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About these Study Guides

The Mathematical Association of America’s American Mathematics Com-
petitions’ website, www.maa.org/math-competitions, announces loud and
clear:

Teachers and schools can benefit from the chance to challenge students with
interesting mathematical questions that are aligned with curriculum standards
at all levels of difficulty.

For over six decades dedicated and clever folk of the MAA have been creating
and collating marvelous, stand-alone mathematical tidbits and sharing them
with the world of students and teachers through mathematics competitions.
Each question devised serves as a portal for deep mathematical mulling and
exploration. Each is an invitation to revel in the mathematical experience.

And more! In bringing together all the questions that link to one topic
a coherent mathematical landscape, ripe for a guided journey of study,
emerges. The goal of this series is to showcase the landscapes that lie within
the MAA’s competition resources and to invite students, teachers, and all
life-long learners, to engage in the mathematical explorations they invite.
Learners will not only deepen their understanding of curriculum topics,
but also gain the confidence to play with ideas and work to become agile
intellectual thinkers.

I was recently asked by some fellow mathematics educators what my
greatest wish is for our next generation of students. I responded:

. . . a personal sense of curiosity coupled with the confidence to wonder, explore,
try, get it wrong, flail, go on tangents, make connections, be flummoxed, try
some more, wait for epiphanies, lay groundwork for epiphanies, go down false
leads, find moments of success nonetheless, savor the “ahas,” revel in success,
and yearn for more.

Our complex society demands of our next generation not only mastery of
quantitative skills, but also the confidence to ask new questions, to innovate,
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x Trigonometry

and to succeed. Innovation comes only from bending and pushing ideas
and being willing to flail. One must rely on one’s wits and on one’s common
sense. And one must persevere. Relying on memorized answers to previously
asked—and answered!—questions does not push the frontiers of business
research and science research.

The MAA competition resources provide today’s mathematics thinkers,
teachers, and doers:

� the opportunity to learn and to teach problem-solving, and
� the opportunity to review the curriculum from the perspective of

understanding and clever thinking, letting go of memorization and
rote doing.

Each of these study guides

� runs through the entire standard curriculum content of a particular
mathematics topic from a sophisticated and mathematically honest
point of view,

� illustrates in concrete ways how to implement problem-solving strate-
gies for problems related to the particular mathematics topic, and

� provides a slew of practice problems from the MAA competition
resources along with their solutions.

As such, these guides invite you to

� review and deeply understand mathematics topics,
� practice problem-solving,
� gain incredible intellectual confidence,

and, above all,

� to enjoy mathematics!



This Guide and
Mathematics Competitions

Whether you enjoy the competition experience and are motivated by it and
delighted by it, or you, like me, tend to shy away from it, this guide is for
you!

We all have our different styles and proclivities for mathematics think-
ing, doing, and sharing, and they are all good. The point, in the end, lies
with the enjoyment of the mathematics itself. Whether you like to solve
problems under the time pressure of a clock or while mulling on a stroll,
problem-solving is a valuable art that will serve you well in all aspects of life.

This guide teaches how to think about content and how to solve chal-
lenges. It serves both the competition doers and the competition non-doers.
That is, it serves the budding and growing mathematicians we all are.

On Competition Names
This guide pulls together problems from the history of the MAA’s American
competition resources.

The competitions began in 1950 with the Metropolitan New York Sec-
tion of the MAA offering a “Mathematical Contest” each year for regional
high-school students. They became national endeavors in 1957 and adopted
the name “Annual High School Mathematics Examination” in 1959. This
was changed to the “American High School Mathematics Examination” in
1983.

In this guide, the code “#22, AHSME, 1972,” for example, refers to
problem number 22 from the 1972 AHSME, Annual/American High School
Mathematics Examination.

In 1985 a contest for middle school students was created, the “American
Junior High School Mathematics Examination,” and shortly thereafter the
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xii Trigonometry

contests collectively became known as the “American Mathematics Compe-
titions,” the AMC for short. In the year 2000 competitions limited to high-
school students in grades 10 and below were created and the different levels
of competitions were renamed the AMC 8, the AMC 10, and the AMC 12.

In this guide, “#13, AMC 12, 2000,” for instance, refers to problem
number 13 from the 2000 AMC 12 examination.

In 2002, and ever since, two versions of the AMC 10 and the AMC 12
are administered, about two weeks apart, and these are referred to as the
AMC 10A, AMC 10B, AMC 12A, and AMC 12B.

In this guide, “#24, AMC 10A, 2013,” for instance, refers to problem
number 24 from the 2013 AMC 10A examination.

On Competition Success
Let’s be clear:

“I am using this guide for competition practice. Does this guide promise me
100% success on all mathematics competitions, each and every time?”

Of course not!

But this guide does offer, if worked through with care

� Feelings of increased confidence when taking part in competitions.
� Clear improvement on how you might handle competition problems.
� Clear improvement on how you might handle your emotional reac-

tions to particularly outlandish-looking competition problems.

Mathematics is an intensely human enterprise and one cannot underestimate
the effect of emotions when doing mathematics and attempting to solve chal-
lenges. This guide gives the human story that lies behind the mathematics
content and discusses the human reactions to problem-solving.

As we shall learn, the first and the most important, effective step in
solving a posed problem is

STEP 1: Read the question, have an emotional reaction to it, take a deep
breath, and then reread the question.

This guide provides practical content knowledge, problem-solving solving
tools and techniques, and concrete discussion on getting over the barriers
of emotional blocks. Even though its goal is not necessarily to improve
competition scores, these are the tools that nonetheless lead to that outcome!



This Guide and the Craft of
Solving Problems

Success in mathematics—however you wish to define it—comes from a
strong sense of self-confidence: the confidence to acknowledge one’s emo-
tions and to calm them down, the confidence to pause over ideas and come
to educated guesses or conclusions, the confidence to rely on one’s wits to
navigate through unfamiliar terrain, the confidence to choose understanding
over impulsive rote doing, and the confidence to persevere.

Success and joy in science, business, and in life doesn’t come from
programmed responses to pre-set situations. It comes from agile and adaptive
thinking coupled with reflection, assessment, and further adaptation.

Students—and adults too—are often under the impression that one
should simply be able to leap into a mathematics challenge and make instant
progress of some kind. This not how mathematics works! It is okay to
fumble, and flail, and to try out ideas that turn out not help in the end.
In fact, this is the problem-solving process and making multiple false starts
should not at all be dismissed! (Think of how we solve problems in everyday
life.)

It is also a natural part of the problem-solving process to react to a
problem.

“This looks scary.”
“This looks fun.”
“I don’t have a clue what the question is even asking!”
“Wow. Weird! Could that really be true?”
“Who cares?”
“I don’t get it.”
“Is this too easy? I am suspicious.”
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We are each human, and the first step to solving a problem is to come to
terms with our emotional reaction to it—especially if that reaction is one of
being overwhelmed. Step 1 to problem-solving mentioned in the previous
section in vital.

Once we have nerves in check, at least to some degree, there are a
number of techniques one could try in order to make some progress with
the problem.

The ten strategies we briefly outline in the appendix are discussed
in full detail on the MAA’s CURRICULUM INSPIRATIONS webpage,
www.maa.org/ci. There you will find essays and videos explaining each
technique in full, with worked examples and slews of further practice exam-
ples and their solutions.

This guide also contains worked examples. Look for the FEATURED
PROBLEMS in sections 1, 3, 5, 6, 10, 12, 13, 14, 16, 17, and 18 where I
share with you my own personal thoughts, emotions, and eventual approach
in solving a given problem using one of the ten problem-solving strategies.



This Guide and Mathematics
Content: Trigonometry

This guide covers the story of trigonometry. It is a swift overview, but it is
complete in the context of the content discussed in beginning and advanced
high-school courses. The purpose of these notes is to supplement and put
into perspective the material of any course on the subject you may have
taken or are currently taking. (These notes will be tough going for those
encountering trigonometry for the very first time!)

In reading and working through the material presented here you will

� see the story in of trigonometry in a new light,
� see the reasons why we, mankind, developed the subject in the way

we did,
� begin to move away from memorization and half-understanding to

deep understanding, and thereby
� be equipped for agile, clever thinking in the subject.

These notes will guide you through to sound mathematical doing in
trigonometry and, of course, to sound problem-solving skills as well.





For Educators:
This Guide and the Common

Core State Standards

The very first Standard for Mathematical Practice asks—requires!—that we
educators pay explicit attention to teaching problem-solving:

MP1 Make sense of problems and persevere in solving them.

And one can argue that several, if not all, of the remaining seven Standards
for Mathematical Practice can play prominent roles in supporting this first
standard. For example, when solving a problem, students will likely be
engaging in the activities of these standards too:

MP2 Reason abstractly and quantitatively.
MP3 Construct viable arguments and critique the reasoning of others.
MP7 Look for and make use of structure.

These guides on Clever Studying through the MAA AMC align directly with
the Standards for Mathematical Practice.

And each individual guide directly addresses content standards too! This
volume on trigonometry attends to the following standards. (The section
numbers refer to the sections of this text in which the standards appear.)

8.G.6 Explain a proof of the Pythagorean Theorem and its converse. (Sec-
tions 1 and 14.)

8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths
in right triangles in real-world and mathematical problems in two and three
dimensions. (Section 1.)
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8.G.8 Apply the Pythagorean Theorem to find the distance between two
points in a coordinate system. (Section 1.)

F-TF.1 Understand radian measure of an angle as the length of the arc on
the unit circle subtended by the angle. (Section 4.)

F-TF.2 Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to all real numbers, interpreted as
radian measures of angles traversed counterclockwise around the unit circle.
(Sections 2, 3, 4, and 11.)

F-TF.3 (+) Use special triangles to determine geometrically the values
of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle
to express the values of sines, cosines, and tangents for π − x , π + x , and
2π − x in terms of their values for x , where x is any real number. (Sections 3
and 7.)

F-TF.4 (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions. (Sections 3, 5, 6, and 7.)

F-TF.5 Choose trigonometric functions to model periodic phenomena
with specified amplitude, frequency, and midline. (Section 18.)

F-TF.6 (+) Understand that restricting a trigonometric function to a do-
main on which it is always increasing or always decreasing allows its inverse
to be constructed. (Section 12.)

F-TF.7 (+) Use inverse functions to solve trigonometric equations that
arise in modeling contexts; evaluate the solutions using technology, and
interpret them in terms of the context. (Section 12.)

F-TF.8 Prove the Pythagorean identity sin2(θ ) + cos2(θ ) = 1 and use it to
find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the quadrant
of the angle. (Section 7.)

F-TF.9 (+) Prove the addition and subtraction formulas for sine, cosine,
and tangent and use them to solve problems. (Section 13.)

G-SRT.6 Understand that by similarity, side ratios in right triangles are
properties of the angles in the triangle, leading to definitions of trigonometric
ratios for acute angles. (Section 10.)

G-SRT.7 Explain and use the relationship between the sine and cosine of
complementary angles. (Section 10.)

G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve
right triangles in applied problems. (Sections 8, 9, and 10.)
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G-SRT.9 (+) Derive the formula A = 1/2 ab sin(C) for the area of a
triangle by drawing an auxiliary line from a vertex perpendicular to the
opposite side. (Sections 15 and 17.)

G-SRT.10 (+) Prove the Laws of Sines and Cosines and use them to solve
problems. (Sections 14, 16, and 17.)

G-SRT.11 (+) Understand and apply the Law of Sines and the Law of
Cosines to find unknown measurements in right and non-right triangles
(e.g., surveying problems, resultant forces). (Sections 14 and 16.)
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1
The Backbone Theorem:

The Pythagorean Theorem

Common Core State Standards

8.G.6 Explain a proof of the Pythagorean Theorem and its converse.

8.G.7 Apply the Pythagorean Theorem to determine unknown side
lengths in right triangles in real-world and mathematical problems in
two and three dimensions.

8.G.8 Apply the Pythagorean Theorem to find the distance between two
points in a coordinate system.

What is the most famous theorem in all of mathematics?
Many would argue that the Pythagorean Theorem is the best known

mathematical result. If you ask your friends and relations the above question
I bet most will respond with this theorem. It is a fundamentally important
result, key to many deep mathematical explorations, and this theorem will
make many appearances throughout our thinking in this guide.

So let’s start by being clear on what the theorem is and how to prove it.

The Pythagorean Theorem: Draw a square on each side of a right triangle
(that is, a triangle with one angle of measure 90◦) and label these squares I,
II, and III as shown.

3



4 Trigonometry

III

I

II

Then:

Area I + Area II = Area III

Two comments:

1. I personally find this result very difficult to believe on a gut level!
Look at the large square in the diagram. Does it look possible to you
that its area really does equal the sum of the areas of the two smaller
squares—on the nose?

2. The Pythagorean Theorem is a statement from geometry. When asked
to state the Pythagorean Theorem, most people rattle off “a squared plus
b square equals c squared,” which sounds like a statement of algebra.

Of course, if we label the sides of the right triangle a, b, and c as shown,
then Area I does indeed have value a2, Area II value b2, and Area III c2. The
statement “Area I + Area II =Area III” then translates to a2 + b2 = c2.

a
b

c

c2

a2

b2

a b c2 2 2+ =
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But one need not label the sides of the right triangle with the letters a,
b, and c. A statement of the Pythagorean Theorem could read p2 + q2 = r2

(if the two legs of the right triangle are labeled p and q, and the hypotenuse
is labeled r ), or as w2 + x2 = h2, or even as a2 + c2 = b2! (Label the legs
as a and c and the hypotenuse as b.)

It is important not to be locked into specific notation. If you see the
Pythagorean Theorem for what it is—a statement of geometry—you won’t
be led astray by the specific notation being used.

Proving the Pythagorean Theorem

The Pythagorean Theorem, of course, was known to Pythagoras and his
Greek contemporaries of 500 bce. It was also known to Egyptian and Chinese
scholars many centuries before the Greeks.

Here’s a lovely, purely geometric, proof of the Pythagorean Theorem,
believed to have originated in China possibly as early as 1100 bce. This
proof is today called “The Chinese Proof.” We’ll present it as a physical
demonstration.

We wish to show that Area I + Area II = Area III in the picture

III

I

II

Cut out four copies of the same right triangle and arrange them in a large
square as shown.

III



6 Trigonometry

The white space in the figure is precisely Area III:

White Space = Area III.

Now arrange the triangles this way to see both Areas I and II.

I

II

Here we see:

White Space = Area I + Area II.

The area of the white space has not changed by rearranging the four
triangles in the large square. We thus conclude that

Area I + Area II = Area III.

Comment. See www.jamestanton.com/?p=1219 for more discussion and
twists on the Pythagorean Theorem.

MAA PROBLEMS
In each of these featured problem sections I give an account of my personal
path to solving the given problem, sharing with you my human reactions and
thoughts along the way. You, no doubt, will have a different set of reactions
to each of these challenges and will develop alternative ways to solve them.
That is, you will have your own human mathematical experience!

Featured Problem

(#24, AMC 10, 2001)

In trapezoid ABC D, AB and C D are perpendicular to AD, with
AB + C D = BC , AB < C D, and AD = 7. What is AB · C D?

(A) 12 (B) 12.25 (C) 12.5 (D) 12.75 (E) 13
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A Personal account of solving this problem

Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 1: Engage in Successful Flailing
Strategy 4: Draw a Picture

I feel a little overwhelmed as I read through this question. There are many
pieces of information expressed solely in terms of letters. It is hard to read.
Sketching a diagram for the problem will no doubt help.

BA a

7
b

CcD

I’ve made AB and DC each perpendicular to AD, as required. I’ve marked
in the length AD = 7. And I’ve also given the other three side-lengths
names because I find all the capital letters in geometry visually confusing.
(By the way, I should let you know it took me three tries to draw this sketch
correctly!)

Let me translate the conditions of the problem into my notation:

AB + C D = BC translates to a + c = b.

AB < C D translates to a < c.

(I have this in my picture. I didn’t in my first sketches!)
And the question wants the value of AB · C D, that is, the value of ac.
Hmm. How am I going to find this product?
Well, in looking at the diagram I feel compelled to draw in an extra line

to make a rectangle and a right triangle. I don’t know if this will help, but I
don’t really know what else to do.

A Ba

a

7 7 b

Cc – aD
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What does the Pythagorean Theorem tell me?

(c − a)2 + 49 = b2

c2 − 2ac + a2 + 49 = b2.

Hmm. I do at least see the product ac in this equation.

Oh, I forgot: b = a + c! Let’s put that in.

c2 − 2ac + a2 + 49 = (a + c)2

c2 − 2ac + a2 + 49 = a2 + 2ac + c2.

This simplifies to −2ac + 49 = 2ac and so we see

4ac = 49

ac = 49

4
= 12.25.

The answer is (B). Super!

Additional Problems
1. (#19, AMC 8, 2005) What is the perimeter of trapezoid ABC D?

30
24

50

25

D

CB

A E

(A) 180 (B) 188 (C) 196 (D) 200 (E) 204

2. (#19, AHSME, 1986) A park is in the shape of a regular hexagon 2 km
on a side. Starting at a corner, Alice walks along the perimeter of the
park for a distance of 5 km. How many kilometers is she from her
starting point?

(A)
√

13 (B)
√

14 (C)
√

15 (D)
√

16 (E)
√

17

3. (#11, AMC 12B, 2011) A frog located at (x, y), with both x and y in-
tegers, makes successive jumps of length 5 and always lands on points
with integer coordinates. Suppose that the frog starts at (0, 0) and ends
at (1, 0). What is the smallest possible number of jumps the frog makes?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6
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4. (#18, AMC 10A, 2008) A right triangle has perimeter 32 and area 20.
What is the length of its hypotenuse?

(A) 57
4 (B) 59

4 (C) 61
4 (D) 63

4 (E) 65
4

5. (#11, AMC 10A, 2011) Square E FG H has one vertex on each side of
square ABC D. Point E is on AB with AE = 7 · E B. What is the ratio
of the area of E FG H to the area ofABC D ?

(A) 49
64 (B) 25

32 (C) 7
8 (D) 5

√
2

8 (E)
√

14
4

6. (#14, AMC 10A, 2008) Older television screens have an aspect ratio
of 4 : 3. That is, the ratio of the width to the height is 4 : 3. The aspect
ratio of many movies is not 4 : 3, so they are sometimes shown on a
television screen by “letterboxing” – darkening strips of equal height
at the top and bottom of the screen, as shown. Suppose a movie has
an aspect ratio of 2 : 1 and is shown on an older television screen with
a 27-inch diagonal. What is the height, in inches, of each darkened strip?

(A) 2 (B) 2.25 (C) 2.5 (D) 2.7 (E) 3

7. (#26, AHSME, 1998) In quadrilateral ABC D, it is given
that ∠A = 120◦, angles B and D are right angles, AB = 13,
and AD = 46. Then AC =
(A) 60 (B) 62 (C) 64 (D) 65 (E) 72

8. (#15, AMC 10B, 2008) How many right triangles have integer leg
lengths a and b and a hypotenuse of length b + 1, where b < 100?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

9. (#23, AMC 12B, 2007) How many non-congruent right triangles
with positive integer leg lengths have areas that are numerically equal
to 3 times their perimeters?

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10
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10. (#10, AMC 10B, 2008) Points A and B are on a circle of radius 5 and
AB = 6. Point C is the midpoint of the minor arc AB. What is the
length of the line segment AC?

(A)
√

10 (B) 7
2 (C)

√
14 (D)

√
15 (E) 4

11. (#16, AMC 12A, 2005) Three circles of radius s are drawn in the
first quadrant of the xy-plane. The first circle is tangent to both axes,
the second is tangent to the first circle and the x-axis, and the third
is tangent to the first circle and the y-axis. A circle of radius r > s is
tangent to both axes and to the second and third circles. What is r/s?

r

s

(A) 5 (B) 6 (C) 8 (D) 9 (E) 10

12. (#22, AMC 10A, 2013) Six spheres of radius 1 are positioned so that
their centers are at the vertices of a regular hexagon of side length 2.
The six spheres are internally tangent to a larger sphere whose center is
the center of the hexagon. An eighth sphere is externally tangent to the
six smaller spheres and internally tangent to the larger sphere. What is
the radius of this eighth sphere?

(A)
√

2 (B) 3
2 (C) 5

3 (D)
√

3 (E) 2

13. (#29, AHSME, 1993) Which of the following sets could NOT be the
lengths of the external diagonals of a right rectangular prism [a “box”]?
(An external diagonal is a diagonal of one of the rectangular faces of
the box.)
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(A) {4, 5, 6} (B) {4, 5, 7} (C) {4, 6, 7} (D) {5, 6, 7}
(E) {5, 7, 8}

14. (#15, AHSME, 1989) In �ABC , AB = 5, BC = 7, AC = 9, and D
is on AC with B D = 5. Find the ratio AD : DC .

B

A CD

(A) 4 : 3 (B) 7 : 5 (C) 11 : 6 (D) 13 : 5 (E) 19 : 8

15. (#25, AMC 10A, 2008) A round table has radius 4. Six rectangular
place mats are placed on the table. Each place mat has width 1 and
length x as shown. They are positioned so that each mat has two
corners on the edge of the table, these two corners being endpoints of
the same side of length x . Further, the mats are positioned so that the
inner corners each touch an inner corner of an adjacent mat. What is x?

1

x

(A) 2
√

5 − √
3 (B) 3 (C) 3

√
7−√

3
2 (D) 2

√
3 (E) 5+2

√
3

2
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16. (#12, AHSME, 1980) The equations of L1 and L2 are y = mx and
y = nx , respectively. Suppose L1 makes twice as large an angle with
the horizontal (measured counterclockwise from the positive x-axis)
as does L2, and that L1 has 4 times the slope of L2. If L1 is not
horizontal, then mn is:

(A)
√

2
2 (B) −

√
2

2 (C) 2 (D) −2
(E) not uniquely determined by the given information



2
Some Surprisingly Helpful

Background History

Common Core State Standards

The background to . . . F-TF.2 Explain how the unit circle in the co-
ordinate plane enables the extension of trigonometric functions to all
real numbers, interpreted as radian measures of angles traversed coun-
terclockwise around the unit circle.

Mankind is on a perpetual scientific and intellectual quest, to answer
the fundamental question:

What is this universe we find ourselves in?

Our need to understand our existence and our place and role in the
universe, and the nature of the universe itself, has propelled grand scientific,
psychological, theological, social, and creative musings since the dawn of
time. The study of astronomy was one of the earliest fields of scientific
pursuit.

Imagine a human back at the dawn of time, sitting on the ground,
observing the universe around her. She notices the Sun, the Moon, and the
stars, and their motion. Each body seems to move in arcs across the day
or night sky. It is natural to wonder what these objects are, how high or
far away they are, what their influence on us might be, and so on. The
mathematics to begin understanding the heavenly motions dates back to the
ancient Babylonians (ca. 2000 bce), if not earlier.

Let’s address one particular natural question: How high is the Sun?

13
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Each day, the Sun rises in the east, moves across the day sky in a large
arc, sets in the west, and then returns to rise in the east again the next day (on
average twelve hours later). It seems natural to suspect that the Sun stays in
motion during the night, moving perhaps below us on the other side of the
ground. Can we determine the height of the Sun at any desired time of day?

height?

x

Unfortunately it is not possible to climb up to the Sun, drop a rope back
down to the ground, and measure its length. From our vantage point, here
on the ground, there is only one measurement we can make: the measure of
the angle of elevation at which we observe the Sun.

Can we determine the height of the Sun from one angle measurement?
Scholars of ancient times were fully aware that the Sun does not move

on a perfectly circular arc across the day sky. But as an attempt to make
some headway on this question, to develop some clever thinking that helps
towards getting some kind of answer, it is natural to approximate the Sun’s
motion as along a perfectly circular path (with our location at the center of
the circle, of course).

x

height?
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The study of “circle-ometry” is now born: How do you determine the
height of a point on a circle knowing only the angle of elevation to that
point?

Comment. The Sun rises in the east and sets in the west. If we set the
direction east to the right in our maps and diagrams (as indeed became
the convention over the centuries), then the Sun’s motion is in a counter-
clockwise direction. This explains why counter-clockwise is the preferred
direction of turning in mathematics today.

III

IVIII

It explains why, in a coordinate system, we always measure angles from
the positive x-axis (the location corresponding to the rise of the Sun), in a
counter-clockwise direction, and why we number the four quadrants of the
coordinate plane in the order that we do—the numbers correspond to the
order of the quadrants through which the Sun moves (assuming that the Sun
continues to move beneath us during the night!).

A Curious Story About Names

Indian scholars of the fifth century ce took on the challenge of “circle-
ometry” with gusto and developed a significant amount of mathematics on
the heights of points in circular motion.

They gave a name to the line segment in diagrams whose length repre-
sents the unknown height. They called it the jyā-ardha (which literally means
“half-chord”), which they abbreviated to jyā in their written work. Thus each
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x

?

angle of elevation has, within a circle of a given radius, an associated jyā
value.

In the tenth century, Islamic scholars read the Indian texts on “circle-
ometry” and translated that work into Arabic. The Sanskrit word jyā was
strange to them and they simply transcribed the word into Arabic letter by
letter. The height of a half-chord in a circle became, in Arabic, jiba.

In the twelfth century, mathematics started to flourish in Europe. West-
ern scholars studied the Arabic texts and worked to translate them into Latin.
They came across the word jiba, which did not exist as a proper Arabic word.
They thought it to be a mis-scribed version of the word jaib, which exists
in the language and means “a cove or a bay,” that is, a little place to put
boats into safe harbor. They thought this a strange name for the length of a
half chord in a circle, but they nonetheless faithfully translated jaib into the
Latin word for “bay,” namely sinus. In English, this word then became sine.
Thus when we talk about the sine of an angle, we are literally saying “the
cove” of the angle!

x

90 – x

The horizontal displacement of the Sun equals the
height of the Sun at the complementary angle.
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Later scholars decided to give a name to the horizontal line segment
adjacent to the angle, which is also the sine of the complementary angle.
They called this length the “companion length to sine,” which later was
shortened to cosine.

The Story Doesn’t Quite End Here

In the mid-1500s George Jaochim Rheticus wrote a book that explained
how to define sine and cosine in terms of triangles without ever mentioning
circles. (One does see right triangles in our circle pictures.) The study of
“circle-ometry” became a study of right triangles. The name trigonometry
was coined for this new version of the subject in 1595 by Bartholomeo
Pitiscus, and it is this right-triangle version that is first taught to high-school
students across the globe some 400 years later.

But let’s see just how easy trigonometry is back in its original “circle-
ometry” setting.



3
The Basics of

“Circle-ometry”

Common Core State Standards

More background to . . . F-TF.2 Explain how the unit circle in the co-
ordinate plane enables the extension of trigonometric functions to all
real numbers, interpreted as radian measures of angles traversed coun-
terclockwise around the unit circle.

Movement towards . . .
F-TF.3 (+) Use special triangles to determine geometrically the values
of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle
to express the values of sine, cosine, and tangent for π − x , π + x ,
and 2π − x in terms of their values for x , where x is any real number.

F-TF.4 (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions

Let’s imagine a point—the Sun, say—moving counterclockwise about
a circle centered at the origin, always rising in the east and setting in the
west.

A problem: What radius circle do we consider?
Just to get the mathematics going, let’s work with a circle of radius of 1

unit. For the Sun moving about the Earth (from our perspective) this is one
very large unit: the number of miles from the Earth to the Sun. But let’s call
it one unit nonetheless.

18
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Comment. Astronomers call the mean distance of the Earth from the Sun
one astronomical unit, so we are right in line with the astronomical origins
of this subject doing this!

1
height = sine

“overness” = companion to sine
                  = cosine 

–1

–1 1

x

If the Sun has risen x degrees from the positive horizontal axis (east),
we define

sin (x) ,read “sine of x ,” is the height of the Sun at that angle of elevation.

cos (x) ,read as “cosine of x ,” is the “overness” of the Sun at that angle
of elevation.

That’s it!

Comment. Indian scholars did not think to set a convention of using a
circle of radius 1. In their work the value of sine for a given angle of elevation
also depended on the radius of the circle being examined.

We’ll see later on how to change the radius of the circle in our consid-
erations too.

