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Preface

The following topics of mathematical analysis have been developed in the last fifty
years: the theory of linear canonical differential equations with periodic Hamiltoni-
ans, the theory of matrix polynomials with selfadjoint coefficients, linear differen-
tial and difference equations of higher order with selfadjoint constant coefficients,
and algebraic Riccati equations. All of these theories, and others, are based on rel-
atively recent results of linear algebra in spaces with an indefinite inner product,
i.e., linear algebra in which the usual positive definite inner product is replaced
by an indefinite one. More concisely, we call this subject indefinite linear algebra.

This book has the structure of a graduate text in which chapters of advanced
linear algebra form the core. The development of our topics follows the lines of
a usual linear algebra course. However, chapters giving comprehensive treatments
of differential and difference equations, matrix polynomials and Riccati equations
are interwoven as the necessary techniques are developed.

The main source of material is our earlier monograph in this field: Matrices
and Indefinite Scalar Products, [40]. The present book differs in objectives and
material. Some chapters have been excluded, others have been added, and exercises
have been added to all chapters. An appendix is also included. This may serve as
a summary and refresher on standard results as well as a source for some less
familiar material from linear algebra with a definite inner product. The theory
developed here has become an essential part of linear algebra. This, together with
the many significant areas of application, and the accessible style, make this book
useful for engineers, scientists and mathematicians alike.
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Chapter 1

Introduction and Outline

This book is written for graduate students, engineers, scientists and mathemati-
cians. It starts with the theory of subspaces and orthogonalization and then goes
on to the theory of matrices, perturbation and stability theory. All of this material
is developed in the context of linear spaces with an indefinite inner product. The
book also includes applications of the theory to the study of matrix polynomials
with selfadjoint constant coefficients, to differential and difference equations (of
first and higher order) with constant coefficients, and to algebraic Riccati equa-
tions.

The present book is written as a graduate textbook, taking advantage of our
earlier monograph Matrices and Indefinite Scalar Products [40] as the main source
of material. Materials not to have been included are chapters on the theory of
canonical selfadjoint differential equations with periodic coefficients, and on the
theory of rational matrix functions with applications. Material on the analysis of
time-invariant differential and difference equations with selfadjoint coefficients has
been retained. In the interests of developing a clearer and more comprehensive the-
ory, chapters on orthogonal polynomials, normal matrices, and definite subspaces
have been introduced, as well as sets of exercises for every chapter. We hope that
these changes will also make our subject more accessible.

The material of this book has an interesting history. The perturbation and
stability results for unitary matrices in a space with indefinite inner product, and
applications to the theory of zones of stability for canonical differential equations
with periodic coefficients were obtained by M. G. Krein [61]. The next development
in this direction was made by I. M. Gelfand, V. B. Lidskii, and M. G. Neigaus [27],
[77]. Further contributions were made by V. M. Starzhinskii and V. A. Yakubovich
[108], W. A. Coppel and A. Howe [15] as well as N. Levinson [75]. The present
authors have made contributions to the theory of linear differential and difference
matrix equations of higher order with selfadjoint coefficients and to the theory of
algebraic Riccati equations.
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All of these theories are based on the same material of advanced linear alge-
bra: namely, the theory of matrices acting on spaces with an indefinite inner prod-
uct. This theory includes canonical forms and their invariants for H-selfadjoint,
H-unitary and H-normal matrices, invariant subspaces of different kinds, and dif-
ferent aspects of perturbation theory. This material makes the core of the book
and makes up a systematic Indefinite Linear Algebra, i.e., a linear algebra in which
the linear spaces involved are equipped with an indefinite inner product. Imme-
diate applications are made to demonstrate the importance of the theory. These
applications are to the solution of time-invariant differential and difference equa-
tions with certain symmetries in their coefficients, the solution of algebraic Riccati
equations, and to the analysis of matrix polynomials with selfadjoint coefficients.

The material included has been carefully selected to represent the area, to
be self-contained and accessible, to follow the lines of a standard linear algebra
course, and to emphasize the differences between the definite and indefinite linear
algebras. Necessary background material is provided at the end of the text in the
form of an appendix.

Naturally, this book is not of encyclopaedic character and is not a research
monograph. Many subjects belonging to the field are not included. Readers in-
terested in a broader range of material may wish to consult our first book [40],
the book by V. M. Starzhinskii and V. A. Yakubovich [108] for applications, and,
of course, the original papers. For the first chapters of a standard linear alge-
bra course we also recommend F. R. Gantmacher [26], I. M. Glazman and Yu. I.
Lyubich [29], and A. I. Mal’cev [80].

1.1 Description of the Contents

The first chapter contains the introduction, notation and conventions. In the sec-
ond chapter the basic geometric ideas concerning spaces with an indefinite inner
product are developed; the main topics being orthogonalization and classifica-
tion of subspaces. Orthogonalization and orthogonal polynomials are studied in
the third chapter. The fourth chapter is concerned with the classification of linear
transformations in indefinite inner product spaces. Here, H-selfadjoint, H-unitary,
and H-normal linear transformations are introduced together with the notion of
unitary similarity. The fifth chapter is dedicated to canonical forms and invariants
of H-selfadjoint and H-unitary matrices. The sign characteristic, the canonical
forms of linear pencils with selfadjoint coefficients, and invariant maximal non-
negative subspaces are introduced and examined. The theory of real selfadjoint
matrices and real unitary matrices is presented in Chapter six. The seventh chapter
is dedicated to the functional calculus in spaces with an indefinite inner product.
The canonical forms and sign characteristic of functions of matrices are studied,
and special attention is paid to the logarithmic and exponential functions.
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The eighth chapter is “H-normal matrices”. The structure of normal matrices
in spaces with indefinite inner product is very complicated and even “wild” in a
certain sense. A detailed analysis is presented. Following this, the ninth chapter
is dedicated to perturbation and stability theory for H-selfadjoint and H-unitary
matrices. This theory takes on a specific character and form in our context, and
is quite different from the well-known general perturbation theory. This topic
is important in applications to the study of stable boundedness of solutions of
differential and difference equations. Applications for differential equations of first
order appear in Chapter eleven. “Matrix Polynomials” is the subject of the twelfth
chapter. It contains an introduction to the general theory of matrix polynomials
with selfadjoint or symmetric coefficients. The latter theory is based on the results
of the previous chapters. Applications of this theory to time-invariant differential
and difference equations of higher order are presented in the thirteenth chapter.
This includes a description of the connected components of differential or difference
equations with stably bounded solutions. The last chapter contains the theory of
algebraic Riccati equations. The appendix serves as a refresher for some parts of
linear algebra and matrix theory which are used in the main body of the book,
as well as a convenient location for some less-familiar technical results. The book
concludes with the bibliography and index.

1.2 Notation and Conventions

Throughout the book, the following notation is used.

Fonts and Sets

• The sans serif font is used for the standard sets C (the complex numbers), R
(the real numbers), T (the unit circle).

• �z and �z denote the real and imaginary parts of the complex number z:
z = �z + i�z.

• z is the complex conjugate of a complex number z.

• arg z is the argument of a nonzero complex number z; 0 ≤ arg z < 2π.

• Matrices are denoted by capital letters A, B, . . ..

• The calligraphic font is used for vector spaces and subspaces: H,G,M etc.

• M = M0+̇ · · · +̇Mk indicates that the subspace M is a direct sum of its
subspaces M1, . . . ,Mk.

• := the left hand side is defined by the equality. =: the right hand side is
defined by the equality.

• Set definition: {A | B } or {A : B } is the set of all elements of the form
A subject to conditions (equalities, containments, etc.) B.
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• ⊆, ⊇ set-theoretic inclusions.

Matrices and Linear Transformations

• The terminology “invertible matrix” and “nonsingular matrix” will be used
interchangeably.

• We often identify a matrix with the linear transformation generated by the
matrix with respect to the standard orthonormal basis.

• The spectrum of a matrix (=the set of eigenvalues, including nonreal eigen-
values of real matrices) A will be denoted σ(A).

• RangeA is the range of a matrix or linear transformation A (the set of vectors
of the form Ax).

• KerA is the kernel (null-space) of a matrix or a linear transformation A.

• diag (X1, . . . , Xr) or X1 ⊕ X2 ⊕ · · · ⊕ Xr denotes the block diagonal matrix
with blocks X1, . . . , Xr on the main diagonal (in the indicated order).

• The restriction of a matrix A (understood as a linear transformation) to its
invariant subspace V is denoted by A |V .

• The transpose of a matrix A is denoted by AT , and A∗ denotes the conjugate
transpose of A, which coincides with the adjoint of the linear transformation
induced by A with respect to the standard orthonormal basis.

• A is the matrix whose entries are the complex conjugates of those of matrix
A.

• The p × p identity matrix is written Ip or I.

• Sip matrix of size n (see Example 2.1.1):

Sn :=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1

0 0
... 1 0

...
... . . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

• ≤, ≥ between hermitian matrices denotes the Loewner order: A ≤ B or
B ≥ A means that the difference B − A is positive semidefinite.

• Similarly, A < B or B > A means that the difference B − A is positive
definite.

• i+(H), i−(H) is the number of positive (resp. negative) eigenvalues (counted
with multiplicities) of a hermitian matrix H .
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• i0(H) = dim Ker(H) is the number of zero eigenvalues (counted with multi-
plicities) of a hermitian matrix H .

• Inertia of a hermitian matrix H: (i+(H), i−(H), i0(H)).

• Signature of a hermitian matrix H:

sig H = i+(H) − i−(H).

• Rλ(A) is the root subspace of a matrix or linear transformation A corre-
sponding to the eigenvalue λ:

Rλ(A) = Ker(A − λI)n,

where n is the size of A.

• RR,λ(A), or RR,µ±iν(A), is the real root subspace of a real matrix A corre-
sponding to its real eigenvalue λ, or to a pair of nonreal complex conjugate
eigenvalues µ ± iν.

Vectors

• Span {x1, . . . , xk} is the subspace spanned by the vectors x1, . . . , xk.

• For typographic convenience we sometimes represent column vectors x =⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ ∈ Cn in the form x = 〈x1, x2, . . . , xn〉. A row vector x with compo-

nents x1, . . . , xn is denoted by [x1 x2 . . . xn].

• ek = 〈0, 0, . . . , 0, 1, 0, . . . , 0〉 ∈ Cn is the kth standard unit vector (with 1 in
the kth position). The dimension n is to be understood from the context.

• The standard inner product in Cn is denoted by (., .):

(x, y) =
n∑

j=1

x(j)y(j), x = 〈x(1), . . . , x(n)〉, y = 〈y(1), . . . , y(n)〉 ∈ Cn.

Norms

The following norms will be used throughout:

• Euclidean vector norm:

‖x‖ =
√

(x, x), x ∈ Cn.
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• Operator matrix norm:

‖A‖ = max{‖Ax‖ : x ∈ Cn, ‖x‖ = 1}

for an m × n complex matrix A.

‖A‖ coincides with the largest singular value of A.

Miscellaneous

The sign function: sgnx = 1 if x > 0, sgnx = −1 if x < 0, sgnx = 0 if x = 0.



Chapter 2

Indefinite Inner Products

In traditional linear algebra the concepts of length, angle, and orthogonality are
defined by a definite inner product. Here, the definite inner product is replaced
by an indefinite one and this produces substantial changes in the geometry of
subspaces. Thus, the geometry of subspaces in this context is fundamental for our
subject, and is the topic of this chapter.

As in the definite case, when an inner product is introduced on Cn, then
certain n × n matrices (seen as linear transformations of Cn) have symmetries
defined by the inner product. If the inner product is definite this leads to the
usual classes of hermitian, unitary, and normal matrices. If the inner product is
indefinite, then analogous classes of matrices are defined and will be investigated
in subsequent chapters.

2.1 Definition

Let Cn be the n-dimensional complex Hilbert space consisting of all column vectors
x with complex coordinates x(j), j = 1, 2, . . . , n. The typical column vector x will
be written in the form x = 〈x(1), x(2), . . . , x(n)〉. The standard inner product in Cn

is denoted by (., .). Thus,

(x, y) =
n∑

j=1

x(j)y(j)

where x = 〈x(1), . . . , x(n)〉, y = 〈y(1), . . . , y(n)〉 and the bar denotes complex con-
jugation.

A function [., .] from Cn ×Cn to C is called an indefinite inner product in Cn

if the following axioms are satisfied:
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(i) Linearity in the first argument;

[αx1 + βx2, y] = α[x1, y] + β[x2, y]

for all x1, x2, y ∈ Cn and all complex numbers α, β;

(ii) antisymmetry;
[x, y] = [y, x]

for all x, y ∈ Cn;

(iii) nondegeneracy; if [x, y] = 0 for all y ∈ Cn, then x = 0.

Thus, the function [., .] satisfies all the properties of a standard inner product
with the possible exception that [x, x] may be nonpositive for n �= 0.

It is easily checked that for every n × n invertible hermitian matrix H the
formula

[x, y] = (Hx, y), x, y ∈ Cn (2.1.1)

determines an indefinite inner product on Cn. Conversely, for every indefinite inner
product [., .] on Cn there exists an n × n invertible and hermitian matrix H such
that (2.1.1) holds. Indeed, for each fixed y ∈ Cn the function x → [x, y] (x ∈ Cn)
is a linear form on Cn. It is well known that such a form can be represented
as [x, y] = (x, z) for some fixed z ∈ Cn. Putting z = Hy we obtain a linear
transformation H : Cn → Cn. Now anti-symmetry and nondegeneracy of [., .]
ensure that H is hermitian and invertible. The space Cn with an inner product
defined by a nonsingular hermitian matrix H will sometimes be denoted by Cn(H).

Note that here, and whenever it is convenient, an n × n complex matrix is
identified with a linear transformation acting on Cn in the usual way.

The correspondence [., .] ↔ H established above is obviously a bijection be-
tween the set of all indefinite inner products on Cn and the set of all n×n invertible
hermitian matrices. This correspondence will be widely used throughout this book.
Thus, the notions of the indefinite inner product [., .] and the corresponding matrix
H will be used interchangeably.

The following example of an indefinite inner product will be important.

Example 2.1.1. Put [x, y] =
∑n

i=1 xiyn+1−i, where x = 〈x1, . . . , xn〉 ∈ Cn, y =
〈y1, . . . , yn〉 ∈ Cn. Clearly, [., .] is an indefinite inner product. The corresponding
n × n invertible hermitian matrix is⎡⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1

0 0
... 1 0

...
... . . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
This matrix will be called the sip matrix of size n (the standard involutary permu-
tation). �
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The discussion above could equally well be set in the context of Rn in which
case other inner products (whether definite or indefinite) are associated with non-
singular real symmetric matrices H , and the resulting space is denoted by Rn(H).

2.2 Orthogonality and Orthogonal Bases

Let [., .] be an indefinite inner product on Cn and M be any subset of Cn. Define
the orthogonal companion of M in Cn by

M[⊥] = {x ∈ Cn | [x, y] = 0 for all y ∈ M} .

Note that the symbol M[⊥] will be reserved for the orthogonal companion with
respect to the indefinite inner product, while the symbol M⊥ will denote the
orthogonal companion in the original inner product (., .) in Cn, i.e.,

M⊥ = {x ∈ Cn | (x, y) = 0 for all y ∈ M} .

Clearly, M[⊥] is a subspace in Cn, and we will be particularly interested in
the case when M is itself a subspace of Cn. In the latter case, it is not generally
true (as experience with the euclidean inner product might suggest) that M[⊥] is
a direct complement for M. The next example illustrates this point.

Example 2.2.1. Let [x, y] = (Hx, y), x, y ∈ Cn, where H is the sip matrix of size n.
Let M be spanned by the first unit vector, e1, in Cn(i.e., e1 = 〈1, 0, . . . , 0〉). It is
easily seen that M[⊥] is spanned by e1, e2, . . . , en−1 and is not a direct complement
to M in Cn. �

In contrast, it is true that, for any subspace M,

dimM + dimM[⊥] = n. (2.2.2)

To see this observe first that

M[⊥] = H−1(M⊥). (2.2.3)

For, if x ∈ M⊥ and y ∈ M we have

[H−1x, y] = (HH−1x, y) = (x, y) = 0 (2.2.4)

so that H−1(M⊥) ⊆ M(⊥). Conversely, if x ∈ M[⊥] and z = Hx then, for any
y ∈ M,

0 = [x, y] = [H−1z, y] = (z, y).

Thus, z ∈ M⊥ and x = H−1z so that M[⊥] ⊆ H−1(M⊥) and (2.2.3) is estab-
lished. Then (2.2.2) follows immediately.

It follows from equation (2.2.2) that, for any subspace M ⊆ Cn,

(M[⊥])[⊥] = M. (2.2.5)
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Indeed, the inclusion (M[⊥])[⊥] ⊇ M is evident from the definition of M[⊥]. But
(2.2.2) implies that these two subspaces have the same dimension, and so (2.2.5)
follows.

A subspace M is said to be nondegenerate (with respect to the indefinite
inner product [., .]) if x ∈ M and [x, y] = 0 for all y ∈ M imply that x = 0. Oth-
erwise M is degenerate. For example, the defining property (iii) for the indefinite
inner product [., .] ensures that Cn itself is always nondegenerate. In Example 2.2.1
the subspace M is degenerate because 〈1, 0, . . . , 0〉 ∈ M and [〈1, 0, . . . , 0〉, y] = 0
for all y ∈ M (if n ≥ 2).

The nondegenerate subspaces can be characterized in another way:

Proposition 2.2.2. M[⊥] is a direct complement to M in Cn if and only if M is
nondegenerate.

Proof. By definition, the subspace M is nondegenerate if and only if M∩M[⊥] =
{0}. In view of (2.2.2) this means that M[⊥] is a direct complement to M. �

In particular, the orthogonal companion of a nondegenerate subspace is again
nondegenerate.

Let P : Cn → M be the orthogonal projection onto subspace M in the
sense of (., .) and consider the hermitian linear transformation PH |M: M → M.
Nondegenerate subspaces can be characterized in another way using this transfor-
mation, namely: subspace M is nondegenerate if and only if PH |M: M → M is
an invertible linear transformation.

If M is any nondegenerate nonzero subspace, Proposition 2.2.2 can be used
to construct a basis in M which is orthonormal with respect to the indefinite inner
product [., .], i.e., a basis x1, . . . , xk satisfying

[xi, xj ] =
{ ±1 for i = j

0 for i �= j
.

To start the construction observe that there exists a vector x ∈ M such that
[x, x] �= 0. Indeed, if this were not true, then [x, x] = 0 for all x ∈ M. Then the
easily verified identity

[x, y] =
1
4
{[x + y, x + y] + i[x + iy, x + iy] − [x − y, x − y] − i[x − iy, x − iy]}

(2.2.6)
shows that [x, y] = 0 for all x, y ∈ M; a contradiction.

So it is possible to choose x ∈ M with [x, x] �= 0 and write x1 = x/
√|[x, x]| so

that [x1, x1] = ±1. By Proposition 2.2.2 (applied in M), the orthogonal companion
(Span {x1})[⊥] of Span {x1} in M is a direct complement of Span {x1} in M and is
also nondegenerate. Now take a vector x2 ∈ (Span {x1})[⊥] such that [x2, x2] = 1,
and so on, until M is exhausted.

In the next proposition we describe an important property of bases for a
nondegenerate subspace which are orthonormal in the above sense. By sig Q, where
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Q : M → M is an invertible hermitian linear transformation from M to M, we
denote the signature of Q, i.e., the difference between the number of positive
eigenvalues of Q and the number of negative eigenvalues of Q (in both cases
counting with multiplicities).

Proposition 2.2.3. Let [., .] = (H., .) be an indefinite inner product with corre-
sponding hermitian invertible matrix H, and let x1, . . . , xk be an orthonormal
(with respect to [., .]) basis in a nondegenerate subspace M ⊆ Cn. Then the sum∑k

i=1[xi, xi] coincides with the signature of the hermitian linear transformation
PH |M: M → M, where P is the orthogonal projection (with respect to (., .)) of
Cn onto M.

Proof. Since M is nondegenerate, the transformation PH |M is invertible. Now
for y =

∑k
i=1 αixi we have

(PH |M y, y) =
k∑

i=1

|αi|2 [xi, xi].

Thus, the quadratic form defined on M by (PH |M x, x) reduces to a sum of
squares in the basis x1, . . . , xk. Since [xi, xi] = ±1 it follows that

∑k
i=1[xi, xi] is

just the signature of PH |M. �

Note, in particular, that the sum
∑k

i=1[xi, xi] does not depend on the choice
of the orthonormal basis.

2.3 Classification of Subspaces

Let [., .] be an indefinite inner product on Cn. A subspace M of Cn is called
positive (with respect to [., .]) if [x, x] > 0 for all nonzero x in M, and nonnegative
if [x, x] ≥ 0 for all x in M. Clearly, every positive subspace is also nonnegative
but the converse is not necessarily true (see Example 2.3.1 below). Observe that
a positive subspace is nondegenerate. If the invertible hermitian matrix H is
such that [x, y] = (Hx, y), x, y ∈ Cn, we say that a positive (resp. nonnegative)
subspace is H-positive (resp. H-nonnegative).

Example 2.3.1. Let [x, y] = (Hx, y), x, y ∈ Cn, where H is the sip matrix of size
n > 1, and assume n is odd. Then the subspace spanned by the first 1

2 (n + 1) unit
vectors is nonnegative, but not positive. The subspace spanned by the unit vector
with 1 in the 1

2 (n + 1)-th position is positive. �
We are to investigate the constraints on the dimensions of positive and non-

negative subspaces. But first a general observation is necessary.
Let [., .]1 and [., .]2 be two indefinite inner products on Cn with corresponding

invertible hermitian matrices H1 and H2, respectively. Suppose, in addition, that
H1 and H2 are congruent, i.e., H1 = S∗H2S for some invertible matrix S. (Here,
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and subsequently, the adjoint S∗ of S is taken with respect to (., .) .) In this case,
a subspace M is H1-positive if and only if SM is H2-positive, with a similar
statement replacing “positive” by “nonnegative”. The proof is direct: take x ∈ M
and

[Sx, Sx]2 = (H2Sx, Sx) = (S∗H2Sx, x) = (H1x, x) = [x, x]1.

Thus, [x, x]1 > 0 for all nonzero x ∈ M if and only if [y, y]2 > 0 for all nonzero y
in SM.

Theorem 2.3.2. The maximal dimension of a positive, or of a nonnegative subspace
with respect to the indefinite inner product [x, y] = (Hx, y) coincides with the
number of positive eigenvalues of H (counting multiplicities).

Note that the maximal possible dimensions of nonnegative and positive sub-
spaces coincide.

Proof. We prove only the nonnegative case (the positive case is analogous). So let
M be a nonnegative subspace, and let p = dimM. Then

min
(x,x)=1, x∈M

(Hx, x) ≥ 0. (2.3.7)

Write all the eigenvalues of H in the nonincreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. By
the max-min characterization of the eigenvalues of H, (Theorem A.1.6) we have

λp = max
L

min
(x,x)=1, x∈L

(Hx, x),

where the maximum is taken over all the subspaces L ⊆ Cn of dimension p. Then
(2.3.7) implies λp ≥ 0 and, since H is invertible, λp > 0. So p ≤ k where k is the
number of positive eigenvalues of H.

To find a nonnegative subspace of dimension k, appeal to the observation
preceding the theorem. By Theorem A.1.1, there exists an invertible matrix S
such that S∗HS is a diagonal matrix of 1’s and −1’s:

H0 := S∗HS = diag (1, . . . , 1,−1, . . . ,−1) , (2.3.8)

where the number of +1’s is k. Hence, it is sufficient to find a k-dimensional
subspace which is nonnegative with respect to H0. One such subspace (which is
even positive) is spanned by the first k unit vectors in Cn. �

A subspace M ⊆ Cn is called H-negative (where H is such that [x, y] =
(Hx, y), x, y ∈ Cn), if [x, x] < 0 for all nonzero x in M. Replacing this condition
by the requirement that [x, x] ≤ 0 for all x ∈ M, we obtain the definition of
a nonpositive (with respect to [., .]) or H-nonpositive subspace. As in Theorem
2.3.2 it can be proved that the maximal possible dimension of an H-negative or
of an H-nonpositive subspace is equal to the number of negative eigenvalues of H
(counting multiplicities).
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Note also the following inequality: Let M be an H-nonnegative or H-nonpo-
sitive subspace, then

|(Hy, z)| ≤ (Hy, y)1/2(Hz, z)1/2 (2.3.9)

for every y, z ∈ M. The proof of (2.3.9) is completely analogous to the standard
proof of Schwarz’s inequality.

We pass now to the class of subspaces which are peculiar to indefinite inner
product spaces and have no analogues in the spaces with a definite inner product.
A subspace M ⊆ Cn is called neutral (with respect to [., .]), or H-neutral (where
H is such that [x, y] = (Hx, y), x, y ∈ Cn) if [x, x] = 0 for all x ∈ M. Sometimes,
such subspaces are called isotropic. In Example 2.3.1 the subspaces spanned by
the first k unit vectors, for k = 1, . . . , n−1

2
, are all neutral.

In view of the identity (2.2.6) a subspace M is neutral if and only if [x, y] = 0
for all x, y ∈ M. Observe also that a neutral subspace is both nonpositive and
nonnegative, and (if nonzero) is necessarily degenerate.

We have seen in Example 2.3.1 that the nonnegative subspace spanned by
the first 1

2
(n + 1) unit vectors is a direct sum of a neutral subspace (spanned

by the first 1
2(n − 1) unit vectors) and a positive definite subspace (spanned by

the 1
2
(n + 1)-th unit vector). This is a general property, as the following theorem

shows.

Theorem 2.3.3. An H-nonnegative (resp. H-nonpositive) subspace is a direct sum
of an H-positive (resp. H-negative) subspace and an H-neutral subspace.

Proof. Let M ⊆ Cn be an H-nonnegative subspace, and let M0 be a maximal H-
positive subspace in M (since dimM is finite, such an M0 always exists). Since
M0 is nondegenerate, Proposition 2.2.2 implies that M0+̇M[⊥]

0 = Cn, and hence

M0+̇
(
M[⊥]

0 ∩M
)

= M.

It remains to show that M[⊥]
0 ∩M is H-neutral. Suppose not; so there exists an

x ∈ M[⊥]
0 ∩ M such that [x, x] �= 0. Since M is H-nonnegative it follows that

[x, x] > 0. Now for each y ∈ M0 we have [x + y, x + y] = [x, x] + [y, y] > 0, in
view of the fact that M0 is H-positive. So Span {x,M0} is also an H-positive
subspace; a contradiction with the maximality of M0.

For an H-nonpositive subspace the proof is similar. �
The decomposition of a nonnegative subspace M into a direct sum M0+M1,

where M0 is positive and M1 is neutral, is not unique. However, dimM0 is
uniquely determined by M. Indeed, let P be the orthogonal (with respect to
(., .)) projection on M, then it is easily seen that dimM0 = rank PH |M, where
PH |M: M → M is a selfadjoint linear transformation.

One can easily compute the maximal possible dimension of a neutral sub-
space.
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Theorem 2.3.4. The maximal possible dimension of an H-neutral subspace is
min(k, l), where k (resp. l) is the number of positive (resp. negative) eigenvalues
of H, counting multiplicities.

Proof. In view of the remark preceding Theorem 2.3.2 it may be assumed that
H = H0 is given by (2.3.8). The existence of a neutral subspace of dimension
min(k, l) is easily seen. A basis for one such subspace can be formed from the unit
vectors e1,e2, . . . as follows: e1 + ek+1, e2 + ek+2, . . . .

Now let M be a neutral subspace of dimension p. Since M is also nonnegative
it follows from Theorem 2.3.2 that p ≤ k. But M is also nonpositive and so the
inequality p ≤ l also applies. Thus, p ≤ min(k, l). �

2.4 Exercises

1. For which values of the parameter w ∈ C are the following hermitian matrices
nonsingular? When they are nonsingular determine whether the determinant
is positive or negative and find the number of negative eigenvalues.

(a)

⎡⎢⎢⎢⎢⎢⎣
1 α α2 . . . αn−1 w
α 1 α . . . αn−2 αn−1

...
...

...
αn−1 αn−2 . . . 1 α

w αn−1 . . . α2 α 1

⎤⎥⎥⎥⎥⎥⎦ , α ∈ C.

(b)

⎡⎢⎢⎢⎢⎢⎣
α 0 . . . 0 w
0 α . . . β 0
...

...
...

0 β . . . α 0
w 0 . . . 0 α

⎤⎥⎥⎥⎥⎥⎦ , α, β ∈ R. The matrix here has even size.

(c)

⎡⎢⎢⎢⎣
α β β2 . . . βn−1 w

β α β . . . βn−2 βn−1

...
...

...
...

...
...

w β
n−1

β
n−2

. . . β α

⎤⎥⎥⎥⎦ α ∈ R, β ∈ C.

2. Define an inner product [., .] on Cn by

[x, y] =
n∑

j=1

xjyn+1−j .

(a) Describe all positive and nonnegative subspaces (with respect to this
inner product).
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(b) Describe all negative and nonpositive subspaces.

(c) Describe all neutral subspaces.

3. Let Sn be the n × n sip matrix and consider the following matrices:

H1 =
[

0 In

In 0

]
, H2 =

[
In 0
0 Sn

]
, H3 =

[
Sn 0
0 In

]
.

Find an H-orthogonal basis in each of the three cases.

4. Find all H-neutral subspaces in each of the three cases of Exercise 3.

5. Find all H-positive subspaces in each of the three cases of Exercise 3.

6. Let M1 and M2 be two subspaces of Cn for which M1 ⊆ M2 and dimM1 +
dimM2 = n. Show that there is an indefinite inner product on Cn in which
M2 = M[⊥]

1 .

7. Define an indefinite inner product on C3n in terms of

H =

⎡⎣ 0 0 In

0 In 0
In 0 0

⎤⎦ .

Consider the subspaces M1 = Span {e1, e2, . . . , en},
M2 = Span {en+1, en+2, . . . , e2n}, and M3 = Span {e2n+1, e2n+2, . . . , e3n}.
(a) Find all H-neutral, all H-nonnegative, and all H-nonpositive subspaces

that contain M1.

(b) Similarly for M3.

(c) Find all H-positive and all H-nonnegative subspaces that contain M2.

8. Let [x, y] = (Hx, y), where H is the n × n matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0 0
1 0 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Find the maximal H-positive and the maximal H-negative subspaces.

9. Solve Exercise 8 for the following matrices:

(a) H0 =

⎡⎢⎢⎢⎣
0 0 . . . 0 1
0 0 . . . 1 0
... . . .

...
1 0 . . . 0 0

⎤⎥⎥⎥⎦ .
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(b) H1 =

⎡⎢⎢⎢⎣
a1 0 . . . 0 1
0 a2 . . . 1 0
... . . .

...
1 0 . . . 0 an

⎤⎥⎥⎥⎦ , aj ∈ R, n = 2k.

The parameters a1, . . . , an are such that H1 is invertible.

(c) H2 = i

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −1
0 0 . . . −1 0
... . . .

...
0 1 . . . 0 0
1 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦ (and the matrix has even size).

(d) H3 = P − (I − P ), where P is hermitian and P 2 = P .

(e) H4 = i

⎡⎢⎢⎢⎢⎢⎣
2i 0 . . . 0 1
0 −2i . . . 1 0
... . . .

...
0 −1 . . . 2i 0
−1 0 . . . 0 −2i

⎤⎥⎥⎥⎥⎥⎦ (and the matrix has even size).

(f) H5 =

⎡⎢⎢⎢⎣
1 α α . . . α
α 1 α . . . α
... . . .

...
α α α . . . 1

⎤⎥⎥⎥⎦ , α ∈ R.

The number α is chosen so that H5 is invertible. What are all such α?

10. Let M be a nonnegative subspace of Cn(H). Show that, except for the trivial
cases when M is neutral or when M is positive, there is a continuum of
distinct direct sum decompositions M = M0+̇M1, where M0 is positive
and M1 is neutral.

11. Show that the neutral subspace M1 is the same for all direct sum decompo-
sitions M = M0+̇M1 of Exercise 10.

12. Let L(n)
2 be the space of all polynomials with complex coefficients of degree

n or less and consider the function ω defined on the unit circle by

ω(eiθ) =
n∑

j=−n

ωje
ijθ , 0 ≤ θ < 2π,

where ω−n, ω−n+1, . . . , ωn ∈ C. Assume that ω is not identically zero and
that the values of ω(eiθ) are real.

Let

x(λ) =
n∑

j=0

ξjλ
j ∈ L(n)

2 , y(λ) =
n∑

j=0

ηjλ
j ∈ L(n)

2 ,
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and define the bilinear form [., .] on L(n)
2 by

[x, y] =
1
2π

∫ 2π

0

n∑
j=0

ξje
ijθω(eiθ)

n∑
k=0

ηkeikθ dθ.

(a) Show that [., .] defines an inner product on L(n)
2 . (The inner product is

generally indefinite.)

(b) Represent the inner product in the form [x, y] = (H2ξ, η) where H2 is
an (n + 1) × (n + 1) hermitian matrix.

(c) Under what conditions on ω(t) are all principal minors of H2 invertible?

(d) When is the inner product [., .] definite, i.e., [x, x] > 0 for every nonzero
x ∈ L(n)

2 ?

13. For each of the following indefinite inner products on Rn find: (a) all nonneg-
ative subspaces, (b) all positive subspaces, (c) all nonpositive subspaces, (d)
all negative subspaces, (e) all neutral subspaces, (f) all maximal nonnegative
subspaces, (g) all maximal nonpositive subspaces.

The indefinite inner products are:

(α) [x, y] =
∑n

j=1 xjyn+1−j ; x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉 ∈ Rn;

(β) [x, y] = (H1x, y), H1 =
[

0 Im

Im 0

]
, (m = n

2 );

(γ) [x, y] = (H2x, y), H2 =
[

Im 0
0 Sm

]
, (m = n

2
);

and Sm is the m × m sip matrix;

(δ) [x, y] = (H3x, y), H3 =
[

Sm 0
0 Im

]
, (m = n

2
);

(ε) [x, y] =
∑m

j=1 (x2j−1y2j + x2jy2j−1) , n = 2m;

(ζ) [x, y] =
∑n

j=1 xjyn+1−j +
∑n

j=1 ajxjyj , a1, . . . , an ∈ R;

(η) [x, y] = a
(∑n

i,j=1 xiyj

)
+
∑n

j=1 xjyj , a ∈ R.

14. Describe geometrically the curve in R2 formed by the vectors x ∈ R2 that
satisfy the equation (Hjx, x) = 1, for each of the following real symmetric
matrices Hj , j = 1, 2, 3, 4, 5:

(a) H1 =
[

3 2
2 3

]
; (b) H2 =

[
1 2
2 1

]
; (c) H3 =

[ −1 −1
−1 −1

]
;

(d) H4 =
[

a b
b a

]
; (e) H5 =

[
a b
b c

]
;

where a, b, c are real numbers.
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15. Describe geometrically the surface in R3 formed by the vectors x ∈ R3 that
satisfy the equation (Hjx, x) = 1, for each of the following real symmetric
matrices Hj , j = 1, 2, 3, 4, 5:

(a) H1 =

⎡⎣ 3 2 0
2 3 0
0 0 1

⎤⎦ ; (b) H2 =

⎡⎣ 1 2 0
2 1 0
0 0 1

⎤⎦ ;

(c) H3 =

⎡⎣ 1 2 0
2 1 0
0 0 −1

⎤⎦ ; (d) H4 =

⎡⎣ −1 −1 0
−1 −1 0
0 0 ±1

⎤⎦ ;

(e) H5 =

⎡⎣ a b 0
b a 0
0 0 ±1

⎤⎦ ;

where a, b are real numbers.

16. Describe geometrically the surface in Rn formed by the vectors x ∈ Rn that
satisfy the equation (Hx, x) = 1, for each of the following situations:

(a) H > 0; (b) H = Sn, the sip matrix; (c) H = diag (λ1, λ2, . . . , λn),

where λ1 ≤ λ2 ≤ · · · ≤ λn are real numbers.

2.5 Notes

The material of this chapter is well-known, even in the infinite dimensional setting
(see [5], [6], [11], [57]).



Chapter 3

Orthogonalization and
Orthogonal Polynomials

Let x1, x2, . . . , xm be a linearly independent set in a linear space with a definite
inner product. In classical linear algebra and analysis a fundamental role is played
by the construction of a mutually orthogonal set of vectors y1, y2, . . . , ym for which
each subset y1, . . . , yk (k ≤ m) spans the same subspace as x1, . . . , xm. The well-
known Gram–Schmidt process is of this kind. This is also the central idea in the
analysis of systems of orthogonal polynomial functions. This chapter is devoted to
the development of this line of thought in the context of the linear space Cn with
an indefinite inner product.

Motivated by applications, attention will be confined to sets of vectors y1, . . . ,
ym for which [yj , yj ] �= 0 for each j; sometimes described as the case of “nonzero
squares”. In this case the orthogonalization will be said to be regular. It turns
out that the results look very like those obtained in the classical case based on a
definite inner product.

The chapter consists of four sections. The first contains general results con-
cerning orthogonal (regular) systems. The second contains discussion of a funda-
mental theorem of Szegő for the case of a definite inner product, as well as a more
general theorem of M. G. Krein for the indefinite case. The last two sections con-
tain a proof of the Krein theorem using the “one-step case” developed by Ellis and
Gohberg as well as their and Lay’s analysis of fundamental determinants arising
in an extension of this process.

3.1 Regular Orthogonalizations

Let Cn be a vector space with an indefinite inner product [·, ·] . A vector y ∈ Cn is
called nonneutral if [y, y] �= 0. Note first of all that any set of nonneutral vectors
y1, y2, . . . , ym which is orthogonal in the sense of the indefinite inner product [·, ·]
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is necessarily linear independent. To see this, suppose that
∑m

j=1 gjyj = 0, and
hence, for k = 1, 2, . . . , m,

m∑
j=1

gj [yj , yk] = gk [yk, yk] = 0.

Then it follows that gk = 0.
We now introduce the key definition. Let v1, v2, . . . , vm be a system (i.e.,

an ordered set) of vectors of Cn. A system of vectors y1, y2, . . . , ym which are
mutually orthogonal with respect to [·, ·] is said to be a regular orthogonalization
of v1, v2, . . . , vm if:

[yj , yj] �= 0, j = 1, 2, . . . , m, (3.1.1)

and

Span {y1, y2, . . . , yk} = Span {v1, v2, . . . , vk} , for k = 1, 2, . . . , m. (3.1.2)

As the following example shows, not every sequence of vectors v1, v2, . . . , vm ∈ Cn

admits a regular orthogonalization.

Example 3.1.1. Consider

[x, y] = (S2mx, y) , x, y ∈ C2m,

where S2m is the sip matrix of size 2m. Let e1, e2, . . . , em be the system of m first
standard unit vectors in C2m. It is easily seen that this system is orthogonal in [·, ·]
and all vectors are neutral

[ej, ek] = 0 j, k = 1, 2, . . . , m. �
For any system of vectors v1, v2, . . . , vm ∈ Cn, the Gram matrix is defined to

be the hermitian matrix

G(v1, v2, . . . , vm) = ([vj , vk])m
j,k=1 .

Clearly, the sip matrix of size m × m is the Gram matrix in Example 3.1.1.

Theorem 3.1.2. The system of vectors v1, v2, . . . , vm from Cn admits a regular
orthogonalization if and only if

detG(v1, v2, . . . , vk) �= 0, for k = 1, 2, . . . , m.

If these conditions hold, then one such orthogonalization y1, y2, . . . , ym is given by

yr =
r∑

j=1

γ
(r)
rj vj , r = 1, 2, . . . , m,

where (
γ

(r)
jk

)r

j,k=1
= (G(v1, v2, . . . , vr))−1.

Moreover
γ(r)

rr = [yr, yr] �= 0, r = 1, 2, . . . , m.
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Proof. Suppose there exists a regular orthogonalization y1, y2, . . . , ym of v1, . . .,
vm. Since

Span {y1, y2, . . . , yk} = Span {v1, v2, . . . , vk}, 1 ≤ k ≤ m,

there exist numbers

αk,j ∈ C, 1 ≤ j ≤ k, 1 ≤ k ≤ m,

such that

yk =
k∑

j=1

αk,jvj , 1 ≤ k ≤ m. (3.1.3)

Furthermore, for 2 ≤ k ≤ m, the vector yk is orthogonal (in the sense of [·, ·]) to
y1, y2, . . . , yk−1 and hence also to v1, . . . , vk−1. From (3.1.3) it follows that

[yk, yk] =
k∑

j=0

αk,j [vj , yk] = αk,k[vk, yk]. 1 ≤ k ≤ m.

For k = 1, 2, . . . , m we define the matrices Ωk and Ak by

Ωk = ([yj , vi])
k
j,i=1 and Ak = (αi,j)

k
i,j=1 ,

where αi,j = 0 for 1 ≤ i < j ≤ m. In view of (3.1.3) we obtain

[yj , vi] = [
j∑

�=1

αj,�v�, vi] =
j∑

�=1

αj,�[v�, vi] =
k∑

�=1

αj,�[v�, vi],

and hence
Ωk = AkG(v1, v2, . . . , vk), k = 1, 2, . . . , m.

Therefore,
detG(v1, v2, . . . , vk) �= 0.

Let Gr = G(v1, v2, . . . , vr) and

Γr = G−1
r =

(
γ

(r)
jk

)r

j,k=1
.

The first step is to prove that γ
(r)
rr �= 0. It is obvious that γ

(1)
11 �= 0. For r = 2, . . . , m

write Gr in the form

Gr =
[

Gr−1 Z∗

Z [vr, vr]

]
where Z = ([vr, v1] . . . [vr, vr−1]). It is clear that

Gr

⎡⎢⎢⎢⎢⎣
γ

(r)
1r

γ
(r)
2r
...

γ
(r)
rr

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ .
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Hence

Gr−1

⎡⎢⎢⎣
γ

(r)
1r
...

γ
(r)
r−1,r

⎤⎥⎥⎦+ Z∗γ(r)
rr = 0

and

Z

⎡⎢⎢⎣
γ

(r)
1r
...

γ
(r)
r−1,r

⎤⎥⎥⎦+ [vr, vr] γ(r)
rr = 1.

The latter two equations imply(
[vr, vr] − ZG−1

r−1Z
∗) γ(r)

rr = 1,

and it follows that γ
(r)
rr �= 0.

In the second step it is proved that the system

yr :=
r∑

j=1

γ
(r)
rj vj (r = 1, 2, . . . , m)

is a regular orthogonalization of v1, v2, . . . , vm. From the definition of Γr, r =
1, 2, . . . , m it follows that

r∑
j=1

γ
(r)
rj [vj , vp] = δrp (p = 1, 2, . . . , r) ,

where δrp is the Kronecker symbol: δrp = 0 if r �= p, and δrp = 1 if r = p. Therefore

[yr, vp] =

⎡⎣ r∑
j=1

γ
(r)
rj vj , vp

⎤⎦ =
r∑

j=1

γ
(r)
rj [vj , vp] = δrp.

Using this equality we obtain for l ≥ k,

[yk, yl] =

⎡⎣ k∑
j=1

γ
(k)
kj vj , yl

⎤⎦ =
k∑

j=1

γ
(k)
kj [vj , yl] =

k∑
j=1

γ
(k)
kj δjl = δklγ

(k)
kk .

In the third step, it remains to prove that equation (3.1.2) holds. From the
definition of y1, y2, . . . , ym it follows that

Span {y1, y2, . . . , yr} ⊆ Span {v1, v2, . . . , vr} , for r = 1, 2, . . . , m.

The reverse inclusion will be proved by induction and, for the first step, it is clear
that Span {y1} = Span {v1} . Suppose that

Span {y1, y2, . . . , yr−1} = Span {v1, v2, . . . , vr−1} .
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Since γ
(r)
rr �= 0,

vr =

⎛⎝yr −
r−1∑
j=1

γ
(r)
rj vj

⎞⎠(γ(r)
rr

)−1

,

and it follows from this relation that

Span {v1, v2, . . . , vr} ⊆ Span {v1, v2, . . . , vr−1, yr} ⊆ Span {y1, . . . , yr} .

The theorem is proved. �
Theorem 3.1.3. If the sequence of vectors v1, v2, . . . , vm admits a regular orthogo-
nalization and

{x1, x2, . . . , xm}, {y1, y2, . . . , ym} ∈ Cn

are two such orthogonalizations, then for some αj ∈ C \ {0}: yj = αjxj (j =
1, 2, . . . , m).

Proof. Suppose the orthogonal systems x1, x2, . . . , xm and y1, y2, . . . , ym are given
as in the theorem. Since

Span {v1, v2, . . . , vr} = Span {y1, y2, . . . , yr} = Span {x1, x2, . . . , xr} ,

for r = 1, 2, . . . , m, there exist αrj , βrj ∈ C such that

yr =
r∑

j=1

αrjvj , xr =
r∑

j=1

βrjvj .

Furthermore
[yr, yj ] = [xr , xj ] = 0, j = 1, 2, . . . , r − 1

and hence
[yr, vj ] = 0, j = 1, 2, . . . , r − 1. (3.1.4)

Since xj is a linear combination of v1, . . . , vj (j = 1, 2, . . . , r − 1) we have

[yr, xj ] = 0, j = 1, 2, . . . , r − 1. (3.1.5)

Now write

xr = aryr +
r−1∑
j=1

ajxj , a1, . . . , ar ∈ C.

Taking inner products [·, ·] of this equality with yr and with xj (j = 1, 2, . . . , r−1),
and using (3.1.4) and (3.1.5) we obtain

ar = [xr, yr]/[yr, yr]

and
[xr, xj ] = 0 = aj [xj , xj ], j = 1, 2, . . . , r − 1.

Hence aj = 0 (j = 1, 2, . . . , r − 1), and xr = aryr. �
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Corollary 3.1.4. Let v1, v2, . . . , vr be the standard orthonormal system in Cn, i.e.,

vk = ek = 〈0, 0, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0〉,

and assume that det([ep, eq])k
p,q=1 �= 0, for k = 1, 2, . . . , r. Then the vectors

y1 =

⎡⎢⎢⎢⎣
γ

(1)
11

0
...
0

⎤⎥⎥⎥⎦ , y2 =

⎡⎢⎢⎢⎢⎢⎣
γ

(2)
12

γ
(2)
22

0
...
0

⎤⎥⎥⎥⎥⎥⎦ , . . . , yr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ
(r)
1r
...

γ
(r)
rr

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1.6)

from Cn, where (
γ(r)

pq

)r

p,q=1
= G(e1, e2, . . . , er)−1

and
G(e1, e2, . . . , er) = ([ep, eq])

r
p,q=1 ,

form a regular orthogonalization of e1, e2, . . . , er in the inner product [·, ·] .
This corollary follows immediately from Theorem 3.1.2.
If the indefinite inner product is defined in terms of the matrix H = (hpq)m

p,q=1

then, with vectors vk of the corollary,

[vj , vk] = (Hej, ek) = hkj ,

and we obtain (
γ(r)

pq

)r

p,q=1
=
(
(hqp)r

p,q=1

)−1
.

Finally, note that a regular orthogonalization of a system can be constructed
with the help of the Gram-Schmidt orthogonalization process in exactly the same
way as in the case of Cn with a definite inner product.

Example 3.1.5. Let L
(n)
2 be the vector space of all polynomials of degree ≤ n:

v(t) = a0 + a1t + · · · + antn

on the unit circle |t| = 1 with the inner product

(v, u) =
1
2π

∫ 2π

0

v(eiθ)u(eiθ)dθ.

Let

ω(eiθ) =
n∑

j=−n

ωje
ijθ �≡ 0



3.1. Regular Orthogonalizations 25

be a weight function for which ω(eiθ) is real valued for θ ∈ [0, 2π], and define an
indefinite inner product by

[v, u]w =
1
2π

∫ 2π

0

v(eiθ)ω(eiθ)u(eiθ)dθ.

It is clear that the system
1, t, t2, . . . , tn

is orthonormal in the inner product (·, ·) . By direct computation we obtain

G(1, t, . . . , tk) =

⎡⎢⎢⎣
ω0 ω1 . . . ωk

ω−1 ω0 . . . ωk−1

. . .
ω−k ω−k+1 . . . ω0

⎤⎥⎥⎦ .

Assume
det G(1, t, . . . , tk) �= 0, for k = 0, 1, . . . , n,

and let G(1, t, . . . , tk)−1 = (ω(k)
pq )k

p,q=0. The system of polynomials

s0(t) = 1,

sk(t) = ω
(k)
00 + ω

(k)
10 t + · · · + ω

(k)
k0 tk, (k = 1, 2, . . . , n) (3.1.7)

form a regular orthogonalization of 1, t, . . . , tn in L
(n)
2 in the indefinite inner prod-

uct [ , ]ω. �
The last statement follows directly from Theorem 3.1.2.

Example 3.1.6. Let H0 be a hermitian matrix defined by the equality

Hn =

⎡⎢⎢⎣
1 a1 a2 . . . an−1

a1 1 0 . . . 0
. . .

an−1 0 0 . . . 1

⎤⎥⎥⎦
and

[x, y]Hn = (Hnx, y), x, y ∈ Cn.

Let e1, e2, . . . , en be the standard basis in Cn. Assume that

1 −
k−1∑
j=1

|aj |2 > 0 and 1 −
k∑

j=1

|aj|2 < 0

for some k (2 ≤ k ≤ n − 1). It is easy to see that

det Hr = 1 −
r−1∑
j=1

|aj |2 .
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Hence it is obvious that the matrix Hr is indefinite for r = k, k + 1, . . . , n and
positive definite for r = 1, 2, . . . , k. Moreover, all eigenvalues of Hn except one are
positive and one is negative. (Cf. Theorems A.1.3 and A.1.4.) From the equality

Hr =
[

1 b
b∗ I

]
,

where b = [a1 a2 . . . ar−1] and b∗ =

⎡⎢⎢⎢⎣
a1

a2

...
ar−1

⎤⎥⎥⎥⎦ there follows the factorization

Hr =
[

1 0
b∗ I

] [
1 0
0 I − b∗b

] [
1 b
0 I

]
,

and hence

H−1
r =

[
1 −b
0 I

] [
1 0
0 B

] [
1 0

−b∗ I

]
=
[

1 + bBb∗ −bB
−Bb∗ B

]
,

where
B = (I − b∗b)−1.

To compute B consider the equation

y − b∗by = x.

Let z = by, then y = b∗z + x, hence

z =
b

1 − bb∗
x

and

Bx =
(

b∗b
1 − bb∗

+ I

)
x.

So the last column in H−1
r has the form⎡⎢⎢⎢⎢⎣

h
(r)
1

h
(r)
2
...

h
(r)
r

⎤⎥⎥⎥⎥⎦ ,

where

h
(r)
1 =

−ar−1

1 − bb∗
, h

(r)
j = (1 − bb∗)−1ajar−1 + δjr for j = 2, 3, . . . , r.
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The vectors

gr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(r)
1

h
(r)
2
...

h
(r)
r

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Cn, r = 1, 2, . . . , n

form a regular orthogonalization of the system e1, e2, . . . , en. �

3.2 The Theorems of Szegő and Krein

Let the weight function

ω(t) :=
n∑

j=−n

ωjt
j , |t| = 1

be nonnegative (but not identically zero) on the unit circle, and let sk(t) (k =
0, 1, . . . , n) be the orthogonalization of 1, t, . . . , tn in the definite inner product
[·, ·]ω . The next theorem is due to Szegő [96].

Theorem 3.2.1. The zeros of the polynomials sk(t), k = 1, 2, . . . , n lie inside the
unit circle.

Proof. Let t0 be a zero of sk(t), then sk(t) = (t− t0)r(t), for some polynomial r(t)
of degree k − 1, and so

sk(t) + t0r(t) = tr(t).

Since [r, sk]ω = 0, we have

[r, r]ω = [tr(t), tr(t)]ω = [sk(t) + t0r(t), sk(t) + t0r(t)]ω
= [sk(t), sk(t)]ω + |t0|2 [r(t), r(t)]ω ,

and hence
(1 − |t|20)[r(t), r(t)]ω = [sk(t), sk(t)]ω .

Since [sk(t), sk(t)]ω and [r(t), z(t)]ω are positive, it follows that |t0| < 1. �
This theorem admits a generalization for the case in which the function ω(t)

has changes of sign on the unit circle. In this case the corresponding inner product
is indefinite. However, it will be assumed in this case that the matrices

Ωk :=

⎡⎢⎢⎣
ω0 ω1 . . . ωk

ω−1 ω0 . . . ωk−1

. . .
ω−k ω−k+1 . . . ω0

⎤⎥⎥⎦ (3.2.8)
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are nonsingular, i.e.,

dk := detΩk �= 0 (k = 0, 1, . . . , n). (3.2.9)

We now state Krein’s theorem [60]:

Theorem 3.2.2. Let sk(t), k = 0, 1, . . . , n, be a regular orthogonalization of 1, t, . . .,
tn in the inner product [ , ]ω , with ω(t) =

∑n
j=−n ωjt

j, and assume that (3.2.9)
holds. For any k ≥ 1 let βk and γk = k − βk denote, respectively, the number of
constancies of sign, and the number of changes of sign, in the sequence

1, d0, d1, . . . , dk−1. (3.2.10)

Then for sk(t),

n+(sk) = βk and n−(sk) = γk, if dkdk−1 > 0

and
n+(sk) = γk and n−(sk) = βk, if dkdk−1 < 0

where n+(sk) (n−(sk)) is the number of zeros of sk inside the open unit disc
(outside the closed unit disc). In particular, the polynomials sk have no zeros on
the unit circle.

If all dk’s are positive then the matrix (ωj−p)
n
j,p=0 is positive definite by

Theorem A.1.3, and hence Szegő’s theorem follows from Krein’s theorem.
The proof of Krein’s theorem will be presented in the next section. Note that

from the Law of Inertia (see Theorem A.1.1) it follows that

i+(Ωn) = βn for dndn−1 > 0

and
i−(Ωn) = γn for dndn−1 > 0,

where i+(Ωn) and i−(Ωn) are the numbers of positive and negative eigenvalues of
Ωn, respectively (counted with multiplicities).

Now Krein’s theorem can be restated in a slightly different notation:

Theorem 3.2.3. Let

Ωk =

⎡⎢⎢⎣
t0 t−1 . . . t−k

t1 t0 . . . t−k+1

. . .
tk tk−1 . . . t0

⎤⎥⎥⎦ , k = 0, 1, . . . , n

be hermitian matrices. Assume that

dk := detΩk �= 0, k = 0, 1, . . . , n,
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and let ⎡⎢⎢⎢⎣
ω0

ω1

...
ωk

⎤⎥⎥⎥⎦ = Ω−1
k

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ .

Then the polynomial
sk(t) = ω0 + ω1t + · · · + ωktk

has no zeros on the unit circle and, furthermore,

n±(sk) = i±(Ωk) for dkdk−1 > 0,

n±(sk) = i∓(Ωk) for dkdk−1 < 0.

3.3 One-Step Theorem

In this section we prove the following “one-step theorem” due to Ellis and Gohberg
[18]. A matrix A = [ajk] ∈ Cn×n is said to be Toeplitz if ajk = ars for all ordered
pairs of indices such that j − k = r − s. In other words, each diagonal of A which
is parallel to the main diagonal has all entries equal.

Theorem 3.3.1. Let Ωn = (tj−k)n
j,k=0 be a hermitian Toeplitz matrix for which

detΩm �= 0, for m = n − 2, n − 1, n.

Let
sn(t) = ω0 + ω1t + · · · + ωntn

and
sn−1(t) = u0 + u1t + · · · + un−1t

n−1,

where ⎡⎢⎢⎢⎣
ω0

ω1

...
ωn

⎤⎥⎥⎥⎦ = Ω−1
n

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
u0

u1

...
un−1

⎤⎥⎥⎥⎦ = Ω−1
n−1

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ .

Then ωn �= 0, un−1 �= 0. If we define

g0 = − 1
un−1

n−2∑
k=0

tk+1uk,

then |tn − g0| �=
∣∣u−1

n−1

∣∣ and:

a) if |tn − g0| <
∣∣u−1

n−1

∣∣ or equivalently detΩn detΩn−2 > 0 then n−(sn) =
n−(sn−1);
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b) if |tn − g0| >
∣∣u−1

n−1

∣∣ or equivalently detΩn detΩn−2 < 0 then n−(sn) =
n − n−(sn−1).

First we will prove a preliminary result:

Theorem 3.3.2. Let Ωn = (tj−k)n
j,k=0 be a hermitian Toeplitz matrix and

detΩn �= 0, detΩn−1 �= 0.

Then the polynomial
sn(t) = ω0 + ω1t + · · · + ωntn

with ⎡⎢⎢⎢⎣
ω0

ω1

...
ωn

⎤⎥⎥⎥⎦ = Ω−1
n

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦
has no zeros on the unit circle.

Proof. By Cramer’s rule, ωn = (det Ωn−1)/(detΩn) and hence ωn �= 0. Let Sn+1

be the (n + 1)×(n + 1) sip matrix. Then S2
n+1 = I and Sn+1ΩnSn+1 = Ωn, where

Ωn = (ωj−k)n
j,k=0. From these equalities it follows that

Ωn

⎡⎢⎢⎢⎣
ωn

ωn−1

...
ω0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦
or

Ωn

⎡⎢⎢⎢⎣
1
ν1

...
νn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ρ
0
...
0

⎤⎥⎥⎥⎦ , (3.3.11)

where ν1 = ω−1
n ωn−1, . . . , νn = ω−1

n ω0 and ρ = ω−1
n .

Let pn(t) be the polynomial

pn(t) = 1 + ν1t + · · · + νntn.

We will prove first that pn(t) �= 0 for |t| = 1.
Assume that t0 ∈ C is a zero of pn(t) and hence

pn(t) = (t − t0)(g1 + g2t + · · · + gntn−1).

Equating coefficients of like powers of t it is found that

b + t0c = d, (3.3.12)
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where

b =

⎡⎢⎢⎢⎣
1
ν1

...
νn

⎤⎥⎥⎥⎦ , c =

⎡⎢⎢⎢⎢⎢⎣
g1

g2

...
gn

0

⎤⎥⎥⎥⎥⎥⎦ , d =

⎡⎢⎢⎢⎣
0
g1

...
gn

⎤⎥⎥⎥⎦ .

In particular, t0g1 = −1 and νn = gn.
For the Toeplitz matrix Ωn we have

c∗Ωnc = [g1, . . . , gn, 0]Ωn

⎡⎢⎢⎢⎣
g1

...
gn

0

⎤⎥⎥⎥⎦ = [0, g1, . . . , gn]Ωn

⎡⎢⎢⎢⎣
0
g1

...
gn

⎤⎥⎥⎥⎦ = d∗Ωnd.

It follows from (3.3.11) that

b∗Ωnb = [1, ν1, . . . , νn]

⎡⎢⎢⎢⎣
ρ
0
...
0

⎤⎥⎥⎥⎦ = ρ

and

t0c
∗Ωnb = t0[g1, . . . , gn, 0]

⎡⎢⎢⎢⎣
ρ
0
...
0

⎤⎥⎥⎥⎦ = t0g1ρ = −ρ.

Using these equalities together with

(b∗ + t0c
∗)Ωn(b + t0c) = d∗Ωnd,

we obtain
ρ − ρ − ρ + |t0|2 c∗Ωnc = c∗Ωnc

which implies that ρ =
(
|t0|2 − 1

)
c∗Ωnc. Since ρ �= 0 it follows that |t0| �= 1.

Finally, since

pn(t) = 1 + ν1t + · · · + νntn = 1 + ω−1
n ωn−1t + · · · + ω−1

n ω0t
n,

we obtain
pn(t) = w−1

n tn(ωnt−n + ωn−1t
−n+1 + · · · + ω0),

and, for |t| = 1, pn(t) = ω−1
n tnsn(t). Hence sn(t) �= 0 for |t| = 1, and the theorem

is proved. �
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Now we prove the “one-step” version of Krein’s theorem.

Proof of Theorem 3.3.1. As in the proof of Theorem 3.3.2, denote

ρ = ω−1
n , ν1 = ω−1

n ωn−1, . . . , νn = ω−1
n ω0

and, similarly,

µ = u−1
n−1, x1 = u−1

n−1un−2, . . . , xn−1 = u−1
n−1u0.

It is clear that
µ =

detΩn−1

detΩn−2
and ρ =

detΩn

detΩn−1
.

The numbers µ and ρ are real and µ, ρ �= 0. As in the proof of Theorem 3.3.2, we
build the polynomials

pn(t) = 1 + ν1t + · · · + νntn and pn−1(t) = 1 + x1t + · · · + xn−1t
n−1.

By Theorem 3.3.2, the polynomials have no zeros on the unit circle, and the
following relations hold:

Ωn−1

⎡⎢⎢⎢⎣
1
x1

...
xn−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
µ
0
...
0

⎤⎥⎥⎥⎦ and Ωn

⎡⎢⎢⎢⎣
1
ν1

...
νn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ρ
0
...
0

⎤⎥⎥⎥⎦ .

For any complex number c we now have

Ωn

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1
x1

...
xn−1

0

⎤⎥⎥⎥⎥⎥⎦+ c

⎡⎢⎢⎢⎢⎢⎣
0

xn−1

...
x1

1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
µ
0
...
0
a

⎤⎥⎥⎥⎥⎥⎦+ c

⎡⎢⎢⎢⎢⎢⎣
a
0
...
0
µ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
µ + ca

0
...
0

a + cµ

⎤⎥⎥⎥⎥⎥⎦ ,

where

a = tn − g0, with g0 := − 1
un−1

⎛⎝n−1∑
j=1

tjuj−1

⎞⎠ .

Choosing c = −aµ−1, we obtain

Ωn

⎡⎢⎢⎢⎢⎢⎣
1

x1 + cxn−1

...
xn−1 + cx1

c

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
µ − |a|2 /µ

0
...
0
0

⎤⎥⎥⎥⎥⎥⎦ ,
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and hence ρ = µ − |a|2 /µ and⎡⎢⎢⎢⎢⎢⎣
1
ν1

...
νn−1

νn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1
x1

...
xn−1

0

⎤⎥⎥⎥⎥⎥⎦+ c

⎡⎢⎢⎢⎢⎢⎣
0

xn−1

...
x1

1

⎤⎥⎥⎥⎥⎥⎦ .

It follows from this that

pn (t) = pn−1(t) + ctp̃n−1(t),

where

p̃n−1(t) = tn−1

(
1 + x1

1
t

+ · · · + xn−1
1

tn−1

)
.

Since ρ �= 0 we have |a| �= |µ| and |tn − g0| �= |µ| . Also |c| �= 1.
It is clear that

|ctp̃n−1(t)| =
∣∣∣ctnpn−1(t)

∣∣∣ = |c| |pn−1(t)| , |t| = 1.

If |c| < 1, then |pn−1(t)| > |ctp̃n−1(t)| for |t| = 1, by the theorem of Rouché (a
classical theorem of complex analysis, see [82, Theorem 6.2.5], for example). It
follows that

n+(pn) = n+(pn−1).

If |c| > 1 we deduce in a similar way that

n+(pn) = n+(tp̃n−1) = 1 + n+(p̃n−1).

Note that |c| < 1 if and only if |a| < |µ|, which in turn happens if and only if
ρµ > 0, or equivalently, if and only if detΩn detΩn−2 > 0. To complete the proof
it remains to remark that, from the equalities

pn(t) = ρtnsn(1/t), pn−1(t) = const tn−1sn−1(1/t), t �= 0,

it follows that
n+(pn) = n−(sn), n+(pn−1) = n−(sn−1).

Also,
pn−1(t) = tn−1p̃n−1(1/t),

and therefore in case |c| > 1 we have

n−(sn) = n+(pn) = 1 + n+(p̃n−1) = 1 + n−(pn−1) = 1 + (n − 1 − n+(pn−1))
= n − n−(sn−1). �



34 Chapter 3. Orthogonalization and Orthogonal Polynomials

Proof of Theorem 3.2.3. By Theorem 3.3.2, the polynomial pn has no zeros on the
unit circle. We will use induction on n. For n = 1 it is easy to see that ν1 = −t−1

0 t,
and

ρ = t0 − t−1t
−1
0 t1 = t0(1 − ∣∣t−1

0 t1
∣∣2),

where ν1 and ρ are as in the proof of Theorem 3.3.1. Therefore

s1(t) = 1 − t−1
0 t1t

so s1 has a zero if and only if t1 �= 0, and in that case the zero of s1 is t0t
−1
1 .

Thus n+(s1) = 1 if and only if
∣∣t1t−1

0

∣∣ > 1, if and only if ρ(t0)−1 > 0. Since t0 is
the (only) eigenvalue of Ω0 the last condition becomes i−(Ω0) = 1 if ρ > 0, and it
becomes i+(Ω0) = 1 if ρ < 0. Hence the theorem holds for n = 1.

Now take n > 1 and assume that Theorem 3.2.3 is true for n − 1. First
consider the case

detΩn detΩn−1 > 0.

By the induction hypothesis, n+(sn−1) = i+(Ωn−2). Let

ξ = 〈t1, t2, . . . , tn−1〉 and x = 〈x1, x2, . . . , xn−1〉.

Then

Ωn−1 =
[

t0 ξ∗

ξ Ωn−2

]
.

Since [
t0 ξ∗

ξ Ωn−2

] [
1
x

]
=
[

µ
0

]
it follows that t0 = ξ∗Ω−1

n−2ξ + µ.
Consequently, the matrix Ωn−1 can be factorized in the form

Ωn−1 =
[

t0 ξ∗

ξ Ωn−2

]
=
[

1 ξ∗Ω−1
n−2

0 1

] [
µ 0
0 Ωn−2

] [
1 0

Ω−1
n−2ξ I

]
. (3.3.13)

If µ > 0 then i−(Ωn−1) = i− (Ωn−2) and since n+(sn) = n+(sn−1) it follows that

n+(sn) = i−(Ωn−1).

Now, consider first the case when

detΩn detΩn−2 > 0.

Then detΩn, detΩn−1, detΩn−2 have the same sign (positive or negative). It is
clear from (3.3.13) that in this case µ > 0, and according to Theorem 3.3.1

n+(sn) = n+(sn−1) + 1.
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Taking into the consideration that i−(Ωn−1) = i−(Ωn−2) we obtain

n+(sn) = n+(sn−1) + 1 = i+(Ωn−1) + 1 = i+(Ωn).

Consider the second case when

detΩn detΩn−2 < 0.

Then detΩn and detΩn−1 have the same sign, and det Ωn−2 has the opposite sign.
By Theorem 3.3.1 n−(sn) = n − n−(sn−1), hence

n+(sn) = n − n+(sn−1) − 1.

The inductive hypothesis implies n+(sn−1) = i−(Ωn−1). Since in this case µ < 0,
we obtain that i+(Ωn−2) = i+(Ωn−1) and hence

n+(sn) = n − (i−(Ωn−1) + 1) = n − 1 − i−(Ωn−1) = i+(Ωn−1).

This completes the proof for the case when detΩn detΩn−1 > 0.

Let us now pass to the case when detΩn detΩn−1 < 0. We assume first that
detΩn det Ωn−2 > 0. Then by Theorem 3.3.1,

n+(sn) = n+(sn−1) + 1.

The inductive hypothesis in this case implies n+(sn−1) = i−(Ωn−2), so n+(sn) =
i−(Ωn−2) + 1. Since µ < 0, according to (3.3.13) we have

i−(Ωn−1) = i−(Ωn−2) + 1,

hence n+(sn) = i−(Ωn−1), as it is to be proved.
Assume now

detΩn detΩn−2 < 0.

By Theorem 3.3.1, n−(sn) = n − n−(sn−1). The inductive hypothesis implies
n+(sn−1) = i−(Ωn−2), so

n+(sn) = n+(sn−1) = i−(Ωn−2).

From (3.3.13) it follows that µ > 0 and i−(Ωn−1) = i−(Ωn−2); hence

n+(sn) = i−(Ωn−1).

This completes the induction and the proof of the theorem. �
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3.4 Determinants of One-Step Completions

The two conditions

|tn − g0| <
∣∣u−1

n−1

∣∣ and |tn − g0| >
∣∣u−1

n−1

∣∣
used in Theorem 3.3.1 have a geometric interpretation. Define an (n+1)× (n+1)
Toeplitz matrix Ω(ω) by setting tn = ω, t−n = ω, and all other entries as in Ωn,
It turns out that, for all ω on the circle

|ω − g0| =
∣∣u−1

n−1

∣∣
(which appears in Theorem 3.3.1), the matrix Ω(ω) is singular.

In contrast, a matrix Ω(ω) for which

|ω − g0| <
∣∣u−1

n−1

∣∣
is said to be internal. If |ω − g0| >

∣∣u−1
n−1

∣∣, the matrix Ω(ω) is said to be external.
The properties of extensions of this kind for general hermitian matrices (not

necessarily Toeplitz) are studied in this section.
We will start with some more notations. For a matrix M = (mjk)n

j,k=1,
M(p, . . . , q) will denote the principal submatrix (mjk)q

j,k=p. It will be assumed
that all entries of the hermitian matrix

F = (fjk)n
j,k=1 (3.4.14)

are given except for the entries f1n and fn1 = f1n. Then we study the determinant
of F (w), where F (w) has the same entries as F except that f1n and fn1 are replaced
by w ∈ C and w, respectively.

The following theorem is due to Ellis, Gohberg, and Lay [19], [20].

Theorem 3.4.1. Let F be the given hermitian matrix (3.4.14) and w ∈ C. Assume
that

d1 :=detF (1, . . . , n − 1) �=0, d2 :=F (2, . . . , n) �=0, d3 :=detF (2, . . . , n − 1) �=0.

Then

det F (w) =
d1d2

d3

(
1 − |w − w0|2 d2

3

d1d2

)
,

where

w0 =
1

w1n

n−1∑
j=2

fnjwjn (3.4.15)

and
[F (1, . . . , n − 1)]−1 = (wjk)n−1

j,k=1.
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Proof. Put ρn−1 = d1/d3, µn−1 = d2/d3, and⎡⎢⎢⎢⎣
1
ν2

...
νn−1

⎤⎥⎥⎥⎦ = d−1
1

⎡⎢⎢⎢⎣
ρn−1

0
...
0

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
u2

...
un−1

1

⎤⎥⎥⎥⎦ = d−1
2

⎡⎢⎢⎢⎣
0
0
...

µn−1

⎤⎥⎥⎥⎦ .

Introduce

∆n = w +
n−1∑
j=2

fnjνj , δn = w +
n−1∑
j=2

f1juj

and

ϕn = − ∆n

µn−1
, ψn =

δn

ρn−1
.

It is easy to see that, if we define ρn := ρn−1 + ϕnδn and µn := µn−1 + ψn∆n,
then

F (w)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
1
ν2

...
νn−1

0

⎤⎥⎥⎥⎥⎥⎦+ ϕn

⎡⎢⎢⎢⎢⎢⎣
0
u2

...
un−1

1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
ρn

0
...
0
0

⎤⎥⎥⎥⎥⎥⎦
and

F (w)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψn

⎡⎢⎢⎢⎢⎢⎣
1
ν2

...
νn−1

0

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0
u2

...
un−1

1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
µn

⎤⎥⎥⎥⎥⎥⎦ .

It follows from these equations that

ρn =
det F (w)

d2
and µn =

detF (w)
d1

.

Hence ρn = ρn−1(1 − ϕnψn) and µn = µn−1(1 − ϕnψn).
If we define (this is the same w0 as in formula (3.4.15))

w0 = −
n−1∑
j=2

fnjνj = −
n−1∑
j=2

f1jµj ,

then δn = w − w0, ∆n = w − w0 and

|w − w0|2 = ϕnψnρn−1µn−1. (3.4.16)
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Also

ϕnψn =
|w − w0|2 d2

3

d1d2
.

Since
det F (w) = ρnd2 = ρn−1(1 − ϕnψn)d2,

we obtain

det F (w) =
d1d2

d3

(
1 − |w − w0|2 d2

3

d1d2

)
, (3.4.17)

as required. �

Corollary 3.4.2.

a) If
det F (1, . . . , n − 1) detF (2, . . . , n − 1) < 0,

then for any w ∈ C, det F (w) �= 0 and

detF (w) det F (2, . . . , n − 1) < 0.

b) If
det F (1, . . . , n − 1) detF (2, . . . , n − 1) > 0,

then det F (w) �= 0 for all w ∈ C except for w on the circle |w − w0| = ρ0,
where

ρ0 =
(det F (1, . . . n − 1) det F (2, . . . , n))1/2

detF (2, . . . , n − 1)

and

w0 = −
n−1∑
j=2

fnjνj , (3.4.18)

⎡⎢⎢⎢⎣
1
ν2

...
νn−1

⎤⎥⎥⎥⎦ = F (1, . . . , n − 1)−1

⎡⎢⎢⎢⎣
ρn−1

0
...
0

⎤⎥⎥⎥⎦ . (3.4.19)

c) Moreover, for internal completions w (when |w − w0| < ρ0) we have

det F (w) det F (2, . . . , n − 1) > 0

and for external completions w (when |w − w0| > ρ0),

detF (w) det F (2, . . . , n − 1) < 0.
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In order to explain Corollary 3.4.2 we will use notation and formulas from
the proof of Theorem 3.4.1. From the formulas

det F (w) = ρnd2 = µnd1

it follows that detF (w) �= 0 if and only if both of the numbers ρn, µn are different
from zero. Since ρn = ρn−1(1 − ϕnψn) and µn = µn−1(1 − ϕnψn), it follows that

det F (w) �= 0 if and only if ϕnψn �= 1.

Now use the formula (3.4.16). Therefore the condition ϕnψn �= 1 becomes

|w − w0|2 �= µn−1ρn−1 =
d1d2

d2
3

.

The statements of the corollary now follow from the final formula (3.4.17).

Example 3.4.3. Consider the hermitian matrix

F (w) =

⎡⎢⎢⎢⎣
1 0 . . . w
0 1 . . . a1

... . . .
...

w a1 . . . 1

⎤⎥⎥⎥⎦ .

In this case

det F (1, . . . , n − 1) = 1, detF (2, . . . , n) = 1 −
n−1∑
j=1

|aj |2

and det F (2, . . . , n − 1) = 1, and it follows easily that

w0 = 0, ρ0 =

⎛⎜⎝1 −
⎛⎝n−1∑

j=1

|aj |2
⎞⎠1/2

⎞⎟⎠ if 1 −
n−1∑
j=1

|aj |2 > 0

and det F (w) < 0 if 1 −∑n−1
j=1 |aj |2 < 0.

It is easy to check directly that

det F (w) = 1 − (|w|2 + |a1|2 + · · · + |an|2
)
.

Hence, if 1 − |a1|2 − · · · − |an|2 > 0 then det F (w) �= 0 if and only if

|w| �=
(∣∣a2

1

∣∣+ |a2|2 + · · · + |an|2
)1/2

.

Here

w0 = 0 and ρ0 =
(
|a1|2 + · · · + |an|2

)1/2

.

If 1 − |a1|2 − · · · + |an|2 < 0 then det F (w) < 0 for any w ∈ C. �
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If Ω = (ωj−k)n
j,k=0 is a Toeplitz matrix then Ω(1, . . . , n − 1) = Ω(2, . . . , n)

and some formulas from this section simplify. For instance,

ρ0 =
|detΩ(1, . . . , n − 1)|
|detΩ(1, . . . , n − 2)| .

Note also that an alternative formula for w0 arises. Namely,

w0 = [fn2, . . . , fn(n−1)]F (2, . . . , n − 1)

⎡⎢⎣ f21

...
f(n−1)1

⎤⎥⎦ .

3.5 Exercises

1. Let

H1 =

⎡⎢⎢⎢⎣
1 a2 a3 . . . an

a2 1 0 . . . 0
... . . .

...
an 0 0 . . . 1

⎤⎥⎥⎥⎦ , aj ∈ C.

(a) Under what conditions is the matrix H1 positive or negative definite?

(b) If the matrix H1 is indefinite how many negative eigenvalues does it
have?

(c) Find a regular orthogonalization of the system e1, e2, . . . , en in the inner
product [x, y] = (H1x, y) .

2. As in Exercise 12 of Chapter 2, let L(n)
2 be the space of all polynomials on

the unit circle of degree n or less, and let the inner product [x, y] be defined
as in that exercise. Let H2 be an invertible hermitian matrix such that

[x, y] = (H2ξ, η), where x(λ) =
n∑

j=0

ξjλ
j ∈ L(n)

2 , y(λ) =
n∑

j=0

ηjλ
j ∈ L(n)

2

and
ξ = 〈ξ0, ξ1, . . . , ξn〉, η = 〈η0, η1, . . . , ηn〉.

(a) Under what conditions on ω(t) are all principal minors of H2 invertible?

(b) Find the regular orthogonalization of 1, t, t2, . . . , tn for the weight func-
tion

ω(t) = ω−ntn + 1 + ωntn, ω−n = ωn ∈ C.

Assume that the conditions of part (a) hold.
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3. Let

H3 =

⎡⎢⎢⎢⎣
1 a a2 . . . an

a 1 a . . . an−1

... . . .
...

an an−1 an−2 . . . 1

⎤⎥⎥⎥⎦ , a ∈ C.

(a) When is the matrix positive or negative definite?

(b) How many negative eigenvalues does the matrix H3 have?

(c) When is the matrix H3 invertible? Find the inverse. When are all prin-
cipal minors invertible?

(d) Find a regular orthogonalization of the system e1, e2, . . . , en+1 in the
inner product [x, y] = (H3x, y).

(e) Find a regular orthogonalization of 1, t, . . . , tn in L(n)
2 , when

ω(t) = �(1 + 2
n∑

j=1

ajeijθ).

(f) Where are the zeros of the polynomials obtained in the regular orthog-
onalization of (e)?

4. Answer questions (a)-(d) of Exercise 3 for the following matrices:

(a) H4 = (αδjk + βjβk)n
j,k=1, α ∈ R, βj ∈ C.

Here, δjk is the Kronecker symbol: δjk = 1 if j = k, and δjk = 0 if j �= k.

(b) H5 =

⎡⎢⎢⎢⎣
α α . . . α β
α α . . . β α
... . . .

...
β α . . . α α

⎤⎥⎥⎥⎦ ; where α, β ∈ R, with even size.

(c) H6 =

⎡⎢⎢⎢⎣
β α . . . α α
α β . . . α α
... . . .

...
α α . . . α β

⎤⎥⎥⎥⎦ , α, β ∈ R.

In case (c) answer also question (e) of Exercise 3 for the weight function

ω(t) = β − α + α
n∑

j=−n

tj .

(d) H7 =

⎡⎢⎢⎢⎣
α i i . . . i
−i α i . . . i
... . . .

...
−i −i −i . . . α

⎤⎥⎥⎥⎦ , α ∈ R.
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In case (d) answer also question (e) of Exercise 3 for the weight function

ω(t) = α + 2�
⎛⎝i

n∑
j=1

tj

⎞⎠ .

(e) H8 =

⎡⎢⎢⎢⎢⎢⎣
α 0 . . . 0 β
0 α . . . β 0
... . . .

...
0 β . . . α 0
β 0 . . . 0 α

⎤⎥⎥⎥⎥⎥⎦ , α, β ∈ R, with even size, 2m.

(f) H9 =

⎡⎢⎢⎢⎣
α1 β . . . β

β α2 . . . β
...

...
. . .

...
β β . . . αn

⎤⎥⎥⎥⎦ , α1, α2, . . . αn ∈ R, β ∈ C.

(g) H10 =

⎡⎢⎢⎢⎣
α z z2 . . . zn

z−1 α z . . . zn−1

... . . .
...

z−n . . . α

⎤⎥⎥⎥⎦ , where α ∈ R and z = eiθ0 , θ0 ∈ R.

In case (g) answer also questions (e) and (f) of Exercise 3 for

ω(t) = α + 2�
⎛⎝ n∑

j=1

eij(θ0+θ)

⎞⎠ .

(h) H11 =
[

I G
G∗ I

]
, where G = diag (g1, . . . , gn), gj ∈ C.

5. Consider the hermitian matrices

(a)

⎡⎢⎢⎢⎣
1 a a2 . . . an−1 w
a 1 a . . . an−2 an−1

... . . .
...

w an−1 . . . a 1

⎤⎥⎥⎥⎦ , a ∈ C,

(b)

⎡⎢⎢⎢⎢⎢⎣
α 0 . . . w
0 α . . . β 0
... . . .

...
0 β . . . α 0
w 0 . . . 0 α

⎤⎥⎥⎥⎥⎥⎦ , α, β ∈ R, with even size,
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(c)

⎡⎢⎢⎢⎣
α β β2 . . . βn−1 w

β α β . . . βn−2 βn−1

... . . .
...

ω β
n−1

β
n−2

. . . β α

⎤⎥⎥⎥⎦ , α ∈ R, β ∈ C.

Find the values of the parameter w ∈ C for which the determinants of these
matrices are nonzero. What are the signs of these determinants? How many
negative eigenvalues do the matrices have?

6. Levinson’s algorithm. (This algorithm generates orthogonal polynomials
s1(t), s2(t), . . . by updating the degree.) Let

sk(t) = w
(k)
0 + w

(k)
1 t + · · · + w

(k)
k−1t

k−1,

where ⎡⎢⎢⎢⎣
ω0 ω1 ω2 . . . ωk−1

ω1 ω0 ω1 . . . ωk−2

... . . .
...

ωk−1 ωk−2 ωk−3 . . . ω0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

w
(k)
0

w
(k)
1
...

w
(k)
k−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ .

Introduce

ν(k) = 〈1, ν
(k)
1 , . . . , ν

(k)
k−1〉, where ν

(k)
j = (w(k)

0 )−1w
(k)
j

and
ρk = (w(k)

0 )−1.

Prove that

ν(k+1) =
[

0
ν(k)

]
− ck

[
ν̃(k)

0

]
,

where
ν̃(k) = 〈1, ν

(k)
k−1, . . . , ν

(k)
1 〉

and where

ck =
ωk−1 + ωk−2ν

(k)
1 + · · · + ω1ν

(k)
k−1

ρk
=

∆k

ρk
,

ρk+1 = ρk − ∆2
k

ρk
− ρk(1 − |ck|2 ,

and

ν̃k =
[

ν̃k−1

0

]
− ck

[
0
νk

]
.

7. Generalize the Levinson algorithm to the case when the Toeplitz matrix is
not selfadjoint.
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8. For a given k with 0 ≤ k ≤ n, construct an n × n hermitian Toeplitz matrix
with a given number k negative eigenvalues and n − k positive eigenvalues.

9. Construct an n×n hermitian Toeplitz matrix with α negative eigenvalues, β
eigenvalues equal to zero, and γ positive eigenvalues, where α, β, γ are given
nonnegative integers that sum up to n.

3.6 Notes

The material of the first three sections of this chapter are selected from the first
chapters of the recent monograph [18]. The main source of these materials are the
papers [9], [21], [20], [60], and [71]. The source for the fourth section is the paper
[19].



Chapter 4

Classes of Linear
Transformations

The classical development of linear algebra in the context of definite inner prod-
uct spaces includes some central questions concerning linear transformations and
matrices with symmetry properties. These properties arise in natural ways in the
many applications of linear algebra in physics, statistics, mechanics, and so on. The
most important of these symmetries include the selfadjoint and unitary properties.

In a similar way, applications requiring analysis on spaces with indefinite
inner products also lead to the study of linear transformations and matrices with
analogous symmetries. The most common of these are, once more, the (suitably
defined) properties of selfadjoint and unitary transformations and their matrix
representations. This chapter develops these fundamental ideas in the setting of
complex matrices acting on Cn with an indefinite inner product. Some necessary
geometric notions in these spaces have been developed in Chapter 2 and will be
important here.

The last three sections of the chapter provide introductions to important
classes of matrices which arise frequently. They are H-contractions, dissipative
matrices, and symplectic matrices.

4.1 Adjoint Matrices

Let [., .] be an indefinite inner product on Cn and let H be the associated invert-
ible hermitian matrix as in Equation (2.1.1). Let A be an n × n complex matrix
considered as a linear transformation on Cn. The H-adjoint of A is the unique
n × n matrix, written A[∗], which satisfies

[Ax, y] = [x, A[∗]y] (4.1.1)
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for all x, y ∈ Cn. The H-adjoint of A may also be described as the adjoint of A
with respect to [., .] . Expressing (4.1.1) in terms of H we have

(HAx, y) = (Hx, A[∗]y) (4.1.2)

for all x, y ∈ Cn, and, hence

(x, A∗Hy) = (x, HA[∗]y)

where (here and elsewhere) A∗ : Cn → Cn is the usual adjoint of A (i.e., (x, A∗y) =
(Ax, y) for all x, y ∈ Cn). It follows that

A[∗] = H−1A∗H. (4.1.3)

In particular, this representation confirms the existence of A[∗] and shows that it
is uniquely determined by A. It also follows from (4.1.3), or from the definition of
A[∗], that (A[∗])[∗] = A.

There are important and well-known connections between the images and
kernels of A and A∗, its usual adjoint. The next proposition describes the extension
of these results to the H-adjoint of A.

Proposition 4.1.1. Let A : Cn → Cn and let A[∗] be its H-adjoint. Then

RangeA[∗] = (KerA)[⊥]; KerA[∗] = (RangeA)[⊥]. (4.1.4)

Proof. Let x ∈ RangeA[∗] so that x = A[∗]y for some y ∈ Cn. Then for every
z ∈ KerA :

[x, z] = [A[∗]y, z] = [y, Az] = 0,

and it follows that
RangeA[∗] ⊆ (KerA)[⊥] (4.1.5)

However, using (4.1.3) and (2.2.2),

dim(RangeA[∗]) = dim(RangeA∗) = n − dim(KerA) = dim(KerA)[⊥],

so that the equality must obtain in (4.1.5).
The proof of the second relation in (4.1.4) is similar. �

A subspace M ⊆ Cn is said to be invariant for an n×n matrix A (considered
as a linear transformation from Cn to Cn), or to be A-invariant, if x ∈ M implies
Ax ∈ M.

Proposition 4.1.2. Let A : Cn → Cn and let [., .] be an indefinite inner product in
Cn. Then a subspace M is A-invariant if and only if its orthogonal companion
M[⊥] is A[∗]-invariant.
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Proof. Let M be A-invariant and let x ∈ M, y ∈ M[⊥]. Then

[A[∗]y, x] = [y, Ax] = 0

since Ax is again in M. So A[∗]y ∈ M[⊥] and M[⊥] is A[∗]-invariant.
To prove the converse statement apply what is already proved to A[∗] and

(A[∗])[∗] = A, taking into account the fact that (M[⊥])[⊥] = M. �
Now it is natural to describe a matrix as H-selfadjoint (or selfadjoint with

respect to [., .]) if A = A[∗]. In a similar way, a matrix U is said to be H-unitary
if it is invertible and U−1 = U [∗], and matrix N is H-normal if NN [∗] = N [∗]N.
Clearly, H-selfadjoint matrices and H-unitary matrices are also H-normal.

The next result shows that if matrices used in defining indefinite inner prod-
ucts are congruent, then matrices of these three types are transformed in a natural
way.

Proposition 4.1.3. Let H1, H2 define indefinite inner products on Cn and H2 =
SH1S

∗ for some invertible n × n matrix S. Then A1 is H1-selfadjoint (or H1-
unitary, or H1-normal) if and only if the matrix A2 := (S∗)−1A1S

∗ is H2-
selfadjoint (or H2-unitary, or H2-normal, respectively).

Proof. We consider the “only if” part of the statement. Proof of the converse state-
ment is analogous. Suppose first that A1 is H1-selfadjoint so that, (see (4.1.3)),
H1A1 = A∗

1H1. Then

H2A2 = (SH1S
∗)((S∗)−1A1S

∗) = SH1A1S
∗ = SA∗

1H1S
∗

= (SA∗
1S

−1)(SH1S
∗) = A∗

2H2,

which implies that A2 is H2-selfadjoint.
If A1 is H1-unitary then A−1

1 = A
[∗]
1 , and it follows from (4.1.3) that H1A

−1
1 =

A∗
1H. So we have

H2A
−1
2 = (SH1S

∗)((S∗)−1A−1
1 S∗) = SH1A

−1
1 S∗ = SA∗

1H1S
∗

= (SA∗
1S

−1)(SH1S
∗) = A∗

2H2.

Thus, A2 is H2-unitary.
In much the same way, it is easily seen that if A1 is H1-normal, then

A1H
−1
1 A∗

1H1 = H−1
1 A∗

1H1A1 and that this implies a similar relation between
A2 and H2. �

Proposition 4.1.3 allows us to study the properties of these selfadjoint, unitary
and normal matrices in the context of a canonical indefinite inner product of the
form [., .] = (P., .) where P ∗ = P and P 2 = I. Indeed, given an invertible hermitian
H there is an invertible S such that P := S∗HS is a diagonal matrix: P =
diag (1, 1, . . . , 1,−1, . . . ,−1). However, this reduction is achieved at the expense
of replacing A by S−1AS. This suggests that S may be chosen in such a way that
both H and A are reduced to some simplest possible forms; an idea that will be
developed in the next chapter.
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4.2 H-Selfadjoint Matrices: Examples and Simplest
Properties

Let [., .] = (H., .) be an indefinite inner product in Cn. As we have seen in the last
section, an n× n matrix A is said to be H-selfadjoint (or selfadjoint with respect
to [., .]) if A = A[∗] or, in other words, (see (4.1.3)) if

A = H−1A∗H. (4.2.6)

Thus, any H-selfadjoint matrix A is similar to A∗. We shall see later that the
converse is also true: if a matrix A is similar to its adjoint (i.e., A = S−1A∗S for
some S) then A is H-selfadjoint for some H. In other words, the similarity between
A and A∗ can be carried out by means of an invertible hermitian matrix. Observe
also that the set of all n×n H-selfadjoint matrices form a real linear space; i.e., if
A and B are H-selfadjoint then so is αA + βB where α, β are any real numbers.

For the case when H2 = I (see concluding remarks of the preceding section)
it is easily seen that A is H-selfadjoint if and only if A∗ is H-selfadjoint. This leads
to the following observation: if H2 = I and H is hermitian, then A is H-selfadjoint
if and only if both of

�A =
1
2
(A + A∗), i(�A) =

1
2
(A − A∗) (4.2.7)

are H-selfadjoint.
The following examples of H-selfadjoint matrices are fundamental.

Example 4.2.1. Let [x, y] = (εSnx, y), x, y ∈ Cn, where Sn is the n × n sip matrix
introduced in Example 2.1.1, and ε is either 1 or −1. Further, let

J =

⎡⎢⎢⎢⎢⎢⎢⎣

α 1 0 . . . 0

0 α 1
...

...
. . . . . .

α 1
0 . . . 0 α

⎤⎥⎥⎥⎥⎥⎥⎦
be the n× n Jordan block with real eigenvalue α. The equality (εSn)J = JT (εSn)
is easily checked and, since JT = J∗, it means that J is εSn-selfadjoint. �
Example 4.2.2. Let [x, y] = (Qx, y), x, y ∈ C2n where

Q =
[

0 Sn

Sn 0

]
,

and Sn is again the n × n sip matrix. Let

K =
[

J 0
0 J

]
,
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where J is the n×n Jordan block with nonreal eigenvalue α (so that J is the n×n
Jordan block with the eigenvalue α ). Again, one checks easily that QK = K∗Q,
i.e., K is Q-selfadjoint. �

The H-selfadjoint matrices from Examples 4.2.1 and 4.2.2 will appear in the
next chapter as elements of a canonical form for selfadjoint matrices in indefinite
inner product spaces.

We describe now some simple properties of H-selfadjoint matrices.

Proposition 4.2.3. The spectrum σ(A) of an H-selfadjoint matrix A is symmetric
relative to the real axis, i.e., λ0 ∈ σ(A) implies λ0 ∈ σ(A). Moreover, in the Jordan
normal form of A, the sizes of the Jordan blocks with eigenvalue λ0 are equal to
the sizes of Jordan blocks with eigenvalue λ0.

Proof. Using (4.2.6), write

λI − A = H−1(λI − A)∗H.

So λI − A is singular if and only if λI − A is singular; i.e., λ0 ∈ σ(A) implies
λ0 ∈ σ(A). Further, let J be the Jordan form of A with reducing matrix T : A =
T−1JT.

Observe also that J∗ is similar to J , and write J∗ = K−1JK for some
invertible K. Then, using the equation above,

λI − A = T−1(λI − J)T = H−1
{
T−1(λI − J)T

}∗
H

so that

λI − J = (TH−1T ∗)(λI − J∗)((T ∗)−1HT−1) = S(λI − J)S−1

where S = TH−1T ∗K−1. Thus, J and J are similar and J can be obtained from
J by permutation of some of its Jordan blocks. The proposition follows. �

Note, in particular, that nonreal eigenvalues of an H-selfadjoint matrix can
only occur in conjugate pairs and, consequently, their total number, whether
counted as distinct eigenvalues or according to algebraic multiplicities, must be
even.

For an n×n matrix A, the root subspace Rλ0 (A) corresponding to an eigen-
value λ0 is defined as follows:

Rλ0(A) = {x ∈ Cn | (A − λ0I)sx = 0 for some positive integer s} . (4.2.8)

It is well known that Rλ0(A) is indeed a subspace and that Cn is a direct sum
of the root subspaces Rλj (A), j = 1, 2, . . . , k, where λ1, . . . , λk are the different
eigenvalues of A (see Theorem A.2.4). If A is hermitian, i.e., selfadjoint with
respect to the ordinary inner product (., .), then its root subspaces corresponding
to different eigenvalues are orthogonal (with respect to (., .)). It turns out that,
with proper modification, this result extends to the case of H-selfadjoint matrices
as well.
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Theorem 4.2.4. Let A be an H-selfadjoint matrix and λ, µ ∈ σ(A) with λ �= µ.
Then

Rλ(A) ⊆ (Rµ(A))[⊥],

i.e., the root subspaces Rλ(A) and Rµ(A) are orthogonal with respect to [., .] =
(H., .).

Proof. Let x ∈ Rλ(A) and y ∈ Rµ(A) so that (A−λI)sx = 0 and (A − µI)t
y = 0

for some s and t. We are to prove that

[x, y] = 0. (4.2.9)

Proceed by induction on s + t. For s = t = 1 we have Ax = λx, Ay = µy. Then

λ[x, y] = [Ax, y] = [x, Ay] = [x, µy] = µ[x, y] (4.2.10)

and since λ �= µ , we obtain (4.2.9).
Suppose now that (4.2.9) is proved for all x′ ∈ Rλ(A), y′ ∈ Rµ(A) such that

(A − λI)s′
x′ = (A − λI)t′y′ = 0 for some s′ and t′ satisfying s′ + t′ < s + t.

