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Preface

This book gathers a collection of refereed articles containing original results report-
ing the recent original contributions of the lectures and communications presented
at the Free Boundary Problems (FBP2005) Conference that took place at the
University of Coimbra, Portugal, from 7 to 12 of June 2005. They deal with the
Mathematics of a broad class of models and problems involving nonlinear partial
differential equations arising in Physics, Engineering, Biology and Finance. Among
the main topics, the talks considered free boundary problems in biomedicine, in
porous media, in thermodynamic modeling, in fluid mechanics, in image process-
ing, in financial mathematics or in computations for inter-scale problems.

FBP2005 was the 10th Conference of a Series started in 1981 in Monteca-
tini, Italy, that has had a continuous development in the following conferences
in Maubuisson, France (1984), Irsee, Germany (1987), Montreal, Canada (1990),
Toledo, Spain (1993), Zakopone, Poland (1995), Crete, Greece (1997), Chiba,
Japan (1999), Trento, Italy (2002) and will be followed by the next one foreseen
to be held in Stockholm, Sweden, in 2008.

In fact, the mathematical analysis and fine properties of solutions and in-
terfaces in free boundary problems have been an active subject in the last three
decades and their mathematical understanding continues to be an important in-
terdisciplinary tool for the scientific applications, on one hand, and an intrinsic
aspect of the current development of several important mathematical disciplines.
This was recognized, in particular, by the Free Boundary Problems Scientific Pro-
gramme of the European Science Foundation, that sponsored three conferences in
the nineties in Europe, and is reflected in an electronic newsletter-forum (FBP-
News, http://fbpnews.org), that started in 2003 and continues to have an impor-
tant role to promote the exchange of information and ideas between mathemati-
cians interested in this area.

Over 150 participants have gathered during the FBP2005, to present and
discuss, in more than 120 talks, the last results on the Mathematics of free bound-
ary problems. The structure of the Conference, advised by a Scientific Committee,
combined Main Lectures and Focus Sessions by invitation and was complemented
with Focus Discussions and Contribution Talks with selected open proposals by
the worldwide scientific community, that constituted almost half of the commu-
nications. The conference also integrated in its programme, for the first time, an
European Mathematical Society (EMS) Lecture. During the FBP2005 Conference,



X Preface

new people and new problems, with renewed classical subjects, were on stage. This
has confirmed that these conferences continue to be an important catalyst for the
identification and development of this interdisciplinary mathematical field. They
promote, not only in Europe, but all over the world, an interdisciplinary scope
in the broadest possible mathematical sense: from experimental observations to
modeling, from abstract mathematical analysis to numerical computations.

The credit of the success of the FPB2005 conference is mainly due to the lec-
turers, the organizers of the focus sessions and all the speakers of the invited and
contributed talks, for their valuable contributions. Of course, our acknowledge-
ments also go to the members of the scientific committee, that was constituted
by C. Bandle (University of Basel), H. Berestycki (EHESS, Paris), L. Caffarelli
(University of Austin, Texas, USA), P. Colli (University of Pavia, Italy), C.J. van
Duijn (University of Eindhoven, Netherlands), G. Dziuk (University of Freiburg,
Germany), C. Elliott (University of Sussex, UK), A. Fasano (University of Flo-
rence, Italy), A. Friedman (University of Ohio, USA), B. Kawohl (University of
Koln, Germany), M. Mimura (University of Tokyo, Japan), S. Osher (University of
Los Angeles, USA), J.F. Rodrigues (University of Lisbon/CMU Coimbra, Portu-
gal), H. Shahgholian (University of Stockholm, Sweden), J. Sprekels (WIAS Berlin,
Germany) and J.L. Vazquez (University Autonoma of Madrid, Spain), as well as
to our co-organizer L.N. Vicente (University of Coimbra), the reviewers for per-
forming the evaluation of the articles presented in this book of Proceedings and
to K.-H. Hoffmann for accepting it in this Birkh&duser Series. Our thanks also go
to the secretariat of the conference, in particular, we wish to acknowledge Rute
Andrade for her excellent collaboration, and the Department of Mathematics of
the University of Coimbra, for the facilities and active assistance.

Finally, we wish to thank also the important financial support from ESF (Eu-
ropean Science Foundation) Scientific Programme (Global) on “Global and Geo-
metrical Aspects of Nonlinear Partial Differential Equations”, as well as, the finan-
cial support from CMUC (Centro de Matemdtica da Universidade de Coimbra),
CMAF (Centro de Matematica e Aplicagoes Fundamentais da Universidade de Lis-
boa), EMS (European Mathematical Society), FLAD (Fundacdo Luso-Americana)
and FCT (Fundagao para a Ciéncia e a Tecnologia).

The Editors

Isabel Narra Figueiredo (Coimbra)
José Francisco Rodrigues (Lisboa)
Lisa Santos (Braga)
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One-dimensional Shape Memory Alloy
Problem with Duhem Type
of Hysteresis Operator

Toyohiko Aiki and Takanobu Okazaki

Abstract. In our previous works we have proposed a mathematical model
for dynamics of shape memory alloy materials. In the model the relationship
between the strain and the stress is given as the generalized stop operator
described by the ordinary differential equation including the subdifferential
of the indicator function for the closed interval depending on the temperature.
Here, we adopt the Duhem type of hysteresis operators as the mathematical
description of the relationship in order to deal with the more realistic math-
ematical model. The aims of this paper are to show our new model and to
establish the well-posedness of the model.

Mathematics Subject Classification (2000). Primary 74D10; Secondary 34G25,
35K45, 35Q72.

Keywords. Shape memory alloy, hysteresis, Duhem type.

1. Introduction

In this paper we consider the following system (1.1)—(1.6). The problem denoted
by P is to find functions, the displacement u, the temperature field # and the stress
oon Q(T):=(0,T) x (0,1),0 < T < o0, satistying

Utt + YUgzzs — WUzt = 05 10 Q(T), (1.1)
0 — Kbpw = Oty + plug>  in Q(T), (1.2)
o+ 0I1(0,e;0) 3 g1(0,¢,0)[ed]™ — g2(0,¢,0)[e/]”  in Q(T), (1.3)
u(t,0) = u(t,1) = 0,ugz(t,0) = ugr(t,1) =0 for 0 <t < T, (1.4)
0.(t,0)=0,(t1)=0 for0<t<T, (1.5)
u(0) = ug, u(0) = vg, 0(0) = 0y, 0(0) = oy, (1.6)

This work is partially supported by a grant in aid of JSPS ((C)16540146).



2 T. Aiki and T. Okazaki

where € = wu, is the linearized strain, v, 4 and k are positive constants, and
ug, vo, B0 and op are initial functions. Also, I(0,¢;-) is the indicator functions of
the closed interval [f(0,¢), f*(0,¢)], 0I(0,¢;-) denotes its subdifferential, where
fi : R2 = R, f* : R? — R are given continuous functions with f, < f* on R?,
and g; are go are also given continuous functions on R>.

In our previous works Aiki-Kenmochi [5], Aiki [1], Aiki-Kadoya-Yoshikawa
[4] the system {(1.1), (1.2), (1.4), (1.5), (1.6), (1.7) } was investigated. Here, (1.7)
is as follows:

or+01(0,e;0) 3 cuge  in Q(T), (1.7)

where ¢ is a positive constant. Also, we quote [5, 1, 4] and Brokate-Sprekels [6] for
the physical background for our system. As mentioned in Visintin [12] the differen-
tial equation (1.7) is one of characterization for the generalised stop operator. We
note that in [4] the well-posedness of the problem without the restriction u? > -,
although we assumed this condition in [5, 1]. In that proof by using maximal
regularity for complex Ginzburg-Landau equation we could remove the condition.

Next, we give a brief explanation for the Duhem type of hysteresis operators.
From the experimental results we know that for shape memory alloy materials the
relationship of interior of hysteresis loops is more complicated than one of the stop
operator (see Figures 1 and 2).

0 <0, 0 >0, 0 >> 0.
F1GURE 1. Graphs from experiments

Then we adopt the Duhem type of stop operator, which is defined by the ordinary
differential equations. For example, the following equation was already introduced
in [12]:
ot = g1 (0, g, 0)[€t]+ - 92(07 g, J)[Et]i'

By choosing suitable functions f,, f*, g1 and g2 we can obtain the graphs which
are very close to experimental graphs, numerically (Figure 3). Also, the system
including the Duhem type of hysteresis operator was already applied for the mag-
netization process of ferromagnetic materials and obtained the existence and the
uniqueness of a solution to the problem in Aiki-Hoffmann-Okazaki [3]. See [2] for
recent works of some mathematical models including hysteresis operators.
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£5(0, )

£,(0,¢)

FIGURE 2. Graph of the generalized stop operator

F1GURE 3. Graph from the numerical calculations

At the end of the introduction we show some results concerned with a mathe-
matical model given by the more general hysteretic relations. In a series of papers
[8, 9] Krejci and Sprekels studied one-dimensional shape memory models with
hysteresis operator of Prandtl-Ishlinskii type, parametrized by the absolute tem-
perature. The problems considered in these papers are more difficult than the one
studied in this paper in the sense that in [8] no smoothing viscosity (i.e., u = 0),
and in [9] no smoothing couple stress are assumed (i.e., v = 0). Moreover, the
above results have been generalized by Krejci, Sprekels and Stefanelli in [10, 11].

Here, we give the advantage and the disadvantage of using the Duhem model
for shape memory alloys instead of the Prandtl-Ishlinskii model. The advantage
of the Duhem model is to possible to deal with any shape of the load-deformation
curves. In case with the Prandtl-Ishlinskii model the initial loading curve must be
concave (cf. [7, Section 2]). The disadvantage of the Duhem model is that it is
impossible to show thermodynamically consistent at the present time.
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2. Main results

The purpose of this section is to give a complete statement for our result. First,
we give assumptions for data.
(A1) fo, f* € C2(R?) N W™ (R?);
(A2) g1 : R?> — R and g : R® — R are Lipschitz continuous and gi,g2 €
L>(R%);
(A3)  wo € HY0,1) N H}(0,1), vo € HF(0,1) N H?(0,1), g € H*(0,1), 09 €
H'Y(0,1),
f«(00,€0) < 00 < f*(00,0) on (0,1).

Next, we define a solution of P as follows:

Definition 2.1. We say that a triplet {u, 8,0} of functions, u,  and o is a solution
of Pon [0,7],0 < T < o0, if and only if the following conditions (S1) and (S2)
hold:
(S1)  w € W2(0,7T; L*(0,1)) N W22(0,T; H'(0,1)) N W (0,T; H?(0,1)) N
W2(0,T; H3(0,1)) N L>(0,T; H4(0, 1))
0e W”(O T; L?(0, 1))mL°°(0 T; H'(0,1)), and
o€ WH2(0,T; L*(0,1)) N L>(0,T; H'(0,1)).
(S2)  (1.1)—(1.6) hold in the usual sense.

This is a main result of this paper.

Theorem 2.2 (Main Theorem). Assume that (A1), (A2) and (A3) hold. Then the
problem P has a unique solution {u,0,0} on [0,T)] for any T > 0.

The proof of the uniqueness is given in Section 3 and the proof of the existence
is rather long and quite similar to those of [1, 4] so that we omit it.

3. Proof of the uniqueness

In this section we will prove the uniqueness. The proof is similar to those of
[1, 4]. Throughout this section we assume (A1)-(A3), and for simplicity we use
the notation H = L?(0,1). Let T > 0, {u1, 01,01} and {uz, 02,02} be solutions of
P on [0,7] and put &; = iy, ¢ = 1,2, u = ug —ug, § = 01 — 02, 0 = 01 — 09,
€ =¢1 — &g, and

M (s) = max{|f.(01,21) — f(02,€2)| oo (Q(s))s [T (01, €1) — F*(02,€2)| Lo (Q(s)) }

for 0 < s < T. Moreover, let 21 = 01 — [0 — M(s)]" and 292 = 00 — [0 — M (s)]".
For s € (0,T] we have

fe(01,61) < 21 < f*(b1,e1) and fi(02,62) < 22 < f*(02,e2) a.e. on Q(s)
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so that by using the definition of subdifferential it is obvious that

1 1
/ o1:(t)(o1(t) — z1())dx < / G1(t)(o1(t) — z1(t))dx  for a.e. t € [0, s],
0 0
1 1
/ oo (8) (02 (t) — 2a(t))dz < / Galt)(oa(t) — 2a(t))dz  for ae. t € [0, 5],
0 0

where G1(t) = (91(61(t), €1 (t), o1(t)) [exe ()] — g2(61(2), €1 (1), 01 (1)) [e0: (1)] ),
Ga(t) = (91(02(t), e2(t), 02(1))[e2¢ (1)) " — g2(02(t), £2(t), 02(t)) [e2¢(#)] 7). Combining

the above two inequalities, we obtain

1d

y gy lr®) = M) o

1
< / (C1() — Ga))o(t) — M(s)]Tdz  forae tc[0,s.  (3.1)
0
Next, (1.1) implies
Utt + YUgzazr — WUtz = Og in Q(T),

and we multiply it by u;. Then, we have

d v
dt(2|ut( HH + 2|U3cﬂc(t)|%{) + e (8)[F

=— /1 o(t)us (t)dzr  for a.e. t € [0,T]. (3.2)
0

It follows from (3.1) and (3.2) that

d 1

S Nlot) = M+ e + D hea ) + e (s

<Ly /01(|9(t)| + e+ lo@®)]([e1e (O] + [e1e(D)] 7)o (t) — M(s)] " dx
+ /01 |g1(02(t), £2(t), o2(0))[[[e16 ()] T — [26(1)] 7| [0 (t) — M ()] T da
+ /01 |g2(02(1), £2(t), o2 ())[[e16 (1))~ — [e26(1)] " |[o(t) — M (s)] " da

_ / ' o (t)ues ()

0
< Lglerlze@ery (10®) 1 + le@®lr)llo(t) — M(s)]" |

+Lg|€1t|Loo / +d1‘
2
g

4L
+§manH+M|Mw M@ﬁm+;ww& for ae. £ € (0,5,
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where L, is a common Lipschitz constant of g; and g» and ﬁg = |gl|Loo(RS) +
|g2| .= (R3), since by Definition 2.1 it holds that uy; € L>(0,T; H?(0,1)) and 1, =
Uitz € L(Q(T)).

By similar calculations we can observe that

5 o (llo(t) = M)+ [-o(t) ~ M(s))* )

QOB + e O + plues (0

dt
< CullB(O] i + 1= lo6) = M) s+ = (8) = M ()] )
+a/ﬁa = M) + () = M) e+ o)

+Ci(|lo(t) = M(s)]* I3 + |[=o(t) = M(s)]*[7) for ae. t € (0, 3],

412 .
where C1 = Lgle1t| (1)) + e It is easy to see that

/O le@I(|[o(t) = M(s)]T| + [[=o(t) — M(s)]"|)d
< 2M(s)\/E(t) + 2E(t) for t € [0, 5],

where E(t) = |[o(t) — M(s)]" % + |[-o(t) — M(s)]ﬂ% Thus we see that

1d d
Qﬁmw+ﬁwmmz+ﬂwamm+umxm%

< CL(0()] i + (D) )V E(t) + 2C1 (M (s)\/E(1) (33)
+4M(s ) +4E(t) + C1E(t)
< Co(|0W) | + le®)| )V E(t) + CaM(s)? + CoE(t)  for ae. t € [0, 5],
where Cy = 2C7 + 4.
Now, by (1.2) and routine works we infer that
k 2
s BB+ 160
1
< / (01 ()ee(t) + o (e (1)B(t)d
0

+MA|awMMuwwww%wmmmm

<lo1|re@erylec®)|u|0@) | a + o) mle2e ()| Lo @ry) |0(t) o
+ pllwrae| Lo @ery) + [u2at| Lo (@(ry)) et ()| |0(F) |
< Cs(|uta ()| [0() | 1 + |o(t)2|0()| 1) (3.4)

< CRO) 3 + | uea (O + Cal6(®)| 1 + 2C5(M()* + E(®) for ave. t € [0,7),

where C3 = |01 | (1)) + [€2t(t) | Lo (1)) + H(|vaat| Lo (@(ry) + |U2at| Lo (@(T)))-
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Hence, by (3.3) and the above inequality there is a positive constant Cy4 such
that

d
g B+ Ex(t) < Callo(t)[F; + M()* + B(t) + e(t)u v/ E(t)
for a.e. t € (0, s], where
1 1
Eo(t) = S E(t) + ()l + vluae (O] + 0]

and .
Ev(0) = pluee (O + 5 00y
In order to give an estimate for |0(t)| 1~ (q(s)) we multiply (1.2) by ;. Then,
similarly to (3.4), it is clear that
e+ 5 100
< Cs([ure ()] 1|02 ()1 + o (8)]]0:(8)] )
1
< G} (Jura (O + o)) + L10: )} for ae. t € [0,7]

so that

‘waﬂ%m+mam@
g@Awmm@+wM®m

t t
< 2C5tM(s)* + QC??/ lo(7)|3dT + C§/ [Ure(T)|3dr  for 0 <t <s.
0 0
Hence, we have

2
1012 (Q(s))
< 201017 (0,5;71) + 102700 0,5:11))
<2 sup |9(t)|§1 + ZC}?SM(S)2 + 2C§(/ |a(7’)|§1d7' +/ |um(7')|§{d7').
0<t<s 0 0

On account of this estimate it yields that

M (s)* < 2L3(10(1)|7 < sy + [T = 0s))

<213(2 sup [0} +2C3M(s)? +2C3( [ lor)ydr + [ fura(r)ydr)
Stss 0 0

+2L3( sup Juge(t)|3 + sup [u(t)|3)
0<t<s 0<t<s

< Cy( sup Eo(t) —|—/ (Eo(t) + E1(t)dt  for0<s<T,
0<t<s 0

where L is a common Lipschitz constant of f* and f. and Cy is a suitable positive
constant.
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Moreover, it is easy to see that

| @< [ lolndozar

< sT/ |Ugr (T)|3dr  for 0 < s <T.
0
Hence, there is a positive constant Cy such that
d
tho(t) + E1(t) < Cs5(Eo(t) + M(s)?) + |e(t)|3 for a.e. t € (0,s].

Now, applying Gronwall’s inequality, the above argument shows that

¢
t -l-/ Ey(7)dr
0

< C5e%5% (sM (s /|£ )|%;dT)

< C5605T(28 sup FEo(t) + ST/ Ei(t)dt) for0<t<s<T.
0<t<t 0

Accordingly, it holds that

sup FEo(t / Ey (7
0<t<s

< C5e%T(1+T) (25 sup Eo(t) + s/ Ei(t)dt) for0<s<T.
0

0<t<t

Here, by choosing a positive number s with C5e®572(14T)s < ; we conclude that
Ey(t) = E1(t) = 0 for t € [0, s]. This implies the uniqueness of a solution. O
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Existence and Uniqueness Results for
Quasi-linear Elliptic and Parabolic Equations
with Nonlinear Boundary Conditions

F. Andreu, N. Ighida, J.M. Mazén and J. Toledo

Abstract. We study the questions of existence and uniqueness of weak and
entropy solutions for equations of type —div a(z, Du) +~(u) 3 ¢, posed in an
open bounded subset Q of RY, with nonlinear boundary conditions of the form
a(z, Du)-n+B(u) 3 ¢. The nonlinear elliptic operator div a(z, Du) is modeled
on the p-Laplacian operator A,(u) = div (|Du[P"2Du), with p > 1, v and 3
are maximal monotone graphs in R? such that 0 € 4(0) and 0 € 3(0), and
the data ¢ € L' (Q2) and ¢ € L' (99). We also study existence and uniqueness
of weak solutions for a general degenerate elliptic-parabolic problem with
nonlinear dynamical boundary conditions. Particular instances of this problem
appear in various phenomena with changes of phase like multiphase Stefan
problem and in the weak formulation of the mathematical model of the so
called Hele Shaw problem.

Mathematics Subject Classification (2000). Primary 35J60; Secondary 35D02.

Keywords. Quasi-linear elliptic equations, Quasi-linear parabolic equations,
Stefan problem, Hele Shaw problem, Nonlinear boundary conditions, Nonlin-
ear semigroup theory.

1. Introduction

Let Q be a bounded domain in RY with smooth boundary 9 and p > 1, and let
a: Q xRY — RY be a Carathéodory function satisfying

(Hy) there exists A > 0 such that a(z, ) - & > AP for a.e. © € 2 and for all
£ eRY,

(Hy) there exists ¢ > 0 and 6 € L? (Q) such that |a(z,€)| < o(0(z) + |§|p71)
for a.e. x € Q and for all ¢ € RN, where p’ = pfl,

(Hs) (a(z,&) —a(x,£&)) - (& — &) > 0 for a.e. z € Q and for all &,& €
RN» 61 7& 52'
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The hypotheses (Hy — Hj3) are classical in the study of nonlinear operators in
divergent form (cf. [31] or [8]). The model example of function a satisfying these
hypotheses is a(x,£) = |£[P~2¢. The corresponding operator is the p-Laplacian
operator A, (u) = div(|DulP~2Du).

We are interested in the study of existence and uniqueness of weak and en-
tropy solutions for the elliptic problem

g8 —div a(z, Du) +vy(u) 3¢ in Q
(5620 a(z,Du) -n+ B(u) 3¢ on 01,

where 7 is the unit outward normal on 9, v € L'(992) and ¢ € L'(Q2). The
nonlinearities v and 3 are maximal monotone graphs in R? (see, e.g., [14]) such
that 0 € v(0) and 0 € 5(0). In particular, they may be multivalued and this allows
to include the Dirichlet condition (taking 3 to be the monotone graph D defined
by D(0) = R) and the Neumann condition (taking 8 to be the monotone graph N
defined by N(r) = 0 for all » € R) as well as many other nonlinear fluxes on the
boundary that occur in some problems in Mechanics and Physics (see, e.g., [20] or
[13]). Note also that, since v may be multivalued, problems of type (S(Zi) appear
in various phenomena with changes of phase like the multiphase Stefan problem
(cf [17]) and in the weak formulation of the mathematical model of the so-called
Hele Shaw problem (cf. [19] and [22]).

Particular instances of problem (S;g) have been studied in [10], [8], [6] and
[2]. The work of Bénilan, Crandall and Sacks [10] was pioneer in this kind of
problems. They study problem (S’;g ) for any vy and § maximal monotone graphs in
R? such that 0 € v(0) and 0 € 3(0), for the Laplacian operator, i.e., for a(z, ) = £.
For nonhomogeneous boundary condition, i.e. ¢ # 0, one can see [27] for ) in the
range of 3, and [25, 26] for some particular instances of 3 and . Another important
work in the L!-Theory for p-Laplacian type equations is [8], where problem

(DY) —div a(z,Du) +v(u) 3¢ inQ
u=20 on 0N

is studied for any v maximal monotone graph in R? such that 0 € v(0). Following
[8], problems (S;%B) and (S;df), where id(r) = r for all € R, are studied in [6]
and [2], for any 8 maximal monotone graph in R? with closed domain such that
0 € 5(0).

Our aim is to establish existence and uniqueness of weak and entropy solu-
tions for the general elliptic problem (S;g) The main interest in our work is that
we are dealing with general nonlinear operators —div a(x, Du) with nonhomoge-
neous boundary conditions and general nonlinearities 8 and v. As in [10], a range
condition relating the average of ¢ and 1 to the range of 3 and -y is necessary for
existence of weak and entropy solution (see Remark 3.3). However, in contrast to
the smooth homogeneous case, a smooth and 1 = 0, for the nonhomogeneous case
this range condition is not sufficient for the existence of weak solution. Indeed, in
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general, the intersection of the domains of § and  seems to create some obstruc-
tion phenomena for the existence of these solutions. In general, even if D(5) = R,
a weak solution does not exist, as the following example shows. Let v be such that
D(y) =[0,1], =R x {0}, and let ¢ € L}(Q), ¢ <0 a.e. in Q, and ¢ € L} (99Q),
1 < 0 a.e. in IO If there exists [u, z, w] a weak solution of the problem (S;g)
(see Definition 3.1), then z € y(u), therefore 0 < u < 1 a.e. in 2, w = 0, and it
holds that for any v € WHP(Q) N L>(Q),

/Qa(x,Du)Dv—k/sz:/mwv—k/Qaﬁv.

Taking v = u, as u > 0, we get u is constant and

/sz:/(mwv—i-/g(bv,

for any v € WHP(Q) N L>=(Q). Consequently, ¢ = z a.e. in Q, and ¥ must be 0
a.e. in OS).

The main applications we have in mind are the study of doubly nonlinear
evolution problems of elliptic-parabolic type and degenerate parabolic problems of
Stefan or Hele-Shaw type, with nonhomogeneous boundary conditions and/or dy-
namical boundary conditions (see [5]). More precisely, we have in mind to study the
following degenerate elliptic-parabolic problem with nonlinear dynamical bound-
ary condition

2z —diva(z, Du) = f, z € y(u), in Qr :=]0,T[xQ
P, 5(f, 9,20, wo) wy +a(z,Du)-n=g, we B(u), onSr:=|0,T[xIN
v(0) = v in 2, w(0) =wp in 0L,

where vy € L1(2), wo € LY(09), f € L*(0,T; LY(2)) and g € L'(0,T; L*(99Q)).
The dynamical boundary conditions, although not too widely considered in the
mathematical literature, are very natural in many mathematical models as heat
transfer in a solid in contact with a moving fluid, thermoelasticity, diffusion phe-
nomena, the heat transfer in two phase medium (Stefan problem), problems in
fluid dynamics, etc. (cf. [18] or [21] and the reference therein).

Problems of type P, g(f, g, 70, wo), that is, the elliptic-parabolic problem with
Dirichlet boundary conditions have been studied extensively in the literature (cf.
[1], [3], [11], [15], [28] and the references therein). However, with respect to the
pure Neumann case, for the multidimensional case, with time-dependent flux g, we
only know the paper of Hulshof [23] for the Laplacian operator and v a uniformly
Lipschitz continuous function, y(r) = 1 forr € RT, v € C*(R™), v’ > 0 on R~ and
lim,| o y(r) = 0; and the paper of Kenmochi [29] also for the Laplace operator
and for v which range is a closed bounded interval. In one space dimension, much
more is known (cf. [12] and the references therein).
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2. Preliminaries

For a maximal monotone graph ¥ in R x R we shall denote ¥_ := inf R(¢) and
Y4 := sup R(¥9), where R(¢) denotes the range of . If 0 € Dom(d) and ¥° is the
main section of ¥, jy(r) = [; 9¥°(s)ds defines a convex lLs.c. function such that
¥ = djy. If j} is the Legendre transformation of jy then 91 = 8j.

In [8], the authors introduce the set

TP(Q) = {u: Q — R measurable such that Tj(u) € W'P(Q) Vk >0},

where Ty (s) = sup(—k,inf(s,k)). They also prove that given u € 71P((2), there
exists a unique measurable function @ : Q — RY such that

DTy (u) = ﬂX{ka} vk > 0.

This function @ will be denoted by Du. It is clear that if v € W1P(Q), then
@ € LP(Q) and @ = Du in the usual sense.

As in [6], T,07(Q) denotes the set of functions u in T1?(Q) satisfying the
following conditions, there exists a sequence u,, in W1?(Q) such that

(a) u, converges to u a.e. in €,
(b) DTg(uy) converges to DTy (u) in L1(Q) for all k > 0,
(c) there exists a measurable function @ on 952, such that u,, converges to @ a.e.
in 09.
The function @ is the trace of u in the generalized sense introduced in [6]. In the
sequel, the trace of u € 7,-7(Q) on dQ will be denoted by w.
We say that a is smooth (see [6]) when, for any ¢ € L°°(2) such that there
exists a bounded weak solution u of the homogeneous Dirichlet problem

(D) { —div a(z,Du) =¢ in

u =0 on 012,

there exists ¢ € L'(9€2) such that u is also a weak solution of the Neumann
problem

(V) { —diva(z,Du) =¢ inQ

a(z,Du) -n=g on ON).

Functions a corresponding to linear operators with smooth coefficients and
p-Laplacian type operators are smooth (see [13] and [30]).

3. The elliptic problem

In this section we give the different concepts of solutions of problem (S;g) and
we state the main results obtained in [4].
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Definition 3.1. Let ¢ € L'(Q) and ¢ € L'(99). A triple of functions [u, z,w] €
WLP(Q)x L (Q)x L' (09) is a weak solution of problem (S;i) if z(x) € y(u(x)) a.e.
in Q, w(z) € B(u(x)) a.e. in 09, and

/Qa(:c,Du)-Dv—l—/szzv—l—/(mwv:/é}ﬂwv—i—/gl(ﬁv, (3.1)

for all v € L®°(2) N WHP(Q).

In general, as it is remarked in [8], for 1 <p <2 — J{,, there exists f € L1(£2)
such that the problem

we Wh'(Q), u—Ay(u)=f in D'(Q),

loc

has no solution. In [8], to overcome this difficulty and to get uniqueness, a new
concept of solution was introduced, named entropy solution. Following these ideas,
as in [6] or [2], we introduce the following concept of solution.

Definition 3.2. Let ¢ € L'(Q) and ¢ € L'(99). A triple of functions [u, z,w] €
T0P(Q) x LY(Q) x LY(9Q) is an entropy solution of problem (S;i) if z(z) €
Y(u(x)) a.e. in Q, w(z) € f(u(x)) a.e. in IQ and

/Qa(x, Du) - DTy (u —v) + / 2T (u —v) + /{m wTy(u — v) 52
< / VT (u — v) —|—7 ¢Ti(u —v) Vk>0,
a0 Q
for all v € L*°(Q) N W1P(Q).

Obviously, every weak solution is an entropy solution and an entropy solution
with u € WHP(Q) is a weak solution.

Remark 3.3. If we take v = Tj(u) £ 1 as test functions in (3.2) and let h go to

+OO, we ge( lhal

Then necessarily ¢ and 1 must satisfy the following range condition

R- s/ w+/¢s7€+,
.0 00 9 v,08

RE =00+ B,100], Ry =10+ 5109,

We will write R, 5 :=|R7 5, R 5[ when R ; < RY 5.

where

We shall state now the uniqueness result for entropy solutions. Since every
weak solution is an entropy solution of problem (S;g), the same result is true for
weak solutions.
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Theorem 3.4 ([4]). Let ¢ € LY(Q) and o € LY(00Q), and let [u1,z1,w1] and

Ug, Z2, wa| be entropy solutions of problem 579y, Then, there exists a constant
R
c € R such that

Uy —us =c¢ a.e. in €,
z1—22=0 a.e. in Q.
wy —we =0 a.e. in ON.
Moreover, if ¢ # 0, there exists a constant k such that z1 = zo = k.

With respect to the existence of weak solutions we have the following results.

Theorem 3.5 ([4]). Assume D(y) = R and R 5 < Rjﬂ, Let D(f) = R or a
smooth.

(i) For any ¢ € LP () and ¢ € L¥' (8Q) with

/Q¢+ /anw € Ry 3, (3.3)

there exists a weak solution [u,z,w] of problem (S(Zi)

(ii) For any [u1,z1,w1] weak solution of problem (S;fwl), ¢1 € LP(Q) and

Y1 € LP(9Q) satisfying (3.3), and any [ug, 22, ws] weak solution of problem
(S;fw), ¢o € LY (Q) and ¢y € LP (3Q) satisfying (3.3), we have that

J R A e e e A KR i

In the case R 5 = Rjﬁ, that is, when v(r) = g(r) = 0 for any r € R,
existence and uniqueness of weak solutions are also obtained.

Theorem 3.6 ([4]). For any ¢ € LP (Q) and ¢ € LP (9Q) with

[o+ [ v=o. (3.4)
Q o0
there exists a unique (up to a constant) weak solution u € W1P(Q) of the problem

—div a(x,Du) = ¢ in
a(z,Du) -n=1 on 0N

/Qa(x,Du)~Dv:/mwv+/Q¢v,

In order to get the above results, the main idea is to consider the approxi-
mated problem

(S’Ym,n,ﬁm,n) { —div a(ac, Du) + Ym.n (u) > ¢m,n in Q

in the sense that

for allv e WhP(Q).

bm,nYm,n a(z, Du) -0+ Bmn (1) 3 Ymon on 012,
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where vy, and By, are approximations of v and 3 given by

1 1 _
Tl =2 + Lt = L
and
Bralr) = B(r) + = Lo
(7)) = 7“)—|—mr =7

respectively, m,n € N, and

$m,n = sup{inf{m, ¢}, —n}
and

Vm,n = sup{inf{m, ¢}, —n},
m,n € N are approximations of ¢ and 1, respectively. For these approximated
problems we obtain existence of weak solutions with appropriate estimates and
monotone properties, which allow us to pass to the limit.

Approximating L'-data by L>°-data and using Theorem 3.6, we can get the

following result about existence of entropy solutions.

Theorem 3.7 ([4]). Assume D(v) =R, and D() = R or a smooth. Let also assume
that, if [0, +oo[C D(B),

. 0 o : 0 —

kginoo'y (k) = 400 and kginooﬁ (k) = +o0, (3.5)
and if | — 00,0] C D(B),

klim (k) = —c0 and klim B2(k) = —oo. (3.6)

Then,
(i) for any ¢ € LY(Q) and ¢ € LY(0N), there exists an entropy solution [u, z, w)
of problem (S;i)
(ii) For any [u1, z1,w1] entropy solution of problem (S’(wal), ¢1 € LY(Q), ¢ €
LY(09), and any [ua, 22, wa] entropy solution of problem (S;fm), b € LY(Q),
o € LY(09), we have that

JCEE +/m(“” — )t < /m(wl — i)+ [ (61— )",

4. The parabolic problem

In this section we give the concept of weak solution for the problem P, g(f,g,z0,wo)
and we state the existence and uniqueness result for this type of solutions given
in [5].

Definition 4.1. Given f € L*(0,T;L(?)), g € L'(0,T; L*(99)), 20 € L*(Q) and
wo € LY(09), a weak solution of Py g(f, g, 20, wo) in [0,T] is a couple (z,w) such
that z € C([0,7] : LY(Q)), w € C([0,T] : L'(09)), 2(0) = 20, w(0) = wp and there
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exists u € L*(0,T; W1P(Q)) such that z € y(u) a.e. in Q7, w € B(u) a.e. on St
and
d d
z(t)€ + w(t)é+ [ a(z, Du(t)) - D¢

(4.1)
- / F(E + / g€ in D'(0,T))
Q o0
for any ¢ € C1(Q).

Recall that even in the case 8 = 0, for the Laplacian operator and v the
multivalued Heaviside function (i.e., for the Hele-Shaw problem), existence and
uniqueness of weak solutions for this problem is known to be true only if

/ZO+/ (/f+/89 >e(o,|sz|) for any ¢ € [0,T)

(cf., [24] or [29])).
We have the following existence and uniqueness theorem.

Theorem 4.2 ([5]). Assume Dom(y) = R, R 5 < R::'ﬁ and Dom(3) = R or a
smooth. Let T > 0. Let f € LP'(0,T; L? (Q)), g € L¥' (0, T; L (8)), zo € L¥' ()
and wy € LP' (9Q) such that

v- <20 vy, B Zwe < By, (4.2)

/Q §(z0) + / J5(wo) < +oo, (4.3)

0 [ [on [([5+ [ a)ems vicon  wa

Then, there exists a weak solution (z,w) of problem Py 5(f, g, 20, wo) in [0,T] such

that
t) = /Qz(t) +/8§2 w(t) Vtelo,T]. (4.5)

Moreover, the following L'-contraction principle holds. For i = 1,2, let f; €
LY (0,T; LY (Q)), g; € LP (0, T; L (8Q)), zig € LP (Q) and w;q € LP (3Q) satis-
fying (4.2), (4.3) and (4.4) for every i; and let (z;,w;) be a weak solution in [0, T
of Py g(fi,9is Zig, Wig), © = 1,2. Then

/Q (21(t) — (1) + /6 () = wa(0)* < / (210 — 220)" + /8 (o — )

//f1 dT+//é9§291 (r)*dr
(4.6)

for almost every t €]0,T[. In particular, problem P, 3(f,g,z0,wo) has a unique
weak solution.

and
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To prove the above theorem we shall use the Nonlinear Semigroups Theory
(cf. [7], [9] or [16]). The natural space to study problem P, g(f, g, 20, wo) from this
point of view is X = L*(Q) x L1(9Q) provided with the natural norm

Il = I fller ) + lgllzron)-

To rewrite problem P, 5(f,g,20,wo) as an abstract Cauchy problem in X,
we define the following operator B7? in X.

B = {((z,w), (2,%)) € X x X : Ju € WHP(Q) such that

[u, z,w] is a weak solution of (S,Zfz w+1i))}'
As a consequence of the results of Section 3, we have BY# is a T-accretive
operator in X, and its closure is m — T-accretive in X. Moreover, we have

Theorem 4.3 ([5]). Under the hypothesis Dom(y) = R, and Dom(8) = R or a
smooth, we have

D(B%B)L (X L0 _ {(z,w) e LY(Q) x LY (0Q) :7- <z < vy, B <w< By}

Then, by the Nonlinear Semigroups Theory, we know that for every zy €
LY (), wo € L (99Q) and every f e LY(0,T;L¥(Q)), g € L*(0,T; L (9Q)),
satisfying (4.2) and (4.4) there exists a unique mild solution of the abstract Cauchy
problem

{ V(@) +BP(V(1) 3 (f.9)  tE(O,T) n

V(O) = (Zo, ’wo).

In principle, it is not clear how these mild solutions have to be interpreted
with respect to the problem P, g(f,g, 20, wo). Now, we show that mild-solution
are weak solutions of problem P, 5(f, g, 20, wo) under the hypothesis of Theorem
4.2, which gives the existence part of Theorem 4.2. To get uniqueness, the main
difficulties are due to the jumps of v and  and the non-homogenous boundary
conditions. We see that weak solutions are integral solutions ([7]) and consequently
mild-solutions. Since BY# is T-accretive in X, the contraction principle (4.6) is
obtained from the general theory.
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Finite Time Localized Solutions of
Fluid Problems with Anisotropic Dissipation

S. Antontsev and H.B. de Oliveira

Abstract. In this work we consider an incompressible, non-homogeneous, di-
latant and viscous fluid for which the stress tensor satisfies a general non-
Newtonian law. The new contribution of this work is the consideration of an
anisotropic dissipative forces field which depends nonlinearly on the own ve-
locity. We prove that, if the flow of such a fluid is generated by the initial
data, then in a finite time the fluid becomes immobile. We, also, prove that,
if the flow is stirred by a forces term which vanishes at some instant of time,
then the fluid is still for all time grater than that and provided the intensity
of the force is suitably small.

Mathematics Subject Classification (2000). 76A05, 76D05, 76E30, 76D03,
35B99.

Keywords. Non-Newtonian Fluids, anisotropic dissipative field, finite time lo-
calization effect.

1. Introduction

1.1. Statement of the problem

In this article we consider incompressible and non-homogeneous non-Newtonian
fluids. We assume that there are no inner mass sources and the motions are isother-
mal. These fluids are driven by the following complete system of equations posed
in the cylinder Q = Q x (0,7) ¢ RN x R*:

ap—l—u-szO, divu = 0; (1.1)
ot
p(aa?+(u~V)u> =divS + pf; (1.2)
1
S = —pI + F(D), D:Z(Vu+VuT). (1.3)

The work of the first author was partially supported by the project FCT-DECONT-UBI.
The work of the second author was partially supported by the project FCT-POCTI-ISFL-209.
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In these equations, u, p and p are, respectively, velocity, density and pressure in
the fluid, and f is the prescribed mass force. S, D and I are, respectively, the
stress tensor, the tensor of rate of deformation and the unit tensor. The domain
Q considered here is bounded and its boundary OS2 is assumed to be Lipschitz.
System (1.1)—(1.3) is endowed with the initial and boundary conditions:

u(x,0) = ug(x), p(x,0) = po(x) in € (1.4)
ux,t)=0 on I'r =090x(0,T). (1.5)
The tensor F is symmetric and is assumed to satisfy, for all u € RY,
N
§ [D(u)|? <D(u): F(u)= > F;Dij, 0<5=03(p)<oo, 1<g<oo. (L6)
i,j=1

Fluids satisfying condition (1.6) are called viscous-plastic if 1 < ¢ < 2 and dilatant
if ¢ > 2. Classical Navier-Stokes equations correspond to ¢ = 2 and, in this case,
for incompressible homogeneous viscous fluids the stress tensor S has the form
S = —plI + 2uD, where p is the shear viscosity.
The new contribution of this work, is the consideration of a forces field f in
(1.2) such that
f(x,t,u) = h(x,t,u) + g(x, 1), (1.7)

where g is a given function and h depends nonlinearly on the velocity field u:

N
~h(x,t,u)-u> Y 6wl VueRY, 0 €(1,2), (1.8)
i=1
for some non-negative constants J;, with ¢ = 1,..., N. We have the following
examples of forces fields f satisfying (1.7) and (1.8):
with g = 0, f(x,t,u) = —(61 |ur| 2uq, ..., 0N Jun |7 2uy); (1.9)

with g # 0, f(x,t,u) = — (61 |ug| 2wy, ..., 0n [un|" 2un) — g(x,t), (1.10)
I8, )20 < C(1—t/tg),,
for some positive constants C, v, t and where u; = max (0, u). Notice the con-
stants d1,...,0n in (1.8) are non-negative and, thus, only one component of the
vector field (07 |u1|7t~2u1, ..., dn Jun|Y ~2uy) appearing in examples (1.9) and
(1.10) can be zero.

From the Fluid Mechanics point of view, condition (1.8) means the forces
field f is a feedback term, as one can see from the examples (1.9) and (1.10). This
feedback is presented as an anisotropic condition, because the dependence of f
on u may be different for distinct directions. Moreover, from condition (1.8), we
can say the feedback forces field h, and thus f, is dissipative, in order to each
component uy, in all directions x where d > 0, for k =1,..., N.

Definition 1.1. We say the weak solutions (u, p) of the problem (1.1)—(1.5) pos-
sesses the finite time localization property if there exists (a finite time) ¢* € (0, 00)
such that u(x,t) = 0 a.e. in Q and for all ¢ > t*.
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1.2. Motivation

In [5, §4.7] was considered, for the first time, the assumption that the forcing term
f in (1.2) to depend on u and to obey

YueRY §lul” < —f(z,t,u)-u, oe(1,2), (1.11)

with some positive constant dy. It was assumed that

1
E(0) = 5 /Qp(x,O)|u(x,O)|2dx < o0, 1/M < py <M= Const. (1.12)

and were considered weak solutions (u, p) of problem (1.1)—(1.5) such that
1
u e L0, T;L3(Q)) NL(0, T; L7 (Q)) N L0, T; WgU(R2))  and v SPEM.

First, were considered pseudo-plastic fluids for which (1.6) holds with § = Const.
and g € (2N/(N + 2),2). The finite time localization property was proved in the
case of f = 0 with t* expressed by an explicit formulae (see [5, Th. 7.1]). The
same property was proved also for a given t¢ > t* if [|f(-,t)|lp.0 < €(1 —t/t¢)"
for all ¢ > 0. Here p = N¢/[N(q — 1) + ¢J, v is some positive constant and € is a
sufficiently small positive constant. Notice that, in the limit case ¢ = 0, we have
f = 0. In this case and assuming (1.6), it can be proved the following results (see
[5, §4.7] — see also [9, 11]): if ¢ = 2, the norm ||u||2, has a time exponential decay,
for t > tg; if ¢ > 2, the norm ||u||2,o has a time power decay, for ¢t > tg.

Then, were considered pseudo-plastic fluids with vanishing or unbounded
density, i.e., assuming that ||1/pol[,, o < C1, llpollps0 < C2, and min(m, M) > 1,
for some positive constants C; and Cz. Under the assumptions that /poug €
L2(Q2) and (1.6 holds with 6 = Const. and ¢ € (2MN/[N(M — 1) +2M],2),
M > N/2, were proved analogous results about finite time localized weak solutions
(see [5, Th. 7.2]).

Notice that to obtain these results there is no need to assume condition
(1.11) on the forces field f. In these cases, i.e., pseudo-plastic fluids (¢ < 2), the
localization effects are determined only by the structure of the tensor S.

Next, was considered the case ¢ > 2, dilatant (¢ > 2) and Newtonian (¢ = 2)
fluids. Under the assumptions that (1.11) and (1.6) with 6 = Const. and ¢ € [2, N)
hold, was proved the finite time localization property (see [5, §4.7]). In this case,
the finite time localization property is determined by the feedback forcing term f.

A few time later, this kind of forces field was improved in planar station-
ary homogeneous incompressible fluid problems, governed by the classical Navier-
Stokes equations. In [1, 2, 3, 4] has been established the property of finite space
localization for the velocity u, i.e., has been proved the solutions u of those prob-
lems have compact support in 2. The isothermal 2-dimensional cases of Stokes and
Navier-Stokes problems were considered in a semi-infinite strip = (0, 00) x (0, L),
L = Const. > 0, in [1, 2, 3]. There, has been assumed the body forces f satisfies,
for every u € R?, u = (u,v), and almost all x € Q

—f(x,u)-u>6u” —g(x),, 0 = Const. > 0, 1<o <2,
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for some function g € L (Q%9), where Q% = (0,2,) x (0, L) and 0 < x, < oo, such
that ¢ > 0 and g(x) = 0 a.e. in ;, = (x4,00) x (0, L). The exothermic version
of the Navier-Stokes problem was consider in [4], where it was assumed, for every
u € R2 u=(u,v), 0 € [m,M] (0 is the temperature), with m < M constants,
and almost all x €

—f(x,0,u) - u>4¢ |u|1+"(9) —g(x,0), 0 = Const. > 0,

for some function g € L' (2% x R) such that g > 0, g(x,0) = 0 a.e. in Q,, for
every 0 € [m, M]. Here, o is a Lipschitz continuous function such that 0 < o~ <
o(f) <ot <1 for every 6 € [m, M].

In this paper, we are interested in generalize some results of [5, §4] by consid-
ering the improvements of the forces fields considered in [1, 2, 3, 4]. Particularly,
we will analyse the following very interesting question: does the property of finite
time localization, for the weak solutions u of (1.1)—(1.8), may be assured by dis-
sipation of the forces field f merely in one direction? Recall that dissipation in
order to u, in the direction z, with k =1,..., N, corresponds to assume d; > 0
in (1.7)—(1.8). We will prove the weak solutions (u, p) of problem (1.1)—(1.5) are
finite time localized, if the stress tensor S satisfies (1.6) for appropriated values of
g and the forces field f satisfies (1.7)—(1.8).

2. Main results

2.1. Weak formulation
We are interested in weak solutions (p,u) to the problem (1.1)—(1.5) such that

E(t) —l—/ |[Vu|? dx < 0o, where E(t)= ;/ p(x,t) |u(x, t)|? dx, (2.1)
Q Q

1/M < p< M, M = Const. >0 (2.2)

Let us introduce the vector function space

31 (Q) = {u CL(Q): /

u-Vodx =0, Vo¢e LT(Q)}
Q

and consider the class of vector functions u € W, ,, u = (u1,...,un), where
W, ={ue L™ (0,T;L*Q)) NL*(0,T; Wy(Q)) : 0 = (01,...,0n),
o; €(1,2) and w; € L79(0,T;L°(Q)) Vi=1,...,N}.

Definition 2.1. A pair of functions (u,p) is called a weak solution of problem
(1.1)—(1.5), if u € W, ,, p satisfies (2.2) and if the following integral identities:

T
—/ /p[u-q)t—i—u@u:V*i)]dxdt—i—
0o Ja

T T
/ /F(u):V@dxdt:/ /pf~¢'dxdt—/p0u0-‘1>(0)dx;
0o Ja o Ja Q
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/OT/Qp[%Jr(u.v)g;] dxdt+/ﬂp0$0(0)dx=0;

are fulfilled for any ® € C' (0,7;J'(Q2)) and ¢ € C!(0,T;H' (Q)) such that
®(x,T) =0 and p(x,T) =0.

According to [5, §4.7] and references therein problem (1.1)—(1.5) has, at least,
one weak solution, if the mass force term does not depend on u, i.e if we consider
f = f(x,t) in a suitable functional space. Moreover, at least formally, every weak
solution of problem (1.1)—(1.5) satisfies the energy relation

th(t)—i—/QF(u):D(u)dx:/pr-udx, (2.3)

where E(t) is given in (2.1). The derivation of (2.3) relies on (1.1)—(1.3), the
symmetry of the tensor F, integration-by-parts formulae and boundary condition
(1.5).

Now, we assume the forces field f satisfies (1.7)—(1.8) for a given vector field
g. Moreover, we assume the tensor F, given in (1.3), is such that

(1.6) holds with ¢ > 2. (2.4)

Thus energy relation (2.3), assumptions (2.2) and (2.4), Korn’s inequality (see
Lemma 2.5) and Sobolev Embedding Theorem, lead us to the estimate

T N
sup E(t)+/ / <6|Vu|q+2(5i s ") dx dt
0 JQ i=1
(2.5)

0<t<T
<C(M) (E(O)+ /0 ) ( /Q |g(x,t)|pdx> o dt),

where p = Nq/[N(q — 1) 4 ¢]. In our further study we assume the existence of, at
least, one weak solution of problem (1.1)—(1.5) in the sense of Definition 2.1.

We give here only the ideas of the proof. We consider the three main different
cases: 1 < ¢ < 2, ¢ =2 and g > 2. For each one of such cases, and for different

constitutive laws, there are known existence results for suitable forces given in
(4=2)/21y
I

appropriated function spaces. For 1 < ¢ <2 and S = —pl 4+ 2uD + aD
the existence of a weak solution is proved in [7]. In [6] was proved the existence of
a weak solution for S = —pI 4+ 2uD (and ¢ = 2). Finally, for S = —pI 4+ 2uD +
ozD%ﬁz)/ D and ¢ > 2, the existence of a weak solution was also proved in [7]. In
our problem (1.1)—(1.5), the idea is to use energy estimate (2.5), assumption (2.2),
repeating the corresponding arguments of [6, 7] (see also [8, 10]) and to use a fixed
point argument. We hope to publish these results elsewhere as soon as possible.
Notice that, according to (2.5), every weak solution satisfies

N
/ ((5 |Vu|q + Z(Sz |Uz
Q

=1

i

") dx € L'[0, 7).
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2.2. Finite time localization
We will prove that the weak solutions of (1.1)—(1.5) are finite time localized, if
condition (2.4) is satisfied and the forces field f satisfies (1.7)—(1.8) and exhibits
dissipation effect in one direction. For the sake of simplicity, we assume that is
($N = 0, i.e.

(1.8) holds with d5 = 0 and ¢; # 0 for all j # N. (2.6)

Let us consider the following hypothesis on the domain 2.
Hypothesis A. The domain €2 is convex, at least, in the x direction.

From this assumption, we can say that each line parallel to the =y axis in-

tersects the boundary 9Q only on two points, say, x% = (29,...,2%_;) and

1= (1 1 “h 40 1
Xy = (21,...,2y_1), with 2}, <z

Theorem 2.2. Let (u,p) be a weak solution of problem (1.1)—(1.5) in the sense of
Definition 2.1. Assume that conditions (1.12), (2.2), (2.4), (2.6) and Hypothesis
A are satisfied.
1. If g(x,t) = 0, then there exists t* > 0 such that E(t) = 0 for almost all
t > t*. In particular, u=0 in QN {t > t*}.
2. Let g # 0 satisfy

q—1

t o\ aw—1) Nq
g(-,t ,Q<6<1_ > ) p= s k>1 2.7
EenI ) N 4 (27)
where i depends on p, q, N and 01, ..., on—1. Then there exists a constant

€0 > 0 such that E(t) = 0 for almost all t > ty, if € > €9 > 0. In particular,
u=0inQN{t>tg}, if e > ey > 0.
Remark 2.3. The mechanical sense of this theorem is that if the flow of a non-
Newtonian dilatant fluid with the dissipative term satisfying (1.8) with g = 0 is
generated by the initial data, then in a finite time the fluid becomes immobile. If
the flow is stirred by the source term g # 0 which vanishes at the instant tg, then
the fluid is still for all ¢ > ¢z provided the intensity of the source is suitably small.

The main tool to prove Theorem 2.2 are two well-known results, usually denoted in
the literature, as the interpolation embedding inequality and the Korn’s inequality.
For these results see [5, §4.7.2 and Appendix 3] and references therein.

Lemma 2.4 (Interpolation Embedding). Let u € Wy*(Q), 1 < p < co. Then the
following interpolation inequality holds:

1/r—1
T,Q)liea 0= /r /q

1 —1/p*’
Here C:((N—l)/Np*)e, 0€l0,1, qe]r,p*] (orqe€(pr]), ifp<N;
C=max((N—1)/Ng,1+(p—1)/pr)?, 6€[0,1], qe[r,), if N<p.

o2 < C(IVulp.e)’ (lu p* = Np/(N —p). (2.8)

lu
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If p > N, then (2.8) is true for ¢ = oo with § = Np/[Np+ r(p — N)] and some
constant C' < 0o not depending on €.

Lemma 2.5 (Korn). Let 1 < p,r < co and D be the tensor of rate of deformation.
If u € WiP(Q), then the following inequality holds

LlIvu

p < [D)[pe < CVulpe, C=Cp N,Q), K=K(p,N,Q).
(2.9)

Proof of Theorem 2.2. We will split this proof into several steps.

Step 1. Applying assumptions (2.6), (2.4) and (2.2) to the energy relation (2.3),
and using Korn’s inequality (2.9), we obtain

N-1
u-gdx, E,,(t) :/ <|Vu|q + Z |u; U) dx, (2.10)
Q i=1

where C' = C1 (K, M, N, dp) with 69 = min,—; .y 9; > 0, K is the Korn’s inequal-
ity constant and, from (1.8), 1 < o; < 2 for all ¢ = 1,..., N — 1. Notice that
ue L2(0,T;WhH4(Q)), u; € L7 (0, T; L (Q)) for all i = 1,..., N — 1.

Step 2. In this step we establish the following result.

Lemma 2.6. Let u € L2(0,7; WhH4(Q) N J9(Q)), u; € L7 (0,T;Lo(2)) for all
t=1,...,N —1. and the Hypothesis A be fulfilled. Then, for almost allt € [0,T],
the inequality

d
th(t) +CE,-(t) < /Q

E()h < CE (1), E@E;prmx (2.11)

holds for some positive constants C = C(||lully o, ¢, N,0:,Q), p = p(g, N,0;) > 1,
i=1,...,N—1. ’

Proof. Without loss of generality, we assume that u € C?(Q) for almost all ¢ €
[0,T]. Using the interpolation embedding inequality (2.8), with ¢ = 2, p = gq,
r = o0y, and Young’s inequality, we can write, for any scalar component wu; of
vector u, withi=1,..., N — 1,

JuilZg < C [ / (V] + Ju
Q
2N

Notice that the assumptions 1 < o; < 2 and ¢ > 2 > Na1
any ¢ = 1,..., N — 1. Assuming, without loss of generality, that ||uH§Q <1, we
can rewrite (2.12), and for all ¢ = 1,..., N — 1, in the form

uill3.0 < C (Eqq(t)™ 1, UN-1 = 1§?§ﬁl{fl—1m' (2.13)

Hi
, q(2 —o;)
7i) d i =1 .
) X > Mg +q(N+Ui)—N0i

(2.12)

assure that p; > 1 for

Next we need to derive an analogous estimate for the last component uy of
vector u. Recall that the force term is non-dissipative, in order to uy, with respect
to the xy direction (65 = 0). To establish that, we introduce the hyperplane

Qz)=0n{x=(,zy) eRY : X' = (21,...,2x_1) and zy =2z} CRV"L
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We formally multiply the continuity equation
divu =0, u=(ug,...,uny) € J1Q),

by ux and integrating by parts over €2(z), we came to

_1/ 3uNd ,_/ 3uN wy dx.
2 Q(z2) a.fN Q(z) 8%

But, according to the boundary condition (1.5) we have

! 8/ / 8“N g dx’. (2.14)
20z Joz) o) = O

Let us consider z% such that (x1,...,2x_1,2%) € 0Q. Integrating (2.14) with
respect to z € [z%;, zn] and applying, once more, the boundary condition (1.5),

uy dx :2/ / u; dx’ dz.
Q(z) % JQz) o Ox;

We apply Hélder’s inequality to obtain
N—-1

) SClIVunllo Y luilly g

=1

where C' = C(N). Integrating the last inequality with respect to z and using,
again, Holder’s inequality, we achieve to the estimate

N-1 N-1
2
lunllzq < ClIVunllyo Y lluilly o < ClIVunllya Y luillsa,
=1 =1

where C = C(q, N, Q). Now, applying (2.13) and the definition of E, ,(t) (see
2.10), we came to the inequality

1 _
lunlq < C(Bgo®)™,  uy = .t “N2 b, (2.15)
where C' = C(||uilly o, 9, N,0i,9Q),i=1,..., N — 1. Finally, combining (2.13) and
(2.15), we obtain (2.11), where p = minj<j<n fi- O

Step 3. If g = 0, using (2.11) and the energy relation (2.10), we come to the
homogeneous ordinary differential inequality

g B0+ CE(t)Y* <0  forallt>0. (2.16)

An explicit integration of (2.16) between ¢t = 0 and ¢ > tg proves the first assertion.
If g # 0, we use the estimate

‘/u'gdx
Q

q
<llg 00 < el[Vullgo+CE)lglly g

|Vu

pellully.o <Clglpa
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valid for some € € (0, 1), and, also, estimate (2.11), assumption (2.7) and the energy
relation (2.10), to achieve the nonhomogeneous ordinary differential inequality

d Y £\
Eit)+CiE({t)/" <Cy(1-— . for all t > 0.

dt g/ 4
The analysis of this inequality, which have been considered in [5, §1.2], proves the
second assertion. (]

Ezample. Let us consider the very interesting particular case of problem (1.1)—
(1.5) when N = 2 and assume the fluid is homogeneous. The incompressibility
condition given in (1.1) and the homogeneity of the fluid allow us to consider
problem (1.1)—(1.5) in the form

1
aaltl-i-(u-V)u: podiVS-l-f; (2.17)
u(x,0) =up(x) in and u(x,t)=0 on I'p=00x(0,T). (2.18)
where pg is the constant density of the fluid, the stress tensor S satisfies (1.3) and

the tensor F satisfies (2.4) with V = 2. By classical techniques, we reduce problem
(2.17)—(2.18) to the consideration of the problem posed by the following equations

divua =0,

. . 0 0
=AYy + P Ay — Py Aipy = (div S),, — (div S), + 3];2 - 3];2’ (2.19)
P(x,0) = /y up(x,s)ds in Q, ¢ =0 and gﬁ =0on 'y =00 x (0,T), (2.20)
0

for the stream function ¥ = ¥(x,y) : u = (u,v) = (¢y, —1). We formally multiply
equation (2.19) by a weak solution ¢ and integrate by parts over 2, using (2.20)
and (2.4) to obtain

d
w0+ CE) < [ (yomin) mix, Byolt) = [ (D017 + [, dx
where E(t) = 1/2 [, |V¢|?dx = 1/2 [, |u]* dx. Proceeding as in the proof of
Theorem 2.2, we obtain

q(2—o1)
424 01) — 204

Then, we multiply the equation ¥y, — %3y = 0 by —,, where v is the stream
function associated to a function u € J9(2), and integrating by parts over (z) =
QN {(z,y) e R?:y = 2} C R, we come to

1 o2 /
- T dr = Yoty d.
2 /Q(z) dy a(2)

Again, proceeding as in the proof of Theorem 2.2, we achieve to the estimate
2
el < € D2 o Il < C D], g Il
where C' = C(N, ¢, ). The rest of the proof follows just in the same manner.

||¢y||;9 < C(Ego)", po=1+ o1
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Remark 2.7. The results established in Theorem 2.2 can be extended to unbounded
domains satisfying Hypothesis A. The proof is almost the same, we only need to use
the known Korn’s and interpolation embedding inequalities (Gagliardo-Nirenberg)
for these domains. See the papers, cited in [5], by Kondratiev and Oleinik for
Korn’s inequality in unbounded domains, and by Gagliardo and Nirenberg for the
interpolation embedding inequality, also, in unbounded domains.
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Parabolic Equations with Anisotropic
Nonstandard Growth Conditions

S. Antontsev and S. Shmarev

Abstract. We study the Dirichlet problem for a class of nonlinear parabolic
equations with nonstandard anisotropic growth conditions. Equations of this
class generalize the evolutional p(z,t)-Laplacian equation. We prove the ex-
istence of a bounded weak solution and study its localization (vanishing)
properties.
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1. Statement of the problem

Let 2 C R™ be a bounded simple-connected domain and 0 < T' < co. We consider
the Dirichlet problem for the parabolic equation

up — ZDi (ai(z,u)|Diu p"(z)_QDiu) +c(z,w)|ul®2u=f inQ,

u=0onT, u(z,0) = up(x) in Q,

where z = (z,t) € Q@ = Q x (0,T], T denotes the lateral boundary of the cylinder
Q. Throughout the paper we assume that p;(z) and o(z) are given measurable in
Q@ functions such that

(1.1)

pi(z) C [infpi, suppz} C(p;,pf)C(,ph),
Q Q
(1.2)
o(z) C {infa, sup 0} C (o™, 0o")
Q Q

The first author was partially supported by the research project DECONT, FCT/MCES (Por-
tugal) at the “Centro de Matemaética”, Universidade da Beira Interior.

