174

FORCING IDEALIZED

JINDR LCH ZAPLETAL



http://www.cambridge.org/9780521874267

This page intentionally left blank



CAMBRIDGE TRACTS IN MATHEMATICS
General Editors

B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK, B. SIMON

174 Forcing Idealized






FORCING IDEALIZED

JINDRICH ZAPLETAL
University of Florida

CAMBRIDGE

UNIVERSITY PRESS




CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, So Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521874267

© J. Zapletal 2008

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2008

ISBN-13 978-0-511-37894-2 eBook (NetLibrary)

ISBN-13 978-0-521-87426-7  hardback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9780521874267

Contents

1

2

3

Introduction

1.1  Welcome
1.2 Navigation
1.3 Notation

1.4 Background
Basics

2.1  Forcing with ideals
2.2 Properness
2.3 Topological representation of names

Properties

3.1  Continuous reading of names

3.2 Fubini properties of ideals

3.3 Bounding forcings

3.4  Bounding and not adding splitting real
3.5  Preservation of Baire category

3.6  Preservation of outer Lebesgue measure
3.7  The countable chain condition

38 II) on X} ideals

3.9 Dichotomies

3.10 Games on Boolean algebras

3.11 Ramsey properties

3.12  Pure decision property

page 1

AN LN

33
33
37
42
46
52
58
64
70
78
87
106
111



vi

Contents

4 Examples

6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Ideals o-generated by closed sets
Porosity ideals

Capacities

Hausdorff measures and variations
Pavement submeasures

Analytic P-ideal forcings

Other examples

Operations

5.1
52
53
54
5.5

The countable support iteration
Side-by-side product

Unions of o-ideals

[llfounded iteration

Directed systems of ideals

Applications

6.1
6.2
6.3

Cardinal invariant inequalities
Duality theorems
Preservation theorems

Questions

7.1
7.2
7.3
7.4
7.5

Basics
Properties
Examples
Operations
Applications

Bibliography
Index

113
113
131
143
179
194
209
213

225
225
239
247
252
264

269
269
278
285

303
303
303
304
306
306

307



1

Introduction

1.1 Welcome

This book reports on the state of a research program that I initiated in 1999. It
connects the practice of proper forcing introduced by Shelah [64] with the study
of various o-ideals on Polish spaces from the point of view of abstract analysis,
descriptive set theory, measure theory, etc. It turns out that the connection is far
richer than I dared to imagine in the beginning. Its benefits include theorems about
methodology of forcing as well as isolation of new concepts in measure theory
or abstract analysis. It is my sincere hope that this presentation will help to draw
attention from experts from these fields and to bring set theory and forcing closer
to the more traditional parts of mathematics.

The book uses several theorems and proofs from my earlier papers; in several
cases I coauthored these papers with others. The first treatment of the subject in
[83] is superseded here on many accounts, but several basic theorems and proofs
remain unchanged. The papers [18], [67], [82], [86], and [87] are incorporated into
the text, in all cases reorganized and with significant improvements.

Many mathematicians helped to make this book what it is. Thanks should
go in the first place to Bohuslav Balcar for his patient listening and enlight-
ening perspective of the subject. Vladimir Kanovei introduced me to effective
descriptive set theory. Ilijas Farah helped me with many discussions on measure
theory. Joerg Brendle and Peter Koepke allowed me to present the subject mat-
ter in several courses, and that greatly helped organize my thoughts and results.
Last but not least, the influence of the mathematicians I consider my teach-
ers (Thomas Jech, Hugh Woodin, and Alexander Kechris) is certainly apparent
in the text.

I enjoyed financial support through NSF grant DMS 0300201 and grant GA CR
201-03-0933 of the Grant Agency of Czech Republic as I wrote this book.
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1.2 Navigation

This is not a textbook. The complexity of the subject is such that it is impossible
to avoid forward references and multiple statements of closely related results, and
to keep the book organized in a logical structure at the same time. As a result, the
linear reading of the book will be necessarily interspersed with some page flipping.
This section should help the reader to find the subjects he is most interested in.

Chapter 2 provides the basic definitions, restatements of properness, and basic
implications of properness, such as the reading of reals in the generic extension
as images of the generic point under ground model coded Borel functions. Every
reader should start with this chapter. A sample theorem:

Theorem 1.2.1. Suppose that I is a o-ideal on a Polish space X. The forcing P,
of I-positive Borel sets ordered by inclusion adds a single point x,,, € X such that

gen

a set B belongs to the generic filter if and only if it contains the generic point X,,,.

Chapter 3 investigates the possible finer forcing properties of the forcings of
the form P,. These divide into three basic groups. The first group is that of Fubini
forcing properties, introduced in Section 3.2. These correspond to the classical
preservation properties such as the bounding property or preservation of outer
Lebesgue measure. A sample theorem:

Theorem 1.2.2. Suppose that I is a o-ideal on a Polish space X such that the
forcing P, is proper. The following are equivalent:

1. P, is bounding;

2. for every Polish topology T on the space X that yields the same Borel structure
as the original one, every Borel [-positive set contains a T-compact I-positive
subset.

The second group of properties is entirely absent in the combinatorial treatment
of forcings. These are the descriptive set theoretic properties of the ideals, rep-
resented by the various dichotomies of Section 3.9 and the IT} on 2: property.
The dichotomies are constantly invoked in the proofs of absoluteness theorems and
preservation theorems. The IT} on E: property of ideals allows ZFC treatment of
such operations as the countable support iteration, product, and illfounded iteration,
with a more definite understanding of the underlying issues. A sample theorem:

Theorem 1.2.3. (LC+CH) Suppose that I is a o-ideal generated by a universally
Baire collection of analytic sets such that every I-positive 2; set has an I-positive
Borel subset. If the forcing P, is w-proper then every function f € 2“' in the
extension either is in the ground model or has a countable initial segment which is
not in the ground model.
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Here, LC denotes a suitable large cardinal assumptions, as explained in the next
section.

The third group of properties is connected with determinacy of games on Boolean
algebras. A number of forcing properties can be expressed in terms of infinitary
games of the poset P, which are determined in the definable context. The games
are usually variations on standard fusion arguments, and the winning strategies are
a necessary tool in the treatment of product forcing, illfounded iteration, and other
subjects. A sample application:

Theorem 1.2.4. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper. The following are equivalent:

1. P, preserves Baire category;
2. there is a collection T of Polish topologies on the space X such that I is the
collection of all sets which are T-meager for every topology 7 € T.

Chapter 4 gives a number of classes of o-ideals / for which I can prove that
the forcing P, is proper. While the presentation is based on a joint paper with
Ilijas Farah [18], it is nevertheless greatly expanded. There are two very distinct
groups of ideals in this respect: the ideals satisfying the first dichotomy, whose
treatment occupies almost the whole chapter, and the ideals that do not satisfy the
first dichotomy, treated in Section 4.7. It seems that the former group is much
larger. Its treatment is divided into several very populous subgroups, each treated
in its own section. These subgroups are typically connected with a basic underlying
idea from abstract analysis, such as capacities or Hausdorff measures. The sections
are all very much alike: first comes the definition of the class of ideals, then the
properness theorem, then the dichotomy theorem (which, mysteriously, is always
proved in the same way as properness), then several general theorems regarding
the finer forcing properties of the ideals. The section closes with a list of examples.
A sample result:

Theorem 1.2.5. Suppose that ¢ is an outer regular subadditive capacity on a
Polish space X. Let I = {A C X : ¢(A) =0}. Then:

1. if the capacity is stable then the forcing P, is proper;

2. if the forcing P, is proper and the capacity is strongly subadditive then the
forcing P, preserves outer Lebesgue measure;

3. if the forcing P, is proper and the capacity is Ramsey then the forcing does not
add splitting reals;

4. every capacity used in potential theory is stable.
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My original hope that the idealization of forcings would closely relate to the
creature forcing technology [58] proved to be naive; the symmetric difference of the
two approaches turned out to be quite large. Nevertheless, in several cases I could
identify a precise correspondence between a class of ideals and a class of creature
forcings.

Chapter 5 relates operations on ideals with operations on forcings. The key case
here is that of the countable support iteration which corresponds to a transfinite
Fubini product of ideals, Section 5.1. The other operations I can handle are side-
by-side product with a great help from determinacy of games on Boolean algebras,
the illfounded iteration, which provides a treatment dual to and more general than
that of [43], the towers of ideals which is a method of obtaining forcings adding
objects more complex than just reals, and the union of ideals, which forcingwise is
an entirely mysterious operation. A sample theorem:

Theorem 1.2.6. (LC) Suppose that 1, : o € k is a collection of universally Baire
o-ideals on some Polish spaces such that the forcings P, are all proper and
preserve Baire category bases. Then the countable support side-by-side product of
these forcings is proper as well and preserves Baire category bases. In addition,
the ideals satisfy a rectangular Ramsey property.

Chapter 6 is probably the primary reason why a forcing practitioner may want
to read this book; however its methods are entirely incomprehensible without the
reading of the previous chapters. There are several separate sections.

Section 6.1 contains the absoluteness results which originally motivated the work
on the subject of this book. There are many theorems varying in the exact large
cardinal strength necessary and in the class of problems they can handle, but on
the heuristic level they all say the same thing. If r is a simply definable cardinal
invariant and [ is a o-ideal such that the forcing P, is proper, then if the inequality
r < cov*(I) holds in some extension then it holds in the iterated P, extension.
Moreover, there is a forcing axiom CPA(7) which holds in the iterated P, extension
and which then must directly imply the inequality r < cov*(I). The CPA-type
axioms have been defined independently in the work of Ciesielski and Pawlikowski
[9] in an effort to axiomatize the iterated Sacks model. A sample theorem:

Theorem 1.2.7. (LC) Suppose that  is a tame cardinal invariant and y, < ¢ holds in
some forcing extension. Then R, = x < ¢ holds in every forcing extension satisfying
CPA; in particular it holds in the iterated Sacks model.

Section 6.2 considers the duality theorems. These are theorems that partially
confirm the old duality heuristic: if 7, J are o-ideals and the inequality cov (/) <
add(J) is provable in ZFC, then so should be its dual inequality non (/) > cof(J).
This is really completely false, but several theorems can be proved that rescue
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nontrivial pieces of this unrealistic expectation. This is the one part of this book
where the combinatorics of uncountable cardinals actually enters the computation
of inequalities between cardinal invariants, with considerations involving various
pef and club guessing structures. A sample theorem:

Theorem 1.2.8. Suppose that J is a o-ideal on a Polish space generated by a
universally Baire collection of analytic sets. If ZFC+LC proves cov(l) = ¢ then
ZFC+ LC proves non(l) <R,.

Section 6.3 gives a long list of preservation theorems for the countable support
iteration of definable forcings. Compared to the combinatorial approach of Shelah
[64], these theorems have several advantages: they connect well with the motivating
problems in abstract analysis, and they have an optimal statement. Among their
disadvantages I must mention the restriction to definable forcings and the necessity
of large cardinal assumptions for a full strength version. Many of the preservation
theorems of this section have no combinatorial counterpart. A sample result:

Theorem 1.2.9. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper. Suppose that ¢ is a strongly subadditive
capacity. If P, forces every set to have the same ¢-mass in the ground model as it
has in the extension, then even the countable support iterations of the forcing P,
have the same property.

1.3 Notation

My notation follows the set theoretic standard of [29]. If T is a tree of finite
sequences ordered by extension then [7] denotes the set of all infinite paths through
that tree; if 7 C 2= then [7] is a closed subset of the space 2. If X,Y are
Polish spaces and A C X x Y is a set then the expression proj(A) denotes the
set {xe X:3dyeY (x,y) € A}, for a point x € X the expression A, stands for
the vertical section {y € Y: (x,y) € A}, and for a point y € Y the expression A”
stands for the horizontal section {x € X : (x, y) € A}. For a Polish space X, K(X)
is the hyperspace of its compact subsets with the Vietoris topology and P(X) is
the space of probability Borel measures on X. The expression 5(X) denotes the
collection of all Borel subsets of the space X. The word “measure” refers to a
o-additive Borel measure. If a set function is o-subadditive rather than o-additive
then I use the word “submeasure.” The value of a measure (submeasure, capacity)
¢ at a set B is referred to as the ¢-mass of the set B. A tower of models is a
sequence (M, : a € B) where $ is an ordinal and M,’s are elementary submodels
of some large structure (typically (H,, €) for a suitable large cardinal ) such that
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o € a € B implies M, € M,. The tower is continuous if for limit ordinals « € 3,
Ma = U‘yEC( M‘y

One important deviation from the standard set theoretical usage is the liberal
use of large cardinal assumptions. In order to prove suitably general theorems of
a statement that is easy to understand and refer to, I frequently have to resort to
a large cardinal assumption of this or that kind. There are only three classes of
applications of large cardinal assumptions in this book—absoluteness, determinacy
of (long and complex) games, and definable uniformization. The minimum large
cardinal necessary for each of these applications is different, sometimes difficult
to state, sometimes unknown, and invariably completely irrelevant for the goals
of this book; the existence of a supercompact cardinal is always sufficient. As a
result, I decided to denote the use of large cardinal assumptions by a simple (LC)
preceding the statement of the theorems. For most but not all specific applications
of the general theorems in this book the large cardinal assumption can be eliminated
by manual construction of all the winning strategies and uniformization functions
necessary. At least in one case (the countable support iteration of Laver forcing) I
made an effort to show that the key dichotomy requires a large cardinal assumption,
and in the rather restrictive case of I} on 2} ideals almost all general theorems in
this book are proved in ZFC.

The labeling of the various claims in this book is indicative of their position
and function. Facts are statements that are proved elsewhere, and I will not restate
their proofs. Theorems are quotable self-standing statements, ready for use in the
reader’s work. Propositions are self-standing statements referred to at some other,
possibly quite distant, place in the book. Finally, claims and lemmas appear in
the proofs of theorems and propositions, and they are not referred to in any other
place.

1.4 Background

The subject of this book demands the reader to be proficient in several areas of set
theory and willing to ask at least the basic questions about several other fields of
mathematics. This section sums up the basic definitions and results which are taken
for granted in the text.

1.4.1 Polish spaces

A Polish space is a separable completely metrizable topological space. Many Polish
spaces occur in this book. If 7' is a countably branching tree without endnodes, then
the set [7] of all infinite branches through the tree T' equipped with the topology
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generated by the sets O, = {x € [T] : t C x} is a Polish space, with important special
cases the Cantor space 2“ and the Baire space w®.

I will make use of basic theory of Polish spaces as exposed in [40]. Every
uncountable Polish space X is a Borel bijective image of the Cantor space and it
is a continuous bijective image of a closed subset of the Baire space. A G5 subset
of a Polish space is again Polish in the inherited topology. Every Polish space is
homeomorphic to a G5 subset of the Hilbert cube.

There are several useful operations on Polish spaces. If X, Y are Polish spaces
then their product is again Polish; even a product of countably many Polish spaces
is still Polish. If X is a Polish space then K(X) denotes the space of all compact
subsets of X equipped with Vietoris topology generated by sets of the form {K €
K(X):K C O} and {K € K(X) : KN O # 0} for open sets O C X. The space K(X)
is referred to as the hyperspace of X; it is Polish and if X is compact then K(X) is
compact as well.

It is possible to change the topology on a Polish space to a new, more convenient
one. Whenever X is Polish with topology 7 and B, : n € o are 7-Borel subsets of
X then there is a Polish topology m extending 7 such that the sets B, : n € w are
n-clopen and the n-Borel sets are exactly the 7-Borel sets.

1.4.2 Definable subsets of Polish spaces

Definability of subsets of Polish spaces plays a critical role. Let X be a Polish
space, with a countable topology basis O. Borel sets are those sets which can
be obtained from the basic open sets by a repeated application of countable union,
countable intersection, and taking a complement. This is a class of sets closed under
continuous preimages and continuous one-to-one images, but not under arbitrary
continuous images. Analytic sets are those that can be obtained as continuous
images of Borel sets. This is a class of sets containing the Borel sets, closed under
continuous images, countable unions and intersections, but not under complements.
Every analytic set A C X is a projection of a closed subset C C X x w”, A =proj(C).
Every analytic subset of the Baire space is of the form proj[7]. Every analytic set
whose complement is analytic is in fact Borel.

The paper [20] isolated an important and very practical broad definability class
of subsets of Polish spaces. A set A C 2 is universally Baire if there are class trees
S, T C (2 x Ord)=® which in all set generic extensions project into complementary
subsets of 2® and A = proj[7]. A subset of another Polish space is universally
Baire if it is in Borel bijective correspondence with a universally Baire subset of
the Cantor space. Equivalently, a set is universally Baire if all of its continuous
preimages have the property of Baire.



8 Introduction

In ZFC, analytic sets and coanalytic sets are universally Baire, and consistently
the class of universally Baire sets does not reach far beyond that. However, under
large cardinal assumptions the class of universally Baire sets expands considerably.
If there is a proper class of Woodin cardinals then the class of universally Baire
sets is closed under complementation and continuous images and preimages, and
every set of reals in the model L(R) is universally Baire.

1.4.3 Measure theory

Let X be a Polish space. A submeasure on X is a map ¢ : P(X) — R* such that
¢(0)=0,ACB— ¢p(A) <¢(B) and (U, A,) <2,¢(A,) whenever A, :n € wis
a countable collection of subsets of the space X. The submeasures on uncountable
Polish spaces in this book will always be countably subadditive in this sense. The
submeasure ¢ is outer regular if p(A) =inf{¢p(O): A C O, O open} and it is outer
if ¢(A) =inf{¢(B): A C B: B Borel}.

A Borel measure (or measure) is a map ¢ : B(X) — R* such that ¢(0) =0,
ACB— ¢(A) < ¢(B) and ¢(U,A,) =2,¢6(A,) if A, :n € w is a countable
collection of pairwise disjoint Borel sets. Finite Borel measures on Polish spaces are
outer regular and tight: ¢(A) =inf{¢(0): A C O, O open} =sup{¢p(K): K C A, K
compact}. I will need a criterion for the restriction of a submeasure ¢ on X to
the Borel subsets of X to be a measure. If d is a complete separable metric on
X and for every pair of closed sets C;, C; C X which are nonzero distance apart,
d(CLUC)) = d(Cy)+ ¢(C)) then indeed ¢ B(X) is a measure. In this situation I
will say that ¢ is a metric measure.

A capacity on a Polish space X is a map ¢ : P(X) — R such that ¢(0) =0,
ACB— ¢(A) <¢p(B), (U, A,) =sup, (A,) whenever A, : n € w is a countable
inclusion-increasing sequence of subsets of the space X, and ¢(K) = inf{¢(O) :
K C O, O open} for compact sets K C X. Capacities are tight on analytic sets: if
A C X is analytic then ¢(A) =sup{¢(K): K C A: K compact}.

1.4.4 Determinacy

Infinitary games of all kinds, lengths, and complexities are a basic feature of this
book. The key problem always is whether one of the players must have a winning
strategy, an issue referred to as the determinacy of the game in question.

An integer game of length w is specified by the payoff set A C w®. In the game,
Players I and II alternate infinitely many times, each playing an integer in his turn.
Player I wins if the infinite sequence they obtained belongs to the set A, otherwise
Player II wins. Insignificant variations of this concept, which are nevertheless much
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more intuitive and easier to use, obtain when Players I and II can use moves from
some other countable set in place of w.

Fact 1.4.1. [49] Games with Borel payoff set are determined. [20] If large cardinals
exist then games with universally Baire payoff set are determined.

A significant variation occurs if the players are allowed to choose their moves
from a set larger than countable. Let U be an arbitrary set, and let A C U® be a set.
The associated game with payoff A of length w is played just as in the previous
paragraph. To state the determinacy theorems, consider U“ as a topological space
with basic open neighborhoods of the form O, = {u € U® : t C u} as t varies over
all finite sequences of elements of the set U.

Fact 1.4.2. [48] Games with Borel payoff set are determined. Suppose that large
cardinals exist, A C U® is a Borel set, f: A — X is a continuous function into a
Polish space, and B C X is a universally Baire set. The game with payoff set f~'B
is determined, and moreover there is a winning strategy which remains winning in
all set generic extensions.

