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J I N D Ř I C H Z A P L E T A L
University of Florida



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-87426-7

ISBN-13 978-0-511-37894-2

© J. Zapletal 2008

2008

Information on this title: www.cambridge.org/9780521874267

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521874267


Contents

1 Introduction page 1
1.1 Welcome 1
1.2 Navigation 2
1.3 Notation 5
1.4 Background 6

2 Basics 15
2.1 Forcing with ideals 15
2.2 Properness 25
2.3 Topological representation of names 29

3 Properties 33
3.1 Continuous reading of names 33
3.2 Fubini properties of ideals 37
3.3 Bounding forcings 42
3.4 Bounding and not adding splitting real 46
3.5 Preservation of Baire category 52
3.6 Preservation of outer Lebesgue measure 58
3.7 The countable chain condition 64
3.8 �1

1 on �
1
1 ideals 70

3.9 Dichotomies 78
3.10 Games on Boolean algebras 87
3.11 Ramsey properties 106
3.12 Pure decision property 111

v



vi Contents

4 Examples 113
4.1 Ideals �-generated by closed sets 113
4.2 Porosity ideals 131
4.3 Capacities 143
4.4 Hausdorff measures and variations 179
4.5 Pavement submeasures 194
4.6 Analytic P-ideal forcings 209
4.7 Other examples 213

5 Operations 225
5.1 The countable support iteration 225
5.2 Side-by-side product 239
5.3 Unions of �-ideals 247
5.4 Illfounded iteration 252
5.5 Directed systems of ideals 264

6 Applications 269
6.1 Cardinal invariant inequalities 269
6.2 Duality theorems 278
6.3 Preservation theorems 285

7 Questions 303
7.1 Basics 303
7.2 Properties 303
7.3 Examples 304
7.4 Operations 306
7.5 Applications 306

Bibliography 307
Index 313



1
Introduction

1.1 Welcome

This book reports on the state of a research program that I initiated in 1999. It
connects the practice of proper forcing introduced by Shelah [64] with the study
of various �-ideals on Polish spaces from the point of view of abstract analysis,
descriptive set theory, measure theory, etc. It turns out that the connection is far
richer than I dared to imagine in the beginning. Its benefits include theorems about
methodology of forcing as well as isolation of new concepts in measure theory
or abstract analysis. It is my sincere hope that this presentation will help to draw
attention from experts from these fields and to bring set theory and forcing closer
to the more traditional parts of mathematics.

The book uses several theorems and proofs from my earlier papers; in several
cases I coauthored these papers with others. The first treatment of the subject in
[83] is superseded here on many accounts, but several basic theorems and proofs
remain unchanged. The papers [18], [67], [82], [86], and [87] are incorporated into
the text, in all cases reorganized and with significant improvements.

Many mathematicians helped to make this book what it is. Thanks should
go in the first place to Bohuslav Balcar for his patient listening and enlight-
ening perspective of the subject. Vladimir Kanovei introduced me to effective
descriptive set theory. Ilijas Farah helped me with many discussions on measure
theory. Joerg Brendle and Peter Koepke allowed me to present the subject mat-
ter in several courses, and that greatly helped organize my thoughts and results.
Last but not least, the influence of the mathematicians I consider my teach-
ers (Thomas Jech, Hugh Woodin, and Alexander Kechris) is certainly apparent
in the text.

I enjoyed financial support through NSF grant DMS 0300201 and grant GA ČR
201-03-0933 of the Grant Agency of Czech Republic as I wrote this book.
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2 Introduction

1.2 Navigation

This is not a textbook. The complexity of the subject is such that it is impossible
to avoid forward references and multiple statements of closely related results, and
to keep the book organized in a logical structure at the same time. As a result, the
linear reading of the book will be necessarily interspersed with some page flipping.
This section should help the reader to find the subjects he is most interested in.

Chapter 2 provides the basic definitions, restatements of properness, and basic
implications of properness, such as the reading of reals in the generic extension
as images of the generic point under ground model coded Borel functions. Every
reader should start with this chapter. A sample theorem:

Theorem 1.2.1. Suppose that I is a �-ideal on a Polish space X. The forcing PI

of I-positive Borel sets ordered by inclusion adds a single point ẋgen ∈ X such that
a set B belongs to the generic filter if and only if it contains the generic point ẋgen.

Chapter 3 investigates the possible finer forcing properties of the forcings of
the form PI . These divide into three basic groups. The first group is that of Fubini
forcing properties, introduced in Section 3.2. These correspond to the classical
preservation properties such as the bounding property or preservation of outer
Lebesgue measure. A sample theorem:

Theorem 1.2.2. Suppose that I is a �-ideal on a Polish space X such that the
forcing PI is proper. The following are equivalent:

1. PI is bounding;
2. for every Polish topology � on the space X that yields the same Borel structure

as the original one, every Borel I-positive set contains a �-compact I-positive
subset.

The second group of properties is entirely absent in the combinatorial treatment
of forcings. These are the descriptive set theoretic properties of the ideals, rep-
resented by the various dichotomies of Section 3.9 and the �1

1 on �
1
1 property.

The dichotomies are constantly invoked in the proofs of absoluteness theorems and
preservation theorems. The �1

1 on �
1
1 property of ideals allows ZFC treatment of

such operations as the countable support iteration, product, and illfounded iteration,
with a more definite understanding of the underlying issues. A sample theorem:

Theorem 1.2.3. (LC+CH) Suppose that I is a �-ideal generated by a universally
Baire collection of analytic sets such that every I-positive �

1
2 set has an I-positive

Borel subset. If the forcing PI is �-proper then every function f ∈ 2�1 in the
extension either is in the ground model or has a countable initial segment which is
not in the ground model.
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Here, LC denotes a suitable large cardinal assumptions, as explained in the next
section.

The third group of properties is connected with determinacy of games on Boolean
algebras. A number of forcing properties can be expressed in terms of infinitary
games of the poset PI which are determined in the definable context. The games
are usually variations on standard fusion arguments, and the winning strategies are
a necessary tool in the treatment of product forcing, illfounded iteration, and other
subjects. A sample application:

Theorem 1.2.4. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. The following are equivalent:

1. PI preserves Baire category;
2. there is a collection T of Polish topologies on the space X such that I is the

collection of all sets which are �-meager for every topology � ∈ T .

Chapter 4 gives a number of classes of �-ideals I for which I can prove that
the forcing PI is proper. While the presentation is based on a joint paper with
Ilijas Farah [18], it is nevertheless greatly expanded. There are two very distinct
groups of ideals in this respect: the ideals satisfying the first dichotomy, whose
treatment occupies almost the whole chapter, and the ideals that do not satisfy the
first dichotomy, treated in Section 4.7. It seems that the former group is much
larger. Its treatment is divided into several very populous subgroups, each treated
in its own section. These subgroups are typically connected with a basic underlying
idea from abstract analysis, such as capacities or Hausdorff measures. The sections
are all very much alike: first comes the definition of the class of ideals, then the
properness theorem, then the dichotomy theorem (which, mysteriously, is always
proved in the same way as properness), then several general theorems regarding
the finer forcing properties of the ideals. The section closes with a list of examples.
A sample result:

Theorem 1.2.5. Suppose that � is an outer regular subadditive capacity on a
Polish space X. Let I = �A ⊂ X � ��A	 = 0
. Then:

1. if the capacity is stable then the forcing PI is proper;
2. if the forcing PI is proper and the capacity is strongly subadditive then the

forcing PI preserves outer Lebesgue measure;
3. if the forcing PI is proper and the capacity is Ramsey then the forcing does not

add splitting reals;
4. every capacity used in potential theory is stable.
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My original hope that the idealization of forcings would closely relate to the
creature forcing technology [58] proved to be naive; the symmetric difference of the
two approaches turned out to be quite large. Nevertheless, in several cases I could
identify a precise correspondence between a class of ideals and a class of creature
forcings.

Chapter 5 relates operations on ideals with operations on forcings. The key case
here is that of the countable support iteration which corresponds to a transfinite
Fubini product of ideals, Section 5.1. The other operations I can handle are side-
by-side product with a great help from determinacy of games on Boolean algebras,
the illfounded iteration, which provides a treatment dual to and more general than
that of [43], the towers of ideals which is a method of obtaining forcings adding
objects more complex than just reals, and the union of ideals, which forcingwise is
an entirely mysterious operation. A sample theorem:

Theorem 1.2.6. (LC) Suppose that I� � � ∈ � is a collection of universally Baire
�-ideals on some Polish spaces such that the forcings PI�

are all proper and
preserve Baire category bases. Then the countable support side-by-side product of
these forcings is proper as well and preserves Baire category bases. In addition,
the ideals satisfy a rectangular Ramsey property.

Chapter 6 is probably the primary reason why a forcing practitioner may want
to read this book; however its methods are entirely incomprehensible without the
reading of the previous chapters. There are several separate sections.

Section 6.1 contains the absoluteness results which originally motivated the work
on the subject of this book. There are many theorems varying in the exact large
cardinal strength necessary and in the class of problems they can handle, but on
the heuristic level they all say the same thing. If � is a simply definable cardinal
invariant and I is a �-ideal such that the forcing PI is proper, then if the inequality
� < cov∗�I	 holds in some extension then it holds in the iterated PI extension.
Moreover, there is a forcing axiom CPA(I) which holds in the iterated PI extension
and which then must directly imply the inequality � < cov∗�I	. The CPA-type
axioms have been defined independently in the work of Ciesielski and Pawlikowski
[9] in an effort to axiomatize the iterated Sacks model. A sample theorem:

Theorem 1.2.7. (LC) Suppose that � is a tame cardinal invariant and �< � holds in
some forcing extension. Then ℵ1 = � < � holds in every forcing extension satisfying
CPA; in particular it holds in the iterated Sacks model.

Section 6.2 considers the duality theorems. These are theorems that partially
confirm the old duality heuristic: if I
 J are �-ideals and the inequality cov�I	 ≤
add�J	 is provable in ZFC, then so should be its dual inequality non�I	 ≥ cof�J	.
This is really completely false, but several theorems can be proved that rescue
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nontrivial pieces of this unrealistic expectation. This is the one part of this book
where the combinatorics of uncountable cardinals actually enters the computation
of inequalities between cardinal invariants, with considerations involving various
pcf and club guessing structures. A sample theorem:

Theorem 1.2.8. Suppose that J is a �-ideal on a Polish space generated by a
universally Baire collection of analytic sets. If ZFC+LC proves cov�I	 = � then
ZFC + LC proves non�I	 ≤ ℵ2.

Section 6.3 gives a long list of preservation theorems for the countable support
iteration of definable forcings. Compared to the combinatorial approach of Shelah
[64], these theorems have several advantages: they connect well with the motivating
problems in abstract analysis, and they have an optimal statement. Among their
disadvantages I must mention the restriction to definable forcings and the necessity
of large cardinal assumptions for a full strength version. Many of the preservation
theorems of this section have no combinatorial counterpart. A sample result:

Theorem 1.2.9. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. Suppose that � is a strongly subadditive
capacity. If PI forces every set to have the same �-mass in the ground model as it
has in the extension, then even the countable support iterations of the forcing PI

have the same property.

1.3 Notation

My notation follows the set theoretic standard of [29]. If T is a tree of finite
sequences ordered by extension then �T� denotes the set of all infinite paths through
that tree; if T ⊂ 2<� then �T� is a closed subset of the space 2�. If X
Y are
Polish spaces and A ⊂ X × Y is a set then the expression proj�A	 denotes the
set �x ∈ X � ∃y ∈ Y 	x
 y
 ∈ A
, for a point x ∈ X the expression Ax stands for
the vertical section �y ∈ Y � 	x
 y
 ∈ A
, and for a point y ∈ Y the expression Ay

stands for the horizontal section �x ∈ X � 	x
 y
 ∈ A
. For a Polish space X, K�X	
is the hyperspace of its compact subsets with the Vietoris topology and P�X	 is
the space of probability Borel measures on X. The expression B�X	 denotes the
collection of all Borel subsets of the space X. The word “measure” refers to a
�-additive Borel measure. If a set function is �-subadditive rather than �-additive
then I use the word “submeasure.” The value of a measure (submeasure, capacity)
� at a set B is referred to as the �-mass of the set B. A tower of models is a
sequence 	M� � � ∈ �
 where � is an ordinal and M�’s are elementary submodels
of some large structure (typically 	H�
∈
 for a suitable large cardinal �) such that
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�′ ∈ � ∈ � implies M�′ ∈ M�. The tower is continuous if for limit ordinals � ∈ �,
M� = ⋃

�∈� M� .
One important deviation from the standard set theoretical usage is the liberal

use of large cardinal assumptions. In order to prove suitably general theorems of
a statement that is easy to understand and refer to, I frequently have to resort to
a large cardinal assumption of this or that kind. There are only three classes of
applications of large cardinal assumptions in this book–absoluteness, determinacy
of (long and complex) games, and definable uniformization. The minimum large
cardinal necessary for each of these applications is different, sometimes difficult
to state, sometimes unknown, and invariably completely irrelevant for the goals
of this book; the existence of a supercompact cardinal is always sufficient. As a
result, I decided to denote the use of large cardinal assumptions by a simple (LC)
preceding the statement of the theorems. For most but not all specific applications
of the general theorems in this book the large cardinal assumption can be eliminated
by manual construction of all the winning strategies and uniformization functions
necessary. At least in one case (the countable support iteration of Laver forcing) I
made an effort to show that the key dichotomy requires a large cardinal assumption,
and in the rather restrictive case of �1

1 on �
1
1 ideals almost all general theorems in

this book are proved in ZFC.
The labeling of the various claims in this book is indicative of their position

and function. Facts are statements that are proved elsewhere, and I will not restate
their proofs. Theorems are quotable self-standing statements, ready for use in the
reader’s work. Propositions are self-standing statements referred to at some other,
possibly quite distant, place in the book. Finally, claims and lemmas appear in
the proofs of theorems and propositions, and they are not referred to in any other
place.

1.4 Background

The subject of this book demands the reader to be proficient in several areas of set
theory and willing to ask at least the basic questions about several other fields of
mathematics. This section sums up the basic definitions and results which are taken
for granted in the text.

1.4.1 Polish spaces

A Polish space is a separable completely metrizable topological space. Many Polish
spaces occur in this book. If T is a countably branching tree without endnodes, then
the set �T� of all infinite branches through the tree T equipped with the topology
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generated by the sets Ot = �x ∈ �T� � t ⊂ x
 is a Polish space, with important special
cases the Cantor space 2� and the Baire space ��.

I will make use of basic theory of Polish spaces as exposed in [40]. Every
uncountable Polish space X is a Borel bijective image of the Cantor space and it
is a continuous bijective image of a closed subset of the Baire space. A G� subset
of a Polish space is again Polish in the inherited topology. Every Polish space is
homeomorphic to a G� subset of the Hilbert cube.

There are several useful operations on Polish spaces. If X
Y are Polish spaces
then their product is again Polish; even a product of countably many Polish spaces
is still Polish. If X is a Polish space then K�X	 denotes the space of all compact
subsets of X equipped with Vietoris topology generated by sets of the form �K ∈
K�X	 � K ⊂ O
 and �K ∈ K�X	 � K ∩O 
= 0
 for open sets O ⊂ X. The space K�X	
is referred to as the hyperspace of X; it is Polish and if X is compact then K�X	 is
compact as well.

It is possible to change the topology on a Polish space to a new, more convenient
one. Whenever X is Polish with topology � and Bn � n ∈ � are �-Borel subsets of
X then there is a Polish topology � extending � such that the sets Bn � n ∈ � are
�-clopen and the �-Borel sets are exactly the �-Borel sets.

1.4.2 Definable subsets of Polish spaces

Definability of subsets of Polish spaces plays a critical role. Let X be a Polish
space, with a countable topology basis O. Borel sets are those sets which can
be obtained from the basic open sets by a repeated application of countable union,
countable intersection, and taking a complement. This is a class of sets closed under
continuous preimages and continuous one-to-one images, but not under arbitrary
continuous images. Analytic sets are those that can be obtained as continuous
images of Borel sets. This is a class of sets containing the Borel sets, closed under
continuous images, countable unions and intersections, but not under complements.
Every analytic set A ⊂ X is a projection of a closed subset C ⊂ X×��, A = proj�C	.
Every analytic subset of the Baire space is of the form proj�T�. Every analytic set
whose complement is analytic is in fact Borel.

The paper [20] isolated an important and very practical broad definability class
of subsets of Polish spaces. A set A ⊂ 2� is universally Baire if there are class trees
S
T ⊂ �2×Ord	<� which in all set generic extensions project into complementary
subsets of 2� and A = proj�T�. A subset of another Polish space is universally
Baire if it is in Borel bijective correspondence with a universally Baire subset of
the Cantor space. Equivalently, a set is universally Baire if all of its continuous
preimages have the property of Baire.
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In ZFC, analytic sets and coanalytic sets are universally Baire, and consistently
the class of universally Baire sets does not reach far beyond that. However, under
large cardinal assumptions the class of universally Baire sets expands considerably.
If there is a proper class of Woodin cardinals then the class of universally Baire
sets is closed under complementation and continuous images and preimages, and
every set of reals in the model L��	 is universally Baire.

1.4.3 Measure theory

Let X be a Polish space. A submeasure on X is a map � � P�X	 → �+ such that
��0	 = 0, A ⊂ B → ��A	 ≤ ��B	 and ��

⋃
n An	 ≤ �n��An	 whenever An � n ∈ � is

a countable collection of subsets of the space X. The submeasures on uncountable
Polish spaces in this book will always be countably subadditive in this sense. The
submeasure � is outer regular if ��A	 = inf���O	 � A ⊂ O
O open
 and it is outer
if ��A	 = inf���B	 � A ⊂ B � B Borel
.

A Borel measure (or measure) is a map � � B�X	 → �+ such that ��0	 = 0,
A ⊂ B → ��A	 ≤ ��B	 and ��

⋃
n An	 = �n��An	 if An � n ∈ � is a countable

collection of pairwise disjoint Borel sets. Finite Borel measures on Polish spaces are
outer regular and tight: ��A	 = inf���O	 � A ⊂ O
O open
 = sup���K	 � K ⊂ A
K
compact
. I will need a criterion for the restriction of a submeasure � on X to
the Borel subsets of X to be a measure. If d is a complete separable metric on
X and for every pair of closed sets C0
C1 ⊂ X which are nonzero distance apart,
��C0 ∪C1	 = ��C0	+��C1	 then indeed � � B�X	 is a measure. In this situation I
will say that � is a metric measure.

A capacity on a Polish space X is a map � � P�X	 → �+ such that ��0	 = 0,
A ⊂ B → ��A	 ≤ ��B	, ��

⋃
n An	 = supn ��An	 whenever An � n ∈ � is a countable

inclusion-increasing sequence of subsets of the space X, and ��K	 = inf���O	 �
K ⊂ O
O open
 for compact sets K ⊂ X. Capacities are tight on analytic sets: if
A ⊂ X is analytic then ��A	 = sup���K	 � K ⊂ A � K compact
.

1.4.4 Determinacy

Infinitary games of all kinds, lengths, and complexities are a basic feature of this
book. The key problem always is whether one of the players must have a winning
strategy, an issue referred to as the determinacy of the game in question.

An integer game of length � is specified by the payoff set A ⊂ ��. In the game,
Players I and II alternate infinitely many times, each playing an integer in his turn.
Player I wins if the infinite sequence they obtained belongs to the set A, otherwise
Player II wins. Insignificant variations of this concept, which are nevertheless much
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more intuitive and easier to use, obtain when Players I and II can use moves from
some other countable set in place of �.

Fact 1.4.1. [49] Games with Borel payoff set are determined. [20] If large cardinals
exist then games with universally Baire payoff set are determined.

A significant variation occurs if the players are allowed to choose their moves
from a set larger than countable. Let U be an arbitrary set, and let A ⊂ U� be a set.
The associated game with payoff A of length � is played just as in the previous
paragraph. To state the determinacy theorems, consider U� as a topological space
with basic open neighborhoods of the form Ot = ��u ∈ U� � t ⊂ �u
 as t varies over
all finite sequences of elements of the set U .

Fact 1.4.2. [48] Games with Borel payoff set are determined. Suppose that large
cardinals exist, A ⊂ U� is a Borel set, f � A → X is a continuous function into a
Polish space, and B ⊂ X is a universally Baire set. The game with payoff set f−1B
is determined, and moreover there is a winning strategy which remains winning in
all set generic extensions.

Still another significant variation occurs if the moves of the two players come
from some fixed Polish space X and the game has � many rounds for some
countable ordinal �. Consider the space X� equipped with the standard Polish
product topology.

Fact 1.4.3. [55] (LC) Games with real entries, countable length, and universally
Baire payoff set are determined.

The games of longer than countable length are important and interesting, and in
this book they appear in Section 6.1. However, I will never be concerned with their
determinacy.

In numerous places I will refer to the Axiom of Determinacy (AD) and its
variations, such as AD+, and the natural models for these axioms.

Definition 1.4.4. The Axiom of Determinacy (AD) is the statement that integer
games with arbitrary payoff set are determined. AD+ is the statement: every set of
reals is �-Borel and games with ordinal entries, length �, and payoff sets which
are preimages of subsets of �� under continuous maps Ord� → �� are determined.

Happily, I will never have to delve into the subtleties of AD+. Let me just state
that it is an open question whether AD is in fact equivalent to AD+. In this book,
I will need the following two pieces of information about the axiom AD+:

Fact 1.4.5. Suppose that suitable large cardinals exist. Then L��	 �=AD+. If
� is a class of universally Baire sets closed under continuous preimages then
L��	��	 �=AD+.
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Fact 1.4.6. [28] (ZF+DC+AD+) If � ∈ � is a regular uncountable cardinal then
there is a set A ⊂ �� and a prewellordering ≤ on A of length � such that every
analytic subset of A meets fewer than � many classes.

Here as usual � is the supremum of lengths of prewellorderings of the real
numbers.

1.4.5 Forcing

The standard reference book for forcing terminology and basic facts is [29]. Suppose
that P
≤ is a partially ordered set, a poset for short. P is separative if for every
p
q ∈ P, if every r ≤ p is compatible with q then p ≤ q. The separative quotient
of P is the partially ordered set of E-equivalence classes on P where pEq if
every extension of p is compatible with q and vice versa, every extension of q is
compatible with p, with the ordering inherited from the poset P. The separative
quotient of P is separative. The posets considered in this book are generally not
separative, and no effort is wasted on considering their separative quotients instead.
Every separative poset P is isomorphic to a dense subset of a unique complete
Boolean algebra denoted by RO�P	.

There is a historically and mathematically important forcing model mentioned
in many places in the book, the choiceless Solovay model. Let me briefly out-
line its construction and basic features. Let � be an inaccessible cardinal and
G ⊂ Coll��
< �	 be a generic filter. Consider the submodel M ⊂ V �G� con-
sisting of those sets hereditarily definable in V �G� from real parameters and
parameters in the ground model. This is the definition of the choiceless Solovay
model.

Fact 1.4.7. The basic features of the Solovay model include

1. for every real number r ∈ M the model M is a choiceless Solovay model over
the model V �r�;

2. every set of reals is a wellordered union of length � = �M
1 of Borel sets.

The book contains several isolated references to the nonstationary tower forcing
Q� discovered by Woodin [79], recently exposed in [45]. If � is a Woodin cardinal
and G ⊂ Q� is a generic filter, then in V �G� there is an elementary embedding j �
V → M such that the model M is transitive, contains the same countable sequences
of ordinals as V �G�, and �M

1 = �.
On several occasions I will refer to the Gandy–Harrington forcing [47]. This is

the countable forcing of all nonempty lightface �1
1 subsets of some fixed Polish

space. As a countable forcing, this is similar to Cohen forcing; its worth derives



1.4 Background 11

from its particular representation. The forcing adds a single point in the Polish space
which belongs to all sets in the generic filter. Note that there are some atoms in the
forcing–the �1

1 singletons, but there are nonatomic parts too. I will also consider
the obvious relativized variations of the Gandy–Harrington forcing.

Throughout the book, I will use a trick commonplace in the literature. Let P
be a partial ordering, M a countable elementary submodel of some large structure
(the structure is typically H� for some large ordinal �, never to be exactly spelled
out) containing all the necessary information (the objects previously named in the
argument, including the poset P). An M-generic filter g ⊂ P is a filter on P ∩M
which intersects every dense subset of P which happens to be an element of the
model M . The expression M�g� describes the generic extension of the transitive
collapse of the model M by the collapsed image of the filter g. If ẋ is a P-name
for an element of �� then ẋ/g is the element of �� defined by ẋ/g�n	 = m ↔
∃p ∈ g p � ẋ�ň	 = m̌. The complexity of this operation is recorded in the following
fact.

Fact 1.4.8. Suppose that P is a forcing, ẋ a P-name for an element of ��, and M
is a countable elementary submodel of a large enough structure. The set A = �y ∈
�� � ∃g ⊂ M ∩P g is M-generic and y = ẋ/g
 is Borel.

Proof. Let Q ⊂ r�o��P	 be the complete Boolean algebra generated by the name
ẋ. Then A = �y ∈ �� � ∃g ⊂ M ∩ Q g is M-generic and y = ẋ/g
. Let N by the
transitive collapse of the model M , and consider the Polish space X of all N -generic
filters on ��Q	 with the usual topology. Then A is the image of the space X under
the continuous injection g �→ ẋ/g, and so A is Borel by a classical theorem of Lusin
[40], 15.1.

1.4.6 Absoluteness

The universally Baire sets (in particular, the analytic and coanalytic sets) have a
natural interpretation in forcing extensions. Suppose A ⊂ 2� is universally Baire,
as witnessed by trees T
S ⊂ �2 × Ord	<� which project to complements in all set
forcing extensions and A = proj�T�. If V �G�
G ⊂ P is an arbitrary set forcing
extension then AV �G�, the interpretation of the set A in the model V �G�, is defined
as �proj�T�	V �G�. A wellfoundedness argument shows that the interpretation does
not depend on the choice of the witness trees T
S. I will use this feature to
denote by Ȧ the P-name for the interpretation of the set A in the extension,
and when speaking about this extended interpretation, I will frequently omit the
superscript in the expression AV �G�. This usage is commonplace throughout the
book.
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The following facts connecting the validity of certain sentences in generic
extensions and the ground model are indispensable throughout the book.

Fact 1.4.9. (Analytic absoluteness) Suppose that M is a transitive model of set
theory, �x ∈ M ∩�� is a sequence of parameters, and � is a �1

1 formula with free
variables. Then ���x	 holds if and only if M �= ���x	 holds.

This is typically used in a situation where M is a generic extension of the transitive
collapse of some countable elementary submodel of a large enough structure.

Fact 1.4.10. (Shoenfield absoluteness) Suppose that M is a transitive model of set
theory containing all countable ordinals, �x ∈ M ∩�� is a sequence of parameters,
and � is a �1

2 formula with free variables. Then ���x	 holds if and only if M �= ���x	
holds.

This is typically used in a generic extension with M equal to the ground model.

Fact 1.4.11. [79] (Universally Baire absoluteness) (LC) Suppose that �A is a finite
sequence of universally Baire sets and M is a countable elementary submodel of
some large structure containing �A. Suppose that M�g� is a generic extension of the
transitive collapse of the model M and �x ∈ � is a finite sequence of parameters
in the model M�g�. Suppose that � is a formula quantifying over reals only. Then
���x
 �A	 holds if and only if M�g� �= ���x
 �A	 holds.

Fact 1.4.12. [45] (�2
1 absoluteness) (LC+CH) Suppose that �A is a finite sequence

of universally Baire sets and � is a formula of the form ∃B ⊂ �� � where �

quantifies only over real numbers. If ���A	 holds in some generic extension, then
���A	 holds.

1.4.7 Cardinal invariants of the continuum

The original motivation for the work contained in this book were the problems
associated with comparison of cardinals defined in various ways from Polish spaces.
I use [2] as a canonical reference.

Among the cardinal invariants that frequently occur in this book, let me quote
�= the least size of a maximal almost disjoint family of subsets of �, � = the least
size of modulo finite unbounded subset of ��, �= the size of the continuum, �= the
least size of modulo finite dominating subset of ��.

Given a �-ideal I on a Polish space X, I will consider the cardinals cov�I	 = the
least number of sets in the ideal I necessary to cover the whole space, non�I	 = the
smallest possible size of an I-positive set, add�I	 = the smallest size of a family
of I-small sets whose union is not I-small, and cof�I	 = the smallest possible size
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of a basis for the ideal I . It will be of advantage to consider starred variations
of these cardinals: cov∗�I	 = the least number of sets in the ideal I necessary to
cover some Borel I-positive set, non∗�I	 = the least cardinal such that every Borel
I-positive set contains an I-positive subset of this size, and similarly for add∗

and cof∗.





2
Basics

2.1 Forcing with ideals

2.1.1 The key definition

Definition 2.1.1. Suppose that X is a Polish space and I is a �-ideal on the space
X. The symbol PI denotes the partial order of I-positive Borel sets ordered by
inclusion.

I will always tacitly assume that the Polish space X is uncountable and the ideal
I contains all singletons. There are several cases in which this will not hold, and
they will be pointed out explicitly. Note that the poset PI depends only on the
membership of Borel sets in the ideal I , but it will frequently be of interest to look
at the membership of non-Borel sets in I .

It is clear that the partial order PI is not separative, and its separative quotient is
the �-algebra B�X� mod I . There is exactly one property all partial orders of this
kind share.

Proposition 2.1.2. The poset PI adds an element ẋgen of the Polish space X such
that for every Borel set B ⊂ X coded in the ground model, B ∈ G iff ẋgen ∈ B.

Proof. It is easy to see that the closed sets contained in the generic filter form a
collection closed under intersection which contains sets of arbitrarily small diameter.
A completeness argument shows that such a collection has a nonempty intersection
containing a single point, and ẋgen is a name for the single point in the intersection.
Another way to describe the generic point is to say that it is the unique element in
all basic open sets in the generic filter.

By induction on the complexity of the Borel set B prove that B � ẋgen ∈ Ḃ. For
closed sets this follows from the definition of the name ẋgen. Suppose that B =⋃

n Cn

and we already know that each set Cn forces ẋgen ∈ Ċn. Whenever D ⊂ B is an
I-positive Borel set then for some number n, D ∩ Cn is I-positive, D ∩ Cn ⊂ Cn

15
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and D ∩ Cn � ẋgen ∈ Ċn ⊂ Ḃ. By the genericity, B � ẋgen ∈ Ḃ. Now suppose that
B = ⋂

n Cn and we already know that each set Cn forces ẋgen ∈ Ċn. Then for every
number n, B � ẋgen ∈ Ċn since B ⊂ Cn. In other words, B � ẋgen ∈ ⋂

n Cn = Ḃ as
desired. Since the Borel sets in Polish spaces are obtained from closed sets by a
repeated application of countable union and intersection, the induction is complete.

Now it is not difficult to prove that C � ẋgen ∈ Ḃ iff C \ B ∈ I . On one hand,
if C \B ∈ I then every strengthening of the condition C is compatible with B and
the previous paragraph applies to show that C � ẋgen ∈ Ḃ. On the other hand, if
C \B � I , then C \B ⊂ C is a condition strengthening C which forces ẋgen ∈ Ċ \ Ḃ

by the previous paragraph again, in particular ẋgen � Ḃ.
The proposition follows.

Note the key role played by the closure of the ideal I under countable unions in
the argument. An important observation is that the forcings of the form PI can be
presented in various forms.

Definition 2.1.3. Suppose I is a �-ideal on a Polish space X. A different presen-
tation of the poset PI is a Borel bijection f � X → Y between X and another Polish
space Y , the �-ideal J on the space Y given by A ∈ J ↔ f−1A ∈ I , and the resulting
poset PJ .

If f� J constitute a different presentation of the forcing PI then the function f
extends to a bijection f̂ � PI → PJ given by f̂ �A� = f ′′A. Note that one-to-one Borel
images of Borel sets are Borel by a theorem of Lusin [40], 15.1, and therefore the
image of the function f̂ indeed consists of Borel sets.

While a given forcing PI can have many presentations, it is true that some
presentations are more natural than others. In fact, I will frequently derive some
forcing properties of the poset PI from the topological features of a certain natural
presentation. The forcing properties of PI then persist through different presentations
while the topological features may not. Note that there is a Borel bijection between
any two uncountable Polish spaces, and so the nature of the Polish space does not
restrict the kind of partial orders that can live on it. It may be occasionally difficult
to decide whether a given presentation is the simplest possible one or the one most
suitable to study.

2.1.2 Representation theorems

The study of the partial orders of the form PI does entail a certain restriction in
generality, but not too great a restriction. The following results show that many
forcings encountered in practice can be presented as PI for a suitable �-ideal I on
a Polish space.
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Fact 2.1.4. [68] Suppose that B is a �-complete countably �-generated Boolean
algebra. Then there is a �-ideal I on the Cantor space such that B is isomorphic
to B�2�� mod I .

Corollary 2.1.5. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion, such that for every tree T ∈ P and every node t ∈ T the
tree T � t is in P as well. Then P is in the forcing sense equivalent to a forcing of
the form PI .

Proof. If Ġ is a name for the generic filter write ẋgen for the generic real: ẋgen =
⋃⋂

Ġ ∈ 2�. Let P ⊂ B be the complete Boolean algebra generated by the poset P.
I will show that the �-algebra C ⊂ B �-generated by the elements bt = 	ť ⊂ ẋgen	 �
t ∈ 2<� is dense. By the previous fact the algebra C is isomorphic to some PI and
at the same time poset P is equivalent to it.

It is enough to show that for every tree T ∈ P it is the case that T = cT where
cT = ∧

n

∨
t∈2n∩T bt. It is clear that T ≤ cT . And if cT �≤ T then there would be a

tree S �⊂ T such that S ≤ cT and a node s ∈ S \T of length n ∈ �. Then S � s ∈ P
and clearly S � s � ẋgen � n � Ť , contradicting the assumption that S ≤ cT .

There is frequently a more direct way of deriving the �-ideal from the tree
forcing in question.

Proposition 2.1.6. Suppose that P is a partially ordered set consisting of binary
trees ordered by inclusion such that for every tree T ∈ P and every node t ∈ T the
tree T � t is in P as well. Suppose moreover that P has the continuous reading of
names. Then the collection I = �A ⊂ 2� � A analytic and for no condition T ∈ P
it is the case that 	T
 ⊂ A� is a �-ideal and the forcing P is in the forcing sense
equivalent to PI .

Here the continuous reading of names is the statement that for every condition
T ∈ P and every name ḟ ∈ �� there is a condition S ⊂ P, natural numbers n0 ∈
n1 ∈ � � � and a function g �

⋃
m�S ∩ 2nm� → � such that for every number m and

every sequence t ∈ S ∩2nm it is the case that S � t � ḟ �m̌� = ǧ�ť�. This is a property
frequently found in practice; consult Section 3.1 for a topological restatement of it.

Proof. Suppose that A = ⋃
An � n ∈ � are analytic sets such that A contains all

branches of some tree T ∈ P. I will produce a tree S ⊂ T and a number n ∈ � such
that all branches of the tree S belong to the set An. This will prove the proposition.

Note that the forcing P adds a canonical generic point ẋgen ∈ 2<� which is a
branch of all trees in the generic filter. Use a Shoenfield absoluteness argument to
show that T � ẋgen ∈ Ȧ and therefore there is a condition T ′ ⊂ T and a number n

such that T ′ � ẋgen ∈ Ȧn.
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Let U ⊂ �2 ×��<� be a tree such that An = proj	U
. There is a name ḟ for an
element of the Baire space �� such that T ′ � �ẋgen� ḟ
 forms a branch through the
tree Ǔ . Use the continuous reading of names to find a tree S ⊂ T ′, natural numbers
n0 ∈ n1 ∈ � � � and a function g �

⋃
m�S ∩ 2nm� → � such that for every number m

and every node t ∈ S ∩ 2nm the condition S � t forces ḟ m̌� = ǧ�ť�. Then for every
branch b through the tree S it must be the case that b together with the function
m �→ g�b � nm� forms a branch through the tree U and therefore b ∈ An. I have just
proved that 	S
 ⊂ An as desired.

Partial orders for adding a real which do not consist of trees and the previous
proposition cannot be applied to them are fairly rare in the practice of definable
forcing. Nevertheless, many of them can be obtained through the methods of this
book. The following is a characterization theorem which does not depend on the
specific combinatorial form of the forcing.

Definition 2.1.7. A forcing P is a universally Baire real forcing if

1. its conditions are elements of some Polish space Y ;
2. there is a name ẋgen for an element of some Polish space X;
3. there is a universally Baire set A ⊂ X ×Y such that for every condition p ∈ P

P � p̌ ∈ Ġ ↔ �ẋgen� p̌
 ∈ Ȧ;
4. for every basic open set O ⊂ X there is a condition p ∈ P such that P � ẋgen ∈

Ȯ ↔ p̌ ∈ Ġ.

Proposition 2.1.8. [83] (LC) Every proper universally Baire real forcing is in the
forcing sense equivalent to one of the form PI .

Proof. I claim that I = �B ⊂ X � B universally Baire and P � ẋgen � Ḃ� is the
�-ideal with the required properties. It is clear that I is closed under countable
unions. Write ẏgen for the PI -name for its generic point in the space X, and let Ġ

be the PI -name for the set �p ∈ P̌ � �ẏgen� p̌
 ∈ Ȧ�. It will be enough to show that
PI � Ġ ⊂ P̌ is a V -generic filter; the proposition then follows by standard abstract
forcing considerations. Suppose that B ∈ PI is a condition, p�q ∈ P are conditions
such that B � p̌� q̌ ∈ Ġ and D ⊂ P is open dense. I must find a condition B′ ∈ PI

and a condition r ∈ P such that B′ ⊂ B, r ≤ p�q, r ∈ D, and B′ � ṙ ∈ Ġ.
Let M be a countable elementary submodel of a large enough structure, let Z be

the Polish space of all M-generic filters on P with the usual topology, let f � Z → X
be a map defined by f�g� = ẋgen/g. This map is continuous by (4) and injective by
(3) of the definition of universally Baire real forcing. Thus the range f ′′Z is Borel
by a classical theorem of Luzin [40], 15.1. Write C = B ∩ rng�f� and for every
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condition r ∈ P ∩M write Cr = C ∩f ′′Or and C̄r = C \f ′′Or , where Or is the open
set of all filters in the space Z containing the condition r. Now,

• C � I . To see this, note that as B � I , there must be a condition r ∈ P such that
r � ẋgen ∈ Ḃ. By elementarity, there must be such a condition in the model M .
Any M-master condition below r forces ẋgen ∈ Ċ, and so C � I as required.

• For every condition r ∈ P ∩ M , Cr � ř ∈ Ġ and C̄r � ř � Ġ if these sets are
I-positive. To see this, note ∀x ∈ Cr M	x
 	= �x� r
 ∈ A, by an absoluteness
argument ∀x ∈ Cr �x� r
 ∈ A, and by the universally Baire absoluteness this
statement will still be true in the PI extension, in particular Cr � ẏgen ∈ Ċr and
�ẏgen� ř
 ∈ Ȧ.

• C̄p� C̄q ∈ I and so Cp ∩Cq � I . This follows from the previous item.

• The sets Cr � r ∈ D∩M is a lower bound of p�q cover the I-positive set Cp ∩Cq,
therefore one of them is I-positive, and Cr = B′ ⊂ B is the required condition.

This completes the proof.

Example 2.1.9. Consider the Sacks forcing P of all perfect binary trees ordered
by inclusion. Corollary 2.1.5, Proposition 2.1.6 and Proposition 2.1.8 all can be
used to show that P = PI for some �-ideal I . None of this abstract reasoning can
replace the information obtained from the perfect set theorem: the �-ideal I is the
ideal of countable subsets of 2�.

2.1.3 Generalizations

There are several ways in which the previous ideas can be generalized, each of
them important and deserving a thorough discussion.

First, one can consider forcing with analytic (projective, universally Baire, etc.)
sets positive with respect to a given �-ideal I . For most of the forcings considered
in this book it will be the case that every I-positive universally Baire set has an
I-positive Borel subset, and so the poset PI is dense in all of these variations, and
under large cardinal assumptions it is dense in the poset �P�X� mod I�L��� – refer
to Section 3.9 for a thorough discussion. Nevertheless, I will have to enter situations
in which this property has not been verified yet, and then the following definition
and proposition will be important.

Definition 2.1.10. Suppose that I is a �-ideal on a Polish space X. The symbol
QI stands for the poset of I-positive analytic sets ordered by inclusion.
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Proposition 2.1.11. Suppose that the �-ideal I is generated by coanalytic sets.
There is a QI -name ẋgen for an element of the Polish space X such that an analytic
set belongs to the generic filter if and only if it contains the point ẋgen in the
extension.

Proof. I will handle the case of X = 2�, the other spaces being Borel bijective
images of 2�. As in the PI case, let ẋgen be the unique point in the intersection of
all basic open sets in the generic filter.

First note that any set A ∈ QI forces ẋgen ∈ Ȧ. To see this, let T ⊂ �2×��<� be
a tree such that A = proj	T
, let G ⊂ QI be a generic filter containing the condition
A and in the generic extension let S ⊂ �<� be the tree consisting of all nodes
t ∈ �<� such that proj	T � �ẋgen � 	t	� t

 ∈ Ġ. Clearly 0 ∈ S and it will be enough
to show that S contains no terminal nodes. Well, if t ∈ S is a node and B ⊂ A is
a condition forcing ť ∈ Ṡ then strengthening the condition B if necessary I may
assume that there is a binary sequence s such that B ⊂ proj	T � �s� t

. By the
�-additivity of the ideal I there must be a number n ∈ � and a bit b ∈ 2 such that
C = B∩proj	T � �s�b� t�n

 � I . Clearly, C � ť�ň ∈ Ṡ as required.

Second, if A�B ∈ QI are sets and A � ẋgen ∈ Ḃ then A∩B � I: if A∩B ∈ I then
let C ∈ I be a coanalytic set including it as a subset, and A\C ∈ QI is a condition
which forces the point ẋgen into itself by the previous paragraph, and by the analytic
absoluteness it forces ẋgen � B, contradicting the assumption. But now A∩B ∈ QI

is a common lower bound of A�B, forcing B ∈ Ġ.

It is remarkable that in all cases when I need to use the forcing QI it is only to
show that in fact PI ⊂ QI is dense. However, the statement that every I-positive
analytic set has an I-positive Borel subset seems to be interesting in its own right.
See Section 3.9 on this and similar dichotomies.

The second way to generalize the forcings of the form PI is to consider spaces
of the form Y � with an uncountable set Y and the standard tree topology instead of
Polish spaces X. For a sequence t ∈ Y <� let Ot be the basic open set determined
by t, Ot = �x ∈ Y � � t ⊂ x�.

Proposition 2.1.12. Suppose that Y is a set and I is a �-ideal on the space Y �

with the following closure property:

(*) if At � t ∈ Y <� are sets in the ideal with At ⊂ Ot, then
⋃

t At ∈ I .

There is a name ẋgen for an element of the space Y � such that in the generic
extension by the poset PI , a Borel set B ⊂ Y � belongs to the generic ultrafilter if
an only if ẋgen ∈ Ḃ.

Proof. Let ẋgen = ⋃
�t ∈ Y <� � Ot ∈ G� where G is the PI -generic filter. It is clear

that the sequences in the union are linearly ordered. Moreover if n ∈ � is a number
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and B ∈ PI is a condition the one of the sets B ∩ Ot � t ∈ Y n is I-positive by the
property (*) and forces the corresponding sequence into the union defining the
sequence ẋgen. Thus PI � ẋgen ∈ Y �.

Before the remainder of the proof note that similarly to Borel subsets of 2� the
Borel subsets of Y � have natural interpretations in every generic extension which
does not depend on the particular Borel definition of the set.

By induction on the complexity of the Borel set B ∈ PI I will show that B �
ẋgen ∈ Ḃ, where Ḃ denotes the interpretation of the Borel set B in the extension.
Suppose first that B is open. If C ⊂ B is any condition then by the property (*) there
must be a sequence t ∈ Y <� such that Ot ⊂ B and C ∩Ot � I . Clearly C ∩Ot ⊂ C
is a condition forcing ẋgen ∈ Ḃ and so B � ẋgen ∈ Ḃ. The remaining steps in the
induction are the same as in Proposition 2.1.2.

Now suppose that B�C ∈ PI are sets such that B � ẋgen ∈ Ċ. I must show that
B∩C � I; then B∩C is the required lower bound of the conditions B�C. Suppose
B ∩C ∈ I . Then B \C is a condition in PI which by the previous paragraph forces
ẋgen into B \C and outside of the set C, contradicting the choice of the set B.

Example 2.1.13. Namba forcing [54]. Let Y = �2 and let I be the ideal of sets
B ⊂ Y � such that there is a map f � Y <� → �2 such that B ⊂ Bf = �y ∈ Y � �
∃�n y�n� ∈ f�y � n��. It is not difficult to see that the ideal I has the closure
property (*) from the previous proposition. I will show that a Borel set B ⊂ Y �

is I-positive if and only if it contains all branches of some Namba tree, that is an
infinite tree T ⊂ Y <� such that all but finitely many of its nodes have ℵ2 many
immediate successors. This means that the Namba forcing is in a natural sense
isomorphic to a dense subset of the poset RI .

Let B ⊂ Y � be a Borel set, and consider the game G between Player I and II.
Player I produces a sequence of ordinals 
n ∈ �2 � n ∈ � and Player II in response
produces a sequence of ordinals �n ∈ �2 � n ∈ �. Moreover Player II must raise a
flag at some round m and for all n > m it must be the case that 
n ∈ �n. Player
II wins if his sequence of answers belongs to the Borel set B. The payoff set of
the game G is Borel and therefore determined by Fact 1.4.2. I will be finished if
I show that Player I has a winning strategy iff B ∈ I and Player II has a winning
strategy iff B contains all branches of some Namba tree.

Suppose first that Player I has a winning strategy � . For every sequence t ∈ Y <�
there are at most 	t	 many ways how the play could reach a position in which Player
I followed his strategy � and Player II produced the sequence t, depending on where
and if Player II decided to raise the flag. Let f�t� = maximum of all the possible
answers by the strategy � in that position. It is easy to see that B ⊂ Bf .

On the other hand, suppose that Player II has a winning strategy � , and let t be
some sequence for which there is a position in which Player II followed his strategy
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� , produced the sequence t and raised the flag at that point. It is easy to see that
then 	T
 ⊂ B for some Namba tree T with trunk t.

Another generalization is to consider spaces XY for a Polish space X and an
uncountable set Y with the standard product topology, a �-ideal I on it and a partial
order RI of I-positive Baire sets ordered by inclusion. Here the Baire sets are those
subsets of the space XY obtained from basic open sets by countable repetition of
countable unions, countable intersections, and complementation. The basic open
sets are those of the form ��x ∈ XY � �x�y� ∈ O� for some basic open set O ⊂ X
and an index y ∈ Y . Such partial orders are the results of the countable support
iterations or products or the tower technology of Section 5.5. Let me include the
basic property here, and defer the detailed treatment to that section.

Proposition 2.1.14. There is a RI -name �xgen for a function from Y to X such that a
Baire set A ⊂ XY belongs to the generic filter if and only if it contains the function
�xgen.

Still another generalization is to consider partial orders P�Y � mod I for a
suitable set Y and an ideal I on it. These partial orders lack the basic feature of the
previously considered cases: the canonical generic object as an element of some
ground model coded simple space. The case Y = � has been extensively studied
[15], [74], [87]. The case Y = �1 and I = the nonstationary ideal has been the subject
of the precipitousness and saturation considerations. The general case of a �-ideal
I has been studied by Gitik and Shelah [24], [25] who showed that the resulting
partial orders cannot be in the forcing sense equivalent to most of the forcings of
the form PJ , where J is a �-ideal on a Polish space.

2.1.4 Basic definability issues

This book deals with suitably definable �-ideals on Polish spaces, with very few
exceptions. The demands on definability vary depending on the large cardinal
axioms one is willing to use. This section spells out several definitions used
throughout the book.

In the presence of large cardinal axioms such as the existence of a supercompact
cardinal, the following definability restriction is used.

Definition 2.1.15. A �-ideal I on a Polish space X is universally Baire if for every
universally Baire set A ⊂ 2� ×X the set �y ∈ 2� � Ay ∈ I� is universally Baire.

Without large cardinals more sophisticated notions of definability and absoluteness
are needed.



2.1 Forcing with ideals 23

Definition 2.1.16. A �-ideal I on a Polish space X is ZFC-correct if it is defined
by a formula � with a possible real parameter r (so that I = �A ⊂ X � ��A� r��)
and every transitive model M of a large fragment of ZFC containing r is correct
about I on its analytic sets (so that if s ∈ M is a code for an analytic set As then
��As� r� ↔ M 	= ��As� r�).

Note that this definition speaks really about the formula defining the ideal rather
than the ideal itself. It turns out that nearly all definitions of �-ideals considered
in this book are ZFC-correct in this sense. This assertion is never completely
trivial though and its proof is surprisingly close to the determinacy dichotomy and
properness arguments used for other purposes.

Example 2.1.17. The ideals associated with Hausdorff submeasures as in Defini-
tion 4.4.1 are ZFC-correct. To see this, fix a Hausdorff submeasure � on a Polish
space X with the associated �-ideal I generated by sets of finite �-mass. Given
an analytic set A ⊂ X let C ⊂ X × �� be a closed set which projects to A, and
consider the integer game G�C� as in the proof of Theorem 4.4.5. Player I has a
winning strategy in the game G�C� if and only if A ∈ I . Now given a transitive
model M containing the set C, M 	= G�C� is determined. The winning strategy the
model M finds is still a winning strategy in V since the nonexistence of a successful
counterplay is a wellfoundedness statement. Thus the statement A ∈ I is absolute
between M and V .

A measure-theoretic counterpart of the above definition is the following.

Definition 2.1.18. A submeasure � on a Polish space X is ZFC-correct if it is
defined by a formula � with a possible real parameter r (so that ��A� < q ↔
��A�q� r� for every set A ⊂ X) and every transitive model M of a large fragment
of ZFC evaluates �-mass correctly (so that if s ∈ M is a code for an analytic set
As then ��As� r� q� ↔ M 	= ��As� r� q� for every rational number q).

Example 2.1.19. Every pavement submeasure defined from a countable set of Borel
pavers is ZFC-correct. Let � be the pavement submeasure on a Polish space X, let
A ⊂ X be an analytic set, let C ⊂ X ×�� be a closed set projecting to A, and let
q be a rational number. ��A� < q if and only if there is a rational number q′ < q
such that Player I has a winning strategy in the game G�C�q′� as in the proof of
Theorem 4.5.6. As in the previous arguments, whenever M is a transitive model
containing the set C then it finds a winning strategy for one of the players in the
games G�C�q′� for all rationals q′, and these winning strategies of the model M
stay winning in V . Thus M evaluates the �-mass of the set A correctly.

Example 2.1.20. Every outer regular strongly subadditive capacity is ZFC-correct.
It is possible to supply the same argument as above using the integer game from
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Theorem 4.3.6, however here I can use an argument which at least on the surface
has no game theoretic content. Let � be a strongly subadditive capacity on a Polish
space X, determined by its values on the sets from some fixed countable basis
O closed under finite unions. The key fact: Fact 4.3.5, showing that the capacity
� is simply derivable from its values on basic open sets. Now let A ⊂ X be an
analytic set, a projection of a closed subset C ⊂ X × ��. Let M be a transitive
model containing the code for the set C, and let q > 0 be a rational number. By
the definitions, if M 	= ��A� < q then M 	= ∃O ⊂ X O is open, ��O� < q and
A ⊂ O, this set O maintains these properties in V by a wellfoundedness argument,
and therefore even in V , ��A� < q. What happens though if M 	= ��A� > q? The
key fact mentioned above implies that M 	= � is a capacity, and by the Choquet’s
capacitability theorem M 	= ∃K ⊂ X ×�� K compact, K ⊂ C and ��proj�K�� > q.
Now the set K maintains these properties in V by a wellfoundedness argument.
Note that p�K� ⊂ X is a compact set, and therefore its �-mass is the infimum of
��O� � O ∈ O�K ⊂ O, a computation which works the same in the model M as in
V by a wellfoundedness argument again.

The ZFC-correctness is a useful tool in a number of situations such as in the
statement of ZFC-provable preservation theorems. Nevertheless, I will need a more
sophisticated and more restrictive notion as well. Unlike the ZFC-correctness, it
can be stated without a reference to models of ZFC and it has been studied in
descriptive set theory for at least a century.

Definition 2.1.21. A �-ideal I on a Polish space X is �1
1 on �

1
1 if for every analytic

set A ⊂ 2� ×X the set �y ∈ 2� � Ay ∈ I� is coanalytic.

Unlike the ZFC-correctness which places no significant restrictions on the forcing
properties of the poset PI , the �1

1 on �
1
1 condition does have important forcing

consequences – its associated forcing can never add dominating reals. This notion
is studied in detail in Section 3.8. Here, let me just include two connections with
ZFC-correctness.

Proposition 2.1.22. If a �-ideal I on a Polish space X is provably �1
1 on �

1
1 then

it has a ZFC-correct definition.

Proof. Let A ⊂ 2� ×X be a universal analytic set and C ⊂ 2� be a coanalytic set
such that ZFC proves ∀y ∈ 2� Ay ∈ I ↔ y ∈ C. Every transitive model M evaluates
the membership of a point y ∈ 2� in the set C correctly by a wellfoundedness
argument. Thus M evaluates the membership in the ideal I correctly as well.

Proposition 2.1.23. Every ZFC-correct ideal is �1
2 on �

1
1. Every ZFC-correct

submeasure is �1
2 on �

1
1.
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Proof. Let I be a ZFC-correct �-ideal on a Polish space X and let A ⊂ 2� ×X be
an analytic set. I must show that the set �y ∈ 2� � Ay ∈ I� is �1

2 on �
1
1. To see this

note that Ay ∈ I ↔for every countable model M containing the real y, either M is
illfounded or M 	= Ay ∈ I , and Ay � I ↔for every countable model M containing
the real y, either M is illfounded or M 	= Ay � I .

Let � be a ZFC-correct submeasure on a Polish space X, let � ∈ �+ be a
real number, and let A ⊂ 2� × X be an analytic set. I must show that the set
�y ∈ 2� � ��Ay� < �� is �1

2 on �
1
1. This is proved in the same way as in the previous

paragraph.

2.2 Properness

The following definition has been central to the development of the forcing theory
in the last several decades.

Definition 2.2.1. [64] A forcing notion P is proper if for every set X and every
stationary set S ⊂ 	X
ℵ0 it is the case that P � Š is stationary. Another equivalent
restatement is the following. The forcing P is proper if for every large enough
cardinal �, every countable elementary submodel M ≺ H� containing P and every
condition p ∈ P ∩M there is an M-master condition q ≤ p; that is, a condition q
forcing Ġ∩ M̌ meets every dense subset of P which is an element of M , where Ġ
is the name for the P-generic filter.

It turns out that in the context of definable forcing this is exactly the right notion.
In its presence there is a rich structure and extensive theory, in its absence there is
collapse. I will first restate it in the terms of �-ideals:

Proposition 2.2.2. Suppose that I is a �-ideal on a Polish space X. The following
are equivalent:

1. the forcing PI is proper;
2. for every countable elementary submodel M of a large enough structure and

every condition B ∈ M ∩PI the set C = �x ∈ B � x is M-generic� is not in the
ideal I .

Here, a point x ∈ X is M-generic if the collection �A ∈ PI ∩M � x ∈ A� is a filter
on PI ∩M which meets all open dense subsets of the poset PI that are elements of
the model M .

Proof. This is just a restatement of the definitions. First note that the set C is Borel:
C = B ∩⋂

�
⋃

�D ∩M� � D ∈ M is an open dense subset of the poset PI�. If C ∈ I
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then B � ẋgen � Ċ and so Ġ∩M is not M-generic by the definition of the set C;
therefore there can be no M-master condition below the set B. On the other hand,
if C � I then C ∈ PI is a condition forcing ẋgen ∈ Ċ and so Ġ∩M is M-generic by
the definition of the set C; thus C is the required master condition.

It is frequently a difficult job to decide the status of properness of a forcing of the
form PI , and a large part of this book is devoted to just that. Let me here include
just three comparatively simple examples.

Example 2.2.3. Let A ⊂ 2� be an analytic non-Borel set and let I be the �-ideal
generated by Borel sets B ⊂ 2� such that the set A∩B is Borel. This is a nontrivial
�-ideal, the forcing PI is not proper though. Let M be a countable elementary
submodel of a large structure and consider the Borel set B = �x ∈ 2� � x is M-
generic�. I will show that the set A ∩ B is Borel, so B ∈ I and PI is not proper.
Suppose x ∈ B is a point. We have x ∈ A iff M	x
 	= x ∈ A (by analytic absoluteness)
iff ∃C ∈ PI ∩M x ∈ C∧C � ẋgen ∈ Ȧ (by the forcing theorem) iff x ∈⋃

�C ∈ PI ∩M �

C � ẋgen ∈ Ȧ�. Thus A∩B is Borel as desired.

Example 2.2.4. Let X denote the Hilbert cube 	0� 1
�. It is a fundamental result
of infinite-dimensional topology that X cannot be covered by countably many
zero-dimensional sets [76], 4.8.5. Let I be the �-ideal on X generated by the zero-
dimensional sets. The forcing PI adds a countable sequence �xgen of real numbers in
	0� 1
. It turns out that the forcing collapses � to ℵ0. To see this, note that for every
real r ∈� the set Ar ⊂ X which is the complement of the product of infinitely many
copies of the set �r +q � q ∈ �� is zero-dimensional; thus PI � ẋgen � Ȧr . Restated,
in the generic extension, for every ground model real r there is a natural number n
and a rational q such that �xgen�n�−q = r. It follows that the set of ground model
reals must be countable.

Example 2.2.5. Let I be the �-ideal of countable subsets of 2�. Let M be a
countable elementary submodel of a large enough structure and let B ∈ M ∩PI be
a condition. To prove the properness of the forcing PI it is enough to show that the
set of M-generic points in the set B is uncountable. Let yn � n ∈ � be a countable list
of infinite binary sequences; I must produce an M-generic sequence x ∈ B which
is not on the list. Let Dn � n ∈ � be an enumeration of all open dense subsets of
PI that are elements of the model M . By induction on n ∈ � build a descending
chain B = B0 ⊃ B1 ⊃ � � � of conditions in PI ∩M such that for every number n ∈ �,
Bn+1 ∈ D and yn � Bn+1. To construct Bn+1, first note that since Bn is uncountable
there must be a basic open set O such that yn � O and Bn ∩O is still uncountable.
Then use the elementarity of the model M to find a condition Bn+1 ⊂ Bn ∩ O in
the set Dn ∩M . By Proposition 2.1.2, there is a point x ∈ ⋂

n Bn. A review of the
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construction shows that this is the desired M-generic point in the set B which is
not among the points yn � n ∈ �.

It is possible to formulate a host of various conjectures stating that more or less
every forcing of the form PI is proper. Most of them will be easily refuted by the
following proposition. This is the richest source of ideals for which the quotient
forcing is not proper.

Proposition 2.2.6. Suppose that I is a �-ideal on a Polish space X. The following
are equivalent:

1. PI adds a countable set of ground model reals which is not covered by any
ground model countable set;

2. I = ⋂
n In where In � n ∈ � is an inclusion decreasing nonstabilizing sequence

of �-ideals, that is for every Borel set B � I and every number n ∈ �, �C ⊂ B �

C ∈ I�C Borel� �= �C ⊂ B � C ∈ In�C Borel�.

In particular, in the presence of CH the second item is equivalent to the forcing PI

collapsing ℵ1, and in the presence of CH and large cardinals (see below) the second
item is equivalent to the improperness of the forcing PI below every condition. Note
that this gives a characterization of properness which does not mention forcing at
all. One peculiar feature of this proposition is that using it I can produce a variety
of �-ideals I such that the forcing PI is not proper, but I do not know how to prove
in ZFC that they collapse any cardinals, see Question 7.1.2.

Proof. In (1)→(2) direction, choose a name ḟ for a function from � to �̌ whose
range is forced not to be included in any ground model countable set. For every
number n ∈ � let In be the �-ideal generated by I and all Borel sets B for which
there is a countable set a ⊂ � such that B � ∀i ∈ n ḟ �i� ∈ ǎ. It is immediate that
the �-ideals In � n ∈ � are as required in the second item.

For the (2)→(1) direction, suppose I = ⋂
n In as in (2). Note that the sets

PI ∩ In � n ∈ � are all dense in the poset PI by the nonstabilizing property. Let
An ⊂ PI ∩ In be a maximal antichain for every number n ∈ � and in the generic
extension consider the set a = �B ∈ G � ∃n ∈ � B ∈ An�. It will be enough to show
that no condition forces the set a to be covered by a countable ground model set,
and to show this, it will be enough in turn to prove that for every condition C ∈ PI

there is a number n ∈ � such that C is compatible with uncountably many elements
of the maximal antichain An. And indeed, there must be a number n such that
C � In, and then for every countable collection b ⊂ An the set

⋃
b is In-small and

the set C \⋃b is In-positive, and so a condition in the forcing PI avoiding all the
conditions in the set b.
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As long as it seems to be difficult to verify the status of properness for a given
forcing of the form PI , a logician will attempt to tackle the two related ques-
tions: the complexity of the notion of properness and its absoluteness for definable
partial orders. The main obstacle to their solution is the quantification over all
countable elementary submodels of a large structure in the definition of proper-
ness. A forcing practitioner knows that in all known definable cases, the proof
of properness goes through various fusion arguments and does not really con-
sider the enormous structure H�. I cannot prove a completely general theorem
to this effect, even though in certain classes of forcings there is some infor-
mation, see Sections 3.10.9 and 3.10.10. The following proposition isolates the
strongest statement that I know to be equivalent to properness for all definable
forcings.

Proposition 2.2.7. (LC) Suppose that P is a universally Baire forcing. Exactly one
of the following is true:

1. P is proper;
2. there is a condition p ∈ P which forces the set �	P
ℵ0�V to be nonstationary.

This is an immediate corollary of the determinacy results in Section 3.10.2.

Corollary 2.2.8. (LC + CH) If P is a universally Baire forcing on the reals then
either P is proper or else P collapses ℵ1 below some condition.

It is impossible to remove the assumption of CH in this corollary. Consider
the following example: If c is a Cohen real then by a result of Gitik the set
A = �a ∈ 	�2


ℵ0 � a � V� is stationary in the extension V 	c
. Let Q be the forcing
shooting a closed unbounded set through the set A with countable conditions. It
is not too difficult to show that if �1

2 = �2 then the iteration P = Cohen∗Q̇ can
be coded as a universally Baire forcing. Certainly P preserves ℵ1 and P is not
proper.

Corollary 2.2.9. (LC + CH) Suppose that P is a proper universally Baire forcing
on the reals. Then (the forcing with the definition of) P is proper in all set generic
extensions.

Proof. Suppose for contradiction that in some set generic extension V 	G
 the
forcing P is not proper. In a further �-closed forcing extension V 	G
	H
, CH
holds and PV 	G
 = PV 	G
	H
 is still not proper, and so by the previous corollary it
collapses ℵ1 below some condition. This is a �2

1 statement with the universally Baire
parameter P, and by the �2

1 absoluteness 1.4.12, it must hold in V , contradicting
the assumption of the properness of P in V .
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I do not know if I can remove the CH assumption here, or perhaps the large
cardinal assumption at the price of reducing the complexity of the partial orders to
which the theorem applies.

2.3 Topological representation of names

The key feature of proper forcings of the form PI is the way of topologizing the
names for reals and Borel sets described in the following propositions.

Proposition 2.3.1. Suppose that I is a �-ideal on a Polish space X such that
the forcing PI is proper. Suppose Y is a Polish space, B ∈ PI is a condition and
B � ẏ ∈ Y is a point. Then there is a condition C ⊂ B in the forcing PI and a Borel
function f � C → Y such that C � ẏ = ḟ �ẋgen�.

Proof. Fix a countable base O for the topology of the space Y . Let M be a
countable elementary submodel of a large enough structure and let C = �x ∈ B � x
is M-generic�. This is a Borel I-positive set. Consider the function f � C → Y
assigning each point x the value ẏ evaluated according to the filter generated by
the point x.

First of all, f is a Borel function, since its graph can be written as C ∩⋂
O∈O AO

where AO =⋃
�z×O � z ∈ PI ∩M�z � ẏ ∈ Ȯ�∪⋃

�z×�X\O� � z ∈ PI ∩M�z � ẏ � Ȯ�
by the forcing theorem. Second, C � ẏ = ḟ �ẋgen� since C � ẋgen ∈ Ċ is an M-generic
point and so the point �ẋgen� ẏ
 must satisfy the definition of the graph of the function
f . The proposition follows.

Proposition 2.3.2. Suppose that I is a �-ideal on a Polish space X such that
the forcing PI is proper. Suppose that Y is a Polish space, B ∈ PI is a condition
and B � Ȧ ⊂ Ẏ is a Borel set. Then there is a condition C ⊂ B and a Borel set
D ⊂ C ×Y such that C � Ȧ = Ḋẋgen

.

Proof. Since the forcing PI preserves ℵ1, strengthening the condition B if necessary
I may assume that the Borel rank of Ȧ is forced to be ≤ 
 for some fixed ordinal

. The proof of the proposition proceeds by induction on the ordinal 
.

If Ȧ is forced to be closed, then again strengthening the condition B if necessary
and using Proposition 2.3.1, I may assume that there is a Borel function f � B →
P�O� such that B � ḟ �ẋgen� = �O ∈ O � O ∩ Ȧ = 0�. Then the set D ⊂ B ×Y�D =
��x� y
 � y � ⋃

f�x�� is the required Borel set. The proof for open sets is similar.
Suppose now that Ȧ is forced to be the union

⋃
n Ȧ�n� of sets of lower complexity.

Use the inductive assumption to find maximal antichains Z�n� ⊂ PI � n ∈ � such
that for every condition z ∈ Z�n� there is a Borel set D�z�n� ⊂ z × Y such that
z � Ȧ�n� = Ḋ�z�n�ẋgen

. Let M be a countable elementary submodel of a large
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enough structure and consider the set C = �x ∈ B � x is M-generic�. For every
number n ∈ � let D�n� ⊂ C ×Y be the set

⋃
�D�z�n� � z ∈ M ∩Z�n��∩C ×Y , and

let D = ⋃
n D�n�. Clearly the set D ⊂ C ×Y is Borel. It is not difficult to verify

that C � Ȧ = Ḋẋgen
. Namely, the condition C forces that the generic point belongs

to exactly one condition in the antichain Z�n� ∩ M for every number n, so then
Ȧ�n� = ⋃

�D�z�n� � z ∈ M ∩Z�n��ẋgen
= Ḋ�n�ẋgen

and Ȧ = ⋃
n Ḋ�n�ẋgen

as desired.
The countable intersection case lends itself to an identical argument.

Note that the argument does not give an ordinal correspondence, a statement of
the kind “if Ȧ is a Borel set forced to be �

0

 then it is equal to the generic section

of a �
0

 ground model set.” Such a statement is true for bounding forcings though.

The identification of names for elements of Polish spaces with Borel functions
has a number of consequences; I will state three that are used throughout the book.

Proposition 2.3.3. Suppose that I is a �-ideal on a Polish space X such that
the forcing PI is proper. Suppose that B ∈ PI is a Borel set, Y is a Polish space,
f � B → Y is a Borel function, and �An � n ∈ �� are analytic or coanalytic subsets
of the space X. Then there is a Borel set C ⊂ B such that for every number n ∈ �,
the image f ′′�C ∩An� ⊂ Y is a Borel set.

Proof. The expression ẏ = ḟ �ẋgen� is a PI -name for a point in the space Y . Write
PI = P ∗ Q̇ where P adds the point ẏ and Q̇ is the remainder forcing, adding the
point ẋgen. For every number n let pn ∈ P be the Boolean value of the statement
∃q ∈ Q̇ q � ẋgen ∈ Ȧn.

Let M be a countable elementary submodel of a large enough structure containing
all the necessary information, and let C = �x ∈ B � x is M-generic for the poset
PI�. I claim that this set has the required properties. It is certainly I-positive by the
properness of the forcing PI . For every number n ∈ � let Dn = �y ∈ Y � y is M-generic
for the poset P and the generic filter given by it meets the condition pn�. The set Dn

is Borel by Fact 1.4.8. Moreover, f ′′�C ∩An� = Dn: whenever y ∈ Dn is a point, it
is possible to find a M	y
-generic x for the poset Q such that M	x
 	= x ∈ An by the
choice of the condition pn; but then x ∈ An by analytic absoluteness, y = f�x� and
so y ∈ f ′′�C ∩An�. On the other hand, if x ∈ C ∩An is a point, then M	x
 	= x ∈ An

by analytic absoluteness, and f�x� ∈ Dn by the forcing theorem applied in the model
M	f�x�
.

Proposition 2.3.4. (PI -uniformization) Suppose that I is a �-ideal on a Polish
space X such that the forcing PI is proper. Suppose that Y is a Polish space,
B ∈ PI is a condition and A ⊂ B × Y is an analytic set with nonempty vertical
sections. Then there is a condition C ⊂ B in the forcing PI and a Borel function
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f � C → Y whose graph is a subset of the set A. With an appropriate large cardinal
assumption it is possible to relax the demand on the set A to be universally Baire.

Proof. By the Shoenfield absoluteness, B � ∃y ∈ Y �ẋgen� y
 ∈ Ȧ. Let ẏ be a name
for the witness real. Let M be a countable elementary submodel of a large enough
structure, let C = �x ∈ B � x is M-generic� and let f � C → Y be the Borel function
defined by f�x� = ẏ evaluated according to the filter generated by the point x. As
in the previous proof, the set C ⊂ B is Borel and I-positive and the function f is
Borel. Moreover, for every point x ∈ B it is the case that M	x
 	= �x� f�x�
 ∈ A by
the forcing theorem, and �x� f�x�
 ∈ A follows by the analytic absoluteness.

The universally Baire case argument follows the same lines with more
absoluteness required.

The ZFC variations of many theorems in this book constantly struggle with the
necessity to uniformize sets that are more complex than analytic. There does not
appear to be a general ZFC theorem which economically covers all the necessary
cases.

Example 2.3.5. PI uniformization of coanalytic sets by Borel functions fails in the
constructible universe L. Consider the set A ⊂ 2� ×2� given by �x� y
 ∈ A ↔ x ∈
L�

y
1
. This is a coanalytic set with nonempty vertical sections. Whenever B ⊂ 2� is a

Borel set and f � B → 2� is a Borel function whose graph is a subset of the set A, it
must be the case that B is countable. If B was uncountable, just choose a countable
elementary submodel M of a large enough structure containing B�f , and choose an
M-generic filter g for the Sacks forcing which contains some perfect subset of the
set B. Writing x ∈ 2� for the resulting generic point we have x ∈ B, f�x� ∈ M	x
,
and since �M

1 = �
M	x

1 it is the case that x � L�M

1
⊃ L

�
f�x�
1

and so �x� f�x�
 � A, a
contradiction.

Example 2.3.6. Suppose that � is a ZFC-correct outer regular submeasure on a
Polish space Y , and suppose that I is a �-ideal on a Polish space X such that
the forcing PI is proper, let B ∈ PI be a condition, let � > 0 be a real number
and A ⊂ B × Y be an analytic set with vertical sections of �-mass < �. Then
there is a condition C ⊂ B in PI and a Borel set A′ ⊂ C × Y with open vertical
sections of �-mass < � which cover the corresponding vertical sections of the set A.
A brief complexity computation reveals that this would require PI uniformization
of a coanalytic set, which may fail by the previous example. However, the special
features of the current situation allow a ZFC argument.

Whenever M is a countable elementary submodel of a large enough structure
containing the set B and x is an M-generic point then M 	= ��Ax� < � by the
ZFC correctness of the submeasure �. By the forcing theorem then, there must
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be a name Ȯ for an open subset of the space Y which is forced to cover the set
Aẋgen

and has �-mass < �. Let C = �x ∈ B � x is M-generic� and let A′ ⊂ C ×Y be

defined by �x� y
 ∈ A′ ↔ y ∈ Ȯ/x. The ZFC-correctness applied again shows that
the vertical sections of the set A′ have mass < �, and since M	x
 	= Ax ⊂ Ȯ/x, a
wellfoundedness argument shows that V 	= Ax ⊂ Ȯ/x and the vertical sections of
the set A′ cover the vertical sections of the set A.

The last remark of this section concerns the homogeneity of the forcings PI .
Suppose that I is a �-ideal on a Polish space X such that the forcing PI is proper,
and suppose that B0�B1 ∈ PI are conditions such that the forcings PI � B0 and PI � B1

are in the forcing sense equivalent. Then there is a PI � B0-name ẏ for a generic
element of the set B1 such that B0 � ẋgen can be recovered from ẏ. Let M be a
countable elementary submodel of a large enough structure, and let C0 ⊂ B0 be
the set of all M-generic points. Let f � C0 → B1 be the Borel function defined by
f�x� = ẏ/x and let C1 = rng�f�. It is not difficult to see that the bijective function
f transfers the ideal I below C0 to the ideal I below C1 at least as far as Borel
sets are concerned. Thus the homogeneity of the forcing PI is always witnessed by
Borel functions. This helps to justify the following definition:

Definition 2.3.7. An ideal I on a Polish space X is homogeneous if for every Borel
set B there is a Borel function f � X → B such that f -preimages of I-small sets are
I-small.

It is clear that homogeneity of ideals does not imply the homogeneity of the
resulting forcing. In all cases encountered in this book the homogeneity of the
forcing and the underlying ideal always come together. Homogeneity is a rather
special property. Many forcings in this book, such as the capacity forcings of
Section 4.3, do not seem to be homogeneous, nevertheless I have not been able to
find a definite proof of inhomogeneity in a single interesting instance.
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Properties

3.1 Continuous reading of names

The continuous reading of names (CRN for short) is one of the more common and
more slippery properties of forcing notions of the form PI .

Definition 3.1.1. Suppose that I is a �-ideal on a Polish space X such that the
forcing PI is proper. The forcing PI is said to have continuous reading of names
(CRN) if for every Borel function f � B→ 2� with an I-positive Borel domain B⊂X
there is an I-positive Borel set C ⊂ B such that the function f � C is continuous.

How common this property is will be obvious from the list of examples below,
and anyone acquianted with the combinatorial approach to forcing can appreciate it
immediately. The slippery part is that the continuous reading of names may (or then
again, may not) depend on the presentation of the forcing PI . Note that extending
the topology on the underlying Polish space without changing the Borel structure
will make more functions continuous and so it can bring about the continuous
reading of names in a forcing in which it was originally not present. This actually
happens in the case of Steprāns forcing of Section 4.2.3. One simple observation
is that every forcing with the CRN has a presentation on the Baire space with
the CRN. If I is a �-ideal on a Polish space X and � � C→ X is a continuous
bijection between a closed subset C of the Baire space and the space X as in [40],
7.9, define the �-ideal J on the Baire space by A ∈ J ↔ � ′′A ∈ I and observe
that if PI has the CRN then so does PJ . Deeper study will reveal that CRN has a
natural game-theoretic restatement – Theorem 3.10.19 – and it is preserved under
the countable support iteration – Theorem 6.3.16.

I will begin with several equivalent restatements of CRN.

Proposition 3.1.2. [87] Let I be a �-ideal on a Polish space X. The following are
equivalent:

33
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1. the forcing PI has the continuous reading of names;
2. for every I-positive Borel set B ⊂ X and a countable collection �Dn � n ∈ ��

of Borel subsets of X there is an I-positive Borel set C ⊂ B such that all sets
Dn∩C are relatively open in C;

3. for every I-positive Borel set B and every Borel function f � B→ Y to a Polish
space Y there is an I-positive Borel set C ⊂ B such that f � C is continuous.

Proof. (1)→(2). Fix sets B�Dn � n ∈ � and define a Borel function f � B→ 2� by
f	r
	n
 = 1 if r ∈ Dn. By the continuous reading of names there is an I-positive
Borel set C ⊂ B such that f � C is continuous. It is immediate that the sets Dn∩C
must be relatively open in C.

(2)→(3). Suppose that B is a Borel I-positive set and f � B→ Y is a Borel
function. For every basic open set O from some fixed countable basis for the space
Y , let DO = f−1O. It is clear that DO is a Borel set and if C ⊂ B is any set such that
all sets DO ∩C are relatively open in C, the function f � C must be continuous.

(3)→(1). Trivial.

Example 3.1.3. Every bounding forcing of the form PI has the continuous reading
of names. This is the content of Theorem 3.3.2.

Example 3.1.4. If the �-ideal I is �-generated by closed sets then the forcing has
the continuous reading of names. This is proved in Theorem 4.1.2.

Example 3.1.5. The Hechler forcing has the continuous reading of names. This
is the forcing of all pairs p = �tp� fp	 where tp ∈ �<� and fp ∈ ��, ordered by
q≤ p↔ tp ⊂ tq, tq \ tp dominates fp on its domain, and for all numbers n� dom	tq
,
fp	n
 ∈ fq	n
. This poset adds a single generic point in the Baire space which is
the union of the first coordinates of the conditions in the generic filter.

Let I be the associated �-ideal on the Baire space, let B ∈ PI be a positive set,
and let g � B→ 2� be a Borel function. To find an I-positive set C ⊂ B on which
the function g is continuous, let M be a countable elementary submodel of a large
enough structure, let C ′ ⊂ B be the set of all M-generic points and let h ∈ �� be a
function modulo finite dominating all functions in the model M . For some number
n ∈ �, the set C = �f ∈ C ′ � ∀m > n f	m
 > h	m
� must be I-positive. To show
that g �C is a continuous function, let s ∈ 2<� be a finite binary sequence and argue
that g−1Os ⊂ C is a relatively open set. Let x ∈ C be a point such that s ⊂ g	x
.
I must find an open neighborhood of the point x in the set C which is mapped
into Ot. Use the forcing theorem to choose a condition p = �tp� fp	 ∈M which is
in the filter determined by the point x and forces š ⊂ ġ	ẋgen
. Let t ⊂ x be a finite
initial segment such that tp ⊂ t, 
t
>n, and ∀m� dom	t
 h	m
> fp	m
�. It follows
from the definitions that for every point y ∈ C∩Ot, its associated M-generic filter
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contains the condition p and by the forcing theorem applied in the model M , it
must be the case that s ⊂ g	y
. In other words, g′′	Ot ∩C
⊂ Os as required.

Example 3.1.6. Let J be an ideal on � and let P	J
 be the associated Prikry-type
forcing. P	J
 has the continuous reading of names if and only if J is a P-ideal. The
argument here follows the lines of the previous proof and Example 3.1.8.

Example 3.1.7. The Steprāns forcing of Section 4.2.3 has the continuous reading
of names in one presentation but fails to have it in another one.

Example 3.1.8. The eventually different real forcing does not have the continuous
reading of names in any presentation. The eventually different real forcing P is the
set of all pairs p = �tp� fp	 where tp is a finite sequence of natural numbers and
fp is a finite set of functions in ��. The ordering is defined by q ≤ p if tp ⊂ tq,
fp ⊂ fq and 	tq \ tp
∩

⋃
fp = 0. The forcing P adds an element ẋgen of the Baire

space as the union of the first coordinates of the conditions in the generic filter.
The function ẋgen has finite intersection with every function in the ground model.
The forcing P is clearly �-centered since any two conditions with the same first
coordinate are compatible. Let I be the �-ideal of all Borel sets B ⊂ �� such that
P � ẋgen � Ḃ so that P is in the forcing sense equivalent to the poset PI .

It is enough to show that for no Polish topology � on the Baire space extending
the standard topology the forcing PI has the �-continuous reading of names. Let
Bn � n ∈ � enumerate a basis for the topology �. These are all Borel subsets of the
Baire space �� and so there are countable antichains An � n ∈ � in the forcing P
such that every condition in An forces ẋgen ∈ Ḃn and the antichains are maximal
with respect to this property.

A piece of notation and an easy construction: for a finite set f ⊂�� of functions
and a number l ∈ � write f	l
= �x	l
 � x ∈ f�. For every number m ∈ � choose a
set fm of m+ 1 many functions in the Baire space which return mutually distinct
values at every input and moreover such that for every number k ∈ �, every n ∈ �
and every condition q ∈ An there is a number l > k such that fm	l
∩fq	l
= 0. Let
h � ��→�� be the partial Borel function defined by h	x
	n
= the least number k
such that x	l
 � fm	l
 for all numbers l > k. Note that the function h is defined on
all but I-many points in the Baire space. I claim that there is no Borel I-positive
set C ⊂ �� such that h � C is a t-continuous function.

Suppose there in fact is such a set C ⊂ ��. Find a condition p ∈ P such that
p � ẋgen ∈ Ċ and let m= 
fp
. The sets Ck = �x ∈ C � h	x
	m
= k� � k ∈ � exhaust
all of C and so one of them must be I-positive. This set Ck is relatively �-open in
the set C and there must be a collection a⊂ � such that Ck = C ∩⋃n∈a Bn. Since
the set Ck is I-positive, there must be a number n ∈ a and a condition q ∈ An such
that p�q are compatible conditions. Now use the property of the finite set fm ⊂ ��
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to find a number l > k� 
sp
� 
sq
 such that fm	l
∩ fq	l
= 0. Since there are m+1
many functions in the finite set fm ⊂ �� and only m many functions in the set
fp, there must be a function y ∈ fm such that y	l
 � fp	l
. It is now easy to find a
finite sequence s extending both sp and sq such that the condition r = �s� fp ∪ fq	
is a lower bound of p�q and s	l
= y	l
. Since the condition r forces both ẋgen ∈ Ċ
and ẋgen ∈ Ḃn, any sufficiently generic point x ∈ �� below the condition r will
belong to the intersection Bn ∩C. However, for every such a point it is the case
that h	x
	m
 > l > k, contradicting the assumption that Bn∩C ⊂ Ck!

The continuous reading of names has several consequences.

Proposition 3.1.9. Suppose that I is a �-ideal on a Polish space X with the
continuous reading of names. Every I-positive Borel set has an I-positive G�

subset.

Proof. Suppose that B ⊂ X is an I-positive Borel set and D ⊂ X×�� is a closed
set projecting to it. Since the poset PI is proper, an application of PI -uniformization
shows that there must be an I-positive Borel set C ⊂ B and a Borel function
f � C → �� whose graph is a subset of the set D. By the continuous reading
of names we may assume that the function f is continuous on C. Every partial
continuous function can be extended to a continuous function with a G� domain
[40], 3.6. Let C ⊂ C ′� f ⊂ g be such a G� set and a continuous extension, with C
still dense in C ′. Since the set D⊂ X×�� is closed, the graph of the function g is
still a subset of it Then C ′ ⊂ B is an I-positive G� subset of the set B.

The conclusion cannot be improved to the density in PI of closed sets as many
examples such as the Cohen forcing show.

Proposition 3.1.10. Suppose that PI is a proper forcing with the continuous reading
of names and J is a c.c.c. ideal on a Polish space Y which does not have the
continuous reading of names in any presentation below any condition. Then the
forcing with PI does not add a PJ -generic.

Proof. Suppose the conclusion fails. By Proposition 2.3.1, there must be a Borel
set B ∈ PI and a Borel function f � B→ Y such that B � ḟ 	ẋgen
 is PJ -generic.
Use Proposition 2.3.3 to find an I-positive Borel set C ⊂ B such that the images
f ′′	C ∩O
 are Borel for all basic open sets O ⊂ X coming from some fixed
countable basis for the space X. Find a Polish topology � on the space Y extending
the original one making all these image sets open. Since the forcing PJ does not
have the continuous reading of names in the topology � below the set C ′ = f ′′C and
it is c.c.c., there must be a Borel function g � C ′ → 2� which is not �-continuous on
any Borel J -positive subset of E. Consider the Borel function g � f � C→ 2� and
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use the continuous reading of names of the poset PI to find a Borel I-positive set
D ⊂ C on which this function is continuous. Now the set f ′′D ⊂ E must have a
Borel J -positive subset D′ ⊂ C ′. The function g � D′ is �-continuous by the choice
of the topology � and the set D. This contradicts the choice of the function g.

As a consequence, the generics for the eventually different real forcing cannot
be obtained in the countable support iterations of forcings such as Laver, Cohen,
Solovay, or Mathias, since these forcings all have the continuous reading of names
and this property is preserved in the iteration by Theorem 6.3.16.

Fact 3.1.11. [87] Suppose that I is a �-ideal such that the forcing PI is proper
and has the continuous reading of names. There is an ideal J on � such that the
forcing Q= P	�
 mod J is proper and equal to the iteration of PI followed with
an ℵ0-distributive forcing.

To prove this it is enough to consider ideals I on the Baire space ��. The ideal J
is then defined on the underlying set �<� by A ∈ J↔ �x ∈�� � ∃�n x � n ∈A� ∈ I�
for a set A⊂ �<�. I omit the proof.

3.2 Fubini properties of ideals

In a very restricted sense the whole field of preservation properties of definable
forcings can be understood as the study of certain variations on the Fubini theorem.

3.2.1 Ideal vs. ideal

Definition 3.2.1. Suppose that I� J are �-ideals on the respective underlying Polish
spaces X�Y . I will say that I� J are perpendicular (I ⊥ J ) if there are a Borel
I-positive set B⊂ X, a Borel J -positive set C ⊂ Y and a Borel set D⊂ B×C such
that the vertical sections of the set D are J -small and the horizontal sections of its
complement are I-small.

It is part of the content of the classical Fubini theorems concerning the Lebesgue
measure and Baire category that null �⊥ null and meager �⊥ meager. Inciden-
tally, among the definable c.c.c. ideals these are essentially the only two instances
of nonperpendicularity, see [17]. In the more general context, the perpendicularity
turns out to have forcing content:

Proposition 3.2.2. (LC) Suppose that PI is a proper forcing and J is generated by
a universally Baire collection of Borel sets. Then I ⊥ J if and only if some condition
in the poset PI forces Ċ ∩V ∈ J for some J -positive Borel set C. If the ideal J is
ZFC-correct then the large cardinal assumption is not necessary.
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I will be frequently in the situation when I� J are homogeneous ideals, and then
the conclusion clearly strengthens to the natural PI � Ẋ∩V ∈ J .

Proof. On one hand, a review of the definitions shows that if B�C�D witness the
statement I ⊥ J then B � C ∩V ⊂ Ḋẋgen

and the latter set is in the ideal J by an

absoluteness argument. On the other hand, if B � Ċ ∩V ∈ J then there is a name
for a Borel set Ȧ ∈ J such that B � Ċ∩V ∈ I . Using Proposition 2.3.2, thinning out
the set B if necessary, I can find a Borel set D ⊂ B×C such that B � Ȧ = Ḋẋgen

.
Using an absoluteness argument, thinning out the set B if necessary again, I can
find the set D in such a way that its vertical sections are in the ideal J . Since
B � Ċ∩V ⊂ Ḋ�xgen

, it is clear that the horizontal sections of the complement of the
set D must be in the ideal I .

For the ZFC version of the proposition, suppose on one hand that PI � Ċ∩V ∈ J
for some Borel set C ⊂ Y , and let B � Ė ∈ J is a Borel set such that Ċ ∩V ⊂ Ė.
Strengthening the condition B if necessary and using Proposition 2.3.2. I may
assume that there is a Borel set D ⊂ B×Y such that B � Ė = Ḋẋgen

. Let M be a
countable elementary submodel of a large enough structure and let B′ ⊂ B be the
I-positive set of M-generic points in the set B. For every point x ∈ B′ it is the case
that M
x� 
=Dx ∈ J by the forcing theorem and so V 
=Dx ∈ J by ZFC-correctness.
It is clear that the sets B′�C�D∩B′ ×C witness the statement I ⊥ J . On the other
hand, suppose that I ⊥ J holds and is witnessed by some sets B ⊂ X�C ⊂ Y , and
D⊂ B×C. I claim that B � Ḋẋgen

∈ J ; since B � Ċ∩V ∈ Ḋẋgen
, this will show that

the Ċ∩V is forced to belong to the ideal J . Suppose for contradiction that B′ ⊂ B is
some condition forcing Ḋẋgen

� J , let M be a countable submodel of a large enough
structure and let x ∈ B′ be an M-generic point. By the forcing theorem it should
be the case that M 
=Dx � J . However, since Dx ∈ J , the ZFC-correctness implies
that M 
=Dx ∈ J , contradiction!

The reader may wonder whether the condition on the set D⊂ B×C in the defi-
nition of perpendicularity can be relaxed to analytic or weaker while the proposition
above remains true. The answer is yes in most cases, but is somewhat awkward to
state precisely. This is used in several critical situations later in the book, notably
in the proofs of preservation theorems for the countable support iteration.

Definition 3.2.3. Suppose � is a class of sets and I� J are �-ideals on Polish spaces
X�Y respectively. The symbols I ⊥� J stand for the statement that there are sets
B ⊂ X�C ⊂ Y and D ⊂ B×C in the class � such that B � I , C � J , all vertical
sections of D are in J while all horizontal sections of its complement are in I .
I ⊥uB J is the perpendicularity with the class of universally Baire sets, I ⊥a J is
the perpendicularity with the class of analytic sets.
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Proposition 3.2.4. (LC) Suppose that I� J are universally Baire �-ideals on their
respective domain Polish spaces X�Y , PI is proper, I satisfies the second universally
Baire dichotomy, and J satisfies the first universally Baire dichotomy. Then I ⊥
J ↔ I ⊥uB J .

Proof. The left-to-right implication does not need an argument. For the right-to-left
implication fix universally Baire sets B0 ⊂ X, C0 ⊂ Y and D0 ⊂ X×Y witnessing
I ⊥uB J . First use the dichotomies to find I-positive Borel set B1 ⊂ B0 and a
J -positive Borel set C1 ⊂C0. By the first dichotomy applied to the �-ideal J , every
vertical section of the set D0 is a subset of a J -small Borel set. By a universally
Baire absoluteness argument, this will happen in the PI generic extension at the
generic vertical section as well. Use Proposition 2.3.2 to find a Borel set B2 ⊂ B1

in the poset PI and a Borel set D1 ⊂ B2×C1 such that B2 � C1∩ 	Ḋ0
ẋgen
⊂ 	Ḋ1
ẋgen

and the latter set is in the �-ideal J . Let M be a countable elementary submodel
of a large enough structure and let B3 = �x ∈ B2 � x is M-generic� ⊂ B2. This
is a Borel I-positive set, by the forcing theorem for every x ∈ B3 it is the case
that M
x� 
= C1 ∩ 	D0
x ⊂ 	D1
x and the latter set is in the �-ideal I , and by the
universally Baire absoluteness it is even true that M
x� 
= C1∩ 	D0
x ⊂ 	D1
x. It is
clear that the sets B3 ⊂ X, C1 ⊂ Y , and D2 =D3∩ 	B3×C1
 witness the statement
I ⊥ J .

Proposition 3.2.5. Suppose that I� J are �-ideals on their respective domain Polish
spaces X�Y , both satisfying the third dichotomy, the forcing PI is proper and the
ideal J is ZFC-correct, generated by Borel sets. Then I ⊥uB J ↔ I ⊥a J .

Proof. The left-to-right direction does not need an argument. For the opposite
direction, suppose the analytic sets B�C�D are given. The third dichotomy yields
a Borel I-positive subset B1 ⊂ B. Let M be a countable elementary submodel
of a large enough structure and x ∈ B1 be an M-generic point. By the ZFC-
correctness, M
x� 
= Dx ∈ J and therefore there is a name Ė for a Borel set such
that M
x� 
= E/x ∈ J and Dx ⊂ Ė. There must be a condition B2 ⊂ B1 and a Borel
set D1 ⊂ B2×Y such that B2 � Ė = 	Ḋ1
�xgen

and Ḋ�xgen
⊂ Ė ∈ J . Let B3 ⊂ B2 be the

set of all M-generic points in the set B2. Let C3 ⊂ C be some J -positive Borel set
obtained by an application of the third dichotomy. Let D3 =D1∩B3×C3. Another
application of ZFC-correctness shows that the sets B3�C3�D3 witness the relation
I ⊥ J .

3.2.2 Ideal vs. submeasure

Definition 3.2.6. Suppose that I is a �-ideal on a Polish space X and � is a
submeasure on a Polish space Y . Say that the ideal I is not perpendicular to the
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submeasure � (I �⊥ �) if for every real number � > 0, every I-positive Borel set
B⊂X and every Borel set D⊂ B×Y with vertical sections of submeasure ≤ � the
set

∫

B
D dI = �y ∈ Y � �x ∈ B � �x� y	 �D� ∈ I�

has mass ≤ �. In parallel to Definition 3.2.3, I will also introduce the notation
I ⊥� �, I ⊥uB �, I ⊥a �.

It is a consequence of the classical Fubini theorem that the ideal of Lebesgue
null sets is not perpendicular to the outer Lebesgue measure. In the more general
context, the perpendicularity turns out to have forcing meaning again.

Definition 3.2.7. Suppose that � is an outer submeasure on a Polish space Y (that
is, w	A
 = inf�w	B
 � A ⊂ B and B ⊂ Y Borel� which is universally Baire (that
is, the function x �→ �	Ax
 � x ∈ 2� where A ⊂ 2�×Y is a universal analytic set,
is universally Baire). Suppose that P is a forcing. I will say that P preserves the
submeasure � if P � �̌	Ǎ
= �̇	Ǎ
 for every set A⊂ Y .

The following propositions have proofs analogous to those in the previous
subsection, and I omit them.

Proposition 3.2.8. (LC) Suppose that I is a �-ideal on a Polish space X such that
the forcing PI is proper. Suppose that � is an outer universally Baire submeasure
on a Polish space Y . Then I ⊥ � is equivalent to the failure of preservation of the
submeasure � by the forcing PI . If the submeasure � is ZFC-correct then the large
cardinal assumption is not necessary.

Proposition 3.2.9. (LC) Suppose that I is a �-ideal on a Polish space X satisfying
the second dichotomy such that the forcing PI is proper. Suppose that � is a
universally Baire submeasure such that every universally Baire set has a Borel
subset of the same submeasure. Then I ⊥ �↔ I ⊥uB �.

Proposition 3.2.10. The previous proposition holds in ZFC if � is a ZFC-correct
submeasure and ⊥uB is replaced with ⊥a.

In certain prominent cases, the perpendicularity with � and its null ideal coincide.
The following two propositions strengthen of [2].

Proposition 3.2.11. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. Let � be the outer Lebesgue measure.
Then I ⊥ � iff I ⊥ null; in other words PI preserves the Lebesgue measure if and
only if it does not make the ground model reals Lebesgue null. If the ideal I is �1

1

on �
1
1 then the large cardinal assumption can be omitted.
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Proof. I will first treat the large cardinal version. The right-to-left direction does
not need an argument. For the other direction, suppose that PI does not preserve
outer Lebesgue measure. I will first show that it does not preserve the outer
Lebesgue measure of some Borel set. Suppose that A ⊂ 2� is a set and B ∈ PI

is a condition such that B � �̇	Ǎ
 < �̌	Ǎ
. There must be a Borel set B1 ⊂ B
and a Borel set D ⊂ B1× 2� such that the vertical sections of the set D have
Lebesgue measure < � while �	A
 > �, and at the same time B1 � Ǎ⊂ Ḋẋgen

. Now

consider the set C = �y ∈ 2� � B1 � y̌ ∈ Ḋẋgen
�. This is a universally Baire set, since

C = �y ∈ 2� � B1 \Dy ∈ I�, it contains the set A and therefore �	C
 > �. Use the
Lebesgue measurability of universally Baire sets to find a Borel set C1 ⊂ C of the
same Lebesgue measure. Then B1 � �̇	Č1
 < �̌	Č1
 as desired.

By the measure isomorphism theorem [40], 14.71, I can then find in the
PI -generic extension an open set O ⊂ 2� such that O contains all the ground
model reals and �	O
 < 1. Let E = 2� \O; this is a �-positive closed set and since
the Lebesgue measure is ergodic, the closure F of the set E under rational trans-
lations has full measure. However, the set F still contains no ground model reals
and so �∗	2�∩V
= 0.

The �1
1 on �

1
1 case is identical with the additional observation that the set C

above is coanalytic and therefore Lebesgue measurable.

Proposition 3.2.12. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the quotient forcing PI is homogeneous and proper. Suppose
that � is either a pavement submeasure or a strongly subadditive submeasure on a
Polish space Y . Then I ⊥ �↔ I ⊥ I�.

Proof. The right-to-left implication does not need a proof. For the opposite impli-
cation, I will treat the case of a pavement submeasure �, obtained from some
countable set U of pavers and a weight function w. Suppose that I ⊥ �. As in the
previous argument this means that there are Borel sets B⊂X�C ⊂ Y and D⊂B×C
such that B � I , C � I�, the vertical sections of D have �-mass < � < �	C
 and
the horizontal sections of the complement of the set D are I-small. Using the ZFC-
correctness of the submeasure �, shrinking the set B if possible I can find a Borel
function f � B→ P	U
 such that ∀x ∈ B ��w	u
 � u ∈ f	x
� < � and Dx ⊂

⋃
f	x
.

Using the �-completeness of the ideal I repeatedly, I can find a descending collec-
tion of Borel I-positive sets Bn � n ∈� and inclusion-increasing sequence an � n ∈�
of subsets of U such that B0 = B�a0 = 0, and for every number n ∈ � and every
point x ∈ Bn+1 it is the case that an+1 ⊂ f	x
 and ��w	u
 � u ∈ f	x
\an+1�≤ 2−n.