SOME EXAMPLES:
x = 0◦

Where is the Sun at an angle of elevation of 0◦? It’s right on the eastern
horizon:
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We see that it has a height of 0, and its “overness” is 1 unit to the right:

sin(0◦) = 0

cos(0◦) = 1.

x = 90◦

When the Sun is at an angle of elevation of 90◦, it is positioned directly
above the origin.

90°

Its height is 1 and its overness is 0. (It doesn’t lie to the left or to the
right of the origin.)

sin(90◦) = 1

cos(90◦) = 0.

x = 180◦
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When the Sun is at an angle of elevation of 180◦, it is positioned directly
on the western horizon.

180°

Its height is 0 and its overness is one unit in the negative direction.

sin(180◦) = 0

cos(180◦) = −1.

x = 270◦

At an angle of elevation of 270◦, the Sun is positioned directly below
the origin. (The other side of the Earth?)

270°
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Its height is −1 and its overness is 0.

sin(270◦) = −1

cos(270◦) = 0.

x = 360◦

We see:

360°

sin(360◦) = 0

cos(360◦) = 1.

Comment. We have:

sin (x + 360◦) = sin (x)

cos (x + 360◦) = cos (x)

x + 360°
x
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Let’s now work out the sine and cosine of some more interesting
angles.

x = 45◦

a

a

1

45

We have an isosceles right triangle and the Pythagorean Theorem gives
a2 + a2 = 1 and so a = 1√

2
. Thus

sin (45◦) = 1√
2

≈ 0.707

cos (45◦) = 1√
2

≈ 0.707.

x = 135◦

a

–a

1
135
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Again we have an isosceles right triangle and the Pythagorean Theorem
gives a = 1√

2
. Here the overness is in the negative direction and we have

sin(135◦) = 1√
2

cos(135◦) = − 1√
2
.

x = −45◦

a

–a1

–45

Positive angles are measured counterclockwise from the positive x-axis,
negative angles in a clockwise direction.

sin(−45◦) = − 1√
2

cos(−45◦) = 1√
2
.

x = 60◦

a

60

1

1
2
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We see half an equilateral triangle of side length 1. Thus cos(60◦) =
1
2 . (Ooh! Is the picture accurate?) The Pythagorean Theorem gives

a =
√

1 − (
1
2

)2 =
√

3
2 and so sin (60◦) =

√
3

2 .

sin (60◦) =
√

3

2
≈ 0.866

cos (60◦) = 1

2
.

x = 30◦

1
2

a

1

30

Again we have half an equilateral triangle.

sin (30◦) = 1

2

cos (30◦) =
√

3

2
.

Comment. For practice, compute sin(−30◦), sin(−135◦), cos(390◦), and
cos(120◦).

IN SUMMARY:

We have

sin(0◦) = 0 sin(30◦) = 1
2 sin(45◦) = 1√

2
sin(60◦) =

√
3

2 sin(90◦) = 1

cos(0◦) = 1 cos(30◦) =
√

3
2 cos(45◦) = 1√

2
cos(60◦) = 1

2 sin(90◦) = 0

These are often considered standard results to be committed to memory.
(See www.jamestanton.com/?p=875 for a HANDY MNEMONIC.)

The sine and cosine values for angles of elevation with the Sun
positioned in other quadrants can be deduced by quickly sketching a
diagram and using your wits just as in this section.
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Comment. It is deemed permissible to drop the parenthesis in the nota-
tions sin (x) and cos (x) if no confusion comes of it. For example, one might
write cos 60◦ = 1

2 or (sin 60◦)2 = 0.75.
School curricula tend to insist that the parentheses be used. Mathemati-

cians tend to drop the parentheses if the context is clear.

MAA PROBLEMS

Featured Problem

(Modified version of #15, AMC 12A, 2006):

Suppose cos (x) = 0 and cos (x + z) = 1
2 . What is the smallest possible

positive value of z?

(A) 30◦ (B) 60◦ (C) 90◦ (D) 150◦ (E) 210◦

Comment. This question was originally given in units of radians.

A Personal account of solving this problem

Curriculum Inspirations Strategy (www.maa.org/ci):

Strategy 4: Draw a Picture

This question looks a bit strange to me. But if I think in terms of the
location of the Sun matters might fall into place. Let’s see.

We’re told that cos (x) = 0. So the Sun at an angle of elevation of x
degrees has zero overness. The Sun is either directly overhead or directly
below.
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By adding an extra z degrees to the angle of elevation, we get an overness
of 1

2 . There are two possible locations for the Sun with this overness.

1/2

The angle of smallest possible measure that shifts the Sun from one of
the overhead/under-head positions to one of these new positions is the angle
I’ve marked. All I need is the measure of that angle.

With the lengths 1
2 and 1 we see we’re dealing with half an equilateral

triangle.

1/2

1

a
z

So the angle I’ve marked a has measure 60◦ and the angle z here has
measure 30◦.

The answer is (A).

Additional Problem
17. (#38, AHSME, 1958) Let r be the distance from the origin to a point

P with coordinates x and y. Designate the ratio y
r by s and the ratio x

r
by c. Then the values of s2 − c2 are limited to the numbers:
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(A) less than −1 and greater than +1, both excluded
(B) less than −1 and greater than +1, both included
(C) between −1 and +1, both excluded
(D) between −1 and +1, both included
(E) −1 and +1 only



4
Radian Measure

Common Core State Standards

F-TF.1 Understand radian measure of an angle as the length of the arc
on the unit circle subtended by the angle.

F-TF.2 Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to all real numbers, interpreted as
radian measures of angles traversed counterclockwise around the unit
circle.

We like to say that “there are 360◦ in a circle.” By this, we mean that we find
it convenient to divide one full rotation into 360 small parts, each called a
degree.

1 full turn = 360°

But why the number “360”?
Some historians suggest that this choice of number is due to Babylonian

scholars (ca 2000 BCE) who observed that one full turn of the Earth about
the Sun, that is, one Earth year, takes 3651/4 days. Thus the number 3651/4

corresponds to one very obvious, human cycle.
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But this is an awkward number with which to work and so the Baby-
lonians rounded it to 360, a much more pleasing figure. (Why didn’t they
round to 365 or to 370 do you think?) To this day we continue to work with
the number 360 and its fractions when thinking about rotations and cycles
(including the way we measure hours, minutes, seconds).

However, the number 360 is very specific to our happenstance of having
evolved on this particular planet—the Earth—revolving about our particular
star—the Sun. Martians, I suspect, would naturally say that there are 660
degrees in a full turn. (How many Martian days—called sols—are there in
a Martian year?)

The number 360 is not at all relevant to mathematics and it proves to be
quite an awkward number for doing more advanced work (in the mathematics
of calculus, for instance). Mathematicians soon found they needed a measure
of turning that is natural to the mathematics, not to our human experience.

The simplest thing to do—as is always the best—is to work with the
simplest circle possible to represent one full turn, namely, a circle of radius 1.

1

Walking all the way round the circumference of this circle corresponds
to walking a distance of 2π × 1 = 2π units. Thus it seems natural to as-
sociate the number 2π with the concept of one full turn, and fractions of
this number with fractions of turns. For example, we associate the number
1
2 · 2π = π with half a turn and the number 3

10 · 2π = 3π
5 with 3

10 of a turn.
These numbers are the distances one physically traverses when walking
these fractions of a full turn on a circle of radius one unit.

A Problem

It looks like radians are measured in units of distance. Would those units
be? Inches? Feet? Miles? Astronomical units? We want a measure of
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turning that is independent of all human choices, including human choices
of unit!

The Fix

We ask: Is there a natural choice of unit associated with any given circle,
independent of the units on any ruler we might pick up to measure distances
on it?

The radius of the circle comes to mind!
Suppose on a given circle we walk a distance of one radius along

its circumference. Let’s call the fraction of turn it represents “one unit of
turning.” This unit of turning is natural to the circle, it is not a distance and
so has no units associated with it, and it represents the same fraction of
turning for all circles. Perfect!

distance r

r

r

Mathematicians give this unit of turning a name. It is called a radian
(to match the word radius).

Question. How many degrees of turning is one radian? (Read on for the
answer.)

A turn of two radians corresponds to walking a diameter length along
a circle circumference, and a turn of 2π radians corresponds to walking a
distance of 2π radii along the circumference of the circle, that is, all the way
round!

We have:

A turn of 2π radians corresponds to one full turn.

The name radian is used whenever we want to associate a quantity with
an amount of turning. For example, writing “2π” all by itself represents a
number. But writing “2π radians” means “one full turn.”
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We have

1 turn ↔ 360◦ ↔ 2π radians

1

2
turn ↔ 180◦ ↔ 1

2
· 2π = π radians

1

3
turn ↔ 120◦ ↔ 2π

3
radians

3

10
turn ↔ 108◦ ↔ 3

10
· 2π = 3π

5
radians

and so on.

Comments

1. Many people find it helpful to remember

180◦ ↔ π radians.

This allows one to convert between radians and degrees fairly swiftly.
For example

2π

3
radian ↔ 2 × 180◦

3
= 120◦

13π

12
radian ↔ 13 × 180◦

12
= 195◦.

2. Consider again the correspondence: 180◦ ↔ π radians.
Dividing through by 180 gives

1◦ ↔ π

180
radians.

This allows us to convert degrees to radians fairly swiftly.
For example, multiplying through by 20 shows 20◦ ↔ 20 × π

180 =
π
9 radians.

Dividing through instead by π gives:

1 radian ↔ 1800

π
≈ 57.3◦.



Radian Measure 33

Comment. Here is the MAA AMC question of the previous section in its
original form:

(#15, AMC 12A, 2006):

Suppose cos (x) = 0 and cos (x + z) = 1
2 . What is the smallest possible

positive value of z?

(A)
π

6
(B)

π

3
(C)

π

2
(D)

5π

6
(E)

7π

6

Care to rethink its solution in terms of radians?
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The Graphs of Sine and

Cosine in Degrees

Common Core State Standards

F-TF.4 (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions.

We have the following table of sine values:

x 0◦ 30◦ 45◦ 60◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ 360◦

sin(x) 0 1
2 = 0.5 1√

2
≈ 0.7

√
3

2 ≈ 0.9 1 0.5 0 −0.5 −1 −0.5 0

x 0◦ −30◦ −45◦ −60◦ −90◦ −135◦ −180◦ −270◦ −360◦

sin(x) 0 −0.5 −0.7 −0.9 −1 −0.5 0 1 0

Plotting points shows that the graph of y = sin(x) has the following shape:

–360 –270 –90 45

1
y = sin(x)

–1

0.7

90 270–180 180 360

34
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Comment. Matters are a little deceptive here: one unit of measure on
the vertical axis is physically very much longer than one unit of measure
on the horizontal axis. A correctly scaled graph would have these physical
lengths match. (Can you see in your mind’s eye how the graph would then
appear?)

A similar exercise shows that the graph of y = cos(x) appears:

–360 –180

1
y = cos(x)

–1

180 360–270 –90 90 270

Each graph is periodic with period 360◦, meaning that the graphs re-
peat in values every 360◦. (This, of course, is reflected in the statements
sin(x + 360◦) = sin(x) and cos(x + 360◦) = cos(x).)

Comment. Many wave-like phenomena in nature appear as “sine curves.”
They are the result of looking at just the vertical component of circular
motion. (If one views one object spinning about another, but from the side,
all one sees is the vertical displacement of that object—a sine wave of
motion!)

Notice that the cosine curve is a horizontal translate of the sine curve
with value x = −90◦ for the cosine curve “behaving like” x = 0◦ for the
sine curve. We have

cos(x) = sin(x + 90◦).

Comment. Why the focus on circles? Imagine an object moving about a
square of “radius” 1 centered about the origin.

At each angle of elevation x , the object has a certain height and certain
overness. Call these the square sine, “squine,” and square cosine, “cosquine,”
of x . (See the diagram on the next page.)

I wonder how the plots of y = squine(x) and y = cosquine (x) appear.
(See www.jamestanton.com/?p=605.)
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 cosquine(x)

 squine(x)

1

–1

–1 1
x

MAA PROBLEMS

Featured Problem

(#10, AHSME, 1985):

An arbitrary circle can intersect the graph of y = sin x in

(A) at most 2 points

(B) at most 4 points

(C) at most 6 points

(D) at most 8 points

(E) more than 16 points

A Personal Account of Solving this Problem

Curriculum Inspirations Strategy (www.maa.org/ci):

Strategy 10: Go to Extremes
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It seems that a circle can intersect a sine graph only zero, one, or two
times:

zero intersections one intersection

two intersections two intersections

Oh. Make the circle a bit bigger and we can get to four intersection points!

Does making it bigger still help?
Hmm. How about a circle so large that any section of it is basically a

straight line segment?
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Ahh! We can get millions of intersection points!

The answer is (E).

Additional Problems
18. (#18, AHSME, 1999) How many zeros does f (x) = cos(log(x)) have

on the interval 0 < x < 1?

(A) 0 (B) 1 (C) 2 (D) 10 (E) infinitely many

19. (#16, AHSME, 1977) If i2 = −1, then the sum

cos 45◦ + i cos 135◦ + · · · + i n cos(45 + 90n)◦ + · · · + i40 cos 3645◦

equals

(A)
√

2
2 (B) −10i

√
2 (C) 21

√
2

2 (D)
√

2
2 (21 − 10i) (E)

√
2

2 (21 + 20i)



6
The Graphs of Sine and

Cosine in Radians

Common Core State Standards

F-TF.4 (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions.

As radians are natural to mathematics, mathematicians will work solely
with radian measure, particularly with regard to the circle functions sine and
cosine.

Comment. One can set one’s calculator into “radian mode.”
If x is taken to be in radian measure, the graph of the function y = sin (x)

now appears:

–2π

–1

1
y = sin(x)

2π–π π– 3π
2

3π
2

– π
2

π
2

The graph for y = cos (x) is similarly adjusted.

39
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–2π

–1

1
y = cos(x)

2π–π π– 3π
2

3π
2

– π
2

π
2

Each graph has period 2π .

Comment. Using the scale of radian on the horizontal axis here has the
lovely effect of scaling the graph of y = sin (x) so that it crosses the origin
at a slope of 1. One can prove that if x is small in value, and given in radian
measure, then the value of sin (x) is very close to the value of x . This means
that the graphs y = sin (x) and y = x look very much alike at the origin.

If x , however, is given in degrees, then sin (x) ≈ π
180 x ≈ 0.017x and

the graph crosses the origin at a very low slope of 0.017. (Our graph for
y = sin (x) in the previous section was deceptive. If we truly scaled the axes
so that one unit of measure along the horizontal axis represents one degree,
then graph appears more as

–360° –180° 180°
–1
1

360°

We see the graph crossing through the origin at a very shallow slope.)
To get a sense of why sin (x) ≈ x if x is close to zero (and given in

radians), consider a polygon with n sides inscribed in a circle of radius 1.

BM

A

O



The Graphs of Sine and Cosine in Radians 41

Let O be the center of the circle, A and B two adjacent vertices of the
polygon, and M the midpoint of the side AB. We have that m∠AO B = 2π

n
(it’s one nth of a full turn) and so m∠M O B = π

n .
Looking at �M O B we see B M = sin

(
π
n

)
, and so AB = 2 sin

(
π
n

)
, and

the perimeter of the polygon is 2n sin
(

π
n

)
.

If n is very large, the polygon is very close to matching the circle. (If
n equals a billion, the human eye could not detect the difference between
the regular billion-gon and the circle itself.) The circle has perimeter, that
is, circumference 2π . So for n very large we expect

2n sin
(π

n

)
≈ 2π.

Rearranging gives

sin
(π

n

)
≈ π

n
.

So for very small angles of the form x = π
n (x is very small if n is very

large) we expect sin (x) ≈ x .

MAA PROBLEMS

Featured Problem

(#18, AHSME, 1981)

The number of real solutions to the equation x
100 = sin x is

(A) 61 (B) 62 (C) 63 (D) 64 (E) 65

A Personal account of solving this problem

Curriculum Inspirations Strategy (www.maa.org/ci):

Strategy 4: Draw a Picture

This problem looks a bit scary to me. But after a deep breath, I see that is
really about a line y = 1

100 x and the sine function y = sin x . (The author of
this question chooses to omit parentheses when writing the sine function.)
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Solutions to the equation x
100 = sin x correspond to intersection points of

these two graphs. Let’s graph them!

(Well, my straight line should be of much shallower slope!)
The line and the sine curve certainly intersect at x = 0 (so that’s one

solution to the equation) and we see from symmetry that there will be an
equal number of positive and negative solutions. This means that there is
going to be an odd number of solutions. That’s something! (Choices (B) and
(D) are definitely out.)

Now what? Hmm.
Let’s focus on right half of the graph, the graph on the positive x-axis.
The straight line, eventually, will rise higher than the sine curve. If I

can count how many “humps” it crosses, then I’ll basically have a count of
the solutions.

How am I going to count those?
Well, the sine graph never goes beyond a height of 1, and the line y =

1
100 x goes above a height of 1 at x = 100. And since the period of the sine
curve is 2π , there are 100

2π
≈ 15.9 positive humps up to x = 100. Hang on!

That doesn’t make sense. What’s actually happening right out near x = 100?
We have that 16 cycles of 2π takes us just past 100. So 15 · 2π is the

start of the cycle that gets “cut off” by x = 100. And to be very clear, the
start of the downward hump in that cycle starts at 15.5 · 2π . Okay, we do
have the full upward hump in what would be the 16th cycle, so there are
sixteen upward humps on the right side of the graph each being cut twice
by the line y = 1

100 x .

15π 16π

15.5π

100
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So 32 intersection points to the right, and thus 32 to the left as well (by
symmetry), making a total of 64 solutions. So (D)?

But the number of solutions has to be odd. Oh! We counted the solution
x = 0 twice.

The answer is (C). There are precisely 63 solutions to the equation
x

100 = sin x .

Additional Problem
20. (#23, AMC 12B, 2003) The number of x-intercepts on the graph of

y = sin
(

1
x

)
in the interval (0.0001, 0.001) is closest to

(A) 2900 (B) 3000 (C) 3100 (D) 3200 (E) 3300



7
Basic Trigonometric

Identities

Common Core State Standards

F-TF.3 (+) Use special triangles to determine geometrically the values
of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit circle
to express the values of sines, cosines, and tangents for π − x , π + x ,
and 2π − x in terms of their values for x , where x is any real number.

F-TF.4 (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions.

F-TF.8 Prove the Pythagorean identity sin2(θ ) + cos2(θ ) = 1 and use it
to find sin(θ ), cos(θ ), or tan(θ ) given sin(θ ), cos(θ ), or tan(θ ) and the
quadrant of the angle.

The sine and cosine functions possess a number of special properties. We
have already seen, for example:

Degrees Radians
sin(x + 360◦) = sin(x) sin(x + 2π ) = sin(x)
cos(x + 360◦) = cos(x) cos(x + 2π ) = cos(x)

and that

Degrees Radians
cos(x) = sin(x + 90◦) cos(x) = sin

(
x + π

2

)

44
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Let’s return to the basic diagram of the position of the Sun on a unit circle:

1

1

sin(x)

sin(–x)

cos(–x) = cos(x)

x
–x

We see the Sun at angles of elevation x and −x degrees have the same
overness but opposite heights. We have

sin(−x) = − sin(x)
cos(−x) = cos(x).

And we see these features in the graphs of sine and cosine: The cosine graph
is symmetric about the y-axis (it adopts the same values on both positive and
negative x-values) and the sine function adopts opposite values on positive
and negative x-values.

Drawing the locations of the Sun at an angle of elevations x degrees
and x + 180 degrees shows the following relations. (The two locations are
on opposite sides of the circle of radius one.)

Degrees Radians
sin(x + 180◦) = − sin(x) sin(x + π) = − sin(x)
cos(x + 180◦) = − cos(x) cos(x + π ) = − cos(x)

We can combine the relations we have established thus far to discover more.
For example, in radians, we have

sin(2π − x) = sin(−x) = − sin(x)
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and
cos(π − x) = − cos(−x) = − cos(x).

Consider again the defining diagram:

1

x

sin(x)

cos(x)

The Pythagorean Theorem gives

(sin x)2 + (cos x)2 = 1.

For visual ease people tend to write sin x for sin(x) and cos x for cos(x)
here.

Important Comment. It has become usual to use unconventional math-
ematical notation for equations of this type in trigonometry. Rather than
write (sin x)2, mathematicians prefer to write sin2 x . Normally, this is the
notation for the composition of functions: f 2(x) means f ( f (x)), but in the
context of trigonometry it is taken to mean f (x) × f (x).

Similarly, cos3 x means (cos x)3, and not a three-fold composition of
functions, and sin67 t means the number sin t raised to the 67th power.

For any positive integer n . . .

sinn x means the number sin(x) raised to the nth power
cosn x means the number cos(x) raised to the nth power

Matters are somewhat confusing for when a negative integer is used—
this abuse of notation no longer applies! For instance, sin−1 x now means
what it should: the inverse function to sine, and not (sin x)−1 = 1

sin(x) . (See
Section 12.)

The statement of the Pythagorean Theorem in the context of this nota-
tion is:

sin2 x + cos2 x = 1
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Example. If sin(g) = 0.65 give two possible values for cos(g).

Answer. We are being told that when the Sun is at an angle of g degrees,
its height is 0.65. There are two possible locations for the Sun.

110.65 0.65

We see that cos(g) is either
√

1 − 0.652 ≈ 0.76 or the negative version
of this, −0.76.

TIP: We have

sin(−x) = − sin(x)

cos(−x) = cos(x)

sin(x + 90◦) = cos(x).

If we change the input of either sin(x) or cos(x) with some combination
of the addition of 90◦ and a change in sign the result will be equivalent to
one of sin(x), cos(x), − sin(x), or − cos(x). Trying some specific values
for x (in particular x = 0◦ and x = 90◦) will tell you which.

Example. Identify cos(x + 90◦).

Answer. For x = 0◦ this function has value cos(90◦) = 0.
For x = 90◦ it has value cos(180◦) = −1.
It must be the inverted version of sine.

cos(x + 90◦) = − sin(x)

Similarly, sin(90 − x) = cos(x) and cos(x + 180◦) = − cos(x).
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MAA PROBLEMS
21. (#18, AHSME, 1980) If b > 1, sin x > 0, cos x > 0 and logb sin x = a,

then logb cos x equals

(A) 2 logb(1 − ba/2) (B)
√

1 − a2 (C) ba2
(D) 1

2 logb(1 − b2a)
(E) none of these



8
Sine and Cosine for Circles

of Different Radii

Common Core State Standards

Towards . . . G-SRT.8 Use trigonometric ratios and the Pythagorean
Theorem to solve right triangles in applied problems.

We have, so far, defined sine and cosine within circles only of radius 1.

sin(x)

cos(x)

1

x

What should we do for a circle of radius different from1?
If one takes a picture to a photocopier and enlarges it by, say, a factor

of two, then all lengths in that picture double while all angles in the picture
are unchanged.

49
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4

4

4

4 – a

a

8

8

8

2a

10º

10º

8 – 2a

× 2

Scale a picture by a factor of three, all lengths triple (and all angles stay
the same). Scale a picture by a factor of 0.4, then all lengths in that picture
reduce to two-fifths of their original lengths (and all angles, again, remain
unchanged).

So take the picture of a unit circle to a photocopier and enlarge it by a
factor of r , a positive real number. All angles will remain the same, but all
lengths in the picture increase by a factor of r .

x

rsin(x)
r sin(x)

r cos(x)

cos(x)

1

x × r

We see that

the height and overness of the Sun traversing a circle of radius r ,
observed at an angle of elevation x degrees is

height = r sin(x)

overness = r cos(x).

There is nothing deep here.
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Example. Find the sine and cosine of the angle A

A

(3, 7)

Answer. In this diagram the Sun has height 7 and overness is 3. But the Sun
is on a circle of radius

√
32 + 72 = √

58. We have:

7 = height =
√

58 sin(A)

3 = overness =
√

58 cos(A)

So sin(A) = 7√
58

and cos(A) = 3√
58

.

Example. Find the sine and cosine of the angle x indicated

x

(–3, –4)
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Answer. The radius of the circle is 5. We have

−4 = height = 5 sin(x)

−3 = overness = 5 cos(x).

So sin(x) = − 4
5 and cos(x) = − 3

5 .

MAA PROBLEMS
22. (#19, AHSME, 1998) How many triangles have area 10 and vertices

at (−5, 0), (5, 0), and (5 cos θ, 5 sin θ) for some angle θ?

(A) 0 (B) 2 (C) 4 (D) 6 (E) 8



9
A Paradigm Shift

Common Core State Standards

Still towards . . . G-SRT.8 Use trigonometric ratios and the Pythagorean
Theorem to solve right triangles in applied problems.

We introduced sin(x) as the actual physical height of the Sun traversing a
circle of radius 1 observed at an angle of elevation of x degrees.

For a circle of a different radius r , the physical height of the Sun
observed at an angle of elevation of x degrees is now

height = r sin(x).

The meaning of sine has now subtly changed. Solving for sin(x) we get

sin(x) = height

r
,

and sine is now a ratio of lengths, not an actual length in and of itself!

Comment. Another shift of thinking also occurred soon after this. In the
mid 1700s, the Swiss mathematician Leonhard Euler noted that sin(x) plays
the role of a function: to each angle x is assigned a number between −1 and
1. (The analogous idea holds for cos(x) too.) Euler was the first to articulate
the notion of a function and seeing sine and cosine as functions provided a
new mindset for thinking about them: he could graph these trigonometric
functions, compose them, ask for their function inverses, and the like.

53
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“CIRCLE-OMETRY” BECOMES TRIGONOMETRY
In the mid-1500s the scholar Jaochim Rheticus turned the study of circle-
ometry into a study of right triangles. His approach is the one used today in
practically all introductory texts to the subject.

Rheticus realized that in the most general case of a circle of arbitrary
radius r , sine and cosine each represent a ratio of lengths in diagrams and
are not themselves physical lengths (except in the case r = 1, perhaps).

r sin(x)

r cos(x)

x

r

We see this if we isolate the right triangle we see in this diagram. For
example, sin(x)is the ratio of the side of length r sin(x) (that is, the side
opposite the angle x) to r , the length of the hypotenuse of the right triangle.
We can thus focus on a study of right-triangle sides and their ratios.

r

x

r sin(x)

r cos(x)
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Rheticus wrote an introductory text on the subject exploring the proper-
ties of ratios of sides of right triangles. His text was extraordinarily influential
and, to this day, still defines how the sine and cosine functions are introduced
to students for the first time in their schooling. No mention whatsoever is
made of the circles from which these right triangles came.

In 1595, Bartholomeo Pitiscus coined the name “trigonometry” for
Rheticus’s right-triangle approach to trigonometry.

Comment. By focusing on right triangles there is now a limitation on the
range of angles x that can be studied. Since the angles in a triangle sum
to 180◦, and a right triangle already contains an angle of measure 90◦, we
must now restrict x to the range 0◦ ≤ x ≤ 90◦. (Is x = 0◦ really allowed
in a right triangle? And x = 90◦?) Asking for sin(120◦), for example, has
no meaning in this context! This is often very confusing to students when
they move from a first course in trigonometry back to a proper course on
“circle-ometry” in a pre-calculus course.
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The Basics of Trigonometry

Common Core State Standards

G-SRT.6 Understand that by similarity, side ratios in right triangles are
properties of the angles in the triangle, leading to definitions of trigono-
metric ratios for acute angles.

G-SRT.7 Explain and use the relationship between the sine and cosine
of complementary angles.

G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve
right triangles in applied problems.

An uninspired approach to Rheticus’s trigonometry begins:
Give the sides of a right triangle containing an angle x of interest the

following names:

opposite
hypotenuse

adjacent

x

The side opposite the angle x is called the opposite (abbreviated “opp”).

The side adjacent to the angle x that is not the hypotenuse of the triangle,
is called the adjacent (abbreviated “adj”).

The hypotenuse of the triangle is called, of course, the hypotenuse
(abbreviated “hyp”).

56
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Example. In this triangle

30

60

6
3

3√3

the side opposite 30◦ has length 3,

the side adjacent to 30◦ has length 3
√

3,

the hypotenuse has length 6,

the side opposite 60◦ has length 3
√

3,

the side adjacent 60◦ has length 3.