The second author was supported by the research grants MTM-2004-05417 (Spain) and
HPRN-CT-2002-00274 (EC).



34 S. Antontsev and S. Shmarev

with given finite constants pii, ot, p; >1,p~ > 1,0~ > 1. The coefficients a; and
¢ may depend on z, t, u(x,t) and obey the following conditions: a;(z,u), ¢(z,u)
are Carathéodory functions, defined for (z,7) € @ x R (measurable in z for every
r € R and continuous in r for a.a. z € Q),

0<ag <ai(z,r) <ay < oo,

v x R
(z,r) €@ 0<c¢y<c(z,u) <cg <00, ag,a,c,c1 = const.

(1.3)
Moreover, it is assumed that the exponents p;(z) and o(z) are continuous in @
with logarithmic module of continuity:

V(z, 2) €Q Y Ipi(z1) — pilz2)| + lo(21) —o(22)| Sw(lzr — 2)  (14)
where w(7) is continuous for 7 > 0 and

lim w(7)ln I C < 4o00. (1.5)
T—0F T

The note is devoted to the study of localization (vanishing) properties of
bounded weak solutions to equation (1.1) which degenerates if |D;u[Pi(*) = 0 or
becomes singular if |D;u|P"*) = co. In Section 2 we collect some known facts
from the theory of the generalized Lebesgue and Sobolev spaces and introduce the
function spaces the solutions of problem (1.1) belong to. In Section 3 we announce
the results on the existence of bounded weak solutions of problem (1.1) and give
a sketch of proofs. In the rest of the note we study the localization properties
of weak solutions: we show that the solutions of problem (1.1) either identically
vanish in a finite time (if p* < 2), or possess the property of finite speed of
propagation of disturbances from the initial data (if p~ > 2). In the study of
the localization properties we use a modification of the method of local energy
estimates [8]. Similar properties of solutions of parabolic equations nonlinear with
respect to the solution with variable exponents of nonlinearity are obtained in
[5, 6]. The localization properties of solutions of elliptic equations with nonstandard
growth conditions are studied in [4, 7]. We also refer to the papers [1, 2, 3, 9] for a
discussion of the regularity properties of weak solutions of the systems of equations
with nonstandard growth conditions (see also the references therein to the previous
work on this issue). The continuity properties of solutions of a parabolic equation
with variable exponent of nonlinearity are studied in [13].

2. Spaces LP(™(Q)) and W, "(Q)

The definitions of the function spaces and the brief description of their properties
presented in this subsection follow [10, 11, 14, 16] (see the review work [12] for the
detailed list of references). Let

{ Q C R” be a bounded domain, 92 be Lipschitz-continuous, (2.1)

p(x) satisfy (1.4) on Q.
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By LP(®)(Q) we denote the space of measurable functions f(z) on Q2 such that

Ap(y(f) =/|f(x)|p(”) dz < .
Q

The space LP(*)(Q) equipped with the norm
1y = 1y = i {A > 0 Ay (F/0) < 1}

becomes a Banach space. The Banach space W P(®)(Q) with p(z) € [p~,pT] C
(1, 00) is defined by

whr)(Q {f c LP@(Q): |V f| € LP(JC)(Q)}’
ol = = S 1Dl + - (22)

If condition (2.1) is fulfilled, then C§°(€2) is dense in I/V1 p(x)(Q) and Wol’ p(x)(ﬂ)
can be defined as the closure of C§°(€2) with respect to the norm (2.2). The equiva-

lent norm of Wol’p(x) is defined by Y, | Diullp(- If p(z) € C°(), then WP(®)(Q)
is separable and reflexive. If p(z), ¢(z) € C°(Q) and

p(x)n
1 < q(z) <supgq(z) < igfp*(x) with  p«(x) = ¢ n—p(z)
@ 00 if p(z) > n,

if p(z) <mn,

then the embedding Wol’p(x)(ﬂ) < L) (Q) is continuous and compact.
The following inequalities hold:

Lo min (100 IFI0G)) < Apy (F) < max (£, 715 ) s (23)

2. Holder’s inequality: for f € LP(*)(Q), g € LI (Q) with

1 1
+ =1, 1<p <plx)<p"<oo, 1<q <gqx)<qgt<oo
p(x) ()
[1791ds <2071, gl (24)
Q
3. for every 1 < g = const < p~ we have [|f|[, < C|f],, with the constant
C =201 »o -
4. Sobolev’s inequality: if conditions (2.1) are fulfilled, there is a constant C' > 0
such that

Ve WP Q) Iflly < CUIVEL - (2.5)
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2.1. Anisotropic generalized Sobolev spaces

Let p;(z,t) and o(z,t) satisfy conditions (1.2) and (1.4). We introduce the Banach
space

V,(Q) = {u| we L7@ED(Q) N WEY(Q), Diue vat)(m},

n
ullv, = llullog5,0 + Z [ Dillp, (-0),0

i=1
and its dual V}(Q). For every t € [0,T] V¢(2) ¢ X = Wy * (Q) N L (), so
that V() is reflexive and separable as a closed subspace of X. Denote p(z) =
(pl(z)v cee 7p’n(z)) and set

Ap().@(Vu) = Z/ |Diu Pieh) dadt.
i=1
Q

The following counterpart of (2.3) holds:

. -+ _
min { ™ Dl ) o S IDwlZ ) o} < Apiy oV )
i 4

- +
<max { 3Dl ) o 3 1Dl o}

By W(Q) we define the Banach space

(2.6)

W(Q) = {u(z, Hlu € L7(Q), Diu € L= (Q), u=0on T},

lullwi@ = S 1Dl e gy + Ill o

with the dual W/(Q) = {w| w e L7 @D (Q) N Lri=1 (0, T; W‘lvp':'(”*t)(Q))}. Here
and throughout the text we use the notation 1/s+ 1/s" = 1.

3. Existence of bounded weak solution

The solution of problem (1.1) is understood in the following sense.

Definition 3.1. A locally integrable function u(z,t) € W(Q) is called weak solution
of problem (1.1) if for every test-function ¢ € LY (Q) N L> (0,7 L*(R)) such

that ¢ =0 on 9 x (0,T), D¢ € LP/=N(Q), ¢ € L*(Q), and every t1,ty € [0,T)
the following identity holds:

to
t/ﬁ/(ug—;aimiu

t2
t

MDD — el u g+ £¢) dz = [ ucda

Q

(3.1)

1
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. 2n
Theorem 3.1. Let conditions (1.2), (1.3) and (1.4) be fulfilled, p— > nt 2 co >0,

f € L*(Q) and ug € L*(?). Then problem (1.1) has at least one weak solution
u € W satisfying the estimate

HuH%w(o,T;p(Q)) +/ (aoz |Diu

Q

with a universal constant M not depending on T.

Pi 4 CO|U|0> dz < M |:||UO||%2(Q) + ||f||g,Q}

Theorem 3.2. Let ug € L>(Q) and || f(-,)||co.0 € L*(0,T). Then the weak solution
of problem (1.1) satisfies the estimate

T
ess sup [[u(:,t)[lec,0 < ||U0||oo,9+/ £, )0, dT.
te(0,T) 0

The strict limitation on the volume of this note prevents us from presenting
here the detailed proofs. We limit ourselves by a very short sketch of the argu-
ments leaving the detailed proofs for future publications. Theorem 3.1 is proved
by constructing a sequence of Galerkin’s approximations: since C§°(2) is dense in
WO1 P (w’t)(Q) for every t € (0,7), we may construct the sequence of approximate
solutions u™ (z,t) = Z,ivzl ul (t)1r () following the classical scheme given in [15,
Ch.3]. To justify the limit passage as N — oo we rely on the monotonicity of the
elliptic part of equation (1.1): let M(s) = |s[P~2s, then V&, € R®

27P ¢ —nl? if 2<p < oo,

M) - M —n)> s

e M e = {<p ~Dle—al (€ + 1) it1<p<2

To prove Theorem 3.2 we take for the test-function in (3.1) the function ;™

with m € N and

k if u >k,
ug = min{|ul, k}signu=< u if Ju| <k,
—k ifu<—k.

Estimate (3.2) follows then after a suitable choice of the parameter k, depending
on ||uol|co,0, and the limit passage as m — oo (see [6]).

4. Vanishing in a finite time

For the sake of presentation, in this section we deal with the equation (1.1) with
isotropic nonlinearity. The general anisotropic case is studied likewise and does
not present any principal difficulty.

Theorem 4.1. Let u(z) be a weak solution of problem (1.1) with p;(z) = p(z), and
let conditions (1.2) , (1.3) and (1.4) be fulfilled.
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1. Let f =0 and either

2n

co >0, max{l,n+2

} <) =plx)<pt <2 (A1)

co >0, ot <2<pt,

+ ot [p- -V~ no- 42
protlpt(n+om)—no] =ve(1/2,1). (4.2)
np=(2—o07)ot +[(24+n)p” —2n)|op*
Then u(z) =0 in Q@ N {t > t*} with some finite t* depending on n,
+
b~, 07, ag, Co-

2. Let either (4.1), or (4.2) holds. Assume that f #Z 0 and

2 1 t 1ZV *
Ireagat <s -] s (4.3

fl+

with € = const > 0, and v = p*/2 < 1 if (4.1) is fulfilled, v defined by
(4.2) otherwise. Then there exists a constant eg > 0 such that u(z) = 0 in
QnN{t >ty >t*}, provided that eg > ¢ > 0.

Proof. Let us introduce the functions
B0 = ulfo. 10)= [fuds, Q) =3 [ (asIDial 4 clul®) da
Q L)

Choosing the solution u(z) for the test-function in (3.1), we obtain the energy

relation

;E’(t) + Q) = I(1). (4.4)

It is easy to see that Q, I € L*(0,7T), and

Qo(t) = / (ao A% u|p(Z) + ¢ |u|a(z)> dr < Q(t) < / (al A% u|p(z) + |u|0(z)> dz.

Q Q

Without loss of generality we may assume that E(t) <1 for a.e. t € (0,T). Using
the interpolation inequalities in the Sobolev spaces of functions defined on € and
depending on t as a parameter, we have that for a.e. t € (0,7T') the inequality

E"W (1) < mm{EpI“)/?() EP <t>/2( g C / |Vu(z)[P?) da (4.5)

holds in which C'is a constant depending only on p=, n, Q, and v.(t) = pf (t)/2 < 1
if condition (4.1) is fulfilled. If condition (4.2) holds, then

B0 <0 [ (Vu@P® + u(z)F) do (46)
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with the exponent
pi ol pi(n+oy) —no.]
v(t)= —\ ot - — ot
npy (2 — o0y )od + [(2+n)ps —2n)] o5 pi
Gathering (4.4) with (4.5) (or (4.6)) and making use of Young’s inequality, we
arrive at the inequality
1
2

Applying (4.3), we obtain the nonhomogeneous ordinary differential inequality

€(1/2,1).  (47)

C v v —
E'(t) + CE~® < U B0 1 Cf (1)l 7.

201 va(t)

1 ¢ 1ZV 2 2w (t)—1
E't)+CE-® < [e]1- . (4.8)
2 ty i
Because of the assumption E(t) < 1, (4.8) can be strengthen as follows:
1 / v / t 1 .
E't)+ CE"<(C'|e|l1— with v = sup v, (t). (4.9)
2 ty + 0,T)

If € = 0, the straightforward integration of this inequality gives the estimate
EYV(t) < E'7(0) — (1 —v)Ct, (4.10)

whence the former assertion of the theorem with t* = E1=%(0)/(1 — v)C. The
latter assertion (¢ > 0) follows like in [8, Ch.1,Lemma 2.1] via comparison with a
suitable barrier function. O

Remark 4.1. The second assertion of the theorem means that under the imposed
conditions every weak solution of problem (1.1) vanishes simultaneously with the
source term at the same instant ty.

5. Space localization of solutions

Let us denote
By(zo) = {z||z —xo| <p}, Sp(x0) = 0B,(x0), Qp(0) = By(x0) x (0,T).

In this section we study the property of finite speed of propagation of disturbances
for the local weak solutions of equation (1.1) in the cylinder Q,,(x0) = B, (z0) X
(0,T), By, C Q, regardless of the boundary conditions on 9. Throughout the
section we assume that the total energy of the solution under study is finite:
Vte (0,7)

t
Diput) = sup [u( s,y + [ [ (uP +colul)dade <€, )
0, 1) 0 JB,,

with some constant C' not depending on t. By local weak solution we mean the
following;:
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Definition 5.1. A measurable function u(z,t) is called local weak solution of equa-
tion (1.1) if for every Q,(xo) C Q
1. u € W(Qp(20)) N L>(0,T; L*(By(x0))), ur € W'(Q,(20)),
2. for every test-function ¢ such that { € W(Q,(x0)), & € W/ (Q,(z0)), ¢ =0
outside Q,(xo), the integral identity holds:
T

/qum +/{—u§t+2ai|Diu
Q 0o @ ‘

Obviously, the weak solution of problem (1.1) u € W(Q) is a local weak
solution in the sense of this definition.

Pi=2Diu D¢ + c|u|"_2u§} dz = /dez.
Q

5.1. The basic energy relation
Let 29 € Q2 be an arbitrary fixed point.

1 1 1

Theorem 5.1. Let — — < . Then for every By(wo) C 2, t € (0,T7] the local
p p n

weak solution of equation (1.1) satisfies the energy relation

¢
1 9 T=t . -
) / u(z,7)dx Y —|—/ / (Z; a;|DiulPt 4 ¢ |ul” — fu) dzdt

BP(IO) 0 Bpo (IO)
t

:—Z/ / wa;|Diu

©0 S, (w0)

pi*2Diu 7z dS dt = I(P» t)v

(5.2)
where v is the unit outer normal to S,(xo).

Proof. We will need the following assertion.
1

p+
Proof. For the sake of brevity, let us denote w = B,(zo) % (0,T"). By (2.4)

P
/ [I(r)|dr <2a0 ) |u
0 i

According to the embedding theorem ||u

1 1
Lemma 5.1. Let Ay (Vu) < K. If — — <, then I(r) € L*(0,p).
D n

pi(),w [ Diw pi(-)w "

pi()w < ClIVul,- o, provided that

pi(x) < P . Finally, for everyi=1,...,n

n—p
IDiul2 ., = / Diuf?” dadt < 2(||Daul” |[ocr IILI »e
w p— Pi—

<201 ’wmax{Api/p;(Diu), AP*/"T(DW)}gC(|Q|,T,p3E,pi,K). O

pi—p— pi(')vw pi(')vw

The rest of the proof follows the proof of Lemma 2.1 in [8, Ch.3]: O
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5.2. Finite speed of propagation of disturbances from the data

Theorem 5.2 (Finite speed of propagation). Let conditions (1.2), (1.3), (1.4) and
the conditions of Theorem 5.1 be fulfilled. Assume that either

co=0, and 2<p <p(zt), (5.3)

or
+ o 2n - <t
>0, o <p~, maxql, 42 <p <p Sp(xvt)§27 (54)
n

and that f =0 in the cylinder Q,,(xo)
solution u(z) of equation (1.1) in Q,(
of finite speed of propagation: u(x,t) =
and p(t) given by the formula

pH(t) = pitP — CO D (po, 1) (5.5)

with some positive constants C, v, and A\, B which depend on the constants in
conditions (1.2), (1.3) and (1.4).

= B,,(z0) x (0,T'). Then every local weak
xo), satisfying (5.1), possesses the property
0 in x € Bpyyy(wo) with 0 <t <t, <T

Remark 5.1. Since the function p(t) defined by (5.5) is monotone decreasing, the
set By (o) is nonempty for small t.

Let us now assume that there exists p1 > 0 such that B,, (z¢) C €2 and that
for some pg € (0, p1)

ug(r) =0 =€ Byy(wo), f(z,£) =0 in Qpy(a)s (5.6)

2 8o T 1715 0,0 < (0= p0) 7, (5.7)
for all p € [po,p1], D(p1,T) < oo, with the positive constant v defined below,
and some € > 0. This assumption means that the functions ug(z) and f(z) are
sufficiently “flat” near the boundaries of their supports.

Theorem 5.3 (The waiting time effect). Let conditions (5.3) or (5.4)) and (5.6),
(5.7) hold, and the conditions of Theorem 5.1 be fulfilled. Then every weak local
solution u(z) of equation (1.1) possesses the waiting time property: there exists a
positive constant t* < T such that u(z,t) =0 in B, (zo) x [0,t*].

o

Sketch of proof. For the sake of simplicity we consider the case (5.3) of Theorem
5.2 and assume that f = 0. Let us introduce the energy functions
¢

Bt = [ [ 9P dpt) = uC 0By 68)

0 Bﬂ(xo)
_ _ . 2
E(p,t) = Igng(paT), b(p,t) = rpgfllﬂ( 2,8, (20) (5.9)
for which ,
B, - / / Vol dedt, B, = / Vul? da. (5.10)
Bﬂ(xo)

0 Sp(wo)
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We recall that due to the regularity of weak solutions stated in Theorem 5.1 the
functions Ey, E, and E;, are well defined in the corresponding functional spaces.
Let us consider first the cylinder B,,(x¢) % (0,77*), po > 0,T* > 0 assuming that

pT—p~ <elpo,T*) (5.11)

with a sufficiently small € > 0. Using the interpolation inequalities (see [4], formulas
(5.15), (5.22) with o= = 2), and then following the proof of [8, Theorem 2.1, p. 133]
we estimate the right-hand side I(p, t) of (5.2) as follows:

t
+ 1)/t ey
1)) <€ [max {7, BE ) ul st (5.12)
0
51 1-6
llpr 5, 20) < CUIVUllp-, B, o) + o °b2)%b > 5.13)
_ 0 5.13
<C (max {EE/N,E:/’) } —|—p*5b§> blze,
where - ) ( )
p~ npT—2)+2 n(p~ —2)+2p~
9 = 1, 6= > 1. 5.14
ptn(p™ —2)+2p” 2p~ (5:14)

Substituting (5.12), (5.13) into (5.2) we arrive at the inequality
1—60 A 1— 1 1— 1 ) 6 0
b+E<Cbh* /maX{Etp rt E, " } (maX{Etﬁ, EF }] +p59b2> dr.
0

Not loosing generality we may assume that E(pg,T) < D(pg,T) <1 and T < 1.
Applying the integral representations

t t
/ Eydt = B, (p.t), / Eudt = E(p,t),
0 0
and using Holder’s inequality, we derive the inequality
(b+ E)" < 0t"p= max {E;_l/’ﬁ, E;_l/’f } ,

with the exponents

uzl—e—l_e /<c:min{1 (1_9p+> 1_6}.
pt 2’ pt p= ) p”
Since E < 1, this inequality leads to the ordinary nonlinear differential inequality
for the energy function E:
E'<(b+E) <Ct}pPE, (5.15)

with the exponents of nonlinearity

p~ (1 pt—2 kpt pt
— 9 1 A= — 56 .
v p‘—1(2+ (2p+ ))< ’ pt—1’ b pt—1

The function E is considered as a function of the variable p depending on ¢ as
a parameter. Notice that due to condition (5.11) on the oscillation of p(z) the
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inequality p < 1 with variable p(z) immediately follows if i < 1 in the special case
when p™ = p~, which much easier to check. The required estimate (5.5) follows
now after integration of the differential inequality in the limits (p, pg). To complete
the proof, we take a ball of an arbitrary radius pg, take a finite covering of this ball
with balls of small radius p’ such that the oscillation condition (5.11) is fulfilled,
and then repeat the previous arguments in every of these balls.

In the case of Theorem 5.3 the same proceeding leads to the nonhomogeneous
ordinary differential inequality

E'<CtpPE,+elp—poli", p € (pop1) (5.16)

The analysis of this inequality is based on [8, Ch.1l, Lemma 2.4 ] (see also [4,
Lemma 5.3]). O

Remark 5.2. The conclusions about the space-and-time localization properties of
solutions to problem (1.1) are based on the analysis of the nonlinear ordinary dif-
ferential inequalities for the energy functions. When dealing with these inequalities
we always reduced them, by means of some suitable assumptions, to the nonlinear
inequalities with constant exponents of nonlinearity, which are already studied (see,
for instance, inequality (4.8) and its counterpart (4.9)). The study of the properties
of functions satisfying the nonlinear ordinary differential inequalities with variable
exponents of nonlinearity is still an open question.
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Parabolic Systems with the
Unknown Dependent Constraints
Arising in Phase Transitions

Masayasu Aso, Michel Frémond and Nobuyuki Kenmochi

Abstract. We consider a system of nonlinear parabolic PDEs which includes a
constraint on the time-derivative depending on the unknowns. This system is a
mathematical model for irreversible phase transitions. In our phase transition
model, the constraint p := p(f,w) is a function of the temperature 6 and
the order parameter (state variable) w and it is imposed on the velocity
of the order parameter, for instance, in such a way that p(f,w) < w; <
p(0,w) + (a positive constant). We give an existence result of the problem.

Mathematics Subject Classification (2000). Primary 35K45; Secondary 35K50.

Keywords. System of nonlinear parabolic PDEs; irreversible phase transitions.

1. Introduction

The irreversible phase change is very often observed in solid-liquid systems, for
instance, in the solidification process of eggs; in fact, once eggs are solidified in
high temperature, their states never return to raw ones even if they are put in cold
water. It is called that the phase transition is irreversible.

In this paper we consider the following system:

0 + wy — vAO = h(z,t) in Q :=Q x (0,7T), (1.1)
wt + a(wy — p(d,w)) — kKAw + f(w) 3 f(0,w) in Q, (1.2)
00 0
an:a::OOHE::Fx(O,T), (
(

9(70) = 90a U)(,O) = Wo On Qa
where Q is a bounded domain in R? with smooth boundary T', 0 < T' < oo; v and
Kk are positive constants; a and 8 are maximal monotone graphs in R x R; p(-,-)
is a function of C%-class on R x R and f(-,) is a Lipschitz continuous function on

R x R. Moreover h is a function on @), and 6y and wy are functions on €2, which
are prescribed as the data. We denote by (P) the system of (1.1)—(1.4).
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In this paper, we suppose for a, 8, p(-,-) and f(-,-) that
(A) 0 € a(0), D(a) = [0, Ny or [0, Np) for some finite positive number Ny, where
D(«) is the domain of a.
(B) B is the subdifferential of the indicator function of the interval (—oo,1],
namely
) for r > 1,
B(r)y =< [0,00) forr=1,
{0} for r < 1.

(C) All of the first- and second-order partial derivatives of p are continuous and
bounded on R x R, p > 0 on R x R and

p(B,w) =0, V0 € R, YVw € R with w > 1; (1.5)
note here that 1 = sup D(f).
(D) f is Lipschitz continuous and bounded on R x R.

We note here that the term a(w; — p(f,w)) requires automatically 0 <
p(0,w) < w; < p(f,w) + Ny, which is a velocity constraint depending on the
unknowns # and w; in the context of irreversible phase transition in solid-liquid
systems, the unknown 6 is temperature and w, 0 < w < 1, is the volume fraction
of solid in the system under consideration. In this paper we give an existence result
for problem (P). We refer for related works on irreversible phase transition, for
instance, to [7, 9] in the case of prescribed constraints.

2. Main result

System (P) is treated under the following assumptions on the data h, 6y, wo:

h e WH2(0,T; L*(Q)) N L®(Q), 6o, wo € H*(Q), %90 = aawo =0onl. (2.1)
n n

For simplicity, we assume that the diffusion coefficients v and x are equal to 1,
and use the notation —Ag to indicate the Laplace operator —A with homogeneous
Neumann boundary condition. Now we give the definition of solution of (P) (with
v=1and k =1).

Definition 2.1. A pair of functions {8, w} is called a solution of (P), if it satisfies
the following conditions (1)—(4):
(1) 6, we Wh2(0,T; L3(Q)) N L>(0,T; H'(Q2)) N L*(0,T; H*(Q)).
(2) 0'(t) + w'(t) — AgB(t) = h(t) in L*(Q) for a.e. t € (0,T), where 6 and w’
denote the time-derivatives of 6 and w, respectively.
(3) There exist functions &,1 € L2(0,T; L*(Q)) with ¢ € a(w’ — p(f,w)) and
n € f(w) a.e. in @ such that
w' () + (1) — Aqw(t) +n(t) = £(O(t),w(t)) in L*(Q) for a.e. t € (0,T).

(4) 6(0) = 0y and w(0) = wp in L*(Q).
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Our existence result is stated as follows:

Theorem 2.1. In addition to assumptions (A), (B), (C) and (D), suppose that (2.1)
holds. Then problem (P) has at least one solution {0, w} in the sense of Definition
2.1 such that

w € L¥(Q), 0, we WH0,T; HY(Q)) N L>(0,T; H*(Q)).
Remark 2.1. As far as the existence (in the sense of Definition 2.1) of a solution
of (P) is concerned, we can replace the conditions for & and 0y by weaker ones
h e L>®(Q), 6 € H'(Q) N L>®(Q). (2.2)

To prove the above theorem we first consider approximate problems (P, »)
of the following form:

0+ J,w) — Ao = h(t,z) in Q, (2.3)
w' +a(w —p0, J,w)) + Ayw+ Br(w) 2 f(O,w) in Q, (2.4)
0(-,0) = 0y, w(-,0) = wp in Q, (2.5)

where A, and J,, 0 < pu <1, and 8y, 0 < A < 1, are defined as follows:
(1) For each 0 < pr < 1, ¢, is the Moreau-Yosida regularization of the function

1
:: 2/Q|Vv|2dx, if v e HY(Q),

o(v)
0, otherwise,
namely,
. 1
eut) = _inf {5 = ol + o)} e @),

and 4, is the subdifferential of ¢, in L*(Q), that is 4, = dp,,.

(2) For each 0 < p < 1, J,, is the resolvent of the subdifferential dp (= —Ay)
in L2(Q), namely, J,, := (I + pdp)~t.

(3) For each 0 < A <1, () is the Moreau-Yosida regularization of § in R,

namely
—(I+ X3t
Oa(r) == r=( —t\ A for all » € R.
It is well known that A, := —AgJ, and it converges to —Aq in L2(Q) as p — 0,

and [ converges to §in R x R as A — 0 in the sense of graph (cf. [5, 8, 10]).

So far as the approximate problems (P, ») are concerned, the existence of
their solutions is shown in a way similar to that in [1-4]; in fact, (P, ) has at
least one solution {6, x,w, } satisfying that

0,5 € WH2(0,T; HY(Q)) N L*(0,T; H*(Q)) and w,, » € WH2(0,T; L*(Q)).

A solution of our problem (P) is constructed as a limit of approximate solutions
{62, wya} as pand A tend to zero.
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3. Uniform estimates

In this section, we give some uniform estimates for {6, x, w, x}.

We use hereafter notations C;, M;, i € N, to indicate positive constants in
inequalities which we derive in this section; C; denotes a positive constant which
does not depend on any of the data h, 6, wy and parameters u, A € (0,1] (but
may depend in general on p, f), and also M, denotes a positive constant which is
independent of p, A € (0,1]. Moreover, we denote by M;()\), ¢ € N, a positive
constant which depends only on A € (0, 1], but not on u € (0, 1].

Lemma 3.1.
(i) The following inequality holds:
10|25 (@) [Wu Al Lo (@) s [w), AL (@) < My 4 MiT, Yu, A€ (0,1],

where My = |0o| L~ () + [wolLe (@) + [kl (@) + [Pl ®2) + No-

(ii) There exists a positive constant My independent of p1, A € (0,1] such that

|42, Juwu,A)E?(Q) < |A0p(Bu.r, Juwu,A)E?(Q)
< Ma (1800732 + 14wtz + [V0ualia) + 00 (wpn) +1)
a.e. on (0,7T).

Proof. The inequalities for wy, x and wj, , in (i) are trivial by assumption (A),
and the one for 6, ) is immediately obtained by comparing it with the function
q(t) := My + M;t. In fact, it is enough to multiply (0,.x —q) — Ao(fur —q) =
h — Juw), \ — Mi(<0) by [0,,» —¢]* and use the usual comparison technic.

Now we prove the inequality in (ii). Since all of the second-order partial
derivatives of p are bounded by assumption (C), it follows that

[Aup(Ou,n, Jﬂwu,)\”zL?(Q) < [Aop(Op,x, Jﬂwu,/\)@%g) (3.1)
< Ms (|V9;L,A|‘1{4(Q) + |VJ;Lw;«A|‘1{4(Q) + |A00#«\|%2(Q) + |Auw#v\|%2(§2))

for a.e. on (0,7). By the Gagliardo-Nirenberg interpolation inequality (cf. [11])
and the result of (i), the following inequalities hold:

—~

VOunlia < Cilbualieo)lualie@
< G (|0u,>\|%2(§2) +|VOuAlF20) + |A00#«\|%2(Q)> NS
< My (|A09u,>\|i2(9) + VOualFa ) + 1) :

Similarly, we get

IN

C3|Juw/w\|%{2(§2)|Juwu,k|%°°(ﬂ)
Ms (|Auwu,/\|%2(ﬂ) + ulwp,a) + 1)

for a.e. on (0,7). In virtue of (3.1) together with the above inequalities we find a
required constant Mo. O

|VJuwu,>\|%4(Q)

IN
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Lemma 3.2. There exists a positive constant My(\) depending only on A € (0,1]
(and on the data p, f, h, 0y and wy as well, but not on p € (0,1]) such that

sup {wu,n%,zm) e + pulwnn) + [ mwu,ndx}
t€[0,T] Q

T
+16,, /\|L2 052 + VO, ,\|L2 0,T;L2()) +/0 pu(w, \)dt < Mi(N),
where B s a primitive of (3.

Proof. Compute: (2.3) x 0/, 5, (2.3) x (—Aof, ,), (2.4) x (w;M —p(@u,,\,Juwu,A))
and (2.4) x A, (w;, \ — p(Op,x, Juwy,x)). Then, with the help of Lemma 3.1, the

Schwarz’s inequality and some other relations such as |w1w\| < |plpesr2) + No ae.
on @ and

(57 Au(w;li,)\ - p(eﬂ,/\» J;Lw#,/\))L2(Q) Z 07 Vg S a(w:L,A _p(eu,)\» J/qu,)\))v
we have respectively (cf. [4]):
1d
(1) |9 Mz + 2dt|veu,)\|L2(Q < |h|L2(Q + Ch,
d 1
(2) |V9 NR dt Ep s < oulwy,\) + 2|A09u,A|L2(Q) + 2|h’|%2(9),
where Eu A() = |A09u /\|L2(Q) (h, =A00ux)r2(0),
d
(3) thllL,A < Ma(A )|Auw#,A|L2(Q) + Cs,
where E}”\() = pu(wu ) +/ ﬁAA(w%)\)dx
Q
d
(4) %L(U’L, )+ dt E}L/\ > 8|0 /\|%2(Q) + M3(N) (|A09;«A|%2(Q) + |Auwu,/\|%2(9)
V0,0 + Pulwun) +1),

1
where Ei,)\(') = 9 |Auwu,)\|i2(§2) + (6z\(wu,/\) - f(eu,Aawu,)\)aA;qu,A)L2(Q)~
Now, by (1) + (2) + (3) + (4) x 2 we observe that
1 / 2 / d
|9 /\|L2(Q 2|v0;¢,/\|L2(Q) + pulwy, \) + thu,/\ (3.2)

< M3(AN)E,\ + M6(||h||%2(9) +1),

where ||h|[12(q) = [h|L2) + [W]12(0) and E, () = é|v‘9u7>\|i2(g) + E) () +
E}LA() + 2Ei/\() Applying the Gronwall’s inequality to (3.2), we obtain the
required inequality with a certain constant Mj()\). O
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On account of estimates in Lemmas 3.1 and 3.2, for each fixed A € (0,1] we
find a sequence {p,} C (0,1] with p, — 0 as n — oo and functions 6, wy such

that
{ 0,2 — Ox in C([0,T]; H*()), (33)
T W — wx i C((0,T]; HY(Q)), '

as n — 0o, and

Wy, A — WA in C([0, T]; L?(2)),

0, x— 05 weakly in L2(0,T; H'()),

Jupw;, \ — wh weakly in L2(0,T; H'(1)),

—Aoby, 2 — —Aob weakly in L2(0,T; L?(Q2)),

wy, \ — Wy weakly in L?(0,T; L?(9)), (3.4)

Ay, wy, 2 — —Aowy weakly in L2(0,T; L?(Q2)),

Ba(wpu, 2) = Ba(wa) in C([0,T]; L*(2)),

S Opn s W x) = f(Ox; wr) in C([0,T]; L*(2)),

p(G#m)\? J/an#m)\) - p(ekv w)\) in C([Ov T]7 Lz(Q))»

as n — 00. Also, put
- 6x\(wu,/\) + f(em)\, w%)\).

—p(Oux, Juwy ) ae. on @, and it follows from the above

e /
§ux 7= =Wy, = Apwp

Then, §,» € a(w
convergences that
Eunr — —Wh+Aogwx—Ba(wr)+ f(Ox, wr) =: &x weakly in L2(0,T; L*(R)), (3.5)

as n — 0o. Moreover it is easy to see that

;L/\

T
lim sup/ (§M7A, wLm/\ — p(@umx, Junwun,/\))L2(Q)dt (3.6)
0

n—oo

T
S/ (&, wh — p(Ox, wy)) 2 dt.
0

By the maximal monotonicity of o, (3.5) and (3.6) show that {x € a(w)—p(fx,wx))
a.e. on Q. Consequently, passing to the limit in (2.3)—(2.5) as n — oo, we see that
Ox, wy € WH2(0,T; HY(Q)) N L>(0,T; H*()) and the pair {#y,w,} is a solution
of problem (Py) := {(3.7)-(3.10)}:

L+ wh — Agfy = h in L(Q),a.e. on (0,7), (3.7)

wh + & — Aowy + Ba(wy) = f(Ox,wy) in L*(Q),a.e. on (0,T), (3.8)
& € a(wh — p(0y,w)y)) a.e. in Q, (3.9)

0x(0) = 6y, wx(0) = wp in L3(Q). (3.10)

Moreover we have the following uniform estimates of {fx,wx} with respect to

A€ (0,1].

Lemma 3.3. There is a positive constant Mz, independent of A € (0,1], such that
Ox|w2(0,7;01 () + [Walwr20,7;m1 (@) + 18X (WA)| L= (0,7522(2)) (3.11)

HOx| Lo 0,112 () + WA Lo (0,112 () < M7
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Proof. Let {6,,x, w, »} be again the solution of (P, ). Then, in addition to es-
timates (1) - (4) in the proof of Lemma 3.2, we have by multiplying (2.4) by

Au(wL,A = p(Opns Jpwp,n)) + (ftﬂA(wu,A) that
d
(5) @u(w;,,\) + thi,/\ + (gu,)\a ﬂi\(wu,/\)p(eu,)\a Juwu,/\))L2(Q)
1
< 8|0L,A|2L2(Q) + My <|Auwu,/\ + @\(wu,A)@z(m + |A09u,/\|%2(9)
+|vg#,/\|2L2(Q) + ou(wpn) + 1) )
1
where B2 ,(-) = ) [ Ayt + B (1) (o
- (A;qu,)\ + B (wu,/\)a f(eu,)\a wu,/\))Lz(Q) .
In the above computation we used some known inequalities such as
(fu,/\,ﬁ;(wu,A)wz,A)Lz(Q) > (§u,>\,ﬁ;(wu«\)p(9u,>m Juwu,A))m(Q),
(ﬁ)x(wu,/\)a Auwu,)\)LQ(Q) >0,

[Apwpn + Br(wpn) 20 > [ApwpalLz@)s [Bx (W) L2 @)-
Now, we compute (1) + (2) + (5) x 2 to get

d -~
Eu,)\ +2 (fu,/\a 61\ (wu,/\)p(eu,/\a Juwu,/\))Lz(Q) (3.12)

Gy
;,z\‘f’dt

< MyEy » + Mio(|[hl[72(0) + 1),
where Ej, 5 (-) := 3[V0ux[320) + EN () +2E5 () and Gua() == 110, \[320) +
%|V9L’)\|2L2(Q) + ¢u(w;, ). Also, we derive from (3.12) that
- d [ ot s -
€ IVIQtGu,)\+dt {e IVIQtE#’,\}-i-Qe Mgt(fﬂ’,\,ﬂi\(w#’,\)p(eﬂ’,\, Juw#’/\))[ﬂ(g) (313)
< Mioe™ (| |l[E2 () + 1)-
For each s € [0, T, integrating (3.13) on [0, s] yields that

s s
/ e_l\/lthu,/\dt‘i‘e_MgsEu,)\(5)+2/ e_Mgt(fu,/\aﬁi\(wu,)\)p(eu,/\a Juwu,/\))L2(Q)dt
0 0

g@xwmm/a%mwamﬂw. (3.14)
0

Here we observe that E, »(0) is bounded in p, A € (0,1] and

lim e_l\/lgt (gun A 61\ (wun A )p(eun A J/Ln Wy, A ))L2 () dt

n—00 0

= / e Mot &y, B (wa)p(Ox, wr)) p2(0ydt = 0,
0
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since B3 (wx)p(Ox, wy) = 0 a.e. on Q. Hence, taking the limit in (3.14) with p = py,
we have
S

S
/ e MotGhdt + e M Ey(5) < Ex(0) + Mu/ e M (R[22 () + 1dt (3.15)
o 0

for all s € [0,T], where

~ 1

E/\() = 2 |0)\|§{1(Q) - (h, —Aoe)\)Lﬁ(Q) + | - AO’UJ}\ + ﬂ,\(w,\)|%2(9)
—2(=Aowx + Br(wr), f(Ox, wr)) L2 (0),
1 1

Gi() = 4|9/A|2L2(Q) + 2|V9/A|2L2(Q) + p(w)).

Since {EA(O)}AE(OJ] is bounded, this inequality implies that F) is uniformly
bounded on [0, 7] with respect to A € (0,1]. From this fact together with (3.15)
we have an inequality which is required in the lemma. O

4. Proof of Theorem 2.1
We are now in a position to give a proof of Theorem 2.1.

Proof of Theorem 2.1 Let {0, wy} be a solution of (Py), A € (0, 1], for which (3.11)
in Lemma 3.3 holds, and put & := —w) + Aqwx — B (wr) + f(Or,wy) again.

First, by the uniform estimates (3.11) we can choose a sequence {\,} C (0,1]
tending to 0 as n — oo with functions §,w € W2(0,T; HY(2))NL> (0, T; H*(2))
and &, n € L>=(0,T; L?(Q)) such that

0, =0y, — 0, w, :=wy, — win C([0,T]); H(N)) as n — co.
and
& =&, — &, B, (wy) — 1 weakly-star in L>(0,T; L*(Q)) as n — oo;

note that the following convergences hold, too:

o, — ¢ weakly in L2(0,T; H(12)),
wl, — w weakly in L2(0,T; H(12)),
—Agl, — —Agb weakly in L2(0,T; L?(Q)),
—Now,, — —Agw weakly in L2(0,T; L*(Q)), (4.1)

FOnswn) — F(0,w) in C([0,T); L2(Q),
P wa) — p(6,w) 10 C(0,T]; L3(92))

as n — oo. From the convergences in (4.1) it follows that
0 +w' — Agf = h in L*(Q), a.e. on (0,T),
w + & — Dow +1 = f(6,w) in L*(Q), a.e. on (0,7T),
0(0) = 6, w(0) = wp in L*(Q).
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Moreover, by the demiclosedness of 3 (cf. [6]), we have n € fB(w) a.e. on Q.
Therefore, to complete the proof of Theorem 2.1 it is enough to show that £ €
a(w’ —p(f,w)) a.e. on @, which is derived as follows. We obverse that

T
hmsup/ (&ns W), = p(On, wn)) 2 (@) dt
0

n—oo

T
= limsup/ (—wl, + Aowy, — B, (wn) + f(On, wy), w), — P(0n, wn)) L2 () dt
0

n—oo

= 1imsup{ |wn|L2(0TL2(Q |an( |L2(Q /ﬁA wy (T))dx

n—oo

1 ~
+, [Vwo|F 20y + / B, (wo)dzx
Q

T
_/O (_w; + Aown — B, (wn) + f(emwn)ap(enawn))LQ(Q)dt}

IN

—|w'[720,7:22(2)) — |Vw( Wiz — /5 T))dz + |Vw0|L2(Q)
+/B(w0)dac—/ (—w' + Aow —n+ f(0,w), p(0, w)) 2 () dl
Q 0

T
= / (_w/+A0w_n+f(9aw)aw/ _p(eaw))l,?(ﬂ)dt
0

T
/0 (& w' —p(B,w))2(q)dt

By the maximal monotonicity of « the above inequalities imply that ¢ € a(w’ —
p(0,w)) a.e. on Q. O

Remark 4.1. Under the weaker condition (2.2), a solution {#,w} of (P) can be
constructed by using energy inequalities (1), (3), (4) (in Lemma 3.2) and (5) (in
Lemma 3.3). In this case, 6 has less regularity

0 € Wh2(0,T; LX(Q)) N L(0, T; H(Q)) N L*(0, T; H2()).
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The N-membranes Problem with
Neumann Type Boundary Condition

A. Azevedo, J.F. Rodrigues and L. Santos

Abstract. We consider the problem of finding the equilibrium position of N
membranes constrained not to pass through each other, under prescribed vo-
lumic forces and boundary tensions. This model corresponds to solve vari-
ationally a N-system for linear second order elliptic equations with sequen-
tial constraints. We obtain interior and boundary Lewy-Stampacchia type
inequalities for the respective solution and we establish the conditions for
stability in measure of the interior contact zones of the membranes.

Mathematics Subject Classification (2000). Primary 35R35; Secondary 35J50.

Keywords. Variational inequalities, Lewy-Stampacchia inequalities, coinci-
dence sets.

1. Introduction

Let © be a bounded open subset of R? with Lipschitz boundary I'. Denote by
u = (uq,...,uy) the equilibrium displacements of N (N > 2) elastic membranes,
each one constrained not to pass through the others, subject to external volumic
forces £ = (f1,..., fn) and boundary tensions g = (g1,...,9n5). The problem
consists of minimizing the energy functional

in the convex set

Ky ={v=(o,...,on) € [H'®)]"

T v > - > on ae. in Q}, (1.2)

This work was partially supported by FCT (Fundagdo para a Ciéncia e Tecnologia).
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N

where a(u,v) Z a(ug, vg), with a(u,v) = aijus,ve; (using the summation con-
k=1

vention for 4,5 =1,...,d) and u - v denotes the usual internal product between u

and v.
The N-membranes problem attached to rigid supports was considered in [3]
for N linear coercive elliptic operators of second order and extended in [1] to
quasilinear operators, with smooth coefficients of p-Laplacian type. For general
linear second order elliptic operators with measurable coefficients, see also [2].
Although Neumann boundary type problems can also be considered for more
general operators, for simplicity, here we assume
{ Q5 - LOO(Q), Qij = Qjj, Jv > ng S Rd aijfifj > V|§|2,

1.3
cE LOO(Q),IJGLOO(F), c>cg>0,b>by >0, cog+by>0. ( )

fl»“'afN € LP(Q)» gi,---, 9N S Lq(F)v
p> 24, ifd>3, p>1ifd=2 (1.4)
> 2 f >3 g>1ifd=2.

Here we use \/ and A for the supremum and infimum, respectively, of two or
more functions

N
=sup{&r,....&n}h N\ &=inf{&, ... ),

k=1

and, accordingly, we set £ =&V 0 and £~ = —(£A0).
The minimization problem (1.1)—(1.2) is equivalent to the variational inequal-

T<<=
A
o

ity
ueKy:

/Q(a(u,v— u)+cu- ( /bu v—u (15)

f/Qf'v—u /Fg'(v—u), Yo € Ky.

For N = 2 this problem can be considered, when the solution is known, as
two one obstacle problems. For N > 3, the upper and the lower membranes are of
this type, but each membrane in between may be considered a solution of a two
obstacles problem. This last problem corresponds to a variational inequality with
the convex set given in the form

K)={¢e H'(Q): v < <pae inQ},

where the given obstacles are such that ¥ < ¢. For two obstacles, the Lewy-
-Stampacchia inequalities for the solution v are

fNAp < Av < fVAY ae. in Q, gANBp < Bv<gVBy ae onl, (1.6)
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where A and B denote the associated differential and boundary operators, respec-
tively,

Av = — (aij”wi)wj + cv, in £, (1.7)
Bv = a;jvz,n; + b, on T, (1.8)
(n1,...,nq) denoting the unit outward normal vector to I

The iteration of these inequalities yields the new set of N inequalities for the
solution u of the N-membranes problem, both in 2 and on T’

l N

/\fkgAulg \/fk, a.e. in §, l=1,...,N, (1.9)
k=1 k=l

1 N

/\ngBul < \/gk, a.e. on I l=1,...,N, (1.10)
k=1 k=1

which allows to reduce the regularity of the solutions to the corresponding regu-
larity of a system of equations, as shown in the next section. In particular, in the
following special cases:

o f1=---= fn = f, the solution u of the variational inequality (1.5) satisfies
the system of NV equations Aup = f a.e.inQ, k=1,...,N;

e g3 = -+ =gn = g, the solution u of the variational inequality (1.5) satisfies
the Neumann boundary conditions Bug = ga.e.on';i=1,..., N, although
in the general case we only can say that u satisfies Signorini type boundary
conditions.

N(N-1)
2

Another interesting result is the stability of the coincidence sets

Iy ={z € Q:up(x) = =w(r) for a.e. z € O}, 1<k<I<N, (1.11)

the sets of contact of ] — k + 1 consecutive membranes. Given a subset A of §,
we denote by X4 (the characteristic function of A), i.e., X4(x) =1if z € A and
Xa(z) =0if x € Q\ A. As we have shown in [1] this is a consequence of writing the
solution of (1.5) as the solution of a semilinear system involving the characteristic
functions Xy, ,. We exemplify the argument in the simple cases N = 2, 3.

For N = 2 there is only one possible coincidence set, the contact of u; with
ug. If the two forces associated with the two membranes are almost everywhere
different in © (f1 # f2 a.e. in Q), then the characteristic function Xy, , of I 5 is
easily shown to converge strongly in any L*(Q), 1 < s < oo, for variations of the
forces in LP(92).

For N = 3 there are three possible coincidence sets, the sets I 2, I2 3 and
Iis = I 2N I3 Setting Xy ; = ka,w 1 < k <1 < 3, the characteristic functions
Xy, of the sets Ir; are shown to converge strongly in any L*(2), 1 < s < oo, for
variations of the forces f1, f2 and f3 in LP(Q), as long as

BEh  REfs h# () (AR A (112)



58 A. Azevedo, J.F. Rodrigues and L. Santos

This is a consequence of the fact that the solution u of (1.5) satisfies the system
a.e. in €,

Auy = fi+ 3(f2 — fi)Xig + 5(2fs — fa— f1)Xis
Aug = fo — 3(f2 = f1)X12 + 5 (fs — f2)Xos + §(2f2 — f1 — f3)X1,3 (1.13)
Aus = f3 — 5(fs— fo)Xos + §(2f1 — f2 — f3)X1 3.

Notice that the system (1.13) contains the case N = 2, that reduces only to
the two first equations of this system, with I 3 = () (so X33 = X; 3 = 0). Even in
the more complicated situation of IV > 3, the stability result can still be extended
in the interior of €2 as we show in Section 3. However, the corresponding stability
result on the boundary I' is an open question. In this paper we have chosen to
present only the Neumann case when I" = 0€), but all the results are still valid,
with simple adaptations, for the mixed problem where 92 = I'gUTI'y, with Dirichlet
data on I'y and Neumann data on I'y (see [7], for instance).

2. The Lewy-Stampacchia inequalities

We begin this section recalling a theorem for the double obstacle problem:

Theorem 2.1. Suppose that 1,12 € HY(Q), f € LP(Q), g € LYT), p, q defined as
in (1.4). Let u be the solution of the variational inequality

/Q<a(u,v—u)+cu(v—u)>+/Fb(v—u)Z/Qf(v—u)—k/rg(y—u), (2.1)

with the assumptions (1.3), in the conver set
K92 ={ve H Q) :¢1 <v <1y ae in Q). (2.2)
If (A — )7, (Apa — £)” € LP(Q) and (B —g)", (Bea—g)~ € LI(D),
then
FANAY < Au < fV Ay, a.e. in £, (2.3)

g A By < Bu < gV Bys, a.e. onT. (2.4)

Proof. The proof of this theorem is a simple adaptation of the arguments used for
the one obstacle problem with Neumann boundary condition (see, for instance, [9]
or [7]). O
Remark 2.2. We observe that both the lower and the upper one obstacle variational
inequalities (2.1) in the convex sets

Ky, = {v € HY(Q) : v >y ae. in Q}
and

K¥2 = {v € HY(Q) : v <)o a.e. in O},
can be regarded as particular cases of the double obstacle problem, corresponding
formally to 12 = +00 and ¥ = —o0, respectively.
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Given N functions @1, ..., pnN, we define, for 1 < k <[ < N, the average of

Py AS
_ ekttt

ke =""_ 1 11 (2.5)

Denote
& =max{(fl1x:k=1,...,N}, no=max{(gh1x:k=1,...,N} (2.6)
and, for k=1,..., N,
& =k(&o—(Hrk)  m=kmo—{(9)1k) (2.7)

We may approximate the solution of (1.5) by the solution of the penalized
problem given by the semilinear system with Neumann boundary conditions, for
k=1,...,N,

Aug, + &0 (uf, —ugy ) — 10 (ug_y —ug) = fi in Q, 2.8)
Bui + nkes(ui - Ui+1) - nkrflgs(uifl — ui) = 0k on F,
with the conventions ug = 400, ufy,; = —oo, where for ¢ > 0, 0. is defined by

0-(s) = —1if s < —¢, 0.(s) = %, if —e < s <0 and f.(s) =0 for s > 0.

Proposition 2.3. With the assumptions (1.3) and (1.4), problem (2.8) has a unique
solution (us, ..., u%), bounded independently of € in [Hl(Q)] N Besides that, Au®
and Buf are bounded independently of & in [LP(Q)]" and in [L9(T)]™, respectively.

Proof. Consider the monotone operator

N
(Ve(v),w) = Z/ (§k9€(vk — Vpt1) — 10 (V-1 — Uk)) Wy (2.9)
k=17

N
+ Z/ (Ukee(vk — Vkt1) — Me—10e (V-1 — vk)>wk.
k=171

The problem (2.8) is equivalent to the semilinear variational problem
w e [H'(Q)]"
(a(u®,v) + cu® -v) + / bu® v+ (¥ (u®),v) (2.10)
- .
:/f'v—k/g'v, Vve[Hl(Q)]N
Q r

and this problem has a unique solution, by standard monotone methods.
Since

Q

Au® = f — (&0 (uf — upyy) — Ep—10:(ujy — Ui))k:L...,N’

—1 < 0. <0and f,& € [LP(Q)]Y, it follows that {Au€ : 0 < & < 1} belongs
to a bounded subset of [LP (Q)]N Analogously, after integration by parts, the set
{Buf : 0 < & < 1} is bounded in [L9(T)]". O
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Proposition 2.4. Under the assumptions (1.3) and (1.4), let u® be the solution of
problem (2.8) and u the solution of the variational inequality (1.5). Then

ug, <uj_q +€, k=2,...,N, (2.11)
and, when € — 0,
ut —u in [Hl(Q)]N,
Au® —— Au in [LP(Q)])" -weak, Buf —— Bu in [LY(D)]N -weak.

Proof. We begin noticing that,
>0 (B>1), (-1 — Er—2) — (&x — &k—1) = fx — fr—1 (k>2),

>0 (k>1), (k=1 — mo—2) — (M6 — k1) = gk — gr—1 (k> 2).

To prove (2.11), we multiply the k—th equation of (2.8) by (u§ —u§_, —&)*
and integrate on Q. Using that 0 (u§_; —uf)(ui—uf_; —¢)" = —(uf —uf_;—e)t
and 0. (uj, —uj, ;) > —1, we obtain

R
Q
< / [fi + & — Epn) (uf, —uf_q — &)™ (2.12)
Q

+/ lgk + Mk — M—1] (uf, —uf_y — )"
T

With similar arguments, if we multiply, for k& > 2, the (k — 1)—th equation
of (2.8) by (u§ —ui_; —e)* and integrate on { we obtain,

AAﬁﬂwmw;rwﬁ
2/m4+&4—@qﬂﬁ—%4—@+ (2.13)
Q

+/ (k-1 + M—1 — Me—2] (uf, —uf_y — )T
r

Subtracting equation (2.13) from (2.12), using the assumptions (1.3), the
conclusion (2.11) follows.

The strong convergence in [H ! (Q)] N of u€ to the solution u of the variational
inequality (1.5), when € — 0, follows by a standard argument.

The uniform boundedeness of {Auf : 0 < ¢ < 1} in [LP(Q)]" implies the
weak convergence of Auf to Au in [LP(Q)]" , and, analogously, the boundedeness
of {Buf: 0 <e <1} in [LQ(F)]N implies the weak convergence of Buf to Bu in
()™, 0
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We are now able to prove the following result:

Theorem 2.5. Under the assumptions (1.3) and (1.4), the solution u of the problem
(1.5) satisfies the following Lewy-Stampacchia type inequalities

fi £ Aw < fiveeeVifn
finfa < Au < favee- Vi
: a.e. in ) (2.14)
finANfvar £ Aun—y < fnoi Vi
fin---ANfy < Aun < fn
and
g1 < Bu < g1Ve-Vgn
g1Ng2 < Bus < g2V Vgn
: a.e. onT. (2.15)
gAN---Agn—1 < Bun—i1 < gn-1Vygn
g AN---Agn < Buy < gn
Proof. It (v,ug,...,un) € Ky, with v € K,,, we see that u; € K,, solves the

variational inequality (1.5) with f = f;. Observing that Aus € LP(Q) and that
Bug € LI(T), by (2.3) and (2.4) we have

fi<Au; < fiVAus ae. in

g1 < Bu3 <g1VBuy ae. inT.
Since u, € Kur,, solves the two obstacles problem (2.1) with f = fi,

U1

k=2,...,N —1, and satisfies, by (2.3) and (2.4),
fiNAug—1 < Aup < frr VAurpr ae in Q,
g NBug—1 < Bup <grVBugy; ae. inl.
As uy € K*V-1 gsatisfies
INNAun_1 < Auy < fy a.e.on
gn NBuny—1 < Buny <gny ae.onl,

(2.14) and (2.15) are easily obtained by simple iterations. O

Remark 2.6. The Lewy-Stamppachia inequalities appeared first in [6] for the obsta-
cle problem with Dirichlet boundary conditions and were extended to the Neumann

case in [5] (see also [9] and [8]).
From (2.14) and (2.15) the following corollary is immediate:
Corollary 2.7. Let u be the solution of the variational inequality (1.5). We have
iff=(f....f), then Au=f in Q, if g=1(9,...,9), then Bu=g onT.
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From the linear elliptic regularity theory (see [4] or [8], for instance) we have

Corollary 2.8. Under the assumptions (1.3) and (1.4), the solution u of (1.5) is
in [CO’“(Q)]N, for some 0 < a < 1. Besides that, if a;; € C%(Q) then u €

N
[Wlp(Q)} and u € [Cl,B(Q)]N ifo<pf=1- i < 1; if in addition T € C1,

loc
be CONT) and f € [L2()]Y, g€ [L2MD)]" thenw e [W¥/22()]"™; finally, if
also gy =---=gn € Wl_rl”p(I‘), then u € [Wz’p(Q)]N,

3. The stability of the coincidence sets

Let up, be the solution of the N-membranes problem (1.5), under the assumptions
(1.3), with given data f, and g, satisfying (1.4). Assuming that f, converges
to f in [LP(Q)]N and that g, converges to g in [Lq(F)]N, we shall extend now
the following stability result in L*(2) (1 < s < o0) of [1] for the corresponding
coincidence sets (defined in (1.11)),

X

p=r=u

;1} —— X{uk:"':ul}’ f0r1§k<l§N

n

Recalling the inequalities (2.14), Au = F a.e. in , for some function
F e [LP(Q)])", as in Lemma 2 of [8], we have

Aug, = Aupyq a.e. in {z € Q: up(xr) = ups1(z)}

and so we can characterize a.e. in ) each F} in terms of f; and the characteristic
functions X¢,, —..—, 3, 1<I< N, 1<r<s<N.