In the end, let a = ⋃
n an and note that ��w	u
 � u ∈ a� ≤ �. Thus the set

C ′ = C \⋃a is �-positive. I claim that PI � �	C ′ ∩V
 = 0, which will complete
the proof. To see this, note that for every number n ∈ �, Bn+1 � �	C ′ ∩V
 < 2−n
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since C ′ ∩V must be covered by the set ḟ 	ẋgen
 \an+1 sum of whose weights if
smaller than 2−n. By the homogeneity of the forcing PI , PI ��	C ′ ∩V
 < 2−n, and
since this happens for every number n ∈ �, PI � �	C ′ ∩V
= 0 as required.

However, in other cases this feature is apparently absent and submeasure preser-
vation takes a life on its own. The reader should note that while homogeneity is
obvious in most popular forcings of the form PI – such as the Sacks or Miller
forcing – it is really quite difficult to argue for it in a more general setting and
most likely in a “typical” �-ideal I this property fails. It is apparently difficult
to find forcings which preserve this submeasure and fail to preserve that submea-
sure, as outstanding mathematicians have been willing to write long papers on the
issue [73].

Before I leave this subject let me point out that the concept of perpendicularity
to submeasures makes sense and is interesting already for ideals on �. Kanovei
and Reeken defined the class of Fubini ideals as those ideals on � which are not
perpendicular to outer Lebesgue measure, produced a long list of Fubini ideals, and
showed that they all have the Radon–Nikodym property.

3.3 Bounding forcings

The bounding property of forcings is one of the most commonly studied and used
properties. This section offers several topological restatements of it.

Definition 3.3.1. A forcing P is bounding (or weakly ���-distributive) if for every
function f ∈ �� in the P-extension there is a function g ∈ �� in the ground model
which dominates f pointwise.

Theorem 3.3.2. Suppose that I is a �-ideal on a Polish space X such that the
forcing PI is proper. The following are equivalent:

1. PI is bounding;
2. every Borel I-positive set contains a compact I-positive subset (compact sets

are dense) and every Borel function on an I-positive domain has a continuous
restriction with a Borel I-positive domain (continuous reading of names);

3. for every Polish topology t on X producing the same Borel structure, every
Borel I-positive set has a t-compact positive subset.

Proof. For the (1)→(2) direction, I will first argue for the case X = 2� and then
reduce the general case to this. Suppose B ∈ PI is a Borel set and g � B→ 2�

be a Borel function. I must produce a compact I-positive set C ⊂ B on which
the function g is continuous. Let T ⊂ 	2× 2×�
<� be a tree projecting into the
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graph of the function g. A Shoenfield absoluteness argument shows that B � ∃y ∈
�� �ẋgen� ġ	ẋgen
� y	 forms a branch through the tree Ť . Let ẏ be a corresponding PI

name for an element of ��. Use the bounding property to find a condition B′ ⊂ B
and a function z ∈ �� such that B′ � ẏ < ž. Now consider the tree S ⊂ T of all
triples of sequences whose third coordinate is dominated by z. The tree S is finitely
branching and so C = proj	proj
S�
⊂ B is compact. Since B′ � ẋgen ∈ Ċ it must be
the case that C � I . Also the graph of the function g � C is equal to the compact
set proj
S� and therefore g � C is continuous as desired.

The general case easily follows. If X is a Polish space and I is a �-ideal
on it such that the forcing PI is proper and bounding, find a Borel bijection
� � 2� → X and let J be the �-ideal of those sets A ⊂ 2� such that � ′′A ∈ I .
Clearly PJ is just a different presentation of PI , therefore it is bounding and
proper and I can apply the previous paragraph to it. Thus if B ∈ PI is a Borel
I-positive subset of X and g � B→ 2� is a function, there is a compact J -positive
set C ⊂ 2� such that � ′′C ⊂ B and the functions ��g �� are both continuous on
C. Since C is a compact zero dimensional space and � � C→ � ′′C is a continuous
bijection, in fact � � C is a homeomorphism of C and the compact set � ′′C ⊂ B.
Thus � ′′C is a compact I-positive subset of the set B on which the function g is
continuous.

The (2)→(1) direction is easier. If B � ẏ ∈ �� is a function, then there is
a condition B′ ⊂ B and a Borel function g � B′ → B such that B′ � ẏ = ġ	�xgen

by the results of Section 2.3. Let C ⊂ B′ be an I-positive compact set on
which the function g is continuous. The set g′′C ⊂ �� is compact and therefore
bounded by some function z ∈ ��. An analytic absoluteness argument shows that
C � ẏ < ž.

(1)→(3) is really subsumed in (1)→(2) since the proof of that implication did
not depend on the topology of the space X. Finally, to see that (3)→(1), suppose for
contradiction (3)∧¬(1) and find a Borel set B⊂X and a Borel function f � B→��

such that f -preimages of compact sets are I-small. As in [40], 13.11, find a Polish
topology t on X that makes f a continuous function. Let C ⊂ B be a t-compact
I-positive set. The image f ′′C ⊂ �� is compact, contradicting the choice of the
function f !

The theorem justifies the widespread use of tree forcings in the forcing practice.
Note that in fact I proved that zero-dimensional compact sets are dense in PI . The
condition of compact sets being dense in PI cannot be relaxed to the equivalence
classes of compact sets being dense in the algebra B	X
 mod I as the example of
the Cohen forcing shows. The density of compact sets does not imply the continuous
reading of names and vice versa. An instructive example is that of Steprāns forcing
in Section 4.2.3 which has two distinct presentations, in one compact sets are dense
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and in the other it has the continuous reading of names, but these two properties
cannot hold in conjunction since the forcing is not bounding.

The following proposition shows that the bounding property is in fact a Fubini
property.

Proposition 3.3.3. Suppose that I is a �-ideal on a Polish space X such that the
forcing PI is proper. The following are equivalent:

1. PI is bounding;
2. I �⊥ J where J is the Laver ideal on ��.

Here the Laver ideal J on �� is generated by sets Ag = �f ∈ �� � for infinitely
many n, f	n
 ∈ g	f � n
� as g varies through all functions from �<� to �. It is
well-known and proved in Section 4.5.2 that every analytic subset of �� either is in
the ideal J or contains all branches of some Laver tree. The ideal J is ZFC-correct
as shown in Theorem 4.5.6.

Proof. Suppose that the poset PI is bounding, B ∈ PI and C ∈ PJ are Borel sets
and D ⊂ B×C is a Borel set with J -small vertical sections. I must show that its
complement contains an I-positive horizontal section. By the ZFC-correctness of
the Laver ideal, thinning out the set B if necessary I may assume that there is a
Borel function G � B→ ��<�

such that for every pair �x� f	 ∈ C it is the case that
for infinitely many numbers n, f	n
 ∈G	x
	f � n
. Since the poset PI is bounding,
there is an I-positive Borel set B1 ⊂ B and a function h � �<� → � such that for
every point x ∈ B1 and every finite integer sequence s, G	x
	s
 ∈ h	s
. Since the
set C is J -positive, there must be a function f ∈ C such that for all but finitely
many numbers n, h	f � n
 ∈ f	n
. It is clear that B1× �f� is the required I-positive
horizontal section of the complement of the set C.

On the other hand assume that ¬I ⊥ J , and let B ∈ PI be a condition and ġ
a PI -name for an element of ��. By Proposition 2.3.4, thinning out the set B
if necessary I may assume that there is a Borel function G � B→ �� such that
B � ġ = Ġ	ẋgen
. Let D⊂ B×�� be the Borel set consisting of all pairs �x� f	 for
which f is dominated by G	x
 at infinitely many values. It is clear that the vertical
sections of the set D are J -small, and since ¬I ⊥ J holds, there must be a Borel
I-positive set B′ ⊂ B and a function f ∈�� such that the horizontal section B′ ×�f�
is a subset of the complement of the set D. An analytic absoluteness argument
shows that B′ forces the function ġ to be dominated by f̌ .

The bounding property has a game-theoretic restatement. This is important since
then a determinacy argument can be used to derive a stronger property than just
bounding in the case of definable forcing.
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Definition 3.3.4. Let P be a partial ordering. In the bounding game G Player I
first indicates an initial condition pini and then plays open dense sets Dn � n ∈ �.
Player II in response to the set Dn chooses a finite set dn ⊂Dn. Player II wins if in
the end the expression pini∧

∧
n

∨
dn describes a nonzero element of the completion

algebra RO	P
.

The following is proved in Section 3.10.3.

Proposition 3.3.5. Suppose the forcing PI is proper. The following are equivalent:

1. Player I has a winning strategy in the bounding game;
2. PI is not bounding.

If the �-ideal I is �1
1 on �

1
1 then the bounding game is determined. If large car-

dinals exist, the bounding game is determined for every universally Baire �-ideal I .

A spectacular application of the bounding game was found by Fremlin. It con-
cerns the relationship between Maharam’s and von Neumann’s problem. Here
Maharam’s problem is whether every c.c.c. complete algebra carrying a continuous
submeasure carries a measure. Von Neumann’s problem asks whether every c.c.c.
complete bounding algebra carries a measure. It turns out that it is consistent and
in fact follows from the P-ideal dichotomy of Todorcevic that every c.c.c. complete
bounding algebra carries a continuous submeasure, and so in such a context the two
problems coincide. Fremlin showed that the determinacy of the bounding game is
of critical concern here.

Fact 3.3.6. (Fremlin) Suppose that B is a c.c.c. complete algebra. The following
are equivalent:

1. Player II has a winning strategy in the bounding game;
2. there is a continuous submeasure on the algebra B.

Corollary 3.3.7. Suppose that I is a �1
1 on �

1
1 c.c.c. �-ideal on a Polish space X.

The following are equivalent:

1. the forcing PI is bounding;
2. there is a continuous submeasure � on the space X such that I contains the

same Borel sets as the ideal �A⊂ X � �	A
= 0�.

If large cardinal assumptions are used then the definability condition on the ideal
can be relaxed to universal Baireness.

Recently Talagrand answered Maharam’s problem in the negative [75].
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3.4 Bounding and not adding splitting real

Shelah introduced the notion of preservation of P-points [2] 6.2.1 – a forcing
preserves P-points if every P-point ultrafilter in the ground model generates a
P-point ultrafilter in the extension–and proved a number of beautiful results with it;
in particular, the preservation of P-points is preserved under the countable support
iteration. Curiously I find it impossible to restate this property as a Fubini property
even in the case of definable forcing. Instead, the natural notion of preservation
of Ramsey ultrafilters has a Fubini type restatement, and there is a corresponding
countable support preservation Theorem 6.3.7. Recall that a Ramsey ultrafilter on �
is an ultrafilter which contains homogeneous sets for every partition p � 
��2 → 2.

Theorem 3.4.1. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper, and let U be a Ramsey ultrafilter on
�. Writing J for the Mathias ideal of Section 4.7.7, the following are equivalent:

1. U generates a Ramsey ultrafilter in the PI -extension;
2. MRR	I� J
;
3. I �⊥ J ;
4. PI is bounding and does not add a splitting real.

In the case of a �1
1 on �

1
1 ideal I the large cardinal assumption is not necessary.

It is not difficult to see that (2), (3), and (4) are equivalent even without the presence
of a Ramsey ultrafilter.

Proof. Let Q be the Prikry-type forcing with the ultrafilter U . This is the set of all
pairs p = �tp� ap	 where tp ∈ 2<� and ap ∈ U and q ≤ p if tp ⊂ tq, aq ⊂ ap, and
�n ∈ dom	tq \ tp
 � tq	n
= 1�⊂ ap. The union of first coordinates of conditions in
the generic filter gives a characteristic function of the generic set ẏgen ⊂ �. I will
rely on the following well-known fact.

Fact 3.4.2. [66] Suppose M is a transitive model of ZFC and y ⊂ � is an infinite
set. Then Y is M-generic for Q if and only if it is modulo finite included in every
set in U ∩M .

For the (1)→(2) implication, assume (1) holds and B ⊂ X and C ⊂ P	�
 are
I� J -positive Borel sets respectively and B×C=⋃

n Dn is a countable union of Borel
sets. By the homogeneity of the Mathias ideal I may assume that C = P	�
. Find
conditions B0 ∈ PI�B0 ⊂B and q ∈Q such that 	B0� q
∈ PI×Q decides the value of
the number n such that 	ẋgen� ẏgen
∈ Ḋn. Let M be a countable elementary submodel
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of some large structure, let B1 = �x ∈ B0 � x is M-generic� and C1 = �y ⊂ � � y is
M-generic for the poset Q, meeting the condition q�. Now observe:

• B1 � I since PI is proper;
• C1 � J since by the above fact C1 is closed under infinite subsets and therefore

dense in P	�
 mod fin below each of its elements;
• every pair 	x� y
 ∈ B1×C1 is M-generic for PI ×Q, since in the model M
x�, U

still generates an ultrafilter by the assumption and therefore the set y still satisfies
the genericity criterion above for the model M
x�.

The forcing theorem applied in the model M to the poset PI×Q then shows that
B1×C1 ⊂Dn, concluding the proof of (1).

(2)→(3) does not need an argument. For (3)→(4), argue in the contrapositive and
assume that PI under some condition adds a splitting real. By Proposition 2.3.1 this
means that there is an I-positive Borel set B⊂X and a Borel function f � B→ P	�

such that for every infinite set b ⊂ � both sets �x ∈ B � b ⊂ f	x
� and �x ∈ B �
b∩ f	x
 = 0� are I-small. A review of definitions shows that the set D ⊂ B×
P	�
, defined by �x� y	 ∈ D iff y× f	x
 is infinite, has J -small vertical sections
and its complement has I-small horizontal sections as desired in the definition of
perpendicularity. Now suppose that the forcing PI adds an unbounded real and
use Proposition 2.3.1 to find an I-positive Borel set B ⊂ X and a Borel function
g � B→�� such that for every function h ∈�� the set �x ∈ B � g	x
 < h pointwise�
is I-small. A review of definitions shows that the set E ⊂ B×P	�
, defined by
�x� y	 ∈ E iff the enumerating function of y does not dominate g	x
 modulo finite,
again witnesses I ⊥ J .

Finally, for (4)→(1) I need the following claim of independent interest.

Claim 3.4.3. (LC) Suppose that U is a Ramsey ultrafilter and D ⊂ P	�
 is a
universally Baire dense set in P	�
 mod fin. Then U ∩D �= 0. If D is in addition
analytic then the large cardinal assumption is not necessary.

Proof. First note that Q � ẏgen ∈ Ḋ. To see this, observe that the set D is still
dense in the Q-extension by universally Baire absoluteness in the large cardinal
case, and by Shoenfield absoluteness in the analytic case. So in the extension,
given any V -generic set y ⊂ � meeting a condition p ∈Q, it is possible to find its
infinite subset z ⊂ y in the set D still meeting the condition p. The set z satisfies
the diagonalization condition from Fact 3.4.2 and therefore it is V -generic for the
poset Q. Another absoluteness argument shows that V
z� 
= z ∈ D and therefore p
could not have forced ẏgen � Ḋ.

Now let M be a countable elementary submodel of a large enough structure
containing both U and D. The ultrafilter U contains a set y which modulo finite
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diagonalizes all the countably many sets in U ∩M . The set y is M-generic for Q by
Fact 3.4.2, and by the previous paragraph and the forcing theorem M
y� 
= y ∈ D.
Another absoluteness argument shows that y ∈D as required.

Now assume that PI does not add a splitting real. I will show that PI preserves
U as an ultrafilter. Suppose that B ∈ PI is a Borel set and f � B→ 
��ℵ0 is a Borel
function. By Proposition 2.3.1, it will be enough to show that there is a set y ∈ U
such that one of the sets �x ∈ B � y ⊂ x�, �x ∈ B � y∩x = 0� is I-positive. For that,
notice that the set D= �y ∈ 
��ℵ0 : one of the sets �x ∈ B � y⊂ x�, �x ∈ B � y∩x= 0�
is I-positive� is dense in P	�
 mod fin since the forcing PI does not add a splitting
real. The set D is universally Baire (or analytic in the �1

1 on �
1
1 case) and therefore

D∩U is nonempty, giving the desired set y ∈ U . The bounding condition can now
be used to show that in fact U generates a Ramsey ultrafilter in the extension.

There is an interesting model theoretic restatement. Looking forward to
Section 3.9, write I∗∗ for the collection of all sets which do not contain a Borel
I-positive subset.

Proposition 3.4.4. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper and bounding. Suppose that U is a
Ramsey ultrafilter. The following are equivalent:

1. PI is does not add splitting reals;
2. in the model L	�

I ∩B�
U�, I∗∗ is a �-ideal.

This and especially the following two propositions should be compared to the results
of DiPrisco and Todorcevic on the dichotomies in the model L	�

U� [13].

Proof. An instrumental well-known fact in this proof is that the ultrafilter U is
a L	�

I ∩B�-generic subset of P	�
 mod fin. This immediately follows from
Claim 3.4.3.

For the ease of notation assume that I ∩B ∈ L	�
. Suppose on one hand that PI

is bounding and does not add splitting reals and suppose that An � n ∈ � are sets in
the model L	�

U� whose union covers a Borel I-positive set B ⊂ X. I will show
that one of the sets An contains a Borel I-positive subset. A genericity argument
shows that there must be in L	�
 names Ȧn � n ∈ � and a set a ⊂ � such that in
the algebra P	�
 mod fin the set a forces B̌ ⊂ ⋃

n Ȧn, and it will be enough to
find a condition b ⊂ a, Borel I-positive set B′ ⊂ B and a number n ∈ � such that
b� B̌′ ⊂ Ȧn. Consider the Mathias ideal J , the Mathias forcing PJ and the condition
C ∈ PJ , C = �b ⊂ � � b ⊂ a modulo finite�. Let f � B×C→ �+1 be the function
defined by f	x� b
= n if n is the least number such that b � x̌ ∈ Ȧn if there is such
a number n; otherwise let f	x� b
 = �. The function g is in the model L	�
. As
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in the proof of Theorem 3.4.1, there must be a rectangle B′ ×C ′ with I� J -positive
sides respectively on which the function f is constant. The constant value cannot be
� because given any point x ∈ B′, in the somewhere dense set C ′ ⊂ P	�
 mod fin
there must be a condition b ⊂ � forcing x̌ ∈ Ȧn for some fixed number n. Now
write n ∈� for the constant value of the function f on the rectangle and find a pair
�s� b	 such that s ⊂ � is finite, b ⊂ � is infinite, and �c ⊂ � � s ⊂ c∧ c ⊂ b�⊂ C ′.
A review of the definitions now shows that b � B̌′ ⊂ Ȧn as required.

On the other hand, suppose that PI adds a splitting real. This means that there
is an I-positive Borel set B ⊂ X and a Borel function f � B→ P	�
 such that for
every infinite set b ⊂ � both sets �x ∈ B � b ⊂ f	x
� and �x ∈ B � b∩ f	x
 = 0�
are I-small. Let A0 = �x ∈ B � f	x
 ∈ U and A1 = �x ∈ B � � \ f	x
 ∈ U�. Since
A0∪A1 = B and A0�A1 ∈ L	�

U�, it will be enough to show that neither of these
sets has a Borel I-positive subset. Suppose for contradiction that some condition
a ⊂ � in P	�
 mod fin forces that (say) Č ⊂ Ȧ0 for some Borel I-positive set
C ⊂ B. Unraveling the definitions, this means that a⊂ f	x
 modulo finite for every
point x ∈ C, which contradicts the asumption on the function f !

The proposition opens the possibility that there are two ways of not adding a
splitting real. The stronger one, in which L	�

I ∩B�
U� 
= I∗∗ is generated by
the �-ideal I; and the weaker one, in which I∗∗ is a �-ideal in this model for a
different reason. Related questions were studied by DiPrisco and Todorcevic who
proved in particular that every set of reals in the model L	�

U� is either countable
or contains a perfect subset. Which Borel generated �-ideals have the property that
every set of reals in the model L	�

I�
U� has either Borel I-small superset or Borel
I-positive subset? This question is related to the dichotomies of Section 3.9 and is
interesting regardless of the properness of the forcing PI . I conclude this section
with the investigation of two particular cases which appear later in the book.

Proposition 3.4.5. (LC) Suppose that I is a �-ideal on a compact metric space X
which is �-generated by a �-compact family of compact subsets of X. Let U be a
Ramsey ultrafilter. Then every set in L	�

U� has either a Borel I-positive subset
or a Borel I-small superset.

Proof. For notational simplicity I will deal with the case X = 2�. Recal that the
ultrafilter U is an L	�
-generic subset of P	�
 mod fin. Suppose that A⊂ X is a
set in L	�

U�. There must be a P	�
 mod fin-name Ȧ ∈L	�
 such that A= Ȧ/U .
There are two separate cases.

Either there is a set a∈U and an I-positive set B⊂X such that ∀x ∈B a� x̌ ∈ Ȧ.
Since B ∈ L	�
, the dichotomy 4.1.3 shows that B has an I-positive Borel subset
B′ ⊂ B. In this case clearly B′ ⊂ A and as desired.
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Or this fails and by a genericity argument then there must be a set a ∈ U such
that for all sets b ⊂ a the set Ab = �x ∈ X � b � x̌ ∈ Ȧ� is I-small. In L	�

U�
consider the Prikry forcing PU , its name ẏgen for a generic subset of � and the
name Ȧẏgen

for an I-small set in the extension. Note that since the set ḃgen seals the

ultrafilter U , it is the case that PU � Ǎ= Ȧẏgen
∩V . I will now produce a Borel set

B ∈ I such that A⊂ B.
Let Fn ⊂ K	X
 � n ∈ � be the countable collection of compact sets generating

the ideal I . Without loss of generality F0 ⊂ F1 ⊂ � � � and so there are PU -names
Ṫn � n ∈ � for binary trees such that PU forces 
Ṫn� ∈ 
Fn� and Ȧẏgen

⊂⋃
n
Ṫn�. The

forcing PU is �-filtered and therefore its Boolean algebra is a union of countably
many ultrafilters Gm � m ∈ �. For numbers m�n ∈ � let Snm be the tree of all finite
binary sequences t such that some condition in the ultrafilter Gm forces ť ∈ Ṫn. Note
that since Gm is closed under finite conjunctions and the set Fn ⊂K	X
 is compact,
it must be the case that 
Snm� ∈ Fn. I will show that A ⊂⋃

n�m
Snm�, and that will
complete the proof of the proposition.

Indeed, suppose that x∈A is a binary sequence. There must be a condition p∈PU

and a number n ∈� such that p � x̌ ∈ 
Ṫn�. There is a number m ∈� such that p ∈
Gm. It then must be the case that x ∈ 
Snm�, because if t⊂ x were an initial segment
not in the tree Snm then the common lower bound of p and the condition in Gm forc-
ing ť � Ṫn would also force x̌� 
Ṫn�, contradicting the choice of the condition p.

Proposition 3.4.6. (LC) Suppose that � is a subadditive outer regular capacity
on a Polish space X such that L	�
 
= � is continuous in increasing wellordered
unions. Let U be a Ramsey ultrafilter. The following are equivalent:

1. for every real number �> 0 and every collection An � n∈� of sets of capacity≤ �

there is an infinite set b ⊂ � such that �	�x ∈ X � ∃�n ∈ b x ∈ An�
≤ �;
2. L	�

U� 
= � is continuous in increasing wellordered unions and every set has

a Borel subset of the same capacity.

Note that the first item is a condition on the capacity weaker than Ramseyness
of Section 4.3.5. That section provides several examples of capacities satisfying the
assumptions of the proposition as well as (1).

Proof. The key element of the proof is again the observation of that the Ramsey
ultrafilter U is an L	�
-generic subset of the poset P = P	�
 mod fin.

(2)→(1) is easier. Suppose that An � n∈� is a collection of capacity≤ � such that
for every infinite set b⊂� the set Bb = �x ∈X � ∃�n ∈ b x ∈ An� has capacity > �.
Going into a subsequence if necessary I can find a real number � > 0 such that
�	Bb
 > �+�. Without loss of generality each set An is Borel and so the whole
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sequence is in L	�
. Consider the set C = ∫

�
An dU = �x ∈ X � �n ∈ � � x ∈ An� ∈

U�⊂X in the model L	�

U�. I will show that �	C
≥ �+� while C has no Borel
subset of capacity > �, proving (1).

Suppose that O ⊂ X is an open set of capacity < �+� and b ∈ P is a condition.
Since �	Bb
 > �+� the set Bb \O must be nonempty, containing some point x ∈X.
The infinite set c = �n ∈ b � x ∈ An� then forces in P that x̌ ∈ C \O. The genericity
of the ultrafilter U then shows that �	C
 ≥ �+�. Now suppose that B ⊂ X is a
Borel set and b ∈ P is a condition such that b � B̌⊂ Ċ. Then for every point x ∈ B
the set �n ∈ b � x � An� must be finite, since if infinite this would be a condition
forcing x̌ � Ċ. This means that B=⋃

n∈�
⋂

m∈b\n Am, an increasing union of sets of
capacity ≤ �, therefore �	B
≤ � as desired.

(1)→(2) is considerably harder. I will first show that the capacity � is still
continuous in increasing wellordered unions in the model L	�

U�. Suppose that
P � Ȧ� � � ∈ � is an inclusion-increasing sequence of sets of mass < � for some
ordinal �. I will find a condition q and a set B ⊂ X of mass ≤ � such that
q � ⋃

� Ȧ� ⊂ B̌. Let D� = �p ∈ P � ∃O open of �-mass < � such that p � Ȧ� ⊂ Ǒ�,
this for every ordinal �∈�. These sets are all open dense. The forcing P ∈L	�
 has
the property that wellordered intersections of open dense sets are still open dense, so
there is some condition q ∈⋂

� D�. For every ordinal � ∈ � let B� =
⋂
�O ⊂ X � O

open and p � Ȧ� ⊂ Ǒ�. These sets form an inclusion increasing sequence of sets
of mass < � in the model L	�
 and therefore B =⋃

� B� has mass ≤ �. It is clear
that B�p are as required.

The second step in the proof of (1)→(2) is to show that U �⊥ �, that is, if � > 0
is a real number and D ⊂ �×X is a set whose vertical sections have �-mass ≤ �
then even the set

∫

�
D dU = �x ∈ X � �n ∈ � � �n�x	 ∈ U� has �-mass ≤ �. Since

the capacity � is outer regular, I may assume that the vertical sections of the set
D are G�. In L	�
, condition (2) implies that the collection �a ⊂ � � �	Ea
 ≤ ��
is dense in the algebra P	�
 mod fin, where Ea = �x ∈ X � ∃�n ∈ a x ∈ Da�.
By the genericity of the Ramsey ultrafilter U over L	�
, there is a set a ∈ U
such that �	Ea
 ≤ �. Now clearly

∫

�
D dU ⊂ Ea and so �	

∫

�
D dU
 ≤ � as

required.
It now follows that the Laver-type forcing P	U
 with the ultrafilter U preserves

the capacity � using a proof similar to the argument for Theorem 3.6.11. Suppose
T ∈ P	U
 is a tree and T � Ȯ ⊂ X is an open set of capacity < �. I must show that
�	�x ∈X � T � x̌ ∈ Ȯ�
≤ �. Thinning out the tree T if necessary I may assume that
there is a function f � T →O such that ∀t ∈ T �	f	t

 < �, ∀s ⊂ t ∈ T f	s
⊂ f	t
,
and T � Ȯ=⋃

n f	ẏgen � n
 where ẏgen is the name for the P	U
-generic path through
the tree T . To simplify the notation suppose that the trunk of the tree T is empty.
By induction on an ordinal � build sets A	�� t
⊂ X as follows:
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• A	0� t
= f	t
;
• A	�� t
=⋃

�∈� A	�� t
 if the ordinal � is limit;
• A	�+1� t
= ∫

�
D dU where D ⊂ �×X is defined by Dn = A	�� t�n
.

It is not difficult to argue by simultaneous induction on � such that A	�� s
 ⊂
A	�� t
 whenever s ⊂ t ∈ T , A	�� t
 ⊂ A	�� t
 whenever � ∈ �, and finally
�	A	�� t

≤ �. The latter statement uses the work in the previous two paragraphs.
By the Replacement Axiom, the inductive process must stabilize at some ordinal �.
I claim that �x ∈X � T � x̌ ∈ Ȯ�⊂A	��0
, which will complete the proof that P	U

preserves the capacity �. In fact these two sets are equal, but this is immaterial
for the purpose here. Suppose x ∈ X, x � A	��0
 is a point. The definition of the
inductive process shows that there is a tree S ⊂ T in P	U
 such that x � A	�� s

for every node s ∈ S. In particular, x � f	s
 for every node s ∈ S and so S � x̌ � Ȯ
as required.

Now I am ready to conclude the proof. In L	�
, let Ȧ be a P-name for a set
of capacity > �. I must find a set a⊂ � such that �	Ea
 > � where Ea = �x ∈ X �
a � x̌ ∈ Ȧ�. Note that the latter set is in L	�
 and so by the assumptions on the
capacity � it has a Borel subset of the same capacity which in the P-extension will
be a subset of the set Ȧ. The implication (1)→(2) then follows by the genericity
of the Ramsey ultrafilter U over the model L	�
. Let a ⊂ � be a P	U
-generic
set and in the model V 
a� consider the set Ea. Since y diagonalizes the ultrafilter
U , it follows that Ȧ/U ⊂ Ea. Now Ȧ/U ∈ V was a set of �-mass > �, the forcing
P	U
 preserves the capacity �, and so V 
a� 
= �	Ea
 > �. A universally Baire
absoluteness argument now shows that already in the ground model there must be
a set a⊂ � such that �	Ea
 > � as desired.

3.5 Preservation of Baire category

Let P be a forcing. I will say that P preserves Baire category if for every nonmeager
set A ⊂ 2�, P � Ǎ is nonmeager. I will also say that P collapses Baire category
(under some condition) if there is a condition p ∈ P such that p� 2�∩V is a meager
set. These two properties have been frequently investigated and used. This section
offers many topological restatements of category preservation in the definable case.
It follows from Proposition 3.2.2 and the homogeneity of the meager ideal that if
I is a suitably definable �-ideal on a Polish space X and the forcing PI is proper
then category preservation is equivalent to I �⊥ meager.

It turns out that category preservation is a property that in universally Baire
forcing case has many consequences that sound almost too good to be true. The
key tool is the following game characterization.
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Definition 3.5.1. Suppose P is a partial order. The category game G between
Players I and II proceeds as follows. First Player II indicates an initial condition
pini ∈ P. After that, the moves alternate, Player I producing a condition pn and
Player II playing its strengthening qn ≤ pn. Player I wins if the result of the play,
the expression

pini∧
∧

m

∨

n>m

qn

denotes a non-zero element in the complete Boolean algebra RO	P
.

The following is proved in Section 3.10.9, Theorem 3.10.21.

Theorem 3.5.2. Suppose that the forcing P is proper. The following are equivalent:

1. P below some condition makes the set of the ground model reals meager;
2. Player II has a winning strategy in the game G.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
then the game G is determined.

I do not know if in the case of a forcing PI associated with a �1
1 on �

1
1 �-ideal I

the category game must be determined in ZFC. This would be quite helpful given
the fact that all category preserving ideals in this book are �1

1 on �
1
1.

There is a large number of corollaries.

Corollary 3.5.3. (LC) Suppose that I is a universally Baire ideal such that the
forcing PI is proper and preserves category. Then the forcing PI is such in all
forcing extensions.

Proof. To see this note that the large cardinal assumptions imply that there is a uni-
versally Baire winning strategy for Player I in the category game. An absoluteness
argument shows that this strategy remains winning in every set forcing exten-
sion. Existence of such strategy implies that the forcing is proper and preserves
category.

The following corollaries depend on an idea which I will use throughout the
book in the case of category-preserving forcings. If I is a �-ideal on a Polish space
X and M is a countable elementary submodel of a large structure, consider the
countable forcing PI ∩M . A repetition of the proof of Proposition 2.1.2 will show
that the forcing PI ∩M adds a single point ẋgen ∈ Ẋ which belongs to all sets in its
generic filter and falls out of all sets in the model M which do not belong to the
generic filter. Moreover, the name for the PI ∩M-generic point is just the restriction
of the name for the PI -generic point to the model M . In general, the forcing PI ∩M
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is so different from PI itself as to be useless to consider; however, in the category
preserving case the situation changes.

Corollary 3.5.4. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. The following are equivalent:

1. PI preserves category;
2. for every countable elementary submodel M of a large structure the forcing

PI ∩M forces its generic point to fall out of all ground model coded I-small
sets.

Proof. For (1)→(2) suppose for contradiction that PI preserves category and some
condition B ∈ PI ∩M forces in PI ∩M that the PI ∩M-generic point belongs to
some Borel I-small set C ∈ I . By the Baire category theorem applied to the poset
PI ∩M there are open dense sets Dn ⊂ PI ∩M � n ∈ � such that B∩⋂n

⋃
Dn ⊂ C.

Choose a winning strategy � in the category game G for Player I in the model M ,
and simulate a play against this strategy in which Player II indicates B = pini and
his n-th move is a condition in the model M and in the set

⋂
m∈n Dm. The result of

this play is a subset of the set C, and Player II won, a contradiction.
For the other direction suppose that (2) holds and B⊂X, C ⊂ 2� and D⊂ B×C

are a Borel I-positive set, a Borel nonmeager set, and a Borel set with meager
vertical sections. I must find a point y ∈ C with B \Dy � I . Fix a countable ele-
mentary submodel M of a large enough structure. If all the sets B \Dy belonged
to the ideal I , then the condition B in the forcing PI ∩M forced C ∩V ⊂ Dẋgen

by the property (2). This is impossible since PI ∩M is a countable forcing, there-
fore equivalent to Cohen forcing, and Cohen forcing preserves Baire category by
Kuratowski–Ulam theorem [40], 8.41.

Corollary 3.5.5. (LC) Suppose that I is a universally Baire ideal on a Polish space
X such that PI is proper. The following are equivalent:

1. PI preserves category;
2. there is a collection T of Polish topologies on the space X giving the same Borel

structure such that I = �A⊂ X � ∀t ∈ T A is meager in t�.

Proof. The direction (2)→(1) is an immediate corollary of the Kuratowski–Ulam
theorem for category. If B ∈ PI is a Borel set, C ⊂ 2� is a Borel nonmeager set
and D ⊂ B×C is a Borel set, find a Polish topology t on the space X such that
the ideal I is a subideal of the t-meager ideal and B is not t-meager, and use the
Fubini theorem for category to either find a vertical section of the set D which is
not meager or a horizontal section of the complement of the set D which is not
t-meager and therefore not in the ideal I .
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For the opposite direction, let M be a countable elementary submodel of a large
enough structure, consider the countable forcing Q = PI ∩M , and consider the
Stone space Y of the forcing Q and its G� subset Z ⊂ Y consisting of M-generic
filters. Since the forcing Q is countable, the space Y is Polish and so is the set
Z. Let � � Z→ X be the one-to-one continuous function defined by �	G
= ẋ/G;
manipulating � on a nowhere dense set I can assume that � is a Borel bijection. Let
t be the �-image of the Y -topology on the space X. This is the desired topology.

To see this note that the collection of filters containing B is non-meager in the
Stone space Y and so the set B is not meager in the topology �. On the other
hand, if C ∈ PI ∩M and Dn � n ∈ � is a collection of open dense subsets of the
poset PI ∩M (possibly not elements of the model M) then there is a play observing
the strategy � with all moves in the model M such that pini = C and qn–the n-th
move of Player II–is in the open dense set

⋂
m∈n Dm. The result of such a play

is an I-positive set. This, together with the Baire category theorem, shows that
no Borel t-nonmeager set can be I-small, or in other words I ⊂ t-meager ideal as
claimed.

Note that the corresponding equivalence for the Lebesgue measure – PI is
bounding and preserves Lebesgue measure if and only if I is polar – is an open
Question 7.2.3.

Corollary 3.5.6. (LC) Suppose that I is a universally Baire ideal on a Polish space
X such that PI is proper. The following are equivalent:

1. PI preserves Baire category;
2. For every I-positive Borel set B ⊂ X the Cohen forcing adds an element of the

set B which falls out of all ground model coded Borel I-small sets.

This is immediate from the previous corollary.

Corollary 3.5.7. (LC) Suppose that I is a universally Baire c.c.c. ideal such that
the forcing preserves Baire category. Then PI is in the forcing sense equivalent to
the Cohen forcing.

This has been proved earlier by Shelah [61] using entirely different methods. The
corresponding implication for the case of Lebesgue measure – if I is a universally
Baire c.c.c. �-ideal and I �⊥ null then PI is equivalent to the Solovay forcing – is
true and its proof follows somewhat different lines [16], [17].

Proof. This is an immediate consequence of the previous corollary. It will be
enough to show that the set D = �C ∈ PI � PI below C has a countable dense
set� ⊂ PI is dense–by the c.c.c. I will be then able to find a countable maximal
antichain in D and get a countable dense subset of the whole forcing PI . So fix
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a condition B ∈ PI . By the previous corollary the Cohen forcing adds an element
ẋ ∈ Ḃ which falls out of all I-small Borel sets coded in the ground model. By the
c.c.c. such a point ẋ is PI -generic. A standard forcing theory argument then shows
that there must be a condition C ⊂ B and a complete embedding of the poset PI

below C to the Cohen forcing algebra. Since Cohen forcing has a countable dense
subset so must the poset PI below C, thus C ∈D and the proof is complete.

Corollary 3.5.8. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper. The following are equivalent:

1. there is a Borel I-positive Borel set B ∈ PI and a Polish topology � on B

generating the same Borel structure such that every countable subset of the set
B is covered by a �−G�-set in the ideal I;

2. PI fails to preserve Baire category.

This shows that the forcings associated with Hausdorff measures of Section 4.4
and outer regular capacities of Section 4.3 make the set of ground model reals
meager. In all the specific cases there is a quite simple proof of this statement
which does not use any large cardinal assumption.

Proof. I will start with (1)→(2) direction. Extend the topology on some positive
Borel set B0 ⊂ X to satisfy the property (1). Suppose for contradiction that B1 ∈
PI�B1 ⊂ B0 is a condition forcing that category is preserved. Fix the corresponding
winning strategy � for Player I in the category game below B1, and choose a
countable elementary submodel M of a large enough structure containing I�B1�� .
Let A ⊂ �x ∈ B1 � x is M-generic� be a countable set meeting every condition in
M ∩PI below B1. Use the assumption to find a G�-set

⋂
m∈� Om in the ideal I

covering A, where Om � m ∈ � are open sets. I claim that there is a counterplay
against the strategy � in which Player II uses only conditions in the model M , and
at n-th round his move qn is a set which is a subset of all the open sets Om � m ∈ n.
The result

⋂
k

⋃
n>k qn of such a play must be a subset of the set O =⋂

m Om ∈ I ,
contradicting the assumption that � is a winning strategy.

Suppose that the play has been constructed up to the move pn ∈M of Player I.
The set

⋂
m∈n Om is open and it contains some M-generic point x ∈ A∩ pn. So

there must be a basic open neighborhood P ⊂ X such that x ∈ P ⊂⋂
m∈n Om. Now

P�P ∩pn ∈M , and since the latter set contains the M-generic point x, it must be
I-positive. Player II indicates qn = P ∩ pn and the construction of the play can
proceed.

The (2)→(1) direction uses no large cardinal or definability assumptions. Fix a
winning strategy � for Player II in the category game starting with some condition
pini ∈ PI , let M be a countable elementary submodel of a large enough structure
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containing the strategy � , and let B= �x ∈ pini � x is M-generic� ∈ PI . Find a Polish
topology � on the Borel set B extending the original one in which all Borel sets
in the model M are open, using [40], II.13.5. I claim that the topology � has the
required property. Suppose that A ⊂ B is a countable set. I will find a play in the
category game in which all moves belong to the model M , Player II follows the
strategy � and A is a subset of the result of the play. This will complete the proof
since the result of the game is �−G� I-small set.

To find the desired play of the category game, first fix an enumeration A= �xn �
n ∈ �� and a partition � = �am � m ∈ �� into infinite sets. I will build the play in
such a way that for every number n ∈� the n-th move qn of the strategy � contains
the point xm whenever n ∈ am. This will guarantee that the set A is indeed a subset
of the result of the play. Well, suppose that the move qn−1 of the play has been
obtained, and find a number m such that n ∈ am. The set D= �q ∈ PI � ∃p≤ pini p
induces the strategy � to answer with q�⊂ PI is dense below the condition PI , and
since the point xm ∈ A is M-generic, it is an element of some condition q ∈D∩M .
This shows precisely that there is an extension of the play by some moves pn
and qn = q in the model M such that xm ∈ qn and Player II still follows his
strategy � .

Corollary 3.5.9. (LC) Suppose that P is a universally Baire proper category
preserving forcing. Suppose that T is an �1-tree. Every uncountable subtree of T
in the P-extension contains an uncountable subtree in the ground model.

Proof. Suppose Ṡ is a name for an uncountable subtree of the tree T , assume that
no condition in the forcing P forces an uncountable set of elements of T into Ṡ,
and work towards a contradiction.

Use Theorem 3.10.21 to find a winning strategy � for Player I in the category
game. Find a countable elementary submodel M containing all the necessary infor-
mation, let �=M ∩�1, and choose an enumeration tm � m ∈ � of �-th level of the
tree T . Find a play of the category game such that

• Player I follows the strategy �;
• moves of Player II come from the model M;
• whenever n ∈ � is a number and m ∈ n then there is a node um < tm in the tree
T such that the condition qn, the answer of Player II at round n, forces ǔm � Ṡ.

This is not difficult to do: once strategy � makes the move pn ∈M by induction
on m ∈ n find a descending chain qmn � m ∈ n of conditions in the model M below
pn such that for every m ∈ n there is a node um < tm such that qmn forces ǔm � Ṡ.
Suppose qm−1

n has been found. Consider the set �u ∈ T � ∃r ≤ qm−1
n r � ǔ � Ṡ� ∈M .

By the assumption on the name Ṡ, this set is co-countable, in particular it contains
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some level T� for � ∈ �. Let um ∈ T� be the unique node smaller than tm and find
the condition qmn ≤ qm−1

n in the model M forcing ǔm � Ṡ. After this subinduction
has been performed, put qn = qnn .

Let q ≤ p be the result of the play described in the previous items. Clearly,
q � ∀m ∈ � ťm � Ṡ and therefore the tree Ṡ ⊂ Ť is countable.

As an immediate consequence the forcing P does not add new branches to �1-trees
and preserves Suslin trees.

3.6 Preservation of outer Lebesgue measure

Let � denote the outer Lebesgue measure on 2�. Let P be a forcing. I will say that
P preserves outer Lebesgue measure if for every set A⊂ 2�, P � 	�	A

V = �	Ǎ
.
I will also say that P collapses outer Lebesgue measure (under some condition) if
there is a condition p ∈ P such that p � 2�∩V is a Lebesgue null set. These two
properties have been frequently investigated and used. It follows from the results
of Section 3.2.2 that if I is a suitably definable �-ideal on a Polish space X and
the forcing PI is proper then PI collapses outer Lebesgue measure iff it does not
preserve it iff I ⊥ � holds.

In this section I will provide several tools for proving outer Lebesgue measure
preservation.

3.6.1 Polar ideals

By far the most powerful tool for proving Lebesgue measure preservation theorems
is associated with polar ideals.

Definition 3.6.1. A �-ideal I on a Polish space X is polar if there is a collection
M of countably additive probability measures on the space X such that I = �A⊂
X � ∀� ∈M �	A
= 0�.

The terminology comes from a paper of Gabriel Debs [12] where he considers
polar ideals of compact sets. While his work is highly relevant to our investigation
here, most examples of polar ideals below are not generated by compact sets in any
presentation. The basic theorem:

Theorem 3.6.2. Suppose that I is a polar �-ideal such that the forcing PI is proper.
Then the forcing PI is bounding and preserves outer Lebesgue measure.

Proof. To prove the bounding condition, let B ∈ PI be a Borel set and f � B→ 2� be
a Borel function. I must produce a compact set C ⊂ B such that C ∈ PI and f �C is
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continuous. To do that, find a probability measure � on the underlying space X such
that �	B
 �= 0 and � vanishes on all sets in the ideal I . Let J = �A⊂X � �	A
= 0�.
Then PJ is isomorphic to the Solovay forcing by the measure isomorphism theorem
[40], 17.41, it is bounding, and there must be a compact set C ⊂ B such that f � C
is continuous and C � J . However, I ⊂ J and so C � I as desired.

The preservation of Lebesgue measure is similar. Let B ∈ PI be a Borel set and
D⊂ B×2� be a Borel set with vertical sections of Lebesgue measure ≤ �. Proceed
as above and find a measure � which vanishes on all sets in the ideal I and �	B
 �= 0.
Let J = �A⊂ X � �	A
= 0�. By the Fubini theorem, �	

∫

B
D dJ
≤ �. Since I ⊂ J ,

it is necessarily the case that
∫

B
D dI ⊂ ∫

B
D dJ , �	

∫

B
D dI
≤ �	

∫

B
D dJ
≤ �, and

the proof is complete.

One of the most pressing questions left open in this book is whether this impli-
cation can be reversed, Question 7.2.3. Note that a similar equivalence indeed is
true on the category side as proved in Corollary 3.5.5. Proposition 3.6.10 below
shows that the implication can be reversed in a rather extensive class of ideals, nev-
ertheless the general case remains open. As long as this important piece is missing,
I will just go on and give a list of examples of ideals which are or are not polar. It
turns out that measure theorists have been involved in this type of investigation for
a long time.

Example 3.6.3. If � is a strongly subadditive capacity on a Polish space X then �
is an envelope of measures by a theorem of Choquet [6], and the associated null
ideal I� = �A⊂X � �	A
= 0� is therefore polar. Here � is an envelope of measures
if for every Borel set B ⊂ X and every real � > 0 there is a measure � on X such
that �≤ � on Borel sets and �	B
≥ �	B
−�. Many forcings of the form PI�

are
proper; this extensive subject is handled in Section 4.3.

Example 3.6.4. Suppose that � is a (non-�-finite) measure on a Polish space X,
and consider the ideal I�� �-generated by sets of finite �-measure. If the measure
satisfies the condition

(*) every Borel �-positive set contains a Borel subset of nonzero finite �-mass,

then the ideal I�� is polar. The verification of the condition (*) for various measures
made measure theorists busy for decades. For instance, Howroyd [26] proved that
r-dimensional Hausdorff measures satisfy it where r > 0 is a real number, and Preiss
and Joyce [32] proved that r-dimensional packing measures satisfy it where r > 0
is a real number. In both cases, the associated forcings are proper and interesting.

The polarity of the ideal I�� requires an argument. Let B ∈ PI��
be a Borel set. I

must find a probability measure � on the space X which vanishes on all sets in the
ideal I�� and assigns the set B a positive value. Consider the ideal J of sets of �-mass
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zero. The property (*) together with the measure isomorphism theorem [40], 17.41,
imply that the forcing PJ is densely isomorphic to Solovay forcing and therefore
bounding. It also implies that there is an uncountable antichain in the forcing PJ

below the set B: any maximal antichain in the dense set �C ∈ PJ � �	C
 < ��
below B must be uncountable since B cannot be covered by countably many sets of
finite �-measure. The argument from 3.7.7 then shows that there must be a perfect
collection P ⊂ K	X
 of mutually disjoint �-positive perfect subsets of the set B.

Use the condition (*), the measure isomorphism theorem and the Sacks uni-
formization 2.3.4 to find a perfect set Q⊂ P and a Borel function f � Q×2�→ X
such that for every compact set C ∈ Q the range of the function fC is a subset
of C and fC is a measure isomorphism between the Lebesgue measure � on the
Cantor set and the measure � on rng	fC
. Let � be some probability measure on
the perfect set Q and let � be the probability measure on the space X given by
�	A
= 	�×�
	f−1	A

. I claim that the measure � has the desired properties.

First, it is clear that �	B
=�	X
= 1. Moreover, whenever A⊂X is a Borel set
in the �-finite ideal I��, the set �C ∈ Q � �	A∩C
 > 0� must be countable by the
countable additivity of the measure �. It follows that the preimage f−1	A
⊂Q×2�

has Lebesgue null vertical sections with possibly countably many exceptions. By
the Fubini theorem then, �	A
= 	�×�
	f−1	A

= 0 as desired.

Example 3.6.5. Rogers and Davies [11] constructed a classical example of a
Hausdorff measure � which fails the condition (*). Necessarily it has to be a
measure associated with a fast growing gauge function, since gauge functions like
the exponentiation to the power r, r > 0, give rise to measures satisfying the
condition (*) by a result of Howroyd [26]. The example gives a Hausdorff measure
� such that its only values are zero or infinity. Thus I�� = �A⊂X � �	A
= 0� and
the whole argument in [11] shows that I�� is not a polar ideal. I investigate the
forcing PI�

in depth in Section 4.4. It turns out that it is proper, bounding, does not
add splitting reals, and collapses the outer Lebesgue measure.

Example 3.6.6. Let I be the �-ideal of sets of extended uniqueness on the unit circle
T in the complex plane. Then I = �A⊂ T � �	T
= 0 for every Rajchman measure
�� and therefore I is a polar ideal. It turns out that the ideal I is �-generated
by closed sets, and therefore the associated forcing PI is proper, bounding, and
preserves category and outer Lebesgue measure.

Example 3.6.7. A number of polar ideals appears in the theory of Borel equivalence
relations. Let E be a Borel equivalence relation on a Polish space X which is not
smooth, and consider the ideal I generated by Borel sets B ⊂ X such that E � B is
smooth. Then by [47], a Borel set B ⊂ X is I-positive if and only if it supports a
probability E-ergodic measure. Thus I = �B ⊂ X � �	B
 = 0 for every E-ergodic
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probability measure� and the ideal I is polar. A special case of this ideal appears
in Section 4.7.1.

If E is a countable Borel equivalence on a Polish space X, call a set B ⊂ X
compressible if there is a Borel injection f � B→ B such that ∀x ∈ B f	x
Ex and the
set B \ f ′′B hits every equivalence class of B. The collection I of all Borel sets B
such that the E-saturation of B is compressible is a �-ideal. A theorem of Nadkarni
[53] shows that B � I if and only if there is an E-invariant probability measure �
such that �	B
 > 0. Here a measure � is E-invariant if it is invariant with respect to
some (any) Borel action of a countable group generating the equivalence E as the
orbit equivalence. Thus I = �B � �	B
= 0 for every E-invariant probability measure
�� and again, I is a polar ideal. The ergodic decomposition theorem shows that PI ,
if nontrivial, is densely isomorphic to the Solovay forcing.

Example 3.6.8. A number of other �-ideals are defined in such a way that they are
polar. A typical example is the �-ideal of Gauss null sets on any separable Banach
space – these are the sets with zero mass for every Gauss measure on the space
[10]. The problem is that such definitions do not yield any hint as to the possible
proof of properness or improperness of the resulting quotient forcing.

Example 3.6.9. Let I be the �-ideal of �-porous sets on the real line. The forcing
PI is proper by the results of Section 4.2, and it is bounding by the results of
[80]. Preiss and Humke [27] produced a Borel I-positive set B⊂� such that every
measure on it concentrates on a �-porous set, therefore the ideal I is not polar. I do
not know if the forcing PI preserves outer Lebesgue measure. In Section 4.2 I will
show an example of another compact metric space for which the metric porosity
forcing demonstrably makes the set of the ground model reals Lebesgue null.

Finally, there is the promised proposition showing than in a large number of
cases polarity of ideals coincides with the preservation of outer Lebesgue measure
and the bounding property.

Proposition 3.6.10. Suppose that � is a countably subadditive submeasure on a
Polish space X which is outer regular on compact sets: �	K
= inf��	O
 � K ⊂O
and O open� for every compact set K ⊂ X. Suppose that the forcing PI�

is proper,
where I� = �A⊂ X � �	A
= 0�. The following are equivalent:

1. the forcing PI�
is bounding and preserves outer Lebesgue measure;

2. the ideal I� is polar.

The proposition applies to all capacities as well as to all pavement submeasures,
since changing the topology of the underlying space X it is possible to present any
pavement submeasure as an outer regular submeasure.
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Proof. The (2)→(1) direction is included in Theorem 3.6.2. The opposite direc-
tion is the heart of the matter. The proof is an elaboration of an argument of
Christensen [7].

Suppose that the forcing PI�
is bounding and proper, and B � I� is a Borel set.

Since the forcing PI�
is bounding, the compact sets are dense in it by Theorem 3.3.2

and I can assume that the set B is in fact compact. There are two distinct cases.
Either the submeasure � � B is not pathological, meaning that there is a bounded

finitely additive measure � on the set X which is dominated by � such that
�	B
 > 0. In this case I will use the standard Caratheodory construction to extend
the measure � �K	X
 to a countably subadditive measure �. Then �	B
=�	B
> 0
and a tightness argument will show that �≤�. For every set A⊂X, define �	A
=
sup�>0 inf��k�	Ok
 � A⊂

⋃
k Ok and Ok is open of diameter < ��. It is immediate

that � is a metric measure. I claim that � is a nonzero countably additive measure
dominated by � as desired. The finite additivity of the measure � and a compactness
argument show that �	K
= inf��	O
 � K ⊂ O and O open� for every compact set
K ⊂ X. In particular �	B
 = �	B
 > 0 and �	K
 ≤ �	K
 for every compact set
K ⊂ X by the outer regularity of the submeasure �. For an arbitrary Borel set
A ⊂ B the tightness of the measure � implies that �	A
 = sup��	K
 � K ⊂ A
compact�≤ sup��	K
 � K ⊂ A compact�≤ �	A
 as desired.

Or the submeasure � � B is pathological. In this case I will show that B �the
ground model reals form a Lebesgue null set. By a theorem of Christensen [7], for
every number n ∈ � there is a finite collection �An

i � i ∈ in� of Borel subsets of B
such that �	An

i 
≤ 2−n and there are nonnegative numbers cni � i ∈ in with unit sum
and �ic

n
i ·�	An

i 
≥ 1/2. Consider the space Y =∏
n in equipped with the probability

measure � which is the product of the measures �n on in defined by �n	a
=�i∈acni .
Consider the set D⊂ B×Y , D= ��x� y	 ∈ B×Y � ∀�n x �An

y	n
�. It will be enough
to show that the vertical sections of the set D have �-mass 0 while the horizontal
sections of its complement have �-mass 0. Fix a point x ∈ B. Then Dx =

⋃
n E

n
x

where En
x = �y ∈ Y � ∀k > n x � Ak

y	k
�. By the choice of the sets Ak
i , the numbers

�k	�i ∈ ik � x � Ak
i �
 are smaller than 1/2 and therefore the �-masses of the sets En

x

andDx are zero. On the other hand, fix a point y ∈ Y . The set B\Dy is the intersection
of sets Fn

y = �x ∈ X � ∃k > n x ∈ Ak
y	k
� which have the respective �-masses ≤

�k>n2−k, numbers which tend to zero as n tends to�. Thus �	B\Dy
= 0 as desired.
The proposition immediately follows from these two cases.

3.6.2 Other proofs

Of course, some forcings preserve outer Lebesgue measure without being polar.
The archetype of such behavior is the Laver forcing; it is not polar since it is not
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bounding. Woodin [2], 7.3.36, proved that Laver forcing preserves outer Lebesgue
measure. A more careful argument actually provides a much stronger result, and
the method will be applied again in the proof of a powerful preservation theorem.

Theorem 3.6.11. Suppose that � is an outer regular capacity on a Polish space X
such that every coanalytic set is capacitable for �. Then Laver forcing preserves �.

Here, a set is capacitable for � if it can be sandwiched between two Borel
sets of the same �-mass. It turns out that in the constructible universe for most
capacities there is a coanalytic set which is not capacitable–Theorem 4.3.21. On
the other hand, under assumptions such as the determinacy of coanalytic games
or add	null
 > ℵ1, coanalytic sets are capacitable for very many capacities –
Theorem 4.3.6. This subject is handled in detail in Section 4.3. Note that the
theorem does not require the capacity to be subadditive.

Proof. Suppose T ⊂�<� is a Laver tree forcing Ȯ⊂ Ẋ to be an open set of capacity
≤ �. I have to show that the set �x ∈ X � T � x̌ ∈ Ȯ� has capacity ≤ �.

Let O be some countable topology basis for the space X closed under finite
unions. A standard fusion argument gives a Laver tree S ⊂ T and a function f �
S→O such that ∀t ∈ S �	f	t

≤ �, s⊂ t→ f	s
⊂ f	t
, and S � Ȯ=⋃

n f	ẋgen � n
.
To simplify the notation assume that S = �<�.

Consider the space Y =�<�×X and the operator � �P	Y
→P	Y
 on it defined
by �s� x	 ∈ �	B
↔ �s� x	 ∈ B∨∀�n �s�n�x	 ∈ B. This is a monotone inductive
coanalytic operator, and therefore by a theorem of Cenzer and Mauldin [5], 1.6,
given a coanalytic set A ⊂ Y , the transfinite sequence given by the description
A = A0, A�+1 = �	A�
 and A� =

⋃
�∈� A� for limit ordinals �, stabilizes at �1 in

a coanalytic set A�1
such that for every analytic set C ⊂ A�1

there is an ordinal
� ∈ �1 such that C ⊂ A�.

Now consider the set A⊂ Y defined by �s� x	 ∈A if x ∈ f	s
. It is not difficult to
see that writing As for the set �x ∈X � �s� x	 ∈A� it is the case that s⊂ t→As ⊂At,
these sets have capacity ≤ � and this feature persists through the countable stages of
the iteration. To see that �	As

�+1
≤ � note that the set As
�+1 is an increasing union

of the sets
⋂

m>n A
s�m
� � n ∈ �, each of them of �-mass ≤ �, and use the continuity

of the capacity under increasing unions. At limit stages, use the continuity of the
capacity again to argue that c	As

�
≤ �.
Consider the coanalytic set A�1

, the fixed point of the operator � , and its first
coordinate B = A0

�1
. First note that x � B means that S �� x̌ ∈ Ȯ, since if x � B

then the tree U = �s ∈ S � x � As
�1
� is a Laver tree by the definition of the operator

� and it forces x̌ � Ȯ. In fact a transfinite induction argument will show that
B = �x ∈ X � S � x̌ ∈ Ȯ�. Now it is enough to show that �	B
 ≤ �. However, if
�	B
 > �, then by the capacitability of the set B there is a compact set C ⊂ B
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such that �	C
 > �, and such a set must be included in the set A0
� for some

countable ordinal �. However, �	A0
�
 ≤ � as proved in the previous paragraph, a

contradiction!

It is instructive to compare this argument with the original Woodin’s proof
for preservation of outer Lebesgue measure in the Laver extension in [2],
7.3.36.

Corollary 3.6.12. Suppose that � is an outer regular capacity such that every
coanalytic set is capacitable for it. Then Miller forcing and Steprāns forcing
preserve �.

To show this it is possible to literally repeat the Laver forcing proof. A par-
allel argument more in line with the doctrine presented in this book reduces
the Miller case to the Laver case by noticing that Laver forcing adds a
point falling out from all Borel sets in the ideal associated with the Miller
forcing.

3.7 The countable chain condition

The countable chain condition is a rare guest in the realm of definable forcing.

3.7.1 Ergodicity

Definition 3.7.1. A �-ideal I on a Polish space X is called ergodic if there is a
Borel equivalence relation E on X with countable classes such that every Borel
E-invariant set is either in I or its complement is in I . A c.c.c. forcing P adding a
single point ẋ ∈ X is called ergodic if its associated ideal �B ⊂ X � P � ẋ � Ḃ� is
ergodic.

While ergodicity does not imply c.c.c. and vice versa, most c.c.c. forcings for
adding a single real are ergodic:

Example 3.7.2. The Cohen forcing is ergodic. Consider the presentation as PI

where I is the ideal of meager subsets of the Cantor space 2�. Let E be
the equivalence relation defined by xEy if x�y is finite. Now if B ⊂ 2� is
a Borel nonmeager set, then it is comeager in some basic open set Ot for
t ∈ 2n for some number n ∈ �, its E-saturation must be comeager in every
set Os for s ∈ 2n, and therefore the E-saturation of the set B is comeager as
required.
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Example 3.7.3. The Solovay forcing is ergodic. This is the fundamental fact of
ergodicity theory [78]; the equivalence used is the Vitali equivalence relation.

Example 3.7.4. The Hechler forcing is ergodic. Hechler forcing P is the set of all
pairs p ∈ �<�×��, p = �tp� fp	 ordered by q ≤ p if tp ⊂ tq, fp ≤ fq pointwise
and tq \ tp ≥ fp pointwise on its domain. The forcing adds a single point ḟgen ∈ ��

as the union of the first coordinates in the generic filter. Let I be its associated
ideal on the Baire space. Let E be the equivalence on the Baire space defined by
fEg↔ 
f�g
< ℵ0. Suppose B⊂ �� is a Borel E-invariant set which is I-positive,
that is there is a condition p � ḟgen ∈ B. I will show that then 1 � ḟgen ∈ B, in other
words �� \B ∈ I as required. Suppose for contradiction that there is a condition
q � ḟgen � B. It is not difficult to extend the conditions p�q to p′� q′ such that

tp′ 
 = 
tq′ 
 and fp′ = fq′ . Consider the function � � P � p′ → Q � q′ where �	r
 is
the condition obtained from r by replacing the appropriate initial segment of tr
with tq′ . The function � is clearly an isomorphism of the two partial orders. Thus
if G ⊂ P � p′ is a generic filter then so is � ′′G ⊂ P � q′. By the forcing theorem,
the generic point x ∈ �� associated with G is in the set B while the generic point
y ∈ �� associated with � ′′G is in the complement of B. However, a review of
the definitions reveals that y is obtained from x by replacing its appropriate initial
segment with tq′ . Thus xEy, contradicting the E-invariance of the set B.

I do not know an example of an ergodic forcing whose ergodicity would be
witnessed by an equivalence relation in the Borel reducibility sense more compli-
cated than the Vitali equivalence. The previous examples seem to indicate that the
ergodicity is connected with c.c.c. and the homogeneity of the forcing, and this is
in fact true.

Proposition 3.7.5. Suppose that I is an ergodic �-ideal on a Polish space X. Then:

1. either the forcing PI is c.c.c.;
2. or the ground model coded I-small sets cover the space X in every ℵ1-preserving

extension.

In other words, if it is at all possible to increase the invariant cov	I
 while
preserving ℵ1, then the forcing PI is the only tool.

Proof. Clearly (1) implies that (2) fails. To see that ¬(1) implies (2), let E be the
countable Borel equivalence relation witnessing the ergodicity. If (1) fails, there
is an uncountable collection �B� � � ∈ �1� of I-positive Borel sets with I-small
pairwise intersections. Use the �-completeness of the ideal I inductively to thin
out the sets B� in such a way that they are actually pairwise disjoint. The sets C�,
complements of the E-saturations of the sets B�, are in the ideal I , and I will show
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that
⋃

�∈�1
C� = X in every ℵ1-preserving extension. Well, if x ∈ X is a point in

some extension which is not in this union, then the equivalence class of the point
x must have a nonempty intersection with every set B� � � ∈ �1. However, the
equivalence class of the point x is countable while there are ℵV1 many disjoint sets
B�; ergo, ℵV1 is collapsed in the extension.

Proposition 3.7.6. Suppose that I is an ergodic c.c.c. �-ideal on a Polish space
X. Then:

1. the countable Borel equivalence relation witnessing ergodicity can be chosen so
that saturations of I-small Borel sets are small;

2. PI is a homogeneous notion of forcing and if the ideal I is generated by Borel
sets, then it is homogeneous;

3. the dichotomy in the definition of ergodicity holds even for universally Baire
sets in place of Borel sets.

Proof. For the first item, choose an arbitrary equivalence relation F witnessing the
ergodicity. Note that there is a Borel set A⊂ X whose complement is in the ideal
I and such that the F -saturation of every Borel I-small subset of A is F -small.
Suppose this fails. Build an inclusion-decreasing sequence �A� � � ∈�1	 of I-large
subsets of the space X and sets �B� � � ∈ �1	 such that B� ⊂ A� is I-small with
I-positive (by the ergodicity, I-large) F -saturation, and such that A�+1 ∩B� = 0.
This is easy enough to do, at limit stages taking intersections of the sets A� built
so far and using the �-additivity of the ideal I . Now consider the PI -generic point.
It falls into the I-large F -saturations of all the sets �B� � � ∈ �1	, and therefore
its equivalence class visits all the sets B�. But the equivalence class is countable
while the sets B� are disjoint, meaning that ℵ1 was collapsed. Once the existence
of the set A⊂X has been established, it is clear that the Borel equivalence relation
E = 	F ∩A2
∪ 	= ∩	X \A
2
 satisfies the demands of the first item.

By the Feldman–Moore theorem [19], there is a Borel action of a countable group
� such that the E-equivalence classes are exactly the orbits under the action. Since
E-saturations of I-small Borel subsets of A are I-small, the action preserves the
ideal I: whenever � ∈ � and B ⊂ A is a Borel set, B ∈ I iff � ′′B ∈ I . Clearly, each
member � ∈ � induces an automorphism �̄ of the poset PI by setting �̄	B
=� ′′	B
.
Since the E-saturations of I-positive Borel sets are large, for every two positive
Borel sets B0, B1 there must be a member � ∈ � such that �̄	B0
∩B1 � I , which
proves the homogeneity of the forcing PI .

For the homogeneity of the �-ideal I let B⊂X be a Borel positive set. Enumerate
the acting group � = ��n � n ∈ �� and note that for all but I-many points x ∈ X
there is an element � ∈ � such that �	x
 ∈ B, since the E-saturation of the set
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B is I-large. This makes it possible to define f � X→ B by setting f	x
 = �n	x

whenever n is the least number m such that �m	x
 ∈ B, and f	x
 = some fixed
element in the set B if no such number m exists. Since �-preimages of Borel I-small
sets are small, it is also true that the f -preimages of Borel I-small sets are I-small.

The ergodicity dichotomy clearly extends to all universally Baire sets, since for
every c.c.c. ideal, every universally Baire set either has a Borel superset in the ideal
I or it has a Borel I-positive subset. In the former case the E-saturation of the
universally Baire set is I-small, in the latter it is I-large.

3.7.2 Perfect antichains

A long time ago Woodin asked whether every suitably definable non-c.c.c. forcing
must contain a perfect antichain. This question was answered in the negative in
[33], where the authors showed that the standard Baumgartner forcing for adding a
closed unbounded subset of �1 can be coded in such a way that no perfect antichains
can exist. It nevertheless turns out that the dichotomy holds for definable bounding
forcing notions and for <�1-proper forcing notions of the form PI :

Proposition 3.7.7. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper and bounding. Then exactly one of the
following holds:

1. PI is c.c.c.;
2. there is a perfect collection of mutually disjoint I-positive compact sets.

If the ideal I is �1
1 on �

1
1 then the large cardinal assumption can be omitted.

Here the word “perfect” refers to the hyperspace K	X
 of compact subsets of the
Polish space X.

Proof. Assume that PI is not c.c.c. Then it is possible to find a collection of �1

many mutually disjoint I-positive Borel sets, and since the compact sets are dense in
the forcing PI , there is a collection �C = �C� � �∈�1	 of mutually disjoint I-positive
compact sets.

Now assume that I is a universally Baire �-ideal, and consider a Woodin cardinal
� with the associated stationary tower Q and the Q-name j � V → N for the generic
elementary embedding. Clearly, Q � j �C�V

1
∈ PI . Choose a countable elementary

submodel M of a large enough structure. If g ⊂M ∩Q is an M-generic filter then
the models M
g� and N/g are both correct about the membership in the ideal I and
therefore the compact set Cg = j �C�V

1
/g is I-positive. I will complete the proof by

finding a perfect collection P of M-generic filters on M∩Q such that the collection
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�Cg � g ∈ P� consists of mutually disjoint sets. Fix a countable topology basis O of
the underlying Polish space.

Claim 3.7.8. If S ∈ Q is a stationary set then there are disjoint basic open sets
O0�O1 such that both sets S0 = �x ∈ S � Cx∩�1

⊂O0� and S1 = �x ∈ S � Cx∩�1
⊂O1�

are stationary.

Proof. If this failed then for every pair O0�O1 of disjoint basic open sets one of
the sets S0� S1 is nonstationary. Collect all of these countably many nonstationary
sets and subtract them from the stationary set S, obtaining a stationary set R.
Let x� y ∈ R be countable sets such that x∩�1 and y∩�1 are distinct countable
ordinals. Since the compact sets Cx∩�1

and Cy∩�1
are disjoint, there are disjoint basic

open sets O0�O1 separating them. This contradicts the construction of the set R
though.

Note that the sets S0� S1 force the compact set j �C�V
1

to be included in O0 or O1

respectively. Now let Dn � n ∈� enumerate all open dense subsets of the forcing Q
in the model M and by induction on sequences u ∈ 2<� build conditions pu ∈Q∩M
and basic open sets Ou so that

• pu ∈D
u
, v⊂ u→ pv ≥ pu;
• Ou�0∩Ou�1 = 0;
• Cx∩�1

⊂ Ou for every set x ∈ pu.
This is not difficult to arrange using the previous claim repeatedly. In the end,

for every infinite binary sequence v ∈ 2� the conditions pu � u⊂ v generate an M-
generic filter gv ⊂Q∩M and the I-positive compact sets Cgv

� v ∈ 2� are mutually
disjoint as desired.

The ZFC case of a �1
1 on �

1
1 ideal I is just a version of the previous argument.

To simplify the notation assume that the underlying Polish space is just the Cantor
space 2�. The set �C ∈ K	2�
 � C � I� is analytic, so find a tree T ⊂ 	�×2<�
<�

which projects into the set of all binary trees U ⊂ 2<� such that 
U� � I . As in
the previous argument find an uncountable collection U� � � ∈ �1 of binary trees
such that the sets 
U�� are I-positive and mutually disjoint. The following claim is
critical:

Claim 3.7.9. Suppose that t ∈ T is a node and S ⊂�1 is a stationary set such that
�U� � � ∈ S�⊂ proj
T � t�. Then there are disjoint basic open sets O0�O1 and nodes
s0� s1 ∈ T such that T � s0 projects into trees which are subsets of O0, T � s1 projects
into trees which are subsets of O1 and both sets S0 = �� ∈ S � U� ∈ proj
T � s0��
and S1 = �� ∈ S � U� ∈ proj
T � s1�� are stationary.
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The proof is just a repetition of the argument for the previous claim. As before,
construct a perfect collection tu � u ∈ 2� of nodes in the tree T such that for
incompatible sequences u� v ∈ 2� there are disjoint basic open sets Ou, Ov such
that T � tu and T � tv project into trees that are subsets of Ou and Ov respectively
and for each sequence u ∈ 2<� the set �� ∈ �1 � U� ∈ proj
T � u�� is stationary.
For each infinite binary sequence v ∈ 2� let Uv be the binary tree into which the
path

⋃
u⊂v tu ⊂ T projects. Then Uv � v ∈ 2� is the required collection of I-positive

mutually disjoint sets.

Note that the only property of the ideal I necessary in the above proof was that
compact sets are dense in the poset PI . There is a number of forcings which are
not bounding but possess this feature; some of them can be found in Section 4.2.

Proposition 3.7.10. (CH) Suppose that I is a �-ideal on a Polish space X such
that the forcing PI is < �1-proper and nowhere c.c.c. Then there exists a perfect
collection of mutually disjoint Borel I-positive sets.

Here, a forcing P is <�1-proper if for every countable ∈-tower �M� � � ∈ �	 of
countable elementary submodels of some large structure and every p ∈ P∩M0 there
is a condition q ∈ P�q ≤ p which is M�-master condition for every ordinal � ∈ �.
It can be proved that almost all forcings considered in this book are < �1-proper
and this property is even absolute throughout forcing extensions. Thus if they fail
the c.c.c., an absoluteness argument will show that they must contain a perfect
collection of mutually disjoint Borel I-positive sets.

Proof. Let � be a large enough regular cardinal, and let y ∈ H�. The key step in
the argument is to find two countable towers �M� �N ≺H� of elementary submodels
containing y such that no point of the space X can be simultaneously �M and
�N -generic for the poset P. Once this is done, the argument is a breeze: choose
countable towers of elementary submodels �Mn� �Nn � n ∈ � such that n ∈m implies
�Mn� �Nn ∈ �Mm� �Nm and no point of the space X can be simultaneously �Mn- and
�Nn-generic, and use < �1-properness of the forcing P to argue that for every
function f ∈ 2� the Borel set Bf = �x ∈X � if f	n
= 0 then x is �Mn-generic, and if

f	n
= 1 then x is �Nn-generic� is I-positive – it is the only candidate for a master
condition for the tower of models indicated by the function f . Then �Bf � f ∈ 2��
is the desired perfect collection of mutually disjoint Borel I-positive sets.

Now the problem of finding the two towers �M� �N as in the previous paragraph
is in itself interesting. I do not know if there is an a priori bound on the necessary
length of these towers, such as 1 or �. My argument runs as follows. Consider
an ∈-tower �M� � � ∈ �1	 of countable elementary submodels, and a countable

submodel N containing this tall tower. Let � = N ∩�1 and �M = �M� � � ∈ �	.
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I claim that no point x ∈ X can be at the same time �M-generic and N -generic. To
see this, note that since the forcing PI is nowhere c.c.c. and of size �= ℵ1, there is
a name ġ for a function from �1 to �1 such that no ground model uncountable set
contains only closure points of ġ. By elementarity it is possible to find such a name
ġ in the model M0. Now let C = �M�∩�1 � � ∈�1�. If a point x ∈X is �M-generic,
then all the ordinals in C∩� are closure points of the function ġ/x, and if the point
x is N -generic then, since C ∈ N , some of the ordinals in C ∩� must fail to be
closure points of the function ġ/x. Both cannot be true at the same time!

An elaboration of the above proof will be used in Sections 4.5 and 4.3 to show
the following related statement.

Fact 3.7.11. Suppose that � is either an outer regular subadditive stable capacity
or a pavement submeasure derived from a countable set of Borel pavers. Then the
following are equivalent:

1. the forcing PI�
is nowhere c.c.c.;

2. every Borel set can be partitioned into perfectly many Borel subsets of the same
�-mass as the original set.

3.8 �1
1 on �1

1 ideals

There is an important property of forcings that completely escaped detection by
the classical combinatorial methods. I must thank Vladimir Kanovei for turning my
attention in the correct direction.

Definition 3.8.1. A �-ideal I on a Polish space X is �1
1 on �

1
1 if for every analytic

set A⊂ 2�×X the set �y ∈ 2� � Ay ∈ I� is coanalytic.

The reader should consult the textbook [40], 29.E, for several classical theorems:
the ideals of countable sets, meager sets and Lebesgue null sets are �1

1 on �
1
1. It turns

out that many �-ideals encountered in forcing theory are �1
1 on �

1
1 while others

are not. The distinction is crucial for someone who wants to develop the theory of
iterated and product forcing without the auxiliary large cardinal assumptions. The
attentive reader will have noticed that most ideals from Chapter 4 are �1

2 on �1
1 but

this does not help with the ZFC dichotomy treatment of iterations of the resulting
forcings. What a difference half a quantifier can make.

At several places in the book I will need the effective version of the above
definition.
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Definition 3.8.2. A �-ideal I on a Polish space X is �1
1 on �

1
1 with a parameter

z∈�� if for the universal �1
1 set A⊂ 2�×2�×X the set ��u� v	 ∈ 2�×2� � Au�v ∈ I�

is �1
1	z
.

3.8.1 Motivating applications

In order to motivate the investigation below, I include several ZFC theorems to be
proved later.

Fact 3.8.3. (Theorem 5.1.9) Suppose that I is an iterable �1
1 on �

1
1 ideal and

� ∈ �1 is a countable ordinal. Then the ideal I� is �1
1 on �

1
1 as well and the

countable support iteration 	PI

� is isomorphic to the forcing PI�

.

Fact 3.8.4. (Theorem 6.3.9) Suppose that I is an iterable �1
1 on �

1
1 ideal, and J is

a �-ideal generated by an analytic collection of closed sets. If I ⊥ J then I� ⊥ J
for all countable ordinals �.

Fact 3.8.5. (Theorem 5.2.6) Suppose that In � n ∈ � is a collection of �1
1 on �

1
1

ideals such that the forcings PIn
are proper, bounding, and preserve bases for the

meager ideal. Then the product J =�nIn is a �1
1 on �

1
1 �-ideal, the full support

product forcing �nPIn
is proper, bounding, and preserves bases for the meager

ideal, and it is isomorphic to the forcing PJ .

Thus the considered property propagates through countable support iterations and
products. I do not know if it propagates through illfounded iterations and unions.
Any theorem in that direction would presumably imply better understanding of the
two operations.

3.8.2 Non-c.c.c. examples

I will identify two classes of examples of non-c.c.c. �1
1 on �

1
1 ideals. Many forcings

fall into both of them. The following proposition will be critical in many situations
where �1

1 on �
1
1 ideals occur. It will also make it possible to identify the first large

class of such ideals.

Proposition 3.8.6. Let I be a �-ideal on a Polish space X. I is �1
1 on �

1
1 with

parameter z if and only if for every real y ∈ � the set Uy =
⋃
	�1

1	y� z
∩ I
 is
uniformly �1

1	y� z
.

The set Uy has the remarkable property that every �1
1	y� z
 set disjoint from it,

if nonempty, is actually I-positive.
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Proof. To simplify the notation assume that z = 0. The right-to-left direction is
almost trivial. Suppose that the set Uy is uniformly �1

1	y
, and let B ⊂�×X be a
�1

1	y
 set for some real y. Clearly, for every real x the section Bx is �1
1	x� y
 and

therefore it is in the ideal I if and only if it is a subset of the �1
1	x� y
 set Ux�y,

which is a uniformly �1
1	x� y
 condition.

The opposite direction is just a computation of the complexity of the set Uy. First
note that if y is a real and C ⊂ X is a �1

1	y
 set in I , then it has a �1
1	y
 superset

still in the ideal I . To see this, let < be a �1
1	y
 rank on the complement of the

set C and consider the set D = X \ �x ∈ X � �u ∈ X � x ≤ u� ∈ I�. The definability
assumptions on I and < show that this is a �1

1	y
 set, and it is disjoint from the
set C. By the effective boundedness theorem, there is an ordinal � recursive in the
real y bounding the ranks of the reals in the set D. The set �x ∈ � � rank	x
 ≥ ��
is then the desired �1

1	y
 superset of the set C in the ideal I .
Thus Uy =

⋃
	�1

1	y
∩ I
 =
⋃
	�1

1	y
∩ I
 which is easily found to be uniformly
�1

1	y
 using any standard �1
1	y
 parametrization of �1

1	y
 sets like the one in [40],
35.B.

Theorem 3.8.7. [18] If the �-ideal I obtains from some coanalytic porosity then
it is �1

1 on �
1
1.

Consult Section 4.2 for definitions and results concerning porosity. Suppose
that X is a Polish space and U is a countable collection of its Borel subsets. Any
inclusion-preserving function por �P	U
→B	X
 is called an abstract porosity. The
�-ideal I �-generated by sets of the form por	a
\⋃a for a⊂ U is the associated
porosity ideal. The generating sets of the form por	a
\⋃	a
 are called porous. To
say that the porosity por is coanalytic is to say that the set ��a� r	 ∈ P	U
×X � r ∈
por	a
�⊂ P	U
×X is coanalytic.

The class of �-ideals described in the theorem includes:

• all �-ideals generated by a coanalytic �-ideal of closed sets, such as the meager
ideal or the ideal of countable sets and many more;

• the metric porosity ideals;
• the �-continuity ideal.

Proof. To simplify the notation assume that the underlying space X is just the
Baire space �� and that the collection U is lightface �1

1, and that the abstract
porosity is lightface �1

1. By Proposition 3.8.6, for every real u I must prove that
⋃
	I ∩�1

1	u

 ∈�1
1	u
. For simplicity put u= 0. First, a small claim.

Claim 3.8.8. If A⊂ ��×�� is �1
1 then the set �x ∈ �� � Ax is porous� is �1

1.
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This is a direct computation. The vertical section Ax is porous if and only if Ax ⊂
por	a
 where a= �u ∈ U � u∩Ax = 0� by the monotonicity of the abstract porosity.
This can be restated as ∀r ∈ Ax∀b ⊂ U a ⊂ b→ r ∈ por	b
 by the monotonicity
again, or ∀r ∈ Ax∀b⊂ U r ∈ por	b
∨∃v ∈ b Ax∩v= 0. This is a uniformly �1

1	x

statement as desired.

The effective version of the First Reflection Theorem [40], 35.10, now shows that
every �1

1 porous set has a �1
1 porous superset. A �1

1 parametrization of �1
1 sets [40],

35.B, then can be used to show that the set C =⋃
	�1

1∩porous sets
=⋃
	�1

1∩porous
sets
 is �1

1. It will be enough to show that C =⋃
	I ∩�1

1
.
The right-to-left inclusion is clear. For the other, let A ∈ �1

1 be a set such that
A\C �= 0 and argue that A � I . Suppose that �an � n ∈ �� is a countable collection
of subsets of U ; I must find an element r ∈ A \⋃n	por	an
 \

⋃
an
. To this end,

by induction construct recursive trees Tn as well as nodes tnm ∈ Tm for m ≤ n so
that:

• T0 is some recursive tree projecting into the �1
1 set A\C, t0

0 = 0;
• the nodes tin ∈ Tn are defined for all i≥ n and form a strictly decreasing sequence

in the tree;
• the set An =

⋂
m≤n proj
Tm � tnm� is nonempty;

• An+1∩por	an
\
⋃
an = 0.

It is clear that in the end the branches through the trees Tn obtained from the nodes
tin project into the same real r ∈A, and the last item of the induction hypothesis will
imply that r �⋃

n	por	an
 \
⋃
an
 as desired. To find the tree Tn+1 and the nodes

tn+1
m for m≤ n+1, consider the set b = �u ∈ U � An∩u= 0� and the set por	b
. A

similar complexity computation as in the proof of the claim shows that por	b
 is
a �1

1 set. The set An \por	b
 is then �1
1 and nonempty, because if it were empty,

the �1
1 set An would be porous, covered by the set por	b
 \⋃b which contradicts

the fact that An∩C = 0 and the definition of the set C. There are now two cases.
Either por	an
⊂ por	b
. In this case let Tn+1 be some recursive tree projecting into
the nonempty �1

1 set An \ por	b
 and find suitable nodes tn+1
m � m ≤ n+ 1 in the

trees. Or, por	an
 �⊂ por	b
, and this means that an �⊂ b by the monotonicity of the
abstract porosity. Choose a set u ∈ an \b, a recursive tree Tn+1 projecting into the
nonempty �1

1 set An ∩u, and find suitable nodes tn+1
m � m ≤ n+ 1. This concludes

the induction step and the proof.

Theorem 3.8.9. [83] If the poset PI is proper and bounding and there is a dense
analytic collection of compact sets in PI and every analytic I-positive set contains
a Borel I-positive subset then the ideal I is �1

1 on �
1
1.
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This includes the following ideals:

• the ideal of capacity zero sets for every subadditive capacity, as long as the
resulting forcing is proper, such as the Lebesgue measure or the Newtonian
capacity;

• any ideal �-generated by a �-compact collection of compact sets;
• the �-ideals generated by sets of finite Hausdorff measure;
• the E0-ideal of Section 4.7.1.

In fact this example makes it very difficult to find natural bounding forcings which
are not associated with a �1

1 on �
1
1 ideal.

Proof. Let X be the underlying Polish space and let D ⊂ PI be the analytic dense
set of compact sets. Suppose that A ⊂ X× 2� is an analytic set, a projection of
a closed set C ⊂ X× 2�×��. I will show that for a point y ∈ 2� the set Ay is
I-positive if and only if the following statement (*) holds: there is a compact set
K ∈ D and a continuous function f � K→ �� such that for every x ∈ K it is the
case that �x� y� f	x
	 ∈ C. It is not difficult to see that (*) is an analytic condition,
which completes the proof of the theorem.

If (*) holds then clearly K ⊂ Ay which shows that Ay � I . On the other hand, if
Ay � I then there is a Borel I-positive set B⊂Ay. There is also a name ż ∈�� such
that B � �ẋgen� y̌� ż	 ∈ Ċ, and since the forcing PI is bounding, there is a compact
set K ∈ D and a continuous function f � K→ �� such that B � ż= ḟ 	ẋgen
 and in
fact for every x ∈ K, �x� y� f	x
	 ∈ C. The condition (*) follows, completing the
proof.

3.8.3 C.c.c. examples

The situation in the c.c.c. realm is considerably more slippery. It turns out that
Shelah and Roslanowski [57] considered a notion that is more or less equivalent to
�1

1 on �
1
1 for c.c.c. ideals:

Definition 3.8.10. Suppose P�≤ is a partial order on the reals. Call P Suslin if the
sets P�≤�⊥ are analytic. Call P very Suslin if it is c.c.c. and the set �A ∈ Pℵ0 � A
is a maximal antichain in P� is analytic as well.

Proposition 3.8.11. If P is a c.c.c. very Suslin poset adding a single point in the
Baire space then the ideal I	P
 is �1

1 on �
1
1. Vice versa, if I is a c.c.c. ergodic �1

1

on �
1
1 �-ideal on the real line and P is a Borel collection of closed sets closed

under finite positive intersections whose equivalence classes are dense in the factor
algebra of PI , then the poset �P�⊂	 is very Souslin.
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Proof. Let B ⊂ �� be an analytic set, B = proj
T� for some tree T ⊂ �<�×�<�.
Then B � I	P
 iff there is a condition p ∈ P forcing the generic real into Ḃ iff there
is a condition p ∈ P and a name � such that p forces � to be a branch of the tree Ť
with the generic real as the first coordinate iff there is p and a system of maximal
antichains �An � n ∈ �� below p and a map f �

⋃
n An→ T such that

• every antichain An+1 is a refinement of the antichain An;
• if q ∈ An then f	q
 is a node in the tree T of length n such that q forces the

generic point to start with the first coordinate of f	q
;
• f carries comparable conditions to comparable nodes in the tree T .

This is an analytic condition since the notion of a maximal antichain is analytic.
For the second sentence in the proposition, let E be the equivalence relation

witnessing the ergodicity, by Proposition 3.7.6 it can be chosen so that E-saturations
of I-small sets are I-small. The poset P is Borel. Sets C�D ∈ P are compatible iff
C∩D � I which is an analytic statement by the definability conditions on the ideal.
Sets C�D ∈ P are incompatible iff C∩D ∈ I iff the E-saturation of C∩D is in the
ideal I iff (by the ergodicity) the complement of this saturation is not in the ideal I ,
which is again an analytic statement. And finally, A ∈ P� is a maximal antichain iff
�� \⋃A ∈ I iff the E-saturation of the set �� \⋃A is in I iff (by the ergodicity)
its complement is not in I , which is an analytic statement.

Shelah and Roslanowski worried that the only examples of �1
1 on �

1
1 c.c.c.

Souslin ideals may be the meager ideal, the Lebesgue null ideal, and the ideals
associated with their finite support iterations, and they devised a scheme to generate
many other ones [57]. However, it turns out that examples of such �-ideals are
readily at hand:

Proposition 3.8.12. [83] The �-ideal associated with the eventually different real
forcing is �1

1 on �
1
1.

The eventually different real forcing [2], 7.4.8, P is the set of all pairs �t� a	
where t is a finite sequence of integers and a⊂ �� is finite, and �s� b	 ≤ �t� a	 if
t ⊂ s, a⊂ b and 	s \ t
∩⋃a= 0.

Proof. It is just necessary to verify that the collection of all maximal antichains
is a Borel set. Let A ∈ P�; it is enough to show that for every sequence s ∈ �<�

and every number m ∈ � the statement �	s�m�A
= “there is a set b ⊂ �� of size
m such that the condition �s� b	 is incompatible with all elements of the set A” is
Borel, because then A is a maximal antichain iff it is an antichain and for every s
and m the statement �	s�m�A
 fails.
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I will just show that �	0�1�A
 is a Borel statement, the general case is essen-
tially identical with a little more complicated notation. Let A = ��tn� an	 � n ∈ ��.
�	0�1�A
 holds iff there is a function f ∈ �� with nonempty intersection with
every tn (since the set b = �f� will witness �) iff the tree T	0�1�A
 = �g � g is
a function from some k ∈ � to �×� such that ∀n ∈ k g	k
 ∈ tk and rng	g
 is a
function� has an infinite branch (since the range of any infinite branch will give
such function f ) iff the tree T	0�1�A
 is infinite (since it is finitely branching).
This is a Borel statement.

Proposition 3.8.13. [87] Suppose that J is an ideal on � containing all finite sets,
and let I be the �-ideal on 2� associated with the Prikry forcing P	J
. The ideal I
is �1

1 on �
1
1 if and only if the ideal J is F� .

Here the Prikry forcing P	J
 is the set of all pairs p= �tp� ap	 ∈ 2<�×J ordered
by q ≤ p iff tp ⊂ tq, ap ⊂ aq, and �n ∈ dom	tq \ tp
 � tq	n
= 1�∩ap = 0.

Proof. For the right-to-left direction note that the ideal I is ergodic. Now if I is �1
1

on �
1
1 then the �-ideal I∩K	2�
 of compact sets is analytic: a set C ∈K	2�
 is in I

if and only if the complement of the closure of C under finite changes is I-positive,
which is an analytic statement. Analytic ideals of compact sets are G� by a theorem
of Kechris, Louveau, and Woodin [36]. Now it is not difficult to see that for a set
a⊂ �, a ∈ J iff �x ∈ 2� � x	n
= 1→ n � a� � I which is an F� condition!

For the left-to-right direction, write K= �a⊂�<� \�0� � ∃b ∈ J∀x ∈ a x∩b �= 0�.
It is clear that this is an ideal on the set �<� \ �0�. A useful observation:

Claim 3.8.14. If J is an F� ideal then K is F� again.

Proof. By a theorem of Mazur [50] there is a lower semicontinuous submeasure
� on P	�
 such that J = �a⊂ � � �	a
 <��. Let �<� be a function on P	�<�

defined by �<�	b
 = inf��	a
 � ∀x ∈ b x∩a �= 0�. It is not difficult to verify that
this is a lower semicontinuous submeasure such that K = �b ⊂ �<� � �<� <��.
The claim follows.

In fact the proof of the proposition shows that if the ideal J is not F� then the
ideal K is not even analytic.

By Proposition 3.8.11, to prove the left-to-right implication of the proposition it
is just necessary to show that the collection of countable subsets of P	J
 which are
maximal antichains is a Borel set. In order to do this, let A⊂ P	J
 be a countable
set. Then A is a maximal antichain if and only if it is an antichain and for every
finite set t⊂�, every condition of the form �t� a	 is compatible with some element
of A. The latter condition is equivalent to: either there is some condition �u�b	 ∈A
such that u ⊂ t and b∩ t \u = 0, or the set at = �x ⊂ � � ∃b �t∪x�b	 ∈ A� is not
in the ideal K. By the claim, this is a Borel statement.
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3.8.4 Nonexamples

Finally the promised class of �-ideals which are definitely not �1
1 on �

1
1, and it is

a really important one.

Proposition 3.8.15. If the poset PI adds a dominating real then the ideal I is not
�1

1 on �
1
1.

Proof. Let X be the underlying Polish space. By Proposition 2.3.1, the assumptions
imply that there is a Borel I-positive set B ⊂ X and a Borel function f � B→ ��

such that for every function g ∈ �� the set �x ∈ X � f	x
 does not modulo finite
dominate the function g� is in the ideal I .

Let � be the set of all trees on �. The set U ⊂ � of all wellfounded trees is well-
known to be �1

1-complete. Let B⊂�×X be the set of all pairs �T�x	 such that x∈C
and for all sequences s ∈ T the tree Txs = �t ∈ T � s � ∀n ∈ dom	t
\dom	s
 t	n
 ∈
f	x
	n
� is finite. Clearly, if the tree T is wellfounded, the set BT is equal to C,
since the trees Txs are all finitely branching and wellfounded, therefore finite. On
the other hand, if the tree T is illfounded as witnessed by some branch g ∈ 
T� then
BT ⊂ �x ∈ C � f	x
 does not modulo finite dominate the function g� ∈ I . Thus the
set �T ∈ � � BT ∈ I� is properly �1

1 and not �1
1, proving the proposition.

3.8.5 The Suslin number

One may wonder if adding a dominating real is the weakest explicit forcing property
that implies that the associated ideal is complex. This is false, as Arnold Miller
showed [52]. He produced a Souslin c.c.c. ideal which does not add a dominating
real but is still not �1

1 on �
1
1. There is an underlying cardinal invariant. Fix a Polish

space X and some complete analytic subset A⊂X. The exact choice turns out to be
irrelevant, and I will use X =the trees on natural numbers and A= the illfounded
trees.

Definition 3.8.16. The Suslin ideal J is the collection of all Borel sets B⊂ X such
that A∩B is a relatively Borel subset of B. The Suslin number is the uniformity of
this ideal, = non	J
�

It is not difficult to verify that J in fact is a �-ideal. Notably the forcing PJ

is not proper, and this was one of the basic examples. The preservation of the
Suslin number seems to be a forcing property very closely related to the �1

1 on �
1
1

property:

Proposition 3.8.17. If PI is a �1
1 on �

1
1 forcing then PI � 2� ∩V � J ; in other

words, the forcing PI does not increase the Suslin number.
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I do not know if under suitable large cardinal assumptions every definable real
forcing which preserves the Suslin number must be locally �1

1 on �
1
1.

Proof. Consider the space X of all trees on � and the complete analytic set A⊂ X
of all illfounded trees. Suppose that I is a �1

1 on �
1
1 ideal on some space Y such that

the factor forcing PI is proper, and for contradiction assume that some condition in
PI forces “Ḃ ⊂ Ẋ is a Borel set such that Ḃ∩V = Ǎ.” By Proposition 2.3.2, there
is an I-positive Borel set C ⊂ Y and a Borel set D⊂ X×C such that C � Ḃ = Ḋy.
For a given point x ∈ X, C � x̌ ∈ Ḃ↔ �y ∈ C � �x� y	 � D� ∈ I , and the condition
on the right hand side of this equivalence is coanalytic since the ideal I is �1

1 on
�

1
1. However, C � x̌ ∈ Ḃ↔ x ∈ A by the choice of the name Ḃ, and A⊂ X is not

coanalytic, contradiction.

In this light it is perhaps reasonable to attempt to find the position of the
Suslin number relative to the standard Cichoń diagram invariants. It turns out that
� ≤��≤ non	meager
 is provable in ZFC, and � <�� is consistent by the work
of Arnold Miller [52]. I do not know if��≤ � is provable in ZFC.

3.9 Dichotomies

A careful review of this book will reveal that it is full of dichotomies and the
dichotomies are really the driving force behind most arguments. In this section I
will discuss the three most important dichotomy schemes.

3.9.1 The first dichotomy

Definition 3.9.1. A �-ideal I on a Polish space satisfies the first (universally Baire)
dichotomy if every universally Baire set is either covered by a Borel set in I or it
contains a Borel I-positive subset.

All c.c.c. ideals as well as the �-ideals discussed in Chapter 4 except for
Section 4.7 satisfy the first dichotomy under suitable large cardinal assumptions.
On the other hand, there are many �-ideals encountered in this book which do
not satisfy this dichotomy. Perhaps surprisingly, the first dichotomy has forcing
consequences.

Proposition 3.9.2. (LC+CH) Suppose that I is a universally Baire �-ideal on a
Polish space X satisfying the first universally Baire dichotomy.

1. Suppose that the forcing PI is < �1-proper. If G ⊂ PI is a generic filter and
V ⊆W ⊆ V 
G� is an intermediate extension, then either W is a c.c.c. extension
of V or W = V 
G�.
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2. Suppose that the forcing P is �-proper. If f ∈ 2�1 is a function in the generic
extension with all countable initial segments in the ground model, then it is itself
in the ground model.

Here, �-properness and < �1-properness are the strengthenings of properness
introduced by Shelah [64]: a forcing P is �-proper if for every ∈-increasing �-
tower �M of countable elementary submodels of a large enough structure and every
condition p ∈ P there is a strengthening q ≤ p which is a master condition simul-
taneously for all models on the sequence. And a forcing P is < �1-proper if
this statement is true for all towers of models of countable length. All proper
forcings considered in this book with the exception of Section 5.5 are in fact
<�1-proper.

Proposition 3.9.2 can be restated in several ways. The CH assumption is not
necessary if the forcing PI is < �1-proper or �-proper in all forcing extensions,
a condition which is invariably satisfied in all applications. In all specific cases
discussed in Chapter 4 to which this theorem applies, a careful argument will
eliminate the need for the large cardinal assumptions.

Proof. Towards the proof of (1), suppose that P is a poset in which PI is dense, and
Q⊂ P is a nowhere c.c.c. regular subposet. A piece of notation: if M is a countable
elementary submodel of a large enough structure and x ∈ X is an M-generic point,
let g	x
 ⊂M ∩Q be the M-generic filter on Q associated with it, more precisely
g	x
= �q ∈Q � ∃B ∈M B≤ q∧x ∈B�. As in Proposition 3.7.10, if M is a countable
elementary submodel of a large enough structure there is a Borel set B ⊂ 2�×X
whose vertical sections are I-positive sets of M-generic points such that whenever
y0 �= y1 ∈ 2� and x0 ∈ By0

� x1 ∈ By1
then g	x0
 �= g	x1
. Note the use of CH in

Proposition 3.7.10. Now let A⊂ 2�×X be an analytic set enumerating all analytic
subsets of the space X, and use the Kondo–Novikov uniformization to find a partial
coanalytic function f � 2�→ X uniformizing the set B \A. The range rng	f 
 ⊂ X
is a �1

2, therefore universally Baire set. It is not covered by any analytic set in the
ideal I , since whenever y ∈ 2� is a point such that Ay ∈ I then f	y
 ∈ rng	f 
 is
defined and not in Ay. By the first universally Baire dichotomy, there is a Borel
I-positive subset B ⊂ rng	f 
. The function g � B is one-to-one, therefore B forces
that the PI -generic point ẋgen ∈ X can be recovered from the generic filter G ⊂ Q

as the only point x in the set B such that G∩M = g	x
. Thus B � ẋgen ∈ V 
Ġ� as
desired.

