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Nonlinear Diffusion Models for Self-gravitating Particles . . . . . . . . . . . . . 107

A.C. Briozzo and D.A. Tarzia
Existence, Uniqueness and an Explicit Solution for a One-Phase
Stefan Problem for a Non-classical Heat Equation . . . . . . . . . . . . . . . . . . . . 117

P. Cardaliaguet, F. Da Lio, N. Forcadel and R. Monneau
Dislocation Dynamics: a Non-local Moving Boundary . . . . . . . . . . . . . . . . 125

E. Chevalier
Bermudean Approximation of the Free Boundary Associated
with an American Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

L. Consiglieri and J.F. Rodrigues
Steady-state Bingham Flow with Temperature Dependent
Nonlocal Parameters and Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

M. Eleuteri
Some P.D.E.s with Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

T. Fukao
Embedding Theorem for Phase Field Equation with Convection . . . . . . 169

G. Galiano and J. Velasco
A Dynamic Boundary Value Problem Arising in the Ecology
of Mangroves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

M. Garzon and J.A. Sethian
Wave Breaking over Sloping Beaches Using a Coupled Boundary
Integral-Level Set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

F. Gibou, C. Min and H. Ceniceros
Finite Difference Schemes for Incompressible Flows
on Fully Adaptive Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Y. Giga, H. Kuroda and N. Yamazaki
Global Solvability of Constrained Singular Diffusion Equation
Associated with Essential Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Contents vii

M.E. Glicksman, A. Lupulescu and M.B. Koss
Capillary Mediated Melting of Ellipsoidal Needle Crystals . . . . . . . . . . . . 219

E. Henriques and J.M. Urbano
Boundary Regularity at {t = 0} for a Singular Free
Boundary Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi
Fast Reaction Limits and Liesegang Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.J. James and J. Lowengrub
Numerical Modeling of Surfactant Effects in Interfacial
Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

J. Kampen
The Value of an American Basket Call with Dividends Increases
with the Basket Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

J.R. King and S.J. Franks
Mathematical Modelling of Nutrient-limited Tissue Growth . . . . . . . . . . 273

P. Krejč́ı
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Preface

This book gathers a collection of refereed articles containing original results report-
ing the recent original contributions of the lectures and communications presented
at the Free Boundary Problems (FBP2005) Conference that took place at the
University of Coimbra, Portugal, from 7 to 12 of June 2005. They deal with the
Mathematics of a broad class of models and problems involving nonlinear partial
differential equations arising in Physics, Engineering, Biology and Finance. Among
the main topics, the talks considered free boundary problems in biomedicine, in
porous media, in thermodynamic modeling, in fluid mechanics, in image process-
ing, in financial mathematics or in computations for inter-scale problems.

FBP2005 was the 10th Conference of a Series started in 1981 in Monteca-
tini, Italy, that has had a continuous development in the following conferences
in Maubuisson, France (1984), Irsee, Germany (1987), Montreal, Canada (1990),
Toledo, Spain (1993), Zakopone, Poland (1995), Crete, Greece (1997), Chiba,
Japan (1999), Trento, Italy (2002) and will be followed by the next one foreseen
to be held in Stockholm, Sweden, in 2008.

In fact, the mathematical analysis and fine properties of solutions and in-
terfaces in free boundary problems have been an active subject in the last three
decades and their mathematical understanding continues to be an important in-
terdisciplinary tool for the scientific applications, on one hand, and an intrinsic
aspect of the current development of several important mathematical disciplines.
This was recognized, in particular, by the Free Boundary Problems Scientific Pro-
gramme of the European Science Foundation, that sponsored three conferences in
the nineties in Europe, and is reflected in an electronic newsletter-forum (FBP-
News, http://fbpnews.org), that started in 2003 and continues to have an impor-
tant role to promote the exchange of information and ideas between mathemati-
cians interested in this area.

Over 150 participants have gathered during the FBP2005, to present and
discuss, in more than 120 talks, the last results on the Mathematics of free bound-
ary problems. The structure of the Conference, advised by a Scientific Committee,
combined Main Lectures and Focus Sessions by invitation and was complemented
with Focus Discussions and Contribution Talks with selected open proposals by
the worldwide scientific community, that constituted almost half of the commu-
nications. The conference also integrated in its programme, for the first time, an
European Mathematical Society (EMS) Lecture. During the FBP2005 Conference,



x Preface

new people and new problems, with renewed classical subjects, were on stage. This
has confirmed that these conferences continue to be an important catalyst for the
identification and development of this interdisciplinary mathematical field. They
promote, not only in Europe, but all over the world, an interdisciplinary scope
in the broadest possible mathematical sense: from experimental observations to
modeling, from abstract mathematical analysis to numerical computations.

The credit of the success of the FPB2005 conference is mainly due to the lec-
turers, the organizers of the focus sessions and all the speakers of the invited and
contributed talks, for their valuable contributions. Of course, our acknowledge-
ments also go to the members of the scientific committee, that was constituted
by C. Bandle (University of Basel), H. Berestycki (EHESS, Paris), L. Caffarelli
(University of Austin, Texas, USA), P. Colli (University of Pavia, Italy), C.J. van
Duijn (University of Eindhoven, Netherlands), G. Dziuk (University of Freiburg,
Germany), C. Elliott (University of Sussex, UK), A. Fasano (University of Flo-
rence, Italy), A. Friedman (University of Ohio, USA), B. Kawohl (University of
Koln, Germany), M. Mimura (University of Tokyo, Japan), S. Osher (University of
Los Angeles, USA), J.F. Rodrigues (University of Lisbon/CMU Coimbra, Portu-
gal), H. Shahgholian (University of Stockholm, Sweden), J. Sprekels (WIAS Berlin,
Germany) and J.L. Vazquez (University Autonoma of Madrid, Spain), as well as
to our co-organizer L.N. Vicente (University of Coimbra), the reviewers for per-
forming the evaluation of the articles presented in this book of Proceedings and
to K.-H. Hoffmann for accepting it in this Birkhäuser Series. Our thanks also go
to the secretariat of the conference, in particular, we wish to acknowledge Rute
Andrade for her excellent collaboration, and the Department of Mathematics of
the University of Coimbra, for the facilities and active assistance.

Finally, we wish to thank also the important financial support from ESF (Eu-
ropean Science Foundation) Scientific Programme (Global) on “Global and Geo-
metrical Aspects of Nonlinear Partial Differential Equations”, as well as, the finan-
cial support from CMUC (Centro de Matemática da Universidade de Coimbra),
CMAF (Centro de Matemática e Aplicações Fundamentais da Universidade de Lis-
boa), EMS (European Mathematical Society), FLAD (Fundação Luso-Americana)
and FCT (Fundação para a Ciência e a Tecnologia).

The Editors
Isabel Narra Figueiredo (Coimbra)
José Francisco Rodrigues (Lisboa)
Lisa Santos (Braga)
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One-dimensional Shape Memory Alloy
Problem with Duhem Type
of Hysteresis Operator

Toyohiko Aiki and Takanobu Okazaki

Abstract. In our previous works we have proposed a mathematical model
for dynamics of shape memory alloy materials. In the model the relationship
between the strain and the stress is given as the generalized stop operator
described by the ordinary differential equation including the subdifferential
of the indicator function for the closed interval depending on the temperature.
Here, we adopt the Duhem type of hysteresis operators as the mathematical
description of the relationship in order to deal with the more realistic math-
ematical model. The aims of this paper are to show our new model and to
establish the well-posedness of the model.

Mathematics Subject Classification (2000). Primary 74D10; Secondary 34G25,
35K45, 35Q72.

Keywords. Shape memory alloy, hysteresis, Duhem type.

1. Introduction

In this paper we consider the following system (1.1)–(1.6). The problem denoted
by P is to find functions, the displacement u, the temperature field θ and the stress
σ on Q(T ) := (0, T )× (0, 1), 0 < T <∞, satisfying

utt + γuxxxx − µuxxt = σx in Q(T ), (1.1)

θt − κθxx = σuxt + µ|uxt|2 in Q(T ), (1.2)

σt + ∂I(θ, ε;σ) � g1(θ, ε, σ)[εt]+ − g2(θ, ε, σ)[εt]− in Q(T ), (1.3)

u(t, 0) = u(t, 1) = 0, uxx(t, 0) = uxx(t, 1) = 0 for 0 < t < T, (1.4)

θx(t, 0) = θx(t, 1) = 0 for 0 < t < T, (1.5)

u(0) = u0, ut(0) = v0, θ(0) = θ0, σ(0) = σ0, (1.6)

This work is partially supported by a grant in aid of JSPS ((C)16540146).



2 T. Aiki and T. Okazaki

where ε = ux is the linearized strain, γ, µ and κ are positive constants, and
u0, v0, θ0 and σ0 are initial functions. Also, I(θ, ε; ·) is the indicator functions of
the closed interval [f∗(θ, ε), f∗(θ, ε)], ∂I(θ, ε; ·) denotes its subdifferential, where
f∗ : R2 → R, f∗ : R2 → R are given continuous functions with f∗ ≤ f∗ on R2,
and g1 are g2 are also given continuous functions on R3.

In our previous works Aiki-Kenmochi [5], Aiki [1], Aiki-Kadoya-Yoshikawa
[4] the system {(1.1), (1.2), (1.4), (1.5), (1.6), (1.7) } was investigated. Here, (1.7)
is as follows:

σt + ∂I(θ, ε;σ) � cuxt in Q(T ), (1.7)
where c is a positive constant. Also, we quote [5, 1, 4] and Brokate-Sprekels [6] for
the physical background for our system. As mentioned in Visintin [12] the differen-
tial equation (1.7) is one of characterization for the generalised stop operator. We
note that in [4] the well-posedness of the problem without the restriction µ2 > γ,
although we assumed this condition in [5, 1]. In that proof by using maximal
regularity for complex Ginzburg-Landau equation we could remove the condition.

Next, we give a brief explanation for the Duhem type of hysteresis operators.
From the experimental results we know that for shape memory alloy materials the
relationship of interior of hysteresis loops is more complicated than one of the stop
operator (see Figures 1 and 2).

θ < θc θ > θc θ >> θc

Figure 1. Graphs from experiments

Then we adopt the Duhem type of stop operator, which is defined by the ordinary
differential equations. For example, the following equation was already introduced
in [12]:

σt = g1(θ, ε, σ)[εt]+ − g2(θ, ε, σ)[εt]−.
By choosing suitable functions f∗, f∗, g1 and g2 we can obtain the graphs which
are very close to experimental graphs, numerically (Figure 3). Also, the system
including the Duhem type of hysteresis operator was already applied for the mag-
netization process of ferromagnetic materials and obtained the existence and the
uniqueness of a solution to the problem in Aiki-Hoffmann-Okazaki [3]. See [2] for
recent works of some mathematical models including hysteresis operators.



One-dimensional Shape Memory Alloy Problem 3

Figure 2. Graph of the generalized stop operator

Figure 3. Graph from the numerical calculations

At the end of the introduction we show some results concerned with a mathe-
matical model given by the more general hysteretic relations. In a series of papers
[8, 9] Krejci and Sprekels studied one-dimensional shape memory models with
hysteresis operator of Prandtl-Ishlinskii type, parametrized by the absolute tem-
perature. The problems considered in these papers are more difficult than the one
studied in this paper in the sense that in [8] no smoothing viscosity (i.e., µ = 0),
and in [9] no smoothing couple stress are assumed (i.e., γ = 0). Moreover, the
above results have been generalized by Krejci, Sprekels and Stefanelli in [10, 11].

Here, we give the advantage and the disadvantage of using the Duhem model
for shape memory alloys instead of the Prandtl-Ishlinskii model. The advantage
of the Duhem model is to possible to deal with any shape of the load-deformation
curves. In case with the Prandtl-Ishlinskii model the initial loading curve must be
concave (cf. [7, Section 2]). The disadvantage of the Duhem model is that it is
impossible to show thermodynamically consistent at the present time.
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2. Main results

The purpose of this section is to give a complete statement for our result. First,
we give assumptions for data.

(A1) f∗, f
∗ ∈ C2(R2) ∩W 2,∞(R2);

(A2) g1 : R3 → R and g2 : R3 → R are Lipschitz continuous and g1, g2 ∈
L∞(R3);

(A3) u0 ∈ H4(0, 1) ∩ H1
0 (0, 1), v0 ∈ H1

0 (0, 1) ∩ H2(0, 1), θ0 ∈ H1(0, 1), σ0 ∈
H1(0, 1),

f∗(θ0, ε0) ≤ σ0 ≤ f∗(θ0, ε0) on (0, 1).

Next, we define a solution of P as follows:

Definition 2.1. We say that a triplet {u, θ, σ} of functions, u, θ and σ is a solution
of P on [0, T ], 0 < T < ∞, if and only if the following conditions (S1) and (S2)
hold:

(S1) u ∈ W 2,∞(0, T ;L2(0, 1)) ∩ W 2,2(0, T ;H1(0, 1)) ∩ W 1,∞(0, T ;H2(0, 1)) ∩
W 1,2(0, T ;H3(0, 1)) ∩ L∞(0, T ;H4(0, 1)),
θ ∈W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)), and
σ ∈W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)).

(S2) (1.1)–(1.6) hold in the usual sense.

This is a main result of this paper.

Theorem 2.2 (Main Theorem). Assume that (A1), (A2) and (A3) hold. Then the
problem P has a unique solution {u, θ, σ} on [0, T ] for any T > 0.

The proof of the uniqueness is given in Section 3 and the proof of the existence
is rather long and quite similar to those of [1, 4] so that we omit it.

3. Proof of the uniqueness

In this section we will prove the uniqueness. The proof is similar to those of
[1, 4]. Throughout this section we assume (A1)–(A3), and for simplicity we use
the notation H = L2(0, 1). Let T > 0, {u1, θ1, σ1} and {u2, θ2, σ2} be solutions of
P on [0, T ] and put εi = uix, i = 1, 2, u = u1 − u2, θ = θ1 − θ2, σ = σ1 − σ2,
ε = ε1 − ε2, and

M(s) = max{|f∗(θ1, ε1)− f∗(θ2, ε2)|L∞(Q(s)), |f∗(θ1, ε1)− f∗(θ2, ε2)|L∞(Q(s))}

for 0 < s ≤ T . Moreover, let z1 = σ1 − [σ −M(s)]+ and z2 = σ2 − [σ −M(s)]+.
For s ∈ (0, T ] we have

f∗(θ1, ε1) ≤ z1 ≤ f∗(θ1, ε1) and f∗(θ2, ε2) ≤ z2 ≤ f∗(θ2, ε2) a.e. on Q(s)
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so that by using the definition of subdifferential it is obvious that∫ 1

0

σ1t(t)(σ1(t)− z1(t))dx ≤
∫ 1

0

G1(t)(σ1(t)− z1(t))dx for a.e. t ∈ [0, s],∫ 1

0

σ2t(t)(σ2(t)− z2(t))dx ≤
∫ 1

0

G2(t)(σ2(t)− z2(t))dx for a.e. t ∈ [0, s],

where G1(t) = (g1(θ1(t), ε1(t), σ1(t))[ε1t(t)]+ − g2(θ1(t), ε1(t), σ1(t))[ε1t(t)]−),
G2(t) = (g1(θ2(t), ε2(t), σ2(t))[ε2t(t)]+−g2(θ2(t), ε2(t), σ2(t))[ε2t(t)]−). Combining
the above two inequalities, we obtain

1
2
d

dt
|[σ(t) −M(s)]+|2dx

≤
∫ 1

0

(G1(t)−G2(t))[σ(t) −M(s)]+dx for a.e. t ∈ [0, s]. (3.1)

Next, (1.1) implies

utt + γuxxxx − µutxx = σx in Q(T ),

and we multiply it by ut. Then, we have

d

dt
(
1
2
|ut(t)|2H +

γ

2
|uxx(t)|2H) + µ|utx(t)|2H

= −
∫ 1

0

σ(t)utx(t)dx for a.e. t ∈ [0, T ]. (3.2)

It follows from (3.1) and (3.2) that

d

dt
(
1
2
|[σ(t) −M(s)]+|2H +

1
2
|ut(t)|2H +

γ

2
|uxx(t)|2H) + µ|utx(t)|2H

≤ Lg

∫ 1

0

(|θ(t)| + |ε(t)|+ |σ(t)|([ε1t(t)]+ + [ε1t(t)]−)[σ(t) −M(s)]+dx

+
∫ 1

0

|g1(θ2(t), ε2(t), σ2(t))||[ε1t(t)]+ − [ε2t(t)]+|[σ(t) −M(s)]+dx

+
∫ 1

0

|g2(θ2(t), ε2(t), σ2(t))||[ε1t(t)]− − [ε2t(t)]−|[σ(t)−M(s)]+dx

−
∫ 1

0

σ(t)utx(t)dx

≤ Lg|ε1t|L∞(Q(T ))(|θ(t)|H + |ε(t)|H)|[σ(t) −M(s)]+|H

+ Lg|ε1t|L∞(Q(T ))

∫ 1

0

|σ(t)|[σ(t) −M(s)]+dx

+
µ

2
|utx(t)|2H +

4L̂2
g

µ
|[σ(t)−M(s)]+|2H +

1
µ
|σ(t)|2H for a.e. t ∈ (0, s],
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where Lg is a common Lipschitz constant of g1 and g2 and L̂g = |g1|L∞(R3) +
|g2|L∞(R3), since by Definition 2.1 it holds that u1t ∈ L∞(0, T ;H2(0, 1)) and ε1t =
u1tx ∈ L∞(Q(T )).

By similar calculations we can observe that
1
2
d

dt
(|[σ(t) −M(s)]+|2H + |[−σ(t)−M(s)]+|2H)

+
d

dt
(|ut(t)|2H + γ|uxx(t)|2H) + µ|utx(t)|2H

≤ C1(|θ(t)|H + |ε(t)|H)(|[σ(t) −M(s)]+|H + |[−σ(t)−M(s)]+|H)

+ C1

∫ 1

0

|σ(t)|([σ(t) −M(s)]+ + [−σ(t)−M(s)]+)dx +
2
µ
|σ(t)|2H

+ C1(|[σ(t) −M(s)]+|2H + |[−σ(t)−M(s)]+|2H) for a.e. t ∈ (0, s],

where C1 = Lg|ε1t|L∞(Q(T )) + 4L̂2
g

µ . It is easy to see that∫ 1

0

|σ(t)|(|[σ(t) −M(s)]+|+ |[−σ(t)−M(s)]+|)dx

≤ 2M(s)
√
E(t) + 2E(t) for t ∈ [0, s],

where E(t) = |[σ(t) −M(s)]+|2H + |[−σ(t)−M(s)]+|2H . Thus we see that

1
2
d

dt
E(t) +

d

dt
(|ut(t)|2H + γ|uxx(t)|2H) + µ|utx(t)|2H

≤ C1(|θ(t)|H + |ε(t)|H)
√
E(t) + 2C1(M(s)

√
E(t) + E(t)) (3.3)

+ 4M(s)2 + 4E(t) + C1E(t)

≤ C2(|θ(t)|H + |ε(t)|H)
√
E(t) + C2M(s)2 + C2E(t) for a.e. t ∈ [0, s],

where C2 = 2C1 + 4.
Now, by (1.2) and routine works we infer that

1
2
d

dt
|θ(t)|2H +

κ

2
|θx(t)|2H

≤
∫ 1

0

(σ1(t)εt(t) + σ(t)u2xt(t))θ(t)dx

+ µ

∫ 1

0

|εt(t)|(|u1xt(t)|+ |u2xt(t)|)|θ(t)|dx

≤ |σ1|L∞(Q(T ))|εt(t)|H |θ(t)|H + |σ(t)|H |ε2t(t)|L∞(Q(T ))|θ(t)|H
+ µ(|u1xt|L∞(Q(T )) + |u2xt|L∞(Q(T )))|εt(t)|H |θ(t)|H
≤ C3(|utx(t)|H |θ(t)|H + |σ(t)|H |θ(t)|H) (3.4)

≤ C2
3 |θ(t)|2H +

µ

4
|utx(t)|2H + C3|θ(t)|H + 2C3(M(s)2 + E(t)) for a.e. t ∈ [0, T ],

where C3 = |σ1|L∞(Q(T )) + |ε2t(t)|L∞(Q(T )) + µ(|u1xt|L∞(Q(T )) + |u2xt|L∞(Q(T ))).
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Hence, by (3.3) and the above inequality there is a positive constant C4 such
that

d

dt
E0(t) + E1(t) ≤ C4(|θ(t)|2H + M(s)2 + E(t) + |ε(t)|H

√
E(t))

for a.e. t ∈ (0, s], where

E0(t) =
1
2
E(t) + |ut(t)|2H + γ|uxx(t)|2H +

1
2
|θ(t)|2H

and
E1(t) = µ|utx(t)|2H +

κ

2
|θx(t)|2H .

In order to give an estimate for |θ(t)|L∞(Q(s)) we multiply (1.2) by θt. Then,
similarly to (3.4), it is clear that

|θt(t)|2H +
κ

2
d

dt
|θx(t)|2H

≤ C3(|utx(t)|H |θt(t)|H + |σ(t)|H |θt(t)|H)

≤ C2
3 (|utx(t)|2H + |σ(t)|2H) +

1
2
|θt(t)|3H for a.e. t ∈ [0, T ]

so that∫ t

0

|θτ (τ)|2Hdτ + κ|θx(t)|2H

≤ C2
3

∫ t

0

(|uτx(τ)|2H + |σ(τ)|2H)dτ

≤ 2C2
3 tM(s)2 + 2C2

3

∫ t

0

|σ(τ)|2Hdτ + C2
3

∫ t

0

|uτx(τ)|2Hdτ for 0 ≤ t ≤ s.

Hence, we have

|θ|2L∞(Q(s))

≤ 2(|θ|2L∞(0,s;H) + |θx|2L∞(0,s;H))

≤ 2 sup
0≤t≤s

|θ(t)|2H + 2C2
3sM(s)2 + 2C2

3 (
∫ s

0

|σ(τ)|2Hdτ +
∫ s

0

|uτx(τ)|2Hdτ).

On account of this estimate it yields that

M(s)2 ≤ 2L2
0(|θ(t)|2L∞(Q(s)) + |ε(t)|2L∞(Q(s)))

≤ 2L2
0(2 sup

0≤t≤s
|θ(t)|2H + 2C2

3sM(s)2 + 2C2
3 (

∫ s

0

|σ(τ)|2Hdτ +
∫ s

0

|uτx(τ)|2Hdτ))

+ 2L2
0( sup

0≤t≤s
|uxx(t)|2H + sup

0≤t≤s
|u(t)|2H)

≤ C4( sup
0≤t≤s

E0(t) +
∫ s

0

(E0(t) + E1(t))dt for 0 ≤ s ≤ T,

where L0 is a common Lipschitz constant of f∗ and f∗ and C4 is a suitable positive
constant.
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Moreover, it is easy to see that∫ s

0

|ε(τ)|2Hdτ ≤
∫ s

0

(
∫ τ

0

|uxt(t)|Hdt)2dτ

≤ sT

∫ s

0

|uxτ (τ)|2Hdτ for 0 ≤ s ≤ T.

Hence, there is a positive constant C5 such that

d

dt
E0(t) + E1(t) ≤ C5(E0(t) + M(s)2) + |ε(t)|2H for a.e. t ∈ (0, s].

Now, applying Gronwall’s inequality, the above argument shows that

E0(t) +
∫ t

0

E1(τ)dτ

≤ C5e
C5s(sM(s)2 +

∫ s

0

|ε(τ)|2Hdτ)

≤ C5e
C5T (2s sup

0≤t≤t
E0(t) + sT

∫ s

0

E1(t)dt) for 0 ≤ t ≤ s ≤ T.

Accordingly, it holds that

sup
0≤t≤s

E0(t) +
∫ s

0

E1(τ)dτ

≤ C5e
C5T (1 + T )(2s sup

0≤t≤t
E0(t) + s

∫ s

0

E1(t)dt) for 0 ≤ s ≤ T.

Here, by choosing a positive number s with C5e
C5T 2(1+T )s ≤ 1

2 we conclude that
E0(t) = E1(t) = 0 for t ∈ [0, s]. This implies the uniqueness of a solution. �
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Existence and Uniqueness Results for
Quasi-linear Elliptic and Parabolic Equations
with Nonlinear Boundary Conditions

F. Andreu, N. Igbida, J.M. Mazón and J. Toledo

Abstract. We study the questions of existence and uniqueness of weak and
entropy solutions for equations of type −div a(x,Du)+γ(u) � φ, posed in an
open bounded subset Ω of R

N , with nonlinear boundary conditions of the form
a(x,Du)·η+β(u) � ψ. The nonlinear elliptic operator div a(x, Du) is modeled
on the p-Laplacian operator ∆p(u) = div (|Du|p−2Du), with p > 1, γ and β
are maximal monotone graphs in R

2 such that 0 ∈ γ(0) and 0 ∈ β(0), and
the data φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). We also study existence and uniqueness
of weak solutions for a general degenerate elliptic-parabolic problem with
nonlinear dynamical boundary conditions. Particular instances of this problem
appear in various phenomena with changes of phase like multiphase Stefan
problem and in the weak formulation of the mathematical model of the so
called Hele Shaw problem.

Mathematics Subject Classification (2000). Primary 35J60; Secondary 35D02.

Keywords. Quasi-linear elliptic equations, Quasi-linear parabolic equations,
Stefan problem, Hele Shaw problem, Nonlinear boundary conditions, Nonlin-
ear semigroup theory.

1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω and p > 1, and let

a : Ω× R
N → R

N be a Carathéodory function satisfying
(H1) there exists λ > 0 such that a(x, ξ) · ξ ≥ λ|ξ|p for a.e. x ∈ Ω and for all

ξ ∈ R
N ,

(H2) there exists σ > 0 and θ ∈ Lp′
(Ω) such that |a(x, ξ)| ≤ σ(θ(x) + |ξ|p−1)

for a.e. x ∈ Ω and for all ξ ∈ R
N , where p′ = p

p−1 ,
(H3) (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) > 0 for a.e. x ∈ Ω and for all ξ1, ξ2 ∈

R
N , ξ1 �= ξ2.
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The hypotheses (H1−H3) are classical in the study of nonlinear operators in
divergent form (cf. [31] or [8]). The model example of function a satisfying these
hypotheses is a(x, ξ) = |ξ|p−2ξ. The corresponding operator is the p-Laplacian
operator ∆p(u) = div(|Du|p−2Du).

We are interested in the study of existence and uniqueness of weak and en-
tropy solutions for the elliptic problem

(Sγ,β
φ,ψ)

{
−div a(x,Du) + γ(u) � φ in Ω
a(x,Du) · η + β(u) � ψ on ∂Ω,

where η is the unit outward normal on ∂Ω, ψ ∈ L1(∂Ω) and φ ∈ L1(Ω). The
nonlinearities γ and β are maximal monotone graphs in R

2 (see, e.g., [14]) such
that 0 ∈ γ(0) and 0 ∈ β(0). In particular, they may be multivalued and this allows
to include the Dirichlet condition (taking β to be the monotone graph D defined
by D(0) = R) and the Neumann condition (taking β to be the monotone graph N
defined by N(r) = 0 for all r ∈ R) as well as many other nonlinear fluxes on the
boundary that occur in some problems in Mechanics and Physics (see, e.g., [20] or
[13]). Note also that, since γ may be multivalued, problems of type (Sγ,β

φ,ψ) appear
in various phenomena with changes of phase like the multiphase Stefan problem
(cf [17]) and in the weak formulation of the mathematical model of the so-called
Hele Shaw problem (cf. [19] and [22]).

Particular instances of problem (Sγ,β
φ,ψ) have been studied in [10], [8], [6] and

[2]. The work of Bénilan, Crandall and Sacks [10] was pioneer in this kind of
problems. They study problem (Sγ,β

φ,0 ) for any γ and β maximal monotone graphs in
R

2 such that 0 ∈ γ(0) and 0 ∈ β(0), for the Laplacian operator, i.e., for a(x, ξ) = ξ.
For nonhomogeneous boundary condition, i.e. ψ �≡ 0, one can see [27] for ψ in the
range of β, and [25, 26] for some particular instances of β and γ. Another important
work in the L1-Theory for p-Laplacian type equations is [8], where problem

(Dγ
φ)

{
−div a(x,Du) + γ(u) � φ in Ω
u = 0 on ∂Ω

is studied for any γ maximal monotone graph in R
2 such that 0 ∈ γ(0). Following

[8], problems (Sid,β
φ,0 ) and (Sid,β

φ,ψ ), where id(r) = r for all r ∈ R, are studied in [6]
and [2], for any β maximal monotone graph in R

2 with closed domain such that
0 ∈ β(0).

Our aim is to establish existence and uniqueness of weak and entropy solu-
tions for the general elliptic problem (Sγ,β

φ,ψ). The main interest in our work is that
we are dealing with general nonlinear operators −div a(x,Du) with nonhomoge-
neous boundary conditions and general nonlinearities β and γ. As in [10], a range
condition relating the average of φ and ψ to the range of β and γ is necessary for
existence of weak and entropy solution (see Remark 3.3). However, in contrast to
the smooth homogeneous case, a smooth and ψ = 0, for the nonhomogeneous case
this range condition is not sufficient for the existence of weak solution. Indeed, in
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general, the intersection of the domains of β and γ seems to create some obstruc-
tion phenomena for the existence of these solutions. In general, even if D(β) = R,
a weak solution does not exist, as the following example shows. Let γ be such that
D(γ) = [0, 1], β = R × {0}, and let φ ∈ L1(Ω), φ ≤ 0 a.e. in Ω, and ψ ∈ L1(∂Ω),
ψ ≤ 0 a.e. in ∂Ω. If there exists [u, z, w] a weak solution of the problem (Sγ,β

φ,ψ)
(see Definition 3.1), then z ∈ γ(u), therefore 0 ≤ u ≤ 1 a.e. in Ω, w = 0, and it
holds that for any v ∈ W 1,p(Ω) ∩ L∞(Ω),∫

Ω

a(x,Du)Dv +
∫

Ω

zv =
∫

∂Ω

ψv +
∫

Ω

φv.

Taking v = u, as u ≥ 0, we get u is constant and∫
Ω

zv =
∫

∂Ω

ψv +
∫

Ω

φv,

for any v ∈ W 1,p(Ω) ∩ L∞(Ω). Consequently, φ = z a.e. in Ω, and ψ must be 0
a.e. in ∂Ω.

The main applications we have in mind are the study of doubly nonlinear
evolution problems of elliptic-parabolic type and degenerate parabolic problems of
Stefan or Hele-Shaw type, with nonhomogeneous boundary conditions and/or dy-
namical boundary conditions (see [5]). More precisely, we have in mind to study the
following degenerate elliptic-parabolic problem with nonlinear dynamical bound-
ary condition

Pγ,β(f, g, z0, w0)

⎧⎪⎨⎪⎩
zt − div a(x,Du) = f, z ∈ γ(u), in QT :=]0, T [×Ω
wt + a(x,Du) · η = g, w ∈ β(u), on ST :=]0, T [×∂Ω
v(0) = v0 in Ω, w(0) = w0 in ∂Ω,

where v0 ∈ L1(Ω), w0 ∈ L1(∂Ω), f ∈ L1(0, T ;L1(Ω)) and g ∈ L1(0, T ;L1(∂Ω)).
The dynamical boundary conditions, although not too widely considered in the
mathematical literature, are very natural in many mathematical models as heat
transfer in a solid in contact with a moving fluid, thermoelasticity, diffusion phe-
nomena, the heat transfer in two phase medium (Stefan problem), problems in
fluid dynamics, etc. (cf. [18] or [21] and the reference therein).

Problems of type Pγ,β(f, g, z0, w0), that is, the elliptic-parabolic problem with
Dirichlet boundary conditions have been studied extensively in the literature (cf.
[1], [3], [11], [15], [28] and the references therein). However, with respect to the
pure Neumann case, for the multidimensional case, with time-dependent flux g, we
only know the paper of Hulshof [23] for the Laplacian operator and γ a uniformly
Lipschitz continuous function, γ(r) = 1 for r ∈ R

+, γ ∈ C1(R−), γ′ > 0 on R
− and

limr↓−∞ γ(r) = 0; and the paper of Kenmochi [29] also for the Laplace operator
and for γ which range is a closed bounded interval. In one space dimension, much
more is known (cf. [12] and the references therein).
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2. Preliminaries

For a maximal monotone graph ϑ in R × R we shall denote ϑ− := inf R(ϑ) and
ϑ+ := sup R(ϑ), where R(ϑ) denotes the range of ϑ. If 0 ∈ Dom(ϑ) and ϑ0 is the
main section of ϑ, jϑ(r) =

∫ r

0 ϑ0(s)ds defines a convex l.s.c. function such that
ϑ = ∂jϑ. If j∗ϑ is the Legendre transformation of jϑ then ϑ−1 = ∂j∗ϑ.

In [8], the authors introduce the set

T 1,p(Ω) = {u : Ω −→ R measurable such that Tk(u) ∈W 1,p(Ω) ∀k > 0},

where Tk(s) = sup(−k, inf(s, k)). They also prove that given u ∈ T 1,p(Ω), there
exists a unique measurable function û : Ω→ R

N such that

DTk(u) = ûχ{|û|<k} ∀k > 0.

This function û will be denoted by Du. It is clear that if u ∈ W 1,p(Ω), then
û ∈ Lp(Ω) and û = Du in the usual sense.

As in [6], T 1,p
tr (Ω) denotes the set of functions u in T 1,p(Ω) satisfying the

following conditions, there exists a sequence un in W 1,p(Ω) such that

(a) un converges to u a.e. in Ω,
(b) DTk(un) converges to DTk(u) in L1(Ω) for all k > 0,
(c) there exists a measurable function ũ on ∂Ω, such that un converges to ũ a.e.

in ∂Ω.
The function ũ is the trace of u in the generalized sense introduced in [6]. In the
sequel, the trace of u ∈ T 1,p

tr (Ω) on ∂Ω will be denoted by u.
We say that a is smooth (see [6]) when, for any φ ∈ L∞(Ω) such that there

exists a bounded weak solution u of the homogeneous Dirichlet problem

(D)
{
− div a(x,Du) = φ in Ω
u = 0 on ∂Ω,

there exists g ∈ L1(∂Ω) such that u is also a weak solution of the Neumann
problem

(N)
{
− div a(x,Du) = φ in Ω
a(x,Du) · η = g on ∂Ω.

Functions a corresponding to linear operators with smooth coefficients and
p-Laplacian type operators are smooth (see [13] and [30]).

3. The elliptic problem

In this section we give the different concepts of solutions of problem (Sγ,β
φ,ψ) and

we state the main results obtained in [4].
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Definition 3.1. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈
W 1,p(Ω)×L1(Ω)×L1(∂Ω) is a weak solution of problem (Sγ,β

φ,ψ) if z(x) ∈ γ(u(x)) a.e.
in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω, and∫

Ω

a(x,Du) ·Dv +
∫

Ω

zv +
∫

∂Ω

wv =
∫

∂Ω

ψv +
∫

Ω

φv, (3.1)

for all v ∈ L∞(Ω) ∩W 1,p(Ω).

In general, as it is remarked in [8], for 1 < p ≤ 2− 1
N , there exists f ∈ L1(Ω)

such that the problem

u ∈ W 1,1
loc (Ω), u−∆p(u) = f in D′(Ω),

has no solution. In [8], to overcome this difficulty and to get uniqueness, a new
concept of solution was introduced, named entropy solution. Following these ideas,
as in [6] or [2], we introduce the following concept of solution.

Definition 3.2. Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω). A triple of functions [u, z, w] ∈
T 1,p

tr (Ω) × L1(Ω) × L1(∂Ω) is an entropy solution of problem (Sγ,β
φ,ψ) if z(x) ∈

γ(u(x)) a.e. in Ω, w(x) ∈ β(u(x)) a.e. in ∂Ω and∫
Ω

a(x,Du) ·DTk(u − v) +
∫

Ω

zTk(u− v) +
∫

∂Ω

wTk(u − v)

≤
∫

∂Ω

ψTk(u− v) +
∫

Ω

φTk(u − v) ∀k > 0,
(3.2)

for all v ∈ L∞(Ω) ∩W 1,p(Ω).

Obviously, every weak solution is an entropy solution and an entropy solution
with u ∈W 1,p(Ω) is a weak solution.

Remark 3.3. If we take v = Th(u) ± 1 as test functions in (3.2) and let h go to
+∞, we get that ∫

Ω

z +
∫

∂Ω

w =
∫

∂Ω

ψ +
∫

Ω

φ.

Then necessarily φ and ψ must satisfy the following range condition

R−
γ,β ≤

∫
∂Ω

ψ +
∫

Ω

φ ≤ R+
γ,β,

where
R+

γ,β := γ+|Ω|+ β+|∂Ω|, R−
γ,β := γ−|Ω|+ β−|∂Ω|.

We will write Rγ,β :=]R−
γ,β,R

+
γ,β[ when R−

γ,β < R+
γ,β .

We shall state now the uniqueness result for entropy solutions. Since every
weak solution is an entropy solution of problem (Sγ,β

φ,ψ), the same result is true for
weak solutions.
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Theorem 3.4 ([4]). Let φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), and let [u1, z1, w1] and
[u2, z2, w2] be entropy solutions of problem (Sγ,β

φ,ψ). Then, there exists a constant
c ∈ R such that

u1 − u2 = c a.e. in Ω,

z1 − z2 = 0 a.e. in Ω.

w1 − w2 = 0 a.e. in ∂Ω.
Moreover, if c �= 0, there exists a constant k such that z1 = z2 = k.

With respect to the existence of weak solutions we have the following results.

Theorem 3.5 ([4]). Assume D(γ) = R and R−
γ,β < R+

γ,β. Let D(β) = R or a
smooth.

(i) For any φ ∈ Lp′
(Ω) and ψ ∈ Lp′

(∂Ω) with∫
Ω

φ +
∫

∂Ω

ψ ∈ Rγ,β, (3.3)

there exists a weak solution [u, z, w] of problem (Sγ,β
φ,ψ).

(ii) For any [u1, z1, w1] weak solution of problem (Sγ,β
φ1,ψ1

), φ1 ∈ Lp′
(Ω) and

ψ1 ∈ Lp′
(∂Ω) satisfying (3.3), and any [u2, z2, w2] weak solution of problem

(Sγ,β
φ2,ψ2

), φ2 ∈ Lp′
(Ω) and ψ2 ∈ Lp′

(∂Ω) satisfying (3.3), we have that∫
Ω

(z1 − z2)+ +
∫

∂Ω

(w1 − w2)+ ≤
∫

∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

In the case R−
γ,β = R+

γ,β, that is, when γ(r) = β(r) = 0 for any r ∈ R,
existence and uniqueness of weak solutions are also obtained.

Theorem 3.6 ([4]). For any φ ∈ Lp′
(Ω) and ψ ∈ Lp′

(∂Ω) with∫
Ω

φ +
∫

∂Ω

ψ = 0, (3.4)

there exists a unique (up to a constant) weak solution u ∈W 1,p(Ω) of the problem{
−div a(x,Du) = φ in Ω
a(x,Du) · η = ψ on ∂Ω

in the sense that ∫
Ω

a(x,Du) ·Dv =
∫

∂Ω

ψv +
∫

Ω

φv,

for all v ∈W 1,p(Ω).

In order to get the above results, the main idea is to consider the approxi-
mated problem

(Sγm,n,βm,n

φm,n,ψm,n
)

{
−div a(x,Du) + γm,n(u) � φm,n in Ω
a(x,Du) · η + βm,n(u) � ψm,n on ∂Ω,
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where γm,n and βm,n are approximations of γ and β given by

γm,n(r) = γ(r) +
1
m
r+ − 1

n
r−

and

βm,n(r) = β(r) +
1
m
r+ − 1

n
r−

respectively, m,n ∈ N, and

φm,n = sup{inf{m,φ},−n}
and

ψm,n = sup{inf{m,ψ},−n},
m, n ∈ N are approximations of φ and ψ, respectively. For these approximated
problems we obtain existence of weak solutions with appropriate estimates and
monotone properties, which allow us to pass to the limit.

Approximating L1-data by L∞-data and using Theorem 3.6, we can get the
following result about existence of entropy solutions.

Theorem 3.7 ([4]). Assume D(γ) = R, and D(β) = R or a smooth. Let also assume
that, if [0,+∞[⊂ D(β),

lim
k→+∞

γ0(k) = +∞ and lim
k→+∞

β0(k) = +∞, (3.5)

and if ]−∞, 0] ⊂ D(β),

lim
k→−∞

γ0(k) = −∞ and lim
k→−∞

β0(k) = −∞. (3.6)

Then,
(i) for any φ ∈ L1(Ω) and ψ ∈ L1(∂Ω), there exists an entropy solution [u, z, w]

of problem (Sγ,β
φ,ψ).

(ii) For any [u1, z1, w1] entropy solution of problem (Sγ,β
φ1,ψ1

), φ1 ∈ L1(Ω), ψ1 ∈
L1(∂Ω), and any [u2, z2, w2] entropy solution of problem (Sγ,β

φ2,ψ2
), φ2 ∈ L1(Ω),

ψ2 ∈ L1(∂Ω), we have that∫
Ω

(z1 − z2)+ +
∫

∂Ω

(w1 − w2)+ ≤
∫

∂Ω

(ψ1 − ψ2)+ +
∫

Ω

(φ1 − φ2)+.

4. The parabolic problem

In this section we give the concept of weak solution for the problem Pγ,β(f,g,z0,w0)
and we state the existence and uniqueness result for this type of solutions given
in [5].

Definition 4.1. Given f ∈ L1(0, T ;L1(Ω)), g ∈ L1(0, T ;L1(∂Ω)), z0 ∈ L1(Ω) and
w0 ∈ L1(∂Ω), a weak solution of Pγ,β(f, g, z0, w0) in [0, T ] is a couple (z, w) such
that z ∈ C([0, T ] : L1(Ω)), w ∈ C([0, T ] : L1(∂Ω)), z(0) = z0, w(0) = w0 and there
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exists u ∈ L1(0, T ;W 1,p(Ω)) such that z ∈ γ(u) a.e. in QT , w ∈ β(u) a.e. on ST

and
d

dt

∫
Ω

z(t)ξ +
d

dt

∫
∂Ω

w(t)ξ +
∫

Ω

a(x,Du(t)) ·Dξ

=
∫

Ω

f(t)ξ +
∫

∂Ω

g(t)ξ in D′(]0, T [)
(4.1)

for any ξ ∈ C1(Ω).

Recall that even in the case β = 0, for the Laplacian operator and γ the
multivalued Heaviside function (i.e., for the Hele-Shaw problem), existence and
uniqueness of weak solutions for this problem is known to be true only if∫

Ω

z0 +
∫ t

0

(∫
Ω

f +
∫

∂Ω

g

)
∈ (0, |Ω|) for any t ∈ [0, T )

(cf., [24] or [29])).

We have the following existence and uniqueness theorem.

Theorem 4.2 ([5]). Assume Dom(γ) = R, R−
γ,β < R+

γ,β and Dom(β) = R or a
smooth. Let T > 0. Let f ∈ Lp′

(0, T ;Lp′
(Ω)), g ∈ Lp′

(0, T ;Lp′
(∂Ω)), z0 ∈ Lp′

(Ω)
and w0 ∈ Lp′

(∂Ω) such that

γ− ≤ z0 ≤ γ+, β− ≤ w0 ≤ β+, (4.2)∫
Ω

j∗γ(z0) +
∫

Γ

j∗β(w0) < +∞, (4.3)

and

µ(t) :=
∫

Ω

w0 +
∫

∂Ω

z0 +
∫ t

0

(∫
Ω

f +
∫

∂Ω

g

)
∈ Rγ,β ∀ t ∈ [0, T ]. (4.4)

Then, there exists a weak solution (z, w) of problem Pγ,β(f, g, z0, w0) in [0, T ] such
that

µ(t) =
∫

Ω

z(t) +
∫

∂Ω

w(t) ∀ t ∈ [0, T ]. (4.5)

Moreover, the following L1-contraction principle holds. For i = 1, 2, let fi ∈
Lp′

(0, T ;Lp′
(Ω)), gi ∈ Lp′

(0, T ;Lp′
(∂Ω)), zi0 ∈ Lp′

(Ω) and wi0 ∈ Lp′
(∂Ω) satis-

fying (4.2), (4.3) and (4.4) for every i; and let (zi, wi) be a weak solution in [0, T ]
of Pγ,β(fi, gi, zi0, wi0), i = 1, 2. Then∫

Ω

(z1(t)− z2(t))+ +
∫

∂Ω

(w1(t)− w2(t))+ ≤
∫

Ω

(z10 − z20)+ +
∫

∂Ω

(w10 − w20)+

+
∫ t

0

∫
Ω

(f1(τ) − f2(τ))+ dτ +
∫ t

0

∫
∂Ω

(g1(τ)− g2(τ))+ dτ

(4.6)
for almost every t ∈]0, T [. In particular, problem Pγ,β(f, g, z0, w0) has a unique
weak solution.
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To prove the above theorem we shall use the Nonlinear Semigroups Theory
(cf. [7], [9] or [16]). The natural space to study problem Pγ,β(f, g, z0, w0) from this
point of view is X = L1(Ω)× L1(∂Ω) provided with the natural norm

‖(f, g)‖ := ‖f‖L1(Ω) + ‖g‖L1(∂Ω).

To rewrite problem Pγ,β(f, g, z0, w0) as an abstract Cauchy problem in X ,
we define the following operator Bγ,β in X .

Bγ,β :=
{

((z, w), (ẑ, ŵ)) ∈ X ×X : ∃u ∈W 1,p(Ω) such that

[u, z, w] is a weak solution of (Sγ,β
z+ẑ,w+ŵ)

}
.

As a consequence of the results of Section 3, we have Bγ,β is a T -accretive
operator in X , and its closure is m− T -accretive in X . Moreover, we have

Theorem 4.3 ([5]). Under the hypothesis Dom(γ) = R, and Dom(β) = R or a
smooth, we have

D(Bγ,β)
L1(Ω)×L1(∂Ω)

=
{
(z, w) ∈ L1(Ω)× L1(∂Ω) : γ− ≤ z ≤ γ+, β− ≤ w ≤ β+

}
.

Then, by the Nonlinear Semigroups Theory, we know that for every z0 ∈
Lp′

(Ω), w0 ∈ Lp′
(∂Ω) and every f ∈ L1(0, T ;Lp′

(Ω)), g ∈ L1(0, T ;Lp′
(∂Ω)),

satisfying (4.2) and (4.4) there exists a unique mild solution of the abstract Cauchy
problem {

V ′(t) + Bγ,β(V (t)) � (f, g) t ∈ (0, T )
V (0) = (z0, w0).

(4.7)

In principle, it is not clear how these mild solutions have to be interpreted
with respect to the problem Pγ,β(f, g, z0, w0). Now, we show that mild-solution
are weak solutions of problem Pγ,β(f, g, z0, w0) under the hypothesis of Theorem
4.2, which gives the existence part of Theorem 4.2. To get uniqueness, the main
difficulties are due to the jumps of γ and β and the non-homogenous boundary
conditions. We see that weak solutions are integral solutions ([7]) and consequently
mild-solutions. Since Bγ,β is T -accretive in X , the contraction principle (4.6) is
obtained from the general theory.
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Finite Time Localized Solutions of
Fluid Problems with Anisotropic Dissipation

S. Antontsev and H.B. de Oliveira

Abstract. In this work we consider an incompressible, non-homogeneous, di-
latant and viscous fluid for which the stress tensor satisfies a general non-
Newtonian law. The new contribution of this work is the consideration of an
anisotropic dissipative forces field which depends nonlinearly on the own ve-
locity. We prove that, if the flow of such a fluid is generated by the initial
data, then in a finite time the fluid becomes immobile. We, also, prove that,
if the flow is stirred by a forces term which vanishes at some instant of time,
then the fluid is still for all time grater than that and provided the intensity
of the force is suitably small.

Mathematics Subject Classification (2000). 76A05, 76D05, 76E30, 76D03,
35B99.

Keywords. Non-Newtonian Fluids, anisotropic dissipative field, finite time lo-
calization effect.

1. Introduction

1.1. Statement of the problem

In this article we consider incompressible and non-homogeneous non-Newtonian
fluids. We assume that there are no inner mass sources and the motions are isother-
mal. These fluids are driven by the following complete system of equations posed
in the cylinder Q = Ω× (0, T ) ⊂ R

N × R
+:

∂ρ

∂t
+ u · ∇ρ = 0, div u = 0; (1.1)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= div S + ρ f ; (1.2)

S = −pI + F(D), D =
1
2
(
∇u +∇uT

)
. (1.3)

The work of the first author was partially supported by the project FCT-DECONT-UBI.
The work of the second author was partially supported by the project FCT-POCTI-ISFL-209.
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In these equations, u, ρ and p are, respectively, velocity, density and pressure in
the fluid, and f is the prescribed mass force. S, D and I are, respectively, the
stress tensor, the tensor of rate of deformation and the unit tensor. The domain
Ω considered here is bounded and its boundary ∂Ω is assumed to be Lipschitz.

System (1.1)–(1.3) is endowed with the initial and boundary conditions:

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x) in Ω; (1.4)

u(x, t) = 0 on ΓT = ∂Ω× (0, T ). (1.5)
The tensor F is symmetric and is assumed to satisfy, for all u ∈ R

N ,

δ |D(u)|q ≤ D(u) : F(u) ≡
N∑

i,j=1

FijDij , 0 < δ = δ(ρ) <∞, 1 ≤ q <∞. (1.6)

Fluids satisfying condition (1.6) are called viscous-plastic if 1 < q < 2 and dilatant
if q > 2. Classical Navier-Stokes equations correspond to q = 2 and, in this case,
for incompressible homogeneous viscous fluids the stress tensor S has the form
S = −pI + 2µD, where µ is the shear viscosity.

The new contribution of this work, is the consideration of a forces field f in
(1.2) such that

f(x, t,u) = h(x, t,u) + g(x, t), (1.7)
where g is a given function and h depends nonlinearly on the velocity field u:

−h(x, t,u) · u ≥
N∑

i=1

δi |ui|σi ∀ u ∈ R
N , σi ∈ (1, 2), (1.8)

for some non-negative constants δi, with i = 1, . . . , N . We have the following
examples of forces fields f satisfying (1.7) and (1.8):

with g ≡ 0, f(x, t,u) = −(δ1 |u1|σ1−2u1, . . . , δN |uN |σN−2uN ); (1.9)

with g �= 0, f(x, t,u) = −(δ1 |u1|σ1−2u1, . . . , δN |uN |σN−2uN)− g(x, t), (1.10)
‖g(·, t)‖2,Ω ≤ C (1− t/tg)ν

+ ,

for some positive constants C, ν, tg and where u+ = max (0, u). Notice the con-
stants δ1, . . . , δN in (1.8) are non-negative and, thus, only one component of the
vector field (δ1 |u1|σ1−2u1, . . . , δN |uN |σN−2uN) appearing in examples (1.9) and
(1.10) can be zero.

From the Fluid Mechanics point of view, condition (1.8) means the forces
field f is a feedback term, as one can see from the examples (1.9) and (1.10). This
feedback is presented as an anisotropic condition, because the dependence of f
on u may be different for distinct directions. Moreover, from condition (1.8), we
can say the feedback forces field h, and thus f , is dissipative, in order to each
component uk, in all directions xk where δk > 0, for k = 1, . . . , N .

Definition 1.1. We say the weak solutions (u, ρ) of the problem (1.1)–(1.5) pos-
sesses the finite time localization property if there exists (a finite time) t∗ ∈ (0,∞)
such that u(x, t) = 0 a.e. in Ω and for all t ≥ t∗.
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1.2. Motivation

In [5, §4.7] was considered, for the first time, the assumption that the forcing term
f in (1.2) to depend on u and to obey

∀u ∈ R
N δ0|u|σ ≤ −f(x, t,u) · u, σ ∈ (1, 2), (1.11)

with some positive constant δ0. It was assumed that

E(0) =
1
2

∫
Ω

ρ(x, 0)|u(x, 0)|2 dx <∞, 1/M ≤ ρ0 ≤M ≡ Const. (1.12)

and were considered weak solutions (u, ρ) of problem (1.1)–(1.5) such that

u ∈ L∞(0, T ;L2(Ω)) ∩ Lσ(0, T ;Lσ(Ω)) ∩ L2(0, T ;W1,q
0 (Ω)) and

1
M
≤ ρ ≤M.

First, were considered pseudo-plastic fluids for which (1.6) holds with δ = Const.
and q ∈ (2N/(N + 2), 2). The finite time localization property was proved in the
case of f = 0 with t∗ expressed by an explicit formulae (see [5, Th. 7.1]). The
same property was proved also for a given tf > t∗ if ‖f(·, t)‖p,Ω ≤ ε (1− t/tf )

ν
+

for all t > 0. Here p = Nq/[N(q − 1) + q], ν is some positive constant and ε is a
sufficiently small positive constant. Notice that, in the limit case ε = 0, we have
f ≡ 0. In this case and assuming (1.6), it can be proved the following results (see
[5, §4.7] – see also [9, 11]): if q = 2, the norm ‖u‖2,Ω has a time exponential decay,
for t ≥ tg; if q > 2, the norm ‖u‖2,Ω has a time power decay, for t ≥ tg.

Then, were considered pseudo-plastic fluids with vanishing or unbounded
density, i.e., assuming that ‖1/ρ0‖m,Ω ≤ C1, ‖ρ0‖M,Ω ≤ C2, and min(m,M) > 1,
for some positive constants C1 and C2. Under the assumptions that

√
ρ0 u0 ∈

L2(Ω) and (1.6 holds with δ = Const. and q ∈ (2MN/[N(M − 1) + 2M ], 2),
M > N/2, were proved analogous results about finite time localized weak solutions
(see [5, Th. 7.2]).

Notice that to obtain these results there is no need to assume condition
(1.11) on the forces field f . In these cases, i.e., pseudo-plastic fluids (q < 2), the
localization effects are determined only by the structure of the tensor S.

Next, was considered the case q ≥ 2, dilatant (q > 2) and Newtonian (q = 2)
fluids. Under the assumptions that (1.11) and (1.6) with δ = Const . and q ∈ [2, N)
hold, was proved the finite time localization property (see [5, §4.7]). In this case,
the finite time localization property is determined by the feedback forcing term f .

A few time later, this kind of forces field was improved in planar station-
ary homogeneous incompressible fluid problems, governed by the classical Navier-
Stokes equations. In [1, 2, 3, 4] has been established the property of finite space
localization for the velocity u, i.e., has been proved the solutions u of those prob-
lems have compact support in Ω. The isothermal 2-dimensional cases of Stokes and
Navier-Stokes problems were considered in a semi-infinite strip Ω = (0,∞)×(0, L),
L = Const . > 0, in [1, 2, 3]. There, has been assumed the body forces f satisfies,
for every u ∈ R

2, u = (u, v), and almost all x ∈ Ω

−f(x,u) · u ≥ δ |u|σ − g(x), , δ = Const . > 0, 1 < σ < 2,
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for some function g ∈ L1 (Ωxg), where Ωxg = (0, xg)×(0, L) and 0 ≤ xg <∞, such
that g ≥ 0 and g(x) = 0 a.e. in Ωxg = (xg ,∞) × (0, L). The exothermic version
of the Navier-Stokes problem was consider in [4], where it was assumed, for every
u ∈ R

2, u = (u, v), θ ∈ [m,M ] (θ is the temperature), with m < M constants,
and almost all x ∈ Ω

−f(x, θ,u) · u ≥ δ |u|1+σ(θ) − g(x, θ), δ = Const . > 0,

for some function g ∈ L1 (Ωxg × R) such that g ≥ 0, g(x, θ) = 0 a.e. in Ωxg for
every θ ∈ [m,M ]. Here, σ is a Lipschitz continuous function such that 0 < σ− ≤
σ(θ) ≤ σ+ < 1 for every θ ∈ [m,M ].

In this paper, we are interested in generalize some results of [5, §4] by consid-
ering the improvements of the forces fields considered in [1, 2, 3, 4]. Particularly,
we will analyse the following very interesting question: does the property of finite
time localization, for the weak solutions u of (1.1)–(1.8), may be assured by dis-
sipation of the forces field f merely in one direction? Recall that dissipation in
order to uk, in the direction xk, with k = 1, . . . , N , corresponds to assume δk > 0
in (1.7)–(1.8). We will prove the weak solutions (u, ρ) of problem (1.1)–(1.5) are
finite time localized, if the stress tensor S satisfies (1.6) for appropriated values of
q and the forces field f satisfies (1.7)–(1.8).

2. Main results

2.1. Weak formulation

We are interested in weak solutions (ρ,u) to the problem (1.1)–(1.5) such that

E(t) +
∫

Ω

|∇u|q dx <∞, where E(t) =
1
2

∫
Ω

ρ(x, t) |u(x, t)|2 dx, (2.1)

1/M ≤ ρ ≤M, M ≡ Const. > 0 (2.2)
Let us introduce the vector function space

Jr(Ω) =
{
u ∈ Lr(Ω) :

∫
Ω

u · ∇φdx = 0, ∇φ ∈ Lr(Ω)
}

and consider the class of vector functions u ∈Wq,σ, u = (u1, . . . , uN), where

Wq,σ ={u ∈ L∞ (
0, T ;L2(Ω)

)
∩ L2(0, T ;W1,q

0 (Ω)) : σ = (σ1, . . . , σN ),

σi ∈ (1, 2) and ui ∈ Lσi(0, T ; Lσi(Ω)) ∀ i = 1, . . . , N}.

Definition 2.1. A pair of functions (u, ρ) is called a weak solution of problem
(1.1)–(1.5), if u ∈Wq,σ, ρ satisfies (2.2) and if the following integral identities:

−
∫ T

0

∫
Ω

ρ [u ·Φt + u⊗ u : ∇Φ] dx dt +∫ T

0

∫
Ω

F(u) : ∇Φ dx dt =
∫ T

0

∫
Ω

ρ f ·Φ dx dt−
∫

Ω

ρ0 u0 ·Φ(0) dx ;
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∫ T

0

∫
Ω

ρ [ϕt + (u · ∇)ϕ] dx dt +
∫

Ω

ρ0ϕ(0) dx = 0 ;

are fulfilled for any Φ ∈ C1
(
0, T ;J1 (Ω)

)
and ϕ ∈ C1

(
0, T ; H1 (Ω)

)
such that

Φ(x, T ) = 0 and ϕ(x, T ) = 0.

According to [5, §4.7] and references therein problem (1.1)–(1.5) has, at least,
one weak solution, if the mass force term does not depend on u, i.e if we consider
f = f(x, t) in a suitable functional space. Moreover, at least formally, every weak
solution of problem (1.1)–(1.5) satisfies the energy relation

d

dt
E(t) +

∫
Ω

F(u) : D(u) dx =
∫

Ω

ρ f · u dx, (2.3)

where E(t) is given in (2.1). The derivation of (2.3) relies on (1.1)–(1.3), the
symmetry of the tensor F, integration-by-parts formulae and boundary condition
(1.5).

Now, we assume the forces field f satisfies (1.7)–(1.8) for a given vector field
g. Moreover, we assume the tensor F, given in (1.3), is such that

(1.6) holds with q ≥ 2. (2.4)

Thus energy relation (2.3), assumptions (2.2) and (2.4), Korn’s inequality (see
Lemma 2.5) and Sobolev Embedding Theorem, lead us to the estimate

sup
0≤t≤T

E(t) +
∫ T

0

∫
Ω

(
δ |∇u|q +

N∑
i=1

δi |ui|σi

)
dx dt

≤C(M)

(
E(0) +

∫ T

0

(∫
Ω

|g(x, t)|p dx
) q

p(q−1)

dt

)
,

(2.5)

where p = Nq/[N(q− 1) + q]. In our further study we assume the existence of, at
least, one weak solution of problem (1.1)–(1.5) in the sense of Definition 2.1.

We give here only the ideas of the proof. We consider the three main different
cases: 1 ≤ q < 2, q = 2 and q > 2. For each one of such cases, and for different
constitutive laws, there are known existence results for suitable forces given in
appropriated function spaces. For 1 ≤ q < 2 and S = −pI + 2µD + αD

(q−2)/2
II D,

the existence of a weak solution is proved in [7]. In [6] was proved the existence of
a weak solution for S = −pI + 2µD (and q = 2). Finally, for S = −pI + 2µD +
αD

(q−2)/2
II D and q ≥ 2, the existence of a weak solution was also proved in [7]. In

our problem (1.1)–(1.5), the idea is to use energy estimate (2.5), assumption (2.2),
repeating the corresponding arguments of [6, 7] (see also [8, 10]) and to use a fixed
point argument. We hope to publish these results elsewhere as soon as possible.

Notice that, according to (2.5), every weak solution satisfies∫
Ω

(
δ |∇u|q +

N∑
i=1

δi |ui|σi

)
dx ∈ L1[0, T ].
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2.2. Finite time localization

We will prove that the weak solutions of (1.1)–(1.5) are finite time localized, if
condition (2.4) is satisfied and the forces field f satisfies (1.7)–(1.8) and exhibits
dissipation effect in one direction. For the sake of simplicity, we assume that is
δN = 0, i.e.

(1.8) holds with δN = 0 and δj �= 0 for all j �= N . (2.6)

Let us consider the following hypothesis on the domain Ω.

Hypothesis A. The domain Ω is convex, at least, in the xN direction.

From this assumption, we can say that each line parallel to the xN axis in-
tersects the boundary ∂Ω only on two points, say, x0

N ≡ (x0
1, . . . , x

0
N−1) and

x1
N ≡ (x1

1, . . . , x
1
N−1), with x0

N ≤ x1
N .

Theorem 2.2. Let (u, ρ) be a weak solution of problem (1.1)–(1.5) in the sense of
Definition 2.1. Assume that conditions (1.12), (2.2), (2.4), (2.6) and Hypothesis
A are satisfied.

1. If g(x, t) ≡ 0, then there exists t∗ > 0 such that E(t) = 0 for almost all
t ≥ t∗. In particular, u ≡ 0 in Q ∩ {t ≥ t∗}.

2. Let g �≡ 0 satisfy

‖g(·, t)‖p,Ω ≤ ε

(
1− t

tg

) q−1
q(µ−1)

+

, p =
Nq

N(q − 1) + q
, µ > 1, (2.7)

where µ depends on p, q, N and σ1, . . . , σN−1. Then there exists a constant
ε0 > 0 such that E(t) = 0 for almost all t ≥ tg, if ε ≥ ε0 > 0. In particular,
u ≡ 0 in Q ∩ {t ≥ tg}, if ε ≥ ε0 > 0.

Remark 2.3. The mechanical sense of this theorem is that if the flow of a non-
Newtonian dilatant fluid with the dissipative term satisfying (1.8) with g ≡ 0 is
generated by the initial data, then in a finite time the fluid becomes immobile. If
the flow is stirred by the source term g �= 0 which vanishes at the instant tg, then
the fluid is still for all t ≥ tg provided the intensity of the source is suitably small.

The main tool to prove Theorem 2.2 are two well-known results, usually denoted in
the literature, as the interpolation embedding inequality and the Korn’s inequality.
For these results see [5, §4.7.2 and Appendix 3] and references therein.

Lemma 2.4 (Interpolation Embedding). Let u ∈ W1,p
0 (Ω), 1 < p < ∞. Then the

following interpolation inequality holds:

‖u‖q,Ω ≤ C(‖∇u‖p,Ω)θ(‖u‖r,Ω)1−θ, θ =
1/r − 1/q
1/r − 1/p∗

, p∗ = Np/(N − p). (2.8)

Here C = ((N − 1)/Np∗)θ
, θ ∈ [0, 1], q ∈ [r, p∗] (or q ∈ [p∗, r]), if p < N ;

C = max ((N − 1)/Nq, 1 + (p− 1)/p r)θ
, θ ∈ [0, 1], q ∈ [r,∞), if N ≤ p.
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If p > N , then (2.8) is true for q = ∞ with θ = Np/[Np + r(p − N)] and some
constant C <∞ not depending on Ω.

Lemma 2.5 (Korn). Let 1 ≤ p, r <∞ and D be the tensor of rate of deformation.
If u ∈W1,p

0 (Ω), then the following inequality holds
1
C
‖∇u‖p,Ω ≤ ‖D(u)‖p,Ω ≤ C‖∇u‖p,Ω, C = C(p,N,Ω), K = K(p,N,Ω).

(2.9)

Proof of Theorem 2.2. We will split this proof into several steps.
Step 1. Applying assumptions (2.6), (2.4) and (2.2) to the energy relation (2.3),
and using Korn’s inequality (2.9), we obtain

d

dt
E(t) + CEq,σ(t) ≤

∫
Ω

u · g dx, Eq,σ(t) =
∫

Ω

(
|∇u|q +

N−1∑
i=1

|ui|σi

)
dx, (2.10)

where C = C1(K,M,N, δ0) with δ0 = mini=1,...,N δi > 0, K is the Korn’s inequal-
ity constant and, from (1.8), 1 < σi < 2 for all i = 1, . . . , N − 1. Notice that
u ∈ L2(0, T ;W1,q(Ω)), ui ∈ Lσi(0, T ; Lσi(Ω)) for all i = 1, . . . , N − 1.
Step 2. In this step we establish the following result.

Lemma 2.6. Let u ∈ L2(0, T ;W1,q(Ω) ∩ Jq(Ω)), ui ∈ Lσi(0, T ; Lσi(Ω)) for all
i = 1, . . . , N − 1. and the Hypothesis A be fulfilled. Then, for almost all t ∈ [0, T ],
the inequality

E(t)
1
µ ≤ C Eq,σ(t), E(t) ≡ 1

2

∫
Ω

ρ |u|2 dx, (2.11)

holds for some positive constants C = C(‖u‖2,Ω , q,N, σi,Ω), µ = µ(q,N, σi) > 1,
i = 1, . . . , N − 1.

Proof. Without loss of generality, we assume that u ∈ C2(Ω) for almost all t ∈
[0, T ]. Using the interpolation embedding inequality (2.8), with q = 2, p = q,
r = σi, and Young’s inequality, we can write, for any scalar component ui of
vector u, with i = 1, . . . , N − 1,

‖ui‖22,Ω ≤ C

[∫
Ω

(|∇ui|q + |ui|σi) dx
]µi

, µi = 1 +
q(2− σi)

q(N + σi)−Nσi
. (2.12)

Notice that the assumptions 1 < σi < 2 and q ≥ 2 > 2N
N+1 assure that µi > 1 for

any i = 1, . . . , N − 1. Assuming, without loss of generality, that ‖u‖22,Ω ≤ 1, we
can rewrite (2.12), and for all i = 1, . . . , N − 1, in the form

‖ui‖22,Ω ≤ C (Eq,σ(t))µN−1 , µN−1 = min
1≤i≤N−1

µi. (2.13)

Next we need to derive an analogous estimate for the last component uN of
vector u. Recall that the force term is non-dissipative, in order to uN , with respect
to the xN direction (δN = 0). To establish that, we introduce the hyperplane

Ω(z) = Ω ∩ {x = (x′, xN ) ∈ R
N : x′ = (x1, . . . , xN−1) and xN = z} ⊆ R

N−1.
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We formally multiply the continuity equation

div u = 0, u = (u1, . . . , uN ) ∈ Jq(Ω),

by uN and integrating by parts over Ω(z), we came to

−1
2

∫
Ω(z)

∂u2
N

∂xN
dx′ =

∫
Ω(z)

N−1∑
i=1

∂uN

∂xi
ui dx′.

But, according to the boundary condition (1.5), we have

1
2
∂

∂z

∫
Ω(z)

u2
N dx′ =

∫
Ω(z)

N−1∑
i=1

∂uN

∂xi
ui dx′. (2.14)

Let us consider x0
N such that (x1, . . . , xN−1, x

0
N ) ∈ ∂Ω. Integrating (2.14) with

respect to z ∈ [x0
N , xN ] and applying, once more, the boundary condition (1.5),∫

Ω(z)

u2
N dx′ = 2

∫ xN

x0
N

∫
Ω(z)

N−1∑
i=1

∂uN

∂xi
ui dx′ dz.

We apply Hölder’s inequality to obtain

‖uN‖22,Ω(z) ≤ C ‖∇uN‖q,Ω

N−1∑
i=1

‖ui‖q′,Ω ,

where C = C(N). Integrating the last inequality with respect to z and using,
again, Hölder’s inequality, we achieve to the estimate

‖uN‖22,Ω ≤ C ‖∇uN‖q,Ω

N−1∑
i=1

‖ui‖q′,Ω ≤ C ‖∇uN‖q,Ω

N−1∑
i=1

‖ui‖2,Ω ,

where C = C(q,N,Ω). Now, applying (2.13) and the definition of Eq,σ(t) (see
2.10), we came to the inequality

‖uN‖22,Ω ≤ C (Eq,σ(t))µN , µN =
1
q

+
µN−1

2
> 1, (2.15)

where C = C(‖ui‖2,Ω , q,N, σi,Ω), i = 1, . . . , N − 1. Finally, combining (2.13) and
(2.15), we obtain (2.11), where µ = min1≤i≤N µi. �

Step 3. If g ≡ 0, using (2.11) and the energy relation (2.10), we come to the
homogeneous ordinary differential inequality

d

dt
E(t) + CE(t)1/µ ≤ 0 for all t ≥ 0. (2.16)

An explicit integration of (2.16) between t = 0 and t ≥ tg proves the first assertion.
If g �≡ 0, we use the estimate∣∣∣∣∫

Ω

u · g dx
∣∣∣∣ ≤ ‖g‖p,Ω ||u||p′,Ω ≤ C‖g‖p,Ω‖∇u‖q,Ω ≤ ε‖∇u‖q,Ω + C(ε)‖g‖

q
q−1
p,Ω ,
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valid for some ε ∈ (0, 1), and, also, estimate (2.11), assumption (2.7) and the energy
relation (2.10), to achieve the nonhomogeneous ordinary differential inequality

d

dt
E(t) + C1E(t)1/µ ≤ C2

(
1− t

tg

) q−1
q(µ−1)

+

for all t ≥ 0.

The analysis of this inequality, which have been considered in [5, §1.2], proves the
second assertion. �

Example. Let us consider the very interesting particular case of problem (1.1)–
(1.5) when N = 2 and assume the fluid is homogeneous. The incompressibility
condition given in (1.1) and the homogeneity of the fluid allow us to consider
problem (1.1)–(1.5) in the form

div u = 0,
∂u
∂t

+ (u · ∇)u =
1
ρ0

div S + f ; (2.17)

u(x, 0) = u0(x) in Ω and u(x, t) = 0 on ΓT = ∂Ω× (0, T ). (2.18)
where ρ0 is the constant density of the fluid, the stress tensor S satisfies (1.3) and
the tensor F satisfies (2.4) with N = 2. By classical techniques, we reduce problem
(2.17)–(2.18) to the consideration of the problem posed by the following equations

−�ψt + ψx�ψy − ψy�ψx = (div S)y − (div S)x +
∂f2

∂x
− ∂f2

∂y
, (2.19)

ψ(x, 0) =
∫ y

0

u0(x, s) ds in Ω, ψ = 0 and
∂ψ

∂n
= 0 on ΓT = ∂Ω× (0, T ), (2.20)

for the stream function ψ ≡ ψ(x, y) : u = (u, v) = (ψy,−ψx). We formally multiply
equation (2.19) by a weak solution ψ and integrate by parts over Ω, using (2.20)
and (2.4) to obtain
d

dt
E(t) + CEq,σ(t) ≤

∫
Ω

(ψy,−ψx) · g dx, Eq,σ(t) =
∫

Ω

(
|D2ψ|q + |ψy|σ1

)
dx,

where E(t) = 1/2
∫
Ω
|∇ψ|2 dx ≡ 1/2

∫
Ω
|u|2 dx. Proceeding as in the proof of

Theorem 2.2, we obtain

‖ψy‖22,Ω ≤ C (Eq,σ(t))µ1 , µ1 = 1 +
q(2− σ1)

q(2 + σ1)− 2σ1
> 1.

Then, we multiply the equation ψyx − ψxy = 0 by −ψx, where ψ is the stream
function associated to a function u ∈ Jq(Ω), and integrating by parts over Ω(z) =
Ω ∩ {(x, y) ∈ R

2 : y = z} ⊆ R, we come to

−1
2

∫
Ω(z)

∂ψ2
x

∂y
dx =

∫
Ω(z)

ψxxψx dx.

Again, proceeding as in the proof of Theorem 2.2, we achieve to the estimate

‖ψx‖22,Ω ≤ C
∥∥D2ψ

∥∥
q,Ω
‖ψy‖q′,Ω ≤ C

∥∥D2ψ
∥∥

q,Ω
‖ψy‖2,Ω ,

where C = C(N, q,Ω). The rest of the proof follows just in the same manner.
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Remark 2.7. The results established in Theorem 2.2 can be extended to unbounded
domains satisfying Hypothesis A. The proof is almost the same, we only need to use
the known Korn’s and interpolation embedding inequalities (Gagliardo-Nirenberg)
for these domains. See the papers, cited in [5], by Kondratiev and Oleinik for
Korn’s inequality in unbounded domains, and by Gagliardo and Nirenberg for the
interpolation embedding inequality, also, in unbounded domains.
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Parabolic Equations with Anisotropic
Nonstandard Growth Conditions

S. Antontsev and S. Shmarev

Abstract. We study the Dirichlet problem for a class of nonlinear parabolic
equations with nonstandard anisotropic growth conditions. Equations of this
class generalize the evolutional p(x, t)-Laplacian equation. We prove the ex-
istence of a bounded weak solution and study its localization (vanishing)
properties.
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Keywords. Nonlinear parabolic equation, nonstandard growth conditions, an-
isotropic nonlinearity, localization of solutions.

1. Statement of the problem

Let Ω ⊂ R
n be a bounded simple-connected domain and 0 < T <∞. We consider

the Dirichlet problem for the parabolic equation

ut −
∑

i

Di

(
ai(z, u)|Diu|pi(z)−2Diu

)
+ c(z, u)|u|σ(z)−2u = f in Q,

u = 0 on Γ, u(x, 0) = u0(x) in Ω,
(1.1)

where z = (x, t) ∈ Q ≡ Ω× (0, T ], Γ denotes the lateral boundary of the cylinder
Q. Throughout the paper we assume that pi(z) and σ(z) are given measurable in
Q functions such that

pi(z) ⊆
[
inf
Q

pi, sup
Q

pi

]
⊂ (p−i , p

+
i ) ⊆ (p−, p+),

σ(z) ⊆
[
inf
Q

σ, sup
Q

σ

]
⊂ (σ−, σ+)

(1.2)

The first author was partially supported by the research project DECONT, FCT/MCES (Por-
tugal) at the “Centro de Matemática”, Universidade da Beira Interior.

The second author was supported by the research grants MTM–2004-05417 (Spain) and
HPRN–CT–2002–00274 (EC).
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with given finite constants p±i , σ±, p−i > 1, p− > 1, σ− > 1. The coefficients ai and
c may depend on x, t, u(x, t) and obey the following conditions: ai(z, u), c(z, u)
are Carathéodory functions, defined for (z, r) ∈ Q× R (measurable in z for every
r ∈ R and continuous in r for a.a. z ∈ Q),

∀ (z, r) ∈ Q× R
0 < a0 ≤ ai(z, r) ≤ a1 <∞,
0 ≤ c0 ≤ c(z, u) ≤ c1 <∞, a0, a1, c0, c1 = const . (1.3)

Moreover, it is assumed that the exponents pi(z) and σ(z) are continuous in Q
with logarithmic module of continuity:

∀ (z1, z2) ∈ Q
∑

i

|pi(z1)− pi(z2)|+ |σ(z1)− σ(z2)| ≤ ω(|z1 − z2|) (1.4)

where ω(τ) is continuous for τ > 0 and

lim
τ→0+

ω(τ) ln
1
τ

= C < +∞. (1.5)

The note is devoted to the study of localization (vanishing) properties of
bounded weak solutions to equation (1.1) which degenerates if |Diu|pi(z) = 0 or
becomes singular if |Diu|pi(z) = ∞. In Section 2 we collect some known facts
from the theory of the generalized Lebesgue and Sobolev spaces and introduce the
function spaces the solutions of problem (1.1) belong to. In Section 3 we announce
the results on the existence of bounded weak solutions of problem (1.1) and give
a sketch of proofs. In the rest of the note we study the localization properties
of weak solutions: we show that the solutions of problem (1.1) either identically
vanish in a finite time (if p+ < 2), or possess the property of finite speed of
propagation of disturbances from the initial data (if p− > 2). In the study of
the localization properties we use a modification of the method of local energy
estimates [8]. Similar properties of solutions of parabolic equations nonlinear with
respect to the solution with variable exponents of nonlinearity are obtained in
[5, 6]. The localization properties of solutions of elliptic equations with nonstandard
growth conditions are studied in [4, 7]. We also refer to the papers [1, 2, 3, 9] for a
discussion of the regularity properties of weak solutions of the systems of equations
with nonstandard growth conditions (see also the references therein to the previous
work on this issue). The continuity properties of solutions of a parabolic equation
with variable exponent of nonlinearity are studied in [13].

2. Spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω)

The definitions of the function spaces and the brief description of their properties
presented in this subsection follow [10, 11, 14, 16] (see the review work [12] for the
detailed list of references). Let{

Ω ⊂ R
n be a bounded domain, ∂Ω be Lipschitz-continuous,

p(x) satisfy (1.4) on Ω.
(2.1)
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By Lp(x)(Ω) we denote the space of measurable functions f(x) on Ω such that

Ap(·)(f) =
∫
Ω

|f(x)|p(x) dx <∞.

The space Lp(x)(Ω) equipped with the norm

‖f‖p(·) ≡ ‖f‖Lp(x)(Ω) = inf
{
λ > 0 : Ap(·) (f/λ) ≤ 1

}
becomes a Banach space. The Banach space W 1, p(x)(Ω) with p(x) ∈ [p−, p+] ⊂
(1,∞) is defined by

W 1, p(x)(Ω) =
{
f ∈ Lp(x)(Ω) : |∇ f | ∈ Lp(x)(Ω)

}
,

‖u‖W 1,p(x)(Ω) =
∑
i

‖Diu‖p(·) + ‖u‖p(·). (2.2)

If condition (2.1) is fulfilled, then C∞
0 (Ω) is dense in W

1, p(x)
0 (Ω) and W

1, p(x)
0 (Ω)

can be defined as the closure of C∞
0 (Ω) with respect to the norm (2.2). The equiva-

lent norm of W 1, p(x)
0 is defined by

∑
i ‖Diu‖p(·). If p(x) ∈ C0(Ω), then W 1,p(x)(Ω)

is separable and reflexive. If p(x), q(x) ∈ C0(Ω) and

1 < q(x) ≤ sup
Ω

q(x) < inf
Ω
p∗(x) with p∗(x) =

⎧⎨⎩
p(x)n

n− p(x)
if p(x) < n,

∞ if p(x) > n,

then the embedding W
1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is continuous and compact.

The following inequalities hold:

1. min
(
‖f‖p

−

p(·) , ‖f‖
p+

p(·)

)
≤ Ap(·)(f) ≤ max

(
‖f‖p

−

p(·) , ‖f‖
p+

p(·)

)
; (2.3)

2. Hölder’s inequality: for f ∈ Lp(x)(Ω), g ∈ Lq(x)(Ω) with

1
p(x)

+
1

q(x)
= 1, 1 < p− ≤ p(x) ≤ p+ <∞, 1 < q− ≤ q(x) ≤ q+ <∞

∫
Ω

|f g| dx ≤ 2 ‖f‖p(·) ‖g‖q(·) . (2.4)

3. for every 1 ≤ q = const < p− we have ‖f‖q ≤ C ‖f‖p(·) with the constant
C = 2 ‖1‖ p(·)

p(·)−q

.

4. Sobolev’s inequality: if conditions (2.1) are fulfilled, there is a constant C > 0
such that

∀ f ∈W
1,p(x)
0 (Ω) ‖f‖p(·) ≤ C ‖∇f‖p(·) . (2.5)
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2.1. Anisotropic generalized Sobolev spaces

Let pi(x, t) and σ(x, t) satisfy conditions (1.2) and (1.4). We introduce the Banach
space

Vt(Ω) =
{
u|u ∈ Lσ(x,t)(Ω) ∩W 1,1

0 (Ω), Diu ∈ Lpi(x,t)(Ω)
}
,

‖u‖Vt = ‖u‖σ(·,t),Ω +
n∑

i=1

‖Diu‖pi(·,t),Ω

and its dual V′
t(Ω). For every t ∈ [0, T ] Vt(Ω) ⊂ X = W 1,p−

0 (Ω) ∩ Lσ−
(Ω), so

that Vt(Ω) is reflexive and separable as a closed subspace of X. Denote p(z) =
(p1(z), . . . , pn(z)) and set

Ap(·),Q(∇u) =
n∑

i=1

∫
Q

|Diu|pi(x,t) dxdt.

The following counterpart of (2.3) holds:

min
{∑

i

‖Diu‖p
+

pi(·),Q,
∑

i

‖Diu‖p
−

pi(·),Q

}
≤ Ap(·),Q(∇u)

≤ max
{∑

i

‖Diu‖p
−

pi(·),Q,
∑

i

‖Diu‖p
+

pi(·),Q

}
.

(2.6)

By W(Q) we define the Banach space

W(Q) =
{
u(x, t)|u ∈ Lσ(x,t)(Q), Diu ∈ Lpi(x,t)(Q), u = 0 on Γ

}
,

‖u‖W(Q) =
∑

i

‖Diu‖Lpi(x,t)(Q)
+ ‖u‖Lσ(x,t)(Q)

with the dual W′(Q) =
{
w|w ∈ Lσ′(x,t)(Q) ∩ Lp′

i(x,t)(0, T ;W−1,p′
i(x,t)(Ω))

}
. Here

and throughout the text we use the notation 1/s+ 1/s′ = 1.

3. Existence of bounded weak solution

The solution of problem (1.1) is understood in the following sense.

Definition 3.1. A locally integrable function u(x, t) ∈W(Q) is called weak solution
of problem (1.1) if for every test-function ζ ∈ Lσ(x,t)(Q) ∩ L∞ (

0, T ;L2(Ω)
)

such
that ζ = 0 on ∂Ω× (0, T ), Diζ ∈ Lpi(x,t)(Q), ζt ∈ L2(Q), and every t1, t2 ∈ [0, T ]
the following identity holds:

t2∫
t1

∫
Ω

(
uζt −

∑
i

ai|Diu|pi−2DiuDiζ − c|u|σ−2u ζ + fζ
)
dz =

∫
Ω

uζdx
∣∣∣t2
t1
. (3.1)
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Theorem 3.1. Let conditions (1.2), (1.3) and (1.4) be fulfilled, p− >
2n

n + 2
, c0 ≥ 0,

f ∈ L2(Q) and u0 ∈ L2(Ω). Then problem (1.1) has at least one weak solution
u ∈W satisfying the estimate

‖u‖2L∞(0,T ;L2(Ω)) +
∫
Q

(
a0

∑
i

|Diu|pi + c0|u|σ
)
dz ≤M

[
‖u0‖2L2(Ω) + ‖f‖22,Q

]
with a universal constant M not depending on T .

Theorem 3.2. Let u0 ∈ L∞(Ω) and ‖f(·, t)‖∞,Ω ∈ L1(0, T ). Then the weak solution
of problem (1.1) satisfies the estimate

ess sup
t∈(0,T )

‖u(·, t)‖∞,Ω ≤ ‖u0‖∞,Ω +
∫ T

0

‖f(·, τ)‖∞,Ω dτ.

The strict limitation on the volume of this note prevents us from presenting
here the detailed proofs. We limit ourselves by a very short sketch of the argu-
ments leaving the detailed proofs for future publications. Theorem 3.1 is proved
by constructing a sequence of Galerkin’s approximations: since C∞

0 (Ω) is dense in
W

1,p(x,t)
0 (Ω) for every t ∈ (0, T ), we may construct the sequence of approximate

solutions uN(x, t) =
∑N

k=1 u
N
k (t)ψk(x) following the classical scheme given in [15,

Ch.3]. To justify the limit passage as N → ∞ we rely on the monotonicity of the
elliptic part of equation (1.1): letM(s) = |s|p−2s, then ∀ ξ, η ∈ R

n

(M(ξ)−M(η)) (ξ − η) ≥
{

2−p |ξ − η|p if 2 ≤ p <∞,

(p− 1) |ξ − η|2 (|ξ|p + |η|p)
p−2

p if 1 < p < 2.

To prove Theorem 3.2 we take for the test-function in (3.1) the function u2m−1
k

with m ∈ N and

uk = min{|u|, k} signu ≡

⎧⎨⎩ k if u > k,
u if |u| ≤ k,
−k if u < −k.

Estimate (3.2) follows then after a suitable choice of the parameter k, depending
on ‖u0‖∞,Ω, and the limit passage as m→∞ (see [6]).

4. Vanishing in a finite time

For the sake of presentation, in this section we deal with the equation (1.1) with
isotropic nonlinearity. The general anisotropic case is studied likewise and does
not present any principal difficulty.

Theorem 4.1. Let u(z) be a weak solution of problem (1.1) with pi(z) = p(z), and
let conditions (1.2) , (1.3) and (1.4) be fulfilled.
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1. Let f ≡ 0 and either

c0 ≥ 0, max
{

1,
2n

n + 2

}
< p− ≤ pi(z) = p(z) ≤ p+ < 2, (4.1)

or ⎧⎨⎩ c0 > 0, σ+ < 2 ≤ p+,
p+ σ+ [p−(n + σ−)− nσ−]

np−(2− σ−)σ+ + [(2 + n)p− − 2n)]σ−p+
≡ ν ∈ (1/2, 1).

(4.2)

Then u(z) = 0 in Q ∩ {t ≥ t∗} with some finite t∗ depending on ‖u0‖2,Ω, n,
p±, σ±, a0, c0.

2. Let either (4.1), or (4.2) holds. Assume that f �≡ 0 and

‖f(·, t)‖
2ν

2ν−1
2,Ω ≤ ε

[
1− t

tf

] ν
1−ν

+

, tf > t∗, (4.3)

with ε = const > 0, and ν = p+/2 < 1 if (4.1) is fulfilled, ν defined by
(4.2) otherwise. Then there exists a constant ε0 > 0 such that u(z) = 0 in
Q ∩ {t ≥ tf > t∗}, provided that ε0 ≥ ε > 0.

Proof. Let us introduce the functions

E(t) = ‖u‖22,Ω , I(t) =
∫
Ω

fu dx, Q(t) =
∑

i

∫
Ω

(
ai |Diu|p(z) + c |u|σ(z)

)
dx.

Choosing the solution u(z) for the test-function in (3.1), we obtain the energy
relation

1
2
E′(t) + Q(t) = I(t). (4.4)

It is easy to see that Q, I ∈ L1(0, T ), and

Q0(t) ≡
∫
Ω

(
a0 |∇u|p(z) + c0 |u|σ(z)

)
dx ≤ Q(t) ≤

∫
Ω

(
a1 |∇u|p(z) + c1 |u|σ(z)

)
dx.

Without loss of generality we may assume that E(t) ≤ 1 for a.e. t ∈ (0, T ). Using
the interpolation inequalities in the Sobolev spaces of functions defined on Ω and
depending on t as a parameter, we have that for a.e. t ∈ (0, T ) the inequality

Eν∗(t)(t) ≤ min
{
Ep−

∗ (t)/2(t), Ep+
∗ (t)/2(t)

}
≤ C

∫
Ω

|∇u(z)|p(z) dx (4.5)

holds in which C is a constant depending only on p±, n, Ω, and ν∗(t) = p+
∗ (t)/2 ≤ 1

if condition (4.1) is fulfilled. If condition (4.2) holds, then

Eν∗(t)(t) ≤ C

∫
Ω

(
|∇u(z)|p(z) + |u(z)|σ(z)

)
dx (4.6)
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with the exponent

ν∗(t) =
p+
∗ σ+

∗ [p−∗ (n + σ−
∗ )− nσ−

∗ ]
np−∗ (2− σ−

∗ )σ+
∗ +

[
(2 + n)p−∗ − 2n)

]
σ−
∗ p

+
∗
∈ (1/2, 1). (4.7)

Gathering (4.4) with (4.5) (or (4.6)) and making use of Young’s inequality, we
arrive at the inequality

1
2
E′(t) + C Eν∗(t) ≤ C

2
Eν∗(t) + C ‖f(·, t)‖ν∗(t)/(2ν∗(t)−1)

2,Ω .

Applying (4.3), we obtain the nonhomogeneous ordinary differential inequality

1
2
E′(t) + C Eν∗(t) ≤ C′

(
ε

[
1− t

tf

] ν
1−ν

+

) 2ν−1
2ν

ν∗(t)
2ν∗(t)−1

. (4.8)

Because of the assumption E(t) ≤ 1, (4.8) can be strengthen as follows:

1
2
E′(t) + C Eν ≤ C′

(
ε

[
1− t

tf

] ν
1−ν

+

)
with ν = sup

(0,T )

ν∗(t). (4.9)

If ε = 0, the straightforward integration of this inequality gives the estimate

E1−ν(t) ≤ E1−ν(0)− (1− ν)Ct, (4.10)

whence the former assertion of the theorem with t∗ = E1−ν(0)/(1 − ν)C. The
latter assertion (ε > 0) follows like in [8, Ch.1,Lemma 2.1] via comparison with a
suitable barrier function. �

Remark 4.1. The second assertion of the theorem means that under the imposed
conditions every weak solution of problem (1.1) vanishes simultaneously with the
source term at the same instant tf .

5. Space localization of solutions

Let us denote

Bρ(x0) = {x| |x− x0| < ρ}, Sρ(x0) = ∂Bρ(x0), Qρ(x0) = Bρ(x0)× (0, T ).

In this section we study the property of finite speed of propagation of disturbances
for the local weak solutions of equation (1.1) in the cylinder Qρ0(x0) = Bρ0(x0)×
(0, T ), Bρ0 ⊂ Ω, regardless of the boundary conditions on ∂Ω. Throughout the
section we assume that the total energy of the solution under study is finite:
∀ t ∈ (0, T )

D(ρ0, t) = sup
(0, t)

‖u(·, τ)‖2L2(Bρ0 ) +
∫ t

0

∫
Bρ0

(|∇u|p + c0|u|σ) dxdt ≤ C, (5.1)

with some constant C not depending on t. By local weak solution we mean the
following:
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Definition 5.1. A measurable function u(x, t) is called local weak solution of equa-
tion (1.1) if for every Qρ(x0) ⊂ Q

1. u ∈W(Qρ(x0)) ∩ L∞(0, T ;L2(Bρ(x0))), ut ∈W′(Qρ(x0)),
2. for every test-function ζ such that ζ ∈W(Qρ(x0)), ζt ∈W′(Qρ(x0)), ζ = 0

outside Qρ(x0), the integral identity holds:∫
Ω

u ζ dx

∣∣∣∣∣∣
T

0

+
∫
Q

[
− u ζt +

∑
i

ai|Diu|pi−2DiuDiζ + c|u|σ−2u ζ
]
dz =

∫
Q

f ζ dz.

Obviously, the weak solution of problem (1.1) u ∈ W(Q) is a local weak
solution in the sense of this definition.

5.1. The basic energy relation

Let x0 ∈ Ω be an arbitrary fixed point.

Theorem 5.1. Let
1
p−
− 1

p+
<

1
n

. Then for every Bρ(x0) ⊂ Ω, t ∈ (0, T ] the local

weak solution of equation (1.1) satisfies the energy relation

1
2

∫
Bρ(x0)

u2(x, τ) dx
∣∣∣τ=t

τ=0
+

t∫
0

∫
Bρ0 (x0)

(∑
i

ai|Diu|pi + c |u|σ − fu

)
dxdt

= −
∑

i

t∫
0

∫
Sρ(x0)

u ai|Diu|pi−2Diu · νi dS dt ≡ I(ρ, t),

(5.2)

where ν is the unit outer normal to Sρ(x0).

Proof. We will need the following assertion.

Lemma 5.1. Let Ap(·)(∇u) ≤ K. If
1
p−
− 1

p+
<

1
n

, then I(r) ∈ L1(0, ρ).

Proof. For the sake of brevity, let us denote ω = Bρ(x0)× (0, T ). By (2.4)∫ ρ

0

|I(r)| dr ≤ 2a0

∑
i

‖u‖pi(·),ω ‖Diu‖pi(·),ω .

According to the embedding theorem ‖u‖pi(·),ω ≤ C ‖∇u‖p−,ω, provided that

pi(x) <
np−

n− p−
. Finally, for every i = 1, . . . , n

‖Diu‖p
−

p−(·),ω =
∫

ω

|Diu|p
−
dxdt ≤ 2 ‖|Diu|p

−‖ pi(·)
p− ,ω

‖1‖ pi
pi−p− ,ω

≤ 2 ‖1‖ pi
pi−p− ,ω max

{
A

p−/p−
i

pi(·),ω (Diu), Ap−/p+
i

pi(·),ω(Diu)
}
≤ C(|Ω|, T, p±i , p±,K). �

The rest of the proof follows the proof of Lemma 2.1 in [8, Ch.3]: �
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5.2. Finite speed of propagation of disturbances from the data

Theorem 5.2 (Finite speed of propagation). Let conditions (1.2), (1.3), (1.4) and
the conditions of Theorem 5.1 be fulfilled. Assume that either

c0 = 0, and 2 < p− ≤ p(x, t), (5.3)

or

c0 > 0, σ+ < p−, max
{

1,
2n

n + 2

}
< p− ≤ p+ ≤ p(x, t) ≤ 2, (5.4)

and that f = 0 in the cylinder Qρ0(x0) = Bρ0(x0)× (0, T ). Then every local weak
solution u(z) of equation (1.1) in Qρ0(x0), satisfying (5.1), possesses the property
of finite speed of propagation: u(x, t) = 0 in x ∈ Bρ(t)(x0) with 0 ≤ t ≤ t∗ < T
and ρ(t) given by the formula

ρ1+β(t) = ρ1+β
0 − CtλD1−ν(ρ0, t) (5.5)

with some positive constants C, ν, and λ, β which depend on the constants in
conditions (1.2), (1.3) and (1.4).

Remark 5.1. Since the function ρ(t) defined by (5.5) is monotone decreasing, the
set Bρ(t)(x0) is nonempty for small t.

Let us now assume that there exists ρ1 > 0 such that Bρ1(x0) ⊂ Ω and that
for some ρ0 ∈ (0, ρ1)

u0(x) ≡ 0 x ∈ Bρ0(x0), f(x, t) ≡ 0 in Qρ0(x0), (5.6)

‖u0‖22,Bρ(x0)
+ ‖f‖22,Qρ(x0)

≤ ε(ρ− ρ0)
1/(1−ν)
+ , (5.7)

for all ρ ∈ [ρ0, ρ1], D(ρ1, T ) < ∞, with the positive constant ν defined below,
and some ε > 0. This assumption means that the functions u0(x) and f(z) are
sufficiently “flat” near the boundaries of their supports.

Theorem 5.3 (The waiting time effect). Let conditions (5.3) or (5.4)) and (5.6),
(5.7) hold, and the conditions of Theorem 5.1 be fulfilled. Then every weak local
solution u(z) of equation (1.1) possesses the waiting time property: there exists a
positive constant t∗ ≤ T such that u(x, t) = 0 in Bρ0(x0)× [0, t∗].

Sketch of proof. For the sake of simplicity we consider the case (5.3) of Theorem
5.2 and assume that f ≡ 0. Let us introduce the energy functions

E(ρ, t) =

t∫
0

∫
Bρ(x0)

|∇u|p(z)dz, b(ρ, t) = ‖u(·, ι)‖22,Bρ(x0)
, (5.8)

E(ρ, t) = max
τ≤t

E(ρ, τ), b(ρ, t) = max
τ≤t
‖u(·, τ)‖22,Bρ(x0)

(5.9)

for which

Eρ =

t∫
0

∫
Sρ(x0)

|∇u|p dxdt, Et =
∫

Bρ(x0)

|∇u|p dx. (5.10)
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We recall that due to the regularity of weak solutions stated in Theorem 5.1 the
functions Et, Eρ and Etρ are well defined in the corresponding functional spaces.
Let us consider first the cylinder Bρ0(x0)× (0, T ∗), ρ0 > 0, T ∗ > 0 assuming that

p+ − p− ≤ ε(ρ0, T
∗) (5.11)

with a sufficiently small ε > 0. Using the interpolation inequalities (see [4], formulas
(5.15), (5.22) with σ± = 2), and then following the proof of [8, Theorem 2.1, p. 133]
we estimate the right-hand side I(ρ, t) of (5.2) as follows:

|I(ρ, t)| ≤ C

t∫
0

max
{
E

(p+−1)/p+

tρ , E
(p−−1)/p−
tρ

}
‖u‖p+,Sρ

dt, (5.12)

‖u‖p+,Sρ(x0) ≤ C(‖∇u‖p−,Bρ(x0) + ρ−δb
1
2 )θb

1−θ
2

≤ C
(
max

{
E

1/p+

t , E
1/p−
t

}
+ ρ−δb

1
2

)θ

b
1−θ
2 ,

(5.13)

where

θ =
p−

p+

n(p+ − 2) + 2
n(p− − 2) + 2p−

< 1, δ =
n(p− − 2) + 2p−

2p−
> 1. (5.14)

Substituting (5.12), (5.13) into (5.2) we arrive at the inequality

b + E ≤ Cb
1−θ
2

t∫
0

max
{
E

1− 1
p+

tρ , E
1− 1

p−
tρ

}(
max

{
E

θ

p+

t , E
θ

p−
t

}
] + ρ−δθb

θ
2

)
dτ.

Not loosing generality we may assume that E(ρ0, T ) ≤ D(ρ0, T ) ≤ 1 and T ≤ 1.
Applying the integral representations∫ t

0

Etρdt = Eρ(ρ, t),
∫ t

0

Etdt = E(ρ, t),

and using Hölder’s inequality, we derive the inequality(
b + E

)µ ≤ Ctκρ−δθ max
{
E1−1/p+

ρ , E1−1/p−
ρ

}
,

with the exponents

µ = 1− θ

p+
− 1− θ

2
, κ = min

{
1
p+

(
1− θp+

p−

)
,
1− θ

p−

}
.

Since E ≤ 1, this inequality leads to the ordinary nonlinear differential inequality
for the energy function E:

E
ν ≤

(
b + E

)ν ≤ Ctλ∗ρ
−βEρ (5.15)

with the exponents of nonlinearity

ν =
p−

p− − 1

(
1
2

+ θ

(
p+ − 2
2p+

))
< 1, λ =

κp+

p+ − 1
, β = δθ

p+

p+ − 1
.

The function E is considered as a function of the variable ρ depending on t as
a parameter. Notice that due to condition (5.11) on the oscillation of p(z) the



Parabolic Equations with Nonstandard Growth Conditions 43

inequality µ < 1 with variable p(z) immediately follows if µ < 1 in the special case
when p+ = p−, which much easier to check. The required estimate (5.5) follows
now after integration of the differential inequality in the limits (ρ, ρ0). To complete
the proof, we take a ball of an arbitrary radius ρ0, take a finite covering of this ball
with balls of small radius ρ′ such that the oscillation condition (5.11) is fulfilled,
and then repeat the previous arguments in every of these balls.

In the case of Theorem 5.3 the same proceeding leads to the nonhomogeneous
ordinary differential inequality

E
ν ≤ Ctλ∗ρ

−βEρ + ε [ρ− ρ0]
ν

1−ν

+ , ρ ∈ (ρ0, ρ1). (5.16)

The analysis of this inequality is based on [8, Ch.1, Lemma 2.4 ] (see also [4,
Lemma 5.3]). �

Remark 5.2. The conclusions about the space-and-time localization properties of
solutions to problem (1.1) are based on the analysis of the nonlinear ordinary dif-
ferential inequalities for the energy functions. When dealing with these inequalities
we always reduced them, by means of some suitable assumptions, to the nonlinear
inequalities with constant exponents of nonlinearity, which are already studied (see,
for instance, inequality (4.8) and its counterpart (4.9)). The study of the properties
of functions satisfying the nonlinear ordinary differential inequalities with variable
exponents of nonlinearity is still an open question.
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Parabolic Systems with the
Unknown Dependent Constraints
Arising in Phase Transitions

Masayasu Aso, Michel Frémond and Nobuyuki Kenmochi

Abstract. We consider a system of nonlinear parabolic PDEs which includes a
constraint on the time-derivative depending on the unknowns. This system is a
mathematical model for irreversible phase transitions. In our phase transition
model, the constraint p := p(θ, w) is a function of the temperature θ and
the order parameter (state variable) w and it is imposed on the velocity
of the order parameter, for instance, in such a way that p(θ, w) ≤ wt ≤
p(θ, w) + (a positive constant). We give an existence result of the problem.
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1. Introduction

The irreversible phase change is very often observed in solid-liquid systems, for
instance, in the solidification process of eggs; in fact, once eggs are solidified in
high temperature, their states never return to raw ones even if they are put in cold
water. It is called that the phase transition is irreversible.

In this paper we consider the following system:

θt + wt − ν∆θ = h(x, t) in Q := Ω× (0, T ), (1.1)

wt + α(wt − p(θ, w)) − κ∆w + β(w) � f(θ, w) in Q, (1.2)
∂θ

∂n
=

∂w

∂n
= 0 on Σ := Γ× (0, T ), (1.3)

θ(·, 0) = θ0, w(·, 0) = w0 on Ω, (1.4)
where Ω is a bounded domain in R3 with smooth boundary Γ, 0 < T <∞; ν and
κ are positive constants; α and β are maximal monotone graphs in R×R; p(·, ·)
is a function of C2-class on R×R and f(·, ·) is a Lipschitz continuous function on
R×R. Moreover h is a function on Q, and θ0 and w0 are functions on Ω, which
are prescribed as the data. We denote by (P ) the system of (1.1)–(1.4).
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In this paper, we suppose for α, β, p(·, ·) and f(·, ·) that
(A) 0 ∈ α(0), D(α) = [0, N0] or [0, N0) for some finite positive number N0, where

D(α) is the domain of α.
(B) β is the subdifferential of the indicator function of the interval (−∞, 1],

namely

β(r) =

⎧⎨⎩ ∅ for r > 1,
[0,∞) for r = 1,
{0} for r < 1.

(C) All of the first- and second-order partial derivatives of p are continuous and
bounded on R×R, p ≥ 0 on R×R and

p(θ, w) = 0, ∀θ ∈ R, ∀w ∈ R with w ≥ 1; (1.5)

note here that 1 = supD(β).
(D) f is Lipschitz continuous and bounded on R×R.

We note here that the term α(wt − p(θ, w)) requires automatically 0 ≤
p(θ, w) ≤ wt ≤ p(θ, w) + N0, which is a velocity constraint depending on the
unknowns θ and w; in the context of irreversible phase transition in solid-liquid
systems, the unknown θ is temperature and w, 0 ≤ w ≤ 1, is the volume fraction
of solid in the system under consideration. In this paper we give an existence result
for problem (P ). We refer for related works on irreversible phase transition, for
instance, to [7, 9] in the case of prescribed constraints.

2. Main result

System (P ) is treated under the following assumptions on the data h, θ0, w0:

h ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(Q), θ0, w0 ∈ H2(Ω),
∂θ0
∂n

=
∂w0

∂n
= 0 on Γ. (2.1)

For simplicity, we assume that the diffusion coefficients ν and κ are equal to 1,
and use the notation −∆0 to indicate the Laplace operator −∆ with homogeneous
Neumann boundary condition. Now we give the definition of solution of (P ) (with
ν = 1 and κ = 1).

Definition 2.1. A pair of functions {θ, w} is called a solution of (P ), if it satisfies
the following conditions (1)–(4):
(1) θ, w ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).
(2) θ′(t) + w′(t) − ∆0θ(t) = h(t) in L2(Ω) for a.e. t ∈ (0, T ), where θ′ and w′

denote the time-derivatives of θ and w, respectively.
(3) There exist functions ξ, η ∈ L2(0, T ;L2(Ω)) with ξ ∈ α(w′ − p(θ, w)) and

η ∈ β(w) a.e. in Q such that

w′(t) + ξ(t)−∆0w(t) + η(t) = f(θ(t), w(t)) in L2(Ω) for a.e. t ∈ (0, T ).

(4) θ(0) = θ0 and w(0) = w0 in L2(Ω).



Parabolic Systems with the Unknown Dependent Constraints 47

Our existence result is stated as follows:

Theorem 2.1. In addition to assumptions (A), (B), (C) and (D), suppose that (2.1)
holds. Then problem (P ) has at least one solution {θ, w} in the sense of Definition
2.1 such that

w′ ∈ L∞(Q), θ, w ∈W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)).

Remark 2.1. As far as the existence (in the sense of Definition 2.1) of a solution
of (P ) is concerned, we can replace the conditions for h and θ0 by weaker ones

h ∈ L∞(Q), θ0 ∈ H1(Ω) ∩ L∞(Ω). (2.2)

To prove the above theorem we first consider approximate problems (Pµ,λ)
of the following form:

(θ + Jµw)′ −∆0θ = h(t, x) in Q, (2.3)

w′ + α(w′ − p(θ, Jµw)) + Aµw + βλ(w) � f(θ, w) in Q, (2.4)

θ(·, 0) = θ0, w(·, 0) = w0 in Ω, (2.5)

where Aµ and Jµ, 0 < µ ≤ 1, and βλ, 0 < λ ≤ 1, are defined as follows:
(1) For each 0 < µ ≤ 1, ϕµ is the Moreau-Yosida regularization of the function

ϕ(v) :=

⎧⎨⎩
1
2

∫
Ω

|∇v|2dx, if v ∈ H1(Ω),

∞, otherwise,

namely,

ϕµ(v) = inf
z∈L2(Ω)

{
1
2µ
|z − v|2L2(Ω) + ϕ(z)

}
, ∀v ∈ L2(Ω),

and Aµ is the subdifferential of ϕµ in L2(Ω), that is Aµ = ∂ϕµ.
(2) For each 0 < µ ≤ 1, Jµ is the resolvent of the subdifferential ∂ϕ (= −∆0)

in L2(Ω), namely, Jµ := (I + µ∂ϕ)−1.
(3) For each 0 < λ ≤ 1, βλ is the Moreau-Yosida regularization of β in R,

namely

βλ(r) :=
r − (I + λβ)−1r

λ
for all r ∈ R.

It is well known that Aµ := −∆0Jµ and it converges to −∆0 in L2(Ω) as µ → 0,
and βλ converges to β in R×R as λ→ 0 in the sense of graph (cf. [5, 8, 10]).

So far as the approximate problems (Pµ,λ) are concerned, the existence of
their solutions is shown in a way similar to that in [1–4]; in fact, (Pµ,λ) has at
least one solution {θµ,λ, wµ,λ} satisfying that

θµ,λ ∈W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) and wµ,λ ∈ W 1,2(0, T ;L2(Ω)).

A solution of our problem (P ) is constructed as a limit of approximate solutions
{θµ,λ, wµ,λ} as µ and λ tend to zero.
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3. Uniform estimates

In this section, we give some uniform estimates for {θµ,λ, wµ,λ}.
We use hereafter notations Ci, Mi, i ∈ N, to indicate positive constants in

inequalities which we derive in this section; Ci denotes a positive constant which
does not depend on any of the data h, θ0, w0 and parameters µ, λ ∈ (0, 1] (but
may depend in general on p, f), and also Mi denotes a positive constant which is
independent of µ, λ ∈ (0, 1]. Moreover, we denote by Mi(λ), i ∈ N, a positive
constant which depends only on λ ∈ (0, 1], but not on µ ∈ (0, 1].

Lemma 3.1.

(i) The following inequality holds:

|θµ,λ|L∞(Q), |wµ,λ|L∞(Q), |w′
µ,λ|L∞(Q) ≤M1 + M1T, ∀µ, λ ∈ (0, 1],

where M1 = |θ0|L∞(Ω) + |w0|L∞(Ω) + |h|L∞(Q) + |p|L∞(R2) + N0.
(ii) There exists a positive constant M2 independent of µ, λ ∈ (0, 1] such that

|Aµp(θµ,λ, Jµwµ,λ)|2L2(Ω) ≤ |∆0p(θµ,λ, Jµwµ,λ)|2L2(Ω)

≤M2

(
|∆0θµ,λ|2L2(Ω) + |Aµwµ,λ|2L2(Ω) + |∇θµ,λ|2L2(Ω) + ϕµ(wµ,λ) + 1

)
a.e. on (0, T ).

Proof. The inequalities for wµ,λ and w′
µ,λ in (i) are trivial by assumption (A),

and the one for θµ,λ is immediately obtained by comparing it with the function
q(t) := M1 + M1t. In fact, it is enough to multiply (θµ,λ − q)′ − ∆0(θµ,λ − q) =
h− Jµw

′
µ,λ −M1(≤ 0) by [θµ,λ − q]+ and use the usual comparison technic.

Now we prove the inequality in (ii). Since all of the second-order partial
derivatives of p are bounded by assumption (C), it follows that

|Aµp(θµ,λ, Jµwµ,λ)|2L2(Ω) ≤ |∆0p(θµ,λ, Jµwµ,λ)|2L2(Ω) (3.1)

≤M3

(
|∇θµ,λ|4L4(Ω) + |∇Jµwµ,λ|4L4(Ω) + |∆0θµ,λ|2L2(Ω) + |Aµwµ,λ|2L2(Ω)

)
for a.e. on (0, T ). By the Gagliardo-Nirenberg interpolation inequality (cf. [11])
and the result of (i), the following inequalities hold:

|∇θµ,λ|4L4(Ω) ≤ C1|θµ,λ|2H2(Ω)|θµ,λ|2L∞(Ω)

≤ C2

(
|θµ,λ|2L2(Ω) + |∇θµ,λ|2L2(Ω) + |∆0θµ,λ|2L2(Ω)

)
|θµ,λ|2L∞(Ω)

≤ M4

(
|∆0θµ,λ|2L2(Ω) + |∇θµ,λ|2L2(Ω) + 1

)
.

Similarly, we get

|∇Jµwµ,λ|4L4(Ω) ≤ C3|Jµwµ,λ|2H2(Ω)|Jµwµ,λ|2L∞(Ω)

≤ M5

(
|Aµwµ,λ|2L2(Ω) + ϕµ(wµ,λ) + 1

)
for a.e. on (0, T ). In virtue of (3.1) together with the above inequalities we find a
required constant M2. �
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Lemma 3.2. There exists a positive constant M1(λ) depending only on λ ∈ (0, 1]
(and on the data p, f, h, θ0 and w0 as well, but not on µ ∈ (0, 1]) such that

sup
t∈[0,T ]

{
|θµ,λ|2H2(Ω) + |Aµwµ,λ|2L2(Ω) + ϕµ(wµ,λ) +

∫
Ω

β̂λ(wµ,λ)dx
}

+|θ′µ,λ|2L2(0,T ;L2(Ω)) + |∇θ′µ,λ|2L2(0,T ;L2(Ω)) +
∫ T

0

ϕµ(w′
µ,λ)dt ≤M1(λ),

where β̂ is a primitive of β.

Proof. Compute: (2.3)× θ′µ,λ, (2.3)× (−∆0θ
′
µ,λ), (2.4)×

(
w′

µ,λ − p(θµ,λ, Jµwµ,λ)
)

and (2.4) × Aµ(w′
µ,λ − p(θµ,λ, Jµwµ,λ)). Then, with the help of Lemma 3.1, the

Schwarz’s inequality and some other relations such as |w′
µ,λ| ≤ |p|L∞(R2) +N0 a.e.

on Q and

(ξ, Aµ(w′
µ,λ − p(θµ,λ, Jµwµ,λ))L2(Ω) ≥ 0, ∀ξ ∈ α(w′

µ,λ − p(θµ,λ, Jµwµ,λ)),

we have respectively (cf. [4]):

(1)
1
2
|θ′µ,λ|2L2(Ω) +

1
2
d

dt
|∇θµ,λ|2L2(Ω) ≤ |h|2L2(Ω) + C4,

(2)
1
2
|∇θ′µ,λ|2L2(Ω) +

d

dt
E0

µ,λ ≤ ϕµ(w′
µ,λ) +

1
2
|∆0θµ,λ|2L2(Ω) +

1
2
|h′|2L2(Ω),

where E0
µ,λ(·) :=

1
2
|∆0θµ,λ|2L2(Ω) − (h,−∆0θµ,λ)L2(Ω),

(3)
d

dt
E1

µ,λ ≤M2(λ)|Aµwµ,λ|2L2(Ω) + C5,

where E1
µ,λ(·) := ϕµ(wµ,λ) +

∫
Ω

β̂λ(wµ,λ)dx,

(4) ϕµ(w′
µ,λ) +

d

dt
E2

µ,λ ≤
1
8
|θ′µ,λ|2L2(Ω) + M3(λ)

(
|∆0θµ,λ|2L2(Ω) + |Aµwµ,λ|2L2(Ω)

+|∇θµ,λ|2L2(Ω) + ϕµ(wµ,λ) + 1
)
,

where E2
µ,λ(·) :=

1
2
|Aµwµ,λ|2L2(Ω) + (βλ(wµ,λ)− f(θµ,λ, wµ,λ), Aµwµ,λ)L2(Ω).