Given x and y as above, put x′ = (A − λI)x, y′ = (A − µI)y. Then, by the
induction assumption [x′, y] = [x, y′] = 0, which means that λ[x, y] = [Ax, y];
µ[x, y] = [x, Ay]. Now use the relations of (4.2.10) once more to complete the
proof. �

In particular, taking λ = µ nonreal in Theorem 4.2.4 we obtain the following
corollary.

Corollary 4.2.5. Let A be an H-selfadjoint matrix and let λ0 ∈ σ(A) be nonreal.
Then the root subspace Rλ0(A) is H-neutral.

4.3 H-Unitary Matrices: Examples and Simplest
Properties

As introduced in Section 4.1, an n × n matrix A is called H-unitary (or unitary
with respect to [., .]) if A is invertible and A−1 = A[∗]. In other words, A is
H-unitary if and only if [Ax, y] = [x, A−1y] for all x, y ∈ Cn, or

A = H−1(A∗)−1H; A∗HA = H. (4.3.11)

In particular, A is similar to (A∗)−1. The converse statement is also true (as
in the case of H-selfadjoint matrices): if A is similar to (A∗)−1, then the matrix
achieving this similarity can be chosen to be hermitian. This fact will be proved
later.

Note that for a fixed H, the set of all H-unitary matrices form a group, i.e.,
if A, B are H-unitary then so are A−1, B−1 and AB.
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If H is first reduced by congruence so that H2 = I (as described at the
end of Section 4.1), then it is easily seen that A is H-unitary if and only if A∗ is
H-unitary.

The following examples of H-unitary matrices are related to the canonical
forms of H-unitary matrices to be developed in the next chapter.

Example 4.3.1. Let [x, y] = (εSnx, y), x, y ∈ Cn, where Sn is the n × n sip matrix
and ε = ±1. Suppose that λ ∈ C with |λ| = 1 and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 2iλ 2i2λ . . . 2in−1λ

0 λ 2iλ
...

λ
...

. . .
λ 2iλ

0 . . . 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easily verified that A∗(εSn)A = εSn so that A is εP -unitary. �

Example 4.3.2. Let [x, y] = (Qx, y) for all x, y ∈ Cn where

Q =
[

0 Sn

Sn 0

]
.

For a nonzero λ ∈ C such that |λ| �= 1 put

A =
[

K1 0
0 K2

]
where

K1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ k1 k2 . . . kn−1

0 λ k1

...
. . . . . .

... λ k1

0 . . . 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, K2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ−1 κ1 κ2 . . . κn−1

0 λ−1 κ1

...
. . . . . .

... λ−1 κ1

0 0 λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

kr = λqr−1
1 (q1 − q2), κr = λ−1qr−1

2 (q2 − q1), for r = 1, 2, . . . , n − 1,

and q1 = i
2
(1 + λ), q2 = i

2
(1 + λ−1).

A direct computation shows that A∗QA = Q, so A is Q-unitary. Note also
that K2 = K−1

1 . �
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More generally, if K1 is an upper triangular Toeplitz matrix which is sim-
ilar to one Jordan block with a nonzero eigenvalue, and if K2 = K−1

1 , then[
K1 0
0 K2

]
is
[

0 Sn

Sn 0

]
-unitary.

Using the similarity of A and (A∗)−1 for an H-unitary matrix A, one can
prove the following analogue of Proposition 4.2.3 (its proof is similar to that of
Proposition 4.2.3 and therefore is omitted).

Proposition 4.3.3. Let A be an H-unitary matrix. Then σ(A) is symmetric relative
to the unit circle, i.e., λ0 ∈ σ(A) implies λ−1

0 ∈ σ(A). Moreover, in the Jordan
normal form of A, the sizes of Jordan blocks with eigenvalue λ0, and the sizes of
Jordan blocks with eigenvalue λ−1

0 , are the same.

There is a strong connection between H-unitary and H-selfadjoint matrices.
As in the case of the usual inner product, one way to describe this connection is
via Cayley transforms.

Recall that if |α| = 1 and w �= w then the map f defined by

f(z) = α(z − w) / (z − w) (4.3.12)

maps the real line in the z-plane onto the unit circle in the ζ-plane, where ζ = f(z).
The inverse transformation is

z = (wζ − wα) / (ζ − α). (4.3.13)

If w �∈ σ(A), then the function f is defined on σ(A) and, if A is H-selfadjoint, one
anticipates that U = f(A) is H-unitary. This idea is developed in:

Proposition 4.3.4. Let A be an H-selfadjoint matrix. Let w be a nonreal complex
number with w �∈ σ(A) and let α be any unimodular complex number. Then

U = α(A − wI)(A − wI)−1 (4.3.14)

is H-unitary and α �∈ σ(U).
Conversely, if U is H-unitary, |α| = 1 and α �∈ σ(U), then for any w �= w

the matrix
A = (wU − wαI)(U − αI)−1 (4.3.15)

is H-selfadjoint and w �∈ σ(A). Furthermore, formulas (4.3.14) and (4.3.15) are
inverse to one another.

The transformation (4.3.15) will be referred to as the Cayley transform.

Proof. If A is H-selfadjoint and |α| = 1 it is easily seen that

(A∗ − wI)H(A − wI) = (αA∗ − αwI)H(αA − αwI).
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Premultiplying by (A∗ −wI)−1 and postmultiplying by (αA−αwI)−1 it is found
that HU−1 = U∗H where U is defined by (4.3.14), and this means that U is
H-unitary. Furthermore, it follows from (4.3.14) that

(U − αI)(A − wI) = α(w − w)I. (4.3.16)

Thus, the hypothesis that w is not real implies that U − αI is invertible and so
α �∈ σ(U).

The relation (4.3.16) also gives

A = wI + α(w − w)(U − αI)−1 = [w(U − αI) + α(w − w)I](U − αI)−1

= (wU − wαI)(U − αI)−1,

so that (4.3.15) and (4.3.14) are, indeed, inverse to each other.
The proof of the converse statement is left to the reader. �

Suppose that U is H-unitary and, as in Proposition 4.3.4, A is the H-
selfadjoint matrix given by (4.3.15). Then the root subspace of U corresponding
to λ0 ∈ σ(U) is also the root subspace of A corresponding to its eigenvalue

µ0 = (wλ0 − wα)(λ0 − α)−1. (4.3.17)

Thus,
Rλ0(U) = Rµ0(A). (4.3.18)

This fact can be verified directly by using (4.3.15) but it is also a consequence of
the following more general lemma. Although this is relatively well-known, a proof
is included in the interests of a self-contained presentation.

Lemma 4.3.5. Let S, T be n×n matrices with the property that S = f(T ), T = g(S)
for some complex functions f and g which are analytic in neighborhoods of σ(T ),
σ(S) respectively. Then for every λ0 ∈ σ(S) we have

Rλ0 (S) = Rg(λ0)(T ). (4.3.19)

Proof. It is well known that g(S) = g̃(S) where g̃ is a polynomial which, in
particular, has the property that g(λ0) = g̃(λ0) for λ0 ∈ σ(S). Let g̃(λ) =∑p

j=0 αj(λ − λ0)j , so that

T − g(λ0)I = g̃(S) − g̃(λ0)I =
p∑

j=0

αj(S − λ0I)j − α0I = W (S − λ0I),

where W =
∑p

j=1 αj(S − λ0I)j−1 is a matrix commuting with S. Now

(T − g(λ0)I)s = W s(S − λ0I)s for s = 0, 1, . . . ,
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so that, using the definition (4.2.8), we have Rλ0(S) ⊆ Rg(λ0)(T ). However, the
same inclusion applies on replacing S, λ0 by T, g(λ0), respectively, yielding

Rg(λ0)(T ) ⊆ Rf(g(λ0))(f(T )) = Rλ0(S),

so (4.3.19) follows. �

Now (4.3.18) is established by an application of the lemma and, in view of
Theorem 4.2.4, it implies the following property:

Corollary 4.3.6. Root subspaces Rλ(U) and Rµ(U ) of an H-unitary matrix U are
H-orthogonal provided λ �= µ−1.

In particular (cf. Corollary 4.2.5), every root subspace of U corresponding to
an eigenvalue not on the unit circle is H-neutral.

It is clear that these orthogonality properties of root subspaces for H-unitary
matrices could also be proved directly using arguments analogous to the proof of
Theorem 4.2.4.

A more general class of unitary matrices will be useful. Suppose that two in-
definite inner products are defined on Cn with associated invertible hermitian
matrices H1 and H2. An n × n matrix A is said to be (H1, H2)-unitary if
[Ax, Ay]H2 = [x, y]H1 for all x, y ∈ Cn. It is easily seen that this is equivalent
to the relation

A∗H2A = H1, (4.3.20)

which could be compared with (4.3.11). Note that an (H1, H2)-unitary matrix
is necessarily invertible. Also, the relation (4.3.20) indicates that the notion of
(H1, H2)-unitary matrices is meaningful only when H1 and H2 are congruent.
Thus, the assertion that A is (H1, H2)-unitary implies the existence of an invertible
S such that H2 = SH1S

∗ and (4.3.20) is equivalent to the statement that S∗A is
H1-unitary or, alternatively, AS∗ is H2-unitary.

4.4 A Second Characterization of H-Unitary Matrices

It has been remarked in Section 4.2 that a matrix A is H-selfadjoint for some H if
and only if the spectrum of A is symmetric with respect to the real line. With the
aid of Cayley transformations it is easy to obtain the analogous result: A matrix
U is H-unitary for some H if and only if the spectrum of U is symmetric with
respect to the unit circle.

Now for any nonsingular A it is not difficult to verify that σ(A−1A∗) is
symmetric with respect to the unit circle and hence A−1A∗ must be H-unitary
for some H. It turns out that this property characterizes H-unitary matrices.
In proving this result, however, we can follow a different line of argument which
makes less demands on spectral theory.

Note that in the next lemma A is not necessarily hermitian.
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Lemma 4.4.1. If U∗AU = A, det A �= 0, then there is an H, with H∗ = H and
detH �= 0 such that U∗HU = H.

Proof. Let H = zA + zA∗ for some z with |z| = 1. Then

U∗HU = U∗(zA + zA∗)U = zA + zA∗ = H

and H∗ = H. To ensure that detH �= 0 observe

H = zA + zA∗ = zA(z−1zI + A−1A∗)

and so we have only to choose z (with |z| = 1) so that −z−1z = −z2 �∈ σ(A−1A∗).
�

Theorem 4.4.2. A matrix U is H-unitary for some H (H∗ = H, det H �= 0) if and
only if U = A−1A∗ for some nonsingular A.

Proof. If U = A−1A∗ then

U∗AU = A(A∗)−1AA−1A∗ = A

and, from the lemma, U is H-unitary for some H.
Conversely, let U be H-unitary and let A = iβ(I − αU∗)H, where |α| = 1,

α �∈ σ(U) and β/β = α. Then

AU = iβ(I − αU∗)HU = iβH(U − αI) = iαβH(αU − I) = −iαβH(I − αU)

= −iβH(I − αU) = A∗,

so U = A−1A∗. �

4.5 Unitary Similarity

Let A1 and A2 be n × n matrices which are H1-selfadjoint and H2-selfadjoint,
respectively. A notion of equivalence of such matrices appears naturally. Namely,
A1 and A2 are said to be unitarily similar if A1 = T−1A2T, where the matrix T
is invertible and (H1, H2)-unitary (i.e., [Tx, T y]H2

= [x, y]H1
for all x, y ∈ Cn or

H1 = T ∗H2T ). In other words, A1 and A2 are unitarily similar if they are similar,
and the similarity matrix is unitary with respect to the indefinite inner products
involved.

It will be convenient to study this equivalence in the framework of the set U
of all pairs of n× n matrices (A, H) where A is an arbitrary complex matrix, and
H defines an indefinite inner product on Cn, i.e., H∗ = H and detH �= 0. The
pairs (A1, H1), (A2, H2) ∈ U are said to be unitarily similar if, for some invertible
matrix T , we have

A1 = T−1A2T and H1 = T ∗H2T.
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Thus, for unitarily similar pairs, A1 and A2 are similar, and H1 and H2 are con-
gruent. In general, however, similarity of A1 and A2 and congruency of H1 and
H2 do not guarantee that (A1, H1) and (A2, H2) are unitarily similar. To ensure
this, the similarity and the congruence must be determined simultaneously by the
same transforming matrix T .

It is easily verified that unitary similarity defines a relation on U which is
reflexive, symmetric, and transitive, i.e., defines an equivalence relation on U . The
corresponding equivalence classes will be called the unitary similarity classes of
U . The observation that each such class is arcwise connected will be useful later.

Theorem 4.5.1. A unitary similarity class of pairs of matrices from U is arcwise
connected.

Proof. Let (A, H) and (B, G) be in U , and be unitarily similar. Thus, A = S−1BS,
H = S∗GS, for some invertible S.

Let S(t), t ∈ [0, 1] be a continuous path of invertible matrices with S(0) = I,
S(1) = S. To establish the existence of such a path, let J be a Jordan form for S
and for each Jordan block Jp = λpI +K, λp �= 0, (where K is the nilpotent matrix
with ones on the super-diagonal and zeros elsewhere) define Jp(t) = λp(t)I + tK,
where λp(t) is a continuous path of nonzero complex numbers with λp(0) = 1,
λp(1) = λp. Then let J(t) be the block diagonal matrix made up of blocks Jp(t)
in just the way that J is made up from the blocks Jp. Then the construction
implies J(0) = I, J(1) = Jp. Now define S(t) = TJ(t)T−1, where T is a matrix
for which S = TJT−1, and the construction is complete.

Using the path S(t) construct a path of pairs of matrices (B(t), G(t)) in the
unitary similarity class of (G, B) by

B(t) = S(t)−1BS(t), G(t) = S(t)∗GS(t),

for t ∈ [0, 1]. Then (B(0), G(0)) = (B, G) and (B(1), G(1)) = (A, H), as required.
�

Note also the following property of unitary similarity (which is just another
formulation of Proposition 4.1.3).

Proposition 4.5.2. Let (A1, H1) and (A2, H2) be unitarily similar. Then A1 is
selfadjoint (unitary, or normal) with respect to the indefinite inner product defined
by H1 if and only if A2 is selfadjoint (resp. unitary, or normal) with respect to the
inner product defined by H2.

In the sequel we shall generally apply the notion of unitary similarity to
classes of pairs (A, H) in which A is H-selfadjoint, or A is H-unitary.
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4.6 Contractions

Let H be a fixed n × n invertible hermitian matrix. A matrix A ∈ Cn×n is called
a strict H-contraction if the following inequality holds for all nonzero x ∈ Cn:

(HAx, Ax) < (Hx, x).

In other words, if
H − A∗HA > 0. (4.6.21)

When H is positive definite, (4.6.21) can be replaced by

‖H1/2AH−1/2‖ < 1. (4.6.22)

Here, H1/2 is the unique positive definite square root of H . It follows from (4.6.22)
that, in this case,

max
λ∈σ(A)

|λ| < 1. (4.6.23)

The following theorem shows that the distribution of the eigenvalues of an H-
contraction relative to the unit circle is determined by the distribution of positive
and negative eigenvalues of H .

Theorem 4.6.1. Let H be invertible and selfadjoint and let A be H-contractive.
Then

n+(A) = i+(H) and n−(A) = i−(H),

where n+(A) and n−(A) denote the number of eigenvalues of A, counted with their
algebraic multiplicities, inside and outside the unit disc, respectively. Similarly,
i+(H) and i−(H) denote the number of positive and negative eigenvalues of H,
respectively, counted with multiplicities.

Proof. Consider first the special case in which the spectrum, σ(A), is in the open
unit disc. Introduce the notation

G := H − A∗HA.

By elementary algebra we obtain

H − (A∗)2HA2 = G + A∗GA

and, more generally,

H − (A∗)mHAm =
m−1∑
j=0

(A∗)jGAj ,

or

H −
m−1∑
j=0

(A∗)jGAj = (A∗)mHAm, m = 1, 2, . . . .
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Since σ(A) is in the open unit disc, (4.6.23) holds, and it is easy to see that the
sequence [Am]∞m=1 converges to zero. Hence

H =
∞∑

j=0

(A∗)jGAj ,

and clearly H > 0. Thus, i+(H) = n, and in this case the theorem is proved.
Now consider the general case. From the conditions of the theorem it follows

that A has no eigenvalues on the unit circle. Indeed, if |λ| = 1 and Ax = λx for
some nonzero x, then

(Gx, x) = (Hx, x) − (HAx, Ax) = 0,

which contradicts the positive definiteness of G.
Let L+ be the span of the eigenvectors and generalized eigenvectors cor-

responding to the eigenvalues of A in the open unit circle. The subspace L+ is
A-invariant. With respect to the orthogonal sum Cn = L+ ⊕ (L+)⊥ the matrices
A, H , and G have the block decompositions

A =
[

A11 A12

0 A22

]
, H =

[
H11 H12

H21 H22

]
, G =

[
G11 G12

G21 G22

]
.

Hence

G = H − A∗HA =
[

H11 − A∗
11H11A11

∗
∗ ∗

]
,

and
G11 = H11 − A∗

11H11A11 > 0.

Since σ(A11) is in the open unit disc, the special case already proved can be used
to see that L+ is a positive subspace in the inner product (Hx, y). According to
Theorem 2.3.2 we have

dimL+ ≤ i+(H).

In the same way, it can be shown that

dimL− ≤ i−(H),

where L− is the span of all eigenvectors and generalized eigenvectors of A corre-
sponding to all eigenvalues in the exterior of the closed unit disc. Finally, since
dimL− + dimL+ = n and i−(H) + i+(H) = n, we arrive at the desired equalities
n±(A) = i±(H). �

A matrix A ∈ Cn×n is called a (nonstrict) H-contraction if

(HAx, Ax) ≤ (Hx, x) for all x ∈ Cn,

in other words, if
H − A∗HA ≥ 0. (4.6.24)



4.7. Dissipative Matrices 59

When H is positive definite, (4.6.24) can be replaced by

‖H1/2AH−1/2‖ ≤ 1 (4.6.25)

and then it follows that
max

λ∈σ(A)
|λ| ≤ 1. (4.6.26)

The conclusions of Theorem 4.6.1 also hold for (nonstrict) H-contractions if
the following additional hypothesis is made:

m∑
j=0

(A∗)jGAj > 0 for some positive integer m.

The proof of this statement is essentially the same as that of Theorem 4.6.1.

There is a natural dual concept: a matrix R ∈ Cn×n is called a strict H-
expansion if

(HRx, Rx) > (Hx, x) for every x ∈ Cn, x �= 0, (4.6.27)

and this equivalent to the inequality

R∗HR − H > 0.

Then one might anticipate that an invertible matrix R ∈ Cn×n is a strict H-
expansion if and only if R−1 is a strict H-contraction. This is, indeed, the case,
and is easily proved.

When H is positive definite, every strict H-expansion R is invertible and
the spectrum σ(R) lies outside of the closed unit disc. Theorem 4.6.1 also admits
an analogue for strict H-expansions. It can be proved first for invertible strict
H-expansions, R, using the property that R−1 is a strict H-contraction, and then
appealing to Theorem 4.6.1. The invertibility hypothesis can be removed by con-
sidering invertible strict H-expansions R′ sufficiently close to R.

4.7 Dissipative Matrices

As in the preceding section, we fix an invertible hermitian n × n matrix H . A
matrix B ∈ Cn×n is called strictly H-dissipative if, for all nonzero x ∈ Cn, the
inequality

�(HBx, x) < 0

holds. In other words,
B∗H + HB < 0. (4.7.28)

In the special case when H is positive definite, (4.7.28) means that

�(H1/2BH−1/2x, x) < 0 (4.7.29)
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for all nonzero x, and it follows from this that all eigenvalues of B are in the open
left halfplane.

This time, the distribution of the eigenvalues of B with respect to the imagi-
nary axis is determined by the distribution of the positive and negative eigenvalues
of H .

Theorem 4.7.1. Let B ∈ Cn×n be a strictly H-dissipative matrix. Then

N−(B) = i+(H), N+(B) = i−(H), (4.7.30)

where for the matrix B we denote by N+(B) and N−(B) the number of eigenvalues
of B, counted with their algebraic multiplicities, in the open left and the open right
half planes, respectively.

Proof. Let us first consider the case when σ(B) is in the open left halfplane. The
equality

B∗H + HB =: G < 0

(see (4.7.28)) can be rewritten in the form

etB∗
GetB = etB∗

HBetB + etB∗
B∗HetB =

detB∗

dt
HetB + etB∗

H
detB

dt

=
d(etB∗

HetB)
dt

, t ∈ R.

(4.7.31)

After integration with respect to t we obtain

(etB∗
HetB)|∞0 =

∫ ∞

0

(etB∗
GetB)dt.

Since we assume that �λ < 0 for every λ ∈ σ(B), it follows that limt−→∞ etB =
limt−→∞ etB∗

= 0, and hence

H = −
∫ ∞

0

(etB∗
GetB)dt. (4.7.32)

All integrals appearing in this computation converge absolutely. This can be
checked by first rewriting the matrices in (4.7.31) and (4.7.32) in the Jordan
basis for B. In this simple form it is easily seen that, after the corresponding
multiplication, the integrals of all the entries converge absolutely.

From (4.7.32) we find that H > 0 and hence

N−(B) = n = i+(H).

Now consider the general case. It follows from the hypotheses of the theorem
that B has no eigenvalues on the imaginary axis. Indeed, if Bx = λx, x �= 0, where
�λ = 0, then

(Gx, x) = (HBx, x) + (B∗Hx, x) = (λ + λ)(Hx, x) = 0,
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a contradiction with the negative definiteness of G.
Let M− be the span of the eigenvectors and generalized eigenvectors corre-

sponding to all eigenvalues of B from the open left half plane. The subspace M−
is B-invariant. With respect to the orthogonal decomposition Cn = M−⊕(M−)⊥,
the matrix B has a block triangular form

B =
[

B11 B12

0 B22

]
.

Also,

H =
[

H11 H12

H21 H22

]
, G =

[
G11 G12

G21 G22

]
.

Hence

G = HB + B∗H =
[

H11B11 + B∗
11H11

∗
∗ ∗

]
,

and
G11 = H11B11 + B∗

11H11 < 0.

Since σ(B) is in the open left half plane, the part of the theorem already proved
applies, and shows that M− is a positive subspace in the inner product (Hx, y).
Now Theorem 2.3.2 implies that dimM− ≤ i+(H). In a similar way we obtain
dimM+ ≤ i−(H), where M+ is the span of all eigenvectors and generalized
eigenvectors of B corresponding to all eigenvalues in the right half plane. Finally,
since dimM− + dimM+ = n and i−(H) + i+(H) = n, we arrive at the desired
equalities N±(B) = i∓(H). �

A matrix B ∈ Cn×n is called (nonstrictly) H-dissipative if

�(HAx, x) ≤ 0 for all x ∈ Cn;

in other words, if
G := HB + B∗H ≤ 0. (4.7.33)

In the case when H is positive definite, this inequality can be replaced by

�(H1/2BH−1/2x, x) ≤ 0, x ∈ Cn,

and hence all eigenvalues of B lie in the closed left halfplane.
The result of Theorem 4.7.1 also holds for (nonstrictly) H-dissipative matri-

ces, provided another hypothesis is made, namely, that∫ T

0

etB∗
GetBdt < 0

for some positive T . This statement follows from Theorem 4.7.1.
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A dual notion is that of accretive matrices. Thus, a matrix S ∈ Cn×n is called
strictly H-accretive if

�(HSx, x) > 0

for every nonzero x ∈ Cn, or in a different notation, HS + S∗H > 0. Obviously,
S is strictly H-accretive if and only if S is strictly −H-dissipative, or (−S) is
strictly H-dissipative. For a strictly H-accretive matrix S and positive definite
H , the spectrum of S is in the open right half plane. All results about strictly
H-dissipative matrices can be extended in the obvious way to strictly H-accretive
matrices. The same can be done for (nonstrictly) H-accretive matrices, i.e., ma-
trices S for which

�(HSx, x) ≥ 0, for every x ∈ Cn.

4.8 Symplectic Matrices

In this section we provide basic properties of real symplectic matrices. Symplectic
matrices arise, in particular, in the study of Riccati equations (see Section 14.11).
Throughout this section we work with the real skew-symmetric matrix

G2m =
[

0 Im

−Im 0

]
∈ R2m×2m;

often abbreviated to G (with the subscript 2m understood). The following easily
verified properties of G will often be used in this section:

GT = −G, G2 = −I, G−1 = −G = GT . (4.8.34)

A real 2m × 2m matrix S is called symplectic if

ST G2mS = G2m. (4.8.35)

Example 4.8.1. A real 2×2 matrix S is symplectic if and only if detS = 1. Indeed,
an easy computation shows that, with a, b, c, d ∈ R,

ST GS =
[

a c
b d

] [
0 1
−1 0

] [
a b
c d

]
=
[

0 ad − bc
−ad + bc 0

]
.

Consequently, detS = ad−bc = 1 implies ST GS = G and, conversely, ST GS = S
implies that detS = ad − bc = 1.

Elementary properties of symplectic matrices are collected in the following
proposition:

Proposition 4.8.2. If S is symplectic, then S is invertible, and the matrices S−1,
ST , −S are symplectic as well.

If S1, S2 ∈ R2m×2m are symplectic, then so is S1S2.



4.8. Symplectic Matrices 63

Proof. These results follow easily from the definition and (4.8.34). We only show
that, if S is symplectic, then so is ST . Indeed, multiply ST GS = G on left and
right by G−1 and by S−1, respectively. This results in G−1ST G = S−1. Now
multiply on left and right by S and G−1, respectively, to obtain SG−1ST = G−1

and, finally, use the property that G−1 = −G. �

In particular, Proposition 4.8.2 shows that the set of 2m × 2m symplectic
matrices is a multiplicative group.

To make a connection with earlier topics, observe that a symplectic matrix
is iG-unitary, where iG is (complex) hermitian. Thus, the results on H-unitary
matrices apply. In particular, we have the following theorem:

Theorem 4.8.3. Let S ∈ R2m×2m be a symplectic matrix. Then σ(S) is symmetric
relative to both the real line and the unit circle, i.e.,

λ0 ∈ σ(S) =⇒ λ0 ∈ σ(S), λ−1
0 ∈ σ(S), λ−1

0 ∈ σ(S).

Moreover, in the Jordan normal form of S, the sizes of Jordan blocks with eigen-
value λ0, and the sizes of Jordan blocks with each of the following eigenvalues: λ0,

λ−1
0 ∈ σ(S), λ−1

0 ∈ σ(S), are the same.

Proof. The result follows from Proposition 4.3.3, and the fact that S is a real
matrix (in particular, the spectrum of S is symmetric relative to the real axis). �

It will be convenient to use Theorem 4.8.3 to classify elementary real invariant
subspaces of symplectic matrices into four types. Recall that

RR,λ(A) = Ker (A − λI)n ⊆ Rn,

and
RR,µ±iν(A) = Ker (A2 − 2µA + (µ2 + ν2)I)n ⊆ Rn,

denote the real root subspaces of a real n × n matrix A corresponding to a real
eigenvalue λ, or to a pair of nonreal complex conjugate eigenvalues µ± iν, respec-
tively. If S is symplectic, we define

RSλ(S) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RR,λ(S) if λ = 1 or λ = −1

RR,µ±iν(S) if |λ| = 1 and the imaginary part of
λ =: µ + iν is positive

RR,λ(S)+̇RR,λ−1(S) if λ ∈ R, |λ| > 1

RR,µ1±iν1(S)+̇RR,µ2±iν2(S) if λ has positive imaginary part
and |λ| > 1.

(Here, λ =: µ1 + iν1 and
λ−1 =: µ2 + iν2).
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Clearly (cf. Theorem A.2.7), there is a direct sum decomposition of real invariant
subspaces for a symplectic matrix S:

Rn =
∑

+̇RSλ(S),

where the direct sum is taken over all eigenvalues of S in the set

{1} ∪ {−1} ∪ {z ∈ C : |z| = 1, �z > 0} ∪ {z ∈ R : |z| > 1}.

With this notation, we can now state an orthogonality result analogous to Corol-
lary 4.3.6.

Theorem 4.8.4. If S is symplectic, and if v ∈ RSλ1(S), w ∈ RSλ2(S), where
λ1 �= λ2, then v and w are G-orthogonal:

(Gv, w) = 0. (4.8.36)

Given that S is iG-unitary, this result is an immediate consequence of Corol-
lary 4.3.6.

It turns out that the eigenvalues ±1 of symplectic matrices have special
structure:

Theorem 4.8.5. For a symplectic matrix, the algebraic multiplicity of the eigenvalue
1, as well as of the eigenvalue −1, is even.

The following proof of this theorem is based on perturbation arguments (see
[74, Appendix]). A lemma will be useful:

Lemma 4.8.6. (a) If S0 ∈ R2m×2m is a symplectic matrix, and if L ∈ R2m×2m

is a symmetric matrix, then for every value of the real parameter t the matrix
S(t) := etGLS0 is symplectic.

(b) If, in addition to the hypotheses of part (a), the matrix L is positive
definite, then there exists an ε > 0 such that for 0 < |t| < ε, t ∈ R, the matrix
S(t) + I is invertible, i.e., −1 is not an eigenvalue of S(t).

Proof. Consider the derivative of the matrix function S(t)T GS(t):

d(S(t)T GS(t))
dt

=
dS(t)T

dt
GS(t) + S(t)T G

dS(t)
dt

= ST
0 (GL)T et(GL)T

GetGLS0 + ST
0 et(GL)T

G(GL)etGLS0.

Since
(GL)T et(GL)T

= et(GL)T

(GL)T

and LT GT G = −G2L (which follows from (4.8.34) and LT = L), it is found that

d(S(t)T GS(t))
dt

= 0, and hence S(t)T GS(t) = constant.
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Evaluating S(t)T GS(t)at t = 0 we see that S(t)T GS(t) = G for all real t, i.e.,
S(t)T GS(t) is symplectic.

For part (b), we argue by contradiction. Assume that S(tp)+I is not invertible
for a sequence of nonzero real values tp, p = 1, 2, . . . , such that tp → 0 as p → ∞.
An application of Theorem A.6.4 (see also the paragraph after that theorem) with
A(t) = S(t) + I yields the existence of a nonzero real analytic vector function
h(t) ∈ Rn in a real neighborhood U of t0 = 0 such that

S(t)h(t) = −h(t), t ∈ U .

By differentiating we obtain

dS(t)
dt

h(t) + S(t)
dh(t)

dt
= −dh(t)

dt
,

or

GLS(t)h(t) = −ht − S(t)ht, ht :=
dh(t)

dt
.

The left-hand side here is equal to −GLh(t); thus

GLh(t) = h(t) + S(t)ht.

Now use the fact that S(t) is symplectic in the following inner product to obtain:

(GLh(t), Gh(t)) = (ht, Gh(t)) + (S(t)ht, Gh(t))
= (ht, Gh(t)) + (ht, S(t)T Gh(t))
= (ht, Gh(t)) + (ht, GS(t)−1h(t))
= (ht, Gh(t)) + (ht, G(−h(t))) = 0. (4.8.37)

On the other hand,

(GLh(t), Gh(t)) = (GT GLh(t), h(t)) = (Lh(t), h(t)). (4.8.38)

But (4.8.37) and (4.8.38) contradict the positive definiteness of L. �
Proof of Theorem 4.8.5. It will suffice to consider the eigenvalue −1 only, since
−S is symplectic if and only if S is symplectic.

Arguing by contradiction, assume that a symplectic matrix S0 has an eigen-
value −1 of odd algebraic multiplicity k. Let 0 < ε < 1 be such that −1 is the
only eigenvalue (perhaps of high multiplicity) of S in the closed disc of radius
ε centered at −1. Since eigenvalues of a matrix are continuous functions of the
entries of the matrix, there exists a δ > 0 such that every symplectic matrix S
satisfying ‖S − S0‖ < δ has exactly k eigenvalues (counted with their algebraic
multiplicities) in the open disc

{z ∈ C : |z + 1| < ε}. (4.8.39)
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Since ε < 1, none of the k eigenvalues of S in the disc (4.8.39) is equal to 1.
Also, if δ is sufficiently small then, for every eigenvalue λ of S in the disc (4.8.39),
the eigenvalues λ, λ−1, and λ−1 are also in the disc (4.8.39). But it follows from
Theorem 4.8.3 that the number of eigenvalues of S in the disc (4.8.39) that are
different from −1 is even. Therefore S must have −1 as an eigenvalue of odd
algebraic multiplicity. But this contradicts Lemma 4.8.6. �

Corollary 4.8.7. Every symplectic matrix S has determinant equal to 1.

Proof. Observe that ST GS = G yields detS = ±1 and, in view of Theorem 4.8.3,
the case det S = −1 is equivalent to S having −1 as an eigenvalue of odd algebraic
multiplicity. However, this is precluded by Theorem 4.8.5. �

In numerical analysis, the class of matrices that are simultaneously orthogo-
nal and symplectic, is of importance (see Section 14.11). This class is characterized
in the next lemma. It is also a preparation for the proof of Theorem 14.11.2.

Lemma 4.8.8. A real orthogonal matrix U of size 2m × 2m is symplectic if and
only if

U =
[

Q1 Q2

−Q2 Q1

]
(4.8.40)

where Q1 and Q2 are in Rm×m.

Proof. The proof is a simple verification. It is found that U is orthogonal with the
block structure of (4.8.40) if and only if QT

1 Q1 +QT
2 Q2 = Im and QT

1 Q2 = QT
2 Q1.

But UT GU = G is also equivalent to these two relations. �

4.9 Exercises

1. Let A, H ∈ Cn×n with H positive definite and assume that at least one of
the equalities holds:

A = A[∗], A−1 = A[∗], AA[∗] = A[∗]A.

Show that A is diagonalizable in an H-orthogonal basis.

2. If the n×n matrix A is diagonalizable in Cn show that there exists a positive
definite matrix H such that, in Cn(H), AA[∗] = A[∗]A.

(a) If, in addition, all eigenvalues of A are real then H can be chosen so
that A[∗] = A.

(b) If, in addition, all eigenvalues of A are on the unit circle then H can be
chosen so that A−1 = A[∗].
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3. Find the eigenvalues and eigenvectors of the following matrices:

(a) H0 =

⎡⎢⎢⎢⎣
0 0 . . . 0 1
0 0 . . . 1 0
... . . .

...
1 0 . . . 0 0

⎤⎥⎥⎥⎦ .

(b) H1 =

⎡⎢⎢⎢⎣
a1 0 . . . 0 1
0 a2 . . . 1 0
... . . .

...
1 0 . . . 0 an

⎤⎥⎥⎥⎦ , aj ∈ R, n = 2k.

(c) H2 = i

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −1
0 0 . . . −1 0
... . . .

...
0 1 . . . 0 0
1 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎦, with even size.

(d) H3 = P − (I − P ), where P ∗ = P, P 2 = P .

(e) H4 = i

⎡⎢⎢⎢⎢⎢⎣
2i 0 . . . 0 1
0 −2i . . . 1 0
... . . .

...
0 −1 . . . 2i 0
−1 0 . . . 0 −2i

⎤⎥⎥⎥⎥⎥⎦ (the matrix here has even size).

(f) H5 =

⎡⎢⎢⎢⎣
1 α α . . . α
α 1 α . . . α
... . . .

...
α α α . . . 1

⎤⎥⎥⎥⎦, α ∈ R.

4. Let Cn(H) be a space with the indefinite inner product defined by an invert-
ible hermitian matrix H , and let A = (ajk)n

j,k=1. Find the matrix A[∗] in the
following cases:

(a) H =

⎡⎢⎢⎢⎣
0 0 . . . 0 1
0 0 . . . 1 0
... . . .

...
1 0 . . . 0 1

⎤⎥⎥⎥⎦,

(b) H =

⎡⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0
0 1 . . . 0 0
... . . .

...
0 0 . . . 1 0
0 0 . . . −1

⎤⎥⎥⎥⎥⎥⎦ , sig H = n − 1.
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(c) H =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0 i
0 0 . . . 1 0
... . . .

...
0 1 . . . 0 0
−i . . . 0 0

⎤⎥⎥⎥⎥⎥⎦ .

(d) H =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0 0
0 1 . . . 0 0
... . . .

...
0 0 . . . 0 1

0 0
... 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , sig H = n − 1.

(e) H =
[

0 Ik

Ik 0

]
, n = 2k.

(f) H =
[

Sk 0
0 Sn−k

]
.

(g) H =
[

Ik 0
0 Sn−k

]
.

5. In Exercise 4, under what further conditions is A H-selfadjoint?

6. When is a linear transformation A in Cn(H) simultaneously H-selfadjoint
and H-unitary?

7. In the space Cn(H) the linear transformation A is simultaneously H-selfad-
joint and H-unitary. Find its eigenvectors and eigenvalues.

8. Let P be an H-orthogonal projection in Cn(H). Prove that the subspaces
KerP and RangeP are H-orthogonal and P [∗] = P.

9. Let P be as in Exercise 8. Show that the linear transformation

S = P − (I − P ),

is simultaneously H-unitary and H-selfadjoint.

10. Prove that, for the linear transformation

Ax =
r∑

j=1

(Hϕj , x)ψj

in Cn(H), where ϕj (j = 1, 2, . . . , n) and ψj (j = 1, 2, . . . , n) are systems of
vectors, the H-adjoint is given by the formula

A[∗]x =
n∑

j=1

(Hψj , x)ϕj .
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11. When is the linear transformation A from the previous exercise H-selfadjoint?

12. Are the following equalities correct for any invertible hermitian matrix H?

(A + B)[∗] = A[∗] + B[∗], (AB)[∗] = B[∗] + A[∗], (αA)[∗] = αA[∗],

I [∗] = I, 0[∗] = 0.

13. Let {ϕj}n
j=1 be an H-orthonormal basis in C(n)(H), that is, (Hϕj , ϕk) = 0 if

j �= k and (Hϕj , ϕk) = 1 if j = k. When is the linear transformation

Ax =
m∑

j=1

αj [x, ϕj ]ϕj , αj ∈ C

(a) H-unitary ? (b) H-selfadjoint ? (c) H-positive (i.e., [Ax, x] > 0 for every
nonzero x ∈ Cn) ?

Find the spectrum of A in cases (a), (b), and (c).

14. Let H =
[

0 1
1 0

]
. Under what conditions is the linear transformation

A =
[

1 α
0 1

]
, α ∈ C

(a) H-selfadjoint ? (b) H-unitary ? (c) H-normal ? (d) H-diagonalizable (i.e.,
there exists an H-orthogonal basis of eigenvectors) ?

15. Is an H-selfadjoint linear transformation always diagonalizable?

16. Is an H-unitary linear transformation always diagonalizable?

17. Let A be H-selfadjoint (H-unitary). Do all eigenvectors of A form an H-
orthonormal basis in Cn(H) ?

18. Under what condition on H does the following equality hold for every matrix
A:

RangeA = (KerA[∗])⊥.

19. Prove or disprove that for every linear transformation A there exists an H-
orthogonal basis with respect to which the matrix of A is lower (upper)
triangular.

20. (a) Find the canonical form of an H-selfadjoint matrix A in C2(H), if

H =
[

0 1
1 0

]
.

(b) Determine when the H-selfadjoint matrix A is H-positive.
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21. Let

A =

⎡⎢⎢⎣
0 1 0 . . . 0
0 0 1 . . . 0

. . .
−a0 −a1 . . . −an−1

⎤⎥⎥⎦ ; aj ∈ R.

Prove that A is H-selfadjoint, where

H =

⎡⎢⎢⎢⎢⎣
a1 a2 . . . an−1 1
a2 a3 . . . 1 0

. . .
an−1 1 . . . 0

1 0 . . . 0

⎤⎥⎥⎥⎥⎦ .

22. Show that the matrix H of the previous exercise is never positive definite.

23. For matrices A and H of Exercise 21, find when A is H-positive.

24. Generalize and repeat Exercise 21 for the block matrix

A =

⎡⎢⎢⎢⎣
0 I 0 . . . 0
0 0 I . . . 0
... . . .

...
−A0 −A1 −A2 . . . −An−1

⎤⎥⎥⎥⎦ , (4.9.41)

where all entries are k × k matrices and Aj = A∗
j .

25. Let
W (λ) = I + B∗H(Iλ − A)−1B,

where A is a square n×n H-selfadjoint matrix. Show that W (λ) = [W (λ)]∗.

26. Assume that (4.9.41) is a block matrix with k × k blocks and A∗
j = An−j for

j = 0, 1, . . . , n, where n = 2r is even and where A0 = An = I. Verify that
the matrix A is H-unitary, where

H = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

An 0

An−1
. . .

...
. . . . . .

Ar+1 . . . An−1 An

−A0 −A1 . . . −Ar−1

−A0 . . . −Ar−2

. . .
...

0 −A0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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27. Extend the result of the preceding exercise (with the same matrix H) to the
case when A∗

j = An−j for j = 0, 1, . . . , n, n is even, and A0 (and hence also
An) is invertible.

28. Let X(t) be an n × n matrix function satisfying the initial value problem

E
dX

dt
= iH(t)X, X(0) = I,

where E and H(t) are selfadjoint. Show that X(t) is E-unitary for any t ∈ R.

29. Provide details for the proof of Proposition 4.3.3.

30. Let A be an n × n matrix with σ(A) inside the open unit disc.

(a) Show that for any n × n matrix D there exists a unique solution X of
the matrix equation

X − A∗XA = D.

Show that the solution can be expressed in the form

X =
∞∑

j=0

(A∗)jDAj .

(Hint: If A is not nilpotent, prove the inequalities ‖Aj‖ ≤ Kqj, j =
1, 2, . . . , where the positive constant K is independent of j, and q =
max{|λ| : λ ∈ σ(A)}.)

(b) Show that A is similar to a strict contraction: A = S−1BS for some
invertible S and some B such that ‖B‖ < 1.

31. Prove that a matrix A ∈ Cn×n is a strict H-contraction for some positive
definite H if and only if the spectrum σ(A) is in the open unit disc. Is the
matrix H unique?

32. Prove that a matrix A ∈ Cn×n is a strict H-contraction for some selfadjoint
invertible H if and only if the spectrum σ(A) does not intersect the unit disc.
Is the matrix H unique?

33. Let B be an n × n matrix with σ(B) inside the left open half plane.

(a) Show that for any n × n matrix D the equation

BX + XB∗ = D

has a unique solution X , and that the solution can be expressed in the
form

X = −
∫ ∞

0

etB∗
DetBdt.
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(Hint: Prove the inequality

‖etB‖ ≤ Keσt, 0 ≤ t < ∞,

where the positive constant K depends on B only, and σ = max{�λ :
λ ∈ σ(B)}.)

(b) Show that the matrix B is similar to a strictly dissipative matrix, i.e.,
there exists an invertible S such that �(S−1BSx, x) < 0 for every
nonzero x ∈ Cn.

34. Prove that an n × n matrix B is strictly H-dissipative for some positive
definite H if and only if σ(B) is in the open left half plane. Is the matrix H
unique?

35. Prove that an n × n matrix B is strictly H-dissipative for some invertible
hermitian H if and only if σ(B) does not intersect the imaginary axis. Is H
unique?

36. Let S be a symplectic matrix, and let RR,λ1(S), RR,λ2(S), RR,µ1±iν1(S),
RR,µ2±iν2(S) be the real root subspaces of S corresponding to real eigenvalues
λ1 and λ2 and pairs of nonreal complex conjugate eigenvalues µ1 ± iν1 and
µ2 ± iν2. Find when:

(a) RR,λ1(S) and RR,λ2(S) are G-orthogonal;

(b) RR,λ1(S) and RR,µ1±iν1(S) are G-orthogonal;

(c) RR,µ1±iν1(S) and RR,µ2±iν2(S) are G-orthogonal.

4.10 Notes

The material of this chapter is well-known, and the greater part of Sections 4.1,
4.2, 4.3, and 4.4 is known even in infinite dimensional setting [5], [6], [11], [57].

Theorem 4.4.2 appeared in [56].
Theorems 4.6.1 and 4.7.1 are called inertia theorems in some literature. Dif-

ferent versions of these theorems can be found in [14], [49], [62], [86], [97], [98],
and [107]. See also [16].

More details on the structure and properties of real symplectic matrices are
found in [73], [4], [74, Appendix], [30], [108], [22], [78], among many other sources.



Chapter 5

Canonical Forms

The fundamental definition of an H-selfadjoint matrix A has been introduced in
the preceding chapter. Also, in Section 4.5, it has been shown that pairs (A, H)
of this kind can be divided into equivalence classes under the relation of “unitar-
ily similarity”. Thus, pairs (A1, H1) and (A2, H2) of this kind are in the same
equivalence class if there is a matrix T such that

A1 = T−1A2T and H1 = T ∗H2T,

or, what is the same, there is a simultaneous congruence H1 = T ∗H2T and H1A1 =
T ∗(H2A2)T . The first objective of this chapter is the description of canonical
pairs in these equivalence classes. As one might expect, this investigation reveals
important invariants of unitary similarity and, in particular, the notion of the
“sign characteristic” of an equivalence class is found to be important. Indeed, three
different characterizations of this notion are to be developed here. The stability of
the sign characteristic under perturbations is also investigated.

Similar questions are studied in the case of unitary similarity of pairs (A, H)
in which A is H-unitary. A broader class of matrices, the “H-normal” matrices,
including the H-selfadjoint and H-unitaries will be the topic of Chapter 8.

5.1 Description of a Canonical Form

Using the notation of Section 4.5, consider a unitary similarity class of pairs of
matrices (A, H) ∈ U in which A is H-selfadjoint. We seek a canonical form in such
a class, i.e., a standard simple pair (J, P ) in the class with the property that for
each pair (A, H) in the class, there is a T such that

A = T−1JT, H = T ∗PT.

In fact, the canonical pair (J, P ) will consist of a matrix J in Jordan nor-
mal form, and a hermitian, invertible P of simple structure (in particular, it will
transpire that P 2 = I).
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Since A is H-selfadjoint we know (Proposition 4.2.3) that the number and
the sizes of Jordan blocks in J corresponding to an eigenvalue λ0(�= λ0) and those
for λ0 are the same. So we can assume that J is a direct sum of Jordan blocks with
real eigenvalues and blocks of the type diag (Jk, Jk),where Jk is a Jordan block
with nonreal eigenvalue.

It will be convenient to introduce the following notation. By Jk(λ) we denote
the Jordan block with eigenvalue λ of size k if λ is real, and the direct sum of
two Jordan blocks of size k

2 , the first with eigenvalue λ and the second with
eigenvalue λ, if λ is nonreal. Often we shall write J(λ) omitting the subscript k.

We have seen in Example 4.2.1 that Jk(λ) is ±P -selfadjoint, where P is the
k × k sip matrix. The following theorem shows that the pair (A, H) is unitarily
similar to a direct sum of blocks of types (J(λ),±P ) when λ is real and (J(λ), P )
when λ is nonreal.

Theorem 5.1.1. Let A, H ∈ Cn×n with H selfadjoint and invertible and let A be
H-selfadjoint. Then there is an invertible T ∈ Cn×n such that A = T−1JT and
H = T ∗PT where

J = J(λ1) ⊕ · · · ⊕ J(λα) ⊕ J(λα+1) ⊕ · · · ⊕ J(λβ) (5.1.1)

is a Jordan normal form for A, λ1, . . . , λα are the real eigenvalues of A, and
λα+1, . . . , λβ are the nonreal eigenvalues of A from the upper half-plane. Also,

Pε,J = ε1P1 ⊕ · · · ⊕ εαPα ⊕ Pα+1 ⊕ · · · ⊕ Pβ , (5.1.2)

where P1, P2, . . . , Pβ are sip matrices with the sizes of J(λ1), . . . , J(λβ) respec-
tively, and ε = {ε1, . . . , εα} is an ordered set of signs ±1. The set ε is uniquely
determined by (A, H) up to permutation of signs corresponding to equal Jordan
blocks.

Conversely, if for some set of signs ε, the pairs (A, H) and (J, Pε,J ) are
unitarily similar, then A is H-selfadjoint.

Note that in Theorem 5.1.1 the number of blocks with each eigenvalue λk of
A is equal to the geometric multiplicity of λk, i.e., the dimension of Ker (λkI −A).

The set of signs ε appearing in this theorem will be called the sign charac-
teristic of the pair (A, H), and recall that it consists of a +1 or −1 factor applied
to each real Jordan block of the Jordan form J of A.

An alternative description of the sign characteristic can be made in terms of
partial multiplicities of A associated with real eigenvalues: one sign (+1 or −1) is
attached to each such partial multiplicity.

The proof of Theorem 5.1.1 will be given later in this chapter. Here, we
note two immediate corollaries. The first gives a complete description of all the
invertible hermitian matrices H for which a given matrix A is H-selfadjoint.
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Corollary 5.1.2. Let A be an n × n matrix which is similar to A∗ and let J be a
Jordan form for A arranged as in (5.1.1). Then A is H-selfadjoint if and only if
H has the form H = T ∗Pε,JT where Pε,J is given by (5.1.2) for some set of signs
ε, and T is an invertible matrix for which A = T−1JT.

In particular, the following result follows immediately.

Corollary 5.1.3. If an n × n matrix A is similar to A∗, then there exists an
invertible hermitian H such that A∗ = H−1AH. Such a matrix is given by H =
T ∗Pε,JT where J is a Jordan normal form for A (arranged as in (5.1.1)), T is any
invertible matrix for which A = T−1JT, ε is an arbitrarily chosen set of signs,
and Pε,J is given by (5.1.2).

The following example is a simple illustration of Corollary 5.1.2.

Example 5.1.4. Let

J = diag
([

0 1
0 0

]
,

[
1 1
0 1

])
.

Then

Pε,J = diag
([

0 ε1

ε1 0

]
,

[
0 ε2

ε2 0

])
for ε = (ε1, ε2), εi = ±1.

According to Theorem 5.1.1, the set Ω = ΩJ of all invertible hermitian matrices H
such that J is H-selfadjoint, splits into 4 disjoint sets Ω1, Ω2, Ω3, Ω4 corresponding
to the sets of signs (+1, +1) , (+1,−1), (−1, +1) and (−1,−1) respectively: Ω =
Ω1 ∪ Ω2∪ Ω3 ∪ Ω4. An easy computation shows that each set Ωi consists of all
matrices H of the form

H = diag
([

0 a1ε1

a1ε1 b1

]
,

[
0 a2ε2

a2ε2 b2

])
,

where a1, a2, are positive and b1, b2 are real parameters; ε1, ε2 are ±1 depending
on the set Ωi. Note also that each set Ωi (i = 1, 2, 3, 4) is (arcwise) connected. �

5.2 First Application of the Canonical Form

In this section we consider some conclusions that can be drawn readily from The-
orem 5.1.1. The first concerns the structure of Ker(λ0I−A) when λ0 ∈ σ(A) and
A is H-selfadjoint. Note that for any eigenvalue λ0 the eigenspace Ker(λ0I − A)
can be written as a direct sum

Ker(λ0I − A) = L1+̇L2, (5.2.3)
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where L1 and L2 are generated by all eigenvectors of λ0 associated with partial
multiplicities equal to 1, and partial multiplicities larger than 1, respectively. These
subspaces could be defined in other ways. For example,

L1 = Span {x1, . . . , xk}, L2 = Ker(λ0I − A) ∩ Range (λ0I − A),

where {x1, . . . , xk} is a maximal set of vectors in Ker(λ0I −A) which are linearly
independent modulo Range(λ0I −A). Clearly, dimL1 (dimL2) is just the number
of partial multiplicities equal to 1 (partial multiplicities larger than 1) associated
with λ0.

Our first observation is that, if A is H-selfadjoint and λ0 ∈ σ(A) is real
then, in the decomposition (5.2.3), L1 is H-nondegenerate and L2 is H-neutral.
To see this, suppose that λ0 has p partial multiplicities equal to 1, and q partial
multiplicities larger than 1. Then the corresponding submatrices of J and Pε,J

from (5.1.1) and (5.1.2) have the form

J(0) = diag (λ0, . . . , λ0, J1, J2, . . . , Jq)

where λ0 appears p times and Jj is a Jordan block of size mj ≥ 2 for j = 1, 2, . . . , q,

Pε,J = diag (ε1, . . . , εp, εp+1Pp+1, . . . , εqPq).

For these matrices, the eigenspace associated with partial multiplicities equal
to 1, say L(0)

1 is spanned by unit coordinate vectors e1, . . . , ep and, in the in-
definite inner product determined by P

(0)
ε,J , we have [ej , ek] = εjδjk for j, k =

1, 2, . . . , p. It follows readily that L(0)
1 is P

(0)
ε,J -nondegenerate, and hence that L1

is H-nondegenerate.
The eigenspace of J (0) associated with the partial multiplicities that are

larger than 1, say L(0)
2 is spanned by unit vectors ej with j = p + 1, p + m1 +

1, . . . , p +
∑q−1

r=1 mr + 1 , and for indices j, k taking these values we clearly have
[ej, ek] = 0 in the P

(0)
ε,J indefinite inner product. It follows that L2 is H-neutral.

If λ0 ∈ σ(A) and λ0 �= λ0, then the whole eigenspace L1+̇L2 is H-neutral.
This can be deducted from the presence of zeros in certain strategic positions of
Pε,J , but this statement can be strengthened to the observation that the whole
root subspace Rλ0 (A) = Ker(λ0I −A)n, where n is the size of A, is H-neutral.
This can be “seen” from the canonical pair J, Pε,J , but has also been proved in
Corollary 4.2.5.

Another useful observation can be made in the case that λ0 ∈ σ(A) and λ0 �=
λ0; namely, that the direct sum of root subspaces Rλ0(A)+̇Rλ0

(A) is nondegenerate
with respect to H . This is easily verified for a canonical pair (J(λ0), P ) and hence,
in full generality.

Our next deduction from the canonical forms of Theorem 5.1.1 concerns the
possibility of counting the negative (or the positive) eigenvalues of H, once the
sign characteristic is known. To be precise about this, let the real Jordan blocks
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J(λ1), J(λ2), . . . , J(λα) of (5.1.1) have sizes m1, . . . , mα and note (from (5.1.2))
that the associated signs in the sign characteristic of (A, H) are ε1, . . . , εα. If
i−(H) is the number of negative eigenvalues of H (and hence of Pε,J ), counted
with multiplicities, it follows first from (5.1.2) that

sig Pε,J =
1
2

α∑
i=1

[1 − (−1)mj ]εi

and, hence, that

i−(H) =
1
2
n − 1

4

α∑
i=1

[1 − (−1)mj ]εi. (5.2.4)

This equation immediately implies that

i−(H) ≥ 1
2
n − 1

2

α∑
i=1

mi

with equality if and only if the mi are all equal to one and ε1 = · · · = εα = 1.
Now the lower bound for i−(H) is just half the number of nonreal eigenvalues of
A. Thus we obtain the following corollary:

Corollary 5.2.1. Let A be H-selfadjoint. Then H has 1
2
n positive eigenvalues (and

so 1
2n negative eigenvalues), counted with multiplicities, if and only if the signs

associated with the Jordan blocks in the Jordan form of A that correspond to real
eigenvalues and have odd size (if any) are equally divided between +1’s and −1’s.

5.3 Proof of Theorem 5.1.1

It is easily verified that, in the statement of Theorem 5.1.1, J is Pε,J -selfadjoint.
The converse statement of the theorem is then an immediate application of Propo-
sition 4.1.3.

Now let A be H-selfadjoint, let λ1, . . . , λα be all the different real eigenvalues
of A and λα+1, . . . , λβ be all the different eigenvalues in the open upper half of
the complex plane. Decompose Cn into a direct sum:

Cn = X1+̇ · · · +̇Xα+̇Xα+1+̇ · · · +̇Xβ

where X1, . . . ,Xα are the root subspaces corresponding to λ1, . . . , λα respectively,
and for j = α + 1, . . . , β, the subspace Xj is the sum of the root subspaces cor-
responding to λj and λj . It follows immediately from Theorem 4.2.4 that for
j, k = 1, 2, . . . , β the subspaces Xj and Xk are orthogonal with respect to H, i.e.,
[x, y] = (Hx, y) = 0 for every x ∈ Xj , y ∈ Xk. From (2.2.2) it follows that for
i = 1, 2, . . . , β,

X [⊥]
i = X1+̇ · · · +̇Xi−1+̇Xi+1+̇ · · · +̇Xβ (5.3.5)
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and then Proposition 2.2.2 implies that each Xi is nondegenerate.
Consider a fixed Xi with i ∈ {α + 1, . . . , β} , so that Xi = X ′

i + X ′′
i and X ′

i,
X ′′

i are the root subspaces corresponding to λi and λi, respectively. Corollary 4.2.5
asserts that both X ′

i and X ′′
i are H-neutral.

There exists an integer m with the properties that (A − λiI)m |X ′
i
= 0, but

(A − λiI)m−1a1 �= 0 for some a1 ∈ X ′
i . Since Xi is nondegenerate and X ′

i

is neutral, there exists a b1 ∈ X ′′
i such that [(A − λiI)m−1a1, b1] = 1. Define

sequences a1, . . . , am ∈ X ′
i and b1, . . . , bm ∈ X ′′

i by

aj = (A − λiI)j−1a1, bj = (A − λiI)j−1b1, j = 1, . . . , m.

Observe that

[a1, bm] = [a1, (A − λiI)m−1b1] = [(A − λiI)m−1a1, b1] = 1,

in particular, bm �= 0. Further, for every x ∈ X ′
i we have

[x, (A − λiI)bm] = [x, (A − λiI)mb1] = [(A − λiI)mx, b1] = 0;

so the vector (A − λiI)bm is H-orthogonal to X ′
i . In view of (5.3.5) we deduce

that (A − λiI)bm is H-orthogonal to Cn, and hence

(A − λiI)bm = 0.

Then clearly am, . . . , a1 (resp. bm, . . . , b1) is a Jordan chain of A corresponding
to λi (resp. λi), i.e., for j = 1, 2, . . . , m − 1,

Aaj − λiaj = aj+1 and Aam = λiam,

and
Abj − λibj = bj+1 and Abm = λibm.

For j + k = m + 1 we have

[aj , bk] = [(A − λiI)j−1a1, (A − λiI)k−1b1] = [(A − λiI)j+k−2a1, b1] = 1 (5.3.6)

and, similarly,
[aj , bk] = 0 if j + k > m + 1. (5.3.7)

Now put

c1 = a1 +
m∑

j=2

αjaj , cj+1 = (A − λiI)cj , j = 1, . . . , m − 1,

where α2, . . . , αm are chosen so that

[c1, bm−1] = [c1, bm−2] = · · · = [c1, b1] = 0. (5.3.8)
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Such a choice is possible, as can be checked easily using (5.3.6) and (5.3.7). Now
for j + k ≤ m we have

[cj, bk] = [(A − λiI)j−1c1, bk] = [c1, (A − λiI)j−1bk] = [c1, bk+j−1] = 0,

and for j + k ≥ m + 1 we obtain, using (A − λiI)ma1 = 0 together with (5.3.6)
and (5.3.7):

[cj , bk] = [(A − λiI)j−1c1, (A − λiI)k−1b1]
= [(A − λiI)j+k−2c1, b1] = [(A − λiI)j+k−2a1, b1]

=
{

1, for j + k = m + 1
0, for j + k > m + 1 .

Let N1 = Span {c1, . . . , cm, b1, . . . , bm} . The relations above show that
A |N1= J1 ⊕ J1 in the basis cm, . . . , c1, bm, . . . , b1 where J1 is the Jordan block of
size m with eigenvalue λi; and

[x, y] = y∗
[

0 P1

P1 0

]
x, x, y ∈ N1

in the same basis, and P1 is the sip matrix of size m. We see from this repre-
sentation that N1 is nondegenerate. By Proposition 2.2.2, Cn = N1+̇N

[⊥]
1 , and

by Proposition 4.1.2, N [⊥]
1 is an invariant subspace for A. If A |N [⊥]

1
has nonreal

eigenvalues, apply the same procedure to construct a subspace N2 ⊆ N [⊥]
1 with

basis c′m′ , . . . , c′1, b
′
m′ , . . . b′1 such that in this basis A |N2= J2 ⊕J2, where J2 is the

Jordan block of size m′ with a nonreal eigenvalue, and

[x, y] = y∗
[

0 P2

P2 0

]
x, x, y ∈ N2

with the sip matrix P2 of size m′. Continue this procedure until the nonreal
eigenvalues of A are exhausted.

Now consider a fixed Xi, where i ∈ {1, . . . , α} so that λi is real. Again,
let m be such that (A − λiI)m |Xi= 0 but (A − λiI)m−1 |Xi �= 0. Let Qi be the
orthogonal projection on Xi and define F : Xi → Xi by

F = QiH(A − λiI)m−1 |Xi .

Since λi is real, it is easily seen that F is a selfadjoint linear transformation.
Moreover, F �= 0; so there is a nonzero eigenvalue of F (necessarily real) with an
eigenvector a1. Normalize a1 so that

(Fa1, a1) = ε, ε = ±1.

In other words, [
(A − λiI)m−1

a1, a1

]
= ε. (5.3.9)
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Let aj = (A−λiI)j−1a1, j = 1, . . . , m. It follows from (5.3.9) that for j+k = m+1

[aj , ak] = [(A − λiI)j−1a1, (A − λiI)k−1a1] = [(A − λiI)m−1a1, a1] = ε. (5.3.10)

Moreover, for j + k > m + 1 we have:

[aj , ak] = [(A − λiI)j+k−2a1, a1] = 0 (5.3.11)

in view of the choice of m. Now put

b1 = a1 + α2a2 + · · · + αmam, bj = (A − λiI)j−1b1, j = 1, . . . , m,

and choose αi so that

[b1, b1] = [b1, b2] = · · · = [b1, bm−1] = 0.

Such a choice of αi is possible. Indeed, the equation [b1, bj] = 0 (j = 1, . . . , m− 1)
implies, in view of (5.3.10) and (5.3.11),

0 = [a1 + α2a2 + · · · + αmam, aj + α2aj+1 + · · · + αm−j+1am]
= [a1, aj ] + 2εαm−j+1 + (terms in α2, . . . , αm−j).

Evidently, these equations determine unique numbers α2, . . . , αm in succession.
Let N = Span {b1, . . . , bm}. In the basis b1, . . . , bm the linear transformation

A |N is represented by the single Jordan block with eigenvalue λi, and

[x, y] = y∗εP0x, x, y ∈ N ,

where P0 is the sip matrix of size m.
Continue the procedure on the orthogonal companion to N, and so on.
Applying this construction, we find a basis f1, . . . , fn in Cn such that A is

represented by the Jordan matrix J of (5.1.1) in this basis and, with Pε,J as defined
in (5.1.2),

[x, y] = y∗Pε,Jx, x, y ∈ Cn,

where x and y are represented by their coordinates in the basis f1, . . . , fn. Let T
be the n × n invertible matrix whose ith column is formed by the coordinates of
fi (in the standard orthonormal basis), i = 1, . . . , n. For such a T, the relation
T−1AT = J holds because f1, . . . , fn is a Jordan basis for A, and equality T ∗HT =
Pε,J follows from the construction of f1, . . . , fn. So (A, H) and (J, Pε,J ) are
unitarily similar.

It remains to prove the uniqueness of the normalized sign characteristic of
(A, H); a sign characteristic of (A, H) is called normalized if the order of the blocks
in the canonical form of (A, H) is such that for every collection of identical Jordan
blocks with a real eigenvalue the signs +1 (if any) associated with this collection
appear first, before the signs −1 (if any) associated with the same collection of
blocks. So suppose that (A, H) is unitarily similar to two canonical pairs, (J, Pε,J )
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and (J, Pδ,J) where ε, δ are sets of signs. It is to be proved that ε and δ are the
same up to permutation of signs corresponding to Jordan blocks with the same
eigenvalue and the same size.

The hypothesis implies that

Pδ,J = S∗Pε,JS, J = S−1JS (5.3.12)

for some invertible S. The second of these equations shows that attention can be
restricted to the case when σ(J) is a singleton. (Indeed, if J = diag (K1, K2) where
σ(K1) ∩ σ(K2) = φ, then every S commuting with J has the form diag (S1, S2)
with partitioning consistent with that of J ; see, for instance, [26, Section VIII.2].)
Thus, it is now assumed that σ(J) = {λ} and λ ∈ R.

Let J have ki blocks Ji1, . . . , Jiki of size mi for i = 1, 2, . . . , t and m1 >
m2 > · · · > mt. Thus, we may write

J = diag
(
diag [J1j ]k1

j=1, diag [J2j ]k2
j=1, . . . ,diag [Jtj ]kt

j=1

)
,

Pε,J = diag
(
diag [ε1jSm1 ]

k1
j=1, diag [ε2jSm2 ]

k2
j=1, . . . ,diag [εtjSmt ]

kt

j=1

)
,

where Sm is the m × m sip matrix, and

Pδ,J = diag
(
diag [δ1jSm1 ]

k1
j=1, diag [δ2jSm2 ]

k2
j=1, . . . ,diag [δtjSmt ]

kt
j=1

)
.

Define also
Ji = Ji1 ⊕ · · · ⊕ Jiki , i = 1, 2, . . . , t.

It follows from (5.3.12) that, for any nonnegative integer k,

Pδ,J(J − Iλ)k = S∗Pε,J (J − Iλ)kS, (5.3.13)

and is a relation between hermitian matrices. Consequently,

sig (Pδ,J (J − Iλ)m1−1) = sig (Pε,J (J − Iλ)m1−1). (5.3.14)

Observe that (J1− Iλ)m1−1 is nilpotent of rank 1 and (Ji − Iλ)m1−1 = 0 for
i = 2, 3, . . . , t. It follows that

Pε,J(J−Iλ)m1−1=diag
(
ε1,1Sm1(J1−Iλ)m1−1, . . . , ε1,k1Sm1(J1−Iλ)m1−1, 0, . . . , 0

)
,

and therefore

sig (Pε,J (J − Iλ)m1−1) =
k1∑

i=1

ε1,i.

Similarly

sig (Pδ,J(J − Iλ)m1−1) =
k1∑

i=1

δ1,i.
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Noting (5.3.14) it is found that

k1∑
i=1

ε1,i =
k1∑

i=1

δ1,i. (5.3.15)

Consequently, the subsets {ε1,1, . . . , ε1,k1} and {δ1,1, . . . , δ1,k1} of ε and δ agree to
within normalization.

Now examine the hermitian matrix Pε,J (J − Iλ)m2−1. This is found to be
block diagonal with nonzero blocks of the form

ε1,jSm1(J1 − Iλ)m2−1, j = 1, 2, . . . , k1

and
ε2,jSm2(J2 − Iλ)m2−1, j = 1, 2, . . . , k2.

It follows that the signature of Pε,J (J − Iλ)m2−1 is given by[
k1∑

i=1

ε1,j

]
(sig

(
Sm1(J1 − Iλ)m2−1)

)
+

k2∑
j=1

ε2,j .

But again, in view of (5.3.13), this must be equal to the corresponding expression
formulated using δ instead of ε. Hence, using (5.3.15), it is found that

k2∑
j=1

ε2,j =
k2∑

j=1

δ2,j

and the subsets {ε2,1, . . . , ε2,k2} and {δ2,1, . . . , δ2,k2} of ε and δ agree within the
normalization convention.

Now it is clear that the argument can be continued for t steps after which
the uniqueness of the normalized sign characteristic is established. This completes
the proof of Theorem 5.1.1. �

5.4 Classification of Matrices by Unitary Similarity

We now exploit the notion of unitary similarity introduced in Section 4.5 and take
advantage of the canonical pairs introduced in Theorem 5.1.1. Recall the remark
in Section 4.5 that if A1 and A2 are similar and H1 and H2 are congruent, it is not
necessarily the case that (A1, H1) and (A2, H2) are unitarily similar. We show
first that, if Aj is Hj-selfadjoint for j = 1 and 2, then unitary similarity of the two
pairs can be characterized quite easily. Let the set U of pairs of matrices (A, H)
be as defined in Section 4.5, i.e., A, H ∈ Cn×n and H is hermitian and invertible.
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Theorem 5.4.1. Let (A1, H1) and (A2, H2) ∈ U and let Aj be Hj-selfadjoint
for j = 1 and 2. Then (A1, H1) and (A2, H2) are unitarily similar if and only
if A1 and A2 are similar and the pairs (A1, H1), (A2, H2) have the same sign
characteristic.

Proof. If A1 and A2 are similar and (A1, H1), (A2, H2) have the same sign char-
acteristic then, by Theorem 5.1.1,

Aj = T−1
j JTj , Hj = T ∗

j Pε,JTj , j = 1 and 2.

Hence
A1 = (T−1

2 T1)−1A2(T−1
2 T1), H1 = (T−1

2 T1)∗H2(T−1
2 T1),

i.e., (A1, H1) and (A2, H2) are unitarily similar and the matrix T−1
2 T1 determines

the unitary similarity.
Conversely, suppose that (A1, H1) and (A2, H2) are unitarily similar. Then

A1 and A2 have a common Jordan form J, which can be arranged as in (5.1.1).
Then, if (A2, H2) and (J, Pε,J ) are unitarily similar for the same set of signs ε,
it follows that (A1, H1) and (J, Pε,J ) are also unitarily similar. In particular, the
sign characteristics of (A1, H1) and (A2, H2) are the same. �

Consider now the important case of unitary similarity in which H1 = H2 = H.
Thus, we say that A1 and A2 are H-unitarily similar if

A1 = U−1A2U and U∗HU = H ;

in other words, if A1 = U−1A2U for some H-unitary matrix U. It is easily seen
that H-unitary similarity defines an equivalence relation on the set of all square
matrices (with the size of H). Furthermore, if an equivalence class contains an
H-selfadjoint matrix it is easily verified that every matrix in the equivalence class
is also H-selfadjoint.

Theorem 5.4.1 shows that H-selfadjoint matrices A1 and A2 are H-unitarily
similar if and only if they are similar and the pairs (A1, H) and (A2, H) have the
same sign characteristic. Using this observation, a canonical representative can
now be constructed in each equivalence class of H-selfadjoint matrices.

First, a set of normalized Jordan matrices is constructed, all of which have
spectrum symmetric with respect to the real axis. Thus, Ξ is defined to be the set
of all n × n Jordan matrices J of the form

Jm1(γ1) ⊕ · · · ⊕ Jmα(γα) ⊕ Jmα+1(γα+1 + iδα+1) ⊕ · · · ⊕ Jmβ
(γβ + iδβ),

where γi (1 ≤ i ≤ β) are real, γ1 ≤ γ2 ≤ · · · ≤ γα, and blocks with the same
eigenvalue are in nondecreasing order of size. Also, δk > 0 for k = α + 1, . . . , β
and γα+1 ≤ γα+2 ≤ · · · ≤ γβ with δk ≤ δk+1 if γk = γk+1 and, finally, all such
blocks with the same eigenvalue are in nondecreasing order of size. (Recall that
Jk(λ) stands for the k × k Jordan block with eigenvalue λ if λ is real, and for
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the direct sum of two k
2 × k

2 Jordan blocks with eigenvalues λ and λ respectively
if λ is nonreal).

With these conventions it is clear that two matrices J ′, J ′′ ∈ Ξ are similar if
and only if J ′ = J ′′.

Now suppose that H is given and consider the subset

ΞH =
{
J ∈ Ξ | TJT−1 is H-selfadjoint for some invertible T

}
.

For each J ∈ ΞH define π(J) to be the set of matrices Pε,J (constructed as in
(5.3.6)) with block structure consistent with that of J, and a set of signs ε such
that Pε,J and H are congruent.

The construction is completed by associating a unique SP with P ∈ π(J),
(J ∈ ΞH), such that H = S∗

P PSP and defining

RH =
{
S−1

P JSP | J ∈ ΞH and P ∈ π(J)
}

.

Then we have:

Theorem 5.4.2. The set RH forms a complete set of representatives of the equiv-
alence classes (under H-unitary similarity) of H-selfadjoint matrices. In other
words, for every H-selfadjoint matrix A there is an A′ ∈ RH such that A and A′

are H-unitarily similar and, if A′, A′′ ∈ RH and A′ �= A′′, then A′ and A′′ are not
unitarily similar.

Proof. Let A be H-selfadjoint, and let A = S−1JS, H = S∗Pε,JS be the canonical
form of (A, H), with normalized sign characteristic, and J chosen from Ξ. Clearly,
Pε,J ∈ π(J). Put A′ = S−1

Pε,J
JSPε,J ∈ RH . Then, by Theorem 5.4.1, A and A′ are

H-unitarily similar .
Conversely, suppose that

A′ = S−1
P ′ J ′SP ′ ∈ RH ; A′′ = S−1

P ′′J
′′SP ′′ ∈ RH ,

and A′ and A′′ are H-unitarily similar. In particular, A′ and A′′ are similar, and
so are J ′ and J ′′. But since J ′, J ′ ∈ Ξ we have J ′ = J ′′. Now use Theorem 5.4.1
to deduce that also P ′ = P ′′ (∈ π(J ′) = π(J ′′)). Clearly, A′ = A′′ (because the
choice of SP is fixed; so P ′ = P ′′ implies SP ′ = SP ′′). �

This section is to be concluded by showing that the equivalence classes of
Theorem 5.4.2 are arcwise connected. But first a lemma is needed.

Lemma 5.4.3. The set of all H-unitary matrices is arcwise connected.

Proof. First observe that the set of all H-selfadjoint matrices is arcwise connected
because it is a real linear space. The lemma is proved by combining this observation
with an appropriate use of the Cayley transformation.

Let U1, U2 be H-unitary matrices and let a1, a2 be unimodular complex num-
bers for which U1 − a1I and U2 − a2I are invertible. For j = 1, 2, define the
H-selfadjoint matrices

Aj = (Uj − ajI)−1(wUj − wajI)
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where w ∈ C \ R. It follows that w �∈ σ(A1) ∪ σ(A2).
Let A(t), t ∈ [0, 1], be a continuous path of H-selfadjoint matrices for which

A(0) = A1, A(1) = A2, and let w(t), t ∈ [0, 1], be a continuous path in C \ R for
which w(0) = w = w(1) and w(t) �∈ σ(A(t)) for t ∈ [0, 1]. For example, w(t) can
be chosen to be equal to the constant w, except for neighborhoods of those points
t for which w ∈ σ(A(t)).

Then define

U(t) = (A(t) − w(t)I)(A(t) − w(t)I)−1

to obtain a path of H-unitary matrices connecting a−1
1 U1 and a−1

2 U2. Now it is
clear that U1 and U2 are also arcwise connected. �
Theorem 5.4.4. Each equivalence class (under H-unitary similarity) of H-selfad-
joint matrices is arcwise connected.

Proof. Let A1 and A2 be H-selfadjoint and A1 = U−1A2U where U is H-unitary.
From Lemma 5.4.3, there exists a path U(t), t ∈ [0, 1] of H-unitary matrices for
which U(0) = U and U(1) = I. Then the path

A(t) = U(t)−1A2U (t), t ∈ [0, 1]

connects A1 and A2 in the equivalence class. �

5.5 Signature Matrices

Let A be H-selfadjoint and let (J, Pε,J ) be the canonical form of the pair (A, H).
We have observed that J and Pε,J satisfy the relations

Pε,JJ = J∗Pε,J , P ∗
ε,J = Pε,J , P 2

ε,J = I. (5.5.16)

The question arises: to what extent do these relations determine Pε,J (for a fixed
J of the form (5.1.1))? In other words, we are interested in solutions of the simul-
taneous equations

PJ = J∗P, P ∗ = P, P 2 = I. (5.5.17)

The next theorem shows that the set of all solutions is a set of matrices which
are unitarily similar to Pε,J ; in fact, of the form SPε,JS∗ where S is unitary and
commutes with J. Thus, every solution can be considered as a representation of
Pε,J in some special orthonormal basis of Cn, and this fact casts a new light on
the canonical matrix Pε,J .

Theorem 5.5.1. If matrix P satisfies the relations (5.5.17), then there is a set of
signs ε (which is unique up to permutation of signs corresponding to equal Jordan
blocks in J) and a unitary matrix S commuting with J such that P = SPε,JS−1.

Conversely, if ε is any set of signs and P = SPε,JS−1 where S is a unitary
matrix commuting with J, then P satisfies the equation (5.5.17).
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Proof. An easy calculation confirms the converse statement. Indeed, if P =
SPε,JS−1 with S∗S = I and SJ = JS, the clearly P ∗ = P and since P 2

ε,J = I,

also P 2 = I. Furthermore, we have J∗ = (S−1JS)∗ = S−1J∗S so that

PJ = SPε,JS−1J = SPε,JJS−1 = SJ∗Pε,JS−1 = J∗SPε,JS−1 = J∗P.

Now consider the direct statement of the theorem and the special case in
which σ(J) = {α} where α is real. Replacing J by J −αI we may assume α = 0.
Let J = diag (J1, . . . , Jk) be the decomposition of J into Jordan blocks, and let

P = [Pij ]ki,j=1

be the corresponding decomposition of P. Note that P ∗ = P implies P ∗
ij = Pji,

and write
Pij =

[
α(ij)

pq

]mi,mj

p,q=1

where mi and mj are the sizes of Ji and Jj respectively. It is easily seen that the
equation PJ = J∗P implies PijJj = J∗

i Pij for i, j = 1, 2, . . . , k, and then this
relation implies that each block of PJ has lower triangular Toeplitz form. More
precisely,

α(ij)
pq = 0 if p + q ≤ max(mi, mj)

α(ij)
pq = α(ij)

uv if p + q = u + v.

Now assume, without loss of generality, that the sizes of the Jordan blocks are
ordered so that m1 = · · · = ms > ms+1 ≥ · · · ≥ mk for some s. Let m =

∑k
i=1 mi

and consider the s×m submatrix A of P formed by rows 1, (m1 + 1), . . . , (m1 +
· · ·+ms−1 +1). Let B be the submatrix of P formed by the last ms+1 + · · ·+mk

columns. Since P 2 = I the product AB is zero.
Because of the ordering of the mj ’s the last ms+1 + · · · + mk columns of A

are zero and so, if A0 is the s × (m1 + · · ·ms) leading submatrix of A, we have

A0B0 = AB = 0, (5.5.18)

where the matrix B0 is formed by the top m1 + . . . + ms rows of B. Then the
invertibility of P is easily seen to imply that of the s×s submatrix of A0 made up
by the columns m1, m1 + m2, . . . , m1 + m2 + . . . + ms of A0. Now (5.5.18) implies
that B0 = 0. In other words, α

(ij)
pq = 0 for i = 1, 2, . . . , s and j = s + 1, . . . , k.

Apply the same argument to the next group of Jordan blocks of equal size,
and repeat as often as possible. The result of this process shows that P must
be block diagonal with each diagonal block corresponding to a group of Jordan
blocks of the same size. Therefore the problem is reduced to the case in which
m1 = m2 = · · · = mk = �, say.

Let C be the k× k(�− 1) submatrix of P formed by rows �, 2�, . . . , k� and all
columns except columns 1, � + 1, . . . , (k − 1)� + 1. If A = [α(ij)

1� ]ki,j=1 then P 2 = I
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implies AC = 0. Again A is invertible and we deduce C = 0. Thus, P is reduced
to the form

P = [γijS�]ki,j=1

where S� is the sip matrix of size �, and the matrix Γ = [γij ]
k
i,j=1 is hermitian.

Then P 2 = I implies that Γ2 = I as well. Hence there exists a k × k unitary
matrix T such that

T−1ΓT = diag (ε1, . . . , εk)

where εj = ±1 for each j.

Now define S = [tijI�]
k
i,j=1 where T = [tij ]

k
i,j=1 and I� is the unit matrix of

size �. Then S is unitary and

S−1PS = diag (ε1S�, . . . , εkS�).

Moreover SJ = JS, so the theorem is proved in the case σ(J) = {α} , α ∈ R.
Now consider the case

J = J0 ⊕ J0, (5.5.19)

where J0 is a Jordan matrix with single nonreal eigenvalue, and let

P =
[

P11 P12

P21 P22

]
be the corresponding decomposition of P. The condition PJ = J∗P can be written
in the form [

P11J0 P12J0

P21J0 P22J0

]
=
[

J∗
0 P11 J∗

0 P12

JT
0 P21 JT

0 P22

]
.

Since σ(J0)∩σ(J0) = φ, it follows from Theorem A.4.1 that the equations P11J0 =
J∗

0 P11 and P22J0 = JT
0 P22 imply P11 = P22 = 0. Also

P12J0 = J∗
0 P12; P21J0 = JT

0 P21. (5.5.20)

But P = P ∗ implies P21 = P ∗
12, so the two relations in (5.5.20) are equivalent.

Let S0 = P ∗
21P0, where P0 = diag (P1, . . . , Pk), and Pi are sip matrices with

sizes equal to the sizes of Jordan blocks in J0. Clearly, S0 is unitary. We prove
that

S0J0 = J0S0.

Indeed, (5.5.20) implies J0P
−1
21 = P−1

21 JT
0 and since P−1

21 = P ∗
21, we have P ∗

21J
T
0 =

J0P
∗
21. Now, using the fact that P0J0 = JT

0 P0, we have

S0J0 = P ∗
21P0J0 = P ∗

21J
T
0 P0 = J0P

∗
21P0 = J0S0.

Put S = diag (S0, I), then clearly, SJ = JS, S is unitary, and

S−1PS =
[

S−1
0 0
0 I

] [
0 P ∗

21

P21 0

] [
S0 0
0 I

]
=
[

0 S−1
0 P ∗

21

P21S0 0

]
=
[

0 P0

P0 0

]
.
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So the theorem is proved in the case when J has the form (5.5.19) with σ(J0) =
{α} , and α is nonreal.

We turn now to the general case of the theorem. Write as in (5.1.1):

J = J(λ1) ⊕ · · · ⊕ J(λα) ⊕ J(λα+1) ⊕ · · · ⊕ J(λβ),

and partition P accordingly: P = [Pij ]
β
i,j=1 . The equality PJ = J∗P implies

PikJ(λk) = J(λi)∗Pik. (5.5.21)

Again, by Theorem A.4.1 (5.5.21) implies that Pik = 0 whenever σ(J(λk)) ∩
σ(J(λi)∗) = ∅. So the proof of the general case is reduced to the two cases
already proved. �

Theorem 5.5.1 and its proof allow us to establish some particular cases in
which every P satisfying (5.5.17) will be in the form Pε,J in the same basis, i.e.,
when one can always choose S = I in Theorem 5.5.1. This will be the case, for
instance, when there is a unique (apart from multiplication of vectors of each
Jordan chain of J by a unimodular complex number, which may be different for
different chains) orthonormal basis in Cn in which J has the fixed form (5.1.1).
This property is easily seen to be true for a nonderogatory matrix J, i.e., when
there is just one Jordan block associated with each distinct eigenvalue. So we
obtain the first part of the following corollary. The second part can be traced from
the proof of Theorem 5.5.1.

Corollary 5.5.2. Assume that J is given by (5.1.1) and at least one of the following
conditions holds:

1. J is nonderogatory;

2. σ(J) is real and each distinct eigenvalue has no two associated Jordan blocks
of the same size.

Then P satisfies equations (5.5.17) if and only if P = Pε,J for some choice of the
signs ε.

In the language of unitary similarity, Theorem 5.5.1 has the consequence:

Corollary 5.5.3. Let H be an invertible hermitian matrix and A be a matrix with
Jordan form J. Then A is H-selfadjoint if and only if (A, H) and (J, P ) are
unitarily similar for any matrix P satisfying the equations (5.5.17).

Suppose now that J and ε are fixed, and consider solutions P1 and P2 of
(5.5.17). Theorem 5.4.1 implies that (J, P1) and (J, P2) are unitarily similar;
which can be expressed by saying that P1 and P2 are congruent, say P1 = T ∗P2T,
for some invertible T commuting with J. In fact, Theorem 5.5.1 implies that the
transforming matrix T is unitary so that the congruence becomes a similarity.
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Theorem 5.5.4. Solutions P1 and P2 of equations (5.5.17) are unitarily similar
with a unitary transforming matrix which commutes with J if and only if P1 and
P2 have the same sign characteristic.

Proof. Since J is fixed in this argument we abbreviate Pε,J to Pε. If P1 and P2 are
solutions of (5.5.17) with the same sign characteristic, ε, then there are unitary
matrices S1 and S2 commuting with J such that

P1 = S1PεS
∗
1 , P2 = S2PεS

∗
2 .

Defining U = S1S
∗
2 it is easily verified that P2 = U∗P1U and that U is unitary

and commutes with J.
Conversely, let P1, P2 be solutions of (5.5.17) with sign characteristics ε1 and

ε2, respectively, and P1 = U∗P2U where U∗U = I and UJ = JU. Then Theorem
5.5.1 implies P2 = S∗Pε2S where S∗S = I and SJ = JS. Consequently,

P1 = (SU)∗Pε2(SU)

where (SU)∗(SU) = I and (SU)J = J(SU). Then (J, P1) and (J, Pε2 ) are
unitarily similar so, by Theorem 5.4.1, ε1 = ε2. �

5.6 The Structure of H-Selfadjoint Matrices when H
has a Small Number of Negative Eigenvalues

In this section we investigate the structure of H-selfadjoint matrices A in the cases
when H has 0, 1, or 2 negative eigenvalues (counting multiplicities) The results
of this section are easily obtained by inspecting the canonical form (J, Pε,J ) of
(A, H), and by sorting out the cases when Pε,J has the required number of negative
eigenvalues. Note also that the number of negative eigenvalues of the n × n sip
matrix is m if n = 2m or n = 2m + 1.

The first case is obvious: if A is H-selfadjoint with positive definite H, then
the spectrum of A is real, A is similar to a diagonal matrix, and all the signs in
the sign characteristic are +1’s.

When H has exactly one negative eigenvalue and A is an H-selfadjoint ma-
trix, then one of the following four statements holds:

(i) σ(A) is real, A is similar to a diagonal matrix, and all but one sign in the
sign characteristic are +1’s;

(ii) σ(A) is real, one Jordan block in the Jordan form of A has size 2 (with
arbitrary sign in the sign characteristic), and the rest of the Jordan blocks
have size 1 with signs +1;

(iii) det(Iλ−A) has exactly 2 nonreal zeros (counting multiplicities), A is similar
to a diagonal matrix, and all signs are +1;
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(iv) σ(A) is real, one Jordan block in the Jordan form of A has size 3, the rest of
the Jordan blocks have size 1, and all the signs are +1.

No. of nonreal Number and signs (in the sign characteristic)

Case eigenvalues of A of Jordan blocks of A

Number (counting with real eigenvalues

multiplicities) of size 1 of size 2 of size 3 of size 4

n

1 0 all but 2 0 0 0

signs are +1

2

2 0 n− 4 signs 0 0

all signs +1 arbitrary

3 0 n− 6 0 2 0

all signs +1 both signs +1

1

4 0 n− 5 sign 1 0

all signs +1 arbitrary sign +1

1

5 0 n− 4 0 0 sign

all signs +1 arbitrary

6 0 n− 3 0 1 0

all signs +1 sign − 1

n− 3

7 0 all signs but 0 1 0

one are +1 sign +1

n− 1 1

8 0 all signs but sign 0 0

one are +1 arbitrary

n− 2

9 2 all signs but 0 0 0

one are +1

1

10 2 n− 4 sign 0 0

all signs +1 arbitrary

11 2 n− 5 0 1 0

all signs +1 sign +1

12 4 n− 4 0 0 0

all signs +1
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It is easily seen that, for every hermitian invertible H of size at least 3 with
exactly 1 negative eigenvalue, all four possibilities can be realized, i.e., for each
case (i)–(iv), there exists an H-selfadjoint A for which this case applies.

The case of two negative eigenvalues of H is somewhat more complicated.
In this case, for an H-selfadjoint matrix A of size at least six, one of 12 possibil-
ities holds. For convenience, they are tabulated above. Again, all 12 possibilities
can be realized for every n × n hermitian invertible H with exactly two negative
eigenvalues (counting multiplicities) and n ≥ 6.

5.7 H-Definite Matrices

Another interesting class of H-selfadjoint matrices are “H-definite”, and are de-
fined as follows: Let H = H∗ be an invertible matrix, and let [., .] = (Hx, y)
be the indefinite inner product defined by H. An n × n matrix A is called H-
nonnegative (resp. H-positive) if [Ax, x] ≥ 0 for all x ∈ Cn (resp. [Ax, x] > 0
for all x ∈ Cn \ {0}). Clearly, these classes of matrices contain only (not all) H-
selfadjoint matrices. So Theorem 5.1.1 is applicable, and it is easily found that
A is H-nonnegative (resp. H-positive) if and only if the matrix Pε,JJ is posi-
tive semidefinite (resp. positive definite) with respect to the usual inner product.
Examining the product Pε,JJ leads to the conclusions:

Theorem 5.7.1. A matrix A ∈ Cn×n is H-positive if and only if the following
conditions hold:

(i) A is H-selfadjoint and invertible;

(ii) the spectrum σ(A) is real;

(iii) A is similar to a diagonal matrix;

(iv) the sign (in the sign characteristic of (A, H)) attached to all Jordan blocks
in the Jordan form of A corresponding to an eigenvalue λ0, is 1 if λ0 > 0,
and −1 if λ0 < 0.

Proof. We may assume from the start that A is H-selfadjoint. Then, without loss
of generality we let A = J , H = Pε,J . Now, the conditions (i) - (iv) are easily
seen to be equivalent to the positive definiteness of the hermitian matrix Pε,JJ .
Finally, use the definition of H-positive matrices. �

Theorem 5.7.2. A matrix A is H-nonnegative if and only if the following conditions
hold:

(i) A is H-selfadjoint;

(ii) σ(A) is real;

(iii) for nonzero eigenvalues of A, all Jordan blocks in the Jordan form of A have
size 1;
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for the zero eigenvalue of A (if zero is an eigenvalue) all Jordan blocks have
sizes either 1 or 2;

(iv) the sign attached to the Jordan blocks of a nonzero eigenvalue λ0 is 1 if
λ0 > 0, and −1 if λ0 < 0; the sign attached to a Jordan block of size 2 (if
any) of the zero eigenvalue, is +1.

The proof of Theorem 5.7.2 is similar to that of Theorem 5.7.1: One verifies
that, assuming A = J , H = Pε,J , the conditions (i) - (iv) are equivalent to the
positive semidefiniteness of the hermitian matrix Pε,JJ .

An n× n matrix A is called H-nonpositive (resp. H-negative ) is [Ax, x] ≤ 0
for all x ∈ Cn (resp. [Ax, x] < 0 for all x ∈ Cn \ {0}). It is left to the reader to
describe H-nonpositive and H-negative matrices. These descriptions are, of course,
closely analogous to Theorem 5.7.1 and 5.7.2.

5.8 Second Description of the Sign Characteristic

The sign characteristic of a pair (A, H), where A is H-selfadjoint, was described
in Section 5.1 in terms of the canonical form. In this section the sign characteristic
will be defined directly in terms of the Jordan chains of the H-selfadjoint matrix
A.

Let λ0 be a fixed real eigenvalue of A, and let Ψ1 ⊆ Cn be the subspace
spanned by the eigenvectors of A corresponding to λ0. For x ∈ Ψ1 \ 0, denote by
ν(x) the maximal length of a Jordan chain of A beginning with the eigenvector x.
In other words, there exists a chain of ν(x) vectors y1 = x, y2, . . . , yν(x) such that

(A − λ0I)yj = yj−1 for j = 2, 3, . . . , ν(x), (A − λ0I)y1 = 0,

and there is no chain of ν(x) + 1 vectors with analogous properties. Let Ψi,
i = 1, 2, . . . , γ (γ = max {ν(x) | x ∈ Ψ1 \ {0}}) be the subspace of Ψ1 spanned
by all x ∈ Ψ1 with ν(x) ≥ i. Then

Ker(Iλ0 − A) = Ψ1 ⊇ Ψ2 ⊇ · · · ⊇ Ψγ.

The following result describes the sign characteristic of the pair (A, H) in terms
of certain bilinear forms defined on the subspaces Ψi.

Theorem 5.8.1. For i = 1, . . . , γ, let

fi(x, y) = (x, Hy(i)), x ∈ Ψi, y ∈ Ψi \ {0},

where y = y(1), y(2), . . . , y(i) is a Jordan chain of A corresponding to real λ0 with
the eigenvector y, and let fi(x, 0) = 0. Then:

(i) fi(x, y) does not depend on the choice of y(2), . . . , y(i);
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(ii) for some selfadjoint linear transformation Gi : Ψi → Ψi,

fi(x, y) = (x, Giy), x, y ∈ Ψi;

(iii) for the transformation Gi of (ii), Ψi+1 = KerGi (by definition Ψγ+1 = {0});
(iv) the number of positive (negative) eigenvalues of Gi, counting multiplicities,

coincides with the number of positive (negative) signs in the sign characteris-
tic of (A, H) corresponding to the Jordan blocks of size i associated with the
eigenvalue λ0 of A.

Proof. Let (J, Pε,J) be the canonical form for (A, H) as described in (5.1.1) and
(5.1.2). Then (A, H) and (J, Pε,J ) are unitarily similar for some set of signs ε,
i.e.,

H = T ∗Pε,JT, A = T−1JT

for some nonsingular T. Hence, for x, y ∈ Ψi,

fi(x, y) = (Tx, Pε,JTy(i)).

Clearly, Tx, and Ty(1), . . . , T y(i) are, respectively, an eigenvector and a Jordan
chain of J corresponding to λ0. In this way the proof is reduced to the case A = J
and H = Pε,J . But in this case the assertions (i)–(iv) are easily verified. �

Consider once more the Jordan matrix J of the proof above. The argument
shows that the basis in which the quadratic form fi(x, x) on Ψi is reduced to a
sum of squares consists of vectors T−1xi1, . . . , T

−1xi,qi , where xij , j = 1, . . . , qi

are all the coordinate unit vectors in Cn such that xij = (J − Iλ0)i−1yij for some
yij , and (Iλ0 − J)xij = 0.

