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Preface

The present book has been written for mathematically prepared
readers who like to look beyond the boundary of a single topic in
order to discover the interrelations with others. More concretely the
author’s idea is to direct the attention of probabilists to the appli-
cability of the enlightening notion of a group to probability theory.

The interplay between probability theory and group theory is as
old as the early investigations on translation invariant probability
distributions and stochastic processes and has become an increas-
ingly important field of research which meanwhile reached a certain
state of maturity.

While the traditional approach to the basic theorems of proba-
bility theory often overshadows part of the structure of the prob-
lems, the awareness of group - theoretical concepts leads to a quick
detection of common features of apparently unrelated situations. In
other words, the perception of algebraic-topological structures in the
state space of stochastic processes does not only yield interesting and
applicable generalizations of known results but also sets a limit to
such generalizations by describing their domains of validity within
the general framework. In practice this approach helps to provide at
least more transparent proofs of well-established theorems including
Lévy’s continuity theorem, the Lévy-Khintchine representation of
infinitely divisible probability measures, transience criteria for con-
volution semi-groups and characterizations of recurrent or transient
random walks.

This primer in probabilities on Abelian topological groups with
emphasis on separable Banach spaces and on locally compact Abelian
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groups is by its very conception an elementary introduction to the
structural access to probability theory, no text book in the habitual
understanding and by now means a monograph. It should be studied
by graduate students along with the course work and will make in-
teresting accompanying reading for their lecturers. At the same time
the book provides information beyond the particular topic and lays
bare the possibility of incorporating certain problems of probability
theory into a wider setting which may be chosen according to the
actual aims of study.

Since the pioneering work of Grenander and Parthasarathy going
back to the early 1960’s structural aspects of probability theory have
been stressed in various monographs. For probabilities on locally
compact groups we mention the books by Berg and Forst and by
Revuz, both of 1975, as well as the author’s book of 1977. There is
also an extensive literature on probabilities on linear spaces. We just
cite the books by Araujo and Giné of 1980, by Linde of 1986 and by
Vakhania, Tarieladze and Chobanyan of 1987. Our selection of topics
from these sources has at least two motives: to stress the significance
of the problems within the development of the theory, and to choose
an approach to their solutions which at the same time is as direct and
informative as possible. Clearly these aims can hardly be achieved
without reference to some basic notions and facts from topological
groups, topological vector spaces and commutative Banach algebras.
Appendices at the end of the book are offered as desirable aids.

In the first part of the book (Chapters 1 to 3) we start by collecting
the necessary measure theory on metric spaces including the Riesz
and Prohorov theorems. It follows a detailed analysis of the Fourier
transform for separable Banach spaces. The main focus of the sub-
sequent discussion is the arithmetic of probability measures on such
spaces, in particular the study of infinitely divisible probability mea-
sures. We establish the embedding of infinitely divisible probability
measures into continuous convolution semigroups and then examine
Gauss and Poisson measures. The Ito-Nishio theorem is applied to a
construction of Brownian motion. The proof of the Lévy-Khintchine
representation is prepared by a detailed discussion of Lévy measures
and generalized Poisson measures. It is clear that the theory exposed
for general separable Banach spaces covers the case of Euclidean
space and also various cases of function spaces.
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The second half of the book (Chapters 4 to 6) begins with the no-
tion of convolution of Radon measures on a locally compact group.
The exposition continues by developing the duality theory of locally
compact Abelian groups including positive definite functions and
measures. Then negative definite functions on such groups are stud-
ied, their duality with positive definite functions and their correspon-
dence in the sense of Schoenberg with convolution semigroups. The
construction of Lévy functions for any locally compact Abelian group
is the basic step towards a Lévy-Khintchine representation of nega-
tive definite functions. The concluding chapter contains a discussion
of transient convolution semigroups and random walks. A measure-
theoretic proof of the Port-Stone transience criterion precedes the
characterization of groups admitting recurrent random walks and
the classification of transient random walks which solves the prob-
lem of renewal of random walks on a locally compact Abelian group.
The theory developed in this part of the book can be easily spe-
cialized to the Euclidean case, but moreover to infinite dimensional
lattices and tori.

Now the methodical framework of the book becomes visible. For
separable Banach spaces as well as for locally compact Abelian
groups dual objects and Fourier transforms of measures as func-
tions on these dual objects are employed in order to determine the
structure of infinitely divisible probability measures and convolu-
tion semigroups. For Banach spaces only restricted versions of the
Lévy continuity theorem can be proved. In fact, by the lack of an
appropriate Bochner theorem for positive definite functions har-
monic analysis soon reaches its limits. In the case of locally compact
Abelian groups, however, the Pontryagin duality provides a far more
elaborate harmonic analysis which can be applied to obtain not only
strong versions of the Lévy continuity theorem but also deep re-
sults on the potential theory of stochastic processes with stationary
independent increments and random walks in the group.

To write a primer in probabilities on algebraic-topological struc-
tures became a matter of concern during the author’s lecturing over
about three decades, mostly at the University of Tibingen in Ger-
many. Along with his research work at the interface between prob-
ability theory and harmonic analysis he taught on probability mea-
sures on Banach spaces, locally compact groups and homogeneous



viii Preface

spaces. It turned out that graduate students majoring in probabil-
ity theory or in analysis took those courses which led to seminars
on "Stochastics and Analysis” in which central limit theorems for
generalized random variables, stochastic processes in and random
fields over general algebraic-topological structures were discussed. In
recent years also analogs of these probabilistic objects for general-
ized convolution structures as Jacobi and Sturm-Liouville translation
structures were considered. For the harmonic analysis of these struc-
tures the presentation of the case of a locally compact Abelian group
provides the appropriate basis. Consequently, the present book may
also be used as a preparatory text for the study of probability mea-
sures on hypergroups and hypercomplex systems.

In conceiving his book the author received encouragement from
many colleagues and friends spread over the globe. Various scientific
agencies like the German and the Japanese Research Societies made
it possible to test preliminary versions of the manuscript in work-
shops and crash courses during research stays and sabbaticals at
universities in Australia (Perth), Japan (Tokyo) and the US (San
Diego). Acknowledgement of prime importance goes to Christian
Berg and Gunnar Forst, to Werner Linde and to Daniel Revuz for
their excellent monographs the contents of which reaches far beyond
our exposition. Several people have read drafts of the text. Espe-
cially valuable was Gyula Pap’s constructive criticism for which the
author is most thankful. There were also capable secretaries who did
a great job in preparing the typescript: Kerstin Behrends and Erika
Gugl deserve praise for their skillful work. Last but not least I am
grateful to M.M. Rao from the University of California at Riverside
who invited the book into the series on Multivariate Analysis with
World Scientific.

The author expresses his expectation that all obscurities contained
in the text will be communicated to him and that despite of such
inevitable deficiencies the book may serve its modest purpose. There
is no doubt that the following statement due to Pablo Picasso also
applies to an author in mathematics

"Ce que je fais aujourd’hui est déja vieux pour demain.”

Tiibingen, March 2004 Herbert Heyer
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1

Probability Measures on Metric Spaces

1.1 Tight measures

Let (E,d) denote a metric space, O(E), A(E), K(E) the systems of
open, closed and compact subsets of E respectively. On (E,d) we
have the notions of the Borel o-algebra

B(E) := o(O(E)) = o(A(E))

of E and of a (Borel) measure on FE, i.e. a non-negative extended
real-valued o-additive set function g on B(FE) with the properties
that u(0) = 0 and p(K) < oo for all K € K(E).

Definition 1.1.1 A finite measure p on E is called

(a) regular if for every B € B(E) and for every € > 0 there exist
A € AE) and O € O(E) such that A C B C O and
w(0) — u(A) < ¢, and

(b) tight if
u(E) = sup{u(K) : K € K(E)}.

Theorem 1.1.2 Let p be a finite measure on E. Then

1
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(i) i is regular.

(#) If p is tight then it must be tnner-regular in the sense that
for each B € B(E)

u(B) = sup{u(K): K € K(E), K C B}.
In particular, for finite measures the notions of tightness and inner-

regularity coincide.

Proof. (i) Let ® := ®,, be the system of all B € B(E) with respect
to which g is regular. Then ® is a Dynkin system in the sense that
E €®, Be® implies that £\ B € D, and whenever (B,),>1 is a
disjoint sequence in ® then B :=J,,., B, € D.

The proof of the first property is clear, and for the second one we
observe that if A € A(E) and O € O(FE) are chosen as in Definition
1.1.1(a) then E\ O C E\ B C E\ A and, noting that £\ O € A(E)
and F'\ A € O(E), we have

WEN\A) - w(E\O) = u(0) — p(4) <e.

As for the third property, given € > 0 we can find A,, € A(F) and
O,, € O(E) with A, C B,, C O,, and

1
1(0n) — p(An) < on+2 €

for all n € N. Let O := {J,,5; On, choose ng with #(Upsng An) <
g/4 and put A :={J°, A,. Then A€ A(E), O € O(E), ACBC
O and

WO\ A) < W0\ A) € 3 WO\ 4+ 3 4(O)

n>1 n=1 n>ng
€ 1 < 3
SZ-FZ ,U,(An)‘f'%_-i{f _ZE<€

Furthermore A(E) C D. Indeed, given A € A(E) for each n € N
we observe that
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is open, and from Aw | A (which holds as E is metric) it follows
that u(Aw) | u(A).

Now A(F) is N-stable, and therefore
B(E) = o(A(E)) = D(A(E)) C D C B(E),

whence ® = B(FE). Here D(A(E)) denotes the Dynkin hull of A(E).

(ii) Let B € B(E) and ¢ > 0. Using (i) there exists A € A(E)
with A C B such that u(B) — u(A4) < §, and also K € K(E) with
w(B) — u(K) < §. Then ANK is a compact subset of B, and

€
+ - =c. [ ]

w(B) - (ANK) < u(B\A) +w(BE\K) < 5+ 35

N ™

Corollary 1.1.3 If u is tight, then for every downward filtered family

(AL)LEI n -A(E)
7 (ﬂ AL> = inf y(4,).

el

Proof. From A := (), A, C Ax we have u(A) < u(Ag) for all
k € I, and hence pu(A) <inf,ey u(A.).

In the reverse direction, appealing to Theorem 1.1.2(%), to each
€ > 0 there exists K € K(E) with K C E'\ A such that

WE\K) — p(A) = u(E\ A) - u(K) <.

Now K C U,;(E\ A,), and hence by compactness there exist
L1yl2y o tn € T with K C UL (B\A,,). Also (F\A,).cr is an upward
filtered family, and hence there exists ¢q € I such that K C E\ 4,,.
From u(E \ K) — u(A) < € it follows that

1(A,) S B\ K) < pu(A) +e
and so € being arbitrary we obtain inf,c; u(A,) < p(A). [ |

Theorem 1.1.4 Let y be a tight measure on E.
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(i) There exists a smallest closed subset Ay of E with
1(Ao) = pu(E).

(it) Ag is separable.
(iii) Ag = {z € E : p(U) > 0 for all open neighborhoods U of x}.
Proof. (i). The family

{A e A(E) : p(4) = u(E)}
is downward filtered, even N-stable. The result now follows from
Corollary 1.1.3.

(ii). By Theorem 1.1.2(ii) there exists a sequence (K, )n>1 of com-
pact and hence separable subsets of Ag with p(Ap) = sup, 5, p(Ky).
Thus A := (U, >, Kn)~ is separable and closed with A C Ao, from
which it follows that

u(4) = u(Ao) = u(E)
and by (i), A = Ag so that Ag must be separable.
(iii). Write
By:={z € E: u(U) >0 for all open neighborhoods U of z}.

Given z € E \ Ag then E \ Ay is an open neighborhood of z with
w(E\ Ag) = 0, and hence z € E \ Bg. In the reverse direction given
x € F\ By there exists an open neighborhood U of x with u(U) = 0.
Hence p(E\U) = u(E). Thus Ag C E\U and hence z € E\ Ao. B

Definition 1.1.5 The set Ag in Theorem 1.1.4 is called the support
of u, and will be denoted by supp ().

Theorem 1.1.6 Let (E,d) be a separable complete metric space.
Then every finite measure p on E is tight.

Proof. Let {z; : k € N} be a dense subset of E. Then for each
n€N

UBumb‘:E

E>1
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where
B(z,0) :={y € E : d(z,y) < 4}

is the open ball of radius é > 0 with centre z. Choose € > 0. Then
to each n € N there exists &, € N satisfying

o 1 €
M(E\ U B(zk,g)_) < om

k=1

The set X
" 1
K = -
N U B D)
n>1k=1

is closed and totally bounded. From the completeness of E it follows
that K is compact. Finally

kn
u(E\K)=u<U (E\ UB(:ck,%r)) <Y o=c m

n>1 k=1 n>1

Theorem 1.1.7 Let E, F' be metric spaces, and ¢ : E — F a contin-
uous mapping. If i is a tight measure on E then the image measure
w(p) of u under ¢ 1is tight on F.

Proof. Since ¢ is a continuous mapping it must be B(E) — B(F)-
measurable, and hence ¢(u) is a finite measure on F. Given € > 0
there exists a compact subset K of E with u(E\ K) < e. Also ¢(K)
is a compact subset of F', and

o) (F\ o(K)) = plo~{(F\ o(K)))

= w(E\ ¢~ (¢(K)))
<uE\K)<e. m
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1.2 The topology of weak convergence

Although in the following discussion the set M®(E) of all tight
(finite Borel) measures on E and its subset M'(FE) := {u € MY(E) :
w(E) = 1} of probability measures will remain the basic measure-
theoretic objects, for some technical arguments we need a few facts
on regular normed contents on E and related integrals. A content
on E is a non-negative extended real-valued (finitely) additive set
function x on the algebra A(O(E)) generated by O(E) satisfying
1(@) = 0. Regular (finite) contents and probability contents on F are

introduced in analogy to regular (finite) and probability measures on
E.

Given a regular finite content p on F, the p-integral of a bounded
real-valued function f on E is defined as follows. Let P be a partition
of E consisting of finitely many pairwise disjoint sets Ey,...,E, €

A(O(F)). We put
Sp -Z iH(E;)

and .
Sp 1= Z m;u(E;),
ji=1

where M; := sup{f(z) : ¢ € E;} and m; = inf{f(z) : z € E;} for
j=1,..,n. fis said to be u-integrable if

inf Sp = sup sp,
P P

and in this case

/fdu = 1%f Sp

is the u-integral of f. Obviously every bounded continuous function

f is p-integrable, and
£ [ fau

defines a normed positive linear functional on the vector space C°(E)
of bounded continuous functions on . Moreover, we have
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Theorem 1.2.1 (F. Riesz) There is a one-to-one correspondence
p— Ly,
between the set of reqular finite (probability) contents p on E and

the set of bounded (normed) positive linear functionals L, on C%(E)
given by

Lu(f) = [
for all f € C¥(E).

The Proof will be carried out only for the case in parentheses.
1. Let L be a normed positive linear functional on C*(E), and let

AL(A) = inf{L(f): f € C*(E), f2>1a}

for every A € A(F). A : A(E) — [0,1] is a smooth probability
content in the sense of the following four properties

(a) AL(@) =0, AL(E) =1
(b) )\L(Al) < )\L(AQ) for all A;,As € .A(E) with A; C A,.

(C) AL(AI U Az) < )‘L(Al) + )\L(Az) for all Ay, A, € .A(E), where
equality holds whenever A; N Ay = 0.

(d) For all A € A(E)
A(A) = inf{A,(07): 0 € O(E), 0> A}.

2. Now, Ay, can be uniquely extended to a regular probability content
pr : A(O(E)) — [0,1], and it turns out that

L) = [ su

for all f € C¥(E).
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In order to verify this identity we pick f € C*(E) with 0 < f <1
and introduce the sets

G = {meE:f(x)>%} € O(E)

foralli =0,1,. Clearly, GoD2GyD...02G, =0. Now
we define functlons al e C’( 0,1 )

i

( y—
0 on |0, ’——1]

. : i
a; := < linear on |—, —
n'n

=1 on ——,1}

and functions f; on E by
fimajof
fori =0,1,...,n,n > 1. Then
1 n
—Zai(t) =
i

for all ¢t € [0,1], hence

1o I
E;fizf and E;L(mzfzf

Since f; > 1¢,, and for any A € A(E), A C G;, 1g, > 14 we obtain
that f; > 14 and hence that

L(fi) 2 AL(A) = pL(4).

From the regularity of p; we infer that

L(fi) 2 pi(Gi)
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and thus

L(f) =2

S|
)=
=
=
QD

Il
ANgE
N
3| e
J
S

—
S’
R
=
)

7

[
1l

e
<
1l
—

I

™

g
=
byl

(G:) — pL(Giy1))

@
It
~

3
—

141
n

%

ML(Gz'\Gz'H)) - %HL(GI)

i

/ fdur —'%NL(GI)

Gi\Gi+1

1 1
faur, nuL(Gl) > /fduL -
E

1

v
© 3
Il |

Q

For n — oo we obtain that
L(f) > / fdur
whenever f € C*(E) with 0 < f < 1.

But since f € C,(F) there exists a constant ¢ > 0 such that
0 <cf <1, hence

L(f)= %L(Cf) > %/Cf dpr, = /f dur, -

Moreover, if f € C®(E), there exists a constant ¢; > 0 satisfying
f+c1 >0, hence

L(f) = L(f+c)—a > /(f+01)d/iL—C1 = /fd/iL-

Thus we have

L(f) > / f duy
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for all f € C°(E). Replacing f by —f yields the assertion.

3. The injectivity of the correspondence y — L, can be seen as
follows: Let i, v be regular probability contents of E satisfying

[ rau= [ a

for all f € C%E), and let A € A(E). There exist decreasing se-
quences (Gp)n>1 and (Hp)p>y in O(E) with G, D A and H, D A
for all n > 1 such that

Jim p(Gn) = p(A)

and
lim v(H,) =v(A).

But then V,, :=G,NH, | A and
lim p(Va) = p(4)
n—oo

as well as
lim v(V,,) = v(A).

n—oo

Choosing for every n > 1 a function f, € C*(E) with the properties
0 < fn <1, fo(A) = {1} and f,(V,¢) = {0} (the existence of which
follows from ANV, = for all n > 1) we obtain

[ i = ! fudit [ o = w@)+ [ fuds

VoA Va\A
and
[ Fadi < u(Va\A) = (V) — u(4),
Vo\A
hence
lim / fad =0,
n—00

Va\A
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Therefore
lim Jndp = V(A)
n—o0
and
lim [ fandv =v(A),
thus

p(A) = v(A) for all A € A(E)

and by the regularity of u, v also
w(B) =v(B) for all B € A(A(E)) = A(O(F))
which implies that p = v. |

At a later stage we will apply the following consequences of the
theorem.

Corollary 1.2.2 If for measures p,v € M*(E)

[ sdn= [ sav

holds whenever f € CP(E) then u = v (on B(E)).

Corollary 1.2.3 Let (E,d) be a compact metric space. There is a
one-to-one correspondence

u— L,

between the set M°(E) and the set LY (C(E)) of positive normed
linear functionals on C(E) given by

L) = [ sau

for all f € C(E) = C*(E).
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The Proof follows directly from Theorem 1.2.1 by applying the
fact that for compact F every regular finite content on FE is in fact

o-additive and hence uniquely extendable to a measure in M?(E).
For the latter property see Theorem 1.3.1. [ |

We proceed to introducing a topology in M®(E).

Definition 1.2.4 Given u € M*E), n>1, f1,f2,...,fn € C*(E)
and € > 0, define

V(w; f1, f2, e frj€) ¢
- {1/ e MY(E) : }/fid,u—/fidz/‘ <e¢ forall i= 1,2,...,n}.

The weak topology T, on M°(E) is the uniquely determined topol-
ogy for which

{V(M, fl, f2a oy fn,5> 'n 2 17 f17f2a "')f'n € Cb(E)7 €> 0}
is a neighborhood system of u for each p € M°(E).
Remark 1.2.5
(a) The weak topology on MY(E) is Hausdorff due to Corollary 1.2.2.
(b) A net (,).er in MP(E) converges weakly (t,,) to n € M*(E)
whenever
iy [ fau. = [ s
el
for all f € C*(E); we write 7, — lim, p, = pu.
(c) In the functional-analytic context of Appendiz B 10 one intro-
duces for the dual pair (CP(E),CP(E)) of topological vector spaces

the weak topology on CP(E)'. If E is compact, then Corollary 1.2.8
yields the homeomorphism

C*(E)} = M*(E)
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and consequently the coincidence of the weak topology restricted to
C®(E), with the weak topology Ty, on MP(E).

Definition 1.2.6 Let u € MP(E). A set B € B(E) is called a p-
continuity (p-null boundary) set if p(0B) = 0 where
OB = B~\B" (¢ A(E)).

Theorem 1.2.7 (Portemanteau) Let (1,).c; be a net in M?(E) and
p € MP(E). The following statements are equivalent:

(1) T — lim, p, =

(i) lim,er p(E) = p(E) and limsup,e; . (A) < p(A) for all A€
A(E).

(i) lim, ey p,(F) = pu(E) and liminf,c; p,(O) > u(O) for all O €
O(E).

(iv) im, ey u,(B) = p(B) for all p-continuity sets B.

Proof.

(i) = (i). As 1g € C*(E) we have lim,c; . (E) = p(E). Now
consider A € A(FE). Then, as A% | Aasn — oo, to each € > 0 we
can find n € N with p(A%) —~ u(A) < e. Choose f € C*(E) with
0< f<1,f(A)={1} and f(E\ A%) = {0}. Then

limsup p,(4) < limsup/fdm < (A7) < p(A) + ¢
el el

and hence

limsup p.(4) < p(4).
el

(%) < (). This follows by considering complements.
(it), (%) = (iv). Let B be a p-continuity set. Then

limsup p,(B) < limsup u,(B™) < u(B™)
el te1

= w(B°) < liminf 41, (B%) < liminf 1, (B)
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and this yields the result.