In what follows, we use, as before, the convention, uy = +o0o and uy4+1 = —oo.
We define the following sets
O ={r e Q:up_1(z) > up(z) = =w(r) >wsp(x)}, (3.1)
the sets of contact of exactly the membranes wug, . . ., u;.

Proposition 3.1. If k,l € N are such that 1 <k <1< N , we have

1 Auw. — Y a.e. in©p; if redk, ... 1},
T fr ae.inOg; if rE{k,... 1}

2. If k <1 then for allr € {k,....1} {f)r+10 > (/kr a.c. in O .

Proof. Because of the regularity result Au € [LP (Q)]N, the proof of this propo-
sition is the same as for the case with boundary Dirichlet condition, done in [1],
since it was done locally at a.e. point x € €. O

Remark 3.2. Tt is well known that a necessary condition for existing contact in the
case of two membranes u; and usg, subject to external forces fi; and fo respectively,
is that fo > f1. Depending on the boundary conditions, this condition may be (or
not) sufficient for contact.
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We would like to emphasize that condition 2. of the preceding proposition is
a necessary condition for the first r — k membranes (k < r <) to be in contact
with the other [ — r + 1 membranes. We can interpret physically the condition 2.
by regarding the first » — k membranes as one membrane where a force with the
intensity of the average of the forces fx, ..., f, is applied and all the other [ —r+1
as another one where it was applied a force with the intensity equal to the average
of the remaining forces fry1,..., fi-

As for the boundary Dirichlet condition case, we may characterize the varia-
tional inequality (1.5) as a system of N equations, coupled through the characteris-
tic functions of the coincidence sets Ix, ;. In (1.13) we presented the system for N =
3, containing as a special case N = 2. The next theorem presents the general case.

Theorem 3.3. Under the assumptions (1.3), let u be the solution of the problem
(1.5) with data f and g satisfying (1.4). Then

Au, = fr + Z bff’l X1 a.e in ), (3.2)
1<k<I<N, k<r<I
where
(Feg = (i if r=1
VL= b = (et — (it if =k
(l—k)(lz—k-H) ((Fesri-1— 5(fo+ f1)  if k<r<lL

Also exactly as in [1], using the variational convergence up, — u in [H' ()] N,

we may prove the continuous dependence of the coincidence sets with respect to
the external data.

Theorem 3.4. Assuming (1.3) and given n € N, let u, denote the solution of
problem (1.5) with given data fn € [LP(Q)]Y, gn € [LYT)]Y, with p,q as in (1.4).
Suppose that
fo —— f in PO, go —— g in [LYD)]".
n n

Then N
Uy —— u in [H'(Q)] .

If, in addition, the limit forces satisfy
(Frer # (Fhr+11 for all k,r,le{1,... N} with k <r <, (3.4)

then, for any 1 < s < oo, Vk,l€ {1,...,N}, k<1,

Remark 3.5. The condition (3.4) for the stability of the coincidence sets for N = 2
is simply f2 # f1 and for N = 3, the condition (1.12) (see [2] for a direct proof).

Remark 3.6. It would be interesting to prove a condition analogous to the system
(3.2) for the boundary operator B (under additional regularity of the solution u),
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i.e., to find sufficient conditions for some coefficients 77** involving the averages
(9)k,1 such that, if I, = {z € T 1 ug(z) = - - = w(x)}, then

_ k.l x .
Bu, = g, + E i ka,z a.e.on .
1<k<I<N, k<r<l
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Modelling, Analysis and Simulation of
Bioreactive Multicomponent Transport

Markus Bause and Willi Merz

Abstract. In this work we present a bioreactive multicomponent model that
incorporates relevant hydraulic, chemical and biological processes of contam-
inant transport and degradation in the subsurface. Our latest results for the
existence, uniqueness and regularity of solutions to the model equations are
summarized; cf. [4, 9]. The basic idea of the proof of regularity is sketched
briefly. Moreover, our numerical discretization scheme that has proved its ca-
pability of approximating reliably and efficiently solutions of the mathematical
model is described shortly, and an error estimate is given; cf. [2, 3]. Finally, to
illustrate our approach of modelling and simulating bioreactive transport in
the subsurface, the movement and expansion of a m-xylene plume is studied
numerically under realistic field-scale assumptions.

1. Introduction

In particular in industrialized countries, groundwater and soil pollution has be-
come a major environmental threat. In many cases groundwater and soil contain
a mixture of organic and anorganic substances. Usually, the contamination itself
is hardly accessible in the subsurface. But, fortunately, biodegradation tends to
attenuate at least some contaminants during groundwater transport. However, its
potential is difficult to predict. Mathematical models and numerical simulations
can be used to predict the long-term evaluation of contaminant plumes and help
to design remediation techniques for field scale problems.

In the sequel, a mathematical model incorporating relevant processes of con-
taminant transport and (bio-)degradation in the subsurface is presented, the math-
ematical properties of its solutions are given and a reliable and efficient approx-
imation scheme for numerical simulations is proposed. Finally, a realistic aquifer
contamination scenario is investigated numerically.
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2. Mathematical model

Microbial degradation mechanisms in soil-groundwater systems are mostly based
on redox reactions (i.e., electron transfers), and the biomass acts as a catalyst
for these reactions. The activity and dynamic of the biomass is dependent on the
availability of an organic substrate, acting as the electron donor, and an electron
acceptor. In this paper, the aerobic degradation of a single substrate is considered
only, since we focus here on analyzing the mathematical properties of solutions
to the governing equations and proposing an accurate numerical approximation
scheme. The main principles hold equally for multiple electron donors and accep-
tors. For modelling of multicomponent bioreactive transport processes we refer to
[11] and the references therein.

In this work, biomass growth is described by Monod-type kinetics. A detailed
discussion of this modelling approach can be found, for instance, in [5, 11, 13]. The
governing equations for the electron donor cp, electron acceptor c4 and immobile
biomass cx are respectively given by

0¢(©cp) — V- (DpVep —gep) = — i,
0¢(©ca) =V - (DaVea —qca) = —aq ppt,

Oex + kqex = g (1 - C)(;Xa )u, (1)

cpD Kip CA Kia
Kp+cp Kip+cp Ka+ca Kra+ca’
We consider solving the Monod model (1) of partial and ordinary differential

equations over Qr = Q x (0,7), T > 0, where Q C R? d = 2,3, is a bounded
domain. The equations (1) are supplied with the initial conditions

on = @ﬂmax Ccx

ep(0) =cpo, ca(,0)=cao, cx(0)=cxp (2)
in 2, and the non-homogeneous Dirichlet and Neumann boundary conditions
C; =¢g; on ET,Da Dchz V= hi on ET,Na (3)

fori =D, A, where ¥rp =T'px(0,T) and Xp ny =T'n x(0,T). Here, I'p and I'y
denote the portions of the boundary 02 = I'p UT'y where Dirichlet and Neumann
boundary conditions are prescribed, respectively.

In equations (1), the parameter as/p, kq, Y, €xpurr Hmax, KD, K1p, K4
and Kja are given constants. In our numerical example (cf. Sec. 5), saturated
groundwater flow is considered and © is assumed to be a constant, too. We refer
to [2, 5, 13] for further details of the model equations and parameter. For our
theoretical results of Sec. 3 and 4 the diffusion-dispersion matrix D = D(x) and
the velocity vector ¢ = ¢(z) are assumed to be given sufficiently smooth functions.
For the sake of physical realism, in our computational studies the Scheidegger

parametrization (cf. [12])
by
D; = (Od; + Bla)I + (5~ )"

b Z':D7A’ (4
1l )
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of the diffusion-dispersion tensor is used. In (4), the parameter d;, ; and §; are
given constants and I is the identity matrix. Further, the velocity field ¢ (volu-
metric flux) in (1) and (4) is obtained by solving the standard single phase Darcy
flow problem, along with appropriate boundary conditions,

Vog=0, q¢+KV@+2)=0. (5)

Here, 1) is the pressure head, ¢ is the (Darcy) flux, K5 = K,(z) is the hydraulic per-
meability in the saturated zone and z denotes the height against the gravitational
direction. For numerical simulations of contaminant transport and biodegradation
scenarios also in the vadose zone we refer to [2].

3. Existence and regularity of solutions

Due to the relevance of the Monod model (1) for hydrological and environmental
studies, as well as for civil and environmental engineering, and due to a lack in its
mathematical analysis, we found it interesting enough to study whether the set of
equations (1)—(3) admits unique (global) solutions and, moreover, whether solu-
tions of higher order regularity exist under appropriate assumptions on the data
and boundary of . From the point of view of numerical computations, regularity
results are of particular importance for the development of approximation schemes
and the application of higher order discretization techniques; cf. [2, 4] and Sec. 4.

As regards the existence and uniqueness of solutions to the model equations
(1)—(3) the following result was proved; cf. [9].

Theorem 3.1. Let Q C R? be a bounded domain. Then there exists a unique non-
negative solution

CD,CA € W;%l(QT)» p> 27 cx € Cl([O,T], C(Q)) (6)
to the Monod model (1)—(3) for any given T € (0, c0).

In (6), the notation of the space-time function spaces Wé’l/ ®(Qr) is standard;
cf., e.g., [8]. We note that even the nonnegativeness of the species’ concentrations
cp, ca and cx is ensured. The proof is based on the fixed point theorem of Leray—
Schauder and can be carried over to three-dimensional domains Q C R3.

Now we address ourselves to solutions of (1)—(3) of higher regularity than it
has been established in (6). Our regularity result is summarized in Theorem 3.2.
In the sequel we sketch briefly the basic steps of its proof. For further details we
refer to [4].

We consider equations (1)—(3) and, for brevity, assume that the coefficient
functions D; and ¢ are constant. The proofs can directly be carried over to the
case of space and time dependent functions D; and ¢. Since the existence of a
unique, nonnegative solution is given by Theorem 3.1 and the coupling of the
equations (1) is through the lower order terms only, it suffices to study a single
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transport equation in (1) in the sequel. Precisely, we consider the coupled system
of equations

Ou—V - (DVu — qu) = —p, Oiex +acx +bck =0, (7)

with a positive scalar D € R and functions a,b,u : Q7 — R. We prescribe the
initial and, for simplicity, the Dirichlet boundary conditions

u(-,0) =uo, cx(,0)=cxpo InQ, u=7u onXr. (8)

We make the following assumptions on the data of the problem:

89604, UO,CX,OGW;;(Q), ’LLo,CX7020 inQ, ()
9

7 7-3
aeW2*2(Xr), 4>0 onXp.

The assumption on 912, that 9 € C4, is stronger than needed. Below, an elliptic
regularity result is required that is satisfied if 9Q € C*, but is also satisfied by
certain other classes of domains. Moreover, we suppose that the second order
compatibility conditions are satisfied.

Next, we specify the regularity assumptions on the functions a, b, . We com-
pare (7) with the original system (1) to see that a,b, u are composed in terms of
the solution to (1)—(3). Due to (6), we directly get that

a,b € sz’l(QT), for p > 2. (10)

The ordinary differential equation in (7) is of Bernoulli-type such that ¢cx may be
represented explicitly in terms of a and b. It turns out that

cx € WR(Qr) NWa(0,T;W2(Q)), forp>2, (11)
and this in fact yields that, also,
TS Wg’l(QT), for p > 2. (12)
Finally, results of elliptic regularity theory then yield the following theorem.

Theorem 3.2. Let (9) and the second order compatibility conditions be satisfied.
Then, the solutions cp,ca of (1)~(3) satisfy

cp,ca € Wy (Qr) N WE(0,T; WiHQ)) . (13)

A detailed proof of Theorem 3.2 can be found in [4]. Along with (11), the
result (13) shows that the Monod model (1)—(3) admits solutions of higher order
regularity under suitable assumptions on the data and boundary of 2. Together
with our computational experiences, this observation brings us to use higher-order
discretizations for the numerical solution of (1)-(3). In (11) and (13), we have
established a slightly higher-order regularity than we will in fact need to derive
optimal order error estimates (cf. Sec. 4) for our numerical approach.
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4. Numerical approximation of solutions

We shall now briefly describe our discretization techniques that we proposed in
[2], analyzed in [4] and apply here to solve numerically the equations (1)—(3);
cf. Sec. 5. For the spatial discretization we use conforming finite element methods.
Let 7, = {K} be a finite decomposition of mesh size h of  into triangles or
tetrahedrons, respectively. The approximation spaces V}, for the electron donor
and acceptor C;, 1 = D, A, and X} for the biomass Cx are defined as V, =
{Ci € C(Q) | Cijx € Po(K) for K € T} N Wi, and X, = {Cx € C(Q) |
Cx |k € P2(K) for K € Ty, }, where P;(K), j € N, denotes the space of continuous
polynomials of maximum degree j. Further, W21,1“D ={peWl(Q)|¢=00onTp}.
For the temporal discretization of equations (1)—(3) we use the two step backward
differentiation formula BDF5 which is of second-order accuracy and has excellent
stability properties; cf. [6].

Let us suppose that coefficients {Q, D;} € WL (Q) x L>(Q), i = A, D, are
prescribed where @ may be the velocity field itself or a suitable approximation
of it. Let Pz, denote the L2-projection onto the finite element space Zj,. The
discretization of the Monod model (1)—(3) by the Galerkin method and BDF;
then reads as:

Set CY = Py, cio and C% = Px,c&. For all time steps n = 0,...,.N — 2
compute approrimations C’i"‘*'2 eW,i1=D,A, and C’;}“ € Xy, by solving

Yotz (O CFF2, Vi) = 4nia (O CFF, V) + 9 (OGP, V)
+741(Q - VOI2, Vi) + Tog1 (Di(tn42) VO 2, V) (14)
+701 (V- Q)CI 2, Vi) = —Toga (o U2 V) + Tgr (ha, Vidry

for all V; € Vi, i = D, A, and

Yn+2 C?(+2 — Tn+1 C?(—i_l + 9 C%

Y et (15)
+ Tnt1ka O = Toia o (1 — c;( ) ut?

for all nodes (x;)j=1,... M associated with degrees of freedom of C’;}“, where

2 2
(o5 Kip cht Kia

un+2 =0 i Cn+2 )
e EX K 1 O Kyp + Ot K+ O3 Kpa+ C3F2

By (-,-) and (-,-)r, we denote the standard L? inner product in L%*() and
L?(T'y), respectively. Further, in (14) and (15) we use the abbreviations 7,42 =
1+ Tog1/(Tot1 + ™), Yot = 1+ Tug1 /7 and v, = Tg-&-l/((Tn-&-l + Tn)Tn) as
well as ap = 1 and as = a4/p. In our computations we will consider non-
vanishing Dirichlet boundary values g;, i = D, A, in (3). For short, the variational
formulation (14) is given for homogeneous Dirichlet boundary conditions only.
Nonhomogeneous boundary values are incorporated by standard techniques.
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Finally, let us address the treatment of the groundwater flow problem (5).
Generally, to calculate the (Darcy) velocity vector g of the model equations (1),
we prefer to use mixed finite element methods due to their conservation properties
and flux approximation as part of the formulation itself; cf. [1] and the references
therein. However, to ensure optimal order convergence properties of the species
Ca, Cp and Cx in (14) and (15), a higher order approximation @ of the flux
q is needed. Precisely, in [2] it was shown for a model transport problem that a
third order accurate flux approximation @) in fact leads to optimal, third order
L?-convergence of the piecewise quadratic approximation of the species. Since the
algorithmic complexity of higher order mixed finite element methods is relatively
large, for the considered approach (14), (15) to the Monod model we currently still
use a conforming approximation of the flow problem (5) by cubic finite elements
which yields in fact a third order accurate approximation @) of the velocity vector
g for (14). For the future we plan to use higher order mixed methods.

Now we shall show briefly that the regularity result that we have established
in Theorem 3.2 in fact enables us to derive optimal order error estimates for the
numerical approach (14), (15). To reduce technical overhead and focus on key
principles, we consider for simplicity the nonlinear model transport problem

u2

atu+q-Vu—V~(DVu)+r1+u2

=f, inQ, fort>0, (16)
along with homogeneous Dirichlet boundary conditions u = 0 on 92 for ¢t > 0,
and the initial condition u(-,0) = ug in 2. We note that equation (16) contains a
reactive term of Monod type and, thus, is of the same structure as the first and
second of the equations (1). In (16), D = D(x) € R%? d = 2,3, is a symmetric
and uniformly positive definite and bounded matrix.

In particular, we shall concentrate on the spatial discretization error. This
is based on the observation made in [2, 7, 10] that in the context of bioreactive
transport the spatial discretization requires particular care. Schemes with much
numerical diffusion produce an artificial mixing of the species which may lead to
an overestimation of the biodegradation potential. Let now wy, : [0,T] — V}, denote
the semidiscrete finite element approximation of the solution u of (16). Then we
have the following result; cf. [4].

Theorem 4.1. Fort € [0,T] there holds
lu(t) = un @ + AV (u(t) — un(®)]| < CH?,

where C = C(|lulloqo,rws ) 10¢ullLio,rws(q))) s independent of h and
bounded above (montonically) in terms of |[ullc (o, wz ), 10l L0, 7ws (@) -

Together with Theorem 3.2 and along with Sobolev embedding results (cf.
[8]), Theorem 4.1 thus yields an optimal order error estimate for the proposed
finite element approximation of the Monod model (1).
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S 033  aap 216  pmax 113 Kra oo
da, dp TAe—5 kg 0025 Kp 079 K, 0045

B 0.03 Y 052 Ka 0.1

B, 036  cxmee 1.0 Kip 917

TABLE 1. Transport- and biodegradation parameters for the test problem.

FIGURE 1. Profile of pressure head ¢ and flow field ¢ (left) and con-
centration of biomass at T' = 44 (center) and T' = 300 (right).

5. Numerical example

To illustrate our approach of modelling and simulating bioreactive transport in the
subsurface, we shall now present a computational study of a realistic groundwater
contamination scenario by a m-xylene plume and, thereby, provide valuable in-
sights into the complex interactions of biological, chemical and physical processes
that are involved in natural attenuation phenomena.

Our computational domain 2 = (0,6) x (0,10) is a section of the aquifer
with two impermeable heterogeneities of elliptic form inside that are obtained by
rotating two ellipses with center in (2,6.5)T and (4,8.5) ", respectively, both with
semi-axes equal to 1.5 and 0.5, by 7/8 and —7/6, respectively; cf. Fig. 1. The
groundwater flow field is modelled by the Darcy flow problem (5). For the Monod
model (1)—(3) we use the field-measured and laboratory-derived input parameters
that are given in [13] and summarized in Table 1. The boundary conditions for
the hydraulic head p = ¢ + z with z = z9 are

p(z) =0 forx €[0,6] x {0}, p(x)=20 forz € 0,6]x {10}
and K;Vp-v = 0 else. The initial conditions for the species are

cp(2,0) =0.0, ca(x,0)=2.0, cx(z,0)=0.03 forzeq.
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FIGURE 2. Concentration of electron donor m-xylene (fop) and electron
acceptor oxygen (bottom) at T' = 10 (left), T = 44 (center) and T = 300
(right).

The contaminant and electron donor m-xylene is injected at the upper inflow
boundary. Precisely, for ¢ > 0 we prescribe the boundary conditions

cp(x,t) =224, ca(x,t) =255 forx e[l,5] x {10},
ep(x,t) =00, ca(x,t)=2.0 forx e ([0,1] x {10})U([5,6] x {10})

and D;Ve; -v=0,i= D, A, for x € 9Q\([0, 6] x {10}).

The calculated pressure head ¢ and flow field ¢ = —K,V (¢ + z) are visu-
alized in Fig. 1. The concentration profiles of the contaminant m-xylene and the
electron acceptor (oxygen) at time 7' = 10,44 and 300 are shown in Fig. 2. The
corresponding biomass concentrations can be found in Fig. 1. For visualization
purposes we have restricted the color range of the biomass to the interval [0,0.5].

Figs. 1 and 2 show that the contaminant is transported by the flow field to
the lower boundary of . Simultaneously, it is degraded by a reaction between
electron donor, acceptor and biomass. However, the reaction is restricted to those
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regions of ) where the concentrations of the species are sufficiently large. Besides
a thin layer close to the inflow boundary where the involved substances (contam-
inant m-xylene and oxygen) are injected, it is basically the interface between the
electron donor (contaminant) and the surrounding region where still enough elec-
tron acceptor (oxygen) is available. If a numerical method with much inherent
artificial (i.e., numerical) diffusion would be used to solve the model equations (1),
then the interface between the electron donor and acceptor would smear out and
the reaction would take place in the larger region. Consequently, the contaminant
would be degraded too fast. This might lead to a completely wrong prediction of
the natural attenuation potential for the considered site; cf. [2, 4, 5, 7, 10] for fur-
ther details. As shown in [2], the higher order discretization techniques proposed
in Sec. 4 help to reduce significantly the amount of inherent numerical diffusion
and prevent wrong predictions.
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Asymptotic Properties of the Nitzberg-Mumford
Variational Model for Segmentation with Depth

Giovanni Bellettini and Riccardo March

Abstract. We consider the Nitzberg-Mumford variational formulation of the
segmentation with depth problem. This is an image segmentation model that
allows regions to overlap in order to take into account occlusions between
different objects. The model gives rise to a variational problem with free
boundaries. We discuss some qualitative properties of the Nitzberg-Mumford
functional within the framework of the relaxation methods of the Calculus of
Variations. We try to characterize minimizing segmentations of images made
up of smooth overlapping regions, when the weight of the fidelity term in
the functional becomes large. This should give some theoretical information
about the capability of the model to reconstruct both occluded boundaries
and depth order.

Mathematics Subject Classification (2000). 46E30,49J45,49Q20.

Keywords. Variational methods, relaxation of functionals, computer vision,
image segmentation.

1. Introduction

In computer vision theory the segmentation problem consists in finding the ho-
mogeneous regions of an image, which are supposed to correspond to meaningful
parts of objects in the three-dimensional world. Several variational models have
been proposed in recent years which deal with the image segmentation problem
[1, 7, 8. In particular Nitzberg and Mumford [10, 11] proposed a variational model
for segmentation with depth that allows regions to overlap to take into account
the partial occlusion of farther objects by those that are nearer. The minimization
of the functional should give the shape of the objects in an image, the reconstruc-
tion of the occluded boundaries, and the ordering of the objects in space. Some
analytical and numerical studies can be found in [3, 4, 6, 11].

The Nitzberg-Mumford model incorporates (partially) the way that an image
derives from a two-dimensional projection of a three-dimensional visual scene.
The luminous intensity (grey level) of the image is represented by a function g €
L (R2) with compact support. The regions of the segmentation constitute a finite
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collection of subsets of the plane
{Ey,...,E,}, E; c R? Vi,

and the sets E; may overlap. A partial ordering < between the regions represents
the relative depth information:

E; < Ej means F; occludes Ej. (1.1)

A segmentation is then an ordered family of regions {E;}7 ;. The wvisible part of
the region E; is the set E! given by

i—1
Ei=FE, E=E\|JE fori=2..n
j=1
The set E,,, is the background region:

;L+1 =R? \ U E;.
i=1
Nitzberg and Mumford [10] gave a variational formulation of the segmentation
problem by looking for a minimizer of the following functional:

n+1

G(n,FEy,....E,) = MZ/E’{(Q —g)%dr + Z/aE'[l + (k)| dH?, (1.2)

where 4 > 0 is a weight, ¢; is the mean of g on E:

1
= / gdr Yi=1,...,n, Cnt1 =0,
2

meas(EY)

H? is the one-dimensional Hausdorff measure, and x;(z) is the curvature of OE;
at x (the sets F; are supposed to have sufficiently smooth boundaries). We choose
the function ¢ : R — [0, +00] even, convex, and of class C* (see [10, 11] for more
details). The functional G is minimized over the number of regions n and the
ordered families of regions {E1, ..., E,}.

In the present paper we will concentrate on the case

Y(k) =|sl’,  p>1

Since the number n of sets is not known in advance, an interesting mathemat-
ical problem is to understand, under suitable assumptions on the image g, if a
minimizing n is equal to the number of shapes which are actually present in the
image g. Moreover it is interesting to know if a minimizing segmentation matches
the depth order embedded in the data. The answers to such questions should give
some theoretical information about the reconstruction capabilities of the model.
Here, we begin to look for an answer when the image g is piecewise constant with
a finite number of values, and p — +o0.

We conclude the introduction by recalling that the proofs of the results here
presented will appear in a forthcoming paper, where a variational model that
enables the reconstruction of interwoven objects will also be considered.
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2. The asymptotic problem
The building block of the energy (1.2) is the functional

F(E) = /8 [+ lpan

which is well defined if E € C?(R?), where C?(R?) denotes the class of all bounded
open subsets of R? of class C2.

If we apply the direct method of the Calculus of Variations to the problem
of minimizing the functional G, we are led to consider sequences of sets {Ep,};, on
which the functional F is uniformly bounded. If the sets are contained in a ball
independent of i such sequences are compact in L*(R?), and it can be proved [2]
that the functional F is lower semicontinuous on the class C2(R?) with respect to
the convergence in L'(R?) (i.e., the L' convergence of the characteristic functions
of sets). However, since in general the limit sets are not of class C2, it is necessary
to extend the functional F to the set of all Lebesgue measurable subsets of R?, in
such a way that the extended functional F is still lower semicontinuous [2].

If we set F(E) = +oo if E ¢ C?>(R?), by using the relaxation method of
the Calculus of Variations, the natural candidate for the functional F is the lower
semicontinuous envelope of F with respect to the L'(R?)-topology, i.e.,

F(F) = inf {lngirnf]-"(Eh) :E, — Ein Ll(RQ)} .

If E € C%(R?) then F(E) = F(E). In [2] it has been proved that there exist sets
E such that F(FE) < +o00, the boundary of which is not smooth. In particular, if
OF is smooth except at an even number of cusp points, then F(FE) is finite. The
characterization of the sets E with F(E) < 400 has been given in [5].

We now denote by G the lower semicontinuous envelope of G with respect to
the [L'(R?)]" product topology (for a fixed n). Because of the continuity of the
terms [, (¢; — g)?dx we have

n+1

On,Erve o E) =Y [ (= gfdo+ Y. F(B),
=1 i =1

The following is an existence result for the functional G.

Theorem 2.1. [Existence] There exists a finite family of sets {Ex,...,En}, such
that F(E;) < +oo for any i € {1,...,n}, which minimizes the functional G.

Moreover, it can be proved that the number n of sets minimizing G is uni-
formly bounded with respect to u. We are now in a position to define the as-
ymptotic variational problem. Let g be a piecewise constant function assuming a
finite set of values. We find that, as ;1 — 400, the sets which minimize G converge
in the [L'(R?)]" product topology, up to a subsequence, to a family of n sets
{El, . ,En} such that

ci=g(x) ifrxeE VYi=1,...,n.
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Moreover, if the sets Ei,..., E, are of class C2(R?), we have
Jg C U aE’L ’
i=1

where J, denotes the jump set of g, i.e., the visible portions of the boundaries.
Then we study the following variational problem: minimize the functional

Goo(n, Br, ..., By) = > F(E;),
=1

over the number of sets n and the families of sets {E1,..., E,}, under the con-
straint
Je € | JoE:. (2.1)
i=1

The set J, is the datum of the problem and the number n of sets is among the
unknowns. The existence of minimizers of G, can be proved from Theorem 2.1
and the uniform boundedness of n with respect to .

3. Energy functionals on systems of curves

In this section we need functionals defined on systems of curves of class W?2P.
We call regular curve any function « : [0,1] — R? such that |§| # 0 in [0, 1]. By
(v) = {~() : t € [0,1]} we denote the trace of v and by I(7) its length.

We define the functional

1) - L2y P
Fo) = [ beplds =)+ 1) [0 0
where s denotes the arclength parameter.
We call system of curves a finite family I' = {+%,...,4™} of closed regular
curves of class WP such that |§%| is constant on [0, 1] for any 4 = 1,...,m. The

trace (T') of a system of curves I is defined as U, (y%).
If I' is a system of curves we define the functional

Fr) =3 F().

If E is a set of class C*(R?) and I is a parametrization of OF, then we have
OF = (I), F(E)=F(T).
If E is not of class C2(R?), but F(FE) < +o0, then it can be proved [2, 5] that E
is open and there exists a system I' of curves such that
OF C (I, F(E)=F(T). (3.1)
We say that a point ¢ € (I') is a self-intersection point of T' if, for any
neighborhood U, of ¢, (I') U, cannot be written as the graph of a WP function.
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Let ¢ = 7%(t1) = 7% (t2) for some 7%,7/ € T and t;,t, € [0,1]. We say that at ¢
there is a tangential self-intersection if

dvi(t di (t

V) g D)
dt dt

We say that at g there is a transversal self-intersection if
dvi(t dvyi (t

V) ()
dt dt

At a point ¢ there may be both tangential and transversal self-intersections.

We say that two systems of curves I and I' are equivalent if

0 =(@), F{I)=FD).

The following is an approximation result for systems of curves, which is useful in
order to estimate the optimal number n of sets E;.

are parallel.

are not parallel.

Theorem 3.1. [Density] Let I' be a system of curves. Then there exist a system of
curves T equivalent to T' and a sequence {T',}y, of systems of curves such that
(i) Tk has a finite number of tangential self-intersections for any h;
(i) Ty, — r strongly in W?2P;
(iii) (T'p) € (') for any h.
The density theorem permits us to resort to systems of curves with a finite
number of tangential self-intersections.

4. Estimate of the number of sets

In this section we give some estimates of the number n of sets minimizing the
energy Goo. We will need some assumptions on the image ¢ in order to achieve the
desired results.

Let Aj,..., Ay denote N sets of class C?(R?) such that for any i,j €
{1,...,N}, with ¢ # j, the boundaries dA; and 0A; intersect transversally at
a finite number of points (see Figure 1). Moreover, let the sets be ordered accord-
ing to the ordering relation (1.1):

Al <Ay < --- < Ap.

The function g is assumed piecewise constant and it is defined by

N
9= ZCiXA;» (4.1)
i=1
where the ¢; are positive constants, so that g is constant on the visible parts A} of

the regions.
The visible portion of the boundary of the region A; is defined by

i—1
(0A1) = dA;, 04;) =04\ |J A; fori=2,...,N.
j=1
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FIGURE 1. The sets A; in the image g.

By the assumptions on the sets A;, the visible portion of JA; consists of a finite
number of C? arcs terminating in a finite set M, of endpoints. We set

N N
Jg =041 J04), M=[JM,.
=2 =2

We now study the relation between the number n minimizing the functional G
and the number N of the regions which are actually present in the image g.
Let {E4,..., E,} be a minimizer of G ; then, using (2.1) and (3.1), there

exist n systems of curves I'?, i = 1,...,n, such that
J, < @, inf Goo = Y _ F(I') . (4.2)
i=1 i=1

We then define
r={r,. ..},
so that J, C (I').

Let X denote the set of all finite families o = {y!,...,7™} of W?2? curves
which connect pairwise all the endpoints in M in such a way that for any point
p € M, the tangent vectors of o and (9 A4;)’ in p are parallel, for any i € {2,..., N}.

We have the following lemma.

Lemma 4.1. If T' has a finite number of tangential self-intersections then there
exists o € ¥ such that

]—"(F)z/J [1+ |k|P]dH" + F(0). (4.3)

The proof of the lemma is based on the following argument. It can be proved
[2] that each system of curves I'" has not transversal self-intersections. Using this
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fact, the property J; C (I'), the hypothesis of a finite number of tangential self-
intersections of I', and the assumptions on the image g, a proof by induction (based
on the finiteness hypothesis) shows that I' not only covers Jg, but also connects
pairwise the endpoints in M by means of additional W?2? curves. Hence, there
exists a family o € 3 such that

Jg U(O’) c(r

and the estimate (4.3) is then obtained by a covering argument.
We are now in a position to state the following energy estimate.

Theorem 4.2. [Energy estimate] If J, C U, 0F;, with F(E;) < +oo for any
i €{1,...,n}, then

inf Gy > / [+ [wlPldH + inf F(o). (4.4)
Jq [eAS
The proof of the estimate is based on the density result of Theorem 3.1,
which permits us to remove from Lemma 4.1 the hypothesis of a finite number
of tangential self-intersections of I'. Then, using (4.2), Lemma 4.1 and taking the
infimum over X, we have

Goo(n, Ev,...,Ey) = F(I) z/ [1+[s["ldH" + inf F(o),
Jq oc
from which the estimate (4.4) follows.
Now we may construct N sets E1, ..., Eg, with W?2P boundary, by connect-
ing pairwise the endpoints in M by means of curves which minimize the energy

I(7)
/ 1+ |w[?]ds
0

with given tangent vectors in M (see Figure 2). In the case p = 2 the minimizing
curves are called elastica because of their application to the theory of flexible
inextensible rods [9].

Then we have

N
||‘C 2)
)

)

N
inf Goo < Z

In partlcular there exists a ﬁnlte family of curves o € ¥ such that

Ua@ingU(a), and infgwg/ [+ [6P)dH" + F(3).
=1

Jg
If 6 minimizes F(o) in ¥ then, using Theorem 4.2, it follows
inf Goo :/ [1+ |k|PJdH" + F(3) ,
']9

so that the family of sets {El, ce Eﬁ} minimizes Go.
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FIGURE 2. Endpoints in M connected by elastica curves.

Hence, in this case the asymptotic functional G, is minimized by a family of
sets with cardinality n = N and the number of regions that are actually present in
the image ¢ is reconstructed. Note that the minimizer & of F(o) in ¥ may be such
that N = N. This may happen in the following case. Suppose that connecting the
endpoints of the visible boundary (0A4;)" of the region A;, a set Ei is obtained.
Analogously, a set Ej is obtained connecting the endpoints of (0A;)" for some
J # i. However, it may happen that the endpoints of (9A4;)" and (0A;)’ can be
connected by forming a single set E ; such that

This case corresponds to a family of curves o € X such that N < N.

However, the assumption that there exists a family o with the above proper-
ties and minimizing F (o) in X, is not satisfied in general. We are able to improve
such a result in the following way.

Let 3¢ C X be the subset of the families ¢ such that there exists a finite family
of sets {Ex, ..., En}, with F(E;) < +oo forany i € {1,..., M} and J, C UM, 0F;,

such that
M

S F(E) = / 1+ [slPJdH" + F(o). (4.5)

=1 g

The case considered so far corresponds to o € Yo and M = N.
We have the following lemma.

Lemma 4.3. If 0 € ¥\ Xg and E1, ..., Eyn are such that

M
Jg U(U) - U OE;,
i=1
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then

g

M
S F(E) > / [+ [6[P)dH" + F(o) + com, (4.6)
i=1 J

where co = [(p/p')"/? + (¢ /p)"/7'), with 1/p+1/p/ = 1.

The proof of the lemma is based on the following argument. If F(E;) < 400
for any 4, by using (3.1) there exists a system of curves I" such that

M M
Uoeic (@), > F(E)=F®).
i=1 =1

Assume first that I" has a finite number of tangential self-intersections. Then,
if 0 ¢ o, we prove by means of an inductive method (based on the finiteness
assumption) that the set (I') \ (JyU (o)) contains at least a closed curve. Hence, by
the Holder inequality the energy of a closed curve is greater than or equal to the
constant ¢om, and the inequality (4.6) then follows by a covering argument. Then
the hypothesis of a finite number of tangential self-intersections of I' is removed
by means of the density result of Theorem 3.1.

Then, using Theorem 4.2, Lemma 4.3 and (4.5), we obtain the following
result.

Proposition 4.4. If the inequality

inf < inf 4.7
Jnf Flo) < inf, F(o)+ com (4.7
holds, then there exist a family of curves o € %o and sets Fi,...,Ey, with

F(E;) < +o0 and J, C UM, 0F;, such that

M
> F(E;) = inf Goo,
i=1

and
F(E;) = k[PldH" + F(o).
;:1 (E:) /Jg[1+||]d + F(o)

If the assumption (4.7) of Proposition 4.4 is satisfied, it follows that the
number M of regions is reconstructed from the image g. Then, the family of sets
{E1,...,En} can be endowed with the ordering relation

Ei<EBEy<---<Ey,

as follows -
i
0B\ CJy, OB N\|JE;jCJy fori=2,...,M.
j=1
Remark 4.5. If N = 2 in the definition (4.1) of g and M counsists of two points,
then the assumption (4.7) is unnecessary, Goo is minimized by n = 2 and the two
endpoints of M are connected by an elastica.
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The oo-Laplacian First Eigenvalue Problem

Marino Belloni

Abstract. We review some results about the first eigenvalue of the infinity
Laplacian operator and its first eigenfunctions in a general norm context.
Those results are obtained in collaboration with several authors: V. Ferone,
P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In Section
5 we make some remarks on the simplicity of the first eigenvalue of Ao this
will be the object of a joint work with A. Wagner (see [BW]).

Mathematics Subject Classification (2000). Primary 35P30; Secondary 35J70,
49125, 49R50.

Keywords. Nonlinear eigenvalue problems, Degenerate elliptic equation, Vari-
ational methods, Viscosity solutions.

1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary 92 of a plane domain
0. If u(z) denotes its vertical displacement, and if its deformation energy is given
by [, [Vul? dz, then a minimizer of the Rayleigh quotient

Jo IVulp dz /[, [ulP d
on I/VO1 "P(Q) satisfies the Euler-Lagrange equation
—Apu =\, |[ulP"?u  in Q, (1.1)

where Apu = div(|Vu|P~2Vu) is the well-known p-Laplace operator. This eigen-
value problem has been extensively studied in the literature, see [L3]. A somewhat
strange recent result is that (as p — oo) the limit equation reads

min { |[Vu| — Acou, —Asu } =0. (1.2)

Here Aou = Z” Uz, Uz Ug,z,; 15 the co-Laplacian, Ao = limy, o A, where A =

AP (see [JLM1, FIN]).
Now suppose that the membrane is not isotropic. It is for instance woven
out of elastic strings like a piece of material. Then the deformation energy can

This work was completed with the support of the research project Calcolo delle Variazioni e
Teoria Geometrica della Misura.
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be anisotropic, see [BK2, BJK]. We are mainly interested in generalizing the
result on eigenfunctions for the p-Laplacian to the situation, where Q@ C R” is
no longer equipped with the Euclidean norm, but instead with a general norm
| - |, for instance with |z| = (327, |2;]9)"/¢ and ¢ € (1,00). In that case a Lip-
schitz continuous function u : © — R (in a convex domain ) has Lipschitz
constant L = sup,cq |Vu(z)|*, where | - |* denotes the dual norm to | - |, because
|u(z)—u(y)| < L |x—y| with this L. Then we study the asymptotic behavior of the
first eigenvalue (eigenfunctions) when p — co. The case when p — 1 and the corre-
sponding limiting problem for the first eigenvalue is not considered, see [KF, KLR].

It is well known, that the infinite-Laplacian operator A, is closely related
to finding a minimal Lipschitz extension of a given function ¢ € C%1(9Q) into §2:
see Section 2. In [BFK] the eigenvalue problem was carried over to a general norm
and studied for finite p, while in [BK2] the eigenvalue problem was investigated
first for finite p and the special non-Euclidean norm |z| = (3°1, |2 [P/ with p
conjugate to p, and then for the limit p — oco. In [BJK] the eigenvalue problem was
investigated for general strictly convex norm |z|, and then for the limit p — oo.

This paper is organized as follows.

In Section 2 we introduce the co-Laplacian operator and we survey some old and
recent results.

In Section 3 we introduce the first eigenvalue of the operator A, and we survey
some results obtained in [BJK, BFK, BK1] and [BK2].

In Section 4 we expose some examples related to the results quoted in Section 3
(see [BJK, BK2]).

In Section 5 we expose some unpublished material on the simplicity of the first
eigenvalue obtained in [BW], a joint work in preparation with A. Wagner.

2. The oo-Laplacian operator A

Suppose f € C%1(9Q), where Q C R™ is an open set, having L(f, Q) as the least
constant for which

holds. Is it possible to find u € C%1(Q) (a Minimal Lipschitz Extension, M.L.E.
shortly) such that
(i) u(z) = f(x) for all z € O
(i) L(u,Q) = L(f,00)?
Such an extension wu exists (see [McS, W]) and satisfies A(f)(z) < u(x) <
U(f)(x) for every = € Q, where

A(f)(x) = supyeaq (f(y) = L(f,09)[z —yl),
U(f)(z) = infyean (f(y)+L(f,00Q)x—yl).
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The functions A(f), U(f) are itself M.L.E., and then there exist infinitely many
functions satisfying (i), (ii). Also, it can happen that u satisfies (¢) and (¢7) but an
inequality like L(u, V) > L(u,0V) holds for some V CC !

Ezample. (n = 1) Consider =] — 4,0[U]0,4[, and f € C%}(99) defined as:
f(=4) = f(0) =0 and f(4) = 4. We have immediately that L(f,9Q) = 1, and if we
construct v = A(f) (exercise!l), the lower M.L.E., it is evident that for V' =]—3, —1]
we have L(v,0V) =0 < 1 = L(v,V) (see also [ACJ] where a similar example is
considered).

The following definition is a way to recover such an instability (see Aronsson
[A1], and also [ACJ]).

Definition 2.1. A function u is an Absolutely Minimal Lipschitz Extension if u
satisfy (i), (i) and
(#i1) L(u, V) = L(f,0V) for every V CC Q.

More precisely, Aronsson defined the class of Absolutely Minimal Lipschitz (A.M.L.
shortly) functions as the class of continuous functions in 2 satisfying (ii7), i.e., it
is not necessary to be an extension to be Absolutely minimal (see [ACJ], where
this approach is stressed). Aronsson proved that A.M.L. functions must satisfy the
Dirichlet boundary value problem
—Asu(z) = 0 ze€
{ u(z) = flz) x€0Q

where Asou = VuV(]Vu|?) is the co-Laplacian (the formal limit as p — oo of
p-Laplacian operator). In 1993 Jensen proved that (2.1) has a unique viscosity so-
lution. This result was known for C? solutions of (2.1) (see [A1]); unfortunately, as
shown by Aronsson itself [A2], there exist co-harmonic functions not of class C2:
for example u(z1, z2) = |x1|*/3 —|z2|*3. For the definitions and relevant properties
of viscosity solutions, see [CIL]. Other uniqueness proof were given by Barles and
Busca [BB] still using a viscosity approach and, more recently, by Aronsson, Cran-
dall and Juutinen [ACJ] where the proof is obtained via the Comparison by Cones
approach introduced in [CEG] (see also [CDP, GPP] for some generalizations of
the Comparison with Cones to more general functionals). Recently O. Savin [S]
found the C' regularity for the solutions of A, u = 0 in 2-dimensional domains.
In [ACJ] some results on minimal Lipschitz extensions are generalized from the
Euclidean to a general norm, see also [Wu]. The infinity-Laplacian operator plays
also an important role in problems of optimal transportation. For technical rea-
sons it is often approximated by p-Laplacians with large p, see for instance [EG],
[BDP]. Another very active fields connected with the infinity-Laplacian operator
is the supremal calculus in L™, see [BJW] and the references therein.

(2.1)
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3. The first eigenvalue of A,

If we minimize the functional
L) = [(Vul) o on K= {0 W@ | ooy =1} (3.1)
Q

then via standard arguments (see [BFK]) a minimizer u, exists for every p > 1
and it is a weak solution to the equation
—Qpu = —div ((|Vup|*)p_2J(Vup)) = )‘p|“p|p_2“p ) (32)
that is
/ (|Vup|"‘)p72 (J(Vup), Vv) de = )\p/ [up|P~2u - v da (3.3)
Q Q

for any v € Wy'*(Q). Here A, = I, (u,) and

*\2
o= (57 (3.4

Clearly (3.4) is well defined as long as the dual norm H(n) = |n|* is of class
CL(R™ \ {0}). Recall that (3.4) is well defined (and single-valued) if and only if
the norm | - | is strictly convex, i.e., if its unit sphere {z : |z| = 1} contains no
nontrivial line segments, see [Z] p. 400. Note further that in this case J(0) = 0 and
that for the Euclidean norm the duality map reduces to the identity J(Vu) = Vu.

Note finally that A, := )\11;/ P is the minimum of the Rayleigh quotient
(Joy (IV0l7)" dar) "

||U||p

Ry(v) = (3.5)

on Wi () \ {0}.

Theorem 3.1. Suppose that H(n) = |n|* is of class C1(R™\ {0}) or that the norm
| - | is strictly convex. Then for every p € [2,00), the nonnegative minimizer u, of
(3.1) is unique, positive and of class C1. It solves (3.2) in the weak sense of (3.3).

For a proof, see [BFK] (see also [L1, L2]).

The function distance to the boundary d(z) := inf,cpq |z — y| is Lipschitz
continuous, satisfies [Vé(z)|* = 1 almost everywhere in Q and it is equal to zero
on the boundary of 2. We have then for every ¢ € Wol’oo(Q) and y € 992

lo(@)] = le(@) — o) < || [Vel*[ld (),
which implies
L1Vl e
116]loo llelloo

HWW&( 1)
A = = . 3.7
161150 161150 (37)

(3.6)

Now let us define
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Therefore Ay, is a geometric quantity related to €. It is the inverse of the radius
of the largest (in general non-Euclidean) ball inside 2. We can now prove the
following Theorem, which explains the analytic meaning of A.

Theorem 3.2. The following limit holds
. 1 .
Here Ap = Ry (up) and the Rayleigh quotient R, is given by (3.5).

For a proof, see [BJK] (see also [JLM1], where the Euclidean case is con-
sidered). For a I'-convergence’s proof, see [BW] (see [DM] for the definitions and
relevant properties of I'-convergence).

Now we state the theorem which characterize the limit eigenvalue equation.

Theorem 3.3. If H(n) := |n|* is of class C*>(R™\ {0}) then every cluster point us
of the sequence {up,} is a viscosity solution of the equation

Foo(u, Vu, D*u) = min { |Vu|* — Asott, —Qoou} =0

with Qeou = {D?*uJ (Vu), J(Vu)) representing the infinite-Laplacian in the Finsler
metric.

For a proof, see [BJK] (see also [JLM1]; in [BK2] we consider the case when
H fails to be of class C2(R™\ {0})). In [BW] we are trying to obtain this eigenvalue
equation starting from a more variational approach (see Section 5 for more details).

The function F., in the setting of viscosity solutions given in [CIL], results
degenerate elliptic but not proper. Therefore a comparison result cannot be ob-
tained via standard theory. Thanks to the change of variable wy, = logues,, we
arrive at the following equation

Goo(Vw, D*w) :=min { |Vuw|* — Aws, —Qoow — (|Vw[*)*} =0, (3.8)
where Qo is defined as before. Equation (3.8), in contrast to Fpy = 0, is now

proper and then we can obtain the following comparison result.

Theorem 3.4. Let 2 be a bounded domain, and suppose that u is a uniformly con-
tinuous viscosity subsolution and v a uniformly continuous viscosity supersolution
of (3.8) in Q. Then the following equality holds:

sup(u(z) — v(x)) = sup (u(z) — v(a). (3.9)
zEQ €N

For a proof see [BJK] (see also [JLM1]).
It is well known that for any 1 < p < oo, the eigenvalue A\, can be character-
ized by the property that A = A, is the only real number for which the equation
—div (|Vup[" P72 (V) = Nup|""u,

has a continuous positive solution with zero boundary value. Also A, has an
analogous characterization.
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Theorem 3.5. Let 2 be any bounded domain and suppose that the norm |- | is of
class C?(R™ \ {0}). If u is a continuous positive viscosity solution in Q0 of

min{|Vul* — Au, —Qocu} =0
with zero boundary value, then A = A.

For a proof, see [BJK] (see also [JLM1]).

4. Examples and observations

Ezample. If the norm under consideration for x € Q is the usual £,- norm, i.e., for
lz| = (X1, |#4]7)Y/9 with ¢ € (1, 00), the duality map according to (3.4) is easily
calculated as

Ji(y) = (yle )~ lyil 2,
with ¢ = ¢/(q¢ — 1) as conjugate exponent. Notice that this differs from the J in
[ACJ], Example 5.2. Then the p-Laplace operator in this Finsler metric is explicitly

given by, see [BFK]
n ' -2
0 clou T ou
— \V4 p/—(l .
qu ; 8961 <| u|q a.’El 81'1>
The oo-Laplace operator in the same Finsler metric is explicitly given by

o 0u 72 9u
4-2
Qoou = |Vu|q, q Z (a%x] 8$]>

i,j=1

Au |72 du
63% 8$i

ou
8$j

and for ¢ = 2 this expression shrinks down to the customary

" 9% Ou Ou

=1 a$i$j 63;1 6a;j

)

Asou =

Remark 4.1. Tt should be remarked that the distance function minimizes the
Rayleigh quotient R, but that d(x) is in general not a viscosity solution of the
limiting eigenvalue problem, unless € is a “ball” in the Finsler metric, see [JLM1],
[JLM2], [BK2] and [BJK].

Remark 4.2. In general, if the domain is not a “ball”’, there exist infinitely many

minimizers of the Rayleigh quotient R,. For example, see the function (5.2) (see
[FIN]).

Remark 4.3. If Q is a “ball” in R™ and p = n, then all the level sets of solutions
to (3.2)
—Qnu = \p|u|"?u

are similar “balls”, see [BFK].
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Remark 4.4. The smoothness assumption made on the dual spheres in[BJK] is
violated if the underlying norm is the ¢; or o, norm. However, the pde —Q, =1
and its limit as p — oo was studied even in this case in [IK], see also [K1], [BDM],
[Ja] and [IL] for the case of the Euclidean norm and for variants of this problem.
The eigenvalue problem is studied in [BK2]

Remark 4.5. Clearly the eigenvalue A\, depends on €). There is an analogue of
the Faber-Krahn inequality which states that among all domains of given volume
Ap(92) becomes minimal if €2 is a “ball” in the Finsler metric: see [BFK].

Ezample. Consider the square S := {(z,y) | max{|z|,|y|} <1}. Assume that the
distance is given by d(x,y) = |z1 — y1| + |22 — y2|. This function does not satisfy
the regularity property stated in the previous section. We know that the function
distance to the boundary

0s(z,y) = d((z,y),05) = min{l — |z, 1 —|y[} ~ V(z,y) €S (4.1)

is a minimizer for the Rayleigh quotient Ro = max{us,uy}/||ul|cc. But ds does
not solve the eigenvalue equation

min { max{|uz|, [u,|} —u, —Asu} =0, (4.2)

where Aju(zg) = 2 ieI(Vu(xo)) |Ua: (Zo)|ta, 2, (x0) is the pseudo—oo-Laplacian
(see [BK2]). We recall that I(&) = {k : [&| = max; |&]}.
On the other hand, the function

too(2,y) = (1 = [2[)(1 — [y]).
is a minimizer of the Rayleigh quotient and also a viscosity solution of (4.2).

We obtain this function as the limit of the sequence of eigenfunctions u, of the
pseudo—p-Laplacian. For the details, see [BK2].

5. Uniqueness

For p = oo the uniqueness of the first eigenfunction is a completely open problem.
In fact Theorem 3.4 is just a local comparison result: this is because, as observed,
just one function can be set equal to 0 on the boundary of €. Clearly, when € is
a “ball” (relative to the metric) then the first eigenfunction is unique because the
function d(z, 99 is the unique minimizer of

min {Roo(u,Q) _WVullea o W(}’O"(Q)}. (5.1)
||,

If Q is a stadium (or an annulus) then (see [BW]) the first eigenfunction is
still unique and is the function distance to the boundary: the proof is obtained by
a careful use of the comparison result (Theorem 3.4) together with the observation
that there exists a point zyp € © and a minimizer (see [FIN]) as follows

_ [ AL —d(z,x0), if d(z,20) < |6]]oc
Chro (z) = { 0, otherwise, e
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If{reQ : 6(x) =]} #{z € Q : () not differentiable}, then (see
[BW]) the function ¢ fails to be a solution of the co-eigenvalue equation.

As stated in Theorem 3.1, for every p € (1,00) the first eigenvalue A, is
simple, and the conjecture is that A, is simple too.

In [BW] we follow a more variational approach to the minimum problem
(5.1). First we define (see [BW]) a local minimizer of (5.1) as follows.

Definition 5.1. u € Wy *°(Q) is a local minimizer of (5.1) if for all open sets V < Q
and all 5 € W™ (Q), where

oy Ju o zeQ\V
o) := { v 1 zTEV,
for some v € Wy™(Q) and ||9]|oo = ||tt]| o, there holds

[Dulloe < [|D8]]co-

Usually a global minimizer is a local minimizer, but Definition 5.1 reverses the
rules: local implies global. Incidentally, this is a big problems in the L* calculus.
We are still working on this approach, and for example we are able to show the
following theorem.

Theorem 5.2. If uo is a local minimizer for (5.1), then |Vioo| — Acctice > 0 in
the viscosity sense, where Aoy = Roo (U, ).
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Comparison of Two Algorithms
to Solve the Fixed-strike
Amerasian Options Pricing Problem

Alfredo Bermudez, Maria Rodriguez-Nogueiras and Carlos Vazquez

Abstract. Amerasian options pricing problems are formulated, using Black-
Scholes and Merton methodology, as unilateral obstacle problems for degen-
erate parabolic convection-diffusion-reaction operators. We mainly focus on
the numerical solution of these problems and we compare two algorithms
based on the augmented Lagrange formulation. Moreover, we use higher-order
Lagrange-Galerkin methods for the time-space discretization. Finally, numer-
ical results show the performance of the proposed methods.

Keywords. Black-Scholes models, Amerasian options, Lagrange-Galerkin
method, Duality algorithms, Active set methods.

In this work we consider the numerical solution of the Amerasian options (with
continuous arithmetic averaging and fixed strike) pricing problem. These options
are path-dependent financial derivatives whose payoffs (i.e., their values at the
end of the contract) somehow depend on an averaging price of another financial
product called the underlying asset during a period of time. Following Black-
Scholes and Merton’s methodology, the value of an Asian option of American type,
or Amerasian option, solves a two-dimensional linear complementarity problem for
a strongly degenerate parabolic differential operator, with no diffusion in one of
the spatial directions (see [12]).

In the literature regarding the European counterpart pricing problem some
changes of variable were proposed to reduce the spatial dimension in one (see
[21, 25]). Nevertheless, these techniques cannot be applied either to the American
case, or to more general problems as those with share-dependent volatility, where it
is mandatory to solve the two-dimensional problem. Regarding now its numerical
solution, a forward shooting algorithm is proposed in [2] and finite volume methods
with high-order nonlinear flux limiter for the convective terms, combined with
a penalty method for the inequality constraints, are applied in [27]. In [18] an
implicit finite element method combined with a PSOR procedure and operator
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regularization is proposed. Recently, in [20] TVD and WENO discretizations have
been applied. In [13] authors solve numerically the Amerasian option problem,
under jump diffusion models, governed by integro-partial differential equations.
They apply a splitting technique that solves the transport equation in the average
direction with a Lagrangian scheme, and solves one-dimensional Black-Scholes
equations in the asset direction, with second-order implicit finite differences.

In the present work we address the numerical solution of unilateral-obstacle
problems arising when pricing Amerasian options. The proposed algorithm results
from the combination of higher-order characteristics methods for time discretiza-
tion, higher-order finite elements for space discretization and two different algo-
rithms for the free boundary problem (the Bermaidez-Moreno algorithm (BM),
and the Augmented Lagrangian Active Set method (ALAS)). This work is a con-
tinuation of some previous ones where the numerical solution of financial pricing
problems by Lagrange-Galerkin methods and iterative algorithms were addressed.
In [8] a numerical algorithm consisting of combining the iterative algorithm intro-
duced in [3] with first-order Lagrange-Galerkin methods to solve general early ex-
ercise two factor pricing problems is applied. In [7] higher-order Lagrange-Galerkin
methods for Eurasian options are used. They have been extended to the general
constrained case in [6] where the BM algorithm has been employed. The main
novelty here is the use of a more recently proposed algorithm, ALAS algorithm
[17], to face with the nonlinearity of the pricing problem.

Notice that the here proposed numerical methodology is quite general and
can be applied to general two factor products as, for instance, convertible bonds
(see [1]). However, we have taken into account the specific features of Asian options
pricing problems, when optimizing, for instance, some algebraic computations.

In the following, we first formulate the mathematical problem; secondly we
recall the basic features of the Lagrange-Galerkin discretization; thirdly, we de-
scribe both the BM algorithm and the ALAS algorithm and give some “a priori”
comparison. Finally, we show some numerical results and final conclusions.