For the case that H = Pε,J and A = J it is not hard to obtain a formula
for the transformations Gi of (ii). Namely, in the standard orthonormal basis
(consisting of unit coordinate vectors) in Ψi,

Gi = PΨi(−Iλ0 + J)i−1Pε,J |Ψi , i = 1, . . . , γ, (5.8.22)

where PΨi is the orthogonal projection on Ψi. Indeed, it is sufficient to prove that

fi(x, y) = (x, PΨi(−Iλ0 + J)i−1Pε,Jy)

for any coordinate unit vectors x, y ∈ Ψi. This is an easy exercise bearing in mind
the special structure of Pε,J and J.

For future reference, we record a corollary of Theorem 5.8.1 that makes ex-
plicit the connection between the sign characteristics of A and of −A.

Corollary 5.8.2. Let A be H-selfadjoint, and let λ be a real eigenvalue of A. Then
the sign characteristic of A corresponding to the odd (resp., even) partial multiplic-
ities, d, associated with λ coincides with (resp., is opposite to) the sign characteris-
tic of the H-selfadjoint matrix −A corresponding to the same partial multiplicities
d, associated with the real eigenvalue −λ of −A.
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Proof. The proof is easily reduced to the situation where A = J is a nilpotent
Jordan matrix, and H = Pε,J . Now observe that, for each Jordan block of size d×d
in A, if y(1), y(2), . . . , y(d) is a Jordan chain of A, then y(1),−y(2), . . . , (−1)d−1y(d)

is a Jordan chain of −A. Now apply Theorem 5.8.1. �

As an application of Theorem 5.8.1 we have the following description of the
connected components in the set of all invertible hermitian matrices H such that
a given matrix A is H-selfadjoint.

Theorem 5.8.3. Let A be an n × n matrix similar to A∗. Suppose that there are
b different Jordan blocks J1, . . . , Jb with real eigenvalues in the Jordan form J of
A, and let ki (i = 1, . . . , b) be the number of times Ji appears in J. Then the set
Ω of all invertible hermitian n × n matrices H such that A is H-selfadjoint, is
a disconnected union of k =

∏b
i=1(ki + 1) (arcwise) connected components Ω =⋃k

i=1 Ωi, where each Ωi consists of all matrices H with the same sign characteristic.

Proof. In view of Corollary 5.1.2 we have

Ω = {H | H = T ∗Pε,JT for some ε and invertible T such that TA = JT} .
(5.8.23)

By Theorem 5.1.1 we can suppose that the set of signs ε in (5.8.23) is normalized.
It is easily seen that the number of all normalized sets of signs is just k; designate
them ε(1), . . . , ε(k). Let

Ωi =
{
H | H = T ∗Pε(i) ,JT for invertible T such that TA = JT

}
.

We prove now that Ωi is connected. It is sufficient to prove that the set of
all invertible matrices T such that TA = JT is connected. Indeed, this set can be
represented as

{UT0 | U is invertible and UJ = JU} ,

where T0 is a fixed invertible matrix such that T0A = JT0. Now from the structure
of the set of matrices commuting with J (see, for instance, [26, Chapter VIII]) it is
easy to deduce that the invertible matrices U commuting with J form a connected
set. Hence Ωi is connected for every i = 1, . . . , k.

It remains to prove that, for H ∈ Ωj , a sufficiently small neighborhood of H
in Ω will contain elements from Ωj only. This can be done using Theorem 5.8.1.
In the notation of Theorem 5.8.1 the bilinear forms f1(x, y), . . . , fγ(x, y) depend
continuously on H ; therefore the same is true for G1, . . . , Gγ . So Gi = Gi(H) :
Ψi → Ψi is a selfadjoint linear transformation which depends continuously on
H ∈ Ω and such that KerGi = Ψi+1 is fixed (i.e., independent of H). It follows
from Theorem A.1.2 that the number of positive eigenvalues and the number of
negative eigenvalues of each Gi remain constant in a neighborhood of H ∈ Ωj . By
Theorem 5.8.1(iv), this neighborhood belongs to Ωj . �
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5.9 Stability of the Sign Characteristic

As another application of Theorem 5.8.1, we present a result on the stability
of the sign characteristic, in the sense of its persistence under sufficiently small
perturbations. For this concept to make sense, the perturbations must be restricted
to those for which the matrix A retains some of its structure after perturbation.

We arrive at the following definition. For any A ∈ Cn×n with a real eigen-
value λ0, and for a positive ε, the (λ0, ε)-structure preserving neighborhood of A
consists of all matrices A1 ∈ Cn×n such that ‖A − A1‖ < ε, A1 has exactly one
real eigenvalue λ1 (perhaps of high multiplicity) in the interval (λ0 − ε, λ0 + ε),
and the partial multiplicities of A1 at the eigenvalue λ1 coincide with the partial
multiplicities of A at λ0. It follows from this definition that A1 has no nonreal
eigenvalues in a complex neighborhood of λ0.

Theorem 5.9.1. Let there be given an H-selfadjoint matrix A, and let λ0 be a real
eigenvalue of A. Then there exist ε > 0 such that for every pair (A1, H1), where
A1 belongs to the (λ0, ε)-structure preserving neighborhood of A, H1 is a hermitian
matrix satisfying ‖H1 − H‖ < ε, and A1 is H1-selfadjoint, the sign characteristic
of (A, H) at λ0 and the sign characteristic of (A1, H1) at the eigenvalue λ1 of A1

lying in the interval (λ0 − ε, λ0 + ε) are the same.

By the sign characteristic of (A, H) at λ0 we mean that part of the sign
characteristic of (A, H) that corresponds to the partial multiplicities associated
with λ0 and similarly for the sign characteristic of (A1, H1) at λ1. Note that by
taking ε sufficiently small, the invertibility of H1 is guaranteed.

Proof. Let A1, H1, and λ1 be as in the statement of Theorem 5.9.1. Let γ be the
largest partial multiplicity of A0 at λ0, which is also the largest partial multiplicity
of A1 at λ1. Denote by Ψi, i = 1, 2, . . . , γ, the subspace spanned by all eigenvectors
of A0 corresponding to λ0 that generate a Jordan chain of length not less than i;
in other words, the Ψi are the subspaces defined at the beginning of the preceding
section. Denote by Ψ(1)

i the similarly defined subspaces for A1 and λ1. Since it is
assumed that A1 belongs to the (λ0, ε)-structure preserving neighborhood of A,
the dimensions of Ψ(1)

i and Ψi are equal for every fixed i.
Put

Eα = Ker (Iλ0 − A)α, α = 1, 2, . . . , γ, E0 = {0},
and for α = 1, 2, . . . , γ choose a basis ηα,1, . . . , ηα,kα in a direct complement of
Eα−1 in Eα. Then for a fixed i, 1 ≤ i ≤ γ, the vectors

φij := (λ0I − A)i−1ηij , j = 1, 2, . . . , ki

form a basis in Ψi. We claim that it is possible to choose bases φ
(1)
i,1 , . . . , φ

(1)
i,ki

in

Ψ(1)
i , for i = 1, 2, . . . , γ, such that the norms ‖φ(1)

i,j −φi,j‖ are as small as we wish,
for sufficiently small ε.
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Indeed, it follows from Proposition A.5.3 that for α = 1, 2, . . . , γ the subspace

E(1)
α := Ker (Iλ1 − A1)α

can be made arbitrarily close to Eα, in the sense that θ(E(1)
α , Eα) can be made

as small as we wish, by choosing a sufficiently small ε. From Corollary A.5.6
we find that, for every α = 1, 2, . . . , γ, there exist a basis η

(1)
α,1, . . . , η

(1)
α,kα

in a

direct complement of E(1)
α−1 in E(1)

α such that η
(1)
α,j is arbitrarily close to ηα,j (j =

1, 2, . . . , kα; α = 1, 2, . . . , γ). Now we can put

φ
(1)
i,j := (λ1I − A1)i−1η

(1)
i,j , j = 1, 2, . . . , ki

to produce bases φ
(1)
i,1 , . . . , φ

(1)
i,ki

in Ψ(1)
i , for i = 1, 2, . . . , γ, where φ

(1)
i,j is arbitrarily

close to φi,j (j = 1, 2, . . . , ki; i = 1, 2, . . . , γ).
Since we have found bases φ

(1)
i,j in Ψ(1)

i that are close enough to the cor-
responding bases φi,j in Ψi, the assertion of Theorem 5.9.1 is obtained without
difficulty from Theorem 5.8.1. Indeed, let fi(x, y) and Gi be the bilinear form and
selfadjoint linear transformation, respectively, defined in Theorem 5.8.1 for A and
λ0, and let f

(1)
i (x, y) and G

(1)
i be the corresponding quantities defined for A1 and

λ1. Then, if H1 is close enough to H , and the bases φ
(1)
i,j are close enough to the

bases φi,j , then the matrix representation of f
(1)
i in the basis φ

(1)
i,1 , . . . , φ

(1)
i,ki

will
be arbitrarily close to the matrix representation of fi in the basis φi,1, . . . , φi,ki .
By Theorem 5.8.1(ii) the same is true for the matrix representations of the self-
adjoint linear transformation G

(1)
i and Gi. Now Theorem 5.8.1, parts (iii) and

(iv), together with Theorem A.1.2(b) ensures that for ε sufficiently small, the sign
characteristic of (A, H) at λ0 coincides with the sign characteristic of (A1, H1) at
λ1. �

5.10 Canonical Forms for Pairs of Hermitian Matrices

Let G1 and G2 be hermitian n × n matrices (invertible or not). Consider the
following problem: reduce G1 and G2 simultaneously by a congruence transfor-
mation to as simple a form as possible. In other words, by transforming the pair
G1, G2 to the pair X∗G1X, X∗G2X with some invertible n × n matrix X we
would like to bring G1, G2 to the simplest possible form.

If one of the matrices G1 or G2 is positive (or negative) definite, it is well
known that G1 and G2 can be reduced simultaneously to a diagonal form. More
generally, such a simple reduction cannot be achieved. However, for the case when
one of the matrices G1 and G2 is invertible, Theorem 5.1.1 leads to the following
result.

Theorem 5.10.1. Let G1 and G2 be hermitian n× n matrices with G2 invertible.
Then there is an invertible n×n matrix X such that X∗G1X and X∗G2X have
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the forms:

X∗G1X = ε1K1⊕· · ·⊕εαKα⊕
[

0 Kα+1

Kα+1 0

]
⊕· · ·⊕

[
0 Kβ

Kβ 0

]
, (5.10.24)

where

Kq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 λq

λq 1
... 1 0

...

0 λq 1
...

λq 1 0 . . . . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

λq is real for q = 1, . . . , α; λq is nonreal for q = α + 1, . . . , β and εq = ±1
(q = 1, . . . , α);

X∗G2X = ε1P1 ⊕ · · · ⊕ εαPα ⊕
[

0 Pα+1

Pα+1 0

]
⊕ · · · ⊕

[
0 Pβ

Pβ 0

]
, (5.10.25)

where Pq is the sip matrix whose size is equal to that of Kq for q = 1, 2, . . . , β.
The representations (5.10.24) and (5.10.25) are uniquely determined by G1 and
G2, up to simultaneous permutation of the same blocks in each formula (5.10.24)
and (5.10.25).

Proof. Observe that G−1
2 G1 is G2-selfadjoint and let (J, Pε,J ) be the canonical

form for (G−1
2 G1, G2). Thus

G−1
2 G1 = XJX−1, G2 = (X∗)−1Pε,JX−1 (5.10.26)

for some invertible matrix X. Now (5.10.26) implies that

G1 = G2XJX−1 = (X∗)−1Pε,JJX−1.

Taking into account the form of Pε,JJ (see formulas (5.1.1) and (5.1.2)) we obtain
the representations (5.10.24) and (5.10.25). The uniqueness of representations
(5.10.24) and (5.10.25) follows from the uniqueness of the canonical form, as stated
in Theorem 5.1.1. �

Note that the sizes of blocks Kq (q = 1, . . . , α), in (5.10.24) and the corre-
sponding numbers λq are just the sizes and eigenvalues of those Jordan blocks in
the Jordan form of G−1

2 G1 which correspond to the real eigenvalues. The sizes of
blocks Kq (q = α + 1, . . . , β) and the corresponding numbers λq may be chosen
as the sizes and eigenvalues of those Jordan blocks of G−1

2 G1 which correspond to
a maximal set of eigenvalues C ⊆ σ(G−1

2 G1) which does not contain a conjugate
pair of complex numbers.
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The problem of the simultaneous reduction of a pair of hermitian matrices
can also be stated as reduction (under congruence transformations) of a linear
pencil of matrices. Namely, given a linear pencil λG1 + G2 of n × n hermitian
matrices, find the simplest form λG′

1 + G′
2 of this pencil which can be obtained

from λG1 + G2 by a congruence transformation: λG′
1 + G2 = X∗(λG1 + G2)X,

where X is an invertible n×n matrix. We leave it to the reader to restate Theorem
5.10.1 in terms of linear pencils of hermitian matrices.

5.11 Third Description of the Sign Characteristic

The two ways of describing the sign characteristic already introduced result in the
statements of Theorems 5.1.1 and 5.8.1. The third approach is apparently quite
different in character and relies on fundamental ideas of analytic perturbation
theory.

If A is H-selfadjoint we have described the associated sign characteristic as
that of the pair (A, H). The discussion of the preceding section suggests that
it would not be unnatural to associate the sign characteristic with the pair of
hermitian matrices (H, HA), or with the pencil λH − HA. In fact, our new
description is to be formulated in terms of the (λ-dependent) eigenvalues of λH −
HA.

The fundamental perturbation theorem concerning these eigenvalues is now
stated:

Theorem 5.11.1. Let G1, G2 ∈ Cn×n be a pair of hermitian matrices. Then there
is a function U(λ) of the real variable λ with values in the unitary matrices such
that, for all real λ,

λG1 + G2 = U(λ)diag (µ1(λ), . . . , µn(λ))U(λ)∗,

and, moreover, the functions µj(λ) and U(λ) can be chosen to be analytic func-
tions of the real parameter λ.

This is a particular case of Theorem A.6.7.
Note that the functions µj(λ) of Theorem 5.11.1 are not generally polynomi-

als in λ.
We apply Theorem 5.11.1 with G1 = H , G2 = −HA, where A is H-

selfadjoint. Thus, the eigenvalue functions µj(λ) (which are, of course, the zeros
of det(Iµ − (λH − HA)) = 0) are analytic in λ. This is the essential prerequisite
for understanding the next characterization of the sign characteristic. Note also
that λ is a real eigenvalue of A if and only if µj(λ) = 0 for at least one j.

Theorem 5.11.2. Let A be an n × n H-selfadjoint matrix, let µ1(λ), . . . , µn(λ) be
the zeros of the scalar polynomial det(µI − (λH − HA)) of degree n arranged so
that µj(λ), j = 1, . . . , n are real analytic functions of real λ, and let λ1, . . . λr be
the different real eigenvalues of A.
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For every i = 1, 2, . . . , r write

µj(λ) = (λ − λi)mij νij(λ)

where νij(λi) �= 0 and is real. Then the nonzero numbers among mi1, . . . , min are
the sizes of Jordan blocks with eigenvalue λi in the Jordan form of A, and the sign
of νij(λi) (for mij �= 0) is the sign attached to mij in the (possibly nonnormalized)
sign characteristic of (A, H).

The proof of Theorem 5.11.2 is based on a different set of ideas, and is
therefore relegated to Chapter 12. We illustrate the theorem with an example:

Example 5.11.3. Let

H =

⎡⎢⎢⎣
0 ε1 0 0
ε1 0 0 0
0 0 0 ε2

0 0 ε2 0

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎦
(cf. Example 5.1.4) where ε1 = ±1, ε2 = ±1. Then we have λ1 = 0, λ2 = 1. The
four eigenvalue functions are given by

µ1,2(λ) =
−ε1 ±

√
1 + 4λ2

2
, µ3,4(λ) =

−ε2 ±
√

1 + 4(λ − 1)2

2
.

It is easily seen that the matrix λH −HA has just one eigenvalue µ1(λ) vanishing
at λ = 0 and just one eigenvalue, say µ3(λ), vanishing at λ = 1. Furthermore, in
sufficiently small neighborhoods of these two points

µ1(λ) = (λ2 − λ4 + · · · )ε1, µ3(λ) = ((1 − λ)2 − (1 − λ)4 + · · · )ε2. �

5.12 Invariant Maximal Nonnegative Subspaces

Invariant subspaces of an H-selfadjoint matrix A will play an important role in
subsequent parts of this book; particularly in connection with factorization prob-
lems for polynomial matrix functions. More especially, we shall be concerned with
A-invariant subspaces which are nonnegative (or nonpositive) with respect to H
and of maximal dimension. This section is devoted to the analysis of such sub-
spaces.

Some notations and definitions will first be set up. Let A be an n × n H-
selfadjoint matrix, and let m1, . . . , mr be the sizes of Jordan blocks in a Jordan
form for A corresponding to the real eigenvalues. Let the corresponding signs in
the sign characteristic for (A, H) be ε1, . . . , εr, and let i+(H) be the number of
positive eigenvalues of H, counting multiplicities.

A set C of nonreal eigenvalues of A is called a c-set if C ∩ C = ∅ and C ∪ C
is the set of all nonreal eigenvalues of A. If M is an H-nonnegative subspace,
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define the index of positivity of M, written p(M), to be the maximal dimension
of an H-positive subspace M0 ⊆ M. It was noted after the proof of Theorem
2.3.3 that p(M) does not depend on the choice of M0.

Theorem 5.12.1. For every c-set C there exists an i+(H)-dimensional, A-in-
variant, H-nonnegative subspace N such that the nonreal part of σ(A |N ) co-
incides with C. The subspace N is maximal H-nonnegative and

p(N ) =
1
2

r∑
i=0

[1 − (−1)mi ]δi, (5.12.27)

where δi = 1 if εi = 1, and δi = 0 if εi = −1.

Proof. We make use of Theorem 5.1.1 and write A = T−1JT, H = T ∗Pε,JT for
some invertible T. Note that the columns of T−1 corresponding to each Jordan
block in J form a Jordan chain for A. So J has exactly q = 1

2 [n −∑r
i=1 mi]

eigenvalues (counting multiplicities) in C, and exactly r Jordan blocks J1, . . . , Jr

of sizes m1, . . . , mr with signs ε1, . . . , εr respectively corresponding to real eigen-
values. Let N be the A-invariant subspace spanned by the following columns of
T−1:

a) the columns corresponding to the Jordan blocks with eigenvalues in C (the
number of such columns is q);

b) for even mi, the first mi/2 columns corresponding to the block Ji;
c) for odd mi, the first (mi + 1)/2 or (mi − 1)/2 columns corresponding to

Ji, according as εi = +1 or εi = −1.
Then the dimension of N is found to be

q +
∑

mi even

mi

2
+

∑
mi odd, εi=1

mi + 1
2

+
∑

mi odd, εi=−1

mi − 1
2

=
n

2
+

1
4

r∑
i=1

[1 − (−1)mi ] εi.

Comparing this with equation (5.2.4) it is seen that dimN = i+(H). Furthermore,
it is easily seen from the structure of Pε,J that N is H-nonnegative.

To check that p(N ) is given by (5.12.27), let PN be the orthogonal projection
on N . Then in the basis for N formed by the chosen columns of T−1 we have

PNH |N= diag (ζ1, ζ2, . . . , ζk) : N → N ,

where ζi = 0 or 1 and ζi = 1 if and only if the i-th chosen column of T−1 is the
1
2 (mj + 1)-th generalized eigenvector in a chain of length mj for which mj is odd
and ζm = +1. It is clear that, with this construction, p(N ) =

∑k
i=1 ζi and the

formula (5.12.27) follows.
Finally, the maximality of N follows from Theorem 2.3.2. �



5.12. Invariant Maximal Nonnegative Subspaces 101

For the case of H-nonpositive invariant subspaces of A there is, of course,
another statement dual to that of Theorem 5.12.1. This can be obtained by con-
sidering −H in place of H in the last theorem. The following example shows that,
in general, the subspace N is not unique (for a given c-set C).

Example 5.12.2. Let

A =

⎡⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ ; H =

⎡⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎤⎥⎥⎦ .

The following 2-dimensional subspaces of C4 are A-invariant and H-nonnegative
(here the c-set C is empty);

Span {〈1 0 0 0〉, 〈0 0 1 0〉} , Span {〈1 0 1 0〉, 〈0 1 0 1〉} .

Note that both subspaces are not only H-nonnegative, but also H-neutral. �
The following result includes extra conditions needed to ensure the unique-

ness of the subspace N from Theorem 5.12.1.

Theorem 5.12.3. Let A be an H-selfadjoint n × n matrix such that the sizes
m1, . . . , mr of the Jordan blocks of A corresponding to real eigenvalues are all
even. Then for every c-set C there exists a unique H-neutral A-invariant subspace
N such that dimN = 1

2n, σ(A |N ) \ R = C, and the sizes of the Jordan blocks of
A |N corresponding to the real eigenvalues are 1

2
m1, . . . ,

1
2
mr.

Proof. Observe first, using (5.2.4) for example, that when m1, . . . , mr are all even
the number of positive eigenvalues of H is just i+(H) = 1

2n. So choosing a c-set
C, Theorem 5.12.1 ensures the existence of a subspace N with all the properties
required by the theorem.

Let NC be the sum of root subspaces of A |N corresponding to the nonreal
eigenvalues of A |N (i.e., the eigenvalues in C), and let Nr be the sum of root
subspaces of A |N corresponding to the real eigenvalues of A |N . Clearly

N = NC+̇Nr. (5.12.28)

Now form the decomposition

Cn = XC +̇XC+̇Xr, (5.12.29)

where XC (resp. XC) is the sum of the root subspaces of A corresponding to the
eigenvalues in C (resp. in C :=

{
λ ∈ C | λ ∈ C

}
).

It is clear from the construction that NC = XC and is uniquely determined,
and also N ∩ XC = {0} . Consequently, the only possible nonuniqueness in the
determination of N arises in forming Nr of (5.12.28).
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Let λ1, . . . , λt be the distinct real eigenvalues of A and Rλj (A) be the
(uniquely determined) root subspace of A corresponding to λj , j = 1, 2, . . . , t.
Then

Xr = Rλ1(A)+̇ · · · +̇Rλt(A)

and there is a corresponding decomposition of Nr (see Theorem A.2.5):

Nr = Nλ1+̇ · · · +̇Nλr ,

with Nλj ⊆ Rλj (A)) for each j and, moreover the dimension of Nλj is just half
that of Rλj (A). These inclusions mean that uniqueness of N now depends on
that of each Nλj . Thus the proof is reduced to the case when A has just one
eigenvalue, say λ0, and λ0 is real.

Without loss of generality assume that λ0 = 0 and that (A, H) is in the
canonical form (J, P ), where P = Pε,J . Let N1, N2 be subspaces with all the
properties listed in Theorem 5.12.3, and we have to prove that N1 = N2.

The proof is by induction on n. Consider first the case that m1 = · · · = mr =
2. Then there exists a unique J-invariant n/2-dimensional subspace N such that
the partial multiplicities of J |N are 1, . . . , 1 (namely, N is spanned by all the
eigenvectors of J). So in that case Theorem 5.12.3 is evident (even without the
condition of P -neutrality). Now consider the general case.

Consider the subspace KerJ. From the properties of Ni it is clear that KerJ ⊆
N1 and KerJ ⊆ N2. Let g1, . . . , gr be the coordinate unit vectors with a 1 in
the positions m1, m1 + m2, . . . , m1 + · · · + mr, respectively. We show that Ni ⊥
Span {g1, . . . , gr} , i = 1, 2, where the orthogonality is understood in the sense of
the usual inner product (., .) . Suppose not, so that there exists an x ∈ Ni such
that (x, gj) �= 0 for some j. Let fj be the eigenvector of J corresponding to the
j-th Jordan block. Clearly, fj ∈ Mi, but (Pfj , x) = (gj , x) �= 0; a contradiction
with the P -neutrality of Ni. So

Ni ⊥ Span {g1, . . . , gr} , i = 1, 2.

Now define the subspaces N ′
i ⊆ Cn as follows: for every x ∈ Cn, let ϕx ∈ Cn

be the vector obtained from x by putting zero instead of the coordinates of x in
the positions 1, m and m1 + · · ·+ mp and m1 + · · ·+ mp + 1 for p = 1, . . . , r − 1:
the rest of the coordinates of x remain unchanged under ϕ. Now put

N ′
i = {ϕx | x ∈ Ni} , i = 1, 2.

It is clear that N ′
i ⊥ (KerJ + Span {g1, . . . , gr}) . Moreover, since Ni ⊇ KerJ and

Ni ⊥ Span {g1, . . . , gr}, we have

N ′
i +̇KerJ = Ni, i = 1, 2.

Evidently, it suffices to prove that N ′
1 = N ′

2. To this end, consider the Jordan
matrix J̃ which is obtained from J by crossing out the first and last column and
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row in each Jordan block. So J̃ has blocks of sizes (m1− 2), . . . , (mr − 2). Further,
define the subspaces Ñi ⊆ Cn−2r as

Ñi =
{
x̃ ∈ Cn−2r | x ∈ N ′

i

}
, i = 1, 2,

where x̃ is obtained from x by crossing out its 2r zero coordinates in the above
mentioned positions. Clearly, the subspaces Ñi are J̃-invariant and P̃ -neutral,
where P̃ is obtained from P by crossing out the first and last column and row
in each of P1, . . . , Pr, and similarly J̃ is obtained from J . So we can apply the
induction hypothesis to deduce that Ñ1 = Ñ2 and therefore also N ′

1 = N ′
2. �

Example 5.12.2 shows that, in Theorem 5.12.3, the requirement that the
multiplicities of A |N are 1

2m1, . . . ,
1
2mr cannot be omitted in general. However, it

turns out that if we require an additional condition that the signs in the sign char-
acteristic of (A, H) which correspond to Jordan blocks with the same eigenvalue
are equal, then for every c-set C there exists an unique H-neutral A-invariant n

2
-

dimensional subspace N with (A |N )\R = C. (Obviously, this additional condition
is violated in Example 5.12.2.) Moreover, in this case we are able to describe all
H-neutral A-invariant n

2
-dimensional subspaces, as follows.

Theorem 5.12.4. Let A be an H-selfadjoint matrix such that the sizes m1, . . . , mr

of the Jordan blocks of A corresponding to the real eigenvalues are all even, and
the signs in the sign characteristic of (A, H) corresponding to the same eigenvalue
are all equal. Let M+ be the sum of the root subspaces of A corresponding to the
eigenvalues of A in the open upper half-plane. Then for every A-invariant subspace
N+ ⊆ M+ there exists a unique A-invariant H-neutral n

2
-dimensional subspace

N such that
N ∩M+ = N+. (5.12.30)

In other words, Theorem 5.12.4 gives a one-to-one correspondence between
the set of A-invariant subspaces N+ of M+ and the set of A-invariant H-neutral
n
2 -dimensional subspaces N , and is given explicitly by (5.12.30).

Proof. Passing to the canonical form of (A, H), we see that it is sufficient to
consider only the two following cases (cf. the proof of Theorem 5.12.3):

(i) σ(A) = {0} ;

(ii) σ(A) =
{
λ0, λ0

}
, λ0 has positive imaginary part.

Consider case (i). In this case M+ = 0, so Theorem 5.12.4 asserts that there
is a unique A-invariant H-neutral n

2
-dimensional subspace N . To prove this,

assume that (A, H) = (J, Pε,J ) is in the canonical form; so

J = J1 ⊕ · · · ⊕ Jr,

where Ji is the nilpotent Jordan block of size mi, i = 1, . . . , r. Suppose, for
instance, that the signs in the sign characteristic of (J, Pε,J ) are all +1’s. Denote



104 Chapter 5. Canonical Forms

by xij the (m1 + · · · + mi−1 + j)-th unit coordinate vector in Cn, j = 1, . . . , mi

(recall that n = m1 + · · · + mr); so the vectors xi1, . . . , ximi form a Jordan chain
of J. Let N be a Pε,J -neutral J-invariant subspace with dimN = 1

2n, and let

x =
∑
i,j

aijxij ∈ N , aij ∈ C.

We claim that the coefficients aij with j > 1
2mi are zeros. Suppose not; let K be

the set of all indices i (1 ≤ i ≤ r) for which the set
{
j | 1

2mi < j ≤ mi, aij �= 0
}

is nonvoid and the difference

max
{

j | 1
2
mi < j ≤ mi, aij �= 0

}
− 1

2
mi

is maximal. Denote this difference by γ. Since N is J-invariant, the vectors

y1 = Jγx, y2 = Jγ−1x

are again in N . A computation shows that

(Pε,Jy1, y2) =
∑
i∈K

∣∣∣ai, 1
2mi+γ

∣∣∣2 = 0

because N is Pε,J -neutral. So ai, 1
2 mi+γ = 0 for all i ∈ K, which contradicts the

choice of K. Thus, aij = 0 for j > 1
2mi. Since dimN = 1

2n, this leaves only one
possibility for N ; namely, N = Span

{
xij | 1 ≤ j ≤ 1

2
mi; i = 1, . . . , r

}
.

Now consider case (ii). Again, assume (A, H) = (J, Pε,J ) is the canonical
form. Rearranging blocks in J and Pε,J (which amounts to a unitary similarity),
we can write J and Pε,J in the forms:

J =
[

J+ 0
0 J+

]
where J+ = J1 ⊕ · · · ⊕ Jr and Ji is the Jordan block of size pi with eigenvalue λ0,
and

Pε,J =
[

0 P
P 0

]
where P = P1 ⊕ · · · ⊕ Pr, and Pi is the sip matrix of size pi. Observe that
J+ = P−1J∗

+P ; so the pair (J, Pε,J ) is unitarily similar to the pair (K, Q), where

K =
[

J+ 0
0 J∗

+

]
, Q =

[
0 I
I 0

]
. It is sufficient to verify Theorem 5.12.4 for

A = K, H = Q.
Given a J+-invariant subspace N+, put

N :=
{[

x
y

]
∈ Cn | x ∈ N+, y ∈ N⊥

+

}
.
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Clearly, N is K-invariant, dimN = n
2

and N ∩Rλ0 (K) =
[ N+

0

]
. Further, N

is Q-neutral; indeed, for x1, x2 ∈ N+, y1, y2 ∈ N⊥
+ we have([

0 I
I 0

] [
x1

y1

]
,

[
x2

y2

])
= (y1, x2) + (x1, y2) = 0.

Now let N ′ be a K-invariant, n
2
-dimensional, Q-neutral subspace such that

N ′ ∩Rλ0(K) =
[ N+

0

]
. (5.12.31)

As N ′ is K-invariant,

N ′ = (N ′ ∩Rλ0(K)) +̇
(N ′ ∩Rλ0

(K)
)
.

In fact

N ′ ∩Rλ0
(K)) ⊆

{[
0
x

]
| x ∈ N⊥

+

}
. (5.12.32)

Indeed, if
[

0
x

]
∈ N ′ with some x ∈ Cn/2 \ N⊥

+ , then there exists y ∈ N+ such

that (x, y) �= 0, and then([
0 I
I 0

] [
0
x

]
,

[
y
0

])
= (x, y) �= 0,

a contradiction with Q-neutrality of N ′. Now (5.12.31) and (5.12.32) together
with dimN ′ = n

2
, imply that N ′ = N .

Theorem 5.12.4 is proved. �

Let A, H be as in Theorem 5.12.4. Observe that for every A-invariant H-
neutral n

2 -dimensional subspace N the sizes of Jordan blocks of the restriction
A |N which correspond to a real eigenvalue are just half the sizes of Jordan blocks
of A corresponding to the same eigenvalue (see Theorem 5.12.3). In particular, the
restriction of A |N to the sum of the root subspaces of A |N corresponding to the
real eigenvalues is independent of N (in the sense that any two such restrictions,
for different subspaces N , are similar).

A special case of Theorem 5.12.4 is sufficiently important to justify a separate
statement:

Corollary 5.12.5. Let A be an H-selfadjoint matrix as in Theorem 5.12.4, and
suppose, in addition, that σ(A) ⊆ R. Then there exists a unique A-invariant,
H-neutral, n

2 -dimensional subspace.
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5.13 Inverse Problems

It has been noted in Corollary 5.1.3 that if an n×n matrix A is similar to A∗ then
there is an H with detH �= 0 and H∗ = H such that A is H-selfadjoint. Now
we ask more specifically: if A is similar to A∗, is there an H with a prescribed
number of negative eigenvalues such that A is H-selfadjoint? In this connection,
recall equation (5.2.4)

i−(H) =
1
2
n − 1

4

α∑
j=1

[1 − (−1)mj ] εj (5.13.33)

which expresses the number of negative eigenvalues of H in terms of the sizes
of Jordan blocks with the real eigenvalues, m1, . . . , mα and the associated signs
ε1, . . . , εα of the sign characteristic. Observe that, if the sign characteristic is
prescribed along with A, then i−(H) is fixed by this relation. When the sign
characteristic is not prescribed the next result holds.

Theorem 5.13.1. Let A be an n × n matrix which is similar to A∗ and let
m1, . . . , mα be the sizes of all the Jordan blocks in the Jordan form of A asso-
ciated with real eigenvalues. Then there exists a nonsingular hermitian matrix H
with exactly N negative eigenvalues (counting multiplicities) for which A is H-
selfadjoint if and only if

1
2
n − 1

4

α∑
j=1

[1 − (−1)mj ] ≤ N ≤ 1
2
n +

1
4

α∑
j=1

[1 − (−1)mj ] . (5.13.34)

Proof. If A is H-selfadjoint and similar to A∗ as required by the theorem, then
(5.13.34) follows immediately from (5.13.33).

Conversely, if (5.13.34) holds then signs ε01, . . . , ε0α can be chosen in such a
way that

N =
1
2
n − 1

4

α∑
j=1

[1 − (−1)mj ] ε0j ,

and a matrix H is found accordingly. �

Note that Theorem 5.13.1 can be re-formulated on replacing N by the number
of positive eigenvalues of H. This is because A is H-selfadjoint if and only if A is
(−H)-selfadjoint and the number of positive eigenvalues of H is just the number
of negative eigenvalues of −H.

Now let 2ν be the number of nonreal eigenvalues of A, counted with mul-
tiplicities. The inequalities (5.13.34) can also be expressed in terms of ν. Thus,
provided N ≤ 1

2n, (5.13.34) is equivalent to the two conditions:

a) ν +
∑α

j=1

[
1
2mj

] ≤ N,
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b) the number of Jordan blocks of A corresponding to real eigenvalues of odd
sizes is not less than

N − ν −
α∑

j=1

[
1
2
mj

]
.

Here, [x] denotes the integer part of x.

This reformulation is established by examination of (5.13.34) making use of the
relation

ν =
1
2

⎛⎝n −
a∑

j=1

mj

⎞⎠ .

In particular, this reformulation leads to the corollary:

Corollary 5.13.2. Assume that the numbers m1, . . . , mα in Theorem 5.13.1 are all
even. Then there exists an n×n hermitian H with exactly N negative eigenvalues
(counting multiplicities) and for which A is H-selfadjoint, if and only if N = 1

2n,
i.e., sig H = 0.

Note that, under the conditions of this result, n is necessarily even.

5.14 Canonical Forms for H-Unitaries: First Examples

The main result obtained earlier in this chapter was the reduction of a pair of
matrices (A, H), for which A is H-selfadjoint, to a canonical form (J, Pε,J ). This
is described in Theorem 5.1.1. The program for the rest of this chapter is similar,
but for pairs (A, H) in which A is H-unitary.

First recall the basic ideas. Let H be an n×n invertible Hermitian matrix and
[x, y] = (Hx, y) be the associated indefinite inner product on Cn. An n×n matrix
A is said to be H-unitary if A is invertible and [A−1x, y] = [x, Ay] for x, y ∈ Cn,
or, what is equivalent, A−1 = A[∗], or A−1 = H−1A∗H. Some simple properties
of H-unitary matrices have already been noted in Section 4.3. In particular, the
spectrum of such a matrix is symmetric with respect to the unit circle, and the root
subspaces of A corresponding to eigenvalues λ and µ with λµ �= 1 are orthogonal
in the indefinite inner product [., .].

It has been seen in Chapter 3 that, if J is an n × n Jordan block with
real eigenvalue λ, and if P is the n × n sip matrix, then (J, P ) form a primitive
matrix pair for which J is P -selfadjoint. It is natural to search for a primitive
P -unitary matrix by examining matrices of the form f(J) where f is a fractional
transformation of the form (4.3.12). It is certainly the case that when λ is real
µ = f(λ) will be the only eigenvalue of f(J), and it will be unimodular.
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It will be convenient to write the Jordan block J in the form J = λI +D (so
that D has the “super-diagonal” made up of “ones,” all other elements zero, and
Dn = 0). Let |η| = 1, suppose w �= w, w �= λ, w �= λ (for the time being λ may be
real or nonreal), and define the Möbius transformation

f(z) =
η(z − w)
z − w

, (5.14.35)

and K = f(J). Then

f(J) = η(λI + D − wI)(λI + D − wI)−1

= η

[
λ − w

λ − w

](
I − 1

w − λ
D

)(
I − 1

w − λ
D

)−1

.

Let µ = f(λ) and q = (w − λ)−1. Then (w − λ)−1 = µ−1ηq and

K = f(J) = (µI − ηqD)(I − qD)−1. (5.14.36)

Note that, since

K = (µI − ηqD)(I + qD + · · · + qn−1Dn−1)

= µI + (µ − η)qD + (µ − η)q2D2 + · · · + (µ − η)qn−1Dn−1,

it follows immediately that K is an upper triangular Toeplitz matrix. Furthermore,
it is easily seen that K is similar to µI +D (preserving the Jordan chain structure
of J) if and only if the coefficient of D in the above expansion is nonzero. But
this coefficient is just (µ − η)q and since q �= 0, and µ = f(λ), it is found that
µ = η only if w = w, and this possibility has been excluded in the definition of f .
Consequently, the matrix K of (5.14.36) is similar to µI+D and (from Proposition
4.3.4) is P -unitary.

Consider in more detail the matrices obtained by this construction from a
real λ, and from a conjugate pair λ, λ (with λ �= λ).

Case 1. (λ = λ, |µ| = 1).
From the definitions of q and µ, it is easily seen that ηq = µq, and the

representation (5.14.36) becomes

K = µ(I − qD)(I − qD)−1. (5.14.37)

We are left with the possibility of choosing the parameters w (and hence q) and
η to simplify (5.14.37) as far as possible. The choice w = λ− i (implying q = i) is
legitimate and gives

K = µ(I + iD)(I − iD)−1 = µ

⎡⎢⎢⎢⎢⎣
1 2i 2i2 · · · 2in−1

0 1 2i · · · ·
······

1 · · 1 2i
0 · · · · · 0 1

⎤⎥⎥⎥⎥⎦ , (5.14.38)
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which is just the matrix of Example 4.3.1. Note that, in (5.14.35), η is still unde-
termined.

Case 2. (λ �= λ, µ1 = f(λ), µ2 = f(λ), µ1µ2 = 1, |µ| �= 1).
Let Jλ = λI +D, Jλ = λI +D and, as above, form K1 = f(Jλ), K2 = f(Jλ).

If q1 = (w − λ)−1, q2 = (w − λ)−1, then (5.14.36) gives

K1 = (µ1I − ηq1D)(I − q1D)−1

K2 = (µ2I − ηq2D)(I − q2D)−1

}
. (5.14.39)

If Q is the matrix
[

0 P
P 0

]
, then it follows from Proposition 4.3.4 that the matrix[

K1 0
0 K2

]
is Q-unitary. In this case, one verifies that

ηq1 = µ1q2, ηq2 = µ2q1,

so that equations (5.14.39) can be written

K1 = µ1(I − q2D)(I − q1D)−1

K2 = µ2(I − q1D)(I − q2D)−1

}
, (5.14.40)

and it is apparent that K2 = K1
−1

.
Now consider “simple” choices for w, and hence q1 and q2. If w = a− i where

a is real, then

q1 =
1

w − λ
=

i

2

[
1

w − λ

]
(w − w) =

i

2

[
1

w − λ

]
(w − λ − (w − λ)) =

i

2
(1 − ηµ1),

and similarly,

q2 =
i

2
(1 − ηµ2).

One can simplify further by putting η = −1 to obtain

q1 =
1
2
i(1 + µ1), q2 =

1
2
i(1 + µ2).

Matrices K1 and K2 of (5.14.40) with this choice of parameters are just those of
Example 4.3.2, namely

K1 =

⎡⎢⎢⎢⎢⎣
µ1 k1 k2 · · · kn−1

0 µ1 k1 ······
· · · µ1 k1

0 · · · · · 0 µ1

⎤⎥⎥⎥⎥⎦ , K2 =

⎡⎢⎢⎢⎢⎣
µ2 κ1 κ2 · · · κn−1

···
µ2 κ1 ···· · · µ2 κ1

0 · · · · · 0 µ2

⎤⎥⎥⎥⎥⎦ ,

(5.14.41)
where

kr = µ1q
r−1
1 (q1 − q2), κr = µ2q

r−1
2 (q2 − q1), for r = 1, 2, . . . , n − 1,

and, of course, µ1µ2 = 1.
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5.15 Canonical Forms for H-Unitaries: General Case

It has been observed that, for any H-unitary matrix A, the spectrum σ(A) is
symmetric relative to the unit circle, and moreover, the partial multiplicities of
an eigenvalue λ coincide with those of the eigenvalue λ

−1
. The blocks of a Jordan

form for A can therefore be arranged as follows:

J = diag (J1, J2, . . . , Jα, Jα+1, . . . , Jα+2β), (5.15.42)

where each Ji is a Jordan block, J1, . . . , Jα each have their associated eigenvalue
on the unit circle, the eigenvalues of Jα+1, Jα+3, . . . , Jα+2β−1 are outside the unit
circle and the eigenvalue of Jα+2j (j = 1, 2, . . . , β) is obtained from that of Jα+2j−1

by inversion in the unit circle.
Construct a block diagonal matrix

KJ = diag(K1, K2, . . . , Kα, Kα+1, . . . , Kα+2β) (5.15.43)

in the following way. If Jj of (5.15.42) has a unimodular eigenvalue µj , let

Kj = µj(I + iD)(I − iD)−1

as in equation (5.14.38). For the pair Jα+2j−1, Jα+2j having nonunimodular eigen-
values µ1, µ2 = µ1

−1, define Kα+2j−1, Kα+2j by (5.14.41), with q1 = i
2 (1 + µ1),

q2 = i
2 (1 + µ2).
It is clear from our study of primitive canonical forms in Section 5.14 that,

with these definitions, KJ is Pε,J -unitary. With these preparations the first im-
portant result of this section can be stated as follows.

Theorem 5.15.1. Let A be H-unitary, and let J be the Jordan normal form of A
arranged as in (5.15.42). Then (A, H) is unitarily similar to a pair (KJ , Pε,J ),
where

Pε,J = diag

(
ε1P1, . . . , εαPα,

[
0 Pα+1

Pα+1 0

]
, . . . ,

[
0 Pα+β

Pα+β 0

])
,

Pj is the sip matrix with size equal to that of Jj (and Kj) for j = 1, . . . , α, and
equal to that of Jα+2(j−α) (and Kα+2(j−α)) for j > α, and ε = (ε1, . . . , εα) is an
ordered set of signs ±1. The set of signs ε is uniquely determined by (A, H) up to
permutation of signs corresponding to equal blocks Kj.

Proof. Let µ1, . . . , µα′ be the distinct unimodular eigenvalues of A and let µα′+1,
. . . , µα′+β′ be distinct nonunimodular eigenvalues chosen one from each conjugate
pair µj , µj

−1. Note that the inverse transformation of (5.14.35) is (wζ−wη)/(ζ−η)
(as a function of ζ).

For j = 1, 2, . . . , α′ define functions gj(ζ) on σ(A) by writing wj = λj − i,
λj ∈ R, and ηj = −µj (cf. Case 1 of Section 5.14), and

gj(ζ) =
(λj − i)ζ + (λj + i)µj

ζ + µj
, (5.15.44)
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in a (sufficiently small) neighborhood of µj with gj(ζ) ≡ 0 in neighborhoods of
every other point of σ(A). Assume also that λ1, . . . , λα are chosen so that µj �= µk

(j, k = 1, 2, . . . , α′) implies λj �= λk.
For a pair of nonunimodular eigenvalues µj and µj

−1 (cf. Case 2 of Section
5.14), let wj = −i, ηj = −1, and, in a neighborhood of µj and µj

1,

gj(ζ) = −i
ζ − 1
ζ + 1

, (5.15.45)

with gi(ζ) ≡ 0 on the remainder of σ(A).
Now define a function g(ζ) on σ(A) by g(ζ) =

∑p
j=1 gj(ζ). Let Tj = gj(A)

and

T = g(A) =
p∑

j=1

Tj .

We show that T is H-selfadjoint.
Observe first that, since (A∗)−1 = HAH−1,

Hgj(A) = (Hgj(A)H−1)H = gj(HAH−1)H = gj((A∗)−1)H,

so that Tj is H-selfadjoint if gj(A) = gj((A∗)−1). The latter fact is readily es-
tablished using the functional calculus and the fact that gj(ζ) = gj(ζ−1). Conse-
quently, Tj is H-selfadjoint for each j, and so T is H-selfadjoint.

Furthermore, the Jordan form JT of T is obtained from the Jordan form J
of A by replacing the eigenvalue µj in each block of J by λj if |µj | = 1, and
by i(1 − µj)/(1 + µj) if |µj | �= 1. Thus, for a fixed set of signs ε, we may write
Pε,JT = Pε,J . Then, applying Theorem 5.1.1, it is found that (T, H) and (JT , Pε,J )
are unitarily similar for some set of signs ε. Thus,

T = S−1JT S, H = S∗Pε,JS

for some nonsingular S.
By construction, A = f(T ) where the function f(z) is the inverse of g(ζ) and

is defined in a neighborhood of a real eigenvalue λj of T by

f(z) =
−µj(z − wj)

z − wj
,

where wj = λj − i, and µj is the corresponding unimodular eigenvalue of A. In a
neighborhood of a pair of nonreal eigenvalues for T , f is defined by

f(z) =
−(z − w)

z − w
,

with w = −i. Furthermore, the construction of KJ shows that KJ = f(JT ). Now
we have

A = f(T ) = S−1f(JT )S = S−1KJS,
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and the relations A = S−1KJS, H = S∗Pε,JS show that (A, H) and (KJ , Pε,J ) are
unitarily similar, as required. The uniqueness of the set of signs ε will be discussed
later, making use of Theorem 5.15.4. �

The set of signs ε associated with the pair (A, H), where A is H-unitary
is, naturally, called the sign characteristic of (A, H). It is clear that the sign
characteristic associated with a unimodular eigenvalue µ of A is just the sign
characteristic of the real eigenvalue λ = g(µ) of the H-selfadjoint matrix T = g(A).
It also follows from the discussion of Section 5.14 that the set of J-invariant
subspaces coincides with the set of KJ -invariant subspaces.

The following example confirms that the notion of the sign characteristic of
(A, H) when A is H-unitary is consistent with that for the sign characteristic of
(A, H) when A is H-selfadjoint, as introduced in Section 5.1.

Example 5.15.2. Let A be a matrix which is both H-unitary and H-selfadjoint.
Thus,

A = H−1A∗H = A−1.

In particular, A2 = I and σ(A) ⊆ {1,−1}. The sign characteristic of A as an
H-selfadjoint matrix is ε(1) say, and (A, H) is unitarily similar to the canonical
pair (J1, P1).

Now let ε(2) be the sign characteristic of A as an H-unitary matrix. Thus,
by definition, ε(2) is the sign characteristic of an H-selfadjoint matrix T = g(A)
where g is given by

g(ζ) =

⎧⎪⎪⎨⎪⎪⎩
(λ1 − i)ζ + (λ1 + i)

ζ + 1
near ζ = 1;

(λ2 − i)ζ + (λ2 + i)
ζ + 1

near ζ = −1,

where λ1, λ2 ∈ R and λ1 �= λ2. Note that the possible eigenvalues of T are λ1 =
g(1), and λ2 = g(−1). Let (T, H) be unitarily similar to a canonical pair (J2, P2).

Now we have
A = S−1

1 J1S1, H = S∗
1P1S1,

T = S−1
2 J2S2, H = S∗

2P2S2,

and since T = g(A), it follows that S−1
2 J2S2 = S−1

1 g(J1)S1, i.e.,,

g(J1) = S−1
3 J2S3,

where S3 = S2S
−1
1 . But it is easily seen that P1 = S∗

3P2S3, and so (g(J1), P1) and
(J2, P2) are unitarily similar. It follows from Theorem 5.5.1 that P1 and P2 have
the same sign characteristic, i.e.,, ε(1) = ε(2), up to an allowed permutation of
signs. �
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The result of Theorem 5.15.1 can be seen as providing a canonical form
(KJ , Pε,J) for the pair (A, H), but we prefer to reserve the phrase “canonical form”
for a unitarily similar pair (J, Qε,J), which is the subject of the next theorem.

Consider first a lemma which specifies a reduction of a typical block of KJ

(as generated by (5.14.36)) to a Jordan block.

Lemma 5.15.3. Let K be an n × n complex matrix of the form

K = µ

⎡⎢⎢⎢⎢⎢⎢⎣
1 α αq αq2 · · · αqn−2

0 1 α αq · · · αqn−3

0 0 1 · · ·
····· · · · ·0 1 α

0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ = µ(I − (q − α)D)(I − qD)−1,

where µαq �= 0, and let J be the n × n Jordan block with eigenvalue µ. Then the
equality

KX = XJ

holds, where

X = diag
(
1, q−1, . . . , q−n+1

)
X̂ndiag

(
1,

q

µα
, . . . ,

(
q

µα

)n−1
)

,

and where

X̂n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0
0 1 −1 1 −1 · · · (−1)n

0 0 1 −2 3 · · · ···0 0 0 1 −3 · · ·
0 0 0 0 1 · · ·
···

· · · 1 −n + 2
0 · · · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.15.46)

Note that the columns of X̂n are made up of the signed binomial coefficients,
and X̂−1

n can also be written down in simple explicit form. Thus, X is invertible,
and the columns of X form a Jordan chain for K. The proof of the lemma is an
exercise in familiar properties of the binomial coefficients and is omitted.

The implications of Lemma 5.15.3 for the reduction of blocks of matrix KJ of
(5.15.43) will now be examined for the cases of eigenvalues which are unimodular
or not unimodular.
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Case 1. Suppose |µ| = 1 and (as in the construction of KJ) set q = i and α = 2i.
A pair (J, Q) is unitarily similar to (K, εP ) (where ε = +1 or −1, and P is the
n × n sip matrix) if J = X−1KX and Q = εX∗PX . The lemma indicates the
choice

X = diag
(
1, i−1, . . . , i−n+1

)
X̂ndiag

(
1, (2µ)−1, . . . , (2µ)−n+1

)
.

It is easily seen that Q = [qjk]nj,k=1 is of triangular form with elements qjk = 0
when j + k ≤ n.

Case 2. With K1 and K2 (= K1
−1

) as defined in (5.14.41), we are to find a matrix
X which will determine the unitary similarity between pairs([

K1 0
0 K2

]
,

[
0 P
P 0

])
and

([
J1 0
0 J2

]
, Q

)
,

and hence the structure of Q. Here, Jj is the n × n Jordan block with eigenvalue
µj for j = 1 and 2 where µ1µ2 = 1.

Using Lemma 5.15.3, construct a matrix X1 for which K1X1 = X1J1 by
setting

q1 =
1
2
i(1 + µ1), q2 =

1
2
i(1 + µ2),

and

q = q1, α = q1 − q2 =
1
2
i(2 + µ1 + µ2) =

1
2
i(1 + µ1)(1 + µ2).

Similarly, on setting q = q2 and

α = q2 − q1 =
1
2
i(1 + µ1)(1 + µ2)

a matrix X2 is obtained for which K2X2 = X2J2. Then[
K1 0
0 K2

] [
X1 0
0 X2

]
=
[

X1 0
0 X2

] [
J1 0
0 J2

]
,

and Q is defined by the congruence

Q =
[

X∗
1 0

0 X∗
2

] [
0 P
P 0

] [
X1 0
0 X2

]
=
[

0 X∗
1PX2

X∗
2PX1 0

]
.

Here, the matrix X∗
1PX2 (and hence Q) is found to be nonsingular and of trian-

gular form with zero elements above the secondary diagonal. Note also that, with
α = q1 − q2 we have

q1

µ1α
=

1
µ1(1 + µ2)

=
1

1 + µ1
.
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The next step is to put the conclusions of Cases 1 and 2 together to formulate
a canonical form for (A, H) where A is H-unitary. But note first that use of the
lemma implies a preferred choice of Jordan chain for K. To investigate reduction
by any Jordan chain the matrix X can be replaced by XT , where T is an arbitrary
nonsingular upper triangular Toeplitz matrix. It may be imagined that there is a
propitious choice for T giving rise to a matrix Q in cases 1 and 2 of particularly
simple structure, but the choice T = I in Lemma 5.15.3 seems, in fact, to be the
least intractable.

In formulating the canonical form suppose that block Jj of J in (5.15.42) has
size nj and Pj is the sip matrix of size nj for j = 1, 2, . . . , α + β.

Theorem 5.15.4. Let A be H-unitary, and let J be a Jordan form for A arranged
as in (5.15.42). Let µ1, . . . , µα be the eigenvalues of J1, . . . , Jα, respectively, and let
µα+1, µα+2, . . . , µα+β be the eigenvalues of Jα+1, Jα+3, . . . , Jα+2β−1, respectively.
(Thus, |µj | = 1 for j = 1, . . . , α and |µj | > 1 for j = α + 1, . . . , α + β).

Then (A, H) is unitarily similar to a pair (J, Qε,J) where

Qε,J = diag
(

ε1Q1, . . . , εαQα,

[
0 Qα+1

Q∗
α+1 0

]
, . . . ,

[
0 Qα+β

Q∗
α+β 0

])
,

(5.15.47)
and for j = 1, 2, . . . , α, we have Qj = X∗

nj
PjXnj , where

Xnj = diag
(
1, i−1, i−2, . . .

)
X̂nj diag

(
1, (2µj)−1, (2µj)−2, . . .

)
,

X̂nj is given by (5.15.46), and ε = (ε1, . . . , εα) is an ordered set of signs ±1.
For j = α + 1, . . . , α + β, we have Qj = X∗

1,jPjX2,j, where

X1,j = diag

(
1,

{
1
2
i(1 + µj)

}−1

,

{
1
2
i(1 + µj)

}−2

, . . .

)
X̂nj

·diag (1, (1 + µj)−1, (1 + µj)−2, . . .),

X̂nj is given by (5.15.46), and X2,j is obtained from X1,j on replacing µj by µj
−1.

To illustrate, observe that the canonical blocks Qj of sizes 2, 3, and 4 for a
unimodular eigenvalue µ are as follows:

i

2

[
0 −µ
µ 0

]
,−1

4

⎡⎢⎢⎣
0 0 µ2

0 −1 1
2µ

µ2 1
2
µ − 1

4

⎤⎥⎥⎦ ,
i

8

⎡⎢⎢⎢⎢⎢⎣
0 0 0 µ3

0 0 −µ µ2

0 µ 0 − 1
4
µ

−µ3 −µ2 1
4
µ 0

⎤⎥⎥⎥⎥⎥⎦ .

In each case, we have J∗
j QjJj = Qj , where Jj is the Jordan block with the size of

Qj and eigenvalue µ.
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One observes that we do not have a canonical form for H-unitary matrices
A where the linear transformation representing A is expressed in terms of a Jor-
dan form and, simultaneously, H has a simple structure comparable to that of
block diagonal matrices with sip diagonal blocks (as for the case of H-selfadjoint
matrices). The examples, particular cases, and theorems in this and the preced-
ing section show that, in the case of H-unitary matrices, when we achieve one of
those two goals, we do not achieve the other. This is in contrast to H-selfadjoint
matrices. Yet another canonical form for H-unitary matrices is given in [44].

Next, we show that the sign characteristic of (A, H), where A is H-unitary,
was properly defined in the proof of Theorem 5.15.1, i.e., that the choice of signs
associated with the eigenvalues of A does not depend on the choice of the parame-
ter w in the Möbius transformation (5.14.35). It was, of course, essential for the
proof of Theorem 5.15.1 that different choices be made for w at different points
of the spectrum. Also, the choice of signs was independent of the parameter η in
(5.14.35).

For the purpose of the next theorem, consider two Möbius transformations

fj(z) =
ηj(z − wj)

z − wj
, j = 1, 2,

and their inverses
gj(ζ) =

wjζ − wjηj

ζ − ηj
,

where |η1| = |η2| = 1, η1 �= η2, and wj �= wj . Thus, each fj maps the reals onto
the unit circle, etc.

Theorem 5.15.5. Let A be H-unitary and suppose that, with the definitions above,

T1 = g1(A), T2 = g2(A).

Then T1 and T2 are H-self-adjoint, and if (�w1)(�w2) > 0, then the sign charac-
teristic of (T1, H) corresponding to a real eigenvalue λ1 of T1 coincides with the
sign characteristic of (T2, H) corresponding to the real eigenvalue λ2 = g2(f(λ1)).

In the proof of Theorem 5.15.4 the condition �wj = −1 was used for each
Möbius transformation employed so the hypothesis of the present theorem applies
there.

Proof. It has been seen in Section 5.14 that the conditions wj �= wj (j = 1, 2)
ensure that the sizes of the Jordan blocks of A are preserved under the trans-
formations A → g1(A) = T1, and A → g2(A) = T2. Consequently, it suffices to
consider a matrix A which is similar to a single n×n Jordan block with unimodular
eigenvalue µ.

Choose a basis x1, x2, . . . , xn of (generalized) eigenvectors of T1 = g1(A) as a
basis for Cn and, in this basis, the representation T̂1 of T1 is an n×n Jordan block,
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say J , with real eigenvalue λ1 = g1(µ). Similarly, T2 = g2(A) has just one real
eigenvalue λ2 = g2(µ) = g2(f1(λ1)). Writing h(λ) = g2(f1(λ)), the representation
of T2 in the Jordan basis constructed for T1 has the form

T̂2 = h(T̂1) =

⎡⎢⎢⎢⎢⎣
γ0 γ1 γ2 · · · γn−1

0 γ0 γ1 · · ·
······

γ0 · · · γ1

0 · · · · · 0 γ0

⎤⎥⎥⎥⎥⎦ , (5.15.48)

where

γj =
h(j)(λ1)

j!
for j = 0, 1, . . . , n − 1.

Since
h(λ) =

w2η1(λ − w1) − w2η2(λ − w1)
η1(λ − w1) − η2(λ − w1)

takes real values for real λ, it is clear that T̂2 is a real matrix.
It is necessary to examine the element γ1 = h(1)(λ1) in some detail. First, as

observed in Section 5.14, γ1 �= 0. A computation shows that

γ1 = h(1)(λ1) =
η1η2(w1 − w1)(w2 − w2)

(η1(λ1 − w1) − η2(λ1 − w1))
2 .

Noting that
η1η2

(η1(λ1 − w1) − η2(λ1 − w1))
2 < 0,

we obtain
γ1 = κ(�w1)(�w2), (5.15.49)

where κ > 0.
To compare the sign characteristics of (T1, H) and (T2, H) (they both consist

of a single sign), we shall take advantage of Theorem 5.8.1 and, to this end, note
that given the Jordan basis x1, . . . , xn for T1 there is a Jordan basis for T2 of the
form

y1 = x1, y2 = γ−1
1 x2,

y3 = γ−2x3 + β32x2, . . . , yn = γ−n+1xn + βn,n−1xn−1 + · · · + βn,2x2. (5.15.50)

This statement is readily verified by using formula (5.15.48).
Consider the linear transformations G

(j)
1 , . . . , G

(j)
n of Theorem 5.8.1 associ-

ated with the matrices T̃j , for j = 1 and j = 2. In this case all of the G
(j)
k act on

a one-dimensional space, and it is easily seen that, in fact, G
(j)
1 = · · · = G

(j)
n−1 = 0

for j = 1, 2, and because of (5.15.50), G
(1)
n and G

(2)
n correspond to multiplication

by constants k1 and k2, respectively, where k2 = γ−n+1
1 k1.
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Thus, the sign characteristics agree whenever γ1 > 0; but this is ensured by
equation (5.15.49). �

The line of argument used in the preceding proof shows that there are other
sufficient conditions guaranteeing preservation of the sign characteristics of g1(A),
g2(A). For example, if all the unimodular eigenvalues of A have only Jordan blocks
of size one in the Jordan canonical form for A, then the difficulties of the theorem
“go away” and the sign characteristics of (T1, H) and (T2, H) will agree. More
generally, it can be seen that the sign characteristic is preserved if and only if

[(�w1)(�w2)]−nj+1 > 0

for each partial multiplicity nj associated with a unimodular eigenvalue of A.
Theorem 5.15.5 demonstrates that the technique used in Theorems 5.15.1

and 5.15.4 to arrive at a sign characteristic for an H-unitary A leads to a unique
definition. More simply, the sign characteristic of (A, H), where A is H-unitary
can be defined as follows: Let g(ζ) = (wζ − wη)/(ζ − η), where |η| = 1, η /∈ σ(A),
and �w > 0. Defining the H-self-adjoint matrix T = g(A), the sign characteristic
of (A, H) at a unimodular µ0 ∈ σ(A) is just the sign characteristic of (T, H) at
the real eigenvalue λ0 = g(µ0) of T .

5.16 First Applications of the Canonical Form of
H-Unitaries

The points to be made in this section are an exact parallel for those made in
Section 5.2 for H-self-adjoint matrices. Comparing the conclusions of Theorem
5.1.1 for H-self-adjoint matrices, and Theorem 5.15.4 for H-unitary matrices, one
sees that matrix Qε,J of (5.15.47) inherits sufficient properties from Pε,J of (5.1.2)
to admit conclusions parallel to those of Section 5.2. The vital characteristics of
Qε,J are that each block Qj is congruent to Pj and is of triangular form with all
elements zero above the bottomleft-topright diagonal.

The conclusions to be drawn will simply be summarized here; the arguments
justifying them are essentially the same as those used in Section 5.2. First, if A
is H-unitary and µ ∈ σ(A) with |µ| = 1, then Ker(µI − A) can be written as a
direct sum

Ker(µI − A) = L1 +̇ L2,

where L1 is H-nondegenerate and L2 is H-neutral. The spaces L1 and L2 are
spanned by eigenvectors of µ associated with partial multiplicities equal to one,
and partial multiplicities larger than one, respectively.

If, on the other hand, µ ∈ σ(A) and |µ| �= 1, then the whole root-subspace
Rµ(A) is H-neutral, and the sum Rµ(A) +̇ Rµ−1(A) is H-nondegenerate.



5.17. Further Deductions from the Canonical Form 119

If H and A are n × n, and H has N negative eigenvalues, it follows (as in
(5.2.4)) that

N =
1
2
n − 1

4

α∑
j=1

[1 − (−1)mj ]εj ,

and from this it is readily concluded that the number of unimodular eigenvalues of
A is at least |sig H| = |sig Qε,J |. Also, H has 1

2
n positive eigenvalues if and only

if the signs associated with Jordan blocks of odd sizes for unimodular eigenvalues
of A (if any) are equally divided between +1’s and −1’s.

5.17 Further Deductions from the Canonical Form

It has been seen that H-self-adjoint and H-unitary matrices have in common the
notion of a sign characteristic, as well as common geometrical properties of root
subspaces. As a result, and in addition to the parallels drawn in the preceding
section, there are other deeper analogues for theorems obtained earlier in Chapter
5.1. Three of these will be considered here.

Denote by i+(H) the number of positive eigenvalues of H (counting multi-
plicities), and recall that for an H-nonnegative subspace L, the index of positivity
p(L) is the maximal dimension (≥ 0) of an H-positive subspace L0 ⊆ L.

Theorem 5.17.1. Let A be an H-unitary matrix, and let C be a set of nonuni-
modular eigenvalues of A, which is maximal with respect to the property that, if
λ0 ∈ C, then λ0

−1
/∈ C. Then there exists an i+(H)-dimensional A-invariant

H-nonnegative subspace N with the three properties:

(i) N is maximal H-nonnegative;

(ii) the nonunimodular part of σ(A|N ) coincides with C;

(iii) p(N ) = 1
2

∑r
j=1[1 − (−1)mj ]δj,

where m1, . . . , mr are the sizes of Jordan blocks in the Jordan form for A having
unimodular eigenvalues and associated signs ε1, . . . , εr in the sign characteristic
of (A, H), and δj = 1 if εj = 1, δj = 0 if εj = −1.

This theorem is the analogue of Theorem 5.12.1 and can be obtained from it
by an application of the Cayley transform. Such a procedure will be demonstrated
in proving the analogue of Theorem 5.4.1.

Theorem 5.17.2. Let U1 be H1-unitary and U2 be H2-unitary. Then (U1, H1) and
(U2, H2) are unitarily similar if and only if U1 and U2 are similar, and the pairs
(U1, H1) and (U2, H2) have the same sign characteristic.

Proof. Let α, w ∈ C with |α| = 1, �w > 0, and such that α is not an eigenvalue
of U1 or of U2. Let

g(ζ) =
wζ − wα

ζ − α
,
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and let A1 = g(U1), A2 = g(U2). Then, by Proposition 4.3.4, A1 is H1-self-adjoint,
and A2 is H2-self-adjoint.

The theorem follows from Theorem 5.4.1 if it can be shown that (A1, H1)
and (A2, H2) are unitarily similar if and only if the same is true of (U1, H1) and
(U2, H2). So suppose that (A1, H1) and (A2, H2) are unitarily similar; i.e., there
is a nonsingular T such that

A1 = T−1A2T, H1 = T ∗H2T.

Then
g(U1) = T−1g(U2)T = g(T−1U2T ),

and applying the inverse transformation to g (which is well defined on σ(A1) and
σ(A2)), it is found that U1 = T−1U2T , and since H1 = T ∗H2T , it follows that
(U1, H1) and (U2, H2) are unitarily similar. But this argument is reversible and so
the theorem is proved. �

Finally, we quote the analogue of Theorem 5.4.4 for future reference. The
proof follows the same lines as that of Theorem 5.4.4.

Theorem 5.17.3. Each equivalence class (under H-unitary similarity) of H-unitary
matrices is arcwise connected.

Recall that H-unitary similarity defines an equivalence relation on the com-
plex square matrices with the size of H (ref. Section 5.4). It is easily verified that
if an equivalence class defined by this relation contains an H-unitary matrix, then
every matrix of the class is H-unitary.

5.18 Exercises

1. Let A ∈ Cn×n. Show that there is a positive definite H ∈ Cn×n such that
(A, H) is unitarily similar to (J, I), where J is a Jordan matrix in the stan-
dard basis of Cn.

2. Show that, for any two similar matrices A and B, there exist positive definite
matrices H and G such that (A, H) and (B, G) are unitarily similar.

3. Consider two matrix pairs

(a) A1 =
[

λ1 α
0 λ2

]
, H1 =

[
0 1
1 0

]
;

(b) A2 =
[

λ1 0
α λ2

]
, H2 =

[
1 0
0 −1

]
.

When is Aj Hj-self-adjoint, for j = 1 and j = 2? If Aj is Hj-selfadjoint, what
is its canonical form? Compute the similarity matrix.
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4. The same problems as in Exercise 3 for the following pairs of matrices:

(a) A3 =

⎡⎣ λ1 α γ
0 λ2 β
0 0 λ3

⎤⎦ ; H3 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ ;

(b) A4 = A3; H4 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ ;

(c) A5 = A3; H5 =

⎡⎣ 1 0 0
0 1 0
0 0 −1

⎤⎦ ;

(d) A6 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · ·
−a0 −a1 −a2 · · · −an−1

⎤⎥⎥⎥⎥⎥⎦;

H6 =

⎡⎢⎢⎣
0 0 · · · 0 1
0 0 · · · 1 0

· · · · · ·
1 0 · · · 0 0

⎤⎥⎥⎦ ;

(e) A7 = A6; H7 =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 a2 · · · an−1 1

a2
·······

... 0

1

⎤⎥⎥⎥⎥⎥⎥⎦ ;

(f) A8 =

⎡⎢⎢⎢⎢⎣
a0 a1 · · · an

an a0 · · · an−1

· · · · · · · · ·
a1 a2 · · · a0

⎤⎥⎥⎥⎥⎦ ; H8 =

⎡⎢⎢⎣
0 0 · · · 0 1
0 0 · · · 1 0

· · · · · ·
1 0 · · · 0 0

⎤⎥⎥⎦ .

The rows of A8 are cyclic permutations of the first row.

5. Find the sign characteristic for the pairs in Exercise 3, assuming that Aj is
Hj-selfadjoint.

6. Find the sign characteristic for all pairs Aj , Hj (j = 3, 4, . . . , 8) in Exercise
4, assuming that Aj is Hj-selfadjoint.



122 Chapter 5. Canonical Forms

7. Describe the structure of all H-unitary matrices in the following cases:

(a) H is positive definite;

(b) H has one negative eigenvalue;

(c) H has two negative eigenvalues (counted with multiplicities).

8. Describe the structure of all H-nonnegative (H-positive) matrices, for a given
invertible hermitian matrix H.

9. Let Rλ(A) be the root subspace of a matrix A corresponding to its eigenvalue
λ.

(a) Using the canonical form for H-selfadjoints, prove that if A is H-
selfadjoint, and λ1, λ2 are eigenvalues of A such that λ1 �= λ2, then the
subspaces Rλ1(A) and Rλ2 (A) are H-orthogonal. (Cf Theorem 4.2.4.)

(b) Using the canonical form for H-unitaries, prove that if A is H-unitary,
and λ1, λ2 are eigenvalues of A such that λ1λ2 �= 1, then the subspaces
Rλ1 (A) and Rλ2(A) are H-orthogonal.

10. Under what additional hypotheses is the matrix A diagonalizable in each of
the following cases:

(a) A is H-selfadjoint; (b) A is H-unitary.

11. Find the canonical form of a pair of matrices (A, H), where A is simultane-
ously H-selfadjoint and H-unitary.

12. Let A be H0-selfadjoint for some invertible hermitian matrix H0. Find the
smallest integer α such that A is H-selfadjoint for some H with sig H = α.

13. Solve the preceding exercise for:

(a) H-unitary A; (b) H-normal A.

14. Find the canonical forms for the following pairs of hermitian matrices:

(a) H =

⎡⎢⎢⎣
0 · · · 0 1
0 · · · 1 0

· · · · · ·
1 0 0 0

⎤⎥⎥⎦ ; G =

⎡⎢⎢⎣
1 0 · · · 0
0 1 · · · 0

· · · · · ·
0 0 · · · 1

⎤⎥⎥⎦ ;

(b) H =

⎡⎢⎢⎣
0 · · · 0 1
0 · · · 1 0

· · · · · ·
1 0 0 0

⎤⎥⎥⎦ ; G =

⎡⎢⎢⎢⎢⎣
0 1
1 0 0

1 · · ·0 1

⎤⎥⎥⎥⎥⎦ ;
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(c) H =

⎡⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
· · · · · ·
1 · · · 0 0

⎤⎥⎥⎦ ; G =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 0
1 0 0

1 · · ·
1

⎤⎥⎥⎥⎥⎥⎥⎦ ;

(d) H =
[

0 Im

Im 0

]
; G = [ajk]2m

j,k=1.

15. Describe the structure of all pairs G1, G2 of hermitian matrices:

(a) if G1 is positive definite;

(b) if each of the matrices G1 and G2 has one negative eigenvalue;

(c) if each of the matrices G1 and G2 has two negative eigenvalues.

16. Let H ∈ Cn×n be a hermitian matrix with p positive eigenvalues λ1, . . . , λp

and q = n− p negative eigenvalues λp+1, . . . , λn, and let φ1, . . . , φn be corre-
sponding eigenvectors (if some of eigenvalues λj , j = 1, 2, . . . , n, coincide, the
eigenvectors are taken to be linearly independent). Then the form (Hφ, φ) is
positive definite on the subspace Span{φ1, . . . , φp}, and is negative definite
on the subspace Span {φp+1, . . . , φn}.

17. In Exercises 3 and 4, find the Aj -invariant maximal Hj-nonnegative sub-
spaces, for j = 1, 2, . . . , 8.

5.19 Notes

The canonical form for H-selfadjoint matrices described in this chapter was known
at the end of the 19th century (see [63], [103]), and it was developed by Weierstrass
in the form of Theorem 5.10.1. The canonical form was rediscovered later by many
authors, [55], [100], [104] is a representative sample of works in the first half of the
20th century (by no means complete). See [101], [99] for historical remarks. More
generally, canonical forms for complex hermitian matrix pairs (over C and over R)
are reviewed in [68]; see also the historical remarks and bibliography in [68].

The sign characteristic as an important notion in its own right was intro-
duced in [37], where the equivalence of the three different descriptions of the sign
characteristic was obtained in a more general setting. The results of Section 5.5
appear in [40] for the first time. Theorem 5.12.3 (essentially) appeared in [66].
Theorem 5.12.4 was obtained in [91].

The material of Sections 5.14, 5.15, 5.16, 5.17 appeared in [40].
A criterion for uniqueness of the subspace N from Theorem 5.12.1 in the

general case is given in [90].





Chapter 6

Real H-Selfadjoint Matrices

We now turn attention to the real space Rn and to an indefinite inner product [., .]
on Rn defined by a real symmetric invertible matrix H. Attention is focussed on
real n×n matrices acting on Rn together with such an indefinite inner product, and
several results obtained in Chapters 2 to 4 are to be re-examined in this context.
In particular, the reader will quickly verify that all the results and observations
of Chapter 2 on the geometry of indefinite inner product spaces (when properly
understood) are also valid for real spaces.

6.1 Real H-Selfadjoint Matrices and Canonical Forms

Let [., .] denote an indefinite inner product defined on Rn by a real symmetric
invertible matrix H of size n, i.e.,,

[x, y] = (Hx, y), for all x, y ∈ Rn.

Recall that (., .) stands for the standard inner product in Rn:

(x, y) =
n∑

j=1

x(j)y(j)

where x = 〈x(1), . . . , x(n)〉, y = 〈y(1), . . . , y(n)〉 are vectors in Rn. The adjoint A[∗]

of a real n × n matrix A is defined just as in (4.1.2) and, as in (4.1.3) it is
easily seen that A[∗] = H−1A∗H. Since A∗ is now just the transpose of A, A[∗] is
obviously real. The following facts and definitions are all formally identical with
predecessors in earlier chapters:

A real matrix A is H-selfadjoint if A∗ = A, i.e., if HA = A∗H .
A real matrix A is H-unitary if A∗A = I, i.e., if A∗HA = H .

A real matrix A is H-normal if A∗A = AA∗, i.e., if (H−1A∗H)A = A(H−1A∗H).
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This section is devoted to properties of the real H-selfadjoint matrices. Some
simple examples follow and, following a trend set in earlier chapters, they will form
the basic blocks in real canonical forms (see Theorem 6.1.5, below).

Example 6.1.1. Let Jk(λ) be the k× k Jordan block with real eigenvalue λ, and let
Sk be the k × k sip matrix. Then Jk(λ) is real ±Sk-selfadjoint. �

Example 6.1.2. If σ, τ ∈ R then
[

σ τ
−τ σ

]
is real S2-selfadjoint. More generally,

the matrix A of even size given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ τ 1 0 · · · 0
−τ σ 0 1

0 0 σ τ
. . .

...

0 0 −τ σ
. . .

...
. . . 1 0

. . . 0 1
σ τ

0 0 · · · −τ σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is real P -selfadjoint where P is the sip matrix with the size of A. �

For any real matrix A, let λ1, . . . , λt be the distinct real eigenvalues of A,
and let σj ± iτj , τj �= 0, for j = 1, 2, . . . , s, be the distinct pairs of nonreal complex
conjugate eigenvalues of A. Then there is a decomposition of Rn into a direct sum
of real A-invariant subspaces Xri:

Rn = Xr1+̇ · · · +̇Xr,t+̇Xr,t+1+̇ · · · +̇Xr,t+s,

where the minimal polynomial of A |Xr,j is a positive integer power of λ − λj , for
j = 1, . . . , t, and the minimal polynomial of A |Xrj is a positive integer power of(
(λ − σj)

2 + τ2
j

)
, for j = t+1, . . . , t+ s (see Theorem A.2.7). Note that dimXrj

is even for j = t + 1, . . . , t + s. Considering A as a linear transformation acting in
Cn, we also obtain the following decomposition:

Cn = X̂r1 + · · · + X̂r,t + X̂r,t+1 + · · · + X̂r,t+s,

where the complex subspace Xrj is equal to Xrj + iXrj . Then

σ(A |
�Xrj

) = {λj} if j = 1, . . . , t

and
σ(A |Xrj ) = {σj + iτj , σj − iτj} if j = t + 1, . . . , t + s.

(See [93, Section 6.62] for more detail of this construction). Using Theorem 4.2.4,
we immediately obtain:
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Theorem 6.1.3. Let A be a real H-selfadjoint matrix, where H is a real symmetric
invertible n × n matrix. Let M1 (resp. M2) be a real A-invariant subspace of Rn

such that the minimal polynomial of the restriction A |M1 (resp. A |M2) is a power
of an irreducible (over the real field) real polynomial p1(λ) (resp. p2(λ)). Then M1

and M2 are H-orthogonal provided p1(λ) �= p2(λ). Moreover, the maximal real
A-invariant subspace M̂1 with the property that the minimal polynomial of A |

�M1

is a power of p1(λ), is H-nondegenerate.

We shall need the following real Jordan form of a real matrix A (not neces-
sarily H-selfadjoint). There exists a real n × n matrix S such that SAS−1 = J ,
where J (a real Jordan form of A) is a block diagonal matrix, each block being of
one of the two following forms (see Theorem A.2.6):

Jp(λ0), λ0 ∈ R, (6.1.1)

Jp(σ ± iτ), σ, τ ∈ R, τ �= 0. (6.1.2)

Note that the minimal polynomial of the Jordan block in (6.1.1) is (λ−λ0)p where
p is the size of the block, and for the matrix in (6.1.2) the minimal polynomial is{
(λ − σ)2 + τ2

}p/2

where p is again the size of the matrix.
As in Chapter 5 a matrix Pε,J is constructed with the same block-diagonal

structure as J . Assume that

J = J1 ⊕ · · · ⊕ Jt ⊕ Jt+1 ⊕ · · · ⊕ Jt+s (6.1.3)

where J1, . . . , Jt are of type (6.1.1) and Jt+1, . . . , Jt+s are of type (6.1.2). Then
define

Pε,J = ε1P1 ⊕ · · · ⊕ εtPt ⊕ Pt+1 ⊕ · · · ⊕ Pt+s (6.1.4)

where Pj is the sip matrix with size equal to that of Jj for j = 1, 2, . . . , t + s
and ε = {ε1, . . . , εt} and εj = ±1 for each j. It is easily verified that J is Pε,J -
selfadjoint.

This observation together with the real Jordan form has an immediate corol-
lary. Let A = S−1JS where S is real and let ε by any set of signs. On forming the
matrix H = S∗Pε,JS, which is also real, it is found that A is real H-selfadjoint.

Corollary 6.1.4. Every real matrix A is H-selfadjoint for some invertible, real,
symmetric matrix H, i.e., there is such an H for which A = H−1AT H.

Note that Corollary 5.1.3 asserts that A is similar to its transpose AT with
a hermitian transforming matrix H. This result says that there is, in fact, a real
symmetric transforming matrix H .

Let (A1, H1) and (A2, H2) be pairs of real n×n matrices, where H1, H2 are
hermitian and invertible. We say that (A1, H1) and (A2, H2) are real unitarily
similar (or r-unitarily similar for short) if A1 = S−1A2S, H1 = S∗H2S for some
real invertible matrix S.

The following theorem is a real version of Theorem 5.1.1.
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Theorem 6.1.5. A pair (A, H) of real matrices, where H = H∗ is real and invert-
ible, and A is H-selfadjoint, is r-unitarily similar to a pair (J, Pε,J), where J is
the real Jordan form of A given by (6.1.3), and Pε,J is given by (6.1.4). The signs
εi are determined uniquely by (A, H) up to permutation of signs in the blocks of
Pε,J corresponding to the Jordan blocks of J with the same real eigenvalue and the
same size.

As in the case of complex matrices, we call the set of signs ε = (ε1, . . . , εt)
the sign characteristic of (A, H).

6.2 Proof of Theorem 6.1.5

Let det(λI − A) = p1(λ)α1 · · · pm(λ)αm , where pi(λ) are real irreducible polyno-
mials over R. Write

Rn = Xr1+̇ · · · +̇Xrm,

where Xri is a real A-invariant subspace of Rn, and the minimal polynomial of
A |Xrj is a power of pj(λ), j = 1, . . . , m. Using Theorem 6.1.3 we can assume (as
in the proof of Theorem 5.1.1) that m = 1, i.e., det(λI − A) = p(λ)α for some
irreducible real polynomial p(λ). Two cases can occur:

1. p(λ) = λ − λ0, λ0 ∈ R.

2. p(λ) = (λ − σ)2 + τ2, τ �= 0, σ, τ ∈ R. In this case n is even.

The first case can be proved by repeating, word for word, the proof of Theo-
rem 5.1.1. So we focus on the second case. Consider A as a linear transformation
acting in Cn; then σ(A) = {σ + iτ, σ − iτ} . Let λ0 = σ + iτ and

X ′ = {x ∈ Cn | (A − λ0I)nx = 0} , X ′′ =
{
x ∈ Cn | (A − λ0I)nx = 0

}
be complex subspaces of Cn. Let m be the largest positive integer such that
(A − λ0I)m−1 |X ′ �= 0, and note that m is also the largest positive integer such
that (A − λ0I)m−1 |X ′′ �= 0.

It will be convenient to introduce the (nonlinear) map K : Cn → Cn as
follows:

K〈x1, x2, . . . , xn〉 = 〈x1, x2, . . . , xn〉, x = 〈x1, x2, . . . , xn〉 ∈ Cn.

Since A and H are real, we have AK = KA, HK = KH.
Note that KX ′ ⊆ X ′′. Indeed, if y ∈ KX ′ then y = Kx, x ∈ X ′ and, since

AK = KA,

(A − λ0I)my = (A − λ0I)mKx = K(A − λ0I)mx = 0,

so that y ∈ X ′′. In fact, since we also have KX ′′ ⊆ X ′, it follows immediately
that KX ′ = X ′′.
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It is now to be shown that[
(A − λ0I)m−1x, Kx

] �= 0

for some x ∈ X ′ and, of course [x, y] = (Hx, y). Assuming the contrary, we have
for every x, y ∈ X ′:

0 =
[
(A − λ0I)m−1(x + y), K(x + y)

]
=
[
(A − λ0I)m−1x, Ky

]
+
[
(A − λ0I)m−1y, Kx

]
.

But using the fact that K commutes with A and H, a direct calculation shows
that [

(A − λ0I)m−1x, Ky
]

=
[
(A − λ0I)m−1y, Kx

]
.

Consequently,
[
(A − λ0I)m−1y, Kx

]
= 0. In other words, [(A − λ0I)m−1y, z] = 0

for every y ∈ X ′ and z ∈ X ′′. Taking y ∈ X ′ such that (A − λ0I)m−1y �= 0, we
observe that (A − λ0I)m−1y is orthogonal (with respect to H) to X ′ + X ′′. But
this is a contradiction since (see the proof of Theorem 5.1.1) the subspace X ′ +X ′′

is nondegenerate.
Thus, there exists an a1 ∈ X ′ such that

θ
def=
[
(A − λ0I)m−1a1, Ka1

] �= 0.

Replacing a1 by αa1 (α ∈ C) will replace θ by α2θ. So we can (and will) assume
that [

(A − λ0I)m−1a1, Ka1

]
= 2i.

Let b1 = Ka1 and for j = 1, 2, . . . , m define

aj = (A − λ0I)j−1a1, bj := (A − λ0I)j−1b1 = Kaj .

As in the proof of Theorem 5.1.1 it can be shown that am, . . . , a1 and bm, . . . , b1

are Jordan chains of A corresponding to λ0 and λ0, respectively, and

[aj , bk] =
{

2i if j + k = m + 1
0 if j + k > m + 1.

(6.2.5)

For j = 1, 2, . . . , m let gj = 1
2 (aj + bj) and hj = 1

2i (aj − bj). Then all the
vectors gj and hj are real (i.e., gj = Kgj and hj = Khj) and they are R-linearly
independent. The real subspace X̃r spanned by g1, h1, . . . , gm, hm is A-invariant
and A has the following matrix representation in the basis gm, hm, . . . , g1, h1:

J0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ τ 1 0 · · · 0
−τ σ 0 1

. . .
...

1 0
... 0 1

σ τ
0 −τ σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.2.6)
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On the other hand, the relations (6.2.5) together with [ai, ak] = [bi, bk] = 0 for
i, k = 1, 2, . . . , m (which follows from the H-neutrality of the subspaces X ′ and
X ′′) imply

[gj , hk] =
{

0 if j + k > m + 1
1 if j + k = m + 1.

(6.2.7)

Note also that [gj, gk] = 1
2

[aj, bk] + 1
2

[bj , ak] = 0 for j + k ≥ m + 1, and similarly
[hj, hk] = 0 for j + k ≥ m + 1. Further,

[gj , hk] = [hj , gk] for j, k = 1, . . . , m,

[gj, gk] = −[hj , hk] for j, k = 1, . . . , m,

and for j1 + k1 = j2 + k2, 1 ≤ j1, k1, j2, k2 ≤ m we have:

[gj1 , gk1 ] = [gj2 , gk2 ] , [gj1 , hk1 ] = [gj2 , hk2 ] ,

[hj1 , gk1 ] = [hj2 , gk2 ] , [hj1 , hk1 ] = [hj2 , hk2 ] .

Then the hermitian matrix H0
def= [fi, fj ]

2m
i,j=1 , where f1 = gm, f2 = hm, . . .,

f2m−1 = g1, f2m = h1, has the following structure:

H0 =

⎡⎢⎢⎢⎢⎣
0 · · · P1

... . . . P2

0 P1

...
P1 P2 · · · Pm

⎤⎥⎥⎥⎥⎦ ,

with

P1 =
[

0 1
1 0

]
, Pj =

[
xj yj

yj −xj

]
, for j = 2, . . . , m,

for some real numbers xj and yj . For brevity, denote by U (resp. V ) the set of

all 2 × 2 real matrices of the form
[

x y
y −x

]
(resp.

[
x y
−y x

]
); thus Pj ∈ U,

j = 1, . . . , m. We claim that there exist matrices Z2, . . . , Zm ∈ V such that⎡⎢⎢⎢⎣
I · · · 0 0

Z∗
2 I 0
...

. . .
...

Z∗
m · · · Z∗

2 I

⎤⎥⎥⎥⎦H0

⎡⎢⎢⎢⎢⎢⎣
I Z2 · · · Zm

0 I · · · Zm−1

...
. . . Z2

0 · · · 0 I

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 · · · 0 P1

. . .

... P1

...
P1 · · · 0

⎤⎥⎥⎥⎦.

(6.2.8)
Indeed, (6.2.8) is equivalent to∑

j + k + � = q
1 ≤ j, k, � ≤ m

Z∗
j PkZ� = 0, q = 4, 5, . . . , m + 2, (6.2.9)
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where we write Z1 = I. Rewrite (6.2.9) in the form

P1Zq−2 + Z∗
q−2P1 = Qq , q = 4, 5, . . . , m + 2 (6.2.10)

where Qq = −∑Z∗
j PkZ�, and the sum is taken over all triples (j, k, �) such that

j + k + � = q; 1 ≤ j, k, � ≤ m; j < q − 2; � < q − 2. Equations (6.2.10) can be
solved for Z2, . . . , Zm successively; indeed, (6.2.10) with q = 4 is

P1Z2 + Z∗
2P1 = −P2,

and one can take Z2 = 1
2

[ −y2 x2

−x2 −y2

]
∈ V to be a solution. Suppose (6.2.10)

to be already solved for q ≤ q0 to obtain solutions Z2, . . . , Zq0−2 ∈ V. Then, as

one checks easily, Qq0+1 ∈ U, and take Zq0−1 = − 1
2

[
0 1
1 0

]
Qq0+1 ∈ V to solve

(6.2.10) with q = q0 + 1.
Having constructed Z2, . . . , Zm ∈ V with the property (6.2.8), observe that

S =

⎡⎢⎢⎢⎢⎢⎢⎣

I Z2 · · · Zm

0 I · · · Zm−1

...
...

. . .
...

0 · · · . . . Z2

0 0 · · · I

⎤⎥⎥⎥⎥⎥⎥⎦
commutes with J0. Let sij be the (i,j)-th entry of S−1, and denote g̃i =

∑2m
j=1 sjifj ,

i = 1, . . . , 2m. Then the real subspace L spanned by g̃1, . . . , g̃2m is A-invariant
and, in the basis g̃1, . . . , g̃2m, the matrix representing A is just J0, while [g̃i, g̃j ] = 0
if i + j �= 2m + 1; [g̃i, g̃j] = 1 if i + j = 2m + 1.

Apply this construction to the pair of real linear transformations

(A |L1 , PL1H |L1) ,

where PL1 is the orthogonal projection on

L1 := {x ∈ Rn | [x, y] = 0 for all y ∈ L} ,

and so on.
Finally, the uniqueness of the sign characteristic is verified as in the proof of

Theorem 5.1.1. �

6.3 Comparison with Results in the Complex Case

As in the case of complex matrices, the basic Theorem 6.1.5 allows us to consider
various problems concerning real H-selfadjoint linear transformations. In many
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cases the results and their proofs are the same for the real and for the complex
cases. For instance, all results and their proofs of Sections 5.2, 5.4, 5.5 are also valid
in the real case. Another description of the sign characteristic of an H-selfadjoint
linear transformation A, given in Theorem 5.8.1, is valid also for the real case.
Theorem 5.4.1 on classification of pairs (A, H), where A is an H-selfadjoint linear
transformation, up to unitary similarity, holds also in the real case (in this case
the classification is up to real unitary similarity, of course). One can obtain the
real version of Theorem 5.4.1 from the complex one, using the fact that for a pair
of real matrices (A, H), where A is H-selfadjoint, the sign characteristics of (A, H)
as a pair of real matrices and as a pair of complex matrices are the same.

Theorem 5.10.1 on the simultaneous reduction of pairs of hermitian matri-
ces has an analogue for pairs of real symmetric matrices. Some reformulation is
required but the short proof is an exact parallel of that used for Theorem 5.10.1.

Theorem 6.3.1. Let G1 and G2 be real symmetric n×n matrices with G2 invertible.
Then there is an invertible n × n real matrix X such that X∗GiX, i = 1, 2 have
the following forms:

X∗G1X = ε1K1 ⊕ · · · ⊕ εαKα ⊕ Kα+1 ⊕ · · · ⊕ Kβ , (6.3.11)

where, for q = 1, 2, . . . , α, the number λα is real and

Kq =

⎡⎢⎢⎣
0 λq

. . . 1
λq . . .

λq 1

⎤⎥⎥⎦ ;

for q = α + 1, . . . , β, the numbers σq and τq are real with τq �= 0 and

Kq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · −τq σq

0 0 0 0 · · · σq τq

0 1
... 1 0

0 0 −τq σq

...
0 0 σq τq

−τq σq 0 1 0 0
σq τq 1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and ε1, . . . , εα are ±1;

X∗G2X = εqP1 ⊕ · · · ⊕ εαPα ⊕ Pα+1 ⊕ · · · ⊕ Pβ , (6.3.12)

where, for q = 1, 2, . . . , β Pq is the sip matrix with size equal to that of Kq. The
representations (6.3.11) and (6.3.12) are uniquely determined by G1 and G2 up to
simultaneous permutation of equal blocks in (6.3.11) and (6.3.12).
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Concerning the results of Section 5.12 note that a real H-selfadjoint ma-
trix does not always have a nontrivial invariant subspace, much less an invariant
subspace which is also maximal H-nonnegative, or H-positive. For example, as

a transformation on R2,
[

0 1
−1 0

]
has no nontrivial subspace and is selfadjoint

with respect to
[

0 1
1 0

]
. The situation is clearer if all the eigenvalues of the real

matrix A are real. If such a matrix is real H-selfadjoint, then all the conclusions
of Section 5.12 can be applied with the understanding that the only candidate for
a c-set is the empty set.

6.4 Connected Components of Real Unitary Similarity

Classes

In Section 5.1 the set of pairs of complex n × n matrices (A, H) for which A
is H-selfadjoint was introduced in order to study the equivalence classes under
unitary similarity. To handle the corresponding problem in the real case consider
Sr, the set of all pairs of real n× n matrices (A, H) for which A is H-selfadjoint.
Then pairs (A1, H1), (A2, H2) ∈ Sr are said to be unitarily similar (or r-unitarily
similar) if there is a real invertible T such that A1 = T−1A2T and H1 = T ∗H2T.
Also, (A1, H), (A2, H) ∈ Sr are real H-unitarily similar (H is now fixed) if A1 =
U−1A2U for some real H-unitary matrix U, i.e., for which U∗HU = H.

In contrast to the conclusions for the complex case described in Theorems
4.5.1 and 5.4.4, it will be shown in this section that the real unitary similarity
classes and the real H-unitary similarity classes are not generally connected. The
basic reason for this is the fact that the group of invertible real n × n matrices is
not connected (see Lemma 6.4.2 below).

Theorem 6.4.1. The r-unitary similarity class of Sr containing a pair (A, H) is
connected if any real Jordan form J of A has a Jordan block of odd size with real
eigenvalue and, otherwise, the class consists of exactly two connected components.
In the latter case, the two connected components consist of those (B, G) ∈ Sr for
which the relations B = T−1AT, G = T ∗HT hold with real matrices T having
positive determinant in one case, and negative determinant in the other.

The proof of Theorem 6.4.1 is based on the following well-known fact which
it will be convenient to present with full proof.

Lemma 6.4.2. The set GLr(n) of all real invertible n × n matrices has two con-
nected components; one contains the matrices with determinant +1, the other con-
tains those with determinant −1.

Proof. Let T be a real matrix with detT > 0 and let J be a real Jordan form for
T. It will first be shown that J can be connected in GLr(n) to a diagonal matrix
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with diagonal entries ±1. Indeed, J may have blocks Jp of two types: first as in
(6.1.1) with nonzero eigenvalue λp in which case we define

Jp(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λp(t) 1 − t · · · 0

0 λp(t)
. . .
. . . . . .

...
...

. . . 1 − t
0 · · · 0 λp(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.4.13)

for any t ∈ [0, 1], where λp(t) is a continuous path of nonzero real numbers such
that λp(0) = λp, and λp(1) = 1 or −1 according as λp > 0 or λp < 0.