Still another significant variation occurs if the moves of the two players come
from some fixed Polish space X and the game has « many rounds for some
countable ordinal «. Consider the space X equipped with the standard Polish
product topology.

Fact 1.4.3. [55] (LC) Games with real entries, countable length, and universally
Baire payoff set are determined.

The games of longer than countable length are important and interesting, and in
this book they appear in Section 6.1. However, I will never be concerned with their
determinacy.

In numerous places I will refer to the Axiom of Determinacy (AD) and its
variations, such as AD+, and the natural models for these axioms.

Definition 1.4.4. The Axiom of Determinacy (AD) is the statement that integer
games with arbitrary payoff set are determined. AD+ is the statement: every set of
reals is co-Borel and games with ordinal entries, length w, and payoff sets which
are preimages of subsets of @ under continuous maps Ord” — w® are determined.

Happily, I will never have to delve into the subtleties of AD+. Let me just state
that it is an open question whether AD is in fact equivalent to AD+. In this book,
I will need the following two pieces of information about the axiom AD+-:

Fact 1.4.5. Suppose that suitable large cardinals exist. Then L(R) E=AD+. If
I' is a class of universally Baire sets closed under continuous preimages then

L(R)(T) |=AD+.
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Fact 1.4.6. [28] (ZF+DC+AD+) If k € O is a regular uncountable cardinal then
there is a set A C w* and a prewellordering < on A of length k such that every
analytic subset of A meets fewer than k many classes.

Here as usual O is the supremum of lengths of prewellorderings of the real
numbers.

1.4.5 Forcing

The standard reference book for forcing terminology and basic facts is [29]. Suppose
that P, < is a partially ordered set, a poset for short. P is separative if for every
p,q € P, if every r < p is compatible with g then p < g. The separative quotient
of P is the partially ordered set of E-equivalence classes on P where pEgq if
every extension of p is compatible with ¢ and vice versa, every extension of ¢ is
compatible with p, with the ordering inherited from the poset P. The separative
quotient of P is separative. The posets considered in this book are generally not
separative, and no effort is wasted on considering their separative quotients instead.
Every separative poset P is isomorphic to a dense subset of a unique complete
Boolean algebra denoted by RO(P).

There is a historically and mathematically important forcing model mentioned
in many places in the book, the choiceless Solovay model. Let me briefly out-
line its construction and basic features. Let k be an inaccessible cardinal and
G C Coll(w, < k) be a generic filter. Consider the submodel M C V[G] con-
sisting of those sets hereditarily definable in V[G] from real parameters and
parameters in the ground model. This is the definition of the choiceless Solovay
model.

Fact 1.4.7. The basic features of the Solovay model include

1. for every real number r € M the model M is a choiceless Solovay model over
the model V [r];
2. every set of reals is a wellordered union of length k = w!' of Borel sets.

The book contains several isolated references to the nonstationary tower forcing
Q; discovered by Woodin [79], recently exposed in [45]. If § is a Woodin cardinal
and G C Qj; is a generic filter, then in V [G] there is an elementary embedding j :
V — M such that the model M is transitive, contains the same countable sequences
of ordinals as V[G], and w} = 6.

On several occasions I will refer to the Gandy—Harrington forcing [47]. This is
the countable forcing of all nonempty lightface =] subsets of some fixed Polish
space. As a countable forcing, this is similar to Cohen forcing; its worth derives
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from its particular representation. The forcing adds a single point in the Polish space
which belongs to all sets in the generic filter. Note that there are some atoms in the
forcing—the 3! singletons, but there are nonatomic parts too. I will also consider
the obvious relativized variations of the Gandy—Harrington forcing.

Throughout the book, I will use a trick commonplace in the literature. Let P
be a partial ordering, M a countable elementary submodel of some large structure
(the structure is typically H, for some large ordinal 6, never to be exactly spelled
out) containing all the necessary information (the objects previously named in the
argument, including the poset P). An M-generic filter g C P is a filter on PN M
which intersects every dense subset of P which happens to be an element of the
model M. The expression M[g]| describes the generic extension of the transitive
collapse of the model M by the collapsed image of the filter g. If x is a P-name
for an element of w® then x/g is the element of w® defined by x/g(n) = m <>
dpegp x(n)=m. The complexity of this operation is recorded in the following
fact.

Fact 1.4.8. Suppose that P is a forcing, x a P-name for an element of w®, and M
is a countable elementary submodel of a large enough structure. The set A= {y €
w®:3gC MNP gis M-generic and y = x/g} is Borel.

Proof. Let Q C r.o.(P) be the complete Boolean algebra generated by the name
X. Then A={yew®:3gC MNQ g is M-generic and y = x/g}. Let N by the
transitive collapse of the model M, and consider the Polish space X of all N-generic
filters on 7r(Q) with the usual topology. Then A is the image of the space X under
the continuous injection g — x/g, and so A is Borel by a classical theorem of Lusin
[40], 15.1. O

1.4.6 Absoluteness

The universally Baire sets (in particular, the analytic and coanalytic sets) have a
natural interpretation in forcing extensions. Suppose A C 2“ is universally Baire,
as witnessed by trees T, S C (2 x Ord)~® which project to complements in all set
forcing extensions and A = proj[T]. If V[G], G C P is an arbitrary set forcing
extension then A" (], the interpretation of the set A in the model V [G], is defined
as (proj[T])V1¢l. A wellfoundedness argument shows that the interpretation does
not depend on the choice of the witness trees 7, S. I will use this feature to
denote by A the P-name for the interpretation of the set A in the extension,
and when speaking about this extended interpretation, I will frequently omit the
superscript in the expression AVICl. This usage is commonplace throughout the
book.
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The following facts connecting the validity of certain sentences in generic
extensions and the ground model are indispensable throughout the book.

Fact 1.4.9. (Analytic absoluteness) Suppose that M is a transitive model of set
theory, X € MNw® is a sequence of parameters, and ¢ is a 3. formula with free

variables. Then ¢(X) holds if and only if M |= ¢(X) holds.

This is typically used in a situation where M is a generic extension of the transitive
collapse of some countable elementary submodel of a large enough structure.

Fact 1.4.10. (Shoenfield absoluteness) Suppose that M is a transitive model of set
theory containing all countable ordinals, X € M Nw® is a sequence of parameters,
and ¢ is a 3} formula with free variables. Then ¢(X) holds if and only if M |= ¢(X)
holds.

This is typically used in a generic extension with M equal to the ground model.

Fact 1.4.11. [79] (Universally Baire absoluteness) (LC) Suppose that Aisa finite
sequence of universally Baire sets and M is a countable elementary submodel of
some large structure containing A. Suppose that M[g] is a generic extension of the
transitive collapse of the model M and X € w is a finite sequence of parameters
in the model M[g]. Suppose that ¢ is a formula quantifying over reals only. Then
& (%, A) holds if and only if M[g] = (%, A) holds.

Fact 1.4.12. [45] (2% absoluteness) (LC+CH) Suppose that Aisa finite sequence
of universally Baire sets and ¢ is a formula of the form IB C w®  where
quantifies only over real numbers. If qS(;X) holds in some generic extension, then
$(A) holds.

1.4.7 Cardinal invariants of the continuum

The original motivation for the work contained in this book were the problems
associated with comparison of cardinals defined in various ways from Polish spaces.
I use [2] as a canonical reference.

Among the cardinal invariants that frequently occur in this book, let me quote
a =the least size of a maximal almost disjoint family of subsets of w, b = the least
size of modulo finite unbounded subset of w®, ¢ = the size of the continuum, d = the
least size of modulo finite dominating subset of w®.

Given a o-ideal I on a Polish space X, I will consider the cardinals cov(l) =the
least number of sets in the ideal I necessary to cover the whole space, non(/) =the
smallest possible size of an /-positive set, add(l) = the smallest size of a family
of I-small sets whose union is not /-small, and cof (/) =the smallest possible size



1.4 Background 13

of a basis for the ideal /. It will be of advantage to consider starred variations
of these cardinals: cov*(/) =the least number of sets in the ideal I necessary to
cover some Borel /-positive set, non*(/) = the least cardinal such that every Borel
I-positive set contains an /-positive subset of this size, and similarly for add*
and cof*.






Basics

2.1 Forcing with ideals

2.1.1 The key definition

Definition 2.1.1. Suppose that X is a Polish space and I is a o-ideal on the space
X. The symbol P, denotes the partial order of I-positive Borel sets ordered by
inclusion.

I will always tacitly assume that the Polish space X is uncountable and the ideal
I contains all singletons. There are several cases in which this will not hold, and
they will be pointed out explicitly. Note that the poset P, depends only on the
membership of Borel sets in the ideal /, but it will frequently be of interest to look
at the membership of non-Borel sets in /.

It is clear that the partial order P, is not separative, and its separative quotient is
the o-algebra B(X) mod I. There is exactly one property all partial orders of this
kind share.

Proposition 2.1.2. The poset P, adds an element x,,, of the Polish space X such
that for every Borel set B C X coded in the ground model, B € G iff x,,, € B.

gen

Proof. It is easy to see that the closed sets contained in the generic filter form a
collection closed under intersection which contains sets of arbitrarily small diameter.
A completeness argument shows that such a collection has a nonempty intersection
containing a single point, and x,,, is a name for the single point in the intersection.
Another way to describe the generic point is to say that it is the unique element in
all basic open sets in the generic filter.

By induction on the complexity of the Borel set B prove that B x,,, € B. For
closed sets this follows from the definition of the name x,,,. Suppose that B=J, C,
and we already know that each set C, forces X, € C,. Whenever D C B is an
I-positive Borel set then for some number n, DNC, is I-positive, DNC, C C,

15
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and DNC, X, € C, C B. By the genericity, B Xyon € B. Now suppose that
B =), C, and we already know that each set C, forces x

gen

€ C Then for every

number n, B X, € C, since B C C,. In other words, B Xoon €M, C, = B as
desired. Since the Borel sets in Polish spaces are obtained from closed sets by a
repeated application of countable union and intersection, the induction is complete.
Now it is not difficult to prove that C  x,,, € B iff C\ B € 1. On one hand,

if C\ B €1 then every strengthening of the condition C is compatible with B and
the previous paragraph applies to show that C  ,,, € B. On the other hand, if

C\B ¢ I, then C\ B C C is a condition strengthening C which forces ,,, € C\B
by the previous paragraph again, in particular x,,, ¢ B.
The proposition follows. O

Note the key role played by the closure of the ideal / under countable unions in
the argument. An important observation is that the forcings of the form P, can be
presented in various forms.

Definition 2.1.3. Suppose I is a o-ideal on a Polish space X. A different presen-
tation of the poset P, is a Borel bijection f: X — Y between X and another Polish
space Y, the o-ideal J on the space Y given by A € J <> f~'A € I, and the resulting
poset P;.

If f,J constitute a different presentation of the forcing P; then the function f
extends to a bijection f P, — P, given by f (A) = f”A. Note that one-to-one Borel
images of Borel sets are Borel by a theorem of Lusin [40], 15.1, and therefore the
image of the function f indeed consists of Borel sets.

While a given forcing P, can have many presentations, it is true that some
presentations are more natural than others. In fact, I will frequently derive some
forcing properties of the poset P, from the topological features of a certain natural
presentation. The forcing properties of P, then persist through different presentations
while the topological features may not. Note that there is a Borel bijection between
any two uncountable Polish spaces, and so the nature of the Polish space does not
restrict the kind of partial orders that can live on it. It may be occasionally difficult
to decide whether a given presentation is the simplest possible one or the one most
suitable to study.

2.1.2 Representation theorems

The study of the partial orders of the form P, does entail a certain restriction in
generality, but not too great a restriction. The following results show that many
forcings encountered in practice can be presented as P, for a suitable o-ideal / on
a Polish space.
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Fact 2.1.4. [68] Suppose that B is a o-complete countably o-generated Boolean
algebra. Then there is a o-ideal I on the Cantor space such that B is isomorphic

to B(2®) mod 1.

Corollary 2.1.5. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion, such that for every tree T € P and every node t € T the
tree T tisin P as well. Then P is in the forcing sense equivalent to a forcing of
the form P,.

Proof. If G is a name for the generic filter write X,,, for the generic real: x,,, =

UNG €2°. Let P C B be the complete Boolean algebra generated by the poset P.
I will show that the o-algebra C C B o-generated by the elements b, = |7 C X,,,| :
t € 2= is dense. By the previous fact the algebra C is isomorphic to some P; and
at the same time poset P is equivalent to it.

It is enough to show that for every tree T € P it is the case that 7' = ¢; where
¢r = Nu Viernnr b,. It is clear that T < ¢;. And if ¢; £ T then there would be a
tree S ¢ T such that S <c¢; and anode s € S\ T of length n € . Then S se P

and clearly S s x n & T, contradicting the assumption that § < cr. O

gen

There is frequently a more direct way of deriving the o-ideal from the tree
forcing in question.

Proposition 2.1.6. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion such that for every tree T € P and every node t € T the
tree T tisin P as well. Suppose moreover that P has the continuous reading of
names. Then the collection I = {A C 2 : A analytic and for no condition T € P
it is the case that [T] C A} is a o-ideal and the forcing P is in the forcing sense
equivalent to P,.

Here the continuous reading of names is the statement that for every condition
T € P and every name f € w* there is a condition S C P, natural numbers ny €
n, € ... and a function g: J,,(SN2") — w such that for every number m and
every sequence 7 € SN2 it is the case that S ¢ f(s) = g(7). This is a property
frequently found in practice; consult Section 3.1 for a topological restatement of it.

Proof. Suppose that A =|JA, : n € w are analytic sets such that A contains all
branches of some tree T € P. I will produce a tree S C T and a number n € w such
that all branches of the tree S belong to the set A,. This will prove the proposition.

Note that the forcing P adds a canonical generic point X, € 2= which is a

branch of all trees in the generic filter. Use a Shoenfield absoluteness argument to
show that T x,,, € A and therefore there is a condition 7" C 7 and a number 7

such that 7" x,,, € A,.
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Let U C (2 x @)= be a tree such that A, = proj[U]. There is a name f for an
element of the Baire space @ such that 7" (X,,,, f) forms a branch through the

tree U. Use the continuous reading of names to find a tree § C 7", natural numbers
ny € n, € ...and a function g:J,,(SN2") — w such that for every number m
and every node r € SN2" the condition S 1 forces fin) = g(7). Then for every
branch b through the tree S it must be the case that b together with the function
m+> g(b n,) forms a branch through the tree U and therefore b € A,. I have just
proved that [S] C A, as desired. O

Partial orders for adding a real which do not consist of trees and the previous
proposition cannot be applied to them are fairly rare in the practice of definable
forcing. Nevertheless, many of them can be obtained through the methods of this
book. The following is a characterization theorem which does not depend on the
specific combinatorial form of the forcing.

Definition 2.1.7. A forcing P is a universally Baire real forcing if

1. its conditions are elements of some Polish space Y;

2. there is a name X, for an element of some Polish space X;

3. there is a universally Baire set A C X x Y such that for every condition p € P
P peGo (i, p)eA:

4. for every basic open set O C X there is a condition p € P such that P X,,, €
0« pedG.

Proposition 2.1.8. /83] (LC) Every proper universally Baire real forcing is in the

forcing sense equivalent to one of the form P,.

Proof. 1 claim that / = {B C X : B universally Baire and P X, & B} is the
o-ideal with the required properties. It is clear that / is closed under countable
unions. Write ygm for the P,-name for its generic point in the space X, and let G
be the P,-name for the set {p € P : (Veens P) € A}. Tt will be enough to show that
P, GcPisa V-generic filter; the proposition then follows by standard abstract
forcing considerations. Suppose that B € P, is a condition, p, g € P are conditions
such that B p,§ € G and D C P is open dense. I must find a condition B € P,
and a condition r € P such that B C B, r<p,q,r€D,and B i€ G.

Let M be a countable elementary submodel of a large enough structure, let Z be
the Polish space of all M-generic filters on P with the usual topology, let f: Z — X
be a map defined by f(g) = %,,,/g. This map is continuous by (4) and injective by
(3) of the definition of universally Baire real forcing. Thus the range f”Z is Borel
by a classical theorem of Luzin [40], 15.1. Write C = BNrng(f) and for every
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condition r € PN M write C, = CN f”0, and C, = C\ f"0,, where O, is the open
set of all filters in the space Z containing the condition r. Now,

L]

C ¢ I. To see this, note that as B ¢ I, there must be a condition r € P such that
r € B. By elementarity, there must be such a condition in the model M.
€ C, and so C ¢ [ as required.

x gen

Any M-master condition below r forces x,,,

* For every condition r € PNM, C, 7e G and C, 7 ¢ G if these sets are
I-positive. To see this, note Vx € C, M[x] |= (x,r) € A, by an absoluteness
argument Vx € C, (x,r) € A, and by the universally Baire absoluteness this
statement will still be true in the P, extension, in particular C,  ,,, € C, and

<).]gen’ ;.> € A
. Cp, Cq e [ and so Cp N Cq ¢ 1. This follows from the previous item.

e The sets C, : r € DN M is a lower bound of p, g cover the /-positive set Cp N Cq,
therefore one of them is /-positive, and C, = B’ C B is the required condition.

This completes the proof. O

Example 2.1.9. Consider the Sacks forcing P of all perfect binary trees ordered
by inclusion. Corollary 2.1.5, Proposition 2.1.6 and Proposition 2.1.8 all can be
used to show that P = P, for some o-ideal /. None of this abstract reasoning can
replace the information obtained from the perfect set theorem: the o-ideal [/ is the
ideal of countable subsets of 2¢.

2.1.3 Generalizations

There are several ways in which the previous ideas can be generalized, each of
them important and deserving a thorough discussion.

First, one can consider forcing with analytic (projective, universally Baire, etc.)
sets positive with respect to a given o-ideal /. For most of the forcings considered
in this book it will be the case that every [-positive universally Baire set has an
I-positive Borel subset, and so the poset P, is dense in all of these variations, and
under large cardinal assumptions it is dense in the poset (P(X) mod I)*® — refer
to Section 3.9 for a thorough discussion. Nevertheless, I will have to enter situations
in which this property has not been verified yet, and then the following definition
and proposition will be important.

Definition 2.1.10. Suppose that I is a o-ideal on a Polish space X. The symbol
Q, stands for the poset of I-positive analytic sets ordered by inclusion.
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Proposition 2.1.11. Suppose that the o-ideal I is generated by coanalytic sets.
There is a Q;-name X,,, for an element of the Polish space X such that an analytic
set belongs to the generic filter if and only if it contains the point X, in the
extension.

Proof. 1 will handle the case of X = 2¢, the other spaces being Borel bijective
images of 2“. As in the P; case, let X,,, be the unique point in the intersection of
all basic open sets in the generic filter.

First note that any set A € Q, forces x,,, € A. To see this, let T C (2 x 0)= be
a tree such that A = proj[7], let G C Q, be a generic filter containing the condition
A and in the generic extension let S C w= be the tree consisting of all nodes
t € = such that proj[T (X, |[tf].1)]€ G. Clearly 0 € S and it will be enough
to show that S contains no terminal nodes. Well, if r € S is a node and B C A is
a condition forcing 7 € S then strengthening the condition B if necessary I may
assume that there is a binary sequence s such that B C proj[T (s, )]. By the
o-additivity of the ideal / there must be a number n € w and a bit b € 2 such that
C=BNproj[T (s~b,t"n)] & 1. Clearly, C i~# € § as required.

Second, if A,Be Q, are setsand A %, € Bthen ANB¢I:if ANB €I then
let C € I be a coanalytic set including it as a subset, and A\ C € Q, is a condition
which forces the point ¥, into itself by the previous paragraph, and by the analytic
absoluteness it forces x,,, ¢ B, contradicting the assumption. But now ANB € Q,

is a common lower bound of A, B, forcing B € G. O

It is remarkable that in all cases when I need to use the forcing Q, it is only to
show that in fact P, C O, is dense. However, the statement that every /-positive
analytic set has an /-positive Borel subset seems to be interesting in its own right.
See Section 3.9 on this and similar dichotomies.