1. Mathematical formulation

The option pricing complementarity problem can be formulated as follows [6]:
Find V : (z1,22,7) € Q x [0,T] — R, satisfying

LIV]<0, V>A, LIV]I(V=-A)=0 1inQx(0,T), (1.1)
subjected to the initial condition
V(z1,22,0) = A(z1,22)  for (x1,22) € Q, (1.2)

and to the boundary condition

ov

O, (x1,22,7) = g(z1,22,7)  onTy 4 x(0,T). (1.3)
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In the previous formulation, Q:=(0,z7) X (0,z3), I'=9Q, and I'1 4 =T'N{x1 =27},

* 0

for 7 and z} “large enough” positive numbers. Moreover, the linear operator L is

0
£l = 5

for ¢ defined in Q x (0,7"), and
1 2.2 (0% —r +dp)m,
A:<2Ux1 0), v:<$2—$1 ), l=r. (1.5)

—Div(A V¢) +v- Vo + 1, (1.4)

0 0 T .
Moreover,
A(xlva) = (:Cg - K)+v (16)
and T
7—e*”, if O0<zo < K ,
L T T—71
g(lL’l,.’EQ,’T) = e—doT _ =TT T (17)
if K i
T(r —do) ! T—7'<9U2<9U2

The unknown function V' denotes the value of the option, as a function of the
underlying asset value, x1, the averaging variable, zo2, and the time to maturity, 7.
Moreover, the averaging interval is [0, T, and the strike is denoted by K > 0. The
positive financial parameters, r, o, dy are the interest rate of the economy, and the
volatility and the dividend yield of the underlying asset, respectively.

Remark 1.1. Notice that the complementarity problem (1.1)—(1.3) admits the cor-
responding variational inequality formulation (see, for instance, [6]) which is usu-
ally associated to obstacle-like problems.

Remark 1.2. Using Black-Scholes and Merton techniques the Amerasian options
pricing problem is firstly posed in an unbounded spatial domain. Keeping in mind
the numerical solution of the problem by using finite elements, a truncation of the
spatial domain is needed. For the sake of simplicity we have directly formulated
the problem in a bounded domain with its corresponding boundary conditions.
For more details concerning this process see, for instance [8, 6, 19].

The following propositions concern the noncoincidence region of the free
boundary problem and have been stated in [8, 19] by using some financial ar-
guments.

Proposition 1.3. At points (x1,x2,t) such that xo < K at time t , the function V
does not reach the obstacle.

1
Proposition 1.4. At points (x1, z2,t) such that x1 > (1 + 1) P T Ty the function
V' does not reach the obstacle. ’

The iterative algorithms we propose for the numerical solution of (1.1)—(1.3)
are based on the Lagrange formulation. It refers to the fact that the inequality

involving the operator L is replaced by an equality by means of an appropriate La-
grange variable or multiplier to be called P. This mixed formulation appears when
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dealing with duality methods for solving obstacle problems (see [14], for example).
Thus, problem (1.1)—(1.3) is equivalent to the following mixed formulation:

Find V and P : Q x [0,T] — R satisfying the partial differential equation

CZ)V—Div(AVV)—I—v-VV—i—lV—i—P:O in Qx (0,7T), (1.8)
-
the complementarity conditions

V>A P<0 (V-AP=0 inQx(0,T), (1.9)

and ingtial and boundary conditions (1.2)—(1.3).

2. Higher-order Lagrange-Galerkin for the unconstrained problem

Very often, in differential equations for pricing financial products the diffusion is
quite small relative to the convection for some regions of the domain and/or for
particular values of the parameters. This is reinforced for Asian options, as there
is no diffusion in one of the spatial dimensions. In such circumstances numerical
schemes present difficulties. A possible upwinding scheme that leads to symmetric
and stable approximations of the transport PDE, reducing temporal errors and
allowing for large timesteps without loss of accuracy, is the characteristics method
for time discretization. An application in finance of the classical characteristics
method has been already developed in [24, 1, 8, 13]. Moreover, while most pa-
pers and books on financial derivatives employ finite differences for the numerical
solution, the use of finite elements has several advantages. Firstly, unstructured
meshes can be convenient to refine at some parts of the domain as, for instance,
near free boundaries or where the initial condition is less smooth. Secondly, it
provides greater flexibility for changing final or boundary conditions as well as
incorporating inequality constraints, if necessary.

In the present work, which mainly focus on the free-boundary aspect, we use
the second-order Lagrange-Galerkin method analyzed in [22, 4, 5] for time-space
discretization. The application of this general method for convection-diffusion-
reaction PDEs to Asian options has been explained in [6]. Particularly, we consider
Q7 finite element spaces,

Q7 = {feCQ),flxk € QKWK € T}, (2.1)

where Q?(K) is the space of polynomials of degree less than or equal to two in each
variable, and we use Simpson rule for numerical integration. So, if we consider a
finite elements space of dimension Ng,y, we have to solve a Ngof X Ngor System

Mp V= bt (2.2)

at each time step, where matrix M;, does not depend on time. This fact allows us
to compute its Choleski factorization only once. Moreover, if meshes satisfy the
condition that their edges are parallel to the axis and an adequate mesh numbering
is used, this matrix is block diagonal. (See [6, 19] for details.)
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3. Numerical treatment of the free boundary problem

The most common method of handling the early exercise condition (which leads to
the free boundary problem) in numerical finance is simply to advance the discrete
solution over a timestep ignoring the restriction and then to make its projection on
the set of constraints (see, for example, [11]). In the case of a single factor (Amer-
ican vanilla put pricing problem, for instance) the algebraic linear complementary
problem is commonly solved using a projected iteration method (PSOR) that cap-
tures the unknown exercise boundary at each time step (see Wilmott [26]). In [10]
a multigrid method to accelerate convergence of the basic relaxation method is
suggested and in [24] a Uzawa’s algorithm to better capture the free boundary is
used. Moreover, in [15] an implicit penalty method for pricing American options
is proposed. Authors show that, when variable timestep is used, quadratic conver-
gence is achieved. The drawbacks of projected relaxation methods are that their
rates of convergence depend on the choice of the relaxation parameter, they dete-
riorate when the meshes are refined and, moreover, they do not take into account
the domain decomposition given by the free boundary. In this section we describe
two algorithms for which the developed regularization does not introduce any fur-
ther source of error as penalty methods do: the Bermudez-Moreno algorithm and
the Augmented Lagrangian Active Set method.

3.1. The Bermiidez-Moreno iterative algorithm (BM)
This method has been introduced in [3] for solving elliptic variational inequalities.
It consists of approximating the solution of the variational inequality by a sequence
of solutions of variational equalities. While this method has been extensively ap-
plied to solve free boundary problems in computational mechanics, its application
to price financial derivatives has been recently proposed [8].

In order to apply the duality method proposed in [3], we introduce a new
Lagrange multiplier, @, in terms of a parameter w > 0, by

Q:=P—-wV. (3.1)
Then, condition (1.9) can be equivalently formulated as
Q(x,t) € G¥(V(x,t)) ae. in Q" x(0,T),

where G¥ := G —wl, I is the identity function and G denotes the following multi-
valued maximal monotone operator (see [9]):

0 if Y <A,
G(Y)=< (—00,0] if Y =A, . (3.2)
0 if A<Y,

We recall that, if B is a maximal monotone operator in a Hilbert space
then its resolvent operator is the single-valued contraction Jy = (I + AB)~! and
its Yosida regularization is the Lipschitz-continuous mapping Gy = A71(I — Jy),
where A is any positive real number (see for instance [9]).
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The following equivalence is straightforward:
p € B(v) & p = Bx(v+ Ap). (33)

In fact, a similar equivalence holds for operator B¥ := B — wl, for any A < 1/w.
In the particular case of B = G given by (3.2), the Yosida regularization of G is

Y;A if Y <(1-wA,
G4 (V) = w (3.4)
— i > —
1 w)\Y if Y >(1-wlA,

and equivalence (3.3) becomes
Q =G5V + Q). (3.5)
The above developments lead to consider the following algorithm:

1. Initialization: Qg is arbitrarily given.
2. Iteration m: @Q,, is known.
(a) Compute V,, 41 by solving

OV, .
aTH —Div(AVVpy1) +v - VViiy
+r+w)Vmg1+Qm = 0 in Q* x (0,7),
Vm+1 (Il,xz,O) = A(.Il,xg) in Q*,
8Vm+1
33}1 (.’El,.’EQ,T) = g(x17x277_) on FT,—&- X (O,T)

(3.6)
(b) Update Lagrange multiplier @ by

Qerl - /«LG;\) [Verl + )\Qm] + (1 - ﬂ)Qm in O x (OvT)v (37)

where p is a relaxation parameter, p € (0, 1].

Remark 3.1. We emphasize that, since (3.5) is completely equivalent to (3.1), this
algorithm does not introduce any further source of error as penalty methods do.

Convergence results in [3] can be easily adapted to our degenerate case. In
particular, one can show convergence as far as w and X are chosen such that wA =
1/2 but, unfortunately, the speed of convergence depends on these parameters.

3.2. Augmented Lagrangian Active set method (ALAS)

The ALAS algorithm proposed in [17] is here applied to the fully discretized in
time and space mixed formulation (1.8)—(1.9). In this method the basic iteration of
the active set consists of two steps. In the first one the domain is decomposed into
active and inactive parts (depending on whether the constraint “acts” or not), and
then, a reduced linear system associated to the inactive part is solved. We use the
algorithm for unilateral problems, which is based on the augmented Lagrangian
formulation. Some a priori known properties of our particular problem are taken
into account in order to improve the performance of this method.
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First, for any decomposition N = I U J, where N := {1,2,..., Ngor}, let us
denote by [Mp]i1 the principal minor of matrix M, and by [Mp]1y the codiagonal
block indexed by I and J. Thus, for each mesh time ¢,, the ALAS algorithm
computes not only V;* and P}’ but also a decomposition N = J* UI" such that

MpVir + Pp = by,
(PRl + BV —A;, < 0 vjeJn, (3.8)
[Pr], = 0 vieln,

for any positive constant 3. In the above, I" and J™ are, respectively, the inactive
and the active sets at time t,,. More precisely, the iterative algorithm builds se-

quences {V,{fm}m, {Pﬁm}m, {In},, and {J}, , converging to V;*, P}, I" and

J". by means of the following steps:

1. Initialize V}ZO and P}?,o < 0. Choose 8 > 0. Set m = 0.
2. Compute

7. = min {o, B+ (Vh’fm - A)} ’

no= fienfen], <o},
J
mo= {ieN[Qp,] o
3. If m > 1 and J}}, = J,_; then convergence is achieved. Stop.
4. Let V and P be the solution of the linear system
MpV + P =b""1,
P=0onl} and V=Aon J},.

—
3
Il

Set Vi1 = Vi Py = min{0, P}, m = m + 1 and go to 2.

It is important to notice that, instead of solving the full linear system in (3.9),
for I =17, and J = J7, the following reduced one on the inactive set is solved:

Mpl [V = [bn_l]l — [Ma]yy [A]}
Vs = [A]y, (3.10)
P = y - M, V.

Remark 3.2. In a unilateral obstacle problem, the parameter 3 only influences the
first iteration.

In [17], authors proved convergence of the algorithm in a finite number of
steps for a Stieltjes matrix (i.e., a real symmetric positive definite matrix with
negative off-diagonal entries [23]) and a suitable initialization. They also proved
that I,,, C I,,,41. Nevertheless, a Stieltjes matrix can be only obtained for linear
elements but never for “our” quadratic elements because we have some positive
off-diagonal entries coming from the stiffness matrix (actually we use a lumped
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mass matrix). However, we have obtained good results by using ALAS algorithm
with quadratic finite elements and the following particular additional features:

o The algorithm is initialized as proposed in [17]:
Vil =A and Py =0b" — M, V.
e We compute the set
I' == {i,e N, x’ = (2, 2}) is a mesh node with
zh <K, x> 147, —Ti)s},
and impose that I? C I?, for every m ( using Propositions 1.3 and 1.4).
e We do not assume monotonicity with respect to m for the sets {I?}, }.

o o o .o Block"s"

Block "r"

FIGURE 1. Spatial domain of solution for the Amerasian call options
pricing problem, separating the active from the inactive set. Two sets of
FE nodes with the same x5 coordinate are represented, and the nodes
inside the active set are filled.

Special care has to be taken for an efficient solution of the linear system
when using the ALAS algorithm. Meshes with edges parallel to the axis and with
suitable mesh numbering have already been used in the BM algorithm. The fact
that in the ALAS algorithm only an incomplete linear system is solved requires
a deeper study. More precisely, by ordering the nodes from right to left and from
bottom to top, we are led to a matrix with N, blocks of dimension NV,,. In other
words, each set of nodes with the same x5 coordinate gives rise to a block in the
matrix. Thus, for each block either all of the nodes are inside the inactive set (the
case of Block “r” in Figure 1) or only the first n(z2) nodes (with n(z2) < Ny, )
belong to the inactive set (the case of Block “s” in Figure 1). The main point is
that also for the ALAS algorithm we develop the factorization of the (complete)
matrix only once outside the time loop and the iterative algorithm loop, and, at
each iteration, we solve IV, systems of variable dimension (less or equal than N, ).

A “general” comparison between the two iterative algorithms is not practi-
cal because the performance of this second algorithm is very problem-dependent.
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For example, the larger the active set, the more efficient the second algorithm
is. Nevertheless, we can establish the following a priori comments related to the
comparison of the two algorithms when applied to our particular problem. They
will be completed when showing the numerical results in the next section:

e Linear systems in the ALAS algorithm are smaller than those in the BM
algorithm.

e The ALAS algorithm uses some a priori known data about the inactive set.
e The BM algorithm is strongly parameter (w) dependent, whereas the (53)
parameter appearing in ALAS algorithm only influences the first iteration.

e ALAS algorithm can be interpreted as a semi-smooth Newton method [16],

and thus it exhibits a super-linear convergence rate.

4. Numerical results

To complete our analysis, we compare the performance of the BM and the ALAS
algorithms for three sets of parameters. In Table 1 we show the results corre-
sponding to the computational domain Q* = (0, z7) x (0, 23), with 2} = 25 = 3K.
Uniform meshes in time and non-uniform meshes in space have been used. If Ny
denotes the number of time steps and Ngoy = Ny, = N, denotes the number of
d.o.f. in each spatial direction, we introduce the following notation for the meshes:

Mesh-1 Mesh-2 Mesh-3 Mesh-4
Ny 34 67 133 265
Naos 67 133 265 529

Regarding Table 1 we can conclude that the ALAS algorithm is more efficient
than the BM one because the computational time is smaller for the same meshes
and leads to analogous results. Notice that the main difference between these
algorithms is the solution of the linear systems and the updating of the Lagrange
multiplier (or active/inactive sets), whereas the computation and factorization of
the full matrix, etc. ... are common to both algorithms. Thus, since the algebraic
part of the program (in particular, the resolution of the already factorized linear
systems) has been optimized in both cases, the difference in time is lower than the
difference in the number of iterations.

On the other hand, the mean number of iterations is clearly less in the ALAS
algorithm than in the BM one. To this respect, it is interesting to note that, in the
ALAS algorithm, parameter § seems not to influence the number of iterations (as
it is claimed in [17]). However, the mean number of iterations in the BM algorithm
crucially depends on the choice of parameter w. Furthermore, we have observed
that the number of iterations as a function of parameter w is a convex function,
and that its minimum depends not only on the test data (i.e., volatility, time to
maturity, etc) but also on the mesh parameters. For this reason, we have first
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searched the value of w giving the minimum number of iterations for each test
data and mesh. This optimal choice is used in Table 1. In Figure 2 we show the
mean number of iterations in the BM algorithm as a function of w for the four
mesh refinements and the data set 0 = 0.2, 7y —T; = 1,7 = 0.1,dp = 0, K = 100.

Parameter
Ny
Op. Value

Time

Parameter
N;
Op. Value
Time

Parameter
N;
Op. Value
Time

c=04, Ty —T, =05

Mesh-1 Mesh-2 Mesh-3
BM ALAS BM  ALAS BM ALAS
1.5E2 1.E5 4.E2 1.E5 1.15E3 1.E5
23 4 26 5 31 6

8.5528 8.5503 8.5310 8.5299 8.5220 8.5232

4 3 38 24 411 271
0=01, Ty -T;=0.25
Mesh-1 Mesh-2 Mesh-3
BM ALAS BM  ALAS BM ALAS
1.5E2 1.E5 3.25E2 1.E5 7.E2 1.E5
10 3 11 3 12 3
1.9759 1.9560 1.9529 1.9308 1.9511 1.9348
4 3 38 30 413 349
c=02 T —T,=1.
Mesh-1 Mesh-2 Mesh-3
BM ALAS BM  ALAS BM ALAS
7.5E1 1.E5 1.5E2 1.E5 4.5E2 1.E5
19 3 20 4 25 5

7.5475E 7.5445E 7.5441 7.5425E 7.5405 7.5406
) 3 43 31 474 355

Mesh-4
BM ALAS
1.9E3 1.E5
33 9
8.5222 8.5223
4689 3560

Mesh-4
BM ALAS
1.15E3 1.E5
13 3
1.9590 1.9590
5259 4685

Mesh-4
BM ALAS

1.06E3 1.Eb5
24 7
7.5386 7.5417
9589 4737

TABLE 1. Results comparing BM and ALAS algorithms applied to the
Amerasian problem with data » = 0.1,dy = 0, K = 100. The pa-
rameters (Parameter) are A for BM and (3 for ALAS. N;; denotes the
mean number of iterations and option value (Op. Value) corresponds to
(S, M,t) = (100, 100, T;). The computation time (Time) is in measured
in seconds.
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Number of Ilterations in BM
140 T !
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FIGURE 2. Mean number of iterations taken for the BM algorithm con-
vergence as a function of parameter w for different meshes and for data
0=02,Ty-T;=1,r=0.1,dy =0, K = 100.
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Nonlinear Diffusion Models
for Self-gravitating Particles

Piotr Biler and Robert Stanczy

Abstract. This paper deals with parabolic-elliptic systems of drift-diffusion
type modelling gravitational interaction of particles. The main feature is pres-
ence of a nonlinear diffusion describing physically relevant density-pressure
relations. We study the existence of solutions of the evolution problem, and
recall results on the existence of steady states, and the blow up of solutions
in cases when drift prevails the diffusion.

Mathematics Subject Classification (2000). Primary 35K60; Secondary 35Q,
35B40, 82C21.

Keywords. Nonlinear diffusion, drift-diffusion systems, mean field equations,
local existence of solutions, steady states, blow up of solutions.

1. Introduction

Our aim is to describe some recent results on drift-diffusion equations coupled with
the Poisson equation

ng = V-(D«(Vp+nVy)), (1.1)

Ap = n. (1.2)

These systems are models for the evolution of the density of particles n = n(x,t) >

0 defined for (z,t) € Q@ xR*, Q C R The particles attract each other gravitation-

ally through the Newtonian potential ¢ = ¢(z,t) generated by themselves. The

pressure p > 0 is a sufficiently regular (€2(R* x RT)) function of the density n
and the temperature 9 > 0

p = p(n,v). (1.3)

The coeflicient D, > 0 above may depend on n, ¥, ¢, x, ... . The natural boundary
condition on 9 for (1.1)—(1.2) is the nonlinear no-flux one

(Vp+nVyp)-v=0, (1.4)

where v is the unit normal vector to 0f2. The potential ¢ satisfies either
Y= Ed *n, (15)
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E4(z) = —((d —2)oq) "t x|*>~¢ being the fundamental solution of the Laplacian in
R?, d > 3, or the homogeneous Dirichlet boundary condition
Plon =0, (1.6)

which is mathematically somewhat simpler. In the case of radially symmetric so-
lutions (1.1)—(1.4), (1.6) is equivalent to (1.1)—(1.4), (1.5): the solutions of (1.5)
and (1.6) differ by a constant, cf. the discussion of this issue in [4, 5, 1].

Systems for self-gravitating particles may describe concentration and collapse
phenomena, manifesting themselves by, e.g., a finite (or infinite) time blow up of
solutions for certain initial data.

Systems like (1.1)—(1.2) or (1.1) with the equation Ay = —n for the poten-
tial have been considered beginning with Nernst—Planck (1895) and Debye—Hiickel
(1926) models for the dynamics of ions in a solute (i.e., repulsing particles). Then,
they have been used in semiconductor theory and plasma physics. Models for at-
tracting particles are studied at least from early nineties of the twentieth century:
[18] and [4]. The papers of P.-H. Chavanis and his collaborators (see [9] and nu-
merous references therein) are another source of those hydrodynamical models in
astrophysics, with an immediate reference to kinetic equations. Besides the sta-
tistical mechanics, systems of the form (1.1)—(1.2) appear also in modelling of
chemotaxis phenomena, generalizing the classical approach which involved the lin-
ear diffusion with p(n) = constn. These biological models, supplemented with the
homogeneous Neumann conditions for n and ¢ are applicable in a description of
concentration of either cells or microorganisms due to chemical agents. We refer
the reader to [12] for a comprehensive review of these aspects of parabolic-elliptic
systems like (1.1)—(1.2), and to [17] for very recent results on related systems with
nonlinear diffusion in RV,

Such mean field systems can be studied either in the canonical ensemble
(i.e., the isothermal setting), when ¥ = const is fixed, or in the microcanonical
ensemble (the nonisothermal case) with a variable temperature: either ¥ = 9(t)
or ¥ = ¥(x,t). Then, the energy balance is described either by a relation like

d 1
E= /pdac + / ny dx = const (1.7)
2 Jo 2 Jo

(which, for a given n, defines ¥ = 9(¢) in an implicit way) in the former case, or
by an evolution partial differential equation for ¥ = ¥(z,t) as was in Streater’s
models in [2] (much more complicated mathematically).

In order to determine the evolution, we also impose an initial condition

n(x,0) = ng(z) >0, (1.8)

and either ¥g > 0 or a value of F which is to be conserved. As a consequence of
(1.4), total mass

M:/Qn(x,t)dx (1.9)

is conserved during the evolution. Moreover, sufficiently regular solutions of the
evolution problem with ny > 0 remain positive.
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The main mathematical questions concerning the systems are the following:

e existence, nonexistence and multiplicity of steady states, either for given M,
or for M, E fixed,

e local in time existence of solutions of the evolution problem,

e asymptotics of global in time solutions,

e possibility of finite time blow up of solutions (corresponding to either a grav-
itational collapse or an explosion),

e spreading of compactly supported initial data when  is unbounded (and
related free boundary problems).

Two systems with particular density-pressure relations have been extensively
studied: for Brownian (or Maxwell-Boltzmann) and Fermi-Dirac particles.

The model of self-gravitating Brownian particles, which consists of (1.1)—
(1.2), with (2.1) below, supplemented by (1.7), has been considered in [9, 11]
for radially symmetric solutions (n, ), and in [10, 6] without this symmetry as-
sumption. Studies of the corresponding isothermal problem with ¥ = 1 had been
conducted earlier, see, e.g., [18, 4]. We refer the reader also to [1, 5] for stationary
solutions for the Brownian particles models. The main issues are:

e gravitational collapse is possible for d > 2 in the isothermal model, and for
d > 3 in the nonisothermal model,

e the existence of steady states with prescribed mass and energy in d > 3 di-
mensions is controlled by the parameter E/M? which should be large enough
(in d = 2 they exist for each M > 0 and each F € R).

Since the Fermi-Dirac model, see (2.3) below, involves nonlinear diffusion,
even local in time existence of solutions is much harder to establish than in the
Brownian (linear diffusion) case, see [3] where in the isothermal case a specific
choice of the coefficient D, has been considered. In particular:

e structure of the set of steady states with given M and ¥ is different (but less
complicated) than in the Brownian case ([9]),

e the existence of steady states with given mass and energy is controlled by
the parameter min { 152, Ml’fg/d} ([7, 16]),

e gravitational collapses cannot occur in d < 3 dimensions in the isothermal
case ([3]),

e the gravitational collapse is possible for d > 4 for suitable initial data in the
nonisothermal case ([7]).

We will study in this paper local in time existence of solutions — a rather
difficult question in such a general setting with (1.3), mainly because of nonlinear
boundary conditions (1.4) for n and possible degeneracies of diffusion. This subject
which has not been considered in [8], where a thorough discussion of the following
topics can be found:

e examples of density-pressure relations more general than Maxwell-Boltzmann
and Fermi-Dirac,
e entropy functionals, entropy production rates and estimates of the energy,
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e cxistence of steady states with prescribed mass and large energy,

e nonexistence of global in time solutions of (1.1)—(1.2) with general density-
pressure relations (1.3), D, = 1, one of the conditions (1.5), (1.6), and either
negative initial entropy or low energy, and thus, a fortiori, nonexistence of
steady states for arbitrary D,

o continuation of local in time solutions of (1.1)—(1.2) with polytropic density-
pressure relations (cf. (2.4) below).

It is worth noting that while “local” results on the existence of steady states (i.e.,
for a small range of control parameters M, ¥, F) are quite similar for general p =
p(n,d), the global structure of the set of steady states (existence of multiple steady
states, bifurcations, end-points of branches of solutions, etc.) is rather sensitive to
variations of the form of p in (1.3), cf. results for the Maxwell-Boltzmann and
Fermi—Dirac models. The problem is relatively well understood in the case of the
Boltzmann model, see [1] and references therein. There are some numerical results
in the case of radially symmetric solutions of the Fermi-Dirac model in the ball of
R3, cf. [9]. Three different approaches are useful when studying the existence and
multiplicity of stationary solutions of the system (1.1)—(1.2), namely: monotonicity
methods (as, e.g., in [13, 14]), variational methods (as, e.g., in [3, 7, 8, 15]), and
integral equations (as, e.g., in [8, 15, 16]).

Results on the nonexistence of steady states and, more generally, nonexistence
of solutions of the evolution problem defined for all ¢ > 0 are proved using either
the moment method (for the boundary condition (1.5)) or Pohozaev—Rellich type
identities (for (1.6)). These are results on the isothermal problem with the pressure
p asymptotically resembling a polytropic relation (2.4), and with quite general
density-pressure relations in the microcanonical setting, see [8, Sec. 5] and [7, Sec.
2]. Similar results for chemotaxis systems with nonlinear diffusion are in [17].

Thus, weakly nonlinear diffusion (e.g., that in (2.4) with small v > 0) is not
strong enough to prevent from a blow up of solutions, at least for initial data
of negative energy. On the other hand, strongly nonlinear diffusion (e.g., (2.4)
with relatively large ) guarantees the continuation of local in time solutions to
the global ones. Indeed, for p(s) ~ ks'™? with v > 1 — 2/d, using the entropy
Wiso (3.1), one proves in [8, Sec. 6] that sup,.q [, p(,t)dz < oo with a bound
depending on the initial data. Then, sups<,<r [12(t)|za(@) < 0o is proved by an
iteration process for any 1 < ¢ < co and 0 < § < T < oo, with a bound depending
also on § and T. Since for v < 1 — 2/d the blow up of solutions, caused by
Jon(z,t)|z|*dz — 0 ast / Thax, is accompanied by the unboundedness of L9(Q)
norms as t /" Tmax ([8, Sec. 5]), one can conclude that such phenomena do not
occur in the complementary range of polytropic exponents v, v > 1 —2/d, i.e., for
diffusion terms Ap(n) in (1.1) strong enough.

Notation. In the sequel | .|, will denote the L7(£) norm. All inessential constants
which may vary from line to line will be denoted by C.



Nonlinear Diffusion 111

2. Examples of diffusions

Without entering into the kinetic theory considerations, cf. [9] and [8], we recall
here the most common density-pressure relations encountered in the (classical and
quantum) statistical mechanics and generalize these examples.

Ezxample. For Maxwell-Boltzmann distributions
pus(n, ¥) = dn (2.1)

holds, which is a consequence of the Maxwellian form of distributions f = f(x,v,t)
maximizing the Boltzmann entropy — fRd flog f dv under the local density con-
straint n(z,t) = [p. fdv. This classical Boltzmann relation and D, = const lead
to linear Brownian diffusion term An in (1.1).

Ezxample. Similarly, Fermi—Dirac distributions maximize the entropy

S:—/ (flogf—|-<1— f)log(l— f)> dv
R4 \ 70 Mo Mo o

whose form a priori prevents from the overcrowding of particles at any point
(z,v,1): 0 < f < mng. Then one has, see, e.g., [3, (1.1)—(1.3)],

— g
n =022 o025 1(N), p=mo2%> Jﬁd/2+lfd/2(/\),

where I, denotes the Fermi integral of order o > —1 defined for A > 0 by
oo e
y* dy
I.(\) = . 2.2

Hence

_ 2 n
prp(n, V) = Zﬁd/zﬂ (Id/2 °© Id/1271> (M ﬁd/2> (2.3)

for a constant p > 0, which leads to a nonlinear diffusion in (1.1). Properties of

Fermi integrals (2.2) (convexity, asymptotics, etc.) relevant to study the system
(1.1)—(1.2), (2.3) are collected in [3, Sec. 2] and [7, Sec. 5].

An analogous construction is used to define Bose—Einstein distributions whose
properties, however, much differ from those of Fermi—Dirac ones, see [8, Sec. 2].

Ezxample. Polytropes are classical equations of state of a gas
Priy(n, 0) = ry 009201 (2.4)

with 0 < v < 2/d, and a polytropic constant x~. These are densities corresponding
to distributions maximizing the Rényi-Tsallis entropy q:11 fRd (f¢— f) dv, where
gq=1+4+1/(1/y—d/2) € (1,00). The limit value v = 2/d leads to the pressure
p1+2/d(n719) = Hz/dnHQ/d (2-5)
independent of ¥. The limit case v \, 0 corresponds to the Boltzmann density-

pressure relation (2.1). The polytropic relations define evolution equations with
nonlinear diffusions as, e.g., in the porous media equation.
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In all the examples above the scaling relation p(9%/%n,9) = 94/?+1p(n, 1) is
satisfied for each 9 > 0, and thus the self-similar form of the pressure
n
p(n,9) =942+ p (19(1/2) (2.6)
follows with a sufficiently regular function P defined on R™T.

In all physically relevant examples the function P behaves like power func-
tions of s near 0 and near co: cos' 70, ¢y 5!t~ with some special exponents 7o,
Yoo > 0, and constants cg, co > 0, respectively. For instance, vo = 0, 700 = 2/d
for the Fermi-Dirac pressure (2.3).

Remark 2.1. Given E and the instantaneous value of n = n(x,t), the physically
justifiable property Ss > 0 permits us to define the temperature ¢ = 9(¢) (and
thus the pressure p = p(n,9)) in a unique way. If p € €! has the self-similar form
(2.6) and P(s)/s't2/ is strictly decreasing, then %2 > 0. Indeed, differentiating

o9
we get (44 1) P(s) > 2sP'(s) whence

dp (d /2 n d _,/ n
0< 99 = (2 +1>19 P (o) = 57 (o)
Moreover, P(s) < Crpaxs 2/ for any s > 1, and P(s) > Cpins'T2/? for any s < 1
and some constants Chin, Cmax > 0.

3. Useful estimates for entropies and energies

In the isothermal setting the function

1 1
Wiso = / (ﬁnh —p+ ngp) dz (3.1)
9 Jo 2

is a (neg)entropy for the problem (1.1)—(1.2), (1.4), either (1.5) or (1.6), and (1.8):
C(iit Wiso = — fQ InD, |V (h + §)|2 dz < 0. Here the function h is defined (up to
a constant depending on the temperature) for an arbitrary increasing C* function
p of n > 0 and for fixed ¥ > 0 by the relation gz = ﬁln gﬁ.

In the nonisothermal setting the existence of a nontrivial entropy needs an
assumption on the structure of p in (1.3), i.e., on the dependence on . A simple
sufficient condition is (2.6) which implies that h has the self-similar form h(n, ) =
H (,1,) with a function H satisfying H'(s) = P'(s)/s. Then the function

W:/Q <nh— (‘21 + 1) g) da (3.2)

is an entropy for the problem (1.1)—(1.2), (1.4), (1.8), one of the boundary condition
(1.5) or (1.6), together with the energy relation (1.7). Moreover, the following
production of entropy formula holds: (?tW =— fQ InD, |V (h + 5) |2 dx <0, see
[8, Sec. 3]. Due to the minus sign before the pressure term and the boundary
conditions (1.4), the entropy W does not provide, in general, substantial a priori
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estimates for n and ¢. However, see [7, Lemma 3.6] and the proof of Theorem 4.1
below for a priori estimates for ¢.

In some cases, the energy relation (1.7) leads to interesting a priori estimates.
Lemma 3.1. Ifd = 3, P(s) > es'™ for some e >0, v =2/d, and all s > 0, then
the total energy (1.7) controls the thermal energy (21 prdx and the absolute value
of the potential energy % |fQ ne dx’ from above. More precisely,

‘/ nedz
Q

with 1/g=r/1+~v)+ (1 —7) = (d+2)/(2d), so that for each § > 0
E+CM'™f > (5(21 — 5) / plit2/d dz, (3.4)
Q

and for each 0 < ¢o < d/2 there exists C = C(co, Q) such that

Ezco/pdm—i— /ngpdx
Q Q

where v =2v/(yd+ 2 —d) = 4/(d(4 — d)).

Lemma 3.2. Ifd > 2, P(s) > es'™ for somee >0, v >1—2/d and all s > 0,
then the counterpart of the estimate (3.3) reads

/ nydzx
Q

with any ¢ > 0, any parameter © > 0 and some constant C = C(c,2) independent
of O, v=2v/(yd+2—-4d), k= (1—~d/2)(d—2)/(vd+ 2 — d).
Now, for each 6 > 0 the estimate corresponding to (3.4) is

< Clnlg < Clnffy, [nfi™" (3-3)

— MY, (3.5)

< Clnl, Ini™ < c|n|ﬁ::@1_’yd/2 +CoMtreT (3.6)

E+CM“Tvy—r > (eg — (5) / nitr9l=7d/2 4. (3.7)
Q

Moreover, for each 0 < ¢y < d/2 the following is true

EZCo/pdm—i— /ngodx
Q Q

If v = 1 —2/d such an estimate is meaningful for small values of mass M only,
namely the following estimate holds

E > (d—coMQ/d>/pdx+’/ npdz
2 Q Q

Since v < 2/d in physical situations, (3.8) will be of main interest for d = 3 and
(3.9) for d = 4.

The proofs of the above lemmas, similar to [7, Lemma 3.3], [8, Lemma 3.2],
involve standard Sobolev—Gagliardo—Nirenberg and Hélder inequalities.

— CMY Ty, (3.8)

e (3.9)

Remark 3.3. The results in Lemmas 3.1 and 3.2 apply to the case of polytropic
density-pressure relations and the Fermi-Dirac model: v = 2/d, d < 3, arbitrary
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M >0, and d = 4, small M > 0, see [7, (29)]. They are also valid (with different
proofs) for the Maxwell-Boltzmann case: d = 2, v = 0 and small M, see [1, 6].

Remark 3.4. From Lemma 3.2 follows, by the Jensen inequality, the estimate
E+ CMl-&-u,ﬁ—n > 6M1+'y|Q|—fy,l91—'yd/2

with a 8 > 0, which readily implies an a priori upper bound for the temperature
9. Indeed, since v < 2/d, the right-hand side increases to oo when ¥ — oo while
the left-hand side is bounded.

4. Results on the existence of solutions

The first step of the construction of local in time solutions of the nonisothermal
evolution problem consists in the analysis of the isothermal problem with ¢ =
const. This has been done for the Maxwell-Boltzmann and Fermi-Dirac cases
in [4] and [3, Sec. 3|, respectively. In the latter publication, solutions have been
constructed as limits of solutions of approximated parabolic problems where the
Poisson equation has been replaced by the penalized parabolic equation

1
kcpt—Ago—ku:O, k> 0. (4.1)

Then, the approach via energy estimates and the passage to the limit & — oo has
led to the solution of the original parabolic-elliptic system. The next step is an
analysis of the problem with a given (continuous) temperature ¥ = 9(t) € (0, c0),
t € ]0,T], see, e.g., [10] and for a slightly another approach [6]. The final step of
the construction of solutions for the nonisothermal evolution problem is to look
for a fixed point of the operator

T:¥r— 0. (4.2)

Here ¥, © € C[0,T1], ©(t) is an instantaneous temperature determined by an energy
relation involving both temperatures: the old one 9¥(t) (appearing implicitly in n,
¢ that solve (1.1)—(1.2)) and the new one O(t) (appearing in the pressure term,
cf. (4.3) below). Usually, this needs Schauder type arguments, so one should prove
invariance (i.e., a priori estimates on 1) and compactness properties (e.g., a bound
on 9) of the operator J. Here, we present the a priori estimates on ¢. The other
details of the construction will appear in a more comprehensive forthcoming paper.
Evidently, assumptions guaranteeing (global in time) existence of solutions of the
evolution problem are, in a sense, complementary to those implying finite time
blow up for D, =1, e.g., assumptions on negativity of E, cf. [8, Sec. 5].

The theorem below covers the case of three-dimensional nonisothermal Fermi—
Dirac model.

Theorem 4.1. Assume that the convexr function P € C! satisfies
(i) P(s)/s1 /4N, e > 0,
(ii) liminfe\ o P(s)/s > 0.
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Moreover, let the data satisfy the condition W(0) < 0 and

(iif) W(0)/M < liminf,_ . R(s)/s = ¢,

where R(s) = sH(s) — (2 +1) P(s) is the entropy density in (3.2). Then the
temperature ¥ for local in time solution satisfies the a priori estimate a < ¢ < b
for some constants 0 < a < b < 0.

Proof. For ¢ € €([0,T1]; (0,00)) we consider the map ® := T(J) as the new
temperature defined for each moment ¢ € [0, 7] by the energy relation

E= d/ 0 2p(ne~42)ds + 1/n<pdx. (4.3)
2 Ja 2 Ja

Thanks to the assumption (i) the operator T is well defined by the argument in
Remark 2.1. First, we prove that J(¢#) is bounded from above uniformly in ¢. Using
the lower estimate of the pressure (ii), i.e., P(s) > ¢1s for some ¢; > 0, and the
estimate of the potential energy (3.8), the upper bound for the new temperature
© follows. Namely,

3E+ CMH'” >FE— ! / npdr = d/ O2p(ne~4?)ds > d@Mq

2 2 2 Jo 2 Jo 2

holds, and thus we arrive at © < b := (dey) ™! (?}\ZJ + C’M”) .

Now, we prove the second part of the claim, i.e., we estimate the temperature
¥ = T(¥) from below for initial data satisfying (iii), i.e., (1 — §)W(0)/M < ¢ for
some 0 > 0. Taking K = K () sufficiently large to have R(s)/s > (1 —0)W(0)/M

for all s > K we obtain
0>W(0)>W(t) = / +/ 2R (" Y de
=W ( {3 2K} {19:/2<K}> (”d/z)

M (1= 8)W(0)/M — C(8)|QY/?
with —C(0) < info<s<x R(s) for some C(d) > 0. This leads to the required bound
for ¥: 9 > a > 0, since 9%/2 > —5W(0)/(C(6)|22]) > 0.

Observe that if £=1lim,_. R(s)/s, then £=—lim,_,, s'*+2/4 (s_Q/dH(s))/.
Moreover, the condition W (0) < 0 is satisfied for initial data if AM2/% > 1, holds.

n
9d/2 2

v
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Existence, Uniqueness and an Explicit Solution
for a One-Phase Stefan Problem for
a Non-classical Heat Equation

Adriana C. Briozzo and Domingo A. Tarzia

Abstract. Existence and uniqueness, local in time, of the solution of a one-
phase Stefan problem for a non-classical heat equation for a semi-infinite
material is obtained by using the Friedman-Rubinstein integral representa-
tion method through an equivalent system of two Volterra integral equations.
Moreover, an explicit solution of a similarity type is presented for a non-
classical heat source depending on time and heat flux on the fixed face z = 0.

Mathematics Subject Classification (2000). Primary 35R35, 80A22, 35C05; Sec-
ondary 35K20, 35K55, 45G15, 35C15.

Keywords. Stefan problem, Non-classical heat equation, Free boundary prob-
lems, Similarity solution, Nonlinear heat sources, System of Volterra integral
equations.

1. Introduction

The one-phase Stefan problem for a semi-infinite material is a free boundary prob-
lem for the classical heat equation which requires the determination of the tem-
perature distribution u of the liquid phase (melting problem) or of the solid phase
(solidification problem), and the evolution of the free boundary x = s(¢). Phase-
change problems appear frequently in industrial processes and other problems of
technological interest [2, 4, 6, 9, 12]. A large bibliography on the subject was given
in [20].

Non-classical heat conduction problem for a semi-infinite material was studied
in [3, 5, 10, 22, 23], e.g., problems of the type

Up — Uy = —F(uy(0,8)), x>0, ¢>0,
u(0,) = 0, t>0 (1.1)
u(z,0) = h(z), x>0

It was supported by CONICET PIP No. 3579 and ANPCYT PICT No. 03-11165.
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where h(x),x > 0, and F(V),V € R, are continuous functions. The function F,
henceforth referred as control function, is assumed to fulfill the following condition

(H1)  F(0)=0.

As it was observed in [22, 23] the heat flux w(x,t) = uy(z, ) for problem (1.1)
satisfies a classical heat conduction problem with a nonlinear convective condition
at £ = 0, which can be written in the form

Wy — Wyy = 0, z>0,t>0,
wy(0,t) = F(w(0,t)), t>0, (1.2)
w(z,0) =k (x) >0, x>0.

The literature concerning problem (1.2) has constantly increased from the
appearance of the papers [13, 15, 17]. In [21] a one-phase Stefan problem for a
non-classical heat equation for a semi-infinite material was presented. The free
boundary problem consists in determining the temperature v = w(z,t) and the
free boundary x = s(t) with a control function F' which depends on the evolution
of the heat flux at the boundary x = 0, satisfying the following conditions

Ut — Ugy = —F(ug(0,1)), 0<z<s(t),0<t<T,

u(0,t) = f(t) >0, 0<t<T, 13
u(s(t),t) = 0,uz(s(t),t) = —5(t), 0<t<T, (1.3)
u(z,0) = h(z) >0, 0<z<b=3s(0) (b>0).

In Section 2 we present a result on the local existence and uniqueness in
time of the solution of the one-phase Stefan problem (1.3) for a non-classical heat
equation with temperature boundary condition at the fixed face z = 0. First,
we prove that the free boundary problem (1.3) is equivalent to a system of two
Volterra integral equations (2.4)—(2.5) [8, 14] following the Friedman-Rubinstein’s
method given in [7, 18](see also [19]). Then, we prove that the problem (2.4)—(2.5)
has a unique local solution in time by using the Banach contraction theorem.

In Section 3 we show an explicit solution of a similarity type for a one-phase
Stefan problem for a non classical control function F' which depends on time and
heat flux on the fixed face z = 0.

2. Existence and uniqueness of the non-classical
free boundary problem

We have the following equivalence:

Theorem 2.1. The solution of the free boundary problem (1.3) is given by
b t
u(z,t) = / G(z,t;&,0)h(£)dE —|—/ Ge(z,t;0,7) f(T)dr (2.1)
0 0

+/O G(z, t; s(1), T)v(T)dT — //D(t) G(z,t;&,7)F(V(7))dédr
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s(t):b—/o o(r)dr (2.2)

where D(t) {(z,7)) 0 <z <s(r),0 <7 <t}, with f € C1[0,T), he C*[0,0],
h(b)=0,h(0 ) = f(0), F is a Lipschitz function over C°[0,T], and the functions
ve CY0,T], Ve C%l0,T] defined by

o(t) = ua(s(t),t) , V(t) = us(0,1) (2.3)

must satisfy the following system of two Volterra integral equations

b ’
o(t) = 2 / N(s(t), €, 001 (£)d
—2/0 N(s(t),t;0,7) dT+2/ Gy (1), T)v(T)dr (2.4)

+2/ [N(s(t),t;s(1),7) — N(s(t),£;0,7)] F(V(7))dr ,

0
b
- /0 N0, 1€, 001 (€)de
—/ N(O,t;O,T)f(T)dT—I—/ G (0,t; s(7), T)v(7)dr (2.5)
0 0

+/ [N(0,¢;8(7),7) — N(0,¢0,7)] F(V(7))dr ,
0

where G, N are the Green and Neumann functions and K is the fundamental
solution of the heat equation, defined respectively by

G(J?,t,f,T) = K(l‘,t,g,T) - K(_m7t’§77—) (26)
N(z,t,&7) = K (2,t,&,7)+ K (—,t,¢,7) (2.7)

1 exp (— (w75)2> t>T1
K (z,t,6,7) = ¢ 2V/n(t=7) 4(t=7)
0 t<rT1

(2.8)

where s (t) is given by (2.2).

In order to prove the local existence and uniqueness of solution v, V €
CY[0,0] (o is a positive small number) to the system of two Volterra integral
equations (2.4)—(2.5) we will use the Banach fixed point theorem. Let us define
the Banach space:

<}
g

Cum,o = {E}: (;)/ v,V : [0, 0]
with the norm
wll = VIl = V(t 2.9
[, =l 11, = max o] + max. (V). (2.9)
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We define the map A : Cyr,o — Cu 0, such that

Fu-a(eu)- (o) e

where

AL (o(), V(8) = Fi(0(t)) + 2/ IN(s(£),, 5(r), 7) — N(s(t), 1,0,7)| F(V(7))dr
’ (2.11)
with

b / t .
Fu(o(t) :2/0 N(s(t),t,€,0)h (g)dg—z/o N(s(t),4,0,7) | ()dr

—|—2/0 G, (s(t),t,s(T), T)v(r)dr

and
As(v(t), V() = Fa(v(t)) +/0/ [N(0,t,s(7),7) — N(0,t,0,7)] F(V(7))dr. (2.12)
with

b , ¢ .
Fy(u(t)) :/0 N(O,4,€,0)h (§)d£—/0 N(0,1,0,7) J (r)dr (2.13)
—l—/o G.(0,t,s(7), T)v(r)dr

Then we have the following property:

Theorem 2.2. If f € C1[0,T], h € C*[0,b], f(0) = h(0), h(b) =0 and F is a
Lipschitz function over C°[0,T], then the map A : Crpo — Chro is well defined
and is a contraction map if o > 0 is small enough. Then there exists an unique
solution on Cyr o+ to the system of integral equations (2.4), (2.5).

3. Explicit solution of a one-phase Stefan problem for a
non-classical heat equation

Now, we consider a free boundary problem which consists in determining the
temperature v = u(z,t) and the free boundary xz = s(t) with a control function F
which depends on time and the evolution of the heat flux at the boundary = = 0,
satisfying the following conditions

pcuy — ktgy = —yF(ug(0,8),t), 0 <z <s(t), t>0, (3.1)
u(0,t) = f = Const. > 0, ¢t > 0, (3.2)

u(s(t),t) =0, kuy(st),t)=—pls(t), t>0, (3.3)
s(0) =0, (3.4)
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where the thermal coefficients k, p, ¢, I, v > 0 and the control function F' is given
by the expression

307: V (Mo > 0). (3.5)

In order to obtain an explicit solution of a similarity type, we define

F(V,t) =

x
®(n) = b, n= 3.6
o) =u(wt).n=,", (36)
where a? = k/pc is the diffusion coefficient.
After some elementary computations we obtain
E(n) }
o(n)=f11- , 0 <n < no, 3.7
() =1r { E(m) URSN (3.7)
where
E(z)=erf(z / fi(r)dr, /\— 7o =1 (3.8)
and .
filz) = exp(—xz)/ exp(r?)dr (3.9)
0

is Dawson’s integral [1] and 7y is an unknown positive parameter to be determined
which characterizes the free boundary given by

s(t) = 2anoV/'t. (3.10)

We remark that Dawson’s integral also appears in the explicit solution for the su-
percooled one-phase Stefan problem with a constant temperature boundary con-
dition on the fixed face [16].

Taking into account the Stefan condition we have that ng = 19(), Ste) must
be the solution of the following equation

4
f/’t; [exp(—2?) + 2\ f1(z)] = x[erf(x A / fi(z)dz] , >0 (3.11)
where Ste = flc > 0 is the Stefan number and

2 * 9
erf(z) = \/W/o exp(—z~)dz. (3.12)

The equation (3.11) is equivalent to the equation
Wi(x) =2\Wa(z) , >0 (3.13)
where functions W7 and W5 are defined by
Wi(z) = Ste exp (—2?) — y/merf(z)z (3.14)

Wa(z) = 2z /OI fi(r)ydr — Ste fi(z). (3.15)
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Remark 3.1. If A = 0 (that is v = 0) in the free boundary problem (3.1)—(3.4)
we obtain the classical Lamé-Clapeyron [11] solution and there exists a unique
solution 7go of the equation (3.11) which is given now by

Fo(a) = ‘\9;; >0 (3.16)
where
Fo(x) = erf(z) exp(z®)x . (3.17)

Theorem 3.2. For each A > 0 there exists a unique solution ng of Eq. (3.13). This
solution ng = no(A) has the following properties

(i) 70(0%) =100 >0

(i) no(+00) = 24 < 400 (3.18)
(iil) mo =no (N\) is an increasing function on A
where ngo 1s the unique solution of Equation (3.16) and x4 > 0 is the unique
positive zero of Wa.

Theorem 3.3. For each A > 0 the free boundary problem (3.1)~(3.4) has a unique
similarity solution of the type

w(z, ) = f {1 - Ez%?)m} L 0<n= Qa”””\/t < no(N) (3.19)
s(t, ) = 2a no(\)Vt (3.20)

where
E(m,A) =erf(n / fi(r)dr (3.21)

and ng = no(A) is the unique solution of Fq. (3.13), with noo < No(N) < 4.

Theorem 3.4. The explicit solution (3.19), (3.20) of the problem (3.1)—(3.4) has
the following properties:

—f
ak (no(X), )\/ﬂ
(ii) wu(x,t,\) > wuo(x,t), VO <z <so(t), t>0
(iil) s(t,A) > so(t), VE>0

(1) ug(0,t,A) = <0,Vt>0

erf(n)

where ug(z,t) = f [1 ~erf(noo

X
, 0<n= < ,t>0
)} n 2av/t 00

so(t) = 5(t,0) = 2aneoV/t

. u(z, t, \) 1 2 o) (42X fll)

S @ty =) {1 Ste exp (—3(N) + 201 (o) 77
700

(v) @, tA) 1 uniformly ¥ « € compact sets C [0, so(¢)).

t—+oo ug(x,t)
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Dislocation Dynamics:
a Non-local Moving Boundary

P. Cardaliaguet, F. Da Lio, N. Forcadel and R. Monneau

Abstract. In this article, we present briefly the mathematical study of the
dynamics of line defects called dislocations, in crystals. The mathematical
model is an eikonal equation describing the motion of the dislocation line with
a velocity which is a non-local function of the whole shape of the dislocation.
We present some partial existence and uniqueness results. Finally we also show
that the self-dynamics of a dislocation line at large scale is asymptotically
described by an anisotropic mean curvature motion.
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1. Introduction

1.1. What are dislocations?

The crystal defects called dislocations are lines whose typical length in metallic
alloys is of the order of 10~%m, with thickness of the order of 10~%m (see Figure
1 for an example of observations of dislocations by electron microscopy).

In the face centered cubic structure, dislocations move at low temperature
in well defined crystallographic planes (the slip planes), at velocities of the order
of 10 ms™!. We refer for instance to Hirth and Lothe [17] for a description at the
atomic level of these dislocations.

The concept of dislocations has been introduced and developed in the XXth
century, as the main microscopic explanation of the macroscopic plastic behavior of
metallic crystals (see for instance the physical monographs Nabarro [20], Hirth and
Lothe [17], or Lardner [19] for a mathematical presentation). Since the beginning
of the 90’s, the research field of dislocations has enjoyed a new boom based on
the increasing power of computers, allowing simulations with a large number of
dislocations (see for instance Kubin et al. [18]). This simultaneously motivated
new theoretical developments for the modelling of dislocations. Recently Rodney,
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FIGURE 1. Dislocations in a Al-Mg alloy (from [23])

Le Bouar and Finel introduced in [21] a new model that we present and study
mathematically in this paper. We also refer the reader to [6] and the references
therein for a more detailed introduction to dislocations dynamics. This model has
also been numerically studied by Alvarez, Carlini, Monneau and Rouy in [3] and
[4]; see also Alvarez, Carlini, Hoch, Le Bouar and Monneau [2]

1.2. Mathematical modelling of dislocations dynamics

An idealization consists in assuming that the thickness of these lines is zero, and
in the case of a single line, in assuming that this line is contained and moves in
the = (z1,z2) plane. The motion of the line I'; (where the subscript ¢ denotes
the time) is simply given by the normal velocity ¢ (see Figure 2).

FIGURE 2. Schematic evolution of a dislocation line I'; by normal ve-
locity ¢ between the times ¢ and ¢ + At with unit normal nr,.

The velocity c is proportional to the shear stress in the material. This stress
can be computed solving the equations of linearized elasticity where the shape of
the dislocation line appears as a source term. This gives a coupled system where
the dislocation line evolution is a function of the velocity ¢, and the velocity c is a
function of the dislocation line I'; itself. In the case of a single dislocation line it
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is possible to write the velocity ¢ as a non-local quantity depending on the whole
shape of the dislocation line (see Alvarez et al. [6]):

() = (o % p(,1)) (@) + ex(a, )

where p is the characteristic function of an open set Q; C R? whose the boundary
is the dislocation line I'y = 0€;:

p(.’E,t) - 1Qt = { 0 if z¢ RQ\Qt,

and c¢o(x) is a given kernel depending on the material. Here the convolution is only
done in space on R2.

It can be easily checked (at least formally), that the evolution on the time
interval (0,T") of the dislocation line I'; is described by the equation of dislocations
dynamics:

{ gi) =(coxp+eci) |Dp] on RZx(0,7) (1.1)
p(-0)=p()=1q, on R’

where g is an open set whose boundary I'y = 0 is the position of the dislocation
line at initial time ¢ = 0.

In what follows, we will study this equation in the framework of discontinuous
viscosity solutions (see Barles [7] for an introduction to this notion). To simplify
the presentation we will state results in dimension n = 2, assuming smooth (C*°)
regularity of the initial position I'y of the dislocation line, of the kernel ¢y, and of
the velocity ¢;. We also assume the following behavior of the kernel at infinity (for
some function g)

1 x
co(x) = 2 g (|m|> for Jz| >1 (1.2)
which is a natural assumption for dislocations.

For considerably weakened assumptions and in any dimensions n, we refer
the reader to the original articles cited in the references.

1.3. Organization of the paper

Although equation (1.1) seems very simple, general results of existence and unique-
ness are unknown up to our knowledge. Technically, the main difficulty comes from
the fact that we have no sign conditions on the kernel ¢y, and then that there is
no inclusion principle for this evolution.

In this paper we present some partial results. In Section 2, we give a short time
existence (and uniqueness) result for a smooth initial dislocation loop. In Section
3, we give a long time existence (and uniqueness) result for a smooth initial curve
with non-negative velocity. Finally in Section 4, we consider the “monotone case”
where the kernel satisfies ¢g > 0. In this particular case, a Slepcev “level sets”
formulation of equation (1.1) is available. In this framework, we show that at large
scales, the dislocation dynamics is asymptotically described by an (anisotropic)
mean curvature motion related to the behavior of the kernel ¢ (z) as |z| — +oo.
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2. Short time existence results in the general case

We will make the following global assumptions on the smooth velocity ¢ (z,t) and
the smooth kernel ¢q(z,t) := ¢o(x), for i = 0,1 and some constants M, Lo, L:

) ey, t) < M V(y,t) € R? x [0, +00)
i) lei(y2,t) — ci(yr, 1) < Loly2 — v Y(y1,y2,t) € R* x R? x [0, +00)
iii) [Deiya,t) — Dei(yr, 1)) < Lily2 — vil Y(y1,92,t) € R? x R? x [0, +00).

(2.1)

To state our results, we first need to recall the notion of discontinuous vis-

cosity solution. We recall that for a function p locally bounded on R? x [0,T), the

function p* designates its upper-semicontinuous envelope (i.e., the smallest u.s.c.
function > p), and the function p, its lower semi-continuous envelope.

Definition 2.1. i) We say that a function p € C ([0,T); L*(R?)) N L> (R? x (0,T))
is a discontinuous viscosity subsolution (resp. supersolution) of (1.1), if

p*(-0) < (p°)" (resp. pu(-,0) > (p°))

and for every point (z,t) € R? x (0,T) and every test function ¢ € C*(R? x (0,7T))
satisfying

p*<é (resp. p.>¢) in R?*x(0,7) and p*(x,t) = ¢(x,t),
we have with ¢ = co*xp+ c1:

99

o (:) < (@, Do(, 1) (p 2 a1 < c(x,mw(w,m) .

ii) We say that p is a discontinuous viscosity solution of (1.1), if it is a discontinuous
viscosity subsolution and a discontinuous viscosity supersolution.

We are now able to state the first result

Theorem 2.2 (Short time existence and uniqueness, [5], [6]). Let us assume (1.2)—
(2.1), and that Qo is a smooth bounded open set in R%. Then there exists a time
T* > 0 and let us consider functions p € C ([0,T*); L*(R?)) with 0 < p < 1,
solutions of equation (1.1) on the interval of time (0, T*) with initial data p(-,0) =
lo,. Then

i) (existence): There exists such a solution p.

ii) (uniqueness): The solution is unique, where the uniqueness has the following
meaning: if p1 and pa are two such solutions, then (p1)* = (p2)*, (p1)« =
(p2)+ and for every t € [0,T), p1(-,t) = p2(-,t) a.e. on R2.

Let us remark that on the time interval (0, 7*) where the theorem is proved
to hold, the solution can be written p(-,t) = 1o, where €, is a Lipschitz open set.
Theorem 2.2 says nothing when €; ceases to be a Lipschitz open set. This is for
instance the case when the topology of €; changes.
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The proof of Theorem 2.2 is based on the application of a fixed point theorem
in the framework of viscosity solutions.

Up to our knowledge, existence and uniqueness for all times (excepted in the
case of non-negative velocities (see Theorem 3.1 below)) is still an open problem
in general.

3. Long time existence for non-negative velocities
In this section we make the following assumption
Cl(y,t) 2 ||CO||L1(R2) V(y,t) € Rz X [0,+OO) (31)

Because we are interested in solutions p satisfying 0 < p < 1, we see that condition
(3.1) implies that ¢ = co* p + ¢1 > 0.