Second, a Jordan block Jp may have the form (6.1.2) when Jp(t) is defined
to have the same zero blocks as Jp, while the 2 × 2 diagonal and superdiagonal
blocks are replaced by[

(1 − t)σ + t (1 − t)τ
−(1 − t)τ (1 − t)σ + t

]
,

[
1 − t 0

0 1 − t

]
, (6.4.14)

respectively, for t ∈ [0, 1]. Then Jp(t) determines a continuous path of real invert-
ible matrices such that Jp(0) = Jp and Jp(1) is an identity matrix.

Applying the above procedures to every diagonal block in J , J is connected
to J1 by a path in GLr(n). Now observe that the path in GLr(2) defined for
t ∈ [0, 2] by[ −(1 − t) t

−t −(1 − t)

]
when t ∈ [0, 1],

[
t − 1 2 − t

−(2 − t) t − 1

]
when t ∈ [1, 2],

connects
[ −1 0

0 −1

]
to
[

1 0
0 1

]
. Consequently J1, and hence J , is connected

in GLr(n) with either I or diag (−1, 1, 1, . . . , 1). But det T > 0 implies detJ > 0
and so the latter case is excluded. Since T = S−1JS for some invertible real S,
we can hold S fixed and observe that the path in GLr(n) connecting J and I will
also connect T and I.

Now assume T ∈ GLr(n) and det T < 0. Then detT ′ > 0, where T ′ =
Tdiag (−1, 1, . . . , 1). Using the argument above, T ′ is connected with I in GLr(n).
Hence T ′ is connected with diag (−1, 1, . . . , 1) in GLr(n). �

Proof of Theorem 6.4.1. Without loss of generality we can assume that (A, H) =
(J, Pε,J) is in the (real) canonical form, so that J is a real Jordan form of A.
Denote by US+ (resp. US−) the set of all pairs (B, G) such that B = T−1JT, and
G = T ∗Pε,JT for some real matrix T with detT > 0 (resp. detT < 0). Clearly,
the r-unitary similarity class containing (J, Pε,J ) is a union of US+ and US−. By
Lemma 6.4.2 each set US+ and US− is connected. Moreover, US+ = US− if and
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only if there is a (B, G) ∈ Sr which can be transformed to (J, Pε,J ) by both T+

and T−, say, with detT+ > 0 and detT− < 0. Thus,

B = T−1
+ JT+ = T−1

− JT−, G = T ∗
+Pε,JT+ = T ∗

−Pε,JT−,

and it follows immediately that US+ = US− if and only if there is a real T with
negative determinant such that

J = T−1JT, Pε,J = T ∗Pε,JT. (6.4.15)

Thus, it remains to prove that there exists a real T with detT < 0 such that
(6.4.15) hold if and only if J has a Jordan block of odd size with a real eigenvalue.

Assume J has such a block, J0. In an obvious notation, we can write

J = J1 ⊕ J0, Pε,J = P1 ⊕ P0, (6.4.16)

where J1 is the “rest” of J, and Pε,J is partitioned accordingly. Put T = I ⊕ (−I)
with partitions consistent with those of (6.4.16). Evidently, (6.4.15) holds and,
since J0 has odd size, det T < 0.

Conversely, assume that J does not have a Jordan block of odd size with
real eigenvalue. It will be proved that detT > 0 for every real invertible T satis-
fying JT = TJ, showing thereby that (6.4.15) never holds for a T with negative
determinant.

Using Theorem A.4.1, it is sufficient to consider two cases separately:

1. det(λI − J) = (λ − λ0)α, λ0 ∈ R;

2. det(λI − J) = [(λ − σ)2 + τ2]m, σ, τ ∈ R, τ �= 0.

Consider case 1.; then J is a Jordan matrix with eigenvalue λ0. Let m1 =
· · · = mk1 > mk1+1 = · · · = mk2 > mk2+1 = · · · = mk3 > · · · > mkr−1+1 = · · · =
mkr be the sizes of the Jordan blocks of J and, by assumption, all mi are even.
Let T be a real invertible matrix commuting with J. Then T has the following
form (see, for example, [26], or [70]):

T = (Tij)kr
i,j=1,

where each Tij is defined by an upper triangular Toeplitz matrix in the following
way: Let

T ′
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tij1 tij2 · · · tijγ

0 tij1
. . .
. . . . . .

...
... tij1 tij2
0 · · · 0 tij1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.4.17)
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be a real γ × γ Toeplitz matrix, then:

1. if mi < mj , we have Tij = [0 T ′
ij ], (6.4.18)

2. if mi > mj , we have Tij =
[

T ′
ij

0

]
, (6.4.19)

3. if mi = mj , we have Tij = T ′
ij , (6.4.20)

and in each case, γ = min(mi, mj).
An easy determinantal computation shows that

det T =
(
det[tij1]k1

i,j=1

)mk1
(
det[tij1]k2

i,j=k1+1

)mk2 · · ·
(
det[tij1]kr

i,j=kr−1+1

)mkr

(6.4.21)
which is positive because the mi are all even and T is invertible.

Now consider case 2. Define the set

Ξ :=
{[

a b
−b a

]
: a, b ∈ R

}
.

It is well-known, and easily verified, that Ξ is a subalgebra of R2×2 which is
isomorphic to the field of complex numbers via the map

φ : Ξ2 −→ C, φ

([
a b
−b a

])
= a + ib.

Let Ξm×m ⊆ R2m×2m be the algebra of m×m matrices with entries in Ξ2. The map
φ extends (by applying it entrywise) to the algebra isomorphism φm : Ξm×m

2 −→
Cm×m. One verifies that

det T ≥ 0, for every T ∈ Ξm×m
2 , (6.4.22)

by examining

φ−1
m (K) = φ−1

m (S−1)Tφ−1
m (S) =

(
φ−1

m (S)
)−1

Tφ−1
m (S),

where K is the Jordan form of φm(T ) with the similarity matrix S ∈ Cm×m:

K = S−1φm(T )S.

Clearly, J ∈ Ξm×m
2 . It is not difficult (but tedious) to check that

TJ = JT, T ∈ R2m×2m =⇒ T ∈ Ξm×m
2 . (6.4.23)

To do this, use the following easily verifiable properties of the algebra Ξ2:

(a) If α ∈ Ξ2 has nonzero off diagonal entries, then the equation xα = αx,
x ∈ R2×2, has solutions x only in Ξ2;
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(b) If α ∈ Ξ2 has nonzero off diagonal entries, and if β ∈ Ξ2, then the equation
xα = αx + β, x ∈ R2×2, has no solutions unless β = 0.

Now it follows from (6.4.22) and (6.4.23) that JT = TJ holds with an invertible
real T only if detT > 0. �

6.5 Connected Components of Real Unitary Similarity

Classes (H Fixed)

Consider now the real unitary similarity classes in the real n × n matrices ob-
tained when the real hermitian invertible matrix H is kept fixed. The analogue
for Theorem 5.4.4 turns out to be:

Theorem 6.5.1. Let H be a fixed invertible real symmetric n × n matrix, and let
A be a real n × n matrix. Then the real H-unitary similarity class

USH(A) := {U−1AU : U is real and H − unitary}

which contains A has either 1, 2 or 4 (arcwise) connected components.

The proof of Theorem 6.5.1 will follow from results on the connected com-
ponents of the group of real H-unitary matrices which are to be presented in
Theorem 6.5.2 below. Observe that all 3 possibilities (USH(A) connected, or has
2 or 4 connected components) may occur. When A is H-selfadjoint one can often
find the exact number of connected components of USH(A) in terms of the struc-
ture of the real Jordan form of A and the sign characteristic of A with respect to
H .

It has been noted (see Lemma 5.4.3) that, in the case of complex matrices, the
set of H-unitary matrices is connected. In the real case, the situation is completely
different. Indeed, even in the scalar case, n = 1, the set of H-unitary matrices
consists of the two points: 1 and −1. The following result describes the connected
components of the set Ur(H) of all real H-unitary matrices.

Theorem 6.5.2. Let H = H∗ be a real invertible matrix.

(i) If H is neither positive nor negative definite, then Ur(H) has exactly 4
(arcwise) connected components, whose representatives can be described as
follows: Let x1 (resp. x2) be a real eigenvector of H corresponding to a pos-
itive (resp. negative) eigenvalue. For every choice of the signs n1 = ±1,
n2 = ±1 consider the real H-unitary matrix A(n1, n2) which maps x1

to n1x1, x2 to n2x2 and x to itself, for every x belonging to the orthogo-
nal complement (in the standard sense) to Span {x1, x2} . The 4 matrices
A(1, 1), A(−1, 1), A(1,−1), A(−1,−1) belong to the different connected com-
ponents in Ur(H).
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(ii) If H is either positive definite or negative definite, then Ur(H) has exactly
2 connected components, one consisting of matrices with determinant 1, and
the second consisting of matrices with determinant −1.

Proof. We start with (ii). Considering the case of positive definite H, we assume
without loss of generality that H = I (indeed, write H = S∗S for some real
invertible n × n matrix S. Then A is H-unitary if and only if SAS−1 is I-
unitary). So the group Ur(H) becomes just the group On of (real) orthogonal
n × n matrices.

Since the determinant is a continuous function of a matrix, clearly the subsets
O+

n and O−
n consisting of all n×n orthogonal matrices with determinant 1 and −1,

respectively, are disconnected in On. We shall prove now that O+
n is connected.

Pick A ∈ O+
n . There exists an orthogonal matrix S such that K

def= S−1AS is in
the real Jordan canonical form, as in Theorem A.2.6 but greatly simplified because
A is orthogonal:

K = [K1, K2, . . . , Kr],

where Ki is either the scalar ±1, or a 2 × 2 matrix of the form[
cos θ sin θ
− sin θ cos θ

]
, 0 ≤ θ ≤ 2π. (6.5.24)

Since detK = 1, the number of −1’s is even. The 2 × 2 matrix
[ −1 0

0 −1

]
is of

type (6.5.24) (with θ = π), so we can assume that Ki is either 1 or has the form
(6.5.24). There exists a continuous path in O

+
n connecting K and I. Indeed, it is

sufficient to connect a block (6.5.24) with
[

1 0
0 1

]
by a continuous path. But

this is easy: take [
cos t sin t
− sin t cos t

]
, θ ≤ t ≤ 2π.

So there exists a continuous path K(t), t ∈ [0, 1] in O+
n such that K(0) = K;

K(1) = I. Now the continuous path S−1K(t)S in O
+
n connects A and I. Hence

O+
n is arcwise connected. The arcwise connectedness of O−

n is proved similarly.
The proof of part (i) is more complicated. We assume without loss of gener-

ality that

H =
[

Ip 0
0 −Iq

]
, 0 < p < p + q = n. (6.5.25)

Given real H-unitary X , consider the polar decomposition X = PU , where P =
(XXT )1/2 is real positive definite and U is real unitary. Note that since X is
invertible, the polar decomposition is unique. Then P and U are also H-unitary,
because HXH−1 = (XT )−1 implies

HPUH−1 = (UT PT )−1 = (U−1P )−1 = P−1U,
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or
PU = H−1P−1UH = (H−1P−1H)(H−1UH).

In view of the uniqueness of the polar decomposition of X , we have P =H−1P−1H ,
U = H−1UH , so P and U are indeed H-unitary. Since the polar representation
depends continuously on X (because P = (XXT )1/2, U = (XXT )−1/2X), we find
that the group Ur(H) is homeomorphic to the product

{P ∈ Ur(H) : P is positive definite} × {U ∈ Ur(H) : UT U = I}. (6.5.26)

More precisely, the one-to-one and onto map ψ(X) = {P, U}, where X ∈ Ur(H)
and X = PU is the polar decomposition of X , defines the homeomorphism between
Ur(H) and the product (6.5.26) and, in fact, both ψ and ψ−1 are real analytic.

We examine each component of (6.5.26) separately. A real H-unitary matrix
is unitary if and only if it commutes with H . In view of the form (6.5.25), it

follows that a real unitary H-unitary matrix U has the form U =
[

U1 0
0 U2

]
,

where U1 ∈ Rp×p and U2 ∈ Rq×q are Ip-unitary and −Iq-unitary, respectively. By
the case (ii) of the theorem we see that the factor {U ∈ Ur(H) : UT U = I} of
(6.5.26) has exactly 4 (arcwise) connected components.

The set
{P ∈ Ur(H) : P is positive definite} (6.5.27)

of (6.5.26) is connected. To verify this, note that for every positive definite P ∈
Rn×n there exists a unique real hermitian Q such that P = eQ. If in addition P is
H-unitary, then

e−H−1QH = H−1e−QH = H−1(eQ)−1H = H−1P−1H = P.

Hence, by the uniqueness of the real hermitian logarithm of P we have

Q = −H−1QH. (6.5.28)

Writing out Q =
[

Q11 Q12

QT
12 Q22

]
, where Q11 = QT

11 ∈ Rp×p, Q22 = QT
22 ∈ Rq×q , we

see that (6.5.28) holds if and only if Q11 = 0 and Q22 = 0. Thus, the set (6.5.27) is
parametrized by Q12 ∈ Rp×q. In particular (6.5.27) is connected. In fact, we have
proved that (6.5.27) is homeomorphic to Rp×q, with the homeomorphism being
real analytic in both directions.

Finally, the characterization of the four connected components given in part
(i), follows immediately from the above proof. �

Let H = H∗ be real, invertible and neither positive definite nor negative defi-
nite. Denote the four connected components of Ur(H) as follows, where A(n1, n2)
are taken from Theorem 6.5.2:

U
++
r (H) � A(1, 1); U

−+
r (H) � A(−1, 1);
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U
+−
r (H) � A(1,−1); U

−−
r (H) � A(−1,−1).

Observe that I ∈ U++
r (H). Also

det S = 1 for S ∈ U
++
r (H) ∪ U

−−
r (H);

det S = −1 for S ∈ U
+−
r (H) ∪ U

−+
r (H).

The multiplication between the different components of Ur(H) is given by the
following table:

· ++ +− −+ −−
++ ++ +− −+ −−
+− +− ++ −− −+
−+ −+ −− ++ +−
−− −− −+ +− ++

(6.5.29)

To illustrate, this table implies that S1S2 ∈ U−+
r (H) for every S1 ∈ U+−

r (H) and
S2 ∈ U−−

r (H).

Proof of Theorem 6.5.1. Assume that H is neither positive definite nor negative
definite. We shall use the notation Uξ,η

r (H), ξ, η ∈ {1−1}, introduced above. Four
cases can occur depending on the relation of the set Ur(H; A) of all real H-unitary
matrices which commute with A to the sets U

ξ,η
r (H):

1. Ur(H; A) is contained in U++
r (H),

2. Ur(H; A) is contained in U++
r (H) ∪ U+−

r (H) but not in U++
r (H),

3. Ur(H; A) is contained in U++
r (H) ∪ U−+

r (H) but not in U++
r (H),

4. none of the cases 1, 2, or 3 holds.

Using the multiplication table (6.5.29), one can easily see that in Case 1 the
set USH(A) has exactly 4 connected components. In cases 2 and 3 this set has
exactly 2 connected components, and in Case 4, USH(A) is connected.

In the case when H is either positive definite or negative definite Theorem
6.5.1 is evident in view of Theorem 6.5.2(ii). �

6.6 Exercises

1. Let H be a real symmetric invertible n × n matrix. Prove that there is a
continuum of H-neutral subspaces in Rn, except for the cases when H is
definite (positive or negative) or when n = 2.

2. When is a linear transformation on Rn(H) simultaneously H-selfadjoint and
H-unitary?

3. Find the real canonical form of Theorem 6.1.5 and an r-unitary similarity
transformation matrix for the following pairs of real matrices (Aj , Hj), where
Aj is Hj-selfadjoint:
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(a) A1 =
[

λ1 α
0 λ2

]
, H1 =

[
0 1
1 0

]
, λ1, λ2, α ∈ R;

(b) A2 =

⎡⎣ λ1 α γ
0 λ2 α
0 0 λ1

⎤⎦ ; H2 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , λ1, λ2, α, γ ∈ R;

(c) A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

...
...

0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

H3 =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 a2 · · · an−1 1

a2
·······

... 0

1

⎤⎥⎥⎥⎥⎥⎥⎦ , where a1, . . . , an−1 ∈ R.

4. Find the real canonical forms of Theorem 6.3.1 and the transforming matrix
X for the following pairs of real symmetric matrices:

(a) G1 =

⎡⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
· · · · · ·
1 · · · 0 0

⎤⎥⎥⎦ ; G2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 0
1 0 0

1 · · ·
1

⎤⎥⎥⎥⎥⎥⎥⎦ ;

(b) G1 = diag (a1, . . . , an), G2 = Sn, where a1, . . . , an ∈ R and Sn is the
n × n sip matrix;

(c) G1 = aEn + bIn, G2 = Sn, where En is the n × n matrix of all 1’s;
a, b ∈ R;

(d) G1 = [ajk]2m
j,k=1 , G2 =

[
0 Im

Im 0

]
, here ajk ∈ R and ajk = akj for

all indices j and k.

5. Let G1 and G2 be invertible real symmetric n × n matrices, and let (6.3.11)
and (6.3.12) be the real canonical form of the pair (G1, G2). Find the real
canonical form of the pair (G2, G1).

6. Find the number of connected components in the r-unitary similarity classes
that contain one of the following pairs (A, H), where A is H-selfadjoint:
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(a) (A, H) = (A1, H1) where the pair (A1, H1) is that of Exercise 3(a);

(b) (A, H) = (A2, H2) where the pair (A2, H2) is that of Exercise 3(b);

(c) (A, H) = (A3, H3) where the pair (A3, H3) is that of Exercise 3(c).

7. Consider the pairs (A, H) of the previous exercise. When the r-unitary simi-
larity class containing (A, H) has more than one connected component, find
a representative pair in every component.

8. Find the number of connected components in the real H-unitary similarity
class that contains A in the five cases:

(a) H =
[

1 0
0 −1

]
, A =

[
0 1
1 0

]
, n = 2;

(b) H =
[

1 0
0 −1

]
, A =

[
a b
0 d

]
, n = 2;

(c) H =
[

1 0
0 −1

]
, A =

[
0 b
c d

]
, n = 2;

(d) H = Sn, the n × n sip matrix, A an upper triangular Toeplitz matrix;

(e) (A, H) = (A2, H2) where (A2, H2) is taken as in Exercise 3(b).

9. Consider the pairs (A, H) of the previous exercise. When the real H-unitary
similarity class containing A has more than one connected component, find
a representative matrix in every component.

6.7 Notes

The canonical form for real H-selfadjoint matrices of Theorem 6.1.5 is given in
[101]. Another approach to the canonical form based on analysis of rational matrix
functions is developed in [24].

A canonical form for real matrices that are selfadjoint in a skew-symmetric
inner product is given in [13], [105]. Another approach to this canonical form via
rational matrix functions was developed in [25]. Theorems 6.4.1 and 6.5.1 appeared
in [40]. More generally, canonical forms for symmetric and skew-symmetric matrix
pairs (over C and over R) are developed and reviewed in [68] and [69].



Chapter 7

Functions of H-Selfadjoint
Matrices

In Section 4.3 we have made use of special functions of matrices (Moebius, or
Cayley, transformations) to examine relationships between H-selfadjoint and H-
unitary matrices. In this chapter the objective is to present a more systematic
investigation of functions of H-selfadjoint matrices. In particular, we are to inves-
tigate how the sign characteristic is transformed.

7.1 Preliminaries

For a square matrix A with spectrum σ(A), a function f(λ) is said to be defined
on σ(A) if, for each point λj ∈ σ(A), f(λj) and the derivatives f (1)(λj), . . .,
f (mj−1)(λj) exist, where mj is the index of λj , i.e., in a Jordan normal form for
A, mj is the size of the largest Jordan block with eigenvalue λj . The numbers
f (r)(λj), λj ∈ σ(A), r = 0, 1, . . . , mj −1 are known as the values of f on σ(A). If
f(λ) is a function of the complex variable and is defined on σ(A) then, of course,
for each point λj ∈ σ(A), either f(λj) is defined but has no derivatives (as at a
branch point) and mj = 1, or f(λ) is analytic in a neighborhood of λj .

For any function f(λ) defined on σ(A), the matrix f(A) is defined to be equal
to g(A) where g(λ) is any polynomial which assumes the same values as f on σ(A).
This is a standard fact of the theory of functions of matrices, and can be found in
[70, Chapter 9], or [26], for example. It is well-known that this procedure defines
f(A) uniquely and for any scalar polynomial p(λ) =

∑
j pjλ

j , p(A) =
∑

j pjA
j .

For a function f(λ) defined on σ(A) it is also easily seen that if A = SJS−1

and J = J1 ⊕ · · · ⊕ Jk is a Jordan form for A with blocks J1, J2, . . . , Jk, then

f(A) = S[f(J1), . . . , f(Jk)]S−1. (7.1.1)
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Furthermore, for j = 1, 2, . . . , k, the diagonal blocks have triangular Toeplitz struc-
ture:

f(Jj) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λj) f (1)(λj) 1
2!

f (2)(λj) · · · 1
(mj−1)!

f (mj−1)(λj)
0 f(λj) f (1)(λj)

f(λj)
. . .

...
...

. . .
f(λj) f (1)(λj)

0 · · · 0 f(λj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(7.1.2)
where {λj} = σ(Jj) and the block Jj has size mj.

If f(λ) is analytic in a neighborhood of σ(A) it is, of course, defined on σ(A)
and an integral representation of f(A) is available. Thus,

f(A) =
1

2πi

∫
Γ

f(λ)(λI − A)−1dλ (7.1.3)

where Γ is a composite contour consisting of a set of circles with sufficiently small
radius; one around each distinct eigenvalue of A.

It is clear that, in this chapter, knowledge of the Jordan form of f(A) in
terms of that for A will be required. The first proposition together with (7.1.1)
and (7.1.2) clarifies this point.

Proposition 7.1.1. Let X be the m × m Jordan block with eigenvalue λ0 and let
f(λ) be a function with m − 1 derivatives at λ0 (i.e., f(λ) is defined on σ(X)).
Let f (r)(λ0) (1 ≤ r ≤ m − 1) be the first nonvanishing derivative of f(λ) at λ0

and if f (j)(λ0) = 0 for j = 1, . . . , m− 1, put r = m. Then the sizes of the Jordan
blocks of f(X) are given by[

m
r

]
repeated r

[m
r

]
− m + r times, and[

m
r

]
+ 1 repeated (m − r

[m
r

]
) times,

and [x] denotes the greatest integer less than or equal to x.

Proof. Without loss of generality, it can be assumed that λ0 = f(λ0) = 0. Then,
using (7.1.2), it is easily seen that dimKerf(X) = r and, more generally, if tj =
dimKer(f(X))j , then

tj = min(m, jr). (7.1.4)

Now the sizes of Jordan blocks of f(X) are uniquely determined by the sequence
t1, t2, . . . , tm. Indeed, the number of Jordan blocks of f(X) with size not less than
j is just tj − tj−1, where j = 1, 2, . . . , m and t0 = 0. This observation, together
with (7.1.4) leads to the conclusion of the proposition. �
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Using similarity transformation, the result of Proposition 7.1.1 easily extends
to matrices similar to one Jordan block. Furthermore, the Jordan form of a matrix
allows one to obtain the Jordan form of a function of a matrix, by first reducing to
the Jordan form with a similarity transformation, and then applying Proposition
7.1.1 to each Jordan block.

Example 7.1.2. Let
X = J5(0) ⊕ J7(0)

be the 12× 12 matrix which is a direct sum of two nilpotent Jordan blocks of sizes
5 and 7. Let f(λ) = 1 + sin(λ3). Then

f(λ) = 1 + λ3 − λ9

3!
+ · · · .

In the notation of Proposition 7.1.1, r = 3, and m = 5 (resp., m = 7) for the
first (resp., second) Jordan block. By Proposition 7.1.1, the matrix I + sin(X3) is
similar to a direct sum of Jordan blocks with eigenvalue 1, with one block of size
3, four blocks of size 2, and one block of size 1. �

7.2 Exponential and Logarithmic Functions

It has been seen in Section 4.3 that H-unitary matrices can be obtained from H-
selfadjoint matrices by means of a Cayley transform, and this fact was exploited
further in Chapter 5. Another method for the transformation of H-selfadjoint
to H-unitary matrices depends on properties of the exponential and logarithmic
functions and will be presented in this section. But it is necessary to take some
care in the definition of the logarithm of an H-unitary matrix.

First define a neighborhood Ω of σ(U), where U is H-unitary, with the fol-
lowing properties:

(a) Ω is symmetric with respect to the unit circle, i.e., λ ∈ Ω implies λ
−1 ∈ Ω.

(b) If σ(U) = {λ1, . . . , λk} then Ω =
⋃k

r=1 Ωr where Ω1, . . . , Ωk are disjoint
neighborhoods of λ1, . . . , λk, respectively.

(c) 0 �∈ Ω.

For r = 1, 2, . . . , k, let lnr denote branches of the logarithmic function. Then
define a function lnλ on Ω by assigning ln = lnr whenever λ ∈ Ωr, and, if λjλk = 1,
then lnj λ = lnk λ, i.e., the same branch of the logarithm is used for domains Ωj ,Ωk

containing eigenvalues which are symmetric with respect to the unit circle. With
these conventions, the function lnλ is defined on σ(U).

Theorem 7.2.1. (a) If A is H-selfadjoint then eiA is H-unitary.

(b) If U is H-unitary and the function lnλ is defined on a neighborhood Ω of
σ(U) as above, then V = −i lnU satisfies eiV = U and V is H-selfadjoint.
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Proof. (a) Obviously eiλ is defined on the spectrum of any matrix, so eiA is well-
defined and, as is well known,

eiA = I + iA +
1
2!

i2A2 + · · · .

Consequently, since HAr = A∗rH for r = 1, 2, . . . ,

HeiA =
(

I + iA∗ +
1
2!

i2A∗2 + · · ·
)

H = eiA∗
H =

[(
e−iA

)∗]
H, =

[(
eiA
)∗]−1

H,

which implies that eiA is H-unitary.
(b) Let J be a Jordan form for U and U = SJS−1. Then

eln U = Sg(J)S−1

where g(λ) = elnr λ when ∈ Ωr, and in any case g(λ) = λ. Hence elnU = U.
We also show that

ln((U∗)−1) = −(lnU)∗. (7.2.5)

Using the Jordan form for U this is seen to be the case if and only if ln((J∗
r )−1) =

−(lnJr)∗ for each Jordan block Jr of J. Using (7.1.2) we obtain

(lnJr)∗ =

⎡⎢⎢⎢⎢⎣
lnr λ 0 0 · · ·
λ
−1

lnr λ 0 · · ·
−λ

−2
λ
−1

lnr λ
. . . . . . . . .

⎤⎥⎥⎥⎥⎦ ,

and a little calculation shows that

ln((J∗
r )−1) =

⎡⎢⎢⎢⎢⎣
lnr(λ

−1
) 0 0 · · ·

−λ
−1

lnr(λ
−1

) 0 · · ·
λ
−2 −λ

−1
lnr(λ

−1
)

. . . . . . . . .

⎤⎥⎥⎥⎥⎦ .

But, for some integer mr,

lnr(λ
−1

) = − ln |λ| + i(arg λ + 2πmr) = −lnr λ,

since lnr λ and lnr λ
−1

are obtained using the same branch of the logarithmic
function. Consequently, ln(J∗−1

r ) = −(lnJr)∗ and (7.2.5) holds.
Finally, defining V = −i lnU we obtain eiV = U and also,

HV = −iH ln(U ) = −iH ln(H−1(U∗)−1H) = −i ln((U∗)−1)H,

so (7.2.5) yields
HV = i(lnU)∗H = V ∗H. �
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7.3 Functions of H-Selfadjoint Matrices

The main emphasis of this section and the next is on functions of H-selfadjoint
and of H-unitary matrices, respectively. We start with a general result.

Theorem 7.3.1. If matrix A is either H-selfadjoint or H-unitary and f(λ) is de-
fined on σ(A), then f(A) is H-normal.

Proof. First consider the case in which A is H-selfadjoint. Since the property of
H-normality is preserved under unitary similarity (Proposition 4.1.3), it can be
assumed that (A, H) is in the canonical form (J, Pε,J ) of Theorem 5.1.1. Then
recall that to a Jordan block of J with real eigenvalue there corresponds a block
of f(J) of Toeplitz form

B =

⎡⎢⎢⎢⎢⎣
α1 α2 · · · αk

0 α1
. . .

...
...

. . . α2

0 · · · 0 α1

⎤⎥⎥⎥⎥⎦ (7.3.6)

as indicated in (7.1.2). Also for a pair of complex conjugate eigenvalues of J there
is a pair of blocks B1 ⊕ B2 of f(J) where each of B1, B2 has the form (7.3.6) of
equal size.

The proof of the theorem now reduces to verification of the facts that (1) B
of (7.3.6) is εP -normal (where ε = 1 or ε = −1), and (2) that B := B1 ⊕ B2 is[

0 P
P 0

]
-normal, and P is always the sip matrix of appropriate size. In case (1),

this reduces to verifying that BB[∗] = B[∗]B, where B has the form (7.3.6). Since
B[∗] = P−1B∗P and P−1B∗P = B it is to be shown that BB = BB. This is
easily checked. In case (2), B[∗] = B2 ⊕B1, and it is to be shown that B1 and B2

commute and that B2 and B1 commute. Again, this is easily checked.
The case when A is H-unitary is easily transformed to the H-selfadjoint case

already established. Let g(λ) be the inverse of a Cayley transform (see Proposition
4.3.4), so that g(A) is H-selfadjoint and let h(λ) = f(g−1(λ)). Then h(λ) is defined
on the spectrum of g(A). By the first part of the proof it follows that the matrix

h(g(A)) = f(g−1(g(A))) = f(A)

is H-normal. �

To characterize those functions f(λ) for which f(A) is H-selfadjoint when
A is H-selfadjoint, we need the following definition. The function f(λ) defined on
σ(A) is said to be real symmetric on σ(A) if for each point λj ∈ σ(A) we have

f (k)(λj) = f (k)(λj), k = 0, 1, . . . , mj − 1,
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and mj is the index of λj . For example, a scalar polynomial is symmetric on
the spectrum of any H-selfadjoint matrix A if it has real coefficients. Also, if
f(λ) = f(λ) and is analytic throughout a neighborhood of σ(A), then f(λ) is real
symmetric on σ(A).

Theorem 7.3.2. Let A be H-selfadjoint and let f(λ) be defined on σ(A). Then f(A)
is H-selfadjoint if and only if f(λ) is real symmetric on σ(A).

Proof. Let f(λ) be real symmetric on σ(A). Suppose that λj ∈ σ(A) has index
mj and let m =

∑
λj∈σ(A) mj . It is clear that there is a real polynomial p(λ) of

degree m − 1 satisfying the m interpolating conditions

p(k)(λj) = f (k)(λj), λj ∈ σ(A), k = 0, 1, . . . , mj − 1,

i.e., p(λ) assumes the same values as f(λ) on σ(A). Since the definitions of f(A)
implies f(A) = p(A) and p(A) is obviously H-selfadjoint, it follows that f(A) is
H-selfadjoint.

Conversely, assume that f(A) is H-selfadjoint. Use Theorem 5.1.1 to reduce
(A, H) to a canonical pair so that f(A) is given by (5.1.1) and (5.1.2). Then there
are just two cases to consider:

(a) A is a single Jordan block with real eigenvalue λ0 and size k, and ±H is the
k × k sip matrix.

(b) A = J ⊕ J where J is a k × k Jordan block with nonreal eigenvalue λ0, and
H is the 2k × 2k sip matrix.

In case (a) it follows from (7.1.1) that f(A) is H-selfadjoint, i.e., Hf(A) =
f(A)∗H if and only if f(λ0), f (1)(λ0), . . . , f (k−1)(λ0) are real numbers. This means
that f(λ) is real symmetric on σ(A).

In case (b) it follows from (7.1.2) that f(A) is H-selfadjoint if and only if
f (r)(λ0) = f (r)(λ0) for r = 0, 1, . . . , k − 1 and, again, this means that f(λ) is real
symmetric on σ(A). �

It is clear that the conclusion of Theorem 7.3.2 can be paraphrased to give
the statement that f(A) is H-selfadjoint (when A is H-selfadjoint) if and only if
f(A) = p(A) for some real polynomial p(λ).

For the more familiar situation in which H is positive definite, A is H-
selfadjoint implies that for each λj ∈ σ(A), λj is real and mj = 1. In this case
f(λ) is real symmetric on σ(A) if and only if the numbers f(λj) are real for each
λj ∈ σ(A).

Now we describe an important class of functions of an H-selfadjoint matrix A
for which f(A) is a Riesz projection (see Section A.3). Let Λ be a set of eigenvalues
of A such that λ ∈ Λ implies λ ∈ Λ. Let fΛ(λ) ≡ 1 in a neighborhood of σ(A) \Λ.
Then fΛ(λ) is analytic in a neighborhood of σ(A) and is real symmetric on σ(A).
By Theorem 7.3.2, fΛ(A) is H-selfadjoint. Formula (7.1.3) shows that fΛ(A) is
just the Riesz projection on the sum of the root subspaces of A corresponding to
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the eigenvalues in Λ. Now H-selfadjointness of fΛ(A) implies that KerfΛ(A) and
RangefΛ(A) are H-orthogonal. Indeed, for x ∈ RangefΛ(A), y ∈ KerfΛ(A) we
have

(Hx, y) = (HfΛ(A)x, y) = (fΛ(A)∗Hx, y) = (Hx, fΛ(A)y) = 0.

In other words, the subspace KerfΛ(A), which is the sum of root subspaces of
A corresponding to eigenvalues outside Λ, is an H-orthogonal complement to
RangefΛ(λ). We have observed this fact before (in another form) in Theorem
4.2.4.

The conditions under which a function of an H-selfadjoint matrix is H-
unitary are more complicated than the counterparts of Theorems 7.3.1 and 7.3.2
in which the function is H-normal, or H-selfadjoint, respectively.

Theorem 7.3.3. Let A be H-selfadjoint and let f(λ) be defined on σ(A). Then f(A)
is H-unitary if and only if, for each λ ∈ σ(A),

f(λ)f(λ) = 1 (7.3.7)

and
k∑

j=0

(
k
j

)
f (j)(λ)f (k−j)(λ) = 0, k = 1, 2, . . . , m − 1, (7.3.8)

and m = m(λ) is the index of λ.

Note, in particular, that (7.3.7) implies |f(λ)| = 1 when λ ∈ σ(A) and λ
is real. Furthermore, if f(λ) is analytic in a domain Ω containing σ(A) and Ω is
symmetric with respect to the real axis, then if (7.3.7) holds throughout Ω, (7.3.8)
follows automatically. To see this, observe that for µ, λ ∈ Ω with µ close enough
to λ,

f(µ) =
∞∑

j=0

(µ − λ)j

j!
f (j)(λ), f(µ) =

∞∑
k=0

(µ − λ)k

k!
f (k)(λ).

Then comparing coefficients of powers of (µ − λ) in the product f(µ)f(µ) = 1,
(7.3.8) is obtained.

Note also that if f(λ) and R(λ) are analytic on a domain Ω as above and
f(λ) = eiR(λ), then f(λ) satisfies condition (7.3.7) on Ω, and hence (7.3.8), if R(λ)
is real symmetric on Ω. For

f(λ)f(λ) = e−iR(λ)eiR(λ) = 1

provided R(λ) = R(λ), i.e., if R(λ) is real symmetric on Ω. In particular, eiA is
H-unitary, as we have already observed in Theorem 7.3.1.

Proof of Theorem 7.3.3. Again, we can assume that (A, H) is in the canonical
form of Theorem 5.1.1. So we have to consider the two cases (as in the proof of
Theorem 7.3.2): (a) A is a Jordan block with real eigenvalue λ and size k, and
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±H is the k × k sip matrix; (b) A = J ⊕ J, where J is a Jordan block with
nonreal eigenvalue λ and size k, and H is the 2k×2k sip matrix. In either case the
equality f(A)∗Hf(A) = H expressing the property that f(A) is H-unitary holds
if and only if f(λ) satisfies (7.3.7) and (7.3.8), as one checks easily using equation
(7.1.2). �

7.4 The Canonical Form and Sign Characteristic for a
Function of an H-Selfadjoint Matrix

Let A be H-selfadjoint and f(λ) be defined on σ(A). If f(A) is also H-selfadjoint,
i.e., f(λ) is real symmetric on σ(A) (ref. Theorem 7.3.2), the problem arises of
defining the canonical form and sign characteristic for the pair (f(A), H) in terms
of corresponding properties of the pair (A, H). An intermediate step is, of course,
the determination of the Jordan form for f(A) in terms of that of A and this has
already been examined in Proposition 7.1.1.

Let λ0 be a real eigenvalue of f(A). We first find the canonical form and
sign characteristic of (f(A), H) at λ0. Let λ1, . . . , λk, λk+1, . . . , λk+� be all the
different eigenvalues of A such that f(λi) = λ0, where λ1, . . . , λk are real and
λk+1, . . . , λk+� are nonreal. Note that the integer � is necessarily even. The cases
k = 0 or � = 0 are not excluded.

Let si1, . . . , si,pi (1 ≤ i ≤ k + �) be the sizes of Jordan blocks with the
eigenvalue λi in the Jordan form of A, and let εi1, . . . , εi,pi (1 ≤ i ≤ k) be the
corresponding signs in the sign characteristic of (A, H) (which exist, of course,
only for real eigenvalues of A). Denote mi = max {si1, . . . , si,pi} for 1 ≤ i ≤ k + �,
i.e., mi is the index of λi.

In the next theorem it is assumed that f(λ) is real symmetric on σ(A).

Theorem 7.4.1. For i = 1, . . . , k+ � let ri be the minimal integer (1 ≤ ri ≤ mi−1)
such that f (ri)(λi) �= 0 (if f (j)(λi) = 0 for j = 1, . . . , mi − 1, put ri = mi). For
a fixed positive integer q, put

γ(q) =
k∑

i=1

pi∑
j=1

εijδij(q), (7.4.9)

where

δij(q) =

⎧⎪⎨⎪⎩
1, if ri(q + 1) − sij is odd and either

q =
[

sij

ri

]
+ 1 or q =

[
sij

ri

]
;

0, otherwise;

put also

η(q) =
�∑

i=1

pi∑
j=1

ηij(q), (7.4.10)
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where

ηij(q) =

⎧⎪⎪⎨⎪⎪⎩
ri

([
sij

ri

]
+ 1
)
− sij if q =

[
sij

ri

]
;

sij − ri

[
sij

ri

]
if q =

[
sij

ri

]
+ 1;

0 otherwise.

Here, [x] denotes the greatest integer less than or equal to x.
Then η(q) is the number of Jordan blocks of f(A) with eigenvalue λ0 and size

q. Furthermore, except in the case when f (ri)(λi) < 0 and q is even, 1
2 (η(q)+γ(q))

(resp. 1
2 (η(q)−γ(q))) is the number of signs +1 (resp. −1) in the sign characteristic

of (f(A), H) which correspond to these Jordan blocks. In the case when f (ri)(λi) <
0 and q is even, 1

2(η(q) − γ(q)) (resp. 1
2 (η(q) + γ(q))) is the number of signs +1

(resp. −1) in the sign characteristic of (f(A), H) which correspond to Jordan blocks
of size q with eigenvalue λ0.

It will be seen from the proof of this theorem that the numbers η(q) ± γ(q)
are always even. In particular, Theorem 7.4.1 asserts that γ(q) is the sum of signs
corresponding to the Jordan blocks of f(A) with eigenvalue λ0 and size q (unless
f (ri)(λi) < 0 and q is even, in which case γ(q) is the negative of the sum of signs
corresponding to the Jordan blocks of f(A) with eigenvalue λ0 and size q). By
(7.4.9), this sum does not depend on the nonreal eigenvalues λi (k+1 ≤ i ≤ k+�).

Proof. By Proposition 7.1.1 we see that η(q) given by (7.4.10) is just the number
of Jordan blocks of f(A) with eigenvalue λ0 and size q. So it remains to prove
that γ(q) is the sum of signs in the sign characteristic of (f(A), H) corresponding
to these blocks.

In this proof we shall use a perturbation argument based on Theorem 5.9.1.
This concerns the stability of the sign characteristic of pairs (B, G), where B is
G-selfadjoint.

We can assume that the pair (A, H) is in the canonical form of (Theorem
5.1.1). So we have to consider only two cases: (a) A is the Jordan block with real
eigenvalue λ1 and size s, and ±H is the s × s sip matrix; (b) A = J ⊕ J, where
J is the Jordan block with nonreal eigenvalue λ1 and size s, and H is the 2s× 2s
sip matrix.

Consider the case (a). Let r (= r1 in the notation of the theorem) be the
least integer 1 ≤ r ≤ s − 1 such that f (r)(λ1) �= 0 (and r = s if f (i)(λ1) = 0
for 1 ≤ i ≤ s − 1). Let ft(λ), t ∈ [0, 1] be a family of analytic functions in a
neighborhood of λ1 with the following properties:

ft(λ1) = f(λ1)(= λ0), f
(i)
t (λ1) = 0 for 1 ≤ i < r;

f
(r)
t (λ1) = (1 − t)f (r)(λ1) ± r!t; (7.4.11)

and
f

(i)
t (λ1) = (1 − t)f (i)(λ1) for r < i ≤ s − 1.
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The sign ± in (7.4.11) is chosen to guarantee that f
(r)
t (λ1) �= 0 for all t ∈ [0, 1].

We assume in the subsequent argument that

f
(r)
t (λ1) > 0, (7.4.12)

thus the sign is +. The situation when f
(r)
t (λ1) < 0 is easily reduced to (7.4.12),

by considering −f(A) instead of f(A) and using Corollary 5.8.2.
Recall that f(λ) is symmetric on σ(A), so the numbers f (i)(λ1), i = 0, . . . , s−

1 are real. Formula (7.1.2) shows that ft(A) is a continuous function of t ∈ [0, 1],
and f0(A) = f(A). Furthermore, Proposition 7.1.1 shows that the eigenvalue of
ft(A) and the sizes of the Jordan blocks of ft(A) are independent of t on the
interval [0, 1]. As ft(A) is H-selfadjoint for t ∈ [0, 1], Theorem 5.9.1 implies that the
sign characteristic of (ft(A), H) is also independent of t. So the sign characteristics
of (f(A), H) and (f1(A), H) are the same, and we shall determine the latter.

It follows from (7.1.2) that

f1(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0 · · · 0 1 0 · · · 0

λ0 · · · 0 1
...

λ0
. . . . . . 0

. . .
. . . 1

. . . 0
. . .

0 λ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7.4.13)

where 1’s appear in the entries (1, r + 1), (2, r + 2), . . . , (r + 1, s). It is easily seen
that, denoting v =

[
s
r

]
and letting ej be the vector 〈0, . . . , 0, 1, 0, . . . , 0〉 with 1 in

the jth place, the chains of vectors

ei, ei+r, . . . , ei+vr; i = 1, 2, . . . , s − rv
ei, ei+r, . . . , ei+(v−1)r; i = s − rv + 1, . . . , r

(7.4.14)

are Jordan chains of f1(A) and form a basis in Cs. Now use the second description
of the sign characteristic (Theorem 5.8.1) to compute the sign characteristic of
(f1(A), H). Indeed, in the notation of Theorem 5.8.1, the linear transformation
Gv+1 in the basis e1, . . . , es−rv is given by the right upper (s − rv) × (s − rv)
corner of H. The linear transformation Gv in the basis e1, . . . , er is given by the
submatrix of H formed by its first r rows and columns r(v−1)+1, . . . , r(v−1)+r.
(In case v = 0 this description should be properly modified.) Since εH (ε = ±1)
is the sip matrix, it is found with the help of Theorem 5.8.1 that, indeed, the sum
of signs in the sign characteristic of (f(A), H) which correspond to blocks of size
q, is given by formula (7.4.9).
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Consider case (b). A perturbation argument analogous to the proof of case
(a) is used. Recall that

f (k)(λ1) = f (k)(λ1), k = 0, 1, . . . , s − 1.

Let r be the least integer 1 ≤ r ≤ s − 1 such that f (r)(λ1) �= 0 (and r = s if
f (i)(λ1) = 0 for 1 ≤ i ≤ s − 1). Select a continuous function

φ : [0, 1] −→ C

such that

φ(0) = f (r)(λ1), φ(1) = r!, φ(t) �= 0 for all t ∈ [0, 1].

Let ft(λ), t ∈ [0, 1] be a family of analytic functions in a neighborhood of {λ1, λ1}
with the following properties:

ft(λ1) = f(λ1)(= λ0), f
(i)
t (λ1) = 0 for 1 ≤ i < r;

f
(r)
t (λ1) = φ(t);

f
(i)
t (λ1) = (1 − t)f (i)(λ1) for r < i ≤ s − 1,

and
f

(i)
t (λ1) = f

(i)
t (λ1), i = 0, 1, . . . , s − 1, 0 ≤ t ≤ 1.

Then, just as in the proof of the case (a), it follows that the sign characteristics
of (f(A), H) and (f1(A), H) are the same. Thus, we can assume that f(A) is a
direct sum of two equal blocks (7.4.13). The chains of vectors

ei, ei+r, . . . , ei+vr; i = 1, 2, . . . , s − rv, s + 1, . . . , 2s − rv;
ei, ei+r, . . . , ei+(v−1)r; i = s − rv + 1, . . . , r, 2s − rv + 1, 2s − rv + 2, . . . , s + r;

where v =
[

s
r

]
, are Jordan chains of f(A) and form a basis of C2s. Now, as in

case (a), the sign characteristic of (f(A), H) is computed by applying Theorem
5.8.1. It turns out that the sum of signs in the sign characteristic of (f(A), H)
corresponding to equal Jordan blocks is zero. �
Example 7.4.2. Let

A =
[

i 1
0 i

]
⊕
[ −i 1

0 −i

]
; H =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

Then

A2 =

⎡⎢⎢⎣
−1 2i 0 0
0 −1 0 0
0 0 −1 −2i
0 0 0 −1

⎤⎥⎥⎦
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is H-selfadjoint. According to Theorem 7.4.1 the sign characteristic of (A2, H) at
the eigenvalue −1 consists of {+1,−1} . Indeed, with

T =

⎡⎢⎢⎣
2ic 0 2i 0
0 c 0 1

−2i 0 −2ic 0
0 1 0 c

⎤⎥⎥⎦ , c =
√

3
2

− i

2

we have

T−1A2T =
[ −1 1

0 −1

]
⊕
[ −1 1

0 −1

]
; T ∗HT =

[
0 2
2 0

]
⊕
[

0 −2
−2 0

]
.

�
Example 7.4.3. Let A and f(λ) be as in Example 7.1.2, and let

H = ε1S5 ⊕ ε2S7, ε1, ε2 ∈ {1,−1},
where S5 and S7 are the sip matrices of sizes 5 × 5 and 7 × 7, respectively. Using
Theorem 7.4.1 we compute the sign characteristic of I+sin(X3) as an H-selfadjoint
matrix. In the notation of that theorem, we have

γ(3) = ε2, η(3) = 1, γ(2) = 0, η(2) = 4, γ(1) = ε1, η(1) = 1.

Thus, the 3 × 3 Jordan block of I + sin(X3) has sign ε2, the four 2 × 2 Jordan
blocks of I + sin(X3) have signs 1 (two of them) and −1 (the other two), and the
1 × 1 Jordan block of I + sin(X3) has sign ε1. �

7.5 Functions of H-Selfadjoint Matrices which are

Selfadjoint in another Indefinite Inner Product

In this section we study the sign characteristic of a function of an H-selfadjoint
matrix, but with respect to a different (but closely related) indefinite inner prod-
uct. To start with, let A be an invertible H-selfadjoint matrix, and let Ĥ = HA.
Obviously, Ĥ is invertible and hermitian and, therefore, generates another inner
product on Cn. Moreover, A is Ĥ-selfadjoint. Indeed

ĤA = HA2 = A∗HA = A∗2H = A∗Ĥ.

We compute the sign characteristic of (A, Ĥ) in terms of the sign characteristic of
(A, H).

Proposition 7.5.1. Let λ0 ∈ σ(A) ∩ R, and let ε1, . . . , εr be the signs in the sign
characteristic of (A, H) corresponding to the Jordan blocks of A with eigenvalue
λ0. Then the signs in the sign characteristic of (A, Ĥ) corresponding to these
Jordan blocks are ε1 · sgnλ0, . . . , εr · sgnλ0, where sgn λ0 is 1 if λ0 > 0 and −1 if
λ0 < 0.
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(Recall that λ0 �= 0 since A is assumed invertible.)

Proof. We can assume that (A, H) is in the canonical form. Let J be a Jordan
block in A with eigenvalue λ0, and let εP be the corresponding part of H, where P
is a sip matrix. Using the second description of the sign characteristic (of Theorem
5.8.1), it is easily seen that the canonical form of (J, PJ) is (J, sgnλ · P ). �

More generally, let A be an H-selfadjoint matrix, and let f(λ) be a function
defined on the spectrum of A such that f(A) is H-selfadjoint and invertible (by
Theorem 7.3.2 this means that f(λ) is real symmetric on σ(A) and f(λ0) �= 0 for
every λ0 ∈ σ(A)). Then Ĥ = Hf(A) is invertible and hermitian, and f(A) is
Ĥ-selfadjoint. Combining Proposition 7.5.1 and the description of the sign char-
acteristic of (f(A), H) given in Theorem 7.4.1, we obtain the following description
of the sign characteristic of (f(A), Ĥ). The notation introduced before and in the
statement of Theorem 7.4.1 will be used.

Theorem 7.5.2. Let A be H-selfadjoint, and let f(A) be H-selfadjoint and invert-
ible. For a fixed positive integer q, η(q) is the number of Jordan blocks of f(A)
with eigenvalue λ0 and size q and, except for the case when f (ri)(λi) < 0 and q
is even, 1

2(η(q) + (sgn λ0) · γ(q)) (resp. 1
2 (η(q) − (sgnλ0) · γ(q))) is the number of

signs +1 (resp. −1) in the sign characteristic of (f(A), Ĥ) corresponding to these
Jordan blocks (here sgnλ0 = 1 if λ0 > 0 and sgnλ0 = −1 if λ0 < 0). In the
exceptional case, 1

2 (η(q) − (sgnλ0) · γ(q)) (resp. 1
2(η(q) + (sgnλ0) · γ(q))) is the

number of +1’s (resp. −1’s) in the sign characteristic of (f(A), Ĥ) corresponding
to these Jordan blocks.

We note also the following fact concerning neutrality of invariant subspaces.

Theorem 7.5.3. Let A be H-selfadjoint and let f(A) be a function of A which is
H-selfadjoint and invertible. Then an f(A)-invariant subspace M ⊆ Cn (where n

is the size of A) is H-neutral if and only if M is Ĥ-neutral, where Ĥ = Hf(A).

Proof. Let Â = f(A) and observe that the subspace M is Â-invariant. Assuming
M is H-neutral (so (Hx, y) = 0 for all x, y ∈ M), for every x, y ∈ M we have

(Ĥx, y) = (HÂx, y) = 0.

Conversely, write z = Â−1x ∈ M and, if M is Ĥ-neutral, then for every x, y ∈ M,

(Hx, y) = (Ĥz, y) = 0. �

Note that Theorem 7.5.3 does not hold in general for A-invariant subspaces
which are H-nonnegative or H-nonpositive. For example, if H = I and f(A) =
−I, then every f(A)-invariant subspace is simultaneously H-positive and Hf(A)-
negative.
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7.6 Exercises

The exercises in this section pertain to the following Hj-selfadjoint matrices Aj :

(a) A1 =
[

λ α

0 λ

]
, H1 =

[
0 1
1 0

]
, λ ∈ C, α ∈ R.

(b) A2 =

⎡⎣ λ α γ
0 µ α

0 0 λ

⎤⎦ , H2 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , µ, γ ∈ R, λ, α ∈ C.

(c) A3 =

⎡⎣ µ 0 0
0 λ α
0 0 λ

⎤⎦ , H3 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , µ, α ∈ R, λ ∈ C.

(d) A4 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · ·
a 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , H4 =

⎡⎢⎢⎣
0 0 · · · 0 1
0 0 · · · 1 0

· · · · · ·
1 0 · · · 0 0

⎤⎥⎥⎦ ∈ Rn×n,

a ∈ R.

(e) A5 =
[

0 1
−a0 −a1

]
, H5 =

[
a1 1
1 0

]
, a0, a1 ∈ R.

(f) A6 =

⎡⎣ 0 1 0
0 0 1

−a0 −a1 −a2

⎤⎦ , H6 =

⎡⎣ a2 a1 1
a1 1 0
1 0 0

⎤⎦ , a0, a1, a2 ∈ R.

(g) A7 = diag (a1, a2, . . . , an), H7 =
[

Ip 0
0 −Iq

]
∈ Rn×n, a1, . . . , an ∈ R,

p + q = n.

(h) A8 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 λ1

0 0
... λ2 0

...
... . . .

...
...

0 λn−1 . . . 0 0
λn 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , H8 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 . . . 0 1

0 0
... 1 0

...
... . . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rn×n,

λ1, . . . , λn ∈ R.

1. For each pair (Aj , Hj), j = 1, . . . , 8, compute the canonical form, including
the sign characteristic, of A2

j as an Hj-selfadjoint matrix.

2. The same as in Exercise 1, but for A3
j .

3. Compute the canonical form, including the sign characteristic, of the Hj-
unitary matrix eiAj , for j = 1, 2, . . . , 8.
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4. Show by example that not every invertible H-selfadjoint matrix has an H-
selfadjoint square root. Recall that a matrix Y ∈ Cn×n is called a square root
of a matrix X ∈ Cn×n if Y 2 = X .

5. Prove that every invertible H-selfadjoint matrix with no negative eigenvalues
has an H-selfadjoint square root.

6. For the invertible matrices Aj , j = 1, . . . , 8, find whether there exists an Hj-
selfadjoint square root of Aj . If it does exist, determine whether or not it is
unique, and find the canonical form of an Hj-selfadjoint square root of Aj .

7. Does there exist a cube root of every invertible H-selfadjoint matrix?

8. For the invertible matrices Aj , j = 1, . . . , 8, find the canonical form, including
the sign characteristic, of Aj as an HjAj-selfadjoint matrix.

9. Prove that every invertible H-selfadjoint matrix A with no negative eigen-
values has an H-selfadjoint logarithm, i.e., an H-selfadjoint matrix B such
that eB = A.

10. The condition in the previous exercise is not necessary: Show that −I2m has
an S2m-selfadjoint logarithm, where S2m is the 2m× 2m sip matrix. On the
other hand, show that −In, where n is odd, has no H-selfadjoint logarithms,
for any invertible hermitian n × n matrix H.

11. Let

A =

⎡⎢⎢⎢⎢⎣
a0 a1 a2 · · · an

0 a0 a1 · · · an−1

· · · · · · · · ·
0 0 · · · 0 a0

⎤⎥⎥⎥⎥⎦
be an upper triangular Toeplitz matrix. Find the Jordan form of f(A), for
the following scalar functions:
(a) f(λ) = λ2 + λ, (b) f(λ) = e2λ, (c) f(λ) = m

√
λ,

(d) f(λ) = sin λ, (e) f(λ) = − cos(3λ + 1), (f) f(λ) = ln (λ).

For the functions m
√

λ and ln (λ) assume that a0 > 0 and the branches
of the mth root and the logarithmic functions are chosen so that m

√
λ > 0

for λ > 0 and ln (λ) is real for λ > 0.

12. Consider a matrix A which is a direct sum of two upper triangular Toeplitz
matrices:

A =

⎡⎢⎢⎢⎢⎣
a0 a1 a2 · · · an

0 a0 a1 · · · an−1

· · · · · · · · ·
0 0 · · · 0 a0

⎤⎥⎥⎥⎥⎦⊕

⎡⎢⎢⎢⎢⎣
b0 b1 b2 · · · bm

0 b0 b1 · · · bm−1

· · · · · · · · ·
0 0 · · · 0 b0

⎤⎥⎥⎥⎥⎦ .
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For the functions f(λ) of the preceding exercise, determine whether f(A) is:

(1) nonderogatory, i.e., has only one Jordan block in the Jordan form for
every eigenvalue;

(2) diagonalizable;

(3) diagonalizable with all eigenvalues distinct.

7.7 Notes

The material of this chapter is based on [40, Chapter 6]. A stronger version of
Theorem 7.3.1 has recently been proved by Higham et al. [48].



Chapter 8

H-Normal Matrices

The main ideas developed in this chapter are, first, a classification (up to unitary
similarity) of normal matrices in an indefinite inner product space and, second, the
nature of canonical forms in this classification. In full generality, this problem area
remains unsolved. We will show that it is not less complex than the problem of
classification of pairwise v×v commuting matrices (up to simultaneous similarity),
where v = min(v+, v−) and v+(v−) is the number of positive (negative) eigenvalues
of H . In the research literature the latter problem is said to be“wild”. In contrast,
it is well known that for the case when H is positive definite the situation is clear
and can be reduced to the problem of simultaneous diagonalization of pairwise
commuting selfadjoint matrices.

A complete theory is presented here for the special case when the indefinite
inner product is defined by

[x, y] = (Hx, y) ,

where H is invertible and hermitian with only one negative or positive eigenvalue.
This includes the description of canonical form and invariants.

In this chapter we use consistently the language of linear transformations,
i.e., a linear transformation on Cn is identified with its matrix representation in
the standard basis e1, . . . , en. On the other hand, it will also be convenient to
work with matrix representations of the same linear transformation with respect
to different bases.

8.1 Decomposability: First Remarks

First recall some basic definitions. If H ∈ Cn×n is hermitian and nonsingular,
then it generates an inner product

[x, y] = (Hx, y) , x, y ∈ Cn.
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which, in general, is indefinite. In this inner product the adjoint linear transfor-
mation is denoted A[∗] and satisfies

[Ax, y] =
[
x, A[∗]y

]
=
[
x, H−1A∗Hy

]
.

The matrix A is said to be H-normal, or normal in the inner product [x, y] , if

AA[∗] = A[∗]A, or AH−1A∗H = H−1A[∗]HA.

We remark that if H is positive definite and

(AH−1A∗)H = (H−1A∗H)A,

then A and A[∗] are simultaneously diagonalizable in an H-orthogonal basis.

Example 8.1.1. Let J be an n × n Jordan block with eigenvalue λ0 ∈ C and let
H = P be the n×n sip matrix. It is easily verified that J is P -normal for any λ0.

�
Proposition 8.1.2. Every square matrix A ∈ Cn×n is H-normal for some hermitian
nonsingular H.

Proof. Let J = diag (J1, . . . , Jk) be a Jordan form of the matrix A, with J1, J2, . . .,
Jk all Jordan blocks and let A = S−1JS. Let Pj be the sip matrix of the same
size as Jj (j = 1, 2, . . . , k). Form P = diag (P1, P2, . . . , Pk), and it is obvious that
J is P -normal. Hence A is S∗PS-normal. �

Let A ∈ Cn×n and V be a subspace of Cn. Recall that, if AV ⊆ V , then V is
said to be an invariant subspace of A, and the restriction of A to V is denoted by
A |V .

A linear transformation A acting in Cn is called decomposable if there exists
a nondegenerate subspace V ⊆ Cn, V �= {0}, V �= Cn, such that both V and V [⊥]

are invariant for A. If V and V [⊥] are nondegenerate nonzero subspaces which are
invariant for A, and A1 := A |V , A2 := A |V [⊥] , then A is called the orthogonal sum
of A1 and A2, or the H-orthogonal sum if the indefinite inner product generated
by H is to be emphasized. In the above decomposition A and H can be represented
as

A =
[

A1 0
0 A2

]
, H =

[
H1 0
0 H2

]
. (8.1.1)

If a linear transformation is not decomposable into an H-orthogonal sum,
it is called indecomposable. It is easy to see that A is decomposable if and only
if there exists a nondegenerate subspace V ∈ Cn different from {0} and Cn, such
that V is invariant for both A and A[∗]. Indeed, if v ∈ V , w ∈ V [⊥], then

[Aw, v] =
[
w, A[∗]v

]
⊆ [w,V ] = 0,

so Aw ∈ V [⊥]. The converse is trivial.
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It is clear that the definition of orthogonal sum can be generalized to admit
any number, k, of terms and then it is easily proved that any linear transfor-
mation can be decomposed into an orthogonal sum of k indecomposable linear
transformations.

In the case when H is positive definite it is known that if a subspace V ⊆ Cn

is invariant for a normal linear transformation N, then V [⊥] is also invariant for
N and, therefore, N is decomposable (if n > 1). This property does not hold in
general when H is indefinite. Indeed, let N and H be the linear transformations
in C4 having the matrix representation

N =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ , H =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦
in some basis {v1, v2, v3, v4} of C4. Then

N [∗] =

⎡⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
and a simple computation shows that NN [∗] = N [∗]N = 0.

Let V1 = Span {v2, v3} and V2 = Span {v1, v4} . Each subspace Vi is nonde-
generate. It is easy to see that V [⊥]

1 = V2, V1 is invariant for N and V2 is invariant
for N [∗]. However, N is indecomposable. To prove this we assume that, on the
contrary, there is a nondegenerate nonzero subspace V , V [⊥] ⊆ C4 for which

N =
[

N1 0
0 N2

]
where N1 : V → V , N2 : V [⊥] → V [⊥].

We first show that dimV �= 1. Indeed, if a vector v ∈ C4 spans V , then

Nv = 0, N [∗]v = 0, and [v, v] �= 0.

But the first two relations imply that v ∈ Span {v1, v3} and, hence, [v, v] = 0. The
equality dimV = 2 is also impossible because then N1 = 0 or N2 = 0. If N1 = 0,

then N
[∗]
1 = 0, V = Span {v1, v3} , and [V ,V ] = 0. If N2 = 0, then, similarly,[V [⊥],V [⊥]
]

= 0. So N is indecomposable.

Lemma 8.1.3. Any H-normal linear transformation N : Cn → Cn is an orthogo-
nal sum of normal linear transformations each of which has one or two distinct
eigenvalues.

In the proof we will take advantage of the following well-known result re-
garding two commuting linear transformations acting in the vector space Cn (see
[41, Chapter 9]):
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Proposition 8.1.4. Let A, B : Cn → Cn be linear transformations such that
AB = BA, let {λ1, λ2, . . . , λ�} be the set of all distinct eigenvalues of A, and
let {µ1, µ2, . . . , µm} be the set of all distinct eigenvalues of B. For each pair (i, j),
(i = 1, 2, . . . , �; j = 1, 2, . . . , m) we define the subspace Qij ⊆ Cn:

Qij := {x ∈ Cn : (A − λiI)nx = (B − µjI)nx = 0} . (8.1.2)

Let Ω = {(i, j) : Qij �= 0} . Then the subspaces Qij have the following properties:

(a) Qij ∩ Span {Qrs : (r, s) ∈ Ω, (r, s) �= (i, j)} = {0} for any (i, j) ∈ Ω;

(b) Span {Qij : (i, j) ∈ Ω} = Cn;

(c) Qij is an invariant subspace for both A and B for all (i, j) ∈ Ω;

(d) λi is the only eigenvalue of the linear transformation A |Qij and µj is the
only eigenvalue of the linear transformation B |Qij .

Proof of Lemma 8.1.3. We use Proposition 8.1.4 with A = N, B = N [∗]. In this
case, in the notation of Proposition 8.1.4, we have � = m and it can be assumed
that µi = λi (i = 1, 2, . . . , �). We claim that, for any pair of indices (i, j) , (r, s) ∈ Ω
we have

[Qij ,Qrs] = 0 unless i = s and j = r. (8.1.3)

Suppose first that i �= s. It is clear that λs is not an eigenvalue of N |Qij and,
hence, the linear transformation (N − λsI) |Qij is nonsingular. Let x ∈ Qij . Then
there exists a vector z ∈ Qij such that (N − λsI)n

z = x. Now for any y ∈ Qrs

we have

[x, y] = [(N − λsI)n
z, y] =

[
z,
(
N [∗] − λsI

)n

y
]

= [z, 0] = 0.

The case i = s, j �= r is treated similarly. So, (8.1.3) holds. Now we can
construct a desired decomposition of N . Let

Vi = Qii for (i, i) ∈ Ω, Vjk = Span {Qjk,Qkj} ((j, k) ∈ Ω, j < k) .
(8.1.4)

The subspaces (8.1.4) are mutually orthogonal (due to (8.1.3)), the intersection of
any one of them with the sum of the other subspaces is zero, and they span Cn. By
Proposition 2.2.2, each of the subspaces Vi and Vjk is nondegenerate. Therefore,
the linear transformation N is the orthogonal sum of linear transformations Ni

and Njk where

Ni = N |Vi , ((i, i) ∈ Ω) , Njk = N |Vjk
, ((j, k) ∈ Ω, j < k) .

It follows from (8.1.2) and (8.1.4) that each Ni has only the eigenvalue λi and
that each Njk has exactly two distinct eigenvalues λj and λk. This concludes the
proof. �
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Note that if (j, k) ∈ Ω, (in the notation of the proof of Lemma 8.1.3) then
(k, j) ∈ Ω and the characteristic polynomial ϕ(λ) of Njk has zeros λj and λk.

Example 8.1.5. Assume that all the Jordan blocks of an H-normal linear transfor-
mation N are one-dimensional, i.e.,, N is diagonalizable. In this case the subspaces
Vi appearing in Lemma 8.1.3 consist of all eigenvectors common to N and N [∗]

with eigenvalues λi and λi respectively. Each of the subspaces Qjk, (j �= k) con-
sists of all eigenvectors common to N and N [∗] with eigenvalues λj and λk. There
exists a basis{

vi1 , vi2 , . . . , vip ; vj1 , vk1 , vj2 , vk2 , . . . , vjq , vkq

}
, (p + 2q = n)

of Cn such that
Nvis = λisvis , (s = 1, 2, . . . , p) ,

Nvjt = λktvjt , Nvkt = λjtvkt (t = 1, 2, . . . , q),

[vis , vis ] = ±1, (s = 1, 2, . . . , p), [vjt , vkt ] = ±1, (t = 1, 2, . . . , q) ;

all the remaining indefinite inner products of the vectors vm are equal to zero.
Therefore, in an appropriate basis the matrices of N and H are block-diagonal
where each block is either one-dimensional

N� = [λ�], H� = [±1]

or two-dimensional

Nuv =
[

λu 0
0 λv

]
, Huv = ±

[
0 1
1 0

]
.

�

8.2 H-Normal Linear Transformations and Pairs

of Commuting Matrices

We are to describe all classes of H-unitarily similar normal linear transformations
and to find the canonical representation of each class. From Section 8.1 it follows
that it is sufficient to solve the problem for the classes consisting of indecompos-
able linear transformations. Moreover, as a result of Lemma 8.1.3, we can even
limit discussion to the linear transformations that have only one or two distinct
eigenvalues. However, in spite of this promising start, the general problem proves
to be in a certain sense unsolvable. In fact, it will be shown that: In the general
case, the problem of classification of H-normal linear transformations up to H-
unitary similarity is at least as complicated as the problem of classification up to
simultaneous similarity of pairs of commuting matrices of size min(ν+, ν−), where
ν+ (resp., ν−) is the number of positive (negative) eigenvalues of H (counted with
multiplicities).
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Indeed, let H have ν+ positive and ν− negative eigenvalues (ν+ + ν− = n) .
Without loss of generality we can assume that ν+ ≥ ν− and, hence

ν0 := ν+ − ν− ≥ 0.

Let Mν−be the set of all pairs of commuting ν− × ν−-matrices. We consider the
case ν0 > 0; it will be obvious how to treat the case ν0 = 0. For each pair of
ν− × ν− commuting matrices P, Q we define two nonnegative integers � and m as
follows: � is the smallest nonnegative integer such that the linear transformations
P −�I and Q do not have a common eigenvalue and m is the smallest nonnegative
integer which is not an eigenvalue of P − �I and not an eigenvalue of Q∗. Here,
as usual, W ∗ denotes the conjugate transpose of the matrix W .

There exists a direct sum decomposition of Cn into subspaces:

Cn = C+ + C− + C0 (8.2.5)

with dim C+ = dim C− = ν−, dim C0 = ν0 such that, up to a congruence, H has
the form

H =

⎡⎣ 0 I 0
I 0 0
0 0 I

⎤⎦ .

Applying, if necessary, a congruence H �→ S∗HS for a suitable invertible S, we
can assume without loss of generality that the decomposition (8.2.5) is orthogonal
with respect to the standard euclidean inner product. Given the pair {P, Q} ∈
Mν− , introduce the linear transformation

N =

⎡⎣ P − �I 0 0
0 Q∗ 0
0 0 mI

⎤⎦ . (8.2.6)

The decomposition (8.2.6) corresponds to the decomposition (8.2.5) of Cn. It is
easy to see that the linear transformation N defined in (8.2.6) is H-normal.

Let the H-normal linear transformations N1 and N2 be produced by two
pairs

{P1, Q1} , {P2, Q2} ∈ Mν− (8.2.7)

where P1 is similar to P2 and Q1 is similar to Q2. We will prove that N1 and N2 are
H-unitarily similar if and only if the pairs of matrices (8.2.7) are simultaneously
similar. The latter means that there exists a nonsingular ν− × ν−-matrix R such
that

P2 = RP 1R
−1, Q2 = RQ1R

−1. (8.2.8)

Indeed, if (8.2.8) holds, the pairs (8.2.7) have the same � and m, the linear trans-
formation

U =

⎡⎣ R 0 0
0 (R∗)−1 0
0 0 I

⎤⎦ (8.2.9)
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is H-unitary and
N2 = UN1U

−1. (8.2.10)

Conversely, suppose that (8.2.10) holds for an H-unitary linear transfor-
mation U. Representing U in the block form corresponding to the decomposi-
tion (8.2.5) and equating the corresponding blocks on both sides of the identity
UN1 = N2U , we show first that all the off-diagonal blocks of U are zero. (In the
process we take advantage of the well-known fact that if square matrices A, B, C
satisfy the equation AC = CB and A and B do not have a common eigenvalue,
then C = 0; see Theorem A.4.1.) Therefore U can be written in the form

U =

⎡⎣ R 0 0
0 (R∗)−1 0
0 0 U0

⎤⎦ , (8.2.11)

where U0 ∈ Cν0×ν0 is unitary, because U is H-unitary, and the linear transfor-
mation R that appears in (8.2.11) realizes the simultaneous similarity (8.2.8).

8.3 On Unitary Similarity in an Indefinite Inner

Product

Let H1 and H2 be invertible hermitian linear transformations and recall that a
linear transformation U for which

H1 = U∗H2U. (8.3.12)

is said to be (H1,H2)-unitary.
Linear transformations A1 and A2 from Cn(H1) to Cn(H2) are called

(H1,H2)-unitarily similar (or unitarily similar if H1 and H2 are understood from
the context) if there exists an (H1,H2)-unitary linear transformation U such that
A1 = U−1A2U. It is readily seen that A1 and A2 are unitarily similar if and only
if there exists an invertible linear transformation T : Cn → Cn such that

H1 = T ∗H2T, A1 = T−1A2T. (8.3.13)

Lemma 8.3.1. Let Ai be a linear transformation acting in the space Cn(Hi), i =
1, 2. Let {u1, u2, . . . , un} be a basis of Cn(H1) and {w1, w2, . . . , wn}a basis of
Cn(H2) such that A1 and A2 have the same matrix A in these bases. Then A1 and
A2 are (H1,H2)-unitarily similar if and only if

[ui, uj] = [wi, wj ] , for i, j = 1, 2, . . . , n. (8.3.14)

Proof. Assume that (8.3.14) holds. Define a linear transformation T : Cn(H1) →
Cn(H2) by the equalities Tui = wi, i = 1, 2, . . . , n. Since

[ui, uj] = (H1ui, uj), [wi, wj ] = (H2wi, wj),
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the equality [ui, uj] = [wi, wj ] can be rewritten as

(H1ui, uj) = (H2Tui, Tuj) = (T ∗H2Tui, uj).

Hence H1 = T ∗H2T . Next, if aij is the (i, j)-entry of the matrix A, we have

TA1ui = T

(
n∑

k=1

akiuk

)
=

n∑
k=1

akiTuk =
n∑

k=1

akiwk = A2wi = A2Tui,

and, therefore, A1 = T−1A2T. Thus, both of the identities (8.3.13) are satisfied,
and A1 and A2 are (H1,H2)-unitarily similar.

Conversely, if A1 and A2 are (H1,H2)-unitarily similar, then equalities
(8.3.14) are easily verified using (8.3.13). �

Corollary 8.3.2. Let Cn(H1) be an n-dimensional space with indefinite inner prod-
uct defined by an invertible hermitian matrix H1, A1 a linear transformation acting
in Cn(H1), and A its matrix in a basis {u1, u2, . . . , un} . Let {w1, w2, . . . , wn} be
an orthonormal basis in Cn with respect to the standard euclidean inner product.
Define two linear transformations A2 and H2 acting in Cn via their matrices in
the basis {w1, w2, . . . , wn} as follows: the matrix of A2 is A, the (i, j)-entry of H2

is [uj, ui] , i, j = 1, 2, . . . , n. Then A1 and A2 are (H1,H2)-unitarily similar.

Proof. For any i, j = 1, 2, . . . , n we have

[wi, wj ] = (H2wi, wj) =

(
n∑

k=1

[ui, uk] wk , wj

)
= [ui, uj] .

So, the conditions of Lemma 8.1.3 are satisfied and A1 and A2 are (H1,H2)-
unitarily similar. �

8.4 The Case of Only One Negative Eigenvalue of H

The result of Section 8.2 shows that a classification of H-normal linear transfor-
mations can be expected only when ν− is small. Such a classification is established
in this section for ν− = 1. The (rather long) proof occupies the rest of the section.

Theorem 8.4.1. Let H be an invertible hermitian matrix with only one negative
eigenvalue. Any H-normal linear transformation acting in Cn with n > 4 is de-
composable. If n = 1, any linear transformation is H-normal and indecomposable.
For n = 2, 3, 4 any indecomposable H-normal linear transformation is unitarily
similar to one and only one of the following canonical linear transformations:

N =
[

λ1 0
0 λ2

]
, H =

[
0 1
1 0

]
, λ1 �= λ2; (8.4.15)
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N =
[

λ z
0 λ

]
, H =

[
0 1
1 0

]
, |z| = 1; (8.4.16)

N =

⎡⎣ λ z r
0 λ z
0 0 λ

⎤⎦ , H =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , r ∈ R, |z| = 1, 0 < arg z < π;

(8.4.17)

N =

⎡⎣ λ 1 ir
0 λ 1
0 0 λ

⎤⎦ , H =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , r ∈ R; (8.4.18)

N =

⎡⎢⎢⎣
λ cosα sinα 0
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦ , H =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦ , 0 < α ≤ π

2
. (8.4.19)

Proof. Throughout the proof we assume that N is indecomposable. Then, accord-
ing to Lemma 8.1.3, N has only one or two distinct eigenvalues. In the latter case,
as the proof of Lemma 8.1.3 shows, n is even:

n = 2m, Cn = Span (Q1,Q2) , Q1 ∩ Q2 = {0}

with
dimQ1 = dimQ2 = m, [Q1,Q1] = [Q2,Q2] = 0;

the linear transformation N |Q1 (resp., N |Q2) has the only eigenvalue λ1 (resp.,
λ2). Since in a space with an indefinite inner product no neutral subspace can be of
dimension larger than min(ν+, ν−) (Theorem 2.3.4), we conclude that m = 1 and
n = 2. The vectors u1, u2 that span Q1 and Q2 correspondingly can be normed so
that

[u1, u1] = [u2, u2] = 0, [u1, u2] = 1. (8.4.20)

Thus, we found a basis {u1, u2} of C2 with the properties (8.4.20) such that the
matrix of N is as in (8.4.15). According to Corollary 8.3.2, the linear transforma-
tion N is unitarily similar to the canonical form (8.4.15).

Now it remains to consider the case when N has only one eigenvalue λ. Then
N [∗] has only one eigenvalue λ. Define the subspace S0 ⊆ Cn as

S0 =
{

x ∈ Cn : (N − λI)x = (N [∗] − λI)x = {0}
}

.

In other words, S0 is the subspace spanned by all eigenvectors common to
N and N [∗]. Since N and N [∗] commute, we have dimS0 > 0. We consider the
following cases and subcases, depending on the properties of S0.

Case 1. S0 is not neutral. Then there exists a vector v ∈ Cn such that

Nv = λv, N [∗]v = λv, [v, v] �= 0.
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The one-dimensional subspace V := Span {v} is nondegenerate and invariant for
both N and N [∗]. Hence, N is indecomposable if and only if S0 is equal to the
space Cn (n = 1) and the case is one-dimensional.

Case 2. S0 is neutral. Then
dimS0 = 1 (8.4.21)

because H has only one negative eigenvalue. The subspace S[⊥]
0 is of dimension

n − 1 and S0 ⊆ S[⊥]
0 .

Case 3. (Subcase of Case 2). S0 = S[⊥]
0 . We have n = 2. Let {v1, v2} be a basis of C2

such that v1 spans S0 and [v1, v2] �= 0. It is easy to find a vector ṽ2 = α1v1 +α2v2

such that
[v1, v1] = [ṽ2, ṽ2] = 0, [v1, ṽ2] = 1 (v1 ∈ S0) .

Then in the basis {v1, ṽ2} the matrix of N is

N =
[

λ µ
0 λ

]
where 0 �= µ ∈ C. Let u1 =

√|µ|v1, u2 = 1√
|µ| ṽ2. Then we have

[u1, u1] = [u2, u2] = 0, [u1, u2] = 1.

In the basis {u1, u2} the matrix of N is as in (8.4.16) with z = µ/ |µ| .
According to Corollary 8.3.2, the linear transformation N is unitarily similar

to the canonical form (8.4.16). Note that the value of z in (8.4.16) is uniquely
defined, i.e., it is an H-unitary invariant of N. To prove this it is sufficient to
prove that if

N1 =
[

λ z̃
0 λ

]
, |z̃| = 1

and T is a nonsingular 2 × 2-matrix such that

N1 = T−1NT (8.4.22)

and
H = T ∗HT, (8.4.23)

then z̃ = z. To prove this, note first of all that it follows from (8.4.22) that T is
upper triangular,

T =
[

t1 t3
0 t2

]
,

and
zt2 = z̃t1. (8.4.24)

From (8.4.23) it follows that t1t2 = 1. Thus, (8.4.24) can be rewritten as z = z̃t1t1.
The last equality along with |z̃| = |z| = 1 yields z̃ = z.
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Case 4. (Subcase of Case 2). S0 ⊆ S[⊥]
0 , S0 �= S[⊥]

0 . As above, we can find the
vectors v1, w ∈ Cn such that

[v1, v1] = [w, w] = 0, [v1, w] = 1, v1 ∈ S0. (8.4.25)

The subspace Span {v1, w} is nondegenerate and so is the subspace

S := (Span {v1, w})[⊥]
.

It is easy to check that

Range(N − λI) ⊆ S
[⊥]
0 , Range

(
N [∗] − λI

)
⊆ S

[⊥]
0 .

Hence, S [⊥]
0 is invariant for both N and N [∗], and

Nw = λw + v0, for some v0 ∈ S[⊥]
0 .

We have a direct sum decomposition Cn = S0 + S + S1, where S1 = Span {w} ,
and the corresponding decompositions of N and N [∗] are

N =

⎡⎣ λ ∗ ∗
0 N1 ∗
0 0 λ

⎤⎦ , N [∗] =

⎡⎣ λ ∗ ∗
0 N2 ∗
0 0 λ

⎤⎦ . (8.4.26)

Note that the subspace S + S0 = S [⊥]
0 is both N -invariant and N [∗]-invariant. It

turns out that N
[∗]
1 = N2. Indeed, let x, y ∈ S. Then for some complex numbers

α and β, we have

Nx = N1x + αv1, N [∗]y = N2y + βv1

and hence,

[N1x, y] = [Nx − αv1, y] = [Nx, y] =
[
x, N [∗]y

]
= [x, N2y + βv1] = [x, N2y]

which means that N
[∗]
1 = N2. Moreover, N1 is normal (with respect to the in-

definite inner product) in S, which follows from the block structure (8.4.26) of N
and N [∗]. Next, since H has only one negative eigenvalue, the inner product on S
inherited from Cn(H) is positive definite. The linear transformation N1 is normal
and has only one eigenvalue. Hence, N1 = λI, N

[∗]
1 = λI.

Case 5. (Subcase of Case 4) S0 �= S[⊥]
0 , n = 3. Denote the vector w by v3. We

can find a vector v2 ∈ S such that [v2, v2] = 1. So, we have a basis

{v1, v2, v3} (8.4.27)
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of C3 with

[vi, vj ] =
{

1 if i + j = 4
0 if i + j �= 4.

Because of (8.4.26), the matrices of N and N [∗] in the basis (8.4.27) are

N =

⎡⎣ λ µ1 µ3

0 λ µ2

0 0 λ

⎤⎦ , N [∗] =

⎡⎣ λ µ2 µ3

0 λ µ1

0 0 λ

⎤⎦ .

The linear transformation N is H-normal if and only if µ1µ1 = µ2µ2. Note that
µ1µ2 �= 0; otherwise we would have

(N − λI)v2 = (N [∗] − λI)v2 = 0, v2 ∈ S0, and dimS0 > 1,

which contradicts (8.4.21). Thus,

µ1 = ρeiθ1 , µ2 = ρeiθ2 , ρ �= 0, 0 ≤ θ1, θ2 < 2π.

Let
w1 = ρv1, w2 = ±e

i(θ2−θ1)
2 v2, w3 =

v3

ρ
,

where the + or − sign is chosen so that the argument of the complex number

±e
i(θ2−θ1)

2 eiθ1 = ±e
i(θ2+θ1)

2

is in the interval [0, π) . Obviously, we have

[wi, wj ] =
{

1 if i + j = 4
0 if i + j �= 4 (8.4.28)

and the matrix of N in the basis {w1, w2, w3} is

N =

⎡⎣ λ z µ
0 λ z
0 0 λ

⎤⎦
where

µ =
µ3

ρ2
and z = ±e

i(θ1+θ2)
2

with the + or − sign chosen as explained above. Thus, |z| = 1, 0 ≤ arg z < π.
Next we introduce a new basis

{u1, u2, u3} (8.4.29)

of C3 as follows:

u1 = t1w1, u2 = t2w2 + t4w1, u3 = t3w3 + t5w2 + t6w1, (8.4.30)
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where t1, . . . , t6 are parameters to be defined later. In order for the properties
(8.4.28) of the indefinite inner products to be preserved, the following equalities
have to be satisfied:

t1t3 = 1, t2t2 = 1, t2t5 + t4t3 = 0, t3t6 + t6t3 + t5t5 = 0. (8.4.31)

We set
t1 = t2 = t3 = 1. (8.4.32)

In the new basis (8.4.29), with (8.4.30)–(8.4.32) satisfied, the matrix of N becomes

N =

⎡⎣ λ z ν
0 λ z
0 0 λ

⎤⎦
where ν = µ + (t5 + t5)z. If z �= 1, we can find the value of t5 (and the values
t4 = −t5, t6 = − 1

2
|t5|2) such that all the equalities in (8.4.31) will hold and

ν = r ∈ R.
Because of Corollary 8.3.2, the linear transformation N is unitarily similar

to the canonical form (8.4.17). If z = 1, we can find the value of t5 (and the values
of t4 and t6 as above) such that again all the equalities in (8.4.31) will hold and
ν = ir, r ∈ R. In this case, the linear transformation N is similar to the canonical
form (8.4.18).

Now we will show that the numbers z and r in the canonical form (8.4.17)
are invariants. To prove this, it is sufficient to prove that if

Ñ =

⎡⎣ λ z̃ r̃
0 λ z̃
0 0 λ

⎤⎦ , |z̃| = 1, 0 < arg z̃ < π, r̃ ∈ R

and if T is an invertible 3 × 3-matrix such that

Ñ = T−1NT (8.4.33)

and
T ∗HT = H, (8.4.34)

then z̃ = z and r̃ = r. To show this, we first take into account that from (8.4.33)
it follows that the matrix T is upper triangular, say

T =

⎡⎣ t1 t4 t6
0 t2 t5
0 0 t3

⎤⎦ ,

and that

z̃t1 − zt2 = 0, z̃t2 − zt3 = 0, z̃t4 + r̃t1 − zt5 − rt3 = 0. (8.4.35)
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The matrix equation (8.4.34) is now equivalent to the set of scalar equations in
(8.4.31). From the first two equations in (8.4.35) it follows that

z̃

z
=

t2
t1

=
t3
t2

which, along with two first equations (8.4.31), yields

z̃

z
=

t2
t1

=
t2
t1

.

So, t2/t1 is real and, since |z̃| = |z| = 1 and 0 < arg z̃, arg z < π, we obtain t1 = t2.
Thus,

z̃ = z, t1 = t2 = t3.

Now the last equation in (8.4.35) can be rewritten as

r − r̃ = (t4t3 − t5t2)z,

or, after the third equation in (8.4.31) is taken into account, as

r − r̃ = (t4t3 + t3t4)z.

Since r̃ − r and (t4t3 + t3t4) are both real and z is not, the last equation yields
r̃ = r.

The proof that r is an invariant in the case when N has the canonical form
(8.4.18) is similar.

Case 6. (Subcase of Case 4). S0 �= S[⊥]
0 , n > 3. Let v1 and w be as in (8.4.25).

Recall that

S0 = Span {v1} , S = Span {v1, w}[⊥]
, S1 = Span {w} .

The direct sum decomposition Cn = S0+̇S+̇S1 gives rise to the following block
structure of the matrices of N and N [∗] (see (8.4.26)):

N =

⎡⎣ λ M1 β
0 λI M3

0 0 λ

⎤⎦ , N [∗] =

⎡⎣ λ M2 β̃

0 λI M4

0 0 λ

⎤⎦ , β, β̃ ∈ C.

Note that H is positive definite on S. If n > 4, then dimS > 2, and therefore the
subspace

S0+̇S1+̇ (RangeM3 + RangeM4) (8.4.36)

has dimension less than n; however, it is easy to see that the subspace (8.4.36)
is H-nondegenerate and invariant for both N and N [∗], a contradiction with the
indecomposability of N . Thus, we must have n = 4.
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Next, consider v2 := M3w ∈ S. The vector v2 is nonzero (otherwise, the
subspace (8.4.36) is 3-dimensional, a contradiction with the irreducibility of N).
By scaling v1 and w, if necessary, we may assume that [v2, v2] = 1. Let v3 ∈ S
be such that [v2, v3] = 0 and [v3, v3] = 1. Then, in the basis {v1, v2, v3, v4}, where
v4 = w, the matrices of N and H are

N =

⎡⎢⎢⎣
λ µ2 µ3 β
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦ , H =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦
where µ2, µ3, β ∈ C. Consequently, N [∗] in the same basis takes the form

N [∗] =

⎡⎢⎢⎣
λ 1 0 β

0 λ 0 µ2

0 0 λ µ3

0 0 0 λ

⎤⎥⎥⎦ .

Next we show that by a suitable transformation we can replace β by zero.
Indeed, let

T :=

⎡⎢⎢⎣
1 β 0 y

0 1 0 −β
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , y ∈ C satisfies 2�y + |β|2 = 0.

One verifies by a straightforward computation that T ∗HT = H (i.e., T is H-
unitary), and

T−1

⎡⎢⎢⎣
λ µ2 µ3 β
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦T =

⎡⎢⎢⎣
λ µ2 µ3 0
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦ .

Thus, we assume

N =

⎡⎢⎢⎣
λ µ2 µ3 0
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦ , N [∗] =

⎡⎢⎢⎣
λ 1 0 0
0 λ 0 µ2

0 0 λ µ3

0 0 0 λ

⎤⎥⎥⎦ , H =

⎡⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎥⎥⎦
in some basis {ṽ1, ṽ2, ṽ3, ṽ4}.

Since N is H-normal, we have µ2µ2 + µ3µ3 = 1 and, therefore,

µ2 = cosαeiφ2 , µ3 = sinαeiφ3
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for appropriate 0 < α ≤ π/2, φ2,φ3 ∈ R. (If α = 0, the linear transformation N is
decomposable because v3 is an eigenvector of both N and N [∗] and dimS0 > 1.)
The vectors

u1 = e
iφ2
2 ṽ1, u2 = e

−iφ2
2 ṽ2, u3 = ei( φ2

2 −φ3)ṽ3, u4 = ei
φ2
2 ṽ4

satisfy

[ui, uj] =
{

1 if (i, j) = (1, 4) or (4, 1) or (2, 2) or (3, 3)
0 otherwise.

Moreover, in the basis consisting of these vectors, the matrix of N is as in (8.4.19).
Applying Corollary 8.3.2, we conclude that N is unitarily similar to the canonical
form (8.4.19).

Now we will prove that the number α in (8.4.19) is an invariant. To prove
this, it is sufficient to prove that if

N1 =

⎡⎢⎢⎣
λ cos α̃ sin α̃ 0
0 λ 0 1
0 0 λ 0
0 0 0 λ

⎤⎥⎥⎦ , 0 < α̃ ≤ π

2
(8.4.37)

and T = (tjk) is a nonsingular matrix such that

N1 = T−1NT (8.4.38)

and
T ∗HT = H, (8.4.39)

then α̃ = α. To prove this, we first observe that from (8.4.38) it follows that
T is upper triangular with t44 = t22. Comparing the (1, 4)- and (2, 2)- entries
of the matrices that appear in both sides of (8.4.39), we conclude that t11 =
t22 �= 0. Since the (1, 2)-entry of the matrix 0 = TN1 − NT (see (8.4.38)) is
t11(cos α̃ − cosα) and 0 < α̃, α ≤ π

2 , it follows that cos α̃ = cos α and, hence,
α̃ = α.

This completes the proof of Theorem 8.4.1. �
It is interesting to note that the Jordan form of N in (8.4.19) consists of one

three-dimensional block and one one-dimensional block, if 0 < α < π
2
, and consists

of two two-dimensional blocks, if α = π
2
.

8.5 Exercises

1. Let A ∈ Cn×n be a normal linear transformation (with respect to the standard
inner product (·, ·)). Which of the following statements are correct?

(a) There exists an orthogonal basis such that A is diagonal.
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(b) There exists a basis in which A is diagonal.

2. Solve the preceding exercise for a linear transformation which is normal with
respect to an indefinite inner product.

3. (a) If A ∈ Cn×n is diagonal in a suitable basis of Cn, how can the standard
inner product in Cn be changed so that A is normal with respect to the
new inner product?

(b) Can the new inner product be positive definite?

4. Let A ∈ Cn×n have a block diagonal form. In each of the following cases,
does there exist an indefinite inner product in Cn such that A is normal with
respect to this inner product?

(a) All diagonal blocks are of size at most 2.

(b) All diagonal blocks are of size 2.

(c) What is the smallest possible ν−(H) in both cases (a) and (b), where
the invertible hermitian matrix H induces the inner product?

(d) If all diagonal blocks are of size at most two, except one which is a
Jordan block of size 3, what is the smallest possible ν−(H)?

(e) If there are only two Jordan blocks both of size 4 on the diagonal of
A, whereas all other diagonal blocks are of size 1, what is the smallest
possible ν−(H)?

5. Let A be an H-normal linear transformation in Cn and let the Jordan form
of A consist of one Jordan block.

(a) Prove that there exists a basis of Cn in which H and A have the following
representation:

H = ε

⎡⎢⎢⎣
0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .
1 0 . . . 0 0

⎤⎥⎥⎦ , ε = ±1,

A = λI + eiθ

⎡⎢⎢⎣
0 −i c2 . . . cn−1

0 0 −i . . . cn−2

. . . . . . . . . . . . . . .
0 0 . . . . . . 0

⎤⎥⎥⎦
with c1, c2, . . . , cn−1 ∈ R; 0 ≤ θ < π.

(b) Show that this representation is unique.

(c) When is A H-selfadjoint?

(d) When is A H-unitary?
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6. Let the Jordan form of a decomposable H-normal linear transformation on
C2n consist of two equal blocks with different eigenvalues λ ∈ C and µ ∈ C.
Assume that either

|λ| < |µ|
or

|λ| = |µ| and arg λ < arg µ (0 ≤ arg λ, arg µ < 2π).

(a) Prove that there exists a basis in C2n in which the matrices H and A
have the following forms:

H =
[

0 Sn

Sn 0

]
, N =

[
C1 0
0 C2

]
,

where Sn is the n × n sip matrix, and either

C1 = λI + eiθ

⎡⎢⎢⎣
0 −i c2 . . . cn−1

0 0 −i . . . cn−2

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤⎥⎥⎦ ,

C2 = µI + eiθ

⎡⎢⎢⎣
0 −ri c2 . . . cn−1

0 0 −ri . . . cn−2

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤⎥⎥⎦ ,

where

0 ≤ θ < π, r > 0, r �= ie−iθ, c2, . . . , cn−1 ∈ C,

or

C1 = λI +

⎡⎢⎢⎣
0 1 c2 . . . cn−1

0 0 1 . . . cn−2

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤⎥⎥⎦ ,

C2 = µI +

⎡⎢⎢⎣
0 1 −c2 . . . −cn−1

0 0 1 . . . −cn−2

. . . . . . . . . . . . . . .
0 0 0 . . . 0

⎤⎥⎥⎦ ,

where c2, c3, . . . , cn−1 ∈ C.

(b) Prove that the representation of A and H as in part (a) is unique.

7. Let an n × n matrix A have the form

A = λ

⎡⎢⎢⎣
1 c1 c2 . . . cn−1

0 1 c1 . . . cn−2

. . . . . . . . . . . . . . .
0 0 0 . . . 1

⎤⎥⎥⎦ , λ ∈ C, |λ| = 1.
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Verify that A is H-unitary, where H is the n × n sip matrix, if and only if
the following equalities hold:

c1 + c1 = 0

c2 + c2 + c1c1 = 0

. . . . . . . . .

cn−1 + cn−1 + c1cn−2 + · · · + cn−2c1 = 0.

8. Consider matrices A, B ∈ Cn×n for which B = λI + µA, where λ ∈ C,
µ ∈ C \ {0}, and let H be an invertible hermitian matrix.

(a) Show that A is H-normal if and only if B is H-normal.

(b) Show that A is indecomposable and H-normal if and only if B has the
same properties.