Now, by (1) + (2) + (3) + (4)× 2 we observe that

1
4
|θ′µ,λ|2L2(Ω) +

1
2
|∇θ′µ,λ|2L2(Ω) + ϕµ(w′

µ,λ) +
d

dt
Eµ,λ (3.2)

≤M3(λ)Eµ,λ + M6(||h||2L2(Ω) + 1),

where ||h||L2(Ω) := |h|L2(Ω) + |h′|L2(Ω) and Eµ,λ(·) := 1
2 |∇θµ,λ|2L2(Ω) + E0

µ,λ(·) +
E1

µ,λ(·) + 2E2
µ,λ(·). Applying the Gronwall’s inequality to (3.2), we obtain the

required inequality with a certain constant M1(λ). �
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On account of estimates in Lemmas 3.1 and 3.2, for each fixed λ ∈ (0, 1] we
find a sequence {µn} ⊂ (0, 1] with µn → 0 as n → ∞ and functions θλ, wλ such
that {

θµn,λ → θλ in C([0, T ];H1(Ω)),
Jµnwµn,λ → wλ in C([0, T ];H1(Ω)), (3.3)

as n→∞, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wµn,λ → wλ in C([0, T ];L2(Ω)),
θ′µn,λ → θ′λ weakly in L2(0, T ;H1(Ω)),
Jµnw

′
µn,λ → w′

λ weakly in L2(0, T ;H1(Ω)),
−∆0θµn,λ → −∆0θλ weakly in L2(0, T ;L2(Ω)),
w′

µn,λ → w′
λ weakly in L2(0, T ;L2(Ω)),

Aµnwµn,λ → −∆0wλ weakly in L2(0, T ;L2(Ω)),
βλ(wµn,λ)→ βλ(wλ) in C([0, T ];L2(Ω)),
f(θµn,λ, wµn,λ)→ f(θλ, wλ) in C([0, T ];L2(Ω)),
p(θµn,λ, Jµnwµn,λ)→ p(θλ, wλ) in C([0, T ];L2(Ω)),

(3.4)

as n→∞. Also, put

ξµ,λ := −w′
µ,λ −Aµwµ,λ − βλ(wµ,λ) + f(θµ,λ, wµ,λ).

Then, ξµ,λ ∈ α(w′
µ,λ − p(θµ,λ, Jµwµ,λ)) a.e. on Q, and it follows from the above

convergences that

ξµn,λ → −w′
λ+∆0wλ−βλ(wλ)+f(θλ, wλ) =: ξλ weakly in L2(0, T ;L2(Ω)), (3.5)

as n→∞. Moreover it is easy to see that

lim sup
n→∞

∫ T

0

(ξµn,λ, w
′
µn,λ − p(θµn,λ, Jµnwµn,λ))L2(Ω)dt (3.6)

≤
∫ T

0

(ξλ, w
′
λ − p(θλ, wλ))L2(Ω)dt.

By the maximal monotonicity of α, (3.5) and (3.6) show that ξλ ∈ α(w′
λ−p(θλ, wλ))

a.e. on Q. Consequently, passing to the limit in (2.3)–(2.5) as n→∞, we see that
θλ, wλ ∈W 1,2(0, T ;H1(Ω))∩L∞(0, T ;H2(Ω)) and the pair {θλ, wλ} is a solution
of problem (Pλ) := {(3.7)-(3.10)}:

θ′λ + w′
λ −∆0θλ = h in L2(Ω), a.e. on (0, T ), (3.7)

w′
λ + ξλ −∆0wλ + βλ(wλ) = f(θλ, wλ) in L2(Ω), a.e. on (0, T ), (3.8)

ξλ ∈ α(w′
λ − p(θλ, wλ)) a.e. in Q, (3.9)

θλ(0) = θ0, wλ(0) = w0 in L2(Ω). (3.10)
Moreover we have the following uniform estimates of {θλ, wλ} with respect to
λ ∈ (0, 1].

Lemma 3.3. There is a positive constant M7, independent of λ ∈ (0, 1], such that

|θλ|W 1,2(0,T ;H1(Ω)) + |wλ|W 1,2(0,T ;H1(Ω)) + |βλ(wλ)|L∞(0,T ;L2(Ω)) (3.11)

+|θλ|L∞(0,T ;H2(Ω)) + |wλ|L∞(0,T ;H2(Ω)) ≤M7
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Proof. Let {θµ,λ, wµ,λ} be again the solution of (Pµ,λ). Then, in addition to es-
timates (1) - (4) in the proof of Lemma 3.2, we have by multiplying (2.4) by
Aµ(w′

µ,λ − p(θµ,λ, Jµwµ,λ)) + d
dtβλ(wµ,λ) that

(5) ϕµ(w′
µ,λ) +

d

dt
E3

µ,λ + (ξµ,λ, β
′
λ(wµ,λ)p(θµ,λ, Jµwµ,λ))L2(Ω)

≤ 1
8
|θ′µ,λ|2L2(Ω) + M8

(
|Aµwµ,λ + βλ(wµ,λ)|2L2(Ω) + |∆0θµ,λ|2L2(Ω)

+|∇θµ,λ|2L2(Ω) + ϕµ(wµ,λ) + 1
)
,

where E3
µ,λ(·) :=

1
2
|Aµwµ,λ + βλ(wµ,λ)|2L2(Ω)

− (Aµwµ,λ + βλ(wµ,λ), f(θµ,λ, wµ,λ))L2(Ω) .

In the above computation we used some known inequalities such as

(ξµ,λ, β
′
λ(wµ,λ)w′

µ,λ)L2(Ω) ≥ (ξµ,λ, β
′
λ(wµ,λ)p(θµ,λ, Jµwµ,λ))L2(Ω),

(βλ(wµ,λ), Aµwµ,λ)L2(Ω) ≥ 0,

|Aµwµ,λ + βλ(wµ,λ)|L2(Ω) ≥ |Aµwµ,λ|L2(Ω), |βλ(wµ,λ)|L2(Ω).

Now, we compute (1) + (2) + (5)× 2 to get

Gµ,λ +
d

dt
Ẽµ,λ + 2 (ξµ,λ, β

′
λ(wµ,λ)p(θµ,λ, Jµwµ,λ))L2(Ω) (3.12)

≤M9Ẽµ,λ + M10(||h||2L2(Ω) + 1),

where Ẽµ,λ(·) := 1
2 |∇θµ,λ|2L2(Ω) + E0

µ,λ(·) + 2E3
µ,λ(·) and Gµ,λ(·) := 1

4 |θ′µ,λ|2L2(Ω) +
1
2 |∇θ′µ,λ|2L2(Ω) + ϕµ(w′

µ,λ). Also, we derive from (3.12) that

e−M9tGµ,λ+
d

dt

{
e−M9tẼµ,λ

}
+2e−M9t(ξµ,λ, β

′
λ(wµ,λ)p(θµ,λ, Jµwµ,λ))L2(Ω) (3.13)

≤M10e−M9t(||h||2L2(Ω) + 1).

For each s ∈ [0, T ], integrating (3.13) on [0, s] yields that∫ s

0

e−M9tGµ,λdt+e−M9sẼµ,λ(s)+2
∫ s

0

e−M9t(ξµ,λ, β
′
λ(wµ,λ)p(θµ,λ, Jµwµ,λ))L2(Ω)dt

≤ Ẽµ,λ(0) + M11

∫ s

0

e−M9t(||h||2L2(Ω) + 1)dt. (3.14)

Here we observe that Ẽµ,λ(0) is bounded in µ, λ ∈ (0, 1] and

lim
n→∞

∫ s

0

e−M9t(ξµn,λ, β
′
λ(wµn,λ)p(θµn,λ, Jµnwµn,λ))L2(Ω)dt

=
∫ s

0

e−M9t(ξλ, β
′
λ(wλ)p(θλ, wλ))L2(Ω)dt = 0,
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since β′
λ(wλ)p(θλ, wλ) = 0 a.e. on Q. Hence, taking the limit in (3.14) with µ = µn,

we have∫ s

0

e−M9tGλdt + e−M9sẼλ(s) ≤ Ẽλ(0) + M11

∫ s

0

e−M9t(||h||2L2(Ω) + 1)dt (3.15)

for all s ∈ [0, T ], where

Ẽλ(·) :=
1
2
|θλ|2H1(Ω) − (h,−∆0θλ)L2(Ω) + | −∆0wλ + βλ(wλ)|2L2(Ω)

−2(−∆0wλ + βλ(wλ), f(θλ, wλ))L2(Ω),

Gλ(·) :=
1
4
|θ′λ|2L2(Ω) +

1
2
|∇θ′λ|2L2(Ω) + ϕ(w′

λ).

Since {Ẽλ(0)}λ∈(0,1] is bounded, this inequality implies that Ẽλ is uniformly
bounded on [0, T ] with respect to λ ∈ (0, 1]. From this fact together with (3.15)
we have an inequality which is required in the lemma. �

4. Proof of Theorem 2.1

We are now in a position to give a proof of Theorem 2.1.

Proof of Theorem 2.1 Let {θλ, wλ} be a solution of (Pλ), λ ∈ (0, 1], for which (3.11)
in Lemma 3.3 holds, and put ξλ := −w′

λ + ∆0wλ − βλ(wλ) + f(θλ, wλ) again.
First, by the uniform estimates (3.11) we can choose a sequence {λn} ⊂ (0, 1]

tending to 0 as n→∞ with functions θ, w ∈ W 1,2(0, T ;H1(Ω))∩L∞(0, T ;H2(Ω))
and ξ, η ∈ L∞(0, T ;L2(Ω)) such that

θn := θλn → θ, wn := wλn → w in C([0, T ];H1(Ω)) as n→∞.

and

ξn := ξλn → ξ, βλn(wn)→ η weakly-star in L∞(0, T ;L2(Ω)) as n→∞;

note that the following convergences hold, too:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ′n → θ′ weakly in L2(0, T ;H1(Ω)),
w′

n → w′ weakly in L2(0, T ;H1(Ω)),
−∆0θn → −∆0θ weakly in L2(0, T ;L2(Ω)),
−∆0wn → −∆0w weakly in L2(0, T ;L2(Ω)),
f(θn, wn)→ f(θ, w) in C([0, T ];L2(Ω)),
p(θn, wn)→ p(θ, w) in C([0, T ];L2(Ω)),

(4.1)

as n→∞. From the convergences in (4.1) it follows that

θ′ + w′ −∆0θ = h in L2(Ω), a.e. on (0, T ),

w′ + ξ −∆0w + η = f(θ, w) in L2(Ω), a.e. on (0, T ),

θ(0) = θ0, w(0) = w0 in L2(Ω).
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Moreover, by the demiclosedness of β (cf. [6]), we have η ∈ β(w) a.e. on Q.
Therefore, to complete the proof of Theorem 2.1 it is enough to show that ξ ∈
α(w′ − p(θ, w)) a.e. on Q, which is derived as follows. We obverse that

lim sup
n→∞

∫ T

0

(ξn, w
′
n − p(θn, wn))L2(Ω)dt

= lim sup
n→∞

∫ T

0

(−w′
n + ∆0wn − βλn(wn) + f(θn, wn), w′

n − p(θn, wn))L2(Ω)dt

= lim sup
n→∞

{
−|w′

n|2L2(0,T ;L2(Ω)) −
1
2
|∇wn(T )|2L2(Ω) −

∫
Ω

β̂λn(wn(T ))dx

+
1
2
|∇w0|2L2(Ω) +

∫
Ω

β̂λn(w0)dx

−
∫ T

0

(−w′
n + ∆0wn − βλn(wn) + f(θn, wn), p(θn, wn))L2(Ω)dt

}

≤ −|w′|2L2(0,T ;L2(Ω)) −
1
2
|∇w(T )|2L2(Ω) −

∫
Ω

β̂(w(T ))dx +
1
2
|∇w0|2L2(Ω)

+
∫

Ω

β̂(w0)dx−
∫ T

0

(−w′ + ∆0w − η + f(θ, w), p(θ, w))L2(Ω)dt

=
∫ T

0

(−w′ + ∆0w − η + f(θ, w), w′ − p(θ, w))L2(Ω)dt

=
∫ T

0

(ξ, w′ − p(θ, w))L2(Ω)dt

By the maximal monotonicity of α the above inequalities imply that ξ ∈ α(w′ −
p(θ, w)) a.e. on Q. �

Remark 4.1. Under the weaker condition (2.2), a solution {θ, w} of (P ) can be
constructed by using energy inequalities (1), (3), (4) (in Lemma 3.2) and (5) (in
Lemma 3.3). In this case, θ has less regularity

θ ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).
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The N -membranes Problem with
Neumann Type Boundary Condition

A. Azevedo, J.F. Rodrigues and L. Santos

Abstract. We consider the problem of finding the equilibrium position of N
membranes constrained not to pass through each other, under prescribed vo-
lumic forces and boundary tensions. This model corresponds to solve vari-
ationally a N-system for linear second order elliptic equations with sequen-
tial constraints. We obtain interior and boundary Lewy-Stampacchia type
inequalities for the respective solution and we establish the conditions for
stability in measure of the interior contact zones of the membranes.

Mathematics Subject Classification (2000). Primary 35R35; Secondary 35J50.

Keywords. Variational inequalities, Lewy-Stampacchia inequalities, coinci-
dence sets.

1. Introduction

Let Ω be a bounded open subset of R
d with Lipschitz boundary Γ. Denote by

uuu = (u1, . . . , uN ) the equilibrium displacements of N (N ≥ 2) elastic membranes,
each one constrained not to pass through the others, subject to external volumic
forces f = (f1, . . . , fN) and boundary tensions g = (g1, . . . , gN). The problem
consists of minimizing the energy functional

E(uuu) =
∫

Ω

(
1
2

( a(uuu,uuu) + cuuu · uuu)− fff · uuu
)

+
∫

Γ

(
1
2
buuu · uuu− ggg · uuu

)
, (1.1)

in the convex set

KN =
{
vvv = (v1, . . . , vN ) ∈

[
H1(Ω)

]N
: v1 ≥ · · · ≥ vN a.e. in Ω

}
, (1.2)

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia).
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where a(uuu,vvv) =
N∑

k=1

a(uk, vk), with a(u, v) = aijuxivxj (using the summation con-

vention for i, j = 1, . . . , d) and uuu · vvv denotes the usual internal product between uuu
and vvv.

The N -membranes problem attached to rigid supports was considered in [3]
for N linear coercive elliptic operators of second order and extended in [1] to
quasilinear operators, with smooth coefficients of p-Laplacian type. For general
linear second order elliptic operators with measurable coefficients, see also [2].

Although Neumann boundary type problems can also be considered for more
general operators, for simplicity, here we assume{

aij ∈ L∞(Ω), aij = aji, ∃ ν > 0 ∀ξ ∈ R
d aijξiξj ≥ ν|ξ|2,

c ∈ L∞(Ω), b ∈ L∞(Γ), c ≥ c0 ≥ 0, b ≥ b0 ≥ 0, c0 + b0 > 0.
(1.3)

⎧⎪⎨⎪⎩
f1, . . . , fN ∈ Lp(Ω), g1, . . . , gN ∈ Lq(Γ),

p ≥ 2d
d+2 if d ≥ 3, p > 1 if d = 2,

q ≥ 2(d−1)
d if d ≥ 3, q > 1 if d = 2.

(1.4)

Here we use
∨

and
∧

for the supremum and infimum, respectively, of two or
more functions

N∨
k=1

ξk = sup{ξ1, . . . , ξN},
N∧

k=1

ξk = inf{ξ1, . . . , ξN},

and, accordingly, we set ξ+ = ξ ∨ 0 and ξ− = −(ξ ∧ 0).
The minimization problem (1.1)–(1.2) is equivalent to the variational inequal-

ity ⎧⎪⎪⎪⎨⎪⎪⎪⎩
uuu ∈ KN :∫

Ω

(
a(uuu,vvv − uuu) + cuuu · (vvv − uuu)

)
+

∫
Γ

buuu · (vvv − uuu)

≥
∫

Ω

fff · (vvv − uuu) +
∫

Γ

ggg · (vvv − uuu), ∀vvv ∈ KN .

(1.5)

For N = 2 this problem can be considered, when the solution is known, as
two one obstacle problems. For N ≥ 3, the upper and the lower membranes are of
this type, but each membrane in between may be considered a solution of a two
obstacles problem. This last problem corresponds to a variational inequality with
the convex set given in the form

K
ϕ
ψ = {ξ ∈ H1(Ω) : ψ ≤ ξ ≤ ϕ a.e. in Ω},

where the given obstacles are such that ψ ≤ ϕ. For two obstacles, the Lewy-
-Stampacchia inequalities for the solution v are

f ∧Aϕ ≤ Av ≤ f ∨Aψ a.e. in Ω, g ∧Bϕ ≤ Bv ≤ g ∨Bψ a.e. on Γ, (1.6)
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where A and B denote the associated differential and boundary operators, respec-
tively,

Av = − (aijvxi)xj
+ cv, in Ω, (1.7)

Bv = aijvxinj + bv, on Γ, (1.8)

(n1, . . . , nd) denoting the unit outward normal vector to Γ.
The iteration of these inequalities yields the new set of N inequalities for the

solution uuu of the N -membranes problem, both in Ω and on Γ
l∧

k=1

fk ≤ Aul ≤
N∨

k=l

fk, a.e. in Ω, l = 1, . . . , N, (1.9)

l∧
k=1

gk ≤ Bul ≤
N∨

k=l

gk, a.e. on Γ, l = 1, . . . , N, (1.10)

which allows to reduce the regularity of the solutions to the corresponding regu-
larity of a system of equations, as shown in the next section. In particular, in the
following special cases:

• f1 = · · · = fN = f , the solution uuu of the variational inequality (1.5) satisfies
the system of N equations Auk = f a.e. in Ω, k = 1, . . . , N ;
• g1 = · · · = gN = g, the solution uuu of the variational inequality (1.5) satisfies

the Neumann boundary conditions Buk = g a.e. on Γ, i = 1, . . . , N , although
in the general case we only can say that uuu satisfies Signorini type boundary
conditions.

Another interesting result is the stability of the N(N−1)
2 coincidence sets

Ik,l = {x ∈ Ω : uk(x) = · · · = ul(x) for a.e. x ∈ Ω}, 1 ≤ k < l ≤ N, (1.11)

the sets of contact of l − k + 1 consecutive membranes. Given a subset A of Ω,
we denote by χ

A (the characteristic function of A), i.e., χA(x) = 1 if x ∈ A and
χ

A(x) = 0 if x ∈ Ω\A. As we have shown in [1] this is a consequence of writing the
solution of (1.5) as the solution of a semilinear system involving the characteristic
functions χIk,l

. We exemplify the argument in the simple cases N = 2, 3.
For N = 2 there is only one possible coincidence set, the contact of u1 with

u2. If the two forces associated with the two membranes are almost everywhere
different in Ω (f1 �= f2 a.e. in Ω), then the characteristic function χ

I1,2 of I1,2 is
easily shown to converge strongly in any Ls(Ω), 1 < s < ∞, for variations of the
forces in Lp(Ω).

For N = 3 there are three possible coincidence sets, the sets I1,2, I2,3 and
I1,3 = I1,2 ∩ I2,3. Setting χ

k,l = χ
Ik,l

, 1 ≤ k < l ≤ 3, the characteristic functions
χ

k,l of the sets Ik,l are shown to converge strongly in any Ls(Ω), 1 < s < ∞, for
variations of the forces f1, f2 and f3 in Lp(Ω), as long as

f1 �= f2, f2 �= f3, f1 �=
1
2
(f2 + f3),

1
2
(f1 + f2) �= f3. (1.12)
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This is a consequence of the fact that the solution uuu of (1.5) satisfies the system
a.e. in Ω,⎧⎪⎨⎪⎩

Au1 = f1 + 1
2 (f2 − f1)χ1,2 + 1

6 (2f3 − f2 − f1)χ1,3

Au2 = f2 − 1
2 (f2 − f1)χ1,2 + 1

2 (f3 − f2)χ2,3 + 1
6 (2f2 − f1 − f3)χ1,3

Au3 = f3 − 1
2 (f3 − f2)χ2,3 + 1

6 (2f1 − f2 − f3)χ1,3.

(1.13)

Notice that the system (1.13) contains the case N = 2, that reduces only to
the two first equations of this system, with I2,3 = ∅ (so χ

2,3 = χ
1,3 = 0). Even in

the more complicated situation of N > 3, the stability result can still be extended
in the interior of Ω as we show in Section 3. However, the corresponding stability
result on the boundary Γ is an open question. In this paper we have chosen to
present only the Neumann case when Γ = ∂Ω, but all the results are still valid,
with simple adaptations, for the mixed problem where ∂Ω = Γ0∪Γ1, with Dirichlet
data on Γ0 and Neumann data on Γ1 (see [7], for instance).

2. The Lewy-Stampacchia inequalities

We begin this section recalling a theorem for the double obstacle problem:

Theorem 2.1. Suppose that ψ1, ψ2 ∈ H1(Ω), f ∈ Lp(Ω), g ∈ Lq(Γ), p, q defined as
in (1.4). Let u be the solution of the variational inequality∫

Ω

(
a(u, v − u) + cu(v − u)

)
+

∫
Γ

b(v − u) ≥
∫

Ω

f(v − u) +
∫

Γ

g(v − u), (2.1)

with the assumptions (1.3), in the convex set

K
ψ2
ψ1

= {v ∈ H1(Ω) : ψ1 ≤ v ≤ ψ2 a.e. in Ω}. (2.2)

If
(
Aψ1− f

)+
,
(
Aψ2− f

)− ∈ Lp(Ω) and
(
Bψ1− g

)+
,
(
Bψ2− g

)− ∈ Lq(Γ),
then

f ∧Aψ1 ≤ Au ≤ f ∨Aψ2, a.e. in Ω, (2.3)

g ∧Bψ1 ≤ Bu ≤ g ∨Bψ2, a.e. on Γ. (2.4)

Proof. The proof of this theorem is a simple adaptation of the arguments used for
the one obstacle problem with Neumann boundary condition (see, for instance, [9]
or [7]). �
Remark 2.2. We observe that both the lower and the upper one obstacle variational
inequalities (2.1) in the convex sets

Kψ1 = {v ∈ H1(Ω) : v ≥ ψ1 a.e. in Ω}
and

K
ψ2 = {v ∈ H1(Ω) : v ≤ ψ2 a.e. in Ω},

can be regarded as particular cases of the double obstacle problem, corresponding
formally to ψ2 = +∞ and ψ1 = −∞, respectively.
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Given N functions ϕ1, . . . , ϕN , we define, for 1 ≤ k < l ≤ N , the average of
ϕk, . . . , ϕl as

〈ϕ〉k,l =
ϕk + · · ·+ ϕl

l − k + 1
. (2.5)

Denote

ξ0 = max {〈f〉1,k : k = 1, . . . , N} , η0 = max {〈g〉1,k : k = 1, . . . , N} (2.6)

and, for k = 1, . . . , N,

ξk = k
(
ξ0 − 〈f〉1,k

)
ηk = k

(
η0 − 〈g〉1,k

)
. (2.7)

We may approximate the solution of (1.5) by the solution of the penalized
problem given by the semilinear system with Neumann boundary conditions, for
k = 1, . . . , N,{

Auε
k + ξkθε(uε

k − uε
k+1)− ξk−1θε(uε

k−1 − uε
k) = fk in Ω,

Buε
k + ηkθε(uε

k − uε
k+1)− ηk−1θε(uε

k−1 − uε
k) = gk on Γ,

(2.8)

with the conventions uε
0 = +∞, uε

N+1 = −∞, where for ε > 0, θε is defined by
θε(s) = −1 if s ≤ −ε, θε(s) = s

ε , if −ε < s < 0 and θε(s) = 0 for s ≥ 0.

Proposition 2.3. With the assumptions (1.3) and (1.4), problem (2.8) has a unique
solution (uε

1, . . . , u
ε
N), bounded independently of ε in

[
H1(Ω)

]N
. Besides that, Auεuεuε

and Buεuεuε are bounded independently of ε in [Lp(Ω)]N and in [Lq(Γ)]N , respectively.

Proof. Consider the monotone operator

〈Ψε(vvv),www〉 =
N∑

k=1

∫
Ω

(
ξkθε(vk − vk+1)− ξk−1θε(vk−1 − vk)

)
wk (2.9)

+
N∑

k=1

∫
Γ

(
ηkθε(vk − vk+1)− ηk−1θε(vk−1 − vk)

)
wk.

The problem (2.8) is equivalent to the semilinear variational problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uεuεuε ∈

[
H1(Ω)

]N
:∫

Ω

(a(uεuεuε, vvv) + cuεuεuε · vvv) +
∫

Γ

buεuεuε · vvv + 〈Ψε(uεuεuε), vvv〉

=
∫

Ω

fff · vvv +
∫

Γ

ggg · vvv, ∀vvv ∈
[
H1(Ω)

]N

(2.10)

and this problem has a unique solution, by standard monotone methods.
Since

Auεuεuε = fff −
(
ξkθε(uε

k − uε
k+1)− ξk−1θε(uε

k−1 − uε
k)

)
k=1,...,N

,

−1 ≤ θε ≤ 0 and fff,ξξξ ∈ [Lp(Ω)]N , it follows that {Auεuεuε : 0 < ε < 1} belongs
to a bounded subset of [Lp(Ω)]N . Analogously, after integration by parts, the set
{Buεuεuε : 0 < ε < 1} is bounded in [Lq(Γ)]N . �
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Proposition 2.4. Under the assumptions (1.3) and (1.4), let uεuεuε be the solution of
problem (2.8) and uuu the solution of the variational inequality (1.5). Then

uε
k ≤ uε

k−1 + ε, k = 2, . . . , N, (2.11)

and, when ε→ 0,

uεuεuε −→ uuu in
[
H1(Ω)

]N
,

Auεuεuε −−⇀ Auuu in [Lp(Ω)]N -weak, Buεuεuε −−⇀ Buuu in [Lq(Γ)]N -weak.

Proof. We begin noticing that,

ξk ≥ 0 (k ≥ 1),
(
ξk−1 − ξk−2

)
−

(
ξk − ξk−1

)
= fk − fk−1 (k ≥ 2),

ηk ≥ 0 (k ≥ 1),
(
ηk−1 − ηk−2

)
−

(
ηk − ηk−1

)
= gk − gk−1 (k ≥ 2).

To prove (2.11), we multiply the k−th equation of (2.8) by (uε
k − uε

k−1 − ε)+

and integrate on Ω. Using that θε(uε
k−1−uε

k)(uε
k−uε

k−1−ε)+ = −(uε
k−uε

k−1−ε)+
and θε(uε

k − uε
k+1) ≥ −1, we obtain∫

Ω

Auε
k(uε

k − uε
k−1 − ε)+

≤
∫

Ω

[fk + ξk − ξk−1] (uε
k − uε

k−1 − ε)+

+
∫

Γ

[gk + ηk − ηk−1] (uε
k − uε

k−1 − ε)+.

(2.12)

With similar arguments, if we multiply, for k ≥ 2, the ( k − 1)−th equation
of (2.8) by (uε

k − uε
k−1 − ε)+ and integrate on Ω we obtain,∫

Ω

Auε
k−1(u

ε
k − uε

k−1 − ε)+

≥
∫

Ω

[fk−1 + ξk−1 − ξk−2] (uε
k − uε

k−1 − ε)+

+
∫

Γ

[gk−1 + ηk−1 − ηk−2] (uε
k − uε

k−1 − ε)+.

(2.13)

Subtracting equation (2.13) from (2.12), using the assumptions (1.3), the
conclusion (2.11) follows.

The strong convergence in
[
H1(Ω)

]N of uεuεuε to the solution uuu of the variational
inequality (1.5), when ε→ 0, follows by a standard argument.

The uniform boundedeness of {Auεuεuε : 0 < ε < 1} in [Lp(Ω)]N implies the
weak convergence of Auεuεuε to Auuu in [Lp(Ω)]N , and, analogously, the boundedeness
of {Buεuεuε : 0 < ε < 1} in [Lq(Γ)]N implies the weak convergence of Buεuεuε to Buuu in
[Lq(Γ)]N . �
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We are now able to prove the following result:

Theorem 2.5. Under the assumptions (1.3) and (1.4), the solution uuu of the problem
(1.5) satisfies the following Lewy-Stampacchia type inequalities

f1 ≤ Au1 ≤ f1 ∨ · · · ∨ fN

f1 ∧ f2 ≤ Au2 ≤ f2 ∨ · · · ∨ fN

...
f1 ∧ · · · ∧ fN−1 ≤ AuN−1 ≤ fN−1 ∨ fN

f1 ∧ · · · ∧ fN ≤ AuN ≤ fN

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
a.e. in Ω (2.14)

and

g1 ≤ B u1 ≤ g1 ∨ · · · ∨ gN

g1 ∧ g2 ≤ B u2 ≤ g2 ∨ · · · ∨ gN

...
g1 ∧ · · · ∧ gN−1 ≤ B uN−1 ≤ gN−1 ∨ gN

g1 ∧ · · · ∧ gN ≤ B uN ≤ gN

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
a.e. on Γ. (2.15)

Proof. If (v, u2, . . . , uN ) ∈ KN , with v ∈ Ku2 , we see that u1 ∈ Ku2 solves the
variational inequality (1.5) with f = f1. Observing that Au2 ∈ Lp(Ω) and that
Bu2 ∈ Lq(Γ), by (2.3) and (2.4) we have

f1 ≤ Au1 ≤ f1 ∨Au2 a.e. in Ω

g1 ≤ B u1 ≤ g1 ∨B u2 a.e. in Γ.

Since uk ∈ K
uk−1
uk+1 solves the two obstacles problem (2.1) with f = fk,

k = 2, . . . , N − 1, and satisfies, by (2.3) and (2.4),

fk ∧Auk−1 ≤ Auk ≤ fk ∨Auk+1 a.e. in Ω,

gk ∧B uk−1 ≤ B uk ≤ gk ∨B uk+1 a.e. in Γ.

As uN ∈ K
uN−1 satisfies

fN ∧AuN−1 ≤ AuN ≤ fN a.e. on Ω,

gN ∧B uN−1 ≤ B uN ≤ gN a.e. on Γ,

(2.14) and (2.15) are easily obtained by simple iterations. �

Remark 2.6. The Lewy-Stamppachia inequalities appeared first in [6] for the obsta-
cle problem with Dirichlet boundary conditions and were extended to the Neumann
case in [5] (see also [9] and [8]).

From (2.14) and (2.15) the following corollary is immediate:

Corollary 2.7. Let uuu be the solution of the variational inequality (1.5). We have

if fff = (f, . . . , f), then Auuu = fff in Ω, if ggg = (g, . . . , g), then Buuu = ggg on Γ.
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From the linear elliptic regularity theory (see [4] or [8], for instance) we have

Corollary 2.8. Under the assumptions (1.3) and (1.4), the solution uuu of (1.5) is
in

[
C0,α(Ω)

]N
, for some 0 < α < 1. Besides that, if aij ∈ C0,1(Ω) then uuu ∈[

W 2,p
loc (Ω)

]N

and uuu ∈
[
C1,β(Ω)

]N if 0 < β = 1 − d
p < 1; if in addition Γ ∈ C1,1,

b ∈ C0,1(Γ) and fff ∈
[
L2(Ω)

]N
, ggg ∈

[
L2(Γ)

]N
then uuu ∈

[
W 3/2,2(Ω)

]N
; finally, if

also g1 = · · · = gN ∈ W 1− 1
p ,p(Γ), then uuu ∈

[
W 2,p(Ω)

]N .

3. The stability of the coincidence sets

Let ununun be the solution of the N -membranes problem (1.5), under the assumptions
(1.3), with given data fnfnfn and gngngn satisfying (1.4). Assuming that fnfnfn converges
to fff in [Lp(Ω)]N and that gngngn converges to ggg in [Lq(Γ)]N , we shall extend now
the following stability result in Ls(Ω) (1 ≤ s < ∞) of [1] for the corresponding
coincidence sets (defined in (1.11)),

χ{un
k
=···=un

l
} −−−−→

n

χ{uk=···=ul}, for 1 ≤ k < l ≤ N.

Recalling the inequalities (2.14), Auuu = FFF a.e. in Ω, for some function
FFF ∈ [Lp(Ω)]N , as in Lemma 2 of [8], we have

Auk = Auk+1 a.e. in {x ∈ Ω : uk(x) = uk+1(x)}
and so we can characterize a.e. in Ω each Fk in terms of fl and the characteristic
functions χ{ur=···=us}, 1 ≤ l ≤ N , 1 ≤ r < s ≤ N .

In what follows, we use, as before, the convention, u0 = +∞ and uN+1 = −∞.
We define the following sets

Θk,l = {x ∈ Ω : uk−1(x) > uk(x) = · · · = ul(x) > ul+1(x)}, (3.1)

the sets of contact of exactly the membranes uk, . . . , ul.

Proposition 3.1. If k, l ∈ N are such that 1 ≤ k ≤ l ≤ N , we have

1. Aur =

{
〈f〉k,l a.e. in Θk,l if r ∈ {k, . . . , l},
fr a.e. in Θk,l if r �∈ {k, . . . , l}.

2. If k < l then for all r ∈ {k, . . . , l} 〈f〉r+1,l ≥ 〈f〉k,r a.e. in Θk,l.

Proof. Because of the regularity result Auuu ∈ [Lp(Ω)]N , the proof of this propo-
sition is the same as for the case with boundary Dirichlet condition, done in [1],
since it was done locally at a.e. point x ∈ Ω. �

Remark 3.2. It is well known that a necessary condition for existing contact in the
case of two membranes u1 and u2, subject to external forces f1 and f2 respectively,
is that f2 ≥ f1. Depending on the boundary conditions, this condition may be (or
not) sufficient for contact.
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We would like to emphasize that condition 2. of the preceding proposition is
a necessary condition for the first r − k membranes (k < r ≤ l) to be in contact
with the other l − r + 1 membranes. We can interpret physically the condition 2.
by regarding the first r − k membranes as one membrane where a force with the
intensity of the average of the forces fk, . . . , fr is applied and all the other l− r+1
as another one where it was applied a force with the intensity equal to the average
of the remaining forces fr+1, . . . , fl.

As for the boundary Dirichlet condition case, we may characterize the varia-
tional inequality (1.5) as a system of N equations, coupled through the characteris-
tic functions of the coincidence sets Ik,l. In (1.13) we presented the system for N =
3, containing as a special case N = 2. The next theorem presents the general case.

Theorem 3.3. Under the assumptions (1.3), let uuu be the solution of the problem
(1.5) with data fff and ggg satisfying (1.4). Then

Aur = fr +
∑

1≤k<l≤N, k≤r≤l

bk,l
r

χ
k,l a.e. in Ω, (3.2)

where

bk,l
r = bk,l

r [f ] =

⎧⎪⎨⎪⎩
〈f〉k,l − 〈f〉k,l−1 if r = l

〈f〉k,l − 〈f〉k+1,l if r = k
2

(l−k)(l−k+1)

(
〈f〉k+1,l−1 − 1

2 (fk + fl)
)

if k < r < l.

Also exactly as in [1], using the variational convergence ununun → uuu in
[
H1(Ω)

]N ,
we may prove the continuous dependence of the coincidence sets with respect to
the external data.

Theorem 3.4. Assuming (1.3) and given n ∈ N, let ununun denote the solution of
problem (1.5) with given data fnfnfn ∈ [Lp(Ω)]N , gngngn ∈ [Lq(Γ)]N , with p, q as in (1.4).

Suppose that

fnfnfn −−−−→
n

fff in [Lp(Ω)]N , gngngn −−−−→
n

ggg in [Lq(Γ)]N .

Then
ununun −−−−→

n
uuu in

[
H1(Ω)

]N
. (3.3)

If, in addition, the limit forces satisfy

〈f〉k,r �= 〈f〉r+1,l for all k, r, l ∈ {1, . . . , N} with k ≤ r < l, (3.4)

then, for any 1 ≤ s <∞, ∀ k, l ∈ {1, . . . , N}, k < l,

χ{un
k
=···=un

l
} −−−−→

n

χ{uk=···=ul} in Ls(Ω). (3.5)

Remark 3.5. The condition (3.4) for the stability of the coincidence sets for N = 2
is simply f2 �= f1 and for N = 3, the condition (1.12) (see [2] for a direct proof).

Remark 3.6. It would be interesting to prove a condition analogous to the system
(3.2) for the boundary operator B (under additional regularity of the solution uuu),
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i.e., to find sufficient conditions for some coefficients γj,k
r involving the averages

〈g〉k,l such that, if Îk,l = {x ∈ Γ : uk(x) = · · · = ul(x)}, then

Bur = gr +
∑

1≤k<l≤N, k≤r≤l

γk,l
r

χ
Îk,l

a.e. on Γ.
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Modelling, Analysis and Simulation of
Bioreactive Multicomponent Transport

Markus Bause and Willi Merz

Abstract. In this work we present a bioreactive multicomponent model that
incorporates relevant hydraulic, chemical and biological processes of contam-
inant transport and degradation in the subsurface. Our latest results for the
existence, uniqueness and regularity of solutions to the model equations are
summarized; cf. [4, 9]. The basic idea of the proof of regularity is sketched
briefly. Moreover, our numerical discretization scheme that has proved its ca-
pability of approximating reliably and efficiently solutions of the mathematical
model is described shortly, and an error estimate is given; cf. [2, 3]. Finally, to
illustrate our approach of modelling and simulating bioreactive transport in
the subsurface, the movement and expansion of a m-xylene plume is studied
numerically under realistic field-scale assumptions.

1. Introduction

In particular in industrialized countries, groundwater and soil pollution has be-
come a major environmental threat. In many cases groundwater and soil contain
a mixture of organic and anorganic substances. Usually, the contamination itself
is hardly accessible in the subsurface. But, fortunately, biodegradation tends to
attenuate at least some contaminants during groundwater transport. However, its
potential is difficult to predict. Mathematical models and numerical simulations
can be used to predict the long-term evaluation of contaminant plumes and help
to design remediation techniques for field scale problems.

In the sequel, a mathematical model incorporating relevant processes of con-
taminant transport and (bio-)degradation in the subsurface is presented, the math-
ematical properties of its solutions are given and a reliable and efficient approx-
imation scheme for numerical simulations is proposed. Finally, a realistic aquifer
contamination scenario is investigated numerically.
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2. Mathematical model

Microbial degradation mechanisms in soil-groundwater systems are mostly based
on redox reactions (i.e., electron transfers), and the biomass acts as a catalyst
for these reactions. The activity and dynamic of the biomass is dependent on the
availability of an organic substrate, acting as the electron donor, and an electron
acceptor. In this paper, the aerobic degradation of a single substrate is considered
only, since we focus here on analyzing the mathematical properties of solutions
to the governing equations and proposing an accurate numerical approximation
scheme. The main principles hold equally for multiple electron donors and accep-
tors. For modelling of multicomponent bioreactive transport processes we refer to
[11] and the references therein.

In this work, biomass growth is described by Monod-type kinetics. A detailed
discussion of this modelling approach can be found, for instance, in [5, 11, 13]. The
governing equations for the electron donor cD, electron acceptor cA and immobile
biomass cX are respectively given by

∂t(ΘcD)−∇ · (DD∇cD − qcD) = −µ ,

∂t(ΘcA)−∇ · (DA∇cA − qcA) = −αA/Dµ ,

∂tcX + kdcX = Y
Θ

(
1− cX

cXmax

)
µ ,

µ = Θµmax cX
cD

KD + cD

KID

KID + cD

cA

KA + cA

KIA

KIA + cA
.

(1)

We consider solving the Monod model (1) of partial and ordinary differential
equations over QT = Ω × (0, T ), T > 0, where Ω ⊂ R

d, d = 2, 3, is a bounded
domain. The equations (1) are supplied with the initial conditions

cD(·, 0) = cD,0 , cA(·, 0) = cA,0 , cX(·, 0) = cX,0 (2)

in Ω, and the non-homogeneous Dirichlet and Neumann boundary conditions

ci = gi on ΣT,D , Di∇ci · ν = hi on ΣT,N , (3)

for i = D,A, where ΣT,D = ΓD×(0, T ) and ΣT,N = ΓN ×(0, T ). Here, ΓD and ΓN

denote the portions of the boundary ∂Ω = ΓD ∪ΓN where Dirichlet and Neumann
boundary conditions are prescribed, respectively.

In equations (1), the parameter αA/D, kd, Y , cXmax , µmax, KD, KID, KA

and KIA are given constants. In our numerical example (cf. Sec. 5), saturated
groundwater flow is considered and Θ is assumed to be a constant, too. We refer
to [2, 5, 13] for further details of the model equations and parameter. For our
theoretical results of Sec. 3 and 4 the diffusion-dispersion matrix D = D(x) and
the velocity vector q = q(x) are assumed to be given sufficiently smooth functions.
For the sake of physical realism, in our computational studies the Scheidegger
parametrization (cf. [12])

Di = (Θdi + βt|q|)I + (βl − βt)
q ⊗ q

|q| , i = D,A , (4)
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of the diffusion-dispersion tensor is used. In (4), the parameter di, βt and βl are
given constants and I is the identity matrix. Further, the velocity field q (volu-
metric flux) in (1) and (4) is obtained by solving the standard single phase Darcy
flow problem, along with appropriate boundary conditions,

∇ · q = 0 , q + Ks∇(ψ + z) = 0 . (5)

Here, ψ is the pressure head, q is the (Darcy) flux, Ks = Ks(x) is the hydraulic per-
meability in the saturated zone and z denotes the height against the gravitational
direction. For numerical simulations of contaminant transport and biodegradation
scenarios also in the vadose zone we refer to [2].

3. Existence and regularity of solutions

Due to the relevance of the Monod model (1) for hydrological and environmental
studies, as well as for civil and environmental engineering, and due to a lack in its
mathematical analysis, we found it interesting enough to study whether the set of
equations (1)–(3) admits unique (global) solutions and, moreover, whether solu-
tions of higher order regularity exist under appropriate assumptions on the data
and boundary of Ω. From the point of view of numerical computations, regularity
results are of particular importance for the development of approximation schemes
and the application of higher order discretization techniques; cf. [2, 4] and Sec. 4.

As regards the existence and uniqueness of solutions to the model equations
(1)–(3) the following result was proved; cf. [9].

Theorem 3.1. Let Ω ⊂ R
2 be a bounded domain. Then there exists a unique non-

negative solution

cD, cA ∈ W 2,1
p (QT ) , p > 2 , cX ∈ C1([0, T ];C(Ω)) (6)

to the Monod model (1)–(3) for any given T ∈ (0,∞).

In (6), the notation of the space-time function spaces W l,l/2
p (QT ) is standard;

cf., e.g., [8]. We note that even the nonnegativeness of the species’ concentrations
cD, cA and cX is ensured. The proof is based on the fixed point theorem of Leray–
Schauder and can be carried over to three-dimensional domains Ω ⊂ R

3.
Now we address ourselves to solutions of (1)–(3) of higher regularity than it

has been established in (6). Our regularity result is summarized in Theorem 3.2.
In the sequel we sketch briefly the basic steps of its proof. For further details we
refer to [4].

We consider equations (1)–(3) and, for brevity, assume that the coefficient
functions Di and q are constant. The proofs can directly be carried over to the
case of space and time dependent functions Di and q. Since the existence of a
unique, nonnegative solution is given by Theorem 3.1 and the coupling of the
equations (1) is through the lower order terms only, it suffices to study a single



68 M. Bause and W. Merz

transport equation in (1) in the sequel. Precisely, we consider the coupled system
of equations

∂tu−∇ · (D∇u− qu) = −µ , ∂tcX + acX + bc2X = 0 , (7)

with a positive scalar D ∈ R and functions a, b, µ : QT �→ R. We prescribe the
initial and, for simplicity, the Dirichlet boundary conditions

u(·, 0) = u0 , cX(·, 0) = cX,0 in Ω , u = ū on ΣT . (8)

We make the following assumptions on the data of the problem:

∂Ω ∈ C4 , u0 , cX,0 ∈ W
10
3

2 (Ω) , u0 , cX,0 ≥ 0 in Ω ,

ū ∈W
7
2 , 7·34·2
2 (ΣT ) , ū ≥ 0 on ΣT .

(9)

The assumption on ∂Ω, that ∂Ω ∈ C4, is stronger than needed. Below, an elliptic
regularity result is required that is satisfied if ∂Ω ∈ C4, but is also satisfied by
certain other classes of domains. Moreover, we suppose that the second order
compatibility conditions are satisfied.

Next, we specify the regularity assumptions on the functions a, b, µ. We com-
pare (7) with the original system (1) to see that a, b, µ are composed in terms of
the solution to (1)–(3). Due to (6), we directly get that

a, b ∈W 2,1
p (QT ) , for p > 2 . (10)

The ordinary differential equation in (7) is of Bernoulli-type such that cX may be
represented explicitly in terms of a and b. It turns out that

cX ∈W 2,2
p (QT ) ∩W 1

p (0, T ;W 2
p (Ω)) , for p > 2 , (11)

and this in fact yields that, also,

µ ∈W 2,1
p (QT ) , for p > 2 . (12)

Finally, results of elliptic regularity theory then yield the following theorem.

Theorem 3.2. Let (9) and the second order compatibility conditions be satisfied.
Then, the solutions cD, cA of (1)–(3) satisfy

cD , cA ∈W 4,3
2 (QT ) ∩W 1

2 (0, T ;W 4
2 (Ω)) . (13)

A detailed proof of Theorem 3.2 can be found in [4]. Along with (11), the
result (13) shows that the Monod model (1)–(3) admits solutions of higher order
regularity under suitable assumptions on the data and boundary of Ω. Together
with our computational experiences, this observation brings us to use higher-order
discretizations for the numerical solution of (1)–(3). In (11) and (13), we have
established a slightly higher-order regularity than we will in fact need to derive
optimal order error estimates (cf. Sec. 4) for our numerical approach.
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4. Numerical approximation of solutions

We shall now briefly describe our discretization techniques that we proposed in
[2], analyzed in [4] and apply here to solve numerically the equations (1)–(3);
cf. Sec. 5. For the spatial discretization we use conforming finite element methods.
Let Th = {K} be a finite decomposition of mesh size h of Ω into triangles or
tetrahedrons, respectively. The approximation spaces Vh for the electron donor
and acceptor Ci, i = D,A, and Xh for the biomass CX are defined as Vh =
{Ci ∈ C(Ω) | Ci|K ∈ P2(K) for K ∈ Th} ∩ W̊ 1

2,ΓD
and Xh = {CX ∈ C(Ω) |

CX |K ∈ P2(K) for K ∈ Th}, where Pj(K), j ∈ N, denotes the space of continuous
polynomials of maximum degree j. Further, W̊ 1

2,ΓD
= {φ ∈ W 1

2 (Ω) | φ = 0 on ΓD}.
For the temporal discretization of equations (1)–(3) we use the two step backward
differentiation formula BDF2 which is of second-order accuracy and has excellent
stability properties; cf. [6].

Let us suppose that coefficients {Q,Di} ∈ W 1
∞(Ω) × L∞(Ω), i = A,D, are

prescribed where Q may be the velocity field itself or a suitable approximation
of it. Let PZh

denote the L2-projection onto the finite element space Zh. The
discretization of the Monod model (1)–(3) by the Galerkin method and BDF2

then reads as:
Set C0

i = PVh
ci,0 and C0

X = PXh
c0X . For all time steps n = 0, . . . ,N − 2

compute approximations Cn+2
i ∈ Vh, i = D,A, and Cn+2

X ∈ Xh by solving

γn+2 〈ΘCn+2
i , Vi〉 − γn+1 〈ΘCn+1

i , Vi〉+ γn 〈ΘCn
i , Vi〉

+τn+1〈Q · ∇Cn+2
i , Vi〉+ τn+1〈Di(tn+2)∇Cn+2

i ,∇Vi〉

+τn+1〈(∇ ·Q)Cn+2
i , Vi〉 = −τn+1〈αi Un+2, Vi〉+ τn+1〈hi, Vi〉ΓN ,

(14)

for all Vi ∈ Vh, i = D,A, and

γn+2 C
n+2
X − γn+1 C

n+1
X + γn C

n
X

+ τn+1kd C
n+2
X = τn+1

Y

Θ

(
1− Cn+2

X

cXmax

)
Un+2

(15)

for all nodes (xj)j=1,...,M associated with degrees of freedom of Cn+2
X , where

Un+2 = Θ µmax C
n+2
X

Cn+2
D

KD + Cn+2
D

KID

KID + Cn+2
D

Cn+2
A

KA + Cn+2
A

KIA

KIA + Cn+2
A

.

By 〈·, ·〉 and 〈·, ·〉ΓN we denote the standard L2 inner product in L2(Ω) and
L2(ΓN ), respectively. Further, in (14) and (15) we use the abbreviations γn+2 =
1 + τn+1/(τn+1 + τn), γn+1 = 1 + τn+1/τn and γn = τ2

n+1/((τn+1 + τn)τn) as
well as αD = 1 and αA = αA/D. In our computations we will consider non-
vanishing Dirichlet boundary values gi, i = D,A, in (3). For short, the variational
formulation (14) is given for homogeneous Dirichlet boundary conditions only.
Nonhomogeneous boundary values are incorporated by standard techniques.
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Finally, let us address the treatment of the groundwater flow problem (5).
Generally, to calculate the (Darcy) velocity vector q of the model equations (1),
we prefer to use mixed finite element methods due to their conservation properties
and flux approximation as part of the formulation itself; cf. [1] and the references
therein. However, to ensure optimal order convergence properties of the species
CA, CD and CX in (14) and (15), a higher order approximation Q of the flux
q is needed. Precisely, in [2] it was shown for a model transport problem that a
third order accurate flux approximation Q in fact leads to optimal, third order
L2-convergence of the piecewise quadratic approximation of the species. Since the
algorithmic complexity of higher order mixed finite element methods is relatively
large, for the considered approach (14), (15) to the Monod model we currently still
use a conforming approximation of the flow problem (5) by cubic finite elements
which yields in fact a third order accurate approximation Q of the velocity vector
q for (14). For the future we plan to use higher order mixed methods.

Now we shall show briefly that the regularity result that we have established
in Theorem 3.2 in fact enables us to derive optimal order error estimates for the
numerical approach (14), (15). To reduce technical overhead and focus on key
principles, we consider for simplicity the nonlinear model transport problem

∂tu + q · ∇u−∇ · (D∇u) + r
u2

1 + u2
= f , in Ω , for t > 0 , (16)

along with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω for t > 0,
and the initial condition u(·, 0) = u0 in Ω. We note that equation (16) contains a
reactive term of Monod type and, thus, is of the same structure as the first and
second of the equations (1). In (16), D = D(x) ∈ R

d,d, d = 2, 3, is a symmetric
and uniformly positive definite and bounded matrix.

In particular, we shall concentrate on the spatial discretization error. This
is based on the observation made in [2, 7, 10] that in the context of bioreactive
transport the spatial discretization requires particular care. Schemes with much
numerical diffusion produce an artificial mixing of the species which may lead to
an overestimation of the biodegradation potential. Let now uh : [0, T ] �→ Vh denote
the semidiscrete finite element approximation of the solution u of (16). Then we
have the following result; cf. [4].

Theorem 4.1. For t ∈ [0, T ] there holds

‖u(t)− uh(t)‖+ h‖∇(u(t)− uh(t))‖ ≤ Ch3 ,

where C = C(‖u‖C([0,T ];W 3
2 (Ω)), ‖∂tu‖L1(0,T ;W 3

2 (Ω))) is independent of h and
bounded above (montonically) in terms of ‖u‖C([0,T ];W 3

2 (Ω)), ‖∂tu‖L1(0,T ;W 3
2 (Ω)).

Together with Theorem 3.2 and along with Sobolev embedding results (cf.
[8]), Theorem 4.1 thus yields an optimal order error estimate for the proposed
finite element approximation of the Monod model (1).
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Θ 0.33 αA/D 2.16 µmax 1.13 KIA ∞
dA, dD 7.4e−5 kd 0.025 KD 0.79 Ks 0.045

βt 0.03 Y 0.52 KA 0.1

βl 0.36 cXmax 1.0 KID 91.7

Table 1. Transport- and biodegradation parameters for the test problem.

Figure 1. Profile of pressure head ψ and flow field q (left) and con-
centration of biomass at T = 44 (center) and T = 300 (right).

5. Numerical example

To illustrate our approach of modelling and simulating bioreactive transport in the
subsurface, we shall now present a computational study of a realistic groundwater
contamination scenario by a m-xylene plume and, thereby, provide valuable in-
sights into the complex interactions of biological, chemical and physical processes
that are involved in natural attenuation phenomena.

Our computational domain Ω = (0, 6) × (0, 10) is a section of the aquifer
with two impermeable heterogeneities of elliptic form inside that are obtained by
rotating two ellipses with center in (2, 6.5)� and (4, 8.5)�, respectively, both with
semi-axes equal to 1.5 and 0.5, by π/8 and −π/6, respectively; cf. Fig. 1. The
groundwater flow field is modelled by the Darcy flow problem (5). For the Monod
model (1)–(3) we use the field-measured and laboratory-derived input parameters
that are given in [13] and summarized in Table 1. The boundary conditions for
the hydraulic head p = ψ + z with z ≡ x2 are

p(x) = 0 for x ∈ [0, 6]× {0} , p(x) = 20 for x ∈ [0, 6]× {10}

and Ks∇p · ν = 0 else. The initial conditions for the species are

cD(x, 0) = 0.0 , cA(x, 0) = 2.0 , cX(x, 0) = 0.03 for x ∈ Ω.
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Figure 2. Concentration of electron donor m-xylene (top) and electron
acceptor oxygen (bottom) at T = 10 (left), T = 44 (center) and T = 300
(right).

The contaminant and electron donor m-xylene is injected at the upper inflow
boundary. Precisely, for t > 0 we prescribe the boundary conditions

cD(x, t) = 2.24 , cA(x, t) = 2.55 for x ∈ [1, 5]× {10} ,
cD(x, t) = 0.0 , cA(x, t) = 2.0 for x ∈ ([0, 1]× {10}) ∪ ([5, 6]× {10})

and Di∇ci · ν = 0, i = D,A, for x ∈ ∂Ω\([0, 6]× {10}).
The calculated pressure head ψ and flow field q = −Ks∇(ψ + z) are visu-

alized in Fig. 1. The concentration profiles of the contaminant m-xylene and the
electron acceptor (oxygen) at time T = 10, 44 and 300 are shown in Fig. 2. The
corresponding biomass concentrations can be found in Fig. 1. For visualization
purposes we have restricted the color range of the biomass to the interval [0,0.5].

Figs. 1 and 2 show that the contaminant is transported by the flow field to
the lower boundary of Ω. Simultaneously, it is degraded by a reaction between
electron donor, acceptor and biomass. However, the reaction is restricted to those
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regions of Ω where the concentrations of the species are sufficiently large. Besides
a thin layer close to the inflow boundary where the involved substances (contam-
inant m-xylene and oxygen) are injected, it is basically the interface between the
electron donor (contaminant) and the surrounding region where still enough elec-
tron acceptor (oxygen) is available. If a numerical method with much inherent
artificial (i.e., numerical) diffusion would be used to solve the model equations (1),
then the interface between the electron donor and acceptor would smear out and
the reaction would take place in the larger region. Consequently, the contaminant
would be degraded too fast. This might lead to a completely wrong prediction of
the natural attenuation potential for the considered site; cf. [2, 4, 5, 7, 10] for fur-
ther details. As shown in [2], the higher order discretization techniques proposed
in Sec. 4 help to reduce significantly the amount of inherent numerical diffusion
and prevent wrong predictions.
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Asymptotic Properties of the Nitzberg-Mumford
Variational Model for Segmentation with Depth

Giovanni Bellettini and Riccardo March

Abstract. We consider the Nitzberg-Mumford variational formulation of the
segmentation with depth problem. This is an image segmentation model that
allows regions to overlap in order to take into account occlusions between
different objects. The model gives rise to a variational problem with free
boundaries. We discuss some qualitative properties of the Nitzberg-Mumford
functional within the framework of the relaxation methods of the Calculus of
Variations. We try to characterize minimizing segmentations of images made
up of smooth overlapping regions, when the weight of the fidelity term in
the functional becomes large. This should give some theoretical information
about the capability of the model to reconstruct both occluded boundaries
and depth order.

Mathematics Subject Classification (2000). 46E30,49J45,49Q20.

Keywords. Variational methods, relaxation of functionals, computer vision,
image segmentation.

1. Introduction

In computer vision theory the segmentation problem consists in finding the ho-
mogeneous regions of an image, which are supposed to correspond to meaningful
parts of objects in the three-dimensional world. Several variational models have
been proposed in recent years which deal with the image segmentation problem
[1, 7, 8]. In particular Nitzberg and Mumford [10, 11] proposed a variational model
for segmentation with depth that allows regions to overlap to take into account
the partial occlusion of farther objects by those that are nearer. The minimization
of the functional should give the shape of the objects in an image, the reconstruc-
tion of the occluded boundaries, and the ordering of the objects in space. Some
analytical and numerical studies can be found in [3, 4, 6, 11].

The Nitzberg-Mumford model incorporates (partially) the way that an image
derives from a two-dimensional projection of a three-dimensional visual scene.
The luminous intensity (grey level) of the image is represented by a function g ∈
L∞(R2) with compact support. The regions of the segmentation constitute a finite
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collection of subsets of the plane

{E1, . . . , En}, Ei ⊂ R2 ∀i,
and the sets Ei may overlap. A partial ordering < between the regions represents
the relative depth information:

Ei < Ej means Ei occludes Ej . (1.1)

A segmentation is then an ordered family of regions {Ei}ni=1. The visible part of
the region Ei is the set E′

i given by

E′
1 = E1, E′

i = Ei \
i−1⋃
j=1

Ej for i = 2, . . . , n.

The set E′
n+1 is the background region:

E′
n+1 = R2 \

n⋃
i=1

Ei.

Nitzberg and Mumford [10] gave a variational formulation of the segmentation
problem by looking for a minimizer of the following functional:

G(n,E1, . . . , En) = µ

n+1∑
i=1

∫
E′

i

(ci − g)2dx +
n∑

i=1

∫
∂Ei

[1 + ψ(κi)]dH1, (1.2)

where µ > 0 is a weight, ci is the mean of g on E′
i:

ci =
1

meas(E′
i)

∫
E′

i

gdx ∀i = 1, . . . , n, cn+1 = 0,

H1 is the one-dimensional Hausdorff measure, and κi(x) is the curvature of ∂Ei

at x (the sets Ei are supposed to have sufficiently smooth boundaries). We choose
the function ψ : R → [0,+∞[ even, convex, and of class C1 (see [10, 11] for more
details). The functional G is minimized over the number of regions n and the
ordered families of regions {E1, . . . , En}.

In the present paper we will concentrate on the case

ψ(κ) = |κ|p, p > 1.

Since the number n of sets is not known in advance, an interesting mathemat-
ical problem is to understand, under suitable assumptions on the image g, if a
minimizing n is equal to the number of shapes which are actually present in the
image g. Moreover it is interesting to know if a minimizing segmentation matches
the depth order embedded in the data. The answers to such questions should give
some theoretical information about the reconstruction capabilities of the model.
Here, we begin to look for an answer when the image g is piecewise constant with
a finite number of values, and µ→ +∞.

We conclude the introduction by recalling that the proofs of the results here
presented will appear in a forthcoming paper, where a variational model that
enables the reconstruction of interwoven objects will also be considered.
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2. The asymptotic problem

The building block of the energy (1.2) is the functional

F(E) =
∫

∂E

[1 + |κ|p] dH1,

which is well defined if E ∈ C2(R2), where C2(R2) denotes the class of all bounded
open subsets of R2 of class C2.

If we apply the direct method of the Calculus of Variations to the problem
of minimizing the functional G, we are led to consider sequences of sets {Eh}h on
which the functional F is uniformly bounded. If the sets are contained in a ball
independent of h such sequences are compact in L1(R2), and it can be proved [2]
that the functional F is lower semicontinuous on the class C2(R2) with respect to
the convergence in L1(R2) (i.e., the L1 convergence of the characteristic functions
of sets). However, since in general the limit sets are not of class C2, it is necessary
to extend the functional F to the set of all Lebesgue measurable subsets of R2, in
such a way that the extended functional F is still lower semicontinuous [2].

If we set F(E) = +∞ if E /∈ C2(R2), by using the relaxation method of
the Calculus of Variations, the natural candidate for the functional F is the lower
semicontinuous envelope of F with respect to the L1(R2)–topology, i.e.,

F(E) = inf
{

lim inf
h→+∞

F(Eh) : Eh → E in L1(R2)
}
.

If E ∈ C2(R2) then F(E) = F(E). In [2] it has been proved that there exist sets
E such that F(E) < +∞, the boundary of which is not smooth. In particular, if
∂E is smooth except at an even number of cusp points, then F(E) is finite. The
characterization of the sets E with F(E) < +∞ has been given in [5].

We now denote by G the lower semicontinuous envelope of G with respect to
the [L1(R2)]n product topology (for a fixed n). Because of the continuity of the
terms

∫
E′

i
(ci − g)2dx we have

G(n,E1, . . . , En) = µ

n+1∑
i=1

∫
E′

i

(ci − g)2dx +
n∑

i=1

F(Ei).

The following is an existence result for the functional G.
Theorem 2.1. [Existence] There exists a finite family of sets {E1, . . . , En}, such
that F(Ei) < +∞ for any i ∈ {1, . . . , n}, which minimizes the functional G.

Moreover, it can be proved that the number n of sets minimizing G is uni-
formly bounded with respect to µ. We are now in a position to define the as-
ymptotic variational problem. Let g be a piecewise constant function assuming a
finite set of values. We find that, as µ→ +∞, the sets which minimize G converge
in the [L1(R2)]n product topology, up to a subsequence, to a family of n sets
{Ẽ1, . . . , Ẽn} such that

ci = g(x) if x ∈ Ẽ′
i ∀i = 1, . . . , n.
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Moreover, if the sets Ẽ1, . . . , Ẽn are of class C2(R2), we have

Jg ⊆
n⋃

i=1

∂Ẽi ,

where Jg denotes the jump set of g, i.e., the visible portions of the boundaries.
Then we study the following variational problem: minimize the functional

G∞(n,E1, . . . , En) =
n∑

i=1

F(Ei),

over the number of sets n and the families of sets {E1, . . . , En}, under the con-
straint

Jg ⊆
n⋃

i=1

∂Ei. (2.1)

The set Jg is the datum of the problem and the number n of sets is among the
unknowns. The existence of minimizers of G∞ can be proved from Theorem 2.1
and the uniform boundedness of n with respect to µ.

3. Energy functionals on systems of curves

In this section we need functionals defined on systems of curves of class W 2,p.
We call regular curve any function γ : [0, 1] → R2 such that |γ̇| �= 0 in [0, 1]. By
(γ) = {γ(t) : t ∈ [0, 1]} we denote the trace of γ and by l(γ) its length.

We define the functional

F(γ) =
∫ l(γ)

0

[1 + |κ|p]ds = l(γ) + l(γ)1−2p

∫ 1

0

∣∣∣∣d2γ

dt2

∣∣∣∣p dt,
where s denotes the arclength parameter.

We call system of curves a finite family Γ = {γ1, . . . , γm} of closed regular
curves of class W 2,p such that |γ̇i| is constant on [0, 1] for any i = 1, . . . ,m. The
trace (Γ) of a system of curves Γ is defined as ∪m

i=1(γ
i).

If Γ is a system of curves we define the functional

F(Γ) =
m∑

i=1

F(γi).

If E is a set of class C2(R2) and Γ is a parametrization of ∂E, then we have

∂E = (Γ), F(E) = F(Γ).

If E is not of class C2(R2), but F(E) < +∞, then it can be proved [2, 5] that E
is open and there exists a system Γ of curves such that

∂E ⊆ (Γ), F(E) = F(Γ). (3.1)

We say that a point q ∈ (Γ) is a self-intersection point of Γ if, for any
neighborhood Uq of q, (Γ)∩Uq cannot be written as the graph of a W 2,p function.
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Let q = γi(t1) = γj(t2) for some γi, γj ∈ Γ and t1, t2 ∈ [0, 1]. We say that at q
there is a tangential self-intersection if

dγi(t1)
dt

and
dγj(t2)

dt
are parallel.

We say that at q there is a transversal self-intersection if

dγi(t1)
dt

and
dγj(t2)

dt
are not parallel.

At a point q there may be both tangential and transversal self-intersections.
We say that two systems of curves Γ and Γ̂ are equivalent if

(Γ̂) = (Γ), F(Γ̂) = F(Γ).

The following is an approximation result for systems of curves, which is useful in
order to estimate the optimal number n of sets Ei.

Theorem 3.1. [Density] Let Γ be a system of curves. Then there exist a system of
curves Γ̂ equivalent to Γ and a sequence {Γh}h of systems of curves such that

(i) Γh has a finite number of tangential self-intersections for any h;
(ii) Γh → Γ̂ strongly in W 2,p;
(iii) (Γh) ⊆ (Γ) for any h.

The density theorem permits us to resort to systems of curves with a finite
number of tangential self-intersections.

4. Estimate of the number of sets

In this section we give some estimates of the number n of sets minimizing the
energy G∞. We will need some assumptions on the image g in order to achieve the
desired results.

Let A1, . . . , AN denote N sets of class C2(R2) such that for any i, j ∈
{1, . . . , N}, with i �= j, the boundaries ∂Ai and ∂Aj intersect transversally at
a finite number of points (see Figure 1). Moreover, let the sets be ordered accord-
ing to the ordering relation (1.1):

A1 < A2 < · · · < AN .

The function g is assumed piecewise constant and it is defined by

g =
N∑

i=1

ciχA′
i
, (4.1)

where the ci are positive constants, so that g is constant on the visible parts A′
i of

the regions.
The visible portion of the boundary of the region Ai is defined by

(∂A1)′ = ∂A1, (∂Ai)′ = ∂Ai \
i−1⋃
j=1

Aj for i = 2, . . . , N.
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3

Figure 1. The sets Ai in the image g.

By the assumptions on the sets Ai, the visible portion of ∂Ai consists of a finite
number of C2 arcs terminating in a finite set Mi of endpoints. We set

Jg = ∂A1

N⋃
i=2

(∂Ai)′, M =
N⋃

i=2

Mi.

We now study the relation between the number n minimizing the functional G∞
and the number N of the regions which are actually present in the image g.

Let {E1, . . . , En} be a minimizer of G∞; then, using (2.1) and (3.1), there
exist n systems of curves Γi, i = 1, . . . , n, such that

Jg ⊆
n⋃

i=1

(Γi), inf G∞ =
n∑

i=1

F(Γi) . (4.2)

We then define
Γ = {Γ1, . . . ,Γn},

so that Jg ⊆ (Γ).
Let Σ denote the set of all finite families σ = {γ1, . . . , γm} of W 2,p curves

which connect pairwise all the endpoints in M in such a way that for any point
p ∈Mi, the tangent vectors of σ and (∂Ai)′ in p are parallel, for any i ∈ {2, . . . , N}.

We have the following lemma.

Lemma 4.1. If Γ has a finite number of tangential self-intersections then there
exists σ ∈ Σ such that

F(Γ) ≥
∫

Jg

[1 + |κ|p]dH1 + F(σ). (4.3)

The proof of the lemma is based on the following argument. It can be proved
[2] that each system of curves Γi has not transversal self-intersections. Using this
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fact, the property Jg ⊆ (Γ), the hypothesis of a finite number of tangential self-
intersections of Γ, and the assumptions on the image g, a proof by induction (based
on the finiteness hypothesis) shows that Γ not only covers Jg, but also connects
pairwise the endpoints in M by means of additional W 2,p curves. Hence, there
exists a family σ ∈ Σ such that

Jg

⋃
(σ) ⊆ (Γ),

and the estimate (4.3) is then obtained by a covering argument.
We are now in a position to state the following energy estimate.

Theorem 4.2. [Energy estimate] If Jg ⊆
⋃n

i=1 ∂Ei, with F(Ei) < +∞ for any
i ∈ {1, . . . , n}, then

inf G∞ ≥
∫

Jg

[1 + |κ|p]dH1 + inf
σ∈Σ
F(σ). (4.4)

The proof of the estimate is based on the density result of Theorem 3.1,
which permits us to remove from Lemma 4.1 the hypothesis of a finite number
of tangential self-intersections of Γ. Then, using (4.2), Lemma 4.1 and taking the
infimum over Σ, we have

G∞(n,E1, . . . , En) = F(Γ) ≥
∫

Jg

[1 + |κ|p]dH1 + inf
σ∈Σ
F(σ),

from which the estimate (4.4) follows.
Now we may construct N̂ sets Ê1, . . . , ÊN̂ , with W 2,p boundary, by connect-

ing pairwise the endpoints inM by means of curves which minimize the energy∫ l(γ)

0

[1 + |κ|p]ds

with given tangent vectors inM (see Figure 2). In the case p = 2 the minimizing
curves are called elastica because of their application to the theory of flexible
inextensible rods [9].

Then we have

Jg ⊆
N̂⋃

i=1

∂Êi, inf G∞ ≤
N̂∑

i=1

F(Êi).

In particular, there exists a finite family of curves σ̂ ∈ Σ such that

N̂⋃
i=1

∂Êi = Jg

⋃
(σ̂), and inf G∞ ≤

∫
Jg

[1 + |κ|p]dH1 + F(σ̂).

If σ̂ minimizes F(σ) in Σ then, using Theorem 4.2, it follows

inf G∞ =
∫

Jg

[1 + |κ|p]dH1 + F(σ̂) ,

so that the family of sets {Ê1, . . . , ÊN̂} minimizes G∞.
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Figure 2. Endpoints inM connected by elastica curves.

Hence, in this case the asymptotic functional G∞ is minimized by a family of
sets with cardinality n = N̂ and the number of regions that are actually present in
the image g is reconstructed. Note that the minimizer σ̂ of F(σ) in Σ may be such
that N̂ �= N . This may happen in the following case. Suppose that connecting the
endpoints of the visible boundary (∂Ai)′ of the region Ai, a set Êi is obtained.
Analogously, a set Êj is obtained connecting the endpoints of (∂Aj)′ for some
j �= i. However, it may happen that the endpoints of (∂Ai)′ and (∂Aj)′ can be
connected by forming a single set Êi,j such that

F(Êi,j) < F(Êi) + F(Êj).

This case corresponds to a family of curves σ̂ ∈ Σ such that N̂ < N .
However, the assumption that there exists a family σ̂ with the above proper-

ties and minimizing F(σ) in Σ, is not satisfied in general. We are able to improve
such a result in the following way.

Let Σ0 ⊆ Σ be the subset of the families σ such that there exists a finite family
of sets {E1, . . . , EM}, with F(Ei) < +∞ for any i ∈ {1, . . . ,M} and Jg ⊆ ∪M

i=1∂Ei,
such that

M∑
i=1

F(Ei) =
∫

Jg

[1 + |κ|p]dH1 + F(σ). (4.5)

The case considered so far corresponds to σ̂ ∈ Σ0 and M = N̂ .
We have the following lemma.

Lemma 4.3. If σ ∈ Σ \ Σ0 and E1, . . . , EM are such that

Jg

⋃
(σ) ⊆

M⋃
i=1

∂Ei,
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then
M∑
i=1

F(Ei) ≥
∫

Jg

[1 + |κ|p]dH1 + F(σ) + c0π, (4.6)

where c0 = [(p/p′)1/p + (p′/p)1/p′
], with 1/p+ 1/p′ = 1.

The proof of the lemma is based on the following argument. If F(Ei) < +∞
for any i, by using (3.1) there exists a system of curves Γ such that

M⋃
i=1

∂Ei ⊆ (Γ),
M∑
i=1

F(Ei) = F(Γ).

Assume first that Γ has a finite number of tangential self-intersections. Then,
if σ /∈ Σ0, we prove by means of an inductive method (based on the finiteness
assumption) that the set (Γ)\ (Jg∪(σ)) contains at least a closed curve. Hence, by
the Hölder inequality the energy of a closed curve is greater than or equal to the
constant c0π, and the inequality (4.6) then follows by a covering argument. Then
the hypothesis of a finite number of tangential self-intersections of Γ is removed
by means of the density result of Theorem 3.1.

Then, using Theorem 4.2, Lemma 4.3 and (4.5), we obtain the following
result.

Proposition 4.4. If the inequality

inf
σ∈Σ0

F(σ) ≤ inf
σ∈Σ
F(σ) + c0π (4.7)

holds, then there exist a family of curves σ ∈ Σ0 and sets E1, . . . , EM , with
F(Ei) < +∞ and Jg ⊆ ∪M

i=1∂Ei, such that
M∑
i=1

F(Ei) = inf G∞,

and
M∑
i=1

F(Ei) =
∫

Jg

[1 + |κ|p]dH1 + F(σ).

If the assumption (4.7) of Proposition 4.4 is satisfied, it follows that the
number M of regions is reconstructed from the image g. Then, the family of sets
{E1, . . . , EM} can be endowed with the ordering relation

E1 < E2 < · · · < EM ,

as follows

∂E1 ⊆ Jg, ∂Ei \
i−1⋃
j=1

Ej ⊆ Jg for i = 2, . . . ,M .

Remark 4.5. If N = 2 in the definition (4.1) of g and M consists of two points,
then the assumption (4.7) is unnecessary, G∞ is minimized by n = 2 and the two
endpoints ofM are connected by an elastica.
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The ∞-Laplacian First Eigenvalue Problem

Marino Belloni

Abstract. We review some results about the first eigenvalue of the infinity
Laplacian operator and its first eigenfunctions in a general norm context.
Those results are obtained in collaboration with several authors: V. Ferone,
P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In Section
5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this
will be the object of a joint work with A. Wagner (see [BW]).

Mathematics Subject Classification (2000). Primary 35P30; Secondary 35J70,
49L25, 49R50.

Keywords. Nonlinear eigenvalue problems, Degenerate elliptic equation, Vari-
ational methods, Viscosity solutions.

1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary ∂Ω of a plane domain
Ω. If u(x) denotes its vertical displacement, and if its deformation energy is given
by

∫
Ω |∇u|

p dx, then a minimizer of the Rayleigh quotient∫
Ω |∇u|p dx

/ ∫
Ω |u|p dx

on W 1,p
0 (Ω) satisfies the Euler-Lagrange equation

−∆pu = λp |u|p−2u in Ω, (1.1)

where ∆pu = div(|∇u|p−2∇u) is the well-known p-Laplace operator. This eigen-
value problem has been extensively studied in the literature, see [L3]. A somewhat
strange recent result is that (as p→∞) the limit equation reads

min { |∇u| − Λ∞u, −∆∞u } = 0. (1.2)

Here ∆∞u =
∑

i,j uxiuxjuxixj is the ∞-Laplacian, Λ∞ = limp→∞ Λp where Λp =

λ
1/p
p (see [JLM1, FIN]).

Now suppose that the membrane is not isotropic. It is for instance woven
out of elastic strings like a piece of material. Then the deformation energy can

This work was completed with the support of the research project Calcolo delle Variazioni e
Teoria Geometrica della Misura.
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be anisotropic, see [BK2, BJK]. We are mainly interested in generalizing the
result on eigenfunctions for the p-Laplacian to the situation, where Ω ⊂ R

n is
no longer equipped with the Euclidean norm, but instead with a general norm
| · |, for instance with |x| = (

∑n
i=1 |xi|q)1/q and q ∈ (1,∞). In that case a Lip-

schitz continuous function u : Ω �→ R (in a convex domain Ω) has Lipschitz
constant L = supz∈Ω |∇u(z)|∗, where | · |∗ denotes the dual norm to | · |, because
|u(x)−u(y)| ≤ L |x−y| with this L. Then we study the asymptotic behavior of the
first eigenvalue (eigenfunctions) when p→∞. The case when p→ 1 and the corre-
sponding limiting problem for the first eigenvalue is not considered, see [KF, KLR].

It is well known, that the infinite-Laplacian operator ∆∞ is closely related
to finding a minimal Lipschitz extension of a given function φ ∈ C0,1(∂Ω) into Ω:
see Section 2. In [BFK] the eigenvalue problem was carried over to a general norm
and studied for finite p, while in [BK2] the eigenvalue problem was investigated
first for finite p and the special non-Euclidean norm |x| = (

∑n
i=1 |xi|p

′
)1/p′

with p′

conjugate to p, and then for the limit p→∞. In [BJK] the eigenvalue problem was
investigated for general strictly convex norm |x|, and then for the limit p→∞.

This paper is organized as follows.

In Section 2 we introduce the ∞-Laplacian operator and we survey some old and
recent results.

In Section 3 we introduce the first eigenvalue of the operator ∆∞, and we survey
some results obtained in [BJK, BFK, BK1] and [BK2].

In Section 4 we expose some examples related to the results quoted in Section 3
(see [BJK, BK2]).

In Section 5 we expose some unpublished material on the simplicity of the first
eigenvalue obtained in [BW], a joint work in preparation with A. Wagner.

2. The ∞-Laplacian operator ∆∞
Suppose f ∈ C0,1(∂Ω), where Ω ⊆ R

n is an open set, having L(f, ∂Ω) as the least
constant for which

|f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ ∂Ω

holds. Is it possible to find u ∈ C0,1(Ω) (a Minimal Lipschitz Extension, M.L.E.
shortly) such that

(i) u(x) = f(x) for all x ∈ ∂Ω;
(ii) L(u,Ω) = L(f, ∂Ω)?

Such an extension u exists (see [McS, W]) and satisfies Λ(f)(x) ≤ u(x) ≤
Ψ(f)(x) for every x ∈ Ω, where{

Λ(f)(x) = supy∈∂Ω (f(y)− L(f, ∂Ω)|x− y|) ,
Ψ(f)(x) = infy∈∂Ω (f(y) + L(f, ∂Ω)|x− y|) .
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The functions Λ(f), Ψ(f) are itself M.L.E., and then there exist infinitely many
functions satisfying (i), (ii). Also, it can happen that u satisfies (i) and (ii) but an
inequality like L(u, V ) > L(u, ∂V ) holds for some V ⊂⊂ Ω!

Example. (n = 1) Consider Ω =] − 4, 0[∪]0, 4[, and f ∈ C0,1(∂Ω) defined as:
f(−4) = f(0) = 0 and f(4) = 4. We have immediately that L(f, ∂Ω) = 1, and if we
construct v = Λ(f) (exercise!), the lower M.L.E., it is evident that for V =]−3,−1[
we have L(v, ∂V ) = 0 < 1 = L(v, V ) (see also [ACJ] where a similar example is
considered).

The following definition is a way to recover such an instability (see Aronsson
[A1], and also [ACJ]).

Definition 2.1. A function u is an Absolutely Minimal Lipschitz Extension if u
satisfy (i), (ii) and
(iii) L(u, V ) = L(f, ∂V ) for every V ⊂⊂ Ω.

More precisely, Aronsson defined the class of Absolutely Minimal Lipschitz (A.M.L.
shortly) functions as the class of continuous functions in Ω satisfying (iii), i.e., it
is not necessary to be an extension to be Absolutely minimal (see [ACJ], where
this approach is stressed). Aronsson proved that A.M.L. functions must satisfy the
Dirichlet boundary value problem{

−∆∞u(x) = 0 x ∈ Ω
u(x) = f(x) x ∈ ∂Ω (2.1)

where ∆∞u = ∇u∇(|∇u|2) is the ∞-Laplacian (the formal limit as p → ∞ of
p-Laplacian operator). In 1993 Jensen proved that (2.1) has a unique viscosity so-
lution. This result was known for C2 solutions of (2.1) (see [A1]); unfortunately, as
shown by Aronsson itself [A2], there exist ∞-harmonic functions not of class C2:
for example u(x1, x2) = |x1|4/3−|x2|4/3. For the definitions and relevant properties
of viscosity solutions, see [CIL]. Other uniqueness proof were given by Barles and
Busca [BB] still using a viscosity approach and, more recently, by Aronsson, Cran-
dall and Juutinen [ACJ] where the proof is obtained via the Comparison by Cones
approach introduced in [CEG] (see also [CDP, GPP] for some generalizations of
the Comparison with Cones to more general functionals). Recently O. Savin [S]
found the C1 regularity for the solutions of ∆∞u = 0 in 2-dimensional domains.
In [ACJ] some results on minimal Lipschitz extensions are generalized from the
Euclidean to a general norm, see also [Wu]. The infinity-Laplacian operator plays
also an important role in problems of optimal transportation. For technical rea-
sons it is often approximated by p-Laplacians with large p, see for instance [EG],
[BDP]. Another very active fields connected with the infinity-Laplacian operator
is the supremal calculus in L∞, see [BJW] and the references therein.
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3. The first eigenvalue of ∆∞
If we minimize the functional

Ip(v) =
∫

Ω

(|∇u|∗)p dx on K := { v ∈ W 1,p
0 (Ω) | ||v||Lp(Ω) = 1 }, (3.1)

then via standard arguments (see [BFK]) a minimizer up exists for every p > 1
and it is a weak solution to the equation

−Qpu := −div
(
(|∇up|∗)p−2J(∇up)

)
= λp|up|p−2up , (3.2)

that is ∫
Ω

(|∇up|∗)p−2 〈J(∇up),∇v〉 dx = λp

∫
Ω

|up|p−2u · v dx (3.3)

for any v ∈ W 1,p
0 (Ω). Here λp = Ip(up) and

Ji(ξ) :=
∂

∂ξi

(
(|ξ|∗)2

2

)
. (3.4)

Clearly (3.4) is well defined as long as the dual norm H(η) = |η|∗ is of class
C1(Rn \ {0}). Recall that (3.4) is well defined (and single-valued) if and only if
the norm | · | is strictly convex, i.e., if its unit sphere {x : |x| = 1} contains no
nontrivial line segments, see [Z] p. 400. Note further that in this case J(0) = 0 and
that for the Euclidean norm the duality map reduces to the identity J(∇u) = ∇u.
Note finally that Λp := λ

1/p
p is the minimum of the Rayleigh quotient

Rp(v) :=

(∫
Ω

(|∇v|∗)p
dx

)1/p

||v||p
(3.5)

on W 1,p
0 (Ω) \ {0}.

Theorem 3.1. Suppose that H(η) = |η|∗ is of class C1(Rn \ {0}) or that the norm
| · | is strictly convex. Then for every p ∈ [2,∞), the nonnegative minimizer up of
(3.1) is unique, positive and of class C1,α. It solves (3.2) in the weak sense of (3.3).

For a proof, see [BFK] (see also [L1, L2]).
The function distance to the boundary δ(x) := infy∈∂Ω |x − y| is Lipschitz

continuous, satisfies |∇δ(x)|∗ = 1 almost everywhere in Ω and it is equal to zero
on the boundary of Ω. We have then for every ϕ ∈W 1,∞

0 (Ω) and y ∈ ∂Ω

|ϕ(x)| = |ϕ(x) − ϕ(y)| ≤ || |∇ϕ|∗||∞δ(x),

which implies
1
||δ||∞

≤ || |∇ϕ|
∗||∞

||ϕ||∞
. (3.6)

Now let us define

Λ∞ :=
|| |∇δ|∗||∞
||δ||∞

(
=

1
||δ||∞

)
. (3.7)
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Therefore Λ∞ is a geometric quantity related to Ω. It is the inverse of the radius
of the largest (in general non-Euclidean) ball inside Ω. We can now prove the
following Theorem, which explains the analytic meaning of Λ∞.

Theorem 3.2. The following limit holds(
lim

p→∞
λ1/p

p =
)

lim
p→∞

Λp = Λ∞.

Here Λp = Rp(up) and the Rayleigh quotient Rp is given by (3.5).

For a proof, see [BJK] (see also [JLM1], where the Euclidean case is con-
sidered). For a Γ-convergence’s proof, see [BW] (see [DM] for the definitions and
relevant properties of Γ-convergence).

Now we state the theorem which characterize the limit eigenvalue equation.

Theorem 3.3. If H(η) := |η|∗ is of class C2(Rn \ {0}) then every cluster point u∞
of the sequence {up} is a viscosity solution of the equation

F∞(u,∇u,D2u) = min { |∇u|∗ − Λ∞u, −Q∞u} = 0

with Q∞u = 〈D2uJ(∇u), J(∇u)〉 representing the infinite-Laplacian in the Finsler
metric.

For a proof, see [BJK] (see also [JLM1]; in [BK2] we consider the case when
H fails to be of class C2(Rn\{0})). In [BW] we are trying to obtain this eigenvalue
equation starting from a more variational approach (see Section 5 for more details).

The function F∞, in the setting of viscosity solutions given in [CIL], results
degenerate elliptic but not proper. Therefore a comparison result cannot be ob-
tained via standard theory. Thanks to the change of variable w∞ = log u∞, we
arrive at the following equation

G∞(∇w,D2w) := min
{
|∇w|∗ − Λ∞, −Q∞w − (|∇w|∗)4

}
= 0, (3.8)

where Q∞ is defined as before. Equation (3.8), in contrast to F∞ = 0, is now
proper and then we can obtain the following comparison result.

Theorem 3.4. Let Ω be a bounded domain, and suppose that u is a uniformly con-
tinuous viscosity subsolution and v a uniformly continuous viscosity supersolution
of (3.8) in Ω. Then the following equality holds:

sup
x∈Ω

(u(x)− v(x)) = sup
x∈∂Ω

(u(x) − v(x)). (3.9)

For a proof see [BJK] (see also [JLM1]).
It is well known that for any 1 < p <∞, the eigenvalue λp can be character-

ized by the property that λ = λp is the only real number for which the equation

−div
(
(|∇up|∗)p−2J(∇up)

)
= λ|up|p−2up

has a continuous positive solution with zero boundary value. Also Λ∞ has an
analogous characterization.
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Theorem 3.5. Let Ω be any bounded domain and suppose that the norm | · | is of
class C2(Rn \ {0}). If u is a continuous positive viscosity solution in Ω of

min{|∇u|∗ − Λu,−Q∞u} = 0

with zero boundary value, then Λ = Λ∞.

For a proof, see [BJK] (see also [JLM1]).

4. Examples and observations

Example. If the norm under consideration for x ∈ Ω is the usual �q- norm, i.e., for
|x| = (

∑n
i=1 |xi|q)1/q with q ∈ (1,∞), the duality map according to (3.4) is easily

calculated as
Ji(y) = (|y|q′)2−q′ |yi|q

′−2yi,

with q′ = q/(q − 1) as conjugate exponent. Notice that this differs from the J in
[ACJ], Example 5.2. Then the p-Laplace operator in this Finsler metric is explicitly
given by, see [BFK]

Qpu =
n∑

i=1

∂

∂xi

(
|∇u|p−q′

q′

∣∣∣∣ ∂u∂xi

∣∣∣∣q′−2
∂u

∂xi

)
.

The ∞-Laplace operator in the same Finsler metric is explicitly given by

Q∞u = |∇u|4−2q′
q′

n∑
i,j=1

(
∂2u

∂xixj

∣∣∣∣ ∂u∂xi

∣∣∣∣q′−2
∂u

∂xi

∣∣∣∣ ∂u∂xj

∣∣∣∣q′−2
∂u

∂xj

)
and for q = 2 this expression shrinks down to the customary

∆∞u =
n∑

i,j=1

∂2u

∂xixj

∂u

∂xi

∂u

∂xj
.

Remark 4.1. It should be remarked that the distance function minimizes the
Rayleigh quotient R∞, but that δ(x) is in general not a viscosity solution of the
limiting eigenvalue problem, unless Ω is a “ball” in the Finsler metric, see [JLM1],
[JLM2], [BK2] and [BJK].

Remark 4.2. In general, if the domain is not a “ball”, there exist infinitely many
minimizers of the Rayleigh quotient R∞. For example, see the function (5.2) (see
[FIN]).

Remark 4.3. If Ω is a “ball” in R
n and p = n, then all the level sets of solutions

to (3.2)
−Qnu = λn|u|n−2u

are similar “balls”, see [BFK].
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Remark 4.4. The smoothness assumption made on the dual spheres in[BJK] is
violated if the underlying norm is the �1 or �∞ norm. However, the pde −Qp = 1
and its limit as p→∞ was studied even in this case in [IK], see also [K1], [BDM],
[Ja] and [IL] for the case of the Euclidean norm and for variants of this problem.
The eigenvalue problem is studied in [BK2]

Remark 4.5. Clearly the eigenvalue λp depends on Ω. There is an analogue of
the Faber-Krahn inequality which states that among all domains of given volume
λp(Ω) becomes minimal if Ω is a “ball” in the Finsler metric: see [BFK].

Example. Consider the square S := {(x, y) | max{|x|, |y|} < 1} . Assume that the
distance is given by d(x, y) = |x1 − y1|+ |x2 − y2|. This function does not satisfy
the regularity property stated in the previous section. We know that the function
distance to the boundary

δS(x, y) = d((x, y), ∂S) = min{1− |x|, 1− |y|} ∀(x, y) ∈ S (4.1)

is a minimizer for the Rayleigh quotient R∞ = max{ux, uy}/||u||∞. But δS does
not solve the eigenvalue equation

min { max{|ux|, |uy|} − u, −∆̃∞u} = 0, (4.2)

where ∆̃∞u(x0) :=
∑

i∈I(∇u(x0)) |uxi(x0)|uxi,xi(x0) is the pseudo−∞-Laplacian
(see [BK2]). We recall that I(ξ) = {k : |ξk| = maxi |ξi|}.
On the other hand, the function

u∞(x, y) = (1− |x|)(1 − |y|).
is a minimizer of the Rayleigh quotient and also a viscosity solution of (4.2).
We obtain this function as the limit of the sequence of eigenfunctions up of the
pseudo−p-Laplacian. For the details, see [BK2].

5. Uniqueness

For p =∞ the uniqueness of the first eigenfunction is a completely open problem.
In fact Theorem 3.4 is just a local comparison result: this is because, as observed,
just one function can be set equal to 0 on the boundary of Ω. Clearly, when Ω is
a “ball” (relative to the metric) then the first eigenfunction is unique because the
function d(x, ∂Ω is the unique minimizer of

min
{
R∞(u,Ω) =

||∇u||∞,Ω

||u||∞,Ω
: u ∈ W 1,∞

0 (Ω)
}
. (5.1)

If Ω is a stadium (or an annulus) then (see [BW]) the first eigenfunction is
still unique and is the function distance to the boundary: the proof is obtained by
a careful use of the comparison result (Theorem 3.4) together with the observation
that there exists a point x0 ∈ Ω and a minimizer (see [FIN]) as follows

Cx0(x) =
{

Λ−1
∞ − d(x, x0), if d(x, x0) < ||δ||∞

0, otherwise, x ∈ Ω. (5.2)
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If {x ∈ Ω : δ(x) = ||δ||∞} �= {x ∈ Ω : δ(x) not differentiable}, then (see
[BW]) the function δ fails to be a solution of the ∞-eigenvalue equation.

As stated in Theorem 3.1, for every p ∈ (1,∞) the first eigenvalue Λp is
simple, and the conjecture is that Λ∞ is simple too.

In [BW] we follow a more variational approach to the minimum problem
(5.1). First we define (see [BW]) a local minimizer of (5.1) as follows.

Definition 5.1. u ∈ W 1,∞
0 (Ω) is a local minimizer of (5.1) if for all open sets V ⊂ Ω

and all v̂ ∈W 1,∞
0 (Ω), where

v̂(x) :=
{

u : x ∈ Ω \ V
v : x ∈ V,

for some v ∈ W 1,∞
0 (Ω) and ‖v̂‖∞ = ‖u‖∞, there holds

‖Du‖∞ ≤ ‖Dv̂‖∞.

Usually a global minimizer is a local minimizer, but Definition 5.1 reverses the
rules: local implies global. Incidentally, this is a big problems in the L∞ calculus.
We are still working on this approach, and for example we are able to show the
following theorem.

Theorem 5.2. If u∞ is a local minimizer for (5.1), then |∇u∞| − Λ∞u∞ ≥ 0 in
the viscosity sense, where Λ∞ = R∞(u∞,Ω).

Acknowledgment

The author would like to thank the referee for the careful reading of the manuscript.

References

[A1] G. Aronsson: Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6
(1967), 551–561.

[A2] G. Aronsson: On the partial differential equation ux
2uxx +2uxuyuxy +uy

2uyy = 0,
Ark. Mat. 7 (1968), 395–425.

[ACJ] G. Aronsson, M.G. Crandall & P. Juutinen: A tour of the theory of absolutely
minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505.

[BB] G. Barles & J. Busca: Existence and comparison results for fully nonlinear de-
generate elliptic equations without zeroth-order term, Comm. Partial Differential
Equations 26 (2001), no. 11-12, 2323–2337.

[BJW] E.N. Barron, R. Jensen & C.Y. Wang: The Euler equation and absolute minimiz-
ers of L∞ functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255–283.

[BFK] M. Belloni, V. Ferone & B. Kawohl: Isoperimetric inequalities, Wulff shape and
related questions for strongly nonlinear elliptic operators, J. Appl. Math. Phys.
(ZAMP), 54 (2003) pp. 771–783.

[BJK] M. Belloni, P. Juutinen & B. Kawohl: The p-Laplace eigenvalue problem and
viscosity solutions as p → ∞ in a Finsler metric, J. Europ. Math. Soc., to appear.



The ∆∞ First Eigenvalue Problem 93

[BK1] M. Belloni & B. Kawohl: A direct uniqueness proof for equations involving the
p-Laplace operator, Manuscripta Math. 109 (2002), no. 2, 229–231.

[BK2] M. Belloni & B. Kawohl: The pseudo-p-Laplace eigenvalue problem and viscosity
solutions as p → ∞, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28–52.

[BW] M. Belloni, & A. Wagner: manuscript.

[BDM] T. Bhattacharya, E. DiBenedetto & J. Manfredi: Limits as p → ∞ of ∆pup = f
and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989).
Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15–68 (1991).

[BDP] G. Buttazzo & L. De Pascale: Optimal Shapes and Masses, and Optimal Trans-
portation Problems, Lecture Notes in Math., 1813, Springer, Berlin (2003), 11–51.

[CDP] T. Champion & L. De Pascale: A principle of comparison with distance functions
for absolute minimizers, preprint (2004)
(see http://cvgmt.sns.it/cgi/get.cgi/papers/chadep04/).

[CIL] M.G. Crandall; H. Ishii & P.L. Lions: User’s guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no.
1, 1–67.

[CE] M.G. Crandall & L.C. Evans: A remark on infinity harmonic functions, Proceed-
ings of the USA-Chile Workshop on Nonlinear Analysis (Via del Mar-Valparaiso,
2000), 123–129 (electronic), Electron. J. Differ. Equ. Conf., 6, Southwest Texas
State Univ., San Marcos, TX, 2001.

[CEG] M.G. Crandall, L.C. Evans & R.F. Gariepy: Optimal Lipschitz extensions and
the infinity Laplacian., Calc. Var. Partial Differential Equations 13 (2001), no. 2,
123–139.

[DM] G. Dal Maso: An introduction to Γ-convergence, Progress in Nonlinear Differential
Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA (1993).
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Comparison of Two Algorithms
to Solve the Fixed-strike
Amerasian Options Pricing Problem

Alfredo Bermúdez, Maŕıa Rodŕıguez-Nogueiras and Carlos Vázquez

Abstract. Amerasian options pricing problems are formulated, using Black-
Scholes and Merton methodology, as unilateral obstacle problems for degen-
erate parabolic convection-diffusion-reaction operators. We mainly focus on
the numerical solution of these problems and we compare two algorithms
based on the augmented Lagrange formulation. Moreover, we use higher-order
Lagrange-Galerkin methods for the time-space discretization. Finally, numer-
ical results show the performance of the proposed methods.

Keywords. Black-Scholes models, Amerasian options, Lagrange-Galerkin
method, Duality algorithms, Active set methods.

In this work we consider the numerical solution of the Amerasian options (with
continuous arithmetic averaging and fixed strike) pricing problem. These options
are path-dependent financial derivatives whose payoffs (i.e., their values at the
end of the contract) somehow depend on an averaging price of another financial
product called the underlying asset during a period of time. Following Black-
Scholes and Merton’s methodology, the value of an Asian option of American type,
or Amerasian option, solves a two-dimensional linear complementarity problem for
a strongly degenerate parabolic differential operator, with no diffusion in one of
the spatial directions (see [12]).

In the literature regarding the European counterpart pricing problem some
changes of variable were proposed to reduce the spatial dimension in one (see
[21, 25]). Nevertheless, these techniques cannot be applied either to the American
case, or to more general problems as those with share-dependent volatility, where it
is mandatory to solve the two-dimensional problem. Regarding now its numerical
solution, a forward shooting algorithm is proposed in [2] and finite volume methods
with high-order nonlinear flux limiter for the convective terms, combined with
a penalty method for the inequality constraints, are applied in [27]. In [18] an
implicit finite element method combined with a PSOR procedure and operator
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regularization is proposed. Recently, in [20] TVD and WENO discretizations have
been applied. In [13] authors solve numerically the Amerasian option problem,
under jump diffusion models, governed by integro-partial differential equations.
They apply a splitting technique that solves the transport equation in the average
direction with a Lagrangian scheme, and solves one-dimensional Black-Scholes
equations in the asset direction, with second-order implicit finite differences.

In the present work we address the numerical solution of unilateral-obstacle
problems arising when pricing Amerasian options. The proposed algorithm results
from the combination of higher-order characteristics methods for time discretiza-
tion, higher-order finite elements for space discretization and two different algo-
rithms for the free boundary problem (the Bermúdez-Moreno algorithm (BM ),
and the Augmented Lagrangian Active Set method (ALAS )). This work is a con-
tinuation of some previous ones where the numerical solution of financial pricing
problems by Lagrange-Galerkin methods and iterative algorithms were addressed.
In [8] a numerical algorithm consisting of combining the iterative algorithm intro-
duced in [3] with first-order Lagrange-Galerkin methods to solve general early ex-
ercise two factor pricing problems is applied. In [7] higher-order Lagrange-Galerkin
methods for Eurasian options are used. They have been extended to the general
constrained case in [6] where the BM algorithm has been employed. The main
novelty here is the use of a more recently proposed algorithm, ALAS algorithm
[17], to face with the nonlinearity of the pricing problem.

Notice that the here proposed numerical methodology is quite general and
can be applied to general two factor products as, for instance, convertible bonds
(see [1]). However, we have taken into account the specific features of Asian options
pricing problems, when optimizing, for instance, some algebraic computations.

In the following, we first formulate the mathematical problem; secondly we
recall the basic features of the Lagrange-Galerkin discretization; thirdly, we de-
scribe both the BM algorithm and the ALAS algorithm and give some “a priori”
comparison. Finally, we show some numerical results and final conclusions.

1. Mathematical formulation

The option pricing complementarity problem can be formulated as follows [6]:
Find V : (x1, x2, τ) ∈ Ω× [0, T ] −→ R, satisfying

L[V ] ≤ 0, V ≥ Λ, L[V ] (V − Λ) = 0 in Ω× (0, T ), (1.1)

subjected to the initial condition

V (x1, x2, 0) = Λ(x1, x2) for (x1, x2) ∈ Ω, (1.2)

and to the boundary condition

∂V

∂x1
(x1, x2, τ) = g(x1, x2, τ) on Γ1,+ × (0, T ). (1.3)
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In the previous formulation, Ω:=(0,x∗1)×(0,x∗2), Γ=∂Ω, and Γ1,+ =Γ∩{x1 =x∗1},
for x∗1 and x∗2 “large enough” positive numbers. Moreover, the linear operator L is

L[φ] =
∂φ

∂τ
− Div(A ∇φ) + v · ∇φ + lφ, (1.4)

for φ defined in Ω× (0, T ), and

A =
(

1
2σ

2x2
1 0

0 0

)
, v =

(
(σ2 − r + d0)x1
x2 − x1

T − τ

)
, l = r. (1.5)

Moreover,
Λ(x1, x2) = (x2 −K)+, (1.6)

and

g(x1, x2, τ) :=

⎧⎪⎨⎪⎩
τ

T
e−rτ , if 0 < x2 < K

T

T − τ
,

e−d0τ − e−rτ

T (r − d0)
if K

T

T − τ
< x2 < x∗2.

(1.7)

The unknown function V denotes the value of the option, as a function of the
underlying asset value, x1, the averaging variable, x2, and the time to maturity, τ .
Moreover, the averaging interval is [0, T ], and the strike is denoted by K > 0. The
positive financial parameters, r, σ, d0 are the interest rate of the economy, and the
volatility and the dividend yield of the underlying asset, respectively.

Remark 1.1. Notice that the complementarity problem (1.1)–(1.3) admits the cor-
responding variational inequality formulation (see, for instance, [6]) which is usu-
ally associated to obstacle-like problems.

Remark 1.2. Using Black-Scholes and Merton techniques the Amerasian options
pricing problem is firstly posed in an unbounded spatial domain. Keeping in mind
the numerical solution of the problem by using finite elements, a truncation of the
spatial domain is needed. For the sake of simplicity we have directly formulated
the problem in a bounded domain with its corresponding boundary conditions.
For more details concerning this process see, for instance [8, 6, 19].

The following propositions concern the noncoincidence region of the free
boundary problem and have been stated in [8, 19] by using some financial ar-
guments.

Proposition 1.3. At points (x1, x2, t) such that x2 ≤ K at time t , the function V
does not reach the obstacle.

Proposition 1.4. At points (x1, x2, t) such that x1 > (1 + rt)
1

t− Ti
x2 the function

V does not reach the obstacle.

The iterative algorithms we propose for the numerical solution of (1.1)–(1.3)
are based on the Lagrange formulation. It refers to the fact that the inequality
involving the operator L is replaced by an equality by means of an appropriate La-
grange variable or multiplier to be called P . This mixed formulation appears when
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dealing with duality methods for solving obstacle problems (see [14], for example).
Thus, problem (1.1)–(1.3) is equivalent to the following mixed formulation:

Find V and P : Ω× [0, T ] −→ R satisfying the partial differential equation

∂V

∂τ
− Div (A∇V ) + v · ∇V + lV + P = 0 in Ω× (0, T ) , (1.8)

the complementarity conditions

V ≥ Λ, P ≤ 0, (V − Λ)P = 0 in Ω× (0, T ), (1.9)

and initial and boundary conditions (1.2)–(1.3).

2. Higher-order Lagrange-Galerkin for the unconstrained problem

Very often, in differential equations for pricing financial products the diffusion is
quite small relative to the convection for some regions of the domain and/or for
particular values of the parameters. This is reinforced for Asian options, as there
is no diffusion in one of the spatial dimensions. In such circumstances numerical
schemes present difficulties. A possible upwinding scheme that leads to symmetric
and stable approximations of the transport PDE, reducing temporal errors and
allowing for large timesteps without loss of accuracy, is the characteristics method
for time discretization. An application in finance of the classical characteristics
method has been already developed in [24, 1, 8, 13]. Moreover, while most pa-
pers and books on financial derivatives employ finite differences for the numerical
solution, the use of finite elements has several advantages. Firstly, unstructured
meshes can be convenient to refine at some parts of the domain as, for instance,
near free boundaries or where the initial condition is less smooth. Secondly, it
provides greater flexibility for changing final or boundary conditions as well as
incorporating inequality constraints, if necessary.

In the present work, which mainly focus on the free-boundary aspect, we use
the second-order Lagrange-Galerkin method analyzed in [22, 4, 5] for time-space
discretization. The application of this general method for convection-diffusion-
reaction PDEs to Asian options has been explained in [6]. Particularly, we consider
Q2

h finite element spaces,

Q2
h := {f ∈ C0(Ω), f |K ∈ Q2(K)∀K ∈ Th}, (2.1)

where Q2(K) is the space of polynomials of degree less than or equal to two in each
variable, and we use Simpson rule for numerical integration. So, if we consider a
finite elements space of dimension Ndof , we have to solve a Ndof ×Ndof system

MhV
n
h = bn−1

h , (2.2)

at each time step, where matrix Mh does not depend on time. This fact allows us
to compute its Choleski factorization only once. Moreover, if meshes satisfy the
condition that their edges are parallel to the axis and an adequate mesh numbering
is used, this matrix is block diagonal. (See [6, 19] for details.)



Numerically Solving Amerasian Options Pricing Problems 99

3. Numerical treatment of the free boundary problem

The most common method of handling the early exercise condition (which leads to
the free boundary problem) in numerical finance is simply to advance the discrete
solution over a timestep ignoring the restriction and then to make its projection on
the set of constraints (see, for example, [11]). In the case of a single factor (Amer-
ican vanilla put pricing problem, for instance) the algebraic linear complementary
problem is commonly solved using a projected iteration method (PSOR) that cap-
tures the unknown exercise boundary at each time step (see Wilmott [26]). In [10]
a multigrid method to accelerate convergence of the basic relaxation method is
suggested and in [24] a Uzawa’s algorithm to better capture the free boundary is
used. Moreover, in [15] an implicit penalty method for pricing American options
is proposed. Authors show that, when variable timestep is used, quadratic conver-
gence is achieved. The drawbacks of projected relaxation methods are that their
rates of convergence depend on the choice of the relaxation parameter, they dete-
riorate when the meshes are refined and, moreover, they do not take into account
the domain decomposition given by the free boundary. In this section we describe
two algorithms for which the developed regularization does not introduce any fur-
ther source of error as penalty methods do: the Bermúdez-Moreno algorithm and
the Augmented Lagrangian Active Set method.

3.1. The Bermúdez-Moreno iterative algorithm (BM)

This method has been introduced in [3] for solving elliptic variational inequalities.
It consists of approximating the solution of the variational inequality by a sequence
of solutions of variational equalities. While this method has been extensively ap-
plied to solve free boundary problems in computational mechanics, its application
to price financial derivatives has been recently proposed [8].

In order to apply the duality method proposed in [3], we introduce a new
Lagrange multiplier, Q, in terms of a parameter ω > 0, by

Q := P − ωV. (3.1)

Then, condition (1.9) can be equivalently formulated as

Q(x, t) ∈ Gω(V (x, t)) a.e. in Ω∗ × (0, T ),

where Gω := G−ωI, I is the identity function and G denotes the following multi-
valued maximal monotone operator (see [9]):

G (Y ) =

⎧⎨⎩ ∅ if Y < Λ,
(−∞, 0] if Y = Λ,
0 if Λ < Y,

. (3.2)

We recall that, if B is a maximal monotone operator in a Hilbert space
then its resolvent operator is the single-valued contraction Jλ = (I + λB)−1 and
its Yosida regularization is the Lipschitz-continuous mapping Gλ = λ−1(I − Jλ),
where λ is any positive real number (see for instance [9]).
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The following equivalence is straightforward:

p ∈ B(v)⇔ p = Bλ(v + λp). (3.3)

In fact, a similar equivalence holds for operator Bω := B − ωI, for any λ < 1/ω.
In the particular case of B = G given by (3.2), the Yosida regularization of Gω is

Gω
λ (Y ) =

⎧⎪⎨⎪⎩
Y − Λ
λ

if Y < (1 − ωλ)Λ,

− ω

1− ωλ
Y if Y ≥ (1 − ωλ)Λ,

(3.4)

and equivalence (3.3) becomes

Q = Gω
λ(V + λQ). (3.5)

The above developments lead to consider the following algorithm:
1. Initialization: Q0 is arbitrarily given.
2. Iteration m: Qm is known.

(a) Compute Vm+1 by solving⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂Vm+1

∂τ
− Div (A∇Vm+1) + v · ∇Vm+1

+(r + ω)Vm+1 + Qm = 0 in Ω∗ × (0, T ),
Vm+1 (x1, x2, 0) = Λ (x1, x2) in Ω∗,

∂Vm+1

∂x1
(x1, x2, τ) = g(x1, x2, τ) on Γ∗

1,+ × (0, T ).

(3.6)
(b) Update Lagrange multiplier Q by

Qm+1 = µGω
λ [Vm+1 + λQm] + (1− µ)Qm in Ω∗ × (0, T ), (3.7)

where µ is a relaxation parameter, µ ∈ (0, 1].

Remark 3.1. We emphasize that, since (3.5) is completely equivalent to (3.1), this
algorithm does not introduce any further source of error as penalty methods do.

Convergence results in [3] can be easily adapted to our degenerate case. In
particular, one can show convergence as far as ω and λ are chosen such that ωλ =
1/2 but, unfortunately, the speed of convergence depends on these parameters.

3.2. Augmented Lagrangian Active set method (ALAS)

The ALAS algorithm proposed in [17] is here applied to the fully discretized in
time and space mixed formulation (1.8)–(1.9). In this method the basic iteration of
the active set consists of two steps. In the first one the domain is decomposed into
active and inactive parts (depending on whether the constraint “acts” or not), and
then, a reduced linear system associated to the inactive part is solved. We use the
algorithm for unilateral problems, which is based on the augmented Lagrangian
formulation. Some a priori known properties of our particular problem are taken
into account in order to improve the performance of this method.
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First, for any decomposition N = I ∪ J, where N := {1, 2, . . . , Ndof}, let us
denote by [Mh]II the principal minor of matrix Mh and by [Mh]IJ the codiagonal
block indexed by I and J. Thus, for each mesh time tn, the ALAS algorithm
computes not only V n

h and Pn
h but also a decomposition N = Jn ∪ In such that

MhV
n
h + Pn

h = bn−1
h ,

[Pn
h ]j + β [V n

h − Λ]j ≤ 0 ∀j ∈ Jn,

[Pn
h ]i = 0 ∀i ∈ In,

(3.8)

for any positive constant β. In the above, In and Jn are, respectively, the inactive
and the active sets at time tn. More precisely, the iterative algorithm builds se-
quences

{
V n

h,m

}
m
,
{
Pn

h,m

}
m
, {Inm}m and {Jn

m}m , converging to V n
h , Pn

h , In and
Jn, by means of the following steps:

1. Initialize V n
h,0 and Pn

h,0 ≤ 0. Choose β > 0. Set m = 0.
2. Compute

Qn
h,m = min

{
0, Pn

h,m + β
(
V n

h,m − Λ
)}

,

Jn
m =

{
j ∈ N,

[
Qn

h,m

]
j
< 0

}
,

Inm = {i ∈ N,
[
Qn

h,m

]
i
= 0}.

3. If m ≥ 1 and Jn
m = Jn

m−1 then convergence is achieved. Stop.
4. Let V and P be the solution of the linear system

MhV + P = bn−1,

P = 0 on Inm and V = Λ on Jn
m.

(3.9)

Set V n
h,m+1 = V, Pn

h,m+1 = min{0, P},m = m + 1 and go to 2.

It is important to notice that, instead of solving the full linear system in (3.9),
for I = Inm and J = Jn

m the following reduced one on the inactive set is solved:

[Mh]II [V ]I =
[
bn−1

]
I
− [Mh]IJ [Λ]J ,

[V ]J = [Λ]J ,
P = bn−1 −MhV.

(3.10)

Remark 3.2. In a unilateral obstacle problem, the parameter β only influences the
first iteration.

In [17], authors proved convergence of the algorithm in a finite number of
steps for a Stieltjes matrix (i.e., a real symmetric positive definite matrix with
negative off-diagonal entries [23]) and a suitable initialization. They also proved
that Im ⊂ Im+1. Nevertheless, a Stieltjes matrix can be only obtained for linear
elements but never for “our” quadratic elements because we have some positive
off-diagonal entries coming from the stiffness matrix (actually we use a lumped
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mass matrix). However, we have obtained good results by using ALAS algorithm
with quadratic finite elements and the following particular additional features:
• The algorithm is initialized as proposed in [17]:

V n
h,0 = Λ and Pn

h,0 = bn −MhV
n
h,0.

• We compute the set

In∗ :=
{
i,∈ N, xi = (xi

1, x
i
2) is a mesh node with

xi
2 < K, xi

1 > (1 + r(tn − Ti)xi
2

}
,

and impose that In∗ ⊂ Inm for every m ( using Propositions 1.3 and 1.4).
• We do not assume monotonicity with respect to m for the sets {Inm}.

Block "s"

Block "r"

Figure 1. Spatial domain of solution for the Amerasian call options
pricing problem, separating the active from the inactive set. Two sets of
FE nodes with the same x2 coordinate are represented, and the nodes
inside the active set are filled.

Special care has to be taken for an efficient solution of the linear system
when using the ALAS algorithm. Meshes with edges parallel to the axis and with
suitable mesh numbering have already been used in the BM algorithm. The fact
that in the ALAS algorithm only an incomplete linear system is solved requires
a deeper study. More precisely, by ordering the nodes from right to left and from
bottom to top, we are led to a matrix with Nx2 blocks of dimension Nx1 . In other
words, each set of nodes with the same x2 coordinate gives rise to a block in the
matrix. Thus, for each block either all of the nodes are inside the inactive set (the
case of Block “r” in Figure 1) or only the first n(x2) nodes (with n(x2) ≤ Nx1)
belong to the inactive set (the case of Block “s” in Figure 1). The main point is
that also for the ALAS algorithm we develop the factorization of the (complete)
matrix only once outside the time loop and the iterative algorithm loop, and, at
each iteration, we solve Nx2 systems of variable dimension (less or equal than Nx1).