Now give special names to ratios of these sides in a right triangle.

opp
hyp

adj

x

The ratio opp
hyp is called the sine of angle x . It is written sin(x).

The ratio adj
hyp is called the cosine of angle x . It is written cos(x).

Question. Can you indeed see that these names are correct in the “circle-
ometry” context?

In the context of right triangles there is no reason to give names only to
two ratios. Rheticus suggested giving names to all six possible ratios. Here
are the names for the remaining four.

The ratio opp
adj is called the tangent of angle x . It is written tan(x).
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The ratio hyp
adj is called the secant of x . It is written sec(x).

The ratio hyp
opp is called the cosecant of x . It is written csc(x).

The ratio adj
opp is called the cotangent of x . It is written cot(x).

Example. According to this triangle

30

60

4
8

4√3

sin(30◦) = opp

hyp
= 4

8
= 1

2
sin(60◦) = opp

hyp
= 4

√
3

8
=

√
3

2

cos(30◦) = adj

hyp
= 4

√
3

8
=

√
3

2
cos(60◦) = adj

hyp
= 4

8
= 1

2

tan(30◦) = opp

adj
= 4

4
√

3
= 1√

3
tan(60◦) = opp

adj
= 4

√
3

4
=

√
3.

Comment. In computing the value of any of these special ratios for a par-
ticular acute angle x it does not matter which right triangle containing the
angle x one draws. By the AA similarity principle for triangles, any two tri-
angles containing a 90◦ angle and an angle of measure x are similar, and thus
ratios of matching pairs of sides for those two triangles have the same value.

A Comment on Names
We’ve seen the origin of the words sine and cosine. Why did Rheticus give
the remaining four rations the names “tangent,” “secant,” “cosecant,” and
“cotangent”?

The ratio opp
adj

Rheticus realized that this ratio is related to a specific tangent line on the
circle of radius one. Call the length of the tangent segment shown H .
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sin(x)

cos(x)

1

1

H

x

There are two similar triangles in this diagram, one with height H and
base 1, and one with height sin(x) and base cos(x). (Here we are
going back to our “circle-ometry” understanding.) Sides in similar
triangles come in the same ratio, and so

H

1
= sin(x)

cos(x)
= opp/hyp

adj/hyp
=opp

adj
.

We see that opp
adj equals H , the length of the tangent line segment. He

called this ratio tangent. As a bonus, we also see that tan(x) = sin(x)
cos(x) .

The ratio hyp
adj

In geometry, a secant is a line that cuts through a circle.

sin(x)

cos(x)

1

1
x

L
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Consider the secant line in our previous picture. Suppose its length is
L . Using similar triangles we see:

L

1
= 1

cos(x)
= 1

adj/hyp
= hyp

adj
.

So the ratio hyp
adj represents the length of a secant line.

Rheticus noticed that if we change our focus to the complementary angle in a
right triangle, what we call the opposite and the adjacent sides of the triangle
interchange. So if sec(x) is hyp

adj in one right triangle, then sec(90◦ − x) = hyp
opp

in that triangle. For this reason he decided to call the ratio hyp
opp cosecant.

Similarly, it is appropriate to call the ratio adj
opp cotangent.

We write hyp
opp = csc(x) and adj

opp = cot(x).

NOTE: All six ratios can be expressed solely in terms of sine and cosine.
We have, for an acute angle of measure x

sin(x) = opp

hyp
cos(x) = adj

hyp
tan(x) = opp

adj

csc(x) = hyp

opp
sec(x) = hyp

adj
cot(x) = adj

opp

and so we see

tan(x) = sin(x)

cos(x)
cot(x) = cos(x)

sin(x)

sec(x) = 1

cos(x)
csc(x) = 1

sin(x)
.

The second set of relations shows us how to extend the functions tangent,
secant, cotangent, and cosecant functions to real values x representing
measures of non-acute angles. For example, we can declare csc(120◦)
to have value 1

sin(120◦) = 2√
3
. (But notice, for example, that csc(180◦) is

undefined!)

Comment. The printing press was invented in the fifteenth-century. It
operated by arranging wooden or metal tiles, one for each letter of the
alphabet, each punctuation mark, and so on, in grooved lines on a wooden
plate. These tiles were then covered with ink and paper was laid across the
plate of inked tiles.
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Printing symbols that required half-line positions, fractional quantities
like 1

cos(x) for instance, was extraordinarily inconvenient. Thus it became the
practice of all scholars of the time to invent in-line names for all quantities
in their work: sec(x) was much easier to print than 1

cos(x) . Today, with the
ease of printing on our computers, we might not feel the need to give the
quantity 1

cos(x) a special in-line name.

Comment. Students beginning trigonometry are usually required to mem-
orize ratios for sine, cosine, and tangent. The following mnemonics are
offered to help:

SOHCAHTOA (most popular today)

Oscar had a heap of apples. Sally counted them. (Apparently popular in the
1950s.)

Tommy on a ship of his caught a herring. (Popular in Britain.)

Once hero and heroine over acted. (Popular in India.)

Studying our homework can always help towards our achievement. (Probably
invented by a teacher!)

Some old hippie caught another hippie tripping on acid. (Probably not officially
offered in classrooms—though outside of the classroom students seem to know
this one!)

Can you see how each of these mnemonics help?

Example. Standing 500 meters from a skyscraper engineers measure the
angle of elevation to the top of the building to be 30◦. How tall is the
building?

30°

H

500 m

Answer. We see a right triangle in this picture, and two particular sides of
the triangle seem relevant to the question: the length of 500 meters (the side
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adjacent to 30◦) and the side that represents the height of the building (the
side opposite to 30◦). SOHCAHTOA suggests we focus on the ratio of
tangent:

tan(30◦) = opp

adj
= H

500
.

On a calculator we see that tan(30◦) ≈ 0.577 so:

0.577 ≈ H

500
.

This gives: H = 500 × 0.577 ≈ 288.7 meters.

Comment. This answer is approximate. The exact answer is H = 500√
3

because we have a 30◦ − 60◦ − 90◦ triangle (half an equilateral triangle).

When standing at the top of a building looking down to a person on the
ground, the angle you spy from, down from a horizontal, is called the angle
of depression to the person on the ground.

The angle at which the person on the ground looks up, from the hor-
izontal, to see you is called the angle of elevation to the person on the
building.

angle of elevation

angle of depression

The angle of depression is always congruent in the angle of elevation.
The words “angle of elevation” and “angle of depression” are used in

many contexts. For example, one can speak of the angle of elevation at
which one spies an airplane, or the angle of elevation of a star, or the angle
of elevation of a rope tied to the top of a tree. Standing at the rim of a crater,
one might speak of the angle of depression to the bottom of the hole, or one
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might talk about the angle of depression of a straight section of railway track
going down a hill.

Example. Two trees are situated directly opposite one another on the banks
of a river. One tree is 50 meters tall and the angle of depression from the top
of this tree to the top of the tree across the river is 12◦ and to its base is 20◦.
How tall is the second tree?

Answer. Let’s sketch the situation. (Assume the trees are perpendicular to
the ground!)

Here H denotes the height of the second tree, and W the width of the
river.

12°
20°

50 m

W

H

Let’s draw in some additional lines and look at congruent angles:

12°

20°

50 m

50 – H

W

W

H

We see tan(20◦) = 50
W and so W = 50

tan(20◦) .
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Also tan(12◦) = 50−H
W and so

H = 50 − W tan(12◦) = 50

(
1 − tan(12◦)

tan(20◦)

)
.

On a calculator, we see H ≈ 20.8m.

Question. Look at the right triangle below. Do you see the following
relations?

sin(90◦ − x) = cos(x)

cos(90◦ − x) = sin(x)

tan(90◦ − x) = 1

tan(x)
.

x

Comment. In radian these relations read: sin(π
2 − x) = cos(x),

cos(π
2 − x) = sin(x), and tan(π

2 − x) = 1
tan(x) .

Comment. Dividing the identity sin2 x + cos2 x = 1 through by cos2 x
gives the identity:

1 + tan2 x = sec2 x .

This holds for all real numbers x that represent angle measures in right
triangles, that is, acute angles.

(But using the relations tan(x) = sin(x)
cos(x) and sec(x) = 1

cos(x) we can ex-
tend this statement to a real number x representing the measure of a non-
acute angle too, provided cos(x) �= 0 for that angle measure.)
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MAA PROBLEMS

Featured Problem

(#17, AMC 12B, 2012)

Square P Q RS lies in the first quadrant. Points (3, 0), (5, 0), (7, 0), and
(13, 0) lie on lines S P , RQ, P Q, and S R, respectively. What is the sum
of the coordinates of the center of the square P Q RS?

(A) 6 (B) 6.2 (C) 6.4 (D) 6.6 (E) 6.8

A Personal account of solving this problem

Curriculum Inspirations Strategy (www.maa.org/ci):

Strategy 2: Do Something!

I don’t think I can fully understand this question until I draw a picture.
We have four points (3, 0), (5, 0), (7, 0), and (13, 0) that all lie on the

x-axis, yet these points lie on the four sides of a square?
Oh, if I read the question in a very literal manner, these points only

need to be on the lines that contain the sides of the square. That’s makes a
big difference!

Okay, here are the four points on the x-axis. I’ve called them A, B, C ,
and D. Where must P Q RS be in relation to them?

A = (3,0) B = (5,0) C = (7,0) D = (13,0)

The point A is meant to be on the line through S and P , the point B on the
line through R and Q, C on the line through P and Q, and D on the line
through S and R.

Okay . . . the lines through A and B contain two opposite sides of the
square, and the lines through C and D contain the other opposite pair of
sides. We must have a picture something like



66 Trigonometry

A = (3,0)

R

S

P

Q

B = (5,0) C = (7,0) D = (13,0)

(My square isn’t very square-like. Oh well!).
Now what?
What is the sum of the coordinates of the center of the square P Q RS?
How can I find the center of the square?
I really can’t think of anything to do. While I am waiting for an epiphany,

let me label some lengths and angles. (I am just doing something!)

A = (3,0)

R

S

P

w
w

w

cb

a

xx

w
Q

B = (5,0)

2 2 6

d

C = (7,0) D = (13,0)

Hmm. I think that has made the picture worse.
Oh. Look at triangles C Q B and C P A. They share angles and so are

similar. Their scale factor is clearly k = 2 and so we have w = c and
a = 2b.

In fact there are four right triangles in this picture each containing the
angle x . That makes four similar triangles and lots of relations like these. I
am going to write a few more of them. (I really don’t know what else to do!)

b

b + w
= 2

8
and so w = 3b.

d = 4c.
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Ooh! I think I can now write everything in terms of b.

a = 2b, b = b, c = w = 3b, d = 4c = 12b, w = 3b.

Does that help? Let me re-label the picture:

A = (3,0)

R

S

P

3b
3b

3b

3bb

2b

xx

3b
Q

B = (5,0)

2 2 6

12b

C = (7,0) D = (13,0)

I know what b is! By the Pythagorean Theorem, b2 + (3b)2 = 4, and so
b = √

0.4.
Maybe that’s not helpful.
Now I am groping for ideas. Can trigonometry help?

tan(x) = b

3b
= 1

3
.

Does that tell me anything?
Well . . . tan(x) = opp

adj = rise
run = slope. So the line through C has slope 1

3 .

Oops, make that − 1
3 since my picture has the angle x in an awkward

position for computing slope. And the perpendicular lines thus have slope
3. So I know the equations of all four lines:

Line through A: y − 0 = 3(x − 3). That is: y = 3(x − 3).

Line through B: y = 3(x − 5).

Line through C : y = − 1
3 (x − 7).

Line through D: y = − 1
3 (x − 13).

I can get the coordinates of P , Q, R, and S by computing where these lines
intersect. Fabulous!

Actually, let me just get the coordinates of P and R, and then find the
midpoint of P R as that is the center of the square.
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The lines through A and C :

y = 3x − 9 → 3y = 9x − 27

3y = −x + 7 → 3y = −x + 7

Subtracting gives x = 3.4 and y = 1.2.
P has coordinates (3.4, 1.2).
The lines through B and D:

y = 3x − 15 → 3y = 9x − 45

3y = −x + 13 → 3y = −x + 13

R has coordinates (5.8, 2.4).
The center of the square is thus ( 9.2

2 , 3.6
2 ) = (4.6, 1.8). Its coordinates

sum to 6.4 and so the answer is (C).

Comment. On reflection I didn’t need trigonometry for this question: if
I drew in some lines for “rise” and “run” I would have seen even more
similar triangles. But when one is groping for ideas, the advice is to go
with whatever inspires! One can, and should, later refine one’s argument and
streamline it.

Additional Problems
23. (#5, AHSME, 1983) Triangle ABC has a right angle at C . If sin A = 2

3 ,
then tan B is

(A) 3
5 (B)

√
5

3 (C) 2√
5

(D)
√

5
2 (E) 5

3

24. (#13, AHSME, 1989) Two strips of width 1 overlap at an angle of α as
shown. The area of the overlap (shown shaded) is

α

1

1

(A) sin α (B) 1
sin α

(C) 1
1−cos α

(D) 1
sin2 α

(E) 1
(1−cos α)2
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25. (#20, AHSME, 1972) If tan x = 2ab
a2−b2 , where a > b > 0 and

0◦ < x < 90◦, then sin x is equal to

(A) a
b (B) b

a (C)
√

a2−b2

2a (D)
√

a2−b2

2ab (E) 2ab
a2+b2

26. (#19, AMC 12B, 2007) Rhombus ABC D, with side length 6, is rolled to
form a cylinder of volume 6 by taping AB to DC . What is sin(∠ABC)?

(A) π
9 (B) 1

2 (C) π
6 (D) π

4 (E)
√

3
2

27. (#15, AHSME, 1999) Let x be a real number such that sec x − tan
x = 2. Then sec x + tan x =
(A) 0.1 (B) 0.2 (C) 0.3 (D) 0.4 (E) 0.5

28. (#15, AHSME, 1973) A sector with acute central angle θ is cut from
a circle of radius 6. The radius of the circle circumscribed about the
sector is

(A) 3 cos θ (B) 3 sec θ (C) 3 cos θ
2 (D) 3 sec θ

2 (E) 3

29. (#21, AHSME, 1991) If f ( x
x−1 ) = 1

x for all x �= 0,1 and 0 < θ < π
2 ,

then f (sec2 θ) =
(A) sin2 θ (B) cos2 θ (C) tan2 θ (D) cot2 θ (E) csc2 θ

30. (#27, AHSME, 1986) In the adjoining figure, AB is a diameter of the
circle, C D is a chord parallel to AB, and AC intersects B D at E ,
with ∠AE D = α. The ratio of the area of �C DE to that of �AB E is

A B

C

E

D

(A) cos α (B) sin α (C) cos2 α (D) sin2 α (E) 1 − sin α
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31. (#20, AHSME, 1983) If tan α and tan β are the roots of x2 − px + q =
0, and cot α and cot β are the roots of x2 − r x + s = 0, then rs is
necessarily

(A) pq (B) 1
pq (C) p

q2 (D) q
p2 (E) p

q

32. (#20, AHSME, 1987) Evaluate

log10(tan 1◦) + log10(tan 2◦) + log10(tan 3◦) + · · · + log10(tan 88◦)

+ log10(tan 89◦)

(A) 0 (B) 1
2 log10( 1

2

√
3) (C) 1

2 log10 2 (D) 1 (E) None of these

33. (#21, AHSME, 1986) In the configuration below, ∠ABC = θ is mea-
sured in radians, C is the center of the circle, segments B D and AE
contain C , and AB is tangent to the circle at A.

B
A

E

D

C

A necessary and sufficient condition for the equality of the two shaded
areas, given 0 < θ < π

2 , is

(A) tan θ = 2θ (B) tan 2θ = 2θ (C) tan θ = θ (D) tan 2θ = θ

(E) tan θ
2 = θ

34. (#15, AHSME, 1984) If sin 2x · sin 3x = cos 2x · cos 3x , then one
value for x is

(A) 18◦ (B) 30◦ (C) 36◦ (D) 45◦ (E) 60◦

35. (#13, AHSME, 1988) If sin x = 3 cos x then what is sin x · cos x?

(A) 1
6 (B) 1

5 (C) 2
9 (D) 1

4 (E) 3
10
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36. (#24, AHSME, 1979) Sides AB, BC and C D of (simple) quadri-
lateral ABC D have lengths 4, 5 and 20, respectively. lf vertex an-
gles B and C are obtuse and sin C = − cos B = 3

5 , then side AD has
length

(A) 24 (B) 24.5 (C) 24.6 (D) 24.8 (E) 25

37. (#23, AHSME, 1980) Line segments drawn from the vertex opposite the
hypotenuse of a right triangle to the points trisecting the hypotenuse have
lengths sin x and cos x , where x is a real number such that 0 < x < π

2 .
The length of the hypotenuse is

(A) 4
3 (B) 3

2 (C) 3
√

5
5 (D) 2

√
5

3
(E) not uniquely determined by the given information

38. (#17, AMC 12, 2000) A circle centered at O has radius 1 and contains
the point A. Segment AB is tangent to the circle at A and ∠ABO = θ .
If point C lies on O A and BC bisects ∠AO B, then OC =

B

A
C

O
θ

(A) sec2 θ − tan θ (B) 1
2 (C) cos2 θ

1+sin θ
(D) 1

1+sin θ
(E) sin θ

cos2 θ
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39. (#25, AMC 12B, 2012)
Let S = {(x, y) : x ∈ {0, 1, 2, 3, 4}, y ∈ {0, 1, 2, 3, 4, 5}, and (x, y) �=
(0, 0)}.

Let T be the set of all right triangles whose vertices are in S. For
every right triangle t = �ABC with vertices A, B, and C in counter-
clockwise order and right angle at A, let f (t) = tan(∠C B A). What
is

∏
t∈T

f (t)?

S

(A) 1 (B) 625
144 (C) 125

24 (D) 6 (E) 625
24



11
The Tangent, Cotangent,

Secant, and Cosecant
Graphs

Common Core State Standards

F-TF.2 Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to all real numbers, interpreted as
radian measures of angles traversed counterclockwise around the unit
circle.

In our study of “circle-ometry” we sketched, very swiftly, the graphs of
y = sin(x) and y = cos(x). The remaining four trigonometric functions were
defined only in the theory of right triangles, where all angles in consideration
are assumed to be acute, that is, less than 90◦. But we can extend the
definitions of these four functions to ones valid for all (or almost all) angles
by using the relations

tan(x) = sin(x)

cos(x)
, cot(x) = cos(x)

sin(x)
, sec(x) = 1

cos(x)
, csc(x) = 1

sin(x)
.

These functions are undefined at values x which give a denominator of zero.
This means that the graphs of these functions have vertical asymptotes at
these values. For example, y = tan(x), has a vertical asymptote at every
location for which cos(x) is zero, namely, at ±90◦,±270◦,±450◦, . . . (or,
in radians, at all n π

2 with n an odd integer).

73
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By plotting points one can see that the graph of the tangent function
appears as:

y = tan(x)

–270 –90 90 270–180 180

Here’s the graph of y = sec(x):

y = sec(x)

–270 –90 90

1

–1
270–180 180
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And here’s the graph of y = csc(x):

y = csc(x)

–270 –90 90 270–180 180
–1

1

Comment. Since sin(−x) = − sin(x) and cos(−x) = cos(x) we have

tan(−x) = sin(−x)

cos(−x)
= − sin(x)

cos(x)
= − tan(x)

cot(−x) = − cot(x)

sec(−x) = sec(x)

csc(−x) = − csc(x).

These algebraic symmetries appear as symmetries in their graphs.
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Inverse Trigonometric

Functions

Common Core State Standards

F-TF.6 (+) Understand that restricting a trigonometric function to a
domain on which it is always increasing or always decreasing allows
its inverse to be constructed.

F-TF.7 (+) Use inverse functions to solve trigonometric equations that
arise in modeling contexts; evaluate the solutions using technology, and
interpret them in terms of the context.

Recall that the notation y = sin−1(x) refers to the inverse function of sine—
going through the “sine machine” backwards.

Forward sine: Put in an angle x and out comes a value between −1 and
1, the sine of that angle.

Inverse sine: Put in a value between −1 and 1 and out comes an angle
with that value for its sine.

For example, sin−1( 1
2 ) is the angle whose sine is 1

2 . That would be 30◦:

sin−1

(
1

2

)
= 30◦.

In the context of right triangles, this statement is correct. In the context of
circle-ometry, however, it is not: there is more than one angle whose sine

76
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has value one half:

sin−1

(
1

2

)
= 30◦ or 150◦ or 390◦ or 510◦ or −210◦ or −330◦ or · · ·

We have two “basic” values, 30◦ and 150◦ (and it is clear from the sketch
that there should be two fundamental situations) and then all the variations
of these angles given by adding and subtracting multiples of 360◦.

30° 30°

Example. cos−1(− 1√
2
) = 135◦ or −135◦ plus multiples of 360◦.

tan−1(
√

3) = 60◦ or 240◦ plus multiples of 360◦.

Recall that the graph of an inverse function is the graph of the original
function reflected about the diagonal line y = x . The graph of y = sin(x) is

–360 –270 –90

1

–1

90 270–180 180 360
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Thus the graph of y = sin−1(x) is:

–90

–1 1

90

270

360

180

–360

–270

–180

1– –
2

Of course, this is not a function in the traditional sense: it is multi-
valued. For example, we see that sin−1( 1

2 ) does indeed have multiple values.
For this reason, folk might sometimes restrict this picture to the only the
highlighted portion shown. (This is sometimes called the principal branch
of inverse sine.) In this way, by agreeing that all angles are to lie between
−90◦ and 90◦, each value between −1 and 1 has a unique angle associated
to it.
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–90

–1 1

90

270

360

180

–360

–270

–180

1– –
2

Thus, given a value x between −1 and 1, the principal value of sin−1(x)
refers to the angle of elevation of the Sun when it has height x and is located
on the right-half portion of the unit circle:
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This choice for a principal branch is somewhat arbitrary. It is concep-
tually easier to keep in mind that there are many admissible angles and to
choose only those that are appropriate for the problem at hand.

The graph of y = cos−1(x) appears as (with the portion that folk typi-
cally deem the principal branch highlighted)

–90

–1 1

90

270

360

180

–360

–270

–180

and the graph of y = tan−1(x) as:
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90

–90

Given a value x between −1 and 1, the principal value of cos−1(x)
refers to the angle of elevation of the Sun when it has height x and is located
in the upper portion of the unit circle:
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The principal value of tan−1(x) refers to the angle of elevation of the
Sun in the right half of the unit circle.

Example. Compute sin−1(cos(30◦)) using the principal branch of inverse
sine.

Answer 1: cos(30◦) =
√

3
2 and so sin−1(cos(30◦)) = sin−1(

√
3

2 ) = 60◦.
Answer 2: sin−1(cos(30◦)) = sin−1(sin(90◦ − 30◦)) = 60◦.

Example. Suppose 0◦ < x < 90◦. Make cos(sin−1(cos(x))) look friendlier
using the principal branch of the inverse sine.

Answer. cos(sin−1(cos(x))) = cos(sin−1(sin(90◦ − x))) = cos(90◦ − x) =
sin(x).
(In general, show for all angles x we have cos(sin−1(cos x)) = | sin(x)|.)

Comment. Calculators offer the means to compute inverse sines, cosines,
and tangents. They only give one answer for each, the principal value. One
must use common sense to determine which variation of this answer is
appropriate for the problem at hand.

Comment. Because of the fifteenth-century printing press, mathemati-
cians sometimes use the terms arcsin(x) for sin−1(x), arccos(x) for cos−1(x),
and so on. (Which part of the circle arc must we be on for a given sine value?)

MAA PROBLEMS

Featured Problem

(#18, AMC 12B, 2009)

For how many values of x in [0, π ] is sin−1(sin 6x) = cos−1(cos x)?

Note: The functions sin−1 = arcsin and cos−1 = arccos denote inverse
trigonometric functions.

(A) 3 (B) 4 (C) 5 (D) 6 (E) 7
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A Personal account of solving this problem

Curriculum Inspirations Strategy (www.maa.org/ci):

Strategy 3: Engage in Wishful Thinking

This problem looks scary to me! I understand all the concepts in the question,
but working with inverse functions is not at all intuitive. I need to take this
slowly—very slowly—and build things up from what I know, with absolute
care and patience!

Firstly, let me just collect some relevant thoughts:

cos−1 gives an angle in the “top half of the circle” (assuming we are
working with the principal branch).

So cos−1 (anything) is an angle between 0 and π . In particular,
cos−1(cos(x)) is an angle between 0 and π whose cosine is cos x even
if the angle x isn’t in this range!

So if x does happen to be “in the top half of the circle,” that is,
if 0 < x < π , then x is the correct angle for cos−1(cos(x)) and we have
cos−1(cos(x)) = x .

If x happens to be “in the bottom half,” that is, π < x < 2π , then x is
the incorrect angle for cos−1(cos(x)). But its matching “correct” angle in the
top half of the circle is 2π − x , and so in this case cos−1(cos(x)) = 2π − x .

If x is outside of these ranges, then we would need to adjust x by some
multiple of 2π and therefore adjust our answers by multiples of 2π too.
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Overall, we see

cos−1(cos(x)) = ±x + 2nπ

and we must use the multiple of 2π that produces an answer in the range
[0, π ]. (I’ve written just “−x” instead of “2π − x ,” absorbing the 2π that
appears there.)

For sin−1. . .

sin−1 gives an angle in the “right half of the circle.”

sin−1(sin(x)) is an angle between −π
2 and π

2 with sine value equal to
sin(x) even if x isn’t in this range.
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So sin−1(sin(x)) = x if we already happen to have −π
2 < x < π

2 .
If x lies in the left half of the circle, then the matching angle with the

same height in the right half is π − x , and sin−1(sin(x)) = π − x .

Again we might need to adjust these answers by multiples of 2π if x is
an angle outside of these ranges.

All right, back to the question. Umm. What was the question?
For how many values of x in [0, π ] is sin−1(sin 6x) = cos−1(cos x)?
Well,

cos−1(cos x) = x or − x adjusted by 2nπ if necessary.

sin−1(sin 6x) = 6x or π − 6x adjusted by 2nπ if necessary.

Bringing all the multiples of 2π together, we basically have four cases to
consider for equality.

6x = x + 2nπ,

6x = −x + 2nπ,

π − 6x = x + 2nπ,

π − 6x = −x + 2nπ.

These give

x = 2nπ

5
,

2nπ

7
,

(2n + 1)π

7
, or

(2n + 1)π

5
,
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which are just the even and odd multiples of π
5 and of π

7 . Since we’re looking
for solutions in the range [0, π ], then we have:

x = 0,
π

5
,

2π

5
,

3π

5
,

4π

5
,
π

7
,

2π

7
,

3π

7
,

4π

7
,

5π

7
,

6π

7
, or π.

But that makes for more solutions than the question suggests!
Actually, I am not surprised. I’ve been quite careless with keeping track

of which multiples of 2π to use when. I just slapped all the multiples of 2π

together and hoped for the best!
But this exercise in wishful thinking has given me a range of angles to

consider. Not all of them will likely be solutions, but the solutions to the
equation that do exist must be among these candidates. Let’s just go through
them one at a time and see which work!

x = 0:

sin−1(sin 0) = 0

cos−1(cos 0) = 0.

We have a solution.

x = π
5 :

sin−1

(
sin

6π

5

)
= π − 6π

5
= −π

5

cos−1
(

cos
π

5

)
= π

5
.

Not a solution.

x = 2π
5 :

sin−1

(
sin

12π

5

)
= sin−1

(
sin

2π

5

)
= 2π

5

cos−1

(
cos

2π

5

)
= 2π

5
.

We have a solution.

Oh! cos−1(cos x) = x for all the angles we are considering! So we need to
only check if sin−1(sin 6x) = x for our angles.

x = 3π
5 :

sin−1

(
sin

18π

5

)
= sin−1

(
sin

8π

5

)
= π − 8π

5
= −3π

5
.

Not a solution.
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x = 4π
5 :

sin−1

(
sin

24π

5

)
= sin−1

(
sin

4π

5

)
= π − 4π

5
= π

5
.