(c) Assuming that H has only one negative eigenvalue, and that A is in-
decomposable and H-normal - having the canonical form of Theorem
8.4.1, find the canonical form of B.

9. Construct an example of an H0-normal matrix which is neither H-selfadjoint
nor H-unitary, for any invertible hermitian matrix H .

8.6 Notes

In this chapter we follow the paper [43]. See also [44], [45]. For further developments
on classification of indecomposable H-normal matrices, see [51], [52], [50]. For other
recently developed aspects of the theory of H-normal matrices, see [79], [85], [84].

As shown in [28], the problem of classification up to simultaneous similarity of
pairs of commuting matrices discussed in Section 8.2 is equivalent to the problem
of classification of k-tuples of arbitrary square matrices of appropriate size up to
simultaneous similarity. For discussion of complexity of the latter problem, using
methods of linear algebra, see [8].





Chapter 9

General Perturbations. Stability
of Diagonalizable Matrices

If A is an H-selfadjoint matrix, a “general perturbation” of the pair (A, H) results
in a pair (B, G), in which B is G-selfadjoint and is close to the unperturbed pair
(A, H) in an appropriate sense. A similar convention applies to the perturbations
of H-unitary matrices considered here.

Identification of a quantity which is invariant under such perturbations is one
of the main results of the chapter. This general theorem will admit the characteri-
zation of all diagonalizable H-selfadjoint matrices with real spectrum which retain
these properties after a general perturbation. Also a description of those cases in
which analytic perturbations of H-selfadjoint matrices retain spectral properties
which are familiar from the classical hermitian case is obtained. Analogous results
for perturbations of H-unitary matrices are also discussed.

9.1 General Perturbations of H-Selfadjoint Matrices

Recall that the signature, sig H, of a hermitian matrix H is defined as the difference
between the number of positive eigenvalues of H and the number of negative
eigenvalues of H (in both cases counting multiplicities). Zero eigenvalues of H , if
any, are not counted.

For a given n × n matrix A and λ ∈ C, let

Rλ(A) = {x ∈ Cn | (A − λI)nx = 0} .

So Rλ(A) �= {0} if and only if λ is an eigenvalue of A, and in this case Rλ(A) is
the root subspace of A corresponding to λ. The orthogonal projection onto Rλ(A)
is denoted by PRλ(A).

Observe that if λ ∈ σ(A) is real and A is H-selfadjoint, then PRλ(A)HPRλ(A)

determines the quadratic form on Rλ(A) associated with a restriction of H . The
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main theorem shows that an invariant of general perturbations of the pair (A, H)
is determined by the signatures of quadratic forms of this kind.

Theorem 9.1.1. Let A be H-selfadjoint and Ω ⊆ R be any open set such that the
boundary of Ω does not intersect σ(A). Then for some sufficiently small neighbor-
hoods UA of A and UH of H ,∑

λ∈Ω

sig
(
PRλ(A)HPRλ(A)

)
=
∑
µ∈Ω

sig
(
PRµ(B)GPRµ(B)

)
(9.1.1)

for every B ∈ UA which is G-selfadjoint for an invertible selfadjoint G ∈ UH .
Moreover, for such a B, the number νΩ(B) of eigenvalues in Ω (counting

multiplicities), satisfies the inequality

νΩ(B) ≥
∑
λ∈Ω

∣∣sig (PRλ(A)HPRλ(A)

)∣∣ , (9.1.2)

and in every neighborhood U ⊆ UA of A there exists an H-selfadjoint matrix B
for which equality holds in (9.1.2).

Proof. We first prove (9.1.1). Evidently, it is sufficient to consider the case

Ω = {µ ∈ R | µ1 < µ < µ2} ,

where µ1, µ2 �∈ σ(A).
Let us compute the signature of the hermitian matrix µH − HA where µ ∈

R \ σ(A). Passing to the canonical form (J, Pε,J) of (A, H) (Theorem 5.1.1) one
sees easily that

sig(µH − HA) =
∑

λ∈σ(A)∩R

sgn(µ − λ)
k(λ)∑
i=1

εi(λ)
2

[1 − (−1)mi(λ)], (9.1.3)

where m1(λ), . . . , mk(λ)(λ) are the sizes of Jordan blocks in J with eigenvalue
λ, and ε1(λ), . . . , εk(λ)(λ) are the corresponding signs in the sign characteristic of
(A, H). As usual, sgn(µ− λ) = 1 if µ − λ > 0 and sgn(µ− λ) = −1 if µ− λ < 0.
From (9.1.3) we find that

sig(µ2H − HA) − sig(µ1H − HA) =
∑

µ1<λ<µ2, λ∈σ(A)

k(λ)∑
i=1

εi(λ)[1 − (−1)mi(λ)],

(9.1.4)
which is equal to

∑
µ1<λ<µ2

sig(PRλ(A)HPRλ(A)). Since the signature of an invert-
ible hermitian matrix is constant under small perturbations (Theorem A.1.2(b)),
there exist neighborhoods UA of A and UH of H such that, for every G-selfadjoint
B ∈ UA with G ∈ UH , we have:

sig(µiH − HA) = sig(µiG − GB), i = 1, 2.
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For such B and G (9.1.1) follows from (9.1.4).
Inequality (9.1.2) is a direct consequence of (9.1.1). Indeed, the canonical

form of B shows that

νΩ(B) ≥
∑
µ∈Ω

∣∣sig(PRµ(B)GPRµ(B))
∣∣ .

To prove the last part of the theorem let (J, Pε,J ) be the canonical form of
(A, H). Consider the part J0 of the Jordan matrix J which corresponds to a fixed
real eigenvalue λ0 of A and let Pε,J0 be the corresponding part of Pε,J . Clearly,
it is sufficient to find a Pε,J0 -selfadjoint matrix K in every neighborhood of J0

with the property that the number of real eigenvalues of K is exactly |sigP0HP0| ,
where P0 = PRλ0 (J). To simplify notation assume that λ0 = 0.

Consider first the construction of K in three particular cases:

(i) J0 is a Jordan block of even size α;

(ii) J0 is a Jordan block of odd size α;

(iii) J0 = J1 ⊕J2 consists of two Jordan blocks J1 and J2 of odd sizes α1 and α2,
respectively, and with opposite signs in the sign characteristic.

Denote by J(±i, β) the Jordan block of size β with eigenvalue ±i, and let ξ
be a small positive number. In case (i) put K = J0+ξ

(
diag

(
J
(
i, α

2

)
, J
(−i, α

2

)))
.

It is easy to check that K is Pε,J0 -selfadjoint with all eigenvalues nonreal.
In case (ii) put

K = J0 + ξ

(
diag

(
J

(
i,

α − 1
2

)
, 0, J

(
−i,

α − 1
2

)))
;

then K is Pε,J0 -selfadjoint with exactly α − 1 nonreal eigenvalues.
In case (iii) put

K =J0+ ξ

�
����diag

�
����J

�
i,

α1 − 1

2

�
,

�
����

1 0 0 1

0 J
�
−i, α1−1

2

	
0 0

0 0 J
�
i, α2−1

2

	
0

−1 0 0 1



����, J

�
−i,

α2 − 1

2

�


����



����,

then K is Pε,J0 -selfadjoint, and

det(λI − K) =
(
λ2 + ξ2

) 1
2 (α1+α2)−1

[
(λ − ξ)2 + ξ2

]
,

so that all eigenvalues of K are nonreal.
In the general case we apply the construction of case (i) to each Jordan block

of J0 of even size, the construction of case (iii) to each pair of Jordan blocks of
J0 of odd size and different signs, and if Jordan blocks of odd size are left, we
apply the construction of case (ii) to each of them. It is easily seen that in this
way we produce a Pε,J0 -selfadjoint matrix K in every neighborhood of J0 such
that νR(K) = |sigP0HP0| . This completes the proof. �
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The following special case of Theorem 9.1.1 is noteworthy. For a real eigen-
value λ0 there is an associated set of signs ε(λ0) ⊆ ε, the sign characteristic of
(A, H). The statement of the corollary concerns the number k(λ0) which is, by
definition, the minimum of the number of positive signs in ε(λ0) and the number
of negative signs in ε(λ0).

Corollary 9.1.2. Let A be H-selfadjoint and assume that all partial multiplicities
of A corresponding to λ0 are equal to 1. Then for every δ > 0 there exist neigh-
borhoods UA of A and UH of H such that, for every pair (B, G) ∈ UA × UH

with B G-selfadjoint, the number sc(B) of nonreal eigenvalues of B in the disc
{λ | |λ − λ0| < δ} does not exceed 2k(λ0), counting multiplicities.

Moreover, in every neighborhood U of A contained in UA there exists an
H-selfadjoint matrix B such that sc(B) = 2k(λ0).

We conclude this section with two illustrative examples.

Example 9.1.3. Let A = Jn(0) be the n × n nilpotent Jordan block (n ≥ 2), and
let H = εSn, the n × n sip matrix. Consider a small εSn-selfadjoint perturbation
B = A + δeneT

1 , where δ is a positive number close to zero. Thus, B is obtained
from A by adding δ in the left bottom corner. It is easy to see that B has eigenvalues

n
√

δe2mπi/n, m = 0, 1, . . . , n − 1,

with the corresponding eigenvectors

〈1,
n
√

δe2mπi/n, ( n
√

δ)2e2(2m)πi/n, · · · , ( n
√

δ)n−1e2((n−1)mπi/n〉,
for m = 0, 1, . . . , n − 1. If Ω is an open set on the real line that contains zero, we
have ∑

µ∈Ω

sig
(
PRµ(B)(εSn)PRµ(B)

)
=

{
ε if n is odd

0 if n is even.

This is equal to sig εSn, as required by Theorem 9.1.1. �
Example 9.1.4. Let

A = 0, H =
[

Ip 0
0 −Iq

]
∈ Cn×n.

For a fixed matrix C ∈ Cp×q, consider the H-selfadjoint perturbation of A:

B =
[

0 εC
−εC∗ 0

]
∈ Cn×n, ε > 0 small.

Since B is skew-hermitian, zero is the only possible real eigenvalue of B, and then

R0(B) =

[
KerC∗

Ker C

]
.
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Let k = rankC = rankC∗. Then R0(B) has dimension (p − k) + (q − k), the
(p − k)-dimensional subspace KerC∗ is H-positive, and the (q − k)-dimensional
subspace KerC is H-negative. Thus,

sig
(
PR0(B)HPR0(B)

)
= p − q = sig H,

as asserted by Theorem 9.1.1. �

9.2 Stably Diagonalizable H-Selfadjoint Matrices

Let A be an H-selfadjoint matrix, and let Ω be an open subset of the real line.
We say that A is Ω-diagonalizable if for every λ0 ∈ Ω ∩ σ(A) the multiplicity of
λ0 as a zero of det(Iλ − A) coincides with dimKer(λ0I − A). In other words, the
restriction of A to the spectral subspace corresponding to the eigenvalues of A in
Ω is similar to a diagonal matrix.

Next, we need to consider matrices for which all neighboring matrices (with
similar symmetries) are also Ω-diagonalizable. More formally, we call matrix A
stably Ω-diagonalizable if there exist neighborhoods UA of A and UH of H such
that, whenever B is G-selfadjoint and (B, G) ∈ UA × UH it follows that B has
the same number of eigenvalues as A in Ω (counting multiplicities) and is Ω-
diagonalizable. Note that, in particular, A must be Ω-diagonalizable.

We will also use the corresponding notion in which the matrix H is kept
fixed. Thus, an H-selfadjoint matrix A is called H-stably Ω-diagonalizable if there
exists a neighborhood UA of A such that every H-selfadjoint matrix B in UA is
Ω-diagonalizable. In the next theorem we assume that Ω is an open subset of the
real line such that its boundary does not contain eigenvalues of A.

Theorem 9.2.1. Let A be H-selfadjoint. Then the following statements are equiv-
alent:

(i) A is stably Ω-diagonalizable;

(ii) A is H-stably Ω-diagonalizable;

(iii) the quadratic form (Hx, x) is either positive definite or negative definite on
the subspace Ker(λ0I − A), for every λ0 ∈ σ(A) ∩ Ω.

We shall call the real eigenvalue λ0 of an H-selfadjoint matrix A definite if
the quadratic form (Hx, x) is either positive definite or negative definite on the
root subspace of A corresponding to λ0. The canonical form (Theorem 5.1.1)
shows that the real eigenvalue λ0 is definite if and only if the Jordan blocks of A
corresponding to λ0 all have size 1, and the signs in the H-sign characteristic of A
corresponding to λ0 are either all equal to +1, or all equal to −1. Thus, statement
(iii) above is equivalent to the definiteness of each eigenvalue of A in Ω.

The proof of Theorem 9.2.1 will indicate some additional properties of an
H-selfadjoint stably Ω-diagonalizable matrix A. First, there exist neighborhoods
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UA of A, UH of H such that if B is G-selfadjoint and (B, G) ∈ UA×UH , then B is
stably Ω-diagonalizable (and not only Ω-diagonalizable as the definition of “stably
Ω-diagonalizable” required). Second, if a real eigenvalue λ0 of A “splits” under
the perturbation and produces eigenvalues µ1, . . . , µr of B (all of them real), then
the sign of µj in the G-sign characteristic of B (j = 1, . . . , r) is just the sign of λ0

in the H-sign characteristic of A.
Note also that in every neighborhood of an H-selfadjoint matrix which is

Ω-diagonalizable but not stably Ω-diagonalizable, there exists an H-selfadjoint B
with nonreal eigenvalues.

Proof of Theorem 9.2.1. We start with the part (iii)⇒(i). We are given that each
eigenvalue of A in Ω is definite so that, in particular, A is Ω-diagonalizable. Let
λ1 < · · · < λr be the eigenvalues of A in Ω and let

δ = min
{

1
3
(λ2 − λ1), . . . ,

1
3
(λr − λr−1), λ̃1, . . . , λ̃r

}
where λ̃i is the distance from λi to the boundary of Ω.

If B is a perturbation of A, we write Pi (resp., Qµ) for the orthogonal pro-
jection onto the root subspace of A (resp., of B) associated with λi (resp., with
µ ∈ R), and νi(B) for the number of real eigenvalues (counting multiplicities) of
B whose distance from λi is less than δ.

Using Theorem 9.1.1 neighborhoods UA of A and UH of H can be found so
that, if (B, G) ∈ UA × UH and B is G-selfadjoint then, for i = 1, 2, . . . , r,

νi(B) ≥
∣∣∣∑ sig (QµGQµ)

∣∣∣ = |sig (PiHPi)| , (9.2.5)

and the summation is over all real µ whose distance from λi is less than δ. Since
λi is a definite eigenvalue of A, the last term in (9.2.5) is just the dimension of the
root subspace Rλi(A) of λi. But for B close to A, since the eigenvalues of B are
continuous functions of the entries of B, we obviously have νi(B) ≤ dimRλi(A)
and so, taking UA smaller, if necessary, the inequality in (9.2.5) is in fact an
equality which means that B is Ω-diagonalizable and all its eigenvalues are definite.
Further, the relation νi(B) = dimRλi(A) shows that B has the same number of
eigenvalues as A in Ω (counting multiplicities). So A is stably Ω-diagonalizable.

(i)⇒(ii) is evident.
(ii)⇒(iii) Assume that A is Ω-diagonalizable, but its eigenvalue λ0 ∈ Ω

is not definite. By Theorem 9.1.1, in every neighborhood of A there exists an
H-selfadjoint matrix B such that the number of real eigenvalues of B in a neigh-
borhood of λ0 is less than the dimension of the root subspace Rλ0(A). This means
that B has nonreal eigenvalues, a contradiction to (ii). �

The case Ω = R in Theorem 9.2.1 will be of particular interest for us. An
H-selfadjoint matrix A is called diagonalizable with real eigenvalues (in short, r-
diagonalizable) if A is similar to a diagonal matrix with real eigenvalues, i.e., A is
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Ω-diagonalizable with Ω = R and all eigenvalues of A are real. The definition
of stably r-diagonalizable matrices, and of H-stably r-diagonalizable matrices are
now evident. The following result is proved in the same way as Theorem 9.2.1.

Theorem 9.2.2. Let A be H-selfadjoint. Then the following statements are equiv-
alent:

(i) A is stably r-diagonalizable;

(ii) A is H-stably r-diagonalizable;

(iii) all eigenvalues of A are real and definite.

The remarks concerning additional properties of stably Ω-diagonalizable ma-
trices (stated before the proof of Theorem 9.2.1) apply for the stably r-diagonal-
izable matrices as well.

9.3 Analytic Perturbations and Eigenvalues

In Section 9.2 we have studied H-selfadjoint matrices A which are stably r-
diagonalizable. Observe that in the classical case, when H is positive definite,
every H-selfadjoint matrix is stably r-diagonalizable. So stably r-diagonalizable
matrices can be viewed as H-selfadjoint matrices which behave like hermitian ones
with respect to small perturbations.

Hermitian matrices are noted also for their special properties with respect
to analytic perturbations. Namely, if A(τ) =

∑∞
j=0 τ jAj is an analytic matrix

function of a real parameter τ with hermitian coefficients Aj , then the eigenvalues
of A(τ) are analytic functions of τ (see, e.g. Theorem 5.11.1 for a particular case
of A(τ) and [58, Section 2.6] for the general situation). Note that in general (i.e.,
without the assumption of the hermitian property), the eigenvalues of A(τ) need
not be analytic; one can claim only their continuity.

This point of view of analytic perturbations leads naturally to the following
definition. Let A0 be H0-selfadjoint and let λ0 be a real eigenvalue of A0. We say
that λ0 is analytically extendable by analytic perturbations if for any pair of matrix
functions A(τ), H(τ) which are analytic in the real variable τ on a neighborhood
U of zero and such that A(τ) is H(τ)-selfadjoint for all τ ∈ U and A(0) = A0,
H(τ) = H0, the eigenvalues of A(τ) which tend to λ0 as τ → 0 can be chosen
analytic functions on U .

When H0 is positive definite, every eigenvalue λ0 of an H0-selfadjoint matrix
A0 is analytically extendable. Indeed, if H0 is not perturbed (i.e., H(τ) ≡ H0) the
result mentioned above ([58, Section 2.6]) applies. The general analytic perturba-
tion A(τ), H(τ) is easily reduced to this case by considering an analytic matrix
function S(τ) such that H(τ) = S(τ)∗S(τ) and replacing A(τ) by S(τ)A(τ)S(τ)−1 .

It will be clear from Theorem 9.3.1 below (in view of Theorem 9.2.1) that
stably r-diagonalizable matrices, and only they, have all eigenvalues analytically
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extendable. So, with respect to analytic perturbations as well, the stably r-diago-
nalizable matrices behave like hermitian ones.

Theorem 9.3.1. Let A0 be H0-selfadjoint. Then a real eigenvalue λ0 of A0 is an-
alytically extendable if and only if the quadratic form (H0x, x) is either positive
definite or negative definite on the subspace Ker(λ0I − A0).

Proof. Let the quadratic form (H0x, x) be either positive or negative definite on
Ker(λ0I − A) and let � be an open disc with center λ0 whose closure intersects
σ(A) only in {λ0}. By Theorem 9.2.1 there exists an ε > 0 such that, for every
G-selfadjoint matrix B such that ||A − B|| + ||H − G|| < ε, all the eigenvalues of
B in � are real. Now let A(τ), H(τ) be n×n matrix functions with the properties
described in the definition of the analytic extendability of eigenvalues. Then the
eigenvalues λ1(τ), . . . , λν(τ) of A(τ) which tend to λ0 as τ → 0 are real for τ
sufficiently close to 0 (namely, those τ for which λi(τ) ∈ � and ||A(τ) − A|| +
||H(τ) − H || < ε). This implies that, for j = 1, 2, . . . , n, λj(τ) is analytic in τ on a
neighborhood of zero. Indeed, λj(τ) is a zero of the polynomial det(λI−A(τ)) with
coefficients analytic in τ and, as such, admits expansion in a series of fractional
powers of τ. More exactly, there exist positive integers α1, . . . , αm such that

α1 + · · · + αm = dimRλ0(A) =: ν

and (admitting a reordering of λj(τ), if necessary)

λp(τ) = λ0 +
∞∑

k=1

c
(q)
k (xp)k, α1 + · · · + αq−1 < p ≤ α1 + · · · + αq (9.3.6)

where

xp = xp (τ)

= |τ |1/(αq)

{
cos

[
1
αq

(
arg τ + 2πi

(
p −

q−1∑
i=1

αi

))]

+i sin

[
1
αq

(
arg τ + 2πi

(
p −

q−1∑
i=1

αi

))]}
,

and where c
(q)
k are complex numbers (so xp is an αq-th root of τ). By definition,

α0 = 0. For details see [7], for example. Consider

λα1(τ) = λ0 +
∞∑

k=1

c
(1)
k (xα1)

k

and let k1 be the smallest index such that c
(1)
k1

�= 0 (if all c
(1)
k = 0, then λ1(τ) ≡ λ0

is obviously analytic in τ for p = 1, . . . , α1). Then

c
(1)
k1

= lim
τ→+0

λ1(τ) − λ0

(xα1)k1
. (9.3.7)
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We find that, because λ1(τ)−λ0 is real, so is c
(1)
k1

. A similar argument shows that

all nonzero c
(1)
k are real. As the imaginary part of λα1 (τ) is zero, we obtain

∞∑
k=1

c
(1)
k |τ |k/(α1) sin

(
k

α1
arg τ

)
= 0

for all |τ | < δ. In particular, for τ < 0 this implies that c
(1)
k sin

(
kπ
α1

)
= 0 for

k = 1, 2, . . . , and means that k is an integer multiple of α1 if c
(1)
k �= 0. So all λp(τ),

1 ≤ p ≤ α1, are analytic on a neighborhood of τ = 0. The same argument shows
that all λ1(τ), . . . , λν(τ) are analytic in τ on a neighborhood of zero. Hence λ0 is
analytically extendable.

Assume now that the form (H0x, x), is neither positive definite nor negative
definite on the subspace Ker(λ0I − A0). We shall construct an analytic matrix
function A(τ), −∞ < τ < ∞, which is H0-selfadjoint and satisfies A(0) = A0, but
has a nonanalytic eigenvalue λ0(τ) which is equal to λ0 in the limit as τ → 0.

Without loss of generality we can assume that (A0, H0) is in the canonical
form. From the condition on the quadratic form (H0x, x) it follows that either A0

has a Jordan block J0 of size m ≥ 2 corresponding to the eigenvalue λ0, or A0

has two Jordan blocks J0 ⊕ J0, each of size 1 and with opposite signs in the sign
characteristic of (A0, H0). Consider the first case:

A0 = J0 ⊕ J1; H0 = ±P0 ⊕ P1,

where P0 is the m × m sip matrix, and (J1, P1) is the rest of (A0, H0). Then

A (τ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ0 1 0

0 λ0
. . .

...
. . . . . .

0 · · · . . . 1
τ 0 0 λ0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⊕ J1

and λ0(τ) = λ0 + τ1/m will do, i.e., is a nonanalytic eigenvalue.
In the second case let

A0 = diag (λ0, λ0, J1) ; H0 = diag (1,−1, P1) .

Then

A(τ) =
[

λ0 + 2τ + τ2 −τ
τ λ0

]
⊕ J1,

and λ0(τ) = λ0 + 1
2 (2τ + τ2 + τ(4τ + τ2)1/2) is not analytic on a neighborhood of

τ = 0. �
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Several interesting remarks on this theorem are the subjects of Exercises 17,
18, 19, and 20 at the end of this chapter.

The following result concerns a case of nonanalytic behavior.

Theorem 9.3.2. Let λ0 be a real eigenvalue of an H0-selfadjoint matrix A0. Sup-
pose that the quadratic form (H0x, x) is not definite on Ker(λ0I − A0), and let
m+ (resp., m−) be the number of positive (resp. negative) squares in the canoni-
cal representation of the quadratic form (H0x, x) on the root subspace Rλ0(A0) =
Ker(λ0I − A0)n. Then a continuous eigenvalue λ0(τ) of an H(τ)-selfadjoint an-
alytic matrix A(τ), where H(0) = H0, A(0) = A0 and τ belongs to some real
neighborhood of zero, has a fractional power expansion

λ0(τ) = λ0 +
∞∑

j=1

cj

(
τ1/p

)j

, cj ∈ C (9.3.8)

with
p ≤ 2 min(m+, m−) + 1. (9.3.9)

Observe that the quadratic form (H0x, x) is nondegenerate on Rλ0 (A0).
(This follows readily on consideration of the canonical form of (A0, H0)).

Proof. It is well-known that λ0(τ) has an expansion (9.3.8) in fractional powers of
τ ; (i.e., a Puiseux expansion, see [7], for example). It remains to prove the estimate
(9.3.9) for p.

Assume λ0(τ) �≡ λ0, and let ϕ be the number of nonreal functions λ0(τ)
given by the formula (9.3.8) (in this formula each of the p different values for τ1/p

is admitted). Using arguments employed in the proof of Theorem 9.3.1, it is not
difficult to see that ϕ ≥ p−1 if p is odd and ϕ = p if p is even. On the other hand,
by Corollary 9.1.2, the number of nonreal eigenvalues of A(τ) (for τ sufficiently
close to zero) does not exceed 2 min(m+, m−). Hence the inequality (9.3.9) holds.
If (H0x, x) is either positive or negative definite on Ker(λ0I − A), then (9.3.9)
gives p = 1, i.e., λ0 is analytically extendable. This is the “if” part of Theorem
9.3.1. �
Example 9.3.3. Let

A = 0, H =
[

Ip 0
0 −Iq

]
∈ Cn×n, A(τ) = τC,

where C is any fixed H-selfadjoint matrix, and τ ∈ R, with |τ | small. The eigen-
values of A(τ) are of the form τλj , where λ1, . . . , λk are the distinct eigenvalues
of C. Obviously, the eigenvalues of A(τ) are analytic functions of τ . On the other
hand, by Theorem 9.3.2, there exist H-selfadjoint analytic perturbations of A whose
eigenvalues are not analytic (if p > 0, q > 0). Letting (for simplicity) p = q = 1
(and hence n = 2), one such perturbation A(τ) is given by

A(τ) =

⎡⎣ τ
τ

2
−τ

2
−τ2

⎤⎦ .
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Indeed, the eigenvalues of A(τ) are

λ0(τ) =
−τ2 + τ ± τ

√
2τ + τ2

2
,

which is not analytic in a neighborhood of τ = 0. In fact, λ0(τ) admits a fractional
power series (9.3.8) with p = 2. �

9.4 Analytic Perturbations and Eigenvectors

Now let λ0 be a real eigenvalue of an H0-selfadjoint matrix A0. We say that the
eigenvectors of A0 corresponding to λ0 are analytically extendable if the following
conditions hold. Let A(τ), H(τ) be a pair of matrix functions which are analytic
in τ on a real neighborhood U of 0, are such that A(τ) is H(τ)-selfadjoint for
all t ∈ U, and satisfy A(0) = A0, H(0) = H0. Also let Γ be a circle with the
center λ0 and radius so small that λ0 is the only eigenvalue of A0 inside or on Γ.
Then for each real τ sufficiently close to zero there exists an H(τ)-orthonormal
basis x1(τ), . . . , xk(τ) of eigenvectors of A(τ) in the subspace K(τ) defined by
Ker(λI − A(τ)), where the sum is taken over all eigenvalues λ of A(τ) inside Γ,
and the vector functions x1(τ), . . . , xk(τ) are analytic functions of τ. Recall that
H(τ)-orthonormality of x1(τ), . . . , xk(τ) means that (H(τ)xi(τ), xj(τ)) is equal to
0 if i �= j, and equal to ±1 if i = j. As we shall see shortly, K(τ) is, in fact, the
sum of the root subspaces of A(τ) corresponding to the eigenvalues of A(τ) inside
Γ.

If the eigenvectors of A0 corresponding to λ0 are analytically extendable,
then the eigenvalue λ0 is necessarily analytically extendable. Indeed, assuming the
contrary, Theorem 9.3.1 shows that the form (H0x, x) is neither positive definite
nor negative definite on Ker(λ0I − A0). Then, arguing as in the second part of
the proof of Theorem 9.3.1, we find that the eigenvectors of A0 corresponding to
λ0 are not analytically extendable. In particular, the analytic extendability of the
eigenvectors of A0 at λ0 implies that the number k coincides with the multiplicity
of λ0 as a zero of det(λI −A). Consequently, all Jordan blocks in the Jordan form
of A(τ) corresponding to the eigenvalues of A(τ) inside Γ have size 1 (in particular,
all Jordan blocks in the Jordan form of A0 corresponding to λ0 have size 1).

When H0 is positive (or negative) definite, it is a well-known fact that the
eigenvectors of A0 are always analytically extendable. If H0 is not definite then,
in general, the analytic extendability of eigenvectors fails. The next theorem gives
necessary and sufficient conditions for analytic extendability of eigenvectors. It
will be seen from this theorem that the eigenvectors of A0 corresponding to each
eigenvalue are analytically extendable if and only if A0 is stably r-diagonalizable.
So, once again, stably r-diagonalizable matrices behave like hermitian ones.

In fact, it turns out that analytic extendability of λ0 and that of the eigen-
vectors corresponding to λ0 are equivalent.



190 Chapter 9. General Perturbations. Stability of Diagonalizable Matrices

Theorem 9.4.1. Let A0 be H0-selfadjoint. Then the eigenvectors of A0 correspond-
ing to λ0 ∈ σ(A0)∩R are analytically extendable if and only if the quadratic form
(H0x, x) is either positive definite or negative definite on the subspace Ker(λ0I −
A0).

For the proof of Theorem 9.4.1 we need a technical result:

Theorem 9.4.2. Let W (t) be an analytic m× n complex matrix-valued function of
the real variable t, a < t < b. Let

r = max{rankW (t) : a < t < b}.

(a) Assume that r > 0. Then there exist vector-valued functions x1(t), . . . , xr(t) ∈
Cm which are analytic on (a, b) and have the following properties:

(1) x1(t), . . . , xr(t) are linearly independent for every t ∈ (a, b);

(2) Span {x1(t), . . . , xr(t)} = RangeW (t)
for every t ∈ (a, b) except for the set Ξ of isolated points, possibly empty,
that consists of exactly those t ∈ (a, b) for which rankW (t) < r;

(3) for every t0 ∈ Ξ,

Span {x1(t0), . . . , xr(t0)} ⊇ RangeW (t0).

(b) Assume that r < n. Then there exist vector-valued functions yr+1(t), . . .,
yn(t) ∈ Cn which are analytic on (a, b) and have the following properties:

(1) yr+1(t), . . . , yn(t) are linearly independent for every t ∈ (a, b);

(2) Span {yr+1(t), . . . , yn(t)} = KerW (t)
for every t ∈ (a, b) except for the set Ξ of isolated points, possibly empty,
that consists of exactly those t ∈ (a, b) for which rankW (t) < r;

(3) for every t0 ∈ Ξ,

Span {yr+1(t), . . . , yn(t)} ⊆ KerW (t0).

Theorem 9.4.2 was proved in [95] in the context of complex analytic operator
functions. A proof of the theorem as stated can be found in [39, Chapter S6] or
[41]. To illustrate Theorem 9.4.2, consider the following situation:

Example 9.4.3. Assume that

W (t) = E(t) (diag (w1(t), w2(t), . . . , wr(t), 0, . . . , 0))F (t), a < t < b, (9.4.10)

where E(t) and F (t) are analytic matrix functions of sizes m × m and n × n
respectively, such that

detE(t) �= 0, detF (t) �= 0, for all t ∈ (a, b),
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and w1(t), . . . , wr(t) are analytic scalar functions not identically equal to zero.
Then the vectors x1(t), . . . , xr(t) of Theorem 9.4.2 can be taken as the first r
columns of the matrix function E(t), and the vectors yr+1(t), . . . , yn(t) of Theorem
9.4.2 can be taken as the n− r right most columns of the matrix function F (t)−1.

We note in passing that every m × n analytic matrix function W (t) can be
written in the form (9.4.10), although we will not use this fact in the sequel.

Proof of Theorem 9.4.1. In view of the remark preceding the statement of this
theorem, and of Theorem 9.4.1, we have only to show that if λ0 is analytically
extendable (or, equivalently, if the quadratic form (H0x, x) is definite on Ker(λ0I−
A0)), then the eigenvectors corresponding to λ0 are analytically extendable as well.

Let A(τ), H(τ) be a pair of matrix functions as in the definition of analytically
extendable eigenvectors defined for |τ | < δ (δ is a positive number), and let Γ be
a small circle with center λ0. By Theorem 9.2.1 there is a δ1 ∈ (0, δ] such that
for |τ | < δ1 all eigenvalues of A(τ) inside Γ are real, all Jordan blocks of A(τ)
corresponding to these eigenvalues are of size 1, and the quadratic form (H(τ)x, x)
is definite on Ker(λ(τ)I − A(τ)) for every eigenvalue λ(τ) of A(τ) inside Γ. In
particular, (H(τ)x, x) �= 0 for every eigenvector x corresponding to λ(τ) (|τ | < δ1).

Let λ(τ) be an eigenvalue of A(τ) which is analytic for |τ | < δ and such
that λ(0) = λ0. Choose a nonzero analytic vector function x(τ) ∈ Ker(λ(τ)I −
A(τ)), |τ | < δ (such an x(τ) exists in view of Theorem 9.4.2). As we have seen
in the preceding paragraph, (H(τ)x(τ), x(τ)) �= 0 for |τ | < δ1. Put x1(τ) =
|(H(τ)x(τ), x(τ))|−1/2

x(τ); then x1(τ) is an analytic eigenvector of A(τ) with
(H(τ)x1(τ), x1(τ)) = ±1.

Now consider the H(τ)-orthogonal companion M(τ) of Span {x1(τ)} (|τ | <
δ1). Since the subspace Span {x1(τ)} is H(τ)-nondegenerate, M(τ) is, in fact, a
direct complement to Span {x1(τ)} in Cn (n is the size of A0). Moreover, we have

M(τ) = H(τ)−1(Span {x1(τ)}⊥) = H(τ)−1 (Kerx1(τ)∗) = Ker (x1(τ)∗H(τ)) .

By Theorem 9.4.2 there exists an analytic basis in M(τ), and applying the Gram–
Schmidt orthogonalization, we obtain an analytic orthonormal basis y1(τ), . . .,
yn−1(τ) in M(τ) (|τ | < δ1). Consider the linear transformation A(τ) |M(τ):
M(τ) → M(τ) and the quadratic form determined by PM(τ)H(τ) |M(τ): M(τ) →
M(τ), where PM(τ) is the orthogonal projection on M(τ) (note that since A(τ)
is H(τ)-selfadjoint, the subspace M(τ) is A(τ)-invariant). Writing these linear
transformations in the basis y1(τ), . . . , yn−1(τ) we obtain (n− 1)× (n− 1) matri-
ces A1(τ) and H1(τ) (|τ | < δ1) such that H1(τ) is hermitian and invertible, A1(τ)
is H1(τ)-selfadjoint, and A1(τ) and H1(τ) are analytic on τ. (The analyticity of
A1(τ) follows from the analyticity of the unique solution {αij}n−1

i,j=1 of the system
of linear equations

A(τ)yi(τ) =
n−1∑
j=1

αjiyj(τ), i = 1, . . . , n − 1
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with analytic coefficients.) Apply the argument employed in the first part of the
proof to produce an analytic eigenvector x2(τ) of A(τ) |M(τ) for |τ | < δ2 ≤ δ1

such that (H(τ)x2(τ), x2(τ)) = ±1, and so on. Eventually we obtain the analytic
(for |τ | < δk < δ, where δk is positive) H(τ)-orthonormal basis x1(τ), . . . , xk(τ)
of eigenvectors of A(τ) in the sum of the root subspaces of A(τ) corresponding to
the eigenvalues inside Γ, i.e., in the subspace Range

[
1

2πi

∫
Γ
(λI − A(τ))−1dλ

]
. We

remark that this subspace is the range of the Riesz projection corresponding to the
eigenvalues of A(τ) inside Γ; see Section A.3 and in particular Proposition A.3.1.
Hence the eigenvectors of A0 corresponding to λ0 are analytically extendable. �

The proof of Theorem 9.4.1 also shows the validity of the following state-
ment (and this also follows from Theorem 9.1.1): Let the eigenvectors of an H0-
selfadjoint matrix A0 corresponding to λ0 ∈ σ(A) ∩ R be analytically extendable,
let A(τ), H(τ) be as in the definition of analytically extendable eigenvectors, and
let x1(τ), . . . , xk(τ) be an analytic H(τ)-orthonormal basis of eigenvectors of A(τ)
in the range of the Riesz projection Range

[
1

2πi

∫
Γ
(λI − A(τ))−1dλ

]
(such a basis

exists by the analytical extendability). Then (H(τ)xi(τ), xi(τ)) is +1 (resp. −1)
if the form (H0x, x) is positive (resp. negative) definite on Ker(λ0I − A0).

9.5 The Real Case

Consider the important case of an H-selfadjoint matrix A where both A and H are
real and pairs (B, G) obtained from perturbations of (A, H) are also confined to
real matrices. It is not difficult to see that the results of Sections 9.1 and 9.2 have
precise analogues in this context. The proofs are also the same with one exception.

The exception concerns the construction of matrices with nonreal eigenvalues
developed in three cases in the final part of the proof of Theorem 9.1.1, and needed
to establish the case of equality in the relation (9.1.2). For case (i) the role played
by diag

(
J
(
i, α

2

)
, J
(−i, α

2

))
is now played by a block of the real Jordan form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

1 0
0 1

0 0
0 0

0 1
−1 0

1 0
0 1

. . .
0 1
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with similar modifications for cases (ii) and (iii).

Using the real analogue of Theorem 9.1.1 the proofs of “real” versions of
Theorems 9.2.1 and 9.2.2 are essentially the same.



9.6. Positive Perturbations of H-Selfadjoint Matrices 193

9.6 Positive Perturbations of H-Selfadjoint Matrices

Let H be an n × n invertible hermitian matrix, and let A be H-selfadjoint. An
eigenvalue λ0 of A will be called semi-simple if dim Ker(λ0I−A) coincides with the
multiplicity of λ0 as a zero of det(λI −A), or, in other words, if the Jordan blocks
of A corresponding to λ0 all have size 1. If λ0 is a semi-simple real eigenvalue of
A, then the quadratic form (Hx, x) is nondegenerate on Ker(λ0I − A), i.e., zero
is the only vector x0 ∈ Ker(λ0I − A) with the property that (Hx0, y) = 0 for all
y ∈ Ker(λ0I −A). This follows easily from the canonical form for pairs (A, H) in
which A is H-selfadjoint.

Let r+(λ0) (resp. r−(λ0)) be the number of positive (resp. negative) squares
in the canonical representation of the quadratic form (Hx, x) on Ker(λ0I − A),
where λ0 is semi-simple. So, in particular,

r+(λ0) + r−(λ0) = dim Ker(λ0I − A),

and is also the algebraic multiplicity of λ0 as an eigenvalue of A. If r−(λ0) = 0,
(r+(λ0) = 0), we say that λ0 is a positive definite (negative definite ) eigenvalue
of A. Recall that a matrix A is said to be H-positive if [Ax, x] > 0 for all x �= 0,
where [x, y] = (Hx, y). In other words, A is H-positive if and only if the matrix
HA is positive definite.

Theorem 9.6.1. Let A be H-selfadjoint, and let λ0 be a semi-simple real eigenvalue
of A. Let Γ be any contour such that λ0 is the only eigenvalue of A inside or on
Γ. Then there exists an ε > 0 with the following properties:

(1) For every H-positive matrix A0 with ||A0|| < ε, the H-selfadjoint matrix
A + A0 has exactly r

def= r+(λ0) + r−(λ0) eigenvalues inside Γ (counting
multiplicities), and all of them are real.

(2) r+(λ0) of these eigenvalues (counting multiplicities) are greater than λ0, and
r−(λ0) of them are smaller than λ0.

(3) Every eigenvalue λ̃ of A + A0 inside Γ is semi-simple and positive definite if
λ̃ > λ0, or negative definite if λ̃ < λ0.

Proof. First observe that λ is an eigenvalue of A if and only if it is an eigenvalue
of the hermitian pencil λH − HA, in the sense that det(λH − HA) = 0. It will
be convenient to prove the theorem in this context of hermitian pencils. Thus,
writing B = HA and B0 = HA0 it will be proved that if B0 is positive definite (in
the classical sense) and ||B0|| < ε, then the eigenvalues of the linear polynomial
λH − (B + B0) have the properties indicated in the theorem. The conclusions of
the theorem will then hold on replacing ε by

∣∣∣∣H−1
∣∣∣∣−1

ε, i.e., ||B0|| <
∣∣∣∣H−1

∣∣∣∣−1
ε

will imply ||A0|| < ε.
Since B0 is positive definite there is an invertible matrix S such that B0 =

S∗S and then we may write

λH − (B + B0) = S∗{λH ′ − (B′ + I)}S,
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where H ′ = (S∗)−1HS−1 and B′ = (S∗)−1BS−1. This congruence implies that
when λ0 is an eigenvalue of λH −B with associated parameters r+(λ0), r−(λ0) as
in the statement of the theorem, then it is also an eigenvalue of λH ′−B′ with the
same parameters r+(λ0), r−(λ0). Furthermore, with Γ defined as in the theorem,
λ0 is the only eigenvalue of λH ′ − B′, inside or on Γ.

Theorem 5.11.1 shows that λH ′ − B′ admits a representation

λH ′ − B′ = U(λ)diag (µ1(λ), . . . , µn(λ)) U(λ)∗

for all λ ∈ R, where U (λ) is an analytic matrix function with unitary values
(U(λ)U(λ)∗ = I) for λ ∈ R; and µ1(λ), . . . , µn(λ) are real-valued analytic functions
of the real variable λ. Since λ0 is a simple eigenvalue of λH − B, and hence of
λH ′−B′, it follows that λ0 is a simple eigenvalue of λH−B, and hence λH ′−B′, it
follows that λ0 is a simple zero of exactly r functions µik

(λ), k = 1, 2, . . . , r among
µ1(λ), . . . , µn(λ) and, moreover, exactly r+(λ0) and r−(λ0) of the r derivatives
µ′

ik
(λ0) are positive, and negative, respectively. It is supposed, for simplicity, that

µ1(λ) = · · · = µr(λ0) = 0 and µ′
j(λ0) is positive for j = 1, 2, . . . , r+(λ0), and

negative for j = r+(λ0) + 1, . . . , r.
Choose an ε > 0 so that, for ||B0|| < ε, λH − (B + B0), and hence λH ′ −

(B′ + I), has exactly r eigenvalues inside Γ. By continuity of the eigenvalues as
functions of δ the same is true for λH ′− (B′ + δI) for any δ ∈ [0, 1] . Furthermore,
defining µj(λ, δ) = µj(λ) − δ, we have

λH ′ − (B′ + δI) = U(λ)diag (µ1(λ, δ), . . . , µn(λ, δ)) U(λ)∗.

Let [α, β] be the interval of R consisting of points inside and on Γ for which
λ0 ∈ (α, β) . Fix j and consider the family of functions µj(λ, δ) defined on [α, β] ;
one for each δ ∈ [0, 1] . Clearly, µj(λ, 0) has a simple zero at λ = λ0 and for any
δ ∈ [0, 1] , µj (α, δ) �= 0 and µj(β, δ) �= 0. As µj(α, δ), µj(β, δ) are continuous
nonzero functions of δ ∈ [0, 1] and

µj(α, 0)µj(β, 0) < 0 for j = 1, . . . , r,

also
µj(α, δ)µj(β, δ) < 0 for j = 1, . . . , r and for δ ∈ [0, 1] .

Thus, for each δ ∈ [0, 1] , µj(λ, δ) has at least one zero in (α, β). The same applies
for each j from 1 to r. Since the total number of zeros (counting multiplicities)
of µj(λ, δ), j = 1, . . . , r in the interval [α, β] does not exceed r, each function
µj (λ, δ) for a fixed j between 1 and r and fixed δ ∈ [0, 1] has exactly one simple
zero λj(δ) in (α, β) . In particular, it follows that for any δ ∈ [0, 1] the r eigenvalues
of λH − (B + δB0) which are inside Γ are all real.

Since λj(δ) is a simple zero of µj(λ, δ), j = 1, 2, . . . , r, which depends contin-
uously on δ ∈ [0, 1] , the derivative

dµj

dλ
(λ, δ)|λj (δ) := νj(δ)
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is either positive for all δ ∈ [0, 1] or negative for all δ ∈ [0, 1] . Since νj(0) > 0 for
j = 1, . . . , r+(λ0) and νj(0) < 0 for j = r+(λ0)+1, . . . , r, we conclude that for any
δ ∈ [0, 1] νj(δ) > 0 for j = 1, . . . , r+(λ0) and νj(δ) < 0 for j = r+(λ0) + 1, . . . , r.

Now let δ ∈ (0, 1] and, since µj(λ0, δ) = µj(λ0) − δ < 0, it follows that
λj(δ) > λ0 for j = 1, 2, . . . , r+(λ0) and λj(δ) < λ0 for j = r+(λ0) + 1, . . . , n.
Putting δ = 1 the theorem is proved. �

Note that the ε appearing in the statement of Theorem 9.6.1 can be esti-
mated. Using [46, Theorem 2.2] it is found that one can use any ε satisfying

0 < ε < (sup
λ∈Γ

||λH − HA||)−1 · ∣∣∣∣H−1
∣∣∣∣−1

.

A result similar to Theorem 9.6.1 holds for H-negative perturbations of A;
in this case the words “greater than” and “less than” in (2), as well as > and <
in (3), in the statement of the theorem must be interchanged.

For positive definite H the statement of Theorem 9.6.1 reduces to the follow-
ing well-known fact (which is not difficult to prove using variational properties of
the eigenvalues of a hermitian matrix): Let A be an hermitian n× n matrix with
eigenvalues λ1 ≤ · · · ≤ λn, then the eigenvalues µ1 ≤ · · · ≤ µn of the hermitian
matrix A + A0 with positive definite A0 satisfy the inequalities

µi > λi, i = 1, . . . , n.

Example 9.6.2. Let A = 0, H =
[

Ip 0
0 −Iq

]
∈ Cn×n, (p + q = n). Then an

H-positive matrix has the form

A0 =
[

B C
−C∗ −D

]
,

where B ∈ Cp×p, C ∈ Cp×q, and D ∈ Cq×q are such that the matrix
[

B C
C∗ D

]
is positive definite. Theorem 9.6.1 asserts that the matrix A0 is diagonalizable,
all eigenvalues of A0 are real, and p of them are positive, whereas q of them are
negative.

9.7 H-Selfadjoint Stably r-Diagonalizable Matrices

Let H = H∗ be an invertible complex n×n matrix. Recall that an H-selfadjoint
matrix A is called stably r-diagonalizable if A is similar to a real diagonal matrix
and this property holds also for every matrix A′ which is sufficiently close to A and
which is H ′-selfadjoint for some hermitian matrix H ′ sufficiently close to H . Denote
by Sr(H) the class of all H-selfadjoint stably r-diagonalizable matrices. We know
by Theorem 9.2.2 that A ∈ Sr(H) if and only if all eigenvalues of A are real and
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definite. The latter means that the quadratic form (Hx, x) is either positive definite
or negative definite on the subspace Ker(λ0I−A) for every eigenvalue λ0 of A. So
there is a unique sign associated with each eigenvalue λ0 of a matrix A ∈ Sr(H)
(which coincides with the sign of the quadratic form (Hx, x), x ∈ Ker(λ0I − A)).

Let A be an H-selfadjoint stably r-diagonalizable matrix. We now define the
index of A as follows. Let (α0, α1) , (α1, α2) , . . . , (αp−1, αp) , α0 = −∞, αp = ∞,
be consecutive intervals on the real line such that every interval (αi, α1+i) contains
the largest possible number of eigenvalues of A having the same sign in the sign
characteristic (so adjacent intervals contain eigenvalues with opposite signs). Let
ni be the sum of multiplicities of the eigenvalues of A lying in (αi−1, αi) , multiplied
by (−1) if the sign of these eigenvalues is negative. Thus, the sign of ni coincides
with the sign (in the sign characteristic of (A, H)) of eigenvalues belonging to
(αi−1, αi) . The sequence {n1, . . . , np} will be called the index of A and will be
denoted indr (A, H). It is easily seen that the index does not depend on the choice
of αi (subject to the condition mentioned above). Observe the following properties
of indr (A, H):

nini+1 < 0, i = 1, . . . , p − 1; (9.7.11)

p∑
i=1

|ni| = n; (9.7.12)

p∑
i=1

ni = sig H. (9.7.13)

Note that if n1, . . . , np are integers with the properties (9.7.11)–(9.7.13), then
there is a matrix A ∈ Sr(H) such that {n1, . . . , np} is the index of A. Indeed, put

K = diag
(
In1 , 2In2 , . . . , pInp

)
,

and
Q = diag

(
ε1In1 , ε2In2 , . . . , εpInp

)
,

where Ij is the j × j unit matrix and εj = sgnnj . Clearly, K is Q-selfadjoint.
Moreover, because of (9.7.13), sig Q = sig H. So there exists an invertible S such
that H = S∗QS. Now A = S−1KS is H-selfadjoint, stably r-diagonalizable and

indr (A, H) = {n1, . . . , np} .

The set Sr(H) of all H-selfadjoint stably r-diagonalizable matrices is open,
and therefore splits into open connected components. All such components may
be described as follows.

Theorem 9.7.1. All matrices from Sr(H) with the same index form a connected
component in Sr(H), and each connected component in Sr(H) has such a form.
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Proof. Let A, B ∈ Sr(H) with canonical forms

JA = diag (α1, . . . , αn) , Pε,JA = diag (δ1, . . . , δn)

and
JB = diag (β1, . . . , βn) , Pε,JB = diag (ζ1, . . . , ζn) ,

respectively (so αi, βi ∈ R and δi, ζi = ±1). We assume that α1 ≤ · · · ≤ αn;
β1 ≤ · · · ≤ βn.

Suppose first that

indr (A, H) = indr (B, H).

Then Pε,JA = Pε,JB , and

J(t) = diag (tα1 + (1 − t)β1, . . . , tαn + (1 − t)βn) , t ∈ [0, 1]

is a continuous path of Pε,JA-selfadjoint stably r-diagonalizable matrices connect-
ing JA and JB. Let A = S−1JAS, H = S∗Pε,AS be the unitary similarity rela-
tions. Then A(t) = S−1JA(t)S, t ∈ [0, 1] is a continuous path of matrices from
Sr(H), and A(1) is similar to B and has the same sign characteristic. By Theorem
5.4.1 A(1) and B are H-unitarily similar. Since the classes of H-unitary similarity
are connected (see Theorem 5.4.4), A(1) and B belong to the same connected
component of Sr(H). So the same is true for A and B.

Suppose now that indr (A, H) is not equal to indr (B, H). We shall prove
that A and B belong to different connected components of Sr(H). Assume the
contrary. Then there exists a continuous path A(t), t ∈ [0, 1] from A to B in Sr(H).
Let

t0 = inf {t ∈ [0, 1] | indr(A(t), H) �= indr(A, H)} .

Let µ1 < · · · < µr be the different eigenvalues of A(t0). We claim that for some
µj , the form (Hx, x), x ∈ Ker(µjI − A(t0) is not definite. Indeed, if all the forms
(Hx, x), x ∈ Ker(µjI − A(t0)) were definite, then the same is true for the forms

(Hx, x), x ∈ Range

[
1

2πi

∫
Γj

(λI − A(t))−1dλ

]
, j = 1, 2, · · · , r, (9.7.14)

where Γj is a small contour around µj , and t belongs to some neighborhood U
of t0 (see Section A.3 for some information about Riesz projections and their
continuity, Theorem A.3.2). Indeed, use Theorem 9.2.1 and remarks thereafter to
see the definiteness of the forms (9.7.14) with t = t0; then by continuity of A(t)
and of the corresponding Riesz projections, the forms (9.7.14) are definite for all
t ∈ U and for j = 1, 2, . . . , r. (Recall that 1

2πi

∫
Γj

(λI − A(t))−1dλ is the Riesz
projection corresponding to the eigenvalues of A(t) inside Γj , see Section A.3.)
But then, by definition of the index, we have

indr (A(t), H) = indr (A(t0), H), t ∈ U,



198 Chapter 9. General Perturbations. Stability of Diagonalizable Matrices

a contradiction with the choice of t0. By Theorem 9.2.2, A(t0) is not stably
r-diagonalizable, which contradicts the choice of the path A(t), t ∈ [0, 1] . �

More generally, consider the connected components of the set Sr of pairs
(A, H), where A is an H-selfadjoint stably r-diagonalizable n × n matrix. Given
integers n1, . . . , np such that nini+1 < 0, i = 1, . . . , p, and

∑p
i=1 |ni| = n, it is

easily seen that the set of all pairs (A, H) ∈ Sr for which the index indr (A, H)
is equal to {n1, . . . , np} (then necessarily

∑p
i=1 ni = sig H) is not empty. As in

Theorem 9.7.1 such sets are precisely the connected components of Sr:

Theorem 9.7.2. All pairs (A, H) ∈ Sr with the same index indr(A, H) form a
connected component in Sr, and each connected component in Sr has such a form.

Proof. Let Hi-selfadjoint matrices Ai, i = 1, 2, be such that Ai is stably r-
diagonalizable and indr(A1, H1) = indr(A2, H2) = {n1, . . . , np} . Then, in particu-
lar, sig H1 = sig H2. So there exists an invertible matrix S such that H2 = S∗H1S.
Put A′

2 = S−1A1S. Then A′
2 is H2-selfadjoint, and since σ(A′

2) = σ(A1), also
indr(A′

2, H2) = indr(A1, H1). By Theorem 9.7.1 there is a continuous path of ma-
trices from Sr(H2) connecting A2 and A′

2. Also there is a continuous path F (t),
t ∈ [0, 1] of invertible matrices connecting S and I. Put A(t) = F (t)−1A1F (t),
H(t) = F (t)∗H1F (t) to obtain a continuous path of matrices A(t) ∈ Sr(H(t))
such that A(0) = A′

2; A(1) = A1. So the set of all pairs (A, H) ∈ Sr with
indr (A, H) = {n1, . . . , np} is connected.

Now let (A1, H1) , (A2, H2) ∈ Sr, and assume that there exists a contin-
uous path (A(t), H(t)) ∈ Sr such that A(0) = A1; H(0) = H1; A(1) = A2;
H(1) = H2. Then clearly, sig H1 = sig H2. Also, as in the proof of Theorem
9.7.1, indr (A1, H1) = indr (A2, H2). �

9.8 General Perturbations and Stably Diagonalizable

H-Unitary Matrices

Results on the perturbation of H-unitary matrices are discussed in this section.
They are derived from, and are similar to, those obtained in Sections 9.1 and 9.2
for H-selfadjoint matrices.

We continue to use the notation PRλ(A) for the orthogonal projection on the
root subspace for A associated with λ. The unit circle is denoted T.

Theorem 9.8.1. Let U be H-unitary, and let Ω ⊆ T be an open set (relative to T)
whose boundary does not intersect σ(U). Then for some neighborhoods UU of U
and UH of H we have∑

λ∈Ω

sig
(
PRλ(U) H PRλ(U)

)
=
∑
µ∈Ω

sig
(
PRµ(V ) GPRµ(V )

)
for every V ∈ UU which is G-unitary for some hermitian G ∈ UH . Moreover, the
number vΩ(V ) of eigenvalues of such a matrix V in Ω (counting multiplicities)
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satisfies the inequality

vΩ(V ) ≥
∑
λ∈Ω

|sig (PRλ(U) H PRλ(U)

) |, (9.8.15)

and in every (open) neighborhood U ⊂ UU of U there exists an H-unitary V for
which the equality holds in (9.8.15).

Note that by taking UH sufficiently small in this statement, the invertibility
of the matrix G is guaranteed.

Theorem 9.8.1 can be obtained from Theorem 9.1.1 by using the Cayley
transform.

Let U be an H-unitary matrix and let Ω be an open subset of the unit circle.
The matrix U is called Ω-diagonalizable if, for every λ0 ∈ Ω∩σ(A), the multiplicity
of λ0 as a zero of det(λI −A) is just dim Ker (λ0I −A). The matrix U is H-stably
Ω-diagonalizable if every H-unitary matrix V sufficiently close to U has the same
number of eigenvalues in Ω as U , and is Ω-diagonalizable. The matrix U is stably
Ω-diagonalizable if this property holds for every G-unitary V such that G (resp.
V ) is sufficiently close to H (resp. U).

In the following theorem we assume that the boundary of Ω does not intersect
σ(U).

Theorem 9.8.2. Let U be an H-unitary matrix. The following statements are equiv-
alent:

(i) U is stably Ω-diagonalizable;

(ii) U is H-stably Ω-diagonalizable;

(iii) the quadratic form (Hx, x) is either positive or negative definite on the sub-
space Ker (λ0I − U), for every λ0 ∈ σ(U) ∩ Ω.

It is easy to see that Theorems 9.2.1 and 9.8.2 can be obtained one from
another by using the Cayley transform and its inverse. A direct proof of Theo-
rem 9.8.2 can also be obtained from the general perturbation Theorem 9.8.1.

An important particular case of Theorem 9.8.2 arises when Ω is the whole
unit circle T.

An H-unitary matrix U is called diagonalizable with unimodular eigenvalues
(in short, u-diagonalizable) if U is similar to a diagonal matrix with unimodular
entries on the diagonal, i. e. U is Ω-diagonalizable with Ω = T, and all eigenvalues
of U lie on the unit circle T. The meaning of the notions of stably u-diagonalizable
matrices and H-stably u-diagonalizable matrices is clear. They are direct analogues
of definitions made in Section 9.2. The analogue of Theorem 9.2.2 is:

Theorem 9.8.3. Let U be an H-unitary matrix. The following statements are equiv-
alent:

(i) U is stably u-diagonalizable;
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(ii) U is H-stably u-diagonalizable;

(iii) all eigenvalues of U lie on the unit circle, and the quadratic form (Hx, x)
is either positive definite or negative definite on Ker (λ0I − U), for every
λ0 ∈ σ(U).

9.9 H-Unitarily Stably u-Diagonalizable Matrices

Let H = H∗ be an invertible complex n × n matrix. Recall from the preceding
section that an H-unitary matrix U is called stably u-diagonalizable if in some
basis in Cn, U is a diagonal matrix with unimodular eigenvalues and this property
holds also for every matrix U ′ which is sufficiently close to U and which is G-
unitary for some hermitian invertible matrix G sufficiently close to H .

Denoting by Su(H) the set of all H-unitary stably u-diagonalizable matrices,
it follows from Theorem 9.8.3, that U ∈ Su(H) if and only if U is similar to a
diagonal matrix with unimodular eigenvalues and the eigenvalues of U are definite.
The latter statement means that the signs in the sign characteristic of the pair
(U, H) which correspond to Jordan blocks with the same eigenvalue (as described
in Section 5.15), are either all +1’s or −1’s. So there is a sign corresponding to each
eigenvalue of U ∈ Su(H) (this sign coincides with the sign in the sign characteristic
of (U, H) corresponding to this eigenvalue).

We will describe the structure of the connected components in Su(H). To
this end we introduce the index for a stably u-diagonalizable H-unitary matrix U
(cf. the definition of the index for stably r-diagonalizable H-selfadjoint matrices).

Let
(α0, α1), (α1, α2), . . . , (αp−1, αp), αp = α0,

be consecutive intervals on the unit circle such that every interval (αi, αi+1) con-
tains the largest possible number of eigenvalues of U of the same sign (so adjacent
intervals contain eigenvalues of opposite sign). In particular, either p is even or
p = 1, and the latter case may occur only if H is positive definite or negative
definite.

Let vi (i = 1, . . . , p) be the sum of multiplicities of eigenvalues of U lying in
(αi−1, αi), multiplied by (−1) if the sign of these eigenvalues is negative (so that
the sign of vi coincides with the sign of eigenvalues belonging to (αi−1, αi)). The
sequence {v1, . . . , vp}, as well as any sequence

{vi, vi+1, . . . , vp, v1, . . . , vi−1}, i = 2, . . . , p, (9.9.16)

(obtained from {v1, . . . , vp} by a cyclic permutation) will be called the index of
U and denoted indu (U, H). It is seen that the index of U does not depend on
the choice of αi (subject to the above conditions), provided that one takes into
account the possible cyclic permutation of indu (U, H).

Observe the following properties of indu (U, H):

If p > 1, then vivi+1 < 0, i = 1, . . . , p (vp+1 = v1 by definition), (9.9.17)
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p∑
i=1

|vi| = n, (9.9.18)

p∑
i=1

vi = sig H, (9.9.19)

and note that (9.9.17) implies p = 1 or p is even.
Let {v1, . . . , vp} be any sequence of nonzero integers with properties (9.9.17)–

(9.9.19). It is easily seen that the set of all matrices from Su(H) whose in-
dex is {v1, . . . , vp} is not empty (cf. the proof of the corresponding property for
indr(A, H) in Section 9.7).

Theorem 9.9.1. All matrices from Su(H) whose indices are obtained from each
other by cyclic permutation from a connected component in Su(H), and every
connected component in Su(H) has this form.

Proof. Let U1, U2 ∈ Su(H); let

K1 = diag
(
eiθ1 , eiθ2 , . . . , eiθn

)
, Pε1,J = diag (ζ1, ζ2, . . . , ζn) , ζi = ±1,

be the canonical form of the pair (U1, H), and let

K2 = diag
(
eiπ1 , eiπ2 , . . . , eiπn

)
, Pε2,J = diag (η1, η2, . . . , ηn) , ηi = ±1,

be the canonical form of the pair (U2, H). We assume that

θ1 ≤ θ2 ≤ · · · ≤ θn, π1 ≤ π2 ≤ · · · ≤ πn, θn − θ1 < 2π, πn − π1 < 2π.
(9.9.20)

Suppose now that indu (U1, H) is equal to indu (U2, H). This means that,
after some cyclic permutation of terms on the main diagonal in K2, and the same
permutation of terms in Pε2,J , we obtain

K3 = diag
(
eip1 , eip2 , . . . , eipn

)
and Pε1,J , respectively. By adding 2π to some of the pj ’s (if necessary), we ensure
that

p1 ≤ p2 ≤ · · · ≤ pn, pn − p1 < 2π.

Put

K(t) = diag
[
eiσ1(t), eiσ2(t), . . . , eiσn(t)

]
, σj(t) = (1−t)θj +tpj , j = 1, 2, . . . , n.

Now write U1 = S−1K1S, H = S∗Pε1,JS for some invertible matrix S. Then

U(t) = S−1K(t)S, t ∈ [0, 1]

is a continuous path of H-unitary matrices from Su(H) connecting U1 and
S−1K3S. Also the H-unitary matrices S−1K3S and U2 are similar and have the
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same sign characteristic. By Theorem 5.17.2, S−1K3S and U2 are H-unitarily
similar. Since the class of H-unitary similarity of H-unitary matrices is connected
(Theorem 5.17.3), we can find a continuous path from S−1K3S to U2 in this class.
Clearly, this path belongs to Su(H).

Now suppose that indu (U1, H) is not equal to indu (U2, H). Assume there
exists a continuous path U(t), t ∈ [0, 1], of H-unitary matrices in Su(H) connecting
U1 and U2. As in the proof of Theorem 9.7.1, we pick

t0 = inf
{
t ∈ [0, 1]

∣∣ indu (U(t), H) is not equal to indu (U1, H)
}

,

and show that for all t in a sufficiently small neighborhood of t0, indu (U(t), H) is
equal to indu (U(t0), H); a contradiction. �

Finally, we consider the connected components of the set Su of all pairs
(U, H), such that H = H∗ ∈ Cn×n is invertible and U is an n×n matrix belonging
to Su(H). Again, given integers v1, . . . , vp with properties (9.9.17) and (9.9.18),
the set of all pairs (U, H) ∈ Su such that indu (U, H) is equal to {v1, . . . , vp} is
not empty.

Theorem 9.9.2. All pairs (U, H) ∈ Su whose indices indu (U, H) are obtained from
each other by a cyclic permutation form a connected component in Su. Every
connected component in Su has such a form.

Proof. Assume (U1, H1), (U2, S2) ∈ Su are such that indu (U1, H1) = {v1, . . . , vp}
is obtained from indu (U2, H2) by a cyclic permutation. Then

p∑
i=1

vi = sig H1 = sig H2.

Let S be an invertible matrix such that H2 = S∗H1S, and put U3 = S−1U1S.
Let S(t), t ∈ [0, 1], be a continuous path of invertible matrices with S(0) = S,
S(1) = I. Put

U3(t) = S−1(t)U1 S(t), H2(t) = S∗(t)H1 S(t).

Then U3(t) is H2(t)-unitary, sig H2(t)=sig H1, and U3(t) is stably u-diagonalizable
and the index indu

(
U3(t), H2

)
is equal to indu (U1, H1). Further,(

U3(0), H2(0)
)

= (U3, H2),
(
U3(1), H2(1)

)
= (U1, H1).

By Theorem 9.9.1 there is a continuous path between (U3, H2) and (U2, H2) in the
set Su(H2). So (U1, H1) and (U2, H2) belong to the same connected component of
the set Su.

Now let (U1, H1) and (U2, H2) be in Su. If sig H1 �= sig H2, then clearly
(U1, H1) and (U2, H2) belong to different connected components of Su (cf. Theorem
A.1.2(b)). Suppose sig H1 = sig H2, but the indices indu (U1, H1) and indu (U2, H2)
are not equal. If it is assumed that there exists a continuous path between (U1, H1)
and (U2, H2) in Su then, arguing as in the proof of Theorem 9.7.1, we arrive at a
contradiction. �
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9.10 Exercises

1. Give an example of a diagonalizable matrix which after a suitable arbitrarily
small perturbation becomes nondiagonalizable.

2. When is a diagonalizable matrix A stably diagonalizable, that is all sufficiently
small perturbations of A are also diagonalizable matrices?

3. Let A be a 2×2 H-selfadjoint matrix, where H =
[

0 1
1 0

]
. What statement

can be made about the canonical form of small H-selfadjoint perturbations
of A, under each of the following three hypotheses?

(a) A has no real eigenvalues;

(b) A has two different eigenvalues;

(c) A has one real eigenvalue of multiplicity 2.

4. Answer the question in Exercise 3 for H-unitary perturbations of an H-
unitary matrix A, using unimodular rather than real eigenvalues.

5. Let there be given the following pairs of matrices (Aj , Hj), j = 1, 2, 3, 4,
where Aj is Hj-selfadjoint:

(a)

A1 =

⎡⎣ λ0 1 0
0 λ0 1
0 0 λ0

⎤⎦ , H1 =

⎡⎣ 0 0 1
0 1 0
1 0 0

⎤⎦ , λ0 ∈ R.

(b)

A2 =

⎡⎣ λ1 1 0
0 λ2 1
0 0 λ1

⎤⎦ , H2 = H1, λ1, λ2 ∈ R.

(c)

A3 =

⎡⎣ λ0 1 0
0 λ0 0
1 0 λ0

⎤⎦ , H3 =

⎡⎣ 1 0 0
0 0 1
0 1 0

⎤⎦ , λ0 ∈ R.

(d)

A4 =

⎡⎣ λ0 1 0
0 λ1 1
0 0 λ0

⎤⎦ , H4 = H1, λ0 ∈ C, λ1 ∈ R.

Describe the canonical forms of small Hj-selfadjoint perturbations of these
pairs.
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6. Let A be an H-selfadjoint n × n matrix. Consider the following statements:

(a) There exist open neighborhoods UA of A and UH of H such that, for
every pair (B, G) ∈ UA ×UH with B G-selfadjoint, the numbers of real
eigenvalues (counted with multiplicities) of A and B coincide.

(b) For every pair (B, G) as in (a), the numbers of nonreal eigenvalues of
A and B coincide.

(c) For every pair (B, G) as in (a), all partial multiplicities of B are equal
to 1.

Verify whether or not the each of the statements (a), (b), and (c) holds when
all partial multiplicities of A are equal to 1.

7. Solve the preceding exercise under each of the following hypotheses:

(a) A has n distinct eigenvalues.

(b) all real eigenvalues of A (if any) have algebraic multiplicity 1.

(c) all partial multiplicities of A corresponding to real eigenvalues (if any)
are equal to 1.

(d) A has at least one partial multiplicity greater than 1 corresponding to
a real eigenvalue.

8. Generalize Exercises 6 and 7 for H-unitary matrices A.

9. Let H be negative definite, and let A be H-selfadjoint. Find the canonical
forms of all small H-selfadjoint perturbations of A.

10. Are the following matrices Aj , j = 1, 2, stably r-diagonalizable with respect
to Hj?

(a)

A1 =
[

In 0
0 −In

]
∈ R2n×2n, H1 =

[
Sn 0
0 Sn

]
.

(b) A2 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · · · ·
−a0 −a1 −a2 · · · −an−1

⎤⎥⎥⎥⎥⎥⎦ ∈ Rn×n;

H2 =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 a2 · · · an−1 1

a2
·······

... 0

1

⎤⎥⎥⎥⎥⎥⎥⎦, where a0, . . . , an−1 ∈ R.
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11. Let A be H-selfadjoint with a real eigenvalue λ0 for which the form (Hx, x)
is indefinite on the subspace Ker (λ0I − A). Prove that there exists an H-
selfadjoint matrix B which is arbitrarily close to A and such that B has
eigenvalues in the open upper and lower halfplanes.

12. Establish an analogue of the preceding exercise for H-unitary matrices.

13. Let A3 = Jn(λ0) be the n × n Jordan block with real eigenvalue λ0, and
let H3 = Sn, the n × n sip matrix. Describe the canonical forms of all H3-
selfadjoint small perturbations of A3.

14. Let Aj and Hj , j = 1, 2, 3, be as in Exercises 10 and 13, and let B be any
small H-selfadjoint perturbation of A. Show that:

(a) If n = 2k + 1 is odd, then B always has at least one real eigenvalue.

(b) If n = 2k is even, then B does not necessarily have a real eigenvalue.

15. Establish an analogue of Exercise 13 for H-unitary matrices.

16. Establish an analogue of Exercise 14 for H-unitary matrices.

17. Let λ0 be a real eigenvalue of an H0-selfadjoint n× n matrix A0. Prove that
if the quadratic form (H0x, x) is not definite on the subspace Ker(λ0I −A0),
then there exists a quadratic polynomial A0+τA1+τ2A2 with H0-selfadjoint
coefficients which has a continuous nonanalytic eigenvalue tending to λ0 as
τ → 0.

18. Show that in the preceding exercise one can take A1 and A2 such that
rankA1 ≤ 2, rankA2 ≤ 1 and RangeA2 ⊆ RangeA1.

19. Give an example to demonstrate that the statement in Exercise 17 is not
generally true if we replace the quadratic polynomial by a linear polynomial
A0 + τA1.

20. Let λ0 be a real eigenvalue of an H0-selfadjoint n × n matrix A. Assume
that the quadratic form (H0x, x) is degenerate on Ker(λ0I − A), meaning
that there is a nonzero vector x ∈ Ker(λ0I − A) such that (H0x, y) = 0 for
every y ∈ Ker(λ0I −A). Prove that there exists an H0-selfadjoint matrix A1

of rank 1 such that A0 + τA1 has a nonanalytic eigenvalue tending to λ0 as
τ → 0.

9.11 Notes

The material of Section 9.1 is taken from [38]. The results of Section 9.2 are due
mainly to Krein [61]; see also [27]. The results of Sections 9.3 and 9.4 appeared
in [40]. Results of Section 9.6 in a more general setting were obtained in [61]. The
contents of Section 9.7 is taken from [38].





Chapter 10

Definite Invariant Subspaces

As we have seen in Section 5.12, every H-selfadjoint matrix has an invariant sub-
space which is maximal H-nonnegative (or maximal H-nonpositive). The proof of
this property was based on the canonical form. This problem will be approached in
a different way in this chapter. A general scheme will be developed concerning ex-
tension of invariant H-nonnegative (or H-nonpositive) subspaces of various classes
of linear transformations with respect to an indefinite inner product. The scheme
is based on a classical fixed point theorem which is given in Section A.8. To avoid
trivialities, we assume throughout the chapter that the indefinite inner product is
truly indefinite, i.e., there exist vectors x and y such that [x, x] < 0 < [y, y].

10.1 Semidefinite and Neutral Subspaces:
A Particular H

We start with descriptions of nonnegative and neutral subspaces with respect to
the indefinite inner product given by a hermitian matrix H in a particular form.
As everywhere in the book, for Y ∈ Cm×n, we use the operator matrix norm

‖Y ‖ := max{‖Y x‖ : ‖x‖ = 1, x ∈ Cn}. (10.1.1)

For simplicity, it is assumed in this section that the indefinite inner product
in Cn is given by

[x, y] = (Hx, y), x, y ∈ Cn,

where the invertible hermitian matrix H has the form

H =

[
Ip 0

0 −Iq

]
. (10.1.2)

Clearly, by applying a congruence H → S∗HS for a suitable invertible ma-
trix S, the form (10.1.2) can always be achieved. The subspaces which are H-
nonnegative with respect to the form (10.1.2) can be conveniently described:
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Lemma 10.1.1. Let H be given by (10.1.2). Then a nonzero subspace M ⊆ Cn of
dimension d is H-nonnegative if and only if M has the form

M = Range
[

P
K

]
, (10.1.3)

where P is a p × d matrix with orthonormal columns, and K ∈ Cq×d satisfies
‖K‖ ≤ 1.

Matrices K with the property that ‖K‖ ≤ 1 are said to be contractions. We
will use this terminology in the sequel.

Proof. The condition that P has orthonormal columns can be written in the form

P ∗P = Id. (10.1.4)

It is easy to see that every subspace of the form (10.1.3) is H-nonnegative. Indeed,
let [

x1

x2

]
=

[
P

K

]
y,

for some y ∈ Cd. Then(
H

[
x1

x2

]
,

[
x1

x2

])
=

([
Ip 0

0 −Iq

][
P

K

]
y,

[
P

K

]
y

)

= (Py, Py) − (Ky, Ky) = (P ∗Py, y) − (Ky, Ky)

= ‖y‖2 − ‖Ky‖2 ≥ 0, (10.1.5)

where the last inequality follows since ‖K‖ ≤ 1.
Conversely, let M be an H-nonnegative subspace, and dim M = d. Let

f1, . . . , fd be a basis of M and, for j = 1, . . . , j, form the partitions:

fj =

[
f1j

f2j

]
, f1j ∈ Cp, f2j ∈ Cq .

We claim that the vectors f11, . . . , f1d are linearly independent. Otherwise, M
would contain a nonzero vector of the form

[
0p×1

f

]
where f ∈ Cq, and this

contradicts the H-nonnegative property of M. Denote by Q1 the p × d matrix
with the columns f11, . . . , f1d (in that order from left to right). Now let

P = Q1T ∈ Cp×d,
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where the invertible matrix T ∈ Cd×d is chosen so that P ∗P = Id. This choice is
always possible because, as f11, . . . , f1d are linearly independent, the matrix Q∗

1Q1

is invertible, as well as positive definite, and so one can take

T =
(√

Q∗
1Q1

)−1

.

Here,
√· stands for the positive definite square root of a positive definite matrix.

Finally, letting Q2 be the q×d matrix with columns f21, f22, · · · , f2d in that order
from left to right, consider

K = Q2T ∈ Cq×d.

With these definitions of P and K, the verification of the formula (10.1.3) is
immediate, because

M = Range [f1 · · · fd] = Range

[
Q1

Q2

]
= Range

[
Q1

Q2

]
T = Range

[
P

K

]
.

Since P ∗P = I, we verify as in (10.1.5) that(
H

[
P

K

]
y,

[
P

K

]
y

)
= ‖y‖2 − ‖Ky‖2 ≥ 0,

for every y ∈ Cd, and hence ‖K‖ ≤ 1. �
Essentially the same proof provides a description of H-positive subspaces:

Lemma 10.1.2. Let H be given by (10.1.2). Then a nonzero subspace M ⊆ Cn of
dimension d is H-positive if and only if M has the form

M = Range
[

P
K

]
,

where P is a p × d matrix with orthonormal columns, and K ∈ Cq×d is a strict
contraction, i.e., ‖K‖ < 1.

Note that, for a given M, the representation (10.1.3), where P ∗P = I and
K is a contraction, is not unique. For example, if α ∈ C, |α| = 1, then replacing
P and K with αP and αK, respectively, we obtain a different representation for
the same M.

To study this nonuniqueness, first of all observe that if

Range

[
P

K1

]
= Range

[
P

K2

]
, (10.1.6)

where P ∗P = Id, then K1 = K2; in other words, the matrix K in (10.1.3) is
uniquely determined by M and P . The verification is easy: if (10.1.6) holds and
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P ∗P = Id then, in particular, the columns of

[
P

K1

]
and of

[
P

K2

]
are linearly

independent, and we have [
P

K1

]
=

[
P

K2

]
W,

for some invertible matrix W . Consequently, P = PW . Multiplying this equality
on the left by P ∗, it follows that W = I. But then also K1 = K2.

As for the nonuniqueness of P in (10.1.3), assume that

Range

[
P1

K1

]
= Range

[
P2

K2

]
,

where P ∗
1 P1 = P ∗

2 P2 = Id. Then, as in the preceding paragraph, we obtain[
P1

K1

]
=

[
P2

K2

]
W, (10.1.7)

for a unique invertible matrix W . In fact, W = P ∗
2 P1. This can be verified by

multiplying P1 = P2W on the left by P ∗
2 . Moreover, (10.1.7) implies P1W

−1 = P2,
and therefore W−1 = P ∗

1 P2. We see that W−1 = W ∗, in other words, W is unitary.
The following result is obtained:

Lemma 10.1.3. If

Range

[
P1

K1

]
= Range

[
P2

K2

]
, (10.1.8)

where P1 and P2 are p× d matrices such that P ∗
1 P1 = P ∗

2 P2 = I, then P1 = P2W ,
K1 = K2W for some unitary d × d matrix W , and this unitary matrix is unique.

In particular Lemma 10.1.3 applies to an H-nonnegative subspace of the form
(10.1.8). However, for the validity of the lemma, it is not necessary that K1 and
K2 be contractions.

Corollary 10.1.4. Every maximal H-nonnegative subspace M can be written
uniquely in the form

M = Range

[
Ip

K

]
, (10.1.9)

where K ∈ Cq×p is a contraction. Conversely, every subspace of the form (10.1.9)
is maximal H-nonnegative.

In particular, Corollary 10.1.4 describes a one-to-one correspondence between
the set of maximal H-nonnegative subspaces and the set of q × p contractions.
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Proof. The uniqueness of the representation (10.1.9) follows from Lemma 10.1.3.
The existence of (10.1.9) follows from Lemma 10.1.1 in which P is unitary because,
in view of Theorem 2.3.2, the dimension of M is equal to p. �

Next, taking advantage of the representation (10.1.3), we consider H-nonne-
gative subspaces which are contained in a maximal H-nonnegative subspace.

Lemma 10.1.5. Let

M0 = Range

[
P0

K0

]
and M = Range

[
Ip

K

]

be given, where P0 ∈ Cp×d has orthonormal columns, K0 ∈ Cq×d and K ∈ Cq×p

are contractions. (In particular, M is maximal H-nonnegative). Then M0 ⊆ M
if and only if K0 = KP0.

Proof. If K0 = KP0 then, obviously,[
P0

K0

]
=

[
I

K

]
P0

and therefore M0 ⊆ M. Conversely, if M0 ⊆ M, then there exists a matrix B
such that [

P0

K0

]
=

[
I

K

]
B.

It follows immediately that B = P0. �
Now we consider H-neutral subspaces. Since every H-neutral subspace is, in

particular, H-nonnegative, Lemma 10.1.1 applies. However, K now has a more
restrictive property:

Lemma 10.1.6. Let H be given by (10.1.2). Then a nonzero subspace M ⊆ Cn of
dimension d is H-neutral if and only if M has the form

M = Range
[

P
K

]
, (10.1.10)

where P and K are matrices with orthonormal columns and sizes p × d, q × d,
respectively.

As we know (Theorem 2.3.4), an H-neutral subspace cannot have dimension
larger than min{p, q}. This is reflected in Lemma 10.1.6 because a matrix of size
m × d can have orthonormal columns only if m ≥ d.

Proof. By Lemma 10.1.1 we may assume that M has the form (10.1.10), with
P ∗P = I and K a contraction. Now M is H-neutral if and only if (Hy, y) = 0 for
every y ∈ M. But this means that

0 = (Hy, y) = (Px, Px) − (Kx, Kx) = ((I − K∗K)x, x),
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for every x ∈ Cd. In fact, such an x satisfies

y =
[

P
K

]
x.

Thus, K∗K = I. In other words, the columns of K are orthonormal. �

By Lemma 10.1.3, for a given H-neutral subspace M, the matrices P and
K of the representation (10.1.10) are determined by M up to a multiplication on
the right by the same unitary matrix.

A completely parallel line of statements exists concerning H-nonpositive sub-
spaces. They can be obtained by applying the H-nonnegative subspaces results to
the matrix −H :

Lemma 10.1.7. Let H be given by (10.1.2). Then:

(a) A nonzero subspace M ⊆ Cn of dimension d is H-nonpositive, resp., H-
negative, if and only if M has the form

M = Range
[

K
P

]
,

where P is a q × d matrix with orthonormal columns, and K ∈ Cp×d is a
contraction, resp., strict contraction.

(b) A subspace M ⊆ Cn is maximal H-nonpositive subspace if and only if it has
the form

M = Range

[
K

Iq

]
, (10.1.11)

where K ∈ Cp×q is a contraction. Moreover, the form (10.1.11) is unique for
a given M.

(c) Let

M0 = Range

[
K0

P0

]
and M = Range

[
K

Iq

]
be given, where P0 ∈ Cq×d has orthonormal columns, and K0 ∈ Cp×d and
K ∈ Cp×q are contractions. Then M0 ⊆ M if and only if K0 = KP0.

10.2 Plus Matrices and Invariant Nonnegative

Subspaces

Throughout this section, we fix the indefinite inner product [·, ·] determined by an
invertible hermitian indefinite n × n matrix H : [x, y] = (Hx, y).
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A matrix A ∈ Cn×n is called a plus matrix, (or, if the dependence on H is
to be emphasized, an H-plus matrix ) if [Ax, Ax] ≥ 0 for every x ∈ Cn such that
[x, x] ≥ 0.

A key property of plus matrices is given in the following proposition:

Proposition 10.2.1. A matrix A ∈ Cn×n is a plus matrix if and only if there exists
a µ ≥ 0 such that

[Ax, Ax] ≥ µ[x, x] for every x ∈ Cn. (10.2.12)

Proof. The “if” part is clear from the definition of plus matrices. Assume A is
a plus matrix. Consider X := H + iA∗HA, and its numerical range (see Section
A.7):

W (X) = {(Xy, y) ∈ C : y ∈ Cn, ‖y‖ = 1}.
Since both H and A∗HA are hermitian, we clearly have

W (X) = {((Hy, y), (A∗HAy, y)) ∈ R2 : y ∈ Cn, ‖y‖ = 1}
= {([y, y], [Ay, Ay]) ∈ R2 : y ∈ Cn, ‖y‖ = 1}.

By definition of a plus matrix, the set W (X) does not intersect the half closed
quadrant {(a, b) ∈ R2 : a ≥ 0, b < 0}. Since W (X) is convex by Theorem A.7.1,
it follows that

W (X) ⊆ {(a, b) ∈ R2 : b ≥ µa}
for some fixed µ ≥ 0. Thus, (10.2.12) follows for all x ∈ Cn with ‖x‖ = 1, and
then it follows for all x ∈ Cn by homogeneity. �

Note that (10.2.12) can be re-written in an equivalent form

A∗HA − µH ≥ 0. (10.2.13)

The set of all nonnegative numbers µ for which (10.2.13) holds (which is nonempty
if A is a plus matrix), is a closed bounded interval [a, b], 0 ≤ a ≤ b < ∞. The
maximal value of µ ≥ 0 for which (10.2.13) holds true will be called the plus-index
of the plus matrix A.

The set of plus matrices respects unitary similarity transformations in the
following sense:

Proposition 10.2.2. If A ∈ Cn×n is an H-plus matrix, then T−1AT is a T ∗HT -plus
matrix, for every invertible T ∈ Cn×n.

The proof is immediate upon noticing that Tx ∈ Cn is H-nonnegative if and
only if x is T ∗HT -nonnegative.

Example 10.2.3. We describe all plus matrices for H =
[

0 1
1 0

]
. Let

A =
[

a b
c d

]
, a, b, c, d ∈ C.
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For µ ∈ R, we have

A∗HA − µH =
[

ac + ca ad + cb − µ

ad + cb − µ bd + db

]
.

Thus, (10.2.13) holds if and only if

ac + ca ≥ 0, bd + db ≥ 0, (10.2.14)

and
|ad + cb − µ|2 ≤ (ac + ca)(bd + db).

We obtain the following criterion: The matrix A is a plus matrix if and only if the
inequalities (10.2.14) hold and

δ2 ≤ (ac + ca)(bd + db),

where δ is the distance from the complex number ad + cb to the nonnegative half-
axis {µ ∈ C : µ ≥ 0}. The plus-index of A is equal to the largest (out of possibly
two solutions) real solution µ0 of the equation

|ad + cb − µ|2 = (ac + ca)(bd + db). �

We now formulate and prove the main result of this section concerning in-
variant nonnegative subspaces of invertible plus matrices: They can be extended
to invariant maximal nonnegative subspaces.

Theorem 10.2.4. Let A be an invertible plus matrix, and let M0 ⊆ Cn be an A-
invariant subspace which is H-nonnegative. Then there exists an H-nonnegative
A-invariant subspace M̃ ⊇ M0 such that dim M̃ = i+(H).

Thus, by Theorem 2.3.2, the subspace M̃ is maximal H-nonnegative. The
hypothesis that A is invertible is essential in Theorem 10.2.4, and the next example
illustrates this.

Example 10.2.5. Let

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 p

−1 0 1 q

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

where p and q are real numbers such that 4p + q2 > 0. Clearly, A is a plus matrix;
in fact, [Ax, Ax] = 0 for every x ∈ C4. Let

M0 = Span 〈1, 0, 1, 0〉 ∈ C4.
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Then AM0 = {0}, in particular, M0 is A-invariant. Since

〈1, 0, 1, 0〉T H〈1, 0, 1, 0〉 = 2,

M0 is H-positive. On the other hand,

KerA = Span {〈1, 0, 1, 0〉, 〈0,−p,−q, 1〉}
is not H-nonnegative (this is where the condition 4p + q2 > 0 is needed). Be-
sides KerA, there are two two-dimensional A-invariant subspaces that contain
M0, namely,

Span {〈1, 0, 1, 0〉, 〈1,±i, 0, 0〉} .

But [
1 ∓i 0 0
1 0 1 0

]
H

⎡⎢⎢⎣
1 1

±i 0
0 1
0 0

⎤⎥⎥⎦ =
[

0 1
1 2

]
,

so neither of these two subspaces is H-nonnegative. �
Nevertheless, it will be seen later that the hypothesis on the invertibility of

A in Theorem 10.2.4 can be relaxed.

Proof of Theorem 10.2.4. By Proposition 10.2.2 it may be assumed that

H =
[

Ip 0
0 −Iq

]
,

for some positive integers p and q (we do not consider the trivial cases when H is
either positive definite or negative definite).

Let M0 be as in Theorem 10.2.4. Represent M0 as in Lemma 10.1.1:

M0 = Range

[
P0

K0

]
,

where P ∗
0 P0 = I, ‖K0‖ ≤ 1. On the other hand, consider the set S of all maximal

H-nonnegative subspaces M that contain M0. Writing

M = Range

[
I

K

]
∈ S,

then, in view of Lemma 10.1.5, we may identify S with the set, S0, of all q × p
contractions K such that K0 = KP0.

At this point we need more basic notions of matrix analysis concerning con-
vergence, limits, etc. Let there be given a sequence

[X(j)]∞j=1 (10.2.15)
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of m×n complex matrices, written in terms of their entries X(j) = [x(j)
u,v ]u=m,v=n

u=1,v=1 .
The sequence (10.2.15) is said to converge to a matrix X = [xu,v]u=m,v=n

u=1,v=1 ∈ Cm×n

if
lim

j−→∞
x(j)

u,v = xu,v

for every pair of indices (u, v), where u = 1, . . . , m, v = 1, . . . , n. In this case X is
the limit of (10.2.15). A set of matrices is called closed if it contains the limit of
every converging sequence X(j), j = 1, 2, . . ., with the X(j)’s in the set in question.
A set of matrices is called bounded if there exists a positive M such that ‖X‖ ≤ M
for every matrix X in the set. Finally, we say that a set T ⊆ Cm×n is convex if

X, Y ∈ T =⇒ αX + (1 − α)Y ∈ T

for every α such that 0 ≤ α ≤ 1. If one identifies the complex vector space
of m × n matrices with Cpq, then the notions of convergence, limits, closedness,
boundedness, and convexity of sets of matrices translate into precisely the same
notions concerning vectors in Cpq .

We now return to the set S0 introduced above. Note that S0 is a convex,
closed, and bounded subset of Cp×q. Indeed, assume that K(j), j = 1, 2, . . ., is a
sequence of q × p matrices such that

‖K(j)‖ ≤ 1, K0 = K(j)P0 for j = 1, 2, . . ., (10.2.16)

and
K = lim

j−→∞
K(j). (10.2.17)

Then, letting x ∈ Cp be such that ‖K‖ = ‖Kx‖ and ‖x‖ = 1, we have

‖K‖ = ‖Kx‖ = lim
j−→∞

‖K(j)x‖ ≤ 1

because, in view of (10.2.16), ‖K(j)x‖ ≤ 1 for every j = 1, 2, . . .. Also, K0 =
KP0, again by (10.2.16). This shows that K ∈ S0, and hence S0 is closed. The
boundedness of S0 is obvious from its definition. Finally, the convexity of S0 is easy
to check: If K1, K2 ∈ Cq×p are contractions such that K0 = KjP0 for j = 1, 2, then
for every α, 0 ≤ α ≤ 1, the matrix K := αK1 + (1 − α)K2 is also a contraction
(because of the triangle inequality for the norm ‖ · ‖), and obviously satisfies
K0 = KP .

Next, we observe that

A(M) := {Ax|x ∈ M} ∈ S

for every M ∈ S. Indeed, the hypothesis that A is a plus matrix implies that
A(M) is H-nonnegative for every H-nonnegative M. Since A is invertible,

dim (A(M)) = dim M = i+(H)
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for every maximal H-nonnegative M and this implies, using Theorem 2.3.2, that
A(M) is maximal H-nonnegative as well. Finally, since A(M0) = M0, we obvi-
ously have A(M) ⊇ M0 for every subspace M ⊇ M0.

In other words, A maps S into itself. Again, identify S with the set

S0 := {K ∈ Cq×p| ‖K‖ ≤ 1 and K0 = KP0}, (10.2.18)

and let Ã be the map induced by A on S0. Thus,

A

(
Range

[
I

K

])
= Range

[
I

Ã(K)

]
, K ∈ S0. (10.2.19)

Observe that the map Ã is a continuous function of K ∈ S0 (more precisely, a
continuous function of the entries of K, considered as pq complex variables subject
to the restriction K ∈ S0 but otherwise independent). To verify this, write

A =

[
A11 A12

A21 A22

]
,

where A11 is p × p and A22 is q × q, and note that (10.2.19) can be rewritten in
the form [

A11 A12

A21 A22

][
I

K

]
X =

[
I

Ã(K)

]
,

for some invertible matrix X . It follows that X = (A11 + A12K)−1 (in particular,
A11 + A12K is invertible for every K ∈ S0), and

Ã(K) = (A21 + A22K)(A11 + A12K)−1.

This is obviously a continuous function of K ∈ S0. Now the fixed point Theorem
A.8.1 guarantees existence of a matrix K ′ ∈ Cq×p such that

‖K ′‖ ≤ 1, K0 = K ′P0, and Ã(K ′) = K ′.

Then

M̃ = Range

[
I

K ′

]
satisfies all the requirements of Theorem 10.2.4. �

10.3 Deductions from Theorem 10.2.4

Theorem 10.2.4 has several important corollaries. To start with, every H-unitary
matrix is obviously invertible and a plus matrix. Thus:
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Theorem 10.3.1. Let A be H-unitary, and let M0 ⊆ Cn be an A-invariant H-
nonnegative (resp. H-nonpositive) subspace. Then there exists an A-invariant H-
nonnegative (resp. H-nonpositive) subspace M such that M ⊇ M0 and dim M =
i+(H) (resp. dim M = i−(H)).

The part of Theorem 10.3.1 concerning H-nonpositive subspaces follows by
noticing that A is also a plus matrix with respect to −H, and applying Theorem
10.2.4 with H replaced by −H.

A similar result holds for H-selfadjoint matrices:

Theorem 10.3.2. Let A be H-selfadjoint, and let M0 ⊆ Cn be an A-invariant
H-nonnegative (resp. H-nonpositive) subspace. Then there exists an A-invariant
H-nonnegative (resp. H-nonpositive) subspace M such that M ⊇ M0 and dim
M = i+(H) (resp. dim M = i−(H)).

Theorem 10.3.2 follows immediately from Theorem 10.3.1 by using Propo-
sition 4.3.4. Indeed, if A is H-selfadjoint, then U given by (4.3.14) is H-unitary,
and since A and U are functions of each other, they have exactly the same set of
invariant subspaces.

A matrix A ∈ Cn×n is called an H-expansion, or H-expansive, if [Ax, Ax] ≥
[x, x] for every x ∈ Cn.

Proposition 10.3.3. A matrix A is H-expansive if and only if the hermitian matrix
A∗HA − H is positive semidefinite.

The proof is easy:

[Ax, Ax] − [x, x] = (HAx, Ax) − (Hx, x) = ((A∗HA − H)x, x), x ∈ Cn,

and therefore [Ax, Ax] ≥ [x, x] for every x ∈ Cn if and only if ((A∗HA−H)x, x) ≥ 0
for every x ∈ Cn, which amounts to the positive semidefiniteness of A∗HA − H .