(iv) = (i). Let f € C®(E). Since f(u) contains at most countably
many atoms, to each € > 0 there exists a strictly increasing sequence
(ti)i:O,l,...,k in R with f(/i)({tz}) = 0 for all 7 = 0,1,...,](?, t; —
tioy < eforalli =1,2,...,k, and f(E) C [tg,tg[ For each i =
1,2,...k put B; := f~([t;—1,%[). Then B; € B(F) and, since

8B; C f1(Oti—1, ti)) = F({ti=1, ti})s

we see that B, is a p-continuity set. We now define

k k
g = Zti—llBi and h:= ZtilBi .
i=1 i=1
Then
g<f<g+eand h—e<f<h
and
lim sup/fdm < limsup/gd,uL + eu(FE)
el el
= /gdu +eu(E) < /fdwr epu(E)
and
liminf [ fdy, > liminf / hdw, — ep(E)
vel 134
= [t eu(B) 2 [ fau—eu(m)
as

k k
/gdl/ = Zti—lV(Bi) and /hdl/ = ZtiV(Bi)
i=1 i=1

for all v € MY(E), and E is a p-continuity set as OF = @. It now
follows that

limsup/fdmS/fduglimeilnf/fd,ub

el
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and this gives the desired equality. [ |

Corollary 1.2.8 Let u € MP(E). Then each of the following is a
Tw-neighborhood basis of p.

(a) {v e M¥E): W(E) — w(E)| < € and v(4;) < p(A;) + ¢ for all
i=1,2,..,n}, where Ay, As,..., A, € A(E), n€ N and e > 0.

(b) {v € MY(E) : [v(E) — p(E)| < € and v(0;) > p(0;) — ¢ for all
i=1,2,..,n}, where 01,03,...,0, € O(E), n€ N and e > 0.

(c) {v € MYE) : |v(B;) — u(B;)| < € for all i = 1,2,...,n}, where
By, By, ..., B, € B(E) are p-continuity sets with n € N and
€ > 0.

Theorem 1.2.9 Let (11,).cs be a net in M®(E) with 7, — lim, p, =
@ € MP(E). Furthermore let f be a bounded Borel-measurable real-
valued function on E. If the set Dy of discontinuity points of f is a

w-null set, then
iy [ fdp. = / Fdu.

Proof. Let A € A(R). Since f~*(A)~ € Dy U f~1(A) we can apply
Theorem 1.2.7 to obtain

lim Supf(l“’b)(A) = limsup ,U'L(fﬂl(A)) < limsup /-‘L(fﬂl(A)_)
eI el el

< p(f7HA)7) S w(Dy U FTHA)) = u(f7H(A) = F(R)(A4).

In addition
lim f(1)(R) = lim 1, (B) = p(E) = f(u)(R).

A second application of Theorem 1.2.7 gives 7, — lim, f(u,) = f(u)-
Now consider ¢ € C®(R) such that Resgy = id g, where B is any
bounded interval containing the bounded set f(B). Since po f = f
we have

iy [ fau, =i [ pdfu) = [odfw = [fdu.
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Corollary 1.2.10 Let (p,).cr be a net in M®(E) satisfying 7, —
lim, 4, = p € MYE), and let B € B(E) be a p-continuity set.
Then for the corresponding measures induced on B we have T, —
th(ML)B =UB.

Proof. Let f € C*(E). Then

/fdz/3=/f13du

for all v € M®(E). From Dy;, C 8B we see that Dy;, is a p-null
set. In addition f1p is bounded and Borel measurable. Referring to
Theorem 1.2.9 it follows that

iy [ f(u)e =iy [ F1ade, = [ faus. .

eI

Theorem 1.2.11 The set D(E) := {e; : x € E} of Dirac measures
on E is 1y,-closed in M®(E), and x v~ ¢, is a homeomorphism of E
onto D(E).

Proof. Let (z,).es be a net in F such that lim,e;z, = z € E. Then
lLléx}/fdewL = lblerrll fz,) = f(z) = /fdaz

for all f € CY(E), and thus 7, — lim,&,, = &, which shows that
x — &, is a continuous mapping E — D(F). In addition = — &,
is injective, which is easily seen by simply choosing B € B(E) with
z € B and y € B, and indeed B = {z} will suffice.

Now suppose that 7, —lim, &;, = € M®(E). From lim,cs &, (E) =
u(E) we see that u(E) = 1, and hence supp (i) # 0. Choose z €
supp(x) and an open neighborhood U of z. It follows from the prop-
erties of supp(u) and Theorem 1.2.7 that

lirr1ei1nf€xL(U) >ulU)>0
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so that there exists .y € I with ¢, (U) > 0, and hence z, € U
for all ¢+ > ¢yy. This shows that lim,c; x, = «, and in particular that
€z + x is continuous. It follows that u = €, since 7, is Hausdorff,
and therefore D(FE) is 7,,-closed. [ |

Theorem 1.2.12 Let E,F be metric spaces, and v : E — F a

continuous mapping. Then u — o(u) is a T,-continuous mapping
from M®(E) into M°(F).

Proof. According to Theorem 1.1.7 we see that o(u) € M®(F) for
all 4 € MP(E). Let (u,)ier be a net in Mb(E) with 7, — lim, p, =
p € MY(E). For each f € C(F) we have f oo € C*(E), and this
implies that

im [ fap(u) =tim [ fopdu = [ fopdu= [ faglu).

el

In the following we will show that we can restrict the study of weak
convergence to bounded sequences. For this purpose we consider the
metrizability of the space M(E) for an arbitrary metric space (E, d).

Lemma 1.2.13 The mapping p : M?(E) x MY(E) — R given by

o(p,v) = inf {e > 0: u(B) < v(B%)+e and v(B) < u(B) +¢
for all B € B(E)}

for all u,v € M®(E) is a metric on M°(E), called the Prohorov
metric (It should be noted that the existence of numbers € > 0 sat-
isfying the above is guaranteed by the boundedness of w,v).

Proof. It is clear that p(u,v) > 0, p(p,v) = p(v, 1) and p(p,u) =0
for all p,v € M®(E). Now suppose p(u,v) = 0. For each A € A(E)
we know that A% | A. Then u(A) = v(A) and hence by Theorem
1.1.2(3), p = v.

Finally, to prove that p satisfies the triangle inequality, consider
A\ i, v € MP(E) and o, 8 > 0 with p(\, 1) < « and p(p,v) < 8. By
definition of p(u,v) we have

u(B) <v(B”)+ 4
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for all B € B(FE). From
(B*)? U (Bf)* c B**F
it follows that
A(B) < p(B*) +a < v((B*)°) + B+ & < v(BF) + (e + )
and correspondingly
v(B) S XBF) + (a+8).

Thus p(A,v) < a+ §. Now since a > p(A, u) and § > p(p,v) were
chosen arbitrarily it follows that

p(Mv) < p(A, 1) + p(p, v) . L
Theorem 1.2.14 The Prohorov metric induces the weak topology T,
on MP(E).
Proof. In each 7,-neighborhood U of . € M®(E) there is an open
p-ball centered in p. Without loss of generality we may assume U to

be chosen as in Corollary 1.2.8(a). Now since 4 is continuous from
above and Ag L Aj as § | 0 there exists § €]0, £[ such that

u(A‘;) < u(A;) + g forall j=1,2,..,n.

Choose v € M?(E) satisfying p(u,v) < 4. Since E% = E it follows
that
[V(E) - uw(E)| <6 <e.

Furthermore
v(A;) < p(AD) +6 < u(A;) + = +6 < () +e

for all j =1,2,...,n, and this implies that v € U.
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For the reverse direction it is to be shown that each open p-ball
centered on u with radius € > 0 contains a 7,,-neighborhood U. Let
4 €]0, £[. Since p is tight, by Theorem 1.1.4 there exists a o-compact
set G ¢ E with u(G) = u(E). To each z € G there corresponds
&(z) €]0, 2| with u(6B(z,é(z))) = 0. Note that

O0B(z,n) C {y € E : d(z,y) = n}.

For each n € N there exist finitely many 7 > 0 such that u(0B(z,n))
> L. Thus there exist only countably many n with u(0B(z,n)) # 0.

Since G C |, B(z,d(x)), the o-compactness of G yields the exis-
tence of a sequence (xn)n>1 With

G c | B(@n, 8(zn)) .

n>1

For each n € N put G, := B(zy,d(z,)). Then (Gp)n>1 is a sequence
of u-continuity sets with diameter less than 4, and

GclGn.
n>1
Hence there exists k£ € N such that

(Uen)>um-s

Put

jeJ
Now € is a finite system of u-continuity sets since
6<UG]-> clUer\yaiclJaa;.
jed jeJ jeJ JjeJ
It follows from Corollary 1.2.8 that

U= (v € MYE) : [(E) — w(B)| < 6, v(C) — u(C)| < &
for all C € ¢}
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is a Ty-neighborhood of .

We wish to show that for each v € U we have p(p,v) < e. Put
Cy = Uﬁzl Gy Since Cy € € we have

v(Co) > u(Co) — 8 > u(E) — 26 > v(E) - 35.
Now choose B € B(E). Then

c= |J gGeg
{i<k:G;NB#8}

C C B? (as diam G; < &) and B C CU(E\Cy) (where CN(E\Cp) =
0). Then

p(B) < w(C)+pn(E\Co) < v(C)+6+8 < v(B®) 426 < v(BY¥) +46
and analogously
v(B) < v(C) +v(E\ Co) < (C) + 6+ 386 < u(BY) +44.

Thus
plp,v) <4d <e. [

Application 1.2.15 Let (X, )n>0 be a sequence of E-valued random
variables on a probability space (0, A, P) with distributions Px, €
MY(E) forn > 0. Then

X, — Xo P-stochastically implies

Px, — Px, weakly asn — oo.
In fact, given € > 0, there exists n, > 1 such that

P([d(Xn,Xo) >¢]) <e forall n>n,.
Let B € B(F). Then
(X, € B] C [d(Xn, Xo) > €] U ([d(Xn,XO) <en[Xo € Bf])
C [d(Xn, Xo) > €] U [X, € B]
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and analogously,
[Xo € B] C [d(Xn, Xo) > €] U[X,, € B].
For n > n, follows
Px (B) <e+Px,(B°)

as well as
Px,(B) <e+Px,(B%)

whenever B € B(FE). But this implies

p(PXn’PXo) <g,

thus Theorem 1.2.14 yields the assertion.
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1.3 The Prohorov theorem

As before (E,d) is a metric space, and the space M°(E) is given
the topology 7, or equivalently the Prohorov metric p. Hence
(M®(E), p) is a metric space.

A finite content p on F is called inner-regular if
n(B) = sup{u(K) : K € K(E), K C B}

for all B € B(E).

Theorem 1.3.1 FEvery inner-regular content u on FE is o-additive, so
that u € M°(E).

Proof. All that needs to be shown is that u is @-continuous. Let
(Bn)n>1 be a sequence in B(E) with B,, | @, and ¢ be given. For
each n € N there exists a compact set K,, C B,, such that

B(Ba) = 1K) < e

Put L, := (N, Ki. Then
#(Br) — p(Ln) < Z(u(Bi) — u(Ki)) <e

forall n € N, and L,, | @. From the finite intersection property there
exists ng € N such that L, = 0 for all n > ng, and hence pu(L,) =0
for all n > ng. Then u(B,) < ¢ for all n > ng, and we have shown
that im, .. u(Bp) = 0. [ ]

Corollary 1.3.2 Let (in)n>1 be an increasing sequence in M®(E)
satisfying

sup pn(F) < 0.

n>1

Then sup, >, pn € M®b(E).
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Proof. Write u(B) := sup,; pn(B) for all B € B(FE). Clearly u
is a finite content on B(E). From Theorem 1.1.2 we have that u,
is inner-regular, and so y is an inner-regular content, and the result
follows from Theorem 1.3.1. [ |

Theorem 1.3.3 Let (E,d) be a compact metric space. Then for each
a>0
MN(E) == {u € M*(E) : u(E) < a}

18 Ty -coOmpact.
Proof. According to Appendix B 14.1 (Alaoglu, Bourbaki), the set
V@ = {p e C*(E) : |loll < a}

is weakly-compact, i.e compact with respect to the topology
o(C*(E),C?(E)). Hence

V-ﬁa) ={peV®.p>0}= ﬂ {p eV o(f) > 0}
feCt (B)

is weakly compact. Furthermore by Corollary 1.2.3 the mapping

uh—ﬂ(f*—*/fdu>

is a bijection from M(®(E) onto V\%. From the definition of 7o,
it follows that it is a homeomorphism, and hence that M(®)(E) is
Tw-compact. |

Definition 1.3.4 A set H C M®(E) is called uniformly tight if
(a) sup{u(E) : p € H} < oo;
(b) to each € > 0 there exists a compact set K C E such that

w(E\K)<e forall pe€ H.
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Theorem 1.3.5 Suppose (E,d) is separable complete. For each H C
MP(E) the following statements are equivalent:

(i) H is uniformly tight.
() (a) sup{u(E) : p € H} < oo;

(b) For all e >0 and n € N there exist 1,2s,...,2x € E such
that

w(E\B,) <e forall pe H

where By, 1= Uf_—_l B(zj, 3)-

Proof. (i)=(%). To each £ > 0 there exists a compact set K C E
such that u(E\ K) < e for all 4 € H. Also to each n € N there exist
T1,Z9,...,Tx € E such that K C B, so that

WE\ By) <e

for all p € H.

(i1)=(i). Let £ > 0. From the assumption for each n € N there
exists B,, C E such that B, is the finite union of %-balls and

1
WEN\ By) < 57€
for all p € H. Put L := (), 5, B,. Then p(E\ L) < e for all p € H.
Now L is totally bounded, and hence so is L™. As F is complete

it follows that L~ is compact. The result now follows from the fact
that

p(ENLT)<pu(E\L)<e forall p€ H. [ |

Lemma 1.3.6 Let A € A(E), u, € MY(E) forall. € I, p € M*(E),
pa € ME(A). If 7, — lim, p, = p and 7, — lim,Resap, = pa then
pa <Resap.
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Proof. We can use Theorem 1.1.2(ii) to deduce that Ressu €
MP®(A). Consider a continuous function g : A — [0,1]. By Tietze’s
extension theorem there exists a continuous function f : £ — [0, 1]
with Ress f = g. Then

=i =i d
/gduA lLlergl/gd(ReSAuL) Llerr}/Af 1o

/gd(ReSAu)=/Afdu-

But in slight modification of Corollary 1.2.2 one obtains that for
measures u,v € M°(E) satisfying

and

/fdugffdu for all f € C*(E) with 0< f<1

i < v holds. Therefore we need only prove that

i [ fau < [ fdp.

el fq A
However this inequality follows immediately from the Portemanteau
theorem 1.2.7, as clearly 7, — lim, f(u.) = fu. [ ]

Theorem 1.3.7 (Prohorov) Consider H C M*(E).
(i) If H is uniformly tight then H is T, -relatively compact.

(1) If E is separable complete then any T, -relatively compact set H
15 uniformly tight.

Proof. (i). Let (K,)n>1 be an increasing sequence of compact sub-
sets of E satisfying u(E \ K,) < % for all u € H. Let (ux)r>1 be
a sequence in H. We have to show that (ux)r>1 possesses a 7,-
convergent subsequence. From

a:=sup{p(Ky,):pe€ Hne N} <sup{u(E):p€ H} < o0
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appealing to Theorem 1.3.3 we have that {Resg,pu : p € H}(C
M()(K,,)) is 7,-relatively compact in M®(K,,). By the metrizabil-
ity of M%(E), which is the content of Theorem 1.2.14, a diagonal
argument provides for each n € N a measure v/, € M?(K,,) with

Tw — lilrcnResKn,uk =v,,.

Put
vn(B) :=v, (BN K,) for all B € B(E).

Then v, € M®(E) for all n € N. Also from Lemma 1.3.6, v, <
Resk, v}, and (recall that K, C Kp41)

Vn(B) < Vg1 (BN Kp) < vny1(B)

for all B € B(E) which says that (vn)n>1 is an increasing sequence.
Moreover,

Un(E) = v (Ky) = kll)rr;o pre(Ky) < likn—l»géf pr(E) < oo

for all n € N. Now appeal to Corollary 1.3.2 to obtain

v :=supv, € M*(E)
n>1

and moreover

V(E) = supv,(E) < 1ikm inf ug(E).
nZl -0

Let A € A(E). Applying the Portemanteau theorem 1.2.7 we get
V(A) > va(A) = V(AN Kn) > limsup (AN Ko)
k>1

1
> limsup px(A) — =
k>1 n

for all n € N, where for the second inequality we have used the fact
that A N K, is closed, and for the third that

WANKL) > u(d) -~
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for all u € H. Hence

v(A) > limsup 1, (A)
k>1

and
v(E)= lim ug(E).
k—oo

A further application of the Portemanteau theorem 1.2.7 gives 7,, —
limy, px = v. Thus every sequence in H has a 7,-convergent subse-
quence, and this just says that H is 7,,-relatively compact.

(i1). Assume that H is 7,,-relatively compact and at the same time
fails to be uniformly tight. The mapping

p— uw(E) = /1Edu
is continuous, and this implies that
sup{u(E): p€ H} < 0.

Let F = {F C E : |F| < oo}. Theorem 1.3.5 implies that there exist
€ > 0 and n € N such that to each F € F there is ur € H with

,uF(E\ ( U B(m,%))) >e€.
z€F

The net (ur)rer contains a 7,-convergent subnet (ur,).cr with
limit u say. For each ¢ € I define

B, = U B(m,%).

zeF,

Now (E\ B.).cr is a downward filtered family in A(E) with [,c, E'\
B, = 0. It follows from Corollary 1.1.3 that

inf u(E\ B,) = 0.
On the other hand applying the Portemanteau theorem we have

/"‘(E \ Bﬂ) > limsup pr, (E \ Bn) > limsup MF, (E \ BL) 2€
el el

for all k € I, and this is a contradiction.
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1.4 Convolution of measures

In this section (E, d) will denote a separable complete metric Abelian
group which means that F is an Abelian group (with binary op-
eration denoted by addition and 0 as neutral element), (F,d) is
a separable and complete metric space with distance function d,
and the mapping (z,y) — z — y from E x E into E is contin-
uous. Along with (E,d),(E x E,d x d) is also a separable com-
plete metric Abelian group. Here the metric d x d is defined by
4 x d((z,y), (u,v)) := max{d(z,u),d(y,v)} for all (z,y), (u,v) € .
A prominent example of a separable complete metric Abelian group
is a separable Banach space (E, ||'||) over R, where the distance func-
tion is given by d(z,y) := ||z — y|| for all z,y € E.

For separable complete metric groups E we have that each finite
measure on F is tight (Theorem 1.1.6) and that the notions “uniform
tightness” and “r,-relative compactness” are equivalent (Prohorov’s
theorem 1.3.7).

Theorem 1.4.1 Let (E,d) be a separable complete metric Abelian
group.

(i) B(E x E) = B(E) @ B(E).

(it) The mapping (z,y) — m(z,y) :=zx+y from E X E into E is
(B(F) ® B(E),B(E))-measurable.

Proof. (i). O(E) is a generator of B(F) with the exhaustion prop-
erty which says that there exists a sequence (O,),>1 in O(E) such
that O, T E. Thus O(E) x O(E) is a generator of B(E) @ B(E).
Furthermore O(E) x O(E) C O(E x E) from which it follows that
B(F)®B(E) C B(E x E). Now choose a countable dense subset D
of E, so that D x D is a countable dense subset of £ x E. The open
balls in E and E x E centered at points in D and D x D respectively
and with rational radii make up countable bases B and C in O(E)
and O(FE x E) respectively. Now

B((z,y),r) = B(z,r) x B(y,r)
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for the corresponding balls, and hence B x B D C. Now B and C are

generators of B(E) and B(E x E) respectively with the exhaustion
property, which implies that B(E) ® B(E) D B(E x E).

(#i). The mapping m from E x E into E is continuous, and hence
(B(E x E),B(E))-measurable. Now apply (%). [ |
Application 1.4.2 Let X,Y be E-valued random variables on a
probability space (2, A, P). Then by Theorem 1.4.1(ii) the mapping
w (X +Y)(w) = X(w) +Y(w) from Q into E is also an E-valued
random wvariable on (Q, A, P), since X +Y =mo(X,Y).

Definition 1.4.3 For u,v € M®(E) we refer to the measure p*v :=
m(u ® v) on E as the convolution of p and v.

We have the following properties of the convolution mapping.
Properties 1.4.4

1.4.4.1 For all f € C*(E)

/fd(u*V) = /(/f(w+y)u(dw)) v(dy)
- / ( / f(w+y)V(dy)> (dw)

which follows from Fubini’s theorem.

1.4.4.2 In particular, for all B € B(F)

(s 0)(B) = [ (B~ ywtay) = [ (B - au(do).
1.4.4.3 For all B,C € B(E) we have B + C € B(E) and

(w*v)(B+C) 2 w(B)v(C).
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The latter can easily be seen as follows:
(u*1)(B+C) = (u@v)(m~(B+C)) > (uew)(BxC) = u(B)y(C).
1.4.4.4 The convolution is commutative and associative, that is
PRV =Uxp
and

Axp)xv=X*(u*v)

for all A\, u,v € M°(E).
The proof uses 1.4.4.1 in conjunction with the injectivity of the

mapping
o (f - / fdu>

from M®(E) into C*(E)',.
1.4.4.5 For each z € E and B € B(E)

(wxez)(B) = (B —z).

1.4.4.6 From 1.4.4.5 and 1.4.4.2 we have pxeq = [ and €, %€y = 54y
forallz,y € E.

Application 1.4.5 Let X,Y be independent E-valued random vari-
ables on a probability space (2, A, P). Then Px,y =Px xPy.