Not a solution.

x = π
7 :

sin−1

(
sin

6π

7

)
= π − 6π

7
= π

7
.

A solution!

x = 2π
7 :

sin−1

(
sin

12π

7

)
= −5π

7
.

Not a solution.

x = 3π
7 :

sin−1

(
sin

18π

7

)
= sin−1

(
sin

4π

7

)
= 3π

7
.

A solution.

x = 4π
7 :

sin−1

(
sin

14π

7

)
= sin−1

(
sin

10π

7

)
= −3π

7
.

Not a solution.

x = 5π
7 :

sin−1

(
sin

30π

7

)
= sin−1

(
sin

2π

7

)
= 2π

7
.

Not a solution.

x = 6π
7 :

sin−1

(
sin

36π

7

)
= sin−1

(
sin

8π

7

)
= −π

7
.

Not a solution.

x = π :

sin−1(sin π ) = 0.

Not a solution.
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There are four solutions, x = 0, 2π
5 , π

7 , and 3π
7 , and the answer to the

question is (B).
Phew!
(This problem really got me thinking about how inverse sine and inverse

cosine operate. Great question!)

Additional Problem
40. (#24, AHSME, 1988) An isosceles trapezoid is circumscribed around a

circle. The longer base of the trapezoid is 16, and one of the base angles
is arcsin(.8). Find the area of the trapezoid.

(A) 72 (B) 75 (C) 80 (D) 90 (E) not uniquely determined
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Addition and Subtraction

Formulas; Double and Half
Angle Formulas

Common Core State Standards

F-TF.9 (+) Prove the addition and subtraction formulas for sine, cosine,
and tangent and use them to solve problems.

It would be wonderfully convenient if the following two claims were true:

sin (x + y) = sin (x) + sin (y)

cos (x + y) = cos (x) + cos (y) .

As experimentation on a calculator shows (or just put in x = 30◦ and
y = 60◦) these dream formulas do not hold.

Can we find expressions for sin(x + y) and cos(x + y) nonetheless?
You bet! We can use an approach similar to the one we used to prove the
Pythagorean Theorem.

89
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Draw two copies each of two right triangles, each with hypotenuse 1.

1

1
1

1

cos(x)

sin(x)

cos(y)

sin(y)

x

x y

y

Arrange them into a rectangle as shown:

sin(x)

sin(y)

y
x

x

y

cos(y)

cos(x)

The area of the white space is the sum of the areas of two small
rectangles:

White Space = sin(x) cos(y) + cos(x) sin(y).

We can also rearrange the four triangles within the large rectangle as

180 - (90 - x) - (90 - y)
= x + y

y x

h

x y
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The white space is now a rhombus with side length 1. The area of a rhombus
(in fact, of any parallelogram) is “base times height.” The base length is 1
and the height is the length h indicated. We see that h is the opposite edge
of a right triangle of hypotenuse 1 and angle x + y. Thus:

White Space = 1 × h = 1 × sin(x + y) = sin(x + y).

It is the same white space. Thus we have proved:

sin(x + y) = sin x cos y + cos x sin y,

at least for angles x and y that lie between 0◦ and 90◦.
(For visual ease, we’ve omitted displaying all the parentheses in this

equation.)
In the same way, we can consider this variation of the proof. (Do you

see the change on which angle is called y?)

y

x

h

x

y

It establishes

cos(x − y) = cos x cos y + sin x sin y,

at least for angles x and y that lie between 0◦ and 90◦.
Two questions naturally arise:

1. Do the formulas we established for sin (x + y) and cos (x − y) also
hold for real numbers x and y representing the measures of non-acute
angles, and even negative angles? (If you play on a calculator, it seems
they do!)

2. Are there formulas for sin (x − y) and cos (x + y)?
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If the answer to question 1 is yes, then we can replace y with −y in the
two formulas we have so far to obtain

sin(x − y) = sin(x + (−y))

= sin(x) cos(−y) + cos(x) sin(−y)

= sin x cos y − cos x sin y

and

cos(x + y) = cos(x − (−y))

= cos(x) cos(−y) + sin(x) sin(−y)

= cos x cos y − sin x sin y.

Again, playing on a calculator, these formulas do seem to hold.
Further, we obtained our formula for cos(x − y) by changing which

angle we labeled y in our triangles. That is, we chose to replace y with
90◦ − y in our formula for sin(x + y). This gives

sin (x + (90◦ − y)) = cos (x) cos (90◦ − y) + sin (x) sin (90◦ − y) .

Using the identities

sin (w − 90◦) = cos (w)

sin (w + 90◦) = − cos (w)

cos (w − 90◦) = sin (w)

cos (w + 90◦) = − sin (w)

sin (−w) = − sin (w)

cos (−w) = cos (w)

we can rewrite this as:

− cos (x − y) = cos x sin y − sin x cos y,

giving our formula for cos (x − y).
So, in summary, we have the four potential angle addition and subtrac-

tion formulas

cos (x + y) = cos x cos y − sin x sin y

sin (x + y) = sin x cos y + cos x sin y

cos (x − y) = cos x cos y + sin x sin y

sin (x − y) = sin x cos y − cos x sin y.
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and the work shows that if we can establish any one as valid for all real values
x and y, then all four formulas are valid. Our proof mimicking the Chinese
Proof of the Pythagorean Theorem established two of these formulas only
for x and y representing the measures to acute angles.

ANOTHER APPROACH TO cos(x − y)
Consider a point S on a circle of radius 1 with angle of elevation x , and a
point Q with angle of elevation y. In the diagram below I’ve drawn x to
represent an obtuse angle and y an acute angle, but they can be angles of
any type.

R = (cos(x-y), sin(x-y))

Q = (cos y, sin y)

P = (1,0)

|SQ| = |RP|

S = (cos x, sin x)

The coordinates of each of these points is just its overness and height as an
ordered pair:

S = (cos x, sin x)

Q = (cos y, sin y) .

The distance d between them satisfies:

d2 = (cos x − cos y)2 + (sin x − sin y)2

= 2 − 2 cos x cos y − 2 sin x sin y.

Now rotate S and Q clockwise about the origin through an angle of measure
y. Then Q is taken to a point R with angle of elevation x − y, R =
(cos (x − y) , sin (x − y)), and Q to the point P = (1, 0) on the horizon-
tal axis. As rotations preserve distances, we have:

d2 = (cos (x − y) − 1)2 + (sin (x − y))2

= 2 − 2 cos (x − y) .
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It follows that cos (x − y) = cos x cos y + sin x sin y holds for all real
values x and y.

We now have

The four addition and subtraction trigonometric formulas

cos(x + y) = cos x cos y − sin x sin y

sin(x + y) = sin x cos y − cos x sin y

cos(x − y) = cos x cos y − sin x sin y

sin(x − y) = sin x cos y − cos x sin y

each hold for all real values x and y.

Example. Find the exact value of cos(15◦).

Answer.

cos (15◦) = cos (60◦ − 45◦)

= cos 60◦ cos 45◦ + sin 60◦ sin 45◦

= 1

2
· 1√

2
+

√
3

2
· 1√

2

= 1 + √
3

2
√

2
.

DOUBLE ANGLE FORMULAS
Going further . . . .

Put y = x into the formulas

cos(x + y) = cos x cos y − sin x sin y

sin(x + y) = sin x cos y + sin y cos x

to obtain

cos(2x) = cos2 x − sin2 x

sin(2x) = 2 sin x cos x .

Since sin2 x + cos2 x = 1 we can alternatively write the first formula
as:

cos(2x) = 2 cos2(x) − 1

cos(2x) = 1 − 2 sin2(x).
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Now tan(2x) = sin(2x)
cos(2x) = 2 sin x cos x

cos2 x−sin2 x . Divide the numerator and denom-

inator each by cos2 x to obtain

tan(2x) =
2 sin x cos x

cos2 x
cos2 x − sin2 x

cos x

=
2

sin x

cos x

1 −
( sin x

cos x

)2
.

That is:

tan(2x) = 2 tan x

1 − tan2 x
.

Similar work shows

tan(x + y) = tan x + tan y

1 − tan x tan y

tan(x − y) = tan(x) + tan(−y)

1 − tan(x) tan(−y)
= tan x − tan y

1 + tan x tan y

Question. The following diagram shows that tan( x
2 ) = sin x

1+cos x . Can you
see how? It also shows that tan( x

2 ) = 1−cos x
sin x .

1

1

x
x––
2

x––
2

Comment. There is a myriad of trigonometric identities one can look at.
They can each usually be proved by plugging away with the addition and
subtraction identities, or the double angle identities, and grinding through
the algebra. (Simple visual proofs like the ones above are always a delight
to stumble upon.) For example, can you prove the following identities?

sin x + sin y = 2 sin

(
x + y

2

)
cos

(
x − y

2

)

cos x + cos y = 2 cos

(
x + y

2

)
cos

(
x − y

2

)
.
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Comment. We have the angle addition formulas

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y − sin x sin y

from which we derived the double angle formulas

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x − sin2 x,

The triple angles formulas follow too. For example,

sin(3x) = sin(2x + x)

= sin(2x) cos x + cos(2x) sin x

= 2 sin x cos2 x + cos2 x sin x − sin3 x

= 3 sin x cos2 x − sin3 x

cos(3x) = cos(2x + x)

= cos(2x) cos x − sin(2x) sin x

= cos3 x − sin2 x cos x − 2 sin2 x cos x

= cos3 x − 3 sin2 x cos x .

With the use of the complex number i (which satisfies i2 = −1) the
triple angle formulas can be united as a single identity:

cos(3x) + i sin(3x) = (cos x + i sin x)3.

One can prove, in general, by induction that for each positive integer n
we have

cos(nx) + i sin(nx) = (cos x + i sin x)n.

If one is aware of Euler’s famous formula eix = cos x + i sin x , this is
nothing more than the statement

einx = (eix )n.

For a complete discussion of the Euler’s formula and role of using
complex numbers to simplify trigonometry see my text THINKING MATH-
EMATICS! Vol 5: Slope, e, i, pi and all that.
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SOMETHING EXTRA
If one graphs on a calculator the function y = 6 sin x + 8 cos x the result
appears to be another sine curve. This is surprise!

It turns out that we can write 6 sin x + 8 cos x in the form c sin(x + k)
for suitable values of c and k. Here’s how:

Writing

c sin(x + k) = c sin x cos k + c cos x sin k = 6 sin x + 8 cos x

shows that setting
c cos k = 6

c sin k = 8

and solving will give us the values that we need. Now

62 + 82 = c2 cos2 k + c2 sin2 k = c2(cos2 k + sin2 k) = c2

gives c = √
62 + 82 = 10. Also,

c sin k

c cos k
= 8

6

gives tan k = 8
6 and so k = tan−1( 8

6 ).
Thus we have

6 sin x + 8 cos x = 10 sin(x + α)

where α = tan−1(4/3).

MAA PROBLEMS
Featured Problem

(#20, AMC 12B, 2013)

For 135◦ < x < 180◦, points P = (cos x, cos2 x), Q = (cot x, cot2 x),
R = (sin x, sin2 x), and S = (tan x, tan2 x) are the vertices of a trapezoid.
What is sin(2x)?

(A) 2 − 2
√

2 (B) 3
√

3 − 6 (C) 3
√

2 − 5 (D) − 3
4 (E) 1 − √

3
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A PERSONAL ACCOUNT OF SOLVING THIS PROBLEM:
Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 1: Engage in Successful Flailing

This problem, to me, looks weird! I see we have four points all of the form
(z, z2), so they lie on the parabola y = x2. Their coordinates are given by
trigonometric functions and apparently these points form a trapezoid. But I
can’t imagine how a trapezoid can fit on a parabola!

Let’s start by getting a sense of where these four points P, Q, R,
and S sit.

We have that 135◦ < x < 180◦. This has to be special for the question.

In this range:

sin x is positive,

cos x is negative,

tan x and cot x are each negative.

The “size” of sin x is smaller than the “size” of cos x (that is,
sin x < | cos x |).

So | tan x | < 1 and | cot x | > 1.

We also have of course sin x < 1 and | cos x | < 1.

Umm. Anything else?

www.maa.org/ci
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The relations tell me about the horizontal coordinates of the points P ,
Q, R, and S. We have sin x (for R) sits on the positive part of the horizontal
axes, cot x (for Q) to the left of −1 on this axis, and cos x (for P) and tan x
(for S) each lie between −1 and 0 on this axis.

Can I determine the relative positions of these last two: cosine and
tangent?

We have

| tan x | = sin x

| cos x | .

Hmm. I don’t see how this helps.
All right, but I do see that the picture has to be one of the following two

options:

Q

P

S R

–1

Q

S

P R

–1

These make a trapezoid.
I am guessing that the sides Q R and P S will be the parallel pair. I’ll

assume this for now and come back to this issue if a problem arises!
I can only think to compute the slopes of the segments:

slope Q R = sin2 x − cot2 x

sin x − cot x
= sin x + cot x

slope P S = cos2 x − tan2 x

cos x − tan x
= cos x + tan x

for both pictures. So it doesn’t matter which picture we work with, we will
obtain

sin x + cot x = cos x + tan x

either way!
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(Another possible problem: Could the slopes be undefined? Could
sin x − cot x = 0 or cos x − tan x = 0? I’ll assume not and again worry
about this later if it turns out to be a problem!)

The question wants us to obtain a value for sin(2x) = 2 sin x cos x .
Surely we can work with the equation we just obtained to make this expres-
sion appear?

We have

sin x + cot x = cos x + tan x,

sin x + cos x

sin x
= cos x + sin x

cos x
,

sin2 x cos x + cos2 x = sin x cos2 x + sin2 x .

Let’s rearrange this:

sin x cos x(sin x − cos x) = sin2 x − cos2 x

= (sin x − cos x)(sin x + cos x).

Divide through by sin x − cos x (which is not zero because tan x is not
actually 1–phew!) to get

sin x cos x = sin x + cos x .

Is this helpful? I am looking for 2 sin x cos x . I see it on the left, but not
on the right.

Square the equation and get some helpful cross terms?

sin2 x cos2 x = sin2 x + 2 sin x cos x + cos2 x = 1 + 2 sin x cos x

Oh! This is:

1

4
(sin 2x)2 = 1 + sin 2x .

We have the quadratic equation 1
4U 2 = 1 + U , that is, U 2 = 4 + 4U ,

giving,

U 2 − 4U = 4

U 2 − 4U + 4 = 8

(U − 2)2 = 8

U = 2 ±
√

8

Since U = sin 2x we need an answer between −1 and 1. So sin 2x = 2 − √
8

and the answer is (A)!
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Comment. We have some problems to fix still in this solution.

1. We assumed Q R‖P S. Why can’t it be the case that the other pair of
sides make the parallel pair?

2. Could the slopes of Q R and P S be undefined? (Are we certain that
sin x �= cot x and cos x �= tan x?)

The question also assumed that this trapezoid exists!

3. Is it possible to prove that there is an angle x with measure between
135◦ and 180◦ that does indeed create a trapezoid just as the question
dictates?

These are good questions to mull on!

Additional Problems
41. (#30, AHSME, 1972) A rectangular piece of paper 6 inches wide is

folded as in the diagram so that one corner touches the opposite side.
The length in inches of the crease L in terms of the angle θ is

L

6 inches

θ

(A) 3 sec2 θ csc θ (B) 6 sin θ sec θ (C) 3 sec θ csc θ

(D) 6 sec θ csc2 θ (E) none of these
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42. (#17, AHSME, 1976) If θ is an acute angle and sin 2θ = a, then
sin θ + cos θ is

(A)
√

a + 1 (B) (
√

2 − 1)a + 1 (C)
√

a + 1 − √
a2 − a

(D)
√

a + 1 + √
a2 − a (E)

√
a + 1 + a2 − a

43. (#17, AMC 12A, 2007) Suppose that sin a + sin b =
√

5
3 and cos a +

cos b = 1. What is cos(a − b)?

(A)
√

5
3 − 1 (B) 1

3 (C) 1
2 (D) 2

3 (E) 1

44. (#17, AHSME, 1973) If θ is an acute angle and sin θ
2 =

√
x−1
2x , then

tan θ equals

(A) x (B) 1
x (C)

√
x−1

x+1 (D)
√

x2−1
x (E)

√
x2 − 1

45. (#30, AHSME, 1975) Let x = cos 36◦ − cos 72◦. Then x equals

(A) 1
3 (B) 1

2 (C) 3 − √
6 (D) 2

√
3 − 3 (E) none of these

46. (#11, AHSME, 1983) Simplify sin(x − y) cos y + cos(x − y) sin y.

(A) 1 (B) sin x (C) cos x (D) sin x cos 2y (E) cos x cos 2y

47. (#15, AHSME, 1978) If sin x + cos x = 1
5 and 0 ≤ x < π , then tan x

is

(A) − 4
3 (B) − 3

4 (C) 3
4 (D) 4

3
(E) not completely determined by the given information

48. (#22, AHSME, 1974) The minimum value of sin A
2 − √

3 cos A
2 is

attained when A is

(A) −180◦ (B) 60◦ (C) 120◦ (D) 0◦ (E) none of these

49. (#21, AMC 12A, 2004) If
∑∞

n=0 cos2n θ = 5, what is the value of
cos 2θ?

(A) 1
5 (B) 2

5 (C)
√

5
5 (D) 3

5 (E) 4
5

50. (#16, AHSME, 1985) If A = 20◦ and B = 25◦, then the value of
(1 + tan A)(1 + tan B) is

(A)
√

3 (B) 2 (C) 1 + √
2 (D) 2(tan A + tan B)

(E) none of these
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51. (#20, AHSME, 1979) If a = 1
2 and (a + 1)(b + 1) = 2, then the radian

measure of arctan a + arctan b equals

(A) π
2 (B) π

3 (C) π
4 (D) π

5 (E) π
6

52. (#14, AHSME, 1989) cot 10 + tan 5 =
(A) csc 5 (B) csc 10 (C) sec 5 (D) sec 10 (E) sin 15

53. (#21, AHSME, 1990) Consider a pyramid whose base ABC D is square
and whose vertex P is equidistant from A, B, C , and D. If AB = 1
and ∠AP B = 2θ , then the volume of the pyramid is

(A) sin θ
6 (B) cot θ

6 (C) 1
6 sin θ

(D) 1−sin 2θ
6 (E)

√
cos 2θ

6 sin θ

54. (#19, AHSME, 1991) Triangle ABC has a right angle at C , AC = 3
and BC = 4. Triangle AB D has a right angle at A and AD = 12.
Points C and D are on opposite sides of AB. The line through D parallel
to AC meets C B extended at E . If DE

DB = m
n , where m and n are relatively

prime positive integers, then m + n =

D

EBC

A

(A) 25 (B) 128 (C) 153 (D) 243 (E) 256
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55. (#24, AMC 12A, 2008) Triangle ABC has ∠C = 60◦ and BC = 4.
Point D is the midpoint of BC . What is the largest possible value
of tan(∠B AD)?

(A)
√

3
6 (B)

√
3

6 (C)
√

3
2
√

2
(D)

√
3

4
√

2−3
(E) 1

56. (#25, AMC 12A, 2009) The first two terms of a sequence are a1 = 1
and a2 = 1√

3
. For n ≥ 1, an+2 = an+an+1

1−anan+1
. What is |a2009|?

(A) 0 (B) 2 − √
3 (C) 1√

3
(D) 1 (E) 2 + √

3

57. (#17, AMC 12A, 2003) Square ABC D has sides of length 4, and M is
the midpoint of C D. A circle with radius 2 and center M intersects a
circle with radius 4 and center A at points P and D. What is the distance
from P to AD?

A B

CD M

P

(A) 3 (B) 16
5 (C) 13

4 (D) 2
√

3 (E) 7
2

58. (#23, AHSME, 1984) sin(10◦)+sin(20◦)
cos(10◦)+cos(20◦) equals

(A) tan(10◦) + tan(20◦) (B) tan(30◦) (C) 1
2 (tan(10◦) + tan(20◦))

(D) tan(15◦) (E) 1
4 tan(60◦)

59. (#24, AMC 12B, 2004) In �ABC , AB = BC , and B D is an altitude.
Point E is on the extension of AC such that B E = 10. The values of
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tan ∠C B E , tan ∠DB E , and tan ∠AB E form a geometric progression,
and the values of cot ∠DB E , cot ∠C B E , cot ∠DBC form an arithmetic
progression. What is the area of �ABC?

B

A D C E

(A) 16 (B) 50
3 (C) 10

√
3 (D) 8

√
5 (E) 18

60. (#24, AMC 12B, 2005) All three vertices of an equilateral triangle
are on the parabola y = x2, and one of its sides has a slope of 2.
The x-coordinates of the three vertices have a sum of m/n, where
m and n are relatively prime positive integers. What is the value of
m + n?

(A) 14 (B) 15 (C) 16 (D) 17 (E) 18

61. (#28, AHSME, 1989) Find the sum of the roots of tan2 x − 9 tan x +
1 = 0 that are between x = 0 and x = 2π radians.

(A) π
2 (B) π (C) 3π

2 (D) 3π (E) 4π

62. (#29, AHSME, 1984) Find the largest value of y
x for pairs of real

numbers (x, y) which satisfy (x − 3)2 = (y − 3)2 = 6.

(A) 3 + 2
√

2 (B) 2 + √
3 (C) 3

√
3 (D) 6 (E) 6 + 2

√
3

63. (#27, AHSME, 1993) The sides of �ABC have lengths 6, 8, and 10.
A circle with center P and radius 1 rolls around the inside of �ABC ,
always remaining tangent to at least one side of the triangle. When P first
returns to its original position, through what distance has P traveled?
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10
6

8

P

A B

C

(A) 10 (B) 12 (C) 14 (D) 15 (E) 17

64. (#22, AMC 12A, 2006) A circle of radius r is concentric with and
outside a regular hexagon of side length 2. The probability that three
entire sides of the hexagon are visible from a randomly chosen point on
the circle is 1

2 . What is r?

(A) 2
√

3 + 2
√

3 (B) 3
√

3 + √
2 (C) 2

√
6 + √

3 (D) 3
√

2 + √
6

(E) 6
√

2 − √
3

65. (#24, AMC 12B, 2006) Let S be the set of all points (x, y) in the
coordinate plane such that 0 ≤ x ≤ π

2 and 0 ≤ y ≤ π
2 . What is the area

of the subset of S for which

sin2 x − sin x sin y + sin2 y ≤ 3

4
?

(A) π2

9 (B) π2

8 (C) π2

6 (D) 3π2

16 (E) 2π2

9

66. (#24, AMC 12A, 2013) Three distinct segments are chosen at random
among the segments whose endpoints are the vertices of a regular
12-gon. What is the probability that the lengths of these three segments
are the three side lengths of a triangle with positive area?

(A) 553
715 (B) 443

572 (C) 111
143 (D) 81

104 (E) 223
286
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The Law of Cosines

Common Core State Standards

8.G.6 Explain a proof of the Pythagorean Theorem and its converse.

G-SRT.10 (+) Prove the Laws of Sines and Cosines and use them to
solve problems.

G-SRT.11 (+) Understand and apply the Law of Sines and the Law of
Cosines to find unknown measurements in right and non-right triangles
(e.g., surveying problems, resultant forces).

Consider a triangle with sides a, b, and c that contains no right angle. Call
the angle opposite side c, C .

b

a

C

c

We can introduce right triangles by drawing in an altitude:

a cos(C )

a sin(C )

b – a cos(C )

a

C

c

107
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The left triangle has “radius” a and so the height and overness in this
triangle are a sin C and a cos C . The right-hand triangle is a right triangle
with legs a sin C and b − c cos C .

Apply the Pythagorean Theorem to the right-hand triangle:

(a sin C)2 + (b − a cos C)2 = c2,

a2 sin2 C + b2 − 2ab cos C + a2 cos2 C = c2,

a2(sin2 C + cos2 C) + b2 − 2ab cos C = c2,

a2 + b2 − 2ab cos C = c2.

This result is called the law of cosines.

Law of Cosines. For any triangle with sides and angles labeled as shown
we have c2 = a2 + b2 − 2ab cos C.

b

a

C

c

Comment. The Law of Cosines holds even if angle C is obtuse. Can you
see how the following diagram establishes this?

a sin(180 – C)

a cos(180 – C)

a

b

c

C

The law of cosines gives a sense of the degree to which the Pythagorean
Theorem fails to hold. We have c2 = a2 + b2 but with an “error term” of
−2ab cos C introduced.



The Law of Cosines 109

Notice that if C = 90◦, then cos C = 0 giving

c2 = a2 + b2 − 2ab · 0 = a2 + b2

and this is exactly the statement of the Pythagorean Theorem (as it should
be). And conversely, if a triangle has side lengths that satisfy the famous
relation a2 + b2 = c2, it must be a right triangle.

Example. Find the measure of the largest angle in a triangle with sides of
lengths 5, 10, and 11.

Answer. The largest angle lies opposite the side of the longest length. Call
this angle x .

By the law of cosines we have 112 = 52 + 102 − 100 cos x giving
x = cos−1

(
4

100

) ≈ 87.7◦.

Comment. An angle C in a triangle is acute precisely when cos > 0 and
obtuse when cos C < 0. By the law of cosines this means, in a triangle with
sides a, b, and c, the angle between sides of lengths a and b is

acute precisely when c2 < a2 + b2,

obtuse precisely when c2 > a2 + b2.

As the largest angle in a triangle is opposite its largest side of the triangle,
we can apply this test once and determine whether or not this largest angle
is acute. If so, then all three angles in the triangle are acute and we have an
acute triangle. If not, the triangle is an obtuse triangle.

MAA PROBLEMS
Featured Problem

(#14, AMC 12B, 2011)

A segment though the focus F of a parabola with vertex V is perpen-
dicular to FV and intersects the parabola in points A and B. What is
cos(∠AV B)?

(A) − 3
√

5
7 (B) − 2

√
5

5 (C) − 4
5 (D) − 3

5 (E) − 1
2
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A Personal account of solving this problem

Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 4: Draw a Picture

This question gives a lot to digest! I am going to have to draw a picture
and attempt to recall all I know about parabolas, their vertices, and their
foci.

A basic picture:

directrix

F

V

My diagram isn’t accurate, but I remember that a parabola is defined
as the set of all points whose perpendicular distance to the directrix (a line)
equals its distance to the focus (a point). Points on parabolas provide equal
distances. (I didn’t draw that well here.)

For the question we have a segment though F that is perpendicular to
the line segment FV . I can draw that.

F
A B

V

It seems irresistible to draw perpendicular lines to the directrix and note
equal distances.

F
A B

V

X Y Z
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Hmm. F B ZY is a rectangle. So is AFY X .
Okay . . . What are we meant to be doing?
What is cos (∠AV B)?
Let’s draw in that angle.

F
A B

V

X Y Z

This is confusing. Actually, it is all the little markings of congruent
segments that are visually messy. Since we have rectangles, and opposite
sides of rectangles are congruent, let’s give length FV a name, say r , and
write in all the lengths in terms of r .

F2r

2r 2r

2r

r

r

A B

V

X Y Z

(Ooh! Our rectangles are squares!)
We want cos (∠AV B). Well. . . ∠AV B is part of an isosceles triangle

with one side of length 4r and two legs of length
√

r2 + (2r )2 = √
5r . Law

of cosines?

(4r )2 = (
√

5r )2 + (
√

5r )2 − 2(
√

5r )(
√

5r ) cos(∠AV B).

This gives

cos(∠AV B) = 5r2 + 5r2 − 16r2

10r2
= −3

5
.

Whoa! We have it. (And a negative answer makes sense since it looks
like ∠AV B could be larger than 90◦ in measure.)

The answer is option (D).
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Additional Problems
67. (#22, AHSME, 1988) For how many integers x does a triangle with side

lengths 10, 24 and x have all its angles acute?

(A) 4 (B) 5 (C) 6 (D) 7 (E) more than 7

68. (#16, AMC 12A, 2012) Circle C1 has its center O lying on circle C2.
The two circles meet at X and Y . Point Z in the exterior of C1 lies on
circle C2 and X Z = 13, O Z = 11, and Y Z = 7. What is the radius of
circle C1?