The second way to generalize the forcings of the form P, is to consider spaces
of the form Y* with an uncountable set Y and the standard tree topology instead of
Polish spaces X. For a sequence 1 € Y= let O, be the basic open set determined
byt,0,={xeY®:tCx}.

Proposition 2.1.12. Suppose that Y is a set and I is a o-ideal on the space Y
with the following closure property:

(*) if A, :t € Y=° are sets in the ideal with A, C O,, then |J, A, € I.

There is a name X,,, for an element of the space Y such that in the generic

extension by the poset P,, a Borel set B C Y belongs to the generic ultrafilter if
an only if x,,, € B.

gen

Proof. Let x,,, =U{t € Y=?: 0, € G} where G is the P,-generic filter. It is clear
that the sequences in the union are linearly ordered. Moreover if n € w is a number
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and B € P, is a condition the one of the sets BN O, : t € Y" is I-positive by the
property (*) and forces the corresponding sequence into the union defining the
sequence X,,,. Thus P, X, € Y*.

Before the remainder of the proof note that similarly to Borel subsets of 2 the
Borel subsets of Y have natural interpretations in every generic extension which
does not depend on the particular Borel definition of the set.

By induction on the complexity of the Borel set B € P, I will show that B
Xoen € B, where B denotes the interpretation of the Borel set B in the extension.
Suppose first that B is open. If C C B is any condition then by the property (*) there
must be a sequence r € Y= such that O, C Band CNO, ¢ I. Clearly CNO, C C
is a condition forcing X, € B and so B Xoen € B. The remaining steps in the
induction are the same as in Proposition 2.1.2.

Now suppose that B, C € P; are sets such that B X, € C. I must show that
BN C ¢ I; then BN C is the required lower bound of the conditions B, C. Suppose
BNC e 1. Then B\ C is a condition in P, which by the previous paragraph forces

X,,, into B\ C and outside of the set C, contradicting the choice of the set B. [J

Example 2.1.13. Namba forcing [54]. Let ¥ = w, and let I be the ideal of sets
B C Y such that there is a map f:Y=“ — w, such that B C B, = {y € Y*:
3*n y(n) € f(y n)}. It is not difficult to see that the ideal I has the closure
property (*) from the previous proposition. I will show that a Borel set B C Y
is I-positive if and only if it contains all branches of some Namba tree, that is an
infinite tree 7 C Y=“ such that all but finitely many of its nodes have N, many
immediate successors. This means that the Namba forcing is in a natural sense
isomorphic to a dense subset of the poset R,.

Let B C Y“ be a Borel set, and consider the game G between Player I and II.
Player I produces a sequence of ordinals «, € w, : n € w and Player II in response
produces a sequence of ordinals 8, € w, : n € w. Moreover Player II must raise a
flag at some round m and for all n > m it must be the case that «, € §8,. Player
IT wins if his sequence of answers belongs to the Borel set B. The payoff set of
the game G is Borel and therefore determined by Fact 1.4.2. I will be finished if
I show that Player I has a winning strategy iff B € I and Player II has a winning
strategy iff B contains all branches of some Namba tree.

Suppose first that Player I has a winning strategy o. For every sequence t € Y ~w
there are at most || many ways how the play could reach a position in which Player
I followed his strategy o and Player II produced the sequence ¢, depending on where
and if Player II decided to raise the flag. Let f(¢) = maximum of all the possible
answers by the strategy o in that position. It is easy to see that B C B;.

On the other hand, suppose that Player II has a winning strategy o, and let ¢ be
some sequence for which there is a position in which Player II followed his strategy
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o, produced the sequence ¢ and raised the flag at that point. It is easy to see that
then [7] C B for some Namba tree T with trunk 7.

Another generalization is to consider spaces X” for a Polish space X and an
uncountable set ¥ with the standard product topology, a o-ideal / on it and a partial
order R, of I-positive Baire sets ordered by inclusion. Here the Baire sets are those
subsets of the space X” obtained from basic open sets by countable repetition of
countable unions, countable intersections, and complementation. The basic open
sets are those of the form {X € X¥ : X(y) € O} for some basic open set O C X
and an index y € Y. Such partial orders are the results of the countable support
iterations or products or the tower technology of Section 5.5. Let me include the
basic property here, and defer the detailed treatment to that section.

Proposition 2.1.14. There is a R,;-name }gm for a function from Y to X such that a
Baire set A C XY belongs to the generic filter if and only if it contains the function
X

gen*

Still another generalization is to consider partial orders P(Y) mod I for a
suitable set Y and an ideal I on it. These partial orders lack the basic feature of the
previously considered cases: the canonical generic object as an element of some
ground model coded simple space. The case ¥ = whas been extensively studied
[15], [74], [87]- The case Y = w, and I = the nonstationary ideal has been the subject
of the precipitousness and saturation considerations. The general case of a o-ideal
I'has been studied by Gitik and Shelah [24], [25] who showed that the resulting
partial orders cannot be in the forcing sense equivalent to most of the forcings of
the form P, where J is a o-ideal on a Polish space.

2.1.4 Basic definability issues

This book deals with suitably definable o-ideals on Polish spaces, with very few
exceptions. The demands on definability vary depending on the large cardinal
axioms one is willing to use. This section spells out several definitions used
throughout the book.

In the presence of large cardinal axioms such as the existence of a supercompact
cardinal, the following definability restriction is used.

Definition 2.1.15. A o-ideal I on a Polish space X is universally Baire if for every
universally Baire set A C 2% x X the set {y € 2“ : A| € I} is universally Baire.

Without large cardinals more sophisticated notions of definability and absoluteness
are needed.
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Definition 2.1.16. A o-ideal I on a Polish space X is ZFC-correct if it is defined
by a formula ¢ with a possible real parameter r (so that = {A C X : ¢p(A,1)})
and every transitive model M of a large fragment of ZFC containing r is correct
about 1 on its analytic sets (so that if s € M is a code for an analytic set A, then

b(Ag, 1) & M= ¢(A, 7).

Note that this definition speaks really about the formula defining the ideal rather
than the ideal itself. It turns out that nearly all definitions of o-ideals considered
in this book are ZFC-correct in this sense. This assertion is never completely
trivial though and its proof is surprisingly close to the determinacy dichotomy and
properness arguments used for other purposes.

Example 2.1.17. The ideals associated with Hausdorff submeasures as in Defini-
tion 4.4.1 are ZFC-correct. To see this, fix a Hausdorff submeasure ¢y on a Polish
space X with the associated o-ideal I generated by sets of finite {/-mass. Given
an analytic set A C X let C C X x w®” be a closed set which projects to A, and
consider the integer game G(C) as in the proof of Theorem 4.4.5. Player I has a
winning strategy in the game G(C) if and only if A € I. Now given a transitive
model M containing the set C, M |= G(C) is determined. The winning strategy the
model M finds is still a winning strategy in V' since the nonexistence of a successful
counterplay is a wellfoundedness statement. Thus the statement A € [ is absolute
between M and V.

A measure-theoretic counterpart of the above definition is the following.

Definition 2.1.18. A submeasure y on a Polish space X is ZFC-correct if it is
defined by a formula ¢ with a possible real parameter r (so that Y(A) < q <>
d(A, q, r) for every set A C X) and every transitive model M of a large fragment
of ZFC evaluates -mass correctly (so that if s € M is a code for an analytic set
A, then Yy(A,, r, q) < M = (A, r, q) for every rational number q).

Example 2.1.19. Every pavement submeasure defined from a countable set of Borel
pavers is ZFC-correct. Let ¢ be the pavement submeasure on a Polish space X, let
A C X be an analytic set, let C C X x w® be a closed set projecting to A, and let
g be a rational number. )(A) < ¢ if and only if there is a rational number ¢’ < ¢
such that Player I has a winning strategy in the game G(C, ¢’) as in the proof of
Theorem 4.5.6. As in the previous arguments, whenever M is a transitive model
containing the set C then it finds a winning strategy for one of the players in the
games G(C, ¢') for all rationals ¢’, and these winning strategies of the model M
stay winning in V. Thus M evaluates the y-mass of the set A correctly.

Example 2.1.20. Every outer regular strongly subadditive capacity is ZFC-correct.
It is possible to supply the same argument as above using the integer game from
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Theorem 4.3.6, however here I can use an argument which at least on the surface
has no game theoretic content. Let ¢ be a strongly subadditive capacity on a Polish
space X, determined by its values on the sets from some fixed countable basis
O closed under finite unions. The key fact: Fact 4.3.5, showing that the capacity
¢ is simply derivable from its values on basic open sets. Now let A C X be an
analytic set, a projection of a closed subset C C X x w®. Let M be a transitive
model containing the code for the set C, and let g > O be a rational number. By
the definitions, if M = (A) < ¢ then M =30 C X O is open, (0) < ¢ and
A C O, this set O maintains these properties in V by a wellfoundedness argument,
and therefore even in V, ¢p(A) < ¢. What happens though if M = /(A) > ¢? The
key fact mentioned above implies that M |= ¢ is a capacity, and by the Choquet’s
capacitability theorem M = 3K C X x w® K compact, K C C and {(proj(K)) > q.
Now the set K maintains these properties in V' by a wellfoundedness argument.
Note that p(K) C X is a compact set, and therefore its ¢-mass is the infimum of
#(0):0 € O,K C 0, a computation which works the same in the model M as in
V by a wellfoundedness argument again.

The ZFC-correctness is a useful tool in a number of situations such as in the
statement of ZFC-provable preservation theorems. Nevertheless, I will need a more
sophisticated and more restrictive notion as well. Unlike the ZFC-correctness, it
can be stated without a reference to models of ZFC and it has been studied in
descriptive set theory for at least a century.

Definition 2.1.21. A o-ideal I on a Polish space X is I1} on 2} if for every analytic
set A C 2% x X the set {y €2 : A € I} is coanalytic.

Unlike the ZFC-correctness which places no significant restrictions on the forcing
properties of the poset P,, the I} on 2} condition does have important forcing
consequences — its associated forcing can never add dominating reals. This notion
is studied in detail in Section 3.8. Here, let me just include two connections with
ZFC-correctness.

Proposition 2.1.22. If a o-ideal I on a Polish space X is provably I} on 2} then
it has a ZFC-correct definition.

Proof. Let A C 2° x X be a universal analytic set and C C 2 be a coanalytic set
such that ZFC proves Vy € 2“ A, € [ <> y € C. Every transitive model M evaluates
the membership of a point y € 2“ in the set C correctly by a wellfoundedness
argument. Thus M evaluates the membership in the ideal [ correctly as well.  [J

Proposition 2.1.23. Every ZFC-correct ideal is A} on E:. Every ZFC-correct
submeasure is A on 3.).
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Proof. Let I be a ZFC-correct o-ideal on a Polish space X and let A C 2“ x X be
an analytic set. I must show that the set {y € 2*: A €I} is A} on 2}. To see this
note that A, € I <>for every countable model M containing the real y, either M is
illfounded or M= A, el, and A € I <>for every countable model M containing
the real y, either M i is illfounded or M= A &1

Let ¢ be a ZFC-correct submeasure on a Polish space X, let € € R" be a
real number, and let A C 2 x X be an analytic set. I must show that the set
{ve2“:¢(A,)) <e}is Al on E}. This is proved in the same way as in the previous
paragraph. O

2.2 Properness

The following definition has been central to the development of the forcing theory
in the last several decades.

Definition 2.2.1. [64] A forcing notion P is proper if for every set X and every
stationary set S C [X]™ it is the case that P S is stationary. Another equivalent
restatement is the following. The forcing P is proper if for every large enough
cardinal 6, every countable elementary submodel M < H, containing P and every
condition p € PN M there is an M-master condition q < p; that is, a condition q
forcing GN M meets every dense subset of P which is an element of M, where G
is the name for the P-generic filter.

It turns out that in the context of definable forcing this is exactly the right notion.
In its presence there is a rich structure and extensive theory, in its absence there is
collapse. I will first restate it in the terms of o-ideals:

Proposition 2.2.2. Suppose that I is a o-ideal on a Polish space X. The following
are equivalent:

1. the forcing P, is proper;

2. for every countable elementary submodel M of a large enough structure and
every condition B € MNP, the set C = {x € B: x is M-generic} is not in the
ideal 1.

Here, a point x € X is M-generic if the collection {A € P,NM: x € A} is a filter
on P, N M which meets all open dense subsets of the poset P, that are elements of
the model M.

Proof. This is just a restatement of the definitions. First note that the set C is Borel:
C=BNM{U(DNM):De M is an open dense subset of the poset P,}. If C € 1
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then B %, ¢ C and so GNM is not M-generic by the definition of the set C;
therefore there can be no M-master condition belqw the set'B. On the other hand,
if C ¢ I then C € P, is a condition forcing ,,, € C and so GNM is M-generic by

the definition of the set C; thus C is the required master condition. O

It is frequently a difficult job to decide the status of properness of a forcing of the
form P,, and a large part of this book is devoted to just that. Let me here include
just three comparatively simple examples.

Example 2.2.3. Let A C 2 be an analytic non-Borel set and let / be the o-ideal
generated by Borel sets B C 2 such that the set AN B is Borel. This is a nontrivial
o-ideal, the forcing P, is not proper though. Let M be a countable elementary
submodel of a large structure and consider the Borel set B = {x € 2* : x is M-
generic}. I will show that the set AN B is Borel, so B € [ and P, is not proper.
Suppose x € B is a point. We have x € A iff M[x] = x € A (by analytic absoluteness)
iff3ICe P NM xe CAC %, € A (by the forcing theorem) iff x € J{C € P,\ M :

C Xy, € A}. Thus AN B is Borel as desired.

Example 2.2.4. Let X denote the Hilbert cube [0, 1]*. It is a fundamental result
of infinite-dimensional topology that X cannot be covered by countably many
zero-dimensional sets [76], 4.8.5. Let I be the o-ideal on X generated by the zero-
dimensional sets. The forcing P, adds a countable sequence ?cge,, of real numbers in
[0, 1]. Tt turns out that the forcing collapses ¢ to ®,. To see this, note that for every
real r € R the set A, C X which is the complement of the product of infinitely many
copies of the set {r+¢: g € Q} is zero-dimensional; thus P, X, ¢ A,. Restated,
in the generic extension, for every ground model real r there is a natural number n
and a rational ¢ such that ?cgen (n) —q = r. It follows that the set of ground model

reals must be countable.

Example 2.2.5. Let / be the o-ideal of countable subsets of 2“. Let M be a
countable elementary submodel of a large enough structure and let B e M NP, be
a condition. To prove the properness of the forcing P, it is enough to show that the
set of M-generic points in the set B is uncountable. Let y, : n € w be a countable list
of infinite binary sequences; I must produce an M-generic sequence x € B which
is not on the list. Let D, : n € w be an enumeration of all open dense subsets of
P, that are elements of the model M. By induction on n € w build a descending
chain B= B, D B, D ... of conditions in P, N M such that for every number n € w,
B, ,eDandy,¢B,,. To construct B, , first note that since B, is uncountable
there must be a basic open set O such that y, ¢ O and B, N O is still uncountable.
Then use the elementarity of the model M to find a condition B,,; C B,N O in
the set D, N M. By Proposition 2.1.2, there is a point x € (), B,. A review of the
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construction shows that this is the desired M-generic point in the set B which is
not among the points y, : n € w.

It is possible to formulate a host of various conjectures stating that more or less
every forcing of the form P, is proper. Most of them will be easily refuted by the
following proposition. This is the richest source of ideals for which the quotient
forcing is not proper.

Proposition 2.2.6. Suppose that I is a o-ideal on a Polish space X. The following
are equivalent:

1. P, adds a countable set of ground model reals which is not covered by any
ground model countable set;

2. I =,1, where I, : n € w is an inclusion decreasing nonstabilizing sequence
of a-ideals, that is for every Borel set B & I and every number n € w, {C C B:
Cel,C Borel} #{CCB:Cel, C Borel}.

In particular, in the presence of CH the second item is equivalent to the forcing P,
collapsing X, and in the presence of CH and large cardinals (see below) the second
item is equivalent to the improperness of the forcing P, below every condition. Note
that this gives a characterization of properness which does not mention forcing at
all. One peculiar feature of this proposition is that using it I can produce a variety
of o-ideals I such that the forcing P, is not proper, but I do not know how to prove
in ZFC that they collapse any cardinals, see Question 7.1.2.

Proof. In (1)—(2) direction, choose a name f for a function from ® to R whose
range is forced not to be included in any ground model countable set. For every
number n € w let I, be the o-ideal generated by I and all Borel sets B for which
there is a countable set a C R such that B Vi e n f(i) € a. It is immediate that
the o-ideals I, : n € w are as required in the second item.

For the (2)—(1) direction, suppose I =(),/, as in (2). Note that the sets
P,N1I,:n € w are all dense in the poset P; by the nonstabilizing property. Let
A, C P;NI, be a maximal antichain for every number n € w and in the generic
extension consider the set a = {B€ G:3n € w B € A,}. It will be enough to show
that no condition forces the set a to be covered by a countable ground model set,
and to show this, it will be enough in turn to prove that for every condition C € P,
there is a number n € w such that C is compatible with uncountably many elements
of the maximal antichain A,. And indeed, there must be a number n such that
C ¢ I, and then for every countable collection b C A, the set |Jb is I,-small and
the set C\ |Jb is I,-positive, and so a condition in the forcing P, avoiding all the
conditions in the set b. O
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As long as it seems to be difficult to verify the status of properness for a given
forcing of the form P,, a logician will attempt to tackle the two related ques-
tions: the complexity of the notion of properness and its absoluteness for definable
partial orders. The main obstacle to their solution is the quantification over all
countable elementary submodels of a large structure in the definition of proper-
ness. A forcing practitioner knows that in all known definable cases, the proof
of properness goes through various fusion arguments and does not really con-
sider the enormous structure H,. I cannot prove a completely general theorem
to this effect, even though in certain classes of forcings there is some infor-
mation, see Sections 3.10.9 and 3.10.10. The following proposition isolates the
strongest statement that I know to be equivalent to properness for all definable
forcings.

Proposition 2.2.7. (LC) Suppose that P is a universally Baire forcing. Exactly one
of the following is true:

1. P is proper;
2. there is a condition p € P which forces the set ([P]™)" to be nonstationary.

This is an immediate corollary of the determinacy results in Section 3.10.2.

Corollary 2.2.8. (LC+ CH) If P is a universally Baire forcing on the reals then
either P is proper or else P collapses R, below some condition.

It is impossible to remove the assumption of CH in this corollary. Consider
the following example: If ¢ is a Cohen real then by a result of Gitik the set
A ={a€[w,]™:a¢ V}is stationary in the extension V [c]. Let Q be the forcing
shooting a closed unbounded set through the set A with countable conditions. It
is not too difficult to show that if 8} = w, then the iteration P = Cohen*( can
be coded as a universally Baire forcing. Certainly P preserves 8, and P is not
proper.

Corollary 2.2.9. (LC+ CH) Suppose that P is a proper universally Baire forcing
on the reals. Then (the forcing with the definition of) P is proper in all set generic
extensions.

Proof. Suppose for contradiction that in some set generic extension V [G] the
forcing P is not proper. In a further o-closed forcing extension V[G][H], CH
holds and PV = PVIGIIH] js still not proper, and so by the previous corollary it
collapses 8, below some condition. This is a 37 statement with the universally Baire
parameter P, and by the %7 absoluteness 1.4.12, it must hold in V, contradicting
the assumption of the properness of P in V. O
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I do not know if I can remove the CH assumption here, or perhaps the large
cardinal assumption at the price of reducing the complexity of the partial orders to
which the theorem applies.

2.3 Topological representation of names

The key feature of proper forcings of the form P, is the way of topologizing the
names for reals and Borel sets described in the following propositions.