Proof. To show this we note that independence of X,Y gives
Px,y) = Px ® Py which implies that

Px+y =Pnox,y) =m(Pxy)) =m(Px @Py) =Px +«Py. B

Theorem 1.4.6 (Support formula) For u,v € M°(E)

supp (u * v) = (supp () + supp (v)) ™.
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Proof. First we note that

(1 * v)((supp (p)+supp (v)) )
= (1 ® v)(m™*((supp (1) + supp (v)) 7))
> (u @ v)(supp (1) x supp (v)) = u(E)v(E)
= (p®v)(E x E) = (pxv)(E).

Thus by Theorem 1.1.4(¢)
supp (p * v) C (supp (1) + supp ()~
To prove the reverse inclusion, consider z € supp (1), U € V(z),y €

supp (v) and V € D(y). Then U + V € V(z + y). Now Property
1.4.4.3 together with Theorem 1.1.4(74:) gives

(p*v)U+V) 2 pU)uV) >0.
To each W € U(z + y) there exist U € V(z),V € V(y) with U +

V C W. A further application of Theorem 1.1.4(%i%) gives z +y €
supp (p + v). Thus

supp (1) + supp (v) C supp (u x v)
and this completes the proof. |
Corollary 1.4.7 If pxv is a Dirac measure then so are each of p,v

Proof. We just observe that a measure is Dirac precisely when it
has a single element support. u

Theorem 1.4.8 Let (ftn)n>1, (z/n)n>1 be sequences with T, — lim,,
=, Tw—lim, v, = v in MP(E). Then 7y, —lim, p,®v, = u@v.

Proof. Appealing to Prohorov’s theorem 1.3.7 to each £ > 0 there
exist K € K(E) with

pn(E\K) <e and v,(E\K)<e
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and o > 0 such that
pn(E) <a and vu(E)<a
for all n € N. Clearly K x K € K(E x E), and
(b @ V) (K X K) = prn(K)vn (K) 2 (un(E) — €)(va(E) —€)
> (pn @ v )(E X E) — £(un(E) + va(E)).

Therefore
(bn @ ) ((E x EY\ (K % K)) < 2ae

and
(n ® V) (E X E) = pn(E)vy(E) < o”

for all n € N. Furthermore from Prohorov’s theorem 1.3.7 we see
that {u, @ v, : n € N} is 7,-relatively compact.

Let A € M®(E x E) be a cluster point of the sequence (4, ®p)n>1,
that is, there exists a subsequence (fn, ® Vp, )k>1 with limit A. Now

€ := {By x By € B(E) x B(E) :
By x By is both a ¢ ® v- and a A-continuity set}
is an N-stable generator of B(E)®B(E) = B(Ex E). Let B1 x B, €

E. Then
9(By x By) = (By x8B3)U(0By x By).

Therefore we have the following three cases to consider.
(1) B; is a p-continuity set and Bj is a v-continuity set.
(2) W(Br) = 0.

(3) v(B;) =0.

With the help of the Portemanteau theorem 1.2.7 we have

)\(B] X B2) = leIIgo(}Lnk ® Vnk)(Bl X B2) = kli_)n;o“nk(Bl)Vnk (B2)
= u(B1)v(B2) = (p®v)(B1 x By),
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A(B1 x By) < klirxgo Pn, (B1)a = u(B1)a=0= (u®v)(B1 X By).
and similarly in the remaining case.
Thus
A(By X By) = (u®v){By X By) forall By x Bye&

and hence A = p ® v. Hence the 7,-relatively compact sequence
(Urn ® Vp)n>1 has a unique cluster point p ® v, and it follows that
T — My, oy ® Uy = p Q V. [ ]

Theorem 1.4.9 Let (FE,d) be a separable complete metric Abelian
group. Then the space (M®(E), T, *) with the convolution * defined
above is a commutative metric semigroup, in the sense that

(i) (M®(E),,) s a metric space (with the Prohorov metric indu-
cing the topology T, ),

(i) (M®(E),*) is a commutative semigroup with neutral element
€0, that is, 9 * = p for all u € M°(E), and

(i53) the mapping (u,v) = p* v from MY(E) x M*(E) into M*(E)
18 Ty -continuous.

Moreover, (M*(E), Ty, *) is a sub-semigroup of (M®(E), T, *).

Proof. In view of the assumed metrizability it suffices to consider
sequences. So given sequences (fin)n>1, (Vn)n>1 With 7, — limy, pn, =
T — lim, v, = v in M®(E) we have by Theorem 1.4.8 that 7, —
limy, pn, ® v, = u ® v. Then Theorem 1.2.12 gives

Tw — M iy * vy =7y —lImm(pu, Qvy) =m(p@v) = p*v.
This proves the continuity of (4,v) — p * v. The remaining asser-

tions follow immediately from Properties 1.4.4.2 and 1.4.4.4 of the
convolution. =
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The Fourier Transform in a Banach Space

2.1 Fourier transforms of probability measures

Let (E,] - ||) denote a separable Banach space over R. With the
metric

(z,y) — llz -yl

(E,] - ) is a complete metric space. We use E’ to designate the
topological dual of E. For z € E and any (continuous real-valued)
linear functional a € E’ we put (z,a) := a(z). It is well-known that
E’ separates the points of E, in the sense that for every x € E'\ {0}
there exists a € E’ satisfying (z,a) # 0 (See Appendix B).

Now let N'(E) denote the family of all closed sub (vector) spaces
F of finite codimension. For every a € E’ we have ker a € M (E), and
therefore (J{IV : N € N(E)} = {0}. Finally, for every N € N(E) let
pn denote the canonical mapping from E onto E/N.

Theorem 2.1.1 For every K € K(E) we have

K ={\{py' (en(K)) : N € N(B)} .
Proof. Clearly

K c K, = {py' (on(K)) : N e N(E)}.

34
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For the reverse inclusion, let € K;. Then for every N € N(E) the
set

Ky :=py (pn(@) NK

is compact and non-empty. Moreover, given M, N € N(E) with
M C N we have Kj; C Kpy. Indeed, let pyas denote the canoni-
cal mapping from E/M onto E/N satisfying pyas o pamr = pn. Then
for y € Ky,

pn(y) = pvm(pm () = pym(pm () = pn (),

and thus y € Ky.

Next we observe that M (F) is N-stable, and consequently that
(KN)Nen(r) 18 a downward filtered family. Since each Ky is com-
pact, ([{Kn : N € N(E)} # 0. But for y € ([{Kn : N € N(E)}
we have pn(y) = pn(z) whenever N € N(E). From \{N : N €
N(E)} = {0} we have z = y € K and consequently K; C K. [

Definition 2.1.2 Let u € M%(E). The mapping fi : E' — C given
by

o) = [ (o)

for all a € E' is called the Fourier transform of u.

For Banach spaces £, F' denote by L(E, F') the set of all continuous
linear mappings from E into F, and consider T € L(E,F). The
adjoint 7" of T is continuous linear mapping from F' into E’ given
by (z,Ttb) = (Tx,b) whenever z € E, b€ F'.

Lemma 2.1.3 Let 4 € M*(E). Then for any T € L(E, F)
T(u)" = poT*.

Proof. We know already that 7'(u) € M®(F) whenever u € M®(E).
Then for every b € F”,

T("0) = [ DT () = [ u(aa)

N / =T u(dz) = (T*b)
= (i o T*)(b). .
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Theorem 2.1.4 (Uniqueness of the Fourier transform). Let p,v €
MY(E) with i = . Then p = v.

Proof. From Lemma 2.1.3 we deduce that

pn ()" = pn(v)"

for every N € N(E). But from Appendix B 3 we infer that E/N =
R? with p :=dim(Z/N) (in the sense of a topological isomorphism).
Applying Property 4.2.16.3 on the uniqueness of the classical Fourier
transform of bounded measures on R? we obtain that py(u) = pn(v)
for every N € N(F). Then

(px' (e (E)))Nen (B

is a downward filtered family in A(E) satisfying (by Theorem 2.1.1)
the equality

K = {en'(on(K)) : N € N(E)}.
It follows that

w(K) = inf{u(py! (pn(K))) : N € N(E)}

inf{pn(1)(pn (K)) : N € N(E)}
= inf{pn (v)(pn(K)) : N € N(E)}
= inf{v(py' (pn(K))) : N € N(E)}
= v(K).

From Theorem 1.1.6 and 1.1.2(¢¢) we now infer that p = v. [ |

Corollary 2.1.5 Every p € MY(E) is uniquely determined by the
family {a(p) : a € E'} of its one-dimensional marginal distributions.

Proof. For z € E, a € E' and t € R we have

(z,a(t)) = (a(z),t) = ta(z) = a(tz) = (tz,a) = (z,ta)
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and hence a®(1) = a. Then Lemma 2.1.3 yields a(#)"(1) = fi(a), and
Theorem 2.1.4 yields the assertion. [ |

From now on we shall employ &-topologies on E’. Prominent
choices for & are the families 7(F) and K(E) of finite and com-
pact subsets F respectively. For every S € G let

ps(a) == sup{|{z,a)| : z € S}
whenever a € E’. We know from Appendix B 7, B 8 that pg is a
seminorm on E’. The topologies generated in E’ by the sets {pg :
S € 6} for & equal to F(E) and K(E) of simple and compact

convergence will be denoted by o(E’, ) and 7(E’, E) respectively.
Clearly

o(E',E) » 7(E',E).
Properties 2.1.6 Let u,v € M°(E) and a,b € E'. Then

2.1.6.1 [(0)] < 0) = (B).

2.1.6.2 ji(—a) = i(a).

2.1.6.3 |i(a) — A0)|? < 2(0){(0)~Refi(a - b))
2.1.6.4 i is 7(E', E)-continuous.

2.1.6.5 If H is a uniformly tight subset of M°(E) then {i: y € H}
is T(E', E)-equicontinuous.

2.1.6.6 Suppose there exists § > 0 such that i(a) =1 for alla € E’
with ||a|| < 6. Then p = &o.

2.1.6.7 (u*v)" = jp.

To show 2.1.6.1 we just consider the equalities

ia)] = ] / & u(d) | < / 65 u(der) = / 1pdu = p(E).
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Property 2.1.6.2 follows from

p—a) = [ e u(da) = [ TEDp(aa) = [ et u(aa) = F@).
As for the proof of 2.1.6.3 we first note that for o, 3 € R we have

,eia_ zﬁ|2 Iezﬂ’ |€ _1|2
S Clan 1)(6—““—") —1) = 2~ 2cos{a — B).

Applying the Cauchy-Schwarz inequality we then obtain
46— O = | [ () — eedutaz) |
< [lettee) - e zu(a) [ 130
=2 [ (1= cos(e, 0~ ))u(d)i(0)
= 2(0) (4(0) - [ Re ¢! u(a))

= 2#(0)( (0) —Re fia —b)).

In order to show 2.1.6.4 given ¢ > 0 we choose K € K(FE) such
that u(E \ K) < £/4. Moreover, there exists § > 0 such that

Izs_

1,t| €
= 2u(B)

for all s,t € R with |s — | < &. Now suppose a,b € E' satisfy
p¥(a —b) < 4. Then

ja) = 4) = | [(H) = =) |
<(E\K) + [ et - D udo) < ¢

The proof of 2.1.6.5 is analogous to that of 2.1.6.4. As for 2.1.6.6
we apply 2.1.6.3 in order to deduce that

|8(2a) — i(a)|* £ 2(1 - Re ji(a))
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for all @ € E’. Now for a € E’ and d > 0 there exists k > 1 satisfying
lla/2%|| < 8. By assumption fi(5) = 1 and consequently

L= f2gg) = - = 42" 55) = 4le)

and hence p = €.
Finally, 2.1.6.7 is immediate from the following chain of equalities:

(5 0)°(@) = [ ) xv)(do)
= [ [ et uaauian)

= /ei(y,tﬂ (/ ei@’“),u(dx)) v(dy)
= Ma)o(a). .
Given 6 > 0 we now consider the set
Vs = {o € E': |la]l < 6)

which by Appendix B 14.1 is equicontinuous, hence o(E’,E) -
compact. Moreover,

Resy,0(E’, E) = Resy, 7(E', E).

From Appendix B 14.2 we infer that, if E is assumed to the separable,
V5 is metrizable with respect to the topologies o(E’, F) and 7(E', E).

Let C(V;) := C(Vs,7(E', E),C) denote the Banach space of all
7(E’, E)-continuous complex-valued functions on Vs, together with
the sup norm || - ||eo. Then for any 1 € M®(E) we obtain
Properties 2.1.7 (of the Fourier transform)
2.1.7.1 Resy, o € C(Vs).

2.1.7.2 |Resy, ]| < u(E).
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In the following we shall identify Resy, /i with fi.

Theorem 2.1.8 For every 1, -relatively compact subset H of M°(E)
the set H is relatively compact in C (Vs).

Proof. From Prohorov’s theorem 1.3.7 we infer that H is uniformly
tight. Then Property 2.1.7.2 implies that H is bounded in C(Vj), and
by Property 2.1.6.5, His equicontinuous. But then the Arzela-Ascoli
theorem yields the assertion. [ |

Theorem 2.1.9 (Continuity of the Fourier transform)
Let (pn)n>1 be a sequence of measures in M®(E) and let p €
MP®(E). The following statements are equivalent:

(1) (in)n>1 converges with respect to T,,.

(it) (in)n>1 ts Ty -relatively compact, and for every § > 0 the se-

quence (fin)n>1 converges uniformly on V;.

(iit) (pn)n>1 is Tw-relatively compact, and for every a € E' the
sequence (fin(a))n>1 converges in C.

If in (i) we assume in addition that T,, — lim, .o ttn, = p then in
(14i) we have
lim fin(a) = fi(a)

for alla € E'.

Proof. (i) = (ii). From the 7,-convergence of the sequence
(tn)pn>1 follows its 7,-relative compactness. Then Theorem 2.1.8
implies that (fin)n>1 is relatively compact in C(V5) for every § > 0.
But from 7, — lim, o tn = @ it follows that

~

lim fi,(a) = f(a)

for all a € E’, since Re €*¢? and Im €'+ belong to C*(E) when-
ever a € E’. Note that this argument takes care of the last state-
ment of the theorem. We conclude that all the accumulation points of
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(fin)n>1 in C(V;) coincide with Resy; f, and hence that lim, cofin =
p uniformly on V;.

(13) = (i) is clear.
(i1i) = (i). Let
p(a) = lim fin(a)

for all a € E’. Moreover, let po be an accumulation point of
(fn)n>1, which means that 7,-limg_,coftn, = po for some subse-
quence (pn, )k>1 Of (f4n)n>1. But then

fola) = Jim fin, (@) = ¢(0)

for all a € E’. The uniqueness theorem 2.1.4 implies that (un)n>1
admits only one accumulation point, and consequently (fin)n>1 Tw-
converges to it. |

We are now in a position to study the logarithm of the Fourier
transform.

Theorem 2.1.10 Consider p € M*(E) satisfying fi{a) # 0 for all
a € E'. Then there egists exactly one compler-valued function h on
E’ admitting the following properties:

(i) h(0)=0.
(i) h is norm-continuous.
(#i) For each a € E',
fi(a) = exp h(a)
In the sequel we shall write Log f instead of h.
Example 2.1.11 For every x € £
Log é, = i{z,").

Proof of the theorem. Let § > 0. Since V; is compact and j is
7(E’, E)-continuous by Property 2.1.6.4, we have that

o :=inf{|i(a)] :a € V5} > 0.
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It follows from Properties 2.1.6.3 and 2.1.6.4 that f is uniformly
continuous on E’ (with respect to the norm in E’), and hence there
exists € > 0 such that

a(e) ~ )| < 3

for all a,b € E’ with |la — b|| < €. Let {¢o,%1,...,¢tn} be a partition
of [0,1] of mesh size less than /6. Then for all & € V5 and j €
{1,2,...,n} we have

£
ltja —t;_1a) = (t; — tj_1)llall < 59=¢

and therefore
lt50) = Ats10)| < 5

Consequently

LG P P
fitj-1a) 2|a(tj-1a)] ~ 2

whenever a € Vi and j € {1,2,...,n}. Now, let Log denote the main
branch of the complex logarithm. We define

ELO (t a)

(tj- 1‘1)

for all @ € V5. Then hs is a complex-valued function on Vs with the
following properties:

(&) hs(0)=0.
(41') hs is T(E’, E)-continuous, and hence also || - ||oo-continuous.

(4i7") For all a € V;
(a) = exp(hs(a)

We shall show that h; is uniquely determined by properties (i') to
(¢17’). In fact, let g5 be another complex-valued function satisfying
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these three properties. Then for each a € Vj there exists k(a) € Z
satisfying
hs(a) — gs(a) = 2mik(a)

(by (é¢7)). But k is || - [lo-continuous on V5 (by (¢¢')) and satisfies
k(0)=0 (by (¢')). Since Vj is || - |o-connected, k(Vs) is a connected
subset of Z. This implies k = 0, and hence hs = g;.

Now, choose 0 < d§; < 45. By the above discussion we have
Resy;, h52 = hs,, and hence h(a) := hs(a) for all a € V; defines

the desired function on E’ which is certainly uniquely determined by
properties (1) to (4). [ |

Corollary 2.1.12 For every § > 0 Log fi is T(E’, E)-continuous on
Vs. In particular

sup{|Logii(a)] : l|la|| £ 6} < 0.

Proof. The first assertion follows from the representation

(Resy; 1) (a) = ZLO - t]a)

valid for all @ € Vj, together with the 7(E', E)-continuity of
(by Property 2.1.6.4). The second assertion is a consequence of the
7(E', E)-compactness of V. [ |

Theorem 2.1.13 Let H C M'(E) such that ji(a) # 0 for all a €
E', u € H. Suppose there exist a,d > 0 satisfying |fi(a)| > « for
all a € V5, u € H, and such that H is equicontinuous on V5 with
respect to 7(E',E). Then

{Resy,Log f:pn€ H}
is relatively compact in C(Vs).

Proof. From Property 2.1.6.3 together with the assumption, H is

uniformly equicontinuous on Vs with respect to the norm || - ||co-
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Therefore there exists a partition {tg,t;,...,t,} of [0,1] with suffi-
ciently small mesh such that

Atia)
fltj-1a)

N =

for all j € {1,2,...,n} and
. i ((t;a
Log ji(a) = ) _ Log %

for all a € V5, p € H (compare the proof of Theorem 2.1.10). But
then

{Resy,Log fi:p€ H}

is bounded and equicontinuous with respect to 7(£’, E), and the
Arzela-Ascoli theorem yields the assertion. |

Lemma 2.1.14 Let § > 0 be given. For every x € E define
J(z)(a) := (z,a) whenever a € Vs. Then J(z) € C(Vs) for all
x € E, and %J 15 a linear isometry from E onto a closed subspace

Of C(V(s).

Proof. We first note that J(z) is 7(E’, F)-continuous. Moreover, J
is a linear mapping from E into C(V;). By Appendix B 14.3

19l : = sup{l(z,a)| : a € Vi)
= ssup{l(z,a)] : lall < 1} = 2]

for all z € E. Therefore }.J is a linear isometry from E into C(V5).
In particular, +J(E) = J(E) is closed in C(Vs). [ |

Corollary 2.1.15 (to Theorem 2.1.18). Let M C E be such that
{Resy,é; 1z € M}
is relatively compact in C'(Vs) (for some 6 > 0). Then M is relatively

compact in E. Furthermore z —Resy;é, 15 a homeomorphism from
E onto a closed subset of C(V5).
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Proof. Firstly |€;(a)| = 1 for all z € M, a € E’. By assumption
{é; : * € M} is equicontinuous on Vj with respect to 7(E’, E). Now
we infer from the theorem that

{Resy,Log &, : x € M}

is relatively compact in C(Vs), and hence {J(x) € M} is relatively
compact in C(V;). Lemma 2.1.14 yields the assertion. [ |

Corollary 2.1.16 Let (ur)r>1 be a sequence of measures with 7,,-
limit p € MY(E) such that i(a) #0, jg(a)#0 foralla€ E, k>
1. Then

lim Log jix = Log [

k—o0

uniformly on bounded subsets of E’.

Proof. Let 6 > 0 be given. As in the proof of Theorem 2.1.10 we see
that

azz—é—inf{ﬂ(a):aEVg} > 0.

Applying the continuity theorem 2.1.9 we obtain the existence of
ko € N such that |ix(a)| > a for all a € V5, k > ko. We now infer
from Prohorov’s theorem 1.3.7 that {ux : k > ko} is uniformly tight,
and from Property 2.1.6.5 that {fiy : k > ko} is equicontinuous with
respect to 7(F’, E). But Theorem 2.1.13 implies that

{Resy,Log fix : k > ko}

is relatively compact in C(Vj). On the other hand the representa-
tions of Log fix and Log i on Vj (see the proof of Theorem 2.1.13)
together with the continuity theorem 2.1.9 yield the limit relation-
ship

Jim Log jix(a) = Log Ai(a)

for all a € V;. Since {Resy,Log fix : k > ko} is relatively compact,
this convergence is uniform on Vj. ]



46 The Fourier Transform in a Banach Space
2.2 Shift compact sets of probability measures

We start with two useful results, following from properties of the
Fourier transform g — fi on the commutative topological semigroup
(MY(E),*, 7). Here E is a given separable Banach space so that,
by Theorem 1.4.9, (M1(E),*,7,) is a metric semigroup.

Lemma 2.2.1 Suppose u € M'(E) has the property that (u™)p>1 s
Tw-relatively compact. Then u = €.

Proof. From Prohorov’s theorem 1.3.7 together with Property
2.1.6.5 (of the Fourier transform) we conclude that the set {(u™)" :
n € N} is equicontinuous with respect to 7(E’, E). But we have
(u™)N = (p)™ for all n € N. Therefore there exists § > 0 such that

1= (o) < 5

whenever @ € V5, n € N. Consequently ji(a) = 1 for all a € Vj as
we shall see now. Indeed, let z € C with [l —-2"| < 1/2for alln € N.
Then Re 2™ > 1/2 for all n € N, and

v

1
3 1 —2" = |1—z||1+z+...+z"*1l

> [1-2|(1+Re z4..+Re z"7!) > |1—z]g,

so that |1 — 2] < 1/n for all n € N, and consequently z = 1.