Theorem 3.1. [existence and uniqueness for all time for non-negative velocity, [1]]
Let us assume (1.2)~(2.1)~(3.1), and that Qg is a smooth bounded open set in R?.
Then there exists a unique function pGC([O,+oo);L1(R2)) with 0< p<1, solution
of equation (1.1) on the interval of time (0, +o00) with initial data p(-,0)=1gq,.

In [1], Alvarez et al. used a geometrical proof. A similar result was also proved
by Barles and Ley [8] using a level sets approach and arguments based on a nice
L! estimate on the level sets of the solution. We also refer to Cardaliaguet, Marchi
[11] for a geometrical study of a similar problem on a bounded set in the plane
with Neumann boundary conditions. The proof of Theorem 3.1 in [1] uses strongly
the following monotonicity formula that we state in any dimension N:

Theorem 3.2 (Monotonicity formula, [1]). Let K be a compact subset of RY, and
di the distance to the set K. Then for any to >t > 0, we have

tN{lHN—l ({dxc(2) = ta}) < tN{lHN—l ({dxc(z) = t1}).

Here HN=1 stands for the (N — 1)-dimensional Hausdorff measure.

Main formal arguments in the proof of Theorem 3.1

Argument 1: interior ball condition: Let us call R(¢) > 0 the radius of the largest
ball included in ; and tangent at any point of the boundary 9€);. Then we can
easily check (at least formally) that this radius satisfies the following ODE:

R=¢— R(n-Dc)+ R? (D2,¢)

where n is the outward unit normal to {2; and 7 is a tangent unit vector to I'y =
0. Using the fact that ¢ > 0, we deduce that

R(t) > Cie™ "t

for some constants C1,~y > 0.
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Argument 2: length of the dislocation: We denote by |T';| the length of I';. Then
using the fact that the curvature K of I'; satisfies K < 1/R(t), we deduce

d c ||C||Loo
I, = cK < < I
at!" / / ko) S r@ ™

which gives an estimate |T'¢| < I(t) < 4o0.
Argument 3: error estimate: based on the monotonicity formula Theorem 3.2, this
is possible to show that if p; satisfy for i = 1,2

Ipi
ot
pi(,0)=1g, on R?
then we have for any ¢ small enough and some constant Cy > 0:
elot —1
l2(8) = - =iy < Co 102 = xlleomioy ()

Combined with the fact that for dislocation dynamics ¢; = cg % p; + ¢1, we get

=c¢; |Dp;] on R?x(0,T) (3.2)

[[p2(st) = p2 ()| r2) < a(®)llp2 — prllLee(0.1);L1(r2))

with «(t) = Ca I(t)]|co|| Lo (r2) 6L0Lt0_1>. This shows in particular the uniqueness

of the solution for small time, which can also be used as a contraction argument
for a fixed point theorem.

4. Convergence to the mean curvature motion at large scale
for nonnegative kernels

In this section we assume that the kernel ¢y satisfies the following condition
co(—x) = co(z) >0 Vo€ R? (4.1)

and consider solutions p of (1.1) with ¢; = = [p. co. This particular choice of ¢;
insures the equilibrium of straight dislocations lines and is physically relevant for
the description at large scales of isolated dislocations lines without exterior stress.

In this section, we are interested in the dynamics of dislocations lines of large
diameter of the order of 1/¢ and in the limit as € — 0. To this end, we define for
€ > 0 the rescaled characteristic function

x t
£ t —
p°(z,1) p(€,€2|ln€|>

which satisfies the following equation

8p6 (> £ 1 £ £
= (G =y [ &) 100 (12)

with the rescaled kernel )

() = e3|lnel o (i) ’
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From the fact that ¢§ > 0, it can be seen (at least formally) that equation (4.2)
preserves the inclusion principle. In this section we do not study directly equa-
tion (4.2), but prefer to use the following Slepcev “level sets” formulation for a
continuous function u°:

a(;; = ((Cg*l{u5(~,t)>ue(x,t)}) (z) = ;/ 68) [Du®| on R x(0,T)
R2
u(-,0) =up on RZ2
(4.3)

In this new formulation each level set {u® = A} represents a dislocation line asso-
ciated to a function p§ = 1=~} which satisfies (4.2) (at least formally).

In the limit ¢ — 0, this dynamics is well approximated by the following
anisotropic mean curvature motion (see for instance Crandall, Ishii, Lions [12] for
a definition of viscosity solutions of the second order equation (4.4)):

oud
ot

u%(-,0) =up on R2?

F(M,p) = —g (T;) trace (M' (Id - Iil ? |1];|>)

where g is introduced in (1.2). In particular we see that equation (4.4) describes
the anisotropic mean curvature motion with velocity

+ F(D*u®,Du’) =0 on R?x (0,7) (4.4)

with

9(7) K

where & is the curvature of the level line of u” and 7 is a unit tangent vector to
the level line of u0.

Before to state our convergence result as € — 0, we need to give the precise
definition of viscosity solutions we use for the non-local equation (4.3) which is
less standard. This definition has been introduced by Slepcev [22] (see also Da Lio,
Kim, Slepéev [13]).

Definition 4.1. (Viscosity sub/super/solution for the non-local eikonal equation)
A locally bounded upper semicontinuous (usc) function u is a viscosity subsolution
of (4.3) if it satisfies:
(i) uf(x,t =0) < up(z) in R?,
(ii) for every (zo,to) €R? % (0,00) and for every test function ® € C> (R? x [0,00)),
that is tangent from above to u® at (zg, o), the following holds:

1
¥ (oo 0) = (166 % e apsactanan) o) =y [ ) 1Dt (45)

A locally bounded lower semicontinuous (Isc) function u® is a viscosity supersolu-
tion of (4.3) if it satisfies:

(i) u®(z,t =0) > up(x) in R?,



132 P. Cardaliaguet, F. Da Lio, N. Forcadel and R. Monneau

(ii) for every (wo,to) ER?x (0,00) and for every test function ® € C> (R? x [0,00)),
that is tangent from below to u® at (zg, o), the following holds:

1
¥ (oo t0) > (6% 1 e apaetanan) o) =y [ ) 1Dt (46)

A locally bounded continuous function u® is a viscosity solution of (4.3) if, and
only if, it is a sub- and a supersolution of (4.3).

Then the main result of this section is

Theorem 4.2. [Convergence of dislocations dynamics to mean curvature motion,
[14]] There exists a constant Coy > 0 only depending on ||col|po®2). Given & €
(0,1) and a bounded and globally Lipschitz continuous function ug, there exists a
unique viscosity solution u® € LS, (R2 x [0, —|—oo)) of problem (4.3). The function
u® satisfies

[[Duf]| oo (R2 x [0, 400)) < |[Dtio]| Lo (r2)
and for every e € (0,1/2):

[u(z,t +5) —u®(z,5)] < Col|Dugl|po(r2) Vi, Y(z,s,t) € R? x [0,400) x [0,1)

Moreover, the solution u® converges locally uniformly in compact sets of R? x
[0, +00) to the unique solution u® of (4.4) with the same initial condition ug.

Remark 4.3. In a future work, we will apply this result to propose a numerical
scheme for anisotropic mean curvature motion or crystalline motion.

While the proof of this convergent result is quite simple in the case where
the gradient of the limit function u° is non-zero, the case where the gradient of u°
vanishes is quite delicate and requires more attention.

We will now present a further property of the limit mean curvature motion.
To this end, we need the following:

Definition 4.4. Let g € C*°(R?\ {0}) satisfying

9(Ap) = ?)(\TB VA € R\{0}, Vp € R2.

We then associate to g a temperate distribution L, defined by

9o
(Lg, #) =/R2 dx |($|3> (p(x) = 9(0) = 2 - Dp(0)1p,(0)(x))

for ¢ € S(R?), where S(R?) is the Schwarz space of test functions on R?, and
B;1(0) denotes the unit ball centered in zero.
We define the Fourier transform

p(€) = | dx p(z)e .
Rz
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Then we have

Theorem 4.5. [Variational origin of the anisotropic mean curvature motion, [14]]

Let g € C°(R?\ {0}) satisfying g(Ap) = 9(p) VA € R\{0}, Vp € R?. Let

|A[27
G=-'71 (4.7)
oo '
where L, is the Fourier transform of L,. Then G(Ap) = |A\|G(p), YA € R\ {0},
Vp € R?, and
L L L
g(p)p ®F =D2G<p). (4.8)
pl/) Il Ipl Ipl

In particular, we see that G is convex if and only if g > 0. Moreover (4.8)
means that in (4.4), we have
Du®
—F(D*°, Du’) =div ( VG D,
( ) Duy) ) 10
i.e., this anisotropic mean curvature motion derives from a convex energy
/G (Duo)).
Remark 4.6. Physically the quantity I:g is naturally given, and then the function
g can be computed using (4.7)—(4.8) where we can check if g is non-negative or
not.
In the simplest case of applications for dislocation dynamics, the crystal is de-
scribed by isotropic elasticity. When the Burgers vector is along the x; direction,
we have

2 1,2
ps + 1-, 1 . 1
G(p) = with v e (-1,
m=""7 (-1,)
where v is the Poisson ratio of the material, and
(27 = 1)(02)* + (2 — 7)(62)? : 1 1
0) = >0 th = 2).
9(0) 0]5 20 with y=,  €(,2)

Our result is very natural for dislocation dynamics. Indeed, in many refer-
ences in physics, the authors describe dislocations dynamics by line tension terms
deriving from an energy associated to the dislocation line. See for instance Brown
[10], Barnet, Gavazza [9] for physical references and Garroni, Miiller [16] for a
variational approach. We also refer to Forcadel [15] for the study of dislocation
dynamics with a mean curvature term. As far as we know, Theorem 3.2, completed
by Theorem 4.2, is the first rigorous proof for the convergence of dislocations dy-
namics to mean curvature motion.
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Bermudean Approximation of the Free
Boundary Associated with an American Option

E. Chevalier

Abstract. American options valuation leads to solve an optimal stopping
problem or a variational inequality. These two approaches involve the knowl-
edge of a free boundary, boundary of the so-called exercise region. As we are
not able to get a closed formula for the American option value function, we
will approximate the free boundary by this of a Bermudean option. Indeed
a Bermudean option value function is the solution of an optimal stopping
problem which can be viewed as a free boundary problem. Thanks to a maxi-
mum principle, we evaluate the difference between Bermudean and American
boundaries.

Mathematics Subject Classification (2000). Primary 91B24; Secondary 60G40.

Keywords. Free boundary, optimal stopping, variational inequality.

1. American options

An American option is a financial product which gives to its owner the right to
earn a specific amount of money at any time he wishes between the initial date
0 and the maturity 7. This amount of money, so-called the option pay-off, is
very often based on the values of one or several underlying assets. The two main
problems of the American option theory are to give a price to this product and
to determine the optimal strategy for the owner: the optimal time to exercise his
right is assumed to be the time for which his gain is greater as possible.

The first step to solve these two linked problems is to make assumptions on
the market. We will assume that the market is composed by d risky assets and
denote by S,f their respective value at time ¢. We assume that (St)o<¢<7 is solution
of the following stochastic differential equation:

where 1= (1)1<;<q € R, 7 > 0 is the interest rate of the market, § € [0, +00)? is
such that §; is the dividend rate of the asset i, o € R? x R? is called the market
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volatility, and (W;)o<¢<r is a standard Brownian motion on R¢. Moreover, we
assume that o satisfies the following hypothesis which insures the non-degeneracy
for the infinitesimal generator of the diffusion S:

Hy: 3M >m>0, Vo € R m|z|?> < 2*oo*x < M|z|*

We denote by F the filtration associated to W, and for = € [0, +00)4, (S¥)o<i<T
is the solution of the stochastic differential equation (1.1) such that S§ = z.

Our goal here is to study a specific class of options, called basket options.
These options offer a pay-off which is the positive part of the difference between a
positive constant (the strike price) and a linear combination of several assets. We
define the pay-off function f such that:

Ve € [0, +00)%, f(x) = (K — (a,2))",

where K > 0 is the strike price, a € R? and (.,.) is the usual scalary product
on R%,

In this setting, the option theory (see [2] and [11]) asserts that at time ¢ €
[0, T, the price of the American option associated with the pay-off f is P(T'—t, S)
where:

P(t,z) = sup E[e""f(S¥)], Vz € [0,+00)?,
T€T0,¢

where 7o is the set of F-stopping times with values in [0, ¢].

At this point two approaches enable us to get information on the value func-
tion P. First the optimal stopping theory (see [9]) asserts that the supremum is
attained and more precisely, we have:

P(t,z) =E [e*”*f(Sf*)} ;

where 7° = inf {t > 0: P(T —t,SF) = f(S{)} AT.

A second point of view gives a variational characterisation for P. We know (see
[3] and [10]) that P is the solution of the following variational inequality

{ (MP—-rP)<0, f<P, (MP—rP)(P—f)=0 as.
P(0,z) = f(z) on RT,

where we set:
d d

oh 1 0%h oh
h(t = — * 5.7 Li L5 — 61 i .
Mh(t, z) Py + 9 igz:l(ao )i, Ti; i, +;(r )z oz,
A specific region of (0, +00) x [0, +00)? appears in these two approaches, it is called
the exercise region:

E={(t,x) € (0,T] x [0,400)*: P(T —t,z) = f(z)}.

In fact if we know this region we would be able on one hand to compute 7*,
on the other hand to compute P as a solution of a partial differential equation.
From a financial point of view, this region is very interesting because it determines
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the optimal strategy the option owner has to follow. Our goal here is to give an
estimation of this region and more specifically of its temporal sections:

vt € (0,T], & ={x€[0,+00)%: P(t,x) = f(x)}.

Indeed, we are not able to get a closed formula for the price of an American
option and to determine its exercise region so a lot of numerical methods have
been developed to compute American options prices. The first idea is to solve the
variational inequality satisfied by the value function thanks to a finite differences
method. However, for problems with high dimension this approach become very
difficult to implement. In this case, we solve the optimal stopping problem with
Monte-Carlo methods (see [5], [13], and [1]). For that, we consider a Bermudean
option, this is an American one which can be exercised only at a finite number
of dates. From a financial point of view, it gives less rights to its owner than
an American option, then its price is lower than the price of the corresponding
American option. However, if the number of exercise opportunities goes to infinity,
it is well known that the Bermudean option price tends to the American ! one.

Some estimations of the convergence rate have been found (see [1]). Since, the
Bermudean option value function is the solution of an optimal stopping problem
which can be seen as a free boundary problem, our goal is the evaluation of the
convergence rate of the Bermudean free boundary to the American one when the
number of exercise opportunities goes to infinity.

2. American and Bermudean exercise regions

Let n € N*. We define the Bermudean option value function for an option offering

n exercise opportunities. For k € {0,...,n} and z € [0, +00)9, we set
P"(kh,z) = sup Ele " f(S7)],
€T e

where h = T'/n and 'Z}ffkh is the set of F-stopping times with values in {ph : p €
Net 0<p<Ek}.

This function P" is easy to compute thanks to Monte-Carlo methods because
it satisfies the so-called dynamic programming principle:

P(0,x) = fl@)

P*((k+ 1)h,x) max (f(x), e~ "hE[P"™ (kh, S,‘f)]) ,

forall k € {0,...,n—1}. Hence it just remains to evaluate the expectancies thanks
to Monte-Carlo method.

Now we have to control the error made by approximating the American
option by the Bermudean one. It has already been proved that the error on value
functions is lower than a constant multiplied by h (see [6], [12], and [1]).

In this paper, we deduce from this error estimate on the value functions an
approximation of the American exercise region by the Bermudean one. Indeed,
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we can define an exercise region for the Bermudean option in the same way than
before. Especially, we will be interested in its temporal sections:

Vi<k<n, & ={xc|0,+00)?:P"(kh,z)= f(z)}.

Now we have to give a sense to the convergence of a region to another. For that we
notice that the temporal sections of the American and Bermudean exercise regions
satisfy some useful properties:

vt € (0,T]), & and " contain 0 and are convex and closed subsets in [0, +00)%.
Hence, for € € [0, +00)? such that ||e]| = 1, we can define:
s(t,e) = inf{A € RT: P(t,\e) > f(Ne)}
s"(t,e) = inf{A € RT : P"(t,\e) > f(\e)},

and with these notations, we get

x
& = {rel,+o0)?: x| <s(t, 12l
L = {xe0,+o00)®: ||| < s™(kh, ”:CH)}
x
Finally, our convergence rate in a direction ¢ € [0,+00)? such that ||| = 1,

will be the positive quantity s™ — s. Our method consists in applying a parabolic
maximum principle to deduce from the error estimate on the value functions that
the difference between s and s is lower than a constant multiplied by v/A.

We conclude this paper by studying the particular case of a put option on
a single asset. We prove that the error P — P™ admits a lower bound: a constant
multiplied by h for h small enough. We will see that this estimation lies on the
previous result: the upper bound for the error on the free boundaries.

3. Upper bound for the error on the free boundaries

In this section we establish our main result: the following Theorem.

Theorem 3.1. Let e € [0, +00)¢ such that ||e|| = 1. There exists a constant Cr . > 0
such that

0 < s™(T,e) — s(T,e) < Cr..Vh,

when h =T /n is small enough.

This result is quite easy to prove in the case d = 1 because we are able to
control %15 thanks to the variational inequality satisfied by P. However, for d > 1,
we can not get this control. To prove the result for e € (0, +00)? such that ||¢]| =1,
we will use a maximum principle. If there exists ¢ € {1,...,d} such that &; = 0,
then we come back to the case with d — 1 assets.
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3.1. The case d =1
Throughout this section, we assume that d = 1 and that a = 1. We will establish
Theorem 3.1 in this particular case.

We recall the definition of the critical price for an American option with
pay-off f. For t € (0,T1], we set

s(t) =inf{z € RT : P(t,z) > f(x)}.

As the value function of the corresponding Bermudean option, P", is convex, it
is possible to define a critical price for the Bermudean option. For k € {1,...,n},
we set
s"(kh) = inf{z € RT : P"(kh,z) > f(x)}.
As P" < P for all n € N* and lim,,, o, P"(T,-) = P(T,), it is easy to see that
s" > s for all n € N* and lim,_, o s"(T) = s(T'). We recall that we know that
there exists a constant Cy; > 0 such that
sup [P — P"|(T,z) < Cyh.
z€[0,+00)
We deduce from this an upper bound for the difference between s and s™.
On the open set (s(T'), s"(T)), we have:

0262 92 P opP op

2 P2 (Tv 5) = T'P(T, 5) - (T - 5)5 ox (Tv 5) + ot (Tv 5)
PP(T.) ~ (r = 8)€, (T,6)

r(K —&) —(6-7)"¢
rK — min{d,r}s"(T),

AV AVARNVS

then there exists C7 > 0 such that %1123 (T,&) > C4.

As we know that s(T) < K, we assume that n is great enough to have
s"(T) < K and we integrate this inequality between s(T) and x € (s(T), s™(T)).
We get:

0 8n2(T) (ZI;@,@H) > (rK —0s™(T)) (z — s(T))
—(r = 8)Ts™(T) (P(T, z) — f(x))
> (rK —6s™(T)) (x — s(T))

—(r = 0)"s"(T) (P(T,s™(T)) — f(s™(T))),

because the function z — P(T,z) — f(z) is nondecreasing on [0, K]. Integrating a
second time between s(T") and s™(T'), we obtain:

7 I P @) — SO 2 0K — 55 (T) (M(T) - s(1))

—(r = 0)"s"(T) (P(T,s™(T)) = f(s™(T))) (s"(T) — 5(T)) -
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As limy,— 400 s™(T) = s(T), for n > 0 and n great enough, we have
(L+m)o?s™(T)? (P(T,s"(T)) — f(s"(T))) = (rK — §5™(T)) (s"(T) — s(T))".
It follows that

n 2 02sn(T)2 n n
(M) =) < () 2" (P (T) = S((T))
o%s(T)?
< (1+77)( K 58(T))Clh+o(h)

To conclude, we have:

lim sup

S(T) = s(T) _ | et

rK —4s(T)’
and if we let i going to 0, we get the result. ¢

3.2. The case d > 1

To prove Theorem 3.1, we need much information on the regularity of the function
x — $"(T, z). The following lemma will provide us with this regularity result.

Lemma 3.2. Let € € (0,4+00)? such that ||| = 1. Forn > 0, we set
Vy={xz €]0, +oo[®: [lz — s(T,e)e|| < n}.

Let n > 0 such that the set V7 is included in a compact subset of |0, +00)?. There
exists a constant sp > 0 such that, for n € N great enough, we have

| sn (T, @ )—s”(T,e)|
sup [l |l <&
veVe |z — s(T,e)e]| -

Proof of Lemma 3.2. Let n € N*. As 0 belongs to & N £} and as these two
sets are convex subsets of R?, we can define the functions g and g, such that
Vx € (0,+00)4,

g(x) =inf{pu >0, x/u €&} and g,(z)=inf{x >0, z/uc &}

They are convex and homogeneous functions (see [4], Lemma 1.2, p. 5). On the
other hand, for z € (0, +00)?, it is easy to see that

For z € V7, we have

5 (T3 ) =" (@a) ] _ 1 gallzlle) = gn (@) |
e — s(T,e)e] lellgn(@)gnle)  llz = s(T.e)el|l
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It follows from the definition of s™ that s' > s™ > s s0 g1 < g, < g. Since g; and
g are continuous with positive values on (0, +00)%, there exists two constants C1,
C5 > 0 such that C7 < g, < Cs. Hence, there exists a constant C' > 0 such that
n T N
(5 (T 2y) =" (129) | [ anlzl) — g1 (=) |
sup < C sup .
weVs |z — s(T,e)e]| seve o —s(Te)e|

Writing g (z) = gn ($(T,€)e) + (gn(x) — gn (s(T,€)e)) and using the homogeneity
of g and g,,, we have

| s (T, uﬁu) —s"(T,e) |

|zl = s(T,e) |
sup < Cgn(e) sup
B el MOV e s(T )
0 anp |90 (09— 0 )
zeVS H.’E - S(T,E)EH
As (gn(€)), ey~ is bounded, there exists C > 0 such that
_§(T -
Conte) oup 11 =5 | _

vevy |z —s(T,e)ell —
Moreover, gy, is convex, denoting by dV,~ the boundary of V7, then we obtain

sup | In (S(T’ 5)5) —Ggn (SL') | < sup | In (S(T’ 5)5) — Ggn (1') |

vevy o= s(T,e)el] zeovy  llz—s(T,e)el]

2
< sup [ ga (@) |

N aesvy
2

<
n

Moreover, we recall a parabolic maximum principle on which lies the proof of
Theorem 3.1. It appears in FRIEDMAN A. (1975).

Let D a bounded domain of (0,T) x RY. We define the parabolic boundary of D by
0pD = 6D —{(t,x) € 6D : t =T} where §D is the boundary of D and introduce
the operator M such that Mh = Mh — rh.

Let u a function defined on [0,T] x R, continuous on D, and such that
u € Cl’z(D), Mu>0o0nD and u<0 on dpD.
Then we have u <0 on D.
Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that there exists a constant b > 0 such that s(7',¢) <
s"(T,e) — bvh. We will prove that it leads to a contradiction by proving that it
implies that there exists A € [s(T),¢), s™(T,e) — bv/h] such that

0> [P f](T.)e).
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For that we will apply the maximum principle on the following domain:

D= {(t,x) € (0,T)x(0,400)% : ||z — s(T,e)e|| < nVh

and s (t, * ) < |lz|l < s™ (T, N >},
] ]

where 7 > 0 is a constant which will be determined later.

Since for all z € (0,400)?, the function ¢ — s (t, Hil\) is non-increasing and

since s (T, Hil\) < 8" (T, Hil\)’ we can assert that D is a bounded domain in
(0,7 x (0, +00).
For t € (0,T), we set £ = hmin{k € {0,...,n} : ¢ < kh}. First we notice that
P™ = f on D because for all t € (0,T), we have s" (T, Hi\l> < sm (t_, ”§”>.

Hence, it follows from the estimation of the value functions error and the fact
that P is non-increasing with respect to time that we have:

[P—f](tz) < P(t,x)— P"(t,x) < Cy4h on D.

Notice that on d,D, we have

0 if |z :s(t, Hﬁl\) ort=0

P— fl(t,x) <
= 1ieo) Ch if |zf = s (T, ”;”) or ||z — s(T,e)el| = nvh.

Hence we will introduce a function which will kill the positive part of P — f on
§,D. On (0,T) x (0,+00)4, we define the function 3(¢,z) = f1(x) + B2(x), with

Bi(z) \;‘h ((Hx —s"(T,¢) +b\/h)+)3

Balz) = jh ((Hx—s(T,e)eH—Z\/h)Jr)g’

where a, b, and ¢ are positive constants which will be determined later.
Now we want to prove that P — f — 8 < 0 on D, so we just have to prove
that the function P — f — [ satisfies the assumptions of the maximum principle.
Indeed 3 is a C1? function on D and D is included in a compact subset of
(0,T) x (0,+00)¢ so we can apply the maximum principle on D to the function
P—f—2.
First step: We prove that P — f — 3 < 0 on §,D.
Let (t,z) € 6,D. We have four cases to study, corresponding to four part of 4, D.

e First case: Assume that ||z| = s (tv H%I)'

In this case, we have
[P—f—0](tz)=-p0(x) <0.
e Second case: Assume that ||z — s(T,¢)e| = nvh.
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From the estimation of the error on value functions (see [1]), we have

[P—f-=08]z) < Cah—p(2)
773
< (Cd_cg )h

Hence, [P — f — 5] (t,x) < 0 if we choose ¢ and 1 such that Cy — c"; < 0.
o Third case: Assume that ||z|| = s™ (T, ”ﬁ”>.

In this case, we have

[P_f_ﬁ] (t,.]?) < th_ﬁl(t’x)

Cah = G (( (T’ in) ~ (D) *Why)g

Since there exists R > 0 such that D C V3 and VJ is included in a compact subset
of (0,4+00)¢, we can apply Lemma 3.2, to prove that there exists sz, > 0 such that

[P—f=pl(tz) < (Ca—alb—sLn)®)h.
We conclude by asserting that [P — f — 5] (¢, ) < 0 as soon as we choose a, b, and
7 such that Cy — a(b— szn)3 < 0.
o Fourth case: We assume that t = 0. We have
[P—f—0](0,2) =—p(t,z) <O0.
In conclusion, P — f — 3 < 0 on 6, D if the two following conditions are satisfied:

3
Caq < 6778 and Cy < a(b—sn).

IA

Second step: We prove that M[P —f—=p]>0o0n D.

We begin with evaluating /\;lﬂ(t, x) when h goes to 0. Computing the deriva-
tives of B on D and using Lemma 3.2, we get the following upper bound for h
going to 0.

MB(t,x) < 3aMs(T,e)?(b+ srn) + 3enMs (T,£)* + o(1),

where the o(1) does not depend on z. As D is included in the continuation region
of the American option, we have

MP(t,z) =0 and Mf(t,z) = —rK + (ad,z) on D.
We obtain:
MIP—f=p(tz) = rK—{adz)— MB(t,z)

< rK —{ad,x)
—3aMs(T,€)(b+ spn — 3enMs (T, €)* + o(1)
< rK —s(T,e){ad,e)

—3aMs(T,e)%(b+ spn — 3enMs (T, e)* + o(1).
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We have given some conditions on the constants a, b, ¢, and i such that if there
are satisfied, the assumptions of the maximum principle are too. Indeed, we have
showed that for i small enough, P— f— 3 < 0 on §,D and M [P—f—0](t,z)>0
on D if the constants a, b, ¢, and 7 satisfy Cy < c";, Cy < a(b — spn)? and
3aMs(T,e)%(b+ spn) + 3enMs (T,e)? < rK — s(T,e){ad,e). It is quite easy to
find some constants a, b, ¢, and n satisfying these conditions, then with these
constants, we can apply the maximum principle on D and prove that P— f—(3 <0
on D. However, if we assume that s(T,¢) < s™(T, &) — bv/h, then there exists A €
(s(T,¢),s"(T, ) —bvh) such that (T, \e) owns to D. That leads to a contradiction
because the continuity of the function P — f — 8 should imply that
0=[P—f=p(T, ) = [P — fI(T, xe) > 0.

In conclusion, we have proved that s(T,¢) > s™(T,¢) — bv/h. O

4. Conclusion
A first consequence of Theorem 3.1 is the following result:
Proposition 4.1. Let n € (0,T). If d =1 and o = 1, there exists 0 < a < 1 such
that for x € (s(T),+00), we have
P(T,z) — P"(T,z) > ahE |7 (rK — 6s(1%)) Trecr_ny |,
with 7 =inf{u >0: ST <s(u)} AT.

The complete the proof of Proposition 4.1 is in [7]. The main idea for the
proof is to construct a new boundary, greater than the Bermudean one but close
enough to the American boundary. For that, we deduce from Theorem 3.1 that
there exists a constant C,, > 0 such that 3" (¢) = s(t)(1+ C,;v/h) > s™(t). Then we
define

P =inf{u>0:87 <3 (w)}A(T—n) and 7" =hinf{k € N:kh > 7"},

and notice that 7 is lower than the optimal stopping time for the Bermudean
option: 7" = hinf{k € N : S%, < s"(kh)}. Now we use the fact that P — f > 0
and then apply It6’s formula in the second inequality to get:

P(T,z) — P"(T,z) > E [P(T, z)—e T P(T — 1, ijh)}

v

E

/ e (rK = 6Sy) Yise<su)y du]
0

v

E [/ e " (rK —485%) B{Sfjgs(u)} duﬂ{;}L<T_n}] .

The result follows from the fact that
P(%h—%h > h) > 1.
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Proposition 4.1 shows that the convergence rate of P™ to P is proportional to 1/n,
but we do not get an equivalent for n (P™ — P). Counsidering a call option with
infinite maturity, Dupuis and Wang achieved to give a first-order expansion of the
error (see [8]). However, when maturity is finite, the value functions and the free
boundaries are time-dependent and finding a first-order expansion of the errors is
still an open problem.
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Steady-state Bingham Flow with Temperature
Dependent Nonlocal Parameters and Friction

L. Consiglieri and J.F. Rodrigues

Abstract. We consider Bingham incompressible flows with temperature de-
pendent viscosity and plasticity threshold and with mixed boundary condi-
tions, including a friction type boundary condition. The coupled system of
motion and energy steady-state equations may be formulated through a vari-
ational inequality for the velocity and variational methods provide a weak
solution to the model. In the asymptotic limit case of a high thermal conduc-
tivity, the temperature becomes a constant solving an implicit total energy
equation involving the viscosity function, the plasticity threshold and the fric-
tion yield coefficient. The limit model corresponds to a steady-state Bingham
flow with nonlocal parameters, which has therefore at least one solution.

Mathematics Subject Classification (2000). Primary 35J85; Secondary 76D03,
80A20.

Keywords. Bingham fluid, friction law, thermal conductivity, variational meth-
ods.

1. Introduction

In the sixties, Ladyzhenskaya [8] proposed a modified Navier-Stokes system with
nonlocal viscosity. In [5], the authors proved that the nonlocal model, as well as
other nonlocal non-Newtonian models, can be obtained as an asymptotic limit case
of a very large thermal conductivity when the viscosities depend on temperature.
In the present work, we extend some of those models for the nonlocal Bingham flow
when the friction behavior on a part of the boundary is also taken into account.
The principal difficulty is that the quadratic term due to the energy dissipation
arising in the right-hand side of the heat equation leads to the L!-analysis of the
partial differential equation. The new feature in the limit model is due to a Fourier
type boundary condition, and consists in the appearance of a nonlocal energy term
on the boundary part where friction is taken into account.
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The Bingham viscoplastic fluid does not flow as a fluid unless the stress tensor
achieves at least some critical shear stress n (the plasticity threshold):

D(u)=0 if |7|<n (1.1)
Tl — .
D(u) = | [|L|T|nT it |7l >n (1.2)

where u is the velocity vector, D(u) = (Vu+ (Vu)T)/2 the symmetric part of the
gradient of the velocity vector, p the viscosity and 7 the deviator tensor of the
Cauchy stress tensor o, that is, 0 = —pI + 7 where p denotes the pressure and [
is the identity matrix. The law (1.1)—(1.2) is an inverse form of the constitutive
law [6]

T = uO)Dw) + ()

|7| < n(d) if and only if [D(u)| =0

considering the viscosity and the plasticity threshold dependent on the tempera-
ture 0, and |D(u)| = (D;;(u)D;;(u))'/2, with the convention on implicit summa-
tion over repeated indices.

Here, let 2 be a bounded open subset of R™(n = 2, 3) with Lipschitz continu-
ous boundary 912, which is assumed to consist of two disjoint parts I'g and I" such
that 9Q = o UT and meas(I'y) > 0. The governing equations to the Bingham
incompressible thermal flow at steady-state are given by

if [D(w)] # 0

(u-Viu—V.-7=-Vp+finQ (1.3)
O, .

V.u_ZZ;&Ei—OmQ7 (1.4)

u-Vl—rkAf=71:D(u)—ab in Q, (e > 0), (1.5)

where the density and the specific heat are assumed equal to one, f denotes the
external forces, and k is the thermal conductivity. Note that we admit a possible
external heat source proportional to the temperature if & > 0, in addition to the
dissipation energy factor 7 : D(u).

We introduce a thermal friction law on the part I" of the boundary, keeping
the no-slip condition on the other part I'y:

only: u=0 (1.6)
onl: uy =0 and (1.7)
lor| <v(0) = ur =0 (1.8)

lor| =v(0) = IX >0, ur = —Aor. (1.9)

Here the tangential and normal velocities and the components of the tangential
stress tensor are given, respectively, by

ur =u—unn, UN =UiN;, O0Tj = 0i5Nj —ONT,;
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where n = (n;) denotes the unit outward normal to 9. In (1.8)—(1.9), we assume a

temperature dependent function v, v > 0, to represent the friction yield coefficient

(see, for instance, [6] for solid-solid interface or [2, 3, 4] for liquid-solid interface).
Finally we consider a homogeneous Neumann boundary condition

00
P 0 on I'y, (1.10)

and the Fourier boundary condition
K,gz +80 =v(@)|ur|onT, (B8>0). (1.11)

In the framework of Lebesgue and Sobolev spaces with W12(Q) = H(Q),
we introduce
V = {ve(C®®)": V-v=0in Q};
H, {ve ()" : V-v=0in Q, vy =0 on 90}, (s > 1);
V = {ve(H*(Q)": V-v=0inQ, v=0onTy, vy =0o0nT},

endowed with the standard norm
[vllv = IDV)ll2,0 = IDV)][2(0)-

For fixed £ > 0, we formulate the problem (1.1)—(1.11) in variational form
[6]: find a weak solution (u,f) € V x W14(Q), for 1 < ¢ < n/(n — 1), such that,

/Q{,u(H)D(u) —u®u}:D(v—u)dze+J(O,v)—J(O,u) (1.12)

>/f-(v—u)dx, Vv eV;
Q

/-@/QVH -Vodx — /QHU - Vodr + oz/QH(bdx —l—B/FQ(éds (1.13)
- /Q {4(0) D) + 7(6)|D(w)[} pda + / v(O)lurlods, Vo e W (Q);

where J : WH1(Q) x V — R{ is defined by

J(G,V):/977(9)|D(v)|dx+/Fl/(0)|vT|ds.

The main idea is to pass to the limit on k (k — +00) in order to reformulate
the local system (1.12)—(1.13) into a nonlocal problem with constant parameters for
the viscosity, the plasticity threshold and the friction yield coefficient calculated
at the constant homogenized temperature, which is implicitly given through a
scalar equation. We notice that the argument used in this work is applicable to
the Newtonian as well as non-Newtonian fluids, as shown in [5].
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2. The main result

Let us state the weak nonlocal formulation to the problem (1.1)-(1.4) and (1.6)—
(1.9) corresponding formally to the limit model x = co.

PROBLEM. Find (u,0) € V' x R satisfying
/D v—u)da:—/gu@u:D(v—u)dx (2.1)
(©) [ (D] = D))o +(0) [ (vl = furl}ds
Z/Qf-(v—u)dx, Ywvev,
where O is a solution to the implicit scalar equation
(@l + 8T © = (®) [ [Dw)Pd-+1(@) | [D(wlda+(©) [ fuslds. (22)
Remark 2.1. Notice that the antisymmetry of the convective term [,(u-V)u-v

is valid by the incompressibility property (1.4) and the boundary condition uy =
0 on 02 given by (1.6)—(1.7).

We assume
peC'R):  Fpp® >0, pe<p(s)<p®, VseR; (2.3)
neC'R): In* >0, 0<n(s)<n*, VseR; (2.4)
veC'R): W >0, 0<u(s)<v", VseR, (2.5)
o,3>0: a+ 3> 0; (2.6)
fev'. (2.7)

The main result of this work is the following theorem.

Theorem 2.2. Under the assumptions (2.3)—(2.7), there exists (u,0) € VxR a
solution to the problem (2.1)~(2.2), which can be obtained as a limit in V xW4(Q),
l1<g<n/(n—1), as kK — 0o of solutions (uy,0,) of (1.12)-(1.13).

3. Auxiliary existence results
The following propositions are essential in the proof of Theorem 2.2.

Proposition 3.1. For every w € H,, s > n, and £ € WH1(Q) there exists a unique
solution u =u(w, &) € V to the variational inequality

/Q{M(Q“)D(u) —w®u}:D(v—u)dz+ J(Ev)—JEnu) (3.1)

>/f~(v—u)dx, Vv ev,
Q
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and it satisfies the estimate
€[]y~

*

[ufly < (3.2)

Moreover, if Wy, and &, are sequences in Hy and W11(Q), respectively, such that
Wy, — W oin Hg, &, — & in LY(Q) and & — € in LY(T), and u,, = u(Wp, &n)
are the corresponding solutions satisfying (3.1), then there exists u = u(w,§) € V
the solution to (3.1) such that u, —uin V.

Proof. The existence and uniqueness of the solution are consequences of classical
results (for instance, see [9]) on variational inequalities with convex continuous
functionals. The estimate (3.2) follows by choosing v = 0 as a test function in (3.1).

Let Wi, &my W, = W(Win, &) be sequences in the conditions of the Propo-
sition. From estimate (3.2) we have u,, — u in V for a subsequence of u,,, still
denoted by u,,, and consequently

u,, — uin Hy, for s < 2n/(n — 2) (3.3)

and in L"(T), forr <2(n—1)/(n—2). (3.4)

The convective term w,, ® u,, : D(v) easily passes to the limit in m. Since &,, —
& a.e.in Q and on T', the functions p,n and v are continuous, and due to the

sequential weak lower semicontinuity of the continuous and convex functional J,
we obtain as in [7]

/{,u(g)D(u) —w®u}:D(v)de+ J(,v) — / f-(v—u)dr
Q Q

> liminf/ ()| D () [2de + liminf J (&, u,,) > /Q/,L(§)|D(u)|2dx + J(& )

m—-+00 O m—-—+oo

So u is a solution to (3.1), and its uniqueness is due to the standard variational
argument.

Choosing v = (u,, +u)/2 as a test function in (3.1) for the solutions u,, and
u, and subtracting the obtained inequalities, it results

" /Q ID(uy, — w)Pd + /Q {1(€m) — 1(€)}D(wn)lda + / (1(Em) — (€)}[umlds
§/Q(w—wm)®um. dac—i—/{u w(&m)}D(u) : D(u,, — u)dz
/{n (6m) — 7€)} D(u |dx+/{u (6m) — v(E)}urlds.

Applying Fatou lemma to the second and third terms on the left-hand side of the
above inequality and using Lebesgue theorem to the convergences on the right-
hand side, the required strong convergence holds. O
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Proposition 3.2. Let u = u(w,§) be the solution given by Proposition 3.1. Then
there exists 0 = 0(u, &) € WH4(Q) a solution to the variational problem

/Q(KZVH —6u) - Vodx +a/99¢dac +ﬁ/rt9¢ds (3.5)
- / (1) D@)[? + (&) D(w)|}bdx + / v(©)lurlgds, Yo e W (),

that satisfies the estimate

allfllar + Bl0llar + VAl VOlan < F (fw, e ) (3.6)

for an arbitrary 1 < ¢ < n/(n —1), and F is a positive function. Moreover, let
W, and &, be sequences in Hy and W11(Q), respectively, such that w,, — w
in Hy, & — & in LY(Q) and &, — € in LYT), and u,, = u(Wp,&n) be the
corresponding solutions given by Proposition 3.1. If 0,, = 0(u,,&n) are solutions
satisfying (3.5), then there exists 6 = 6(u, &) a solution to (3.5) such that 6, — 0
in WH4(Q)-weak, L'(Q)-strong and L*(T')-strong.
Remark 3.3. In (3.5), the terms on the right-hand side have sense, since ¢ €
Wha'(Q)) — C(Q) for ¢’ > n, that is, ¢ < n/(n— 1), and the term Jo 0u- V¢ has
meaning for §# € W4(Q), u € H, with s > n, and ¢ € WhH7' (Q).
Proof. Let us define F' = p(&)|D(u)|?> +n(&)|D(u)| and G = v(&)|ur| € L7() for
r as in (3.4), and, for each m € N, take

mF

F =
" m+|F|

€ L>(Q).

From the Lax-Milgram theorem, there exists a unique solution 6,, € H'(Q)
to the following variational problem

/ (kV 0y, — 0pu) - Vodz + a/ Ompda + ﬁ/ Omods (3.7)
Q Q r
= / Fédx + / Gods, Vo e HY(Q).

Q T

From L!'—data theory (see, for instance, [5] or [10]), the estimate (3.6) follows
for 6,,. Indeed, choosing

¢ = sign(0,,)[1 — 1/(1 4 [0,])°] € WH2(Q) N L>®(Q), for ¢ > 0,

as a test function in (3.7) it follows

o[V, 2 /
<
=y 0o+ 9C6) [ Bulds <1

Arguing as in [10] and [5] we conclude, for ¢ < n/(n — 1), that

/2 (2—q)/2
/ |ng|qu < <F||1,Q+ ”G T,F> (5 (/ |0m|qn/(nq)) _|_C(5))
Q RS Q

Lo+ |G

r, I
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for arbitrary € > 0. If 8 > 0, using a Poincaré-Sobolev type inequality we obtain

1 lanstoyr < C (wmq,a 8 / |0m|ds) (3.8)

qn/(n—q)

<C\/F||1Q+G||rl“( 1/q||0 ||n(2 Q)/[2(£ q)]+Cl( ) for k> 1.

If 8 =0, the assumption (2.6) implies that o > 0. Choosing ¢ = 1 as a test
function in (3.7) we get

0</0 /Fmdx-i-/GdSS ||FH1,Q+HG||1,F§
T

and instead of (3.8) we obtain

18mllgn/(i—g),0 < ClIVOm|lq.q + Q| =D/ ()] f99m|

F r,
< o[V H1he g, ool s o)) gor s,

where C' is a constant dependmg on 2, and _fQ denotes \512| fQ .
Consequently, for e sufficiently small it follows

10|l gn/(n—q),0 < C (independent of m and &),

and then 6,, satisfies the estimate (3.6). Thus, we can extract a subsequence of
Om, still denoted by 6,,, such that it weakly converges to 6 in W14(Q), where 0
solves the limit problem (3.5).

Let wp,, &y and u,, = u(wiy,, &,) be sequences in the conditions of Propo-
sition 3.1, that is, u,, is such that u,, — uin V. In order to pass to the limit in
(3.5) for solutions 6, = 0(uy,, &) when m tends to infinity, from estimate (3.6),
we can extract a subsequence of 6,,, still denoted by 6,,, such that it converges to
0, which is the solution to (3.5). Note that by (3.3) and 6, — 6 in L1/ ("= (()
we obtain 0, u,, — fu in Ls/lants(=al(Q) < L9(Q) for n = 2, 3. O

4. Proof of Theorem 2.2

This proof is divided in two parts.

4.1. Existence for the coupled system (1.12)—(1.13)

Consider the multi-valued mapping £ defined on
K :={(w,&) ¢ VxW"(Q) : |w|ly < R; and 1€llwrao) < Ra},

taking Ry > ||f||v//p« and Ry conveniently chosen from estimate (3.6), such that
L applies (w,&) into the nonempty convex set {(u,0)} C K, where u and 6 are
the solutions given at Propositions 3.1 and 3.2, respectively. Thus the Tychonof-
Kakutani-Glicksberg fixed point theorem (see [1, pages 218-220]) guarantees a
solution, (u,d) € L(u, ), to (1.12)—(1.13) still satisfying the estimates (3.2) and
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(3.6), provided L(w, ) is a closed set and L is upper semicontinuous for the weak
topology in V x W14(Q), for 1 < ¢ < n/(n—1). From the closed graph theorem 1,
page 413], it remains therefore to prove that if (W, &) — (w,€) in V x WH4(Q)
and (W, 0p,) € L(Wi, &) then

(U, O) — (u,0) € L(W,E). (4.1)
By the Rellich-Kondrachof embedding
V —— H,, forn < s <2n/(n—2);
Wh(Q) s L}(Q), and Whe(Q) < LY(T),
the final assertion (4.1) derives from Propositions 3.1 and 3.2.

4.2. Passage to the limit on

Let (uy,0,) be a solution to (1.12)—(1.13), corresponding to each x > 0 and let
k — +oo. From the estimates (3.2) and (3.6), we can extract a subsequence of
(ug,0,), still denoted by (u, 6y ), satisfying

Vo, — 0in LI(QY),

6, — © = constant in Wh7(Q).
We can proceed as in the proof of Proposition 3.1 to get a strong convergence of
u,, to uin H'(Q). Then, we can pass to the limit (1.13) on s (k — +00), taking

¢ = 1 to obtain (2.2). Now, taking the limit x — oo in (1.12), it follows that the
limit u solves the nonlocal problem (2.1). O
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Some P.D.E.s with Hysteresis
Michela Eleuteri

Abstract. We present some results concerning two classes of P.D.E.s con-
taining a continuous hysteresis operator. We introduce a weak formulation
in Sobolev spaces for a Cauchy problem; under suitable assumptions on the
hysteresis operator, we state some existence results. The presentation of the
paper is quite general, as we avoid to describe all the details of the proof of
the theorems involved.

Introduction

Hysteresis is a phenomenon that occurs in several and quite different settings, for
example in plasticity, in ferromagnetism, in phase transitions.

We can certainly fix in the important monograph of Krasnosel’skii and
Pokrovskil [8] the starting point of the mathematical research on hysteresis, which,
from that moment onwards, has been considerably increasing, providing many in-
teresting results (at this purpose we can certainly quote the recent monographes
devoted to this topic, see Brokate and Sprekels [4], Krejéi [9], Mayergoyz [10] and
Visintin [11], together with the references therein). In particular, a great number of
contributions has been obtained for classes of P.D.E.s containing hysteresis nonlin-
earities, involving quasilinear and semilinear, parabolic and hyperbolic equations.

The aim of this paper is to present an overview on some results obtained by
the author concerning two new classes of P.D.E.s containing a continuous hysteresis
operator; all these results can be found in [5]. More in detail, we deal with the
following two model equations

2U u u
th + gt YN (gt —|—Q(u)) —f mOx(0.7) 0.1)
gt (Ut F) + 7 Vut Fu) - Au=f mQxOT),  (0.2)

where € is an open bounded set of RN, N > 1, A is the Laplace operator, with
suitable boundary conditions, 7' : Q2x (0,7) — R¥ is known, G and F are hysteresis
operators and f in both cases is a given function. Actually our results turn to
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be valid for the more general class of memory operators, i.e., operators fulfilling
only (1.3), but in the most frequent applications G and F are instead also rate
independent (i.e., hysteresis operators).

We focus our attention on the well-posedness of our model problems; our
treatment is quite general because we do not propose all the details of the proof
of our results. We instead spend some time describing the physical interpretation
of our model equations and the choice of the functional setting in which we work.

The plan of the paper is the following: in Section 1 we recall the concept of
hysteresis operator together with its most common properties which will be used
later. In Section 2 we study the model equation (0.1): we first explain its physical
meaning; then after a small presentation of the functional setting in which the
problem will be framed (which is a bit unusual), we introduce a weak formulation
in Sobolev spaces of the Cauchy problem related to equation (0.1). Under suit-
able assumptions on the data and on the operator G, we state an existence and
uniqueness theorem for the solutions of our model equation. Section 3 is devoted
instead to the analysis of the model equation (0.2): also in this case we briefly
explain in which physical context the equation arises; then we still introduce a
weak formulation in the Sobolev spaces of the initial and boundary value problem
(with Dirichlet boundary conditions) associated to equation (0.2). Under suitable
assumptions on the operator F and on the data we state an existence result for
the solutions of this model equation. We moreover include in some remarks fur-
ther results which can be obtained for our model equations, without entering into
details.

1. Some basic facts concerning hysteresis and hysteresis operators

We can illustrate the basic concept of hysteresis by means of a very simple example.
Let us consider a sort of black box which transforms a continuous time-dependent
scalar variable u - which is often called input — into a time-dependent variable w
— which plays the role of the output. Just to do a couple of examples, in ferromag-
netism v may correspond to the magnetic field H and w to the magnetic induction
B; otherwise in plasticity u can be identified to the strain £ and w can represent
instead the stress o and so on.

At any instant ¢, w(t) depends on the evolution of the input w and on the
initial state of the system, or, more in general, on a variable n° which contains all
the information about the initial state. So we have

F:Co[0,T]) x X — C°([0,T7]) w(t) = [F(u,n°)](t) vtelo,T], (1.1)

where X is a suitable metric space.

We have the memory effect when at any instant ¢ the output w(t) is not sim-
ply determined by the value u(t) of the input at the same instant, but it depends
also on the previous evolution of u. We have the rate independence property when
the path of the couple (u(t),v(t)) is invariant with respect to any increasing time
homeomorphism, i.e., there is no dependence on the derivative of u. It is this fact
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that allows us to draw the characteristic pictures of hysteresis in the (u,w)-plane.
The operators showing the memory effect are called memory (or Volterra) opera-
tors, while those fulfilling both the memory and the rate independence property
are called hysteresis operators.

The notion of hysteresis operator just introduced, (which is essentially due to
Krasnosel’skil, see [7]), can be used to model phenomena in which time is the only
independent variable, as in O.D.E.s but it cannot be directly applied in situations
like in problems involving P.D.E.s, where also space variables appear. In order to
overcome this difficulty, it is enough to extend the operator like F in (1.1), acting
on time-dependent functions, to some operator F acting also on space-dependent
functions.

The choice we make in this paper is to work with a more general class of
memory operators of the following type

F - M(@;C%([0,T7)) — M(Q:¢°([0,T7)), (1.2)
where Q is an open bounded set of RY, N > 1 and M (;C°([0,T7])) is the Fréchet
space of strongly measurable functions Q — C°([0,77), i.e., M(Q;C°([0,T])) is
the set of functions v : Q — C°([0,77]) such that there exists a sequence v, of
simple functions with v, — v strongly in C°([0,T]), a.e. in ©, endowed with the
quasi-norm

ol e ozl = / [vlleo o))

T a 1+ |[vlleoqo,m)
Nevertheless, we shall have always in mind the case in which the operator F is rate
independent (and so when F is a hysteresis operator), which is the most frequent
situation one can encounter in the applications.

We conclude the section by recalling some properties, useful in the following,
that an operator like F in (1.2) can satisfy. In particular F can be:
® CAUSAL if
{ Yur,ve € M(Q:C0([0,T1)), Vtel[0,T], if vy = vy in [0,1], ae. in Q,

then [F(vn)](1) = [F(2)]( ) ave. in 0 (1.3)

e LIPSCHITZ CONTINUOUS from L?(Q;C%([0,T7)) into L2(£2;C°([0, T) itself, if there
exists a constant L such that, for any u1,us € L%(€;C°([0,T7))

[ F(u1) = Fluz)l| L2(oscoo,17)) < Lllur — ual|p2(icoo,17); (1.4)

e STRONGLY CONTINUOUS, if

{ V{v, € M(;C°([0,T])) }nen, if v, — v uniformly in [0, T (L5)
a.e. in 2, then F(v,) — F(v) uniformly in [0, 7], a.e. in ;
e AFFINELY BOUNDED, if
{ 3L, 31 e L2(Q): W € M(Q;CO([O,T])), w6)
HF @), leo o,y < Lilv(z, )lleoo,my + 7(2) ae. in
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® PIECEWISE MONOTONE, if
Yo e M(Q;C°([0,T)])), V[ti,tz] C [0,T7,
if v(x,-) is affine in [¢1, ¢2] a.e. in §2, then (1.7)
{[F0))(.t2) — [F@))(@.12)} - [o(z, t2) — v(z,12)] > 0 ae. in ©;

e PIECEWISE LIPSCHITZ CONTINUOUS, if

JL>0: Voe M(Q:C00,T]), V[t t2] C[0,T]
if v(x,-) is affine in [t1, t2] a.e. in §2, then (1.8)
[F()](x, t2) — [F()](z, 1) < Llv(x, t1) — v(z, t2)] a.e. in Q.

It is not restrictive to assume that L = L = L.

2. First model equation

2.1. Physical interpretation of the model equation (0.1)

If we couple in a suitable way the Maxwell equations with the Ohm law, considered
in a domain D C R? which represents our electromagnetic material, (for more
details on the topic see for example [6]), we get the following equation

- ~
E%tf-l-llwaaaf+02V><fo_j:47rcav><§ in Dy :=D x (0,7T),
where ¢ is the speed of light in vacuum, € the dielectric permittivity, H is the
magnetic field, B is the magnetic induction, o is the electric conductivity and
finally ¢ is an applied electromotive force.

We can simplify this equation by imposing severe restrictions on the geometry
of the system; more precisely, let  be a domain of R?, we can assume that H is
parallel to the z-axis and depends on the first two cartesian coordinates, z,y, i.e.,

—

H = (0,0, H(x,y)). This implies that
0? 0?

V xVxH=(0,0-A,,H) where Npy = 92 + Oy2”

Dealing with a strongly anisotropic material we can also assume B = (0,0, B(z,y))
and the same can be done for the known term. Choosing to not display the coef-
ficients for the sake of simplicity, the previous equation becomes
0*B N OB
ot ot
At this point it is necessary to introduce a constitutive relation between B
and H; we choose the following one

H =G(B)+ \B, (2.2)

~NeyH=f  inQp:=Qx(0,7). (2.1)
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where G is a suitable hysteresis operator and A > 0 is a given constant, depending
on the geometry of the system. This relation can be for example obtained combin-
ing in series a ferromagnetic element with hysteresis (which is a rate independent
element) and a conducting solenoid with a paramagnetic core (which is instead a
rate dependent element). Coupling (2.1) and (2.2) we get exactly (0.1).

2.2. Statement of the main results

We fix an open bounded set Q C R? of Lipschitz class with boundary I' and set
Q = Qx(0,T). We took R? in consideration of the physical meaning of our model
equation, even if actually our results are true also for the more general case of
RN, N > 1. We consider the following operator

G : M(;C°([0,T1)) — M(2;C°([0,T1))

which is assumed to satisfy (1.3) and (1.4).

We denote by vy : H'(2) — H'Y?(T') the unique linear continuous trace
operator such that yov = v|,. for all v € C*°(Q) N H(Q).

Now we introduce the operator A : H}(Q) — H~(Q) defined as follows

-1(9) (AU, V) 1) = /QVu -Vudx Yu,v € H(Q); (2.3)

Pu  0%u

oxr?  Oy?
Moreover we also define the operator A~! which can be interpreted as the inverse
of the operator —A, , associated with the homogeneous Dirichlet boundary con-
ditions, i.e., for any v € H71(Q), u = A~ if and only if u € H'(Q2), —A, yu =0
in the sense of distributions and you =0 on 9Q =T

so it is clear that Au = —A, yu (:: ) in the sense of distributions.

Before presenting the main result, we discuss a bit the setting of our model
problem, as the choice of the right functional spaces to work with plays a funda-
mental role in order to have some positive results. In our case the choice we make
is a bit unusual in the sense that we consider the following Hilbert triplet

L*(Q) c HTH(Q) = (H1(Q)) C (L*(Q))

where the role of the pivot space is played by H~*(£2) and the injection (continuous
and dense) of the space L%(Q) into H () is defined in this way

a1 (f), @) m () IZ/Qf pdz YV [feL*(Q), Ve Hj(Q).

The Sobolev space H~1() is endowed with the scalar product

(u, ) g-1() =1 (@< u, A 'v >HL(Q)
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therefore, if we identify H~1(Q) to its dual (H~1(Q2))’ by means of the Riesz
theorem, we have

2@y (0 Hre@) =W, Ha-—@) = (Hd) a1 =r-1@) (LA ) @

:/ fAWde Ve L), Vye H'(Q),
Q

where we also used the fact that the scalar product is symmetric.
For the sake of simplicity, from now on we set L?(Q) :==V, H Q) := H
and (L?(Q2))" := V'. We assume that u® € V, v € H and f € L*(0,T; H).

We want to solve the following problem

Problem 2.1. To find two functions u € M(£;C°([0,T])) N L?(Q) and v € L?(Q)
such that G(u) € L*(Q) and for any v € HY(0,T;V) with ¢(-,T) =0 a.e. in Q

T T
/ —v'<@+u,881f>vdt+/0 | ety vdear »

- / v lF v dt + v (0 4 10) (), (-, 0) )y

_/OT/Q“CZ) dmdt:/OT/dede/Qu°<->w<-,0>dx. (2.5)

Interpretation. It is not difficult to show that (2.4) and (2.5) yield

AT AT G = A7

o t ¢ in L2(Q), a.e. in (0,7)
=v

ot

and w),_, = u% v|,_, = v* in the sense of the traces. If in addition the solution
(u,v) is more regular in space, (as indeed happens at the end, see Remark 2.3)
then (2.4) and (2.5) yield directly (0.1) in L2(0,T;V").

The main theorem which we obtain is the following

Theorem 2.2. (Ezistence and uniqueness) Let us assume that the operator G :
M(Q;:C0([0,T])) — M(Q;:C°([0,T))) fulfills (1.3) and (1.4). Suppose moreover
that u® € V,v° € H and f € L?>(0,T; H). Then Problem 2.1 has a unique solution
u € HY0,T;V) and v € L3(Q) such that G(u) € L*(Q;C°([0,T))). If moreover G
fulfills (1.8), then we get that G(u) € H(0,T; L*(2)).