A “general” comparison between the two iterative algorithms is not practi-
cal because the performance of this second algorithm is very problem-dependent.
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For example, the larger the active set, the more efficient the second algorithm
is. Nevertheless, we can establish the following a priori comments related to the
comparison of the two algorithms when applied to our particular problem. They
will be completed when showing the numerical results in the next section:
• Linear systems in the ALAS algorithm are smaller than those in the BM

algorithm.
• The ALAS algorithm uses some a priori known data about the inactive set.
• The BM algorithm is strongly parameter (ω) dependent, whereas the (β)

parameter appearing in ALAS algorithm only influences the first iteration.
• ALAS algorithm can be interpreted as a semi-smooth Newton method [16],

and thus it exhibits a super-linear convergence rate.

4. Numerical results

To complete our analysis, we compare the performance of the BM and the ALAS
algorithms for three sets of parameters. In Table 1 we show the results corre-
sponding to the computational domain Ω∗ = (0, x∗1)× (0, x∗2), with x∗1 = x∗2 = 3K.
Uniform meshes in time and non-uniform meshes in space have been used. If Nts

denotes the number of time steps and Ndof = Nx1 = Nx2 denotes the number of
d.o.f. in each spatial direction, we introduce the following notation for the meshes:

Mesh-1 Mesh-2 Mesh-3 Mesh-4
Nts 34 67 133 265
Ndof 67 133 265 529

Regarding Table 1 we can conclude that the ALAS algorithm is more efficient
than the BM one because the computational time is smaller for the same meshes
and leads to analogous results. Notice that the main difference between these
algorithms is the solution of the linear systems and the updating of the Lagrange
multiplier (or active/inactive sets), whereas the computation and factorization of
the full matrix, etc. . . . are common to both algorithms. Thus, since the algebraic
part of the program (in particular, the resolution of the already factorized linear
systems) has been optimized in both cases, the difference in time is lower than the
difference in the number of iterations.

On the other hand, the mean number of iterations is clearly less in the ALAS
algorithm than in the BM one. To this respect, it is interesting to note that, in the
ALAS algorithm, parameter β seems not to influence the number of iterations (as
it is claimed in [17]). However, the mean number of iterations in the BM algorithm
crucially depends on the choice of parameter ω. Furthermore, we have observed
that the number of iterations as a function of parameter ω is a convex function,
and that its minimum depends not only on the test data (i.e., volatility, time to
maturity, etc) but also on the mesh parameters. For this reason, we have first
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searched the value of ω giving the minimum number of iterations for each test
data and mesh. This optimal choice is used in Table 1. In Figure 2 we show the
mean number of iterations in the BM algorithm as a function of ω for the four
mesh refinements and the data set σ = 0.2, Tf − Ti = 1, r = 0.1, d0 = 0,K = 100.

σ = 0.4, Tf − Ti = 0.5
Mesh-1 Mesh-2 Mesh-3 Mesh-4

BM ALAS BM ALAS BM ALAS BM ALAS
Parameter 1.5E2 1.E5 4.E2 1.E5 1.15E3 1.E5 1.9E3 1.E5

Nit 23 4 26 5 31 6 33 9
Op. Value 8.5528 8.5503 8.5310 8.5299 8.5220 8.5232 8.5222 8.5223

Time 4 3 38 24 411 271 4689 3560

σ = 0.1, Tf − Ti = 0.25
Mesh-1 Mesh-2 Mesh-3 Mesh-4

BM ALAS BM ALAS BM ALAS BM ALAS
Parameter 1.5E2 1.E5 3.25E2 1.E5 7.E2 1.E5 1.15E3 1.E5

Nit 10 3 11 3 12 3 13 3
Op. Value 1.9759 1.9560 1.9529 1.9308 1.9511 1.9348 1.9590 1.9590

Time 4 3 38 30 413 349 5259 4685

σ = 0.2, Tf − Ti = 1.
Mesh-1 Mesh-2 Mesh-3 Mesh-4

BM ALAS BM ALAS BM ALAS BM ALAS
Parameter 7.5E1 1.E5 1.5E2 1.E5 4.5E2 1.E5 1.05E3 1.E5

Nit 19 3 20 4 25 5 24 7
Op. Value 7.5475E 7.5445E 7.5441 7.5425E 7.5405 7.5406 7.5386 7.5417

Time 5 3 43 31 474 355 5589 4737

Table 1. Results comparing BM and ALAS algorithms applied to the
Amerasian problem with data r = 0.1, d0 = 0,K = 100. The pa-
rameters (Parameter) are λ for BM and β for ALAS. Nit denotes the
mean number of iterations and option value (Op. Value) corresponds to
(S,M, t) = (100, 100, Ti). The computation time (Time) is in measured
in seconds.
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Dep. de Matemática Aplicada.Univ. Santiago de Compostela
e-mail: mabermud@usc.es
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Dep. de Matemáticas. Univ. da Coruña
e-mail: marianog@usc.es

Carlos Vázquez
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Nonlinear Diffusion Models
for Self-gravitating Particles

Piotr Biler and Robert Stańczy

Abstract. This paper deals with parabolic-elliptic systems of drift-diffusion
type modelling gravitational interaction of particles. The main feature is pres-
ence of a nonlinear diffusion describing physically relevant density-pressure
relations. We study the existence of solutions of the evolution problem, and
recall results on the existence of steady states, and the blow up of solutions
in cases when drift prevails the diffusion.

Mathematics Subject Classification (2000). Primary 35K60; Secondary 35Q,
35B40, 82C21.

Keywords. Nonlinear diffusion, drift-diffusion systems, mean field equations,
local existence of solutions, steady states, blow up of solutions.

1. Introduction

Our aim is to describe some recent results on drift-diffusion equations coupled with
the Poisson equation

nt = ∇ · (D∗ (∇p + n∇ϕ)) , (1.1)
∆ϕ = n. (1.2)

These systems are models for the evolution of the density of particles n = n(x, t) ≥
0 defined for (x, t) ∈ Ω×R

+, Ω ⊂ R
d. The particles attract each other gravitation-

ally through the Newtonian potential ϕ = ϕ(x, t) generated by themselves. The
pressure p ≥ 0 is a sufficiently regular (C2(R+ × R

+)) function of the density n
and the temperature ϑ > 0

p = p(n, ϑ). (1.3)
The coefficient D∗ > 0 above may depend on n, ϑ, ϕ, x, . . . . The natural boundary
condition on ∂Ω for (1.1)–(1.2) is the nonlinear no-flux one

(∇p + n∇ϕ) · ν = 0, (1.4)

where ν is the unit normal vector to ∂Ω. The potential ϕ satisfies either

ϕ = Ed ∗ n, (1.5)
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Ed(x) = −((d− 2)σd)−1|x|2−d being the fundamental solution of the Laplacian in
R

d, d ≥ 3, or the homogeneous Dirichlet boundary condition

ϕ|∂Ω = 0, (1.6)

which is mathematically somewhat simpler. In the case of radially symmetric so-
lutions (1.1)–(1.4), (1.6) is equivalent to (1.1)–(1.4), (1.5): the solutions of (1.5)
and (1.6) differ by a constant, cf. the discussion of this issue in [4, 5, 1].

Systems for self-gravitating particles may describe concentration and collapse
phenomena, manifesting themselves by, e.g., a finite (or infinite) time blow up of
solutions for certain initial data.

Systems like (1.1)–(1.2) or (1.1) with the equation ∆ϕ = −n for the poten-
tial have been considered beginning with Nernst–Planck (1895) and Debye–Hückel
(1926) models for the dynamics of ions in a solute (i.e., repulsing particles). Then,
they have been used in semiconductor theory and plasma physics. Models for at-
tracting particles are studied at least from early nineties of the twentieth century:
[18] and [4]. The papers of P.-H. Chavanis and his collaborators (see [9] and nu-
merous references therein) are another source of those hydrodynamical models in
astrophysics, with an immediate reference to kinetic equations. Besides the sta-
tistical mechanics, systems of the form (1.1)–(1.2) appear also in modelling of
chemotaxis phenomena, generalizing the classical approach which involved the lin-
ear diffusion with p(n) = constn. These biological models, supplemented with the
homogeneous Neumann conditions for n and ϕ are applicable in a description of
concentration of either cells or microorganisms due to chemical agents. We refer
the reader to [12] for a comprehensive review of these aspects of parabolic-elliptic
systems like (1.1)–(1.2), and to [17] for very recent results on related systems with
nonlinear diffusion in R

N .
Such mean field systems can be studied either in the canonical ensemble

(i.e., the isothermal setting), when ϑ = const is fixed, or in the microcanonical
ensemble (the nonisothermal case) with a variable temperature: either ϑ = ϑ(t)
or ϑ = ϑ(x, t). Then, the energy balance is described either by a relation like

E =
d

2

∫
Ω

p dx +
1
2

∫
Ω

nϕdx = const (1.7)

(which, for a given n, defines ϑ = ϑ(t) in an implicit way) in the former case, or
by an evolution partial differential equation for ϑ = ϑ(x, t) as was in Streater’s
models in [2] (much more complicated mathematically).

In order to determine the evolution, we also impose an initial condition

n(x, 0) = n0(x) ≥ 0, (1.8)

and either ϑ0 > 0 or a value of E which is to be conserved. As a consequence of
(1.4), total mass

M =
∫

Ω

n(x, t) dx (1.9)

is conserved during the evolution. Moreover, sufficiently regular solutions of the
evolution problem with n0 ≥ 0 remain positive.
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The main mathematical questions concerning the systems are the following:

• existence, nonexistence and multiplicity of steady states, either for givenM, ϑ
or for M, E fixed,
• local in time existence of solutions of the evolution problem,
• asymptotics of global in time solutions,
• possibility of finite time blow up of solutions (corresponding to either a grav-

itational collapse or an explosion),
• spreading of compactly supported initial data when Ω is unbounded (and

related free boundary problems).

Two systems with particular density-pressure relations have been extensively
studied: for Brownian (or Maxwell–Boltzmann) and Fermi–Dirac particles.

The model of self-gravitating Brownian particles, which consists of (1.1)–
(1.2), with (2.1) below, supplemented by (1.7), has been considered in [9, 11]
for radially symmetric solutions (n, ϕ), and in [10, 6] without this symmetry as-
sumption. Studies of the corresponding isothermal problem with ϑ ≡ 1 had been
conducted earlier, see, e.g., [18, 4]. We refer the reader also to [1, 5] for stationary
solutions for the Brownian particles models. The main issues are:

• gravitational collapse is possible for d ≥ 2 in the isothermal model, and for
d ≥ 3 in the nonisothermal model,
• the existence of steady states with prescribed mass and energy in d ≥ 3 di-

mensions is controlled by the parameter E/M2 which should be large enough
(in d = 2 they exist for each M > 0 and each E ∈ R).

Since the Fermi–Dirac model, see (2.3) below, involves nonlinear diffusion,
even local in time existence of solutions is much harder to establish than in the
Brownian (linear diffusion) case, see [3] where in the isothermal case a specific
choice of the coefficient D∗ has been considered. In particular:

• structure of the set of steady states with given M and ϑ is different (but less
complicated) than in the Brownian case ([9]),
• the existence of steady states with given mass and energy is controlled by

the parameter min
{

E
M2 ,

E
M1+2/d

}
([7, 16]),

• gravitational collapses cannot occur in d ≤ 3 dimensions in the isothermal
case ([3]),
• the gravitational collapse is possible for d ≥ 4 for suitable initial data in the

nonisothermal case ([7]).

We will study in this paper local in time existence of solutions – a rather
difficult question in such a general setting with (1.3), mainly because of nonlinear
boundary conditions (1.4) for n and possible degeneracies of diffusion. This subject
which has not been considered in [8], where a thorough discussion of the following
topics can be found:

• examples of density-pressure relations more general than Maxwell–Boltzmann
and Fermi–Dirac,
• entropy functionals, entropy production rates and estimates of the energy,
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• existence of steady states with prescribed mass and large energy,
• nonexistence of global in time solutions of (1.1)–(1.2) with general density-

pressure relations (1.3), D∗ = 1, one of the conditions (1.5), (1.6), and either
negative initial entropy or low energy, and thus, a fortiori , nonexistence of
steady states for arbitrary D∗,
• continuation of local in time solutions of (1.1)–(1.2) with polytropic density-

pressure relations (cf. (2.4) below).
It is worth noting that while “local” results on the existence of steady states (i.e.,
for a small range of control parameters M , ϑ, E) are quite similar for general p =
p(n, ϑ), the global structure of the set of steady states (existence of multiple steady
states, bifurcations, end-points of branches of solutions, etc.) is rather sensitive to
variations of the form of p in (1.3), cf. results for the Maxwell–Boltzmann and
Fermi–Dirac models. The problem is relatively well understood in the case of the
Boltzmann model, see [1] and references therein. There are some numerical results
in the case of radially symmetric solutions of the Fermi–Dirac model in the ball of
R

3, cf. [9]. Three different approaches are useful when studying the existence and
multiplicity of stationary solutions of the system (1.1)–(1.2), namely: monotonicity
methods (as, e.g., in [13, 14]), variational methods (as, e.g., in [3, 7, 8, 15]), and
integral equations (as, e.g., in [8, 15, 16]).

Results on the nonexistence of steady states and, more generally, nonexistence
of solutions of the evolution problem defined for all t ≥ 0 are proved using either
the moment method (for the boundary condition (1.5)) or Pohozaev–Rellich type
identities (for (1.6)). These are results on the isothermal problem with the pressure
p asymptotically resembling a polytropic relation (2.4), and with quite general
density-pressure relations in the microcanonical setting, see [8, Sec. 5] and [7, Sec.
2]. Similar results for chemotaxis systems with nonlinear diffusion are in [17].

Thus, weakly nonlinear diffusion (e.g., that in (2.4) with small γ > 0) is not
strong enough to prevent from a blow up of solutions, at least for initial data
of negative energy. On the other hand, strongly nonlinear diffusion (e.g., (2.4)
with relatively large γ) guarantees the continuation of local in time solutions to
the global ones. Indeed, for p(s) ∼ κs1+γ with γ > 1 − 2/d, using the entropy
Wiso (3.1), one proves in [8, Sec. 6] that supt>0

∫
Ω
p(x, t) dx < ∞ with a bound

depending on the initial data. Then, supδ≤t≤T |n(t)|Lq(Ω) < ∞ is proved by an
iteration process for any 1 < q <∞ and 0 < δ < T <∞, with a bound depending
also on δ and T . Since for γ ≤ 1 − 2/d the blow up of solutions, caused by∫
Ω
n(x, t)|x|2 dx→ 0 as t↗ Tmax, is accompanied by the unboundedness of Lq(Ω)

norms as t ↗ Tmax ([8, Sec. 5]), one can conclude that such phenomena do not
occur in the complementary range of polytropic exponents γ, γ > 1− 2/d, i.e., for
diffusion terms ∆p(n) in (1.1) strong enough.

Notation. In the sequel | . |q will denote the Lq(Ω) norm. All inessential constants
which may vary from line to line will be denoted by C.
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2. Examples of diffusions

Without entering into the kinetic theory considerations, cf. [9] and [8], we recall
here the most common density-pressure relations encountered in the (classical and
quantum) statistical mechanics and generalize these examples.

Example. For Maxwell–Boltzmann distributions

pMB(n, ϑ) = ϑn (2.1)

holds, which is a consequence of the Maxwellian form of distributions f = f(x, v, t)
maximizing the Boltzmann entropy −

∫
Rd f log f dv under the local density con-

straint n(x, t) =
∫

Rd f dv. This classical Boltzmann relation and D∗ = const lead
to linear Brownian diffusion term ∆n in (1.1).

Example. Similarly, Fermi–Dirac distributions maximize the entropy

S = −
∫

Rd

(
f

η0
log

f

η0
+

(
1− f

η0

)
log

(
1− f

η0

))
dv

whose form a priori prevents from the overcrowding of particles at any point
(x, v, t): 0 ≤ f ≤ η0. Then one has, see, e.g., [3, (1.1)–(1.3)],

n = η02d/2−1σdϑ
d/2Id/2−1(λ), p = η02d/2σd

d
ϑd/2+1Id/2(λ),

where Iα denotes the Fermi integral of order α > −1 defined for λ > 0 by

Iα(λ) =
∫ ∞

0

yα dy
λey + 1

. (2.2)

Hence

pFD(n, ϑ) =
µ

d
ϑd/2+1

(
Id/2 ◦ I−1

d/2−1

)(
2
µ

n

ϑd/2

)
(2.3)

for a constant µ > 0, which leads to a nonlinear diffusion in (1.1). Properties of
Fermi integrals (2.2) (convexity, asymptotics, etc.) relevant to study the system
(1.1)–(1.2), (2.3) are collected in [3, Sec. 2] and [7, Sec. 5].

An analogous construction is used to define Bose–Einstein distributions whose
properties, however, much differ from those of Fermi–Dirac ones, see [8, Sec. 2].

Example. Polytropes are classical equations of state of a gas

p1+γ(n, ϑ) = κγϑ
1−γd/2n1+γ (2.4)

with 0 < γ < 2/d, and a polytropic constant κγ . These are densities corresponding
to distributions maximizing the Rényi–Tsallis entropy −1

q−1

∫
Rd (f q − f) dv, where

q = 1 + 1/(1/γ − d/2) ∈ (1,∞). The limit value γ = 2/d leads to the pressure

p1+2/d(n, ϑ) = κ2/dn
1+2/d (2.5)

independent of ϑ. The limit case γ ↘ 0 corresponds to the Boltzmann density-
pressure relation (2.1). The polytropic relations define evolution equations with
nonlinear diffusions as, e.g., in the porous media equation.
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In all the examples above the scaling relation p(ϑd/2n, ϑ) = ϑd/2+1p(n, 1) is
satisfied for each ϑ > 0, and thus the self-similar form of the pressure

p(n, ϑ) = ϑd/2+1P
( n

ϑd/2

)
(2.6)

follows with a sufficiently regular function P defined on R
+.

In all physically relevant examples the function P behaves like power func-
tions of s near 0 and near ∞: c0s1+γ0 , c∞s1+γ∞ with some special exponents γ0,
γ∞ ≥ 0, and constants c0, c∞ > 0, respectively. For instance, γ0 = 0, γ∞ = 2/d
for the Fermi–Dirac pressure (2.3).

Remark 2.1. Given E and the instantaneous value of n = n(x, t), the physically
justifiable property ∂p

∂ϑ > 0 permits us to define the temperature ϑ = ϑ(t) (and
thus the pressure p = p(n, ϑ)) in a unique way. If p ∈ C1 has the self-similar form
(2.6) and P (s)/s1+2/d is strictly decreasing, then ∂p

∂ϑ > 0. Indeed, differentiating
we get

(
d
2 + 1

)
P (s) > d

2sP
′(s) whence

0 <
∂p

∂ϑ
=

(
d

2
+ 1

)
ϑd/2P

( n

ϑd/2

)
− d

2
nP ′

( n

ϑd/2

)
.

Moreover, P (s) ≤ Cmaxs
1+2/d for any s ≥ 1, and P (s) ≥ Cmins

1+2/d for any s ≤ 1
and some constants Cmin, Cmax > 0.

3. Useful estimates for entropies and energies

In the isothermal setting the function

Wiso =
1
ϑ

∫
Ω

(
ϑnh− p +

1
2
nϕ

)
dx (3.1)

is a (neg)entropy for the problem (1.1)–(1.2), (1.4), either (1.5) or (1.6), and (1.8):
d
dtWiso = −

∫
Ω ϑnD∗

∣∣∇ (
h + ϕ

ϑ

)∣∣2 dx ≤ 0. Here the function h is defined (up to
a constant depending on the temperature) for an arbitrary increasing C1 function
p of n > 0 and for fixed ϑ > 0 by the relation ∂h

∂n = 1
ϑn

∂p
∂n .

In the nonisothermal setting the existence of a nontrivial entropy needs an
assumption on the structure of p in (1.3), i.e., on the dependence on ϑ. A simple
sufficient condition is (2.6) which implies that h has the self-similar form h(n, ϑ) =
H

(
n

ϑd/2

)
with a function H satisfying H ′(s) = P ′(s)/s. Then the function

W =
∫

Ω

(
nh−

(
d

2
+ 1

)
p

ϑ

)
dx (3.2)

is an entropy for the problem (1.1)–(1.2), (1.4), (1.8), one of the boundary condition
(1.5) or (1.6), together with the energy relation (1.7). Moreover, the following
production of entropy formula holds: d

dtW = −
∫
Ω ϑnD∗

∣∣∇ (
h + ϕ

ϑ

)∣∣2 dx ≤ 0, see
[8, Sec. 3]. Due to the minus sign before the pressure term and the boundary
conditions (1.4), the entropy W does not provide, in general, substantial a priori
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estimates for n and ϕ. However, see [7, Lemma 3.6] and the proof of Theorem 4.1
below for a priori estimates for ϑ.

In some cases, the energy relation (1.7) leads to interesting a priori estimates.

Lemma 3.1. If d = 3, P (s) ≥ εs1+γ for some ε > 0, γ = 2/d, and all s ≥ 0, then
the total energy (1.7) controls the thermal energy d

2

∫
Ω
p dx and the absolute value

of the potential energy 1
2

∣∣∫
Ω nϕdx

∣∣ from above. More precisely,∣∣∣∣∫
Ω

nϕdx
∣∣∣∣ ≤ C|n|2q ≤ C|n|2r

1+γ |n|2−2r
1 (3.3)

with 1/q = r/(1 + γ) + (1− r) = (d + 2)/(2d), so that for each δ > 0

E + CM1+ν ≥
(
ε
d

2
− δ

)∫
Ω

n1+2/d dx, (3.4)

and for each 0 < c0 < d/2 there exists C = C(c0,Ω) such that

E ≥ c0

∫
Ω

p dx +
∣∣∣∣∫

Ω

nϕdx
∣∣∣∣− CM1+ν , (3.5)

where ν = 2γ/(γd+ 2− d) = 4/(d(4− d)).

Lemma 3.2. If d > 2, P (s) ≥ εs1+γ for some ε > 0, γ > 1 − 2/d and all s ≥ 0,
then the counterpart of the estimate (3.3) reads∣∣∣∣∫

Ω

nϕdx
∣∣∣∣ ≤ C|n|2r

1+γ |n|2−2r
1 ≤ c|n|1+γ

1+γΘ1−γd/2 + CM1+νΘ−κ (3.6)

with any c > 0, any parameter Θ > 0 and some constant C = C(c,Ω) independent
of Θ, ν = 2γ/(γd+ 2− d), κ = (1− γd/2)(d− 2)/(γd+ 2− d).
Now, for each δ > 0 the estimate corresponding to (3.4) is

E + CM1+νϑ−κ ≥
(
ε
d

2
− δ

)∫
Ω

n1+γϑ1−γd/2 dx. (3.7)

Moreover, for each 0 < c0 < d/2 the following is true

E ≥ c0

∫
Ω

p dx +
∣∣∣∣∫

Ω

nϕdx
∣∣∣∣− CM1+νϑ−κ. (3.8)

If γ = 1 − 2/d such an estimate is meaningful for small values of mass M only,
namely the following estimate holds

E ≥
(
d

2
− c0M

2/d

)∫
Ω

p dx +
∣∣∣∣∫

Ω

nϕdx
∣∣∣∣− C. (3.9)

Since γ ≤ 2/d in physical situations, (3.8) will be of main interest for d = 3 and
(3.9) for d = 4.

The proofs of the above lemmas, similar to [7, Lemma 3.3], [8, Lemma 3.2],
involve standard Sobolev–Gagliardo–Nirenberg and Hölder inequalities.

Remark 3.3. The results in Lemmas 3.1 and 3.2 apply to the case of polytropic
density-pressure relations and the Fermi–Dirac model: γ = 2/d, d ≤ 3, arbitrary
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M > 0, and d = 4, small M > 0, see [7, (29)]. They are also valid (with different
proofs) for the Maxwell–Boltzmann case: d = 2, γ = 0 and small M , see [1, 6].

Remark 3.4. From Lemma 3.2 follows, by the Jensen inequality, the estimate

E + CM1+νϑ−κ ≥ βM1+γ |Ω|−γϑ1−γd/2

with a β > 0, which readily implies an a priori upper bound for the temperature
ϑ. Indeed, since γ < 2/d, the right-hand side increases to ∞ when ϑ → ∞ while
the left-hand side is bounded.

4. Results on the existence of solutions

The first step of the construction of local in time solutions of the nonisothermal
evolution problem consists in the analysis of the isothermal problem with ϑ =
const. This has been done for the Maxwell–Boltzmann and Fermi–Dirac cases
in [4] and [3, Sec. 3], respectively. In the latter publication, solutions have been
constructed as limits of solutions of approximated parabolic problems where the
Poisson equation has been replaced by the penalized parabolic equation

1
k
ϕt −∆ϕ + u = 0, k > 0. (4.1)

Then, the approach via energy estimates and the passage to the limit k →∞ has
led to the solution of the original parabolic-elliptic system. The next step is an
analysis of the problem with a given (continuous) temperature ϑ = ϑ(t) ∈ (0,∞),
t ∈ [0, T ], see, e.g., [10] and for a slightly another approach [6]. The final step of
the construction of solutions for the nonisothermal evolution problem is to look
for a fixed point of the operator

T : ϑ �−→ Θ. (4.2)

Here ϑ, Θ ∈ C[0, T ], Θ(t) is an instantaneous temperature determined by an energy
relation involving both temperatures: the old one ϑ(t) (appearing implicitly in n,
ϕ that solve (1.1)–(1.2)) and the new one Θ(t) (appearing in the pressure term,
cf. (4.3) below). Usually, this needs Schauder type arguments, so one should prove
invariance (i.e., a priori estimates on ϑ) and compactness properties (e.g., a bound
on Θ̇) of the operator T. Here, we present the a priori estimates on ϑ. The other
details of the construction will appear in a more comprehensive forthcoming paper.
Evidently, assumptions guaranteeing (global in time) existence of solutions of the
evolution problem are, in a sense, complementary to those implying finite time
blow up for D∗ = 1, e.g., assumptions on negativity of E, cf. [8, Sec. 5].

The theorem below covers the case of three-dimensional nonisothermal Fermi–
Dirac model.

Theorem 4.1. Assume that the convex function P ∈ C1 satisfies
(i) P (s)/s1+2/d ↘ ε > 0,
(ii) lim infs↘0 P (s)/s > 0.
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Moreover, let the data satisfy the condition W (0) < 0 and
(iii) W (0)/M < lim infs→∞ R(s)/s ≡ �,

where R(s) = sH(s) −
(

d
2 + 1

)
P (s) is the entropy density in (3.2). Then the

temperature ϑ for local in time solution satisfies the a priori estimate a ≤ ϑ ≤ b
for some constants 0 < a < b <∞.

Proof. For ϑ ∈ C([0, T ]; (0,∞)) we consider the map Θ := T(ϑ) as the new
temperature defined for each moment t ∈ [0, T ] by the energy relation

E =
d

2

∫
Ω

Θ1+d/2P (nΘ−d/2) dx +
1
2

∫
Ω

nϕdx. (4.3)

Thanks to the assumption (i) the operator T is well defined by the argument in
Remark 2.1. First, we prove that T(ϑ) is bounded from above uniformly in ϑ. Using
the lower estimate of the pressure (ii), i.e., P (s) ≥ c1s for some c1 > 0, and the
estimate of the potential energy (3.8), the upper bound for the new temperature
Θ follows. Namely,

3
2
E +

C

2
M1+ν ≥ E − 1

2

∫
Ω

nϕdx =
d

2

∫
Ω

Θ1+d/2P (nΘ−d/2) dx ≥ d

2
ΘMc1

holds, and thus we arrive at Θ ≤ b := (dc1)−1
(

3E
M + CMν

)
.

Now, we prove the second part of the claim, i.e., we estimate the temperature
ϑ = T(ϑ) from below for initial data satisfying (iii), i.e., (1 − δ)W (0)/M < � for
some δ > 0. Taking K = K(δ) sufficiently large to have R(s)/s > (1− δ)W (0)/M
for all s ≥ K we obtain

0 > W (0) ≥W (t) =

(∫
{ n

ϑd/2 ≥K}
+

∫
{ n

ϑd/2 <K}

)
ϑd/2R

( n

ϑd/2

)
dx

≥ M(1− δ)W (0)/M − C(δ)|Ω|ϑd/2

with −C(δ) ≤ inf0≤s≤K R(s) for some C(δ) > 0. This leads to the required bound
for ϑ: ϑ ≥ a > 0, since ϑd/2 > −δW (0)/(C(δ)|Ω|) > 0.

Observe that if �=lims→∞R(s)/s, then �=− d
2 lims→∞s1+2/d

(
s−2/dH(s)

)′
.

Moreover, the condition W (0) < 0 is satisfied for initial data if M2/d  ϑ0 holds.
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[14] A. Raczyński, Steady states for polytropic equation of self-gravitating gas. Math.
Meth. Appl. Sci. 28 (2005), 1881–1896.
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Existence, Uniqueness and an Explicit Solution
for a One-Phase Stefan Problem for
a Non-classical Heat Equation

Adriana C. Briozzo and Domingo A. Tarzia

Abstract. Existence and uniqueness, local in time, of the solution of a one-
phase Stefan problem for a non-classical heat equation for a semi-infinite
material is obtained by using the Friedman-Rubinstein integral representa-
tion method through an equivalent system of two Volterra integral equations.
Moreover, an explicit solution of a similarity type is presented for a non-
classical heat source depending on time and heat flux on the fixed face x = 0.

Mathematics Subject Classification (2000). Primary 35R35, 80A22, 35C05; Sec-
ondary 35K20, 35K55, 45G15, 35C15.

Keywords. Stefan problem, Non-classical heat equation, Free boundary prob-
lems, Similarity solution, Nonlinear heat sources, System of Volterra integral
equations.

1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free boundary prob-
lem for the classical heat equation which requires the determination of the tem-
perature distribution u of the liquid phase (melting problem) or of the solid phase
(solidification problem), and the evolution of the free boundary x = s(t). Phase-
change problems appear frequently in industrial processes and other problems of
technological interest [2, 4, 6, 9, 12]. A large bibliography on the subject was given
in [20].

Non-classical heat conduction problem for a semi-infinite material was studied
in [3, 5, 10, 22, 23], e.g., problems of the type

ut − uxx = −F (ux(0, t)), x > 0, t > 0,
u(0, t) = 0, t > 0
u(x, 0) = h(x), x > 0

(1.1)

It was supported by CONICET PIP No. 3579 and ANPCYT PICT No. 03-11165.



118 A.C. Briozzo and D.A. Tarzia

where h(x), x > 0, and F (V ), V ∈ R, are continuous functions. The function F ,
henceforth referred as control function, is assumed to fulfill the following condition

(H1) F (0) = 0.

As it was observed in [22, 23] the heat flux w(x, t) = ux(x, t) for problem (1.1)
satisfies a classical heat conduction problem with a nonlinear convective condition
at x = 0, which can be written in the form⎧⎨⎩

wt − wxx = 0, x > 0, t > 0,
wx(0, t) = F (w(0, t)), t > 0,
w(x, 0) = h

′
(x) ≥ 0, x > 0.

(1.2)

The literature concerning problem (1.2) has constantly increased from the
appearance of the papers [13, 15, 17]. In [21] a one-phase Stefan problem for a
non-classical heat equation for a semi-infinite material was presented. The free
boundary problem consists in determining the temperature u = u(x, t) and the
free boundary x = s(t) with a control function F which depends on the evolution
of the heat flux at the boundary x = 0, satisfying the following conditions⎧⎪⎪⎨⎪⎪⎩

ut − uxx = −F (ux(0, t)), 0 < x < s(t), 0 < t < T,
u(0, t) = f(t) ≥ 0, 0 < t < T,
u(s(t), t) = 0, ux(s(t), t) = − .

s (t) , 0 < t < T,
u(x, 0) = h(x) ≥ 0, 0 ≤ x ≤ b = s(0) (b > 0) .

(1.3)

In Section 2 we present a result on the local existence and uniqueness in
time of the solution of the one-phase Stefan problem (1.3) for a non-classical heat
equation with temperature boundary condition at the fixed face x = 0. First,
we prove that the free boundary problem (1.3) is equivalent to a system of two
Volterra integral equations (2.4)–(2.5) [8, 14] following the Friedman-Rubinstein’s
method given in [7, 18](see also [19]). Then, we prove that the problem (2.4)–(2.5)
has a unique local solution in time by using the Banach contraction theorem.

In Section 3 we show an explicit solution of a similarity type for a one-phase
Stefan problem for a non classical control function F which depends on time and
heat flux on the fixed face x = 0.

2. Existence and uniqueness of the non-classical
free boundary problem

We have the following equivalence:

Theorem 2.1. The solution of the free boundary problem (1.3) is given by

u(x, t) =
∫ b

0

G(x, t; ξ, 0)h(ξ)dξ +
∫ t

0

Gξ(x, t; 0, τ)f(τ)dτ (2.1)

+
∫ t

0

G(x, t; s(τ), τ)v(τ)dτ −
∫∫

D(t)

G(x, t; ξ, τ)F (V (τ))dξdτ ,
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s(t) = b−
∫ t

0

v(τ)dτ (2.2)

where D(t) = {(x, τ)/ 0 < x < s(τ), 0 < τ < t} , with f ∈ C1 [0, T ) , h∈ C1 [0, b] ,
h (b) = 0, h (0) = f (0) , F is a Lipschitz function over C0 [0, T ] , and the functions
v ∈ C0 [0, T ], V ∈ C0 [0, T ] defined by

v(t) = ux(s(t), t) , V (t) = ux(0, t) (2.3)

must satisfy the following system of two Volterra integral equations

v(t) = 2
∫ b

0

N(s(t), t; ξ, 0)h
′
(ξ)dξ

−2
∫ t

0

N(s(t), t; 0, τ)
.

f (τ)dτ + 2
∫ t

0

Gx(s(t), t; s(τ), τ)v(τ)dτ (2.4)

+2
∫ t

0

[N(s(t), t; s(τ), τ) −N(s(t), t; 0, τ)]F (V (τ))dτ ,

V (t) =
∫ b

0

N(0, t; ξ, 0)h
′
(ξ)dξ

−
∫ t

0

N(0, t; 0, τ)
.

f (τ)dτ +
∫ t

0

Gx(0, t; s(τ), τ)v(τ)dτ (2.5)

+
∫ t

0

[N(0, t; s(τ), τ) −N(0, t; 0, τ)]F (V (τ))dτ ,

where G, N are the Green and Neumann functions and K is the fundamental
solution of the heat equation, defined respectively by

G (x, t, ξ, τ) = K (x, t, ξ, τ) −K (−x, t, ξ, τ) (2.6)

N (x, t, ξ, τ) = K (x, t, ξ, τ) + K (−x, t, ξ, τ) (2.7)

K (x, t, ξ, τ) =

{
1

2
√

π(t−τ)
exp

(
− (x−ξ)2

4(t−τ)

)
t > τ

0 t ≤ τ
(2.8)

where s (t) is given by (2.2) .

In order to prove the local existence and uniqueness of solution v, V ∈
C0 [0, σ] (σ is a positive small number) to the system of two Volterra integral
equations (2.4)–(2.5) we will use the Banach fixed point theorem. Let us define
the Banach space:

CM,σ =
{

−→
w =

(
v

V

)
/ v, V : [0, σ]→ R, continuous, with

∥∥∥−→
w

∥∥∥
σ
≤M

}
with the norm∥∥∥−→

w
∥∥∥

σ
:= ‖v‖σ + ‖V ‖σ := max

t∈[0,σ]
|v(t)|+ max

t∈[0,σ]
|V (t)| . (2.9)
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We define the map A : CM,σ −→ CM,σ, such that
−→
w̃ (t) = A

(−→
w (t)

)
=

(
A1(v(t), V (t))
A2(v(t), V (t))

)
(2.10)

where

A1(v(t), V (t)) = F1(v(t)) + 2
∫ t

0

[N(s(t), t, s(τ), τ) −N(s(t), t, 0, τ)]F (V (τ))dτ

(2.11)
with

F1(v(t)) = 2
∫ b

0

N(s(t), t, ξ, 0)h
′
(ξ)dξ − 2

∫ t

0

N(s(t), t, 0, τ)
.

f (τ)dτ

+2
∫ t

0

Gx(s(t), t, s(τ), τ)v(τ)dτ

and

A2(v(t), V (t)) = F2(v(t)) +
∫ t

0

[N(0, t, s(τ), τ) −N(0, t, 0, τ)]F (V (τ))dτ. (2.12)

with

F2(v(t)) =
∫ b

0

N(0, t, ξ, 0)h
′
(ξ)dξ −

∫ t

0

N(0, t, 0, τ)
.

f (τ)dτ (2.13)

+
∫ t

0

Gx(0, t, s(τ), τ)v(τ)dτ

Then we have the following property:

Theorem 2.2. If f ∈ C1 [0, T ] , h ∈ C1 [0, b] , f(0) = h(0), h(b) = 0 and F is a
Lipschitz function over C0 [0, T ], then the map A : CM,σ −→ CM,σ is well defined
and is a contraction map if σ > 0 is small enough. Then there exists an unique
solution on CM,σ to the system of integral equations (2.4), (2.5).

3. Explicit solution of a one-phase Stefan problem for a
non-classical heat equation

Now, we consider a free boundary problem which consists in determining the
temperature u = u(x, t) and the free boundary x = s(t) with a control function F
which depends on time and the evolution of the heat flux at the boundary x = 0,
satisfying the following conditions

ρcut − kuxx = −γF (ux(0, t), t) , 0 < x < s(t) , t > 0, (3.1)

u(0, t) = f = Const. > 0, t > 0, (3.2)
u(s(t), t) = 0, kux(s(t), t) = −ρl .

s (t) , t > 0, (3.3)

s(0) = 0, (3.4)
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where the thermal coefficients k, ρ, c, l, γ > 0 and the control function F is given
by the expression

F (V, t) =
λ0√
t
V (λ0 > 0) . (3.5)

In order to obtain an explicit solution of a similarity type, we define

Φ(η) = u(x, t), η =
x

2a
√
t

(3.6)

where a2 = k/ρc is the diffusion coefficient.
After some elementary computations we obtain

Φ(η) = f

[
1− E(η)

E(η0)

]
, 0 < η < η0, (3.7)

where

E(x) = erf (x) +
4λ√
π

∫ x

0

f1(r)dr, λ =
γλ0

ρca
> 0 , [λ] = 1 (3.8)

and

f1(x) = exp(−x2)
∫ x

0

exp(r2)dr (3.9)

is Dawson’s integral [1] and η0 is an unknown positive parameter to be determined
which characterizes the free boundary given by

s(t) = 2aη0

√
t. (3.10)

We remark that Dawson’s integral also appears in the explicit solution for the su-
percooled one-phase Stefan problem with a constant temperature boundary con-
dition on the fixed face [16].

Taking into account the Stefan condition we have that η0 = η0(λ, Ste) must
be the solution of the following equation

Ste√
π

[exp(−x2) + 2λf1(x)] = x[erf(x) +
4λ√
π

∫ x

0

f1(z)dz] , x > 0 (3.11)

where Ste =
fc

l
> 0 is the Stefan number and

erf(x) =
2√
π

∫ x

0

exp(−z2)dz. (3.12)

The equation (3.11) is equivalent to the equation

W1(x) = 2λW2(x) , x > 0 (3.13)

where functions W1 and W2 are defined by

W1(x) = Ste exp
(
−x2

)
−
√
πerf(x)x (3.14)

W2(x) = 2x
∫ x

0

f1(r)dr − Ste f1(x). (3.15)
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Remark 3.1. If λ = 0 (that is γ = 0) in the free boundary problem (3.1)–(3.4)
we obtain the classical Lamé-Clapeyron [11] solution and there exists a unique
solution η00 of the equation (3.11) which is given now by

F0(x) =
Ste√
π
, x > 0 (3.16)

where
F0(x) = erf(x) exp(x2)x . (3.17)

Theorem 3.2. For each λ > 0 there exists a unique solution η0 of Eq. (3.13). This
solution η0 = η0(λ) has the following properties

(i) η0(0+) = η00 > 0
(ii) η0(+∞) = x4 < +∞ (3.18)
(iii) η0 = η0 (λ) is an increasing function on λ

where η00 is the unique solution of Equation (3.16) and x4 > 0 is the unique
positive zero of W2.

Theorem 3.3. For each λ > 0 the free boundary problem (3.1)–(3.4) has a unique
similarity solution of the type

u(x, t, λ) = f

[
1− E(n, λ)

E (η0(λ), λ)

]
, 0 < η =

x

2a
√
t
< η0(λ) (3.19)

s(t, λ) = 2a η0(λ)
√
t (3.20)

where
E(η, λ) = erf(η) +

4λ√
π

∫ η

0

f1(r)dr (3.21)

and η0 = η0(λ) is the unique solution of Eq. (3.13), with η00 < η0(λ) < x4.

Theorem 3.4. The explicit solution (3.19), (3.20) of the problem (3.1)–(3.4) has
the following properties:

(i) ux(0, t, λ) =
−f

aE (η0(λ), λ)
1√
πt

< 0 , ∀t > 0

(ii) u(x, t, λ) ≥ u0(x, t) , ∀ 0 ≤ x ≤ s0(t) , t > 0

(iii) s(t, λ) ≥ s0(t) , ∀ t > 0

where u0(x, t) = f

[
1− erf(η)

erf(η00)

]
, 0 < η =

x

2a
√
t
< η00 , t > 0

s0(t) = s(t, 0) = 2aη00

√
t

(iv) 1 ≤ u(x, t, λ)
u0(x, t)

≤ 1

1− η(x, t)
η00

[
1− 2

Ste

η0(λ) (1 + 2λ ‖f1‖∞)
exp (−η2

0(λ)) + 2λf1 (η0(λ))
η(x, t)

]

(v) lim
t→+∞

u(x, t, λ)
u0(x, t)

= 1 uniformly ∀ x ∈ compact sets ⊂ [0, s0(t)).
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Depto. Matemática – CONICET
FCE, Univ. Austral
Paraguay 1950, S2000FZF Rosario, Argentina
e-mail: Domingo.Tarzia@fce.austral.edu.ar



International Series of Numerical Mathematics, Vol. 154, 125–135
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Dislocation Dynamics:
a Non-local Moving Boundary

P. Cardaliaguet, F. Da Lio, N. Forcadel and R. Monneau

Abstract. In this article, we present briefly the mathematical study of the
dynamics of line defects called dislocations, in crystals. The mathematical
model is an eikonal equation describing the motion of the dislocation line with
a velocity which is a non-local function of the whole shape of the dislocation.
We present some partial existence and uniqueness results. Finally we also show
that the self-dynamics of a dislocation line at large scale is asymptotically
described by an anisotropic mean curvature motion.
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1. Introduction

1.1. What are dislocations?

The crystal defects called dislocations are lines whose typical length in metallic
alloys is of the order of 10−6m, with thickness of the order of 10−9m (see Figure
1 for an example of observations of dislocations by electron microscopy).

In the face centered cubic structure, dislocations move at low temperature
in well defined crystallographic planes (the slip planes), at velocities of the order
of 10 ms−1. We refer for instance to Hirth and Lothe [17] for a description at the
atomic level of these dislocations.

The concept of dislocations has been introduced and developed in the XXth
century, as the main microscopic explanation of the macroscopic plastic behavior of
metallic crystals (see for instance the physical monographs Nabarro [20], Hirth and
Lothe [17], or Lardner [19] for a mathematical presentation). Since the beginning
of the 90’s, the research field of dislocations has enjoyed a new boom based on
the increasing power of computers, allowing simulations with a large number of
dislocations (see for instance Kubin et al. [18]). This simultaneously motivated
new theoretical developments for the modelling of dislocations. Recently Rodney,



126 P. Cardaliaguet, F. Da Lio, N. Forcadel and R. Monneau

Figure 1. Dislocations in a Al-Mg alloy (from [23])

Le Bouar and Finel introduced in [21] a new model that we present and study
mathematically in this paper. We also refer the reader to [6] and the references
therein for a more detailed introduction to dislocations dynamics. This model has
also been numerically studied by Alvarez, Carlini, Monneau and Rouy in [3] and
[4]; see also Alvarez, Carlini, Hoch, Le Bouar and Monneau [2]

1.2. Mathematical modelling of dislocations dynamics

An idealization consists in assuming that the thickness of these lines is zero, and
in the case of a single line, in assuming that this line is contained and moves in
the x = (x1, x2) plane. The motion of the line Γt (where the subscript t denotes
the time) is simply given by the normal velocity c (see Figure 2).
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Figure 2. Schematic evolution of a dislocation line Γt by normal ve-
locity c between the times t and t + ∆t with unit normal nΓt .

The velocity c is proportional to the shear stress in the material. This stress
can be computed solving the equations of linearized elasticity where the shape of
the dislocation line appears as a source term. This gives a coupled system where
the dislocation line evolution is a function of the velocity c, and the velocity c is a
function of the dislocation line Γt itself. In the case of a single dislocation line it
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is possible to write the velocity c as a non-local quantity depending on the whole
shape of the dislocation line (see Alvarez et al. [6]):

c(x, t) = (c0 � ρ(·, t)) (x) + c1(x, t)

where ρ is the characteristic function of an open set Ωt ⊂ R
2 whose the boundary

is the dislocation line Γt = ∂Ωt:

ρ(x, t) = 1Ωt :=
{

1 if x ∈ Ωt

0 if x ∈ R
2\Ωt,

and c0(x) is a given kernel depending on the material. Here the convolution is only
done in space on R

2.
It can be easily checked (at least formally), that the evolution on the time

interval (0, T ) of the dislocation line Γt is described by the equation of dislocations
dynamics: {

∂ρ

∂t
= (c0 � ρ + c1) |Dρ| on R

2 × (0, T )

ρ(·, 0) = ρ0(·) := 1Ω0 on R
2

(1.1)

where Ω0 is an open set whose boundary Γ0 = ∂Ω0 is the position of the dislocation
line at initial time t = 0.

In what follows, we will study this equation in the framework of discontinuous
viscosity solutions (see Barles [7] for an introduction to this notion). To simplify
the presentation we will state results in dimension n = 2, assuming smooth (C∞)
regularity of the initial position Γ0 of the dislocation line, of the kernel c0, and of
the velocity c1. We also assume the following behavior of the kernel at infinity (for
some function g)

c0(x) =
1
|x|3 g

(
x

|x|

)
for |x| ≥ 1 (1.2)

which is a natural assumption for dislocations.
For considerably weakened assumptions and in any dimensions n, we refer

the reader to the original articles cited in the references.

1.3. Organization of the paper

Although equation (1.1) seems very simple, general results of existence and unique-
ness are unknown up to our knowledge. Technically, the main difficulty comes from
the fact that we have no sign conditions on the kernel c0, and then that there is
no inclusion principle for this evolution.

In this paper we present some partial results. In Section 2, we give a short time
existence (and uniqueness) result for a smooth initial dislocation loop. In Section
3, we give a long time existence (and uniqueness) result for a smooth initial curve
with non-negative velocity. Finally in Section 4, we consider the “monotone case”
where the kernel satisfies c0 ≥ 0. In this particular case, a Slepčev “level sets”
formulation of equation (1.1) is available. In this framework, we show that at large
scales, the dislocation dynamics is asymptotically described by an (anisotropic)
mean curvature motion related to the behavior of the kernel c0(x) as |x| → +∞.
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2. Short time existence results in the general case

We will make the following global assumptions on the smooth velocity c1(x, t) and
the smooth kernel c0(x, t) := c0(x), for i = 0, 1 and some constants M,L0, L1:⎧⎨⎩

i) |ci(y, t)| ≤M ∀(y, t) ∈ R
2 × [0,+∞)

ii) |ci(y2, t)− ci(y1, t)| ≤ L0|y2 − y1| ∀(y1, y2, t) ∈ R
2 × R

2 × [0,+∞)
iii) |Dci(y2, t)−Dci(y1, t)| ≤ L1|y2 − y1| ∀(y1, y2, t) ∈ R

2 × R
2 × [0,+∞).

(2.1)
To state our results, we first need to recall the notion of discontinuous vis-

cosity solution. We recall that for a function ρ locally bounded on R
2× [0, T ), the

function ρ∗ designates its upper-semicontinuous envelope (i.e., the smallest u.s.c.
function ≥ ρ), and the function ρ∗ its lower semi-continuous envelope.

Definition 2.1. i) We say that a function ρ ∈ C
(
[0, T );L1(R2)

)
∩L∞ (

R
2 × (0, T )

)
is a discontinuous viscosity subsolution (resp. supersolution) of (1.1), if

ρ∗(·, 0) ≤ (ρ0)∗ (resp. ρ∗(·, 0) ≥ (ρ0)∗)

and for every point (x, t) ∈ R
2× (0, T ) and every test function φ ∈ C1(R2× (0, T ))

satisfying

ρ∗ ≤ φ (resp. ρ∗ ≥ φ) in R
2 × (0, T ) and ρ∗(x, t) = φ(x, t),

we have with c = c0 � ρ+ c1:

∂φ

∂t
(x, t) ≤ c(x, t)|Dφ(x, t)|

(
resp.

∂φ

∂t
(x, t) ≤ c(x, t)|Dφ(x, t)|

)
.

ii) We say that ρ is a discontinuous viscosity solution of (1.1), if it is a discontinuous
viscosity subsolution and a discontinuous viscosity supersolution.

We are now able to state the first result

Theorem 2.2 (Short time existence and uniqueness, [5], [6]). Let us assume (1.2)–
(2.1), and that Ω0 is a smooth bounded open set in R

2. Then there exists a time
T ∗ > 0 and let us consider functions ρ ∈ C

(
[0, T ∗);L1(R2)

)
with 0 ≤ ρ ≤ 1,

solutions of equation (1.1) on the interval of time (0, T ∗) with initial data ρ(·, 0) =
1Ω0 . Then

i) (existence): There exists such a solution ρ.
ii) (uniqueness): The solution is unique, where the uniqueness has the following

meaning: if ρ1 and ρ2 are two such solutions, then (ρ1)∗ = (ρ2)∗, (ρ1)∗ =
(ρ2)∗ and for every t ∈ [0, T ∗), ρ1(·, t) = ρ2(·, t) a.e. on R

2.

Let us remark that on the time interval (0, T ∗) where the theorem is proved
to hold, the solution can be written ρ(·, t) = 1Ωt where Ωt is a Lipschitz open set.
Theorem 2.2 says nothing when Ωt ceases to be a Lipschitz open set. This is for
instance the case when the topology of Ωt changes.
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The proof of Theorem 2.2 is based on the application of a fixed point theorem
in the framework of viscosity solutions.

Up to our knowledge, existence and uniqueness for all times (excepted in the
case of non-negative velocities (see Theorem 3.1 below)) is still an open problem
in general.

3. Long time existence for non-negative velocities

In this section we make the following assumption

c1(y, t) ≥ ||c0||L1(R2) ∀(y, t) ∈ R
2 × [0,+∞). (3.1)

Because we are interested in solutions ρ satisfying 0 ≤ ρ ≤ 1, we see that condition
(3.1) implies that c = c0 � ρ + c1 ≥ 0.

Theorem 3.1. [existence and uniqueness for all time for non-negative velocity, [1]]
Let us assume (1.2)–(2.1)–(3.1), and that Ω0 is a smooth bounded open set in R

2.
Then there exists a unique function ρ∈C

(
[0,+∞);L1(R2)

)
with 0≤ρ≤1, solution

of equation (1.1) on the interval of time (0,+∞) with initial data ρ(·,0)=1Ω0 .

In [1], Alvarez et al. used a geometrical proof. A similar result was also proved
by Barles and Ley [8] using a level sets approach and arguments based on a nice
L1 estimate on the level sets of the solution. We also refer to Cardaliaguet, Marchi
[11] for a geometrical study of a similar problem on a bounded set in the plane
with Neumann boundary conditions. The proof of Theorem 3.1 in [1] uses strongly
the following monotonicity formula that we state in any dimension N :

Theorem 3.2 (Monotonicity formula, [1]). Let K be a compact subset of R
N , and

dK the distance to the set K. Then for any t2 > t1 > 0, we have

1
tN−1
2

HN−1 ({dK(x) = t2}) ≤
1

tN−1
1

HN−1 ({dK(x) = t1}) .

Here HN−1 stands for the (N − 1)-dimensional Hausdorff measure.

Main formal arguments in the proof of Theorem 3.1
Argument 1: interior ball condition: Let us call R(t) > 0 the radius of the largest
ball included in Ωt and tangent at any point of the boundary ∂Ωt. Then we can
easily check (at least formally) that this radius satisfies the following ODE:

Ṙ = c−R (n ·Dc) + R2
(
D2

ττc
)

where n is the outward unit normal to Ωt and τ is a tangent unit vector to Γt =
∂Ωt. Using the fact that c ≥ 0, we deduce that

R(t) ≥ C1e
−γt

for some constants C1, γ > 0.
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Argument 2: length of the dislocation: We denote by |Γt| the length of Γt. Then
using the fact that the curvature K of Γt satisfies K ≤ 1/R(t), we deduce

d

dt
|Γt| =

∫
Γt

cK ≤
∫

Γt

c

R(t)
≤ ||c||L

∞

R(t)
|Γt|

which gives an estimate |Γt| ≤ l(t) < +∞.
Argument 3: error estimate: based on the monotonicity formula Theorem 3.2, this
is possible to show that if ρi satisfy for i = 1, 2⎧⎨⎩

∂ρi

∂t
= ci |Dρi| on R

2 × (0, T )

ρi(·, 0) = 1Ω0 on R
2

(3.2)

then we have for any t small enough and some constant C2 > 0:

||ρ2(·, t)− ρ2(·, t)||L∞(R2) ≤ C2 l(t)||c2 − c1||L∞(R2×(0,T ))

(
eL0t − 1

L0

)
.

Combined with the fact that for dislocation dynamics ci = c0 � ρi + c1, we get

||ρ2(·, t)− ρ2(·, t)||L1(R2) ≤ α(t)||ρ2 − ρ1||L∞((0,T );L1(R2))

with α(t) = C2 l(t)||c0||L∞(R2)

(
eL0t−1

L0

)
. This shows in particular the uniqueness

of the solution for small time, which can also be used as a contraction argument
for a fixed point theorem.

4. Convergence to the mean curvature motion at large scale
for nonnegative kernels

In this section we assume that the kernel c0 satisfies the following condition

c0(−x) = c0(x) ≥ 0 ∀x ∈ R
2 (4.1)

and consider solutions ρ of (1.1) with c1 = − 1
2

∫
R2 c0. This particular choice of c1

insures the equilibrium of straight dislocations lines and is physically relevant for
the description at large scales of isolated dislocations lines without exterior stress.

In this section, we are interested in the dynamics of dislocations lines of large
diameter of the order of 1/ε and in the limit as ε→ 0. To this end, we define for
ε > 0 the rescaled characteristic function

ρε(x, t) = ρ

(
x

ε
,

t

ε2| ln ε|

)
which satisfies the following equation

∂ρε

∂t
=

(
cε
0 � ρ

ε − 1
2

∫
R2

cε
0

)
|Dρε| (4.2)

with the rescaled kernel
cε
0(x) =

1
ε3| ln ε| c0

(x
ε

)
.



Dislocation Dynamics: a Non-local Moving Boundary 131

From the fact that cε
0 ≥ 0, it can be seen (at least formally) that equation (4.2)

preserves the inclusion principle. In this section we do not study directly equa-
tion (4.2), but prefer to use the following Slepčev “level sets” formulation for a
continuous function uε:⎧⎨⎩

∂uε

∂t
=

((
cε
0 � 1{uε(·,t)>uε(x,t)}

)
(x)− 1

2

∫
R2

cε
0

)
|Duε| on R

2 × (0, T )

uε(·, 0) = u0 on R
2.

(4.3)
In this new formulation each level set {uε = λ} represents a dislocation line asso-
ciated to a function ρε

λ = 1{uε>λ} which satisfies (4.2) (at least formally).
In the limit ε → 0, this dynamics is well approximated by the following

anisotropic mean curvature motion (see for instance Crandall, Ishii, Lions [12] for
a definition of viscosity solutions of the second order equation (4.4)):⎧⎨⎩

∂u0

∂t
+ F (D2u0, Du0) = 0 on R

2 × (0, T )

u0(·, 0) = u0 on R
2

(4.4)

with

F (M,p) = −g
(
p⊥

|p|

)
trace

(
M ·

(
Id− p

|p| ⊗
p

|p|

))
where g is introduced in (1.2). In particular we see that equation (4.4) describes
the anisotropic mean curvature motion with velocity

g(τ) κ

where κ is the curvature of the level line of u0 and τ is a unit tangent vector to
the level line of u0.

Before to state our convergence result as ε → 0, we need to give the precise
definition of viscosity solutions we use for the non-local equation (4.3) which is
less standard. This definition has been introduced by Slepčev [22] (see also Da Lio,
Kim, Slepčev [13]).

Definition 4.1. (Viscosity sub/super/solution for the non-local eikonal equation)
A locally bounded upper semicontinuous (usc) function uε is a viscosity subsolution
of (4.3) if it satisfies:

(i) uε(x, t = 0) ≤ u0(x) in R
2,

(ii) for every (x0,t0)∈R
2×(0,∞) and for every test function Φ∈C∞(

R
2× [0,∞)

)
,

that is tangent from above to uε at (x0, t0), the following holds:

Φε
t (x0, t0) ≤

(
(cε

0 � 1{uε(·,t0)≥uε(x0,t0)})(x0)−
1
2

∫
R2

cε
0

)
|DΦε(x0, t0)|. (4.5)

A locally bounded lower semicontinuous (lsc) function uε is a viscosity supersolu-
tion of (4.3) if it satisfies:

(i) uε(x, t = 0) ≥ u0(x) in R
2,
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(ii) for every (x0,t0)∈R
2×(0,∞) and for every test function Φ∈C∞(

R
2× [0,∞)

)
,

that is tangent from below to uε at (x0, t0), the following holds:

Φε
t (x0, t0) ≥

(
(cε

0 � 1{uε(·,t0)>uε(x0,t0)})(x0)−
1
2

∫
R2

cε
0

)
|DΦε(x0, t0)|. (4.6)

A locally bounded continuous function uε is a viscosity solution of (4.3) if, and
only if, it is a sub- and a supersolution of (4.3).

Then the main result of this section is

Theorem 4.2. [Convergence of dislocations dynamics to mean curvature motion,
[14]] There exists a constant C0 > 0 only depending on ||c0||L∞(R2). Given ε ∈
(0, 1) and a bounded and globally Lipschitz continuous function u0, there exists a
unique viscosity solution uε ∈ L∞

loc

(
R

2 × [0,+∞)
)

of problem (4.3). The function
uε satisfies

||Duε||L∞(R2×[0,+∞)) ≤ ||Du0||L∞(R2)

and for every ε ∈ (0, 1/2):

|uε(x, t + s)− uε(x, s)| ≤ C0||Du0||L∞(R2)

√
t, ∀(x, s, t) ∈ R

2 × [0,+∞)× [0, 1)

Moreover, the solution uε converges locally uniformly in compact sets of R
2 ×

[0,+∞) to the unique solution u0 of (4.4) with the same initial condition u0.

Remark 4.3. In a future work, we will apply this result to propose a numerical
scheme for anisotropic mean curvature motion or crystalline motion.

While the proof of this convergent result is quite simple in the case where
the gradient of the limit function u0 is non-zero, the case where the gradient of u0

vanishes is quite delicate and requires more attention.

We will now present a further property of the limit mean curvature motion.
To this end, we need the following:

Definition 4.4. Let g ∈ C∞(R2\ {0}) satisfying

g(λp) =
g(p)
|λ|3 , ∀λ ∈ R\{0}, ∀p ∈ R

2.

We then associate to g a temperate distribution Lg defined by

〈Lg, ϕ〉 =
∫

R2
dx

g
(

x
|x|

)
|x|3

(
ϕ(x) − ϕ(0)− x ·Dϕ(0)1B1(0)(x)

)
for ϕ ∈ S(R2), where S(R2) is the Schwarz space of test functions on R

2, and
B1(0) denotes the unit ball centered in zero.

We define the Fourier transform

ϕ̂(ξ) =
∫

R2
dx ϕ(x)e−iξ·x.
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Then we have

Theorem 4.5. [Variational origin of the anisotropic mean curvature motion, [14]]

Let g ∈ C∞(R2\ {0}) satisfying g(λp) =
g(p)
|λ|3 , ∀λ ∈ R\{0}, ∀p ∈ R

2. Let

G := − 1
2π

L̂g (4.7)

where L̂g is the Fourier transform of Lg. Then G(λp) = |λ|G(p), ∀λ ∈ R\ {0},
∀p ∈ R

2, and

g

(
p⊥

|p|

)
p⊥

|p| ⊗
p⊥

|p| = D2G

(
p

|p|

)
. (4.8)

In particular, we see that G is convex if and only if g ≥ 0. Moreover (4.8)
means that in (4.4), we have

−F (D2u0, Du0) = div
(
∇G

(
Du0

|Du0|

))
|Du0|,

i.e., this anisotropic mean curvature motion derives from a convex energy∫
G

(
Du0)

)
.

Remark 4.6. Physically the quantity L̂g is naturally given, and then the function
g can be computed using (4.7)–(4.8) where we can check if g is non-negative or
not.
In the simplest case of applications for dislocation dynamics, the crystal is de-
scribed by isotropic elasticity. When the Burgers vector is along the x1 direction,
we have

G(p) =
p2
2 + 1

1−ν p2
1

|p| with ν ∈ (−1,
1
2
)

where ν is the Poisson ratio of the material, and

g(θ) =
(2γ − 1)(θ1)2 + (2 − γ)(θ2)2

|θ|5 ≥ 0 with γ =
1

1− ν
∈ (

1
2
, 2).

Our result is very natural for dislocation dynamics. Indeed, in many refer-
ences in physics, the authors describe dislocations dynamics by line tension terms
deriving from an energy associated to the dislocation line. See for instance Brown
[10], Barnet, Gavazza [9] for physical references and Garroni, Müller [16] for a
variational approach. We also refer to Forcadel [15] for the study of dislocation
dynamics with a mean curvature term. As far as we know, Theorem 3.2, completed
by Theorem 4.2, is the first rigorous proof for the convergence of dislocations dy-
namics to mean curvature motion.
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Bermudean Approximation of the Free
Boundary Associated with an American Option

E. Chevalier

Abstract. American options valuation leads to solve an optimal stopping
problem or a variational inequality. These two approaches involve the knowl-
edge of a free boundary, boundary of the so-called exercise region. As we are
not able to get a closed formula for the American option value function, we
will approximate the free boundary by this of a Bermudean option. Indeed
a Bermudean option value function is the solution of an optimal stopping
problem which can be viewed as a free boundary problem. Thanks to a maxi-
mum principle, we evaluate the difference between Bermudean and American
boundaries.

Mathematics Subject Classification (2000). Primary 91B24; Secondary 60G40.

Keywords. Free boundary, optimal stopping, variational inequality.

1. American options

An American option is a financial product which gives to its owner the right to
earn a specific amount of money at any time he wishes between the initial date
0 and the maturity T . This amount of money, so-called the option pay-off, is
very often based on the values of one or several underlying assets. The two main
problems of the American option theory are to give a price to this product and
to determine the optimal strategy for the owner: the optimal time to exercise his
right is assumed to be the time for which his gain is greater as possible.

The first step to solve these two linked problems is to make assumptions on
the market. We will assume that the market is composed by d risky assets and
denote by Si

t their respective value at time t. We assume that (St)0≤t≤T is solution
of the following stochastic differential equation:

dSt = diag (St)((r1l − δ)dt + σdWt) (1.1)

where 1l = (1)1≤i≤d ∈ R
d, r > 0 is the interest rate of the market, δ ∈ [0,+∞)d is

such that δi is the dividend rate of the asset i, σ ∈ R
d × R

d is called the market



138 E. Chevalier

volatility, and (Wt)0≤t≤T is a standard Brownian motion on R
d. Moreover, we

assume that σ satisfies the following hypothesis which insures the non-degeneracy
for the infinitesimal generator of the diffusion S:

H1 : ∃M > m > 0, ∀x ∈ R
d, m‖x‖2 ≤ x∗σσ∗x ≤M‖x‖2.

We denote by F the filtration associated to W , and for x ∈ [0,+∞)d, (Sx
t )0≤t≤T

is the solution of the stochastic differential equation (1.1) such that Sx
0 = x.

Our goal here is to study a specific class of options, called basket options.
These options offer a pay-off which is the positive part of the difference between a
positive constant (the strike price) and a linear combination of several assets. We
define the pay-off function f such that:

∀x ∈ [0,+∞)d, f(x) = (K − 〈α, x〉)+ ,

where K > 0 is the strike price, α ∈ R
d, and 〈., .〉 is the usual scalary product

on R
d.
In this setting, the option theory (see [2] and [11]) asserts that at time t ∈

[0, T ], the price of the American option associated with the pay-off f is P (T−t, St)
where:

P (t, x) = sup
τ∈T0,t

E[e−rτf(Sx
τ )], ∀x ∈ [0,+∞)d,

where T0,t is the set of F-stopping times with values in [0, t].
At this point two approaches enable us to get information on the value func-

tion P . First the optimal stopping theory (see [9]) asserts that the supremum is
attained and more precisely, we have:

P (t, x) = E

[
e−rτ∗

f(Sx
τ∗)

]
,

where τ∗ = inf {t ≥ 0 : P (T − t, Sx
t ) = f(Sx

t )} ∧ T.
A second point of view gives a variational characterisation for P . We know (see
[3] and [10]) that P is the solution of the following variational inequality{

(MP − rP ) ≤ 0, f ≤ P, (MP − rP ) (P − f) = 0 a.s.

P (0, x) = f(x) on R
+,

where we set:

Mh(t, x) = −∂h
∂t

+
1
2

d∑
i,j=1

(σσ∗)i,jxixj
∂2h

∂xixj
+

d∑
i=1

(r − δi)xi
∂h

∂xi
.

A specific region of (0,+∞)×[0,+∞)d appears in these two approaches, it is called
the exercise region:

E =
{
(t, x) ∈ (0, T ]× [0,+∞)d : P (T − t, x) = f(x)

}
.

In fact if we know this region we would be able on one hand to compute τ∗,
on the other hand to compute P as a solution of a partial differential equation.
From a financial point of view, this region is very interesting because it determines
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the optimal strategy the option owner has to follow. Our goal here is to give an
estimation of this region and more specifically of its temporal sections:

∀t ∈ (0, T ], Et = {x ∈ [0,+∞)d : P (t, x) = f(x)}.
Indeed, we are not able to get a closed formula for the price of an American
option and to determine its exercise region so a lot of numerical methods have
been developed to compute American options prices. The first idea is to solve the
variational inequality satisfied by the value function thanks to a finite differences
method. However, for problems with high dimension this approach become very
difficult to implement. In this case, we solve the optimal stopping problem with
Monte-Carlo methods (see [5], [13], and [1]). For that, we consider a Bermudean
option, this is an American one which can be exercised only at a finite number
of dates. From a financial point of view, it gives less rights to its owner than
an American option, then its price is lower than the price of the corresponding
American option. However, if the number of exercise opportunities goes to infinity,
it is well known that the Bermudean option price tends to the American ! one.

Some estimations of the convergence rate have been found (see [1]). Since, the
Bermudean option value function is the solution of an optimal stopping problem
which can be seen as a free boundary problem, our goal is the evaluation of the
convergence rate of the Bermudean free boundary to the American one when the
number of exercise opportunities goes to infinity.

2. American and Bermudean exercise regions

Let n ∈ N
∗. We define the Bermudean option value function for an option offering

n exercise opportunities. For k ∈ {0, . . . , n} and x ∈ [0,+∞)d, we set

Pn(kh, x) = sup
τ∈T n

0,kh

E[e−rτf(Sx
τ )],

where h = T/n and T n
0,kh is the set of F-stopping times with values in {ph : p ∈

N et 0 ≤ p ≤ k}.
This function Pn is easy to compute thanks to Monte-Carlo methods because

it satisfies the so-called dynamic programming principle:⎧⎨⎩ Pn(0, x) = f(x)

Pn((k + 1)h, x) = max
(
f(x); e−rh

E[Pn(kh, Sx
h)]

)
,

for all k ∈ {0, . . . , n−1}. Hence it just remains to evaluate the expectancies thanks
to Monte-Carlo method.

Now we have to control the error made by approximating the American
option by the Bermudean one. It has already been proved that the error on value
functions is lower than a constant multiplied by h (see [6], [12], and [1]).

In this paper, we deduce from this error estimate on the value functions an
approximation of the American exercise region by the Bermudean one. Indeed,
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we can define an exercise region for the Bermudean option in the same way than
before. Especially, we will be interested in its temporal sections:

∀1 ≤ k ≤ n, En
kh = {x ∈ [0,+∞)d : Pn(kh, x) = f(x)}.

Now we have to give a sense to the convergence of a region to another. For that we
notice that the temporal sections of the American and Bermudean exercise regions
satisfy some useful properties:

∀t ∈ (0, T ], Et and En
t contain 0 and are convex and closed subsets in [0,+∞)d.

Hence, for ε ∈ [0,+∞)d such that ‖ε‖ = 1, we can define:

s(t, ε) = inf{λ ∈ R
+ : P (t, λε) > f(λε)}

sn(t, ε) = inf{λ ∈ R
+ : Pn(t, λε) > f(λε)},

and with these notations, we get

Et = {x ∈ [0,+∞)d : ‖x‖ ≤ s(t,
x

‖x‖ )}

En
kh = {x ∈ [0,+∞)d : ‖x‖ ≤ sn(kh,

x

‖x‖ )}.

Finally, our convergence rate in a direction ε ∈ [0,+∞)d such that ‖ε‖ = 1,
will be the positive quantity sn − s. Our method consists in applying a parabolic
maximum principle to deduce from the error estimate on the value functions that
the difference between sn and s is lower than a constant multiplied by

√
h.

We conclude this paper by studying the particular case of a put option on
a single asset. We prove that the error P − Pn admits a lower bound: a constant
multiplied by h for h small enough. We will see that this estimation lies on the
previous result: the upper bound for the error on the free boundaries.

3. Upper bound for the error on the free boundaries

In this section we establish our main result: the following Theorem.

Theorem 3.1. Let ε ∈ [0,+∞)d such that ‖ε‖ = 1. There exists a constant CT,ε > 0
such that

0 ≤ sn(T, ε)− s(T, ε) ≤ CT,ε

√
h,

when h = T/n is small enough.

This result is quite easy to prove in the case d = 1 because we are able to
control ∂2P

∂x2 thanks to the variational inequality satisfied by P . However, for d > 1,
we can not get this control. To prove the result for ε ∈ (0,+∞)d such that ‖ε‖ = 1,
we will use a maximum principle. If there exists i ∈ {1, . . . , d} such that εi = 0,
then we come back to the case with d− 1 assets.
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3.1. The case d = 1
Throughout this section, we assume that d = 1 and that α = 1. We will establish
Theorem 3.1 in this particular case.

We recall the definition of the critical price for an American option with
pay-off f . For t ∈ (0, T ], we set

s(t) = inf{x ∈ R
+ : P (t, x) > f(x)}.

As the value function of the corresponding Bermudean option, Pn, is convex, it
is possible to define a critical price for the Bermudean option. For k ∈ {1, . . . , n},
we set

sn(kh) = inf{x ∈ R
+ : Pn(kh, x) > f(x)}.

As Pn ≤ P for all n ∈ N
∗ and limn→+∞ Pn(T, ·) = P (T, ·), it is easy to see that

sn ≥ s for all n ∈ N
∗ and limn→+∞ sn(T ) = s(T ). We recall that we know that

there exists a constant C1 > 0 such that

sup
x∈[0,+∞)

[P − Pn](T, x) ≤ C1h.

We deduce from this an upper bound for the difference between s and sn.
On the open set (s(T ), sn(T )), we have:

σ2ξ2

2
∂2P

∂x2
(T, ξ) = rP (T, ξ)− (r − δ)ξ

∂P

∂x
(T, ξ) +

∂P

∂t
(T, ξ)

≥ rP (T, ξ)− (r − δ)ξ
∂P

∂x
(T, ξ)

≥ r(K − ξ)− (δ − r)+ξ
≥ rK −min{δ, r}sn(T ),

then there exists C1 > 0 such that ∂2P
∂x2 (T, ξ) ≥ C1.

As we know that s(T ) < K, we assume that n is great enough to have
sn(T ) < K and we integrate this inequality between s(T ) and x ∈ (s(T ), sn(T )).
We get:

σ2sn(T )2

2

(
∂P

∂x
(T, x) + 1

)
≥ (rK − δsn(T )) (x− s(T ))

−(r − δ)+sn(T ) (P (T, x)− f(x))
≥ (rK − δsn(T )) (x− s(T ))
−(r − δ)+sn(T ) (P (T, sn(T ))− f(sn(T ))) ,

because the function x→ P (T, x)− f(x) is nondecreasing on [0,K]. Integrating a
second time between s(T ) and sn(T ), we obtain:

σ2sn(T )2

2
(P (T, sn(T ))− f(sn(T ))) ≥ 1

2
(rK − δsn(T )) (sn(T )− s(T ))2

−(r − δ)+sn(T ) (P (T, sn(T ))− f(sn(T ))) (sn(T )− s(T )) .
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As limn→+∞ sn(T ) = s(T ), for η > 0 and n great enough, we have

(1 + η)σ2sn(T )2 (P (T, sn(T ))− f(sn(T ))) ≥ (rK − δsn(T )) (sn(T )− s(T ))2 .

It follows that

(sn(T )− s(T ))2 ≤ (1 + η)
σ2sn(T )2

(rK − δsn(T ))
(P (T, sn(T ))− f(sn(T )))

≤ (1 + η)
σ2s(T )2

(rK − δs(T ))
C1h + o(h).

To conclude, we have:

lim sup
n→+∞

sn(T )− s(T )
s(T )
√
h

≤ σ

√
C1(1 + η)
rK − δs(T )

,

and if we let η going to 0, we get the result. ♦

3.2. The case d > 1
To prove Theorem 3.1, we need much information on the regularity of the function
x→ sn(T, x). The following lemma will provide us with this regularity result.

Lemma 3.2. Let ε ∈ (0,+∞)d such that ‖ε‖ = 1. For η > 0, we set

V ε
η =

{
x ∈]0,+∞[d: ‖x− s(T, ε)ε‖ < η

}
.

Let η > 0 such that the set V ε
η is included in a compact subset of ]0,+∞)d. There

exists a constant sε
η > 0 such that, for n ∈ N great enough, we have

sup
x∈V ε

η

| sn
(
T, x

‖x‖

)
− sn (T, ε) |

‖x− s(T, ε)ε‖ ≤ sε
η.

Proof of Lemma 3.2. Let n ∈ N
∗. As 0 belongs to ET ∩ En

T and as these two
sets are convex subsets of R

d, we can define the functions g and gn such that
∀x ∈ (0,+∞)d,

g(x) = inf{µ > 0, x/µ ∈ ET } and gn(x) = inf{µ > 0, x/µ ∈ En
T }.

They are convex and homogeneous functions (see [4], Lemma I.2, p. 5). On the
other hand, for x ∈ (0,+∞)d, it is easy to see that

g(x) =
‖x‖

s
(
T, x

‖x‖

) and gn(x) =
‖x‖

sn
(
T, x

‖x‖

) .
For x ∈ V ε

η , we have

| sn
(
T, x

‖x‖

)
− sn (T, ε) |

‖x− s(T, ε)ε‖ =
1

‖x‖gn(x)gn(ε)
| gn(‖x‖ε)− gn (x) |
‖x− s(T, ε)ε‖ .



Bermudean Approximation of American Free Boundary 143

It follows from the definition of sn that s1 ≥ sn ≥ s so g1 ≤ gn ≤ g. Since g1 and
g are continuous with positive values on (0,+∞)d, there exists two constants C1,
C2 > 0 such that C1 < gn < C2. Hence, there exists a constant C > 0 such that

sup
x∈V ε

η

| sn
(
T, x

‖x‖

)
− sn (T, ε) |

‖x− s(T, ε)ε‖ ≤ C sup
x∈V ε

η

| gn(‖x‖ε)− gn (x) |
‖x− s(T, ε)ε‖ .

Writing gn(x) = gn (s(T, ε)ε) + (gn(x)− gn (s(T, ε)ε)) and using the homogeneity
of g and gn, we have

sup
x∈V ε

η

| sn
(
T, x

‖x‖

)
− sn (T, ε) |

‖x− s(T, ε)ε‖ ≤ Cgn(ε) sup
x∈V ε

η

| ‖x‖ − s(T, ε) |
‖x− s(T, ε)ε‖

+C sup
x∈V ε

η

| gn (s(T, ε)ε)− gn (x) |
‖x− s(T, ε)ε‖ .

As (gn(ε))n∈N∗ is bounded, there exists C̃ > 0 such that

Cgn(ε) sup
x∈V ε

η

| ‖x‖ − s(T, ε) |
‖x− s(T, ε)ε‖ ≤ C̃.

Moreover, gn is convex, denoting by δV ε
η the boundary of V ε

η , then we obtain

sup
x∈V ε

η

| gn (s(T, ε)ε)− gn (x) |
‖x− s(T, ε)ε‖ ≤ sup

x∈δV ε
η

| gn (s(T, ε)ε)− gn (x) |
‖x− s(T, ε)ε‖

≤ 2
η

sup
x∈δV ε

η

| gn (x) |

≤ 2C2

η
. ♦

Moreover, we recall a parabolic maximum principle on which lies the proof of
Theorem 3.1. It appears in Friedman A. (1975).

Let D a bounded domain of (0, T )×R
d. We define the parabolic boundary of D by

δpD = δD − {(t, x) ∈ δD : t = T } where δD is the boundary of D and introduce
the operator M̃ such that M̃h =Mh− rh.
Let u a function defined on [0, T ]× R

d, continuous on D̄, and such that

u ∈ C1,2(D), M̃u ≥ 0 on D and u ≤ 0 on δpD.

Then we have u ≤ 0 on D.
Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that there exists a constant b > 0 such that s(T, ε) <
sn(T, ε) − b

√
h. We will prove that it leads to a contradiction by proving that it

implies that there exists λ ∈ [s(T, ε), sn(T, ε)− b
√
h] such that

0 ≥ [P − f ] (T, λε) .
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For that we will apply the maximum principle on the following domain:

D =
{

(t, x) ∈ (0, T )×(0,+∞)d : ‖x− s(T, ε)ε‖ < η
√
h

and s

(
t,

x

‖x‖

)
< ‖x‖ < sn

(
T,

x

‖x‖

)}
,

where η > 0 is a constant which will be determined later.
Since for all x ∈ (0,+∞)d, the function t→ s

(
t, x

‖x‖

)
is non-increasing and

since s
(
T, x

‖x‖

)
< sn

(
T, x

‖x‖

)
, we can assert that D is a bounded domain in

(0, T )× (0,+∞)d.
For t ∈ (0, T ), we set t̄ = hmin{k ∈ {0, . . . , n} : t ≤ kh}. First we notice that
Pn = f on D̄ because for all t ∈ (0, T ), we have sn

(
T, x

‖x‖

)
≤ sn

(
t̄, x

‖x‖

)
.

Hence, it follows from the estimation of the value functions error and the fact
that P is non-increasing with respect to time that we have:

[P − f ] (t, x) ≤ P (t̄, x)− Pn(t̄, x) ≤ Cdh on D.

Notice that on δpD, we have

[P − f ](t, x) ≤

⎧⎨⎩ 0 if ‖x‖ = s
(
t, x

‖x‖

)
or t = 0

Ch if ‖x‖ = sn
(
T, x

‖x‖

)
or ‖x− s(T, ε)ε‖ = η

√
h.

Hence we will introduce a function which will kill the positive part of P − f on
δpD. On (0, T )× (0,+∞)d, we define the function β(t, x) = β1(x) + β2(x), with

β1(x) =
a√
h

((
‖x‖ − sn(T, ε) + b

√
h
)+

)3

β2(x) =
c√
h

((
‖x− s(T, ε)ε‖ − η

2

√
h
)+

)3

,

where a, b, and c are positive constants which will be determined later.
Now we want to prove that P − f − β ≤ 0 on D, so we just have to prove

that the function P − f − β satisfies the assumptions of the maximum principle.
Indeed β is a C1,2 function on D and D is included in a compact subset of

(0, T ) × (0,+∞)d so we can apply the maximum principle on D to the function
P − f − β.
First step: We prove that P − f − β ≤ 0 on δpD.

Let (t, x) ∈ δpD. We have four cases to study, corresponding to four part of δpD.

• First case: Assume that ‖x‖ = s
(
t, x

‖x‖

)
.

In this case, we have

[P − f − β] (t, x) = −β(t, x) ≤ 0.

• Second case: Assume that ‖x− s(T, ε)ε‖ = η
√
h.
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From the estimation of the error on value functions (see [1]), we have

[P − f − β] (t, x) ≤ Cdh− β2(x)

≤
(
Cd − c

η3

8

)
h.

Hence, [P − f − β] (t, x) ≤ 0 if we choose c and η such that Cd − cη3

8 < 0.

• Third case: Assume that ‖x‖ = sn
(
T, x

‖x‖

)
.

In this case, we have

[P − f − β] (t, x) ≤ Cdh− β1(t, x)

≤ Cdh−
a√
h

((
sn

(
T,

x

‖x‖

)
− sn(T, ε) + b

√
h

)+
)3

.

Since there exists R > 0 such that D ⊂ V ε
R and V ε

R is included in a compact subset
of (0,+∞)d, we can apply Lemma 3.2, to prove that there exists sL > 0 such that

[P − f − β] (t, x) ≤
(
Cd − a(b− sLη)3

)
h.

We conclude by asserting that [P − f − β] (t, x) ≤ 0 as soon as we choose a, b, and
η such that Cd − a(b− sLη)3 < 0.
• Fourth case: We assume that t = 0. We have

[P − f − β] (0, x) = −β(t, x) ≤ 0.
In conclusion, P − f − β ≤ 0 on δpD if the two following conditions are satisfied:

Cd < c
η3

8
and Cd < a(b − sLη)3.

Second step: We prove that M̃[P − f − β] ≥ 0 on D.
We begin with evaluating M̃β(t, x) when h goes to 0. Computing the deriva-

tives of β on D and using Lemma 3.2, we get the following upper bound for h
going to 0.

M̃β(t, x) ≤ 3aMs(T, ε)2(b + sLη) + 3cηMs (T, ε)2 + o(1),

where the o(1) does not depend on x. As D is included in the continuation region
of the American option, we have

M̃P (t, x) = 0 and M̃f(t, x) = −rK + 〈αδ, x〉 on D.

We obtain:

M̃ [P − f − β] (t, x) = rK − 〈αδ, x〉 − M̃β(t, x)
≤ rK − 〈αδ, x〉
−3aMs(T, ε)2(b + sLη − 3cηMs (T, ε)2 + o(1)

≤ rK − s(T, ε)〈αδ, ε〉
−3aMs(T, ε)2(b + sLη − 3cηMs (T, ε)2 + o(1).
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We have given some conditions on the constants a, b, c, and η such that if there
are satisfied, the assumptions of the maximum principle are too. Indeed, we have
showed that for h small enough, P−f−β ≤ 0 on δpD and M̃ [P − f − β] (t, x) ≥ 0
on D if the constants a, b, c, and η satisfy Cd < cη3

8 , Cd < a(b − sLη)3 and
3aMs(T, ε)2(b + sLη) + 3cηMs (T, ε)2 < rK − s(T, ε)〈αδ, ε〉. It is quite easy to
find some constants a, b, c, and η satisfying these conditions, then with these
constants, we can apply the maximum principle on D and prove that P−f−β ≤ 0
on D. However, if we assume that s(T, ε) < sn(T, ε)− b

√
h, then there exists λ ∈

(s(T, ε), sn(T, ε)−b
√
h) such that (T, λε) owns to D̄. That leads to a contradiction

because the continuity of the function P − f − β should imply that

0 ≥ [P − f − β] (T, λε) = [P − f ] (T, λε) > 0.

In conclusion, we have proved that s(T, ε) ≥ sn(T, ε)− b
√
h. �

4. Conclusion

A first consequence of Theorem 3.1 is the following result:

Proposition 4.1. Let η ∈ (0, T ). If d = 1 and α = 1, there exists 0 < a ≤ 1 such
that for x ∈ (s(T ),+∞), we have

P (T, x)− Pn(T, x) ≥ ahE

[
e−rτ∗

(rK − δs(τ∗)) 1l{τ∗<T−η}

]
,

with τ∗ = inf {u ≥ 0 : Sx
u ≤ s (u)} ∧ T.

The complete the proof of Proposition 4.1 is in [7]. The main idea for the
proof is to construct a new boundary, greater than the Bermudean one but close
enough to the American boundary. For that, we deduce from Theorem 3.1 that
there exists a constant Cη > 0 such that s̃n(t) = s(t)(1+Cη

√
h) ≥ sn(t). Then we

define

τ̃h = inf {u ≥ 0 : Sx
u ≤ s̃n (u)} ∧ (T − η) and τ̄h = h inf{k ∈ N : kh ≥ τ̃h},

and notice that τ̄h is lower than the optimal stopping time for the Bermudean
option: τh = h inf{k ∈ N : Sx

kh ≤ sn(kh)}. Now we use the fact that P − f ≥ 0
and then apply Itô’s formula in the second inequality to get:

P (T, x)− Pn(T, x) ≥ E

[
P (T, x)− e−rτh

P (T − τh, Sx
τh)

]
≥ E

[∫ τh

0

e−ru (rK − δSx
u) 1l{Sx

u≤s(u)} du

]

≥ E

[∫ τ̄h

τ̃h

e−ru (rK − δSx
u) 1l{Sx

u≤s(u)} du1l{τ̃h<T−η}

]
.

The result follows from the fact that

P

(
τ̄h − τ̃h ≥ h

2

)
≥ 1

4
.
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Proposition 4.1 shows that the convergence rate of Pn to P is proportional to 1/n,
but we do not get an equivalent for n (Pn − P ). Considering a call option with
infinite maturity, Dupuis and Wang achieved to give a first-order expansion of the
error (see [8]). However, when maturity is finite, the value functions and the free
boundaries are time-dependent and finding a first-order expansion of the errors is
still an open problem.
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Steady-state Bingham Flow with Temperature
Dependent Nonlocal Parameters and Friction

L. Consiglieri and J.F. Rodrigues

Abstract. We consider Bingham incompressible flows with temperature de-
pendent viscosity and plasticity threshold and with mixed boundary condi-
tions, including a friction type boundary condition. The coupled system of
motion and energy steady-state equations may be formulated through a vari-
ational inequality for the velocity and variational methods provide a weak
solution to the model. In the asymptotic limit case of a high thermal conduc-
tivity, the temperature becomes a constant solving an implicit total energy
equation involving the viscosity function, the plasticity threshold and the fric-
tion yield coefficient. The limit model corresponds to a steady-state Bingham
flow with nonlocal parameters, which has therefore at least one solution.

Mathematics Subject Classification (2000). Primary 35J85; Secondary 76D03,
80A20.

Keywords. Bingham fluid, friction law, thermal conductivity, variational meth-
ods.

1. Introduction

In the sixties, Ladyzhenskaya [8] proposed a modified Navier-Stokes system with
nonlocal viscosity. In [5], the authors proved that the nonlocal model, as well as
other nonlocal non-Newtonian models, can be obtained as an asymptotic limit case
of a very large thermal conductivity when the viscosities depend on temperature.
In the present work, we extend some of those models for the nonlocal Bingham flow
when the friction behavior on a part of the boundary is also taken into account.
The principal difficulty is that the quadratic term due to the energy dissipation
arising in the right-hand side of the heat equation leads to the L1-analysis of the
partial differential equation. The new feature in the limit model is due to a Fourier
type boundary condition, and consists in the appearance of a nonlocal energy term
on the boundary part where friction is taken into account.
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The Bingham viscoplastic fluid does not flow as a fluid unless the stress tensor
achieves at least some critical shear stress η (the plasticity threshold):

D(u) = 0 if |τ | ≤ η (1.1)

D(u) =
|τ | − η

µ|τ | τ if |τ | > η (1.2)

where u is the velocity vector, D(u) = (∇u+(∇u)T )/2 the symmetric part of the
gradient of the velocity vector, µ the viscosity and τ the deviator tensor of the
Cauchy stress tensor σ, that is, σ = −pI + τ where p denotes the pressure and I
is the identity matrix. The law (1.1)–(1.2) is an inverse form of the constitutive
law [6]

τ = µ(θ)D(u) + η(θ)
D(u)
|D(u)| if |D(u)| �= 0

|τ | ≤ η(θ) if and only if |D(u)| = 0

considering the viscosity and the plasticity threshold dependent on the tempera-
ture θ, and |D(u)| = (Dij(u)Dij(u))1/2, with the convention on implicit summa-
tion over repeated indices.

Here, let Ω be a bounded open subset of R
n(n = 2, 3) with Lipschitz continu-

ous boundary ∂Ω, which is assumed to consist of two disjoint parts Γ0 and Γ such
that ∂Ω = Γ̄0 ∪ Γ̄ and meas(Γ0) > 0. The governing equations to the Bingham
incompressible thermal flow at steady-state are given by

(u · ∇)u−∇ · τ = −∇p + f in Ω; (1.3)

∇ · u =
n∑

i=1

∂ui

∂xi
= 0 in Ω; (1.4)

u · ∇θ − κ∆θ = τ : D(u) − αθ in Ω, (α ≥ 0), (1.5)

where the density and the specific heat are assumed equal to one, f denotes the
external forces, and κ is the thermal conductivity. Note that we admit a possible
external heat source proportional to the temperature if α > 0, in addition to the
dissipation energy factor τ : D(u).

We introduce a thermal friction law on the part Γ of the boundary, keeping
the no-slip condition on the other part Γ0:

on Γ0 : u = 0 (1.6)
on Γ : uN = 0 and (1.7)

|σT | < ν(θ)⇒ uT = 0 (1.8)
|σT | = ν(θ)⇒ ∃λ ≥ 0, uT = −λσT . (1.9)

Here the tangential and normal velocities and the components of the tangential
stress tensor are given, respectively, by

uT = u− uNn, uN = uini, σTi = σijnj − σNni
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where n = (ni) denotes the unit outward normal to ∂Ω. In (1.8)–(1.9), we assume a
temperature dependent function ν, ν ≥ 0, to represent the friction yield coefficient
(see, for instance, [6] for solid-solid interface or [2, 3, 4] for liquid-solid interface).

Finally we consider a homogeneous Neumann boundary condition

∂θ

∂n
= 0 on Γ0, (1.10)

and the Fourier boundary condition

κ
∂θ

∂n
+ βθ = ν(θ)|uT | on Γ, (β ≥ 0). (1.11)

In the framework of Lebesgue and Sobolev spaces with W 1,2(Ω) = H1(Ω),
we introduce

V = {v ∈ (C∞(Ω))n : ∇ · v = 0 in Ω};
Hs = {v ∈ (Ls(Ω))n : ∇ · v = 0 in Ω, vN = 0 on ∂Ω}, (s > 1);
V = {v ∈ (H1(Ω))n : ∇ · v = 0 in Ω, v = 0 on Γ0, vN = 0 on Γ},

endowed with the standard norm

‖v‖V = ‖D(v)‖2,Ω = ‖D(v)‖L2(Ω).

For fixed κ > 0, we formulate the problem (1.1)–(1.11) in variational form
[6]: find a weak solution (u, θ) ∈ V ×W 1,q(Ω), for 1 < q < n/(n− 1), such that,∫

Ω

{µ(θ)D(u) − u⊗ u} : D(v − u)dx + J(θ,v) − J(θ,u) (1.12)

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V ;

κ

∫
Ω

∇θ · ∇φdx−
∫

Ω

θu · ∇φdx + α

∫
Ω

θφdx + β

∫
Γ

θφds (1.13)

=
∫

Ω

{µ(θ)|D(u)|2 + η(θ)|D(u)|}φdx +
∫

Γ

ν(θ)|uT |φds, ∀φ ∈W 1,q′
(Ω);

where J : W 1,1(Ω)× V → R
+
0 is defined by

J(θ,v) =
∫

Ω

η(θ)|D(v)|dx +
∫

Γ

ν(θ)|vT |ds.

The main idea is to pass to the limit on κ (κ→ +∞) in order to reformulate
the local system (1.12)–(1.13) into a nonlocal problem with constant parameters for
the viscosity, the plasticity threshold and the friction yield coefficient calculated
at the constant homogenized temperature, which is implicitly given through a
scalar equation. We notice that the argument used in this work is applicable to
the Newtonian as well as non-Newtonian fluids, as shown in [5].
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2. The main result

Let us state the weak nonlocal formulation to the problem (1.1)–(1.4) and (1.6)–
(1.9) corresponding formally to the limit model κ =∞.
Problem. Find (u,Θ) ∈ V × R satisfying

µ(Θ)
∫

Ω

D(u) : D(v − u)dx−
∫

Ω

u⊗ u : D(v − u)dx (2.1)

+η(Θ)
∫

Ω

{|D(v)| − |D(u)|}dx + ν(Θ)
∫

Γ

{|vT | − |uT |}ds

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V,

where Θ is a solution to the implicit scalar equation

(α|Ω|+ β|Γ|)Θ = µ(Θ)
∫

Ω

|D(u)|2dx+ η(Θ)
∫

Ω

|D(u)|dx+ ν(Θ)
∫

Γ

|uT |ds. (2.2)

Remark 2.1. Notice that the antisymmetry of the convective term
∫
Ω(u · ∇)u · v

is valid by the incompressibility property (1.4) and the boundary condition uN =
0 on ∂Ω given by (1.6)–(1.7).

We assume

µ ∈ C0(R) : ∃µ∗, µ
∗ > 0, µ∗ ≤ µ(s) ≤ µ∗, ∀s ∈ R; (2.3)

η ∈ C0(R) : ∃η∗ > 0, 0 ≤ η(s) ≤ η∗, ∀s ∈ R; (2.4)
ν ∈ C0(R) : ∃ν∗ > 0, 0 ≤ ν(s) ≤ ν∗, ∀s ∈ R; (2.5)
α, β ≥ 0 : α + β > 0; (2.6)

f ∈ V ′. (2.7)

The main result of this work is the following theorem.

Theorem 2.2. Under the assumptions (2.3)–(2.7), there exists (u,Θ) ∈ V × R a
solution to the problem (2.1)–(2.2), which can be obtained as a limit in V ×W 1,q(Ω),
1 < q < n/(n− 1), as κ→∞ of solutions (uκ, θκ) of (1.12)–(1.13).

3. Auxiliary existence results

The following propositions are essential in the proof of Theorem 2.2.

Proposition 3.1. For every w ∈ Hs, s ≥ n, and ξ ∈W 1,1(Ω) there exists a unique
solution u = u(w, ξ) ∈ V to the variational inequality∫

Ω

{µ(ξ)D(u)−w ⊗ u} : D(v − u)dx + J(ξ,v) − J(ξ,u) (3.1)

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V,
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and it satisfies the estimate

‖u‖V ≤
‖f‖V ′

µ∗
. (3.2)

Moreover, if wm and ξm are sequences in Hs and W 1,1(Ω), respectively, such that
wm → w in Hs, ξm → ξ in L1(Ω) and ξm → ξ in L1(Γ), and um = u(wm, ξm)
are the corresponding solutions satisfying (3.1), then there exists u = u(w, ξ) ∈ V
the solution to (3.1) such that um → u in V .

Proof. The existence and uniqueness of the solution are consequences of classical
results (for instance, see [9]) on variational inequalities with convex continuous
functionals. The estimate (3.2) follows by choosing v = 0 as a test function in (3.1).

Let wm, ξm,um = u(wm, ξm) be sequences in the conditions of the Propo-
sition. From estimate (3.2) we have um ⇀ u in V for a subsequence of um, still
denoted by um, and consequently

um → u in Hs, for s < 2n/(n− 2) (3.3)
and in Lr(Γ), for r < 2(n− 1)/(n− 2). (3.4)

The convective term wm ⊗ um : D(v) easily passes to the limit in m. Since ξm →
ξ a.e. in Ω and on Γ, the functions µ, η and ν are continuous, and due to the
sequential weak lower semicontinuity of the continuous and convex functional J ,
we obtain as in [7]∫

Ω

{µ(ξ)D(u)−w ⊗ u} : D(v)dx + J(ξ,v) −
∫

Ω

f · (v − u)dx

≥ lim inf
m→+∞

∫
Ω

µ(ξm)|D(um)|2dx + lim inf
m→+∞

J(ξm,um) ≥
∫

Ω

µ(ξ)|D(u)|2dx + J(ξ,u)

So u is a solution to (3.1), and its uniqueness is due to the standard variational
argument.

Choosing v = (um +u)/2 as a test function in (3.1) for the solutions um and
u, and subtracting the obtained inequalities, it results

µ∗

∫
Ω

|D(um − u)|2dx +
∫

Ω

{η(ξm)− η(ξ)}|D(um)|dx +
∫

Γ

{ν(ξm)− ν(ξ)}|um|ds

≤
∫

Ω

(w −wm)⊗ um : D(u)dx +
∫

Ω

{µ(ξ)− µ(ξm)}D(u) : D(um − u)dx

+
∫

Ω

{η(ξm)− η(ξ)}|D(u)|dx +
∫

Γ

{ν(ξm)− ν(ξ)}|uT |ds.

Applying Fatou lemma to the second and third terms on the left-hand side of the
above inequality and using Lebesgue theorem to the convergences on the right-
hand side, the required strong convergence holds. �
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Proposition 3.2. Let u = u(w, ξ) be the solution given by Proposition 3.1. Then
there exists θ = θ(u, ξ) ∈ W 1,q(Ω) a solution to the variational problem∫

Ω

(κ∇θ − θu) · ∇φdx + α

∫
Ω

θφdx + β

∫
Γ

θφds (3.5)

=
∫

Ω

{µ(ξ)|D(u)|2 + η(ξ)|D(u)|}φdx +
∫

Γ

ν(ξ)|uT |φds, ∀φ ∈W 1,q′
(Ω),

that satisfies the estimate

α‖θ‖q,Ω + β‖θ‖q,Γ +
√
κ‖∇θ‖q,Ω ≤ F

(
‖f‖V ′ ,

µ∗

µ∗
, η∗, ν∗

)
(3.6)

for an arbitrary 1 < q < n/(n − 1), and F is a positive function. Moreover, let
wm and ξm be sequences in Hs and W 1,1(Ω), respectively, such that wm → w
in Hs, ξm → ξ in L1(Ω) and ξm → ξ in L1(Γ), and um = u(wm, ξm) be the
corresponding solutions given by Proposition 3.1. If θm = θ(um, ξm) are solutions
satisfying (3.5), then there exists θ = θ(u, ξ) a solution to (3.5) such that θm → θ
in W 1,q(Ω)-weak, L1(Ω)-strong and L1(Γ)-strong.

Remark 3.3. In (3.5), the terms on the right-hand side have sense, since φ ∈
W 1,q′

(Ω)) ↪→ C(Ω̄) for q′ > n, that is, q < n/(n− 1), and the term
∫
Ω θu · ∇φ has

meaning for θ ∈W 1,q(Ω), u ∈ Hs with s ≥ n, and φ ∈W 1,q′
(Ω).

Proof. Let us define F = µ(ξ)|D(u)|2 + η(ξ)|D(u)| and G = ν(ξ)|uT | ∈ Lr(Ω) for
r as in (3.4), and, for each m ∈ N, take

Fm =
mF

m + |F | ∈ L∞(Ω).

From the Lax-Milgram theorem, there exists a unique solution θm ∈ H1(Ω)
to the following variational problem∫

Ω

(κ∇θm − θmu) · ∇φdx + α

∫
Ω

θmφdx + β

∫
Γ

θmφds (3.7)

=
∫

Ω

Fmφdx +
∫

Γ

Gφds, ∀φ ∈ H1(Ω).

From L1−data theory (see, for instance, [5] or [10]), the estimate (3.6) follows
for θm. Indeed, choosing

φ = sign(θm)[1− 1/(1 + |θm|)ς ] ∈ W 1,2(Ω) ∩ L∞(Ω), for ς > 0,

as a test function in (3.7) it follows

κ

∫
Ω

ς|∇θm|2
(1 + |θm|)ς+1

dx + βC(ς)
∫

Γ

|θm|ds ≤ ‖F‖1,Ω + ‖G‖r,Γ.

Arguing as in [10] and [5] we conclude, for q < n/(n− 1), that∫
Ω

|∇θm|qdx ≤
(
‖F‖1,Ω + ‖G‖r,Γ

κς

)q/2

(ε
(∫

Ω

|θm|qn/(n−q)

)(2−q)/2

+ C(ε))
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for arbitrary ε > 0. If β > 0, using a Poincaré-Sobolev type inequality we obtain

‖θm‖qn/(n−q),Ω ≤ C

(
‖∇θm‖q,Ω + β

∫
Γ

|θm|ds
)

(3.8)

≤ C

√
‖F‖1,Ω + ‖G‖r,Γ

ς
(ε1/q‖θm‖n(2−q)/[2(n−q)]

qn/(n−q),Ω + C′(ε)) for κ > 1.

If β = 0, the assumption (2.6) implies that α > 0. Choosing φ ≡ 1 as a test
function in (3.7) we get

0 ≤
∫

Ω

θm =
∫

Ω

Fmdx +
∫

Γ

Gds ≤ ‖F‖1,Ω + ‖G‖1,Γ;

and instead of (3.8) we obtain

‖θm‖qn/(n−q),Ω ≤ C‖∇θm‖q,Ω + |Ω|(n−q)/(nq)|
∫
−

Ω

θm|

≤ C

√
‖F‖1,Ω + ‖G‖r,Γ

ς
(ε1/q‖θm‖n(2−q)/[2(n−q)]

qn/(n−q),Ω + C′(ε)) for κ > 1,

where C is a constant depending on Ω, and
∫
−

Ω
denotes 1

|Ω|
∫
Ω
.

Consequently, for ε sufficiently small it follows

‖θm‖qn/(n−q),Ω ≤ C (independent of m and κ),

and then θm satisfies the estimate (3.6). Thus, we can extract a subsequence of
θm, still denoted by θm, such that it weakly converges to θ in W 1,q(Ω), where θ
solves the limit problem (3.5).

Let wm, ξm and um = u(wm, ξm) be sequences in the conditions of Propo-
sition 3.1, that is, um is such that um → u in V . In order to pass to the limit in
(3.5) for solutions θm = θ(um, ξm) when m tends to infinity, from estimate (3.6),
we can extract a subsequence of θm, still denoted by θm, such that it converges to
θ, which is the solution to (3.5). Note that by (3.3) and θm ⇀ θ in Lqn/(n−q)(Ω)
we obtain θmum ⇀ θu in Lsqn/[qn+s(n−q)](Ω) ↪→ Lq(Ω) for n = 2, 3. �

4. Proof of Theorem 2.2

This proof is divided in two parts.

4.1. Existence for the coupled system (1.12)–(1.13)

Consider the multi-valued mapping L defined on

K := {(w, ξ) ∈ V ×W 1,q(Ω) : ‖w‖V ≤ R1 and ‖ξ‖W 1,q(Ω) ≤ R2},
taking R1 ≥ ‖f‖V ′/µ∗ and R2 conveniently chosen from estimate (3.6), such that
L applies (w, ξ) into the nonempty convex set {(u, θ)} ⊂ K, where u and θ are
the solutions given at Propositions 3.1 and 3.2, respectively. Thus the Tychonof-
Kakutani-Glicksberg fixed point theorem (see [1, pages 218–220]) guarantees a
solution, (u, θ) ∈ L(u, θ), to (1.12)–(1.13) still satisfying the estimates (3.2) and
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(3.6), provided L(w, ξ) is a closed set and L is upper semicontinuous for the weak
topology in V ×W 1,q(Ω), for 1 < q < n/(n−1). From the closed graph theorem [1,
page 413], it remains therefore to prove that if (wm, ξm) ⇀ (w, ξ) in V ×W 1,q(Ω)
and (um, θm) ∈ L(wm, ξm) then

(um, θm) ⇀ (u, θ) ∈ L(w, ξ). (4.1)

By the Rellich-Kondrachof embedding

V ↪→↪→ Hs, for n ≤ s < 2n/(n− 2);
W 1,q(Ω) ↪→↪→ L1(Ω), and W 1,q(Ω) ↪→↪→ L1(Γ),

the final assertion (4.1) derives from Propositions 3.1 and 3.2.

4.2. Passage to the limit on κ

Let (uκ, θκ) be a solution to (1.12)–(1.13), corresponding to each κ > 0 and let
κ → +∞. From the estimates (3.2) and (3.6), we can extract a subsequence of
(uκ, θκ), still denoted by (uκ, θκ), satisfying

∇θκ → 0 in Lq(Ω),
θκ → Θ = constant in W 1,q(Ω).

We can proceed as in the proof of Proposition 3.1 to get a strong convergence of
uκ to u in H1(Ω). Then, we can pass to the limit (1.13) on κ (κ → +∞), taking
φ ≡ 1 to obtain (2.2). Now, taking the limit κ→ +∞ in (1.12), it follows that the
limit u solves the nonlocal problem (2.1). �
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Some P.D.E.s with Hysteresis

Michela Eleuteri

Abstract. We present some results concerning two classes of P.D.E.s con-
taining a continuous hysteresis operator. We introduce a weak formulation
in Sobolev spaces for a Cauchy problem; under suitable assumptions on the
hysteresis operator, we state some existence results. The presentation of the
paper is quite general, as we avoid to describe all the details of the proof of
the theorems involved.

Introduction

Hysteresis is a phenomenon that occurs in several and quite different settings, for
example in plasticity, in ferromagnetism, in phase transitions.

We can certainly fix in the important monograph of Krasnosel’skĭı and
Pokrovskĭı [8] the starting point of the mathematical research on hysteresis, which,
from that moment onwards, has been considerably increasing, providing many in-
teresting results (at this purpose we can certainly quote the recent monographes
devoted to this topic, see Brokate and Sprekels [4], Krejč́ı [9], Mayergoyz [10] and
Visintin [11], together with the references therein). In particular, a great number of
contributions has been obtained for classes of P.D.E.s containing hysteresis nonlin-
earities, involving quasilinear and semilinear, parabolic and hyperbolic equations.

The aim of this paper is to present an overview on some results obtained by
the author concerning two new classes of P.D.E.s containing a continuous hysteresis
operator; all these results can be found in [5]. More in detail, we deal with the
following two model equations

∂2u

∂t2
+

∂u

∂t
−�

(
∂u

∂t
+ G(u)

)
= f in Ω× (0, T ) (0.1)

∂

∂t
(u + F(u)) + �v · ∇(u + F(u))−�u = f in Ω× (0, T ), (0.2)

where Ω is an open bounded set of R
N , N ≥ 1, � is the Laplace operator, with

suitable boundary conditions, �v : Ω×(0, T )→ R
N is known, G and F are hysteresis

operators and f in both cases is a given function. Actually our results turn to
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be valid for the more general class of memory operators, i.e., operators fulfilling
only (1.3), but in the most frequent applications G and F are instead also rate
independent (i.e., hysteresis operators).

We focus our attention on the well-posedness of our model problems; our
treatment is quite general because we do not propose all the details of the proof
of our results. We instead spend some time describing the physical interpretation
of our model equations and the choice of the functional setting in which we work.

The plan of the paper is the following: in Section 1 we recall the concept of
hysteresis operator together with its most common properties which will be used
later. In Section 2 we study the model equation (0.1): we first explain its physical
meaning; then after a small presentation of the functional setting in which the
problem will be framed (which is a bit unusual), we introduce a weak formulation
in Sobolev spaces of the Cauchy problem related to equation (0.1). Under suit-
able assumptions on the data and on the operator G, we state an existence and
uniqueness theorem for the solutions of our model equation. Section 3 is devoted
instead to the analysis of the model equation (0.2): also in this case we briefly
explain in which physical context the equation arises; then we still introduce a
weak formulation in the Sobolev spaces of the initial and boundary value problem
(with Dirichlet boundary conditions) associated to equation (0.2). Under suitable
assumptions on the operator F and on the data we state an existence result for
the solutions of this model equation. We moreover include in some remarks fur-
ther results which can be obtained for our model equations, without entering into
details.

1. Some basic facts concerning hysteresis and hysteresis operators

We can illustrate the basic concept of hysteresis by means of a very simple example.
Let us consider a sort of black box which transforms a continuous time-dependent
scalar variable u - which is often called input – into a time-dependent variable w
– which plays the role of the output. Just to do a couple of examples, in ferromag-
netism u may correspond to the magnetic field H and w to the magnetic induction
B; otherwise in plasticity u can be identified to the strain ε and w can represent
instead the stress σ and so on.

At any instant t, w(t) depends on the evolution of the input u and on the
initial state of the system, or, more in general, on a variable η0 which contains all
the information about the initial state. So we have

F : C0([0, T ])×X → C0([0, T ]) w(t) = [F(u, η0)](t) ∀ t ∈ [0, T ], (1.1)

where X is a suitable metric space.
We have the memory effect when at any instant t the output w(t) is not sim-

ply determined by the value u(t) of the input at the same instant, but it depends
also on the previous evolution of u. We have the rate independence property when
the path of the couple (u(t), v(t)) is invariant with respect to any increasing time
homeomorphism, i.e., there is no dependence on the derivative of u. It is this fact
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that allows us to draw the characteristic pictures of hysteresis in the (u,w)-plane.
The operators showing the memory effect are called memory (or Volterra) opera-
tors, while those fulfilling both the memory and the rate independence property
are called hysteresis operators.

The notion of hysteresis operator just introduced, (which is essentially due to
Krasnosel’skĭı, see [7]), can be used to model phenomena in which time is the only
independent variable, as in O.D.E.s but it cannot be directly applied in situations
like in problems involving P.D.E.s, where also space variables appear. In order to
overcome this difficulty, it is enough to extend the operator like F in (1.1), acting
on time-dependent functions, to some operator F acting also on space-dependent
functions.

The choice we make in this paper is to work with a more general class of
memory operators of the following type

F :M(Ω; C0([0, T ]))→M(Ω; C0([0, T ])), (1.2)

where Ω is an open bounded set of R
N , N ≥ 1 andM(Ω; C0([0, T ])) is the Fréchet

space of strongly measurable functions Ω → C0([0, T ]), i.e., M(Ω; C0([0, T ])) is
the set of functions v : Ω → C0([0, T ]) such that there exists a sequence vn of
simple functions with vn → v strongly in C0([0, T ]), a.e. in Ω, endowed with the
quasi-norm

||v||M(Ω;C0([0,T ])) :=
∫

Ω

||v||C0([0,T ])

1 + ||v||C0([0,T ])
dx.

Nevertheless, we shall have always in mind the case in which the operator F is rate
independent (and so when F is a hysteresis operator), which is the most frequent
situation one can encounter in the applications.

We conclude the section by recalling some properties, useful in the following,
that an operator like F in (1.2) can satisfy. In particular F can be:

• causal if{
∀ v1, v2 ∈ M(Ω; C0([0, T ])), ∀ t ∈ [0, T ], if v1 = v2 in [0, t], a.e. in Ω,
then [F(v1)](·, t) = [F(v2)](·, t) a.e. in Ω;

(1.3)

• Lipschitz continuous from L2(Ω; C0([0, T ])) into L2(Ω; C0([0, T ]) itself, if there
exists a constant L such that, for any u1, u2 ∈ L2(Ω; C0([0, T ]))

||F(u1)−F(u2)||L2(Ω;C0([0,T ])) ≤ L ||u1 − u2||L2(Ω;C0([0,T ])); (1.4)

• strongly continuous, if{
∀ {vn ∈M(Ω; C0([0, T ]))}n∈N, if vn → v uniformly in [0, T ]

a.e. in Ω, then F(vn)→ F(v) uniformly in [0, T ], a.e. in Ω;
(1.5)

• affinely bounded, if{
∃ L̄, ∃ τ ∈ L2(Ω) : ∀v ∈M(Ω; C0([0, T ])),

||[F(v)](x, ·)||C0([0,T ]) ≤ L̄ ||v(x, ·)||C0([0,T ]) + τ(x) a.e. in Ω;
(1.6)
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• piecewise monotone, if⎧⎪⎨⎪⎩
∀ v ∈M(Ω; C0([0, T ])), ∀ [t1, t2] ⊂ [0, T ],
if v(x, ·) is affine in [t1, t2] a.e. in Ω, then

{[F(v)](x, t2)− [F(v)](x, t1)} · [v(x, t2)− v(x, t1)] ≥ 0 a.e. in Ω;
(1.7)

• piecewise Lipschitz continuous, if⎧⎪⎨⎪⎩
∃ L̂ > 0 : ∀ v ∈ M(Ω; C0([0, T ])), ∀ [t1, t2] ⊂ [0, T ]
if v(x, ·) is affine in [t1, t2] a.e. in Ω, then

|[F(v)](x, t2)− [F(v)](x, t1)| ≤ L̂ |v(x, t1)− v(x, t2)| a.e. in Ω.

(1.8)

It is not restrictive to assume that L = L̄ = L̂.