The assertion now follows from fi(a) = 1 for all a € Vs with the
help of Property 2.1.6.6 of the Fourier transform. |

Lemma 2.2.2 Let p,v € M'(E) such that u* v =v. Then v = &.

Proof. Properties 2.1.6.1 and 2.1.6.4 of the Fourier transform give
the existence of § > 0 satisfying fi(a) # 0 for all a € V5. Moreover,
fi(a)?(a) = {i{a) and hence ¥(a) = 1 for all a € V5. We now apply
Property 2.1.6.6 of the Fourier transform in order to obtain v = g¢.

[
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Theorem 2.2.3 Let (n)n>1, (Un)n>1 be sequences in M*(E) such
that {pn * v, 1 n > 1} and {un : n > 1} are both 7, -relatively
compact. Then {v, : n > 1} is also 7, -relatively compact.

Proof. Let € > 0. By Prohorov’s theorem 1.3.7 there exists K €
K(E) such that for all n > 1

pn *vn(K)>1—¢ and pp(K)>1-—¢.

But
1—e < pp*vp(K) = /I/n(K — ) pn(dx)

< / Un(K — 2)pn(dz) + € S vp(K — K) +¢,
K

so that v, (K — K) > 1 — 2¢ whenever n > 1. One more application
of Prohorov’s theorem 1.3.7 gives that {v, : n > 1} is 7,-relatively
compact. |

Corollary 2.2.4 Suppose that
Tw — lm p, = p € M*(E)

and
Tw — Um pn, v, =X € MY(E).

Moreover, assume fi{(a) # 0 for all a € E'. Then there exists v €
M?(E) such that
Ty — im v, =v

and pxv = A

Proof. Theorem 2.2.3 implies that {v, : n > 1} is 7,-relatively
compact. Furthermore the continuity theorem 2.1.9 implies that for
alla € E'

() = T Lt ) @) _ M)
RO = T W A
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Another application of the continuity theorem 2.1.9 yields

Ty — lim v, =v € MY(E).

n—oo

But then X
#(a)ji(a) = M)
or

(1 *v)a) = Xa)

for all @ € E’ which, by the uniqueness theorem 2.1.4, gives the
desired result. ]

Remark 2.2.5 The assumption made in the corollary that fi(a) # 0
for all a € E' cannot be dropped (without replacement). In fact,
from Lukacs [29], Theorem 5.1.1, we know that there exist u,vq, vy €
MY(R) with v1 # vo such that p* vy = p % va. The sequence {u *
Vi, 4 % Vo, 4 % Uy, ...} obuiously converges with respect to T, but the
sequence {v1,v9,v1,...} does not.

Definition 2.2.6 We refer to H C M'(E) as being relatively shift
compact if for every u € H there exists ¢, € E such that {ux*eg, :
p € H} is Ty-relatively compact.

We note by Prohorov’s theorem 1.3.7 that relative shift compact-
ness of a subset H is equivalent to the property that for every ¢ > 0
there exists K € K(E) such that

WK — )= prea, (K) 21— ¢

for all p € H, which motivates the use of the alternative terminology
shift tightness.

Let (tn)n>1 be a relatively shift compact sequence in M(E), so
that there exists a sequence (2, )n>1 in E such that

{ttn * €z, :n € N}

is 7,-relatively compact. We refer to (z,)n>1 as a centralizing se-
quence for (un)n>1 (equivalently, (zn)n>1 centralizes (pin)n>1).
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Theorem 2.2.7 Let (in)n>1, (Un)n>1 be sequences in M'(E)
such that (tn, * Un)n>1 18 Ty-relatively compact. Then both (fn)n>1
and (Vn)n>1 are relatively shift compact. Moreover, if (2,)n>1 is @
centralizing sequence for (fin)n>1, then (—z,)n>1 @ a centralizing
sequence for (Vn)n>1. - -

Proof. Choose (6x)k>1, (€k)k>1 CJ0,00[ with §; <1, & | 0 and

€k
Z;;;S

k>1

[N

By assumption for every & € N there exists K € K(E) satisfying
i ¥ Un(Kr) > 1 — ¢y
for all n € N. Let
Bop i ={z € E: pn(Kr —x) >1— i}

and put

By = () Bn-
k>1

We have for all £ > 1
2 i+ (BN K) = [ (B K) = ) (d)
- / n (B \ (K — 3))vn(de)

> /E (K= ) )

2 Vn(E\ Bn)(1 = (1 - 0k)) = Sk vn(E \ Bni),

so that
va(E\Ba) < Y va(B\Bu) < 3 < 2
k>1 k>1 0k
and thus for all n > 1
Un(Bn) > %
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In particular B,, # ( and so there exists z,, € E with
/.l,n(Kk — .’En) >1- 5k

for all k& € N. This implies the 7,-relative compactness of (u, *
Emn)nzl-
But since

P * Un = (ln * €z, ) * (Vn ¥ €_z,,)

for all n > 1, Theorem 2.2.3 implies the 7,,-relative compactness of
(V*e_g, In>1. [ ]

Corollary 2.2.8 The following statements are equivalent:
(1) (thn * Un)n>1 i shift tight.
(%) (tn)n>1 and (vp)n>1 are shift tight.
Proof. (i) = (ii). Let (z,)n>1 be a centralizing sequence for (u, *

Un)n>1. Then Theorem 2.2.7 implies that (un)n>1 and (v, * €5, Jn>1
are shift tight, and consequently (vy,)n>1 is also shift tight.

(i) = (i). Let (n)n>1, (Yn)n>1 be centralizing sequences for
(Un)n>1, (Un)n>1 respectively. Since

(B*ea,) * (v *ey,) = (Bn * Vn) * €xptyn
for all n > 1 and since the convolution (g, v) + p*v is continuous on
M (E) x M'(E) the sequence (Zp, + yn)n>1 centralizes (pn * vy )n>1.
n

Theorem 2.2.9 For every shift tight sequence (pn)n>1 in M*(E)
the following statements are equivalent:

(1) (n)n>1 5 Ty-relatively compact.
(it) Each centralizing sequence for (un)n>1 is relatively compact.

(iii) There is a relatively compact centralizing sequence for (L )n>1.
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Proof. (i) = (i1). Let (z,)a>1 be a centralizing sequence for
(#n)n>1- Then the sequences (u * €4, )n>1 and (un)n>1 are both
Tw-Telatively compact. By Theorem 2.2.3 it follows that (g4, )n>1 is

Ty-relatively compact, and hence (z,)n>1 is relatively compact (See
Theorem 1.2.11).

(i) = (¢19) is clear.
(113) = (). Let (Zn)n>1 denote a relatively compact centralizing

sequence for (1, )n>1. Then the sequences (u*e,, Jn>1 and (E_z, Jn>1
are Ty-relatively compact. But

pn = (ln * €5,) *E_qz,

for every n > 1; this together with the continuity of the convolution
in M1(E) yields the desired conclusion. [

Corollary 2.2.10 Given a centralizing sequence (T )n>1 for (fn)n>1

and an arbitrary sequence (Yn)n>1 in E the following statements are
equivalent:

(1) (Yn)n>1 centralizes (fin)n>1-
(1) (Tn, — Yn)n>1 45 relatively compact.
Proof. For every n > 1 we have
(kn * €yp) * €xp—yy = Hin * Ea, -

Therefore (un * €y, )n>1 is shift tight and (z, — yn)n>1 centralizes
(Un * €y, )n>1. The equivalence now follows from Theorem 2.2.9. ®

Corollary 2.2.11 Let (fin)n>1, (Zn)n>1 be sequences in M'(E) and
E respectively satisfying

Tw”nlLﬁ;oHn =pu€ MI(E)

and
Tw— lim p, *e,, =ve MY(E).
n—oo
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Then there erxists x := limy o0 Tn, and v = p * €4.

Proof. From Theorem 2.2.9 we conclude that (@n)n>1 is relatively
compact. Let z,y be accumulation points of (2, )n>1. Since the con-

volution in M!(E) is continuous,

P Ex =V =[*¢E,.

Putting z 1= z — y we obtain g x &, = u. But now Lemma 2.2.2
applies to give z = 0, so that £ = y. Consequently lim,,_,, z, = z,
and this takes care of the assertion. |

Theorem 2.2.12 Let (un)n>1 be a shift tight sequence in M(E).
The following statements are equivalent:

(i) (fin)n>1 18 Ty-relatively compact.

(i) For some (each) 6 > 0 the sequence (Resy; fin)n>1 i relatively
compact in C(Vy).

(iii) For some (each) 6 > 0 the sequence (Resy; fin)n>1 15 equicon-
tinuous in O with respect to 7(E', E).

Proof. (ii) < (iii). Property 2.1.6.3 of the Fourier transform to-
gether with |fi,| < 1 for all n > 1 and the Arzela-Ascoli theorem
imply the assertion.

(1) = (i) follows from Prohorov’s theorem 1.3.7 in conjunction
with Property 2.1.6.5 of the Fourier transform.

(73t) = (3). From Theorem 2.2.9 we see that it suffices to show the
existence of a relatively compact centralizing sequence for (fin)n>1.
Let therefore (z,)n,>1 be a centralizing sequence for (tn)n>1. By
assumption and Property 2.1.6.5 of the Fourier transform we have,
for every € > 0,K € K(E) and 7 > 0 such that

and
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for all a € V; with pg(a) <nand alln > 1. For sucha and all n > 1
we then obtain the inequalities

fin(@) — fin (@)= <€

and c
(@] 21 -2,

and hence that

11 o ei(wn,a)‘ < - _1 - ﬂn(a) _ﬂn(a)ei(zma) <
2

Consequently (Resy,é;, )n>1 is equicontinuous in 0, and hence rela-
tively compact in C(Vs) by Property 2.1.6.3 of the Fourier transform.
The homeomorphism = — Resy, €, between E and C(Vs) provides
the final step of the proof. [ ]

Corollary 2.2.13 Let (tin)n>1, (Tn)n>1 be sequences in M(E),E
respectively satisfying

Tw — lm pp * ey, =:1/€M1(E).

n—oo
Then the following statements are equivalent:

(1) (Hn)n>1 18 Ty-convergent.

(ii) For some (each) § > 0, (fin)n>1 converges uniformly on Vj.
Proof. (i) = (it). This follows directly from the continuity theorem

2.1.9.

(#) = (¢). By assumption (un)n>1 is shift tight, and by Theo-
rem 2.2.12 (fip)n>1 is Ty-relatively compact. We now employ Theo-
rem 2.2.3 and the homeomorphism z — &, in order to obtain that
(n)n>1 is relatively compact in E. Let z,y be accumulation points
of (zn)n>1. Moreover, let

f = lim Res; i € C(Vs)
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(for some § > 0). Then by the continuity theorem 2.1.9
F@)et=e) = p(a) = f(a)e v
for all a € V5. But now (0) = 1, and ¥ is || ||-continuous by Property
2.1.6.4 of the Fourier transform, hence there exists §’ €]0,4] with

v{a) # 0 for all a € V. It follows that

ei(w_yva) =1

for all @ € Vi, and hence z = y by Property 2.1.6.6 of the Fourier
transform. Thus (z,),>1 converges in E. From the factorization

P = (fin * €z,) * €z,

together with the continuity of the convolution in M1(E) we con-
clude that (pn)n>1 Tw-converges. [ |

Corollary 2.2.14 Let (n)n>1 be a shift tight sequence in M (E)
such that (fin)n>1 converges uniformly on bounded subsets of E'.
Then (n)n>1 Tw-cONVerges.

Proof. Theorem 2.2.12 yields the 7,-relative compactness of
(ttn)n>1- But then the continuity theorem 2.1.9 implies the assertion.
|

The next topic will be the discussion of symmetrizing measures

in M!(E), which will place some of the preceding results in a more
applicable setting,.

Definition 2.2.15 Given measures u,v € M(FE) we call 4 a factor
of v if there exists A € M*(E) such that p* \ = v, in which case we
write @ < v.

Properties 2.2.16 (of the factorization).

2.2.16.1 (Reflexivity) p < p for each p € M*(E).
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2.2.16.2 (Weak symmetry) p < v and v < p for p,v € M(E)
implies = v x e, for some x € E.

2.2.16.3 (Transitivity) u < v and v < & for p,v,k € M (E) implies
=K.

2.2.16.4 (Permanence under convolution) If p1 < vi and po < vy
for p1,v1, po, Vo € MY(E) then py * g < vy * va.

2.2.16.5 Let (i)n>1 and (n)n>1 be sequences in M*(E) such that
(Un)n>1 15 shift tight and pn, < v, for all n € N. Then (Bn)n>1 18
also shift tight. ’

2.2.16.6 (Continuity of <) Let (in)n>1 and (vn)n>1 be sequences in
MY(E) such that pp, < vy, for all n € N and both

Tw— M pp =, Ty — lim v, =v.
n—00 n—00

Then p < v.
2.2.16.7 If u < v for p,v € M (E) then

[7(a)| < la(a)l
a€F.

Proof. To prove 2.2.16.2, suppose u* A = v and v x kK = pu for
MKk € MY(E). Then p* A x K = p. From Lemma, 2.2.2 we infer that
A%k = g9, and hence by Corollary 1.4.7 that there exists z € E such
that A=¢e_, and k = £,. 2.2.16.5 follows from Theorem 2.2.7.

To show 2.2.16.6, given un * A\, = v, for A\, € M*(E), n € N,
Theorem 2.2.3 yields the 7,-relative compactness of (A\,)n>1. Let
A be an accumulation point of (A,)n>1. The continuity of the con-
volution in M(E) implies that p * A = v, and this is the desired
assertion. A

And finally, 2.2.16.7 follows from fi(a)A(a) = P(a) for some A €
M!(E) together with [A(a)] <1 for all a € E'. [ ]
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Definition 2.2.17 For every p € MP®(E) the adjoint u~ of u is
defined (as a measure in M®(E)) by

u~(B) = u(~B)

whenever B € B(E). We refer to u as symmetric if u= = p.
Properties 2.2.18 (of the adjoint). Let z € E,u,v € Mb(E).
2.2.18.1 (g,)” = €_;.

2.2.18.2 (u " = 4.

2.2.18.3 u is symmetric if and only if [ is real-valued, and this in
turn holds if and only if

(o) = [ coste,apulde)
acFE.

2.2.18.4 The mapping p — p~ from MP(E) into itself is T,,-
continuous.

2.2.18.5 (u7)” = p.
2.2.18.6 (uxv)" =p~ *v.
In particular, the convolution of symmetric measures is again sym-

metric.

Theorem 2.2.19 For every sequence (fin)n>1 of symmetric mea-
sures in M(E) the following statements are equivalent:

(i) (n)n>1 1S Tw-relatively compact.

(M) (‘u,n)n21 18 Sh’l,ft tzght
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Proof. It suffices to demonstrate the implication (i7) = (3). Let
(Zn)n>1 be a centralizing sequence for (pt,)n>1. For every n € N we
have that

(fn *Ex,)” =y ¥E_g, = lin *E_g,
Since the adjoint is a continuous mapping by Property 2.2.18.4,
(—Zn)n>1 is also a centralizing sequence for (fin)n>1. But then

(2zp)n>1 is relatively compact in E by Corollary 2.2.10, and Theo-
rem 2.2.9 gives the result. [ |

Theorem 2.2.20 Let (un)n>1 be a sequence of symmetric mea-
sures in M'(E) and (zn)n>1 any sequence in E such that (u, *
€zn )n>1 Tw-converges. Then the sequences (Lin)n>1 and (T )n>1 con-
verge in M'(E) and E respectively.

Proof. From 7, — limy o0 fin * €5, = A € MY(E) it follows that

Tw— LM pp, *xe_p = A
n—00
On the other hand we have

Wn * Eg, = (Nn * 5—a:n) * €2z,

for all n € N. From Corollary 2.2.11 we infer that lim,_ . 2z, =:
y € F exists, and hence

) 1
z:= lim z, = ~y.
n—o0 2

Finally, the continuity of the convolution in M!(E) yields

Tw— lIm pp, =7, — Um (u, *ez ) ¥y, =Axe_g. [ ]
n—0Q n—oo

Theorem 2.2.21 Let (tn)n>1, (Un)n>1 be sequences in M(E),
where each pin s symmetric. If (in*1n)n>1 15 @ Ty -relatively compact
sequence, then 5o are (fin)n>1 and (Vn)p>1.
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Proof. Theorem 2.2.7 implies that (i, ),>1 is shift tight. Then, by
Theorem 2.2.19, (ptn)n>1 is Ty-relatively compact and, by Theorem

2.2.3, (vn)n>1 Is Ty-relatively compact. [ |

Theorem 2.2.22 For every sequence (fin)n>1 in MP(E) the follow-
ing are equivalent:

(1) (n)n>1 1S Ty -relatively compact.
(it) (pin + tyy Jn>1 1t Ty -relatively compact.
Proof. For every n > 1 we have
(bn + 11 )(E) = pn(B) + piy (E) = 2un(E)

and hence

Sup(pin + fin, )(E) = 2sup pn(E).
n>1 n>1

Let € > 0 and K € K(E). If u,(E\ K) < € then

(bn + p EN (K U (=K))) < pin(E\ K) + i (=(E\ K)) =
=2u,(E\K)<e¢

and K U (—K) € K(E). On the other hand, if
(un + 1B\ K) <e

we obtain that u,(F \ K) < € for every n > 1. Prohorov’s theorem
1.3.7 yields both of the desired implications. |

Definition 2.2.23 For every u € M(E) the measure
ul? = pxu~ € M'(E)
is called the symmetrization of p.

Properties 2.2.24 (of the symmetrization). Let p,v € M1(E).
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2.2.24.1 |u|? is symmetric.

2.2.24.2 |u + v|? = |u|? x [v|?, and in particular, |p™|? = (Ju|®)™ for
alln € N.

2.2.24.3 (|u|*)"(a) = |4(a)|* for alla € E'.

Proof. 2.2.24.1 is a simple application of Properties 2.2.18.5 and
2.2.18.6. To show 2.2.24.2, it suffices to apply Property 2.2.18.6, and
for 2.2.24.3 we just appeal to Properties 2.1.6.7 and 2.2.18.2 (of the
Fourier transform). [ |

Theorem 2.2.25 For every sequence (fin)n>1 in M*(E) the follow-
ing are equivalent:

(i) (Hn)n>1 18 shift tight.
(ii) (‘Mn'z)n21 s Ty -relatively compact.

Proof. (i) = (i¢). From the T,-continuity of the mapping p —
pu~ (Property 2.2.18.4) we obtain that (i ),>1 is shift tight. An
application of Corollary 2.2.8 yields the shift tightness of (|n|*)n>1.
Finally, we employ Property 2.2.24.1 together with Theorem 2.2.19
in order to see that (|us|*)n>1 is Ty-relatively compact.

(#7) = (1). This follows directly from Corollary 2.2.8. [ |
Corollary 2.2.26 For every u € M*(E) the following are equivalent:

(1) (L™)n>1 is shift tight.

(i) p is a Dirac measure.
Proof. It suffices to demonstrate the implication (i) = (ii). Theorem
2.2.25 together with Property 2.2.24.2 implies that ((Ju}2)")n>1 is

Tw-Telatively compact. But then Lemma 2.2.2 gives |u|? = €, and
itself must be a Dirac measure. |
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2.3 Infinitely divisible and embeddable measures
We start by giving the basic

Definition 2.3.1 A measure u € M(E) is called infinitely divis-
ible if for every n € N there exists an n-th root of i i.e. a measure
i € MY(E) such that

Hhey = fi-

By I(E) we denote the set of all infinitely divisible measures in
MY(E).

Example 2.3.2 For every x € E the Dirac measure ¢, belongs to
I(E).

In fact, for every n € N

since F is divisible.

Clearly, I(E) is a (commutative) subsemigroup of M!(E). One
just notes that for p, v € I(EF) admitting the representations y = ul
and v = v with u,,v, € M(E) respectively (n € N), we have

px v = (fin *vp)".
Moreover, the semigroup I(E) has a neutral element ¢g.

Theorem 2.3.3 For each u € I(E) one has ji{(a) # 0 whenever
a€FE.

Proof. Let p = u? with p, € M*(E) for every n € N. Then p, < p
for all n € N, and by Property 2.2.16.5 (t)n>1 is shift tight, hence
by Theorem 2.2.25 (|tin|?)n>1 i8 T-relatively compact. Let v be an
accumulation point of (Jun|?)n>1. Then v is symmetric. Moreover,
for all n > m we have that

()™ < Ial?,
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and consequently that
™ < |uf?

for all m € N, since < is a closed relation. But then (1");,>1 1S & Ty-
relatively compact sequence, which follows with the help of Property
2.2.16.5 and Theorem 2.2.19. Thus v = €y which implies that

™5

as n — oo (in the topology 7,) and therefore by the continuity
theorem 2.1.19 together with Property 2.2.24.3 that

lim |iin(a)f? =1

n—o0

for all @ € E’. But then for each a € E’ there exists an n € N such
that f,(a) # 0, thus

(a) = (fin(a))™ #0. u

Corollary 2.3.4 For every p € I(E)
(t) there exists Log fi, and

(ii) if p is symmetric, then Log i is real which implies that fi(a) > 0
whenever a € E'.

Proof. (i) follows from Theorem 2.1.10 on the existence of the func-
tion h. Concerning

(1) we first note that 4(E’) C R, since u is symmetric and hence
is real. Next we realize that

fi(a) = exp Log fi(a)
for all a € E’, hence that

(Log A)(E') Cc RU2miZX .



62 The Fourier Transform in a Banach Space

As a continuous image of E’ the set (Log f)(E’) is connected. But
Log f(0) = 0, thus (Log 2)(E’) C R and the remaining assertion
follows. u

Theorem 2.3.5 (Uniqueness of roots) Let u € I(E).

For every n € N there exists ezactly one (n-th root) u, € M(E)
such that uy = u, and

in(0) = exp ( L0 50 )

whenever a € E',

If, moreover, u is symmetric, then also each n-th root p, of u is
symmetric (n € N).