For (2), suppose for contradiction that B ∈ PI is a condition forcing ḟ � �1 → 2
is a function with all initial segments in the ground model which does not itself
belong to the ground model. Let M be a countable elementary submodel of a large
enough structure. I will show that there is a Borel I-positive set C ⊂ �x ∈ B � x is
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M-generic� such that, writing g � C→ 2M∩�1 for the function defined by g	x
= ḟ /x,
the g-preimages of singletons are in the ideal I . An absoluteness argument the shows
that C � ḟ � M ∩�1 � V , contradicting the initial assumption. The following claim
is key.

Claim 3.9.3. For every countable set U ⊂ 2M∩�1 the set �x ∈ B � x is M-generic
and ḟ /x � U� is I-positive.

With the claim in hand, consider the set W = �h ∈ 2M∩�1 � Bh � I� where
Bh = �x ∈ B � x is M-generic and ḟ /x = h�. The set W is universally Baire, so
it is either countable or it contains a perfect subset. In the former case, the set
C = �x ∈ B � x is M-generic and ḟ /x �W� is Borel, by the claim it is I-positive,
and g-preimages of singletons are I-small in C by the definition of C. In the lat-
ter case, find a continuous injection � � 2� → W , let A ⊂ 2�×X be an analytic
set enumerating all analytic subsets of the space X, and use the Kondo–Novikov
uniformization [40], 36.14, to find a partial coanalytic function k � 2� → X uni-
formizing the set ��y� x	 � x ∈ B�	y
� �y� x	 � A�. As in the previous proof, the
range of k is a �1

2 I-positive set on which g is an injection. Now use the first
dichotomy to find a Borel I-positive subset C ⊂ rng	k
. The set C will be as
required.

To prove the claim, first use �-properness to find a winning strategy � ∈ M
for Player II in the following game. Player I starts with a condition pini ∈ PI

and then plays open dense sets Dn ⊂ P, and Player II answers with countable
sets dn ⊂ Dn. Player II wins if the result of the game, the set pini ∩

⋂
n

⋃
dn,

is I-positive. Let U ⊂ 2M∩�1 be a countable set, with some enumeration U =
�hn � n ∈ ��. I will find a play according to the strategy � whose moves pini =
B�Dn�dn � n ∈ � will be in the model M , such that for every number n and every
condition q ∈ dn will be in the n-th open dense subset of PI in the model M
in some fixed enumeration and there will be an ordinal � ∈ M ∩�1 such that
q decides ḟ � � to be a particular ground model function different from ȟn � �.
The I-positivity of the result of such a play then confirms the veracity of the
claim.

Now suppose that the moves Dn�dn have been constructed. For every ordinal
� ∈ �1 let E� ⊂ PI be the open dense set of conditions that are in the n-th open
dense subset of the forcing PI in the model M and moreover decide ḟ � �, let
e� ⊂ E� be the answer of the strategy � to this open dense set, and let S� = �k ∈
2� � ∃q ∈ e� q � ḟ � �= ǩ�. Let T = �k ∈ 2<�1 � every initial segment of k including
k is in

⋃
� S�; thus T is an �1-tree. There are two cases to consider:
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• hn is not a branch of the tree T ∩M . In such a case, there is an ordinal � ∈M∩�1

such that the moves Dn+1 = E��dn+1 = e� satisfy the induction demands.
• hn is a branch of the tree T ∩M . In this case first note that the proper definable

forcing PI cannot add a new branch through the �1-tree T . (Note that there is a
proper forcing Q adding no reals and no new branches through T such that in
the resulting extension it is impossible to add new branches through T without
collapsing �1. On the other hand, the forcing PI should be proper even in the
Q-extension by Corollary 2.2.9.) In particular, PI � ḟ is not a branch through
T . Let Dn+1 be the open dense set of all conditions q that are in the n-th open
dense subset of the poset PI in the model M and moreover decide some initial
segment of ḟ which does not belong to the tree T and let dn+1 be the answer of
the strategy � .

In each case, the induction step of the construction has been successfully completed.

Example 3.9.4. Let I be the E0-ideal of Section 4.7.1, or the Mathias ideal of
Section 4.7.7. Then I does not satisfy the first dichotomy. This is true since the
associated forcings – the E0-forcing and the Mathias forcing – can be decomposed
into a �-closed*c.c.c. iteration and so contain an intermediate �-closed extension
and at the same time, under CH, a function f ∈ 2�1 which has all initial segments
in the ground model and itself is not in the ground model.

Example 3.9.5. The ideals associated with products or iterations of non-c.c.c.
forcings cannot satisfy the first dichotomy.

Example 3.9.6. Suppose that I is a universally Baire �-ideal generated by closed
sets such that the forcing PI is bounding or does not add splitting reals. Then
the forcing PI generates a minimal extension. Let me briefly sketch the argument.
If there was a proper intermediate extension, it would have to be c.c.c. by the
proposition–�-ideals generated by closed sets satisfy the first dichotomy. The c.c.c.
intermediate extension would have to contain a new real – by Corollary 3.5.9 the
forcing PI does not add any branches through Suslin trees. That new real is obtained
over the ground model by forcing with a universally Baire c.c.c. �-ideal which
does not make the set of the ground model reals meager, since nonmeagerness
is preserved by PI . Finally, by Corollary 3.5.7 the forcing with this c.c.c. ideal
is equivalent to the Cohen forcing, contradicting the bounding property or the
no splitting real property. Note that while the forcing PI is embeddable into a
�-closed*c.c.c. iteration it cannot be equivalent to such an iteration.
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Definition 3.9.7. Let M be a transitive model of ZF and I ∈M be a �-ideal on a
Polish space X. The �-ideal satisfies the first dichotomy in the model M if every
subset of the space X in M has either a Borel I-small superset or a Borel I-positive
subset.

This notion will be only interesting in choiceless models such as L	�
, L	�

U�
for a Ramsey ultrafilter U , and notably the choiceless Solovay model. Notably all
universally Baire c.c.c. ideals and ideals from Chapter 4 except for Section 4.7
satisfy the first dichotomy in the Solovay model. An absoluteness argument shows
that the first dichotomy in the choiceless Solovay extension implies the first uni-
versally Baire dichotomy in the ground model. I do not know if the converse is true
under any additional assumptions.

3.9.2 The second dichotomy

Definition 3.9.8. The ideal I satisfies the second (universally Baire) dichotomy
if every universally Baire set is either in the ideal or contains a Borel I-positive
subset.

Every �-ideal I such that the forcing PI is proper can be amended to one
satisfying the second dichotomy without changing the forcing using the following
operation.

Definition 3.9.9. Suppose I is a �-ideal on a Polish space X. The �-ideal I∗ is
generated by all universally Baire sets containing no Borel I-positive subset.

Proposition 3.9.10. (LC) Suppose that the forcing PI is proper. A Borel set B is
I-positive if and only if it is I∗-positive.

Proof. Suppose that B is a Borel I-positive set such that B ⊂ ⋃
n An for some

universally Baire sets An � n ∈�. A universally Baire absoluteness argument shows
that B is still covered by these sets in the PI -generic extension. There must be a
condition C ∈ PI�C ⊂ B, and a number n ∈ � such that C � ẋgen ∈ Ȧn. Let M be a
countable elementary submodel of a large enough structure and let D = �x ∈ C � x
is M-generic�; since the forcing PI is proper, this Borel set is I-positive. By the
forcing theorem, for every point x ∈D it is the case that M
x� 
= x ∈ An and by the
universally Baire absoluteness x ∈ An. It follows that D ⊂ An as required.

Definition 3.9.11. Let M be a transitive model of ZF and let I be a �-ideal on a
Polish space X, in the model M . The ideal satisfies the second dichotomy in the
model M if every subset of the space X in the model M is either in the ideal or it
contains a Borel I-positive subset.
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This will be again interesting only in the choiceless models such as L	�
,
L	�

U� for a Ramsey ultrafilter U , or the choiceless Solovay model. Given a
�-ideal I there is a natural attempt to amend it to a �-ideal satisfying the second
dichotomy in a given model M:

Definition 3.9.12. Let I be a �-ideal on a Polish space. The collection I∗∗ consists
of all sets without a Borel I-positive subset.

The key problem of course is that the collection I∗∗ may fail to be a �-ideal.

Proposition 3.9.13. (LC) Suppose that I is a universally Baire �-ideal such that
the forcing PI is proper in all forcing extensions. Then in the choiceless Solovay
model the collection I∗∗ is closed under wellordered unions.

Proof. Suppose that A� � � ∈ � is some sequence of sets in the Solovay model such
that their union contains a Borel I-positive set B. I must find an ordinal � ∈ � such
that the set A� contains an I-positive set. By the usual homogeneity arguments
I may assume that the set B is coded in the ground model and the sequence
A� � � ∈ � is definable from parameters in the ground model. In the ground model,
let C ⊂ B be a condition in the forcing PI and let � ∈ � be an ordinal such that
C � Coll	��<  
 � ẋgen ∈ Ȧ�. I will show that the set A� contains an I-positive
Borel set.

Consider the properness game on the partial order PI – Section 3.10.2. Since
the payoff set is universally Baire, Fact 1.4.2 shows that Player II has a winning
strategy � in the game which remains a winning strategy in all forcing extensions,
in particular in the Solovay model. There, look at the play of the game against
the strategy � in which Player I starts out with the condition C ∈ PI and then
enumerates all open dense subsets of the poset PI in the ground model. The result
of the play is a Borel I-positive set D ⊂ C consisting of V -generic reals only. By
the forcing theorem and the usual homogeneity arguments it must be the case that
D ⊂ A� as required.

It follows by an absoluteness argument that the collection I∗∗ is closed under
wellordered unions in all models with absolute definitions such as L	�
. It is not
true though that the closure of I∗∗ under wellordered unions implies properness of
the forcing PI : A decreasing intersection of countably many �-ideals closed under
well-ordered unions is again so closed, but the resulting forcing is not proper by
Proposition 2.2.6.

If the ideal I itself satisfies the first dichotomy then I = I∗∗, but if it does not it
may be interesting to find a description of I∗∗ in more informative terms.

Example 3.9.14. Let I be the E0-ideal on 2� of Section 4.7.1. The following holds
in the Solovay model as well as in transitive inner models of AD+ containing all
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the reals. The ideal I∗∗ consists of sets which can be decomposed into a wellordered
union of partial E0-transversals.

Example 3.9.15. Let I be an iterable ideal such that I = I∗∗, and let � ∈ �1 be a
countable ordinal. The results of Section 5.1 show that in the Solovay model as
well as in transitive inner models of AD� containing all the reals it is the case that
the iterated Fubini product I� also satisfies I� = 	I�
∗∗.

Example 3.9.16. Let I be the Mathias ideal. Then both in the Solovay model and
in transitive models of AD+ containing all the reals it is the case that I = I∗∗.

In the Solovay model a nice characterization of ideals with the second dichotomy
is available. To introduce the terminology used in it, if I is an ideal on a Polish
space X, write Î for the ideal on X×2� defined by A ∈ Î↔ proj	A
 ∈ I .
Proposition 3.9.17. (In the Solovay model) For every �-ideal I on a Polish space,
Î satisfies the second dichotomy if and only if I is closed under well-ordered unions.

Note that the proof shows that it is enough to find an analytic Î-positive subset
of a given Î-positive set for the equivalence to go through.

Proof. The right-to-left implication is easy. In the Solovay model, every subset of
a Polish space is a wellordered union of Borel sets. Now if I is a �-ideal closed
under wellordered unions then so is Î and if B is a Î-positive set, it can be written
as a wellordered union of some of its Borel subsets, and one of these must be
Î-positive.

For the left-to-right implication note that in the Solovay model, increasing unions
of subsets of a Polish space X stabilize in ℵ1 many steps, and so it is enough to
prove that closure of a �-ideal I on X under ℵ1 unions follows from the second
dichotomy for Î . For contradiction assume that �B� � � ∈ �1	 is an ℵ1-collection
of I-small sets with I-positive union. Let Z be the Polish space of all trees on
� with a natural topology, let Y = X×Z and let A = ��x�T	 ∈ Y � x ∈ B�, the
tree T is wellfounded and has rank ��. The projection of the set A is exactly the
union

⋃
� B�, and so A � Î . Use the strong dichotomy to find an analytic Î-positive

subset C ⊂ A. By the boundedness theorem, there is a countable ordinal � such
that whenever �x�T	 ∈ C then the rank of the tree T is less than �. Then it must
be the case that the projection of the set C to the space X is included in the set
⋃

�∈� B� ∈ I , contradicting the Î-positivity of the set C.

In the context of determinacy, one implication of the above equivalence survives.

Proposition 3.9.18. (ZF+DC+AD+) If Î satisfies the second dichotomy then I is
closed under wellordered unions.
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Proof. Just the same as the previous argument with an additional ingredient,
Fact 1.4.6. Assume AD+ and assume that I is a �-ideal on a Polish space X
whose pullback satisfy the second dichotomy. By transfinite induction on  ∈ �
argue that whenever �A� � � ∈  	 is a collection of sets in I then its union is in
the ideal I as well. The successor, countable and singular steps in the induction
are trivial. So suppose  ∈ � is a regular cardinal and the statement has been ver-
ified up to  . Fix a collection �A� � � ∈  	 of sets in the ideal I . If

⋃
� A� � I ,

use Steel’s result to find a suitable prewellorder ≤ on a set Y ⊂ � of length
 and let B ⊂ X×� be the set of all pairs �x� r	 such that x ∈ A� where r
is in the �-th ≤-equivalence class. The set B is Î-positive and by the second
dichotomy it has an analytic positive subset C ⊂ B. The projection of C into the
� coordinate is an analytic subset of Y , and therefore it meets only <  many
≤-classes, bounded by some ordinal � ∈  . The projection of C into the X coor-
dinate is an I-positive set, and it is a subset of the set

⋃
�∈� A�. However, this

contradicts the induction hypothesis, which implies that the set
⋃

�∈� A� is in the
ideal I .

I do not know if the first or the second dichotomy implies that there is a fixed
countable ordinal � ∈ �1 such that every positive set contains a positive �0

� set.
There are several �-ideals exposed in this book for which I do not know such a
bound.

The previous two propositions have an interesting counterpart in the study of
submeasures and capacities. Let X be a Polish space and � � P	X
→ �+ be
a function such that A ⊂ B implies �	A
 ≤ �	B
. I will be frequently inter-
ested in the continuity of � in increasing wellordered unions, meaning that
�	

⋃
� A�
 = sup� �	A�
 if A� � � ∈ � is an inclusion-increasing sequence of

sets. The main tool for the verification of this property is the function �̂ �
P	X×2�
→�+ defined by �̂	A
= �	proj	A

, together with the following two
propositions.

Proposition 3.9.19. (In the Solovay model) The function � is continuous in increas-
ing wellordered unions of uncountable cofinality if and only if every subset of X×2�

has a Borel subset of the same �̂-mass.

Proposition 3.9.20. (ZF+DC+AD+) If every subset of X×2� has a Borel subset
of the same �̂-mass, then the function � is continuous in increasing wellordered
unions of uncountable cofinality.

The proofs are essentially identical to the arguments for Propositions 3.9.17
and 3.9.18, and as such are left to the reader.
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3.9.3 The third dichotomy

This is the weakest of the dichotomies considered above, their ZFC shadow.

Definition 3.9.21. A �-ideal I on a Polish space X satisfies the third dichotomy if
every I-positive analytic set contains a Borel I-positive subset.

As before, given a �-ideal I on a Polish space there is a natural operation to
amend it so that it satisfies the third dichotomy. The fact of life is though that all
�-ideals considered in this book satisfy the third dichotomy as they are. It seems
to be necessary to supply a different argument every time. The forcing QI as in
Proposition 2.1.11 is always a useful tool here.

The corresponding dichotomy for coanalytic sets almost always fails in models
such as the constructible universe, with exceptions such as the meager ideal or the
Lebesgue null ideal. The following proposition is frequently useful in proving the
failure of the dichotomy for coanalytic sets in L.

Proposition 3.9.22. Suppose that I is a �-ideal on a Polish space X such that
provably

1. there is a Borel set B ⊂ 2�×X whose vertical sections generate the ideal I;
2. the forcing PI is proper;
3. there is a Borel function f � X→ 2� such that for every set C ∈ I there is a set

D ∈ I such that C∩D = 0 and f ′′D = 2�.

Then in the constructible universe L there is a coanalytic I-positive set without a
Borel I-positive subset.

Proof. Work in the constructible universe. Consider the set A= �x ∈ X � for some
y ∈ 2�∩L

�
f	x

1

, x ∈ By�. I claim that this set works.
First of all, the set A ⊂ X is coanalytic: x ∈ A if and only if for every z ∈ 2�,

either there is a recursive-in-z wellordering o such that every countable structure
M 
= V = L whose ordinals are isomorphic to o contains a point y such that
�x� y	 ∈ B, or z �= f	x
. This is a coanalytic statement.

Second, the set A⊂ X contains no Borel I-positive subset. Suppose that C ⊂ A
is Borel and I-positive, let M be (the transitive collapse of) a countable submodel
of a large enough structure, and let x ∈ C be a M-generic real for the forcing PI .
Now �M

1 =�
M
x�
1 by the properness of the forcing PI , and so �f	x


1 ∈�M
1 , L

�
f	x

1
⊂M ,

the point x falls out of all I-small sets coded by elements of the structure L
�
f	x

1

and
therefore does not belong to the set A and C �⊂ A.

Finally, the set A⊂ X is I-positive. To see this, whenever C ∈ I is a set, I must
produce an element x ∈ A \C. Use the third item of the assumptions to find a set
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D ∈ I such that C ∩D = 0 and f ′′D = 2�, let y ∈ 2� be a point such that D ⊂ By,
and let x ∈D be a point such that y ∈ L

�
f	x

1

. Clearly x ∈ A\C as desired.

The coding tool from the statement (3) of this proposition is constructed in later
sections for various �-ideals, giving the following corollaries.

Corollary 3.9.23. Suppose that � is a pavement submeasure such that the forcing
PI�

is nowhere c.c.c. Then in L, there is a coanalytic set of full �-mass without a
Borel �-positive subset.

Corollary 3.9.24. Suppose that � is an outer regular subadditive stable capacity
such that the forcing PI�

is nowhere c.c.c. Then in L, there is a coanalytic subset
of full �-mass without a Borel �-positive subset.

3.10 Games on Boolean algebras

Many forcing properties of partial orders can be characterized via infinitary games
on the associated complete Boolean algebras. This line of thinking has been fre-
quently explored in the past [14], [30]. The point I want to make in this section
is that in the context of definable forcing, these games are often determined, and
the existence of winning strategies for one of the sides can yield surprisingly
strong conclusions. The games considered in this section are invariably quite com-
plex – with complicated moves and payoff sets even in the cases of the simplest
forcings. This means that the general theorems necessarily use quite strong large
cardinal assumptions even in the cases of syntactically very simple partial orders.
This being said, the reader should revisit some simple examples to see that in
all particular cases the winning strategies are long known and readily at hand.
This section contains just the definitions of the games, the determinacy results,
and the proof of an equivalence with a forcing property. The applications are
scattered throughout the book and the reader is advised to consult the index to
find them.

3.10.1 Precipitousness

Let I be a �-ideal on a Polish space X.

Definition 3.10.1. The Borel precipitous game G is played between Players Empty
and Nonempty who alternate to obtain a descending chain B0 ⊃ B1 ⊃ � � � of
conditions in the forcing PI . Player Nonempty wins if

⋂
n Bn �= 0.

Proposition 3.10.2. Player Nonempty has a winning strategy in the game G.
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Proof. The strategy is the following. On the side, player Nonempty will create an
increasing sequence Mn � n ∈ � of countable elementary submodels of some large
structure and use some simple bookkeeping tool to make sure that Bn ∈Mn and the
chain Bn � n ∈ � is M-generic where M =⋃

n Mn. Now the basic Proposition 2.1.2
applied in the model M shows that

⋂
n Bn �= 0 as required. It is not difficult to see

that player Nonempty can in fact make sure that the intersection is a singleton.

3.10.2 Properness

There is the classical game theoretical restatement of properness due to Charles
Gray.

Definition 3.10.3. Suppose P is a partial order. Fix a partition � =⋃
k ak of �

into infinite sets such that min	ak
 ≥ k. The properness game G between Players
I and II proceeds as follows. First Player I indicates an initial condition pini ∈ P.
After that, the moves alternate, at round n Player I produces an open dense set
Dn ⊂ P and Player II responds with a condition qn ∈ P such that qn ∈Dk where k
is such that n ∈ ak. Player II wins if the result of the play, the expression

pini∧
∧

k

∨

n∈ak
qn

denotes a non-zero element in the complete Boolean algebra RO	P
.

Theorem 3.10.4. The following are equivalent:

1. Player II has a winning strategy;
2. the forcing P is proper.

and the following are equivalent:

1. Player I has a winning strategy;
2. some condition forces the set 	
P�ℵ0
V to be nonstationary in 	
P�ℵ0
V
G�.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
then the game G is determined.

Proof. The first equivalence appeared in the work of Charles Gray and Saharon
Shelah. If Player II has a winning strategy � , M is a countable elementary submodel
of a large enough structure and p ∈ P∩M is an arbitrary condition, simulate a play
against the strategy � in which Player I indicates p= pini and then enumerates all
the open dense sets in the model M , and Player II follows the strategy � ∈ M .
The result of such a play is the required master condition for the model M . On the
other hand, if the forcing P is proper, Player II can win the properness game by
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following some simple bookkeeping tool to make sure that in the end of the play
there is a model M which contains all the moves played, and for every dense set
D ∈M that Player I played, Player II enumerated the whole set M ∩D. The result
of the game is a condition weaker than the master condition for the model M and
therefore nonzero.

For the second equivalence first suppose that there is a winning strategy �
for Player I in the properness game. Let pini ∈ P be the initial condition indi-
cated by the strategy, let G ⊂ P be a generic filter containing the condition pini
and in V
G� let f � P<� → P be the function defined by f	�p
 = some condition
in D∩G if �p is a legal sequence of Player II’s answers to the strategy � and
D is the appropriate set played by the strategy � , and f	�p
 = pini otherwise.
I claim that no countable set in V is closed under the function f . For contra-
diction assume that q ≤ pini is a condition and a ⊂ P is a countable set such
that q � ǎ is closed under the function ḟ . Consider the counterplay against the
strategy � in which Player II keeps all of his moves in the set a and to each
open dense set D ⊂ P the strategy � produces he enumerates the countable set
D∩a. A review of the definitions reveals that the condition q is stronger than the
result of this play, contradicting the assumption that � was a winning strategy for
Player I.

Now suppose that some condition p ∈ P forces the set 	
P�ℵ0
V to be nonsta-
tionary in 	
P�ℵ0
V
G�, as witnessed by some function f � P<�→ P in the extension
under which no countable subset of P in the ground model is closed. Player I will
win by indicating the initial condition p = pini and then employing some simple
bookkeeping tool to play in such a way that in the end there is a countable elemen-
tary submodel M of a large enough structure such that all Player II’s moves stayed
inside M and Player I enumerated all open dense subsets of the poset P in the
model M . If the result q ≤ pini of such a play was nonzero then clearly q is a master
condition for the model M and it forces M ∩P is closed under ḟ , contradicting
the assumed properties of the name ḟ . Thus the described strategy is winning for
Player II and the second equivalence follows.

For the determinacy of the properness game, fix a universally Baire �-ideal I on
a Polish space X such that P = PI . Note that it is harmless to require Player II to
provide codes for the Borel sets he is playing, since the outcome of the game does
not depend on these codes. The sequence of the codes is then continuously read off
the play, and the determination whether the result of the play is not in the ideal I
is a universally Baire operation on the sequence of the codes. Now use Fact 1.4.2
to make the determinacy conclusion.

In this particular case, there is an interesting consequence of the determinacy
of the properness game answering the concerns of Carlos DiPrisco. It does not fit
anywhere else in the book, and I include it here.
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Proposition 3.10.5. (LC+CH) Let P be a proper universally Baire forcing. Let  
be a weakly compact cardinal and V	�
 be the derived Solovay model. Force with
P over V	�
 and let �∗ be the set of reals of the resulting extension. Then V	�∗

is a Solovay model as well.

Proof. It is enough to show that every element of �∗ is generic over V for a poset
of size <  [13], 1.1. To this end, suppose that p ∈ P and � are a condition in P
and a P-name for a real in the model V	�
. By a weak compactness argument,
there is an inaccessible cardinal � <  and a V -generic filter g ⊂ Coll	��< �
 in
V	�
 such that p ∈ V 
g� and � ∩V 
g� ∈ V 
g� is a name for a real in the forcing
P∩V 
g�. In the model V 
g�, the forcing P is proper by Corollary 2.2.9. This means
that in that in the properness game GV 
g�, Player II has a winning strategy � which
remains a winning strategy in every forcing extension of V 
g�, in particular, in the
model V	�
. In the model V	�
, find a play against the strategy � in which Player
I indicates pini = p and then enumerates all the open dense subsets of the poset P in
the model V 
g�. Since � remains a winning strategy in the model V	�
, the result
of this play is then a condition q ∈ P ∩V	�
. That condition q by its definition
forces in P that the intersection H ∩V 
g� of the generic filter on P with the model
V 
g� will be V 
g�-generic. Since �∩V 
g� was a P-name in V 
g�, this implies that
�/H ∈ V 
g�
H ∩V 
g�� is a real in a generic extension of the ground model V by a
poset of size <  .

3.10.3 The bounding condition

Definition 3.10.6. Suppose P is a partial order. The bounding game G between
Players I and II proceeds as follows. First Player I indicates an initial condition
pini ∈ P. After that, the moves alternate, at round n Player I produces an open
dense set Dn ⊂ P and Player II responds with a finite set dn ⊂ Dn. Player II wins
if the result of the play, the expression

pini∧
∧

n

∨
dn

denotes a non-zero element in the complete Boolean algebra RO	P
.

Theorem 3.10.7. Suppose that P is a proper partial order. The following are
equivalent:

• Player I has a winning strategy in the game G;
• some condition forces that P adds an unbounded real.
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Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined. If P = PI for a �1

1 on �
1
1 ideal I on a

Polish space then the game is determined without the need for the large cardinal
assumptions.

Proof. If p � ḟ ∈ �� is an unbounded real then Player I has a winning strategy in
the game which completely ignores the moves of the other player. Just put p= pini
and Dn = �q ∈ P � q decides the value of ḟ 	ň
�. It is clear that whatever Player
II answers, the result of the play would have to bound the function ḟ ∈ �� by a
ground model function, and therefore the result has to be zero.

On the other hand, if � is a winning strategy for Player I then a name for
an unbounded real can be extracted as follows. Let p = pini, the initial condition
dictated by the strategy � , let M be a countable elementary submodel of a large
enough structure, and let q ≤ p be an M-master condition. If �An � n ∈ �� is the
enumeration of all maximal antichains of P which are in the model M , the countable
antichains �M ∩An � n ∈ �� are predense below q. I claim though that there is
no strengthening r ≤ q which is compatible with at most finitely many elements
of each antichain An ∩M . If r was such a strengthening, Player II could win
against the strategy � by choosing a maximal antichain An ⊂ Dn, An ∈M against
Player II’s move Dn and letting dn ⊂ An ∩M be the finite set of all conditions
compatible with r . It is clear that in this way all moves of the play will be in
the model M and the result of the game will be larger than r, therefore nonzero,
contradicting the choice of � as a winning strategy. With this information at hand,
it is easy to see that with any enumeration P∩M = �sm � m ∈ �� the name ḟ ∈ ��,
ḟ 	ň
=least m such that sm ∈ An and šm ∈ Ġ, is forced by the condition q to be an
unbounded real.

The argument for the determinacy of this game is literally the same as in the
previous section. For the �1

1 on �
1
1 version, suppose that the forcing PI is bounding.

I will describe a closed version of the bounding game which is more difficult to
play for Player II than the original bounding game, and I will use the determinacy
of closed games to find a winning strategy for Player II in the more difficult game.

For the simplicity of notation assume that X = 2�. Note that compact sets are
dense in the poset PI , and the set of I-positive compact sets is analytic in K	X
 by
the definability assumption. Let T ⊂�<�×	2<�
<� be a tree which projects into the
set of all trees S ⊂ 2<� such that 
S� � I . The closed bounding game is then played
between Player I and II in the following fashion. The moves of Player I are the same
as in the original bounding game. Player II responds to each open set Dn with a
finite set dn of binary trees such that for all U ∈ dn, 
U�∈Dn. Moreover he indicates
a node tn ∈ T . Player II wins if the nodes tn � n ∈ � form a branch through the tree
T and its projection S, a binary tree, is covered by

⋃
dn for every number n ∈ �.
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The game is closed for Player II and clearly more difficult for him to play than
the original game. This closed version of the game is determined and therefore
it will be enough to show that Player I has no winning strategy. Suppose � is a
strategy for Player I, M is a countable elementary submodel of a large enough
structure, An � n ∈ � is a list of all maximal antichains in the model M consisting
of compact sets, let p be the initial condition dictated by the strategy � , and let
q ≤ p be an M-master condition. The bounding property shows that there is a
closed set r ≤ p such that r is covered by a finite number of conditions in the
antichain An, this for all numbers n ∈ �. Player II will now win as in the previous
proof, producing a path through the tree T which projects into a binary tree S such
that 
S�= r . The argument is complete.

3.10.4 Not adding a bounded eventually different real

Definition 3.10.8. Suppose P is a partial order. The BED game G between Players
I and II proceeds as follows. First Player I indicates an initial condition pini ∈ P.
After that, the moves alternate, at round n Player I produces a natural number
kn and a P-name ṁn for a number smaller than kn and Player II responds with a
number ln ∈ kn. Player II wins if the result of the play, the expression

pini∧
∧

n

∨

o>n


ľo = ṁo


denotes a nonzero element in the complete Boolean algebra RO	P
.

Theorem 3.10.9. Let P be a partial order. The following are equivalent:

• Player I has a winning strategy in the BED game;
• some condition forces that P adds a bounded eventually different real.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined.

Proof. First suppose that Player I has a winning strategy � in the game calling for
some initial condition pini. Then he actually has a winning positional strategy �,
a sequence kn� ṁn of names for natural numbers such that he wins playing these
partitions no matter what the opponent’s answers are. To obtain the positional
strategy note that at each round n there are only finitely many names for natural
numbers the strategy � can produce as n-th move for Player I, and choose ṁn

to be a name for a number coding them all. It is clear that � must be a winning
strategy if � is. Now the name ġ ∈ ��, ġ	n
= ṁn, is forced by the condition pini
to be eventually different from every ground model function. For if q ≤ pini forced
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ġ ∩ f̌ 
 = ℵ0 for some ground model function f , Player II could play ln = f	n

against the strategy �, and q would be smaller than the result of the play, showing
that Player II wins, a contradiction.

On the other hand, a name ġ ∈�� for a function bounded by some ground model
function f ∈ �� which some condition p ∈ P forces to be eventually different,
provides a winning strategy for Player I. Just let kn = f	n
 and ṁn = ġ	ň
.

The determinacy of the game is an issue more sensitive than in the previous
cases since the payoff set is not of a form to which Fact 1.4.2 can be immediately
applied. I need to consider a new game H which is only slightly harder for Player
II than the game G, and which is determined.

The moves of Player I in the game H are the same as in the game G. At round
n, Player II answers by choosing a number ln ∈ kn as in the game G, but in addition
he plays finite, possibly empty, sets dni � i ∈ n of conditions in P such that for every
i ∈ n and q ∈ dni , q � ṁi = ľi. Player II wins if the expression

∧
n

∨
o>n

∨
i d

i
o denotes

a nonzero element in the complete Boolean algebra RO	P
.
Fact 1.4.2 shows that the game H is determined whenever the forcing P is

universally Baire and suitable large cardinals exist. I will show that the game H is
really the same as G for Player I in that Player I has a winning strategy in the game
H if and only if some condition forces P to add a bounded eventually different
real. The determinacy of the game G then immediately follows: if Player I does
not have a winning strategy in the game G, then the forcing P does not add a
bounded eventually different real, Player I has no winning strategy in the game H ,
the determinacy of the game H yields a winning strategy for Player II in it, and if
Player II erases from that strategy the finite sets of conditions he obtains a winning
strategy for the game G as desired.

Now, on one hand, if the forcing P adds a bounded eventually different real then
Player I can win the game H in exactly the same way he won the game G. On the
other hand, suppose that P is proper, does not add an eventually different real, and �
is a strategy for Player I in the game H . I must produce a play against the strategy in
which Player II wins. Let M be a countable elementary submodel of a large enough
structure, let pini ∈ P∩M be the first move dictated by the strategy � and let q ≤ p
be a master condition. Let pn � n ∈� be an enumeration of the set P∩M . Consider
the set S of all plays in which Player I uses his strategy and Player II plays just
finite sets in the model M such that dni ⊂ �p0� p1� � � � pn�. This is a finitely branching
tree of plays. Consider the name ġ � �→�<� given by the demand that ġ	n
 is the
collection of all possible names played at round n in the plays in the set S. Since the
poset P does not add a bounded eventually different real, there is a condition r ≤ q
and a function f � �→ �<� such that r � 
ġ∩ f̌ 
 = ℵ0. Now consider the play in
the set S in which Player II at round n plays the number ln predicted for the name
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ṁn by the function f and uses the sets dkn � k ∈ � to slowly exhaust the countable
set �s ∈ P ∩M � s � ṁn = ľn�. A review of the definitions shows that the result of
this play will be larger than the condition r and Player II wins as desired.

3.10.5 Laver property

Definition 3.10.10. [2], 6.3.27. A forcing P has the Laver property if for every
ground model function f ∈ �� and every ground model nondecreasing function
g ∈ �� converging to infinity, for every function h ∈ �� dominated pointwise by f
in the extension, there is a ground model function e � �→ 
��<ℵ0 such that the set
e	n
 has size ≤ g	n
+1 and contains the value h	n
.

A basic definable example of a partial ordering with Laver property is the
Mathias forcing. It seems to be difficult to come up with substantially more complex
examples. There is a natural game theoretic counterpart to the Laver property.

Definition 3.10.11. Suppose P is a partial order. The Laver game G between
Players I and II proceeds as follows. First Player I indicates an initial condition
pini ∈ P. After that, the moves alternate, at round n Player I produces a natural
number kn and a P-name ṁn for a number smaller than kn, and a number gn ∈ �
and Player II responds with a set an ⊂ kn of size at most gn+1. Player II wins if
either the sequence of numbers gn � n ∈ � was not nondecreasing and diverging to
infinity or else the result of the play, the expression

pini∧
∧

n


ṁn ∈ ǎn


denotes a non-zero element in the complete Boolean algebra RO	P
.

Theorem 3.10.12. Let P be a partial order. The following are equivalent:

• Player I has a winning strategy in the Laver game;
• the forcing P does not have the Laver property.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined.

Proof. Suppose first that Player I has a winning strategy � in the Laver game.
It is then not difficult to see that he has a positional winning strategy �, that is,
a nondecreasing function g ∈ �� and names ṁn such that he wins playing these
objects regardless of the oponnent’s moves. To see this, note that at every move
there are only finitely many options for Player II and so there are only finitely
many possible answers the strategy � can supply. Let ṁn be a name for a number
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coding all the finitely many names the strategy � can supply at round n. Finally,
use a compactness argument to find an increasing sequence �ni � i ∈ �� of natural
numbers such that the strategy � asks for at least i many pieces of the partition
at each round after round ni, no matter what Player II’s moves. Then define the
function g by g	n
= i if nm ≤ n< ni+1. It is not difficult to check that the positional
winning strategy � given by g and �ṁn � n∈�� is winning since it is a better strategy
than � . But then, if pini ∈ P is the initial condition dictated by the strategy, f ∈ ��

is a function defined by f	n
 = kn, and ḣ is a name for a function in �� defined
by ḣ	n
 = ṁn it is immediate that these objects witness the failure of the Laver
property of the poset PJ .

On the other hand, if Player I has no winning strategy in the Laver game then
the Laver property is rather easy to check. Suppose p ∈ P is a condition, f ∈ �� a
function, g ∈ �� a nondecreasing function diverging to infinity, and ḣ a name for
a function in �� dominated by f . The condition p = pini together with the names
ṁn = ḣ	ň
 and the function g does not constitute a positional winning strategy
for Player I, and there must be a winning counterplay for Player II, with moves
Bn =

⋃
k∈e	n
 Ck

n for some function e � �→ 
��<ℵ0 such that 
e	n

 ≤ g	n
+1. Any
condition q≤the result of the play then clearly forces ∀n∈� ḣ	n
∈ ě	n
 as desired.

The determinacy of the game is handled in the same way as in Section 3.10.4.

3.10.6 Strong preservation of submeasures

Definition 3.10.13. Suppose that � is a universally Baire submeasure on a Polish
space X. A forcing P strongly preserves � if for every real number � > 0 and every
set A⊂ X in the extension with �	A
 < � there is a Borel set B ⊂ X coded in the
ground model such that A⊂ B and �	B
 < �.

This is a commonly studied forcing property; in the case of outer Lebesgue
measure, it coincides with the preservation of basis of the Lebesgue null ideal.
In other cases, it apparently has a life of its own. In this book it appears in
Theorems 4.3.13 and 4.4.17. I will always use it with outer regular submeasures.
It may make sense to study it for functions which are not necessarily subadditive,
such as general outer regular capacities.

For several classes of submeasures the strong preservation has a suitable game-
theoretic restatement. I will restrict to the case of strongly subadditive capacities.

Definition 3.10.14. Suppose that P is a forcing and � is an outer strongly
subadditive capacity on the Cantor space 2�. The strong preservation game G
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is played by Players I and II in the following fashion. First, Player I indi-
cates real numbers 0 < �ini < �ini, a clopen set Uini ⊂ 2�, and a condition
pini ∈ P. Then he plays one by one P-names U̇n � n ∈ � for clopen sets so that
pini forces U̇ini ⊂ U̇0 ⊂ U̇1 ⊂ � � � and for every pair of natural numbers n ∈ m,
�	U̇n
−�	U̇ini
 < �ini and �	U̇m
−�	U̇n
 < 2−n�ini. Player II plays a sequence
Vn � n ∈ � of clopen sets such that Uini ⊂ V0 ⊂ V1 ⊂ � � � and for every n ∈ m ∈ �,
�	Vn
−�	Uini
 < �ini and �	Vm
−�	Vn
 < 2−n�ini. Player II is allowed to wait
for arbitrary finite number of steps before placing the next set on his sequence.
Player II wins if the result of the play, the expression

pini∧
∧

n

∨

m


U̇n ⊂ V̇m


denotes a nonzero element in the complete algebra RO	P
.

Note that as the sets U̇n and Vn are (forced to be) clopen in the compact space 2�,
the result of the game is equal to pini∧


⋃
n U̇n ⊂

⋃
n V̇n
.

Theorem 3.10.15. Suppose that P is a forcing and � is a strongly subadditive
capacity on the Cantor space 2�. The following are equivalent:

1. Player I has a winning strategy in the strong preservation game;
2. P does not strongly preserve the capacity �.

If suitable large cardinals exist and P is proper and P = PI for some universally
Baire �-ideal I on a Polish space, then the game is determined. If the ideal I
is in addition �1

1 on �
1
1 and the forcing PI is bounding, then the large cardinal

assumptions are not necessary.

Proof. The (2)→(1) direction is easy. If P does not strongly preserve � the there
is a condition p ∈ P, real numbers 0 < �< � and a P-name for an open set Ȯ ⊂ 2�

such that p � �	Ȯ
 < � and Ȯ cannot be covered by a ground model open set of
mass < �. Then Player I can win by indicating pini = p, � = �ini, � = �ini, and
Uini = 0, and then playing so that in the end p � Ȯ =⋃

n U̇n.
The (1)→(2) direction is harder. Suppose that Player I has a winning strategy �

in the game, with initial choices p = pini�U = Uini� � = �ini� � = �ini. I will find a
P-name Ȯ ⊂ X for an open set such that pini � U̇ ⊂ Ȯ∧�	Ȯ
−�	U̇
 < �+�

2 such
that every legal sequence �Vn � n ∈�	 of nontrivial Player II’s moves can be played
against the strategy � in such a way that the strategy � answers with a sequence
of names �U̇n � n ∈ �	 such that p � ⋃

n U̇n ⊂ Ȯ. It immediately follows that the
set Ȯ cannot be covered by a ground model set of �-mass < �: if R ⊂ 2� is a
ground model open set with �	R
 < �, q ≤ p a condition, and q � Ȯ ⊂ Ṙ, Player
II could produce a counterplay against the strategy � such that in it,

⋃
n Vn = R
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and pini � ⋃
n U̇n ⊂ Ȯ. The result of such a play would have to be bigger than q,

contradicting the assumption that � was a winning strategy for Player I.
To produce the name Ȯ, consider the tree T of all finite legal sequences of

nontrivila moves of Player II against the strategy � . To each node t ∈ T , t �= 0,
assign a positive number mt such that �t2

−mt� < �−�
2 and s⊂ t→ms ∈mt. To each

node t ∈ T assign the unique finite partial play �t against the strategy � such that the
sequence of nontrivial moves of Player II in it is exactly t, and for every n∈ dom	t
,
t	n
 is played exactly at round mt�n+1. The play �t ends with the last move on the
sequence t. Let Ȯ be the name for the union of all the names for basic open sets
that the strategy � produces against the plays �t � t ∈ T . I claim this name works.

It is clearly enough to prove that p � �	Ȯ
−�	Uini
 <
�+�

2 . Just enumerate the
nodes of the tree T as tn � n ∈ �, respecting the extension order. For every number
n ∈� t ∈ T , let Ȯn be the name for the union of all the basic open sets the strategy
� produces in the infinite extension of the play �tn in which Player II adds no
nontrivial moves past �t. It will be enough to prove by induction on n ∈ � that
p��	

⋃
k∈n Ȯk
−�	U
 < �+�k∈n2−mtk �. This is clear for n= 0. If it is known for

some n ∈ �, find l ∈ n such that tl is an immediate predecessor of tn, and observe
that p � �	Ȯn
 < �	Ȯn ∩ Ȯl
+ 2−mtn � by the definition of the game. The strong
subadditivity now kicks in to give p � �	

⋃
k∈n Ȯk ∪ Ȯn
 < �	

⋃
k∈n Ȯk
+ 2−mtn �

and the induction step follows.
Now suppose that P = PI is a proper forcing with some universally

Baire �-ideal I . The determinacy of the game is a nontrivial statement, since the
payoff set of the game is not of the form to which Fact 1.4.2 can be applied.
Instead, I have to define an auxiliary game Ḡ which is determined under suitable
large cardinal assumptions, and show that the game Ḡ is more difficult for Player
II than the game G, but still Player I has a winning strategy in one of the games iff
he has a winning strategy in the other. The game Ḡ is obtained from G by having
Player II additionally indicate conditions pk ∈ P�k ∈ �, and stipulating that Player
II wins if the result of the game, the expression

pini∧
∧

n

∨∨

m

�pk � pk � U̇n ⊂ V̌m�

is nonzero in the complete algebra RO	P
. It is not difficult to use Fact 1.4.2 to
verify that if P = PI for a universally Baire �-ideal I and suitable large cardinals
exist, then the game Ḡ is determined. (The set ��n�m�k	 ∈ �3 � pk � U̇n ⊂ V̌m�
as well as the sequence of (codes for) the conditions pk � k ∈ � are obtained
continuously from the play of the game, and then checking if the result of the play
is in the ideal I is a universally Baire procedure on these two objects and the ideal
I .) Clearly, the game Ḡ is more difficult for Player II than the original game. I must
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prove that if Player I has a winning strategy in the auxiliary game, then he has one
in the original game. The properness of the forcing P is a necessary ingredient here.

Suppose that � is a winning strategy for Player I in the auxiliary game, with ini-
tial choices p�U����. Let M be a countable elementary submodel of a large enough
structure, and let pk � k ∈� be an enumeration of the set P∩M . Now consider only
the plays in which Player II indicates this sequence of conditions. Just as before,
it is possible to find a name Ȯ for an open set such that p � �	Ȯ
−�	U
 < �+�

2
and every legal sequence of clopen sets can be played against the strategy � such
that the resulting name for an open set the strategy � produces is forced to be a
subset of Ȯ. I will show that, writing q ≤ p for any M-master condition, q � Ȯ
cannot be covered by any open set from the ground model of mass �	U
. This of
course shows that Player I has a winning strategy in the original game.

Now if R ⊂ 2� was an open set with U ⊂ R and �	R
−�	U
 < �, and r ≤ q
was a condition forcing Ȯ ⊂ Ṙ, then stratify R = ⋃

n Vn as a union of a legal
sequence of nontrivial moves for Player II’s moves and find a way to play them
so that the resulting set the strategy � produces is forced by p to be a subset of
Ȯ. Now observe that the moves U̇n the strategy � produced in such a play are
all elements of the model M . Since r ∈ P is a master condition, this means that
r � ∧

n

∨
m U̇n ⊂ V̇m is equivalent to r ≤∧

n

∨
m

∨
�s ∈M ∩P � s � U̇n ⊂ V̇m�. Thus

the condition r witnesses that Player II won against the strategy � , a contradiction.
The ZFC case of bounding forcing associated with a �1

1 on �
1
1 ideal is left to

the interested readers. It is just necessary to further adjust the auxiliary game by
requiring Player II to produce a witness to the fact that the result of the game is
not in the ideal I .

3.10.7 Analytic P-ideals

Given a suitably definable ideal J on � and a forcing P, one may ask whether every
set in J in the extension is covered by a set in J in the ground model. In general, this
is a difficult question. In this section I offer a game-theoretic reformulation of this
preservation property for analytic P-ideals. I will use the characterization of P-ideals
due to Solecki: if J is an analytic P-ideal on � then there is a lower semicontinuous
submeasure � on P	�
 such that J = J� = �a⊂ � � limn �	a\n
= 0�.

Definition 3.10.16. Suppose that � is a lower semicontinuous submeasure on P	�

and P is a forcing. The J�-preservation game is played between Players I and II
in the following fashion. First, Player I indicates real numbers 0 < �ini < �ini,
a condition pini ∈ P, as well as a finite set uini ⊂ �. After that, at round n ∈ �
Player I indicates a P-name u̇n for a finite subset of � such that pini forces
ǔini ⊂ u̇0 ⊂ u̇1 ⊂ � � � and �	u̇n \ ǔ
 < � and �	u̇n \ u̇m
 < 2−m�ini. Player II answers
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with a sequence v0� v1� v2 � � � of finite subsets of � such that uini ⊂ v0 ⊂ v1 ⊂ � � � ,
�	vn \uini
 < �ini and �	vn \vm
 < 2−m�ini. Player II can postpone putting another
set on his sequence for any number of rounds. Player II wins if the result of the
play, the expression

pini∧

⋃

n

u̇n ⊂
⋃

n

v̌n


is a nonzero element in the algebra RO	P
.

Theorem 3.10.17. Suppose that P is a forcing and � is a lower semicontinuous
submeasure on P	�
. The following are equivalent:

1. P forces that every element of the ideal J� in the extension is covered by a set
in the ideal J� in the ground model;

2. Player I does not have a winning strategy in the game.

Moreover, if suitable large cardinals exist and P = PI for a universally Baire ideal
I , and PI is proper, the game is determined. If in addition the ideal I is �1

1 on �
1
1

and the forcing PI is bounding, then large cardinal assumptions are not necessary.

Proof. Obviously, if item (1) fails and p � ȧ ∈ J� is a set that cannot be covered
by a ground model element of J�, then Player I can win the game by indicating
pini = p and then arranging ȧ =⋃

n u̇n. On the other hand, suppose that (1) holds
and � is a strategy for Player I. I must find a counterplay winning for Player II.
Let p�����u be the initial choices of the strategy � . I will find a set b ∈ J� and a
condition q≤ p such that u⊂ b��	b\u
< � and for every legal sequence vn � n∈�
of nontrivial moves for Player II there is a way to play it so that q � ⋃

n u̇n ⊂ b,
where u̇n � n ∈ � is the sequence of names the strategy � produces. Then it is easy
to stratify the set b into an increasing union b = ⋃

n vn so that these sets form a
legal sequence of nontrivial moves for Player II, and there must be a way to play
them so that in the end, Player II wins as witnessed by the condition q.

To find the set b, consider the tree of all finite sequences of legal answers
by Player II, and for each t ∈ T fix a number nt such that s ⊂ t→ ns ∈ nt and
�t2

−nt < �−�
�

. For every t ∈ T let �t be the shortest finite play in which Player II
produces exactly the sequence t as his nontrivial moves, and he plays t	k
 at round
nt�k+1. Let ȧ be the name for the union of all sets the strategy � indicates in the
course of all these plays �t � t ∈ T . I claim that pini � ȧ ∈ J� and �	ȧ
 < �. Then use
the preservation properties of the forcing P to find a condition q ≤ p and a ground
model set b ∈ J� of �-mass < � such that q � ȧ⊂ b̌; this will conclude the proof.

To verify the properties of the name ȧ, for a node t ∈ T write ȧt for the
name for the union of all names the strategy � produces in the infinite play that



100 Properties

starts with �t and has no nontrivial moves by Player II past t. Clearly ȧ =⋃
t ȧt.

It follows from the definition of the game that p forces these sets to be in the
ideal J and �	ȧt \ ȧs
 < 2−ns� whenever s ∈ T is an immediate predecessor of the
node t ∈ T . Thus, p � �	ȧ
 ≤ �	ȧ0
+���	ȧt \ ȧs
 � t ius an immediate succesor
of s�≤ �+�t2

−nt� < �. Moreover, if �> 0 is a real number, find a finite set S ⊂ T
closed under initial segment so that �t∈T\S2−nt < ��/2. Since p � ȧt ∈ J� for every
node t ∈ T , it is also true that p forces

⋃
t∈S at ∈ J� and there must be a number

m ∈ � such that �	
⋃

t∈S ȧt \m
 < �/2. For such a number m ∈ �, �	ȧ \m
 < �,
and therefore ȧ ∈ J�.

The determinacy of the game is handled in a way parallel to the previous cases,
and I omit the argument.

3.10.8 Continuous reading of names

Definition 3.10.18. Suppose I is a �-ideal on a Polish space X and O is a countable
topology basis for X closed under finite unions. Suppose � =⋃

�ai�j � i� j ∈ �� is
a partition of � into an array of infinite pairwise disjoint sets. The continuous
reading of names game G between Players I and II proceeds as follows. First
Player I indicates and initial condition pini ∈ PI . After that, the moves alternate,
Player I producing a name �n for a natural number and Player II answering with
a basic open set On ∈O. Player II wins if the result of the play, the expression

pini∧
∧

i

∧

j


ẋgen ∈
⋃

n∈ai�j
On↔ �i = j


denotes a nonzero element in the complete Boolean algebra RO	PI
.

Theorem 3.10.19. Suppose that the forcing PI is proper. The following are
equivalent:

1. PI fails to have the continuous reading of names;
2. Player I has a winning strategy in the game G.

Moreover, if suitable large cardinals exist and the ideal I is universally Baire then
the game G is determined.

Proof. On one hand, if PI fails to have the continuous reading of names then there
is an I-positive Borel set B⊂X and a Borel function f � B→�� such that f is not
continuous on any Borel I-positive subset of B. Player I will then win by setting
pini = B and �i = ḟ 	ẋgen
	i
 and ignoring the moves of Player II altogether. If the
result of such a play was positive, with an I-positive Borel set C ⊂ B below it, it
is clear that for every i� j ∈ � it is the case that for all but I-many points x ∈ C,
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f	x
	i
= j↔ x ∈⋃
n∈ai�j On. Throwing out these countably many I-small sets from

C, the remainder is an I-positive Borel subset C ′ ⊂ C such that the f -preimages of
basic open sets in �� are relatively open in C ′.

On the other hand, suppose that Player I has a winning strategy � in the game G
starting with a condition pini ∈ PI . Let M be a countable elementary submodel of a
large enough structure containing pini� I and � and let B be the I-positive Borel set
of the M-generic points meeting the condition pini. Enumerate all names for natural
numbers in the model M by �i � i ∈�, and define f � B→�� by f	x
	i
= �i/x. This
is a Borel function, and I claim that f is not continuous on any Borel I-positive
subset of B. If C ⊂ B was a Borel I-positive set such that f � C was continuous,
then Player II could defeat the strategy � in the following way. For the n-th move
Player I will make, find a number in such that this move is �in , for every number
j ∈� find an open set Oin�j

⊂X such that ∀x ∈ C f	x
	in
= j↔ x ∈Oin�j
, and use

the moves with indices in the set ain�j ⊂ � to cover the open set Oin�j
⊂ X with its

basic open subsets. It is clear than in the end the condition C is below the result of
the play, and therefore Player I lost.

The determinacy of the game is handled as in the previous cases and I omit the
argument.

3.10.9 Preservation of Baire category

Definition 3.10.20. Suppose P is a partial order. The Baire category game G
between Players I and II proceeds as follows. First Player II indicates an initial
condition pini ∈ P. After that, the moves alternate, Player I producing a condition
pn and Player II playing its strengthening qn ≤ pn. Player I wins if the result of the
play, the expression

pini∧
∧

m

∨

n>m

qn

denotes a nonzero element in the complete Boolean algebra RO	P
.

Theorem 3.10.21. Suppose that the forcing P is proper. The following are
equivalent:

1. P below some condition makes the set of the ground model reals meager;
2. Player II has a winning strategy in the game G.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined.

Proof. (1)→(2) is easier. Suppose that p � Ȯn � n ∈ � are open dense subsets of
the Cantor space such that 2� ∩V ∩⋂

n Ȯn = 0. Then Player II will win by first
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indicating p = pini and then playing conditions qn in such a manner that there are
finite binary sequences tn such that

• t0 ⊂ t1 ⊂ � � �

• qn � Otn
⊂⋂

m∈n Ȯm.

This is a winning strategy, since if the result of the play was nonzero, it would
be a condition forcing the ground model real

⋃
n tn into the comeager set

⋂
n Ȯn,

contradicting the assumptions.
For the opposite direction, fix a winning strategy � for Player II in the game

and let M be a countable elementary submodel of a large enough structure. Let q
be an M-master condition below the inital condition pini ∈ P ∩M indicated by the
strategy � . Let T be the tree of all finite plays of the game T with moves in the
model M in which Player II follows his strategy � . Let Ġ be the P-name for the
generic filter and let Ȧ= �� ∈ 
T� � ∃�n qn	�
 ∈ Ġ�⊂ 
T�, where qn	�
 is the n-th
condition indicated by Player II in the play �. I will show that q � Ȧ ⊂ 
T� is a
comeager set which contains no ground model elements, and this will complete the
proof.

To see that Ȧ is forced to be comeager it is enough to produce for each play
t ∈ T ending with Player II’s move a two move extension in the tree T whose last
move by Player II belongs to the generic filter. Note that Dt = �r ∈ P � ∃s ∈ P t�s�r
is a play according to the strategy ��⊂ P is a dense set in the model M . Therefore
the condition q forces Dt ∩ Ġ∩M �= 0, yielding the desired extension of the play
t. To see that no ground model infinite play � ∈ 
T� can belong to the set Ȧ, note
that if r ≤ q is a condition such that �̌ ∈ Ȧ then r must be a condition stronger than
the result of the game �. This is impossible since the strategy � is winning and
therefore the result of the game � is zero.

The determinacy of the game follows immediately from Fact 1.4.2.

3.10.10 Preservation of category basis

Definition 3.10.22. Suppose P is a partial order. Say that P preserves category
basis if every meager set in the extension is contained in a meager set coded in the
ground model.

Essentially by a theorem of Fremlin [2], 2.2.11, the preservation of category
basis is equivalent to the conjunction of ��-bounding and the preservation of
nonmeagerness.

Definition 3.10.23. Suppose P is a partial order. The category basis game G
between players I and II proceeds as follows. First Player II indicates an initial
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condition pini ∈ P. After that, the moves alternate, Player I producing a condition
pn and Player II playing its strengthening qn ≤ pn, after which Player I may or
may not raise a flag. Let n0 < n1 < � � � be the rounds at which Player I raised the
flag; we agree that n0 = 0. Player I wins if he raised the flag infinitely many times
and the result of the play, the expression

pini∧
∧

i

∨

ni≤n<ni+1

qn

denotes a non-zero element in the algebra RO	P
.

Theorem 3.10.24. Suppose that the forcing P is proper. The following are
equivalent:

1. P does not preserve category basis;
2. Player II has a winning strategy in the category basis game.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined. If P = PI for some �1

1 on �
1
1 �-ideal

I then the game is determined without the use of the large cardinal assumptions.

Proof. First suppose that P does not preserve category basis, and find a name
Ȯn � n ∈ � for a sequence of open dense subsets of the Cantor space 2� such that
the set

⋂
n Ȯn contains no comeager subset coded in the ground model. I will assume

that each Ȯn is in fact a name for a dense open subset of 2<�. Player II will win
in the following way. He enumerates the binary tree 2<� by tm � m ∈ � and in each
round m ∈ � he finds a condition qm ≤ pm and a binary sequence sm ⊃ tm so that
qm � šm ∈

⋂
n∈m Ȯn. Suppose for contradiction that this strategy is not winning and

find a play according to it whose result is some condition r ∈ P. Consider the set
B = �x ∈ 2� � ∃�m sm ⊂ x�. A review of the definitions reveals that B ⊂ 2� is a
comeager set and r � Ḃ ⊂⋂

n Ȯn, contradicting the assumption on the open dense
sets Ȯn � n ∈ �.

Now suppose that Player II has a winning strategy � . First I will argue that there
must be also a winning strategy for Player II which disregards the flag.

Now let pini ∈ P be the initial condition indicated by the strategy � for contra-
diction assume that there is a condition p≤ pini such that the forcing P � p preserves
category basis. Let M be a countable elementary submodel of a large enough struc-
ture containing the strategy �. Let T be the countable tree of all plays according to
the strategy � with all moves in the model M . Let q ≤ p be an M-master condition.
As in the previous proof, writing Ȧ = �� ∈ 
T� � ∃�n qn	�
 ∈ Ġ� ⊂ 
T� it is the
case that q � Ȧ ⊂ 
T� is comeager. Since the forcing P � p preserves category,
there is a strengthening q′ ≤ q and a play � ∈ 
T�∩V such that q′ � �̌ ∈ Ȧ. Let
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ḃ = �n ∈ � � �	n
 ∈ Ġ�⊂ �. This is forced by q′ to be an infinite subset of �, and
since the forcing P � p is bounding, there is a ground model infinite set c ⊂ � and
a condition q′′ ≤ q such that q′′ �there is an element of ḃ between any two distinct
elements of č. Consider the play � ′ which proceeds just like � except that Player
I raises flags at rounds indicated by the numbers in the set c. Since the strategy �
disregards the flag entirely, this is a play which observes the strategy � . A review
of the definitions shows that q′′ ∈ P is a condition smaller than the result of the
play � ′, thus Player I won, contradicting the assumption that � was a winning
strategy.

The determinacy of the game is clear in the context of large cardinals and
universally Baire forcing P from Fact 1.4.2. The determinacy of the game in the �1

1

on �
1
1 case in ZFC is handled similarly to Theorem 3.10.7. I will produce a Borel

variation of the game which in the case of the category preserving forcing is more
difficult for Player I than the original game, show that if the forcing PI preserves
category basis then Player II has no winning strategy in the Borel game, and use a
determinacy argument to find a winning strategy for Player I.

For the simplicity of notation assume that X = 2�. Since the ideal I is �1
1

on �
1
1 the collection of compact I-positive subsets of X is analytic in K	X
. Let

T ⊂�<�× 	2<�
<� be a tree that projects into the set of all trees S ⊂ 2<� such that

S� � I . The Borel category basis game is played in the following fashion. Player
I indicates compact sets pn ∈ PI and Player II answers with compact sets qn ⊂ pn.
Moreover, Player II raises the flag after some rounds indexed by 0 = n0 ∈ n1 ∈
n2 ∈ � � � , and at n-th round also indicates a node tn ∈ T such that all numbers used
in tn are smaller than n and 
tn
 ≤ n. Player I wins if he raised the flag infinitely
many times and the nodes tn � n ∈ � form a branch through the tree T and its
projection S, a binary tree, is covered by each of the sets

⋃
�qn � nk ≤ n < nk+1� for

every k ∈ �.
The payoff of this game is clearly Borel. Moreover, if the forcing PI is bounding

then compact sets are dense in it, and since smaller move is a better move for
Player II, the Borel game is in such a case harder for Player I than the original
game. I will show that if the forcing PI preserves category basis then Player II does
not have a winning strategy in the Borel game. A Borel determinacy argument the
gives a winning strategy for Player I in the Borel game as well as in the original
game.

Suppose that the forcing PI preserves category basis and for contradiction assume
that Player II has a winning strategy. Similarly to the work above first find a winning
strategy � for Player II which does not depend on the flag and the nodes of the tree
T Player I is producing along the play. This is possible since there are only finitely
many possibilities for the node tn at each round n and, as always, a smaller move
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is a better move for Player II. The rest of the argument is essentially identical to
the proof above.

3.10.11 The Sacks property

The paper [86] proves a theorem similar to the previous section for the Lebesgue
measure in place of category. I will state the result without proof.

Definition 3.10.25. A forcing P has Sacks property if for every ground model
nondecreasing function f ∈�� diverging to infinity in the ground model and every
function g ∈ �� in the extension there is a function h � �→ 
��<ℵ0 in the ground
model such that 
h	n

 ≤ f	n
 and g	n
 ∈ h	n
.
[2] shows that a forcing has the Sacks property if and only if it strongly pre-
serves outer Lebesgue measure: for every real number � > 0, every open set of
measure < � in the extension is covered by such an open set from the ground
model.

Definition 3.10.26. Suppose P is a partial order. The measure basis game G
between Players I and II proceeds as follows. First Player II indicates an initial
condition pini ∈ P. After that, the moves alternate, Player I producing a condition
pn and Player II playing its strengthening qn ≤ pn, after which Player II may or
may not raise a flag. Let n0 < n1 < � � � be the rounds at which Player I raised the
flag; we agree that n0 = 0. Player I wins if either the numbers ni+1−ni � i ∈ � do
not form a nondecreasing sequence diverging to infinity or else the result of the
game, the expression

pini∧
∧

i

∨

ni≤n<ni+1

qn

denotes a non-zero element in the algebra RO	P
.

Theorem 3.10.27. Suppose that the forcing P is proper. The following are
equivalent:

1. P does not have the Sacks property;
2. Player II has a winning strategy in the measure basis game.

Moreover, if suitable large cardinals exist and the forcing P is universally Baire
and proper then the game G is determined. If P = PI for some �1

1 on �
1
1 �-ideal

I then the game is determined without the use of the large cardinal assumptions.
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3.11 Ramsey properties

The Ramsey theory is a rich subject. In this section I define several definable
Ramsey theoretic properties that may hold for various �-ideals. Their verification
is frequently very difficult and typically involves forcing fusion arguments.

3.11.1 Rectangular Ramsey properties

The rectangular Ramsey properties are directly related to side-by-side product
forcing.

Definition 3.11.1. �-ideals I� J on respective Polish spaces X�Y are said to satisfy
the rectangular Ramsey property MRR	I� J
 if for every partition B×C =⋃

n Dn

of a rectangle with Borel I-positive side B ⊂ X and a Borel J -positive side C ⊂ Y
into countably many Borel sets, one of the sets Dn contains a rectangle B′ ×C ′ with
a Borel I-positive side B′ ⊂ B and a Borel J -positive side C ′ ⊂ C. The Ramsey
notation used is 	I+� J+
→B 	I

+� J+
1
ℵ0

. A similar definition is applied in the case
of a product of finitely or countably many �-ideals.

It is immediately clear that if I� J are �-ideals on Polish spaces X�Y satisfying
the rectangular Ramsey property then the side-by-side product PI ×PJ is naturally
isomorphic to a dense subset of PI×J where I× J is the ideal on the space X×Y
generated by Borel sets that do not contain a rectangle with Borel I� J -positive sides;
and similarly for products of arbitrary countable collection of forcings. This feature
greatly simplifies the understanding of the product forcing, as will become clear in
Section 5.2. If in this case the forcing PI ×PJ is proper then the Ramsey property
holds for partitions in which the setsDn � n∈� come from larger definability classes:
analytic in ZFC, and universally Baire with a suitable large cardinal assumption.
This follows from Proposition 3.9.10 applied to the forcing PI×J .

Before I indulge in a list of examples and nonexamples, it is worth mentioning
that the typical method for proving the negation of the rectangular Ramsey property
is to demonstrate a strong negative partition property:

Definition 3.11.2. 	I+� J+
 �→B 
I
+� J+�1� is the statement that there is a rectangle

B×C with Borel I-positive and J -positive sides respectively and a Borel function
f � B×C→ 2� such that the f -image of every subrectangle B′ ×C ′ with Borel
I-positive and J -positive sides respectively is the full set 2�. Similarly for a product
of finitely or countably many �-ideals.

Note that if a Borel function f witnesses 	I+� J+
 �→B 
I
+� J+� and 2� =⋃

n En is a
partition of the Cantor space into countably many sets then the sets Dn ⊂B×C � n∈
� given by �x� y	 ∈Dn↔ f	x� y
 ∈ Cn witness the relation 	I+� J+
 �→B 	I

+� J+
.
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Many examples of the rectangular Ramsey properties are proved in Section 5.2.
They are surprisingly closely related to a part of the Cichoń diagram:

b dec

cov(null) non(meager) cof(meager) cof(null)

d

cov(meager)

The upper right hand corner (meaning the forcings which do not increase the
invariants in the upper right hand corner) is well-behaved, as exemplified in

Theorem 3.11.3. (LC) (Theorem 5.2.6) If In � n ∈ � is a sequence of universally
Baire �-ideals such that the forcings PIn

are all proper and preserve category bases

then MRR	In � n ∈ �
. In the case of �1
1 on �

1
1 ideals this is provable in ZFC.

The search for rectangular Ramsey theorems not implied by this theorem leads
to the following train of thought. The invariant cof	meager
 is well-known to be
the maximum of non	meager
 and �. Thus the forcings which increase it must
increase either non	meager
 or �.

For the forcings which increase � the positive results are

Example 3.11.4. [31] Let I be the �-ideal generated by the compact subsets of the
Baire space; thus PI is the Miller forcing, the optimal way to increase �. MRR	I� I

holds.

Example 3.11.5. (Spinas, personal communication) Let I be the �-ideal generated
by the sets on which the Pawlikowski function is continuous. The forcing PI is
the Steprāns forcing of Section 4.2.3, the optimal way to increase �	�. MRR	I� I

holds. The proof is close to that of [31]. Added in proof: this is not so clear.

The negative results are the following. They are all established later using a much
stronger negative square bracket Ramsey property.

Example 3.11.6. [77] Let I be the �-ideal generated by the compact subsets of
the Baire space. Then ¬MRR	I� I� I
 and in fact 
I+� I+� I+� �→B 
I

+� I+� I+�1� . It
immediately follows that if J is a �-ideal on a Polish space X such that the forcing
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PJ adds an unbounded real then ¬MRR	J� J� J
. To see this, fix a Borel J -positive
set B ⊂ X and a Borel function f � B→ �� such that f -preimages of compact sets
are I-small. Let � � 	��
3 →� be a function witnessing the negative square bracket
relation with I . A trivial diagram chasing argument shows that the function � � f
witnesses the same relation for the ideal J .

Example 3.11.7. Let I be the Laver ideal. The MRR	I� I
 fails and in fact the
negative square bracket relation holds. As in the previous example this means that
whenever J is a �-ideal such that the forcing PJ is proper and adds a dominating
real then MRR	J� J
 fails. This follows from Example 3.11.13 below.

Example 3.11.8. Suppose that I is the ideal of meager sets. Then MRR	I� I
 and in
fact 	I+� I+
 �→B 
I

+� I+�1� holds. The proof closely follows the case for Lebesgue
measure below.

The forcings that increase the cardinal non	meager
 are not as well understood
from the Ramsey point of view.

Example 3.11.9. Let I be the Lebesgue null ideal on the unit interval. Then
MRR	I� I
 fails and in fact 	I+� I+
 �→B 
I

+� I+�1� holds. To see this, let rx � x ∈
2� be a perfect set of reals which are pairwise not a rational multiple of each
other. Let f � 
0�1�× 
0�1�→ � be defined by f	s� t
 = s− t. By an old result of
Steinhaus [2], 3.2.10, for Borel I-positive sets B�C the set B−C of all differences
contains an interval. Now let ax � x ∈ 2� be a Borel collection of pairwise disjoint
dense subsets of � and define the map g � 
0�1�× 
0�1�→ 2� by g	s� t
 = x if
s− t ∈ ax. Clearly the function g witnesses the negative square bracket partition
relation.

The subject of asymmetric rectangular Ramsey theorems (those where I �= J ) offers
much more variation.

Example 3.11.10. (LC) If I is a universally Baire �-ideal on a Polish space X such
that PI is proper and preserves Lebesgue measure basis, and if J is a polar ideal
then MRR	I� J
. In the case of a �1

1 on �
1
1 ideal I this is provable in ZFC.

Example 3.11.11. (LC) (Theorem 5.2.8) If I is a universally Baire �-ideal on a
Polish space X such that PI is proper and preserves category basis, and if J is an
ideal such that PJ is proper and preserves category then MRR	I� J
.

Example 3.11.12. [16] If X�Y are Polish spaces equipped with respective
continuous submeasures � and � then 
I+� � I

+
� � �→B 
I

+
� � I

+
� �.

Example 3.11.13. (LC) If I is a �-ideal on a Polish space X such that PI is proper
then the following are equivalent:
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1. PI is bounding and does not add splitting reals;
2. MRR	I� J
 where J is the Mathias ideal;
3. MRR	I�K
 where K is the Laver ideal;
4. 
I+�K+�→B 
I

+�K+�1� .

Let me just show here that if PI adds a splitting real then the square bracket
relation with the Laver ideal fails. Suppose first that PI adds a splitting real and
let B ∈ PI be a condition and f � B→ 2� be a Borel function such that for every
bit b ∈ 2 and every infinite set a ⊂ � the set �x ∈ B � ∀n ∈ a f	x
	n
 = b� is in
the ideal I . Let g � ��×B→ 2� be the function defined by g	y� x
 = f	x
 � y. I
will show that the g-image of every rectangle D×E ⊂ ��×B with Borel Laver-
positive and I-positive Borel sides contains a nonempty open set. The same trick
as in Example 3.11.9 then finishes the argument. It is in fact clear from the proof
that Laver×PI adds a Cohen real and a similar construction will work for every
poset PJ adding a dominating real in place of the Laver forcing.

Suppose that D×E is a rectangle with Borel positive sides. Let T ⊂ �<� be
a Laver tree such that 
T� ⊂ D and let t0 ∈ T be its trunk. Let E0 ⊂ E be some
I-positive Borel set such that f	x
� t0 is the same binary sequence u ∈ 2<� for all
x ∈ E0. I will show that Ou ⊂ g′′	D×E
. Let z ∈ 2<� be some infinite sequence
extending u; I will find points x ∈ E0 and y ∈ 
T� such that g	y� x
 = z. Choose
a winning strategy � for the Nonempty player in the precipitous game with the
ideal I as in Section 3.10.1. By induction on n ∈� build sequences tn ∈ T and sets
En�E

′
n ∈ PI such that

• t0 ⊂ t1 ⊂ � � �

• for every point x ∈ En the function f	x
� tn equals z � dom	tn
;
• E0�E

′
1�E1�E

′
2�E2� � � � is a play of the precipitous game in which the Nonempty

player; E′0 is not defined follows his strategy � .

Suppose that tn�En have been found. Let E′n+1 ∈ PI be the move dictated to
the Nonempty player at this stage. The set an = �m ∈ � � t�n m ∈ T and for both
b = 0�1 the set �x ∈ E′n+1 � f	x
	m
 = b� is I-positive� must be infinite by the
assumption on the function f . Choose any number m ∈ an and let tn+1 = t�n m and
En+1 = �x ∈ E′n+1 � f	x
	m
= z	
tn

�. The induction hypotheses are satisfied.

In the end, let y = ⋃
n tn ∈ D and let x ∈ E be some point in the intersection

⋂
n En. Clearly, g	y� x
= z.

The ultimate delimitative negative result in this subject is

Example 3.11.14. There is a c.c.c. ideal I such that letting J be the ideal of
countable sets, 
I+� J+� �→ 
I+� J+�1� . Let P be the eventually different real forcing
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[2], 7.4.B, and let I be its associated �-ideal on ��, so that P is in the forcing
sense equivalent to PI . Let J be the ideal of countable sets. MRR	I� J
 fails. The
easiest way to see that is to choose a perfect subset X ⊂ �� consisting of mutually
eventually different functions, and define a function f � ��×X→ 2� by letting
f	y� x
 to be the sequence of parities of elements of the set �n ∈ �� x	n
= y	n
�.
It turns out that the f -image of every rectangle with Borel I-positive and J -positive
sides respectively, contains a nonempty open subset of 2�. Just like in the previous
arguments this means that 
I+�K+�→ 
I+�K+�1� fails for every �-ideal K containing
all singletons.

3.11.2 Square Ramsey properties

Quite a different keg of fish are the square Ramsey properties.

Definition 3.11.15. Let I be a �-ideal on a Polish space X. Let n�k� l be natural
numbers. The shorthand I+ →B 	I

+
nk�l denotes the following statement: for every
Borel I-positive set B and every Borel function f � 
B�n → k there is a Borel
I-positive set C ⊂ B such that 
f ′′
C�n
 ≤ l.

The shorthand I+ →B 
I
+�n� is the statement that for every Borel I-positive set

B⊂X and every Borel function f � 
B�n→ 2� there is a Borel I-positive set C ⊂ B
such that f ′′
C�n �= 2�.

Example 3.11.16. The archetype of square Ramsey theorems is the theorem of Blass
dealing with the ideal I of countable sets on 2�. Blass proved that I+ →B 	I

+
2
k�1

holds for every natural number k, and for every natural number n ∈ � there is
l	n
 ∈ � such that I+ →B 	I

+
nk�l	n
 holds for every natural number k.

Yuan-Chyuan Sheu proved a parallel theorem for the cmin ideal and computed the
numbers l	n
. Let me include one negative result.

Example 3.11.17. (Blass, personal communication) Let I be the E0 ideal on 2�

of Section 4.7.1. Then I+ �→B 
I
+�3� . For the proof, suppose x0� x1� x2 ∈ 2� are

distinct infinite binary sequences. Define f	x0� x1� x2
∈ 2� in the following way. By
induction on the number n ∈� construct numbers mn ∈� and bits f	x0� x1� x2
	n
.
Let m0 =the least number k such that x	k
� y	k
� z	k
 are not all equal, let i0 ∈ 3 be
such that the bit xi0	m0
 is different from the other two, and let f	x0� x1� x2
	0
=
xi0	m0
. Suppose the numbers mn and in are known. Then mn+1 =the least number
k >mn such that the two bits �xi	k
 � i ∈ 3� i �= in� are distinct, let f	x0� x1� x2
	n+
1
 = xin	mn+1
, and let in+1 ∈ 3 be the number j for which xin	mn+1
 �= xj	mn+1
.
This completes the definition of the function f � 
2��3 → 2�.

It is easy to see that the function f is Borel. In order to prove that it witnesses
the negative partition relation, I must show that for every E0 tree T ⊂ 2<� and



3.12 Pure decision property 111

every point y ∈ 2� there are branches x0� x1� x2 through the tree T such that
f	x0� x1� x2
= y. This is left to the reader.

3.11.3 Canonical Ramsey theorems

Still different issues arise in the subject of canonical Ramsey theorems, both
rectangular and square.

Definition 3.11.18. Suppose that I� J are �-ideals on Polish spaces X�Y respec-
tively, and let F be a set of Borel equivalence relations on X×Y . The shorthand
	I+� J+
→c

B 	I
+� J+
F stands for the statement that for every Borel I and J positive

sets B and C respectively and every Borel equivalence relation e on B×C there
are Borel I and J positive sets B′ ⊂ B and C ′ ⊂ C respectively and an equivalence
relation f ∈ F such that e � B′ ×C ′ = f � B′ ×C ′. Similar notation will be used for
the square canonization properties.

As always in canonical Ramsey theory it is the nature of the set F that makes
all the difference. The rectangular canonical theorems have a tight connection with
the degree structure of the product forcing extension. It is for example well-known
that 	I+� I+
→c

B 	I
+� I+
F holds for I = the ideal of countable sets on the Cantor

space and F = �E0�E1�E2�E3�, where E0 is the identity equivalence relation, E1

is the identity on the first coordinate, E2 is the identity on the second coordinate,
and E3 is the equivalence relation with a single class. This result implies that in
the product Sacks forcing extension, there are four V -degrees of reals: the trivial
degree, the degree of the first generic, the degree of the second generic, and
the degree of a real coding the two generics. The canonical Ramsey theorem is
apparently properly stronger than the classification of degrees in the product forcing
extension though.

As the last remark, note that the relation 	I+� J+
 �→B 
I
+� J+� implies the

failure of the canonical Ramsey relation for any reasonable family F of equiv-
alence relations. If f � B×C → 2� is a Borel function witnessing the negative
square bracket relation, then for every Borel equivalence E on 2� define a Borel
equivalence E′ on B×C by 	x0� y0
E

′	x1� y1
 if f	x0� y0
Ef	x1� y1
, and note that
the complexity of the relation E′ remains the same at every rectangle with Borel
positive sides.

3.12 Pure decision property

The pure decision is a property frequently used in certain types of forcing arguments.
This section offers its topological restatement.
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Definition 3.12.1. [87] Let I be a �-ideal on some Polish space X with a fixed
metric d. We say that the poset PI has the pure decision property or contractive
reading of names (with respect to the metric d) if for every I-positive Borel set
B ⊂ X and every Borel map f � 	B�d
→ 	Y� e
 into a compact metric space there
is a Borel I-positive set C ⊂ B on which the map f is a contraction.

Example 3.12.2. The Laver forcing has the pure decision property in the standard
representation, with respect to the metric of least difference on ��: d	x� y
 = 2−n

where n is the smallest number where the functions x� y ∈ �� differ.

Proof. Let I be the Laver �-ideal on the Baire space. Let B be Borel I-positive set
and f � 	B�d
→ 	Y� e
 be a Borel map into a compact metric space. Thinning out
the set B if necessary we may assume that B = 
T� for some Laver tree T ⊂ �<�.
To simplify the notation assume that T has an empty trunk.

Before proceeding recall the well known fact that for every Laver tree S and
Borel partition 
S�=⋃

i∈n Ai into finitely many pieces there is a Laver tree U ⊂ S
with the same trunk such that the set 
U� is included in one of the pieces of the
partition.

Now for every n find a finite 2−n−1-network yn ⊂ Y , that is, a set such that
every point of the space Y is 2−n−1-close to one of its elements. By induction on
n ∈ � build a fusion sequence of Laver trees Tn so that T0 = T� Tn+1 agrees with
Tn on sequences of length n+ 1 and for every such a sequence t ∈ Tn there is an
element xt ∈ yn such that for every path r through Tn+1 extending the sequence t,
the element f	r
 ∈ Y is 2−n−1-close to xt. This is possible by the observation in
the previous paragraph. Note that by the triangle inequality this means that for two
such paths r0� r1 the elements f	r0
� f	r1
 ∈ Y will have e-distance ≤ 2−n. Let S be
the fusion of the sequence of trees Tn. It is not difficult to see that the set C = 
S�
has the required properties.
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Examples

4.1 Ideals �-generated by closed sets

This is the historically first class of ideals discovered to generate proper forcings.

Definition 4.1.1. A �-ideal I is �-generated by closed sets if every set in I is
contained in an F� set in I .

Several results of this section are in fact special cases of the results of Sec-
tion 4.2 concerning the abstract porosity ideals. Nevertheless I decided to treat
them separately here because the abstract porosity ideals form a much more complex
family.

One feature, which sets this class of ideals apart from the other classes considered
in this chapter, is that it is not invariant under different presentations. Every forcing
of the form PI where I is an ideal on a Polish space X �-generated by closed sets
has a presentation PJ on the Baire space �� such that J is �-generated by closed
sets. To see this note that the set X is a one-to-one continuous image of a closed
subset C of the Baire space, X = f ′′C. The ideal J on �� generated by �� \C
and the preimages of I-small sets is �-generated by closed sets since the open set
�� \C is F� and f -preimages of closed sets are closed. Clearly PI is naturally
isomorphic to PJ .

4.1.1 General results

Theorem 4.1.2. [82] Suppose that I is a �-ideal on a Polish space X generated by
closed sets. The forcing PI is proper. The forcing PI preserves the Baire category
and has the continuous reading of names.

113
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Proof. Fix a countable basis O of the space X. Suppose that M is a countable
elementary submodel of a large enough structure and B ∈ PI ∩M is a condition.
I must show that the set C = �x ∈ B � x is M-generic� is I-positive. To this end,
fix a countable collection Fn � n ∈ � of closed sets in the ideal I and find a point
x ∈ C \⋃n Fn. To produce the point x, enumerate the open dense subsets of the
forcing PI in the model M by Dn � n∈� and by induction build conditions Bn � n∈�
so that

• B = B0 ⊃ B1 ⊃ � � �

• Bn+1 ∈Dn∩M
• Bn+1∩Fn = 0

This is easy to do. Suppose that Bn ∈M has been obtained. There must be a
basic open set O ∈O such that Bn∩O is disjoint from Fn and I-positive, otherwise
the set Bn =

⋃
�Bn ∩O � O ∩ Fn = 0�O ∈ O�∪ Fn would be in the ideal I . The

set Bn ∩O ∈ M is a condition, by an elementarity argument there must be a set
Bn+1 ⊂ Bn∩O in the set Dn+1.

In the end, the filter generated by the conditions Bn � n ∈� is M-generic, and by
an application of Proposition 2.1.2 in the model M the intersection

⋂
n Bn contains

a single point x. Clearly x ∈ C \⋃n Fn and the forcing PI is proper.
For the continuous reading of names suppose that B � I is a Borel set and

f � B→ 2� is a Borel function. By a result of Solecki [69], there is an I-positive G	

subset B0 ⊂ B; throwing out all sets O∩B0 such that O ∈O and O∩B0 ∈ I I may
assume that for every open set O ⊂ X the intersection O∩B0 is either I-positive
or empty. Then every I-small closed set F ⊂ X is nowhere dense in B0 and so the
ideal I is included in the ideal of meager subsets of B0. The set C ⊂ X is G	 and
therefore Polish in the inherited topology. The function f is continuous on some
comeager subset B1 ⊂ B0–[40], 8.38. Clearly, B1 � I and the function f � B1 is
continuous as desired.

The category preservation follows similar lines. Suppose that B ∈ PI is a Borel
set, C ⊂ 2� is a nonmeager Borel set, and D⊂ B×C is a set with meager vertical
sections. I must find a horizontal section of the complement of D which is not in
the ideal I . As before, I can assume that the set B is in fact G	 and the ideal I below
B is contained in the ideal of meager subsets of B. Since the set B is a Polish space
in the inherited topology, the Kuratowski–Ulam theorem [40], 8.41(iii), says that
there is a horizontal section of the complement of the set D which is nonmeager in
the set B and therefore I-positive as desired.

Theorem 4.1.3. Suppose that I is a �-ideal generated by closed sets on a Polish
space X.
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1. I satisfies the third dichotomy, in fact every analytic I-positive set contains a
G	 I-positive subset.

2. In the choiceless Solovay model I satisfies the first dichotomy and it is closed
under wellordered unions.

3. (ZF+DC+AD+) I satisfies the first dichotomy and it is closed under wellordered
unions.

Proof. The first item is a result of Solecki [69]. The second item is a result of
DiPrisco and Todorcevic [13]; a generalization is proved in Section 4.2. For the
third item, fix a countable topology basis O for the space X and let A ⊂ X× 2�

be a set. I will show that if proj
A� � I then there is an analytic set B ⊂ A such
that proj
B� � I and then use Proposition 3.9.18. Fix a Borel bijection � � 2� →
X×2� and consider the game H
I�A� in which Player I gradually produces open
sets On � n ∈ � and Player II produces a sequence z ∈ 2≤�; if z is infinite let
�1
z� ∈ X be the first coordinate of the point �
z� ∈ X×2�. At round n Player I
must decide which of the first n basic open sets in O are a subset of Om � m ∈
n, however Player II is allowed to postpone placing new bits on his sequence
arbitrarily. The winning condition for Player II is (if the sequence z is infinite then
�
z� ∈ A) and (if all sets X \On � n ∈ � are in the ideal I then z is infinite and
�1
z� ∈

⋂
n On).

Claim 4.1.4. Player I has a winning strategy if and only if proj
A� ∈ I .

Proof. If proj
A� ∈ I then Player I will win simply by producing some open sets
On � n ∈ � such that X \On ∈ I and proj
A� ⊂ ⋃

n
X \On�. On the other hand
suppose that proj
A� � I and � is a strategy for Player I. I must produce a winning
counterplay against the strategy � .

For each finite sequence 
 that is a position of the game H
I�A� in which
Player I followed the strategy � , let On

� � n ∈ � be the n-th open set the strategy
� will produce if Player II places no new bits on his sequence z after 
 as
the play extends to infinity. If there is a number n ∈ � such that X \On

� � I ,
then Player II won this infinite extension of 
 and we are done. Suppose this
does not happen for any play 
, and use the assumption on the set A to find
a sequence z ∈ 2� such that �
z� ∈ A and �1
z� ∈

⋂

�n On

�. I will produce

a play against the strategy � in which Player II produces the sequence z ∈ 2�

and wins.
By induction on n build the initial segments 
n of the play so that the point

�1
z� ∈ X belongs to one of the open sets the strategy � decided to put in On in
the play 
n+1. This is easily possible: Let 
0 = 0 and once 
n has been constructed,
Player II just waits long enough after 
n, adding no bits on his sequence, until the
strategy � puts a basic open set into On which contains the point �1
z�. After that,
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Player II adds another bit on the sequence z, and that will conclude the construction
of the play 
n+1. In this way, Player II clearly wins.

Now suppose that proj
A� � I . To produce an analytic set B ⊂ A such that
proj
B� � I , just apply the previous claim with a determinacy argument to find a
winning strategy � for Player II in the game H
I�A� and let B = ��
z� ∈ A � for
some counterplay by Player II the strategy � produces the sequence z�. Clearly,
this is an analytic subset of A by its definition and by the winning condition for
Player II. Moreover, proj
B� � I since the strategy � remains winning in the game
H
I�B� and the claim can be used for the set B.

Theorem 4.1.5. If I is a �-ideal generated by closed sets, then the forcing PI is
embeddable into �-closed*c.c.c. iteration.

This is proved in Section 4.2.

Theorem 4.1.6. Suppose that I is a �-ideal on a Polish space X �-generated by
closed sets. Then PI forces that every function ḟ � �1→ 2 has an infinite subfunction
in the ground model.

Proof. Suppose B � ḟ � �1 → 2 is a function. Let � be a winning strategy for
the Nonempty Player In the Borel precipitous game of Section 3.10.1. Choose a
large enough structure and let �M be a continuous ∈-tower of countable elementary
submodels of this structure of length �1 such that I���B� ḟ ∈ �M
0�. For a Borel set
C ⊂ B and an ordinal � ∈ �1 let C
��= �x ∈ C � x is �M
��-generic for all �≤ ��,
and for a bit b ∈ 2 let C
�+ 1� b� = �x ∈ C
�+ 1� � ḟ 
 �M
��∩�1�/x = b�. A
bootstrapping argument based on the proof of Theorem 4.1.2 shows that if C ∈ PI ∩�M
0� then C
�� � I , and so C
�� ∈ �M
�+1�. A review of the definitions reveals
that the Borel set C
�+1� b�, if I-positive, is a condition forcing ḟ 
 �M
��∩�1�= b.

There are two separate cases:

• there is an ordinal � ∈�1 and a condition C ⊂ B
��, C ∈ �M
�+1� such that for
uncountably many ordinals � ∈ �1 the set C
�+1�1� is in the ideal I;

• otherwise.

In the first case, fix C, let �n � n ∈ � be infinitely many ordinals as in
the description of the first item, let �=⋃

n �n and let D= C
��\⋃n C
�n+1�1�.
The set D is a difference of an I-positive and I-small set, therefore a condition in
the poset PI and it forces ḟ � � �M
�n�∩�1 � n ∈ �� is constantly zero.

In the second case, use the failure of the first case to find an uncountable set
A⊂�1 such that for every �∈A� every ordinal �∈� and every condition C ⊂B
��

in PI ∩ �M
�+1� the set C
�+1�1� is I-positive. Let �n � n ∈� enumerate the first
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� many elements of the set A. I will show that D=⋂
n B
�n+1�1� � I which will

complete the argument for the second case since D � ḟ � � �M
�n�∩�1 � n ∈ �� is
constantly equal to one. Let Fn � n ∈� be a countable collection of closed sets in the
�-ideal I . To find a element x ∈D\⋃n Fn, by induction on n ∈ � build conditions
pn � n ∈ � so that

• B = p0 ⊃ p1 ⊃ � � � , and there are conditions q0� q1 � � � such that the sequence
p0� q0� p1� q1� � � � is a play of the Borel precipitous game in which the Nonempty
player follows his strategy �; in this way

⋂
n pn �= 0 and the point x ∈ X will be

an arbitrary point in the intersection;
• pn+1 ∈ �M
�n+1� and pn+1 ⊂ B
�n+1�1�\Fn.

Suppose that the condition pn has been constructed, and let qn⊂ pn be the answer
dictated by the strategy � to the Nonempty player. By an elementarity argument,
qn ∈ �M
�n−1�. Since Fn is a closed set in the ideal I there must be a basic open
set O such that qn ∩O � I and Fn ∩O = 0. Now let pn+1 = 
qn ∩O�
�n+ 1�1� =
qn∩O∩B
�n+1�1� which is still I-positive by the choice of the ordinal �n. This
completes the inductive construction. In the end, any element in the nonempty
intersection

⋂
n pn shows that the set D is not covered by the sets Fn � n ∈ � as

desired.

Note that the proof really gives a bit more. If add
meager� > ℵ1 then either there
is an infinite ground model set b⊂�1 such that f � b is constantly zero, or there is
an uncountable set b ⊂ �1 such that f � b is constantly one.

Theorem 4.1.7. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X �-generated by closed sets. Suppose that V ⊆ V�H�⊆ V�G� are the ground
model, the PI -extension, and an intermediate extension. Then V�H� is either equal
to V , or it is an extension of V by a single Cohen real, or it is equal to V�G�.

Proof. The first step is to show that the intermediate extension is c.c.c. This
immediately follows from Proposition 3.9.2 and Theorem 4.1.2. These two use
large cardinal assumptions, however a manual ZFC construction will give the same
conclusion in the case that the ideal I is generated by an analytic collection of
closed sets.

Suppose now that Q ⊂ RO
PI� is a complete c.c.c. algebra. The second step
in the proof is to show that Q is countably generated. This uses no large cardinal
or definability assumptions. Suppose for contradiction that Q is not countably
generated, and by induction on � ∈ �1 build an increasing chain of countably
generated complete subalgebras Q� ⊂Q and elements b� ∈Q�+1 such that b� is not
decided by any element of Q�. Let f � �1 → 2 be a function in the generic extension
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given by f
��= 1 if b� is in the generic filter. An elaboration of the argument in
the previous theorem shows that there are three possibilities:

• there is an uncountable set A⊂�1 and a descending chain of conditions B� � � ∈
�1 in PI such that B� � ∀� ∈ A∩� f
��= 1;

• there is an uncountable set A⊂�1 and a descending chain of conditions B� � � ∈
�1 in PI such that B� � ∀� ∈ A∩� f
��= 0;

• there is a countable set ��n � n ∈ �� of countable ordinals such that for every
function g ∈ 2� there is a condition B ∈ PI forcing ḟ 
�n�= 1↔ g
n�= 1.

I will derive a contradiction in all the three cases. In the first and second case,
note that Q � ḟ � A is not constant. To see this let R =⋃

� Q�. By the c.c.c. this
is a complete subalgebra of Q, ḟ is an R-name and no condition r ∈ R decides
uncountably many values of ḟ since for some ordinal �, r ∈Q� and then r fails to
decide all the values past �. Now by the c.c.c. again there is a fixed ordinal � ∈�1

such that R (or Q or PI ) forces ḟ � Ǎ∩ �̌ is not constant. However, this contradicts
the fact that the condition B� forces ḟ � Ǎ∩ �̌ to be constant. The third case uses
c.c.c. again–since ḟ � ��n � n ∈ �� is a Q-name and Q is c.c.c. there are at most
countably many ground model functions that can be forced equal to it, however the
third item ascertains that there are continuum many of them.

Thus the algebra Q is countably generated, and since it is proper, its generic
extension is given by a single binary sequence y ∈ 2�. The last step is to show that
V�y� is a Cohen extension of V . Consider the �-ideal J = �B ⊂ 2� � Q � ẏ � Ḃ�.
Since Q is c.c.c., so is the forcing PJ and so the real y must be PJ -generic. Now
PJ is a definable c.c.c. forcing which preserves Baire category since PI does, so
by Corollary 3.5.7, PJ must be equivalent to the Cohen forcing. The large cardinal
and definability assumption used in that corollary can be in this case eliminated by
manual construction of the winning strategies necessary–work which is implicitly
present in the proof of Theorem 4.1.2.

There is a large subclass of �-ideals which have much stronger preservation
properties.

Theorem 4.1.8. Suppose that the �-ideal I on a compact metric space X is
generated by a �-compact collection of compact sets. Then the forcing PI is
bounding and does not add splitting reals.

This class of forcings includes, among others, the partial orders of the scheme
called �0 in [58], Section 1.3. Let me include a very brief exposition. Suppose that
T is a finitely branching tree, for every node t ∈ T let at be the set of its immediate
successors, and let �t � P
at�→�+ be monotone functions such that the numbers
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�t
at� tend to �. Let P be the partial order of all trees S ⊂ T such that for every
number n ∈ � and every node t ∈ S there is an extension u ∈ S such that writing
aS
u ⊂ au for the set of all of its immediate successors in the tree S, it is the case

that �u
a
S
u� ≥ n. Now let I be the ideal on the space �T� generated by all closed

sets �S� where S ⊂ T is a tree such that all the set �aS
u � u ∈ S�⊂�+ is bounded. It

is not difficult to see that I is generated by a �-compact collection of compact sets
and the determinacy argument below shows that an analytic set is I-positive if and
only if it contains all branches of some tree S ∈ P. Thus the forcings PI , P are in
the forcing sense equivalent.

Proof. For the simplicity of notation I will deal with the case X = 2�. The �-ideal
I is generated by the union of compact families Fn ⊂ K
X� � n ∈ � of closed sets.
Taking finite unions I may and will assume that the sets Fn � n ∈ � are increasing.
There are two different proofs of the theorem offering different extra information.

The first proof has a familiar dichotomy at its heart. Call a binary tree T large
if for every node t ∈ T and every number n ∈ � there is a number m such that no
binary tree S such that �S� ∈ Fn contains all the nodes of Tn below t. The following
claim has been repeatedly rediscovered.

Claim 4.1.9. Suppose that A⊂X is an analytic set. Then either A∈ I or A contains
all branches of an I-large tree. In the presence of AD this extends to all subsets of X.

Proof. Let A⊂ X be an arbitrary set and consider a game G
A� between Players I
and II in which Player I produces binary trees Sn � n∈� such that �Sn�∈ Fn. Player II
produces a point x ∈ X. Player II wins if x ∈ A \⋃n Cn. In order to complete the
description of the game, I must specify the precise schedule for both players. At
round n, Player I must indicate the n-th level of the trees Sm � m ∈ n. On the other
hand, Player II can wait for an arbitrary finite number of rounds before placing
another bit on his sequence x.

The same argument as in Theorem 4.1.3 now shows that A ∈ I ↔ Player I has
a winning strategy in the game G
A�. Suppose now that A � I is a Borel set. Then
Borel determinacy implies that Player II has a winning strategy � in the game
G
A�. The key point now is that the collection Y of all counterplays by Player I
forms a compact set as the sets Fn ⊂ K
X� are closed. Let B = � ′′Y . This is a
compact set since it is a continuous image of a compact set, it is a subset of the set
A since the strategy � is winning, and it is I-positive since the strategy � remains a
winning strategy in the game G
B� for trivial reasons. Thus every Borel I-positive
set A⊂X has an I-positive compact subset B⊂A, B= �T� for some binary tree T .
Removing all the nodes t ∈ T such that �T � t� ∈ I if necessary I arrive at an I-large
tree as desired in the claim. The extension of this argument to analytic sets can be
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arranged through Solecki’s result 4.1.3(1), and the extension to all sets under AD
is immediate.

Thus the poset PI has a dense subset naturally isomorphic to the forcing of all
I-large trees ordered by inclusion. The theorem is now proved by familiar fusion
arguments. In fact, one can prove that the forcing PI preserves P-points. Suppose
that U is a P-point ultrafilter on �, T is an I-large tree, and ȧ is a name for a
subset of �. Thinning out the tree T if necessary I may assume that there is a
continuous function f � �T�→ P
�� so that T � ȧ= ḟ 
ẋgen�. There are two distinct
cases:

• either there is an I-large tree T ′ ⊂ T such that for all x ∈ �T ′� the set f
x� belongs
to U ;

• otherwise.