(A) 5 (B)
√

26 (C) 3
√

3 (D) 2
√

7 (E)
√

30

69. (#13, AMC 12A, 2009) A ship sails 10 miles in a straight line from A to
B, turns through an angle between 45◦ and 60◦, and then sails another
20 miles to C . Let AC be measured in miles. Which of the following
intervals contains AC2?

20

10A B

C

(A) [400, 500] (B) [500, 600] (C) [600, 700] (D) [700, 800]
(E) [800, 900]

70. (#14, AMC 12A, 2003) Points K , L , M , and N lie in the plane of the
square ABC D so that AK B, BLC , C M D, and DN A are equilateral
triangles. If ABC D has an area of 16, find the area of K L M N .

K

A B

CD

LN

M
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(A) 32 (B) 16 + 16
√

3 (C) 48 (D) 32 + 16
√

3 (E) 64

71. (#21, AMC 12B, 2003) An object moves 8 cm in a straight line
from A to B, turns at an angle α, measured in radians and chosen
at random from the interval (0, π ), and moves 5 cm in a straight line
to C . What is the probability that AC < 7?

(A) 1
6 (B) 1

5 (C) 1
4 (D) 1

3 (E) 1
2

72. (#15, AHSME, 1952) The sides of a triangle are in the ratio 6 : 8 : 9.
Then
(A) the triangle is obtuse
(B) the angles are in the ratio 6 : 8 : 9
(C) the triangle is acute
(D) the angle opposite the largest side is double the angle opposite the

smallest side
(E) none of these

73. (#21, AHSME, 1981) In a triangle with sides of lengths a, b and c,

(a + b + c)(a − b − c) = 3ab.

The measure of the angle opposite the side of length c is

(A) 15◦ (B) 30◦ (C) 45◦ (D) 60◦ (E) 150◦

74. (#29, AHSME, 1964) In this figure ∠RF S = ∠F DR, F D = 4 inches,
DR = 6 inches, F R = 5 inches, F S = 7 1

2 inches. The length of RS in
inches is

6

5
4

7.5

RD

F S

(A) undetermined (B) 4 (C) 5 1
5 (D) 6 (E) 6 1

4

75. (#29, AHSME, 1991) Equilateral triangle ABC has been creased and
folded so that vertex A now rests at A′ on BC as shown. If B A′ = 1
and A′C = 2 then the length of crease P Q is
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A

Q

P

B CA'

(A) 8
5 (B) 7

20

√
21 (C) 1+√

5
2 (D) 13

8 (E)
√

3

76. (#25, AHSME, 1972) Inscribed in a circle is a quadrilateral having sides
of lengths 25, 39, 52, and 60 taken consecutively. The diameter of this
circle has length

(A) 62 (B) 63 (C) 65 (D) 66 (E) 69

77. (#24, AMC 12B, 2013) Let ABC be a triangle where M is the mid-
point of AC , and C N is the angle bisector of ∠AC B with N on AB.
Let X be the intersection of the median B M and the bisector C N . In
addition �B X N is equilateral and AC = 2. What is B N 2?

(A) 10−6
√

2
7 (B) 2

9 (C) 5
√

2−3
√

3
8 (D)

√
2

6 (E) 3
√

3−4
5

78. (#23, AMC 12B, 2002) In �ABC , we have AB = 1 and AC = 2.
Side BC and the median from A to BC have the same length. What is
BC?

(A) 1+√
2

2 (B) 1+√
3

2 (C)
√

2 (D) 3
2 (E)

√
3

79. (#19, AHSME, 1983) Point D is on side C B of triangle ABC .
If ∠C AD = ∠D AB = 60◦, AC = 3 and AB = 6, then the length
of AD is

(A) (B) 2.5 (C) 3 (D) 3.5 (E) 4

80. (#30, AHSME, 1996) A hexagon inscribed in a circle has three consec-
utive sides each of length 3 and three consecutive sides each of length 5.
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The chord of the circle that divides the hexagon into two trapezoids,
one with three sides each of length 3 and the other with three sides each
of length 5, has length equal to m

n , where m and n are relatively prime
positive integers. Find m + n.

(A) 309 (B) 349 (C) 369 (D) 389 (E) 409

81. (#25, AHSME, 1981) In triangle ABC in the adjoining figure, AD and
AE trisect ∠B AC . The lengths of B D, DE and EC are 2, 3 and 6,
respectively. The length of the shortest side of �ABC is

A

B
2 3 6

D E C

(A) 2
√

10 (B) 11 (C) 6
√

6 (D) 6
(E) not uniquely determined by the given information

82. (#12, AMC 12A, 2013) The angles in a particular triangle are in arith-
metic progression, and the side lengths are 4, 5, and x . The sum of the
possible values of x equals a + √

b + √
c, where a, b, and c are positive

integers. What is a + b + c?

(A) 36 (B) 38 (C) 40 (D) 42 (E) 44
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The Area of a Triangle

Common Core State Standards

G-SRT.9 (+) Derive the formula A = 1/2 ab sin(C) for the area of a
triangle by drawing an auxiliary line from a vertex perpendicular to the
opposite side.

The area of a triangle is one-half base times height.

a c

b

h

C

Thus in this picture

Area = 1

2
· bh.

But h = a sin C .

Area of a Triangle. The area of the triangle is 1
2 ab sin C where C is the

angle between two sides of lengths a and b.

Comment. This formula also valid if C is an obtuse angle. Can you see
why? (Use sin(180◦ − C) = sin C .)

116
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Example. Find, to one decimal place, the area of the following triangle:

5
7

6

Answer. Let x be the angle between sides of lengths 5 and 6. Then, by the
law of cosines

x = cos−1

(
52 + 62 − 72

2 · 5 · 6

)
≈ 78.5◦.

Thus

area = 1
2 · 5 · 6 · sin(78.5) ≈ 14.7.

Question. We rounded our value of x to one decimal place and then used
that value to compute the area, allegedly, to one decimal place. Did the initial
rounding affect our final answer adversely?

MAA PROBLEMS
83. (#14, AHSME, 1987) ABC D is a square and M and N are the midpoints

of BC and C D respectively. Then sin θ =

A

B

D

N

θ

CM

(A)
√

5
5 (B) 3

5 (C)
√

10
5 (D) 4

5 (E) none of these
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84. (#10, AMC 12A, 2012) A triangle has area 30, one side of length 10,
and the median to that side of length 9. Let θ be the acute angle formed
by that side and the median. What is sin θ?

(A) 3
10 (B) 1

3 (C) 9
20 (D) 2

3 (E) 9
10

85. (#26, AHSME, 1977) Let a, b, c, and d be the lengths of sides M N ,
N P , P Q and QM , respectively, of quadrilateral MNPQ. If A is the
area of MNPQ, then

(A) A = (
a+c

2

) (
b+d

2

)
if and only if MNPQ is convex.

(B) A = (
a+c

2

) (
b+d

2

)
if and only if MNPQ is a rectangle.

(C) A ≤ (
a+c

2

) (
b+d

2

)
if and only if MNPQ is a rectangle.

(D) A ≤ (
a+c

2

) (
b+d

2

)
if and only if MNPQ is a parallelogram.

(E) A ≥ (
a+c

2

) (
b+d

2

)
if and only if MNPQ is a parallelogram.

86. (#32, AHSME, 1961) A regular polygon of n sides is inscribed in a
circle of radius R. The area of the polygon is 3R2. Then n equals

(A) 8 (B) 10 (C) 12 (D) 15 (E) 18



16
The Law of Sines

Common Core State Standards

G-SRT.10 (+) Prove the Laws of Sines and Cosines and use them to
solve problems.

G-SRT.11 (+) Understand and apply the Law of Sines and the Law of
Cosines to find unknown measurements in right and non-right triangles
(e.g., surveying problems, resultant forces).

Return to the following diagram of a triangle with an altitude drawn in:

a c

b

h

C A

Label angles C and A as shown. (The third angle will be called B.)

Looking at the left right triangle we have h = a sin C .

Looking at the right right triangle have h = c sin A.

We must have a sin C = c sin A yielding a
sin A = c

sin C .

If, instead, we focused on the altitude that cuts angle A we’d obtain
b

sin B = c
sin C .

119
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Stringing these equalities together yields the law of sines:

Law of Sines. In a triangle with sides a, b, and c and angles A, B, and
C as shown we have

a

sin A
= b

sin B
= c

sin C

c

b

a

A

B

C

Comment. Our derivation of the law of sines relied on the diagram of
an acute triangle. Can you see that the law of sines is valid for obtuse
triangles too? (If the angle C is obtuse in our opening diagram, then h =
a sin(180◦ − C) = −a sin(−C) = a sin C .)

A Little Known Fact
The number given by the common value a

sin A = b
sin B = c

sin C has a geometric
interpretation.

One learns in a geometry course that any triangle can be circumscribed
by a circle.

a

A

A

One also learns that all inscribed angles from the same chord have the same
measure.

Circumscribe our given triangle in a circle and slide the vertex at angle
A along the circumference of the circle until one side of the triangle passes
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through the center of the circle. The measure A of the angle does not
change.

This produces a right triangle containing angle A, and we see that sin A
equals a divided by the diameter of the circle:

sin A = a

diameter
.

Thus:

The common value of the ratio a
sin A = b

sin B = c
sin C equals the diameter

of the circle that circumscribes the triangle.

Comment. One can use the law of sines to prove the “angle bisector
theorem” in geometry: an angle bisector in a triangle divides the side it
meets into two sections of lengths in proportion to the ratio of the remaining
two sides of the triangle.

a b

m

m– –n = a– –
b

n

x x

y180°–y

MAA PROBLEMS

Featured Problem

#23, AHSME, 1982

The lengths of the sides of a triangle are consecutive integers, and the
largest angle is twice the smallest angle. The cosine of the smallest
angle is

(A) 3
4 (B) 7

10 (C) 2
3 (D) 9

14 (E) none of these
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A Personal account of solving this problem

Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 7: Perseverance is Key

I can’t tell if this question is straightforward or if it is going to be tricky.
Here’s a picture of the triangle we’re working with:

n + 1

n + 2

n

x

2x

Here n is a positive integer and the smallest angle x is opposite the smallest
side and the largest angle 2x is opposite the largest side.

We’ve been told about two angles in the triangles and their opposite
sides, so I can’t help to wonder what the law of sines might say here:

n

sin x
= n + 2

sin(2x)
.

So

sin(2x)

sin x
= 2 sin x cos x

sin x
= n + 2

n
.

We get

cos x = n + 2

2n
.

It looks like (D) fits this bill with n = 7. Is that the answer?
I am a little bit nervous to leap to this conclusion as fractions can be

expressed in many forms. For example, I see that n = 4 gives cos x = 6
8 = 3

4 ,
which is option (A).

Since we want cos x I can’t help but wonder what too the law of cosines
has to say:

n2 = (n + 1)2 + (n + 2)2 − 2(n + 1)(n + 2) cos x .

Putting in our expression for cos x :

n2 = (n + 1)2 + (n + 2)2 − (n + 1)(n + 2)2

n
.
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Let’s just grind our way through some algebra and see what value of n we
get.

n2 = n2 + 2n + 1 + n2 + 4n + 4 − n3 + 5n2 + 8n + 4

n
,

n2 + 5n + 8 + 4

n
= n2 + 6n + 5,

3 + 4

n
= n,

n2 = 3n + 4.

This gives n = 4 or n = −1. Only n = 4 is relevant for the question and the
answer is (A) after all!

Additional Problems
87. (#18, AHSME, 1995) Two rays with common endpoint O form a 30◦

angle. Point A lies on one ray, point B on the other ray, and AB = 1.

The maximum possible length of O B is

(A) 1 (B) 1+√
3√

2
(C)

√
3 (D) 2 (E) 4√

3

88. (#14, AHSME, 1972) A triangle has angles of 30◦ and 45◦. If the side
opposite the 45◦ angle has length 8, then the side opposite the 30◦ angle
has length

(A) 4 (B) 4
√

2 (C) 4
√

3 (D) 4
√

6 (E) 6

89. (#23, AHSME, 1993) Points A, B, C and D are on a circle of diameter 1,
and X is on diameter AD. If B X = C X and 3∠B AC = ∠B XC = 36◦,
then AX =

D

C

X

B

A
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(A) cos 6◦ cos 12◦ sec 18◦ (B) cos 6◦ sin 12◦ csc 18◦

(C) cos 6◦ sin 12◦ sec 18◦ (D) sin 6◦ sin 12◦ csc 18◦

(E) sin 6◦ sin 12◦ sec 18◦

90. (#28, AHSME, 1985) In �ABC , we have ∠C = 3∠A, a = 27 and
c = 48. What is b?

b a

cA B

C

(A) 33 (B) 35 (C) 37 (D) 39 (E) not uniquely determined

91. (#28, AHSME, 1975) In the triangle ABC shown, M is the midpoint of
side BC , AB = 12 and AC = 16. Points E and F are taken on AC and
AB respectively, and lines E F and AM intersect at G. If AE = 2AF
then EG

G F equals

A
F

B

M

C

E

G

(A) 3
2 (B) 4

3 (C) 5
4 (D) 6

5
(E) not enough information to solve the problem.

92. (#28, AHSME, 1998) In triangle ABC, angle C is a right angle and
C B > C A. Point D is located on BC so that angle C AD is twice angle
D AB. If AC/AD = 2/3, then C D/B D = m/n, where m and n are
relatively prime positive integers. Find m + n.
(A) 10 (B) 14 (C) 18 (D) 22 (E) 26
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Heron’s Formula for the

Area of a Triangle

Common Core State Standards

G-SRT.9 (+) Derive the formula A = 1/2 ab sin(C) for the area of a
triangle by drawing an auxiliary line from a vertex perpendicular to the
opposite side.

G-SRT.10 (+) Prove the Laws of Sines and Cosines and use them to
solve problems.

Consider a triangle with side lengths a, b, and c. Let θ be the angle between
the sides of lengths sin a and cos b.

a

c

bθ

The area of the triangle is 1
2 ab sin θ .

The law of cosines states that a2 + b2 − 2ab cos θ = c2.
If we solve for sin θ in the first equation and for cos θ in the second and

substitute each into the equation:

cos2 θ + sin2 θ = 1

an expression that relates the area of the triangle to its three side-lengths
must result.

125
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If you are gung-ho for the algebra, rearranging this expression (eventu-
ally) yields:

area =
√

s(s − a)(s − b)(s − c)

where s = a+b+c
2 is the semi-perimeter of the triangle.

This is known as Heron’s Formula.

Comment. See the essay at www.jamestanton.com/wp-content/uploads/
2012/03/Cool-Math-Essay April-2014 On-Cyclic-Quadrilaterals.pdf for a
generalization of Heron’s formula to cyclic quadrilaterals (Brahmagupta’s
formula) and then to quadrilaterals in general (Bretschneider’s formula).
This material will be of tremendous help to answering question 100 at the
end of this section.

MAA PROBLEMS

Featured Problem

(#39, AHSME, 1965)

A foreman noticed an inspector checking a 3′′-hole with a 2′′-plug and a
1′′-plug and suggested that two more gauges be inserted to be sure that
the fit was snug. If the new gauges are alike, then the diameter, d, of
each, to the nearest hundredth of an inch, is

(A) 0.87 (B) 0.86 (C) 0.83 (D) 0.75 (E) 0.71

A Personal account of solving this problem

Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 2: Do Something!

I need to draw a picture of the situation before I can assess my reaction to
this question!
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We have something like

1

1

.5

rr

rr

.5

.5.5

11

It’s a complicated picture and I am now feeling nervous about the question!
I’ve marked in all the radii I can, including the unknown radius r of

each of the two congruent additional circles. If I can figure out r I can double
it and get its diameter.

I see in the picture two triangles each with sides 1.5, r + 5, and r + 1.

r + 1 r + 0.5

1.5

I don’t know what to do with this.
Heron’s formula?
The triangle has semi-perimeter

r + 1 + r + 1
2 + 3

2

2
= r + 3

2
.
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By Heron’s formula, the area of the triangle is:

area =
√(

r + 3

2

)(
r + 3

2
− r − 1

)(
r + 3

2
− r − 1

2

)(
r + 3

2
− 3

2

)

=
√(

r + 3

2

)
· 1

2
· 1 · r

=
√

r2

2
+ 3

4
.

I don’t think this is doing anything for me. Hmm.
I suppose I could try to work out the area of this triangle a second way,

and then compare results. I might get an equation that must be true for r .
Let h be the height of the triangle. Then area = 1

2 · 3
2 · h = 3

4 h. Can I
work out h?

r + 1 r + 0.5
h

1.5 – xx

We have

x2 + h2 = (r + 1)2

and (
3

2
− x

)2

+ h2 =
(

r + 1

2

)2

.

Let’s expand and manipulate the second equation and use the first one along
the way:

9

4
− 3x + x2 + h2 =

(
r + 1

2

)2

,

9

4
− 3x + (r + 1)2 =

(
r + 1

2

)2

,

9

4
− 3x + 2r + 1 = r + 1

4
,

r = 3x − 3.
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Hang on! I want h.

h2 = (r + 1)2 − x2

= (r + 1)2 −
(r

3
+ 1

)2

= 8

9
r2 + 4

3
r.

So the area of the triangle is

area = 3

4
h = 3

4

√
8r2

9
+ 4

3
r = 1

4

√
8r2 + 12r = 1

2

√
2r2 + 3r ,

which is the same formula as before and I have just gone in a circle. Bother!
Hmm. What else is there about this question?
I haven’t used the center of the big circle in any way. The large circle

has radius 1.5.

1

r

r

.5

1
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Let me draw a radius for the large circle that cuts through the apex of my
triangle. That radius has length 1.5. Oh! I can mark in a great number of
lengths:

r

r
r

.5

1

.5

.5

.5
.5

1

1

r + 1 r + 0.5
h

10.5

1.5 – r

Actually, maybe I can find h by doing the same work I did before but for
this part of the diagram:

r + 1 r + 0.5
h

1.5 – r

1 – y0.5 y

We have

y2 + h2 =
(

3

2
− r

)2

and

(1 − y)2 + h2 =
(

r + 1

2

)2

,

1 − 2y +
(

3

2
− r

)2

=
(

r + 1

2

)2

,

1 − 2y + 9

4
− 3r = r + 1

4
,

y = 3

2
− 2r,
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so

h2 =
(

3

2
− r

)2

− y2 =
(

3

2
− r

)2

−
(

3

2
− 2r

)2

= 3r − 3r2

giving

A = 3

4
h = 3

4

√
3r − 3r2.

This is a different formula. Let’s now equate the two area formulas and solve
for r :

3

4

√
3r − 3r2 =

√
r2

2
+ 3r

4
,

9

16
(3r − r2) = r2

2
+ 3r

4
,

9(3r − 3r2) = 8r2 + 12r,

27r − 27r2 = 8r2 + 12r,

35r2 = 15r,

r = 3

7
.

So the diameter is 2 × 3
7 = 6

7 ≈ 0.86. The answer is (B).
Whoa!

Additional Problems
93. (#18, AMC 12A, 2012) Triangle ABC has AB = 27, AC = 26, and

BC = 25. Let I denote the intersection of the internal angle bisectors
of �ABC . What is B I ?

(A) 15 (B) 5 + √
26 + 3

√
3 (C) 3

√
26 (D) 2

3

√
546 (E) 9

√
3

94. (#50, AHSME, 1953) One of the sides of a triangle is divided into
segments of 6 and 8 units by the point of tangency of the inscribed
circle. If the radius of the circle is 4, then the length of the shortest
side of the triangle is:

(A) 12 units (B) 13 units (C) 14 units (D) 15 units (E) 16 units

95. (#20, AMC 12B, 2012) A trapezoid has side lengths 3, 5, 7, and 11. The
sum of all the possible areas of the trapezoid can be written in the form
of r1

√
n1 + r2

√
n2 + r3, where r1, r2, and r3 are rational numbers and
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n1 and n2 are positive integers not divisible by the square of a prime.
What is the greatest integer less than or equal to

r1 + r2 + r3 + n1 + n2?

(A) 57 (B) 59 (C) 61 (D) 63 (E) 65

96. (#19, AMC 12, 2000) In triangle ABC, AB = 13, BC = 14, and
AC = 15. Let D denote the midpoint of BC and let E denote the
intersection of BC with the bisector of angle B AC . Which of the
following is closest to the area of the triangle ADE?

(A) 2 (B) 2.5 (C) 3 (D) 3.5 (E) 4

97. (#23, AMC 12A, 2002) In triangle ABC , side AC and the perpen-
dicular bisector of BC meet in point D and B D bisects ∠ABC . If
AD = 9 and DC = 7, what is the area of triangle AB D?

(A) 14 (B) 21 (C) 28 (D) 14
√

5 (E) 28
√

5

98. (#20, AMC 12B, 2011) Triangle ABC has AB = 13, BC = 14, and
AC = 15. The points D, E , and F are the midpoints of AB, BC , and
AC respectively. Let X �= E be the intersection of the circumcircles
of �B DE and �C E F . What is X A + X B + XC?

(A) 24 (B) 14
√

3 (C) 195
8 (D) 129

√
7

14 (E) 69
√

2
4

99. (#18, AMC 12B, 2008) A pyramid has a square base ABC D and
vertex E . The area of square ABC D is 196, and the areas of �AB E
and �C DE are 105 and 91, respectively. What is the volume of the
pyramid?

(A) 392 (B) 196
√

6 (C) 392
√

2 (D) 392
√

3 (E) 784

100. (#24, AMC 12A, 2011) Consider all quadrilaterals ABC D such that
AB = 14, BC = 9, C D = 7, and D A = 12. What is the radius of the
largest possible circle that fits inside or on the boundary of such a
quadrilateral?

(A)
√

15 (B)
√

21 (C) 2
√

6 (D) 5 (E) 2
√

7
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Fitting Trigonometric

Functions to Periodic Data

Common Core State Standards

F-TF.5 Choose trigonometric functions to model periodic phenomena
with specified amplitude, frequency, and midline.

Recall that the sine and cosine curves each represent a linear displacement
of a point moving about a circle. They each provide a wave-like curve that
cycles every 360 degrees, or every 2π radians if one is thinking in radians.

–2π

–1

1
y = sin(x)

2π–π π– 3π
2

3π
2

– π
2

π
2

–2π

–1

1
y = cos(x)

2π–π π– 3π
2

3π
2

– π
2

π
2

133



134 Trigonometry

Many phenomena in nature follow cyclical patterns and it often is
desirous to model data from them via trigonometric functions. Here’s a
ludicrously contrived example:

Example. The population of wombats in Adelaide, Australia, seems to rise
and fall in a cyclic fashion throughout the year. At its minimum in February,
the peak of summer, there are approximately 7000 wombats. By the time
of August, the middle of the green winter months, the population usually
doubles. In another six months’ time it falls back to 7000.

Use a trigonometric function to model the wombat population.

Answer. Let P(t) be the count of wombats at time t measured in
months with t = 1 corresponding to January. We have P(2) = 7000, P(8) =
14000, P(14) = 7000, p(20) = 14000 and so forth. This suggests a trigono-
metric function of the type

2

7000

14000

8 14
t

This looks like a cosine curve with “new zero” at t = 8, but its period is
12 months rather than 2π . Also, the curve is raised 10500 places and it
“stretches” up and down 3500 places. This suggests

P(t) = 3500 cos(k(t − 8)) + 10500

for some number k that is going to change the period of the function appro-
priately. (Can you see that 3500 cos(k(t − 8) + 10500 oscillates above and
below the value 10500, with a range 3500 up and 3500 down? Can you see
that putting t = 8 does indeed give the high value of 14000?)

To find k we can simply plug in a value for t . Let’s try t = 2, say. We
have:

7000 = 3500 cos(−6k) + 10500
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giving

cos(−6k) = −1.

This suggests −6k = π or −π or 3π or −3π and so on. For ease, let’s go
with k = π

6 , going with the smallest positive value for k. (The other choices
are valid too.)

So we seem to have

P(t) = 3500 cos
(π

6
(t − 8)

)
+ 10500

To check,

P(2) = 3500 cos(−π ) + 10500 = 3500(−1) + 10500 = 7000

P(8) = 3500 cos(0) + 10500 = 14000

P(14) = 3500 cos(π ) + 10500 = 7000.

Looking good!
And we can be sure that we have the correct period by noting that the

cosine curve completes one full cycle from 0 radians to 2π and we have

π

6
(t − 8) = 0 when t = 8

and

π

6
(t − 8) = 2π when t = 20.

Thus we do have a twelve-month cycle. We’re in good shape!
The work here illustrates a standard practice in applied mathematics and

in physics, using a trigonometric function to model a periodic phenomenon.
The trickiest part is adjusting the period of the trigonometric function.

To be clear . . .

y = sin x , for instance, completes one full cycle between x = 0 and
x = 2π . That is, it is “done” when x = 2π .

Thus

y = sin(5x) is done when 5x = 2π, that is, when x = 2π

5
.

y = cos(3x) is done when 3x = 2π, that is, when x = 2π

3
.

y = sin(2πx) is done when 2πx = 2π, that is, when x = 1.

y = sin
(

x
3

)
is done when x

3 = 2π, that is, when x = 6π.
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In general:

y = sin(kx) or y = cos(kx) is done when kx = 2π.

Example. Find an example of a sine function with period 7.

Answer. Consider y = sin(kx). We need it to be done when x = 7. That
is, we need k · 7 = 2π . This gives k = 2π

7 and our function is y = sin( 2πx
7 ).

(Check by putting in x = 7.)

In general

the functions y = sin

(
2πx

T

)
and y = cos

(
2πx

T

)
have period T .

[Do check that these are each indeed done when x = T .]

Example. What is the period of the function y = sin(π
6 (x − 67))?

Answer. This is the function y = sin( π
6 x) with c = 67 behaving as zero. Its

period is the same as the period of y = sin(π
6 x).

Now y = sin(π
6 x) is done when π

6 x = 2π , that is, when x = 12. The
period of y = sin(π

6 x), and of y = sin(π
6 (x − 67)), is thus 12.

In general

the functions y = sin

(
2π (x − a)

T

)
and y = cos

(
2π (x − a)

T

)
also have period T .

Comment. In the context of degree measure, this statement reads

the functions y = sin

(
360(x − a)

T

)
and y = cos

(
360(x − a)

T

)
have period T .
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MAA PROBLEMS

Featured Problem

(#24, AMC 12A, 2007)

For each integer n > 1, let F(n) be the number of solutions of the equation
sin x = sin nx on the interval [0, π ]. What is

∑2007
n=2 F(n)?

(A) 2,014,524 (B) 2,015,028 (C) 2,015,033 (D) 2,016,532
(E) 2,017,033

A Personal account of solving this problem

Curriculum Inspirations Strategies (www.maa.org/ci):

Strategy 5: Solve a smaller version of the same problem.

This problem looks positively frightful!
Deep breath!
What’s this question basically about? Answer: The graphs of sin x and

and sin nx . Specifically, about where they intersect.
That’s too abstract. How about I just solve where sin x and sin 2x

intersect.
I know what the graph of y = sin x looks like. And I know what y =

sin 2x looks like too: it’s the same graph but with double the period.

π 2π

These graphs intersect three times in the interval [0, π ].
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How about y = sin x and y = sin 3x? We have that sin 3x has
period 2π

3 .

π

These intersect four times in the interval [0, π ].
I don’t yet have a feel for what happens in general, so let me just keep

looking at these small number cases.
For y = sin x and y = sin 4x (with period 2π

4 ) there are five intersection
points, two for each positive “hump” of sin 4x and one for x = π .

For y = sin x and y = sin 5x (with period 2π
5 ):

Ooh. This one is interesting. Each positive hump of the y = sin nx graph
gives two intersection points, except in this case where the middle hump
lands right at x = π

2 . This hump has only one intersection point.
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I am seeing the following:

If y = sin nx has k positive humps in the interval [0, π ] then there are 2k
intersection points, two for each hump, unless we have sin nx = 1 at x = π

2 , in
which case there is one less intersection point for that hump.

Now sin
(
n · π

2

) = 1 if n π
2 = π

2 + 2mπ for some integer m, that is, if n =
4m + 1. I can add to my thoughts then:

This exceptional case happens when n is one more than a multiple of 4.

Ooh. I don’t quite have it right. There is another detail I can’t forget.