Proof. From Theorem 2.3.3 we conclude that fi(a) # Ofor alla € E’.
But then also fi,(a) # 0 for each n € N (a € E’). Theorem 2.1.10
yields the existence of Log fi,, for every n € N. We also have that

exp(Log A(a)) = ji(a) = (fin(a))™ = exp(n Log jin(a))
for each n € N (a € E’), hence that
Log ji=n Log fin

or 1
Log fip, = — Log [i.
08 fin =~ Log i

The uniqueness of the Fourier transform (Theorem 2.1.4) implies the

uniqueness of the n-th root i, of i as asserted.

Finally, Corollary 2.3.4 together with Property 2.2.18.3 yields the
last assertion of the theorem. [ ]

Theorem 2.3.6 (Convergence of roots) For y € I(E) with sequence
(k1)n>1 of n-th roots py of p,

-
B €o
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as n — 0o in the weak topology 7.,.
Proof. Let § > 0. By Corollary 2.1.12
sup{|Log f(a)| :a € V5} < 00.

From Theorem 2.3.5 we infer that

n—eo

i (43)"(@) = Jim oxp (1 Log o))

= éo(a)

uniformly in a € V;. Since pi < op for all n € N, the sequence

(11 )n>1 is shift tight by Property 2.2.16.5. But then Corollary 2.2.14
applies, and with the help of the uniqueness and continuity theorems
2.1.4 and 2.1.9 respectively the result follows.

Theorem 2.3.7 (Closeness of I(E) in MY(E)). Let (ux)k>1 be a
sequence of measures in I(E) such that

p, — p € M'(E)
as k — oo, with respect to T,,. Then p € I(E), and

(Bk)1 — ps

as k — oo, with respect to T, for alln € N.

Proof. 1. Let n € N be fixed. Then, by the continuity of the map-
pings p— u~ and (u,v) — p* v we obtain

() L1 < |l

and

x> — |uf®
as k — oo, with respect to 7,,. But then Property 2.2.16.5 and
Theorem 2.2.19 apply and yield the 7-relative compactness of
(I(pe) L1 k21-
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Moreover, Theorem 2.3.5 together with the continuity theorem 2.1.9
implies that for all a € E’

lim (|(u) 1% (a) = Jim |((ux) 1) (@) ?

k—oco n
. . 2
= lim |jix(a))?
—_00
nr 2
= |i(a)|*.

Applying the continuity theorem 2.1.9 again there exists a measure
vn € MY(E) satisfying

n(a) = |fi(a)|

RN

Since this equality holds for every n € N, |u|? € I(E), hence by
Theorem 2.3.3

|(@)® = (Jul*)"(a) # 0

whenever a € F’.

2. From 1. and from the existence of the function h (Theorem 2.1.10)
we infer that Log [ exists. Then Corollary 2.1.16 implies that

lim Log fix(a) = Log fi(a)
k—oo

uniformly on bounded subsets of elements a of E’. It follows from
Theorem 2.3.5 that

1m () })" @) = Jim exp (1 Log iu(a)
= exp (% Log ﬂ(a)>

uniformly on bounded subsets of elements a in E’. In addition,
((x) 1 )k>1 is a shift tight sequence (by Property 2.2.16.5), conse-

quently, by Corollary 2.2.14 there exists a measure p, € M'(E) such
that

(I‘k)% —* ln
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for all n € N (k — oo, with respect to 7,,). But then the continuity
of the convolution yields u* = p or u € I(E). By Theorem 2.3.5 we
have that pn = p1 for all n € N. u

Definition 2.3.8 A family (u.)icr, of measures in M*(E) is said
to be a (continuous) convolution semigroup in M'(E) if it has
the following properties:

(a) s * iy = psye for all s,t € R .
(b) Mo = Ep -
(¢) The mapping t — g from Ry into MY (E) is 1,,-continuous.

Evidently, the measures y; of a convolution semigroup (u¢)ier,
in M'(E) are elements of I(E), since

Ht = (M%)n
for every n € N. For the converse we prove the subsequent

Theorem 2.3.9 (Embedding) Let u € I(E). Then for everyt € Ry
there exists exactly one measure py € M(E) such that

fit(a) = exp(t Log fi(a))
whenever a € E', and (u)icr, i a convolution semigroup in
MY(E).
In particular one has
prL=p.
Proof. 1. Let t € Q} and k,£,k',# € N such that
k K

Tttt
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By Theorem 2.3.5 we obtain that for all a € E’

(64) @ = (1) @) " = (ex0 5 Log ta))”
exp (3 Log ie)) = exp(t Log A(a)
((u;_,)’“ ) @.

The uniqueness theorem 2.1.4 then implies that

is uniquely determined, and

Hs * bt = Hstt

whenever s,t € Q.

2. Let t € Ry and let (t,)n>1 be a sequence in QF such that
lim,, o0 tn = t. Let, moreover, m € N with t,, < m for all n € N.

Since by 1.
Mtn * lu'm_tn = /’Lm

for all n € N, (it, )n>1 is shift tight. This follows from Theorem
2.2.7.

Now, let § > 0 be given. We know that
sup{|Log fi(a)|:a € V5} < 0.
But then 1. implies that

lim fig,(a) = lim exp(t, Log ji(a))

n—oo

= exp(t Log {i(a))

uniformly for a € Vs. It follows from Corollary 2.2.14 and from the
uniqueness and continuity properties of the Fourier transform that
there exists exactly one measure u; € M!(E) satisfying

fir(a) = exp(t Log f(a))
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for all a € E’. Moreover,

Hm py, = pe

n—oo
which shows the first assertion in the theorem.
3. As a consequence of the previous discussion we obtain that
Hs * Ht = st
for all s,t € R,. The continuity of ¢t — u; follows as in 2. by

choosing for t € R, an arbitrary sequence (t,,)n,>1 in R} such that
limg, oo tn = t. [
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2.4 Gauss and Poisson measures

In this section the prominent subsets of Gauss and Poisson measures
within I(E) will be studied.

Definition 2.4.1 A measure p € M'(E) is called a (symmetric)

Gauss measure if there exists a symmetric linear mapping R :
E' — E such that

p() = exp (- 5{Raa))

whenever a € E’.
Here we apply the symmetry of a mapping R : E' — E in the
sense that
(Ra,b) = (a, Rb)
for all a,b e F'.
R is said to be the covariance operator of p.
By G(FE) we abbreviate the totality of all Gauss measures on E.

Examples 2.4.2

2.4.2.1 Let E := RP. Then the p-dimensional normal distribu-
tion N(0,C) with mean (vector) 0 and covariance (matriz) C is
a Gauss measure on E.

In fact, for all a € R? = (RP)’ we have that

N(0,C)"(a) = exp ( — Z(Ca, a)),

SR

and C is symmetric.

2.4.2.2 Let E := C(I) (equal to the space of continuous real-valued
functions on the compact interval I := [0,1]). Then the Wiener
measure W is a Gauss measure on E.

In fact, from the theory of Brownian motion follows that

—~

W(x) = exp ( - %(Rx, x))
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with

(Rx)(t) = / (s A t)x(ds)

for all x € C(I)' = M®(I) — M%(I), t € I. It turns out that R is a
linear mapping C(I)’ — C(I) which is shown to be symmetric (by
Fubini’s theorem).

2.4.3 Scholium on the Wiener measure. Let (Q, %, P, (By)ier)
denote a Brownian motion in R with parameter set I = [0,1]. For
every t € I there exists a real-valued random variable B; on (2,2, P)
with P([B; # Bi]) = 0 such that for every w € 0 the mapping
t — B,(w) from I into R is continuous. The process (2,2, P, (B, )ter)
is called a Brownian motion with continuous paths. As a result of
this modification we may assume without loss of generality that the
initial Brownian motion (2,2, P, (B;)icr) has continuous paths. It
follows that the mapping

(w,t) = Bi(w)

from Q x I into R is A ® B(I) — B(R)-measurable, hence that the
mapping B : @ — C(I) which sends w onto the path ¢ — By(w)
is 2 — B(C(I))-measurable. But then the Wiener measure W :=
Py = B(P) is a measure in M*(C(I)) with Fourier transform given

by
/W(X) = exp(—% /(s At)x ® x(ds,dt))

for all x € C(I)'.
Now let

(B0 = [ (s A)x(ds)
for all x € C(I)’, t € I. Since
|(Rx)(t1) — Rx(t2)| < |t1 — ta]||xl

for all y € C(I)’, t1,t2 € I, Ry is Lipschitz continuous, in particu-
lar, Rx € C(I). Clearly, R is a continuous linear mapping C(I)’ —
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C(I). Moreover,

/ (s A )y ® x(ds, dt) = / ( / (5 A t)x(ds) ) x(dt)
= @0 = (Rx. )

and therefore

——

W= exp(—%(Rx,x»

whenever x € C(I)'.

Properties 2.4.4 of Gauss measures

2.4.4.1 R is uniquely determined and positive in the sense that
<Ra, a)Z 0

foralla € E'.
In fact, the uniqueness of R follows from the representation

(Ra,a) = — Log p(a)
together with
<Ra,b> = i(R(a +b),a+b)— i—(R(a -b),a— b),

both equalities being valid for all a,b € E’.
The positivity of R is a consequence of

pla) < p(0) =1
valid for all a € E'.
2.4.4.2 Every Gauss measure is symmetric, since p is real-valued.

2.4.4.3 Let p,o € G(E) with covariance operators R and S respec-
tively. Then p * 0 € G(E) with covariance operator R+ S.
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In particular, G(E) is a subsemigroup of M'(E).
As for the proof of this property we just compute
(p* 0)"a) = p(a)é(a)

= exp (—%(Ra, a)) exp (—%(Sa, a))

= exp(—%((Ra,a) + (Sa,a)))

= oxp(~5{(R+ S)a,a)

for all @ € E’ and observe that R+ S is a symmetric linear mapping
E' - E.

2.4.4.4 Let p € G(E) with covariance operator R and let T be a
continuous linear mapping from E into another Banach spaces F.
Then T(p) € G(F) with covariance operator T o Ro T*.

In fact, for all b € F’ we have
1
T(p)(b) = po T*(b) = p(T*b) = exp(~5 (R(T"6), T*))
— 1 t
= exp(—=5{(T o RoTH)b, b)),
and T o RoT"® is a symmetric mapping F’ — F.

2.4.4.5 G(E) C I(E)
Moreover, for every p € G(E) there erists a convolution semigroup
(pt)ter, given by
pt = H z(p)
for all t € Ry such that p1 = p.

Here the symbol H, denotes the homothetical mapping x — rx
(withr € Ry) on E.

For the proof of this property we first agree on R to be the covari-
ance operator of p. Then by Property 2.4.4.4 H ;(p) € G(E) with
covariance operator tR. It follows that

(H\/E(P)) "=
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for every n € N, hence that p € I(E). The remaining part of the
statement follows from the embedding theorem 2.3.9.

2.4.4.6 Let s,t ¢ R with s> +t2 =1, and let T := Ts,: be defined by
T(z,y) = (s3 + ty, tz — sy)

for all (z,y) € E x E. T is a continuous linear mapping on E X E.
Then for every p € G(E)

T(p®p)=p®p.

In fact, let R denote the covariance operator of p, and let
g(a) :== (Ra,a)
for all a € E’. Then
q{sa + tb) + q(ta — sb) = g(a) + q(b)

and
T*(a,b) = (sa + tb, ta — sb)

whenever a,b € E’. Here the identification (E X E)' = E' x E' is
applied.
It follows that for all (a,b) € B/ x E’

(T(p & P))(a,5) = (p © ) (T4(a,8)) = p(sa+ th)3(ta — sb)
= exp(—%[q(sa + tb) + g(ta — sb)])
= exp(~5la(a) + a(0))
= p(a)p(b) = (p ® p)"(a,b).

Lemma 2.4.5 (Fernique) For every p € G(E)

[ alPotan) < oo,
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Proof. 1. The mapping T := T% L defined as in Property 2.4.4.6 is
2 2

invertible with T—! = T. Now, let z,y € E, u,v € R, with ||z| < u
and |ly|| > v. Then

| HeEn] = Zwl - =) >
and by Property 2.4.4.6 we obtain
ol < woCll - I > 0]
=p@p(ll - <l x[1 [ > o)
=T(p@p)({l- I <l x [I - || > v])
= p® p(T([] - <l x [I - | > v))

<pop([I-1> ] x 11> =)

=(e(l1>51))"

2. Now we choose vy := u sufficiently large such that

3
a = p([|l - || < wo]) > 1
and we obtain

1
i

vy, = (2”% - 1) (\/§+ 1)v0

for all n € N. Then

p(lll- 1l > wo) < 7

Moreover, let

Un+1 — Vo = V2 v,

for all n € Z . The estimate achieved in 1. yields

ap([l - I > vnsa]) < (o([ll - | > wa)))?

for all n € Z, hence by induction

Lot > v < (Rot- 1> ) < (37
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3. It remains to be shown that

ll]|?p(dz) < oo.
[-l>v1)

In fact, from v, < 4952% and from the estimate in 2. we conclude
that

lol?o(dz) = 3 / 2] o(dz)

"2 (o < || <ona]

< S p(ll - > va)

n>1

(- 1>wa]

271—1
<1603 > 2t (-1?;) < 0. m
n>1

With this preparation we can approach the more profound prop-
erties of Gauss measures on a (separable) Banach space.

Theorem 2.4.6 (Integral representation of the covariance operator)

Let p € G(E) with covariance operator R. Then

(i) Ra = [(z,a)zp(dz)

or all a € E,, where the integral is understood in the sense o
g
Bochne1 .

(i) R is a compact operator.
Proof. (i) At first we observe that
Iz, @)z < llall} I®
for all z € E,a € E’. Therefore Lemma 2.4.5 implies that the map-
ping
Tz (z,0)T

is Bochner-integrable with respect to p.
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We add a few remarks on Bochner integrability: Let (Q,2, u) be
a measure space, and let f : 2 — FE be a mapping from 2 into a
separable Banach space B. f is said to be Bochner integrable if

(a) f is strongly measurable in the sense that there exist step func-
tions f, : & — E such that

fn—f
as n — oo strongly p-almost everywhere, and such that
®) J152) = F@uta) — 0
as n — 0.

In this case

/f () = lim_ [ fuw)u

with the limit taken in the strong sense, is called the Bochner integral
of f with respect to .

Moreover one has the useful criterion that a strongly measurable
function f : @ — E is Bochner integrable with respect to u if and
only if || f|| is p-integrable (in the usual sense).

We proceed with the proof of the theorem. Let

Sa := /(x,a)mp(dx)

for all a« € E’. S defines a linear mapping E' — E. Moreover, for
every b € E' we have

{Sa,b) = /(x,a)(x,b)p(dx).

This representation shows that S is symmetric. Now, for all a € E’

a(p)™(t) = exp (—%2<Ra, a)) = N(0, <Ra,a>)/\(t)
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whenever ¢ € R, hence by Property 2.4.4.4 together with the unique-
ness of the Fourier transform

a(p) = N(0,{Ra,a)) .
But
(Ra,a) = /t2N(O, (Ra,a))(dt)
= [ #alo)dt) = [(z,a0(de) = (Sa,0)

for all a € E’. Since R and S are symmetric, we obtain as in the
proof of Property 2.4.4.1 that R = S.

(1) Let (an)n>1 be a bounded sequence in E’. Then there exists a
0 > 0 such that ||a,|| < § for all n € N,

We know from Appendix B 14 that Vs is compact and metrizable
with respect to the topology o(E’, E). Thus there exist a subsequence
(@ny )k>1 Of (an)n>1 and an a € Vj such that

lim (z,an,) = (z,a)
k—oo

whenever z € E. Applying (i) we now get

| Rt — Ral| < / (@ k) — (2, a) [z o(dz)
In addition we have that
(2, an) — (@ a)lllzl] < 26]z])?

for all x € E. By Lebesgue’s dominated convergence theorem follows

lim Ra,, = Ra,
k—oo
and this finishes the proof that R is compact. |

Theorem 2.4.7 (Characterization of Gauss measures). For every
measure p € M (E) the following statements are equivalent:



Gauss and Poisson measures 77
(i) p € G(E).
(ii) There erists a mapping q : £ — R with

q(ta) = t*q(a)

forallt € R, a € E’ such that
pla) = &1

whenever a € E’.

(tit) a(p) € G(R) for alla € E'.

Proof. (i) = (ii). Let p € G(F) with covariance operator R. Putting

q(a) = %(Ra,a)
for all a € E' we immediately arrive at the assertion.
(12) = (4i1). Let a € E'. Then for all t € R
a(p)\(t) = p(ta) = €~9*) = e7'4(®) = N(0,29(a))" (1),

hence
a(p) = N(0,2¢(a))

or a(p) € G(R).

(#52) = (¢). Let a(p) = N(0, h(a)) with a function h : E/ — R. Then
forall a € E/

ha) = [ ENOh@)E) = [ Pa(o)dr) = [(@02dn) ()

and

pla) = a(p) (1) = NOh(@)) () =exp(~3h(@)) (@)



78 The Fourier Transform in o Banach Space
Now, for all z € E, a € E’' we define
(Ta)(z) = (z,a),

By (1) Ta € L%(E,p) for all a € E’, T is a linear mapping E' —
L?*(E,p), and by (1) and (2)

exp(~51Tal?) = f(a)

whenever a € F’.

Now, by Property 2.1.6.4 of the Fourier transform T is a continuous
mapping
(B, 7(E', E)) — (L*(E,p), |l - I

Appendix B 13 (Arens, Mackey) provides us with the identification
(E',7(E',E)) «— E.

Consequently, T can be regarded as a mapping L?(F,p) — E and
hence R := T? o T is a linear mapping B/ — E with

(Ra,b) = (T(Ta),b) = (Ta,Th)

for all a,b € E’. This shows that R is symmetric, and setting a = b
one obtains that

for all @ € F’, and p has been shown to belong to G(E). [ |

Definition 2.4.8 For any given measure A € M°(E) the measure

e(\) —e“”)‘llz " e M\(E

n>0

with A0 := gq is called the Poisson measure with exponent A.
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By P(E) we shall abbreviate the totality of all Poisson measures
m E.

Discussion 2.4.9 of the genesis of Poisson measure in classical
probability theory. Here we have E := RP. Let A € MY(E) \ {0}.
Moreover, let

(a) (Xp)n>1 denote a sequence of independent E-valued random
variables on a probability space (Q,2A,P) such that

1

Py =—2
N IPY|

foralln > 1 and let

(b) N denote a Z-valued random variable on (Q,2%,P), indepen-
dent of (X)n>1 and such that

Py = (|,

where II(||Al]) denotes the elementary Poisson distribution with
parameter ||A||.

Now, for every w € Q let

N(w)

Sn(w) =Y Xp(w)
k=1

(with ZLI Xi(w) := 0). Then S, is an E-valued random variable
on (2,2, P) with

Properties 2.4.10 of Poisson measures
2.4.10.1 For everya € E'
e(A)"(a) = exp(A(a) — X(0))

= exp(/ (ei(x’“) - 1) )\(d.'L‘)),
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hence

Log e(M)"(a) = A(a) — A(0).

The following computation serves as a proof of the first assertion:

/ e (da) = e N Y L / €H40:8) X" (d)

ey %(A”)’\(a)
ey ;3(;(@)71

= RO Z A0 (g B

The second statement follows from the existence of h := Log [
(Theorem 2.1.10) together with the continuity of the Fourier trans-
form.

2.4.10.2 For A\i, Az € M®(E) we have
6()\1) * 6()\2) = G(Al -+ )\2) .

In particular, P(E) is a subsemigroup of M'(E).
For the proof one just notes that

(e(A1) * e(X2)) (a) = e(M1)" (a)e(X2)" (a) )
= exp(A1(a) — M1(0)) exp(Az(a) — A2(0))

(by Property 2.4.10.1)

= exp((M1 + A2)" (@) = (A1 + A2)(0))
= (e(A1 + X2))"(a)

(again by Property 2.4.10.1), whenever a € E'.
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2.4.10.3 P(E) C I(E).

Moreover, for any e(A) € P(E) there exists a convolution semigroup
(e(A)t)ecr, given by
e(A); := e(t))

for all t € Ry such that e(A); = e(A).

This follows from Properties 2.4.10.1 and 2.4.10.2 together with
the embedding theorem 2.3.9.

2.4.10.4 Let Ay, Ay € MY(E) with A\; < Ag. Then
e(M) < e(X2).

In fact, looking at Ay = A\ + (A2 — A) with Ay — A\ € M¥(E)
Property 2.4.10.2 yields

6()\2) = 8()\1) * 6()\2 — /\2)
and hence the assertion.

2.4.10.5 For every A\ € MP(E) we have e(\)™ = e(A™)
since for all a € B’

(e(N)™)"(a) = eV (a) = exp(A(a) — A(0))
= exp (Ma) - X( A0)) = exp (W (2) - 3 (0))
= (A )" (a).

2.4.10.6 Let A € M®(E). Then e(A + A7) = |e(A)|?, since
eA+ A7) =e(A)xe(A7) =e(N) xe(A)”
by Property 2.4.10.5, and furthermore
= le(V)*.

Theorem 2.4.11 (Denseness of P(E) in I(E)) P(E) is a 7,-dense
subsemigroup of I(E).
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In particular, for any p € I(E) with sequence (1)n>1 of n-th
T00ts fi1 of u we have that "

e(npur) — p
as n — 0o with respect to the topology T,.
Proof. 1. Clearly,
2n nk
-n
el
k=0
as n — 00, since

k —n,,2n k

n e n n
e " - =
k;ﬂ k! (2n)! I; @2n+1)... 2n+k)
e-—nn2n e—ann
— Y 97k =
(2n)! I; (2n)!

~20(9)27 /g1 e\n n
== (0" =)
forall n > 1.