Proposition 2.3.1. Suppose that I is a o-ideal on a Polish space X such that
the forcing P, is proper. Suppose Y is a Polish space, B € P, is a condition and
B yeYisa point. Then there is a condition C C B in the forcing P, and a Borel

function f:C — Y such that C y= f()'cgen).

Proof. Fix a countable base O for the topology of the space Y. Let M be a
countable elementary submodel of a large enough structure and let C = {x € B: x
is M-generic}. This is a Borel I-positive set. Consider the function f: C — Y
assigning each point x the value y evaluated according to the filter generated by
the point x.

First of all, f is a Borel function, since its graph can be written as C N[ o 4o
where A, ={zx0:z€ P,NM, z yeO}UU{zx(X\O) zePNM,z y¢ O}
by the forcing theorem. Second, C  y = f (%) since C %, € Cisan M- -generic
point and so the point (X,,,, y) must satisfy the definition of the graph of the function
f. The proposition follows. O

Proposition 2.3.2. Suppose that I is a o-ideal on a Polish space X such that
the forcing P, is proper. Suppose that Y is a Polish space, B € P, is a condition
and B A C Y is a Borel set. Then there is a condition C C B and a Borel set
D C C xY such that C A:Dkw

Proof. Since the forcing P, preserves R, strengthening the condition B if necessary
I may assume that the Borel rank of A is forced to be < « for some fixed ordinal
a. The proof of the proposition proceeds by induction on the ordinal «.

If A is forced to be closed, then again strengthening the condition B if necessary
and using Proposition 2.3.1, I may assume that there is a Borel function f: B —
P(O) such that B f(icge,,) ={0e®:0NA=0}. Then the set D C Bx Y, D =
{{(x,y) :y € Uf(x)} is the required Borel set. The proof for open sets is similar.

Suppose now that A is forced to be the union U. A(n) of sets of lower complexity.
Use the inductive assumption to find maximal antichains Z(n) C P, : n € w such
that for every condition z € Z(n) there is a Borel set D(z,n) C z x Y such that
2 A®n) = D(z, n)s,,- Let M be a countable elementary submodel of a large
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enough structure and consider the set C = {x € B: x is M-generic}. For every
number n € w let D(n) C C x Y be the set | J{D(z,n):ze MNZ(n)}NC x Y, and
let D =J, D(n). Clearly the set D C C x Y is Borel. It is not difficult to verify
that C A= ka. Namely, the condition C forces that the generic point belongs
to exactly one condition in the antichain Z(n) N M for every number n, so then
A(n)=U(D(z,n):zeM NZ(n)};,, = D(n)% and A=J, D(”)xqm as desired.
The countable intersection case lends itself to an identical argument. O

Note that the argument does not give an ordinal correspondence, a statement of
the kind “if A is a Borel set forced to be 22 then it is equal to the generic section
of a 22 ground model set.” Such a statement is true for bounding forcings though.

The identification of names for elements of Polish spaces with Borel functions
has a number of consequences; I will state three that are used throughout the book.

Proposition 2.3.3. Suppose that 1 is a o-ideal on a Polish space X such that
the forcing P, is proper. Suppose that B € P, is a Borel set, Y is a Polish space,
f:B— Y is a Borel function, and {A, : n € w} are analytic or coanalytic subsets
of the space X. Then there is a Borel set C C B such that for every number n € w,
the image f"(CNA,) CY is a Borel set.

Proof. The expression y = f ()'cgen) is a P,-name for a point in the space Y. Write
P, = P*Q where P adds the point y and Q is the remainder forcing, adding the
point %,,,. For every number n let p, € P be the Boolean value of the statement

g€ Qq Xoon € A,

Let M be a countable elementary submodel of a large enough structure containing
all the necessary information, and let C = {x € B : x is M-generic for the poset
P,}. I claim that this set has the required properties. It is certainly /-positive by the
properness of the forcing P,. For every number n € w let D, = {y € Y: y is M-generic
for the poset P and the generic filter given by it meets the condition p, }. The set D,
is Borel by Fact 1.4.8. Moreover, f"(CNA,) = D,: whenever y € D, is a point, it
is possible to find a M[y]-generic x for the poset Q such that M[x] = x € A, by the
choice of the condition p,,; but then x € A, by analytic absoluteness, y = f(x) and
soy € f"(CNA,). On the other hand, if x € CNA,, is a point, then M[x] =x€ A,
by analytic absoluteness, and f(x) € D, by the forcing theorem applied in the model

MLf(x)]. O

Proposition 2.3.4. (P,-uniformization) Suppose that I is a o-ideal on a Polish
space X such that the forcing P, is proper. Suppose that Y is a Polish space,
B e P, is a condition and A C B x Y is an analytic set with nonempty vertical
sections. Then there is a condition C C B in the forcing P, and a Borel function
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f:C — Y whose graph is a subset of the set A. With an appropriate large cardinal
assumption it is possible to relax the demand on the set A to be universally Baire.

Proof. By the Shoenfield absoluteness, B Iy € Y (%,,,,y) € A. Let y be a name
for the witness real. Let M be a countable elementary submodel of a large enough
structure, let C = {x € B: x is M-generic} and let f: C — Y be the Borel function
defined by f(x) = y evaluated according to the filter generated by the point x. As
in the previous proof, the set C C B is Borel and /-positive and the function f is
Borel. Moreover, for every point x € B it is the case that M[x] = (x, f(x)) € A by
the forcing theorem, and (x, f(x)) € A follows by the analytic absoluteness.

The universally Baire case argument follows the same lines with more
absoluteness required. O

The ZFC variations of many theorems in this book constantly struggle with the
necessity to uniformize sets that are more complex than analytic. There does not
appear to be a general ZFC theorem which economically covers all the necessary
cases.

Example 2.3.5. P, uniformization of coanalytic sets by Borel functions fails in the
constructible universe L. Consider the set A C 2° x 2 given by (x,y) € A<>x €
L,y This is a coanalytic set with nonempty vertical sections. Whenever B C 2 is a
Borel set and f: B — 2“ is a Borel function whose graph is a subset of the set A, it
must be the case that B is countable. If B was uncountable, just choose a countable
elementary submodel M of a large enough structure containing B, f, and choose an
M-generic filter g for the Sacks forcing which contains some perfect subset of the
set B. Writing x € 2 for the resulting generic point we have x € B, f(x) € M|x],
and since o} = wzlwm it is the case that x & L,» D Lw{<“> and so {x, f(x)) ¢ A, a
contradiction.

Example 2.3.6. Suppose that ¢ is a ZFC-correct outer regular submeasure on a
Polish space Y, and suppose that / is a o-ideal on a Polish space X such that
the forcing P, is proper, let B € P, be a condition, let £ > 0 be a real number
and A C B x Y be an analytic set with vertical sections of ¢-mass < &. Then
there is a condition C C B in P, and a Borel set A’ C C x Y with open vertical
sections of ¢-mass < & which cover the corresponding vertical sections of the set A.
A brief complexity computation reveals that this would require P, uniformization
of a coanalytic set, which may fail by the previous example. However, the special
features of the current situation allow a ZFC argument.

Whenever M is a countable elementary submodel of a large enough structure
containing the set B and x is an M-generic point then M = ¢(A,) < & by the
ZFC correctness of the submeasure ¢. By the forcing theorem then, there must
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be a name O for an open subset of the space Y which is forced to cover the set
A; , and has ¢-mass < €. Let C = {x € B: x is M-generic} and let A’ C C x Y be

defined by (x,y) € A’ <> y € O/x. The ZFC-correctness applied again shows that
the vertical sections of the set A’ have mass < €, and since M[x] = A, C O/x, a
wellfoundedness argument shows that V = A, C O/x and the vertical sections of
the set A’ cover the vertical sections of the set A.

The last remark of this section concerns the homogeneity of the forcings P,.
Suppose that [ is a o-ideal on a Polish space X such that the forcing P, is proper,
and suppose that B, B, € P, are conditions such that the forcings P, B, and P, B,
are in the forcing sense equivalent. Then there is a P, Bj-name y for a generic

element of the set B, such that B, X, can be recovered from y. Let M be a
countable elementary submodel of a large enough structure, and let C, C B, be
the set of all M-generic points. Let f: C, — B, be the Borel function defined by
f(x) =¥y/x and let C; = rng(f). It is not difficult to see that the bijective function
f transfers the ideal I below C, to the ideal I below C, at least as far as Borel
sets are concerned. Thus the homogeneity of the forcing P, is always witnessed by

Borel functions. This helps to justify the following definition:

Definition 2.3.7. An ideal I on a Polish space X is homogeneous if for every Borel
set B there is a Borel function f: X — B such that f-preimages of I-small sets are
I-small.

It is clear that homogeneity of ideals does not imply the homogeneity of the
resulting forcing. In all cases encountered in this book the homogeneity of the
forcing and the underlying ideal always come together. Homogeneity is a rather
special property. Many forcings in this book, such as the capacity forcings of
Section 4.3, do not seem to be homogeneous, nevertheless I have not been able to
find a definite proof of inhomogeneity in a single interesting instance.
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Properties

3.1 Continuous reading of names

The continuous reading of names (CRN for short) is one of the more common and
more slippery properties of forcing notions of the form P,.

Definition 3.1.1. Suppose that I is a o-ideal on a Polish space X such that the
forcing P, is proper. The forcing P, is said to have continuous reading of names
(CRN) if for every Borel function f: B — 2 with an [-positive Borel domain B C X
there is an I-positive Borel set C C B such that the function f C is continuous.

How common this property is will be obvious from the list of examples below,
and anyone acquianted with the combinatorial approach to forcing can appreciate it
immediately. The slippery part is that the continuous reading of names may (or then
again, may not) depend on the presentation of the forcing P,. Note that extending
the topology on the underlying Polish space without changing the Borel structure
will make more functions continuous and so it can bring about the continuous
reading of names in a forcing in which it was originally not present. This actually
happens in the case of Steprans forcing of Section 4.2.3. One simple observation
is that every forcing with the CRN has a presentation on the Baire space with
the CRN. If / is a o-ideal on a Polish space X and 7: C — X is a continuous
bijection between a closed subset C of the Baire space and the space X as in [40],
7.9, define the o-ideal J on the Baire space by A € J <> m’A € I and observe
that if P, has the CRN then so does P,;. Deeper study will reveal that CRN has a
natural game-theoretic restatement — Theorem 3.10.19 — and it is preserved under
the countable support iteration — Theorem 6.3.16.

I will begin with several equivalent restatements of CRN.

Proposition 3.1.2. [87] Let I be a o-ideal on a Polish space X. The following are
equivalent:

33
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1. the forcing P, has the continuous reading of names;

2. for every I-positive Borel set B C X and a countable collection {D, : n € w}
of Borel subsets of X there is an I-positive Borel set C C B such that all sets
D, NC are relatively open in C;

3. for every I-positive Borel set B and every Borel function f: B — Y to a Polish
space Y there is an I-positive Borel set C C B such that f C is continuous.

Proof. (1)—(2). Fix sets B, D, : n € w and define a Borel function f: B — 2 by
f(r)(n) =1if r € D,. By the continuous reading of names there is an /-positive
Borel set C C B such that f C is continuous. It is immediate that the sets D, N C
must be relatively open in C.

(2)—(3). Suppose that B is a Borel /-positive set and f: B — Y is a Borel
function. For every basic open set O from some fixed countable basis for the space
Y,let D, = f~'0. It is clear that D,, is a Borel set and if C C B is any set such that
all sets D, N C are relatively open in C, the function f C must be continuous.

(3)—(1). Trivial. O

Example 3.1.3. Every bounding forcing of the form P, has the continuous reading
of names. This is the content of Theorem 3.3.2.

Example 3.1.4. If the o-ideal [ is o-generated by closed sets then the forcing has
the continuous reading of names. This is proved in Theorem 4.1.2.

Example 3.1.5. The Hechler forcing has the continuous reading of names. This
is the forcing of all pairs p = (t,, f,) where , € ®=“ and f, € @, ordered by
q=<p<t,Ct,t,\1,dominates f, on its domain, and for all numbers n ¢ dom(z,),
f,(n) € f,(n). This poset adds a single generic point in the Baire space which is
the union of the first coordinates of the conditions in the generic filter.

Let 7 be the associated o-ideal on the Baire space, let B € P, be a positive set,
and let g: B — 2“ be a Borel function. To find an /-positive set C C B on which
the function g is continuous, let M be a countable elementary submodel of a large
enough structure, let C’ C B be the set of all M-generic points and let 7 € w® be a
function modulo finite dominating all functions in the model M. For some number
new,theset C={feC :Ym>n f(m)> h(m)} must be I-positive. To show
that g C is a continuous function, let s € 2<“ be a finite binary sequence and argue
that g7'0, C C is a relatively open set. Let x € C be a point such that s C g(x).
I must find an open neighborhood of the point x in the set C which is mapped
into O,. Use the forcing theorem to choose a condition p = (t,, f,) € M which is
in the filter determined by the point x and forces § C g(%,,,). Let t C x be a finite
initial segment such that ¢, C #, |t| > n, and Vm ¢ dom(z) h(m) > f,(m)}. It follows
from the definitions that for every point y € C N O,, its associated M-generic filter
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contains the condition p and by the forcing theorem applied in the model M, it
must be the case that s C g(y). In other words, g”(0,NC) C O, as required.

Example 3.1.6. Let J be an ideal on w and let P(J) be the associated Prikry-type
forcing. P(J) has the continuous reading of names if and only if J is a P-ideal. The
argument here follows the lines of the previous proof and Example 3.1.8.

Example 3.1.7. The Steprans forcing of Section 4.2.3 has the continuous reading
of names in one presentation but fails to have it in another one.

Example 3.1.8. The eventually different real forcing does not have the continuous
reading of names in any presentation. The eventually different real forcing P is the
set of all pairs p = (t,, f,) where ¢, is a finite sequence of natural numbers and
f, is a finite set of functions in w®. The ordering is defined by ¢ < p if 7, C 1,,
f, C f, and (z,\t,)NUf, = 0. The forcing P adds an element %, of the Baire
space as the union of the first coordinates of the conditions in the generic filter.
The function X, has finite intersection with every function in the ground model.
The forcing P is clearly o-centered since any two conditions with the same first
coordinate are compatible. Let I be the o-ideal of all Borel sets B C w® such that
P X, & B so that P is in the forcing sense equivalent to the poset P,.

It is enough to show that for no Polish topology 7 on the Baire space extending
the standard topology the forcing P, has the 7-continuous reading of names. Let
B, : n € w enumerate a basis for the topology 7. These are all Borel subsets of the
Baire space w® and so there are countable antichains A, : n € w in the forcing P
such that every condition in A, forces i, € B, and the antichains are maximal
with respect to this property.

A piece of notation and an easy construction: for a finite set f C w® of functions
and a number / € w write f(I) = {x(I) : x € f}. For every number m € w choose a
set f,, of m+1 many functions in the Baire space which return mutually distinct
values at every input and moreover such that for every number k € w, every n € w
and every condition g € A, there is a number / > k such that f,, (1) N f, (/) = 0. Let
h:w® — w® be the partial Borel function defined by A (x)(n) = the least number &
such that x(1) & f,,({) for all numbers [ > k. Note that the function % is defined on
all but /-many points in the Baire space. I claim that there is no Borel /-positive
set C C w” such that 2 C is a t-continuous function.

Suppose there in fact is such a set C C w®. Find a condition p € P such that
P X € C and let m = |f,|. The sets C; = {x € C: h(x)(m) =k} : k € w exhaust
all of C and so one of them must be /-positive. This set C, is relatively 7-open in
the set C and there must be a collection ¢ C w such that C, = CNUJ,., B, Since
the set C, is I-positive, there must be a number n € a and a condition g € A, such
that p, g are compatible conditions. Now use the property of the finite set f,, C @*

gen
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to find a number [ > k, |s,|, [s,| such that f, ([)N f, (1) = 0. Since there are m+1
many functions in the finite set f,, C @” and only m many functions in the set
f,» there must be a function y € f,, such that y(I) € f,(/). It is now easy to find a
finite sequence s extending both s, and s, such that the condition r = (s, f,U f,)
is a lower bound of p, ¢ and s(I) = y(I). Since the condition r forces both ,,, € C
and x,,, € B,, any sufficiently generic point x € w® below the condition r will
belong to the intersection B, N C. However, for every such a point it is the case
that 2(x)(m) > [ > k, contradicting the assumption that B, C C C,!

gen

The continuous reading of names has several consequences.

Proposition 3.1.9. Suppose that I is a o-ideal on a Polish space X with the
continuous reading of names. Every I-positive Borel set has an I-positive G
subset.

Proof. Suppose that B C X is an /-positive Borel set and D C X x w® is a closed
set projecting to it. Since the poset P, is proper, an application of P,-uniformization
shows that there must be an /-positive Borel set C C B and a Borel function
f:C — w” whose graph is a subset of the set D. By the continuous reading
of names we may assume that the function f is continuous on C. Every partial
continuous function can be extended to a continuous function with a G5 domain
[40], 3.6. Let C C C', f C g be such a G set and a continuous extension, with C
still dense in C’. Since the set D C X x w® is closed, the graph of the function g is
still a subset of it Then C’' C B is an I-positive G subset of the set B. O

The conclusion cannot be improved to the density in P, of closed sets as many
examples such as the Cohen forcing show.

Proposition 3.1.10. Suppose that P, is a proper forcing with the continuous reading
of names and J is a c.c.c. ideal on a Polish space Y which does not have the
continuous reading of names in any presentation below any condition. Then the
Jorcing with P, does not add a P,-generic.

Proof. Suppose the conclusion fails. By Proposition 2.3.1, there must be a Borel
set B € P, and a Borel function f: B — Y such that B f (%g,) is P,-generic.
Use Proposition 2.3.3 to find an /-positive Borel set C C B such that the images
f"(CNO) are Borel for all basic open sets O C X coming from some fixed
countable basis for the space X. Find a Polish topology 7 on the space Y extending
the original one making all these image sets open. Since the forcing P, does not
have the continuous reading of names in the topology 7 below the set C' = f”C and
it is c.c.c., there must be a Borel function g: C’ — 2 which is not 7-continuous on
any Borel J-positive subset of E. Consider the Borel function go f: C — 2 and
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use the continuous reading of names of the poset P, to find a Borel /-positive set
D C C on which this function is continuous. Now the set f”D C E must have a
Borel J-positive subset D" C C'. The function g D’ is T-continuous by the choice
of the topology 7 and the set D. This contradicts the choice of the function g. [

As a consequence, the generics for the eventually different real forcing cannot
be obtained in the countable support iterations of forcings such as Laver, Cohen,
Solovay, or Mathias, since these forcings all have the continuous reading of names
and this property is preserved in the iteration by Theorem 6.3.16.

Fact 3.1.11. [87] Suppose that I is a o-ideal such that the forcing P, is proper
and has the continuous reading of names. There is an ideal J on w such that the
forcing Q =P(w) mod J is proper and equal to the iteration of P, followed with
an R -distributive forcing.

To prove this it is enough to consider ideals / on the Baire space w®. The ideal J
is then defined on the underlying set w~* by AeJ < {x € w®:3°nx neA}el}
for a set A C w=“. I omit the proof.

3.2 Fubini properties of ideals

In a very restricted sense the whole field of preservation properties of definable
forcings can be understood as the study of certain variations on the Fubini theorem.

3.2.1 Ideal vs. ideal

Definition 3.2.1. Suppose that I, J are o-ideals on the respective underlying Polish
spaces X, Y. I will say that I,J are perpendicular (I L J) if there are a Borel
I-positive set B C X, a Borel J-positive set C C Y and a Borel set D C B x C such
that the vertical sections of the set D are J-small and the horizontal sections of its
complement are I-small.

It is part of the content of the classical Fubini theorems concerning the Lebesgue
measure and Baire category that null ¥ null and meager f meager. Inciden-
tally, among the definable c.c.c. ideals these are essentially the only two instances
of nonperpendicularity, see [17]. In the more general context, the perpendicularity
turns out to have forcing content:

Proposition 3.2.2. (LC) Suppose that P, is a proper forcing and J is generated by
a universally Baire collection of Borel sets. Then I L J if and only if some condition
in the poset P, forces cnve J for some J-positive Borel set C. If the ideal J is
ZFC-correct then the large cardinal assumption is not necessary.
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I will be frequently in the situation when I, J are homogeneous ideals, and then
the conclusion clearly strengthens to the natural P, XNV e J.