In the first case, replace T with T ′, the name ȧ with the name for its complement,
and proceed as in the second case. In the second case, I will produce an I-large
tree S ⊂ T and a set b ∈ U such that ∀x ∈ �S� b ⊂ f
x�. This will conclude the
proof of preservation of P-points. Recall the P-point game between Players I and
II: Player I plays sets bn � n ∈ � in the ultrafilter, and Player II answers with finite
subsets cn ⊂ bn. Player I wins if

⋃
n cn � U . Since U is a P-point, Player I has no

winning strategy [2], 4.4.4. I will describe a strategy � for Player I such that after
each move cn he writes on the side a tree Sn such that these trees form a fusion
sequence, and Sn � čn ⊂ ȧ. Find a counterplay against this strategy winning for
Player II, let b=⋃

n cn and S =⋂
n Sn with the sets cn and trees Sn obtained in this

counterplay, and observe that S�b are as required.
In order to describe the strategy � , let S−1 = T and m−1 = 0. Once the tree

Sn−1 and the number mn−1 have been obtained, find a natural number mn such that
every node s ∈ Sn−1 of length mn−1 and for every compact set C ∈ Fn there is and
extension t ∈ Sn−1 of length mn such that Ot ∩C = 0. For every node t ∈ Sn−1 of
length mn−1 find a path xt ∈ �Sn−1� such that t ⊂ xt and f
xt� ∈ U . The strategy
� then makes the move bn =

⋂
t f
xt�. Once Player II responds with a finite set

cn ⊂ bn, just use the continuity of the function f to find a number k ∈ � such that
for every node t ∈ Sn−1 ∩ 2mn−1 and every path x ∈ �Sn−1� which agrees with xt at
the first k entries, cn ⊂ f
x�. Let Sn = �s ∈ Sn−1 � ∃t ∈ Sn−1∩2mn−1 s is compatible
with xt � k�. It is not difficult to see that the strategy � has the required properties.

The second proof uses infinitary games on Boolean algebras, and it uses the
following fact of independent interest.

Claim 4.1.10. (LC) Suppose that J is a universally Baire �-ideal such that PJ is
proper. The following are equivalent:
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1. PJ does not add a bounded eventually different real;
2. for every �-ideal I �-generated by a �-compact collection of compact sets,

I �⊥ J .

The theorem follows easily from the claim. Consider the ideal J of sets nowhere
dense in the algebra P
�� mod fin so that PJ is in the forcing sense equivalent
to the Mathias forcing of Section 4.7.7 and it does not add a bounded eventually
different real. The claim then says that I �⊥ J which by the results of Section 3.4 is
equivalent to the forcing PI not adding unbounded or splitting reals. Of course it
is the implication (1)→(2) which is most interesting from the forcing preservation
point of view.

The implication (2)→(1) is easier. If PJ adds a bounded eventually different real
then there is a �-ideal I generated by an F� collection of compact sets such that
I ⊥ J . Namely, suppose that B ∈ PJ is a condition forcing that ġ ∈�� is a function
pointwise dominated by some f̌ ∈ ��, yet eventually different from any ground
model function. Thinning out the condition B if necessary we may assume that there
is a Borel function G � B→ �nf
n� such that B � ġ = Ġ
ẋgen�. Now let I be the
�-ideal on �nf
n� which is �-generated by sets Cg�n = �h ∈ �nfn � h is different
from g at every input ≥ n�. This is an F� collection of compact sets. It turns out that
I ⊥ J as witnessed by the set C ⊂�nf
n�×B, where �h�x� ∈C if �h∩G
x�� = ℵ0.
Clearly, the vertical sections of the set C are J -small since B forces the real ġ to
be eventually different from any given ground model function h. The horizontal
sections of the complement of the set C are I-small since PI forces the generic real
to have infinite intersection with any function G
x� for x in the ground model.

Now the (1)→(2) implication. For definiteness assume that the �-ideal I is on
the Cantor space 2�, and fix compact sets Kn � n ∈ � of compact subsets of 2�,
the generators for the ideal I . I may and will assume that K0 ⊂ K1 ⊂ � � � , and for
brevity, I will identify the elements of the sets Kn with their respective trees on 2<�.

Suppose for contradiction that I ⊥ J , as witnessed by some sets B ∈ PI and
C ∈ PJ and a Borel set D⊂ B×C such that its complement has I-small horizontal
sections. I must find a J -positive vertical section of the set D. Thinning out the
set C if necessary it is possible to find Borel functions fn � C → Kn such that


B×C�\D�y ⊂⋃

n fn
y� – Proposition 2.3.4.
Use the determinacy of the BED game on the poset PJ of Section 3.10.4

to find Player II’s winning strategy � in it. Find a winning strategy 
 for the
Nonempty Player In the Borel precipitous game associated with the poset PI . I
will construct a play p of the Borel precipitous game respecting the strategy 

with moves denoted by Bini = B�B0�B1�B2� � � � I will also construct a play q of
the BED game respecting the strategy � , in which Player I plays certain partitions
P0�P1� � � �of the set C into finitely many Borel sets, and Player II chooses their



122 Examples

elements C0�C1� � � � . I will proceed in such a way that for every point y ∈ Cn the
sets

⋃
m∈n fm
y� and B2n+1 are disjoint.

In the end, let C� =
⋂

n

⋃
m>n Cm ⊂ C � J be the result of the play q against

the strategy � , and let x ∈ B be the real such that �x�=⋂
n Bn. The choice of the

functions fn implies that for every point y ∈ C� it is the case that �x� y� ∈ D, and
the proof will be complete.

In order to perform the inductive construction, suppose that the sets Cn and
B2n+1 have been obtained. For every number i ∈� consider the equivalence relation
Ei

n on the set C given by y Ei
nz if and only if fm
y� � i= fm
z� � i for every number

m≤ n. The equivalences induce partitions Pi
n of the set C into finitely many Borel

equivalence classes. The next move on the play against the strategy � will be one
of the partitions Pi

n, it is just necessary to decide which one:
Let Ci

n be the answer the strategy � gives if the partition Pi
n is played. Let

T i
m � m ≤ n be the uniform values of fm
y� � i � m ≤ n for every point y ∈ Ci

n. So
each T i

m is a binary tree of height i. Let U be a nonprincipal ultrafilter on � and
define infinite binary trees Tm � m≤ n by setting t ∈ Tm iff �i∈� � t ∈ T i

m�∈U . Since
the sets Km � m≤ n are closed, it follows immediately that Tm ∈ Km for all m≤ n.
Since the set B2n+1 is I-positive and the closed sets �Tm� � m≤ n are in the ideal I ,
there must be a finite binary sequence t �⋃

m≤n Tm such that B2n+2 =B2n+1∩Ot � I .
Let B2n+3 be the condition dictated to the Nonempty player by the strategy 
 in the
Borel precipitous game after the move B2n+2 is played. By the definitions, there must
be a number i larger than the length of the sequence t such that t � T i

m, for all m≤ n.
Then Pi

n will be the next Player I’s move on the play q against the strategy � .

4.1.2 Sacks forcing

Set theorists get born and die, move to distant countries, get married, bear children,
go bankrupt, grow old and sick, and Sacks forcing is still with us, working just
as well as the day Sacks invented it. It is the partial order of perfect binary trees
ordered by inclusion.

Let I be the �-ideal of countable subsets of 2�. The following fact shows that
the forcing PI has a dense subset naturally isomorphic to Sacks forcing.

Proposition 4.1.11. [40], 29.1. Every analytic set A⊂ 2� is either countable or it
contains all branches of some perfect binary tree.

Proof. Just an outline of the integer game proof. Suppose that C ⊂ 2�×�� is
a set. Consider the game G
C� between Players I and II in which at n-th round
Player I plays a finite binary sequence sn ∈ 2<� and a natural number mn ∈ �.
Player II answers with a bit bn ∈ 2. In the end let x ∈ 2� be the concatenation
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s�
0 b

�
0 s

�
1 b

�
1 � � � and let y =m0m1m2 · · · ∈ �� Player I wins if the pair �x� y� belongs

to the set C. The following claim is key.

Claim 4.1.12. Player II has a winning strategy if and only if proj
C� is countable.
If Player I has a winning strategy then the set proj
C� contains a perfect subset.

Now if A ⊂ 2� is an uncountable analytic set, find a closed set C ⊂ 2�×��

projecting into it, note that the game G
C� is closed for Player I and therefore
determined, and use the claim to inscribe a perfect subset into A.

Corollary 4.1.13. The ideal I is homogeneous.

Proof. If B � I is a Borel set then it contains all branches of some perfect binary
tree T . The natural continuous bijection � � 2�→ �T� has the required property that
�-preimages of countable sets are countable.

4.1.3 Miller forcing

Arnold Miller introduced the Miller forcing: the conditions are superperfect trees
ordered by inclusion. Here, a tree T ⊂ �<� is superperfect if for every node t ∈ T
there is an extension s ∈ T with infinitely many immediate successors.

Let I be the �-ideal generated by compact subsets of ��. The following
dichotomy proved by Kechris shows that Miller forcing is naturally isomorphic
to a dense subset of PI .

Proposition 4.1.14. [39] Suppose that A⊂ �� is an analytic set. Either A ∈ I or
A contains all branches of some superperfect tree.

Proof. Suppose that C ⊂ �� ×�� is a set. Consider the game G
C� between
Players I and II in which at n-th round Player I plays a finite sequence sn ∈ �<�

and a number mn ∈ � and Player II answers with a number kn ∈ �. The sequence
sn+1 must then begin with a number larger than mn. In the end let x ∈ 2� be the
concatenation s�

0 s
�
1 � � � and let y =m0m1m2 · · · ∈ �� Player I wins if the pair �x� y�

belongs to the set C.

Claim 4.1.15. Player II has a winning strategy if and only if proj
C� ∈ I . If Player I
has a winning strategy then the set proj
C� contains all branches of a superperfect
tree.

Now if A ⊂ 2� is an uncountable analytic set, find a closed set C ⊂ ��×��

projecting into it, note that the game G
C� is closed for Player I and therefore
determined, and use the claim to inscribe a superperfect subset into A.

Corollary 4.1.16. The ideal I is homogeneous.
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Proof. If B � I is a Borel set then it contains all branches of some superperfect
tree T . The natural continuous bijection � � ��→ �T� has the required property that
preimages of compact sets are compact.

There is a still different presentation of the Miller forcing. Let X be a Polish
space and B⊂X be a Borel subset which is not F� . Let J be the �-ideal generated
by the closed sets which are subsets of B. The forcing PJ below B is then in the
forcing sense isomorphic to the Miller forcing. To see this, suppose that C ⊂ B is
a condition in PJ . This means that the set C cannot be separated from X \B by
an F� -set. By a theorem of Kechris, Louveau, and Woodin [40], 21.22, there is a
Cantor set D ⊂ X such that D \B is countable dense and D∩B ⊂ C. This means
that the set C ∩D is hoemorphic to the Baire space �� and it will be enough to
prove that the ideal J below the set C ∩D is �-generated by compact sets. To do
this, note that if E ⊂ C ∩D is compact then E ⊂ B is closed and therefore in the
ideal J . On the other hand, if E ⊂ B is a closed set, then E∩D is a compact set,
and it is equal to E∩C∩D by the choice of the set D.

4.1.4 Cohen forcing and its iteration

Paul Cohen introduced the Cohen forcing as the poset of finite binary sequences
ordered by inclusion. Consider the �-ideal I of meager sets on 2�. This is a �-ideal
generated by closed sets. The Baire category theorem shows that Cohen forcing is
in the forcing sense isomorphic to PI .

Fact 4.1.17. [40], 21.6. If A⊂ 2� is an analytic set then either A ∈ I or there is a
basic open set O ⊂ 2� such that O \A ∈ I . In the context of AD this extends to all
subsets of 2�.

Corollary 4.1.18. The ideal I is homogeneous.

Proof. Suppose that B � I is a Borel set, find a nonempty basic open set O such
that O\B ∈ I and let �0 � 2�→O be the natural continuous bijection. This function
has the property that the preimages of meager sets are meager, however its range
is not entirely included in the set B. To fix this, let E = �x ∈ 2� � �0
x� � B�, note
that the set E is meager, and let � � 2� → B be defined by �
x�= �0
x� if x � E
and �
x� = arbitrary element of the set B if x ∈ E. This function has the desired
properties in the definition of homogeneity.

Cohen forcing is usually iterated with finite support. It turns out that the �-ideal
J = I� associated with its countable support iteration of length � is also generated
by closed sets in its natural presentation. Note that the ideals associated with longer
iterations cannot be generated by closed sets since these iterations contain the
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nowhere c.c.c. iteration of length � as an intermediate extension, which would
contradict Theorem 4.1.7.

Let J be the �-ideal on X = 
2��� generated by the sets C ⊂ X such that for
some number n, the projection of the set C into 
2��n is a closed nowhere dense
set. With a nod to the presentation of the countable support iteration in Section 5.1,
I will state the following without proof.

Fact 4.1.19. If A⊂X is an analytic set then either A∈ J or A contains all branches
of some I��-tree.

So indeed the poset PJ contains a dense subset naturally isomorphic to the count-
able support iteration of length � of the Cohen forcing. Compare this result with
Theorem 4.1.7. The ideal J is �-generated by closed sets, and therefore every
intermediate extension of the PJ extension must be given by a Cohen real. There
are many such extensions in the PJ extension; however, none of them is the
largest.

4.1.5 The cmin ideal

Kojman [22], [23] and many others considered the partition cmin � �2
��2 → 2 given

by cmin
x� y� = �
x� y� mod 2 where �
x� y� = min�n � x
n� �= y
n�. It turns out
that the Cantor space cannot be covered by countably many cmin-homogeneous set
and the partition is in fact minimal in this respect.

Fact 4.1.20. [22] If d � �X�2 is a continuous partition such that the underlying Polish
space X cannot be covered by countably many d-homogeneous sets then there is a
continuous function � � 2�→ X such that the following diagram commutes.

X
d 2

22ω

π =
cmin

A very closely related object is the simplest function which cannot be decom-
posed into countably many monotonic functions. Let f � 2� → 2� be the function
defined by f
x�
n�= 
x
n�+n� mod 2. With the usual lexicographic ordering on
2�, this function cannot be decomposed into countably many monotonic functions.
It turns out that it is the simplest such a function.

Fact 4.1.21. [83] If X is a Polish space with a separable Borel ordering and
g � X→ 2� is an analytic function then
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1. either g can be decomposed into countably many monotonic subfunctions;
2. or there are monotonic embeddings � and � such that the following diagram

commutes.

X
g

2ω

π ψ

2ω f
2ω

Under AD this extends to all functions g.

It follows directly from the definitions that a set A ⊂ 2� is cmin-homogeneous
if and only if the function f is monotonic on A, and these properties are inherited
by the closure of the set A. Consider the �-ideal I generated by cmin-homogeneous
sets. Since the partition is continuous, the closure of a homogeneous set is itself
homogeneous, therefore the ideal I is generated by closed sets. In fact, the collection
of closed homogeneous sets is compact in the hyperspace K
2�� and therefore the
forcing PI is bounding and adds no splitting reals by Theorem 4.1.8. To find a
combinatorial presentation of the forcing PI the following concept is useful. A tree
T ⊂ 2<� is a cmin-tree if for every node t ∈ T and every bit b ∈ 2 there is a splitnode
s ⊃ t� s ∈ T whose length has parity b. The following is proved using the usual
determinacy arguments.

Proposition 4.1.22. [83] An analytic set is I-positive if and only if it contains all
branches of some cmin-tree.

Proof. Let C ⊂ 2�×�� be a set. Consider a game G
C� between Players I and
II in which at round n Player I chooses a finite binary sequence tn ∈ 2<� of even
length and a number mn. Player II responds with a bit bn ∈ 2. In the end, let
x = t�0 b

�
0 t

�
1 b1 � � � and y = m0m1m2 � � �Player I wins if �x� y� ∈ C. The following

claim is key.

Claim 4.1.23. Player II has a winning strategy if and only if proj
C� ∈ I . If Player I
has a winning strategy then the set proj
C� contains all branches of some cmin tree.

Now if A⊂ 2� is an analytic I-positive set, choose a closed subset C ⊂ 2�×��

projecting into it, note that the game G
C� is closed for Player I and therefore
determined, and use the claim to inscribe a cmin tree into the set A.

Corollary 4.1.24. The �-ideal I is homogeneous.

Proof. If B � I is a Borel set then it contains all branches of some cmin tree T ;
thinning out the tree if necessary, I may assume that the first branching node is
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at an even level, the next two branching nodes come at odd levels, the next four
come at even levels and so on. The natural continuous bijection � � 2� → �T�
preserves the partition cmin and thus has the required property that preimages of
cmin-homogeneous sets are again cmin-homogeneous.

Sheu investigated the Ramsey theoretic properties of the �-ideal I . He proved
that the countable support product of an arbitrary number of copies of PI does not
add a splitting real.

The previous fact shows the cmin forcing is the simplest forcing in which the
monotonic reading of names fails. Here the monotonic reading of names for a
�-ideal J is the statement that every Borel function with J -positive domain has
a monotonic restriction with J -positive domain. The notion of monotonicity uses
a separable Borel ordering on the domain and the range of the function f and it
turns out that the choice of the ordering is immaterial. Some forcings including the
Sacks forcing do have the monotonic reading of names, others do not. The whole
situation should be compared with Steprāns forcing of Section 4.2.3, which is the
simplest forcing without the continuous reading of names.

4.1.6 Packing measures

Suppose that �X�d� is a compact metric space and h � �+ → �+ is a gauge
function, a continuous nondecreasing function with h
0� = 0. There are several
definitions of various packing measures. I will define the packing premeasure �p

by �p
A� = inf	 sup��nh
rn� � there are points xn ∈ A such that the closed balls
around xn with radius rn < 	 are pairwise disjoint� and the packing measure as
�
A� = inf��n�p
An� � A ⊂

⋃
n An�. It turns out that � is a metric measure and

typically it is not �-finite. Let I be the �-ideal generated by sets of finite packing
measure.

Proposition 4.1.25. The ideal I is �-generated by a �-compact collection of
compact sets.

Proof. For natural numbers k� l ∈� consider the set Kkl ⊂K
X� consisting of those
compact sets F ⊂X such that �p
F�k�= sup��ih
ri� � there are points xi ∈ F such
that the closed balls around xi of radius ri < 2−k are pairwise disjoint�≤ l.

First observe that every set Kkl ⊂ K
X� is compact. Suppose Fn � n ∈ � are sets
in Kkl converging to another compact set F . If �p
F�k� > l as witnessed by some
finite set of points xi and radii ri, there will be a large number n such that the set Fn

contains points yi sufficiently close to xi such that the balls around yi of radius ri
are disjoint, and then �p
Fn� k� > l, a contradiction. Thus �p
F�k�≤ l and F ∈Kkl

as required.
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Second, observe that every set A ⊂ X of finite �p mass is a subset of a set in
one of the collections Kkl. Just choose k� l large enough so that �p
A�k� < l and
note that �p
A�k�= �p
Ā� k�, thus the closure Ā is in Kkl as required.

It is now immediately clear that the ideal I is �-generated by the sets Kkl � k� l∈�.

Consider the following measure-theoretic result:

Fact 4.1.26. [32] Every Borel �-positive set has a Borel subset of positive, finite
�-mass.

Caution – this result is sensitive to the particular definition of packing measure
in question, for a discussion see [32]. It now follows from 4.1.8 and 3.6.4 that
the forcing PI is bounding, preserves Baire category, preserves outer Lebesgue
measure, and does not add splitting reals. I do not know how the forcing depends
on the metric space and gauge function in question.

Example 4.1.27. To construct a thematic forcing which increases the invariant
cof
null� and keeps all other Cichoń invariants unchanged choose a decreasing
sequence of numbers 0 < dn < 1 � n ∈ � converging to zero such that dn > n2dn+1,
and let kn � n ∈ � be positive natural numbers such that the sequence kn ·dn � n ∈ �
diverges to infinity. Consider the metric space X = �nkn with the least differ-
ence metric d
x� y� = d�
x�y�, and consider the one-dimensional packing measure
� associated with it. The numbers kn were chosen so that the space X is not
a countable union of sets of finite �-measure, and the numbers dn were cho-
sen so that any tunnel T = �nan where an ⊂ kn is a set of size ≤ n2, has finite
packing measure. Let I be the �-ideal on the space X generated by the sets
of finite packing measure. The forcing adds an element of the space X which
cannot be enclosed by an n2 tunnel from the ground model, and therefore it
increases the invariant cof
null� by [2], 2.3.9. The forcing is bounding and
does not add splitting reals by Theorem 4.1.8, it preserves Baire category by The-
orem 4.1.2, and it preserves outer Lebesgue measure by Theorem 3.6.2 and the
previous Fact.

4.1.7 The splitting real forcing

Shelah [62] considered a bounding forcing for adding a splitting real. The conditions
are trees T ⊂ 2<� such that for every node t ∈ T there is a number n ∈ � such that
for every m > n and every bit b ∈ 2 there is an extension s ⊃ t� s ∈ T such that
s
n�= b. The ordering is that of inclusion.
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Consider the �-ideal I on 2� generated by sets Aa = �x ∈ 2� � ∀n ∈ a x
n�= 1�
and Ba = �x ∈ 2� � ∀n ∈ a x
n� = 0�, as a varies over all infinite subsets of �.
The generating sets are all closed and they form a G	-set in K
2��. The following
proposition shows that the forcing PI contains a dense subset isomorphic to Shelah’s
forcing. Compare this to Theorem 4.1.8

Fact 4.1.28. [72] An analytic set A⊂ 2� is I-positive if and only if it contains all
branches of some splitting tree.

Regarding the finer forcing properties of this partial order I will make the
following observation.

Proposition 4.1.29. I ⊥ null.

Thus under some condition the forcing PI collapses the outer Lebesgue measure.
I do not know if under some other condition the forcing PI preserves it.

Proof. To facilitate the underlying intuition consider the ideal J for adding a
�-splitting subset of the set z which is a disjoint union of 2n � n ∈ �. Thus the
domain of the �-ideal J is X = 2z and J is clearly just another presentation
of the ideal I , and it will be enough to show J ⊥ null. Consider the Borel
set B ⊂ X of the characteristic functions of graphs of all functions f such that
∀n f
n� ∈ 2n. It is not difficult to see that the set B is J -positive. Now con-
sider the Borel set D ⊂ B× 2�, �x� y� ∈ D ↔ ∃�n x
�n� y � n�� = 1. A brief
review of the definitions will reveal that the vertical sections of the set D are
Lebesgue null while the horizontal sections of its complement are in the ideal J as
desired.

4.1.8 Sets of extended uniqueness

Let � be the unit circle in the complex plane. For a measure � on � let �̂
n� be
the n-th Fourier coefficient of the measure �, that is, �̂
n� = ∫

� e
−inxd�
x�. The

measure � is a Rajchman measure if its Fourier coefficients converge to 0. Let
I = �A ⊂ � � �
A� = 0 for every Rajchman measure ��. In Fourier analysis, the
sets in the ideal I are known as sets of extended uniqueness.

Fact 4.1.30. (Debs, Saint Raymond) [37], VIII.3, Theorem 1. The ideal I is
generated by closed sets.

Note that by the virtue of its definition the ideal I is polar and therefore the
forcing PI is bounding and preserves the outer Lebesgue measure. Other forcing
properties of the forcing PI are unknown.
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4.1.9 Destroying a partition into closed sets

Arnold Miller [51] considered a forcing P adding an infinite binary sequence r ∈ 2�

which destroys a partition 2� = ⋃
i∈K Ci of the Cantor space into a collection of

pairwise disjoint compact sets in the ground model indexed by some uncountable
index set K, that is, P � ∀i ṙ � Ċi. The forcing P consists of binary trees T such
that Ci∩ �T� is a nowhere dense subset of the set �T� for every index i.

Consider the �-ideal I on 2� generated by the sets Ci. The following proposition
shows that the forcing PI contains a dense subset isomorphic to the forcing P.

Proposition 4.1.31. A set A⊂ 2� is I-positive if and only if it contains all branches
of some tree in the forcing P.

Proof. Let B ⊂ 2� be a Borel I-positive set; I must produce a tree T ⊂ 2<� such
that �T� ⊂ B and T ∈ P. The key idea is to find the perfect tree T in such a way
that for every node t ∈ T there is an index it such that �Cit

∩ �T � t�� = 1. Such a
tree must be in the poset P: if i is an index and t ∈ T is a node, then there are two
cases: either i = it, in which case certainly there is a node s ∈ T extending t such
that Ci∩ �T � s�= 0; or i �= it, in which case again there is an initial segment s ∈ T
of the unique element of Cit

∩ �T � t� such that Os∩Ci = 0 since the sets Ci and Cis

are closed and disjoint.
Fix a tree S ⊂ 
�× 2�<� projecting into the set B ⊂ 2�. Removing some bad

nodes of the tree S and thinning out the set B if necessary I may assume that for
all nodes s ∈ S, p�S � s� � I . Call a node s ∈ S incompatible with an index i ∈ K
if the binary sequence forming the second coordinate of the node s is not on the
tree determining the compact set Ci ⊂ 2� Now by induction on n ∈ � build trees
Tn ⊂ S and functions �n��n such that:

• Tn+1 end-extends Tn.
• Two distinct endnodes t = �at� bt� and s = �as� bs� of the tree Tn have
⊂-incomparable second coordinates.

• �n � Tn→K is an injection and �n � Tn→ �S� is a function such that �n
t� is a cofi-
nal branch of the tree S which passes through t as well as through some terminal
node of the tree Tn, and its second coordinate is a binary sequence in the compact
set C�n
t�

. The function �n returns distinct values of i on distinct nodes t ∈ Tn.
• �n��n ⊂ �n+1��n+1.
• Whenever t ∈ Tn and then the only terminal node of the tree Tn+1 compatible

with �n
t� is the one on the branch �n
t�⊂ S.

This is not difficult to do. Suppose that Tn��n have been constructed. There
are just finitely many pairwise disjoint compact sets indicated by the function �n
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and so there will be a number m ∈ � such that for every t ∈ Tn among the nodes
�n
s� � m � s ∈ Tn the only one compatible with �n
t� will be �n
t� � m. Let Tn+1

be the closure of the set ��n
s� � m � s ∈ Tn� under initial segment. For every node
t ∈ Tn+1 \Tn find an index it and a branch bt ⊂ S such that the branch bt passes
through t as well as some terminal node of Tn+1, its second coordinate is in the
set Cit

, and the indices it are mutually distinct and outside of the set rng
�n�. This
is easily possible since for every terminal node s ∈ Tn+1 the projection p�S � s�
meets infinitely many sets among the Ci � i ∈ K. Finally, let �n+1 = �n ∪ ��t� it� �
t ∈ Tn+1 \Tn� and �n+1 = �n ∪ ��t� bt� � t ∈ Tn+1 \Tn�. The induction hypotheses
continue to hold.

In the end, let T� =
⋃

n Tn ⊂ S and let T ⊂ 2<� be the projection of T� into 2<�.
The second item of the induction hypothesis implies that any branch through the
tree T is a projection of a unique branch through the tree T� and so �T�⊂ B. Also,
if n ∈ �, s ∈ Tn is a terminal node and t ∈ T its projection then �T � t�∩C�n
s�

is a
set containing a single element, the projection of the branch �n
s�. This concludes
the proof.

4.2 Porosity ideals

The subject of the present section grew out of an attempt to generalize the proof of
properness of the forcing associated with the �-ideal generated by porous subsets
of a Polish metric space. It turns out that there is a suitable generalization of the
metric porosity.

Definition 4.2.1. [18] Let X be a Polish space and U a countable collection of its
Borel subsets. An abstract porosity is an inclusion preserving map por � P
U�→
B
X�, that is a ⊂ b→ por
a� ⊂ por
b�. The porosity ideal I associated with the
porosity por is �-generated by sets por
a� \⋃a, as a runs through all subsets of
U . Such sets (and their subsets) are called porous.

Note that by extending the topology on the space X without changing the Borel
structure and the underlying forcing PI it is possible to assume that the sets in U
are clopen, without changing the Borel structure or the poset PI . However, this is
not always a natural step to make; cf. Subsection 4.2.3. Another remark in this
vein is that every presentation of a porosity ideal is a porosity ideal; this is in
contradistinction to the class of �-ideals generated by closed sets which is not
invariant under various presentations.

In the way of examples, note that every �-ideal J generated by closed sets is a
porosity ideal. Just let U be the collection of all basic open sets and por
a� = X
whenever X \⋃a ∈ J , and por
a� = 0 otherwise. It is clear that a set is porous if
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and only if it is covered by a closed set in the ideal J . Somewhat more substantial
example is the following representation of the meager ideal as a porosity ideal. Let
U be again the collection of basic open sets, and let por
a� be the closure of

⋃
a.

It is not difficult to see that a set is porous if and only if it is covered by a closed
nowhere dense set. The real examples are covered by the subsections below. It is
nevertheless the case that the extent of the family of porosity ideals is unclear.
Question 7.3.1 is one related unsolved problem. There indeed are porosity ideals
which cannot be presented as ideals generated by closed sets, such as the metric
porosity ideal of Section 4.2.2.

4.2.1 General results

Theorem 4.2.2. [18] Suppose that I is a porosity �-ideal on a Polish space X.
Then the forcing PI is proper and preserves Baire category.

Proof. Suppose that B ∈ PI is a Borel set, and Ȯn � n ∈ � is a name for a sequence
of open dense subsets of 2<�. Suppose M is a countable elementary submodel of
a large enough structure and y ∈ 2� is a point which meets all open dense subsets
of the Cantor space in the model M . I must show that the set C = �x ∈ B � x is
M-generic for PI and y ∈⋂

n Ȯn/x� is I-positive. Let an ⊂ U � n ∈� be sets; I must
produce a point x ∈ C \⋃�por
an� \

⋃
an � n ∈ ��. In order to do this, enumerate

the open dense subsets of PI in the model M by Dn � n ∈ � and by induction on n
build conditions Bn � n ∈ � so that

• B = B0 ⊃ B1 ⊃ � � � are all elements of the model M;
• Bn+1 ∈Dn;
• Bn+1∩por
an�\

⋃
an = 0;

• for some initial segment tn ⊂ y, Bn+1 � ťn ∈ Ȯn.

Once this is done, the filter g ⊂ PI ∩M generated by the sets Bn is M-generic by
the second item and its intersection is a singleton containing a point x ∈ X. By the
third item x ∈ B \⋃�por
an�\

⋃
an � n ∈ �� . Finally by the last item y ∈⋂

n Ȯn/x
as required, completing the proof.

The inductive construction is easy to perform. Suppose that Bn ∈M has been
found. Let a= �u ∈ U � Bn∩u ∈ I� and let B0

n ⊂ B be defined by B0
n = 
B \⋃a�\

por
a�. Note that both of the set differences in the previous expression removed
only a Borel I-small set from B, so B0

n ∈ PI ∩M . Consider the set an ⊂M . I claim
that there is a condition B1

n ⊂ B0
n in the model M such that B1

n∩por
an�\
⋃
an = 0.

There are two possible cases. Either an ⊂ a in which case por
an� ⊂ por
a� by
the monotonicity of the porosity function and B1

n = B0
n will work. Or there is a

set u ∈ an \a in which case the set B1
n = B0

n∩u ∈ PI ∩M will work. Now use the
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elementarity to find a condition B2
n ⊂ B1

n in the model M and in the open dense set
Dn. The set �t ∈ 2<� � ∃A ⊂ B2

n A � ť ∈ Ȯn� ⊂ 2<� is open dense and an element
of the model M , and by the choice of the point y ∈ 2� it is possible to find a set
B3
n ⊂ B2

n in the model M and an initial segment tn ⊂ y such that B3
n � ťn ∈ Ȯn.

Finally, let Bn+1 = B3
n and the induction step is complete.

Theorem 4.2.3. Suppose that I is a porosity �-ideal on a Polish space X.

1. I satisfies the third dichotomy.
2. (In the choiceless Solovay model) I satisfies the first dichotomy and is closed

under wellordered unions.
3. (ZF+DC+AD+) I satisfies the first dichotomy and it is closed under wellordered

unions.

Proof. For the first item use the forcing QI of all analytic I-positive sets ordered by
inclusion. The ideal I is generated by Borel sets and so Proposition 2.1.11 applies
to show that the forcing adds a point ẋgen which belongs to all sets in the generic
filter.

Let A � I be an analytic set. Let M be a countable elementary submodel of a
large enough structure containing the set A and let B = �x ∈ A � x is M-generic for
the forcing QI�. This is a Borel set by Fact 1.4.8; it will be enough to show that
B � I . The proof follows exactly the lines of the previous proof. The only relevant
point is that if C � I is an analytic set and a = �u ∈ U � C ∩ u ∈ I� then the set

C \⋃a�\por
a� is analytic again, since the range of the porosity function consists
of Borel sets.

The second item is similar. Work in the choiceless Solovay model derived
from an inaccessible cardinal �. Suppose that A ⊂ X×2� is an arbitrary set such
that proj
A� � I . I will produce a Borel subset B ⊂ A such that proj
B� � I . An
application of Proposition 3.9.17 then completes the proof of the second item. By
the usual homogeneity arguments I may assume that the set A is definable from
parameters in the ground model. Since proj
A�� I there must be in V a forcing P of
size < � and a P-name �ẋ� ẏ� such that P � ∀a⊂ U a ∈ V → ẋ � por
a�\⋃a and
P � Coll
��< �� � �ẋ� ẏ� ∈ Ȧ. Back again in the Solovay model, let B= ��x� y� ∈
X× 2� � ∃g ⊂ P g is a V -generic filter and �x� y� = �ẋ� ẏ�/g�. The set B is Borel
by Fact 1.4.8 and the usual homogeneity arguments show that B ⊂ A. The proof
will be complete once I show that proj
B� � I .

The proof follows closely the argument for properness again. Let an � n ∈ � be
subsets of U ; I must produce a V -generic filter g ⊂ P such that ẋ/g �⋃

n
por
an�\⋃
an�. Enumerate the dense open subsets of the poset P in V by Dn � n ∈ � and by
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induction on n ∈� build a descending chain of conditions 1P = p0 ≥ p1 ≥ p2 ≥ � � �
so that

• pn+1 ∈Dn;
• for every V -generic filter h ⊂ P containing the condition pn+1, ẋ/h � por
an� \⋃

an.

If this construction succeeds then certainly the filter g generated by the conditions
pn � n ∈ � is as desired. To perform the inductive step, suppose that the condition
pn ∈ P has been constructed, and let a= �u ∈ U � V �= pn � ẋ � ȧ�. The set a⊂ U
is in the ground model, and there are two cases. Either an ⊂ a; then, since pn �
ẋ � por
a�\⋃a, it is also the case that pn � ẋ � por
a� and by the monotonicity of
the porosity function no V -generic filter h containing the condition pn has ẋ/h ∈
por
an�. In this case any condition pn+1≤ pn in the open dense set Dn will satisfy the
induction hypotheses. Or there is a set u∈ an\a and consequently a condition q≤ pn

such that q � ẋ ∈ u̇. Clearly, any V -generic filter h ⊂ P containing the condition
q ∈ P will have ẋ/h∈ u and so ẋ/h� por
an�\

⋃
an. Thus in this case any condition

pn+1 ≤ p in the open dense set Dn will satisfy the induction hypotheses.
The last item is similar again. Suppose for simplicity that the underlying Polish

space is 2�. Suppose that A⊂ 2�×2� is a set such that proj
A�� I; I must produce
an analytic set B ⊂ A such that proj
B� � I . The argument is then concluded by a
reference to Proposition 3.9.18.

Fix the countable collection U of Borel sets defining the porosity. Consider
a game G
A� between Players I and II in which Player I produces a sequence
an � n ∈ � of subsets of U and Player II produces a point �x� y� ∈ 2� × 2�.
Player II wins if �x� y� ∈ A and x �⋃

n
por
an� \
⋃
an�. In order to complete the

description of the game, just enumerate the set U in some way. At round n ∈ �,
Player I decides which among the first n elements of U belong to which sets
am � m ∈ �. Player II answers with a pair of sequences sn� tn ∈ 2n. Player II wins
if the sequences sn converge (the limit is denoted by x), the sequences tn converge
(the limit is denoted by y), �x� y� ∈ A and x �⋃

n
por
an�\
⋃
an�.

I will prove that Player I has a winning strategy in the game G
A� if and only
if proj
A� ∈ I . Then, if proj
A� � I , Player II must have a winning strategy � by a
determinacy argument. Let B ⊂ A be the set of all points �x� y� the strategy � can
produce against a counterplay by Player II. The set B is analytic by its definition –
it is the image of the compact collection of all possible plays by Player I under a
total Baire class one function – it is a subset of the set A as � is a winning strategy,
and its projection is I-positive as � remains a winning strategy in the game G
B�.

First of all, if proj
A� ∈ I then Player I can easily win ignoring the moves of the
adversary altogether. On the other hand, suppose that � is a strategy for Player I. I
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will find a set C ⊂ 2� in the ideal I such that for all x � C and all y ∈ 2� there is a
counterplay against the strategy � which produces the pair �x� y� such that x does not
belong to the small set obtained by the strategy. This means that either proj
A�⊂C
and proj
A� ∈ I , or else � is not a winning strategy, completing the proof.

For every finite partial play 
 of the game respecting the strategy � and all
natural numbers n�m let a
�n�m ⊂ U be the collection of all those sets u ∈ U that
the strategy � can put into an in some play extending 
 in which the additional
sequences played by Player II all agreed with the last move of 
 on the first m bits.
Let C =⋃


�n�m
por
a
�n�m�\
⋃
a
�n�m�. Clearly, C ∈ I . I claim that the set C works.

For any point x ∈ 2� \C and y ∈ 2� build by induction on i ∈ � partial plays 
i
against the strategy � so that

• 0= 
0 ⊂ 
1 ⊂ � � �

• all moves of Player II on 
i+1 \
i agree with x or y respectively on the first i bits;
• for every i ∈ �, either x � ⋃

a
i�i�i
or at some point during the play 
i+1 the

strategy � put a set u ∈ U into ai such that x ∈ u.

The induction is entirely straightforward given the definition of the set a
i�i�i
.

Consider the infinite play
⋃

n 
n. In it, the moves of Player II converge to the
points x and y as guaranteed by the second item. Now fix a number i ∈ � and let
a⊂ U be the i-th set obtained by the strategy � . I must show that x � por
a�\⋃a.
For this, consider the set b = a
i�i�i

, use the second item to see that a⊂ b, and use
the monotonicity of the porosity function to see that

⋃
a∪por
a�⊂⋃

b∪por
b�.
There are now two possibilities according to the third item above.

• x�⋃
b. In this case, since x� por
b�\⋃b by the definition of the set C, it follows

that x�⋃
b∪por
b� and consequently x� por
a�\⋃a⊂⋃

b∪por
b� as desired.
• There is a set u ∈ a such that x ∈ u. Then certainly x � por
a�\⋃
a� as well.

In both cases, the argument came to a successful conclusion.

Theorem 4.2.4. If I is a porosity �-ideal then the forcing PI is embeddable into
�-closed*c.c.c. iteration.

Proof. For simplicity assume that the underlying Polish space is the Cantor space
2�. Let P be the partial order of pairs p= �ap� bp� where:

• ap is a countable set of trees T ⊂ 
�× 2�<� such that proj�T� � I; for every
I-positive element u ∈ U the set ap contains a tree which projects to u;

• The set ap is closed under I-positive intersections: if T0� T1 ∈ ap and proj�T0�∩
proj�T1� � I then there is a tree S ∈ ap such that proj�S�= proj�T0�∩proj�T1�;
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• The set ap is closed under restriction: if t ∈ ap and t ∈ T is a node such that
proj�T � t� � I then T � t ∈ ap;

• The set ap is closed under the following operation: if T ∈ ap is a tree and a⊂ U

is the set �u ∈ U � proj�T�∩u ∈ I� then there is a tree S ∈ ap which projects into
the set 
proj�T�\⋃a�\por
a�. Note that proj�T�\proj�S� ∈ I .

• bp is a countable collection of sets z⊂ ap such that for every tree T ∈ ap there is
S ∈ z such that proj�T�∩proj�S� � I .

The ordering is that of coordinatewise reverse inclusion. This is clearly a �-
closed forcing. If G ⊂ P is a generic filter then let Q ∈ V�G� be the set �proj�T� �
∃p ∈G T ∈ ap� ordered by inclusion. The proof will be complete once I show that
Q is c.c.c. and if D ⊂ PI is a dense set in the ground model then D∩Q ⊂ Q is
dense. For then, the poset Q adds a V -generic filter on PI and so PI embeds into
the iteration P ∗Q. The following claim will be instrumental.

Claim 4.2.5. Suppose p = �ap� bp� ∈ P is a condition and consider the set B =
⋂

z∈bp
⋃
�proj�T� � T ∈ z�. Then for every tree S ∈ ap, B∩proj�S� � I and for every

I-positive analytic set C ⊂ B there is a condition q = �aq� bp� ≤ p such that the set
aq includes some tree T such that C = proj�T�.

The claim immediately implies that if D⊂PI is an open dense set then P � Ď∩Q
is dense. To see this, for every condition p ∈ P and every tree S ∈ ap consider the
set B⊂X as in the claim and look at the intersection B∩proj�S�. It is an I-positive
analytic set and therefore contains an I-positive Borel subset and even one from the
open dense set D. Choose such a set C ⊂ B and use the claim to find a condition
q ≤ p which includes some tree T such that proj�T� = B∩ proj�S�. The condition
q forces that there is an element of the open dense set D below the condition
proj�S� ∈ Q. Finally use a genericity argument to see that D∩Q is forced to be
dense.

For the c.c.c. of the forcing Q in the P-extension, suppose that p � Ḋ ⊂ Q̇ is
an open dense set. Let M be a countable elementary submodel of a large enough
structure, let q≤p be a the coordinatewise union of some M-generic filter g⊂P∩M
and let z⊂ aq be the set �proj�S� � S ∈ aq� q � proj�S� ∈ Ḋ�. A genericity argument
concerning the filter g shows that for every tree T ∈ aq there is S ∈ z such that
proj�S�∩proj�T�� I . Ergo, the pair r = �aq� bq∪�z�� ≤ q is a condition in the poset
P. It is immediate that r � �proj�S� � S ∈ z�⊂ Q̇ is a countable predense set, proving
the c.c.c. of the forcing Q.

All that remains to do is to prove the claim. Fix the condition p= �ap� bp�. First
I will show that B � I . Suppose that an � n ∈ � are subsets of the set U defining
the porosity ideal I . For every tree S ∈ ap I must produce a point x ∈ 2� such that
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x ∈ B∩ proj�S� \⋃n
por
an� \
⋃
an�. Enumerate the set bp as �zn � n ∈ �� and by

induction on n ∈ � build a sequence Sn � n ∈ � of trees in ap so that

• S = S0, proj�S0�⊃ proj�S1�⊃ � � �

• for every number n there is a tree T ∈ zn such that proj�Sn+1�⊂ proj�T�;
• for every number n the set proj�Sn+1�∩por
an�\

⋃
an is empty;

• there are nodes tnm ∈ Sm of length n for every number m ∈ n such that tm+1
m ⊂

tm+2
m ⊂ � � � and proj�Sn�⊂ proj�Sm � tnm� for every m ∈ n.

The fourth item is designed to imply that
⋂

n proj�Sn� �= 0. Any point x ∈ 2� in
this intersection is the required element of the set proj�S�∩B \⋃n
por
an�\

⋃
an�

as is clear from the second and third item.
The induction step closely follows the argument from the properness proof.

Suppose that Sn has been constructed. Letting a = �u ∈ U � u∩ proj�Sn� ∈ I� ⊂ U ,
the set 
proj�Sn� \

⋃
a� \por
a� is I-positive and there is a tree S0

n ∈ ap projecting
into it. The next step is to produce a tree S1

n ∈ ap such that proj�S1
n�⊂ proj�S0

n� and
proj�S1

n�∩por
an�\
⋃

an�= 0. There are two cases: either an ⊂ a, in which case the

tree S1
n = S0

n will work; or there is some set u ∈ an \a, in which case the analytic set
proj�S0

n�∩u is I-positive and any tree S1
n ∈ ap projecting into it will work. The next

step is to find a tree T ∈ zn such that the set proj�T�∩proj�S1
n� is I-positive and let

S2
n ∈ ap be any tree that projects into this set. Finally, by the countable additivity of

the �-ideal I there are nodes tn+1
m ∈ Sm of length n+1 for every number m ∈ n+1

extending the nodes tnm such that the set proj�S2
n�∩

⋂
m∈n+1 proj�Sm � tn+1

m � is I-positive
and let Sn+1 ∈ ap be any tree projecting into it. This completes the inductive step
and shows that the set B ⊂ X is I-positive.

Now suppose that C ⊂B is any I-positive analytic set. Find a tree T ⊂ 
�×2�<�

which projects into the set C and close the set ap∪ �T� so that it satisfies the first
four items from the definition of the poset p, getting a set aq. Since the set aq \ap

contains only trees that project into subsets of the set C, the definition of the set
B shows that the pair q = �aq� bp� satisfies the last item in the definition of the
forcing P, and it is the condition sought in the claim.

The following two theorems have proofs almost literally identical to the
corresponding results in Section 4.1.

Theorem 4.2.6. If I is a porosity �-ideal then PI forces that every function f �
�1 → 2 in the extension has an infinite ground model subfunction.

Theorem 4.2.7. (ZFC+LC) Suppose that I is a �-ideal generated by a universally
Baire porosity and V ⊆ V�H�⊆ V�G� are a ground model, a PI -extension, and an
intermediate extension. Then either V�H� is given by a single Cohen real or it is
equal to V�G�.
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4.2.2 Metric porosity

The study of �-ideals associated with metric porosities was the original motivation
for developing the concept of general porosity.

Definition 4.2.8. [81] Let X�d be a compact metric space, let A⊂ X be a set and
x ∈ X a point. The metric porosity of the set A at point x is defined as

lim sup
	>0

r
A�x�	�

	

where r
A�x�	� is the supremum of the radii of open balls which are subsets of
the open ball around x with radious 	 and are disjoint from the set A. A set is
metrically porous if it has nonzero porosity at all of its points. A set is metrically
�-porous if it can be decomposed into countably many metrically porous sets.

It is not difficult to check that the �-ideal of �-porous sets can be generated
by an abstract porosity in the sense of Definition 4.2.1. Just let the set U be the
collection of open balls with rational radii and centers in some fixed countable
dense subset of the space X, and for a⊂ U let x ∈ por
a� if lim sup	>0

s
a�x�	�

	
> 0

where s
a� x�	� is the supremum of the radii of the balls in a which are subsets of
the ball of radius 	 around the point x.

The most important result regarding the associated partial orders has been
obtained by Zajíček and Zelený as a corollary of their results in [80].

Proposition 4.2.9. [80] Let X�d be a compact metric space and I the �-ideal of
metrically �-porous sets. Then the forcing PI is bounding.

There is an alternative game theoretic proof of Diego Rojas showing that at least
in the case of a zero-dimensional space X compact sets are dense in the forcing
PI . This proof generalites to such variations of metric porosity as strong porosity
or symmetric porosity.

What are the finer forcing properties of the resulting partial orders? In general,
the �-porous ideal I on a metric space X�d may not preserve outer Lebesgue
measure. Humke and Preiss [27] showed that the ideal associated with the metric
porosity on the real numbers is not polar; I do not know if the resulting forcing
preserves outer Lebesgue measure. The metric porosity on the space constructed in
the following example certainly does collapse outer Lebesgue measure.

Example 4.2.10. Let 0 < pn < 1 � n ∈ � be real numbers such that �npn �= 0,
and let kn � n ∈ � be positive natural numbers such that �np

kn
n = 0. Consider the

space X =�nkn with the least difference metric d
x� y�= 2−�
x�y�. I claim that the
associated forcing PI makes the ground model reals null. It will be enough to find
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a Polish probability measure space Y�� and a Borel set D ⊂ X×Y such that the
vertical sections of D have �-mass one and its horizontal sections are �-porous.

Let T be the tree of all finite sequences t such that t
n� ∈ kn for all numbers
n ∈ dom
t�; thus X = �T�� Consider the space Y = 2T equipped with the probability
measure � defined by the demand �
�y ∈ Y � y
t� = 0�� = p�t�. The set C = �y ∈
Y � all but finitely many nodes t ∈ T have an immediate successor s such that
y
s� = 1� ⊂ Y has �-mass one. Consider the Borel set D = ��x� y� ∈ X ×C �
∀�n y
x � n�= 0�⊂ X×C. Its vertical sections have �-mass one, while for every
point y ∈ Y , the horizontal section Dy is the union of the sets An � n ∈ �, where
An = �x ∈ X � ∀m> ny
x � m�= 1� is a set of porosity 1/2 at each of its point by
the definition of the set C. Thus I ⊥ I� as required.

4.2.3 �-continuity

Lusin considered the question whether there is a Borel function which cannot
be decomposed into countably many continuous functions (is not �-continuous).
The answer turns out to be positive, and Pawlikowski [8] provided a particularly
simple example. The function f � 
�+1��→ �� is defined by f
x�
n�= x
n�+1
if x
n� ∈ � and f
x�
n�= 0 otherwise. Here the space �+1 is equipped with the
order topology and the space 
�+1�� then with the product topology. It turns out
that the function f is not �-continuous and it is the simplest such an example.

Fact 4.2.11. Suppose that g � X→ Y is a Borel function and A⊂ X is an analytic
set. Then

1. either g � A is �-continuous;
2. or there are topological embeddings � and � such that the following diagram

commutes.

A
g−−−−→ Y

�
⏐
⏐�

�
⏐
⏐�


�+1��
f−−−−→ ��

Under AD this is true for all functions and all sets.

This has been proved originally by Solecki [70] for Baire class one functions and
later extended [83] to all Borel functions.

There is a natural associated forcing. Suppose that f � X→ Y is a Borel non-�-
continuous function and I is the �-ideal generated by sets on which f is continuous.
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Then I is a porosity ideal. To see this choose countable bases O for X and P for
Y , let U = �u
O�P� � O ∈ O�P ∈ P� where u
O�P� = �x ∈ O � f
x� � P� and
por
a�= �x ∈ X � ∀O ∈O x ∈ O→∃P ∈ P f
x� ∈ P∧u
O�P� ∈ a�. A review of
definitions will show that the function f is continuous on some set X if and only
if A is porous with respect to this porosity.

Thus the forcing PI is proper and preserves nonmeagerness by Theorem 4.2.2.
The continuous reading of names fails as witnessed by the function f and clearly
the forcing has been designed in a minimal way for such a purpose. The Fact
shows that the forcing is densely naturally isomorphic to PJ where J is the �-
continuity ideal obtained from the Pawlikowski function, and if initially f was
the Pawlikowski function then the ideal I is homogeneous. Thus without loss of
generality it is possible to consider only the case of the �-ideal I generated by the
sets of continuity of the Pawlikowski function.

The forcing PI is proper and it preserves Baire category. It is not bounding since
it does not have the continuous reading of names by its definition. I will show that
it preserves outer Lebesgue measure. The argument uses a claim of independent
interest. Let f � X→ Y be a Borel function, let � be the outer Lebesgue measure
on 2�, and let P be the Solovay forcing of �-positive Borel subsets of 2� ordered
by inclusion.

Claim 4.2.12. If p ∈ P is a condition and Ȧ is a P-name such that p � ḟ � Ȧ∩V
is continuous, then there are sets Bn � n ∈ � in the ground model such that p �
Ȧ∩V ⊂⋃

n B̌n and f � Bn is continuous for every n ∈ �.

Proof. For every clopen set O ⊂ 2� let BO = �x ∈ X � ∃qx�O ⊂ p∩O �
qx�O� >
3
4�
O�∧qx�O � x̌ ∈ Ȧ�. It will be enough to show that the sets BO � O a clopen set,
have the properties stated in the claim. The Lebesgue density theorem shows that
p � Ȧ∩V ⊂⋃

O B̌O. To show that f � BO is continuous, assume for contradiction it
is not and find a sequence xn � n ∈ � of points in BO together with its limit x ∈ BO

such that the set of values �f
xn� � n ∈ �� does not have f
x� as an accumulation
point. Clearly, the condition

⋂
m

⋃
n>m qxn�O∩qx�O has �-mass > 1

4�
O� and it forces
that infinitely many of the xn’s as well as x belong to the set Ȧ, contradicting the
assumption that ḟ � Ȧ∩V is continuous.

Now look at the forcing PI . If it does not preserve outer Lebesgue measure,
then by the results of Section 3.2.2 I ⊥ � holds and so there are Borel sets B ⊂ X
and D⊂ X×2� such that B � I the vertical sections of D are Lebesgue null while
the horizontal sections of its complement are I-small. This means that there are
P-names Ȧn � n ∈ � for sets such that ḟ � Ȧn is continuous for every n ∈ � and
B∩V ⊂⋃

n Ȧn. Together with the previous claim this contradicts the I-positivity
of the set B.
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4.2.4 Uniform convergence

Let X be a Polish space with a countable topology basis O and fn � X→ Y�n∈� be a
sequence of Borel functions into a metric space Y with a fixed metric d, converging
pointwise. Given a point x ∈X and a set A⊂X, consider the oscillation osc
x�A�,
the supremum of all real numbers q ≥ 0 such that for every open neighborhood
O ⊂ X containing the point x, it is the case that infp sup�d
fm
y�� fn
y�� � m >
n > p�y ∈ O∩A� ≥ q. This notion comes from the work of Zalcwasser, and it is
connected with the notion of uniform convergence [40], p. 279. It is not difficult
to show that whenever K ⊂ X is a compact set then ∀x ∈ Kosc
x�K� = 0 ↔the
sequence �fn � n ∈�� converges uniformly on K. Let I be the �-ideal generated by
sets A⊂ X such that osc
x�A�= 0 for all x ∈ A. I will show that this is a porosity
ideal, and at least in the case of zero-dimensional space X compact sets are dense
in PI .

First, for every rational number q > 0, every basic open neighborhood O ⊂ X
and every number p ∈ � let u
q�O�p� = �x ∈ O � ∃m > n > p d
fm
x�� fn
x�� ≥
q�, let U = �u
q�O�p�� and let the porosity por � P
U�→ B
X� be defined by
por
a� = �x ∈ X � ∀q > 0 ∃O ∈ O ∃p ∈ � x ∈ O∧u
q�O�p� ∈ a�. Clearly this is
an inclusion-preserving function. It is straightforward to check that for every set
A ⊂ X, ∀x ∈ A osc
x�A� = 0 ↔ ∃a ⊂ U A ⊂ por
a� \⋃a and so the �-ideal I
coincides with the one derived from the porosity por.

To show that compact sets are dense in the poset PI , for every set A ⊂ X
define a game Gosc
A� between Players I and II. Player I gradually constructs a
point x ∈ X, player II builds subsets an � n ∈ � of the set U and player I wins if
x ∈ A \⋃n
por
an� \

⋃
an�. I must specify the schedule for both players. Fix an

enumeration �Oj � j ∈ �� of a basis for the Polish space X and �qj � j ∈ �� of
nonnegative rationals. At round j ∈�, Player I must specify whether x ∈Oj or not,
and Player II must indicate which of the sets u
qk�Ol�p� belong to which sets an,
for k� l�p�n ∈ j. This defines the game.

Claim 4.2.13. Player II has a winning strategy in the game Gpor
A� if and only if
A ∈ I .

The right-to-left implication is immediate–if A∈ I then Player II can win ignoring
opponent’s moves entirely. On the other hand, if Player II has a winning strategy �
then consider the sets An = �x ∈ A � if Adam produces the point x then the strategy
� will beat him by arranging x ∈ por
an�\

⋃
an�. It is clear that A=⋃

n An since the
strategy � was winning, so it will be enough to prove that ∀x ∈ An osc
x�An�= 0.
Fix a point x ∈ An and consider the play against the strategy � in which Player
I produces the point x. For every rational number q > 0 there must be an initial
segment 
 of the play of length j and numbers l� p ∈ j such that x ∈ Ol and
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the strategy � put the set u
q�Ol�p� in the set an. Look at the open set that
Player I committed to at this round, this is the open set P = ⋂

�Ok � k ∈ j ∧ x ∈
Ok�∩

⋂
�X \Ok � k ∈ j∧x �Ok� containing the point x. I claim that for every point

y ∈ An ∩Ol ∩P it is the case that ∀m > n > p d
fm
y�� fn
y�� < q, showing that
osc
x�A�≤ q. And indeed, every such a point y ∈ An can be produced only with a
play whose initial segment is 
 and by the definition of the set An it must fall out
of the set u
q�Ol�p�. The definition of the set u
q�Ol�p� says then exactly that
∀m> n > p d
fm
y�� fn
y�� < q.

The rest of the proof is standard. Suppose that B � I is a Borel set, and use the
claim and Borel determinacy, 1.4.2, to find a winning strategy � for Player I in the
game Gosc
B�. Consider the set C ⊂ X of all points that the strategy � can output
against some counterplay. Then

• C ⊂ B since the strategy � was winning;
• C � I since the strategy � remains winning in the game Gosc
C� for obvious

reasons;
• C is compact since C = g′′Z where Z is the compact space of all counterplays of

Player I and g � Z→ X is the continuous function which assigns to each play the
point the strategy � produces against that play. Note that Z is compact because
Player I has only finitely many possible moves at any given round, and the
function g is continuous, because the preimage of any open set Oj is the clopen
set of all plays against which the strategy � was forced to admit at round j that
the resulting point will be in the set Oj .

It follows that every Borel I-positive set contains a compact I-positive subset.
This extends to analytic sets by Theorem 4.2.3 and in the context of AD to all sets.

4.2.5 Differentiability

Let f � �0�1�→ �0�1� be a function. If A⊂ �0�1� is a set and x ∈ A is a point I will
say that the function f � A is differentiable at a point x if either x is isolated in A or
else the numbers f
y�−f
x�

y−x � y ∈ A converge as y tends to the point x. I will say that
the function f is differentiable at A if f �A is differentiable at all points of the set A.

Let I be the �-ideal generated by sets on which the function f is differentiable.
I will show that this is a porosity ideal. This implies that the associated forcing is
proper. I am really in dark as to which further forcing properties it may have and
how it depends on the function f .

Let U = �u
d� e� � d� e ⊂ �0�1� are rational intervals� where u
d� e� = �x ∈ d �
f
x� ∈ e�. The porosity function is defined by the following formula. If a ⊂ U is
a set then x ∈ por
a� if for every rational number q there is a cone centered at
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the point 
x� f
x�� of rational slope and thickness ≤ q and a basic open interval c
containing x such that for every pair of rational intervals d� e, if d ⊂ c and d× e
is disjoint from the cone then u
d� e� ∈ a�. It is clear that this is an inclusion-
preserving function and its values are Borel sets. A review of the definitions shows
that a set A⊂ �0�1� is porous if and only if the function f is differentiable on it.

4.3 Capacities

If � is a subadditive capacity on a Polish space X one can consider the �-ideal
I� = �A⊂X � �
A�= 0� and the associated forcing PI�

. It turns out that properness
and other forcing properties of the poset depend heavily on the measure theoretic
properties of the capacity �.

4.3.1 Some measure-theoretic definitions

I will start this section with a brief restatement of several measure-theoretic
definitions and facts.

Definition 4.3.1. [40], 30.1. A capacity on a Polish space X is a function � �
P
X�→�+ satisfying the following demands:

1. (monotonicity) �
0�= 0, A⊂ B→ �
A�≤ �
B�.
2. (continuity in increasing unions) If An � n∈� is an inclusion increasing sequence

of subsets of the space X then �

⋃

n An�= supn �
An�.
3. (outer regularity on compact sets) if K ⊂ X is a compact set then �
K� =

inf��
O� � K ⊂ O�O open�. This implies that � is continuous in decreasing
intersections of compact sets.

4. �
K� <� for every compact set K ⊂ X.

Note that the way it is stated above, a capacity is defined on all subsets of the
space X. All capacities I will encounter are outer capacities in the sense that they
are determined by their values on Borel sets through the property �
A�= inf��
B� �
A⊂ B�B Borel�. It is not difficult to see that if � satisfies the above properties on
Borel sets then the outer capacity derived from it satisfies these properties as well.

In fact, every outer capacity is determined by its values on basic open sets from
any basis closed under finite unions. We set �
O� = sup��
D� � D ⊂ O�D ∈ B�
for open sets O, �
K� = inf��
O� � K ⊂ O�O open� for compact sets K, �
B� =
sup��
K� � K ⊂ B�K compact � for Borel sets B, and �
A�= inf��
B� � A⊂ B�B
Borel�. The first step is justified by the continuity of the capacity in increasing
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unions and the second by the outer regularity on compact sets. The third step is
justified by Choquet’s theorem, the central fact about capacities:

Fact 4.3.2. [40], 30.13. Suppose that � is a capacity on a Polish space X and
A⊂ X is an analytic set. Then �
A�= sup��
K� � K ⊂ A�K compact�.

Many capacities used in this book share some other properties:

Definition 4.3.3. The capacity � is subadditive if �
A∪B�≤ �
A�+�
B�.

For a subadditive capacity � the collection I�= �A⊂X ��
A�= 0� forms a �-ideal,
and I will naturally study the forcing properties of the forcing PI�

. A frequently
encountered stronger property is that of strong subadditivity.

Definition 4.3.4. The capacity � on a Polish space X is strongly subadditive if
�
A�+�
B� ≥ �
A∪B�+�
A∩B� whenever A�B ⊂ X. I will frequently use a
trivial restatement of this inequality: �
A∪B�−�
A∩B�≤ 
�
A�−�
A∩B��+

�
B�−�
A∩B��.
Strongly subadditive capacities share a number of properties of interest. Among
them:

Fact 4.3.5. [6] Let X be a compact zero-dimensional Polish space, O the collection
of its clopen sets, and � � O→�+ a strongly subadditive submeasure on O. Then
� can be extended in a unique fashion to an outer capacity on the space X. The
extension capacity is given by �
O� = sup��
P� � P ⊂ O�P ∈ O� for open sets
O ⊂ X, and �
A�= inf��
O� � A⊂ O�O ⊂ X open� for all other sets A⊂ X.

Theorem 4.3.6. Suppose that � is an outer strongly subadditive capacity on a
compact Polish space X.

1. [6] � is outer regular on all sets, that is �
A�= inf��
O� � A⊂O�O open� for
all sets A.

2. [6] � is an envelope of measures, that is �
B�= sup��
B� � � is a measure less
or equal to � on all Borel sets�.

3. In the Solovay model, every set has a Borel subset of the same capacity and �

is continuous in increasing wellordered unions.
4. (ZF+DC+AD+) Every set has a Borel subset of the same capacity and � is

continuous in increasing wellordered unions.
5. � is continuous in increasing wellordered unions of length < add
null�. In

particular, if add
null� > ℵ1 then every coanalytic set has a Borel subset of
the same capacity.
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6. Whenever P is a forcing with the Sacks property and � > 0 is a real number,
then every open set of capacity < � in the extension is covered by such an open
set in the ground model.

I will tackle the problem of capacitability of coanalytic sets in ZFC in
Theorem 4.3.21.

Proof. Fix a countable topology basis O for the Polish space X closed under finite
unions and intersections.

For (4), suppose that B⊂X×2� is an arbitrary set. I must find an analytic subset
A ⊂ B such that �
proj
A�� = �
proj
B��. An application of Proposition 3.9.20
will then complete the proof of (4). Fix a countable basis O of the Polish space X
closed under finite unions, fix a Borel bijection � � 2�→ X×��, and let � > 0 be
a real number. Consider the game G�
B� between Players I and II in which Player I
indicates basic open sets Pn ∈O such that P0 ⊂ P1 ⊂ � � � , �
Pn+1�−�
Pn� < 2−3n−2

and �
Pn� ≤ �, and Player II gradually builds a binary sequence x ∈ 2�; I will
write proj
�
x�� for the projection of the point �
x� ∈ X ×�� into the first
coordinate. Player II is allowed to postpone the decision-making process by an
arbitrary number of rounds. Player II wins if proj
�
x�� � ⋃

n Pn and �
x� ∈ B.
The following claim is key.

Claim 4.3.7. If � > �
proj
B�� then Player I has a winning strategy. If
� < �
proj
B�� then Player I does not have a winning strategy.

Proof. If � > �
proj
B�� then Player I can win simply by constructing an open
set P = ⋃

n Pn such that �
P� < � and proj
B� ⊂ P. On the other hand, if
� < �
proj
B�� and � is a strategy for Player I then write 	= 
�
proj
B��−��/2
and consider the collection U of all basic open sets that � can produce if Player II
postpones his first decision to a number m such that 2−m < 	. It will be enough
to show that �


⋃
U� < �
proj
B��. Then any point �x� y� ∈ B with x �⋃

U will
provide a counterplay against the strategy � in which Player II wins.

To show that �

⋃
U� < �
proj
B��, for any number n ≥ m write Un for the

collection of all open sets the strategy � can play at round n in some play in which
Player II postponed his first decision to round m. Since

⋃
U is the increasing

union
⋃

n

⋃
Un and the capacity � is continuous in increasing unions, it will

be enough to show that �

⋃
Un� < �+ 
1− 2−n�	. The proof of this statement

proceeds by induction on n; it is clearly true for n ≤ m. Now suppose that it
has been verified for some n ≥ m. To proceed to n+ 1 note that the set Un+1

consists of < 2n+1 sets, each of which has �-mass < �
P�+ 2−n ·	 for some set
P ∈ Un. A simple exercise in strong subadditivity then shows that �


⋃
Un+1� <

�

⋃
Un�+2n ·2−3n−2 ≤�


⋃
Un�+2n ·2−2n−2 ·	<�+
1−2−n−1�	 as required.
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Now let �<�
B� be a real number. To complete the proof of (4), it is enough to
find an analytic set A⊂ B such that �
proj
A�� > �. Use a determinacy argument
and the previous claim to find a winning strategy � for Player II in the game G�
B�.
Let A be the collection of all points the strategy � can generate against a counterplay
of Player I. The winning condition for Player II shows that A ⊂ B, moreover the
set A is clearly analytic. Since the strategy � remains winning for Player II in the
game G�
A�, another reference to the Claim shows that �
A�≥ �. (4) follows.

(5) is an immediate consequence of the following claim.

Claim 4.3.8. Suppose that � is an uncountable regular cardinal, ��	 are positive
real numbers, and B� � � ∈ � are sets of �-mass < �. Then there is an infinite set
b ⊂ � such that �


⋃
�∈b B�� < �+	. If moreover � < add
null� then the set b

can be found of size �.

Proof. Let me first argue for the last sentence. For every ordinal � ∈ � choose an
open set O� ⊂ X covering the set B�, with �
O�� < �+	/2. Let f� � �→ O be
some function such that the sets f�
n� � n ∈ � form an increasing sequence with
union O� and for every number n ∈�, �
f�
n+1�� < �
f�
n��+2−2n−2 ·	. Since
� < add
null�, [2] shows that there is a tunnel g � �→P
O� such that for every
number n ∈ �, �g
n�� < 2n, and for every ordinal � ∈ � there is a number m�

such that ∀n > m� f�
n� ∈ g
n�. Use a counting argument to find a fixed number
m ∈� and a fixed sequence t ∈Om such that the set S = �� ∈ � � f� � m= t∧∀n≥
m f�
n�∈ g
n�� is of size �. It will be enough to show that the open set

⋃
�∈S O� has

�-mass < �+	. By the continuity of the capacity in increasing unions, it will be
enough to show that the open sets Pn =

⋃
�∈S f�
n� have capacity < �+	 for every

number n ∈�. The proof of this statement proceeds by induction on n. It is clearly
true for n≤m. For the induction step, suppose it holds at some number n≥m and
note that the collection �f�
n+1� � � ∈ S� has size ≤ 2n+1 by the choice of g and m.
Since �
f�
n+1�� <�
f�
n��+2−2n−2 ·	, a simple exercise in strong subadditivity
shows that �
Pn+1�<�
Pn�+2n+1 ·2−2n−2 ·	≤�
Pn�+2−n−1 ·	≤ �+
1−2−n−1�	
as desired.

The second sentence now abstractly follows from the previous paragraph. Find
a countable elementary submodel M of a large structure and force over M to
increase add
null� past � with a c.c.c. forcing. The generic extension M�g�
satifies the formula that there is an open set O of capacity < �+	 and a set b ⊂ �
of size � such that O� ⊂ O for every ordinal � ∈ b. Now in V , the set b is still
infinite, and an absoluteness argument shows that ∀� ∈ b B� ⊂O as required.

Finally, (3) abstractly follows from (5). Suppose that � is an inaccessible cardi-
nal, G⊂ Coll
��< �� is a generic filter and V
�∩V�G�� is the derived choiceless
Solovay model. Suppose that B� � � ∈ � is some sequence of sets in the model
V
�∩ V�G��, all of �-mass ≤ �. I must argue that

⋃
� B� has �-mass ≤ �.
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Let h be a V�G�-generic filter for the amoeba forcing for measure. The model
V
�∩V�G��h�� is again a Solovay model, there is a unique elementary embedding
j � V
�∩V�G��→V
�∩V�G��h�� fixing the ground model pointwise, and the proof
of (5) shows that in the model V
�∩V�G��h�� the set

⋃
� j
B�� has �-mass equal to

�. An elementarity argument then yields V
�∩V�G�� �=�

⋃

� B��= � as required.
The last item is left to the reader.

The investigation of the finer forcing properties of the forcing PI�
lead to the

following measure theoretic definition, which is to guarantee that the forcing does
not add splitting reals.

Definition 4.3.9. A capacity � on a Polish space X is Ramsey if for all real
numbers ��	 > 0 and every infinite collection An � n ∈ � of subsets of the space X
of capacity < � there are distinct indices n �=m such that �
An∪Am� < �+	.

In the way of examples note that the outer Lebesgue measure is not Ramsey as
any infinite collection of stochastically independent sets of measure 1/2 will show.
For most capacities I do not know how to decide whether they are Ramsey or
not, see Question 7.3.5. Many Ramsey capacities are produced in Sections 4.3.5
and 4.3.6. The treatment of Ramsey capacities is in many ways parallel to the
strongly subadditive capacities.

Theorem 4.3.10. Let X be a compact zero-dimensional Polish space, O the collec-
tion of its clopen sets, and � �O→�+ a Ramsey submeasure on O. Then � can be
extended in a unique fashion to an outer capacity � on the space X. The extension
capacity is given by �
O� = sup��
P� � P ⊂ O�P ∈O� for open sets O ⊂ X, and
�
A� = inf��
O� � A ⊂ O�O ⊂ X open� for all other sets A ⊂ X. The capacity �
is Ramsey.

Proof. Fix an enumeration of the countable basis O consisting of clopen sets. The
following two claims, providing equivalent restatements of Ramseyness, are the
main ingredients of the proof.

Claim 4.3.11. For all positive real numbers ��	 > 0 and every sequence Un � n ∈�
of basic open sets of �-mass smaller than � there is an infinite set b⊂� such that
�-masses of finite unions of sets among Un � n ∈ b are smaller than �+	.

Proof. This is just a repeated use of Ramsey theorem. By induction on m ∈� build
infinite sets bm ⊂ � and numbers nm ∈ � such that

• �= b0 ⊃ b1 ⊃ � � �

• nm =min
bm+1�;
• the numbers �


⋃
l∈m Unl

∪Ok� � k ∈ bm are bounded below 	.
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Once this is done, the infinite set b = �nm � m ∈ �� has the desired properties.
The induction hypotheses trivially hold at m = 0. To perform the inductive step
at a given natural number m, consider the sets Vk =

⋃
l∈m Unl

∪Uk for all numbers
k ∈ bm. These form an infinite collection of sets of �-mass less than �+	′ for some
	′ < 	. Coose a real number 	′ < 	′′ < 	 and consider the partition p � �bm�

2 → 2
defined by p
h�k� = 0 iff �
Vk ∪ Vl� ≥ �+ 	m+2. The Ramsey property of the
capacity implies that there are no infinite 1-homogeneous sets, and the Ramsey
theorem implies that there must be an infinite 0-homogeneous set bm+1 ⊂ bm. The
induction step is completed by letting nm =min
bm+1�.

Claim 4.3.12. For all positive real numbers ��	 > 0 there is a number n ∈� such
that for every basic open set U ⊂X with �
U� < � there is a basic open set V ⊂X
among the first n many basic open sets such that �
U ∪V� < �+	/2 and for every
basic open W ⊂ X, if �
W ∪V� < �+	/2 then �
W ∪V ∪U� < �+	.

Proof. Suppose this fails for some ��	 > 0, and for every n ∈ � find an open set
Un ⊂ X which forms a counterexample; in particular, �
Un� < �. Use the previous
claim to find an infinite subset b⊂� such that the �-masses of finite unions of sets
among �Un � n ∈ b� are bounded below �+	/2. Let Vm � m ∈ � be an inclusion-
increasing collection of basic open sets exhausting the open set

⋃
n∈b Un, and let

nm � m ∈ � be numbers in the set b such that Vm is among the first nm many basic
open sets. Since Vm does not work for Unm

, there are basic open sets Wm such that
�
Vm ∪Wm� < �+	/2 but �
Vm ∪Wm ∪Unm

� ≥ �+	. Use the Ramsey property
and the Ramsey theorem to find an infinite set c⊂� so that the �-masses of unions
of pairs of sets among �Vm∪Wm � m ∈ C� are bounded below �+	. Let m ∈ c, and
find k ∈ c such that Unm

⊂ Vk. Now Vm ∪Wm ∪Unm
⊂ Vm ∪Wm ∪Vk ∪Wk, and so

�
Vm∪Wm∪Unm
� < �+	. Contradiction!

Now consider the function � defined in the statement of the theorem. To show
that this is a capacity, it is only necessary to prove that it is continuous in increasing
unions. I must first prove the continuity of � in increasing unions of open sets.
If On � n ∈ � are open sets forming an increasing union and U ∈ O is a basic
clopen set, a subset of the union

⋃
n On, then, since U is compact, U must be a

subset of one of the sets On. This immediately implies that �

⋃

n On�= supn �
On�.
Suppose now that An � n ∈� is an increasing union of arbitrary sets of �-mass < �,
and suppose that 	 > 0 is a real number. To show that �


⋃
n An� ≤ �+	, choose

open sets On ⊂ X � n ∈ � covering the respective sets, with �-masses bounded
below 	. I will find an infinite set b ⊂ � such that �


⋃
n∈b On� ≤ �+	; this will

complete the proof of the continuity. The argument closely mimicks the proof of
Claim 4.3.11.
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By induction on m ∈ � build numbers nm ∈ � and sets bm ⊂ � so that

• �= b0 ⊃ b1 ⊃ b2 ⊃ � � � are infinite sets;
• nm =min
bm+1� for all numbers m ∈ �;
• for every number m, the numbers �


⋃
l∈m Onl

∪Ok� � k ∈ bm are bounded below
�+	.

In the end the set b = �nm � m ∈ �� is as required by the continuity of � in
increasing unions of open sets. To perform the induction, suppose the set bm as
well as the numbers nl � l ∈m have been found. Find real numbers �′� 	′ > 0 such
that all sets

⋃
l∈m Onl

∪Ok � k ∈ bm have mass < �′ and �′ + 	′ < �+ 	. Find a
number n′ ∈� that works as in the above claim. A pigeonhole argument shows that
there must be a basic open set V among the first n′ many sets in the basis, and an
infinite set bm+1 ⊂ bm such that for every number k ∈ bm+1, the set V works as in
Claim 4.3.12 for inclusion-cofinally many clopen subsets of the set

⋃
l∈m Onl

∪Ok.
It follows immediately that for any two numbers k�k′ ∈ bm+1 it is the case that
�


⋃
l∈m Onl

∪Ok ∪Ok′� < �′ + 	′. Let nm = min
bm+1�. The induction hypotheses
continue to hold.

Now that I have verified that � is a capacity, its uniqueness follows. Any other
outer capacity extending � must agree with � on compact sets by the definitions,
consequently it must agree with � on all analytic sets by Choquet’s theorem, and
finally it must agree with � on all other sets since it is an outer capacity. The proof
of Ramseyness of � is left to the reader.

Note that subadditivity of � was not needed anywhere in the proof; in this book
I have no use for capacities that are not subadditive though. The claim in the proof
shows that the collection of all Ramsey capacities is Borel in a suitable sense.

Theorem 4.3.13. Suppose that � is an outer Ramsey capacity on a compact Polish
space X.

1. � is outer regular on all sets, that is �
A�= inf��
O� � A⊂O�O open� for all
sets A⊂ X.

2. In the Solovay model, every set has a Borel subset of the same capacity and �

is continuous in increasing wellordered unions.
3. (ZF+DC+AD+) Every set has a Borel subset of the same capacity and � is

continuous in increasing wellordered unions.
4. Whenever � is a regular cardinal and MA� holds then � is continuous in

increasing wellordered unions of length �. In particular, under MA�, every
coanalytic set has a Borel subset of the same capacity.
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5. Whenever Q is a forcing with the Laver property, ��	 > 0 are real numbers and
O ⊂ X is an open set oin the extension of �-mass < �, then there is a ground
model open set P ⊂ X such that O ⊂ P and �
P� < �+	.

Proof. The first item is very similar to the previous theorem. Consider the function
� � P
X�→�+ given by �
A�= inf��
O� � A⊂ O and O ⊂ X is an open set�. It
will be enough to show that � is a capacity: as � and � agree on compact sets by
the outer regularity of the capacity � on such sets, Choquet’s theorem 4.3.2 applied
to both of them shows that they must agree on analytic sets, and as � is an outer
capacity, this implies that �= � and so � is outer regular.

To prove that � is a capacity, it is only necessary to verify its continuity in
increasing unions. Suppose that An � n ∈ � is an inclusion-increasing sequence of
sets of �-mass < � for some fixed real number � and 	 > 0 is a real number.
To show that �


⋃
n An� < �+	, find open sets On � n ∈ � such that An ⊂ On and

�
On� < �, and use the proof of Claim 4.3.11 to find an infinite set b ⊂ � such
that the finite unions of sets among On � n ∈ b have �-mass bounded below �+	.
By the continuity of � in increasing unions of open sets it follows that

⋃
n∈b On is

an open set covering
⋃

n An of �-mass < �+	, witnessing that
⋃

n An < �+	 as
required.

The next three items use the following key property of the capacity � only. It
is a property shared by every outer regular capacity used in mathematical practice,
and in the case of Ramsey capacities it is verified by an argument entirely parallel
to Claim 4.3.12. Fix a countable topology basis O for the space X.

(*) for all positive real numbers ��	 > 0 and every open set O⊂X with �
O� < �
there is a basic open set U ⊂ O such that for every open set P ⊂ X with
�
U ∪P� < � it is the case that �
O∪P� < �+	.

Items (2) and (4) use the following family of forcings. For every positive real
� > 0 let Q� be the partial order of open sets of �-mass < � ordered by reverse
inclusion. It is immediate that the union of sets in the generic filter is an open set
of mass ≤ �. The key observation is that the partial order Q� is �-linked. For every
open set O ∈Q� find rational numbers q
O� < �� r
O� > 0 such that �
O� < q
O�
and q
O�+ r
O� < �, and find a basic open set U
O�⊂ O that works as in (*) for
these two rationals and the set O. Clearly, if O�P ∈Q� and q
P�= q
O�� r
P�= r
O�
and U
P�= U
O�, then �
O∪P� < � and the two conditions are compatible.

For (4), assume that MA� holds and suppose that A� � � ∈ � is an inclusion
increasing collection of sets of �-mass ≤ �; I must show that �


⋃
� A�� < �+	

for any given real number 	 > 0. For every ordinal � ∈ � fix an open set O� ⊃ A�

of �-mass < �+ 	/3. Consider the forcing Q = Q�+2	/3. I claim that there is a
condition in it forcing the generic open set to be a superset of � many of the sets
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O� � � ∈ �. If this was not the case then the c.c.c. of the forcing would imply
that there is a fixed ordinal � ∈ � such that Q �for no ordinal � ∈ � greater than
� is the open set O� a subset of the generic filter. This is impossible though,
because O�+1 ∈Q is a condition forcing the opposite. Now use MA� to find a filter
g ⊂ Q such that for a cofinal set b ⊂ �, O�

⋃
g. Clearly, �


⋃
�∈b O�� ≤ �


⋃
g� ≤

�+2	/3, and since
⋃

� A� ⊂
⋃

�∈b O�, it must be the case that �

⋃

� A�� < �+	 as
desired.

For (2), suppose that � is an inaccessible cardinal, G⊂Coll
��< �� is a generic
filter and V
�∩ V�G�� is the derived choiceless Solovay model. Suppose that
B� � � ∈ � is some sequence of sets in the model V
�∩V�G��, all of �-mass ≤ �.
I must argue that

⋃
� B� has �-mass ≤ �. Let 	 > 0 be an arbitrary positive real

number. Let h be a V�G�-generic filter for the forcing Q�+	 such that
⋃
h covers

cofinally many sets B�. The model V
�∩V�G��h�� is again a Solovay model, there
is a unique elementary embedding j � V
�∩V�G��→ V
�∩V�G��h�� fixing the
ground model pointwise, and in the model V
�∩V�G��h�� the set

⋃
� j
B�� is

covered by the set
⋃
h which has �-mass equal to �+	. An elementarity argument

then yields V
�∩V�G�� �= �

⋃

� B��= � as required.
The integer game argument for (3) is somewhat more challenging. For simplicity

assume that X= 2�. Work under ZF+DC+AD+. Suppose that ��	> 0 are positive
real numbers and B ⊂ 2�×�� is a set such that �
proj
B�� > �. I must find an
analytic subset A⊂B such that �
proj
A��≥ �. An application of Proposition 3.9.20
will then complete the proof. Enumerate all pairs of positive rationals and basic
open sets by �qn�Un� � n ∈ �. Consider the integer game between Players I and II
in which Player I generates an open set O ⊂ X of �-mass ≤ �+	 and Player II
produces a point �x� y� ∈ 2�×��. Player II wins if x �O and �x� y� ∈ B. To finish
the description of the game, I must set up a schedule for both players. At round n,
Player I determines whether Un ⊂ O or not and whether �
O∪Un� < qn or not.
If in the end his answers are inconsistent with the set O obtained, he produced an
inconsistent run, and he loses. Player II can wait for an arbitrary finite number of
moves (place trivial moves) before placing the next pair in 2×� on his sequence.
This completes the description of the game.

I will show that Player II has a winning strategy � . Once this is established,
the set B ⊂ 2�×�� consisting of the points the strategy � produces against all
possible consistent runs by Player I is analytic by its definition and it is contained in
A by the winning condition of the game. Moreover, �
proj
B��≥ �, since Player I
can produce any open set O ⊂ 2� of capacity < � as his resulting set, forcing the
strategy � to come up with a pair �x� y� ∈ A such that x � O. Note that then,
�x� y� ∈ B by the definition of the set B, and so proj
B� �⊂ O and �
proj
B��≥ �.

By a determinacy argument, it is enough to prove that Player I does not have
a winning strategy. Suppose that � is a strategy for Player I which produces only
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consistent runs (otherwise it is easy to defeat it by inducing an inconsistent run).
Choose a real number 	 > 0. I will produce an open set P ⊂ 2� of �-mass < �+	
such that any point �x� y� ∈ 2�×�� with x � P can be produced by a counterplay
against � in such a manner that x does not belong to the resulting open set.
This will certainly show that the strategy � is not winning: just choose 	 > 0 so
that �
proj
A�� > �+	 and a point �x� y� ∈ A such that x � P and construct the
corresponding counterplay. In it, Player II won.

To construct the open set P ⊂X, I will first introduce the following notation. For
a finite play 
 following the strategy � let O
 ⊂ X be the open set the strategy �
produces in the infinite extension of the play 
 in which Player II posts no nontrivial
moves past 
. Enumerate the set 
2×��<� as tn � n ∈� in such a way that all initial
segments of a given sequence are enumerated earlier than the sequence itself. Also,
fix positive real numbers 	n � n ∈ � whose sum is less than 	. By induction on
n ∈ �, build finite plays 
n against the strategy � so that:

• the nontrivial moves of Player I in the play 
n together form the sequence tn;
• if tm ⊂ tn then 
m ⊂ 
n;
• �


⋃
m∈n O
m

� < �+�m∈n	m.

In the end, clearly the set P =⋃
n O
n

is as required, since for any point �x� y� ∈
2�×�� with x� P, the play

⋃
�
n � tn ⊂ �x� y�� is a counterplay against the strategy

in which Player II produces the point �x� y� and x does not belong to the resulting
open set. Note also that �
P�≤ �+�n	n < �+	 by the last item of the induction
hypothesis.

To perform the induction, start with 
0 = 0. Suppose that the plays 
m � m ∈ n
have been constructed. Use (*) to find a basic open set U ⊂ ⋃

m∈n O
m
such that

for every open set O ⊂ 2�, if �
O ∪U� < �+�m∈n	 then �
O ∪⋃
m∈n O
m

� <
�+�m∈n+1	m. To obtain the play 
n, find a number k ∈ n such that tn is an
immediate successor of 
k. Consider the infinite play 
 extending 
k in which
Player II places no nontrivial moves past 
k and Player I follows the strategy
� , and its resulting open set O
k

⊂ 2�. Since �
O
k
∪U� < �+�m∈n	m, there

must be a round in the play 
 in which the strategy � promised that for the
resulting set O ⊂ X, �
O ∪U� < q for some rational number q < �+�m∈n	m.
Now let 
n be the extension of 
k obtained by Player II placing trivial moves until
that round, and then placing the pair �b� l� such that t�k �b� l� = tn. The choice
of the basic open set U guarantees that the induction hypothesis (3) continues
to hold.

The last item needs more careful work, as it is a property that is quite specific to
Ramsey capacities. I will need the following strengthening of (*). Fix an enumera-
tion of the countable topology basis O = �Ui � i ∈ �� for the space X closed under
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finite unions. The following holds and is verified by an argument entirely similar
to Claim 4.3.12:

(**) For every ��	> 0 there is a number m=m
��	�∈� such that for every open
set O⊂X with �
O�< � there is a number i ∈m such that �
O∪Ui� < �+	/2
and moreover for every open set P ⊂ X such that �
P∪Ui� < �+	/2 it is the
case that �
O∪Ui∪P� < �+	.

Now suppose Q is a forcing with Laver property, ��	 > 0 are real numbers and
some condition q0 ∈ Q forces that Ȯ ⊂ X is an open set of �-mass < �. Fix an
increasing sequence 	i � i ∈ � of real numbers bounded below 	 and for a number
n ∈ � define the following:

• kn = �i∈ni!;
• mn =max�m
�+	i� �+	i+1� � kn ≤ i < kn+1�;
• ḟ 
n� is the Q-name for the pair �ḟ0
n�� ḟ1
n�� such that ḟ0
n�= 1↔Un ⊂ Ȯ and
ḟ1
n�= ��j� i� � j ∈mn+1� kn+1 ≤ i < kn+2 and �
Ȯ∪Uj� < �+ 	i+	i+1

2 �.

Note that for every n ∈ � there are only finitely many possibilities for the value
of ḟ 
n� in the extension. Let ḟ be the Q-name for a function with domain � obtained
from the names ḟ 
n� � n∈�. By the Laver property of the forcing Q there must be a
tree T and a condition q1 ≤ q0 such that every node of T at the n-th level splits into
at most n+1 many immedate successors and q1 � ḟ ∈ �Ť �. Thinning out the tree T if
necessary I may assume that for every node t ∈ T there is a condition qt ≤ q1 forcing
t ⊂ ḟ . Consider the open set P ⊂ X, P =⋃

�Un � ∃t ∈ T ∃n ∈ dom
t� t0
n�= 1�. It
will be enough to show that �
P� < �+	, since clearly q1 � Ȯ ⊂ P̌.

Let M be a countable elementary submodel of a large enough structure, and for
every node t ∈ T choose an M-generic filter gt ⊂M ∩Q containing the condition
q1 such that t ⊂ ḟ /gt. Let Ot = Ȯ/gt. Clearly, P ⊂⋃

t Ot and it will be enough to
show that the latter set has �-mass < �+	. Enumerate the tree T with possible
repetitions as ti � i ∈ � in such a way that Tn = �ti � kn ≤ i < kn+1�–note that
�Tn� ≤ n!. Now by induction on l ∈ � prove that the open set Pj =

⋃
i∈j Oti

has
�-mass < �+	l. This is obvious for l = 1. Suppose that a number l ∈ � is given
and �
Pl� < �+	l. Write 	′l = 	l+	l+1

2 , and find the number n ∈� such that tl ∈ Tn,
and find a number j ∈ mn such that �
Uj ∪Pl� < �+ 	′j and for every open set
R ⊂ X such that �
Uj ∪R� < �+	′j it is the case that �
Pl ∪Uj ∪R� < �+	j+1.
Find the number i ∈ j such that tj is an immediate successor of the node ti. Then
Oti
⊂ Pk and consequently �
Ul∪Oti

� < �+	′j . The definition of the name ḟ and

the fact that ḟ 
n− 1�/gti = ḟ 
n− 1�/gtl then imply that �
Uj ∪Otl
� < �+	′l and

the properties of the basic open set Uj imply that �
Pl ∪Uj ∪Otl
< �+ 	l+1, in

particular, �
Pl+1� < �+	l+1.
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It turns out that the notion of Ramsey capacity has several interesting features
which reach beyond the forcing applications. The Ramsey capacities behave well
in the operation of meet of submeasures.

Definition 4.3.14. Let ��� be submeasures on a Polish space X. The meet �∧� of
these two submeasures is a set function defined by 
�∧��
A�= inf��
B�+�
C� �
B∪C = A�.

It is not difficult to see that �∧� is a submeasure, and it indeed is the meet of
the two submeasures in the lattice of submeasures ordered by setwise domination.
It is in general not true that a meet of two capacities is a capacity, however the
following is true:

Proposition 4.3.15. Suppose that ��� are outer regular subadditive capacities on
a Polish space X.

1. If one of them is a Ramsey capacity then �∧� is a capacity.
2. If both are Ramsey capacities then �∧� is a Ramsey capacity.

Proof. It is clear that �∧� is an outer regular countably subadditive submeasure.
For the first item, it is necessary to verify the continuity under increasing unions.
Suppose that the capacity � is Ramsey. Suppose that An � n ∈ � is an increasing
collection of sets, � ≥ 0 is a real number, and 
�∧��
An� ≤ � for every number
n∈�. Let 	> 0 be a real number. To show that 
�∧��
⋃n An� < �+	 choose sets
Bn�Cn such that An = Bn ∪Cn and �
Bn�+�
Cn� < �+	/4. Find an infinite set
a⊂� such that supn∈a �
Bn�+ supn∈a �
Cn� < �+	/3 and use the Ramseyness of
the capacity � and Claim 4.3.11 to find an infinite set b⊂ a such that �


⋃
n∈b Bn� <

supn∈a �
Bn�+	/2. Now the set A=⋃
n An can be covered by the set

⋃
n∈b Bn of

small �-mass and the set
⋃

n∈a Dn where Dn = An \
⋃

m∈a Bm. The sets Dn � n ∈
a have small � mass since they are covered by the sets Cn � n ∈ a, and most
importantly, they form an increasing sequence, so even their union D has a small
� mass, �
D� < supn∈a �
Cn�+ 	/2. It follows that 
�∧��


⋃
n An� < �+ 	 as

desired.
The proof of the second item is similar. Suppose that ��� are Ramsey capacities

and An � n ∈ � are sets of �∧� mass < �, and 	 > 0 is a real number. To find
an infinite set c ⊂ � such that 
�∧��


⋃
n∈c An� < �+	 first find sets Bn�Cn such

that An = Bn∪Cn and �
Bn�+�
Cn� < � and then use the Ramseyness to find an
infinite set b ⊂ � such that �


⋃
n∈b Bn� < supn∈b �
Bn�+	/2 and an infinite set

c ⊂ b such that �

⋃

n∈c Cn� < supn∈b �
Cn�+	/2. It is immediate that the infinite
set c works as desired.
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Every strongly subadditive Ramsey capacity also has a natural compact met-
ric space associated to it. Let A�B ⊂ X be arbitrary sets and define d
A�B� =
�
A∪ B�−min��
A���
B��. The strong subadditivity of the capacity � can be
used to show that this is a premetric, that is, d
A�A� = 0 for every set A and d
satisfies the triangle inequality. Let A ≡ B↔ d
A�B� = 0; then ≡ is an equiv-
alence relation, and consider the metric space Y of ≡-equivalence classes. The
outer regularity of the capacity � shows that every set is equivalent to a G	 set
and the equivalence classes of basic open sets are dense, i.e. Y is separable. More
importantly, if the capacity is Ramsey then the space Y is precompact, that is, every
sequence �An� � n ∈ � of points in the space Y contains a Cauchy subsequence:
thinning out the sequence if necessary I may assume that the capacities of the sets
involved converge to some real number �≥ 0, and then Claim 4.3.11 together with
an obvious diagonalization argument yields a subsequence such that the capacities
of the unions of its tails converge to � as well. A review of the definitions will
show that such a subsequence must be Cauchy. This means that the completion
Ȳ of the space Y is a compact metric space. The metric d is a natural one in
cases such as the Newtonian capacity and it would be interesting to find out what
is the relationship of the compact space Ȳ to other objects studied in potential
theory.

4.3.2 General theorems

The key concern in this section is the properness of the forcing PI�
, where � is a

subadditive capacity on a Polish space X. The following definition will be critical.

Definition 4.3.16. The capacity � is stable if for every Borel set A⊂ X there is a
Borel set Ã⊃ A of the same capacity such that for every Borel set B ⊂ X��
B� >
0�B∩ Ã= 0 it is the case that �
A∪B� > �
A�.

As an example consider the Newtonian capacity in the Euclidean space �3 [40],
30.A. The unit sphere A has the same capacity as the open unit ball or the closed
unit ball. It turns out that the stability property is witnessed by Ã= the closed unit
ball; if a positive capacity set is added to it, it will increase the capacity of the
union. The sections below include a long list of stable capacities.

Theorem 4.3.17. [84] Suppose that � is a subadditive stable capacity. The forcing
PI�

is proper.

I will give two quite different proofs. One of them is combinatorial in nature
and yields a natural fusion argument. The other proof is game theoretical, and it
works only for outer regular capacities; on the other hand it requires the existence
of the tilde set Ã ⊃ A only for open sets A. The game theoretic argument yields
dichotomy type information.
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Proof. The combinatorial proof depends on a small claim.

Claim 4.3.18. Suppose B ∈ PI�
is a condition and D ⊂ PI�

is an open dense
set. Then there is a countable set D′ ⊂ D consisiting of subsets of B such that
�


⋃
D′�= �
B�.

Proof. Fix the condition B and the open dense set D⊂ PI�
. By induction on � ∈�1

choose sets C� ⊂ B in the open dense set D so that �

⋃

�∈� C�� < �

⋃

�∈�+1 C�� if
possible. By the separability of the real line this process must end after count-
ably many steps, and I will show that the only reason for it to end is that
�


⋃
�∈� C��=�
B�. Then D′ = �C� � �∈��⊂D is the countable set required in the

claim.
Well, suppose that writing A =⋃

�∈� C� it is the case that �
A� < �
B�. Then
B \ Ã is a �-positive Borel set and as such contains a subset C� ∈ D. By the
definitory property of the tilde set Ã it must be the case that �
A∪C�� > �
A�
and I extended the induction process by one more step as required.

The properness of the forcing PI�
immediately follows. If M is a countable

elementary submodel of a large enough structure and B ∈ PI ∩M is a set of some
positive capacity �> 0, choose a decreasing sequence of rational numbers qn � n∈�
which are less than � and do not converge to zero, enumerate open dense sets
in the model M by Dn � n ∈ � and by induction on n ∈ � build compact sets
B⊃C0 ⊃C1 ⊃ � � � in the model M such that �
Cn� > qn and the set Cn+1 is covered
by finitely many sets in the collection Dn ∩M . If this construction succeeds then
C =⋂

n Cn is a compact set of capacity ≥ infn qn by the continuity of the capacity
in decreasing intersections of compact sets, and C is the desired master condition
for the model M .

The set C0 is obtained through Choquet’s capacitability theorem 4.3.2. Suppose
that Cn has been obtained. By the claim, in the model M there is a countable set
D′ ⊂Dn consisting of subsets of Cn such that �


⋃
D′�=�
Cn�. As the capacity is

continuous in increasing unions, there is a finite set D′′ ⊂D′ in the model M such
that �


⋃
D′′� > qn+1. By the elementarity of the model again and the capacitability

theorem, there is a compact set Cn+1 ⊂
⋃
D′′ of �-mass > qn+1. This concludes the

inductive construction and the combinatorial proof.
For the game theoretic proof, let � be an outer regular subadditive stable capacity

on the Polish space X. Fix a countable basis O of the space closed under finite
unions. Let P be a forcing adding a point ẋ ∈ Ẋ.

Consider an infinite game G=G
P�x� between Players I and II. In the beginning,
Player I indicates an initial condition pini ∈ P and Player II answers with a positive
real number �> 0. After that, Player I produces a sequence Dk � k∈� of open dense
subsets of the forcing P as well as a set A⊂X with �
A�≤ �. Player II produces a
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sequence pini ≥ p0 ≥ p1 ≥ � � � such that pk ∈Dk and pk decides the membership of
the point x in the k-th basic open subset of the space X in some fixed enumeration.
Player II wins if, writing g ⊂ P for the filter his conditions generate, the point ẋ/g
falls out of the set A.