The proof of this result is based on the contraction mapping principle. We
first consider any given function z € H'(0,7;V) and solve the counterpart of
Problem 2.1 with G(u) replaced by G(z). This procedure allows us to get rid of
the nonlinearity in the hysteresis term. In a second step we construct an operator
J : HY(0,T;V) — H(0,T;V) which associates to any z the first element u of
the pair (u,v) solution of the modified problem just considered. We consequently
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prove that J has a fixed point, which will be the desired unique solution of our
model equation.

Remark 2.3. Once that the solution of our problem is also unique, it is not hard
to obtain the Lipschitz continuous dependence of u from the data of our model
problem. Moreover, using a standard characterization of the spaces Ha () and
H'(Q) (which can be for example found in [3], Sect. IX.1, IX.4) we achieve a
higher regularity result in space for the solution of our model problem.

3. Second model problem

Consider an open bounded set of Lipschitz class 2 ¢ RY, N > 1 with boundary
[ and set Q := Q x (0,T). Assume that the operator F : M(£;C°([0,T])) —
M(Q;C0([0,T))) satisfies (1.3), (1.5), (1.6), (1.7) and (1.8).

The causality property entails that [F(v)](-,0) depends just on F and v(-,0);
so we can set H (v(+,0)) := [F(v)](-,0) for all v € M(;C°([0,T7)).

For the sake of simplicity we set this time V := H}(Q), H := L?(Q2) and
V' := H'(Q) and we consider V endowed with the norm ||ul|v := ||Vu|[L2(q)~ .
We then identify the space L?(2) to its topological dual (L?(£2))’; as the injection
of V into L%(Q) is continuous and dense, (L?(£2))’ can be identified to a subspace
of V'. This yields the Hilbert triplet V' C H = H' C V' with dense and continuous
injections.

Now we denote by v/ (-,-)yv the duality pairing between V' and V and we
then define the linear and continuous operator A: V — V' as in (2.3).

We assume that u®, w® = H - (u’) € L?(Q2) are given initial data.

The problem we want to solve is the following

Problem 3.1. Let us consider a known function U such that v 3“ € L>=(Q)N and
V=0 a.e. in Q. We search for a function u € M(Q,CO([O,T]))OLQ(O T;V) such
that F(u ) € M(Q;C°([0, T)))NL?(Q) and for anyy € H*(0,T; L2(Q))QL2(O,T; V)
with (-, T) =0 a.e. in

/ / (u+ F(u 815 dmdt / / VY] (u+ F(u)) de dt
+/0 /QVu-vwdxdt

T
— [ vt des [ 1@+ u' @) (a0 (31)
0 Q
Interpretation. The variational equation (3.1) can be interpreted as
0
81;, YT Vw—Au=f iV ae in(0,T) 652

w= I+ F)(u)
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hence, integrating by parts in time in (3.1) we get [u+ F(u)],,_, = u® +w° in V',

in the sense of the traces.

[t=0

Physical interpretation. Let D C R? represent the region occupied by a porous
medium. We consider the equation of continuity

00
at—i—V-(j’:O in Dr =D x (0,7),
where 6 is the water content of the medium and ¢ is the flux. We have 8 = ¢ s
where ¢ : D — [0, 1] is the porosity of the medium and s is the saturation.
We couple this equation with Darcy’s law

7=—k(Vu+pg?Z)

where k is the hydraulic conductivity, u is the pressure, p is the density of the
fluid, ¢ is the gravity acceleration and Z is the upward vertical unit vector. The
saturation s and the pressure u are unknown.

Therefore the system we find is the following

Os
—Vk(V ) =0
Y ot (Vutpg?) in Dr, (3.3)
s = F(u),

where the dependence of s upon w is formally represented by the operator F.
Experimental results show the occurrence of a quite relevant hysteresis effect which
has occasionally been represented by Preisach models in engineering literature.
Some interesting results on this topic have been obtained for example in [1], [2].

Now, first of all we make the following strong assumption on the hydraulic
conductivity: we suppose that k does not depend on the saturation s (as indeed
happens) but it is a constant; then we suppose that in (3.3) the derivative in time
is not a Eulerian derivative but a material derivative. At this point, if we want to
express this resulting equation in terms of the Eulerian derivative, the system we
get is included in our model system (3.2), which may then represent a model with
saturation versus pressure constitutive relation with hysteresis and with a term of
transport.

The existence result we are able to state is the following

Theorem 3.2. (Existence) Let us assume that the operator F : M(Q;C°([0,T))) —
M(;C°([0,T))) fulfills (1.3), (1.5) (1.6), (1.7) and (1.8). Moreover let

ferl*Q), eV, v’ eH.
Then Problem 3.1 admits at least one solution uw € H'(0,T; HYNL>(0,T;V) such
that F(u) € H(0,T; H).

The technique we use for proving this existence result is based on approxi-
mation by implicit time discretization, a priori estimates and passage to the limit
by compactness. This approximation procedure is quite convenient in the analy-
sis of equations that include a hysteresis operator, as in any time-step we have
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to solve a stationary problem in which the hysteresis operator is reduced to the
superposition with a nonlinear function.

Remark 3.3. As the equation is quasilinear, one cannot expect to have uniqueness
for all the choices of hysteresis operators F. However when F is a Prandtl-Ishlinskii
operator of play type, the solution of Problem 3.1 is also unique. The proof does not
relay on the Hilpert’s inequality as indeed happens in [11], Sect. IX.2, but exploits
instead the properties of F. Another interesting result which can be established
is the dependence of the solutions from the data. Assume to have a sequence of
memory operators G,, converging pointwise in C°([0, T]), a.e. in £ to some operator
G; if u,, are the solutions of Problem 3.1 with F replaced by G, then it turns out
that there exists u such that u,, — w in some suitable topology and G, (u,) — G(u)
strongly in L?(Q). Moreover u is a solution of Problem 3.1 with F replaced by
G. The idea contained in the proof is new and also the assumptions we take on
G, are weaker than the ones usually employed in results of this kind. The proof
exploits the properties of the operators G,, and the uniform convergence in time
of the sequence of our approximate solutions (pointwise convergence would not be
enough for our purposes).

Remark 3.4. We develop the results of this section working with Dirichlet bound-
ary conditions, other alternative choices of boundary conditions are possible; the
discussion of these different situations is still work in progress.
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Embedding Theorem for Phase Field Equation
with Convection

Takesi Fukao

Abstract. In this paper, we shall prove the existence of solutions for the sys-
tem of second order partial differential equations. This system is constructed
by the phase field equations with a convection described by the Navier-Stokes
equations in a liquid region. In our setting, this liquid region is also unknown,
which is defined by the solution of the phase field equations. In order to de-
termine the liquid region by the unknown parameter, which is called order
parameter, we need to get the continuity. From the L? framework, we shall
obtain the smoothness of the order parameter by the compactness theorem of
Aubin’s type.
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Keywords. Phase field system, Navier-Stokes equations, compactness method.

1. Introduction

We consider a material which has two physical phases, liquid and solid. We are
interested in the dynamics of the interface, taking account of a convective flow in
the liquid region. Our idea is to describe this phenomenon by the weak formulation
of the phase field equations with a convection. And this convection is governed
by the Navier-Stokes equations in the unknown liquid region. Our purpose is to
show the existence of some solutions. The phase field system is one of the famous
model which describes the solid-liquid phase transition phenomena by the partial
differential equations. This model has the strong relationship between the Stefan
problem which is also well known as the effective model for the phase transition.
About the Stefan problem we have a result [6] from the stand point of the practical
situation. But the weak solution of the Stefan problem is discontinuous in general.
So it is not easy to guarantee the fact that the liquid region is the exact open set.
Actually the result of [6] is the existence theory for an approximate problem. On
the other hand, in the case of the prototype phase filed equations we can gain the
regularity of the order parameter if we regularize the convection. So we apply the
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same methods in [6] and find the exact solution. Considering the problem as the
weak formulation and applying the penalty method, we settle the difficulty of the
unknown region. And then we shall obtain the existence result.

2. System of phase field and Navier-Stokes equations

In this section we introduce a simplified system. After define our solution we
shall give the main theorem. Let 0 < T' < +oo, t € [0,7] and Q,,(t) C R?® be
the bounded time dependent domain with smooth boundary T'y,(t) := 0, (t).
Moreover we define a non-cylindrical domain and its lateral boundary by

Qm= |J {1 x @), Zm= |J {#} xTn).

te(0,T) te(0,T)

Q,,(t) is occupied by a material having two phases, liquid and solid. Our purpose
is to find the distribution of these regions. For any (¢,z) € Q.,, let x := x(t,x) be
the order parameter which stands for the state of the material. These regions are
separated by an unknown interface. From the stand point of the Stefan problem it is
a natural setting that the sharp interface is defined by the 0-level curve of y. On the
other hand in the case of the phase field equations the set {(¢, ) € Qum; x(t,z) = 0}
has the measure in general. So in our phase field equations we image the virtual
solid-liquid interface namely we call the set

Qp(t) := QL () \ {z € QL (t); x(¢, ) < 0}

by the liquid region, the set Q4(t) := Q,,(t) \ Qe () by the solid region and S(t) :=
O () \ {Qe(t) U Qs(t)} by the virtual interface. If x is continuous in @, then
Q5(t) and Q(t) are open sets and 2, () = Q¢ (t) U S(t) UQs(¢) for each ¢ € [0,T].
And then we define

S(x) := U {t} x S(t), Qilx):= U {t} x Q;(t) fori=s,L.
te(0,T) te(0,T)

We consider the following system of a couple of the phase field equations and
the Navier-Stokes equations: 6 := 6(t,z) be the temperature, v .= v(¢,x) be the
convective vector and py := py(t, x) be the pressure,

Di(v)0 + Di(v)x — A0 = [ in Qnm, (2.1)

Di(v)x =Ax+x* —x =0 inQm, (2.2)
Vv Av=g(0) - T QuX), (2.3

divv =0 in Qe(x), (2.4)

v=vp inQs(x)US(x), (255)

gz =0, gii =0, v=vp on X, (2.6)

0(0,) =00, x(0,") =x0, v(0,-)=vo in Qo :=Qp(0), (2.7)
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where for each € > 0, the operator Df(v) stands for the regularization of the
material derivative 9/0t + (pe * v) - V with the unknown v, where the convolution
(pe xV)(t,2) = (pe(t) * v1(t, ), pe(t) * va(t, ), p(t) * v3(t,z)) is the mollification
of v and p.(t) is the usual mollifier with respect to ¢; f, g, vp, 6o, xo0, Vo are given
functions; n = n(t,z) = (n1(t, z), na(t,x), ns(t,x)) is the 3-dimensional unit
vector outward normal to T'y,(t) at & € T',,(t). Throughout this paper we assume
that the shape of domain ,,(t) smoothly changes in time in the following sense:
(A1) There exists a bounded domain  C R?® with smooth boundary T' := 9Q
such that Q,,(¢t) C Q for all t € [0, T]. Moreover there exists a transformation
y € C3(Q) := C3*(Q)? with Q := (0,T) x Q which gives a C3-diffeomorphism
y(t,-) = (y1(t,-), ya(t, ), ys(t,-)) from Q onto itself for all ¢ € [0,T] such
that

v(t, A (t)) = Qo forallt € [0,7], y(0,-) =T (identity) on Q.

We can say that in the liquid region Q¢(x) the vector v coincides with the convec-
tion described by the Navier-Stokes equations (2.3) and (2.4). In the solid region
Qs(x) the vector v coincides with the given vector vp := vp (¢, x), for example we
interpret it as the deformation speed. It is given by the above assumption (A1) by
Ox/0t(t,y(t,r)) where x := y~!. Anyway we assume that the given function vp
satisfies the following compatibility condition:

(A2) A vector function vp € C?(Q) so that
divvp(t,-) =0 in Q,(t) forallte[0,T],
Vp N =v, ON Xy,

where vy (t, ) is the normal speed of Ty, (t) defined by 9x/0t(t,y(t,)) -n(t, ).

Let ¥ :=(0,7) xT' and Q7 := (0,T) X Qno. We use the following notations:
H:=L*Quo), V :=H"(Qmo) (= W"*(Qumo)),
with the usual norms. H is a Hilbert space with standard inner product (-,-)q.
We see that the following relations hold:
Ve HV"

where <— means that the embedding is compact. Moreover we use the following
notations for vector valued function spaces:

D,(Q) := {z € Cr(Q);divza =0 in Q},

H:=12(Q), Y:=L}Q), V:=H.(Q), X:=W.4Q),

where L2(Q), L4(Q), HL(Q2) and W4(Q) are the closures of D,(f2) in spaces
L2(Q), L(Q2), HY(Q) and W14(Q), respectively. They are equipped with the usual
product norms. We see that H is a Hilbert space with the usual inner product
(-, )u- Now we formulate the Navier-Stokes equations as a homogeneous Dirichlet
boundary value problem. We put w := v — vp on @Q,, and wo := vo — vp(0) on
Q0. Then

w=0 onQs(x)US(x) andon X,,. (2.8)
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For simplicity, we denote by w and wg again the 0-extensions of them onto @
and (2, respectively. A weak variational formulation of Navier-Stokes equations is
described in terms of w and wq as follows:

T T T T
_ / (w, ' yuadt + / a(w,m)dt + / bt w, w,m)dt + / ctw,m)dt (2.9)
0 0 0 0

T
= [ (9u0)muadt + (wo.n(O)sxfor all m € W),
0
subject to the constraint w = 0 a.e. on Qs(x), where

n' € L2(0,T;H), n(T,-) =0 a..on (), } .
n=0 ae onQ\Q«x) ’
here n’ := 0n/dt. In order to emphasize the dependence of the class of test func-

tions upon x we denote it by W(x). Moreover a(,-) : V. x V — R and for each
te[0,T], b(t;+,): VXV XV =R, ¢t ) Hx H— R are defined by

W) = {n € L4(0,T: X);

3
a(z,mn) = Z/Qv,zi -Vndx for allz,m €V,

b(t;z,z,m) Z/ z+vp(t))-Vz)nyde for all z,z,m €V,

3
c(t;z,m) : Z/ (t))nidx  for all z,n € H,
Q

and for each z € L*(Q), g (2) € L?(0,T;H) is defined by

—(vp-V)vp +1eAvp| on Qm,

t

aVD
gu(z)={ {g(z)_ )

0 otherwise,
where Py, : L?(Q2) — H is the Leray projector.
Definition 2.1. The triplet {0, x,v} € L®(Qm) X C(Qm) x L?(Q.) is called a
weak solution of the system if (D1)—(D3) are satisfied:
(D1) 6 and x satisfy the following estimates

sup |0(t)| a1 (@, (1)) < +00, / IHZ(Q t))dt < +00,
te(0,T)

T aX

/ ot (t) dt < +o0, sup [X(t)|m2(q,. ) < +00;

0 H(Q) t€(0,T)

(D2)w:=v—vp € L=(0,T; H)NL?*(0,T; V), w is weakly continuous from [0, T
into H and w = 0 a.e. on Q4(x);

(D3) {6, x, v} satisfy (2.1)—(2.7) in the variational sense.
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For each £ > 0, our main theorem is now stated as follows:

Theorem 2.2 (Main Theorem). Assume that (Al) and (A2) hold. Moreover f €
LOO(Qm), g <€ Co’l(R), 0y € Hl(QmO), Xo € Hz(Qmo) and vo € L2(Qm0) with
divvg = 0 in Q. Then there exists at least one solution {0, x,v} of our system.

Remark 2.3. In the 2-dimensional case, Planas and Boldrini [10] obtained the
existence result for the same kind of the problem without the time regularization
for the convection by applying the LP-theory of parabolic equations.

3. Phase field equations with given convection

In this section we discuss about the solvability of the phase field equations with
given convection, and recall the known result for the Navier-Stokes equation in
the non-cylindrical domain. Finally we shall note the key of the proof. Firstly,
we assume that the convective vector v := (01,02,03) is given. Now for each
80,8 € [0,T) with 0 < 59 < s <T, we use the following notations:

Q(s0,5) = (50,5) X, Qum(so,8) == | J {t} x Qu(t).
te(so,s)

Moreover we consider the following auxiliary system:

— / 9 D5 ndxdt — / xDEndxdt + / Vo - Vndxdt — (3.1)
Qm (s0,8) Qm (50,5) Qm (s0,8)
:/ fnd:cdt—i—/ HSOn(so)dac—i—/ XsoM(s0)dz,
Qm (s0,5) Qi (s0) Qi (s0)
—/ XDfndxdt—k/ VX'Vndxdt—k/ (x® = x)ndzdt (3.2)
Qm (0,5) Qm(s0,5) Qm(s0,5)

:/ 0ndxdt+/ XsoM(s0)dx,
Q,—,,,(S(),S) Qm,(SO)

for all n € H (Qm(s0,5)) with 7(s,-) = 0 a.e. on Q,,(s), where Di := D§(¥). As-
sume that 05, € HY(Qn(50)), Xso € H2(Qm(s0)). Moreover v—vp € L?(0,T; V)N
L>(0,T;H) and v satisfies the following compatibility condition

V.n=wv, onX,. (3.3)

Then there exists uniquely {6, X} € H'(Qm(s0,5)) X H(Qm(s0,s)) such that

sup 10(8) |51, 1) < 00, / 101) 2o, 00y < 00,
s0

t€(s0,s)

t S(up )|>Z(t)|H1(Q,,L(t)) < 400, / IX(1) 3202, (1)) dt < +00,
€(s0,s S0

and {6, X} satisfy the weak formulations (3.1) and (3.2). See Fukao [5], or more
general approach by Schimperna [13]. Here we recall an important result of the
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embedding theorem for spaces L2(0,T; H(2)) N L>(0,T; L*(R2)). For example,
Chapter 3, Section 2 in the book of Ladyzenskaja, Solonnikov and Ural’ceva [9]

1-2/r

2/r
lulLro,1;L9(0) < C1|V“|L2(0,T;L2(Q))|“|Loo(0,T;L2(Q))7

where ¢ and r are arbitrary positive numbers satisfying the condition

1 3

3
p g = Witha €26 re2 o, (34)

and ¢ is a positive constant. We have the following estimate especially the key
point is the independence of v.

Lemma 3.1. For any so,s € [0,T] with 0 < sg < s < T, there exists a positive con-
stant My depend on |0y 12(0,, (s0))s | Xs0|L2(@m (s0)) @A | f12(Qyn (s0,5)), independent
of v such that

S
sup 108|200y + / 1802 0, 00t < M. (3.5)
S0

te(so0,9)

sup [X(4)|£2(e,. 1)) +/ XD Z (@, (1))@t + |X|L4(Qun (s0.5) < M1 (3.6)
t€(s0,8) S0

Proof. Using Green-Stokes’ formula with the help of the divergence freeness, the
compatibility condition (3.3) and Gronwall’s inequality we get the conclusion. O

Using the same method of Theorem 7.1 in Chapter 3, Section 7 of the book
by Ladyzenskaja, Solonnikov and Ural’ceva [9], we obtain the following global
boundedness:

Lemma 3.2. For any so,s € [0,T] with 0 < sg < s < T, there exists a positive
constant My depend on [0s,|12(0,.(s0)) @A |Xso|L2(0n(s0)) independent of v such
that

IXI o0 (Qun (50,8)) < Moa. (3.7)

Proof. From the independence of ¥ in the estimate of Lemma 3.1, we take n = [x —
M]* in (3.2) with some large positive constant M. And then y—x° = y(1—x?) < ¥
on {(t,z) € Qm(so, s); x(t,z) > M}. So thanks to the result of [9], it is enough to
show that 6 is bounded with respect to the norm of L" (so,s) as the LI (Q,(t))
valued function, where ¢* and r* are arbitrary positive numbers satisfying the
condition

1 3
=1- .
¥ +2q* K, (38)
with
e 3 400 r* e +00 0<kr<l
T2 -k T 1—w 0] '

By virtue of (3.4) and Lemma 3.1 with x = 1/4 we get the conclusion. O
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Lemma 3.3. For any so,s € [0,T] with 0 < sg < s < T, there exists a pos-
itive constant M3z depend on |0s,|12(0,. (s0))s |XsolL2(Qm(s0))s [F1Lo0(Qm(s0,5)) and
[V|L2(so,s;v) such that

/ Ix(t |H2(Q ()dt + S(up)|~(t)|H1(Q,,,L(t)) < Ms. (3.9)
te(so,s

Proof. Consider the strong formulation of (3.2). For any 7 € [sq, s], multiplying
the function —Ay and integrating over Q.,,(so, 7) with respect to ¢ and z. Recall
the Gagliardo-Nirenberg inequality

IVX[E1 (0 1)) < C2lX|H2 (@ (8)) K] L% (20 ()

where ¢y is a positive constant. Then by using Lemma 3.2 and Young’s inequality
for o1 > 0 the following estimate holds

IVX(T) 2 ry) +2(1 = 201)/ X V372 (2, ) A
S0

(02M2)2|{’|i2( V) M
2 50,5; + M12 + don +2M7 + |Xso|H1(Qm 0))’

for all 7 € [sg, s]. Thus we get the conclusion. d

Lemma 3.4. For any so,s € [0,T] with 0 < sg < s < T, there exists a positive
constant My depend on |0s,|m1(q,, (s0))s |Xso|H2(Qn(s0)) A [V|L2(s0,s5v) Such that

sup [X(O)|w2(,. (1)) < Ma. (3.10)
t€(s0,s)

Proof. We consider the following auxiliary equation with U = 9y /dt.
DU — AU +3x*U —U =G in Qu(so, s),

oU
on
U(so) = Us, := —D; (V(s0))x(50) + Axso — Xio + Xso + 05 00 QL (s0),

where G := 80/0t—(0(p+v)/0t)-VX). Now 0, € H (Qn(50)), Xso € H2(Qm(50))
and vp € C?(Q), so the above equation of the initial and boundary value problem
with given coefficient can be solved. Then U satisfies

=0 on I'(so,s),

g 2
s (U0l + | VO o dt < Mi (3.11)
S0

tE(s0,s)

where M} is a positive constant depend on |0s,|52(q,, (s0))s [XsolH2 (0 (s0)) and
|V|L2(30 V) Fmally thanks to Lemma 3.1, 3.2, 3.3 and 3.4 with the equation
Ax = D X —X°+ X+ 6 we get the conclusion. O
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Lemma 3.5. For any so,s € [0,T] with 0 < sg < s < T, there exists a posi-

tive constant Ms depend on |0s,|m1(q,, (s0))» |XsolH2(Qm(s0))s [F1Lo0(Qm(s0,5)) and
[V|L2(so,s;v) such that

16] Lo (@ (50,5)) +/ 168372 (0, endt + sup |VO(H)|L2(q,, 1) < M5, (3.12)

S0 t€(s0,s)
Proof. Thanks to the estimate ~(3.10), the same argument of Lemma 3.2 and 3.3
works to the equation (3.1) of 6. O

In order to show the main theorem, especially to obtain the uniformly con-
vergence of approximation for y, we prepare the compactness theorem of Aubin’s
type, see the paper of Simon [14]. Let Dy = Ou/Ot + v -Vu and v — vp €
L2(0,T;V)NL*>(0,T; H) and it satisfies (3.3) then the following proposition holds:

Proposition 3.6. Let F' be a bounded set in L>=(0,T; H?(Qmo)) and
T
/0 |Dtu(t)|%2(9m(t))dt < Mg for all u(t,x) :=u(t,y(t,x)) with u € F,

where Mg is a positive constant. Then F is relatively compact in C([0,T] X Qmo)-

Proof. In our setting the domain is time dependent, but we have the enough
estimate for v. So the boundedness of the time derivative is coming from the
one of Dyu. Thus we get the conclusion.

We can find the related topics in Fukao [5]. O

Proof of Theorem 2.1. The proof is the same way in Fukao and Kenmochi [6]
with Proposition 3.6. The essential idea is due to Fujita and Sauer [4]. We denote
by ((PF);V,0s,,Xs,) 01 [So, s] the variational problem associated with the phase
field equations on Q.,,(so, s) with given convection v. And any functions {é,)%}
satisfying the above lemmas are called solutions of ((PF); v, 0y,, xs,) on [so, s]. On
the other hand the solvability for the Navier-Stokes equations in non-cylindrical
domain was discussed by many authors, for example Fujita and Sauer [4]. Here
we apply the result of Kenmochi [7, 8]. In the existence proofs of [7, 8], one of
main points is an extensive use of a compactness theorem of Aubin’s type and its
extension. We denote ((NS)s;6, X, Vs,) on [sg, ] the following variational problem
associated with the penalized Navier-Stokes equations on Q.,(so, s):

S S S
—/ (n’,\Tv)HdT—i—/ a(v~v,17)d7'—|—/ b(t; W, w,n)dr

S0 So S0

b [ etrwmir [ P09 mudr = [ (gu@)mudr + (w0

S0 S0
for all n € Wy(so, s),
where [x]~ is the negative part of x, wg, := v,, — vp(so) and
n' € L?(so,s;H), n(s) =0 a.e. on Q, }

Wi (s0,5) := {77 € L*(s0,5:X); n =0 a.e. on Q(so, s) \ @m(so, )
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We know from the result of [7] there exist functions Ws € L>(sq, s; H)NL?(sq, s; V)
with w = 0 a.e. on Q(s0, 5)\@m (S0, s) and W is weakly continuous from [sg, s] into
H such that wy satisfies the above variational formulation. Moreover the following
inequality holds:

1
2

S0

- b 1 s
wslt)i+ [ wa(rfdr+ ;[ R Pdedr
Q(s0,t)

1. ‘ N
< 2|w50|%{ —|—/ (g1,(8), Ws)udr for all t € [so, s].
s0

Any functions v5 := Wy + vp satisfying the above estimate are called solutions
of ((NS)s;0,X,Vs,) on [so,8]. Let 0 =t <tV < ) < ... <N = T, be the
partition of [0,7] given by t& = khy for k =0,1,..., N with hy = T/N. We are
now going to construct a sequence of approximate solutions. For each s, ¢ € [0,T],
O 5(+) be the C3-diffeomorphism in 2 given by O, ;(z) = x(s,y(t,z)) forallz € Q,
note that ©; s maps Q,,(t) onto Q,,(s) for each s,t € [0, T]. Now, for fixed positive
parameters d € (0, 1], let us define a set of functions 6%, x¥ on @, and v on Q by

ON (t,z) == Hgk(t,x), if t €[ty ,,t7) and = € Q,, (1),
Xév(t,m = ngvk(t,x), if te [ti\ll,tkN) and x € Q,, (1),

vV (t,z) = vé\fk(t,x) if t € [tY |, t) and z € Q,

where H(Js\fk, xé\fk and vé\fk are solutions of the Navier-Stokes equations ((NS)s; 0, X,
Vf;\fkil(tk,l)) and phase field equations ((PF);Vf;\fk,ngil(tk,l),xé\fkfl(tk,l)) on
[t t] where

Bt 1) = Ot — P, O (1)) for (1) € Quult 1,11,
)Z(t,.lf) = X(lﬁ\,/kfl(t — hn, @t,t—hzv (l‘)) for (t,.]?) € Qm(tkal’tkN)'

By virtue of the Proposition 3.6 with Lemma 3.4, the compact embedding {X(];V}
to C(Q.,) is ensured. Thus in order to discuss convergences as N — 0 and § — 0
we can use the standard compactness argument. Finally in order to show that the
convective vector coincides with vp in the solid region, the idea of the compact
cylinder by Fujita and Sauer [4] can be applied, because our solid region is exact
open set. U

References

[1] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech.
Anal., 92(1986), 205-245.

[2] E. Casella and M. Giangi, An analytical and numerical study of the Stefan prob-
lem with convection by means of an enthalpy method, Math. Methods Appl. Sci.,
24(2001), 623-639.



178 T. Fukao

[3] G.J. Fix, Phase field methods for free boundary problems, pp. 580-589 in Free
Boundary Problems: Theory and Applications, Pitman Rese. Notes Math. Ser.,
Vol. 79, Longman, London, 1983.

[4] H. Fujita and N. Sauer, On existence of weak solutions of the Navier-Stokes equa-
tions in regions with moving boundaries, J. Fac. Sci., Univ. Tokyo., Sec. IA. Math.,
17(1970), 403-420.

[5] T. Fukao, Phase field equations with convections in non-cylindrical domains, pp. 42—
54 in Mathematical Approach to Nonlinear Phenomena; Modelling, Analysis and
Simulations, GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 23, Gakkotosho, Tokyo.

[6] T. Fukao and N. Kenmochi, Stefan problems with convection governed by Navier-
Stokes equations, Adv. Math. Sci. Appl., 15(2005), 29-48.

[7] N. Kenmochi, Résolution de problémes variationels paraboliques non linéaires par
les méthodes de compacité et monotonie, Theses, Universite Pierre et Marie Curie,
Paris 6, (1979).

[8] N. Kenmochi, Résultats de compacité dans des espaces de Banach dépendant du
temps, Séminaire d’analyse convexe, Montpellier, Exposé 1, (1979), 1-26.

[9] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear
equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, Amer.
Math. Soc., 1968.

[10] G. Planas and J.L. Boldrini, A bidimensional phase-field model with convection for
change phase of an alloy, J. Math. Anal. Appl. 303(2005), 669687,

[11] J.F. Rodrigues, Variational methods in the Stefan problem, pp.147-212 in Phase
Transitions and Hysteresis, Lecture Notes Math., Vol. 1584, Springer-Verlag, 1994.

[12] J.F. Rodrigues and F. Yi, On a two-phase continuous casting Stefan problem with
nonlinear flux, European J. Appl. Math., 1(1990), 259-278.

[13] G. Schimperna, Abstract approach to evolution equations of phase-field type and
applications, J. Differential Equations 164(2000), 395-430,

[14] J. Simon, Compact sets in the spaces LF(0,T;B), Ann. Mate. Pura. Appl., 146
(1987), 65-96.

[15] V.N. Strarovoitov, On the Stefan problem with different phase densities, Z. Angew.
Math. Mech., 80(2000), 103-111.

[16] A. Visintin, Models of phase transitions, PNLDE, Birkhiauser, Boston, 1996.

Takesi Fukao

General Education

Gifu National College of Technology
2236-2 Kamimakuwa, Motosu-shi,
Gifu 501-0495 Japan

e-mail: fukao@gifu-nct.ac.jp



International Series of Numerical Mathematics, Vol. 154, 179-188
(© 2006 Birkhéduser Verlag Basel/Switzerland

A Dynamic Boundary Value Problem
Arising in the Ecology of Mangroves

Gonzalo Galiano and Julian Velasco

Abstract. We consider an evolution model describing the vertical movement of
water and salt in a domain split in two parts: a water reservoir and a saturated
porous medium below it, in which a continuous extraction of fresh water takes
place (by the roots of mangroves). The problem is formulated in terms of a
coupled system of partial differential equations for the salt concentration and
the water flow in the porous medium, with a dynamic boundary condition
which connects both subdomains.

We study the existence and uniqueness of solutions, the stability of the
trivial steady state solution, and the conditions for the root zone to reach, in
finite time, the threshold value of salt concentration under which mangroves
may live.

Keywords. Dynamic boundary condition, system of partial differential equa-
tions, existence, uniqueness, stability, dead core.

1. Introduction

Mangrove forests or swamps can be found on low, muddy, tropical coastal areas
around the world. Mangroves are woody plants that form the dominant vegetation
of mangrove forests. They are characterized by their ability to tolerate regular in-
undation by tidal water with salt concentration ¢, close to that of sea water (see,
for example, [19]). The mangrove roots take up fresh water from the saline soil
and leave behind most of the salt, resulting in a net flow of water downward from
the soil surface, which carries salt with it. As pointed out by Passioura et al. [26],
in the absence of lateral flow, the steady state salinity profile in the root zone
must be such that the salinity around the roots is higher than c¢,,, and that the
concentration gradient is large enough so that the advective downward flow of salt
is balanced by the diffusive flow of salt back up to the surface. In [26] the authors
presented steady state equations governing the flow of salt and uptake of water in

Supported by the Spanish DGI Project MTM2004-05417 and by the European RTN Contract
HPRN-CT-2002-00274.
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the root zone, assuming that there is an upper limit ¢, to the salt concentration at
which roots can take up water, and that the rate of uptake of water is proportional
to the difference between the local concentration ¢ and the assumed upper limit
ce. They also assumed that the root zone is unbounded, and that the constant of
proportionality for root water uptake is independent of depth through the soil. In
[12], the model was extended in two important ways. First, considering more gen-
eral root water uptake functions and second, limiting the root zone to a bounded
domain. The authors proved mathematical properties such as the existence and
uniqueness of solutions of the evolution and steady state problems, the conditions
under which the threshold level of salt concentration is attained, and others. In [12],
it is assumed that tides, or other sources of fresh or not too saline water, renew the
water on the soil-water interface allowing to prescribe the salt concentration at this
boundary (Dirichlet boundary data). Although this is the usual situation in which
mangroves live, in this article we shall focus in the situation in which the inflow of
fresh or sea water is impeded. In this situation, the continuous extraction of fresh
water by the roots of mangroves drives the ecosystem to a complete salinization
and, henceforth, to death. This work is motivated by the occurrences observed at
Ciénaga Grande de Santa Marta, Colombia. As reported by Botero [8] (see also
[29]), the construction of a highway along the shore in the 1950s obstructed the
natural circulation of water between both parts of the road (Caribbean sea and
lagoon). In addition, in the 1970s, inflow of fresh water from the river Magdalena
was reduced due to the construction of smaller roads and flooding control dikes.
These changes caused a hypersalinization of water and soil, which resulted in ap-
proximately 70% mangrove mortality (about 360 Km? of mangrove forests), see
[8], [18]. Although other causes, like evaporation or sedimentation, may have had
an important contribution to the salinization of the Ciénaga, we shall keep our
attention in the mechanisms of mangroves and their influence in this process.

The main mathematical difficulty of this model when compared with that
studied in [12] is that the closure of the natural system, the lagoon, implies a
new type of boundary condition in the water-soil interface, which is no longer of
Dirichlet type. Balance equations for salt and water content lead to a dynamical
boundary condition at such interface, i.e., a boundary condition involving the time
derivative of the solution. Although not too widely considered in the literature,
dynamic boundary conditions date back at least to 1901 in the context of heat
transfer [27]. Since then, they have been studied in many applied investigations
in several disciplines like Stefan problems [30, 33], fluid dynamics [16], diffusion
in porous medium [28, 15], mathematical biology [14] or semiconductor devices
[31]. From a more abstract point of view the reader is referenced to, among others,
[10, 24, 20, 11, 13, 1, 2, 7].

Apart from the mathematical technical details, one of the main features of the
dynamic boundary condition when compared to the Dirichlet boundary condition
is the elimination of the boundary layer the latter creates in a neighborhood of
the water-soil interface, layer in which the salt concentration keeps well below the
threshold salinity level. Thus, this new model allows us to describe the situation
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in which a continuous increase of fresh water uptake by the roots of mangroves
drives the ecosystem to a complete salinization.

The outline of the paper is the following: in Section 2 we formulate the math-
ematical model. We assume that mangroves roots are situated in a porous medium
in the top of which a water reservoir keeps the soil saturated. As in [12], coupled
partial differential equations for salt concentration and water discharge are con-
sidered in the porous medium. Above it, in the water reservoir, balance laws for
salt and water are formulated. The assumption of homogeneous salt concentration
in the water reservoir leads to a dynamic boundary condition in the water-soil
interface. In Section 3 we state our hypothesis and formulate our main results on
existence and uniqueness of solutions of the evolution problem, as well as the con-
vergence of this solution to the steady state solution. We also study the conditions
under which the complete salinization of the root zone is attained in finite time
(dead core). The proofs of these results will appear elsewhere [17].

2. The mathematical model

In this section we formulate the mathematical model which describes the salt and
water movement in the water-soil system. We consider the case where the man-
groves are present in the horizontal z, y plane, with a homogeneous porous medium
located below this plane and a water reservoir above it. The porous medium is
characterized by a constant porosity 6, indicating that we are assuming the man-
groves roots to be homogenized throughout the porous medium, without affecting
its properties. Assuming further that the hydrodynamic dispersion tensor, D, is
constant and isotropic, i.e., neglecting the velocity dependence in the mechanical
dispersion, we find for the salt concentration the equation, see [6],

Hg(; + div (eq — DVe¢) = 0, (2.1)

where the vector q denotes the specific discharge of the fluid, D = DI, I is the
identity matrix and ¢ denotes time. We also have a fluid balance in the porous
medium. Disregarding density variations in the mass balance equation of the fluid,
we obtain a fluid volume balance expressed by

divg + S =0, (2.2)

where S is the volume of water taken up by the roots per unit volume of porous
material per unit time. If the mangroves are uniformly distributed throughout
the z,y-plane and there is no lateral fluid flow, we may consider the problem as
one-dimensional in the vertical direction. If the z-axis is positive when pointing
downwards, the flow domain is characterized by the interval 0 < z < H < oo. In
the one-dimensional setting equations (2.1) and (2.2) become

Oct + (cq — 0Dc,), =0, (2.3)
. +5 =0, in (0,H) x (0,7) (2.4)
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For S, we assume to have the form

p
g.— s(2) (1 — Cc ) for 0 <c<ec, (2.5)
0 for ¢ > ¢,

where c. is the upper limit of salt concentration at which mangroves may uptake
water, p > 0 and s(z) is determined by the root distribution as a function of the
depth z below the soil surface. This root distribution function will be non-negative,
and non-increasing with z. We shall keep in mind the following characteristic
example: we assume that the function s is a positive constant, so/z., above a
certain depth z,., and zero below that depth, i.e.,

s(z) =s0/z« H0<z<z, and s(z)=0 ifz. <z<H (2.6)

The quantity sg is the total amount of root water uptake in the profile with no
salt present, in volume per unit surface per unit time, i.e., the transpiration rate
of the mangrove plants in the absence of salinity. On the bottom of the porous
medium domain, we assume no flux boundary conditions, resulting in

q(H,t) =c,(H,t) =0 forte(0,T). (2.7)

On the water-soil interface we prescribe a boundary condition which is deduced
from conservation laws for salt and water in the whole system water-soil. We
assume that salt concentration in the water domain, C, remains uniformly dis-
tributed in space. This approximation is justified when assuming a much faster
mixing of the salt in the reservoir than in the porous medium. Then, the average
height level of the water reservoir, W, and C' are functions that only depend on
time. We further consider, based on a continuity assumption

C(t) = ¢(0,t) fort e (0,7T). (2.8)
Then we have:

e The salt balance. Assuming that the total amount of salt in the system water-
soil remains constant, we have

d

H
CW+ | 6c)=0 in(0,7).
dt
0

Therefore, from equation (2.3) and the boundary condition (2.7),
d(CW)
dt
e The fluid balance, which asserts that the amount of water taken up from the
soil by the roots of mangroves is replaced by water from the reservoir:
dw
dt

= ¢(0,-)q(0,-) — 0Dc,(0,-) in (0,T). (2.9)

— —¢(0,-) in (0,T). (2.10)
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Combining (2.8)—(2.10) we deduce
W (t)ct(0,t) = Dc,(0,t) for t € (0,T), (2.11)

which is the dynamic boundary condition for the soil-water interface. Finally, we
add to this formulation given initial distributions of salt concentration, ¢(-,0) = ¢
in (0, H), and of water reservoir height level, W(0) = Wj.

We recast the above formulation in an appropriate dimensionless form intro-
ducing the following variables, unknowns and parameters:

t:=Dt/22, x:=2/2., u:=clce, §=qz./D0,
w=W/0z., 3(x):=z.(Hx)/so, d:=H/z., m:=s0z./D0,
and we define f(z,u) := S(Hx,ccu), with f: [0,d] x [0,1] — R4 given by
fw,0) = 5@)(1 - o)}, (2.12)
with p > 0 and
5(x)=1 if0<z<1 andi(x)=0 ifl<z<d (2.13)

With the above changes we are led to the following problem (omitting tildes): find
u:Qr —[0,1], ¢: Qr — R and W : [0,7] — R such that
ur + (ug — ug)y =0, (2.14)
Gz +mf(,u)=0 inQr=1x(0,T), with I = (0,d), (2.15)
w'(t) +¢q(0,t) =0 forte (0,T),

subject to the boundary and initial conditions

w(t)u(0,t) = uy(0,1), (2.16)
ug(d,t) = q(d,t) =0 for t € (0,7, (2.17)
u(-,0) =ug in I, w(0) = wo. (2.18)

Remark 1. In the recasting of our model there appeared a constant capturing all
the important physical parameters, the mangrove’s number:

m = soz«/DO. (2.19)

Using [26] and [25] as a reference we find the following values for the physical
constants: D = 7-107°m?/day, § = 0.5, and s¢ = 1 ¢m~2day*. Taking z* in the
range 0.2-0.5m, this implies a time scale in the range 2-10yr and m € (6, 15).

3. Main results

We shall refer to problem (2.14)—-(2.18), as to Problem P, for which we assume the
following hypothesis:
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H;. The function f: I x [0,1] — R, with I = (0,d) and d > 1, satisfies
fe L= c(0,1]), [fl<1,
f(-,s) is non-increasing in I and f(d,s) > 0 for all s € [0,1],
f(z,-) is non-increasing in [0, 1] and f(x,1) =0 for a.e. x € I.
Note that, in particular, f > 0 in I x [0, 1].
H,. The initial data posses the regularity
up € H'(I) with 0 <wp<1 in 1.

H3. The function w is a positive constant. The number m is positive. We set
w=m=1.

Remark 2. The assumption w (or the dimensional W) constant in Hs has a rea-
sonable range of validity. From (2.4), (2.5), (2.10) and the mean value theorem we
infer

t
W(t) =Wy — / q(0,7)dr = Wy — tse(1 — ¢ )P, for some ¢ € (0,c¢.).
0

Ce
Set sp as in Remark 1 and p = 1. A lower limit for ¢ is sea water salt concentration
Cw ~ 0.5¢c.. Then Wy must be much greater than the 15 cm that the lagoon will
decrease per year while keeping the sea water salt concentration. For a value of
¢ = 0.9¢, the decrease of the height level is of about 3 cm per year.

Remark 3. Since the numbers m and w do not play any essential role in the results
we prove in this work, we set m = w = 1 for clarity.

Under Hypothesis H;—Hj3 we cannot expect the existence of classical solutions. We
then introduce the notion of solution we shall work with.

Definition 1. We say that (u,q) is a strong solution of Problem P if v : Qr — [0,1]
and ¢ : Q7 — R satisfy the following properties:
1. For any r € (0, 00),
u € WH(0,T; L(I)) N L7 (0, Ts W' (I)) N C((0,T): C(D)),
g€ C(0,TEW)
with W= {p € Wh(I) : o(d) =0} .
2. The differential equations (2.14) and (2.15) and the boundary conditions

(2.16) and (2.17) are satisfied almost everywhere. The initial distribution is
satisfied in the sense

lim Ju(- ) = uol| 2y = 0.
We prove the following result on existence and regularity of solutions.

Theorem 1. Assume Hy—Hs. Then there exists a strong solution of Problem P
satisfying
U > Uy = minug a.e. in Qr. (3.1)
I
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In addition, if for some p >0
feCPIx0,1)) and wugec C*P(I), (3.2)

and if ug satisfies the following compatibility condition

1
uh(0) + ) (0) / F(uo(@)dz — uf(0) = £(0,up(0)uo(0),  (3.3)
then u € CYP2HP(Qr) and g € CHHPITP(Qr).

We prove uniqueness of solution for f(x, ) being Lipschitz continuous in [0, 1].
For more general functions, we show that uniqueness of solution holds true under
an additional condition on the component u. In Proposition 1 we give an example
in which solutions of Problem P satisfy such condition.

Theorem 2. Let (u1,q1) and (us2,q2) be two strong solutions of Problem P and let
H,-Hs be satisfied. If either

f(z,-) s Lipschitz continuous in [0,1]  for almost all x € Q, (3.4)

or anyone of the solutions satisfies

u(z, t) > /w lug(y, )| dy  a.e. in Qr, (3.5)
0

then (u1,q1) = (u2,q2) a.e. in Q.

Proposition 1. Assume H;—Hs and (3.2)~(3.3), and let (u,q) be a solution of Prob-
lem P. Suppose that ug satisfies ug, < L in I and

f('aum)§L<Um_;, (36)

for some positive constant, L, with u,, given by (3.1). Assume
feu)+ufu(,u) <0 in Q. (3.7)
Then condition (3.5) is satisfied.

Remark 4. In particular, if f(z,0) = s(z)(1 — 0)?, with s smooth, and uy €
C?*P(I) satisfies ug, < (1 — um)? < Uy — 5, then condition (3.5) is satisfied.
Actually, the smoothness requirement on s may be dropped by using an approxi-
mation argument.

One important effect of the dynamic boundary condition when compared to
the Dirichlet boundary condition at the boundary water-soil is the elimination of
the boundary layer the latter creates. It is straightforward to prove that the unique
solution of the steady state problem corresponding to Problem P, i.e., functions
U € HY(I) and Q € W satisfying

(QU —Uz)e =Qu + f(-,U)=0 in I,
U.(0) =U,(d) =0,
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is the trivial solution (U, Q) = (1,0). Regarding the asymptotic convergence of
solutions of Problem P to this trivial solution when t — oo, we have the following
result.

Theorem 3. Assume Hi-Hs and u,, > 0, and let (u,q) be a strong solution of
Problem P. Then

(u,q) — (1,0) in L2(I) and u(0,t) — 1 pointwise ast — oo.

We finally state a result on the existence of a dead core for solutions of
Problem P, i.e., sets where the threshold salinization © = 1 is attained in finite
time. The proof of this result, which is of local nature, i.e., independent of the
boundary data, can be found in [12]. First, we introduce some notation. For any
t € (0,T) we consider the parabola of vertex (x, t),

Pt) ={(z,7): |z —zo| < (r—=08), 1€ T},

with 0 < v < 1 and x¢ € I such that T < 9 < 1 — T%, implying P(t) C Qr for
all t € (0,T). We define the local energy functions

E(t) ::/ lug|* dzdr and C(t) ::/ (1 —w)P dx dr. (3.8)
P(t) P(t)

In [12] we proved the following theorem using the techniques introduced in [3, 4].

Theorem 4. Suppose there exist constants sg and s1 such that
0 < sgo?™ <of(-,1—0) <s10Pt for o €10,1], (3.9)

in P(t) for a.e. t € (0,T), with p € (0,1) and so > s1/2, and let (u,q) be a
strong solution of Problem P. Then there exists a positive constant M such that if
E0)+C(0) < M then u=1 in P(t*), for some t* € (0,T).

Let us finish this section with a remark on the assumptions of Theorem 4.
First, if function f is given by f(z,0) = s(x)(1 — o)P, with s given by (2.13) then
(3.9) is trivially satisfied in the region where s > 0 (root zone). Regarding the
bound of the initial energy, we have that testing the first equation of (2.14) with
1 — u and using the equation (2.15) we obtain

26(0)+C0) < [(1-wf + (1= w2+ [ fw).  (310)
I Qr

Therefore, if the initial datum is close enough to one then the initial energy bound

is satisfied. Combining Theorems 3 and 4 we deduce the following corollary.

Corollary 1. Let (u, q) be a strong solution of Problem P in Qr, for T large enough.
Under the conditions of Theorems 3 and 4 there exist Ty, t* > 0 such that u = 1
in P(t*), for some t* € (Ty,T).

Or, in other words, the threshold value of salt concentration is attained in
any compact set contained in the root zone in finite time.
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Wave Breaking over Sloping Beaches
Using a Coupled
Boundary Integral-Level Set Method

M. Garzon and J.A. Sethian

Abstract. We present a numerical method for tracking breaking waves over
sloping beaches. We use a fully non-linear potential model for incompress-
ible, irrotational and inviscid flow, and consider the effects of beach topog-
raphy on breaking waves. The algorithm uses a Boundary Element Method
(BEM) to compute the velocity at the interface, coupled to a Narrow Band
Level Set Method to track the evolving air/water interface, and an associ-
ated extension equation to update the velocity potential both on and off the
interface. The formulation of the algorithm is applicable to two- and three-
dimensional breaking waves; in this paper, we concentrate on two-dimensional
results showing wave breaking and rollup, and perform numerical convergence
studies and comparison with previous techniques.

Keywords. Level set methods, Boundary integral methods, Wave breaking .

1. Introduction and overview

The coupling of Level Set Methods (LSM) and Boundary Integral Methods (BIM)
is very adequate for solving certain class of free boundary problems, mainly for
two reasons. First, the robustness and topological properties of LSM to move the
front, and second, the accuracy, sharpness and single fluid approach of BIM to
obtain the front velocity.

In this work we are interested in problems where the boundary condition
for the BIM has to be obtained from the solution of a partial differential equa-
tion posed on the moving front. Examples of that problems are: The Helle-Shaw
problem, sprays and electrosprays, and wave breaking among others.

This work was supported by U.S. Department of Energy, Applied mathematical Sciences, and the
Division of Mathematical Sciences, National Sciences Foundation and the Spanish DGI project
BFM 00-1324.
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Wave breaking is a highly non-linear phenomena involving two phase flow
and turbulent flow. It has been confirmed by experimental measurements ([7])
and full Navier Stokes simulations ([13]), that the water flow is almost irrotational
up to the impact of the jet onto the flat surface of the water. Therefore a fully
non-linear potential flow model (FNPM) can be used [4].

Previous works on wave breaking are very extensive. Simulations up to the
impact can be found in ([4], [5], [6]). For breaking and postbreaking see, for exam-
ple, ([13],([8]). Laboratory measurements can be found in ([7]).

The idea of the present work is, as mentioned above, to couple LSM and BIM
for the numerical solution of the FNPM for two-dimensional waves shoaling over
a constant and sloping bottom. This approach provides a simple and direct way
to solve the model equations by reformulating the problem in a complete Euler-
ian framework, and straightforward upwind numerical schemes give sufficiently
accurate wave profiles while shoaling and breaking. The formulation is unchanged
in three dimensions, offering the possibility of computing complex breaking wave
motions.

2. The governing equations

Let Q(t) be the 2D fluid domain in the vertical plane (z,z) at time ¢, with z
the vertical upward direction (and z = 0 at the undisturbed free surface), and

Ti(s) = (x(s,t),2(s,t)) a parametrization of the free boundary at time ¢ (see
Figure 1).
A
z
I'y(s
R(s,t) He)
r h Q) toow
1 t
A\l /D;
Ty

FIGURE 1. The domain

Under the previous above mentioned assumptions, the mass and momentum
conservation equations are given by

Vu = 0 in Q1) (2.1)
—Vp .
w+u-Vu = ) +b in Q(t) (2.2)

where u(z, z,t) is the fluid velocity, p(z, z,t) the pressure field, b(z, z,t) the body
forces (per unit mass), p is the fluid density.
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Since the motion is irrotational, fluid particles do not rotate and vorticity
vanishes everywhere in the field of flow. In this case, this means that the velocity
field can be represented as the gradient of a scalar function referred to as the
velocity potential ¢(z,y,t). If u = V¢, and b = —gz, being z a unit vector in the
vertical direction (z = Vz), the momentum equation (2.2) reduces to the so-called
Bernoulli’s equation:

¢t+;(v¢.v¢)+p;p“+gz:o. (2.3)

This gives the pressure field once ¢ is known (here p, denotes the atmospheric
pressure).
On the free boundary, the following boundary conditions are imposed:

1. Continuity of stress tensor between water and air leads to p = p,, and thus
we have

¢ + ;(V¢~V¢) +gz=0 on Ty(s).

2. If R(s,t) = (X(s,1),Y(s,t)) is the position vector of a fluid particle on the
free surface, we have the kinematic boundary condition

Ri(s,t) = u(R(s,t),t) on T'(s)
where s identifies the fluid particle that is in x = X(s,t), z = Z(s,t) at time ¢.

Therefore, the model equations are:

u = V¢ in Q1) (2.4)
Ap = 0 in Q1) (2.5)
R; = u on Ty(s) (2.6)
D
D(f = —gz+ ;(V(b -V¢) on T'y(s) (2.7)
¢n = 0O0on I'yul'y UTs. (28)

3. Embedding the equations of motion in a level set framework

Briefly, the main idea of the LSM ([9], [10], [11]) is to embed the initial position
of the front as the zero level set of a higher-dimensional function ¥(z, z,t). One
then links the evolution of this function ¥ to the propagation of the front itself
through a time-dependent initial value problem. At any time, the front is given by
the zero level set of the time-dependent level set function ¥. An equation for the
motion for this level set function ¥ which matches the zero level set of ¥ with the
evolving front comes from observing that the level set value of a particle on the
front with path R(s,t) must always be zero:

U(R(s,t),t) =0
Hence, we have that
U, + VU(R(s,t),t) -u=0. (3.1)
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For our wave problem, let 2; be a fictitious fixed squared domain that con-
tains the free boundary at any time ¢. Equation (2.6), which states that the front
moves with velocity u can be replaced by the level set equation (3.1) posed on ;.

To embed equation (2.7) in the level set framework we do the following: On
the free boundary T'y(s) we define

O(s,t) = ¢(z,2,t)|r,5) = O(R(s,1),1),
and thus by fixing s and moving t, we are constrained to a fluid particle, which
means that ®.(s,t) is a total derivative and hence

1
=i +tu-Vo= (Vo V) gz,
Next, let be G(z, z,t) a function defined on §2; with the following property:
G(X (s,t), Z(s,t),t) = P(s,t) onTy(s)
Applying the chain rule, we have
1
Gi+u-VG= 2(V¢ Vo) — gz, (3.2)

which holds on I't(s). Note that u and right-hand side of equation (3.2) are only
defined on I't(s). In order to be able to solve equation (3.2) embedded in the whole
domain 21, we need to extend these variables off the front.

The model equations, written in a complete Eulerian framework, are

u = V¢ in Q) (3.3)
Ap = 0 in Q1) (3.4)
U, + VU -uggy = 0 in O (3.5)
Gi4uget - VG = foxt in O (3.6)
én = 0 on [HUT; UTy (3.7)

being f = 5(V¢ - Vo) — gz and feyt the extension of f onto €.

4. Numerical approximations and algorithms

Integral formulation of equation (3.4), with boundary conditions given by (3.6)
and (3.7) is solved using a BEM, that uses a Galerkin approximation of the BI,
linear shape functions and a special treatment of the corners. The interface veloc-
ity is obtained postprocessing the solution ¢, on the interface using a Galerkin
technique, see ([3]).

To approximate equations (3.5) and (3.6) in £; homogeneous boundary con-
ditions are imposed on 9€2;. A second-order upwind finite differences in space and
first-order in time is used for equation (3.5), while for equation (3.6) we used a
first-order upwind finite differences in space and first-order in time.

The velocity and the velocity potential are both initially defined only on
the interface. In order to create values throughout the narrow band, which are
required to update the fixed grid Eulerian partial differential equations, we use the
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extension methodology developed by Adalsteinsson and Sethian in [1] to construct
appropriate extensions.

The basic algorithm can be summarized as follows:

1. Compute initial front position and velocity potential ®(s,0) on Ig(s).

2. Extend ®(s,0) onto the grid points of { to initialize G.

3. Generate Q(t) and solve (3.4), using the Boundary Element Method. This
yields the velocity u and source term f on the front nodes.

. Extend u and f off the front onto €2;.

. Update G using (3.6) in €.

. Move the front with velocity u using (3.5) in €4

. Interpolate (bi-cubic interpolation) G from grid points of Q; to the front
nodes to obtain new boundary conditions for (3.4). Go back to step 3 and
repeat forward in time.

~N O Ot =~

A more complete algorithm with regridding can be found in [2].

5. Numerical results

A common procedure to study the accuracy and convergence properties of the
discretized equations with respect the mesh sizes and the time step is by means
of an analytical solution. A solitary wave propagating over a constant depth is a
travelling wave that moves in the x direction with speed equal to the celerity of the
wave (c). The velocity potential and the velocity on the front as functions of = are
also translated with the same speed c. Therefore, in this case, by calculating initial
wave data with Tanaka’s method ([12]) and translating it, we are able to compute
the L2 norms of the errors for the various magnitudes. See these results in [2].

For the case of a solitary wave shoaling over a sloping bottom, the accu-
racy can only be checked looking at the mass and energy conservation properties
and comparing breaking wave characteristic obtained here with those reported
elsewhere, for example in [5].

5.1. Sloping bottom test

A solitary wave propagating over a sloping bed changes its shape gradually, slightly
increasing maximum height and front steepness, till a point where a vertical front
tangent is reached. This is usually called the breaking point BP=(typ, Zpp, 2bp),
where xp, represents the x coordinate, zp, the height at z}, and t;, the time of
occurrence. Beyond the BP the wave tip develops, with velocities much bigger than
the wave celerity, causing the wave overturning and the subsequent falling of the
jet toward the flat water surface. Denote this endpoint as EP=(tep, Zep, Zep). Total
wave mass and total energy should be theoretically, conserved until EP. However
beyond the BP a lost in potential energy and the corresponding gain in kinetic
energy is expected, due to the large velocities on the wave jet.
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Wave breaking characteristics change, mainly according to initial wave ampli-
tude (Hp) and bottom topography. To study how our numerical method predicts
wave breaking we run the following test cases:

e (a) Hy=0.6, L = 25, slope=1:22, z. = 6.05, 2z, =6
e (b) Hy =0.6, L =18, slope=1: 15, 2, = 5.55, x5, = 5.4

and compare the results obtained here for case (b) with those reported in ([4]).
Here z. denotes the x coordinate at the crest for the initial wave and z, the z
coordinate where the bottom slope starts.

A series of numerical experiments have been made, and optimal discretization
parameters found are: Az = 0.01, At = 0.0001 and dy = 0.005, fo = 10 (approx-
imately 193 BEM nodes) for all cases. Front regridding has been made according
to maximum height before the BP and according to maximum velocity modulus
beyond BP. Beyond the BP, and due to the complex topography of the wave front,
reinitialization of ¥ and new ®(s, t) extension has been performed every 1000 time
steps.

Table 1 shows the breaking characteristics for the test cases. Grilli et all
reported in ([4]) for test (b) values of ¢y, = 2.41, z, = 15.64 and 2, = 0.67. The
discrepancies can be attributed to the slightly different position of the initial wave
(z. = 5.5) and the higher-order approximations used in their Lagrangian-Eulerian
formulation.