2. First model equation

2.1. Physical interpretation of the model equation (0.1)
If we couple in a suitable way the Maxwell equations with the Ohm law, considered
in a domain D ⊂ R

3 which represents our electromagnetic material, (for more
details on the topic see for example [6]), we get the following equation

ε
∂2 �B

∂t2
+ 4πσ

∂ �B

∂t
+ c2∇×∇× �H = 4π c σ∇× �g in DT := D × (0, T ),

where c is the speed of light in vacuum, ε the dielectric permittivity, �H is the
magnetic field, �B is the magnetic induction, σ is the electric conductivity and
finally �g is an applied electromotive force.

We can simplify this equation by imposing severe restrictions on the geometry
of the system; more precisely, let Ω be a domain of R

2, we can assume that �H is
parallel to the z-axis and depends on the first two cartesian coordinates, x, y, i.e.,
�H = (0, 0, H(x, y)). This implies that

∇×∇× �H = (0, 0,−�x,yH) where �x,y =
∂2

∂x2
+

∂2

∂y2
.

Dealing with a strongly anisotropic material we can also assume �B = (0, 0, B(x, y))
and the same can be done for the known term. Choosing to not display the coef-
ficients for the sake of simplicity, the previous equation becomes

∂2B

∂t
+

∂B

∂t
−�x,yH = f̃ in ΩT := Ω× (0, T ). (2.1)

At this point it is necessary to introduce a constitutive relation between B
and H ; we choose the following one

H = G(B) + λ Ḃ, (2.2)
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where G is a suitable hysteresis operator and λ > 0 is a given constant, depending
on the geometry of the system. This relation can be for example obtained combin-
ing in series a ferromagnetic element with hysteresis (which is a rate independent
element) and a conducting solenoid with a paramagnetic core (which is instead a
rate dependent element). Coupling (2.1) and (2.2) we get exactly (0.1).

2.2. Statement of the main results

We fix an open bounded set Ω ⊂ R
2 of Lipschitz class with boundary Γ and set

Q := Ω×(0, T ). We took R
2 in consideration of the physical meaning of our model

equation, even if actually our results are true also for the more general case of
R

N , N ≥ 1. We consider the following operator

G :M(Ω; C0([0, T ]))→M(Ω; C0([0, T ]))

which is assumed to satisfy (1.3) and (1.4).
We denote by γ0 : H1(Ω) → H1/2(Γ) the unique linear continuous trace

operator such that γ0v = v|Γ for all v ∈ C∞(Ω̄) ∩H1(Ω).
Now we introduce the operator A : H1

0 (Ω)→ H−1(Ω) defined as follows

H−1(Ω) 〈Au, v 〉H1
0 (Ω) :=

∫
Ω

∇u · ∇v dx ∀u, v ∈ H1
0 (Ω); (2.3)

so it is clear that Au = −�x,y u

(
:= −∂

2u

∂x2
− ∂2u

∂y2

)
in the sense of distributions.

Moreover we also define the operator A−1 which can be interpreted as the inverse
of the operator −�x,y associated with the homogeneous Dirichlet boundary con-
ditions, i.e., for any v ∈ H−1(Ω), u = A−1v if and only if u ∈ H1(Ω), −�x,yu = v
in the sense of distributions and γ0u = 0 on ∂Ω = Γ.

Before presenting the main result, we discuss a bit the setting of our model
problem, as the choice of the right functional spaces to work with plays a funda-
mental role in order to have some positive results. In our case the choice we make
is a bit unusual in the sense that we consider the following Hilbert triplet

L2(Ω) ⊂ H−1(Ω) ≡ (H−1(Ω))′ ⊂ (L2(Ω))′

where the role of the pivot space is played by H−1(Ω) and the injection (continuous
and dense) of the space L2(Ω) into H−1(Ω) is defined in this way

H−1(Ω)〈j (f), ϕ〉H1
0 (Ω) :=

∫
Ω

f ϕ dx ∀ f ∈ L2(Ω), ∀ϕ ∈ H1
0 (Ω).

The Sobolev space H−1(Ω) is endowed with the scalar product

(u, v)H−1(Ω) :=H−1(Ω)< u,A−1v >H1
0 (Ω);
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therefore, if we identify H−1(Ω) to its dual (H−1(Ω))′ by means of the Riesz
theorem, we have

(L2(Ω))′〈ψ, f〉L2(Ω) =(ψ, f)H−1(Ω) = (f, ψ)H−1(Ω) =H−1(Ω) 〈f,A−1ψ〉H1
0 (Ω)

=
∫

Ω

f A−1ψ dx ∀ f ∈ L2(Ω), ∀ψ ∈ H−1(Ω),

where we also used the fact that the scalar product is symmetric.
For the sake of simplicity, from now on we set L2(Ω) := V, H−1(Ω) := H

and (L2(Ω))′ := V ′. We assume that u0 ∈ V, v0 ∈ H and f ∈ L2(0, T ;H).
We want to solve the following problem

Problem 2.1. To find two functions u ∈ M(Ω; C0([0, T ])) ∩ L2(Q) and v ∈ L2(Q)
such that G(u) ∈ L2(Q) and for any ψ ∈ H1(0, T ;V ) with ψ(·, T ) = 0 a.e. in Ω∫ T

0

− V ′ 〈v + u,
∂ψ

∂t
〉V dt +

∫ T

0

∫
Ω

(v + G(u))ψ dxdt

=
∫ T

0
V ′〈f, ψ 〉V dt + V ′ 〈(v0 + u0)(·), ψ(·, 0) 〉V

(2.4)

−
∫ T

0

∫
Ω

u
∂ψ

∂t
dx dt =

∫ T

0

∫
Ω

v ψ dx dt +
∫

Ω

u0(·)ψ(·, 0) dx. (2.5)

Interpretation. It is not difficult to show that (2.4) and (2.5) yield⎧⎪⎨⎪⎩
A−1 ∂v

∂t
+ A−1 ∂u

∂t
+ v + G(u) = A−1f

∂u

∂t
= v

in L2(Ω), a.e. in (0, T )

and u|t=0 = u0, v|t=0 = v0 in the sense of the traces. If in addition the solution
(u, v) is more regular in space, (as indeed happens at the end, see Remark 2.3)
then (2.4) and (2.5) yield directly (0.1) in L2(0, T ;V ′).

The main theorem which we obtain is the following

Theorem 2.2. (Existence and uniqueness) Let us assume that the operator G :
M(Ω; C0([0, T ])) → M(Ω; C0([0, T ])) fulfills (1.3) and (1.4). Suppose moreover
that u0 ∈ V , v0 ∈ H and f ∈ L2(0, T ;H). Then Problem 2.1 has a unique solution
u ∈ H1(0, T ;V ) and v ∈ L2(Q) such that G(u) ∈ L2(Ω; C0([0, T ])). If moreover G
fulfills (1.8), then we get that G(u) ∈ H1(0, T ;L2(Ω)).

The proof of this result is based on the contraction mapping principle. We
first consider any given function z ∈ H1(0, T ;V ) and solve the counterpart of
Problem 2.1 with G(u) replaced by G(z). This procedure allows us to get rid of
the nonlinearity in the hysteresis term. In a second step we construct an operator
J : H1(0, T ;V ) → H1(0, T ;V ) which associates to any z the first element u of
the pair (u, v) solution of the modified problem just considered. We consequently
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prove that J has a fixed point, which will be the desired unique solution of our
model equation.

Remark 2.3. Once that the solution of our problem is also unique, it is not hard
to obtain the Lipschitz continuous dependence of u from the data of our model
problem. Moreover, using a standard characterization of the spaces H1

0 (Ω) and
H1(Ω) (which can be for example found in [3], Sect. IX.1, IX.4) we achieve a
higher regularity result in space for the solution of our model problem.

3. Second model problem

Consider an open bounded set of Lipschitz class Ω ⊂ R
N , N ≥ 1 with boundary

Γ and set Q := Ω × (0, T ). Assume that the operator F : M(Ω; C0([0, T ])) →
M(Ω; C0([0, T ])) satisfies (1.3), (1.5), (1.6), (1.7) and (1.8).

The causality property entails that [F(v)](·, 0) depends just on F and v(·, 0);
so we can set HF (v(·, 0)) := [F(v)](·, 0) for all v ∈ M(Ω; C0([0, T ])).

For the sake of simplicity we set this time V := H1
0 (Ω), H := L2(Ω) and

V ′ := H−1(Ω) and we consider V endowed with the norm ||u||V := ||∇u||L2(Ω)N .
We then identify the space L2(Ω) to its topological dual (L2(Ω))′; as the injection
of V into L2(Ω) is continuous and dense, (L2(Ω))′ can be identified to a subspace
of V ′. This yields the Hilbert triplet V ⊂ H ≡ H ′ ⊂ V ′ with dense and continuous
injections.

Now we denote by V ′〈·, ·〉V the duality pairing between V ′ and V and we
then define the linear and continuous operator A : V → V ′ as in (2.3).

We assume that u0, w0 = HF (u0) ∈ L2(Ω) are given initial data.

The problem we want to solve is the following

Problem 3.1. Let us consider a known function �v such that �v, ∂�v
∂t ∈ L∞(Q)N and

∇·�v = 0 a.e. in Q. We search for a function u ∈ M(Ω; C0([0, T ]))∩L2(0, T ;V ) such
that F(u) ∈ M(Ω; C0([0, T ]))∩L2(Q) and for any ψ ∈ H1(0, T ;L2(Ω))∩L2(0, T ;V )
with ψ(·, T ) = 0 a.e. in Ω∫ T

0

∫
Ω

−(u+ F(u))
∂ψ

∂t
dx dt−

∫ T

0

∫
Ω

[�v · ∇ψ] (u + F(u)) dx dt

+
∫ T

0

∫
Ω

∇u · ∇ψ dxdt

=
∫ T

0
V ′〈f, ψ〉V dt +

∫
Ω

[u0(x) + w0(x)]ψ(x, 0) dx. (3.1)

Interpretation. The variational equation (3.1) can be interpreted as⎧⎨⎩
∂w

∂t
+ �v · ∇w −�u = f in V ′, a.e. in (0, T )

w = (I + F)(u)
(3.2)
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hence, integrating by parts in time in (3.1) we get [u+F(u)]|t=0 = u0 +w0 in V ′,
in the sense of the traces.

Physical interpretation. Let D ⊂ R
3 represent the region occupied by a porous

medium. We consider the equation of continuity
∂θ

∂t
+∇ · �q = 0 in DT = D × (0, T ),

where θ is the water content of the medium and �q is the flux. We have θ = ϕs
where ϕ : D → [0, 1] is the porosity of the medium and s is the saturation.

We couple this equation with Darcy’s law

�q = −k (∇u + ρ g �z)

where k is the hydraulic conductivity, u is the pressure, ρ is the density of the
fluid, g is the gravity acceleration and �z is the upward vertical unit vector. The
saturation s and the pressure u are unknown.

Therefore the system we find is the following⎧⎨⎩ ϕ
∂s

∂t
−∇ · k (∇u + ρ g �z) = 0

s = F(u),
in DT , (3.3)

where the dependence of s upon u is formally represented by the operator F .
Experimental results show the occurrence of a quite relevant hysteresis effect which
has occasionally been represented by Preisach models in engineering literature.
Some interesting results on this topic have been obtained for example in [1], [2].

Now, first of all we make the following strong assumption on the hydraulic
conductivity: we suppose that k does not depend on the saturation s (as indeed
happens) but it is a constant; then we suppose that in (3.3) the derivative in time
is not a Eulerian derivative but a material derivative. At this point, if we want to
express this resulting equation in terms of the Eulerian derivative, the system we
get is included in our model system (3.2), which may then represent a model with
saturation versus pressure constitutive relation with hysteresis and with a term of
transport.

The existence result we are able to state is the following

Theorem 3.2. (Existence) Let us assume that the operator F :M(Ω; C0([0, T ]))→
M(Ω; C0([0, T ])) fulfills (1.3), (1.5) (1.6), (1.7) and (1.8). Moreover let

f ∈ L2(Q), u0 ∈ V, w0 ∈ H.

Then Problem 3.1 admits at least one solution u ∈ H1(0, T ;H)∩L∞(0, T ;V ) such
that F(u) ∈ H1(0, T ;H).

The technique we use for proving this existence result is based on approxi-
mation by implicit time discretization, a priori estimates and passage to the limit
by compactness. This approximation procedure is quite convenient in the analy-
sis of equations that include a hysteresis operator, as in any time-step we have
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to solve a stationary problem in which the hysteresis operator is reduced to the
superposition with a nonlinear function.

Remark 3.3. As the equation is quasilinear, one cannot expect to have uniqueness
for all the choices of hysteresis operators F . However when F is a Prandtl-Ishlinskĭı
operator of play type, the solution of Problem 3.1 is also unique. The proof does not
relay on the Hilpert’s inequality as indeed happens in [11], Sect. IX.2, but exploits
instead the properties of F . Another interesting result which can be established
is the dependence of the solutions from the data. Assume to have a sequence of
memory operators Gn converging pointwise in C0([0, T ]), a.e. in Ω to some operator
G; if un are the solutions of Problem 3.1 with F replaced by Gn, then it turns out
that there exists u such that un → u in some suitable topology and Gn(un)→ G(u)
strongly in L2(Q). Moreover u is a solution of Problem 3.1 with F replaced by
G. The idea contained in the proof is new and also the assumptions we take on
Gn are weaker than the ones usually employed in results of this kind. The proof
exploits the properties of the operators Gn and the uniform convergence in time
of the sequence of our approximate solutions (pointwise convergence would not be
enough for our purposes).

Remark 3.4. We develop the results of this section working with Dirichlet bound-
ary conditions, other alternative choices of boundary conditions are possible; the
discussion of these different situations is still work in progress.
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Embedding Theorem for Phase Field Equation
with Convection

Takesi Fukao

Abstract. In this paper, we shall prove the existence of solutions for the sys-
tem of second order partial differential equations. This system is constructed
by the phase field equations with a convection described by the Navier-Stokes
equations in a liquid region. In our setting, this liquid region is also unknown,
which is defined by the solution of the phase field equations. In order to de-
termine the liquid region by the unknown parameter, which is called order
parameter, we need to get the continuity. From the L2 framework, we shall
obtain the smoothness of the order parameter by the compactness theorem of
Aubin’s type.

Mathematics Subject Classification (2000). Primary 35K55; Secondary 76D05.
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1. Introduction

We consider a material which has two physical phases, liquid and solid. We are
interested in the dynamics of the interface, taking account of a convective flow in
the liquid region. Our idea is to describe this phenomenon by the weak formulation
of the phase field equations with a convection. And this convection is governed
by the Navier-Stokes equations in the unknown liquid region. Our purpose is to
show the existence of some solutions. The phase field system is one of the famous
model which describes the solid-liquid phase transition phenomena by the partial
differential equations. This model has the strong relationship between the Stefan
problem which is also well known as the effective model for the phase transition.
About the Stefan problem we have a result [6] from the stand point of the practical
situation. But the weak solution of the Stefan problem is discontinuous in general.
So it is not easy to guarantee the fact that the liquid region is the exact open set.
Actually the result of [6] is the existence theory for an approximate problem. On
the other hand, in the case of the prototype phase filed equations we can gain the
regularity of the order parameter if we regularize the convection. So we apply the
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same methods in [6] and find the exact solution. Considering the problem as the
weak formulation and applying the penalty method, we settle the difficulty of the
unknown region. And then we shall obtain the existence result.

2. System of phase field and Navier-Stokes equations

In this section we introduce a simplified system. After define our solution we
shall give the main theorem. Let 0 < T < +∞, t ∈ [0, T ] and Ωm(t) ⊂ R

3 be
the bounded time dependent domain with smooth boundary Γm(t) := ∂Ωm(t).
Moreover we define a non-cylindrical domain and its lateral boundary by

Qm :=
⋃

t∈(0,T )

{t} × Ωm(t), Σm :=
⋃

t∈(0,T )

{t} × Γm(t).

Ωm(t) is occupied by a material having two phases, liquid and solid. Our purpose
is to find the distribution of these regions. For any (t, x) ∈ Qm, let χ := χ(t, x) be
the order parameter which stands for the state of the material. These regions are
separated by an unknown interface. From the stand point of the Stefan problem it is
a natural setting that the sharp interface is defined by the 0-level curve of χ. On the
other hand in the case of the phase field equations the set {(t, x) ∈ Qm;χ(t, x) = 0}
has the measure in general. So in our phase field equations we image the virtual
solid-liquid interface namely we call the set

Ω�(t) := Ωm(t) \ {x ∈ Ωm(t);χ(t, x) < 0}

by the liquid region, the set Ωs(t) := Ωm(t) \Ω�(t) by the solid region and S(t) :=
Ωm(t) \ {Ω�(t) ∪ Ωs(t)} by the virtual interface. If χ is continuous in Qm, then
Ωs(t) and Ω�(t) are open sets and Ωm(t) = Ω�(t) ∪ S(t)∪Ωs(t) for each t ∈ [0, T ].
And then we define

S(χ) :=
⋃

t∈(0,T )

{t} × S(t), Qi(χ) :=
⋃

t∈(0,T )

{t} × Ωi(t) for i = s, �.

We consider the following system of a couple of the phase field equations and
the Navier-Stokes equations: θ := θ(t, x) be the temperature, v = v(t, x) be the
convective vector and p� := p�(t, x) be the pressure,

Dε
t (v)θ + Dε

t (v)χ −∆θ = f in Qm, (2.1)

Dε
t (v)χ −∆χ + χ3 − χ = θ in Qm, (2.2)

∂v
∂t

+ (v · ∇)v −∆v = g(θ)−∇p� in Q�(χ), (2.3)

divv = 0 in Q�(χ), (2.4)

v = vD in Qs(χ) ∪ S(χ), (2.5)
∂θ

∂n
= 0,

∂χ

∂n
= 0, v = vD on Σm, (2.6)

θ(0, ·) = θ0, χ(0, ·) = χ0, v(0, ·) = v0 in Ωm0 := Ωm(0), (2.7)
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where for each ε > 0, the operator Dε
t (v) stands for the regularization of the

material derivative ∂/∂t+ (ρε ∗v) · ∇ with the unknown v, where the convolution
(ρε ∗ v)(t, x) = (ρε(t) ∗ v1(t, x), ρε(t) ∗ v2(t, x), ρε(t) ∗ v3(t, x)) is the mollification
of v and ρε(t) is the usual mollifier with respect to t; f, g, vD, θ0, χ0,v0 are given
functions; n = n(t, x) := (n1(t, x), n2(t, x), n3(t, x)) is the 3-dimensional unit
vector outward normal to Γm(t) at x ∈ Γm(t). Throughout this paper we assume
that the shape of domain Ωm(t) smoothly changes in time in the following sense:
(A1) There exists a bounded domain Ω ⊂ R

3 with smooth boundary Γ := ∂Ω
such that Ωm(t) ⊂ Ω for all t ∈ [0, T ]. Moreover there exists a transformation
y ∈ C3(Q) := C3(Q)3 with Q := (0, T )×Ω which gives a C3-diffeomorphism
y(t, ·) := (y1(t, ·), y2(t, ·), y3(t, ·)) from Ω onto itself for all t ∈ [0, T ] such
that

y(t,Ωm(t)) = Ωm0 for all t ∈ [0, T ], y(0, ·) = I (identity) on Ωm0.

We can say that in the liquid region Q�(χ) the vector v coincides with the convec-
tion described by the Navier-Stokes equations (2.3) and (2.4). In the solid region
Qs(χ) the vector v coincides with the given vector vD := vD(t, x), for example we
interpret it as the deformation speed. It is given by the above assumption (A1) by
∂x/∂t(t,y(t, x)) where x := y−1. Anyway we assume that the given function vD

satisfies the following compatibility condition:
(A2) A vector function vD ∈ C2(Q) so that

divvD(t, ·) = 0 in Ωm(t) for all t ∈ [0, T ],

vD · n = vn on Σm,

where vn(t, ·) is the normal speed of Γm(t) defined by ∂x/∂t(t,y(t, ·)) ·n(t, ·).
Let Σ := (0, T )× Γ and QT := (0, T )× Ωm0. We use the following notations:

H := L2(Ωm0), V := H1(Ωm0) (:= W 1,2(Ωm0)),

with the usual norms. H is a Hilbert space with standard inner product (·, ·)H .
We see that the following relations hold:

V ↪→H ↪→ V ∗,

where ↪→ means that the embedding is compact. Moreover we use the following
notations for vector valued function spaces:

Dσ(Ω) :=
{
z ∈ C∞

0 (Ω); divz = 0 in Ω
}
,

H := L2
σ(Ω), Y := L4

σ(Ω), V := H1
σ(Ω), X := W1,4

σ (Ω),
where L2

σ(Ω), L4
σ(Ω), H1

σ(Ω) and W1,4
σ (Ω) are the closures of Dσ(Ω) in spaces

L2(Ω), L4(Ω), H1(Ω) and W1,4(Ω), respectively. They are equipped with the usual
product norms. We see that H is a Hilbert space with the usual inner product
(·, ·)H. Now we formulate the Navier-Stokes equations as a homogeneous Dirichlet
boundary value problem. We put w := v − vD on Qm and w0 := v0 − vD(0) on
Ωm0. Then

w = 0 on Qs(χ) ∪ S(χ) and on Σm. (2.8)
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For simplicity, we denote by w and w0 again the 0-extensions of them onto Q
and Ω, respectively. A weak variational formulation of Navier-Stokes equations is
described in terms of w and w0 as follows:

−
∫ T

0

(w,η′)Hdt +
∫ T

0

a(w,η)dt +
∫ T

0

b(t;w,w,η)dt +
∫ T

0

c(t;w,η)dt (2.9)

=
∫ T

0

(gL(θ),η)Hdt + (w0,η(0))H for all η ∈W(χ),

subject to the constraint w = 0 a.e. on Qs(χ), where

W(χ) :=
{

η ∈ L4(0, T ;X); η′ ∈ L2(0, T ;H), η(T, ·) = 0 a.e. on Ω,
η = 0 a.e. on Q \Q�(χ)

}
;

here η′ := ∂η/∂t. In order to emphasize the dependence of the class of test func-
tions upon χ we denote it by W(χ). Moreover a(·, ·) : V ×V → R and for each
t ∈ [0, T ], b(t; ·, ·, ·) : V ×V ×V→ R, c(t; ·, ·) : H×H→ R are defined by

a(z,η) :=
3∑

i=1

∫
Ω

∇zi · ∇ηidx for all z,η ∈ V,

b(t; z, z̄,η) :=
3∑

i=1

∫
Ω

((z + vD(t)) · ∇z̄i)ηidx for all z, z̄,η ∈ V,

c(t; z,η) :=
3∑

i=1

∫
Ω

(z · ∇(vD)i(t))ηidx for all z,η ∈ H,

and for each z ∈ L2(Q), gL(z) ∈ L2(0, T ;H) is defined by

gL(z) :=

⎧⎨⎩ PL

[
g(z)− ∂vD

∂t
− (vD · ∇)vD + ν�∆vD

]
on Qm,

0 otherwise,

where PL : L2(Ω)→ H is the Leray projector.

Definition 2.1. The triplet {θ, χ,v} ∈ L∞(Qm) × C(Qm) × L2(Qm) is called a
weak solution of the system if (D1)–(D3) are satisfied:
(D1) θ and χ satisfy the following estimates

sup
t∈(0,T )

|θ(t)|H1(Ωm(t)) < +∞,

∫ T

0

|θ(t)|2H2(Ωm(t))dt < +∞,

∫ T

0

∣∣∣∣∂χ∂t (t)
∣∣∣∣2
H1(Ω)

dt < +∞, sup
t∈(0,T )

|χ(t)|H2(Ωm(t)) < +∞;

(D2) w := v−vD ∈ L∞(0, T ;H)∩L2(0, T ;V), w is weakly continuous from [0, T ]
into H and w = 0 a.e. on Qs(χ);

(D3) {θ, χ,v} satisfy (2.1)–(2.7) in the variational sense.
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For each ε > 0, our main theorem is now stated as follows:

Theorem 2.2 (Main Theorem). Assume that (A1) and (A2) hold. Moreover f ∈
L∞(Qm), g ∈ C0,1(R), θ0 ∈ H1(Ωm0), χ0 ∈ H2(Ωm0) and v0 ∈ L2(Ωm0) with
divv0 = 0 in Ωm0. Then there exists at least one solution {θ, χ,v} of our system.

Remark 2.3. In the 2-dimensional case, Planas and Boldrini [10] obtained the
existence result for the same kind of the problem without the time regularization
for the convection by applying the Lp-theory of parabolic equations.

3. Phase field equations with given convection

In this section we discuss about the solvability of the phase field equations with
given convection, and recall the known result for the Navier-Stokes equation in
the non-cylindrical domain. Finally we shall note the key of the proof. Firstly,
we assume that the convective vector ṽ := (ṽ1, ṽ2, ṽ3) is given. Now for each
s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , we use the following notations:

Q(s0, s) := (s0, s)× Ω, Qm(s0, s) :=
⋃

t∈(s0,s)

{t} × Ωm(t).

Moreover we consider the following auxiliary system:

−
∫

Qm(s0,s)

θD̃ε
tηdxdt −

∫
Qm(s0,s)

χD̃ε
t ηdxdt +

∫
Qm(s0,s)

∇θ · ∇ηdxdt (3.1)

=
∫

Qm(s0,s)

fηdxdt +
∫

Ωm(s0)

θs0η(s0)dx +
∫

Ωm(s0)

χs0η(s0)dx,

−
∫

Qm(s0,s)

χD̃ε
tηdxdt +

∫
Qm(s0,s)

∇χ · ∇ηdxdt +
∫

Qm(s0,s)

(χ3 − χ)ηdxdt (3.2)

=
∫

Qm(s0,s)

θηdxdt +
∫

Ωm(s0)

χs0η(s0)dx,

for all η ∈ H1(Qm(s0, s)) with η(s, ·) = 0 a.e. on Ωm(s), where D̃ε
t := Dε

t (ṽ). As-
sume that θs0 ∈ H1(Ωm(s0)), χs0 ∈ H2(Ωm(s0)). Moreover ṽ−vD ∈ L2(0, T ;V)∩
L∞(0, T ;H) and ṽ satisfies the following compatibility condition

ṽ · n = vn on Σm. (3.3)

Then there exists uniquely {θ̃, χ̃} ∈ H1(Qm(s0, s))×H1(Qm(s0, s)) such that

sup
t∈(s0,s)

|θ̃(t)|H1(Ωm(t)) < +∞,

∫ s

s0

|θ̃(t)|2H2(Ωm(t))dt < +∞,

sup
t∈(s0,s)

|χ̃(t)|H1(Ωm(t)) < +∞,

∫ s

s0

|χ̃(t)|2H2(Ωm(t))dt < +∞,

and {θ̃, χ̃} satisfy the weak formulations (3.1) and (3.2). See Fukao [5], or more
general approach by Schimperna [13]. Here we recall an important result of the
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embedding theorem for spaces L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)). For example,
Chapter 3, Section 2 in the book of Ladyženskaja, Solonnikov and Ural’ceva [9]

|u|Lr(0,T ;Lq(Ω)) ≤ c1|∇u|1−2/r
L2(0,T ;L2(Ω))|u|

2/r
L∞(0,T ;L2(Ω)),

where q and r are arbitrary positive numbers satisfying the condition

1
r

+
3
2q

=
3
4

with q ∈ [2, 6], r ∈ [2,+∞], (3.4)

and c1 is a positive constant. We have the following estimate especially the key
point is the independence of ṽ.

Lemma 3.1. For any s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , there exists a positive con-
stant M1 depend on |θs0 |L2(Ωm(s0)), |χs0 |L2(Ωm(s0)) and |f |L2(Qm(s0,s)), independent
of ṽ such that

sup
t∈(s0,s)

|θ̃(t)|L2(Ωm(t)) +
∫ s

s0

|θ̃(t)|2H1(Ωm(t))dt ≤M1. (3.5)

sup
t∈(s0,s)

|χ̃(t)|L2(Ωm(t)) +
∫ s

s0

|χ̃(t)|2H1(Ωm(t))dt + |χ̃|L4(Qm(s0,s)) ≤M1. (3.6)

Proof. Using Green-Stokes’ formula with the help of the divergence freeness, the
compatibility condition (3.3) and Gronwall’s inequality we get the conclusion. �

Using the same method of Theorem 7.1 in Chapter 3, Section 7 of the book
by Ladyženskaja, Solonnikov and Ural’ceva [9], we obtain the following global
boundedness:

Lemma 3.2. For any s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , there exists a positive
constant M2 depend on |θs0 |L2(Ωm(s0)) and |χs0 |L2(Ωm(s0)) independent of ṽ such
that

|χ̃|L∞(Qm(s0,s)) ≤M2. (3.7)

Proof. From the independence of ṽ in the estimate of Lemma 3.1, we take η = [χ̃−
M ]+ in (3.2) with some large positive constant M . And then χ̃−χ̃3 = χ̃(1−χ̃2) ≤ χ̃
on {(t, x) ∈ Qm(s0, s); χ̃(t, x) ≥M}. So thanks to the result of [9], it is enough to
show that θ̃ is bounded with respect to the norm of Lr∗

(s0, s) as the Lq∗
(Ωm(t))

valued function, where q∗ and r∗ are arbitrary positive numbers satisfying the
condition

1
r∗

+
3

2q∗
= 1− κ, (3.8)

with

q∗ ∈
[

3
2(1− κ)

,+∞
]
, r∗ ∈

[
1

1− κ
,+∞

]
, 0 < κ < 1.

By virtue of (3.4) and Lemma 3.1 with κ = 1/4 we get the conclusion. �
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Lemma 3.3. For any s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , there exists a pos-
itive constant M3 depend on |θs0 |L2(Ωm(s0)), |χs0 |L2(Ωm(s0)), |f |L∞(Qm(s0,s)) and
|ṽ|L2(s0,s;V) such that∫ s

s0

|χ̃(t)|2H2(Ωm(t))dt + sup
t∈(s0,s)

|χ̃(t)|H1(Ωm(t)) ≤M3. (3.9)

Proof. Consider the strong formulation of (3.2). For any τ ∈ [s0, s], multiplying
the function −∆χ̃ and integrating over Qm(s0, τ) with respect to t and x. Recall
the Gagliardo-Nirenberg inequality

|∇χ̃|2L4(Ωm(t)) ≤ c2|χ̃|H2(Ωm(t))|χ̃|L∞(Ωm(t)),

where c2 is a positive constant. Then by using Lemma 3.2 and Young’s inequality
for σ1 > 0 the following estimate holds

|∇χ̃(τ)|2L2(Ωm(τ)) + 2(1− 2σ1)
∫ τ

s0

|χ̃|2H2(Ωm(t))dt

≤
(c2M2)2|ṽ|2L2(s0,s;V)

2σ1
+ M2

1 +
M1

4σ1
+ 2M1 + |χs0 |2H1(Ωm(s0)),

for all τ ∈ [s0, s]. Thus we get the conclusion. �

Lemma 3.4. For any s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , there exists a positive
constant M4 depend on |θs0 |H1(Ωm(s0)), |χs0 |H2(Ωm(s0)) and |ṽ|L2(s0,s;V) such that

sup
t∈(s0,s)

|χ̃(t)|H2(Ωm(t)) ≤M4. (3.10)

Proof. We consider the following auxiliary equation with U = ∂χ̃/∂t.

D̃ε
tU −∆U + 3χ2U − U = G in Qm(s0, s),

∂U

∂n
= 0 on Γm(s0, s),

U(s0) = Us0 := −Dε
t (ṽ(s0))χ(s0) + ∆χs0 − χ3

s0
+ χs0 + θs0 on Ωm(s0),

where G := ∂θ̃/∂t−(∂(ρε∗ṽ)/∂t)·∇χ̃). Now θs0 ∈ H1(Ωm(s0)), χs0 ∈ H2(Ωm(s0))
and vD ∈ C2(Q), so the above equation of the initial and boundary value problem
with given coefficient can be solved. Then U satisfies

sup
t∈(s0,s)

|U(t)|L2(Ωm(t)) +
∫ s

s0

|U(t)|2H1(Ωm(t)) dt ≤M ′
4, (3.11)

where M ′
4 is a positive constant depend on |θs0 |L2(Ωm(s0)), |χs0 |H2(Ωm(s0)) and

|ṽ|L2(s0,s;V). Finally thanks to Lemma 3.1, 3.2, 3.3 and 3.4 with the equation
∆χ̃ = D̃ε

t χ̃− χ̃3 + χ̃ + θ̃ we get the conclusion. �
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Lemma 3.5. For any s0, s ∈ [0, T ] with 0 ≤ s0 < s ≤ T , there exists a posi-
tive constant M5 depend on |θs0 |H1(Ωm(s0)), |χs0 |H2(Ωm(s0)), |f |L∞(Qm(s0,s)) and
|ṽ|L2(s0,s;V) such that

|θ̃|L∞(Qm(s0,s)) +
∫ s

s0

|θ̃(t)|2H2(Ωm(t))dt + sup
t∈(s0,s)

|∇θ̃(t)|L2(Ωm(t)) ≤M5. (3.12)

Proof. Thanks to the estimate (3.10), the same argument of Lemma 3.2 and 3.3
works to the equation (3.1) of θ̃. �

In order to show the main theorem, especially to obtain the uniformly con-
vergence of approximation for χ, we prepare the compactness theorem of Aubin’s
type, see the paper of Simon [14]. Let D̃tu := ∂u/∂t + v · ∇u and ṽ − vD ∈
L2(0, T ;V)∩L∞(0, T ;H) and it satisfies (3.3) then the following proposition holds:

Proposition 3.6. Let F̄ be a bounded set in L∞(0, T ;H2(Ωm0)) and∫ T

0

|D̃tu(t)|2L2(Ωm(t))dt < M6 for all u(t, x) := ū(t,y(t, x)) with ū ∈ F̄ ,

where M6 is a positive constant. Then F̄ is relatively compact in C([0, T ]×Ωm0).

Proof. In our setting the domain is time dependent, but we have the enough
estimate for ṽ. So the boundedness of the time derivative is coming from the
one of D̃tu. Thus we get the conclusion.

We can find the related topics in Fukao [5]. �
Proof of Theorem 2.1. The proof is the same way in Fukao and Kenmochi [6]
with Proposition 3.6. The essential idea is due to Fujita and Sauer [4]. We denote
by ((PF); ṽ, θs0 , χs0) on [s0, s] the variational problem associated with the phase
field equations on Qm(s0, s) with given convection ṽ. And any functions {θ̃, χ̃}
satisfying the above lemmas are called solutions of ((PF); ṽ, θs0 , χs0) on [s0, s]. On
the other hand the solvability for the Navier-Stokes equations in non-cylindrical
domain was discussed by many authors, for example Fujita and Sauer [4]. Here
we apply the result of Kenmochi [7, 8]. In the existence proofs of [7, 8], one of
main points is an extensive use of a compactness theorem of Aubin’s type and its
extension. We denote ((NS)δ; θ̃, χ̃,vs0 ) on [s0, s] the following variational problem
associated with the penalized Navier-Stokes equations on Qm(s0, s):

−
∫ s

s0

(η′, w̃)Hdτ +
∫ s

s0

a(w̃,η)dτ +
∫ s

s0

b(τ ; w̃, w̃,η)dτ

+
∫ s

s0

c(τ ; w̃,η)dτ +
1
δ

∫ s

s0

(PL([χ̃]−w̃),η)Hdτ =
∫ s

s0

(gL(θ̃),η)Hdτ + (ws0 ,η(0))H

for all η ∈W0(s0, s),
where [χ̃]− is the negative part of χ̃, ws0 := vs0 − vD(s0) and

W0(s0, s) :=
{

η ∈ L4(s0, s;X);
η′ ∈ L2(s0, s;H), η(s) = 0 a.e. on Ω,
η = 0 a.e. on Q(s0, s) \Qm(s0, s)

}
.



Embedding Theorem for Phase Field Equation 177

We know from the result of [7] there exist functions w̃δ ∈ L∞(s0, s;H)∩L2(s0, s;V)
with w̃ = 0 a.e. on Q(s0, s)\Qm(s0, s) and w̃δ is weakly continuous from [s0, s] into
H such that w̃δ satisfies the above variational formulation. Moreover the following
inequality holds:

1
2
|w̃δ(t)|2H +

∫ t

s0

|w̃δ(τ)|2Vdτ +
1
δ

∫
Q(s0,t)

[χ̃]−|w̃δ|2dxdτ

≤ 1
2
|w̃s0 |2H +

∫ t

s0

(gL(θ̃), w̃δ)Hdτ for all t ∈ [s0, s].

Any functions ṽδ := w̃δ + vD satisfying the above estimate are called solutions
of ((NS)δ; θ̃, χ̃,vs0) on [s0, s]. Let 0 = tN0 < tN1 < tN2 < · · · < tNN = T , be the
partition of [0, T ] given by tNk = khN for k = 0, 1, . . . , N with hN = T/N . We are
now going to construct a sequence of approximate solutions. For each s, t ∈ [0, T ],
Θt,s(·) be the C3-diffeomorphism in Ω given by Θt,s(x) = x(s,y(t, x)) for all x ∈ Ω,
note that Θt,s maps Ωm(t) onto Ωm(s) for each s, t ∈ [0, T ]. Now, for fixed positive
parameters δ ∈ (0, 1], let us define a set of functions θN

δ , χN
δ on Qm and vN

δ on Q by

θN
δ (t, x) := θN

δ,k(t, x), if t ∈ [tNk−1, t
N
k ) and x ∈ Ωm(t),

χN
δ (t, x) := χN

δ,k(t, x), if t ∈ [tNk−1, t
N
k ) and x ∈ Ωm(t),

vN
δ (t, x) := vN

δ,k(t, x) if t ∈ [tNk−1, t
N
k ) and x ∈ Ω,

where θN
δ,k, χ

N
δ,k and vN

δ,k are solutions of the Navier-Stokes equations ((NS)δ; θ̃, χ̃,
vN

δ,k−1(tk−1)) and phase field equations ((PF);vN
δ,k, θ

N
δ,k−1(tk−1), χN

δ,k−1(tk−1)) on
[tNk−1, t

N
k ] where

θ̃(t, x) = θN
δ,k−1(t− hN ,Θt,t−hN (x)) for (t, x) ∈ Qm(tNk−1, t

N
k ),

χ̃(t, x) = χN
δ,k−1(t− hN ,Θt,t−hN (x)) for (t, x) ∈ Qm(tNk−1, t

N
k ).

By virtue of the Proposition 3.6 with Lemma 3.4, the compact embedding {χN
δ }

to C(Qm) is ensured. Thus in order to discuss convergences as N → 0 and δ → 0
we can use the standard compactness argument. Finally in order to show that the
convective vector coincides with vD in the solid region, the idea of the compact
cylinder by Fujita and Sauer [4] can be applied, because our solid region is exact
open set. �
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A Dynamic Boundary Value Problem
Arising in the Ecology of Mangroves

Gonzalo Galiano and Julián Velasco

Abstract. We consider an evolution model describing the vertical movement of
water and salt in a domain split in two parts: a water reservoir and a saturated
porous medium below it, in which a continuous extraction of fresh water takes
place (by the roots of mangroves). The problem is formulated in terms of a
coupled system of partial differential equations for the salt concentration and
the water flow in the porous medium, with a dynamic boundary condition
which connects both subdomains.

We study the existence and uniqueness of solutions, the stability of the
trivial steady state solution, and the conditions for the root zone to reach, in
finite time, the threshold value of salt concentration under which mangroves
may live.

Keywords. Dynamic boundary condition, system of partial differential equa-
tions, existence, uniqueness, stability, dead core.

1. Introduction

Mangrove forests or swamps can be found on low, muddy, tropical coastal areas
around the world. Mangroves are woody plants that form the dominant vegetation
of mangrove forests. They are characterized by their ability to tolerate regular in-
undation by tidal water with salt concentration cw close to that of sea water (see,
for example, [19]). The mangrove roots take up fresh water from the saline soil
and leave behind most of the salt, resulting in a net flow of water downward from
the soil surface, which carries salt with it. As pointed out by Passioura et al. [26],
in the absence of lateral flow, the steady state salinity profile in the root zone
must be such that the salinity around the roots is higher than cw, and that the
concentration gradient is large enough so that the advective downward flow of salt
is balanced by the diffusive flow of salt back up to the surface. In [26] the authors
presented steady state equations governing the flow of salt and uptake of water in

Supported by the Spanish DGI Project MTM2004-05417 and by the European RTN Contract
HPRN-CT-2002-00274.
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the root zone, assuming that there is an upper limit cc to the salt concentration at
which roots can take up water, and that the rate of uptake of water is proportional
to the difference between the local concentration c and the assumed upper limit
cc. They also assumed that the root zone is unbounded, and that the constant of
proportionality for root water uptake is independent of depth through the soil. In
[12], the model was extended in two important ways. First, considering more gen-
eral root water uptake functions and second, limiting the root zone to a bounded
domain. The authors proved mathematical properties such as the existence and
uniqueness of solutions of the evolution and steady state problems, the conditions
under which the threshold level of salt concentration is attained, and others. In [12],
it is assumed that tides, or other sources of fresh or not too saline water, renew the
water on the soil-water interface allowing to prescribe the salt concentration at this
boundary (Dirichlet boundary data). Although this is the usual situation in which
mangroves live, in this article we shall focus in the situation in which the inflow of
fresh or sea water is impeded. In this situation, the continuous extraction of fresh
water by the roots of mangroves drives the ecosystem to a complete salinization
and, henceforth, to death. This work is motivated by the occurrences observed at
Ciénaga Grande de Santa Marta, Colombia. As reported by Botero [8] (see also
[29]), the construction of a highway along the shore in the 1950s obstructed the
natural circulation of water between both parts of the road (Caribbean sea and
lagoon). In addition, in the 1970s, inflow of fresh water from the river Magdalena
was reduced due to the construction of smaller roads and flooding control dikes.
These changes caused a hypersalinization of water and soil, which resulted in ap-
proximately 70% mangrove mortality (about 360 Km2 of mangrove forests), see
[8], [18]. Although other causes, like evaporation or sedimentation, may have had
an important contribution to the salinization of the Ciénaga, we shall keep our
attention in the mechanisms of mangroves and their influence in this process.

The main mathematical difficulty of this model when compared with that
studied in [12] is that the closure of the natural system, the lagoon, implies a
new type of boundary condition in the water-soil interface, which is no longer of
Dirichlet type. Balance equations for salt and water content lead to a dynamical
boundary condition at such interface, i.e., a boundary condition involving the time
derivative of the solution. Although not too widely considered in the literature,
dynamic boundary conditions date back at least to 1901 in the context of heat
transfer [27]. Since then, they have been studied in many applied investigations
in several disciplines like Stefan problems [30, 33], fluid dynamics [16], diffusion
in porous medium [28, 15], mathematical biology [14] or semiconductor devices
[31]. From a more abstract point of view the reader is referenced to, among others,
[10, 24, 20, 11, 13, 1, 2, 7].

Apart from the mathematical technical details, one of the main features of the
dynamic boundary condition when compared to the Dirichlet boundary condition
is the elimination of the boundary layer the latter creates in a neighborhood of
the water-soil interface, layer in which the salt concentration keeps well below the
threshold salinity level. Thus, this new model allows us to describe the situation
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in which a continuous increase of fresh water uptake by the roots of mangroves
drives the ecosystem to a complete salinization.

The outline of the paper is the following: in Section 2 we formulate the math-
ematical model. We assume that mangroves roots are situated in a porous medium
in the top of which a water reservoir keeps the soil saturated. As in [12], coupled
partial differential equations for salt concentration and water discharge are con-
sidered in the porous medium. Above it, in the water reservoir, balance laws for
salt and water are formulated. The assumption of homogeneous salt concentration
in the water reservoir leads to a dynamic boundary condition in the water-soil
interface. In Section 3 we state our hypothesis and formulate our main results on
existence and uniqueness of solutions of the evolution problem, as well as the con-
vergence of this solution to the steady state solution. We also study the conditions
under which the complete salinization of the root zone is attained in finite time
(dead core). The proofs of these results will appear elsewhere [17].

2. The mathematical model

In this section we formulate the mathematical model which describes the salt and
water movement in the water-soil system. We consider the case where the man-
groves are present in the horizontal x, y plane, with a homogeneous porous medium
located below this plane and a water reservoir above it. The porous medium is
characterized by a constant porosity θ, indicating that we are assuming the man-
groves roots to be homogenized throughout the porous medium, without affecting
its properties. Assuming further that the hydrodynamic dispersion tensor, D, is
constant and isotropic, i.e., neglecting the velocity dependence in the mechanical
dispersion, we find for the salt concentration the equation, see [6],

θ
∂c

∂t
+ div (cq− θD∇c) = 0, (2.1)

where the vector q denotes the specific discharge of the fluid, D = DI, I is the
identity matrix and t denotes time. We also have a fluid balance in the porous
medium. Disregarding density variations in the mass balance equation of the fluid,
we obtain a fluid volume balance expressed by

div q + S = 0, (2.2)

where S is the volume of water taken up by the roots per unit volume of porous
material per unit time. If the mangroves are uniformly distributed throughout
the x, y-plane and there is no lateral fluid flow, we may consider the problem as
one-dimensional in the vertical direction. If the z-axis is positive when pointing
downwards, the flow domain is characterized by the interval 0 < z < H < ∞. In
the one-dimensional setting equations (2.1) and (2.2) become

θct + (cq − θDcz)z = 0, (2.3)
qz + S = 0, in (0, H)× (0, T ) (2.4)
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For S, we assume to have the form

S :=

⎧⎨⎩ s(z)
(

1− c

cc

)p

for 0 ≤ c ≤ cc,

0 for c > cc,
(2.5)

where cc is the upper limit of salt concentration at which mangroves may uptake
water, p > 0 and s(z) is determined by the root distribution as a function of the
depth z below the soil surface. This root distribution function will be non-negative,
and non-increasing with z. We shall keep in mind the following characteristic
example: we assume that the function s is a positive constant, s0/z∗, above a
certain depth z∗, and zero below that depth, i.e.,

s(z) = s0/z∗ if 0 ≤ z ≤ z∗ and s(z) = 0 if z∗ < z ≤ H. (2.6)

The quantity s0 is the total amount of root water uptake in the profile with no
salt present, in volume per unit surface per unit time, i.e., the transpiration rate
of the mangrove plants in the absence of salinity. On the bottom of the porous
medium domain, we assume no flux boundary conditions, resulting in

q(H, t) = cz(H, t) = 0 for t ∈ (0, T ). (2.7)

On the water-soil interface we prescribe a boundary condition which is deduced
from conservation laws for salt and water in the whole system water-soil. We
assume that salt concentration in the water domain, C, remains uniformly dis-
tributed in space. This approximation is justified when assuming a much faster
mixing of the salt in the reservoir than in the porous medium. Then, the average
height level of the water reservoir, W , and C are functions that only depend on
time. We further consider, based on a continuity assumption

C(t) = c(0, t) for t ∈ (0, T ). (2.8)

Then we have:

• The salt balance. Assuming that the total amount of salt in the system water-
soil remains constant, we have

d

dt

(
CW +

∫ H

0

θc
)

= 0 in (0, T ).

Therefore, from equation (2.3) and the boundary condition (2.7),

d(CW )
dt

= c(0, ·)q(0, ·)− θDcz(0, ·) in (0, T ). (2.9)

• The fluid balance, which asserts that the amount of water taken up from the
soil by the roots of mangroves is replaced by water from the reservoir:

dW

dt
= −q(0, ·) in (0, T ). (2.10)
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Combining (2.8)–(2.10) we deduce

W (t)ct(0, t) = θDcz(0, t) for t ∈ (0, T ), (2.11)

which is the dynamic boundary condition for the soil-water interface. Finally, we
add to this formulation given initial distributions of salt concentration, c(·, 0) = c0
in (0, H), and of water reservoir height level, W (0) = W0.

We recast the above formulation in an appropriate dimensionless form intro-
ducing the following variables, unknowns and parameters:

t̃ := Dt/z2
∗, x := z/z∗, u := c/cc, q̃ = qz∗/Dθ,

w = W/θz∗, s̃(x) := z∗s(Hx)/s0, d := H/z∗, m := s0z∗/Dθ,

and we define f(x, u) := S(Hx, ccu), with f : [0, d]× [0, 1]→ R+ given by

f(x, σ) := s̃(x)(1 − σ)p
+, (2.12)

with p > 0 and

s̃(x) = 1 if 0 ≤ x ≤ 1 and s̃(x) = 0 if 1 < x ≤ d. (2.13)

With the above changes we are led to the following problem (omitting tildes): find
u : Q̄T → [0, 1], q : Q̄T → R and W : [0, T ]→ R such that

ut + (uq − ux)x = 0, (2.14)
qx + mf(·, u) = 0 in QT = I × (0, T ), with I = (0, d), (2.15)
w′(t) + q(0, t) = 0 for t ∈ (0, T ),

subject to the boundary and initial conditions

w(t)ut(0, t) = ux(0, t), (2.16)
ux(d, t) = q(d, t) = 0 for t ∈ (0, T ), (2.17)
u(·, 0) = u0 in I, w(0) = w0. (2.18)

Remark 1. In the recasting of our model there appeared a constant capturing all
the important physical parameters, the mangrove’s number :

m := s0z∗/Dθ. (2.19)

Using [26] and [25] as a reference we find the following values for the physical
constants: D = 7 · 10−5 m2/day, θ = 0.5, and s0 = 1 �m−2day−1. Taking z∗ in the
range 0.2–0.5 m, this implies a time scale in the range 2–10 yr and m ∈ (6, 15).

3. Main results

We shall refer to problem (2.14)–(2.18), as to Problem P, for which we assume the
following hypothesis:
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H1. The function f : Ī × [0, 1]→ R, with I = (0, d) and d ≥ 1, satisfies

f ∈ L∞(I;C([0, 1]), |f | ≤ 1,
f(·, s) is non-increasing in Ī and f(d, s) ≥ 0 for all s ∈ [0, 1],
f(x, ·) is non-increasing in [0, 1] and f(x, 1) = 0 for a.e. x ∈ I.

Note that, in particular, f ≥ 0 in Ī × [0, 1].
H2. The initial data posses the regularity

u0 ∈ H1(I) with 0 ≤ u0 ≤ 1 in I.

H3. The function w is a positive constant. The number m is positive. We set
w = m = 1.

Remark 2. The assumption w (or the dimensional W ) constant in H3 has a rea-
sonable range of validity. From (2.4), (2.5), (2.10) and the mean value theorem we
infer

W (t) = W0 −
∫ t

0

q(0, τ)dτ = W0 − ts0(1 −
c̄

cc
)p, for some c̄ ∈ (0, cc).

Set s0 as in Remark 1 and p = 1. A lower limit for c̄ is sea water salt concentration
cw ∼ 0.5cc. Then W0 must be much greater than the 15 cm that the lagoon will
decrease per year while keeping the sea water salt concentration. For a value of
c = 0.9cc the decrease of the height level is of about 3 cm per year.

Remark 3. Since the numbers m and w do not play any essential role in the results
we prove in this work, we set m = w = 1 for clarity.

Under Hypothesis H1–H3 we cannot expect the existence of classical solutions. We
then introduce the notion of solution we shall work with.

Definition 1. We say that (u, q) is a strong solution of Problem P if u : Q̄T → [0, 1]
and q : Q̄T → R satisfy the following properties:

1. For any r ∈ (0,∞),

u ∈W 1,r(0, T ;Lr(I)) ∩ Lr(0, T ;W 2,r(I)) ∩ C((0, T ];C(Ī)),
q ∈ C((0, T ];W)

with W :=
{
ϕ ∈ W 1,∞(I) : ϕ(d) = 0

}
.

2. The differential equations (2.14) and (2.15) and the boundary conditions
(2.16) and (2.17) are satisfied almost everywhere. The initial distribution is
satisfied in the sense

lim
t→0
‖u(·, t)− u0‖L2(I) = 0.

We prove the following result on existence and regularity of solutions.

Theorem 1. Assume H1–H3. Then there exists a strong solution of Problem P
satisfying

u ≥ um := min
Ī

u0 a.e. in QT . (3.1)
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In addition, if for some p > 0

f ∈ Cp(Ī × [0, 1]) and u0 ∈ C2+p(Ī), (3.2)

and if u0 satisfies the following compatibility condition

u′
0(0) + u′

0(0)
∫ 1

0

f(x, u0(x))dx − u′′
0(0) = f(0, u0(0))u0(0), (3.3)

then u ∈ C1+p,2+p(Q̄T ) and q ∈ C1+p,1+p(Q̄T ).

We prove uniqueness of solution for f(x, ·) being Lipschitz continuous in [0, 1].
For more general functions, we show that uniqueness of solution holds true under
an additional condition on the component u. In Proposition 1 we give an example
in which solutions of Problem P satisfy such condition.

Theorem 2. Let (u1, q1) and (u2, q2) be two strong solutions of Problem P and let
H1-H3 be satisfied. If either

f(x, ·) is Lipschitz continuous in [0, 1] for almost all x ∈ Ω, (3.4)

or anyone of the solutions satisfies

u(x, t) >
∫ x

0

|ux(y, t)| dy a.e. in QT , (3.5)

then (u1, q1) = (u2, q2) a.e. in QT .

Proposition 1. Assume H1–H3 and (3.2)–(3.3), and let (u, q) be a solution of Prob-
lem P. Suppose that u0 satisfies u0x ≤ L in I and

f(·, um) ≤ L < um −
1
2
, (3.6)

for some positive constant, L, with um given by (3.1). Assume

f(·, u) + ufu(·, u) < 0 in QT . (3.7)

Then condition (3.5) is satisfied.

Remark 4. In particular, if f(x, σ) = s(x)(1 − σ)p, with s smooth, and u0 ∈
C2+p(Ī) satisfies u0x ≤ (1 − um)p < um − 1

2 , then condition (3.5) is satisfied.
Actually, the smoothness requirement on s may be dropped by using an approxi-
mation argument.

One important effect of the dynamic boundary condition when compared to
the Dirichlet boundary condition at the boundary water-soil is the elimination of
the boundary layer the latter creates. It is straightforward to prove that the unique
solution of the steady state problem corresponding to Problem P, i.e., functions
U ∈ H1(I) and Q ∈ W satisfying

(QU − Ux)x = Qx + f(·, U) = 0 in I,

Ux(0) = Ux(d) = 0,
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is the trivial solution (U,Q) = (1, 0). Regarding the asymptotic convergence of
solutions of Problem P to this trivial solution when t→∞, we have the following
result.

Theorem 3. Assume H1-H3 and um > 0, and let (u, q) be a strong solution of
Problem P. Then

(u, q)→ (1, 0) in L2(I) and u(0, t)→ 1 pointwise as t→∞.

We finally state a result on the existence of a dead core for solutions of
Problem P, i.e., sets where the threshold salinization u = 1 is attained in finite
time. The proof of this result, which is of local nature, i.e., independent of the
boundary data, can be found in [12]. First, we introduce some notation. For any
t ∈ (0, T ) we consider the parabola of vertex (x0, t),

P(t) := {(x, τ) : |x− x0| < (τ − t)ν , τ ∈ (t, T )} ,
with 0 < ν < 1 and x0 ∈ I such that T ν < x0 < 1 − T ν, implying P(t) ⊂ QT for
all t ∈ (0, T ). We define the local energy functions

E(t) :=
∫
P(t)

|ux|2 dx dτ and C(t) :=
∫
P(t)

(1− u)p+1 dx dτ. (3.8)

In [12] we proved the following theorem using the techniques introduced in [3, 4].

Theorem 4. Suppose there exist constants s0 and s1 such that

0 < s0σ
p+1 ≤ σf(·, 1− σ) ≤ s1σ

p+1 for σ ∈ [0, 1], (3.9)

in P(t) for a.e. t ∈ (0, T ), with p ∈ (0, 1) and s0 > s1/2, and let (u, q) be a
strong solution of Problem P. Then there exists a positive constant M such that if
E(0) + C(0) ≤M then u ≡ 1 in P(t∗), for some t∗ ∈ (0, T ).

Let us finish this section with a remark on the assumptions of Theorem 4.
First, if function f is given by f(x, σ) = s(x)(1− σ)p, with s given by (2.13) then
(3.9) is trivially satisfied in the region where s > 0 (root zone). Regarding the
bound of the initial energy, we have that testing the first equation of (2.14) with
1− u and using the equation (2.15) we obtain

2E(0) + C(0) ≤
∫

I

(1− u0)2 + (1− u0(0))2
(
1 +

∫
QT

f(·, u)
)
. (3.10)

Therefore, if the initial datum is close enough to one then the initial energy bound
is satisfied. Combining Theorems 3 and 4 we deduce the following corollary.

Corollary 1. Let (u, q) be a strong solution of Problem P in QT , for T large enough.
Under the conditions of Theorems 3 and 4 there exist T0, t

∗ > 0 such that u ≡ 1
in P(t∗), for some t∗ ∈ (T0, T ).

Or, in other words, the threshold value of salt concentration is attained in
any compact set contained in the root zone in finite time.
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Wave Breaking over Sloping Beaches
Using a Coupled
Boundary Integral-Level Set Method

M. Garzon and J.A. Sethian

Abstract. We present a numerical method for tracking breaking waves over
sloping beaches. We use a fully non-linear potential model for incompress-
ible, irrotational and inviscid flow, and consider the effects of beach topog-
raphy on breaking waves. The algorithm uses a Boundary Element Method
(BEM) to compute the velocity at the interface, coupled to a Narrow Band
Level Set Method to track the evolving air/water interface, and an associ-
ated extension equation to update the velocity potential both on and off the
interface. The formulation of the algorithm is applicable to two- and three-
dimensional breaking waves; in this paper, we concentrate on two-dimensional
results showing wave breaking and rollup, and perform numerical convergence
studies and comparison with previous techniques.

Keywords. Level set methods, Boundary integral methods, Wave breaking .

1. Introduction and overview

The coupling of Level Set Methods (LSM) and Boundary Integral Methods (BIM)
is very adequate for solving certain class of free boundary problems, mainly for
two reasons. First, the robustness and topological properties of LSM to move the
front, and second, the accuracy, sharpness and single fluid approach of BIM to
obtain the front velocity.

In this work we are interested in problems where the boundary condition
for the BIM has to be obtained from the solution of a partial differential equa-
tion posed on the moving front. Examples of that problems are: The Helle-Shaw
problem, sprays and electrosprays, and wave breaking among others.

This work was supported by U.S. Department of Energy, Applied mathematical Sciences, and the
Division of Mathematical Sciences, National Sciences Foundation and the Spanish DGI project
BFM 00-1324.
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Wave breaking is a highly non-linear phenomena involving two phase flow
and turbulent flow. It has been confirmed by experimental measurements ([7])
and full Navier Stokes simulations ([13]), that the water flow is almost irrotational
up to the impact of the jet onto the flat surface of the water. Therefore a fully
non-linear potential flow model (FNPM) can be used [4].

Previous works on wave breaking are very extensive. Simulations up to the
impact can be found in ([4], [5], [6]). For breaking and postbreaking see, for exam-
ple, ([13],([8]). Laboratory measurements can be found in ([7]).

The idea of the present work is, as mentioned above, to couple LSM and BIM
for the numerical solution of the FNPM for two-dimensional waves shoaling over
a constant and sloping bottom. This approach provides a simple and direct way
to solve the model equations by reformulating the problem in a complete Euler-
ian framework, and straightforward upwind numerical schemes give sufficiently
accurate wave profiles while shoaling and breaking. The formulation is unchanged
in three dimensions, offering the possibility of computing complex breaking wave
motions.

2. The governing equations

Let Ω(t) be the 2D fluid domain in the vertical plane (x, z) at time t, with z
the vertical upward direction (and z = 0 at the undisturbed free surface), and
Γt(s) = (x(s, t), z(s, t)) a parametrization of the free boundary at time t (see
Figure 1).

�

�

�����
�

�
hΓ1

Γb

Γb

Γ2

Γt(s)
R(s, t)

Ω(t)

���������

x

z

Figure 1. The domain

Under the previous above mentioned assumptions, the mass and momentum
conservation equations are given by

∇u = 0 in Ω(t) (2.1)

ut + u · ∇u =
−∇p
ρ

+ b in Ω(t) (2.2)

where u(x, z, t) is the fluid velocity, p(x, z, t) the pressure field, b(x, z, t) the body
forces (per unit mass), ρ is the fluid density.
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Since the motion is irrotational, fluid particles do not rotate and vorticity
vanishes everywhere in the field of flow. In this case, this means that the velocity
field can be represented as the gradient of a scalar function referred to as the
velocity potential φ(x, y, t). If u = ∇φ, and b = −gz, being z a unit vector in the
vertical direction (z = ∇z), the momentum equation (2.2) reduces to the so-called
Bernoulli’s equation:

φt +
1
2
(∇φ · ∇φ) +

p− pa

ρ
+ gz = 0. (2.3)

This gives the pressure field once φ is known (here pa denotes the atmospheric
pressure).
On the free boundary, the following boundary conditions are imposed:

1. Continuity of stress tensor between water and air leads to p = pa, and thus
we have

φt +
1
2
(∇φ · ∇φ) + gz = 0 on Γt(s).

2. If R(s, t) = (X(s, t), Y (s, t)) is the position vector of a fluid particle on the
free surface, we have the kinematic boundary condition

Rt(s, t) = u(R(s, t), t) on Γt(s)

where s identifies the fluid particle that is in x = X(s, t), z = Z(s, t) at time t.
Therefore, the model equations are:

u = ∇φ in Ω(t) (2.4)
∆φ = 0 in Ω(t) (2.5)
Rt = u on Γt(s) (2.6)
Dφ

Dt
= −gz +

1
2
(∇φ · ∇φ) on Γt(s) (2.7)

φn = 0 on Γb ∪ Γ1 ∪ Γ2. (2.8)

3. Embedding the equations of motion in a level set framework

Briefly, the main idea of the LSM ([9], [10], [11]) is to embed the initial position
of the front as the zero level set of a higher-dimensional function Ψ(x, z, t). One
then links the evolution of this function Ψ to the propagation of the front itself
through a time-dependent initial value problem. At any time, the front is given by
the zero level set of the time-dependent level set function Ψ. An equation for the
motion for this level set function Ψ which matches the zero level set of Ψ with the
evolving front comes from observing that the level set value of a particle on the
front with path R(s, t) must always be zero:

Ψ(R(s, t), t) = 0

Hence, we have that

Ψt +∇Ψ(R(s, t), t) · u = 0. (3.1)
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For our wave problem, let Ω1 be a fictitious fixed squared domain that con-
tains the free boundary at any time t. Equation (2.6), which states that the front
moves with velocity u can be replaced by the level set equation (3.1) posed on Ω1.

To embed equation (2.7) in the level set framework we do the following: On
the free boundary Γt(s) we define

Φ(s, t) = φ(x, z, t)|Γt(s) = φ(R(s, t), t),

and thus by fixing s and moving t, we are constrained to a fluid particle, which
means that Φt(s, t) is a total derivative and hence

Φt = φt + u · ∇φ =
1
2
(∇φ · ∇φ)− gz.

Next, let be G(x, z, t) a function defined on Ω1 with the following property:

G(X(s, t), Z(s, t), t) = Φ(s, t) on Γt(s)

Applying the chain rule, we have

Gt + u · ∇G =
1
2
(∇φ · ∇φ) − gz, (3.2)

which holds on Γt(s). Note that u and right-hand side of equation (3.2) are only
defined on Γt(s). In order to be able to solve equation (3.2) embedded in the whole
domain Ω1, we need to extend these variables off the front.

The model equations, written in a complete Eulerian framework, are

u = ∇φ in Ω(t) (3.3)
∆φ = 0 in Ω(t) (3.4)

Ψt +∇Ψ · uext = 0 in Ω1 (3.5)
Gt + uext · ∇G = fext in Ω1 (3.6)

φn = 0 on Γb ∪ Γ1 ∪ Γ2 (3.7)

being f = 1
2 (∇φ · ∇φ)− gz and fext the extension of f onto Ω1.

4. Numerical approximations and algorithms

Integral formulation of equation (3.4), with boundary conditions given by (3.6)
and (3.7) is solved using a BEM, that uses a Galerkin approximation of the BI,
linear shape functions and a special treatment of the corners. The interface veloc-
ity is obtained postprocessing the solution φn on the interface using a Galerkin
technique, see ([3]).

To approximate equations (3.5) and (3.6) in Ω1 homogeneous boundary con-
ditions are imposed on ∂Ω1. A second-order upwind finite differences in space and
first-order in time is used for equation (3.5), while for equation (3.6) we used a
first-order upwind finite differences in space and first-order in time.

The velocity and the velocity potential are both initially defined only on
the interface. In order to create values throughout the narrow band, which are
required to update the fixed grid Eulerian partial differential equations, we use the
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extension methodology developed by Adalsteinsson and Sethian in [1] to construct
appropriate extensions.

The basic algorithm can be summarized as follows:

1. Compute initial front position and velocity potential Φ(s, 0) on Γ0(s).
2. Extend Φ(s, 0) onto the grid points of Ω1 to initialize G.
3. Generate Ω(t) and solve (3.4), using the Boundary Element Method. This

yields the velocity u and source term f on the front nodes.
4. Extend u and f off the front onto Ω1.
5. Update G using (3.6) in Ω1.
6. Move the front with velocity u using (3.5) in Ω1

7. Interpolate (bi-cubic interpolation) G from grid points of Ω1 to the front
nodes to obtain new boundary conditions for (3.4). Go back to step 3 and
repeat forward in time.

A more complete algorithm with regridding can be found in [2].

5. Numerical results

A common procedure to study the accuracy and convergence properties of the
discretized equations with respect the mesh sizes and the time step is by means
of an analytical solution. A solitary wave propagating over a constant depth is a
travelling wave that moves in the x direction with speed equal to the celerity of the
wave (c). The velocity potential and the velocity on the front as functions of x are
also translated with the same speed c. Therefore, in this case, by calculating initial
wave data with Tanaka’s method ([12]) and translating it, we are able to compute
the L2 norms of the errors for the various magnitudes. See these results in [2].

For the case of a solitary wave shoaling over a sloping bottom, the accu-
racy can only be checked looking at the mass and energy conservation properties
and comparing breaking wave characteristic obtained here with those reported
elsewhere, for example in [5].

5.1. Sloping bottom test

A solitary wave propagating over a sloping bed changes its shape gradually, slightly
increasing maximum height and front steepness, till a point where a vertical front
tangent is reached. This is usually called the breaking point BP=(tbp, xbp, zbp),
where xbp represents the x coordinate, zbp the height at xbp and tbp the time of
occurrence. Beyond the BP the wave tip develops, with velocities much bigger than
the wave celerity, causing the wave overturning and the subsequent falling of the
jet toward the flat water surface. Denote this endpoint as EP=(tep, xep, zep). Total
wave mass and total energy should be theoretically, conserved until EP. However
beyond the BP a lost in potential energy and the corresponding gain in kinetic
energy is expected, due to the large velocities on the wave jet.
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Wave breaking characteristics change, mainly according to initial wave ampli-
tude (H0) and bottom topography. To study how our numerical method predicts
wave breaking we run the following test cases:

• (a) H0 = 0.6, L = 25, slope=1 : 22, xc = 6.05, xs = 6
• (b) H0 = 0.6, L = 18, slope=1 : 15, xc = 5.55, xs = 5.4

and compare the results obtained here for case (b) with those reported in ([4]).
Here xc denotes the x coordinate at the crest for the initial wave and xs the x
coordinate where the bottom slope starts.

A series of numerical experiments have been made, and optimal discretization
parameters found are: ∆x = 0.01, ∆t = 0.0001 and d0 = 0.005, f0 = 10 (approx-
imately 193 BEM nodes) for all cases. Front regridding has been made according
to maximum height before the BP and according to maximum velocity modulus
beyond BP. Beyond the BP, and due to the complex topography of the wave front,
reinitialization of Ψ and new Φ(s, t) extension has been performed every 1000 time
steps.

Table 1 shows the breaking characteristics for the test cases. Grilli et all
reported in ([4]) for test (b) values of tbp = 2.41, xbp = 15.64 and zbp = 0.67. The
discrepancies can be attributed to the slightly different position of the initial wave
(xc = 5.5) and the higher-order approximations used in their Lagrangian-Eulerian
formulation.

Test tbp xbp zbp tep xep

(a) 2.76 17.39 0.674 3.36 20.2
(b) 2.34 15.20 0.662 2.90 17.8

Table 1. Breaking characteristics

Figure 2 shows wave shape for case (a) at t = 0, 1, 2, 2.76, 2.94, 2.14, 3.34
and Figure 3 shows wave shape for case (b) at t = 0, 1, 2, 2.34, 2, 48, 2.68, 2.90. In
Figures 4 and 5 we show in more detail the wave profiles from the BP to the EP
for cases (a) and (b) respectively.

Finally, to see how wave shape and breaking characteristics change with bot-
tom topography, we consider two more tests, this time with a sinusoidal shape
bottom. As can be seen in Figures 6 and 7 the breaking characteristics are consid-
erably different, and the wave breaks as a spilling breaker rather than the plunging
breaker of case (a) and (b).

From these numerical experiments we conclude that the numerical method
presented here is capable of reproducing wave shoaling and breaking till the touch-
down of the wave jet. Considering that we use only first-order approximations of
the model equations, a piecewise linear approximation of the free boundary, and a
first-order linear BEM, the results are quite accurate. The absolute errors in mass
and energy seem to be higher than those reported in ([4]). This is not surprising
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due to the fact that in ([4]) a higher-order BEM is used (both higher-order ele-
ments to define local interpolation between nodes and spline approximation of the
free boundary geometry) and time integration for the free boundary conditions is
at least second-order in time.
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Figure 2. Wave shape at various times. Case (a)
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Figure 3. Wave shape at various times. Case (b)



196 M. Garzon and J.A. Sethian

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
H0=0.6 slope1:22

x

z

Figure 4. Wave shape at various times. Case (a)
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Figure 5. Wave shape at various times. Case (b)
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Figure 6. Wave shape at various times. Case (c)
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Figure 7. Wave shape at various times. Case (d)
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Finite Difference Schemes for Incompressible
Flows on Fully Adaptive Grids

Frédéric Gibou, Chohong Min and Hector Ceniceros

Abstract. We describe a finite difference scheme for simulating incompressible
flows on nonuniform meshes using quadtree/octree data structure. A semi-
Lagrangian method is used to update the intermediate fluid velocity in a
standard projection framework. Two Poisson solvers on fully adaptive grids
are also described. The first one is cell-centered and yields first-order accu-
rate solutions, while producing symmetric linear systems (see Losasso, Gibou
and Fedkiw [15]). The second is node-based and yields second-order accurate
solutions, while producing nonsymmetric linear systems (see Min, Gibou and
Ceniceros [17]). A distinguishing feature of the node-based algorithm is that
gradients are found to second-order accuracy as well. The schemes are fully
adaptive, i.e., the difference of level between two adjacent cells can be arbi-
trary. Numerical results are presented in two and three spatial dimensions.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00.

1. Introduction

Incompressible flows are at the center of countless applications in physical sci-
ences. Uniform Cartesian grids used in numerical simulations are limited in their
ability to resolve small scale details and as a consequence nonuniform meshes are
often used in practice. For example, see the approach of Almgren et al. [1] (and
the references therein) for the Navier-Stokes equations on block structured grids.
Since the work of [2] on compressible flows, adaptive mesh refinement techniques
have been widely used. In the case of incompressible flows, adaptive mesh strate-
gies are quite common (see, e.g., [7]), but implementations based on the optimal
quadtree/octree data structure is less common.

In the case of a standard projection method (see, e.g., [4, 3]), the most compu-
tationally expensive part comes from solving a Poisson equation for the pressure.
This is also the limiting part in terms of accuracy, since high-order accurate (and
unconditionally stable) semi-Lagrangian methods exist for the convective part. In
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Figure 1. Left: the domain is tiled with cells of sizes varying accord-
ing to the refinement criterion. Right: Zoom of one computational cell.
The velocity components u, v and w are defined on the cell faces while
the pressure p is defined at the center of the cell. The density ρ, the
temperature T and the level set function φ are stored at the nodes.

[18], Popinet proposed second-order nonsymmetric numerical method to study the
incompressible Navier-Stokes equations using an octree data structure. In [15],
Losasso et al. extended the nonsymmetric discretization of [18] proposing a sym-
metric solution of the Poisson equation. This work relies on the observation that,
in the case of the Poisson equation, first-order perturbations in the location of the
solution yield consistent schemes (see [6]). Losasso et al. [14] recently extended
the work of Lipnikov et al. [12] to the case of arbitrary grids to propose a second-
order accurate symmetric discretization of the Poisson equation. In [17], Min et al.
proposed a second-order accurate scheme that also yields second-order accurate
gradients. In this case the linear system is nonsymmetric, but diagonally dominant.

2. The octree data structure

In [15], Losasso et al. proposed a solver for the incompressible Euler equations on
fully adaptive grids. The domain is tiled with cells as depicted in Figure 1 and
the mesh is refined automatically in order to capture the local details critical to
realistic simulations and coarsened elsewhere. An octree data structure is used
(see [19]) for efficient processing and the different variables are stored as depicted
in Figure 1: The velocity components u, v and w are stored at the cell faces
while the pressure is stored at the center of the cell. This is the standard MAC
grid arrangement used in previous works (see, e.g., [8]). However, in the case of
nonuniform meshes it is more convenient to store the other quantities such as the
density ρ, the temperature T and the level set function φ at the nodes of each cell.
This stems from the fact that interpolations of ρ, φ and T are more difficult with
cell-centered data as discussed in [22].
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3. Navier-Stokes equations on octrees

The motion of fluids is described by the incompressible Navier-Stokes equations
for the conservation of momentum and mass:

ut + u · ∇u = −∇p + f , (3.1)
∇ · u = 0, (3.2)

where u = (u, v, w) is the velocity field, f accounts for the external forces and where
the spatially constant density of the mixture has been absorbed in the pressure p.
Viscous effects are ignored.

A projection method [4] (see also [3]) is used to solve equations 3.1 and 3.2:
First an intermediate velocity u∗ is computed over a time step �t, ignoring the
pressure term

u∗ − u
�t + u · ∇u = f . (3.3)

This step, accounting for the convection and the external forces, is followed by
a projection step to account for incompressibility and boils down to solving the
Poisson equation

∇2p =
1
�t∇ · u

∗. (3.4)

Finally, the pressure correction is added to define the new velocity field u:

u = u∗ −∆t∇p. (3.5)

The reader is referred to [15] and the references therein for details in the simulations
of free surface flows.

3.1. Finding the intermediate velocity

The intermediate velocity u∗ is found by solving equation 3.3 using a first-order
accurate semi-Lagrangian method. In the case of nonuniform grids, the standard
high-order accurate upwind methods (see, e.g., [9, 20, 13]) traditionally used in the
case of uniform grids are not well suited due to their stringent time step restrictions
and the complexity of their implementations. On the other hand, semi-Lagrangian
methods (see, e.g., [21]) are unconditionally stable and are straightforward to
implement.

3.2. The divergence operator

Equation 3.4 is solved by first evaluating the right-hand side at every grid point
in the domain. Then, a linear system for the pressure is constructed and inverted.
Consider the discretization of equation 3.4 for a large cell with dimensions�x, �y
and �z neighboring small cells as depicted in Figure 1 (left). Since the discretiza-
tion is closely related to the second vector form of Green’s theorem that relates a
volume integral to a surface integral, we first rescale equation 3.4 by the volume
of the large cell to obtain

Vcell�t∇2p = Vcell∇ · u∗. (3.6)
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Figure 2. Discretization of the pressure gradient. The pressure values
p1, p2, p6, and p10 are defined at the center of the cells. pa represents
a weighted average pressure value. py defines the y component of the
pressure gradient between Cell 1 and Cell 10 defined by standard central
differencing. p̂x represents the discretization of the x component of the
pressure gradient between Cell 1 and Cell 2, whereas px is a O(�x)
perturbation of p̂x.

The right-hand side of equation 3.6 now represents the quantity of mass flowing
in and out of the large cell within a time step �t in m3s−1. This can be further
rewritten as

Vcell∇ · (u∗ −�t∇p) = 0. (3.7)

This equation implies that the term ∇p is most naturally evaluated at the same
location as u∗, namely at the cell faces, and that there is a direct correspondence
between the components of the vectors ∇p and u∗. That is, there is a direct
correspondence between px and u, py and v, pz and w, which live on the right
and left faces, top and bottom faces, front and back faces, respectively. Moreover,
substituting equation 3.5 into equation 3.7 implies Vcell∇ · u = 0 or ∇ · u = 0 as
desired.

Invoking the second vector form of Green’s theorem, one can write

Vcell∇ · u∗ =
∑
faces

(u∗
face · n)Aface, (3.8)

where n is the outward unit normal of the large cell and where Aface represents
the area of a cell face. In the case of Figure 1 (left), the discretization of the x
component ∂u∗/∂x of the divergence reads

�x�y�z ∂u
∗

∂x
= u∗

2A2 + u∗
3A3 + u∗

4A4 + u∗
5A5 − u∗

1A1, (3.9)
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Figure 3. High-resolution simulation illustrating the motion of a solid
object through shallow water (left), the subsequent flow that reflects off
the wall (center), and the eventual cresting and overturning of waves
generated by this process (right). Reprinted from [15]

where the minus sign in front of u∗
1A1 accounts for the fact that the unit normal

points to the left. In this example, the discretization of ∂u∗/∂x amounts to

∂u∗

∂x
=

1
�x

(
u∗

2 + u∗
3 + u∗

4 + u∗
5

4
− u∗

1

)
. (3.10)

The y and z directions are treated similarly.

3.3. Defining the pressure derivative to obtain a symmetric linear system

Once, the divergence is computed at the grid node, equation 3.4 is used to construct
a linear system of equations for the pressure. Invoking again the second vector form
of Green’s theorem, one can write

Vcell∇ · (�t∇p) =
∑
faces

((�t∇p)face · n) Aface. (3.11)

Therefore, once the pressure gradient is computed at every face, we can carry out
the computation in a similar manner as for the divergence of the velocity described
above.

In Gibou et al. [6], we showed that O(�x) perturbations in the location of the
solution sampling still yield consistent approximations. This was then exploited in
[15] to define ∇p in order to construct a symmetric linear system. We simply define

px =
p2 − p1

� ,

where� can be defined as� = �x, which is the size of the large cell or� = 1
2�x,

which is the size of the small cell, or as the Euclidean distance between the loca-
tions of p1 and p2 or as the distance along the x direction between the locations of
p1 and p2 etc. In fact, in light of Theorem 4.1, we understand that there is some
leeway in defining �. Numerical tests against analytical solutions equation were
presented in [15] to demonstrate that this scheme is convergent.
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Figure 4. High-resolution simulation of the formation of a milk crown
illustrating the capability of emulating surface tension. Reprinted
from [15].

4. Second-order schemes for Poisson

The method in [15] is first-order accurate on fully adaptive grid and yields a sym-
metric linear system. This work was extended to second-order accuracy in Losasso
et al. [14] using ideas from Lipnikov et al. [12]. We have presented in Min et
al. [17] a Poisson solver on fully adaptive grids that produces second-order accu-
rate solutions with second-order accurate gradients. This scheme yields diagonally
dominant linear systems and is straightforward to implement. In particular, the
discretization associated with one grid nodes involves only two (2D) or three (3D)
adjacent cells, producing a scheme straightforward to implement.

4.1. Analysis

Theorem 4.1 (from [17]). Consider a finite difference for �u = f that is mth-order
accurate at locally uniform cell and nth-order accurate at locally nonuniform cell
with m,n ≥ 1. Then, it is globally min(m,n + 1)th-order accurate in L∞ norm.

This means that second-order accuracy in the maximum norm can be achieved
with discretizations that are only first-order accurate at locally nonuniform points,
but that reduce to second-order accurate at locally uniform points. Consider a
Cartesian domain Ω ∈ R

n with boundary ∂Ω and the variable Poisson equation
∇ · (ρ∇u) = f on Ω with Dirichlet boundary condition u|∂Ω = g. We assume that
the variable coefficient ρ is bounded from below by a positive constant.

In one spatial dimension, standard central differencing formulas read:(
ui−1 − ui

si− 1
2

· ρi−1 + ρi

2
+

ui+1 − ui

si+ 1
2

· ρi+1 + ρi

2

)
· 2
si− 1

2
+ si+ 1

2

= fi,

where si−1/2 is the distance between nodes i− 1 and i. Authors have often been
mislead by Taylor analysis and concluded that such schemes are only first-order
accurate. However, they are second-order accurate. This has been observed ana-
lytically (see, e.g., [16, 11] and numerically [5], [10]).

This discretization can be applied in a dimension by dimension framework.
However, special care needs to be taken when vertices are no longer aligned (see,
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Figure 5. Left: Discretization at u0 in the case of a nonuniform mesh.
Right: Domain Ω = [0, π]2 and original mesh used in example 4.2.1.

e.g., Figure 5 [left]). In this case, [17] propose to use the truncation error in linear
interpolation in the transverse direction as part of the stencil for the derivative
in the other direction, leading to a more compact stencil, and an M-matrix. For
example, referring to Figure 5 (left) the discretizations for (ρux)x and (ρuy)y along
with their Taylor analysis are given respectively by(

u1 − u0

s1
· ρ1 + ρ0

2
+

s6D5 + s5D6

s5 + s6

)
· 2
s1 + s4

(4.1)

= (ρux)x +
s5s6

(s1 + s4)s4
(ρuy)y + O(h),

and (
u2 − u0

s2
· ρ2 + ρ0

2
+

u3 − u0

s3
· ρ3 + ρ0

2

)
· 2
s2 + s3

(4.2)

= (ρuy)y + O(h),

with
D5 = u5−u0

s4
· ρ5+ρ0

2 ,

D6 = u6−u0
s4
· ρ6+ρ0

2 .

The spurious term s5s6
(s1+s4)s4

(ρuy)y is cancelled by weighting appropriately
equations (4.1) and (4.2) as(

u1−u0
s1
· ρ1+ρ0

2 + s6a5+s5a6
s5+s6

)
· 2

s1+s4

+
(

u2−u0
s2
· ρ2+ρ0

2 + u3−u0
s3
· ρ3+ρ0

2

)
· 2

s2+s3
·
(
1− s5s6

(s1+s4)s4

)
= f0 + O(h).

The discretization obtained is now first-order accurate at locally nonuniform
points and second-order accurate at locally uniform points, hence yields a globally
second-order accurate scheme in the maximum norm in light of Theorem 4.1.
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Effective Resolution Error in the L∞ norm Order Error in the L1 norm Order

322 4.18× 10−1 9.25× 10−2

642 9.11× 10−2 2.20 2.09× 10−2 2.15

1282 2.31× 10−2 1.98 5.29× 10−3 1.99

2562 5.89× 10−3 1.97 1.33× 10−3 1.99

5122 1.49× 10−3 1.98 3.35× 10−4 1.99

Table 1. Second-order accuracy in the solution of example 4.2.1.

4.2. Numerical experiments

We report numerical evidences that confirm the schemes described above yield
second-order accuracy in the L1 and L∞ norms for both the solution and its
gradients, on highly irregular grids. In particular the difference of level between
cells can be greater that one, illustrating that the method preserves its second-
order accuracy on fully adaptive meshes. The linear systems of equations are solved
using a bi-conjugate gradient method with an incomplete Cholesky preconditioner.

4.2.1. Accuracy on solution. Consider a domain and a grid depicted in Figure 5
[right] and ∇ (ρ∇u) = f with an exact solution of u(x, y) = sin(x) + sin(y) and
density ρ = sin(x) sin(y) + 2. Dirichlet boundary conditions are imposed on the
boundary. Table 1 demonstrates second-order accuracy in the L1 and L∞ norms.

4.2.2. Accuracy on gradient. One distinguishing feature of this algorithm is that it
yields second-order accuracy in the maximum norm for the solution’s gradients as
well. This is achieved by removing spurious error with procedures related to those
presented above, i.e., referring to the notations in Figure 5 (left), the gradient at
u0 is calculated as:

ux = u4−u0
s4
· s1

s1+s4
+ u0−u1

s1
· s4

s1+s4
− s5s6s1

2s4(s1+s4)uyy,

uy = u3−u0
s3
· s2

s2+s3
+ u0−u2

s2
· s3

s2+s3
,

where

uyy =
(
u3 − u0

s3
+

u2 − u0

s2

)
· 2
s2 + s3

.

Consider a domain and a grid depicted in Figure 5 (right) and ∇ (ρ∇u) = f
with an exact solution of u(x, y) = sin(x)+sin(y) and density ρ = sin(x) sin(y)+2.
Dirichlet boundary conditions are imposed on the boundary. Table 2 demonstrates
second-order accuracy of the gradient in the L1 and L∞ norms.
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Effective Resolution Error in the L∞ norm Order Error in the L1 norm Order

642 4.25× 10−2 9.48× 10−3

1282 1.66× 10−2 1.36 2.41× 10−3 1.98

2562 4.42× 10−3 1.91 5.81× 10−4 2.05

5122 1.12× 10−3 1.98 1.41× 10−4 2.04

10242 2.78× 10−4 2.01 3.46× 10−5 2.03

Table 2. Convergence rate for example 4.2.2.

5. Conclusion

We have described finite difference schemes for simulating incompressible flows on
nonuniform meshes. The quadtree (2D) and octree (3D) data structures allowed
for an efficient representation of the mesh. In particular, we have described two
different schemes for solving the Poisson equation. The first one is cell-centered
and yields first-order accurate solutions, while producing symmetric linear systems
[15]. The second is node-based and yields second-order accuracy for the solution
and its gradients, while producing nonsymmetric linear systems [17]. The schemes
are fully adaptive, i.e., the difference of level between two adjacent cells can be
arbitrary.
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Global Solvability of
Constrained Singular Diffusion Equation
Associated with Essential Variation

Yoshikazu Giga, Hirotoshi Kuroda and Noriaki Yamazaki

Abstract. We consider a gradient flow system of total variation with con-
straint. Our system is often used in the color image processing to remove a
noise from picture. In particular, we want to preserve the sharp edges of pic-
ture and color chromaticity. Therefore, the values of solutions to our model is
constrained in some fixed compact Riemannian manifold. By this reason, it is
very difficult to analyze such a problem, mathematically. The main object of
this paper is to show the global solvability of a constrained singular diffusion
equation associated with total variation. In fact, by using abstract conver-
gence theory of convex functions, we shall prove the existence of solutions to
our models with piecewise constant initial and boundary data.

Mathematics Subject Classification (2000). Primary 35K55, 68U10; Secondary
47J35.

Keywords. Singular diffusion, total variation, color image processing, subdif-
ferential.

1. Introduction

We consider a constrained singular diffusion equation associated with total varia-
tion as follows:

u′ = −πu

(
−div

(
∇u
|∇u|

))
in (0, T )× Ω, (1.1)

where u′(t) :=
d

dt
u(t), 0 < T < +∞ and Ω is a bounded domain in R

2 with

boundary Γ. Let Sn−1 be the unit sphere in R
n (n ≥ 1), i.e.,

Sn−1 := {w ∈ R
n; |w| = 1}.
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For each element u ∈ Sn−1, let πu : R
n → TuS

n−1 be an orthogonal projection
from R

n = TuR
n to tangent space TuS

n−1 of Sn−1 at u.
The motivation of this paper is the color image processing. The constrained

singular diffusion equation (1.1) was proposed by Tang-Sapiro-Caselles [22, 23] in
order to remove a noise from the chromaticity of the initial image preserving the
sharp edges of picture and color chromaticity.

For the gray image processing, there is a vast literature. For instance, we
refer to [1, 2, 6, 19, 20]. In the simplest model of the gray image processing, the
Gaussian filter was used for a grey-level function. Namely, for a given initial grey-
level function u0, we solve the heat equation

u′ = ∆u in (0, T )× Ω

to get a denoised grey-level function u(t, ·) at scale t. However, this way has a
drawback since all characteristic function is mollified and a sharp contrast become
ambiguous. In order to keep the sharp edges, one use a (unconstrained) singular
diffusion equation governed by total variation flow⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′ = div
(
∇u
|∇u|

)
in (0, T )× Ω,

u = g(x) on (0, T )× Γ,
u(0, ·) = u0 in Ω,

(1.2)

where g and u0 are given data. Then, the grey-level function is not mollified, and a
Heaviside type function is a stationary solution to (1.2). Since (1.2) is the gradient
system, we easily get the results on existence and uniqueness of solutions. In fact,
we can define the energy functional ψ on L2(Ω) by

ψ(u) =

⎧⎨⎩
∫

Ω

|∇ũ| if ũ ∈ BV (Ω),

+∞ otherwise.
(1.3)

Here ũ is the extension of u ∈ L2(Ω) to R
2 such that ũ(x) = g̃(x) for x ∈ R

2 \
Ω, where g̃ is a Lipschitz extension of the boundary data g to R

2. Then, ψ is
proper, lower semi-continuous and convex on L2(Ω). Moreover, the (unconstrained)
gradient system (1.2) can be reformulated as in the abstract form:

u′(t) ∈ −∂ψ(u(t)) in L2(Ω), for t > 0. (1.4)

Thus, by applying the general theory established by Brézis [5] and Kōmura [16],
we can get the solution to (1.2). For another detailed analysis, we refer to [1, 2],
for instance. The (unconstrained) singular diffusion equation is also important to
describe nonlinear physical phenomena (cf. [8, 10, 14, 15, 21, 24]). For instance,
Shirakawa-Kimura [21] studied Allen-Cahn type equation with the total variation
functional as the interfacial energy.
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In this paper we discuss the global existence of solution u : [0, T ) × Ω →
Sn−1 ⊂ R

n to the following Dirichlet problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′ = −πu

(
−div

(
∇u
|∇u|

))
in (0, T )× Ω,

u = g(x) on (0, T )× Γ,
u(0, ·) = u0 in Ω,

(1.5)

where g and u0 are given data which are maps from Ω to Sn−1. In 2003, Giga-
Kobayashi [10] considered the problem (1.5) in the one-dimensional case. Then,
they showed that for each piecewise constant initial data u0 on Ω, there is a unique
global solution u on [0,∞) such that u(t) is a piecewise constant on Ω. Moreover,
they studied the stationary problem in the case when the manifold is the unit circle
S1 in R

2. In 2004, Giga-Kashima-Yamazaki [9] studied (1.1) in the n-dimensional
torus domain Ω := T

n =
∏n

i=1(R/ωiZ) for given ωi > 0 (i = 1, 2, . . . , n). Assuming
that the initial data u0 is (sufficiently) small in some sense, they [9] constructed
the local solution to (1.1) in the torus domain T

n as the limit of solutions to
p-harmonic map flow equations with p > 1

u′ = −πu

(
−div

(
|∇u|p−2∇u

))
in (0, T )× T

n (1.6)

by passing to the limit of p→ 1. In 2005, Giga-Kuroda-Yamazaki [12] proved the
global existence of solution to a discretized version of (1.1) with Neumann bound-
ary condition by restricting a class of mappings into that of piecewise constant
mappings.

The main object of this paper is to show a global solvability of (a discretized
version of) Dirichlet problem (1.5) by using the idea of [9, 10, 12]. Namely, for
each piecewise constant initial and boundary data we find the piecewise constant
solution u(t) to (1.5) on Ω. Then, the problem is reduced to a system of ordinary
differential equations unless two different values merges. This is the key point and
idea in order to construct the global solution to the discretized Dirichlet problem
(1.5). Of course, merging may occur, so, it is very difficult to study the detailed
dynamics in 2-dimensional case. Different from one dimensional problem, our ap-
proach may not correspond to a solution of an original problem with a piecewise
constant initial data. Such a difficulty is also observed in the unconstrained prob-
lem of crystalline flow [4] and [8], for instance.

The plan of this paper is as follows. In Section 2, we reformulate the problem
(1.5) as in the evolution equation in some real Hilbert space by using subdifferential
of convex functional. Then, we mention main result (Theorem 2.3) in this paper,
which is concerned with the global existence of solution. In Section 3, we recall the
convergence theorem established in [9]. In Section 4, we consider the approximating
problem to (1.5). In the final Section 5 we give the proof of Theorem 2.3.

Notation

Throughout this paper, let Ω be a bounded domain in R
2 with boundary Γ. We

denote by L2(Ω; Rn) the space of R
n-valued square integrable functions. For the
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unit sphere Sn−1 in R
n (1 ≤ n < +∞), let L2(Ω;Sn−1) be the closed subset of

L2(Ω; Rn) of the form

L2(Ω;Sn−1) := {v ∈ L2(Ω; Rn) ; v(x) ∈ Sn−1 a.e. x ∈ Ω}.
Let H be a real Hilbert space with the inner product 〈·, ·〉, and ϕ : H →

(−∞,+∞] be a proper (i.e., not identically equal to infinity), l.s.c. (lower semi-
continuous) and convex function on H . Then, we denote by ∂ϕ the subdifferential
of ϕ, which is defined by the set

∂ϕ(u) = {f ∈ H | ϕ(u + h)− ϕ(u) ≥ 〈f, h〉 for any h ∈ H}.
For basic properties of subdifferential, we refer to the monograph by Brézis [5].

2. Subdifferential formulation and main theorem

We begin with the definition of rectangular decompositions of Ω.

Definition 2.1 (Rectangular decomposition). For the bounded domain Ω in R
2, let

C be a rectangular decomposition of R
2 so that C := {Rj}j∈Λ is a disjoint family of

open rectangles Rj = (aj , bj)×(cj , dj) which covers R
2 expect a Lebesgue measure

zero set. Then, we define a decomposition ∆ of Ω associated with C by

∆ := {Ωi}i∈I with Ωi = Ri ∩Ω, I = {i ∈ Λ ; Ωi �= ∅}.
Note that I is a finite index set, since Ω is a bounded domain.

Throughout this paper we fix the family ∆ = {Ωi}i∈I . Then, let H∆ be the
set of all R

n-valued step functions on
⋃

i∈I Ωi, i.e.,

H∆ =

{∑
i∈I

aiχΩi ; ai ∈ R
n

}
,

where χΩi is the characteristic function on Ωi. We easily see that H∆ is the subset
of L2(Ω; Rn), and the total variation of u ∈ H∆ is given by this form∫

Ω

|∇u| =
∑
i<j

cij |ai − aj | if u ∈ H∆,

which is also called a essential variation of u. Here, we set cij = H1(∂Ωi ∩ ∂Ωj),
where H1 is the Hausdorff measure and ∂Ωi is the boundary of Ωi. More precisely,
cij implies a length of ∂Ωi∩∂Ωj . For the precise definition and basic properties of
total variation, see monographs by Evans-Gariepy [7] or Giusti [13], for instance.

Now, by the similar argument in the gray image processing (1.2)–(1.4), we
reformulate the problem (1.5) as in some evolution equation. To do so, let us define
two functions on real Hilbert spaces. For given boundary data g ∈ H∆, we put

ϕ∆(u) =

⎧⎨⎩
∫

Ω

|∇u| if u ∈ H∆ with u(x) = g(x) for x ∈ Γ,

+∞ otherwise.
(2.1)
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Then, from [7] or [13] it follows that ϕ∆ is the proper, l.s.c. and convex function
on L2(Ω; Rn). Also, we can define the proper, l.s.c. and convex function ΦT

∆ on
L2

(
0, T ;L2(Ω; Rn)

)
by the form (cf. [9, Proposition 2.1])

ΦT
∆(u) =

∫ T

0

ϕ∆

(
u(t)

)
dt for all u ∈ L2

(
0, T ;L2(Ω; Rn)

)
. (2.2)

Next, for each h ∈ L2
(
0, T ;L2(Ω;Sn−1)

)
we define a map Ph(·) from L2(0, T

;L2(Ω; Rn)) to L2
(
0, T ;L2(Ω; Rn)

)
by

Ph(f)(t, x) := πh(t,x)(f(t, x)) for a.e. (t, x) ∈ [0, T ]× Ω (2.3)

for any f ∈ L2
(
0, T ;L2(Ω; Rn)

)
.

By using these notations as above, we easily see that the problem (1.5) can
be reformulated as in the following form:{

u′ ∈ −Pu

(
∂ΦT

∆(u)
)

in L2
(
0, T ;L2(Ω; Rn)

)
,

u|t=0 = u0 in Ω.
(2.4)

Now, let us give the definition of a solution to (2.4) (i.e., (1.5)).

Definition 2.2. Let 0 < T < +∞. For given data g, u0 ∈ H∆, a function u : Ω×
[0, T ]→ R

n is called a solution of (2.4) (i.e., (1.5)), if u ∈ L2
(
0, T ;L2(Ω;Sn−1)

)
∩

C([0, T ];L2(Ω; Rn)), ut ∈ L2
(
0, T ;L2(Ω; Rn)

)
and (2.4) holds.

Now, let us mention our main result in this paper, which is concerned with
the global existence of a solution to (2.4) (i.e., (1.5)).

Theorem 2.3. Suppose the initial and boundary data u0, g ∈ H∆ with u0, g ∈
L2(Ω;Sn−1). Then, for any time T > 0 there exists at least one solution u on
[0, T ] to the problem (2.4), i.e., (1.5).

Note that we cannot apply the general theory (cf. [5, 16]) to the problem
(2.4), because of the projection Pu. Hence, in order to prove Theorem 2.3, we
consider the approximating problem of (1.5), and apply the abstract convergence
theorem established in [9].

3. Abstract convergence theory

In this section, we recall the abstract convergence theory in [9]. We begin with the
notion of Graph-convergence for multi-valued operators on a real Hilbert space H .

Definition 3.1 (e.g. [3]). For (multi-valued) operators An (n = 1, 2, . . . ) and A on
a real Hilbert space H , we say that An converges to A in the sense of Graph as
n → +∞, if for any (u, v) ∈ Graph(A) there exists (un, vn) ∈ Graph(An) such
that un → u and vn → v strongly in H as n→ +∞.

Example. (cf. [3] or [9, Appendix]). Let ψ, ψn (n = 1, 2, . . . ) be proper, l.s.c. and
convex functions on H . Assume that ψn converges to ψ on H as n → +∞ in the
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sense of Mosco [18], namely, the following two conditions are satisfied:
(i) For any subsequence {ψnk

} ⊂ {ψn}, if zk → z weakly in H as k → +∞,
then, lim inf

k→+∞
ψnk

(zk) ≥ ψ(z).

(ii) For any z ∈ D(ψ) = {z ∈ H | ψ(z) < +∞}, there is a sequence {zn} in H
such that zn → z in H and ψn(zn)→ ψ(z) as n→ +∞.

Then, ∂ψn converges to ∂ψ on H in the sense of Graph as n→ +∞.

Next, let us introduce the class L(K) of the operator B(·)(·) : L2(0, T ;G)×
L2(0, T ;H) → L2(0, T ;H), where G is a non-empty closed subset of H and
L2(0, T ;G) is a closed subset of L2(0, T ;H) of the form

L2(0, T ;G) := {u ∈ L2(0, T ;H) ; u(t) ∈ G a.e. t ∈ [0, T ]}.

Definition 3.2 (cf. [9, Section 3]). We denote by B ∈ L(K) the set of all operator
B(·)(·) : L2(0, T ;G) × L2(0, T ;H) → L2(0, T ;H) satisfying the following three
conditions:

(i) For any u ∈ L2(0, T ;G), B(u)(·) is a bounded linear operator on L2(0, T ;H).
(ii) There exists a constant K > 0 such that sup

u∈L2(0,T ;G)

‖B(u)(·)‖L ≤ K, where

‖B(u)(·)‖L = sup
v∈L2(0,T ;H),‖v‖=1

‖B(u)(v)‖L2(0,T ;H).

(iii) If a sequence {uk}+∞
k=1⊂L2(0,T ;G) strongly converges to some u in L2(0,T ;G),

then, there is a subsequence {uk(l)}+∞
l=1 ⊂ {uk}+∞

k=1 such that

B(uk(l))∗(v) −→ B(u)∗(v) strongly in L2(0, T ;H)

for any v ∈ L2(0, T ;H), where B(u)∗(·) is the adjoint operator of B(u)(·).

Example. The projection operator Ph(·) defined in (2.3) is contained in the class
L(K) in Definition 3.2.

Now, let us recall the abstract convergence theory established in [9].

Proposition 3.3 (Abstract convergence theorem) (cf. [9, Theorem 3.1] ). Let Ψn

(n = 1, 2, . . . ) and Ψ be proper, convex, l.s.c. functionals on L2(0, T ;H). Let B ∈
L(K). Assume that ∂Ψn converges to ∂Ψ in the sense of Graph. Assume that there
is a constant R > 0 so that un ∈ L2(0, T ;H) (n = 1, 2, . . . ) satisfies following
conditions; ⎧⎨⎩

u′
n ∈ −B(un)(∂Ψn(un) ∩BR) in L2(0, T ;H),

un ∈ L2(0, T ;G),
un|t=0 = u0,n ∈ G,

where BR := {u ∈ L2(0, T ;H) ; ‖u‖L2(0,T ;H) ≤ R}. If u0,n → u0 strongly in H
and un → u in C([0, T ], H) as n→ +∞, then, the function u is the solution of⎧⎨⎩

u′ ∈ −B(u)(∂Ψ(u)) in L2(0, T ;H),
u ∈ L2(0, T ;G),
u|t=0 = u0 ∈ G.
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4. Approximating problem

In this section we consider the approximating problem of (1.5). At first we shall
define the approximating energy function to (2.1).

For each ε > 0, let us define the function ϕε
∆ by the form

ϕε
∆(u) =

⎧⎪⎨⎪⎩
∑
j<k

cjk

√
|aj − ak|2 + ε2 if u ∈ H∆

with u(x) = g(x) for x ∈ Γ,
+∞ otherwise.

(4.1)

Clearly, ϕε
∆ is proper, l.s.c. and convex on L2(Ω; Rn) such that ∂ϕε

∆(·) is single-
valued for any i with Ωi ∩ Γ = ∅. More precisely, we have

∂ϕε
∆(u) =

∑
i,j

cij

|Ωi|
ai − aj√

|ai − aj |2 + ε2
χΩi for Ωi with Ωi ∩ Γ = ∅ (4.2)

for all u =
∑
i∈I

aiχΩi ∈ H∆, where |Ωi| is the volume of Ωi.

Since ϕε
∆ is the approximating function of our energy ϕ∆ defined by (2.1),

the approximating problem to (2.4) is given by the following form{
u′

ε = −Puε

(
∂ϕε

∆(uε)
)

in L2(Ω; Rn), a.e. t ∈ (0, T ),
uε|t=0 = u0 in Ω.

(4.3)

Here let us mention the result on existence-uniqueness of solutions to (4.3).

Proposition 4.1. Suppose the same condition in Theorem 2.3. Then, for any ε > 0
and T > 0, there exists at most one solution uε on [0, T ] to the approximating
problem (4.3).

Proof. For each given data u0, g ∈ H∆ we can prove this Proposition by the slight
modification in [10, Subsection 4.3] or [12, Proposition 3.1].

In fact, let g =
∑
i∈I

giχΩi ∈ H∆. Then, by taking account of u0, g ∈ H∆,

(2.3) and (4.2), we observe that the approximating problem (4.3) is reduced to the
ODE (ordinary differential equation) system:

(ODE): Find a unique function uε(t) =
∑
i∈I

ai(t)χΩi on [0,∞) such that ai(t) is

Lipschitz continuous from [0,∞) to Sn−1 satisfying

ai(t) ≡ gi on Ωi with Ωi ∩ Γ �= ∅,

dai(t)
dt

= −πai(t)

⎛⎝∑
j

cij

|Ωi|
ai(t)− aj(t)√

|ai(t)− aj(t)|2 + ε2

⎞⎠ (4.4)

on Ωi with Ωi ∩ Γ = ∅,
for each i ∈ I.
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Since ai(t) ∈ Sn−1 and the projection πai(t) : R
n → Tai(t)S

n−1, we observe that the
right hand side of (4.4) is bounded independent of t. Hence, by applying the classi-
cal theory of ODE (e.g. Cauchy-Lipschitz Theorem), we can get the unique global
solution uε on [0,∞) to (ODE), i.e., to our approximating problem (4.3). �

5. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 by applying the abstract convergence theory
[Proposition 3.3]. We begin with the key lemma to show Theorem 2.3.

Lemma 5.1. Let ϕ∆ and ϕε
∆ be proper, l.s.c. and convex functions on L2(Ω; Rn)

defined in (2.1) and (4.1), respectively. Then, we have:
(i) ϕε

∆ converges to ϕ∆ on L2(Ω; Rn) in the sense of Mosco [18] as ε→ 0.

(ii) ΦT,ε
∆ converges to ΦT

∆ on L2
(
0, T ;L2(Ω; Rn)

)
in the sense of Mosco [18] as

ε → 0, where ΦT,ε
∆ is proper, l.s.c. and convex on L2

(
0, T ;L2(Ω; Rn)

)
de-

fined by

ΦT,ε
∆ (u) =

∫ T

0

ϕε
∆

(
u(t)

)
dt for all u ∈ L2

(
0, T ;L2(Ω; Rn)

)
.

Proof. By the general theory of convex analysis and the lower semi-continuity of
the total variation, we can easily show (i). The assertion (ii) is the direct conse-
quence of (i). �
Proof of Theorem 2.3. By applying the abstract convergence theory [Proposition
3.3], we can get the solution of our problem (2.4) as the limit of the function uε

of (4.3) when ε→ 0.
Note that the function uε is also a solution to the approximating problem{

u′
ε = −Puε

(
∂ΦT,ε

∆ (uε)
)

in L2
(
0, T ;L2(Ω; Rn)

)
,

uε|t=0 = u0 in Ω,
(5.1)

since we observe that f ∈ ∂ΦT,ε
∆ (uε) in L2

(
0, T ;L2(Ω; Rn)

)
if and only if f(t) ∈

∂ϕε
∆(uε(t)) for a.e. t ∈ [0, T ] (for instance, we refer to Brézis [5]).

Now, we take L2(Ω; Rn) as a real Hilbert space H , and choose L2(Ω;Sn−1)
as a non-empty closed subset G in Proposition 3.3. Moreover, from Examples in
Section 3 and Lemma 5.1 we observe that the projection operator Ph(·) ∈ L(K),
and ∂ΦT,ε

∆ converges to ∂ΦT
∆ on L2

(
0, T ;L2(Ω; Rn)

)
in the sense of Graph as ε→ 0.

By the expression (4.2) of ∂ϕε
∆(uε), we see that the subdifferential ∂ϕε

∆(uε)
is bounded in L2(Ω; Rn) uniformly in ε. Therefore, the subdifferential ∂ΦT,ε

∆ (uε)
is also bounded in L2

(
0, T ;L2(Ω; Rn)

)
uniformly in ε for each T > 0, hence, there

is a closed ball BR of L2
(
0, T ;L2(Ω; Rn)

)
such that

∂ΦT,ε
∆ (uε) ⊂ BR uniformly in ε > 0 for each T > 0.

Since uε is the solution to (4.3) on (0, T ), there is an element u∗
ε ∈ ∂ϕε

∆(uε)
such that u′

ε(τ, x) = −πuε(τ,x)(u∗
ε(τ, x)) for a.e. (τ, x) ∈ (0, T )×Ω. By the definition
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of πuε(τ,x)(·), we see that u′
ε(τ, x) ∈ Tuε(τ,x)S

n−1 for a.e. (τ, x) ∈ (0, T )×Ω. Thus,
we have ∫

Ω

|u′
ε(τ, x)|2dx = (u′

ε(τ),−πuε(τ)(u∗
ε)(τ))L2(Ω;Rn) (5.2)

= −(u′
ε(τ), u

∗
ε(τ))L2(Ω;Rn) = − d

dτ
ϕε

∆(uε(τ))

for a.e. τ ∈ (0, T ). By integrating (5.2) over (0, T ), we get the energy equation∫ t

0

∫
Ω

|u′
ε(τ, x)|2dxdτ + ϕε

∆(uε(t)) = ϕε
∆(u0) for any t ∈ [0, T ]. (5.3)

From (5.3) and the compactness theory (cf. [13, Theorem 1.19]) it follows that
{uε(t)} is relatively compact in L2(Ω; Rn) for any t ∈ [0, T ]. Thus, Ascoli-Arzela’s
theorem implies that there exist a subsequence {uεm}+∞

m=1 ⊂ {uε} and a function
u ∈ C([0, T ];L2(Ω; Rn)) such that εm → 0 and

uεm −→ u strongly in C([0, T ];L2(Ω; Rn)) as m→∞.

Therefore, since assumptions of the abstract convergence theory [Proposition 3.3]
are satisfied, we can apply Proposition 3.3 to our problem. Thus, we conclude that
u is the solution on [0, T ] to (2.4) (i.e., (1.5)) for each T > 0. �
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Capillary Mediated Melting
of Ellipsoidal Needle Crystals

M.E. Glicksman, A. Lupulescu and M.B. Koss

Abstract. Measurements of video data on melting dendritic crystal fragments
in reduced gravity show that a fragment’s ellipsoidal axial ratio, C/A, rises
initially until it melts down to a pole-to-pole length of C ≈ 5 mm. At that
point we observe a sudden fall in the C/A ratio with time, as the polar re-
gions melt toward each other more rapidly than C/A times the melting speed,
dA/dt, of the equatorial region. This accelerated melting allows the C/A ra-
tio to fall from values around 10-20 (needle-like) towards values approaching
unity (spheres) just before total extinction occurs. Analytical and numerical
modeling will be presented that suggest that the cause of these sudden changes
in kinetics and morphology during melting at small length scales is due to a
crystallite’s extreme shape anisotropy. Shape anisotropy leads to steep gra-
dients in the mean curvature of the solid-melt interface near the ellipsoid’s
poles. These curvature gradients act through the Gibbs-Thomson effect to in-
duce unusual thermo-capillary heat fluxes within the crystallite that account
for the observed enhanced polar melting rates. Numerical evaluation of the
thermo-capillary heat fluxes shows that they increase rapidly with the C/A
ratio, and with decreasing length scale, as melting progresses toward total
extinction.

PACS numbers: 66.30.-h, 81.10.-h, 81.30.Fb, 83.10.-y
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1. Introduction

Dendritic (branched) crystals are often encountered whenever metals, semiconduc-
tors, ceramics, and some organic materials solidify from supercooled or supersatu-
rated melts and solutions, or when alloys solidify directionally under low thermal
gradients [1]. Thermal dendrites are the simplest cases to treat theoretically, as
their formation involve only the redistribution of latent heat in a pure molten



220 M.E. Glicksman, A. Lupulescu and M.B. Koss

phase. Two comprehensive reviews summarizing the kinetics of dendritic crystal
growth are available [2, 3].

The most precise quantitative experiments that test theories of dendritic
growth were accomplished about six years ago as a series of microgravity space
flight experiments using transparent plastic crystals crystallizing from their melts
at small supercoolings [4, 5]. Dendritic growth measurements made in micrograv-
ity advantageously simplify the transport of latent heat during crystal growth
by eliminating nearly all sources of melt convection [6]. Specifically, the kinetics
of dendritic growth in high-purity succinonitrile (SCN), a BCC crystal, and pi-
valic acid (PVA), an FCC crystal, were measured under convection-free conditions
on three United States Microgravity Payload Missions (USMP-2, 1994, USMP-3,
1996, and USMP-4, 1997). These missions were flown as a coordinated series on the
space shuttle Columbia. Video data were recorded for the first time on USMP-4,
allowing measurements of the kinetics of dendritic fragments undergoing melting
in microgravity. Microgravity melting of crystals is unique in avoiding any rela-
tive motions or natural convection between solid and melt because of the virtual
absence of buoyancy forces.

The initial experimental melting data were analyzed on the basis of conduc-
tion-limited quasi-static melting theory. This theory was developed specifically
to predict the growth rate or melting speed of needle-like crystallites that were
modeled as slender ellipsoids with time-dependent major and minor axes of lengths
C(t) and A(t), respectively [7]. Close agreement was found between that theory and
the microgravity experiments when the melting process occurred under “shape-
preserving” conditions. Shape preservation implies a constant value during melting
of the C/A ratios of individual ellipsoidal crystal fragments [7].

2. Mushy Zones

The measurements taken with video recording of PVA crystals during USMP-
4 provide the first significant compilation of convection-free melting data over
a large variation of length scales, covering a range from about 10−2 m down to
2×10−4 m. As melting progresses, see the video sequence in figure 1-left, dendritic
side-arms detach and shorten. Each fragment eventually melts away to extinction.
It is especially important to note that in microgravity the individual crystallites
remain motionless, and that melting proceeds by thermal conduction from the
heated surrounding melt to the crystallites.

3. Melting and freezing

3.1. Background

Until recently, quantitative studies of melting kinetics comprise a relatively small
body of experimental literature, and researchers had concentrated on mathematical
analysis of the kinetics of melting in pure materials, such as heat storage media
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Figure 1. Left: Sequence of video frames after most crystal fragments
in the dendritic mush zone are totally melted. Right: Last fragment
to melt in the same video field of view. Digital image analysis of the
middle frame shown in the video sequence on the left. Automated edge
detection is employed to find the elliptical profile of this PVA crystallite
to determine its major and minor axes, C(t) and A(t), respectively. Tip
of glass injector at top of all frames is 1 mm in diameter.

or so-called phase change materials or PCM’s [8]–[12]. A mathematical review
is available of moving and free boundary approaches applied to the analysis of
melting kinetics by Herraiz et al. [13]. Their comprehensive survey includes most of
the known analytical solutions for melting. Melting kinetics in superheated alloys
was also analyzed recently by Coriell et al., who demonstrated the interesting
occurrence of multiple similarity solutions [14, 15]. Rettenmayr et al. published a
series of interesting papers on the non-equilibrium melting of alloys that provide
experimental observations and theoretical analysis of melting phenomena where
solute diffusion plays a key rôle [16]–[19].