For the graph y = sin nx with n even we have two intersection points for each
hump, plus an extra intersection at x = π .

I think that’s all the pieces.
So now the question is: How many positive humps does y = sin nx

have in the interval [0, π ]?
Looking at my pictures:

sin 2x has 1 hump
sin 3x has 2 humps
sin 4x has 2 humps
sin 5x has 3 humps

and I can see in my mind’s eye that

sin 6x will have 3 humps.

We have the counts 1, 2, 2, 3, 3, . . . . A pattern!
In fact, I can see that whenever we draw the graph of y = sin(n + 1)x

from looking at the graph of y = sin x all we need to do is “squeeze in”
another upward or downward hump in the interval [0, π ].

Actually, in going from y = sin nx to y = sin(n + 1)x with n odd we
squeeze in one more downward hump and the number of upward humps
won’t change. In going from y = sin nx to y = sin(n + 1)x with n even we
squeeze in one more upward hump and the count increases by one. I am
convinced then that the pattern above persists.

Looking at the pattern we see:

y = sin nx has n
2 upward humps in the interval [0, π ] if n is even, and

n+1
2 if n is odd.
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I’ve got to pull all this information together.

Each positive hump gives 2 intersection points, except for the excep-
tional middle hump for n one more than a multiple of four (it has one
fewer intersection point).

For n even there are n
2 upward humps. For n odd there are n+1

2 upward
humps.

For n even there is an addition intersection point at x = π .

Okay, in terms of F(n) we have

For n even: F(n) = 2 × n

2
+ 1 = n + 1.

For n = 4m + 1 : F(n) = 2 × n + 1

2
− 1 = n.

For n = 4m + 3 : F(n) = 2 × n + 1

2
= n + 1.

So F(n) = n + 1 except when n is one more than a multiple of four, n = 5,

9, 13, . . . , 2005, at which F(n) = n. There are 501 of these exceptional
cases.

Getting there!

2007∑
n=2

F(n) =
(

2007∑
n=2

(n + 1)

)
− 501

=
(

2007∑
n=2

n

)
+ 2006 − 501

=
(

2007∑
n=1

n

)
− 1 + 2006 − 501

= 2007 × 2008

2
− 1 + 2006 − 501

= 2007 × 1000 + 2007 × 4 − 1 + 2006 − 501

= 2,007,000 + 8028 − 1 + 2006 − 501

= 2,016,532.

The answer is (D).
Crazy!
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(EXTRA) Polar Coordinates

The location of a point P in the plane is specified by its x- and y-coordinates:

P = (x, y).

In the late 1600s, Sir Isaac Newton realized that one could also specify the
location of a point via two other parameters:

i) The distance of the point from the origin.

ii) The angle of elevation of the point from the positive x-axis.

(Sound familiar?)

x

yr

P = (x, y) = (r, θ)

y = r sin θ

x = r cos θ

θ

The distance of a point from the origin is usually denoted r and its angle
of elevation θ . This angle is usually given in radians. We then say that the
point P has polar coordinates P = (r, θ ).

141
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Comment. As we shall soon see polar coordinates are very handy when
attempting to describe the location of points following circular motion—say,
the orbits of planets about a star. (Again, sound familiar?)

We have the following relations:

x

yr

P = (x, y) = (r, θ)

y = r sin θ

x = r cos θ

θ

x = r cos θ r =
√

x2 + y2

y = r cos θ tan θ = y

x

These relations give a means for converting between the Cartesian
coordinates of a point and its polar coordinates.

Example. The point (1, 1) in Cartesian coordinates is
√

2 units from the
origin and has an angle of elevation π

4 . It has polar coordinates (
√

2, π
4 ).

1

1

√⎯⎯2
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Comment. One could also say that the polar coordinates of this point are
(
√

2, 9π
4 ). Do you see why?

Example. The point Q = (3, π
3 ), in polar coordinates, has Cartesian coor-

dinates given by

x = 3 cos
(π

3

)
= 3

2

y = 3 sin
(π

3

)
= 3

√
3

2
.

Thus Q = ( 3
2 , 3

√
3

2 ).

Example. The point R = (2, 0) lies on the positive x-axis. Its distance
from the origin is r = 2 and its angle of elevation is 0 radians. Thus, in polar
coordinates, R = (2, 0).

Example. The point H = (
√

5,−π
2 ) in polar coordinates has Cartesian

coordinates H = (0,−√
5). Do you see why?

Comment. The notation for Cartesian and polar coordinates is identical!
If an author states that a point W has coordinates (π, π

6 ), there is nothing in
the notation to indicate which coordinate system is being used. Hopefully
the context of the statement makes it clear which it is.

Comment. The polar coordinates of a point are not unique. For example,
the point with polar cooridinates (r, θ ) also has polar coordinates (r, θ + 2π )
and polar coordinates (r, θ − 2π ), and so on.

Also, one can assign any angle of elevation one desires to the point with
r = 0, that is, to the origin.

In addition, mathematicians will allow r to adopt negative values! Neg-
ative distances are to be measured in the opposite direction from what one
expects. For example, the point P with polar coordinates P = (−3, π

4 ) is
“−3 units out from the origin” along the ray at angle π

4 .
This is the same as the point with polar coordinates (3, 5π

4 ).
In the same way, the point with polar coordinates (−5,−π

2 ), for exam-
ple, is also the point (5, π

2 ).
Recall the equations:

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
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P

3

π– –
4

Example. Using approximations to one decimal place, find the polar coor-
dinates of the point whose Cartesian coordinates are P = (−3, 7).

Answer. Here r =
√

(−3)2 + 72 = √
58 ≈ 7.6 and according to my calcu-

lator, set in radians, θ = tan−1
(− 7

3

) ≈ −1.2. But there is an issue here as
there are many angles that have tangent equal to − 7

3 . Has the calculator
offered me the correct one for this problem?

It might be easier to work in degrees for the moment. In degrees,
tan−1

(− 7
3

) ≈ −66.8◦ and we have an angle that lies in the fourth quad-
rant. But P = (−3, 7) lies in the second quadrant. The angle in the second
quadrant with the same tangent as −66.8◦ is −66.8◦ + 180 = 113.2◦.

Returning to radians, this means that the angle θ appropriate for the
problem is −1.2 + π ≈ 1.9 radians.

Thus, in polar coordinates, P ≈ (7.6, 1.9).

In General: The two angles θ and θ + π have the same tangent value.
If the calculator provides a value for θ = tan−1

( y
x

)
that is in an in-

appropriate quadrant, then the angle will need to be adjusted by π .
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(EXTRA) Polar Graphs

One advantage of polar coordinates is that they make the graphs of circles
and spirals somewhat trivial.

Example. Write an equation for the circle of radius 5 centered about the
origin.

5

–5

–5 5

Answer. All points that a distance 5 from the origin constitute the circle.
Thus an equation describing this set of points is

r = 5.

Example. Write the equation of the ray at angle π
4 from the origin.

145
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Answer. The equation θ = π
4 does it.

Example. Sketch the curve given by the formula r = θ .

Answer. There is never any harm in just plotting points! Let’s evaluate r for
different values of θ .

θ 0
π

4

π

2
π

3π

2
2π 3π 4π

r 0
π

4

π

2
π

3π

2
2π 3π 4π

Thus when θ = π
4 we have a point a distance r = π

4 out from the origin
at this angle. When θ = π

2 we have point a distance r = π
2 out from the origin

at this angle (on the vertical axis); when θ = 2π we have a point a distance
2π from the origin (on the horizontal axis); and so on. We obtain a spiral:
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Example. Sketch the curve given by the formula: r = cos θ .

Answer. Again let’s plot points, evaluating r for different values of θ .

θ 0
π

6

π

4

π

3

π

2

3π

4
π

3π

2
2π

r 1

√
3

2
≈ 0.9

1√
2

≈ 0.7
1

2
0 − 1√

2
≈ −0.7 −1 0 1

If one plots these points carefully (being careful to interpret the negative
distances appropriately) it seems we have a circle.

Do we?
Recall that for polar coordinates, x = r cos θ and r =

√
x2 + y2, and

so our equation r = cos θ reads√
x2 + y2 = x

r

That is, √
x2 + y2 = x√

x2 + y2
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giving

x2 + y2 = x

x2 − x + y2 = 0

x2 − x + 1

4
+ y2 = 1

4(
x − 1

2

)2

+ y2 = 1

4
.

This is indeed the equation of a circle. The center is
(

1
2 , 0

)
and the

radius is 1
2 .

Practice. Sketch the curve given in polar coordinates by r = 1 − cos θ .
(This curve is called a cardioid.) Show that in Cartesian coordinates the
equation of this curve is

(x2 + y2 + x)2 = x2 + y2.

Comment. It is standard practice in the curriculum to have students
explore the shapes of the polar graphs of r = cos(nθ ) and r = sin(nθ ) for
different integer values of n, and predict the number of “petals” the graphs
will possess.
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Solutions

Here are previously published solutions to the competition problems
as they appear at www.edfinity.com. One can also find these solu-
tions in the MAA’s published texts on the AMC competitions (go to
www.maa.org/publications/books and click on “Book Categories” to find
their problem-solving books).

Warning: Each solution presented here is fast paced and to the point,
simply working through the mathematics of the task at hand to get the job
done. These solutions are written by a variety of authors.

For an account of the problem-solving practices behind each solution
guiding the mathematical steps presented—along with discussion on its con-
nections to the Common Core State Standards and further, deeper, queries
and possible explorations—see the Curriculum Bursts at www.maa.org/ci.

Comment. Sometimes multiple solutions to the same problem were pub-
lished, with the alternate solutions using mathematical techniques different
from those discussed in the sections of this text. We present here only the
solutions featuring the tools of the Pythagorean Theorem and trigonometry.
We’ve also made some minor editorial changes to these published solutions.

1. (A)

A

B

E F
D

C

24 24 2530

50

18 7

By the Pythagorean Theorem, AE = √
302 − 242 = √

324 = 18. (Or
note that triangle AE B is similar to a 3-4-5 right triangle, so

151
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AE = 3 × 6 = 18.) It follows that C F = 24 and F D = √
252 − 242 =√

49 = 7. The perimeter of the trapezoid is 50 + 30 + 18 + 50 + 7 + 25 =
180.

2. (A)
Assume that Alice starts at A in the figure and ends at B. In �ABC ,

∠AC B is right and AC = 2
√

3. The Pythagorean Theorem shows that
(AB)2 = 13.

A C

B

1

22 120°

OR

In �AB D in the second figure,

1) ∠ADB = 60◦,

2) AD = 4, and

3) B D = 1.

By the law of cosines,

(AB)2 = 12 + 42 − 2(1)(4)(1/2) = 13.

Therefore AB = √
13.

A C

B

D

1

22



Solutions 153

3. (B)
Because AB = 1, the smallest number of jumps is at least 2. The

perpendicular bisector of AB is the line with equation x = 1
2 , which has no

points with integer coordinates, so two jumps are not possible. A sequence
of three jumps is possible; one such sequence is (0, 0) to (3, 4) to (6, 0)
to (1, 0).

4. (B)
Let x be the length of the hypotenuse, and let y and z be the lengths of

the legs. The given conditions imply that

y2 + z2 = x2, y + z = 32 − x, and yz = 40.

Thus

(32 − x)2 = (y + z)2 = y2 + z2 + 2yz = x2 + 80,

from which 1024 − 64x = 80, and x = 59
4 .

Note: Solving the system of equations yields leg lengths of

1

8
(69 +

√
2201) and

1

8
(69 −

√
2201)

so a triangle satisfying the given conditions does in fact exist.

5. (B)
Without loss of generality, assume that F lies on BC and that E B = 1.

Then AE = 7 and AB = 8. Because E FG H is a square, B F = AE = 7,
so the hypotenuse E F of �E B F has length

√
12 + 72 = √

50. The ratio of
the area of E FG H to that of ABC D is therefore

E F2

AB2
= 50

64
= 25

32
.

B

A
H

F

E

C

D

G

1

7
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6. (D)
Let h and w be the height and width of the screen, respectively, in

inches. By the Pythagorean Theorem, h : w : 27 = 3 : 4 : 5, so

h = 3

5
· 27 = 16.2 and w = 4

5
· 27 = 21.6.

The height of the non-darkened portion of the screen is half the width,
or 10.8 inches. Therefore the height of each darkened strip is

1

2
(16.2 − 10.8) = 2.7 inches.

OR

The screen has dimensions 4a × 3a for some a. The portion of the screen
not covered by the darkened strips has aspect ratio 2 : 1, so it has dimensions
4a × 2a. Thus the darkened strips each have height a

2 . By the Pythagorean
Theorem, the diagonal of the screen is 5a = 27 inches. Hence the height of
each darkened strip is 27

10 = 2.7 inches.

7. (B)
Extend D A through A and C B through B and denote the intersection

by E . Triangle AB E is a 30–60–90 triangle with AB = 13, so AE = 26.
Triangle C DE is also a 30–60–90 triangle, from which it follows that
C D = (26+46)√

3
= 24

√
3. Now apply the Pythagorean Theorem to triangle

C D A to find that AC =
√

462 + (24
√

3)2 = 62.

A
D

C

46 26
E

B

13

24√⎯⎯3

OR

Since the opposite angles sum to a straight angle, the quadrilateral is
cyclic, and AC is the diameter of the circumscribed circle. Thus AC is the
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diameter of the circumcircle of triangle AB D. By the law of sines,

AB = B D

sin 120◦ = B D√
3/2

.

We determine B D by the law of cosines:

B D2 = 132 + 462 + 2 · 13 · 46 · 1

2
= 2883 = 3 · 312

so B D = 31
√

3. Hence AC = 62.

8. (A)
By the Pythagorean Theorem we have a2 + b2 = (b + 1)2, so

a2 = (b + 1)2 − b2 = 2b + 1.

Because b is an integer with b < 100, a2 is an odd perfect square
between 1 and 201 and there are six of these, namely, 9, 25, 49, 81, 121, and
169. Hence a must be 3, 5, 7, 9, 11, or 13, and there are six triangles that
satisfy the given conditions.

9. (A)
Let the triangle have leg lengths a and b, with a ≤ b. The given condition

implies that

1

2
ab = 3(a + b +

√
a2 + b2),

so

ab − 6a − 6b = 6
√

a2 + b2.

Squaring both sides and simplifying yields

ab(ab − 12a − 12b + 72) = 0,

from which

(a − 12)(b − 12) = 72.

The positive integer solutions of the last equation are (a, b) =
(3, 4), (14, 48), (15, 36), (18, 24), and (20, 21). However, the solution (3, 4)
is extraneous, and there are six right triangles with the required property.

10. (A)
Let O be the center of the circle, and let D be the intersection of OC

and AB. Because OC bisects minor arc AB, O D is a perpendicular bisector
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of chord AB. Hence AD = 3, and applying the Pythagorean Theorem to
�ADO yields O D = √

52 − 32 = 4. Therefore DC = 1, and applying the
Pythagorean Theorem to �ADC yields AC = √

32 + 12 = √
10.

O

C

D3

5

A B

11. (D)
Consider a right triangle as shown. By the Pythagorean Theorem,

(r + s)2 = (r − 3s)2 + (r − s)2

so

r2 + 2rs + s2 = r2 − 6rs + 9s2 + r2 − 2rs + s2

and

0 = r2 − 10rs + 9s2 = (r − 9s)(r − s).

But r �= s, so r = 9s and r/s = 9.

OR

Because the ratio r/s is independent of the value of s, assume that s = 1
and proceed as in the previous solution.

12. (B)
Let the vertices of the regular hexagon be labeled in order A, B, C ,

D, E, and F . Let O be the center of the hexagon, which is also the center
of the largest sphere. Let the eighth sphere have center G and radius r .
Because the centers of the six small spheres are each a distance 2 from
O and the small spheres have radius 1, the radius of the largest sphere
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is 3. Because G is equidistant from A and D, the segments G O and AO
are perpendicular. Let x be the distance from G to O . Then x + r = 3.
The Pythagorean Theorem applied to �AOG gives (r + 1)2 = 22 + x2 =
4 + (3 − r )2, which simplifies to 2r + 1 = 13 − 6r , so r = 3

2 . This shows
that the eighth sphere is tangent to AD at O .

A

F D

C

B

E

O

2

1

O

G

x
r

DA

13. (B)
Let a, b, and c, with a ≤ b ≤ c, be the lengths of the edges of the box;

and let p, q, and r , with p ≤ q ≤ r , be the lengths of its external diagonals.
(The diagram shows three faces adjacent at a vertex “flattened out” as in the
net of a solid.)

c

r

q p

b

b

a
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The Pythagorean Theorem implies that

p2 = a2 + b2

q2 = a2 + +c2

r2 = b2 + c2

so r2 = p2 + q2 − 2a2 < p2 + q2

is a necessary condition for a set {p, q, r} to represent the lengths of the
diagonals. Only choice (B) fails this test:

(A) 62 = 36 < 41 = 42 + 52

(B) 72 = 49 /< 41 = 42 + 52

(C) 72 = 49 < 52 = 42 + 62

(D) 72 = 49 < 61 = 52 + 62

(E) 82 = 64 < 74 = 52 + 72.

The other four choices do correspond to actual prisms because the condition
r2 < q2 + q2 is also sufficient. To see this, just solve the equations for a, b,
and c:

a2 = p2 + q2 − r2

2

b2 = p2 − q2 + r2

2

c2 = −p2 + q2 + r2

2
.

OR

The angle θ , formed at the vertex of the parallelepiped by diagonals of two
adjacent faces, is less than the 90◦ dihedral angle formed by the two faces.
It follows that a triangle formed by choosing one diagonal in each of three
faces must be an acute triangle. Therefore, if p, q and r are the lengths of
the face diagonals, then from the law of cosines if follows that

r2 = p2 + q2 − 2pq cos θ < P2 + q2

since cos θ > 0.
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14. (E)
Apply the law of cosines to �B AC :

BC2 = B A2 + AC2 − 2(B A)(AC) cos A

49 = 25 + 81 − 2(5)(9) cos A.

Thus cos A = 19
30 .

Let H be the foot of the altitude from B.

A C
H

B

D

Then

AD = 2 · AH = 2(AB) cos A = 19

3

DC = AC − AD − 8

3

and

AD : DC = 19 : 8.

15. (C)
Select one of the mats. Let P and Q be the two corners of the mat that

are on the edge of the table, and let R be the point on the edge of the table
that is diametrically opposite P as shown. Then R is also a corner of a mat
and �P Q R is a right triangle with hypotenuse P R = 8. Let S be the inner
corner of the chosen mat that lies on Q R, T the analogous point on the mat
with corner R, and U the corner common to the other mat with corner S
and the other mat with corner T . Then �ST U is an isosceles triangle with
two sides of length x and vertex angle 120◦. It follows that ST = √

3x , so
Q R = QS + ST + T R = √

3x + 2.
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1

x
x

x

x

P

Q

S

R

T

√⎯⎯3x

U

Apply the Pythagorean Theorem to �P Q R to obtain (
√

3x + 2)2 + x2 =
82, from which x2 + √

3x − 15 = 0. Solve for x and ignore the negative
root to obtain

x = 3
√

7 − √
3

2
.

16. (C)
Let θ1 and θ2 be the angles of inclination of lines L1 and L2, respectively.

Then m = tan θ1 and n = tan θ2 · θ1 = 2θ2, and m = 4n,

4n = m = tan θ1 = tan 2θ2 = 2 tan θ2

1 − tan2 θ2
= 2n

1 − n2
.

Thus

4n = 2n

1 − n2
and 4n(1 − n2) = 2n.

Since n �= 0, 2n2 = 1, and mn, which equals 4n2, is 2.

17. (D)
Notice −r ≤ x, y ≤ r and so each of c = x

r and s = y
r lie between −1

and 1.
Now s2 − c2 ≤ s2 ≤ 1 with equality when c = 0, that is, when x = 0

(forcing y = ±r ).
Also, s2 − c2 ≥ −c2 ≥ −1 with equality when s = 0, that is, when

y = 0 and x = ±r .
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18. (E)
Note that the range of log(x) on the interval (0, 1) is the set of all

negative numbers, infinitely many of which are zeros of the cosine function.
In fact since cos x = 0 for all x of the form π

2 ± nπ ,

f
(
10

π
2 ±nπ

) = cos
(
log

(
10

π
2 ±nπ

))
= cos

(
π

2
± nπ

)
= 0

for all positive integers n.

19. (D)
Since

i n+2 cos(45 + 90(n + 2))◦ = −i n(− cos(45 + 90n)◦)

= i n(cos(45 + 90n)◦)

every other term has the same value. The first is
√

2/2, and there are 21
terms with this value (n = 0, 2, 4 . . . , 40). The second term is i cos 135◦ =
−i

√
2/2, and there are 20 terms with this value (n = 1, 3, . . . , 39). Thus

the sum is
√

2

2
(21 − 20i).

20. (A)
The intercepts occur where sin( 1

x ) = 0, that is, where x = 1/(kπ ) and
k is a nonzero integer. Solving

0.0001 <
1

kπ
< 0.001

yields

1000

π
< k <

10,000

π
.

Thus the number of x intercepts in (0.0001, 0.001) is⌊
10,000

π

⌋
−

⌊
1000

π

⌋
= 3183 − 318 = 2865,

which is closest to 2900.
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21. (D)

logb sin x = a

sin x = ba

sin2 x = b2a

cos x =
√

1 − b2a

logb cos x = 1

2
logb(1 − b2a).

22. (C)
The area of the triangle is 1

2 (base)(height) = 1
2 (5 − (−5)) · |5 sin θ | =

25| sin θ |. There are four values of θ between 0 and 2π for which | sin θ | =
0.4, and each value corresponds to a distinct triangle with area 10.

OR

The vertex (5 cos θ, 5 sin θ ) lies on a circle of diameter 10 centered at the
origin. In order that the triangle have area 10, the altitude from that vertex
must be 2. There are four points on the circle that are 2 units from the x-axis.

23. (E)
From the identity 1 + tan2 x = sec2 x it follows that

1 = sec2 x − tan2 x = (sec x − tan x)(sec x + tan x) = 2(sec x + tan x).

So sec x + tan x = 0.5.

OR

The given relation can be written as 1−sin x
cos x = 2. Squaring both sides yields

(1−sin x)2

1−sin2 x = 4, hence 1−sin x
1+sin x = 4. It follows that sin x = − 3

5 and that

cos x = 1 − sin x

2
= 1 − (−3/5)

2
= 4

5
.

sec x + tan x = 5

4
− 3

4
= 0.5

Thus

24. (B)
The shaded figure in the problem is a rhombus. Each side has length

1/ sin α, which can be observed in the right triangle indicated in the figure.
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The height of the rhombus is 1, which is the width of each strip. The area of
the rhombus is base · height = 1 · (1/ sin α).

1

α

OR

The area of a parallelogram is the product of the lengths of two adjacent
sides and the sine of the angle between them. Therefore, the area of this
rhombus is (1/ sin α)2 sin α.

25. (E)

a2 – b2

a2 + b2

2ab

x

The acute angle x may be taken as opposite leg of 2ab in a right triangle
with the other leg of length a2 − b2. Then the square of the hypotenuse h is,
by the Pythagorean Theorem,

h2 = (2ab)2 + (a2 − b2)2 = a4 + 2a2b2 + b4 = (a2 + b2)2.

We now see from the figure and the definition of sine that sin x =
2ab/(a2 + b2).

26. (A)
Let θ = ∠ABC . The base of the cylinder is a circle with circumference

6, so the radius of the base is 6
2π

= 3
π

. The height of the cylinder is the
altitude of the rhombus, which is 6 sin θ . Thus the volume of the cylinder is

6 = π

(
3

π

)2

(sin θ ) = 54

π
sin θ,

so sin θ = π/9.
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27. (D)
In the figure, sin A = BC

AB = 2
3 . So for some x > 0, BC = 2x , AB = 3x ,

and AC =
√

(AB)2 − (BC)2 = √
5x . Thus tan B = AC

BC =
√

5
2 .

A C

B

2x
3x

28. (D)
The center of the circle that circumscibes the sector P O Q is at C , the

intersection of the perpendicular bisectors SC and RC . Considering triangle
O RC we see that

sec
θ

2
= OC

3
or OC = 3 sec

θ

2
.

S
C

O
Q

P

R

θ––
2

θ––
2

29. (A)
If x

x−1 = sec2 θ then

x = x sec2 θ − sec2 θ

x(sec2 θ − 1) = sec2 θ

x tan2 θ = sec2 θ.
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Hence

x = sec2 θ

tan2 θ
= 1

sin2 θ

and

f (sec2 θ ) = sin2 θ.

OR

First solve y = x
x−1 for x to find x = y

y=1 . Then f (y) = y−1
y . Hence

f (sec2 θ ) = sec2 θ − 1

sec2 θ
= 1 − cos2 θ = sin2 θ.

OR

Since 1
1− 1

x

= x
x−1 , f ( 1

1−t ) = t . Thus

f (sec2 θ ) = f

(
1

cos2 θ

)
= f

(
1

1 − sin2 θ

)
= sin2 θ.

30. (C)
Because AB||DC , arc AD is equal to arc C B and C DE and AB E are

similar isosceles triangles. Thus

area C DE

area AB E
=

(
DE

AE

)2

.

Draw AD. Since AB is a diameter, ∠ADB = 90◦. Thus, considering
right triangle ADE , DE = AE cos α, and(

DE

AE

)2

= cos2 α.

31. (C)
By the relationship between the roots and the coefficients of a quadratic

equation, it follows that

p = tan α + tan β, q = tan α tan β

r = cot α + cot β, s = cot α cot β

Since

cot α + cot β = 1

tan α
+ 1

tan β
= tan α + tan β

tan α tan β
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and

cot α cot β = 1

tan α tan β

the equalities r = p/q and s = 1/q follow. Thus rs = p/q2.

32. (A)
Using log a + log b = log ab repeatedly, we find that the sum is

P = log10[(tan 1◦)(tan 2◦) · · · tan(45◦) · · · tan(89◦)].

Moreover, (tan 1◦)(tan 89◦) = 1, (tan 2◦)(tan 88◦) = 1, and so on, be-
cause tan θ tan(90◦ − θ ) = tan θ cot θ = 1 for all θ at which both tan θ and
cot θ are defined. Thus

P = log10(tan 45◦) = log10 1 = 0.

33. (A)
The area of the shaded sector is θ

2 (AC)2. This must equal half the
area of �ABC , which is 1

2 (AC)(AB). Hence the shaded regions have
equal area if, and only if, θ

2 (AC)2 = 1
4 (AC)(AB), which is equivalent to

2θ = AB
AC = tan θ .

34. (A)
The following statements are equivalent:

sin 2x sin 3x = cos 2x cos 3x,

cos 2x cos 3x − sin 2x sin 3x = 0,

cos(2x + 5x) = 0,

5x = 90◦ ± 180◦k, k = ±1,±2, . . . ,

x = 18◦ ± 36◦k, k = ±1,±2, . . . .

The only correct value listed among the answers is 18◦.

OR

By inspection of the original equation, it is sufficient that sin 2x = cos 3x
and sin 3x = cos 2x , which are both true if 2x and 3x are complementary.
Thus 2x + 3x = 90◦, that is, x = 18◦ is a correct value.
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35. (E)
If sin x = 3 cos x , then tan x = 3. From the figure we conclude that

sin x cos x = 3√
10

· 1√
10

= 3

10

for any acute angle x . If x ′ is another angle with x ′ = 3, then x ′ − x is a
multiple of π . Thus

sin x ′ = ± 3√
10

cos x ′ = ± 1√
10

.

So sin x ′ cos x ′ is still 3/10 (since sin x ′ and cos x ′ have the same sign).

3

1

x

√⎯⎯10

OR

Multiplying the given equation first by sin x and then by cos x yields

sin2 x = 3 sin x cos x

cos2 x = (1/3) sin x cos x .

Adding gives

1 = (10/3) sin x cos x,

so

sin x cos x = 3

10
.
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36. (E)
Let E be the intersection of lines AB and C D, and let β and θ be the

measures of ∠E BC and ∠EC B, respectively. Since

cos β = − cos B = sin C = sin θ,

β + θ = 90◦, so ∠B EC is a right angle, and

B E = BC sin θ = 3, C E = BC sin β = 4.