Test tpp,  Tpp Zop  tep  Tep
(a) 276 17.39 0.674 3.36 20.2
(b) 234 1520 0.662 2.90 17.8

TABLE 1. Breaking characteristics

Figure 2 shows wave shape for case (a) at ¢ = 0,1,2,2.76,2.94,2.14,3.34
and Figure 3 shows wave shape for case (b) at t = 0,1,2,2.34,2,48,2.68,2.90. In
Figures 4 and 5 we show in more detail the wave profiles from the BP to the EP
for cases (a) and (b) respectively.

Finally, to see how wave shape and breaking characteristics change with bot-
tom topography, we consider two more tests, this time with a sinusoidal shape
bottom. As can be seen in Figures 6 and 7 the breaking characteristics are consid-
erably different, and the wave breaks as a spilling breaker rather than the plunging
breaker of case (a) and (b).

From these numerical experiments we conclude that the numerical method
presented here is capable of reproducing wave shoaling and breaking till the touch-
down of the wave jet. Considering that we use only first-order approximations of
the model equations, a piecewise linear approximation of the free boundary, and a
first-order linear BEM, the results are quite accurate. The absolute errors in mass
and energy seem to be higher than those reported in ([4]). This is not surprising
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due to the fact that in ([4]) a higher-order BEM is used (both higher-order ele-
ments to define local interpolation between nodes and spline approximation of the
free boundary geometry) and time integration for the free boundary conditions is
at least second-order in time.

H0=0.6 slope1:22
4 T T

o} |
_4 | | | |
0 5 10 15 20 25
X
FIGURE 2. Wave shape at various times. Case (a)
H0=0.6 slope1:15

4 T T T T T T T T

3r ,

2t ]

FIGURE 3. Wave shape at various times. Case (b)
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HO0=0.6 , sinusoidal bottom
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FIGURE 6. Wave shape at various times. Case (c)
H0=0.6 , sinusoidal bottom
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FIGURE 7. Wave shape at various times. Case (d)
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Finite Difference Schemes for Incompressible
Flows on Fully Adaptive Grids

Frédéric Gibou, Chohong Min and Hector Ceniceros

Abstract. We describe a finite difference scheme for simulating incompressible
flows on nonuniform meshes using quadtree/octree data structure. A semi-
Lagrangian method is used to update the intermediate fluid velocity in a
standard projection framework. Two Poisson solvers on fully adaptive grids
are also described. The first one is cell-centered and yields first-order accu-
rate solutions, while producing symmetric linear systems (see Losasso, Gibou
and Fedkiw [15]). The second is node-based and yields second-order accurate
solutions, while producing nonsymmetric linear systems (see Min, Gibou and
Ceniceros [17]). A distinguishing feature of the node-based algorithm is that
gradients are found to second-order accuracy as well. The schemes are fully
adaptive, i.e., the difference of level between two adjacent cells can be arbi-
trary. Numerical results are presented in two and three spatial dimensions.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00A00.

1. Introduction

Incompressible flows are at the center of countless applications in physical sci-
ences. Uniform Cartesian grids used in numerical simulations are limited in their
ability to resolve small scale details and as a consequence nonuniform meshes are
often used in practice. For example, see the approach of Almgren et al. [1] (and
the references therein) for the Navier-Stokes equations on block structured grids.
Since the work of [2] on compressible flows, adaptive mesh refinement techniques
have been widely used. In the case of incompressible flows, adaptive mesh strate-
gies are quite common (see, e.g., [7]), but implementations based on the optimal
quadtree/octree data structure is less common.

In the case of a standard projection method (see, e.g., [4, 3]), the most compu-
tationally expensive part comes from solving a Poisson equation for the pressure.
This is also the limiting part in terms of accuracy, since high-order accurate (and
unconditionally stable) semi-Lagrangian methods exist for the convective part. In
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FIGURE 1. Left: the domain is tiled with cells of sizes varying accord-
ing to the refinement criterion. Right: Zoom of one computational cell.
The velocity components u, v and w are defined on the cell faces while
the pressure p is defined at the center of the cell. The density p, the
temperature T and the level set function ¢ are stored at the nodes.

[18], Popinet proposed second-order nonsymmetric numerical method to study the
incompressible Navier-Stokes equations using an octree data structure. In [15],
Losasso et al. extended the nonsymmetric discretization of [18] proposing a sym-
metric solution of the Poisson equation. This work relies on the observation that,
in the case of the Poisson equation, first-order perturbations in the location of the
solution yield consistent schemes (see [6]). Losasso et al. [14] recently extended
the work of Lipnikov et al. [12] to the case of arbitrary grids to propose a second-
order accurate symmetric discretization of the Poisson equation. In [17], Min et al.
proposed a second-order accurate scheme that also yields second-order accurate
gradients. In this case the linear system is nonsymmetric, but diagonally dominant.

2. The octree data structure

In [15], Losasso et al. proposed a solver for the incompressible Euler equations on
fully adaptive grids. The domain is tiled with cells as depicted in Figure 1 and
the mesh is refined automatically in order to capture the local details critical to
realistic simulations and coarsened elsewhere. An octree data structure is used
(see [19]) for efficient processing and the different variables are stored as depicted
in Figure 1: The velocity components u, v and w are stored at the cell faces
while the pressure is stored at the center of the cell. This is the standard MAC
grid arrangement used in previous works (see, e.g., [8]). However, in the case of
nonuniform meshes it is more convenient to store the other quantities such as the
density p, the temperature T and the level set function ¢ at the nodes of each cell.
This stems from the fact that interpolations of p, ¢ and T" are more difficult with
cell-centered data as discussed in [22].
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3. Navier-Stokes equations on octrees

The motion of fluids is described by the incompressible Navier-Stokes equations
for the conservation of momentum and mass:

w+u-Vu = —-Vp+f, (3.1)
V-u = 0, (3.2)

where u = (u, v, w) is the velocity field, f accounts for the external forces and where
the spatially constant density of the mixture has been absorbed in the pressure p.
Viscous effects are ignored.

A projection method [4] (see also [3]) is used to solve equations 3.1 and 3.2:
First an intermediate velocity u* is computed over a time step At, ignoring the
pressure term

*

u* —

At
This step, accounting for the convection and the external forces, is followed by
a projection step to account for incompressibility and boils down to solving the
Poisson equation

"fu-vu = f (3.3)

1
2 *
= . . .4
VZp tV u (3.4)
Finally, the pressure correction is added to define the new velocity field u:
u=u"— AtVp. (3.5)

The reader is referred to [15] and the references therein for details in the simulations
of free surface flows.

3.1. Finding the intermediate velocity

The intermediate velocity v* is found by solving equation 3.3 using a first-order
accurate semi-Lagrangian method. In the case of nonuniform grids, the standard
high-order accurate upwind methods (see, e.g., [9, 20, 13]) traditionally used in the
case of uniform grids are not well suited due to their stringent time step restrictions
and the complexity of their implementations. On the other hand, semi-Lagrangian
methods (see, e.g., [21]) are unconditionally stable and are straightforward to
implement.

3.2. The divergence operator

Equation 3.4 is solved by first evaluating the right-hand side at every grid point
in the domain. Then, a linear system for the pressure is constructed and inverted.
Consider the discretization of equation 3.4 for a large cell with dimensions Az, Ay
and Az neighboring small cells as depicted in Figure 1 (left). Since the discretiza-
tion is closely related to the second vector form of Green’s theorem that relates a
volume integral to a surface integral, we first rescale equation 3.4 by the volume
of the large cell to obtain

VceIIAtVQP = Vcellv -u”. (36)
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FIGURE 2. Discretization of the pressure gradient. The pressure values
p1, P2, Ps, and pyo are defined at the center of the cells. p, represents
a weighted average pressure value. p, defines the y component of the
pressure gradient between Cell 1 and Cell 10 defined by standard central
differencing. p, represents the discretization of the z component of the
pressure gradient between Cell 1 and Cell 2, whereas p, is a O(Axz)
perturbation of p,.

The right-hand side of equation 3.6 now represents the quantity of mass flowing
in and out of the large cell within a time step At in m3s~!. This can be further
rewritten as

VeV - (u* — AtVp) = 0. (3.7)

This equation implies that the term Vp is most naturally evaluated at the same
location as u*, namely at the cell faces, and that there is a direct correspondence
between the components of the vectors Vp and u*. That is, there is a direct
correspondence between p, and u, py and v, p, and w, which live on the right
and left faces, top and bottom faces, front and back faces, respectively. Moreover,
substituting equation 3.5 into equation 3.7 implies VeenV-u=0o0r V-u =0 as
desired.
Invoking the second vector form of Green’s theorem, one can write

Vcellv ‘ut = Z (U*face . n) Afacev (38)

faces

where n is the outward unit normal of the large cell and where Ag,ce represents
the area of a cell face. In the case of Figure 1 (left), the discretization of the x
component du*/dzx of the divergence reads

ou*

AxAyA
Thylz o

= U;AQ + U§A3 + ’LLZA4 + U;A5 — UTAI» (39)
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F1GURE 3. High-resolution simulation illustrating the motion of a solid
object through shallow water (left), the subsequent flow that reflects off
the wall (center), and the eventual cresting and overturning of waves
generated by this process (right). Reprinted from [15]

where the minus sign in front of ujA; accounts for the fact that the unit normal
points to the left. In this example, the discretization of u*/dz amounts to
ou* 1 <u§+u§+uj+u§ *)

(3.10)

or Az 4 o

The y and z directions are treated similarly.

3.3. Defining the pressure derivative to obtain a symmetric linear system

Once, the divergence is computed at the grid node, equation 3.4 is used to construct
a linear system of equations for the pressure. Invoking again the second vector form
of Green’s theorem, one can write

VeenV - (ALVD) = > ((AEVD)aee - 1) Aface. (3.11)

faces

Therefore, once the pressure gradient is computed at every face, we can carry out
the computation in a similar manner as for the divergence of the velocity described
above.

In Gibou et al. [6], we showed that O(Axz) perturbations in the location of the
solution sampling still yield consistent approximations. This was then exploited in
[15] to define Vp in order to construct a symmetric linear system. We simply define

D _p2—PM
€T A I

where A can be defined as A = Az, which is the size of the large cell or A = %Aw,
which is the size of the small cell, or as the Euclidean distance between the loca-
tions of p; and ps or as the distance along the x direction between the locations of
p1 and ps ete. In fact, in light of Theorem 4.1, we understand that there is some
leeway in defining A. Numerical tests against analytical solutions equation were
presented in [15] to demonstrate that this scheme is convergent.
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FI1GURE 4. High-resolution simulation of the formation of a milk crown
illustrating the capability of emulating surface tension. Reprinted
from [15].

4. Second-order schemes for Poisson

The method in [15] is first-order accurate on fully adaptive grid and yields a sym-
metric linear system. This work was extended to second-order accuracy in Losasso
et al. [14] using ideas from Lipnikov et al. [12]. We have presented in Min et
al. [17] a Poisson solver on fully adaptive grids that produces second-order accu-
rate solutions with second-order accurate gradients. This scheme yields diagonally
dominant linear systems and is straightforward to implement. In particular, the
discretization associated with one grid nodes involves only two (2D) or three (3D)
adjacent cells, producing a scheme straightforward to implement.

4.1. Analysis

Theorem 4.1 (from [17]). Consider a finite difference for Au = f that is mth-order
accurate at locally uniform cell and nth-order accurate at locally nonuniform cell
with m,n > 1. Then, it is globally min(m,n + 1)th-order accurate in L™ norm.

This means that second-order accuracy in the maximum norm can be achieved
with discretizations that are only first-order accurate at locally nonuniform points,
but that reduce to second-order accurate at locally uniform points. Consider a
Cartesian domain 2 € R™ with boundary 0f) and the variable Poisson equation
V- (pVu) = f on Q with Dirichlet boundary condition u|sn = g. We assume that
the variable coefficient p is bounded from below by a positive constant.

In one spatial dimension, standard central differencing formulas read:

Uifl_ui'Pi—1+Pi+Ui+1_ui'pi+1+pi . 2 iy
S 1 2 Sit1 2 8i7;+8i+; v

T2

where s;_1/7 is the distance between nodes i — 1 and i. Authors have often been
mislead by Taylor analysis and concluded that such schemes are only first-order
accurate. However, they are second-order accurate. This has been observed ana-
lytically (see, e.g., [16, 11] and numerically [5], [10]).

This discretization can be applied in a dimension by dimension framework.
However, special care needs to be taken when vertices are no longer aligned (see,
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FIGURE 5. Left: Discretization at ug in the case of a nonuniform mesh.
Right: Domain 2 = [0, 7]? and original mesh used in example 4.2.1.

e.g., Figure 5 [left]). In this case, [17] propose to use the truncation error in linear
interpolation in the transverse direction as part of the stencil for the derivative
in the other direction, leading to a more compact stencil, and an M-matrix. For
example, referring to Figure 5 (left) the discretizations for (puy), and (pu, ), along
with their Taylor analysis are given respectively by

— D D 2
<U1 UO_p1+p0+36 5+ S5 6)_ (4.1)
S1 2 S5 + Sg S1+ S4
5586
= O(h
(puz)s + (514 $4)84 (puy), + O(),
and
- - 2
(uz uo.Pz—I—po_i_U?, Uo.p3+po>. (4.2)
So 2 S3 2 So + 83
with
D; = Uss—:m . psgpo’
Dg = UG.;UO . pezpo_

The spurious term (Slsfjf)s4 (puy)y is cancelled by weighting appropriately

equations (4.1) and (4.2) as

u1—uo , P1+pPo +_86a5+€5a6 .2
s1 2 s5+S6 S1+84

- p2+p - p3+p 2 85 ¢ —
+ <UQ82uo ’ 22 ’ + u383u0 : 32 0) : So+S3 ’ (1 - (81:?:5)34> - fO + O(h’)

The discretization obtained is now first-order accurate at locally nonuniform

points and second-order accurate at locally uniform points, hence yields a globally
second-order accurate scheme in the maximum norm in light of Theorem 4.1.
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Effective Resolution Error in the L*™ norm Order Error in the L! norm Order

322 4.18 x 1071 9.25 x 1072

642 9.11 x 1072 2.20 2.09 x 1072 2.15
1282 2.31 x 1072 1.98 5.29 x 1073 1.99
2562 5.89 x 1073 1.97 1.33 x 1073 1.99
5122 1.49 x 1073 1.98 3.35 x 1074 1.99

TABLE 1. Second-order accuracy in the solution of example 4.2.1.

4.2. Numerical experiments

We report numerical evidences that confirm the schemes described above yield
second-order accuracy in the L' and L norms for both the solution and its
gradients, on highly irregular grids. In particular the difference of level between
cells can be greater that one, illustrating that the method preserves its second-
order accuracy on fully adaptive meshes. The linear systems of equations are solved
using a bi-conjugate gradient method with an incomplete Cholesky preconditioner.

4.2.1. Accuracy on solution. Consider a domain and a grid depicted in Figure 5
[right] and V (pVu) = f with an exact solution of u(z,y) = sin(z) + sin(y) and
density p = sin(z)sin(y) + 2. Dirichlet boundary conditions are imposed on the
boundary. Table 1 demonstrates second-order accuracy in the L' and L norms.

4.2.2. Accuracy on gradient. One distinguishing feature of this algorithm is that it
yields second-order accuracy in the maximum norm for the solution’s gradients as
well. This is achieved by removing spurious error with procedures related to those
presented above, i.e., referring to the notations in Figure 5 (left), the gradient at
ug is calculated as:

_ Uq4—UQ . S1 U —u1l . S4 _ 8586351
Uy = S4 s1+s4 + s1 s1+s4 284(81+s4)uyy’
w, = UsTuo . s2 | uo—uz s
Y s3 s2+83 S2 s2+s3”
where
U3 — up U2 — Ug 2
Uyy = + ) .
S3 So So + 83

Consider a domain and a grid depicted in Figure 5 (right) and V (pVu) = f
with an exact solution of u(z,y) = sin(x)+sin(y) and density p = sin(z) sin(y) +2.
Dirichlet boundary conditions are imposed on the boundary. Table 2 demonstrates
second-order accuracy of the gradient in the L' and L® norms.
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Effective Resolution Error in the L*™ norm Order Error in the L! norm Order

642 4.25 x 1072 9.48 x 1073

1282 1.66 x 102 1.36 2.41 x 1073 1.98
2562 4.42 x 1073 1.91 5.81 x 1074 2.05
5122 1.12 x 1073 1.98 1.41 x 10~* 2.04
10242 2.78 x 1074 2.01 3.46 x 107° 2.03

TABLE 2. Convergence rate for example 4.2.2.

5. Conclusion

We have described finite difference schemes for simulating incompressible flows on
nonuniform meshes. The quadtree (2D) and octree (3D) data structures allowed
for an efficient representation of the mesh. In particular, we have described two
different schemes for solving the Poisson equation. The first one is cell-centered
and yields first-order accurate solutions, while producing symmetric linear systems
[15]. The second is node-based and yields second-order accuracy for the solution
and its gradients, while producing nonsymmetric linear systems [17]. The schemes
are fully adaptive, i.e., the difference of level between two adjacent cells can be
arbitrary.
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Global Solvability of
Constrained Singular Diffusion Equation
Associated with Essential Variation

Yoshikazu Giga, Hirotoshi Kuroda and Noriaki Yamazaki

Abstract. We consider a gradient flow system of total variation with con-
straint. Our system is often used in the color image processing to remove a
noise from picture. In particular, we want to preserve the sharp edges of pic-
ture and color chromaticity. Therefore, the values of solutions to our model is
constrained in some fixed compact Riemannian manifold. By this reason, it is
very difficult to analyze such a problem, mathematically. The main object of
this paper is to show the global solvability of a constrained singular diffusion
equation associated with total variation. In fact, by using abstract conver-
gence theory of convex functions, we shall prove the existence of solutions to
our models with piecewise constant initial and boundary data.

Mathematics Subject Classification (2000). Primary 35K55, 68U10; Secondary
47J35.

Keywords. Singular diffusion, total variation, color image processing, subdif-
ferential.

1. Introduction

We consider a constrained singular diffusion equation associated with total varia-

tion as follows:
= —m, | —div “ in (0,7) x Q (1.1)
u |VU| ) 9 .

d
where u/(t) = dtu(t), 0 < T < +oo and  is a bounded domain in R? with
boundary T'. Let S"~! be the unit sphere in R” (n > 1), i.e.,

SPL = {w € R™ Jw| = 1}.
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For each element u € S™ !, let m, : R® — T,S™ ! be an orthogonal projection
from R = T,R™ to tangent space T,,S"~! of S"~1 at u.

The motivation of this paper is the color image processing. The constrained
singular diffusion equation (1.1) was proposed by Tang-Sapiro-Caselles [22; 23] in
order to remove a noise from the chromaticity of the initial image preserving the
sharp edges of picture and color chromaticity.

For the gray image processing, there is a vast literature. For instance, we
refer to [1, 2, 6, 19, 20]. In the simplest model of the gray image processing, the
Gaussian filter was used for a grey-level function. Namely, for a given initial grey-
level function ug, we solve the heat equation

v =Au in (0,T)xQ

to get a denoised grey-level function u(t,-) at scale t. However, this way has a
drawback since all characteristic function is mollified and a sharp contrast become
ambiguous. In order to keep the sharp edges, one use a (unconstrained) singular
diffusion equation governed by total variation flow

u' = div (|§u|> in (0,7) x Q,
u
u=g(x) on (0,T)xT, (1.2)
u(0,) = ug in Q,

where g and ug are given data. Then, the grey-level function is not mollified, and a
Heaviside type function is a stationary solution to (1.2). Since (1.2) is the gradient
system, we easily get the results on existence and uniqueness of solutions. In fact,
we can define the energy functional ¢ on L?(Q) by

/|va| if % € BV(Q),
u) = 9]

+00 otherwise.

o (1.3)

Here @ is the extension of u € L*(Q2) to R? such that u(x) = g(z) for z € R?\
), where g is a Lipschitz extension of the boundary data g to R2. Then, v is
proper, lower semi-continuous and convex on L?({2). Moreover, the (unconstrained)
gradient system (1.2) can be reformulated as in the abstract form:

u'(t) € =0 (u(t)) in L>(Q), fort > 0. (1.4)

Thus, by applying the general theory established by Brézis [5] and Komura [16],
we can get the solution to (1.2). For another detailed analysis, we refer to [1, 2],
for instance. The (unconstrained) singular diffusion equation is also important to
describe nonlinear physical phenomena (cf. [8, 10, 14, 15, 21, 24]). For instance,
Shirakawa-Kimura [21] studied Allen-Cahn type equation with the total variation
functional as the interfacial energy.
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In this paper we discuss the global existence of solution u : [0,T) x  —
S"~1 C R" to the following Dirichlet problem

"= —m, | —div Vu in (0, ,
Coln))women

u(0,) = ug in Q,

where ¢ and ug are given data which are maps from Q to S"~'. In 2003, Giga-
Kobayashi [10] considered the problem (1.5) in the one-dimensional case. Then,
they showed that for each piecewise constant initial data ug on §2, there is a unique
global solution u on [0, 00) such that u(t) is a piecewise constant on €. Moreover,
they studied the stationary problem in the case when the manifold is the unit circle
St in R2. In 2004, Giga-Kashima-Yamazaki [9] studied (1.1) in the n-dimensional
torus domain 2 := T" =[], (R/w;Z) for givenw; >0 ( = 1,2,...,n). Assuming
that the initial data wug is (sufficiently) small in some sense, they [9] constructed
the local solution to (1.1) in the torus domain T™ as the limit of solutions to
p-harmonic map flow equations with p > 1

v = —my, (=div (|VuP~?Vu))  in (0,7) x T" (1.6)

by passing to the limit of p — 1. In 2005, Giga-Kuroda-Yamazaki [12] proved the
global existence of solution to a discretized version of (1.1) with Neumann bound-
ary condition by restricting a class of mappings into that of piecewise constant
mappings.

The main object of this paper is to show a global solvability of (a discretized
version of) Dirichlet problem (1.5) by using the idea of [9, 10, 12]. Namely, for
each piecewise constant initial and boundary data we find the piecewise constant
solution u(t) to (1.5) on Q. Then, the problem is reduced to a system of ordinary
differential equations unless two different values merges. This is the key point and
idea in order to construct the global solution to the discretized Dirichlet problem
(1.5). Of course, merging may occur, so, it is very difficult to study the detailed
dynamics in 2-dimensional case. Different from one dimensional problem, our ap-
proach may not correspond to a solution of an original problem with a piecewise
constant initial data. Such a difficulty is also observed in the unconstrained prob-
lem of crystalline flow [4] and [8], for instance.

The plan of this paper is as follows. In Section 2, we reformulate the problem
(1.5) as in the evolution equation in some real Hilbert space by using subdifferential
of convex functional. Then, we mention main result (Theorem 2.3) in this paper,
which is concerned with the global existence of solution. In Section 3, we recall the
convergence theorem established in [9]. In Section 4, we consider the approximating
problem to (1.5). In the final Section 5 we give the proof of Theorem 2.3.

Notation

Throughout this paper, let € be a bounded domain in R? with boundary I'. We
denote by L?(Q;R") the space of R"-valued square integrable functions. For the



212 Y. Giga, H. Kuroda and N. Yamazaki

unit sphere S"~! in R™ (1 < n < +00), let L?(2;, 5" 1) be the closed subset of
L2(Q;R™) of the form

L2871 i= {v € L*(Q;R™) ; v(z) € S" ae. 2 € Q).

Let H be a real Hilbert space with the inner product (-,-), and ¢ : H —
(=00, +00] be a proper (i.e., not identically equal to infinity), l.s.c. (lower semi-
continuous) and convex function on H. Then, we denote by dp the subdifferential
of ¢, which is defined by the set

Op(u) ={f € H | o(u+h) —p(u) = (f,h) for any h € H}.

For basic properties of subdifferential, we refer to the monograph by Brézis [5].

2. Subdifferential formulation and main theorem
We begin with the definition of rectangular decompositions of €.

Definition 2.1 (Rectangular decomposition). For the bounded domain 2 in R?, let
C be a rectangular decomposition of R? so that C := {R;}jea is a disjoint family of
open rectangles R; = (aj,b;) x (cj,d;) which covers R? expect a Lebesgue measure
zero set. Then, we define a decomposition A of 2 associated with C by

A= {Qi}ie] with Q; = R;NQ, I = {Z eEN; Q; # (Z)}
Note that I is a finite index set, since €2 is a bounded domain.

Throughout this paper we fix the family A={Q;};c;. Then, let Ha be the

set of all R"-valued step functions on (J;.; s, i.e.,
Hp = {Z%Xm ; ai € R"} :
iel

where ygq, is the characteristic function on ;. We easily see that Ha is the subset
of L?(2;R™), and the total variation of u € Hx is given by this form

/|Vu|:Zcij|ai—aj| ifUEHA,

Q2 i<j

which is also called a essential variation of u. Here, we set ¢;; = H(9Q; N 99;),

where H! is the Hausdorff measure and 9€; is the boundary of ;. More precisely,

cij implies a length of 9€; N0QY;. For the precise definition and basic properties of

total variation, see monographs by Evans-Gariepy [7] or Giusti [13], for instance.
Now, by the similar argument in the gray image processing (1.2)—(1.4), we

reformulate the problem (1.5) as in some evolution equation. To do so, let us define

two functions on real Hilbert spaces. For given boundary data g € Ha, we put

Vu if uw € Ha with u(x) = g(z) for z € T,
pa(u) = /Q| | . (#) = g() (2.1)

400 otherwise.
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Then, from [7] or [13] it follows that A is the proper, l.s.c. and convex function
on L?(Q;R"). Also, we can define the proper, Ls.c. and convex function ®4 on
L?(0,T; L*(€;R™)) by the form (cf. [9, Proposition 2.1])

A (u / a(u@))dt  forallu € L*(0,T; L*(;R™)). (2.2)
(0.

Next, for each h € L?(0,T; L*(€%; S"!)) we define a map P, () from L?(0,T
LR(Q:R")) to L2(0, T L2(Q%: B™) by

Pu(f)(t, ) == Ty (f(t,x))  for ae. (t,z) € [0,T] x Q (2.3)

for any f € L? (O,T; L2(% R"))
By using these notations as above, we easily see that the problem (1.5) can
be reformulated as in the following form:

{ u € —P,(09%(u)) in L2(0,T; LA R™)),

24
u|t=0 = UQ in €. ( )

Now, let us give the definition of a solution to (2.4) (i.e., (1.5)).

Definition 2.2. Let 0 < T < +4o0. For given data g, up € Ha, a function u :  x
[0,T] — R™ is called a solution of (2.4) (i.e., (1.5)), if u € L(0,T; L*(Q; S™1)) N
C([0,T); L*(;R™)), we € L2(0,T; L*(;R™)) and (2.4) holds.

Now, let us mention our main result in this paper, which is concerned with
the global existence of a solution to (2.4) (i.e., (1.5)).

Theorem 2.3. Suppose the initial and boundary data ug, g € Ha with ug, g €
L2(Q; S"1). Then, for any time T > O there exists at least one solution u on
[0,T] to the problem (2.4), i.e., (1.5).

Note that we cannot apply the general theory (cf. [5, 16]) to the problem
(2.4), because of the projection P,. Hence, in order to prove Theorem 2.3, we
consider the approximating problem of (1.5), and apply the abstract convergence
theorem established in [9].

3. Abstract convergence theory

In this section, we recall the abstract convergence theory in [9]. We begin with the
notion of Graph-convergence for multi-valued operators on a real Hilbert space H.

Definition 3.1 (e.g. [3]). For (multi-valued) operators A,, (n =1,2,...) and A on
a real Hilbert space H, we say that A, converges to A in the sense of Graph as
n — oo, if for any (u,v) € Graph(A) there exists (un,v,) € Graph(A4,) such
that u,, — v and v,, — v strongly in H as n — +o0.

Ezample. (cf. [3] or [9, Appendix]). Let ¥, v, (n =1,2,...) be proper, l.s.c. and
convex functions on H. Assume that ,, converges to ¢ on H as n — +oo in the
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sense of Mosco [18], namely, the following two conditions are satisfied:
(i) For any subsequence {t,, } C {wn}, if zx — z weakly in H as k — o0,
then, lim inf ¥, (zk) > ¥(2).
k—+o0
(ii) For any z € D(¢) = {z € H | ¥(2) < 400}, there is a sequence {z,} in H
such that z, — z in H and ¢,,(z,) — ¥(z) as n — +o0.

Then, 0, converges to dy on H in the sense of Graph as n — +o0.

Next, let us introduce the class £(K) of the operator B(:)(+) : L*(0,T; G) x
L?(0,T;H) — L?*(0,T; H), where G is a non-empty closed subset of H and
L?(0,T;G) is a closed subset of L?(0,T; H) of the form

L*(0,T;G) :={u € L*(0,T; H) ; u(t) € G a.e. t € [0,T]}.

Definition 3.2 (cf. [9, Section 3]). We denote by B € L(K) the set of all operator
B(:)(:) : L?(0,T;G) x L?(0,T; H) — L?(0,T; H) satisfying the following three
conditions:

(i) For any u € L?(0,T;G), B(u)(-) is a bounded linear operator on L?(0,T; H).

(ii) There exists a constant K > 0 such that sup  ||B(u)(-)[lz < K, where
uw€L?(0,T;G)

[1B(uw)()lle = sup 1B (w) () 2 (0.7:00)-
veL2(0,T;H),||lv||=1

(iif) Ifasequence {uy}{>5 C L?(0,T;G) strongly converges to some u in L%(0,T;G),
then, there is a subsequence {uy)};2 C {ur}{ 2] such that
Bl(uyy)*(v) — B(u)*(v) strongly in L*(0,T; H)
for any v € L%(0,T; H), where B(u)*(-) is the adjoint operator of B(u)(-).

Ezample. The projection operator Py, (-) defined in (2.3) is contained in the class
L(K) in Definition 3.2.

Now, let us recall the abstract convergence theory established in [9)].

Proposition 3.3 (Abstract convergence theorem) (cf. [9, Theorem 3.1] ). Let ¥,
(n=1,2,...) and ¥ be proper, convez, l.s.c. functionals on L*(0,T; H). Let B €
L(K). Assume that OV,, converges to OV in the sense of Graph. Assume that there
is a constant R > 0 so that u, € L*(0,T;H) (n = 1,2,...) satisfies following
conditions;
ul, € =B(uy) (0¥, (u,) N Br) in L*(0,T; H),
un € L?(0,T; G),
un|t=0 = Up,n € G>
where Br := {u € L*(0,T;H) ; |lull200,r;mr) < R}. If wo,n — uo strongly in H
and u, — u in C([0,T),H) as n — +oo, then, the function u is the solution of
uw € —B(uw)(0¥(u)) in L*(0,T; H),
u€ L?0,T;G),
u|t:0 = 1Uug € G.
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4. Approximating problem

In this section we consider the approximating problem of (1.5). At first we shall
define the approximating energy function to (2.1).
For each € > 0, let us define the function % by the form

Z%\/MJ‘ —apl*+e? if ueHa
Pa(u) = i<k with u(z) = g(x) for x € T, (4.1)

+00 otherwise.

Clearly, ¢% is proper, Ls.c. and convex on L?(€2;R™) such that 9% (+) is single-
valued for any ¢ with Q; NT" = (). More precisely, we have
c —a;
TN I J Xq, for Q; with Q;NT =0 (4.2)
Al Z|Q| \/|CL1—CL]|2+52
for all u = ZaiXQi € Ha, where [€;] is the volume of ;.
iel

Since % is the approximating function of our energy @a defined by (2.1),

the approximating problem to (2.4) is given by the following form

{ ul = —P,, (&pEA(uE)) in L2Q;R"), ae.tc(0,7),

4.3
u€|t=0 = U in Q. ( )

Here let us mention the result on existence-uniqueness of solutions to (4.3).

Proposition 4.1. Suppose the same condition in Theorem 2.3. Then, for any e > 0
and T > 0, there exists at most one solution u. on [0,T] to the approximating
problem (4.3).

Proof. For each given data ug, g € Ha we can prove this Proposition by the slight
modification in [10, Subsection 4.3] or [12, Proposition 3.1].

In fact, let g = ZgiXQi € Ha. Then, by taking account of ug, g € Ha,
iel
(2.3) and (4.2), we observe that the approximating problem (4.3) is reduced to the
ODE (ordinary differential equation) system'

(ODE): Find a unique function wu. (¢ Zal Xq, on [0,00) such that a;(t) is
el
Lipschitz continuous from [0, 00) to S"~! satisfying

ai(t) =g; on; with Q;NT # 0,
dai(t) Cij ) —aj (t)
- 44
dt @it Z €] \/Ia@ ) —a;(t)]? + e 44
on QZ with QZ Nnl= (Z),

for each 7 € I.
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Since a;(t) € S™~! and the projection Tay(t) - R" — Tai(t)S"’l, we observe that the
right hand side of (4.4) is bounded independent of ¢. Hence, by applying the classi-
cal theory of ODE (e.g. Cauchy-Lipschitz Theorem), we can get the unique global
solution u. on [0,00) to (ODE), i.e., to our approximating problem (4.3). O

5. Proof of Theorem 2.3

In this section, we prove Theorem 2.3 by applying the abstract convergence theory
[Proposition 3.3]. We begin with the key lemma to show Theorem 2.3.

Lemma 5.1. Let pa and ¢S be proper, l.s.c. and conver functions on L?(£;R™)
defined in (2.1) and (4.1), respectively. Then, we have:

(i) @5 converges to oa on L*(;R™) in the sense of Mosco [18] as ¢ — 0.

(i) @z’s converges to ®X on L?(0,T; L*(;R™)) in the sense of Mosco [18] as
e — 0, where @z’g is proper, l.s.c. and convex on L? (O,T;LQ(Q;R")) de-
fined by

o~ [ )@ for allue 0.7 L20R).
0

Proof. By the general theory of convex analysis and the lower semi-continuity of
the total variation, we can easily show (i). The assertion (ii) is the direct conse-
quence of (i). O

Proof of Theorem 2.3. By applying the abstract convergence theory [Proposition
3.3], we can get the solution of our problem (2.4) as the limit of the function wu.
of (4.3) when € — 0.

Note that the function w. is also a solution to the approximating problem

{ ul = —P, (095 (u.)) in L2(0,T; L2 R™M),

5.1
us'tZO = Uo in Qv ( )

since we observe that f € d®L*°(u.) in L2 (0,75 LA(Q;R™)) if and only if f(t) €
00 (ue(t)) for a.e. t € [0,T] (for instance, we refer to Brézis [5]).

Now, we take L2(£2;R") as a real Hilbert space H, and choose L?(£2; S"71)
as a non-empty closed subset G in Proposition 3.3. Moreover, from Examples in
Section 3 and Lemma 5.1 we observe that the projection operator Py(-) € L(K),
and 8<I>£’5 converges to 0% on L2 (0, T; L?(%; R")) in the sense of Graph ase — 0.

By the expression (4.2) of 9% (ue), we see that the subdifferential 9% (ue)
is bounded in L?(Q;R™) uniformly in e. Therefore, the subdifferential 9% (u.)
is also bounded in L? (0, T; L?(%; R")) uniformly in € for each T' > 0, hence, there
is a closed ball By of L? (0, T; L?(Q; R”)) such that

8@2’5 (ue) C Bg  uniformly in € > 0 for each T' > 0.

Since u, is the solution to (4.3) on (0,7, there is an element u € 9% (ue)
such that u.(7,2) = —my_(74)(ul(7,2)) for a.e. (1,2) € (0,T)x €. By the definition
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of y_ (r,2)(+), we see that u_(r,z) € TuE(T’I)S"’1 for a.e. (1,2) € (0,T) x Q. Thus,

we have
/ |u’€(7',ac)|2dx
Q

for a.e. 7 € (0,T). By integrating (5.2) over (0,T"), we get the energy equation

(W (7) =Tue (1) (u2)(T)) L2 (umm) (5:2)

= () u () = — o @ (7))

/0 /Q [ul (T, ac)|2dxd7 + oA (ue(t)) = pa(ug) for any t € [0,T]. (5.3)

From (5.3) and the compactness theory (cf. [13, Theorem 1.19]) it follows that
{ue(t)} is relatively compact in L?({; R") for any ¢ € [0, 7. Thus, Ascoli-Arzela’s
theorem implies that there exist a subsequence {uc,, };7° C {u.} and a function
u € C([0,T]; L?(£;R™)) such that &,, — 0 and

ue,, — u strongly in C([0,T]; L*(;R™))  as m — oo.

Therefore, since assumptions of the abstract convergence theory [Proposition 3.3]
are satisfied, we can apply Proposition 3.3 to our problem. Thus, we conclude that
w is the solution on [0,T] to (2.4) (i.e., (1.5)) for each T > 0. O
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Capillary Mediated Melting
of Ellipsoidal Needle Crystals

M.E. Glicksman, A. Lupulescu and M.B. Koss

Abstract. Measurements of video data on melting dendritic crystal fragments
in reduced gravity show that a fragment’s ellipsoidal axial ratio, C'//A, rises
initially until it melts down to a pole-to-pole length of C' ~ 5 mm. At that
point we observe a sudden fall in the C//A ratio with time, as the polar re-
gions melt toward each other more rapidly than C'/A times the melting speed,
dA/dt, of the equatorial region. This accelerated melting allows the C//A ra-
tio to fall from values around 10-20 (needle-like) towards values approaching
unity (spheres) just before total extinction occurs. Analytical and numerical
modeling will be presented that suggest that the cause of these sudden changes
in kinetics and morphology during melting at small length scales is due to a
crystallite’s extreme shape anisotropy. Shape anisotropy leads to steep gra-
dients in the mean curvature of the solid-melt interface near the ellipsoid’s
poles. These curvature gradients act through the Gibbs-Thomson effect to in-
duce unusual thermo-capillary heat fluxes within the crystallite that account
for the observed enhanced polar melting rates. Numerical evaluation of the
thermo-capillary heat fluxes shows that they increase rapidly with the C'/A
ratio, and with decreasing length scale, as melting progresses toward total
extinction.

PACS numbers: 66.30.-h, 81.10.-h, 81.30.Fb, 83.10.-y

Keywords. Mushy zones, dendrites, melting, capillarity, microgravity.

1. Introduction

Dendritic (branched) crystals are often encountered whenever metals, semiconduc-
tors, ceramics, and some organic materials solidify from supercooled or supersatu-
rated melts and solutions, or when alloys solidify directionally under low thermal
gradients [1]. Thermal dendrites are the simplest cases to treat theoretically, as
their formation involve only the redistribution of latent heat in a pure molten
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phase. Two comprehensive reviews summarizing the kinetics of dendritic crystal
growth are available [2, 3].

The most precise quantitative experiments that test theories of dendritic
growth were accomplished about six years ago as a series of microgravity space
flight experiments using transparent plastic crystals crystallizing from their melts
at small supercoolings [4, 5]. Dendritic growth measurements made in micrograv-
ity advantageously simplify the transport of latent heat during crystal growth
by eliminating nearly all sources of melt convection [6]. Specifically, the kinetics
of dendritic growth in high-purity succinonitrile (SCN), a BCC crystal, and pi-
valic acid (PVA), an FCC crystal, were measured under convection-free conditions
on three United States Microgravity Payload Missions (USMP-2, 1994, USMP-3,
1996, and USMP-4, 1997). These missions were flown as a coordinated series on the
space shuttle Columbia. Video data were recorded for the first time on USMP-4,
allowing measurements of the kinetics of dendritic fragments undergoing melting
in microgravity. Microgravity melting of crystals is unique in avoiding any rela-
tive motions or natural convection between solid and melt because of the virtual
absence of buoyancy forces.

The initial experimental melting data were analyzed on the basis of conduc-
tion-limited quasi-static melting theory. This theory was developed specifically
to predict the growth rate or melting speed of needle-like crystallites that were
modeled as slender ellipsoids with time-dependent major and minor axes of lengths
C(t) and A(t), respectively [7]. Close agreement was found between that theory and
the microgravity experiments when the melting process occurred under “shape-
preserving” conditions. Shape preservation implies a constant value during melting
of the C//A ratios of individual ellipsoidal crystal fragments [7].

2. Mushy Zones

The measurements taken with video recording of PVA crystals during USMP-
4 provide the first significant compilation of convection-free melting data over
a large variation of length scales, covering a range from about 1072 m down to
2 x10~* m. As melting progresses, see the video sequence in figure 1-left, dendritic
side-arms detach and shorten. Each fragment eventually melts away to extinction.
It is especially important to note that in microgravity the individual crystallites
remain motionless, and that melting proceeds by thermal conduction from the
heated surrounding melt to the crystallites.

3. Melting and freezing
3.1. Background

Until recently, quantitative studies of melting kinetics comprise a relatively small
body of experimental literature, and researchers had concentrated on mathematical
analysis of the kinetics of melting in pure materials, such as heat storage media
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Hires

Video Frame: Time =33 s

FIGURE 1. Left: Sequence of video frames after most crystal fragments
in the dendritic mush zone are totally melted. Right: Last fragment
to melt in the same video field of view. Digital image analysis of the
middle frame shown in the video sequence on the left. Automated edge
detection is employed to find the elliptical profile of this PVA crystallite
to determine its major and minor axes, C(t) and .A(t), respectively. Tip
of glass injector at top of all frames is 1 mm in diameter.

or so-called phase change materials or PCM’s [8]-[12]. A mathematical review
is available of moving and free boundary approaches applied to the analysis of
melting kinetics by Herraiz et al. [13]. Their comprehensive survey includes most of
the known analytical solutions for melting. Melting kinetics in superheated alloys
was also analyzed recently by Coriell et al., who demonstrated the interesting
occurrence of multiple similarity solutions [14, 15]. Rettenmayr et al. published a
series of interesting papers on the non-equilibrium melting of alloys that provide
experimental observations and theoretical analysis of melting phenomena where
solute diffusion plays a key réle [16]-[19].

Both quasi-static and moving boundary solutions are well known for the
growth of spherical crystals [20, 21]. Also, a class of moving boundary similarity
solutions was developed by Ham that describes the freezing of crystals in the form
of ellipsoids and hyperboloids [22]. Ham’s solutions for the growth of ellipsoidal
crystals, however, based as they are on similarity solutions to the heat conduction
equation, are neither morphologically stable for the case of freezing, nor are they
applicable via time reversal to the process of melting.

The present authors also recently analyzed a specific class of conduction-
limited melting problems related to the present work, namely, the quasi-static
self-similar melting of prolate spheroids [7]. Analytic solutions were developed ear-
lier by assuming the presence of small superheating in the melt (quasi-static con-
ditions), ignoring the influences of capillarity at small length scales, and employing
the simplification that the crystal’s C/A ratio remains constant during melting.
Specifically, potential theory predicts the changes with time, ¢, of a crystallite’s
semi-major axis, C(t), rescaled with respect to the crystal’s initial semi-major axis
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length, Cy. The melting kinetics derived in [7] may be written as
C(t)/Co = \/1 £ Kprolate X St - Fo. (1)
In Eq. (1) the kinetic coefficient, Kprolate, is defined as

16 O\
Kprolate: Elog E+% <A> )

where the parameter = > 1 is the prolate spheroidal interface coordinate denoting
the crystal-melt interface. Kprolate < 0 for melting, and positive for freezing, re-
spectively. An interface becomes progressively more needle-like in shape as 2= — 1,
and more spherical as = — oo. The melting kinetic constant can be expressed
solely in terms of the crystal’s C'//A ratio by using the relationship for prolate

spheroids that g = Jz1 The dimensionless melting time, or Fourier number, is

defined as Fo = gét , where ay is the thermal diffusivity of the melt. The melting
Stefan number, St, is defined as the ratio of the superheating in the surrounding
melt, To, — T}, to the material’s characteristic temperature, T = A(Z 7. Thus,
St = (Too — T1n)/T, where To is the temperature of the melt far from the crys-
tallite; 17, is the equilibrium melting temperature; AHy is the molar enthalpy of
fusion, and ASy is the molar entropy of fusion. It is apparent from the form of Eq.
(1) that the conduction-limited freezing of prolate spheroids at a constant C/A
ratio will progress at long times as approximately the square-root of time. In the
case of conduction-limited melting, the rate of melting — as measured by the major
axis — will accelerate continuously, approaching an infinite rate at the extinction
time. This last important kinetic prediction, along with independent estimation of
the melting Stefan number, St, were checked quantitatively from the video images
derived from the IDGE microgravity experiments [7]. The correspondence between
Eq. (1) and experiment was generally excellent, as may be seen in figure 2. The
theoretical curve approaching the extinction time tends to under-predict the rate
of melting slightly.

4. Dendritic melting experiments

4.1. Background

The Isothermal Dendritic Growth Experiment (IDGE) was designed to test ex-
isting mathematical models that predict how melt supercooling affects dendrite
growth speed and tip radius [5], [32]-[37]. As mentioned in the introduction, only
the final space flight, USMP-4, provided the capability for real-time digital stream-
ing of 30 fps full gray-scale video during crystal growth and melting. During the
final minute of melting, just prior to extinction, the thermal fields within the
melting chamber stabilize. Individual video frames covering that period were con-
verted to .tiff files and exported to permit the post-flight kinetic melting analysis
discussed here.
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FIGURE 2. Comparison with theory, Eq. (1), of the observed crystallite
major axis length, C(t), versus melting time. The extinction time ob-
served for this melting experiment was approximately 40 s. The value of
Kprolate = 360.6 selected to predict these data corresponds to a steady
C/A ratio of approximately 12.

4.2. Video data analysis

The size and shapes of the melting dendritic fragments were determined from in-
dividual digitized video frames using commercial image analysis software [38]. The
equivalent ellipse of the two-dimensional profiles of the crystal-melt interfaces sur-
rounding selected fragments were calculated using the measured lengths of their
semi-major axes, C(t), and semi-minor axes, A(t). These crystallites often, but
not always, approximated ellipsoidal bodies of revolution, excepting some rem-
nant surface irregularities on the otherwise smooth crystal-melt interface. These
projections, moreover, represent the profile of the crystallites viewed normal to
their C-axis.

We have already reported details [7] on the kinetic analysis using Eq. (1) to
predict the behavior of a needle crystal melting self-similarly with a nearly constant
C/A = 12. See again Figure 2. We now present the analysis of melting crystal frag-
ments close to the extinction time, when the axial ratio C//.A changes significantly
with time. Specifically, in the current study of the measured C/A ratios of melting
PVA crystal fragments, the axial ratio rose during most of the melting process but
then suddenly decreased as the extinction point, tT, approached. The extinction
point corresponds to the time at which a fragment completely disappears within
one additional video frame. Kinetic data for melting, as reported here, usually
started at about ¢ = (t' — 60) s. For example, the time-dependent behavior of the
C/A ratio is shown for these crystallites in Figure 3-left, and Figure 3-right. In
both of these melting cycles the [C'/A ratio during the last minute climbs steadily
from its initial value of C/A ~ 7 to more than about C'/A ~ 17 — indicating a



224 M.E. Glicksman, A. Lupulescu and M.B. Koss

20

Cra

capillarity starts here capillarity starts here

0 I I I I I
0 4 1 L L 1 1] 10 20 3o 40 50 60
0 10 20 30 40 50 80

Time [s] Time [s]

FiGURE 3. Left: C/A ratio versus time. Data for PVA crystallites
formed at an initial supercooling of 0.42K in the IDGE, during USMP-
4. The C/A values rise steadily until at about 50 s. they suddenly drop.
Right: The C/A ratio versus time. Data for crystallites formed at a sim-
ilar initial supercooling of 0.46K. The C/A almost doubles during the
first 50 s. of melting, and then fall precipitously.

strongly increasing anisotropy of the shape as the crystallite melts and becomes in-
creasingly slender and more needle-like. Then, at the point where the total length
of the crystallite, 21 x C(t), is reduced by melting to less than about 5 mm, and the
corresponding crystallite diameter 2A(¢) is reduced to 0.03 mm, one consistently
observes (see again Figure 3-left, and Figure 3-right), that the rising C'/A ratios
suddenly reverse their trend and begin to fall rapidly. When the C/A ratios reach
values between roughly 10 and 5, respectively, the speed of melting becomes so
high that the video framing rate cannot keep pace with the changes leading to
extinction. This sudden reduction in the crystallite’s axial ratio just precedes its
extinction from melting at t' ~ 60 s. As it will be discussed in more detail later
in this paper, we suggest that this unusual behavior, i.e., the sudden decrease
during melting in a crystallite’s shape anisotropy, or slenderness, reflects that its
dimensions have become sufficiently small for the crystallite to begin exhibiting
significant capillary or surface tension effects. Such an observation or suggestion
for its cause has, to our knowledge, not been reported, heretofore.

More specifically, as melting progresses, the reduction in crystal size increases
the mean curvature at all points on the ellipsoidal interface, but especially near
its poles. The increased curvature reduces the equilibrium melting point, via the
Gibbs-Thomson effect [12, 39], which in turn speeds up the melting process. The
presence of highly curved regions near the poles results in enhanced melting rates
that force the poles to approach each other faster than even the self-similar rate of
decrease in the equatorial diameter. In order that the poles on a slender crystallite
melt fast enough to cause a reduction in the crystallite’s axial ratio, the following
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inequality must hold:

ac' C |dA
> . . 2

ul> | @
The enhanced speed of melting at and near the poles suggested in Eq. (2)

would result in the crystallite achieving a more spherical shape, consistent with

the observed drop in the C'/A ratio. If relationship (2) above were an equation

rather than the expressed inequality, the ellipsoid would melt away self-similarly
with a constant axial ratio.

5. Interfacial capillary

5.1. Curvature of ellipsoids

Quasi-static conduction theory, as mentioned earlier, is able to correlate nearly all
the observed kinetic melting data up to the time, ¢, at which crystallite extinction
via melting occurs. This observation may be ascribed to the fact that although
capillarity can drastically alter the shape of a small melting crystal fragment, it
has only minor effects on a crystallite’s equilibrium melting point over the range
of size scales that were observed in our experiments.

The equilibrium melting point of a small crystal with an anisotropic inter-
facial energy, (), is given by the anisotropic Gibbs-Thomson-Herring equation
[39], namely

ASy/Q ’
where (2 is the molar volume of the crystal. Here we have chosen to parameterize
the location along the interface using the orientation angle, ¢, of the local unit
normal on the interface with respect to the C-axis, or (100) zone axis of the PVA
crystallite, rather than the polar projection angle, 6, from the ellipsoid’s centroid,
x =y = z = 0. The second angular derivative of the interfacial energy, v,,, that
appears in Eq. (3) is also taken with respect to this normal orientation angle.

T.=Tp —

5.2. Thermo-capillary effects

As discussed earlier in Section 3.1, a crystal surrounded by a large body of hotter
melt that is heated to a temperature, T, > T, experiences a rate of melting
caused by heat conduction, the intensity of which is controlled by the melting
Stefan number, St. A local Stefan number for melting, including the effect of
curvature on temperature, Eq. (3), may be written as

Co ((9) + Y00) ( Cp >,H.

Stoe = Toe =Tu) N pp A0 \am,

(4)

The first term on the right-hand side of Eq. (4) is the melting Stefan number ap-
plicable to a large crystal, where surface tension effects may be neglected, whereas
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FIGURE 4. Left: Principle sections through a needle crystal. The crystal
is in the form of an ellipsoid with its C-axis parallel to the y-axis, and is
viewed here as a projection onto the plane x = 0, and rotated into the
plane of the page. Its A-axis is parallel to the xz-axis, and is viewed here
with its projection onto the plane y = 0, and rotated into the plane of
the page. This ellipsoid’s C/A ratio equals 10, which is typical of the
axial ratios encountered in the present melting experiments. The polar
projection angle 6, defined as 6 = arctan(y/z), provides a convenient
running variable, against which the mean curvature, H(6), of the ellip-
tical cross-section may be plotted. Right: Mean curvature, H, around
the upper half of the ellipsoid’s surface. (Note use of a logarithmic scale
on the ordinate.) The angle § = 0 locates the ellipsoid’s equator, shown
as the circular projection on the left, around which the curvature is a
minimum. The north and south poles of the ellipsoid occur at § = +m/2,
which designate interfacial locations that exhibit the maximum curva-
ture.

the second term provides the local correction arising from anisotropic capillarity.
Equation (4) can be written conveniently as

Stloc =S5t+ AStcapa (5)

where ASt.,, is the local capillary correction added at small length scales (large
H values).

During the microgravity melting experiments reported here, capillary effects
became significant for crystals melted sufficiently to reduce their semi-major axis
lengths to less than C ~ 0.25 cm. The additional thermo-chemical data for pure
PVA needed to evaluate eqs. (4) and (5), include: T5, = 309 K, C,/AH; =
0.091 K='. The 4-fold anisotropy of the interfacial free energy taken about the
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(100) crystallographic direction that coincides with the major growth axes of PVA
dendritic crystallites may be expressed in polar form as [40],

(’Y + ’wa)
ASy/Q

The normal angles at the poles of a prolate spheroid are ¢ = +m/2. When these
materials data are substituted back into Eq. (6) to evaluate the capillary constants
at the poles one finds that (y 4+ 7,,)2/ASy = 1.1 x 107° [cm-K]. Inserting all of
these terms into Eq. (4) shows that the maximum capillary correction, or con-
tribution, to the apparent melting Stefan number at the poles of the crystallites
observed in the experiments reported in figure 1

ASteap ~ 1.0 x 1077 Hpole- (7)

At the poles, k1 = k2, so the maximum mean curvature, Hpole, for an ellipsoid
with a given C/A ratio and minor axis length, A, may be shown to be

1-C\ 1
Hpole = KRpole = ( A ) A (8)

1

=4.5x 107%(1 — 0.75 cos 4¢) [cm - K]. (6)

Inserting the right-hand side of Eq. (8) back into Eq. (7) yields the maximum
capillary correction to the melting Stefan number for these crystallites (C'/A ~ 17
and A ~ 0.012 cm), namely

: 1
ASteqp =1.0x 107" (ZAC> [ A 107 (9)

5.3. Internal thermo-capillary fluxes

Such a small change in St caused by capillarity would have negligible influence
on the heat flux delivered externally to the poles from the surrounding hotter
melt. As suggested, however, by the behavior of the mean curvature shown in
Figure 4 right, needle-like ellipsoidal crystals also exhibit an enormous gradient
of their curvature near their poles. A steep gradient in the mean curvature of
the crystal-melt interface also corresponds, via the Gibbs-Thomson-Herring effect,
to a large capillary-induced local temperature gradient: with the polar regions
at the coldest location, i.e., largest mean curvature, and the equator and mid-
latitudes slightly warmer. The strong gradients of the interfacial curvature near
the poles add an additional thermo-capillary flux of heat conducted within the
crystallite that increases its melting rates near the poles. Figure 2-left shows a
sketch suggesting this mechanism of enhanced heat currents that reside internally
and externally to the crystallite. The authors calculated the detailed dependence
of the internal thermo-capillary flux at the ellipsoid’s poles as a function of the
C/A ratio. These data, presented in Figure 2-right, are based on finite element
numerical solutions of Laplace’s equation.

1 For the anisotropic case considered here, the actual maximum capillary correction to the melting
point occurs at a latitude slightly below the true pole. This offset in the coldest latitude is,
however, small and will be ignored for the purposes of the present analysis.
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6. Conclusion

The heat flux data in Figure 2 support our hypothesis that sharp curvature gra-
dients account for internal thermo-capillary heat fluxes that cause the observed
onset of a falling C/A ratio, whenever crystallites melt below a critical size. In
the specific example drawn from the melting cycle analyzed in figure 3-right, the
critical size at which thermo-capillary effects become manifest occurs at ¢t = 52 s,
corresponding to the time at which the major axis length C' = 0.4 cm, and the
minor axis A = 0.024 cm.

1200 T T T T T

1000 o

800 -

600 -

Internal Flux,

400 -

200 |- B

C/A Ratio

FI1GURE 5. Left: External fluxes, controlled by the Stefan number of the
heated melt, and internal fluxes, controlled by the curvature gradient
near a sharp tip. Extra (internal) flux causes the poles to melt more
rapidly, which accounts for the observation that the C/A ratio drops
rapidly as a melting crystallite approaches its extinction point. Right:
Finite element calculations of capillary induced fluxes within a melting
crystallite.
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Boundary Regularity at {t = 0} for
a Singular Free Boundary Problem

Eurica Henriques and José Miguel Urbano

Abstract. In this note it is shown that the weak solutions of the Stefan prob-
lem for the singular p-Laplacian are continuous up to {¢t = 0}. The result is a
follow-up to a recent paper of the authors concerning the interior regularity.
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lem.

1. The problem and the regularity result

In a recent paper (cf. [5]), the authors obtained interior continuity results for the
weak solutions of the singular parabolic PDE

o =00 =0, nend); 1<p<2, (1.1)

where v is a maximal monotone graph and Ayu = div|Vu[P~2Vu is the p-
Laplacian. When v has a single jump at the origin, this equation generalizes to a
nonlinear setting the modelling of the classical Stefan problem that corresponds
to the case p = 2 and describes a phase transition at constant temperature for a
substance obeying Fourier’s law. Equation (1.1) is singular both in space and time
since 1 < p < 2 and, roughly speaking, +'(0) = co.

In this note it is shown that, for continuous initial data, the continuity result
holds up to {t = 0} so that, in a way, the solution inherits the continuity properties
of the boundary data. We consider a regularized approximated problem and show
that the sequence of approximate solutions is equicontinuous up to {¢ = 0}. Due to
the singularities in the equation we need to use intrinsic scaling to uniformly reduce
the oscillation of the approximate solutions in a sequence of shrinking cylinders
laying at the bottom of the space-time domain. For a modern account of intrinsic
scaling and related matters, we suggest the reading of the recent survey [4].

To fix ideas, assume that an incompressible material (say pure water) occupies
a bounded domain  C RY, with two phases, a solid phase corresponding to the

Research supported by CMUC/FCT, Project POCI/MAT/57546/2004 and PRODEP-FSE.
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region {# < 0} and a liquid phase corresponding to the region {6 > 0}, separated
by an interface ® = {6 = 0}, the free boundary. We denote Qr = Q x (0,7 and
¥ =00 x (0,T), for some T > 0. The problem in its strong formulation reads

o0 = A0 in Qpr\®={0<0}u{0>0}

[|V0|p72V0]j ‘n = Aw-n on ®={6=0}
0 = 0 on X

0(0) = 6, in Qx{0}
where n is the unit normal to ®, pointing to the solid region, w the velocity of
the free boundary and A = [e]T > 0 the latent heat of phase transition (e is the
internal energy), with [.]* denoting the jump across ®.