Both quasi-static and moving boundary solutions are well known for the
growth of spherical crystals [20, 21]. Also, a class of moving boundary similarity
solutions was developed by Ham that describes the freezing of crystals in the form
of ellipsoids and hyperboloids [22]. Ham’s solutions for the growth of ellipsoidal
crystals, however, based as they are on similarity solutions to the heat conduction
equation, are neither morphologically stable for the case of freezing, nor are they
applicable via time reversal to the process of melting.

The present authors also recently analyzed a specific class of conduction-
limited melting problems related to the present work, namely, the quasi-static
self-similar melting of prolate spheroids [7]. Analytic solutions were developed ear-
lier by assuming the presence of small superheating in the melt (quasi-static con-
ditions), ignoring the influences of capillarity at small length scales, and employing
the simplification that the crystal’s C/A ratio remains constant during melting.
Specifically, potential theory predicts the changes with time, t, of a crystallite’s
semi-major axis, C(t), rescaled with respect to the crystal’s initial semi-major axis
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length, C0. The melting kinetics derived in [7] may be written as

C(t)/C0 =
√

1±Kprolate × St · Fo. (1)

In Eq. (1) the kinetic coefficient, Kprolate, is defined as

Kprolate ≡
±16

Ξ log Ξ+1
Ξ−1

(
C

A

)2

,

where the parameter Ξ ≥ 1 is the prolate spheroidal interface coordinate denoting
the crystal-melt interface. Kprolate < 0 for melting, and positive for freezing, re-
spectively. An interface becomes progressively more needle-like in shape as Ξ→ 1,
and more spherical as Ξ → ∞. The melting kinetic constant can be expressed
solely in terms of the crystal’s C/A ratio by using the relationship for prolate
spheroids that C

A = Ξ√
Ξ2−1

. The dimensionless melting time, or Fourier number, is
defined as Fo ≡ α�

C2
0
t , where α� is the thermal diffusivity of the melt. The melting

Stefan number, St, is defined as the ratio of the superheating in the surrounding
melt, T∞ − Tm, to the material’s characteristic temperature, T ≡ ∆Hf

Cp
. Thus,

St ≡ (T∞ − Tm)/T, where T∞ is the temperature of the melt far from the crys-
tallite; Tm is the equilibrium melting temperature; ∆Hf is the molar enthalpy of
fusion, and ∆Sf is the molar entropy of fusion. It is apparent from the form of Eq.
(1) that the conduction-limited freezing of prolate spheroids at a constant C/A
ratio will progress at long times as approximately the square-root of time. In the
case of conduction-limited melting, the rate of melting – as measured by the major
axis – will accelerate continuously, approaching an infinite rate at the extinction
time. This last important kinetic prediction, along with independent estimation of
the melting Stefan number, St, were checked quantitatively from the video images
derived from the IDGE microgravity experiments [7]. The correspondence between
Eq. (1) and experiment was generally excellent, as may be seen in figure 2. The
theoretical curve approaching the extinction time tends to under-predict the rate
of melting slightly.

4. Dendritic melting experiments

4.1. Background

The Isothermal Dendritic Growth Experiment (IDGE) was designed to test ex-
isting mathematical models that predict how melt supercooling affects dendrite
growth speed and tip radius [5], [32]–[37]. As mentioned in the introduction, only
the final space flight, USMP-4, provided the capability for real-time digital stream-
ing of 30 fps full gray-scale video during crystal growth and melting. During the
final minute of melting, just prior to extinction, the thermal fields within the
melting chamber stabilize. Individual video frames covering that period were con-
verted to .tiff files and exported to permit the post-flight kinetic melting analysis
discussed here.
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Figure 2. Comparison with theory, Eq. (1), of the observed crystallite
major axis length, C(t), versus melting time. The extinction time ob-
served for this melting experiment was approximately 40 s. The value of
Kprolate = 360.6 selected to predict these data corresponds to a steady
C/A ratio of approximately 12.

4.2. Video data analysis

The size and shapes of the melting dendritic fragments were determined from in-
dividual digitized video frames using commercial image analysis software [38]. The
equivalent ellipse of the two-dimensional profiles of the crystal-melt interfaces sur-
rounding selected fragments were calculated using the measured lengths of their
semi-major axes, C(t), and semi-minor axes, A(t). These crystallites often, but
not always, approximated ellipsoidal bodies of revolution, excepting some rem-
nant surface irregularities on the otherwise smooth crystal-melt interface. These
projections, moreover, represent the profile of the crystallites viewed normal to
their C-axis.

We have already reported details [7] on the kinetic analysis using Eq. (1) to
predict the behavior of a needle crystal melting self-similarly with a nearly constant
C/A ≈ 12. See again Figure 2. We now present the analysis of melting crystal frag-
ments close to the extinction time, when the axial ratio C/A changes significantly
with time. Specifically, in the current study of the measured C/A ratios of melting
PVA crystal fragments, the axial ratio rose during most of the melting process but
then suddenly decreased as the extinction point, t†, approached. The extinction
point corresponds to the time at which a fragment completely disappears within
one additional video frame. Kinetic data for melting, as reported here, usually
started at about t = (t† − 60) s. For example, the time-dependent behavior of the
C/A ratio is shown for these crystallites in Figure 3-left, and Figure 3-right. In
both of these melting cycles the lC/A ratio during the last minute climbs steadily
from its initial value of C/A ≈ 7 to more than about C/A ≈ 17 – indicating a
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Figure 3. Left: C/A ratio versus time. Data for PVA crystallites
formed at an initial supercooling of 0.42K in the IDGE, during USMP-
4. The C/A values rise steadily until at about 50 s. they suddenly drop.
Right: The C/A ratio versus time. Data for crystallites formed at a sim-
ilar initial supercooling of 0.46K. The C/A almost doubles during the
first 50 s. of melting, and then fall precipitously.

strongly increasing anisotropy of the shape as the crystallite melts and becomes in-
creasingly slender and more needle-like. Then, at the point where the total length
of the crystallite, 2l×C(t), is reduced by melting to less than about 5 mm, and the
corresponding crystallite diameter 2A(t) is reduced to 0.03 mm, one consistently
observes (see again Figure 3-left, and Figure 3-right), that the rising C/A ratios
suddenly reverse their trend and begin to fall rapidly. When the C/A ratios reach
values between roughly 10 and 5, respectively, the speed of melting becomes so
high that the video framing rate cannot keep pace with the changes leading to
extinction. This sudden reduction in the crystallite’s axial ratio just precedes its
extinction from melting at t† ≈ 60 s. As it will be discussed in more detail later
in this paper, we suggest that this unusual behavior, i.e., the sudden decrease
during melting in a crystallite’s shape anisotropy, or slenderness, reflects that its
dimensions have become sufficiently small for the crystallite to begin exhibiting
significant capillary or surface tension effects. Such an observation or suggestion
for its cause has, to our knowledge, not been reported, heretofore.

More specifically, as melting progresses, the reduction in crystal size increases
the mean curvature at all points on the ellipsoidal interface, but especially near
its poles. The increased curvature reduces the equilibrium melting point, via the
Gibbs-Thomson effect [12, 39], which in turn speeds up the melting process. The
presence of highly curved regions near the poles results in enhanced melting rates
that force the poles to approach each other faster than even the self-similar rate of
decrease in the equatorial diameter. In order that the poles on a slender crystallite
melt fast enough to cause a reduction in the crystallite’s axial ratio, the following
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inequality must hold: ∣∣∣∣dCdt
∣∣∣∣ > C

A
·
∣∣∣∣dAdt

∣∣∣∣ . (2)

The enhanced speed of melting at and near the poles suggested in Eq. (2)
would result in the crystallite achieving a more spherical shape, consistent with
the observed drop in the C/A ratio. If relationship (2) above were an equation
rather than the expressed inequality, the ellipsoid would melt away self-similarly
with a constant axial ratio.

5. Interfacial capillary

5.1. Curvature of ellipsoids

Quasi-static conduction theory, as mentioned earlier, is able to correlate nearly all
the observed kinetic melting data up to the time, t†, at which crystallite extinction
via melting occurs. This observation may be ascribed to the fact that although
capillarity can drastically alter the shape of a small melting crystal fragment, it
has only minor effects on a crystallite’s equilibrium melting point over the range
of size scales that were observed in our experiments.

The equilibrium melting point of a small crystal with an anisotropic inter-
facial energy, γ(θ), is given by the anisotropic Gibbs-Thomson-Herring equation
[39], namely

Te = Tm −
(γ(ϕ) + γϕϕ)

∆Sf/Ω
· H, (3)

where Ω is the molar volume of the crystal. Here we have chosen to parameterize
the location along the interface using the orientation angle, ϕ, of the local unit
normal on the interface with respect to the C-axis, or 〈100〉 zone axis of the PVA
crystallite, rather than the polar projection angle, θ, from the ellipsoid’s centroid,
x = y = z = 0. The second angular derivative of the interfacial energy, γϕϕ, that
appears in Eq. (3) is also taken with respect to this normal orientation angle.

5.2. Thermo-capillary effects

As discussed earlier in Section 3.1, a crystal surrounded by a large body of hotter
melt that is heated to a temperature, T∞ ≥ Tm, experiences a rate of melting
caused by heat conduction, the intensity of which is controlled by the melting
Stefan number, St. A local Stefan number for melting, including the effect of
curvature on temperature, Eq. (3), may be written as

Stloc = (T∞ − Tm)
Cp

∆Hf
+

(γ(ϕ) + γϕϕ)
∆Sf/Ω

(
Cp

∆Hf

)
· H. (4)

The first term on the right-hand side of Eq. (4) is the melting Stefan number ap-
plicable to a large crystal, where surface tension effects may be neglected, whereas
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Figure 4. Left: Principle sections through a needle crystal. The crystal
is in the form of an ellipsoid with its C-axis parallel to the y-axis, and is
viewed here as a projection onto the plane x = 0, and rotated into the
plane of the page. Its A-axis is parallel to the x-axis, and is viewed here
with its projection onto the plane y = 0, and rotated into the plane of
the page. This ellipsoid’s C/A ratio equals 10, which is typical of the
axial ratios encountered in the present melting experiments. The polar
projection angle θ, defined as θ = arctan(y/x), provides a convenient
running variable, against which the mean curvature, H(θ), of the ellip-
tical cross-section may be plotted. Right: Mean curvature, H, around
the upper half of the ellipsoid’s surface. (Note use of a logarithmic scale
on the ordinate.) The angle θ = 0 locates the ellipsoid’s equator, shown
as the circular projection on the left, around which the curvature is a
minimum. The north and south poles of the ellipsoid occur at θ = ±π/2,
which designate interfacial locations that exhibit the maximum curva-
ture.

the second term provides the local correction arising from anisotropic capillarity.
Equation (4) can be written conveniently as

Stloc = St+ ∆Stcap, (5)

where ∆Stcap is the local capillary correction added at small length scales (large
H values).

During the microgravity melting experiments reported here, capillary effects
became significant for crystals melted sufficiently to reduce their semi-major axis
lengths to less than C # 0.25 cm. The additional thermo-chemical data for pure
PVA needed to evaluate eqs. (4) and (5), include: Tm = 309 K, Cp/∆Hf =
0.091 K−1. The 4-fold anisotropy of the interfacial free energy taken about the
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〈100〉 crystallographic direction that coincides with the major growth axes of PVA
dendritic crystallites may be expressed in polar form as [40],

(γ + γϕϕ)
∆Sf/Ω

= 4.5× 10−6(1− 0.75 cos 4ϕ) [cm ·K]. (6)

The normal angles at the poles of a prolate spheroid are ϕ = ±π/2. When these
materials data are substituted back into Eq. (6) to evaluate the capillary constants
at the poles one finds that (γ + γϕϕ)Ω/∆Sf = 1.1× 10−6 [cm·K]. Inserting all of
these terms into Eq. (4) shows that the maximum capillary correction, or con-
tribution, to the apparent melting Stefan number at the poles of the crystallites
observed in the experiments reported in figure 1

∆Stcap # 1.0× 10−7 Hpole. (7)

At the poles, κ1 = κ2, so the maximum mean curvature, Hpole, for an ellipsoid
with a given C/A ratio and minor axis length, A, may be shown to be

Hpole = κpole =
(
l · C
A

)
1
A
. (8)

Inserting the right-hand side of Eq. (8) back into Eq. (7) yields the maximum1

capillary correction to the melting Stefan number for these crystallites (C/A # 17
and A # 0.012 cm), namely

∆Stcap = 1.0× 10−7

(
l · C
A

)
1

l ·A # 1.4× 10−4. (9)

5.3. Internal thermo-capillary fluxes

Such a small change in St caused by capillarity would have negligible influence
on the heat flux delivered externally to the poles from the surrounding hotter
melt. As suggested, however, by the behavior of the mean curvature shown in
Figure 4 right, needle-like ellipsoidal crystals also exhibit an enormous gradient
of their curvature near their poles. A steep gradient in the mean curvature of
the crystal-melt interface also corresponds, via the Gibbs-Thomson-Herring effect,
to a large capillary-induced local temperature gradient: with the polar regions
at the coldest location, i.e., largest mean curvature, and the equator and mid-
latitudes slightly warmer. The strong gradients of the interfacial curvature near
the poles add an additional thermo-capillary flux of heat conducted within the
crystallite that increases its melting rates near the poles. Figure 2-left shows a
sketch suggesting this mechanism of enhanced heat currents that reside internally
and externally to the crystallite. The authors calculated the detailed dependence
of the internal thermo-capillary flux at the ellipsoid’s poles as a function of the
C/A ratio. These data, presented in Figure 2-right, are based on finite element
numerical solutions of Laplace’s equation.

1For the anisotropic case considered here, the actual maximum capillary correction to the melting
point occurs at a latitude slightly below the true pole. This offset in the coldest latitude is,
however, small and will be ignored for the purposes of the present analysis.
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6. Conclusion

The heat flux data in Figure 2 support our hypothesis that sharp curvature gra-
dients account for internal thermo-capillary heat fluxes that cause the observed
onset of a falling C/A ratio, whenever crystallites melt below a critical size. In
the specific example drawn from the melting cycle analyzed in figure 3-right, the
critical size at which thermo-capillary effects become manifest occurs at t = 52 s,
corresponding to the time at which the major axis length C = 0.4 cm, and the
minor axis A = 0.024 cm.

Figure 5. Left: External fluxes, controlled by the Stefan number of the
heated melt, and internal fluxes, controlled by the curvature gradient
near a sharp tip. Extra (internal) flux causes the poles to melt more
rapidly, which accounts for the observation that the C/A ratio drops
rapidly as a melting crystallite approaches its extinction point. Right:
Finite element calculations of capillary induced fluxes within a melting
crystallite.
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Boundary Regularity at {t = 0} for
a Singular Free Boundary Problem

Eurica Henriques and José Miguel Urbano

Abstract. In this note it is shown that the weak solutions of the Stefan prob-
lem for the singular p-Laplacian are continuous up to {t = 0}. The result is a
follow-up to a recent paper of the authors concerning the interior regularity.

Mathematics Subject Classification (2000). 35B65, 35D10, 35K65.

Keywords. Singular PDE, boundary regularity, intrinsic scaling, Stefan prob-
lem.

1. The problem and the regularity result

In a recent paper (cf. [5]), the authors obtained interior continuity results for the
weak solutions of the singular parabolic PDE

∂tη −∆pθ = 0 , η ∈ γ(θ) ; 1 < p < 2 , (1.1)

where γ is a maximal monotone graph and ∆pu = div |∇u|p−2∇u is the p-
Laplacian. When γ has a single jump at the origin, this equation generalizes to a
nonlinear setting the modelling of the classical Stefan problem that corresponds
to the case p = 2 and describes a phase transition at constant temperature for a
substance obeying Fourier’s law. Equation (1.1) is singular both in space and time
since 1 < p < 2 and, roughly speaking, γ′(0) =∞.

In this note it is shown that, for continuous initial data, the continuity result
holds up to {t = 0} so that, in a way, the solution inherits the continuity properties
of the boundary data. We consider a regularized approximated problem and show
that the sequence of approximate solutions is equicontinuous up to {t = 0}. Due to
the singularities in the equation we need to use intrinsic scaling to uniformly reduce
the oscillation of the approximate solutions in a sequence of shrinking cylinders
laying at the bottom of the space-time domain. For a modern account of intrinsic
scaling and related matters, we suggest the reading of the recent survey [4].

To fix ideas, assume that an incompressible material (say pure water) occupies
a bounded domain Ω ⊂ R

N , with two phases, a solid phase corresponding to the

Research supported by CMUC/FCT, Project POCI/MAT/57546/2004 and PRODEP-FSE.
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region {θ < 0} and a liquid phase corresponding to the region {θ > 0}, separated
by an interface Φ = {θ = 0}, the free boundary. We denote ΩT = Ω× (0, T ) and
Σ = ∂Ω× (0, T ), for some T > 0. The problem in its strong formulation reads

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂t θ = ∆pθ in ΩT \ Φ = {θ < 0} ∪ {θ > 0}[

|∇θ|p−2∇θ
]+
− · n = λw · n on Φ = {θ = 0}

θ = 0 on Σ
θ(0) = θ0 in Ω× {0}

where n is the unit normal to Φ, pointing to the solid region, w the velocity of
the free boundary and λ = [e]+− > 0 the latent heat of phase transition (e is the
internal energy), with [ . ]+− denoting the jump across Φ.

As usual, a weak formulation, in which all explicit references to the free
boundary are absent, is obtained considering the maximal monotone graph H
associated with the Heaviside function, and introducing a new unknown function,
the enthalpy η, such that

η ∈ γ(θ) := θ + λH(θ) .

A formal integration by parts against appropriate test functions and the replace-
ment of the initial condition for θ by a more adequate initial condition for η, leads
to an integral relation that we adopt as definition of weak solution.

Definition 1.1. We say that (η, θ) is a weak solution of problem (P), if

θ ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ L∞(ΩT ) ;

η ∈ L∞(ΩT ) and η ∈ γ(θ) , a.e. in ΩT ;

−
∫

ΩT

η ∂tξ +
∫

ΩT

|∇θ|p−2∇θ · ∇ξ =
∫

Ω

η0 ξ(0) , ∀ξ ∈ T (ΩT ) .

The space of test functions we are considering is

T (ΩT ) :=
{
ξ ∈ Lp

(
0, T ;W 1,p

0 (Ω)
)

: ∂tξ ∈ L2(ΩT ) , ξ(T ) = 0
}

,

and we assume that

η0 ∈ γ(θ0) , and ∃M > 0 : |θ0(x)| ≤M , a.e. x ∈ Ω . (1.2)

Let 0 < ε$ 1 and consider the bilipschitzian function

γε(s) = s+ λHε(s) ,

where Hε is a C∞-approximation of the Heaviside function. Taking also functions
θ0ε ∈W 1,p(Ω) such that

θ0ε → θ0 , γε(θ0ε)→ η0 in Lp(Ω) and |θ0ε| ≤M , a.e. in Ω

we define a sequence of approximated problem as follows:
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(Pε): For each 0 < ε$ 1, find a function

θε ∈ H1
(
0, T ;L2(Ω)

)
∩ L∞(

0, T ;W 1,p
0 (Ω)

)
∩ L∞(ΩT )

such that

−
∫

ΩT

γε(θε) ∂tξ +
∫

ΩT

|∇θε|p−2∇θε · ∇ξ =
∫

Ω

γε(θ0ε) ξ(0) , ∀ξ ∈ T (ΩT ) . (1.3)

In the presence of the regularity required, equation (1.3) can be shown to be
equivalent to the two conditions: θε(0) = θ0ε and, for a.e. t ∈ (0, T ),∫

Ω×{t}
∂t[γε(θε)] ϕ+

∫
Ω×{t}

|∇θε|p−2∇θε · ∇ϕ = 0 , ∀ϕ ∈ W 1,p
0 (Ω) . (1.4)

It was shown in [7] that this approximated problem has a unique solution and
enough a priori estimates were derived to pass to the limit and obtain a solution
of the original problem. In particular, the sequence of approximate solutions was
shown to be equibounded.

We show here that there exists a uniform, i.e., independent of ε, modulus of
continuity for θε up to {t = 0} and this will allow us to obtain a continuous solution
up to {t = 0} for the original problem as a consequence of Ascoli’s theorem. We
need to assume, in addition to (1.2), that

θ0 ∈ C(Ω) and (θ0ε)ε is equicontinuous. (1.5)

This means that, over a compact K ⊂ Ω, each θ0ε and θ0 have the same modulus
of continuity.

We will prove the following regularity result.

Theorem 1.2. The sequence (θε)ε is equicontinuous up to {t = 0}. Then the weak
solution of problem (P ) is continuous up to {t = 0}. Moreover, for any com-
pact K ⊂ Ω, there exists a non-decreasing continuous function ωK : R

+ → R
+,

ωK(0) = 0, depending only upon the data and the modulus of continuity of θ0,
such that

|θ(x1, t1)− θ(x2, t2)| ≤ ωK

(
|x1 − x2|+ |t1 − t2|

1
p

)
,

for every pair of points (x1, t1), (x2, t2) ∈ K ′× [0, T ], and every compact K ′ ⊂ K.

In face of the recent results of [5], we clearly only need to prove the continuity
at t = 0.

2. Energy and logarithmic estimates near {t = 0}
The building blocks of regularity theory leading to continuity results are energy
and logarithmic estimates. These are the fundamental tools to proof Proposition
3.1 and will be derived next.

The crucial observation here is that, when deriving estimates for (1.1) in
cylinders laying at the bottom of ΩT , the term involving (θε−k)± with power one,
is absent, unlike in the interior case, which strongly simplifies the analysis. This is
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due to the choice of an independent of time cutoff function, which suffices for our
purposes, and an appropriate selection of levels k, according to the initial data.

Given a point x0 ∈ R
N , Kρ(x0) denotes the N -dimensional cube with centre

at x0 and wedge 2ρ:

Kρ(x0) :=
{
x ∈ R

N : max
1≤i≤N

|xi − x0i| < ρ

}
.

Fix (x0, t0) ∈ ΩT and consider the cylinder

(x0, t0) + Q(τ, ρ) = Kρ(x0)× (t0 − τ, t0)

where τ is such that t0 − τ = 0 so the cylinder lies at the bottom of ΩT . Consider
a piecewise smooth cutoff function ξ, independent of t ∈ (0, t0), satisfying

0 ≤ ξ ≤ 1 , |∇ξ| <∞ and ξ(x) = 0 , x /∈ Kρ(x0) . (2.1)

In the weak formulation (1.4), take ϕ = ± (θε − k)± ξp ∈W 1,p
0 (Kρ(x0)) and then

integrate in time over (0, t), for t ∈ (0, t0). Since

±∂t (γε(θε)) (θε − k)± = ±γ′
ε(θε) ∂tθε (θε − k)± = ∂t

(∫ (θε−k)±

0

γ′
ε(k ± s) s ds

)
,

recalling the t-independence of ξ and the definition of γε, we obtain the following
bound from below for the term involving the time derivative

1
2

∫
Kρ(x0)×{t}

(θε − k)2± ξp − 2(M + λ)
∫

Kρ(x0)×{0}
(θε − k)± ξp . (2.2)

Observe that, if we choose

k ≥ sup
x∈Kρ(x0)

θ0ε(x) (2.3)

when working with (θε − k)+, and

k ≤ inf
x∈Kρ(x0)

θ0ε(x) (2.4)

for (θε − k)−, the second term of (2.2) vanishes. On the other hand, the term
concerning the space derivatives is estimated above by

1
2

∫ t

0

∫
Kρ(x0)

|∇(θε − k)±|p ξp − C(p)
∫ t

0

∫
Kρ(x0)

(θε − k)p
± |∇ξ|

p

using Young’s inequality with ε = (2(p− 1))
p−1

p . We thus obtain

Proposition 2.1. There exists a constant C, that can be determined a priori in
terms of the data and independently of ε, such that for every (x0, t0) ∈ ΩT , for
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every cylinder (x0, t0)+Q(τ, ρ) such that t0−τ = 0, and for every level k verifying
(2.3) or (2.4),

sup
0<t<t0

∫
Kρ(x0)×{t}

(θε − k)2± ξp +
∫ t0

0

∫
Kρ(x0)

|∇(θε − k)±|p ξp

≤
∫ t0

0

∫
Kρ(x0)

(θε − k)p
− |∇ξ|

p
. (2.5)

Now consider the logarithmic function

Ψ± = Ψ
(
H±

k , (θε − k)±, c
)

=
(

ln
(

H±
k

H±
k + c− (θε − k)±

))
+

, 0 < c < H±
k

where
H±

k = ess sup
(x0,t0)+Q(τ,ρ)

(θε − k)± .

In the weak formulation (1.4) take

ϕ =
[(

Ψ±)2
]′

ξp = 2Ψ± (
Ψ±)′

ξp ,

where ξ is defined as in (2.1). Observing that⎧⎪⎪⎨⎪⎪⎩
Ψ+(x, 0) = 0 for k ≥ sup

x∈Kρ(x0)

θ0ε(x)

Ψ−(x, 0) = 0 for k ≤ inf
x∈Kρ(x0)

θ0ε(x) ,

and using Young’s inequality with ε = (2(p− 1))
p−1

p we arrive at

Proposition 2.2. There exists a constant C, determined a priori only in terms
of the data and independently of ε, such that for every (x0, t0) ∈ ΩT , for every
cylinder (x0, t0)+Q(τ, ρ) such that t0− τ = 0 and for every level k verifying (2.3)
or (2.4),

sup
0<t<t0

∫
Kρ(x0)×{t}

(
Ψ±)2

ξp ≤
∫ t0

0

∫
Kρ(x0)

Ψ±
∣∣∣(Ψ±)′∣∣∣2−p

|∇ξ|p . (2.6)

3. Reduction of the oscillation in rescaled cylinders

Fix (x0, 0) ∈ Ω× {0}, and take R > 0 such that K2R(x0) ⊂ Ω. By translation, we
may assume that x0 = 0. Introduce the cylinder

Q (Rp, 2R) := K2R × (0, Rp)

and define

µ+ = ess sup
Q(Rp,2R)

θε ; µ− = ess inf
Q(Rp,2R)

θε ; ω = ess osc
Q(Rp,2R)

θε = µ+ − µ− .
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Construct the cylinder

Q (a0R
p, R) = KR × (0, a0R

p) , a0 =
( ω

2m

)2−p

,

where m > 1 is to be chosen. Without loss of generality, we may assume that
ω
2m ≤ 1 so that the following relations hold:

Q (a0R
p, R) ⊂ Q (Rp, 2R) and ess osc

Q(a0Rp,R)
θε ≤ ω .

The proof of Theorem 1.2 is a well-known consequence of the following iter-
ative argument.

Proposition 3.1. There exist constants σ ∈ (0, 1), and C,m > 1, that can be
determined a priori only in terms of the data, such that constructing the sequences{

ω0 = ω
ωn+1 = σ ωn

and
{

R0 = R
Rn+1 = R

Cn

and the family of boxes

Qn = (anR
p
n, Rn) , an =

(ωn

2m

)2−p

,

we have

Qn+1 ⊂ Qn and ess osc
Qn

θε ≤ max
{
ωn, 2 ess osc

KRn

θ0ε

}
, (3.1)

for all n = 0, 1, 2, . . ..

To prove Proposition 3.1, assume first that both inequalities

µ+ − ω

4
≤ µ+

0 := ess sup
KR

θ0ε and µ− +
ω

4
≥ µ−

0 := ess inf
KR

θ0ε (3.2)

hold. Subtracting the second inequality from the first one we get
ω

2
≤ µ+

0 − µ−
0 = ess osc

KR

θ0ε .

and the proposition is trivially proved.
Without loss of generality, assume that the second inequality in (3.2) fails.

Then the levels k = µ− + ω
2s , for s ≥ 2, verify k ≤ µ−

0 and, consequently, the
energy and logarithmic estimates (2.5) and (2.6), respectively, hold for (θε − k)−.
The next result has a double scope: it determines the parameter m that defines the
height of the constructed initial cylinder and defines a level such that the subset
of Q

(
a0R

p, R
2

)
where θε is below that level is small.

Lemma 3.2. For all ν ∈ (0, 1), there exists m > 3, depending only on the data,
such that∣∣∣∣(x, t) ∈ Q

(
a0R

p,
R

2

)
: θε(x, t) < µ− +

ω

2m

∣∣∣∣ < ν

∣∣∣∣Q(
a0R

p,
R

2

)∣∣∣∣ .
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Proof. Consider estimate (2.6) written for (θε − k)−, with k = µ− + ω
4 , and for a

cutoff function 0 ≤ ξ ≤ 1, defined in KR, and verifying

ξ ≡ 1 in KR
2

; ξ ≡ 0 on |x| = R ; |∇ξ| ≤ 2
R

.

Take m > 3 sufficiently large so that 0 < c = ω
2m < H−

k . The logarithmic function
Ψ− is well-defined and, since H−

k ≤ ω
4 , the following inequalities hold

Ψ− ≤ (m− 2) ln 2 and
∣∣∣(Ψ−)′∣∣∣2−p

≤
( ω

2m

)p−2

.

Then, from (2.6), we get for all t ∈ (0, a0R
p), the estimate∫

KR×{t}

(
ψ−)2

ξp ≤ C (m− 2)
∣∣∣KR

2

∣∣∣ .

Next, integrate over the smaller set{
x ∈ KR

2
: θε(x, t) < µ− +

ω

2m

}
, ∀t ∈ (0, a0R

p)

where ξ = 1 and Ψ− ≥ (m − 3) ln 2, since H−
k ≤ ω

4 . Consequently, for all t ∈
(0, a0R

p), ∣∣∣x ∈ KR
2

: θε(x, t) < µ− +
ω

2m

∣∣∣ ≤ C
m− 2

(m− 3)2

∣∣∣KR
2

∣∣∣ .

The proof is complete if we choose m so large that C m−2
(m−3)2 < ν. �

The next lemma provides a uniform lower bound for θε within a smaller
cylinder, through a specific choice of the value ν that appears in Lemma 3.2.

Lemma 3.3. There exists ν0 ∈ (0, 1), depending only on the data, such that if∣∣∣∣Q(
a0R

p,
R

2

)
: θε(x, t) ≤ µ− +

ω

2m

∣∣∣∣ ≤ ν0

∣∣∣∣Q(
a0R

p,
R

2

)∣∣∣∣
then

θε(x, t) ≥ µ− +
ω

2m+1
, a.e. (x, t) ∈ Q

(
a0R

p,
R

4

)
.

Proof. Consider the decreasing sequences of real numbers

Rn =
R

4
+

R

2n+2
; kn = µ− +

ω

2m+1
+

ω

2m+1+n
, n = 0, 1, . . .

and, in the energy estimates (2.5), take ϕ = −(θε− kn)− ξp
n, where 0 ≤ ξn ≤ 1 are

smooth cutoff functions, defined in KRn , and verifying

ξ ≡ 1 in KRn+1 ; ξ ≡ 0 on |x| = Rn ; |∇ξn| ≤
2n+3

R
.

Introduce the level

k̄n =
kn + kn+1

2
.
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Since ∫
KRn×{t}

(θε − kn)2− ξp
n =

∫
KRn×{t}

(θε − kn)p
− (θε − kn)2−p

− ξp
n

≥ (kn − k̄n)2−p

∫
KRn×{t}

(θε − k̄n)p
− ξp

n

= a0 2−(n+3)p

∫
KRn×{t}

(θε − k̄n)p
− ξp

n

and (θε − kn)p
− ≤

(
ω

2m

)p, the referred energy estimates take the form

sup
0<t<a0Rp

∫
KRn×{t}

(θε − k̄n)p
− ξp

n +
1
a0

2−(n+3)p

∫ ∫
Q(a0Rp,Rn)

∣∣∇(θε − k̄n)−
∣∣p ξp

n

≤ C(p)
( ω

2m

)p 22pn

Rp

1
a0

∫ ∫
Q(a0Rp,Rn)

χ[(θε−kn)−>0] .

Introducing the change of variable z = t
a0

, defining the new functions

θ̄ε(x, z) = θε(x, a0z) ; ξ̄n(x, z) = ξn(x, a0z) ,

and denoting V p = L∞(Lp) ∩ Lp(W 1,p), we arrive at

∥∥(θ̄ε − k̄n)−
∥∥p

V p(Q(Rp,Rn+1))
≤ C(p)

22pn

Rp

( ω

2m

)p

An ,

where

An :=
∫ Rp

0

|An(z)| dz , An(z) :=
{
x ∈ KRn : (θ̄ε − kn)− > 0

}
.

Since ( ω

2m

)p

2−(n+3)p An+1 ≤
∫ ∫

Q(Rp,Rn+1)

(θ̄ε − k̄n)p
−

≤ C A
1+ p

N+p
n

∣∣∣∣(θ̄ε − k̄n)−
∣∣∣∣p

V p(Q(Rp,Rn+1))
,

using Corollary 3.1 of [3, page 9], we conclude

An+1 ≤ C
23pn

Rp
A

1+ p
N+p

n

and, consequently,

Yn+1 ≤ C 23pn A
1+ p

N+p
n , for Yn :=

An

|Q (Rp, Rn)| .
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If Y0 ≤ C−N+p
p 2−

3(N+p)2

p then, by Lemma 4.1 of [3, page 12], Yn → 0 when
n→∞ which completes the proof. Observe that, by the hypothesis,

Y0 =

∣∣(x, z) ∈ Q(Rp, R) : θ̄ε(x, z) < µ− + ω
2m

∣∣
|Q(Rp, R)| ≤ ν0

so we just have to take

ν0 ≡ C−N+p
p 2−

3(N+p)2

p . �

Now we can finally conclude the first iteration step in the proof of Proposition
3.1. Indeed, taking ν = ν0 from Lemma 3.3, and determining the corresponding
value m with the help of Lemma 3.2, we arrive at

θε(x, t) ≥ µ− +
ω

2m+1
, a.e.(x, t) ∈ Q

(
a0R

p,
R

4

)
,

and then we conclude that

ess osc
Q(a0Rp, R

4 )
θε ≤

(
1− 1

2m+1

)
ω = σ ω .

Taking C = 4 in Proposition 3.1, we get Q1 ⊂ Q
(
a0R

p, R
4

)
, and then

ess osc
Q1

θε ≤ ess osc
Q(a0Rp, R

4 )
θε ≤ σ ω = ω1 .

We can now repeat the whole process starting from Q1.

Remark 3.4. Observe that we do not get a reduction on the t-direction since the
cutoff functions ξ are independent of t.

Remark 3.5. The regularity result can be further extended; one can obtain conti-
nuity up to the lateral boundary Σ using a reasoning similar to the one presented
in [2] and [8].
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Fast Reaction Limits and Liesegang Bands

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi

1. Introduction

The purpose of this study is to start understanding from a mathematical viewpoint
experiments in which regularized structures with spatially distinct bands and rings
of precipitated material were exhibited, with clearly visible scaling properties. This
phenomenon has been originally observed by Liesegang [1] in 1896, after whom
the name “Liesegang bands/rings” has been coined. Since then there have been a
large number of contributions to the understanding of such precipitated pattern
formation from experimental as well as theoretical viewpoints. However, as far
as we know, there has not been any mathematical study of this problem apart
from numerical simulations. In this note we introduce a one-dimensional reaction
diffusion system which is a simplified model of the supersaturation model proposed
by Keller and Rubinow [2] in 1981 and study the occurrence of precipitated bands
in this system, by means of singular limit analysis.

2. The model

We study a model, for which the basic ideas have been proposed by Keller and
Rubinov [2]. In a spatial domain Ω an immobile reactant B is present, with uniform
concentration b0. Starting at an initial time t = 0, the boundary ∂Ω is brought
in contact with a different reactant A, that penetrates into Ω through a diffusive
process. Inside Ω, A and B react, to produce a third substance C. This substance
on the one hand diffuses through Ω, while on the other hand it crystallizes (“pre-
cipitates”) to form an immobile product D. This precipitation process starts as
soon as the concentration c of C has surpassed a critical value Cs > 0; the precipi-
tation rate is thought to depend linearly on c. In places where D has been formed,
the precipitation process continues as long as c remains positive.

The purpose of our study is to show that such a reaction-diffusion system may
give rise to precipitation regions where D is present. We restrict ourselves to a
one-dimensional situation and assume that the space domain Ω is the semi-infinite
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slab {x > 0}. We also require that, for t > 0, a(0, t) = a0 > 0 is constant and that
C cannot leave Ω, that is, ∂c

∂x(0, t) = 0. As for the precipitation reaction C � D,
we assume that the rate for the backward reaction D → C is negligible. This yields
the problem

(P∗
k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = D1axx − kab 0 < x <∞, t > 0,

bt = −kab 0 < x <∞, t > 0,

ct = Dcxx + kab− F (c, d) 0 < x <∞, t > 0,

dt = F (c, d) 0 < x <∞, t > 0,

cx(0, t) = 0 t > 0,

a(0, t) = a0 > 0 t > 0,

a(x, 0) = c(x, 0) = d(x, 0) = 0 x > 0,

b(x, 0) = b0 > 0 x > 0,

where D, D1 and k are positive constants. We suppose that F is the discontinuous
function

F (c, d) =

{
c if c > Cs or d > 0,

0 if c ≤ Cs and d = 0,

where the positive constant Cs stands for the supersaturation concentration. Al-
ternatively we can rewrite Problem (P∗

k) in the form

(P∗
k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

at = D1axx − kab 0 < x <∞, t > 0,

bt = −kab 0 < x <∞, t > 0,

ct = Dcxx + kab− cH̃ ((c− Cs)+ + d) 0 < x <∞, t > 0,

dt = cH̃ ((c− Cs)+ + d) 0 < x <∞, t > 0,

a(0, t) = a0 > 0 t > 0,

cx(0, t) = 0 t > 0,

a(x, 0) = c(x, 0) = d(x, 0) = 0 x > 0,

b(x, 0) = b0 > 0 x > 0,

where H̃ is the Heaviside function: H̃(s) = 0 if s ≤ 0, H̃(s) = 1 otherwise.

The equation for d in Problem (P∗
k) has been formulated to express the chemical

assumption that dt = c if c > Cs or if d > 0 and that dt = 0 otherwise. The
right-hand side of the d-equation is not Lipschitz in d and we cannot be sure that
its solution is unique, even if c − Cs ≤ 0 everywhere. Chemical arguments imply
that d(x, t) can only be positive if its growth has been initiated by a positive value
of c(x, τ)−Cs for some τ ≤ t. This implies that we have to look for a solution such
that d(x, t) = 0 if c(x, τ) ≤ Cs for all τ < t. In view of these comments, we are able
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to reformulate again Problem (P∗
k) in a slightly simpler way, which in addition is

more precise from a chemical point of view. Assuming, for the time being, that c
is continuous, we introduce the function

w(x, t) =
∫ t

0

(
c(x, s)− Cs)+

)
ds. (1)

We claim that, for the solution we are interested in, w(x, 0) > 0 if and only if
(c(x, t) − Cs)+ + d(x, t) > 0. To see this, let us first assume that w(x̄, t̄) > 0.
Then, clearly, there are t1 < t2 ≤ t̄ such that c(x, t) > Cs for all t1 < t < t2.
The differential equation for d implies that d(x̄, t̄) > 0, which in turn implies that
(c(x̄, t̄)−Cs)+ + d(x̄, t̄) > 0. Conversely, if w(x, t) = 0, it is clear that c(x, τ) ≤ Cs

for all τ ≤ t. In view of the preceding argument, we must now conclude that
d(x, t) = 0 for the solution we are interested in. Thus, we may replace the argument
(c− Cs)+ + d of the Heaviside function by the new argument w.

Note that, in (P∗
k), the first two equations can be solved separately. The behavior

of ak and bk has been studied in [3,4] in the asymptotic limit k →∞. In particular,
it has been shown in [3,4] that in this limit a behaves as the solution of a one-phase
Stefan problem with melting boundary ζ(t) = α

√
t for some positive constant α.

It then remains to study the problem

(Pk)

⎧⎪⎪⎨⎪⎪⎩
ct = Dcxx + kab− cH̃

(∫ t

0
(c(x, s) − Cs)+) ds

)
0 < x <∞, t > 0,

cx(0, t) = 0 t > 0,

c(x, 0) = 0 x > 0.

The organization of this note is as follows. In Section 2, we explain why the term
kakbk converges to a measure as k tends to infinity and give an explicit form of
its limit.

In Section 3 we study the singular limit as k →∞ of the linear equation that one
obtains when omitting the last term in the equation for c.

In Section 4 we indicate the main steps for the proof of the existence of a solution
of Problem (P k).

Further we present in Section 5 its limiting behavior as k →∞.

Finally we state our main results about Liesegang bands in Section 6. We refer to
[5] and [6] for the complete proofs.

3. The singular limit of kakbk as k →∞
Our main result is that

kab→ boα

2
√
t
δ(x− α

√
t) as k →∞, (2)
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where δ is the Dirac δ-function. It can be shown as follows. We first recall a result
of [3,4]. For all T > 0, there holds∫ T

0

∫
R+

akbk � C

k
,

where the constant C depends on T . One immediately deduces that there exists a
Radon measure µ such that as k →∞

kakbk ⇀ µ

along a subsequence in the sense of weak convergence of measures.

Multiplying the equation for bk by a continuously differentiable test function
with compact support in (0,∞) × (0, T ), and integrating by parts, one can show
that the measure µ is concentrated on the free boundary ζ, or more precisely that

µ = −b0
∂

∂t
H̃ (x− ζ(t)) = ζ′(t)b0δ(x− ζ(t)),

x > 0, t > 0, which in turn implies (2).

4. The limiting behavior as k →∞ of the solution of a
corresponding linear problem

The next step is to consider the linear problem

(Qk)

⎧⎪⎪⎨⎪⎪⎩
ψt = Dψxx + kakbk x > 0, t > 0,

ψx(0, t) = 0 t > 0,

ψ(x, 0) = 0 x > 0.

We will prove in [5] that as k → ∞ its solution ψk converges to the unique weak
solution ψ of the problem

(Q)

⎧⎪⎪⎨⎪⎪⎩
ψt = Dψxx + b0α

2
√

t
δ(x− α

√
t) x > 0, t > 0,

ψx(0, t) = 0 t > 0,

ψ(x, 0) = 0 x > 0.

We remark that Problem (Q) admits at most one solution and we prove its ex-
istence by constructing the solution explicitly. Indeed note that Problem (Q) is
invariant by the rescaling {t = µ2τ, x = µξ} so that a possible solution can be
written in the form

ψ(t, x) = Ψ(η) with η =
x√
t
,

where Ψ satisfies

DΨ′′ +
η

2
Ψ′ +

b0α

2
δ(η − α) = 0 Ψ(∞) = 0, Ψ′(0) = 0.



Fast Reaction Limits and Liesegang Bands 245

We deduce that

Ψ(η) =

⎧⎪⎨⎪⎩
A(D, b0, α) when η ≤ α,

b0α
e

α2
4D

2D

∫ ∞

η

e−
s2
4D ds when η > α,

where

A(D, b0, α) :=
b0αe

α2
4D

2D

∫ ∞

α

e−
s2
4D ds.

5. Existence of a solution of Problem (P k)

We extend the unknown concentration ck to the whole domain R×R
+ according to

ck(−x, t) = ck(x, t), x > 0, t > 0.

and ak and bk similarly. Problem (Pk) becomes

(Pk)

{
ct = Dcxx + kab− cH̃(

∫ t

0 (c− Cs)+), x ∈ R, t > 0,

c(x, 0) = 0, x ∈ R.

In order to be able to work with partial differential equations with a bounded right
hand side, we perform a change of the unknown function. We set

ψk(−x, t) = ψk(x, t), x > 0, t > 0,

and
c̃k = ck − ψk.

Problem (Pk) can be rewritten as

(Pk)

{
c̃t = Dc̃xx − (c̃ + ψk)H̃

(∫ t

0 (c̃+ ψk − Cs)+
)
, x ∈ R, t > 0,

c̃(x, 0) = 0, x ∈ R.

To begin with we consider the boundary value problem⎧⎪⎪⎨⎪⎪⎩
ψt = Dψxx + kab, x ∈ (−R,R), t > 0,

ψ(±R, t) = 0, t > 0

ψ(x, 0) = 0, x ∈ (−R,R),

and denote its unique solution by ψk
R. We first prove the existence of a solution of

the problem

(Pk
R)

⎧⎪⎪⎨⎪⎪⎩
c̃t = Dc̃xx − (c̃+ ψk

R)H 1
R

(∫ t

0
(c̃ + ψk

R − Cs)+
)
, x ∈ (−R,R), t > 0,

c̃(±R, t) = 0, t > 0,

c̃(x, 0) = 0, x ∈ (−R,R).

where Hε is a smooth nondecreasing approximation of the Heaviside graph H such
that Hε(s) = H(s) for all s > 0 and s < −ε.
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In order to prove the existence of a solution of Problem (P k
R), we consider

the map T : φ→ γ, where γ is the unique solution of the auxiliary problem

(PA)

⎧⎪⎪⎨⎪⎪⎩
γt = Dγxx − (γ + ψk

R)H 1
R

(∫ t

0 (φ + ψk
R − Cs)+

)
, x ∈ (−R,R), t > 0,

γ(±R, t) = 0, t > 0,

γ(x, 0) = 0, x ∈ (−R,R).
We set

Lu = ut −Duxx + (u + ψk
R)H 1

R

(∫ t

0

(φ + ψk
R − Cs)+

)
,

and observe that

L0 = ψk
RH 1

R

(∫ t

0

(φ + ψk
R − Cs)+

)
� 0,

and that
L(−ψk

R) = (−ψk
R)t −D(−ψk

R)xx = −kakbk � 0.
We define

C =
{
u ∈ C([−R,R]× [0, T ]),−ψk

R � u � 0
}
,

and remark that T maps C into itself. Furthermore one can show that T is compact
and continuous on C so that it follows from the Schauder fixed point theorem that
the map T has a fixed point c̃k

R which is a classical solution of Problem (PA) with
γ = φ = c̃k

R.

Finally letting R tend to ∞ we deduce the existence of a weak solution
of Problem (P k), where the Heaviside Function H̃ is replaced by the Heaviside
graph H .

6. Singular limit as k →∞ of solutions of Problem (P k)

In what follows we use the notation QT = [0,∞) × [0, T ). Next we consider the
limit Problem (P ) which we define by

(P)

⎧⎪⎪⎨⎪⎪⎩
ct = Dcxx + b0α

2
√

t
δ(x − α

√
t)− c H(x, t) 0 < x <∞, t > 0,

cx(0, t) = 0 t > 0,

c(x, 0) = 0 x > 0,
where

H(x, t) ∈ H(
∫ t

0

(c− Cs)+(x, τ)dτ), (3)

and where H is the Heaviside graph

H(y) =

⎧⎪⎪⎨⎪⎪⎩
0 when y < 0,

[0, 1] when y = 0,

1 when y > 0.
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x

t

t = (x/α)2

Figure 1. Time law for the Liesegang bands

Definition A weak solution of Problem (P) is a function pair {c,H} with the prop-
erties

(1) for each T > 0, c− ψ ∈ C1+γ, 1+γ
2 (QT ) ∩H1(QT ) for all 0 < γ < 1;

(2) for all ϕ ∈ C1(QT ) such that ϕ vanishes for t = T ,∫
QT

(ψ − c)ϕt =
∫

QT

[D(ψ − c)xϕx − cϕH]. (4)

One can prove the following result.

Theorem 1 There exists a subsequence {ckn} and a function
c ∈ C1+γ, 1+γ

2 ([0, R]× [0, T ]) for all γ ∈ (0, 1) such that as kn →∞

ckn − ψkn → c− ψ (5)

in C1+γ, 1+γ
2 ([0, R] × [0, T ]) for all γ ∈ (0, 1), R and T positive. The pair (c,H),

where H is defined by (3), is a weak solution of Problem (P) and the function c is
such that 0 ≤ c ≤ ψ and c− ψ is nonincreasing in time.

In the next section, we discuss the existence and some properties of precipi-
tation or Liesegang bands:

Definition A Liesegang band is connected component in (x, t)-plane of the set
{w > 0}.

Note that a Liesegang band can exist only if

A(D, b0, α) > Cs, (6)

which we assume from now on.
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7. Properties of Liesegang bands

To begin with we consider the first Liesegang band. To do that, we define, for fixed
t > 0,

P(t) = {x ≥ 0 : w(y, t) > 0 for all 0 ≤ y < x},
where w has been defined in (1).

S(t) = sup{x : x ∈ P(t)} if P(t) �= ∅ and S(t) = 0 otherwise.

We have that

Lemma 6 S(t) > 0 for all t > 0. Moreover, S(·) is nondecreasing.

Therefore there exists indeed a precipitation region. The continuity of c implies
that

Lemma 7 Suppose that t is such that S(t+ε)>S(t) for all ε>0. Then

c(S(t), t) = Cs.

Next, we have

Lemma 8 S(·) is continuous.

Idea of the proof. Suppose, for contradiction, that x1 := S(t∗−) < S(t∗+) := x2.
Then for every x ∈ (x1, x2):

(i) c(x, t) ≤ Cs for t ≤ t∗, and
(ii) There is a sequence ti → t∗+ such that c(x, ti) > Cs.

Since the function c− ψ is nonincreasing in time, this implies that x > α
√
t∗; the

strong maximum principle then yields a contradiction.

Our next step is to prove the following result. From now on we assume that
the function H in the definition of a weak solution of Problem (P) coincides with
the Heaviside function H̃

(∫ t

0 (c− Cs)+(x, τ)dτ
)
.

Theorem 2 Under the additional technical condition that 2Cs > A(D, b0, α), there
is a time T ∗ > 0 such that S(t) = S(T ∗) for all t ≥ T ∗.

Idea of the proof. Let β > 0 be defined by the relation ψ(β) = Cs. We have

ψ(x, t) ≥ Cs whenever x ≤ β
√
t. (7)

S(t) ≤ β
√
t, and ψ(x, t) ≥ Cs whenever x ≤ S(t). (8)

Let 0 < γ < 2Cs −A(D, b0, α) and suppose that c(S(T ∗), T ∗) < γ. Then we have:

Cs − c(S(T ∗), T ∗) ≥ Cs − γ ≥ A(D, b0, α)− Cs.

We claim that S(t) cannot grow any more. Indeed suppose, for the purpose of
contradiction, that t∗ > T ∗ and that S(t∗) > S(T ∗). Then there exists a t̄ ∈
(T ∗, t∗) such that

(i) S(t̄) = S(T ∗) for every T ∗ ≤ t ≤ t̄,
(ii) c(S(T ∗), t̄) = Cs.
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This implies that

c(S(T ∗), t̄)− c(S(T ∗), T ∗) > Cs − γ

≥ A(D, b0, α)− Cs

≥ ψ(S(T ∗), t̄)− ψ(S(T ∗), T ∗)

(see (8)) and therefore that

c(S(T ∗), t̄)− ψ(S(T ∗), t̄) > c(S(T ∗), T ∗)− ψ(S(T ∗), T ∗).

This contradicts the fact that c− ψ is nonincreasing in time.

Furthermore one can show that it indeed occurs that c(S(T ∗), T ∗) < γ.

Lemma 9 For every 0 < γ < Cs, there is a time t > 0 such that c(S(t), t) < γ.

To conclude this note, we mention three additional results:

Theorem 3 If 2Cs > A(D, b0, α) > Cs and if α√
D

is sufficiently large, there are
infinitely many distinct precipitation regions.

Theorem 4 If a new precipitation region germinates at (x, t), then x = α
√
t. This

property is the so-called time-law.

Theorem 5 In the (x, t)-plane, a Liesegang band can only extend to the right of the
point of initiation.
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Université de Paris-Sud (Bât. 425)
F-91405 Orsay Cedex, France



250 D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi

R. van der Hout
Mathematical Institute
University of Leiden
POB 9512
NL-2300 RA Leiden, The Netherlands

M. Mimura
Department of Mathematics
School of Science and Technology
Meiji Institute for Mathematical Science and Technology
Meiji University
Higashimita, Tama-ku, Kawasaki, 214-8571 Japan

I. Ohnishi
Institute for Nonlinear Sciences and Applied Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima, 739-8526 Japan



International Series of Numerical Mathematics, Vol. 154, 251–261
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Numerical Modeling of Surfactant Effects
in Interfacial Fluid Dynamics

Ashley J. James and John Lowengrub

Abstract. Surfactants are substances that preferentially accumulate at inter-
faces between two fluids, altering the local surface tension. An imposed flow
can produce a non-uniform distribution of surfactant. In regions of high sur-
factant concentration the surface tension is low, so the interface offers less
resistance to deformation and can become highly curved, allowing very small
droplets or bubbles to pinch off. A numerical method to simulate interfacial
surfactant mechanics within a volume of fluid method has been developed.
To conserve surfactant, the surfactant mass and the interfacial surface area
are tracked as the interface evolves, and then the surfactant concentration
is reconstructed. The algorithm is coupled to an incompressible flow solver
that uses a continuum method to incorporate both the normal and tangential
components of the surface tension force into the momentum equation.

Keywords. surfactant, VOF, interfacial flow, surface tension.

1. Introduction

Surfactant plays a critical role in numerous important industrial and biomedi-
cal applications. For example, the formation of very small drops or bubbles by
tip streaming relies on the presence of surfactant. The production of such tiny
droplets is useful in drug delivery, industrial emulsification, liquid/liquid extrac-
tion, polymer blending and plastic production, and other applications.

Surfactants adhere to interfaces resulting in a lowered, non-uniform surface
tension along the interface. This makes the capillary force non-uniform and intro-
duces the Marangoni force. Interfacial surfactant is transported with the interface
by convection, and may diffuse along the interface in the presence of a surfactant
concentration gradient. Additionally, compression or stretching of the interface
causes a corresponding increase or decrease in the concentration. The equation
that governs these dynamics has been derived in various forms in [1, 2]. The mo-
tion of the surfactant and of the surrounding bulk fluids are coupled through the
Marangoni force.
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We simulate interface dynamics using the volume-of-fluid (VOF) method [3].
The main advantages of the method are that the interface shape is not constrained,
changes in topology are handled automatically, and mass of each flow component
is conserved exactly. The interface location is captured as it moves through the
grid by tracking the local volume fraction. Flow discontinuities are smoothed and
the surface tension force is distributed over a thin layer near the interface.

Continuum formulations of the interface governing equations have been im-
plemented numerically primarily for clean drops, although Jan and Tryggvason
[4] studied the effect of surfactants on rising bubbles using an immersed bound-
ary/front tracking method and Ceniceros [5] used a hybrid level-set/front tracking
method to study the effect of surfactants on capillary waves. Xu and Zhao [6]
simulated surfactant transport on a deformable interface in conjunction with a
level set method. They did not couple their method to a flow solver, but presented
test cases in which a velocity field is prescribed. Renardy et al. [7] presented sim-
ulations of drops with surfactant using the VOF method. This work thus far has
been limited to assuming a linear relation between the surfactant concentration
and surface tension.

In the current paper we present a numerical method that incorporates sur-
factant dynamics in an axisymmetric, incompressible Navier-Stokes solver based
on the VOF method for interface capturing. We focus on the case of insoluble
surfactant. The surfactant mass is exactly conserved along the interface by our
algorithm. An arbitrary equation of state relating the surfactant concentration to
the surface tension may be used. Further details and verification are given in [8].

2. Governing equations

We assume that the flow is incompressible in both fluids, so the velocity, u, is
divergence free, ∇·u = 0. The VOF method is used to track the interface between
the two fluids, called fluid 1 and fluid 2. In this method a volume fraction, F , is
defined in each grid cell as the fraction of the cell that contains fluid 1. The volume
fraction evolution is governed by a convection equation that ensures the interface
moves with the velocity of the fluid,

∂F

∂t
+ u · ∇F = 0. (2.1)

Surface tension is included in the momentum equation via the continuum
surface force (CSF) method [9]. The momentum equation satisfies the stress bal-
ance boundary condition on the interface. The surface tension force is nonzero
only near the interface. The VOF and CSF methods make it unnecessary to apply
boundary conditions at the interface and one set of governing equations applies to
the entire domain. Thus, the density and viscosity must be retained as variables in
the momentum equation even though they are both constant in each fluid. Using



Numerical Modeling of Surfactant Effects 253

inertial time and pressure scales, the momentum equation is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +

1
Re
∇ ·

[
µ
(
∇u +∇uT

)]
+

1
ReCa

FS , (2.2)

where ρ is the density, p is the pressure, Re is the Reynolds number, µ is the
viscosity and Ca is the capillary number. The surface force FS is

FS = ∇ ·
[
σ
(
I − nn

)
δΣ

]
= −σκδΣn + δΣ∇Sσ (2.3)

where σ is the surface tension, n is the unit vector normal to the interface, δΣ
is the surface delta function, κ is the interface curvature and ∇S is the surface
gradient. The first term on the right-hand side of Eq. (2.3) is the capillary force
and the second term is the Marangoni force. The normal vector and the surface
delta function are determined from the gradient of the volume fraction,

n = − ∇F|∇F | , δΣ = |∇F |. (2.4)

The surfactant concentration evolution is governed by a convection-diffusion equa-
tion with a source term to account for interfacial stretching,

∂Γ
∂t

+ u · ∇Γ =
1

PeS
∇2

SΓ + Γn · ∇u · n, (2.5)

where Γ is the interfacial surfactant concentration, PeS is the surface Peclet num-
ber, and ∇2

S is the surface Laplacian operator.
In our finite volume method, we do not solve Eq. (2.5) directly and instead

relate the surfactant concentration in a finite volume to the ratio of the surfactant
mass M and surface area A in that volume, i.e., Γ = M/A. The surfactant mass
and surface area are tracked independently as described below. Siegel [10] has also
proposed decomposing concentration into mass and area.

The equation governing A can be written in differential form as

DA

Dt
=

∂A

∂t
+ u · ∇A = −A (n · ∇u · n) . (2.6)

The left-hand side of equation (2.6) is the time rate of change of the area of
a material element of the interface. The right-hand side represents changes in
interfacial area due to stretching. The mass of surfactant on a material element
of the interface can change if there is diffusion along the interface. The governing
equation is

DM

Dt
=

∂M

∂t
+ u · ∇M =

A

PeS
∇2

SΓ. (2.7)

Equation (2.5) is regained by combining equations (2.6) and (2.7) with Γ = M/A.
Finally, an equation of state is given for the surface tension as a function of

surfactant concentration. For example, the Langmuir equation of state is

σ =
1 + E ln (1− xΓ)
1 + E ln (1− x)

, (2.8)
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where E is the surfactant elasticity and x is a measure of surfactant coverage. The
scaling is constructed so that the equilibrium dimensionless concentration, Γ = 1,
corresponds to the equilibrium dimensionless surface tension, σ = 1.

3. Computational method

3.1. Introduction

The axisymmetric governing equations are discretized using a finite-volume
method, on a fixed, structured, uniform, staggered grid, in the r − z plane. In
the staggered grid arrangement the velocity components are defined on cell faces
and all other variables are defined at cell centers. The continuity and momen-
tum equations are discretized using second-order central differences, except for
the surface stress, which is described in Section 3.6.

An explicit Euler time integration method is used, except that surfactant
diffusion is discretized implicitly as described in Section 3.5. At each time step,
first the velocity and pressure are updated, using a projection method, and then the
volume fraction and the surfactant distribution are updated as described below.

The volume of fluid 1 in a grid cell at the beginning of a time step is the cell
volume times the volume fraction. During a time step the volume flux of fluid 1
that moves between adjacent grid cells is computed. The volume fraction at the
end of a time step is then the initial volume of fluid 1 minus the net volume flux
out of the cell, divided by the cell volume. Thus, although equation (2.1) governs
the evolution of the volume fraction, the method actually tracks fluid volumes.

Our approach to surfactant evolution is analogous to volume fraction evolu-
tion. Surfactant mass fluxes due to convection and diffusion are computed. The
concentration in a grid cell is then the surfactant mass in the cell divided by the
surface area of the interface in the cell. The surface area in a cell may vary, unlike
the cell volume, so it is critical to accurately track the surface area.

Surface area evolution is described below, as well as volume fraction and
surfactant mass evolution. However, the “reconstruction” of the interface and the
surfactant concentration are described first.

3.2. Volume fraction and surfactant concentration reconstruction

To convect volumes of fluid while preventing smearing of the interface normal to
itself it is first necessary to reconstruct the interface from the volume fraction
field. This interface reconstruction locates where the volume of fluid 1 resides in
the cell, rather than assuming both fluids are distributed uniformly. Convection
of surfactant similarly suffers from excessive numerical diffusion if the surfactant
is assumed to uniformly distributed along the interface, so its distribution is also
reconstructed.

The volume fraction distribution in a cell is determined by approximating
the interface in a cell as a straight line. The line segment approximation of the
interface is defined independently in each cell, so the approximate interface need
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Figure 1. Computation of surface gradient of surfactant.

not be continuous from one cell to the next. First, the normal vector is computed
as the volume fraction gradient using a finite difference method with a nine-point
stencil. The normal vector defines the slope of the line. The intercept is calculated
iteratively so that the volume of fluid 1 defined by the line equals that defined by
the known cell volume fraction, Fi,j .

The surfactant concentration is reconstructed as a linear function of position,
s, along the straight-line interface reconstruction, Γ = (∇SΓ) s + c, where the
surface gradient, ∇SΓ, is taken to be constant in each cell. As for the interface
reconstruction, the function need not be continuous from one cell to the next. Since
the concentration is only defined on the interface the surface gradient cannot be
computed using a simple finite difference formula, as the normal vector is for
the interface reconstruction. Instead the gradient is computed using only the two
adjacent cells that contain an interface segment. This is illustrated in Figure 1 for
the case in which the adjacent cells that contain an interface segment are cells
(i + 1, j) and (i − 1, j). The procedure is analogous if other adjacent cells are
used. The concentration gradient is the difference in concentration between the
two cells divided by the distance, L, between their interface midpoints. For the
case illustrated in Figure 1, for example

(∇SΓ)i,j =
Γi+1,j − Γi−1,j

L
. (3.1)

The intercept, c, in the concentration reconstruction is then computed to ensure
that the average concentration defined by the reconstruction equals the known
average concentration in the cell, Γi,j .

3.3. Volume fraction evolution

The axisymmetric, conservative governing equation for the volume fraction is

∂F

∂t
+

1
r

∂

∂r
(ruF ) +

∂

∂z
(vF ) = F

[
1
r

∂

∂r
(ru) +

∂v

∂z

]
. (3.2)



256 A.J. James and J. Lowengrub

where u is the radial velocity and v is the vertical velocity. The equation is split
into radial and vertical directions using an intermediate volume fraction, F̃ ,

F̃i,j − Fn
i,j

∆t
+

RFn
i+1/2,j −RFn

i−1/2,j

2πri∆r∆z∆t
=

F̃i,j

(
ri+1/2u

n+1
i+1/2,j − ri−1/2u

n+1
i−1/2,j

ri∆r

)
(3.3)

Fn+1
i,j − F̃i,j

∆t
+

Z̃F i,j+1/2 − Z̃F i,j−1/2

2πri∆r∆z∆t
= F̃i,j

(
vn+1

i,j+1/2 − vn+1
i,j−1/2

∆z

)
. (3.4)

RFi+1/2,j is the volume flux of fluid 1 in the radial direction across the (i + 1
2 , j)

face, and ZFi,j+1/2 is the volume flux of fluid 1 in the vertical direction across the
(i, j + 1

2 ) face. The fluxes are calculated in one direction and used to update the
volume fraction to the intermediate level. Then, using the intermediate volume
fraction, the fluxes are calculated in the other direction and used to update the
intermediate volume fraction to the next time level. The direction computed first
is switched at each time step.

The volume flux is the amount of fluid 1 that passes through the face during
the time step. This flux equals the amount of fluid 1 in the domain of dependence
of the face, at the beginning of the time step. This is illustrated in Figure 2 for
the case of flux across the (i + 1

2 , j) face with positive radial velocity, ui+1/2,j .
The domain of dependence is approximated by the region bounded by the face of
interest, the two adjacent perpendicular grid lines, and a line parallel to the face
of interest that is a distance of U∆t away from the face, where U is the velocity
normal to the face. The flux is the intersection of the domain of dependence and
the portion of the cell volume that contains fluid 1, as defined by a straight-line
reconstruction of the interface.

3.4. Surface area evolution

The interfacial area in a grid cell is governed by equation (2.6). The area is updated
in three steps. Two account for convection, one step in each direction, and are taken
in tandem with the volume fraction. An additional step to account for stretching
is taken in between the two convective steps.

Ãi,j −An
i,J + RAn

i+1/2,j −RAn
i−1/2,j = 0 (3.5)

Âi,j = Ãi,j −∆tÃi,j (n · ∇u · n)n+1
i,j (3.6)

An+1
i,j − Âi,J + ẐAi,j+1/2 − ẐAi,j−1/2 = 0, (3.7)

where RAn
i+1/2,j is the interfacial area flux in the radial direction across the (i +

1
2 , j) face, and ZAn

i,j+1/2 is the interfacial area flux in the vertical direction across
the (i, j + 1

2 ) face. The stretching term in equation (3.6) is evaluated with 2nd
order central differences. Convective fluxes of area are computed analogously to
the volume fraction fluxes, and, as for the volume fraction, the direction computed
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Interface ui+1/2,j∆t
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Figure 2. Calculation of volume flux. The volume flux, RFi+1/2,j , is
denoted by the darker gray area.

first is switched at each time step. The fluxes in one direction are used to update
the area to an intermediate value in all cells, Ã, at the same time the volume
fraction is updated by convection in the same direction. The straight line interface
reconstruction is then updated. Next, stretching is applied to update the area in
all cells to Â. Finally, convective fluxes in the other direction complete the update
of the area in all cells to the new time step, An+1. This is done in conjunction
with the final update of the volume fraction by convection in the same direction.

The area flux is the area in the domain of dependence at the beginning of
the time step. In Figure 2 this domain is the region ui+1/2,j∆t wide. The area of
the straight line in the domain of dependence, Adod, and the area of the straight
line in the whole cell, Asl, are computed from the interface geometry. Unlike in the
volume fraction computation, Adod is not an accurate representation of the area
flux. However, the straight line does provide a good representation of which part
of the cell the interface is in. Thus, we assume that the fraction of the actual area
in the domain of dependence equals the fraction of the area of the straight line in
the domain of dependence. Thus, the area flux is computed as the fraction of the
area of the straight line in the domain of dependence, Adod/Asl, times the actual
cell interfacial area, Ai,j .

3.5. Surfactant evolution

The evolution of the surfactant mass in a cell is governed by equation (2.7). At
each time step, the mass equations are updated in three steps that correspond to
convection and diffusion.

M̃i,j −Mn
i,J + RMn

i+1/2,j −RMn
i−1/2,j = 0 (3.8)

M̂i,j − M̃i,J + Z̃M i,j+1/2 − Z̃M i,j−1/2 = 0 (3.9)

Mn+1
i,j − M̂i,j = DRn+1

i+1/2,j −DRn+1
i−1/2,j + DZn+1

i,j+1/2 −DZn+1
i,j−1/2. (3.10)
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First, the mass is updated in every cell to an intermediate level, M̃ , by convection
in one direction, along the convection of volume fraction and interfacial area in
the same direction. After this the interface approximation is reconstructed, the
area is stretched, the average concentration is updated as Γ = M/A, and the
concentration approximation is reconstructed. Next, the mass is updated in every
cell by convection in the other direction to M̂ , along with convection of volume
fraction and interfacial area. The direction in which F , A and M are convected
first is switched at every time step to avoid skew. Then, once again, the interface
approximation is reconstructed, the average concentration is updated, and the
concentration approximation is reconstructed. Finally, the mass is updated in every
cell to the next time level, Mn+1, by diffusion in both directions simultaneously.

The mass fluxed by convection through a cell face during a time step equals
the mass in the domain of dependence at the beginning of the step, as for vol-
ume of fluid and interfacial area. Its computation is analogous to the area flux
computation. A first approximation to the flux is the integral of the concentration
over the straight line in the domain of dependence, Mdod. In computing Mdod it
is crucial to use the linear reconstruction of the concentration, instead of simply
its average value, to avoid excessive numerical diffusion. As for the area, this does
not accurately represent the flux since Mdod is obtained using the straight line.
However, Mdod/Adod gives a consistent value for the average concentration on the
portion of the interface that is convected. This is multiplied by the area flux to
obtain a mass flux that is consistent with the area flux

Mass Flux =
(
Mdod

Adod

)(
Ai,j

Adod

Asl

)
. (3.11)

Next, the mass is updated to the new time step by diffusion in a single implicit
step. Diffusion of surfactant across a cell face occurs only when there is an interface
in both cells adjacent to the face. From Fick’s Law, the radial flux across the face
(i + 1

2 , j), for example, is

DRn+1
i+1/2,j =

∆t

PeS
2πri+1/2

(
Γn+1

i+1,j − Γn+1
i,j

Li+1/2,j

)
, (3.12)

where the surface gradient is approximated as the difference in the average con-
centration between the two adjacent cells, divided by L, the distance between
the midpoints of the straight-line interface reconstructions in the cells. Note that
equation (3.10) is implicit, since the concentration in the flux is evaluated at the
new time step. In practice this is written as an equation for concentration by di-
viding by the area. Since the fluxes depend on Γn+1

i,j this coupled system is solved
iteratively for Γn+1

i,j . The surfactant mass is then updated as M = ΓA.

3.6. Surface tension force

Once the surfactant concentration distribution is known the average surface ten-
sion in each grid cell can be computed from the equation of state, (2.8). The surface
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stress, equation (2.3), can be written as

FS = σκ∇F +
∂σ

∂s
|∇F |s. (3.13)

In the staggered grid arrangement the stress components are evaluated at cell faces.
First, the curvature is computed in each grid cell center using standard methods.
Next, the curvature is evaluated at each face as the average of the curvature in
the two adjacent cells. The surface tension at cells faces is also computed as the
average of the surface tension in the two adjacent cells, if both cells contain an
interface segment. If only one of the adjacent cells contains an interface segment
the surface tension in that cell is used as the surface tension at the face. If there
is not an interface segment in either adjacent cell the surface tension at the face
is set to zero and there is no surface force.

The surface gradient of the surface tension is non-zero only at faces for which
both adjacent grid cells contain an interface segment. For such faces the gradient
is computed exactly as the surface gradient of concentration is computed in eval-
uating surface diffusion. The magnitude of the volume fraction gradient at each
face is computed using straightforward 2nd order finite difference approximations.
Finally, the radial component of the surface stress, FR, becomes

FRi+1/2,j = (σκ)i+1/2,j

(
Fi+1,j − Fi,j

∆r

)
+

(
σi+1,j − σi,j

Li+1/2,j

)
|∇F |i+1/2,j . (3.14)

The vertical component is analogous.

4. Conclusions and future work

In this paper, we presented a volume of fluid method that accounts for an evolving
surface distribution of insoluble surfactant and the associated Marangoni force in
an axisymmetric geometry. The masses of the fluid components and of the surfac-
tant are exactly conserved. An arbitrary equation of state relating the surfactant
concentration to the surface tension may be used.

There are several directions we will pursue in the future. To resolve the wide-
ranging length and time scales inherent in interfacial flows with surfactants, we
will implement adaptive mesh refinement. This is necessary to resolve, for example,
very small secondary drops that may pinchoff from the ends of a primary drop in
the presence of surfactant (tip streaming). Additionally, coupling the VOF method
to a level set method can improve the accuracy of the surface tension computation
[11]. We have implemented a 2D coupled level-set/volume-of-fluid algorithm on
an adaptive mesh for clean drops [12]. The method uses an arbitrary Lagrangian-
Eulerian method to capture the interface evolution. An analogous method to track
the surfactant is currently undergoing testing.

In additional future work, we will link the volume fraction and interface area
advection routines to create a higher-order, self-consistent interface reconstruction.
We will also simulate the transport of soluble surfactant in the fluid bulk and
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transfer of surfactant between the bulk and the interface. Finally, the simulations
will be generalized to three dimensions.
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The Value of an American Basket Call with
Dividends Increases with the Basket Volatility

Jörg Kampen

Abstract. We show the American Call on a basket (i.e., a weighted sum of
assets) and with dividends increases with the basket volatility in a large class
of multivariate continuous diffusion models. In case of a flat yield curve the
same result holds for the American Put on a basket. The proof of our result
is based on extensions of Hajek’s mean stochastic comparison results to sto-
chastic sums. We provide a simple proof of Hajek’s result and show why the
argument is much more involved in case of our extensions. We provide the
main ideas of the proofs of our extensions based on heat kernel expansions.

Mathematics Subject Classification (2000). Primary 35K15; Secondary 60G40.

Keywords. Mean stochastic comparison, dependence of American call value
on volatility.

1. American Call basket options with dividends

The American Call option on a basket of assets is the right to sell a certain basket
of assets, i.e., a fixed weighted sum of underlyings, at strike price K during the
time of the validity of the contract. Strike price, underlyings, and maturity time are
written in the contract. The term “American” refers to the early exercise right of
the option holder. This early exercise right leads to the feature of free boundaries
in the typical continuous diffusion models of financial markets. Let us consider
such a (for simplicity complete) market with n risky assets S = (S1, . . . , Sn) which
satisfy

dSi = (r(S) − δi(S))Sidt + σi(S)SidWi (1.1)
in the risk-neutral measure, and where S → r(S), S → σi(S), and S → δi(S) are
bounded Lipschitz-continuous functions which model interest rates, volatilities,
and dividends, respectively. Dividends are always nonnegative. Let T > 0 be the
maturity time. We consider (1.1) on the time interval [0, T ] and assume that W is

This work was completed with the support of SFB 359 (DFG) and BMBF.
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an n-dimensional Brownian motion which satisfies for all 0 ≤ t ≤ T

ρij(t) =
∫ t

0

[Wi,Wj ](s)ds, (1.2)

with constant ρij modeling the correlations of the returns of the assets (we shall
consider the extension to variable correlations below). In order to introduce the
basket volatility we make the following observation on stochastic sums. If F1(t) =
S1(t) + · · ·+ Sn(t) and assuming that [F1](t) > 0, then

Z(t) =
∫ t

0

1√
[F1](u)

dF1(u) (1.3)

is a Brownian motion by Levy’s theorem. We have

dF1 = σB(S)dZ(t), (1.4)

where we call

σB(S) =
√∑

ij

ρijσiσjSiSj (1.5)

the basket volatility. We want to show that the value function of an American
basket Call with dividends increases as the basket volatility increases. The value
function is defined as the solution (δt, S)→ VC(δt, S) of the obstacle equation

max
{
∂u

∂δt
− LSu, f − u

}
= 0, (1.6)

in (0, T ]× R
n
+ × R

m
+ , and satisfies the initial condition (K is the strike price)

VC(0, S) = fC(S) =

(∑
i

Si −K

)+

. (1.7)

Here, δt denotes the time to maturity T − t (hence the minus sign in the diffusion
equation in (1.6)), and

LSu =
1
2
σσT : D2

Su + Sδ,r · ∇Su− ru, (1.8)

where Sδ,r := ((r − δ1)S1, . . . , (r − δn)Sn) and D2
Su =

(
SiSj

∂2u
∂Si∂Sj

)
. The volatil-

ity matrix σσT , the volatilities σi, and covariances (ρij) are related by

σσT = σiρijσj . (1.9)

Indicating the dependence of the basket volatility σB(S) =
√∑

ij ρijσiσjSiSj on

R = (ρij) by writing σR
B we observe that in our model of constant correlations we

have
σR

B ≤ σR′
B iff R ≤ R′. (1.10)

As usual we say that R ≤ R′ iff R′ − R is positive. Next recall that the exercise
region is the contact set E = {(t, S)|VC(t, S = fC(S)}. Our main Theorem then is
the following.
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Theorem 1.1. The American Call option basket value function VC is monotone
with respect to the basket volatility, i.e.,

σB ↑ ⇒ V σB

C ↑ (1.11)

where

σB(S) =
√∑

ij

ρijσiσjSiSj .

This means that the exercise region shrinks with increasing basket volatility.

Remark 1.2. If dividends δi = 0, then the American basket Call option value
function VC equals the European basket Call option value function.

The proof of Theorem 1 is easily reduced to the case of European basket Call
option. The reason is that the value function of American Call options is the limit
of the value functions of certain Bermudean Call options (as is well known). If
0 < T1 < · · · < Tn = T is the tenor structure of a Bermudean option and

Dk = {T1, . . . , Tn}, (1.12)

then the value of a Bermudean Call option at time t = 0 (we consider the value at
time t = 0 w.l.o.g.) is

VBC(0, x) = sup
τ∈Dk

Ex(e−rτfC(S(τ))), (1.13)

where the expectation is taken w.r.t. the risk neutral measure.
If ∆ := maxk∈{T1,...,Tn} Tk+1−Tk, then ∆→ 0 implies VBC ↑ VC . Hence, the

proof of Theorem 3 reduces to main stochastic comparison theorems of stochastic
sums with convex nondecreasing data. If data are convex but not nondecreasing,
then mean stochastic comparison results hold only with additional restrictions.
One possible restriction is no drift at all, but this means that constant drift terms
are also allowed (proof by coordinate transformation). Hence, in context of an
American Put option, we can allow for a flat yield curve.

Theorem 1.3. Let r be a constant function. The American basket Put option value
function VP is monotone with respect to the basket volatility, i.e.,

σB ↑ ⇒ V σB

P ↑ . (1.14)

The elegance of stating theorems in terms of the basket volatility has to be
paid off by some restriction of the model w.r.t. correlations. However, our results
can be extended to financial market models where the assets S = (S1, . . . , Sn)
satisfy

dSi

Si
= µi(S)dt + σ(S)dW, (1.15)

and where σ is an n×n matrix-valued bounded continuous function. Note that in
the latter model correlations between the returns of the assets may depend on S.
We state the following corollaries.
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Corollary 1.4. In the framework of the more general model class (1.15), the Amer-
ican Call option basket value function VC is monotone with respect to σσT , i.e.,

σσT ↑ ⇒ V σB

C ↑ . (1.16)

This means that the exercise region shrinks with increasing volatility matrix σσT .

Similarly,

Corollary 1.5. Let the interest rates r be constant. In the framework of the more
general model class (1.15) the American Put basket option value function VC is
monotone with respect to σσT , i.e.,

σσT ↑ ⇒ V σB

P ↑ . (1.17)

This means that the exercise region shrinks with increasing basket volatility ma-
trix σσT .

This paper is organized as follows. In the next section 2 we state two mean
stochastic comparison results. In Section 3 we recall some results on the WKB-
expansion of the fundamental solution of parabolic equations. Finally, in Section
4 we provide a simplified proof of Hajek’s result in the univariate case. In Section
5 we provide the main ideas of our extensions stated in Section 2.

2. Two mean stochastic comparison results

In this section we state two mean stochastic comparison results. The first one is
for a general class of convex payoff and can be applied to option pricing in finance
in case of a flat yield curve. The second theorem requires nondecreasing data,
but allows for a quite general class of drift terms. It can be applied directly to
continuous diffusion market models.

Theorem 2.1. Let T > 0, f ∈ C (R) be convex, and assume that f satisfies an
exponential growth condition. Furthermore, let X,Y be semimartingales with x =
X(0) = Y (0) ∈ R

n, where

X(t) = X(0) +
∫ t

0

σ(X(s))dW (s),

Y (t) = X(0) +
∫ t

0

ρ(Y (s))dW (s),

with n × n- matrix-valued bounded continuous functions x → σσT (x) and y →
ρρT (y). If σσT ≤ ρρT , then for all 0 ≤ t ≤ T

Ex

(
f

(∑
i

Xi(t)

))
≤ Ex

(
f

(∑
i

Yi(t)

))
.

Remark 2.2. Here, we say that σσT ≤ ρρT if for all x σσT (x) ≤ ρρT (x).
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The second theorem includes drift terms but is more restrictive w.r.t. the
data.

Theorem 2.3. Let T > 0, f ∈ C (R) nondecreasing, convex, and satisfying an
exponential growth condition, X,Y semimartingales with x = X(0) = Y (0) ∈ R

n,
where

X(t) = X(0) +
∫ t

0

µ(X(s))ds +
∫ t

0

σ(X(s))dW (s),

Y (t) = X(0) +
∫ t

0

ν(Y (s))ds +
∫ t

0

ρ(Y (s))dW (s),

with n × n-matrix-valued bounded continuous functions x → σσT (x) and y →
ρρT (y). If µ ≤ ν are bounded continuous functions, and σσT ≤ ρρT , then for all
0 ≤ t ≤ T

Ex

(
f

(∑
i

Xi(t)

))
≤ Ex

(
f

(∑
i

Yi(t)

))
.

3. Some results on the WKB-expansion of parabolic equations

We recall some results on the fundamental solution and its relation to continuous
diffusion processes. The continuous diffusion

dX(δt) = µ(X(δt))dt + σ(X(δt))dW (δt) (3.1)

satisfies (under some standard assumptions)

P (X(δt) ∈ dy) = p(δt, x, y)dy, (3.2)

where p is the fundamental solution of the parabolic equation

∂u

∂δt
− 1

2

∑
ij

(σσT )ij(x)
∂2u

∂xi∂xj
−

∑
i

µi(x)
∂u

∂xi
= 0 (3.3)

on the domain R
n × (0, T ) with the initial condition

p(0, x, y) = δy(x), (3.4)

where δy(x) denotes the delta distribution related to the Dirac delta distribution
δ by δy(x) = δ(x − y). The fundamental solution exists and is (strictly) positive
on R

n × (0, T ) if the conditions
(A) The operator L is uniformly parabolic in R

n, i.e., there exists 0 < λ < Λ <∞
such that for all ξ ∈ R

n \ {0}

0 < λ|ξ|2 ≤
n∑

i,j=1

(σσT )ij(x)ξiξj ≤ Λ|ξ|2. (3.5)

(B) The coefficients of L are bounded functions in R
n which are uniformly Hölder

continuous of exponent α (α ∈ (0, 1)).
hold.
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Furthermore, if the additional condition
(C) the growth of all derivatives of the smooth coefficients functions

x→ (σσT )ij(x) and x→ bi(x)

is at most of exponential order
holds, then the fundamental solution p has the representation

p(δt, x, y) =
1√

4πδt
n exp

⎛⎝−d2(x, y)
4δt

+
∑
k≥0

ck(x, y)δtk

⎞⎠ , (3.6)

where d is the Riemannian distance with respect to the line element

ds2 =
∑
ij

aijdxidxj ,

(aij) being the inverse of (aij) (cf. [7]), and ck are global solutions of first-order
equations converging pointwise to zero (cf. [3]).

4. A simple proof in case of convex value functions and the
univariate case

Mean stochastic comparison results are easy to obtain if the larger value function is
convex with respect to the spatial variables. We demonstrate this in the multivari-
ate case, and apply the argument to the univariate case. If the diffusion coefficients
are only assumed to depend on time (or, more generally, the larger value function
is convex with respect to the spatial variables), then a multivariate extension of
Hajek’s result can be obtained as follows. Consider the process X = (X1, . . . , Xn)
which starts at some x ∈ R

n at time t and satisfies

dX(s) = σ(X(s))dZ(s), (4.1)

where σ(X(s)) is a matrix-valued process (values in R(n × n)). Here, Z(s) an n-
dimensional Brownian motion. We assume that x → Σ(x) = σσT (x) satisfies (A)
and (B). Let (x1, . . . , xn) → h(x1, . . . , xn) be a convex function, which satisfies
some exponential growth condition and assume that ρ : [0,∞)→ R(n×n) Lipschitz
continuous deterministic function such that

σσT (X(s)) ≤ ρ(s)ρT (s) for all s ∈ R+. (4.2)

Then for all T > t the value function

(t, x)→ u(t, x) = E(t,x)(h(X(T ))) (4.3)

satisfies the final value problem

∂u

∂t
+

1
2

∑
ij

σ(x)σT (x)ij
∂2u

∂xi∂xj
= 0, (4.4)

with the final condition
u(T, x) = h(x). (4.5)
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Similarly, if Y = (Y1, . . . , Yn) with Y (t) = x ∈ R
n satisfies

dY (s) = ρ(s)dZ(s), (4.6)

then the value function

(t, x)→ v(t, x) = E(t,x)(h(X(T ))) (4.7)

satisfies the final value problem

∂v

∂t
+

1
2

∑
ij

ρρT
ij(t)

∂2u

∂xi∂xj
= 0, (4.8)

with the final condition
v(T, x) = h(x). (4.9)

Note that comparison holds for both problems (4.4), (4.8) by standard viscosity
solution theory. We observe that the solution function v of the latter Cauchy
problem is convex by the weak maximum principle. Now, plugging in v into the
equation for u gives

∂v
∂t + 1

2

∑
ij σσ

T (x)ij
∂2v

∂xi∂xj

= − 1
2

∑
ij

(
ρ(t)ρT (t)ij − σ(x)σT (x)ij

)
∂2v

∂xi∂xj
.

(4.10)

Note that the right side of (4.10) equals

−Tr
((
ρρT − σσT

)
D2v

)
, (4.11)

where D2v denotes the Hessian of v. Since v is convex with respect to the spatial
variables, and ρρT ≥ σσT , we have

Tr
((
ρρT − σσT

)
D2v

)
≥ 0. (4.12)

Hence, we have v ≥ u on R
n × (0, T ) by the comparison principle. Note that we

consider final value problems here. The sign of the right side of (4.10) and changes
if we consider initial value problems. We summarize

Proposition 4.1. Let the processes X and Y with X(0) = Y (0) = x satisfy (4.1)
and (4.6) and σσT and ρρT be Lipschitz continuous. Let f be a convex function
which satisfies some exponential growth condition. Then for all (t, x) ∈ (0, T )×R

n

and T ≥ t we have
E(t,x)(f(X(T )) ≤ E(t,x)(f(Y (T ))). (4.13)

Next, in the univariate case we can prove that the value function is convex
with respect to the spatial variable. Consider the case n = 1 and the (initial value)
problem {

∂V
∂δt −

1
2a(x)∂2V

∂x2 = 0 in (0, T )× R

V (0, x) = h(x) for x ∈ R.
(4.14)
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Then we get

∂V

∂δt
(δt, x) = a(x)

∂2V

∂x2
=

∫
R

h(y)
∂p

∂δt
(δt, x, y)dy (4.15)

=
∫

R

h(y)
∂2(a(y)p(δt, x, y))

∂y2
dy =

∫
R

(
d2h(y)
dy2

a(y)
)
p(δt, x, y)dy ≥ 0

Since a > 0, it follows that
∂2V

∂x2
(δt, x) ≥ 0. (4.16)

An analogous argument for convexity in the spatial variable holds in case of n = 1
and the situation of Theorem 4 (where there is a drift term). Just use the forward
Kolmogorov equation as in (4.15) but with drift term, and use that f is monotone
non-decreasing. Hence, we have

Corollary 4.2. Consider the case n = 1 in the situation of Theorem 3, where
f ∈ C (R) is convex assume that f satisfies an exponential growth condition. Then
for all (t, x) ∈ (0, T )× R

n and T ≥ t we have

E(t,x)(f(X(T )) ≤ E(t,x)(f(Y (T ))). (4.17)

The latter relation also holds in case n = 1 and the situation of Theorem 4.

5. Proof of Theorem 3 (main ideas)

In the situation of Theorem 3 convexity of the value function w.r.t. the spatial
variables cannot be expected in general. Hence, we need a different argument in
order to prove Theorem 3. We shall provide the basic ideas of this argument. If we
abbreviate (aij) = σσT , then the value function V (t, x) = Ex(f(

∑
i Xi(t)) with

V (0, x) = f(
∑n

i xi) satisfies the Cauchy problem⎧⎨⎩
∂V
∂δt −

1
2

∑
ij aij(x) ∂2V

∂xi∂xj
= 0 in (0, T )× R

n

V (0, x) = f(
∑n

i xi) for x ∈ R
n.

(5.1)

Let A = (aij) and denote the solution of (5.1) by VA. If the entries of A are
replaced by the entries of some A′ = (a′ij) in (5.1), then we denote its solution by
VA′ . We have to show

A ≤ A′ ⇒ VA ≤ VA′ . (5.2)

We shall assume conditions (A), (B), and (C), and adding ε‖x‖2 to f for small ε
if necessary, we assume that the second order partial derivatives of f are strictly
positive. Having proved Theorem 3 in case of this additional restrictions, it is easy
to see that it holds also under the conditions of Theorem 3. The first step now
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is to show that the time derivative of VA is positive Using Kolmogorov’s forward
equation for the fundamental solution p of the diffusion equation in (5.1) we have

∂V

∂δt
(δt, x) =

∫
Rn

h(y)
∂p

∂δt
(δt, x, y)dy

=
∫

Rn

h(y)
1
2

∑
ij

∂2(aij(y)p(δt, x, y))
∂yi∂yj

dy

=
∫

Rn

Tr
(
D2h(y)A(y)

)
p(δt, x, y)dy.

(5.3)

Since h is convex and A = (aij) is positive, we have

Tr

(
D2f(

∑
i

yi)A(y)

)
> 0. (5.4)

Note that this implies immediately that

Tr
(
D2V (δt, x)A(x)

)
> 0, (5.5)

because

Tr
(
D2V (δt, x)A(x)

)
=

∫
Rn

f ′′

(
n∑

i=1

yi

)
Tr (A(y)) p(δt, x, y)dy, (5.6)

and p exists and is strictly positive under the conditions (A) and (B). Next consider
small δt, and the essential case where n = 2. We consider the standard WKB-
expansion

pA(δt, x, y) =
1√

2πδt
n√

detA(y)
exp

(
−d

2(x, y)
2δt

+ c00(x, y) +
∞∑

k=1

ck(x, y)δtk
)
,

(5.7)
where c00 satisfies

−n
2

+
1
2
Ld2 +

1
2

∑
i

⎛⎝∑
j

(aij(x) + aji(x))
d2

xj

2

⎞⎠ ∂c0
∂xi

(x, y) = 0, (5.8)

but with the boundary condition

c00(x, y) = 0 iff x = y. (5.9)

Now, define ∆x = (∆x1,∆x2) = (x− y). Then c00 is of the form

c0y
0 (∆x) = c0y

01∆x1 + c0y
02∆x2 + O(|∆x|2) = O(∆x), (5.10)
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where c0y
0 , c0y

01 , and c0y
02 are functions depending only in y. We have

∂VA

∂δt
(δt, x) =

∫
Rn

Tr
(
D2h(y)A(y)

)
pA(δt, x, y)dy

=
∫

Rn

Tr(D2h(y)A(y))
detA(y)

exp

⎛⎝−d2
A(x, y)
2δt

+
∑
i≥0

cy
i (x)δti

⎞⎠ dy

(5.11)

For simplicity we consider the essential case where n = 2. For y ∈ R
n and

λA
i (y), i = 1, 2 being the eigenvalues of A(y) = (aij(y)), we observe that the

terms in (5.11) equal∫
Rn

1√
2πδt

n
µA(y)(λA

1 (y) + λA
2 (y))√

λA
1 (y)λA

2 (y)
exp

(
−∆x2

1

2λA
1 (y)δt

+
−∆x2

2

2λA
2 (y)δt

+ O(∆x)
)
dy

(5.12)
for some function µA. We know that

µA(y)(λA
1 (y) + λA

2 (y)) > 0, (5.13)

hence µA is positive. Considering the derivative with respect to λA
1 (y) we get

∫
Rn

µA(y)√
2πδt

n

((
1

2
√
λA

1 (y)λA
2 (y)

− 1
2

√
λA

2 (y)
(λA

1 (y))3

)
+

(√
λA

1 (y)
λA

2 (y)

+

√
λA

2 (y)
λA

1 (y)

)
1

λA
1 (y)2

∆x2
1

δt

)
exp

(
−∆x2

1

2λA
1 (y)δt

+
−∆x2

2

2λA
2 (y)δt

+ O(∆x)
)
dy.

(5.14)

The second bracket (in front of exp) in equation (5.14) becomes positive. If
λA

1 (y) > λA
2 (y) then

1

2
√
λA

1 (y)λA
2 (y)

− 1
2

√
λA

2 (y)
(λA

1 (y))3
> 0 (5.15)

Furthermore, we know that µA(y) is positive. Now let w.l.o.g.

A =
(

λA
1 (y) 0

0 λA
2 (y)

)
, A′ =

(
λA′

1 (y) 0
0 λA′

2 (y)

)
. (5.16)

Now we can construct a homotopy A : [0, 1] × R
n → R

n×n from A = A(0) to
A′ = A(1). Considering transformed equations in new variables z with a large
constant c

z1 = cx1, z2 = x2 (5.17)
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(if necessary) we can first assume that λA
1 > λA

2 and λA′
1 > λA′

2 . Then

∫
Rn

µB(t)(y)√
2πδt

n

(⎛⎝ 1

2
√
λ

B(t)
1 λ

B(t)
2 (y)

− 1
2

√√√√ λ
B(t)
2 (y)

(λB(t)
1 (y))3

⎞⎠ +
(√√√√λ

B(t)
1 (y)

λ
B(t)
2 (y)

+

√√√√λ
B(t)
2 (y)

λ
B(t)
1 (y)

)
∆x2

1

λ
B(t)
1 (y)2δt

)
exp

(
−∆x2

1

2λB(t)
1 (y)δt

+
−∆x2

2λB(t)
2 (y)δt

+ O(∆x)

)
dy > 0

(5.18)
for all B(t), t ∈ [0, 1], where λ

B(t)
i (y) are the entries of

B(t) =
(

(1 − t)λA
1 (y) + tλA′

1 (y) 0
0 λA

2 (y)

)
, AM =

(
λA′

1 (y) 0
0 λA

2 (y)

)
. (5.19)

This shows that B : [0, 1]→ ×R
n → R

n×n is a homotopy from A to AM such that
for small δt and all x

s→
∂VB(s)

∂δt
(δt, x) (5.20)

is monotone increasing. Hence,

VA(δs, x) ≤ VA′(δs, x) for all δs ≤ δt (5.21)

for small δs ≤ δt0 > 0. Moreover, this δt0 > 0 can be chosen uniformly in x. Since
we assumed that the initial data are regular with bounded continuous second
derivatives we know that

∂V

∂δt
= Tr

(
AD2V

)
(5.22)

is bounded. Hence, λmin = infy λ
A′
min(y) − λA

min(y) > 0 implies that there exists
δt > 0 such that

inf
x∈Rn

Tr
(
A′(y)D2V (δt, x)

)
− Tr

(
A(y)D2V (δt, x)

)
> 0 (5.23)

and this implies that
∂VA(δt, x)

∂δt
<

∂VA′(δt, x)
∂δt

(5.24)

for some δt > 0 which can be chosen independently of x. Hence,

0 < δt0 := arg sup
δs∈[0,T ]

{VA(δt, x) ≤ VA′(δt, x)|for all x ∈ R
n} . (5.25)

Since VA, VA′ are continuous, we have 0 ≤ s ≤ δt0

VA(s, .) ≤ VA′(s, .). (5.26)

The extension of the argument to global time involves an analysis of the
parametric dependence of the higher order terms ck of the WKB-expansion and is
provided in [3].
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6. Comments on literature

Mean stochastic comparison results can be used in order to identify optimal strate-
gies of multivariate passport options (cf. [2], [3], [5]). Our Theorem 2 and Theorem
3 generalize Hajek’s Theorem 3 in [1]. Hajek’s Theorem (and that it can be useful
in the financial context) was mentioned to me first by Peter Laurence.
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Mathematical Modelling of
Nutrient-limited Tissue Growth

J.R. King and S.J. Franks

Abstract. Free boundary problems associated with biological tissue growing
under conditions of nutrient limitation are formulated. We consider two con-
stitutive laws to describe the deformation of the tissue, Darcy flow and Stokes
flow. Analysis by asymptotic methods, clarifying the model’s stability prop-
erties, is then described for the two biologically-plausible limit cases: (1)
the small-death-rate limit and (2) the thin-rim (fast-nutrient-consumption
or large-tumour) limit. The former leads to some interesting variants on the
Hele-Shaw squeeze film problem and the latter makes explicit a buckling in-
stability associated with growth-induced compressive stresses.

Keywords. Tissue growth, singular perturbation methods, buckling instability.

1. Introduction

We summarise here an extension of the analysis of [4] corresponding to the incor-
poration of one of the most important effects neglected there, namely the slowing
down of the growth (following the initial exponential growth phase) due to the
limited availability of nutrient in the regions furthest from a nutrient source. We
refer to [4] for background and further references. Here we follow [5] in describing
nutrient transport by a reaction-convection-diffusion equation of the form

∂c

∂t
+∇ · (cv) = ∇ · (Dc(n,m)∇c)− λ(c, n,m) (1)

where c(x, t) is the nutrient concentration, the nutrient diffusivity being Dc, v(x, t)
is the macroscopic velocity field of the growing tissue and λ is the nutrient con-
sumption rate. One of our prime motivations comes from tumour growth modelling
and in this context n(x, t) denotes the local volume fraction of live tumour cells,

The authors are grateful to EPSRC and AEA Technology for a CASE studentship held by the
second author whilst much of this work was being undertaken. JRK also gratefully acknowledges
funding from EPSRC grant no. GR/S31051/01.
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ρ(x, t) that of the surrounding material (typically normal cells in vivo and fluid or
gel, say, in vitro) and m(x, t) that of the necrotic material (i.e., the products of
cell death); in the tissue-engineering context, n might denote the fraction of the
void space occupied by tissue at a given point in a porous scaffold. We assume
each of these phases to be incompressible and adopt the no-voids condition

n + ρ+ m = 1, (2)

which is why Dc and λ have not been made dependent upon ρ also. Neglecting
cellular diffusion (i.e., in the ‘sharp-interface’ limit of [4]), we have in addition that

∂n

∂t
+∇ · (nv) = km(c)n− kd(c)n,

∂ρ

∂t
+∇ · (ρv) = 0, (3)

∂m

∂t
+∇ · (mv) = kd(c)n,

where km and kd are the mitotic and death rates of the viable cells (km is an
increasing function of c and kd a decreasing one), and for brevity we neglect here
any birth or death in the surrounding (ρ) material. For simplicity, we also neglect
any volume change on cell death; moreover, in contrast to [6] we shall not include
any mechanisms for the transport, consumption or further degradation of the
necrotic material. From (2)–(3), we have

∇ · v = km(c)n (4)

and in one dimension, or with radial symmetry, (1)–(3) forms a closed system. In
higher dimensions, however, we need to specify a constitutive law in addition; as
in [4], we consider two cases, as follows.

(a) Darcy flow

Here

v = − K

µ(n,m)
∇p, (5)

introducing an extra unknown (the pressure field p(x, t)), but closing the system;
µ(n,m) is the viscosity of the growing medium and K is the permeability.

(b) Stokes flow

Here the stress tensor σij satisfies for each i the momentum equations

∂σij

∂xj
= 0 (6)

and we adopt the constitutive law

σij = −
(
p +

2
3
µ(n,m)

∂vk

∂xk

)
δij + µ(n,m)

(
∂vi

∂xj
+

∂vj

∂xi

)
, (7)
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where the pressure p is defined by

p = −1
3
σkk. (8)

We shall leave µ and Dc arbitrary, writing

µ(1, 0) = µn, µ(0, 1) = µm, µ(0, 0) = µρ,

Dc(1, 0) = D
(n)
c , Dc(0, 1) = D

(m)
c , Dc(0, 0) = D

(ρ)
c .

(9)

For brevity, we neglect consumption of nutrient by the surrounding medium and
by the necrotic material (noting that c will in any case typically be negligible in
the necrotic core) and for definiteness take

λ(c, n,m) = kc(c)n; (10)

moreover, we note (for reasons explained in [5]) that (1) can in practice be ap-
proximated by its quasi-steady limit, i.e.,

∇ · (Dc(n,m)∇c) = kc(c)n. (11)

Having established this more general formulation, we shall henceforth restrict at-
tention to the ‘one-phase’ case in which effects due to the surrounding (ρ) material
are negligible, giving the simplified version of the model in Section 2 and providing
asymptotic reductions in Sections 3 and 4.

2. The one-phase problem: formulation

2.1. Boundary conditions

We first focus on the case of in vitro growth, taking (as in [5]) the surroundings
to be passive, so that we can set ρ = 0 in Ω(t) (and, since m = 1 − n in Ω(t), we
suppress the m dependence of µ and Dc) with

c = c∗, qν = v · ν on Γ(t), (12)

where Ω(t) is the tumour, having moving interface Γ(t) with unit outward normal
ν and outward normal velocity qν , and c∗ is a constant. We are thus assuming
that the surroundings are well stirred (we note that c∗ can readily be made a
function of time in the analysis which follows) or possess a high nutrient diffusivity
(D(ρ)

c  D
(n)
c ) or contain nutrient sources (such as vasculature) which maintain c

at a constant level. In addition, we adopt stress free boundary conditions

(a) p = 0 on Γ(t), (13)
(b) σijνj = 0 on Γ(t), (14)

which correspond to taking the surrounding material to be inviscid.
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2.2. Non-dimensionalisation

We define k ≡ km(c∗) to be the ‘nutrient-rich’ mitotic rate and non-dimensionalise
according to

x = Lx̂, t = t̂/k, c = c∗ĉ, v = kLv̂, qν = kLq̂ν ;
(a) p = µnkL

2p̂/K; (b) p = µnkp̂, σij = µnkσ̂ij ,

where L is a representative length scale. We then introduce

k̂m(ĉ) = km(c)/k, k̂d(ĉ) = kd(c)/kd(c∗), k̂c(ĉ) = kc(c)/kc(c∗),
µ̂(n) = µ(n)/µn, D̂c(n) = Dc(n)/D(n)

c

to give, droppingˆ’s,

∂n

∂t
+∇ · (nv) = km(c)n− σkd(c)n,

∂m

∂t
+∇ · (mv) = σkd(c)n,

n + m = 1, (15)
∇ · (Dc(n)∇c) = βkc(c)n in Ω(t),
c = 1, qν = v · ν, on Γ(t),

where km(1) = 1, kc(1) = 1 and Dc(1) = 1, and the dimensionless parameters
σ and β are given in terms of dimensional quantities by σ = kd(c∗)/km(c∗) and
β = kc(c∗)L2/D

(n)
c c∗. In addition

(a) v = − 1
µ(n)

∇p in Ω(t), p = 0 on Γ(t) (16)

or

(b)
∂σij

∂xj
= 0, σij = −

(
p +

2
3
µ(n)

∂vk

∂xk

)
δij + µ(n)

(
∂vi

∂xj
+

∂vj

∂xi

)
in Ω(t),

σijνj = 0 on Γ(t),
(17)

where µ(1) = 1 in each case. In view of (4), the latter constitutive law can also be
expressed in the form

σij = −
(
p +

2
3
km(c)µ(n)n

)
δij + µ(n)

(
∂vi

∂xj
+

∂vj

∂xi

)
. (18)

We note that
dn

dt
= n(1− σ − n)

holds at any material point on Γ(t), so n→ 1− σ there as t→∞.
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3. The small-death-rate limit, σ $ 1

In this section we consider the first of two biologically plausible limit cases in
which the formulations above can be significantly simplified, namely σ $ 1, which
corresponds to the apoptotic rate (the rate of natural cell death) being much
smaller than the mitotic rate under nutrient rich conditions (care is of course
required with this limit if kd becomes too large for small c); this limit is discussed
in the radially symmetric case in [5]. Since ∇ · v = km(c)n, it follows from (15)
that

∂n

∂t
+ v · ∇n = km(c)n(1 − n)− σkd(c)n

so taking n = 1− σ at t = 0 in Ω(0), we have in the limit σ → 0 the leading order
solution

n = 1 in Ω(t) (19)

for t = O(1) (as is obvious on physical grounds); to avoid a proliferation of suffices
we shall omit the subscript 0 in denoting leading order solutions. Hence to leading
order

∇ · v = km(c), ∇2c = βkc(c), in Ω(t),
c = 1, qν = v · ν on Γ(t). (20)

with
(a)v = −∇p in Ω(t), p = 0 on Γ(t) (21)

or

(b)
∂σij

∂xj
= 0, σij = −

(
p +

2
3
∂vk

∂xk

)
δij +

(
∂vi

∂xj
+

∂vj

∂xi

)
in Ω(t),

σijνj = 0 on Γ(t).
(22)

We now discuss the two constitutive laws separately.

(a) Darcy flow

Here we have the coupled moving boundary problem

∇2c = βkc(c), ∇2p = −km(c) in Ω(t),

c = 1, qν = −∂p

∂ν
on Γ(t).

(23)

As explained in [5], kc(c) = km(c) seems in practice to be a reasonable as-
sumption and if Γ = ∂Ω, or for suitable boundary conditions on ∂Ω\Γ if Γ �= ∂Ω,
we then have

c = 1− βp (24)

and the leading-order problem reduces to

∇2c = βkm(c) in Ω(t),

c = 1, βqν =
∂c

∂ν
on Γ(t).

(25)
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In the case km(c) = c, we have a Baiocchi transformation

w =
1
β

∫ t

0

e−t′ (1− c(x, t′)) dt′ for x ∈ Ω(0),

w =
1
β

∫ t

ω

e−t′(1 − c(x, t′))dt′ for x ∈ Ω(t)\Ω(0),

where we write Γ(t) as t = ω(x), whereby w is given by

∇2w = βw − (1− e−t) for x ∈ Ω(0), ∇2w = βw + e−t for x ∈ Ω(t)\Ω(0),

at t = ω(x) w =
∂w

∂ν
= 0.

(b) Stokes flow

In this case we have

∇2c = βkc(c), ∇ · v = km(c), 0 = −∇
(
p− 1

3
km(c)

)
+∇2v in Ω(t),

c = 1, qν = v · ν, σijνj = 0 on Γ(t).
(26)

Various manipulations of (26) are possible, for example, if kc(c) = km(c); then
writing

v =
1
β
∇c + v†, p = p† +

4
3
km(c)

leads to the usual Stokes flow equations

∇ · v† = 0, 0 = −∇p† +∇2v†,

but the boundary conditions become non-standard.

4. The thin-rim (fast-nutrient-consumption or large-tumour) limit,
β  1

In the converse limit to the one we now discuss, i.e., as β → 0, we have c ∼ 1 and
the nutrient-rich formulations of [4] thus apply. The limit as β →∞ also leads to
significant simplifications, as we now describe.

(a) Darcy flow

Again denoting by −ν the inward normal distance from Γ(t), the boundary-layer
scalings

t =
√
βT, ν = ζ/

√
β, p = P/β, v = V/

√
β, qν = Qν/

√
β, (27)
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apply for Darcy flow, giving at leading order the one-dimensional ‘travelling-wave’
problem (in which Qν is of course independent of ζ)

∂

∂ζ
((Vν −Qν)n) = km(c)n− σkd(c)n,

∂

∂ζ
((Vν −Qν)m) = σkd(c)n,

n + m = 1,
∂

∂ζ

(
Dc(n)

∂c

∂ζ

)
= kc(c)n,

Vν = − 1
µ(n)

∂P

∂ζ
,

c = 1, P = 0, Vν = Qν on ζ = 0,

n→ 0, m→ 1,
∂c

∂ζ
→ 0 as ζ → −∞,

(28)

from which P decouples, with the solution then depending on Vν and Qν only
through Wν ≡ Vν −Qν . The leading-order solutions Wν , n, m and c depend only
on ζ and not on T or on the tangential components of x (Qν depends on these,
but is independent of ζ, being determined subsequently via the moving boundary
problem formulated below). We note that the components of V in the directions
tangential to Γ are of O(1/

√
β). Since

dWν

dζ
= km(c)n, −∞ < ζ < 0, Wν = 0 on ζ = 0 (29)

it follows from (26) that

n = 1− σ, m = σ on ζ = 0,

as is to be expected. As in the description of the large-time behaviour in [5], (26)
determines a part of its solution the value of the constants U and c∞, defined by

U = − lim
ζ→−∞

Wν(ζ), c∞ = lim
ζ→−∞

c(ζ). (30)

We note that the above formulation (apart of course from the initial value prob-
lem for P ) holds irrespective of the choice of constitutive law (the leading-order
problem being locally one-dimensional), so the quantities U and c∞ defined by
(30) are of more general relevance.

The quantities in (30) represent the information we need from the inner
(boundary-layer) analysis. In the outer (ν = O(1)) problem, i.e., in the necrotic
core, we have n $ 1 (indeed, n is exponentially small), m ∼ 1 and by matching
with (30) we obtain c ∼ c∞ and, to leading order,

∇ ·V = 0, V = − 1
µm
∇p̄ in Ω(T ),

p̄ = 0, Qν = V · ν + U on Γ(T ),
(31)

where p = p̄/
√
β is the appropriate pressure scaling when µm = O(1). The second

condition on Γ(T ) is a novel feature of this formulation, accounting for the O(1)
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change in Vν between the matching region and the true interface which results
from cell division in the viable rim (i.e., in ζ = O(1)). The solution to the problem
(31) is of course the trivial one

p̄ = 0, V = 0, Qν = U, (32)

the last of which implies that the outward normal velocity of the interface is con-
stant; nevertheless, we record the full formulation (31) here in order to generalise
it subsequently, in particular to the two-phase case in which the properties of
the surrounding material cannot be ignored. We remark that there is also a dis-
tinguished limit µm = O(1/

√
β) in which a Hele-Shaw type formulation results

which contains a ‘kinetic undercooling’ regularisation.

(b) Stokes flow

Other than for p, which is of O(1), the scalings (27) again apply in the boundary
layer, and Wν , n, m and c are determined, exactly as for Darcy flow, with the
definitions (30) pertaining. The flow problem is rather more delicate, however,
requiring the calculation of O(1/

√
β) terms in the momentum equations and re-

quiring derivations of “viscous shell” equations, somewhat akin to those in [2] but
with significant differences due to cell division. Denoting co-ordinates on Γ(T ) by
τ and υ, using (27) we have (in an obvious notation)

σττ ∼ −
(
p +

2
3
µ(n)

dWν

dζ

)
+

1√
β
σ(1)

ττ ,

συυ ∼ −
(
p +

2
3
µ(n)

dWν

dζ

)
+

1√
β
σ(1)

υυ ,

σνν ∼ −
(
p− 4

3
µ(n)

dWν

dζ

)
+

1√
β
σ(1)

νν ,

(33)

στυ ∼
1√
β
σ(1)

τυ , στν ∼ µ(n)
∂Vτ

∂ζ
+

1√
β
σ(1)

τν , συν ∼ µ(n)
∂Vυ

∂ζ
+

1√
β
σ(1)

υν (34)

where p denotes the leading-order pressure; in conventional incompressible flow
problems it follows from the continuity equation that Vν is independent of ζ,
but here we instead have (29) and some of the resulting balances accordingly
differ. Nevertheless, we can read off the relevant asymptotic formulations of the
momentum equations directly from [2], which we essentially follow in parametrising
the free surface in such a way that lines of constant τ and υ are lines of curvature
of Γ(T ); we write Γ(T ) as x = xΓ(τ, υ, T ) and define

aτ =
∣∣∣∣∂xΓ

∂τ

∣∣∣∣ , aυ =
∣∣∣∣∂xΓ

∂υ

∣∣∣∣ .
At leading order the momentum equations then read

∂

∂ζ

(
aτaυσ

(0)
τν

)
=

∂

∂ζ

(
aτaυσ

(0)
υν

)
=

∂

∂ζ

(
aτaυσ

(0)
νν

)
= 0,
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where here and henceforth aτ and aυ denote leading-order quantities. Since στν =
συν = σνν = 0 on Γ(T ), it follows that

σ(0)
τν = σ(0)

υν = σ(0)
νν = 0 (35)

and hence at O(1)

p =
4
3
µ(n)

dWν

dζ
, σ(0)

ττ = σ(0)
υυ = −2µ(n)

dWν

dζ
,

∂Vτ

∂ζ
=

∂Vυ

∂ζ
= 0. (36)

At O(1/
√
β), we have (from [2], using (34) and (35))

∂

∂τ

(
aυσ

(0)
ττ

)
+

∂

∂ζ

(
aτaυσ

(1)
τν

)
− ∂aυ

∂τ
σ(0)

υυ = 0,

∂

∂υ

(
aτσ

(0)
υυ

)
+

∂

∂ζ

(
aτaυσ

(1)
υν

)
− ∂aτ

∂υ
σ(0)

ττ = 0,

∂

∂ζ

(
aτaυσ

(1)
νν

)
− aτaυ

(
κτσ

(0)
ττ + κυσ

(0)
υυ

)
= 0,

where κτ and κυ are the principal curvatures of Γ(T ) (our sign convention differing
from that of [2]). Using (36) (observing that aτ and aυ are independent of ζ, while
σ

(0)
ττ and σ

(0)
υυ are independent of τ and υ) we thus obtain

∂

∂ζ
σ(1)

τν =
∂

∂ζ
σ(1)

υν = 0,
∂

∂ζ
σ(1)

νν = −4κµ(n)
dWν

dζ
,

where κ = (κτ + κυ)/2 is the leading-order mean curvature of Γ(T ). Hence

σ(1)
τν = σ(1)

υν = 0, σ(1)
νν = 4κ

∫ 0

ζ

km(c(ζ′))µ(n(ζ′))n(ζ′)dζ′, (37)

We are now in a position to formulate the leading-order problem in the core,
wherein n is again exponentially small and c ∼ c∞. Writing

σij = σ̄ij/
√
β, p = p̄/

√
β

we thus obtain the standard Stokes flow problem

∇ ·V = 0,
∂σ̄ij

∂xj
= 0, σ̄ij = −p̄δij + µm

(
∂Vi

∂xj
+

∂Vj

∂xi

)
in Ω(T ); (38)

this is subject to the moving boundary conditions

σ̄ijνj = 2γκνi, Qν = V · ν + U on Γ(T ), (39)

where we have matched with (37) and defined

γ = 2
∫ 0

−∞
km(c(ζ))µ(n(ζ))n(ζ)dζ . (40)

Cell division in the viable rim thus generates a surface-tension-like term, but with
a negative coefficient of surface tension, −γ (determined by (40)). This is un-
surprising in that cell division generates compressive stresses in the rim, leading
to the likelihood of “viscous-buckling” instabilities; the formulation (38)–(39) is
of course ill-posed, and in practice buckling will presumably occur on a length
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scale comparable to the thickness of the viable rim (i.e., of O(1/
√
β)), causing

the thin-rim analysis above to cease to be valid. Were the U term absent from
(39), the formulation would be equivalent to the time-reversal of the Stokes flow
problem with positive surface tension, discussed in [1] for example, and for Γ(T )
initially analytic a solution can be expected to exist for some finite time, despite
the problems ill-posedness.