In order to complete the description of the game, I must describe the exact
schedule for both players. At round k ∈ �, Player I indicates the open dense set
Dk ⊂ PI�

and a set Ak ∈ O so that �
Ak� ≤ � and k0 ∈ k1 implies Ak0
⊂ Ak1

and
�
Ak1

�−�
Ak0
�≤ 2−k0 . In the end, obtain the set A as A=⋃

k Ak. The continuity
of the capacity in increasing unions shows that �
A� ≤ �. Note that apart from
the open dense sets, Player I has only countably many moves at his disposal. Still,
he can produce a superset of any given set of �-mass < � as his set A. Player II
is allowed to tread water, that is, to wait for an arbitrary finite number of rounds
(place trivial moves) before placing the next condition pk on his sequence.

Lemma 4.3.19. Player II has a winning strategy in the game G if and only if P � ẋ
falls out of all ground model coded �-null sets.

Proof. The key point is that the payoff set of the game G is Borel in the (large)
tree of all legal plays, and therefore the game is determined by [49]. A care-
ful computation will show that the winning condition for Player I is in fact an
F� set.

For the left-to-right direction, if there is some condition p ∈ P and a �-null Borel
set B ⊂ X such that p � ẋ ∈ Ḃ, then Player I can win by indicating pini = p, and
after Player II chooses his number � > 0, Player I produces an open set A⊂ X of
mass < � such that B ⊂ A, on the side creating an increasing sequence Mi � i ∈ �
of countable elementary submodels of some large structure and playing in such a
way that the sets Dk � k ∈ � enumerate all open dense subsets of the poset P in
the model M =⋃

i Mi, and �pk � k ∈ �� ⊂M . In the end, this must bring success:
this way, Player II’s filter g ⊂ P is M-generic containing the condition p, by the
forcing theorem applied in the model M , M�g� �= ẋ/g ∈B, and by Borel absoluteness
ẋ/g ∈ A as desired.

The right-to-left direction is harder. Suppose that P � ẋ falls out of all ground
model coded �-null sets, and � is a strategy for Player I. By the determinacy of
the game G, it will be enough to find a counterplay against the strategy � winning
for Player II. Let pini ∈ P be the initial condition indicated by the strategy � . There
must be a number �> 0 such that for every Borel set A⊂X with �
A�≤ � there is a
condition q≤ p forcing ẋ� Ȧ. If this failed, for every real number �> 0 there would
be a Borel set A� ⊂X of � mass < � such that p � ẋ ∈ Ȧ�; then p � ẋ ∈⋂

� A�, and
since the latter set is �-null, this would contradict the assumptions on the name ẋ.
The real number � will be Player II’s initial response.
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The rest of the play is obtained in the following way. Consider the tree T of all
partial plays 
 of the game G respecting the strategy � such that they end at some
round k with Player II placing a condition p ∈ P as his last move such that

(*) for every Borel set B ⊃ Ak, if �
B�−�
Ak�≤ 2−k and �
B�≤ � then there is
a condition q ≤ p such that q � ẋ � Ḃ.

Note that every infinite play whose initial segments form an infinite branch
through the tree T Player II won in the end, because for no number k and no
condition p ∈ g it could be the case that p � ẋ ∈ Ȧk by the condition (*) and
therefore ẋ/g � A. Now the play consisting of the initial moves described in the
previous paragraph is in the tree T by the choice of the real number � > 0, and so it
will be enough to show that every node of the tree can be extended to a longer one.

Suppose 
 ∈ T is a finite play of length k̄, ending with a nontrivial move p ∈ P of
Player II and a move Ak̄ of Player I, satisfying the property (*). Consider the infinite
play extending 
 in which Player I follows the strategy � and Player II places only
trivial moves past 
. Write Ak for the k-th basic open set the strategy produced during
this play and A=⋃

k Ak. Clearly, �
Ã�=�
A�≤�
Ak̄�+2−k̄, and by the property
(*) there is a condition q ≤ p forcing ẋ � Ã. Let r ≤ q be a condition in the appro-
priate open dense set indicated by Player I, deciding whether the point ẋ belongs to
the appropriate basic open subset of X or not. This will be the next nontrivial move
of Player II past 
 in the required play in the tree T extending 
, I just have to
decide at which round to place that move in order to make the condition (*) hold.

Assume for contradiction that for no round k > k̄ the condition (*) will be satis-
fied after Player II places the move r at the round k. Then for every number k > k̄
there is a Borel set Bk ⊃ Ak such that �
Bk�≤ �
Ak�+2−k such that r � ẋ ∈ Ḃk.

Claim 4.3.20. �

⋂

k Bk∪A�= �
A�.

Proof. Note A = ⋃
k Ak is an increasing union. If the claim failed, by the

continuity of the capacity in increasing unions there would have to be a number
i > k̄ such that �


⋂
k Bk ∪ Ai� > �
A�+ 2−i. However, Bi ⊃

⋂
k Bk ∪ Ai and

�
Bi�≤ �
Ai�+2−i ≤ �
A�+2−i, contradiction.

By the properties of the tilde operation, it must be the case that �

⋂

k Bk \Ã�= 0.
At the same time, r � ẋ ∈ ⋂

k Bk \ Ã. This contradicts the assumption that P � ẋ
falls out of all ground model coded �-null sets!

Now suppose that M is a countable elementary submodel of a large structure and
B ∈ PI�

∩M is a condition. To prove that the set C = �x ∈B � x is M-generic� is pos-
itive, for any �-null set E⊂X I must produce a point x ∈C \E. Let � be a winning
strategy in the game G
PI�

� ẋgen� for Player II and let � ∈M be the real number it
produces after Player I chooses pini = B. Choose an open set A⊂X covering the set
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A such that �
A� < � and simulate a play of the game in which Player II follows
his winning strategy and Player I starts out with the condition B, enumerates all
open dense subsets of the poset PI�

in the model M , and in the end produces the set
A⊂ X. Note that all initial segments of this play are in the model M and therefore
the resulting point x ∈ X is an M-generic element of B \E as required.

Theorem 4.3.21. Suppose that � is an outer regular subadditive stable capacity
on a Polish space X. Then:

1. I� satisfies the third dichotomy, in fact every analytic set contains a Borel subset
of the same capacity.

2. In the choiceless Solovay model, I� satisfies the first dichotomy and � is contin-
uous in increasing wellordered unions. In fact every set contains a Borel subset
of the same capacity.

3. (ZF+DC+AD+) I� satisfies the first dichotomy and � is continuous in
increasing wellordered unions. Every set contains a Borel subset of the same
capacity.

4. In the constructible universe, if the forcing PI�
is nowhere c.c.c. then there is a

coanalytic �-positive set without a �-positive Borel subset.

Proof. The first item is an immediate consequence of Choquet’s theorem 4.3.2. For
the second item, use Proposition 3.9.19. Work in the choiceless Solovay model and
suppose that A⊂ X×2� is a set such that �
proj
A��≥ �. I must find an analytic
subset B ⊂ A such that �
proj
B��≥ �. By the standard homogeneity arguments I
may assume that the set A is in fact definable from ground model parameters. Move
to the ground model and for every open set O⊂X of capacity <� find a forcing PO

with a name �ẋO� ẏO� such that PO � ẋO � Ȯ and Coll
��< �� � �ẋO� ẏO� ∈ Ȧ. Let
P be the side-by-side sum of these forcings and let ẋ� ẏ be the side-by-side sum of
the names ẋO� ẏO. Consider the set B= ��x� y� � ∃g ⊂ P g is V -generic and �x� y� =
�ẋO/g� ẏO/g��. The set B is analytic by its definition, and it is a subset of the set A
by the usual homogeneity argument. It will be enough to show that �
proj
B��≥ �.

Back in the ground model, look at the forcing P and the name ẋ. Clearly
�
1P� ≥ � and the review of the game theoretic proof above reveals that Player II
has a winning strategy � in the Borel game G
P� ẋ� which answers the condition
pini = 1P with the number �ini = �. The strategy � remains winning in the Solovay
model, and if Player I challenges it with an open set O ⊂ X of capacity < � and
a list of all open dense subsets of P in the ground model, it produces a point
�x� y� ∈ B such that x � O. Thus �
proj
B��≥ � as desired.

The proof of the third item uses an integer game and Proposition 3.9.20. Work
in the context of ZF+DC+AD+. Let A ⊂ X× 2� be an arbitrary set such that
�
proj
A�� > �. I must produce an analytic subset B⊂A such that �
proj
B��≥ �.
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Let � � 2�→ X×2� be a Borel bijection and for any set C ⊂ X×2� consider the
integer game G
C��� played as follows. Player I gradually produces an open set
O ⊂ X of �-mass ≤ � and Player II produces a binary sequence r ∈ 2�; Player II
wins if, writing �x� y� = �
r� it is the case that �
r� ∈ C and x � O.

In order to complete the description of the game I must specify the schedule
for both players. At round n Player I must play a basic open set On such that
O0 ⊂O1 ⊂O2 ⊂ � � � , the �-masses of these sets are ≤ �, and in the end, O=⋃

n On

and �
O� < �
On�+2−n. Player II in turn can wait for an arbitrary finite number
of rounds before placing the next bit on his sequence r. The following claim is key.

Claim 4.3.22. If �
proj
C�� < � then Player I has a winning strategy. If Player I
has a winning strategy then �
proj
C��≤ �.

Proof. The first sentence records the obvious fact that if �
proj
C�� < � then
Player I can win by producing some open set O covering the projection proj
C�,
ignoring Player II’s moves altogether. On the other hand, suppose �
proj
C�� > �
and � is a strategy for Player I. I must produce a counterplay winning for Player II.
For every finite play t respecting the strategy � consider the set Ot which the
strategy � outputs if the play t is completed without further nontrivial move by
Player II. Moreover, for every bit b ∈ 2 consider the plays tnb resulting from t by
Player II placing one more nontrivial move b at round n past t, and consider the
set Rtb =

⋂
n Õtnb \ Õt. I claim that �
Rtb�= 0.

To see this, by the properties of the tilde operation it is enough to show that
�
Ot ∪

⋂
n Õtnb� = �
Ot�. The proof of this equality follows almost literally the

argument in Claim 4.3.20.
Now, since �
proj
C�� > �, the projection proj
C� is not covered by the sets

Õ0 ∪
⋃

t�b Rtb, which has mass ≤ �. There must then be a point �x� y� ∈ A such
that x � Õ0∪

⋃
t�b Rtb and a binary sequence r ∈ 2� such that �
r�= �x� y�. I will

show that Player II has a winning counterplay against the strategy � in which he
produces the binary sequence r. Note that I just need to decide at which rounds
Player I places the bits of the sequence r. By induction on m ∈� build finite plays
0= t0 ⊂ t1 ⊂ t2 ⊂ � � � against the strategy � such that:

• tm+1 obtains from tm by Player I waiting for some time and then adding one
more bit of the sequence r as the last move of tm+1;

• x � Õtm
.

Once this has been done then the play
⋃

m tm is winning for Player II, since by
the second item of the induction hypothesis the point x ∈ X does not belong to any
of the open sets the strategy � produced in the course of the play. The induction
itself is trivial to perform. Once the finite play tm has been found, let b ∈ 2 be the
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next bit on the sequence r ∈ 2� and note that x � Rtm�b
. Therefore there must be

a number n such that x � Õtmnb
. The play tm+1 = tmnb then satisfies the induction

hypothesis, and this completes the proof of the claim.

Now back to the set A ⊂ X× 2�. Since �
proj
A�� > �, the previous claim
together with a determinacy argument show that Player II has a winning strategy
� in the game G
C���. Let B = � ′′�r ∈ 2�: the strategy � produces the sequence
r against some counterplay�. The set B is analytic by virtue of its definition, it is
a subset of the set A since the strategy � was winning, and moreover, the strategy
� remains a winning strategy in the play G
B��� for obvious reasons. One more
application of the claim shows that �
proj
B��≥ � as required.

The proof of (4) closely follows the proof of Theorem 4.5.6(4). I omit it.

The preservation properties of the forcings PI�
are closely connected to

fundamental measure theory facts.

Theorem 4.3.23. Suppose that � is a subadditive capacity on a Polish space X
such that the forcing PI�

is proper. Then the forcing PI�
is bounding.

Proof. This is just a conjunction of Choquet’s capacitability theorem 4.3.2 and
Theorem 3.3.2. It is enough to show that compact sets are dense in every Polish
topology 
 extending the original one. But � remains a capacity with respect to
that topology 
, and therefore every analytic �-positive set has a 
-compact subset
of arbitrarily close �-mass!

Theorem 4.3.24. Suppose that � is a strongly subadditive capacity such that the
forcing PI�

is proper. Then the forcing PI�
preserves outer Lebesgue measure.

Proof. This is again just a conjunction of Choquet’s envelope of measures theo-
rem 4.3.6(2) and Theorem 3.6.2. The strongly subadditive capacity � is an envelope
of measures and therefore the ideal I� = �A⊂X � for all measures �≤� �
A�= 0�
is polar.

Theorem 4.3.25. Suppose that � is a subadditive Ramsey capacity such that the
forcing PI�

is proper. Then PI�
does not add a splitting real.

Proof. Suppose B ∈ PI�
is a condition and ȧ is a name for a subset of �. Without

loss of generality assume that the set B is compact and there is a Borel function
f � B→ P
�� such that B � ȧ= ḟ 
ẋgen�. Assume that there is no infinite set b⊂�

and no condition C ⊂ B such that C � b̌ ⊂ ȧ. I must produce an infinite set d ⊂ �
and a condition D ⊂ B such that D � ȧ∩ ď = 0.

In order to do this, choose a strictly decreasing sequence �n � n ∈ � of positive
real numbers smaller that �
B� which converges to a nonzero number, and by



162 Examples

induction on n ∈ � construct a decreasing sequence Cn � n ∈ � of compact subsets
of B of capacity �
Cn� > �n and distinct natural numbers mn � n ∈ � such that for
all points x ∈ Cn, the set f
x�⊂ � does not contain the number mn. In the end, the
compact set

⋂
n Cn has nonzero �-mass and it forces ȧ∩�mn � n∈��= 0 as desired.

To perform the induction step, consider the infinite collection of sets Am � m ∈�
defined by Am = �x ∈ Cn � m � f
x��. If infinitely many of them had capacity
≤ �n+1 then there would be an infinite subcollection Am � m ∈ b for some set b⊂�
such that

⋃
m∈b Am < �n, and then the nonzero capacity Borel set Cn \

⋃
m∈b Am

forces b ⊂ ẋ, contradiction. Thus there is a number mn larger than all mk � k ∈ n
such that �
Amn

� > �n+1, and then the compact set Cn+1 ⊂ Amn
can be extracted

with a reference to Choquet’s capacitability theorem 4.3.2.

Theorem 4.3.26. Suppose that � is a strongly subadditive stable capacity. The
forcing PI�

can be embedded into a �-closed*c.c.c. iteration.

In fact the assumption of strong subadditivity can be weakened to A⊂ B�A⊂C,
�
A�= �
B�= �
C� implies �
A�= �
B∪C�, a property which clearly follows
from strong subadditivity, but it is also satisfied for some other capacities such as
the Steprāns capacities of Section 4.3.4.

Proof. Fix a countable topology basis O of the underlying Polish space X closed
under finite unions. Consider the partial order P of all pairs p= �ap� bp� satisfying
the following demands:

• ap is a countable set of �-positive compact sets, closed under �-positive finite
intersections and �-positive subtraction of a basic open set;

• bp is a countable collection of sets z⊂ ap such that ∀C ∈ ap∀O ∈O �
O∪ 
C∩
⋃
z��= �
O∪C�.

The ordering is that of coordinatewise extension. The partial order P is clearly
�-closed. If G ⊂ P is a generic filter then Q ∈ V�G� is the partial order

⋃
p∈G ap

ordered by inclusion. I will show that Q is a c.c.c. forcing and if H ⊂ Q is a
V�G�-generic filter then the upwards closure K of H in PI�

is a V -generic filter.
This will complete the proof of the theorem. The following claim is critical:

Claim 4.3.27. Suppose that p = �ap� bp� is a condition in the forcing P, and
consider the set B =⋂

z∈bp
⋃
z⊂ X. Then:

1. �
B� > 0 and for every set C ∈ ap, and basic open set O ∈ O, �
O∪C� =
�
O∪ 
C∩B��;

2. for every closed set C ⊂ B of positive capacity there is a condition q ≤ p such
that C ∈ aq.
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The claim implies that K is forced to be a V -generic filter: if �p�C� is a condition
in the iteration P ∗Q and D⊂ PI�

is an open dense set, strengthening the condition
p if necessary I may assume that C ∈ ap, and then for every �-positive closed set
C ′ ⊂ C∩⋂z∈bp

⋃
z in the open dense set D there is a condition q ≤ p in the forcing

P such that C ′ ∈ aq by the Claim. Clearly the condition �q�C ′� ≤ �ap�C� in the
iteration P ∗ Q̇ forces the filter K ⊂ PI�

to meet the open dense sets D ⊂ PI�
.

Towards the c.c.c. of the forcing Q, suppose for contradiction that p ∈ P is a
condition forcing Ȧ⊂ Q̇ to be an uncountable maximal antichain. In the P-extension,
for every condition C ∈Q and basic open set O ∈O let �
O�C�= sup��
O∪
⋃y∩
C�� � y ⊂ A countable�. Note that the supremum is in fact attained, and I will first
argue that �
C�= �
O∪C�.

If not, there must be a condition q ≤ p and a set y ⊂ aq such that C ∈ aq

and q forces y̌ ⊂ Ȧ and �
O�C� = �
O∪ 

⋃
y∩C�� < �
O∪C�. Now let B =

C ∩⋂z∈bq
⋃
z be the set from the claim. Note �
O∪C�= �
O∪ 
B∩C��. Find a

�-positive compact set C ′ ⊂O∪
B∩C�\ the tilde of O∪
⋃y∩C� and a condition
r ≤ q such that C ′ ∈ ar . Strengthening the condition r if necessary I may assume
that there is a set C ′′ ∈ ar such that r � Č ′′ ∈ Ȧ and C ′′ is compatible with C ′. By
the definition of the tilde operation then, �
O∪⋃


y∪ �C ′′��∩C� > �

⋃
y∩C�,

contradicting the choice of the set y.
Now suppose that M is a countable elementary submodel containing p� Ȧ, let

g ⊂ P ∩M be an M-generic filter containing the condition p, and let q ≤ p be
the natural lower bound of this filter. The previous paragraph shows that the pair
r = �aq� bq ∪ �Ȧ/g�� is a condition in the forcing P and it clearly forces that
Ȧ/g ⊂ P is a maximal antichain. Therefore Ȧ = Ȧ/g, contradicting the presumed
uncountability of the antichain Ȧ.

Thus all that remains is to prove the claim. For the first item, suppose that C ∈ ap

is a set, O ∈O is a basic open set, and let On � n ∈ � be a collection of basic open
sets such that �
O∪⋃

n On� < �
O∪C�. It will be enough to show that the set
D=⋂

z∈bp
⋃
z∩ 
C \⋃n On�\O is nonempty. In order to do this, enumerate the set

bp by zm � m∈� and by induction on m∈� find a descending chain C0⊃C1⊃� � � of
compact sets in the collection ap such that C0=C \O, Cm+1 is a set disjoint from Om

and it is a subset of some element of zm, and �
O∪⋃n On∪Cm� > �
O∪⋃n On�.
In the end clearly

⋂
m Cm is a nonempty subset of D as required.

To perform the inductive construction assume that the compact set Cm has been
constructed. Since the capacity � is continuous in increasing unions, there must be
a number n̄ > m such that �
O∪⋃n∈n̄ On∪Cm� > �
O∪⋃n On�. From the second
item of the definition of the poset P it follows that �
O∪⋃n∈n̄ On∪
Cm∩

⋃
zm�� >

�
O∪⋃
n On�. The strong subadditivity of the capacity � now implies that there

must be an element E ∈ zm such that �
O∪⋃n On� <�
O∪⋃n On∪
Cm∩E\On��.
This completes the induction step and the proof of the first item.
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The second item of the claim is now immediate. If C ⊂B is a �-positive compact
set then let aq be the closure of the set ap∪ �C� under positive finite intersections
and positive subtractions of a basic open set. The sets in aq are then either already
in ap or subsets of the set C. Let q = �aq� bp�. The verification of the second
condition in the definition of the poset P is trivial.

Theorem 4.3.28. Suppose that � is a strongly subadditive stable capacity. Then

1. every function f � �1 → 2 in the PI�
extension has an infinite ground model

subfunction;
2. every intermediate extension of the PI�

-extension is c.c.c.;
3. (add
null� > ℵ1) every intermediate extension is given by a single Solovay

real.

Proof. The proof of (1) closely follows the argument for Theorem 4.1.6. It is
necessary to argue that for every collection �B� � � ∈ �1� of Borel sets of �-mass
< � and for every real number 	 > 0 there is an infinite subcollection �B� � � ∈ b�
whose union has capacity < �+	, which is part of the content of Claim 4.3.8.

The second item follows from Theorem 4.3.21 and Proposition 3.9.2 in the
presence of large cardinals, however it is possible to perform a manual construction
to avoid the large cardinal assumptions. The strong subadditivity is not needed here.

In the proof of (3), I must first show that every c.c.c. intermediate extension is
countably generated. This follows the lines of the proof of Theorem 4.1.7. I must
use the assumption add
null� >ℵ1 to show that for every collection �B� � �∈�1�
of Borel sets of �-mass <� and for every real number 	> 0 there is an uncountable
subcollection �B� � � ∈ b� whose union has capacity < �+	. This is again proved
in Claim 4.3.8. Finally, I must show that the intermediate c.c.c. countably generated
extension given by a measure algebra. In order to do that, note that the c.c.c. forcing
is associated with �1

1 on �
1
1 ideal, it is bounding and c.c.c., and so by Corollary 3.3.7

it is a Maharam algebra. Now the forcing PI�
preserves outer Lebesgue measure by

Theorem 4.3.24 (another use of strong subadditivity), the intermediate c.c.c. forcing
must preserve outer Lebesgue measure too, and as [17] shows, the Solovay forcing
is the only Maharam algebra forcing which preserves outer Lebesgue measure!

4.3.3 Potential theory

Theorem 4.3.29. (Murali Rao) All capacities in use in potential theory are stable.

The proof of this theorem requires a bit of space and explanations. I will use a
general approach to potential spaces exposed in [1], Section 2.3.

Definition 4.3.30. Let M be a space with a positive measure �, and let n ∈ �.
A kernel on �n×M is an transform function g � �n×M→ � such that g
·� y� is
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lower semicontinuous for every point y ∈M and g
x� ·� is �-measurable for each
point x ∈�n.

Definition 4.3.31. For every �-measurable function f � M → � let Gf � �n → �
be the function defined by Gf
x�= ∫

M
g
x� y�f
y�d�
y�.

Now let p ≥ 1 be a real number. Associated with it is the uniformly convex
Banach space Lp
�� and its subset Lp

+
�� consisting of non-negative functions. We
are ready to define the capacity c = cg�p on �n:

Definition 4.3.32. For every set E ⊂�n let �E = �f ∈ L
p
+
�� � ∀x ∈ E Gf
x�≥ 1�

and let cg�p
E�= inf�
∫

M
fpd� � f ∈�E�.

It turns out that the function cg�p is an outer regular subadditive capacity, see [1],
Propositions 2.3.4–6 and 2.3.12. It is not immediately clear if it has to be strongly
subadditive, even though in many cases including the Newtonian capacity it is [44].
Most capacities in potential theory are obtained in this way; I just mention the most
notorious examples.

Example 4.3.33. The Newtonian capacity results from a Newton kernel and p= 2.
The Newton kernel is a special case of Riesz kernels with �= 2, see below. This is
perhaps not the simplest way of viewing this classical capacity. A simpler definition
can be found in [40], 30.B.

Example 4.3.34. The Riesz capacities result from Riesz kernels. If 0 < �< n is a
real number, the Riesz kernel I� ��

n→� is given by

I�
x�= a�

∫ �

0
t
�−n

2 e−
��x�2

t
dt

t
= ��

�x�n−�
for certain constants a����; the above setup will yield the �-th Riesz capacity by
letting M =�n, � =the Lebesgue measure, and g
x� y�= I�
x−y�.

Example 4.3.35. The Bessel capacities result from Bessel kernels. If � > 0 then
the Bessel kernel G� ��

n→� is given by

G�
x�= a�

∫ �

0
t
�−n

2 e−
��x�2

t − t
4�
dt

t
�

Then proceed similarly as in the case of Riesz capacities.

I will now show that the capacities obtained in this way are stable. The key tool
is the following description of the closure �̄E of the set �E in the space Lp
��:

Fact 4.3.36. [1], Proposition 2.3.9. Let E ⊂�n be a set. Then �̄E = �f ∈ L
p
+
�� �

for all but �-null set of x ∈ E, Gf
x�≥ 1�.
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Since the set �̄E ⊂ Lp
�� is closed and convex, the uniform convexity of the
Banach space Lp
�� implies that there is a unique up to Lp equivalence function
f ∈ �̄E with the smallest norm. The function f is called the capacitary function
of the set E, and clearly

∫

M
fpd� = �
E�. We will write f = fE . Note that the

transform GfE , called the capacitary potential of the set E does not depend on the
choice of fE within its equivalence class.

For every set A ⊂ �n let Ã = A∪ �x ∈ �n � GfE
x� ≥ 1�. The following claim
immediately implies that this set works as demanded by Definition 4.3.16.

Claim 4.3.37. Let A⊂ B ⊂�n be arbitrary sets. Then �
A� < �
B� if and only if
�
B \ Ã� > 0.

Proof. On one hand, if �
B\ Ã�= 0 then fA ∈ �̄B and therefore �
B�≤ ∫

M
f
p
Ad�=

�
A�. On the other hand, suppose �
A� = �
B�. Since A ⊂ B, it is the case that
fB ∈ �̄A. Since �
A�= �
B�, it is the case that the norms of the functions fB and
fA coincide. By the uniqueness of the function of minimal norm in the set �̄A it
must be the case that fA = fB up to the Lp equivalence. Thus B \ Ã ⊂ �x ∈ B �
GfA
x� < 1�= �x ∈ B � GfB
x� < 1� and the capacity of the latter set is zero by the
definition of the set �̄B. The claim follows.

Slight variations of the above definitions are in use in potential theory. A typical
small change is the replacement of the Banach space Lp
�� with lqLp
�� in the case
of Besov capacities and Lizorkin–Triebel capacities [1], Chapter 4. The results and
proofs mentioned above apply again in these cases. The above definitions can be
further generalized to yield capacities on spaces other than �n.

4.3.4 Steprāns capacities

In [74] Steprāns implicitly constructed a wide family of stable capacities and studied
forcings associated with them. In this section I will expose the scheme for generating
these capacities and prove the necessary theorems.

Let T be a finitely branching tree. For every node t ∈ T let at denote the set of
all its immediate successors in the tree T . For every node t ∈ T choose a norm �t

on �at satisfying the following properties.

1. (respects absolute value) �f � ≤ �g� → �t
f�≤ �t
g�.
2. (subadditivity) �t
�f �+ �g��≤ �t
f�+�t
g�.
3. (multiplicativity) �t
�f�= ��t
f� for every real number �≥ 0.
4. (normalized) �t
the unit function�= 1.
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For every natural number n ∈� the sequence ��= ��t � t ∈ T� generates a norm
�n on �Tn defined by induction on n∈�: �1
f�=�0
f� and �n+1
f�=�n
g� where
g ∈�Tn is defined by g
t�=�t
f � at�. Note that the norms �n inherit the above four
properties. The associated outer regular capacity � on the Polish space �T� is defined
in the natural way. For a clopen subset O⊂ �T� find a number n ∈� with a function
f � Tn→ 2 such that for every x ∈ �T�, x ∈O↔ f
x � n�= 1 and let �
O�= �n
f�.
Since the norms on the sequence �� are normalized, this does not depend on the
choice of the number n. For an open set B ⊂ �T� let �
B�= sup��
O� � O ⊂ B � O
clopen�, and for all other sets A⊂ �T� let �
A�= inf��
B� � B open and A⊂ B�. It
is not difficult to see that this is a countably subadditive outer regular submeasure.
I must show that this definition indeed yields a stable capacity.

Theorem 4.3.38. The function � is a stable capacity.

Proof. The key point of the argument is the definition of the submeasures �t � t ∈ T .
These are defined in the same way as � except the definition starts at the node t

instead of 0 ∈ T . The multiplicativity of the norms on the sequence �� implies that
for every set B ⊂ Ot its is the case that �t
B� ·�
Ot� = �
B�, and the definitions
imply that for every set B ⊂ �T� and every number n ∈ �, �
B� = �n
g� where
g ∈�Tn is the function defined by g
t�= �t
B�.

The following important claim is reminiscent of the Lebesgue density theorem.

Claim 4.3.39. Whenever B ⊂ �T� is an �-positive set and � > 0 is a real number
then there is a node t ∈ T such that �t
B� > 1−�.

Proof. Suppose this fails for some set B ⊂ X��
B� > 0, and a real number � > 0.
By induction on n ∈ � build sets Kn � n ∈ � and On � n ∈ � so that:

• Kn ⊂ T is a set of mutually incomparable nodes, and On =
⋃
�Ot � t ∈ Kn�.

K0 = �0� and O0 = X.
• Every node in Kn has some extension in Kn+1, and every node in Kn+1 has some

initial segment in Kn, so On+1 ⊂ On.
• For every node t ∈Kn the set On+1∩Ot covers the set B∩Ot, and �
On+1∩Ot� <


1−���
Ot�. Such a set certainly exists by the assumption.

The multiplicativity of the norms can then be used to show that �
On�< 
1−��n.
Thus �


⋂
n On� = 0. On the other hand, the last item implies that B ⊂ ⋂

n On, a
contradiction.

To show that � is a capacity it is only necessary to verify that it is continuous
in increasing unions. Let B =⋃

n Bn be an increasing union, and assume for con-
tradiction that for a real number � > 0, 
1−���
B� > supn �
Bn�. Consider the set
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K = �t ∈ T � ∃n �t
Bn� > 1−�� and its subset L⊂ K consisting of those nodes of
K which have no proper initial segment in K.

Observe that �
�B \⋃t∈L Ot�� = 0. If this failed then by the countable sub-
additivity of the submeasure � there must be a number n ∈ � such that
�
�Bn \

⋃
t∈L Ot�� > 0 and by the previous claim there must be a node s ∈ T

such that �s
�Bn \
⋃

t∈L Ot�� > 1−�. This node cannot extend any element of the
set L, nevertheless it must be an element of the set K, a contradiction.

It follows that the open set
⋃

t∈L Ot has �-mass at least that of B. The definition
of the submeasure � provides for an existence of a finite set M ⊂ L such that

1− ���


⋃
t∈M Ot� > supn �
Bn�. For every node t ∈ M find a number mt ∈ �

such that �t
Bmt
� > 1−� and let m=maxt∈M mt. Since the sets Bn � n ∈� form an

inclusion-increasing sequence, this means that �t
Bm� > 1−� for every node t ∈M ,
and the multiplicativity of the norms implies that �
Bm� > 
1− ���


⋃
t∈M Ot� >

supn �n
Bn�, a contradiction. Thus the submeasure � indeed is a capacity.
To see that the capacity � is stable, let A⊂ �T� be a set. For every number � > 0

let A� = �x ∈ �T� � ∃n �x�n
A� > 1−�� and let Ã= A∪⋂� A�. I claim that this set
works as demanded by Definition 4.3.16. First note that �
Ã� = �
A�: every set
A� is open and by the multiplicativity it has capacity ≤ 
1−���
A�, and therefore
�


⋂
� A�� ≤ �
A�. Moreover by Claim 4.3.39, �
A \⋂� A�� = 0 and therefore

�
A∪⋂
� A�� = �


⋂
� A�� ≤ �
A� as required. Now suppose that B ⊂ X \ Ã is a

positive capacity set. By the countable additivity of the capacity �, there is a real
number �> 0 such that the set B\A� has positive capacity. Use Claim 4.3.39 to find
a sequence t ∈ T such that �t
B� > 1−�. It is now clear that �t
B� > 1−�≥ �t
A�
and it follows that �
A∪B� > �
A� as required.

The properties of the forcings PI�
are unclear. This family of forcings includes the

Solovay forcing: the capacity � is a measure if each of the norms �t is just a convex
combination of the outputs of the normed function. On the other hand many of the
forcings are nowhere c.c.c. The capacities obtained are in general not strongly sub-
additive even though Fremlin [21] showed that they satisfy certain weakenings of the
strong subadditivity. I will show that the Steprāns capacities are envelopes of mea-
sures, which implies that the resulting forcings preserve the outer Lebesgue measure.

Proposition 4.3.40. Let � be a Steprāns capacity. Then � is an envelope of
measures.

Proof. Let T be the finitely branching tree supporting the capacity � and let
�t � t ∈ T be the norms from which the capacity � is defined. Suppose that K ⊂ �T�
is a compact set; I must find a measure � such that � ≤ � and �
K� = �
K�.
By tree induction on t ∈ T assign real numbers wt to nodes in the tree T so that
w0 = �
K� and ws = wt ·�s
K�/�u∈at�u
K� whenever s is an immediate successor
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of the node t. It is clear that wt = �s∈atws holds for every node t ∈ T . Let � be the
unique measure on �T� such that �
Ot�= wt for all nodes t ∈ T .

Since the set K is compact, it is clear that �
K� = w0 = �
K�. To show that
�≤ � it is enough to prove �
O�≤ �
O� for every clopen set O ⊂ �T�. However,
the multiplicativity of the norms can be used to show that in fact �
O�≤ �
O∩K�.

4.3.5 A construction of Ramsey capacities

In this section I will produce a great number of Ramsey capacities � such that
the forcing PI�

is proper. The properness will be guaranteed by the fact that they
are pavement measures, with a reference to Section 4.5. As an artifact of the
construction the forcings PI�

collapse Lebesgue measure. The following definition
is motivated by the study of pathological submeasures [7], [15]; it is related to the
Maharam problem.

Definition 4.3.41. Let a be a finite set and � a submeasure on it. The pathologicity
index path
�� be the smallest real number � such that there is a collection �bi � i∈ j�
of subsets of a and nonnegative real numbers ci � i ∈ j with �i∈jci = 1, �
bi� < �
and �ici�
bi�≥ 1/2.

It is easy to see that for every measure � on the set a there is a set of �-mass at
least 1/2 and �-mass at most path
��, and this is how I will use the pathologicity.
The choice of the constant 1/2 is rather arbitrary as long as it is larger than zero.
The key point is that there are submeasures such that path
�� is much smaller than
the �-mass of the whole space.

Example 4.3.42. A direct attack at the definition. Let u� v ∈ � be natural numbers
such that u/2 ≤ v < u and consider the pavement submeasure � on the set a =
�u�v defined by the pavers bi = �y ∈ a � i ∈ y� for i ∈ u and the weight function
w
bi� = 1

u−v+1 . In other words, �
b� = 1
u−v+1 times the smallest number of sets of

the form bi � i ∈ u necessary to cover the set b ⊂ a. It is immediate that �
a� = 1
and path 
��= 1

u−v+1 since �i∈u
1
u
�
bi�= v

u
≥ 1

2 . Manipulating the numbers u� v one
can clearly bring path 
�� arbitrarily close to 0.

Example 4.3.43. Davies and Rogers used a considerably more sophisticated sub-
measure in their construction of a Hausdorff measure which attains only the values
0 and � [11]. I will restate their example in probabilistic terms. Let n be a
large natural number and � < 1/2

√
n be a positive real number. Let X be the

n-dimensional sphere in �n+1, and for every x ∈ X write C
x� ⊂ X for the cap
�y ∈X � x ·y ≥ ��. Writing � for the usual probability measure on X, a computation
shows that �
C
x�� > 1/4. Throw a large number of mutually independent darts
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on the sphere X, obtaining a finite set a ⊂ X. As the number of darts grows, the
probability of the following event tends to 1:

• a cannot be covered by n many caps of the form C
x� � x ∈ X. This uses
Lyusternik–Shnirelman–Borsuk theorem, which says that whenever Di � i ∈ n

is a collection of closed sets covering the sphere X then one of them contains a
pair of antipodal points.

• For every point x ∈ a the set a∩C
x� has size at least �a�/4. This uses some
Monte Carlo type considerations.

Now let a be a set of darts satisfying these two items, and let � be the submeasure
on the set a defined by �
b� = max�1�m
b�/�a��, where m
b� is the smallest
number of caps of the form C
x� � x ∈ a such that their union covers the set b. The
first item shows that �
a�= 1, and the second item shows that the average of the
characteristic functions of the caps C
x� � x ∈ a is greater than 1/4 at every point
in a. Note that �
C
x��= 1/�a� is very small.

Towards the construction of the Ramsey capacities, let T be a finitely branching
tree and �t � t ∈ T be submeasures on the set at of all immediate successors of
the node t in the tree T such that �t
at�= 1 and path
�t� · �T�t�� → 0. Let X = �T�
and define a submeasure � � P
X�→ �+ by �
A� = inf��t∈T�t
bt� � bt ⊂ at and
for every branch x ∈ A there is t ∈ T with x � �t�+ 1 ∈ bt�. It is clear that � is a
pavement submeasure and therefore the forcing PI�

is proper by Theorem 4.5.2.
The following theorem is the central result of this section.

Theorem 4.3.44. � is a Ramsey capacity.

Proof. I will first introduce helpful notation. An assignment is a function F with
dom
F�= T and ∀t ∈ T F
t�⊂ at. I will write OF = �x ∈X � ∃t x � 
�t�+1� ∈ F
t��.
The proof of the theorem depends on a small claim.

Claim 4.3.45. Suppose that ��	 > 0 are real numbers. There is a natural num-
ber n = n
��	� such that for every assignment F with �t∈T�t
F
t�� < � there is
an assignment G such that �t∈T≤n�t
G
t�� < �+	/2, �t∈T>n

�t
G
t�� < 	/2, and
OF ⊂ OG.

Proof. Just choose a number k ∈ � such that 
1/2�k� < 	/3 and a number n =
n
��	� ∈� such that k · �Tn� ·max�path
�t� � t ∈ Tn� < 	/3. I claim that the number
n works. Let F be an assignment with �t∈T�t
F
t�� < �. For every node s ∈ Tn+1

write g
s�= �t⊇s�t
F
t��.
Fix a node u ∈ Tn and consider the function g � au. I will argue that there

is a set cu ⊂ au such that �u
cu� < 	/3�Tn� and �s∈au\cug
s� < 
1/2�k�s∈aug
s�.
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The pathologicity of the submeasure �u kicks in exactly at this point. Let ci� bi �
i ∈ j witness the fact that path
�u� < 	/3k�Tn�. Thus bi ⊂ au � i ∈ j are sets of
�u-submeasure < 	/3k�Tn� and ci ∈ �0�1� � i ∈ j are real numbers with unit sum
such that �ici�
bi� ≥ 1/2. Since the corresponding convex combination of the
numbers �s∈big
s� � i ∈ j gives a sum at least �s∈aug
s�/2, there must be an index
i0 ∈ j such that �s∈bi0 g
s� ≥ �s∈aug
s�/2. Repeat this process k times, each time
reaping at least one half of the sum of the remaining numbers g
s� by some set
bim ⊂ au. In the end, let cu =

⋃
m∈k bim .

The conclusion of the proof is now at hand. The desired assignment G is obtained
from F by letting G
u� = F
u� for all u ∈ T<n, G
u� = F
u�∪ cu for all u ∈ Tn,
G
t� = 0 for every node t ∈ T>n such that the restriction of the node t to the

n+ 1�-st level falls into one of the sets cu � u ∈ Tn, and G
t� = F
t� for all the
other nodes t ∈ T>n.

The proof that � is Ramsey is now straightforward. If ��	 > 0 are real numbers
and Ak � k∈� are sets of �-mass <�, first choose assignments Fk � k∈� witnessing
this, and then find the number n= n
��	� and assignments Gk =G
Fk���	� as in
the claim. There are only finitely many possibilities for Gk � T≤n and so for two
distinct numbers k �= l it will be the case that Gk � T≤n =Gl � T≤n. It is clear that
�
Ak∪Al� < �+	 as witnessed by the assignment G � t "→Gk
t�∪Gl
t�.

To show that � is a capacity, it is enough to argue that it is continuous in
increasing unions. Let Ak � k ∈ � be an ⊂-increasing sequence of sets of �-mass
≤ �; I must show that �


⋃
k Ak� ≤ �. Fix a real number 	 > 0. To show that

�

⋃

k Ak� < �+	 choose assignments Fk � k ∈ � witnessing that �
Ak� < �+	/2
and by induction on m ∈ � find

• infinite sets um ⊂ � such that �= u0 ⊃ u1 ⊃ u2 ⊃ � � �

• an increasing sequence of numbers nm ∈ �;
• assignments Fm

k � k ∈ um such that Fm
k � T≤nm is the same for all k ∈ um, this

common part denoted by Gm, G0 ⊃G1 ⊃ � � � , ��t�≤nmGm
t� < �+�l∈m	 ·2−l and
��t�>nm

Fm
k 
t� < 	 ·2−m for all k ∈ um.

This is easy to do using the claim repeatedly. In the end, let km =min
um� and
consider the assignment G � t "→ ⋃

m Fkm

t�; this is slightly bigger than

⋃
mGm.

The induction hypotheses imply that �t�t
G
t�� < �+ 	 and the assignment
G witnesses �
Akm

� < �+ 	 for all numbers m and so even �
A� < �+ 	 as
desired.

Example 4.3.46. A capacity connected to the 
f�h�-bounding property of forcings
introduced by Shelah [2], 7.2.13 is obtained through this scheme in the following
way. Let f�h ∈�� be functions such that f
n�/2≤ h
n�≤ f
n� and

∏
m∈n f
m�h
m� ·
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1
f
n�−h
n�+1 → 0. Let T be the tree of all finite sequences t such that for every number
n ∈ dom
t�, t
n� ⊂ f
n� is a set of size h
n�. For every node t ∈ T let mt be the
submeasure obtained in Example 4.3.42 with u = f
�t�� and v = h
�t��, and let
cf�h be the resulting capacity. It is not difficult to show that if a forcing is not
f�h-bounding then it makes the ground model reals into a cf�h-mass zero set. The
rather restrictive condition f
n�/2 ≤ h
n� can be replaced by a number of much
weaker requirements.

The construction of capacities in this section carries with it the following forcing
effect.

Proposition 4.3.47. Suppose that � is a capacity constructed using the above
scheme. Then I� ⊥ null.

Proof. Let T be the tree used in the construction with submeasures �t � t ∈ T . For
simplicity suppose that the submeasures �t used to generate the capacity depend
only on the length of the sequence t and write �k for the submeasure used at
sequences of length k. For each number k ∈ � let Ak = �Ak

i � i ∈ jk� and cki � i ∈ jk
witness the pathologicity of the submeasure �k. Let U be the tree of all finite
sequences s such that for every number k ∈ dom
s�, s
k� ∈Ak. Equip U with the
probability measure � obtained as a product of the probability measures nk on Ak

which assign each singleton �Ak
i � mass cki .

Now consider the Borel set D ⊂ �T�×U defined by �v�u� ∈ D if and only if
∃�k v
k� � u
k�. Note that nk
�A

k
i � v
k� � Ak

i �� ≤ 1/2 and therefore the vertical
sections of the set D have zero �-mass. On the other hand, �k
u
k��≤ �
�k� and so
�
�v � v
k�∈ u
k���≤ �
�k� · �Tk� which tends to 0 as k diverges to�. Consequently
the horizontal sections of the complement of the set D have �-mass 0.

4.3.6 Another Ramsey capacity

In this section I will provide a family of examples of nontrivial stable strongly
subadditive Ramsey capacities. The treatment is parallel to the Steprāns capacities.

Fix a function f � �+ → �+ which is differentiable, increasing, concave, and
f
0� = 0� f
1� = 1. Typical examples include f
x� = xr for some real number
0 < r < 1 or f
x� = log2
1+ x�. Let T be a finitely branching tree. I will derive
a strongly subadditive capacity �f on �T� in a way that closely mimicks the
construction of Steprāns capacities.

By induction on n ∈ � define a norm �g�n for all functions g ∈ 
�+�Tn . Let
�g�0 = g
0� and �g�n+1 = �h�n where the function h ∈ 
�+�Tn is defined by h
t� =
f
arithmetical average of the values g
s� where s ∈ Tn+1 is an immediate successor
of t�.
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Claim 4.3.48. Let n ∈ � be a number and g�h�k� l functions from Tn to �+.

1. If g ≤ h everywhere then �g�n ≤ �h�n.
2. �g+h�n ≤ �g�n+�h�n.
3. If g≤ h�k and h�k≤ l everywhere and g+l≤ h+k everywhere then �g�n+�l�n≤
�h�n+�k�n.

Proof. This is proved by an easy induction on n ∈�. For the third item note that if
f is differentiable, increasing and concave, u≤ v� x and v� x≤ y and u+y ≤ v+x,
then f
u�+ f
y� ≤ f
V�+ f
x�. To see this, fix u� y and minimize f
V�+ f
x�
subject to the condition u ≤ v� x ≤ y and u+ y ≤ v+ x. Since the function f is
increasing I can assume that x ≤ v and x is the smallest possible given v, which is
x= u+y−v. Now differentiating the function f
V�+f
u+y−V� with respect to
v gives a nonpositive number since f ′ is a decreasing function and u+ y− v ≤ v.
Thus the maximum of f
V�+f
u+y−V� is attained at the boundary point v= y
as desired.

The capacity �f is now defined as follows. For a clopen set O ⊂ �T� find a
number n ∈ � and a function g � Tn → 2 such that x ∈ O↔ g
x � n� = 1 and let
�f
O�= �g�n. This definition does not depend on the choice of the number n since
f
1�= 1. For an open set A⊂ �T� let �f
A�= sup��f 
O� � O ⊂ A is clopen� and
for all other sets B⊂ �T� let �f
B�= inf��f 
A� � B⊂A and A is open�. The second
item of the claim shows that the function �f is strongly subadditive on clopen sets.
Fact 4.3.5 then shows that the natural extension of �f to all subsets of �T� gives
a strongly subadditive capacity. It is not difficult to see that if the function f is
continuous at 0 then in every tree T which branches sufficiently fast the capacity
�f assigns singletons zero mass.

I will investigate the special case of the capacities �r = �f where f
x�= xr for
a real number 0 < r < 1. Let T be a finitely branching tree such that each node on
its n-th level has many immediate successors.

Theorem 4.3.49. Let 0 < r < 1 be a real number. Then �r is a stable Ramsey
capacity.

Proof. First, some notation. Fix the real number r and write �r = �. I will need
the capacities �t and norms ���t�n for every node t ∈ T defined just as � itself
except starting at the node t ∈ T instead of 0. The above work can be performed
in the same manner for these capacities to show that they are strongly subadditive.
It is clear from the definitions that for every set A⊂ �T� and every number n ∈ �,
�
A�= �g�n where the function g assigns a node t ∈ Tn the value �t
A�.
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Arguments for both the stability and Ramseyness use a certain multiplicativity
property of the capacity �. This is recorded in the following claim; the proof is an
elementary induction on n ∈ �.

Claim 4.3.50. For every number n ∈ �, every function g � Tn → �+ and every
positive real number a, a
rn��g�n = �ag�n.

For the stability, it is enough to define the tilde operation on open sets. Then,
for an arbitrary Borel set B, the set B̃ = ⋃

n Õn will work, where On � n ∈ � are
open supersets of B whose capacity tends to that of B.

Suppose that O ⊂ �T� is an open set and let Õ = O∪ �x ∈ �T� � ∀� > 0 ∃n ∈
� �x�n
O� > 
1−��
r

−n��. I will show that this set works as in Definition 4.3.16.
First, I must argue that �
Õ� = �
O�. Choose a real number � > 0 and work

to prove that �
O�≥ 
1−���
O∪P��, where P� =
⋃
�Ou � �u
O� > 
1−��
r

−�u����
This will be enough since the set O∪P� covers Õ by the definitions. For every node
t ∈ T and every natural number n> �t� let ft�n � Tn � t→�+ be the function defined
by ft�n
s�= �s
O�, and gt�n � Tn →�+ be the function defined by gt�n
s�= ft�n
s�

except when there is some node u, t ⊆ u ⊆ s such that �u
O� > 
1− ��
r
−�u��, in

which case assign gt�n
s�= 1. Using the Claim 4.3.50 repeatedly, by induction on
n−�t� argue that �gt�n�t�n < 
1−��
r

�t���ft�n�t�n. A review of definitions shows that
�
O∪P��= supn �g0�n�tn , and therefore �
O�≥ 
1−���
O∪P�� as desired.

Now I must show that for every �-positive set C ⊂ �T� disjoint from Õ it is the
case that �
O∪C� > �
O�. This uses the following claim similar to Claim 4.3.39.

Claim 4.3.51. For every �-positive Borel set C ⊂ �T� and every real number � > 0
there is a node u ∈ T such that �u
C� > 
1−��
r

−�u��.

Proof. Since it has been already established that � is a capacity, it is harmless to
assume that the set C is compact. Fix a real number � > 0 and suppose the claim
fails for C and �. Find a natural number n such that 
1−���
P� < �
C� where
P ⊂ �T� is the clopen set of all sequences sharing their initial segment of length
n with some element of the set C. Such a number n exists by the outer regularity
of the capacity � and a compactness argument. By downward tree induction on
the node t, starting at nodes at level n, argue that 
1−��
r

−�t���t
P� > �t
C�. This
yields a contradiction at t = 0.

Use the claim repeatedly to find a point x ∈C such that ∀�> 0 ∃n∈� �x�n
C�>


1−��
r
−n�. Since x � Õ, there must then be a number n ∈ � such that �x�n
C� >

�x�n
O�. A review of definitions shows that this implies �
O∪C� > �
O�.
Now for the proof of the Ramsey property, let ��	 > 0 be real numbers. Find a

number n ∈ � such that � ·2
rn� < �+	 and find a number k such that the function
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g � Tn→�+ given by g
t�= 3/k has such a small norm that � ·2
rn�+�g�n < �+	.
Now let m= �Tn�k+1. I claim that among any collection of sets Ai � i∈m of capacity
< � there are two whose union has capacity < �+	. By a counting argument there
must be numbers i �= j ∈ m and a function h � Tn → k such that for all nodes
t ∈ Tn, both h
t�/k ≤ �t
Ai� ≤ 
h
t�+ 1�/k and h
t�/k ≤ �t
Aj� ≤ 
h
t�+ 1�/k.
Consider the functions gi� gj� g � Tn → �+ given by gi
t� = ct
Ai�� gj
t� = ct
Aj�
and g
t� = �t
Ai ∪Aj�. The strong subadditivity of the capacities ct shows that
g
t�≤ gi
t�+gj
t�+2/k and consequently g
t�≤ 2gi
t�+3/k. A computation using
the previous two claims and the choice of the numbers n�k shows that �
Ai∪Aj�=
�g
t��n ≤ �2gi
t��n+ �3/k�n = 2
rn��gi
t��n+ �3/k�n = 2
rn��
Ai�+ �3/k�n ≤ 2
rn��+
�3/k�n < �+	 as desired.

4.3.7 An improper capacity forcing

For a long time I could not find an example of a capacity � such that the forcing
PI�

is not proper. The present section provides a host of such examples, showing
that the subject of study is quite varied and difficult. I will begin with a simple
measure theoretic proposition.

Proposition 4.3.52. Suppose that �n � n ∈ � is a collection of capacities on a
Polish space X such that �n
X� = 1. Let � � P
X�→ �+ be defined by �
A� =
�n2−n−1cn
A�. Then

1. � is a capacity;
2. if all capacities �n are outer regular then so is �;
3. if all capacities �n are strongly subadditive then so is �;
4. if all capacities �n are Ramsey then so is �.

Proof. The argument begins with the investigation of the sum of two capacities.

Claim 4.3.53. Suppose that �0��1 are two (outer regular, strongly subadditive,
Ramsey) capacities. Then �0+�1 is a (outer regular, strongly subadditive, Ramsey)
capacity.

This is a triviality; I will argue for the outer regularity and Ramseyness of
�0+�1. Let �=�0+�1. Suppose first that �0��1 are both outer regular capacities.
If A⊂X is an arbitrary set and �
A�<� then use the outer regularity of �0 and �1 to
find open sets O0�O1 ⊂X, both covering the set A, such that �0
O0�+�1
O1� < �.
Then clearly �
O0 ∩O1� < �, proving the outer regularity of �. Now suppose
that �0��1 are both Ramsey capacities, ��	 > 0 and An � n ∈ � are subsets of
the space X such that �
An� < � for all n ∈ �. Use a counting argument to
find an infinite set a ⊂ � and real numbers �0� �1 such that �0 + �1 = � and
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�0
An� < �0+	/4��1
An� < �1+	/4 for all numbers n ∈ a. Use the Ramseyness
of the capacity c0 and the Ramsey theorem to find an infinite set b ⊂ a such
that �0
An ∪Am� < �0+ 	/2 for all numbers n ∈ m. Use the Ramseyness of the
capacity c1 to find numbers n �= m ∈ b such that �1
An ∪Am� < �1+ 	/2. Then
�
An∪Am� < �+	 as required.

The infinite sum operation in the proposition is treated similarly. I will argue
for the outer regularity and Ramseyness, the other cases being similar. Suppose
that all capacities �n � n ∈ � are outer regular, A ⊂ X is an arbitrary set and
�
A�< �. Find a number n ∈� such that �
A�< �−2−n, and consider the capacity
�n =�m∈n2−m−1�m. By the previous paragraph this is an outer regular capacity and
so there is an open set O⊃X such that �n
O�< �−2−n. However, �≤ dn+2−n and
so �
O� < � as required. Now suppose that �n � n ∈ � are all Ramsey capacities,
let ��	 > 0 be real numbers and let Am � m ∈ � be sets such that �
Am� < �.
Find a number n ∈ � such that 2−n < 	. As before, consider the capacity �n.
It is Ramsey, smaller than �, and therefore there must be numbers m �= k such
that �n
Am ∪Ak� < �+ 	− 2−n. Since � ≤ �n + 2−n, it must be the case that
�
Am∪Ak� < �+	 as required.

In order to produce a subadditive (outer regular, strongly subadditive, Ramsey)
capacity � such that the forcing PI�

is not proper, it will now be enough to find a
nondecreasing sequence �n � n ∈� of unit mass subadditive (outer regular, strongly
subadditive, Ramsey) capacities such that the respective �-ideals I�n

do not stabilize
in the sense of Proposition 2.2.6. Consider the subadditive (outer regular, strongly
subadditive, Ramsey) capacity �=�n2−n−1�n. The �-ideal I� = �A⊂X � d
A�= 0�
is clearly the intersection of the nonstabilizing decreasing sequence of �-ideals
I�n

� n ∈ �, and therefore the forcing PI�
is not proper.

To build the capacities �n � n ∈ � as in the previous paragraph I will use
the construction from Section 4.3.6. Let rn � n ∈ � be a decreasing sequence of
reals smaller than one, bounded away from zero. Let �n = �f where f
x� = xrn ,
as constructed in Section 3.11. It is immediate that �n � n ∈ � is an increasing
sequence of strongly subadditive Ramsey capacities. To prove that the sequence of
their respective null ideals does not stabilize it will be enough to prove the following.

Proposition 4.3.54. Every �n+1-positive compact set has a compact subset which
is �n+1-positive and �n-null.

Proof. It will be enough to prove the following claim.

Claim 4.3.55. For every compact �n+1-positive compact set K and every real
number � > 0 there is a compact set L ⊂ K such that �n+1
L� > �n+1
K� and
�n
L� < �.



4.3 Capacities 177

Once the claim is proved, it is easy to build a descending sequence of compact
sets below any given �n+1-positive set whose intersection has positive �n+1-mass
but zero �n-mass. Note that capacities are continuous in decreasing intersections
of compact sets.

To prove the claim, use the fact that the sequence rmn+1 � m ∈ � goes to zero
faster than rmn � m ∈ � to find a natural number m and real numbers ��� such
that 
1−��
r

−m
n+1� < � < � < �
r−mn �. From the proof of Proposition 4.3.49 recall the

capacities 
�n+1�t associated with a node t ∈ Tm. For each such node t ∈ Tm find a
compact set Kt ⊂K∩�T � t� such that � ·
�n+1�t
K�< 
�n+1�t
Kt� < � ·
�n+1�t
K�
and let L=⋃

t Kt. I claim that the set L works as desired. And really, Claim 4.3.50
shows that �n+1
L� > �
rmn+1� ·�n+1
K� > 
1− �� ·�n+1
K�, and since for every
t ∈ Tm 
�n�t
Kt�≤ 
�n+1�t
Kt�≤ � holds, �n
L�≤ �
rmn � < � as required.

In fact, the above way of constructing a capacity � such that the forcing PI�
is

not proper is in a precise sense canonical, as the following theorem shows.

Theorem 4.3.56. Suppose that � is a strongly subadditive capacity. The following
are equivalent:

1. PI�
is not proper;

2. there are a positive set C and an increasing sequence of strongly subadditive
capacities �n � n∈� below � such that the respective ideals I�n

strictly decrease
below C and I� =

⋂
n I�n

.

There are two attractive corollaries. The first shows that in the special case of
�-ideals derived from strongly subadditive capacities the properness of the quotient
forcing is a projective statement. This partially answers certain concerns from
Chapter 2, in particular Question 7.1.1. I do not know if the complexity bound is
optimal.

Corollary 4.3.57. The set �� � � is a strongly subadditive capacity on 2� such that
the forcing PI�

is proper� is �1
3.

Proof. In order to make sense of this note that strongly subadditive capacities
on 2� form a Polish space under suitable coding. Let O denote the set of all
clopen subsets of 2�. If � is a strongly subadditive submeasure on O then the set
function �̃ � P
2��→�+ defined by �̃
O�= sup��
P� � P ∈O�P ⊂ O� for open
sets O ⊂ 2� and �̃
A� = inf��̃
O� � A ⊂ O�O open� for all other sets A ⊂ 2�, is
a strongly subadditive capacity and it is in fact the unique strongly subadditive
capacity extending �. Thus the strongly subadditive capacities may be identified
with the closed subset of �O consisting of strongly subadditive submeasures on O.
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The corollary is then a simple complexity calculation using the third item of the
theorem.

The second corollary shows that improperness of the quotient forcing is in fact
equivalent to a stronger statement. I do not know if in ZFC it is equivalent to
collapsing � to ℵ0.

Corollary 4.3.58. If the forcing PI�
is not proper, then under some condition,

the forcing PI�
adds a countable set of ordinals not covered by a ground model

countable set of ordinals.

Proof. The proof of the equivalence of (1) and (2) goes through a third statement
equivalent to both. It is perhaps not as quotable as either (1) or (2), but it is still
interesting in that it shows that the definition of stability of capacities was in some
sense natural. Here it is:

(*) there is a �-positive compact set K ⊂ 2� and an open set O ⊂ 2� such that for
every compact �-positive set K′ ⊂K it is the case that �
K′ ∪O� > �
O�, but
for every real number � > 0 there is an open set P� ⊃ O such that �
P�� <
�
O�+� and every compact �-positive subset K′ ⊂K has a compact �-positive
subset K′′ ⊂ K′ such that �
K′′ ∪P��= �
P��.

Let me first show that (*) is equivalent to the improperness of the forcing PI�
.

Suppose that (*) holds as witnessed by some K and O. For every rational number
� > 0 choose a witnessing set P� ⊃ O. Let D� = �K′′ ⊂ K � �
K′′ ∪P��= �
P���;
this set is dense below the condition K by (*). If the forcing PI�

was proper,
there would have to be a compact �-positive set L ⊂ K which is covered by a
countable (indeed, finite) subset D′

� ⊂ D�, this for every positive rational number
�. By the strong subadditivity, �


⋃
D′

�∪P��=�
P��, and so �

⋂

�

⋃
D′

�∪P���=
�
O�. Another application of strong subadditivity shows that �
L∪O�−�
O� ≤
�


⋂
�

⋃
D′

��∪ 

⋂

� P���−�
O�, which is equal to zero by the previoius sentence
and so �
L∪O�= �
O�, contradicting the assumption on the sets K and O.

On the other hand, if (*) fails then the forcing PI�
is proper. Let me just give the

briefest of arguments here, because the proof is essentially identical to the game
theoretic one for Theorem 4.3.17. I will just indicate the necessary changes. The
game G will be played for the forcing PI�

and its canonical generic point only. In
the construction of the counterplay against a putative winning strategy � of Player
I, Player II will place a move Kn at a round m ∈ � so that, writing Om ⊂ 2� for
the basic open set the strategy � played at the round m, for every open set P ⊃Om

such that �
P� ≤ �
Om�+2−m there is a positive compact set K′
n such that every

positive compact set K′′
n ⊂K′

n satisfies �
K′′
n ∪P� > �
P�. The existence of such a

compact set Kn and a number m follows from the failure of (*).
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To show that (*) is equivalent to (2) above, first assume that (*) holds as
witnessed by some sets K and O ⊂ 2�. For every natural number n ∈ � find
a set P2−n ⊃ O as in (*) and let �n
A� = �
P2−n ∪A�−�
P2−n � for every set
A ⊂ K. It is essentially trivial to argue that the functions �n � n ∈ � are strongly
subadditive capacities smaller than �. The statement (2) will then be satisfied with
�n =�m∈n2−m ·�m. On the other hand, if (2) holds then the forcing PI�

is not proper
by Proposition 2.2.6, and therefore (*) follows by the previous paragraph.

4.4 Hausdorff measures and variations

This section deals with forcings obtained from a generalization of the ideal
�-generated by sets of finite Hausdorff measure.

Definition 4.4.1. Let X be a Polish space, U a countable collection of its Borel
subsets, let diam � U → �+ be a function referred to as a diameter function, and
let w � P
U�→�+ be a weight function satisfying the following demands:

1. w is Borel;
2. if a⊂ U is a set and w
a� is a finite number then the diameters of the sets in a

converge to 0;
3. w is weakly subadditive: there is a function f ∈�� such that for all sets a�b⊂U ,

if w
a��w
b� < n then w
a∪b� < f
n�.

The Hausdorff submeasure � derived from U�w is then given by �	
A� =
inf�w
a� � a ⊂ U consists of sets of diameter < 	 and A ⊂ ⋃

a� and �
A� =
sup	>0 �	
A�.

The definition subsumes Hausdorff measures on compact metric spaces and
many other submeasures. In fact the terminology is a little misleading since the
function � does not have to be a submeasure if w is not subadditive. Nevertheless,
in typical examples this situation does not arise. I will be interested in the forcing
properties of the poset PI��

where I�� is the �-ideal generated by sets of finite
�-mass.

Note that any presentation of a Hausdorff submeasure forcing is itself a Hausdorff
submeasure forcing. Increasing the Polish topology on the space X to make the
sets in the collection U clopen and choosing a continuous bijection � � C → X
for some closed set C ⊂ �� it becomes obvious that every Hausdorff submeasure
forcing has a presentation on the Baire space in which the sets in the collection U
are open.
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4.4.1 General theorems

Theorem 4.4.2. [18] Suppose that � is a Hausdorff submeasure on a Polish space
X. The forcing PI��

is proper.

Proof. For simplicity assume that X = �� and the sets in the collection U are
open. Suppose that � is a Hausdorff submeasure, P is a partial order and ẋ is
a P-name for an element of the Baire space. The Hausdorff game G
���P� ẋ�
is a game of length � between Players I and II played in the following fashion.
In the beginning Player I indicates an initial condition pini and then he produces
one-by-one open dense subsets �Dn � n ∈ �� of the poset P, and dynamically on a
fixed schedule a Borel set A ⊂ X of �-finite �-mass. Player II plays one by one
decreasing conditions pini ≥ p0 ≥ p1 ≥ � � � so that pn ∈ Dn and pn decides the n-th
digit of the point ẋ. He is allowed to hesitate for any number of rounds before
placing his next move. Player II wins if, writing g for the filter Player II obtained,
it is the case that ẋ/g � A.

To make this precise, Player I produces subsets �al
k � k� l ∈ �� of the set U so

that all elements of al
k have diameter ≤ 2−l, and w
al

k� ≤ k. The Borel set A ⊂ X
above is then extracted as

⋃
k

⋂
l

⋃
al
k. Note that this is indeed a set in the ideal I

as each set
⋂

l

⋃
al
k has Hausdorff submeasure at most k. Enumerating the set U as

�ui � i ∈ ��, Player I must indicate at round n which among the sets ui � i ∈ n fall
into which set al

k � k� l ∈ n. Note that in this way Player I’s moves related to the set
A can be coded as natural numbers. Note also that given any set B ∈ I��, Player I
can play so that his resulting set A ∈ I�� is a superset of B.

Lemma 4.4.3. The following are equivalent:

1. P � ẋ is not contained in any ground model Borel I��-small set;
2. Player II has a winning strategy in the game G
���P� ẋ�.

Theorem 4.4.2 immediately follows. An application of the lemma to the poset
PI��

and its generic real shows that Player II has a winning strategy � in the game
G
���PI��

� ẋgen�. Now suppose M is a countable elementary submodel of a large
enough structure containing the ideal I and the strategy � , and let B ∈M ∩PI be
a condition. We must show that the set �x ∈ B � x is M-generic� is I��-positive.
Well, if A is a Borel I��-small set then consider the play of the game in which
Player II follows the strategy � and Player I indicates B = pini, enumerates the
open dense sets in the model M , and dynamically produces a superset of the set
A. Clearly, all moves of the play will be in the ground model, therefore the filter
g ⊂M ∩PI Player II creates will be M-generic, and the resulting real ẋgen/g ∈ B
will be M-generic and outside the small set A as desired.
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One direction of the lemma is easy. If some condition p ∈ P forces the point
ẋ to belong to some ground model coded I-small Borel set B, then Player I has a
simple winning strategy. He will indicate pini = p, dynamically produce a suitable
superset A⊃ B�A ∈ I , and on the side he will find an inclusion increasing sequence
�Mn � n ∈ �� of countable elementary submodels of some large enough structure
such that the n-th Player II’s move pn belongs to the model Mn, and he will make
sure to enumerate all open dense subsets of the poset P that occur in the model
N =⋃

n Mn. This is certainly easily possible. In the end Player II’s filter g will be
N -generic, by the forcing theorem N�g� �= ẋ/g ∈A, by Borel absoluteness ẋ/g ∈A,
and Player I won.

For the other direction of the lemma note that the payoff set of the game is
Borel and therefore the game is determined – Fact 1.4.2. Thus it will be enough
to obtain a contradiction from the assumption that P � ẋ is not contained in any
ground model coded Borel I-small set and yet Player I has a winning strategy � .
A small claim will be used repeatedly:

Claim 4.4.4. For every condition p ∈ P and every number k ∈� there is a number
l
p� k�∈� such that for every set a⊂U of weight ≤ k consisting of sets of diameter
≤ 2−l
p�k� there is a condition q ≤ p forcing ẋ �⋃

a.

Proof. Suppose this fails for some p�k, and for every natural number l ∈ � find a
set al ⊂U of weight ≤ k consisting of sets of diameter ≤ 2−l such that p � ẋ ∈⋃al.
But then, p � ẋ ∈⋂

l

⋃
al, and the latter set is certainly in the ideal I��, being of

�-mass ≤ k. Contradiction!

First, some notation. Fix an enumeration U = �ui � i ∈ �� from which Player I’s
schedule is derived. Fix a function g ∈ �� such that for every number n, for every
collection of ≤ n many subsets of U of weight ≤ n, their union has weight ≤ g
n�.
Such a function exists by the weak subadditivity of the weight function w.

Player II will obtain a winning counterplay against the strategy � by induction.
His moves will be denoted by pn, played at rounds in, and on the side he will
produce numbers ln. The intention is that the resulting point ẋ/g will fall out
of all sets

⋃
a
lk
k � k ∈ �. For the convenience of notation let 
n be the initial

segment of the counterplay ending after the round in. The induction hypothesis is the
following:

• for every number k ∈ n and every index i ∈ in, if the strategy � placed the set ui

in a
lk
k then pn � ẋ � u̇i;

• ln > l
pn� g
n��, and the diameters of all sets ui � i > in are less than 2−ln .

This will certainly conclude the proof. To argue that Player II won this run of
the game G
���P� ẋ�, note that whenever u = ui ∈ a

lk
k is a Borel set, then every
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condition Player I played after round i forces ẋ � u by the first item of the induction
hypothesis. Since the set u⊂�� is open, this means that ẋ/g � u. This in turn means
that ẋ/g �⋃

k a
lk
k ⊃ A, and Player II won.

To get p0� l0� i0 just find a condition p0 ∈D0 below pini, let i0 be some number
such that all sets ui � i > in have diameter less than l
p0� g
0��, and let l0 be a
large enough number. The induction hypotheses are satisfied. Now suppose that the
objects pk� lk� ik have been constructed. For every number k ∈ n let bk ⊂ �ui � i≥ in�
be the collection of all sets in U indexed by a number i ≥ in which the strategy �
places into the set alk

k if Player II makes no nontrivial move past pn. Let bn ⊂ U

be the collection of all sets that the strategy � places into the set aln
k if Player II

makes no nontrivial move past pn. Let b=⋃
k≤n+1 bk ⊂ U . Note that this collection

consists of sets of diameter ≤ ln and it has weight ≤ g
n� by the weak subadditivity
of the weight function w. Therefore, there must be a condition q ≤ pn forcing
ẋ � ⋃

b. Let pn+1 ≤ pn be a condition deciding the 
n+ 1�-st digit of the point
ẋ ∈ ��. Let ln+1 > l
pn+1� g
n+1�� and let in+1 be a number large enough so that
all sets ui � i ≥ in+1 have diameters < 2−ln . The induction hypothesis continues to
hold.

Theorem 4.4.5. [18] Suppose that � is a Hausdorff submeasure on a Polish
space X.

1. The �-ideal I�� satisfies the third dichotomy.
2. In the choiceless Solovay model, I�� satisfies the first dichotomy and it is closed

under wellordered unions.
3. (ZF+DC+AD+) I�� satisfies the first dichotomy and it is closed under

wellordered unions.

Proof. For the first item note that the ideal I�� is generated by Borel sets. Consider
the partial order QI��

of I��-positive analytic subsets of the space X ordered by
inclusion. By Proposition 2.1.11, this forcing adds a generic point ẋgen ∈ X which
belongs to all sets in the generic filter. Suppose A ⊂ X is an analytic I��-positive
set. To find a Borel I��-positive subset B ⊂ A, let M be a countable elementary
submodel of a large enough structure and let B = �x ∈ A � x is M-generic for the
forcing PI��

�. The proof of Theorem 4.4.2 shows that this is an I��-positive set,
and as it is a one-to-one continuous image of the G	 set of M-generic filters on the
poset QI��

∩M , it is Borel. The first item follows.
For the second item, work in the Solovay model and suppose A⊂ X×2� is an

arbitrary set such that proj
A� � I��; I must find an analytic set B ⊂ A such that
proj
B�� I��. The proof will then be completed by a reference to Proposition 3.9.17.
By the usual homogeneity arguments I can assume that the set A is definable from
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parameters in the ground model. In the ground model, find a forcing P of size
< � and P-names ẋ� ẏ for elements of the space X and 2� respectively such that
P � ẋ � ⋃


I�� ∩ V� and Coll
��< �� � �ẋ� ẏ� ∈ Ȧ. Use Lemma 4.4.3 to find
a winning strategy � for Player II in the game G
���P� ẋ� and run back to
the Solovay model. There the strategy � still remains a winning strategy in the
ground model version of the game G
���P� ẋ� by a wellfoundedness argument.
This shows that the set �ẋ/g � g ⊂ P is a V -generic filter� is I��-positive, and it
is the projection of the analytic set B = ��ẋ/g� ẏ/g� � g ⊂ P is V -generic� which
by the usual homogeneity argument is a subset of the set A. The second item
follows.

The last item uses an integer game. Fix a Borel bijection � � 2� → X×2� and
let A ⊂ X× 2� be an arbitrary set. I must show that if proj
A� � I�� then there
is an analytic set B ⊂ A such that proj
B� � I��. Then, a reference to Proposi-
tion 3.9.18 will conclude the argument for the last item. Define an integer variation
G
A� of the game introduced in Theorem 4.4.2: Player I produces a countable
sequence of subsets Ak � k ∈ � of the space X such that �
Ak� ≤ k, and Player II
produces an infinite binary sequence y ∈ 2�. Player II wins if �
y� ∈ A and the
first coordinate of the point �
y� falls out of the set

⋃
n An. To complete the

description of the game, I must specify the schedule for both players. Player I
creates sets al

k ⊂ U for all numbers k� l ∈ � such that w
al
k� ≤ k and sets in al

k

have diameter < 2−l; the sets Ak are then obtained as Ak =
⋂

l

⋃
al
k. At round n

Player I must specify all the finitely many sets of diameter ≥ 2−n that belong to
al
k � k� l ≤ n. On the other hand, Player II plays the sequence y bit by bit and he

can wait for arbitrary finite number of rounds before placing the next bit on the
sequence.

The following claim is key.

Claim 4.4.6. Player I has a winning strategy in the game G
A� if and only if
proj
A� ∈ I��.

With the claim in hand, suppose that proj
A� � I��. A determinacy argument
gives a winning strategy � for Player II in the game G
A�. Let B= ��
y� � y ∈ 2� is
the result of the strategy � playing against some counterplay�. Since the strategy �
is winning for Player II, clearly B⊂A. By the virtue of its definition, B is analytic.
Finally, since the strategy � remains winning in the game G
B� for Player II, it
must be the case that proj
B� � I��. The third item of the present theorem follows.

The argument for the claim is standard. On one hand, if proj
A�∈ I�� the Player I
can win ignoring adversary moves altogether. On the other hand, if � is a strategy
for Player I then I will produce a set C ∈ I�� such that for every point x ∈X \C and
every point z ∈ 2� there is a play against the strategy in which Player II produces
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a sequence y ∈ 2� such that �
y� = �x� z� and wins. This will certainly prove the
claim, because if proj
A� � I�� then Player II can win against the strategy � by
choosing a point x ∈ proj
A�\C, a point z ∈ 2� such that �x� z� ∈ A, and finding a
winning play.

To define the set C ∈ I��, I need to introduce new notation. If t is a finite play
against the strategy � , n ∈� is a natural number and b ∈ 2 is a bit, then tnb denotes
the play against the strategy � which starts out with t and then proceeds to round n
without Player II making any nontrivial move except at round n, where he places
the bit b. For numbers k� l ∈� and a finite play t against the strategy let al

k
t�⊂ U
be the collection of those sets in U which the strategy � places into the set al

k

past the play t in the infinite extension of the play t in which Player II makes only
trivial moves after t. For a finite play t and a finite sequence �l of natural numbers

let C
t��l�=⋂
n

⋃
k∈dom
�l�

⋃

a
�l
k�
k 
tn0�∪a�l
k�k 
tn1��. It is immediate that this is a set

of finite �-mass. For a finite play t and a number k ∈ � let C
t� k� =⋂
l>n a

l
k
t�;

this is again a set of finite �-mass. Finally, let C =⋃
t�k Ct�k ∪

⋃
t��l Ct��l and argue

that the set C works as announced.
To show this, suppose that y ∈ 2� is a point such that �
y� ∈ A and the first

coordinate of the point �
y� does not belong to the set C. By induction on n ∈ �

build plays tn and numbers �l
n� so that:

• 0 = t0 ⊂ t1 ⊂ � � � , the plays tn follow the strategy � , tn+1 = tnmb for suitable
number m and bit b, and Player II in the course of these plays builds the sequence
y ∈ 2�;

• x �⋃
a
�l
k�
k 
tn� for all numbers k≤ n.

In the end, Player II will win, because the second item implies that for every

k ∈ �, x �⋃
a
�l
k�
k . Suppose that the play tn has been constructed, together with the

numbers �l
k� � k ∈ n. First, find the number �l
n�: as x � C
tn� n�, there must be a
number �l
n� > n such that x �⋃

a
�l
n�
n . And second, find the number m ∈� and the

bit b ∈ 2 such that tn+1 = tnmb. The bit b is determined by the sequence y. Now

since x � C
t��l�, there must be a number m such that x �⋃
k≤n

⋃
a
�l
k�
k 
tnmb�, and

then let tn+1 = tnmb. The induction hypotheses continue to hold.

There is a large natural class of Hausdorff submeasures for which I can prove a
stronger forcing preservation theorem.

Definition 4.4.7. The weight function w is lower semicontinuous if the diameters
of the sets in U converge to 0 and for every set a⊂ U , w
a�= sup�w
b� � b ⊂ a is
finite�.
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Theorem 4.4.8. [18] If the Hausdorff submeasure � is derived from a lower
semicontinuous weight function then the forcing PI��

is bounding and does not add
splitting reals.

Proof. This will be a corollary to the following fact of independent interest. Let J
be a universally Baire �-ideal such that the forcing PJ is proper. The following are
equivalent:

1. PJ has the Laver property;
2. for every Hausdorff submeasure � derived from a lower semicontinuous weight

function, I�� �⊥ J .

The proof of this equivalence requires large cardinal assumptions in its full
generality. For the purposes of the theorem such assumptions are not necessary
though, because I will apply it only in the case of the Mathias ideal J . Then PJ is
in the forcing sense equivalent to the Mathias forcing and it has the Laver property.
This shows in particular that the ideal I�� �⊥ J , which by the results of Section 3.4
is equivalent to PI��

not adding unbounded or splitting reals.
The (2)→(1) implication is easier. Suppose that J is a �-ideal on a Polish space

Y such that PJ is proper and fails to have the Laver property, as witnessed by some
ground model functions f� g ∈ �� and a name ḣ for a function in the extension
dominated by f . Then I ⊥ J for some �-finite ideal I derived from a lower
semicontinuous Hausdorff submeasure. Namely, let Xn = �f
n��g
n� and let  n be
the submeasure on Xn defined by  n
a�=the smallest possible size of a set z⊂ Xn

such that a contains no superset of z, and use the method of Section 4.4.3 to obtain
a �-finite ideal I on the space X =�nXn. It is not difficult to see that the forcing PI

adds a function ẋgen ∈�nXn such that every ground model function h dominated by f
satisfies h
n�∈ ẋgen
n� for all but finitely many n. To see that I ⊥ J , find a J -positive
Borel set C ⊂ Y and a Borel function k � C→�� such that C � ḣ= k̇
ṙgen� and let
D⊂X×C be the Borel set D= ��x� y� � for all but finitely many n, k
y�
n�∈ x
n��.
Now the vertical sections of the set D are J -small since for every given point x ∈X
the condition C forces ḣ to avoid the prediction by x infinitely many times. And the
horizontal sections of the complement of the set D are I-small since for every given
point y ∈ Y the poset PI forces the function ẋgen to predict k
y� at all but finitely many
values.

Of course from the point of view of forcing preservation it is the implication
(1)→(2) that is most interesting. Suppose C ∈ PJ and B ∈ PI are positive Borel
sets and D ⊂ C×B is a Borel set with I-small vertical sections. I must produce a
J -positive horizontal section of the complement of the set D.
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First, fix some instrumental objects. Use PJ uniformization 2.3.4 to see that
thinning out the set C if necessary we may assume that there are Borel maps
al
k � C → P
U� � k� l ∈ � such that for every element y ∈ C, the set al

k
y� has
weight ≤ k and consists of sets of diameter ≤ 2−l, and the vertical section Dy of the
set D above y is covered by the �-finite set

⋃
k

⋂
l

⋃
al
k
r�. Fix also an enumeration

U = �ui � i ∈ ��, a function g ∈ �� such that unions of ≤ n many subsets of U of
weight ≤ n have weight ≤ g
n�, fix a winning strategy � for Player II in the Laver
game 3.10.11 associated with the poset PJ , and let M be a countable elementary
submodel of a large enough structure containing the strategy � as well as other
relevant objects.

By induction on n ∈ � build plays 
0 ⊂ 
1 ⊂ 
2 ⊂ � � �of the Laver game of
the respective length i0� i1� i2� � � � observing the strategy � , conditions B = B0 ⊃
B1 ⊃ B2 ⊃ � � � in the forcing PI and numbers l0� l1� l2� � � � . The intention is that the
resulting set C
 ⊂ Y of the play 
 =⋃

n 
n is J -positive, the intersection
⋂

n Bn is
a singleton containing some unique x ∈ X and the set C
 × �x� is a subset of the
complement of D, secured by the fact that for every y ∈ C
 , x �⋃

k

⋃
a
lk
k 
y�. The

induction hypotheses are:

• The finite plays as well as the sets Bn are in the model M , and Bn+1 belongs
to the n-th open dense subset of the forcing PI in the model M in some fixed
enumeration.

• ln > l
Bn� g
n��, and for every number i≤ in it is the case that diam
ui�≥ 2−ln and
for every number i > in it is the case that diam
ui�≤ l
Bn� g
n��. Here l
Bn� g
n��

refers to the number identified in Claim 4.4.4.
• For every number j, in ≤ j < in+1, Player I places the following move in 
n+1 at

round j. Consider the equivalence relation Ej
n given by r Ej

n s if and only if for
every number i, in ≤ i≤ j, and for every number k≤ n, ui ∈ a

lk
k 
r�↔ ui ∈ a

lk
k 
s�.

Player I plays the partition of the set C ⊂ Y into the finitely many Borel Ej
n

equivalence classes, asking the opponent to choose n+ 1 many of them. The
strategy � answers with a set Cj , a union of at most n+ 1 many equivalence

classes. Let bjn = �ui ∈ U � in ≤ i ≤ j�∃k ≤ n ∃y ∈ Cj ui ∈ a
lk
k 
y��. Note that the

collection bjn consists of sets of diameter at most l
Bn� g
n�� and has weight at
most g
n� since it is a union of n+1 many sets of weight ≤ n.

• Whenever i ∈ in and ∃k≤ n ∃y ∈⋂
j∈in Cj ui ∈ a

lk
k 
y� then Bn∩ui = 0.

This will certainly be enough. The first item implies that the intersection
⋂

n Bn

will be a singleton by Proposition 2.1.2 applied in the model M . The resulting set
C
 ⊂ Y of the play 
 is J -positive. The third item then implies that x ∈⋂

n∈� Bn
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and r ∈⋂
j∈� Bj then �x� r� � C as required, since x �⋃

k

⋃
a
lk
k . The second item

is present only to keep the induction going.
Now suppose the play 
n, the set Bn and the numbers ln� in have been found.

Consider the infinite run of the Laver game extending 
n according to the third
inductive item, and the collection bn =

⋃
j∈� bjn. This collection consists of sets of

diameter≥ l
Bn� g
n�� and by the lower semicontinuity of the Hausdorff submeasure
in question, it has weight at most g
n�. Therefore the Borel set Bn�5 = Bn \

⋃
bn

is I-positive. Note that this set already satisfies the last item of the induction
hypothesis at n+1 no matter what the number in+1 will be. Now find an arbitrary
set Bn+1 ⊂ Bn�5 in the n-th open dense set in the model M and consider the number
l
Bn+1� g
n+1��. Let in+1 be some number such that diam
ui�≤ 2−l
An+1�g
n+1�� for
every i > in, and let ln+1 > l be some number such that diam
ui� ≥ ln+1 for every
i ≤ in. This completes the inductive step and the proof of the theorem.

4.4.2 Hausdorff measures

Suppose X is a compact metric space with metric d, U is the collection of all balls
with rational radius with centers at some given countable dense set, diam is the
usual metric diameter function, h ��+ →�+ is a continuous nondecreasing gauge
function with h
0�= 0 and w
a�= �u∈ah
diam
u��. Then Definition 4.4.1 results
in the usual h-dimensional Hausdorff measure.

It is interesting to investigate when Theorem 4.4.8 can be applied to the forcing
PI��

. Clearly the difficulty is that in the above setup for a Hausdorff measure there
are infinitely many distinct balls of a given radius. Nevertheless, we have

Proposition 4.4.9. Suppose that the function h satisfies the doubling condition,
that is, there is a number r ∈� such that h
2�� < rh
�� for every � ∈�+. Let � be
the resulting Hausdorff measure. Then there is a Hausdorff submeasure � derived
from a lower semicontinuous weight function such that I�� = I��.

Proof. Use the compactness of the space X to find a finite 2−n-net An ⊂ X for
every natural number n ∈�; that is, every point of the space X is 2−n-close to some
point in the set An. Let U be the set of all balls with centers in the set An and
radius 2−n for some number n, such a ball will be assigned diameter 2−n and weight
h
2−n�, and for every set a⊂U let w
a�=�u∈ah
diam
u��. This is clearly a lower
semicontinuous weight function. Let � be the resulting Hausdorff submeasure. It is
not difficult to use the doubling condition to show that �
B�≤ �
B�≤ r�
B� and
therefore the �-finite ideals associated with the submeasures ��� coincide.

Corollary 4.4.10. If the gauge function satisfies the doubling condition then the
forcing PI��

is bounding and does not add splitting reals.
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This should be compared with a classical result of Howroyd [26]:

Fact 4.4.11. If the gauge function h satisfies the doubling condition then every
analytic �-positive set has a compact subset of �-positive finite measure.

This, together with Example 3.6.4, yields the following related corollary:

Corollary 4.4.12. If the gauge function h satisfies the doubling condition then the
forcing PI��

is bounding and preserves outer Lebesgue measure.

Measure theorists have long studied the question whether in every Hausdorff
measure every Borel set of positive measure must have a Borel subset of positive
finite measure. This turns out to be false and Davies and Rogers [11] provided
a classical counterexample: a compact metric space and a gauge function such
that the resulting Hausdorff measure � achieves only 0 and � as its values. In
such a case, I�� = I� = I� where � is the associated Hausdorff content capacity:
�
A�= inf��nh
diam
un�� � un ⊂ X�A⊂⋃

n un�.

Proposition 4.4.13. The forcing PI��
from the Davies–Rogers example is proper,

bounding, collapses outer Lebesgue measure, and adds no splitting reals.

Proof. In all cases there are several possible proofs of the given property. The
properness follows from the work in this section as well as from work in Section 4.5,
since I�� = I� and � is a pavement submeasure. A review of the Davies and Rogers
example shows that in the metric space in question there are only countably many
possible distances forming a set of real numbers which converges to 0, and for
each possible distance � > 0 there is a finite set of clopen sets of diameter � such
that every other set of diameter � is a subset of one of them. Thus the Hausdorff
measure is in fact obtained from a lower semicontinuous weight function, and the
work in the previous section shows that the forcing is bounding and adds no splitting
reals. Another way of looking at this is that the Hausdorff content is a capacity
[56], Theorem 47, and use 4.3.23 to show that the forcing is bounding. A careful
review of the example shows that in fact the Hausdorff content in question is a
special case of the scheme of Section 4.3.5 which produces Ramsey capacities, and
therefore by Theorem 4.3.25 the forcing PI�

= PI��
does not add splitting reals.

To show that the forcing collapses outer Lebesgue measure it is possible to either
review the example again and see that in fact Davies and Rogers prove that the
ideal I�� = I� is not polar and use Proposition 3.6.10 with the Hausdorff content
�. Another way is to use Proposition 4.3.47 which shows that the construction of
capacities in Section 4.3.5 yields forcings which collapse outer Lebesgue measure.
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In fact, both PI�
adding no splitting reals and collapsing outer Lebesgue measure

abstractly implies that there are no sets of finite positive Hausdorff measure. To
see this, first review the definitions and observe I� = I�. If there was a Borel set B
of positive finite Hausdorff measure then the forcing PI�

� B is in the forcing sense
equivalent to the Solovay forcing by the measure isomorphism theorem, and so it
adds splitting reals and preserves outer Lebesgue measure.

4.4.3 Fat tree forcings

In [58], Shelah and Roslanowski isolated a class of forcings referred to as �1. In
this section I show that these forcings correspond to a certain class of Hausdorff
submeasures. This opens a new way of looking at them, and as one application it
shows that they do not add splitting reals by Theorem 4.4.8.

Suppose that T is a finitely branching tree. For each node t ∈ T let at denote the
set of the immediate successors of the tree T , and choose a collection ��= ��t � t ∈ T�
where �t � P
at�→ �+ are functions which are monotone and uniformly weakly
subadditive: there is a function f ∈ �� such that for every node t ∈ T , union
of two subsets of at of weights ≤ n has weight ≤ f
n�. These objects can be
used to generate a Hausdorff submeasure on the Polish space X = �T� in the
following way. Let U = �ut�a � t ∈ T�a⊂ at� where ut�a = �x ∈ X � x � �t�+1 ∈ a�,
let diam
ut�a� = 2−�t�, and for a set b ⊂ U let w
b� = sup��t
a� � ut�a ∈ b�. Let �
be the resulting Hausdorff submeasure on the space X. I will show that the forcing
PI�n

has a dense subset naturally isomorphic to the poset of ��-fat trees, where an

infinite tree S ⊂ T is ��-fat if for every number k ∈ � there is l ∈ � such that for
every node t ∈ S of length > l the set �t
�s ∈ S � s is an immediate successor of
t�� > k.

Proposition 4.4.14. Suppose that A ⊂ X is an analytic set. Then A � I�� if and

only if A contains all branches of some ��-fat tree. Under AD this extends to all
subsets of the space X.

Proof. For the ease of notation assume that the underlying tree T is just �<�. Fix
an analytic set A ⊂ X together with a tree Z ⊂ 
�×��<� projecting to it, and
consider the game G between Players I and II. There is a counter c associated with
the game, its initial value is zero. The initial move of Player I is a sequence t ∈ T .
After that, at each round i ∈ � Player I indicates an immediate successor ti ∈ T of
the node played in the previous round, and time to time he increases the value of
the counter c by one and plays a natural number nj . Player II responds by playing
a set bi ⊂ ati

such that �t
bi� ≤ c. At round i+ 1, Player I must make sure that
ti+1 � bi. Player I wins if he increased the counter infinitely many times and the
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path through the tree T together with the sequence nj � j ∈ � he obtained form a
branch through the tree Z. Note that before he increases the value of the counter
the first time, Player I has a complete freedom of choice of moves. The following
claim is key.

Claim 4.4.15. Player II has a winning strategy if and only if B ∈ I��. Player I has
a winning strategy if and only if there is a fat tree S ⊂ T such that �S�⊂ B.

Once the claim has been proved, the proposition follows by a determinacy argument
using Fact 1.4.2.

The second equivalence in the claim is more or less obvious. Suppose that
S ⊂ T is a fat tree such that �S�⊂ A. Then in the proper forcing �1, S � ẋgen ∈ Ȧ
by Shoenfield absoluteness, there is a name ẏ ∈ �� such that S � �ẋgen� ẏ� form a
branch through the tree Z, and by the continuous reading of names of �1 [58] there
is a fat tree U ⊂ S and a continuous function f � U →�� such that U � ẏ= ḟ 
ẋgen�
and even such that x� f
x� forms a branch through the tree Z for every path x ∈ �U�.
Then Player I can win in the game by playing along the tree U , increasing the
counter to k+1 and playing the number nk every time he hits a node ti ∈ U such
that all extensions s ∈ U of ti split into at least �s-mass k+ 1 many immediate
successors and all paths x ∈ �U� with ti ⊂ x have f
x�
k�= nk. On the other hand,
if Player I has a winning strategy � then let S ⊂ T be the tree of all nodes the
strategy � can arrive at; a simple compactness argument shows that every branch
x ∈ �S� is a result of the strategy � acting against some counterplay, and therefore
�S�⊂ B. Another compactness argument shows that in fact S is an ��-fat tree.

Similarly, the right-to-left direction of the first equivalence in the claim is easy.
Suppose that A ∈ I�� is a set, and for every number n find a set An ⊂ X of �-mass
≤ n such that A ⊂ ⋃

n An. Find natural numbers c0 ∈ c1 ∈ c2 ∈ � � � such that for
every number n and every node t ∈ T the union of n-many subsets of at of �t-
mass ≤ n has �t-mass ≤ cn. This is possible by the uniform weak subadditivity
of the functions �t � t ∈ T . The winning strategy of Player II is now described by
the following rule: when Player I increases the value of the counter c to cn after
playing some node ti ∈ T , Player II finds sets bt�n ⊂ at � t ∈ T� �t� > �ti� such that
�t
bt� ≤ n and An ⊂

⋃
t ut�bt�n

, and continues playing in such a fashion that the set
⋃

m∈n btj �m (which is of �tj
-mass ≤ cn) is a subset of his move btj after the play

reached the node tj , this for all j > i. A review of the definitions reveals that this
is a winning strategy for Player II.

This leaves us with the left-to-right direction of the first equivalence. Suppose
that � is a strategy for Player II. I will produce countably many sets of finite
�-mass such that every point x ∈ �T� belonging to neither of them and every
sequence �nj � j ∈ �� ∈ �� can be produced by Player I in a play against the
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strategy � . This will certainly suffice, since then if A � I��, Player I can defeat the
strategy by playing a suitable point in the set A and a witness sequence. For every
partial play 
 against the strategy � and every natural number n let A
�n ⊂ X be
the following set. For every number l ∈ � and every node t ∈ T of length > l let
blt

� n� ⊂ at be the set the strategy � indicates in the last move of a finite play
which extends 
, finishes with the node t, and in which Player I raises the counter
just once more at round l and plays the number n at that round. Note that there is at
most one such play. Let al

�= �ut�blt

�n�

� �t�> l� and let A
�n =
⋂

l

⋃
al

�. Note

that �
A
�n� is a finite number, bounded by the value of the counter at the end of
the play 
 plus two. I will show that the countably many sets A
�n have the required
property.

Suppose that x ∈X is some point not in
⋃


�n A
�n, and let y ∈��. I will produce a
winning counterplay against the strategy � which ends in the point x. To construct
the counterplay, I just have to show when Player I increases the value of the counter.
By induction on number k ∈� build increasing sequence of natural numbers ik ∈�
such that the play 
k lasting ik+1 rounds in which Player I follows the sequence x,
raises the value of the counter at rounds im � m≤ k and in which Player II follows
the strategy � is a legal play of the game, and x �⋃

aik

k−1� y
k��. The induction
starts with letting 
−1 = 0. To find the number i0 note that x �A0 and so there must
be a number l such that x �⋃

al
0�; let i0 = l. Suppose 
k has been constructed. To
find the number ik+1 (and the play 
k+1) first note that since x�⋃

aik

k−1�, Player I
can legally extend the play 
k for arbitrary finite number of rounds following the
sequence x ∈X as long as he does not increase the value of the counter. Now, since
x � A
k�y
k�

, there is a number l ∈ � such that x �⋃
al

k�. Just let l= ik+1 and the

induction hypotheses will be satisfied.

What are the finer forcing properties of partial orders of fat trees? Theorem 4.4.8
shows that they are all bounding and add no splitting reals. I will show that a number
of them preserve various capacities. Let f ∈ �� be a function such that f
n� >
∏

m∈n f
m� and let g � �×�→ � be a function such that for any given numbers
n� i ∈� g
n� i+1� > 2 ·g
n� i�. Consider the space X =∏

j f
j�, X = proj�T� where
T is the tree of all finite sequences such that for every j ∈ �
t�, t
j� ∈ f
j�. For
every node t ∈ T let �t
a�= the least number k such that �a�> g
�t�� k�, for a⊂ at.
The resulting ��-fat tree forcing is known as PTf�g [2]. I will show that depending on
the choice of the functions f� g the poset PTf�g preserves outer Lebesgue measure
and some Ramsey capacities.

Proposition 4.4.16. Suppose that for every number k∈�, �i
�j∈if
j� · g
k�i�

g
k+1�i� �<�.
Then I�� is a polar �-ideal.
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The scary arithmetical condition just says that the function g
·� i� grows very
fast when compared with the numbers f
j� � j ∈ i. Together with the previous
proposition and Theorem 3.6.2 this implies that the forcing PTf�g preserves outer
Lebesgue measure. It is interesting to compare this argument with the original proof
in [2].

Proof. This is essentially a triviality at this stage. Suppose that S is an ��-fat tree.
I must produce a probability measure � on T such that all subsets of finite �-mass
have zero �-mass. Just let � be the unique probability measure such that for every
node t ∈ S the �-masses of sets Os ∩ �S�, where s ∈ S is an immediate successor of
the node t, are all equal.

Suppose A ⊂ �S� has finite �-mass, smaller than some natural number k. For
an arbitrary real number � > 0, I must show that �
A� < �. Find a number l ∈ �
such that past level l, every node s ∈ S has more than g
�s�� k+1�-many immediate
successors, and �i>l
�j∈if
j� · g
i�k�

g
i�k+1� � < �. Since �
A� < k, there must be a choice
of sets bt ⊂ at for every node t ∈ S longer than l such that �bt� ≤ g
�t�� k� and A⊂
⋃

t ut�bt
. The choice of the number l shows though that �


⋃
t ut�bt

� < �, completing
the proof.

Theorem 4.4.17. Suppose that � is a finite outer regular Ramsey capacity. Then
there are functions f� g such that the forcing PTf�g preserves �. In fact, for real
numbers ��	 > 0, every set of capacity < � in the extension has an open superset
of capacity < �+	 coded in the ground model.

In fact it is clear from the argument that it is possible to preserve a countable
collection of outer regular Ramsey capacities. With a suitable choice of the capacity
�, such as that generated from submeasures of Example 4.3.42, the whole situation
is closely related to the f�h-bounding property of the forcings [2], 7.2.13.

Proof. Fix a finite Ramsey outer regular capacity � on a Polish space Y . Observe
that for every real number 	 > 0 and every natural number p ∈� there is a number
q = q
p�	� such that for every real number � > 0 and every collection of q many
sets of capacity < � there are p many of them whose union has capacity < �+	.
This is proved by an argument parallel to (*) in the proof of Theorem 4.3.13.