Proof. On one hand, a review of the_ definitions shows that if B, C, D witness the
statement / 1L J then B CNV C D; . and the latter set is in the ideal J by an

absoluteness argument. On the other hand, if B CNV e J then there is a name
for a Borel set Ae J suchthat B CNV el Using Proposition 2.3.2, thlnnlng out
the set B if necessary, I can find a Borel set D C B x C such that B A= D g
Using an absoluteness argument, thinning out the set B if necessary again, I can
find the set D in such a way that its vertical sections are in the ideal J. Since
B Cnvc Digm’ it is clear that the horizontal sections of the complement of the
set D must be in the ideal /.

For the ZFC version of the proposition, suppose on one hand that P, CNV e J
for some Borel set C C Y, and let B E € J is a Borel set such that CNVCE.
Strengthening the condition B if necessary and using Proposition 2.3.2. T may
assume that there is a Borel set D C Bx Y such that B E=D, .Let M be a
countable elementary submodel of a large enough structure and let B C B be the
I-positive set of M-generic points in the set B. For every point x € B’ it is the case
that M[x] = D, € J by the forcing theorem and so V |= D, € J by ZFC-correctness.
It is clear that the sets B’, C, DN B’ x C witness the statement / L J. On the other
hand, suppose that 7 L J holds and is witnessed by some sets B C X, C C Y, and
D C Bx C. Iclaim that B D«%m €J;since B CNVe Dkw, this will show that

the CNV is forced to belong to the ideal J. Suppose for contradiction that B’ C B is
some condition forcing D o ¢ J, let M be a countable submodel of a large enough
structure and let x € B’ be an M-generic point. By the forcing theorem it should
be the case that M |= D, ¢ J. However, since D, € J, the ZFC-correctness implies
that M &= D, € J, contradiction! O

The reader may wonder whether the condition on the set D C B x C in the defi-
nition of perpendicularity can be relaxed to analytic or weaker while the proposition
above remains true. The answer is yes in most cases, but is somewhat awkward to
state precisely. This is used in several critical situations later in the book, notably
in the proofs of preservation theorems for the countable support iteration.

Definition 3.2.3. Suppose I is a class of sets and 1, J are o-ideals on Polish spaces
X, Y respectively. The symbols I L J stand for the statement that there are sets
BCX,CCY and D C BxC in the class I" such that B¢ I, C & J, all vertical
sections of D are in J while all horizontal sections of its complement are in I.
I L,z J is the perpendicularity with the class of universally Baire sets, 1 1, J is
the perpendicularity with the class of analytic sets.
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Proposition 3.2.4. (LC) Suppose that I, J are universally Baire o-ideals on their
respective domain Polish spaces X, Y, P, is proper, I satisfies the second universally
Baire dichotomy, and J satisfies the first universally Baire dichotomy. Then I 1
JoILl,J.

Proof. The left-to-right implication does not need an argument. For the right-to-left
implication fix universally Baire sets B, C X, C, C Y and D, C X x Y witnessing
I 1,; J. First use the dichotomies to find /-positive Borel set B; C B, and a
J-positive Borel set C; C C,. By the first dichotomy applied to the o-ideal J, every
vertical section of the set D, is a subset of a J-small Borel set. By a universally
Baire absoluteness argument, this will happen in the P, generic extension at the
generic vertical section as well. Use Proposition 2.3.2 to find a Borel set B, C B,
in the poset P, and a Borel set D, C B, x C, such that B, C,;N (DO))-W C (D1)xgm
and the latter set is in the o-ideal J. Let M be a countable elementary submodel
of a large enough structure and let By = {x € B, : x is M-generic} C B,. This
is a Borel [I-positive set, by the forcing theorem for every x € B, it is the case
that M[x] = C, N (D,), C (D,), and the latter set is in the o-ideal I, and by the
universally Baire absoluteness it is even true that M[x] = C,N(D,), C (D,),. It is
clear that the sets B; C X, C; C Y, and D, = D;N (B, x C,) witness the statement
I1J. O

Proposition 3.2.5. Suppose that I, J are o-ideals on their respective domain Polish
spaces X, Y, both satisfying the third dichotomy, the forcing P, is proper and the
ideal J is ZFC-correct, generated by Borel sets. Then I 1z J <1 1, J.

Proof. The left-to-right direction does not need an argument. For the opposite
direction, suppose the analytic sets B, C, D are given. The third dichotomy yields
a Borel I-positive subset B, C B. Let M be a countable elementary submodel
of a large enough structure and x € B; be an M-generic point. By the ZFC-
correctness, M[x] |= D, € J and therefore there is a name E for a Borel set such
that M[x] |= E/x € J and D, C E. There must be a condition B, C B, and a Borel
set D, C B, x Y such that B, E = (Dl))':w and Diw C EeJ. Let B, C B, be the
set of all M-generic points in the set B,. Let C; C C be some J-positive Borel set
obtained by an application of the third dichotomy. Let D; = D, N By x C;. Another
application of ZFC-correctness shows that the sets B;, C;, D5 witness the relation
IL1J. O

3.2.2 Ideal vs. submeasure

Definition 3.2.6. Suppose that I is a o-ideal on a Polish space X and ¢ is a
submeasure on a Polish space Y. Say that the ideal I is not perpendicular to the
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submeasure ¢ (I L ¢) if for every real number € > 0, every I-positive Borel set
B C X and every Borel set D C B x Y with vertical sections of submeasure < & the
set

/Ddl:{er:{xeB:<x,y>¢D}eI}

has mass < e. In parallel to Definition 3.2.3, I will also introduce the notation
Il I Lz IL, 9.

It is a consequence of the classical Fubini theorem that the ideal of Lebesgue
null sets is not perpendicular to the outer Lebesgue measure. In the more general
context, the perpendicularity turns out to have forcing meaning again.

Definition 3.2.7. Suppose that ¢ is an outer submeasure on a Polish space Y (that
is, w(A) = inf{w(B) : A C B and B C Y Borel} which is universally Baire (that
is, the function x +— ¢(A,) : x € 2° where A C 2° X Y is a universal analytic set,
is universally Baire). Suppose that P is a forcing. I will say that P preserves the
submeasure ¢ if P d)(;\) = d)(;\) for every set ACY.

The following propositions have proofs analogous to those in the previous
subsection, and I omit them.

Proposition 3.2.8. (LC) Suppose that I is a o-ideal on a Polish space X such that
the forcing P, is proper. Suppose that ¢ is an outer universally Baire submeasure
on a Polish space Y. Then I L ¢ is equivalent to the failure of preservation of the
submeasure ¢ by the forcing P,. If the submeasure ¢ is ZFC-correct then the large
cardinal assumption is not necessary.

Proposition 3.2.9. (LC) Suppose that I is a o-ideal on a Polish space X satisfying
the second dichotomy such that the forcing P, is proper. Suppose that ¢ is a
universally Baire submeasure such that every universally Baire set has a Borel
subset of the same submeasure. Then I L. ¢ <1 L, ¢.

Proposition 3.2.10. The previous proposition holds in ZFC if ¢ is a ZFC-correct
submeasure and L g is replaced with L.

In certain prominent cases, the perpendicularity with ¢ and its null ideal coincide.
The following two propositions strengthen of [2].

Proposition 3.2.11. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper. Let A be the outer Lebesgue measure.
Then I L Aiff I L null; in other words P, preserves the Lebesgue measure if and
only if it does not make the ground model reals Lebesgue null. If the ideal I is 11}
on 2} then the large cardinal assumption can be omitted.
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Proof. 1 will first treat the large cardinal version. The right-to-left direction does
not need an argument. For the other direction, suppose that P, does not preserve
outer Lebesgue measure. I will first show that it does not preserve the outer
Lebesgue measure of some Borel set. Suppose that A C 2 is a set and B € P,
is a condition such that B /\(A) < /V\(A) There must be a Borel set B, C B
and a Borel set D C B, x 2¢ such that the vertical sections of the set D have
Lebesgue measure < & while A(A) > &, and at the same time B, Ac chgm- Now

consider the set C={y€2”:B, ye€ Dkqm}- This is a universally Baire set, since
C={ye2”:B,\D’ €1}, it contains the set A and therefore A(C) > &. Use the
Lebesgue measurability of universally Baire sets to find a Borel set C; C C of the
same Lebesgue measure. Then B, A(C,) < A(C,) as desired.

By the measure isomorphism theorem [40], 14.71, I can then find in the
P,-generic extension an open set O C 2 such that O contains all the ground
model reals and A(O) < 1. Let E =2\ O; this is a A-positive closed set and since
the Lebesgue measure is ergodic, the closure F of the set E under rational trans-
lations has full measure. However, the set F still contains no ground model reals
and so A*(2°NV) =0.

The II} on 2: case is identical with the additional observation that the set C
above is coanalytic and therefore Lebesgue measurable. O

Proposition 3.2.12. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the quotient forcing P, is homogeneous and proper. Suppose
that ¢ is either a pavement submeasure or a strongly subadditive submeasure on a
Polish space Y. Then I L ¢ <> 1 L 1.

Proof. The right-to-left implication does not need a proof. For the opposite impli-
cation, I will treat the case of a pavement submeasure ¢, obtained from some
countable set U of pavers and a weight function w. Suppose that I L ¢. As in the
previous argument this means that there are Borel sets BC X,CCYand DC BxC
such that B ¢ I, C € 1, the vertical sections of D have ¢-mass < & < ¢(C) and
the horizontal sections of the complement of the set D are /-small. Using the ZFC-
correctness of the submeasure ¢, shrinking the set B if possible I can find a Borel
function f: B — P(U) such that Vx € B 3{w(u) : u € f(x)} < & and D, C | f(x).
Using the o-completeness of the ideal I repeatedly, I can find a descending collec-
tion of Borel /-positive sets B, : n € w and inclusion-increasing sequence a, : n € w
of subsets of U such that B, = B, a, = 0, and for every number n € w and every
point x € B, it is the case that a,,, C f(x) and 2{w(u) : u € f(x)\a,, } <27"

In the end, let @ = J, a, and note that Z{w(u) : u € a} < e. Thus the set
C'=C\Ua is ¢-positive. I claim that P, ¢(C’'NV) =0, which will complete
the proof. To see this, note that for every number n € w, B,,;, ¢(C'NV) <27"
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since C'NV must be covered by the set f (%4en) \ @41 sum of whose weights if
smaller than 27", By the homogeneity of the forcing P,, P, ¢(C'NV) <27, and
since this happens for every number n € w, P, ¢(C'NV) =0 as required. O

However, in other cases this feature is apparently absent and submeasure preser-
vation takes a life on its own. The reader should note that while homogeneity is
obvious in most popular forcings of the form P, — such as the Sacks or Miller
forcing — it is really quite difficult to argue for it in a more general setting and
most likely in a “typical” o-ideal I this property fails. It is apparently difficult
to find forcings which preserve this submeasure and fail to preserve that submea-
sure, as outstanding mathematicians have been willing to write long papers on the
issue [73].

Before I leave this subject let me point out that the concept of perpendicularity
to submeasures makes sense and is interesting already for ideals on w. Kanovei
and Reeken defined the class of Fubini ideals as those ideals on w which are not
perpendicular to outer Lebesgue measure, produced a long list of Fubini ideals, and
showed that they all have the Radon—-Nikodym property.

3.3 Bounding forcings

The bounding property of forcings is one of the most commonly studied and used
properties. This section offers several topological restatements of it.

Definition 3.3.1. A forcing P is bounding (or weakly w, w-distributive) if for every
function f € w® in the P-extension there is a function g € @ in the ground model
which dominates f pointwise.

Theorem 3.3.2. Suppose that I is a o-ideal on a Polish space X such that the
forcing P, is proper. The following are equivalent:

1. P, is bounding;

2. every Borel I-positive set contains a compact I-positive subset (compact sets
are dense) and every Borel function on an I-positive domain has a continuous
restriction with a Borel I-positive domain (continuous reading of names);

3. for every Polish topology t on X producing the same Borel structure, every
Borel I-positive set has a t-compact positive subset.

Proof. For the (1)—(2) direction, I will first argue for the case X = 2* and then
reduce the general case to this. Suppose B € P, is a Borel set and g: B — 2¢
be a Borel function. I must produce a compact /-positive set C C B on which
the function g is continuous. Let 7 C (2 X 2 x w)~ be a tree projecting into the
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graph of the function g. A Shoenfield absoluteness argument shows that B Jy €
©° (Xgp,» 8(%,,,), y) forms a branch through the tree T. Let y be a corresponding P,
name for an element of w®. Use the bounding property to find a condition B’ C B
and a function z € w® such that By < z. Now consider the tree S C T of all
triples of sequences whose third coordinate is dominated by z. The tree S is finitely
branching and so C = proj(proj[S]) C B is compact. Since B"  X,,, € C it must be
the case that C ¢ I. Also the graph of the function g C is equal to the compact
set proj[S] and therefore g C is continuous as desired.

The general case easily follows. If X is a Polish space and [ is a o-ideal
on it such that the forcing P, is proper and bounding, find a Borel bijection
m:2% — X and let J be the o-ideal of those sets A C 2“ such that 7"A € I.
Clearly P, is just a different presentation of P,, therefore it is bounding and
proper and I can apply the previous paragraph to it. Thus if B € P, is a Borel
I-positive subset of X and g: B — 2“ is a function, there is a compact J-positive
set C C 2% such that 7”C C B and the functions 7, g o 77 are both continuous on
C. Since C is a compact zero dimensional space and 77: C — 7" C is a continuous
bijection, in fact 7 C is a homeomorphism of C and the compact set 7’C C B.
Thus 7”C is a compact /-positive subset of the set B on which the function g is
continuous.

The (2)—(1) direction is easier. If By € w® is a function, then there is
a condition B' C B and a Borel function g: B — B such that By = g(%,,,)
by the results of Section 2.3. Let C C B’ be an [-positive compact set on
which the function g is continuous. The set g’C C w® is compact and therefore
bounded by some function z € w®. An analytic absoluteness argument shows that
C y<z

(1)=(3) is really subsumed in (1)—(2) since the proof of that implication did
not depend on the topology of the space X. Finally, to see that (3)— (1), suppose for
contradiction (3)A—(1) and find a Borel set B C X and a Borel function f: B — w®
such that f-preimages of compact sets are /-small. As in [40], 13.11, find a Polish
topology ¢ on X that makes f a continuous function. Let C C B be a t-compact
I-positive set. The image f”C C w® is compact, contradicting the choice of the
function f! O

The theorem justifies the widespread use of tree forcings in the forcing practice.
Note that in fact I proved that zero-dimensional compact sets are dense in P,. The
condition of compact sets being dense in P, cannot be relaxed to the equivalence
classes of compact sets being dense in the algebra B(X) mod I as the example of
the Cohen forcing shows. The density of compact sets does not imply the continuous
reading of names and vice versa. An instructive example is that of Steprans forcing
in Section 4.2.3 which has two distinct presentations, in one compact sets are dense
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and in the other it has the continuous reading of names, but these two properties
cannot hold in conjunction since the forcing is not bounding.
The following proposition shows that the bounding property is in fact a Fubini

property.

Proposition 3.3.3. Suppose that 1 is a o-ideal on a Polish space X such that the
forcing P, is proper. The following are equivalent:

1. P, is bounding;
2. I L J where J is the Laver ideal on o®.

Here the Laver ideal J on »® is generated by sets A, = {f € @ : for infinitely
many n, f(n) € g(f n)} as g varies through all functions from w<® to w. It is
well-known and proved in Section 4.5.2 that every analytic subset of w® either is in
the ideal J or contains all branches of some Laver tree. The ideal J is ZFC-correct
as shown in Theorem 4.5.6.

Proof. Suppose that the poset P, is bounding, B € P, and C € P, are Borel sets
and D C B x C is a Borel set with J-small vertical sections. I must show that its
complement contains an /-positive horizontal section. By the ZFC-correctness of
the Laver ideal, thinning out the set B if necessary I may assume that there is a
Borel function G : B— w®" such that for every pair (x, f) € C it is the case that
for infinitely many numbers n, f(n) € G(x)(f n). Since the poset P, is bounding,
there is an /-positive Borel set B; C B and a function & : = — w such that for
every point x € B, and every finite integer sequence s, G(x)(s) € h(s). Since the
set C is J-positive, there must be a function f € C such that for all but finitely
many numbers n, h(f n) € f(n). It is clear that B, x {f} is the required /-positive
horizontal section of the complement of the set C.

On the other hand assume that —/ L J, and let B € P, be a condition and g
a P,-name for an element of w”. By Proposition 2.3.4, thinning out the set B
if necessary I may assume that there is a Borel function G : B — w® such that
B g= C()'cgm). Let D C B x w* be the Borel set consisting of all pairs {x, f) for
which f is dominated by G(x) at infinitely many values. It is clear that the vertical
sections of the set D are J-small, and since —/ L J holds, there must be a Borel
I-positive set B’ C B and a function f € w® such that the horizontal section B’ x {f}
is a subset of the complement of the set D. An analytic absoluteness argument
shows that B’ forces the function g to be dominated by j‘ O

The bounding property has a game-theoretic restatement. This is important since
then a determinacy argument can be used to derive a stronger property than just
bounding in the case of definable forcing.
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Definition 3.3.4. Let P be a partial ordering. In the bounding game G Player I
first indicates an initial condition p;,; and then plays open dense sets D, : n € w.
Player Il in response to the set D, chooses a finite set d, C D,. Player Il wins if in
the end the expression p;,; A\, \ d, describes a nonzero element of the completion
algebra RO(P).

The following is proved in Section 3.10.3.
Proposition 3.3.5. Suppose the forcing P, is proper. The following are equivalent:

1. Player I has a winning strategy in the bounding game;
2. P, is not bounding.

If the o-ideal 1 is 1} on 21 then the bounding game is determined. If large car-
dinals exist, the bounding game is determined for every universally Baire o-ideal 1.

A spectacular application of the bounding game was found by Fremlin. It con-
cerns the relationship between Maharam’s and von Neumann’s problem. Here
Maharam’s problem is whether every c.c.c. complete algebra carrying a continuous
submeasure carries a measure. Von Neumann’s problem asks whether every c.c.c.
complete bounding algebra carries a measure. It turns out that it is consistent and
in fact follows from the P-ideal dichotomy of Todorcevic that every c.c.c. complete
bounding algebra carries a continuous submeasure, and so in such a context the two
problems coincide. Fremlin showed that the determinacy of the bounding game is
of critical concern here.

Fact 3.3.6. (Fremlin) Suppose that B is a c.c.c. complete algebra. The following
are equivalent:

1. Player II has a winning strategy in the bounding game;
2. there is a continuous submeasure on the algebra B.

Corollary 3.3.7. Suppose that I is a 11} on Ei c.c.c. a-ideal on a Polish space X.
The following are equivalent:

1. the forcing P, is bounding;
2. there is a continuous submeasure ¢ on the space X such that I contains the
same Borel sets as the ideal {A C X : ¢(A) =0}.

If large cardinal assumptions are used then the definability condition on the ideal
can be relaxed to universal Baireness.

Recently Talagrand answered Maharam’s problem in the negative [75].
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3.4 Bounding and not adding splitting real

Shelah introduced the notion of preservation of P-points [2] 6.2.1 — a forcing
preserves P-points if every P-point ultrafilter in the ground model generates a
P-point ultrafilter in the extension—and proved a number of beautiful results with it;
in particular, the preservation of P-points is preserved under the countable support
iteration. Curiously I find it impossible to restate this property as a Fubini property
even in the case of definable forcing. Instead, the natural notion of preservation
of Ramsey ultrafilters has a Fubini type restatement, and there is a corresponding
countable support preservation Theorem 6.3.7. Recall that a Ramsey ultrafilter on w
is an ultrafilter which contains homogeneous sets for every partition p : [w]* — 2.