5. Discussion

We have here summarised a relatively general moving-boundary formulation for
the growth of soft tissue under constraints of nutrient limitation. Other asymptotic
limits are noteworthy, including σ $ 1 with t = O(1/σ) which exhibits features
of both of those that we have discussed. Worthwhile generalisations include the
incorporation of multi-phase and elastic effects.

A particularly noteworthy result is the buckling instability mechanism which
has been identified in the thin-rim limit. Similar effects can also be expected for
other constitutive laws (including elasticity) and this growth-induced-stress insta-
bility mechanism can be added to the growth-driven one analysed in [3] and to
the usual nutrient-limited fingering mechanism closely related to the familiar ones
that can arise in Stefan and Hele-Shaw problems.

References

[1] L.J. Cummings, S.D. Howison, J.R. King, Two-dimensional Stokes and Hele-Shaw
flows with free surfaces. Euro. J. Appl. Math. 10 (1999), 635–680.

[2] P.D. Howell, Extensional thin layer flows. D. Phil Thesis, University of Oxford, 1994.

[3] S.J. Franks, J.R. King, Interactions between a uniformly proliferating tumour and
its surroundings: uniform material properties. Math. Med. Biol. 20 (2003), 47–89.

[4] J.R. King, S.J. Franks, Mathematical analysis of some multi-dimensional tissue-
growth models. Euro. J. Appl. Math. 15 (2004), 273–295.

[5] J.P. Ward, J.R. King, Mathematical modelling of avascular-tumour growth. IMA J.
Math. Appl. Med. Biol. 14 (1997), 39–69.

[6] J.P. Ward, J.R. King, Mathematical modelling of avascular-tumour growth II: Mod-
elling growth saturation. IMA J. Math. Appl. Med. Biol. 16 (1999), 171–211.

J.R. King
Centre for MathematicalMedicine, School of Mathematical Sciences
University of Nottingham, Nottingham NG7 2RD, UK
e-mail: John.King@nottingham.ac.uk

S.J. Franks
Health and Safety Laboratory
Harpur Hill, Buxton SK17 9JN, UK
e-mail: Susan.Franks@hsl.gov.uk



International Series of Numerical Mathematics, Vol. 154, 283–290
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Asymptotic Hysteresis Patterns
in a Phase Separation Problem

Pavel Krejč́ı

Abstract. A non-smooth temperature-driven phase separation model with
conserved energy and a large set of equilibria is shown to develop sponta-
neously two different time scales as time tends to infinity. The temperature
evolution becomes slower and slower, while the microevolution on the un-
known phase interface keeps its own independent characteristic speed. In the
large time limit, the temperature becomes uniform in space, there exists a
partition of the physical body into at most three constant limit phases, and
the phase separation process has a hysteresis-like character.
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Introduction

In this contribution, we present a model illustrating how hysteresis may arise in
systems with multiple equilibria and multiple time scales. The rate-independence,
as one of the prominent features of hysteresis, results from the competition between
a slow observer, who tries to move the system away from an equilibrium, and the
underlying physical mechanism, which is so fast that it attains a new equilibrium
position “almost instantaneously”. If more than one equilibrium exists under a
given external loading, such a process may become irreversible and manifests a
true hysteresis behavior on the observer’s time scale.

A simple example involving a first order singularly perturbed ODE with a
small parameter at the time derivative, a non-monotone right-hand side, and a time
dependent forcing, has been investigated in detail in [2]. It was shown there that if
the coefficient in front of the time derivative tends to zero (that is, the internal time
becomes infinitely fast), then the limit input-output mapping defines a hysteresis
operator in the space of regulated functions.

The philosophy of the present paper is different. We do not prescribe dif-
ferent time scales in our problem. Instead, we show that in a phase-field system,
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the time scale doubling may occur as a result of the interplay between the heat
diffusion (which causes a tendency to a slow temperature stabilization), and the
non-convexity of the free energy with respect to the order parameter, which makes
phase mixtures unstable and thus produces sharp phase interfaces in the limit with
fast motions on the microscale.

We give here merely a commented survey of mathematical results obtained in
[4, 5]. Note only that the proofs are not straightforward. They require a thorough
analysis of the local fast dynamics of the order parameter, classified according to
all possible (a priori unknown) limit temperature scenarios, and combined with
the global energy conservation and entropy growth principles. An interested reader
may find the detailed argument as well as a more complete reference list in [5].

2. Mathematical model

Let us consider the following phase-field system for the state variables θ (the ab-
solute temperature) and χ (an order parameter characterizing the physical phase).

∂t(cV θ + Λ(χ))− κ∆θ = 0 , (2.1)

µ∂tχ+ λ(χ) + ∂I[0,1](χ) � L

θc
θ , (2.2)

Λ(χ) = Lχ+ αχ(1− χ) , λ(χ) = Λ′(χ) = L + α− 2αχ (2.3)

for (x, t) ∈ Ω× (0,∞), where Ω ⊂ R
N with N ≥ 1, representing the physical body,

is an open bounded domain with Lipschitzian boundary, I[0,1] is the indicator
function of the interval [0, 1] (that is, I[0,1](χ) = 0 if χ ∈ [0, 1], I[0,1](χ) = +∞ if
χ /∈ [0, 1]), and ∂I[0,1] is its (maximal monotone) subdifferential. The specific heat
cV , heat conductivity κ, latent heat L, phase relaxation coefficient µ, mean phase
transition temperature θc, and undercooling/overheating parameter α < L are
assumed to be positive constants. The exact shape (2.3) of Λ has only been chosen
for simplicity. The argument remains valid if Λ is any strictly concave increasing
function in C2([0, 1]).

The thermodynamic derivation of the system (2.1)–(2.3) is based on the
choice of the free energy density F in the form

F (θ, χ) = cV θ(1 − log θ) + Λ(χ) + I[0,1](χ)− Lθ

θc
χ (2.4)

= cV θ(1 − log θ) + Lχ

(
1− θ

θc

)
+ αχ(1− χ) + I[0,1](χ) ,

hence it is of double obstacle type with respect to χ as in [6, Sect. VII.3], with two
local minima at χ = 0 and χ = 1 in the temperature range

1− α

L
<

θ

θc
< 1 +

α

L
. (2.5)

Beyond this interval, only one local minimum persists, namely χ = 1 for high
temperatures, and χ = 0 for low temperatures. The values of χ outside [0, 1] are
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0

F

χ1

θ
θc

= 1− α
L

1 < θ
θc

< 1 + α
L

θ = θc

1− α
L < θ

θc
< 1

θ
θc

= 1 + α
L

Figure 1. The “phase component” of the free energy at different temperatures.

not accessible due to the term I[0,1](χ) in the free energy. Figure 1 shows the shape
of F (θ, χ) for different values of θ, not accounting for the purely caloric component
cV θ(1− log θ), which only produces vertical shifts in the diagram.

The order parameter χ can thus be interpreted as a characterization of the
phase: the body Ω is in high temperature phase at point x and time t if χ(x, t) = 1,
and in low temperature phase if χ(x, t) = 0, while the intermediate values of χ
correspond to a mixture of both. Intuitively, the mixtures can be expected to be un-
stable because of the concave character of the free energy in the open interval (0, 1).

Similarly to the general scheme in [1], we associate with the free energy
density F given by (2.4) the densities of internal energy U and entropy S in the
form

U(θ, χ) = cV θ + Λ(χ) + I[0,1](χ) , (2.6)

S(θ, χ) = cV log θ +
L

θc
χ . (2.7)

Using the identity

∂tI[0,1](χ(t)) = ξ(t) ∂tχ(t) = 0 a. e. , (2.8)

which holds for every absolutely continuous function χ and every measurable se-
lection ξ(t) ∈ ∂I[0,1](χ(t)), we may interpret Eq. (2.1) as the energy balance

∂tU + div q = 0 (2.9)

with Fourier heat flux q = −κ∇θ. Eq. (2.2) describes, similarly as in [6, Sect. V.1],
the phase relaxation dynamics

µ∂tχ ∈ −δχF (θ, χ) , (2.10)
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where δχ denotes here, by an abuse of notation, alternatively the derivative with
respect to χ of the components of F (θ, χ), which are differentiable, and the sub-
differential for the components which are convex in χ.

Using (2.8), we easily check that every solution of (2.1)–(2.14) with the prop-
erties stated in Theorem 3.1 below (θ > 0, in particular) satisfies the entropy
balance equation

∂tS + div
q
θ

=
µ

θ
(∂tχ)2 +

κ|∇θ|2
θ2

, (2.11)

where the entropy production term on the right-hand side is non-negative in agree-
ment with the Second principle of thermodynamics.

We couple the system (2.1)–(2.3) with the homogeneous Neumann boundary
condition

∂θ

∂n
= 0 on ∂Ω× (0,∞) (2.12)

and initial conditions

θ(x, 0) = θ0(x) , χ(x, 0) = χ0(x) , (2.13)

with given functions

θ0 ∈W 1,2(Ω) ∩ L∞(Ω) , inf ess {θ0(x) ; x ∈ Ω} > 0 ,
χ0 ∈ L∞(Ω) , χ0(x) ∈ [0, 1] a. e.

}
(2.14)

The main results of [4, 5] are Theorems 3.1, 3.2 below on the convergence
of (θ, χ) towards an equilibrium (θ∞, χ∞) as t → ∞. The limit temperature θ∞
is constant in space. If it is contained in the interval given by (2.5), the range of
χ∞ consists of three points at most: the two pure phases χ = 0 and χ = 1, and
possibly one unstable intermediate phase. If it is lower or higher, then only one
phase (the cold one or the hot one, respectively) persists.

3. Main results

The exact values of the physical constants in (2.1)–(2.3) are not relevant for the
qualitative behavior of the solution. We therefore assume that

cV = κ = L = µ = θc = 1 , 0 < α < 1 , (3.1)

|Ω| = 1 , where | · | denotes the Lebesgue measure in R
N . (3.2)

In other words, system (2.1)–(2.3) now reads

∂t(θ + Λ(χ))−∆θ = 0 , (3.3)

∂tχ+ λ(χ) + ∂I[0,1](χ) � θ , (3.4)

Λ(χ) = χ+ αχ(1 − χ) , λ(χ) = 1 + α− 2αχ . (3.5)

This is a special case of the system

∂t(θ + F1[w])−∆θ = 0 , (3.6)

µ(θ) ∂tw + f1[w] + θf2[w] = 0 (3.7)
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with hysteresis operators f1, f2, F1, which was investigated in [4]. Indeed, (3.3)–
(3.5) can be transformed into (3.6)–(3.7) by introducing an auxiliary function

w(x, t) =
∫ t

0

(θ(x, τ) − λ(χ(x, τ)) dτ . (3.8)

χ

w0

1

Figure 2. A diagram of the stop χ = s[χ0, w] with χ0 = 0.

Then the inclusion

∂tχ+ ∂I[0,1](χ) � ∂tw , χ(0) = χ0 (3.9)

defines the so-called stop operator χ = s[χ0, w] (see Figure 2), and we obtain
(3.6)–(3.7) with F1[w] = Λ(s[χ0, w]), f1[w] = λ(s[χ0, w]), f2[w] = −1, µ(θ) = 1,
see [3] for details.

The main result in [4] was Theorem 2.1, which reads (with respect to the
present notation) as follows.

Theorem 3.1. Let Ω ⊂ R
N be an open bounded domain with Lipschitzian boundary,

and let θ0, χ0 satisfying (2.14) be given. Then system (3.3)–(3.5), (2.12)–(2.13)
admits a unique global solution (θ, χ) ∈ [L∞(Ω×(0,∞))]2 such that ∂tχ ∈ L∞(Ω×
(0,∞)), ∂tθ,∆θ ∈ L2(Ω × (0,∞)), θ(x, t) > 0, χ(x, t) ∈ [0, 1] a. e. in Ω × (0,∞),
and the function

V (t) :=
∫

Ω

(
|∇θ|2 + |∂tχ|2

)
(x, t) dx (3.10)

has the property∫ ∞

0

V (t) dt <∞ , Var
[0,∞)

V 2 <∞ , lim
t→∞

sup ess
s>t

V (s) = 0 . (3.11)

Note that V (t) may be discontinuous. This makes the proof of the convergence
of V (t) towards zero technically complicated, and special dissipation properties of
hysteresis operators have to be taken into account.

The total energy E(t) and entropy S(t) are given by the respective formulas

E(t) =
∫

Ω

(θ + Λ(χ)) (x, t) dx (3.12)

S(t) =
∫

Ω

(log θ + χ) (x, t) dx . (3.13)
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Integrating (3.3) and (2.11) over Ω and using the boundary condition (2.12)
we obtain

E(t) = E(0) =: E0 (3.14)

Ṡ(t) =
∫

Ω

(
(∂tχ)2

θ
+
|∇θ|2
θ2

)
(x, t) dx a. e. (3.15)

We further have log θ ≤ θ, χ ≤ Λ(χ) for all admissible arguments, hence S(t) is a
bounded non-decreasing function, and there exists S∞ ≤ E0 such that

S(t)↗ S∞ as t→∞ . (3.16)

Since θ is uniformly bounded from below and from above by positive constants, we
also see that the quantity V (t) in Theorem 3.1 is actually nothing but the entropy
production. In other words, Theorem 3.1 says that it tends to zero sufficiently fast
as t tends to infinity.

The above balance principles for E(t) and S(t) play a crucial role in the proof
of the following main result of [5].

0

θ∞

χ∞1

1 + α

1

1− α

Figure 3. A diagram of the equilibrium set (3.19).

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, assume that Ω ⊂ R
N

is of class C2 if N ≥ 4. Then there exist a constant θ∞ > 0 and a function
χ∞ ∈ L∞(Ω) such that the solution to (3.3)–(3.5), (2.12)–(2.13) has the properties

lim
t→∞

sup
x∈Ω
|θ(x, t)− θ∞| = 0 , (3.17)

lim
t→∞

χ(x, t) = χ∞(x) a. e. , (3.18)

θ∞ ∈ λ(χ∞(x)) + ∂I[0,1](χ∞(x)) a. e. (3.19)

The convergence (3.17) does not indeed follow directly from Theorem 3.1 and
some deeper results from the theory of analytical semigroups have to be used. What
we can conclude however from Theorem 3.1 is that the temperature variations
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become infinitely slow for large times. This is in contrast with the order parameter
equation (3.4) which has unit characteristic speed independently of how slow the
right-hand side is. This produces the difference in the time scales for θ and for χ. If
we equip the observer with the slower and slower “temperature clock”, the phase
transition dynamics described by Eq. (3.4) will eventually look like “infinitely fast
hysteresis jumps” in the χ − θ plane between the two stable vertical branches as
on Fig. 4.

Condition (3.19) means that χ∞(x) = 1 a. e. if θ∞ > 1 + α, and χ∞(x) = 0
a. e. if θ∞ < 1 − α. For 1 − α ≤ θ∞ ≤ 1 + α (see Figure 3), the domain Ω is
decomposed into Ω = A∞ ∪ B∞ ∪ C∞, with χ∞(x) = 0 for x ∈ A∞, χ∞(x) = 1
for x ∈ C∞, and χ∞(x) = (1+α− θ∞)/(2α) for x ∈ B∞. In fact, the intermediate
value of χ between 0 and 1 is unstable with respect to small perturbations and
is actually unlikely to persist for t →∞ except for some particular cases, like for
instance:

• θ0(x) = θ̄ = const., θ̄ ∈ λ(χ0(x)) + ∂I[0,1](χ0(x)) a. e. Then the solution
remains constant in time θ(x, t) = θ0(x), χ(x, t) = χ0(x) independently of
the distribution of χ0(x) (time-independent solutions).
• θ0(x) = θ̄ = const., χ0(x) = χ̄ = const. If E0 is such that

1 + α < E0 < 2− α , (3.20)

then the function Γ(χ) = E0 − λ(χ) − Λ(χ) has only one null point χ∞ in
(0, 1), Γ(0) > 0, Γ(1) < 0, hence the solution χ∗(t) of the differential equation

χ̇∗(t) = Γ(χ∗(t)) , χ∗(0) = χ̄ , (3.21)

stays in (0, 1) for all t > 0, limt→∞ χ∗(t) = χ∞, and χ(x, t) = χ∗(t), θ(x, t) =
E0 − Λ(χ∗(t)) is a solution to (3.3)–(3.5), (2.12)–(2.13) which entirely lies in
the unstable region (space-independent solutions).

0

θ

χ1

1 + α

1

1− α

Figure 4. A typical limit hysteresis behavior.
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The two above examples seem to be quite isolated, and we make the following
conjecture.

Conjecture. For a generic set of initial data (for example a set of second Baire’s
category like in [2, Remark 5.3]), the Lebesgue measure of the set B∞ is zero.
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Žitná 25
CZ-11567 Praha 1, Czech Republic
e-mail: krejci@wias-berlin.de, krejci@math.cas.cz



International Series of Numerical Mathematics, Vol. 154, 291–305
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Obstacle Problems for Monotone
Operators with Measure Data

Chiara Leone

Abstract. The aim of this work is to study obstacle problems associated to
monotone operators when the forcing term is a bounded Radon measure.
Existence, uniqueness, stability results, and properties of the solutions are
investigated.

1. Introduction

Given a bounded open set Ω of IRN , N ≥ 2, and a strictly monotone elliptic
operator A in divergence form, we study obstacle problems for the operator A in
Ω with homogeneous Dirichlet boundary conditions on ∂Ω, when the forcing term
µ is a measure on Ω and the obstacle ψ is an arbitrary function on Ω.

Obstacle problems when the forcing term F belongs to the dual of the energy
space, determined by the growth assumptions on the operator, have been studied
as part of the theory of Variational Inequalities (for which we refer to well-known
books such as [20] and [35]). In this frame the problem consists in finding a function
u ∈W 1,p

0 (Ω) (the energy space) which is above the obstacle ψ, such that{
〈A(u), v − u〉 ≥ 〈F, v − u〉,
∀v ∈W 1,p

0 (Ω), v ≥ ψ.
(1.1)

For such problems a wide abstract theory has been developed, and we know that,
if there exists at least a function z ∈ W 1,p

0 (Ω) above the obstacle, then there exists
one and only one solution.

Among all classical results, we recall that the solution of (1.1) is also charac-
terized as the smallest function u ∈ W 1,p

0 (Ω) such that{
A(u)− F ≥ 0 in D′(Ω),
u ≥ ψ in Ω,

(1.2)
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or, equivalently, u is the smallest function u ∈ W 1,p
0 (Ω), greater than or equal to

ψ, such that {
A(u)− F = λ in Ω,
u = 0 on ∂Ω,

(1.3)

for some nonnegative measure λ of W−1,p′
(Ω).

Trying to extend this theory to problems where the forcing term is a measure
various difficulties arise.

We recall that, already in the case of equations, the term 〈µ, u〉 has not
always a meaning when µ is a measure and u ∈ W 1,q

0 (Ω), q ≤ N . On the other
hand, simple examples show that the solution of equations with measure data
cannot be expected to belong to the energy space W 1,p

0 (Ω). When N ≥ 2, indeed,
the solution of the Laplace equation in a ball with the Dirac mass at the center
as datum, does not belong to H1

0 (Ω), but only to W 1,q
0 (Ω), with q < N

N−1 . Hence
the classical formulation (1.1) of the variational inequality fails.

Also the use of the characterization (1.2) to define the obstacle problem with
measure data is not possible because another problem arises: an example by J.
Serrin (see [32] and, for more details, [31]) shows that, when A is a particular
linear elliptic operator with discontinuous coefficients, the homogeneous equation{

Au = 0 in D′(Ω),
u = 0 on ∂Ω,

has a nontrivial solution v which does not belong to H1
0 (Ω). The function u ≡ 0

is obviously the unique solution in H1
0 (Ω).

So (1.2) in general does not determine the solution of the obstacle problem: indeed,
with such A and v, if we choose ψ ≡ −∞, and if u were the minimal supersolution,
then we would have u ≤ u + tv a.e. in Ω, for any t ∈ IR, which implies v ≡ 0, i.e.,
a contradiction.

To overcome these difficulties, when the forcing term is a measure, we intro-
duce a formulation for obstacle problems, based on a suitable notion of solution
to equations with measure data, which ensures existence and uniqueness results.

We briefly recall that, in the linear case, i.e., A(u) = −div(A(x)∇u), where
A is a uniformly elliptic matrix with L∞(Ω) coefficients, the problem of finding a
solution of {

A(u) = µ in Ω
u = 0 on ∂Ω,

(1.4)

when µ is a bounded Radon measure on Ω was investigated by G. Stampacchia,
who introduced and studied in [33] a notion of solution using duality and regularity
arguments. This allowed him to prove both existence and uniqueness results.

Stampacchia’s framework, which heavily relies on a duality argument, can-
not be extended to the general nonlinear case, except in the case p = 2, where
Stampacchia’s ideas continue to work if the operator is strongly monotone and
Lipschitz continuous. In this setting, indeed, we can use the notion of solution,
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namely the reachable solution, considered by F. Murat in [28] to solve uniquely
the Dirichlet problem (1.4), when µ is a bounded Radon measure.

Finally, in the general nonlinear monotone case, when µ is a bounded Radon
measure vanishing on all sets of p-capacity zero (the capacity defined starting from
W 1,p

0 (Ω): see Section 2), we may use the notion of entropy solution introduced in
[2] and [6], which ensures us that (1.4) has a unique entropy solution.

Using these types of solutions we give a definition for unilateral problems with
measure data quite similar to the characterization given by (1.3) in the classical
setting.

We say that a function u solves the Obstacle Problem when the forcing term
µ is a bounded Radon measure and the obstacle ψ is an arbitrary function on Ω,
if u is the smallest function with the following properties: u ≥ ψ in Ω and u is the
unique solution (in an appropriate sense), of a problem of the form{

A(u) = µ+ λ in Ω,
u = 0 on ∂Ω,

(1.5)

for some bounded Radon measure λ ≥ 0. More precisely, if A is linear, we assume
that u is the solution of (1.5) in the sense of Stampacchia; if p = 2 and A is strongly
monotone and Lipschitz continuous, we assume that u is the reachable solution of
(1.5); finally, when A is a general nonlinear strictly monotone operator, and µ, λ
are bounded Radon measures vanishing on sets of p-capacity zero, then u is the
entropy solution.
The measure λ which corresponds to the solution u of the unilateral problem
relative to A, µ, and ψ, is called the obstacle reaction associated with u.
The outline of the paper is as follows.

After giving the definitions and some preliminary results we consider the
questions of existence and uniqueness of solutions to Obstacle Problems with mea-
sure data. We study also some properties of the obstacle reactions associated with
the solutions of the Obstacle Problems, obtaining the so called Lewy-Stampacchia
inequality, and we investigate the interaction between obstacles and data, and
in particular the complementarity conditions. Finally we will give some stability
results, dealing with the convergence properties of the solutions to the Obstacle
Problem, under simultaneous perturbation of the operator, the forcing term, and
the obstacle.
The results we propose here are contained in some already published papers (see
[22], [21], and [23], as well as [13] and [12]). We decided to give the results with no
proof, referring to those papers for the proofs.

For a different approach to Obstacle Problems with measure data see also
[5], [3], [4], [29], [30], and more recently [8] and [9].
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2. Assumptions and preliminary results

Given p and p′ two real numbers, with p > 1 and 1
p + 1

p′ = 1, let a : Ω× IRN → IRN

be a Carathéodory function such that for almost every x in Ω and for every ξ, η
in IRN (ξ �= η):

|a(x, ξ)| ≤ C0[k0(x) + |ξ|p−1], (2.1)

a(x, ξ)ξ ≥ C1|ξ|p − k1(x), (2.2)

(a(x, ξ)− a(x, η))(ξ − η) > 0, (2.3)

a(x, 0) = 0, (2.4)

where C0 and C1 are two positive real constants, k0 is a nonnegative function in
Lp′

(Ω) and k1 is a nonnegative function in L1(Ω). Thanks to hypotheses (2.1)–
(2.4) the operator A : u �→ −div(a(x,∇u)) maps W 1,p

0 (Ω) into its dual W−1,p′
(Ω)

and for every F ∈ W−1,p′
(Ω) there exists a unique function u ∈ W 1,p

0 (Ω) such
that {

A(u) = F in Ω
u = 0 on ∂Ω,

(2.5)

in the weak sense (see, e.g., [25]).
Let Mb(Ω) the space of Radon measures µ on Ω whose total variation |µ|

is bounded on Ω. As usual we identify Mb(Ω) with the dual of the Banach space
C0(Ω) of continuous functions that are zero on the boundary, so that the duality
is 〈µ, u〉 =

∫
Ω u dµ, for every u in C0(Ω) and the norm is ‖µ‖Mb(Ω) = |µ|(Ω).

In order to include in our analysis also the case of thin obstacles, it is con-
venient to introduce the notion of p-capacity. Given a compact set K ⊆ Ω, its
p-capacity with respect to Ω is given by

Cp(K) = inf
{∫

Ω

|∇z|2 dx : z ∈ C∞
0 (Ω), z ≥ χK

}
,

where χK is the characteristic function of K. This definition can be extended to
any open subset A of Ω in the following way:

Cp(A) = sup {Cp(K) : K compact, K ⊆ A} .
Finally, it is possible to define the p-capacity of any set B ⊆ Ω as:

Cp(B) = inf {Cp(A) : A open, B ⊆ A} .
A property holds Cp-quasi everywhere (abbreviated as Cp-q.e.) when it holds

up to sets of p-capacity zero.
A function v : Ω→ IR is Cp-quasi continuous (resp. Cp-quasi upper semicon-

tinuous) if, for every ε > 0 there exists a set E such that Cp(E) < ε and v|Ω\E
is

continuous (resp. upper semicontinuous) in Ω\E. We recall also that if u and v are
Cp-quasi continuous and u ≤ v a.e. in Ω then also u ≤ v Cp-q.e. in Ω. A function
u ∈ W 1,p

0 (Ω) always has a Cp-quasi continuous representative, which is uniquely
defined (and finite) up to a set of p-capacity zero. In the sequel we shall always
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identify u with its Cp-quasi continuous representative, so that the pointwise values
of u are defined Cp-quasi everywhere.

In the sequel Mp
b,0(Ω) will be the special subspace of Mb(Ω) of all measures

which vanish on all sets of p-capacity zero. Moreover, we denote the positive cones
of Mb(Ω) and Mp

b,0(Ω) by M+
b (Ω) and Mp,+

b,0 (Ω), respectively.
It is well known that, if µ belongs to W−1,p′

(Ω)∩Mb(Ω), then µ is in Mp
b,0(Ω),

every u in W 1,p
0 (Ω) ∩ L∞(Ω) is summable with respect to µ and

〈µ, u〉 =
∫

Ω

u dµ,

where 〈·, ·〉 denotes the duality pairing between W−1,p′
(Ω) and W 1,p

0 (Ω), while in
the right hand side u denotes the Cp-quasi continuous representative and, conse-
quently, the pointwise values of u are defined µ-almost everywhere.
A self-contained presentation of all these notions can be found, for instance, in [19].

Let us recall here the following result, that is the analogous of the Lebesgue
decomposition theorem and can be proved in the same way (see Lemma 2.1 in [18]).

Proposition 2.1. For every measure µ ∈Mb(Ω) there exists a unique pair of mea-
sures (µa, µs), with µa ∈Mp

b,0(Ω) and µs concentrated on a set of p-capacity zero,
and µ = µa + µs. If µ is nonnegative, so are µa and µs.

Let us fix a function ψ : Ω→ IR, and the corresponding convex set

Kψ(Ω) := {z Cp − quasi continuous in Ω : z ≥ ψ Cp − q.e. in Ω}.
For every j > 0 we define the truncation function Tj : IR �→ IR by

Tj(t) =

{
t if |t| ≤ j

j sign(t) if |t| > j.

Let us consider the space T 1,p
0 (Ω) of all functions u : Ω �→ IR which are almost

everywhere finite and such that Tj(u) ∈ W 1,p
0 (Ω) for every j > 0. It is easy to

see that every function u ∈ T 1,p
0 (Ω) has a Cp-quasi continuous representative with

values in IR, that will always be identified with the function u. Moreover, for
every u ∈ T 1,p

0 (Ω) there exists a measurable function Φ : Ω �→ IRN such that
∇Tj(u) = Φχ{|u|≤j} a.e. in Ω (see Lemma 2.1 in [2]). This function Φ, which is
unique up to almost everywhere equivalence, will be denoted by ∇u. Note that
∇u coincides with the distributional gradient of u whenever u ∈ T 1,p

0 (Ω)∩L1
loc(Ω)

and ∇u ∈ L1
loc(Ω, IR

N ).
In order to study the elliptic problem{

A(u) = µ in Ω,
u = 0 on ∂Ω

(2.6)

when µ is a bounded Radon measure, we cannot use the variational formulation ,
since, in general, the term 〈µ, v〉 has not always meaning when µ is a measure and
v ∈ W 1,r

0 (Ω), with r ≤ N . On the other hand the solution cannot be expected to
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belong to the energy space W 1,p
0 (Ω), as simple examples show. Thus, it is necessary

to change the functional setting in order to prove existence result.
In the linear case, i.e., if p = 2 and a(x,∇u) = A(x)∇u, where A is a N × N
matrix such that

|A(x)ξ| ≤ C0|ξ| and A(x)ξξ ≥ C1|ξ|2, ∀ξ ∈ IRN , for a.e. x ∈ Ω, (2.7)

with C0 and C1 two positive real constants, problem (2.6) was studied by G.
Stampacchia in [33].

Definition 2.2. Assume that Ω satisfies the following regularity condition: there
exists a constant γ > 0 such that

meas(Br(x) \ Ω) ≥ γmeas(Br(x)),

for every x ∈ ∂Ω and for every r > 0, where Br(x) denotes the open ball with centre
x and radius r. A function uµ ∈ L1(Ω) is a solution in the sense of Stampacchia
(also called solution by duality) of the equation (2.6) if∫

Ω

uµg dx =
∫

Ω

u∗
g dµ, ∀g ∈ L∞(Ω), (2.8)

where u∗
g is the solution of {

A∗u∗
g = g in Ω

u∗
g ∈ H1

0 (Ω),

and A∗ is the adjoint of A.

Existence and uniqueness of uµ are proved in [33]. It is easy to prove that,
for every j > 0, Tj(uµ) ∈ H1

0 (Ω) and∫
Ω

|∇Tj(uµ)|2 dx ≤ j|µ|(Ω). (2.9)

In the case p = 2, if A is strongly monotone and Lipschitz continuous,
Stampacchia’s ideas continue to work. In this special case, indeed, F. Murat (in
[28]) proved the existence and uniqueness of a solution (called reachable solution)
of (2.6).
Assuming that Ω is a regular set (in the sense of Definition 2.2), we consider
a : Ω × IRN → IRN a Carathéodory function such that for every ξ, η in IRN

(ξ �= η), and for almost every x ∈ Ω,

|a(x, ξ) − a(x, η)| ≤ C0|ξ − η|, (2.10)

(a(x, ξ) − a(x, η))(ξ − η) ≥ C1|ξ − η|2, (2.11)

a(x, 0) = 0, (2.12)

where C0 and C1 are two positive real constants.
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Definition 2.3. We say that a function u ∈ T 1,p
0 (Ω) is a reachable solution of the

problem (2.6) if there exist two sequences µn and un such that

(i) µn ∈ Mb(Ω) ∩W−1,p′
(Ω) and µn converges to µ in the ∗-weak topology of

Mb(Ω);
(ii) un ∈W 1,p

0 (Ω) and un solves the Dirichlet problem (2.5) relative to the datum
µn;

(iii) un converges to u a.e. in Ω.

Remark 2.4. Note that this definition can be given also for a general monotone
operator A (see [15], where the existence of a reachable solution has been proved
in this generality).

Actually, in the general nonlinear case, when µ ∈ Mp
b,0(Ω), other types of

solutions to (2.6) have been proposed. The notion of entropy solution, of SOLA,
and of renormalized solution were introduced respectively in [2], [11], and [26].
These three frameworks, which are actually equivalent, are successful since they
allow to prove existence and uniqueness results.

Definition 2.5. Let µ ∈Mp
b,0(Ω); we say that a function u ∈ T 1,p

0 (Ω) is an entropy
solution of (2.6) if∫

Ω

a(x,∇u)∇Tk(u− ϕ) dx =
∫

Ω

Tk(u− ϕ) dµ, (2.13)

for every ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω) and for every k > 0.

Remark 2.6. Let us point out that these three types of solutions coincide when each
make sense. This means, for example, that if A is linear the Stampacchia’s solution
is also the reachable solution, as well as, if p = 2 and A is strongly monotone and
Lipschitz continuous, and µ is a measure in Mp

b,0(Ω), then the reachable solution
is also the entropy solution.

Thanks to these notions of solutions we will arrive to a suitable definition of
obstacle problems with measure data (see [13], [22], and [21]).
Roughly speaking, we choose the minimum element among those functions v above
the obstacle, such that A(v)−µ is not only nonnegative in the sense of distributions
but it is actually a nonnegative bounded Radon measure, and the equation is solved
in the sense of Stampacchia or in the sense of the reachable solutions, if A is linear
or A is strongly monotone and Lipschitz continuous, respectively, and in the sense
of entropy in the general nonlinear case when µ is a bounded Radon measure
vanishing on all sets of p-capacity zero.

Actually, to define the solution for obstacle problems with measure data, we
will distinguish two cases. The first one regards the case where µ is a general
bounded Radon measure. This case can be treated only considering p = 2 and the
operator A Lipschitz continuous and strongly monotone. The second case deals
with bounded Radon measures µ vanishing on all sets of p-capacity zero, so that
we are able to handle with a general nonlinear monotone operator A. In this case,



298 C. Leone

we are not able to drop the assumption that µ is absolutely continuous with respect
to the p-capacity, since in our approach we need a suitable notion of solution to
equations with measure data which ensures existence and uniqueness results. As
a matter of fact, for a general monotone operator A the question of existence of
a solution to (2.6) has been faced in [16] where the authors extend the notion of
renormalized solution (see [26]) to the case of a general measure µ ∈Mb(Ω). In that
paper they proved the existence of such a solution and introduced other equivalent
definitions, which show that all the renormalized solutions are constructed by
approximating, in an appropriate way, the measure µ (with respect to the ∗-weak
convergence of measures), so that they are reachable solutions. On the other hand
the question of uniqueness of a reachable solution, in this case, is still an open
problem.

Definition 2.7. Let p = 2 and let a satisfy (2.10)–(2.12); we say that u is the
solution of the Obstacle Problem with datum µ ∈ Mb(Ω) and the obstacle ψ
(denoted by OP (A, µ, ψ)) if

1. there exists a measure λ ∈ M+
b (Ω) such that u is the reachable solution of

(2.6) relative to µ + λ, and u ∈ Kψ(Ω).
2. for any ν ∈ M+

b (Ω) such that the reachable solution v of (2.6) relative to
µ+ ν is in Kψ(Ω), we have u ≤ v a.e. in Ω.

Remark 2.8. This definition includes, of course, also the case where A is linear. In
this case, as we already observed in Remark 2.6, the notion of reachable solution
and of Stampacchia’s solution are equivalent.

Definition 2.9. Let a satisfy (2.1)–(2.4); we say that u is the solution of the Obstacle
Problem with datum µ ∈Mp

b,0(Ω) and the obstacle ψ (denoted by OP0(A, µ, ψ)) if

1. there exists a measure λ ∈ Mp,+
b,0 (Ω) such that u is the entropy solution of

(2.6) relative to µ + λ, and u ∈ Kψ(Ω).
2. for any ν ∈ Mp,+

b,0 (Ω) such that the entropy solution v of (2.6) relative to
µ+ ν is in Kψ(Ω), we have u ≤ v a.e. in Ω.

By definition, it is clear that, if such a solution (ofOP (A,µ,ψ) orOP0(A,µ,ψ))
exists, it is unique.

3. Main results

First of all we want to treat the question of existence (the uniqueness being implicit
in the definition itself) of solutions to OP (A, µ, ψ) and OP0(A, µ, ψ).

We have the following theorems (see [22] and [21] for the proofs).

Theorem 3.1. Let p = 2 and let a satisfy (2.10)–(2.12). If ψ : Ω→ IR is such that

ψ ≤ uρ C2 − q.e. in Ω, (3.1)
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where ρ ∈Mb(Ω) and uρ is the reachable solution of{
A(u) = ρ in Ω,
u = 0 on ∂Ω;

then, for every µ ∈ Mb(Ω), there exists a unique solution of OP (A, µ, ψ) in the
sense of Definition 2.7. Moreover the corresponding obstacle reaction λ satisfies

‖λ‖Mb(Ω) ≤ ‖(µ− ρ)−‖Mb(Ω).

Theorem 3.2. Let a satisfy (2.1)–(2.4) and let ψ : Ω→ IR be such that

ψ ≤ uρ Cp − q.e. in Ω, (3.2)

where ρ ∈ W−1,p′
(Ω) ∩Mb(Ω) and uρ is the variational solution of{

A(u) = ρ in Ω,
u = 0 on ∂Ω;

then, for every µ ∈Mp
b,0(Ω), there exists a unique solution of OP0(A, µ, ψ) in the

sense of Definition 2.9. Moreover the corresponding obstacle reaction λ satisfies

‖λ‖Mb(Ω) ≤ ‖(µ− ρ)−‖Mb(Ω).

The proofs of existence are based on an approximation technique. The obsta-
cle reactions associated with the solutions for regular data are shown to satisfy an
estimate on the masses, which allows to pass to the limit and obtain the solution
in the general case.

In our setting we are able to prove (see [22] and [21]) the Lewy-Stampacchia
inequality: first proved in [24] it has been extended by various authors to different
cases. It has become a powerful tool for proving existence and regularity results.

Theorem 3.3. Let p = 2 and let a satisfy (2.10)–(2.12). Let µ ∈ Mb(Ω) and u be
the solution of OP (A, µ, uρ) (uρ defined in (3.1)). If we denote by λ the obstacle
reaction associated with u, it holds

λ ≤ (µ− ρ)−.

Theorem 3.4. Let a satisfy (2.1)–(2.4), µ ∈ Mp
b,0(Ω) and u be the solution of

OP0(A, µ, uρ) (uρ defined in (3.2)). If we denote by λ the obstacle reaction asso-
ciated with u, it holds

λ ≤ (µ− ρ)−.

Furthermore, as in the classical framework, we study the interaction between
obstacles and data, and in particular the complementarity conditions. More pre-
cisely, the following theorem (see [22] for the proof) shows that the solution u of
OP0(A, µ, ψ), when µ ∈ Mp

b,0(Ω), is the only entropy solution of (2.6) relative to
µ+λ such that u = ψ λ-almost everywhere in Ω, and u ≥ ψ Cp-q.e. in Ω. We also
find a more technical characterization of the solution of the Obstacle Problem,
which turns out to be similar to (1.1).
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Theorem 3.5. Let a satisfy (2.1)–(2.4), µ ∈ Mp
b,0(Ω) and ψ satisfy (3.2); then the

following statements are equivalent:
(1) u is the solution of OP0(A, µ, ψ) and λ is the associated obstacle reaction;
(2) u ≥ ψ Cp-q.e. in Ω, λ ∈ Mp,+

b,0 (Ω), u is the entropy solution of (2.6) relative
to µ+ λ, and{ ∫

Ω Tk(u− ϕ) dλ ≤
∫
Ω Tk(v − ϕ) dλ,

∀ϕ ∈W 1,p
0 (Ω) ∩ L∞(Ω), ∀v ∈ T 1,p

0 (Ω), v ≥ ψ Cp-q.e. in Ω;
(3.3)

(3) u ≥ ψ Cp-q.e. in Ω, λ ∈ Mp,+
b,0 (Ω), u is the entropy solution of (2.6) relative

to µ+ λ, and
u = ψ λ-a.e. in Ω.

Remark 3.6. Observe that if ψ is Cp-q.e. upper bounded, we can consider in (3.3)
ϕ ∈ W 1,p

0 (Ω)∩L∞(Ω), ϕ ≥ ψ Cp-q.e. in Ω and v = ϕ, so that, taking into account
that u is the entropy solution of (2.6) relative to µ+λ, for every k > 0, u satisfies∫

Ω

a(x,∇u)∇Tk(u− ϕ) dx ≤
∫

Ω

Tk(u− ϕ) dµ, (3.4)

which turns out to be quite similar to the usual variational formulation (1.1).
The previous formula was already obtained in [4] when the datum µ is a function
in L1(Ω).

This fact is non longer true when we pass to consider general data in Mb(Ω)
(when p = 2 and A is strongly monotone and Lipschitz continuous). The following
example, which is a variant of an example studied by L. Orsina and A. Prignet,
shows that the solution of the obstacle problem with right-hand side measure does
not touch the obstacle, though it is not the solution of the equation.

Example. Let N ≥ 2, Ω be the ball B1(0), A = −∆, µ = −δ0 (the Dirac
mass at the origin), and ψ = −h a negative constant. Let u be the solution of
OP (−∆,−δ0,−h), then −∆u = −δ0 +λ (and the equation is satisfied in the sense
of Stampacchia or, equivalently, in the setting of reachable solutions). We want to
show that λ = δ0.

Taking ν = δ0 in condition 2 of Definition 2.7, we obtain u ≤ 0 C2-q.e. in Ω.
As u ≥ −h, we have u = Th(u) and hence u ∈ H1

0 (Ω) by (2.9). This implies that
the measure −δ0 + λ belongs to Mb(Ω) ∩H−1(Ω), which is contained in M2

b,0(Ω).
In other words λ = δ0 +λ0, with λ0 ∈M2

b,0(Ω). Since λ is nonnegative and δ0⊥λ0,
the measure λ0 is nonnegative. Then u = uλ0 ≥ 0, and finally u = 0. Thus the
solution can be far above the obstacle, but the obstacle reaction is nonzero, and
is exactly δ0.

The previous example can be explained by the following theorem that shows
that, when the obstacle is controlled from above and from below in an appropriate
way, it is possible to “isolate” the effect of the singular negative part of the data.
Namely, the reaction λ will be written as λ = λ0 + µ−

s , where λ0 belongs to
M2,+

b,0 (Ω). Moreover the “regular part” λ0 is concentrated on the coincidence set
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{x ∈ Ω : u(x) = ψ(x)} whenever ψ is C2-quasi upper semicontinuous, and a
complementarity condition holds.

Theorem 3.7. Let p = 2, and let a satisfy (2.10)–(2.12). Let µ ∈ Mb(Ω) and let
ψ : Ω→ IR be C2-quasi upper semicontinuous satisfying

u−ρ−τ ≤ ψ ≤ uρ,

where ρ ∈ M2
b,0(Ω) and τ ∈ Mb(Ω), with τ⊥µ−

s (here u−ρ−τ and uρ are the
reachable solutions of (2.6) relative to −ρ − τ and ρ, respectively). Let u and u0

be the solutions of OP (A, µ, ψ) and OP (A, µa + µ+
s , ψ), respectively, and λ and

λ0 be the corresponding obstacle reactions. Then u = u0 a.e. in Ω, λ0 ∈M2,+
b,0 (Ω),

λ = λ0 + µ−
s , and u = ψ λ0-a.e. in Ω.

In [12] this theorem was proved in the linear case, investigating the behavior
of the potential of two mutually singular measures near their singular points.
Actually in [21] we extend this result to our (nonlinear) context giving alternative
proofs.

Finally we deal with the behavior of the Obstacle Problem in the sense of
Definition 2.9 under perturbation of the operator, of the forcing term, and of the
obstacle.

The study of the properties of the solutions to the Obstacle Problem when the
operators vary is based on a notion of convergence for strictly monotone operators,
called G-convergence. Actually, to deal with this type of convergence we have to
restrict our class of functions a satisfying (2.1)–(2.4).

In particular, given two constants c0, c1 > 0 and two constants α and β, with
0 ≤ α ≤ 1 ∧ (p− 1) and p ∨ 2 ≤ β < +∞, we consider the family L(c0, c1, α, β) of
Carathéodory functions a(x, ξ) : Ω× IRN → IRN such that:

|a(x, ξ)− a(x, η)| ≤ c0(1 + |ξ|+ |η|)p−1−α|ξ − η|α, (3.5)

(a(x, ξ) − a(x, η))(ξ − η) ≥ c1(1 + |ξ|+ |η|)p−β |ξ − η|β , (3.6)
a(x, 0) = 0, (3.7)

for almost every x ∈ Ω, for every ξ, η ∈ IRN .

Definition 3.8. We say that a sequence of functions ah(x, ξ) ∈ L(c0, c1, α, β) G-
converges to a function a(x, ξ) satisfying the same hypotheses (possibly with dif-
ferent constants c̃0, c̃1, α̃, β̃) if for any F ∈W−1,p′

(Ω), the solution uh of{
Ah(uh) = F in Ω
u = 0 on ∂Ω

satisfies
uh ⇀ u weakly in W 1,p

0 (Ω)
and

ah(x,∇uh) ⇀ a(x,∇u) weakly in Lp′
(Ω)N ,

where u is the unique solution of (2.5).
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The following theorem justifies the definition of G-convergence.

Theorem 3.9. Any sequence ah(x, ξ) of functions belonging to L(c0, c1, α, β) admits
a subsequence which G-converges to a function a(x, ξ) ∈ L(c̃0, c̃1, α

β−α , β), where
c̃0, c̃1 depend only on N, p, α, β, c0, c1

This compactness theorem was obtained by L. Tartar (see [34] and Theorem
1.1 of [17]) in the case of nonlinear monotone operators defined from H1

0 (Ω) into
H−1(Ω), when p = 2 and the functions ah ∈ L(c0, c1, 1, 2), and then extended in
the version of Theorem 3.9 in [10] (see Theorem 4.1).

Concerning the perturbation of the obstacles we consider a notion of conver-
gence for sequences of convex sets introduced by U. Mosco in [27].

Definition 3.10. Let Kh be a sequence of subsets of a Banach space X . The strong
lower limit

s− lim inf
h→+∞

Kh

of the sequence Kh is the set of all v ∈ X such that there exists a sequence vh ∈ Kh,
for h large, converging to v strongly in X .

The weak upper limit
w − lim sup

h→+∞
Kh

of the sequence Kh is the set of all v ∈ X such that there exists a sequence vk

converging to v weakly in X and a sequence of integers hk converging to +∞, such
that vk ∈ Khk

.
The sequence Kh converges to the set K in the sense of Mosco, shortly

Kh
M→K, if

s− lim inf
h→+∞

Kh = w − lim sup
h→+∞

Kh = K.

Mosco proved that this type of convergence is the right one for the stability
of variational inequalities with respect to obstacles. This is the main result of his
theory.

Theorem 3.11. Let Kψh
:= Kψh

(Ω) ∩W 1,p
0 (Ω) and Kψ := Kψ(Ω) ∩W 1,p

0 (Ω) be
nonempty. Then

Kψh

M→Kψ

if and only if, for any F ∈W−1,p′
(Ω),

uh → u strongly in W 1,p
0 (Ω),

where uh and u are the solutions of V I(A,F, ψh) (the variational inequality relative
to A, F , and ψh) and V I(A,F, ψ) (the variational inequality relative to A, F , and
ψ), respectively.

Several stability results can be proved as corollaries of this theorem by Mosco.
In particular, the strong convergence

ψh → ψ strongly in W 1,p(Ω)
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easily implies the convergence of Kψh
to Kψ in the sense of Mosco, but the weak

convergence

ψh ⇀ ψ weakly in W 1,r(Ω), r > p,

also implies the same result (see [7], [1]).

Now, we consider a sequence ah of functions in L(c0, c1, α, β), a sequence of
measures ρh ∈Mb(Ω) ∩W−1,p′

(Ω), and the variational solution uρh
of{

Ah(uρh
) = ρh in Ω

uρh
∈ W 1,p

0 (Ω).

We assume that

sup
h
‖ρh‖Mb(Ω) < +∞ (3.8)

and that the function ψh satisfies:

ψh ≤ uρh
Cp-q.e. in Ω. (3.9)

Moreover we suppose that

ψ ≤ 0 Cp-q.e. in Ω. (3.10)

Theorem 3.12. Let ah be a sequence in L(c0, c1, α, β), which G-converges to a
function a, and let Ah and A be the operators associated to ah and a, respectively.
Let us assume (3.8), (3.9), and (3.10), with Kψh

converging to Kψ in the sense of
Mosco. Finally, we consider µh, µ ∈Mp

b,0(Ω) such that

µh(B)→ µ(B), for every Borel set B ⊆ Ω.

Then the solutions uh and u of the obstacle problems OP0(Ah, µh, ψh) and
OP0(A, µ, ψ), respectively, satisfy

Tj(uh) ⇀ Tj(u) weakly in W 1,p
0 (Ω), for every j > 0,

ah(x,∇uh) ⇀ a(x,∇u) weakly in Lq(Ω)N , for every q < N
N−1 ,∫

Ω

ah(x,∇uh)∇Tj(uh) dx→
∫

Ω

a(x,∇u)∇Tj(u) dx, for every j > 0.

Remark 3.13. By formal modifications we can prove Theorem 3.12 (see [23]) re-
placing (3.10) with (3.2) and

ψ ≤M Cp−q.e. in Ω,

where M is a positive constant.

Theorem 3.12 is the analogous of Theorem 3.1 of [14] proved in the classical
setting of variational inequalities.
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latéraux, Nonlinear partial differential equations and their applications (Collège de
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Piecewise Constant Level Set Method
for Interface Problems
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Abstract. We apply the Piecewise Constant Level Set Method (PCLSM) to
interface problems, especially for elliptic inverse and multiphase motion prob-
lems. PCLSM allows using one level set function to represent multiple phases,
and the interfaces are represented implicitly by the discontinuity of a piece-
wise constant level set function. The inverse problem is solved using a vari-
ational penalization method with total variation regularization of the coeffi-
cient, while the multiphase motion problem is solved by an Additive Operator-
Splitting scheme.
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1. Introduction

Traditional level set idea was first proposed by Osher and Sethian[8]. Since then,
the level set method plays a great role in dealing with interface problems. By level
set method, one does not evolve the interfaces, instead one just evolves the level set
function. The main advantage of level set approach is that the interfaces are im-
plicitly represented by a level set function, and so complicated topological changes
can be dealt naturally and easily. In [4, 3, 2], some variants to the traditional level
set method were proposed. In this work, we are trying to show the applications
of the PCLSM of [4, 3, 2] for some interface problems. For traditional level set
methods, one needs to reinitialize the level set function to be a signed distance
function during the iterations, and cautions must be taken with respect to the
discretization of Heaviside and Dirac functions. The piecewise constant level set
method does not need to care about these issues [4].
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2. Piecewise Constant Level Set Method Formulations

The essential idea of the PCLSM of [4] is to use a piecewise constant level set
function to identify the interfaces separating the subdomains. Assume that we
need to partition the domain Ω into subdomains Ωi, i = 1, 2, . . . , n and the number
of subdomains is a priori known. In order to identify the subdomains, we try to
identify a piecewise constant level set function φ such that

φ = i, in Ωi, i = 1, 2, . . . , n. (2.1)

Thus, for any given partition {Ωi}ni=1 of the domain Ω, it corresponds to a unique
PCLS function φ which takes the values 1, 2, . . . , n. Associated with such a level
set function φ, the characteristic functions of the subdomains are given as

ψi =
1
αi

n∏
j=1,j �=i

(φ− j), αi =
n∏

k=1,k �=i

(i− k). (2.2)

If φ is given as in (2.1), then we have ψi(x) = 1 for x ∈ Ωi, and ψi(x) = 0 elsewhere.
We can use the characteristic functions to extract geometrical information for the
subdomains and the interfaces between the subdomains. For example,

Length(∂Ωi) =
∫

Ω

|∇ψi|dx, Area(Ωi) =
∫

Ω

ψidx. (2.3)

Define

K(φ) = (φ − 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ − i). (2.4)

At every point in Ω, the level set function φ should satisfy

K(φ) = 0. (2.5)

This level set idea has been used for image segmentation in [4, 9, 10] and inverse
problems involving shape identification in [11]. Fast algorithms have been also
developed for this method for image segmentation in [9, 10].

3. PCLSM for elliptic inverse problem

We try to use PCLSM for an inverse problem. Consider the partial differential
equation:

−∇ · (q(x)∇u) = f, x ∈ Ω ⊂ R2, u(x) = 0, x ∈ ∂Ω. (3.1)
Suppose we have some observations of the solution u, and we want to recover

the coefficient q(x) by using the observations. In [1], the standard level set method
has been applied to elliptic inverse problems.

Due to the ill-posedness of the problem, output-least-square method is often
used for recovering q(x). Assume that ud ∈ L2(Ω) is an observation for u, and let
K be the set of admissible coefficients

K = {q(x) | q(x) ∈ L∞(Ω) ∩ TV (Ω), 0 < q(x) � q(x) � q̄(x) <∞}. (3.2)
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with q(x) and q̄(x) known a priori, and TV denotes the total variation norm. We
solve the following minimization problem for the output-least-square method to
find the parameter q(x).

min
q∈K

F (q), F =
∫

Ω

1
2
|u(q)− ud|2dx + βR(q), (3.3)

above R(q) =
∫
Ω |∇q|dx is the total variation norm of q, β is the regularization

parameter and u(q) is the solution of (3.1) with a given q. We assume that q(x) is
piecewise constant and represent q(x) by piecewise constant level set function

q(x) =
n∑

i=1

ciψi(x). (3.4)

Incorporating it into (3.3), and letting G(ci, q) = F (q(ci, φ)), we then need to solve

min
ci,φ

K(φ)=0

G(ci, φ), G(ci, φ) =
∫

Ω

1
2
|u(q(ci, φ)− ud|2 + βR(q). (3.5)

To deal with the constraint, we use the common penalization method

min
ci,φ

L, L = G + W =
∫

Ω

1
2
|u− ud|2 + βR(q) +

1
2µ

∫
Ω

K2(φ)dx. (3.6)

The following algorithm is used to solve (3.6).

Algorithm 1. Choose initial values for φ0 and c̄0. For k = 1, 2, . . ., do
1. Find c̄k+1 = {ck+1

i }ni=1, such that

c̄k+1 = argmin
c̄

L(c̄k, φk). (3.7)

2. Find φk+1 such that

φk+1 = arg min
φ

L(c̄k+1, φk). (3.8)

3. Check convergence, if converged, stop; else goto 1.
Above argminL(·) denotes the minimizer of L(·). In order to find a minimizer of
L(·) with respect to ci, i = 1, 2, . . . , n, we use a gradient based method with line
search. Usually, we update ci after each 5–10 outer iterations. The most difficult
part of the above algorithm for our model problem is the second step – minimizing
φ, so we concentrate on the minimizing of φ. At the minimizer, we should have

∂L

∂φ
=

∂G

∂φ
+ W ′(φ) = 0. (3.9)

To solve (3.9), we can instead solve the following evolution differential equation to
steady state

φt +
∂L

∂φ
= 0. (3.10)

According to the operator splitting scheme [5, 6], we can solve (3.10) in the fol-
lowing way:
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For l = 1, 2, . . ., until convergence, do

φl+1/2 − φl

τ
+

∂G

∂φ
(c̄l, φl+1/2) = 0, (3.11)

φl+1 − φl+1/2

τ
+ W ′(φl+1) = 0. (3.12)

where τ is a pseudo time-step. Notice that (3.12) can be written as

φ− φl+1/2 + α2K(φ)K ′(φ) = 0. (3.13)

where α2 is a parameter that should be chosen properly. Note that (3.13) is a
polynomial of φ, and we will use Newton method to solve it. The two minimization
problems in Algorithm 1 are never solved exactly. A fixed number of gradient
iterations is used for solving (3.7). A fixed number of iteration of (3.11)–(3.12) is
used for solving (3.8).

3.1. Numerical experiments for elliptic inverse problem

We take the examples in [1] to testify the efficiency of our Algorithm 1. Let Ω =
(0, 1)× (0, 1), f = 20π2 sin(πx) sin(πy). Let u� be the exact finite element solution
for the exact q and σ be the noise level. We get the observed solution ud =
u� +σ||u�||L2/||Rd||L2Rd. Where Rd is a finite element function with nodal values
being uniform random numbers between [−1, 1] with zero mean.

The domain Ω consists of a rectangular mesh with uniform mesh size h = 1/64
for both x and y directions. In all the figures, the dotted lines in the background
show the true level set curves and the dashed lines are the computed level set
curves.

In this example, the exact coefficient q(x) is given in Figure 1, i.e., q(x) =
2 inside the two closed curves and q(x) = 1 outside the curves. See Fig. 2 for
the numerical results. We see that only 300 iterations are needed to recover q(x)
accurately.

(a) exact level set curve (b) exact q(x)

Figure 1. The exact q(x) and the location of the discontinuity



Piecewise Constant Level Set Method for Interface Problems 311

(a) Initial (b) 10 iterations

(c) 80 iterations (d) 200 iterations

(e) 300 iterations (f) The error ||q − qk||L2(Ω) v.s. itera-

tion number

Figure 2. The computed solution at different iterations , with σ = 1%.
Initial qi = [1.2, 1.8], Initial level set function φ = 1.5
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4. PCLSM for multiphase motion problem

Usually, the multiphase motion problem involves curves meeting at a point with
prescribed angles. Each interface Γij , separates regions Ωi and Ωj and moves with
a normal velocity

vij = fijκij + (ei − ej). (4.1)
where κij is the local curvature, fij is the constant surface tension of Γij , and ei

corresponds to the bulk energy. This model problem can be obtained by associating
an energy functional E to the motion, which involves the length of each interface
and the area of each subregion, i.e.,

E = E1 + E2

E1 =
∑

1�i<j�n

fijLength(Γij) (4.2)

E2 =
∑

1�i�n

eiArea(Ωi).

By minimizing this energy functional, the internal interfaces are driven to
equilibrium. Our method is especially inspired by [7] and [13].

In the following, the PCLSM will be used to solve the motion by mean cur-
vature problem. For simplicity, let us consider problem (4.2) with

ei = 0, fij = 1. (4.3)

We want to emphasize that there is no problem to apply PCLSM for general setting
for (4.2). Under condition (4.3), the problem (4.2) reduces to the model problem:

min
Γij

∑
1�i<j�n

Length(Γij). (4.4)

There are different ways to find the curves that minimize the above energy func-
tional. Under the condition that Γij is the interface between Ωi and Ωj and {Ωi}ni=1

are represented by (2.1), we see that
n∑

i=1

∫
Ω

|∇ψi|dx = 2
∑

1�i<j�n

Length(Γij).

Thus, If we use our PCLSM for (4.4), then we need to find a function φ that solves
the following constrained minimization problem:

minF, F =
n∑

i=1

∫
Ω

|∇ψi|dx, subject to K(φ) = 0 and φ|∂Ω = g. (4.5)

Usually, the Neumann boundary condition is supposed. However, in this paper,
we would like to try Dirichlet boundary conditions, which should produce a con-
strained motion. By using the same penalization technique and gradient method,
we found that the equation we need to solve is

φt +
∂F

∂φ
+ W ′(φ) = 0. (4.6)
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Applying the operator-splitting scheme again, we need to solve the following two
equations alternatively

φt +
∂F

∂φ
(φ) = 0, (4.7)

φt + W ′(φ) = 0. (4.8)

The first equation is trying to minimize the energy functional and the second
equation is trying to enforce that the minimizer is taking the values 1, 2, . . . , n.

we have tried to solve the first equation is the Additive version of Operator
Splitting (AOS) scheme of [5, 6, 12]. Note that

∇ψi = ψ′
i(φ)∇φ. (4.9)

and

∂F

∂φ
= −

n∑
i=1

∇ ·
(
∇ψi

|∇ψi|

)
ψ′

i = −
n∑

i=1

∇ ·
(

sign(ψ′
i)
∇φ
|∇φ|

)
ψ′

i. (4.10)

For two-dimensional problems, we have

∂F

∂φ
= −

n∑
i=1

ψ′
i

(
sign(ψ′

i)
φx

|∇φ|

)
x

−
n∑

i=1

ψ′
i

(
sign(ψ′

i)
φy

|∇φ|

)
y

. (4.11)

If we apply the AOS [5, 6] and do some standard linearization, we need to solve

φ̃k+1/4 − φk

τ
−

n∑
i=1

ψ′
i(φ

k)

(
sign(ψ′

i(φ
k))

φ̃
k+1/4
x

|∇φk|

)
x

= 0, (4.12)

φ̃k+1/2 − φk

τ
−

n∑
i=1

ψ′
i(φ

k)

(
sign(ψ′

i(φ
k))

φ̃
k+1/2
y

|∇φk|

)
y

= 0. (4.13)

Then, set

φk+1/2 =
1
2
(φ̃k+1/4 + φ̃k+1/2). (4.14)

When the value of φk+1/2 is obtained, we solve (3.12) to get φk+1. The two equa-
tions (4.12)–(4.13) can be solved efficiently on lines parallel to the x and y-axes.

4.1. Numerical experiments for multiphase motion problem

In all the experiments, we take Ω = (0, 1) × (0, 1) and use Dirichlet boundary
conditions. The domain Ω is divided into square elements with uniform mesh size
h = hx = hy = 1/64.

In this example, we test our algorithm on the well-known triple-junction
problem which involves three phases. The boundary and initial values are: φ0|Ω =
1.0, g(0, [0, 1/2]) = g([0, 1], 0) = 1, g(0, [1/2, 1]) = g([0, 1], 1) = 3, g(1, [0, 1]) = 2.
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(a) 10 iterations (b) 100 iterations

(c) 200 iterations (d) 300 iterations

(e) 1000 iterations (f) 2000 iterations

(g) 2100 iterations (h) The computed solution

Figure 3. Example 2: Computed solution for 3 phases.
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For this test problem, the real triple junction point should be at (1−1/2
√

3,1/2)
which is approximately (0.7118, 0.5). The three interface curves should be straight
lines and the three angles around the triple junction point should satisfy the clas-
sical angle condition, i.e., (2π

3 , 2π
3 , 2π

3 ) . We see that algorithm needs only about
2100 iteration steps to approximate the real solution accurately.

5. Conclusion

The purpose of this work is to show that the PCLSM of [4] can be used for interface
problems coming from mean curvature motion and elliptic inverse problem. The
experiments given here plus the tests done in [4, 3, 2] reveals the potential to use
the PCLSM for a large class of interface problems. For more details about the
PCLSM, we refer to [4, 3, 2].
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Dynamics of a Moving Reaction Interface
in a Concrete Wall

Adrian Muntean and Michael Böhm

Abstract. We formulate a 1D partly dissipative moving-boundary reaction-
diffusion system that describes the penetration of a reaction front into a con-
crete wall. We state the well-posedness of the model and the existence of
non-trivial upper and lower bounds for the concentrations, speed of the inter-
face, and shut-down time of the process. A numerical example illustrates the
typical behavior of concentrations and interface penetration in a real-world
application.

Mathematics Subject Classification (2000). Primary 35R35; Secondary 35K57,
74F25, 35D05.

Keywords. Moving-boundary problem, reaction-diffusion system, corrosion,
porous media, concrete carbonation.

1. Statement of the problem and a mathematical model

Carbon dioxide, which is present under normal atmospheric conditions and also
emitted as industrial output, attacks reinforced concrete structures by destroying
their protection against corrosion. The process is called carbonation. The core
reaction can be described as

CO2(g → aq) + Ca(OH)2(aq)
H2O−→ CaCO3(aq) + H2O. (1.1)

Its impact on concrete microstructure is significant and possible repairs are often
expensive. Therefore there is need of models capable to predict the depth of CO2

penetration in concrete structures accurately. We consider the carbonation pene-
tration in a wall whose chemistry, humidity level, and microstructure are known
[6]. Experiments show that the zone of reaction is narrowly confined to the in-
terface between the unreacted solid and the product layer, i.e., the region where
calcium carbonate precipitates to the solid matrix. See [5, 6, 8] for more details
on this motivating practical problem.

This work was completed with the partial support of DFG-SPP1122 Prediction of the Course of
Physicochemical Damage Processes Involving Mineral Materials.
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We idealize the reaction front by a surface Γ(t). Let the positive x-axis be
directed normally to Γ(t) and into the uncarbonated part. The basic geometry is
sketched in Figure 1 (a). At t = 0, we assume that the origin located at x = 0
is behind the reaction interface Γ(t). Assuming that the reactants, which depend
only on the real variables x and t, are available to reaction, we expect that the
reaction interface moves as x = s(t) for t ∈ ST :=]0, T [ such that s(0) = s0,
where T ∈]0,+∞], s0 ∈]0, L[, and L ∈]0,+∞[ are given, see Figure 1 (b). We
denote the mass concentration of the reactants and products as follows: ū1 :=
[CO2(aq)], ū2 := [CO2(g)], ū4 := [CaCO3(aq)], and ū5 := [H2O] are the chemical
species present in the region Ω1(t) := [0, s(t)[; ū3 := [Ca(OH)2(aq)] and ū6 :=
[H2O] are species present in Ω2(t) :=]s(t), L]. For ease of notation, we use the

(a) (b)

Figure 1. (a) Basic geometry for the PΓ model. The box A is the region
which our model refers to. (b) Schematic 1D geometry. The reactants
of (1.1) are spatially segregated at any time t.

set of indices I := I1 ∪ {4} ∪ I2, where I1 := {1, 2, 5} points out the active
concentrations in Ω1(t), and I2 := {3, 6} refers to the active concentrations living
in Ω2(t). Specifically, we take into account that CaCO3(aq) is not transported in
Ω := Ω1(t) ∪ Γ(t) ∪ Ω2(t), therefore the only partly dissipative character of the
model. Then, we are led to discuss the moving-boundary problem of determining
the concentrations ūi(x, t), i ∈ I and the interface position s(t) which satisfy for
all t ∈ ST the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(φφwūi),t + (−Diνi2φφwūi,x)x = +fi,Henry, x ∈ Ω1(t), i ∈ {1, 2},
(φφwū3),t + (−D3φφwū3,x)x = +fDiss, x ∈ Ω2(t),

(φφwū4),t = +fPrec + fReacΓ, x = s(t) ∈ Γ(t),
(φū5),t + (−D5φū5,x)x = +fReacΓ, x ∈ Ω1(t),
(φū6),t + (−D6φū6,x)x = 0, x ∈ Ω2(t).

(1.2)

The initial and boundary conditions are φφwνi2ūi(x, 0) = ûi0, i ∈ I, x ∈ Ω(0),
φφwνi2ūi(0, t) = λi, i ∈ I1, ūi,x(L, t) = 0, i ∈ I2, x ∈ Ω2(t), where t ∈ ST . Specific
to our problem, we impose the following interface conditions⎧⎨⎩

[j1 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφw ū1]Γ(t),

[ji · n]Γ(t) = s′(t)[φφwνi2ūi]Γ(t), i ∈ {2, 5, 6},
[j3 · n]Γ(t) = −η̃Γ(s(t), t) + s′(t)[φφw ū3]Γ(t),

(1.3)
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s′(t) = α
η̃Γ(s(t), t)

φφwū3(s(t), t)
, s(0) = s0, (1.4)

where ν12 = ν32 := 1, ν22 := φa

φw
, ν52 = ν62 := 1

φw
, νi� := 1 (i ∈ I, � ∈ I − {2}),

ji := −Diνi�φφwūi (i, � ∈ I1 ∪ I2) are the corresponding diffusive fluxes, and
α > 0. Here Di, L, and s0 are strictly positive constants, λi are prescribed in
agreement with the environmental conditions to which Ω – a part of the wall
(cf. Figure 1 (b)) – is exposed [6]. The initial conditions ûi0 > 0 are determined
by the chemistry of the cement. We assume ûi0 = λi. The hardened mixture of
aggregate, cement, and water (i.e., the concrete) imposes ranges for the porosity
φ > 0 and also for the water and air fractions, φw > 0 and φa > 0, see [6]. Since
the active concentrations are small, the constant porosity assumption is valid. The
productions terms fi,Henry, fDiss, fPrec, and fReac Γ are sources or sinks by Henry-
like interfacial transfer mechanisms, dissolution, precipitation, and carbonation
reactions. Typical examples are (cf. [4, 8]):{

fi,Henry := (−1)iPi(φφwū1 −Qiφφaū2)(Pi > 0, Qi > 0), i ∈ {1, 2},
fDiss := −S3,diss(φφwū3 − u3,eq), S3,diss > 0, fPrec := 0, fReacΓ := η̃Γ.

(1.5)

Let ū denote the vector of concentrations (ū1, . . . , ū6)t and MΛ be the set of
parameters Λ := (Λ1, . . . ,Λm)t that are needed to describe the reaction rate. For
our purposes, it suffices to assume that MΛ is a non-empty compact subset of R

m
+ .

We introduce the function

η̄Γ : R
6 ×MΛ → R+ by η̄Γ(ū(x, t),Λ) := kφφwū

p̄
1(x, t))ū

q̄
3(x, t), x = s(t). (1.6)

In (1.6) m := 3 and Λ := {p̄, q̄, kφφw} ∈ R
3
+. We define the rate of reaction (1.1)

η̃Γ(s(t), t), which arises in (1.3)–(1.5), by

η̃Γ(s(t), t) := η̄Γ(ū(s(t), t),Λ). (1.7)

(1.6) is a special choice of η̄Γ and represents the classical power-law ansatz. Other
choices of η̄Γ may be employed, too. See [4, 8], e.g.

Note that some equations are valid in Ω1(t), while others act in Ω2(t) or at
Γ(t)! All of the three space domains are varying in time and they are a priori un-
known. The interface conditions require some explanation. The term η̃Γ(s(t), t) ≈
αs′(t) denotes the number of moles per volume that are transported by diffusion
to the reaction interface. For convenience, we assume here η̃Γ(s(t), t) = s′(t). The
expression ±φφwū(s(t), t)s′(t) accounts for the mass flux induced by the motion of
the boundary Γ(t) in order to preserve conservation of mass. The conditions (1.3)
express jumps in the gradients of concentrations across Γ(t). They are typical
interface relations for a surface reaction mechanism, i.e., the classical Rankine-
Hugoniot jump relations cf. [1], Section 1.2.E, e.g. The non-local law (1.4) governs
the dynamics of the reaction interface. The latter interface condition is derived via
first principles in the 1D case and for simple 2D geometries in [4, 8]. This kind of
relationship is missing in the approach by Brieger and Wittmann [5]. It is however
needed to complete the model formulation and allows the determination of the
interface location once the reactants at Γ(t) are known. The setting is applicable
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when the reaction rate is very rapid and the diffusion of the gaseous CO2 is suf-
ficiently slow, or in other terms, when the characteristic time of the carbonation
reaction is much smaller than the characteristic time of diffusion of the fastest
species. This difference in the characteristic times causes the concentrations of the
active chemical species and their gradient to have a jump at Γ(t). The magnitude
of the jump typically depends on the concentration itself. The system (1.2)–(1.7)
forms the sharp-interface carbonation model PΓ, or shortly (PΓ). The model PΓ

consists of a coupled semi-linear system of parabolic equations that has a moving
a priori unknown internal boundary Γ(t), where the reaction (1.1) is assumed to
take place. The coupling between the equations and the nonlinearities comes from
the influence of the chemical reaction on the transport part and also from the
dependence of the moving regions Ω1(t) and Ω2(t) on s(t). Other nonlinearities
might be introduced by different assumptions on the production terms.

We present results on the well-posedness of the sharp-interface model PΓ

and prove some useful estimates. To do this, we firstly fix the moving boundary
by means of Landau-like transformations. Then we define the weak solutions to
the transformed model and state its well-posedness locally in time. Since upper
and lower bounds on the weak solution and on the shut-down time of the process
are available, the maximum estimates become uniformly in time and the weak
solution can be extended up to a global one, see the results and remarks in Sections
2 and 4. In Section 3, a simulation example shows the typical behavior of active
concentrations and interface penetration into a real concrete wall. The model shows
qualitatively good results when the numerical solution is compared with measured
penetration depth profiles.

2. Main results

For each i ∈ I1∪I2, we denote Hi := L2(a, b), where we set [a, b] := [0, 1] for i ∈ I1
and [a, b] := [1, 2] for i ∈ I2. Moreover, H :=

∏
i∈I1∪I2

Hi, Vi = {u ∈ H1(a, b) :
ui(a) = 0}, i ∈ I1, Vi := H1(a, b), i ∈ I2, and V =

∏
i∈I1∪I2

Vi, see [8]. In addition,
| · | := || · ||L2(a,b) and || · || := || · ||H1(a,b). If (Xi : i ∈ I) is a sequence of given sets
Xi, then X |I1∪I2| denotes the product

∏
i∈I1∪I2

Xi := X1 ×X2 ×X3 ×X5 ×X6.
Note that sometimes u(1) and u,y(1) replace u(1, t) and u,y(1, t), respectively.

We re-formulate the model PΓ in terms of macroscopic quantities by perform-
ing the transformation of all concentrations into volume-based concentrations via
ûi := φφwūi, i ∈ {1, 3, 4}, û2 := φφaū2, ûi := φūi, i ∈ {5, 6}. We map (PΓ) onto
a domain with fixed boundaries. To this effect, we employ the Landau transfor-
mations (x, t) ∈ [0, s(t)] × S̄T �−→ (y, τ) ∈ [a, b] × S̄T , y = x

s(t) and τ = t, for

i ∈ I1, (x, t) ∈ [s(t), L]× S̄T �−→ (y, τ) ∈ [a, b]× S̄T , y = a+ x−s(t)
L−s(t) and τ = t, for

i ∈ I2. We re-label τ by t and introduce the new concentrations, which act in the
auxiliary y-t plane by ui(y, t) := ûi(x, t)−λi(t) for all y ∈ [a, b] and t ∈ ST . Thus,
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the model equations are reduced to

(ui + λi),t −
1

s2(t)
(Diui,y),y = fi(u + λ) + y

s′(t)
s(t)

ui,y, i ∈ I1, (2.1)

(ui + λi),t −
1

(L− s(t))2
(Diui,y),y = fi(u + λ) + (2− y)

s′(t)
L− s(t)

ui,y, i ∈ I2,

where u is the vector of concentrations (u1, u2, u3, u5, u6)t and λ := (λ1, λ2, λ3,
λ5, λ6)t represents the boundary data. The transformed initial, boundary, and
interface conditions are

ui(y, 0) = 0, i ∈ I1 ∪ I2, ui(a, t) = 0, i ∈ I1, ui,y(b, t) = 0, i ∈ I2, (2.2)

−D1

s(t)
u1,y(1) = ηΓ(1, t) + s′(t)(u1(1) + λ1),

−D2

s(t)
u2,y(1) = s′(t)(u2(1) + λ2), (2.3)

−D3

L− s(t)
u3,y(1) = ηΓ(1, t)− s′(t)(u3(1) + λ3), (2.4)

D5

s(t)
u5,y(1)− D6

L− s(t)
u6,y(1) = s′(t)(u5(1) + λ5 − u6(1)− λ6), (2.5)

where ηΓ(1, t) denotes the reaction rate that acts in the y-t plane. This is defined by

ηΓ(1, t) := η̄Γ(ū(ys(t), t) + λ(t),Λ), y ∈ [0, 1], t ∈ ST (2.6)

for a given Λ ∈MΛ. Finally, two ode’s

s′(t) = ηΓ(1, t) and û′
4(t) = f4(û(s(t), t)) a.e. t ∈ ST , (2.7)

complete the model formulation, where û := (û1, û2, û3,û4,û5, û6)t. We also assume

s(0) = s0 > 0, û4(s(0), 0) = û40 ≥ 0. (2.8)

The transformed model equations are collected in (2.1)–(2.8). Let ϕ := (ϕ1,ϕ2,ϕ3,
ϕ5,ϕ6)t ∈ V be an arbitrary test function, and take t ∈ ST . To write the weak
formulation of (2.1)–(2.8) in a compact form, we introduce the notation:⎧⎪⎪⎨⎪⎪⎩

a(s, u, ϕ) := 1
s2

∑
i∈I1

(Diui,y, ϕi,y) + 1
(L−s)2

∑
i∈I2

(Diui,y, ϕi,y),
bf (u, ϕ) :=

∑
i∈I1∪I2

(fi(u), ϕi),
e(s, s′, u, ϕ) := 1

s

∑
i∈I1

gi(s, s′, u(1))ϕi(1) + 1
L−s

∑
i∈I2

gi(s, s′, u(1))ϕi(1),
h(s, s′, u,y, ϕ) := s′

s

∑
i∈I1

(yui,y, ϕi) + s′
L−s

∑
i∈I2

((2 − y)ui,y, ϕi),
(2.9)

for any u ∈ V and λ ∈ W 1,2(ST )|I1∪I2|. Furthermore, v4(t) := û4(s(t), t) for
t ∈ ST . The term a(·) incorporates the diffusive part of the model, bf (·) comprises
volume productions, e(·) sums up reaction terms acting on Γ(t), and h(·) is a non-
local term due to fixing of the domain. For our application (see (1.5) and (1.6)),
the interface terms gi(i ∈ I1 ∪ I2) are given by{

g1(s, s′, u) := ηΓ(1, t) + s′(t)u1(1), g2(s, s′, u) := s′(t)u2(1),
g3(s, s′, u) := −ηΓ(1, t) + s′(t)u3(1), g5(s, s′, u) := g6(s, s′, u) = 0, (2.10)
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whereas the volume terms fi (i ∈ I) are defined as⎧⎨⎩ f1(u) := P1(Q1u2 − u1), f4(û) := +η̃Γ(s(t), t),
f2(u) := −P2(Q2u2 − u1), f5(u + λ) := +ηΓ(1, t),
f3(u) := S3,diss(u3,eq − u3), f6(u) := 0.

(2.11)

Set MηΓ := supu(y,t)∈K{ηΓ(1, t) : y ∈ [a, b], t ∈ ST }
(
K :=

∏
i∈I [0, ki]

)
, where⎧⎨⎩

ki := max{ui0(y) + λi(t), λi(t) : y ∈ [a, b], t ∈ S̄T }, i = 1, 2, 3,
k4 := max{û40(x) + MηΓT : x ∈ [0, s(t)], t ∈ S̄T },
kj := max{ui0(y) + λi(t) + MηΓT : y ∈ [a, b], t ∈ S̄T }, j = 5, 6.

(2.12)

Definition 2.1. (Local Weak Solution) We call the triple (u, v4, s) a local weak
solution to (2.1)–(2.8) if there is a Sδ :=]0, δ[ with δ ∈]0, T ] such that

v4 ∈W 1,4(Sδ), s ∈W 1,4(Sδ), (2.13)

u ∈W 1
2 (Sδ; V,H) ∩ [S̄δ �→ L∞(a, b)]|I1∪I2| ∩ L∞(Sδ;C0, 1

2−([a, b]|I1∪I2|)), (2.14)⎧⎪⎪⎨⎪⎪⎩
(u′(t), ϕ) + a(s, u, ϕ) + e(s, s′, u, ϕ) = bf (u(t) + λ(t), ϕ)
+h(s, s′, u,y, ϕ)− (λ′(t), ϕ) for all ϕ ∈ V, a.e. t ∈ Sδ,

s′(t) = ηΓ(1, t), v′4(t) = f4(û(s(t), t)) a.e. t ∈ Sδ,
u(0) = u0 ∈ H, s(0) = s0, v4(0) = û40.

(2.15)

There is some freedom in choosing the exact structure of the reaction rate
ηΓ. The only assumptions that are needed are the following:

(A) There exists a positive constant Cη = Cη(Λ, u, λ, T ) such that

η̄Γ(ū(s(t), t),Λ) ≤ Cηū(s(t), t) for all t ∈ ST .

(B) The reaction rate ηΓ (defined cf. (2.6)) is locally Lipschitz with respect to all
variables. More precisely, let (u(i), v

(i)
4 , s(i)) be two solutions corresponding to the

sets of data Di := (u(i)
0 , λ(i), . . . ,Λ(i))t, where i ∈ {1, 2}. Set ∆u := u(2) − u(1),

∆v4 := v
(2)
4 − v

(1)
4 , ∆λ := λ

(2)
2 − λ(1), ∆u0 := u

(2)
0 − u

(1)
0 , and ∆Λ := Λ(2) − Λ(1).

The Lipschitz condition on ∆ηΓ := ∆η̄Γ = η̄Γ(ū(2),Λ(2)) − η̄Γ(ū(1),Λ(1)) reads:
There exists a positive constant cL = cL(D1,D2) such that the inequality |∆ηΓ| ≤
cL(|∆u|+ |∆Λ|) holds locally pointwise. For a particular choice of η̄Γ, Λ, and hence
cL, see (1.6).

(C1) k3 ≥ max{|u3,eq(t)| : t ∈ S̄T };
(C2) P1Q1k2 ≤ P1k1; P2k1 ≤ P2Q2k2;
(C3) Q2 > Q1.
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Theorem 2.2 (Local Existence and Uniqueness, [8]). Assume the hypotheses (A)–
(C2) and let the following conditions (2.16)–(2.20) be satisfied:

u3,eq ∈ L2(ST ), λ ∈W 1,2(ST )|I1∪I2|, λ(t) ≥ 0 a.e. t ∈ S̄T , (2.16)

u0 ∈ L∞(a, b)|I1∪I2|, u0(y) + λ(0) ≥ 0 a.e. y ∈ [a, b], (2.17)
û40 ∈ L∞(0, s0), û4(x, 0) ≥ 0 a.e. x ∈ [0, s0], (2.18)

min{min
S̄T

{u3,eq(t)}, S3,diss, P1, Q1, P2, Q2} > 0, (2.19)

0 < s0 ≤ s(t) ≤ L0 < L for all t ∈ S̄T . (2.20)

Then the following assertions hold:
(a) There exists a δ ∈]0, T [ such that the problem (2.1)–(2.8) admits a unique

local solution on Sδ in the sense of Definition 2.1;
(b) 0 ≤ ui(y, t) + λi(t) ≤ ki a.e. y ∈ [a, b] (i ∈ I1 ∪ I2) for all t ∈ Sδ. Moreover,

0 ≤ û4(x, t) ≤ k4 a.e. x ∈ [0, s(t)] for all t ∈ Sδ;
(c) v4, s ∈ W 1,∞(Sδ).

Remark 2.3. Let (u(i), v
(i)
4 , s(i))(i ∈ {1, 2}) be two local weak solutions on Sδ.

Correspondingly, let (u(i)
0 , λ(i),Λ(i)) be the initial, boundary and reaction data.

Then the function H ×W 1,2(Sδ)|I1∪I2| ×MΛ → W 1
2 (Sδ,V,H) ×W 1,4(Sδ)2 that

maps (u0, λ,Λ)t into (u, v4, s)t is Lipschitz in the following sense: There exists a
constant c = c(δ, s0, û40, L, ki) > 0 such that

||∆u||2W 1
2 (Sδ,V,H)∩L∞(Sδ,H) + ||∆v4||2W 1,4(Sδ)∩L∞(Sδ) + ||∆s||2W 1,4(Sδ)∩L∞(Sδ) (2.21)

≤ c

(
||∆u0||2H∩L∞([a,b]|I1∪I2|) + ||∆λ||2W 1,2(Sδ)∩L∞(Sδ) + max

MΛ
|∆Λ|2

)
.

Furthermore, we were able to show that small changes in the concentration fields
induce small displacements of the position of the reaction front, for details see [8].
A straightforward consequence of this aspect is that the main output of the model
(the penetration curve versus time, see Figure 2 (c), e.g.) is stable with respect to
small perturbations in the reaction rate structure.

Proposition 2.4 (Strict Lower Bounds, [8]). Assume that the hypotheses of Theo-
rem 2.2 are satisfied. In addition, if the restriction (C3) holds and the initial and
boundary data are strictly positive, then there exists a range of parameters such
that the positivity estimates stated in Theorem 2.2(b) are strict for all times.

Theorem 2.2 and Remark 2.3 report on the well-posedness of (2.1)–(2.8)
with respect to the time interval Sδ. In the sequel, we extend this local well-
posed solution up to a global solution. Firstly, we assume that the hypotheses of
Proposition 2.4 hold. In this case, for an arbitrary L0 ∈]s0, L[ there is a Tfin < +∞
such that s(Tfin) = L0. Thus, Tfin is the time when Γ(t) has penetrated all of
]s0, L0[. We refer to it as the final carbonation time or shut-down time of the
(carbonation) process. Physically reasonable restrictions on the life span of the
weak solution (hence, on Tfin) are given in Proposition 2.6 (iii). See also [10, 12, 13]
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for some closely related scenarios. The next results are direct consequences of
Theorem 2.2 and Proposition 2.4.

Proposition 2.5 (Strict Monotonicity of the Reaction Interface). If the hypotheses
of Proposition 2.4 are satisfied, then the position s ∈ W 1,∞(Sδ) of the interface
Γ(t) is strictly monotonic increasing on Sδ.

Proposition 2.6 (Basic Estimates). Let (u, v4, s) be the unique local solution to
(2.1)–(2.8) that fulfills the hypotheses of Proposition 2.4. Then the following esti-
mates hold:

(i) ηmin < s′(t) < ηmax for all t ∈ Sδ;
(ii) s0 ≤ s(t) ≤ s0 + ηmaxt for all t ∈ Sδ;
(iii) L0−s0

ηmax
< Tfin < L0−s0

ηmin
,

where ηmin and ηmax denote uniform lower and upper bounds on η̃Γ.

Proof. By Theorem 2.2 (b) and Proposition 2.4, (i) and (ii) are straightforward.The
equation for s′ in (2.7) leads to Tfin − t0 =

∫ s(Tfin)

s(t0)
1

η̃Γ(s)ds (t0 ∈ [0, Tfin[), see [2].
We apply the mean-value theorem and estimate the reaction rate η̃Γ from below
by using the non-trivial uniform lower bounds on the reactants (i.e., on u1 and u3),
and afterwards from above, by means of the corresponding maximum estimates.
In this way, it yields (iii). �

Theorem 2.7 (Global Solvability). Assume that the hypotheses of Proposition 2.4
are satisfied. Then the time interval STfin :=]0, Tfin[ of (global) solvability of (2.1)–
(2.8) is finite and is characterized by

Tfin = s−1(L0). (2.22)

Proof. The finiteness of the length of STfin is a consequence of Proposition 2.6 (iii).
The uniform maximum estimates of concentrations together with the nonnegativ-
ity of concentrations imply that the region

∏
i∈I [0, ki]× [s0, s0 + TfinMηΓ ], which

confines the graph of (u, v4, s), remains invariant along the physically relevant in-
terval ]0, Tfin[ of existence of the weak solution. The strictly positive constant MηΓ

is defined by (2.12), while the value of Tfin obeys the a priori estimate pointed out
in Proposition 2.6 (iii). Note that the invariant region is independent of u, s, x, or
t and that Tfin can be a posteriori calculated via (2.22). By the strict monotonicity
of s (cf. Proposition 2.5) and W 1,∞(STfin) ↪→ C(S̄Tfin), we obtain (2.22). �

3. Numerical example

We consider an 18 years old concrete wall made of the cement PZ35F, whose
chemistry and outdoor exposure conditions are described in [6], Table 3.1. The
weak formulation (2.15) allows us to approximate the underlying moving-boundary
problem by using the finite element method. The examples shown in Figures 2 and
3 are obtained with a uniform 1D Galerkin scheme. For more numerical simulations
of carbonation scenarios and details on the numerical scheme, see [4, 7, 8, 11].
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(a) (b) (c)

Figure 2. (a)+(b) CO2(aq) and Ca(OH)2(aq) profiles vs. space. Each
curve refers to time t = i years, i ∈ {1, . . . , 18}. (c): Interface location
vs. the experimental points “ ◦ ” (see [6]) after Tfin = 18 years of expo-
sure.

(a) (b) (c)

Figure 3. (a) CaCO3(aq) profiles vs. space. Each curve refers to time
t = i years, i ∈ {1, . . . , 18}. (b)+(c) Concentration of CO2(aq) and
Ca(OH)2(aq) vs. time and space.

Observe that steep concentration gradients arise near Γ(t) (Figure 3 (c), e.g.) and
the calculated interface location is in the experimental range (Figure 2 (c)).

4. Remarks

Proofs for the statements in Section 2 are given in [8]. The energy approach and Ba-
nach fixed-point principle (see also [3]) were used to obtain the local well-posedness
result. The main effort was concentrated on proving the positivity and the max-
imum estimates of the concentrations. The structure of the problem (2.1)–(2.8)
allowed us to obtain non-trivial uniform lower estimates for all concentrations
(Proposition 2.4). It is straightforward to deduce a strict lower bound for the
speed of the interface (see Proposition 2.6 (i)) which shows, e.g., that the reac-
tion interface Γ(t) does not stop before it reaches the end of the geometry. The
positivity of s′ also ensures that a backward movement of Γ(t) is impossible. This
fact contradicts Brieger and Wittmann [5], who suggested that Γ(t) may follow
a forward-backward movement. A non-trivial a priori upper bound of the final
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time of carbonation Tfin is available cf. Proposition 2.6 (iii). This margins the time
needed to completely carbonate the domain [s0, L0]. Another merit of the bound
on Tfin is that it supports the extending of the local solution (defined on Sδ) up
to a global solution (defined on STfin), see Theorem 2.7. It is noteworthy that for
sufficiently large time t and width of the sample L0, the interface position has a
sublinear growth in time (cf. Proposition 2.6 (ii)). This is only a rough estimate.
Since the reaction-rate structure (1.7) affects the scaling of the penetration depth
and of the width of the reaction front, improved asymptotic bounds are expected.
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Adaptive Finite Elements with High Aspect
Ratio for Dendritic Growth of a Binary Alloy
Including Fluid Flow Induced by Shrinkage

Jacek Narski and Marco Picasso

Abstract. An adaptive phase field model for the solidification of binary alloys
in two space dimensions is presented. The fluid flow in the liquid due to
different liquid/solid densities is taken into account. The unknowns are the
phase field, the alloy concentration and the velocity/pressure in the liquid.

Continuous, piecewise linear finite elements are used for the space dis-
cretization, a semi-implicit scheme is used for time discretization. An adaptive
method allows the number of degrees of freedom to be reduced, the mesh tri-
angles having high aspect ratio whenever needed.

Numerical results are presented for dendritic growth of four dendrites.

1. Introduction

In recent years, considerable progress has been made in numerical simulation of
solidification processes at microscopic scale [1]. Although sharp interface [2, 3]
and level-set models [4, 5] have proved to be efficient, the phase field method
emerged as a method of choice in order to simulate dendritic growth in binary
alloys [6, 7, 8, 9, 10, 11]. In phase field models, the location of the solid and
liquid phases in the computational domain is described by introducing an order
parameter, the phase field, which varies smoothly from one in the solid to zero in
the liquid through a slightly diffused interface. The main difficulty when solving
numerically phase field models is due to the very rapid change of the phase field
(and also of the concentration field in alloys) across the diffuse interface, whose
thickness has to be taken very small (between 1 and 10 nm) to correctly capture the
physics of the phase transformation. A high spatial resolution is therefore needed
to describe the smooth transition. In order to reduce the computational time and
the number of grid points adaptive isotropic finite elements [12, 13] have been
used. Further reduction of the number of nodes has been achieved using adaptive
finite elements with high aspect ratio [14, 15].

Jacek Narski is supported by the Swiss National Science Foundation.
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The influence of inter-dendritic liquid flow has already been taken into ac-
count in dendritic simulations [16, 17, 18, 19, 20]. Also, the inter-dendritic liquid
flow induced by shrinkage – that is to say the flow induced by the fact that solid
and liquid densities are different – has been considered [21, 22, 23, 24, 25]. The goal
of this paper is to take into account the inter-dendritic liquid flow due to shrink-
age, using adaptive finite elements with high aspect ratio as in [14, 15]. Numerical
results show that the method is capable of predicting micro-porosity.

The outline of the paper is the following. In the following section, we present
the model and briefly discuss the numerical method. Numerical results are pre-
sented in section 3, where the pressure drop due to shrinkage is observed during
solidification of four dendrites.

2. The model

The equations governing the solidification process are derived using a volume av-
eraging technique in a similar way as in [16, 17]. The key idea is to develop two
sets of equations (for the solid and liquid phases) and transform them into one set
using averaging over small volume and introducing average quantities.

In the following we present and discuss the averaged mass, momentum and
species conservation equation for binary alloy undergoing a solid/liquid phase tran-
sition. As in [21, 22, 23, 24, 25], we take into account the fact that the solid and
liquid densities are different.

2.1. Mass conservation

The solidification of a binary alloy in a bounded domain Ω of R
2 between time

0 and tend is considered. Let φ : Ω × (0, tend) → R be the phase field describing
presence of solid (φ = 1) or liquid (φ = 0). The phase field φ varies smoothly
but rapidly from zero to one in a thin region of width δ, the so-called solid/liquid
diffused interface. Let ρs and ρl be the constant solid and liquid densities (for most
alloys ρl < ρs). Then the average density ρ : Ω× (0, tend)→ R is defined by

ρ = ρsφ + ρl(1− φ). (1)

Let vs, vl be the solid and liquid velocities, respectively. In this model, the solid
velocity vs is a known constant (in most cases vs = 0), whereas vl is unknown.
Then, the average velocity v : Ω× (0, tend)→ R

2 is defined by

ρv = ρsφvs + ρl(1− φ)vl. (2)

Averaging the mass conservation equation in the solid and liquid regions yields
∂

∂t

(
ρsφ + ρl(1− φ)

)
+ div

(
ρsφvs + ρl(1 − φ)vl

)
= 0,

which can be rewritten, using (1) and (2):

∂ρ

∂t
+ div (ρv) = 0. (3)
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It should be noted that, in the sharp interface limit (that is to say when the
width of the solid-liquid interface δ tends to zero), then the phase field φ is the
characteristic function of the solid so that the density ρ becomes a step function
and (3) has to be understood in the sense of distributions. Then, the following
relation holds on the solid/liquid interface:

[ρ]V + [ρv · n] = 0 (4)

where [·] denotes the jump of the inside quantity across the interface, V is the
normal velocity of the solid/liquid interface and the vector n denotes the normal
to the interface. For instance, when solid is not moving (vs = 0), this condition
reduces to

vl · n =
ρs − ρl

ρl
V, (5)

see Figure 1.

Liquid

Solid

V
vl

Figure 1. Solidification of a solid seed with density ρs larger than the
liquid density ρl: as the solid/liquid interface moves with normal velocity
V toward the boundary of the calculation domain Ω, liquid flows with
velocity vl toward the solid.

At this point it should be noted that certain geometrical configurations are
incompatible with the mass conservation equation (3). This is the case when a
liquid region is surrounded by a solid region, see Figure 2 where examples of
compatible and not compatible configurations are shown.

2.2. Momentum conservation

Averaging the momentum conservation equation in the solid and liquid regions
yields

∂

∂t

(
ρsφvs + ρl(1 − φ)vl

)
+ div

(
ρsφvs ⊗ vs + ρl(1− φ)vl ⊗ vl

)
− div

(
φσs + (1− φ)σl

)
= 0,
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Figure 2. Examples of solidification configurations that are compati-
ble and not compatible with equation (3). The first two configurations
are compatible with (3) since some external liquid can enter the com-
putational domain in order to feed all liquid regions. The last two con-
figurations are not compatible with (3) since external liquid cannot feed
the liquid region located at the center of the computational domain.

where σs, σl are the solid and liquid stress tensors, respectively. Our goal is to
obtain a momentum equation for the unknown average velocity v. First, the defi-
nitions (1) (2) together with (3) are used to eliminate the liquid velocity vl in the
momentum equation:

ρ
∂v

∂t
+ (ρv · ∇)v + div

(
ρ

φρs

(1− φ)ρl
(v − vs)⊗ (v − vs)

)
− div

(
φσs + (1− φ)σl

)
= 0.

Moreover, the solid mechanical deformation is neglected, thus σs = 0. Also, given
a penalty parameter ε$ 1, the penalty term

1
ε
φ2(v − vs)

is added to the momentum equation in order to force the average velocity field v
to equal the solid velocity vs in the solid region (φ = 1). Finally, the liquid stress
tensor (1 − φ)σl is replaced by −pI + 2µlε(v) where p is the average pressure, µl

the liquid viscosity and ε(v) = 1/2(∇v +∇vT ) the rate of deformation tensor of
the average velocity v. Therefore, the momentum equation can be rewritten in the
whole computational domain Ω as:

ρ
∂v

∂t
+ (ρv · ∇)v + div

(
ρ

φρs

(1− φ)ρl
(v − vs)⊗ (v − vs)

)
− 2div

(
µlε(v)

)
+∇p +

1
ε
φ2(v − vs) = 0. (6)
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It should be stressed that in the liquid far from the solid/liquid interface (φ = 0),
the mass and momentum equations (3) (6) reduce to the incompressible Navier-
Stokes equations whereas in the solid region (φ = 1), due to the penalty term, the
velocity equals the solid velocity vs as ε becomes small.

2.3. Species conservation

We proceed as in [20], eq. (33) and (34). Let C be the average massic concentration
of the alloy defined by

ρC = ρsφCs + ρl(1− φ)Cl,

where Cs, Cl are the solid and liquid concentrations, respectively. Introducing the
constant partition coefficient k

k =
Cs

Cl

yields

Cl =
ρC

kρsφ + ρl(1− φ)
and Cs =

kρC

kρsφ + ρl(1− φ)
. (7)

Averaging the species conservation gives

∂

∂t

(
ρsφCs + ρl(1− φ)Cl

)
+∇ ·

(
ρsφCsvs + ρl(1− φ)Clvl

)
−∇ ·

(
Dsρsφ∇Cs + Dlρl(1− φ)∇Cl

)
= 0,

where Ds, Dl are the constant solid and liquid diffusion coefficients. Using (7) and
(2), the quantities Cs, Cl and vl can be eliminated to obtain

∂(ρC)
∂t

+ div
(

ρC

kρsφ + ρl(1− φ)

(
ρv + (k − 1)ρsφvs

))
− div

(
D(φ)∇(ρC) + D(φ)

ρC(ρl − kρs)
kρsφ + ρl(1− φ)

∇φ
)

= 0,

where we have set

D(φ) =
kρsφDs + ρl(1− φ)Dl

kρsφ + ρl(1− φ)
.

Introducing the volumic concentration c = ρC, the above equation writes

∂c

∂t
+ div

(
c

kρsφ + ρl(1− φ)

(
ρv + (k − 1)ρsφvs

))
− div

(
D(φ)∇c + D̃(c, φ)∇φ

)
= 0, (8)

where we have set

D̃(c, φ) = D(φ)
c(ρl − kρs)

kρsφ + ρl(1− φ)
.
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2.4. Phase-field

As in [17], we consider a standard phase-field equation for the solid phase moving
with constant velocity vs :

1
µk

(
∂φ

∂t
+ vs · ∇φ

)
= Γ

(
div

(
A(∇φ)∇φ

)
− φ(1 − φ)(1 − 2φ)

δ2

)
+

(
Tm + ml

c

kρsφ + ρl(1− φ)
− T

)
φ(1 − φ)

δ
. (9)

Here µk denotes the kinetic mobility, Γ is the Gibbs-Thomson coefficient. The term
div(A(∇φ)∇φ) is the functional derivative (that is to say the Fréchet derivative)
of the surface energy

1
2

∫
Ω

a
(
θ
(
∇φ(x)

))2|∇φ(x)|2dx,

where a is the real-valued function defined by

a(θ) = 1 + ā cos(4θ),

with ā the anisotropy parameter and where θ(ξ) denotes the angle between a vector
ξ ∈ R

2 \ {0} and the first component of the orthonormal Cartesian basis (e1, e2),
that is

cos θ(ξ) =
ξ · e1
‖ξ‖ .

Therefore the matrix A(·) in (9) is defined for ξ ∈ R
2 \ {0} by

A(ξ) =
(

a2(θ(ξ)) −a(θ(ξ))a′(θ(ξ))
a(θ(ξ))a′(θ(ξ)) a2(θ(ξ))

)
,

The term φ(1− φ)(1− 2φ) in (9) is the derivative of the double well which forces
the phase field to values close to zero or one. Finally, the last term in (9) is a source
term accounting for the energy due to the solid-liquid phase transformation, where
Tm is the melting temperature of the pure substance, ml is the slope of the liquid
line in the equilibrium phase diagram. The temperature field T is a known linear
function of space and time

T (x, t) = T0 + tṪ + Gd · x (10)

where Ṫ and G are given constants and d is a selected solidification direction in
space.

It should be noted that the velocity field v is not present in equation (9) so
that, in the sharp interface limit, the classical Gibbs-Thomson relation between the
interface velocity V , the curvature and the concentration c is recovered. Therefore,
the effect of the fluid motion on Gibbs-Thomson relation is neglected. We refer to
[24, 25] for more general models including such effects.
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2.5. Summary of the model

The goal of the present model is to find the phase field φ : Ω× (0, tend)→ R, the
volumic concentration c : Ω × (0, tend) → R, the velocity v : Ω × (0, tend) → R

2

and the pressure p : Ω × (0, tend) → R, satisfying equations (9), (8), (6) and (3).
Natural boundary conditions apply on the boundary of the calculation domain Ω
for φ, c and v. Moreover, initial conditions at time t = 0 must be prescribed for
φ, c and v.

Existence and uniqueness of solutions for this model in the absence of liquid
flow and for sufficiently small ā (small anisotropy) are proved in [26]. A posteriori
error estimation and adaptive finite elements are presented in [14]. Existence and
convergence of solutions in presence of liquid flow is an open problem.

2.6. Numerical method

Equations (9), (8), (6) and (3) are discretized in time using an order one semi-
implicit scheme. Space discretization is based on continuous, piecewise linear finite
elements on triangular adapted meshes. In order to reduce the number of degrees
of freedom, the triangles may have large aspect ratio whenever needed. The refine-
ment/coarsening criterion is based on a posteriori error estimates and the adaptive
algorithm has already been presented for elliptic problems [27], parabolic problems
[28], Stokes problem [29], dendritic growth [14] and coalescence [15].

3. Numerical experiments

The liquid flow due to shrinkage is now computed around four dendrites. We
place 2 × 2 = 4 dendritic seeds in a square Ω of size 0.001 m and let the system
evolve observing the liquid flow and the pressure drop during the process. The
distance between the seeds is 0.0002 m. The temperature is given by (10) with
T0 = 993.8 K, Ṫ = 10 K/s and G = 0. The values of the physical parameters are
given in Table 1.

Tm k Ds Dl Γ
1000 K 0.5 5 10−10 m2/s 5 10−9 m2/s 5 10−7 Km

ā µk ml ρs ρl µl

0.04 0.0015 m/(Ks) −260 K 1000 kg/m3 950 kg/m3 0.014 kg/(ms)

Table 1. Values of the physical parameters.

The solidification shrinkage causes the liquid to flow toward the center of
the square. When the dendrites are sufficiently big, one can observe negative pres-
sure appearing in the almost closed central region of the computational domain Ω.
The velocity field is changing significantly during the experiment, the maximum
observed velocity being 0.0001 m/s. In the beginning, where distance between den-
drites is big, the maximum velocity is small, namely 0.00001 m/s. However, when
neighboring dendrite tips are sufficiently close to each other, the velocity changes
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rapidly in order to supply the central region of the domain with new material.
When dendrites grow further, the spacing between dendrite tips of neighboring
dendrites gets smaller and that limits the amount of liquid that can pass toward
the center, which causes the pressure drop. Furthermore, the concentration in the
center gets much higher than in the rest of the domain. Figures 3 and 5 show the
evolution of the system in the case of 4 dendrites.

Figure 3. Dendritic growth of 4 dendrites at times t = 0.15 and 0.225s.
Left: adapted meshes (39442 vertexes at final time). Middle: concentra-
tion. Right: pressure.
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Figure 4. Dendritic growth of 4 dendrites at time t = 0.225 s. Velocity field.

Figure 5. Dendritic growth of 4 dendrites at time t = 0.225 s. Zoom
of the concentration and adapted mesh. Same scale as in Figure 3.
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A Free Boundary Problem for Nonlocal
Damage Propagation in Diatomites

C. Nitsch

Abstract. A new model for fluid flow in diatomites [3] motivates the study of a
new degenerate parabolic system. We provide numerical as well as analytical
evidence that there exists a free boundary, which represents the interface
between the pristine rock and the damaged one.

Keywords. Nonlocal damage mechanics, oil engineering, nonlinear parabolic
system, degenerate parabolic system.

1. Introduction

We present a work devoted to the study of a new model of fluid flow in porous
media arising in petroleum engineering. The formulation and analysis of the model
is motivated by the difficulties to extract oil from oil bearing diatomaceous for-
mations. Important examples of such oil fields can be found in California. The
problem is particularly challenging because of the peculiarities of diatomaceous
rocks: high porosity, low permeability and fragility. Because of the high porosity
the diatomite oil reservoirs are often very rich, but, in view of the low permeabil-
ity, the wells placed in this kind of oil reservoirs have a very low production rate
unless the hydraulic fracture technique is applied. This technique consists of the
injection of high pressure fluid from the wells inside the reservoir in order to in-
duce fractures which increase the rock permeability. However, because of the rock
fragility, a long term fracturing process causes subsidence phenomena, with very
serious consequences for the safety of the wells themselves. Therefore the damag-
ing process on the one hand is necessary to increase the production, on the other
hand it has to be monitored and predicted to avoid the collapse of the wells.

A first serious attempt to give a realistic mathematical description which
takes into account both the damage accumulation process and the fluid flux, has
been recently made by Barenblatt, Patzek, Prostokishin & Silin in [3]. In the next
section we review their model. It contains several nonlinearities which cannot be
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chosen properly without further study. In our work we restrict ourselves to power
type nonlinearities, which will be used to identify the dependance of the solutions
on the exponents of the powers.

2. Physical background

Hydraulic fracturing was developed in the 1950s and gave to producers the pos-
sibilities to extract more oil out of newly discovered and existing fields. Powerful
pumps at the surface inject a fluid (the so-called “fracture fluid”) into the reservoir
rocks. The pressure exerted by the fluid exceeds the compressive stress of the rock,
opening fractures which constitute paths of increased permeability.

In diatomaceous oil bearing formations like Lost Hills, the hydraulic frac-
turing is performed by injecting water. Due to the peculiarities of the diatomite
the microstructure of this rock has to change to get any appreciable fluid flow.
Actually during field operations the stress in the rock leads to the collapse of wall
pores resulting in a network of microcracks which increases the permeability of the
diatomite. Eventually the microcrack net connects with the macrofracture. This
microcrack accumulation motivated the development of a new model based on the
continuum damage mechanics approach. According to this branch of mechanics
the damage is usually denoted by ω and is a scalar field which takes values from
0 to 1. The pristine rock in a point is represented by ω = 0 and the completely
damaged rock by ω = 1. The intermediate values (0 < ω < 1) represents partially
damage states.

We derive a model which solves simultaneously the macroscopic fluid flow and
the microstructural changes of diatomite. We start from the filtration equation of
the fluid in the diatomite stratum assuming that the word “fluid” refers to both
species (oil and water that we do not distinguish). The diatomite is considered as
a weakly compressible elastic porous medium and the fluid as a weakly compress-
ible fluid, so its density ρ is a linear function of the pressure. The diatomaceous
stratum is supposed for simplicity homogeneous, with constant height and depth,
and bounded from above and below by impermeable rocks. Moreover we assume
that inside the reservoir, during geologic times, the pressure p of the fluid and
the mean geostatic stress1 σ, assumed respectively the constant values pi and σi.
Since the deposit is deep if we perturb the fluid pressure p from its equilibrium
initial value pi, the sum p+ σ remains constant and is equal to pi + σi during the
whole process. Under such hypotheses, following [3] (see also [2]), we obtain from
the continuity equation

∂t(mρ) +∇(ρu) = 0 (u is the filtration velocity)

1The mean geostatic stress is one third of the first invariant of the stress tensor i.e.: 1/3(σx +
σy + σz),
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and from Darcy’s law

u = −k

µ
∇p (µ is the fluid viscosity)

the equation for the pressure:

∂tp = ∇(K∇p). (2.1)

Here the “piezo diffusivity” coefficient K is defined as

K =
k

µmc
,

where c is a constant taking into account the compressibility coefficient of the fluid
and the compressibility coefficient of the rock porosity. Equation (2.1) is defined
in two spatial dimensions, and all the quantities involved (pressure, porosity, per-
meability, compressibility etc.) have to be interpreted as averaged on the height
of the diatomaceous stratum.

The key idea in [3] was to consider the permeability as a function of the rock
damage alone, k = k(ω).

The basic equation now becomes

∂tp = ∇(K(ω)∇p). (2.2)

Here K(ω) is an increasing function of ω, and by hypothesis, K(0) = 0. In order
to perform a numerical and analytical investigation, we restrict ourselves to power
type functional relation K(ω) = Kωα, α > 0.

To complete the problem formulation it is now necessary to add an equation
for the damage accumulation. Initially the rock is considered pristine (ω = 0),
with the possible exception of small regions around the wells which appear during
the drilling. When the water is pumped into the wells and starts to filtrate in the
diatomaceous rock, the pressure in the pores eventually increases above a certain
critical value I and microcracks start to appear. The exact value of I is unknown
and has to be determined by infield experiments. We claim that it has to be not
less then pi, since during geological time no damage has been accumulated.

The basic assumption is that locally the damage accumulation rate ∂tω is
proportional to a certain power of (p− I)+, and also proportional to the fraction
of undamaged rock 1−ω. From classical continuum damage mechanics, the process
of damage accumulation is governed locally by a kinetic equation of the type:

dω

dt
= A(1− ω)(p− I)γ

+,

where A is a constant. In addition to this bulk mechanism, we consider a nonlocal
damage diffusion process. We expect in fact, that fluid wedging takes place in the
microcracks. Again we focus on qualitative evaluation of the equations and we
choose a very simple nonlocal damage evolution equation of the form:

∂tω =
[
∇(D(ω, p)∇ω) + A(1− ω)(p− I)γ

+

]
+

(2.3)
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where the positive part on the right-hand side avoids a nonphysical damage heal-
ing. In particular we will use the following expression for the damage diffusivity
coefficient:

D(ω, p) = Λ2ωµ(p− I)β
+,

where Λ is constant.
The physical model, up to a space-time scaling, leads to the following math-

ematical formulation{
ωt = div(ωµ(p− I)β

+∇ω) + A(1 − ω)(p− I)γ
+ in R

2 × R
+

pt = div(ωα∇p) in R
2 × R

+,
(2.4)

with the following initial conditions

ω(x, 0) = ω0(x) p(x, 0) = p0(x) in R
2. (2.5)

We shall refer to (2.4) and (2.5) as the 2D formulation of the diatomite problem.
We assume that p = 0 correspond to the rest pressure in the undamaged

zone, hence also I ≥ 0. The constants α, β, γ, µ and a satisfy

α, β, γ, A > 0 µ ≥ 0.

The case we are interested in is when the initial data ω0 and p0 are compactly
supported, and have the same support. Outside such domain the rock is pristine
and the pressure is the rest pressure.

We also consider the one-dimensional version{
ωt = (ωµ(p− I)β

+ωx)x + A(1 − ω)(p− I)γ
+ in R× R

+

pt = (ωαpx)x in R× R
+

(2.6)

with initial data

ω(x, 0) = ω0(x) p(x, 0) = p0(x) in R. (2.7)

We will refer to (2.6) and (2.7) as the 1D formulation of the diatomite problem.
Both formulations present some mathematical difficulties. The nonnegativity

of ∂tω makes the equation fully nonlinear while the diffusivity coefficients ωα and
ωµ(p− I)+ enforce degeneracy.