As usual, a weak formulation, in which all explicit references to the free

boundary are absent, is obtained considering the maximal monotone graph H

associated with the Heaviside function, and introducing a new unknown function,
the enthalpy 7, such that

(P)

ne~vy@) =0+ H(O) .

A formal integration by parts against appropriate test functions and the replace-
ment of the initial condition for # by a more adequate initial condition for n, leads
to an integral relation that we adopt as definition of weak solution.

Definition 1.1. We say that (1, ) is a weak solution of problem (P), if
o€ L7(0, T3 W3 "(Q)) NL=(Qr) ;
ne L*Qr) and ne~(9), ae in Qr;

- / n i + / VOP2ve . ve = / wE0) | Ve T(Qr) .
Qr Qr Q

The space of test functions we are considering is
T(Qr) := { EcL? (o,T; W&J’(Q)) D0 e L*(Qr), &T)=0 } ,
and we assume that
o €v(0), and IM >0 : |§p(x)| <M, ae. z€N. (1.2)
Let 0 < e < 1 and consider the bilipschitzian function

Ye(s) = s+ AHe(s) ,

where H, is a C*°-approximation of the Heaviside function. Taking also functions
0o € WP (Q) such that

Ooc = 6o , ve(Boe) = mo in LP(Q) and |fp| <M, ae. in

we define a sequence of approximated problem as follows:
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(P:): For each 0 < € <« 1, find a function
0 € H'(0,T; L*(Q)) N L*(0,T; W, P(Q)) N L (Qr)
such that

- / 7e(6) D€ + / V6,72V, - V¢ = / Ye(Bo) £(0) . V€ T(Qr) . (13)
Qr Qr Q

In the presence of the regularity required, equation (1.3) can be shown to be
equivalent to the two conditions: 6.(0) = 6y and, for a.e. t € (0,T),

/ F[ve(0e)] <p+/ IVO[P2V0. - Vo=0, YoeWyP(Q). (1.4)
Qx{t} Qx{t}

It was shown in [7] that this approximated problem has a unique solution and
enough a priori estimates were derived to pass to the limit and obtain a solution
of the original problem. In particular, the sequence of approximate solutions was
shown to be equibounded.

We show here that there exists a uniform, i.e., independent of ¢, modulus of
continuity for . up to {t = 0} and this will allow us to obtain a continuous solution
up to {t = 0} for the original problem as a consequence of Ascoli’s theorem. We
need to assume, in addition to (1.2), that

0o € C(2) and (foc)e is equicontinuous. (1.5)

This means that, over a compact K C €2, each 0y and 0y have the same modulus
of continuity.

We will prove the following regularity result.

Theorem 1.2. The sequence (0.), is equicontinuous up to {t = 0}. Then the weak
solution of problem (P) is continuous up to {t = 0}. Moreover, for any com-
pact K C €, there exists a non-decreasing continuous function wg : Rt — RT,
wi (0) = 0, depending only upon the data and the modulus of continuity of 0o,
such that

1
0(@1,t1) = 0wz, t2)] < wic (Jor — @] + [ty — b))
for every pair of points (x1,t1), (x2,t2) € K’ x[0,T], and every compact K' C K.

In face of the recent results of [5], we clearly only need to prove the continuity
at t =0.

2. Energy and logarithmic estimates near {t = 0}

The building blocks of regularity theory leading to continuity results are energy
and logarithmic estimates. These are the fundamental tools to proof Proposition
3.1 and will be derived next.

The crucial observation here is that, when deriving estimates for (1.1) in
cylinders laying at the bottom of Qp, the term involving (6, — k)+ with power one,
is absent, unlike in the interior case, which strongly simplifies the analysis. This is
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due to the choice of an independent of time cutoff function, which suffices for our
purposes, and an appropriate selection of levels k, according to the initial data.

Given a point 29 € RN, K,(x() denotes the N-dimensional cube with centre
at x¢ and wedge 2p:

- N . R .
K,(xo) == {w e RY : 1rgnizg§v|xz Zoi| < p} .

Fix (z9,t0) € Q7 and consider the cylinder
(w0, to) + Q(7, p) = K, (x0) X (to — 7, 10)

where 7 is such that ¢y — 7 = 0 so the cylinder lies at the bottom of Qp. Consider
a piecewise smooth cutoff function £, independent of ¢ € (0, ¢y), satisfying

0<¢E<1, |V <oo and &(z)=0, x ¢ K,(zo) . (2.1)
In the weak formulation (1.4), take ¢ = & (0. — k), &P € WP (K,(z0)) and then

integrate in time over (0,t), for t € (0,tp). Since

(0c—k)+
+0; (Ve(0e)) (0 — k) = £7((0c) 010c (0 — k)+ = O (/0 vi(k £5) s ds) ,

recalling the t-independence of £ and the definition of 7., we obtain the following
bound from below for the term involving the time derivative

1
/ (0. — k)2 €0 —2(M + /\)/ O — ke . (22
2 JK ,(zo)x{t} K, (w0)x {0}
Observe that, if we choose
k> sup 6oe(x) (2.3)
€K, (o)

when working with (§. — k)4, and

k< inf 6o 2.4
*xe}?i(xo)o(x) (2.4)

for (f. — k)_, the second term of (2.2) vanishes. On the other hand, the term
concerning the space derivatives is estimated above by

1 t t
V(0 — k)P & - C 0. — k)R |VEP
2/0/;@,@0)' (6. K)sl € <p>/0/Kp(x0)< o |ve

p—1

using Young’s inequality with e = (2(p — 1)) » . We thus obtain

Proposition 2.1. There exists a constant C, that can be determined a priori in
terms of the data and independently of €, such that for every (xo,to) € Qr, for
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every cylinder (xo,to) +Q(7, p) such that to—71 = 0, and for every level k verifying
(2.3) or (2.4),

to
w_ | 6-pie+ [ [ vk e
0<t<to JK,(xo)x{t} 0 JK,(z0)

to
_L\P P
< / /K R D

Now consider the logarithmic function

H:t
UE =0 (HE (0. — k ,c:(ln< k )> ., 0<c< HF
( k( ):t ) H};I:_i_c_(ee_k_)i N k

where

Hf = esssup (0 — k)«
(z0,t0)+Q(T,p)

In the weak formulation (1.4) take
2 ! + +\/
o= [(8)] e =20 (vt) ¢,
where ¢ is defined as in (2.1).

1
Ut(z,0)=0 for k> sup 6o (x)
€K, (x0)

Observing that

U (x,0)=0 for k< inf 6Op(x) |,
r€K,(x0)

p—1
and using Young’s inequality with ¢ = (2(p — 1))p1’ we arrive at

Proposition 2.2. There exists a constant C, determined a priori only in terms
of the data and independently of €, such that for every (zo,to) € Qr, for every
cylinder (xq,to) + Q(7, p) such that to —m = 0 and for every level k verifying (2.3)
r(2.4),

+\2 fo + +\/ 2-p
sup / (%) fpﬁ/ / v ’(\I} )
0<t<to JK,(z0)x{t} 0 JK,(zo)

3. Reduction of the oscillation in rescaled cylinders

Vel . (2.6)

Fix (z9,0) € Q x {0}, and take R > 0 such that Kr(zo) C . By translation, we
may assume that zg = 0. Introduce the cylinder

Q (RP,2R) := Ksr x (0, RP)
and define

+ _ - _ 4 _
pum=esssup 6.; p =essinf O.; w=essosc O.=p" —pu
Q(R? 2R) Q(R” 2R) Q(RP,2R)
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Construct the cylinder
w \2-p
Q (a/ORpaR) = KR X (O,CLoRp) ) ag = (2m) )
where m > 1 is to be chosen. Without loss of generality, we may assume that
v, <1 so that the following relations hold:

2771,
aoRP,R) C Q (R?,2R) and essosc 0. <w.
Q (ao ) CQ( ) o

The proof of Theorem 1.2 is a well-known consequence of the following iter-
ative argument.

Proposition 3.1. There exist constants o € (0,1), and C,m > 1, that can be
determined a priori only in terms of the data, such that constructing the sequences

wo = w Ro=R
and R
Wnt1 = 0 Wn Rpt1=cn

and the family of boxes

P wn \ 2P
Qn - (aanaRn) 5 Ap = <2m> 5
we have
Qn+1 CQn and essosc 6. < max {wn,2 ess osc 905} , (3.1)
Rn

forallm=0,1,2,....

To prove Proposition 3.1, assume first that both inequalities

ut — w < ,uar := ess sup 6o, and uwo+ w > g = ess inf O, (3.2)
4 4 Kr

Kr

hold. Subtracting the second inequality from the first one we get
w
9 g,ug—/ig:es%gsc Ooc .

and the proposition is trivially proved.

Without loss of generality, assume that the second inequality in (3.2) fails.
Then the levels k = u~ + 5., for s > 2, verify k < py and, consequently, the
energy and logarithmic estimates (2.5) and (2.6), respectively, hold for (8. — k)_.
The next result has a double scope: it determines the parameter m that defines the
height of the constructed initial cylinder and defines a level such that the subset
of @ (aoRp , g ) where 6. is below that level is small.

Lemma 3.2. For all v € (0,1), there exists m > 3, depending only on the data,

such that
(z,t) € Q (aoRp, };) Dle(zt) <p” + Q (aoRp, I;)‘ .

w
2m

<
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Proof. Consider estimate (2.6) written for (6 — k), with k = = 4+ ¢, and for a
cutoff function 0 < ¢ <1, defined in Kg, and verifying

2
§=1 inKg; E=0 onl|z|=R; |V§|§R.

Take m > 3 sufficiently large so that 0 < ¢ = 7, < H, . The logarithmic function

U~ is well-defined and, since H, < %, the following inequalities hold

2—p w p—2
< ( ) .
= \9m

Then, from (2.6), we get for all ¢ € (0,agRP), the estimate

/ (v7)" € <C(m-2) Ky
Krx{t}

U™ < (m-—2)In2 and ‘(\Il_)/

Next, integrate over the smaller set
o w
{xeKzgzﬁe(m,t)<,u +2m} , vt € (0,aoRP)

where £ = 1 and ¥~ > (m — 3) In2, since H,, < . Consequently, for all ¢t €
(O,CL()R‘D),

Kr

m—2
5

w
: N <
‘xeKz; Oc(z,t) < +2m’_0(m_3)2

The proof is complete if we choose m so large that C (::”:32)2 <. O

The next lemma provides a uniform lower bound for 6. within a smaller
cylinder, through a specific choice of the value v that appears in Lemma 3.2.

Lemma 3.3. There exists vy € (0,1), depending only on the data, such that if
R
Q (aoRp, 2 ) ’

R
omt1 0 & (z,t) €Q (ang, 4) .

Proof. Consider the decreasing sequences of real numbers

R—R R P w w
n 4 +2n+2’ n = H +2m+1+2m+1+n’

and, in the energy estimates (2.5), take p = —(0e — ky)— &2, where 0 < ¢, <1 are
smooth cutoff functions, defined in Kg,, and verifying

w

@ (wrn. ) s ot <

‘Sl/o

then

n=0,1,...

2n+3

fE]. inKR R

wi i §=0 on |z| = Rp 5 |V&u| <

Introduce the level
7 kn + kn+1
k, = .
2
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Since

/ (06 - kn)% fﬁ = / (06 - kn)zi (96 - kn)2—7p fﬁ
Kr, x{t} Kr, x{t}

> (k= Fon)2? / (0 — Fn)? €@
KRn X{t}

— g2 P / (6. — k)P €
KRn X {t}

and (0. — k,)? < (2“,’” )p, the referred energy estimates take the form

_ 1 -
sup / (0 — k)P €2+ = 2= (n+3p // ’V(ee - kn)—’p 134
0<t<aoRP JKg, x{t} ao Q(aoRP,Ry,)

w \P 22 1
<C ( ) / / B .
< Cl) 2m RP ag Q(aoRP,Ru)X[(eE ) ==0)

Introducing the change of variable z = ato, defining the new functions

0_5(.%,2’) = 06(x7a02) ; En(xvz) = fn(fﬂ,aoz) s

and denoting VP = L>°(LP) N LP(W'P), we arrive at

_ _ 22pn w\P
[ T el Ry (Qm) An s

where
RP B
A, ::/ |An(2)| dz Ap(z) :={z € Kg, : (0 —kn)- >0} .
0
Since

( ) 9=(nt3p 4 | < // b, — k)"
2m Q(R?, an

1+ _
S CAn N+P H 06 - k‘")_Hz‘)/i"(Q(prRn+1)) ’

using Corollary 3.1 of [3, page 9], we conclude

23pn 1+ P
An-i-l < c Rp An NEe
and, consequently,
14+ 2 A
Yo < C 277 A, Ve for Y, = "



Boundary Regularity at {t = 0} for a Singular Problem 239

N+p __ 3(N+p)?

fYy<C™ » 2 »  then, by Lemma 4.1 of [3, page 12], Y;, — 0 when
n — oo which completes the proof. Observe that, by the hypothesis,

|(z,2) € Q(RP,R) : Oc(x,2) < ™ + 4| <

Yy =
|Q(Rr, R)|
so we just have to take
vg=C~ e 2_3(N::p)2 . O

Now we can finally conclude the first iteration step in the proof of Proposition
3.1. Indeed, taking v = 1y from Lemma 3.3, and determining the corresponding
value m with the help of Lemma 3.2, we arrive at

- w R
Oc(z,t) > + om+1 a.e.(z,t) € Q (aoRp, 4> ,

and then we conclude that

1
Q?SSR%S%) Vs (1 - 2”””“) vmoe

Taking C' = 4 in Proposition 3.1, we get Q1 C Q (aoRp, {f), and then
essosc B, < essosc O, <ow=uw .
@ Q(aoR?, T)

We can now repeat the whole process starting from Q1.

Remark 3.4. Observe that we do not get a reduction on the ¢-direction since the
cutoff functions £ are independent of ¢.

Remark 3.5. The regularity result can be further extended; one can obtain conti-
nuity up to the lateral boundary ¥ using a reasoning similar to the one presented
in [2] and [8].
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Fast Reaction Limits and Liesegang Bands

D. Hilhorst, R. van der Hout, M. Mimura and I. Ohnishi

1. Introduction

The purpose of this study is to start understanding from a mathematical viewpoint
experiments in which regularized structures with spatially distinct bands and rings
of precipitated material were exhibited, with clearly visible scaling properties. This
phenomenon has been originally observed by Liesegang [1] in 1896, after whom
the name “Liesegang bands/rings” has been coined. Since then there have been a
large number of contributions to the understanding of such precipitated pattern
formation from experimental as well as theoretical viewpoints. However, as far
as we know, there has not been any mathematical study of this problem apart
from numerical simulations. In this note we introduce a one-dimensional reaction
diffusion system which is a simplified model of the supersaturation model proposed
by Keller and Rubinow [2] in 1981 and study the occurrence of precipitated bands
in this system, by means of singular limit analysis.

2. The model

We study a model, for which the basic ideas have been proposed by Keller and
Rubinov [2]. In a spatial domain €2 an immobile reactant B is present, with uniform
concentration bg. Starting at an initial time ¢ = 0, the boundary 02 is brought
in contact with a different reactant A, that penetrates into 2 through a diffusive
process. Inside 2, A and B react, to produce a third substance C. This substance
on the one hand diffuses through 2, while on the other hand it crystallizes (“pre-
cipitates”) to form an immobile product D. This precipitation process starts as
soon as the concentration ¢ of C has surpassed a critical value Cy > 0; the precipi-
tation rate is thought to depend linearly on c. In places where D has been formed,
the precipitation process continues as long as ¢ remains positive.

The purpose of our study is to show that such a reaction-diffusion system may
give rise to precipitation regions where D is present. We restrict ourselves to a
one-dimensional situation and assume that the space domain €2 is the semi-infinite
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slab {z > 0}. We also require that, for ¢t > 0, a(0,t) = ag > 0 is constant and that
C cannot leave (2, that is, gfc (0,t) = 0. As for the precipitation reaction C = D,
we assume that the rate for the backward reaction D — C is negligible. This yields
the problem

a; = Diag, — kab O<x<oo, t>0,

by = —kab O<ax<oo, t>0,

¢t = Dcgy + kab — F(c,d) 0<zxz<oo, t>0,
P1) d¢ = F(c,d) O<zx<oo, t>0,

cz(0,t) =0 t>0,

a(0,t) =ap >0 t>0,

a(x,0) = ¢(z,0) = d(z,0) =0 x>0,

b(x,0) =by >0 x>0,

where D, D; and k are positive constants. We suppose that F' is the discontinuous
function
cife>Csord>0,

F(e,d) =
(d) { Oife<Cgand d=0,

where the positive constant Cs stands for the supersaturation concentration. Al-
ternatively we can rewrite Problem (Pj) in the form

a; = Diag, — kab 0<x<oo, t>0,
by = —kab 0<ax<oo, t>0,
¢t = Degy + kab — cH ((¢ — Co) T + d) 0<z<oo, t>0,

) d; = cH ((c — Cy)t 4+ d) 0<z<oo, t>0,
a(0,t) =ap >0 t >0,
cz(0,1) =0 t>0,
a(x,0) = ¢(z,0) = d(z,0) =0 x>0,
b(x,0) =by >0 x >0,

where H is the Heaviside function: H(s) = 0 if s <0, H(s) = 1 otherwise.

The equation for d in Problem (P} ) has been formulated to express the chemical
assumption that d; = cif ¢ > Cs or if d > 0 and that d; = 0 otherwise. The
right-hand side of the d-equation is not Lipschitz in d and we cannot be sure that
its solution is unique, even if ¢ — Cy < 0 everywhere. Chemical arguments imply
that d(x,t) can only be positive if its growth has been initiated by a positive value
of ¢(x, 7) — Cs for some 7 < ¢. This implies that we have to look for a solution such
that d(x,t) = 0if ¢(z,7) < C; for all 7 < ¢. In view of these comments, we are able
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to reformulate again Problem (P}) in a slightly simpler way, which in addition is
more precise from a chemical point of view. Assuming, for the time being, that ¢
is continuous, we introduce the function

w(z,t) = /0 (c(z,s) — Cs)T) ds. (1)

We claim that, for the solution we are interested in, w(z,0) > 0 if and only if
(c(z,t) — Cs)T + d(x,t) > 0. To see this, let us first assume that w(z,t) > 0.
Then, clearly, there are t; < to < t such that c(z,t) > Cs for all t; < t < ta.
The differential equation for d implies that d(z,%) > 0, which in turn implies that
(c(z,t) — Cs)T +d(z,t) > 0. Conversely, if w(z,t) = 0, it is clear that c(z,7) < C
for all 7 < t. In view of the preceding argument, we must now conclude that
d(x,t) = 0 for the solution we are interested in. Thus, we may replace the argument
(¢ — Cs)T + d of the Heaviside function by the new argument w.

Note that, in (P}), the first two equations can be solved separately. The behavior
of ay, and by has been studied in [3,4] in the asymptotic limit & — oco. In particular,
it has been shown in [3,4] that in this limit a behaves as the solution of a one-phase
Stefan problem with melting boundary () = a+/t for some positive constant a.
It then remains to study the problem

¢t = Degy + kab — cH (fot (e(x,s) — CS)+)ds> 0<z<oo, t>0,
(P¥) x(0,8) =0 t>0,
c(z,0) =0 x> 0.
The organization of this note is as follows. In Section 2, we explain why the term
kayby converges to a measure as k tends to infinity and give an explicit form of
its limit.
In Section 3 we study the singular limit as k¥ — oo of the linear equation that one

obtains when omitting the last term in the equation for c.

In Section 4 we indicate the main steps for the proof of the existence of a solution
of Problem (P¥).

Further we present in Section 5 its limiting behavior as k — oo.

Finally we state our main results about Liesegang bands in Section 6. We refer to
[5] and [6] for the complete proofs.

3. The singular limit of ka.b, as k — oo

Our main result is that

kab — b

2(\’/t5(ac —avt) as k — oo, (2)
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where § is the Dirac d-function. It can be shown as follows. We first recall a result
of [3,4]. For all T' > 0, there holds

T
[t
o Jr+ k

where the constant C' depends on T'. One immediately deduces that there exists a
Radon measure i such that as k — oo

ka*bk — p
along a subsequence in the sense of weak convergence of measures.

Multiplying the equation for b* by a continuously differentiable test function
with compact support in (0,00) x (0,7), and integrating by parts, one can show
that the measure p is concentrated on the free boundary ¢, or more precisely that

= —bo o 1 (2 = (1) = (o (e — (1),

x> 0,t > 0, which in turn implies (2).

4. The limiting behavior as £ — oo of the solution of a
corresponding linear problem

The next step is to consider the linear problem
Yy = Dy, + kagby z>0,t>0,

(Q9) ¥, (0,1) =0 t>0,

We will prove in [5] that as k& — oo its solution ), converges to the unique weak
solution 1 of the problem

Yy = Dipyy + gﬁa(x —avt)  x>0,t>0,

Q) $2(0,) =0 t>0,

We remark that Problem (Q) admits at most one solution and we prove its ex-
istence by constructing the solution explicitly. Indeed note that Problem (Q) is
invariant by the rescaling {t = p?7, x = p&} so that a possible solution can be

written in the form
T

P(t,x) = ¥(n) with =

where U satisfies

b
DU 4 1w (- a) =0 W(oo) =0, W(0) =0,
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We deduce that
A(D,bg,a) when 7 < «,

‘I’(U) = b eZ; 2 d h
4D
0Q 2D ), e s when 7> q,
where )
boae 1 52
A(D, by, @) := Oggw e~ 4pds.

[0

5. Existence of a solution of Problem (P*)
We extend the unknown concentration c* to the whole domain R x R* according to
F(—a,t) = F(x,1), x>0,t>0.
and a® and b¥ similarly. Problem (P*) becomes
(P { ct :Dcm—l—kab—cﬁ(fg(c—cs)‘*‘), z€R, t>0,

c(x,0) =0, x eR.
In order to be able to work with partial differential equations with a bounded right
hand side, we perform a change of the unknown function. We set

P (—x,t) = ¥ (2, 1), x>0, t>0,
and
ek =k — k.
Problem (P¥) can be rewritten as
(") { ¢ = Déypp — (E+YM)H (fot(é+w’“ - CS)JF) , zE€R, t>0,
é(x,0) =0, z €R.
To begin with we consider the boundary value problem
Yy = Dy + kab, x€(—R,R), t >0,
Y(ER,t) =0, t>0
Y(x,0) =0, xz € (—R, R),
and denote its unique solution by ¥%. We first prove the existence of a solution of
the problem
& = Dégs — (F+Wh)H, (fg(e+ Wk — cs)+) , ze(—R,R),t>0,
(PR) R, 1) =0, t>0,
&(z,0) =0, z€(-R,R).

where H. is a smooth nondecreasing approximation of the Heaviside graph H such
that H.(s) = H(s) for all s > 0 and s < —¢.
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In order to prove the existence of a solution of Problem (PE), we consider
the map T : ¢ — =, where + is the unique solution of the auxiliary problem

Y= Dvaw = (UM, (fo(@+ v~ C)T), @€ (-RR)t>0,
(PA) S y(£R,t) =0, t>0,
v(z,0) =0, z € (—R,R).
We set ,
Lu = up — Dugy + (u+ YR)H 1 (/O (¢+¢'§—Cs)+) :

and observe that

t
o= vl ([rvh-cor) 2o

and that
ﬁ(—ﬂ)ﬁ) = (—sz)t - D(_wllc%)ww = —ka"bF < 0.
We define
¢ = {ue C(-R.R) x [0.T]).~w S u <0},
and remark that 7" maps C into itself. Furthermore one can show that T is compact

and continuous on C so that it follows from the Schauder fixed point theorem that
the map T has a fixed point ¢% which is a classical solution of Problem (P ) with

y=¢=7ch.
Finally letting R tend to oo we deduce the existence of a weak solution

of Problem (P*), where the Heaviside Function H is replaced by the Heaviside
graph H.

6. Singular limit as k — oo of solutions of Problem (P*)

In what follows we use the notation Q7 = [0,00) x [0,T"). Next we consider the
limit Problem (P) which we define by

ct:Dcm—f—boo‘é(m—a\/t)—c’)'((x,t) 0<z<oo, t>0,

2v/t
(P) c:(0,8) =0 t>0,
c(z,0)=0 x>0,
where .
H(z,t) € H(/O (c — Co)*(x, 7)dr), (3)

and where H is the Heaviside graph
0 when y < 0,
H(y) = (0,1]  when y =0,
1 when y > 0.
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t

FIGURE 1. Time law for the Liesegang bands

Definition A weak solution of Problem (P) is a function pair {c, H} with the prop-
erties
14

(1) for each T >0, c— € C*T7 2" (Qr) N HYQr) for all 0 < v < 1;
(2) for all ¢ € CY(Qr) such that ¢ vanishes for t =T,

/Fw~mmw:/[Dw—@ﬂ%—wHy (4)

T

One can prove the following result.

Theorem 1 There exists a subsequence {c*"} and a function
1+

ce C 2 ([0, R] x [0,TY]) for all vy € (0,1) such that as k, — oo
T o)

1+

in C*7 27 ([0, R] x [0,T)]) for all v € (0,1), R and T positive. The pair (c,H),
where H is defined by (3), is a weak solution of Problem (P) and the function c is
such that 0 < ¢ < and ¢ — v is nonincreasing in time.

In the next section, we discuss the existence and some properties of precipi-
tation or Liesegang bands:

Definition A Liesegang band is connected component in (xz,t)-plane of the set
{w > 0}.

Note that a Liesegang band can exist only if
A(D, by, ) > Cs, (6)

which we assume from now on.
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7. Properties of Liesegang bands

To begin with we consider the first Liesegang band. To do that, we define, for fixed
t >0,
Pt)={z>0: w(y,t)>0forall 0 <y <z},

where w has been defined in (1).

S(t)=sup{zx:z e P(t)} if P(t)#0 and S(t) =0 otherwise.
We have that
Lemma 6 S(t) > 0 for all t > 0. Moreover, S(-) is nondecreasing.

Therefore there exists indeed a precipitation region. The continuity of ¢ implies
that

Lemma 7 Suppose that t is such that S(t+¢€)>S(t) for all e>0. Then
c(S(t),t) = Cs.

Next, we have
Lemma 8 S(-) is continuous.

Idea of the proof. Suppose, for contradiction, that z1 := S(t*7) < S(t*T) 1= xs.
Then for every = € (x1,z2):

(i) e(x,t) < Cs for t < ¢*, and

(i) There is a sequence t; — t** such that c(z,t;) > Cs.
Since the function ¢ — 1) is nonincreasing in time, this implies that > a\/t*; the
strong maximum principle then yields a contradiction.

Our next step is to prove the following result. From now on we assume that
the function H in the definition of a weak solution of Problem (P) coincides with
the Heaviside function H (fg (c — Cy)T(x, T)dT).

Theorem 2 Under the additional technical condition that 2Cs > A(D, by, &), there

is a time T* > 0 such that S(t) = S(T*) for all t > T*.

Idea of the proof. Let 5 > 0 be defined by the relation (5) = Cs. We have
Y(x,t) > Cy whenever x < BVt (7)

S(t) < pVt, and o(z,t) > Cs whenever z < S(t). (8)
Let 0 < v < 2Cs — A(D, by, @) and suppose that ¢(S(T*), T*) < 7. Then we have:
Cs —c(S(T%), T*) > Cs — v > A(D, by, ) — Cs.

We claim that S(¢) cannot grow any more. Indeed suppose, for the purpose of
contradiction, that t* > T* and that S(t*) > S(T7). Then there exists a ¢ €
(T*,t*) such that

(i) S(t) = S(T™) for every T* <t <1,

(ii) ¢(S(T*),t) = Cs.
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This implies that
o(S(T7),1) = e(S(T"),T*) > Cs —
> A(D, by, a) — C
> p(S(T7), 1) = (S(T™),T")
(see (8)) and therefore that

c(S(T7), 1) = (S(T7), 1) > e(S(T7), T") = p(S(T7), T7).
This contradicts the fact that ¢ — v is nonincreasing in time.
Furthermore one can show that it indeed occurs that ¢(S(T%),T*) < ~.

Lemma 9 For every 0 <y < Cs, there is a time t > 0 such that ¢(S(t),t) < 7.

To conclude this note, we mention three additional results:

Theorem 3 If 2Cs > A(D,by,a) > Cs and if \/O‘D is sufficiently large, there are
infinitely many distinct precipitation regions.

Theorem 4 If a new precipitation region germinates at (x,t), then ¥ = av/t. This
property is the so-called time-law.

Theorem 5 In the (x,t)-plane, a Liesegang band can only extend to the right of the
point of initiation.
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Numerical Modeling of Surfactant Effects
in Interfacial Fluid Dynamics

Ashley J. James and John Lowengrub

Abstract. Surfactants are substances that preferentially accumulate at inter-
faces between two fluids, altering the local surface tension. An imposed flow
can produce a non-uniform distribution of surfactant. In regions of high sur-
factant concentration the surface tension is low, so the interface offers less
resistance to deformation and can become highly curved, allowing very small
droplets or bubbles to pinch off. A numerical method to simulate interfacial
surfactant mechanics within a volume of fluid method has been developed.
To conserve surfactant, the surfactant mass and the interfacial surface area
are tracked as the interface evolves, and then the surfactant concentration
is reconstructed. The algorithm is coupled to an incompressible flow solver
that uses a continuum method to incorporate both the normal and tangential
components of the surface tension force into the momentum equation.

Keywords. surfactant, VOF, interfacial flow, surface tension.

1. Introduction

Surfactant plays a critical role in numerous important industrial and biomedi-
cal applications. For example, the formation of very small drops or bubbles by
tip streaming relies on the presence of surfactant. The production of such tiny
droplets is useful in drug delivery, industrial emulsification, liquid/liquid extrac-
tion, polymer blending and plastic production, and other applications.

Surfactants adhere to interfaces resulting in a lowered, non-uniform surface
tension along the interface. This makes the capillary force non-uniform and intro-
duces the Marangoni force. Interfacial surfactant is transported with the interface
by convection, and may diffuse along the interface in the presence of a surfactant
concentration gradient. Additionally, compression or stretching of the interface
causes a corresponding increase or decrease in the concentration. The equation
that governs these dynamics has been derived in various forms in [1, 2]. The mo-
tion of the surfactant and of the surrounding bulk fluids are coupled through the
Marangoni force.
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We simulate interface dynamics using the volume-of-fluid (VOF) method [3].
The main advantages of the method are that the interface shape is not constrained,
changes in topology are handled automatically, and mass of each flow component
is conserved exactly. The interface location is captured as it moves through the
grid by tracking the local volume fraction. Flow discontinuities are smoothed and
the surface tension force is distributed over a thin layer near the interface.

Continuum formulations of the interface governing equations have been im-
plemented numerically primarily for clean drops, although Jan and Tryggvason
[4] studied the effect of surfactants on rising bubbles using an immersed bound-
ary/front tracking method and Ceniceros [5] used a hybrid level-set/front tracking
method to study the effect of surfactants on capillary waves. Xu and Zhao [6]
simulated surfactant transport on a deformable interface in conjunction with a
level set method. They did not couple their method to a flow solver, but presented
test cases in which a velocity field is prescribed. Renardy et al. [7] presented sim-
ulations of drops with surfactant using the VOF method. This work thus far has
been limited to assuming a linear relation between the surfactant concentration
and surface tension.

In the current paper we present a numerical method that incorporates sur-
factant dynamics in an axisymmetric, incompressible Navier-Stokes solver based
on the VOF method for interface capturing. We focus on the case of insoluble
surfactant. The surfactant mass is exactly conserved along the interface by our
algorithm. An arbitrary equation of state relating the surfactant concentration to
the surface tension may be used. Further details and verification are given in [8].

2. Governing equations

We assume that the flow is incompressible in both fluids, so the velocity, u, is
divergence free, V-u = 0. The VOF method is used to track the interface between
the two fluids, called fluid 1 and fluid 2. In this method a volume fraction, F’, is
defined in each grid cell as the fraction of the cell that contains fluid 1. The volume
fraction evolution is governed by a convection equation that ensures the interface
moves with the velocity of the fluid,

oF

o T VE=0. (2.1)

Surface tension is included in the momentum equation via the continuum
surface force (CSF) method [9]. The momentum equation satisfies the stress bal-
ance boundary condition on the interface. The surface tension force is nonzero
only near the interface. The VOF and CSF methods make it unnecessary to apply
boundary conditions at the interface and one set of governing equations applies to
the entire domain. Thus, the density and viscosity must be retained as variables in
the momentum equation even though they are both constant in each fluid. Using
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inertial time and pressure scales, the momentum equation is

ot R ReC’an7 (2.2)

where p is the density, p is the pressure, Re is the Reynolds number, p is the
viscosity and Ca is the capillary number. The surface force Fg is

Fs=V"- [0 (I — nn) 52] = —okdxn + 0xVgo (2.3)

1 1
p(au—ku'Vu) =-Vp+ eV- [u(Vu+VuT)] +

where o is the surface tension, n is the unit vector normal to the interface, Jx
is the surface delta function, k is the interface curvature and Vg is the surface
gradient. The first term on the right-hand side of Eq. (2.3) is the capillary force
and the second term is the Marangoni force. The normal vector and the surface
delta function are determined from the gradient of the volume fraction,

_VF
VE[

The surfactant concentration evolution is governed by a convection-diffusion equa-
tion with a source term to account for interfacial stretching,

or 1
ot +u-VF:P6SV§F+Fn~Vu'n, (2.5)

where I' is the interfacial surfactant concentration, Peg is the surface Peclet num-
ber, and V% is the surface Laplacian operator.

In our finite volume method, we do not solve Eq. (2.5) directly and instead
relate the surfactant concentration in a finite volume to the ratio of the surfactant
mass M and surface area A in that volume, i.e., I' = M/A. The surfactant mass
and surface area are tracked independently as described below. Siegel [10] has also
proposed decomposing concentration into mass and area.

The equation governing A can be written in differential form as

DA 0A

Dt ot
The left-hand side of equation (2.6) is the time rate of change of the area of
a material element of the interface. The right-hand side represents changes in
interfacial area due to stretching. The mass of surfactant on a material element
of the interface can change if there is diffusion along the interface. The governing
equation is

n =

Ss = |VF. (2.4)

+u-VA=—-A(n-Vu-n). (2.6)

DM M A
Dt = a@t +u-VM = Pesvgr. (2.7)
Equation (2.5) is regained by combining equations (2.6) and (2.7) with T' = M/A.
Finally, an equation of state is given for the surface tension as a function of
surfactant concentration. For example, the Langmuir equation of state is

1+ Emn(l-al)

1+ FEln(l—2)’ (28)
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where F is the surfactant elasticity and x is a measure of surfactant coverage. The
scaling is constructed so that the equilibrium dimensionless concentration, I' = 1,
corresponds to the equilibrium dimensionless surface tension, o = 1.

3. Computational method

3.1. Introduction

The axisymmetric governing equations are discretized using a finite-volume
method, on a fixed, structured, uniform, staggered grid, in the r — z plane. In
the staggered grid arrangement the velocity components are defined on cell faces
and all other variables are defined at cell centers. The continuity and momen-
tum equations are discretized using second-order central differences, except for
the surface stress, which is described in Section 3.6.

An explicit Euler time integration method is used, except that surfactant
diffusion is discretized implicitly as described in Section 3.5. At each time step,
first the velocity and pressure are updated, using a projection method, and then the
volume fraction and the surfactant distribution are updated as described below.

The volume of fluid 1 in a grid cell at the beginning of a time step is the cell
volume times the volume fraction. During a time step the volume flux of fluid 1
that moves between adjacent grid cells is computed. The volume fraction at the
end of a time step is then the initial volume of fluid 1 minus the net volume flux
out of the cell, divided by the cell volume. Thus, although equation (2.1) governs
the evolution of the volume fraction, the method actually tracks fluid volumes.

Our approach to surfactant evolution is analogous to volume fraction evolu-
tion. Surfactant mass fluxes due to convection and diffusion are computed. The
concentration in a grid cell is then the surfactant mass in the cell divided by the
surface area of the interface in the cell. The surface area in a cell may vary, unlike
the cell volume, so it is critical to accurately track the surface area.

Surface area evolution is described below, as well as volume fraction and
surfactant mass evolution. However, the “reconstruction” of the interface and the
surfactant concentration are described first.

3.2. Volume fraction and surfactant concentration reconstruction

To convect volumes of fluid while preventing smearing of the interface normal to
itself it is first necessary to reconstruct the interface from the volume fraction
field. This interface reconstruction locates where the volume of fluid 1 resides in
the cell, rather than assuming both fluids are distributed uniformly. Convection
of surfactant similarly suffers from excessive numerical diffusion if the surfactant
is assumed to uniformly distributed along the interface, so its distribution is also
reconstructed.

The volume fraction distribution in a cell is determined by approximating
the interface in a cell as a straight line. The line segment approximation of the
interface is defined independently in each cell, so the approximate interface need
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F1GURE 1. Computation of surface gradient of surfactant.

not be continuous from one cell to the next. First, the normal vector is computed
as the volume fraction gradient using a finite difference method with a nine-point
stencil. The normal vector defines the slope of the line. The intercept is calculated
iteratively so that the volume of fluid 1 defined by the line equals that defined by
the known cell volume fraction, Fj ;.

The surfactant concentration is reconstructed as a linear function of position,
s, along the straight-line interface reconstruction, I' = (VgI') s + ¢, where the
surface gradient, VgI', is taken to be constant in each cell. As for the interface
reconstruction, the function need not be continuous from one cell to the next. Since
the concentration is only defined on the interface the surface gradient cannot be
computed using a simple finite difference formula, as the normal vector is for
the interface reconstruction. Instead the gradient is computed using only the two
adjacent cells that contain an interface segment. This is illustrated in Figure 1 for
the case in which the adjacent cells that contain an interface segment are cells
(i +1,75) and (i — 1,5). The procedure is analogous if other adjacent cells are
used. The concentration gradient is the difference in concentration between the
two cells divided by the distance, L, between their interface midpoints. For the
case illustrated in Figure 1, for example

Livrj =T

(VSF)M‘ = L

(3.1)

The intercept, ¢, in the concentration reconstruction is then computed to ensure
that the average concentration defined by the reconstruction equals the known
average concentration in the cell, I'; ;.

3.3. Volume fraction evolution

The axisymmetric, conservative governing equation for the volume fraction is

oF 10

10 ov
o T ror (vF)=F [7“ o (ru) + ] . (3.2)



256 A.J. James and J. Lowengrub

where u is the radial velocity and v is the vertical velocity. The equation is split
into radial and vertical directions using an intermediate volume fraction, F,

Fij— 1 n inH/z,j o RF‘nq/z,j -

(2¥] 3

At 2rr ArAz At
+1 +1
& (riﬂ/gu:ﬁrl/z,j - 7"1‘1/2”?-1/2,]’)

b r; Ar (3.3)

n g > T~ n+1 n+1
Fi,jH — i " ZFj12—ZFi 12 B Yig+1/2 ~ Yig—1/2 (3.4)
At 2mr; ArAzAt “J Az ' '

RF; {12 is the volume flux of fluid 1 in the radial direction across the (i + é,j)
face, and ZFj j11/o is the volume flux of fluid 1 in the vertical direction across the
(1,5 + %) face. The fluxes are calculated in one direction and used to update the
volume fraction to the intermediate level. Then, using the intermediate volume
fraction, the fluxes are calculated in the other direction and used to update the
intermediate volume fraction to the next time level. The direction computed first
is switched at each time step.

The volume flux is the amount of fluid 1 that passes through the face during
the time step. This flux equals the amount of fluid 1 in the domain of dependence
of the face, at the beginning of the time step. This is illustrated in Figure 2 for
the case of flux across the (i + é,j) face with positive radial velocity, w;;1/2 ;-
The domain of dependence is approximated by the region bounded by the face of
interest, the two adjacent perpendicular grid lines, and a line parallel to the face
of interest that is a distance of UAt away from the face, where U is the velocity
normal to the face. The flux is the intersection of the domain of dependence and
the portion of the cell volume that contains fluid 1, as defined by a straight-line
reconstruction of the interface.

3.4. Surface area evolution

The interfacial area in a grid cell is governed by equation (2.6). The area is updated
in three steps. Two account for convection, one step in each direction, and are taken
in tandem with the volume fraction. An additional step to account for stretching
is taken in between the two convective steps.

‘ij —Ais+ RA?+1/2,;‘ - RA?—l/z,j =0 (3.5)
Ai,j = j” — Atgi,j (n-Vu- n):bjl (3.6)
AZL,j_l _ Ai”] + ZAAi’j+1/2 — ZAAi’jfl/z =0, (37)

where RA?, | /2,; is the interfacial area flux in the radial direction across the (1 +
é, j) face, and ZA? j+1/2 is the interfacial area flux in the vertical direction across

the (i,j + 3) face. The stretching term in equation (3.6) is evaluated with 2nd
order central differences. Convective fluxes of area are computed analogously to
the volume fraction fluxes, and, as for the volume fraction, the direction computed
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FIGURE 2. Calculation of volume flux. The volume flux, RFj /s ;, is
denoted by the darker gray area.

first is switched at each time step. The fluxes in one direction are used to update
the area to an intermediate value in all cells, A, at the same time the volume
fraction is updated by convection in the same direction. The straight line interface
reconstruction is then updated. Next, stretching is applied to update the area in
all cells to A. Finally, convective fluxes in the other direction complete the update
of the area in all cells to the new time step, A”*!. This is done in conjunction
with the final update of the volume fraction by convection in the same direction.

The area flux is the area in the domain of dependence at the beginning of
the time step. In Figure 2 this domain is the region u; /o jAt wide. The area of
the straight line in the domain of dependence, 44,4, and the area of the straight
line in the whole cell, Ay, are computed from the interface geometry. Unlike in the
volume fraction computation, Ag.q is not an accurate representation of the area
flux. However, the straight line does provide a good representation of which part
of the cell the interface is in. Thus, we assume that the fraction of the actual area
in the domain of dependence equals the fraction of the area of the straight line in
the domain of dependence. Thus, the area flux is computed as the fraction of the
area of the straight line in the domain of dependence, Agoq/Asi, times the actual
cell interfacial area, 4; ;.

3.5. Surfactant evolution

The evolution of the surfactant mass in a cell is governed by equation (2.7). At
each time step, the mass equations are updated in three steps that correspond to
convection and diffusion.

M; j — My + RMi"H/z’j — RMZLl/z’j =0 (3.8)
Mi,j - J\N/fi,J + mi,j+1/2 - ﬁwi,j—l/2 =0 (3.9)
Miil;rl - M, = DR?jll/lj - DR?jll/Zj + DZZJJ‘Z:1/2 - DZ’Z’,;’;ll/Q' (3.10)
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First, the mass is updated in every cell to an intermediate level, M , by convection
in one direction, along the convection of volume fraction and interfacial area in
the same direction. After this the interface approximation is reconstructed, the
area is stretched, the average concentration is updated as I' = M/A, and the
concentration approximation is reconstructed. Next, the mass is updated in every
cell by convection in the other direction to M , along with convection of volume
fraction and interfacial area. The direction in which F', A and M are convected
first is switched at every time step to avoid skew. Then, once again, the interface
approximation is reconstructed, the average concentration is updated, and the
concentration approximation is reconstructed. Finally, the mass is updated in every
cell to the next time level, M™*!, by diffusion in both directions simultaneously.

The mass fluxed by convection through a cell face during a time step equals
the mass in the domain of dependence at the beginning of the step, as for vol-
ume of fluid and interfacial area. Its computation is analogous to the area flux
computation. A first approximation to the flux is the integral of the concentration
over the straight line in the domain of dependence, My,q. In computing Mg,q it
is crucial to use the linear reconstruction of the concentration, instead of simply
its average value, to avoid excessive numerical diffusion. As for the area, this does
not accurately represent the flux since My,q is obtained using the straight line.
However, Myo4/Adod gives a consistent value for the average concentration on the
portion of the interface that is convected. This is multiplied by the area flux to
obtain a mass flux that is consistent with the area flux

Mdod) ( Ad0d>
Mass Flux = A; s . 3.11
<Ad0d 7 Ag (8.11)

Next, the mass is updated to the new time step by diffusion in a single implicit
step. Diffusion of surfactant across a cell face occurs only when there is an interface
in both cells adjacent to the face. From Fick’s Law, the radial flux across the face
(i + %,j), for example, is

At et et
DR — 2mr; At A 3.12
i+1/2,5 PeS WTH‘l/Q ( Li+1/2,j ( )

where the surface gradient is approximated as the difference in the average con-
centration between the two adjacent cells, divided by L, the distance between
the midpoints of the straight-line interface reconstructions in the cells. Note that
equation (3.10) is implicit, since the concentration in the flux is evaluated at the
new time step. In practice this is written as an equation for concentration by di-
viding by the area. Since the fluxes depend on FZ;FI this coupled system is solved

iteratively for F?jl. The surfactant mass is then updated as M = T'A.

3.6. Surface tension force

Once the surfactant concentration distribution is known the average surface ten-
sion in each grid cell can be computed from the equation of state, (2.8). The surface
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stress, equation (2.3), can be written as
0
Fs = okVF + aZ|VF|s. (3.13)

In the staggered grid arrangement the stress components are evaluated at cell faces.
First, the curvature is computed in each grid cell center using standard methods.
Next, the curvature is evaluated at each face as the average of the curvature in
the two adjacent cells. The surface tension at cells faces is also computed as the
average of the surface tension in the two adjacent cells, if both cells contain an
interface segment. If only one of the adjacent cells contains an interface segment
the surface tension in that cell is used as the surface tension at the face. If there
is not an interface segment in either adjacent cell the surface tension at the face
is set to zero and there is no surface force.

The surface gradient of the surface tension is non-zero only at faces for which
both adjacent grid cells contain an interface segment. For such faces the gradient
is computed exactly as the surface gradient of concentration is computed in eval-
uating surface diffusion. The magnitude of the volume fraction gradient at each
face is computed using straightforward 2nd order finite difference approximations.
Finally, the radial component of the surface stress, F'R, becomes

Fiy1j— Fij Oit1j — Oij

The vertical component is analogous.

4. Conclusions and future work

In this paper, we presented a volume of fluid method that accounts for an evolving
surface distribution of insoluble surfactant and the associated Marangoni force in
an axisymmetric geometry. The masses of the fluid components and of the surfac-
tant are exactly conserved. An arbitrary equation of state relating the surfactant
concentration to the surface tension may be used.

There are several directions we will pursue in the future. To resolve the wide-
ranging length and time scales inherent in interfacial flows with surfactants, we
will implement adaptive mesh refinement. This is necessary to resolve, for example,
very small secondary drops that may pinchoff from the ends of a primary drop in
the presence of surfactant (tip streaming). Additionally, coupling the VOF method
to a level set method can improve the accuracy of the surface tension computation
[11]. We have implemented a 2D coupled level-set/volume-of-fluid algorithm on
an adaptive mesh for clean drops [12]. The method uses an arbitrary Lagrangian-
Eulerian method to capture the interface evolution. An analogous method to track
the surfactant is currently undergoing testing.

In additional future work, we will link the volume fraction and interface area
advection routines to create a higher-order, self-consistent interface reconstruction.
We will also simulate the transport of soluble surfactant in the fluid bulk and
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transfer of surfactant between the bulk and the interface. Finally, the simulations
will be generalized to three dimensions.
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The Value of an American Basket Call with
Dividends Increases with the Basket Volatility

Jorg Kampen

Abstract. We show the American Call on a basket (i.e., a weighted sum of
assets) and with dividends increases with the basket volatility in a large class
of multivariate continuous diffusion models. In case of a flat yield curve the
same result holds for the American Put on a basket. The proof of our result
is based on extensions of Hajek’s mean stochastic comparison results to sto-
chastic sums. We provide a simple proof of Hajek’s result and show why the
argument is much more involved in case of our extensions. We provide the
main ideas of the proofs of our extensions based on heat kernel expansions.

Mathematics Subject Classification (2000). Primary 35K15; Secondary 60G40.

Keywords. Mean stochastic comparison, dependence of American call value
on volatility.

1. American Call basket options with dividends

The American Call option on a basket of assets is the right to sell a certain basket
of assets, i.e., a fixed weighted sum of underlyings, at strike price K during the
time of the validity of the contract. Strike price, underlyings, and maturity time are
written in the contract. The term “American” refers to the early exercise right of
the option holder. This early exercise right leads to the feature of free boundaries
in the typical continuous diffusion models of financial markets. Let us consider
such a (for simplicity complete) market with n risky assets S = (S1,...,S,) which
satisfy

dS; = (r(S) — 6;(9))S:dt + 0;(S5)S; dW; (1.1)
in the risk-neutral measure, and where S — r(S), S — 0;(5), and S — §;(S) are
bounded Lipschitz-continuous functions which model interest rates, volatilities,
and dividends, respectively. Dividends are always nonnegative. Let T' > 0 be the
maturity time. We consider (1.1) on the time interval [0, 7] and assume that W is

This work was completed with the support of SFB 359 (DFG) and BMBF.



262 J. Kampen

an n-dimensional Brownian motion which satisfies for all 0 < ¢ < T

pis (1) = / (W, W;)(s)ds, (1.2)

with constant p;; modeling the correlations of the returns of the assets (we shall
consider the extension to variable correlations below). In order to introduce the
basket volatility we make the following observation on stochastic sums. If Fy(t) =
S1(t) + -+ -+ Sp(t) and assuming that [F1](t) > 0, then

¢ 1
2(t) = /0 iy (1.3)

is a Brownian motion by Levy’s theorem. We have
dFy = op(S)dZ(t), (1.4)
where we call
UB(S) = \/ZpijUinSiSj (15)
]
the basket volatility. We want to show that the value function of an American

basket Call with dividends increases as the basket volatility increases. The value
function is defined as the solution (dt,S) — Ve (dt, S) of the obstacle equation

Oou
— L — = 1.
max{aét su, f u} 0, (1.6)
in (0,77 x R} x R, and satisfies the initial condition (K is the strike price)

+
Vo(0,5) = fe(S) = (Z&—K) . (1.7)

Here, §t denotes the time to maturity 7' — ¢ (hence the minus sign in the diffusion
equation in (1.6)), and

1
Lsu = 200T : D%u + S5 - Vsu —ru, (1.8)

where Ss, := ((r —01)S1,...,(r — 6,)Sn) and D%u = (SiSj 85,;2557 ) The volatil-

ity matrix oo, the volatilities o;, and covariances (p;;) are related by
ool = 0ipijo;. (1.9)
Indicating the dependence of the basket volatility op(S) = \/Z” pij0i0S;S; on

R = (pij) by writing o we observe that in our model of constant correlations we
have

R <ol ifR<R. (1.10)
As usual we say that R < R’ iff R’ — R is positive. Next recall that the exercise
region is the contact set E = {(t,S)|Vc(t,S = fc(S)}. Our main Theorem then is
the following.
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Theorem 1.1. The American Call option basket value function Vo is monotone
with respect to the basket volatility, i.e.,

ol = VS%1 (L.11)
where

UB(S) = ZPijUinSiSj'
]
This means that the exercise region shrinks with increasing basket volatility.

Remark 1.2. If dividends 6; = 0, then the American basket Call option value
function Vo equals the European basket Call option value function.

The proof of Theorem 1 is easily reduced to the case of European basket Call
option. The reason is that the value function of American Call options is the limit
of the value functions of certain Bermudean Call options (as is well known). If
0<T) <---<T, =T is the tenor structure of a Bermudean option and

Dy ={T1,....T,}, (1.12)

then the value of a Bermudean Call option at time ¢t = 0 (we consider the value at
time ¢ = 0 w.l.o.g.) is
Vee(0,2) = sup E*(e”"" fc(S(7))), (1.13)
TEDy
where the expectation is taken w.r.t. the risk neutral measure.

If A :=maxpeqr,,.. 7,} Tht1 — Tk, then A — 0 implies Vpc T V. Hence, the
proof of Theorem 3 reduces to main stochastic comparison theorems of stochastic
sums with convex nondecreasing data. If data are convex but not nondecreasing,
then mean stochastic comparison results hold only with additional restrictions.
One possible restriction is no drift at all, but this means that constant drift terms
are also allowed (proof by coordinate transformation). Hence, in context of an
American Put option, we can allow for a flat yield curve.

Theorem 1.3. Let r be a constant function. The American basket Put option value
function Vp is monotone with respect to the basket volatility, i.e.,

op = VIBT. (1.14)

The elegance of stating theorems in terms of the basket volatility has to be
paid off by some restriction of the model w.r.t. correlations. However, our results

can be extended to financial market models where the assets S = (57,...,5,)
satisty
ds;
g = i (S)dt + o (S)dW, (1.15)
i

and where o is an n X n matrix-valued bounded continuous function. Note that in
the latter model correlations between the returns of the assets may depend on S.
We state the following corollaries.
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Corollary 1.4. In the framework of the more general model class (1.15), the Amer-
ican Call option basket value function Vi is monotone with respect to ool , i.e.,

ool 1= V3B 1. (1.16)

This means that the exercise region shrinks with increasing volatility matriz oo™ .

Similarly,

Corollary 1.5. Let the interest rates v be constant. In the framework of the more
general model class (1.15) the American Put basket option value function V¢ is

monotone with respect to ool i.e.,

ool 1= VIB 1. (1.17)
This means that the exercise region shrinks with increasing basket volatility ma-
triz oo®.

This paper is organized as follows. In the next section 2 we state two mean
stochastic comparison results. In Section 3 we recall some results on the WKB-
expansion of the fundamental solution of parabolic equations. Finally, in Section
4 we provide a simplified proof of Hajek’s result in the univariate case. In Section
5 we provide the main ideas of our extensions stated in Section 2.

2. Two mean stochastic comparison results

In this section we state two mean stochastic comparison results. The first one is
for a general class of convex payoff and can be applied to option pricing in finance
in case of a flat yield curve. The second theorem requires nondecreasing data,
but allows for a quite general class of drift terms. It can be applied directly to
continuous diffusion market models.

Theorem 2.1. Let T > 0, f € C(R) be convezr, and assume that f satisfies an
exponential growth condition. Furthermore, let X,Y be semimartingales with x =
X(0) =Y (0) € R, where

X®=X@+AUM@MW@,

V() =X+ [ v (s)aw ).

with n X n- matriz-valued bounded continuous functions x — JUT(x) and y —
oot (y). If oo™ < ppT, then for all0 <t < T

(e ()

Remark 2.2. Here, we say that ool < pp? if for all x oo™ () < pp™ ().
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The second theorem includes drift terms but is more restrictive w.r.t. the
data.

Theorem 2.3. Let T > 0, f € C(R) nondecreasing, convex, and satisfying an
exponential growth condition, X,Y semimartingales with x = X (0) = Y (0) € R™,
where

X(0) = XO)+ [ p(X(@)s+ [ o(X(@)awW (),
YO =X+ [ v+ [ pv(s)aws)

with n x n-matriz-valued bounded continuous functions x — ool (z) and y —
pp" (y). If p < v are bounded continuous functions, and oo’ < ppT, then for all

o=t=T - <f<;Xi(t)>> < B <f<;m)>>'

3. Some results on the WKB-expansion of parabolic equations

We recall some results on the fundamental solution and its relation to continuous
diffusion processes. The continuous diffusion

dX (8t) = p(X (0t))dt + o (X (5t))dW (dt) (3.1)
satisfies (under some standard assumptions)
P (X (dt) € dy) = p(dt, z, y)dy, (3.2)
where p is the fundamental solution of the parabolic equation
g{?ﬁ a ; %:(UUT) 33; O:U] zi:'ul - (33)
on the domain R™ x (0,7T) with the initial condition
p(0, 2, y) = by (x), (3-4)

where d,(z) denotes the delta distribution related to the Dirac delta distribution

d by 6y(x) = 6(z — y). The fundamental solution exists and is (strictly) positive

on R™ x (0,T) if the conditions

(A) The operator L is uniformly parabolic in R", i.e., there exists 0 < A < A < 00
such that for all £ € R™\ {0}

n
0 <A < Y (00T (@) < AJEP. (3.5)
i,j=1
(B) The coefficients of L are bounded functions in R™ which are uniformly Hélder
continuous of exponent o (a € (0,1)).

hold.
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Furthermore, if the additional condition
(C) the growth of all derivatives of the smooth coefficients functions
z— (oo);j(x) and =z — b;(z)
is at most of exponential order
holds, then the fundamental solution p has the representation

_E@y) | 3 enlay)att | (3.6)

n €XP
VAarst 4ot >0
where d is the Riemannian distance with respect to the line element

ds?® = Z aijdxidxj,

ij

p(dt,z,y) =

(a@) being the inverse of (a;;) (cf. [7]), and ¢ are global solutions of first-order
equations converging pointwise to zero (cf. [3]).

4. A simple proof in case of convex value functions and the
univariate case

Mean stochastic comparison results are easy to obtain if the larger value function is
convex with respect to the spatial variables. We demonstrate this in the multivari-
ate case, and apply the argument to the univariate case. If the diffusion coefficients
are only assumed to depend on time (or, more generally, the larger value function
is convex with respect to the spatial variables), then a multivariate extension of
Hajek’s result can be obtained as follows. Consider the process X = (X1,...,X,)
which starts at some z € R™ at time ¢ and satisfies

dX(s) =o(X(s))dZ(s), (4.1)

where 0(X(s)) is a matrix-valued process (values in R(n x n)). Here, Z(s) an n-
dimensional Brownian motion. We assume that  — X(z) = oo’ (z) satisfies (A)
and (B). Let (x1,...,2,) — h(z1,...,2,) be a convex function, which satisfies
some exponential growth condition and assume that p : [0, 00) — R(nxn) Lipschitz
continuous deterministic function such that

oo (X(s)) < p(s)p” (s) for all s € R, (4.2)