Therefore, AE = 7, DE = 24 and AD, which is the hypotenuse of
right triangle ADE , is

√
72 + 242 = 25.

C
θ

β
5

4

B

E

A

D20

37. (C)
Applying the Pythagorean Theorem to �C DF and �C EG in the

adjoining figure yields

4a2 + b2 = sin2 x

a2 + 4b2 = cos2 x .

Adding these equations, we obtain

5(a2 + b2) = sin2 x + cos2 x = 1.

Hence

AB = 3
√

a2 + b2 = 3

√
1

5
= 3

√
5

5
.
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B

sin(x)

cos(x)

D

E

C
F Gb

a

a

a

b b
A

38. (D)
The fact that O A = 1 implies that B A = tan θ and BO = sec θ . Since

BC bisects ∠ABO , it follows that O B
B A = OC

C A , which implies O B
O B+B A =

OC
OC+C A = OC . Substituting yields

OC = sec θ

sec θ + tan θ
= 1

1 + sin θ
.

39. (B)
First note that the isosceles right triangles t can be excluded from the

product because f (t) = 1 for these triangles. All triangles mentioned from
now on are scalene right triangles.

Let O = (0, 0). First consider all triangles t = �ABC with vertices in
S ∪ {O}. Let R1 be the reflection with respect to the line with equation x = 2.
Let A1 = R1(A), B1 = R1(B), C1 = R1(C), and t1 = �A1 B1C1. Note that
�ABC ∼= �A1 B1C1 with right angles at A and A1, but the counterclockwise
order of the vertices of t1 is A1, C1, and B1. Thus f (t1) = tan(∠A1C1 B1) =
tan(∠AC B) and

f (t) f (t1) = tan(∠C AB) tan(∠AC B) = AC

AB
· AB

AC
= 1.

The reflection R1 is a bijection of S ∪ {O} and it induces a partition of
the triangles in pairs (t, t1) such that f (t) f (t1) = 1. Thus the product over
all triangles in S ∪ {O} is equal to 1, and thus the required product is equal
to the reciprocal of

∏
t∈T1

f (t), where T1 is the set of triangles with vertices
in S ∪ {O} having O as one vertex.

Let S1 = {(x, y) : x ∈ {0, 1, 2, 3, 4} and y ∈ {0, 1, 2, 3, 4}} and let R2

be the reflection with respect to the line with equation x = y. For every
right triangle t = �O BC with vertices B and C in S1, let B2 = R2(B),
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C2 = R2(C), and t2 = �O B2C2. Similarly as before, R2 is a bijection
of S1 and it induces a partition of the triangles in pairs (t, t2) such that
f (t) f (t2) = 1. Thus

∏
t∈T1

f (t) = ∏
t∈T2

f (t), where T2 is the set of trian-
gles with vertices in S ∪ {O} with O as one vertex, and another vertex with
y-coordinate equal to 5.

Next, consider the reflection R3 with respect to the line with equation
y = 5

2 . Let X = (0, 5). For every right triangle t = �O XC with C in S,
let C3 = R3(C) and t3 = �O XC3. As before R3 induces a partition of
these triangles in pairs (t, t3) such that f (t) f (t3) = 1. Therefore to calculate∏

t∈T2
f (t), the only triangles left to consider are the triangles of the form

t = �OY Z where Y ∈ {(x, 5) : x ∈ {1, 2, 3, 4}} and Z ∈ S/{X}.
The following argument shows that there are six such triangles. Because

the y-coordinate of Y is greater than zero, the right angle of t is not at O .
The slope of the line OY has the form 5

x with 1 ≤ x ≤ 4, so if the right angle
were at Y , then the vertex Z would need to be at least 5 horizontal units
away from Y , which is impossible. Therefore the right angle is at Z . There
are four such triangles with Z on the x-axis, with vertices O, Z = (x, 0),
and Y = (x, 5) for 1 ≤ x ≤ 4. There are two more triangles: those with
vertices O, Z = (3, 3), and Y = (1, 5), and with vertices O , Z = (4, 4),
and Y = (3, 5).

O O

The product of the values f (t) over these six triangles is equal to

1

5
· 2

5
· 3

5
· 4

5
· 3

√
2

2
√

2
· 4

√
2√
2

= 144

625
.

Thus the required product equals

∏
t∈T

f (t) =
(∏

t∈T1

f (t)

)−1

=
(∏

t∈T2

f (t)

)−1

=
(

144

625

)−1

= 625

144
.
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40. (C)
By viewing the sides of the trapezoid as tangents to the circle, we find

that the sums of the lengths of opposite sides are equal. (Indeed, this is
true for any circumscribed quadrilateral.) Defining x and y as shown in the
figure, we have

2y + 1.2x = 2x

y + 1.2x = 16.

Then y = 4, x = 10 and the area is 1
2 (4 + 16) · 8 = 80.

x x0.8x

0.6x 0.6x

y

16

41. (A)

6 inches

6

h

L
h

θ
θ

90 – 2θ
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In the figure, where h denotes the length of the sheet,

6

h
= cos(90◦ − 2θ ) = sin 2θ = 2 sin θ cos θ

from which h = 2/(sin θ cos θ ). Also L/h = sec θ and therefore

L = h sec θ = 3 sec θ/(sin θ cos θ ) = 3 sec2 θ csc θ.

42. (A)
Using trigonometric identities, we obtain

(sin θ + cos θ )2 = sin2 θ + cos2 θ + 2 sin θ cos θ

= 1 + sin 2θ

= 1 + a.

Since θ is acute, sin θ + cos θ > 0 and sin θ + cos θ = √
1 + a.

43. (B)
Square both sides of both equations to obtain

sin2 a + 2 sin a sin a + sin2 b = 5/3 and

cos2 a + 2 cos a cos b + cos2 b = 1.

Then add corresponding sides of the resulting equations to obtain

(sin2 a + cos2 a) + (sin2 b + cos2 b) + 2(sin a sin b + cos a cos b) = 8

3
.

Because sin2 a + cos2 a = sin2 b + cos2 b = 1, it follows that

cos(a − b) = sin a sin b + cos a cos b = 1

3
.

One ordered pair (a, b) that satisfies the given condition is approxi-
mately (0.296, 1.527).

44. (E)
Using the formula for the cosine of twice the angle 1

2θ , we have

cos θ = cos 2

(
θ

2

)
= 1 − 2 sin2 θ

2
= 1 − 2

x − 1

2x
= 1

x
.

(Note that since 0 < θ < 90◦, 0 < 1
x < 1, so x > 1.) Now

tan2 θ = sec2 θ − 1 = 1

cos2 θ
− 1 = x2 − 1,
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so

tan θ =
√

x2 − 1.

45. (B)
Let w = cos 36◦ and y = cos 72◦. Applying the identities

cos 2θ = 2 cos2 θ − 1 and cos 2θ = 1 − 2 sin2 θ

with θ = 36◦ in the first identity and θ = 18◦ in the second identity yields

y = 2w2 − 1 and w = 1 − 2y2.

Adding the equations yields

w + y = 2(w2 − y2) = 2(w − y)(w + y)

and division by w + y yields 2(w − y) = 1, so

x = w − y = 1

2
.

46. (B)
Let w = x − y. Then the given expression is

sin w cos y + cos w sin y = sin(w + y) = sin x .

47. (A)
If sin x + cos x = 1

5 , then cos x = 1
5 − sin x and

cos2 x = 1 − sin2 x =
(

1

5
− sin x

)2

so

25 sin2 x − 5 sin x − 12 = 0.

The solutions of 25s2 − 5s − 12 = 0 are s = 4/5 and s = −3/5. Since
0 ≤ x < π , sin x ≥ 0, so sin x = 4/5 and cos x = (1/5) − sin x = −3/5.
Hence tan x = −4/3.

48. (E)
Write

sin
A

2
−

√
3 cos

A

2
= 2

(
1

2
sin

A

2
−

√
3

2
cos

A

2

)

= 2 sin

(
A

2
− 60◦

)
.
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This expression is minimized when sin( A
2 − 60◦) = −1 or when

A
2 − 60◦ = 270◦ + (360m)◦, that is when A = 660◦ + (270m)◦, m =
0,±1,±2, . . .. None of (A) through (D) is an angle of this form.

49. (D)
The given series is geometric with an initial term of 1 and a common

ratio of cos2 θ , so its sum is

5 =
∞∑

n=0

cos2n θ = 1

1 − cos2 θ
= 1

sin2 θ
.

Therefore sin2 θ = 1
5 and

cos 2θ = 1 − 2 sin2 θ = 1 − 2

5
= 3

5
.

50. (B)
We show that for any angles A and B for which the tangent function is

defined and A + B = 45◦, (1 + tan A)(1 + tan B) = 2. By the addition law
for tangents,

1 = tan 45◦ = tan(A + B) = tan A + tan B

1 − tan A tan B

1 − tan A tan B = tan A + tan B

1 = tan A + tan B + tan A tan B.

Thus

(1 + tan A)(1 + tan B) = 1 + tan A + tan B + tan A tan B = 1 + 1 = 2.

51. (C)
Let x = arctan a and y = arctan b.
Then

(a + 1)(b + 1) = 2

(tan x + 1)(tan y + 1) = 2

tan x + tan y = 1 − tan x tan y

tan x + tan y

1 − tan x tan y
= 1.
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The left hand side is tan(x + y), so

tan(x + y) = 1 and x + y = π

4
= arctan a + arctan b.

OR

Substituting a = 1
2 in the equation (a + 1)(b + 1) = 2 and solving for b, we

obtain b = 1
3 . Then

tan(x + y) = tan x + tan y

1 − tan x tan y
= a + b

1 − ab
=

1

2
+ 1

3

1 − 1

6

= 1,

so x + y = π
4 .

52. (B)
Use the definitions of the tangent and cotangent functions and the

identity for the cosine of the difference of two angles to obtain

cot 10 + tan 5 = cos 10

sin 10
+ sin 5

cos 5

= cos 10 cos 5 + sin 10 sin 5

sin 10 cos 5

= cos(10 − 5)

sin 10 cos 5

= cos 5

sin 10 cos 5

= 1

sin 10

= csc 10.

This is an instance of the identity

cot 2x + tan x = csc 2x .

To prove it, imitate the above substituting 2x for 10 and x for 5.
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53. (E)
Let M be the midpoint of AB and O be the center of the square. Thus

AM = O M = 12 and slant height P M = 1
2 cos θ . Hence

P O2 = P M2 − O M2 = 1

4
cot2 θ − 1

4

= cos2 θ − sin2 θ

4 sin2 θ

= cos 2θ

4 sin2 θ
.

Since 0 < θ < 45◦, the volume is

1

3
· 12 · P O =

√
cos 2θ

6 sin θ
.

A M B
A M B

O

P PP

θ θ

54. (B)
Since AB = √

32 + 42 = 5 and B D = √
52 + 122 = 13, it follows that

m

n
= DE

DB
= sin ∠DB E = sin(180◦ − ∠DB E)

= sin ∠DBC

= sin(∠DB A + ∠ABC)

= sin(∠DB A) cos(∠ABC) + cos(∠DB A) sin(∠ABC)

= 12

13
· 4

5
+ 5

13
· 3

5

= 63

65

and m + n = 128.
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55. (D)
Let C = (0, 0), B = (2, 2

√
3), and A = (x, 0) with x > 0. Then D =

(1,
√

3). Let P be on the positive x-axis to the right of A.
Then ∠B AD = ∠P AD − ∠P AB. Provided ∠P AD and ∠P AB are

not right angles, it follows that

tan(∠B AD) = tan(∠P AD − ∠P AB)

= tan(∠P AD) − tan(∠P AB)

1 + tan(∠P AD) tan(∠P AB)

= m AD − m AB

1 + m ADm AB

=

√
3

1 − x
− 2

√
3

2 − x

1 +
√

3

1 − x
· 2

√
3

2 − x

=
√

3x

x2 − 3x + 8

=
√

3(√
x − 2

√
2√

x

)2
+ (4

√
2 − 3)

≤
√

3

4
√

2 − 3
,

with equality when x = 2
√

2. If ∠P AD = 90◦, then

tan(∠B AD) = − cot(∠P AB) = 1√
3

<

√
3

4
√

2 − 3
.

Therefore the largest possible value of tan(∠B AD) is
√

3
4
√

2−3
.

56. (A)
Recognize the similarity between the recursion formula given and the

trigonometric identity

tan(a + b) = tan a + tan b

1 − tan a tan b
.

Also note that the first two terms of the sequence are tangents of familiar
angles, namely π

4 and π
6 .

Let c1 = 3, c2 = 2, and cn+1 = (cn + cn+1) mod 12. We claim that the
sequence {an} satisfies an = arctan(πcn

12 ). Note that

a1 = 1 = tan
(π

4

)
= tan

(πc1

12

)
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and

a2 = 1√
3

= tan
(π

6

)
= tan

(πc2

12

)
.

By induction on n, the formula for the tangent of the sum of two angles,
and the fact that the period of x is π ,

an+2 = an + an−1

1 − anan+1
=

tan
(πcn

12

)
+ tan

(πcn+1

12

)
1 − tan

(πcn

12

)
tan

(πcn+1

12

)

= tan

(
π (cn + cn+1)

12

)

= tan

(
πcn+2

12

)
.

The first few terms of the sequence {cn} are

3, 2, 5, 7, 0, 7, 7, 2, 9, 11, 8, 7, 3, 10, 1, 11, 0, 11, 11, 10, 9, 7, 4, 11, 3, 2.

So the sequence {cn} is periodic with period 24. Because 2009 = 24 · 83 +
17, it follows that c2009 = c17 = 0. Thus

|a2009| =
∣∣∣∣ tan

(
πc17

12

)∣∣∣∣ = 0.

57. (B)
(Triangle ADM is congruent to triangle AP M by the side-side-side

principle.) Let ∠M AD = α. Then

P Q = (P A) sin(∠P AQ) = 4 sin(2α) = 8 sin α cos α

= 8

(
2√
20

)(
4√
20

)
= 16

5
.

58. (D)
Two trigonometric identities for expressing sums as products are

sin x + sin y = 2 sin
x + y

2
cos

x − y

2

cos x + cos y = 2 cos
x + y

2
cos

x − y

2
.

Thus

sin 10◦ + sin 20◦

cos 10◦ + sin 20◦ = sin 15◦

cos 15◦ = tan 15◦.
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59. (B)
Let ∠DB E = α and ∠DBC = β. Then ∠C B E = α − β and

∠AB E = α + β, so tan(α − β) tan(α + β) = tan2 α. Thus

tan α − tan β

1 + tan α + tan β
· tan α − tan β

1 − tan α tan β
= tan2 α,

from which it follows that

tan2 α − tan2 β = tan2 α(1 − tan2 α tan2 β).

Upon simplifying, tan2 β(tan4 α − 1) = 0, so tan α = 1 and α = π
4 . Let

DC = a and B D = b. Then cot ∠DBC = b
a . Because ∠C B E = π

4 − β

and ∠AB E = π
4 + β, it follows that

cot ∠C B E = tan ∠AB E = tan

(
π

4
+ β

)
= 1 + a

b

1 − a
b

= b + a

b − a
.

Thus the numbers 1, b+a
b−a , and b

a form an arithmetic progression, so
b
a = b+3a

b−a . Setting b = ka yields k2 − 2k − 3 = 0, and the only positive

solution is k = 3. Hence b = B E√
2

= 5
√

2, a = 5
√

2
3 , and the area of �ABC

is ab = 50
3 .

60. (A)
Suppose that the triangle has vertices A(a, a2), B(b, b2), and C(c, c2).

The slope of line segment AB is

b2 − a2

b − a
= b + a,

so the slopes of the three sides of the triangle have a sum

(b + a) + (c + b) + (a + c) = 2 · m

n
.

The slope of one side is 2 = tan θ for some angle θ , and the two
remaining sides have slopes

tan

(
θ ± π

3

)
= tan θ ± tan(π/3)

1 ∓ tan θ tan(π/3)
= 2 ± √

3

1 ∓ 2
√

3
= −8 ± 5

√
3

11
.

Therefore

m

n
= 1

2

(
2 − 8 + 5

√
3

11
− 8 − 5

√
3

11

)
= 3

11
,

and m + n = 14.
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Such a triangle exists. The x-coordinates of its vertices are (11 ± 5
√

3)/11
and −19/11.

61. (D)
Since

tan2 x − 9 tan x + 1 = sec2 x − 9 tan x

= 1

cos2 x
− 9

sin x

cos x

= 1 − 9 sin x cos x

cos2 x

=
1 − 9

2
sin 2x

cos2 x

we need to sum the roots of the equation sin 2x = 2
9 between as x = 0 and

x = 2π . The four roots are

x = arcsin 2
9

2
,
π − arcsin 2

9

2
,

2π + arcsin 2
9

2
, and

3π − arcsin 2
9

2
.

and their sum is 3π .

OR

For any b > 2 the solutions of y2 − by + 1 = 0 are

y1, y2 = b ± √
b2 − 4

2
,

which are distinct and positive. Then either use the fact that the product of
the roots of a quadratic is the constant term, or note that

y1 · y2 = (b + √
b2 − 4)(b − √

b2 − 4)

22
= b2 − (b2 − 4)

4
= 1

to see that y1 and y2 are reciprocals. Choose the first quadrant angles, x1 and
x2, so x1 = y1 and x2 = y2. Then

tan x2 = y2 = 1

y1
= 1

tan x1
= cot x1 = tan

(
π

2
− x1

)
,

so x1 and x2 are complementary. Since tan(x + π ) = tan x , there are four
values of x between 0 and 2π , and all can be expressed in terms of x1

x1,
π

2
− x1, π + x1,

3π

2
− x1.

Their sum is 3π .
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62. (A)
Let P = (x, y), A = (0, 0), C = (3, 3) and B be any point on the pos-

itive x-axis. The locus of P is the circle with center C and radius
√

6 and
y
x is the slope of segment AP . Clearly this slope is the greatest when AP
is tangent to the circle on the left side, as in the adjoining figure (note:√

6 < 3).

y

P

C

x
BA

α

√⎯⎯6

2√⎯⎯3

Let α = ∠C AP . Since ∠B AC = 45◦, the answer is

tan(α + 45◦) = tan α + 1

1 − tan α
.

Since ∠APC = 90◦, tan α = PC/P A. By the Pythagorean Theorem,

P A =
√

(AC)2 − (PC)2 = 2
√

3.

Thus tan α = 1/
√

2 and the answer is 3 + 2
√

2.

63. (B)
When the circle is closest to A with its center P at A′, let its points of

tangency to AB and AC be D and E , respectively. The path parallel to AB
is shorter than AB by AD plus the length of a similar segment at the other
end. Now AD = AE = cot(A/2). Similar reasoning at the other vertices
shows that the length L of the path of P is

L = AB + BC + C A − 2 cot
A

2
− 2 cot

B

2
− 2 cos

C

2
.
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1

DA

A'

E

Note that

cot
A

2
=

(
cos(A/2)

sin(A/2)

)(
2 cos(A/2)

2 cos(A/2)

)

= 2 cos2(A/2)

2 sin(A/2) cos(A/2)

= 1 + cos2(A/2) − sin2(A/2)

sin A

= 1 + cos A

sin A

= 1 + (4/5)

3/5
= 3.

Similarly

cot
C

2
= 1 + cos C

sin C
= 1 + (3/5)

4/5
= 2.

Of course, cot(B/2) = cot 45◦ = 1. The length of the path is

L = 8 + 6 + 10 − 2(3) − 2(1) − 2(2) = 12.

Challenge. Prove that for any triangle and for any circle that rolls around
inside the triangle, the perimeter of the triangle that is the locus of the
center of the circle is the perimeter of the original triangle diminished by
the perimeter of the similar triangle that circumscribes the circle.
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64. (D)
Place the hexagon in a coordinate plane with center at the origin O and

vertex A at (2, 0). Let B, C, D, E and F be the other vertices in counter-
clockwise order.

P

(r, 0)A

BC

O

Corresponding to each vertex of the hexagon, there is an arc on the cir-
cle from which only the two sides meeting at that vertex are visible. The
given probability condition implies that those arcs have a combined degree
measure of 180◦, so by symmetry each is 30◦. One such arc is centered
at (r, 0). Let P be the endpoint of this arc in the upper half-plane. Then
∠P O A = 15◦. Side BC is visible from points immediately above P , so P
is collinear with B and C . Because the perpendicular distance from O to
BC is

√
3, we have

√
3 = r sin 15◦ = r sin(45◦ − 30◦) = r (sin 45◦ cos 30◦ − sin 30◦ cos 45◦).

So

√
3 = r ·

√
2

2

(√
3

2
− 1

2

)
= r ·

√
6 − √

2

4
.

Therefore

r = 4
√

3√
6 − √

2
= 4

√
3√

6 − √
2

·
√

6 + √
2√

6 + √
2

=
√

18 +
√

6 = 3
√

2 + 6.
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65. (C)
For a fixed value of y, the values of sin x for which sin2 x − sin x sin y +

sin2 y = 3
4 can be determined by the quadratic formula. Namely,

sin x =
sin y ±

√
sin2 y − 4

(
sin2 y − 3

4

)
2

= 1

2
sin y ±

√
3

2
cos y.

Because cos(π
3 ) = 1

2 and sin(π
3 ) =

√
3

2 , this implies that

sin x = cos
(π

3

)
sin y ± sin

(π

3

)
cos y = sin

(
y ± π

3

)
.

Within S, sin x = sin(y − π
3 ) implies x = y − π

3 . However, the case
sin x = sin(y − π

3 ) implies x = (y + π
3 when y ≤ π

6 , and x = −y + 2π
3

when y ≥ π
6 . Those three lines divide the region S into four subregions,

within each of which the truth value of the inequality is constant. Testing
the points (0, 0), (π

2 , 0), (0, π
2 ), and (π

2 , π
2 ) shows that the inequality is true

only in the shaded subregion. Its area is(π

2

)2
− 1

2
·
(π

3

)2
− 2 · 1

2
·
(π

6

)2
= π2

6
.

(0,   )

(  , 0) (  ,    )

x = y +

x = –y +

x = y –

(0, 0)

2π
3

π
2

π
2

π
2

π
2

π
3

π
3

66. (E)
Assume without loss of generality that the regular 12-gon is inscribed

in a circle of radius 1. Every segment with endpoints in the 12-gon subtends
an angle of 360

12 k = 30k degrees for some 1 ≤ k ≤ 6. Let dk be the length
of the segments that subtend an angle of 30k degrees. There are 12 such
segments of length dk for every 1 ≤ k ≤ 5 and 6 segments of length d6.
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Because dk = 2 sin(15k◦), it follows that

d2 = 2 sin(30◦) = 1,

d3 = 2 sin(45◦) =
√

2,

d4 = 2 sin(60◦) =
√

3,

d6 = 2 sin(90◦) = 2,

d1 = 2 sin(15◦) = 2 sin(45◦ − 30◦)

= 2 sin(45◦) cos(30◦) − 2 sin(30◦) cos(45◦)

=
√

6 − √
2

2
,

d5 = 2 sin(75◦) = 2 sin(45◦ + 30◦)

= 2 sin(45◦) cos(30◦) + 2 sin(30◦) cos(45◦)

=
√

6 + √
2

2
.

If a ≤ b ≤ c, then da ≤ db ≤ dc and the segments with lengths da, db, and
dc do not form a triangle with positive area if and only if dc ≥ da + db. Be-
cause d2 = 1 <

√
6 − √

2 = 2d1 <
√

2 = d3, it follows that for (a, b, c) ∈
{(1, 1, 3)(1, 1, 4), (1, 1, 5), (1, 1, 6)}, the segments of lengths da, db, and
dc do not form a triangle with positive area.

Similarly,

d3 =
√

2 <

√
6 − √

2

2
+ 1 = d1 + d3 <

√
3 = d4,

d4 < d5 =
√

6 + √
2

2
=

√
6 − √

2

2
+

√
2 = d1 + d3,

and

d5 < d6 = 2 = 1 + 1 = 2d2,

so for (a, b, c) ∈ {(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 2, 6)},
the segments of lengths da, db, and dc do not form a triangle with posi-
tive area.

Finally, if a ≥ 2 and b ≥ 3, then da + db ≥ d2 + d3 = 1 + √
2 > 2 ≥

dc, and also if a ≥ 3, then da + db ≥ 2d3 = 2
√

2 > 2 ≥ dc.
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Therefore the complete list of forbidden triples (da, db, dc) is given by

(a, b, c) ∈ {(1, 1, 3), (1, 1, 4), (1, 1, 5), (1, 1, 6),

(1, 2, 4), (1, 2, 5), (1, 2, 6), (1, 3, 5), (1, 3, 6), (2, 2, 6)}.

For each (a, b, c) ∈ {(1, 1, 3), (1, 1, 4), (1, 1, 5)}, there are
(12

2

)
pairs of

segments of length da and 12 segments of length dc. For each (a, b, c) ∈
{(1, 1, 6), (2, 2, 6)}, there are

(12
2

)
pairs of segments of length da and 6 seg-

ments of length dc. For each (a, b, c) ∈ {(1, 2, 4), (1, 2, 5), (1, 3, 5)}, there
are 123 triples of segments with lengths da, db, and dc. Finally, for each
(a, b, c) ∈ {(1, 2, 6), (1, 3, 6)}, there are 122 pairs of segments with lengths
da and db, and 6 segments of length dc. Because the total number of triples

of segments equals
((12

2 )
3

) = (66
3

)
, the required probability equals

1 − 3 · 12 · (12
2

) + 2 · 6 · (12
2

) + 3 · 123 + 2 · 122 · 6(66
3

) = 1 − 63

286
= 223

286
.

67. (A)
In any triangle with sides a, b, c, the angle opposite a is acute if, and

only if, a2 < b2 + c2. This follows from the law of cosines. Applying this
fact to the angles opposite x , 24, and 10, we find

x2 < 102 + 242 = 262,

242 < x2 + 102 ⇔ 476 < x2,

102 < x2 + 242.

The first line tells us that x < 26. The second tells us that x ≥ 22 (since
x is an integer). The third is satisfied for every x . Thus there are 4 integer
values that meet all the conditions: 22, 23, 24, 25.

68. (E)
Let r be the radius of C1. Because O X = OY = r , it follows that

∠O ZY = ∠X Z O . Applying the Law of Cosines to triangles X Z O and
O ZY gives

112 + 132 − r2

2 · 11 · 13
= cos ∠X Z O = cos ∠O ZY = 72 + 112 − r2

2 · 7 · 11
.

Solving for r2 gives r2 = 30 and so r = √
30.
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69. (D)
By the law of cosines,

AC2 = AB2 + BC2 − 2 · AB · BC · cos

∠ABC = 500 − 400 cos ∠ABC.

Because cos ∠ABC is between cos 120◦ = − 1
2 and cos 135◦ = −

√
2

2 , it
follows that

700 = 500 + 200 ≤ AC2 ≤ 500 + 200
√

2 < 800.

70. (D)
Quadrilateral K L M N is a square because it has 90◦ rotational sym-

metry, which implies that each pair of adjacent sides is congruent and
perpendicular.

Since K L M N is a square, its area is (N K )2. Note that m(∠N AK ) =
150◦. By the Law of Cosines,

(N K )2 = 42 + 42 − 2(4)(4)

(
−

√
3

2

)
= 32 + 16

√
3.

71. (D)
Let β = π − α. Apply the Law of Cosines to �ABC to obtain

(AC)2 = 82 + 52 − 2(8)(5) cos β = 89 − 80 cos β.

Thus AC < 7 if and only if

89 − 80 cos β < 49,

that is, if and only if

cos β >
1

2
.

Therefore we must have 0 < β < π
3 , and the requested probability is

π/3
π

= 1
3 .

72. (C)
Since 62 + 82 = 100 > 92, the triangle is acute, so that (C) is a correct

choice. A check of (D) by the Law of Sines or the Law of Cosines shows
that it is incorrect. (B) is obviously incorrect by the Law of Sines.
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73. (D)
Let θ be the angle opposite the side of length c. Now

(a + b + c)(a + b − c) = 3ab

(a + b)2 − c2 = 3ab

a2 + b2 − ab = c2.