Now I am ready to state the arithmetical condition on the functions f� g which
ensures the preservation of the capacity c in the forcing PTf�g. Find an infinite
sequence 	i � i ∈ � of positive real numbers such that �i	i <�. Suppose that the
function g is such that for every number i ∈ � and every k ∈ �, g
i� k+ 1� >
q
g
i� k�� 	i�. Then find the function f ∈ �� such that f
n� > g
n�n�. I claim that
the capacity � is preserved by the forcing PTf�g.



4.4 Hausdorff measures and variations 193

In order to show this, assume that S � Ȯ ⊂ Y is a set of �-mass < �. Fix a
countable topology basis O of the Polish space Y closed under finite unions. Using
the continuous reading of names, thinning out the tree S I may assume that there
is a function h � S→O such that s ∈ S implies �
h
s�� < �, t ⊂ s→ h
t�⊂ h
s�,
and S � Ȯ =⋃

i h
ẋgen � i�.
First, a couple of definitions. If R ⊂ S is a (possibly finite) tree and t ∈ R is a

nonterminal node then write aR
t for the set of immediate successors of the node t in

the tree R. Let t ∈ R. I will say that R is 1-smaller than S if for every non-terminal
node s ∈ R with t ⊆ s, �s
a

R
s � ≥ �s
a

S
s �−1. For every tree R⊂ S and every node

t let A
R� t�=⋃
�h
s� � s ∈ R� t ⊆ s�. The following claim is key.

Claim 4.4.18. For every node t ∈ S and every number k≥ �t� there is a 1-smaller
tree R⊂ S of height k such that �
A
R� t�� < �+��t�<i<k	i.

Proof. This is proved by induction on k−�t�. If k−�t� = 0 this is obvious since
P
t� k� = h
t�. For the inductive step, let t ∈ S be a node and k > �t� a number.
By the induction hypothesis, for every node s ∈ aS

t , there is a tree Rs such that
�
A
Rs� s�� < �+��s�≤i<k	i. Now use the properties of the function g to find a
set b ⊂ aS

t such that �t
b� ≥ �t
a
S
t �− 1 and the set

⋃
s∈b A
Rs� s� has �-mass

�+��t�<i<k	i+	�t�. But then, the tree R=⋃
s∈b Rs has the required properties!

Let 	 > 0. I will produce an infinite 1-smaller tree R⊂ S with R ∈ PTf�g and a
node t ∈ R such that �
A
R� t�� < �+	. This will clearly suffice as R � t � Ȯ ⊂
A
R�0�. Find a number l ∈� such that �i>l	i < 	 and let t ∈ S be a node at level l.
Use the claim to find the 1-smaller finite trees Rk ⊂ S of height k for every number
k, and then use a compactness argument to find a 1-smaller infinite tree R⊂ S such
that every level of R is included in infinitely trees in the collection Rk � k ∈�. Then
R is an ��-fat tree, and the continuity of the capacity � in increasing unions shows
that �
A
R� t��≤ supk �
A
Rk� t��≤ �+	 as required.

4.4.4 Diagonalizing an F�-ideal

Suppose that J is an F� -ideal on �. I will produce a proper and bounding forc-
ing which adds no splitting reals, and it adds an infinite set b ⊂ � such that
∀c ∈ J ∩V �b∩ c� < ℵ0. This has been achieved earlier by Laflamme through a
combinatorial construction, even though his paper does not show that his forcing
adds no splitting reals.

By a theorem of Mazur [50], there is a lower semicontinuous submeasure � on �
such that J = �c⊂� � �
c� <��. Now construct a Hausdorff submeasure on the Can-
tor space in the following way. Let U = �un � n ∈ �� where un = �x ∈ 2� � x
n�= 1�,
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let diam
un� = 2−n, and for a set a ⊂ U let w
a� = ��n ∈ � � un ∈ a�. Consider
the Hausdorff submeasure � obtained from these objects and the forcing PI��

.
The forcing is proper, bounding and adds no splitting reals by Theorem 4.4.8,

since the weight function w is clearly lower semicontinuous. Consider the set
B = �x ∈ 2� � ∃�n x
n� = 1�. I will show that B � I�� and B forces the generic
subset of � to have finite intersection with all the ground model J -small subsets
of �.

Suppose that An � n ∈ � are sets of finite �-mass; I must produce a point
x ∈ B \⋃n An. I may assume that �
An� ≤ n. By induction on n ∈ � construct
infinite sets cn ⊂ � of infinite �-mass so that

• �= c0 ⊃ c1 ⊃ � � �

• writing kn = min
cn� it is the case that 0 = k0 ∈ k1 ∈ � � � and for every infinite
subset d ⊂ cn+1 the characteristic function of the set �ki � i ≤ n�∪d is not in An.

Once this is achieved then the characteristic function of the infinite set �kn �
n ∈ �� belongs to B \⋃n An, proving that B � I��. The induction step is easy. If
cn ⊂ � has been constructed then choose a number j > max�ki � i ≤ n� and find a
set an ⊂ � \ j of �-mass ≤ n+ 1 such that An ⊂

⋃
i∈a ui. This is possible by the

definition of the Hausdorff submeasure. The set cn+1 = 
cn \an� \ j will work as
desired.

By absoluteness, B � ẋgen is a characteristic function of an infinite set. Let c ∈ J
be any set. I will argue that A = �x ∈ B � �n ∈ c � x
n� = 1� is finite� ∈ I��. This
happens since for every number k ∈ � the set A is covered by

⋃
n∈c\k un which is

a union of weight ≤ �
c� of sets of diameter < 2−k. Thus �
A� ≤ �
c�, A ∈ I��,
and B � �n ∈ c � ẋgen
n�= 1� is finite as desired.

4.5 Pavement submeasures

In mathematical practice, a number of submeasures on Polish spaces comes from
the following construction.

Definition 4.5.1. Let X be a Polish space, U a countable set of its Borel subsets,
and w � U →�+ a function. The associated pavement submeasure � is defined by
�
A�= inf��nw
un� � un ∈U�A⊂⋃

n un�. The sets in the collection U are referred
to as pavers and w is a weight function. The associated ideal is I� = �A ⊂ X �
�
A�= 0�.

Note that every presentation of a pavement ideal is a pavement ideal, and so
every pavement forcing has a pavement presentation on every uncountable Polish



4.5 Pavement submeasures 195

space. The topology on the space X can be increased to make the pavers clopen
without changing the forcing PI�

by [40], 13.A. Furthermore, every Polish space
is a continuous bijective image of a closed subset of the Baire space. Combining
these two tricks it is clear that every pavement forcing has a presentation on the
Baire space such that the pavers are open sets.

4.5.1 General theorems

Theorem 4.5.2. [18] Let X be a Polish space and � a pavement submeasure
generated by a countable set of Borel pavers. The forcing PI�

is proper.

Proof. The proof again uses a determined infinite game. For notational simplicity
assume that the underlying space is ��, the pavers are open, and fix the weight
function w � U →�+ generating the submeasure. Suppose that P is a partial order
and ẋ is a P-name for an infinite sequence of natural numbers. Consider the game
G
��P� ẋ� of length � between Player I and Player II played in the following
fashion. In the beginning Player I indicates an initial condition pini and Player II
responds with a real number � > 0. After that, Player I produces one-by-one open
dense subsets �Dn � n ∈ �� of the poset P, and dynamically on a fixed schedule
a Borel set A ⊂ X of �-mass ≤ �. Player II plays one by one decreasing condi-
tions pini ≥ p0 ≥ p1 ≥ � � � so that pn ∈ Dn and pn decides the n-th number of the
sequence ẋ. He is allowed to hesitate for any number of rounds before placing his
next move. Player II wins if, writing g for the filter he obtained, it is the case
that ẋ/g � A.

To make this precise, at round k ∈� Player I indicates a finite set ak ⊂U so that
a0 ⊂ a1 ⊂� � � , �u∈akw
u�≤ � and for all numbers j ∈ k ∈�, �u∈ak\ajw
u�≤ 2−j . In
the end the set A ⊂ X is recovered as

⋃⋃
k ak. It is clear that given any set B of

mass < � Player I can play so that B ⊂ A for his resulting set A.

Lemma 4.5.3. The following are equivalent:

1. P � ẋ is not contained in any ground model Borel �-null set;
2. Player II has a winning strategy in the game G
��P� ẋ�.

Granted this lemma, the whole treatment transfers from the previous section.
One direction of the lemma is easy. If there is a condition p ∈ P such that p � ẋ ∈ Ḃ
for some ground model coded Borel �-null set B, then Player I can easily win
by indicating pini = p, and after Player II responds with a number �, Player I
dynamically produces a suitable superset A of �-mass < � of the set B, and
mentioning all the open dense sets necessary to make sure that the result of the
game falls into the set B ⊂ A.
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For the other direction of the lemma note that the payoff set of the game is G	

in the tree of all possible plays and therefore the game is determined – Fact 1.4.2.
Thus it will be enough to obtain a contradiction from the assumption that P � ẋ is
not contained in any ground model coded Borel �-null set and yet Player I has a
winning strategy � . A small claim will be used repeatedly:

Claim 4.5.4. For every condition p ∈ P there is a real number �
p� > 0 such
that for every set a ⊂ U with �u∈aw
u� ≤ �
p� there is a condition q ≤ p forcing
ẋ �⋃

a.

Proof. Suppose this fails and for every real number � > 0 find a set a� ⊂ U with
�u∈a�w
a��≤ � such that p � ẋ ∈⋃

a�. But then p � ẋ ∈⋂
�

⋃
a� and the latter set

is in the ideal I�, contradicting the properties of the name ẋ.

Player II will find a winning counterplay against the strategy � in the following
fashion.

The first move of Player II will be the real number �= �
pini� ∈M . The rest of
the counterplay will be built by induction, Player II’s moves denoted by pn, played
at rounds in. The initial segment of the play ending after the round in−1 will be
denoted by 
n, and for notational convenience let p−1 = pini and 
0 = �pini�. The
following induction hypotheses will be satisfied:

• �
pn�≥ 2−in ;
• the condition pn ∈M is in the sets Dn , it decides the n-th bit of the sequence ẋ

and it forces ẋ �⋃
ain

. Here the symbols Dn and ain
refer to Player I’s moves in

the play 
n+1.

This will certainly be sufficient. Let 
 =⋃
n 
n and argue that Player II has won.

Since the pavers are open, it is enough to show that for every number n and every
paver u ∈ ain

it is the case that Otn
�⊂ u, where tn ∈ �n is the sequence of the first

n numbers forced onto ẋ by the condition pn. But this is clear from the second
inductive item! Note that this argument uses just the second item of the induction
hypothesis, the first item just helps keep the induction going.

To perform the induction, suppose the play 
n−1 has been constructed. Let b be
the collection of all sets in U which the strategy � will put into the sets ak � k ∈ �
in the infinite play extending 
 in which Player II adds no nontrivial moves after
the round in. Let B =⋃


b \ak�⊂ X. This is a set of �-mass at most 2−in−1 ≤ �pn−1

so there must be a condition q ≤ pn−1 which forces ẋ � Ḃ. Find a condition pn ≤ q
in the open dense set Dn, deciding the value of the next natural number on the
sequence ẋ. The condition pn will be the next move of Player II, and it will



4.5 Pavement submeasures 197

be played at round in such that 2−in < �
pn�. The induction hypotheses continue
to hold.

The following theorem gathers some useful consequences of the previous proof.

Theorem 4.5.5. Suppose that � is a pavement measure on a Polish space X. Then

1. Whenever B ∈ PI�
is a condition and D⊂ PI�

is an open dense set then there is
a countable set D′ ⊂D consisting of subsets of B such that �


⋃
D′�= �
B�.

2. Whenever B ∈ PI�
is a condition and ṅ is a name for a natural number smaller

than some fixed k ∈ � then there is a condition C ⊂ B deciding the value of the
name ṅ with �
C�≥ 1/k ·�
B�.

3. The forcing PI�
is <�1-proper, and in fact for every countable continuous tower

�M of countable elementary submodels of a large enough structure and every
condition B ∈ �M
0� the set �x ∈ B � x is generic for every model on the tower
�M�⊂ B has the same mass as B.

4. If PI�
is nowhere c.c.c. then every Borel set B⊂ X can be divided into perfectly

many mutually disjoint Borel subsets of the same �-mass.
5. If PI�

is nowhere c.c.c. then for every countable collection �Bn � n ∈�� of Borel
sets there is a refinement �Cn � n ∈ �� such that Cn ⊂ Bn is a Borel set of the
same �-mass as Bn and the sets Cn � n ∈ � are mutually disjoint.

Proof. For the first item let B ∈ PI�
be a condition, D be an open dense set, and M

be a countable elementary submodel of a large enough structure. Let C = �x ∈ B � x
is M-generic�. The proof of Theorem 4.5.2 shows that �
C� = �
B�; moreover
C ⊂⋃

�A ∈D∩M � A⊂ B� as desired.
For the second item, let B ∈ PI�

be a condition and ṅ be a name for a number
smaller than some k ∈ �. Let M be a countable elementary submodel of a large
enough structure, let C = �x ∈ B � x is M-generic�, and Cl = �x ∈ C � ṅ/x = l�
for l ∈ k; so C = ⋃

l∈k Cl. A review of the definitions shows that Cl � ṅ = ľ if
�
Cl� > 0. As in the previous paragraph, �
B� = �
C� and by the subadditivity
of the submeasure � one of the sets Cl � l ∈ k must have �-mass not less than
�
C�/k= �
B�/k.

(3) is proved by induction on the length of the tower �M . The successor step of
the induction is a trivial application of the previous theorem. Now suppose that �M
is a tower of limit length � ∈ �1 and (3) has been verified for all shorter towers.
Choose a condition B ∈ �M0; I must prove that �
C�= �
B� where C = �x ∈ B � x

is �M-generic�. Let a⊂ U be a set such that �u∈aw
u� < �
B�; I must find a point
x ∈ C \⋃a. Choose an increasing sequence �m � m ∈ � of ordinals converging
to �, an enumeration a = �un � n ∈ ��, and an enumeration Dm � m ∈ � of open
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dense subsets of the poset PI�
in

⋃ �M such that Dm ∈ �M
�m�. By induction on
m ∈ � construct an increasing sequence of numbers nm ∈ � and descneding chain
of conditions Bm ∈ PI�

so that

• n0 = 0�B0 = B;
• Bm+1 ⊂ �x ∈ B � x is �M � �m-generic�, Bm+1 ∈Dm, and Bm+1 ∈ �M
�m+1�;
• Bm∩

⋃
n∈nm an = 0 and �
Bm� > �n�nmw
an�.

Once this has been done, the intersection
⋂

m Bm must be nonempty, since the
filter generated by the conditions Bm � m ∈ � is

⋃ �M-generic and Proposition 2.1.2
holds in the modle �M . Any point x ∈ B in this intersection will be �M-generic by
the second item, and that point will fall out of the set

⋃
n an by the third item. This

will conclude the proof of (3).
The induction itself is easy to perform. Suppose that the set Bm and the number

nm have been constructed. The set �x ∈ Bm � x is �M � 
�m�-generic� has the same
�-mass as the set Bm by the transfinite induction hypothesis and it is covered by
the set

⋃

Dm∩ �M
�m�� by genericity. Thus there must be a set C ∈ Dm∩ �M
�m�

such that �
C ′ \⋃n�nm an� �= 0, where C ′ = Bm ∩C ∩ �x ∈ X � x is �M � �m+1-
generic�. Find a number nm+1 such that �
C ′ \⋃n�nm an� > �n�nm+1

w
an� and let
Bm+1 = C ′ \⋃n∈nm+1

an. The induction hypotheses are satisfied.
(4) is now proved similarly to Proposition 3.7.10. I will prove it under the

Continuum Hypothesis. However, it is clear that this assumption is irrelevant since
the Continuum Hypothesis can be forced with a �-closed forcing and so the perfect
collection of Borel sets I find in the extension must have existed in the ground
model already. So assume CH and fix the set B. Use the assumption of nowhere
c.c.c. and the proof of Proposition 3.7.10 to find towers �Mt � t ∈ 2<� such that t ⊂ s

implies �Mt ⊂ �Ms and whenever t� s are incompatible sequences no point x ∈ B can
be both �Mt and �Ms-generic. Note the use of CH in that proof. For every infinite
binary sequence y ∈ 2� let �My =

⋃
t⊂y �My and let By = �x ∈ B � x is �My-generic�.

The previous item shows that these sets have the same �-mass as B, and the choice
of the system of towers implies that these sets are pairwise disjoint as desired.

For (5), fix the collection �Bn � n ∈ �� to be refined and by induction on n ∈ �
find Borel sets B�

n � � ∈ �1 such that B�
n ⊂ Bn, �
B�

n �= �
Bn�, for fixed number n
they are mutually disjoint, and if k ∈ n then every set B�

n has �-positive intersection
with just countably many sets B

�
k � � ∈ �1, with some ordinal bound �nk ∈ �1.

Once this has been achieved, let � ∈ �1 be an ordinal larger than all the �nk’s
and let Cn = B�

n \
⋃

k �=n B�
k . The induction itself is easy to perform. Suppose the

sets B
�
k � � ∈ �1� k ∈ n have been constructed. To find the sets B�

n � � ∈ �1, choose
a countable elementary submodel M of a large enough structure containing in
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particular the set Bn, and let B′n = �x ∈ Bn � x is M-generic�. Now �
B′n�= �
Bn�

and by genericity B′n � if the generic filter meets some set B�
k � k ∈ n�� ∈ �1, then

� ∈ M . In particular, �
B′n ∩B
�
k � = 0 for every number k ∈ n and every ordinal

� �M . The induction step is concluded by an application of (4) to the set B′n.

Theorem 4.5.6. Let X be a Polish space and � a pavement submeasure generated
by a countable set of Borel pavers.

1. I� satisfies the third dichotomy. In fact, every analytic set has a Borel subset of
the same �-mass.

2. I� satisfies the first dichotomy in the Solovay model. In fact, in that model every
set has a Borel subset of the same �-mass and � is continuous in increasing
wellordered unions of uncountable cofinality.

3. (ZF+DC+AD+) I� satisfies the first dichotomy and � is continuous in
increasing wellordered unions of uncountable cofinality.

4. In the constructible universe, if the forcing PI�
is nowhere c.c.c. then there is

an �-positive coanalytic set without a �-positive Borel subset.
5. � is continuous in increasing wellordered unions of uncountable cofinality less

than add
null�. In particular, if add
null� > ℵ1 then every coanalytic set
has a Borel subset of the same mass.

6. � is ZFC-correct.

Proof. For the first item, consider the partial order QI�
of I�-positive analytic sets

ordered by inclusion. Proposition 2.1.11 shows that the forcing adds a single point
ẋgen which falls out of all �-null sets and it belongs to all sets in the generic filter.
Let A ∈ QI�

be an analytic �-positive set. I will produce a Borel set B ⊂ A of the
same �-mass, and this will complete the proof of the first item.

Use Lemma 4.5.3 to find a winning strategy � for Player II in the game
G
��QI�

� ẋgen�, let M be a countable elementary submodel of a large enough
structure containing ��A�� , and let B = �x ∈ A � x is M-generic�. The set B is
Borel by Fact 1.4.8. The set B also has the same �-mass as the set A by the same
proof as in Theorem 4.5.2. The proof of the first item is complete.

The second item is proved in the same way as Theorem 4.3.21(2). The proof
of the third item is more sophisticated. Suppose that A ⊂ X× 2� is a set and
� > 0 is a real number. If �
proj
A�� > �, I must produce an analytic set B ⊂ A
such that �
proj
B�� > � and then refer to Proposition 3.9.19. Fix a Borel bijection
� � 2�→X×2� and consider the integer pavement game G
A��� in which Player I
produces a set a⊂ U with �u∈aw
u� < � and Player II produces a binary sequence
y ∈ 2�. Player II wins if �
y� ∈ A and the first coordinate of the point �
y� is not
in the set

⋃
a. To complete the description of the game I stipulate that at round n
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Player I must indicate a finite set an ⊂ a such that �u∈a\anw
u� < 2−n while Player II
can wait for an arbitrary finite number of rounds to put another bit on his sequence y.

Claim 4.5.7. �
proj
A�� < � implies that Player I has a winning strategy in the
game G
A��� which in turn implies that �
proj
A��≤ �.

Given the claim, the third item of the theorem easily follows. As in Proposi-
tion 3.9.20, it will be enough to show that if �
proj
A�� > � then A has an analytic
subset B ⊂ A with �
proj
B�� ≥ �. To find B, use the claim and a determinacy
argument to find a winning strategy � in the game G
A��� for Player II and let B be
the set of all points in X×2� the strategy � can produce against some counterplay.
the definition of the set B shows that it is an analytic set. Since the strategy � is
winning, it must be the case that B ⊂ A, and finally, since the strategy � remains
wining in the game G
B���, the claim implies that �
proj
B�≥ � as desired.

Now I turn to the proof of the claim. The first implication is almost trivial;
if �
proj
A�� < � then Player I can win by producing a set a ⊂ U such that
�u∈aw
u� < � and proj
A�⊂⋃

a, ignoring the moves of Player II altogether. The
second implication is harder. Fix a strategy � for Player I. For every finite play t of
the game according to the strategy � let at ⊂U be the set of all elements u ∈U the
strategy � places in the set a after the play t if that play is extended by an infinite
sequence of trivial moves by Player II; so �u∈at < 2−�t�. Also for a number n∈� and
a bit b ∈ 2 let tnb be the play extending t in which Player II makes just trivial moves
except for the last one at round n where he adds the bit b to his sequence. For a play t
and a bit b ∈ 2 let Ctb =

⋂
n

⋃
atnb; clearly �
Ctb�= 0. I will show that if the strategy

� is winning then proj
A�⊂⋃
a0∪

⋃
tb Ctb. This will complete the proof since the

latter set has mass ≤ �. So suppose x ∈ proj
A�\⋃a0∪
⋃

tb Ctb is a point and y ∈ 2�

is a binary sequence such that �
y� ∈A is a point projecting to x. I will find a win-
ning counterplay against the strategy � which produces the sequence y. Clearly, it is
just necessary to decide the natural numbers nm � m ∈� such that Player II plays the
bit y
m� at round nm. Given the numbers nk � k∈m write tm for the finite play against
the strategy � in which Player II places y
k� at round nk and the and nm−1 is the last
round of the play tm; t0 = 0. I will construct the numbers nm � m ∈ � and the plays
tm inductively maintaining the statement x�⋃

atm
as the induction hypothesis. This

is satisfied at t0 = 0. Now suppose the play tm has been found. Since x � Ctm�y
m�,
there must be a number n > nm−1 such that x � atmny
m�. Clearly, the number
n= nm together with the play tm+1 = tmny
m� still satisfy the inductive hypothesis.
In the end, the union

⋃
m tm is the desired winning counterplay against the

strategy � .
The fourth item is proved with the help of Proposition 3.9.22. I must construct

the necessary coding device, that is, a Borel function f � X→ 2� such that for



4.5 Pavement submeasures 201

every set A0 ∈ I� there is a disjoint set A1 ∈ I� such that f ′′A1 = 2�. In order to do
this, choose an ∈-tower Mn � n ∈ � of countable elementary submodels of a large
enough structure and find countable collections Cn = C0

n ∪ C1
n ∈ Mn+1 consisting

of mutually disjoint sets such that whenever B ∈Mn is a condition then it has a
subset of the same mass in both C0

n and C1
n . This is possible by Theorem 4.5.5.

Let f
x�
n�= 0 if x belongs to some set in C0
n , and f
x�
n�= 1 otherwise. I must

show that the function f has the requested coding property.
Suppose that a⊂ U is a set such that �u∈aw
u� is smaller than the mass of the

whole space. I will find a set A1 ∈ I� disjoint from
⋃
a such that f ′′A1 = 2�. Let

Dn � n ∈ � enumerate the open dense subsets of PI�
in the models of the tower

such that Dn ∈Mn. By tree induction on t ∈ 2<� find conditions Bt ∈ PI�
so that

B0 = X, Bt ∈M�t�, t ⊂ s implies Bs ⊂ Bt, and if n= �t�> 0 then:

• Bt ∈Dn−1;
• Bt ∈ Ct
n−1�

n ;
• �
Bt� < 2−2n;
• there is a finite set at ⊂ a such that Bt ∩

⋃
at = 0 and �
Bt� > �u∈a\atw
u�.

Once this is done, for every binary sequence y ∈ 2� the intersection
⋂

n By�n is
nonempty, containing some point xy ∈ X which is generic for the model

⋃
n Mn by

the first item. Every such point falls out of the set a by the last item, and f
xy�= y
by the second item. Finally, writing A1 = �xy � y ∈ 2�� it must be the case that
�
A1�= 0 by the third item. This will conclude the proof.

To perform the induction, suppose that the set Bt has been obtained, let
n = �t� and work in the model Mn. By Theorem 4.5.5, there is a countable
collection D′

n ⊂ Dn consisting of subsets of Bt of �-mass < 2−2n such that
�


⋃
D′

n� = �
Bt�. Since �
Bt� > �u∈a\atw
u� there must be a set C ∈ D′
n such

that �
C \⋃a� > 0. Then, there must be a finite set bt ⊂ a such that writing
C ′ = C \⋃bt, �
C

′� > �u∈a\btw
u�. Now use the properties of the collections C0
n+1

and C1
n+1 to find sets Bt�0�Bt�1 ⊂ C ′ of the same �-mass as C ′ in the respective

collections. The induction proceeds with at�0 = at�1 = bt.
The fifth item is an immediate corollary of the following claim of independent

interest, parallel to Claim 4.3.8. Note that every coanalytic set is an increasing
union of ℵ1 many Borel sets.

Claim 4.5.8. Suppose that � is an uncountable regular cardinal, ��	 > 0 are real
numbers, and �B� � � ∈ �� are sets of �-mass < �. Then there is an infinite set
b ⊂ � such that �


⋃
�∈b B�� < �+ 	. If moreover add
null� > � then there is

such a set b of size �.
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Proof. I will start with the last sentence. Let U�w be the set of pavers and the weight
function generating the pavement submeasure �. For every number n let Kn be the
set of all finite subsets a⊂ U such that �u∈aw
u� < 4−n. For every ordinal � find a
function f� with domain � such that for every n∈�, f�
n�⊂U is finite, for all n> 0
it is the case that f�
n� ∈ Kn, B� ⊂

⋃⋃
n f�
n� and ��w
u� � u ∈⋃

n f�
n�� < �+
	/2. The assumption add
null� > � implies that there is a function g with domain
� such that for every number n ∈ �, g
n�⊂ Kn is a set of size < 2n and for every
ordinal �, for all but finitely many numbers n ∈ � it is the case that f�
n� ∈ g
n�.
Use a counting argument to find a number m∈� such that 2−m < 	/2 and a function
h with domain m such that the set b = �� ∈ � � f� � m= h∧∀n≥m f�
n� ∈ g
n��
has size �. It is now clear that the set

⋃
�∈b B� is covered by the pavers in the set

⋃
rng
h�∪⋃n≥m

⋃
g
n�, whose weights sum up to less than �+	/2+	/2= �+	.

To argue now for the first part of the claim, find a countable elementary
submodel M of a large structure and an M-generic filter g for a c.c.c. forcing such
that M�g� �= add
null� > �. By the work in the previous paragraph, in the model
M�g� there is an infinite set b ⊂ � of size � such that M�g� �= �


⋃
�∈b B�� < �+	.

This set b is still infinite in V , and it has the desired properties.

The last item is a small sweet payback for the work done so far. Suppose M is a
transitive model of a large fragment of ZFC containing the code for the pavement
submeasure �–that is, the weight function and the pavers. I must show that the
model M computes the �-mass correctly for analytic sets. Work in the model M
for a while. If B ⊂ X is an analytic set and � > 0 is a real number, the statement
�
B� > � is equivalent to Player II having a winning strategy � in the game
G
A�	� for some real number 	 > � and a Borel set A⊂ X×2� projecting into B.
However, the fact that the strategy � is winning is coanalytic and therefore absolute
between M and V . It follows that M �=�
B� > �↔ V �=�
B� > � as desired.

Theorem 4.5.9. Let X be a Polish space and � a pavement submeasure generated
by a countable set of Borel pavers. The forcing PI�

is regularly embeddable into a
�-closed*c.c.c. iteration.

Proof. For simplicity (and sanity) assume that the underlying Polish space is the
Cantor space 2�. Let P be the partial order of pairs p= �ap� bp� such that:

• ap is a countable partially ordered set of trees T ⊂ 
�×2�<� such that proj�T�� I�;
the ordering is defined by S ≤ T if proj�S�⊂ proj�T�;

• the set ap is closed under I�-positive intersections: if T0� T1 ∈ ap are trees such that
proj�T0�∩proj�T1� � I� then there is a tree S ∈ ap such that proj�S�= proj�T0�∩
proj�T1�;
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• the set ap is closed under restriction: if T ∈ ap and t ∈ T is a node such that
proj�T � t� � I� then T � t ∈ ap;

• the set ap is closed under subtraction of a finite union of pavers: if T ∈ ap is a
tree and a ⊂ U is a finite set such that �
proj�T� \⋃a� > 0 then there is a tree
S ∈ ap projecting into the set proj�T�\⋃a;

• bp is a countable collection of subsets z⊂ ap such that for every tree T ∈ ap it is
the case that �


⋃
z∩proj�T��= �
proj�T��.

The ordering of the set P is by coordinatewise reverse inclusion. This is clearly
a �-closed forcing. If G ⊂ P is a generic filter then let Q ∈ V�G� be the set
�proj�T� � ∃p ∈ G T ∈ ap� ordered by inclusion. The proof will be complete once
I show that Q is c.c.c. and if D ⊂ PI�

is a dense set in the ground model then
D∩Q⊂Q is dense.

Claim 4.5.10. Suppose p = �ap� bp� ∈ P is a condition and consider the set B =
⋂

z∈bp
⋃
�proj�T� � T ∈ z�. Then

1. for every tree T ∈ ap it is the case that �
proj�T��= �
proj�T�∩B�;
2. for every I�-positive analytic set C ⊂ B there is a condition q = �aq� bp� ≤ p

such that the set aq includes some tree T such that C = proj�T�.

The claim immediately implies that if D⊂PI is an open dense set then P � Ď∩Q
is dense. To see this, for every condition p ∈ P and every tree S ∈ ap consider the
set B⊂X as in the claim and look at the intersection B∩proj�S�. It is an �-positive
analytic set and therefore contains an �-positive Borel subset and even one from the
open dense set D. Choose such a set C ⊂ B and use the Claim to find a condition
q ≤ p which includes some tree T such that proj�T� = B∩ proj�S�. The condition
q forces that there is an element of the open dense set D below the condition
proj�S�∈Q. Finally use a genericity argument to see that D∩Q is forced to be dense.

For the c.c.c. of the forcing Q in the P-extension, suppose that p � Ḋ⊂Q is an
open dense set. Let M be a countable elementary submodel of a large enough struc-
ture, let q ≤ p be a the coordinatewise union of some M-generic filter g ⊂ P ∩M
and let z ⊂ aq be the set �proj�S� � S ∈ aq� q � proj�S� ∈ Ḋ�. I will show that for
every tree T ∈ aq it is the case that �
proj�T�∩⋃

�proj�S� � S ∈ z�� = �
proj�T��.
This shows that the pair r = �aq� bq ∪ �z�� ≤ q is a condition in the poset P. It is
immediate that r � �proj�S� � S ∈ z� ⊂ Q̇ is a countable predense set, proving the
c.c.c. of the forcing Q.

For every tree T ∈ aq let �
T� = �
proj�T� ∩⋃
�proj�S� � S ∈ z��. I must

show that �
T� = �
proj�T��. First, an elementarity argument shows that
q � �
T� = sup��
proj�T�∩⋃

E� � E ⊂ Ḋ countable�. Suppose for contradiction
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that for some tree T ∈ aq it is indeed the case that �
T� < �
proj�T��. Let a⊂U be
a set such that ��w
u� � u ∈ a� < �
proj�T�� and proj�T�∩⋃�proj�S� � s ∈ z�⊂⋃

a.
Let B be the set described in the claim. The set proj�T�∩B \⋃a is analytic and
�-positive, therefore by Theorem 4.5.6, the claim, and a genericity argument there
is a condition r ≤ q and a tree S ∈ ar such that proj�S� ⊂ proj�T�∩B \⋃a and
r � proj�S�∈ Ḋ. Let a′ ⊂ a be a finite set such that �
proj�S�� >��w
u� � u∈ a\a′�.
Use the closure property of the set aq to find a tree T ′ ∈ aq such that
proj�T ′� = proj�T� \⋃a′. Now �
T ′� ≤ ��w
u� � u ∈ a \a′� < �
proj�S�� and this
contradicts the second sentence of this paragraph for the tree T ′.

All that remains to do is to prove the claim. Let p = �ap� bp� ∈ P be
a condition, let B = ⋂

z∈bp
⋃
�proj�T� � T ∈ z� and let T ∈ ap. I must first

argue that �
proj�T�� = �
proj�T� ∩ B�. Suppose a ⊂ U is a set such that
�u∈aw
u� < �
proj�T��; I must produce a point x ∈ proj�T�∩B \⋃a. By induction
on n ∈� build trees Tn ∈ ap and nodes tnm ∈ Tm � m ∈ n and finite sets an ⊂ a so that

• T = T0, proj�T�⊃ proj�T1�⊃ proj�T2� � � �

• the nodes tnm ∈ Tm form an increasing sequence, and proj�Tn�⊂ proj�Tm � tnm�;
• with some fixed enumeration bp = �zn � n ∈ �� there is a tree R ∈ zn such that

proj�Tn+1�⊂ proj�R�;
• proj�Tn�∩

⋃
an = 0 and �
proj�Tn�� > �u∈a\anw
u�.

Once this has been done, it is clear that for every number m ∈ �, the union
⋃
tnm forms a branch through the tree Tm, all of these branches project into the

same point x and x ∈ proj�T�∩B \⋃a. The induction itself is easy. Suppose that
the trees Tm � m ∈ n and nodes tnm ∈ Tm are known. Find a tree S ∈ ap projecting
into the set

⋂
m∈n proj�Tm � tnm�. Since �
proj�S� ∩⋃

zn� = �proj�S��, the set
proj�S�∩ 
⋃R∈zn proj�R��\⋃a has positive �-mass. By the countable subadditivity
of the submeasure �, there must be a tree R ∈ zp and nodes tn+1

m ∈ Tm extending
the nodes tnm such that the set proj�R�∩⋂m∈n proj�Tm � tn+1

m �\⋃a still has positive
�-mass, say � > 0. There must be a finite set an+1 ⊂ a such that �u∈a\an+1

w
u� < �.
Let Tn ∈ ap be any tree projecting into the set proj�R�∩⋂m∈n proj�Tm � tn+1

m �\⋃an+1

and let tn+1
n = 0. The induction hypotheses continue to hold.

The second item of the claim now immediately follows. If C ⊂ B is any analytic
�-positive set and T is any tree projecting into it, just close the set ap∪ �T� under
the operations in the definition of the forcing P to get a set aq. The trees in aq

either belong to ap or else project into subsets of the set C ⊂ B, and therefore the
pair q = �aq� bp� is a condition in the forcing P.

The Fubini properties common to all the pavement forcings are quite easily
identified.



4.5 Pavement submeasures 205

Theorem 4.5.11. Suppose that J is a �-ideal on a Polish space Y such that the
forcing PJ is proper. The following are equivalent:

1. ¬I� ⊥ J for every pavement submeasure �;
2. the forcing PJ has the Sacks property.

Proof. On one hand, suppose that the forcing PJ does not have the Sacks property.
There is a PJ -name for a function ḟ ∈ �� such that for every ground model
function h � �→ ���<ℵ0 such that �h
n�� = n2 it is forced that for infinitely many
n ∈ �, ḟ 
ň� � ȟ
ň�. By Proposition 2.3.1, there is a Borel set C ∈ PI and a Borel
function g � B→�� such that B � ḟ = ġ
ẏgen�. Now define a pavement submeasure
� on the space X of all functions h � �→ ���<ℵ0 such that �h
n�� = n2: set
U = �unm � n�m ∈ ��, where unm = �h ∈ X � m � h
n��, and w
unm�= 1/n2.

It is quite clear that �
X�= 1. If a⊂ U is a collection of pavers of total weight
< 1 then for no number n there can be more than n2 many pavers in the set a of the
form unm. As a result, there is a function h ∈ X such that for all numbers n�m ∈ �
such that unm ∈ a, m ∈ h
n�. Such a function does not belong to any of the pavers
in the set a.

It is also clear that for every function k ∈ ��, the set Ak = �h ∈ X � ∃�n k
n� �
h
n�� has �-mass zero. Given any real number � > 0, find a natural number n0

such that �n>n0
1/n2 < � and consider the set a = �an�k
n� � n > n0� ⊂ U . The sum

of the weights of the pavers in this set is < � and Ak ⊂
⋃
a by the definitions,

therefore �
Af� < � as required.
To sum up the previous work, writing D ⊂ X×B for the Borel set ��h�y� �

∃�n g
y�
n� ∈ h
n��, it is the case that the horizontal sections of the set D are in
the ideal � while the vertical sections of its complement belong to the ideal J . This
concludes the proof of (1)→(2).

On the other hand, if the forcing PJ does have the Sacks property then for every
pavement submeasure � on a Polish space X it is in fact true that every subset of
X in the extension has a Borel superset coded in the ground model of arbitrarily
close �-mass. For suppose that the submeasure � is obtained from some set U
of pavers and a weight function w � U → �+, and suppose that some condition
p ∈ PJ forces ȧ⊂ U is a set whose sum of weights is less than some fixed � > 0.
It will be enough, for every positive real number 	 > 0, to produce a set b ⊂ U
in the ground model whose sum of weights is < �+ 	, and a condition q ≤ p
forcing ȧ ⊂ b̌. It is an elementary matter to find a function k � �→ �+ such that
�nn

2k
n� < 	 and PJ -name ḟ � �→ �U�<ℵ0 such that p forces ȧ =⋃
rng
ḟ � and

��w
u� � u ∈ ḟ 
n+1�� < k
n� for all n ∈�. Use [2], 2.3.9 again to find a condition
q ≤ p and a ground model function g � �→ ��U�<ℵ0 �<ℵ0 such that for every n ∈ �,
g
n� consists of at most n2 many sets and in each of them the pavers sum up to
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a weight < k
n�, and q forces that ḟ 
n+ 1� ∈ ǧ
n�. Moreover, the condition q
will decide the value of ḟ 
0� to be some finite set c ⊂ U . Then clearly q forces
ȧ ⊂ ∪⋃⋃

rng
g�, and the weights of pavers in the latter set add up to less than
�+	 by the construction. This completes the proof.

Note that the argument shows that among the pavement forcings there is one
which has the fewest Fubini-type preservation properties; it is identified in the first
paragraph of the proof. This should be compared with the situation for �-ideals
generated by closed sets. Among those, Cohen forcing is the one with the fewest
Fubini-type preservation properties.

Finally, there are two theorems regarding the subsets of �1 added by pavement
forcings.

Theorem 4.5.12. Suppose that � is a pavement measure on a Polish space X
generated by a countable set of Borel pavers. Then PI�

forces that every function
f � �1 → 2 in the extension has an infinite ground model subfunction.

Proof. Fix a condition B ∈ PI�
forcing ḟ � �1 → 2. Fix a winning strategy � for the

Nonempty Player In the Borel precipitous game G
I��. Fix �M , a continuous ∈-tower
of countable elementary submodels of a sufficiently large structure of length �1 such
that the first model �M
0� contains X�����B� ḟ . For every condition C ⊂ B write
C
��= �x ∈ C � x is M�-generic for all � ≤ �� and C
�+1� b�= �x ∈ C
�+1� �

ḟ 
 �M
��∩�1�/x = b�. Clearly C
�+1�= C
�+1�0�∪C
�+1�1�. If C ∈ �M
0�
then a bootstrapping argument based on the proof of Theorem 4.5.2 shows that
�
C� = �
C
���. A review of the definitions reveals that C
�+ 1� b� ⊂ C is a
Borel set which, if �-positive, forces ḟ 
 �M
��∩�1�= b.

There are two distinct cases.

• There is an ordinal �∈�1 and a condition C in PI�
∩ �M
�+1� such that C⊂B
��

and the set of all ordinals � such that �
C
�+1�1�� < �
C� is uncountable.
• Otherwise.

To conclude the argument in the first case, apply Claim 4.5.8 to find an infinite
set b ⊂ �1 such that the set

⋃
�∈b C
�+ 1�1� has �-mass smaller than �
C� Let

� = sup
b� and consider the set D= C
��\⋃�∈b C
�+1�1�. This is an �-positive
Borel set and a condition forcing that ḟ � ��n � n ∈ �� is constantly equal to zero.

In the second case, use the failure of the first case to find an uncountable set
A⊂�1 such that for every �∈A, every ordinal �∈� and every condition C ⊂B
��

in PI�
∩ �M
�+1� it is the case that �
C
�+1�1�� = �
C�. Let �n � n ∈ � be an

infinite increasing sequence of elements in the set A. Let D = ⋂
n B
�n+ 1�1�.



4.5 Pavement submeasures 207

I will show that �
B� = �
D�, so D ⊂ B is a condition in the poset PI�
forcing

ḟ � ��n � n ∈ �� is constantly equal to one, completing the argument in the second
case and the proof of the theorem. Suppose for contradiction that �
D� <�
B� and
find a set a⊂ U such that �u∈aw
u� < �
B� and D ⊂⋃

a. By induction on n ∈ �
build conditions Cn and sets an ⊂ a so that

• B = C0 ⊃ C1 ⊃ � � � , Cn ∈ �M
�n�, Cn+1 ⊂ B
�n + 1�1� and there are condi-
tions p0� q0� p1� q1 � � � such that C0 ⊃ p0 ⊃ q0 ⊃ C1 ⊃ p1 ⊃ q1 ⊃ C2 ⊃ � � � and
the sequence p0� q0� p1� � � � forms a play of the Borel precipitous game G
I�� in
which the Nonempty player uses his winning strategy �;

• 0= a0 ⊂ a1 ⊂ � � �

• Cn∩
⋃
an = 0 and �
Cn� > �u∈a\anw
u�.

If this construction succeeds then
⋂

n Cn is a nonempty set by the first item, and
any of its elements belongs to the set D \⋃a, contradicting the choice of the set
a⊂ U .

The initial setup C0 = B and a0 = 0 satisfies the induction hypothesis. Suppose
that Cn�an have been constructed. Let En = �q ∈ PI�

� ∃p p0� q0� p1� � � � qn−1� p� q is

a play utilizing the strategy ��. The set En ∈ �M
�n� is dense below Cn and therefore
there is a countable subset Fn ⊂En in the model �M
�n� such that �


⋃
Fn�=�
Cn�.

As I am working on the second case, it follows that �
B
�n+1�∩⋃Fn�=�
Cn�.
By the third item of the induction hypothesis, �
B
�n+1�∩⋃Fn \

⋃

a\an�� �= 0

and so there must be a set qn ∈ Fn such that �
B
�n+1�∩qn \
⋃

a\an�= � > 0.

Find a finite set an+1 ⊂ a such that an ⊂ an+1 and �u∈a\an+1
< �. Find a set pn ∈

�M
�n� witnessing the fact that qn ∈ En. Finally, let Cn+1 = B
�n+1�∩qn \
⋃
an−1.

The induction hypotheses continue to hold.

Note that the argument shows that if add
null� > ℵ1 then there is either an
infinite ground model set b ⊂ �1 such that f � b is constantly 0 or an uncountable
ground model set b ⊂ �1 such that f � b is constantly 1.

Theorem 4.5.13. Suppose that � is a pavement submeasure on a Polish space X
generated by a countable set of Borel pavers, and V ⊆ V�H�⊆ V�G� are a ground
model, a PI�

extension, and an intermediate extension. Then

1. either V�H�= V�G� or V�H� is a c.c.c. extension of V ;
2. (add
null� > ℵ1) V�H� is generated by a single real.

I do not know if the assumption add
null� > ℵ1 can be removed. I also do
not know what c.c.c. reals can be added by a pavement forcing. The proof of the
theorem is very similar to Theorem 4.1.7 and I omit it.
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4.5.2 Laver forcing

Laver defined the Laver forcing as the poset of all Laver trees ordered by inclusion.
Here an infinite tree T ⊂�<� is Laver if it has a stem t ∈ T such that every node of
the tree T is compatible with it and all longer nodes in the tree t split into infinitely
many immediate successors.

Consider the �-ideal I on �� generated by all sets Ag = �f ∈ �� � ∃�n f
n� ∈
g
f � n� as g varies over all functions from �<� to �. The following fact has been
proved by a number of people, I think the priority should go to [4]. It shows that
the forcing PI has a dense subset naturally isomorphic to Laver forcing.

Proposition 4.5.14. Let A⊂ �� be an analytic set. Either A ∈ I or A contains all
branches of some Laver tree.

Proof. Suppose C ⊂��×�� is a set and consider the following game G
C�. In it,
Players I and II alternate, Player II starts out with a finite sequence tini ∈ �<� and
then at round n, Player I indicates a natural number mn and Player II responds with
a larger number kn. Moreover, Player II in some rounds mentions another natural
number li smaller than the index of the round. In the end, let x = t�inik

�
0 k

�
1 � � � and

y = l0l1l2 � � � . Player II wins if he obtained infinitely many numbers li � i ∈ �, and
�x� y� ∈ C. The following claim is key.

Claim 4.5.15. Player I has a winning strategy if and only if proj
C� ∈ I . If Player II
has a winning strategy then proj
C� contains all branches of a Laver tree.

The proposition immediately follows. If A ⊂ �� is an analytic set then it is a
projection of some closed set C ⊂ ��×��. The game G
C� has G	 payoff and is
determined by Fact 1.4.2. A reference to the claim then completes the proof.

Corollary 4.5.16. The ideal I is homogeneous.

Proof. Suppose that T ⊂ �<� is a Laver tree. The natural homeomorphism � �
��→ �T� has the properties required in the definition of homogeneity.

It turns out that the �-ideal I is generated by a pavement submeasure. Just let U =
�Ot�n � t ∈�<��n ∈�� where Ot�n = �f ∈�� � t⊂ f� f
�t�� ∈ n� and let w
Ot�n�= �t

for some sequence �t � t ∈ �<� of positive real numbers with converging sum.

4.5.3 Solovay forcing

The outer Lebesgue measure � on the Cantor space 2� is a pavement submeasure.
The forcing PI�

was first considered by Solovay.

Fact 4.5.17. I� is a homogeneous ideal.
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Proof. This is an immediate corollary of the measure isomorphism theorem. When-
ever B ∈ PI�

is a Borel set of nonzero measure then there is a Borel bijection
� � 2� → B which preserves the measure. This means among other things that
preimages of �-null sets are �-null and the ideal is homogeneous.

4.5.4 Maharam algebras

A submeasure � on a Boolean algebra is exhaustive if for every sequence of
pairwise disjoint elements the masses converge to 0. One example of an exhaustive
submeasure is the outer Lebesgue measure on Borel sets. Maharam asked whether
this is essentially the only example: if X is a Polish space and � an exhaustive
submeasure on it, is there a measure with the same null sets as �? Restated in
forcing terms, if � is a countably subadditive exhaustive submeasure on 2�, is it
necessarily true that PI�

is in the forcing sense equivalent to the Solovay forcing?
This question remained open for several decades until Talagrand gave a negative
answer [75]. It turns out that all countably subadditive exhaustive submeasures on
2� are in fact pavement submeasures. This development provides new examples of
pavement submeasure forcings. They are all c.c.c. and add splitting reals, and if �
is an exhaustive submeasure then PI�

collapses outer Lebesgue measure by a result
of Christensen [7] and many other outer regular submeasures by a result of [16].

4.6 Analytic P-ideal forcings

It is possible to associate a forcing with every P-ideal K on natural numbers. This
forcing adds an infinite subset of � with finite intersection with every ground model
element of the ideal K; moreover, in the case of an analytic P-ideal this forcing is
proper. The resulting forcings are apparently very complex.

Definition 4.6.1. [18] An ideal K on � is a P-ideal if for every sequence An (n∈�)
of sets in K there is A∈K such that An \A is finite for all n. The associated P-cover
�-ideal I on P
�� is generated by sets Ax = �y ⊂ � � x \ y is infinite� as x varies
through all elements of K.

I-positive sets are sometimes called approximations to K. The family of compact
hereditary sets in I plays an important role in the proof of the structure theorem
for analytic P-ideals [71]. Note that since K is a P-ideal, the sets Ax with all their
subsets form a �-ideal and so they form a basis for the ideal I consisting of G	

sets. It is quite obvious that the ideal I does not contain all singletons, for example
��� � I . However, the ideal I does contain all singletons when restricted to some
interesting Borel sets B, such as B = K.
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4.6.1 General theorems

Theorem 4.6.2. [18] If I is a P-cover ideal then the forcing PI is proper.

Proof. Fix the analytic P-ideal K on � which generates the ideal I . Use the
classical result of Solecki [71] to find a finite lower semicontinuous submeasure
� � P
��→ �+ such that K = Exh
��. That is to say, �
y� = sup��
x� � x ⊂ y
finite� for every set y ⊂ �, and K = �y ⊂ � � limn �
y \n� = 0�. Note that in fact
K is Borel.

Suppose that P is a forcing and ẋ is a P-name for a subset of �. Consider the
P-cover game G
P� ẋ� between Player I and Player II. In it, Player I produces an
initial condition pini ∈ P, one by one open dense sets Dn ⊂ P and dynamically on a
fixed schedule a set y⊂��y ∈K. Player II produces one by one a descending chain
pini ≥ p0 ≥ p1 ≥ � � � of conditions such that pn ∈ Dn and pn decides the statement
ň ∈ ẋ. He can hesitate for an arbitrary finite number of steps before placing his next
move. In the end, let g ⊂ P be the filter Player II created. Player II wins if y ⊂ ẋ/g
modulo a finite set.

To make this precise, I need to specify Player I’s schedule for the set y. At round
n Player I decides whether n ∈ y or not and specifies a number mn ∈ � such that
�
y \mn� ≤ 2−mn . The latter demand is equivalent to the condition that for every
number k ∈ �, �
y∩k\mn�≤ 2−mn . It is quite clear that Player I can produce any
given set in the ideal K under this schedule.

As in the previous sections, it will be enough to prove the following lemma.

Lemma 4.6.3. The following are equivalent.

• P � ẋ falls out of all ground model coded Borel I-small sets.
• Player II has a winning strategy in the game G
P� ẋ�.

One direction of the lemma is again trivial. If there is a condition p ∈ P forcing
the set y\ ẋ to be infinite, then Player I can win by playing on the side an increasing
sequence �Mn � n ∈ �� of countable elementary submodels of some large structure,
enumerating all the open dense subsets of P in M = ⋃

n Mn, producing p = pini

and the set y, and playing so that Player II’s filter g is M-generic. In the end,
M�g� �= y \ ẋ/g is infinite by the forcing theorem, and so y \ ẋ/g is infinite and
Player I won.

The opposite direction is harder. Suppose that the first item of the lemma is
satisfied. A small claim will be used repeatedly.

Claim 4.6.4. For every condition p ∈ P there are numbers m
p� and k
p� such
that for every set y ∈ K of submeasure ≤ 2−m
p� there is a condition q ≤ p forcing
y̌ \ ẋ ⊂ ǩ
p�.
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Proof. Suppose that this fails for some p. By induction on n ∈ � find sets yn ∈ K
and increasing numbers kn such that:

• �
yn�≤ 2−n and �

⋃

m∈n ym�\kn ≤ 2−n;
• yn∩kn = 0;
• p � y̌n \ ẋ �= 0.

To start, let k0 = 0. To find the set yn and the number kn+1 once the sets
ym � m ∈ n and the number kn are known, use the failure of the claim at p�−n and
kn to find a set yn ∈ K such that yn∩kn = 0, �
yn�≤ 2−n and p � y̌n \ ẋ �= 0. Then
z=⋃

m∈n+1 yn ∈K and therefore there is a number kn+1 ∈� such that �
z\kn+1�≤
2−n−1. This concludes the inductive step.

In the end, let y = ⋃
n yn. It is not difficult to verify from the first induc-

tion hypothesis that �
y \kn� ≤ 2−n+�m≥n2−m and therefore y ∈ K. The last two
induction hypotheses then show that p � y̌ \ ẋ is infinite, contradiction.

The payoff set of the game G
P� ẋ� I� is Borel and the game is therefore deter-
mined by Fact 1.4.2. To conclude the proof of the lemma, it will be enough to
derive a contradiction from the assumption that Player I has a winning strategy � .
To find Player II’s counterplay, let M be a countable elementary submodel of a large
enough structure and let p= pini ∈ P be Player I’s initial condition. Let m
p�� k
p�
be the numbers from the claim. The idea now is to construct a counterplay such that
the resulting filter g⊂ P∩M is M-generic and y\ ẋ/g⊂max�k
p��mm
p��. In order
to do that, find Player II’s moves pn ∈ P∩M played at rounds in in such a way that:

• the condition pn ∈M belongs to the n-th open dense set Player I played, to the
n-th open dense subset of P in the model M under some fixed enumeration, and
it decides the statement ň ∈ ẋ;

• pn � ẋ∩ y̌∩ in ⊂max�k
p��mm
p��; note that the set y∩ in is known at round in;
• the number mm
pn�

is known at round in, and in > k
pn��mm
pn�
.

The second induction hypothesis then immediately implies that Player II won the
resulting play of the game, obtaining the desired contradiction. To construct p0� i0,
let y ∈K be the set the strategy � produces if Player II forever hesitates to place a
nontrivial move in the play. By the claim, there is a condition q ≤ p forcing y̌ \ ẋ⊂
max�mm
p�� k
p��. Let p0 ≤ q, p0 ∈M be a condition in the first open dense subset of
the poset P in the model M and in the first open dense set Player I played, deciding
the statement 0 ∈ ẋ. Let i0 be a sufficiently large number so that the last induction
hypothesis is satisfied. The induction step is similar. Going through the same
motions as in the previous sections will then conclude the proof of the theorem.
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Theorem 4.6.5. Suppose that I is a P-cover ideal on P
��.

1. I satisfies the third dichotomy.
2. In the choiceless Solovay model, I satisfies the first dichotomy.
3. (ZFC+DC+AD+) I satisfies the first dichotomy and it is closed under

wellordered unions.

Example 4.6.6. Laver forcing. Let K be the collection of sets x⊂�×� with finite
vertical sections. It is not difficult to see that PI � K is isomorphic to the poset PJ

where J is a �-ideal of nondominating subsets of ��. It has been known for some
time that PJ is in the forcing sense equivalent to the Laver forcing [4].

Example 4.6.7. The optimal amoeba forcing for measure. Let K be the collection
of sets x⊂ 2<� such that the set Bx = �r ∈ 2� � for infinitely many numbers n ∈ �,
r � n ∈ x�⊂ 2� is Lebesgue null. It is well-known and not difficult to verify that K
is an analytic P-ideal [71]. The poset PI � K adds a Lebesgue null set containing all
ground model coded Lebesgue null sets. It is not the same as the standard amoeba
forcing for measure, in particular it is not c.c.c. Note that the same procedure will
work with the Maharam submeasures in place of the Lebesgue measure.

Example 4.6.8. Every quotient forcing associated with a pavement submeasure is
isomorphic to PI �B for a suitable P-cover ideal I and Borel I-positive set B. To see
this, let U�w be the weight generating the null ideal J , and let X be the underlying
space. Let K = �a ⊂ U � w
a� is finite�; so this is a typical F� P-ideal on the set
P
U�. Let I be the associated P-cover ideal on PP
U�. Consider the function
� � X→P
U� defined by �
r�= �u ∈ U � r � u� and the set B= rng
��⊂P
U�. I
claim that B is an I-positive Borel set and the bijection � � X→ B moves the ideal
J to the ideal I below B. If A ⊂ X is a set in the ideal J , for every n ∈ � find a
set an ⊂ U such that w
an� ≤ 2−n and A⊂⋃

an, and set b =⋃
n an ⊂ U . Clearly,

b ∈ K and the image � ′′A is included in the I-small set �c ⊂ U � b \ c is infinite�.
On the other hand, if A ⊂ PPU is a set in the ideal I , find a set b ⊂ U of finite
weight such that A⊂ �c ⊂ U � b \ c is infinite� and note that the preimage �−1A is
J -small since it is covered by the union of every cofinite subset of b.

The dependence on Solecki’s result and the determinacy of the associated game
make it difficult to extend the result to the case of P-cover ideals generated by
undefinable P-ideals. It is not difficult to observe that if K is the complement of
a Ramsey ultrafilter F , I ′ is the P-cover ideal derived from K and I is the ideal
generated by I ′ and �F� then PI is in the forcing sense equivalent to the standard
c.c.c. poset Q diagonalizing the Ramsey ultrafilter F , since it adds a diagonalizing
real and such a real is Q-generic by the Mathias criterion for Q-genericity.
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The posets PI associated with an analytic P-ideal K are strongly inhomogeneous,
and some singletons such as ��� are positive in the ideal I . The P-ideal K itself
is a condition in the forcing PI and below this condition the poset has much more
reasonable properties. Note that it adds an element of the analytic P-ideal K which
modulo finite includes all ground model elements of K.

Lemma 4.6.9. The ideal I is homogeneous below K.

Proof. Recall that an ideal I � K is homogeneous if and only if for every Borel
I-positive set B⊂K there is a function f � K→ B such that f -preimages of I-small
sets are I-small [83], Definition 2.3.1. In this case, every function f mapping a set
y ∈ K to a set x ∈ B which covers y modulo a finite set will clearly work.

It is not immediately clear if the poset PI � K is homogeneous per se.

4.7 Other examples

The forcings described in the previous subsections all share a common feature:
the ideals associated with them satisfy the first dichotomy, and therefore all the
intermediate models inside their respective generic extensions are c.c.c. extensions
of the ground model. There are many definable partial orders which do not have
this property. Obvious examples of such a behavior are the iterations or side by
side products. There are also less obvious but still very common examples of
definable partial orders which add a minimal real but can be decomposed into
�-closed*c.c.c. iterations, and therefore do not satisfy the first dichotomy. Some of
them are connected to very familiar objects.

4.7.1 The E0 equivalence

Definition 4.7.1. E0 is the equivalence relation on 2� defined by xE0y if and only
if x�y is finite.

E0 is the minimal non-smooth equivalence relation, as the Glimm–Effros dichotomy
shows:

Fact 4.7.2. [47] Suppose that F is a Borel equivalence relation on some Polish
space X. Then:

1. either there is a Borel function g � X→� such that xFy if and only if g
x�= g
y�;
the equivalence F is then said to be smooth;

2. or there is a topological embedding h � 2� → X such that rE0s if and only if
h
r�Fh
s�.
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Now let I be the �-ideal on 2� generated by Borel partial E0-transversals, that
is, Borel sets which meet every E0-equivalence class in at most one element. This
coincides with the ideal of Borel sets B such that the equivalence E0 � B is smooth.

Theorem 4.7.3. The forcing PI is proper and preserves Baire category.

Proof. By Corollary 3.5.4 it is enough to show that whenever M is a countable
elementary submodel of a large enough structure then the forcing PI ∩M forces its
generic point to fall out of all ground model I-small sets.

Suppose for contradiction that some condition B ∈ PI ∩M forces the generic
point ẋgen into a Borel partial E0-transversal A. The following is a key claim.

Claim 4.7.4. There is a finite binary sequence s such that 
B+ s�∩B � I .

Here the set B+ s consists of all sequences obtained from elements x in the set
B by adding the finite sequence s coordinatewise to x modulo 2. If the claim failed
then

⋃
s∈2<�
B+s�∩B ∈ I and the set B\⋃s
B+s� is a Borel partial E0-transversal,

therefore the set B is I-small, contradiction.
Fix the binary sequence s ∈ 2<� as in the claim. Note that the operation C "→C−s

is an automorphism of the forcing PI ∩M . Thus 
B+ s�∩B � 
ẋgen− s� is also a
PI -generic point, and since both ẋgen and ẋgen− s both meet the condition B they
must both belong to the set Ȧ. This contradicts the assumption that the set A is an
E0-selector.

A combinatorially simple dense subset of the forcing PI has been isolated in
[83]. A perfect binary tree T is called an E0-tree if for every splitnode t ∈ T the
next two splitnodes s0� s1 extending t have the same length and T below s0 is equal
to T below s1.

Fact 4.7.5. [83], 2.3.29. Every analytic set is either in the ideal I or it contains all
branches of some E0-tree.

Corollary 4.7.6. The ideal I is homogeneous.

Proof. The natural continuous bijection between 2� and a given E0-tree preserves
the E0 equivalence and therefore the membership of sets in the E0 ideal.

The presentation of the forcing PI as the poset of E0-trees ordered by inclusion
makes it possible to prove many theorems about its forcing properties using the
standard fusion arguments. Let me just mention at this point that the fact that the
forcing PI is bounding can be abstractly derived form the Glimm–Effros dichotomy
in the following way. No matter what Polish topology t one chooses on the set 2�,
the equivalence E0 is still not going to be smooth, and the dichotomy shows that
every I-positive Borel set B will contain a set C such that there is a t-continuous
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map � � 2�→C reducing the E0-equivalence on 2� to E0 on the set C. But then the
set C must be I-positive and t-compact. A reference to Theorem 3.3.2 concludes
the argument.

Lemma 4.7.7. PI naturally decomposes into a strategically �-closed*c.c.c.
iteration.

Proof. Let P be the poset of Borel E0-invariant I-positive sets. If H ⊂ P is a generic
filter, in V�H� let J be the ideal of Borel sets which are disjoint from some set in
H , and consider the forcing PJ . I will show that P is �-closed, P � PJ is c.c.c., the
V�H�-generic point x ∈ 2� for PJ is in fact V -generic for PI , and the filter H can
be recovered from it as the collection of all Borel E0-invariant sets which contain
it. This will complete the proof.

Recall that the forcing P is strategically closed if Player II has a winning strategy
in the descending chain game, a game in which Players I and II alternate to obtain
a descending chain p0 ≥ q0 ≥ p1 ≥ q1 � � � of conditions in P and Player II wins if
the chain has a lower bound. Player II will win the game by playing conditions
qn = E0-saturation of some E0-tree Tn ⊂ 2<� such that the trees Tn � n ∈ � form a
fusion sequence – the n-th splitting level of the tree Tn is still the n-th splitting level
of the tree Tn+1. Then the E0-saturation of the tree T =⋂

n Tn will be the required
lower bound of the chain obtained in the play. In order to show that Player II can
maintain his commitments, suppose that at round n he played qn = E0-saturation of
a tree Tn and Player I answered with some set pn+1 ⊂ pn. Choose a sequence t in
the 
n+1�-th splitting level of the tree Tn. The countable sompleteness of the ideal
I shows that the set pn+1 ∩ �Tn � t� is I-positive, containing all branches of some
E0-tree S. Tn+1 will then be the smallest E0-tree containing S and the 
n+ 1�-th
splitting level of the tree Tn as subsets. the invariance of the set pn+1 under the
E0 equivalence shows that the E0-closure of the set �Tn+1� is included in pn+1 as
required.

4.7.2 The E1 equivalence

Definition 4.7.8. E1 is the equivalence relation on 
2��� defined by �x E1 �y if the
sequences �x� �y agree on all but finitely many entries.

Fact 4.7.9. [35] Suppose that F is a hypersmooth Borel equivalence relation. Then
either F is Borel reducible to E0 or E1 is reducible to F by a continuous injection.

Here, a hypersmooth equivalence relation is one which is an increasing union
of countably many smooth equivalence relations. In particular, E1 is hypersmooth,
as are all of its restrictions to Borel subsets of 
2���. So let I be the �-ideal of
Borel sets B ⊂ 
2��� such that E1 � B is reducible to E0. What are the properties
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of the forcing PI? The previous Fact shows that it is a homogeneous notion of
forcing: if B ∈ PI is a Borel set then the equivalence relation E1 � B is not reducible
to E0 and therefore there is a continuous injective reduction f � 
2��� → B of E1

to E1 � B. Clearly, the reduction f extends to an isomorphism of the forcing PI to
PI � rng
f�. So perhaps we have an interesting new forcing at hand? In fact it turns
out otherwise:

Proposition 4.7.10. The forcing PI is not proper.

Proof. I will find a representation of the ideal I as a decreasing nonstabilizing
intersection of �-ideals and then use Proposition 2.2.6. Let In be the �-ideal on

2��� generated by I and all sets B⊂ 
2��� for which there exists a Borel function
g � 
2���\n→ 
2��n such that for all sequences �x ∈ B, �x � n= g
�x � 
�\n��.

It is immediate that the ideals In � n ∈ � form an inclusion descending sequence
and I ⊂⋃

n In. To see
⋃

n In ⊂ I , suppose that a Borel set B belongs to all ideals In.
For each number n I can then find a Borel partition B=Cn∪

⋃
mD

n
m such that Cn ∈ I

and for each natural number m there is a Borel function gnm. Let C =⋃
n Cn ⊂ B.

This is a set in the �-ideal I and the proof will be complete once I show that the
remainder set B \C is in the ideal I as well. Note that the equivalence relation E1

has only countable equivalence classes on B \C: whenever �x ∈ B \C is a sequence
then ��x�E1

∩B\C ⊂ ��y � ∃n∈� �y � 
�\n�= �x � 
�\n�∧∃m �y � n= gnm
�y � 
�\n���.
The equivalence relation E1 cannot be Borel reduced to a Borel equivalence relation
with countable classes, therefore B \C ∈ I as desired.

The last point is to show that the sequence In � n ∈ � does not stabilize below
any Borel set. In order to do that, I must show that for every number n ∈ � and
every Borel set B ∈ PI there is a Borel set C ⊂ B in In \ I . Use Fact 4.7.9 to find a
continuous injection f � 
2��� → B reducing E1-equivalence to E1 � B. The range
rng
f� ⊂ B is compact, and so is the set C ′ ⊂ 
2���\n which is the projection of
rng
f� to 
2���\n. Thus, the function g � C ′ → 
2��n which assigns to each sequence
�x ∈ C ′ the lexicographically least sequence �y such that �x��y ∈ rng
f�, is continuous.
Writing C = ��x ∈ rng
f� � �x � n= g
�x � 
�\n�, it is clear that C ⊂ B is compact set
in In. To see that C � I , note that the equivalence relation E1 reduces to E1 � rng
f�
via the function f , and E1 � rng
f� reduces to E1 �C via the function h � rng
f�→C
defined by h
�x�= 
�x � 
�\n���g
�x � 
�\n��.

4.7.3 The E2 equivalence

Let J be the summable ideal on �; J = �a ⊂ � � �n∈a
1

n+1 < ��. Let E2 be the
equivalence on 2� defined by xE2y↔ �n ∈ � � x
n� �= y
n�� ∈ J�. The equivalence
E2 is not reducible to a countable Borel equivalence relation and is in fact minimal
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such. In order to state this precisely, I need a couple of definitions and a dichotomy
result due to Hjorth. The presentation owes much to Kanovey’s [34].

Definition 4.7.11. For points x� y ∈ 2� let d
x� y� = �� 1
n+1 � x
n� �= y
n��. A set

B⊂ 2� is grainy if there is a real number � > 0 such that for every finite sequence
xm � m ∈ n of points in B, if ∀m ∈ n d
xm�xm+1� < � then d
x0� xn�≤ 1.

Note that d is a metric on each E2-equivalence class, while points from different
classes have infinite distance.

Fact 4.7.12. [34] Let I be the �-ideal on 2� generated by Borel grainy sets.

1. An analytic set A ⊂ 2� is I-positive if and only if there is a continuous E2-
preserving injection f � 2�→ A. An analytic set A⊂ 2� is I-small if and only if
there is a Borel function f � B→ 2� with domain B ⊃ A which reduces E2 � B
to a countable Borel equivalence relation on 2�.

2. Moreover, whenever A⊂ 2�×2� is an analytic set whose projection is I-positive,
then there is a continuous E2-preserving injection f � 2�→ proj
A� and there is
a continuous function g � rng
f�→ 2� uniformizing the set A on rng
f�.

3. The ideal I is �1
1 on �

1
1. Every analytic grainy set is a subset of a Borel one.

Note that the second item shows that the ideal I satisfies the third dichotomy,
and if the forcing PI is proper, then it is homogeneous and bounding. Kanovei
proved the properness of the forcing. I will include a proof of a stronger theorem.

Theorem 4.7.13. The forcing PI is proper and preserves Baire category.

Proof. For analytic sets A�B ⊂ 2� write AE2B if for every point x ∈ A there is
y ∈ B such that xE2y and vice versa, for every y ∈ B there is x ∈ A such that
xE2y. If moreover � > 0 is a real number, write AE�

2B if for every x ∈ A there
is y ∈ B such that d
x� y� < � and vice versa. Note that AE�

2B implies AE2B and
the latter relation is an equivalence, while the former is not. A small claim will be
useful.

Claim 4.7.14.

1. If A�B ⊂ 2� are analytic sets and AE2B then A ∈ I↔ B ∈ I .
2. If A ⊂ 2� is an I positive analytic set and � > 0 is a real number then there

is a finite collection Am � m ≤ n of analytic I-positive subsets of A such that
∀m ∈ nAmE

�
2Am+1 while ∀x ∈ A0∀y ∈ An d
x� y� > 1.

To prove the first item, suppose A� I , and let C ⊂ 2�×2� be the set ��x� y� � x ∈
A∧y ∈B∧xE2y�. This is an analytic set with proj
C�=A, and so by the second item
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of Fact 4.7.12 there is an E2-preserving continuous injection f � 2�→A and a contin-
uous function g � rng
f�→ 2� uniformizing the set C on rng
f�. Then g#f � 2�→B
is a continuous E2-preserving function witnessing the I-positivity of the set B.

For the second item, for a natural number n ∈ �, a finite set a ⊂ � such that
�n∈a

1
n+1 > 1, and a function f ∈ 2a let Bn�f = �x ∈A � f ⊂ x and there is an �-path of

length n+1 through the set A starting with x such that 1−f ⊂ its endpoint�. There
must be a pair n�f such that Bn�f � I . To see this, suppose for contradiction that
Bn�a ∈ I for all pairs n�a, find a Borel set B′n�a ∈ I covering it, and observe that the
analytic set A\⋃n�f B

′
n�f is grainy, therefore I-small. This provides a decomposition

of the set A into countably many I-small sets, contradicting the positivity of the
set A. Now fix the pair n�f such that Bn�f � A, and for m ≤ n let Am = �x � x is
on m-th position of an � path through the set A of length n+1 such that f ⊂ the
first endpoint and 1− f ⊂ the other endpoint�. Clearly, A0 = Bn � I , AmE

�
2Am+1,

and by the first item the analytic sets Am are all I-positive as required.
In order to prove the properness of PI , I will deal with the poset QI of analytic I-

positive sets, since PI ⊂QI is dense by Fact 4.7.12 (1). Suppose that M is a countable
elementary submodel of a large enough structure and let A⊂ 2� be a Borel grainy
set. I must show that the forcing QI ∩M forces its generic real to fall out of the set
A. For contradiction assume that some condition B ∈ QI ∩M forces ẋgen ∈ Ȧ. Let
�> 0 be a real number witnessing the grainy property of the set A, and use the claim
in the model M to find a finite collection of sets Bm � m ∈ n as in the second item
of the claim. Now consider the forcing R consisting of n-tuples Cm � m ∈ n such
that Cm ∈ QI ∩M , Cm ⊂ Bm and CmE

�
2Cm+1, ordered by coordinatewise inclusion.

For each number m ∈ n let Ġm be the R-name for the filter on the poset QI ∩M
generated by the m-th coordinates of conditions in the generic filter.

Claim 4.7.15. R forces each filter Ġm � m ∈ n to be generic for QI ∩M .

For the ease of notation I will prove it just for m = 0. Suppose D ⊂ QI ∩M
be an open dense set, and Cm � m ∈ n be a condition in the forcing R. I will find
a stronger condition C ′m � m ∈ n in R such that C ′ ∈ D. This will certainly be
sufficient. Just choose any set C ′0 ⊂ C0 in the set D and then define by induction
on m ∈ n C ′m+1 = �x ∈ Cm+1 � ∃y ∈ C ′m d
x� y� < ��. These are analytic sets, and
since C ′0 � I and C ′mE

�
2C

′
m+1, all of the sets C ′m are I-positive and form the desired

condition in the forcing R.
Now let H ⊂ R be a generic filter and for every m ∈ n write xm ∈ 2� for the

generic real of the m-th generic filter on QI . It is immediate that d
xm�xm+1� < �
for every m ∈ n, while d
x0� xn� > 1� On the other hand, it follows from the forcing
theorem that xm ∈ A for all m ∈ n. However, this contradicts the grainy property
of the set A.
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It is now known that the forcing E2 is proper, bounding, preserves Baire category
and outer Lebesgue measure, together with host of other properties. These results
will appear in forthcoming work.

4.7.4 Silver forcing

Another variation of the E0-ideal is the Silver ideal. Let G be the graph on 2�

connecting two binary sequences if and only if they differ in exactly one place.
Let I be the �-ideal of sets �-generated by Borel G-independent sets. To facilitate
the expressions below, for a partial function f � �→ 2 write 2� � f for the set
�g ∈ 2� � f ⊂ g�. A typical I-positive set is then 2� � f for a function f mapping a
coinfinite subset of � to 2: it is not difficult to see that every Borel G-independent
set has a meager intersection with the space 2� � f equipped with the natural
topology.

Fact 4.7.16. [83], 2.3.37. Every analytic subset of 2� is either in the ideal I or else
it contains a subset of the form 2� � f for some function f mapping a coinfinite
subset of � to 2.

Corollary 4.7.17. The ideal I is homogeneous.

Proof. Suppose that f is a function mapping a cofinite subset of � to 2. The natural
continuous bijection between 2� and 2� � f preserves edges of the graph G and
therefore the ideal I .

Corollary 4.7.18. The forcing PI has a dense subset naturally isomorphic to Silver
forcing.

Proof. Recall that Silver forcing is the poset of functions f � �→ 2 with coinfinite
domain ordered by inclusion. It is clear that the map f "→ 2� � f is an isomorphism
of Silver forcing and a dense subset of the forcing PI .

4.7.5 Other Borel graphs

Kechris, Solecki, and Todorcevic [38] defined a Borel graph G0 on the Cantor set
2� in the following way. First choose a dense set D ⊂ 2<� such that every level
of 2<� contains exactly one element of D. For every sequence s ∈ D define the
function flips � Os → Os by setting flips
x� =the binary sequence identical to x
except that x
�s��= 1− flips
x�
�s��. Let then G0 be the graph on 2� which is the
union of the graphs of all the functions flips � s ∈D.

It is not difficult to check that G0 is locally countable acyclic Borel graph with
uncountable Borel chromatic number, and its connectedness components are exactly
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the E0-equivalence classes. In fact, Ben Miller proved that it is minimal with this
property in a very strong sense:

Fact 4.7.19. Suppose that G is a locally countable acyclic Borel graph with
uncountable Borel chromatic number on a Polish space X and E is a Borel
countable equivalence relation on X with G ⊂ E. Then there is a continuous
injection � � 2� → X such that for every x� y ∈ 2� it is the case that xE0y↔
�
x�E�
y� and xG0y↔ �
x�G�
y�.

Let I be the �-ideal generated by the Borel G0-independent sets. The pre-
vious Fact shows immediately that compact sets are dense in PI and the ideal
I is homogeneous: whenever B ⊂ 2� is an I-positive set, there will be a Borel
injection � � 2� → B as in the Fact, its range will be an I-positive compact
subset of B, and �-preimages of I-small sets are small. So perhaps this is
another example of a homogeneous proper bounding forcing? It turns out quite
otherwise:

Theorem 4.7.20. The forcing PI is not proper.

Proof. Compared to the graph considered in the previous subsection, the graph G0

is much less homogeneous, as the following claim shows.

Claim 4.7.21. (Ben Miller) Suppose that s ∈D is a sequence and B⊂Os is a Borel
I-positive set. Then there is a compact I-positive subset C ⊂ B such that flip′′s C is
G0-independent.

To see how the theorem follows from the claim, for every sequence s ∈ D find
a maximal antichain As ⊂ PI � Os in the set �C ⊂Os � flip′′s C ∈ I�. It will be enough
to show that for every condition B ∈ PI there is a sequence s ∈ D such that B
is compatible with uncountably many elements of the antichain As. This in fact
shows that the forcing PI adds an �-sequence of ground model reals that cannot be
covered by a ground model countable set.

Suppose for contradiction that B0 ∈ PI is a condition compatible with only
countably many elements of every antichain As � s ∈D. For every s ∈D and every
condition C ∈ As compatible with B0 remove the set flip′′s C from B0, obtaining a
Borel I-positive set B1 ⊂ B0. There must be a sequence s ∈D such that B2 = �x ∈
Os∩B1 � flips
x�∈B1�� I . (If there was not such a sequence s ∈D, removing all the
countably many I-small sets �x ∈ Os ∩B1 � flips
x� ∈ B1� from the set B1 one ends
up with a G0-independent set, contradicting the positivity of the set B1.) Now use
the claim to find a set C ∈As compatible with B2, and consider any point x ∈C∩B2.
Clearly, flips
x� ∈ B1 by the definition of the set B2, but on the other hand, the set
C is compatible with B2, therefore with B, and therefore flip′′s C ∩B1 = 0 by the
definition of the set B1. Contradiction!
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To prove the claim, without loss of generality asssume that B ⊂ Os�0 and
consider the graph G=G0 � B and the equivalence relation E = E0 � B. Fact 4.7.19
yields a continuous injection � � 2� → B such that for every x� y ∈ 2�, xG0y↔
�
x�G0�
y� and xE0y↔ �
x�E0�
y�. I claim that the image � ′′2� works. Since
� reduces the graph G0 to the graph G0 � C, it must be the case that C � I . Now
suppose that x� y ∈ 2� and assume that flips
�
x��G0flips
�
y��. Since flips ⊂G0,
this means that �
x� and �
y� belong to the same connected component of the
graph G0, in other words, �
x�E0�
y�. Since the injection � preserves E0, this
means that xE0y and there is a finite path p connecting x and y in G0. Then � ′′p
is a finite path in the set B connecting �
x� and �
y�. However, the sequence
��
x�� flips
�
x��� flips
�
y����
y�� is a path outside of the set B which connects
these two points, contradicting the acyclicity of the graph G0.

4.7.6 Weakly wandering sets

Definition 4.7.22. Let G be a group acting on some Polish space X. A set A⊂ X
is weakly wandering if there is an infinite set H ⊂G such that the sets g ·A � g ∈H
are mutually disjoint.

Let G be a countable group acting in a Borel way on some Polish space X
and consider the �-ideal I generated by Borel weakly wandering sets. There are
many actions for which this ideal is nontrivial; one such an example is the shift
action of � on the space 2�, where every Borel weakly wandering set must be
meager.

Theorem 4.7.23. The forcing PI is proper and preserves Baire category.

Proof. Let M be a countable elementary submodel of a large structure. The forcing
PI ∩M adds a single point ẋ which belongs to all sets in the generic filter. By
Corollary 3.5.4, it will be enough to show that PI ∩M forces ẋ to fall out of all
ground model coded Borel sets in the ideal I .

Suppose for contradiction that B ∈ PI ∩M is a condition and A ∈ I is a weakly
wandering set such that B forces ẋ ∈ Ȧ. Let H ⊂ G be an infinite set witnessing
the fact that A is weakly wandering.

Claim 4.7.24. There are distinct elements g�h ∈H such that h−1gB∩B � I .

If this failed then the set B would decompose into the countably many sets
�h−1gB∩B � g �= h ∈ H� and B \⋃g �=h∈H h−1gB. The former sets are in the ideal I
by the assumption, and the latter set is weakly wandering as witnessed by the set
H ⊂G. Thus B ∈ I , a contradiction.
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Fix elements g�h ∈H as in the claim. Note that g�h ∈M , the map � � PI → PI ,
�
C� = �h−1g
x� � x ∈ C� is an automorphism of the partial order PI , and its
restriction to PI ∩M is an automorphism of the partial order PI ∩M . Thus if K ⊂
PI ∩M is a generic filter containing the condition h−1g∩B, the filter � ′′K ⊂ PI ∩M
is a generic filter as well. Clearly h−1g
ẋ/K� = ẋ/� ′′K and g
ẋ/K� = h
ẋ/� ′′K�.
However, both filters K and � ′′K contain the condition B, so ẋ/K and ẋ/� ′′K are
both elements of the set A and so their images under the action by g and h should
be distinct, contradiction.

Note that as long as dichotomies for this ideal are missing it is not clear whether
the forcing PI is homogeneous or whether or how it depends on the dynamical
system in question.

4.7.7 Mathias forcing

Adrian Mathias introduced the forcing P of all pairs p = �sp� ap� where sp ⊂ �
is finite and ap ⊂ � is infinite, with the ordering q ≤ p if sp ⊂ sq, aq ⊂ ap, and
sq \ sp ⊂ ap. The forcing is designed to add an infinite set ẋgen ⊂ � which is the
union of all conditions in the generic filter. The following Fact records the basic
information about this partial order.

Fact 4.7.25.

1. P is proper.
2. (Direct decision) If p ∈ P is a condition and ḃ a name for a bit then there is a

definite value c ∈ 2 and a condition q ≤ p with sp = sq such that p � ḃ = č.
3. (Geometric property) If M is a transitive model of a large fragment of ZFC,

x⊂ � is Mathias generic for M and y ⊂ � is an infinite set up to finitely many
elements included in x then y is Mathias generic for M as well.

4. (Generic decomposition) P naturally decomposes into a two-step iteration of
the forcing P
�� mod fin and the Prikry-type forcing P
U� where U is the
ultrafilter on � obtained from the first stage of the iteration.

Let I be the �-ideal of sets A⊂ P
�� which are nowhere dense in the algebra
P
�� mod fin. Note that the ordering of P
�� mod fin is �-closed and therefore
these sets indeed do form a �-ideal. The following proposition immediately implies
that the forcing PI has a dense subset isomorphic to the Mathias forcing P.

Proposition 4.7.26. Suppose A ⊂ P
�� is a universally Baire set. Then A � I if
and only for some finite set s ⊂ � and some infinite set a ⊂ � the set A contains
all sets x ⊂ � such that s ⊂ x and x \ s ⊂ a.
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Proof. Suppose that A ⊂ P
�� is not in the ideal I and let c ⊂ � be an infinite
set under which it is dense. Let M be a countable elementary submodel of a large
enough structure containing a and let b ⊂ � be a Mathias-generic set below the
condition �0� c�. Since the set A is dense below c there must be a set a ∈ A which
is almost included in the set b. By the geometric property of the Mathias forcing –
Fact 4.7.25 – the set a is Mathias generic over the model M , and since the set A is
universally Baire, it must be the case that M�a� �= a ∈ A. By the forcing theorem
there must be a condition p= �s�d� ∈M in the generic filter determined by y such
that p � ẋgen ∈ Ȧ. Consider the collection of all sets x⊂ a with s⊂ a; I claim this is
a subset of the set A as desired. And indeed, every element x⊂� of this collection
is a subset of the set a and by the geometric property it is Mathias generic over the
model M; it meets the condition p and by the forcing theorem M�x� �= x ∈ A. A
wellfoundedness argument shows that x ∈ A as needed.

On the other hand, if s⊂� is a finite set and a⊂� is infinite then the collection
�x ⊂ � � x is infinite and s ⊂ x�x \ s ⊂ a� is dense in P
�� mod fin below the set
a. The proposition follows.
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5.1 The countable support iteration

Suppose that I is a �-ideal on a Polish space X such that the forcing PI is proper.
If � ∈ �1 is a countable ordinal then it is natural to look for a �-ideal I� on the
Polish space X� equipped with the product topology such that the forcing with PI�

is in the forcing sense equivalent to the countable support iteration of the forcing
PI of length �. The iterations of arbitrary uncountable length will then be realized
using a natural limit of the ideals I�, and it is treated in Section 5.5.

The natural candidate for the ideal I� is described in the following definition.

Definition 5.1.1. Let I be a �-ideal on a Polish space X and � ∈ �1 be a countable
ordinal. A set A ⊂ X� is in the ideal I� if Player I has a winning strategy in the
iteration game G�A� of length �. In round � ∈ � of the game, Player I indicates a
set B� ⊂ X in the ideal I and Player II responds with a point x� ∈ X \B�. Player
II wins if the sequence �x� � � ∈ �� of his answers belongs to the set A. The ideal
I� is referred to as the transfinite Fubini iteration of I .

In the following sections I am going to show that I� is the correct ideal to
consider, but several loose ends have to be tied before precise theorems can be
stated. Of a particular concern will be the fact that the membership of Borel
sets in the ideal I� may depend on more than just the membership of Borel sets
in I . A related issue is the determinacy of the game G�A� for various payoff
sets A ⊂ X�.

Of course, the basic stepping stone is the suitable definability of the �-ideal
I so that the notion of iteration of PI is well-defined. This is straightforward
to define if suitable large cardinals are present, however in the ZFC case it is
necessary to resort to several ugly patches. The following two definitions record the
situation.

225
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Definition 5.1.2. (LC) A �-ideal I on a Polish space X is iterable if

1. the set of all (codes for) analytic sets in the ideal I is universally Baire;
2. the ideal satisfies the second universally Baire dichotomy 3.9.8;
3. the forcing PI is proper in all forcing extensions.

Note that the third item is equivalent to the properness of the forcing in some
extension satisfying CH by Corollary 2.2.9, in particular it is equivalent to the
properness of the forcing under CH. Note also that all proofs in the previous
chapter yield the second (even the first) dichotomy for the concerned ideals. Note
also that every �-ideal I satisfying (1) and (3) can be amended to one satisfying
the second dichotomy without affecting the forcing PI by Proposition 3.9.10. The
second dichotomy will be used to simplify the statements of numerous theorems.

Definition 5.1.3. (without LC) A �-ideal I on a Polish space X is iterable if

1. the ideal is ZFC-correct;
2. it satisfies the third dichotomy 3.9.21;
3. for every transitive countable model M of set theory and every condition B ∈

PI ∩M the set 	x ∈ B � x is M-generic for PI
 is I-positive.

Note that the properness proofs in the previous chapter all yield the iterability of
the ideals in question, in both LC and non-LC case. One important point connecting
the third items in the two definitions is

Proposition 5.1.4. (LC) Suppose that I is an iterable �-ideal on a Polish space X.
Then for every countable elementary submodel M of a large enough structure, every
generic extension M�g� of M and every Borel set B ∈ PI ∩M�g� the set 	x ∈ B � x
is M-generic for PI
 is I-positive.

Proof. Fix the model M and the filter g and for the sake of simplicity identify the
model M�g� with its transitive collapse. Let 
 be a Woodin cardinal of M�g�, and
in V find an M�g�-nonstationary tower M�g�-generic filter h and the corresponding
embedding j � M�g� → N . Now PI ∩ M�g��h� = P

M�g��h�
I since the poset PI is uni-

versally Baire and M�g��h� is a generic extension of an elementary submodel of a
large structure in V . The absoluteness of the definition also shows that PN

I = P
M�g��h�
I

since the models N and M�g��h� have the same reals. Choose an M�g�-inaccessible
cardinal � ∈ 
 and look into the model N . Since N �= j�P

M�g�
I � = PI is proper,

N �= C = 	r ∈ B � r is PI -generic for the model j′′�M�g� ∩ V��
 is I-positive. By
the absoluteness of the ideal I between the models N and M�g��h�, M�g��h� �= C
is I-positive. And by the universally Baire absoluteness for the model M�g��h�, the
set C is I-positive in V as desired.
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5.1.1 A topological restatement of the iteration

Definition 5.1.5. Let I be a �-ideal on a Polish space X and � ∈ �1 be a countable
ordinal. An I��-tree is a tree p ⊂ X<� satisfying the following requirements:

1. the tree p as well as the sets p � � = 	
x ∈ X<� � ∃
y 
x�
y ∈ p
 for all � ∈ � are
Borel;

2. for every ordinal � ∈ �−1 and every node t ∈ p∩X� the set 	y ∈ X � 
x�y ∈ p


of immediate successors is I-positive;
3. if 
xn � n ∈ � is an inclusion increasing sequence of nodes in the tree p whose

lengths are bounded below � then
⋃

n 
xn ∈ p.

I will study the forcing P� of I��-trees ordered by inclusion and compare it with
the countable support iteration R� of the forcing PI . Write 
ygen for the R�-generic
�-sequence of points in the space X, and for an tree p ∈ P� write ��p� be the
function with domain � defined by ��p���� = the canonical R�-name for the Borel
set 	x ∈ X � 
ygen � ��x ∈ ṗ
. The key theorem:

Theorem 5.1.6. Suppose that � ∈ �1 is a countable ordinal and I is an iterable
ideal on a Polish space X. Then

1. � � P� → R� is an isomorphism between P� and a dense subset of R� and for
every tree p ∈ P�, it is the case that ��p� �R�


ygen ∈ �ṗ�;
2. the collection �I��∗ = 	A ∈ X� � A is analytic and there is no tree p ∈ P� such

that �p� ⊂ B
 is an iterable �-ideal, so P� is a dense subset of P�I��∗ .

It follows immediately that writing 
xgen for the canonical P�-generic �-sequence
of points in the space X, the isomorphism � sends the P�-name 
xgen to the R�-name

ygen.

Proof. This is really just the proof of the preservation of properness under the
countable support iteration [64], Section III.3.3 in disguise. The argument proceeds
by simultaneous induction on �. Suppose that the induction hypothesis has been
verified up to �.

First verify that that the range of the function � is indeed a subset of R� and for
every tree p ∈ P� it is the case that ��p� � ẏgen ∈ �ṗ�. This is clear for � limit by the
definition of the iteration R�. At the successor stage � = �+1 note that p � � ∈ P�

and ��p � �� �R�

ygen � � ∈ �ṗ � ��. I just have to check that ��p � �� �R�

	x ∈
X � �
ygen � ���x ∈ �ṗ�
 
 I . To see this, let M be a countable elementary submodel
of a large structure and let 
y ∈ X� be an M-generic sequence for the poset R�

below the condition ��p � ��. By the induction hypothesis, M�
y� �= 
y ∈ p and by
an absoluteness argument 
y ∈ p. The set B
y = 	x ∈ X � 
y�x ∈ �p�
 is an I-positive
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Borel set with code in the model M�
y�, and by the ZFC-correctness or absoluteness
argument, M�
y� �= B
y 
 I . By the forcing theorem, M �= ��p � �� � B
ygen


 I , by
elementarity ��p � �� � B
ygen


 I , and ��p� ∈ R� as required.
Second, I must show that the range of the function � is dense in R�. In order

to do that, choose a countable elementary submodel M of a large enough structure
and by induction on � ∈ �+1 prove the foolowing statement.

(*) For every ordinal � ∈ �, every condition r ∈ R� ∩M and every p ∈ P� whose
branches are all M-generic sequences for the poset R� which meet the condition
r � �, there is a tree q ∈ P� whose branches are M-generic sequences for the
poset p� which meet the condition r, and such that p = q � �. Moreover for
every such a tree p, ��p� ≤ r � �, and for every such a tree q, ��q� ≤ r.

The argument is essentially identical to the proof in [64] and its details are
left to the reader. Let me just indicate the situation in which the third item of
the iterability definition is needed. It is in the successor stage of the induction.
Suppose that � = �′ + 1 are ordinals, r ∈ R� is a condition and p ∈ P�′ is a tree
whose branches are M-generic sequences for the poset R�′ which meet the condition
r � �′. Then the tree q = p∪ 	
x ∈ X� � 
x � �′ ∈ p and 
x is an M-generic sequence
meeting the condition r
 is in the poset P�. and B � � = A. The only nontrivial
observation in the proof of this statement is that for every sequence 
y ∈ �p� the set
	x ∈ r���/
y � r is M�
y�-generic for the poset P

M�
y�
I 
 is I-positive. But this is exactly

the contents of the condition (3).
The density of the range of the function � immediately follows. Suppose that

r ∈ R� is a condition. Let M be a countable elementary submodel of a large enough
structure containing the condition r, and use (*) with � = 0 and � = � to find the
tree p ∈ P� such that ��p� ≤ r.

The closure of the collection �I��∗ under countable unions has a similar proof.
Suppose that p ∈ P� is a tree and �p� = ⋃

n An is a countable union of analytic sets.
It will be enough to show that one of the sets An � n ∈ � contains all branches of
some I��-tree. By a Shoenfield absoluteness argument, �p� =⋃

n An holds in every
forcing extension, so ��p� � ∃n ∈ � ẏgen ∈ Ȧn. let r ≤ ��p� be some condition
deciding the value of n, let M be a countable elementary submodel of a large
structure, and use (*) with � = 0 and � = � to find a tree q ∈ P� whose branches
consist of M-generic points for the forcing R� meeting the condition r. For every
branch 
x ∈ �q� the forcing theorem implies that M�
x� �= 
x ∈ An, by absoluteness

x ∈ An, and so �q� ⊂ An as required.

The ZFC-correctness of the ideal �I��∗ is left to the reader.

The ideal �I��∗ is not quite the same as I�. Under mild assumptions on the ideal I ,
the two contain the same analytic sets though. This is the key point in understanding
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the countable support iteration. The theorems to this effect are proved in the three
following sections.

5.1.2 The Solovay model

Life in the Solovay model offers many advantages, even though (because?) choices
are somewhat limited there. One of the advantages is a very smooth statement of
the countable support iteration dichotomy theorem. This arised in my conversations
with Saharon Shelah in February 2002.

Theorem 5.1.7. (In the choiceless Solovay model) Suppose that I is a �-ideal
closed under wellordered unions on some Polish space X, and � is a countable
ordinal. The ideal I� is closed under wellordered unions and every I�-positive set
contains all branches of some I��-tree.

Proof. Let � be an inaccessible cardinal and V��� the related Solovay model. Let
I be a �-ideal closed under well-ordered unions. By a standard argument, it is
possible to assume that all the real parameters of the definition of the ideal I are
in V ; I will neglect these parameters in the sequel. Assume that � ∈ � is an ordinal
and A ⊂ X� is a set in V���. Working in the model V���, I will show that if the
set A is not I�-small, then it contains all branches of some I��-tree. By a standard
homogeneity argument I may assume that � ∈ �V

1 and the set A is definable as
A = 	
x ∈ X� � ��
x� t�
 from some parameter t in the ground model. Consider the
following strategy � for Player I in the iteration game: the strategy � applied to
a string 
y of Player II’s answers gives the set

⋃
�I ∩ ODV�
y��. Since the ideal I is

closed under well-ordered unions, this is a legal strategy for Player I. If the set A
is not I�-small, there must be a sequence in the set A which is a legal counterplay
against this strategy. This means that back in V there is a poset P of size < � and
a P-name 
x for an �-sequence of points in the Baire space such that P �“for every
� ∈ �̌, 
x��� 
 ⋃

�I ∩ODV�
x����; moreover Coll���< �� � ��
x� ť�”. I will show that
in this case there is an I��-tree q such that �q� ⊂ A.

Back to the model V���. Call a sequence 
y ∈ X≤� P-generic if there is a
V -generic filter g ⊂ P such that 
y ⊂ 
x/g. For such a sequence 
y and a condition
p ∈ P we will say that p is 
y-good if there is a V -generic filter g ⊂ P containing the
condition p such that 
y ⊂ 
x/g. An important observation is that for every ordinal
� ≤ � the set B = 	
y ∈ X� � p is 
y-good
 is Borel by Fact 1.4.8.

The following claim is reminiscent of the classical preservation theorems for
countable support iterations. Note that P is a countable set in the model V���.

Claim 5.1.8. For every ordinal � ≤ �, for every ordinal � ∈ �, every I��-tree q
whose branches are P-generic, and every Borel function f � �q� → P such that for
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every sequence 
y ∈ �q� the condition f�
y� is 
y-good, there is a I��-tree r whose
cofinal branches are P-generic such that q = r � � and for every sequence 
y ∈ �r�
the condition f�
y � �� is 
y-good.

Once the claim has been proved, we will apply it with � = � and � = 0 to get
an I��-tree q whose branches are all P-generic. A standard homogeneity argument
shows that �q� ⊂ A and the dichotomy follows.

The claim is proved by induction on the ordinal �. First the successor step.
Suppose the induction hypothesis holds at � and we want to verify it at � + 1
for some ordinal � ≤ �, an I��-tree q and a Borel function f � �q� → P. Use
the induction hypothesis to get a I��-tree q′ such that q = q′ � � and every branch

y ∈ �q� is P-generic and even f�
y � ��-good. Now consider the tree r whose branches
are exactly those sequences 
y ∈ X�+1 for which 
y � � ∈ q′ and 
y is P-generic and
even f�
y � ��-good. It is clear that q′ = r � �, r is Borel, and so in order to
conclude the induction step I just have to verify that for every sequence 
y ∈ �q′�
the set 	x ∈ X � 
y�x ∈ r
 is I-positive. But this is clear: this set is nonempty, it is
definable from parameters in the model V�
y� and all of its elements fall out of all
I-small sets definable from such parameters, by the choice of the forcing P and the
name 
x.

For the limit step, suppose that � is a limit of an increasing sequence of ordinals
��n � n ∈ ��, � ∈ �0 is an ordinal and q is a I��-tree and f � �q� → P is a Borel func-
tion as in the assumption of the claim. Let �On � n ∈ �� be an enumeration of open
dense subsets of the poset P in the ground model V , and by use the inductive hypoth-
esis on the ordinals �n repeatedly to construct a sequence �qn� fn � n ∈ �� such that

• qn is an I��n-tree, q = q0 � � and qm = qn � �m for m ∈ n;
• fn � �qn� → P are Borel functions such that for every sequence 
y ∈ �qn� the condi-

tions f�
y � �� ≥ f�
y � �0� ≥ · · · ≥ f�
y � �n� form a descending chain in the poset P;
• every sequence 
y ∈ �qn� is P-generic and in fact fn�
y�-good.