2. The sequence (e(ng1))n>1 is Ty-relatively compact.
In fact, for € > 0 there exists by 1. an ng € N such that

nn
AP e

for all n > ng. Since the mapping t — p; from R, into M (E) is
continuous, the set {u; : t € [0,2]} is relatively compact. But then
Prohorov’s theorem 1.3.7 applies, and there exists a set K € K(FE)
with

p(K)>1-¢
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for all ¢ € [0,2]. This implies that for all n > ng

nk n ok
e(npy)(K) =™ wpe(K) 2 e Y pg(K)
k>0 k=0
nk
—n(Z k‘) (1—¢) > (1-¢)2
k=0

3. For all z € C one has

as n — oo. It follows that

lim e(npl) (@) = lim exp((n %) (@) —n)

= nli_{r;g exp( [exp( Log u(a)) — 1])
= exp(Log fi(a)) = ji(a)

whenever a € E’. We now apply 2. in order to use the continuity
theorem 2.1.9 yielding

lim e(nu1)=,u. ]

n—oo

Theorem 2.4.12 (Continuity of the Poisson mapping). Let (Ay)n>1
be a sequence of measures in M°(E).

(1) If (An)n>1 is Ty-relatively compact, then so is (e(\y,)).

(it) The mapping e : M®(E) — MY(E) is continuous in the sense
that the 7,,-convergence A, — X\ € M(E) implies the Ty,-con-
vergence

e(An) — e(A)

as n — oQ.
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Proof. (i) By Prohorov’s theorem 1.3.7

d = sup [[A,[ < o0.
n>1

For given £ > 0 there exists a kg € N satisfying
€
_’ - .
k>ko k! 2
But since {Af : 0 < k < ko, n € N} is 7,-relatively compact (by the
continuity of the convolution) Prohorov’s theorem 1.3.7 provides us
with the existence of a set K € K(F) such that
€
M(Ke) < —
LK) < o
whenever 0 < k < kg, n € N. Therefore

) (%) = eI ST ZR(I)

k>0

Another application of Prohorov’s theorem 1.3.7 yields (7).

(22) We apply Property 2.4.10.1 in order to obtain
lim e(A\,)"(a) = e(\)"(a)

n—0o0

whenever a € E’. But then (¢) together with the continuity theorem
2.1.9 implies the assertion. ]

Remark 2.4.13 The converse of statement (i) of Theorem 2.4.12
does not hold in general. In fact, by Theorem 2.4.11 we have for any
€ I(E) that

elnpiz) — 1
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as n — 0o, but
sup [[np || = sup(npi)(E)
n>1 n>1

=sup n = 00.
n>1

Résumé 2.4.14 A measure p € MY(E) is called (continuously)
embeddable if there ezists a (continuous) convolution semigroup
(uthter, i MY(E) such that py = p.

By EM(E) we denote the totality of all embeddable measures on
E. Then EM(E) is a subsemigroup of M!(E), and G(E) as well
as P(FE) are subsemigroups of the semigroup I(E) which by the
embedding Theorem 2.3.9 is contained in EM(E). While I(E) is
Tw-closed in M*(E) by Theorem 2.3.7, P(E) is 7,-dense in I(E) by
Theorem 2.4.11.



3

The Structure of Infinitely Divisible

Probability Measures

3.1 The lto-Nishio theorem

This section is devoted to studying the convergence behavior of sums
of independent random variables taking their values in a separable
Banach space E. The discussion will provide a complete version of
Lévy’s continuity theorem which extends Theorem 2.1.9.

Definition 3.1.1 A subset Z of E is said to be a (measurable)
cylinder set if there exist a finite set {a1,...,an} in E' and a set
B ¢ B(R") such that

Z =Z(ay,...,an; B) :={z € E: ({z,a1),..., (z,an)) € B}.
Let 3(E) denote the system of cylinder sets of E.
Properties 3.1.2 of cylinder sets
3.1.2.1 3(E) C B(E).

86
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3.1.2.2 3(E) = B(E) if and only if dim E < oc.
3.1.2.3 3(E) is an algebra.

In fact, we note that E = Z(a;R) for arbitrary a € E’ and hence
belongs to 3(E). Moreover, for Z := Z(ay,...,an;B) € 3(E) also
Z¢ = Z(ay,...,an; B®) € 3(E) and with Z' := Z(a},...,a;,; B') for
{al,...,a.,}, B’ € B(R)™ we have that

ZNZ = Z(a1, 0, n, @), oy Gl B x B) € 3(E).

ey Uy

3.1.2.4 3(E) is translation invariant.
This property follows directly from

Z+y=2(a1, . an; B+ ((y,01), .., (¥, 0n)))

for Z := Z(a,...,an; B) with {a1,..,a,} C E’, B € B(R)" and
yeFE.

3.1.2.5 o(3(E)) = B(E).

By Property 3.1.2.1 it suffices to show that O(E) C o(3(F)).
Moreover, applying the assumption that E is separable the proof is
reduced to showing that B(z,r)~ € o(3(E)) forallz € E, r € R}.
Finally, by Property 3.1.2.4 it remains to verify that B(0,r)” €
o(3(E)) for every r € R}.

Let (z,)n>1 be a sequence dense in E. From Appendix B 5 (Ba-
nach, Hahn) we obtain a sequence (a,),>1 in E' with |jan|| = 1 such
that (z,,a,) = ||| for all n > 1. Now, let

B, = ﬂ{er:(m,an) <r}.

n>1

Clearly, B, € o(3(E)) and hence the proof is finished once B(0,r) ™ =
B, has been established. At first we note that B(0,7) C B,. For the
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reversed inclusion we pick z € B, to which there exists a subse-

quence (Zn,)k>1 of (Tn)n>1 such that limg .o Z,, = z. But the
inequalities

lZn. | = (Trg,Ony) = (Tny — Z,0n,) + (T, an,) < |Zn, —xl| +r

valid for all k£ > 1 imply that ||z|| < r, hence that z € B(0,7)~.

Discussion 3.1.3 of types of convergence for E-valued random vari-
ables.

Let (Yn)n>1 be a sequence of E-valued random variables on a prob-
ability space (Q, AU, P).

3.1.3.1 (Y, )n>1 converges P-a.s. (in symbols Yy, Pag. ) if and only
if for alle >0

lim P([sup ||V, — Yn| >¢]) =0.
m—o0 nzm

3.1.3.2 (Y, )n>1 converges P-stochastically (in symbols Yy, P_stoch )

if and only if for alle > 0
lim sup P([||Y, — Yl >¢]) = 0.
m—oQ an

3.1.3.3 IfY denotes the P-a.s. or P-stoch limit of (Yy,)n>1 then the
limiting relations hold for Y instead of Yy, in 8.1.3.1 and 3.1.3.2
respectively.

We note that P-a.s. convergence implies P-stoch convergence, and
P-stoch convergence implies convergence of (Y,)n>1 in distribution
which is defined as weak convergence of the sequence (Py, )p>1 of

distributions Py, of ¥, as measures in M1(E) (in symbols Y;, - ).

Theorem 3.1.4 (Ottaviani’s inequality). Let (Yi)i<k<n be a se-
quence of independent E-valued random variables on (Q,2; P). Then
for all € > 0 we have the inequality

1= max P([[Yitr+ ..+ Yall 2 e)P([ max Y1+ ... + Ve[| > 2])

<P(IY1 + ... + Yy || > €]).
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Proof. For every k =1,...,n — 1 let
By :=[|IY1ll < 2, .., ||Y1 + ... + Yi1]| < 26, |V + ... + Yi|| > 2¢],
Cr == [|[Yes1 + ... + Y|l < €], and
=[IY1 + ... + Y| > €]

Then By, ..., B,—1 are pairwise disjoint, and By, Cy are independent
for 1 <k <n-—1. Since

Y1+ + Yol 2 (Y1 4 o+ Vel = [Yegr + o+ Yol

we obtain
n—1
U (Bk N Ck) C D,
k=1

and hence

n—1 n
P(D) > Y P(B,NCy) =) P(By)P(Ci)
k=1

k=1

> ( min P(Cy)) (" P(Bk)>

1<k
<n 1

= min (1 -P(CP))P U Bk)

1<k<n

1<k<n

= (1 - max P(C})) - P([lxg}?i(n Y1 + ... + Yi| > 2¢]).

Corollary 3.1.5 For each £ > 1 let Sp := Zi___l Y.. Then

1~Sup(lmax P({[lSn — Skll 2 E]))P([Sup 1Skl > 2e])

< supP([IIS 1> e])

for all e > 0.
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Proof. Applying the theorem to each of the sequences (Yi)1<k<n
(n > 1) we obtain for all £ > 0

l—igg(lm,gx P([||Sn — Skll = €]))P (llggcagm Skl > 2e])

< it;I;P([HSnH > g])

whenever m > 1. But we have

[ max Skl > 2] 1 [Sup 1Skl > 2e],

hence by the continuity from below of the measure P the assertion
follows. [ ]

Theorem 3.1.6 (Equivalence of types of convergence). Let (Xy)r>1
be a sequence of independent E-valued random variables on (2,2, P)
with distributions Ay = Px, (k > 1), and let (Sy)n>1 be the corre-
sponding sequence of n-the partial sums S, =Y p_, Xr(n > 1). For
every n > 1 we abbreviate

n ' =Pg =A% .. %A,
Then the following statements are equivalent:
(i) (Sn)n>1 converges P-a.s..
(ii) (Sp)n>1 converges P-stoch.
(#1) (Sn)n>1 converges in distribution.
Proof. (i) = (i) = (4i¢) are well-known implications valid for arbi-

trary sequences of E-valued random variables on (2,2, P). (For the
second implication see Application 1.2.15.)

(1) = (i) Let € > 0. For § €]0, 3] there exists an mq > 1 such that

P([”Xm+1 + .t Xn“ 2 5]) = P([”Sn - Sm” 2 5]) <46
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whenever mo < m < n. But Corollary 3.1.5 applied to the sequence
of E-valued random variables Y, := Xpp4n (n > 1) yields

1
§P(FUP”5m+k"SmH3>2d)
k>1
<@1- 5)P([ilirf 1Sm sk — Smll > 2€])
< 1= 6P([sup | Stk = Simll > 2¢])
k>1
<1~ sup(max P(|Smsn = Smerl > e])
 P([suD Sk — Smll > 2e])
k>1

< S‘;I;P([“Sm+n — S| > €]) <6,

hence

1
5P((5up [1Sn — Sl > 2¢]) < 8
n>m

for all m > my, and this implies (3).
(141) = (41). For 1 < m < n we have

Umn = )\m+1 .ok >‘n = PSn-—Sm = PX,,L.'.1~{-,..+X,L

and consequently

P([[|Sn = Smll 2 €]) = pmn(B(0,€)%)

Now we assume that S, P_stoch 35 not fulfilled. Then there

exist subsequences (mg)r>1, (7k)rk>1 in N with mp < ng and
oy ni (B(0,€)¢) > ¢ for all k > 1. But since fim, * fhmy n, = Hn, for
all k > 1 and 7, — lim,, o0 ptn = ¢ € M*(E) by assumption, the se-
quence (lm, n, )k>1 is Ty-relatively compact. Without loss of general-
ity we may therefore assume that 7o, —limg_,co fhmy,n, = ¥ € M (E).
But then p* v = p by (ii7) of Theorem 1.4.9 and hence v = ¢g by
Lemma 2.2.2. Finally, the sequence of inequalities

0 = e9(B(0,€)°) > HmSup pm, . (B(0,€)°) 2 € > 0
k—o0
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yields the desired contradiction, and (i¢) of the theorem has been
established. [ ]

Corollary 3.1.7 Let the sequence (fin)n>1 of distributions Pg, be
shift tight in M*(E). Then there ezists a sequence (Tn)n>1 in E such
that

Proof. By Theorem 2.2.25 the sequence (v,)n>1 With vy, 1= |u,|?
for all n > 1is 7,-relatively compact. Since |0y, | = |fin|? by Property
2.2.24.3 and v, < vh41, Property 2.2.16.7 yields 0 < D1 < 0y, for
all n > 1. By the continuity theorem 2.1.9 this implies that (v, )n>1
is Ty-convergent.

In the following we aim at representing the sequence (v, ),>1 as a
sequence of distributions of E-valued random variables on an appro-
priate probability space. Let

Yn(wl,wg) = Xn(wl)

and
Zn ((4)1,(4.)2) = Xn(WQ)

whenever (wy,ws) € Q@ x Q (n > 1). Clearly, {Y1,721,Y2,25,...} is a
sequence of independent F-valued random variables on the proba-
bility space (2 x ,A® A, P ® P) such that

(P ®P)yn = (P®P)Zn = Pxn = A,

for all n > 1. As a consequence we obtain that the E-valued random

variable
n

k=1

has v, as its distribution (n > 1) (See Application 1.4.5 and Property
1.4.4.4). It follows that

n
Z(Yk—Zk)—d» as n — 00.
k=1
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Moreover, since (Y, — Z,)n>1 is a sequence of independent E-valued
random variables, the theorem applies and

n
Z Y, — Zk P®f_;a.s. W
k=1

where W denotes an E-valued random variable on (2 x Q, AQA, P®
P). But then there exists @ € A ® 2% with (P ® P)(Q) = 1 such that

lim (Sp(w1) — Sp(w2)) = W(w;,ws)

n—oo

for all (w;,ws) € Q. An application of Fubini’s theorem yields

1= (P & P)(Q) = /P(sz)P(dw2)

and hence provides us with an wy € € such that P(Q.,) = 1. Choos-
ing 2, := Sp(ws) for all n > 1 we obtain the sequence (z,),>1 in E
required in the assertion. |

The following two Lemmata are designed to prepare the main re-
sult of the section.

Lemma 3.1.8 Let X,Y,Y1,Y3,.. be E-valued random variables on
(Q,2,P). For every n > 1 the random variables X and Y, are as-
sumed to be independent. Moreover, by hypothesis

P-—stoch
—

(Yn,a) (¥, a)

for every a € E'. Then X and Y are independent.

Proof. Let ay,...,ay € E'. For each n > 1 we introduce the R*-
valued random variable

Pn = ((Ymad)’ I <Yn7ak>) .

Psigh o= ((Y,a1),..., (Y, ax)), since

Then ¢,

x

P({llon — @lloo > €]) Z (KYn, a5) = (Y, a5)| > e),
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where by hypothesis the right hand side tends to 0 for all € > 0.

Next we note that by assumption the random variables

Y= ((X,a1), ..., (X, ax))
and ¢, are independent, and

n @ T8 ooy,

The equivalence theorem 3.1.6 together with Theorem 1.4.8 yields
Pogy = Tw — nh_,n;o Po.gy =Tw — r}i_{[;o(Pwn ®Py) =P, @ Py,

thus ¢ and 1 are independent.

Now, let Z1,Z5 € 3(E). There exist ay,...,ax € E' and By,B; €
B(R*) such that

Zj = Zj(al, ey Aoy B])

for j = 1,2. From the above chain of equalities we deduce

P([Y € 21, X € Z3])) = P(lp € B1,Y € Bs))

= P([p € Bi]))P([¢ € By))
=P([Y € Z1,))P([X € ZJ]).

Since 3(F) is a N-stable generator of *B(F) by Properties 3.1.2.3 and
3.1.2.5 we have shown that X and Y are independent. [ |

Lemma 3.1.9 Let (U, P, (Yo)aecr') and (E,B(E),p, ({.,a))acE")
denote two equivalent stochastic processes (with parameter set E' and

state space R). Then there exists an E-valued random variable Y on
(Q,2A,P) such that

P(Yo=(Y,9))) =1

whenever a € E’.

In particular, Py = u.
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Proof. With RN carrying the product topology we have that
B(RN) = B(R)®N. Let (a,)n>1 be a sequence in E’ with

({z € E:{z,an) <7} = B(0,r)"

n>1

for every r € RX. This follows from Appendix B 5 (Banach, Hahn)

which indeed yields a sequence (a,)n>1 in E’ satisfying |lan,| = 1
and (z,an) = ||z|| for all n > 1.
By

p(z) = ((2,an))n21

for all z € E we introduce an injective continuous linear mapping
from E into RN. Now, u € M!(E) is tight by Theorem 1.1.6. Hence
there exists an increasing sequence (K, ),>1 in C(E) such that for
C = {J,>; Kn we obtain that u(C) = 1. Clearly, C € B(E) and
o(C) = U,>, ¢(Kn) € B(RN). But then Resk,y is a homeo-
morphism from K, onto ¢(K,) and hence Rescy turns out to be
a bimeasurable bijection from (C,C N B(E)) onto (¢(C),»(C) N
B(RN)). Consequently, there is a measurable mapping % from
(RN, B(RN)) into (E,B(E)) given by ¢(p(x)) = z for all z € C.
Now we put
AW) = (Yay (@))n21

for all w € Q. A is a measurable map from (2, 2) into (RN, B(RN)).
For every finite sequence {Bj, ..., B} in B(R) we have by assump-
tion that

P([A€ By X .. x BgyxR xR x ..]
= P([Ya, € Bj for j=1,...,k])
= u([{.,a;) € Bj for j =1,...,k])
=u(fp € B X ... x By x RXx R x ...]).

But the system of sets of the form B; X .. x By x Rx R x ... is a
N-stable generator of B(RN) = (B(R))®N, hence P = p,,.

Analogously one shows that

Py,on = B(. a)oe
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forallae E'.

Now, for a € E’ we form the set
B, := {(tn)nz0 € R X RN 1 tg = (¥((tn)n>1),0)} € B(R x RY)
and introduce the E-valued random variable Y := 1 o A. Then

P([Y, = (Y,a)]) = P([Yo = (¥ 0 A,a)])
=P([Yo ® A € B,))
= p([{,a) ® p € Ba))
= p([{-,a) = (Yo p,a)])
= p([(,a) = Yop,a)]NC)
=u(C) =1,

and the first statement of the Lemma has been established.

For the remaining statement we take
Z = Z(ay,...,an; B) € 3(E)
(for ai,...,an, € E', B € B(R")). Then

Py(2) =P([({Y,a1), ... {Y,an)) € B])
=P([Y,, ®...0Y,, € B)])
= u(Z).

Applying Properties 3.1.2.3 and 3.1.2.5 this implies that Py = y. B

Theorem 3.1.10 (Tto, Nishio) Let (Xi)x>1 be a sequence of inde-
pendent E-valued random variables Xy on (2,2, P) with the prop-
erty that Px, is symmetric for all k > 1, and let (Sp)n>1 be the
. . n -
corresponding sequence of n-th partial sums Y, _; Xk.

The following statements are equivalent:

(i) (Sn)n>1  converges P-almost surely.
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(it) (Sn)n>1  converges P-stochastically.
(i) (Sp)n>1  converges in distribution.
() (Ps, )n>1 is uniformly tight.

(v) There exists an E-valued random variable S on (9,2, P) such
that

(Sp,a) T8N (S, a)
foralla € E'.

(vi) There exists a measure p € M*(E) such that

Ps,(a) — fi(a)
for alla € E'.

Proof. From the equivalence theorem 3.1.6 we deduce the equiva-
lences

(1) & (41) & (411)
and from the continuity theorem 2.1.9 the implication
(75¢) = ().

We proceed to the proof of implication

(4v) = (i). By assumption the sequence (Pg, ),>1 is uniformly tight,
consequently Corollary 3.1.7 becomes applicable and hence there ex-
ists a sequence (2,),>1 in E such that

P—a.s.
Sp — zplg e

as n — 00. Since the random variables X are independent and their
distributions Px,_, are symmetric for all k¥ > 1, we obtain

PR, X = QPx. =QPx, =X P_x, =Pg

n>1 n>1 n>1

pz1(—Xn)?
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and therefore for every e >0 and all k > 1
P([sup [|(Sm — zm) — (Sk — z&)|| > ¢€])
m>k

= P(lsup [| X1+ .+ Xom = (@m — 21)]| > €])

=P .. x, ({n)nz1 € BN

SUp [[Yk+1 + o + Ym — (Tm — 1) > €})
m>k

=P (-xa){En)uz1 € EN .

sup Yk+1 + o+ Ym — (Zm — 2E)|| > €})
= P([i‘i% | = Xkt1 = oo = X = (@ — zp)|| > €])
= P([ili% I(=Sm = Zm) — (=S — i)l > €]).

But this implies the limiting relation

P-—a.s.
—Sn_wnlﬂ %

as n — 00. Observing that for every n > 1

1 1
‘Q'(Sn - ﬂSle) - 5(—817, - mnlﬂ)

we obtain the desired statement ().

S, =

(v) = (). Let u := Ps. By the inner regularity of u (see Theorem
1.1.2(44)) for every € > 0 there exists a K € K(E) such that u(K°) <
e. The set Ky := {:(x—y) : 7,y € K} is compact. Now, given k > 1
we note that for every n > 1 the E-valued random variables X := S
and Y, := Sk, — Sk are independent, and by hypothesis

(Yn,a) = (Sk4n, @) — (Sk,a) T=8™ (S, 0) — (Sk,a) = (S ~ Sk, a)

whenever a € E’. Applying Lemma 3.1.8 this implies that the ran-
dom variables X and Y := §— S} are independent. But with X+Y =
S and py :=Pg, = *;?:1 Px, we obtain

1—e < p(K) = px * Pg_g5,(K)

= /,u,k(K—x)PS—-Sk(dm),
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hence there exists an zy € F such that px(K — zx) > 1 — e. This,
however, implies that

pk(KT) = P([Sk ¢ Ki])
< P([Sk +zx € K]U[-Sk + zx € K))
<P([Sk & K —zi]) + P([—Sk € K — x4])
= 2uk (K — z1)°) < 2.

Since the inequalities are valid for each k > 1, (iv) has been estab-
lished.

(vi) = (v) Foreacha € E' ({(X,,a))n>1 is asequence of independent
real-valued random variables on (Q,2,P), and for all n > 1

(X1,a) + ... + (Xn,a) = (Sp,a) .
But then

Pis, o) = a(Ps,)(t) = Ps, (a(1)) = Ps, (ta)

and

——

a(p)(t) = ia'(t)) = ita)
whenever a € E’, t € R. Now, by hypothesis

Jim Bis, o)(t) = alu)(®)

for all t € R, and by the classical continuity theorem which follows
from Theorem 4.3.8 we have

Ps, 0 —= ay)

or d
(Sn,a) —

The equivalence theorem 3.1.6 now yields

(Sp,a) =% Y,
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where Y, is a real-valued random variable on (2, %, P).