A matrix B ∈ Cn×n is called H-dissipative if the real part of [Bx, x] is
nonpositive for every x ∈ Cn. This condition can easily be interpreted in terms of
positive semidefiniteness: A matrix B is dissipative if and only if

B∗H + HB ≤ 0. (10.3.20)

Lemma 10.3.4. (a) Let A be H-expansive, and let w, η ∈ C be such that w has
positive imaginary part, |η| = 1 and η is not an eigenvalue of A. Then the
matrix

B = i(wA − wηI)(A − ηI)−1 (10.3.21)

is H-dissipative.
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(b) Let B be H-dissipative, and let w, η ∈ C be such that |η| = 1, w has positive
imaginary part and is not an eigenvalue of −iB. Then the matrix

A = η(−iB − wI)(−iB − wI)−1 (10.3.22)

is H-expansive.

Proof. (a) Letting B be defined by (10.3.21), we have to prove that

HB +B∗H = iH(wA−wηI)(A− ηI)−1 − i(A∗ − ηI)−1(wA∗−wηI)H (10.3.23)

is negative semidefinite. Multiplying (10.3.23) on the right by A − ηI and on the
left by A∗ − ηI, we obtain (using ηη = 1)

i(A∗ − ηI)H(wA − wηI) − i(wA∗ − wηI)H(A − ηI)

= (iw − iw)(A∗HA − H) − iηwHA − iwηA∗H + iwηHA + iwηA∗H

= (iw − iw)(A∗HA − H). (10.3.24)

By the hypothesis that A is H-expansive, we have

((A∗HA − H)x, x) = (A∗HAx, x) − (Hx, x) = [Ax, Ax] − [x, x] ≥ 0,

for every x ∈ Cn. Hence A∗HA − H is positive semidefinite. Since w has positive
imaginary part, the real number iw − iw is negative, and hence (10.3.24) is neg-
ative semidefinite. Finally, (10.3.23) is congruent to (10.3.24), therefore (10.3.23)
is negative semidefinite as well.

(b) Letting A be defined by (10.3.22), consider

A∗HA−H = (iB∗ − wI)−1(iB∗ − wI)H(−iB − wI)(−iB − wI)−1 − H

= (iB∗ − wI)−1[(iB∗ − wI)H(−iB − wI)

− (iB∗ − wI)H(−iB − wI)](−iB − wI)−1

= (iB∗ − wI)−1[iwHB − iwB∗H − iwHB + iwB∗H](−iB − wI)−1

= (iB∗ − wI)−1(−iw + iw)(HB + B∗H)(−iB − wI)−1. (10.3.25)

Since B is H-dissipative and −iw + iw is a negative real number, the matrix
(−iw + iw)(HB + B∗H) is positive semidefinite, and hence so is also A∗HA−H ,
by (10.3.25). �

The transformations in (10.3.21) and (10.3.22) are, in fact, the inverses of
each other. Thus, denote

g(z) = (wz − wη)(z − η)−1, z ∈ C,



220 Chapter 10. Definite Invariant Subspaces

and
h(z) = η(z − w)(z − w)−1, z ∈ C,

where |η| = 1 and w has positive imaginary part. Then for every matrix A not
having eigenvalue η, the number w is not an eigenvalue of the matrix B = g(A),
and

A = h(B). (10.3.26)

Here the matrices g(A) and h(B) are understood in the sense of functions of
matrices; they are also given by formulas (10.3.21) and (10.3.22), respectively.
The verification of (10.3.26) is easy:

h(g(z)) = η(g(z) − w)(g(z) − w)−1

=
(

wz − wη

z − η
− w

)(
wz − wη

z − η
− w

)−1

= η(wz − wz)(wη − wη)−1

= z,

and therefore, by the well-known properties of functions of matrices, h(g(A)) = A.
As for the invertibility of B − wI, note that

B − wI = (wA − wηI)(A − ηI)−1 − wI

= [(wA − wηI) − w(A − ηI)](A − ηI)−1 = (wη − wη)(A − ηI)−1.

Theorem 10.3.5. Let B be H-dissipative or H-expansive, and let M0 ⊆ Cn be a
B-invariant H-nonnegative (resp. H-nonpositive) subspace. Then there exists a
B-invariant maximal H-nonnegative (resp. maximal H-nonpositive) subspace M
such that M ⊇ M0.

Proof. First, suppose that B is H-dissipative. Assume M0 is H-nonnegative. Let A
be given by (10.3.22). Then A is H-expansive and, in particular, A is a plus matrix.
Note also that M0 is A-invariant, because A is a function of B. Selecting w so that
w /∈ σ(−iB), we guarantee that A is invertible. By Theorem 10.2.4, there exists
an A-invariant subspace M which is maximal H-nonnegative and contains M0.
Since B is a function of A (given by formula (10.3.21)) M is also B-invariant. This
proves the part of the theorem for H-dissipative B and H-nonnegative subspaces.
If M0 is H-nonpositive, apply the already proved part to the (−H)-dissipative
matrix −B.

If B is H-expansive, then we use Lemma 10.3.4, and the property that the
matrices given by formulas (10.3.21) and (10.3.22) have the same set of invariant
subspaces, to reduce the proof to the already considered case of H-dissipative
B. �

Finally, we are in a position to prove a stronger form of Theorem 10.2.4.
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Theorem 10.3.6. Let A ∈ Cn×n be a plus matrix such that Range A is not H-
nonnegative. Let M0 ⊆ Cn be an A-invariant subspace which is H-nonnegative
(resp. H-nonpositive). Then there exists H-nonnegative (resp. H-nonpositive) A-
invariant subspace M̃ ⊇ M0 such that dim M̃ = i+(H) (resp. dim M̃ = i−(H)).

Proof. By Proposition 10.2.1 there exists a µ > 0 such that [Ax, Ax] ≥ µ[x, x] for
all x ∈ Cn. (The possibility of µ = 0 is excluded by the hypothesis that the range
of A is not H-nonnegative.) Scaling A, if necessary, we can assume that µ = 1.
Then A is H-expansive, and the result follows from Theorem 10.3.5. �

10.4 Expansive, Contractive Matrices and Spectral

Properties of Invariant Maximal Semidefinite
Subspaces

In the previous section we have derived extension results on invariant semidefi-
nite subspaces for various classes of matrices with respect to an indefinite inner
product. In particular, the extension results yield existence of invariant maximal
semidefinite subspaces. Here, we shall see that, for expansive and contractive ma-
trices, these invariant subspaces have additional spectral properties.

Recall that a matrix A ∈ Cn×n is called H-expansive if [Ax, Ax] ≥ [x, x] for
every x ∈ Cn. A matrix A ∈ Cn×n is called H-strictly expansive if

[Ax, Ax] > [x, x] for every nonzero x ∈ Cn. (10.4.27)

Equivalently, A is H-strictly expansive if and only if there is ε > 0 such that

[Ax, Ax] ≥ [x, x] + ε‖x‖2 for every x ∈ Cn. (10.4.28)

Indeed, (10.4.28) clearly implies (10.4.27). Conversely, if (10.4.27) holds, then the
continuous function f(x) := [Ax, Ax]− [x, x] takes only positive values on the unit
sphere S = {x ∈ Cn : ‖x‖ = 1}. Since the unit sphere is bounded and closed in
Cn, the function f(x) attains its minimum value, call this value ε, on S. Clearly,
ε > 0, and by definition of ε, (10.4.28) is satisfied for x ∈ S. By homogeneity,
(10.4.28) is satisfied for every nonzero x, and for x = 0 the inequality (10.4.28) is
obvious.

We record several useful properties of H-expansive matrices:

Proposition 10.4.1. (a) If A and B are H-expansive, then so is AB.

(b) If A is H-strictly expansive, and B is H-expansive, then BA is H-strictly
expansive.

(c) Assume that H is a signature matrix: H = H∗ = H−1. Then A is H-strictly
expansive if and only if A∗ is H-strictly expansive.
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Proof. The proofs of (a) and (b) follow readily from the definitions.
We now prove (c) for H-expansive matrices. The case of H-strictly expansive

matrices is completely analogous. Given A ∈ Cn×n, let η ∈ C, |η| = 1, be such
that ηI + A is invertible, and let

C = (ηI − A)(ηI + A)−1H.

Then

H + C = [I + (ηI − A)(ηI + A)−1]H = 2η(ηI + A)−1H, (10.4.29)

and, in particular, H + C is invertible. Furthermore,

H − A∗HA = 2((H + C)−1)∗(C∗ + C)(H + C)−1, (10.4.30)

H − AHA∗ = 2(I + CH)−1(C∗ + C)((I + CH)−1)∗. (10.4.31)

To verify (10.4.30), rewrite the right-hand side of (10.4.30), using (10.4.29), in the
form

1
2
(ηI + A∗)H(C∗ + C)H(ηI + A)

=
1
2
(ηI + A∗)H[H(ηI + A∗)−1(ηI − A∗) + (ηI − A)(ηI + A)−1H]H(ηI + A)

=
1
2
[(ηI − A∗)H(ηI + A) + (ηI + A∗)H(ηI − A)]

=
1
2
[(H − A∗HA) + (H − A∗HA)] = H − A∗HA.

Equation (10.4.31) can be verified in a similar way. In view of Proposition 10.3.3,
it is clear from (10.4.30) and (10.4.31) that A is H-expansive if and only if C∗ +C
is negative semidefinite, and the same condition is equivalent to A∗ being H-
expansive. This proves (c). �

For H-strictly expansive matrices A, the A-invariant maximal H-nonnega-
tive and A-invariant maximal H-nonpositive subspaces (which exist by Theorem
10.3.5) have important spectral properties:

Theorem 10.4.2. Let A ∈ Cn×n be an H-strictly expansive matrix. Then A has
no eigenvalues of modulus 1, and the following properties hold true for any A-
invariant H-nonnegative subspace M+ of dimension i+(H), and any A-invariant
H-nonpositive subspace M− of dimension i−(H):

(1) The subspace M+ is actually H-positive.

(2) |λ| > 1 for every eigenvalue λ of A |M+ .
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(3) The subspace M+ contains all root subspaces of A corresponding to its eigen-
values λ with |λ| > 1.

(4) The subspace M− is actually H-negative.

(5) |λ| < 1 for every eigenvalue λ of A |M− .

(6) The subspace M− contains all root subspaces of A corresponding to its eigen-
values λ with |λ| < 1.

Proof. We prove only parts (1), (2), and (3), leaving the proofs of (4), (5), and
(6) for the reader.

First note that by (10.4.28) the matrix A∗HA−H is positive definite. There-
fore, by Theorem A.1.5 A has no eigenvalues on the unit circle.

Next, let P be an invertible matrix whose first i+(H) columns form a basis
for M+. A transformation A �→ P−1AP , H �→ P ∗HP will transform A into a
block triangular form. So (cf. Exercise 5 in Section 10.6) we may assume that

A =
[

A0 A1

0 A2

]
, H =

[
H0 H1

H∗
1 H2

]
,

where A0 is i+(H) × i+(H), and where M+ = Span {e1, . . . , ei+(H)}. Since M+

is H-nonnegative, it follows that H0 is positive semidefinite. Now the positive
definiteness of A∗HA−H implies the positive definiteness of A∗

0H0A0 −H0. Now
Theorem A.1.5 shows that H0 is invertible. Thus, in fact, H0 is positive definite,
so (1) holds and, also, the matrix A0 has no eigenvalues of modulus less than 1.
This proves (2).

For (3), observe that by the same Theorem A.1.5 the dimension of the sum
of the root subspaces of A corresponding to the eigenvalues of A outside the unit
circle, is equal to i+(H). Thus, in view of the already proven property (2), if (3)
were false, the dimension of M+ would have been less than i+(H), a contradiction
with M+ being a maximal H-nonnegative subspace. �
Corollary 10.4.3. Let A be H-strictly expansive. Then the sum of the root subspaces
of A corresponding to its eigenvalues λ with |λ| > 1 (resp., with |λ| < 1) is the
unique A-invariant maximal H-nonnegative (resp., H-nonpositive) subspace.

For matrices that are H-expansive, but not H-strictly expansive, there is a
weaker result:

Theorem 10.4.4. Let A ∈ Cn×n be H-expansive. Then:

(1) There exist A-invariant H-nonnegative subspaces M+ of dimension i+(H),
such that |λ| ≥ 1 for every eigenvalue λ of A |M+ , and containing all root
subspaces of A corresponding to its eigenvalues λ with |λ| > 1.

(2) There exist A-invariant H-nonpositive subspaces M− of dimension i−(H),
such that |λ| ≤ 1 for every eigenvalue λ of A |M− , and containing all root
subspaces of A corresponding to its eigenvalues λ with |λ| < 1.
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Proof. The proof uses a perturbation argument. Let P be an invertible matrix
such that

H = P ∗
[

Ip 0
0 −Iq

]
P, p = i+(H), q = i−(H).

Then for every ε, 0 < ε < 2, the matrix

Sε := P−1

[
(1 + ε)Ip 0

0 (1 − ε)Iq

]
P

is H-strictly expansive. Indeed,

S∗
εHSε − H

= P ∗
([

(1 + ε)Ip 0
0 (1 − ε)Iq

] [
Ip 0
0 −Iq

] [
(1 + ε)Ip 0

0 (1 − ε)Iq

]

−
[

Ip 0
0 −Iq

])
P

= εP ∗
[

(2 + ε)Ip 0
0 (2 − ε)Iq

]
P,

which is positive definite.
Consider the matrix Bε := ASε where 0 < ε < 2. Obviously, limε→0 Sε = I,

so we have limε→0 Bε = A. On the other hand, Bε is H-strictly expansive by
Proposition 10.4.1. Thus, Corollary 10.4.3 can be applied to Bε. Let M+,ε and
M−,ε be the Bε-invariant maximal H-nonnegative and Bε-invariant maximal H-
nonpositive subspaces, respectively.

At this point we need basic topological properties of the set of subspaces in
Cn (see, for example, [41, Chapter 13] for details, also Section A.5). The set of
subspaces in Cn is a compact complete metric space in the metric defined by the
gap (A.5.13):

θ(M,N ) := ‖PM − PN‖, M, N subspaces in Cn.

Therefore, there exists the limit subspaces

M± := lim
m→∞M±,εm

for some sequence {εm}∞m=1 such that limm→∞ εm = 0. One verifies that the
subspaces M± have the properties required in (1) and (2). We provide details for
M+ only; the consideration of M− is completely analogous.

Since M+,εm is H-nonnegative, the subspace M+ is H-nonnegative as well,
as one can easily verify arguing by contradiction. Now

i+(H) = dimM+,εm = dimM+,
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for sufficiently large m, where the second equality is guaranteed by Proposition
A.5.4. Hence M+ is maximal H-nonnegative. Next, we check that M+ is A-
invariant. Let x0 ∈ M+. We have

Ax0 = (A − Bεm)x0 + Bεmx0

= (A − Bεm)x0 + BεmPM+,εm
x0 + Bεm(PM+ − PM+,εm

)x0.

(10.4.32)

Apply PM+ :

PM+Ax0 = PM+

[
(A − Bεm)x0 + BεmPM+,εm

x0 + Bεm(PM+ − PM+,εm
)x0

]
= PM+

[
(A − Bεm)x0 + Bεm(PM+ − PM+,εm

)x0

]
+(PM+ − PM+,εm

)BεmPM+,εm
x0 + BεmPM+,εm

x0. (10.4.33)

In the last equality we have used the property that the range of PM+,εm
is Bεm -

invariant. Subtracting (10.4.32) from (10.4.33) we see that ‖PM+Ax0−Ax0‖ tends
to zero as m −→ ∞. Thus, PM+Ax0 = Ax0, and M+ is A-invariant, as claimed.

Next, let x ∈ Rλ0(A), where |λ0| > 1. Denote by Γ a circle of sufficiently small
radius centered at λ0, and let PΓ(A) be the Riesz projection of A corresponding
to Γ (cf. Section A.3). Then, for sufficiently large m, we have

x = PΓ(A)x = (PΓ(A) − PΓ(Bεm))x + xm, (10.4.34)

where xm = PΓ(Bεm)x. By Theorem A.3.2, ‖PΓ(A) − PΓ(Bεm)‖ tends to zero as
m → ∞, and by Corollary 10.4.3, xm ∈ M+,εm . Thus, (10.4.34) yields lim

m→∞xm =
x. Using Theorem A.5.1, we obtain x ∈ M+. This proves that M+ contains all
root subspaces of A corresponding to eigenvalues with modulus larger than 1.

Finally, we prove that M+ does not intersect the root subspaces of A corre-
sponding to eigenvalues with modulus smaller than 1. Let Γ0 be a simple closed
rectifiable contour such that all eigenvalues λ of A with |λ| ≥ 1 are inside Γ0,
and all eigenvalues λ of A with |λ| < 1 are outside Γ0. Take x ∈ M+. By Theo-
rem A.5.1, x = limm→∞ xm for some sequence of vectors xm, m = 1, 2, . . . , such
that xm ∈ M+,εm . Now for sufficiently large m, the range of the Riesz projection
PΓ0(Bεm) contains all root subspaces of Bεm corresponding to the eigenvalues
of Bεm with modulus larger than 1, as it is easily seen using the continuity of
eigenvalues of Bεm with m → ∞. In particular, using also Corollary 10.4.3, we
have

xm = PΓ0(Bεm)xm.

Now write, for sufficiently large m:

x − PΓ0(A)x = (x − xm) + (xm − PΓ0(A)x)

= (x − xm) + (PΓ0(Bεm)xm − PΓ0(A)x)

= (x − xm) + (PΓ0(Bεm)xm − PΓ0(A)xm) + PΓ0(A)(xm − x).
(10.4.35)

In view of Theorem A.3.2, the right-hand side of (10.4.35) tends to zero as m → ∞.
Thus, x = PΓ0(A)x, and the result follows. �
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We now consider contractions with respect to the indefinite inner product. A
matrix A ∈ Cn×n is said to be H-contractive, or an H-contraction, if [Ax, Ax] ≤
[x, x] for every x ∈ Cn. Many properties of H-contractive matrices are analogous,
but with the inequality signs reversed, to the properties of H-expansive matrices.
For illustration, we state one such analogue here (without proof); that of Theorem
10.4.4.

Theorem 10.4.5. Let A ∈ Cn×n be H-contractive. Then:

(1) There exist A-invariant H-nonnegative subspaces M+ of dimension i+(H),
such that |λ| ≤ 1 for every eigenvalue λ of A |M+ , and containing all root
subspaces of A corresponding to its eigenvalues λ with |λ| < 1.

(2) There exist A-invariant H-nonpositive subspaces M− of dimension i−(H),
such that |λ| ≥ 1 for every eigenvalue λ of A |M− , and containing all root
subspaces of A corresponding to its eigenvalues λ with |λ| > 1.

10.5 The Real Case

In this section we consider indefinite inner products in a real space Rn. Thus, the
inner product is defined by [x, y] = (Hx, y), for x, y ∈ Rn, where H ∈ Rn×n is a
real symmetric invertible matrix, and there exist x0, y0 ∈ Rn such that [x0, x0] <
0 < [y0, y0].

In the particular case when H has the form

H =
[

Ip 0
0 −Iq

]
,

all the results and constructions of Section 10.1 are valid in the real case as well,
with the subspaces, vectors, and matrices being real rather than complex.

A matrix A ∈ Rn×n is called an H-plus matrix if

[x, x] ≥ 0, x ∈ Rn =⇒ [Ax, Ax] ≥ 0.

As in the complex case (using Theorem A.7.2 in place of Theorem A.7.1) one shows
that A is H-plus if and only if there exists µ ≥ 0 such that [Ax, Ax] ≥ µ[x, x] for
every x ∈ Rn or, equivalently, if and only if AT HA − µH is positive semidefinite.

Theorem 10.2.4 and its proof hold in the real case. As a consequence, an
interesting observation results: If A is an n×n real matrix with no real eigenvalues
(thus, n is necessarily even), then A cannot be an H-plus matrix, for any real
symmetric invertible matrix H that has an odd number of positive eigenvalues,
counted with multiplicities. Indeed, under the hypothesis of the observation, A has
no odd dimensional invariant subspaces, and therefore cannot have an invariant
maximal H-nonnegative subspace.

Many constructions and results of Section 10.3 involve complex numbers
and therefore are not applicable in the real case. However, Theorem 10.3.1 and
Proposition 10.3.3 also hold in the real case.
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Finally, note that the results of Section 10.4 hold in the real case, with the
same proof (except for the proof of Proposition 10.4.1), because the sum of the
root subspaces of a real matrix that correspond to its eigenvalues with modulus
greater (resp., smaller) than 1, is real. Indeed, as the real Jordan form (Theorem
A.2.6) shows, there are bases in these sums of root subspaces that consist of real
vectors. As for the proof of Proposition 10.4.1, although it depends on complex
numbers, the result itself is valid in the real case, and indeed the real case follows
easily from the complex case by considering the linear transformations A and H
as acting on Cn rather than on Rn.

10.6 Exercises

1. Prove that the norm (10.1.1) coincides with the largest singular value of Y .
Recall that the singular values α1 ≥ α2 ≥ · · · ≥ αmin{n,m} ≥ 0 of a matrix
Y ∈ Cm×n are defined by the singular value decomposition Y = UDV , where
U and V are unitary matrices of sizes m×m and n× n, respectively, and D
is an m×n diagonal matrix with the nonnegative numbers α1, . . . , αmin{n,m}
on the diagonal starting with the upper left corner of D.

2. Let

H0 =
[

0 1
1 0

]
. (10.6.36)

Find all matrices A =
[

a b
c d

]
in the following classes:

(a) A is H0-expansive, (b) A is H0-strictly expansive, (c) A is H0-dissipative,
(d) A is singular (=noninvertible) real H0-expansive, (e) A is singular real
H0-contractive.

3. Let H = Sn, the n × n sip matrix. Answer the questions of the preceding
exercise for diagonal matrices A = diag (a1, . . . , an), aj ∈ C.

4. Let H be as in the preceding exercise. Describe all diagonal H-plus matrices.

5. Show that if A ∈ Cn×n is H-strictly expansive, then T−1AT is also T ∗HT -
strictly expansive, for every invertible matrix T ∈ Cn×n.

6. Establish an analogue of the preceding exercise for H-dissipative matrices.

7. Provide detailed proof of parts (4), (5), and (6) of Theorem 10.4.2.

8. Give an example of an H-strictly expansive A ∈ Cn×n, and an H-expansive
B ∈ Cn×n, such that AB is not H-strictly expansive.

9. Provide details in the proof of Theorem 10.4.5.

10. Prove that if A is H-expansive and invertible, then A−1 is H-contractive and,
conversely, if A is H-contractive and invertible, then A−1 is H-expansive.
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11. (a) Verify by a direct computation that the matrix A =
[

0 1
−1 0

]
is not

H-plus for any real symmetric invertible indefinite 2 × 2 matrix H .

(b) For A given in part (a), find all complex hermitian invertible indefinite
matrices H such that A is H-plus.

(c) What are the plus-indices of the H-plus matrix A in (b)?

12. Let H be an invertible indefinite hermitian n × n matrix and let A ∈ Cn×n.

(a) Show that the set of all real numbers µ for which the matrix A∗HA−µH
is positive semidefinite is either empty or a bounded closed interval [a, b].

(b) For every bounded closed interval [a, b] find hermitian H and A ∈ Cn×n

such that [a, b] consists of exactly those real numbers µ for which the
matrix A∗HA − µH is positive semidefinite.

13. Let H =
[

α 0
0 β

]
, and

A =
[

a b
c 0

]
, where a, b, c ∈ C. (10.6.37)

Assume that α > 0 and β < 0. Verify that A is H-strictly expansive if and
only if the following inequality holds:

−βα
(|a|2 − 1 − |c|2|b|2)− β2|c|2 − α2|b|2 > 0.

Conclude that if α2 �= β2, then there exists a matrix A of the form (10.6.37)
such that A is H-strictly expansive, but A∗ is not.

10.7 Notes

The approach to invariant subspaces via fixed point theorems originated with M.G.
Krein [59]. Since then, it was developed in many directions, including classes of
operators in infinite dimensional spaces, see [6] and references there.

The description of H-nonnegative and H-neutral subspaces for H = Ip ⊕
−Iq ⊕ 0r which is similar to the one given in Section 10.2 was developed and used
in [83].

The proof of Proposition 10.2.1 using the Toeplitz–Hausdorff theorem goes
back to Ando [1].

Example 10.2.5 is taken from [83]. The material of Sections 10.3 and 10.4 is
based on [83].

Results related to those of Section 10.2 were obtained in [10]. Theorem 10.4.4
(in a slightly stronger version, and in the context of infinite dimensional spaces)
is proved in [57]; see Theorem 11.2 there.

The proof of Proposition 10.4.1 is adapted from [17].



Chapter 11

Differential Equations of First
Order

This chapter contains a brief introduction to first order time-invariant (i.e., con-
stant coefficient) systems of differential equations. The objective is to discuss those
systems with symmetries in which an indefinite inner product plays a role, so that
these applications serve to fix some of the theory already developed. Also, the scene
will be set for a more substantial treatment of higher order systems in Chapter
13. The reader is referred to beginning differential equations texts for the details
of proofs of basic results that are needed here.

11.1 Boundedness of solutions

Let K and H be n × n hermitian matrices with H invertible, and consider the
differential equation

iH
dx

dt
= Kx; x = x(t) ∈ Cn, t ∈ R. (11.1.1)

The symmetries of the coefficients make this a fundamental “Hamiltonian” system
of differential equations; “fundamental” because the coefficients do not depend on
t.

The general solutions of (11.1.1) are easily obtained and can be found in
many textbooks on differential equations:

Proposition 11.1.1. The formula

x(t) = e−itH−1Kx0, x0 ∈ Cn (11.1.2)

defines the general solution of (11.1.1).
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In applications it is important to know when every solution of (11.1.1) is
bounded on the real line. Criteria of this kind are well-known for the general
system of first order linear differential equations:

dx

dt
= iAx; x = x(t) ∈ Cn, t ∈ R (11.1.3)

where A is an n × n matrix. Thus:

Proposition 11.1.2. The following statements are equivalent:

(a) Every solution of (11.1.3) is bounded on the real line;

(b) There exists a positive constant M such that

‖eitA‖ ≤ M for every t ∈ R;

(c) A is diagonalizable with all eigenvalues real.

The proof can be obtained without difficulty using the Jordan form of A or,
more precisely, using the description of a fundamental set of solutions in terms
of eigenvalues, eigenvectors, and generalized eigenvectors of the matrix iA. Again,
this can be found in many differential equations textbooks.

Returning to the Hamiltonian system (11.1.1), it is clear that the matrix
A := −H−1K is H-selfadjoint, and it follows from Proposition 11.1.2 that all
solutions of (11.1.1) are bounded on the real line if and only if A is r-diagonalizable.
This observation, together with Theorem 9.2.2, leads to the equivalence of (i), (iii),
and (iv) in the following result.

We say that the solutions of (11.1.1), where H and K are hermitian matrices
with invertible H, are stably bounded if every solution of (11.1.1) is bounded on
the real line and this property holds for all equations

iH̃
dx

dt
= K̃x, H̃ = H̃∗, K̃ = K̃∗,

with H̃ and K̃ sufficiently close to H and K, respectively. If in the above definition
H is kept fixed, i.e.,, we always take H̃ = H, then we say that the solutions of
(11.1.1) are H-stably bounded; if the range of the independent variable t is restricted
to the half line [0,∞), then stable boundedness on the half line is obtained.

Theorem 11.1.3. Let H and K be n × n hermitian matrices, with H invertible.
Then the following statements are equivalent:

(i) the solutions of (11.1.1) are stably bounded;

(ii) the solutions of (11.1.1) are stably bounded on the half line [0,∞);

(iii) the solutions of (11.1.1) are H-stably bounded;

(iv) σ(−H−1K) ∈ R, and the quadratic form (Hx, x) is definite on the subspace
Ker(λiI + H−1K) for every λi ∈ σ(−H−1K).
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Proof. We verify that (i) and (ii) are equivalent. By Proposition 11.1.1, the so-
lutions of (11.1.1) are bounded on the half line [0,∞) if and only if the matrix
iA := −iH−1K has all eigenvalues with nonnegative real parts and the eigenval-
ues of iA with zero real parts (if any) have only partial multiplicities equal to 1.
But since A is H-selfadjoint, the eigenvalues of iA are symmetric with respect
to the imaginary axis. Thus, the criterion for boundedness of (11.1.1) on the half
line [0,∞) boils down to r-diagonalizability of A; this is just the criterion for
boundedness of solutions of (11.1.1) on the whole real line. �

Now consider the matrix version of equation (11.1.1):

iH
dX

dt
= KX, (11.1.4)

together with the initial condition X(0) = In. The solution X(t) of (11.1.4) sat-
isfying this initial condition is uniquely defined, and the matrix X(1) is called
the monodromy matrix of the matrix equation (11.1.4) or of the vector equation
(11.1.1). Clearly, the monodromy matrix is equal to e−iH−1K . Thus, statement
(iv) of Theorem 11.1.3 can be re-cast in terms of the monodromy matrix:

Corollary 11.1.4. Under the hypotheses of Theorem 11.1.3, each of the statements
(i) and (ii) is equivalent to

(iv) All eigenvalues of the monodromy matrix X have absolute value 1, and the
quadratic form (Hx, x) is definite on the subspace Ker(λiI − X) for every
λi ∈ σ(X).

In view of the formula X = e−iH−1K , the proof follows immediately from
Theorem 11.1.3 .

This section concludes with a description of the connected components of the
set of stably bounded Hamiltonian systems of the form (11.1.1). This is summa-
rized in the next theorem, where the terminology and notation of Section 9.7 are
used.

Theorem 11.1.5. (a) Let an invertible H = H∗ ∈ Cn×n be fixed. If n1, . . . , np are
integers with the properties (9.7.11), (9.7.12), and (9.7.13), then the stably bounded
first order systems

iH
dx

dt
= Kx (11.1.5)

for which
indr (−H−1K, H) = {n1, . . . , np}

belong to the same connected component in the set of all stably bounded systems
(11.1.5) with fixed H .

Conversely, if two stably bounded systems

iH
dx

dt
= K1x and iH

dx

dt
= K2x, K1 and K2 hermitian,
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belong to the same connected component in the set of all stably bounded systems
(11.1.5) with fixed H , then

indr (−H−1K1, H) = indr (−H−1K2, H).

(b) If n1, . . . , np are integers with the properties (9.7.11) and (9.7.12), then
the stably bounded first order systems

iH
dx

dt
= Kx (11.1.6)

for which
indr (−H−1K, H) = {n1, . . . , np}

belong to the same connected component in the set of all stably bounded systems
(11.1.5) with arbitrary K = K∗ ∈ Cn×n and invertible H = H∗ ∈ Cn×n.

Conversely, if

iH1
dx

dt
= K1x and iH2

dx

dt
= K2x,

where

K1 = K∗
1 , K2 = K∗

2 ∈ Cn×n, and H1 = H∗
1 , H2 = H∗

2 ∈ Cn×n are invertible,

belong to the same connected component in the set of all stably bounded systems
(11.1.5) with arbitrary K = K∗ ∈ Cn×n and invertible H = H∗ ∈ Cn×n, then

indr (−H−1
1 K1, H1) = indr (−H−1

2 K2, H2).

The proof is obtained by combining Theorems 11.1.3 and 9.7.1, 9.7.2.

11.2 Hamiltonian Systems of Positive Type with

Constant Coefficients

Consider the Hamiltonian system of differential equations with constant coeffi-
cients:

iH
dx

dt
= (K + K0)x, (11.2.7)

where H = H∗ is invertible, and K = K∗, K0 = K∗
0 . Here, the matrix K0 is

viewed as a small perturbation of K; so ||K0|| is small in some sense. We are to
study the behavior of the eigenvalues of the monodromy matrix of (11.2.7) (called
the multiplicators of the system (11.2.7)) as K0 changes. The case when K0 is
positive definite is of special interest, and the system is then said to be of positive
type.
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Assume now that all solutions of the system

iH
dx

dt
= Kx, t ∈ R (11.2.8)

are bounded. In this case, it follows from Proposition 11.1.2 that the multiplicators
of (11.2.8) are unimodular and, for every multiplicator λ0, the quadratic form
(Hx, x) is nondegenerate on the subspace Ker(λ0I−X), where X = exp(−iH−1K)
is the monodromy matrix of (11.2.8).

We say that the multiplicator λ0 has positive multiplicity r+(λ0) and negative
multiplicity r−(λ0) if the quadratic form (Hx, x) defined on Ker(λ0I − X) has
r+(λ0) positive squares and r−(λ0) negative squares in its canonical form. In
particular, r+(λ0) + r−(λ0) coincides with the dimension of Ker(λ0I − X), which
in turn is equal to the multiplicity of λ0 as a zero of det(λI − X). In particular,
the multiplicator λ0 is said to be of positive (resp. negative) type if the quadratic
form (Hx, x) is positive (resp. negative) definite on Ker(λ0I − X).

Theorem 11.2.1. Let (11.2.7) be a constant coefficient Hamiltonian system of pos-
itive type, and assume that all solutions of the unperturbed system (11.2.8) are
bounded. Then for ||K0|| small enough all solutions of (11.2.7) are also bounded.

Moreover, if λ0 is a multiplicator of (11.2.8) with positive multiplicity r+(λ0)
and negative multiplicity r−(λ0), then r+(λ0) (resp., r−(λ0)) multiplicators of
(11.2.7) in a neighborhood of λ0 are of positive (resp. negative) type and situated
on the unit circle in the negative (resp. positive) direction from λ0.

By convention, the counterclockwise direction is positive, and the clockwise
direction is negative.

Proof. As X = exp(−iH−1K) is the monodromy matrix of (11.2.8) then, for any
multiplicator λ0 of (11.2.8) there is an eigenvalue µ0 of the matrix A = −H−1K
for which λ0 = eiµ0 . Observe that A is H-selfadjoint and −H−1K0 is H-negative
for K0 positive definite; moreover, Ker(λ0I − X) = Ker(µ0I − A).

Now apply Theorem 9.6.1, suitably adapted, to the H-negative perturbation
−H−1K0 of −H−1K and, after mapping the perturbed real eigenvalues µ on the
unit circle with the map λ = eiµ, the theorem is obtained. �

Note that positive definiteness of K0 is essential in Theorem 11.2.1. Indeed,
we know from Theorem 11.1.3 that if λ0 is not of positive or negative type, then
there exists a perturbation K0 = K∗

0 with the norm as small as we wish such that
the perturbed system

iH
dx

dt
= (K + K0)x

has an unbounded solution. Theorem 11.2.1 shows, in particular, that this situation
is impossible for positive definite perturbations.

Let λ0 be a multiplicator of the system (11.2.8) with bounded solutions,
and let r+(λ0) (resp. r−(λ0)) be the positive (resp. negative) multiplicity of λ0.
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It is possible to regard λ0 as r+(λ0) + r−(λ0) equal multiplicators; r+(λ0) of
them being of positive type and r−(λ0) of them being of negative type. With
this convention, one can reformulate Theorem 11.2.1 in more informal terms as
follows: a multiplicator of positive (resp. negative) type of the system (11.2.8) with
bounded solutions moves clockwise (resp. counterclockwise) on the unit circle as
the matrix K is perturbed by a positive definite matrix.

11.3 Exercises

1. Show that a matrix A is H-selfadjoint if and only if eiA is H-unitary.

2. Let A be an H-selfadjoint matrix. Then A is stably r-diagonalizable if and
only if eiA is stably u-diagonalizable.

3. Let
i
dx

dt
= Ax(t), t ∈ R (11.3.9)

be a differential equation with an H-selfadjoint n × n matrix A.

(a) Under what conditions is every solution of (11.3.9) bounded (on the real
line)?

(b) Under what conditions is every nonzero solution of (11.3.9) unbounded?

(c) Assume that every nonzero solution of (11.3.9) is unbounded. Show
that, similarly, there exists an ε > 0 such that every nonzero solution
is unbounded for all differential equations of the form

i
dx

dt
= Bx(t), t ∈ R

where B is an H-selfadjoint matrix and ‖B − A‖ < ε.

(d) Is the statement in (c) valid if “unbounded” is replaced by “bounded”?

4. (Floquet’s theorem) Let G ∈ Cn×n be an invertible hermitian matrix, and
let H(t), t ∈ R, be an hermitian piecewise continuous n× n matrix function.
Let Z(t) be the unique solution of the initial value problem

G
dZ

dt
= iH(t)Z(t), Z(0) = In.

Furthermore, fix a G-skew-adjoint matrix V , in other words, V = −G−1V ∗G.
Then a matrix function X(t) is a solution of

G
dX

dt
= iH(t)X(t)

if and only if the matrix function

Y (t) := etV Z(t)−1X(t)
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satisfies the differential equation with constant coefficients

dY

dt
= V Y.

5. Solve the differential equation

iHj
dx(t)

dt
= Gjx(t), t ∈ R

for the following pairs of hermitian n × n matrices. In each case determine
whether or not the solutions are stably bounded.

(a)

H1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1

0 0 0 · · · 1 0

· · · · · · · · ·
0 1 0 · · · 0 0

1 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

1 0 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · · · · ·
0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(b)

H2 = H1, G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

0 1 0 · · · 0 0

· · · · · · · · ·
0 0 0 · · · 1 0

0 0 0 · · · 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(c)

H3 = H1, G3 =
[

Ik 0
0 −Ik

]
, n = 2k is even.

(d)
H4 = H1, G4 = diag (λ1, . . . , λn), λ1, . . . , λn ∈ R.

(e)

H5 = G1, G5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 λ0

0 0 0 · · · λ0 1

...
...

... . . .
...

...

0 λ0 1 · · · 0 0

λ0 1 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, λ0 ∈ R.
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6. Let H and K be invertible hermitian n × n matrices. Prove that the stable
boundedness of solutions of

iH
dx

dt
= Kx

is equivalent to the stable boundedness of solutions of each of the following
three equations:

iH
dx

dt
= −Kx, iK

dx

dt
= Hx, iK

dx

dt
= −Hx.

7. Provide a detailed proof for Theorem 11.1.5.

11.4 Notes

The main contents of this chapter are applications of the results of Chapter 9 to
differential equations of first order with hermitian matrix coefficients. The stability
results were in fact obtained by M.G. Krein [61] for a more general case and a
more general formulation. The connected components in a more general case were
studied in [27], see also [40]. The latter reference is the source of the entire chapter.



Chapter 12

Matrix Polynomials

This chapter concerns the study of matrix polynomials of arbitrary degree with
hermitian coefficients. Let

L(λ) =
�∑

j=0

Ajλ
j , Aj = A∗

j ∈ Cn×n for j = 0, . . . , �

be such a polynomial. When A� is invertible the companion matrix

CL =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I 0

. . .
...

... I

−Ã0 −Ã1 · · · −Ã�−1

⎤⎥⎥⎥⎥⎥⎥⎦ , (12.0.1)

where Ãj = A−1
� Aj , j = 0, . . . , � − 1 plays an important role. It is well-known

that the spectral structure of L(λ) (i.e., the eigenvalues, eigenvectors and general-
ized eigenvectors) and that of CL are intimately related. For example, if x0 is an
eigenvector of L(λ) corresponding to λ0 (so that L(λ0)x0 = 0, x0 �= 0), then the
vector

〈x0, λ0x0, . . . , λ
�−1
0 x0〉 :=

⎡⎢⎢⎢⎣
x0

λ0x0

...
λ�−1

0 x0

⎤⎥⎥⎥⎦
is an eigenvector of CL corresponding to its eigenvalue λ0. This observation applies
generally to matrix polynomials with invertible leading coefficient (not only with
hermitian coefficients).

A property enjoyed by matrix polynomials with hermitian coefficients is of
particular interest in this work: namely, that the companion matrix is selfadjoint
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with respect to an indefinite inner product. Thus,

BLCL = C∗
LBL,

where

BL =

⎡⎢⎢⎢⎣
A1 A2 · · · A�

A2 . . .

... A�

A� 0

⎤⎥⎥⎥⎦
is hermitian and invertible (note that BL is never positive (or negative) definite
except for the trivial case when � = 1 and A� is positive (or negative) definite).
Hence the properties of selfadjoint matrices in indefinite inner products play a key
role in the investigation of hermitian matrix polynomials.

The results presented in this chapter are also based on the general theory
of matrix polynomials, where a considerable amount of knowledge is available
now (see the authors’ monograph [39], for example, or Chapter 14 of [70]). Before
going on to the situations in which indefinite inner products play a role, we give
an account of some basic facts from this theory.

12.1 Standard Pairs and Triples

In this section attention is confined to matrix polynomials L(λ) =
∑�

j=0 Ajλ
j

(λ ∈ C) where the coefficients A0, A1, . . . , A� are n× n complex matrices and the
leading coefficient A� is invertible. The degree of such a polynomial is �. The degree
of the scalar polynomial detL(λ) will obviously be n�, so the spectrum σ(L) of L,
defined by

σ(L) = {λ ∈ C | detL(λ) = 0} ,

is finite and consists of not more than n� different complex numbers; these are
called the eigenvalues of L.

We now define an n� × n� matrix whose spectral properties are intimately
related to those of L. Let Ãj = A−1

� Aj , j = 0, 1, . . . , �−1 and define the companion
matrix of L by (12.0.1). The relationship referred to can be concentrated in the
statement that Iλ − CL and L(λ) ⊕ In(�−1) are equivalent, where In(�−1) is the
identity matrix of size n(� − 1). That is, there exist n� × n� matrix polynomials
E(λ) and F (λ), whose inverses are also matrix polynomials, for which

L(λ) ⊕ In(�−1) = E(λ)(Iλ − CL)F (λ). (12.1.2)
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This fact can be demonstrated by writing out E(λ) and F (λ) explicitly. In
fact, we may take

F (λ =

⎡⎢⎢⎢⎢⎣
I 0 · · · 0

Iλ I
...

...
. . .

Iλ�−1 Iλ�−2 · · · I

⎤⎥⎥⎥⎥⎦ ,

E(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
K�−1(λ) K�−2(λ) · · · K1(λ) K0(λ)

I 0

0 I
...

...
. . .

0 0 · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎦
where K0(λ) = A� and Kr+1(λ) = λKr(λ) + A�−r−1 for r = 0, 1, . . . , � − 2.
Clearly, detF (λ) ≡ 1, detE(λ) ≡ ± detA� �= 0, and hence E(λ)−1 and F (λ)−1

are polynomials. A direct multiplication shows that (12.1.2) is satisfied.
It follows from this equivalence that the elementary divisors of L(λ) and

Iλ−CL coincide; see Section A.6. In particular, the eigenvalues of L coincide with
those of CL and, furthermore, their partial multiplicities agree.

More generally, any �n × �n matrix T for which L(λ) ⊕ In(�−1) and Iλ − T
are equivalent is called a linearization of L. It follows that all linearizations of L
are similar to one another and, in particular, to the companion matrix CL.

To study the matrix polynomial L(λ) it is convenient to introduce pairs of
matrices (X, T ) as follows: X is an n×n� matrix and T is an n�×n� matrix such
that

X = [I 0 · · · 0]S, T = S−1CLS (12.1.3)

for some n� × n� invertible matrix S, where CL is the companion matrix of L(λ).
In particular, T is also a linearization of L(λ). Such a pair (X, T ) will be called
a (right) standard pair of L(λ).

If the standard pair (X, T ) of L(λ) is such that T is a matrix in Jordan
canonical form (which is necessarily the Jordan form of CL), then we say that
(X, T ) is a Jordan pair.

The next proposition shows that the definition of a standard pair used here
is consistent with that of [39].

Proposition 12.1.1. The matrices X ∈ Cn×2n and T ∈ C2n×2n form a standard
pair if and only if the nl × nl matrix⎡⎢⎢⎢⎣

X
XT
...

XT �−1

⎤⎥⎥⎥⎦ (12.1.4)
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is nonsingular and
A�XT � + · · · + A1XT + A0X = 0. (12.1.5)

Proof. Let P1 =
[

In 0 . . . 0
]
, and it is easily verified that, for r = 0, 1, . . .,

� − 1,
P1C

r
L =

[
0 · · · 0 I 0 · · · 0

]
, (12.1.6)

where I is in the position r + 1, and that

P1C
�
L =

[
−Ã0 −Ã1 · · · −Ã�−1

]
. (12.1.7)

Consequently, using (12.1.3),⎡⎢⎢⎢⎣
X

XT
...

XT �−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
P1

P1CL

...
P1C

�−1
L

⎤⎥⎥⎥⎦S = I�nS = S. (12.1.8)

But it also follows from (12.1.6) and (12.1.7) that

�−1∑
r=0

ÃrP1C
r
L = −P1C

�
L

from which (12.1.5) follows.
Conversely, given (12.1.4) and (12.1.5), define S by (12.1.8) and (12.1.3)

follows. �
When the matrix polynomial L(λ) is monic (i.e., with leading coefficient

A� = I), the following important representation theorem holds (see [39]), i.e., the
coefficients are represented in terms of the two matrices of a standard pair:

Theorem 12.1.2. Let (X, T ) be a standard pair of a monic matrix polynomial L(λ).
Then

L(λ) = λ�I − XT �(V1 + · · · + V�λ
�−1), (12.1.9)

where Vi, i = 1, . . . , � are the n� × n matrices for which

[V1 · · ·V�] =

⎡⎢⎢⎢⎣
X

XT
...

XT �−1

⎤⎥⎥⎥⎦
−1

.

Proof. Let L(λ) = λ�I +
∑�−1

j=0 λjAj . It is sufficient to prove Theorem 12.1.2 for
X = [I 0 · · · 0] , T = CL. In this case we have

[I 0 · · · 0]C�
L = [−A0,−A1, . . . ,−A�−1]



12.1. Standard Pairs and Triples 241

and ⎡⎢⎢⎢⎣
[I 0 · · · 0]

[I 0 · · · 0]CL

...
[I 0 · · · 0] C�−1

L

⎤⎥⎥⎥⎦ = I,

so the formula (12.1.9) follows. �

Let L(λ) =
∑�

j=0 Ajλ
j be a matrix polynomial with invertible leading coef-

ficient A�, and with a standard pair (X, T ). Then a third matrix Y can be defined
by

Y =

⎡⎢⎢⎢⎣
X

XT
...

XT �−1

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0
...
0

A−1
�

⎤⎥⎥⎥⎦ .

The (ordered) triple of matrices (X, T, Y ) is called a standard triple for L(λ). If T
is a matrix in Jordan form, then the triple (X, T, Y ) is said to be a Jordan triple.
The following proposition follows from the definitions:

Proposition 12.1.3. If (X, T, Y ) is a standard triple for L(λ), and if a triple of
matrices (X1, T1, Y1) is similar to (X, T, Y ), i.e.,,

X1 = XS, T1 = S−1TS, Y1 = S−1Y

for some invertible matrix S, then (X1, T1, Y1) is also a standard triple for L(λ).
Conversely, any two standard triples for L(λ) are similar.

The following resolvent form for the inverse of a matrix polynomial is often
useful:

Theorem 12.1.4. If (X, T, Y ) is a standard triple of an n × n matrix polynomial
L(λ) of degree � with invertible leading coefficient, then

L(λ)−1 = X(In�λ − T )−1Y, λ ∈ C \ σ(L). (12.1.10)

Conversely, if (12.1.10) holds for a triple of matrices (X, T, Y ) of sizes n × n�,
n� × n�, n� × n, respectively, then (X, T, Y ) is a standard triple for L(λ).

For a proof see [39, Theorem 2.4] or [70, Section 14.2].
If (X, T, Y ) is a standard triple for a matrix polynomial L(λ), then the or-

dered pair (T, Y ) is said to be a left standard pair of L(λ) and if, in addition, T is in
a Jordan form, then (T, Y ) is a left Jordan pair. A dual result for Theorem 12.1.2
holds for left standard pairs; it can be obtained easily from Theorem 12.1.2 by
using the observation that (T, Y ) is a left standard pair for the matrix polynomial
L(λ) if and only if the pair of transposed matrices (Y T , T T ) is a right standard
pair for the polynomial L(λ)T with transposed coefficients.

To illustrate the constructions and results of this section, we borrow an ex-
ample from [39]:
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Example 12.1.5. Let

L(λ) =
[

λ3
√

2λ2 − λ√
2λ2 + λ λ3

]
.

A Jordan pair (X, T ) of L(λ) is given by the following two matrices:

X =
[

1 0 −√
2 + 1 −√

2 − 2
√

2 + 1
√

2 + 2
0 1 1 0 1 0

]
,

T = 0 ⊕ 0 ⊕
[

1 1
0 1

]
⊕
[ −1 1

0 −1

]
.

Note that T is in Jordan form, as required by the definition of a Jordan pair.
Let

Y =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
−1 0

(
√

2 + 2)/4 0
(−√

2 − 1)/4 1/4
(−√

2 + 2)/4 0
(−√

2 + 1)/4 −1/4

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then (X, T, Y ) is a Jordan triple for L(λ). In particular,⎡⎣ X
XT
XT 2

⎤⎦ Y =

⎡⎣ 0
0
I2

⎤⎦ .

This equality is easily verified by a straightforward computation. �
See [39] for more details concerning standard pairs and triples of matrix

polynomials.

12.2 Matrix Polynomials with Hermitian Coefficients

Consider the matrix polynomial L(λ) =
∑�

j=0 λjAj , where A� is invertible, and
assume that all the coefficients Aj are hermitian: Aj = A∗

j . In this case the
polynomial L(λ) is said to be hermitian. The special case of quadratic hermitian
polynomials (with l = 2) is particularly important in the analysis of vibrating
systems and already requires the full machinery to be developed here.

In this case important roles are played by the companion matrix CL, by
standard pairs (X, T ) as discussed above, and by the �n × �n matrix BL defined
by

BL =

⎡⎢⎢⎢⎢⎢⎣
A1 A2 · · · A�−1 A�

A2 A� 0
... . . .

...
A�−1 A�

A� 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ . (12.2.11)
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It is clear that BL is hermitian and invertible and so it may be used to form
an indefinite inner product in Cn�. Furthermore, it is easily seen that BLCL =
C∗

LBL; so CL is BL-selfadjoint. In particular, σ(CL) (and therefore also σ(L)) is
symmetric relative to the real axis, i.e., if λ0 ∈ σ(CL) then λ0 ∈ σ(CL). Moreover,
the degrees of elementary divisors of L(λ) corresponding to λ0 and to λ0 are the
same1.

Observe that the signature of BL is given by:

sig BL =
{

0 if � is even
sigA� if � is odd. (12.2.12)

To see this, consider the continuous family of hermitian matrices:

B(ε) =

⎡⎢⎢⎢⎢⎢⎣
εA1 εA2 · · · εA�−1 A�

εA2 A� 0
...

...
εA�−1 A�

A� 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ , ε ∈ [0, 1] .

Clearly, B(1) = BL and B(ε) is invertible for all ε ∈ [0, 1] . Hence sig B(ε) is
independent of ε on this interval; so sig BL = sig B(0), and the latter is easily
calculated to yield (12.2.12).

Real eigenvalues having only linear elementary divisors (i.e., semi-simple
eigenvalues) are of special interest. The next proposition gives a geometric char-
acterization of a real eigenvalue with this property.

A nonzero vector x0 ∈ Cn is an eigenvector of L(λ) corresponding to λ0 ∈
σ(L) if L(λ0)x0 = 0. When this is the case it is easily seen that the vector

x̂0 = 〈x0, λ0x0, . . . , λ
�−1
0 x0〉 (12.2.13)

is an eigenvector of CL. In fact, CLx̂0 = λ0x̂0. Conversely, the structure of CL

implies that every eigenvector x̂0 of CL corresponding to the eigenvalue λ0 of CL

is of the form (12.2.13) where x0 is an eigenvector of L(λ).
It is not difficult to see that an eigenvalue λ0 has only linear elementary

divisors if and only if the dimension of KerL(λ0) coincides with the multiplicity
of λ0 as a zero of detL(λ). Or, equivalently, if and only if the dimension of
Ker(Iλ0 − CL) coincides with the multiplicity of λ0 as a zero of det(Iλ − CL).

Proposition 12.2.1. Let L(λ) be an hermitian matrix polynomial with invertible
leading coefficient, and let λ0 ∈ σ(L) be real. Assume that L(λ) has only linear
elementary divisors corresponding to λ0, with p+ (resp. p−) associated positive
(resp. negative) signs in the sign characteristic of (CL, BL). Then the quadratic
form defined on the (p+ + p−)-dimensional subspace KerL(λ0) by (x, L(1)(λ0)x) is

1It is interesting to note that this symmetry of the spectrum also occurs if the coefficients of
L(λ) are real matrices but not necessarily hermitian (i.e., real symmetric).
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nonsingular and has p+ (resp. p−) positive (resp. negative) squares in its canonical
form. In other words, the hermitian matrix representation of the form in any basis
of KerL(λ0) has p+ positive eigenvalues and p− negative eigenvalues, counted with
multiplicities.

Conversely, if the quadratic form (x, L(1)(λ0)x), x ∈ KerL(λ0) is nonsingu-
lar, then L(λ) has only linear elementary divisors corresponding to λ0, and the sign
characteristic of (CL, BL) associated with λ0 coincides with the number of positive
(resp. negative) squares in the canonical form of (x, L(1)(λ0)x), x ∈ KerL(λ0).

In this statement L(1)(λ) is the derivative of L(λ) with respect to λ. Also,
the quadratic form is said to be nonsingular if for a fixed x0 ∈ KerL(λ0) ,
(x0, L

(1)(λ0)y) = 0 for all y ∈ KerL(λ0) implies x0 = 0.

Proof. Let x, y ∈ KerL(λ0). A direct computation shows that

(x, L(1)(λ0)y) = (x̂, BLŷ) (12.2.14)

where
x̂ = 〈x, λ0x, . . . , λ�−1

0 x〉, ŷ = 〈y, λ0y, . . . , λ�−1
0 y〉,

and therefore x̂, ŷ ∈ Ker(Iλ0 − CL). Now the proposition follows from Theorem
5.8.1. �

In fact, Theorem 5.8.1 can be used to formulate a generalization of this propo-
sition to include any real eigenvalue, i.e., with no hypotheses on the elementary
divisors (see [39, Theorem 10.14]).

The fact that a matrix polynomial has hermitian coefficients is reflected in
certain symmetries of its standard triples. The following definition captures these
symmetries. A triple of matrices (X, T, Y ), where X ∈ Cn×n�, T ∈ Cn�×n�, Y ∈
Cn�×n is said to be a selfadjoint triple if there exists an invertible hermitian matrix
M ∈ Cn�×n� such that

Y ∗ = XM−1, T ∗ = MTM−1, X∗ = MY. (12.2.15)

The first and third equations here are actually equivalent, and one of them could
equally well have been omitted.

Theorem 12.2.2. Let L(λ) be an n×n matrix polynomial of degree � with invertible
leading coefficient. Then L(λ) is hermitian if and only if it has a standard triple
which is selfadjoint, and in this case every standard triple of L(λ) is selfadjoint.

Proof. If (X, T, Y ) is a selfadjoint standard triple for L(λ), then using the resolvent
form (12.1.10) we obtain

(L(λ)−1)∗ =
(
X(In�λ − T )−1Y

)∗ = Y ∗(In�λ − T ∗)−1X∗

= XM−1(In�λ − MTM−1)−1MY = L(λ)−1,

and it follows that L(λ) is hermitian.
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Conversely, if L(λ) is hermitian, then the standard triple

(X, T, Y ) =

⎛⎜⎜⎜⎝[I 0 . . . 0], CL,

⎡⎢⎢⎢⎣
0
...
0

A−1
�

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

of L(λ) is selfadjoint in the sense of (12.2.15), and BL of (12.2.11) plays the role
of M . Finally, observe that if (X, T, Y ) is selfadjoint with the hermitian matrix
M satisfying (12.2.15), and if S ∈ Cn�×n� is invertible, then the similar triple
(XS, S−1TS, S−1Y ) is also selfadjoint, with the corresponding invertible hermitian
matrix S∗MS. �

A more general class of matrix polynomials consists of those with H-self-
adjoint coefficients, i.e., L(λ) =

∑�
j=0 λjAj , where all coefficients Aj are H-

selfadjoint with a fixed H (HAj = A∗
jH, j = 0, . . . , �) and A� is invertible.

However, such polynomials do not exhibit essentially new properties compared
with polynomials having hermitian coefficients. The reason is that the companion
matrix CL is selfadjoint in the indefinite inner product determined by the matrix⎡⎢⎢⎢⎣

H 0 · · · 0
0 H · · · 0
...

...
. . .

...
0 0 · · · H

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

A1 A2 · · · A�−1 A�

A2 A� 0
... . . .

...
A�−1 A�

A� 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

12.3 Factorization of Hermitian Matrix Polynomials

We start with a characterization of divisibility of matrix polynomials (not neces-
sary hermitian) in terms of their standard pairs (see [39] for the proof and more
details). A matrix polynomial L1(λ) is said to be a right divisor of a matrix poly-
nomial L(λ) if L(λ) = L2(λ)L1(λ) for some matrix polynomial L2(λ).

Theorem 12.3.1. Let L(λ) be a matrix polynomial of degree � with invertible leading
coefficient and with standard pair (X, T ). Let L be a T -invariant subspace such
that the linear map

Qk(L) :=

⎡⎢⎢⎢⎣
X

XT
...

XT k−1

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
L

: L → Cnk

is invertible (in particular, dimL = nk). Then the matrix polynomial of degree k

L1(λ) := λkI − XT k
∣∣
L(V1 + V2λ + · · · + Vkλk−1), (12.3.16)
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where
[V1 V2 . . . Vk] = Qk(L)−1, Vi : Cn → L,

is a right divisor of L(λ). Conversely, if a monic matrix polynomial L1(λ) of degree
k is a right divisor of L(λ), then there exists a unique T -invariant subspace L such
that Qk(L) is invertible and formula (12.3.16) holds.

This theorem shows that there is a one-to-one correspondence between the
set of T -invariant subspaces L for which Qk(L) is invertible, and the set of monic
right divisors of degree k of L(λ). We say that L is the supporting subspace (with
respect to the standard pair (X, T )) of the right monic divisor L1(λ) of L(λ).

Note that, in the notation of Theorem 12.3.1, (X |L, T |L) is a standard pair
for the right divisor L1(λ) (a basis is chosen in L so that (X |L, T |L) are represented
by matrices).

Assume now that the matrix polynomial L(λ) is hermitian. In this case we
know that CL is BL-selfadjoint. So there are CL-invariant maximal BL-nonne-
gative (or BL-nonpositive) subspaces (Theorem 5.12.1). It turns out that such
subspaces are supporting subspaces for certain monic divisors of hermitian matrix
polynomials, provided the leading coefficient is positive definite:

Theorem 12.3.2. Let L(λ) be an hermitian matrix polynomial of degree � with pos-
itive definite leading coefficient A�. Let L+ ( resp. L−) be a CL-invariant maximal
BL-nonnegative (resp. maximal BL-nonpositive) subspace. Then:

(i) dimL± =
�n

2
if � is even; dimL± =

� ± 1
2

n if � is odd;

(ii) the linear transformation

Qk(L±) =

⎡⎢⎢⎢⎣
P

PCL

...
PCk−1

L

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
L±

: L± → Cnk

is invertible, where P = [I 0 . . . 0], and nk = dimL±;

(iii) the monic matrix polynomial

L1(λ) = λkI − P
(
CL|L±

)k (V1 + V2λ + · · · + Vk−1λ
k−1),

where [V1V2 . . . Vk−1] =
(
Qk(L±)

)−1, is a right divisor of L(λ), with the
supporting subspace L±.

Proof. The statement (i) follows from (12.2.12). The statement (iii) follows from
(ii) in view of Theorem 12.3.1. So it remains to prove (ii). It is sufficient to check
that Qk(L±) is one-to-one. Assume first that � is even, and let

x = 〈x1, . . . , x�〉 ∈ Ker Qk(L±),
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where xi ∈ Cn. Since ⎡⎢⎢⎢⎣
P

PCL

...
PCk−1

L

⎤⎥⎥⎥⎦ = [Ink 0],

we have x1 = · · · = xk = 0, and this implies that (BLx, x) = 0. However, since L±
is B-nonnegative (or B-nonpositive) and CLx ∈ L±, Schwarz’ inequality applies
and gives, ∣∣(BLCLx, x)

∣∣2 ≤ (BLCLx, CLx)(BLx, x). (12.3.17)

(Note that Schwarz’ inequality holds if restricted to a nonpositive (or nonnegative)
subspace, see (2.3.9).) Now (12.3.17) yields (BLCLx, x) = 0. But

(BLCLx, x) = (BL〈x2, . . . , x�, y〉, 〈x1, . . . , x�〉)
for some y ∈ Cn. Using the fact that x1 = · · · = xk = 0 and the definition of BL,
it follows that (A�xk+1, xk+1) = 0. But A� is positive definite, and so xk+1 = 0.

Now
(BLCLx, CLx) = 0,

and using Schwarz’ inequality again, it is found that (BLC2
Lx, CLx) = 0. This

implies that xk+2 = 0, and the process can be continued.
Assume now that � is odd, and consider L+ (so that k = �+1

2 ). Let x =
〈x1, . . . , x�〉 ∈ KerQk(L+). Then, in particular, x1 = · · · = xk = 0. As in the case
of even �, we have (BLx, x) = 0 and by Schwarz’ inequality,

(BLCLx, CLx) = (BLC2
Lx, x) = 0.

But
(BLCLx, CLx) = (A�xk+1, xk+1),

so xk+1 = 0. Applying a similar argument using (BLCLx, CLx) = 0 we obtain
xk+2 = 0, and so on.

For L−, a similar argument is applied starting as follows: Given

x = 〈x1, . . . , x�〉 ∈ Ker Q �−1
2

(L−),

we have
0 ≥ (BLx, x) =

(
A�x �+1

2
, x �+1

2

)
,

and this implies that x �+1
2

= 0 and (BLx, x) = 0. �

For more information about factorizations of hermitian matrix polynomials
see [39]. Here, we shall only state the following result (without proof), which
describes a factorization of nonnegative matrix polynomials. An n × n matrix
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polynomial L(λ) is said to be nonnegative if
(
L(λ)x, x

) ≥ 0 for all x ∈ Cn and all
λ ∈ R. Clearly, a nonnegative matrix polynomial is hermitian (because for every
real λ the matrix L(λ) is hermitian). Also, the degree of a nonnegative matrix
polynomial is necessarily even. To verify this property, assume by contradiction
that

L(λ) =
�∑

j=0

λjAj , A� �= 0, � odd,

is a nonnegative matrix polynomial, and let x0 be an eigenvector of A� correspond-
ing to a nonzero eigenvalue λ0. Then

(L(λ)x0, x0) = λ�λ0(x0, x0) + lower order terms,

which obviously has opposite signs for λ < 0 and λ > 0 if |λ| is sufficiently large.

Theorem 12.3.3. The following statements are equivalent for an n × n matrix
polynomial L(λ) with hermitian coefficients and invertible leading coefficient:

(i) L(λ) is nonnegative;

(ii) the leading coefficient of L(λ) is positive definite, and all elementary divisors
of L(λ) corresponding to the real eigenvalues (if any) have even degrees;

(iii) the leading coefficient of L(λ) is positive definite, and all signs in the sign
characteristic of (CL, BL) are +1’s;

(iv) L(λ) admits the factorization

L(λ) =
(
M(λ)

)∗
M(λ) (12.3.18)

for some n × n matrix polynomial M(λ) of degree k.

In fact, there is a one-to-one correspondence between CL-invariant nk-dimen-
sional BL-neutral subspaces in Cnl and factorizations (12.3.18). Indeed, we know
from Theorem 12.3.2 that each such subspace L is a supporting subspace for a
monic divisor L1(λ) of L(λ). It turns out that the BL-neutrality of L implies that
the quotient L(λ)L1(λ)−1 is just

(
L1(λ)

)∗. Conversely, by Theorem 12.3.1, every
factorization (12.3.18) is generated by a CL-invariant supporting subspace, and
the special form of the factorization (12.3.18) (i.e., the quotient L(λ)M(λ)−1 is
equal to

(
M(λ)

)∗) implies that this subspace is BL-neutral.
We remark also that if the conditions (i)–(iv) of Theorem 12.3.3 hold, then

the matrix polynomial M(λ) in (12.3.18) can be chosen in such a way that σ(M)
lies in the closed upper halfplane (or σ(M) lies in the closed lower halfplane). More
generally, let S be a set of nonreal eigenvalues of L(λ) such that λ ∈ S implies
λ /∈ S, and S is maximal with respect to this property. Then there exists a monic
matrix polynomial M(λ) satisfying (12.3.18) for which σ(M) \ R = S.
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12.4 The Sign Characteristic of Hermitian Matrix
Polynomials

Let L(λ) be a hermitian matrix polynomial with invertible leading coefficient
and degree �. As we know, L(λ) has a selfadjoint standard triple (X, T, Y ), i.e.,
(X, T, Y ) is a standard triple for L(λ), and the relations

Y ∗ = XM−1, T ∗ = MTM−1, X∗ = MY

hold for some invertible hermitian matrix M . The matrix M is actually unique.
This follows from the equality⎡⎢⎢⎢⎣

X
XT

...
XT �−1

⎤⎥⎥⎥⎦ M =

⎡⎢⎢⎢⎣
Y ∗

Y ∗T ∗
...

Y ∗(T ∗)�−1

⎤⎥⎥⎥⎦
and the invertibility of the matrix⎡⎢⎢⎢⎣

X
XT

...
XT �−1

⎤⎥⎥⎥⎦ .

In particular, T is M -selfadjoint. Thus, we can speak of the sign characteristic of
the pair (T, M).

Then the sign characteristic of L(λ) is defined as the sign characteristic of
(T, M). Since any two standard triples of L(λ) are similar (Proposition 12.1.3),
the definition of the sign characteristic of L(λ) is independent of the choice of
selfadjoint standard triple (X, T, Y ). Thus, the sign characteristic attaches a sign
±1 to every elementary divisor (λ − λ0)α, λ0 ∈ R of L(λ).

An eigenvalue of an n×n matrix polynomial M(λ) (not necessarily hermitian
or with invertible leading coefficient) is a number λ0 for which M(λ0) is not
invertible, and a nonzero vector x1 for which M(λ0)x1 = 0 is called an eigenvector
of M(λ) corresponding to λ0.

A sequence of vectors {x1, . . . , xk}, xj ∈ Cn, is called a Jordan chain of M(λ)
at λ0 of length k if x1 �= 0 and

M(λ0) x1 = 0,
M ′(λ0) x1 + M(λ0) x2 = 0,

...
...

1
(k − 1)!

M (k−1)(λ0) x1 +
1

(k − 2)!
M (k−2)(λ0)x2 + · · · + M(λ0)xk = 0.

(12.4.19)
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Here, M (j)(λ0) is the matrix value of the j-th derivative of M(λ) at λ0. It follows
easily from the diagonal Smith form of M(λ) (Section A.6) that if the determinant
of M(λ) is not identically zero, then the lengths of Jordan chains of M(λ) are
uniformly bounded (i. e. with a bound independent of λ0).

Proposition 12.4.1. Let M(λ) be an n×n matrix polynomial with invertible leading
coefficient, and let CM be the companion matrix of M(λ). Then the columns of an
n × r matrix X0 form a Jordan chain for M(λ) at λ0 if and only if the columns
of the �n × r matrix ⎡⎢⎢⎢⎣

X0

X0J0

...
X0J

�−1
0

⎤⎥⎥⎥⎦ (12.4.20)

form a Jordan chain for CM corresponding to the same λ0, where J0 is the r × r
Jordan block with eigenvalue λ0.

Proof. Write

M(λ) =
�∑

j=0

Ajλ
j , Aj ∈ Cn×n for j = 0, . . . , �.

By assumption, A� is invertible. Denote Ãj = A−1
� Aj , for j = 0, 1, . . . , � − 1, and

write X0 = [x(1) x(2) . . . x(r)], where x(j) ∈ Cn. Then the kth column of (12.4.20)
has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

λ0x
(k) + x(k−1)

...∑j
i=0

(
j
i

)
λj−i

0 x(k−i)

...∑�−1
i=0

(
� − 1

i

)
λ�−1−i

0 x(k−i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k = 1, 2, . . . , r, (12.4.21)

where (
j
i

)
=

⎧⎨⎩
j!

i!(j − i)!
if 0 ≤ i ≤ j

0 if i < 0 or if i > j

are the binomial coefficients, and where it is assumed that x(i) = 0 if i < 1.
The verification of (12.4.21) is straightforward using induction on k (starting with

k = 1), and taking advantage of the binomial formula
(

j
i

)
+
(

j
i − 1

)
=(

j + 1
i

)
.
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Now the kth column of

CM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

λ0x
(k) + x(k−1)

...∑j
i=0

(
j
i

)
λj−i

0 x(k−i)

...∑�−1
i=0

(
� − 1

i

)
λ�−1−i

0 x(k−i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− λ0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

λ0x
(k) + x(k−1)

...∑j
i=0

(
j
i

)
λj−i

0 x(k−i)

...∑�−1
i=0

(
� − 1

i

)
λ�−1−i

0 x(k−i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
takes the form ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k−1)

λ0x
(k−1) + x(k−2)

...∑j
i=0

(
j
i

)
λj−i

0 x(k−1−i)

...∑�−2
i=0

(
� − 2

i

)
λ�−2−i

0 x(k−1−i)

Zk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

Zk = −Ã0x
(k)−Ã1

(
λ0x

(k) + x(k−1)
)
−· · ·−Ã�−1

(
�−1∑
i=0

(
� − 1

i

)
λ�−1−i

0 x(k−i)

)

−
(

�−1∑
i=0

(
� − 1

i

)
λ�−i

0 x(k−i)

)
.

Thus, the columns of (12.4.20) form a Jordan chain of CM corresponding to the
eigenvalue λ0 if and only if

Z1 = 0, Zk =
�−1∑
i=0

(
� − 1

i

)
λ�−1−i

0 x(k−1−i), for k = 2, 3, . . . , r. (12.4.22)

It is easy to see that Z1 = 0 is equivalent to M(λ0)x(1) = 0, and after some
straightforward algebra, the kth equation in (12.4.22) boils down to:

1
(k − 1)!

M (k−1)(λ0)x(1) +
1

(k − 2)!
M (k−2)(λ0)x(2) + · · · + M(λ0)x(k) = 0,

and we are done. �
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Now let L(λ) be a hermitian matrix polynomial with invertible leading coeffi-
cient, and let λ0 be a real eigenvalue of L(λ). For an eigenvector x ∈ KerL(λ0)\{0}
let ν(x) be the maximal length of a Jordan chain of L(λ) beginning with the eigen-
vector x of λ0. Let

γ = max
{
ν(x) | x ∈ KerL(λ0) \ {0}

}
,

and then define the subspaces Ψi ⊆ KerL(λ0), i = 1, . . . , γ by:

Ψi = Span {x ∈ Ker L(λ0) \ {0} : ν(x) ≥ i} .

Theorem 12.4.2. Let λ0 be a real eigenvalue of L and, for i = 1, . . . , γ,

fi(x, y) =

⎛⎝x,
i∑

j=1

1
j!

L(j)(λ0) y(i+1−j)

⎞⎠ , x, y ∈ Ψi,

where y = y(1), y(2), . . . , y(i) is a Jordan chain of L(λ) corresponding to λ0 with
eigenvector y; if y = 0, let fi(x, y) = 0. Then:

(i) fi(x, y) does not depend on the choice of y(2), . . . , y(i);

(ii) there exists a selfadjoint linear transformation Gi : Ψi → Ψi such that

fi(x, y) = (x, Giy), x, y ∈ Ψi;

(iii) Ψi+1 = KerGi (by definition, Ψγ+1 = {0});
(iv) the number of positive (negative) eigenvalues of Gi, counted with their mul-

tiplicities, coincides with the number of positive (negative) signs in the sign
characteristic of L(λ) corresponding to the elementary divisors (λ − λ0)i.

Proof. We will use the sign characteristic of the pair (CL, BL) for the sign char-
acteristic of L(λ). We know by Proposition 12.4.1 that the columns of an n × r
matrix X0 form a Jordan chain for L(λ) at λ0 if and only if the columns of the
�n × r matrix form a Jordan chain for CL corresponding to the same λ0. So, in
view of Theorem 5.8.1, it remains to check that⎛⎝x,

r∑
j=1

1
j!

L(j)(λ0) y(r+1−j)

⎞⎠ =
(
x̂, BLŷ(r)

)
(12.4.23)

for every eigenvector x and every Jordan chain y(1), y(2), . . . , y(r) of L(λ) corre-
sponding to λ0, where

x̂ =

⎡⎢⎢⎢⎣
x

λ0x
...

λ�−1
0 x

⎤⎥⎥⎥⎦ and [ŷ(1) . . . ŷ(r)] =

⎡⎢⎢⎢⎣
[
y(1) . . . y(r)

][
y(1) . . . y(r)

]
J0

...[
y(1) . . . y(r)

]
J�−1

0

⎤⎥⎥⎥⎦ , J0 = Jr(λ0).
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The proof of (12.4.23) is combinatorial. Let L(λ) =
∑�

j=0 λjAj . Then, substituting

x̂ =

⎡⎢⎢⎢⎣
x

λ0x
...

λ�−1
0 x

⎤⎥⎥⎥⎦ and ŷ(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(r)

λ0y
(r) + y(r−1)

...∑j
i=0

(
j
i

)
λj−i

0 y(r−i)

...∑�−1
i=0

(
� − 1

i

)
λ�−1−i

0 y(r−i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by definition y(p) = 0 for p ≤ 0) in the expression (x̂, BLŷr) we deduce that

(x̂, BLŷ(r)) =

⎛⎝x,

�−1∑
i=0

[ �∑
k=1

�∑
p=i+k

(
p − k

i

)
λp−i−1

0 Ap

]
y(r−i)

⎞⎠ .

It is easy to see that

�∑
k=1

�∑
p=i+k

(
p − k

i

)
λp−i−1

0 Ap =
1

(i + 1)!
L(i+1)(λ0),

and (12.4.23) follows. �

Now let us compute the first two linear transformations G1 and G2. Since

f1(x, y) =
(
x, L′(λ0)y

)
, x, y ∈ Ker L(λ0),

it is easy to see that
G1 = P1L

′(λ0)P1|Ψ1 ,

where P1 is the orthogonal projection onto Ψ1. For brevity, write

L0 = L(λ0), L′
0 = L(1)(λ0), and L′′

0 = L(2)(λ0).

Then, for x, y ∈ Ker G1,

f2(x, y) =
(

x,
1
2

L′′
0y + L′

0y
′
)

,

where {y, y′} is a Jordan chain of L(λ) corresponding to λ0. Thus

L′
0y + L0y

′ = L′
0y + L0(I − P1)y′ = 0, (12.4.24)

(and the last equality follows since L0P1 = 0).
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Denote by L+
0 : Cn → Cn the linear transformation which is equal to L−1

0

on Ψ⊥
1 and zero on Ψ1 = KerL0. Then L+

0 L0(I −P1) = I −P1 and (12.4.24) gives

(I − P1)y′ = −L+
0 L′

0y.

Now, for x, y ∈ Ψ2,

(x, L′
0y

′) =
(
x, L′

0

(
P1 + (I − P1)

)
y′
)

= (x, L′
0P1y

′) +
(
x, L′

0(I − P1)y′)
= (x, G1P1y

′) +
(
x, L′

0(I − P1)y′) =
(
x, L′

0(I − P1)y′)
= (x,−L′

0L
+
0 L′

0y),

where the last but one equality follows from the fact that x ∈ KerG1 and G1 = G∗
1.

Thus

f2(x, y) =
(

x,
1
2

L′′
0y − L′

0L
+
0 L′

0y

)
,

and, finally,

G2 = P2

[
1
2

L′′
0 − L′

0L
+
0 L′

0

]
P2|Ψ2 ,

where P2 is the orthogonal projection of Cn on Ψ2.

To illustrate this construction consider an example:

Example 12.4.3. Let

L(λ) =

⎡⎣ λ2 0 0
0 λ2 + λ λ
0 λ λ2 + λ

⎤⎦ .

Choose the eigenvalue λ0 = 0 of L(λ). Then KerL(0) = C3, so Ψ1 = C3. Further-
more,

L′(0) =

⎡⎣ 0 0 0
0 1 1
0 1 1

⎤⎦
and

f1(x, y) =
(
x, L′(0)y

)
= x2(y2 + y3) + x3(y2 + y3),

where x = 〈x1, x2, x3〉, y = 〈y1, y2, y3〉.
The matrix L′(0) has one nonzero eigenvalue, namely 2, and

Ker L′(0) = Ψ2 = Span
{〈1, 0, 0〉, 〈0,−1, 1〉}.

Thus there is exactly one partial multiplicity of L(λ) corresponding to λ0 = 0 which
is equal to 1, and its sign is +1. It is easily seen that {y, 0} is a Jordan chain for
any eigenvector y ∈ Ψ2. Thus

f2(x, y) =
(

x,
1
2

L′′(0)y + L′(0)y′
)

= (x, y) for x, y ∈ Ψ2.
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Therefore there are exactly two partial multiplicities of λ0 = 0 which are equal to
2, and their signs are +1. �

For future reference, let us determine the sign characteristic of scalar poly-
nomials with real coefficients.

Example 12.4.4. Let

L(λ) = a�λ
� + a�−1λ

�−1 + · · · + a1λ + a0, a0, . . . , a� ∈ R,

be a scalar hermitian polynomial. If λ0 is a zero of L(λ), then there is only one
partial multiplicity of L(λ) associated with λ0. If moreover λ0 is real, then the sign
in the sign characteristic of L(λ) associated with λ0 coincides with sgnL(q)(λ0),
where q is the multiplicity of λ0 as a zero of L(λ) (and hence L(q)(λ0) �= 0.) This
follows immediately from Theorem 12.4.2 using the observation that an eigenvector
x ∈ C \ {0} of L(λ) at λ0 has a Jordan chain of the form {x, 0, . . . , 0} with q − 1
zeros. �

The next result shows that the sign characteristic of hermitian matrix poly-
nomials is in fact a local notion.

Theorem 12.4.5. Let L1(λ) and L2(λ) be two hermitian matrix polynomials with
invertible leading coefficients. If λ0 ∈ σ(L1) is real and

L
(i)
1 (λ0) = L

(i)
2 (λ0), i = 0, 1, . . . , γ,

where the integer γ is greater than or equal to the maximal length of Jordan chains
of L1(λ) and of L2(λ) corresponding to λ0, then the sign characteristics of L1(λ)
and L2(λ) at λ0 are the same.

Naturally, the sign characteristic of a hermitian matrix polynomial at an
eigenvalue is taken to mean the subset of the sign characteristic, corresponding to
the elementary divisors of this eigenvalue. It is clear that Theorem 12.4.5 defines
the sign characteristic at λ0 as a local property of a hermitian matrix polynomial.
This result is an immediate corollary of Theorem 12.4.2.

The next theorem concerns the stability of the sign characteristic under her-
mitian perturbations of the coefficients.

Theorem 12.4.6. Let L(λ) =
∑�

j=0 Ajλ
j be a hermitian matrix polynomial with

invertible A� and let λ0 ∈ σ(L) be real. Then there exists a δ > 0 with the following
property:
For every hermitian matrix polynomial

L̃(λ) =
�∑

j=0

Ãjλ
j

such that
‖Ãj − Aj‖ < δ, j = 1, . . . , �, (12.4.25)
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and for which there exists a unique eigenvalue λ1 of L̃(λ) in the disc {λ ∈ C :
|λ0 − λ| < δ} with the same partial multiplicities as those of L(λ) at λ0, the sign
characteristic of L̃(λ) at λ1 coincides with the sign characteristic of L(λ) at λ0.

Proof. The result follows easily from Theorem 5.9.1. Indeed, let BL (resp., B̃L)
and CL (resp., C̃L) be defined as in (12.0.1) and (12.2.11) for L (resp., L̃). Then
for δ > 0 small enough, B̃L is as close as we wish to BL and C̃L is as close as we
wish to CL. Recall that CL (resp., C̃L) is BL (resp., B̃L)-selfadjoint and the sign
characteristic of L (resp., L̃) coincides with the CL (resp., C̃L)-sign characteristic
of BL (resp., B̃L). It remains to apply Theorem 5.9.1. �

Now let L(λ) and L̃(λ) be as in Theorem 12.4.6 and suppose, in addition,
that the real Jordan structure of L̃(λ) is the same as that of L(λ). More precisely,
this means that the number r of different real eigenvalues λ1 < · · · < λr and
λ̃1 < · · · < λ̃r of L and L̃ (respectively) is the same and, furthermore, for every
j (1 ≤ j ≤ r), the partial multiplicities of L(λ) at λj and those of L̃(λ) at λ̃j are
the same.

The following result (which is a particular case of Theorem 12.4.6) shows that
stability of the real Jordan structure implies stability of the sign characteristic.

Theorem 12.4.7. Let L(λ) and L̃(λ) be as in Theorem 12.4.6. Then there exists
a δ > 0 such that the sign characteristics of L and L̃ are the same for every
hermitian matrix polynomial L̃(λ) that satisfies (12.4.25) and such that the real
Jordan structures of L(λ) and L̃(λ) coincide.

The statement on the agreement of sign characteristics means that, if λ1 <
· · · < λr and λ̃1 < · · · < λ̃r are the different real eigenvalues of of L and L̃,
respectively, then the sign characteristics of L(λ) at λj and L̃(λ) at λ̃j are the
same, for j = 1, . . . , r.

12.5 The Sign Characteristic of Hermitian Analytic

Matrix Functions

Let L(λ) be a hermitian matrix polynomial with invertible leading coefficient. Then
Theorem A.6.7 states that, for real λ the matrix L(λ) has a diagonal decomposition

L(λ) = U(λ) · diag
[
µ1(λ), . . . , µn(λ)

] · V (λ), (12.5.26)

where U(λ) is unitary (for real λ) and V (λ) =
(
U(λ)

)∗
. Moreover, the functions

µi(λ) and U(λ) can be chosen to be analytic functions of the real parameter λ
(but in general µi(λ) and U(λ) are not polynomials). This result suggests that the
notion of a sign characteristic will also apply to analytic matrix functions. This
extension of the theory is made here. However, it will also serve as preparation for
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the important Theorem 12.5.2 which gives another (frequently useful) definition
of the sign characteristic in the polynomial case.

Let Ω be a connected domain in the complex plane which is symmetric with
respect to the real axis. An analytic n×n matrix function A(λ) in Ω is said to be
hermitian if A(λ) =

(
A(λ)

)∗ for all real λ ∈ Ω.
In what follows, we only consider those hermitian analytic functions A(λ)

for which detA(λ) is not identically zero (and this condition will not be repeated
explicitly). For such matrix functions A(λ) the spectrum

σ(λ) =
{
λ ∈ Ω | det A(λ) = 0

}
is a set of isolated points, because they are the zeros of the analytic function
detA(λ). Then, for every λ0 ∈ σ(A) the Jordan chains of A(λ) at λ0 are defined
as follows (cf. equations (12.4.19)). As for matrix polynomials, we say that a chain
of vectors {x1, . . . , xk}, xj ∈ Cn is a Jordan chain of A(λ) at λ0 if x1 �= 0 and

A(λ0)x1 = 0,
A′(λ0)x1 + A(λ0)x2 = 0,

...
...

1
(k − 1)!

A(k−1)(λ0)x1 +
1

(k − 2)!
A(k−2)(λ0)x2 + · · · + A(λ0) xk = 0.

(12.5.27)
Here A(j)(λ0) is the matrix value of the j-th derivative of A(λ) at λ0.

This set of equations can be written conveniently in matrix notation:⎡⎢⎢⎢⎢⎢⎣
A(λ0) 0 . . . 0
A′(λ0) A(λ0) . . . 0

...
... . . .

...
1

(k − 1)!
A(k−1)(λ0)

1
(k − 2)!

A(k−2)(λ0) . . . A(λ0)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

...
xk

⎤⎥⎥⎥⎦ = 0.

The integer k is called the length of the Jordan chain {x1, . . . , xk} and the
condition det A(λ) �≡ 0 ensures that the Jordan chains of A(λ) at λ0 cannot be
continued indefinitely. More precisely, there is a positive integer γ (which may
depend on λ0) such that every Jordan chain of A(λ) at λ0 has length at most γ.
This follows easily from the diagonal form of A(λ) in a neighborhood of λ0 (see
Section A.6).

Now let λ0 ∈ σ(A) be real. Then there exists a hermitian matrix polynomial
L(λ) with invertible leading coefficient such that

L(j)(λ0) = A(j)(λ0), j = 0, . . . , γ, (12.5.28)

where γ is the maximal length of Jordan chains of A(λ) corresponding to λ0.
Bearing in mind that x1, . . . , xk is a Jordan chain of L(λ) corresponding to λ0 if
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and only if x1 �= 0 and⎡⎢⎢⎢⎢⎢⎣
L(λ0) 0 . . . 0
L′(λ0) L(λ0) . . . 0

...
... . . .

...
1

(k − 1)!
L(k−1)(λ0)

1
(k − 2)!

L(k−2)(λ0) . . . L(λ0)

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

...
xk

⎤⎥⎥⎥⎦ = 0,

and similarly for A(λ), it follows from (12.5.28) that L(λ) and A(λ) have the same
Jordan chains corresponding to λ0.

In particular, the structure of Jordan chains of A(λ) and L(λ) at λ0 agree
and we may define the sign characteristic of A(λ) at λ0 as the sign characteristic
of the pair (CL, BL) at λ0, where CL is the companion matrix of L(λ) and BL is
given by (12.2.11). (In view of Theorem 12.4.5, this definition does not depend on
the choice of L(λ)).

The next theorem will be useful later, but is clearly of independent interest.
Given an analytic matrix function R(λ) in Ω, let R∗(λ) denote the analytic (in Ω)
matrix function

(
R(λ)

)∗.
Theorem 12.5.1. Let A be a hermitian analytic matrix function in Ω, and let λ0 ∈
σ(A) be real. Let R(λ) be an analytic matrix function in Ω such that det R(λ0) �= 0.
Then the sign characteristics of A and R∗AR at λ0 are the same.

Proof. Consider first the case that A(λ) = L(λ) is a hermitian matrix polynomial
with invertible leading coefficient.

Let γ be the maximal length of Jordan chains of L(λ) corresponding to λ0.
Let m be an integer which is large enough that there exist matrix polynomials
S(λ) and T (λ), both of degree m, with invertible leading coefficients, and which
are solutions of the following interpolation problems:

S(j)(λ0) = R(j)(λ0) for j = 0, 1, . . . , γ;

T (j)(λ0) = I for j = 0, and T (j)(λ0) = 0 for j = 1, . . . , γ.

(The proof of existence of S(λ) and T (λ) is reduced to the scalar case, and their
leading coefficients can be chosen diagonal with nonzero diagonal entries.) Then

(S∗LS)(j)(λ0) = (R∗LR)(j)(λ0) for j = 0, . . . , γ,

thus in view of the definition, the sign characteristics of S∗LS and R∗LR at λ0 are
the same.

On the other hand, let F (λ, t), t ∈ [0, 1] be a continuous family of matrix
polynomials of degree m with invertible leading coefficients such that

F (λ, 0) = S(λ), F (λ, 1) = T (λ)
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and F (λ0, t) is invertible for every t ∈ [0, 1]. For example,

F (λ, t) = (λ − λ0)mFm(t) +
m−1∑
j=1

(λ − λ0)j
[
tTj + (1 − t)Sj

]
+ F0(t),

where

S(λ) =
m∑

j=0

(λ − λ0)jSj , T (λ) =
m∑

j=0

(λ − λ0)jTj

and Fi(t) (i = 0, m) is a continuous invertible matrix function such that Fi(0) = Si

and Fi(1) = Ti.
Consider the family of hermitian matrix polynomials with invertible leading

coefficients:
M(λ, t) = F ∗(λ, t)L(λ)F (λ, t), t ∈ [0, 1].

Since detF (λ0, t) �= 0 it follows that λ0 ∈ σ
(
M(λ, t)

)
and the partial multiplicities

of M(λ, t) at λ0 do not depend on t ∈ [0, 1]. Applying Theorem 12.4.6 we see that,
also, the sign characteristic of M(λ, t) at λ0 does not depend on t ∈ [0, 1]. In
particular, the sign characteristics of S∗LS and T ∗LT at λ0 are the same. But the
sign characteristic of T ∗LT at λ0 is the same as that of L in view of Theorem 12.4.5.

So Theorem 12.5.1 is proved for the case that A(λ) is a polynomial with in-
vertible leading coefficient. The general case can be easily reduced to this. Namely,
let L(λ) be a hermitian matrix polynomial satisfying (12.5.28). Let M(λ) be a ma-
trix polynomial with invertible leading coefficient such that

M (j)(λ0) = R(j)(λ0), j = 0, . . . , γ.

By definition, the sign characteristic of R∗AR at λ0 is defined by M∗LM , and that
of A is defined by L. But in view of the already proved case, the sign characteristics
of L and M∗LM at λ0 are the same. �

Theorem 12.5.1 will be used to describe the sign characteristic of a hermitian
matrix polynomial from the viewpoint of perturbation theory. This description
(given in Theorem 12.5.2 below) is one of the main results of this chapter.

As indicated in (12.5.26), let µ1(λ), . . . , µn(λ) be the eigenvalues of the her-
mitian matrix polynomial L(λ) (when considered as a matrix depending on the
real parameter λ). Then the real analytic functions µj(λ) are the roots of the
equation

det
(
µI − L(λ)

)
= 0. (12.5.29)

It is easy to see that λ0 ∈ σ(L) if and only if at least one of the µj(λ0) is zero.
Moreover, dim KerL(λ0) is exactly the number of indices j (1 ≤ j ≤ n) such that

µj(λ0) = 0.

On the other hand, it is possible to consider the solutions µ1(λ), . . . , µn(λ) of equa-
tion (12.5.29) (for every fixed λ) as analytic functions of λ. As the next theorem
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shows, the partial multiplicities of L(λ) at λ0 coincide with the multiplicities of
λ0 as a zero of the analytic functions µ1(λ), . . . , µn(λ). Moreover, the sign charac-
teristic of L(λ) at λ0 can be described in terms of the functions µj(λ).

Theorem 12.5.2. Let L = L∗ be a hermitian matrix polynomial having an invertible
leading coefficient, and let µ1(λ), . . . , µn(λ) be real analytic functions of real λ such
that

det
(
µjI − L(λ)

)
= 0, j = 1, . . . , n.

Let λ1 < · · · < λr be the distinct real eigenvalues of L(λ). For every i = 1, . . . , r
write

µj(λ) = (λ − λ0)mij νij(λ), mij ≥ 0,

where νij(λi) �= 0 is real. Then the nonzero numbers among mi1, . . . , min are the
partial multiplicities of L(λ) associated with λi, and sign νij(λi) (for mij �= 0)
is the sign attached to the partial multiplicity mij of L(λ) at λi in its (possibly
nonnormalized) sign characteristic.

Proof. The decomposition (12.5.26) which, a priori, holds only for real λ in a
neighborhood of λi can be extended to those complex λ which are close enough
to λi. Then U(λ), µj(λ) and V (λ) can be regarded as analytic functions in some
complex neighborhood of λi in C. This is possible since U(λ), µj(λ) and V (λ) can
be expressed as convergent series in a real neighborhood of λi. Consequently, these
series also converge in some complex neighborhood of λi. (But then of course it is
no longer true that U(λ) is unitary and V (λ) =

(
U(λ)

)∗.)
Now the first assertion of Theorem 12.5.2 follows from (12.5.26) and Theorem

A.6.6.
Further, in view of Theorem 12.5.1, the sign characteristics of L and

diag
[
µj(λ)

]n
j=1

at λi are the same. Let us compute the latter. Choose scalar poly-
nomials µ̃1(λ), . . . , µ̃n(λ) of the same degree with real coefficients and with the
properties:

µ̃
(k)
j (λi) = µ

(k)
j (λi)

for k = 0, . . . , mij ; i = 1, . . . , r; j = 1, . . . , n.
By definition, the sign characteristics of diag

[
µj(λ)

]n
j=1

and diag
[
µ̃j(λ)

]n
j=1

are the same. Using the description of the sign characteristic of diag
[
µ̃j(λ)

]n
j=1

given in Example 12.4.4, we see that the first nonzero derivative µ̃
(k)
j (λi) (for fixed

i and j) is positive or negative depending on whether the sign of the Jordan block
corresponding to the Jordan chain

〈0, . . . , 0, 1, 0, . . . , 0〉, 0, . . . , 0

(with “1” in the j-th place) of λi is +1 or −1. Thus, the second assertion of
Theorem 12.5.2 follows. �

As for the proof of Theorem 5.11.2, simply observe that it is a particular
case of Theorem 12.5.2, when the hermitian matrix polynomial L(λ) is of the first
degree.
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12.6 Hermitian Matrix Polynomials on the Unit Circle

Let L(λ) =
∑�

j=0 λjAj be a matrix polynomial, where � = 2k is even and the
leading coefficient A� is invertible. Assume also that the rational function L̂(λ) =
λ−kL(λ) is hermitian on the unit circle, i.e.,(

L̂(λ)
)∗ = L̂(λ−1), λ ∈ C.

This class of matrix polynomials plays a role in the study of systems of difference
equations (see Section 13.7).

Matrix polynomials of this kind satisfy the condition
(
L̂(λ)

)∗ = L̂(λ) for
|λ| = 1 and so the matrix polynomial L(λ) is said to be hermitian with respect
to the unit circle . By analogy with the case of hermitian matrix polynomials we
might expect that the companion matrix CL will be unitary in a suitable indefinite
scalar product. This is the case. In fact,

C∗
LB̂LCL = B̂L, (12.6.30)

where

B̂L = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A� . . . 0

0
...

. . .
...

Ak+1 . . . A�

−A0 . . . −Ak−1

...
. . .

... 0
0 . . . −A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is hermitian and invertible. To check (12.6.30), observe that

C∗
L =

⎡⎢⎢⎢⎣
0 . . . 0 −A�A

−1
0

I . . . 0 −A�−1A
−1
0

...
. . .

...
...

0 . . . I −A1A
−1
0

⎤⎥⎥⎥⎦
and

(C∗
L)−1 =

⎡⎢⎢⎢⎢⎢⎣
−A�−1A

−1
� I 0 . . . 0

−A�−2A
−1
� 0 I . . . 0

...
...

...
. . .

...
−A1A

−1
� 0 0 . . . I

−A0A
−1
� 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ .

Now the condition B̂LCL = C∗
L
−1B̂L can be verified by a direct computation.
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Let λ0 be a unimodular eigenvalue of L(λ) (i. e. |λ0| = 1). For each x ∈
KerL(λ0) write x̂ = 〈x, λ0x, . . . , λ�−1

0 x〉. Then for any x, y ∈ KerL(λ0) it follows
that (

x, iλ0L̂
(1)(λ0) y

)
= (x̂, B̂Lŷ ), (12.6.31)

where L̂(1)(λ) is the derivative of L̂(λ) with respect to λ. This relation can be
checked by a direct computation of (x̂, B̂Lŷ) using the property λ0 = λ−1

0 .
Using the definition of the sign characteristic of a unitary matrix in an indef-

inite scalar product (Section 5.15) the following statement (which is an analogue
of Proposition 12.2.1) is obtained.

Proposition 12.6.1. Let L(λ) be a matrix polynomial of even degree �, which is
hermitian on the unit circle, and with invertible leading coefficient. Let λ0 be a
unimodular eigenvalue of L(λ). Then the quadratic form(

x, iλ0

(
λ− �

2 L(λ)
)(1)(λ0)x

)
, x ∈ KerL(λ0)

is nonsingular if and only if all the elementary divisors of L(λ) corresponding to
λ0 are linear. In this case the number of positive (resp. negative) squares in the
canonical form of (

x, iλ0

(
λ− �

2 L(λ)
)(1)(λ0)x

)
, x ∈ KerL(λ0)

coincides with the number of signs +1 (resp. −1) in the sign characteristic of
(CL, B̂L) (here the B̂L-unitary matrix CL is the companion matrix of L(λ)).

In concluding this section, note that one can obtain factorization results for
hermitian matrix polynomials on the unit circle from corresponding results for
hermitian matrix polynomials on the real line. To illustrate this approach, let us
prove the following result, which is an analogue of Theorem 12.3.3.

Theorem 12.6.2. Let

R(λ) =
k∑

j=−k

λjRj

be a rational n × n matrix function such that
(
R(λ)x, x

) ≥ 0 for all |λ| = 1 and
x ∈ Cn, and det R(λ) is not identically zero. Then R(λ) admits a factorization

R(λ) =
(
A(λ−1)

)∗
A(λ), λ ∈ C (12.6.32)

where A(λ) is a matrix polynomial.

Proof. Let

L(λ) =
2k∑

j=0

(1 + iλ)j(1 − iλ)2k−jRj−k.
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It is easily checked that L(λ) is a matrix polynomial which is nonnegative on the
real line, and det L(λ) �≡ 0. Let a ∈ R be such that L(a) is invertible, hence L(a)
is positive definite. Then the matrix polynomial

M(λ) = λ2kL(a)−
1
2 L(λ−1 + a)L(a)−

1
2

is monic and nonnegative on the real line. By Theorem 12.3.3, M(λ) admits a
factorization

M(λ) =
(
M1(λ)

)∗
M1(λ)

for some monic matrix polynomial M1(λ) of degree k. This factorization leads to
the factorization

L(λ) =
(
L1(λ)

)∗
L1(λ)

with matrix polynomial

L1(λ) = (λ − a)kM1

(
(λ − a)−1

)
L(a)

1
2 .

Now

R

(
1 + iλ

1 − iλ

)
=

L(λ)
(1 + λ2)k

=
[

L1(λ)
(1 − iλ)k

]∗
L1(λ)

(1 − iλ)k

and denoting

µ =
1 + iλ

1 − iλ
,

we obtain

R(µ) =
[
(1 + µ)k

2k
L1

(−i(1 − µ)
1 + µ

)]∗ (1 + µ)k

2k
L1

(
i(1 − µ)
1 + µ

)
,

which is a factorization of type (12.6.32) with

A(λ) =
(1 + λ)k

2k
L1

(
i(1 − λ)
1 + λ

)
. �

As with Theorem 12.3.3, the matrix polynomial A(λ) in (12.6.32) can be
chosen with an additional spectral property. Thus, if S is a set of nonunimodular
eigenvalues of R(λ) such that λ ∈ S implies λ −1 /∈ S, and S is maximal with
respect to this property, then there exists a matrix polynomial A(λ) satisfying
(12.6.32) for which the nonunimodular spectrum of A(λ) coincides with S.

12.7 Exercises

1. Prove that a pair of matrices (T, Y ) of sizes n�×n� and n�×n, respectively,
is a left standard pair for

L(λ) = Iλ� +
�−1∑
j=0

Ajλ
j
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if and only if [Y, TY, . . . , T �−1Y ] is invertible and

Y A0 + TY A1 + · · · + T �−1Y A�−1 + T �Y = 0.

2. Show that given a right standard pair (X, T ) of a monic matrix polynomial
L(λ), there exists a unique Y such that (X, T, Y ) is a standard triple for
L(λ), and in fact Y is given by formula

Y =

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

X
XT

...
XT �−1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

−1 ⎡⎢⎢⎢⎣
0
...
0
I

⎤⎥⎥⎥⎦ .

3. Show that, given a left standard pair (T, Y ) of a monic matrix polynomial
L(λ), there exists a unique X such that (X, T, Y ) is a standard triple of L(λ)
and, in fact,

X = [0 . . . 0 I ][Y, TY, . . . , T �−1Y ]−1.

4. Prove that (T, Y ) is a left standard pair for L(λ) = Iλ� +
∑�−1

j=0 Ajλ
j if and

only if (Y ∗, T ∗) is a right standard pair for the monic matrix polynomial

Iλ� +
�−1∑
j=0

A∗
jλ

j .

5. Let L(λ) = λ� +
∑�−1

i=0 aiλ
i be a scalar polynomial with � distinct zeros

λ1, . . . , λ�.

(a) Show that
(X, T ) =

(
[1 1 . . . 1], diag [λ1, . . . , λ�]

)
is a right standard pair for L(λ). Find a matrix Y such that (X, T, Y )
is a standard triple for L(λ).

(b) Show that

(T, Y ) =

⎛⎜⎜⎜⎝diag [λ1, . . . , λ�],

⎡⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

is a left standard pair for L(λ), and find X such that (X, T, Y ) is a
standard triple for L(λ).
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6. Let L(λ) = (λ−λ1)�1 · · · (λ−λk)�k be a scalar polynomial, where λ1, . . . , λk

are distinct complex numbers. Show that(
[X1, . . . , Xk], J�1(λ1) ⊕ · · · ⊕ J�k

(λk)
)

and ⎛⎜⎜⎜⎝J�1(λ1) ⊕ · · · ⊕ J�k
(λk),

⎡⎢⎢⎢⎣
Y1

Y2

...
Yk

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

are right and left standard pairs, respectively, of L(λ), where Xi = [1 0 . . .0]
is a 1 × �i matrix and

Yi =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦
is an �i × 1 matrix.

7. Let

L(λ) =
[

L1(λ) 0
0 L2(λ)

]
be a monic matrix polynomial, and let (X1, T1, Y1) and (X2, T2, Y2) be stan-
dard triples for the polynomials L1(λ) and L2(λ), respectively. Find a stan-
dard triple for the polynomial L(λ).

8. Given a standard triple for the matrix polynomial L(λ), find a standard triple
for the polynomial S−1L(λ + α)S where S is an invertible matrix, and α is
a complex number.

9. Let (X, T, Y ) be a standard triple for L(λ). Show that(
[X 0],

[
0 I
T 0

]
,

[
0
Y

])
is a standard triple for the matrix polynomial L(λ2).

10. Given a standard triple for the matrix polynomial L(λ), find a standard triple
for the polynomial L

(
p(λ)

)
, where p(λ) =

∑m−1
j=0 λjαj is a scalar polynomial.

11. Let L(λ) = Iλ� +
∑�−1

j=0 Ajλ
j be a 3×3 matrix polynomial whose coefficients

are circulants:

Ak =

⎡⎣ ak bk ck

ck ak bk

bk ck ak

⎤⎦ , k = 0, 1, . . . , � − 1

(ak, bk and ck are complex numbers). Describe right and left standard pairs
of L(λ).
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12. Let

L2(λ) =
[

2 1
1 1

]
λ2 +

[
4 2
2 0

]
λ +

[
2 1
1 1

]
.

(a) Find a left standard (Jordan) pair.

(b) Find a right standard (Jordan) pair.

(c) Find the sign characteristic of L(λ).

(d) Find a selfadjoint triple.

(e) Reconstruct the polynomial from its left and right Jordan pairs.

(f) Prove that L2(λ) is positive semidefinite on the real line.

(g) Factorize L2(λ) in the form L2(λ) = L∗
1(λ)L1(λ).

13. Solve the preceding exercise for the following matrix polynomials:

(α) L3(λ) = L2(λ2);

(β) L4(λ) =
[

2 1
1 1

]
λ2 +

[
0 −2
−2 −8

]
λ +

[
0 0
0 16

]
;

(γ) L5(λ) = L4(λ3).

14. Let L6(λ) be the hermitian matrix polynomial

L6(λ) =
[

0 1
1 −1

] [
2(λ2 + 1)2 (λ2 + 1)2

(λ2 + 1)2 λ4 + 1

] [
0 1
1 −1

]
.

(a) Show that L6(λ0 is positive semidefinite for every real λ0.

(b) Find one factorization

L6(λ) = (M(λ))∗M(λ), (12.7.33)

where M(λ) is a monic matrix polynomial of degree 2.

(c) Find another factorization of the type (12.7.33), for the same L(λ).

(d) How many factorizations of the type (12.7.33) are there?

12.8 Notes

The main results of this chapter related to perturbation and stability were obtained
by the authors in their papers [35, 36, 37, 38]. The first five sections and the
part of the sixth section describing the spectral theory of matrix polynomials in
general, and selfadjoint polynomials in particular, are taken from the authors’
papers [34, 35, 36, 37]. In addition, consult [39, 40] where more details and further
results can be found. See also [70, Chapter 14].



Chapter 13

Differential and Difference
Equations of Higher Order

The notions and results developed in Chapter 12 for matrix polynomials are used
in this chapter to study systems of differential and difference equations of higher
order with constant coefficients.

13.1 General Solution of a System of Differential
Equations

Consider the system of differential equations with constant coefficients

�∑
j=0

ijAj
djx

dtj
= 0; t ∈ R, (i =

√−1) (13.1.1)

where Aj are n × n (complex) matrices and A� is invertible, and x = x(t) ∈
Cn is an unknown vector-valued function. It turns out that the general solution
x(t) of (13.1.1) can be conveniently expressed via a standard pair (X, T ) of the
corresponding matrix polynomial, as defined in Section 12.1:

Theorem 13.1.1. Let L(λ) =
∑�

j=0 ijλjAj , be an n × n matrix polynomial with
invertible leading coefficient A�, and let (X, T ) be a standard pair for L(λ). Then
the general solution of the system of differential equations (13.1.1) is given by

x(t) = XetTx0, t ∈ R, (13.1.2)

where x0 ∈ Cn� is an arbitrary constant vector.

Proof. Since all standard pairs for L(λ) are similar then, by definition, it is suf-
ficient to prove (13.1.2) for the pair (X, T ) = ([I 0 · · · 0] , CL). Let us first verify
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that any x(t) of the form (13.1.2) is, indeed, a solution of (13.1.1). It is easily seen
that

x(j)(t) = [I 0 · · · 0]Cj
LetCLx0, j = 0, 1, 2, . . . ,

and therefore

�∑
j=0

ijAj
djx

dtj
=

⎛⎝ �∑
j=0

ijAj [I 0 · · · 0]Cj
L

⎞⎠ etCLx0. (13.1.3)

But [I 0 · · · 0]Cj
L = [0 · · · 0 I 0 · · · 0] with In in position (j + 1), for j =

0, . . . , � − 1; and

[I 0 · · · 0] C�
L =

[−(i�A�)−1A0, −(i�A�)−1(iA1), . . . , −(i�A�)−1(i�−1A�−1)
]
.

Substitution in (13.1.3) yields

�∑
j=1

ijAj
djx

dtj
= 0.

To see that formula (13.1.2) gives all solutions of (13.1.1), observe first that,
since Al is invertible, the space of all solutions of (13.1.1) is n�-dimensional (see
Theorem S1.6 of [39], for example). So it is sufficient to check that the formula
(13.1.2) gives the zero solution only for x0 = 0. Assume that XetT x0 ≡ 0. Then
repeated differentiation gives XT ietT x0 ≡ 0 and hence⎡⎢⎢⎢⎣

X
XT

...
XT �−1

⎤⎥⎥⎥⎦ etT x0 ≡ 0.

But, by Proposition 12.1.1, the first matrix in the left is invertible, and so is etT .
Consequently, x0 = 0. �

13.2 Boundedness for a System of Differential
Equations

Now consider a system of differential equations with constant coefficients of the
form (13.1.1), where A0, A1, . . . , A� are n×n hermitian matrices, and A� is invert-
ible. Such systems also arise in applications, and form a natural generalization of
the Hamiltonian equations studied in Chapter 11 (i.e., the case � = 1 of (13.1.1)).
Obviously, the properties of solutions of (13.1.1) are closely related to the proper-
ties of the matrix polynomial

L(λ) =
�∑

j=0

λjAj , (13.2.4)
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and note that this polynomial is hermitian: Aj = A∗
j for j = 0, 1, . . . , �.

Again, the cases for which all solutions of (13.1.1) are bounded are of primary
interest. To describe these cases in terms of L(λ), it is convenient to introduce the
following definition: A hermitian matrix polynomial has simple structure if all
its eigenvalues are real and all elementary divisors are linear (i.e., real and semi-
simple).

Theorem 13.2.1. The solutions of (13.1.1) are bounded on the whole real line,
correspondingly on the half line [0,∞), if and only if L(λ) has simple structure.

Proof. By Theorem 13.1.1, the general solution of the system L
(

d
dt

)
x(t) = 0 is

given by the formula x(t) = PetCLx0, where P = [I 0 · · · 0] and x ∈ Cn� is
arbitrary. Then it is easily seen that the general solution of (13.1.1) is given by
the formula x(t) = Pe−itCLx0. So if all eigenvalues of CL (or, what is the same,
the eigenvalues of L(λ)) are real with all partial multiplicities equal to 1, then
sup−∞<t<∞ ||x(t)|| < ∞ for all x0.

Conversely, assume that the solution of (13.1.1) are bounded (t ∈ R). Since
x(i)(t), k = 1, 2, . . . are also solutions of (13.1.1) and therefore are bounded, it
follows that, for all x0, the vector⎡⎢⎢⎢⎣

x(t)
x′(t)

...
x(�−1)(t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
P

−iPCL

...
±i�−1PC�−1

L

⎤⎥⎥⎥⎦ e−itCLx0

is bounded on the real line. But PCk−1
L = [0 · · · I 0 · · · 0] with I in the k-th place

so, in fact,
sup

−∞<t<∞

∣∣∣∣e−itCLx0

∣∣∣∣ < ∞ for all x0.

This happens only if all eigenvalues of CL are real with all partial multiplicities
equal to 1.

If the solutions of (13.1.1) are bounded on the half line [0,∞) then, similarly,
we obtain

sup
0≤t<∞

∣∣∣∣e−itCLx0

∣∣∣∣ < ∞ for all x0.

Thus, iCL has all its eigenvalues with nonnegative real parts, and the eigenvalues
of iCL with zero real parts (if any) have only partial multiplicities equal to 1.
But since CL is BL-selfadjoint, the eigenvalues of iCL are symmetric with respect
to the imaginary axis. It follows again that all eigenvalues of CL are real and
semi-simple. �

Finally, we remark that when (13.1.1) has only bounded solutions, Proposi-
tion 12.2.1 can be applied to each eigenvalue of L and will, in fact, play an impor-
tant part in the characterization of those systems (13.1.1) for which all neighboring
systems of the same kind have only bounded solutions.
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13.3 Stable Boundedness for Differential Equations

Consider the system of differential equations with constant coefficients of (13.1.1),
where Aj , j = 0, . . . , � are n×n hermitian matrices. It is assumed that the leading
coefficient A� is invertible, and we let L(λ) be the associated hermitian matrix
polynomial given by (13.2.4). The equation (11.1.1) studied in Section 11.1 is the
particular case of (13.1.1) with � = 1.

Our main objective will be the characterization of those cases in which
(13.1.1) has stably bounded solutions, i.e., the solutions of (13.1.1) are bounded
and remain bounded under any sufficiently small hermitian perturbations of the
coefficients A0, . . . , A�. The next theorem provides a criterion for this stable bound-
edness property of solutions of (13.1.1) in terms of the underlying polynomial L(λ).

Theorem 13.3.1. Equation (13.1.1) has stably bounded solutions if and only if σ(L)
is real and, for every λ0 ∈ σ(L), the quadratic form (L′(λ0)x, x) is definite on the
subspace KerL(λ0).

Here L′(λ) denotes the derivative of L(λ) with respect to λ. Theorem 13.3.1
will follow as an easy corollary of certain stability properties of the hermitian
matrix polynomial L(λ), which are independently interesting.

Recall that the polynomial (13.2.4) is said to have simple structure if all its
eigenvalues are real and all elementary divisors of L(λ) are linear (the latter prop-
erty means that dim KerL(λ0) coincides with the multiplicity of λ0 as a zero of
detL(λ) for all λ0 ∈ σ(L)). If these properties also hold for all polynomials ob-
tained from (13.2.4) by sufficiently small hermitian perturbations of its coefficients
A0, . . . , A�, then the polynomial (13.2.4) is said to have stable simple structure .
For example, every polynomial L(λ) of the form (13.2.4) with n� distinct real
eigenvalues, has stable simple structure.

As an illustration, consider the “gyroscopic” systems arising in mechanics.
In this case equation (13.2.4) applies with � = 2, A2 positive definite, A∗

1 = A1

and A0 is negative definite. Then L(λ) has stable simple structure (see [64, Section
7.7] and [16, Ex. 7(a), p. 91] for details).

The following theorem describes polynomials with stable simple structure in
terms of the definiteness of certain quadratic forms; an analogue of the description
of Theorem 9.2.1.

Theorem 13.3.2. The polynomial L(λ) given by (13.2.4) has stable simple structure
if and only if σ(L) ⊆ R and, for every λ0 ∈ σ(L), the quadratic form (L′(λ0)x, x)
is definite on the subspace KerL(λ0).

Note that Theorem 9.2.1 (more exactly, the equivalence (i) ⇔ (iii) there) is
a particular case of Theorem 13.3.2 which may be obtained by putting L(λ) =
λH − HA. Note also that the definiteness of the quadratic form (L′(λ0)x, x) on
KerL(λ0) implies that all elementary divisors of L corresponding to λ0 are linear
(see Proposition 12.2.1).
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Theorem 13.3.1 follows immediately from Theorem 13.3.2. Indeed, the solu-
tions of (13.1.1) are bounded if and only if L(λ) has simple structure (Theorem
13.2.1).

Proof of Theorem 13.3.2. Together with the polynomial L (λ) consider the block
matrices:

CL =

⎡⎢⎢⎢⎢⎢⎣
0 I 0 · · · 0
0 0 I · · · 0
...

. . .
...
I

−A−1
� A0 −A−1

� A1 · · · −A−1
� A�−1

⎤⎥⎥⎥⎥⎥⎦ ;

BL =

⎡⎢⎢⎢⎣
A1 · · · A�−1 A�

...
...

A�−1 A� 0 · · · 0
A� 0 · · · 0

⎤⎥⎥⎥⎦
(13.3.5)

Then CL is BL-selfadjoint (see Section 12.2). Also, the eigenvalues of L(λ) coincide
with those of CL, and the elementary divisors of λ0 as an eigenvalue of L(λ), and
the partial multiplicities of λ0 as an eigenvalue of λI − CL, are the same (see
Chapter 12).

For the converse, suppose that the quadratic form (L′(λ0)x, x) is definite on
the subspace KerL(λ0) for every λ0 ∈ σ(L) so that, in particular, L has simple
structure. Then CL is r-diagonalizable and, moreover, the quadratic form (BLy, y)
is definite on the subspace Ker(λ0I − CL), for every λ0 ∈ σ(L) (see Proposition
12.2.1). Hence, by Theorem 9.2.2, L(λ) has stable simple structure.

Assume now that L(λ) has simple structure, but for some λ0 ∈ σ(L), the
quadratic form (L′(λ0)x, x) is not definite on KerL(λ0). We shall prove that by
small hermitian perturbations of the coefficients of L one can make some eigen-
values of the perturbed polynomial nonreal (and this will show that L does not
have stable simple structure). Let

Cn = KerL(λ0) ⊕ (KerL(λ0))⊥;

and write (with respect to this decomposition):

L(λ) =
[

D1(λ − λ0) + E1(λ)(λ − λ0)2 D∗
2(λ − λ0) + (E2(λ))∗(λ − λ0)2

D2(λ − λ0) + E2(λ)(λ − λ0)2 E3(λ)

]
.

Here D1 = D∗
1 is a constant matrix, and E1(λ), E2(λ), E3(λ) are matrix polyno-

mials. Since all elementary divisors of L corresponding to λ0 are linear, it follows
that D1 is invertible, and since (L′(λ0)x, x) is not definite on Ker(L(λ0)), D1 has
both negative and positive eigenvalues.

Replacing L(λ) by M(λ) := WL(λ)W ∗, where W =
[

I 0
−D2D

−1
1 I

]
, we

can assume that D2 = 0. Let x, y be orthonormal eigenvectors of D1 corresponding
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to a positive eigenvalue α and a negative eigenvalue β, respectively. With respect
to the orthogonal decomposition

Cn = Span {x} ⊕ Span {y} ⊕ (Span {x, y})⊥

write:

M(λ) =

⎡⎣ α 0 0
0 β 0
0 0 0

⎤⎦ (λ − λ0) + F (λ)(λ − λ0)2 +

⎡⎣ 0 0 0
0 0 0
0 0 G(λ)

⎤⎦
where F (λ), G(λ) are selfadjoint matrix polynomials and the lower right block
corner of F (λ) is zero. Now let ζ be a small positive number and put

Mζ(λ) = M(λ) +

⎡⎣ 0 αβ 0
αβ 0 0
0 0 0

⎤⎦ ζ − F (λ)βζ2.

It is easily verified that λ′ := λ0 + iζ(α |β|)1/2 is a zero of (λ− λ0)2 − αβζ2 and a
nonreal eigenvalue of Mζ(λ). Indeed,

M(λ′) =
[

α(λ′ − λ0) αβζ
αβζ β(λ′ − λ0)

]
⊕ G(λ′),

and therefore

detM(λ′) = αβ
[
(λ′ − λ0)2 − αβζ2

]
detG(λ′).

This concludes the proof of Theorem 13.3.2. �

Now consider an hermitian matrix polynomial L(λ) (as in (13.2.4)) which
has simple structure but not stable simple structure. The proof of Theorem 13.3.2
shows that there is a perturbation of L(λ) of type L(λ, ζ) = L(λ)+ζM1+ζ2M2(λ),
where ζ > 0 is small, with the following properties (we assume n > 1):

(i) M1 is a hermitian matrix of rank 2.

(ii) M2(λ) is a hermitian matrix polynomial whose degree does not exceed �−2;

(iii) L(λ, ζ) has a nonreal eigenvalue λ0(ζ) of the form λ0(ζ) = λ0 + iζγ, for all
sufficiently small positive ζ, and where γ is a fixed real number.

Thus, the unperturbed multiple eigenvalue “splits” under such a perturbation in
such a way that nonreal eigenvalues appear.
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13.4 The Strongly Hyperbolic Case

In this section we describe an important class of differential equations which nec-
essarily have stably bounded solutions.

An n × n matrix polynomial L(λ) =
∑�

j=0 λjAj will be called strongly hy-
perbolic if the leading coefficient A� is positive definite and for every x ∈ Cn \ {0} ,
the scalar equation

(L(λ)x, x) =
�∑

j=0

(Ajx, x) = 0 (13.4.6)

has � distinct real zeros. All coefficients of a strongly hyperbolic polynomial L(λ) =∑�
j=0 λjAj are hermitian (indeed, all the numbers (Ajx, x), x ∈ Cn\ {0} , j =

1, . . . , � are real, which implies the hermitian property of each Aj ; see [70], for
example).

Theorem 13.4.1. The differential equation

�∑
j=0

ijAj
djx

dtj
= 0, t ∈ R

has stably bounded solutions provided the matrix polynomial L(λ) =
∑�

j=0 λjAj is
strongly hyperbolic.

The proof will be based on properties of strongly hyperbolic polynomials
which must first be developed. Let L(λ) be a strongly hyperbolic n × n matrix
polynomial of degree �, and let

λ1(x) > · · · > λ�(x)

be the zeros of (L(λ)x, x) = 0, x ∈ Cn \ {0} . As all zeros of the scalar polynomial
(L(λ)x, x) = 0, x �= 0 are real and distinct, and its leading coefficient is positive,
it follows that

(−1)j−1(L′(λj(x))x, x) > 0, j = 1, . . . , �; x �= 0. (13.4.7)

For j = 1, 2, . . . , � define

�j = {λj(x) | x ∈ Cn \ {0}} = {λj(x) | x ∈ Cn, ||x|| = 1} .

The set �j is called the j-th spectral zone of L(λ). The spectral zones are compact
and connected (because �j is the image of the unit sphere under the continuous
map λj , and the unit sphere is compact and connected); so in fact �j = [αj , βj ]
for some real numbers αj ≤ βj . Further, the spectrum σ(L) of L is real and

σ(L) ⊆
�∑

j=1

�j . (13.4.8)
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Indeed, for λ ∈ C \⋃�
j=1 �j and x on the unit sphere we have

||L(λ)x|| ≥ |(L(λ)x, x)| = (Anx, x)
�∏

j=1

|λ − λj(x)| > 0,

so L(λ) is invertible which means that λ �∈ σ(L).
The following property of the spectral zones is deeper.

Lemma 13.4.2. Different spectral zones of a strongly hyperbolic matrix polynomial
do not intersect.

Proof. We have to prove that �j ∩�k = ∅ for j �= k. It will suffice to show that
�j ∩ �j+1 = ∅ for j = 1, . . . , � − 1. Assume the contrary, so �j ∩ �j+1 �= ∅
for some j. So there exist vectors x and y of norm 1 and a real number α =
λj(x) = λj+1(y) such that (L(α)x, x) = (L(α)y, y) = 0. By (13.4.7) we have
(L′(α)x, x)(L′(α)y, y) < 0. Define the n× n matrix C = L′(α) + iL(α). Then the
nonzero numbers (Cx, x) and (Cy, y) are real and have opposite signs. Now use
the Toeplitz–Hausdorff theorem (Theorem A.7.1) according to which the numerical
range of C is convex. So there exists a vector z of norm 1 such that (Cz, z) = 0.
This means that (L(α)z, z) = (L′(α)z, z) = 0; so α is at least a double zero of
(L(λ)z, z) = 0, and this contradicts the strongly hyperbolic property of L(λ). �
Proof of Theorem 13.4.1. By Theorem 13.3.1, and in view of the inclusion (13.4.8),
we have only to check that for every λ0 ∈ σ(L) the quadratic form (L′(λ0)x, x) is
definite on KerL(λ0). Evidently, λ0 ∈ �j for some j. Moreover, by Lemma 13.4.2,
λ0 = λj(x) for every x ∈ KerL(λ0) \ {0} . Now (13.4.7) shows that the quadratic
form (L′(λ0)x, x) is positive definite on KerL(λ0) if j is odd, and negative definite
if j is even. �

13.5 Connected Components of Differential Equations

with Hermitian Coefficients and Stably Bounded
Solutions

Consider the system of differential equations

L

[
i
d

dt

]
x =

�∑
j=0

ijAj
djx

dtj
= 0; t ∈ R (13.5.9)

where L(λ) =
∑�

i=0 Aiλ
i is a polynomial with n × n hermitian coefficients (Ai =

A∗
i ) and invertible leading coefficient A�. We shall assume that (13.5.9) has

stably bounded solutions. Then Theorem 13.3.1 implies that σ(L) is real and
the quadratic form (L′(λ0)x, x) is definite on the subspace KerL(λ0) for every
λ0 ∈ σ(L). So we can assign a sign ε(λ0) to every eigenvalue of L; namely,
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ε(λ0) = +1 (resp. ε(λ0) = −1) if (L′(λ0)x, x) is positive (resp. negative) defi-
nite on the subspace KerL(λ0).

Now construct the index

Ind (L) := {r; n1, . . . , np}

associated with the polynomial L as follows (cf. the definition of the index of
an H-selfadjoint stably r-diagonalizable matrix). Put r = sig A�. Further, define
α0 = −∞, αp = ∞ and let

(α0, α1), (α1, α2), . . . , (αp−1, αp)

be consecutive intervals on the real line such that every interval (αi, αi+1) contains
the maximal number of eigenvalues of L(λ) of the same sign. Let n1, . . . , np be the
sum of multiplicities of the eigenvalues of L(λ) lying in (αi−1, αi), multiplied by
(−1) if the sign of these eigenvalues in the sign characteristic is negative.

For brevity, a matrix polynomial L with hermitian coefficients and invert-
ible leading coefficient, and such that the differential equation (13.5.9) has stably
bounded solutions, will be called an SB polynomial .

Theorem 13.5.1. Let L1 and L2 be SB polynomials. If IndL1 �= IndL2, then L1

and L2 belong to different connected components in the set of all SB polynomials.

The topology in the set Ω of all SB polynomials is introduced naturally as
follows: Ω is a disconnected union of the sets Ω�, � = 1, 2, . . . , where Ω� is the
set of all SB polynomials of fixed degree �. In turn, Ω� is given the topology as
a subset of Cn×n × · · · × Cn×n (� + 1 times), where Cn×n is the set of all n × n
complex matrices with the standard topology, by identifying the SB polynomial∑�

i=0 Aiλ
i with the ordered set (A0, . . . , A�) ∈ Cn×n × · · · × Cn×n.

Proof. Write Li(λ) =
∑�

j=0 λjAij , i = 1, 2, and let

Ind (Li) =
{

r(i); n(i)
1 , . . . , n(i)

pi

}
.

We can assume that L1 and L2 have the same degree � (otherwise Theorem 13.5.1
is trivial). Clearly, if the leading coefficients of L1 and L2 have different signatures
(i.e., if r(1) �= r(2)), then L1 and L2, belong to different connected components in
the set Ω�.

Let CL1 and CL2 be the companion matrices of L1 and L2, respectively, and
introduce the matrices

BLi =

⎡⎢⎢⎢⎣
Ai0 Ai1 · · · Ai�

Ai1 0
... Ai�

...
Ai� 0 · · · 0

⎤⎥⎥⎥⎦ , i = 1, 2.
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As observed in Section 12.2 (in particular, Proposition 12.2.1), for i = 1, 2 the
companion matrix CLi is BLi-selfadjoint and also BLi-stably r-diagonalizable.
Also for i = 1, 2,

indr(CLi , BLi) =
{
n

(i)
1 , . . . , n(i)

pi

}
.

By Theorem 9.7.2, if
{
n

(1)
1 , . . . , n

(1)
p

}
�=
{
n

(2)
1 , . . . , n

(2)
p

}
, then (CL1 , BL1)

and (CL2 , BL2) belong to different connected components in the set Sr. So in this
case the polynomials L1 and L2 also belong to different connected components in
Ω�. �

13.6 A Special Case

In this section we study in detail the class A of SB matrix polynomials of second
degree and size 2 × 2 with positive definite leading coefficient. In this case every
L(λ) ∈ A can be written in the form

L(λ) = λ2A2 + λA1 + A0, (13.6.10)

where Ai are 2 × 2 hermitian matrices (i = 0, 1, 2), and A2 is positive definite.
A preliminary result is required:

Lemma 13.6.1. Let λ∼ (resp. λ̃) be the smallest (resp. the greatest) eigenvalue of
L(λ) ∈ A. Then the form (L′(λ∼)x, x) is negative definite on the space KerL(λ∼),

and the form (L′(λ̃)x, x) is positive definite on the space KerL(λ̃).

Proof. Let L(λ) be given by (13.6.10). Let us show first that the hermitian matrix
L(λ) is positive definite for λ < λ∼. Indeed, since A2 is positive definite, L(λ) =
λ2
(
A2 + 1

λA1 + 1
λ2 A0

)
is certainly positive definite for λ real and |λ| large enough.

Let µ = inf {λ ∈ R | L(λ) is not positive definite} . Then L(λ) is positive definite
for λ < µ and, by continuity, L(µ) is positive semidefinite. But L(µ) cannot be
positive definite (otherwise L(λ) would be positive definite also for µ < λ < µ+ ε,
for small ε > 0; a contradiction with the definition of µ). This means that L(µ)x =
0 for some x �= 0, i.e., µ is an eigenvalue of L(λ), and therefore µ ≥ λ∼. So L(λ) is
positive definite for λ < λ∼.

Now pick x ∈ KerL(λ∼) \ {0} and put f(λ) = (L(λ)x, x). Then f(λ) < 0 for
λ < λ∼ and f(λ∼) = 0. Consequently, f ′(λ∼) = (L′(λ∼)x, x) ≤ 0. But the equality
(L′(λ∼)x, x) = 0 is impossible because L(λ) is SB.

Similarly, one checks Lemma 13.6.1 for the largest eigenvalue λ̃. �
This proof shows that the result of Lemma 13.6.1 remains valid for every SB

matrix polynomial with positive definite leading coefficient and even degree.
Lemma 13.6.1 shows that the index for L ∈ A can be only one of the following

two:
Ind1 = {2;−1, 1,−1, 1} , Ind2 = {2;−2, 2} .
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Let A1 (resp. A2) be the set of all polynomials L ∈ A whose index is Ind1 (resp.
Ind2). It is easily seen that both sets A1 and A2 are nonempty; for instance,[

λ(λ − 1) 0
0 (λ − 2)(λ − 3)

]
∈ A1,

[
λ(λ − 2) 0

0 (λ − 1)(λ − 3)

]
∈ A2.

Theorem 13.5.1 shows that if L1 ∈ A1, L2 ∈ A2, then L1 and L2 belong to
different connected components in A. It will be proved that the sets A1 and A2

are connected, thereby verifying the conjecture for SB polynomials of size 2 × 2,
degree 2 and with positive definite leading coefficients.

To this end consider the set A0 of all matrix polynomials L ∈ A which have
four distinct eigenvalues (necessarily real).

Lemma 13.6.2. The set A0 consists of exactly two connected components.

Proof. Pick
L(λ) = λ2A2 + λA1 + A0 ∈ A0. (13.6.11)

Since A2 is positive definite, write A2 = S∗S for some invertible 2 × 2 matrix
S. Let S(t), t ∈ [0, 1] be a continuous path of invertible 2 × 2 matrices such that
S(0) = S; S(1) = I. Then putting

L(λ, t) = (S(t))∗(λ2I + (S∗)−1A1S + (S∗)−1A0S)S(t), t ∈ [0, 1]

we connect L with a polynomial L1(λ) = L(λ, 1) with leading coefficient I, and
the connecting path lies entirely in A0. Further, let λ∼ be the smallest eigenvalue
of L1. Putting

L1(λ, t) = L1(λ + tλ∼), t ∈ [0, 1]

we obtain a continuous path in A0 connecting L1(λ) = L1(λ, 0) with L2(λ) def=
L1(λ + λ∼), and the latter polynomial has leading coefficient I and its smallest
eigenvalue is zero. Finally, by putting

L2(λ, t) = U(t)∗L2(λ)U(t), t ∈ [0, 1]

where U(t) is a suitable continuous path in the connected group of 2 × 2 unitary
matrices, we connect L2(λ) in A0 with a polynomial L3(λ) ∈ A0 of the following
form:

L3(λ) =
[

λ2 + λa λ(b + ic)
λ(b − ic) λ2 + λd + x

]
, (13.6.12)

where a, b, c, d, x are real numbers with x �= 0, and detL3(λ) has three different
positive zeros.

Let Ã0 be the set of all polynomials of type (13.6.12). Let 0 < p < q < r

be the eigenvalues of L3(λ) ∈ Ã0, which is given by (13.6.12). Then the following
relations hold:

ax = −pqr; d + a = −p − q − r; x + ad − b2 − c2 = pq + pr + qr, (13.6.13)
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which, together with inequalities 0 < p < q < r, are necessary and sufficient in
order that L3 ∈ Ã0. It follows from (13.6.13) that, given x �= 0 and p, q, r such
that 0 < p < q < r, one can solve (13.6.13) uniquely for a, d and b2 + c2 if and
only if the number

x + ad − pq − pr − qr =
1
x2

[
x3 − x2(pq + pr + qr) + x(p + q + r)pqr − (pqr)2

]
is nonnegative. As the polynomial x3 − x2(pq + pr + qr) + x(p + q + r)pqr −
(pqr)2 has three different positive real zeros pq < pr < qr, we find that Ã0 has
exactly two connected components, which can be identified in terms of the numbers
p, q, r, x, b, c introduced above in the following way. One component is given by{

(p, q, r, x, b, c) ∈ R6 | 0 < p < q < r; pq ≤ x ≤ pr;

b2 + c2 = x3 − x2(pq + pq + qr) + x(p + q + r)pqr − (pqr)2
}

;

the second is {
(p, q, r, x, b, c) ∈ R6 | 0 < p < q < r; x ≥ qr;

b2 + c2 = x3 − x2(pq + pr + qr) + x(p + q + r)pqr − (pqr)2
}

.

Hence the set A0 also has exactly two connected components. �

Now one can easily show that the sets A1 and A2 are connected. Indeed,
since A0 is dense in A, the set A consists of at most two connected components,
and because of Theorem 13.5.1, A has exactly two connected components. Now
A = A1 ∪A2 and A1 ∩A2 = ∅; so in view of the same Theorem 13.5.1, it is clear
that A1 and A2 are the connected components of A.

13.7 Difference Equations

Consider the following difference equation:

A0xi + A1xi+1 + · · · + A�xi+� = 0, i = 0, 1, . . . , (13.7.14)

where {xi}∞i=0 is a sequence of n-dimensional complex vectors to be found, and
A0, . . . , A� are given complex n×n matrices. It is assumed throughout this section
that A� is invertible.

As in the case of the system of differential equations (13.1.1), a general solu-
tion of (13.7.14) can be found in terms of a standard pair (X, T ) of the associated
matrix polynomial

L(λ) =
�∑

j=0

λjAj .



13.7. Difference Equations 279

Theorem 13.7.1. The general solution of (13.7.14) is given by the formula

xi = XT iz, i = 0, 1, . . . , (13.7.15)

where z is an arbitrary n�-dimensional vector.
If T is invertible, then the general solution of the bilateral difference equation

A0xi + A1xi+1 + · · · + A�xi+� = 0, i = 0,±1,±2, . . . , (13.7.16)

is given by the formula

xi = XT iz, i = 0,±1,±2, . . . , z ∈ Cn�. (13.7.17)

Proof. We will prove formula (13.7.15) only; the proof of (13.7.17) is completely
analogous.

Since any two standard pairs of L(λ) are similar, we can assume X =
[I 0 . . . 0] and T = CL. Then

�∑
j=0

AjXT j = 0

(cf. the proof of (13.1.3)), so the formula (13.7.15) indeed gives solutions for
(13.7.14). Further, invertibility of A� implies that

x�+i = −A−1
� (A0xi + · · · + A�−1xi+�−1), i = 0, 1, . . . ,

and therefore the solution of (13.7.14) is determined by the values of x0, . . . , x�−1.
In other words, the dimension of the space of solutions of (13.7.14) is n�. So in
order to prove that (13.7.15) gives all solutions of (13.7.14) we have to check that
xi = 0, i = 0, 1, 2, . . . , � − 1, implies z = 0. But this follows from the invertibility
of the matrix ⎡⎢⎢⎢⎣

X
XT

...
XT �−1

⎤⎥⎥⎥⎦
which was established in Proposition 12.1.1. �

We will be interested in description of systems of difference equations
(13.7.14) with the property that every solution sequence is bounded:

Proposition 13.7.2. The system (13.7.14) has all solutions bounded if and only if
any linearization T of the associated matrix polynomial L(λ) =

∑�
j=0 λjAj has all

its eigenvalues in the closed unit disc, and the eigenvalues of T on the unit circle
(if any) are all semi-simple.

Assuming that the matrix A0 is invertible, the bilateral system (13.7.16) has
all solutions bounded if and only if any linearization T of the associated matrix
polynomial L(λ) is diagonalizable and has all eigenvalues on the unit circle.
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Recall that an n�×n� matrix T , a linearization of L(λ), appears in a standard
pair (X, T ) of L(λ).

Proof. Formula (13.7.15) shows that all solutions of (13.7.14) are bounded if and
only if the set {T q}∞q=0 of powers T with nonnegative integer exponents is bounded.
This property in turn is well known (and easily observed using the Jordan form
of T ) to be equivalent to the properties of T stated in the proposition.

Similarly, formula (13.7.17) shows that all solutions of (13.7.16) are bounded
if and only if the set {T q}∞q=−∞ is bounded (the invertibility of T follows from
the hypothesis that A0 is invertible). The boundedness of {T q}∞q=−∞ is easily
seen to be equivalent to the properties of T as stated in the second part of the
proposition. �

Now consider the system (13.7.14) with the additional assumptions that � is
even, say � = 2k, and

A∗
i = A�−i, i = 0, . . . , �. (13.7.18)

Note, in particular, that A∗
0 = A� and is therefore invertible. A matrix polynomial

with coefficients satisfying this condition is sometimes said to be palindromic. For
example, palindromic polynomials arise if the differential equation

l∑
j=0

ijÃj
djx

dtj
= 0

with hermitian coefficients Ãj is approximated using a symmetric finite difference

technique (i. e. replacing the derivative
dx

dt
at the point kh (k = 0,±1,±2, . . . ) by

1
2h

[
x
(
(k + 1)h

)− x
(
(k − 1)h

)]
; here h is a fixed positive number).

If (13.7.18) holds, then CL is B̂L-unitary and therefore the spectrum of CL

is symmetric relative to the unit circle. We obtain the following theorem. We say
that a matrix polynomial L(λ) has simple structure with respect to the unit circle
if the spectrum σ(L) lies on the unit circle and all eigenvalues are semi-simple.

Theorem 13.7.3. Let there be given n×n matrices A0, . . . , A� such that A∗
j = A�−j

for j = 0, . . . , �, the integer � is even, and A� is invertible. Then the following
statements are equivalent:

(a) All solutions of the system

A0xi + A1xi+1 + · · · + A�xi+� = 0, i = 0, 1, . . . , (13.7.19)

are bounded.

(b) All solutions of the bilateral system

A0xi + A1xi+1 + · · · + A�xi+� = 0, i = 0,±1,±2, . . . , (13.7.20)

are bounded.
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(c) The matrix polynomial L(λ) =
∑�

j=0 λjAj has simple structure with respect
to the unit circle.

Proof. By Proposition 13.7.2 we know that all solutions of (13.7.20) are bounded
if and only if the linearization of L(λ) is diagonalizable and has all eigenvalues
on the unit circle. In view of formula (12.1.2) (cf. Theorems A.6.2 and A.6.3) this
condition is equivalent to (c).

By the same Proposition 13.7.2, all solutions of (13.7.19) are bounded if and
only if CL has all eigenvalues in the closed unit disc, with the eigenvalues on
the unit circle (if any) have all partial multiplicities equal to 1. But since the
spectrum of CL is symmetric relative to the unit circle, we arrive at statement (c),
as before. �

In fact, Theorem 13.7.3 holds for systems (13.7.19) also when � is odd. Indeed,
the condition A∗

j = A�−j for j = 0, . . . , � implies that

L(λ) = λ�
(
L(λ

−1
)
)∗

, λ ∈ C \ {0}.

Thus, σ(L) is symmetric relative to the unit circle. Therefore, if the solutions of
(13.7.19) are bounded, then L(λ) cannot have spectrum outside of the unit circle,
and the same holds for any linearization of L(λ). Now use Proposition 13.7.2.

13.8 Stable Boundedness for Difference Equations

We continue with investigations of the difference equation (13.7.14) under the
assumptions of the preceding section, namely, that A� is invertible, � is even, and
the palindromic conditions (13.7.18) hold. We are interested in the case when
the solutions of (13.7.14) are stably bounded, i.e.,, all solutions of (13.7.14) are
bounded, and all solutions of every system

Ã0yi + Ã1yi+1 + · · · + Ã�yi+� = 0, i = 0, 1, . . . ,

with
Ã∗

j = Ã�−j , j = 0, 1, . . . , �,

are bounded provided ‖Ãj − Aj‖ is small enough (for j = 0, 1, . . . , �).

Theorem 13.8.1. The solutions of (13.7.14) are stably bounded if and only if the
spectrum of the associated matrix polynomial L(λ) =

∑�
j=0 λjAj lies on the unit

circle, and the quadratic form(
x, iλ0

(
λ−�/2 L(λ)

)(1)

(λ0)x
)

, x ∈ KerL(λ0) (13.8.21)

is either positive definite or negative definite, for every λ0 ∈ σ(L).
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In this statement, the superscript (1) denotes the derivative.

Proof. We use the companion matrix for the polynomial L(λ):

CL =

⎡⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I 0

. . .
...

... I

−Ã0 −Ã1 · · · −Ã�−1

⎤⎥⎥⎥⎥⎥⎥⎦ , Ãj = A−1
� Aj , j = 0, 1, . . . , �− 1,

and the following matrix introduced in Section 12.6:

B̂L = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A� . . . 0

0
...

. . .
...

Ak+1 . . . A�

−A0 . . . −Ak−1

...
. . .

... 0
0 . . . −A0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, k =

�

2
.

Assume that the spectrum of L(λ) is unimodular, and that the quadratic form
(13.8.21) is definite for every λ0 ∈ σ(CL). This means that, for every eigenvalue λ0

of CL, the quadratic form (x, B̂Lx), x ∈ Ker (λ0I − CL) is either positive definite
or negative definite (see formula (12.6.31) and Proposition 12.6.1). By Theorem
9.8.3 there exists an ε > 0 such that every H-unitary matrix U with

‖U − CL‖ + ‖H − B̂L‖ < ε

is similar to a diagonal matrix with unimodular spectrum. In particular, this is
true for every matrix

U =

⎡⎢⎢⎢⎢⎢⎢⎣
0 I 0 · · · 0
0 0 I 0

. . .
...

... I
−(A′

�)
−1A′

0 −(A′
�)

−1A′
1 · · · −(A′

�)
−1A′

�−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

under the palindromic conditions (13.7.18), and provided that
∑�

j=0 ‖A′
j −Aj‖ is

sufficiently small. By Theorem 13.7.3 the solutions of (13.7.14) are stably bounded.
For the converse, assume now that the solutions of (13.7.14) are stably

bounded. Then, using Theorem 13.7.3 again, the polynomial L(λ) must have only
unimodular semi-simple eigenvalues, and every matrix polynomial

L̂(λ) =
�∑

j=0

λjÂj (13.8.22)
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with

Âj = Â∗
�−j for j = 0, 1, . . . , � and

�∑
j=0

‖Âj − Aj‖ sufficiently small

(13.8.23)
has this property. Choose w ∈ C, |w| = 1 such that L(w) is invertible, and put

R(λ) =
�∑

j−0

(1 + iλ)j(1 − iλ)�−jBj , (13.8.24)

where B0, . . . , B� are the coefficients of the polynomial

Lw(λ) := (−w)−
�
2 L(−wλ) =

�∑
j=0

λjBj .

Note that Lw(λ) is hermitian with respect to the unit circle, i.e., the rational
matrix function (λ−�/2)Lw(λ) has the property that

(λ−�/2)Lw(λ) = ((λ)−�/2)Lw(λ) for λ ∈ T.

Therefore, R(λ) is a hermitian (relative to the real line) matrix polynomial of
degree �. Moreover, the leading coefficient of R(λ) is easily seen to be equal to
i�Lw(−1), and therefore is invertible.

Clearly, all eigenvalues of R(λ) are real and semi-simple. Moreover, all eigen-
values of hermitian matrix polynomials of degree � which are sufficiently close to
R(λ) (in the sense that their coefficients are close to the corresponding coefficients
of R(λ)) are also semi-simple. Indeed, this follows from the property that every
matrix polynomial (13.8.22) satisfying (13.8.23) has only unimodular semi-simple
eigenvalues, in view of the inverse formula for (13.8.24):

L(µ) =
[
1 − w−1µ

2

]�

(−w)kR

(
i(1 + w−1µ)
1 − w−1µ

)
, k =

�

2
.

By Theorem 13.3.2 the quadratic form (x, R(1)(λ0)x) is either positive definite or
negative definite on KerR(λ0) for every eigenvalue λ0 of R(λ). A computation
shows that, putting

L̂(λ) = λ−kL(λ), k =
�

2
,

we have

R(1)(λ) = 2λk(1 + λ2)k−1L̂

(−w(1 + iλ)
1 − iλ

)
+(−w)(1 + λ2)k

[
2i

(1 − iλ)2

]
L̂(1)

(−w(1 + iλ)
1 − iλ

)
.
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Let λ0 be a (necessarily real) eigenvalue of R(λ). Then

µ0 :=
−w(1 + iλ0)

1 − iλ0

is a (necessarily unimodular) eigenvalue of L(λ), and

KerR(λ0) = Ker L(µ0) = Ker L̂(µ0).

Hence, for every x ∈ KerL(µ0) we have

iµ0L̂
(1)(µ0)x =

1
2
(1 + λ2

0)
−k+1R(1)(λ0)x,

so the form
(x, iµ0L̂

(1)(µ0)x), x ∈ Ker L̂(µ0)

is positive definite or negative definite together with the form (x, R(1)(λ0)x), x ∈
KerR(λ0). �

13.9 Connected Components of Difference Equations

Consider again the class of difference equations studied in Section 13.7. To repeat,
a typical equation has the form

A0xi + A1xi+1 + · · · + A�xi+l = 0, i = 0, 1, . . . , (13.9.25)

where {xi}∞i=0 is a sequence of n-dimensional complex vectors to be found, and
A0, . . . , A� are given complex n × n matrices. As before, it is assumed that � is
even, the coefficient symmetries (13.7.18) hold, and A� is invertible. In particular,
A�/2 is hermitian and A0 is invertible as well. We say that a difference equation
(13.9.25) has stably bounded solutions if there exists an ε > 0 such that all solutions
of every equation

�∑
m=0

A′
mxi+m = 0, i = 0, 1, . . . ,

with A′∗
j = A′

�−j , j = 0, . . . , �, and with

�∑
m=0

‖A′
m − Am‖ < ε

are bounded. A description of the difference equations with stably bounded solu-
tions was given in Theorem 13.8.1.

There exists a natural topology on the set Ωu of all equations (13.9.25) with �
even, A∗

�−j = Aj for j = 0, . . . , �, A� invertible, and with stably bounded solutions.
Observe that Ωu is a disconnected union of the sets Ωu,�, � = 2, 4, . . . , where Ωu,�
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is the set of equations (13.9.25) with stably bounded solutions of degree �. In turn,
Ωu,� is given a topology as a subset of Cn×n × · · · × Cn×n (� + 1 times), where we
identify the difference equation (13.9.25) with the ordered set of its coefficients

(A0, . . . , A�) ∈ Cn×n × · · · × Cn×n.

So it makes sense to speak about the connected components of Ωu.
In what follows we shall identify any system (13.9.25) with the matrix poly-

nomial L(λ) formed by its coefficients. To study the connected components of Ωu,
introduce the notion of an index for L(λ):

Indu(L) = {n1, . . . , np}. (13.9.26)

As we noticed above, every λ0 ∈ σ(L) is unimodular: we say that the sign of λ0 is
negative (resp. positive) if the quadratic form(

x, iλ0

(
λ−�/2 L(λ)

)(1)

(λ0)x
)

, x ∈ KerL(λ0)

is negative (resp. positive) definite. Let

[α0, α1), (α1, α2), . . . , (αp−1, αp), αp − α0 = 2π,

be consecutive intervals such that every arc[
eiα0 , eiα1

)
, . . . ,

(
eiαp−1 , eiαp

)
contains the largest possible number of eigenvalues of L(λ) having the same sign.
We let ni (i = 1, . . . , p) in (13.9.26) be the sum of the multiplicities of eigenvalues
of L(λ) lying on the i-th arc and multiplied by (−1) if the sign of these eigenvalues
is negative.

Theorem 13.9.1. Let

A01xi + A11xi+1 + · · · + A�,1xi+� = 0, i = 0, 1, . . . , (13.9.27)

and
A02xi + A12xi+1 + · · · + A�,2xi+� = 0, i = 0, 1, . . . , (13.9.28)

be two difference equations of type (13.9.25), i.e., A∗
ji = A�−j,i for j = 0, . . . , � and

for i = 1, 2; � is even; and A�,1, A�,2 are invertible. Suppose that both equations
(13.9.27) and (13.9.28) have stably bounded solutions, and the indices Indu(L1)
and Indu(L2) of

L1(λ) =
�∑

j=0

λjAj1

and

L2(λ) =
�∑

j=0

λjAj2,
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respectively, cannot be obtained from each other by a cyclic permutation. Then the
equations (13.9.27) and (13.9.28) belong to different connected components in the
set of all equations of type (13.9.25) with stably bounded solutions.

Proof. Let

Cj =

⎡⎢⎢⎢⎢⎢⎣
0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
−A−1

�,j A0j −A−1
�,j A1j −A−1

�,j A2j . . . −A−1
�,j A�−1,j

⎤⎥⎥⎥⎥⎥⎦ , j = 1, 2,

B̂j = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A�,j . . . 0

0
...

. . .
...

Ak+1,j . . . A�,j

−A0j . . . −Ak−1,j

...
. . .

... 0
0 . . . −A0j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j = 1, 2,

where k = �/2. As we know from Section 12.6, Cj is B̂j-unitary and, moreover, Cj

is stably u-diagonalizable. Further, Indu(Lj) coincides with the index indu (Cj , B̂j)
(see equation (9.9.16)). Now Theorem 9.9.1 shows that (C1, B̂1) and (C2, B̂2) be-
longs to different connected components in the set of all pairs (U, H) where U
is H-unitary and stably u-diagonalizable, and the conclusion of Theorem 13.9.1
follows. �

13.10 Exercises

1. Are the solutions of the differential equation

Lj

[
i
d

dt

]
x = 0, t ∈ R,

stably bounded, in each of the following cases?

(a) j = 1 and L1(λ) is a scalar polynomial with real coefficients.

(b) j = 2 and L2(λ) = I2λ
2 +
[

0 2
2 0

]
λ + I2.

(c) j = 3 and L3(λ) = L2(λ2).

2. Factorize the matrix polynomials L1(λ), L2(λ), L3(λ) of Exercise 1, when
possible.
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3. For those polynomials Lj(λ), j=1, 2, 3, of Exercise 1 that are stably bounded,
compute their indices.

4. Consider the system

A0xk + A1xk+1 + A2xk+2 = 0, k = 0, 1, . . . , (13.10.29)

where A2 = A∗
0 ∈ Cn×n is invertible and A1 ∈ Cn×n is hermitian. Under what

conditions has the difference equation (13.10.29) stably bounded solutions?
Answer the question for each of the following situations:

(a) n = 1, (i.e., A0 and A1 are scalars);

(b) A0 and A1 are diagonal matrices;

(c) A0 and A1 are circulant matrices: (An n × n matrix B = [bjk]nj,k=1 is
called a circulant if the equality bjk = brs holds for all ordered pairs of
indices (j, k) and (r, s) such that j − k = r − s modulo n.)

5. Under what conditions does the difference equation

A0xk + A1xk+1 + · · · + A�xk+� = 0, k = 0, 1, . . . , (13.10.30)

have stably bounded solutions? Assume that � = 2m is even and Ar = A∗
�−r

for r = 1, . . . , m with invertible A0. Answer the question for the following
cases:

(a) The matrices Aj , j = 0, 1, . . . , � are scalar matrices;

(b) The matrices Aj , j = 0, 1, . . . , � are diagonal;

(c) The matrices Aj , j = 0, 1, . . . , � are circulants.

6. Assuming that (13.10.29) has stably bounded solutions, compute the index
under each of the hypotheses (a), (b), (c) of the preceding exercise.

7. Repeat the preceding exercise for the difference equation (13.10.30).

8. Given that A, H ∈ Cn×n are hermitian and H is invertible, under what
conditions are the solutions of the differential equation iH dx

dt
= Ax stably

bounded on the half line [0,∞)?

9. Let L(λ) be a hermitian matrix polynomial with invertible leading coeffi-
cient. Under what conditions are the solutions of the differential equation
L
(
i d
dt

)
x = 0 stably bounded on the half line [0,∞)?

10. Under what conditions are the solutions of the difference equation

A0xk + A1xk+1 + · · · + A2mxk+2m = 0, k − 0,±1,±2, . . . ,

stably bounded? Here, Aj are n × n matrices such that Aj = A∗
2m−j for

j = 0, 1, . . . , m, and A0 is invertible.
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13.11 Notes

This chapter includes results about stable boundedness of the solutions of linear
differential and difference equations of higher order with selfadjoint coefficients.
These results are based on theorems from Chapter 12 and were obtained by the
authors in the papers [37], [38]; see also [39], [40]. For more on hyperbolic systems
see the monographs [81] and [92].



Chapter 14

Algebraic Riccati Equations

The subject of this chapter is the description of the solution set of a certain
nonlinear matrix equation which arises in several different fields. Fortunately, the
nonlinear equation is amenable to solution by linear techniques and, in particular,
some of the techniques developed in this book are fundamental. It will be found
that the solution of certain quadratic equations in matrices depends heavily on
the structures introduced in earlier chapters. Briefly, the equation for X ∈ Cn×n

has the form

XBX − XA − A∗X − C = 0,

where the coefficients A, B = B∗, C = C∗ ∈ Cn×n are known. In particular, this
problem can be resolved using our knowledge of matrices which are selfadjoint in
an indefinite inner product.

The origin of this equation in systems theory will be summarized in Section
14.2, and will be seen to involve differential systems. There is a parallel problem
area concerning discrete systems and this leads to nonlinear equations of a dif-
ferent kind. However, it is interesting that the complete solution of this problem
requires knowledge of matrices which are unitary in an indefinite inner product.
Unfortunately, space limitations prevent the development of this theory here, and
the reader is referred to [67] for a detailed investigation of this problem.

It is necessary to begin with some concepts from systems theory. This is
the subject of Section 14.1. After discussing the origins of the problem in Section
14.2, the systematic theory begins in Section 14.3. A fundamental existence the-
orem appears in Section 14.6 and the existence of extremal solutions is the topic
of Section 14.9. The theory is presented first in the context of (possibly) complex
matrix solutions of equations with complex coefficients. Investigation of real sym-
metric solutions for real systems is treated in Section 14.10 as a special case of the
more general theory over the complex field.
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14.1 Matrix Pairs in Systems Theory and Control

The following definitions play an important role in systems theory and, conse-
quently, in the theory to be developed in this chapter.

Definition 14.1.1. The matrix pair, A ∈ Cn×n and B ∈ Cn×m is said to be con-
trollable if

rank
[

B AB A2B · · · An−1B
]

= n. (14.1.1)

More generally, the controllable subspace of such a pair (A, B) is the subspace
of Cn:

CA,B := Range
[

B AB · · · An−1B
]

=
n−1∑
r=0

Range(ArB). (14.1.2)

Clearly, when the pair is controllable, CA,B = Cn, the whole space (see also Exercise
1 of this chapter).

The following property of the controllable subspace is often helpful:

Proposition 14.1.2. The subspace CA,B coincides with
∑s−1

r=0 Range(ArB) for every
s ≥ n.

We relegate the proof to the exercises. There is also a nice geometric descrip-
tion of the controllable subspace:

Proposition 14.1.3. Given a pair (A, B) as above, the controllable subspace CA,B

is the smallest A-invariant subspace containing RangeB.

Proof. For r = 0, 1, . . . , define

Cr = Range
[

B AB · · · Ar−1B
]
,

and let k be the smallest integer for which Ck+1 = Ck. Clearly, if x ∈ Cr then
Ax ∈ Cr+1. Thus, if x ∈ Ck then Ax ∈ Ck+1 and so Ck ⊆ CA,B is A-invariant. Also,
it is clear that RangeB ⊆ CA,B .

Finally, let S be any subspace of Cn for which AS ⊆ S and RangeB ⊆ S. It
is to be shown that CA,B ⊆ S. But for r = 1, 2, . . . we have

Range (Ar−1B) = Ar−1RangeB ⊆ Ar−1S ⊆ S.

It follows from equation(14.1.2) that CA,B ⊆ S. �
A condition which is weaker than controllability is also important for the

theory:

Definition 14.1.4. A matrix pair (A, B) (as in the preceding definition) is said to
be stabilizable if there is a matrix K ∈ Cm×n such that A + BK has all of its
eigenvalues in the open left half of the complex plane.
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Note that a square matrix with the property that all of its eigenvalues lie in
the open left half of the complex plane is often said to be stable. Thus, the pair
(A, B) (as above) is stabilizable if and only if there is a K such that A + BK is
stable. It is not hard to see that controllable pairs are necessarily stabilizable, but
not conversely (see the Exercises).

The notion of “observability” is dual to that of controllability. Consider a
pair C ∈ Cm×n, A ∈ Cn×n:

Definition 14.1.5. The matrix pair (C, A) is said to be observable if

rank

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦ = n.

More generally, the unobservable subspace of a pair (C, A), as above, is the
subspace of Cn:

UC,A = Ker

⎡⎢⎢⎢⎣
C

CA
...

CAn−1

⎤⎥⎥⎥⎦ =
n−1⋂
r=0

Ker(CAr).

Clearly, the pair (C, A) is observable if and only if the unobservable subspace is
the trivial subspace, {0}.

The duality of the notions of controllability and observability is made appar-
ent in:

Proposition 14.1.6. The pair (C, A) is observable if and only if the pair (A∗, C∗)
is controllable.

The following lemma concerning controllable pairs will be useful.

Lemma 14.1.7. Let the pair A, B ∈ Cn×n be controllable and B be positive semi-
definite. Then the matrix

Ω(t) := −
∫ t

0

e−τABe−τA∗
dτ

is negative (resp. positive) definite for all t > 0 (resp. t < 0) and the matrix
Â := A + BΩ(t)−1 is stable for any t > 0.

Proof. Clearly, Ω(0) = 0 and, when t1 ≥ t2, Ω(t1) ≤ Ω(t2). In particular, Ω(t)
is negative (positive) semidefinite for t > 0 (t < 0, respectively). To prove that
Ω(t) < 0 (resp. Ω(t) > 0) for t > 0 (resp. t < 0) it is enough to check that
(Ω(t)x, x) = 0 only if t = 0 or x = 0.
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Assume the contrary so that (Ω(t)x, x) = 0 for some t �= 0, say t > 0. Since

(Ω(t)x, x) = −
∫ t

0

‖B 1
2 e−τA∗

x‖2 dτ,

it follows that B
1
2 e−τA∗

x = 0 for all τ ∈ (0, t). Differentiating repeatedly with
respect to τ it follows that⎡⎢⎢⎢⎣

B
1
2

B
1
2 A∗
...

B
1
2 (A∗)n−1

⎤⎥⎥⎥⎦ e−τA∗
x = 0.

Consequently, since[
B AB · · · An−1B

]
=
[

B
1
2 AB

1
2 · · · An−1B

1
2
]
B

1
2 ,

we have

rank
[

B AB · · · An−1B
] ≤ rank

[
B

1
2 AB

1
2 · · · An−1B

1
2
]

< n,

which contradicts the controllability of (A, B).
To prove the last statement observe that, if t > 0, then

AΩ(t) + Ω(t)A∗ =
∫ t

0

{ d

dτ
e−τABe−τA∗} dτ = e−tABe−tA∗ − B, (14.1.3)

and hence
ÂΩ(t) + Ω(t)Â∗ = e−tABe−tA∗

+ B.

Now let λ0 be an eigenvalue of Â∗ with corresponding eigenvector x. Then for
t > 0,

(λ0 + λ0)x∗Ω(t)x = x∗(ÂΩ(t) + Ω(t)Â∗)x
= x∗(e−tABe−tA∗

+ B)x ≥ 0.

But Ω(t) is negative definite, so this inequality must imply that λ0 + λ0 ≤ 0.
Furthermore, if λ0 + λ0 = 0, then Bx = 0 and the definition of Â∗ implies that
A∗x = λ0x. Hence

Ω(t)x = −
∫ t

0

e−τABxe−λ0τ dτ = 0, t > 0,

which contradicts the negative definite property of Ω(t). Thus λ0 + λ0 < 0 for
every eigenvalue λ0 of Â∗, and hence for every eigenvalue of Â. �
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Another proposition will be useful in the sequel. The proof is deferred to the
exercises. In this proposition matrix K is sometimes referred to as a “feedback”
matrix.

Proposition 14.1.8. Let A, B, K be complex matrices of sizes n × n, n × m and
m × n, respectively and write Â = A + BK. Then:

1. For r = 0, 1, 2, . . .,

Range
[

B ÂB . . . ÂrB
]

= Range
[

B AB . . .ArB
]
.

2. C
�A,B = CA,B.

3. (Â, B) is controllable if and only if (A, B) is controllable.

14.2 Origins in Systems Theory

In this section the main objective is an account of a classical optimization problem
with many applications. It is known as the “LQR” problem where the letters LQR
stand for “linear quadratic regulator”. There are no formal proofs and those who
can accept these nonlinear matrix equations at face value may wish to omit this
section.

Description of the optimization problem begins with an apparently simple
differential system which is, however, of central importance. An “input” or “con-
trol” vector function u(t) and an “output” vector function y(t) are connected as
follows:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t).

The intermediate function x(t) (generally living in a space of relatively high di-
mension) is known as the “state” of the system. The cost of applying a control
u(t) with initial vector x0 is defined in terms of the input and output functions as
follows:

Ju(x0) = ‖u‖2
R1

+ ‖y‖2
R2

,

where R1 > 0, R2 > 0, and

‖u‖2
R1

=
∫ ∞

0

u(t)∗R1u(t)dt, ‖y‖2
R2

=
∫ ∞

0

y(t)∗R2y(t)dt.

Then, substituting for y,

‖y‖2
R2

=
∫ ∞

0

[x∗ u∗]
[

C∗

D∗

]
R2[C D]

[
x
u

]
dt,
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and

Ju(x0) =
∫ ∞

0

[x∗ u∗]R̂
[

x
u

]
dt,

where

R̂ =
[

0 0
0 R1

]
+
[

C∗R2C C∗R2D
D∗R2C D∗R2D

]
=:
[

Q S
S∗ R

]
.

Notice that this formulation expresses the cost in terms of the input and the state.
The output no longer appears explicitly. It follows from the hypotheses made above
that R̂ ≥ 0, Q = C∗R2C ≥ 0, and R = R1 + D∗R2D > 0.

The LQR problem is now formulated as follows: Minimize the cost Ju(x0) by
choice of u(t) subject to the linear constraint

ẋ(t) = Ax(t) + Bu(t), x(0) = x0.

An optimal control is a function û(t) for which the optimal cost Ĵ(x0) = J �u(x0) =
infu Ju(x0) is attained.

In order to describe a solution to the problem it turns out to be convenient
(and physically significant) to restrict attention to matrix coefficients which are
linked in particular ways.

Theorem 14.2.1. Given the hypotheses:

(1) the pair (A, B) is stabilizable,

(2) rank R̂ = rankQ + rankR,

(3) the pair (Q, A) is observable,

then there exists an optimal control of the form

û(t) = Ke(A+BK)tx0,

where K = −R−1(S∗ + B∗X) and X is the maximal1 hermitian solution of the
algebraic Riccati equation (ARE)

X(BR−1B∗)X − XÂ − Â∗X − Q̂ = 0,

where
Â = A − BR−1S∗, Q̂ = Q − SR−1S∗.

Furthermore, X > 0, Ĵ(x0) = x∗
0Xx0, and A + BK is stable.

1The sense in which the solution is “maximal” will be clarified in Section 14.9 below.
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14.3 Preliminaries on the Riccati Equation

We start with a matrix quadratic equation which includes that arising in the LQR
problem of the preceding section. Thus, consider the equation

XDX + XA + BX − C = 0, (14.3.4)

where D, A, B, C are matrices of sizes n×m, n×n, m×m, and m×n respectively
and may be real or complex. Note that the coefficients fit into a square matrix of
size (n + m) × (n + m):

T :=
[

A D
C −B

]
. (14.3.5)

It has been seen above, however, that our main interest lies in equations with
D∗ = D, C∗ = C, and B = A∗. Thus,

XDX + XA + A∗X − C = 0, (14.3.6)

and it is natural to anticipate hermitian solutions, X∗ = X , as required for the
optimization problem. This equation is the object of interest for most of this
chapter and, for easy reference, it is given a name “the CARE” (abbreviating
continuous algebraic Riccati equation).

The solution set of such an equation can take a variety of forms, and it will
be useful to illustrate this in some primitive examples.

Example 14.3.1. Scalar equations of the form dx2 + 2ax− c = 0, where a, d, c ∈ R
and d > 0, a ≥ 0. The hermitian property of solutions means just real solutions
here, and they may or may not exist. The existence of a nonnegative solution
requires c ≥ 0. �

Example 14.3.2. The equation (14.3.6) with

D =
[

0 1
1 0

]
, A = 0, C =

[
1 0
0 0

]
has no solution (either real or complex). �

Example 14.3.3. The equation (14.3.6) with

D =
[

1 0
0 0

]
, A =

[
0 0
1 0

]
, C =

[ −2 0
0 1

]

has the one hermitian solution X =
[

0 −1
−1 0

]
and two nonhermitian solutions.

�
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Example 14.3.4. The equation (14.3.6) with

D =
[

0 0
0 1/3

]
, A =

[
0 −1

2/3 0

]
, C =

[
5/3 0
0 1

]

has four hermitian solutions including the maximal solution X =
[

3 1
1 3

]
, and

two nonhermitian solutions. �
Example 14.3.5. The equation (14.3.6) with

D =
[

1 0
0 0

]
, A =

[
0 0
0 1

]
, C =

[
1 0
0 0

]

has an isolated solution X =
[

1 0
0 0

]
, and a continuum of hermitian solutions

depending on a parameter a ∈ C :

Xa =
[ −1 a

a − 1
2
|a|2

]
,

and also a continuum of nonhermitian solutions. �

14.4 Solutions and Invariant Subspaces

Now let us begin a systematic analysis of solutions of the general equation (14.3.4)
via the properties of the matrix T of (14.3.5). First, for any m× n matrix X , the
n-dimensional subspace

G(X) := Range
[

In

X

]
⊆ Cm+n

is called the graph of X , or a graph subspace of Cm+n. The first proposition is a
candidate for the most important fact in the geometric study of Riccati equations.
Recall the definition of T in equation (14.3.5).

Proposition 14.4.1. Let X be m× n. Then X is a solution of (14.3.4) if and only
if the graph of X is T -invariant.

Proof. If G(X) is T -invariant, then[
A D
C −B

] [
I
X

]
=
[

I
X

]
Z (14.4.7)

for a suitable matrix Z. The first block row of this equation gives Z = A + DX ,
and then the second row gives C − BX = X(A + DX). In other words, X solves
(14.3.4).

Conversely, if X solves (14.3.4), then (14.4.7) holds with Z = A + DX. �



14.5. Symmetric Equations 297

Representing the T -invariant subspace G(X) as the linear span of a set of
Jordan chains (or eigenvectors and generalized eigenvectors) of T the following
constructive result is obtained. The preceding statement makes equal sense over
R and over C . Now it is more convenient to work over C .

Theorem 14.4.2. Equation (14.3.4) has a solution X ∈ Cm×n if and only if there
is a set of vectors v1, . . . , vn ∈ Cm+n forming a set of Jordan chains for T and, if

vj =
[

yj

zj

]
, j = 1, 2, . . . ,

where yj ∈ Cn, then y1, y2, . . . , yn form a basis for Cn.
Furthermore, if

Y = [y1 y2 . . . yn], Z = [z1 z2 . . . zn],

every solution of (14.3.4) has the form X = ZY −1 for some set of Jordan chains
v1, v2, . . . , vn for T such that Y is nonsingular.

These results focus our attention on n-dimensional T -invariant subspaces. It
is not difficult to see that, generically, the number of solutions of (14.3.4) is finite
and bounded above by the number of ways of choosing n vectors from a basis of
m + n eigenvectors and generalized eigenvectors of T . This applies to Example
14.3.4. By design, the other examples of that collection are not generic.

14.5 Symmetric Equations

Now focus on equation (14.3.6): the CARE. Instead of T , define

M = i

[
A D
C −A∗

]
(14.5.8)

and associated matrices

H =
[ −C A∗

A D

]
, Ĥ = i

[
0 I
−I 0

]
. (14.5.9)

Notice the following connections:

H∗ = H, Ĥ∗ = Ĥ, HM = M∗H, ĤM = M∗Ĥ, H = ĤM.

In the language of Chapter 4, these relations mean that M is self-adjoint in
each of the two indefinite inner products generated on C 2n by H and by Ĥ (given
that they are nonsingular). In particular, the spectrum of M is symmetric with
respect to the real axis. Since solutions of the CARE are now linked with certain
invariant subspaces of M , we see that the canonical form (over C ) discussed in
Section 5.1 has a vital role to play.
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Lemma 14.5.1. It can be assumed that H is nonsingular with inertia (n, n, 0).

Proof. Notice first that the Riccati equation, CARE, is invariant if the coefficient
A is replaced by A + iαI where α ∈ R. Thus, if H does not already have the
desired inertia, then A is replaced by A + iαI. Then, for α sufficiently large, the
inertia of H will be equal to that of[

0 −iαI
iαI 0

]
,

and this inertia is easily seen to be (n, n, 0). �
This lemma means that, without loss of generality, the existence of n-dimen-

sional neutral subspaces of H can be assumed.
Returning to the graph subspace of a solution X of (14.3.6), another very

nice property arises from the symmetry of the CARE. It is easily seen that[
I
X

]∗
H

[
I
X

]
= (X∗ − X)(A + DX) + XDX + XA + A∗X − C.

As in Section 2.3, a subspace S is said to be Ĥ-neutral if (Ĥx, y) = 0 for all
x, y ∈ S. (In particular, the generalized eigenspace corresponding to a nonreal
eigenvalue of M is necessarily both H-neutral and Ĥ-neutral.) Now it is seen
that:

Proposition 14.5.2. If X is a solution of the CARE with graph subspace G(X),
then X is hermitian if and only if G(X) is Ĥ-neutral. Also, X is hermitian if and
only if G(X) is H-neutral.

Note that the property in Proposition 14.5.2 that G(X) is Ĥ-neutral if and
only if G(X) is H-neutral follows from Theorem 7.5.3.

An important special case is, of course, that in which the coefficients of the
CARE are all real matrices. Then we define

Mr =
[

A D
C −AT

]
, Ĥr =

[
0 I
−I 0

]
, Hr =

[ −C AT

A D

]
.

Now the spectrum of M is symmetric with respect to both axes in the complex
plane, and Mr is said to have Hamiltonian symmetry. We have,

ĤrMr = −MT
r Ĥr, HrMr = −MT

r Hr, Hr = −ĤrMr,

and now Mr can be analyzed as an iHr-self-adjoint matrix.

14.6 An Existence Theorem

For simplicity, this presentation is first focussed on the complex case. The objec-
tive is to examine hermitian solutions of the CARE in terms of the M -invariant
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subspaces which are both graph subspaces (and so necessarily n-dimensional) and
neutral with respect to Ĥ or H . If the nonsingular matrix H0 defining an indefinite
inner product has inertia (π, ν, 0) then the dimension of a maximal H0-neutral sub-
space is min(π, ν) (see Theorem 2.3.4). Thus, using either H or Ĥ , the dimension
of a maximal neutral subspace matches that of a graph subspace.

The problem of finding a formal proof of existence of hermitian solutions of
the Riccati equation has now been transformed to that of proving the existence
of n-dimensional subspaces which are neutral with respect to Ĥ or H , and this
can be done using the theory of Chapters 4 and 5. However, an essential feature
is still missing. According to Proposition 14.4.1, such a subspace must also be
a graph subspace. This property holds under a further condition which links the
coefficients of the quadratic and linear terms of the Riccati equation (14.3.6):

Lemma 14.6.1. Assume that D ≥ 0 and the pair (A, D) is controllable. Let L be
an n-dimensional M -invariant H-nonpositive subspace of C2n. Then L is a graph
subspace.

Proof. For a subspace L defined in the statement, write

L = Range
[

X1

X2

]
for some n × n matrices X1 and X2. We are going to prove that X1 is invertible.

First, observe that M -invariance of L means that[
A D
C −A∗

] [
X1

X2

]
=
[

X1

X2

]
T

for some n × n matrix T . In other words,

AX1 + DX2 = X1T ; (14.6.10)

CX1 − A∗X2 = X2T. (14.6.11)

Then H-nonpositivity of L means that the matrix

[X∗
1 X∗

2 ]
[ −C A∗

A D

] [
X1

X2

]
= X∗

2DX2 + X∗
1A∗X2 + X∗

2AX1 − X∗
1CX1

(14.6.12)
is negative semidefinite.

Let K = KerX1. Since (14.6.12) is negative semidefinite, we have for every
x ∈ K:

0 ≥ x∗X∗
2DX2x + x∗X∗

1A∗X2x + x∗X∗
2AX1x − x∗X∗

1CX1x = x∗X∗
2DX2x,

and since D ≥ 0, X2x ∈ KerD, i.e.,

X2K ⊆ KerD. (14.6.13)
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Further, equation (14.6.10) implies that

TK ⊆ K. (14.6.14)

Indeed, for x ∈ K we have in view of (14.6.10) and (14.6.13):

X1Tx = AX1x + DX2x = 0.

Now equation (14.6.11) gives for every x ∈ K:

A∗X2x = −CX1x + A∗X2x = −X2Tx ∈ X2K

and so
A∗X2K ⊆ X2K. (14.6.15)

We see from (14.6.13) that A∗X2K ⊆ KerD and we now claim, more generally,
that

A∗rX2K ⊆ KerD, r = 0, 1, 2, . . . . . (14.6.16)

We have already proved this inclusion for r = 0 and r = 1. Assuming, inductively,
that (14.6.16) holds for r − 1, and using (14.6.15) it is found that

A∗r(X2K) = A∗r−1(A∗X2K) ⊆ A∗r−1X2K ⊆ KerD;

so (14.6.16) holds. Now for every x ∈ K:⎡⎢⎢⎢⎣
D

DA∗
...

DA∗n−1

⎤⎥⎥⎥⎦ (X2x) = 0,

or (X2x)∗[D, AD, . . . , An−1D] = 0. But rank[D, AD, . . . , An−1D] = n, so X2x =
0. But the only n-dimensional vector x for which X1x = X2x = 0 is the zero
vector; otherwise dimL < n, which contradicts our assumptions. So K = {0} and
X1 is invertible. Then we can write

L = Range
[

I
X

]
,

where X = X2X
−1
1 , and so L is indeed a graph subspace. �

Recall that M is H-self-adjoint and that H is assumed to have n positive
eigenvalues and n negative eigenvalues (Lemma 14.5.1). Thus, the existence of
n-dimensional M -invariant H-nonpositive subspaces (or, what is the same, M -
invariant maximal H-nonpositive subspaces) is ensured — as discussed in Chap-
ter 5. The next result associates subspaces of this kind (including H-neutral sub-
spaces) with certain solutions of (14.3.6) (including the hermitian solutions).
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Theorem 14.6.2. Assume that D ≥ 0 and the pair (A, D) is controllable, and let
L be an n-dimensional M -invariant, H-nonpositive subspace.Then

L = Range
[

I
X

]
, (14.6.17)

where X is a solution of the CARE such that

(X∗ − X)(A + DX) (14.6.18)

is negative semidefinite.
Conversely, if X is a solution of (14.3.6) such that (X∗ − X)(A + DX) is

negative semidefinite, then the subspace

Range
[

I
X

]
is n-dimensional, M -invariant and maximal H-nonpositive.

Proof. As in Proposition 14.4.1, if X is a solution of (14.3.6) then Range
[

I
X

]
is M -invariant. Indeed,

i

[
A D
C −A∗

] [
I
X

]
=
[

I
X

]
i(A + DX). (14.6.19)

Furthermore,[
I X∗ ] [ −C A∗

A D

] [
I
X

]
= −C + X∗A + A∗X + X∗DX (14.6.20)

and, since X is a solution of (14.3.6), this is equal to (X∗ − X)(A + DX). So if
this matrix is negative semidefinite, so is[

I X∗ ] [ −C A∗

A D

] [
I
X

]

and, in turn, this means that Range
[

I
X

]
is an H-nonpositive subspace. As

dim(Range
[

I
X

]
) = n and the signature of H is zero, the subspace Range

[
I
X

]
is maximal H-nonpositive (see Theorem 2.3.2).

Conversely, if L is an n-dimensional M -invariant H-nonpositive subspace
then, by the preceding lemma, it may be assumed to be a graph subspace, say

L = Range
[

I
X

]
. The M -invariance of L implies that

[
A D
C −A∗

] [
I
X

]
=
[

I
X

]
T0,
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for some T0 ∈ Cn×n. But this gives T0 = A + DX and then

C − A∗X = XT0 = X(A + DX),

i.e., X is a solution of (14.3.6). Further, using (14.6.20), H-nonpositivity of L
implies that

X∗DX + A∗X + X∗A − C = (X∗ − X)(A + DX)

is a negative semidefinite matrix. �

Theorem 14.6.2 shows, in particular, that there is a one-to-one correspon-
dence between the n-dimensional, M -invariant, maximal H-nonpositive subspaces
L and solutions of (14.3.6) with the property that (X∗ −X)(A + DX) is negative
semidefinite. This correspondence is given by the formula (14.6.17).

Now take advantage of the constructive development of M -invariant, H-
nonpositive subspaces of Section 5.12. Let C be a maximal set of nonreal eigen-
values of M with the property that, if λ ∈ C then λ /∈ C. Then Theorem 5.12.1
ensures the existence of an n-dimensional M -invariant, H-nonpositive subspace
LC such that the nonreal spectrum of the restriction of M to this subspace is C.
By Theorem 14.6.2,

LC = Range
[

I
X

]
,

where X is a solution of the CARE such that (X∗ − X)(A + DX) is negative
semidefinite. Furthermore, (14.6.19) shows that σ(M |LC ) = σ(i(A + DX)). The
following result is obtained:

Theorem 14.6.3. Assume that D ≥ 0 and that the pair (A, D) is controllable.
Then for every maximal set C′ of nonreal eigenvalues of M with the property that
λ ∈ C′ implies λ /∈ C′, there exists a solution of (14.3.6) such that (X∗ − X)(A +
DX) is negative semidefinite and σ(i(A + DX)) \ R = C′. In particular, there
exist solutions X1 and X2 of (14.3.6) such that (X∗

i − Xi)(A + DXi) is negative
semidefinite for i = 1, 2, and

� σ(A + DX1) ≤ 0, � σ(A + DX2) ≥ 0.

It is apparent that the construction of hermitian solutions via invariant sub-
spaces of M is considerably simplified if M has no real eigenvalues. The following
result suggests that there are some useful conditions under which this happens.
(Indeed, this is a simplified version of a more general result. See, for example, [67,
Theorem 7.2.8]).

Theorem 14.6.4. If D ≥ 0, C ≥ 0, (A, D) is controllable and (C, A) observable,
then M has no real eigenvalues.
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Proof. The argument is by contradiction. Thus, suppose λ ∈ R and

M

[
x1

x2

]
= λ

[
x1

x2

]
,

[
x1

x2

]
�=
[

0
0

]
.

Thus
iAx1 + iDx2 = λx1, iCx1 − iA∗x2 = λx2, (14.6.21)

or,
Ax1 + Dx2 = −iλx1, −Cx1 + A∗x2 = iλx2.

The first equation implies

x∗
2Dx2 = −iλx∗

2x1 − x∗
2Ax1, (14.6.22)

and the second gives

−x∗
1Cx1 = iλx∗

1x2 − x∗
1Ax2 = (−iλx∗

2x1 − x∗
2Ax1)∗ = x∗

2Dx2, (14.6.23)

having used (14.6.21) at the last step. But, as C ≥ 0 and D ≥ 0 this implies that,
in fact, Cx1 = Dx2 = 0.

Now equations (14.6.21) reduce to

(A + iλI)x1 = 0,

which, together with Cx1 = 0, implies CArx1 = 0 for r = 0, 1, 2, . . ., i.e., x1 is in
the unobservable subspace of the pair (C, A) (see Definition 14.1.5). But, as the
pair (C, A) is assumed to be observable this means that x1 = 0.

A similar argument using the controllability of (A, D) shows that x2 = 0 as
well, and a contradiction is obtained. �

14.7 Existence when M has Real Eigenvalues

In contrast to Theorem 14.6.4, when M has real eigenvalues they must have a
special structure. The first indication of this comes from a simple proposition:

Proposition 14.7.1. If there is a hermitian solution X of equation (14.3.6), then

M = i

[
A D
C −A∗

]
and i

[
A + DX D

0 −(A + DX)∗

]
are similar.

Proof. Given the existence of the solution X = X∗, consider the matrix T =[
I 0
X I

]
and verify that T−1MT has the required form. �
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It follows from this block similarity that M has real eigenvalues if and only if
A+DX (or −(A+DX)∗) has a pure imaginary eigenvalue. But such an eigenvalue
will re-appear as an eigenvalue of the block −(A+ DX)∗ (or A + DX , resp.) and,
therefore, as a multiple eigenvalue of M itself. Thus, when the symmetric Riccati
equation has a hermitian solution, real eigenvalues of M (if any) cannot be simple
eigenvalues.

This section is devoted to resolution of the more delicate case in which real
eigenvalues for M are admitted. The first result provides conditions under which
the multiplicities of the real eigenvalues of M have a relatively simple structure.
First recall Definition 14.1.1 and the notion of a “controllable subspace” (equation
(14.1.2)).

It will also be convenient to use notation for the “root subspace”, or “gener-
alized eigenspace” of an eigenvalue. Thus if λ0 ∈ σ(A) and A is n × n, then

Rλ0(A) = Ker(A − λ0I)n.

Notice that condition (14.7.24) below is automatically satisfied if the pair (A, D)
is controllable, as assumed in Theorems 14.6.2 and 14.6.3.

Theorem 14.7.2. Assume that D ≥ 0 and C∗ = C. If the CARE has a hermitian
solution X, and

Rλ0(A + DX) ⊆ CA,D (14.7.24)

for every pure imaginary or zero eigenvalue λ0 of A + DX, then all the partial
multiplicities corresponding to the real eigenvalues of M (if any) are even. In
fact, the partial multiplicities of a real eigenvalue λ0 of M are twice the partial
multiplicities of −iλ0 as an eigenvalue of A + DX.

For the proof of this theorem a technical lemma is needed which is, however,
of independent interest. (This proof, in turn, depends on Lemma A.2.3.)

Lemma 14.7.3. Let Y , D be n×n matrices with D ≥ 0 and let X+, X− be matrices
of the form

X± =
[

Y D
0 ±Y ∗

]
.

Assume also that, with the minus signs (with the plus signs) in this formula,

Rλ0(Y ) ⊆ CY,D (14.7.25)

for every eigenvalue λ0 of Y on the imaginary axis (on the real axis, respectively).
Then the partial multiplicities of any eigenvalue λ0 of X− (or X+) on the

imaginary axis (on the real axis) are all even. Indeed, they are twice the partial
multiplicities of λ0 as an eigenvalue of Y .



14.7. Existence when M has Real Eigenvalues 305

Proof. We consider the case of X−; the argument for X+ is similar. Let Z be a
Jordan form for Y and Z = SY S−1. Then[

Y D
0 −Y ∗

]
=
[

S−1 0
0 S∗

] [
Z D0

0 −Z∗

] [
S 0
0 (S−1)∗

]
where D0 = SDS∗ ≥ 0, and it is sufficient to prove that all eigenvalues of[

Z D0

0 −Z∗

]
on the imaginary axis (if any) have the required properties.

Let λ0 be such a pure imaginary or zero eigenvalue. Let Z1, . . . , Zk be the
Jordan blocks of Z corresponding to λ0, let their sizes be α1, . . . , αk, and denote
α = α1 + · · · + αk. Without loss of generality we can suppose that these blocks
are in the top left corner of Z. So we can write

[
Z D0

0 −Z∗

]
=

⎡⎢⎢⎣
Z′ 0 D1 D2

0 Z ′′ D∗
2 D3

0 0 −Z ′∗ 0
0 0 0 −Z ′′∗

⎤⎥⎥⎦
where Z ′ = Z1 ⊕ · · · ⊕ Zk, Z ′′ is the ‘rest’ of Z, and

D0 =
[

D1 D2

D∗
2 D3

]
is the corresponding partition of D0. The condition (14.7.25) now takes the form

Range
([

D1 D2

D∗
2 D3

]
,

[
Z ′ 0
0 Z ′′

] [
D1 D2

D∗
2 D3

]
, . . . ,[

(Z ′)n−1 0
0 (Z ′′)n−1

] [
D1 D2

D∗
2 D3

])
⊇
[

Cα

0

]
. (14.7.26)

Let D1 = (D1ij)k
i,j=1 be the partition of D1 consistent with the partitioning Z ′ =

Z1 ⊕ · · · ⊕ Zk. It is enough to prove that in the Jordan form of the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1 − λ0I 0 · 0 D111 D112 · D11k

0 Z2 − λ0I · 0 D121 D122 · D12k

· · · · · · · ·
0 0 · Zk − λ0I D1k1 D1k2 · D1kk

0 0 · 0 −Z∗
1 − λ0I 0 · 0

0 0 · 0 0 −Z∗
2 − λ0I · 0

· · · · · · · ·
0 0 · 0 0 0 · −Z∗

k − λ0I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
the blocks with eigenvalue 0 have sizes 2α1, . . . , 2αk. Let fij (i, j = 1, . . . , k) be the
entry in the bottom right corner of D1ij , and consider the matrix F = [fij ]ki,j=1
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formed by all these entries. Since F is a principal submatrix of D1, and hence of
D0, F ≥ 0.

Let us show that F is invertible. If not, then there exists an invertible matrix
U = [uij ]ki,j=1 such that UFU∗ has a zero in the bottom right corner. Let G =
[gij ]αi,j=1 be an α × α invertible matrix of the following structure:

gβiβj = uij where βi = α1 + · · · + αi; i, j = 1, . . . , k,
gqq = 1 for q �∈ {β1, . . . , βk},
gpq = 0 for p �= q and {p, q} �⊆ {β1, . . . , βk}.

Then the matrix GD1G
∗ has a zero in the bottom right corner, and since GD1G

∗ ≥
0, the last column and last row of GD1G

∗ are also zeros. On the other hand, from
the structure of G it is seen (bearing in mind that the β1-th,. . . , βk-th rows of
Z ′ − λ0I are zeros) that the bottom row of G(Z ′ − λ0I)G−1 is also zero. Now let

G̃ =
[

G 0
0 I

]
be an n×n matrix where I is the (n−α)× (n−α) unit matrix. It is clear that the
βk-th row of G̃D0G̃

∗ is zero, as well as the βk-th row of G̃(Z −λ0I)G̃−1. However,
this contradicts (14.7.26).

So the matrix F is invertible, and since F > 0, every principal submatrix of
F is also positive definite, hence invertible. Thus, Lemma A.2.3 applies and the
proof is complete. �

Proof of Theorem 14.7.2. Observe that (by Proposition 14.1.8) the right-hand side
of (14.7.24) can be written in the form

CA,D = Range[D, (A + DX)D, . . . , (A + DX)n−1D]

for any n × n matrix X . Let X = X∗ be a solution of the CARE. Then the
similarity[

I 0
−X I

] [
A D
C −A∗

] [
I 0
X I

]
=
[

A + DX D
0 −(A∗ + XD)

]
(14.7.27)

is easily verified. So we can consider the matrix

i

[
A + DX D

0 −(A∗ + XD)

]
in place of M . It remains to apply Lemma 14.7.3. �

Of particular interest in Theorem 14.7.2 is the case in which the pair (A, D)
is controllable. In this case condition (14.7.24) is always satisfied, and we obtain
the following corollary.
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Corollary 14.7.4. Assume that D ≥ 0 and the pair (A, D) is controllable. If the
CARE admits a hermitian solution, then all the partial multiplicities of M corre-
sponding to real eigenvalues (if any) are even.

We now return to Theorem 14.7.2. As observed previously, the matrix M is

Ĥ-self-adjoint, where Ĥ = i

[
0 I

−I 0

]
. It turns out that, in this context, the

sign characteristic of the pair (M, Ĥ) is completely determined.

Theorem 14.7.5. Under the hypotheses of Theorem 14.7.2, and assuming that the
CARE has a hermitian solution X satisfying the condition (14.7.24), the sign
characteristic of (M, Ĥ) consists of +1’s only.

The proof of this elegant result is, unfortunately, long and technical, so it is
omitted and the reader is referred to [40, Section II.4.4], or [67, Theorem 7.3.5],
for the details.

14.8 Description of Hermitian Solutions

Existence theorems for hermitian solutions of the CARE have been formulated in
the preceding sections. Here, it is assumed that hermitian solutions exist and they
are to be described in terms of the invariant subspaces of matrix M of equation
(14.5.8). The first result is really a special case of Theorem 14.6.2.

Theorem 14.8.1. Assume that, in the CARE, D ≥ 0 and (A, D) is a controllable
pair. Then every n-dimensional, M -invariant, H-neutral subspace L has the form

L = Range
[

I
X

]
, (14.8.28)

where X is a hermitian solution of the CARE and, in this case, M |L is similar to
i(A + DX).

Conversely, for every hermitian solution X of the CARE, the subspace L
given by (14.8.28) is n-dimensional, M -invariant, and H-neutral.

Proof. Since an H-neutral subspace is also H-nonpositive it follows from Theorem
14.6.2 that L is a graph subspace. Now apply Proposition 14.5.2 to conclude that
X is an hermitian solution of the CARE. The converse follows immediately from
Proposition 14.5.2. �

This important theorem establishes a one-to-one correspondence between the
hermitian solutions of the CARE and the n-dimensional, M -invariant, H-neutral
subspaces by means of equation (14.8.28). In this statement matrix H can be
replaced by Ĥ of equation (14.5.9), since L is H-neutral if and only if it is Ĥ-
neutral. The next theorem describes the hermitian solutions of the CARE in terms
of all M -invariant subspaces. We adopt the following terminology: If Z is an n×n
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matrix, and Ω is a subset of the complex plane, the sum of the root subspaces of
Z corresponding to the eigenvalues in Ω will be referred to as the spectral subspace
of Z corresponding to the eigenvalues in Ω. If Ω does not contain any eigenvalues
of Z, the corresponding spectral subspace is taken to be the zero subspace.