The construction is very easy to perform: at each number n ∈ � first apply
the induction hypothesis at �n to get a tree qn as asserted in the claim, and then
for every sequence 
y ∈ Bn let fn�
y� be some condition in the open dense set On

smaller than fn−1�
y � �n−1� for which 
y is good, say the first condition with this
property in some fixed enumeration of the poset P.

In the end, let r = ⋃
n qn. It is clear that r is an I��-tree. Moreover, every

sequence 
y ∈ �r� is P-generic and even f�
y � ��-good, as witnessed by the
V -generic filter g ⊂ P obtained from the descending sequence �fn�
y � �n� � n ∈ ��
of conditions in the poset P.

The closure of the ideal I� under well-ordered unions immediately follows.
Suppose that �A� � � ∈ �� is a well-ordered sequence of I�-small sets. By a
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standard argument I may assume that the sequence is definable from elements of
the ground model V . Note that then every single set on the sequence is definable
from such elements. The previous argument shows that Player I’s strategy in the
iteration game commanding him to play

⋃
�I ∩ ODV�
y�� whenever the play is in

the position where Player II created a sequence 
y, is winning for all the sets A�

simultaneously, therefore it is winning for their union.

5.1.3 �1
1 on �

1
1 ideals

The main virtue of the �1
1 on �

1
1 �-ideals from the point of view of this book is

that the countable support iteration dichotomy theorem is true for them in ZFC.
This arose in my conversation with Vladimir Kanovey in April 2002.

Theorem 5.1.9. Suppose that I is an iterable �1
1 on �

1
1 �-ideal on a Polish space

X and � ∈ �1 is a countable ordinal. Then every I�-positive analytic set contains
all branches of some I��-tree.

Proof. In order to simplify the notation, suppose that the ideal I is ligthface �1
1 on

�1
1, the space X is actually the Baire space ��, and for every real z let Uz denote

the �1
1�z� set

⋃
��1

1�z�∩ I� from Proposition 3.8.6.
Let � ∈ �1 be a countable ordinal, let a be a real number coding the ordinal � in

a suitable fashion, and let b be an arbitrary real. Let U�
a�b = 	
r ∈ X� � ∃� ∈ � 
r��� ∈

Ua�b�
r��
. It is clear that U�
a�b is a �1

1�a� b� set in the ideal I�. I will show that every
�1

1�a� b� set of �-sequences of reals is either a subset of U�
a�b (and so is I�-small)

or else it contains all branches of an I��-tree. The argument proceeds by induction
on the ordinal � for all reals a�b simultaneously.

First the successor stage of the induction. Let A ⊂ X�+1 be a �1
1�a� b� set

which is not a subset of U�+1
a�b . Subtracting this �1

1�a� b� set if necessary we may
assume that A is a nonempty �1

1�a� b� set disjoint from U�+1
a�b . Consider the set

Ā = 	
x ∈ X� � ∃y ∈ X 
x�y ∈ A
 ⊂ X�. It is not difficult to see that Ā is a nonempty
�1

1�a� b� set disjoint from U�
a�b. Therefore, by the induction hypothesis it contains all

branches of some I��-tree p̄. Also for every sequence 
x ∈ Ā the set 	y ∈ X � 
x�y ∈ A

is a nonempty �1

1�a� b� 
x� disjoint from the set Ua�b�
x, therefore I-positive, and thus
contains a Borel I-positive subset. Consider the countable support iteration �PI�

�+1

of the poset PI of length �+ 1; certainly �PI�
�+1 = �PI�

� ∗ ṖI . Define a condition
p in this two step iteration by p = �p̄� Ḃ� where Ḃ is a name for an arbitrary
Borel I-positive subset of the I-positive analytic set 	y ∈ X � 
x�

geny ∈ A
. Let M be a
countable elementary submodel of a large enough structure containing the condition
p, and use Theorem 5.1.6 to obtain an I��-tree q ⊂ X�+1 all of whose branches
are M-generic sequences meeting the condition p. For every sequence 
x ∈ �q�,
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M�
x� �= 
x ∈ A by the forcing theorem and V �= 
x ∈ A by the analytic absoluteness
between V and M�
x�. Thus q is the desired I��+1-tree with �q� ⊂ A.

The limit step is trickier. Let � = ⋃
n �n be a limit of an increasing sequence of

ordinals, and suppose that A ⊂ X� is a �1
1�a� b� set, which is not a subset of U�

a�b.
As in the previous paragraph we may assume that A is a nonempty set actually
disjoint from U�

a�b. Let T be a tree recursive in a�b that projects into the set A under
a suitable coding. For an integer n, a sequence 
x ∈ X�n , and a node t ∈ T of length
n let A�n� 
x� t� denote the set 	
y ∈ X�n+1−�n � there is a branch through the tree T
meeting the node t which gives rise to an �-sequence of which 
x�
y is an initial
segment
. Several observations are in order. First, the set A�n� 
x� t� ⊂ X�n+1−�n is
�1

1�
x�a�b� and disjoint from the set U
�n+1−�n


x�a�b
. Thus by the induction hypothesis, if

the set A�n� 
x� t� is nonempty, then it is I�n+1−�n -positive and contains all branches
of some I��n+1 −�n-tree. Moreover, if the set A�n� 
x� t� is nonempty and 
y is its
element, then there is a node t′ ∈ T of length n + 1 extending the node t such
that the set A�n+ 1� 
x�
y� t′� is nonempty. I must produce an I��-tree q such that
�q� ⊂ A. The countable support iteration of the forcing PI of length � is (naturally
isomorphic to) the full support iteration of length � whose n-th iterand is the partial
order Pn of Borel I�n+1−�n -positive subsets of X�n+1−�n by the induction hypothesis
and the iterability of the ideal I . Write Qn for the n-step iteration of Pm � m ∈ n
and 
xn ∈ X�n for its generic sequence. Define a condition p = �ṗn � n ∈ �� in the
iteration of length �, together with Qn-names �ṫn � n ∈ �� for nodes in the tree T
such that p � n = �ṗm � m ∈ n� �Qn

ṫ0 ⊂ ṫ1 � � � and A�n� 
xn� ṫn� �= 0. This is easy to
do by induction: just let ṗn be a name for some I��n+1 − �n-tree inside the set
A�n� 
xn� ṫn�, and ṫn+1 be a Qn+1-name for a node in the tree Ť extending ṫn such
that p � n+1 � �
xn+1� ṫn+1� ∈ Ť . Now let M be a countable elementary submodel of
a large enough structure and use Theorem 5.1.6 to find an I��-tree q all of whose
branches are M-generic sequences meeting the condition p. For every sequence

x ∈ �q� it is the case that M�
x� �= 
x ∈ Ȧ as witnessed by the branch

⋃
n tn ⊂ Ť , and

by analytic absoluteness 
x ∈ A. Thus �q� ⊂ A as desired.

Corollary 5.1.10. PI� is in the forcing sense equivalent to the countable support
iteration of PI of length �.

Corollary 5.1.11. The ideal I� is �1
1 on �

1
1, and every analytic I�-positive set has

a Borel I�-positive subset.

Proof. Let a be a real coding the ordinal �, and let b be an arbitrary real. The
proof of the lemma shows that a �1

1�a� b� subset of X� belongs to the ideal I� if
and only if it is a subset of the �1

1�a� b� set U�
a�b, which is a uniformly �1

1�a� b�
condition.
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As an interesting aside, note that the set U�
a�b constructed in the previous proof,

natural as it may be, is not equal to the union of all �1
1�a� b� sets in the ideal I�.

This union is actually properly smaller. To see this, consider the simplest case of
I = ctble, the ideal of countable sets, � = 2 and a�b = 0. Let A ⊂ X ×X be a
�1

1 set with the following frequently used universality property: for every �
1
1 set

B ⊂ X × X there is a point x ∈ X such that the vertical sections Ax and Bx are
equal. A moment’s thought will show that then there must be actually uncountably
many such points. Now let B be the union of all �1

1 subsets of X × X which
belong to the ideal I2. This is a �1

1 set, and by the definition of the ideal I2,
only countably many of its vertical sections are uncountable. Thus there must be
a point x ∈ X such that the vertical section Bx is countable, and is equal to the
section Ax. Now Ax is a countable �1

1�x� set of reals. As such it countains only
hyperarithmetic-in-x reals, but since the set of all such reals is properly �1

1�x�,
it also misses some of them. Let y be a hyperarithmetic-in-r real which does not
belong to the set Ax, and consider the pair �x� y�. Since y is hyperarithmetic in x,
�x� y� ∈ U 2

00. And since y 
 Ax = Bx, the pair �x� y� does not belong to any �1
1 set in

the ideal I2.

5.1.4 The universally Baire dichotomy

Now I will give a version of the dichotomy, which in the presence of large cardinals
is applicable to essentially any definable proper forcing adding a single real.

Theorem 5.1.12. (LC) Suppose that I is an iterable ideal on a Polish space X.
Whenever � ∈ �1 is a countable ordinal and A is an I�-positive universally Baire
set then A contains all branches of some I��-tree.

Proof. There are several lines of argument available at this point. The shortest one
will consider Proposition 3.9.13, Theorem 5.1.7, and universally Baire absoluteness
argument. Essentially for sentimental reasons I will give a proof that uses determi-
nacy of long games with real entries – this was the first proof I had in the spring of
2000. It also shows that inner models of ZF+DC+AD� containing all reals evaluate
the ideal I� correctly.

Let A ⊂ X� be a universally Baire set. The problem is that in general Player
I’s moves in the iteration game G�A� are rather arbitrary subsets of the space X;
thus the game has entries more complex than reals and the determinacy results of
Section 1.4.4 cannot be directly applied to it.

Consider a surrogate game H�A�. It is again played between Players I and II
for � many rounds. This time, at round � ∈ �, Player I starts, plays an I-positive
Borel set B� ⊂ X, Player II answers with a Borel I-positive subset C� ⊂ B�, and
finally Player I chooses a point x� ∈ C�. Player I wins if the �-sequence of his
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answers belongs to the set A. Under a suitable coding of Borel sets by reals, this
is a game of countable length with real entries and universally Baire payoff, and
therefore one of the players has a universally Baire winning strategy by Fact 1.4.3.
I will show that if Player I has a winning strategy in the game H�A� then he has
a winning strategy in G�A�, and if Player II has a winning strategy in the game
H�A� then the set A contains all branches of some I��-tree. This will complete the
proof. Thus there are two cases.

First, assume that Player I has a universally Baire winning strategy � in the
game H�A�; I must describe his winning strategy in the game G�A�. As the game
G�A� develops, he will simulate a play of the game H�A� according to the strategy
� on the side so that the �-sequences of points in the space X obtained in the two
plays are the same and:

• After Player II has completed his moves �x� � � ∈ �� up to an ordinal � ∈ �

Player I will have created the first � many rounds of the auxiliary run of the
game H�A� in such a way that the points played by Player II on the G and H

side coincide.
• At the round � of the game G he will play the set D� = X \⋃	C ⊂ X � some

Player II’s challenge on the H-side makes the strategy � answer with the set C
.
The set in this union is universally Baire and dense in the poset PI , therefore the
complement of its union is universally Baire and has no Borel I-positive subset.
By the second dichotomy of the ideal I it is an I-small set, and a legal move for
Player I on the G-side.

• After Player II responds with a real r� 
 D�, Player I will use the definition of the
set D� to find auxiliary moves B� ⊃ C� � x� on the H-side such that the move
C� follows the strategy � , and adds them to his auxiliary run of the game H�A�.

In the end, Player I wins the run of the game G�A� since he wins the auxiliary
run of the game H�A�.

Second, assume that Player II has a universally Baire winning strategy � in the
game H�A�. Write R� for the countable support iteration of the forcing PI of length
�, adding a generic �-sequence 
ygen ∈ X�. By induction on � ≤ � build conditions
p� ∈ R� and R�-names t� for partial plays of the game H�A� of length � observing
the strategy � which result in 
ygen as a sequence of Player II’s answers, such
that � ∈ � implies p� = p� � � and p� � t� = t� � �. After the induction has been
performed, just use Theorem 5.1.6 to find a countable elementary submodel M of a
large enough structure containing I�p��A�� and an I��-tree q whose branches are
M-generic sequences meeting the condition p�. By the forcing theorem applied in
the model M , for every sequence 
y ∈ �p� M�
y� �= t�/
y is a play along the strategy
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� which results in the sequence 
y. By the universally Baire absoluteness, t�/
y is
really such a play, and since the strategy � was winning for Player II, 
y ∈ A. Thus
�q� ⊂ A is the as required.

To perform the induction, note that at limit stage � there is no freedom of choice:
p� = ⋃

�∈� p� and t� is the name for the union of t� � � ∈ �. At the successor stage
� = � +1 move into a generic extension V�G�� where G� ⊂ R� is a generic filter
meeting the condition p� . Let B� ⊂ X be the Borel I-positive set dictated to Player
II as his move after the run t� by the strategy �. Let D� = 	x ∈ X � there is Player
I’s move C ⊂ B� which makes the strategy � answer with x
. Since the strategy �
is universally Baire, even the set D� is. Also, D� 
 I , in fact B� \D� ∈ I . To see
this, note that the universally Baire set B� \ D� does not have a Borel I-positive
subset, since such a set could be used as Player I’s move in the definition of the set
D� to produce an element of the obviously empty set D� ∩ �B� \D��; and use the
second dichotomy of the ideal I . Now D� ⊂ B� is a universally Baire I-positive set,
and so by the second dichotomy of the ideal I it has a Borel I-positive subset E�.
Let p� = p�

� Ė�, and let t� be a name for a partial run of the game H�A� following
the strategy � of the form t� = t�

� Ḃ�
� Ċ�ẋ where ẋ is the �-th generic point. Since

p� � ẋ ∈ Ė� ⊂ Ḋ�, such a run exists by the definition of the set D� and universally
Baire absoluteness. This completes the inductive step.

The dichotomy has corollaries similar to the previous one.

Corollary 5.1.13. (LC) PI� is in the forcing sense equivalent to the countable
support iteration of PI of length �.

Corollary 5.1.14. (LC) Suppose that Ay � y ∈ 2� is a universally Baire collection of
sets in the ideal I�. Then there is a universally Baire system of strategies �y � y ∈ 2�

witnessing this fact.

The following corollary is really a part of the proof of the theorem.

Corollary 5.1.15. (LC) Suppose that r ⊂ X<� is a universally Baire tree such
that every countable inclusion increasing sequence of nodes in r whose lengths
are bounded below � has an upper bound in r and every nonterminal node of r
branches into I-positively many immediate successors. Then there is an I��-tree p
such that p ⊂ r.

5.1.5 Laver forcing and large cardinals

The previous section is the real reason why the large cardinal assumptions figure so
prominently in this book. In order to prove that the dichotomy “every I�-positive
analytic set contains all branches of some I��-tree” holds in some model of set
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theory, it is enough to move to the Coll���< �� extension for some inaccessible
cardinal � and use Theorem 5.1.7. However, in order to show that the dichotomy
holds in every forcing extension (and that is how the dichotomy is used in the
main applications in Section 6.1), it is necessary to resort to either an absoluteness
argument or a determinacy argument such as the one in the proof of Theorem 5.1.12.
This increases the large cardinal strength of the dichotomy for some ideals I . In
view of Theorem 5.1.9 and Proposition 3.8.15, the simplest candidate for such an
increase in large cardinal strength is the Laver ideal. This section shows that indeed,
the validity of the dichotomy for the Laver ideal in all forcing extensions requires
large cardinals already for the case � = 2.

Theorem 5.1.16. Let I be the Laver ideal on ��. The following are equivalent:

1. for every set x, x# exists;
2. in every generic extension, every analytic subset of ����2 is either in the ideal

I2 or it contains an I� 2-tree.

Recall from Section 4.5.2 that the Laver ideal I is generated by the sets Ag =
	f ∈ �� � for infinitely many n ∈ �, f�n� ∈ g�f � n�
 where g � �<� → �. Such
functions g will be referred to as predictors and if f ∈ Ag then we will say that the
predictor g captures the function f .

Proof. Both directions are mildly challenging. For (1)→(2), I will need the
following claim.

Claim 5.1.17. Suppose that analytic determinacy holds. Every �1
2 set A ⊂ �� is

either in the Laver ideal or it contains all branches of a Laver tree.

Proof. Write A = proj�B� for some coanalytic set B ⊂ �� ×2�. Consider the game
G in which Player II starts with finite sequences t ∈ �<� and s ∈ 2<� of the
same length, and after that, Player I and II alternate, Player I indicates a number
ni and Player II responds with a number mi > ni and a bit bi. In the end, write
x = t�m�

0 m�
1 · · · ∈ �� and y = s�b�

0 b�
1 · · · ∈ 2�. Player II wins if �x� y� ∈ B. This

is a game with analytic payoff for Player I and therefore it is determined. The claim
will follow once I show that if Player I has a winning strategy then A ∈ I , and if
Player II has a winning strategy then A contains all branches of a Laver tree. This
is a quite standard argument though, essentially literally contained in [4].

Now suppose that sharps exist, move to an arbitrary generic extension and fix
an analytic set A ⊂ ����2. Consider the set A′ = 	x ∈ �� � Ax 
 I
. The Laver
ideal is ZFC-correct by the last item of Theorem 4.5.6 and the construction in
Section 4.5.2. By Proposition 2.1.23, the set A′ ⊂ �� is �1

2. Analytic determinacy
holds and therefore the set A′ is either in the ideal I or it contains all branches
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of some Laver tree T ⊂ �<�. In the former case clearly A ∈ I2. In the latter case,
let me first argue that T � Aẋgen


 I . To see this, let M be a countable elementary
submodel of a large structure and x ∈ T be an M-generic point for the Laver
forcing. Then Ax 
 I and since the Laver ideal is ZFC-correct, M�x� �= Ax 
 I .
The forcing theorem and an elementarity argument then show that T � Aẋgen


 I .
Let C ⊂ ����2 ×�� be a closed set projecting to A. By the continuous reading of
names for Laver forcing in the Laver extension, T �there is a Laver tree Ṡ ⊂ �
and a continuous function ḟ � S → �� such that ∀y ∈ �S� �ẋgen� y� f�y�� ∈ C. Let M
be a countable elementary submodel of a large structure, find a Laver tree T ′ ⊂ T
consisting of M-generic points for the Laver forcing, and for each point x ∈ �T ′�
consider the Laver tree Ṡ/x ⊂ �<�. By a wellfoundedness absoluteness argument in
the model M�x�, for every branch y ∈ �Ṡ/x� it is the case that �x� y� �ḟ /x��y�� ∈ C
and therefore �x� y� ∈ A. Thus, the set A contains all the branches of the I� 2-tree p
defined by �x� y� ∈ p ↔ x ∈ T ∧y ∈ Ṡ/x.

To show (2)→(1), I will argue for the contrapositive. Since there is a set a whose
sharp does not exist, by the covering theorem there must be a cardinal � > �a� of
cofinality � whose successor is computed correctly in L�a�. I will prove that in a
suitable generic extension collapsing � and preserving its successor, the dichotomy
fails. This follows from three quite independent observations, interesting in their
own right.

Claim 5.1.18. There is a Borel set B ⊂ 2� ×�� such that the set 	x ∈ 2� � Bx 
 I

is �1

1-complete.

This follows from the proof of Proposition 3.8.15 and the fact that Laver forcing
adds a dominating real.

Claim 5.1.19. Suppose that x ∈ 2� and �� ∩L�x� is a dominating set. Then there
is a �1

1�x� subset of �� which is I-positive and contains no Laver subtree.

Proof. Choose an infinite binary sequence x ∈ 2� and consider the set A of all
functions z ∈ �� such that there exists a predictor g ∈ L�z

1
�x� which captures the

function z.
First, the set A is �1

1�x�: z ∈ A if and only if there exists a linear ordering o
recursive in z which is a wellordering and such that every model of V = L�x� whose
ordinals are isomorphic to o contains a predictor capturing z.

Second, if the reals of L�x� are dominating, then the set A is I-positive. For
choose an arbitrary predictor g. Fix a recursive partition 	Cn � n ∈ �
 of � into
infinite sets, and using the assumption, find a predictor g′ ∈ L�x� such that for every
sequence t ∈ �<�, g�t� ∈ g′�t� and moreover g′�t� contains some element of the
set C0 not in g�t�. Now it is easy to construct a function z ∈ �� such that for all
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numbers n z�n� 
 g�z � n�, z�n� ∈ g′�z � n� ↔ z�n� ∈ C0 and there are infinitely
many such numbers n, and the set 	m > 0 � rng�z�∩Cm �= 0
 is an arbitrary subset
of � \ 	0
, in particular a set coding an ordinal � such that g′ ∈ L��x�. Thus the
function z avoids the predictor g and belongs to the set A as witnessed by the
predictor g′.

Finally, the set A does not contain a Laver-perfect subset. Suppose T is a Laver
tree. Let M be a countable elementary submodel of a large enough structure contain-
ing x and T , and let z ∈ T be an M-generic Laver real. Clearly, �z

1 ∈ �M
1 = �

M�G�
1 and

so L�z
1
�x� ⊂ M . Thus the function z avoids all the predictors in L�z

1
�x� and as such it

is a branch of the tree T which does not belong to the set A, proving the claim.

The set A deserves a further comment. Its variations for the countable ideal
and the bounded ideal are the largest �1

1�x� sets without a perfect (superperfect,
respectively) subset. However, there is no largest �1

1�x� set without a Laver-perfect
subset. For suppose Y is such a set. Then for every tree T ⊂ �<� recursive in
the real x, T is wellfounded iff the �1

1�x� set BT is not in the ideal I (where the
set B is defined in Claim 5.1.18) iff BT \Y �= 0 (since Borel I-positive sets have
Laver subtrees). However, this gives a �1

1�x� definition of the properly �1
1�x� set

of wellfounded trees recursive in x, contradiction.

Claim 5.1.20. Suppose that there is a set whose sharp does not exist. Then there is
a forcing extension in which there exists a real x such that �� ∩L�x� is dominating.

Proof. This is a rather standard covering lemma argument. Let a be a set whose
sharp does not exist. Let � > �a� be a cardinal which is a limit of successive
cardinals �n � n ∈ �; the model L�a� computes the successor cardinal �+ correctly.
Collapsing the minimum of the cardinals �n � n ∈ � to ℵ0 I may assume that in fact
� = ℵ�. Let 	Cn � n ∈ �
 be a partition of � into infinite sets. Consider the partial
order P consisting of all trees T whose nodes are partial functions from � to � such
that (i) every function t ∈ T has domain some m ∈ � and maps Cn ∩m into �n in
an order-preserving way for all n ∈ �, and (ii) for all t ∈ T , all n ∈ � and all � ∈ �n

there is s ∈ T such that t ⊂ s and � ∈ max s′′Cn. The set P is ordered by inclusion.
It is quite clear that the forcing P adds a function ḟgen � � → � such that ḟgen � Cn

is an increasing cofinal sequence in �n, and so P � ��̌� = ℵ0. Let ẋ be a name for
the real in the generic extension which codes a wellordering on � of ordertype �̌,
together with the function ḟgen and the set a. I will show that the reals of L�x� are
dominating in the generic extension.

Well, assume that T ∈ P and T � ġ ∈ �� is a function. A standard argument can
be employed to give a fusion sequence T = T0 ⊃ T1 ⊃ T2 ⊃ � � � together with sets
A0�A1� � � � so that
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• A0 = 	0
, for each number n there is kn such that An is exactly the set of all
nodes of the tree Tn with domain kn;

• whenever n > 0 then the set An has size ℵn and for every node t ∈ An the tree
Tn � t decides the value of ḟgen�ġ�ň+1�-th element of the set Čn+1�;

• for every number n, every node t ∈ An, every m ∈ n and every � ∈ �n there is a
node s ∈ An+1 such that � ∈ max s′′Cm.

Let S = ⋂
n Tn. The third item shows that S ∈ P and the second item provides

for a function h ∈ ∏
n �n such that S � ∀n > 1 ḟgen�ġ�ň�-th element of the set

Čn� ∈ ȟ�n�. By the covering lemma, there is a set b ∈ L�a� of size ℵ1 covering the
range of the function h. Let ė ∈ �� be a function in the extension defined by ė�ň� =
the least number m such that sup�b̌ ∩�n� ∈ ḟgen�m-th element of the set Cn�, for
n > 1. Then clearly the condition S forces ė ∈ L�ẋ� and for all n > 1, ė�n� > ġ�n�
as desired, proving the claim.

The theorem now easily follows. Suppose that there is a set whose sharp does
not exist. Then there is a forcing extension V�G� containing a point x ∈ 2� such
that �� ∩L�x� is dominating. Work in V�G�. Let A ⊂ �� be a bad �1

1�x� set from
Claim 5.1.19 and let B ⊂ 2� × �� be a bad Borel set from Claim 5.1.18. Since
the set B̄ = 	x ∈ R � Bx 
 I
 is �1

1-complete, there is a Borel function f � �� → 2�

reducing A to B̄, that is, y ∈ A iff f�y� ∈ B̄. Let C ⊂ �� ×�� be the set of all pairs
�y� z� such that �f�y�� z� ∈ B. I claim that the set C witnesses the statement of the
theorem.

First of all, the set C is I2-positive, and in fact Player II has a winning strategy
in the iteration game of length 2. If Player I plays some I-small set B0 in the first
round, then II can choose a function y0 ∈ A \ B0 since the set A is I-positive.
In the second round, after Player I’s move B1 Player II can choose a point
z 
 B1 such that �f�y�� z� ∈ B since the set of all such points is positive by the
definitions.

Second, there is no Borel I-perfect subset D ⊂ C. If D were such a subset, then
D � 1 = 	y ∈ �� � ∃z �y� z� ∈ D
 would be an I-positive analytic subset of the set A.
However, analytic I-positive sets have Laver-perfect subsets, while the set A has
no such a subset.

5.2 Side-by-side product

The operation of side-by-side product of partial orders is much harder to handle
than that of the countable support iteration. The basic questions remain open in
their full generality.
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Question 5.2.1. Suppose P�Q are universally Baire proper forcings. Is P × Q
proper?

Question 5.2.2. Suppose I� J are �-ideals on Polish spaces X�Y such that the
forcings PI , PJ are proper. Find a description of an ideal K on X × Y such
that PI × PJ is in the forcing sense equivalent to PK , without using the forcing
relation.

While these two question may sound disjoint, in fact they should be considered
together. Regarding the second question, there are several natural candidates for
the side-by-side product of ideals:

Definition 5.2.3. Suppose that I� J are �-ideals on Polish spaces X�Y respectively.
The symbol I ×J stands for the collection of those Borel sets D ⊂ X ×Y which do
not contain an positive Borel rectangle: a set of the form B×C where B ⊂ X�C ⊂ Y
are Borel I-positive, resp. J -positive sets. If I ×J is a �-ideal then I will say that
the ideals I� J have the rectangular Ramsey property, MRR�I� J�. Similarly for a
product of countably many ideals.

The problem with the above definition is that in many cases it does not yield
a �-ideal as investigated in Section 3.11. Nevertheless, if I × J is a �-ideal, then
clearly PI × PJ is naturally isomorphic to a dense subset of PI×J . We will see
that this is indeed frequently the case. The investigation of the forcing properties
of the product is then an exercise in rectangular Ramsey theory and canonization
theorems. There are some natural competing candidates for the definition of the
cross-product ideal.

Definition 5.2.4. Suppose that I� J are �-ideals on Polish spaces X�Y . The �-ideal
I ⊗ J on X ×Y is �-generated by Borel sets of two kinds: the Borel sets with all
vertical sections in the ideal J , and the Borel sets with all horizontal sections in
the ideal I .

The comparison of the cross-products I ×J , I ⊗J , and PI ×PJ is quite difficult in
general.

Fact 5.2.5. [83], 2.3.57. Let I be the E0-ideal on 2�. Then I × I = I ⊗ I [65]. Let
J be the ideal of countable sets. Then J × J �= J ⊗ J .

Neither statement is easy to prove. The proof of the first sentence uses effective
descriptive set theory. To prove the second sentence, Shelah claims in [65], Section
4 to have a consistent example of an F� -set containing an ℵ2 ×ℵ2 rectangle but no
rectangle with perfect sides. Such a set is in the ideal J × J but not in J ⊗ J .
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5.2.1 Preservation of category basis

There is at least one class of cases in which I have essentially full information.

Theorem 5.2.6. [86] (LC) Suppose that In � n ∈ � is a collection of universally Baire
ideals whose quotient forcings are proper and preserve category basis. Then their
countable support side-by-side product is a category basis preserving proper forcing
and the collection In � n ∈ � has the rectangular Ramsey property. If the �-ideals
PIn

� n ∈ � are �1
1 on �

1
1 then the large cardinal assumption is not necessary. In the

latter case the product ideal is �1
1 on �

1
1 as well and it satisfies the third dichotomy.

The case of uncountable side-by-side product is then handled using the techniques
of Section 5.5.

Proof. Given the results of Section 3.10.10, this is just a simple fusion argument.
For simplicity I will deal with the product of two forcings PI and PJ , with �-ideals
I� J on Polish spaces X�Y respectively. I will call a set B×C ⊂ X×Y where B ∈ PI

and C ∈ PJ a block. Consider the game G on the product poset defined in a manner
similar to the category base game: first Player II indicates a block pini and then
the two players alternate, Player I indicating a block pn and Player II answering
with a block qn ⊂ pn. Moreover, before some rounds n0 ∈ n1 ∈ � � � Player I raises
a flag; we agree that n0 = 0 by default. Player I wins if the result of the play, the
set 	�x� y� ∈ pini � ∀i ∈ �∃n ni ≤ n < ni+1 ∧�x� y� ∈ qn
 contains a block.

Claim 5.2.7. Player I has a winning strategy in the game G.

Proof. Use Theorem 3.10.24 to find winning strategies ��� for Player I in the
category base games associated with the posets PI�PJ . I will fuse them to obtain a
winning strategy � for Player I in the game G. Write pini = Bini ×Cini, pn = Bn ×Cn

and qn = B′
n ×C ′

n for the blocks played during the game G. The strategy � is uniquely
given by the following demands on the moves it produces:

• the play b = Bini�B0�B′
0�B1�B′

1� � � � follows the strategy � . Let 0 = l0 < l1 < l2 <

� � � be the natural numbers such that the strategy � calls stops to rounds in the
play b just before playing Bl1

�Bl2
� � � �

• the play c = Cini�C0�C ′
l1−1�Cl1

�C ′
l2−1�Cl2

� � � � follows the strategy �;
• for every number k 
 	li � i ∈ �
 the set Ck is just C ′

k−1; this implies that moves
of Player II in the play c are legal in the category basis game;

• let 0 = m0 < m1 < m2 < � � � be the natural numbers such that the strategy � raises
the flag in the play c just before playing Cm1

�Cm2
� � � � . Thus 	mj � j ∈ �
 ⊂
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	li � i ∈ �
. Player II raises the flag in the play of the game G just before the
moves indexed by mj � j ∈ �.

It is not difficult to see that if B ∈ PI is the result of the play b and C ∈ PJ is the
result of the play c, then the result of the play of the game G observing the above
demands contains the block B×C and therefore Player I won.

It now follows immediately that I ×J is a �-ideal. Let B×C ⊂ X×Y be a Borel
rectangle with positive sides, decomposed into a countable union B ×C = ⋃

m Dm

of Borel sets. It is enough to show that one of the sets Dm contains a rectangle with
positive sides.

Write ẋgen� ẏgen for the PI ×PJ -generic pair of points. Note that B ×C � ẋgen ∈
B� ẏgen ∈ C, since these points are PI and PJ -generic respectively. By an absoluteness
argument, there is a rectangle B0 ×C0 ⊂ B ×C which forces �ẋgen� ẏgen� ∈ Ḋm for
some definite number m ∈ �. I claim that the set Dm contains a Borel rectangle
with positive sides.

To see this, let M be a countable elementary submodel of a large enough structure
containing the rectangle B0 ×C0, the set Dm, as well as a winning strategy � for
Player I in the game G. Enumerate all open dense subsets of the poset PI ×PJ in
the model M as 	Ei � i ∈ �
 and simulate a run x of the game G against the strategy
� with the initial move B0 ×C0 and such that all its moves are in the model M and
during the i-th round Player II chooses only sets from the open dense set Ei. The
result of the game contains some rectangle B1 ×C1. I claim that B1 ×C1 ⊂ Dm; this
will complete the proof.

Let x ∈ B1� y ∈ C1 be points. It is easy to check that the collection of all rectangles
in the model M containing this pair is a filter on the poset �PI ×PJ�∩M . By the
simulation above, this filter is M-generic. By the forcing theorem applied in the
model M , M�x� y� �= �x� y� ∈ Dm, and by an absoluteness argument �x� y� ∈ Dm. So
B1 ×C1 ⊂ Dm as desired.

Finally I am ready to argue that PI × PJ is a proper forcing preserving cat-
egory basis. It is clear that the poset PI × PJ naturally densely embeds into
PI×J , the game G is just the category game under another name, and Player
I has a winning strategy in it. A reference to Theorem 3.10.21 concludes the
argument.

To handle the ZFC case for �1
1 on �

1
1 ideals, first observe that Theorem 3.10.24

provides the winning strategies in the category basis game for Player I in ZFC,
and therefore the above argument can be performed without any reference to large
cardinals. For the third dichotomy note that the above argument in fact shows
that the collection K of analytic subsets of X × Y containing no Borel rectangle
with positive sides is a �-ideal. By Theorem 3.8.9 this is a �1

1 on �
1
1 ideal.
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Every analytic set in a �1
1 on �

1
1 ideal has a Borel superset in the ideal, therefore

K = I × J and the theorem follows.

5.2.2 Asymmetric theorems

The asymmetric product theorems (those in which there are different assumptions
on the ideals entering the product) offer a veritable labyrinth of possibilities. The
reader should look back to Section 3.11 to see that the rectangular Ramsey properties
fail in a number of cases. Very many cases remain open though.

Theorem 5.2.8. (LC) Suppose that I� J are universally Baire ideals on the respec-
tive Polish spaces X�Y such that the forcings PI�PJ are proper and PI preserves
category bases and PJ preserves Baire category. Then the forcing PI ×PJ is proper,
it preserves Baire category, and MRR�I� J� holds.

Proof. As in the previous proof, call a Borel rectangle B ×C ⊂ X ×Y a block if
B 
 I and C 
 J . Consider the game G between Players I and II in which Player
II starts and indicates some block pini, and then the two players alternate, Player I
indicating blocks pn and Player II responding with blocks qn ⊂ pn. Player I wins
if the result of the game, the set 	�x� y� ∈ pini � ∃�n �x� y� ∈ qn
, contains a block.
I will show that Player I has a winning strategy in this game. The theorem then
follows by the same argument as in the previous section.

Use Theorem 3.10.24 to find a winning strategy � for Player I in the category
basis game associated with the forcing PI . Use Theorem 3.10.21 to find a winning
strategy � for Player I in the category game associated with the forcing PJ . The
winning strategy � for Player I in the game G is a fusion of the strategies ���.
Writing pini = Bini ×Cini, pn = Bn ×Cn, and qn = B′

n ×C ′
n, the strategy � is fully

determined by the following demands:

• the sets Bini�B0�B′
0�B1�B′

1� � � � form a play b in the category base game observing
the strategy �;

• writing 0 = n0 ∈ n1 ∈ n2 ∈ � � � for the rounds after which Player I raised the flag in
the play b of the category base game,the play Cini� C0, C ′

n1
, Cn1+1, C ′

n2
, Cn2+1 � � �

form a play c of the category game observing the strategy �;
• at rounds indexed by m 
 	ni � i ∈ �
 Player I puts Cm+1 = C ′

m–this implies that
the moves of Player II in the previous item were legal in the category game.

In the end, let B ∈ PI be the result of the play b and let C ∈ PJ be the result
of the play c. It is immediate that the result of the play of the game G in which
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Player I follows the above demands contains the block B×C and therefore Player I
wins.

Note that the statement parallel to the previous theorem only replacing category
with Lebesgue measure is false. Consider the product of Laver and Silver forcing.
Laver forcing preserves outer Lebesgue measure and Silver forcing preserves mea-
sure basis. However, Silver forcing adds a splitting real and therefore the rectangular
property fails as shown in Example 3.11.13. Nevertheless, the product forcing is
proper, since Laver forcing is embeddable into a �-closed*�-centered iteration.

Theorem 5.2.9. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X, � a capacity on a Polish space Y and

1. PI preserves Baire category;
2. � is either subadditive outer regular stable capacity or a pavement capacity;
3. PI � every subset of the space Y can be covered by a ground model coded set

of arbitrarily close capacity.

Then MRR�I� I�� and the forcing PI�
×PI is proper. Moreover, if the forcing PI is

bounding then so is the cross-product.

The large cardinal assumption can be eliminated in a large class of cases. I need a
winning strategy for Player I in the Baire category game, which is available in ZFC
if the forcing is in addition bounding and the ideal is �1

1 on �
1
1 by Theorem 3.10.21. I

also need the capacity � to remain continuous in increasing unions in the extension,
which is implied by ZFC-correctness of the capacity �, or typically it follows from
a formal ZFC proof of the continuity.

Proof. First argue that for every set B ∈ PI�
in the ground model and every open

dense set D ⊂ PV
I�

in the PI -extension there is a countable set D′ ⊂ D consisting
of subsets of B such that ��B� = ��

⋃
D′�. This is a consequence of the second

and third items only. Work in the PI -extension, let M be a countable elementary
submodel of a large enough structure, and let D′ = 	C ∈ D ∩ M � C ⊂ B
; I will
prove that the set D′ ⊂ D is as required.

Suppose first that � is a pavement submeasure and for contradiction assume that
��B� > ��

⋃
D′�. Use the third item to find a ground model set a ⊂ U of pavers

such that
⋃

D′ ⊂ ⋃
a and �u∈U w�u� < ��B�, where U is the countable collection

of Borel pavers and w the associated weight function used to build the capacity
�. Find a set C ∈ D below the ground model coded �-positive set B \⋃a. Find
a finite set a′ ⊂ a such that �u∈a\a′w�u� < ��C�. Use an elementarity argument to
show that there is in the model M a set C ′ ∈ D, C ′ ⊂ B\⋃a′, ��C ′� > �u∈a\a′w�u�.
The set C ′ ∈ D′ is not covered by the set

⋃
a, a contradiction.
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The proof for the case of subadditive outer regular stable capacity � is similar.
Suppose for contradiction that ��B� > ��

⋃
D′�. Use the third item to find an open

set O in the ground model such that
⋃

D′ ⊂ O and ��O� < ��B� and find a set
C ∈ D below the �-positive ground model set B \ Õ. The basic property of the
tilde operation implies ��O ∪C� > ��O�. Use the continuity of the capacity � in
increasing unions to find a basic open set P ⊂ O such that ��P ∪C� > ��O�. Use
an elementarity argument to find a set C ′ ∈ M ∩ D such that ��P ∪ C ′� > ��O�.
Then the set C ′ ∈ D′ is not covered by the set O, a contradiction.

In both cases note that in the PI -extension, since the function � remains a
capacity, for every condition B ∈ PV

I�
and every open dense set D ⊂ PV

I�
and every

� > 0 there is a finite collection D′ ⊂ D consisting of subsets of B such that
��B� < ��

⋃
D′� + �. To restate this in the context of the product forcing, for

every condition �A�B� ∈ PI × PI�
and every open dense set E ⊂ PI × PI�

and
every real number � > 0 there is a condition A′ ⊂ A and a finite collection D′ of
subsets of B such that ��B� < ��

⋃
D′�+� and for every B′ ∈ C ′ it is the case that

�A′�B′� ∈ E.
The proofs of properness and the rectangular Ramsey property are now handled

in one scoop. Suppose A�B are Borel I� I�-positive subsets of the spaces X and
Y respectively, let f � A × B → � be a Borel function, and let M be a countable
elementary submodel of a large enough structure. I will find Borel I� I�-positive
respectively sets A� ⊂ A and B� ⊂ B such that the rectangle A� ×B� consists of
M-generic points and the function f is constant on it. To do this, work in the model
M and find an I-positive Borel set A0 ⊂ A and a �-positive compact set B0 ⊂ B
such that the pair �A0�B0� forces in the product forcing the f -value of the generic
pair to be some fixed number n ∈ �, and find a winning strategy � for Player I in
the category game associated with the forcing PI . Enumerate the open dense subsets
of the product forcing in the model M by Ei � i ∈ �, let qi � i ∈ � be a decreasing
sequence of rational numbers smaller than ��B0� which converges to a nonzero
number, and construct Borel I-positive sets Ai ⊂ X�Ai ∈ M and Borel I�-positive
sets Bi ⊂ Y�Bi ∈ M such that

• there are sets A′
i � i ∈ � such that the sequence pini = A0�A′

1�A1�A′
2�A2 � � � is a

play according to the strategy � , in particular Ai ⊂ A′
i;

• B0 ⊃ B1 ⊃ � � � are compact sets and for every number i ∈ � it is the case that
��Bi� > qi and there is a finite collection Di ∈ M such that Bi = ⋃

Di and for
every set C ∈ Di, �Ai�C� ∈ ⋂

j∈i Ej .

The previous paragraph shows that the inductive step of the construction can be
performed. In the end, let A� = 	x ∈ A0 � ∃�n x ∈ An
 and B� = ⋂

n Bn. The set
A� is the result of the play following the strategy � constructed in the previous
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paragraph, so it is I-positive. The set B� has capacity ≥ inf i qi since it is an
intersection of a decreasing collection of compact sets of capacity at least that.
Every point �x� y� ∈ A� ×B� is M-generic for the product poset as the construction
immediately shows. By the forcing theorem then, for every point �x� y� ∈ A� ×B� it
is the case that M�x� y� �= f�x� y� = n and by an absoluteness argument f�x� y� = n.
This concludes the proof of properness and the rectangular Ramsey property.

Finally, the above proof shows that the forcing PV
I�

is bounding in the
PI -extension. Thus if the forcing PI is bounding then so is the cross-product.

Corollary 5.2.10. (LC) If I is a �-ideal on a space X such that PI preserves outer
Lebesgue basis and � is either a strongly subadditive stable capacity or a pavement
capacity on a Polish space Y then MRR�I� I�� and the forcing PI�

×PI is proper.
In fact the product forcing is bounding and in the case of a strongly subadditive
capacity it preserves outer Lebesgue measure.

Proof. The first step in the argument is the verification of the last item of the
assumptions of the theorem. I will consider the case of a strongly subadditive
capacity �, the case of pavement capacities is similar. Suppose in the PI exten-
sion, O ⊂ Y is an open set of �-mass < �. For a given real number 
 > 0 I
must find a ground model coded open set P of mass < � + 
 such that O ⊂ P.
Let O ∈ V be a countable basis of the space Y closed under finite intersec-
tions and unions and consider the tree T of all finite sequences t of basic
open sets such that ��t�0�� < �, and n ∈ m ∈ dom�t� implies t�n� ⊂ t�m� and

��t�m�� < ��t�n�� + 
 · 2− n2�n+1�
2 . There is a path p through the tree T such that

O = ⋃
rng�p�. Since the forcing PI preserves outer Lebesgue measure basis, by

[2], 2.3.12 there is a subtree S ⊂ T in the ground model such that every node of S
has at most 2n immediate successors and p is a path through the tree S. Let P be
the union of all open sets that occur in the range of some sequence in the tree S.
A simple exercise in strong subadditivity shows that ��P� < �+
, and certainly
O ⊂ P.

Towards the proof of preservation of outer Lebesgue measure � on 2�, suppose
that � is a strongly subadditive capacity and B × C ⊂ X × Y is a rectangle with
I- and �-positive sides respectively, � > 0 is a real number and D ⊂ �B×C�×2� is
a Borel set with vertical sections of Lebesgue measure ≤ �. I must prove that the set
Z = 	z ∈ 2� � B×C � ž ∈ Ḋẋgen�ẏgen


 has outer Lebesgue measure ≤ �. Use Choquet’s
theorem 4.3.6(2) to find a measure � ≤ � on the space Y which assigns a nonzero
mass to the set C. For every point x ∈ B let Ex = 	z ∈ 2� � ��	y ∈ C � z 
 Dx�y
� = 0
.
The usual Fubini theorem shows that the set ��Ex� ≤ �. Choose a positive real
number 
 > 0. Since the forcing PI preserves outer Lebesgue measure basis,
there is an I-positive set B1 ⊂ B and an open set O ⊂ 2� of outer Lebesgue
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measure < �+
 such that ∀x ∈ B1 Ex ⊂ O. I will be done if I prove that Z ⊂ O.
Suppose z 
 O. To show that z 
 Z, find a positive real number � > 0 such that
the set B2 = 	x ∈ B1 � ��	y ∈ C � z 
 Dx�y
� > �
 is still I-positive. Since the
forcing PI preserves outer Lebesgue measure basis, there is a Borel I-positive set
B3 ⊂ B2 and a set P ⊃ C such that ��P� < ��C�−� and for every point x ∈ B3,
	y ∈ C � z ∈ Dx�y
 ⊂ P. Now consider the rectangle B3 × �C \ P�. The set C \ P
has �-measure at least � and therefor it is �-positive. Also, for no points x ∈ B3

and y ∈ C \ P it is the case that z ∈ Dx�y and so B3 × �C \ P� � ž 
 Dẋgen�ẏgen
as

required.

Corollary 5.2.11. If � is a Ramsey capacity and either strongly subadditive stable
capacity or a pavement capacity and I is the �-compact ideal on the Baire space
then MRR�I� I�� and the forcing PI ×PI�

is proper.

This now immediately follows from the last item of Theorem 4.3.13 and the fact
that Miller forcing has the Laver property.

Theorem 5.2.12. (LC+CH) Suppose that I is a universally Baire �-ideal such that
PI is a proper forcing. The following are equivalent:

1. PI is bounding and does not add a splitting real.
2. Let J be the Laver ideal. Then MRR�I� J� and the forcing PI ×PJ is proper.
3. Let K be the Mathias ideal. Then MRR�I�K� and the forcing PI ×PK is proper.

This follows immediately from Example 3.11.13 and the fact that both Laver
forcing and Mathias forcing embed into a �-closed*�-centered iteration. Note that
the forcing PI remains proper in the �-closed extension by Corollary 2.2.9, and
after forcing with PI the �-centered forcing remains c.c.c.

5.3 Unions of �-ideals

One operation on �-ideals that does not seem to have a convenient translation into
the standard forcing terms is the union. Suppose that I� J are �-ideals on the same
Polish space X and let K be the �-ideal generated by their union. Thus the forcing
PK adds a point in the space X that simultaneously falls out of all ground model
I-small and J -small sets, a feat that may not be achievable by any combination of
iteration and product of the forcings PI�PJ .

Theorem 5.3.1. Suppose that � is an outer regular subadditive stable capacity and
� is a pavement submeasure on a Polish space X. Let K be the �-ideal generated
by the union I� ∪ I�. Then
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1. the forcing PK is proper;
2. the ideal K satisfies the third dichotomy;
3. in the Solovay model or under ZF+DC+AD+, the ideal I is closed under

wellordered unions and satisfies the first dichotomy.

I must rush to assure the reader that none of the results in the above
items seem to follow from some more general results. Perhaps surprisingly, I
do not know in general if the properness is preserved under unions, if the
third dichotomy is preserved under unions, or if the closure under wellordered
unions is preserved under unions. The theorem can be generalized much further
though, as will be immediately clear from the proof. It is possible to combine
any countable number of pavement submeasures, a finite number of strongly
subadditive capacities, a countable number of ideals generated by closed sets,
and a single Hausdorff submeasure, and the items (1–3) above will still be
satisfied.

Regarding the particular situation described in the theorem, it is clear that K = I�,
where � = � ∧ � is the meet of the submeasures � and � defined in Defini-
tion 4.3.14. Proposition 4.3.15 then shows that if � is a Ramsey capacity (such as is
the case in Section 4.3.5) then also � is a capacity and the forcing PK is bounding.
If in addition the capacity � is Ramsey then even � is Ramsey and the forcing
PK does not add splitting reals. The items (2) and (3) above can be improved to
include the submeasure � in its statements, for example (2) can be strengthened to
every analytic set having a Borel subset of the same �-mass.

Proof. First fix some relevant objects. Let O be some countable basis of the Polish
space X closed under finite unions, let U be a countable set of Borel subsets of
the space X and w � U → �+ be a weight function generating the submeasure �.
Finally, fix some Borel bijection f � 2� → X.

Suppose that P is a forcing adding an element ẋ of the Polish space X. Consider
the game G between Players I and II in which Player I starts with a condition
pini ∈ P and Player II answers with a positive real number �ini > 0. After that, at
round n Player I indicates an open dense set Dn ⊂ P and a basic open set On and
a finite set an ⊂ U so that

• ��On� < �ini��u∈an
w�u� < �ini;

• O0 ⊂ O1 ⊂ � � � and ��On+1� < ��On�+2−n;
• a0 ⊂ a1 ⊂ � � � and�u∈an+1\an

< 2−n.

Player II counters with a descending chain of conditions pini ≥ p0 ≥ p1 � � � such
that pn ∈ Dn and pn decides the n-th bit of f−1x. The important point is though that
Player II does not need to play the condition pn at round n – he can postpone it for
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an arbitrary finite number of steps. In the end, let g ⊂ P be the filter generated by the
conditions Player II played and let x = ẋ/g. Player II wins if x 
 ⋃

n On ∪⋃
n

⋃
an.

As in Theorems 4.3.17 and 4.3.21, it is enough to show the following:

Lemma 5.3.2. Player II has a winning strategy in the game G if and only if P � ẋ
falls out of all K-small sets coded in the ground model.

The left-to-right direction is easy. If some condition p ∈ P forces the point ẋ to
fall into some K-small set A ⊂ X, Player I will win by placing pini = p, and once
Player II answers with �ini, Player I proceeds with the construction of some open set
O ⊂ X and a set a ⊂ U such that ��O���u∈aw�u� < � and p � ẋ ∈ Ȯ ∪⋃

ǎ. Player
I also chooses his open dense sets in such a way that in the end the filter g Player II
obtained is M-generic for some countable elementary submodel M of a large enough
structure. By the forcing theorem applied in the model M , M�g� �= ẋ/g ∈ O ∪⋃

a,
by Borel absoluteness ẋ/g ∈ O ∪⋃

a, and Player I wins.
The proof of the right-to-left direction relies on the fact that the payoff set of

the game G is Borel in the tree of all possible plays, and therefore G is determined.
Thus it is enough to reach a contradiction from the assumption that Player I has a
winning strategy � while P � ẋ falls out of all K-small sets coded in the ground
model. To reach it, I will construct a winning counterplay for Player II against � .
First choose a countable elementary submodel M of a large enough structure; the
counterplay will use only moves from the model M and the filter Player II will
obtain will be M-generic.

Let pini be the condition indicated by the strategy � as its first move. Similarly
to, there must be a positive real number � > 0 such that for every pair B�C of
Borel sets of respective � and �-masses < � there is a condition q ≤ p forcing
ẋ 
 B∪C. This will be the first move in the desired counterplay. Now by induction
I will construct finite plays t0 ⊂ t1 ⊂ t2 � � � such that

• t0 = �pini� �ini� and tn+1 is an extension of tn consisting of Player II waiting and
at some point playing one more condition pn, which is the last move of tn+1;

• pn belongs to the n-th open dense subset of the poset PK in the model M in some
fixed enumeration;

• pn � ẋ 
 Om ∪⋃
am; here and below m is the index of the round at which the

condition pn is played;
• for every pair B�C of Borel subsets of X such that Om ⊂ B���B� < ��Om� +

2−m+1 and ��A� < 2−m+1 there is a condition q ≤ pn such that q � ẋ 
 Ḃ∪ Ċ.

This will certainly suffice. In the end, the filter g Player II will have constructed
will be M-generic and by the forcing theorem and the third inductive item M�g� �=
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ẋ/g 
 ⋃
n On ∪⋃

n

⋃
an and by the Borel absoluteness ẋ/g 
 ⋃

n On ∪⋃
n

⋃
an as

required.
Suppose the play tn has been constructed. To find the condition pn and decide

at which round Player II should place it, consider the infinite extension of the play
tn in which Player II just waits forever without placing any further conditions. The
strategy � produces an open set O = ⋃

m Om and a set a = ⋃
m am. By the third

item of the induction hypothesis, there must be a condition q ≤ pn−1 such that
q � ẋ 
 Õ ∪⋃

m≥�tn� am. Let pn ≤ q be some condition in the open dense set Dn.
I claim that it is possible for Player II to place the condition pn at some round m so
that the induction hypotheses are satisfied. Clearly, the third item of the induction
hypotheses will be satisfied. Now suppose that the last item is not satisfied at
any number m. Choose a positive real number 
 > 0 such that for all sets B�C
of respective ���-masses < 
 there is a condition r ≤ pn forcing ẋ 
 Ḃ ∪ Ċ. For
every number m with 2−m+2 < 
 choose Borel sets Bm�Cm witnessing the failure.
Look at the sets B =⋂

m Bm \ Õ and C =⋃
m Cm. A review of the definitions shows

that pn � ẋ ∈ Ḃ ∪ Ċ. However, this is impossible since just as in Theorem 4.3.17
��B� = 0 and ��C� < 
.

Another similar theorem is the following:

Theorem 5.3.3. Suppose that I is a translation-invariant �-ideal on 2� generated
by closed sets and J is the E0-ideal. Writing K for the �-ideal generated by I ∪J ,
PK is proper and K satisfies the third dichotomy.

Proof. Suppose that M is a countable elementary submodel. It will be enough to
prove that PK ∩M � ẋgen falls out of all ground model coded K-small sets. Suppose
this fails; then either some condition B ∈ PK ∩M forces ẋgen ∈ Ċ for some closed
set C ∈ I or some condition B ∈ PK ∩M forces ẋgen ∈ Ȧ for some Borel E0-selector
D. The former case is impossible, since similarly to the proof of Theorem 4.1.2
there must be some basic open set O such that F ∩O = 0 and B ∩O 
 K and then
B ∩O � ẋgen 
 Ċ. To reach a contradiction in the latter case, first note that as in
Theorem 4.7.3 there must be a nonzero rational q ∈ 2<� such that B ∩B +q 
 K.
If no such a rational existed, removing the K-small sets B ∩ B + q � q ∈ � from
the set B I would be left with a Borel selector, contradicting the assumption that
B 
 K. Now fix a nonzero rational q ∈ � such that B ∩B +q 
 K and let x ∈ 2�

be a PI ∩M-generic point below the condition B ∩B +q. By the forcing theorem,
x ∈ D. But now, the ideal K is translation-invariant, and so the point x−q is also
PI ∩ M-generic, it meets the condition B, and by the forcing theorem x − q ∈ D.
This contradicts the assumption that D was an E0-selector.

The proof of the third dichotomy is very similar. Write QK for the partial ordering
of K-positive analytic sets ordered by inclusion. Since K is generated by Borel sets,
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Proposition 2.1.11 shows that QK adds a generic point ẋgen which belongs to all
sets in the generic filter. Suppose that A is an analytic K-positive set. To find a
Borel K-positive subset of A, choose a countable elementary submodel of a large
enough structure and consider the Borel set A′ ⊂ A of all M-generic points for QK

in the set B. I must argue that A′ 
 K, and for that it will be enough to show that
QK � ẋgen does not belong to any ground model coded K-small set. The proof is
identical to the previous paragraph, with one important additional point added. As
I argue that for every analytic set B ∈ PK ∩M there is a rational number q �= 0 such
that B∩B+q 
 K, if such a rational number did not exist then I can remove from
the set B some Borel K-small supersets of the K-small sets B∩B+q and I will be
left with an analytic E0-selector. The additional point comes here: Every analytic
E0-selector has a Borel superset that is an E0-selector by the first reflection theorem
[40], 35.10, and therefore it belongs to the ideal K!

Again, it is possible to add various translation invariant capacities and pavements
submeasures into the union, but the complexity of arguments grows, and in the
absence of any tangible applications I will exercise the liberty of omitting the
precise statements and proofs.

A natural question arises: Does the forcing obtained from the union of two ideals
inherit any properties from the forcings with the two ideals? The only quotable
information I have on this subject is summarized in the following theorem.

Theorem 5.3.4. (LC) Suppose that J is a universally Baire c.c.c. ergodic �-ideal
on a Polish space Y , In � n ∈ � are universally Baire �-ideals on a Polish space
X generated by Borel sets, and let K be the �-ideal generated by the union
⋃

n In. Assume that the forcing PK is proper. If for every n ∈ � In �⊥ J holds, then
K �⊥ J .

Proof. Let E be a countable Borel equivalence relation witnessing the ergodic-
ity of the ideal J , and use Proposition 3.7.6 to amend E in such a way that
the E-saturations of E-small sets are E-small. Now suppose that B ∈ PK and C ⊂ PJ

are Borel sets and D ⊂ B ×C is a Borel set with all horizontal sections K-small.
I must find a J -positive vertical section of its complement.

A standard PJ -uniformization argument as in Proposition 2.3.4 yields a J -positive
set C ′ ⊂ C and Borel subsets Dn � n ∈ � of the rectangle B ×C ′ such that D∩B ×
C ′ ⊂ ⋃

n Dn and horizontal sections of the set Dn are In-small. Beefing up the sets
Dn I may assume that they are invariant under the equivalence E. Now for every
number n ∈ � the universally Baire set Bn = 	x ∈ B � �C ′ \Dn�x ∈ In
 contains no
In-positive Borel subset, since such a subset would contradict the assumption In �⊥ J .
As Proposition 3.9.10 shows, the collection K∗ of all universally Baire sets without
a Borel K-positive subset forms a �-ideal, and all the sets Bn � n ∈ � belong to it.
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Since B 
 K∗, it must be the case that there is a point x ∈ B \⋃n Bn. For this point
x, the vertical sections �C ′ \Dn�x � n ∈ � are all J -positive, and since they are all
E-invariant, the ergodicity of the ideal J implies the must be all J -large in the set
C ′ ⊂ Y . In particular, the set �C ′ \D�x ⊃ ⋂

n�C
′ \Dn�x is J -large in the set C ′ and

therefore J -positive as required.

Corollary 5.3.5. (LC) The following properties are preserved by countable unions
of definable ideals generated by Borel sets:

1. preservation of Baire category;
2. preservation of outer Lebesgue measure;
3. preservation of category bases;
4. preservation of Lebesgue measure bases.

Proof. All of these properties can be expressed as Fubini properties with an ergodic
ideal. The corresponding ergodic ideals, from top to bottom, are the meager ideal,
the Lebesgue measure zero ideal, the ideal associated with Hechler forcing, and the
ideal associated with amoeba forcing.

5.4 Illfounded iteration

The practice of illfounded iterations has been hampered by the lack of a suitable
definition of a partial order that could serve as the iteration. There is a good reason
for this – some forcings simply cannot be illfoundedly iterated no matter how one
interprets that term. The approach with �-ideals immediately finds the suitable
definition and detects the surrounding difficulties. Many open questions remain.

This section, as it was the case in the previous sections, handles only the case
of illfounded iterations of countable length. The uncountable length iterations must
be treated using the methods of Section 5.5.

5.4.1 The general case

The following definition should motivate the development of the treatment of the
illfounded iteration in this chapter. If �L�≤� is a linear order and i ∈ L then I will
write < i�≤ i, and > i for the sets 	j ∈ L � j < i
� 	j ∈ L � j ≤ i
, and 	j ∈ L � j > i

respectively.

Definition 5.4.1. (In the Solovay model) Suppose that I is a �-ideal on a Polish
space X closed under well-ordered unions. The ideals IL on the spaces XL are
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defined simultaneously for all countable linear orders �L�≤�. Namely, IL � L a
countable linear order is the inclusion-smallest collection of ideals such that:

1. Each IL contains all sets of the form AC where C ⊂ X<i ×X is a Borel set with
I-small vertical sections for some point i ∈ L and AC = 	
x ∈ XL � �
x �< i� 
x�i�� ∈
C
. The sets AC are referred to as the generators of the ideal IL.

2. Each IL is closed under wellordered unions.
3. The ideals are closed under fusion. Whenever L is a countable linear order,

i ∈ L, and A
x � 
x ∈< i is a collection of sets in the ideal I≥i then the set

y ∈ XL � 
y �≥ i ∈ A
y�<i is in the ideal IL.

Note that in the Solovay model the Axiom of Choice is absent and therefore the
process of closing the collection of generators under the wellordered unions and the
operation in (3) can be quite complex. Let IL

0 be the collection of generators and for
every ordinal � let IL

� be the collection of wellordered unions and fusions of sets
in

⋃
�∈� IL

� . The increasing sequence of collections IL
� will stabilize at some ordinal

�, where IL
� = IL. Correspondingly, every set A ∈ IL is assigned a rank rk�A� as

the smallest ordinal � such that A ∈ IL
� . The question how large the ordinal � is is

closely related to the properness of the forcing PIL . In all cases where I can find
the value of � it is in fact equal to 1.

Note that if I is a universally Baire ideal then by a Coll���< �� homogeneity
argument the ideal IL ∩V is in the ground model V , and by an abuse of notation I
will refer to this ideal by IL as well. In this section I will show that in a number
of cases the ideal IL is nontrivial, has a natural universally Baire definition, and
the forcing PIL is a proper iteration of the forcing PI in the sense that it adds a
sequence 
xgen ∈ XL such that for every point i ∈ L, ẋgen�i� is V�
xgen �< i�-generic
for the poset PI .

I will first state the motivating fact which shows that I am aiming at the smallest
possible ideal and a natural generalization of the countable support iteration in the
wellfounded case.

Fact 5.4.2. (LC) Suppose that I is a universally Baire ideal and L is a countable
linear ordering.

1. IL is a universally Baire ideal.
2. If L is a wellordering and the ideal I satisfies the second universally Baire

dichotomy then the Definitions 5.4.1 and 5.1.1 coincide on the universally Baire
sets.

3. Suppose J is a universally Baire ideal on XL such that the forcing PJ is a proper
iteration of the forcing PI . Then IL ⊂ J .
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The definition of the ideal IL itself raises obvious questions. Why do I use the
choiceless Solovay model for the definition? Is the ideal IL nontrivial at all? The
following examples should shed some light at these questions.

Example 5.4.3. (ZFC+CH) There are functions fn � �2���\n → �2��ℵ0 for n ∈ �
such that for every sequence 
x ∈ �2��� there is a number n such that 
x�n� ∈
fn+1�
x � � \ n + 1�. In other words, if one attempts to apply the definition of IL

in a model of ZFC+CH instead of the Solovay model, the result is a trivial ideal
already in the simplest illfounded case, I = ctble and L = �∗. In order to find the
functions fn � n ∈ � fix a wellordering ≺ of the Cantor space of ordertype �1 and
let fn�
y� = 	r ∈ 2� � r ≺ s for some s on the sequence 
y
. By a wellfoundedness
argument, for every sequence 
x ∈ �2��� there are numbers n ∈ m ∈ � such that

x�n� ≺ 
x�m� and then 
x�n� ∈ fn+1�
x � �\n+1�.

Example 5.4.4. (Hjorth) Suppose that I is a universally Baire ideal on a Polish
space X such that the forcing PI is proper and adds a dominating real. Then the
ideal I�∗

is trivial. To outline the proof, I will for simplicity assume that the space
X is recursively presented and there is a lightface �1

1 function f � X → �� such that
for every function h ∈ �� the set 	x ∈ X � f�x� �=∗ h
 is in the ideal I .

The key observation is that whenever y ∈ X is a point and x ∈ X is a PI -generic
point, then �

y
1 < �

x�y
1 . Note that whenever T ⊂ �<� is a tree recursive in y, then T

has an infinite branch iff T has an infinite branch in V iff T has an infinite branch
modulo finite dominated by f�x� iff for some n ∈ � and some sequence t ∈ T ∩�n,
the tree T ′ = 	s ∈ T � s is inclusion-compatible with t and dominated by f�x� past
n
 is infinite. The last condition gives a �1

1�x� y� restatement of illfoundedness of
trees recursive in y, therefore �

y
1 < �

x�y
1 .

Now consider the set B ⊂ X�∗
of all sequences 
x such that there is n ∈ � and

an illfounded tree T ⊂ �<� recursive in 
x � ���n� such that none of its branches
is modulo finite dominated by f�
x�n��. This is an I�∗

-small set by virtue of its
definition; I will show that B = X�∗

. Well, if 
x ∈ X�∗ \B was a sequence, then the
ordinals �


x��\n
1 would have to strictly decrease as n ∈ � increases by the observation

in the previous paragraph. This is of course impossible.

Example 5.4.5. (LC) If the �-ideal I is universally Baire and the forcing PI

is proper and preserves Baire category, then for every countable linear order L
the ideal IL is nontrivial. The results of Section 3.5 imply that there is a Cohen
forcing name ẋ for an element of the space X which falls out of all ground model
coded I-small sets. Consider the finite support product P of the Cohen forcing
along the linear ordering L, adding Cohen reals ri � i ∈ L the resulting sequence

x = �ẋ/ri � i ∈ L� ∈ XL. Since ri is a Cohen real over the model V�rj � j < i�, the
point 
x�i� falls out of all I-small Borel sets coded in the model V�
x�j� � j < i� and
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so the sequence 
x is forced to fall out of all the generators of the ideal IL. In the
Solovay model, the ideal J = 	A ⊂ XL � 	g ⊂ P � 
x/g ∈ A
 is meager in the space of
all filters on P
 is closed under wellordered unions, I just showed that it contains
all the generators of the ideal IL, and therefore IL ⊂ J . On the other hand, XL 
 J
and so XL 
 IL.

Example 5.4.6. (LC) If I is a universally Baire polar ideal then XL 
 IL. The proof
is the same as in the previous example, replacing Cohen forcing with Solovay
forcing and the finite support iteration of Cohen forcing with the random algebra
with L ·� many generators.

There is a number of ideals I and illfounded orderings L for which I do not know
if IL is a nontrivial ideal, see Questions 7.4.2 and 7.4.3. The following is the main
theorem of this section.

Theorem 5.4.7. (LC) Suppose that I is a universally Baire �-ideal on a Polish
space X such that the forcing PI is proper and preserves Baire category. Let L be
a countable linear ordering. Then

1. PIL is a proper forcing which is an iteration of the poset PI along the ordering
L. Moreover PIL preserves Baire category.

2. A Borel set B ⊂ XL is IL-positive if and only if the Cohen forcing adds a
sequence 
x ∈ B such that 
x�i� belongs to no Borel I-small set coded in the
model V�
x �< i�.

In fact the second item abstractly follows from the first, but it seems to be impossible
to prove the first without the help of the second. Note that the second item yields
a description of the ideal which does not refer to the inaccessible cardinal � at all.

Proof. Let � be the inaccessible cardinal from which the ideal IL is defined, let
G ⊂ Coll���< �� be a generic filter and work in the model V�G�. In the end, I
will use a suitable absoluteness argument to transfer the important properties of
the forcing PIL back to the ground model. The key features of the proof are the
following two innocent abstract forcing claims.

Claim 5.4.8. If K ⊂ L is an initial segment of L then PIK is in a natural sense a
regular subordering of PIL .

Proof. If B ⊂ XL is a set in the Solovay model I will study the projection ��B� =
	
x ∈ XK � B
x 
 IL\K
 where B
x = 	
y ∈ XL\K 
x�
y ∈ B
. Note that

(*) B ∈ IL ↔ ��B� ∈ IK .
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The right-to-left direction of this equivalence immediately follows from the
inclusion of the fusion into the definition of the ideals IL. For the left-to-right
direction, argue by an easy induction on the rank of the set B ⊂ XL.

The argument is now easily finished. If B ⊂ XL is a Borel IL-positive set then by
(*) the projection ��B� ⊂ XK is an IK-positive set in the Solovay model. The ideal
IK is closed under wellordered unions, and since every set in the Solovay model is
a wellordered union of Borel sets, there is a Borel IK-positive set C ⊂ ��B�. (This
move is on the formal level the only reason why I considered closing the collection
of all generators under wellordered unions.) By (*) again, for every condition
C ′ ⊂ C in the forcing PIK the set B′ = 	
x ∈ B � 
x � K ∈ C ′
 is Borel IL-positive, and
��B′� ≤ C ′. The claim follows.

At least in one simple case I must find an explicit form of the remainder PIL/PIK .
Let i ∈ L be a point, K = 	j ∈ L � j < i
 and J = K ∪ 	i
. To find the remainder
PIJ /PIK , let 
x ∈ XK be a generic sequence for PIK and in the model V�G��
x� define
Q = 	B ⊂ X � B Borel, I-positive, and there is a universally Baire function f ∈ V �G�,
f � XK → B�X�, such that B = f�
x�
 ordered by inclusion.

Claim 5.4.9. PIJ = PIK ∗Q.

Proof. This is really an immediate corollary of the previous claim. Consider the
map � � PIK ∗Q → P�XJ� defined in the following way. If C ∈ PIK is a condition
and f � XK → B�X� is a universally Baire function such that C � ḟ �
xgen� 
 I then
let ��C�f� = 	
x ∈ XJ � 
x � K ∈ C ∧ 
x�i� ∈ f�
x � K�
.

First of all, the range of � consists of IJ -positive sets. To see this, note that
if C � ḟ �
xgen� 
 I then the set D = 	
x ∈ C � f�
x� 
 I
 must be IK-positive, in fact
modulo IK equal to C: if its complement in C was IK-positive, it would contain a
positive Borel set which by universally Baire absoluteness would force f�
xgen� ∈ I .
Now D = ����C�f�� and so ����C�f�� 
 IJ by the previous claim.

Second, if B ⊂ XJ is an IJ -positive set in the Solovay model then it has a
subset which is in the range of the map �. To see this, thin out the set B to
be Borel if necessary, and consider the set ��B� ⊂ XK . This is an IK-positive
set by the previous claim, so it has a Borel IK-positive subset C. Let f � XK →
B�X� be defined by f�
x� = 	y ∈ X � 
x�y ∈ B
. A universally Baire absoluteness
argument shows that the pair C�f is in the domain of the function �, and clearly
��C�f� ⊂ B.

Now I come to the key points. Let M be a countable elementary submodel of
a large enough structure. I will show that the forcing PIL ∩ M forces its generic
sequence 
xgen out of every Borel set in the ideal IL. This will show that the forcing
PIL is proper and preserves Baire category by Corollary 3.5.4. In order to do this,
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I will show that PIL ∩M forces its generic sequence 
xgen out of every generator of
the ideal IL. This shows that for every generator B the set 	g ⊂ PIL ∩M � 
xgen/g 
 B

contains a dense G
 in the Polish space of all ultrafilters on PIL ∩M . After that,
an easy induction on the rank of a set A ⊂ XL�A ∈ IL shows that for every set
A ∈ IL, the set 	g ⊂ PIL ∩M � 
xgen/g ∈ A
 contains a dense G
 set, and therefore
PIL ∩M � 
xgen 
 Ȧ as desired. The induction uses the closure of the meager ideal
under fusion and wellordered unions in the Solovay model.

So choose a point i ∈ L, let K = 	j ∈ L � j < i
, and choose a Borel set C ⊂ XK ×X
with I-small vertical sections. I must prove that PIL ∩M � �
xgen � K� 
xgen�i�� 
 Ċ.
Note that writing J = 	j ∈ L � j ≤ i
 it is the case that �PIK ∩ M� ≺ �PIJ ∩ M� ≺
�PIL ∩M� essentially by Claim 5.4.8 since the model M is closed under the projection
function described there. Moreover, writing 
ygen for the PIK ∩M-generic sequence,
it is the case that �PIJ ∩M� = �PIK ∩M�∗ �Q∩M�
ygen�� by Claim 5.4.9. Thus it will
be enough to show that the forcing Q∩M�
ygen� forces �
ygen� ż� 
 Ċ, where ż is the
Q∩M�
ygen�-name for a generic point in the space X. Note that Q∩M�
ygen� ⊂ PI

and C
ygen
∈ I . Let � ∈ M be some universally Baire winning strategy for Player II

in the category game for the forcing PI . It is immediate from the definition of the
name Q that the set Q∩M�
ygen� ⊂ PI is closed under the strategy � , and the same
argument as in Corollary 3.5.4 shows that it forces its generic point to fall out of
all I-small sets, in particular out of C
ygen

, as desired.
Finally, I must wrap up and transfer the whole argument to the ground model.

Note that I proved the following to hold in the model V �G�.

(**) A Borel set B ⊂ XL is IL-positive if and only if ��B� holds, where ��B� is
the statement that there is a name 
xgen in the Cohen forcing which is forced to
fall into B and outside of all generators.

(***) The forcing PJ , where J = 	B ⊂ IL Borel, ¬��B�
, is proper and preserves
Baire category.

Perhaps I should argue for (**). The left-to-right direction first: if B ⊂ XL is a
Borel IL-positive set and M is a countable elementary submodel of a large enough
structure then the countable forcing PIL ∩M � B forces its generic sequence into the
set B and out of all generators as I just argued. For the opposite direction note that
if the Cohen poset forces 
xgen to fall out of all generators, there is a Borel function
f � 2� → B such that f -preimages of generators are meager. Since the meager ideal
is closed under well-ordered unions, preimages of any set in the ideal IL are meager,
and therefore no set in IL can cover the set B.

Note that the property � of (**) is a universally Baire property of a Borel set
and therefore absolute among forcing extensions. By the fact that the forcing PJ

is proper and category preserving is witnessed by the existence of a universally



258 Operations

Baire winning strategy in the category game for the first player, and this fact is also
absolute, and transfers to V . The theorem follows.

As the last step in the proof I must show that the forcing PIL is indeed an iteration
of PI along the linear order L, which is to say that for every index i ∈ L the point

xgen�i� is forced to be PI -generic over the model V�
xgen �< i�. All work necessary
for this has already been done. Just use a universally Baire absoluteness argument
to transfer Claims 5.4.8 and 5.4.9 to the ground model, and then note that the latter
says exactly that the point 
xgen�i� is PI -generic over the model V �
xgen �< i�: since
the forcing PI<i is proper, every condition in PI ∩V �
xgen �< i� is an image of the
sequence 
xgen �< i under a ground model universally Baire (even Borel) function
by Proposition 2.3.1.

The argument may seem somewhat tortured: first I produce a completely abstract
definition of the ideal IL only to find a quite definite description of the ideal in the
above theorem. It may have been indeed easier to start working from the definite
description in Theorem 5.4.7(2), and that was the road I took in [83]. The present
argument shows how abstract considerations lead to this description. It is also my
hope that the reader will compare the argument with the ZFC proofs in the following
subsection and see the similarities.

5.4.2 The �1
1 on �

1
1 case

Considering the development in Section 5.1.3 one may be tempted to expect that
the theorems of the previous subsection may be provable in ZFC if the ideal I is
�1

1 on �
1
1. I do not know if this is the case, nevertheless an important class of

forcings can indeed be treated in ZFC. Throughout this section I will work under
the assumption that the Polish space X is recursively presented, the linear order L
is recursive, and the ideal I is lightface �1

1 on �1
1. The general case follows by a

straightforward relativization.

Definition 5.4.10. Suppose I is a �1
1 on �

1
1 �-ideal on a Polish space X. Suppose

that L is a countable linear order. The ideal IL
s (s for “simple,” perhaps a case

of wishful thinking) is generated by the sets Ar = 	
x ∈ XL � ∃i ∈ L x�i� ∈ ⋃
�I ∩

�1
1�r� 
x �< i��
 as r varies over all elements of the Cantor space 2�.

Note that since the ideal I is �1
1 on �

1
1 the set

⋃
�I ∩�1

1�y�� is uniformly �1
1�y�

by Proposition 3.8.6, and therefore the ideal IL
s is generated by coanalytic sets.

Since every coanalytic set is a wellordered union of Borel sets, the ideal IL
s is a

subset of the ideal IL defined in the previous subsection. I will show that in several
important cases these two ideals contain the same Borel sets and the theorems about
IL from the previous section go through in ZFC for IL

s .
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Theorem 5.4.11. Suppose that I is a �1
1 on �

1
1 �-ideal generated by closed sets

and L is a countable linear order. Let J = IL
s . Then

1. the ideal J is �1
1 on �

1
1 and satisfies the third dichotomy;

2. the forcing PJ is a proper category preserving iteration of PI along L.

Proof. The first item is a necessary intermediate step to the proof of the second
item. The argument uses the Gandy–Harrington forcing of all nonempty �1

1 subsets
of the space XL ordered by inclusion. A standard argument close to the proof of
Proposition 2.1.11 shows that this forcing adds a generic sequence 
xgen ∈ XL which
belongs to all sets in the generic filter. Let A ⊂ XL be a �1

1 set and consider the set
Ã = 	
x ∈ A � ∀i ∈ L 
x�i� 
 ⋃

�I ∩�1
1�
x �< i��
. Since the ideal I is �1

1 on �
1
1 this is

an analytic set, and there are two cases. Either Ã = 0, in which case clearly A ∈ J ;
or Ã �= 0, in which case I will prove that A 
 J .

Consider the condition p = Ã in the Gandy–Harrington forcing P. I will prove
that p � 
xgen 
⋃

�J ∩V�. However, let me first show how the first item follows from
this. By an analytic absoluteness argument, Ã 
 J . To find a Borel J -positive subset
B ⊂ Ã let M be a countable elementary submodel of a large enough structure and let
B = 	
x ∈ Ã � 
x is M-generic for the forcing P
. This is a Borel set, since it is in one-to-
one Borel correspondence with the Borel set of all M-generic filters on the countable
forcing P, and it is J -positive since p � 
xgen ∈ B \⋃�J ∩V�. This proves the third
dichotomy. Finally, to show that J is a �1

1 on �
1
1 �-ideal, note that we just proved

that a �1
1�y� set A is in J if and only if ∀
x ∈ A ∃i ∈ L 
x�i� ∈ ⋃

�I ∩�1
1�y� 
x �< i��

which is a �1
1�y� condition.

Towards the proof of p � 
xgen 
 ⋃
�J ∩V �, the key observation is that if i ∈ L

is an arbitrary point then the Gandy–Harrington forcing Q of nonempty �1
1 subsets

of X<i naturally regularly embeds into P, with the projection function � � P → Q
defined by ��q� = 	
y ∈ X<i � ∃
x ∈ q 
y ⊂ 
x
. Now suppose for contradiction that
some condition q ≤ p forces in P that 
xgen�i� ∈ ⋃

�I ∩ �1
1�ǔ� 
xgen �< i� for some

parameter u ∈ 2� and a point i ∈ L. Strengthening the condition q if necessary
we may find a P-name Ċ for a closed �1

1�ǔ� 
xgen �< i� set in the ideal I such
that q � 
xgen�i� ∈ Ċ. Strengthening q further I may assume that Ċ is in fact a
Q-name where Q is the Gandy–Harrington forcing of nonempty �1

1 subsets of
X<i. Consider the condition ��q� ∈ Q and work in the Q-extension V�
y� where

y ∈ ��q� is the Q-generic sequence. The set D = 	x ∈ X � ∃
z 
y�x�
z ∈ q
 is a
nonempty �1

1�
y� set which is disjoint from the set
⋃

�I ∩�1
1�
y�� by the definition

of the set Ã, and therefore it is I-positive. Since the set C ⊂ X is closed and
in the ideal I , there must be a basic open set O ⊂ X such that C ∩ O = 0 and
D ∩ O �= 0. Return to the ground model and find a condition r ≤ ��q� in the
poset Q which identifies the open set O. An absoluteness argument shows that
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the �1
1 set 	
x ∈ XL � 
x � i ∈ r ∧ 
x�i� ∈ O
 is nonempty. This set is a condition

in P stronger than q which forces 
xgen�i� 
 Ċ, contradicting the choice of the
name Ċ.

This completes the proof of the first item. The argument for the second item
now proceeds along the lines of the previous section. The first observation is that
writing J<i = I<i

s and J≥i = I≥i
s , the forcing PJ<i

naturally embeds into PJ . To see
that note that by the third dichotomy proved above there is no harm in including
analytic sets in these forcings, and then the projection function � � PJ → PJ<i

is
defined by ��A� = 	
y ∈ X<i � 	
z ∈ X≥i � 
y�
z ∈ A
 
 J≥i
. The important point is
that since the �-ideal J≥i is �1

1 on �
1
1 the set ��A� is analytic. The properties of

projection are then easily checked for the function �.
To prove that the forcing PJ is proper and preserves category, it is enough to

show that for every countable elementary submodel M of a large enough structure,
M ∩ PJ � 
xgen 
 ⋃

�J ∩ V�, where 
xgen is now the M ∩ PJ -generic sequence in
XL – Corollary 3.5.4. Suppose for contradiction that some condition p ∈ M ∩ PJ

forces 
xgen�i� ∈ ⋃
�I ∩�1

1�ǔ� 
xgen �< i� for some point i ∈ L and parameters u ∈ 2�.
Strengthening the condition p I may assume that there is a name Ċ for a closed
�1

1�ǔ� 
xgen �< i� set in the ideal I such that p � 
xgen�i� ∈ Ċ, and Ċ is in fact
a M ∩PJ<i

-name. Note that the forcing M ∩PJ<i
naturally embeds into M ∩PJ as

witnessed by the projection function � � M . Move to the M ∩PJ<i
-generic extension

V�
y� where 
y ∈ ��p� is the generic sequence. By an absoluteness argument the set
D = 	x ∈ X � 	
z ∈ X>i � 
y�x�
z ∈ p
 is I-positive, and there must exist a basic open
set O ⊂ X such that C ∩O = 0 while D∩O 
 I . Move back to the ground model,
let q ≤ ��p� be a condition in the forcing p which identifies the basic open set O,
and consider the set r = 	
y ∈ q � 	x ∈ O � 	
z ∈ X>i � 
y�x�
z ∈ p
 
 J>i
 
 I
. This
is an analytic set in the model M . It cannot be J<i-small set, because it would
then be covered by a coanalytic set r ′ ∈ M ∩ J<i and the condition q \ r ′ would
force Ḋ ∈ I , a contradiction. But then the set p′ = 	
x ∈ p � 
x � i ∈ r� 
x�i� ∈ O
 ⊂ p
is by the definitions a J -positive analytic subset of p which forces 
xgen�i� 
 C, a
contradiction.

The very last step in the proof is to show that PJ is indeed an iteration of the
forcing PI , that is, for every i ∈ L the point 
xgen�i� is forced to be PI -generic over
the model V�
xgen �< i� where 
xgen now is the name for the PJ -generic sequence in
the space XL. The proof of this is identical to the argument in Theorem 5.4.7 and
as such left to the reader.

A particular special case that has been treated from the combinatorial standpoint
[43] is the case of an ideal I �-generated by a �-compact collection of compact
sets. In this case a more complete information is available.
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Theorem 5.4.12. Suppose that I is a �-ideal on a Polish space X generated by a
�-compact collection of compact sets and L is a countable linear order. Let J = IL

s .
The forcing PJ is bounding.

Proof. In order to simplify the proof I will assume that the underlying space X
is the Cantor space 2�, the ordering L is recursive and the ideal I is generated
by a recursive increasing sequence of compact collections Fn � n ∈ � of compact
sets.

I must produce, among other things, a collection of compact subsets of XL which
is dense in the forcing PJ . I will call a nonempty compact set C ⊂ XL solid if for
all basic open sets O ⊂ XL, all sequences 
x ∈ C ∩ O and all points i ∈ L the set
	z ∈ 2� � ∃
y �
x �< i��z�
y ∈ C ∩O
 is not in the ideal I .

The following two lemmas will complete the proof of the theorem.

Lemma 5.4.13. Nonempty compact solid sets are J -positive.

Proof. Fix a nonempty compact solid set C ⊂ XL. Consider the forcing P of all
nonempty basic open subsets of the set C ordered by inclusion. A completeness
argument immediately shows that if G ⊂ P is a generic filter then

⋂
G is a set

containing a single element 
xgen ∈ C. I will show that P � ẋgen 
 ⋃
�J ∩ V�. An

analytic absoluteness argument then shows that C 
 J .
The key observation is again that for every point i ∈ L the forcing P<i of all

nonempty basic open subsets of the projection C<i of the set C into the space X<i

naturally regularly embeds into the poset P, with the projection function ��p� =
projection of the basic open set p into C<i. Note that ��p� is indeed a basic open
subset of C<i since the set C is compact and zero-dimensional. The other properties
of the projection are easily checked for the function �.

Suppose for contradiction that some condition p ∈ P forces 
xgen�i� ∈ ⋃
�I ∩

V�
xgen �< i��. Strengthening the condition p if necessary I can assume that it also
identifies a number n ∈ � such that there is a compact set K ∈ Fn ∩Vm�
xgen �< i�

with 
xgen�i� ∈ K. Strengthening the condition p even further I may assume that K̇ is
in fact a P<i name. Let G ⊂ P<i be a generic filter containing the condition ��p� and

x ∈ C<i its attendant generic sequence. The set C is solid in the ground model and by
a Shoenfield absoluteness argument it is solid even in the generic extension. Thus the
set B = 	z ∈ X � ∃
y � 
x�z�
y ∈ p
 is compact and I-positive, it is not a subset of the set
K, and there is some basic open set O ⊂ X such that B∩O �= 0 while K∩O = 0. Find
a condition q ≤ ��p� in the generic filter G which identifies this open set O and run
back to the ground model. Let r ≤ p be the set 	
x ∈ C � 
x � i ∈ q� 
x�i� ∈ O� 
x ∈ p
. This
is a basic open subset of the set C, it is nonempty since in the generic extension V�G�
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it is nonempty, and it forces 
xgen�i� 
 K̇, contradicting the assumed properties of the
condition p.

Lemma 5.4.14. If f � �2��L → 2� is a partial �1
1�a� function then

1. either for every sequence 
x ∈ dom�f� there is a point i ∈ L such that 
x�i� belongs
to some �1

1�a� 
x � i� set A ∈ I;
2. or there is a nonempty compact solid set C ⊂ A such that the function f � C is

continuous.

Proof. Let me simplify the notation by the assumption that a = 0; the general
case follows by a simple relativization. Consider the set A = dom�f� and the set
Ã = 	
x ∈ A � ∀i ∈ L 
x�i� 
 ⋃

��1
1�
x � �−�� i��∩ I�
. Note that A is a �1

1 set. The
ideal I is �1

1 on �
1
1 by Theorems 4.1.8 and 3.8.9; by Proposition 3.8.6 then the set

⋃
��1

1�y�∩ I� is �1
1�y� uniformly in y and therefore the set Ã is �1

1. If Ã = 0 then
we are in the first case and the proof is complete. So assume Ã �= 0.

The argument uses a generalization of the Gandy–Harrington forcing. The
closed set C ⊂ XL will be added by a forcing P consisting of all tuples
p = �ap�np� ep� gp�hp� where:

• ap ⊂ L is a finite set, np ∈ � is a number, and ep ⊂ 2ap×np is a collection of
sequences. The information carried by this part of the condition is ep = 	
x �
ap ×np � 
x ∈ C
.

• gp is an assignment which attaches to each function u ∈ ep a �1
1 set gp�u� ⊂ Ã.

The information carried here is 
x ∈ C ∧ 
x � ap ×np = 
u implies 
x ∈ gp�
u�.
• hp is an assignment which attaches to each function u ∈ ep a finite sequence

hp�u� ∈ 2<�. This will carry the information that 
x ∈ C ∧ 
x � ap ×np = u implies
hp�u� ⊂ f�
x�.

• (The most important condition) There is an assignment kp = k � ep → XL such
that for every function u ∈ ep k�u� ∈ gp�u�, k�u� � ap × np = u, and for every
i ∈ ap and every two functions u� v ∈ ep if u � �ap∩ < i�×np = v � �ap∩ < i�×np

then k�u� �< i = k�v� �< i.

Note that the function k from the last item is not a part of the condition p. The
ordering is defined by q ≤ p if ap ⊂ aq�np ⊂ nq, 	u � ap × np � u ∈ eq
 = ep and
for every function u ∈ eq it is the case that gq�u� ⊂ gp�u � ap × np� and hp�u �
ap ×np� ⊂ hq�u�. Thus �0� 0� 0� 0� 0� is the largest condition in the poset P.

Let M be a countable elementary submodel and G ⊂ P an M-generic filter.
Consider the set C = 	
x ∈ XL � ∀p ∈ G 
x � ap ×np ∈ ep
. I claim that the set C is
as required in the second item of the claim. It is clear that the set C is closed, the
other properties are less obvious. The following claim is key.
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Claim 5.4.15. If p ∈ G, u ∈ ep and B = gp�u� then 	
x ∈ C � 
x � ap ×np = u
 ⊂ B.

Proof. Let q ∈ P be a condition, let Tu � u ∈ eq be recursive trees projecting to
lightface analytic subsets of XL, and let u �→ l�u� ∈ Tu � u ∈ eq be an assignment
such that for every function u ∈ eq, gq�u� ⊂ proj�Tu � l�u�� holds. I will prove that
for every number m ∈ � there is a strengthening q′ ≤ q with the same a�n� e, and
h coordinate as q and an assignment u �→ l′�u� ∈ Tu � u ∈ eq such that for every
function u ∈ eq, l�u� ⊂ l′�u�, �l′�u�� ≥ m, and gq′�u� ⊂ proj�Tu � l′�u��. The claim
then follows by a straightforward genericity argument.

To find the g coordinate of the condition q′, consult an assignment k � eq → XL

witnessing the fact that q ∈ P. Note that for every function u ∈ eq, k�u� ∈ gq�u� ⊂
proj�Tu � l�u��. find a node l′�u� of the tree Tu of length at least m that extends l�u�
and such that k�u� ∈ proj�Tu � l′�u��. Then the map gq′�u� = gq�u�∩proj�Tu � l′�u��
will have the desired properties. Note that the same assignment k witnesses the fact
that q′ ∈ P.

Now it is clear that C ⊂ Ã. To show that f � Ã is a continuous function, suppose
that t ∈ 2<� is a finite binary sequence. I must show that the preimage f−1Ot

is relatively open in the set C. Let p ∈ P be any condition, and consider the
assignment kp. For every function u ∈ ep find a sequence hq�u� extending hp�u�
such that hq�u� ⊂ f�kp�u�� and hq�u� is either incompatible with t or extends t.
Consider the tuple q = �ap�np� ep� gq�hq� where gq�u� = 	
x ∈ gp�u� � hq ⊂ f�
x�
.
It is clear that q ≤ p is a condition as witnessed by the assignment kq = kp and the
claim shows that if q ∈ G then ∀
x ∈ C t ⊂ f�
x� ↔ t ⊂ hq�
x � ap ×np�, therefore
the preimage f−1Ot is relatively clopen in the set C. The continuity of the function
f � C now follows by a genericity argument.

To show that C ⊂ XL is solid, let me re-introduce an observation from Theo-
rem 4.1.8. Call a set Z ⊂ 2<� n-large if no set in the collection Fn of generators for
the ideal I contains elements extending every sequence in Z. Since Fn is a compact
collection of compact sets, for every I-positive set Y ⊂ X there is a number m ∈ �
such that the set 	y � m � y ∈ Y
 is n-large.

Claim 5.4.16. For every condition p ∈ P, every index i ∈ L, every natural number
n ∈ � and every function u ∈ ep there is a condition q ≤ p such that the set
	t ∈ 2<� � ∃v ∈ eq u ⊂ v and v at i equals t
 is n-large.

Proof. Fix p� i� n�u, without loss of generality assume i ∈ ap, and let k � ep → XL

be the assignment witnessing the fact that p ∈ P. Let 
x = k�u� and consider the set
Y = 	y ∈ X � ∃
z ∈ X>i∃l l is an assignment witnessing that p ∈ P and l�u� = 
x �<
i�y�
z
. A review of definitions shows that this is a �1

1�
x �< i� set, and since it is
nonempty (containing the point 
x�i�), it must be I-positive by the choice of the set
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Ã. Find a natural number m > np such that the set Z = 	y � m � y ∈ Y
 is n-large, and
for every sequence t ∈ Z find yt ∈ Y extending it and an assignment lt witnessing
yt ∈ Y . Construct the condition q in the following way:

• nq = m, aq = ap;
• every sequence v ∈ ep� v �= u has a unique extension in eq, and it is k�v� � aq ×nq;
• the extensions of u in eq are exactly the functions 	lt � aq ×nq � t ∈ Z
;
• gq�hq are obtained trivially from gp�hp: gq�v� = gp�v � ap ×np� for all functions

v ∈ eq, and the same thing for hq;
• the assignment kq is defined by kq�v� = kp�v � ap ×np� if u �⊂ v and kq�v� = lt�u�

if u ⊂ v and v at i is equal to t.

A review of definitions reveals that the condition q is as required.

The solidity now immediately follows. Suppose 
x ∈ C is a sequence, i ∈ L is an
index, and Kn � n ∈ � are compact sets in the ideal I , Kn ∈ Fn. To find a sequence

y ∈ x such that 
y �< i = 
x �< i and 
y�i� 
 ⋃

n Kn, use the claim and a genericity
argument repeatedly to build sequences 
yn ∈ C such that 
yn �< i converges to 
x �< i
and 
yn�i� belongs to some clopen subset of 2� disjoint from

⋃
m∈n Km. The sequence


y = limn 
yn will then be as required.

5.5 Directed systems of ideals

It is frequently the case that the forcing job requires adding a more complex object
than just a real. There are iterations and products of uncountable length as well as
many other constructions. This section explains an operation on ideals helpful in
such situations.

Definition 5.5.1. Let X be a Polish space and L an arbitrary set. A set B ⊂ XL is
Baire if it is obtained from basic open sets by a repeated application of countable
unions, intersections, and complements. Here a basic open set is a set O ⊂ XL

for which there is an open set P ⊂ X and an index i ∈ L such that O = 	
x ∈ XL �

x�i� ∈ P
.

The Baire sets are similar to Borel sets in that they have a natural represen-
tation in the generic extension, and I will adopt the same conventions about this
representation as in the case of Borel sets. Every Baire set B ⊂ XL has a support–a
countable set supp�B� ⊂ L such that the membership of any sequence 
x ∈ XL in
the set B depends only on 
x � supp�B�. For every countable set a ⊃ supp�B� I will
write B � a = 	
x ∈ Xa � ∃
y ∈ B 
y � a = 
x
.
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Suppose that I is a �-ideal on the set XL and consider the forcing PI of all
Baire I-positive sets ordered by inclusion. The following propositions have proofs
closely related to those in Chapter 2.

Proposition 5.5.2. PI adds a sequence 
xgen ∈ XL such that for every Baire set
B ⊂ XL in the ground model, 
xgen ∈ B iff B is in the generic filter.

Proposition 5.5.3. PI is proper if and only if for every countable elementary
submodel M of a large enough structure and every set B ∈ PI ∩M the set 	
x ∈ B � 
x
is PI -generic
 is I-positive.

Proposition 5.5.4. Suppose PI is proper forcing.

1. If B ∈ PI is a condition and ẏ a PI -name for an infinite binary sequence then
there is a condition C ⊂ B and a Borel function f � C � supp�C� → 2� such that
C � ẏ = ḟ �
xgen � supp�C��.

2. If B ∈ PI is a condition, Y is a Polish space, K is a set, and Ȧ is a name for a
Baire subset of Y K then there is a condition C ⊂ B and a Baire set D ⊂ C ×Y K

such that C � Ȧ = Ḋ
xgen
.

Every �-ideal on Baire sets is obtained as a limit of sorts of a directed system
of smaller �-ideals. While this is an elementary observation, it will be very helpful
in the actual construction of interesting �-ideals on Baire sets.

Definition 5.5.5. A collection � = 	Ia � a ∈ S
 is a directed system of �-ideals if

1. S ⊂ �L�ℵ0 is a cofinal set of countable subsets of L;
2. Ia is a �-ideal on the set Xa;
3. whenever a ⊂ b are sets in S and B ⊂ Xa, then B ∈ Ia iff 	
x ∈ Xb � x � a ∈ B
 ∈ Ib.

The limit lim� of such a directed system is the collection I of Baire sets defined
by B ∈ I iff for some (equivalently, every) set a ∈ S with supp�B� ⊂ a it is the case
that B � a ∈ Ia. It is not difficult to see that I is in fact a �-ideal.

5.5.1 Uncountable iterations and products

The various iterations and products of uncountable length of partial orders of the
form PJ where J is an iterable �-ideal on a Polish space X can be handled using
the technology of this section. Fix an ordinal � and for a countable set a ⊂ � let Ja

be the ideal on Xa defined just as the Fubini power J� where � =ordertype of a.
It is not difficult to see that the ideals Ja � a ∈ ���ℵ0 form a directed system; let J�

be its limit.
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Theorem 5.5.6. (LC) PJ�
is a proper notion of forcing, naturally isomorphic to

the countable support iteration of length � of the forcing PJ . If the ideal J is in
addition �1

1 on �
1
1, then no large cardinal assumptions are necessary.

The same construction applies to products. For an iterable �-ideal K on a Polish
space X, an ordinal �, and a countable set a ⊂ � let Ka be the collection of those
Borel subsets of Xa which do not contain a rectangle ��∈aB� where B� are Borel
K-positive sets. It is not difficult to verify that if the collections K� are in fact
�-ideals then these ideals form a directed system; let K� be its limit.

Theorem 5.5.7. (LC) Suppose that K is an iterable �-ideal such that the forcing PK

preserves category basis. Then the forcing PK�
is proper, it is naturally isomorphic

to the countable support product of � many copies of PK , and it preserves category
basis. If the ideal K is in addition �1

1 on �
1
1, then on large assumptions are

necessary.