Theorem 3.4.1. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper, and let U be a Ramsey ultrafilter on
w. Writing J for the Mathias ideal of Section 4.7.7, the following are equivalent:

1. U generates a Ramsey ultrafilter in the P,-extension;
2. MRR(Z, J);

1L

4. P, is bounding and does not add a splitting real.

In the case of a I1; on 2} ideal I the large cardinal assumption is not necessary.

It is not difficult to see that (2), (3), and (4) are equivalent even without the presence
of a Ramsey ultrafilter.

Proof. Let Q be the Prikry-type forcing with the ultrafilter U. This is the set of all
pairs p = (tp, a,) where t,€2°% and a,€ U and g < p if t,Ct, a,Ca, and
{n €dom(z,\1,):1,(n) =1} C a,. The union of first coordinates of conditions in
the generic filter gives a characteristic function of the generic set y,,, C w. I will

rely on the following well-known fact.

Fact 3.4.2. [66] Suppose M is a transitive model of ZFC and y C w is an infinite
set. Then Y is M-generic for Q if and only if it is modulo finite included in every
setin UNM.

For the (1)—(2) implication, assume (1) holds and B C X and C C P(w) are
1, J-positive Borel sets respectively and B x C =, D, is a countable union of Borel
sets. By the homogeneity of the Mathias ideal I may assume that C = P(w). Find
conditions B, € P;, B, C B and g € Q such that (B,, q) € P, x Q decides the value of

the number n such that (x,,,, ¥,.,) € D,. Let M be a countable elementary submodel
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of some large structure, let B, = {x € B, : x is M-generic} and C, ={y C w:y is
M -generic for the poset Q, meeting the condition ¢}. Now observe:

* B, ¢ I since P, is proper;

e C, ¢ J since by the above fact C, is closed under infinite subsets and therefore
dense in P(w) mod fin below each of its elements;

e every pair (x,y) € B, x C, is M-generic for P, x Q, since in the model M[x], U
still generates an ultrafilter by the assumption and therefore the set y still satisfies
the genericity criterion above for the model M[x].

The forcing theorem applied in the model M to the poset P, x O then shows that
B, x C, C D, concluding the proof of (1).

(2)—(3) does not need an argument. For (3)—(4), argue in the contrapositive and
assume that P, under some condition adds a splitting real. By Proposition 2.3.1 this
means that there is an /-positive Borel set B C X and a Borel function f: B — P(w)
such that for every infinite set b C w both sets {x € B: b C f(x)} and {x € B:
bN f(x) =0} are I-small. A review of definitions shows that the set D C B X
P(w), defined by (x,y) € D iff y x f(x) is infinite, has J-small vertical sections
and its complement has /-small horizontal sections as desired in the definition of
perpendicularity. Now suppose that the forcing P, adds an unbounded real and
use Proposition 2.3.1 to find an /-positive Borel set B C X and a Borel function
g: B — w” such that for every function i € w® the set {x € B: g(x) < h pointwise}
is I-small. A review of definitions shows that the set E C B x P(w), defined by
(x,y) € E iff the enumerating function of y does not dominate g(x) modulo finite,
again witnesses / L J.

Finally, for (4)—(1) I need the following claim of independent interest.

Claim 3.4.3. (LC) Suppose that U is a Ramsey ultrafilter and D C P(w) is a
universally Baire dense set in P(w) mod fin. Then UND # 0. If D is in addition
analytic then the large cardinal assumption is not necessary.

Proof. First note that Q0 y,,, € D. To see this, observe that the set D is still
dense in the Q-extension by universally Baire absoluteness in the large cardinal
case, and by Shoenfield absoluteness in the analytic case. So in the extension,
given any V-generic set y C @ meeting a condition p € @, it is possible to find its
infinite subset z C y in the set D still meeting the condition p. The set z satisfies
the diagonalization condition from Fact 3.4.2 and therefore it is V-generic for the
poset Q. Another absoluteness argument shows that V[z] =z € D and therefore p
could not have forced y,,, ¢ D.

Now let M be a countable elementary submodel of a large enough structure
containing both U and D. The ultrafilter U contains a set y which modulo finite
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diagonalizes all the countably many sets in U N M. The set y is M-generic for Q by
Fact 3.4.2, and by the previous paragraph and the forcing theorem M[y] =y € D.
Another absoluteness argument shows that y € D as required. O

Now assume that P, does not add a splitting real. I will show that P, preserves
U as an ultrafilter. Suppose that B € P, is a Borel set and f: B — [w]™ is a Borel
function. By Proposition 2.3.1, it will be enough to show that there is a set y € U
such that one of the sets {x € B:y C x}, {x € B: yNx =0} is I-positive. For that,
notice that the set D = {y € [w]™: one of the sets {x € B: y C x}, {x € B: yNx =0}
is I-positive} is dense in P (w) mod fin since the forcing P, does not add a splitting
real. The set D is universally Baire (or analytic in the IT} on Ei case) and therefore
DNVU is nonempty, giving the desired set y € U. The bounding condition can now
be used to show that in fact U generates a Ramsey ultrafilter in the extension. [

There is an interesting model theoretic restatement. Looking forward to
Section 3.9, write I** for the collection of all sets which do not contain a Borel
I-positive subset.

Proposition 3.4.4. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper and bounding. Suppose that U is a
Ramsey ultrafilter. The following are equivalent:

1. P, is does not add splitting reals;
2. in the model L(R)[INB][U], I'** is a o-ideal.

This and especially the following two propositions should be compared to the results
of DiPrisco and Todorcevic on the dichotomies in the model L(R)[U] [13].

Proof. An instrumental well-known fact in this proof is that the ultrafilter U is
a L(R)[I N B]-generic subset of P(w) mod fin. This immediately follows from
Claim 3.4.3.

For the ease of notation assume that /N3 € L(R). Suppose on one hand that P,
is bounding and does not add splitting reals and suppose that A, : n € w are sets in
the model L(R)[U] whose union covers a Borel /-positive set B C X. I will show
that one of the sets A, contains a Borel /-positive subset. A genericity argument
shows that there must be in L(R) names A, : n € w and a set a C w such that in
the algebra P(w) mod fin the set a forces B C |J, A,, and it will be enough to
find a condition b C a, Borel I-positive set B' C B and a number n € w such that
b BcC A,,. Consider the Mathias ideal J, the Mathias forcing P, and the condition
CeP,,C={bCw:bCamodulo finite}. Let f: Bx C — w+ 1 be the function
defined by f(x, b) = n if n is the least number such that b X € A, if there is such
a number n; otherwise let f(x, b) = w. The function g is in the model L(R). As



3.4 Bounding and not adding splitting real 49

in the proof of Theorem 3.4.1, there must be a rectangle B’ x C’ with I, J-positive
sides respectively on which the function f is constant. The constant value cannot be
 because given any point x € B, in the somewhere dense set C’ C P(w) mod fin
there must be a condition b C w forcing X € A, for some fixed number n. Now
write n € w for the constant value of the function f on the rectangle and find a pair
(s, b) such that s C w is finite, b C w is infinite, and {c Cw:sCcAcC b} CC.
A review of the definitions now shows that b B’ C An as required.

On the other hand, suppose that P, adds a splitting real. This means that there
is an /-positive Borel set B C X and a Borel function f: B — P(w) such that for
every infinite set b C w both sets {x € B: b C f(x)} and {x € B: bN f(x) = 0}
are [-small. Let Ay={xe B: f(x) e U and A, ={x € B: w\ f(x) € U}. Since
AgUA, =B and A, A, € L(R)[U], it will be enough to show that neither of these
sets has a Borel /-positive subset. Suppose for contradiction that some condition
a C w in P(w) mod fin forces that (say) Cc A, for some Borel I-positive set
C C B. Unraveling the definitions, this means that a C f(x) modulo finite for every
point x € C, which contradicts the asumption on the function f! O

The proposition opens the possibility that there are two ways of not adding a
splitting real. The stronger one, in which L(R)[I NB][U] = I** is generated by
the o-ideal I; and the weaker one, in which I** is a o-ideal in this model for a
different reason. Related questions were studied by DiPrisco and Todorcevic who
proved in particular that every set of reals in the model L(R)[U] is either countable
or contains a perfect subset. Which Borel generated o-ideals have the property that
every set of reals in the model L(IR)[/][U] has either Borel /-small superset or Borel
I-positive subset? This question is related to the dichotomies of Section 3.9 and is
interesting regardless of the properness of the forcing P,. I conclude this section
with the investigation of two particular cases which appear later in the book.

Proposition 3.4.5. (LC) Suppose that I is a o-ideal on a compact metric space X
which is o-generated by a o-compact family of compact subsets of X. Let U be a
Ramsey ultrafilter. Then every set in L(R)[U] has either a Borel I-positive subset
or a Borel I-small superset.

Proof. For notational simplicity I will deal with the case X = 2. Recal that the
ultrafilter U is an L(IR)-generic subset of P(w) mod fin. Suppose that A C X is a
set in L(R)[U]. There must be a P(w) mod fin-name A € L(RR) such that A= A/U.
There are two separate cases.

Either there is a set a € U and an [-positive set BC X suchthatVxe Ba Xx¢ A.
Since B € L(R), the dichotomy 4.1.3 shows that B has an /-positive Borel subset
B’ C B. In this case clearly B’ C A and as desired.
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Or this fails and by a genericity argument then there must be a set a € U such
that for all sets b C a the set A, ={x € X:b X € A} is I-small. In L(R)[U]
consider the Prikry forcing Py, its name y,,, for a generic subset of w and the

name A_-VM for an /-small set in the extension. Note that since the set bgen seals the

ultrafilter U, it is the case that P, A= A&m N V.1 will now produce a Borel set
B eI such that A C B.

Let F, C K(X) : n € w be the countable collection of compact sets generating
the ideal /. Without loss of generality F, C F;, C ... and so there are P, -names
T, : n € w for binary trees such that P,, forces [T, ] € [ ] and A L cU, [T,]. The
forcmg P, is o-filtered and therefore its Boolean algebra is a unlon of countably
many ultrafilters G, : m € w. For numbers m, n € o let S,,, be the tree of all finite
binary sequences ¢ such that some condition in the ultrafilter G,, forces 7 € T),. Note
that since G,, is closed under finite conjunctions and the set F,, C K(X) is compact,
it must be the case that [S,,,] € F,. I will show that A C U, ,,[S,,.]. and that will
complete the proof of the proposition.

Indeed, suppose that x € A is a binary sequence. There must be a condition p € P,
and a number 7 € @ such that p X € [T, ]. There is a number m € w such that p €
G,,. It then must be the case that x € [S,,,], because if  C x were an initial segment
not in the tree S, then the common lower bound of p and the condition in G,, forc-
ing 7 ¢ T, would also force X ¢ [T ], contradicting the choice of the condition p. [

n,m

Proposition 3.4.6. (LC) Suppose that ¢ is a subadditive outer regular capacity
on a Polish space X such that L(R) |= ¢ is continuous in increasing wellordered
unions. Let U be a Ramsey ultrafilter. The following are equivalent:

1. for every real number & > 0 and every collection A, : n € w of sets of capacity < &
there is an infinite set b C w such that p({x € X:3°nebxe A,}) <&,

2. L(R)[U] = ¢ is continuous in increasing wellordered unions and every set has
a Borel subset of the same capacity.

Note that the first item is a condition on the capacity weaker than Ramseyness
of Section 4.3.5. That section provides several examples of capacities satisfying the
assumptions of the proposition as well as (1).

Proof. The key element of the proof is again the observation of that the Ramsey
ultrafilter U is an L(R)-generic subset of the poset P = P(w) mod fin.

(2)— (1) is easier. Suppose that A, : n € w is a collection of capacity < & such that
for every infinite set b C w the set B, ={x € X:3*n € b x € A,} has capacity > &.
Going into a subsequence if necessary I can find a real number & > 0 such that
&(B,) > ¢+ 6. Without loss of generality each set A, is Borel and so the whole
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sequence is in L(RR). Consider the set C= [ A, dU={xeX:{new:xecA,}¢c
U} C X in the model L(R)[U]. I will show that ¢(C) > £+ & while C has no Borel
subset of capacity > g, proving (1).

Suppose that O C X is an open set of capacity < £+ 0 and b € P is a condition.
Since ¢(B,,) > £+ 6 the set B, \ O must be nonempty, containing some point x € X.
The infinite set c = {n € b: x € A,} then forces in P that x € C'\ O. The genericity
of the ultrafilter U then shows that ¢(C) > &+ 8. Now suppose that B C X is a
Borel set and b € P is a condition such that b B C C. Then for every point x € B
the set {n € b: x ¢ A,} must be finite, since if infinite this would be a condition
forcing x ¢ C. This means that B =, ,, (mewn An»> an increasing union of sets of
capacity < g, therefore ¢(B) < ¢ as desired.

(1)—(2) is considerably harder. T will first show that the capacity ¢ is still
continuous in increasing wellordered unions in the model L(R)[U]. Suppose that
P AB : B € a is an inclusion-increasing sequence of sets of mass < & for some
ordinal 8. T will find a condition ¢ and a set B C X of mass < & such that
q U, AB CB. Let Dg = {p € P:30 open of ¢-mass < & such that p AB c 0},
this for every ordinal 8 € a.. These sets are all open dense. The forcing P € L(RR) has
the property that wellordered intersections of open dense sets are still open dense, so
there is some condition g € () Dg. For every ordinal B € a let B, ={0OC X: O
open and p AB C b}. These sets form an inclusion increasing sequence of sets
of mass < ¢ in the model L(R) and therefore B = Ug B has mass < . It is clear
that B, p are as required.

The second step in the proof of (1)—(2) is to show that U £ ¢, that is, if € > 0
is a real number and D C w x X is a set whose vertical sections have ¢-mass < &
then even the set [ D dU ={x€ X:{n € w:(n,x) € U} has ¢-mass < ¢. Since
the capacity ¢ is outer regular, I may assume that the vertical sections of the set
D are G4. In L(R), condition (2) implies that the collection {a C w: ¢(E,) < &}
is dense in the algebra P(w) mod fin, where E, = {x € X:3*n € a x € D,}.
By the genericity of the Ramsey ultrafilter U over L(R), there is a set a € U
such that ¢(E,) < e. Now clearly [ D dU C E, and so ¢(f, D dU) < & as
required.

It now follows that the Laver-type forcing P(U) with the ultrafilter U preserves
the capacity ¢ using a proof similar to the argument for Theorem 3.6.11. Suppose
TeP(U)isatreeand T O C X is an open set of capacity < &. I must show that
¢({xeX:T Xe 0}) <e. Thinning out the tree T if necessary I may assume that
there is a function f: T — O such that Ve € T ¢(f(1)) <&, Vs Cte T f(s) C f(1),
andT 0=, f(Vgen ) where y,,, is the name for the P(U)-generic path through
the tree 7. To simplify the notation suppose that the trunk of the tree T is empty.
By induction on an ordinal « build sets A(a, ) C X as follows:
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* A0, 1) = f(1);
* A(a, 1) = Ugey A(B, 1) if the ordinal « is limit;
* A(a+1,1)= [ D dU where D C w x X is defined by D, = A(a, t"n).

It is not difficult to argue by simultaneous induction on « such that A(«, s) C
A(a,t) whenever s C t € T, A(B,t) C A(a,t) whenever B € a, and finally
¢(A(a, 1)) < e. The latter statement uses the work in the previous two paragraphs.
By the Replacement Axiom, the inductive process must stabilize at some ordinal ().
Iclaimthat {xe X:T Xe O} C A(Q,0), which will complete the proof that P(U)
preserves the capacity ¢. In fact these two sets are equal, but this is immaterial
for the purpose here. Suppose x € X, x ¢ A(,0) is a point. The definition of the
inductive process shows that there is a tree S C 7' in P(U) such that x ¢ A((, s)
for every node s € S. In particular, x ¢ f(s) for every node s€ S andso § X ¢& O
as required.

Now I am ready to conclude the proof. In L(R), let A be a P-name for a set
of capacity > &. I must find a set @ C w such that ¢(E,) > & where E, = {x € X :
a Xe A). Note that the latter set is in L(R) and so by the assumptions on the
capacity ¢ it has a Borel subset of the same capacity which in the P-extension will
be a subset of the set A. The implication (1)—(2) then follows by the genericity
of the Ramsey ultrafilter U over the model L(R). Let a C w be a P(U)-generic
set and in the model V [a] consider the set E,. Since y diagonalizes the ultrafilter
U, it follows that A/U C E,. Now A/U €V was a set of ¢-mass > &, the forcing
P(U) preserves the capacity ¢, and so V[a] = ¢(E,) > €. A universally Baire
absoluteness argument now shows that already in the ground model there must be
a set a C w such that ¢(E,) > & as desired. O

3.5 Preservation of Baire category

Let P be a forcing. I will say that P preserves Baire category if for every nonmeager
set AC2°, P Als nonmeager. I will also say that P collapses Baire category
(under some condition) if there is a condition p € P such that p  2°NV is a meager
set. These two properties have been frequently investigated and used. This section
offers many topological restatements of category preservation in the definable case.
It follows from Proposition 3.2.2 and the homogeneity of the meager ideal that if
I is a suitably definable o-ideal on a Polish space X and the forcing P, is proper
then category preservation is equivalent to / £ meager.

It turns out that category preservation is a property that in universally Baire
forcing case has many consequences that sound almost too good to be true. The
key tool is the following game characterization.
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Definition 3.5.1. Suppose P is a partial order. The category game G between
Players I and Il proceeds as follows. First Player Il indicates an initial condition
Dini € P. After that, the moves alternate, Player I producing a condition p, and
Player II playing its strengthening q, < p,. Player I wins if the result of the play,
the expression

pini/\/\ \/ qn

m n>m

denotes a non-zero element in the complete Boolean algebra RO(P).
The following is proved in Section 3.10.9, Theorem 3.10.21.
Theorem 3.5.2. Suppose that the forcing P is proper. The following are equivalent:

1. P below some condition makes the set of the ground model reals meager;
2. Player Il has a winning strategy in the game G.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
then the game G is determined.

I do not know if in the case of a forcing P, associated with a IT! on 3| o-ideal I
the category game must be determined in ZFC. This would be quite helpful given
the fact that all category preserving ideals in this book are TI! on 3;.

There is a large number of corollaries.

Corollary 3.5.3. (LC) Suppose that I is a universally Baire ideal such that the
forcing P, is proper and preserves category. Then the forcing P, is such in all
forcing extensions.

Proof. To see this note that the large cardinal assumptions imply that there is a uni-
versally Baire winning strategy for Player I in the category game. An absoluteness
argument shows that this strategy remains winning in every set forcing exten-
sion. Existence of such strategy implies that the forcing is proper and preserves
category. O

The following corollaries depend on an idea which I will use throughout the
book in the case of category-preserving forcings. If / is a o-ideal on a Polish space
X and M is a countable elementary submodel of a large structure, consider the
countable forcing P, N M. A repetition of the proof of Proposition 2.1.2 will show
that the forcing P, M adds a single point X,,, € X which belongs to all sets in its
generic filter and falls out of all sets in the model M which do not belong to the
generic filter. Moreover, the name for the P, N M-generic point is just the restriction
of the name for the P,-generic point to the model M. In general, the forcing P, " M
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is so different from P, itself as to be useless to consider; however, in the category
preserving case the situation changes.

Corollary 3.54. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper. The following are equivalent:

1. P, preserves category;

2. for every countable elementary submodel M of a large structure the forcing
P, N M forces its generic point to fall out of all ground model coded I-small
sets.

Proof. For (1)—(2) suppose for contradiction that P, preserves category and some
condition B € P, M forces in P, M that the P, N M-generic point belongs to
some Borel /-small set C € I. By the Baire category theorem applied to the poset
P,NM there are open dense sets D, C P, M: n € w such that BN(,UD, C C.
Choose a winning strategy o in the category game G for Player I in the model M,
and simulate a play against this strategy in which Player II indicates B = p,,; and
his n-th move is a condition in the model M and in the set (., D,,- The result of
this play is a subset of the set C, and Player II won, a contradiction.