Theorem 14.8.2. Assume that D ≥ 0 and (A, D) is a controllable pair. Assume
that the CARE has a hermitian solution, and let N+ be the spectral subspace of
M corresponding to all eigenvalues in the open upper half-plane. Then for every
M -invariant subspace N ⊆ N+ there exists a unique hermitian solution X of the
CARE such that

Range
[

I
X

]
∩ N+ = N .

Conversely, if X is a hermitian solution of the CARE, then Range
[

I
X

]
∩ N+

is M -invariant.

The proof is obtained by combining Theorem 14.7.5 with Theorem 5.12.4.
The subspace N+ of Theorem 14.8.2 can be replaced by the spectral subspace

of M corresponding to any maximal set C of eigenvalues with the property that
λ0 ∈ C implies that λ0 /∈ C. Indeed, the following Theorem 14.8.4 is arrived at in
this way. It is obtained by taking N+ to be the spectral subspace of M determined
by the set iS and choosing N = N+. The assertion about partial multiplicities
follows from Theorem 5.12.3.

Theorem 14.8.2 allows us to count the number of hermitian solutions of the
CARE by counting the number of invariant subspaces of the restriction M |N+ .
First, let J+ be the Jordan form of M |N+ and, clearly J+ and M |N+ have the
same number of invariant subspaces. Now a Jordan block of size k has exactly
k + 1 invariant subspaces. Hence, if for each eigenvalue of J+ there is exactly one
associated Jordan block, then J+ has exactly

∏α
i=1(ki + 1) invariant subspaces,

where ki = dim Ker(λiI − J+), for i = 1, 2, . . . , α and λ1, . . . , λα are all the
distinct eigenvalues of J+.

If, on the other hand, dim Ker(λI − J+) ≥ 2 for some λ, then J+ has a
continuum of invariant subspaces. To see this observe that, if x and y are linearly
independent eigenvectors of J+ corresponding to the same eigenvalue λ, then all
of the 1-dimensional subspaces spanned by {x + cy}, c ∈ C, are different and
J+-invariant. The following corollary has been established:

Corollary 14.8.3. Assume that D ≥ 0, (A, D) is a controllable pair, and that
the CARE has a hermitian solution. If dimKer (λI − M) ≤ 1 for all λ in the
open upper half-plane, then the number of hermitian solutions of the CARE is
exactly

∏α
i=1(ki+1), where k1, . . . , kα are the algebraic multiplicities of all distinct

eigenvalues λ1, . . . , λα of M in the open upper half-plane.
If dimKer (λI−M) ≥ 2 for some nonreal λ, then the CARE has a continuum

of hermitian solutions.
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In particular, it follows from this corollary that the CARE has a unique
solution if and only if all eigenvalues of M are real and all their partial multiplicities
are even.

For the following theorem and the next section, it is convenient to work with
the spectrum of the matrix

T :=
[

A D
C −A∗

]
= −iM, (14.8.29)

rather than M itself. Of course, this simply involves a rotation of the spectrum
in the complex plane through a right angle and has no effect on the invariant
subspaces.

Theorem 14.8.4. Assume that D ≥ 0, (A, D) is a controllable pair, and that the
CARE has a hermitian solution. Let S be a set of nonreal eigenvalues of T with
nonzero real parts for which λ ∈ S implies −λ /∈ S and which is maximal with
respect to this property. Then there exists a unique hermitian solution X of the
CARE such that S is exactly the set of eigenvalues of A+DX having nonzero real
parts.

Furthermore, the partial multiplicities for every pure imaginary or zero eigen-
value λ0 (if any) of A+DX are equal to m1, . . . , mk, where the partial multiplicities
of T corresponding to λ0 are 2m1, . . . , 2mk.

Notice that, in this statement, the fact that the partial multiplicities of T
corresponding to purely imaginary λ0 are all even follows from Theorem 14.7.2.

14.9 Extremal Hermitian Solutions

In this section we continue our study of the CARE (14.3.6) under the assumptions
that C = C∗, D ≥ 0 and (A, D) is controllable. It will also be assumed throughout
this section that the CARE has at least one hermitian solution. We shall prove
the existence of maximal and minimal solutions under these hypotheses. Recall
that, for the optimal control problem discussed in Section 14.2, it is precisely the
maximal solution which is of interest.

The extreme solutions are defined with respect to a natural order relation
in the set of all hermitian matrices. Namely, X1 ≤ X2 for hermitian matrices
X1 and X2 means that X2 − X1 is positive semidefinite. A hermitian solution
X+ (resp. X−) of the CARE is called maximal (resp. minimal) if X ≤ X+

(resp. X− ≤ X) for every hermitian solution X . Obviously, if a maximal (resp. min-
imal) solution exists, it is unique. The following theorem establishes the existence
of extremal hermitian solutions and characterizes them in spectral terms.

Theorem 14.9.1. If C∗ = C, D ≥ 0, (A, D) is controllable, and the CARE has
a hermitian solution, then there exist a maximal hermitian solution X+, and a
minimal hermitian solution, X−. The solution X+ is the unique hermitian solution
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for which σ(A + DX+) lies in the closed right half-plane, and is obtained from
Theorem 14.8.4 by taking S to be the set of eigenvalues of T (of equation (14.8.29))
having positive real parts.

The solution X− is the unique hermitian solution with σ(A + DX−) in the
closed left half-plane, and is obtained from Theorem 14.8.4 by taking S to be the
set of eigenvalues of T having negative real parts.

Proof. Let X be a hermitian solution of the CARE and define Ã = A + DX and

U(t) = −
∫ t

0

e−τ �ADe−τ �A∗
dτ, t ∈ R.

Since (A, D) is controllable, so is (Ã, D) (by Proposition 14.1.8). So Lemma 14.1.7
is applicable, and U(t) is positive (resp. negative) definite for t < 0 (resp. t > 0).
Also,

U(t1) ≤ U(t2) for t1 ≥ t2,

and therefore (using the easily verified property that X ≥ Y > 0 implies 0 <
X−1 ≤ Y −1)

U(t1)−1 ≥ U(t2)−1 > 0 for 0 > t1 ≥ t2. (14.9.30)

It follows that the limit limt→−∞ U(t)−1 exists; indeed, this limit can be uniquely
determined by

( lim
t→−∞ U(t)−1x, x) = lim

t→−∞ (U(t)−1x, x)

for any x ∈ Cn, where the limit on the right-hand side exists by (14.9.30). More-
over, limt→−∞ U(t)−1 is positive semidefinite.

For any positive real T and t < T define

XT (t) = X + (U(t − T ))−1. (14.9.31)

Since XT (t) = [XU(t − T ) + I]U(t − T )−1, it follows that XT (t) is invertible for
t ∈ [T − δ, T ), where δ > 0 is small enough, and (because U(0) = 0)

lim
t→T

XT (t)−1 = 0.

By a direct computation, using the facts that X = X∗ is a solution of the CARE
and that U(t) satisfies the differential equation (cf. (14.1.3)),

U(t)′ = −ÃU − UÃ∗ − D,

and one checks easily that XT (t) satisfies the differential Riccati equation

XT (t)′ + C − XT (t)A − A∗XT (t) − XT (t)DXT (t) = 0, t < T. (14.9.32)

Equation (14.9.32), together with the boundary condition limt→T XT (t)−1 =
0, determine XT (t) uniquely as a quantity independent of the choice of the her-
mitian solution X of the CARE. Indeed, let VT (t) = XT (t)−1. Then, by differen-
tiating the equation XT (t) · VT (t) = I, it is found that

VT (t)′ = −VT (t)XT (t)′VT (t),
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and, using (14.9.32), VT (t) satisfies the differential equation

−VT (t)′ + VT (t)CVT (t) − AVT (t) − VT (t)A∗ − D = 0

for T − δ < t < T (this is the interval where the invertibility of XT (t) is guaran-
teed). Also, VT (t) satisfies the initial condition

lim
t→T

VT (t) = 0.

Hence, by the uniqueness theorem for solutions of the initial value problem we
find that VT (t) and, consequently, also XT (t) are uniquely determined (i.e., inde-
pendent of the choice of X) for T − δ0 < t < T . Here δ0 ≤ δ is a suitable positive
number. But then XT (t) is uniquely determined for all t < T , as is easily seen from
the formula (14.9.31). (Indeed, it follows from that formula and the definition of
U(t) that XT (t) is a real analytic function of t < T ; now use the property that if
two real analytic functions coincide on some open interval, they coincide on the
whole domain of definition.)

As T → ∞, the matrix function XT (t) converges uniformly on compact
intervals to the constant matrix

X+ = X + lim
t→−∞ U(t)−1. (14.9.33)

Of course, X+ is independent of X . Now (14.9.33) implies that X+ = X∗
+ and

X ≤ X+. Further,

X ′
T (t) =

dU(t − T )−1

dt
= −U(t − T )−1 · dU(t − T )

dt
U(t − T )−1

= U(t − T )−1[ÃU(t − T ) + U(t − T )Ã∗ + D]U (t − T )−1

= U(t − T )−1Ã + Ã∗U(t − T )−1 + U(t − T )−1DU(t − T )−1

has a limit when T → ∞ (keeping t fixed). As the function U (t − T )−1 itself has
a limit when T → ∞ (and t is fixed), it follows that

lim
T→∞

X ′
T (t) = 0.

For a fixed t, passing to the limit when T → ∞ in (14.9.32), we find that X+

is a solution of the CARE. Since X ≤ X+ for any hermitian solution X , X+ is
maximal.

Furthermore,

A + DX+ = lim
t→−∞(A + D(X + U(t)−1)) = lim

T→∞
(A + DXT (0)), (14.9.34)
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and

A + DXT (0) = Ã + D(U(−T ))−1 = Ã − D

[∫ −T

0

e−τ �ADe−τ �A∗
dτ

]−1

= −
⎡⎣(−Ã) − D

(∫ T

0

e−τ(− �A)De−τ(− �A∗) dτ

)−1
⎤⎦ .

Since rank[D,−ÃD, . . . , (−1)n−1Ãn−1D] = n, the second part of Lemma 14.1.7
ensures that σ(A + DXT (0)) lies in the open right half-plane. Using (14.9.34)
and the continuity of eigenvalues of A + DXT (0) as functions of T , we find that
�λ0 ≥ 0 for every λ0 ∈ σ(A+DX+). Uniqueness of a hermitian solution X of the
CARE with the additional property that �σ(A + DX) ≥ 0 follows from Theorem
14.8.4.

Applying the results we have obtained concerning maximal solutions of the
CARE to the equation

XDX − XA − A∗X − C = 0 (14.9.35)

and noting that X is a solution of (14.9.35) if and only if −X is a solution of
(14.3.6), we obtain the corresponding results for minimal solutions. �

Although Theorem 14.9.1 refers only to extremal solutions, the idea emerging
here is that the choice of S in the spectrum of T (of equation (14.8.29)) determines
a hermitian solution X (by Theorem 14.8.4) and the set S reappears as that part
of the spectrum of the resulting modified state matrix A + DX which is not on
the imaginary axis.

14.10 The CARE with Real Coefficients

Riccati equations frequently arise with real coefficient matrices, A, D, C, and it
is natural to investigate, not just the set of hermitian solutions, but the subset
of real symmetric solutions. Such equations are the topic of this section and, of
course, the preceding analysis applies but more structure can be expected in the
solution set of a “real” CARE (14.3.6). The definitions of matrices M and H are
retained (as in (14.5.8) and (14.5.9)):

M = i

[
A D
C −A∗

]
, H =

[ −C A∗

A D

]
. (14.10.36)

Recall that M is H-selfadjoint and, in particular, the spectrum of M is symmetric
with respect to the real axis. However, as A, D, C are now real, the spectrum
of M is also symmetric with respect to the imaginary axis. Thus, if λ0 ∈ σ(M)
then λ0, −λ0, and −λ0 are also in σ(M) and the partial multiplicities of such a
quadruple of eigenvalues will all be the same.
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A description of the set of real symmetric solutions of the CARE with real
coefficients is provided by the next theorem.

Theorem 14.10.1. Assume that, for the CARE with real coefficient matrices A,
D, C, D ≥ 0, the pair (A, D) is controllable, and there is at least one hermitian
(not necessarily real symmetric) solution. Let Ñ+ be the spectral subspace of M
corresponding to the eigenvalues in the halfopen first quadrant:

{λ ∈ C | �λ > 0, �λ ≥ 0}.
Then for every M -invariant subspace L̃ ⊆ Ñ+ there exists a unique real symmetric
solution X of the CARE such that

Range
[

I
X

]
∩ Ñ+ = L̃. (14.10.37)

Conversely, if X is a real symmetric solution of the real CARE, then the subspace

Range
[

I
X

]
∩ Ñ+ is M -invariant.

Proof. Denote by N++ (resp. N+) the spectral subspace of M in the open first
quadrant, {λ ∈ C | �λ > 0, �λ > 0}, (resp. in the open upper half-plane). Then
N++ ⊆ Ñ+ ⊆ N+.

Given an M -invariant subspace L̃ ⊆ Ñ+, let L++ = L̃ ∩ N++, and let L be
the sum of two subspaces, namely L̃ and

L++ = {< x1, . . . , x2n >∈ C2n | < x1, . . . , x2n >∈ L++}.
It is easily seen that, if the vectors f0, . . . , fk ∈ C2n form a Jordan chain for

M with the eigenvalue λ0, then the vectors

f0, −f1, f2, . . . ,±fk

form a Jordan chain of M with eigenvalue −λ0. Hence the subspace L++ is M -
invariant and L++ ∩ Ñ+ = {0}. Moreover, the subspace L enjoys the property
that

< x1, . . . , x2n >∈ L implies < x1, . . . , x2n >∈ L. (14.10.38)

In particular, L is M -invariant and L ∩ Ñ+ = L̃. By Theorem 14.8.2 there is a
unique hermitian solution X of the CARE such that

Range
[

I
X

]
∩ N+ = L,

and we claim that this X is real. Indeed, X is also a solution of the CARE, and
both L and N+ enjoy the property (14.10.38). Hence

Range
[

I
X

]
∩ N+ = L.
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However, the solution X is unique and so X = X . Thus, there is a real symmetric
solution X of the real CARE such that (14.10.37) holds.

Now let X and Y be two real symmetric solutions of the real CARE, and
assume that

Range
[

I
X

]
∩ Ñ+ = Range

[
I
Y

]
∩ Ñ+. (14.10.39)

Theorem 14.8.2 ensures that the subspace (14.10.39) is M -invariant. Taking com-
plex conjugates it follows that

Range
[

I
X

]
∩ Ñ− = Range

[
I
Y

]
∩ Ñ−, (14.10.40)

where
Ñ− :=

{
< x1, . . . , x2n >∈ C2n | < x1, . . . , x2n >∈ Ñ+

}
.

But Ñ− is the spectral subspace of M corresponding to the eigenvalues in the
quadrant

{λ ∈ C | �λ ≤ 0, �λ > 0}
(cf. the property of Jordan chains of M mentioned above). Combining (14.10.39)
and (14.10.40) it is found that

Range
[

I
X

]
∩ N+ = Range

[
I
Y

]
∩N+

and the uniqueness statement of Theorem 14.8.2 ensures that X = Y . �

Notice the special role played in this proof by the subspace Ñ+. In fact,
instead of this subspace, it is possible to take in its place a spectral subspace of M
corresponding to any set C+ of nonreal eigenvalues of M which is maximal with
respect to the two following properties:

(a) If λ0 ∈ C+ and is pure imaginary, then λ0 /∈ C+.

(b) If λ0 ∈ C+ and is not pure imaginary, then λ0, −λ0, and −λ0 are not in C+.

Now consider the possibility of real symmetric extremal solutions for the real
CARE. Recall that the extremal solutions are defined in Theorem 14.9.1 in terms
of subsets S of eigenvalues of matrix T (defined in (14.8.29)) which contain no
pairs (λ0,−λ0), and are maximal in this respect. It has been shown in Theorem
14.8.4 that, given the existence of one hermitian solution, every such subset S
determines a unique hermitian solution XS of the CARE such that S is the set
of eigenvalues of A + DX having nonzero real parts. The next result provides
necessary and sufficient conditions under which XS is real.
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Theorem 14.10.2. Consider the real CARE. Assume that D ≥ 0, (A, D) is a con-
trollable pair and that there exists at least one hermitian solution (not necessarily
real). Then a set S of eigenvalues of M (as defined above) consists of conjugate
pairs of eigenvalues if and only if the solution XS is real. In particular, the maxi-
mal and minimal solutions of the real CARE are real and symmetric.

The proof of this theorem uses the same line of argument as the proof of
Theorem 14.10.1 and will not be reproduced here (see the Exercises to this chap-
ter). The statement concerning the maximal and minimal solutions follows from
Theorem 14.9.1.

14.11 The Concerns of Numerical Analysis

First of all, general purpose algorithms for solving the CARE are designed for
equations with real matrix coefficients and are designed to compute the maximal
solution, when it exists. The analysis is generally undertaken in terms of the real
2n× 2n matrix

T =
[

A D
C −AT

]
of equation (14.8.29). Defining N =

[
0 I
−I 0

]
, it follows that

NT =
[

C −AT

−A D

]
,

a real symmetric matrix, and this (or the equivalent relation, N−1T T N = −T )
is the defining property of a Hamiltonian matrix. The spectrum of such a matrix
is distributed symmetrically with respect to both the real and the imaginary axes
(cf. the discussion of equations (14.10.36)).

It should also be recognized that, in most applications, the Hamiltonian has
no purely imaginary or zero eigenvalues. Recall that, when they do exist, they
are necessarily multiple eigenvalues (Theorem 14.7.2). As a consequence, many of
the analytical difficulties encountered in this chapter do not arise and, generally,
algorithms are designed for this less intricate case.

There are iterative methods for finding solutions of the real CARE (some
based on Newton’s method, for example). However, the methods of choice are
usually based on so-called “subspace” methods and the theoretical ideas developed
in this chapter. Conceivably, this could be done by direct application of Theorem
14.4.2 via the calculation of eigenvectors and, possibly, generalized eigenvectors.
But this strategy presents difficult problems of numerical stability and is generally
avoided for this reason. A class of more stable algorithms originates with Laub [72].
They are known as Schur methods because they involve reduction to triangular
(or quasi-triangular) form by a real orthogonal similarity — following a technique
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of Schur from 1909. The use of a real orthogonal similarity is the basis of more
reliable numerical performance.

Thus, a real orthogonal matrix U = [U1 U2] is to be found so that

[U1 U2]T
[

A D
C −AT

]
[U1 U2] =

[
S1 S12

0 S2

]
, (14.11.41)

where U1 and U2 are 2n×n, and S1, S2 are real n×n upper quasi-triangular2 ma-
trices. Their diagonal blocks of size 1 determine real eigenvalues, and those of size
2 determine conjugate pairs. The presence of the zero block on the right shows
immediately that RangeU1 is T -invariant. One must therefore ensure that the
eigenvalues of S1 are those required to generate the stabilizing subspace (i.e., asso-
ciated with the eigenvalues of the Hamiltonian in the right half-plane, cf. Theorem
14.9.1). When this is the case, we write

U1 =
[

X1

X2

]
and

[
A D
C −AT

] [
X1

X2

]
=
[

X1

X2

]
S1,

so that X = X2X
−1
1 (see Theorem 14.4.2).

Another (more substantial) difficulty is the design of an algorithm which
uses a sequence of elementary real orthogonal similarities but also retains the
Hamiltonian symmetry at each stage; a property which is also of great importance
in accurate numerical computation.

This difficulty can be resolved by further restricting the matrix U to be sym-
plectic, i.e., satisfying UT NU = N . The reason for this is the property described
in Lemma 14.11.1 below: that if U is both real orthogonal and symplectic and A
is Hamiltonian, then UAUT is Hamiltonian.

There is a remarkable theorem of Paige and van Loan [87] which has played
an important role in this connection. Observe first that a matrix A has the Hamil-
tonian structure of Mr if and only if NA = (NA)T . As noted, if A is Hamiltonian
and U is orthogonal and symplectic, then UAUT is also Hamiltonian. In this
way, the Hamiltonian structure is maintained through each step of the recursive
algorithm used to generate the matrix U of (14.11.41).

The next lemma is easy preparation for Theorem 14.11.2 to follow. The reader
is referred to [87] for the proof, as the technique of proof is quite different from
the methods used elsewhere in this book.

Lemma 14.11.1. If A is Hamiltonian and U is orthogonal and symplectic, then
UAUT is Hamiltonian.

Indeed, if A is Hamiltonian, in other words, the equation N−1AT N = −A

2An upper quasi-triangular matrix with entries aij has the property that aij = 0 whenever
i < j − 1.
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holds, then

(UAUT )T N = UAT UT N = UAT NU−1 = −UNAU−1 = −NUAU−1

= −N(UAUT ),
(14.11.42)

where we have used the properties of the orthogonal and symplectic matrix U ,
namely, UT NU = N and U−1 = UT . Now equality (14.11.42) shows that UAUT

is Hamiltonian as well.

Theorem 14.11.2. If T =
[

A D
C −AT

]
has no real eigenvalues, DT = D and

CT = C, then there exists a real matrix U which is both orthogonal and symplectic
for which

UT

[
A D
C −AT

]
U =

[
R G
0 −RT

]
,

where all matrices are real, R is upper quasi-triangular, and GT = G.

14.12 Exercises

1. Let A ∈ Cn×n and B ∈ Cn×m and Cr = Range[B AB . . . ArB]. Show that
for r = 0, 1, 2, . . . , Cr ⊆ Cr+1 and, if Cr = Cr+1 then Cs = Cr for all s ≥ r.
(In the latter case Cr is the controllable subspace of the pair (A, B).)

2. Prove Proposition 14.1.2. Hint: Use the previous exercise and the Cayley–
Hamilton theorem, which implies that An is a linear combination of matrices
I, A, A2, . . . , An−1.

3. Show that a controllable matrix pair is stabilizable, but that the converse
statement is not necessarily true.

4. Establish Propositions 14.1.6 and 14.1.8.

5. Verify the results claimed in the five examples of Section 14.3.

6. Prove that every invertible matrix A has a square root, i.e., there is a matrix
X such that X2 = A. Give an example of a 2× 2 real matrix with no square
root (either real or complex).

7. Consider the CARE (14.3.6) with

D =
[

1 1
1 1

]
, A =

[
0 −1
1 0

]
, C =

[
1 1
1 1

]
.

(a) Find all hermitian solutions.

(b) Identify the maximal and minimal solutions.

(c) Find all solutions X for which (X∗ − X)(A + DX) ≤ 0.
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(Notice that the matrix M of (14.5.8) has no real eigenvalues but is not
diagonalizable.)

8. Consider the CARE of the preceding exercise once more.

(a) Find all real symmetric solutions.

(b) Identify the maximal and minimal real symmetric solutions.

(c) Find all real solutions satisfying (X∗ − X)(A + DX) ≤ 0.

(d) Find all real solutions satisfying (X∗ − X)(A + DX) ≥ 0.

9. Consider the CARE (14.3.6) with D∗ = D, C ≥ 0, and (C, A) observable.
Show that all hermitian solutions (if any) are nonsingular.

10. Complete the “similar argument” in the proof of Theorem 14.6.4.

11. Consider the real CARE, and assume that D ≥ 0, the pair (A, D) is con-
trollable, and that the CARE has real symmetric solutions. Find conditions
in terms of the eigenvalues of T of (14.8.29) which guarantee that every
hermitian solution is real.

12. Use the techniques developed in the proof of Theorem 14.10.1 to establish
Theorem 14.10.2.

13. Provide a detailed proof of Theorem 14.11.2 for the cases n = 1 and n = 2.

14.13 Notes

The exposition of this chapter is based on the extensive treatment of algebraic
Riccati equations in [67] and earlier papers quoted there, together with expository
material from [65].



Appendix A

Topics from Linear Algebra

This Appendix contains a collection of concepts and results from linear algebra
and matrix theory which may serve as a refresher for some readers, but also serves
as a source of materials needed in the main body of the text.

Some of the basic definitions and results concerning linear spaces with an
inner product (not indefinite) are reviewed for easy comparison with the theory of
linear spaces with an indefinite inner product of the main text. (In this appendix
an inner product is always definite unless stated otherwise.) The reader is expected
to be familiar with most of the material presented here. For more details, including
proofs of statements not included here, see, for example, [70].

A.1 Hermitian Matrices

Some useful and well-known properties of hermitian matrices are collected in this
section.

Hermitian matrices H1, H2 ∈ Cn×n are said to be congruent if H1 = T ∗H2T
for some invertible T ∈ Cn×n. It is easily seen that congruent matrices form an
equivalence class in which the rank is an invariant. Furthermore, congruence has
the important property of preserving the “inertia” of a hermitian matrix, i.e., the
numbers of positive, negative, and zero eigenvalues as specified more precisely in:

Theorem A.1.1. Each equivalence class of congruent matrices in Cn×n contains
exactly one matrix with the partitioned form

D =

⎡⎣ Is 0 0
0 −Ir−s 0
0 0 0n−r

⎤⎦ ,

where r is the rank of all matrices in the class and s is the number of positive
eigenvalues, each counted as many times as its algebraic multiplicity.
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In this partitioned matrix the last row and column simply does not appear
if r = n. Clearly, the invariant r − s is just the number of negative eigenvalues
(counted with algebraic multiplicities). The triple of integers (s, r − s, n− r) is an
invariant of the equivalence class of all congruent matrices, and summarizes the
numbers of positive, negative, and zero eigenvalues. It is called the inertia — of
each matrix in the equivalence class.

It will be convenient to use the following notation for a hermitian matrix H :
i+(H), resp., i−(H), is the number of positive, resp., negative eigenvalues of H ,
counted with their multiplicities, and i0(H) is the number of zero eigenvalues of H
(multiplicities counted). Thus, H is congruent to the matrix D of Theorem A.1.1
if and only if i+(H) = s, i−(H) = r − s, and i0(H) = n − r.

Continuity of the eigenvalues (properly enumerated) of a matrix, as functions
of the entries of the matrix, yields the part (a) of the next theorem (part (b) follows
easily from part (a)):

Theorem A.1.2. Let there be given a hermitian X ∈ Cn×n. Then, there exists an
ε > 0 such that:

(a) i+ (Y ) ≥ i+ (X), i− (Y ) ≥ i− (X)

for every hermitian Y ∈ Cn×n satisfying ‖Y − X‖ < ε, and

(b) i+ (Y ) = i+ (X), i− (Y ) = i− (X)

for every hermitian Y ∈ Cn×n satisfying ‖Y − X‖ < ε and rankY = rankX.

Given the topic of this book, it is necessary to have constructive methods
for the determination of the inertia of an hermitian matrix, or, more specifically,
the determination of the eigenvalues themselves. Classical results concerning the
former problem can be formulated in terms of the “leading principal minors” of
an n × n matrix. They are, by definition, just the determinants h1, h2, . . . , hn of
the leading principal submatrices of matrix H of sizes 1×1, 2×2, . . . , n×n. Then
theorems of Frobenius and Jacobi, respectively, are as follows:

Theorem A.1.3. An n × n hermitian matrix H is positive definite if and only if
all its leading principal minors, h1, h2, . . . , hn are positive.

Theorem A.1.4. If H is an hermitian matrix of rank r and h1, h2, . . . , hr are
its leading principal minors, then the number of negative (respectively, positive)
eigenvalues of H is equal to the number of changes (respectively, constancies) of
sign in the sequence 1, h1, h2, . . . , hr.

A result describing the relationship between the inertia of a hermitian matrix
and the number of eigenvalues of another (not necessarily hermitian) matrix is
known as an inertia theorem. A result of this kind (that is needed elsewhere)
applies when the two matrices are connected by a linear inequality. Thus:

Theorem A.1.5. Let A ∈ Cn×n and G ∈ Cn×n be matrices such that G is hermitian
and A∗GA − G is positive definite. Then:
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(a) G is invertible;

(b) A has no eigenvalues of modulus 1;

(c) the number of eigenvalues of A, counted with their algebraic multiplicities,
that have modulus larger than 1, is equal to i+(G);

(d) the number of eigenvalues of A, counted with their algebraic multiplicities,
that have modulus smaller than 1, is equal to i−(G).

This statement is Theorem 13.2.2 of [70]. The result is originally due to
Taussky [98], Hill [49], and Wimmer [106]. A proof is available in [70] as well. This
theorem differs from Theorem 4.6.1, because here the invertibility of G is a priori
not assumed. However, one can easily deduce a proof of Theorem A.1.5 from that
of Theorem 4.6.1.

It is useful to have different ways of characterizing eigenvalues and eigenvec-
tors. In the case of hermitian matrices variational methods admit a characterization
of eigenvalues which is independent of the eigenvectors, and is frequently known
as the “mini-max” method. To describe this, let H be an hermitian matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. It is well-known that the largest and smallest
eigenvalues λ1 and λn can be written in the form

λ1 = maxx �=0
x∗Hx

x∗x
, λn = minx �=0

x∗Hx

x∗x
,

and that these extrema are attained at eigenvectors of H . The mini-max theorem
admits generalizations of these formulas to any eigenvalue of H .

Let Sj be any subspace of Cn of dimension j, for j = 1, 2, . . . , n. Then the
theorem can be stated as follows:

Theorem A.1.6. For j = 1, 2, . . . , n,

λj = minSn−j+1max0�=x∈Sn−j+1

x∗Hx

x∗x
,

or, in dual form,

λn−j+1 = maxSn−j+1min0�=x∈Sn−j+1

x∗Hx

x∗x
.

A.2 The Jordan Form

The complex vector space Cn×n can be subdivided into disjoint equivalence classes
of similar matrices. Each equivalence class is determined by a unique matrix in
canonical form. Conventions vary to some degree on the specification of this canon-
ical form. It forms a building block for other forms developed in the body of this
text.
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First define a typical Jordan block

Jm(λ) =

⎡⎢⎢⎢⎢⎢⎢⎣
λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
. . . . . . 0

...
... λ 1

0 0 · · · 0 λ

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Cm×m.

The fundamental theorem specifying the Jordan canonical form is as follows:

Theorem A.2.1. For any A ∈ Cn×n there is a block-diagonal matrix J ∈ Cn×n of
the form

J =

⎡⎢⎢⎢⎣
Jm1(λ1) 0 · · · 0

0 Jm2(λ2) · · · 0
...

...
. . . 0

0 0 · · · Jmr (λr)

⎤⎥⎥⎥⎦ (A.2.1)

which is similar to A.
Moreover, the matrix J is uniquely determined by A up to permutation of the

diagonal blocks, i.e., if A is also similar to a matrix⎡⎢⎢⎢⎣
Jn1(µ1) 0 · · · 0

0 Jn2(µ2) · · · 0
...

...
. . . 0

0 0 · · · Jns (µs)

⎤⎥⎥⎥⎦ ,

then r = s and the collection {Jn1(µ1), Jn2µ2, . . . , Jns(µs)} (possibly with repeated
elements) can be re-arranged so that Jnk

(µk) = Jmk
(λk) for k = 1, 2, . . . , r.

Proofs of this theorem can be found in many textbooks on linear algebra and
the theory of matrices such as Finkbeiner [23], Gantmacher [26], Gohberg et al.
[41], Horn and Johnson [53], Lancaster and Tismenetsky [70], Smith [94].

Here we present a simple and short proof of existence of the Jordan form
of a linear transformation on a finite dimensional vector space over the complex
numbers. The proof is taken from [32]. It is based on an algorithm that allows one
to build the Jordan form of a linear transformation A on an n-dimensional space
if the Jordan form of A restricted to an (n− 1)-dimensional invariant subspace is
known.

Let A be a linear transformation on Cn. A subspace of Cn is called cyclic if
it is of the form

Span
{
ϕ, (A − λI)ϕ, . . . , (A − λI)m−1ϕ

}
with

(A − λI)m−1ϕ �= 0 and (A − λI)mϕ = 0.
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Such a subspace is A-invariant and has dimension m. This follows immediately
from the fact that if for some r (r = 0, 1, . . . , m − 1),

cr(A − λI)rϕ + · · · + cm−1(A − λI)m−1ϕ = 0 and cr �= 0,

then, after multiplying on the left with (A−λI)m−r−1, we obtain cr(A−λ)m−1ϕ =
0, which is a contradiction.

The argument of the proof can be reduced to two cases. In one case there is
a vector g outside of an (n − 1)-dimensional A-invariant subspace F of Cn such
that Ag = 0. In this case

Cn = F+̇ Span{g}
and the proof is clear from the induction hypothesis onF . The difficult case is when
no such g exists. It turns out that one of the cyclic subspaces of the restriction of
A to F is replaced by a cyclic subspace of A in Cn which is larger by one dimension
while keeping the other cyclic subspaces unchanged.

We make the following observation: Assume

W = H +̇ Span{ϕ, Aϕ, . . . , Am−1ϕ}

with
Am−1ϕ �= 0, Amϕ = 0,

where H is an A-invariant subspace of Cn and AmH = {0}. Given h ∈ H, let
ϕ′ = ϕ + h. Then

W = H +̇ Span{ϕ′, Aϕ′, . . . , Am−1ϕ′},

with
Am−1ϕ′ �= 0, Amϕ′ = 0.

This observation follows immediately from the fact that, if a linear combination of
the vectors ϕ′, Aϕ′, . . . , Am−1ϕ′ belongs to H, then the same linear combination
of vectors ϕ, Aϕ, . . . , Am−1ϕ also belongs to H.

Proof of Theorem A.2.1 (existence). The proof proceeds by induction on the di-
mension n of Cn.

The decomposition is trivial if the space is C. Assume that it holds for spaces
of dimension n− 1. Let the space be Cn. First we assume that A is singular. Then
RangeA has dimension at most n − 1. Let F be an (n − 1)-dimensional space of
Cn which contains RangeA. Since AF ⊆ RangeA ⊆ F , the induction hypothesis
guarantees that F is the direct sum of cyclic subspaces

Mj = Span
{
ϕj , (A − λjI)ϕj , . . . , (A − λjI)mj−1ϕj

}
, 1 ≤ j ≤ k.

The subscripts are chosen so that dim Mj ≤ dim Mj+1, 1 ≤ j ≤ k − 1.
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Define S = {j | λj = 0}. Take g /∈ F . We claim that Ag is of the form

Ag =
∑
j∈S

αj ϕj + Ah, h ∈ F , (A.2.2)

if S �= ∅. If S = ∅, then Ag = Ah. To verify (A.2.2), note that Ag ∈ RangeA ⊆ F .
Hence Ag is a linear combination of vectors of the form

(A − λjI)qϕj , 0 ≤ q ≤ mj − 1, 1 ≤ j ≤ k.

For λj = 0, the vectors Aϕj , . . . , A
m−1ϕj are in A(F). If λj �= 0, then from

(A − λjI)mj ϕj = 0 and the binomial theorem we find that ϕj is of the form

mj∑
m=1

bmAmϕj .

Thus all vectors (A − λjI)qϕj belongs to AF and equation (A.2.2) holds. Let
g1 = g − h, where h is given in (A.2.2). Since g /∈ F and h ∈ F , we have g1 /∈ F
and from equation (A.2.2),

Ag1 =
∑
j∈S

αj ϕj . (A.2.3)

If Ag1 = 0, then Span{g1} is cyclic and Cn = F+̇ span{g1}.
Suppose Ag1 �= 0. Let p be the largest of the integers j in (A.2.3) for which

αj �= 0. Then for g̃ = g1/αp,

Ag̃ = ϕp +
∑

j∈S,j<p

αj

αp
ϕj . (A.2.4)

Define
H =

∑
j∈S,j<p

+̇Mj.

The subspace H is A-invariant and since dimMj ≤ dimMp, j < p, it follows that
Amp(H) = {0}. Thus by the observation (before the proof) applied to H +̇Mp

and equality (A.2.4), we have

H +̇Mp = H +̇ Span{Ag̃, . . . , Amg̃}.
Hence,

F =

⎛⎝∑
j �=p

+̇Mj

⎞⎠ +̇ Span{Ag̃, . . . , Amg̃}.

Since g̃ /∈ F ,

Cn = F +̇ Span{g̃} =

⎛⎝∑
j �=p

+̇Mj

⎞⎠ +̇ Span{Ag̃, . . . , Amg̃}.
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This completes the proof of the theorem under the assumption that A is singular.
For the general case, let µ be an eigenvalue of A. Then A − µI is singular

and by the above result applied to A − µI, it follows that Cn is the direct sum of
cyclic subspaces for A. �

This proof shows how to extend a Jordan form for A on an (n−1)-dimensional
invariant subspace F to an n-dimensional A-invariant subspace containing F .

The matrix (A.2.1) is called the Jordan form of A (or possibly the complex
Jordan form of A). Note that a matrix which is represented by a Jordan form in
some basis can be transformed by a similarity transformation to the same Jordan
form in the standard orthonormal basis (cf. Exercise 6).

Example A.2.2. Let

A =

⎡⎢⎢⎢⎢⎣
0 1 0 0 a
0 0 0 0 b
0 0 0 1 c
0 0 0 0 d
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , a, b, c, d ∈ C.

Then
Ae2 = e1, Ae1 = 0, Ae4 = e3, Ae3 = 0.

We take

F = Span{e1, e2, e3, e4} = Span{e2, Ae2} +̇ Span{e4, Ae4}.

Now e5 /∈ F and

Ae5 = ae1 + be2 + ce3 + de4 = be2 + de4 + A(ae2 + ce4).

If d �= 0, take g̃ = e5 − ae2 − ce4/d. Then

Ag̃ = e4 +
b

d
e2, A2g̃ = e3 +

b

d
e1

and
C5 = Span{e2, Ae2} +̇ Span{g̃, Ag̃, A2g̃}.

If d = 0 and b �= 0, take g̃ = e5−ae2− ce4/b. Then Ag̃ = e2, and Ae2 = e1. Hence

C5 = Span{g̃, Ag̃, A2g̃} +̇ Span{e4, Ae4}.

Finally, if d = b = 0, take g̃ = e5 − ae2 − ce4. Then Ag̃ = 0 and

C5 = Span{e2, Ae2} +̇ Span{e4, Ae4} +̇ Span{g̃}. �

This example is taken from [32].
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The following terminology is used consistently throughout this book: The
numbers λ1, λ2, . . . , λr in the Jordan form (A.2.1) of A are the eigenvalues of
A (not necessarily distinct), and the set of all eigenvalues is the spectrum of A,
denoted by σ(A).

For an eigenvalue λ0 of A, the geometric multiplicity, γ(λ0) is the number of
Jordan blocks in the Jordan form of A in which λ0 appears as an eigenvalue (i.e.,
in which λj = λ0). The geometric multiplicity of an eigenvalue can also be defined
as the dimension of the corresponding eigenspace.

The algebraic multiplicity , α(λ0), of eigenvalue λ0 is the sum of the sizes of
Jordan blocks in which λ0 appears as an eigenvalue. It is easily verified that

γ(λ0) = dim Ker(A − λ0I), α(λ0) = dim Ker(A − λ0I)n. (A.2.5)

The partial multiplicities of the eigenvalue λ0 are just the sizes of Jordan
blocks with the eigenvalue λ0 in the Jordan form of A. If several such Jordan
blocks have the same size, then the size is repeated as a partial multiplicity as
many times as the number of these Jordan blocks indicates. Thus, the number of
partial multiplicities is equal to the geometric multiplicity.

A chain of vectors v1, . . . , vk ∈ Cn is called a Jordan chain of an n×n matrix
A corresponding to its eigenvalue λ0 if v1 �= 0 and

(A − λI)v1 = 0, (A − λI)vj = vj−1, j = 2, 3, . . . , k.

The positive integer k is called the length of the Jordan chain v1, . . . , vk.
Generally speaking, determination of the Jordan form of a matrix is a difficult

problem, both theoretically and numerically, unless a special structure is present.
One such result, that determines the Jordan form of a matrix with a special
structure, is the next technical lemma, which is however of independent interest,
and is used in Chapter 14.

Lemma A.2.3. Let J1, . . . , Jk be the (upper triangular) nilpotent Jordan blocks of
sizes α1 ≥ α2 ≥ · · · ≥ αk respectively. Let

J0 =

⎡⎢⎢⎢⎣
J1 0 . . . 0
0 J2 . . . 0
... . . .

...
0 0 . . . Jk

⎤⎥⎥⎥⎦
and

Φ =
[

J0 Φ0

0 JT
0

]
where Φ0 = [φij ]αi,j=1 is a matrix of size α × α and α = α1 + · · · + αk. Let

βi = α1 + · · · + αi, i = 1, . . . , k
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and suppose that the k × k submatrix Ψ = [φβiβj ]ki,j=1 of Φ0 is invertible and
moreover is such that the principal submatrices [φβiβj ]�i,j=1, � = 1, 2, . . . , k− 1 are
invertible as well. Then the sizes of Jordan blocks in the Jordan form of Φ are
2α1, . . . , 2αk.

Proof. The proof will proceed in several steps. We start with a general fact of
independent interest:

Step 1. An n × n matrix A = [ai,j ]ni,j=1, ai,j ∈ C has the property that the con-
secutive principal submatrices, including A itself, [ai,j ]ki,j=1, k = 1, 2, . . . , n, are
invertible if and only if A admits a factorization A = LU , where L is an invertible
lower triangular matrix, and U is an invertible upper triangular matrix.

Proof of Step 1. The “if” part is clear by inspection, because the consecutive
(starting with the top left corner) principal submatrices of L and of U are in-
vertible in view of the triangular property of L and U . For the “only if” part,
argue by induction on n, the case n = 1 being trivial. Partition

A =
[

A0 y
x z

]
,

where A0 is (n−1)×(n−1), x is an (n−1)-component row, y is an (n−1)-component
column, and z ∈ C. Then by the induction hypothesis we have A0 = L0U0 for some
invertible lower and upper triangular matrices L0 and U0, respectively. Let

�1 = xU−1
0 , u1 = L−1

0 y,

and �2, u2 any pair of nonzero complex numbers such that

�2u2 = z − xA−1
0 y.

Note that the formula[
In−1 0

−xA−1
0 1

] [
A0 y
x z

]
=
[

A0 y
0 z − xA−1

0 y

]
guarantees that z − xA−1

0 y �= 0, and therefore the choice of �2 and u2 as above is
possible. Now a straightforward verification shows that[

A0 y
x z

]
=
[

L0 0
�1 �2

] [
U0 u1

0 u2

]
,

and we are done. �

In the subsequent steps, similarity transformations are to be applied to the
matrix Φ, to eventually obtain a matrix similar to Φ for which the sizes of the
Jordan blocks are obviously 2α1, . . . , 2αk.
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Step 2. Let i �∈ {β1, β2, . . . , βk} be an integer; 1 ≤ i ≤ α. Let Ui1 be the α × α
matrix such that all its rows (except for the (i + 1)-th row) are zeros, and row
number (i + 1) is [φi1 φi2 . . . φiα]. Put

Si1 =
[

I Ui1

0 I

]
;

then

Si1ΦS−1
i1 =

[
J0 Φi0

0 JT
0

]
,

where the i-th row of Φi0 is zero, and all other rows (except for the (i+1)-th) of Φi0

are the same as in Φ0. Note also that the submatrix Ψ is the same in Φi0 and in Φ0.
Applying this transformation sequentially for every i ∈ {1, . . . , α} \ {β1, . . . , βk},
starting with the smallest index i in the set {1, . . . , α} \ {β1, . . . , βk}, we find that
Φ is similar to a matrix of the form

Φ1 =
[

J0 V
0 JT

0

]
,

where the i-th row of V is zero for i �∈ {β1, . . . , βk}, and vβpβq = φβpβq , p, q =
1, . . . , k, where V = (vij)α

i,j=1.

Step 3. We show now that, by applying a similarity transformation to Φ1, it is
possible to make vij = 0 for i �∈ {β1, . . . , βk} or j �∈ {β1, . . . , βk}, without changing
the matrix Ψ.

Let Vj = [vij ]αi=1 be the j-th column of V . For fixed j �∈ {β1, . . . , βk} we have
vij = 0 for i �∈ {β1, . . . , βk}, and, since Ψ is invertible, there exist σj,1, . . . , σj,k ∈ C
such that

Vj +
k∑

i=1

σj,iVβi = 0.

Let S2j =
[

Iα 0
0 Iα + U2j

]
, where, but for the j-th column, U2j consists of zeros,

and the i-th entry in the j-th column of U2j is σj,βm if i = βm for some m and
zero otherwise. Then

S−1
2j Φ1S2j =

[
J0 V − Z1

0 JT
0 − Z2

]
,

with the following structure of the matrices Z1 and Z2:

Z1 = [0 . . . 0Vj0 . . . 0], where Vj is in the j-th position;

Z2 = [0 . . . 0Z2,j−10 . . . 0],

where
Z2,j−1 = 〈0, . . . , 0,−σj,1︸ ︷︷ ︸

α1

, 0, . . . , 0,−σj,2︸ ︷︷ ︸
α2

, . . . , 0, . . . , 0,−σj,k︸ ︷︷ ︸
αk

〉
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is an α× 1 column in the (j − 1)-th position in Z2. If j = βm +1 for some m, then
we put Z2 = 0. It is easy to see that S−1

2j Φ1S2j can be reduced by a similarity
transformation

S−1
2j Φ1S2j �→

[
Iα 0
0 U−1

3j

]
S−1

2j Φ1S2j

[
Iα 0
0 U3j ,

]

with a suitable invertible matrix U3j to the form
[

J0 W1,j

0 JT
0

]
, where the m-th

column of W1,j coincides with the m-th column of V − Z1 for m ≥ j and for m ∈
{β1, . . . , βk}. (The matrix U3j affects column operations that transform JT

0 − Z2

into JT
0 .) Applying the similarity

Φ1 �→
[

Iα 0
0 U−1

3j

]
S−1

2j Φ1S2j

[
Iα 0
0 U3j ,

]
sequentially for every j �∈ {β1, . . . , βk}, starting with the largest index j in the set

{1, 2, . . . , α} \ {β1, . . . , βk} (A.2.6)

and finishing with the smallest index j in the set (A.2.6), we find that Φ1 is similar
to the matrix

Φ2 :=
[

J0 W2

0 JT
0

]
,

where the (βi, βj)-entries of W2 (i, j = 1, . . . , k) form the matrix Ψ, and all other
entries of W2 are zeros.

Step 4. We replace the invertible submatrix Ψ in W2 by an invertible diagonal
matrix.

By Step 1, we have Ψ−1
1 Ψ = DΨ2, where Ψ−1

1 = (bij)k
i,j=1, bij = 0 for

i < j, is a lower triangular matrix with 1s on the diagonal: b11 = · · · = bkk = 1;
Ψ2 = (cij)k

i,j=1, cij = 0 for i > j is an upper triangular matrix with 1s on the
diagonal; and D is an invertible diagonal matrix. Define the α×α invertible matrix
S3 = (s(3)

p,q)α
p,q=1 as follows:

s(3)
p,q =

⎧⎨⎩ bij for p = βi, q = βj , where i, j = 1, . . . , k;
1 for p = q �∈ {β1, . . . , βk};
0 in all other cases.

Then [
S3 0
0 Iα

]
Φ2

[
S−1

3 0
0 Iα

]
=
[

J0 + Z3 W3

0 JT
0

]
,

where the (βi, βj) entries of W3 (i, j = 1, . . . , k) form the upper triangular matrix
DΨ2, and all other entries of W3 are zeros; the α × α matrix Z3 may contain
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nonzero entries only in the positions (βj − 1, βi) for i < j and such that αj > 1.

It is easy to see that
[

J0 + Z3 W3

0 JT
0

]
is similar to

Φ3 :=
[

J0 W3

0 JT
0

]
;

here the hypothesis α1 ≥ · · · ≥ αk plays a role. Indeed, assuming for a moment
for notational simplicity that k = 2, let the (β2 − 1, β1) entry of Z3 be equal to
γ ∈ C, and let T be the α2 × α1 matrix

T =
[

0α2×(α1−α2) diag (±γ,∓γ, . . . , τγ, 0)
]
, τ ∈ {∓,±}.

Then a computation shows that⎡⎣ Iα1 0 0
T Iα2 0
0 0 Iα

⎤⎦[ J0 + Z3 W3

0 JT
0

]⎡⎣ Iα1 0 0
−T Iα2 0
0 0 Iα

⎤⎦ = Φ3.

Define the α×α invertible matrix S4 = (s(4)
p,q)α

p,q=1 by the following equalities:

s(4)
p,q =

⎧⎨⎩ cij for p = βi, q = βj , where i, j = 1, . . . , k;
1 for p = q �∈ {β1, . . . , βk};
0 in all other cases.

Then [
Iα 0
0 S4

]
Φ3

[
Iα 0
0 S−1

4

]
=
[

J0 W4

0 JT
0 + Z4

]
,

where the (βi, βj) entries of W4 form the diagonal matrix D, and all other en-
tries are zeros; the α × α matrix Z4 can contain nonzero entries only in the
positions (βi, βj − 1) for i < j and such that αj > 1. Again, one verifies that[

J0 W4

0 JT
0 + Z4

]
is similar to

Φ4 :=
[

J0 W4

0 JT
0

]
.

This completes the proof of Step 4.

Now, by inspection, the sizes of the Jordan blocks of Φ4 are 2α1, . . . , 2αk. So
the same is true for Φ, and the lemma is proved. �

The proof of Lemma A.2.3 is taken from [36] (see also [42]), where the result
is stated under the more restrictive hypothesis that Φ0 is positive definite.
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The Jordan canonical form allows one to obtain easily many properties of ma-
trices that relate to eigenvalues and eigenvectors. For A ∈ Cn×n, the root subspace
Rλ0(A) corresponding to an eigenvalue λ0 of A is defined as follows:

Rλ0(A) = {x ∈ Cn | (A − λ0I)sx = 0 for some positive integer s} . (A.2.7)

In fact,
Rλ0(A) = Ker (A − λ0I)n,

where n is the size of A. In particular, we obtain that Rλ0(A) is indeed a subspace.
We have a direct sum decomposition:

Theorem A.2.4. If A is an n × n matrix with the distinct eigenvalues λ1, . . . , λk,
then Cn is a direct sum of the root subspaces Rλj (A), j = 1, 2, . . . , k:

Cn = Rλ1(A)+̇ · · · +̇Rλk
(A).

For the proof observe that Theorem A.2.4 is easy if A is a Jordan form
(the root subspaces are spanned by appropriate standard unit vectors), and for a
general A use the similarity to a Jordan form.

More generally:

Theorem A.2.5. If A is an n × n matrix with the distinct eigenvalues λ1, . . . , λk,
and if M is an A-invariant subspace, i.e., Ax ∈ M for every x ∈ M, then

M = (M∩Rλ1(A)) +̇ (M∩Rλ2(A)) +̇ · · · +̇ (M∩Rλk
(A)) .

Now the same questions concerning Jordan forms arise for equivalence classes
of real square matrices generated by real similarity transformations. Thus, our
concern is now with the real vector space Rn×n. The results are similar to those
above but the canonical forms are rather more complicated and, perhaps for this
reason, may be less familiar.

Description of an appropriate canonical form requires the introduction of
another class of matrices in standard form. For real numbers, λ and µ �= 0 define
the real Jordan block of even size, say 2m × 2m by

J2m(λ ± iµ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ µ 1 0 · · · 0 0
−µ λ 0 1 · · · 0 0
0 0 λ µ · · · 0 0

0 0 −µ λ · · · ...
...

...
...

...
... 1 0

...
...

...
... 0 1

0 0 0 0 λ µ
0 0 0 0 −µ λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, there are m real 2×2 blocks on the main diagonal and 2×2 identity matrices
making up the super-diagonal blocks. Clearly J2m(λ ± iµ) is a real matrix, and
σ(J2m(λ ± iµ)) = {λ + iµ, λ − iµ}.
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Theorem A.2.6. For any A ∈ Rn×n there is a block-diagonal matrix J ∈ Rn×n

which is similar to A over the reals (i.e there is an invertible S ∈ Rn×n such that
A = S−1JS) and has the form

J = Jm1(λ1) ⊕ Jm2(λ2) ⊕ · · · ⊕ Jmr (λr)
⊕J2mr+1(λr+1 ± iµr+1) ⊕ · · · ⊕ J2mq(λq ± iµq), (A.2.8)

where the λj are real and the µj are real and positive.
Moreover, the matrix J of (A.2.8) is uniquely determined by A up to permu-

tation of the diagonal blocks.

Naturally, the matrix J of (A.2.8) is known as the real Jordan form of A. A
complete proof of this theorem can be found in Chapter 12 of Gohberg et al. [41].
(Another source is Shilov [93].)

The root subspaces and Theorems A.2.4 and A.2.5 have natural analogues
in real spaces. Thus, if A ∈ Rn×n and if λ0 is a real eigenvalue of A, we define the
real root subspace

RR,λ0(A) = {x ∈ Rn | (A − λ0I)sx = 0 for some positive integer s} , (A.2.9)

and if µ ± iν is a pair of nonreal complex conjugate eigenvalues of A, the corre-
sponding real root subspace is defined by

RR,µ±iν(A)
=
{
x ∈ Rn | (A2 − 2µA + (µ2 + ν2)I)sx = 0 for some positive integer s

}
.

(A.2.10)

Theorem A.2.7. If A is a real n × n matrix with the distinct real eigenvalues
λ1, . . . , λk and the distinct pairs of nonreal complex conjugate eigenvalues µ1 ±
iν1, . . . , µ� ± iν�, then we have a direct sum decomposition

Rn = RR,λ1(A)+̇ · · · +̇RR,λk
(A)+̇RR,µ1±iν1(A)+̇ · · · +̇RR,µ�±iν�

(A).

For a proof see, for example, [93, Section 6.34].

Theorem A.2.8. If A and λ1, . . . , λk, µ1±iν1, . . . , µ�±iν� are as in Theorem A.2.7,
and if M ⊆ Rn is an A-invariant subspace, then

M = (M∩Rλ1 (A)) +̇ (M∩Rλ2(A)) +̇ · · · +̇ (M∩Rλk
(A))

+̇ (M∩RR,µ1±iν1(A)) +̇ · · · +̇ (M∩RR,µ�±iν�
(A)) .

A proof of Theorem A.2.8 can be found in [41], Chapters 2 and 12.

A.3 Riesz Projections

In this section we use basic complex analysis, in particular, contour integration
and the theorem of residues. All this background material is standard, and is found
in many undergraduate texts on complex analysis; see for example, [82], [89], [47].
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Let Γ be a simple (without self-intersections), closed, rectifiable contour in the
complex plane. The contour integral of a Cn×n-valued function F (z) = [fi,j(z)]ni,j=1

defined on Γ is understood in the entry-wise sense:∫
Γ

F (z)dz =
[∫

Γ

fi,j(z)dz

]n

i,j=1

.

We will be particularly interested in the resolvent functions F (z) = (zI − X)−1,
where X ∈ Cn×n. Clearly,

∫
Γ
(zI − X)−1dz is well defined provided Γ does not

intersect the spectrum of X . Furthermore, every entry of (zI −X)−1 is a rational
function of z ∈ C, as readily seen from the formula

(zI − X)−1 =
adj (zI − X)
det (zI − X)

,

where adj (zI − X) is the algebraic adjoint of zI − X . Thus, by the theorem of
residues, the integral

PΓ(X) :=
1

2πi

∫
Γ

(zI − X)−1dz (A.3.11)

is equal to the sum of the residues of (zI − X)−1 inside Γ.
The next proposition and theorem are basic in operator theory, see, for ex-

ample, [33, Section I.2]. We provide here elementary proofs using matrix analysis.

Proposition A.3.1. Let X ∈ Cn×n and let Λ be a subset of σ(X). Assume that
Γ is a contour such that Λ is inside Γ and σ(X) \ Λ is outside Γ. Then PΓ(X)
is a projection with RangePΓ(X) equal to the sum of the root subspaces of X
corresponding to the eigenvalues in Λ, and KerPΓ(X) equal to the sum of the root
subspaces of X corresponding to the eigenvalues in σ(X) \ Λ.

It is understood in this proposition that PΓ(X) = I, resp. PΓ(X) = 0, if
Λ = σ(X), resp. Λ = ∅. The projection PΓ(X) is called the Riesz projection of X
corresponding to Γ.

Proof. Using Theorem A.2.1, we may assume without loss of generality that X is
in the Jordan form. Then use the formula

(zI − Jm(λ))−1 =

⎡⎢⎢⎢⎣
(z − λ)−1 (z − λ)−2 · · · (z − λ)−m

0 (z − λ)−1 · · · (z − λ)−m+1

...
...

. . .
...

0 0 · · · (z − λ)−1

⎤⎥⎥⎥⎦ ,

which is straightforward to verify. Now the theorem of residues gives

1
2πi

∫
Γ

(zI − Jm(λ))−1dz =
{

0 if λ is outside Γ,
Im if λ is inside Γ,

and we are done. �



334 Appendix A. Topics from Linear Algebra

Note that the function

f(µ, X) := ‖(µI − X)−1‖

is continuous on the set{
(µ, X) : µ ∈ C \ σ(X), X ∈ Cn×n

}
(A.3.12)

(with n fixed), and therefore attains its maximum on every compact subset of
(A.3.12).

Theorem A.3.2. Let A ∈ Cn×n, and let Γ be a simple closed rectifiable contour
that does not intersect σ(A). Then there exist positive constants ε and M which
depend on A and Γ only such that for every matrix B ∈ Cn×n with ‖B − A‖ ≤ ε
the following properties hold:

(a) B has no eigenvalues on Γ;

(b) ‖PΓ(A) − PΓ(B)‖ ≤ M‖A − B‖.
Proof. The existence of ε > 0 such that the property (a) holds, is an easy con-
sequence of continuity of eigenvalues of B as functions of the entries of B; in
turn, the continuity of eigenvalues follows from the continuity of the roots of the
characteristic equation det (λI − B).

Using the definition of Riesz projections, with ε > 0 such that (a) holds and
with B satisfying ‖B − A‖ ≤ ε, we have

PΓ(A) − PΓ(B) =
1

2πi

∫
Γ

(zI − A)−1(A − B)(zI − B)−1dz.

Hence, using approximation of the integral by Riemann sums and triangle inequal-
ity for the operator matrix norm,

‖PΓ(A) − PΓ(B)‖

≤ length of Γ
2π

(
max
z∈Γ

‖(zI − A)−1‖
) (

max
z∈Γ

‖(zI − B)−1‖
)

‖A − B‖,

where the maxima exist (are finite) because the set{
(z, B) : z ∈ Γ, B ∈ Cn×n and ‖B − A‖ ≤ ε

}
is a compact subset of (A.3.12). Thus, we may take

M =
length of Γ

2π

(
max

z∈Γ, ‖B−A‖≤ε
‖(zI − B)−1‖

)2

to satisfy the property (b). �
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A.4 Linear Matrix Equations

Theorem A.4.1. Let A and B be (real or complex) matrices of sizes m × m and
n × n, respectively. Then the matrix equation

AX − XB = 0

with the unknown (real or complex) m × n matrix X has only the trivial solution
X = 0 if and only if σ(A) ∩ σ(B) = ∅.

See, e.g, [70, Chapter 12] for a proof.

A.5 Perturbation Theory of Subspaces

Throughout this section, we let PL be the orthogonal projection on a subspace
L ⊆ Cn: PLx = x if x ∈ L and PLx = 0 if x ⊥ L.

If M, N are subspaces in Cn, we define the gap between M and N by

θ(M,N ) := ‖PM − PN ‖. (A.5.13)

The set of subspaces in Cn is a compact complete metric space in the metric
defined by the function θ(M,N ); see, for example, [41, Chapter 13] for details
and more information on the gap.

We first collect some elementary and well-known properties of the gap. We
begin with convergence in the gap matric, which can be conveniently expressed in
terms of convergence of vectors.

Theorem A.5.1. Let Mj, j = 1, 2, . . . ,, be a sequence of subspaces in Cn such that

lim
j→∞

θ(Mj ,N ) = 0

for some subspace N . Then N consists of exactly those vectors x ∈ Cn for which
there exists a sequence of vectors xj ∈ Cn, j = 1, 2, . . . , such that

xj ∈ Mj , j = 1, 2, . . . , and lim
j→∞

xj = x.

A proof is given in [41, Chapter 13], for example.

Proposition A.5.2. If QM and QN are projections, not necessarily orthogonal, on
the subspaces M ⊆ Cn and N ⊆ Cn respectively, then

θ(M,N ) ≤ ‖QM − QN‖.

For the proof see [40, Proposition III.A.3] or [41, Theorem 13.1.1].
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Proposition A.5.3. Let X ∈ Cm×n. Then there exist positive constants K, ε such
that

θ(Ker X, KerY ) ≤ K‖X − Y ‖, θ(Range X, RangeY ) ≤ K‖X − Y ‖

for every Y ∈ Cm×n satisfying ‖X − Y ‖ < ε and rankX = rankY .

For the proof see, for example, [40, Lemma III.5.4] or [41, Theorem 13.5.1].

Proposition A.5.4. Assume
θ(M,N ) < 1. (A.5.14)

Then
dimM = dimN (A.5.15)

and PM(N ) = M, PN (M) = N .

Proof. If dimM < dimN then there exists an x ∈ N ∩ (M⊥) with ‖x‖ = 1. But
then

‖(PM − PN )x‖ = ‖x‖ = 1 and ‖PM − PN ‖ ≥ 1,

which contradicts (A.5.14), and (A.5.15) follows. If PM(N ) �= M then, using the
already proved property (A.5.15), we see that there exists an x ∈ N with ‖x‖ = 1
such that PMx = 0, i.e.,, x ⊥ M. Then we obtain a contradiction with (A.5.14)
as above. �

Two strictly increasing sequences of subspaces of Cn,

M1 ⊆ M2 ⊆ · · · ⊆ Mk, Mj �= Mj+1, and
N1 ⊆ N2 ⊆ · · · ⊆ Nk, Nj �= Nj+1,

are said to be δ-close if

‖PMj − PNj‖ < δ < 1 for j = 1, 2, . . . , k.

The next result is [40, Lemma III.5.2].

Theorem A.5.5. Given ε > 0 there exists δ > 0 which depends on ε and on n only
such that for every pair of δ-close sequences of subspaces {Mj}k

j=1 and {Nj}k
j=1

of Cn, there exists an invertible n × n matrix S (depending on the sequences) for
which

S(M1) = N1, . . . , S(Mk) = Nk, and ‖I − S‖ < ε.

Proof. We use induction on k. Put S1 = I − (PM1 − PN1 ) and observe that
S1(M1) = N1. (Use Proposition A.5.4.) Then ‖PM1 − PN1‖ < δ < 1 implies
‖S1 − I‖ < δ, and we are done in the case k = 1. Note also that

‖S−1
1 − I‖ <

δ

1 − δ
.
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Now consider the general case. Since S1PMj S
−1
1 is a (not necessarily orthogonal)

projection on S1(Mj), we have by Proposition A.5.2

θ(S1(Mj),Nj) ≤ ‖S1PMj S
−1
1 − PNj‖,

and therefore

θ(S1(Mj),Nj) ≤ ‖S1PMj (S−1 − I)‖ + ‖(S1 − I)PMj‖ + ‖PMj − PNj‖
< (1 + δ)

δ

1 − δ
+ δ + δ = δ

(
3 − δ

1 − δ

)
.

(A.5.16)
By the induction hypothesis there is a δ̃ > 0 and an invertible linear transformation
S̃ : Nk → Nk with the properties

S̃(S1(Mj)) = Nj , j = 1, 2, . . . , k − 1,

and ‖I − S̃‖ < 1
2
ε, provided that

‖PS1(Mj) − PNj‖ < δ̃, j = 1, 2, . . . , k − 1. (A.5.17)

Here S1 is a linear transformation such that S1(Mk) = Nk and ‖S1 − I‖ =
‖PMk

− PNk
‖. The existence of S1 is guaranteed by the case k = 1 which has

already been considered.
Define the linear transformation S : Cn → Cn by S |Mk

= S̃S1 |Mk
and

S |(Mk)⊥= I. Then, given (A.5.17) and

‖PMk
− PNk

‖ < δ,

we have

‖I − S‖ = ‖I − S |Mk
‖ ≤ ‖(I − S̃S1 |Mk

‖ + ‖I − S1‖ <
1
2
ε(1 + δ) + δ.

Using (A.5.16) we see that it is sufficient to choose δ > 0 so that

δ

(
3 − δ

1 − δ

)
< δ̃ and δ < min

{
ε

2 + ε
, 1
}

. �

A closer inspection of the proof of Theorem A.5.5 reveals that, in fact, one
can choose δ = ε/(12n−1) (provided ε ≤ 1/2). If the sequences of subspaces are of
length not exceeding k, then one can take δ = ε/(12k−1).

As an immediate corollary from Theorem A.5.5 we obtain:

Corollary A.5.6. Let L1 ⊆ L2 be two subspaces of Cn, and let x1, . . . , xk be a basis
in some direct complement to L1 in L2. Then for every ε > 0 there exists δ > 0
which depends on ε, n, and the basis {xj}k

j=1, such that if L̂1 ⊆ L̂2 are subspaces
of Cn with

θ(L̂1,L1) < δ, θ(L̂2,L2) < δ,
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then for some basis {x′
j}k

j=1 in a direct complement to L̂1 in L̂2 the inequalities

‖x1 − x′
1‖ < ε, . . . , ‖xk − x′

k‖ < ε

hold.

In particular, under the hypotheses of Corollary A.5.6, any pair of direct
complements of L1 in L2, and of L̂1 in L̂2, have the same dimension.

A.6 Diagonal Forms for Matrix Polynomials and

Analytic Matrix Functions

Some necessary background material from the theory of matrix polynomials and
analytic matrix functions will be surveyed in this section. The concepts and results
presented here are well-known, and proofs of most of the results can be found in
[70, Chapter 7] and [39, Chapters S1, S6], for example.

Consider an n× n matrix A(λ) whose elements are polynomials in the inde-
pendent variable λ with complex coefficients:

A(λ) =

⎡⎢⎢⎢⎣
a1,1(λ) a1,2(λ) . . . a1,n(λ)
a2,1(λ) a2,2(λ) . . . a2,n(λ)

...
...

. . .
...

an,1(λ) an,2(λ) . . . an,n(λ)

⎤⎥⎥⎥⎦ . (A.6.18)

Such a matrix A(λ) is known as a matrix polynomial, or a λ-matrix. (In the lit-
erature, the concept of matrix polynomials includes rectangular matrices, but in
this book we work only with square matrix polynomials.) The degree of A(λ) is
defined to be that of the scalar polynomial of largest degree among the entries of
A(λ). Addition and multiplication of n× n matrices (for a fixed n) is well-defined
in the usual way.

An n × n matrix polynomial A(λ) is said to be invertible if A(λ)B(λ) = In

for all λ and some matrix polynomial B(λ) (the inverse of A(λ)). It is easy to see
that A(λ) is invertible if and only if detA(λ) is a nonzero constant, i.e.,, a (scalar)
polynomial of degree zero. Indeed, the “if” part is clear in view of the formula

A(λ0)−1 =
adjA(λ0)
detA(λ0)

, λ0 ∈ C,

where adjA(λ0) is the algebraic adjoint of the matrix A(λ0). For the “only if”
part, apply the determinant function to both sides of the equality A(λ)B(λ) = In

to conclude that detA(λ) is invertible as a scalar polynomial, and therefore must
be a nonzero constant.

We say that a matrix polynomial A(λ) is unimodular if detA(λ) is a nonzero
constant. Thus, A(λ) is unimodular if and only if A(λ) is invertible.
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Two n × n matrix polynomials A(λ) and B(λ) are said to be equivalent if

A(λ) = P (λ)B(λ)Q(λ) (A.6.19)

for some unimodular matrix polynomials P (λ) and Q(λ). Clearly, polynomial
equivalence is an equivalence relation (it is reflexive, symmetric, and transitive).

Theorem A.6.1. Every n × n matrix polynomial A(λ) is equivalent to a diagonal
matrix polynomial of the form

D(λ) = diag
[

i1(λ) i2(λ) . . . ir(λ) 0 0 . . . 0
]
, (A.6.20)

where i1(λ), . . . , ir(λ) are scalar polynomials with complex coefficients and lead-
ing coefficient 1, and with the property that ij(λ) is divisible by ij−1(λ), for
j = 2, . . . , r. Moreover, the parameter

r := max{rankA(λ0) : λ0 ∈ C}

and the polynomials i1(λ), . . . , ir(λ) are uniquely determined by A(λ).

The form (A.6.20) is called the Smith form of A(λ) and the polynomials
i1(λ), . . . , ir(λ) are known as the invariant polynomials of A(λ). Those complex
numbers λ0 for which rankA(λ0) < r, i.e., λ0 is a root of at least one of the
invariant polynomials, are the eigenvalues of A(λ).

For every index j such that ij(λ) is not identically equal to 1, write the
complete factorization

ij(λ) =
αj∏

k=1

(λ − λk,j)βk,j ,

where for every j, the complex numbers λ1,j , . . . , λαj ,j are distinct, and βk,j are
positive integers. The factors (λ − λk,j)βk,j are called the elementary divisors of
A(λ). In the collection of all the elementary divisors of A(λ), a particular polyno-
mial (λ − λ0)β is repeated as many times as the number of invariant polynomials
in which it appears as a factor. The elementary divisors (λ − λk,j)βk,j where the
numbers λk,j are all equal to a fixed eigenvalue λ0, are said to correspond to, or to
be associated with, the eigenvalue λ0. In this case, the degrees of the elementary
divisors associated with λ0 are called the partial multiplicities of A(λ) at λ0. An
elementary divisor (λ − λk,j)βk,j is said to be linear if βk,j = 1.

It follows from Theorem A.6.1 that:

Theorem A.6.2. Two n × n matrix polynomials are equivalent if and only if they
have the same collection of elementary divisors.

A comparison with the Jordan form is instructive:

Theorem A.6.3. Let X ∈ Cn×n, and consider the n×n matrix polynomial A(λ) =
λI − X. Then:
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(1) The eigenvalues of A(λ) coincide with the eigenvalues of the matrix X.

(2) The degrees β1, . . . , βk of the elementary divisors (λ − λ0)β1 , . . . , (λ − λ0)βk

corresponding to the eigenvalue λ0 of A(λ) coincide with the sizes of Jordan
blocks with the eigenvalue λ0 in the Jordan form of X.

(3) The invariant polynomials of A(λ) are:

in(λ) = (λ − λ1)γ1,n (λ − λ2)γ2,n · · · (λ − λp)γp,n ,

in−1(λ) = (λ − λ1)γ1,n−1(λ − λ2)γ2,n−1 · · · (λ − λp)γp,n−1 , . . .

...
i1(λ) = (λ − λ1)γ1,1(λ − λ2)γ2,1 · · · (λ − λp)γp,1 .

Here, λ1, . . . , λp are the distinct eigenvalues of X and for k = 1, 2, . . . , p,

γk,n ≥ γk,n−1 ≥ · · · ≥ γk,1

are the sizes of Jordan blocks, in nonincreasing order, corresponding to the
eigenvalue λk (k = 1, 2, . . . , p). We set γk,m = 0 for m = n−q, n−q−1, . . . , 1
if the geometric multiplicity of λk is equal to q < n.

The proof is easily obtained by considering the Smith form (A.6.20) for λI−J ,
where J is the Jordan form of X . To analyze this Smith form note first that if scalar
polynomials φ(λ) and ψ(λ) are relatively prime, then the 2× 2 matrix polynomial
diag (φ(λ), ψ(λ)) is equivalent to diag (φ(λ)ψ(λ), 1):�

ψ(λ) φ(λ)
ρ(λ) τ (λ)

��
φ(λ) 0

0 ψ(λ)

���
1 −1
0 1

��
1 0

−ρ(λ)φ(λ) 1

��
=

�
φ(λ)ψ(λ) 0

0 1

�
,

for some polynomials ρ(λ) and τ(λ) such that ρ(λ)φ(λ) − τ(λ)ψ(λ) = 1, and the
existence of such ρ(λ) and τ(λ) is guaranteed by the relative primeness assumption.

In particular, it follows from Theorem A.6.3 that X is diagonalizable if and
only if all elementary divisors of A(λ) = λI −X are linear (i.e., all eigenvalues are
semi-simple). Also, X is nonderogatory (i.e., for every eigenvalue the corresponding
eigenvectors span a one-dimensional subspace) if and only if exactly one invariant
polynomial of A(λ) is nonconstant.

A diagonal Smith form is available also for a more general class of matrix
functions, namely, for matrices whose entries are analytic functions of the complex
variable in a fixed open set of the complex plane, or analytic functions of the real
variable defined on a fixed interval of the real axis. In short, such matrices will be
called analytic matrix functions. The next result is a local version of this Smith
form valid for analytic matrix functions in a (complex) neighborhood of a fixed
λ0 ∈ C.

Theorem A.6.4. Let A(λ) be an analytic n × n matrix function of the complex
variable λ ∈ U(λ0), where U(λ0) is an open neighborhood of λ0 ∈ C. Then there
exist analytic n×n matrix functions P (λ), Q(λ), λ ∈ U ′(λ0), where U ′(λ0) ⊆ U(λ0)
is an open neighborhood of λ0, with the following properties:
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(a) det P (λ) �= 0 and detQ(λ) �= 0 for λ ∈ U ′(λ0);

(b) for λ ∈ U ′(λ0) the equation

A(λ) = P (λ) diag
[

(λ − λ0)γ1 (λ − λ0)γ2 . . . (λ − λ0)γr 0 . . . 0)
]
Q(λ)

(A.6.21)
holds, where γ1 ≤ γ2 ≤ · · · ≤ γr are nonnegative integers.

Moreover, the parameter

r := max{rankA(λ) : λ ∈ U ′(λ0)} (A.6.22)

and the integers γj, j = 1, 2, . . . , r, are uniquely determined by A(λ) and by λ0.

A proof of Theorem A.6.4 can be developed along the same lines as the proof
of Theorem A.6.1 (see, for example, [70, Chapter 7], [39, Chapter S1]). The result
of Theorem A.6.4 is also valid (with exactly the same proof) for real analytic
matrix functions A(λ) of the real variable λ in a neighborhood of λ0 ∈ R in the
domain of definition of A(λ). In this case, U ′(λ0) is a real neighborhood of λ0, and
P (λ) and Q(λ) are real analytic matrix functions. The nonzero integers among γj ,
j = 1, 2, . . . , r are called the partial multiplicities of A(λ) at λ0. In fact:

Proposition A.6.5. The sum
γ1 + · · · + γs (A.6.23)

is equal to the minimal multiplicity of λ0 as a zero of the determinants of the s×s
submatrices of A(λ), for s = 1, 2, . . . , r.

Note that determinants of submatrices of A(λ) are scalar analytic functions
of λ, so that the multiplicities of their zeros are well-defined. To prove Proposition
A.6.5, use (A.6.21) and the Binet–Cauchy formula for subdeterminants of products
of matrices ([70, Section 2.5] or [41, Section A.2]).

Theorem A.6.6. The partial multiplicities of an analytic matrix function at λ0

are invariant under multiplication on the left and on the right by analytic matrix
functions invertible at λ0.

Proof. Suppose that the equation

A(λ) = P (λ)B(λ)Q(λ), λ ∈ U(λ0) (A.6.24)

holds, where A(λ), P (λ), B(λ), and Q(λ) are analytic n × n matrix functions in
an open neighborhood U(λ0) of λ0 ∈ C, and that detP (λ0) �= 0, detP (λ0) �= 0.
Then

detP (λ) �= 0, detP (λ) �= 0, λ ∈ U ′(λ0),

where U ′(λ0) ⊆ U(λ0) is an open neighborhood of λ0.
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The definition (A.6.22) shows that the parameter r is the same for A(λ) and
for B(λ). Let

γ1(A) ≤ γ2(A) ≤ · · · ≤ γr(A), γ1(B) ≤ γ2(B) ≤ · · · ≤ γr(B)

be the partial multiplicities of A(λ) and of B(λ) at λ0, respectively. Using Propo-
sition A.6.5 and the Binet–Cauchy formula, we obtain

γ1(A) + · · · + γs(A) ≥ γ1(B) + · · · + γs(B), s = 1, 2, . . . , r. (A.6.25)

Write (A.6.24) in the form B(λ) = P (λ)−1A(λ)Q(λ)−1, note that P (λ)−1 and
Q(λ)−1 are analytic in an open neighborhood of λ0, and argue in a similar way to
obtain

γ1(B) + · · · + γs(B) ≥ γ1(A) + · · · + γs(A), s = 1, 2, . . . , r. (A.6.26)

Now the inequalities (A.6.25) and (A.6.26) yield γs(A) = γs(B), s = 1, 2, . . . , r,
i.e., the result of Theorem A.6.6. �

The final result on diagonal forms concerns analytic diagonalizability of her-
mitian matrix polynomials:

Theorem A.6.7. Let L(λ) be a hermitian matrix polynomial. Then the matrix L(λ)
has a diagonal form

L(λ) = U(λ) · diag
[
µ1(λ), . . . , µn(λ)

] · V (λ), λ ∈ R, (A.6.27)

where U(λ) is unitary for real λ and V (λ) =
(
U(λ)

)∗
.

Moreover, the functions µi(λ) and U(λ) can be chosen to be analytic functions
of the real parameter λ.

This result is a particular case of Rellich’s theorem [58]. For a proof see [39,
Chapter S6]) for example, where the result is proved in the more general setting
of selfadjoint analytic matrix functions.

A.7 Convexity of the Numerical Range

The numerical range (also known as the field of values), W (A), of a matrix A ∈
Cn×n is a subset of the complex plane defined by

W (A) = {(Ay, y) ∈ C : y ∈ Cn, ‖y‖ = 1}.
The numerical range is compact, i.e., closed and bounded, because it is the range
of the continuous complex-valued function f(y) = (Ay, y) defined in the compact
set {y ∈ Cn : ‖y‖ = 1}. Numerical ranges of matrices (and linear transforma-
tions) have been extensively studied in the literature. Here, we need the celebrated
Toeplitz–Hausdorff theorem:
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Theorem A.7.1. For every A ∈ Cn, the set W (A) is convex.

Many proofs of this theorem are available in the literature and, rather than
reproduce one of them, note that references [3], [54, Chapter 1], [76], contain the
more elementary and detailed proofs.

Letting

X1 =
1
2
(A + A∗), X2 =

1
2i

(A − A∗),

and identifying C with R2, it can be seen that W (A) coincides with the joint
numerical range W (X1, X2) of the two hermitian matrices X1 and X2:

W (X1, X2) := {((X1y, y), (X2y, y)) ∈ R2 : y ∈ Cn, ‖y‖ = 1}. (A.7.28)

Thus, Theorem A.7.1 can be restated as follows:

Theorem A.7.2. For every pair of hermitian n × n matrices (X1, X2), the set
W (X1, X2) is convex.

For real symmetric matrices, the real joint numerical range WR(X1, X2) is
defined in a similar way:

WR(X1, X2) := {((X1y, y), (X2y, y)) ∈ R2 : y ∈ Rn, ‖y‖ = 1},
where X1 and X2 are n×n real symmetric matrices. The real Toeplitz–Hausdorff
theorem, proved by Brinkman [12], reads slightly differently from Theorem A.7.2;
the real joint numerical range is generally nonconvex if n = 2:

Theorem A.7.3. For every pair of real symmetric n×n matrices (X1, X2), the set
WR(X1, X2) is convex, provided n > 2.

For every pair of real symmetric 2×2 matrices (X1, X2), the set WR(X1, X2)
is either an ellipse, a line segment, or a singleton. In particular, WR(X1, X2)
bounds a convex set.

An elementary proof of Theorem A.7.3 for the case n ≥ 3, which also includes
a proof of Theorem A.7.1, is given in [2], [3].

Proof. Here, we only prove the case n = 2. Note first that the following transfor-
mations do not change the required properties of WR(X1, X2):

• Simultaneous orthogonal transformations

(X1, X2) �→ (UT X1U, UT X2U),

where U ∈ R2×2 is an orthogonal matrix;

• Shifts (X1, X2) �→ (X1 + aI, X2 + bI) where a, b ∈ R; scalings (X1, X2) �→
(rX1, sX2), where r, s are nonzero real numbers; and

• Linear combinations: adding to one of the X1, X2 a scalar multiple of the
other.



344 Appendix A. Topics from Linear Algebra

Thus, applying suitable transformations of these kinds, we may assume without
loss of generality that one of the following cases occurs if at least one of X1, X2 is
nonzero:

(1) X1 =
[

1 0
0 −1

]
, X2 =

[
0 1
1 0

]
,

(2) X1 =
[

1 0
0 −1

]
, X2 = 0,

(3) X1 = 0, X2 =
[

0 0
0 1

]
.

The cases (2) and (3) are easy: WR(X1, X2) is a line segment, possibly degenerated
into a singleton. In case (1), upon writing

y =
[

cosα
sin α

]
∈ R2, 0 ≤ α ≤ 2π,

we have

WR(X1, X2) = {(cos(2α), sin(2α)) ∈ R2 : 0 ≤ α ≤ 2π},
which is the unit circle. �

A.8 The Fixed Point Theorem

In this section we present a well-known theorem asserting existence of a fixed point
of a continuous map. It is known as Brouwer’s fixed point theorem.

Theorem A.8.1. Let S be a nonempty closed bounded convex subset of Rm, and let
f : S −→ S be a continuous function. Then f has a fixed point, i.e, there exists
x ∈ S such that f(x) = x.

An elementary and complete proof of the theorem can be found in [102,
Section 7.5], or [31, Chapter 7], for example.

The result of Theorem A.8.1 is clearly valid also for every (nonempty) topo-
logical space which is homeomorphic to a closed bounded subset of Rm for some
m. On the other hand, each of the three hypotheses: convexity, closedness, and
boundedness, is essential for the result. Indeed, the unit circle is closed, bounded,
but not convex; a rotation of the unit circle has no fixed point (unless the angle
of the rotation is an integer multiple of 2π). The real line is closed and convex,
but not bounded; a shift f(x) = x + a, x ∈ R, where a ∈ R \ {0} has no fixed
points. The open interval (0, 1) is bounded, convex, but not closed; the function
f : (0, 1) −→ (0, 1) defined by f(x) = (x + 1)/2 has no fixed points in (0, 1).
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A.9 Exercises

1. Prove that a selfadjoint, unitary, or normal linear transformation is unitarily
similar to a diagonal linear transformation in the standard basis.

2. Prove that any square matrix is unitarily similar to an upper (or lower)
triangular matrix in the standard basis. (Hint: this is close to a well-known
theorem which can be attributed to either Schur or Toeplitz.)

3. Show that any square matrix is similar to a matrix with orthogonal root
subspaces.

4. Given any set of linearly independent vectors x1, x2, . . . , xn ∈ Cn, show that
there is a positive definite inner product on Cn in which these vectors form
an orthogonal basis.

5. Let M1 and M2 be two subspaces of Cn for which M1+̇M2 = Cn. Show
that there is a positive definite inner product in which M2 = M[⊥]

1 .

6. Let φj = [φjk ]nk=1, j = 1, 2, . . . , n be vectors from Cn. Show that:

(a) These vectors form a basis for Cn if and only if

det[φjk ]nj,k=1 �= 0. (A.9.29)

(b) The linear transformation defined by the matrix Φ = [φjk ]nj,k=1 trans-
forms the standard basis e1, e2, . . . , en into φ1, φ2, . . . , φn.

(c) If the condition (A.9.29) holds then the matrix

H := ([φjk ]nj,k=1)
−1
[
([φjk]nj,k=1)

∗]−1

is positive definite.

7. Let a2, a3, . . . , an ∈ C and define

H1 =

⎡⎢⎢⎢⎢⎢⎣
1 a2 a3 · · · an

a2 1 0 · · · 0
a3 0 1 · · · 0
...

...
...

an 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦ .

(a) Under what conditions is the matrix H1 positive or negative definite?

(b) When the matrix H1 is indefinite, how many negative eigenvalues does
it have?

8. Let a ∈ C and define

H3 =

⎡⎢⎢⎢⎣
1 a a2 · · · an−1

a 1 a · · · an−2

... · · · ...
an−1 an−2 an−3 · · · 1

⎤⎥⎥⎥⎦ .
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(a) When is H3 positive or negative definite?

(b) How many negative eigenvalues does H3 have?

(c) When is H3 invertible? Find the inverse when it exists. When are all
principal minors nonzero?

9. Find the Jordan forms for the following matrices:

A1 =

�
�

−2 2 −4
1 0 1
4 −3 6

�
� , A2 =

�
�

0 4 −2
4 10 3
−9 −18 −4

�
� , A3 =

�
�

0 −4 −2
1 4 1
0 0 2

�
� ,

A4 =

�
�������

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

�
�������

, A5 =

�
�����

a1 a2 · · · an

an a1 · · · an−1

· · · · · · · · ·
a2 a3 · · · a1

�
�����

.

The rows of A5 are cyclic permutations of the first row.

A6 =

�
�����������

0 1 0 · · · 0 0

−1 0 1 · · · 0 0

0 −1 0 · · · 0 0

· · · · · · · · ·
0 0 0 · · · 0 1

0 0 0 · · · −1 0

�
�����������

, A7 =

�
�����������

1 α α · · · α α

β 1 α · · · α α

β β 1 · · · α α

· · · · · · · · ·
β β β · · · 1 α

β β β · · · β 1

�
�����������

,

α, β ∈ C.

10. Find the Smith form of the following matrix polynomials:

(a) L1(λ) =
[

p1(λ) p2(λ)
0 p3(λ)

]
, where p1(λ), p2(λ), p3(λ) are scalar poly-

nomials.

(b) L2(λ) = I2λ
2 +
[

0 a
a 0

]
λ + I2, a ∈ C.

(c) L3(λ) =
[

2 1
1 1

]
λ2 +

[
4 2
2 0

]
λ +

[
2 1
1 1

]
.

(d) L4(λ) =
[

2 1
1 0

]
λ2 +

[
4 2
2 0

]
λ +

[
2 1
1 0

]
.

(e) L5(λ) =
[

p(λ)q(λ) + r(λ) q(λ)
p(λ) 1

]
, where p(λ), q(λ), r(λ) are scalar

polynomials.
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(f) L6(λ) =
[

λ + 1 λ λ3

λ + 2 λ2 λ − 1

]
.

11. If diag (i1(λ), . . . , ir(λ), 0, . . . , 0) is the Smith form of an n × n matrix poly-
nomial L(λ), what are the Smith forms of the following matrix polynomials?

(a) L(p(λ)), where p(λ) is a scalar polynomial;

(b)
[

L(λ) (L(λ))2 + 2L(λ)
0 −L(λ)

]
.

12. For the following collections of elementary divisors of a 6× 6 matrix polyno-
mial, find the invariant polynomials:

(a) λ, λ+1, (λ+1)2, (λ+1)2, λ+2, λ+2, (λ+2)2, (λ+2)2, λ+3, (λ+3)2,
(λ + 3)3.

(b) (λ− i)3, (λ− i)3, (λ− i)3, (λ− i)3, (λ− i)3, (λ− i)3, (λ + i)2, (λ + i)2,
(λ + i)2, (λ + i)2.

13. Give an example of a pair of 2 × 2 matrix polynomials L1(λ) and L2(λ)
such that L1(λ) and L2(λ) are equivalent, but (L1(λ))2 and (L2(λ))2 are not
equivalent.
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[41] I. Gohberg, P. Lancaster, and L. Rodman. Invariant Subspaces of Matrices with
Applications. Wiley - Interscience, New York etc., 1986.

[42] I. Gohberg, P. Lancaster, and L. Rodman. On hermitian solutions of the symmetric
algebraic Riccati equations, SIAM J. Control and Optim., 24:1323-1334, 1986.

[43] I. Gohberg and B. Reichstein. On classification of normal matrices in an indefinite
scalar product. Integral Equations and Operator Theory, 13:364-394, 1990.

[44] I. Gohberg and B. Reichstein. On H-unitary and block-Toeplitz H-normal operators.
Linear and Multilinear Algebra, 30:17-48, 1991.

[45] I. Gohberg and B. Reichstein. Classification of block-Toeplitz H-normal operators.
Linear and Multilinear Algebra, 34:213-245, 1993.

[46] I. Gohberg, and E. I. Sigal. On operator generalizations of the logarithmic residue
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cations, Vol. 7, Birkhäuser Verlag, Basel, 1983.

[62] M. G. Krein. Stability Theory of Differential Equations in Banach Spaces. Kiev,
1964. (Russian). ([16] is an expanded English translation.)

[63] L. Kronecker. Algebraische Reduktion der Scharen bilinearer Formen. S.-B. Akad.
Berlin, 763–77, 1890.

[64] P. Lancaster. Lambda-matrices and Vibrating Systems. Pergamon Press, 1966;
Dover, 2002.

[65] P. Lancaster. Lectures on Linear Algebra, Control and Stability. Dept. of Mathe-
matics and Statistics, University of Calgary, 1999.

[66] P. Lancaster and L. Rodman. Existence and uniqueness theorems for algebraic
Riccati equations. International Journal of Control, 32:285-309, 1980.

[67] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon press, Oxford,
1995.

[68] P. Lancaster and L. Rodman. Canonical forms for hermitian matrix pairs under
strict equivalence and congruence. SIAM Review, to appear.

[69] P. Lancaster and L. Rodman. Canonical forms for symmetric/skew-symmetric real
matrix pairs under strict equivalence and congruence. Linear Algebra and Appl., to
appear.



Bibliography 353

[70] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Or-
lando, 1985.

[71] H. J. Landau. Polynomials orthogonal in an indefinite metric operator theory. Oper-
ator theory: Advances and Applications, 34:203-214, Birkhäuser Verlag, Basel, 1988.
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H-orthogonal sum, 160
H-stably bounded, 230
c-set, 99
r-unitary similarity, 127, 133

Analytic matrix function, 340
hermitian, 257

sign characteristic, 258
Jordan chain, 257

length, 257
partial multiplicity, 341
real, 341
spectrum, 257

Analytic matrix functions, 338

Basis
H-orthonormal, 69

CARE, 295
maximal solution, 309
minimal solution, 309

Cayley transform, 52
Circulant, 287
Companion matrix, 237
Convex, 216

Difference equation
stably bounded, 281, 284

Differential equation
stably bounded, 270

Eigenvalue
analytically extendable, 185
negative definite, 193
positive definite, 193
semi-simple, 193, 340

Eigenvectors
analytically extendable, 189

Fixed point theorem, 344

Gap, 335
Gram matrix, 20
Graph subspace, 296

Hamiltonian symmetry, 298

Indefinite inner product, 7
Index of positivity, 100

Jordan block, 48, 322
real, 331

Jordan chain
length, 326

Jordan form, 322, 339
real, 332

Kronecker symbol, 41

Levinson’s algorithm, 43
LQR problem, 294
LU decomposition, 327

Matrices
(H1, H2)-unitarily similar, 165
H-unitarily similar, 83
congruent, 319
unitarily similar, 165
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Matrix
(H1, H2)-unitary, 54, 165
H-accretive, 62

strictly, 62
H-adjoint, 45
H-contraction, 58, 226

strict, 57
H-contractive, 226
H-dissipative, 61, 218

strictly, 59
H-expansion, 218

strict, 59
H-expansive, 218, 221
H-negative, 92
H-nonnegative, 91
H-nonpositive, 92
H-normal, 47, 126
H-plus matrix, 213

plus-index, 213
H-positive, 69, 91, 193
H-selfadjoint, 47, 126
H-stably Ω-diagonalizable, 183,

199
H-stably r-diagonalizable, 185
H-stably u-diagonalizable, 199
H-strictly expansive, 221
H-unitary, 47, 126
Ω-diagonalizable, 183, 199
r-diagonalizable, 184
u-diagonalizable, 199
circulant, 287
contraction, 208
decomposable, 160
diagonalizable, 340

stably, 203
eigenvalue, 326

algebraic multiplicity, 326
geometric multiplicity, 326
partial multiplicity, 326

external, 36
Hamiltonian, 315
hermitian

inertia, 5, 320
signature, 5, 11

indecomposable, 160
internal, 36
Jordan chain, 326
Jordan form, 325
nonderogatory, 88, 158, 340
plus matrix, 213
spectrum, 326
stably Ω-diagonalizable, 183, 199
stably r-diagonalizable, 185, 195

index, 196
stably u-diagonalizable, 199

index, 200
strict contraction, 209
symplectic, 62, 316
Toeplitz, 29
upper quasi-triangular, 316

Matrix pair
controllable, 290
observable, 291
stabilizable, 290, 317

Matrix polynomial
companion matrix, 238
degree, 338
eigenvalue, 238, 249, 339
eigenvector, 249
elementary divisor, 339

linear, 339
hermitian, 242

index, 275
SB, 275
sign characteristic, 249
unit circle, 261

hyperbolic, 288
invariant polynomial, 339
invertible, 338
Jordan chain, 249
Jordan pair, 239
Jordan triple, 241
left Jordan pair, 241
left standard pair, 241
linearization, 239
monic, 240
nonnegative, 248
palindromic, 280
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partial multiplicity, 339
right divisor, 245

supporting subspace, 246
selfadjoint triple, 244
simple structure, 270

unit circle, 280
spectrum, 238
stable simple structure, 270
standard pair, 239
standard triple, 241
strongly hyperbolic, 273
unimodular, 338

Matrix polynomials
equivalent, 339

Mini-max theorem, 321
Monodromy matrix, 231
Multiplicator, 232

negative multiplicity, 233
negative type, 233
positive multiplicity, 233
positive type, 233

Numerical range, 342
joint, 343

Orthogonal companion, 9
Orthogonal sum, 160

Perturbation theory, 335

Real H-unitary similarity, 137
Real unitary similarity, 127, 133
Regular orthogonalization, 20
Rellich’s theorem, 342
Riccati equation

extremal solutions, 309
real, 312

Riesz projection, 148, 333
Root subspace, 5, 49, 331

real, 332

Sign characteristic, 74, 112, 128
normalized, 80

Sign function, 6
Sip matrix, 8

Smith form, 339
Square root of a matrix, 317
Stably bounded, 230
Structure preserving neighborhood, 95
Subspace

H-negative, 12
H-neutral, 13
H-nonnegative, 11
H-nonpositive, 12
H-positive, 11
controllable, 290, 317
cyclic, 322
degenerate, 10
invariant, 46, 160, 331
isotropic, 13
neutral, 13
nondegenerate, 10
nonnegative, 11
nonpositive, 12
positive, 11
spectral, 308
unobservable, 291

System
gyroscopic, 270

Toeplitz–Hausdorff theorem, 342

Unitary similarity, 55
Unitary similarity class, 56

Vector
nonneutral, 19
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