On the other hand the two stochastic processes

(2,2, P, (Ya)ace) and (E,B(E), 1, ((-,a))ack)

are equivalent.

In fact, let ay,...,ax € E'. Then for all (¢, ..., ;) € R assumption
(vi) together with an application of Lebesgue’s dominated conver-
gence theorem implies that

k
Py, Yo ) (B ) = /exp (ithYaj)dP
j=1

7j=1
k
= nIerolo exp (z(Sn, Z;tjaj)> dP
J=
k
= lim Pg (thaj :/exp (zZQ(,aﬁ)du
N-—00
=1 Jj=1

= B ar)slar)) (s oo B)

hence that
P, Ya,) = B(ar)n(aak) -

Finally, we apply Lemma 3.1.9 and obtain an E-valued random
variable S :=Y on (9,2, P) such that

P([Yo=(S,a)])=1
for all a € E’. Consequently,
(Snra) "5 (S,a),

thus
(Smra) T8 (S, a)
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whenever a € E’. But this is (v). |

Corollary 3.1.11 Let (jin)n>1 be a sequence of symmetric measures
in MY(E) such that fn, < fns1 for alln > 1, and let p € M'(E)
such that

Jim_fin(@) = (a)

for all a € E’. Then

I, = fo.

Proof. By assumption, for every n > 2 there exists a A, € M*(E)
with g, = Ap * tin_1. Moreover we put A; := p;. Taking Fourier
transforms and applying Properties 2.1.6.7 and 2.2.18.3 we see that
Ap 18 symmetric for all n > 1.

Now, let (X,)n>1 be a sequence of independent E-valued random
variables on (©,2,P) such that Px, = A, for all n > 1. Then the
distribution of S, := > p_, Xx has the form

n

mn
Ps, = X Px, = X Ax = in-
k=1 k=1

Therefore (vi) of the theorem becomes applicable, and we obtain
that
i~ ve MYE).

It remains to apply the uniqueness and continuity properties of the
Fourier transform (Theorems 2.1.4 and 2.1.9 respectively) in order
to see that v = p. |

Remark 3.1.12 Without the assumption of symmetry for the dis-
tributions Px, of the random variables Xy (k > 1) the implication
(v)= (i) of the Ito-Nishio theorem 3.1.10 does not remain valid.

In fact, let E denote an infinite-dimensional separable Banach
space with orthonormal basis {e, : n > 1}. Let (2,9, P) be a prob-
ability space, and let
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for all w € 2, n > 1 (where ep := 0). Then (X,),>1 is a sequence
of independent E-valued random variables on (2,2, P). Moreover

Sulw) = 3 Xi(w) = en
k=1

for all w € Q, n > 1. Finally, we put S(w) := 0 for all w € 2. Then

lim (S,,a) = lim (en,a) =0=(S,a)
whenever a € E’, and this implies (v).
But
lim S, (w) # S(w),
n—o0

since ||Sp(w)||=1for all n > 1 (w € ), hence (¢) does not hold.

As an immediate application of the Ito-Nishio theorem 3.1.10 we
discuss the representation of E-valued Gaussian random variables as
a.s.-convergent random series (in E).

Theorem 3.1.13 (Random series representation of Gaussian ran-
dom variables).

Let p be a Gauss measure on E. Then there exist a sequence
(Zp)n>1 in E and a sequence (€x)n>1 of independent real-valued ran-
dom variables on a probability space (Q, A, P) with P¢, = N(0,1) for
all n € N such that the series Y, <, &nTrn is P-a.s. convergent, and

P =p.
ZnZl Enn p
Proof. We recall the proof of Theorem 2.4.7 and realize that given

p € G(E) there is a continuous linear mapping T : (E’, 7(E’, E)) —
(L*(E,p), 1l -1I) such that

(@) = exp(~ | Tal?

for all o € E’. Moreover, T? can be regarded as a mapping from
L%*(E,p) into E. For a given orthonormal basis {f, : n € N} of
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L?(E, p) we define the sequence (z,)n>1 in E by z,, := Ttf, for all
n € N.

Now let (£,)n>1 be a sequence of independent, identically dis-
tributed real-valued random variables on (Q,2%;P) with P, =
N(0,1) for all n € N. Employing the notation A\, := P¢_,, we
obtain for all a € E’ that

n(a) / Enwnya)dP /e’i(fnfnyTa)dP
- / eirtnTal N (0, 1) (dr)

= N(071)A((fn,Ta>) = e—%<fn;Ta)2
for all @ € E’ and that A, is symmetric (n € N). For p, := Ay *..%x\,

we have R 5
fin(a) = A(a) ... An(a)
i

whenever a € E’ (n € N). But then Parseval’s identity yields

Jim pn(a) = exp { -3 Z(f;,Ta }

]>1

= exp { - §I|Ta||2} = pla)

for all @ € E', and from the Ito-Nishio theorem 3.1.10 together with
the continuity theorem 2.1.9 the assertion follows. |
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3.2 Fourier expansion and construction of Brownian motion

As an application of the results of the previous section we shall re-
turn to the discussion of the Wiener measure introduced as a Gauss
measure in Example 2.4.2.2 and its rise from Brownian motion in R.
In particular we shall establish the Fourier expansion of Brownian
motion in R and construct Brownian motions in R with continuous
paths.

In preparing the tools we recall the notion of p-dimensional
standard normal distribution as the measure

N(0,I,) := N(0,1)®

in M!(RP), where I, denotes the p-dimensional unit matrix.

It is well-known that for any linear mapping T from R? intoc R?
the Fourier representation

(T(N(0,1,))"(@) = exp (— énTtaHZ)

=exp(—

For any p x p-matrix C over R, ¢ > 1 and any linear mapping 7’
from RY into RP? satisfying TT* = C the measure

DO

(TT)a, a))

holds whenever a € RP.

N(0,C) := T(N(0,1,))

in M'(RP) turns out to be the (p-dimensional) normal distribu-
tion with mean (vector) 0 and covariance (matrix) C.

Remarks 3.2.1

3.2.1.1 By the uniqueness of the Fourier transform (Theorem 2.1.4)
the measure N(0,C) is uniquely determined by its covariance C.
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3.2.1.2 The covariance C = TT"* is obviously symmetric and positive
semidefinite. Moreover, given a symmetric and positive semidefinite
p x p-matriz C over R there exists a p X p-matrix R over R such
that C = RR}, and consequently

N(0,C) = R(N(0, 1))

(Ca,a))

3.2.1.3 Let X = (X1,..,Xp)" be an RP-valued random variable on
o probability space (2, U, P) with Px = N(0,C). Then || X||* is P-
integrable, and for the expectation vector and covariance (matriz) of
X we obtain

or

rS | =

N(0,C)(a) = exp (—

for all a € RP.

E(X) = (B(X1), .., B(X,))t =0

and
C(X) = (Cov (X, X;))1<i,j<p = C

respectively.
The following

Properties 3.2.2 of the normal distribution will be used in the
discussion below.

3.2.2.1 With D(ry,...,mp) denoting the diagonal matriz containing
r1,...,7p € R as diagonal elements we have

N(0,D(o é N(0,0?

=1

3.2.2.2 Let X;,...,,X, denote z'ndependent R-valued random vari-
ables on (2,2, P) wzth Px, = N(0,0?) for all i = 1,...,p. Then for
X = (X1,...,Xp)t one obtains

Px = N(0,D(0%,...,03))
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3.2.2.3 Let X = (X1,...,Xp)! be an RP-valued random variable on
(2,2, P) with Px = N(0,C). Then the real-valued random variables
X1,...,Xp are independent if and only if X,,..., X, are uncorrelated.

3.2.2.4 For any linear mapping S from RP into R?
S(N(0,C)) = N(0,5CS")
3.2.2.5 Let (Cp)n>0 be a sequence of symmetric and positive semidef-

wmnite p X p-matrices over R. Then the following statements are equiv-
alent:

(i) N(0,Cr) = N(0,Co).

(i) Cn, — Cy, and the sequence (N(0,Cr))n>1 5 Tu-relatively
compact (in M*(RF)).

(Z’LZ) Cn — Oo.

While the proof of the implication (i¢) = (¢) is an immediate
consequence of the classical continuity theorem for measures on R”
the implication (i) = (4¢) makes use of the continuity theorem 2.1.9.

Now let (Q,2%, P, (By)ier) denote a Brownian motion in R with
parameter set I = [0,1]. By H(B) we abbreviate the closed lin-
ear subspace of L?(f2,2,P) generated by the family {B; : ¢t € I}
(of Brownian variables). It can be shown that H(B) is a separable
Hilbert space with scalar product defined by

€= [ nap
for all &, € H(B).

Theorem 3.2.3 There is a unique linear isometry S form L2(I) :=
= L2(I,B(I), ;) onto H(B) satisfying

S(1po,4) = By
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forallt eI

Proof. At first let f be an elementary (or step) function on I of the

form "
Z f] l[tJ 1,tJ

for a subdivision 0 = tg < t; < ... < t, = 1 of I and coeflicients
fla""fn € R.
Moreover, let

k13
Z (B, — Bi,_,)-

Then f — S(f) is a linear mapping from the space 7(I) of all
elementary functions on I into the Hilbert space H(B) such that

S(l[O,t]) = Bt .

Therefore S(7(I)) is dense in H(B). On the other hand 7 (I) is dense
in L2(1).
Now, for every f € T(I) we have that

IS(ANl2 = lI£12-

Picking f € T(I) of the form f = 37, fjly,_, ;| We see that
2= Z;;l szl[tj_l,t,[, and consequently

/ (PP =33 4 / By, — By_,)(Bi, — By, ,)dP

=1 j=1
= jz_:lff(tj —ti_1) = /If(t)2dt,

where for the latter equality independence and normal distribution
of the increments of the given Brownian motion have been applied.
Thus S is a linear isometry between the dense subspaces 7 (/) and
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S(T(I)) of L?(I) and ‘H(B) respectively, and hence extendable to a
linear isometry S from L2(I) onto H(B).

Finally we note that the set {1jg : t € I} is total in L?(I). As a
consequence S is unique. [ |

Definition 3.2.4 For every f € L?(I) the unique element S(f) of
L*(Q,2%,P) (constructed in Theorem 3.2.8) is called the stochastic
integral of f with respect to the Brownian motion (Q, 2, P, (B})ier)
and is abbreviated by

| swas,

I
/de.

Properties 3.2.5 of the stochastic integral

or

3.2.5.1 For f,g € L?(I) we have

E(/de) =0
Cov (/de,/gdB) —(f,9).
Var ( / de) = lI£1.

For the proof we note that the mapping £ — [ £ dP from L%(Q,2,P)
into R is continuous and identically zero on the dense subspace
S(T(I)) of H(B). Therefore it vanishes on H(B). Now let f,g €
L2(I). Since S(f) and S(g) are centered and since S is an isometry
we obtain that

Cov (5(£),5(9)) = (S(f),5(9)) = (f,9) -

and

In particular
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The remaining identity follows by choosing g := f.

3.2.5.2 For any finite family {f® : i = 1,...,k} of functions in L>(I)
the R*-valued random variable

(/f(UdB,...,/f“”dB)lt

has a (k-dimensional) normal distribution with mean 0 and covari-
ance ((f%, fD))1<i <k

Moreover, the real-valued random variables If f(l)dB Jf K)dB
are independent if and only if the functions f(1), k) € L2 (I) are
pairwise orthogonal.

The second statement follows from the first one with the help of
Property 3.2.2.3. For the proof of the first statement we first take
functions f(I, ..., f*) € T(I) of the form

m
fO = nygz)l[tj—htj[

Jj=1

with f7 e Rand 0 =to < t1 <. <ty =1 (1<i<k1<j<m)

By
R((zj)1<i<m) = (Z f:;gi)‘”j)
1<i<k

j=1
for all (z;)1<j<m € R™ a linear mapping R from R™ into RF is
defined. From the properties of Brownian motion the distribution of
the R™-valued random variable X = (By, —Bi,;_, )1<j<m on (€, %, P)
is N(0,C) with C := D(t; —to, ..., t, —tm—1) (See Property 3.2.2.2).
But now ’
(SN gick = Ro X,

hence by Property 3.2.2.4 (S(f®))1<i< is normally distributed.

Next we pick f, ..., f(¥) € L?(I) arbitrarily. There are sequences
(N1 in T(I) such that limp o |fS) — F@|; = 0 whenever
1= 1,...,k. An application of Theorem 3.2.3 yields

Jim [IS(£8) = S(fD)l|2 = 0.
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Therefore the sequence (S( T(Zi))),,zl converges stochastically to-
wards S(f™) for all ¢ = 1,...,k, and consequently the sequence

((S(f(l)) e S( (k))))n>1 converges stochastically towards (S(f(%),
)) Employmg Application 1.2.15 we arrive at

Tw
Pistromas = PoUOmas -
From the above discussion together with Property 3.2.5.1

P N(0,C,),

(SUEM<izk
where C,, := ((f{", ,Sj)))ls,-,jsk (for all n > 1).

Let C = ((f(i)af(j)>)1S_i,jSk- Then lim,,_,q ”fr(:) — F@DY, =
0 (1 £ < k) implies lim,,_,o Cr, = C. But now Property 3.2.2.5
yields .

Pstrnee > MO0,
hence
P(S(f(i)))ISiSk: = N(0,C)

which completes the proof.

Theorem 3.2.6 (Fourier erpansion of Brownian motion). Let
(fn)n>1 be an orthonormal basis of L*(I). For every n € N let

=/fndB.

Then (€n)n>1 is a sequence of independent, identically distributed
real-valued random variables on (Q,2A,P) with P, = N(0,1) for

every n € N, and
(/ I u)du) €n
n>1

uniformly int €I P-a.s..
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Proof. By Theorem 3.2.3 (£»)n>1 is an orthonormal basis of H(B).
Let

bn(t) == (Ljo,q1, fu) = /0 frn(u)du

for all t € I (n € N). Then

1[O,t] = Z bn(t)fn

n>1

in L?(I). Again employing Theorem 3.2.3 we arrive at

B, = / 1j,4dB

= bn(t) / fadB

n>1

= Z bn, (t)‘fn

n>1

in L2(Q,2A, P). Now by Property 3.2.5.2 P;, = N(0,1) for all n €
N, and the sequence (£,)n>1 is independent. Since L2-convergence
implies stochastic convergence the equivalence theorem 3.1.6 yields

that
B, = Z (/tfn(u)du)ﬁn P—as. (tel)
0

n>1

In order to show the required uniform convergence P-a.s. we look
at the sequence (X, )n>1 of C(I)-valued random variables

s (m ( [ fn(u)du> zn(w>)

on (2,2, P). Since P, = N(0,1), Px,_ is symmetric for all n € N,
and the sequence (X,)n>1 is clearly independent.

Let S, := ), X; for every N. Then our assertion reads as

Sp P=%% B, where B is the (A—B(C(I))-measurable) C(I)-valued
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random variable w — (¢t — Bi(w)) on (2,4, P). By the Ito-Nishio
theorem 3.1.10 (and since C(I)’ = M®(I)— M?®(I)) it suffices to show

that
(Sny ) (B, )

for all u € M®(I), and for this limit relation it suffices in turn to
show that

P—stoch
—_—

i [ |(Sny1) = (B, 1)IdP = 0

n—o

whenever y € M®(I). Now we apply Fubini’s theorem in order to
obtain

[ (8 = (B w1aP
-[1] (5u()() ~ Bu(w)udn)|P(d)

1
S/o (/QISn(w)(t)—Bt(w)IP(dw)>u(dt)

) }
S/O (/QISn(w)(t)—Bt(w)l P(dw)) p(dt)

for all p € M®(I) (n € N). But

[ [5:)0) - BwPP(w) = 3 by

k>n

and

Do) =D (Lo, fa)® = Il =1

k>1 k>1

for all n € N (t € I). By the dominated convergence theorem this
implies

Jim_ ( / [Sn(w Bt(W)]2P(dW)) p(dt) =0
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for all u € M®(I), hence the assertion. u

Remark 3.2.7 Employing the orthonormal basis (fn)n>1 of L3(I)
defined by

falt) == V2 sin(nnt)

for which obviously

t V2
du = —(1 - t
/0 fa(u)du n7r( cos(nnt))
holds (for allt € I, n > 1). Theorem 3.2.6 yields that

B; = X—E n>1(1 — cos(nmt))én

holds uniformly int € I P-a.s..

In the remaining part of this section we shall establish the existence
of Brownian motion in R with continuous paths. In fact, the process
(B¢)tcs constructed in Remark 3.2.7 has continuous paths due to the
uniform convergence of the series and the continuity of the functions
fo, n2> 1L

Lemma 3.2.8 For everyn € Z, and k =1,...,2" let
hE) - = Varlar_ge-n-1 (2k—1)2-n-1]
—\/2_”1[(2k_1)2—n—1, (2k)2—n—1[ -
Moreover, let f1 := 191} and
fan g := A

forallneZ,, k=1,..,2".
Then the so defined Haar system (f,)pn>1 is an orthonormal
basis of L2(I).

Proof. From
(hﬁl’“))z = 2"1[(k—1)2—n, k2-n|
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follows || fm|l2 = 1 for allm € N, and f,, fr = 0 a.e. or frnfrn = Cfman
a.e. for all m,n € N with m # n, where ¢ = ¢(m,n) denotes an
appropriate constant, implies {fr,, fa) = 0 for m # n. Thus (fn)n>1
is an orthonormal system in L?(I). In order to see that (fn)n>1 i8
also a basis of L2(I) we pick f € L%(I) with (f, f,) =0foralln € N
and set F(t) := fg f(s)ds for all t € I. Clearly F € C(I). Moreover,
by induction one shows that F(k2™") = 0 for all n € Z, and all
k=0,1,...,,2™. Since F is continuous, we obtain

t
0=F() = / f(s)ds
0
for all ¢t € I, hence that f = 0 a.e.. |

Lemma 3.2.9 For everyt € I and m > 1 let

b (t) = (Ljo,¢)s fm) = /0 Fm(s)ds .

Then by, (t) >0 for allt € I, m € N and

Z bi(t) <

2"<kS2"+1

w3

o-

N =

whenevert € I, ne€ Z,.

Proof. Evidently b,,(t) > 0 for all t € I,m € N, and for t €
[(7 —1)27™, j27"[ we have that

D be(t) =b;(8)

2n<k§2n+1
<bi((2 127"

= 2—("+1),/2n
1 _=

= 2772
5 2

whenever 1 < j <27, n
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Lemma 3.2.10 Let (£,)n>1 be a sequence of independent, identi-
cally distributed real-valued random variables on a probability space
(Q,2U,P) with Pe, = N(0,1) for all n € N. Moreover, let (Xp)n>1
be the sequence of C(I)-valued random variables on (0,2, P) defined
by

Xn(w) = b ()ér(w)

for all w € ), where the sequence (by,)n>1 is given as in Lemma
8.2.9. Finally, let Sy, ==Y 1 X; for alln € N.

Then there exists a C(I)-valued random variable Z on (Q,%,P)

such that

SP—-—E?SZ

Proof. At first we establish the inequalities

(el > ) = — [ -Tdv~\[/ e
:\/;[_er(zr)"]% \f/ (or)-Ye—"dr
s\/%e—%

valid for all w € R} (n € N). But then

ZP([|€n|>\/§—ln—T—L \/»Zn 2(lnn) i< oo,

n>2 n>2

An application of the Borel-Cantelli Lemma implies that
P( lim |:|§n| < \/3lnn]) -

Therefore for P-almost every w € Q there exists an n(w) € N such
that [{m(w)| < V3lnm for all m > 27« and hence we obtain

o (W) 1= 1€e(W)] < V3 27+ = (n 4+ 1)3v31In2

2"<Ic<2”+1
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whenever n > n(w). But now Lemma 3.2.8 yields

D m®em@)= Y > be(t)ler W)

m>2n{w) n2n(w) 2n<kL2nt!

< > ( > bk(t))an(w)

n>n(w) \2n<k<2n+1

S\/31n Z (n+1)72"% < oo

n>n{w)

for all t € I and P-almost all w € . Consequently the series
Y om>1 bm(t)ém(w) converges uniformly in ¢ € I for P-almost all
w € 2, and the proof is complete. [ ]

Theorem 3.2.11 (Ezistence of Brownian motion with continuous
paths)

Let Z denote the C(I)-valued random wvariable on (,%,P) es-
tablished as the P-a.s. limit of the sequence (S,)n>1 introduced in

Lemma 8.2.10. For every t € I we consider the real-valued random
variable Z; defined on (Q,2,P) by

=3 " Sat)w) =) ba(t)n(w)

n>1 n>1

whenever w € Q.

Then (0,4, P,(Z;)icr) is a Brownian motion on R having con-
tinuous paths.

Proof. Since Z(w) € C(I) for all w € 2, the process (2,2, P,
(Zt)ter) has continuous paths.