Illfounded iterations can be treated in a similar way. For an iterable �-ideal J
on a Polish space X, a linearly ordered index set L, and a countable set A ⊂ L let
Ja be the �-ideal on Xa as constructed in Section 5.4. It is not difficult to see that
these ideals from a directed system. Let JL be the limit of this system.

Theorem 5.5.8. (LC) Suppose that J is an iterable category preserving �-ideal.
Then the forcing PJL

is proper, it is an iteration of the forcing PJ along L, and it
preserves Baire category.

The proofs of the previous propositions are essentially identical to the proposi-
tions concerning the countable length iterations and products and as such are left
to the reader. Note though that there always is a small additional ingredient in
the argument. I do not have a general theorem saying something to the effect “if
the forcings associated with the ideals in the directed system are proper then so is
the limit.” Once the properness is established though, the forcing with the directed
system inherits all the Fubini properties from the ideals in the system.

It is possible to develop a very similar theory of countable and uncountable
iterations, products, or illfounded iterations for the partial orders of the form PI

where I is a suitably definable �-ideal of Baire subsets of XL for some Polish space
X and index set L. Since I have not found a single person in the world interested
in this a priori promising line of research as yet, I refrain from developing it here.
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5.5.2 Shooting a club subset of �1

All forcings described in Chapter 4 are < �1-proper, and this feature propagates
through the countable support iteration [64]. Thus, in the resulting generic exten-
sions, various club-guessing principles will hold. If one wants to violate club
guessing, it is necessary to use a more sophisticated approach. Let me demonstrate
the approach on the problem of adding a club subset of �1 with finite intersection
with every ground model set of ordertype �.

Let X = 2 and L = �1. Consider the directed system � of ideals indexed by
countable ordinals. For an ordinal � ∈ �1 let the ideal I� be generated by the set
	
x ∈ 2� � 
x is not a characteristic function of a closed subset of �
 plus all sets
	
x ∈ 2� � 	� ∈ � � 
x��� = 1
∩ b is infinite
 as b runs through all subsets of � of
ordertype �. It is not difficult to check that these ideals indeed form a directed
system; let I = lim�. It is immediate to verify that PI � 
xgen is a characteristic
function of a club subset of �V

1 with finite intersection with every ground model
set of ordertype �. The following is a key fact; its proof is essentially a repetition
of arguments such as Theorem 4.5.2.

Fact 5.5.9. [83] 4.2.14. PI is proper.

What is the advantage of adding a closed unbounded subset of �1 in this
seemingly complicated way over the usual finite side condition forcings? It turns
out that one has the same tight control over the reals added by the directed system
of ideals forcings as one does in the case of the forcings adding a single real. For
example, one can show that the forcing PI above has all the Fubini properties of
Laver forcing, in particular, it does not add Cohen or random reals and this feature
persists into its countable support iterations. In this way, it is possible to obtain new
models of the Ciesielski–Pawlikowski style axioms of Section 6.1 in which various
prediction principles on �1 do not hold, and therefore these prediction principles
do not follow from the axioms. However, in the absence of definite applications I
hesitate to develop this subject any further.
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Applications

6.1 Cardinal invariant inequalities

The contents of this section was the original motivation behind the development of
the theory presented in this book. It turns out that for many cardinal invariants ���,
if the inequality � < � can be forced at all then there is an extension M� depending
only on the invariant � which must realize the inequality. Moreover, there is an
axiomatization of this phenomenon, a sentence �� depending only on the invariant
� such that M� �= �� and in all forcing extensions satisfying the sentence �� the
inequality � < � holds.

The canonical models M� turn out to be natural and well-understood; these are
the models such as the iterated Sacks model or the iterated Laver model [46]. Using
the methods of the present book, the question whether M� �= � < � translates into
a question about Borel or projective sets. The canonical axiomatizations �� also
predate the methods of this book; they have been discovered by Ciesielski and
Pawlikowski [9] at least in the case of the iterated Sacks model. What is new in
this section is exactly the argument that these models and axiomatizations have the
strong absoluteness properties described in the previous paragraph.

In order to be able to state and prove the theorems I must introduce several
notions first.

6.1.1 Ciesielski–Pawlikowski axioms

In their book [9], Ciesielski and Pawlikowski isolated a number of closely related
axioms which hold in the iterated Sacks model, and used them to study various
properties of the model. Here I will use just one of them and add a parameter to it
so that I get a family of axioms which hold in various forcing extensions.

269
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Definition 6.1.1. Let I be a �-ideal on a Polish space X. The CPA(I) game is
played in �1 stages between Player I and II in the following fashion. At round
� ∈ �1 Player I indicates an I���-tree p� for some countable ordinal �� ∈ �1,
and a Borel function f� � 	p�
 → 2�. Player II responds with a I���-tree q� ⊂ q�.
Player I wins if in the end, 2� = ⋃

� f ′′
� 	q�
.

A simple observation shows that if CH holds then Player I has a winning strategy.
He simply plays constant functions f� � � ∈ �1 such that their respective singleton
ranges y� � � ∈ �1 cover the whole Cantor space. It may be the case that this is the
only way how Player I can obtain a winning strategy.

Definition 6.1.2. CPA(I) is the statement “cov∗�I� > ℵ1 and Player II does not
have a winning strategy in the CPA(I) game.” Here cov∗�I� = min
A ⊂ I �

⋃
A

contains an I-positive Borel subset�.

The CPA definition above differs from the one I gave in [83] in that I use the
invariant cov∗�I� in the place of cov�I�. This change is irrelevant in the most
important case of homogeneous ideals.

The axiom CPA(I) is really designed to hold in the iterated PI model.

Proposition 6.1.3. [9][83] Suppose that I is an iterable �-ideal on a Polish space
X generated by Borel sets. Then CPA(I) holds in the countable support iterated PI

extension.

The requirement that the ideal I be generated by Borel sets can be replaced by
other conditions if enough absoluteness is available.

Proof. Suppose for simplicity that CH holds, write P� for the countable support
iteration of length � of the poset PI and choose a generic filter G ⊂ P�2

. I have
to show that CPA(I) holds in V	G
. The key tools are the ℵ2-c.c. of the poset
P�2

proved in [64], III.4.1 and the representation of the poset P�2
as found in

Section 5.5.
First of all, cov∗�I� = ℵ2 in V 	G
. By a chain condition argument every col-

lection of ℵ1 many codes for Borel sets in the ideal I belongs to some model
V 	G∩P�
 fo a suitable ordinal � ∈ �2. By the absoluteness demands on the ideal
I , the generic points past the ordinal � added during the iteration fall out of all of
these sets.

To complete the proof, I must show that no Player II’s strategy for the CPA
game is winning in the model V 	G
. So let �̇ ∈ V be a P�2

-name for a strategy for
Player II. By a chain condition argument again, there is an ordinal � ∈ �2 such that
the partial evaluation �̇/�G∩P�� = �̇/G∩V 	G∩P�
 is Player II’s strategy in the
game in the model V 	G∩P�
. In this model CH holds and so Player I can enumerate
all his legal moves in the CPA game as 

���p�� f�� � � ∈ �1� and play them in
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succession. Player II follows the strategy to produce trees 
q� � � ∈ �1�. I claim that
this play of the game is winning in V 	G
 for Player I, completing the proof. To see
this, note that V 	G
 is a P�2

-extension of V 	G∩P�
 by the factorization theorem
of [2], 1.5.10. Work in the model V 	G∩P�
. If p ∈ P�2

is a condition and ẋ is a
P�2

-name for an infinite binary sequence, by Proposition 5.5.4 there is a condition
q ≤ p in P�2

and a Borel map f � Xdom�q� → 2� such that q � ẋ = ḟ �
xgen � dom�q��.
By the choice of Player I’s moves there must be an ordinal � ∈ �1 such that the
unique order-preserving map � � �� → dom�q� sends the tree p� to q and the map
f� to f . Let r ≤ q be the image of the set q� under the map �. Then clearly
r � ẋ ∈ ḟ ′′

� r�. Since the condition p and the name ẋ were arbitrary, it follows that
V 	G
 �= 2� = ⋃

� f ′′
� 	q�
 and Player I won as desired.

Thus typically CPA holds in the iterated Sacks model, CPA(bounded) holds
in the iterated Miller model and so on. Other models for the CPA variations are
in a short supply. It is for example possible to use a countable support iteration of
the forcing constructed in Section 5.5.2 to find a model of CPA(Laver) in which
various club prediction principles on �1 fail.

It is not at all clear on the first sight what the consequences of an axiom like
CPA(I) should be. It follows from the work in the following sections that the
axioms imply equalities � = ℵ1 for large classes of invariants �. Ciesielski and
Pawlikowski [9] studied the special case of I = ctble and derived a number of
other consequences. Many important open questions remain, such as whether any
of these axioms imply � = ℵ2.

6.1.2 Tame invariants

In order to state the absoluteness theorems in full generality, I need to introduce a
syntactical class of cardinal invariants.

Definition 6.1.4. Let X be a Polish space. A cardinal invariant � is tame if it
is defined to be the minimum size of a set A ⊂ X with properties ��A� and
∀x ∈ X ∃y ∈ A ��x� y� where � quantifies over natural numbers and elements of A
only and � is a projective formula not mentioning the set A. Real parameters are
allowed. The set A is called a witness for �.

Most cardinal invariants studied today are tame. There are exceptions to this rule,
and with a little practice it becomes obvious that there is a thick line separating
the tame and non-tame invariants. The methods of this section offer no hint on the
treatment of non-tame invariants.
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Example 6.1.5. � is tame. It is defined as the smallest size of a maximal almost
disjoint family. To write it in the tame form, let X = P���, ��A� will assert that
the elements of A are mutually almost disjoint and ��x� y� will assert that x∩ y is
infinite.

Example 6.1.6. � is tame. It is the smallest possible size of a modulo finite
unbounded subset of ��, so ��A� =“A = A” and ��x� y� will assert that x �< y
modulo finite.

For a similar reason, invariants like � and � as well as all covering numbers are
tame. The covering numbers can be written in such a way that the formula ��A� is
trivially true.

Example 6.1.7. (independently proved by Mildenberger) 	 is not tame.

Proof. I will find a model M of ZFC+LC+	 > ℵ1 and a forcing in it which
preserves cardinals, preserves tame invariants and collapses 	 to ℵ1� The model M
is the iterated Mathias model and the forcing P is simply the algebra P��� mod fin.
In the model M� P is ℵ1-distributive of size � = ℵ2 and therefore does not collapse
cardinals or tame invariants and by the results of [66] it forces 	 = ℵ1 as desired.

Example 6.1.8. (Mildenberger) 
 is not tame.

Proof. In fact I will prove that if � is a tame invariant and ZFC+LC proves 
 ≤ �
then ZFC+LC proves � ≤ �. To understand the meaning of this, note that ZFC
proves 
≤ � by [2] Theorem 4.3.2. It will show that 
 is not tame since 
< � holds
in the finite support iterated Cohen model by [2], 4.3.3.

So suppose that � is a tame invariant such that ZFC+LC does not prove � ≤ �.
There must be a countable model M of the consistent theory ZFC+LC+� < �, and
by Theorem 6.1.11, in its iterated Miller extension M	G
, ℵ1 = � < � = ℵ2 holds.
By [3] 
= �= ℵ2 holds in the iterated Miller model as well. Thus the model M	G

stands witness to the consistency of the theory ZFC+LC+� < 
.

In the large-cardinal-free context, where not enough absoluteness is available, I
will have use for the following weakening of the above definition:

Definition 6.1.9. Let X be a Polish space. A cardinal invariant � is very tame if it
is defined as the minimum size of a set A with properties ��A� and ∀x ∈ � ∃y ∈
A ��x� y� where ��A� = ∀x0� x1 · · · ∈ A ∃y0� y1� · · · ∈ A ��
x� 
y� for some arithmetic
formula �, � is an analytic formula, and ZFC proves that for every countable set
a ⊂ � with ��a� there is a set A ⊃ a such that �A� = � and A is a witness for �.
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This notion is slightly more complicated, and due to its last clause, it is not �0 in
the definition of the invariant. However, it is still sufficiently intuitive and broad –
I do not know of a single tame invariant in use today that would not be very tame.

Example 6.1.10. � is very tame.

Proof. Suppose that B is an infinite maximal almost disjoint family, and a is a
countable almost disjoint family. I will find a maximal almost disjoint family A
extending a of the same cardinality as B. It is not difficult to produce a permutation
� � � → � such that every set in a is modulo finite equal to the �-image of some
set in B. Thus the family A can be obtained as the set 
� ′′x � x ∈ B� with possible
finite modifications to some of its members.

Some invariants fail to be tame. This book offers no hint for general treatment
of non-tame invariants.

6.1.3 Absoluteness theorems

I will provide the archetype result and its ZFC version.

Theorem 6.1.11. [83] (LC) Suppose that I is an iterable �-ideal on a Polish
space X satisfying the second dichotomy. Suppose that � is a tame invariant. If
�< cov∗�I� holds in some forcing extension then it holds in every forcing extension
satisfying CPA(I).

In other words, the “optimal” way to prove the consistency of inequality of the
form � < cov∗�I� is to study an arbitrary model of CPA(I), such as the iterated PI

extension. It may be however that the easiest way to argue that � < cov∗�I� holds
in this extension is to prove that it holds in some other extension and then use the
theorem as a transfer tool. The theorem says that the iterated PI extension will keep
the values of as many tame cardinal invariants as possible at ℵ1. The following are
common special cases. The ideals are all homogeneous and so cov�I� = cov∗�I�
in all cases.

• I = the ideal of countable sets. cov�I� = � best increased by countable support
Sacks forcing.

• I = the ideal of �-bounded sets in ��. cov�I� = � best increased by countable
support iterated Miller forcing.

• I = the ideal of meager sets. cov�I� best increased by countable support iterated
Cohen forcing. In this case finite support iteration gives a similar effect.
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• I = the ideal of Lebesgue null sets. cov�I� best increased by countable support
iterated Solovay forcing. In this case a large measure algebra will give a similar
effect.

• I = the cmin ideal. cov�I� = [22] best increased by the countable support iterated
cmin forcing.

• I = the Laver ideal. cov�I� = � best increased by countable support iteration of
the Laver forcing.

• I = sets nowhere dense in P��� mod fin. cov�I� = 	 best increased by countable
support iteration of Mathias forcing.

Similar theorems can be proved for combinations of several ideals, stating for
example

• I = the ideal of compact subsets of the Baire space and J = the Lebesgue null
ideal. min
��cov�null�� best increased by the countable support iteration in
which the Miller and Solovay forcings alternate.

There are several attractive corollaries of metamathematical flavor.

Corollary 6.1.12. (Elimination of forcing) Let I and � satisfy the assumptions of
the theorem. Then ZFC+LC � ∃P P � �< cov∗�I� if and only if ZFC+LC+CPA(I)
� � < cov∗�I�.

The right-to-left implication is clear, since by Proposition 6.1.3 CPA(I) holds in
the iterated PI extension. For the left-to-right implication assume that � < cov�I�
can provably be forced and argue in the theory ZFC+LC+CPA(I). � < cov∗�I� can
be forced, and applying Theorem 6.1.11 in the generic extension, �< cov∗�I� holds
in every inner model of it satisfying CPA(I), in particular it holds in the ground
model. � < cov∗�I� follows.

Corollary 6.1.13. (Separation at ℵ1 and ℵ2) Let I and � satisfy the assumptions of
the theorem. Then � < cov∗�I� is consistent with ZFC+LC if and only if ℵ1 = � <
cov∗�I� = ℵ2 is.

The right-to-left implication is trivial. For the left-to-right implication look at any
model of ZFC+LC+� < cov∗�I�. There, � < cov∗�I� can be forced by the trivial
poset and so an application of Theorem 6.1.11 in it says that � < cov∗�I� will hold
in the iterated PI extension. In that extension though, ℵ1 = � < cov∗�I� = ℵ2.

Corollary 6.1.14. (Mutual consistency) Let I�� and � satisfy the assumptions of
the theorem. If each of � < cov∗�I� and � < cov∗�I� can be separately forced,
then their conjunction can be forced as well.
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To see this, note that Theorem 6.1.11 says precisely that the iterated PI extension
will satisfy all such forceable inequalities simultaneously. This argument does
not give literal mutual consistency, the statement “if each of � < cov∗�I� and
� < cov∗�I� is consistent, then so is their conjunction.” This statement is probably
false in general, but I have no counterexample.

Proof. To prove Theorem 6.1.11, let X be a Polish space and � be a tame invariant,
defined as � =the least size of a set A ⊂ X such that ��A�∧∀x ∈ X∃y ∈ A ��x� y�.
Consider the sentence � = ∃A ⊂ X ��A�∧∀� ∈ �1 ∀p an I��-tree ∀f � 	p
 → X
Borel ∃y ∈ A 

z ∈ B � ��f�
z�� y�� � I�. This may be a mouthful, but note that this
is a �2

1 sentence with a universally Baire parameter, the predicate for the ideals
I� � � ∈ �1.

Claim 6.1.15. � < cov∗�I� implies �.

Proof. Just look at any set A ⊂ X such that �A� < cov∗�I� and ��A� ∧ ∀x ∈
X∃y ∈ A ��x� y� holds. I claim that the set A is a witness to the sentence �.
To see this, choose a countable ordinal � ∈ �1, a Borel set B � I� and a Borel
function f � B → X and for contradiction assume that for every point y ∈ A the set
Cy = 

z ∈ B � ��f�
z�� y�� is in the ideal I�. Choose winning strategies �y � y ∈ A for
Player I in the iteration games with the payoff sets Cy, and choose an I��-tree p
such that 	p
 ⊂ B. By induction on � ∈ � construct sequences t� ∈ p of length �
which are legal answers to all the strategies �y � y ∈ A simultaneously. To do that,
at limit stage just take unions, and at a successor stage � = � +1 note that the sets
�y�t�� � y ∈ A are in the ideal I and therefore by the inequality �A� < cov∗�I� they
cannot cover the I-positive Borel set 
z � t�

� z ∈ p�. Thus it is possible to find a point
in the latter set which is a legal response to all the strategies simultaneously.

In the end, the branch 
z of the tree p extending all the nodes t� � � ∈ � belongs
to the set B, but at the same time, it belongs to none of the sets Cy � y ∈ A since it
conforms to all the winning strategies �y � y ∈ A. Contradiction.

Now work in some forcing extension satisfying CPA(I). Consider a �-closed
poset P forcing CH. In the P extension, � holds: it holds in the forcing extension
satisfying � < cov∗�I� by the previous claim, and it must then hold in every
extension satisfying CH by �2

1 absoluteness 1.4.12. Find a P-name Ȧ = 
ẏ� � � ∈ �1�
for a witness to the sentence �. Consider the following Player II’s strategy in the
CPA game: On the side, he is going to create a descending chain of conditions
r� � � ∈ �1 in P such that p� decides the point ẏ�. Also, writing p����� f� for �-th
move of Player I, the condition r� is going to identify some point y such that it is
forced into the set Ȧ and the set 

z ∈ 	p�
 � ��f�
z�� y�� is not in the ideal I�� , and
Player II will respond with some tree q such that 	q
 is a subset of this set.
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This cannot be a winning strategy for Player II, and therefore there is a winning
counterplay by Player I against it. Let A = 
y� � � ∈ �1� ⊂ X be the set of the points
such that p� � ẏ� = y̌�. A review of the definitions shows that A is a witness for
the sentence �, in particular A witnesses � = ℵ1!

The time has come to state the ZFC version of Theorem 6.1.11.

Theorem 6.1.16. Suppose that I is an iterable �1
1 on �

1
1 �-ideal. Suppose that

� is a very tame cardinal invariant. If � < cov∗�I� holds in some inner model of
ZFC containing all ordinals or its generic extension, then ℵ1 = � < cov∗�I� holds
in every generic extension of every inner model of ZFC containing all ordinals
whenever this extension satisfies CPA(I).

The restriction to �1
1 on �

1
1 ideals rules out ZFC applications to such common

models as the Laver model. There is however an important feature which makes this
theorem applicable for several ideals I for which the assumptions of Theorem 6.1.11
are not satisfied. Note that Theorem 6.1.16 does not require the ideal I to satisfy
the second dichotomy. This is made possible by the tight proof of the countable
support iteration dichotomy for �1

1 on �
1
1 ideals. Thus Theorem 6.1.16 is applicable

to such ideals as the E0 ideal or the Silver forcing ideal.

Proof. To prove Theorem 6.1.16, let I be a �-ideal satisfying the assumptions of
the theorem; to simplify the notation assume that it is actually lightface �1

1 on
�1

1. Let � be a very tame invariant defined as in Definition 6.1.9 by min
�A� ⊂
� � ��A�∧∀x ∈ � ∃y ∈ A ��x� y��. Consider the sentence � saying that there is a
countable set a ⊂� satisfying �, an ordinal � ∈ �1, a I��-tree p and a Borel function
f � 	p
 → � such that for every countable set b ⊃ a satisfying � and every real
y ∈ b the set 

z ∈ 	p
 � ��f�
z�� y�� is in the ideal I�. I will show that � is equivalent
to a �1

2 statement, � → � = cov�I� and ¬�∧CPA(I)→ � < cov∗�I�. Then the
theorem follows. Suppose that � < cov�I� holds in some inner model containing
all ordinals, as in all generic extensions. Then the inner model must satisfy ¬� and
by Shoenfield’s absoluteness � must fail in all inner models containing all ordinals.
So in any such a model satisfying CPA(I) � < cov∗�I� must hold.

Claim 6.1.17. � implies � = cov�I�.

Proof. Suppose that � holds as witnessed by some a ⊂ X, � ∈ �1, p and f . By the
homogeneity of the invariant � it will be enough to show that for every set A ⊂ X
such that a ⊂ A���A� and �A� < cov∗�I� there is a point x ∈ X such that no point
y ∈ A satisfies ��x� y�. Look at a point y ∈ A. Find a countable set b ⊂ A such
that ��b��a ⊂ b and y ∈ b, and look at the sentence �: it says that the set By =


z ∈ 	p
 � ��f�
r�� y�� is in the ideal I�. So fix the corresponding Player I’s winning
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strategies �y in the iteration games with payoff sets By, for all y ∈ A. I will produce
a sequence 
z ∈ 	p
 which is a legal counterplay against all the strategies �y � y ∈ A
simultaneously. Then the sequence 
z falls out of all sets By � y ∈ A, in other words the
point x = f�
r� has the required property. The construction of the sequence 
z = 
z� �

� ∈ �� proceeds by induction. At the stage �, the set 
s � ∃
t 
z� � � ∈ ���s�
t ∈ B�
is Borel and I-positive. On the other hand, the strategies 
�y � y ∈ A� offer only
< cov∗�I� many countable sets to be avoided, which then can be easily done. The
limit stages present no difficulty due to the �-closure condition in the definition of an
I-perfect set.

Claim 6.1.18. ¬�∧CPA(I) implies ℵ1 = � < cov�I�.

Proof. Suppose � fails and consider the following Player II’s strategy in the CPA(I)
game. As the game develops, he will construct an increasing chain 
a� � � ∈ �1�
of countable sets of reals satisfying the property �. Note that the property is pre-
served under unions of increasing sequences due to its simple syntactical form.
When Player I indicates an I���-tree p� and a Borel function f � 	p�
 → 2�,
Player II will use the failure of � to

⋃
�∈� a� , p� and f to produce a count-

able set a� and a point y� ∈ a� such that the set 

z ∈ 	p�
 � ��f�
z�� y��� is not in
the corresponding iterated Fubini power of the ideal I . The latter set is analytic
and so it must contain all branches of a I���-tree q� ⊂ p. this will be Player
II’s move. CPA(I) says that this strategy is not winning for Player II and sup-
plies Player I’s counterplay which wins, i.e.

⋃
�∈�1

f ′′
� 	q�
 = 2�. Then the set

A = ⋃
� a� that Player I produced on the side during the run of this game is a

witness to ℵ1 = � < cov∗�I�: ��A� holds since the set A is an increasing union
of sets satisfying �, and for every real x there is an ordinal � ∈ �1 such that
x ∈ f ′′

� 	q�
, and by the choice of the tree q�, there is a real y ∈ a� ⊂ A such that
��x� y� holds.

Claim 6.1.19. � can be written in a �1
2 form.

Proof. Consider the statement �̄ saying that there is a countable model M of a large
fraction of ZFC and its elements a�x�p� ż such that M �= a ⊂ X is a countable set
satisfying �, x is a countable ordinal, p is a condition in the countable support
iteration of PI -forcing along x and ḃ is a name for an infinite binary sequence, such
that M is wellfounded and for every countable set b ⊃ a satisfying � and every
point y ∈ b the set 

z ∈ Y x � 
z is M-generic and ��ḃ/
z� y�� is Ix small, where Y is the
domain Polish space of the �-ideal I . This is a �1

2 statement since the membership
in the ideal Ix for analytic sets is a coanalytic statement by Corollary 5.1.11. To see
that � → �̄, let a���p and f witness the statement of � and choose a countable
elementary submodel M of large enough structure containing these objects, let
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ḃ = ḟ �
zgen�. Then M�a�p� ḃ witness the sentence �̄. Vice versa, if M�a�x�p� ż

witness �̄, then the ordering x must be isomorphic to some ordinal � and by a
properness argument there is a I��-tree q consisting solely of M-generic sequences
meeting the condition p. Then the set B together with the function f�
z� = ḃ/
z
witnesses the sentence �.

6.2 Duality theorems

The duality heuristic in the science of cardinal invariants is the following statement:
if I� J are suitably definable �-ideals and ZFC proves cov�I � ≤ non�J � then
ZFC also proves non�I � ≥ cov�J �. In fact, every inequality involving invariants
add�non�cov�cof of suitably definable invariants can be dualized by switching
add with cof and non with cov and reversing the inequality sign, and the duality
heuristic will say that an inequality is provable if and only if its dual is. This is
really completely false in general, nevertheless it has provided a valuable guidance
in many situations. In this section I will provide several theorems that offer formal
insight into the heuristic.

Example 6.2.1. Suppose ≤ is some simply definable prewellordering on a Polish
space X of ordertype �1. Let I be a �-ideal generated by those subsets of X the
ranks of whose elements are bounded in �1. Clearly ZFC proves that cov�I� =
non�I� = ℵ1. Now consider the ideal J of countable sets on 2� and note that the
duality heuristic fails: ZFC proves ℵ1 = cov�I � ≤ non�J � = ℵ1, but it certainly
does not prove � = cov�J � ≤ non�I � = ℵ1, or at least so we like to think.

In some cases the duality theorems immediately follow from preservation theorems
in Section 6.3.

Example 6.2.2. Suppose that � is a pavement submeasure on a Polish space X.
ZFC+LC proves � ≤ non∗�I�� if and only if ZFC+LC proves � ≥ cov∗�I��. To
argue for this, I will show that both statements are equivalent to ZFC+LC proving
I� ⊥ J where J is the Miller ideal on ��.

First note that from I� ⊥ J it abstractly follows that � ≤ non∗�I�� and � ≥
cov∗�I��. Just find a �-positive Borel set B ⊂ X and a Borel set D ⊂ B×�� whose
vertical sections are �-bounded and the horizontal sections of the complement are
�-small. A review of the definitions then shows that if E ⊂ �� is a dominating set
then the collection 
�B ×�� \D�y � y ∈ E� consists of �-null sets and covers the
whole set B, and if F ⊂ B is a �-positive set then for every point x ∈ F choose a
function fx ∈ �� �-bounding the section Dx; the set 
fx � x ∈ F� is not �-bounded.
This proves the two cardinal invariant inequalities.
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Now suppose that ZFC+LC does not prove I� ⊥ J , find a model M in which this
fails, and work in it. As PJ , the Miller forcing, is homogeneous, Proposition 3.2.12
shows that this implies ¬J ⊥ �. By Theorem 6.3.13, this feature propagates through
the countable support iteration of PJ . In other words, in the iterated Miller extension
it will be the case that non∗�I� = ℵ1 < � and so ZFC+LC does not prove � ≤
non∗�I��. For the other inequality note that the ideal J is generated by closed sets,
therefore by Theorem 6.3.9 the relation ¬I� ⊥ J propagates through the countable
support iterations of the poset PI�

. In other words, in the iterated PI�
-extension

the ground model reals will be still unbounded and � = ℵ1 < cov∗�I��, and so
ZFC+LC does not prove � ≥ cov∗�I��.

Such situations are very rare though. In the following subsections I will isolate
several theorems in which no preservation theorem is needed.

6.2.1 The countable ideal

Theorem 6.2.3. [83] Suppose that J is a �-ideal on a Polish space X generated
by vertical sections of some projective set 2� ×X. If ZFC+LC proves cov�J� = �
then ZFC+LC proves non�J� ≤ ℵ2. If the ideal J is generated by vertical sections
of an analytic set then the large cardinal assumptions can be dropped.

Proof. The argument is based on the following combinatorial fact of independent
interest. Let I be the ideal of countable subsets of the Cantor space 2�.

Lemma 6.2.4. For every countable ordinal � ∈ �1, non�I�� ≤ ℵ2.

Proof. The key tool in the argument is the following

Fact 6.2.5. (Shelah) For every limit countable ordinal � and every regular cardinal
� > ℵ1 there is a stationary set S ⊂ � consisting of ordinals of cofinality � and a
sequence 
C� � � ∈ S� of sets such that

1. for every ordinal � ∈ S C� ⊂ � is a closed cofinal set of ordertype �;
2. for ordinals ��� ∈ S the intersection C� ∩C� is an initial segment of both of the

sets C� , C�;
3. for every closed unbounded set E ⊂ � there is an ordinal � ∈ S such that C� ⊂ E.

This fact was announced in [60], p. 136, remark 2.14A. The proof is in [59],
available from the Mathematics ArXiv. The reader wishing to stick to published
results will have to use a well-known much stronger club-guessing property at ℵ3

[63], and will only get a larger upper bound of ℵ3 for non�ctble��.
So fix a nonzero countable ordinal �, without loss of generality � is limit. The

proof of the lemma divides into two branches according to the value of �. If � ≤ ℵ2
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then we are done since ��2���� = �≤ ℵ2. If �≥ ℵ3 then fix a collection 
r� � � ∈ �2�
of distinct infinite binary sequences and the club guessing sequence 
C� � � ∈ S�
with the set S ⊂ �2 from Fact 6.2.5. For each ordinal � ∈ S define the �-sequence

r� ∈ �2��� to include the real numbers indexed by the nonaccumulation elements
of the set C�. The proof will be complete once I show that the set 

r� � � ∈ S� is
ctble�-positive.

For the ease of notation regard the sequences 
r� as indexed by the nonaccumu-
lation points of the set C�. Let � be Player I’s strategy in the iteration game; I must
produce an ordinal � ∈ S such that the sequence 
r� is a valid counterplay against that
strategy. To that end, fix a continuous tower 
M� � � ∈ �2� of elementary submodels
of large enough structure, all of them of size ℵ1 and containing �1 as a subset. Let
E = 
� ∈ �2 � M� ∩�2 = ��. The set E is closed unbounded, so there must be an
ordinal � ∈ S such that C� ⊂ E. Then 
r� is the sought sequence. Indeed, for every
ordinal � among the first � nonaccumulation points of the set C� the set C� ∩� is
in the model M� by (2) above. So even the sequence 
r� � � and Player I’s challenge
��
r� � �� at round � are in the model M� . But that challenge is just a countable set,
so ��
r� � �� ⊂ M� does not contain the point r� � M� as desired.

It may be of certain interest to give a diametrally different argument for the
weaker

Lemma 6.2.6. non�ctble�� ≤ ℵ�+1.

Proof. Recall the basic pcf structure fact:

Fact 6.2.7. [63], II.1.5. There is an increasing sequence 
�n � n ∈ �� of cardinals
below ℵ� such that the true cofinality of the product

∏
n �n modulo finite is ��+1,

meaning that there is a modulo finite increasing cofinal sequence 
f� � � ∈ ��+1�
in the product.

To see that non�ctble�� ≤ ℵ�+1 assume without loss that � ≥ ℵ� and fix a
sequence 
r� � � ∈ ��� of distinct infinite binary sequences. For each function f�

from the above Fact and every integer n let 
r�n ∈ �� be the sequence defined by

r�n�m� = rf��n+m�. It will be enough to prove that the set 

r�n � � ∈ ��+1� n ∈ �� is
ctble�-positive. Suppose that � is Player I’s strategy in the iteration game, and
let g ∈ ∏

n �n be a function defined by g�n� = sup
� ∈ �n � for some partial play
of the game respecting the strategy � and using just the reals indexed below �n−1

as Player II’s answers, the real r� belongs to some Player I’s move�. Since the
functions f� � � ∈ ��+1 are cofinal in the product

∏
n �n, there will be an ordinal

� ∈ ��+1 and an integer n ∈ � such that the function f� dominates g from n on.
The reader can easily check that the sequence 
r�n is a legal sequence of answers
against the strategy � as desired.
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The remainder of the proof is easy. Suppose that ZFC+LC proves cov�J� = �.
Then ZFC+LC proves that this equality holds in the iterated Sacks extension. Now
argue formally in the theory ZFC+LC. The work of Sections 5.5 and 5.1 shows that
there is a countable ordinal � ∈ �1, a Borel I�-positive Borel set B ⊂ �2���, and a
Borel function f � B → X such that f -preimages of J -small sets are ctble�-small.
The function f just represents a point of the space X which is forced to fall out
of all ground model coded J -small sets. Now a separate argument is necessary to
prove that ctble� is a homogeneous ideal and therefore the set B can be taken as
the whole space �2���. Let E ⊂ �2��� be a ctble�-positive set from Lemma 6.2.4.
A review of the definitions shows that f ′′E is a J -positive set of size ≤ ℵ2!

The cardinal bound ℵ2 in the theorem is the best possible; it cannot be replaced
with ℵ1.

Example 6.2.8. Let J be the �-ideal on �2��� �-generated by the sets Ag = 

r ∈
�� � ∃i ∈ j ∈ � 
r�j� = g�
r�i��� as g varies over all Borel functions from 2� to 2�.
Then ZFC proves cov�J� = � and ZFC+PFA proves non�J� = ℵ2.

Proof. If 
g� � � ∈ �� are < � many Borel functions from 2� to 2�, by induction on
j ∈ � find binary sequences 
r�i� so that 
r�i� is not in the set 
g��
r�j�� � j ∈ i� � ∈ ��
of size < �. Clearly the sequence 
r ∈ �2��� is not in any of the sets Ag�

showing
that cov�J� = �.

Now work in the context of PFA and fix an arbitrary set A ⊂ �2��� of size ℵ1. I
will show that A ∈ J , and therefore non�J� = ℵ2. Let r� � � ∈ �1 be an enumeration
of the set X of all the reals occuring on the sequences in the set A. By an application
of PFA to the Baumgartner’s poset adding a club with finite conditions, there is a
club C ⊂ �1 such that for every sequence 
r ∈ A there are integers i ∈ j and two
successive elements of the club C such that the reals 
r�i�� 
r�j� were enumerated
between these. Let fn � X → X, for n ∈ � be functions such that for every ordinal
� ∈ �1 the functional values 
fn�r�� � n ∈ �� include every real enumerated before
the least element of the club C larger than �. By an application of MA to a c.c.c.
coding poset there are Borel functions 
gn � n ∈ �� such that for every integer n
fn ⊂ gn. It is immediately clear that A ⊂ ⋃

n Agn
.

6.2.2 The cmin ideal and variations

Recall the definition of the cmin ideal of Section 4.1.5. The function cmin � 	2�
2 → 2
is defined by cmin�x� y� = x�y mod 2 and the cmin ideal, which I will here denote
by I2, is generated by the cmin-monochromatic sets. A natural generalization of this
procedure yields partitions cn � 	2�
2 → n and �-ideals In on the Cantor space 2�
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by setting cn�x� y� = x�y mod n and defining the ideal In as �-generated by sets
A ⊂ 2� such that c′′

nA2 �= n.
The basic feature of these ideals from the set theoretic point of view is the

following.

Fact 6.2.9. For every number n ∈ �, cov�In+1� ≤ cov�In� and cov�In�
+n ≥ �.

In particular, the invariants cov�In� � n ∈ � form a nonincreasing sequence of
cardinals and therefore stabilize at some point. ZFC does not decide the value of
the natural number at which this happens. Also, if � is a limit cardinal, all of these
invariants are equal to �.

Theorem 6.2.10. [67] (LC) Suppose that J is a �-ideal on a Polish space X
generated by vertical sections of some projective set 2� × X. If ZFC+LC proves
cov�J� ≥ cov�In� then ZFC+LC proves non�J� ≤ ℵn. If the ideal J is generated
by vertical sections of an analytic set then the large cardinal assumptions can be
dropped.

Theorem 6.2.11. [67] (LC) Suppose that J is a �-ideal on a Polish space X
generated by vertical sections of some projective set 2� × X. If ZFC+LC proves
cov�I� ≥ minn cov�In� then ZFC+LC proves non�I� ≤ ℵ�2+1. If the ideal J is
generated by vertical sections of an analytic set then the large cardinal assumptions
can be dropped.

Proof. The arguments are the same in both cases, and they use the line of thinking
from the previous section. The following lemmas are critical.

Lemma 6.2.12. For every number n ∈ � and every countable ordinal � ∈ �1,
non�I�

n � ≤ ℵn+1.

Lemma 6.2.13. If K is a transfinite Fubini product of any countable combination
of the ideals In � n ∈ � then non�K� ≤ ℵ�2+1.

In order to prove these statements, for every natural number n ∈ � I will consider
ideals Jn on �2��n+1 defined in the following way. For every number k ∈ n+1 and
every function f � �2��n+1 \ 
k� → 2� the set Af = 
x ∈ �2��n+1 � x�k� = f�x �
�n+1\ 
k���� is in the ideal Jn, and the ideal Jn is �-generated by all sets of this
form. The ideal Jn is trivial if � = ℵn, but I will have to study its behavior in more
complex situations than that.

For every number n ∈ � let g � �2��n+1 → 2� be the function defined by g�x��m ·
n + k� = x�k��m� whenever k ≤ n and m ∈ �. A simple observation now shows
that preimages of In-small sets are Jn-small. It immediately follows that it will be
enough to prove the lemmas for the ideals Jn in place of In.
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Towards the proof of Lemma 6.2.12 fix a number n > 0 and a countable ordinal
� ∈ �1, without loss assuming that � is limit. For every number m ∈ n use Fact 6.2.5
to choose a club guessing sequence 
Cm = 
Cm

� � � ∈ �m+2� in �m+2. I may certainly
assume that �≥ ℵn+1 and so we can choose a sequence 
s = 
s� � � ∈ �n+1� of pairwise

distinct elements of 2�. For every n-tuple 
� ∈ ∏
m∈n �m+2 such that the sets Cm


��m�

have ordertype �, let 

��m���� � � ∈ �� enumerate the nonaccumulation points of
these sets in the increasing order, and let 
r
� ∈ ���2��n��� be the �-sequence whose
�-th element is the point 
s
��m���� � m ∈ n� in the space �2��n. It will be enough to

show that the set 

r
� � 
� ∈ ∏
m∈n �m+2� is J�

n -positive.
To prove this, for every strategy � for Player I in the iteration game I need

to find an n-tuple 
� such that the sequence 
r
� is a legal counterplay against the
strategy � . So fix the strategy � and by downward induction on m ∈ n find

• a continuous increasing ∈-tower 
Mm = 
Mm
� � � ∈ �m+2� of elementary submodels

of a large enough structure, each of them of size ℵm+1 and such that Mm
� ∩�m+2 ∈

�m+2. In particular, we require 
Ck � k ∈ n+ 1�
s�� ∈ Mm
0 . Let Em = 
� ∈ �m+2 �

Mm
� ∩�m+2 = ��; this is a closed unbounded subset of �m+2.

• an ordinal �m ∈ �m+2 such that the set Cm
�m

⊂ �m is cofinal of ordertype � and
it is a subset of the club Em. For every two numbers k ∈ m ∈ n we demand that
�m ∈ Mk

0 .

Let 
� = 
�m � m ∈ n�. I claim that the sequence 
r
� is the desired legal counterplay
against the strategy � . So look at an arbitrary round � ∈ � and suppose that
the sequence does constitute a legal counterplay up to this point. What happens
at round �?

The important observation is that for every integer k ∈ n, the play up to this
round is in the model Mk


��k����
since it is defined from objects that belong to this

model. In particular, one of the parameters in the definition is the set Ck

��k�

∩
��k����

which is in the model by the coherence requirement (2) in Fact 6.2.5.
The strategy � now indicates functions 
fmk � k ∈ n�m ∈ �� such that fmk is a

function from �2��n\
k� to 2�. We must show that the point 
r
���� is not contained
in the graph of any of these functions. So choose integers m ∈ � and k ∈ n.
Consider the set Y = 
fmk�
u� 
v� � 
u ∈ �2��k is a sequence all of whose entries are
on the 
s-sequence, indexed by ordinals smaller than �k+1 and 
v ∈ �2��n\�k+1� is a
sequence all of whose entries are on the 
s-sequence, indexed by ordinals in the set
⋃

k+2∈l∈n+2 Cl

��l�

�. This set is of size < ℵk+2 and it belongs to the model Mk

��k����

.

Thus Y ⊂ Mk

��k����

, in particular s
��k���� � Y , which by the definition of the set Y
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means that the point 
r
���� = 
s
��l���� � l ∈ n� is not on the graph of the function fmk

as desired. Lemma 6.2.12 follows.
Towards the proof of Lemma 6.2.13, let � be an arbitrary countable ordinal.

For definiteness I will deal with the transfinite Fubini iteration K of a sequence of
�-ideals of length � ·� ·� whose (� ·�+n)-th element is the ideal Jn. Fix several
objects whose existence is provable in ZFC:

• An increasing sequence 
� = 
�� � � ∈ �2� of regular cardinals below ℵ�2
such

that the true cofinality of their product modulo the bounded ideal on �2 is
��2+1, from [63], Chapter II, Theorem 1.5. This means that there is a sequence

h = 
h� � � ∈ ��2+1� of functions in

∏
� �� which is increasing and cofinal in the

modulo bounded ordering. Fix such a sequence.
• A club guessing sequence 
C = 
C� � � ∈ ��2+1� from Fact 6.2.5. The sequence

will guess closed unbounded subsets of ��2+1 by segments of length � · � · �.
For every ordinal � ∈ ��2+1 let C����� denote the �-th nonaccumulation point
of the set C� .

• A club guessing sequence 
D = 
D� � � ∈ �2� from Fact 6.2.5. The sequence will
guess closed unbounded subsets of �2 by segments of length � · � · � again,
with similar notational convention for as in the previous item, using the symbol
D����� for the �-th nonaccumulation point of the set D�.

• Without harm we may assume that �> ℵ�2
. So fix a sequence 
s = 
s� � � ∈ ��2+1�

of pairwise distinct elements of 2�.

Now suppose that � ∈ ��2+1 and � ∈ �2 are ordinals such that the ordertypes
of the sets C� and D� are both � · � · �. Define a � · � sequence 
r�� by setting
its � ·�+n-th element to be the point in the space �2��n+1 whose k-th coordinate
for every number k ∈ n+ 1 is the point on the s sequence indexed by the ordinal
hC����·��·�+n�+k��D���� · �� ·�+n�+n−k��. I will show that the collection 

r�� �
� ∈ ��2+1� � ∈ �2� is K-positive, proving the lemma. This means that for every
Player I’s strategy � in the iteration game I must find ordinals � ∈ ��2+1 and � ∈ �2

such that the sequence 
r�� is a legal counterplay against the strategy.
Fix a continuous increasing ∈-tower 
M� � � ∈ ��2+1� of elementary submodels

of large enough structure, each of them of size ℵ�2
and such that M� ∩��2+1 ∈ ��2+1.

In particular, 
�� 
h� 
C� 
D�� ∈ M0. Let E = 
� ∈ ��2+1 � M� ∩��2+1 ∈ ��2+1�. Since
this is a closed unbounded subset of ��2+1, there must be an ordinal � such that
the set C� ⊂ � is cofinal of ordertype � ·� ·� and C� ⊂ E.

Also, fix a continuous increasing ∈-tower 
N� � � ∈ �2� of elementary submodels
of large enough structure, each of them of size ℵ1 and such that N� ∩�2 ∈ �2. In
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particular, 
�� 
h� 
C� 
D�E���� ∈ N0. Let F = 
� ∈ �2 � N� ∩�2 = ��. Since this is a
closed unbounded set, there must be an ordinal � ∈ �2 such that the set D� ⊂ � is
cofinal of ordertype � ·� ·� and D� ⊂ F .

I claim that the sequence 
r�� is a legal counterplay against the strategy � . To see
this, consider the situation at round � ·�+n for some ordinal � ∈ � and number
n ∈ �. Suppose that up to this point, the sequence constituted a legal partial play;
we want to see that it will provide a legal answer even in this round. The strategy
� commands Player I to play functions 
fmk � k ∈ n+1�m ∈ �� such that for each
k ∈ n+ 1 and each m ∈ � the function maps �2��n+1\
k� to �2��. I must show that
the n + 1-tuple 
t = 
r���� · � + n� ∈ �2��n+1 is not on the graph of any of these
functions, that is 
t�k� �= fmk�
t � �n+1\ 
k���.

To this end, fix integers k ∈ n+ 1 and m ∈ �. Define a function g ∈ ∏
� �� by

letting g��� to be the supremum of the set 
� ∈ �� � s� = fmk�
u� 
v�� where 
u ∈ �2��k

is a sequence all of whose entries are on the 
s-sequence, and are indexed by ordinals
< sup
��′ � �′ ∈ ��, and 
v ∈ �2���n+1�\�k+1� is a sequence all of whose entries are
on the 
s-sequence and are indexed in the ordinals in the range of the functions

h�′ � �′ ∈ C� ∩C���� · �� ·�+n�+k���. It is immediate that this set has size < ��

and so the function g is well-defined. There are two important points.

• g ∈ MC����·��·�+n�+k�. This so happens because the function is defined from objects
contained in the model, in particular from the set C� ∩��� ·�� ·�+n�+k� which
belongs to the model by the coherence of the C-sequence.

• g ∈ ND����·��·�+n�+k� by the same reason as in the previous item, this time using
the coherence of the D-sequence.

By the first point, the function g ∈ ∏
� �� is dominated by the function

hC����·��·�+n�+k� from some ordinal on. By the second point, this ordinal must be
smaller than D���� · �� ·�+n�+ k�. By the definition of the function g and the
sequence 
t = 
r���� ·�+n� then, it must be the case that 
t�k� �= fmk�
t � �n+1\
k���
as desired. Lemma 6.2.13 follows.

6.3 Preservation theorems

The terminology used in the previous work is highly suitable for proving preser-
vation theorems for the countable support iteration. The preservation theorems
obtained are in spirit quite different from those obtained by Shelah [64], not only
because they work only in a definable context and with large cardinal assumptions,
but also because they cover a quite different scale of preservation properties.
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Before I indulge in a list of theorems, I will recall some terminology and basic
tricks used in their proofs. Suppose that I is an iterable �-ideal on a Polish space
X. The symbol I� stands for the �-th iterated Fubini power of the ideal I . A
nonempty tree p ⊂ X<� is an I��-tree if its levels are Borel and each of its nodes
has an I-positive set of immediate successors. Recall that if the ideal I is iterable
and satisfies the second universally Baire dichotomy then every universally Baire
I�-positive set contains all branches of some I��-tree. I will need to relativize
this to an arbitrary sequence t ∈ X<�. The symbol I��t� wil stand for the �-
ideal on the space of all sequences in X� which contain t as an initial segment
defined by A ∈ I� ↔ 
t�
x � 
x ∈ A� ∈ I��t�. A tree p ⊂ X<� is an I��� t-tree if
it contains t as its trunk, its levels are Borel, and every node of p past t splits
into I-positively many immediate successors. Clearly the work of Section 5.1
shows that every universally Baire I��t�-positive set contains all branches of some
I��� t-tree.

The following proposition explains the “bootstrapping” move, which makes it
possible to prove the preservation theorem only for iterations of length � and then
argue abstractly for the general case.

Proposition 6.3.1. (LC) Suppose that J is a �-ideal on a Polish space Y and for
every iterable ideal I , if I �⊥ J then I� �⊥ J . Then

1. for every iterable ideal I and every countable ordinal � ∈ �1, I� �⊥ J ;
2. for every iterable ideal I and every ordinal �, if for every Borel J -positive set

B ⊂ Y PI � Ḃ ∩V � J , then the countable support iteration of PI of length �

forces the same;
3. if in addition the ideal J is homogeneous, for every iterable ideal I and every

ordinal �, if PI � Ẏ ∩ V � J then the countable support iteration of length �

forces the same.

Moreover, if the variable I ranges over �1
1 on �

1
1 ideals then the large cardinal

assumption can be dropped.

And finally, the following proposition records the fusion argument for the
countable support iteration.

Proposition 6.3.2. Suppose that I is an iterable ideal, B � I� is a Borel set, and
f � B → �� is a Borel function. Then there is a I��-tree p such that 	p
 ⊂ B and
for 
x ∈ 	p
 the value f�
x��n� depends only on 
x � n.

The proof is just a repetition of the standard proof of the preservation of properness
in the countable support iteration and as such I omit it.
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6.3.1 Uniformity of ergodic ideals

Theorem 6.3.3. [83] (LC) Suppose that I is an iterable ideal on a Polish space
X and J is an ergodic c.c.c. ideal on a Polish space Y . If suitable large cardinals
exist and I �⊥ J then I� �⊥ J . If the ideal I is �1

1 on �
1
1 and the ideal J comes from

a Suslin c.c.c. forcing then the large cardinal assumption can be dropped.

Proof. I will treat the large cardinal version. Let E be a countable Borel equivalence
relation on the space Y witnessing the assumption that the ideal J is ergodic. Suppose
that I �⊥ J holds. Towards the proof of I� �⊥ J , choose Borel sets B ⊂ X�, C ⊂ Y , and
D ⊂ B×C such that the horizontal sections of the complement of D are in the ideal
I; I must find a vertical J -positive section of the set D. There is a universally Baire
collection of winning strategies �y � y ∈ C for Player I in the iteration games with
payoff sets �B ×C� \D�y� ⊂ B. Since E is an equivalence relation with countable
classes, without loss of generality I may suppose that the moves of the strategies
are invariant under the equivalence relation E. I will find a sequence 
x ∈ B such
that for a J -positive set C ′ ⊂ C, the sequence 
x is a legal sequence of answers of
Player II against the strategy �y for all y ∈ C ′. This will indicate that C ′ ⊂ D
x and
D
x is the desired positive vertical section.

Find an I��-tree p ⊂ X� such that 	p
 ⊂ B. By induction on n ∈ � build
sequences tn ∈ X<� such that

• 0 = t0 ⊂ t1 ⊂ � � � , tn ∈ p, �tn� = n;
• writing Cn = 
y ∈ C � the sequence tn is a legal sequence of Player II’s answers

to the strategies �y�, the set C ′
n is J -positive. Note that since the strategies are

invariant under the equivalence relation E, so is the set C ′
n, and by the ergodicity

it must be the case that C \Cn ∈ J .

The initial state t0 = 0 of the induction satisfies the induction hypothesis. Suppose
tn has been obtained. Now I �⊥ J , the initial assumption, is equivalent to I �⊥uB J by
Proposition 3.2.4, since the ideal J is c.c.c. and therefore satisfies the first universally
Baire dichotomy. Consider the Borel I-positive set Bn = 
x ∈ X � t�

n x ∈ p�, the
universally Baire J -positive set Cn, and the universally Baire set Dn ⊂ Bn × Cn

defined by 
x� y� ∈ Dn if x � �y�tn�. The complement of this set has J -small
horizontal sections by the definition of the strategies, and so I �⊥uB J implies that
there must be a point x ∈ Bn such that �Dn�x � J . The sequence tn+1 = t�

n x satisfies
the induction hypotheses.

In the end, let 
x = ⋃
n tn ∈ 	p
 ⊂ B. The main point of the argument now is that

C ′ = ⋂
n Cn is a J -positive set, since for every number n ∈ � it was the case that

C \Cn ∈ J . The theorem follows.
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Corollary 6.3.4. Under the above assumptions the statement PI � V ∩ X � J is
preserved under the countable support iteration of the suitably definable forcing.
In particular, the following properties are preserved:

1. V ∩� is not meager;
2. V ∩� is not Lebesgue null;
3. V ∩meager is cofinal in meager;
4. V ∩null is cofinal in null.

Proof. It is just necessary to observe that the properties enumerated above can be
expressed as preservation of J -positivity for a suitable ergodic �-ideal associated
with a Suslin forcing. The first two properties are already in this form. The third
property is equivalent to the preservation of positivity for the ideal associated with
Hechler forcing and the usual amoeba forcing for measure will work for the last
property.

The reader may want to compare these techniques and results to the parallel
results of [41] and [42], which employ combinatorial approach to proper forcing.

The book [83] introduced a weakening of the ergodic property of ideals that
is still sufficient for the above proof. The following definition restates Definition
5.4.4 in that book.

Definition 6.3.5. Suppose that I is a �-ideal on a Polish space X. I will call the ideal
weakly ergodic if the partial order Pe

I is ℵ0-distributive. Here, a condition p ∈ Pe
I is

a pair 
Bp�Ep� where Bp ⊂ X is a Borel I-positive set and Ep is a countable Borel
equivalence relation on Bp such that Ep-saturations of I-small sets are I-small. Pe

I

is ordered by q ≤ p if Bq ⊂ Bp, Bq is invariant under Ep, and Ep � B2
q ⊂ Eq.

Note that if large cardinals exist and I is a universally Baire weakly ergodic
ideal then the forcing Pe

I must in fact be strategically closed since the descending
chain game is determined. Recall that in the descending chain game [30] Players I
and II alternate, creating a descending chain pn � n ∈ � of conditions in the poset
Pe

I , and Player II wins if the chain has a lower bound. In this particular case, this
condition reduces to

⋂
n Bpn

� I , since then the largest lower bound will be the pair

B = ⋂

n Bpn
�E = ⋃

n Epn
� B2�.

It is not difficult to see that PI then embeds into Pe
I ∗ PJ where J is the �-

ideal generated by Borel sets disjoint from some set Bp where p comes from the
Pe

I -generic filter. The forcing PJ is c.c.c. in all cases that I can see.
The extent of the family of weakly ergodic ideals is something of a mystery.

Proposition 6.3.6. The following ideals are weakly ergodic.

1. Every c.c.c. ergodic ideal.
2. The Laver ideal.
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3. The cmin ideal.
4. The Mathias ideal.
5. The E0-ideal.

Proof. In the case of a c.c.c. ergodic ideal I , Player II wins the descending chain
game by simply finding a countable Borel equivalence relation E such that every E-
invariant Borel set is either I-small or I-large and E-saturations of I-small sets are
I-small, and then in his first move playing a condition 
B1�E1� such that E � B1 ⊂ E1.
His remaining moves are completely irrelevant, since for every number n ∈ � it
must be the case that B1 \Bn ∈ I by the ergodicity, and therefore B \⋂n Bn ∈ I and
⋂

n Bn � I as required.
For the Laver ideal, as the descending chain game on Pe

I develops, Player II
indicates conditions 
B2n+1�E2n+1� � n ∈ � in such a way that

• B2n+1 = 	Tn
 for some Laver tree Tn and the trees Tn � n ∈ � form a fusion
sequence;

• for every sequence s ∈ �<� and every branching node t ∈ Tn let ft�s�n � Os → 	Tn � t


be the natural homeomorphism; then E2n+1 is required to be a Borel count-
able equivalence relation containing all the pairs �x� y� � ∃s0� t0� s1� t1 f−1

t0�s0�n�x� =
f−1

t1�s1�n�y�.

It is not difficult to see that this is possible. Suppose B2n+1�E2n+1� Tn have been
obtained, and B2n+2�E2n+2 is the answer of Player I. There is a node s ∈ �<� such
that the set B2n+2 contains all branches of some Laver tree S with trunk s. Since
B2n+2 is invariant under the equivalence relation E2n+1, the second item above
implies that in fact it contains all branches of some Laver trees with trunks equal
to the nodes at the n-th splitting level of the tree Tn. Let Tn+1 be the Laver tree
combining all of them, find the homeomorphisms as in the second item above, and
let B2n+3 be the E2n+2-saturation of the set 	Tn+1
 and E2n+3 be the equivalence
relation generated by E2n+2 and the pairs in the second item above. This concludes
the inductive step.

In the end, the condition 
B�E� defined by B = ⋂
n Bn and E = ⋃

n En � B is a
lower bound of the chain obtained. Note that the set B contains all branches of the
Laver tree T = ⋂

n Tn.
For the cmin, Mathias and E0-ideal proceed in the same way as above, with a

notion of fusion suitable for the associated forcings.

Theorem 6.3.7. (LC) Suppose that J is a universally Baire weakly ergodic ideal
satisfying the second dichotomy. Whenever I is an iterable ideal and I �⊥uB J then
I� �⊥uB J .
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Proof. The argument is exactly the same as in Theorem 6.3.3 except that on the J
side it is necessary to simulate a run of the descending chain game in the forcing
Pe

J .

There are several attractive corollaries. The reader should note that all cases
below in which the ideal J satisfies the first dichotomy can be actually obtained
from other preservation theorems in this section. The novel cases are those in which
the ideal J does not satisfy the first dichotomy. Theorem 6.3.7 is the only theorem
in this section that can handle preservation theorems of this kind. Note that in these
cases it is not clear if ⊥uB is the same as ⊥.

Corollary 6.3.8. (LC) The following statements are preserved under the countable
support iteration of suitably definable proper forcings.

1. 2� ∩V is cmin-positive.
2. No unbounded reals are added.
3. No splitting or unbounded reals are added.
4. 2� ∩V cannot be covered by a universally Baire set without a Borel E0-positive

subset.

If the iterated ideals are �1
1 on �

1
1 then the statement “2� ∩ V � E0-ideal” is

preserved.

6.3.2 Uniformity of porosity ideals

Theorem 6.3.9. Suppose that I is an iterable ideal on a Polish space X and J
is a �-ideal generated by a universally Baire abstract porosity. If suitable large
cardinals exist and I �⊥ J then I� �⊥ J . If the abstract porosity function is coanalytic
then the large cardinal assumptions can be dropped.

Proof. I will treat the large cardinal case. Suppose that the �-ideal J is generated
by some porosity function por � P�U� → B�Y� for some collection U of Borel
subsets of the space Y . Suppose for contradiction that I �⊥ J and I� ⊥ J , and fix
Borel sets B ⊂ X�, C ⊂ Y and D ⊂ B×C witnessing the latter statement. Thus the
vertical sections of the set D are in the ideal J while the horizontal sections of its
complement are in the ideal I�.

Using the standard P�
I -uniformization arguments find an I��-tree p ∈ P�

I and
Borel functions fn � n ∈ �, fn � 	p
 → P�U�, such that for every sequence 
x ∈ 	p
,
D
x ⊂ ⋃

n�por�fn�
x�� \⋃fn�
x��. Find a universally Baire collection �y � y ∈ C of
strategies winning for Player I in the iteration games with payoff sets �B×C�\D�y.
I will find a point 

xend� yend� ∈ 	p
×C such that
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• 
xend is a legal sequence of Player II’s answers to the strategy �yend
;

• y � ⋃
n�por�fn�
xend��\⋃fn�
xend��.

This will be a contradiction as such a point 

x� y� can be neither in the set D nor
in its complement.

Fix a winning strategy � for the Nonempty player in the Borel precipitous game
with the ideal J . By induction on n build sequences tn ∈ Xn, conditions Cn ∈ PJ

and I��� tn-trees pn ⊂ p such that

• 0 = t0 ⊂ t1 ⊂ t2 ⊂ � � � are sequences in the tree T ; in the end 
xend = ⋃
n tn. Also

p = p0 ⊃ p1 ⊃ � � �

• C = C0 ⊃ C1 ⊃ � � � are conditions i PJ such that for some C ′
0 ⊃ C ′

1 ⊃ � � � the
sequence C0�C ′

0�C1�C ′
1 � � � forms a legal play against the strategy � in the Borel

precipitous game; so in the end
⋂

n Cn must be nonempty and the point yend will
be any of its elements;

• for every point y ∈ Cn the sequence tn will be a legal sequence of Player II’s
answers against the strategy �y;

• the set Cn+1 is disjoint from all sets por�fn�
x��\⋃fn�
x� for 
x ∈ 	pn+1
.

The first two items concern the actual construction of the point 

xend� yend� ∈ 	p
×C,
the last two items are present to guarantee the required properties of that point. The
proof will be complete once I show how to perform the induction.

The inductive construction is straightforward. The initial setup 0 = t0� p =
p0�C = C0 satisfies the induction hypothesis. Suppose that tn�Cn�Tn have
been constructed. Let C ′

n ⊂ Cn be the set dictated to player Nonempty by
the strategy � in the Borel precipitous game. Consider the set B′

n = 
x ∈ X �
t�
n x ∈ pn� and the set D′

n ⊂ B′
n × C ′

n given by 
x� y� ∈ D′
n if x � �y�tn�. The

complement of the universally Baire set D′
n has I-small horizontal sections.

The porosity ideals satisfy the first universally Baire dichotomy by Theo-
rem 4.2.3, thus I �⊥ J ↔ I �⊥uB J by Proposition 3.2.4, and there must be a
point x ∈ B′

n such that the vertical section �D′
n�x contains a J -positive Borel set

C ′′
n ⊂ C ′

n. Let tn+1 = t�
n x.

Let a = 
u ∈ U � C ′′
n ∩u ∈ J�. By the countable additivity of the ideal I��tn+1�

and the dichotomy 5.1.12, there is a I��� tn+1 tree pn+1 ⊂ pn such that either for all
sequences 
z ∈ 	pn+1
, fn�
z� ⊂ a, or there is a set u � a such that for all sequences

z ∈ 	pn+1
, u ∈ fn�
z�. In the former case, let Cn+1 = �C ′′

n \⋃a�\por�a�, in the latter
case let Cn+1 = C ′′

n ∩u. The induction hypothesis continues to hold.

Corollary 6.3.10. The following properties are preserved in the countable support
iteration of suitably definable forcings:
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1. V ∩� is not meager;
2. V ∩�� is unbounded;
3. V ∩2� cannot be decomposed into countably many cmin-homogeneous sets;
4. any ground model Borel non-�-continuous function remains non-�-continuous

on V ∩�;
5. V ∩B is not metrically �-porous for every Borel set B ⊂ �.

Proof. The first three statements are associated with ideals generated by closed
sets, treated in Section 4.1; every �-ideal generated by closed sets is a porosity
ideal. The last two ideals have been discussed in Section 4.2. Note that the first four
ideals are homogeneous and therefore it is enough to speak about the preservation
of positivity of the whole space. I do not know if the metric porosity ideal is
homogeneous.

6.3.3 Outer regular capacities

The standard notion of a capacity and outer regular capacity was defined in
Section 4.3.

Theorem 6.3.11. [85] (LC) Suppose that I is an iterable �-ideal and � is an
outer regular capacity. If suitable large cardinals exist and ZF+DC+AD+ proves
that the capacity � is continuous in increasing well-ordered unions and I �⊥ �
then I� �⊥ �. If the ideal I is �1

1 on �
1
1, the capacity � is ZFC-correct, and

coanalytic sets are capacitable for it, then the large cardinal assumption can be
dropped.

It is remarkable that neither the LC nor ZFC arguments uses the dichotomies from
Section 5.1. Instead they use a complicated manipulation of the capacities. In the
next section, the reader can find a theorem with a nontrivial overlap with the present
theorem, whose proof uses the dichotomies.

Proof. Suppose � is an outer regular capacity on a Polish space Y . Fix a basis O
for the space Y closed under finite unions. Suppose that I is an iterable �-ideal on a
Polish space X such that I �⊥ �. Suppose that p ∈ P�

I is a condition and Ȯ is a name
for an open subset of the space Y of capacity ≤ �. By Proposition 6.3.2, there is a
I��-tree q ⊂ p and a Borel function f � 	q
 → O� such that q � Ȯ = ⋃

n ḟ �
xgen��n�
and for a sequence 
x ∈ 	q
 the value f�
x��n� depends only on 
x � n; for a sequence
t ∈ q of length ≥ n the symbol f�t��n� will stand for the unique possible value of
f�
x��n� where t ⊂ 
x.
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It will be enough to show that ��
y ∈ Y � q � y̌ ∈ Ȯ�� ≤ �. In order to do this,
for a sequence t ∈ q write Bt = 
x ∈ X � t�x ∈ q� and by induction on ordinal �
define sets A�t��� ⊂ Y for all t ∈ p simultaneously:

• A�t� 0� = ⋃
n∈�t� f�t��n�;

• A�t��+1� = ∫

Bt
D�t��� dI where D�t��� ⊂ Bt ×Y is the set of all pairs 
x� y�

such that y ∈ A�t�x���;
• A�t��� = ⋃

�∈� A�t��� for limit ordinals �.

It is easy to simultaneously argue by induction on the ordinal � that s ⊆ t and
� ≤ � imply A�s��� ⊆ A�t���. After that, it is again easy to argue by induction
on the ordinal � for all sequences t ∈ p simultaneously that ��A�t���� ≤ �: this
follows by the assumption I �⊥ � on the successor step, and by the assumption that
the capacity is continuous in wellordered increasing unions under AD+. Note that
the whole inductive process takes place inside some inner model of AD+ all of
whose sets are universally Baire – Fact 1.4.5.

By the Replacement Axiom, the whole inductive process must stabilize at some
ordinal �. I claim that A�0��� = 
y ∈ Y � q � x̌ ∈ Ȯ�. For the left-to-right inclusion
argue by induction on the ordinal � for all sequences t ∈ p simultaneously that
A�t��� ⊂ 
y ∈ Y � 

x ∈ 	q
 � y �⋃

rng�f�� ∈ I��t��. For the (more important) opposite
inclusion note that if y � A�0��� then the universally Baire tree r ⊂ p� r = 
t ∈
p � y � A�t���� is I-positively branching and so by Corollary 5.1.15 contains a
condition s ∈ P�

I . The setup of the sets A�t� 0� then implies that y �⋃

x∈	s


⋃
n f�
x��n�

and therefore s � y̌ � Ȯ.
The previous two paragraphs in conjunction show that ��A�0���� = ��
y ∈ Y �

q � y̌ ∈ Ȯ�� ≤ � as desired.
The ZFC case requires several nontrivial patches of the above argument. First,

the Borel function f � q → O is obtained through a reference to the ZFC-correctness
of the capacity �. After that, consider the operator � on the space q ×Y defined
by �t� y� ∈ ��A� ↔ �t� y� ∈ A ∨ 
x ∈ X � t�x ∈ q ∧ �t�x� y� � A� ∈ I , for every
set A ⊂ q × Y . An important point is that the ideal I is �1

1 on �
1
1 so that this

formula defines a monotone coanalytic operator. By a theorem of Cenzer and
Mauldin [5], 1.6, given a coanalytic set A ⊂ q ×Y , the transfinite sequence given
by the description A = A0, A�+1 = ��A�� and A� = ⋃

�∈� A� for limit ordinals
�, stabilizes at �1 in a coanalytic set A�1

= ��A�1
� such that for every analytic

set C ⊂ A�1
there is an ordinal � ∈ �1 such that C ⊂ A�. Now consider the set

A = 
�t� y� ∈ q × Y � y ∈ f�t��, its associated coanalytic fixed point A�1
and the

coanalytic set A′ = 
y ∈ Y � �0� y� ∈ A�1
�. If y ∈ Y is a point such that y � A′

then the tree qy = 
t ∈ q � �t� y� � A�1
� ⊂ q is an analytic I-positively splitting
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tree and therefore it contains an I��-subtree r ⊂ qy. Clearly, r � y̌ � Ȯ. Thus
q � Ȯ ∩V ⊂ Ȧ′ ∩V and it will be enough to show that the set A′ has �-mass ≤ �.

This is still a nontrivial statement, and the coanalytic capacitability assumption
is used here. First argue by induction on � ∈ �1 for all nodes t ∈ q simulta-
neously that ��
y ∈ Y � �t� y� ∈ A��� ≤ �. This is clear at � = 0, and at limit
stages of the induction this follows from the continuity of the capacity � under
countable increasing unions. The successor step � = � + 1 follows from the
assumption that I �⊥ �, but extra care is required. Let t ∈ q be a node, write
Bt = 
x ∈ X � t�x ∈ q� and write D ⊂ B×Y for the set 
�x� y� � x ∈ B� �t�x� y� ∈ A��.
I must show that ��

∫

B
D dI� ≤ �. This would directly follow from I �⊥ � if the

set D was analytic. However, D is coanalytic and another patch is called for.
Suppose for contradiction that the integral has �-mass > �. Let D = ⋃

�∈�1
D�

be an increasing union of Borel sets such that every Borel subset of D is
included in one of D�’s as a subset. I will reach the contradiction by show-
ing that the integral of one of the sets D� has �-mass > �. Since the ideal
I is �1

1 on �
1
1, the set

∫

B
D dI is coanalytic. By the capacitability of the

coanalytic sets, there is a Borel set C ⊂ ∫

B
D dI of the same �-mass. Since

the ideal I is �1
1 on �

1
1, the analytic set �B × C� \ D with I-small horizon-

tal sections has a Borel superset with I-small horizontal sections; denote its
Borel complement in B × C by the letter D′. Now D′ ⊂ D and so D′ ⊂ D�

for some ordinal � ∈ �1. This brings about the desired contradiction and con-
cludes the successor stage of the induction. Finally, in the end note that the
set A′ is coanalytic and by the capacitability of coanalytic sets it must have a
Borel subset A′′ ⊂ A′ of the same �-mass, and this must be a subset of one
of the sets 
y ∈ Y � �0� y� ∈ A�� by the aforementioned theorem of Cenzer and
Mauldin. If ��A′� > �, then � > ��A′′� ≥ ��
y ∈ Y � �0� y� ∈ A���. However, I
have just proved that the latter set has capacity ≤ �, contradiction. Thus ��A′� ≤ �
as desired.

Corollary 6.3.12. Under the above assumptions, the preservation of the following
capacities is preserved under the countable support iteration of definable forcings:

1. outer Lebesgue measure;
2. Newtonian capacity and all capacities ocurring in potential theory ;
3. all strongly subadditive capacities ;
4. the cf�h capacity introduced in Example 4.3.46.

The preservation theorem resulting from the last item above is connected to the
f�h-bounding preservation theorems of Shelah [2], 7.2.18, 7.2.19.
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6.3.4 Pavement submeasures

Theorem 6.3.13. [85] Suppose that I is an iterable �-ideal on a Polish space X
and � is a pavement submeasure on a Polish space Y derived from a countable
collection of Borel pavers. If suitable large cardinals exist and I �⊥ � then I� �⊥ �.
If the ideal I is �1

1 on �
1
1 and every coanalytic set has a Borel subset of the same

�-mass then the large cardinal assumptions can be dropped.

The assumption on the coanalytic sets in the last sentence is parallel to the same
requirement in Theorem 6.3.11. Consult Theorem 4.5.6 to see that the assumption is
satisfied in many situations. If for some reason it is necessary to work in a situation
where the assumption is not satisfied, the conclusion of the theorem will be weaker:
the iteration will not preserve �-masses of all sets but just the masses of sets of the
form B∩V where B is a Borel set coded in the ground model V .

Proof. Fix a countable collection U of Borel sets and a weight function w � U →
�+which give rise to the pavement measure �.

Suppose for contradiction that I �⊥ � and I� ⊥ �. This means that there are a real
number � ≥ 0, a Borel I�-positive set B ⊂ X� and a Borel set D ⊂ B×Y �-masses
of whose vertical sections are bounded below � and the set C = ∫

B
D dI� ⊂ Y

has �-mass > �. By the usual P�
I -uniformization argument and Proposition 6.3.2

this means that there are a condition p ∈ P�
I such that 	p
 ⊂ B and a function

f � 	p
 → U� such that for every sequence 
x ∈ 	p
 the value f�
x��n� depends only
on 
x � n and moreover �n�
w�u� � u ∈ f�
x��n�� ≤ �, together with a universally
Baire system �y � y ∈ C of winning strategies for Player I in the iteration games
with payoff sets 

x ∈ 	p
 � y � ⋃

n f�
x��n��.
Fix a winning strategy � for the Nonempty player in the Borel precipitous game

with the ideal I�. In order to reach a contradiction, I will build by induction the
following objects:

• Sequences 0 = t0 ⊂ t1 ⊂ � � � in the tree p, with �tn� = n. In the end I will put

xend = ⋃

n tn.
• I��� tn-trees pn such that p = p0 ⊃ p1 ⊃ � � �

• Borel sets C ⊃ C0 ⊃ C ′
0 ⊃ C ′′

0 ⊃ C1 ⊃ C ′
1 ⊃ C ′′

1 ⊃ C2 ⊃ � � � of positive �-mass
such that the sets C ′

0�C ′′
0 �C ′

1�C ′′
1 � � � form a play of the Borel precipitous game

according to the strategy � . The intersection
⋂

n Cn will contain a singleton
yend ∈ Y .

• For every point y ∈ Cn the sequence tn will be a correct sequence of Player II’s
responses to the strategy �y.
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• Finite sets Qn ⊂ U such that 
f�
x��m� � m ∈ n� 
x ∈ 	pn
� ⊂ Qn, Cn ∩⋃
Qn = 0 and

and the numbers �
w�u� � u ∈ �rng�f�
x�� \Qn� for 
z ∈ 	pn
 are bounded below
��Cn�.

Once this construction is complete, consider the point 

xend� yend� ∈ 	p
×C. By
the fourth item above, the sequence 
xend is a correct sequence of Player II’s answers
to the strategy �yend

and therefore it should be the case that 

xend� yend� ∈ D. On the
other hand, the fifth item implies that yend � ⋃

rng�f�
xend��, and this is the desired
contradiction.

The initial setup p = p0� 0 = t0� 0 = Q0�C = C0 satisfies the induction hypothesis.
Now suppose the objects tn� pn�Cn�Qn have been defined. By induction on k ∈ �
build a descending sequence of I��� tn-trees qk and finite sets Rk ⊂ U \Qn such that
for every number k and every sequence 
z ∈ 	qk
 it is the case that Rk ⊂ rng�f�
z��
and �
w�u� � u ∈ �rng�f�
z�� \ Qn� \ Rk� < 2−k. This is easily possible using the
countable completeness of the ideal I� and the dichotomy 5.1.12. In the end,
�
w�u� � u ∈ ⋃

k Rk� < ��Cn� by the last item of the induction hypothesis, so the
set C ′

n = Cn \⋃k

⋃
Rk has positive �-mass. Let C ′′

n be the strategy �’s answer to C ′
n.

Let k ∈ � be a number so large that 2−k < ��C ′′
n �. Let Bn = 
x ∈ X � t�

n x ∈ qk� and
consider the universally Baire set Dn ⊂ Bn ×C ′′

n given by 
x� y� ∈ Dn ↔ x � �y�tn�.
Note that the horizontal sections of the complement of Dn are I-small. By the
assumptions, I �⊥ �, by the dichotomy in Theorem 4.5.6 and Proposition 3.2.9 this is
equivalent to I �⊥uB � and there must be a point x ∈ Bt such that ���Dn�x� = ��C ′′

n �.
Use Theorem 4.5.6 to find a Borel set Cn+1 ⊂ �Dn�x of the same �-mass, let
tn+1 = t�

n x and pn+1 = qk � tn+1 and continue with the induction process.
The ZFC argument requires several patches again. First, use the ZFC-correctness

of the submeasure � to find the function f � 	p
 → �U��. Note that since the ideal
I� is �1

1 on �
1
1, the set C ⊂ Y must be coanalytic, and use the assumptions to

replace it with a Borel subset of the same �-mass. Use the proof of Theorem 5.1.9
to show that the strategies �y � y ∈ C can be chosen in such a way that there is a real
r such that for every y ∈ C and every finite sequence t ∈ p, if the iteration game
reaches the situation where Player II will have played the sequence t, the strategy �y

responds with the union of all �1
1�r� y� sets in the ideal I . The inductive process then

proceeds as above, with Proposition 3.2.9 and ⊥uB replaced with 3.2.10 and ⊥a.

Corollary 6.3.14. The following statements are preserved under the countable
support iteration of suitably definable forcings:

1. preservation of outer Lebesgue measure;
2. V ∩�� is dominating;
3. preservation the cf�h capacity introduced in Example 4.3.46.
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6.3.5 Other preservation theorems

There is a large class of preservation theorems for properties that cannot be in
an obvious way stated as Fubini properties. Their proofs use the old-fashioned
algebraic approach to the countable support iteration as in [2], plus the determinacy
results of Section 3.10. It is always necessary to find the appropriate determined
game, and after that, the arguments follow the same pattern. I do not see a uniform
way for finding the determined games, and consequently, I hesitate to state a general
theorem. Instead, I will list a number of preservation theorems, prove one of them,
and let the others to the interested readers. The necessary determined games appear
in Section 3.10.

Theorem 6.3.15. (LC) Suppose that J is an analytic P-ideal, and I is an iterable
�-ideal on a Polish space. If PI forces J̇ ∩V to be cofinal in J̇ under inclusion,
then so do all of its countable support iterations. If in addition I is a �1

1 on �
1
1

ideal and the forcing PI is bounding, the large cardinals are not necessary.

Theorem 6.3.16. (LC) Suppose that I is an iterable ideal on a Polish space X
such that PI has the continuous reading of names. Then all of its iterations have
the continuous reading of names.

Theorem 6.3.17. (LC) Suppose that � is a pavement submeasure on 2� defined
from a countable set of clopen pavers. Suppose I is an iterable ideal on a Polish
space X. If PI strongly preserves � then so do all of its countable support iterations.
If, in addition, the ideal I is �1

1 on �
1
1 and PI is bounding, then the large cardinal

assumptions are not necessary.

Theorem 6.3.18. (LC) Suppose that � is a strongly subadditive capacity on the
Cantor space 2�. Suppose I is an iterable ideal on a Polish space X. If PI strongly
preserves � then so do all of its countable support iterations. If, in addition, the
ideal I is �1

1 on �
1
1 and PI is bounding, then the large cardinal assumptions are

not necessary.

This list is in no way exhaustive. I will prove the last theorem. Recall that a
forcing P is said to strongly preserve a universally Baire submeasure � on a Polish
space Y if for every real number � > 0 and every set A ⊂ Y in the extension
with ��A� < � there is a ground model coded Borel set B ⊂ Y such that A ⊂ B
and ��B� < �. Strong preservation of submeasures is a common concern in forcing
arguments; in this book it appears for example in Theorem 4.3.13.

To cut the notational clutter, I will consider only iterations of length �. The
general length case follows by a familiar bootstrapping argument. The iteration of
a forcing PI of length n ≤ � will be denoted by PIn . I will use the old fashioned
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algebraic approach to the iteration, so PI� consists of �-sequences 
p such that
∀n ∈ � 
p � n �PIn 
p�n� ∈ ṖI .

I will need extra notation to handle the strong preservation game of Section 3.10
efficiently. Suppose that P is a forcing and � is a (finite or infinite) play of the game.
The symbols ��pini�, ���ini�� ���ini�, and ��Uini� denote Player I’s initial choices,
for every number k ∈ � ��k� I� denotes k-th move of Player I, ��k� II� denotes the
k-th nontrivial move of Player II, ���� I� = ⋃

k ��k� I� and ���� II� = ⋃
k ��k� II�.

Thus, ���� I� is a P-name for an open set of �-mass ≤ ���ini�, ���� II� is an open
set of mass ≤ ���ini�, and the result of the play �, if nonzero, forces in P that
���� I� ⊂ ���� II�.

The following is a key concept, and it reveals the idea behind the definition
of the game. Suppose P ∗ Q̇ is a two step forcing iteration. I will call a pair

�P� �Q� coherent past m if �P is a play of the strong preservation game for P and
�P�pini� � �Q is a play of the strong preservation game for Q̇, and for every k ∈ �,
�P�m+k� I� = �Q�k� II�; I will call the pair coherent if there is a number m such
that it is coherent past m. Note that �Q�k� II� is a P-name for a clopen set and as
such a suitable move for player I in the strong preservation game for P. Note that if
the pair is coherent and Player II won both plays, with the resulting conditions p� q̇,
then 
p� q̇� � �Q��� I� ⊂ �P��� II�. I will use the obvious variation of this definition
for iterations of arbitrary finite length. More importantly, I will also use it in the
case where �P� �Q̇ are finite plays. In such a case, I require that �P�pini� �Player II
makes exactly k many nontrivial moves in the play �Q̇, where m+k is the length
of the play �P

One way to obtain a coherent pair of plays proceeds like this: let �P� �̇Q be
winning strategies in the game for P� Q̇ respectively, let 0 < � < � be real numbers,
let m ∈ � be a natural number, and let � be a finite play against the strategy �P such
that � has length m, with U̇ as the last name played by Player I. Let �′ > 2−m�,
�′ = 2−m� let q̇ be a name for a condition in Q̇, and let U̇n � n ∈ � be P ∗ Q̇-
names for clopen sets such that 
p� q̇� � U̇ ⊂ U̇0 ⊂ U̇1 ⊂ � � � ���U̇n� − ��U̇� <
����Un� − ��U̇k� < 2−k�′ for k ∈ n. Then let �Q̇ be the play resulting from the
application of the strategy �Q to the initial choices q̇� �′� �′� U̇ , and the names
U̇n � n ∈ �, and �P is the play that is obtained from � by adding names for the
nontrivial moves of Player II in the play �Q as moves of Player I, and letting the
strategy �P act on them.

Towards the proof of the theorem, suppose that I is an iterable �-ideal on a
Polish space X, and suppose that the forcing PI strongly preserves �. I will prove
that PI� strongly preserves �. Let 
p ∈ PI� be a condition, 0 < � < � be real numbers,
and Ȯ ⊂ 2� be a name for an open set of �-mass < �. I will find a condition 
q ≤ 
p
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and an open set R ⊂ 2� of �-mass < � such that 
q � Ȯ ⊂ Ṙ. This will prove the
strong preservation property of the iteration.

By a universally Baire absoluteness argument, the forcing PI strongly preserves
� in all forcing extensions, and by the results of Section 3.10.6, there are PIn -
names �̇n for a winning strategy for Player II in the strong preservation game for
PI , this for all n ∈ �. Also, there are names U̇n � n ∈ � for clopen sets forming
an inclusion-increasing sequence such that 
p � Ȯ = ⋃

n Un, and ��U̇m�−��U̇n� <
2−n−1� whenever n ∈ m ∈ �.

I will construct a descending sequence 
pn � n ∈ � of conditions in the iteration
below 
p and, for every n ∈ �, PIn -names �n so that

• 
pn � n+1 = 
pn+1 � n+1; thus the sequence of conditions has a lower bound 
p�

given by 
p��n� = 
pn�n�;
• 
pn+1 � U̇n is in fact a PIn+1 -name;
• 
pn � n � 
�n� �n+1� is a coherent pair of plays against the strategies �̇n� �̇n+1

respectively, �n�pini� = 
pn�n�, and U̇n ⊂ �n+1�Uini�. Moreover, �0��ini� = � and
�0��ini� = �.

After this is done, consider the condition 
q ∈ PI� defined by 
q � n � 
q�n� =
the result of the play �n. Since the strategies �̇n � n ∈ � are forced to be winning,
this is indeed a definition of a condition in the iteration. Let R = �0��� II�. Since
�0��ini� = � and �0 is a winning strategy, R ⊂ 2� is an open set of �-mass at
most �. By the coherence requirement, for every n ∈ � it is the case that 
q � U̇n ⊂
�n��� I� ⊂ �0��� II� = R and therefore 
q � Ȯ ⊂ Ṙ as required.

To construct the plays and the conditions as above, by induction on n ∈ � build
conditions 
pn and PIn -names ṁn for nonzero natural numbers, and PIk -names �k�n

for k ≤ n so that:

• 
pn � n = 
pn+1 � n;
• �k�n is a PIk -name for a finite play of the strong preservation game against the

strategy �̇k;
• 
pk � k forces �k�n0

to be a proper initial segment of �k�n1
whenever n0 ∈ n1 are

natural numbers, and �k�n and �k+1�n cohere above ṁk;
• writing l̇n = �k∈nṁk, it is the case that 
pn+1 � U̇l is in fact a PIn -name and it is

the last move of Player I in the play �n�n. Moreover, �0�n��ini� = �, �0�n��ini = �,
and for k > 0, �k�n��ini� = 2−lk−1� and �k�n��ini� = 2−lk�.

To initiate the construction, let 
p = 
p0. Now suppose that n ∈ � is a natural
number and pn� �k�n−1 � k ∈ n, as well as ṁk � k ∈ n have been constructed. Let
l̇ = �k∈nṁk. Find a decreasing sequence 
pn ≥ 
r0 ≥ 
r1 ≥ � � � so that for every h ∈ �,
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pn � n+1 = 
rh � n+1 and 
rh � U̇l+h+1 is in fact a PIn+1 -name. Consider the PIn
-name

�̄n = �̄ for an infinite play of the strong preservation game against the strategy �̇n

such that �̄�pini� = 
pn�n�, �̄��ini� = 2−l�, �̄��ini� = 2−l−1� (except at n = 0 where
these two values will be � and �), �̄�Uini� = U̇l, and �̄�h� II� = U̇l+h+1. By downward
induction on k ∈ n find the PIk -names �̄k for infinite plays against the strategies �̇n

extending �k�n−1 such that the sequence 
�̄k � k ≤ n� coheres. By upward induction
on k ≤ n find PIk -names ġk for natural numbers so that g0 =the length of �0�n−1 +1,
and ġk =the index of the round of the play �̄k in which Player II makes the ġk−1-th
nontrivial move. Let ṁn = ġn, let �k�n = �̄k � ġn for all k ≤ n, and let 
pn+1 ∈ PI� be
the condition given by 
pn+1 � n+1 = 
pn � n+1 and the remainder of 
pn+1 is forced
to be equal to 
rṁn

� 	n+1���. The induction hypotheses continue to hold, and the
theorem follows.

6.3.6 Cichoń’s diagram

What pentagram is to heavy metal, Cichoń’s diagram is to set theory. It depicts
ZFC-provable inequalities between several cardinal invariants, with the assertion
that no other inequalities between them can be proved.

add(null) add(meager) cov(meager) non(null)

b d

cov(null) non(meager) cof(meager) cof(null)

In this section I will illustrate how the techniques of this book can be used to
show that none of the inequalities documented in the diagram can be reversed.
This duplicates the work of [2], using forcings that naturally come up in abstract
analysis.

Start with the upper right corner. Consider the packing measure � on the metric
space described in Example 4.1.27. The associated �-finite forcing PI��

is proper,
bounding, and preserves outer Lebesgue measure and Baire category. All of these
features proliferate through the countable support iteration. I do not know if it is pos-
sible to replace the packing measure with a packing measure on a Euclidean space.

Move down to non�null�. Consider the metric porosity ideal defined in
Example 4.2.10. The forcing is bounding and preserves category by the results
of Section 4.2. Again, the resulting model has cof�null� = non�null� = ℵ2
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while the other invariants remain small. I do not know if it is possible to replace
the metric space above with a Euclidean space.

In order to increase non�meager� while keeping the other invariants small, let
� be the two-dimensional Hausdorff measure on the three-dimensional Euclidean
space and let I�� be the �-ideal generated by sets of finite mass. By the results of
Section 4.4 the resulting forcing is bounding and does not add a splitting real, in
particular it does not add random reals. It also preserves outer Lebesgue measure
since the ideal I�� is polar as shown in Example 3.6.4. These properties are preserved
under the countable support iteration. The forcing increases non�meager� by
Corollary 3.5.8 or by a direct computation.

In order to increase � while keeping the other invariants small, consider the
Laver ideal I with the attendant Laver forcing equivalent to PI . Since � = cov�I�,
this increases �. The forcing preserves outer Lebesgue measure as well as many
other outer regular capacities by Theorem 3.6.11. An interesting argument offers
itself to show that Laver forcing and its iteration do not add random reals.
Consider the ideal J of non-�-splitting sets from Section 4.1.7. The forcing
PJ is bounding which is equivalent to I �⊥ J . Since the ideal J is �-generated
by closed sets this feature persists through the countable support iteration. On
the other hand, Proposition 4.1.29 shows that null ⊥ J and so neither PI nor
its iterations can add random reals. Thus in the resulting model � = ℵ2 while
non�null� = cov�null� = ℵ1.

In order to increase � and non�null� keeping the other invariants small, it
is common to use Mathias forcing and its countable support iteration. Recall that
the Mathias forcing is associated with the ideal I of sets nowhere dense in the
algebra P��� mod fin. I must prove that in the resulting model cov�null� =
cov�meager� = ℵ1, in other words the iteration adds no Cohen or random reals.
Consider any of the capacities � from Section 4.3.5. Since � is Ramsey, I �⊥ � by
Theorems 4.3.23 and 4.3.25, and this feature persists through the countable support
iteration by Theorem 6.3.11 – in particular the set of ground model reals is of full
capacity in the extension. On the other hand, � is an outer regular capacity so
meager ⊥ � by Corollary 3.5.8 or a direct computation, and the construction of
the capacity � implies that null ⊥ � by Proposition 4.3.47. Thus no Cohen or
random reals are added in the iteration.

In order to increase �, non�null� and cov�null� it is customary to iter-
ate Mathias and Solovay forcings. I must show that in the resulting model
cov�meager� is small, in other words the iteration adds no Cohen reals. Con-
sider any of the Ramsey capacities � from Section 4.3.6. Since the capacity � is
Ramsey, I �⊥ �, and since it is strongly subadditive, null �⊥ �, and this feature
persists through the iteration by Theorem 6.3.11. On the other hand, � is an outer
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regular capacity, therefore meager⊥ � by Corollary 3.5.8 or a direct computation,
and so the iteration can add no Cohen real.

Increasing � and cov�null� is commonly achieved by iterating Miller forcing
and Solovay forcing. I must show that in the resulting model �= non�null� = ℵ1.
Neither Miller forcing nor Solovay forcing adds a dominating real, and this feature
persists through the countable support iterations of definable forcings by Theo-
rem 6.3.9. Both Miller and Solovay forcing preserve the outer Lebesgue measure,
which again persists through the iteration by Theorem 6.3.11.

The only problematic possibility left out in the above discussion is whether it is
possible to increase ��cov�null�, and non�null� while keeping cov�meager�
small. I will leave this part to the interested readers.



7
Questions

7.1 Basics

Question 7.1.1. Let A ⊂ 2� ×2� ×2� be an analytic (coanalytic, etc.) set. For every
point x ∈ � let Ix be the �-ideal generated by the sets Ax�y � y ∈ 2�. What is the
complexity of the set �x ∈ 2� � PIx

is proper�?

Question 7.1.2. Suppose that I = ⋂
n In is an intersection of a decreasing nonsta-

bilizing sequence of universally Baire �-ideals. Does the forcing PI collapse � to
ℵ0?

Note that Proposition 2.2.6 shows that the forcing PI adds a countable set of ordinals
which cannot be covered by a ground model countable set. With some definability
this should imply that � is collapsed.

Question 7.1.3. Prove that some of the forcings presented in this book are not
homogeneous.

A typical case is that of I generated by sets of finite two-dimensional Hausdorff
measure in �3. There appears to be no reason why the forcing PI should be
homogeneous, but at the same time, I have no idea how to argue for inhomogeneity.
In fact, for every forcing mentioned in this book, either it is obviously homogeneous
or else I think it cannot be homogeneous and at the same time I have no proof of
the inhomogeneity.

7.2 Properties

Question 7.2.1. Is there a pair of universally Baire �-ideals I� J such that PI�PJ

are proper and I ⊥ J is not equivalent to I ⊥uB J? How about the special case of
J = E0-ideal?

303
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Question 7.2.2. (CH) Is there a definable �-ideal I such that the forcing PI is
proper and preserves Ramsey ultrafilters and does not preserve all P-points?

Question 7.2.3. Suppose that I is a universally Baire �-ideal on a Polish space X
such that the forcing PI is proper. Suppose that PI is bounding and preserves outer
Lebesgue measure. Must there be a polar ideal J on X such that I and J contain
the same Borel sets?

Section 3.5 proves a variation of this with the Lebesgue measure replaced by Baire
category. Section 3.6 contains the proof of this in the special case that I = I� where
� is some submeasure which is outer regular on compact sets.

Question 7.2.4. Let I be the �-ideal on 	0� 1
× 	0� 1
 associated with the side-by-
side product of Solovay forcing with itself. Is I �1

1 on �
1
1?

Example 3.11.9 shows that writing J for the Lebesgue null ideal, MRR�J� J� fails
badly. Since PJ ×PJ is a definable proper forcing, the question arises, what is its
associated ideal? At this point I do not have a definition of this ideal which does
not involve the forcing relation. An answer to the question should help resolve this
problem.

Question 7.2.5. Is �� ≤ � provable in ZFC?

Simple complexity calculations show that the �-ideal connected to any proper
bounding forcing consisting of an analytic collection of finitely branching trees
must be �1

1 on �
1
1 and therefore the forcing and its iterations preserve ��. Thus a

bounding poset increasing �� must have a somewhat unusual form.

Question 7.2.6. Suppose that I is a �-ideal such that PI is c.c.c. Is it true that
every positive Borel set contains a positive closed set modulo the ideal I?

Question 7.2.7. (AD) Suppose that I is a �-ideal on a Polish space such that
there is a countable ordinal 
 such that every Borel set either has a �0


 I-positive
subset or a �0


 I-small subset. Does then every (not necessarily Borel) set have this
property?

This question is driven by the simple fact that all ideals satisfying the first dichotomy
that I can produce have a simply describable basis consisting of Borel sets of limited
complexity; in fact, such ideals in this book are always generated by G�� sets.

7.3 Examples

Question 7.3.1. Suppose that I is a universally Baire porosity ideal. Is there a
universally Baire porosity generating I?
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The membership of a �-ideal I in all other classes of ideals considered in this
book are recognizable in the model L���	I
. The general question is whether the
existence of generating porosity is recognizable in L���	I
.

Question 7.3.2. Is there a countable ordinal 
 such that �0

 sets are dense in the

forcing PI for every porosity �-ideal I?

Question 7.3.3. Let I be the �-ideal generated by the metrically porous subsets of
the unit interval. Does the forcing PI preserve outer Lebesgue measure?

[27] proved that the ideal of metrically porous sets is not polar. The associated
forcing is bounding by [80]. The question relates to Question 7.2.3.

Question 7.3.4. (ZF+DC+AD+) Is there a subadditive outer regular capacity c
which is not continuous under increasing wellordered unions?

Note that Theorems 4.3.21 and 4.5.6 show that most capacities in fact are so
continuous.

Question 7.3.5. Is the Newtonian capacity restricted to the closed unit ball Ramsey?

This is motivated by the effort to separate the various capacity forcings from each
other, in particular from the Solovay forcing. If the Newtonian capacity is Ramsey
then the associated forcing does not add splitting reals and thus is quite different
from the Solovay forcing. The larger program is to classify capacities by the forcing
properties of their associated forcings.

Question 7.3.6. Is the theory ZF+“every subset of �3 has a Borel subset of the
same Newtonian capacity” equiconsistent with ZFC?

Question 7.3.7. Can a pavement submeasure forcing add a Cohen real?

Note that Theorem 4.5.13 says that the only possible intermediate extensions are
given by c.c.c. reals. The bounding c.c.c. reals cannot be excluded because they are
all generated by a pavement submeasure forcing. The question seeks to eliminate
any other possibility; recall that every definable c.c.c. forcing which is not bounding
adds a Cohen real. The known pavement submeasure forcings fail to add a Cohen
real, each for a very different reason.

Question 7.3.8. Let X be a separable Banach space and I be the �-ideal of Gauss
null sets on X [10]. Is the forcing PI proper?
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7.4 Operations

Question 7.4.1. Characterize those suitably definable �-ideals I on �� such that it
is provable in ZFC that if 0# does not exist then there is a forcing extension V	G

and in it a point x ∈ �� such that V	G
 �= L	x
∩�� 	 I .

This question is motivated by the proof of Theorem 5.1.16.

Question 7.4.2. Let I be the ideal associated with the eventually different real
forcing. Is I�∗

a nontrivial ideal?

Question 7.4.3. Is there a �-ideal I such that the �-ideal I�∗
is nontrivial while

the �-ideal I� is trivial?

Question 7.4.4. Let I be the ideal of Lebesgue null sets. Is the forcing PI�∗ proper?

The forcing would be a sort of a countable support illfounded iteration of the
random forcing, and the proof should generalize to the capacity forcings.

Question 7.4.5. Suppose that I� J are �-ideals on the same Polish space X such
that PI�PJ are both proper. Let K be the �-ideal generated by I ∪ J . Is it true that
PK is proper? If PI�PJ are bounding, is PK bounding? If PI�PK are bounding and
do not add splitting reals, is PK such?

7.5 Applications

Question 7.5.1. Consider the CPA game G for the ideal I of countable sets. Is the
existence of a winning strategy for Player I in the game G equivalent to CH?

Question 7.5.2. Which variations of the Ciesielski–Pawlikowski axioms prove
� = ℵ2?

Question 7.5.3. Is there a useful axiomatization of the side-by-side product models
parallel to the CPA axioms?

Let I denote the countable side-by-side product of the ideal of the countable
sets. It is not difficult to employ �2

1 absoluteness to show that under suitable large
cardinal assumptions, if � is a tame invariant and � < cov�I� can be forced, then it
holds in the long side-by-side product of the Sacks forcing. In the product model,
� = ℵ1 and cov�I� can be pushed arbitrarily high. However, it is not clear whether
any reasonable sentence in the product model is responsible for this effect.
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