For the other direction suppose that (2) holds and BC X, CC2?and D C Bx C
are a Borel /-positive set, a Borel nonmeager set, and a Borel set with meager
vertical sections. I must find a point y € C with B\ D” ¢ I. Fix a countable ele-
mentary submodel M of a large enough structure. If all the sets B\ D” belonged
to the ideal /, then the condition B in the forcing P, N M forced CNV C D)'rg(,,
by the property (2). This is impossible since P, M is a countable forcing, there-
fore equivalent to Cohen forcing, and Cohen forcing preserves Baire category by
Kuratowski—Ulam theorem [40], 8.41. O

Corollary 3.5.5. (LC) Suppose that I is a universally Baire ideal on a Polish space
X such that P, is proper. The following are equivalent:

1. P, preserves category;
2. there is a collection T of Polish topologies on the space X giving the same Borel
structure such that I = {A C X :Vt € T A is meager in t}.

Proof. The direction (2)—(1) is an immediate corollary of the Kuratowski—Ulam
theorem for category. If B € P, is a Borel set, C C 2 is a Borel nonmeager set
and D C B x C is a Borel set, find a Polish topology ¢ on the space X such that
the ideal I is a subideal of the #-meager ideal and B is not r-meager, and use the
Fubini theorem for category to either find a vertical section of the set D which is
not meager or a horizontal section of the complement of the set D which is not
t-meager and therefore not in the ideal /.
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For the opposite direction, let M be a countable elementary submodel of a large
enough structure, consider the countable forcing Q = P, N M, and consider the
Stone space Y of the forcing Q and its G4 subset Z C Y consisting of M-generic
filters. Since the forcing Q is countable, the space Y is Polish and so is the set
Z. Let m:Z — X be the one-to-one continuous function defined by 7(G) = x/G;
manipulating 77 on a nowhere dense set I can assume that 7 is a Borel bijection. Let
t be the m-image of the Y-topology on the space X. This is the desired topology.

To see this note that the collection of filters containing B is non-meager in the
Stone space Y and so the set B is not meager in the topology 7. On the other
hand, if C € P,NM and D, :n € w is a collection of open dense subsets of the
poset P, N M (possibly not elements of the model M) then there is a play observing
the strategy o with all moves in the model M such that p;,; = C and ¢g,—the n-th
move of Player II-is in the open dense set (),,c, D,,- The result of such a play
is an [-positive set. This, together with the Baire category theorem, shows that
no Borel 7-nonmeager set can be /-small, or in other words / C f-meager ideal as
claimed. O

Note that the corresponding equivalence for the Lebesgue measure — P, is
bounding and preserves Lebesgue measure if and only if / is polar — is an open
Question 7.2.3.

Corollary 3.5.6. (LC) Suppose that I is a universally Baire ideal on a Polish space
X such that P, is proper. The following are equivalent:

1. P, preserves Baire category;
2. For every I-positive Borel set B C X the Cohen forcing adds an element of the
set B which falls out of all ground model coded Borel I-small sets.

This is immediate from the previous corollary.

Corollary 3.5.7. (LC) Suppose that I is a universally Baire c.c.c. ideal such that
the forcing preserves Baire category. Then P, is in the forcing sense equivalent to
the Cohen forcing.

This has been proved earlier by Shelah [61] using entirely different methods. The
corresponding implication for the case of Lebesgue measure — if / is a universally
Baire c.c.c. o-ideal and / £ null then P, is equivalent to the Solovay forcing — is
true and its proof follows somewhat different lines [16], [17].

Proof. This is an immediate consequence of the previous corollary. It will be
enough to show that the set D = {C € P, : P, below C has a countable dense
set} C P, is dense-by the c.c.c. I will be then able to find a countable maximal
antichain in D and get a countable dense subset of the whole forcing P,. So fix
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a condition B € P,. By the previous corollary the Cohen forcing adds an element
% € B which falls out of all I-small Borel sets coded in the ground model. By the
c.c.c. such a point x is P,-generic. A standard forcing theory argument then shows
that there must be a condition C C B and a complete embedding of the poset P,
below C to the Cohen forcing algebra. Since Cohen forcing has a countable dense
subset so must the poset P, below C, thus C € D and the proof is complete. U

Corollary 3.5.8. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper. The following are equivalent:

1. there is a Borel I-positive Borel set B € P, and a Polish topology T on B
generating the same Borel structure such that every countable subset of the set
B is covered by a T — Gg-set in the ideal I;

2. P, fails to preserve Baire category.

This shows that the forcings associated with Hausdorff measures of Section 4.4
and outer regular capacities of Section 4.3 make the set of ground model reals
meager. In all the specific cases there is a quite simple proof of this statement
which does not use any large cardinal assumption.

Proof. T will start with (1)—(2) direction. Extend the topology on some positive
Borel set B, C X to satisfy the property (1). Suppose for contradiction that B, €
P,, B, C B, is a condition forcing that category is preserved. Fix the corresponding
winning strategy o for Player I in the category game below B,, and choose a
countable elementary submodel M of a large enough structure containing /, B, 0.
Let A C {x € B, : x is M-generic} be a countable set meeting every condition in
MNP, below B,. Use the assumption to find a Gs-set (), O,, in the ideal I
covering A, where O,, : m € w are open sets. I claim that there is a counterplay
against the strategy o in which Player II uses only conditions in the model M, and
at n-th round his move g, is a set which is a subset of all the open sets O,, : m € n.
The result (M, U,-« g, of such a play must be a subset of the set 0=, 0,, € I,
contradicting the assumption that o is a winning strategy.

Suppose that the play has been constructed up to the move p, € M of Player 1.
The set (),,c, O,, 1s open and it contains some M-generic point x € ANp,. So
there must be a basic open neighborhood P C X such that x e P C (),,c,, O,,- Now
P, PNp, € M, and since the latter set contains the M-generic point x, it must be
I-positive. Player II indicates ¢, = PN p, and the construction of the play can
proceed.

The (2)—(1) direction uses no large cardinal or definability assumptions. Fix a
winning strategy o for Player II in the category game starting with some condition
Pini € Py, let M be a countable elementary submodel of a large enough structure
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containing the strategy o, and let B= {x € p,,; : x is M-generic} € P,. Find a Polish
topology 7 on the Borel set B extending the original one in which all Borel sets
in the model M are open, using [40], I1.13.5. T claim that the topology 7 has the
required property. Suppose that A C B is a countable set. I will find a play in the
category game in which all moves belong to the model M, Player II follows the
strategy o and A is a subset of the result of the play. This will complete the proof
since the result of the game is 7 — G5 [-small set.

To find the desired play of the category game, first fix an enumeration A = {x,, :
n € w} and a partition w = {a,, : m € w} into infinite sets. I will build the play in
such a way that for every number n € w the n-th move ¢, of the strategy o contains
the point x,, whenever n € a,,. This will guarantee that the set A is indeed a subset
of the result of the play. Well, suppose that the move g,_, of the play has been
obtained, and find a number m such that n € a,,. The set D={g e P,:3p <p,,; p
induces the strategy o to answer with ¢} C P, is dense below the condition P,, and
since the point x,, € A is M-generic, it is an element of some condition ¢ € DN M.
This shows precisely that there is an extension of the play by some moves p,
and g, = g in the model M such that x, € g, and Player II still follows his
strategy o. O

Corollary 3.5.9. (LC) Suppose that P is a universally Baire proper category
preserving forcing. Suppose that T is an w,-tree. Every uncountable subtree of T
in the P-extension contains an uncountable subtree in the ground model.

Proof. Suppose S is a name for an uncountable subtree of the tree 7', assume that
no condition in the forcing P forces an uncountable set of elements of 7 into S ,
and work towards a contradiction.

Use Theorem 3.10.21 to find a winning strategy o for Player I in the category
game. Find a countable elementary submodel M containing all the necessary infor-
mation, let « = M Nw,, and choose an enumeration ¢,, : m € o of a-th level of the
tree 7. Find a play of the category game such that

* Player I follows the strategy o;

e moves of Player II come from the model M;

e whenever n € w is a number and m € n then there is a node u,, < ¢,, in the tree
T such that the condition ¢, the answer of Player II at round n, forces i1, & S.

This is not difficult to do: once strategy o makes the move p, € M by induction
on m € n find a descending chain g : m € n of conditions in the model M below
p, such that for every m € n there is a node u,, < t,, such that ¢ forces i,, & S.
Suppose ¢”~! has been found. Consider the set {u € T:3r < ¢" ' r i ¢ S} e M.
By the assumption on the name S, this set is co-countable, in particular it contains
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some level T for B € a. Let u,, € Ty be the unique node smaller than 7,, and find

the condition g™ < g™ in the model M forcing i,, & S. After this subinduction
has been performed put g, =q..

Let g < P be the result of the play described in the previous items. Clearly,
g VYmewt,¢ § and therefore the tree § C T is countable. O

As an immediate consequence the forcing P does not add new branches to w,-trees
and preserves Suslin trees.

3.6 Preservation of outer Lebesgue measure

Let A denote the outer Lebesgue measure on 2. Let P be a forcing. I will say that
P preserves outer Lebesgue measure if for every set A C 2, P (A(A))Y = A(A).
I will also say that P collapses outer Lebesgue measure (under some condition) if
there is a condition p € P such that p 2“NV is a Lebesgue null set. These two
properties have been frequently investigated and used. It follows from the results
of Section 3.2.2 that if 7 is a suitably definable o-ideal on a Polish space X and
the forcing P, is proper then P, collapses outer Lebesgue measure iff it does not
preserve it iff 7 L A holds.

In this section I will provide several tools for proving outer Lebesgue measure
preservation.

3.6.1 Polar ideals

By far the most powerful tool for proving Lebesgue measure preservation theorems
is associated with polar ideals.

Definition 3.6.1. A o-ideal I on a Polish space X is polar if there is a collection
M of countably additive probability measures on the space X such that I = {A C
X:VYueM u(A)=0}.

The terminology comes from a paper of Gabriel Debs [12] where he considers
polar ideals of compact sets. While his work is highly relevant to our investigation
here, most examples of polar ideals below are not generated by compact sets in any
presentation. The basic theorem:

Theorem 3.6.2. Suppose that I is a polar o-ideal such that the forcing P, is proper.
Then the forcing P, is bounding and preserves outer Lebesgue measure.

Proof. To prove the bounding condition, let B € P, be a Borel set and f: B — 2“ be
a Borel function. I must produce a compact set C C B such that Ce€ P, and f Cis
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continuous. To do that, find a probability measure u on the underlying space X such
that w(B) # 0 and w vanishes on all sets in the ideal 1. Let J = {A C X : u(A) =0}.
Then P, is isomorphic to the Solovay forcing by the measure isomorphism theorem
[40], 17.41, it is bounding, and there must be a compact set C C B such that f C
is continuous and C ¢ J. However, I C J and so C ¢ I as desired.

The preservation of Lebesgue measure is similar. Let B € P, be a Borel set and
D C B x2“ be a Borel set with vertical sections of Lebesgue measure < . Proceed
as above and find a measure u which vanishes on all sets in the ideal / and w(B) # 0.
Let J = {A C X : u(A) = 0}. By the Fubini theorem, A(f, D dJ) <e&. Since I C J,
it is necessarily the case that [, D dI C [, D dJ, A([,D dI) < A(f, D dJ) < e, and
the proof is complete. O

One of the most pressing questions left open in this book is whether this impli-
cation can be reversed, Question 7.2.3. Note that a similar equivalence indeed is
true on the category side as proved in Corollary 3.5.5. Proposition 3.6.10 below
shows that the implication can be reversed in a rather extensive class of ideals, nev-
ertheless the general case remains open. As long as this important piece is missing,
I will just go on and give a list of examples of ideals which are or are not polar. It
turns out that measure theorists have been involved in this type of investigation for
a long time.

Example 3.6.3. If 7 is a strongly subadditive capacity on a Polish space X then n
is an envelope of measures by a theorem of Choquet [6], and the associated null
ideal /1, = {A C X : n(A) = 0} is therefore polar. Here 7 is an envelope of measures
if for every Borel set B C X and every real € > O there is a measure pu on X such
that u < m on Borel sets and w(B) > 1(B) — &. Many forcings of the form P, are
proper; this extensive subject is handled in Section 4.3.

Example 3.6.4. Suppose that ¢ is a (non-o-finite) measure on a Polish space X,
and consider the ideal /,, o-generated by sets of finite ¢-measure. If the measure
satisfies the condition

(*) every Borel ¢-positive set contains a Borel subset of nonzero finite ¢-mass,

then the ideal /,, is polar. The verification of the condition (*) for various measures
made measure theorists busy for decades. For instance, Howroyd [26] proved that
r-dimensional Hausdorff measures satisfy it where r > 0 is a real number, and Preiss
and Joyce [32] proved that r-dimensional packing measures satisfy it where r > 0
is a real number. In both cases, the associated forcings are proper and interesting.
The polarity of the ideal /4, requires an argument. Let B € P,  be a Borel set. I
must find a probability measure w on the space X which vanishes on all sets in the
ideal 7, and assigns the set B a positive value. Consider the ideal J of sets of ¢-mass
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zero. The property (*) together with the measure isomorphism theorem [40], 17.41,
imply that the forcing P, is densely isomorphic to Solovay forcing and therefore
bounding. It also implies that there is an uncountable antichain in the forcing P,
below the set B: any maximal antichain in the dense set {C € P, : ¢(C) < oo}
below B must be uncountable since B cannot be covered by countably many sets of
finite ¢-measure. The argument from 3.7.7 then shows that there must be a perfect
collection P C K(X) of mutually disjoint ¢-positive perfect subsets of the set B.

Use the condition (*), the measure isomorphism theorem and the Sacks uni-
formization 2.3.4 to find a perfect set Q C P and a Borel function f: O x2* — X
such that for every compact set C € Q the range of the function f. is a subset
of C and f is a measure isomorphism between the Lebesgue measure A on the
Cantor set and the measure ¢ on rng(f.). Let i/ be some probability measure on
the perfect set Q and let w be the probability measure on the space X given by
w(A) = ( x A)(f~'(A)). I claim that the measure u has the desired properties.

First, it is clear that w(B) = u(X) = 1. Moreover, whenever A C X is a Borel set
in the o-finite ideal 1, the set {C € Q: ¢(ANC) > 0} must be countable by the
countable additivity of the measure ¢. It follows that the preimage f~'(A) C Q x 2°
has Lebesgue null vertical sections with possibly countably many exceptions. By
the Fubini theorem then, w(A) = (¢ x A)(f~'(A)) = 0 as desired.

Example 3.6.5. Rogers and Davies [11] constructed a classical example of a
Hausdorff measure ¢ which fails the condition (*). Necessarily it has to be a
measure associated with a fast growing gauge function, since gauge functions like
the exponentiation to the power r, r > 0, give rise to measures satisfying the
condition (*) by a result of Howroyd [26]. The example gives a Hausdorff measure
¢ such that its only values are zero or infinity. Thus /,, = {A C X : ¢(A) =0} and
the whole argument in [11] shows that I, is not a polar ideal. I investigate the
forcing P,¢ in depth in Section 4.4. It turns out that it is proper, bounding, does not
add splitting reals, and collapses the outer Lebesgue measure.

Example 3.6.6. Let I be the o-ideal of sets of extended uniqueness on the unit circle
T in the complex plane. Then I = {A C T: u(T) = 0 for every Rajchman measure
p} and therefore 7 is a polar ideal. It turns out that the ideal I is o-generated
by closed sets, and therefore the associated forcing P, is proper, bounding, and
preserves category and outer Lebesgue measure.

Example 3.6.7. A number of polar ideals appears in the theory of Borel equivalence
relations. Let E be a Borel equivalence relation on a Polish space X which is not
smooth, and consider the ideal / generated by Borel sets B C X such that E B is
smooth. Then by [47], a Borel set B C X is I-positive if and only if it supports a
probability E-ergodic measure. Thus I = {B C X : u(B) = 0 for every E-ergodic
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probability measure} and the ideal 7 is polar. A special case of this ideal appears
in Section 4.7.1.

If E is a countable Borel equivalence on a Polish space X, call a set B C X
compressible if there is a Borel injection f: B — B such that Vx € B f(x)Ex and the
set B\ f”B hits every equivalence class of B. The collection I of all Borel sets B
such that the E-saturation of B is compressible is a o-ideal. A theorem of Nadkarni
[53] shows that B ¢ I if and only if there is an E-invariant probability measure
such that u(B) > 0. Here a measure w is E-invariant if it is invariant with respect to
some (any) Borel action of a countable group generating the equivalence E as the
orbit equivalence. Thus / = {B: u(B) = 0 for every E-invariant probability measure
p} and again, I is a polar ideal. The ergodic decomposition theorem shows that P,,
if nontrivial, is densely isomorphic to the Solovay forcing.

Example 3.6.8. A number of other o-ideals are defined in such a way that they are
polar. A typical example is the o-ideal of Gauss null sets on any separable Banach
space — these are the sets with zero mass for every Gauss measure on the space
[10]. The problem is that such definitions do not yield any hint as to the possible
proof of properness or improperness of the resulting quotient forcing.

Example 3.6.9. Let [ be the o-ideal of o-porous sets on the real line. The forcing
P, is proper by the results of Section 4.2, and it is bounding by the results of
[80]. Preiss and Humke [27] produced a Borel I-positive set B C R such that every
measure on it concentrates on a o-porous set, therefore the ideal / is not polar. I do
not know if the forcing P, preserves outer Lebesgue measure. In Section 4.2 I will
show an example of another compact metric space for which the metric porosity
forcing demonstrably makes the set of the ground model reals Lebesgue null.

Finally, there is the promised proposition showing than in a large number of
cases polarity of ideals coincides with the preservation of outer Lebesgue measure
and the bounding property.

Proposition 3.6.10. Suppose that ¢ is a countably subadditive submeasure on a
Polish space X which is outer regular on compact sets: ¢(K) =inf{¢p(0): K C O
and O open} for every compact set K C X. Suppose that the forcing P, is proper,
where 1, = {A C X : ¢(A) = 0}. The following are equivalent:

1. the forcing P, is bounding and preserves outer Lebesgue measure;
2. the ideal 1, is polar.

The proposition applies to all capacities as well as to all pavement submeasures,
since changing the topology of the underlying space X it is possible to present any
pavement submeasure as an outer regular submeasure.
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Proof. The (2)—(1) direction is included in Theorem 3.6.2. The opposite direc-
tion is the heart of the matter. The proof is an elaboration of an argument of
Christensen [7].

Suppose that the forcing P, is bounding and proper, and B ¢ I, is a Borel set.
Since the forcing P,¢ is bounding, the compact sets are dense in it by Theorem 3.3.2
and I can assume that the set B is in fact compact. There are two distinct cases.

Either the submeasure ¢ B is not pathological, meaning that there is a bounded
finitely additive measure ¢ on the set X which is dominated by ¢ such that
Y(B) > 0. In this case I will use the standard Caratheodory construction to extend
the measure ¥ K(X) to a countably subadditive measure w. Then w(B) = /(B) >0
and a tightness argument will show that u < ¢. For every set A C X, define w(A) =
sups.o inf{Z,(0,) : A C U, O, and O, is open of diameter < 8}. It is immediate
that w is a metric measure. I claim that w is a nonzero countably additive measure
dominated by ¢ as desired. The finite additivity of the measure ¢y and a compactness
argument show that u(K) = inf{)(O) : K C O and O open} for every compact set
K C X. In particular w(B) = (B) > 0 and u(K) < ¢(K) for every compact set
K C X by the outer regularity of the submeasure ¢. For an arbitrary Borel set
A C B the tightness of the measure w implies that u(A) = sup{u(K) : K C A
compact} < sup{¢(K) : K C A compact} < ¢(A) as desired.