In [3] it was conjectured that this degeneracy leads to a free boundary prob-
lem. Both ω and p remain compactly supported and have the same support for all
t > 0, and there exists an a priori unknown front which separates the damaged
and undamaged rocks. In the following sections we shall see that both numerical
and analytical evidence confirm such a conjecture.

3. Numerical simulations

The first numerical experiment presented was performed using the 2D formulation.
We have chosen for this example α = 2, γ = 5, β = A = 1, µ = 0. The domain
is a square of vertices (±1,±1). The initial damage and pressure are zero except
inside a circle of radius 0.1 and centered in (0, 0) (see Figure 1 when t = 0) where
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pressure and damage are prescribed to be respectively 8 and 1. No flux boundary
conditions for both damage and pressure are prescribed on the sides of the square.

These conditions actually models a well injecting fluid in the middle of a
square oil field. The results are shown in Figure 1. The simulation runs from t = 0
to t = 0.6. The idea is to show the sharp front which separates damaged and
undamaged regions with the strong indication that it coincides with a pressure
front.

In order to catch the behavior of p and ω across such an interface, we turn
our attention to the 1D formulation. This time the system was studied on the
half line x ≥ 0 again with initial damage pressure set to zero, and the following
boundary conditions: ∂xω(0, t) = 0 and p(0, t) = 1.

We solved the problem numerically for several values of the parameters in-
volved and selected some specific values in order to exhibit different types of be-
havior.

The results clearly show that the behavior of the solutions across the bound-
ary is strongly dependent on the constants involved. In Figure 2(a) we set α = 2,
β = 0.5, A = 1, γ = µ = 1 and I = 0.7. The simulation suggests that the damage
is discontinuous across the free boundary. The pressure seems to decrease linearly
on the left side of the boundary toward a value which is reasonably close to I. In
Figure 2(b) we set α = 0.5, β = 2, A = 1, γ = µ = 1 and I = 0.5. In this case ω
seems to go smoothly to zero crossing the boundary. In Figure 2(c) we set α = 2,
β = 2, A = 1, γ = µ = 3 and I = 0.5. It seems that p jumps across the free
boundary to a value greater than I, while ω is again continuous.

These results show that when I > 0, p is discontinuous across the interfaces.
What is more interesting is that even (p−I)+ and ω may be sometimes discontinu-
ous. This opens a nontrivial problem: when ω is discontinuous and I > 0 the term
ωαpx is ambiguous being the product of a measure and a discontinuous function.
An investigation of the travelling waves solution of system 2.6 in [5] confirmed
that the behavior of ω and p strongly depends on the parameters involved and in
particular there exists travelling waves for which ω or (p− I)+ have jumps across
the interface. Nevertheless for those travelling waves the product of ω and (p−I)+
happens to be always zero on the interface. Hence at least one of the two functions
has to be continuous. The last condition is in perfect agreement with the results
of the next section.

4. Analytical results

We studied existence of solutions of the following system{
ωt = (ωµ(p− I)β

+ωx)x + A(1 − ω)(p− I)γ
+ in R× R

+

pt = (ωαpx)x in R× R
+

(4.1)

with initial data

ω(x, 0) = ω0(x) p(x, 0) = p0(x) in R. (4.2)
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Figure 1. The damage and pressure fields at three different instants
t = 0, 0.09, and 0.6 which demonstrate the damage and pressure exten-
sion.
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Figure 2. Numerical experiment (1) damage, (2) pressure
(a) α = 2, β = 0.5, γ = µ = 1; I = 0.8
(b) α = 0.5, β = 2, γ = µ = 1; I = 0.6
(c) α = 2, β = 2, γ = 1, µ = 3; I = 0.6
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In this section we do not take into account the physical constraint of no damage
healing ∂tω ≥ 0. The analytical study of this simplified problem is already quite
complicated, and experience with other system containing this type of constraint
[8] suggest that from an analytical point of view the constraint ∂tω ≥ 0 is mostly
a technical complication.

Throughout the section we shall assume that ω0 and p0 are BV functions
with compact support. Namely they satisfy the hypotheses{

p0, ω0 ∈ BV (R),
p0 ≥ 0, 0 ≤ ω0 ≤ 1 in R,

(4.3)

and {
ω0(x) > 0 and p0(x) > 0 if a < x < b,

ω0(x) = p0(x) = 0 if x < a or x > b.
(4.4)

We also make a mere technical assumption (it allow us to use, at a certain point,
lap number theorem):⎧⎨⎩ there exists ρ̄ > 0 such that for any ρ ∈ [0, ρ̄)

the sets {x : ω0(x) > ρ} and {x : p0(x) > I ± ρ}
are intervals (if they are non empty).

(4.5)

Here, if g : D ⊆ R
n → [0,∞) with n ≥ 1, we denote by {g > 0} the interior of the

set
{
x ∈ D : lim infρ→0

∫
Bρ(x)∩D

g > 0
}
, where we have used the notation

∫
Bρ(x)∩D

f :=
1

|Bρ(x) ∩D|

∫
Bρ(x)∩D

f,

Bρ(x) being the ball of radius ρ centered in x.

We begin specifying what we mean by solution.

Definition 4.1. A pair (ω, p) ∈ X2
T := [L∞((0, T );BV (R)) ∩ L∞([0, T ] × R) ∩

H1((0, T );H−1(R))]2 for all T > 0 is a solution of system (4.1)–(4.2) if

(i) ωx ∈ L2
loc ({p > I}), px ∈ L2

loc ({ω > 0}),
(ii) ωαp2

x ∈ L1({ω > 0}) and ωµ(p− I)βω2
x ∈ L1({p > I}),

(iii) for all T > 0 and φ, ψ ∈ H1(R× [0, T ]) with compact support (i.e., for some
M > 0, φ = ψ = 0 for a.e. x > |M |) and for all t ∈ [0, T ]∫

R

φ(t)p(t) −
∫

R

φ(0)p0 =
∫ t

0

∫
R

φtp−
∫ ∫
{ω>0}∩Qt

φxω
αpx
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and∫
R

ψ(t)ω(t)−
∫

R

ψ(0)ω0

=
∫ t

0

∫
R

ψtω −
∫ ∫
{p>I}∩Qt

ψxω
µ(p− I)βωx + A

∫ t

0

∫
R

ψ(p− I)γ
+(1− ω).

Here QT := R× (0, T ] for all T > 0.

Since X2
T is embedded in [C([0, T ];L2

loc(R))]2 (see Proposition 4.3 and its
proof in [4] for more details) the integral equalities in (iii) are well defined for all
t ∈ [0, T ]. We observe the difference between the usual definition of weak solution
and the one given above. Two integrals in Definition 4.1 (iii) are restricted to the
sets {ω > 0} and {p > I}. We notice that without such a restriction these integrals
might even be ill defined. Indeed we anticipated that across the free boundary we
might deal with cases in which both p and ω have jumps.

It is possible to prove the following result.

Theorem 4.2. Let hypotheses (4.3), (4.4) and (4.5) be satisfied. Then Problem
(4.1)–(4.2) has a solution (ω, p) which satisfies the following properties:

(i) There exist a, b ∈ C([0,∞)) such that a(0) = a, b(0) = b, a(t) is nonincreas-
ing, b(t) is nondecreasing, and

ω(x, t) > 0 and p(x, t) > 0 if a(t) < x < b(t),

ω(x, t) = p(x, t) = 0 if x < a(t) or x > b(t);
(ii) for a.e. t > 0 ω(p− I)+ → 0 as x↘ a(t) and x↗ b(t);
(iii) if p0 ≥ I in (a, b) then p(x, t) ≥ I if a(t) < x < b(t).

We give a brief overview of the proof of the Theorem 4.2 and we refer the
reader interested to the details to [4].

Our result relies on several steps.

A candidate solution is first provided by an approximation argument. We
replace, for ε > 0, the degenerate system (4.1)–(4.2) with⎧⎪⎨⎪⎩

pt = ((ωα + ε)px)x in R× R
+

ωt = ((ωµ(p− I)β
+ + ε)ωx)x + A(1− ω)(p− I)γ

+ in R× R
+

p(x, 0) = p0(x), ω(x, 0) = ω0(x) for x ∈ R.

(4.6)

A weak solution of (4.6) is defined in a standard way (requiring that 0 ≤ ω0 ≤ 1,
p0 ≥ 0 and ωx, px ∈ L2

loc(R × [0,∞))). Existence of solutions is provided by the
following proposition

Proposition 4.3. Let ω0 and p0 satisfy{
0 ≤ ω0 ≤ 1, p0 ≥ 0 in R,

ω0, p0 ∈ BV (R) ∩ Lq(R) (1 ≤ q ≤ ∞).
(4.7)
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Then, for all ε > 0, Problem (4.6) has a weak solution (ωε, pε) satisfying

(i) 0 ≤ ωε ≤ 1 and 0 ≤ pε ≤ C in R× [0,∞);
(ii) for all T > 0 there exists CT > 0 such that∫ T

0

∫
R

(ωµ
ε (pε − I)β + ε)ωε

2
xdxdt +

∫ T

0

∫
R

(ωα
ε + ε)pε

2
xdxdt ≤ CT ; (4.8)

(iii) ωε and pε are uniformly bounded in

L∞((0, T );Lq(R)) ∩H1((0, T );H−1(R)) ∩ L∞((0, T );BV (R))

for all 1 ≤ q ≤ ∞ and T > 0;
(iv) for all T > 0

(ωε(pε − I)+)ν

is uniformly bounded in L2((0, T );H1(R)) if ν ≥ 1
2 min {α + 1, β + 1, µ+ 2} .

A candidate solution of problem (4.1)–(4.2) is then supplied by compactness
arguments. It is straightforward to prove that there exists a couple

ω, p ∈ C([0, T ];Lq(R)) ∩H1((0, T );H−1(R)) ∩ L∞((0, T );BV (R)),

with 1 ≤ q <∞, 0 ≤ ω ≤ 1 and 0 ≤ p ≤ C, such that

(ωεn , pεn)→ (ω, p) in [C([0, T ];L2
loc(R))]2, (4.9)

for some sequence εn → 0.
The main difficulty is now to prove that (ω, p) is a solution of (4.1)–(4.2).

In particular the proof of (i), (ii) and (iii) in Theorem 4.2 is quite delicate. The
existence and continuity of the two functions a(t) and b(t) rely on an iteration
technique based on integral estimates and a generalized version of Stampacchia’s
Lemma, which has been introduced and developed in [6, 7] in the context of the
thin film equation and which was applied here for the first time to a system of
equations.

Our results suggest several open problems. We noticed that very little is
known about the behavior of ω and p across the free boundary. However from
(iv) in Proposition 4.3 we can claim that ω(x, t)(p(x, t) − I)+ → 0 as x ↘ a(t)
and x ↗ b(t) for a.e. t > 0. Therefore at least the continuity of ω or (p − I)+ is
guaranteed, in perfect agreement with numerical experiments and travelling wave
analysis.

The existence of solutions for the one dimensional formulation without ne-
glecting the positive part at the right-hand side of the equation of ω is another
open problem. Also the uniqueness of the solution, as well as the existence of a so-
lution in the two dimensional formulation. The latter is particularly difficult, since
it is not even known if the BV-estimate ((iii) in Proposition 4.3) for the solutions
of the approximating system 4.6 continues to hold in 2D.
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Concentrating Solutions for
a Two-dimensional Elliptic Problem
with Large Exponent in Nonlinearity

Angela Pistoia

Abstract. We study the existence of positive and sign-changing solutions to
the boundary value problem −∆u = |u|p−1u in a bounded smooth domain
Ω in R

2, with homogeneous Dirichlet boundary condition, when p is a large
exponent. We find topological conditions on Ω which ensure the existence of
a positive solution concentrating at exactly m points as p → ∞. In particular,
for a non-simply connected domain such a solution exists for any given m ≥ 1.
Moreover, for p large enough, we prove the existence of two pairs of solutions
which change sign exactly once and whose nodal lines intersect the boundary
of Ω.

Mathematics Subject Classification (2000). Primary 35J60; Secondary 35B33.

Keywords. Large exponent, concentrating solutions, nodal solutions, Green’s
function, finite-dimensional reduction.

1. Introduction

In this paper we collect some results, obtained in collaboration with Pierpaolo
Esposito and Monica Musso in [12] and [13], about the problem

−∆u = |u|p−1u in Ω, u = 0 on ∂Ω. (1.1)

where Ω is a smooth bounded domain in R
2 and p > 1.

It is well known that for any p > 1 problem (1.1) has a least energy solution
up which is obtained by minimizing the Rayleigh quotient:

Ip(u) =

∫
Ω |∇u|2

(
∫
Ω |u|p+1)

2
p+1

, u ∈ H1
0(Ω) \ {0}.

The author is supported by M.U.R.S.T., project “Metodi variazionali e topologici nello studio di
fenomeni non lineari”.
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In [17, 18] the authors show that such a least energy solution has L∞-norm
bounded and bounded away from zero uniformly in p, for p large. Furthermore,
up to subsequence, the renormalized energy density p|∇up|2 concentrates as a
Dirac delta around a critical point ξ0 of the Robin function H(x, x), where H is
the regular part of the Green function of the Laplacian in Ω with homogeneous
Dirichlet boundary condition. Namely, the Green function G(x, y) is the solution
of the problem

−∆xG(x, y) = δy(x) x ∈ Ω, G(x, y) = 0 x ∈ ∂Ω

and H(x, y) is the regular part defined as

H(x, y) = G(x, y)− 1
2π

log
1

|x− y| .

In [14] the authors show that the concentration point of the least energy solution
is the maximum point of the Robin function.

In [1, 10] the authors give a further description of the asymptotic behavior
of up, as p→∞, by identifying a limit profile problem of Liouville-type:

−∆u = eu in R
2,

∫
R2

eu < +∞ (1.2)

and showing that ‖up‖∞ →
√
e as p → +∞. The only solutions to this problem

are given by

Uδ,ξ(y) = log
8δ2

(δ2 + |y − ξ|2)2 y ∈ R
2,

with δ > 0 and ξ ∈ R
2 (see [8]).

As far as it concerns the existence of sign-changing solutions to (1.1), in
[5, 7] it was proved the existence of a least energy nodal solution ūp to (1.1) which
has exactly two nodal domains. More precisely, if Jp : H1

0(Ω) → R is defined by
Jp(u) = 1

2

∫
Ω

|∇u|2dx − 1
p+1

∫
Ω

|u|p+1dx and N p = {u ∈ H1
0(Ω) | u+ �= 0, u− �=

0, J ′
p(u)(u+) = J ′

p(u)(u−) = 0}, then it holds Jp(ūp) = min
Np

Jp.

In [12, 13] the authors build positive and sign-changing solutions for problem
(1.1) that, up to a suitable normalization, look like a sum or a difference of con-
centrated solutions for the limit profile problem (1.2) centered at several points
ξ1, . . . , ξm, as p→∞.

Our main results are the following.

The first result concerns the existence of positive solutions in a not simply
connected domain.

Theorem 1.1. If Ω is not simply connected, then for any k there exists pk > 0
such that for any p ≥ pk problem (1.1) has at least a family of positive solutions
concentrating at k different points of Ω.
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The second result concerns the existence of positive solutions in a simply
connected domain.

Theorem 1.2. If Ω is a h-dumbbell with thin handles, then there exists ph > 0 such
that for any p ≥ ph problem (1.1) in Ω has at least 2h − 1 different families of
positive solutions concentrating at different points in Ω, i.e., h families of solutions
concentrating at 1 point , h(h−1)

2 families of solutions concentrating at 2 points,
. . . , 2 families of solutions concentrating at h − 1 points, 1 family of solutions
concentrating at h points.

The third result concerns the existence and the profile of sign-changing solu-
tions in a general domain.

Theorem 1.3. There exists p0 > 0 such that for any p ≥ p0 problem (1.1) has at
least two pairs of sign-changing solution ±ui

p, i = 1, 2, with one positive peak and
one negative peak. Moreover Ω \

{
x ∈ Ω : ui

p(x) = 0
}

has exactly two connected
components and {x ∈ Ω : ui

p(x) = 0} ∩ ∂Ω �= ∅.

We would like to compare problem (1.1) with a widely studied problem which
has some analogies with it.

In higher dimension the problem equivalent to problem (1.1) is the slightly
sub-critical problem

−∆u = |u| 4
N−2−εu in Ω, u = 0 on ∂Ω, (1.3)

where Ω is a smooth bounded domain in R
N , N ≥ 3 and ε is a positive parameter.

Indeed, in dimension N ≥ 3, the embedding of H1
0 (Ω) in Lp+1(Ω) is compact

for every p < N+2
N−2 and the minimum of the Rayleigh quotient corresponding to

problem (1.3) is achieved by a positive function uε, called least energy solution,
which, after a multiplication by a suitable positive constant, is a solution to (1.3). It
is well known that, as ε goes to 0, the least energy solution uε concentrates around
a point, which is a critical point of the Robin function of the corresponding Green
function (see [4, 14, 15, 19]). Also the converse is true: around any stable critical
point of the Robin function one can build a family of positive solutions for (1.3)
concentrating precisely there (see [19, 20]). In [4] and [16] the authors showed that
also for problem (1.3) there exist positive solutions with concentration in multiple
points and, as in the problem that we are considering in the present paper, the
points of concentration are given by critical points of a certain function defined
in terms of both the Green function and Robin function. However, as far as it
concerns positive solutions, the analogies between problems (1.1) and (1.3) break
down here. Indeed, while for (1.1) one can find positive solutions with an arbitrarily
large number of condensation points in any given not simply connected domain Ω
as proved in Theorem 1.1, in [4] the authors proved that positive solutions to (1.3)
can have at most a finite number of peaks which depends on Ω.

On the other hand, as far as it concerns sign-changing solutions, results sim-
ilar to those in Theorem 1.3 have been obtained in [6] for problem (1.3). In [6]
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the authors prove that, if ε is small enough, problem (1.3) has at least N pairs of
sign changing solutions ±ui

ε, i = 1, . . . , N , such that, as ε goes to zero, ui
ε blows

up positively at a point ξi
1 and blows up negatively at a point ξi

2, with ξi
1, ξ

i
2 ∈ Ω,

ξi
1 �= ξi

2. Moreover, the set Ω \ {x ∈ Ω : ui
ε(x) = 0} has exactly two connected

components and the nodal set {x ∈ Ω : ui
ε(x) = 0} intersects the boundary of Ω,

provided H(ξi
1, ξ

i
1) = H(ξi

2, ξ
i
2). Here H denotes the Robin function of the Green

function of the Dirichlet Laplacian.

2. Finite-dimensional reduction

The proof of all our results relies on a Lyapunov-Schmidt procedure (as in the
pioneering papers [2, 3]), which is briefly sketched in the following. The detailed
proofs can be found in [12, 13].

Let PUδ,ξ denote the projection of Uδ,ξ onto H1
0(Ω), namely ∆PUδ,ξ = ∆Uδ,ξ

in Ω, PUδ,ξ = 0 on ∂Ω. Secondly, let U(y) := U1,0(y). Let V be the radial solu-
tion to

∆V + eUV = eUv in R
2, v :=

1
2
U2

and let W be the radial solution to

∆W + eUW = eUw in R
2,

w := V U − 1
2

(V )2 − 1
3
U3 − 1

8
U4 +

1
2
V U2.

For any δ > 0 and ξ ∈ R
2, we define

Vδ,ξ(x) := V

(
x− ξ

δ

)
, Wδ,ξ(x) := W

(
x− ξ

δ

)
, x ∈ Ω.

Then δ,ξ solves

∆Vδ,ξ + eUδ,ξVδ,ξ = eUδ,ξvδ,ξ in R
2, vδ,ξ(x) := vη

(
x− ξ

δ

)
and Wδ,ξ solves

∆Wδ,ξ + eUδ,ξWδ,ξ = eUδ,ξwδ,ξ in R
2, wδ,ξ(x) := wη

(
x− ξ

δ

)
.

Let PVδ,ξ and PWδ,ξ denote the projection onto H1
0(Ω) of Vδ,ξ and Wδ,ξ, respec-

tively.
Let ξ1, . . . , ξk be k different points in Ω. Define now

Uξ(x) :=
k∑

i=1

ai

γµ
2

p−1
i

(
PUδi,ξi(x) +

1
p
PV ξi

δi,ξi
(x) +

1
p2
PW ξi

δi,ξi
(x)

)
(2.1)

where ai ∈ {−1,+1},
γ := p

p
p−1 e−

p
2(p−1) , (2.2)
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so that lim
p→+∞

γ
p = 1√

e
. Moreover, concentration parameters δ1, . . . , δk satisfy

δi = µie
−p/4 (2.3)

with µi := µi(p, ξ), i = 1, . . . , k, given by

log(8µ4
i ) =

⎛⎝8πH(ξi, ξi) + 8π
∑
j �=i

aiaj
µ

2
p−1
i

µ
2

p−1
j

G(ξi, ξj)

⎞⎠(
1− ν

4p
− ω

4p2

)

+
log δi

p

(
ν +

ω

p

)
. (2.4)

for some positive constants ν and ω.
A direct computation shows that, for p large, µi thus satisfies

µi ∼ e−
3
4 e

2πH(ξi,ξi)+2π
∑
j �=i

aiajG(ξj ,ξi)

.

We point out that with this choice of parameters µi the profile of Uξ in a neigh-
borhood of the concentration point ξi is

Uξ(δiy + ξi) ∼ ai

√
e

[
1 +

1
p
U(y) +

1
p2
V (y) +

1
p3
W (y)

]
.

We will look for a solution to (1.1) of the form u = Uξ + φ, where φ is a
higher order term in the expansion of u and ξ ∈ Oε, where, for some ε > 0,

Oε :=
{
ξ ∈ Ωk | (dist ξi, ∂Ω) ≥ 2ε, |ξi − ξj | ≥ 2ε, i, j = 1, . . . , k, i �= j

}
.

It is useful to rewrite problem (1.1) in terms of φ, namely{
L(φ) = − [R + N(φ)] in Ω,
u = 0 on ∂Ω. (2.5)

where

L(φ) := L(p, ξ, φ) = ∆φ + g′p (Uξ)φ, (2.6)

R := R(p, ξ) = ∆Uξ + gp (Uξ) , (2.7)
N(φ) := N(p, ξ, φ) = gp (Uξ + φ)− gp (Uξ)− g′p (Uξ)φ. (2.8)

Here gp(s) := |s|p−1s.
A first step to solve (2.5), or equivalently (1.1), consists in studying the

invertibility properties of the linear operator L. In order to do so we introduce the
weighted L∞ norm defined by

‖h‖∗ := sup
x∈Ω

∣∣∣∣∣∣
(

k∑
i=1

δi

(δ2
i + |x− ξi|2)

3
2

)−1

h(x)

∣∣∣∣∣∣ for any h ∈ L∞(Ω).

With respect to this norm, the error term R(p, ξ) given in (2.7) can be esti-
mated in the following way.

Lemma 2.1. Let ε > 0 be fixed. There exists c > 0 and p0 > 0 such that for any
ξ ∈ Oε and p ≥ p0 we have ‖∆Uξ + gp (Uξ)‖∗ ≤

c
p4 .
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Next, we will solve the following projected linear problem: given h ∈ C0,α(Ω),
find a function φ and constants ci,j , for i = 1, . . . , k, j = 1, 2, such that⎧⎪⎪⎨⎪⎪⎩

L(φ) = h +
∑
i,j

ci,je
Uδi,ξiZi,j , in Ω,

φ = 0 on ∂Ω,∫
Ω

eUδi,ξiZi,jφ = 0 if i = 1, . . . , k, j = 1, 2,
(2.9)

Here we set, for i = 1, . . . , k and j = 1, 2,

Zi,j(x) := zj

(
x− ξi

δi

)
, with zj(y) :=

∂U

∂yj
(y) =

4yj

1 + |y|2 .

This linear problem is uniquely solvable, for p sufficiently large, in the set of
functions with bounded ‖ · ‖∗-norm.

Lemma 2.2. Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that for any
p > p0 and ξ ∈ Oε there is a unique solution φ to problem (2.9) which satisfies
‖φ‖∞ ≤ cp‖h‖∗.

Let us now introduce the following nonlinear auxiliary problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∆(Uξ + φ) + gp (Uξ + φ) =

2∑
i,j=1

ci,je
Uδi,ξiZi,j in Ω,

φ = 0 on ∂Ω,∫
Ω

eUδi,ξiZi,jφ = 0 if i = 1, . . . , k, j = 1, 2,

(2.10)

for some coefficients ci,j . The following result holds.

Proposition 2.3. Let ε > 0 be fixed. There exist c > 0 and p0 > 0 such that for
any p > p0 and ξ ∈ Oε problem (2.10) has a unique solution φp(ξ) which satisfies
‖φp(ξ)‖∞ ≤

c
p3 . Furthermore, the function ξ → φp(ξ) is a C1 function in L∞(Ω)

and in H1,2
0 (Ω).

After problem (2.10) has been solved, we find a solution to problem (2.5)
(hence to the original problem (1.1)) if we find a point ξ such that coefficients
cij(ξ) in (2.10) satisfy cij(ξ) = 0 for i = 1, . . . , k, j = 1, 2.

Let us introduce the energy functional Jp : H1
0(Ω)→ R given by

Jp(u) :=
1
2

∫
Ω

|∇u|2dx− 1
p + 1

∫
Ω

|u|p+1dx, (2.11)

whose critical points are solutions to (1.1). We also introduce the finite-dimensional
restriction J̃p : Ωk → R given by

J̃p(ξ) := Jp

(
Uξ + φp(ξ)

)
.

The following result holds.

Lemma 2.4. If ξ ∈ Ωk is a critical point of J̃p, then Uξ + φp(ξ) is a critical point
of Jp, namely a solution to problem (1.1).
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Next we need to write the expansion of J̃p as p goes to +∞,

Lemma 2.5. It holds

J̃p(ξ) = k
4πe
p

+ k
8πe(log 8− 1)

p2
− 32π2e

p2
Φ(ξ) + Rp(ξ),

where Rp = O(p−3) C1-uniformly with respect to ξ in compact sets of Mk := Ωk\∆,
where ∆ = {ξ ∈ Ωk : ξi = ξj for some i, j} and the function Φk : Mk → R is
defined by

Φk(ξ1, . . . , ξk) =
k∑

i=1

H(ξi, ξi) +
k∑

i,j=1
i�=j

aiajG(ξi, ξj). (2.12)

Finally by Lemma 2.5 and Lemma 2.4 we easily deduce the following result.

Theorem 2.6. Assume ξ∗ = (ξ∗1 , . . . , ξ∗k) ∈ M is a critical point of Φk stable with
respect to C1-perturbations. Then there exists p0 > 0 such that for any p ≥ p0

there exists a solution to problem (1.1) which concentrates at points ξ∗1 , . . . , ξ
∗
k .

3. Proof of main results

By Theorem 2.6, it is clear that looking for positive k-peaks solutions to (1.1)
means looking for C1-stable critical points of the function Φk defined in (2.12)
with a1 = · · · = ak = +1, namely

Φk(ξ1, . . . , ξk) =
k∑

i=1

H(ξi, ξi) +
k∑

i,j=1
i�=j

G(ξi, ξj).

Proof of Theorem 1.1. We argue as in [9]. Let γ be a curve in Ω around the hole.
Let c∗ := inf

H∈H
sup
z∈γk

Φk

(
H(1, z)

)
, where H :=

{
H : [0, 1]× γk →Mk continuous,

H(0, ·) = id} . Then c∗ is a critical value of Φk and there exists ξ∗ ∈Mk which is
a C1-stable critical point of Φk. Finally, the claim follows by Theorem 2.6. �
Proof of Theorem 1.2. We argue as in [11]. Let h be an integer. By h-dumbbell
domain with thin handles we mean the following: let Ω0 = Ω1 ∪ · · · ∪ Ωh, with
Ω1, . . . ,Ωh smooth bounded domains in R

2 such that Ω̄i∩ Ω̄j = ∅ if i �= j. Assume
that Ωi ⊂ {(x1, x2) ∈ R

2 : ai ≤ x1 ≤ bi}, and Ωi ∩ {x2 = 0} �= ∅, for some
bi < ai+1 and i = 1, . . . , h. Let Cε = {(x1, x2) ∈ R

2 : |x2| ≤ ε, x1 ∈ (a1, bh)}, for
some ε > 0. We say that Ωε is a h-dumbbell with thin handles if Ωε is a smooth
simply connected domain such that Ω0 ⊂ Ωε ⊂ Ω0 ∪ Cε, for some ε > 0.

Set, for 1 ≤ k ≤ h,

Φε
k(ξ) =

k∑
i=1

HΩε(ξi, ξi) +
k∑

i,j=1
i�=j

GΩε(ξi, ξj), ξ ∈ Ωk
ε .
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It is easy to check that Φ0
k has h!

(k−h)!k! local maximum points in Ωk
0 , i.e., the

absolute maximum point in the connected component Ωi1 × · · · × Ωik
, for any

{i1, . . . , ik} ⊂ {1, . . . , h} with il �= im, l �= m. Then if ε ∼ 0, Φε
k has h!

(k−h)!k!

local maximum points in Ωk
ε , which are C1-stable critical points of Φε

k. Finally,
the claim follows by Theorem 2.6. �

By Theorem 2.6, it is clear that looking for sign-changing solutions to (1.1)
with one positive peak and one negative peak means looking for C1-stable critical
points of Φ2 defined in (2.12) with a1 = +1 and a2 = −1, namely

Φ2(ξ1, ξ2) = H(ξ1, ξ1) + H(ξ2, ξ2)− 2G(ξ1, ξ2).

Proof of Theorem 1.3. First of all, we note that Φ2(ξ1, ξ2) → −∞ as (ξ1, ξ2)
approaches ∂M2 and Φ2(ξ1, ξ2) = Φ2(ξ2, ξ1). Therefore Φ2 has at least cat M̃2

critical points which are C1-stable. Here M̃2 denote the quotient manifold M2 with
respect to the equivalence (ξ1, ξ2) ∼ (ξ2, ξ1). It is easy to see that cat M̃2 ≥ 2.

By Theorem 2.6 it follows that, provided p is large enough, there exist pairs
u

(i)
p and −u(i)

p of solutions to (1.1) for i = 1, . . . , cat M̃2. For sake of simplicity, set
up = u

(i)
p for some i. We know the profile of up, more precisely

up(x) =
1

γpµ1

2
p−1
p

(
PUδ1p,ξ1p

(x) +
1
p
PVδ1p,ξ1p

)

− 1

γpµ2

2
p−1
p

(
PUδ2p,ξ2p

(x) +
1
p
PVδ2p,ξ2p

)
+ φ̂p(x)

where γp, δip and µip are given in (2.2), (2.3) and (2.4), respectively. Moreover
ξip → ξ∗i , ξ

∗
1 , ξ

∗
2 ∈ Ω, ξ∗1 �= ξ∗2 . Finally ‖φ̂p‖L∞(Ω) ≤ C

p3 .

Let us prove that {x ∈ Ω : up(x) �= 0} has exactly two connected compo-
nents. We remark that there exists r > 0, independent of p, such that B(ξ1p, r) ⊂
Ω+

p := {x ∈ Ω : up(x) > 0} , B(ξ2p, r) ⊂ Ω−
p := {x ∈ Ω : up(x) < 0} and

‖up‖L∞(Ω\{B(ξ1p,r)∪B(ξ2p,r)}) ≤ c
p . Assume there exists a third connected com-

ponent ωp ⊂ Ω \
{
B(ξ1p, r) ∪B(ξ2p, r)

}
. Then up solves

−∆up = |up|p−1up in ωp, up = 0 on ∂ωp.

It follows that

‖up‖2H1
0(ωp) ≤ ‖|up|p−1‖

L
p

p−2 (ωp)
‖up‖2Lp(ωp) ≤ S2

p‖up‖p−1

L
p(p−1)

p−2 (ωp)

‖up‖2H1
0(ωp).

Finally a contradiction easily arises, since S2
p ∼ 8πep and p‖up‖p−1

L
p(p−1)

p−2 (ωp)

= o(1).

Let us prove that {x ∈ Ω : up(x) = 0} ∩ ∂Ω �= ∅. We can prove that

pup(x)→ 8π
√
e [G(x, ξ∗1 )−G(x, ξ∗2 )] in C1

loc

(
Ω \ {ξ∗1 , ξ∗2}

)
.
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Then it follows that

p
∂up

∂ν
(x)→ 8π

√
e
∂

∂ν
[G(x, ξ∗1 )−G(x, ξ∗2 )] uniformly on ∂Ω.

On the other hand, the fact that
∫

∂Ω

∂
∂ν [G(x, ξ∗1 )−G(x, ξ∗2 )] = 0, implies that

∂
∂ν [G(·, ξ∗1 )−G(·, ξ∗2)] changes sign on ∂Ω. Therefore ∂up

∂ν changes sign on ∂Ω and
finally up changes sign in a neighborhood of ∂Ω. �
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Existence of Weak Solutions
for the Mullins-Sekerka Flow

Matthias Röger

Abstract. We prove the long-time existence of solutions for the Mullins-
Sekerka flow. We use a time discrete approximation which was introduced
by Luckhaus and Sturzenhecker [Calc. Var. PDE 3 (1995)] and pass in a new
weak formulation to the limit.
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Keywords. Free boundaries, Mullins-Sekerka flow, varifolds.

1. Introduction

The Mullins-Sekerka flow as a variant of the classical Stefan problem describes
phase transitions in materials with small specific heat constant. A geometric con-
dition on the phase interface, known as Gibbs-Thomson law, accounts for surface
tension effects and allows to model superheating and undercooling effects.

We consider a time interval (0, T ), an open bounded region Ω ⊂ R
3 repre-

senting the body of the material and we set ΩT := (0, T )×Ω. The state variables
are the relative temperature

u : ΩT → R,

(u = 0 denoting the melting point) and a phase function

X : ΩT → {0, 1},
dividing Ω at a time t ∈ (0, T ) into a liquid phase {X (t, .) = 1} and a solid phase
{X (t, .) = 0} separated by the phase interface, that is their common boundary.

In a non-dimensional form the energy balance reads

∂tX −∆u = f, (1.1)

The research of the author was supported by DFG Sonderforschungsbereich 611 and by the
European Community’s Human Potential Programme under contract HPRN-CT-2002-00274,
FRONTS-SINGULARITIES..



362 M. Röger

where f is a given heat source. The Mullins-Sekerka flow is obtained coupling (1.1)
with the Gibbs-Thomson law

H(t, .) = u(t, .) on the phase interface, (1.2)

where H(t, .) denotes the scalar mean curvature of the phase interface, which we
take positive for convex liquid phases. An initial condition for X and a boundary
condition for u on ∂Ω are added.

Existence of classical solutions for the Mullins-Sekerka problem locally in time
was proved by Chen, Hong and Li [CHY96] and by Escher and Simonett [ES97].
Chen [Che96] obtains solutions globally in time as limit of a certain Cahn-Hilliard
model, but there the Gibbs-Thomson law is satisfied in a rather weak and complex
formulation. Luckhaus and Sturzenhecker obtained in [LS95] solutions for a time-
discrete approximation of the Mullins-Sekerka flow and give a comparatively simple
formulation of the Gibbs-Thomson law, but they could prove the convergence to
solutions of (1.1), (1.2) only under an additional condition on the approximations.

Our goal is to give a general existence result for the Mullins-Sekerka problem
in space dimension n = 3 using a rather natural generalization of the Gibbs-
Thomson law.

In this contribution we introduce our result and sketch the proof. For more
details and a complete proof we refer to [Rög05].

2. Weak formulations of the Gibbs-Thomson law

A suitable weak formulation of the problem is crucial to obtain long-time existence.
We consider for a moment a time-independent situation. Weak formulations of the
Gibbs-Thomson law use the fact that the mean curvature gives the first variation
of the area functional:

Let hs(Γ),−ε < s < ε be a smooth variation of a hypersurface Γ ⊂ R
n with

the variation field ξ =
d

ds

∣∣∣
s=0

hs. Then

d

ds

∣∣∣
s=0

∫
hs(Γ)

1 dHn−1 =
∫

Γ

divTxΓ ξ(x) dHn−1(x) =
∫

Γ

− �H · ξ dHn−1 (2.1)

holds. One strategy to generalize the mean curvature vector is to formulate the first
variation of the area functional, given by the first equality in (2.1). The advantage
is that only ‘first derivatives’ (the tangential planes) of the surface enter this
expression.

For a phase and a temperature functions

X ∈ BV(Ω; {0, 1}), u ∈
◦
H1,2(Ω).

in [LS95] a BV-formulation of the Gibbs-Thomson law was introduced, that is∫ T

0

∫
Ω

(
∇ · ξ − ∇X|∇X| ·Dξ

∇X
|∇X|

)
(t, .)|∇X |(t, .) dt =

∫
ΩT

∇ · (uξ)X
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for all ξ ∈ C∞
c (ΩT ; R3). On the left-hand side we recognize the first variation of

the area functional, given by the integral over the tangential divergence of the
vector-field ξ. Formally, using the Gauss-Green Theorem on the right-hand side
and the identity (2.1) we obtain H(t) = u(t).

Let us now investigate how this formulation behaves if we pass in approxi-
mate Gibbs-Thomson equations to the limit. We consider a sequence h → 0 and
X h ∈ BV(Ω; {0, 1})), uh ∈

◦
H1,2(Ω) such that

Hh = uh for h > 0

holds in the BV-formulation. Moreover we assume that

X h → X in L1(Ω),

uh ⇀ u in H1,2(Ω),

and that the total surface area is preserved,∫
Ω

|∇X h| →
∫

Ω

|∇X |. (2.2)

Then an argument going back to Reshetnyak (see [AFP00] Theorem 2.39) shows
that

H = u

holds in the BV-formulation.
Thus, under the above assumptions we can pass to the limit within the BV-
formulation. The condition (2.2) that no surface area is lost is crucial and it was
this condition which had to be assumed for the time-discrete approximations in
[LS95] to obtain solutions for the Mullins-Sekerka flow.

Difficulties which arise if (2.2) does not hold are captured in the following
example. Assume two solid parts of approximations X h which merge to one when
letting h→ 0.
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......

........
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X = 1

X = 1

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .......

A part of the boundary, indicated by the dashed line, has ceased to separate two
different phases. We call this part the hidden boundary, whereas the phase interface
represents the physically relevant part of the boundary. Cusp singularities occur
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due to the cancellation of phase interfaces. As shown in [Sch97] the BV-formulation
of the Gibbs-Thomson law breaks down.

We follow an idea of Schätzle [Sch01] to consider the surface measure of the
phase interfaces and we use the concept of integral varifolds introduced by Almgren
[Alm65]. We briefly recall the basic definitions and refer for details to the book of
Simon [Sim83].

Remark 2.1. A rectifiable varifold µ is a Radon measure on Ω such that for µ-
almost all x ∈ Ω a (n− 1)-dimensional tangential plane Txµ (in the sense of
geometric measure theory) exists, and an integral varifold, if in addition the mul-
tiplicity of µ is µ-almost everywhere integer-valued. For a rectifiable varifold µ we
define the first variation by

δµ(ξ) :=
∫

Ω

divTxµ ξ(x) dµ(x) for ξ ∈ C1
c (Ω; Rn).

We say that µ is of locally bounded first variation with mean curvature vector �Hµ,
if �Hµ ∈ L1

loc(µ) and

δµ(ξ) =
∫

Ω

− �Hµ · ξ dµ for all ξ ∈ C1
c (Ω; Rn).

To prove the existence of solutions we will use a result of Schätzle [Sch01] on
the convergence in approximate Gibbs-Thomson equations. However, in our case
the control about hidden boundaries is quite delicate and we have to focus on the
physically relevant part of the boundary.
For this reason we use a generalized formulation of the Gibbs-Thomson law which
is based on the following definition of mean curvature for a general phase interface.

Definition 2.2. Let E ⊂ Ω with XE ∈ BV(Ω) and let there exist an integral
(n− 1)-varifolds µ on Ω, such that

∂∗E ⊂ spt(µ),

µ has locally bounded first variation with mean curvature vector �Hµ,

�Hµ ∈ Ls
loc(µ), s > n− 1, s ≥ 2.

Then we call

�H := �Hµ|∂∗E

the generalized mean curvature vector of ∂∗E.

The above definition was proposed and justified in [Rög04]. The essential
boundary ∂∗E represents the phase interface, whereas the set spt(µ) \ ∂∗E can
be seen as a hidden boundary. Under the above assumptions the varifolds mean
curvature restricted to the phase interface is a property of the phase interface itself
and independent of the location of hidden boundaries.
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3. Main result

Our solutions of the Mullins-Sekerka problem satisfy the Gibbs-Thomson in the
sense, that for almost all times a generalized mean curvature for the phase interface
exists and is given pointwise almost everywhere by equation (1.2).

Theorem 3.1. Let n = 3 and data

X0 ∈ BV(Ω; {0, 1}),
f ∈ L2(Ω)

be given. Then there exists

X ∈ L∞(0, T ; BV(Ω; {0, 1})),

u ∈ L2(0, T ;
◦
H1,2(Ω)),

such that ∫
ΩT

X∂tϕ+
∫

Ω

X0ϕ(0, .)−
∫

ΩT

∇u · ∇ϕ = −
∫

ΩT

fϕ (3.1)

for all ϕ ∈ C∞
c ([0, T )×Ω). For almost all t ∈ (0, T ) a generalized mean curvature

H(t) of ∂∗{X (t, .) = 1} exists and satisfies

H(t, .) = u(t, .) (3.2)

H2-almost everywhere on ∂∗{X (t, .) = 1}.

Our formulation of the Gibbs-Thomson law generalizes the BV-formulation.
Nevertheless we remark that our solution concept does not include a weak for-
mulation of a boundary condition on the angle between the phase interface and
the fixed boundary ∂Ω. In [Rög05] more general boundary conditions for u are
considered. Time-dependent heat sources f ∈ L2(ΩT ) can also be included.

4. Time-discretization

In [LS95] the gradient flow structure of the Mullins-Sekerka problem was used to
construct for a given time step h > 0 iteratively step functions in time which solve
a time-discrete version of (1.1), (1.2).

Proposition 4.1 ([LS95]). There exists

uh : (0, T )→
◦
H1,2(Ω), X h : (0, T )→ BV(Ω; {0, 1}),

such that

X h
t = X0 for 0 ≤ t < h

and such that the approximate energy-balance
1
h

(
X h

t −X h
t−h

)
= ∆uh

t + f, (4.1)
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and the approximate Gibbs-Thomson law

Hh
t = uh

t (4.2)

hold, where Hh
t denotes the mean curvature of ∂∗{X h

t = 1} and (4.2) is satisfied
in the BV-formulation. Moreover an energy estimate and an estimate for time-
differences are satisfied,∫

Ω

|∇X h
t |+

1
4

∫ t

0

∫
Ω

|∇uh|2 ≤
∫

Ω

|∇X0|+ C(T )‖f‖L2(Ω), (4.3)

for all h < t < T and ∫ T

τ

∫
Ω

|X h
t −X h

t−τ | dL3 dt ≤ Cτ
1
4 (4.4)

for all 0 < τ < T .

As a corollary we obtain the following compactness result.

Corollary 4.2. There exists a subsequence h→ 0 and functions

X ∈ L∞(0, T ; BV(Ω)), u ∈ L2(0, T ;
◦
H1,2(Ω)),

such that

uh ⇀ u weakly in L2(0, T ;
◦
H1,2(Ω)), (4.5)

X h → X in L1(ΩT ), (4.6)

and such that for almost all t ∈ (0, T )

X h(t) → X (t) in L1(Ω), (4.7)

sup
h>0
‖X h(t, .)‖BV(Ω) < ∞, (4.8)

lim inf
h→0

‖uh(t, .)‖ ◦
H1,2

(Ω)
< ∞. (4.9)

5. Convergence to solutions

We sketch here the proof of Theorem 3.1. Let u,X and a subsequence h → 0 be
given as above. Letting h→ 0 in equations (4.1) and (4.2) we will show that u,X
are weak solution of the Mullins-Sekerka problem. Whereas the energy balance is
derived in a standard way the main effort is the passage to a limit in the approxi-
mate Gibbs-Thomson law (4.2). One difficulty is that we have to argue pointwise
in time. Due to the lack of strong L1(ΩT )-compactness of the approximate tem-
peratures, we have to consider any limit point of (uh(t, .))h>0 in the weak-

◦
H1,2(Ω)

topology and have to identify their traces on ∂∗{X (t, .) = 1} with the trace of the
weak limit u in (4.5).
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We associate to the surface measure of the phase interfaces an integral 2-
varifolds with density one by defining

µh
t (η) :=

∫
Ω

η |∇X h
t | for η ∈ C0

c (Ω).

For the first variation of µh
t we obtain, recalling (4.2)

δµh
t (ξ) =

∫
Ω

(
∇ · ξ − ∇X

h
t

|∇X h
t |
· Dξ

∇X h
t

|∇X h
t |

)
|∇X h

t | =
∫

Ω

X h
t ∇ · (uh

t ξ)

for all ξ ∈ C1
c (Ω,R3).

The first step in the proof of Theorem 3.1 is to show that the phase interfaces
∂∗{X (t, .) = 1} have a generalized mean curvature. Since this mean curvature is
determined by the phase interface itself, it is given by the strong convergence in
(4.6), (4.7). Even more, also any limit of the first variations (δµh

t )h>0 is determined
by (4.6).

Lemma 5.1. For almost all t ∈ (0, T ) the phase interface ∂∗{X (t, .) = 1} has a
generalized mean curvature �H(t) in the sense of Definition 2.2 with

�H(t) ∈ L4
loc(|∇X (t, .)|). (5.1)

For any subsequence (hi)i∈N with supi∈N ‖uhi(t, .)‖ ◦
H1,2

(Ω)
< ∞ we obtain

δµhi
t (ξ) →

∫
Ω

− �H(t) · ξ |∇X (t, .)| (5.2)

for all ξ ∈ C1
c (Ω,R3).

Proof. See [Rög05] �
To prove that the mean curvature of the phase interface is given as trace

of the weak limit u in (4.5) the difficulty is that the pointwise convergence (5.2)
holds only for time-dependent subsequences. By an argument similar to a refined
dominated convergence theorem in [PS93] we conclude the following convergence.

Lemma 5.2. There is a subsequence h→ 0, such that∫ T

0

δµh
t (ξ(t, .)) dt →

∫ T

0

(∫
Ω

− �H(t) · ξ(t, .) |∇X (t, .)|
)
dt (5.3)

for all ξ ∈ L2(0, T ;C1
c (Ω)).

Proof. See [Rög05]. �
The Gibbs-Thomson law now follows. We obtain from (4.5), (4.6) and Lemma

5.2 that ∫
ΩT

X∇ · (uξ) = lim
h→0

∫
ΩT

X h∇ · (uhξ) = lim
h→0

∫ T

0

δµh
t (ξ(t, .)) dt

=
∫ T

0

( ∫
Ω

− �H(t) · ξ(t, .) |∇X (t, .)|
)
dt
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and deduce that for almost all t ∈ (0, T ) and all ξ ∈ C1
c (Ω; R3)∫

Ω

X (t, .)∇ ·
(
u(t, .)ξ

)
=

∫
Ω

− �H(t) · ξ |∇X (t, .)|

holds, which implies by the Gauss-Green Theorem (3.2).
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Existence and Approximation Results for
General Rate-independent Problems via
a Variable Time-step Discretization Scheme
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Abstract. In this note, we prove an existence and approximation result for a
class of state-dependent rate-independent problems (which have already been
investigated in [6]), by passing to the limit in a time-discretization scheme
with suitably constructed variable-time steps.
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1. Introduction

In this paper, we present an existence and approximation result for the Cauchy
problem for the doubly nonlinear evolution equation:

∂Ψ(z(t), ż(t)) + ∂E(t, z(t)) � 0 in Z, t ∈ (0, T ). (1.1)

Here, Z is a (separable) reflexive Banach space, and the symbol 〈·, ·〉 denotes the
duality pairing between Z ′ and Z. Throughout the paper, we will always assume
the two proper functionals E : [0, T ]× Z → R and Ψ : Z × Z → [0,+∞) to fulfil

E(t, ·) : Z → R is convex and l.s.c. for a.e. t ∈ (0, T ),

E(·, z) : [0, T ]→ R is differentiable ∀ z ∈ Z,
(1.2)

Ψ(z, ·) : Z → [0,+∞) is convex and 1-positively homogeneous ∀z ∈ Z, (1.3)

and the symbol ∂ in (1.1) denotes the subdifferential of both functionals w.r.t.
their second variables, i.e., for t ∈ [0, T ] and z, v ∈ Z we have

ξ ∈ ∂E(t, z) ⇔ E(t, ẑ)− E(t, z) ≥ 〈ξ, ẑ − z〉 ∀ẑ ∈ Z,

ω ∈ ∂Ψ(z, v) ⇔ Ψ(z, v̂)−Ψ(z, v) ≥ 〈ω, v̂ − v〉 ∀v̂ ∈ Z.

Let us point out that our 1-homogeneity assumption on Ψ(z, ·) entails that a
solution to (1.1) remains so if the time variable is rescaled.
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As a matter of fact, (1.1) models rate-independent processes, occurring in
plasticity, phase transformations in elastic solids, dry friction on surfaces, and sev-
eral other fields of continuum mechanics (see the survey [4]). In this framework, z is
referred to as the state variable of the process, while the functionals E and Ψ are re-
spectively related to the potential energy and to the dissipation. Rate-independence
means that such processes are insensitive to changes in the time-scales, which is
also connected to the fact that they may display a hysteresis behavior.

The energetic formulation. A new modelling approach for rate-independent pro-
blems has been recently proposed in the seminal papers [5, 8, 7], however dealing
with the simpler case of a state-independent functional Ψ (i.e., Ψ(z, v) = Ψ(v) for
all (z, v) ∈ Z×Z). Such an approach stems from the fact that, in the applied prob-
lems arising in, e.g., plasticity, the energy functional E cannot be expected to be
convex or smooth w.r.t. the state variable. Hence, the subdifferential formulation
(1.1) appears to be too restrictive. On the other hand, the functional t �→ E(t, ·),
which takes into account the external loadings, can be assumed smooth. In this
spirit, in the paper [6] the following energetic formulation of (1.1) has been con-
sidered:

E(t, z(t)) ≤ E(t, ẑ) + Ψ(z(t), ẑ−z(t)) ∀ẑ ∈ Z, (S)

E(t, z(t)) +
∫ t

0

Ψ(z(τ), ż(τ))dτ = E(0, z(0)) +
∫ t

0

∂tE(τ, z(τ))dτ. (E)

Note that (S) is a stability condition, which states that switching from the state z
to the state ẑ enforces a release of potential energy E(t, z(t))−E(t, ẑ), smaller than
the dissipated energy Ψ(z(t), ẑ−z(t)). On the other hand, (E) is an energy balance.
Let us stress that the formulation (S)-(E) does not involve the derivative of E w.r.t.
the variable z, but only the assumedly smooth power of the external forces ∂tE .
Actually, it has been shown in [6] that, under suitable conditions on E and Ψ (see
Sec. 3 later on), the two formulations (1.1) and (S)-(E) are equivalent. Moreover,
an existence and approximation result (cf. [6, Thm. 4.7]) has been proved for
(S)-(E) by passing to the limit in a suitable time-discretization scheme, which we
briefly introduce.

Approximation via time-discretization. To introduce this approximation scheme,
let us fix a partition of the interval (0, T )

Pτ :=
{
t0τ = 0 < t1τ < · · · < tN−1

τ < tNτ = T
}
, τ := max

j=1,...,N
{tjτ − tj−1

τ }, (1.4)

and let us introduce the following time incremental problem, associated with the
time-continuous Problem (1.1): given z0

τ := z0, find z1
τ , . . . , z

N
τ ∈ Z such that

zk
τ ∈ argmin{ E(tkτ , z) + Ψ(zk−1

τ , z − zk−1
τ ) | z ∈ Z } for k = 1, . . . , N. (IP)

It can be shown (cf. Section 3) that, under suitable assumptions on Ψ and E ,
for any k = 1, . . . , N (IP) has a unique solution {zk

τ}, fulfilling the subdifferential
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inclusion
∂Ψ(zk−1

τ , zk
τ − zk−1

τ ) + ∂E(tkτ , zk
τ ) � 0 ∀k = 1, . . . , N, (1.5)

the stability condition

E(tkτ , zk
τ ) ≤ E(tkτ , ẑ) + Ψ(zk−1

τ , ẑ − zk
τ ) ∀ẑ ∈ Z, (1.6)

as well as the energy inequality

E(tkτ ,zk
τ )+(tkτ − tk−1

τ )Ψ
(
zk−1
τ ,

zk
τ −zk−1

τ

tkτ − tk−1
τ

)
≤E(tk−1

τ ,zk−1
τ )+

∫ tk
τ

tk−1
τ

∂tE(r,zk−1
τ )dr.

(1.7)

Indeed, (1.5), (1.6) and (1.7) are nothing but the discrete versions of (1.1), (S)
and (E). In this setting, the approximate solutions of (1.1) are then constructed
as suitable interpolants of the discrete solutions {zk

τ }Nk=1. Yet, in [6] the passage to
the limit procedure is performed only in the case of uniform time-step partitions.
Our main result. Nonetheless, it has been suggested in [6, Rem. 4.10] that it should
also be possible to pass to the limit in an approximation scheme constructed with
a variable time-step partition of [0, T ], somehow “adjusted” to the data of the
problem, cf. (3.19) later on. In the what follows, we will indeed prove this conjec-
ture, thus obtaining our main existence and approximation result, Theorem 3.8.
The proof of this result relies on a (version of) the compactness result for Young
measures (which we briefly present in Sec. 2), and on a chain rule argument. How-
ever, let us point out that the problem of the convergence of a generic variable
time-step approximation scheme for (S)-(E) remains open.
Error estimates and uniqueness. As for the analysis of the rate of convergence of
the approximate solutions, this issue is actually tightly connected to the problem
of uniqueness of the solutions to (1.1). In fact, the strong convergence of the
approximation scheme in the state-independent case has been achieved in [7], by
means of the same energetic estimates exploited for proving a result of continuous
dependence on the initial data. However, the latter type of result is definitely
harder to prove in the state-dependent case, due to the quasivariational character
of the problem. Uniqueness and continuous dependence theorems for (1.1) have
indeed been obtained in [6] under more restrictive assumptions on Ψ and E than
the ones for existence, by carefully combining the energetic method of [7] with
the convex analysis arguments of [2]. Up to now, it has turned out to be arduous
to adapt this complex uniqueness proof for proving the strong convergence of the
approximate solutions, even in the case of a uniform time-step partition.

2. The fundamental theorem for Young measures
for the weak topology

Notation. Let X be a separable reflexive Banach space. We denote by B(X) the
Borel σ-algebra of X , while L is the σ-algebra of the Lebesgue measurable subsets
of (0, T ) (| · | stands for the Lebesgue measure on (0, T )), and L ⊗ B(X) is the
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product σ-algebra on (0, T )×X . We say that a L ⊗ B(X)-measurable functional
h : (0, T )×X → (−∞,+∞] is a weakly normal integrand if

v �→ ht(v) = h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ). (2.1)

We also recall that a sequence {un} ⊂ L1(0, T ;X) is uniformly integrable if

∀ ε > 0 ∃ δ > 0 ∀ J ⊂ (0, T ) |J | ≤ δ ⇒ sup
n∈N

∫
J

‖un(t)‖ dt ≤ ε. (2.2)

Definition 2.1 (Young measures). A Young measure (or parametrized measure) in
X is a family ν := {νt}t∈(0,T ) of Borel probability measures on X such that

t ∈ (0, T ) �→ νt(B) is L-measurable ∀B ∈ B(X). (2.3)

We denote by Y(0, T ;X) the set of all Young measures.

The following result, which is a version of the so-called fundamental com-
pactness result for Young measures (see, e.g., [1, Thm.1]) for the weak topology,
has been proved in [10] (cf. Thm. 3.2 therein).

Theorem 2.2 (The fundamental theorem for weak topologies). Let {vn}n∈N be a
bounded sequence in Lp(0, T ;X), for some p ≥ 1; if p = 1, let {vn} also be uni-
formly integrable. Then, there exists a subsequence k �→ vnk

and a Young measure
ν = {νt}t∈(0,T ) ∈ Y(0, T ;X) such that for a.e. t ∈ (0, T )

νt is concentrated on the set L(t) :=
⋂∞

p=1

{
vnk

(t) : k ≥ p
}w

(2.4)

of the weak limit points of {vnk
(t)}, and

lim inf
k→∞

∫ T

0

h(t, vnk
(t))dt ≥

∫ T

0

(∫
X

h(t, ξ) dνt(ξ)
)

dt (2.5)

for every weakly normal integrand h such that {h−(·, vnk
(·))} is uniformly inte-

grable (h− denoting the negative part of h). As a consequence, setting v(t) :=∫
X
ξdνt(ξ), we have

vnk
⇀ v in Lp(0, T ;X) if p <∞, vnk

∗
⇀v in L∞(0, T ;X). (2.6)

Remark 2.3. Note that our Lp-boundedness assumption (together with the uniform
integrability for p = 1) yields by itself that, up to a subsequence, {vn} weakly con-
verges in Lp(0, T ;X) (for p = 1, this is guaranteed by the Dunford-Pettis criterion
for L1 vector-valued functions, see, e.g., [3, Thm. IV.2.1]). Hence, (2.6) (which is a
straightforward consequence of the general lower semicontinuity inequality (2.5))
has rather to be interpreted as an identification of the weak-Lp limit in terms of a
suitable Young measure ν. Such a measure actually retains some information on
the pointwise (weak) limiting behavior of the sequence, see (2.4).



Rate-independent Problems 373

3. The main result

First of all, let us enlist all the assumptions on the functionals E and Ψ which will
come into play in the proof of our main theorem (i.e., Thm. 3.8) and of the related
intermediate results.

Statement of the assumptions

Besides (1.2), we assume that E complies with

∂tE(·, z) : [0, T ]→ R is measurable ∀z ∈ Z, and

∃C0 > 0 ∃λ0 ∈ L1(0, T ; [0,∞)) ∀z ∈ Z : |∂tE(t, z)| ≤ λ0(t)(E(t, z) + C0);
(3.1)

∃λ1 ∈ L1(0, T ; [0,∞)) for a.e. t ∈ (0, T ), ∀z, ẑ ∈ Z :

|∂tE(t, z)−∂tE(t, ẑ)| ≤ λ1(t)‖z−ẑ‖;
(3.2)

for a.e. t ∈ (0, T ) the map z �→ ∂tE(t, z) is weakly continuous on Z; (3.3)

∂E ⊂ [0, T ]× Z × Z ′ is closed in the strong-weak-weak topology. (3.4)

Finally, we require z �→ E(t, z) to be uniformly convex in the z variable, with a
modulus of convexity κ independent of t ∈ [0, T ], i.e., (setting zθ := (1−θ)z0+θz1):

∃κ > 0 ∀z0, z1 ∈ Z, ∀t ∈ [0, T ], ∀θ ∈ [0, 1] :

E(t, zθ) ≤ (1− θ)E(t, z0) + θE(t, z1)−
κ

2
θ(1− θ)‖z0 − z1‖2.

(3.5)

Remark 3.1. Indeed, (3.1) ensures that E is bounded from below and absolutely
continuous in time (see also [4, Sect. 3]): namely, ∀ t, s ∈ [0, T ] and ∀ z ∈ Z we
have

E(t, z) ≥ −C0, and E(t, z) + C0 ≤ (E(s, z) + C0) exp
(
|
∫ t

s

λ0(τ) dτ |
)
. (3.6)

Remark 3.2. Under the assumptions (1.2), (3.1) and (3.2) on E , the following chain
rule for the subdifferential ∂E of E holds (for the proof, see [6, Prop. 2.6]): for any
curve z ∈ W 1,1(0, T ;Z) such that there exists a selection g with

g(t) ∈ ∂E(t, z(t)) for a.e. t ∈ (0, T ) and g ∈ L∞(0, T ;Z ′), (3.7)

then the map t �→ E(t, z(t)) is absolutely continuous on (0, T ), and for every mea-
surable selection ζ(t) ∈ ∂E(t, z(t)) we have the identity

d
dtE(t, z(t)) = 〈ζ(t), ż(t)〉+ ∂tE(t, z(t)) for a.e. t ∈ (0, T ). (3.8)

As for the dissipation functional Ψ, in addition to (1.3) we impose:

∃CΨ > 0 ∀(z, v) ∈ Z × Z : Ψ(z, v) ≤ CΨ‖v‖; (3.9)

∃ψ∗ > 0 ∀ z, ẑ, v,∈ Z : |Ψ(z, v)−Ψ(ẑ, v)| ≤ ψ∗‖v‖‖z − ẑ‖,
with ψ∗ < κ;

(3.10)

Ψ : Z × Z → [0,∞) is sequentially weakly lower semicontinuous; (3.11)

∀v ∈ Z : Ψ(·, v) : Z → [0,∞) is sequentially weakly continuous. (3.12)
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We refer to [6, Sec. 4.2] for a non trivial example of functionals Ψ and E complying
with all the above assumptions.

Remark 3.3. Loosely speaking, the requirement ψ∗ < κ in (3.10) means that the
variations of Ψ with respect to z are weak enough so that the uniform convexity of
E is able to compensate for them. In fact, a simple example (see [6, Sec. 3]) shows
that, when ψ∗ ≥ κ, the Cauchy problem for (1.1) might not possess absolutely
continuous solutions.

Remark 3.4. It is possible to show (cf. [6, Lemma 4.1]) that, under the present
conditions on Ψ, (3.12) is equivalent to the fact that the map z �→ ∂Ψ(z, 0) has a
sequentially closed graph in the weak-weak topology of Z × Z ′.

Remark 3.5. Assumption (1.3) has an interesting geometrical interpretation: i.e.,
that for every z ∈ Z there exists a non-empty, closed and convex set C(z) ⊂ Z ′,
with Ψ(z, v) := sup{ 〈σ, v〉 | σ ∈ C(z) } for all v ∈ Z (i.e., for all z ∈ Z Ψ(z, ·) is
the support function of the set C(z)). Standard convex analysis results (see [9])
ensure that

∂Ψ(z, v) = argmax{ 〈σ, v〉 | σ ∈ C(z) } ⊂ C(z) = ∂Ψ(z, 0) ∀ v, z ∈ Z.

Besides, it is easy to check that, due to (3.9), for all z ∈ Z

C(z) ⊂ B′
CΨ

(0),

B′
CΨ

(0) being the ball of Z ′ centered at 0, with radius CΨ.

Remark 3.6. It has been verified (see [6, Prop. 2.7]) that, under the present as-
sumptions, for a.e. t ∈ [0, T ] the stability condition (S) is equivalent to

∂Ψ(z(t), 0) + ∂E(t, z(t)) � 0. (3.13)

Approximation

Let us a fix a partition Pτ (1.4) of [0, T ], and consider the discrete time incremental
problem (IP), with an initial datum z0 ∈ Z. In [6] (cf. Lemma 4.4 and Cor. 4.5
therein), it has been proved that, under (some of) the assumptions (1.2)–(1.3) and
(3.1)–(3.4), problem (IP) admits a unique solution, complying with (1.5)–(1.7), as
well as with the following variational inequality: ∀ẑ ∈ Z

κ

2
‖zk

τ − ẑ‖2 ≤ E(tkτ , ẑ)−E(tkτ , zk
τ )+Ψ(zk−1

τ , ẑ−zk−1
τ )−Ψ(zk−1

τ , zk
τ −zk−1

τ ). (3.14)

Furthermore, note that (1.5) may be rephrased in this way: for all k = 1, . . . , N
there exist ξk ∈ ∂E(tkτ , zk

τ ), ωk ∈ ∂Ψ(zk−1
τ , zk

τ − zk−1
τ ) fulfilling ξk + ωk = 0.

We can now introduce the piecewise constant interpolants Zτ , Zτ : [0, T ]→ Z

and the piecewise linear interpolant Ẑτ : [0, T ] → Z of the discrete solutions
{zk

τ }Nk=0 of Problem (IP), defined by

Zτ (t) := zk
τ for t ∈ (tk−1

τ , tkτ ], Zτ (t) := zk−1
τ for t ∈ [tk−1

τ , tkτ ),
Ẑτ (t) = t−tk−1

τ

tk
τ −tk−1

τ
zk
τ + tk

τ −t

tk
τ −tk−1

τ
zk−1
τ , for t ∈ [tk−1

τ , tkτ ].
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Analogously, we introduce the (left-continuous piecewise constant) interpolants ξ̄τ
and ω̄τ of {ξk}Nk=1 and {ωk}Nk=1. Also, let tτ : [0, T ]→ [0, T ] be defined by tτ (0) := 0
and tτ (t) := tkτ for t ∈ (tk−1

τ , tkτ ]. Of course, for every t ∈ [0, T ] we have tτ (t) ↓ t
as τ ↘ 0.

Hence, on account of Remark 3.5, (1.5) yields for every t ∈ [0, T ]

ξτ (t) ∈ ∂E(tτ (t), Zτ (t)), ωτ (t) ∈ ∂Ψ(Zτ (t), 0), ωτ (t) + ξτ (t) = 0. (3.15)

On the other hand, summing up (1.7) on each subinterval of the partition Pτ , we
end up with the energy estimate∫ t

s

Ψ(Zτ (r), Ẑ ′
τ (r))dr + E(t, Zτ (t)) ≤ E(s, Zτ (s)) +

∫ t

s

∂tE(r, Zτ (r))dr (3.16)

for every pair of nodes s, t ∈ Pτ , with s < t.

A priori estimates

We will always denote by the symbol C any positive constant occurring in the
following estimates, without specifying the quantities C may depend on.

Claim 1. There exists a positive constant C such that for all τ > 0

max
{
|E(t, Zτ (t))|, |E(t, Zτ (t))|

}
≤ C ∀ t ∈ [0, T ]. (3.17)

Indeed, using that Zτ (t) = Zτ (t) for every t ∈ Pτ , taking s = 0 and t = tτ (t) in
(3.16) we end up with

E(tτ (t), Zτ (t)) ≤ E(0, z0) +
∫ tτ (t)

0

∂tE(r, Zτ (r))dr.

Hence, by (3.1) we have

E(tτ (t), Zτ (t)) ≤ E(0, z0) +
∫ tτ (t)

0
λ0(r) (E(r, Zτ (r)) + C0) dr.

Then, by the Gronwall Lemma and the first of (3.6) we conclude

0 ≤ E(tτ (t), Zτ (t)) + C0 ≤ (E(0, z0) + C0) exp(
∫ tτ (t)

0
λ0(r) dr),

so that the sequence {E(tτ (·), Zτ (·))} is bounded in L∞(0, T ). Exploiting the sec-
ond of (3.6), we conclude a L∞-bound for the sequence {E(·, Zτ (·))}. We argue
likewise for {E(·, Zτ (·))}, and (3.17) is proved.

Claim 2. There exists a positive constant C such that for all τ > 0

‖Zτ‖L∞(0,T ;Z), ‖Zτ‖L∞(0,T ;Z), ‖Ẑτ‖L∞(0,T ;Z) ≤ C. (3.18)

This estimate is a straightforward consequence of (3.17) and of the uniform con-
vexity assumption (3.5) on E .
Claim 3. The sequences {ξ̄τ} and {ω̄τ} are bounded in L∞(0, T ;Z ′).
This is due to (3.15) and to (1.3), (3.9): indeed, in view of Remark 3.5 we have

ω̄τ (t) ∈ ∂Ψ(Zτ (t), 0) ⊂ B′
CΨ

(0) ∀ t ∈ [0, T ].
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Claim 4. Set Λ∗ :=
∫ T

0 λ1(s) ds, and, for every N ≥ 1, let PτN be the partition:

0 = t0τ < · · · ≤ tkτ ≤ · · · < tNτ = T,

∫ tk
τ

0

λ1(s) ds = kΛ∗/N, k = 1, . . . , N.

(3.19)
Then, the following estimates hold:

‖ẐτN − ZτN‖L∞(0,T ;Z) ≤ ‖ZτN − ZτN
‖L∞(0,T ;Z) ≤

Λ∗
(κ− ψ∗)N

∀N ≥ 1. (3.20)

The first inequality in (3.20) ensues from trivial calculations. As for the second
one, we first choose ẑ := zk−1

τ in (3.14), thus obtaining

κ
2 ‖zk

τ − zk−1
τ ‖2 ≤ E(tkτ , zk−1

τ )− E(tkτ , zk
τ )−Ψ(zk−1

τ , zk
τ − zk−1

τ ). (3.21)

Secondly, we write (3.14) at the (k−1)th step and plug in ẑ := zk
τ . Adding the

resulting inequality and (3.21), and exploiting (3.1)–(3.2), (3.5), (3.9)–(3.10) (see
[6, Prop. 4.7] for details), we get

κ‖zk
τ − zk−1

τ ‖2

≤ E(tkτ , zk−1
τ )− E(tkτ , zk

τ ) + E(tk−1
τ , zk

τ )− E(tk−1
τ , zk−1

τ )

+ Ψ(zk−2
τ , zk

τ − zk−1
τ )−Ψ(zk−1

τ , zk
τ − zk−1

τ )

≤
∫ tk

τ

tk−1
τ

(∂tE(τ, zk−1
τ )−∂tE(τ, zk

τ )) dτ + ψ∗‖zk−1
τ − zk−2

τ ‖‖zk
τ − zk−1

τ ‖

≤ ‖zk
τ − zk−1

τ ‖
∫ tk

τ

tk−1
τ

λ1(τ) dτ + ψ∗‖zk−1
τ − zk−2

τ ‖‖zk
τ − zk−1

τ ‖.

On the other hand, by (3.19) we have
∫ tk

τ

tk−1
τ

λ1(τ) dτ = Λ∗/N . Thus, dividing both

sides of the above inequality by κδk, with δk := ‖zk
τ − zk−1

τ ‖ for k = 1, . . . , N and
δ0 := 0, we end up with the recurrence relation

δk ≤
Λ∗
κN

+
ψ∗

κ
δk−1 ∀k = 1, . . . , N,

and the second inequality in (3.20) easily follows.

Claim 5. Assume (3.19). Then, the sequence {Ẑ ′
τN
}N ⊂ L1(0, T ;Z) is bounded

and uniformly integrable.
As a consequence of (3.20), we have for all k = 1, . . . , N∫ tk

τ

tk−1
τ

‖Ẑ ′
τN

(s)‖ ds ≤ Λ∗
(κ− ψ∗)N

=
1

κ− ψ∗

∫ tk
τ

tk−1
τ

λ1(s) ds, (3.22)

and the first assertion is proved upon summing on the subintervals of the partition.
To check the uniform integrability, we preliminarily note that, for any fixed N ≥ 1,
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and for any s, t ∈ [0, T ], with th−1 < s < th ≤ tj−1 ≤ t < tj , there holds∫ t

s

‖Ẑ ′
τN

(r)‖ dr ≤
∫ th

th−1

‖Ẑ ′
τN

(r)‖ dr +
∫ tj−1

th

‖Ẑ ′
τN

(r)‖ dr +
∫ tj

tj−1

‖Ẑ ′
τN

(r)‖ dr

≤ 2Λ∗
(κ− ψ∗)N

+
∫ tj−1

th

λ1(r) dr ≤ 2Λ∗
(κ− ψ∗)N

+
∫ t

s

λ1(r) dr,

in view of (3.22). Then, let us fix ε > 0, and hence N∗ > 1 such that, for N > N∗,
2Λ∗/((κ− ψ∗)N) < ε/4. Let us also pick δ∗ > 0 such that

s, t ∈ [0, T ], |s− t| ≤ δ∗ =⇒
{ ∫ t

s
‖Ẑ ′

τN
(r)‖ dr ≤ ε

4 for 1 ≤ N ≤ N∗,∫ t

s
λ1(r) dr ≤ ε

4 .

Combining the two estimates above, we finally end up with

|t− s| ≤ δ∗ ⇒ sup
N

∫ t

s

‖Ẑ ′
τN

(r)‖ dr ≤ sup
N≤N∗

∫ t

s

‖Ẑ ′
τN

(r)‖ dr

+ sup
N>N∗

∫ t

s

‖Ẑ ′
τN

(r)‖ dr ≤ 3ε
4
.

Remark 3.7. Let us point out that Claims 1–3 hold for any variable time-step
partition Pτ , whereas we have been able to prove Claims 4 and 5 just for the
partition PτN defined by (3.19), which is in fact tailored to the function λ1, cf. (3.2).
On the other hand, it can be proved that, if λ1 ∈ L∞(0, T ) and if uniform time-step
partitions are considered, then a stronger version of (3.20) holds, namely

‖Ẑ ′
τ‖L∞(0,T ;Z) ≤

‖λ1‖L∞(0,T )

κ− ψ∗ for τ > 0,

see [6, Prop. 4.8]

Our existence and approximation result

Theorem 3.8. Assume (1.2)–(1.3), (3.1)–(3.5), (3.9)–(3.12). Let z0 ∈ Z fulfil the
stability condition

E(0, z0) ≤ E(0, ẑ) + Ψ(z0, ẑ − z0) ∀ẑ ∈ Z. (3.23)

Then, the sequence of partitions {PτN}N of [0, T ] defined by (3.19) admits a sub-
sequence (not relabeled), for which there exists a curve z ∈ W 1,1(0, T ;Z) such that
z(0) = z0, and the following convergences hold as N ↗∞:

∀t ∈ [0, T ] : ẐτN (t), ZτN (t), ZτN
(t) ⇀ z(t) in Z, (3.24)

Ẑ ′
τN

⇀ ż in L1(0, T ;Z). (3.25)

Moreover, z fulfils the energetic formulation (S)–(E) of (1.1) for all t ∈ [0, T ].

Proof. It follows from Claim 5 that the sequence {ẐτN} ⊂ C0([0,T]; Z) is equicon-
tinuous. Hence, the estimate (3.18), combined with the Ascoli-Arzelà compactness
theorem in the framework of the weak topology of (the reflexive space) Z, ensures
that there exists a limit curve z ∈ L∞(0, T ;Z) such that, along a subsequence, the
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convergence for ẐτN in (3.24) holds. We trivially have z(0) = z0. Thanks to (3.20),
we also deduce the convergences for ZτN and ZτN

. Besides, owing to Claim 5 and
the Dunford-Pettis criterion [3, Thm. IV.2.1], we conclude that z ∈ W 1,1(0, T ;Z)
and that (3.25) holds up to a further extraction.

Proof of (S). In view of Theorem 2.2 and of Claim 3, up to a further extraction
the sequences {ξ̄τN} and {ω̄τN} have two limiting Young measures {ζt}t∈(0,T ) ∈
Y(0, T ;Z ′) and, respectively, {µt}t∈(0,T ) ∈ Y(0, T ;Z ′) such that for a.e. t ∈ (0, T )
the measure ζt (µt, respectively) is concentrated on the set Lξ(t) (Lω(t), resp.) of
the weak limit points of the sequence {ξτN

(t)} ({ωτN (t)}, resp.). Further,

ξ̄τN

∗
⇀ξ in L∞(0, T ;Z ′), with ξ(t) :=

∫
Z′ v dζt(v) for a.e. t ∈ (0, T ),

ω̄τN

∗
⇀ω in L∞(0, T ;Z ′), with ω(t) :=

∫
Z′ v dµt(v) for a.e. t ∈ (0, T ).

Passing to the limit in (3.15), we have

ξ(t) + ω(t) = 0 for a.e. t ∈ (0, T ). (3.26)

On the other hand, thanks to (3.4), (3.11)–(3.12), Remark 3.4, (3.15) and (3.24),
we readily conclude that

Lξ(t) ⊂ ∂E(t, z(t)), Lω(t) ⊂ ∂Ψ(z(t), 0) for a.e. t ∈ (0, T ).

Thus, a convexity argument yields that ξ(t) ∈ ∂E(t, z(t)) and ω(t) ∈ ∂Ψ(z(t), 0)
for a.e. t ∈ (0, T ). Combining this with (3.26), we end up with (3.13). Therefore, by
Remark 3.6, (S) holds for a.e. t ∈ (0, T ), hence for all t ∈ [0, T ] due to (3.23) and
by a continuity argument. By the way, let us stress that the above computations
yield that there exists ξ ∈ L∞(0, T ;Z ′) fulfilling ξ(t) ∈ ∂E(t, z(t))∩ (−∂Ψ(z(t), 0))
for a.e. t ∈ (0, T ). Recalling that Ψ(z(t), 0) = 0, we conclude that

Ψ(z(r), ż(r)) + 〈ξ(r), ż(r)〉 ≥ 0 for a.e. r ∈ (0, t), (3.27)

Proof of (E). First, we establish the one-sided estimate∫ t

0 Ψ(z(r), ż(r))dr + E(t, z(t)) ≤ E(0, z0) +
∫ t

0 ∂tE(r, z(r))dr (3.28)

by passing to the limit as N ↗∞ in the discrete energy inequality∫ tτN
(t)

0

Ψ(ZτN
(r), Ẑ ′

τN
(r))dr + E(tτN (t), ZτN (tτN (t)))

≤ E(0, z0) +
∫ tτN

(t)

0

∂tE(r, ZτN
(r))dr (3.29)

for all t ∈ [0, T ]. Owing to the assumptions (3.1)–(3.3), it is easy to pass to the
limit in the terms involving E and ∂tE , see the proof of [6, Thm. 4.6] for further
details. In fact, we end up with

∂tE(·, ZτN
(·))→ ∂tE(·, z(·)) in L1(0, T ), (3.30)

lim infN→∞(E(tτN (t), Zτ (tτN (t)) ≥ E(t, z(t))), (3.31)

In order to pass to the limit in the first integral term on left-hand side of (3.29),
we remark that, by Claims 2 and 5, the sequence {(ZτN

, Ẑ ′
τN

)} is bounded in
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L1(0, T ;Z × Z). Thus, applying Theorem 2.2 in the space X := Z × Z, we con-
clude that, up to a subsequence, (ZτN

, Ẑ ′
τN

) generates a limiting Young measure
{νt}t∈(0,T ) ∈ Y(0, T ;Z × Z). Recalling that Ψ is a weakly normal integrand (cf.
Section 2) on the space (0, T )× Z × Z, we thus obtain

lim inf
N→∞

∫ tτN
(t)

0

Ψ(Zτ (r), Ẑ ′
τN

(r))dr ≥
∫ t

0

(∫
Z×Z

Ψ(z, v)dνr(z, v)
)

dr. (3.32)

On the other hand, in view of (3.24), (3.25), (2.4) and (2.6), for a.e. t ∈ (0, T )
we have νt = δz(t) ⊗ σt, with {σt}t∈(0,T ) ∈ Y(0, T ;Z) and ż(t) =

∫
Z
v dσt(v)

for a.e. t ∈ (0, T ). Therefore, also by the Jensen inequality we conclude∫ t

0

(∫
Z×Z

Ψ(z, v)dνr(z, v)
)

dr =
∫ t

0

(∫
Z

Ψ(z(r), v)dσr(v)
)

dr

≥
∫ t

0

Ψ(z(r), ż(r))dr. (3.33)

Collecting (3.30), (3.31), (3.32) and (3.33), we conclude (3.28). To obtain the op-
posite inequality, we combine (3.27) with the chain rule formula (3.8) (see Remark
3.2), applied to the L∞-selection ξ of ∂E(·, z(·)) previously retrieved. Therefore,
we find

d
dtE(t, z(t)) + Ψ(z(t), ż(t)) ≥ ∂tE(t, z(t)) for a.e. t ∈ (0, T ).

Integration of this inequality leads to the converse inequality of (3.28), and (E)
ensues. �
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Global Attractors for the Quasistationary
Phase Field Model: a Gradient Flow Approach

Antonio Segatti

Abstract. In this note we summarize some results of a forthcoming paper
(see [15]), where we examine, in particular, the long time behavior of the so-
called quasistationary phase field model by using a gradient flow approach.
Our strategy in fact, is inspired by recent existence results which show that
gradient flows of suitable non-convex functionals yield solutions to the related
quasistationary phase field systems. Thus, we firstly present the long-time
behavior of solutions to an abstract non-convex gradient flow equation, by
carefully exploiting the notion of generalized semiflows by J.M. Ball and we
provide some sufficient conditions for the existence of the global attractor for
the solution semiflow. Then, the existence of the global attractor for a proper
subset of all the solutions to the quasistationary phase field model is obtained
as a byproduct of our abstract results.

Mathematics Subject Classification (2000). 80A22, 37L30, 35K55.

Keywords. Quasistationary phase field models, gradient flow equation, gener-
alized semiflows, global attractor.

1. Introduction

In this paper we are interested in the study of the asymptotic stability from the
point of view of the global attractor of the so-called quasistationary phase field
system

∂t(ϑ + χ)−∆ϑ = g, (1.1)

−∆χ + W ′(χ) = ϑ, (1.2)

in Ω× (0, T ), where Ω is a bounded domain, occupied by a medium liable to phase
transition in the time interval (0, T ), for T > 0. Here, ϑ is the relative tempera-
ture of the system, and χ is the phase variable. Further, the function W ′ is the
derivative of the double well potential (e.g., W (χ) := (χ2− 1)2/4, but in our anal-
ysis we can cover also the case in which W presents some singular parts) and g
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is a source term that will be taken independent of time. The system (1.1)–(1.2)
can be formally obtained from the standard parabolic phase field system (firstly
discussed by Caginalp in [6]) by suppressing the time derivative of χ in the equa-
tion for the order parameter. However, proving the convergence of solutions of the
phase field system to the solutions of its quasistationary version is still an open
and apparently difficult problem. Indeed, the problem of existence of solutions to
(1.1)–(1.2) is intrinsically difficult, because of its mixed elliptic-parabolic nature,
i.e., the lack of the term ∂tχ in (1.2), which prevents from directly controlling
the variation in time of the order parameter. Thus, standard approximation ar-
guments are not straightforwardly available. However, the existence of a suitable
solution to (1.1)–(1.2) has been proved by Plotnikov & Starovoitov in [11]
and by Schätzle [16] in the technically different cases of Dirichlet and of Neu-
mann boundary condition for ϑ. In their approach, the proof of the convergence
of the discrete approximation to the solution to (1.1)–(1.2) relies on Holmgren
uniqueness continuation theorem or on refined spectral analysis tools and in both
cases essentially depends on the particular shape and regularity of the double well
potential W = (χ2−1)2/4. More recently, Rossi and Savaré in [13, 14] obtained
an existence results by a procedure which somehow exploits the underlying physics
of the system. In particular, their analysis relies on the crucial observation that
(1.1)–(1.2) stems as a gradient flow for a non convex function strictly related to
the entropy of the system. Thus the existence of solutions to (1.1)–(1.2) is obtained
as a by product of the general existence theory for gradient flows for non convex
functional developed in [13, 14]. We recall that also the quasistationary version of
the Penrose-Fife model for phase transitions has recently received a good deal of
interest, as the paper [8] shows.

Our approach to the analysis of the long-time behavior of (1.1)–(1.2) actually
follows from the existence analysis of [13, 14], which we briefly recall. For later
convenience, we recast (1.1)–(1.2) by introducing the internal energy (or enthalpy)
variable u := ϑ+ χ, thus obtaining

∂tu−∆(u− χ) = g, in Ω× (0, T ) (1.3)

−∆χ+ W ′(χ) = u− χ, in Ω× (0, T ) (1.4)

u− χ = 0, ∂nχ = 0 on ∂Ω× (0, T ). (1.5)

In [13, 14] relation (1.4) is interpreted as the Euler-Lagrange equation for the
minimization, with respect to χ and for fixed u, of the functional

F (u, χ) :=
∫

Ω

(
1
2
|u− χ|2 +

1
2
|∇χ|2 + W (χ)

)
dx,

whose gradient flow with respect to the variable u also yields (1.3). Namely, we
turn to the system (f := (−∆−1)g){

(−∆−1)∂tu− δF
δu = f in Ω× (0, T ),

δF
δχ = 0 in Ω× (0, T ),

(1.6)
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which has a clear variational structure. In fact, in [14] it has been rigorously proved
that (1.6) may be interpreted as the gradient flow equation (for a suitable notion of
subdifferential which we introduce below), in the Hilbert space H−1(Ω) (recall the
conditions (1.5) on u− χ), of the functional defined by φ : H−1(Ω)→ (−∞,+∞]

φ(u) := inf
χ∈H1(Ω)

∫
Ω

(
1
2
|u− χ|2 +

1
2
|∇χ|2 + W (χ)

)
dx, with D(φ) = L2(Ω).

(1.7)
Let us point out that φ is a concave perturbation of a quadratic functional, hence
it is non-convex. In [14] (see also Theorem 3.1 in this paper) existence and approx-
imation results have been obtained for the abstract Cauchy problem

u′(t) + ∂sφ(u(t)) � f a.e. in (0, T ), u(0) = u0, (GF)

for a given initial datum u0 ∈ D(φ) and source term f . The term with ∂sφ is a
suitable limiting version (cf. the forthcoming Section 3 for the rigorous definition)
of the Fréchet subdifferential of the (general) proper and lower semicontinuous
functional φ : H → (−∞,+∞], not necessarily convex, defined in a (separable)
Hilbert space H with scalar product 〈·, ·〉 and norm | · |H (which we will often
simply denote by | · |). Such techniques have been then applied in order to deduce
existence and approximation results for the quasistationary phase field evolution
problem (1.3)–(1.4), supplemented with Dirichlet boundary conditions. Thus, in
order to study the long time behavior of (1.3)–(1.4), we are naturally led to study
the long time behavior of (GF) with the potential φ given by (1.7) in the Hilbert
space H−1(Ω). For the investigation of the long time behavior of a gradient flow
equation for a fairly general non-convex function, the reader is referred to the
forthcoming paper [15].

The long time dynamics of gradient flow equations of the type (GF) when
the potential φ is a convex and lower semicontinuous function (thus ∂sφ reduces to
the subdifferential of the convex analysis) is rather well known. In particular, the
existence of the global attractor has been proved and the long-time convergence
to single stationary states investigated even in the non-autonomous situation (see,
among the others, [4] and [19]). When φ is non convex nor a smooth perturbation
of a convex function (as (1.7)), things are remarkably more difficult. In fact, due
to the non convexity of the potential φ, the uniqueness of the solutions is no longer
to be expected (as in the concrete case of the quasistationary phase field system
(1.3)–(1.4)). Hence, (GF) does not generate a semigroup, and we cannot rely on
the theory of [20] for the study of the long-term dynamics of the solutions.

In recent years, several approaches have been developed in order to address
the asymptotic behavior of solutions of differential problems without uniqueness.
Without any claim of completeness, we may refer the reader to, e.g., the results
by Sell [17] (but see also Chepyzhov & Vishik [7]), Melnik & Valero [10],
and, especially, to the work of J.M. Ball, [1, 2]. In particular, we will especially
focus here on the theory of generalized semiflows proposed in [1]. By definition, a
generalized semiflow is a family of functions on [0,+∞) taking values in a given
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phase space (we have to think for instance to the solutions to a given differential
problem), and complying with suitable existence, stability for time translation,
concatenation, and upper semicontinuity axioms. Within this setting, it is possible
to introduce a suitable notion of global attractor, and to characterize the existence
of such an attractor in terms of suitable boundedness and compactness properties
on the generalized semiflow. We refer the reader to Section 2 for an overview of
these general notions and results, which we have exploited in connection with (GF)
in the framework of the metric space (see (3.4))

X = D(φ), dX = |u− v|+ |φ(u)− φ(v)| ∀u, v ∈ X .

Indeed, we define the phase space in terms of the energy functional φ (see [12, 18]
for some analogous choices), which turns out to be a Lyapunov function for the
system.

We have shown that the set of the solutions to (GF) on the half-line [0,+∞)
is a generalized semiflow, cf. Theorem 3.3 later on, and that it possesses a global
attractor, cf. Theorem 3.4. Referring to the forthcoming paper [15] for all the
details, we just stress that the energy identity and a proper chain rule for the
potential φ combined with the compactness of the sublevels of φ (see Theorem
3.1) will play a key role both in the proof of the upper-semicontinuity axiom, and
of the boundedness and compactness properties of the trajectories. Eventually, we
apply our abstract results Theorems 3.3 and 3.4 to the investigation of the long-
time behavior of the energy solutions to (1.3)–(1.4), i.e., the solutions deriving
from the related gradient flow equation (GF), for the functional φ in (1.7). Thus,
we show that, under suitable conditions, the energy solutions to (1.3)–(1.4) form
a generalized semiflow, which admits the global attractor. Let us stress that this
gradient flow approach does not provide the description of the long-term behavior
of the whole set of solutions to (1.3)–(1.4), but it is rather concerned with a proper
subclass of trajectories (i.e., the solutions to the gradient flow).

2. Generalized semiflows

Suppose we are given a metric space (not necessarily complete) X with metric
dX . If C is a subset of X and b is a point in X , we set ρ(b, C) := infc∈C dX (b, c);
consequently, if C ⊂ X and B ⊂ X , we set dist(B,C) := supb∈B ρ(b, C).

Definition 2.1. A generalized semiflow F on X is a family of maps u : [0,+∞)→ X ,
called solutions, satisfying the following hypotheses:

(H1) (Existence) For each v ∈ X there exists at least one u ∈ F with u(0) = v.

(H2) (Translates of solutions are still solutions) If u ∈ F and τ ≥ 0, then uτ ∈ F
where uτ (t) := u(t+ τ), t ∈ (0,+∞).
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(H3) (Concatenation) If u, v ∈ F, and t ≥ 0 with u(t) = v(0) then the function
w defined by

w(τ) :=
{

u(τ) for 0 ≤ τ ≤ t,
v(τ − t) for t < τ,

belongs to F.
(H4) (Upper semi-continuity with respect to initial data) If un ∈ F with un(0)→

v, then there exist a subsequence unk
of un and u ∈ F with u(0) = v such

that unk
(t)→ u(t) for each t ≥ 0.

It is possible to extend to generalized semiflows the standard concepts con-
cerning absorbing sets, ω-limit sets and attractors given for semiflows and semi-
groups (see [1]). In particular, for a given generalized semiflows F any t ≥ 0, we
define

T (t)E =
{
u(t) : u ∈ F with u(0) ∈ E

}
, (2.1)

where E ⊂ X . It is clear that T (t) : 2X → 2X , denoting by 2X the space of all
subsets of X . Moreover, thanks to (H2) and (H3),

{
T (t)

}
t≥0

defines a semigroup
on 2X . On the other hand, (H4) implies that T (t)z is compact for any z ∈ X . We
say that the subset U ⊂ X attracts a set E if dist(T (t)E,U)→ 0 as t→ +∞.

We say that U is invariant if T (t)U = U for all t ≥ 0.
The subset U ⊂ X is a global attractor if U is compact, invariant, and attracts

all bounded sets.
F is eventually bounded if, given any bounded B ⊂ X , there exists τ ≥ 0 with
γτ (B) bounded.
F is point dissipative if there exists a bounded set B0 such that, for any u ∈ F,
u(t) ∈ B0 for all sufficiently large t ≥ 0.
F is asymptotically compact if for any sequence un ∈ F with un(0) bounded, and for
any sequence tn ↗ +∞, the sequence un(tn) has a convergent subsequence. We will
also make use of the notion of Lyapunov function, which can be introduced starting
from the following definitions: we say that a complete orbit g ∈ F is stationary if
there exists x ∈ F such that g(t) = x for all t ∈ R – such x is then called a rest
point. We denote the set of rest points of F by Z(X ). A function V : X → R is
said to be a Lyapunov function for F if: V is continuous, V (g(t)) ≤ V (g(s)) for
all g ∈ F and 0 ≤ s ≤ t (i.e., V decreases along solutions), and, whenever the
map t �→ V (g(t)) is constant for some complete orbit g , then g is a stationary
orbit. Finally, we say that a global attractor A for F is Lyapunov stable if for
any ε > 0 there exists δ > 0 such that for any E ⊂ F with dist(E,A) ≤ δ, then
dist(T (t)E,A) ≤ ε for all t ≥ 0. The following Theorem (see [1, Theorem 5.1])
gives sufficient conditions for a generalized semiflow to have a global attractor.

Theorem 2.2 (Ball 1997). Assume that each element u ∈ F is continuous from
(0,+∞) → X and that F is asymptotically compact. Suppose further that there
exists a Lyapunov function V for F and that the sets of its rest points Z(X ) is
bounded. Then, F is also point dissipative, and thus admits a global attractor A.
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Moreover for all trajectories u ∈ F, the limit sets α(u), ω(u) are connected subsets
of Z(X ) on which V is constant. When Z(X ) is totally disconnected the limits

z− = lim
t↘−∞

u(t), z+ = lim
t↗+∞

u(t) (2.2)

exist and z−, z+ are rest points; moreover, v(t) tends to a rest point as t ↗ +∞
for every v ∈ F.

3. Abstract gradient flows in Hilbert spaces
and their long time behavior

In this section we briefly recall the existence theorem of Rossi and Savaré in [14]
and we state, without proofs, our main results. The interested reader is referred
to the forthcoming paper [15] for the proofs and for some related remarks.

First of all, we have to introduce the notion of subdifferential we aim to use
in our analysis. Since the function φ is non convex, a preliminary choice could be
the so called Fréchet subdifferential defined by

ξ ∈ ∂φ(v) ⇔ v ∈ D(φ), lim inf
w→v

φ(w) − φ(v) − 〈ξ, w − v〉
|w − v| ≥ 0. (3.1)

It is easy to see that the Fréchet subdifferential reduces to the usual one as soon
as φ is convex. Unfortunately, (3.1) has some drawbacks. In particular, easy finite
dimensional examples show that the graph of the Fréchet subdifferential may not
be strongly-weakly closed, which is one of the major features of the convex case.
We thus define the strong limiting subdifferential ∂sφ at a point v ∈ D(φ) as the
set of the vectors ξ such that there exists sequences

vn, ξn ∈H with ξn ∈ ∂φ(vn), vn → v, ξn → ξ, φ(vn)→ φ(v), (3.2)

as n ↑ +∞. Of course, ∂sφ reduces to the usual subdifferential ∂φ whenever φ is
convex. Let us now recall one of the existence results proved in [14] for the Cauchy
problem (GF).

Theorem 3.1 (Rossi-Savaré 04). Let φ : H → (−∞,+∞] be a proper and lower
semicontinuous function which complies with the coercivity assumption

∃κ ≥ 0 : v �→ φ(v) + κ|v|2 has compact sublevels, (comp)

and with the Chain Rule condition for any bounded interval (a, b)

if v ∈ H1(a, b; H ), ξ ∈ L2(a, b; H ), ξ ∈ ∂sφ(v) a.e. in (a, b),

and φ ◦ v is bounded, then φ ◦ v ∈ AC(a, b) and
d

dt
φ(v(t)) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (a, b).

(chain)

Then, for any u0 ∈ D(φ), T > 0 and f ∈H , the Cauchy problem

u′(t) + ∂sφ(u(t)) � f a.e. in (0, T ), u(0) = u0,
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admits a solution u ∈ H1(0, T ; H ). Moreover, there holds the energy identity∫ t

s

|u′(σ)|2 dσ + φ(u(t)) = φ(u(s)) +
∫ t

s

〈f, u′(σ)〉 dσ, ∀s, t ∈ [0, T ]. (3.3)

3.1. Long time behavior of (GF)

The assumption u0 ∈ D(φ) in the existence Theorem 3.1, suggests to investigate
the long time behavior of (GF) in the phase space (not complete in general)

X := D(φ), with dX (u, v) := |u− v|+ |φ(u)− φ(v)| ∀u, v ∈ X . (3.4)

Definition 3.2. We denote by S the set of all solutions u ∈ H1
loc(0,+∞; H ) to the

gradient flow equation

u′(t) + ∂sφ(u(t)) � f for a.e. t ∈ (0,+∞). (3.5)

We can now state our main results (see [15] for the proofs).

Theorem 3.3 (The generalized semiflow). Let φ comply with the assumptions of
Theorem 3.1. In addition, assume that

∃K1,K2 ≥ 0 : φ(u) ≥ −K1|u| −K2 ∀u ∈H . (3.6)

Then, S is a generalized semiflow on (X , dX ).

In order to study the long time behavior for our gradient flow equation, we
assume some additional continuity property for the potential φ, that is

vn → v, sup
n

(
|(∂sφ(vn))◦|, φ(vn)

)
< +∞ ⇒ φ(vn)→ φ(v), (cont)

where |(∂sφ(v))◦| := inf
ξ∈∂sφ(v)

|ξ|. The latter is indeed a natural request. In fact,

(cont) is readily fulfilled by lower semicontinuous convex functionals. We thus
have

Theorem 3.4 (The global attractor). Let φ fulfill the above assumptions of Theorem
3.1, (cont) and

∃J1, J2 > 0 : φ(u) ≥ J1|u| − J2 ∀u ∈H . (3.7)

Further, let D be a non-empty subset of X satisfying

T (t)D ⊂ D ∀t ≥ 0,

Z(S) ∩ D := {u ∈ D(∂sφ) : 0 ∈ ∂sφ(u)− f} ∩ D is bounded in (X , dX ).
(3.8)

Then, there exists a unique, Lyapunov stable attractor A for S in D, given by
A := ∪{ω(D) : D ⊂ D bounded} .
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4. Long time behavior of the quasistationary phase field system

First of all, we have to specify the class of solutions of the quasistationary phase
field model (1.3)–(1.4) for which we construct the global attractor. We introduce
the following

Definition 4.1 (Energy solutions). We say that a function

u ∈ H1
loc(0,+∞;H−1(Ω)) ∩ L∞

loc(0,+∞;L2(Ω))

is an energy solution to Problem (1.3)–(1.4) with the boundary conditions (1.5) if
u solves the gradient flow equation

u′(t) + ∂sφ(u(t)) � f for a.e. t ∈ (0,+∞),

in the Hilbert space H := H−1(Ω), for the functional

φ(u) := inf
χ∈H1(Ω)

∫
Ω

(
1
2
|u− χ|2 +

1
2
|∇χ|2 + W (χ)

)
dx, u ∈ L2(Ω).

(4.1)

We denote by E the set of all energy solutions.

The set E is not empty thanks to Theorem 3.1. In fact, in [14] it has been
proved that the potential φ in (1.7) is proper and lower semicontinuous and satisfies
the chain rule (chain) and the coercivity condition (comp) in the Hilbert space
H = H−1(Ω). As a by product of our main results Theorem 3.3 and Theorem 3.4
we thus have the following result (D(W ) is the realization in L2(Ω) of the domain
of W ) in the framework of the phase space (see (4.1))

X = L2(Ω) dX (u, v) = ‖u− v‖H−1(Ω) + |φ(u)− φ(v)| ∀u, v ∈ L2(Ω) (4.2)

Theorem 4.2. Let the double well potential W in (1.4) be such that: there exist
constants κ1, κ2 > 0 such that for all v ∈ H1(Ω) ∩D(W )∫

Ω

W (v)dx ≥ κ1‖v‖2L2(Ω) − κ2, (4.3)

and either one of the following

1. the set H1(Ω) ∩D(W ′) is bounded in (L2(Ω), dX ), (4.4)

2. there exist two positive constants κ3, κ4 such that for all v ∈ H1(Ω)∩D(W ′)∫
Ω

W ′(v)v ≥ κ3‖v‖L2(Ω) − κ4. (4.5)

Then, the set E of all the energy solutions to Problem (1.3)–(1.4) is a generalized
semiflow in the phase space (L2(Ω), dX ) (see (4.2)). Moreover, E possesses a unique
global attractor AE , which is Lyapunov stable. Finally, for any trajectory u ∈ E
and for any u∞ ∈ ω(u), we have

−∆u∞ + W ′(u∞) = f,

∂nu∞ = 0 (4.6)
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Meaningful examples of potentials W satisfying the coercivity assumption (4.3)
and (4.2) (or(4.5)) are the standard double-well potential

W (χ) :=
(χ2 − 1)2

4
, (4.7)

but also

W (χ) := I[−1,1](χ) + (1− χ)2; (4.8)

W (χ) := c1 ((1 + χ) ln(1 + χ) + (1 − χ) ln(1− χ))− c2χ
2 + c3χ + c4, (4.9)

with c1, c2 > 0 and c3, c4 ∈ R (see, e.g., [5, 4.4, p. 170] for (4.9), [3, 21] for (4.8)).
In particular, the term with I[−1,1] is the indicator function of [−1, 1], thus forcing
χ to lie between −1 and 1.

Remark 4.3. We stress that the question of the convergence of all the trajectory
u(t) to a single solution of equation (4.6) is a nontrivial one and is not answered by
the preceding Theorem. This problem would have an affirmative answer if the set of
all the solution would be totally disconnected (see Theorem 2.2). Unfortunately, it
is well known (see [9]) that problem (4.6) may well admit a continuum of solutions.

Remark 4.4 (The Neumann-Neumann boundary condition case). If one replace the
first in (1.5) with ∂n(u−χ) = 0 (i.e., homogeneous Neumann boundary conditions
for the temperature ϑ), we get the so-called quasistationary phase field model with
Neumann-Neumann boundary condition. This situation is very delicate since with
this type of (non coercive) boundary conditions problem (1.3)–(1.4) does not have
a gradient flow structure (see [14]). In [14] however, the existence of solutions has
been deduced by means of a suitable approximation with more regular problems
of gradient flow type. This kind of approximation has been reconsidered in [15]
from the point of view of the long time dynamics. More precisely, in [15] we show
that the set of all the solutions to (1.3)–(1.4) obtained with the above mentioned
approximation still retain a (kind of) generalized semiflow structure. In particular
this set, named EN , does not satisfy the concatenation property, but complies with
some substantial properties, which allow us to prove the existence of a suitable
weak notion of global attractor AEN . Here weak means that this subset of the
phase space is no longer invariant but only quasi invariant in the sense that for
any v ∈ AEN there exists a complete orbit w with w(0) = v and w(t) ∈ AEN for
all t ∈ R.
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Aleksandrov and Kelvin Reflection and
the Regularity of Free Boundaries

Henrik Shahgholian and Georg S. Weiss

Abstract. The first part of this paper is an announcement of a result to ap-
pear. We apply the Aleksandrov reflection to obtain regularity and stability
of the free boundaries in the two-dimensional problem

∆u =
λ+

2
χ{u>0} − λ−

2
χ{u<0} ,

where λ+ > 0 and λ− > 0 .
In the second part we show that the Kelvin reflection can be used in a

similar way to obtain regularity of the classical obstacle problem

∆u = χ{u>0}

in higher dimensions.

Mathematics Subject Classification (2000). Primary 35R35, Secondary 35J60.

Keywords. Free boundary, singular point, branch point, obstacle problem,
regularity, Kelvin transform, global solution, blow-up, monotonicity formula.

1. Part I

From the physical point of view, the problem

∆u =
λ+

2
χ{u>0} −

λ−
2
χ{u<0} in Ω, (1.1)

where λ+ > 0, λ− > 0 and Ω ⊂ Rn (cf. Fig. 1) arises for example as the “two-phase
membrane problem”: consider an elastic membrane touching the planar phase
boundary between two liquid/gaseous phases with constant densities ρ1 > ρ2 in a
gravity field, for example water and air. If the constant density ρm of the membrane
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Education, Japan. He wishes to thank the Max Planck Institute for Mathematics in the Sciences
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Free Boundary Points

x

u

Figure 1. Example of a one-dimensional membrane

satisfies ρ1 > ρm > ρ2, then the membrane is being buoyed up in the phase with
higher density and pulled down in the phase with lesser density, so the equilibrium
state can be described by equation (1.1). Notice that (1.1) arises also as limiting
case in the model of temperature control through the interior described in [7, 2.3.2]
as h1, h2 → 0.

Properties of the solution etc. have been derived by the G.S. Weiss in [19]
and by N. Uraltseva in [16]. Moreover, in [15], H. Shahgholian-N. Uraltseva-G.S.
Weiss gave a complete characterization of global two-phase solutions satisfying a
quadratic growth condition at the two-phase free boundary point 0 and at in-
finity. It turned out that each such solution coincides after rotation with the
one-dimensional solution u(x) = λ+

4 max(xn, 0)2 − λ−
4 min(xn, 0)2. In particu-

lar this implies that each blow-up limit u0 at so-called “branch points” (see
Fig. 2), Ω ∩ ∂{u > 0} ∩ ∂{u < 0} ∩ {∇u = 0} , is after rotation of the form
u0(x) = λ+

4 max(xn, 0)2 − λ−
4 min(xn, 0)2.

u = 0

u > 0

u < 0

Figure 2. Example of a branch point

In this paper we prove (cf. Theorem 1.5) that in two dimensions the free
boundary is in a neighborhood of each branch point the union of (at most) two C1-
graphs. As application we obtain the following stability result: If the free boundary
contains no singular one-phase point for certain boundary data (B0), then for
boundary data (B) close to (B0) the free boundary consists of C1-arcs converging
to those of (B) (cf. Theorem 1.7).
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Let λ+ > 0 and λ− > 0 , n ≥ 2, let Ω be a bounded open subset of Rn with
Lipschitz boundary and assume that uD ∈ W 1,2(Ω) . From [19] we know then that
there exists a “solution”, i.e., a function u ∈ W 2,2(Ω) solving the strong equation
∆u = λ+

2 χ{u>0} − λ−
2 χ{u<0} a.e. in Ω, and attaining the boundary data uD in

L2 . The boundary condition may be replaced by other, more general boundary
conditions.

The tools at our disposition include two powerful monotonicity formulae.
One is the monotonicity formula introduced in [18] by G.S. Weiss for a class
of semilinear free boundary problems (see also [17]). The second monotonicity
formula has been introduced by H.W. Alt-L.A. Caffarelli-A. Friedman in [1]. What
we are actually going to apply in Theorem 1.4 is a stronger statement than the
one in [1].

For the sake of completeness let us state both monotonicity formulae here.

Theorem 1.1 (Weiss’s Monotonicity Formula). Suppose that Bδ(x0) ⊂ Ω . Then
for all 0 < ρ < σ < δ the function

Φx0(r) := r−n−2

∫
Br(x0)

(
|∇u|2 + λ+ max(u, 0) + λ− max(−u, 0)

)

− 2 r−n−3

∫
∂Br(x0)

u2 dHn−1 ,

defined in (0, δ) , satisfies the monotonicity formula

Φx0(σ) − Φx0(ρ) =
∫ σ

ρ

r−n−2

∫
∂Br(x0)

2
(
∇u · ν − 2

u

r

)2

dHn−1 dr ≥ 0 .

For a proof see [18].
In Theorem 1.4 we are going to need the following stronger version of the

Alt-Caffarelli-Friedman monotonicity formula.

Theorem 1.2 (Alt-Caffarelli-Friedman Monotonicity Formula). Let h1 and h2 be
continuous non-negative subharmonic W 1,2-functions in BR(z) satisfying h1h2 = 0
in BR(z) as well as h1(z) = h2(z) = 0 .

Then for

Ψz(r, h1, h2) := r−4

∫
Br(z)

|∇h1(x)|2
|x− z|n−2

dx

∫
Br(z)

|∇h2(x)|2
|x− z|n−2

dx ,

and for 0 < ρ < r < σ < R, we have Ψz(ρ) ≤ Ψz(σ). Moreover, if equality holds
for some 0 < ρ < r < σ < R then one of the following is true:

(A) h1 = 0 in Bσ(z) or h2 = 0 in Bσ(z),

(B) for i = 1, 2, and ρ < r < σ, supp (hi)∩∂Br(z) is a half-sphere and hi∆hi = 0
in Bσ(z) \Bρ(z) in the sense of measures.
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For a proof of this version of monotonicity see [15]. We also refer to [1], for
the original proof.

It is noteworthy that

Ψz(r, (∂eu)+, (∂eu)−) = Ψ0(1, (∂eur)+, (∂eur)−) and Φz(r, u) = Φ0(1, ur),

where

ur(x) =
u(rx + z)

r2
.

It is in fact possible to apply Theorem 1.2 to the positive and negative part
of directional derivatives of u : due to N. Uraltseva, the functions max(∂eu, 0) and
−min(∂eu, 0) are subharmonic in Ω (see Lemma 2 in [16]).

A quadratic growth estimate near the set Ω∩{u = 0}∩{∇u = 0} had already
been proved in [19] for more general coefficients λ+ and λ− , but local W 2,∞- or
C1,1-regularity of the solution has been shown for the first time in [16]. See also
[14]. So we know that

u ∈W 2,∞
loc (Ω) . (1.2)

The following lemma relates the value of the density of the ACF-monotonicity
formula to the structure of the singularity:

Lemma 1.3. Let u be a solution of (1.1) in B1 and suppose that the origin is a free
boundary point. Then the following statements are equivalent:

1) Either ∇u(0) �= 0, or limr→0 Ψ0(r, (∂eu)+, (∂eu)−) = 0 for each direction e.

2) Either ∇u(0) �= 0, or each blow-up limit

u0(x) = lim
m→∞

u(rmx)
r2m

is after rotation of the form

u0(x) = a1
λ+

4
max(x1, 0)2 − a2

λ−
4

min(x1, 0)2

where a1, a2 ∈ {0, 1} and a1 + a2 �= 0.

3) Either ∇u(0) �= 0, or at least one blow-up limit

u0(x) = lim
m→∞

u(rmx)
r2m

is after rotation of the form

u0(x) = a1
λ+

4
max(x1, 0)2 − a2

λ−
4

min(x1, 0)2

where a1, a2 ∈ {0, 1}.
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4) The origin is not a one-phase singular free boundary point, i.e., no blow-up
limit

u0(x) = lim
m→∞

u(rmx)
r2m

is allowed to be a non-negative/non-positive homogeneous polynomial of de-
gree 2.

Let us now define the class

M∗ := {u : B1(0)→ R :

u(x1, . . . , xn) = β1

(
λ+

4
max(x1, 0)2 − λ−

4
min(x1 − τ, 0)2

)
+ β2x1, (1.3)

where τ ∈ [−1, 0], 0 ≤ β1 ≤ a, 0 ≤ β2 ≤ b, 0 < c ≤ β1 + β2,
and β2 �= 0 implies τ = 0}.

The class M is then defined as all rotated elements of M∗, i.e.,

M := {u : B1(0)→ R : u = v ◦ U where U is a rotation, v ∈M∗}. (1.4)

Observe that singular one-phase solutions are excluded from M .

Theorem 1.4. Let (uα)α∈I be a family of solutions of (1.1) in B1 that is bounded in
W 2,∞(B1), and suppose that 0 ∈ Ω∩ (∂{uα0 > 0} ∪ ∂{uα0 < 0}) for some α0 ∈ I,
and either ∇uα0(0) �= 0 or limr→0 Ψ0(r, (∂euα0)

+, (∂euα0)
−) = 0 for each direction

e; this means by Lemma 1.3 that 0 is not a singular one-phase free boundary point.
Define further Sr by

rn−1S2
r (y, uα) =

∫
∂Br(y)

u2
α,

Then, if uα → uα0 in L1(B1) as α → α0, ∂{uα > 0} � y → 0 and r → 0, all
possible limit functions of the family

uα(y + r·)
Sr(y, uα)

,

belong to M for some a, b, c as above.

The following theorem contains our main result, i.e., regularity at branch
points. Unfortunately the known techniques seem to be insufficient to do a conclu-
sive analysis at branch points. One reason is that the density of the monotonicity
formula by H.W. Alt-L.A. Caffarelli-A. Friedman takes the value 0 at branch
points.

The situation is complicated by the fact that the limit manifold of all possible
blow-ups at branch points (including the case of varying centers) is not a one-
dimensional or even smooth manifold, but has a more involved structure. Also the
convergence to blow-up limits is close to the branch-point not uniform! Here we use
an intersection-comparison approach based on the Aleksandrov reflection to show
that – although the flow with respect to the limit manifold may not slow down
when blowing up – the free boundaries are still uniformly graphs (see Proposition
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1.6). The approach in Proposition 1.6 uses – apart from the reflection invariance –
very little information about the underlying PDE and so yields a general approach
to the regularity of free boundaries in two space dimensions provided that there
is some information on the blow-up limits.

The Aleksandrov reflection has been recently used to prove regularity in geo-
metric parabolic PDE ([10], [11], [12]). In contrast to those results, where struc-
tural conditions for the initial data are preserved under the flow, our results are
completely local.

Theorem 1.5. Let n = 2, let (uα)α∈I be a family of solutions of (1.1) in B1 that
is bounded in W 2,∞(B1), and suppose that for some α0 ∈ I, a blow-up limit

lim
m→∞

uα0(rm·)
r2m

is contained in M∗.
Then, if uα→uα0 in L1(B1) as α→α0, Br0∩∂{uα > 0} and Br0∩∂{uα < 0}

are C1-graphs uniformly in α∈Nκ(α0) for some r0>0 and κ>0; here the direction
of every graph is the same, and Nκ(α0) is a given open neighborhood of α0.

The crucial tool in the proof of the theorem is the following proposition which
uses an Aleksandrov reflection approach.