But

a2 + b2 − 2ab cos θ = c2,

so that ab = 2ab cos θ, cos θ = 1
2 , and θ = 60◦.

74. (E)
By the law of cosines, 52 = 42 + 62 − 2 × 4 × 6 × cos ∠D, hence

cos ∠D = 27/48 = cos ∠RF S. So

RS2 = 52 +
(

7
1

2

)2

− 2(5)

(
7

1

2

)(
27

48

)

giving RS = 6 1
4 .

75. (B)
Let x = P A = P A′ and y = Q A = Q A′. Apply the Law of Cosines

to �P B A′ to obtain

x2 = (3 − x)2 + 12 − 2(3 − x) cos 60◦

which leads to x = 7
5 . Consider �QC A′ in a similar fashion to find

y = 7
4 .
Now apply the Law of Cosines to �P AQ,

P Q2 = x2 + y2 − 2xy cos 60◦ = 49

25
+ 49

16
− 49

20
= 49 · 21

400
,

which leads to P Q = (7/20)
√

21.
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76. (C)
As part of a cyclic quadrilateral, angles A and C are supplementary.

C

D

A

B

39

52

60

25

By the law of cosines on triangles AB D and C B D,

B D2 = 392 + 522 − 2(39)(52) cos C

B D2 = 252 + 602 − 2(25)(60) cos A.

Since C is the supplement of A, replacing cos C by its equal − cos A
and subtracting gives

0 = 0 + (2(39)(52) + 2(25)(60)) cos A

so cos A = 0, A is a right angle, and B D is the diameter of the circumscrib-
ing circle. Its length is B D = √

392 + 522 = √
32132 + 42132 = 65.

77. (A)
Let α = ∠AC N = ∠NC B and x = B N . Because �B X N is equi-

lateral it follows that ∠B XC = ∠C N A = 120◦, ∠C B X = ∠B AC =
60◦ − α, and ∠C B A = ∠B MC = 120◦ − α. Thus �ABC ∼ �B MC and
�ANC ∼ �B XC . Then

BC

2
= BC

AC
= MC

BC
= 1

BC

so BC = √
2 and

C X + x

2
= C N

AC
= C X

BC
= C X√

2
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so C X = (
√

2 + 1)x .

C A

B

M

N

PX

α
α

Then the Law of Cosines applied to �BC X gives

2 = BC2 = B X2 + C X2 − 2 · B X · C X · cos(120◦)

= x2 + (1 +
√

2)2 x2 + (1 +
√

2)x2

= (5 + 3
√

2)x2

and solving for x2 gives the requested answer.

78. (C)
Let M be the midpoint of BC, let AM = 2a AM, and let θ = ∠AM B.

Then cos ∠AMC = − cos θ . Applying the Law of Cosines to �AB M and
to �AMC yields, respectively,

a2 + 4a2 − 4a2 cos θ = 1

and

a2 + 4a2 + 4a2 cos θ = 4.

1

2a

2

a

a

B

M

CA

Adding, we obtain 10a2 = 5, so a = √
2/2 and BC = 2a = √

2.
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79. (A)
Let AD = y. Since AD bisects ∠B AC , we have DB

C D = AB
BC = 2, so we

may set C D = x and DB = 2x as in the figure.

3
y

x D B

A

C

2x

6
60° 60°

Applying the Law of Cosines to �C AD and �D AB, we have

x2 = 32 + y2 − 3y,

(2x)2 = 62 + y2 − 6y.

Subtracting 4 times the first equation from the second yields 0 =
−3y2 + 6y = −3y(y − 2). Since y �= 0, y = 2.

80. (E)
In hexagon ABC DE F , let AB = BC = C D = a and let DE + E F +

F A = b. Let O denote the center of the circle, and let r denote the radius.
Since the arc B AF is one-third of the circle, it follows that ∠B AF =
∠F O B = 120◦. By using the Law of Cosines to compute B F two ways, we
have a2 + ab + b2 = 3r2. Let ∠AO B = 2θ . Then a = 2r sin θ , and

AD = 2r sin(3θ )

= 2r sin θ · (3 − 4 sin2 θ )

= a

(
3 − a2

r2

)

= 3a

(
1 − a2

a2 + ab + b2

)

= 3ab(a + b)

a2 + ab + b2
.

Substituting a = 3 and b = 5, we get AD = 360
49 , so m + n = 409.
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81. (A)
In the figure let ∠B AC = 3α, c = AB, y = AD, z = AE , and

b = AC . Then by the angle bisector theorem

c

2
= 2

3
and

y

b
= 1

2
so

z = 3

2
c, b = 2y.

α α
α

b = 2y

z =   c
y

c

A

B D E C
2 3 6

3
2

Using the law of cosines in �ADB,�AE D, and �AC E , respectively,
yields

c2 + y2 − 4

2cy
=

9
4 c2 + y2 − 9

3cy
=

9
4 c2 + 4y2 − 36

6cy
.

The equality of the first and second expressions implies

3c2 − 2y2 = 12.

The equality of the first and third expressions implies

3c2 − 4y2 = −96.

Solving these equations for c2 and y2 yields

c2 = 40, y2 = 54.

Thus the sides are

AB = c = 2
√

10 ≈ 6.3,

AC = b = 2y = 2
√

54 = 6
√

6 ≈ 14.7,

BC = 11.
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82. (A)
Let the angles of the triangle be α − δ, α, α + δ. Then 3α = α − δ +

α + α + δ = 180◦, so α = 60◦. There are three cases depending on which
side is opposite to the 60◦ angle. In each case, the Law of Cosines can be
used to solve for the unknown side.

If the unknown side is opposite the 60◦ angle, then

x2 = 42 + 52 − 2 · 4 · 5 · cos 60◦ = 21,

so x = √
21.

If the side of length 5 is opposite to the 60◦ angle, then

52 = x2 + 42 − 2 · 4 · x · cos 60◦ = x2 − 4x + 16,

and the positive solution is 2 + √
13.

If the side of length 4 is opposite the 60◦ angle, then

42 = x2 + 52 − 2 · x · 5 · cos 60◦ = x2 − 5x + 25,

which has no real solutions.
The sum of all possible side lengths is 2 + √

13 + √
21. The requested

sum is 2 + 13 + 21 = 36.

83. (B)
We may suppose that the sides of the square have length 2, so that

B M = N D = 1. Then

1 MB C

N

DA

α

θ

2

2

1
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sin θ = sin

(
π

2
− 2α

)
= cos 2α

= 2 cos2 α − 1

= 2

(
2√
5

)2

− 1

= 3

5
.

OR

One may express area(�AM N ) in terms of sin θ , find area (�AM N ) again
numerically by subtracting the areas of other (right) triangles from the area
of the square, and then solve for sin θ .

84. (D)
The area of a triangle equals one half the product of two sides and

the sine of the included angle. Because the median divides the base in
half, it partitions the triangle in two triangles with equal areas. Thus
1
2 · 5 · 9 sin θ = 15 and sin θ = 2·15

5·9 = 2
3 .

5 5

9 h

θ

OR

The altitude h to the base forms a right triangle with the median as its
hypotenuse, and thus h = 9 sin θ . Hence the area of the original triangle is
1
2 · 10h = 1

2 · 10 · 9 sin θ = 30 so sin θ = 2·30
10·9 = 2

3 .

85. (B)
If M N P Q is convex, then A is the sum of the areas of the triangles into

which M N P Q is divided by diagonal M P , so that

A = 1

2
ab sin N + 1

2
cd sin Q.
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Similarly, dividing M N P Q with the diagonal N Q yields

A = 1

2
ad sin M + 1

2
bc sin P.

We show below that these two equations for A hold also if M N P Q is
not convex. Therefore, in any case,

A ≤ 1

4
(ab + cd + ad + bc) = a + c

2
· b + d

2
.

The inequality is an equality if and only if

sin M = sin N = sin P = sin Q = 1,

i.e., if and only if M N P Q is a rectangle.
If M N P Q is not convex, for example if the interior angle Q of the

quadrilateral M N P Q is greater than 180◦, then A is the difference

Area of �M N P − Area of �M Q P

so that

A = 1

2
ab sin N − 1

2
cd sin ∠P QM

= 1

2
ab sin N − 1

2
cd sin(360◦ − ∠M Q P)

= 1

2
ab sin N + 1

2
cd sin ∠M Q P.

86.(C)
The area of a regular polygon is 1

2 × perimeter × apothem. Here
the apothem is R cos( 180

n ) and the perimeter is n × 2R sin( 180
n ). There-

fore 3R2 = 1
2 R cos( 180

n ) × 2n R sin( 180
n ) giving 6

n = 2 sin( 180
n ) cos( 180

n ) =
sin( 360

n ) where n is a positive integer equal to or greater than 3. Of the
possible angles the only one whose sine is a rational number is 30◦ and so
n = 12. To check, note that 6

12 = 1
2 = sin( 360

12 ).

87. (D)
By the Law of Sines, O B

sin ∠AO B = AB
sin ∠AO B = 1

1/2 , so O B =
2 sin ∠O AB ≤ 2 sin 90◦ = 2, with equality if and only if ∠O AB = 90◦.

88. (B)
Let s denote the required side. Then the Law of Sines gives

s

sin 30◦ = 8

sin 45◦
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or

s = 8 sin 30◦

sin 45◦ = 8(1/2)

(
√

2/2)
= 4

√
2.

89. (B)
The center of the circle is not X since 2∠B AC �= ∠B XC . Thus AD

bisects ∠B XC and ∠B AC . (Why?) Since ∠AB D is inscribed in a semicir-
cle, ∠AB D = 90◦, and thus

AB = AD · cos ∠B AD = 1 · cos

(
1

2
∠B AC

)
= cos 6◦.

Also,

∠AX B = 180◦ − ∠DX B = 180◦ − 36◦

2
= 162◦.

Since the sum of the angles in �AX B is 180◦,

∠AX B = 180◦ − (162◦ + 6◦) = 12◦.

By the Law of Sines,

AB

sin ∠AX B
= AX

sin ∠AB X
so

cos 6◦

sin 162◦ = AX

sin 12◦ .

Since sin 162◦ = sin 18◦, we have

AX = cos 6◦ sin 12◦

sin 18◦ = cos 6◦ sin 12◦ csc 18◦.

90. (B)
By the Law of Sines,

27

sin A
= 48

sin 3A
.

Using the identity

sin 3A = 3 sin A − 4 sin3 A

we have

48

27
= 16

9
= sin 3A

sin A
= 2 − 4 sin2 A.
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Solving for sin A gives sin A = √
11/6 and cos A = 5/6. (cos A cannot

be negative since 0 < 3A < 180◦). Again by the Law of Sines,

b

sin(180◦ − 4A)
= 27

sin A

or

b = 27 sin 4A

sin A
.

Since

sin 4A = 2 sin 2A cos 2A = 4 sin A cos A(cos2 A − sin2 A)

we have

b = 27 · 4 · 5

6

(
25 − 11

36

)
= 35.

91. (A)
Construct line C P parallel to E F and intersecting AB at P . Then

AP

AC
= AF

AE
.

That is,

AP

16
= AF

2AF
,

so

AP = 8.

Let a, x , y, α, β, δ, and θ be as shown in the adjoining diagram. The
desired ratio EG/G F is the same as y/x which we now determine.

E

C

M

BPFα

β

A

G a

ay

x
δ

By the law of sines,

a

sin α
= 12

sin θ
and

a

sin β
= 16

sin(180◦ − θ )
= 16

sin θ
.
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Hence

sin β

sin α
= 3

4
.

Moreover,

x

sin α
= 8

sin δ
and

y

sin β
= 16

sin(180◦ − δ)
= 16

sin δ
.

Hence

y

x
= 2

sin β

sin α
= 3

2
.

92. (B)
Let E denote the point on BC for which AE bisects ∠C AD. Because

the answer is not changed by a similarity transformation, we may assume that
AC = 2

√
5 and AD = 3

√
5. Apply the Pythagorean Theorem to triangle

AC D to obtain C D = 5, then apply the angle bisector theorem to �C AD to
obtain C E = 2 and E D = 3. Let x = DB. Apply the Pythagorean Theorem
to �AC E to obtain AE = √

24, then apply the angle bisector theorem to
�E AB to obtain AB = (x/3)

√
24. Now apply the Pythagorean Theorem

to �ABC to get

(
2
√

5
)2 + (x + 5)2 =

( x

3

√
24

)2

from which it follows that x = 9. Hence B D/DC = 9/5, and m + n = 14.

D

B

E

CA

3a

2a

a
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OR

Denote by a the measure of angle C AE . Let AC = 2u, and AD = 3u.
It follows that C D = √

5u. We may assume B D = √
5 (Otherwise, we

could simply modify the triangle with a similarity transformation.) Hence,
the ratio C D/B D we seek is just u. Since cos 2a = 2

3 , we have sin a = 1√
6
.

Applying the Law of Sines in triangle AB D yields

sin D

AB
= sin a√

5
= 2/3√

(2u)2 +
(√

5 (1 + u)
)2

= 1/
√

6√
5

.

Solve this for u to get

2
√

5
√

6 = 3
√

4u2 + 5(1 + 2u + u2)

120 = 9(9u2 + 10u + 5)

0 = 27u2 + 30u − 25

0 − (9u − 5)(3u + 5)

so u = 5/9 and m + n = 14.

93. (A)
Let a = BC , b = AC , and c = AB. Let D, E , and F be the feet of the

perpendiculars from I to BC , AC , and AB, respectively. Because B F and
B D are common tangent segments to the incircle of �ABC , it follows that
B F = B D. Similarly, C D = C E and AE = AF . Thus

2 · B D = B D + B F = (BC − C D) + (AB − AF)

= BC + AB − (C E + AE)

= a + c − b = 25 + 27 − 26 = 26,

so B D = 13. Let s = 1
2 (a + b + c) = 39 be the semiperimeter of �ABC

and r = DI the inradius of �ABC . The area of �ABC is equal to rs and
also equal to

√
s(s − a)(s − b)(s − c) by Heron’s formula. Thus

r2 = (s − a)(s − b)(s − c)

s
= 14 · 13 · 12

39
= 56.

Finally, by the Pythagorean Theorem applied to the right triangle B DI ,
it follows that B I 2 = DI 2 + B D2 = r2 + B D2 = 56 + 132 = 56 + 169 =
225 so B I = 15.
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94. (B)
Let x be as shown, and s the semi-perimeter of the triangle. Denoting the

sides of the triangle by a, b, c we observe that a = 8 + 6 = 14, b = 8 + x ,
c = x + 6.

8 8

6 x

x
6

4

4

4

2s = a + b + c − 2x + 28 so s = x + 14.

On the one hand, the area of the triangle is half the product of the
perimeter and the radius of the inscribed circle; on the other hand, it is given
in terms of s so that

area = rs = 4(x + 14) =
√

s(s − a)(s − b)(s − c) =
√

48x(x + 14)

or

(x + 14)2 = 3x(x + 14).

Therefore x = 7, and the shortest side is c = 6 + 7 = 13.

OR

sin
B

2
= 4√

42 + 62
= 2√

13
, cos

B

2
= 3√

13
,

sin B = 2 sin
B

2
cos

B

2
= 4√

13
.
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Similarly sin C = 4
5 . Using the Law of Sines

sin B

b
= sin C

c
,

12/13

8 + x
= 4/5

6 + x
.

Thus x = 7.

95. (D)
Let ABC D be a trapezoid with AB||C D. Let E be the point on C D

such that C E = AB. Then ABC E is a parallelogram. Set AB = a, BC = b,
C D = c, and D A = d. Then the side lengths of �ADE are b, d, and c − a.
If one of b or d is equal to 11, say b = 11 by symmetry, then d + (c − a) ≤
7 + (5 − 3) < 11 = d, which contradicts the triangle inequality. Thus
c = 11. There are three cases to consider, namely, a = 3, a = 5, and a = 7.

If a = 3, then �ADE has side lengths 5, 7, and 8 and by Heron’s
formula its area is

1

4

√
(5 + 7 + 8)(7 + 8 − 5)(8 + 5 − 7)(5 + 7 − 8) = 10

√
3.

The area of �AEC is 3/8 of the area of �ADE , and triangles ABC
and AEC have the same area. It follows that the area of the trapezoid is
1
2 (35

√
3).

If a = 5, then �ADE has side lengths 3, 6, and 7, and area

1

4

√
(3 + 6 + 7)(6 + 7 − 3)(7 + 3 − 6)(3 + 6 − 7) = 4

√
5.

The area of �AEC is 5/6 of the area of �ADE , and triangles ABC
and AEC have the same area. It follows that the area of the trapezoid is
1
3 (32

√
5).

If a = 7, then �ADE has side lengths 3, 4, and 5. Hence we have
a right trapezoid with height 3 and base lengths 7 and 11. It has area
1
2 (3(7 + 11)) = 27.

The sum of the three possible areas is 35
2

√
3 + 32

3 . Hence r1 = 35
2 ,

r2 = 32
3 , r3 = 27, n1 = 3, n2 = 5, and r1 + r2 + r3 + n1 + n2 = 35

2 + 32
3 +

27 + 3 + 5 = 63 + 1
6 . Thus the required integer is 63.

96. (C)
By Heron’s formula the area of �ABC is

√
(21)(8)(7)(6), which is 84,

so the altitude from vertex A is 2(84)/14 = 12. The midpoint D divides BC
into two segments of length 7, and the bisector of ∠B AC divides BC into
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segments of length 14(13/28) = 6.5 and 14(15/28) = 7.5 (since the angle
bisector divides the opposite side into lengths proportional to the remaining
two sides). Thus the triangle �ADE has base DE = 7 − 6.5 = 0.5 and
altitude 12, so its area is 3.

97. (D)
By the angle bisector theorem, AB/BC = 9/7. Let AB = 9x and

BC = 7x , let m∠AB D = m∠C B D = θ , and let M be the midpoint of BC .
Since M is on the perpendicular bisector of BC , we have B D = DC = 7.
Then

cos θ =
7x
2

7
= x

2
.

B

M

CD
A

9 7

Applying the Law of Cosines to �AB D yields

92 = (9x)2 + 72 − 2(9x)(7)
( x

2

)
,

from which x = 4/3 and AB = 12. Apply Heron’s formula to obtain the
area of triangle AB D as

√
14 · 2 · 5 · 7 = 14

√
5.

98. (C)
Because DE is parallel to AC and E F is parallel to AB it follows that

∠B DE = ∠B AC = ∠E FC .
By the inscribed angle theorem, ∠B DE = ∠B X E and ∠E FC =

∠E XC . Therefore ∠B X E = ∠E XC . Furthermore B E = EC , so by the
angle bisector theorem X B = XC .

Note that ∠B XC = 2∠B X E = 2∠B DE = 2∠B AC .
By the inscribed angle theorem, it follows that X is the circumcenter of

�ABC , so X A = X B = XC = R the circumradius of �ABC .
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A

D F

X

EB C

Let a = BC , b = AC , and c = AB. The area of �ABC equals 1
4R (abc),

and by Heron’s formula it also equals
√

s(s − a)(s − b)(s − c), where
s = 1

2 (a + b + c). Thus

R = abc

4
√

s(s − a)(s − b)(s − c)
= 13 · 14 · 15

4
√

21 · 8 · 7 · 6
= 65

8
,

and X A + X B + XC = 3R = 195
8 .

99. (E)
Square ABC D has side length 14. Let F and G be the feet of the alti-

tudes from E in �AB E and �C DE , respectively. Then FG = 14, E F =
2 · 105

14 = 15 and EG = 2 · 91
14 = 13. Because �E FG is perpendicular

to the plane of ABC D, the altitude to FG is the altitude of the pyramid.
By Heron’s formula, the area of �E FG is

√
(21)(6)(7)(8) = 84, so the

altitude to FG is 2 · 84
14 = 12. Therefore the volume of the pyramid is(

1
3

)
(196)(12) = 784.

100. (C)
(See www.jamestanton.com/wp-content/uploads/2012/03/Cool-Math-

Essay April-2014 On-Cyclic-Quadrilaterals.pdf for some help with this
solution.)
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Because AB + C D = 21 = BC + D A it follows that ABC D always
has an inscribed circle tangent to its four sides. Let r be the radius of the
inscribed circle.

Using square brackets to denote area, we have

[ABC D] = 1

2
r (AB + BC + C D + D A) = 21r.

Thus the radius is maximum when the area is maximized.
Note that

[ABC] = 1

2
· 14 · 6 sin B = 63 sin B

and

[AC D] = 1

2
· 12 · 7 sin D = 42 sin D.

On the one hand,

[ABC D]2 = ([ABC] + [AC D])2

= 632 sin2 B + 422 sin2 D + 2 · 42 · 63 sin B sin D.

On the other hand, by the Law of Cosines,

AC2 = 122 + 72 − 2 · 7 · 12 cos D = 142 + 92 − 2 · 9 · 14 cos B.

Thus

212 =
(

2 · 26 + 2 · 16

4

)2

=
(

142 − 122 + 92 − 72

4

)2

= (63 cos B − 42 cos D)2

= 632 cos2 B + 422 cos2 D − 2 · 42 · 63 cos B cos D.

Adding these two identities yields

[ABC D]2 + 212 = 632 + 422 − 2 · 42 · 63 cos(B + D) ≤ 632

+ 422 − 2 · 42 · 63 = (63 + 42)2 = 1052,

with equality if and only if B + D = π (that is, ABC D is cyclic). Therefore

[ABC D]2 ≤ 1052 − 212 = 212(52 − 1) = 422 · 6,
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and the required maximum r = 1
21 [ABC D] = 2

√
6.

OR

Establish as in the first solution that r is maximized when the area is maxi-
mized. Bretschneider’s formula, which generalizes Brahmagupta’s formula,
states that the area of an arbitrary quadrilateral with side lengths a, b, c, and
d, is given by √

(s − a)(s − b)(s − c)(s − d) − abcd cos2 θ,

where s = 1
2 (a + b + c + d) and θ is half the sum of either pair of opposite

angles. For a, b, c, and d fixed, the area is maximized when cos θ = 0.
Thus the area is maximized when θ = 1

2π that is, when the quadrilateral is

cyclic. In this case, the area equals
√

7 · 12 · 14 · 9 = 42
√

6 and the required
maximum radius r = 1

21 · 42
√

6 = 2
√

6.





Appendix:
Ten Problem-Solving

Strategies

Here, in brief, are the ten problem solving strategies that apply partic-
ularly well to solving competition mathematics problems. Please go to
www.maa.org/ci for full explanations of these strategies and further practice
problems.

Remember that these strategies come after conducting the first, and
most important, step in problem solving:

STEP 1: Read the question, have an emotional reaction to it, take a deep
breath, and then reread the question.

The strategies:

STRATEGY 1: Engage in Successful Flailing
Often one can often identify to which topic a challenge belongs—this ques-
tion is about right triangles, or this question is about repeating decimals—but
still have no clue as to how to start on the challenge. The thing to do then is
to engage in direct flailing.

To do this, think about everything you know about right triangles or
about repeating decimals. Read the question out loud and then describe
it again in different words. Draw a picture. Try an example with actual
numbers. Mark something on the diagram. And so on. Do everything you
can think of that is relevant to the content at hand. In doing so, a step forward
with the problem often emerges.

207
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See the FEATURED PROBLEMS of sections 1 and 13 of this guide to
see this strategy in action (as well as www.maa.org/ci).

STRATEGY 2: Do Something!
Innovation in research and business is not easy. Many times one is stymied
and not even able to conceive of any next step to take. This can happen in
mathematics problem solving too.

Perhaps the most powerful of problem solving techniques, in mathe-
matics and in life, is to simply DO SOMETHING, no matter how irrelevant
or unhelpful it may seem. Unblock the emotional or intellectual impasse by
writing something—most anything—on the page. Turn the diagram upside-
down and shade in a feature that now stands out to you. Underline some
words in the question statement. Just do something!

See the FEATURED PROBLEMS of sections 10 and 17 of this guide
to see this strategy in action (as well as www.maa.org/ci).

STRATEGY 3: Engage in Wishful Thinking
As I tell my students, if there is something in life you want, make it happen.
(And then be willing to handle the consequences of your actions with care
and grace!) If you wish, for example, that “+4” appeared on the left side
of an equation, then make it happen by adding a 4 to the left (with the
consequence of adding a 4 four to the right as well).

A beautiful problem-solving technique is to simply change the problem
to what you wish it could be.

See the FEATURED PROBLEM of section 12 of this guide to see this
strategy in action (as well as www.maa.org/ci).

STRATEGY 4: Draw a Picture
The upper-school mathematics curriculum tends to drill down to analytic
techniques and visualization is put to the side. But visual thinking can
unlock deep insight. Don’t underestimate the power of drawing a picture
for the problem. (For example, perhaps the best way to “prove” that
1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 52 is to draw in the diagonals of a
5 × 5 array of dots.)

See the FEATURED PROBLEMS of sections 1, 3, 6, and 14 of this
guide to see this strategy in action (as well as www.maa.org/ci).



Appendix: Ten Problem-Solving Strategies 209

STRATEGY 5: Solve a Smaller Version of
the Same Problem
A large, complex task can be made comprehensible by examining a smaller,
analogous version.

For example, if there are areas to find, can I use symmetry to my
advantage and work out the area of just one piece? If there is a list, instead
of finding the hundredth number, can I just find the third to get a feel for
things? If I make a first move, is the rest of the game just a smaller version
of the original game? Is the count of things I don’t want easier to compute
than the count of things I do want? And so on.

See the FEATURED PROBLEM of section 18 of this guide to see this
strategy in action (as well as www.maa.org/ci).

STRATEGY 6: Eliminate Incorrect Choices
Eliminating what cannot be right helps determine that which must be correct.

Must the answer be even or odd?

Must the answer be large or small?

Should the answer involve π?

Should the graph be straight or concave?

Should the numbers increase or decrease?

With how many zeros should the answer end?

And so on.

See www.maa.org/ci for some examples of this strategy in action.

STRATEGY 7: Perseverance is Key
What impression of the mathematical pursuit do we give students? Answers
are pre-known (they are at the back of the book or are in the teacher’s
mind), all can be accomplished in a fixed amount of time (quizzes and
exams are usually timed), and the goal is to follow a pre-set intellectual
path (as dictated by a curriculum). Open research and problem-solving
tasks, on the other hand, usually possess none of these features. Persistence
and perseverance are key skills absolutely vital for any success in original
intellectual endeavors.
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See the FEATURED PROBLEM of sections 16 of this guide to see this
strategy in action (as well as www.maa.org/ci).

STRATEGY 8: Second-Guess the Author
If a problem feels staged, then use that to your advantage!

The number 131 mentioned is prime. Coincidence?

The number 203 = 7 × 29 only has one two-digit factor. Is that helpful?

Why are we rolling the dice first and then tossing the coin? Is that order
important?

Why are we focusing on factors of 2 and 5? Is it because 2 × 5 = 10?

Hmm. 210 = 1024 is very close to 1000.

Both equations involve
√

2x . Is that a coincidence?

Why the arc of a circle? Is that because we want the ship to stay the
same distance from a certain point?

Why a parabola? Do we need equal distances of some kind?

See www.maa.org/ci for some examples of this strategy in action.

STRATEGY 9: Avoid Hard Work
No one enjoys hard computation or a tedious grind through formulas and
equations. Brute-force work should be undertaken only as a last resort. Do
what a mathematician does—think long and hard to devise a creative, elegant
approach that avoids hard work!

Do I really need to work out 221 − 1 to see if it factors?

See www.maa.org/ci for some examples of this strategy in action.

STRATEGY 10: Go to Extremes
It is fun to be quirky and push ideas to the edge. Taking the parameters of
a problem to an extreme can give insight to the workings of the situation
described. And such insight can often illuminate a path for success.

If the escalator had zero velocity (that is, it wasn’t moving) how many
steps would I have to climb? What if it was moving really fast?
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What if the number had very few factors? What if the number were
prime?

What if everyone had the same age?

What if the point P was on top of point Q? What if point P was very
far away?

What if cake’s temperature was a billion degrees?

What if x was really close to zero?

What if the circle was so big that it practically a straight line?

See the FEATURED PROBLEM of section 5 of this guide to see this strategy
in action (as well as www.maa.org/ci).