Or the submeasure ¢ B is pathological. In this case I will show that B the
ground model reals form a Lebesgue null set. By a theorem of Christensen [7], for
every number n € w there is a finite collection {A} :i € i,} of Borel subsets of B
such that ¢(A?) < 27" and there are nonnegative numbers ¢/ : i € i, with unit sum
and 3¢} - x(A) > 1/2. Consider the space Y =[], i, equipped with the probability
measure u which is the product of the measures u,, on i, defined by w,(a) =2, ¢!
Consider the set D C Bx Y, D={(x,y) € BxY:¥*nx ¢ A, }. It will be enough
to show that the vertical sections of the set D have p-mass O while the horizontal
sections of its complement have ¢-mass 0. Fix a point x € B. Then D, = J, E"
where E} = {y € Y:Vk > n x ¢ Aj,,}. By the choice of the sets A}, the numbers
we({i €, : x ¢ A¥}) are smaller than 1/2 and therefore the p-masses of the sets E”
and D, are zero. On the other hand, fix a point y € Y. The set B\ D” is the intersection
of sets F' ={xeX:3k>n xe A’;(k)} which have the respective ¢p-masses <
3,27, numbers which tend to zero as 7 tends to co. Thus ¢(B\ D*) = 0 as desired.

The proposition immediately follows from these two cases. O

3.6.2 Other proofs

Of course, some forcings preserve outer Lebesgue measure without being polar.
The archetype of such behavior is the Laver forcing; it is not polar since it is not
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bounding. Woodin [2], 7.3.36, proved that Laver forcing preserves outer Lebesgue
measure. A more careful argument actually provides a much stronger result, and
the method will be applied again in the proof of a powerful preservation theorem.

Theorem 3.6.11. Suppose that ¢ is an outer regular capacity on a Polish space X
such that every coanalytic set is capacitable for ¢. Then Laver forcing preserves ¢.

Here, a set is capacitable for ¢ if it can be sandwiched between two Borel
sets of the same ¢p-mass. It turns out that in the constructible universe for most
capacities there is a coanalytic set which is not capacitable-Theorem 4.3.21. On
the other hand, under assumptions such as the determinacy of coanalytic games
or add(null) > R,, coanalytic sets are capacitable for very many capacities —
Theorem 4.3.6. This subject is handled in detail in Section 4.3. Note that the
theorem does not require the capacity to be subadditive.

Proof. Suppose T C w=“ is a Laver tree forcing O C X tobe an open set of capacity
< . I have to show that the set {x e X: T X € O} has capacity < s.

Let O be some countable topology basis for the space X closed under finite
unions. A standard fusion argument gives a Laver tree S C T and a function f:
S— OsuchthatVi e S ¢(f(1)) <e,s Ct— f(s) C f(t),and S  O=U, f(&p, n).
To simplify the notation assume that § = w=“.

Consider the space Y = w=“ x X and the operator I": P(Y) — P(Y) on it defined
by (s, x) € I'(B) < (s, x) € BVYVY®n (s"n, x) € B. This is a monotone inductive
coanalytic operator, and therefore by a theorem of Cenzer and Mauldin [5], 1.6,
given a coanalytic set A C Y, the transfinite sequence given by the description
A=Ay, Ay =T(A,) and A, = g, Ag for limit ordinals a, stabilizes at w; in
a coanalytic set A, such that for every analytic set C C A, there is an ordinal
a € w, such that C C A,,.

Now consider the set A C Y defined by (s, x) € A if x € f(s). It is not difficult to
see that writing A* for the set {x € X : (s, x) € A} it is the case that s C r — A* C A,
these sets have capacity < € and this feature persists through the countable stages of
the iteration. To see that ¢(A},, ) < & note that the set A}, is an increasing union
of the sets (,,., AL ™ : n € w, each of them of ¢-mass < &, and use the continuity
of the capacity under increasing unions. At limit stages, use the continuity of the
capacity again to argue that c(A?) < e.

Consider the coanalytic set A, , the fixed point of the operator I', and its first
coordinate B = AS)I' First note that x ¢ B means that S / X € O, since if x ¢ B
then the tree U ={s€S:x ¢ Az)l} is a Laver tree by the definition of the operator

I' and it forces X ¢ 0 In fact a transfinite induction argument will show that
B={xeX:S Xxe O}. Now it is enough to show that ¢(B) < e. However, if
¢(B) > ¢, then by the capacitability of the set B there is a compact set C C B



64 Properties

such that ¢(C) > &, and such a set must be included in the set A? for some
. 0 . .

countable ordinal o. However, ¢(A,) < & as proved in the previous paragraph, a

contradiction! O

It is instructive to compare this argument with the original Woodin’s proof
for preservation of outer Lebesgue measure in the Laver extension in [2],
7.3.36.

Corollary 3.6.12. Suppose that ¢ is an outer regular capacity such that every
coanalytic set is capacitable for it. Then Miller forcing and Steprans forcing
preserve ¢.

To show this it is possible to literally repeat the Laver forcing proof. A par-
allel argument more in line with the doctrine presented in this book reduces
the Miller case to the Laver case by noticing that Laver forcing adds a
point falling out from all Borel sets in the ideal associated with the Miller
forcing.

3.7 The countable chain condition

The countable chain condition is a rare guest in the realm of definable forcing.

3.7.1 Ergodicity

Definition 3.7.1. A o-ideal I on a Polish space X is called ergodic if there is a
Borel equivalence relation E on X with countable classes such that every Borel
E-invariant set is either in I or its complement is in 1. A c.c.c. forcing P adding a
single point x € X is called ergodic if its associated ideal {BC X : P % & B} is
ergodic.

While ergodicity does not imply c.c.c. and vice versa, most c.c.c. forcings for
adding a single real are ergodic:

Example 3.7.2. The Cohen forcing is ergodic. Consider the presentation as P,
where [ is the ideal of meager subsets of the Cantor space 2“. Let E be
the equivalence relation defined by xEy if xAy is finite. Now if B C 29 is
a Borel nonmeager set, then it is comeager in some basic open set O, for
t € 2" for some number n € w, its E-saturation must be comeager in every
set O, for s € 2", and therefore the E-saturation of the set B is comeager as
required.
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Example 3.7.3. The Solovay forcing is ergodic. This is the fundamental fact of
ergodicity theory [78]; the equivalence used is the Vitali equivalence relation.

Example 3.7.4. The Hechler forcing is ergodic. Hechler forcing P is the set of all
pairs p € 0= x w®, p={(t,, f,) ordered by ¢ < p if t, Ct,, f, < f, pointwise
and 7,\ 7, > f, pointwise on its domain. The forcing adds a single point fgen € w”
as the union of the first coordinates in the generic filter. Let I be its associated
ideal on the Baire space. Let E be the equivalence on the Baire space defined by
fEg < |fAg| < R,. Suppose B C w® is a Borel E-invariant set which is I-positive,
that is there is a condition p fgen € B. I will show that then 1 fgen € B, in other
words w® \ B € I as required. Suppose for contradiction that there is a condition
q j‘gen ¢ B. It is not difficult to extend the conditions p, g to p’, ¢’ such that
|t,| =lt,| and f, = f,. Consider the function 7: P p'— Q ¢ where m(r) is
the condition obtained from r by replacing the appropriate initial segment of ¢,
with 7,,. The function 7 is clearly an isomorphism of the two partial orders. Thus
if GC P p'is a generic filter then so is 7'G C P ¢q'. By the forcing theorem,
the generic point x € w” associated with G is in the set B while the generic point
y € w® associated with 7”G is in the complement of B. However, a review of
the definitions reveals that y is obtained from x by replacing its appropriate initial
segment with 7,. Thus xEy, contradicting the E-invariance of the set B.

I do not know an example of an ergodic forcing whose ergodicity would be
witnessed by an equivalence relation in the Borel reducibility sense more compli-
cated than the Vitali equivalence. The previous examples seem to indicate that the
ergodicity is connected with c.c.c. and the homogeneity of the forcing, and this is
in fact true.

Proposition 3.7.5. Suppose that I is an ergodic o-ideal on a Polish space X. Then:

1. either the forcing P, is c.c.c.;
2. or the ground model coded I-small sets cover the space X in every R, -preserving
extension.

In other words, if it is at all possible to increase the invariant cov(/) while
preserving N, then the forcing P, is the only tool.

Proof. Clearly (1) implies that (2) fails. To see that —(1) implies (2), let E be the
countable Borel equivalence relation witnessing the ergodicity. If (1) fails, there
is an uncountable collection {B, : @ € w,} of I-positive Borel sets with /-small
pairwise intersections. Use the o-completeness of the ideal / inductively to thin
out the sets B, in such a way that they are actually pairwise disjoint. The sets C,,,
complements of the E-saturations of the sets B, are in the ideal /, and I will show
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that U,e,, C, = X in every R, -preserving extension. Well, if x € X is a point in
some extension which is not in this union, then the equivalence class of the point
x must have a nonempty intersection with every set B, : & € w,. However, the
equivalence class of the point x is countable while there are | many disjoint sets

B,; ergo, NY is collapsed in the extension. O

Proposition 3.7.6. Suppose that I is an ergodic c.c.c. o-ideal on a Polish space
X. Then:

1. the countable Borel equivalence relation witnessing ergodicity can be chosen so
that saturations of I-small Borel sets are small;

2. P, is a homogeneous notion of forcing and if the ideal I is generated by Borel
sets, then it is homogeneous;

3. the dichotomy in the definition of ergodicity holds even for universally Baire
sets in place of Borel sets.

Proof. For the first item, choose an arbitrary equivalence relation F witnessing the
ergodicity. Note that there is a Borel set A C X whose complement is in the ideal
I and such that the F-saturation of every Borel /-small subset of A is F-small.
Suppose this fails. Build an inclusion-decreasing sequence (A, : @ € w,) of I-large
subsets of the space X and sets (B, : @ € w,) such that B, C A, is /-small with
I-positive (by the ergodicity, /-large) F-saturation, and such that A, N B, = 0.
This is easy enough to do, at limit stages taking intersections of the sets A, built
so far and using the o-additivity of the ideal /. Now consider the P,-generic point.
It falls into the I-large F-saturations of all the sets (B, : & € w,), and therefore
its equivalence class visits all the sets B,. But the equivalence class is countable
while the sets B, are disjoint, meaning that 8, was collapsed. Once the existence
of the set A C X has been established, it is clear that the Borel equivalence relation
E=(FNA?)U(=N(X\A)?) satisfies the demands of the first item.

By the Feldman—Moore theorem [19], there is a Borel action of a countable group
I such that the E-equivalence classes are exactly the orbits under the action. Since
E-saturations of /-small Borel subsets of A are /-small, the action preserves the
ideal I: whenever 7 € I" and B C A is a Borel set, B € [ iff 7B € I. Clearly, each
member 7 € I" induces an automorphism 7 of the poset P, by setting 7(B) = 7" (B).
Since the E-saturations of /-positive Borel sets are large, for every two positive
Borel sets B, B, there must be a member 7 € I" such that 7 (B,) N B, € I, which
proves the homogeneity of the forcing P,.

For the homogeneity of the o-ideal / let B C X be a Borel positive set. Enumerate
the acting group I' = {77, : n € w} and note that for all but /-many points x € X
there is an element 7 € I' such that 7(x) € B, since the E-saturation of the set
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B is I-large. This makes it possible to define f: X — B by setting f(x) = m,(x)
whenever n is the least number m such that m,,(x) € B, and f(x) = some fixed
element in the set B if no such number m exists. Since I'-preimages of Borel /-small
sets are small, it is also true that the f-preimages of Borel /-small sets are /-small.

The ergodicity dichotomy clearly extends to all universally Baire sets, since for
every c.c.c. ideal, every universally Baire set either has a Borel superset in the ideal
I or it has a Borel /-positive subset. In the former case the E-saturation of the
universally Baire set is /-small, in the latter it is /-large. O

3.7.2 Perfect antichains

A long time ago Woodin asked whether every suitably definable non-c.c.c. forcing
must contain a perfect antichain. This question was answered in the negative in
[33], where the authors showed that the standard Baumgartner forcing for adding a
closed unbounded subset of w, can be coded in such a way that no perfect antichains
can exist. It nevertheless turns out that the dichotomy holds for definable bounding
forcing notions and for < w,-proper forcing notions of the form P;:

Proposition 3.7.7. (LC) Suppose that I is a universally Baire o-ideal on a Polish
space X such that the forcing P, is proper and bounding. Then exactly one of the
following holds:

1. P,isc.cc.;
2. there is a perfect collection of mutually disjoint I-positive compact sets.

If the ideal I is 11} on Ei then the large cardinal assumption can be omitted.

Here the word “perfect” refers to the hyperspace K(X) of compact subsets of the
Polish space X.

Proof. Assume that P, is not c.c.c. Then it is possible to find a collection of w,
many mutually disjoint /-positive Borel sets, and since the compact sets are dense in
the forcing P,, there is a collection C= (C, : a € w,) of mutually disjoint /-positive
compact sets.

Now assume that / is a universally Baire o-ideal, and consider a Woodin cardinal
o with the associated stationary tower Q and the Q-name j: V — N for the generic
elementary embedding. Clearly, Q jém]v € P,. Choose a countable elementary
submodel M of a large enough structure. If g C M N Q is an M-generic filter then
the models M[g] and N/g are both correct about the membership in the ideal I and
therefore the compact set C, = jéw]v /8 is I-positive. I will complete the proof by
finding a perfect collection P of M-generic filters on M N Q such that the collection
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{C, : g € P} consists of mutually disjoint sets. Fix a countable topology basis O of
the underlying Polish space.

Claim 3.7.8. If S € Q is a stationary set then there are disjoint basic open sets
0Oy, O, such that both sets Sy ={x € S: C,r, C Oy} and S; ={x € S:C,,, C O}
are stationary.

Proof. If this failed then for every pair O,, O, of disjoint basic open sets one of
the sets S,, S, is nonstationary. Collect all of these countably many nonstationary
sets and subtract them from the stationary set S, obtaining a stationary set R.
Let x,y € R be countable sets such that xNw, and yNw, are distinct countable
ordinals. Since the compact sets C,,, and C,,,, are disjoint, there are disjoint basic
open sets O,, O, separating them. This contradicts the construction of the set R
though. O

Note that the sets S, S; force the compact set ja'wlv to be included in O, or O,
respectively. Now let D, : n € w enumerate all open dense subsets of the forcing O
in the model M and by induction on sequences « € 2<“ build conditions p, € 0NM
and basic open sets O, so that

.pMEDM’UCu_)pvzpu;
° OM’\OHOM’\I =O’
e C C O, for every set x € p,.

xNwy

This is not difficult to arrange using the previous claim repeatedly. In the end,
for every infinite binary sequence v € 2¢ the conditions p, : u C v generate an M-
generic filter g, C QN M and the /-positive compact sets C, : v € 2 are mutually
disjoint as desired.

The ZFC case of a IT} on E} ideal I is just a version of the previous argument.
To simplify the notation assume that the underlying Polish space is just the Cantor
space 2¢. The set {C € K(2*) : C & I} is analytic, so find a tree T C (w x 259)=¢
which projects into the set of all binary trees U C 2= such that [U] € I. As in
the previous argument find an uncountable collection U, : @ € w, of binary trees
such that the sets [U,] are I-positive and mutually disjoint. The following claim is
critical:

Claim 3.7.9. Suppose that t € T is a node and S C w, is a stationary set such that
{U,:a €S} Cproj[T t]. Then there are disjoint basic open sets O,, O, and nodes
S, 81 € T such that T s, projects into trees which are subsets of O,, T s, projects
into trees which are subsets of O, and both sets Sy = {a € S: U, € proj[T s,]}
and S; ={a € S: U, € proj[T s,]} are stationary.
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The proof is just a repetition of the argument for the previous claim. As before,
construct a perfect collection 7, : u € 2 of nodes in the tree 7' such that for
incompatible sequences u, v € 2 there are disjoint basic open sets O,, O, such
that 7 r, and T ¢, project into trees that are subsets of O, and O, respectively
and for each sequence u € 2= the set {a € w, : U, € proj[T u]} is stationary.
For each infinite binary sequence v € 2¢ let U, be the binary tree into which the
path U,c, t, C T projects. Then U, : v € 2¢ is the required collection of /-positive
mutually disjoint sets. O

Note that the only property of the ideal / necessary in the above proof was that
compact sets are dense in the poset P,. There is a number of forcings which are
not bounding but possess this feature; some of them can be found in Section 4.2.

Proposition 3.7.10. (CH) Suppose that I is a o-ideal on a Polish space X such
that the forcing P, is < w,-proper and nowhere c.c.c. Then there exists a perfect
collection of mutually disjoint Borel I-positive sets.

Here, a forcing P is < w,-proper if for every countable e-tower (M : B € @) of
countable elementary submodels of some large structure and every p € PN M, there
is a condition ¢ € P, ¢ < p which is Mg-master condition for every ordinal § € .
It can be proved that almost all forcings considered in this book are < w,-proper
and this property is even absolute throughout forcing extensions. Thus if they fail
the c.c.c., an absoluteness argument will show that they must contain a perfect
collection of mutually disjoint Borel /-positive sets.

Proof. Let 0 be a large enough regular cardinal, and let y € H,. The key step in
the argument is to find two countable towers M,N < H, of elementary submodels
containing y such that no point of the space X can be simultaneously M and
K’-genen’c for the poset P. Once this is done, the argument is a breeze: choose
countable towers of elementary submodels M,, N, : n € w such that n € m implies
M,,, 1(7,1 € 1\71,,,, Nm and no point of the space X can be simultaneously 1\71,,- and
K’n-generic, and use < w,-properness of the forcing P to argue that for every
function f € 2 the Borel set B; = {x € X : if f(n) =0 then x is M ,-generic, and if

f(n) =1 then x is ](/,;generic} is I-positive — it is the only candidate for a master
condition for the tower of models indicated by the function f. Then {B,: f € 2}
is the desired perfect collection of mutually disjoint Borel /-positive sets.

Now the problem of finding the two towers M, N as in the previous paragraph
is in itself interesting. I do not know if there is an a priori bound on the necessary
length of these towers, such as 1 or w. My argument runs as follows. Consider
an e-tower (Mg : B8 € w;) of countable elementary submodels, and a countable

submodel N containing this tall tower. Let & = NNw, and M = (Mg : B € a).
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I claim that no point x € X can be at the same time M -generic and N-generic. To
see this, note that since the forcing P, is nowhere c.c.c. and of size ¢ = R, there is
a name ¢ for a function from w, to w, such that no ground model uncountable set
contains only closure points of g. By elementarity it is possible to find such a name
¢ in the model M. Now let C = {Mz;Nw, : B € w,}. If a point x € X is M-generic,
then all the ordinals in C N« are closure points of the function ¢/x, and if the point
x is N-generic then, since C € N, some of the ordinals in C N« must fail to be
closure points of the function g/x. Both cannot be true at the same time! O

An elaboration of the above proof will be used in Sections 4.5 and 4.3 to show
the following related statement.

Fact 3.7.11. Suppose that ¢ is either an outer regular subadditive stable capacity
or a pavement submeasure derived from a countable set of Borel pavers. Then the
following are equivalent:

1. the forcing P, ) is nowhere c.c.c.;
2. every Borel set can be partitioned into perfectly many Borel subsets of the same
¢-mass as the original set.

3.8 1! on 3] ideals

There is an important property of forcings that completely escaped detection by
the classical combinatorial methods. I must thank Vladimir Kanovei for turning my
attention in the correct direction.

Definition 3.8.1. A o-ideal I on a Polish space X is 11} on Ei if for every analytic
set A C2° x X the set {y €2°: A, €I} is coanalytic.

The reader should consult the textbook [40], 29.E, for several classical theorems:
the ideals of countable sets, meager sets and Lebesgue null sets are IT! on ). It turns
out that many o-ideals encountered in forcing theory are TI} on Ei while others
are not. The distinction is crucial for someone who wants to develop the theory of
iterated and product forcing without the auxiliary large cardinal assumptions. The
attentive reader will have noticed that most ideals from Chapter 4 are A} on X} but
this does not help with the ZFC dichotomy treatment of iterations of