Proposition 1.6. Let n = 2, let (uα)α∈I be a family of solutions of (1.1) in B1 that
is bounded in W 2,∞(B1), and suppose that for some α0 ∈ I, a blow-up limit

lim
m→∞

uα0(rm·)
r2m

is contained in M∗.
Then, if uα → uα0 in L1(B1) as α → α0, there exist for given ε ∈ (0, 1/8)

positive κ, δ and ρ such that for α ∈ Nκ(α0), y ∈ Bδ ∩ ∂{uα > 0} and r ∈ (0, ρ),
the scaled function

ur(x) =
uα(rx + y)
Sr(y, uα)

(1.5)

satisfies
dist(ur,M

∗) = inf
v∈M∗

sup
B1(0)

|v(x) − ur(x)| < ε.

The idea of the proof is to reflect the solution at a plane as in Fig. 3 and to
compare the reflected solution to the original solution. As a consequence we obtain
the following stability result:

Theorem 1.7. Let Ω ⊂ R2 be a bounded Lipschitz domain and assume that for
given Dirichlet data uD ∈ W 1,2(Ω) the free boundary does not contain any one-
phase singular free boundary point (cf. Lemma 1.3).

Then for K ⊂⊂ Ω and ũD ∈ W 1,2(Ω) satisfying sup∂Ω |uD− ũD| < δK , there
is ω > 0 such that the free boundary is for every y ∈ K in Bω(y) the union of (at
most) two C1-graphs which approach those of the solution with respect to boundary
data uD as sup∂Ω |uD − ũD| → 0.
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Reflection Plane

Approximate F.B.

Approximate Free Boundary

at radius

at radius

Figure 3. Turning free boundary

2. Part II

We are going to give a sketch of how a similar approach can be applied to the
classical obstacle problem in higher dimensions.

The solution of the classical obstacle problem u is non-negative and satisfies

∆u =
1
2
χ{u>0} . (2.1)

Classical results include local C1,1-regularity (see [8]) and non-degeneracy of the
solution. Regularity of the free boundary in higher dimensions has first been proved
by L.A. Caffarelli in [4]. Here we give an alternative proof of the fact that the free
boundary is close to regular points the graph of a differentiable function. To this
end we define the class

M∗ := {u : B1(0)→ R : u(x1, . . . , xn) =
1
4

max(x1, 0)2 }. (2.2)

The class M is then defined as all rotated elements of M∗, i.e.,

M := {u : B1(0)→ R : u = v ◦ U where U is a rotation, v ∈M∗}. (2.3)

Moreover for any γ ∈ (0, π) the class Mγ is defined as

Mγ := {u : B1(0)→ R : u = v ◦ U where U is a rotation,
v ∈M∗, and supe∈∂B1

| arccos((Ue) · e)| ≤ γ}. (2.4)
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Lemma 2.1. Let u be a W 2,∞(B1)-solution of (2.1). If one blow-up limit u0 of the
blow-up sequence u(x0 + rj ·)/r2j as rj → 0 is contained in M then all blow-up
limits of u(xk + rk·)/r2k as xk → x0 and rk → 0 are contained in M .

Proof. This follows from the upper semicontinuity of the density x �→ Φx(0+),
from the consequent homogeneity of blow-up limits of u(xk + rk·)/r2k and from
the known fact that each non-trivial homogeneous solution of degree 2 is either
contained in M or a quadratic homogeneous polynomial (cf. [4]). �

Theorem 2.2. Let u be a W 2,∞(B1)-solution and suppose that a blow-up limit

lim
m→∞

u(rm·)
r2m

is contained in M∗.
Then the free boundary ∂{u > 0} is in some open neighborhood of x0 the

graph of a differentiable, Lipschitz continuous function.

Theorem 2.2 follows from the combination of Lipschitz continuity (see the
following Proposition) and flatness (see Lemma 2.1). The following Proposition
based on the Kelvin transform is crucial.

Proposition 2.3. Let u be a W 2,∞(B1)-solution and suppose that a blow-up limit

lim
m→∞

u(rm·)
r2m

is contained in M∗.
Then there exist for ε ∈ (0, 1) positive δ and ρ such that for y ∈ Bδ ∩ ∂{u > 0}
and r ∈ (0, ρ), the scaled function

ur(x) =
u(y + rx)

r2
(2.5)

satisfies
dist(ur,M

γ0) = inf
v∈Mγ0

sup
B1(0)

|v(x) − ur(x)| < ε,

where γ0 = π/2− 1/10.

Proof. First, by continuity and by Lemma 2.1, for any ε̃ > 0 there are positive κ̃, δ̃
and ρ̃ such that

dist(uρ̃,M
∗) < ε̃ for α ∈ Nκ̃(α0) and y ∈ ∂{uα > 0} ∩Bδ̃

and dist(ur,M) < ε̃ for α ∈ Nκ̃(α0), y ∈ ∂{uα > 0} ∩Bδ̃ and r ∈ (0, ρ̃).
Now if the statement of the theorem does not hold, then there are positive r0 and
a rotation Uθ0 satisfying arccos((Uθ0e) · e) ≥ π/2− γ0 − c1ε > 0 as well as

dist(ur0 ◦ Uθ0 ,M
∗) ≤ ε̃;

here c1 is a constant depending on (a, b, λ+, λ−). It is important for what follows
that α and y are the same for ur0 and uρ̃. In the remainder of the proof α and y are
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free boundary

reflection surface

Figure 4. Reflection at a sphere cap

fixed. Let us now take an arbitrary rotation V such that supe∈∂B1
| arccos((V e) ·

e)| ≤ 2(π/2− γ0), let w := uρ̃ ◦V and define v define by the Kelvin transform (cf.
[13, Theorem 4.13], i.e.,

v(x) := |x− 2e1|2−nw(
x− 2e1
|x− 2e1|2

)

(see Fig. 4). The function v satisfies in B1 the equation

∆v(x) = |x− 2e1|−n−2χ{v>0} .

By the C1-closeness of uρ̃ to M∗ we know that w ≥ v on ∂(B1(0)∩B1(2e1)). Thus∫
B1(0)∩B1(2e1)

|∇max(v − w, 0)|2 =
∫

B1(0)∩B1(2e1)

∆(w − v)max(v − w, 0)

=
∫

B1(0)∩B1(2e1)

max(v − w, 0)
(
χ{w>0} − |x− 2e1|−n−2χ{v>0}

)
≤ 0,

implying that w ≥ v in B1(0) ∩B1(2e1). Consequently

ur0 ≥ |
r0
ρ̃
x− 2e1|2−nur0(V (

x− (ρ̃/r0)2e1
|(r0/ρ̃)x− 2e1|2

)) in B1(0) ∩B1(2e1) ,

a contradiction to
dist(ur0 ◦ Uθ0 ,M

∗) ≤ ε̃

in view of arccos((Uθ0e)·e) ≥ π/2−γ0−c1ε > 0 and the arbitrary choice of V . �
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Solvability for a PDE Model of
Regional Economic Trend

Ken Shirakawa, Akio Ito and Atsushi Kadoya

Abstract. The aim of this work is to develop a simulation method focused on
regional economic trend. In this light, an original model, formulated by partial
differential equations, will be proposed. Consequently, the existence of time-
local solutions of our mathematical model will be concluded, as a transitional
report in the research.

Mathematics Subject Classification (2000). Primary 91B62; Secondary 35K45.

Keywords. Regional economic trends, Mathematical model by PDEs, Solv-
ability.

1. Introduction

This work is motivated to represent the dynamics of economic trends in local
communities, such as cities, towns and villages. Generally, economic conditions
have been estimated through the observation of an economic parameter, called
“production”, and it has been said that two kinds of parameters, respectively called
“labor force” and “capital”, are mainly involved in the movement of production.
In the field of macro economics, these parameters are classified as “flow variable”,
and each of them is supposed to be some representative value, which indicates a
subaccumulation of economical quantity circulating in a certain period (usually
one year). So in the actual research activities, flow variables are often observed as
discrete data.

However, since economic data actually vary the whole times, it is conceivable
that discrete data are not enough to foresee some accidental movements, such as
price escalation and heavy falls in price. Also, at the level of local communities,
the regional disparities of economic conditions, coming from urban congestion and
under population etc., will not be negligible.

The research for this paper is partially supported by a grant from Institute for Advanced Research
Hiroshima Shudo University, 2004.
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In view of this, we set the main purpose of this paper to propose and to
study a mathematical model described in a continuous framework. To this end, let
us denote the space-time coordinate system by a product space QT := Ω× (0, T )
of a two or three dimensional domain Ω with a smooth boundary Γ := ∂Ω, and
an open interval (0, T ) with a constant T > 0. As a natural consequence, the
mathematical model should somehow represent the movements of flow variables,
such as production, labor force and capitals. But, these flow variables would be
unsuitable to adopt as unknown parameters of our model, because flow variables
are mathematically supposed to map a subset A ⊂ Ω and an interval I ⊂ [0, T ],
into an economical quantity at the area A, accumulated during the period I. Hence,
we first introduce the following virtual parameter, named as “density”, for each
flow variable.

Definition 1.1. Let F be any flow variable. Let us denote by R+ the half interval
[0,+∞) of nonnegative values, and for any Borel set A ⊂ Ω and any open interval
I ⊂ [0, T ], let us denote by F (A, I) ∈ R+ the value of flow F at the subarea A
and the period I. Then, a nonnegative function f : Ω× [0, T ] −→ R+ is called the
density of flow F , if and only if:

F (A, I) =
∫

I

∫
A

f(x, t) dx dt

for any Borel set A ⊂ Ω and any open interval I ⊂ [0, T ].

Throughout this paper, we denote by p, u, w = t(w1, . . . , wN ) with N ∈ N,
the density of production, the density of labor force, and the vectorial parameter
of densities of N -kinds of capitals respectively, and assume the following equality
for these densities:

p = c uα0wα1
1 · · ·wαN

N for some constants prescribed to satisfy

c > 0, 0 < αi < 1 (i = 0, 1, . . . , N) and
N∑

i=0

αi = 1. (1.1)

Equality (1.1) is known as the relational expression of Cobb-Douglas type,
and in the context, the constant c is a scaling coefficient, and the exponent α0

and N -exponents αi (i = 1, . . . , N) are respectively the ratios that labor force
u and N -capitals wi (i = 1, . . . , N) contribute to economic growth. Thus, the
conservation law

∑N
i=0 αi = 1 is usually assumed for these exponents. Incidentally,

it is empirically said that α0 ≈ 0.75 and
∑N

i=1 αi ≈ 0.25.
Now, our mathematical model is derived in the track of the modelling method

as in [4, section 3]. In [4], the authors have tentatively ruled out spatial variation
of densities, and have proposed a mathematical model described by the following
ordinary differential equations:

u′(t) = n0(log p)′(t)u(t), t ∈ (0, T ], (1.2)
w′(t) = p(t)s−D w(t), t ∈ (0, T ]; (1.3)

subject to the relational expression (1.1) and appropriate initial conditions, where
0 < n0 < 1 is a constant, s := t(s1, . . . , sN ) is a vector consisted of positive
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constants si (i = 1, . . . , N), and D :=
⎛⎝ δ1 0. . .

0 δN

⎞⎠ is a N × N -diagonal matrix

with positive constants δi (i = 1, . . . , N).
The first equation (1.2) is a kinetic equation of labor force, and it is derived on

the basis of Malthus’s law with a time-dependent growth rate n0(log p)′(t). Here,
since the term (log p)′(t) is nothing but the so-called “economic growth rate”, this
equation also implies that the growth rate of labor force directly depends on the
economic vibrancy at each time (see [4, Remark 3.1], for details). Furthermore,
under the relational expression (1.1), it is easily checked that equation (1.2) is
equivalent to:

(log u)′(t) =
N∑

i=1

νi(logwi)′(t), t ∈ (0, T ]; (1.4)

where νi := n0αi/(1 − n0α0) (i = 1, . . . , N). Notice that N -constants νi (i =
1, . . . , N) satisfy 0 < νi < 1 (i = 1, . . . , N) and

∑N
i=1 νi < 1.

On the other hand, the second equation (1.3) is a balance equation among
the variation w′(t) of capitals in time, the positive contribution p(t)s from the
production and the negative contribution −D w(t) such as depreciations. The
coupled system {(1.1),(1.3)} is known as “Solow model”, in honor of the name of
proposer (cf. [10]), and the original model is formulated by ordinary differential
equations in scalar-valued framework of w. Nevertheless, since the category of
capitals is not singleton in general, the study of Solow model has enhanced into
vectorial framework, as in (1.3), by some follow-on researchers (e.g. [4, 7]).

In this paper, we first modify the system {(1.1)–(1.3)} into the framework
to enable the representation of spatial (regional) disparities of parameters. Hence,
our mathematical model will be described by a system of appropriate partial dif-
ferential equations that will be based on the system {(1.1)–(1.3)}. But, because of
a technical reason in mathematical treatment, the parameter w (capitals) will be
considered under scalar-valued setting. Consequently, the existence of time-local
solutions of the original system will be reported in the main theorem of this paper.

Notation. For any Banach space X , we denote by | · |X the norm in X , throughout
this paper. Also, for any Hilbert space H , we denote by (·, ·)H the inner product
in H .

2. Statement of the main result

First of all, let us start with proposing the following coupled system of two partial
differential equations:⎧⎨⎩

(log u)t − κ0∆(log u) = ν1(logw)t in QT ,
∂

∂n
(log u) = 0 on ΣT := Ω× (0, T ), u(·, 0) = u0 in Ω;

(2.1)
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wt − κ1∆w = s1c u

α0w1−α0 − δ1w in QT ,
∂w

∂n
= 0 on ΣT , w(·, 0) = w0 in Ω;

(2.2)

as a possible mathematical model of regional economic trends.
This system consists of two Cauchy problems (2.1) and (2.2) of parabolic

equations subject to homogeneous Neumann boundary conditions, which are re-
spectively derived from the equivalent formula (1.4) of the kinetic equation (1.2)
of labor force, and Solow model {(1.1), (1.3)} under scalar-valued setting of w.
Therefore, unknown parameters of this model are the density u of labor force and
the (scalar-valued) density w of a capital, and in the context, κi (i = 0, 1) are
diffusion coefficients of (small) positive constants.

Now, let us denote by σ1 the constant s1c, as in (2.2), for simplicity. Also,
let us set DN :=

{
z ∈ H2(Ω) ∂z

∂n = 0 a.e. on Γ
}
, and let us denote by ∆N the

operator ∆N : DN −→ L2(Ω), defined as ∆Nz = ∆z for any z ∈ DN . As is well
known, operator −∆N forms a maximal monotone graph in the product space
L2(Ω)× L2(Ω).

In this paper, we mainly focus on the existence of solutions of the system
{(2.1),(2.2)}, prescribed as follows.

Definition 2.1. A pair {u,w} of functions u,w : QT −→ R+ is called a solution of
system {(2.1),(2.2)}, if and only if:
(s1) u,w ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), v := log u ∈ L∞(QT ), and

logw ∈ L∞(QT );

(s2) u(0) = u0 ∈ H1(Ω), v0 := v(0) = log u0 ∈ L∞(Ω),

vt(t)− κ0∆Nv(t) = ν1(logw)t(t) in L2(Ω), a.e. t ∈ (0, T ];

(s3) w(0) = w0 ∈ DN , logw0 ∈ L∞(Ω),

wt(t)− κ1∆Nw(t) = σ1e
α0v(t)w(t)1−α0 − δ1w(t) in L2(Ω), a.e. t ∈ [0, T ].

On the basis of the above definition, the following theorem will be concluded
as the main result of this paper.

Theorem 2.2. System {(2.1), (2.2)} admits at least one time-local solution.

Remark 2.3. As it is mentioned in introduction, the main objective of the research
is to represent the dynamics of regional economic trends. So the study on the
dynamical system generated by system {(2.1), (2.2)} (including the solvability)
will be a basilicus assessment criterion for the adequacy of mathematical models
and simulation data. From this viewpoint, Theorem 2.2 can be said a report on
interim step yet, while it gives some positive answer for the adequacy of our model.

However, since the original Solow model generates a dynamical system having
quite strong stability, the major focus in next challenges will be to know whether
the dynamical systems generated by PDE models, such as system {(2.1), (2.2)},
also show similar stability as in the case of ODE models.
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3. Auxiliary problems

The main theorem will be proved by means of Schauder’s fixed point argument,
seen in [5, section 3], or others (e.g., [2, 8]). To this end, let us put:

M0 := | log u0|L∞(Ω) + 1;

and let us fix two functions:

ṽ, w̃ ∈ W 1,2(0, T ;L2(Ω)) with |ṽ|L∞(QT ) ≤ 2M0 and log w̃ ∈ L∞(QT ); (3.1)

to consider the following Cauchy problems:⎧⎪⎨⎪⎩
wt(t)− κ1∆Nw(t) + δ1w(t) = σ1e

α0ṽ(t)|w(t)|1−α0

in L2(Ω), a.e. t ∈ (0, T ],

w(0) = w0 ∈ H1(Ω), a.e. in Ω;
(3.2)

{
vt(t)− κ0∆Nv(t) = ν1(log w̃)t(t) in L2(Ω), a.e. t ∈ (0, T ],

v(0) = v0 ∈ H1(Ω) ∩ L∞(Ω), a.e. in Ω.
(3.3)

This section is devoted to show some lemmas concerned with key properties of the
above auxiliary problems.

Let ϕ be a proper l.s.c. and convex functional on L2(Ω), defined as:

ϕ(z) :=

⎧⎨⎩
κ1

2

∫
Ω

|∇z|2 dx +
δ1
2

∫
Ω

|z|2 dx, if z ∈ H1(Ω),

+∞, otherwise;

and for any t ∈ [0, T ], let g(t, ·) be a continuous operator from L2(Ω) into itself,
defined as:

g(t, z) := −σ1e
α0ṽ(t,·)|z|1−α0 for any z ∈ L2(Ω).

Then, Cauchy problem (3.2) is equivalently reformulated to that for the following
evolution equation:

wt(t) + ∂ϕ(w(t)) + g(t, w(t)) � 0 in L2(Ω), a.e. t ∈ [0, T ]; (3.4)

subject to the subdifferential ∂ϕ of ϕ in L2(Ω), and a non-Lipschitz perturbation
g(t, ·) (t ∈ [0, T ]).

In recent years, this type of evolution equation has been studied by a lot of
mathematicians, such as Brézis [1], from various viewpoint. So applying some of
those theories (e.g., [9]), we immediately see the existence of solutions of Cauchy
problem (3.2). But the uniqueness is hard to say at this moment, because the
property of the perturbation g(t, ·) (t ∈ [0, T ]) is too weak to satisfy conditions for
uniqueness, in any general theory.

In this light, the following lemma will be keypoint to solve the barriers for
the fixed point argument, including the uniqueness.
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Lemma 3.1. (L∞-estimates for solutions of (3.2)) Let us fix positive constants r
and R to satisfy:

δ1r < σ1e
−2α0M0r1−α0 and δ1R > σ1e

2α0M0R1−α0 ; (3.5)

respectively, and let us assume that:

0 < r ≤ w0(x) ≤ R < +∞ a.e. x ∈ Ω. (3.6)

Then, for any solution w of Cauchy problem (3.2), we see that

r ≤ w(x, t) ≤ R a.e. (x, t) ∈ QT .

Proof. First, let us prove the nonnegativeness of w in QT . Multiplying the both
sides of (3.4) by −w−(t), we have

1
2
d

dt
|w−(t)|2L2(Ω) ≤ −σ1

(
eα0ṽ(t)|w(t)|1−α0 , w−(t)

)
L2(Ω)

≤ 0, a.e. t ∈ [0, T ]. (3.7)

So, integrating the both sides of (3.7) over any interval [0, t] ⊂ [0, T ],

|w−(t)|2L2(Ω) ≤ |w−
0 |2L2(Ω) = 0 for any t ∈ [0, T ],

which implies w ≥ 0 a.e. in QT .
Next, we show that r ≤ w ≤ R a.e. in QT . Let us put

w r(t) := r − w(t), wR(t) := w(t)−R in L2(Ω), for any t ∈ [0, T ].

Then, it is easily seen from (3.5) that

(w r)t − κ1∆w r + δ1w r < σ1(e−2α0M0r1−α0 − eα0ṽ|w|1−α0) a.e. in QT ,(3.8)

(wR)t − κ1∆wR + δ1wR < σ1(eα0ṽ|w|1−α0 − e2α0M0R1−α0) a.e. in QT ,(3.9)
∂w r

∂n
=

∂ wR

∂n
= 0 a.e. on ΣT . (3.10)

Let us multiply the both sides of (3.8) and (3.9) by w+
r and w+

R , respectively.
Then, on account of (3.10), the nonnegativeness of w and the monotonicity of the
function exp( · ) in R, integrating the both sides of the results over Ω yields that

1
2
d

dt
|w+

r (t)|2L2(Ω) ≤ σ1e
−2α0M0

(
(r1−α0 − w(t)1−α0 )+, w+

r (t)
)

L2(Ω)
,(3.11)

1
2
d

dt
|w+

R (t)|2L2(Ω) ≤ σ1e
2α0M0

(
(w(t)1−α0 −R1−α0)+, w+

R (t)
)
L2(Ω)

,(3.12)

a.e. t ∈ [0, T ].
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Here, since:

r1−α0 − ω1−α0

r − ω
≤ 1

rα0

for any ω ∈ (0, r) (see Fig.1),

ω1−α0 −R1−α0

ω −R
≤ 1− α0

Rα0

for any ω ∈ (R,+∞) (see Fig.2);

Ω
O r

r

Ω

Ω

1�Α

1�Α

0

0

Ω
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we see from (3.11) and (3.12) that

d

dt
|w+

r (t)|2L2(Ω) ≤
2σ1e

−2α0M0

rα0
|w+

r (t)|2L2(Ω), and

d

dt
|w+

R (t)|2L2(Ω) ≤
2σ1(1 − α0)e2α0M0

Rα0
|w+

R (t)|2L2(Ω);

a.e. t ∈ [0, T ], respectively. Thus, applying Gronwall’s lemma for the above in-
equalities, we conclude that r ≤ w ≤ R a.e. in QT . �
Corollary 3.2. (Uniqueness of solutions of (3.2)) For any initial value w0 ∈ H1(Ω)
satisfying (3.6), solutions of Cauchy problem (3.2) have the uniqueness.

Proof. By Lemma 3.1, the perturbation g(t, ·) (t ∈ [0, T ]) can be regarded as Lips-
chitz perturbation with a time-independent Lipschitz constant. Thus, the unique-
ness immediately follows from the general theory as in [1]. �

Next, let us look towards another Cauchy problem (3.3). On account of (3.1),
this Cauchy problem just turns out that for a heat equation, subject to a forcing
term (log w̃)t = w̃t/w̃ ∈ L2(0, T ;L2(Ω)) and homogeneous Neumann boundary
condition. Therefore, by usual energy estimates, solution v has the boundedness
in topologies of W 1,2(0, T ;L2(Ω)) and L∞(0, T ;H1(Ω)). However, referring to the
technique as in Ladyženskaja-Solonnikov-Ural’ceva [6], we further obtain the fol-
lowing L∞-estimate of solutions.

Lemma 3.3. (L∞-estimates for solutions of (3.3)) In addition of (3.1), let us assume
that:

(log w̃)t =
w̃t

w̃
∈ L∞(0, T ;L2(Ω)). (3.13)

Then, there exists a time T0 = T0(|v0|L∞(Ω), |(log w̃)t|L∞(0,T ;L2(Ω))) ∈ (0, T ], de-
pending on |v0|L∞(Ω) and |(log w̃)t|L∞(0,T ;L2(Ω)), such that

|v(t)|L∞(Ω) ≤ 2M0 = 2(|v0|L∞(Ω) + 1) for any t ∈ [0, T0].
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Proof. Since this lemma is obtained just as in [6, Theorem 7.1 in Chapter III],
we omit to show the detailed proof. Additionally, the thread of the proof can be
found in [3, Lemma 2.1], too. �

In the proof of the main theorem, the above lemma will be required to com-
plete the iteration, associated with solution operators for problems (3.2) and (3.3).

4. Proof of the main theorem

Now we are on the stage to prove the main theorem. Throughout this section, we
use the same notations as in the previous sections.

For any T ∈ (0, 1], let us set a compact and convex subset X0(T ) in
C([0, T ];L2(Ω)), by putting:

X0(T ) :=

⎧⎪⎪⎨⎪⎪⎩ ξ ∈W 1,2(0, T ;L2(Ω))
∩L∞(0, T ;H1(Ω))

∫ t

0

|ξt(τ)|2L2(Ω) dτ + κ0|∇ξ(t)|2L2(Ω)n

≤ κ0|∇v0|2L2(Ω)n + 1, and

|ξ(t)|L∞(Ω) ≤ 2M0, for any t ∈ [0, T ]

⎫⎪⎪⎬⎪⎪⎭ ;

and for any ṽ ∈ X0(T ), let us consider Cauchy problem (3.2) with the initial value
w0 ∈ DN satisfying (3.6). Then, as is seen in the last section, problem (3.2) admits
a unique solution w ∈W 1,2(0, T ;L2(Ω))∩L∞(0, T ;H1(Ω)), and we find a positive
constant ρ0 = ρ0(|v0|L∞(Ω), |w0|H1(Ω), R), independent of T ∈ (0, 1], such that

|w|W 1,2(0,T ;L2(Ω)) + |w|L∞(0,T ;H1(Ω)) ≤ ρ0.

Also, taking the time-derivative of the both sides of (3.4) and multiplying the
both sides of the result by wt(t), we further find a positive constant ρ1 =
ρ1(|v0|L∞(Ω), |v0|H1(Ω), |w0|H2(Ω), r, R), independent of T ∈ (0, 1], such that

ρ1 ≥ ρ0 and |w|C1([0,T ];L2(Ω)) ≤ ρ1.

Here, for any T ∈ (0, 1], let us introduce a compact and convex subset Y0(T ),
by putting:

Y0(T ) :=
{

η ∈ C1([0, T ];L2(Ω))
r ≤ η ≤ R a.e. in QT , and
|η|C1([0,T ];L2(Ω)) + |η|L∞(0,T ;H1(Ω)) ≤ ρ1

}
;

to define an operator PT : X0(T ) −→ Y0(T ), which maps any function ṽ ∈ X0(T )
into the solution w ∈ Y0(T ) of Cauchy problem (3.2). Then, for each T ∈ (0, 1],
the operator PT is continuous in the sense that:

wi := PT ṽi → w := PT ṽ in C([0, T ];L2(Ω)) as i→ +∞,
if {ṽi} ⊂ X0(T ), ṽ ∈ X0(T ) and ṽi → ṽ in C([0, T ];L2(Ω)) as i→ +∞.

(4.1)
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The continuous dependence (4.1) is checked by applying Gronwall’s lemma to the
following differential inequality:

1
2
d

dt
|(wi−w)(t)|2L2(Ω)≤ σ1

(
eα0ṽi(t)wi(t)1−α0− eα0ṽ(t)w(t)1−α0, (wi−w)(t)

)
L2(Ω)

≤ σ1e
2α0M0

(
R1−α0 +

1
rα0

)(
|(wi − w)(t)|2L2(Ω) + |(ṽi − ṽ)(t)|2L2(Ω)

)
;

for a.e. t ∈ [0, T ], that is obtained in a standard way with use of a similar technique
as in the proof of Lemma 3.1.

Next, for any T ∈ (0, 1] and any w̃ ∈ Y0(T ), let us consider Cauchy problem
(3.3). Then, since:

|(log w̃)t(t)|2L2(Ω) =
∣∣∣∣ w̃t(t)
w̃(t)

∣∣∣∣2
L2(Ω)

≤ ρ2
1

r2
for any t ∈ [0, T ]; (4.2)

the following energy estimate:∫ t

0

|vt(τ)|2L2(Ω) dτ + κ0|∇v(t)|2L2(Ω)n

≤ κ0|∇v0|2L2(Ω)n +
ν2
1ρ

2
1

r2
· t, for any t ∈ [0, T ];

(4.3)

is easily obtained by multiplying the both sides of the (heat) equation by vt(t).
Now, for each T ∈ (0, 1], let us define a solution operator QT : Y0(T )

−→ C([0, T ];L2(Ω)), which maps any w̃ ∈ Y0(T ) into the solution v ∈
W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)). Then, on account of the uniqueness of so-
lutions and the demi-closedness of the maximal monotone operator, the operator
QT shows the following continuity:

vi := QT w̃i → v := QT w̃ in C([0, T ];L2(Ω)) as i→ +∞,
if {w̃i} ⊂ Y0(T ), w̃ ∈ Y0(T ) and w̃i → w̃ in C([0, T ];L2(Ω)) as i→ +∞;

(4.4)

for any T ∈ (0, 1].
Furthermore, on account of (4.2), (4.3) and Lemma 3.3, we find a sufficiently

small constant T∗ ∈ (0, 1] such that

(QT w̃)|[0,T∗] ∈ X0(T∗) for any T ∈ [T∗, 1] and any w̃ ∈ Y0(T ),

where the notation “ |[0,T∗]” denotes the restriction of functions in C([0, T ];L2(Ω)),
with T ∈ [T∗, 1], onto the compact interval [0, T∗]. Therefore, by the compactness of
X0(T∗) in C([0, T∗];L2(Ω)), the operator QT∗ : Y0(T∗) −→ X0(T∗) is well defined
and continuous in the sense of (4.4) under T = T∗.

Consequently, we figure out that the composition ST∗ := PT∗ ◦ QT∗ : Y0(T∗)
−→ Y0(T∗) forms a well-defined and continuous operator in the topology of
C([0, T∗];L2(Ω)). Since Y0(T∗) is a compact and convex subset in C([0, T∗];L2(Ω)),
Schauder’s fixed point theorem enables us to conclude the existence of a fixed
point w∗ ∈ Y (T∗) for the operator (iteration) ST∗ . Here, putting v∗ := QT∗w∗ and
u∗ := ev∗ , the pair {u∗, w∗} fulfills all conditions (s1)–(s3) under T = T∗. This
entails the existence of time-local solutions of our system {(2.1),(2.2)}. �
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Surface Energies in Multi-phase Systems
with Diffuse Phase Boundaries

Björn Stinner

Abstract. A Ginzburg–Landau type functional for a multi-phase system in-
volving a diffuse interface description of the phase boundaries is presented
with the following calibration property: Prescribed surface energies (possibly
anisotropic) of the phase transitions are correctly recovered in the sense of a
Γ-limit as the thickness of the diffuse interfaces converges to zero. Possible
applications are grain boundary motion and solidification of alloys on which
numerical simulations are presented.

Mathematics Subject Classification (2000). 82B26, 74N20, 74E10.

Keywords. Phase transitions, phase field model, sharp interface model, surface
energy, anisotropy.

1. Introduction

Consider a domain Ω ⊂ R
d, d ∈ {1, 2, 3}, which is subdivided into several (not

necessarily connected) regions Ωα, α ∈ {1, . . . ,M}, M ∈ N, separated by hy-
persurfaces Γαβ , 1 ≤ α < β ≤ M. The interfaces are supposed to carry energy
obtained by integrating surface densities which may depend on the orientation of
the hypersurface. The total energy of the system has the form

FSI =
∑
α<β

∫
Γαβ

σαβ(ναβ)dHd−1. (1.1)

To avoid wetting effects is is assumed that σαβ + σβδ > σαδ > 0 for each triple of
phases α, β, δ.

Energies as in (1.1) can be approximated by Ginzburg–Landau energies of
the form

FPF =
∫

Ω

(
εa(φ,∇φ) +

1
ε
w(φ)

)
dLd. (1.2)
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Here, φ = (φ1, . . . , φM) : Ω→ ΣM with

ΣM :=
{
v ∈ R

M :
M∑

α=1

vα = 1 and 0 ≤ vα ≤ 1 for all α = 1, . . . ,M
}

is a set of phase field variables. For each α, φα is assigned to one of the phases
(labelled α and corresponding to Ωα) and describes its presence in a point of Ω.
The function a(φ,∇φ) is a non-negative gradient term, and w(φ) is a multi-well
potential withM minima corresponding to the phases. It is well known that such
Ginzburg–Landau energies cause transition regions where the phase fields vary
from one of the minima of w, i.e., from one of the phases, to another one. The
thickness of the interfacial layers is of the order ε, a small length scale.

Bellettini et al. [2] showed that the Γ-limit of (1.2) as ε → 0 has the form
(1.1), and they proved a relation between the σαβ and the functions a and w.
Using matched asymptotic expansions, Sternberg [10] for the isotropic case and
Garcke et al. [5] for the general case found the slightly simpler relation

σαβ(ν) = inf
p

{∫ 1

−1

√
w(p)a(p, p′ ⊗ ν)dy,

p ∈ C0,1([−1, 1]; ΣM), p(−1) = eα, p(1) = eβ

}
(1.3)

where eα and eβ are the corners of the simplex ΣM corresponding to the phases
α and β, i.e., eη = (δηθ)Mθ=1 with the Kronecker symbols δηθ. Using numerical sim-
ulations they showed that this formula holds true for a large class of anisotropies.
Vice versa, it is a non-trivial task to construct functions a and w such that the
surface energies obtained via (1.3) coincide with given surface energies (which, in
applications, may be known from experiments).

A possible solution has been found by the author in collaboration with H.
Garcke and R. Haas (see [7]) and will be presented in the following sections. First
some facts on the minimization problem (1.3), afterwards the precise aims are
stated. Some additional conditions on a and w are imposed:

Definition 1.1. Let

TΣM :=
{
v = (v1, . . . , vM) ∈ R

M :
M∑

α=1

dα = 0
}
.

The function a : ΣM × (TΣM)d → R is an admissible gradient term if

a(φ,X) ≥ 0, a(φ, ηX) = η2a(φ,X) ∀φ ∈ ΣM, X ∈ (TΣM)d, η ∈ R, (1.4)

aαβ(ν) := a(seβ + (1− s)eα, (eβ − eα)⊗ ν) (1.5)

does not depend on s ∈ [0, 1] ∀α, β ∈ {1, . . . ,M}.
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The function w : ΣM → R is an admissible multi-well potential if

w(φ) ≥ 0 ∀φ ∈ ΣM, w(φ) = 0 ⇔ φ ∈ {e1, . . . , eN}, (1.6)

w(seβ + (1− s)eα) = wαβs
2(1− s)2, ∀s ∈ [0, 1], α, β ∈ {1, . . . ,M}. (1.7)

A minimizer of the problem in (1.3) fulfills after appropriate rescaling to some
function φ : R→ ΣM (cf. [5] for this procedure)

w,φ(φ) + a,φ(φ, ∂zφ⊗ ν)− d

dz

(
a,X(φ, ∂zφ⊗ ν)ν

)
= λ,

lim
z→∞

φ(z) = eβ, lim
z→−∞

φ(z) = eα,
(1.8)

where λ = 1
M

∑M
i=1 w,φi(φ)+a,φi(φ, ∂zφ⊗ν)− d

dz

(
a,Xi(φ, ∂zφ⊗ν)ν

)
is a Lagrange

multiplier and λ = λ(1, . . . , 1) ∈ R
M. In particular, the minimization problem in

(1.3) reads now

σαβ(ν) = inf
φ

{∫
R

(
a(φ, ∂zφ⊗ ν) + w(φ)

)
dz,

φ ∈ C0,1(R; ΣM), lim
z→−∞

φ(z) = eα, lim
z→∞

φ(z) = eβ

}
. (1.9)

Lemma 1.2. Consider a function of the form

φ(z) = χ(z)eβ + (1− χ(z))eα. (1.10)

Then φ solves (1.8) for admissible functions a and w if

χ(z) =
1
2

(
1 + tanh

(√ wαβ

aαβ(ν)

z

2
))

and if (1.11)

λ = w,φi + |χ′|2a,φi −
d

dz

(
χ′a,Xiν

)
(1.12)

for some λ independent of i ∈ {1, . . . ,M} where w,φi is evaluated at φ(z) and the
derivatives of a at (φ(z), (eβ − eα)⊗ ν).

Moreover, if φ is a solution to (1.9) then the surface energy is

σαβ(ν) =
1
3

√
aαβ(ν)wαβ (1.13)

Proof. Given φ as in (1.10) obviously φ(z) → eβ ⇔ χ(z) → 1 ⇔ z → ∞ and
φ(z) → eα ⇔ χ(z) → 0 ⇔ z → −∞ whence the second line of (1.8) follows.
By assumption (1.4) a,φ is two-homogeneous and a,X is one-homogeneous with
respect to the second variable. Since ∂zφ(z)⊗ ν = χ′(z)(eβ − eα)

a,φ(φ(z), ∂zφ(z)⊗ ν) = |χ′(z)|2a,φ(φ(z), (eβ − eα)⊗ ν),

a,X(φ(z), ∂zφ(z)⊗ ν) = χ′(z)a,X(φ(z), (eβ − eα)⊗ ν).

The first line of (1.8) then follows directly from (1.12).
A straightforward calculation shows the identities

|χ′|2 =
wαβ

aαβ
χ2(1− χ)2, χ′′ =

wαβ

aαβ
χ(1− χ)(1 − 2χ). (1.14)



416 B. Stinner

By assumption (1.5) a(φ(z), (eβ − eα) ⊗ ν) = aαβ(ν). Therefore, if φ solves (1.9)

then the surface energy is (substituting z
2

√
aαβ(ν)

wαβ
= t)

σαβ(ν) =
∫

R

(
a(φ, ∂zφ⊗ ν) + w(φ)

)
dz

=
∫

R

(
|χ′(z)|2aαβ(ν) + wαβχ(z)2(1− χ(z))2

)
dz

=
∫

R

2wαβ(1 + tanh(t))2(1− tanh(t))2
√

aαβ(ν)
wαβ

dt

=
1
3

√
aαβ(ν)wαβ . �

Now it is possible to state the aim precisely:

Task. Construct admissible functions a and w such that

1. the values 1
3

√
aαβ(ν)wαβ coincide with given surface energies σαβ(ν),

2. the function φ(z) = χ(z)eβ + (1 − χ(z))eα with χ given by (1.11) fulfills
condition (1.12), and

3. this function φ(z) solves (1.9).

2. On the solvability of the task

In this section, an admissible gradient potential a will be presented which is based
on the irreducible representations φα∇φβ − φβ∇φα first used in [8] and later in
[11] in the context of the phase field approach. Polynomial multi-well potentials
w will also be presented such that the second point of the task set in the previous
section is fulfilled and a critical point of the minimization problem (1.9) has the
desired structure (1.10). In view of the first point, the values on the right-hand
side of (1.13) can be determined in terms of coefficients of a and w. In particu-
lar, the presented potentials allow for a large class of anisotropic surface energies
σαβ(ν). It remains to examine whether the third point of the given task is satis-
fied. For this purpose, numerical simulations of test problems have been performed
indicating when a critical point of the form (1.10) indeed solves the minimization
problem (1.9). More results and other examples for gradient terms a and multi-well
potentials w with the demanded properties including results of further numerical
simulations will be published in a forthcoming paper [7].

Definition 2.1. For each α �= β, α, β ∈ {1, . . . ,M}, let sαβ : R
d → R be one-

homogeneous functions which are positive on the unit sphere Sd−1 = {ν ∈ R
d :

‖ν‖2 = 1}, even and smooth (except in zero), and let gαβ positive coefficients.
In addition the symmetries gαβ = gβα and sαβ(ν) = sβα(ν) for all ν ∈ Sd−1,
1 ≤ α, β ≤ N , are assumed to hold. The gradient potential in (1.2) is defined by

a(φ,∇φ) =
∑
α<β

gαβ

(
sαβ(φα∇φβ − φβ∇φα)

)2
. (2.1)
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The homogeneity and the symmetry of the sαβ(ν) yield ∇sαβ(ν) ·ν = sαβ(ν)
and ∇sαβ(−ν) = −∇sαβ(ν). Since

a(seβ + (1 − s)eα), (eβ − eα)⊗ ν) = gαβ

(
sαβ(ν)

)2 = aαβ(ν) (2.2)

is independent of s ∈ [0, 1] a fulfills the assumptions of Definition 1.1 and is
admissible.

Proposition 2.2. The multi-well potential

w(φ) = 9
∑
α<β

gαβφ
2
αφ

2
β

(
1 + 8

∑
δ �=α,β

φδ

)
(2.3)

satisfies the assumptions of Definition 1.1, and, given a(φ,∇φ) by (2.1), the con-
dition (1.12) of Lemma 1.2 is satisfied.

Proof. It is easy to derive that (1.6) is fulfilled. Since w(seβ + (1 − s)eα) =
9gαβs

2(1− s)2 condition (1.7) is fulfilled, too, with wαβ = 9gαβ.
When evaluating the derivatives of a at (χeβ +(1−χ)eα, (eβ− eα)⊗ ν) short

calculations show that

a,φi = 2gαβ(sαβ(ν))2, i = α, β,

a,Xi =

{
2gαβsαβ(ν)∇sαβ(ν)(−χ), i = α,

2gαβsαβ(ν)∇sαβ(ν)(1 − χ), i = β,

d

dz

(
a,Xiνχ

′
)

=

{
2gαβ(sαβ(ν))2(−χχ′′ − |χ′|2), i = α,

2gαβ(sαβ(ν))2((1 − χ)χ′′ − |χ′|2), i = β,

and if i �= α, β it holds that a,φi = 0 and a,Xi = 0, whence d
dz (a,Xiνχ

′) = 0. For
the derivatives of w evaluated at φ = χeβ + (1− χ)eα on can derive

w,φi(χeβ + (1− χ)eα) =

⎧⎪⎨⎪⎩
18gαβχ

2(1− χ), i = α,

18gαβχ(1− χ)2, i = β,

72gαβχ
2(1− χ)2, i �= α, β.

(2.4)

It follows then from (1.12) for i �= α, β necessarily

λ = 72gαβχ
2(1− χ)2 = 8wαβχ

2(1− χ)2. (2.5)

For i = α the right-hand side of (1.12) reads using the identities (1.14) and (2.2)

w,φα + |χ′|2a,φα −
d

dz

(
χ′a,Xαν

)
= 2wαβχ

2(1− χ) +
wαβ

aαβ(ν)
χ2(1− χ)2 2aαβ(ν)

− 2aαβ(ν)
(
− χ

wαβ

aαβ(ν)
χ(1− χ)(1− 2χ)− wαβ

aαβ(ν)
χ2(1− χ)2

)
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= 2wαβχ
2(1− χ) + wαβχ

2(1− χ)2

+ wαβ(ν)
(
4χ2(1− χ)2 − 2χ2(1− χ) + 2χ2(1− χ)2

)
= 8wαβχ

2(1− χ)2 = λ,

hence condition (1.12) holds for i = α with λ given by (2.5). Similarly this can be
shown for i = β. �
Theorem 2.3. The multi-well potential

w(φ) = 9
∑
α<β

gαβφ
2
αφ

2
β

(
1 + 8

∑
δ �=α,β

φδ

)
+

∑
α<β<δ

gαβδφ
2
αφ

2
βφ

2
δ (2.6)

satisfies the assumptions of Definition 1.1. Given a(φ,∇φ) by (2.1) the second
point of the set task is satisfied.

Proof. For the additional term wadd(φ) :=
∑

α<β<δ gαβδφ
2
αφ

2
βφ

2
δ it holds that

(wadd),φ(χeβ + (1 − χ)eα) = 0. Therefore, (2.4) is not changed. Hence, the same
arguments as in the proof of the preceding proposition followed by Lemma 1.2 can
be applied to show the theorem. �

Observe that aαβ(ν) = gαβ(sαβ(ν))2 and wαβ = 9gαβ yield

σαβ(ν) = gαβsαβ(ν)

from Lemma 1.2 if, in addition, also the third point of the given task is satisfied.
In order to recover a prescribed surface energy the idea is that gαβ determines its
typical size involving the physical units (one may choose the mean value of σαβ(ν)
on the unit sphere) and that sαβ(ν), a dimensionless multiplier, models the devia-
tions from this typical value depending on the direction ν, i.e., the anisotropy. In
spite of the constraints imposed on the gαβ and the sαβ(ν) in Definition 2.1 a wide
class of anisotropic surface tensions can be recovered by that procedure. Hence,
there is a good chance that the first point of the set task can be fulfilled provided
the third point is satisfied for the presented potentials. Numerical experiments
for test problems have been performed and are presented in the following section
indicating that this is in fact the case.

3. Numerical tests

In the following let α = 1 and β = 2. In one space dimension a sharp transition
relaxed under a gradient flow of the energy (1.2) (cf. (4.1) in the following section),
i.e., a jump of φ from e1 to e2, expecting a stable form which approximates a
solution to (1.9). Let M = 3, ε = 0.1 and consider the domain D = [0, 1] discretized
with a uniform grid of mesh size ∆x = 0.01. Homogeneous boundary conditions
were imposed which were checked to have no influence on the results. For the
numerical method based on finite differences [6] is an appropriate reference.

Choosing gαβ = 1 and sαβ(ν) = 1 for all pairs (α, β), very small contributions
of the order 10−4 of phase 3 in the transition region were found after relaxation.
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Refining the grid, the contributions became even smaller indicating that discretiza-
tion errors had come in. Also the case of different surface energies was examined
defining g12, g13 and g23 by a permutation of the values 2√

3
, 1.0 and 1√

3
. If g12 = 2√

3

the largest contributions from phase 3 of order 10−3 were observed. As in the case
of equal surface energies they became smaller when refining the grid.

For M = 4 the multi-well potential (2.3) converges to −∞ if ξ → ∞ and
φ = ξ(1, 1,−1,−1). During the relaxation of the sharp phase transition it was
indeed observed that φ3 and φ4 were equal and grew such that no equilibrium
was reached. Adding a coercive term as in (2.6) the blow up could be avoided.
Analogously, if M > 4 the additional term in w turned out to be necessary.

Let gαβ = 1 and sαβ(ν) = 1 as before and use the potential (2.6) where
gαβδ = C for all triples α, β, δ with a positive constant C. In the case M = 4, for
C ≤ 120.0 we found large contributions of the phases 3 and 4 of order 10−1 in the
transition region. The energy (1.2) can be approximated by the sum

FApprox := ∆x

N∑
i=0

ε a(φ(xi), ∂h
xφ(xi)) +

1
ε
w(φ(xi)),

where ∂h
xφ(xi) = 1

∆x(φ(xi+1)−φ(xi)) and the {xi}Ni=0 are the grid points. Comput-
ing this sum gives energies of FApprox = 0.970590 if C = 5.0, i.e., in the presence
of third phase contributions, and FApprox = 0.999242 if C = 200.0 without. This
indicates that if C is to small then the solution to (1.9) has not the form (1.10).
Moreover, the approximation of the surface energy, here σαβ(ν) = 1, is worse in
that case.

To examine whether a given surface energy is correctly recovered by the
phase field model the contraction of a sphere by a curvature flow in two space
dimensions is a good test problem since an analytical solution is known. Using
matched asymptotic expansions, it is shown in [5] that the phase field model yields
a model with free boundaries moving according to a curvature flow in the sharp
interface limit as ε→ 0. For a sphere in 2D, this curvature flow can be expressed
in terms of the radius r(t) being a function of the time t and reads

ṙ(t) = − σ

r(t)
, r(0) = r0. (3.1)

For σ = 1 the exact solution is r(t) =
√
r20 − 2t.

On the domain D = [0, 2]2 phase 1 initially occupied a quarter of a ball with
radius r0 = 1.4 centered in (0, 0), phase 2 occupied the remaining part of D, and
another phase 3 is considered but initially nowhere present. The initial data were
chosen as follows:

φ1,ic = 1
2

(
1− tanh(3(r−r0)

2ε )
)
, φ2,ic = 1− φ1,ic, φ3,ic = 0.

The other parameters were ε = 0.2, ∆x = 0.01, gαβ = 1 and sαβ(ν) = 1 for all pairs
α < β. Homogeneous Neumann boundary conditions were imposed. Two numerical
simulations were performed, a first one with the straightforward generalization
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Figure 1. On the left: Simulated triple junction. On the right: Contri-
bution of phase 4 in the triple junction.

w(φ) = 9
∑

α<β gαβφ
2
αφ

2
β of the standard multi-well potential and a second one

with the new potential (2.3).
During the first simulation a strong con-
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tribution of φ3 in the interfacial layer
was observed in contrast to the second
simulation. The figure shows the radii of
the sets where φ1 = φ2 in comparison
with the exact solution over the time. If
no third phase contributions are present
the simulation remarkably good approx-
imates the exact solution while in the
other case the velocity of the shrinking
circle is too small. This is consistent with
the results in [6]. There for the above

choice of w a surface energy σ < 1 was measured which, by (3.1), leads to a
slower motion.

When simulating with M = 4 or more phases, phase field variables are
present in the region of a triple junction which do not correspond to the adja-
cent phases. Fig. 1 shows a triple junction on the domain D = [0, 1]2. Thanks
to an appropriate choice of the gαβδ, on the phase transitions no contributions of
other phase field variables than corresponding to the adjacent phases are observed.
But in the triple junction a fourth phase has developed which was not present ini-
tially (φ4(t = 0) = 0) and whose height turned out to be independent of ε and
∆x. Nevertheless, the angles in the triple point still agree remarkably well with
the theoretically predicted values of 120◦ (see [3]) in spite of the presence of the
artificial fourth order contributions.
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Figure 2. Growth of grains. From left to right and from top to bottom
the situation at the times t =0.0, 0.0036, 0.0108, and 0.9.

4. Applications

As a first application example grain growth involving four grains of different struc-
ture was simulated, modeled by an L2-gradient flow of the energy (1.2). It reads

ω∂tφα = ε
(
∇ · a,Xα(φ,∇φ) − a,φα(φ,∇φ)

)
− w,φα − λ (4.1)

with an appropriate Lagrange multiplier λ ensuring ∂tφ ∈ TΣM and a calibration
constant ω. For the surface energy anisotropies the crystalline functions

sαβ(ν) = max{η(k)
αβ · ν, k = 1, . . . , 6},

were chosen where the {η(k)
αβ }k are the edges of a hexagonal crystal. For every

phase transition the same surface energy was chosen, namely gαβ = 1 and{
η
(k)
αβ

}6

k=1
=

{
( 1

0 ) , 1
2

(
1√
3

)
, 1

2

(
−1√

3

)
,
(−1

0

)
, 1

2

(
−1

−
√

3

)
, 1

2

(
1

−
√

3

)}
for all α < β. On the domain D = [0, 1]2 the system of parabolic partial differ-
ential equations (4.1) was discretized explicitly in time using a finite difference
method (gradients were replaced by forward differences, the divergence by a back-
ward difference, cf. [6]). The values for the phase field variables were initialized
using a Voronoj diagram. The grid size of the uniform grid was ∆x = 0.0033, the
time step ∆t = 1.5 · 10−6. Setting gαβδ = 250.0 for all triples α < β < δ third
phase contributions on the phase boundaries could be avoided. Periodic bound-
ary conditions were imposed. Fig. 2 shows the evolution of the grains. During the
relaxation, the angles remarkably good approximate the predicted values of 120◦

and the phase boundaries are oriented according to the preferred directions (cf.
[1] for the crystalline curvature flow resulting from the gradient flow of (1.1) with
such crystalline surface energies).

As a second example the gradient flow (4.1) for three phases (two solid phases
and liquid one) was coupled to parabolic evolution equations balancing the mass
respectively the concentrations of two components of a eutectic alloy (cf. [4] for a
description of a general model for solidification of alloys on which the present one
is based). The concentrations are denoted by c1 and c2 and satisfy the algebraic
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constraint c1 + c2 = 1 and the partial differential equations

∂tci = −∇ · Ji = −∇ ·
2∑

j=1

Lij∇
−µj

T
, 1 ≤ i ≤ 2.

The Ji are the fluxes and satisfy J1 + J2 = 0 for that the algebraic constraint
remains fulfilled during the evolution. The Onsager coefficients Lij constitute a
symmetric matrix and were chosen to be

L11 = L22 = −L12 = −L21 = D(α)c1c2

with diffusion coefficients Dα depending on the phase but independent of the
components. In the liquid phase Dα was set to 1.5 while in the two solid phases
to 0.015. The chemical potentials µj are the derivatives of the free energies of the
possible phases with respect to the concentrations, µj = ∂cjf . The free energies
were chosen of the form

fα(c, φ) :=
3∑

α=1

2∑
i=1

(
ciL

α
i

T − Tα
i

Tα
i

h(φα)
)

+
2∑

i=1

Tci ln(ci).

The function h satisfying h(0) = 0 and h(1) = 1 is a monotone function. The
quantity Lα

i is the latent heats per unit volume of the phase transition from phase α
to the liquid phase and of the pure component i, and Tα

i is the melting temperature
of the ith component in phase α. Indexing the solid phases with α and β and the
liquid one with l the following values were chosen:

Lα
i = Lβ

i = 10.5467, Ll
i = 0, ∀i, Tα

1 = T β
2 = 2.4, Tα

2 = T β
1 = 1.6.

These choices yield a symmetric eutectic phase diagram with a eutectic concentra-
tion of cE = 0.5, a eutectic temperature of about TE ≈ 2.11686, and equilibrium
concentrations cα = 0.1 and cβ = 0.9 of the solid phases at eutectic temperature.
The above choice of the Onsager coefficients together with this free energy density
yields linear diffusion equations in the pure phases, cf. [4].

The system temperature T was kept constant during the simulation and set
to 2.01686 which means that the liquid is slightly undercooled. The evolution of
the phase field variables is coupled to the thermodynamic quantities be adding
a term − 1

T f,φα(c, φ) to the right-hand side of (4.1). The remaining values were
set to ε = 0.4 and ω = 0.1. Initially, a situation as in Fig. 3 on the left was
considered on the domain [4.8, 9.6]. The concentrations in the phases were chosen
according to the equilibrium values at eutectic temperature. To the left and to
the right periodic boundary conditions were imposed while to the top and to the
bottom homogeneous Neumann boundary conditions. The initial situation relaxed
on a uniform grid with spacing ∆x = 0.04 and time stepping ∆t = 0.0002. After
a while, a self-similar lamellar growth of the solid phases into the liquid one was
observed (see Fig. 3). For more numerical simulations and results on eutectic alloys
[9] is an appropriate reference.
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Figure 3. Eutectic solidification, lamellar solid structure growing self-
similarly (after a while) into an undercooled melt. From the left to the
right the situation at t = 0.0, 0.06, 1.2, 6.0.
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High-order Techniques for Calculating
Surface Tension Forces

M. Sussman and M. Ohta

Abstract. In this paper we develop further the “height fraction” technique
for computing curvature directly from volume fractions. In particular we, (1)
develop a systematic approach for calculating curvature from volume fractions
which is accurate to any order, and (2) we test the second-order “height
fraction” technique on the following two-phase problems: (1) the break-up of
a cylindrical column of liquid due to Rayleigh-capillary instability, (2) surface
tension induced droplet oscillations and (3) the steady motion of gas bubbles
rising in liquid.

Keywords. Curvature, volume-of-fluid method, level set, multiphase flow.

1. Introduction

Numerical algorithms for calculating surface tension have been presented from the
perspective of front tracking algorithms [14, 26, 25, 28, 16], Volume-of-Fluid algo-
rithms [3, 7, 1, 18, 8], level set methods [24, 12, 13], and various hybrid methods
[23, 20, 6]. The ability to accurately calculate surface tension can be important for
modeling the impact of drops on surfaces, contact line dynamics, bubble motion,
and the break-up of liquid jets. In our previous work [20], a second-order coupled
level set and volume of fluid method was presented for calculating bubble growth
and collapse. In that work, the “height fraction” technique[9] was employed to
accurately calculate curvature directly from volume fractions. In this paper, we
present additional calculations further validating the second-order method orig-
inally proposed in [20]. Furthermore, we demonstrate that the “height fraction”
technique can be extended to calculate curvature to any order of accuracy.

Conventional wisdom would have it that only a level set representation of
an interface is capable of having a very high-order accurate method for extracting

Work supported in part by NSF grant number 0242524 (U.S. Japan Cooperative Science).
Work supported in part by JSPS.
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the interface curvature. For example, a “spectral” level set approach was presented
by[21]. Previous methods for extracting curvature from volume fractions have been
proposed by Chorin [4] (osculating circle technique), Poo and Ashgriz [15], Aleinov
and Puckett [1] (convolution technique), Williams et al. [27], Renardy et al. [17]
(“PROST”), and the “height fraction” approach [9, 20, 7, 5]. The challenge in
accurately calculating curvature from the volume-of-fluid function F is the fact
that F transitions sharply from 0 (computational cell containing only gas) to 1
(computational cell containing only liquid). Of all the approaches for calculating
curvature from volume fractions, the “height fraction” approach is the most direct,
and, unlike convolution techniques, it is “localized.”

In this paper we present a systematic approach to extending the “height
fraction” approach to any order of accuracy (i.e., higher than second order).

2. Curvature discretization using “height fractions”

The curvature of an interface is computed to second- or fourth-order accuracy
directly from the volume fractions. The method is based on reconstructing the
“height” function directly from the volume fractions [9]. Without loss of generality,
we assume that the free surface is oriented more horizontal than vertical. For
a second-order curvature algorithm, a 3 × 3 × 7 stencil of volume fractions is
constructed about cell (i, j, k). For the fourth-order algorithm, a 5× 5× 13 stencil
of volume fractions is constructed about cell (i, j, k). The 3× 3 (5 × 5 for fourth-
order) vertical sums, Fi′,j′ , i′ = −1 . . . 1, j′ = −1 . . .1, are exact integrals of the
height function h(x, y) (up to a constant); i.e.,

Fi′,j′∆x∆y∆z =
∫ xi+i′+1/2

xi+i′−1/2

∫ yj+j′+1/2

yj+j′−1/2

h(x, y)dxdy + C. (2.1)

It can be shown that ∆z(F1,0 − F−1,0)/(2∆x) is a second-order approximation to
hx(xi, yj) and that ∆z(F1,0−2F0,0 +F−1,0)/∆x2 is a second-order approximation
to hxx(xi, yj). In general, one expands h(x, y) in a Taylor series,

h(x, y) = h(xi, yj) + (x− xi)hx(xi, yj) +
1
2
(x− xi)2hxx(xi, yj)

+
1
6
(x − xi)3hxxx(xi, yj) +

1
24

(x− xi)4hxxxx(xi, yj) + (y − yj)hy(xi, yj)

+
1
2
(y − yj)2hyy(xi, yj) +

1
6
(y − yj)3hyyy(xi, yj) +

1
24

(y − yj)4hyyyy(xi, yj)

+ (x− xi)(y − yj)hxy(xi, yj) +
1
2
(x− xi)2(y − yj)hxxy(xi, yj)

+
1
2
(x − xi)(y − yj)2hxyy(xi, yj) +

1
4
(x− xi)2(y − yj)2hxxyy(xi, yj)

+ higher-order terms.
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After integrating the Taylor series expansion of h(x, y) and using (2.1), one has

Fi′,j′∆z = h(xi+i′ , yj+j′ ) +
1
24

∆x2hxx(xi+i′ , yj+j′ ) (2.2)

+
1

(16)(120)
∆x4hxxxx(xi+i′ , yj+j′ ) +

1
24

∆y2hyy(xi+i′ , yj+j′ )

+
1

(16)(120)
∆y4hyyyy(xi+i′ , yj+j′ ) +

1
(24)(24)

∆x2∆y2hxxyy(xi+i′ , yj+j′ )

+ higher-order terms.

For a horizontally orientated surface, the curvature is written as,

κ = ∇ · n
where,

n =

⎛⎝− hx√
1 + h2

x + h2
y

,− hy√
1 + h2

x + h2
y

,
1√

1 + h2
x + h2

y

⎞⎠ .

For a fourth-order approximation to the curvature, we must approximate hx, hy,
hxx, hyy and hxy with fourth-order accuracy. We assume the discretization to each
of these terms has the form,

∂l+mh(xi, yj)
∂xl∂ym

= ∆z

2∑
i′=−2

2∑
j′=−2

Al,m
i′,j′Fi′,j′ .

The coefficients, Al,m (l = 0, 1, 2 and m = 0, 1, 2), are determined by the “method
of undetermined coefficients” in which one uses the relation (2.2) to relate Fi′,j′

to h, and the fact that our discretization for the derivatives of h should be exact
for the polynomials h(x, y) = (x− xi)l(y − yj)m where l = 0 . . . 4 and m = 0 . . . 4.
As a result, one constructs a matrix system of equations with 25 equations and 25
unknowns. For example, in 2d, one has the following fourth-order approximations,

∂h(xi)
∂x

≈ ∆y

∆x

(
5
48

(F−2 − F2) +
17
24

(F1 − F−1)
)

∂2h(xi)
∂x2

≈ ∆y

∆x2

(
−1
8

(F−2 + F2) +
3
2
(F1 + F−1)−

11
4
F0

)
.

Remark: For the fourth-order algorithm, a 5 × 5 × 13 stencil is used. A possible
concern here is that in underresolved regions, the interface might pass through
the stencil more than one time resulting in an erroneous approximation to the
curvature. A simple patch (not implemented for any of the results presented in
this paper) for this problem would be to locate the interface crossing, in each
13 cell column of data, closest to zk and then delete other interface crossings by
looking at where the divided difference,

Dfi′,j′,k′ =
fi′,j′,k′ − fi′,j′,k′−1

∆z
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Table 1. Convergence study for computing curvatures from volume
fractions of a unit circle in 2d. Results for the second-order and fourth-
order discretizations are reported.

∆x max error (2nd) max error (4th) avg. error (2nd) avg. error (4th)
1/16 0.0031 0.00104 0.0019 0.00016
1/32 0.0007 4.21E-5 0.0005 7.9E-6

Table 2. Convergence study for computing curvatures from volume
fractions of a unit sphere in 3d. Results for the second-order and fourth-
order discretizations are reported.

∆x max error (2nd) max error (4th) avg. error (2nd) avg. error (4th)
1/16 0.050 0.03431 0.0035 0.00081
1/32 0.010 0.00060 0.0009 2.78E-5

changes sign. All volume fractions in the stencil, fi′,j′,k′′ , in which k′′ ≥ k′ ≥ k are
set to fi′,j′,k′−1.

3. Numerical validation of curvature discretization for a circle

We check our curvature discretization algorithm for a circle in 2d or a sphere in
3d. In 2d, we have a unit circle located at the point (2,2) in a 4× 4 domain. In 3d,
we have a unit sphere located at the origin in a 2×2 domain. Symmetric boundary
conditions are used at the borders of the domain. As demonstrated by Tables 1
and 2, we get the appropriate order of accuracy for our high-order height fraction
curvature discretization schemes.

4. Parasitic currents

In this section we test our implementation of surface tension for the problem of a
static 2d drop with surface tension. The exact solution for such a problem is that
the velocity u is identically zero. In terms of the Ohnesorge number,

Oh =
µ√
σρD

,

and assuming constant density and constant viscosity in the drop, the Navier
Stokes equations are,

Du

Dt
= −∇p +

1
Oh

∆u− 1
Oh

κ∇H.

We assume the drop is surrounded by a constant pressure void. The numerical
simulation uses the second-order coupled levelset and volume-of-fluid (CLSVOF)
algorithm described in [20]. We investigate the maximum velocity of our numerical
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Table 3. Convergence study for static droplet with surface tension
(parasitic currents test). Maximum velocity at t = 250 is shown. Oh =
12000. ρL = 1 and ρG = 0. Results for the second-order discretization
of curvature and the fourth-order discretization are reported.

∆x max. velocity (2nd) max. velocity (4th)
1.0/32 1.4E-6 5.5E-7
1.0/64 1.5E-7 2.9E-8

method for varying grid resolutions at the dimensionless time t = 250. The dimen-
sions of our computational grid are 1× 1 with symmetric boundary conditions at
all boundaries. A one diameter drop is placed at the origin of our domain. Our tol-
erance for the pressure solver and viscous solver is 1.0E−12. In Table 3 we display
results of our grid refinement study for Oh = 12000. We used both the second-
order height fraction algorithm and the fourth-order height fraction algorithm for
calculating curvature. Our results indicate at least second-order convergence us-
ing both approaches. We remark that the overall results are not expected to be
4th-order accurate when using the 4th-order height fraction curvature discretiza-
tion since the underlying Navier-Stokes solver is second order. For a reference of
previous results for parasitic currents, we refer the reader to work by [16, 7]. Our
results using the fourth-order accurate curvature discretization algorithm crush
any doubt about the ability to calculate surface tension using the volume-of-fluid
method.

5. 2d axisymmetric test problems

In this section we validate the second-order height fraction curvature discretization
scheme for the problem of (1) surface tension driven drop oscillations, (2) Rayleigh-
capillary instability, and (3) steady bubble motion. The governing equations are
the Navier-Stokes equations for two phase flows,

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ − σκ∇H (5.1)

∇ ·U = 0

Dφ

Dt
= 0

ρ = ρLH(φ) + ρG(1−H(φ))

µ = µLH(φ) + µG(1 −H(φ))

H(φ) =
{

1 φ ≥ 0
0 φ < 0
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Table 4. Convergence study for zero gravity drop oscillations γ = 1/2.

∆r Eavg
Amplitude Emax

amplitude

3/64 N/A N/A
3/128 0.00073 0.00174
3/256 0.00021 0.00054

We either use the second-order “single-phase” method described in [20] (ρG = 0)
or the sharp interface “two-phase” method described in [11, 22] (ρG = 0.001).

For the first problem (1), surface tension driven drop oscillations, we compute
the evolution of a drop in a void with a surface tension coefficient σ = 1/2 and
initial perturbation of ε = 0.05. Table 4 gives the successive errors in amplitude
as one refines the computational grid. In Figure 1, we plot the minor amplitude
versus time for the three different grid resolutions.
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Figure 1. Perturbation in minor amplitude for zero gravity drop os-
cillations. µL = 1/50, γ = 1/2.

For the second problem (2), we calculate the break-up of a liquid jet (in
a void) due to capillary instability. The surface tension coefficient is σ = 1 and
the viscosity coefficient is µ = 1/200. In Figure 2, we display the results of our
computations for the capillary jet as it breaks up. In Table 5, we measure the
relative errors for the interface and velocity field for grid resolutions ranging from
16x32 to 64x128.

For our third test problem (3), we compute the steady state shapes of a gas
bubble rising in a viscous Newtonian liquid. For comparison, we use the experi-
mental results found in [2] and [10] and computational results in [19].

As in [2] and [10], we present our computational results in terms of the
following dimensionless groups. The Reynolds number R, the Eötvös number Eo,
and the Morton number Mo are defined as follows

R =
ρLU

ηL
Eo =

gL2U

σ
Mo =

gη4
L

ρσ3
. (5.2)
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Table 5. Convergence study for the Rayleigh capillary instability prob-
lem. Two-phase sharp interface method. t = 80.

grid Einterface Eavg
Liquid Emax

Liquid

16x32 N/A N/A N/A
32x64 3.87 2.77 0.014
64x128 0.62 0.84 0.003

t=100.0t=90.0

t=80.0t=40.0

Figure 2. Capillary Instability. Grid resolution is 64× 128.

ρ is the liquid density, L is the bubble diameter, U is a characteristic velocity, ηL

is the liquid viscosity, σ is the surface tension, and g is the acceleration of gravity.
A comparison of computed terminal bubble shapes versus previous computational
and experimental results are reported in Figure 3. Our comparisons include oblate
ellipsoidal cap bubbles studied by [2] (Eo = 243, Mo = 266, and R = 7.77 for
bubble figure 2(d) and Eo = 116, Mo = 5.51, and R = 13.3 for bubble figure 3(d)),
spherical cap bubbles studied by Hnat & Buckmaster [10] (R = 9.8, Mo = 0.065,
and C = 4.95, where C = r

(ν2/g)1/3 ), and a disk-bubble studied by Ryskin & Leal
[19] (R = 100 and We = 10).

6. Conclusions

The “height fraction” approach for deriving curvature from volume fractions was
extended from second-order accurate to fourth-order accurate. The improved ac-
curacy was verified both analytically and through numerical tests. When applied
to the “parasitic currents” test, there was a factor of 5 improvement of the fourth-
order method over the second-order method. Besides developing a fourth-order
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Figure 3. Comparison of numerical results with experimental results
and previous computational results. Upper left: Bhaga & Weber (figure
2, bubble (d)). Upper right: Bhaga & Weber (figure 3, bubble (d)).
Lower left: Hnat & Buckmaster. Lower right: Ryskin & Leal.

height fraction technique for finding curvature, we also verified further the robust-
ness of using the second-order height fraction technique together with a 2nd-order
Navier-Stokes solver for problems such as the pinch-off of a liquid jet and the
steady rise of bubbles.
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Simulation of a Model of Tumors
with Virus-therapy

Youshan Tao and Qian Guo

Abstract. We consider a procedure for cancer therapy which consists of in-
jecting replication-competent viruses into the tumor. The viruses infect tumor
cells, replicate inside them, and eventually cause their death. As infected cells
die, the viruses inside them are released and then proceed to infect adjacent
tumor cells. However, a major factor influencing the efficacy of virus agents
is the immune response that may limit the replication and spread of the
replication-competent virus. The immune response is cytokine-mediated. The
expression of viruses in tumor cells sensitize cells to lysis by the TNF (tumor
necrosis factor) cytokine. The competition between tumor cells, a replication-
competent virus and an immune response is modelled as a free boundary
problem for a nonlinear system of partial differential equations, where the
free boundary is the surface of the tumor. In this model, the immune re-
sponse equation is a non-standard parabolic equation due to the chemotaxis
(spatial gradients of diffusible chemicals) of the immune response. The pur-
pose of this paper is to give the numerical methods for solving this kind of
free boundary problems. Several simulation results are also given.

Mathematics Subject Classification (2000). 35R35; 92A15.

Keywords. Tumors, replication-competent virus, immune response, chemo-
taxis, free boundary problems.

1. The model

In the past three decades, the gene therapy approaches for cancer treatment have
been studied and the corresponding mathematical models of tumor growth have
been developed (for example, see [1–6, 10, 12–14]). These models have generated
valuable insights into cancer treatment. However, one of the obstacles in developing
efficient gene therapy to cancer is in the delivery process. The macromolecules used
as gene delivery carriers are too large to be transported into, and diffuse within, the
tumor (see Jain [7]). Recently, replication-competent viruses have been proposed as
an approach to bypass the delivery problem. The virus is engineered to selectively
bind to receptors on the tumor cell surface (but not to the surface of normal
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healthy cells). The virus particles then gain entry by endocytosis and proceed to
proliferate exponentially within the tumor cell, eventually causing death (lysis).
Thereupon the newly reproduced virus particles are released and then proceed to
infect adjacent cancer cells.

A mathematical model which describes the evolution of tumors under viral in-
jection was recently developed by Wu, Byrne, Kirn and Wein [16]. They computed
and compared the evolution of the tumor under different initial conditions using
the simplified version of their model. Friedman and Tao [5] presented a somewhat
different model and made a rigorous mathematical analysis on their model. The
PDE for the virus is the main difference between the FT model and the WBKW
model. The WBKW model does not include diffusion term and their mathematical
system is not a well posed problem.

However, a major factor influencing the efficacy of virus agents is the immune
response. New clinical data ([8], [9]) revealed an innate immune response to virus
that may mitigate the effects of treatment. The immune response is cytokine-
mediated. The expression of virus gene in tumor cells sensitize cells to lysis by
the TNF (tumor necrosis factor) cytokine (see [11] and references therein). The
binding of TNF to death receptors on the tumor cell surface induces apoptosis.
TNF preferentially induces apoptosis of viral-infected tumor cells, whereas the
uninfected tumor cells are generally resistant to TNF-induced killing.

In order to improve the efficacy of oncolytic viruses, we therefore need to
better understand the dynamics between tumor growth, a replication-competent
virus and an immune response. Recently, Wein, Wu and Kirn [15] incorporated an
immune response into their earlier model [16]. In [17] the authors made some anal-
ysis on the WWK model [15] using ODEs which are simplified approximation to
their PDE model, whereas Tao and Guo [11] made a rigorous mathematical analy-
sis on the PDE model. Furthermore, TG model [11] includes a diffusion term in the
immune response equation for the consideration of mathematical well-posedness.

Clinical results suggest that the immune response is cytokine-mediated (see
Section 1 in [11]). The immune response migrates towards cytokines. The move-
ment of the immune response is sometimes an active process induced by chemoat-
tractants. Therefore, the immune response equation should include not only the
random diffusion but also the chemotaxis as done in [10].

The physical variables are assumed as follows:

x̂ = density of uninfected tumor cells,
ŷ = density of infected tumor cells,
n̂ = density of necrotic cells,
v̂ = density of free virus, i.e., virus in the extracellular tissue,
ẑ = density of the immune response, and
u = the velocity field within the tumor.

The tumor volume is modelled as an incompressible fluid, through which the cells
travel via a convective field whose velocity is u. The velocity field is a result of
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the spatio-temporal variation due to the proliferation of uninfected cells and the
removal of necrotic cells. We assume that the problem is radially symmetric, so
that all the unknown functions depend only on (r, t) where r is the distance from
the center of the tumor. The model were derived by applying the principle of mass
conservation to each of the variables. The model consists of the following system
of equations:

Dx̂

Dt
≡ ∂x̂(r, t)

∂t
+

1
r2

∂

∂r

(
r2u(r, t)x̂(r, t)

)
(1.1)

= λx̂(r, t)− βx̂(r, t)v̂(r, t),
Dŷ

Dt
≡ ∂ŷ(r, t)

∂t
+

1
r2

∂

∂r

(
r2u(r, t)ŷ(r, t)

)
(1.2)

= βx̂(r, t)v̂(r, t)− δŷ(r, t)− kŷ(r, t)ẑ(r, t),
Dn̂

Dt
≡ ∂n̂(r, t)

∂t
+

1
r2

∂

∂r

(
r2u(r, t)n̂(r, t)

)
(1.3)

= δŷ(r, t) + kŷ(r, t)ẑ(r, t)− µn̂(r, t),

∂v̂(r, t)
∂t

= Nδŷ(r, t)− γv̂(r, t) + D1
1
r2

∂

∂r

(
r2
∂v̂(r, t)
∂r

)
,

∂v̂(0, t)
∂r

= 0, (1.4)

∂ẑ(r, t)
∂t

= lẑ(r, t)ŷ(r, t)− ω[ẑ(r, t)]2 + D2
1
r2

∂

∂r

(
r2
∂ẑ(r, t)
∂r

)
(1.5)

− χ

r2
∂

∂r

(
r2ẑ(r, t)

∂ŷ(r, t)
∂r

)
, D2

∂ẑ(0, t)
∂r

− χ
∂ŷ(0, t)
∂r

= 0.

In (1.1), λ is the proliferation rate of the uninfected cancer cells and β is the
infection rate of the uninfected cells; in (1.2), δ is the death rate of the infected
cells by lysis and k is the killing rate of the infected cells killed by the immune
response; in (1.3), µ is the removal rate of the necrotic cells; in (1.4), γ is the
removal (or clearance) rate of virus (1/γ is the mean lifetime of free virus), Nδ is
the virus release rate (N is the burst size of virus at the death of a cell) and D1

is the diffusion coefficient of virus; in (1.5), l is the productive rate of the immune
response, ω is the second-order clearance rate of the immune response, D2 is the
diffusion coefficient of the immune response and χ is the chemotactic coefficient;
the last equation in (1.4) or (1.5) is a consequence of the radial symmetry. The
readers may refer to [5, 11, 15–17] for more detailed biological explanations of the
equations (1.1)–(1.5) (except the chemotaxis term in (1.5)).

We finally assume that all cells have the same size and density, and that they
are uniformly distributed in the tumor (see [13]), so that

x̂ + ŷ + n̂ ≡ const. ≡ θ. (1.6)

Summing equations (1.1)–(1.3) and invoking the assumption (1.6) we get

θ

r2
∂

∂r

(
r2u(r, t)

)
= λx̂(r, t)− µn̂(r, t). (1.7)
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The boundary conditions, at the moving boundary, are

∂

∂r
v̂(R(t), t) = D2

∂

∂r
ẑ(R(t), t)− χẑ(R(t), t)

∂

∂r
ŷ(R(t), t) = 0, (1.8)

dR(t)
dt

= u(R(t), t). (1.9)

(1.8) means that virus particles and the immune response do not cross the
boundary, for t > 0, and (1.9) is the equation of continuity: the velocity of the free
surface is the same as the velocity u at the surface.

We note that Equation (1.3) is a consequence of Equations (1.1), (1.2), (1.6)
and (1.7), so that in the sequel we may drop this equation and replace n̂ by θ−x̂−ŷ
in (1.7).

We also note that since the velocity field is radially symmetric,

u(0, t) = 0. (1.10)

To complete the model, we impose the following initial conditions

R(0) is prescribed,
x̂(r, 0) = x̂0(r), ŷ(r, 0) = ŷ0(r), v̂(r, 0) = v̂0(r), ẑ(r, 0) = ẑ0(r)
where ẑ0(r) > 0 and x̂0(r), ŷ0(r), v̂0(r) are nonnegative
functions with x̂0(r) + ŷ0(r) ≤ θ, for 0 ≤ r ≤ R(0).

(1.11)

This paper studies numerically the model (1.1)–(1.11). We shall study ana-
lytically in a subsequent paper the global existence of the solutions of the model
(1.1)–(1.11).

Remark 1.1. The model (1.1)–(1.11) was originally developed by Wein, Wu and
Kirn (see [15], [17]). However, in the WWK model there does not appear a dif-
fusion term in the virus equation (1.4) and there do not appear a diffusion term
and a chemotaxis term for the immune response equation (1.5). Without a diffu-
sion term for virus density or for immune response density, the WWK model is,
mathematically, not a well posed problem, as explained in Section 3 of [5]. As said
before, the immune response migrates towards cytokines. The movement of the
immune response is sometimes an active process induced by chemoattractants.
So we incorporate a chemotaxis term into the immune response equation (1.5).
Mathematically, with a chemotaxis term, the equation (1.5) is non-standard para-
bolic equation. Biologically, the chemotaxis may have effects on the tumor growth
and on the spatio-temporal distributions of tumor cells, viruses and the immune
response.

The structure of this paper is as follows. First, in Section 2 we transform the
problem (1.1)–(1.11) into a problem in a fixed region and we introduce a variable
change to simplify the difficulty which is due to the chemotaxis term. In Section 3
and 4, we study the model using numerical methods. The numerical methods are
given in Section 3, whereas the simulation results are presented in Section 4.
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2. Transformation

We introduce the variables

x̃ =
x̂

θ
, ỹ =

ŷ

θ
, ṽ =

v̂

θN
, z̃ = ẑ, ũ = u

and the quantity

p0 =
βNθ

γ
.

The parameter p0 is called the basic reproductive ratio in the epidemic modeling.
It represents the mean number of virus particles released by one virus.

It will be convenient to transform the region {0 ≤ r ≤ R(t)} into the fixed
region {0 ≤ ρ ≤ 1} by

ρ = ρ(r, t) =
r

R(t)
.

We further introduce the variable change:

x(ρ, t) = x̃(r, t), y(ρ, t) = ỹ(r, t), z(ρ, t) = z̃(r, t)e−
χ

D2
ỹ(r,t),

v(ρ, t) = ṽ(r, t), u(ρ, t) = ũ(r, t)/R(t).

In terms of the new variable, the system (1.1)–(1.11) takes the following form:

∂x

∂t
+

[
u(ρ, t)− ρu(1, t)

]∂x
∂ρ

(2.1)

= λx− p0γxv −
[
− µ+ (λ + µ)x + µy

]
x,

∂y

∂t
+

[
u(ρ, t)− ρu(1, t)

]∂y
∂ρ

(2.2)

= p0γxv − δy − kyze
χ

D2
y −

[
− µ+ (λ + µ)x + µy

]
y,

∂v

∂t
− D1

R2(t)
1
ρ2

∂

∂ρ

(
ρ2 ∂v

∂ρ

)
− ρu(1, t)

∂v

∂ρ
= δy − γv, vρ(0, t) = 0, (2.3)

∂z

∂t
− D2

R2(t)
1
ρ2

∂

∂ρ

(
ρ2 ∂z

∂ρ

)
−

( χ

R2(t)
∂y

∂ρ
+ ρu(1, t)

)∂z
∂ρ

(2.4)

=
[
− χ

D2

(∂y
∂t
− ρu(1, t)

∂y

∂ρ

)
+ lθy

]
z − ωe

χ
D2

yz2, zρ(0, t) = 0,

u(ρ, t) =
1
ρ2

∫ ρ

0

s2
[
− µ + (λ + µ)x(s, t) + µy(s, t)

]
ds (2.5)

in {0 < ρ < 1, t > 0},
Ṙ(t) = R(t)u(1, t), R(0) is given, (2.6)
vρ(1, t) = zρ(1, t) = 0, (2.7)
x(ρ, 0) = x0(ρ), y(ρ, 0) = y0(ρ), v(ρ, 0) = v0(ρ), z(ρ, 0) = z0(ρ), (2.8)

x0(ρ) ≥ 0, y0(ρ) ≥ 0, x0(ρ) + y0(ρ) ≤ 1, z0(ρ) > 0. (2.9)
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We shall also assume that

x0(ρ), y0(ρ), v0(ρ) and z0(ρ) belong to C1[0, 1], and
∂v0

∂ρ
(1) =

∂z0
∂ρ

(1) = 0.

(2.10)
In this paper we focus on numerically solving the system (2.1)–(2.10). The

numerical methods are given in Section 3 and the simulation results are presented
in Section 4. The global existence of the solutions to the system (2.1)–(2.10) will
be studied in a forthcoming paper.

3. Numerical methods

We solve the system (2.1)–(2.10) by finite difference methods (for simplicity, we
take δy = γv). We give a spatial mesh, with mesh points si = ih, h = 1

N0
for

0 ≤ i ≤ N0, which partition the interval [0, 1]. And we set time step τ, tm =
mτ,m = 0, 1, 2, . . . .

We denote

R(m) ≈ R(tm), u(i,m) ≈ u(si, tm), v(i,m) ≈ v(si, tm),

x(i,m) ≈ x(si, tm), y(i,m) ≈ y(si, tm), z(i,m) ≈ z(si, tm).

By the composite trapezoid rule, we discretize (2.5)

u(i,m) = −µsi

3
+

(λ + µ)
s2i

h
i−1∑
j=0

1
2
(
s2jx

(j, m−1) + s2j+1x
(j+1, m−1)

)
(3.1)

+
µ

s2i
h

i−1∑
j=0

1
2
(
s2jy

(j, m−1) + s2j+1y
(j+1, m−1)

)
.

and, u(0,m) = 0.
By the backward Euler method, we discretize (2.6)

R(m) =
R(m−1)

1− τ ∗ u(N0,m)
. (3.2)

Using the implicit centered difference formula, we discretize equations (2.1),
(2.2) and (2.4) with initial value conditions (2.17)

x(i,m) − x(i,m−1) +
τ

h

[
u(i,m) − si × u(N0,m)

](
x(i,m) − x(i−1,m)

)
(3.3)

−τ
{
λ− p0γv

(i,m−1) − [−µ + (λ + µ)x(i,m) + µy(i,m)]
}
x(i,m) = 0

where i = 1, . . . , N0 − 1;

x(i,m) − x(i,m−1) − τ
{
λ− p0γv

(i,m−1) − [−µ+ (λ + µ)x(i,m) + µy(i,m)]
}
x(i,m) = 0
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where i = 0, N0 and we have used the fact that [u(ρ, t)− ρu(1, t)]|ρ=0,1 = 0;

y(i,m) − y(i,m−1) +
τ

h

[
u(i,m) − si × u(N0,m)

](
y(i,m) − y(i−1,m)

)
(3.4)

−τ
{
p0γv

(i,m−1)x(i,m) − δy(i,m) − ky(i,m)z(i,m−1)e
χ

D2
y(i,m)

−[−µ+ (λ + µ)x(i,m) + µy(i,m)]y(i,m)
}

= 0

where i = 1, . . . , N0 − 1;

y(i,m) − y(i,m−1) − τ
{
p0γv

(i,m−1)x(i,m) − δy(i,m) − ky(i,m)z(i,m−1)e
χ

D2
y(i,m)

−[−µ+ (λ + µ)x(i,m) + µy(i,m)]y(i,m)
}

= 0

where i = 0, N0 and we have used the fact that [u(ρ, t)− ρu(1, t)]|ρ=0,1 = 0;

z(i,m) − z(i,m−1) + τ
{
− D2

R(m)2

[ 2
si

z(i,m) − z(i−1,m)

h
(3.5)

+
z(i+1,m) − 2 z(i,m) + z(i−1,m)

h2

]
−
[ χ

R(m)2

y(i,m) − y(i−1,m)

h
+ si u

(N0,m)
]z(i,m) − z(i−1,m)

h

−
[
lθ y(i,m) − χ

D2

(y(i,m) − y(i,m−1)

τ
− siu

(N0,m) y
(i,m) − y(i−1,m)

h

)]
z(i,m)

+ωe
χ

D2
y(i,m)

z(i,m)2
}

= 0

where i = 1, . . . , N0 − 1;

z(i,m) − z(i,m−1) + τ
{
− D2

R(m)2

[z(i+1,m) − 2 z(i,m) + z(i+1,m)

h2

]
−
[
lθ y(i,m) − χ

D2

y(i,m) − y(i,m−1)

τ

]
z(i,m) + ωe

χ
D2

y(i,m)

z(i,m)2
}

= 0

where i = 0,

z(i,m) − z(i,m−1) + τ
{
− D2

R(m)2

[z(i−1,m) − 2 z(i,m) + z(i−1,m)

h2

]
−
[
lθ y(i,m) − χ

D2

y(i,m) − y(i,m−1)

τ

]
z(i,m) + ωe

χ
D2

y(i,m)

z(i,m)2
}

= 0

where i = N0.

Here, we have used the boundary conditions ∂y
∂ρ (1, t) = ∂z

∂ρ(0, t) = ∂z
∂ρ(1, t) = 0.

We propose the following iteration algorithm:
(1) Initialization: Given corresponding parameters and mmax, set m = 1, x(i,0) =

x0(i), y(i,0) = y0(i), i = 0, 1, . . . , N, R(0) = 1;
(2) Solve (3.1) for u(i,m), i = 0, 1, . . . , N ;
(3) Solve (3.2) for R(m);
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(4) Solve (3.3) and (3.4) for x(i,m), y(i,m), i = 0, 1, . . . , N ;
(5) Evaluate (3.5) at ρ = si, t = tm for z(i,m), i = 0, 1, . . . , N ;

(6) v(i,m) = δ y(i,m)

γ , i = 0, 1, . . . , N ;

(7) STOP if m > mmax; otherwise set m := m + 1, GOTO (2).

4. Simulation results

The typical parameter values for our numerical work are λ = 3.2 × 10−4; µ =
1/72; ω = 1600; δ = 1/48; p0 = 3.73; κ = 15.3; γ = 1; θ = 1e6; l = 0.0016; D2 =
0.0005; xs = 9.7531× 10−1; ys = 3.8298× 10−3; zs = 3.0× 10−1; x0 = xs+ xs ∗
(ρ3/3−ρ2/2)/10; y0 = ys+ ys∗ (ρ3/3−ρ2/2)/50; z0 = zs+ zs∗ (ρ3/3−ρ2/2)∗ 2,
(see [13]).

Figure 1 shows that the tumor growth is monotonous increasing in chemotaxis
coefficient χ if t ≥ 20 (hours) and the diffusivity D2 is small. However, the tumor
growth is insensitive to the chemotaxis coefficient χ if the diffusivity D2 is large.

0 50 100 150 200 250 300
0.999

1

1.001

1.002

1.003

1.004

1.005

time (hours)

R
(t

)

χ=0
χ=1
χ=2

Figure 1. The effect of the chemotaxis coefficient χ on tumor growth.

Figure 2 shows that the effects of the chemotaxis coefficient χ on the spatial
distribution of the infected cell density y(ρ, t), which varies with time.

The stronger the chemotaxis is, the more the immune response migrates
towards the infected cells, and therefore more virus may be killed. Overall, the
strong chemotaxis may mitigate the effects of treatment as shown in Figure 1.

At the early stage of tumor growth, the density of the infected cells is increas-
ing in the spatial direction (see the spatial distribution of the density y(ρ, t) of the
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Figure 2. The spatial distributions of the density y(ρ, t) of the infected
cells at times t = 50, 100, 150, 200.

infected cells at time t = 50 in Figure 2). However, the infected cells can secrete
chemoattractants, which can induce the movement of the immune response (which
in turn kills the infected cells). The spatial gradient of the infected cells directs
this movement. Hence, as time t increasing, the above monotony of y(ρ, t) in the
spatial direction changes. The density of the infected cells may become decreasing
in the spatial direction (see the spatial distributions of the density y(ρ, t) of the
infected cells at time t = 100, 150, 200 in Figure 2). Our simulation also shows that
the density of the infected cells depends on the chemotactic coefficient χ. How-
ever, this dependence is not monotonous (see Figure 2), which may indicate the
complexity of the competition between tumor cells, virus and an immune response.
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Asymptotic Behavior of a
Hyperbolic-parabolic Coupled System
Arising in Fluid-structure Interaction

Xu Zhang and Enrique Zuazua

Abstract. In this paper we summarize some recent results on the asymptotic
behavior of a linearized model arising in fluid-structure interaction, where
a wave and a heat equation evolve in two bounded domains, with natural
transmission conditions at the interface. These conditions couple, in particu-
lar, the heat unknown with the velocity of the wave solution. First, we show
the strong asymptotic stability of solutions. Next, based on the construction
of ray-like solutions by means of Geometric Optics expansions and a careful
analysis of the transfer of the energy at the interface, we show the lack of
uniform decay of solutions in general domains. Finally, we obtain a polyno-
mial decay result for smooth solutions under a suitable geometric assumption
guaranteeing that the heat domain envelopes the wave one. The system un-
der consideration may be viewed as an approximate model for the motion
of an elastic body immersed in a fluid, which, in its most rigorous modeling
should be a nonlinear free boundary problem, with the free boundary being
the moving interface between the fluid and the elastic body.
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Keywords. Fluid-structure interaction, Strong asymptotic stability, Non-uni-
form decay, Gaussian Beams, Polynomial decay, Weakened observability in-
equality.

1. Introduction

Let Ω ⊂ R
n (n ∈ N) be a bounded domain with C2 boundary Γ = ∂Ω. Let Ω1 be a

sub-domain of Ω and set Ω2 = Ω \Ω1. We denote by γ the interface, Γj = ∂Ωj \ γ

The work is supported by the Grant MTM2005-00714 of the Spanish MEC, the DOMINO Project
CIT-370200-2005-10 in the PROFIT program of the MEC (Spain), the SIMUMAT projet of the
CAM (Spain), the EU TMR Project “Smart Systems”, and the NSF of China under grants
10371084 and 10525105.
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(j = 1, 2), and νj the unit outward normal vector of Ωj (j = 1, 2). We assume
γ �= ∅ and γ is of class C1 (unless otherwise stated). Denote by � the d’Alembert
operator ∂tt −∆. Consider the following hyperbolic-parabolic coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt −∆y = 0 in (0,∞)× Ω1,
�z = 0 in (0,∞)× Ω2,
y = 0 on (0,∞)× Γ1,
z = 0 on (0,∞)× Γ2,

y = zt,
∂y
∂ν1

= − ∂z
∂ν2

on (0,∞)× γ,

y(0) = y0 in Ω1,
z(0) = z0, zt(0) = z1 in Ω2.

(1.1)

This is a simplified and linearized model for fluid-structure interaction. In sys-
tem (1.1), y may be viewed as the velocity of the fluid; while z and zt represent
respectively the displacement and velocity of the structure. This system consists
of a wave and a heat equation coupled through an interface with transmission
conditions. More realistic models should involve the Stokes (resp. the elasticity)
equations instead of the heat (resp. the wave) ones. In [7] and [11], the same system
was considered but for the transmission condition y = z on the interface instead
of y = zt. From the point of view of fluid-structure interaction, the transmission
condition y = zt in (1.1) is more natural since y and zt represent velocities of the
fluid and the elastic body, respectively. On the other hand, in the most rigorous
formulation the model should consist on a free boundary problem, with the free
boundary being the moving interface between the fluid and the elastic body. After
linearization around the trivial solution the interface is kept fixed in time. Our
analysis concerns this later linearized formulation.

Put H1
Γ1

(Ω1)
�
=

{
h|Ω1

∣∣∣h ∈ H1
0 (Ω)

}
and H1

Γ2
(Ω2)

�
=

{
h|Ω2

∣∣∣ h ∈ H1
0 (Ω)

}
. As

we shall see, system (1.1) is well posed in the Hilbert space

H
�= L2(Ω1)×H1

Γ2
(Ω2)× L2(Ω2).

The space H is asymmetric with respect to the wave and heat components since
the regularity differs in one derivative from one side to the other.

When Γ2 is a non-empty open subset of the boundary, the following is an
equivalent norm on H :

|f |H =
√
|f1|2L2(Ω1) + |∇f2|2(L2(Ω2))n + |f3|2L2(Ω2)

, ∀ f = (f1, f2, f3) ∈ H.

This simplifies the dynamical properties of the system in the sense that the only
stationary solution is the trivial one. The analysis is simpler as well. The same
can be said when Γ2 has positive capacity since, then, the Poincaré inequality
holds. Note that when Γ2 = ∅ or, more generally, when Cap Γ2, the capacity of
Γ2, vanishes, | · |H is no longer a norm on H . In this case, there are non-trivial
stationary solutions of the system. Thus, the asymptotic behavior is more complex
and one should rather expect the convergence of each individual trajectory to a
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specific stationary solution. Therefore, to simplify the presentation of this paper,
we shall assume Cap Γ2 �= 0 in what follows.

Define the energy of system (1.1) by

E(t)
�
= E(y, z, zt)(t) =

1
2
|(y(t), z(t), zt(t))|2H .

By means of the classical energy method, it is easy to check that

d

dt
E(t) = −

∫
Ω1

|∇y|2dx. (1.2)

Therefore, the energy of (1.1) is decreasing as t → ∞. First of all, we show that
E(t) → 0 as t → ∞, without any geometric conditions on the domains Ω1 and
Ω2. Note however that, due to the lack of compactness of the resolvent of the
generator of the underlying semigroup of system (1.1) for n ≥ 2, one can not
use directly the LaSalle’s invariance principle to prove this result. Instead, using
the “relaxed invariance principle” ([9]), we conclude first that the first and third
components of every solution (y, z, zt) of (1.1), y and zt, tend to zero strongly
in L2(Ω1) and L2(Ω2), respectively; while its second component z tends to zero
weakly in H1

Γ2
(Ω2) as t→∞. Then, we use the special structure of (1.1) and the

key energy dissipation law (1.2) to “recover” the desired strong convergence of z
in H1

Γ2
(Ω2).

The main goal of this paper is to summarize the results we have obtained
in the analysis of the longtime behavior of E(t). Especially, we study whether or
not the energy of solutions of system (1.1) tends to zero uniformly as t→∞, i.e.,
whether there exist two positive constants C and α such that

E(t) ≤ CE(0)e−αt, ∀ t ≥ 0 (1.3)

for every solution of (1.1).
According to the energy dissipation law (1.2), the uniform decay problem

(1.3) is equivalent to showing that: there exists T > 0 and C > 0 such that every
solution of (1.1) satisfies

|(y0, z0, z1)|2H ≤ C

∫ T

0

∫
Ω1

|∇y|2dxdt, ∀ (y0, z0, z1) ∈ H. (1.4)

Inequality (1.4) can be viewed as an observability estimate for equation (1.1) with
observation on the heat subdomain.

Note however that, as indicated in [10], there is no uniform decay for solutions
of (1.1) even in one space dimension. The analysis in [10] exhibits the existence of a
hyperbolic-like spectral branch such that the energy of the eigenvectors is concen-
trated in the wave domain and the eigenvalues have an asymptotically vanishing
real part. This is obviously incompatible with the exponential decay rate. The
approach in [10], based on spectral analysis, does not apply to multidimensional
situations. But the 1− d result in [10] is a warning in the sense that one may not
expect (1.4) to hold.
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Exponential decay property also fails in several space dimensions, as the 1−d
spectral analysis suggests. For this purpose, following [7], we analyze carefully the
interaction of the wave and heat-like solutions on the interface for general geome-
tries. The main idea is to use Gaussian Beams ([6] and [5]) to construct approx-
imate solutions of (1.1) which are highly concentrated along the generalized rays
of the d’Alembert operator � in the wave domain Ω2 and are almost completely
reflected on the interface γ. Due to the asymmetry of the energy space H , the same
construction in [7] does not give the desired estimate. One has to compute higher
order corrector terms on the phases and amplitudes of the wave-like solutions to
recover an accurate description.

In view of the above analysis, it is easy to see that, one can only expect a
polynomial stability property of smooth solutions of (1.1) even under the Geomet-
ric Control Condition (GCC for short, see [1]), i.e., when the heat domain where
the damping of the system is active is such that all rays of Geometric Optics prop-
agating in the wave domain touch the interface in an uniform time. To verify this,
we need to derive a weakened observability inequality by viewing the whole system
as a perturbation of the wave equation in the whole domain Ω. This technique was
applied in the simpler model analyzed in [7]. However, as before, some efforts are
necessary to treat the asymmetric structure of the energy space H .

We refer to [12] for the details of the proofs of the results in this paper
and other results in this context (especially for the analysis without the technical
assumption Cap Γ2 �= 0).

2. Some preliminary results

In this section, we shall present some preliminary results.
Define an unbounded operatorA : D(A) ⊂ H → H by AY = (∆Y1, Y3,∆Y2),

where Y = (Y1, Y2, Y3) ∈ D(A), and

D(A) =
{

(Y1, Y2, Y3) ∈ H
∣∣∣ ∆Y1 ∈ L2(Ω1), ∆Y2 ∈ L2(Ω2), Y3 ∈ H1(Ω2),

Y1|Γ1 = Y3|Γ2 = 0, Y1|γ = Y3|γ ,
∂Y1

∂ν1

∣∣∣
γ

= −∂Y2

∂ν2

∣∣∣
γ

}
.

Remark 1. Obviously, in one space dimension, i.e., n = 1, we have D(A) ={
(Y1, Y2, Y3) ∈ H

∣∣∣ Y1 ∈ H2(Ω1), Y2 ∈ H2(Ω2), Y3 ∈ H1(Ω2), Y1|Γ1 = Y3|Γ2 =

0, Y1|γ = Y3|γ , ∂Y1
∂ν1

∣∣∣
γ

= −∂Y2
∂ν2

∣∣∣
γ

}
⊂ H2(Ω1) ×H2(Ω2)×H1(Ω2). But this is not

longer true in several space dimensions.

It is easy to see that system (1.1) can be re-written as an abstract Cauchy
problem in H : Xt = AX for t > 0 with X(0) = X0, where X = (y, z, zt) and
X0 = (y0, z0, z1). We have the following result.

Theorem 1. The operator A is the generator of a contractive C0-semigroup in H,
and 0 ∈ ρ(A), the resolvent of A.
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Remark 2. When n = 1, in view of the embedding in Remark 1, it is easy to
check that A−1 is compact. However, A−1 is not guaranteed to be compact in
several space dimensions, i.e., n ≥ 2. Indeed, for any F = (F1, F2, F3) ∈ H , the
second component Y2 of A−1F belongs to H1

Γ2
(Ω2), which has the same regularity

as the second component F2 of F . (According to the regularity theory of elliptic
equations, this regularity property for Y2 is sharp as we shall see.)

The following result shows that A−1 is not compact.

Proposition 1. In dimensions n ≥ 2, the domain D(A) is noncompact in H.

The proof of Proposition 1 is due to Thomas Duyckaerts. The main idea is
as follows: It suffices to show that there exists a sequence of {(Y k

1 , Y
k
2 , Y

k
3 )}∞k=1 ⊂

D(A) such that (Y k
1 , Y

k
2 , Y

k
3 ) ⇀ 0 in D(A) as k →∞ and inf

k∈N

|(Y k
1 , Y

k
2 , Y

k
3 )|H ≥ c

for some constant c > 0. For this purpose, for any nonempty open subset Γ0 of Γ,
we denote by H

−1/2
Γ0

(Γ) the completion of C(Γ0 ) with respect to the norm:

|u|
H

−1/2
Γ0

(Γ)
= sup

{ ∣∣∫
Γ
ufdΓ

∣∣
|f |H1/2(Γ)

∣∣∣∣∣ f ∈ H1/2(Γ) \ {0} and f = 0 on Γ \ Γ0

}
.

Since H
−1/2
γ (∂Ω1) can be identified with H

−1/2
γ (∂Ω2) (algebraically and topo-

logically), we denote them simply by H
−1/2
γ . It is easy to see that H

−1/2
γ is an

infinite-dimensional separable Hilbert space whenever n ≥ 2. Hence there is a se-
quence {βk}∞k=1 ⊂ H

−1/2
γ such that |βk|

H
−1/2
γ

= 1 for each k and βk ⇀ 0 in H
−1/2
γ

as k →∞.
We solve the following two systems⎧⎪⎨⎪⎩

∆Y k
1 = 0 in Ω1,

Y k
1 = 0 on Γ1,

∂Y k
1

∂ν1
= −βk on γ,

⎧⎪⎨⎪⎩
∆Y k

2 = 0 in Ω2,

Y k
2 = 0 on Γ2,

∂Y k
2

∂ν2
= βk on γ

to get Y k
i ∈ H1

Γi
(Ωi) (i = 1, 2), and then solve⎧⎪⎨⎪⎩

∆Y k
3 = 0 in Ω2,

Y k
3 = 0 on Γ2,

Y k
3 = Y k

1 on γ

to get Y k
3 ∈ H1

Γ2
(Ω2). This produces the desired {(Y k

1 , Y
k
2 , Y

k
3 )}∞k=1.

Remark 3. Noting the structure of D(A), it is easy to see that

D(A) ⊂ H1
Γ1

(Ω1)×H1
Γ2

(Ω2)×H1
Γ2

(Ω2). (2.1)

This, at least, produces H1-regularity for the heat and wave components of system
(1.1) whenever its initial datum belongs to D(A). One may need the H2-regularity
for the heat and wave components of system (1.1) when the initial data are smooth.
For this to be true it is not sufficient to take the initial data in D(A) since generally
D(A) �⊂ (H2(Ω1) ∩H1

Γ1
(Ω1))× (H2(Ω2) ∩H1

Γ2
(Ω2)) ×H1

Γ2
(Ω2) unless n = 1.
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In order to prove the existence of smooth solutions of (1.1), we introduce the
following Hilbert space:

V =
{
(y0, z0, z1) ∈ D(A)

∣∣∣ y0 ∈ H2(Ω1), z0 ∈ H2(Ω2)
}
⊂ D(A),

with the canonical norm. Note however that, according to Proposition 1, D(Ak)
is not necessarily a subspace of V even if k ∈ N is sufficiently large.

We have the following regularity result:

Theorem 2. Let Γ∩γ = ∅ and γ ∈ C2. Then for any (y0, z0, z1) ∈ V , the solution of
(1.1) satisfies (y, z, zt) ∈ C([0,∞);V ), and for any T ∈ (0,∞), there is a constant
CT > 0 such that

|(y, z, zt)|C([0,T ];V ) ≤ CT |(y0, z0, z1)|V .
The main idea to show Theorem 2 is as follows: We first take the tangential

derivative of the system and show that the tangential derivative of the solution is
of finite energy and then by using the original equation, one obtains the regularity
of the other derivatives.

3. Asymptotic behavior

First of all, we show the strong asymptotic stability of (1.1) without the GCC.

Theorem 3. For any given (y0, z0, z1) ∈ H, the solution (y, z, zt) of (1.1) tends to
0 strongly in H as t→∞.

To prove Theorem 3, by density, it suffices to assume (y0, z0, z1) ∈ D(A).
As we said above, we apply the relaxed invariance principle, using the energy as
Lyapunov function. This yields the strong convergence to zero of the components y
and zt of the solution in the corresponding spaces. But this argument fails to give
strong convergence to zero of z in H1

Γ2
(Ω2), because of the lack of compactness

of the embedding from D(A) into H . This argument, in principle, only yields the
weak convergence of z. We need a further argument to show that the convergence
of z holds in the strong topology of H1

Γ2
(Ω2). The key point is that, in view of the

energy dissipation law (1.2), one has

∇y ∈ L2(0,∞; (L2(Ω1))n). (3.1)

Also, by the standard semigroup theory and (2.1) in Remark 3, we see that ∇y ∈
C([0,∞); (L2(Ω1))n). Therefore, (3.1) implies that there is a sequence {sn}∞n=1

which tends to ∞ such that

∇y(sn)→ 0 strongly in (L2(Ω1))n as n→∞.

With this, we can deduce that

∇z(sn)→ 0 strongly in (H1(Ω2))n as n→∞,

and, using the decreasing character of the energy of the system, we may conclude
that the convergence holds along all the continuous one parameter family z(s) as
s tends to infinity.



Asymptotic Behavior of a Hyperbolic-parabolic Coupled System 451

Next, we analyze the non-uniform decay of solutions to (1.1). For this pur-
pose, we recall that a null bicharacteristic for � in R

n is defined to be a solution
of the ODE: {

ẋ(t) = 2ξ(t), ξ̇(t) = 0,
x(0) = x0, ξ(0) = ξ0,

where the initial data ξ0 are chosen such that |ξ0| = 1/2. Clearly, (t, x(t)), the
projection of the null bicharacteristic to the physical time-space, traces a line in
R

1+n (starting from (0, x0)), which is called a ray for � in the sequel. Sometimes,
we also refer to (t, x(t), ξ(t)) as the ray. Obviously, rays for � in R

n are simply
straight lines.

In the presence of boundaries, rays, when reaching the boundary, are reflected
following the usual rules of Geometric Optics. More precisely, for a T > 0 and a
bounded domain M ⊂ R

n with piecewise C1 boundary ∂M , the singular set being
localized on a closed (topological) sub-manifold S with dimS ≤ n−2, we introduce
the following definition of multiply reflected rays.

Definition 1. A continuous parametric curve: [0, T ] � t �→ (t, x(t), ξ(t)) ∈ C([0, T ]×
M × R

n), with x(0) ∈M and x(T ) ∈M , is called a multiply reflected ray for the
operator � in [0, T ]×M if there exist m ∈ N, 0 < t0 < t1 < · · · < tm = T such
that each (t, x(t), ξ(t))|ti<t<ti+1 is a ray for � (i = 0, 1, 2, . . . ,m−1), which arrives
at ∂M \S at time t = ti+1, and is reflected by (t, x(t), ξ(t))|ti+1<t<ti+2 by the usual
geometric optics law whenever i < m− 1.

In view of [7, Lemma 2.2 and Remark 2.4], we have the following geometric
lemma.

Lemma 1. For each T > 0, there is a multiply reflected ray for the operator � in
M which meets ∂M \ S transversally and non-normally.

We have the following key result.

Theorem 4. Let the boundary ∂Ω2 of the wave domain Ω2 be of class C4. For any
T > 0, let [0, T ] � t �→ (t, x(t), ξ(t)) ∈ C([0, T ]× Ω2 × R

n) be a multiply reflected
ray for the operator � in Ω2, which meets the boundary ∂Ω2 transversally and
non-normally. Then there is a family of solutions {(yε, zε)}ε>0 of system (1.1) in
(0, T ) (the initial conditions being excepted), such that

|∇yε|2(L2((0,T )×Ω1))n = O(ε), Eε(0) = E(yε, zε, ∂tzε)(0) ≥ c0,

where c0 > 0 is a constant, independent of ε.

Now, combining Lemma 1 and Theorem 4, one obtains the following non-
uniform decay result:

Theorem 5. Let the boundary ∂Ω2 of the wave domain Ω2 be of class C4. Then
i) For any given T > 0, there is no constant C > 0 such that (1.4) holds for all

solutions of (1.1);
ii) The energy E(t) of solutions of system (1.1) does not decay exponentially as

t→∞.
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Finally, we analyze the long time behavior of solutions of system (1.1) in
several space dimensions under suitable geometric assumptions.

We introduce the following internal observability assumption for the wave
equation in Ω:

(H) There exist T0 > 0 such that for some constant C > 0, all solutions of the
following system⎧⎨⎩ � ζ = 0 in (0, T0)× Ω,

ζ = 0 on (0, T0)× Γ,
ζ(0) = ζ0, ζt(0) = ζ1 in Ω

satisfy

|ζ0|2H1
0 (Ω) + |ζ1|2L2(Ω) ≤ C

∫ T0

0

∫
Ω1

|ζt|2dxdt, ∀ (ζ0, ζ1) ∈ H1
0 (Ω)× L2(Ω).

It is well known that assumption (H) holds when T0 and Ω1 satisfy the
Geometric Optics Condition (GCC) introduced in [1]. This condition asserts that
all rays of Geometric Optics propagating in Ω and bouncing on the boundary
enter the control domain Ω1 in a uniform time T0 > 0. A relevant particular case
in which the GCC is satisfied is when the heat domain Ω1 envelopes the wave
domain Ω2. This simple case can be handled by the multiplier method ([4]).

Now, we may state our polynomial decay result for system (1.1) as follows.

Theorem 6. Let T0 and Ω1 satisfy (H). Then there is a constant C > 0 such that
for any (y0, z0, z1) ∈ D(A), the solution of (1.1) satisfies

|(y(t), z(t), zt(t))|H ≤
C

t1/6
|(y0, z0, z1)|D(A), ∀ t > 0.

Remark 4. Theorem 6 is not sharp for n = 1 since in [10] we have proved that
the decay rate is 1/t2. However, similar to [7], the WKB asymptotic expansion for
the flat interface allows to show that it is impossible to expect the same decay
rate for several space dimensions. This suggests that the rate of decay in the
multidimensional case is slower than in the one dimensional one. According to
Remark 5 and the possible sharp weakened observability inequality (3.4) below, it
seems reasonable to expect 1/t to be the sharp polynomial decay rate for smooth
solutions of (1.1) with initial data in D(A). But this is an open problem. We refer
to [3] for an interesting partial solution to this problem with a decay rate of the
order of 1/t1−δ for all δ > 0 but under stronger assumptions on the geometry that
Ω is of C∞ and Γ1 ∩ Γ2 = ∅.

The proof of Theorem 6 is based on the following key weakened observability
inequality for equation (1.1):
Theorem 7. Let T0 and Ω1 satisfy (H). Then there exist two constants T0 and
C > 0 such that for any (y0, z0, z1) ∈ D(A3), and any T ≥ T0, the solution of
(1.1) satisfies

|(y0, z0, z1)|H ≤ C|∇y|H3(0,T ;(L2(Ω1))n). (3.2)
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The main idea to prove Theorem 7 is as follows: Setting w = yχΩ1 + ztχΩ2 ,
noting (1.1) and recalling that ∂zt/∂ν2 = −∂yt/∂ν1 on (0, T )×γ, and by (y0, z0, z1)
∈ D(A2), one sees that w ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) satisfies⎧⎪⎨⎪⎩
�w = (ytt − yt)χΩ1 +

(
∂y
∂ν1
− ∂yt

∂ν1

)
δγ in (0, T )× Ω,

w = 0 on (0, T )× Γ,
w(0) = y0χΩ1 + z1χΩ2 , wt(0) = (∆y0)χΩ1 + (∆z0)χΩ2 in Ω.

(3.3)
Then, by means of the energy method and assumption (H), one concludes Theo-
rem 7.

Remark 5. Note that (3.2) is, indeed, a weakened version of (1.4), in which we
do not only use the norm of ∇y on (L2((0, T )× Ω1))n to bound the total energy
of solutions but the stronger one on H3(0, T ; (L2(Ω1))n). Nevertheless, inequality
(3.2) is very likely not sharp. One can expect, under assumption (H), the following
stronger inequality to hold:

|(y0, z0, z1)|H ≤ C|∇y|H1/2(0,T ;(L2(Ω1))n). (3.4)

This is also an open problem.

4. Open problems

This subject is full of open problems. Some of them seem to be particularly relevant
and could need important new ideas and further developments:

• Logarithmic decay without the GCC. Inspired on [8], it seems natural to expect
a logarithmic decay result for system (1.1) without the GCC. However, there is
a difficulty to do this. In [7] we show this decay property for system (1.1) but
with the interface condition y = zt replaced by y = z. The key point is to apply
the known very weak observability inequalities for the wave equations without
the GCC ([8]) to a perturbed wave equation similar to (3.3), and use the crucial
fact that the generator of the underlying semigroup has compact resolvent. It is
precisely the lack of compactness for (1.1) in multi-dimensions that prevents us
from showing the logarithmic decay result in the present case.

• More complex and realistic models. In the context of fluid-structure interaction,
it is more physical to replace the wave equation in system (1.1) by the system of
elasticity and the heat equation by the Stokes system, and the fluid-solid interface
γ by a free boundary. It would be interesting to extend the present analysis to
these situations. But this remains to be done.

• Nonlinear models. A more realistic model for fluid-structure interaction would be
to replace the heat and wave equations in system (1.1) by the Navier-Stokes and
elasticity systems coupled through a moving boundary. To the best of our knowl-
edge, very little is known about the well-posedness and the long time behavior for
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the solutions to the corresponding equations (We refer to [2] for some existence
results of weak solutions in two space dimensions).

• Control problems. In [10], we analyze the null controllability problem for system
(1.1) in one space dimension by means of spectral methods. It is found that the
controllability results depend strongly on whether the control enters the system
through the wave component or the heat one. This problem is completely open in
several space dimensions.
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