Clearly, Zy(w) = 0 for P-almost all w € €. It remains to show that
the process (2,2, P, (Z;);cs) admits stationary independent incre-
ments Z, — Z, with N(0,t— s) as their distributions (s,t € I, s <t).
Let ty,...,tx € I with t; < t3 < ... < t§ be fixed for the sequel. For
every n € N let Tn = (bj(ti))ISiSk,ISan and NMn = (€I,~"a€n)t~
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By Property 3.2.22 P, = N(0,1,), and by Property 3.2.2.4 we
deduce from (S, (t1), ..., Sn(te))* = Tyn, that

P(Su(t)Su(te)) = N0, T Ty) .
We now apply Lemma 3.2.10 in order to obtain that
P(Su(ts)srSaltn)) = P(Ze,20,) -
On the other hand
lim TnTi = (ti A tj)lgi,jgk =:C

as follows easily from the equalities

n
Jim (T,T7);; = lim 21 b (£:)bm (25)
m=

= Z(1[0,ti],fm)<1[o,tj],fm>

m>1
= (1[Oyti]’ 1[0,tj]> = tz /\ t]

valid forall 1 <i <k, 1<j<n.
But then Property 3.2.2.5 yields Pz, | z,) = N(0,C). Intro-
ducing the linear mapping R : R¥ — R¥ given by

R(zy1,...,xx) = (T1,T2 — T1, ..., Tk — Th—1)

for all (z1,...,z1) € RF we see that RCR! = D(t1,ta — t1, ..., tx —
tx—1), and once again applying Property 3.2.2.4 we obtain that

P(Ztl7Zt2_Zt1:---:Ztk"Ztk_1) = R(N(O’ C))
= N(O,D(tl,tg — 11yt — tk—l))-

Now, Properties 3.2.2.3 and 3.2.2.1 provide the final arguments. ®
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3.3 Symmetric Lévy measures and generalized Poisson measures

In this section we shall extend the notion of Poisson measure by ad-
mitting not necessarily bounded though at least o-finite exponents.
Let M?(FE) denote the set of all o-finite measures on B(E).

Definition 3.3.1 A measure A € M?(E) is said to be a symmetric
Lévy measure if it has the following properties:

(a) X\ is symmetric in the sense that A(—B) = A(B) for all B €
B(E).

(b) A({0}) = 0.

(c) There exists a measure E(\) € M®(E) such that

é/(\/\)(a) = exp { /(cos(w,a) — 1)/\(das)}

for alla € E'.

By Ls(E) we abbreviate the totality of symmetric Lévy measures
on E.

Remarks 3.3.2

3.3.2.1 From the uniqueness of the Fourier transform (Theorem
2.1.4) follows that é(\) is uniquely determined by part (c) of its def-
inition.

3.3.2.2 é(}) is a symmetric measure in M YE) as one concludes
from the facts that e()\) is real-valued and E(N)(E) = e()\) 0)=1.

3.3.2.3 The correspondence A — €()) between the sets Ls(E) and
{e(N) : X € Ls(E)} is one-to-one.

This assertion follows with some more effort as Theorem 3.3.11.
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We will also see later that at this stage

3.3.2.4 there is no need to assume that
/(1 — cos{z, y))A(dz) < oo

or that é(/X)(a) #0 for alla € E'.

3.3.2.5 Let A be a symmetric measure in M®(E) satisfying part (b) of
Definition 3.3.1. Then A € L;(E), and é()) is the Poisson measure
e()\) with exponent A (as defined in 2.4.8).

This observation motivates the extension of Poisson measures to
generalized Poisson measures to be introduced later.

3.3.2.6 For A\, g € L(E) the sum Ay + A9 € LS(E), and

é()\l + )\2) = é()\l) % é()\g) .

In fact, for every a € E’

(E(A1) * (A2))"(a) = exp { /(cos <z,y>-1(\ + Az)(dm)},

hence by the uniqueness of the Fourier transform (Theorem 2.1.4)
the assertion follows.

We now turn our attention to the study of sequences in the set
P(E) of Poisson measures on E.

For A € M°(E) and § € R we introduce the abbreviations
)\I,; = )‘UJ

and
A% = Ayg,
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where Us 1= {z € E : ||z|| < 6}. Clearly, A|s + A\|* = \. Moreover, let
C(A) :={§ e R} : M(0U;s) = 0}.
Evidently C(A)€ is a countable set.

Theorem 3.3.3 Let (A\,),>1 be a sequence in MP(E) such that
(e(An))n>1 is relatively shift compact. Then for every 6 € R the
sequence (An|®)n>1 48 Ty -relatively compact.

Proof. 1. For § > 0 we have that \,|s + /\n|‘5 = A,, hence that
e(An|®) < e(M\,). But then Property 2.2.16.5 yields that (e(An]?))n>1
is relatively shift compact. As a consequence we may assume without
loss of generality that A,(Us) = 0, hence that A,|® = A, for all
n € N. Moreover, by Theorem 2.2.25 (|e(A,)|?)n>1 is Ty-relatively
compact, and from Property 2.4.10.6 we obtam le(An)2 = eDn+A7)
whenever n € N. Therefore, in view of Theorem 2.2.22 we may
assume without loss of generality that A, is symmetric for all n € N.

2. We show that d := sup,,> || M| < o0
Suppose that d = oo. By an eventual choice of an appropriate

subsequence we may assume without loss of generality that ||A,| > n
for all n € N and that

e(\n) == p€ MY(E)

(See part 1. of this proof). For every n € N we now consider the
measure o, := ”T”)\ which is symmetric and satisfies no,, < A, as
well as 0,(Us) = 0. Moreover, we have that e(o,)” < e(\,) for all
n € N. Applying Property 2.2.16.5 and Theorem 2.2.19 yields the
Tw-Telative compactness of (e(o,))n>1. Let v be an accumulation
point of (e(oy))n>1. From

e(o,)™ < e(An)
for all n > m follows that v™ < u for all m € N and hence that
(V™) m>1 18 Ty-relatively compact. We now infer from Lemma 2.2.1

that v = g and thus that

e(on) = £.
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Since 0 ¢ 9(Uf), Ug is an go-continuity set, and the desired contra-
diction follows from the inequalities

0 =eo(Us) = lim e(0s)(Us)

> 1limsup o, (Us) = l
€ n>1 e

3. Finally, let € > 0. From part 1. of this proof we conclude that
there exists a set K € K(E) such that e(A,)(K°) < e for all n € N.
Now we apply part 2. of this proof in order to arrive at the estimate

A (K°) < elrnlle(n,)(K°) < ede

valid for all n € N. But then (X\,)n>1 is a 7-relatively compact
sequence by Prohorov’s theorem 1.3.7. [ |

Theorem 3.3.4 Let (A,)n>1 be a sequence in MP(E) such that
(e(An))n>1 is relatively shift compact. For everyn € N let

fula) = /U (2, 0)* Ma(da)

whenever a € V1. Then (fyn)n>1 ts relatively compact in C(V7).

Proof. Replacing A, by A, + A, changes f,, by the factor 2. There-
fore we may assume without loss of generality that A, is symmetric
and that (e(An))n>1 is Ty-relatively compact. This can be justified
by referring to Property 2.4.10.6 and Theorem 2.2.25 respectively.
Thus, with the help of Theorem 2.1.8, we obtain that (e(Ap)")n>1 is
relatively compact in C(V;). But now we observe that 1 —cos ¢ > 533
for all t € [—1,1]. It follows that

fala) < -3 / (cos(z, a) — 1)An(dz) = —3Log e(An)"(a)

for all a € E’. Moreover, e(A,)"(a) > 0 for all n € N. Thus the
relative compactness of (e(A,)")n>1 in C(V1) implies that

- A
Tltgfl e(An)(a) >0
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for all a € V5.

In fact, for some subsequence (A, )k>1 of (An)n>1 we have that
e(Mn,) =% pelI(E)

where ji(a) # 0 for all a € E'.

But then sup,,»; |fr(a)] < oo for all a € V. On the other hand we
know that the set {f, : n € N} is equicontinuous in 0 (with respect
to 7(E’, E)).

This is easily deduced from Property 2.1.6.5 together with the fact
that e(A,)*(0) =1 for all n € N.

Finally,
|fn(a')% - fn(b)%l < fula —b)
for all a,b € V; satisfying a — b € V; (and all n € N).
In fact, for such a,b € V;

/U (@, 0) (@, ) An(de) < fula)} fa(®)},
hence

|fn(a)® — fa(b)2|?
< ful@) + fa(b) — 2fn(a)® fu(b)?
2 x z, b)? nldz) — z,a)(zx, nldx
s/Ul<x,a>/\n<d>+/U1< B2An(dz) =2 [ (z,a) (@, b)An(de)

U1

= | ({&,9) — {z,5)* A (dz)
U,

- / (2,0 — b)2An(dz) = fala —b).
U

From the inequality just established we infer that {f, : n € N}
is equicontinuous everywhere on V; (with respect to 7(E’, E)). The
Arzela-Ascoli theorem yields the assertion. [ ]
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Theorem 3.3.5 Let (An)n>1 be a sequence of measures in L(E) N
M®(E) such that A\, T A € Ly(E). Then

E(An) = e(hn) = &(N).

Proof. By Property 2.4.10.4 we have that é(A,) < €(An41) for all
n € N. Since A, < A, the Radon-Nikodym theorem provides a mea-
surable function f, : E — I such that A, = f, - A (n € N). From
An T A we infer that f, T 1g A-a.e.. Now the monotone convergence
theorem applies and we obtain that

lim [ (1 — cos(z,a))A,(dz)

00

= lim [ (1 - cos(z,a))fn(z)\(dx)

- / (1 = cos(z, a)) M(dz),

hence that
lim &(X,)"(a) = &) (a)

n—00

for all a € E’. But every measure é(\,,) is symmetric (n € N). Thus,
by the Ito-Nishio theorem 3.1.10 the assertion follows. [ |

Properties 3.3.6 of symmetric Lévy measures
Let X € Ls(E).

3.3.6.1 For every 6 € R} we have A(U§) < oo.

In fact, A being o-finite there exists a sequence (Ap)p>1 of sym-
metric measures in M%(E) with A, T A. But then Theorem 3.3.5
implies

E(An) =5 E(N),
and hence Theorem 3.3.3 that

AMUE) = sup A\ (U§) = sup(Ae|®)(E) < 0.
n>1 n>1
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3.3.6.2 For every sequence (0, )n>1 in R} with 6, | 0 we have that

B 22 &0

For a proof we note that from Property 3.3.6.1 together with Re-
mark 3.3.2.5 follows that X, := M’ € L,(E) N M%(E) for every
n € N. Evidently A, T X, so that Theorem 3.3.5 yields the assertion.

3.3.6.3

sup {/U (z,a)’X(dz) :a € Vl} <00

In order to see this let (6,),>1 be a sequence in R with &, | 0
and let A\, := A|®* for all n € N. Then )\, € M®(E) for all n € N by
Property 3.3.6.1 and

e(dn) == E(N)

by Property 3.3.6.2. But then by Theorem 3.3.4 there exists an o €
R satisfying

/ (z,0)?An(dz) < o
U1

for all @ € V1, n € N, and since A, T A we obtain that
/ (z,a)*\(dz) <
Uy

(appealing to the proof of Theorem 3.3.5).

3.3.6.4 (See Remark 3.8.2.4)

/ (1 = cos(z, a))A(de) < oo

and ) ;
lim —cos t{z,a) )

t—o00 t2 (d.’I)) =0
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for alla € E'.
For the proof let, given a € E’,

fa(x) = (x,a)zlul (.’E) +2- 1U10(1:)

whenever z € E. From Properties 3.22.6.1 and 3.3.6.3 we infer that
fa s M-integrable. Since 1 — coss < % for all s € R we have that

1—cos t(z,a)

2 < falz)

for all x € E, t > 1. The special choice ¢t = 1 yields the first asser-
tion. The remaining one is implied by the limit relation

1- t
lim cos t{z,a)
t— 00 $2

=0

valid for all z € F with the help of Lebesgue’s dominated convergence
theorem.

Theorem 3.3.7 (Characterization of symmetric Lévy measures).

Let ) be a symmetric measure in M (E) with A({0}) = 0. Then
the following statements are equivalent:

(i) A € Ly(E).

(i3) For each § € R we have that M(U§) < oo, and for some (each)
sequence (8,)n>1 in R with 8, | O the sequence (8(A|°"))n>1
is Ty -relatively compact.

(iii) There exists a sequence (Ap)n>1 of symmetric measures in
MY(E) with A, T A such that the sequence (€(Ap))n>1 45 Tw-
relatively compact.

Proof. (i) = (4¢) follows directly from Properties 3.3.6.1 and 3.3.6.2.

(i) = (i41). The choice A, := X|*» for all n € N yields the implica-
tion.
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(444) = (i). The defining properties (a) and (b) of Definition 3.3.1 of
a symmetric Lévy measure are part of the assumptions. From A, T A
we obtain that for all a € E’

lim / (1 = cos(z, a))An (dz) = / (1 = cos(z, a)) A(dx)

n—oo

(See the proof of Theorem 3.3.5). Then Properties 3.3.6.1 and 3.3.6.4
imply that

lim &(0)"(a) = exp { / (cos(z, a) — 1)/\(dx)}

for all @ € E’. From the continuity theorem follows property (c) of
the definition 3.3.1 and hence (7). [ |

Corollary 3.3.8 Suppose that A € L,(E).

(i) Let o be a symmetric measure on E with 0 < A\. Then o €
Ls(E), and
é(a) < e(N).

(ii) E\) € I(E).

Moreover, é(\) is (continuously) embeddable (¢ EM(E)) with
(continuous) embedding convolution semigroup (€(A)¢)e>0, where

for allt € R.

Proof. (i). Obviously the measure o belongs to M?(E) and fulfills
properties (a) and (b) of the Lévy measure. For every § € R} we
deduce from Property 3.3.6.1 that o(Uf) < A({U§) < oo. Now let
(8n)n>1 be a sequence in R} with &, | 0. Then for every n € N we
obtain that

&a]’) x (A = 0)[°") = &(A|)
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holds and that &(o|%) is symmetric. (See Properties 2.4.10.2 and
2.4.10.5 and observe that 0 < A — o < A). From Property 3.3.6.2
and Theorem 2.2.21 we infer that the sequence (e(0|%*))n>1 IS Tu-
relatively compact. Thus Theorem 3.3.7 implies the assertion.

(#). In view of Remark 3.3.2.6 and (i) of this corollary we have
th € Ly,(F) and

E(sA) x 8(tN) = &((s + £)A)

for all s,t € Ry. This shows that é&(A\) € I(F). The remaining part
of the statement follows from

Log é(A\)"(a) = /(cos(x,a) — 1)A\(dz)

valid for all a € E’ and from the embedding theorem 2.3.9 (Here we
rely on Properties 2.1.6.4, 3.3.6.4 and on Theorem 2.1.10 for detailed
arguments. ).

Definition 3.3.9 For A € L,(E) the measure é(\) € M*(E) intro-
duced in Definition 8.5.1 is called the generalized Poisson mea-
sure with exponent \.

Clearly,
Log é(A\)*(a) = /(cos(z,a) - 1)A(dz)

for every a € E'.

Lemma 3.3.10 Let A\;, A2 € Ls(E) satisfying

/ (1 — cos(z,a))A:(dx) = / (1 = cos{z, a))z(dx)

B B

for all B € B(F) and a € E'. Then A1 = Ag.

Proof. Remark 3.3.2.1 and property (b) of the Lévy measure to-

gether with the fact that U 7 E \ {0} holds enable us to assume
without loss of generality that A\; and A2 belong to M®(E).
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Now we define for every a € E'

ga(z) == Z 2—ml—1-q(1 — oS (<w7;1a>))

m>1

whenever z € E. Clearly g, € C(E), 0 < g, <1, and go(z) = 0
if and only if {(z,a) = 0 (z € E). From Appendix B 5 (Banach,
Hahn) we deduce the existence of a sequence (a;);>1 in E’ with the
property that (z,a;) = 0 for all j € N implies that z = 0. In fact, for
every sequence (Z,)n>1 dense in E there exists a sequence (an)n>1
in E' satisfying |||l = 1 and (z,a,) = ||z, || for all n € N.
Now let 1
hz) = 3 500, @)

Jjz1

for all z € E. Then h € C(E), 0 < h <1, and h(z) = 0 if and only
if x =0 (z € F). By assumption

/hd)q:/ hdAy
B B

for all B € B(E), hence A\1(B) = X(B) for all B € B(E) with
0 € B. Property (b) of a Lévy measure leads to the assertion. n

Theorem 3.3.11 (Injectivity of the generalized Poisson mapping;
see Remark 3.8.2.3).

Let M\, A € LS(E) with é()\l) = é()\g) Then A1 = Aq.
Proof. For each a € E’ let
fa(z) :=1 — cos(z, a)

whenever z € E. By assumption we have that

exp (— / fad/\l) — 50)Ma)

= 5(\)"(a

= )
— exp ( -/ fad)\z),
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hence after an application of Property 3.3.6.4 (of Lévy measures)

that
/mm=/nw2

for all a € E’. We note that
gHoth)  ¢ila=B) — gia(gif 4 o=18) = 2¢i% cos 3
(for a, f € R), hence that

fa+b + fa—b - 2fa = 2003(-aa’>fb

for all a,b € E’. But then
(o 2)@) = [ costa)fy dn

= /cos(.,a)fb dAg
= (fs- 22)"(a)

for all a,b € E’. The uniqueness theorem 2.1.4 yields fj- Al = fp- A2
for all b € E’, and Lemma 3.3.10 completes the proof. [ |

Theorem 3.3.12 Let (An)n>1 be a sequence in Ly(E) such that the
corresponding sequence (E(A,))n>1 of generalized Poisson measures
is Ty-relatively compact in M (E). Then

(i) for everyd € R the sequence (An|®)n>1 is T, -relatively compact
in M%(E),

(it) there exist a subsequence (An, )k>1 0f (An)n>1 and a A € L (E)

such that
Tw
At 22 AP

for all § € C()), and

(iit) the sequence (fn)n>1 defined by

fala) = /U (2, a)2 ), (dz)
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for alla € Vi, n € N, is relatively compact in C(V7).

Proof. (i). From Corollary 3.3.8(i) we infer that &(1,|%) < &(\,)
for all n € N. Consequently, by Theorem 2.2.21 the sequence
(E(Anl®))n>1 is Ty-relatively compact. Property 3.3.6.1 yields that

An|® € MP(E) for all n € N. The desired assertion now follows from
Theorem 3.3.3.

(7). The assumption together with part(¢) of this proof supply us
with a subsequence (An, )k>1 of (An)n>1 satisfying

é(n,) = p€ MY (E)

and
1

Anl? ™ A0 € MY(E)
for all j € N (Here the usual diagonal procedure has been applied).
The set C :=[;5, C (A1) has a countable complement in R’. Let

j,m e N and § € C with § > % and § > . By Corollary 1.2.10 we

obtain that
>\(J‘)|6 — )\(m)|5.

Now let (§;);>1 be a sequence in C with d; | 0 and §; > 3 for all
j € N. We put ‘
A(B) := sup(A\) |’ )(B)
izl

for all B € B(E). Observing that A% = AG+1|% < A\G+) 8541
for all j € N we see that ) is a symmetric measure in M?(E) with
A({0}) = 0. Moreover, for given § € C(A) we choose j € N with
8; < 8. Then § € C(A\9), and from Corollary 1.2.10 we deduce that

1 w ] ; . .
Angl? = (Any7)° T ADP = WD P18 = (N5)° = A7,

where \|® € M®(E). Thus, it remains to show that A € L (E). For
this we first note that by Theorem 2.4.12(4i) we have that

éni¥) == E(N¥)

for all j € N. Next we employ Corollary 3.3.8(7) and Remark 3.3.2.6
in order to obtain

é()‘nk) = é(’\‘nk|5j) * é()‘nk|5j)
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valid for all 4,5 € N. Therefore Corollary 2.2.4 together with the
fact that £(A\|%)"(a) # 0 for all a € E’ (Property 2.4.10.1) yields the
existence of a measure v; € M(E) such that

=y % e(\%)

for all j € N. Now Theorem 2.2.21 implies that the sequence
(e(A|%))j>1 is Ty-relatively compact, since the measures e(A|%)
are symmetric by Property 2.4.10.5. Finally, Theorem 3.3.7 yields
the desired statement.

(z31) is shown in analogy to the proof of Theorem 3.3.4. [ ]

Theorem 3.3.13 (Construction of symmetric Lévy measures).

Let X be a symmetric measure in M?(E) satisfying the following
conditions:

(a) M{0}) = 0.
) J(1L A z)A(de) < oo.
Then X € L,(E).
Proof. 1. Let A € M(E) such that [ ||z]|A(dz) < co. Then
[ alleyas) < [ lirs).

In order to see this we first establish the inequality

/ el (d) < kA(E)! / elA(dz)
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valid for all & € N. The proof runs by induction. While the case
k =1 is clear, we need only treat the step from k to k& + 1. But this
is easily done:

J el 1(d2) = [ [ o+ yix¥aman
< [ [ el @ + [ [ lin-daaay)
= XB) [ lal () + 34(B) [yl
< MEYkME)* 1/||a:||)\ (dz) + \(E /||:c||)\ (dx)

(k+ )\(E /”a:“)\ d).

Finally,
ey = @ 3 2 [ alabao)

k:>0

-ME)Z (kA(E)E- 1/||a:||)\ (dx))
k>1 k!

1
= ") E)k1 Ad
: <,§<k-1)z“ ) )/uxn (do)

Here we note that

[ 1ixo(a) = [ ellataz) = 0.

2. From the assumptions on the symmetric measure A we now deduce
that A € Ly(E). We have A(Uf) < f(1 A ||lz[)M(dz) < co and X =
Al1+Alr. Without loss of generality we assume that AM(Uf) = 0. With
Ap 1= )\|% for all n € N we obtain that Ay = 0 and A, T A. Moreover,

M(E) = XUF) < [ (1A lel)A(dz) < o0
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hence A € M?(E) and A\, — \,,_1 € M*(E) for all n > 2.

Let (X,)n>2 be a sequence of independent E-valued random vari-
ables on a probability space (2,2, P) such that

PXn = G(An - )\n—l) (’I’L Z 2) .

Then

P = K P

j=m

* 6()\_7' - /\j—l)
j=m

=e(Ap — Am—1) 2<m < ).

I

In particular,
Pzn X, = e(Ap) (n>2).

j=2

But

/Mi&WP
= [ zlletn = M- (d)

< / llz||(An — Am—1)(dz) (by part 1. of this proof)

:Lﬂwmm_ﬁcnwwm

1
k) m—1

< /U  lelx).

m—T
Since [, ||z]|A(dz) < oo, Lebesgue’s dominated convergence theo-
rem yields

lim |z||A(dz) = 0.
U_1

m-—00
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Now, the inequality

15y

valid for all 2 < m < n implies that

n

DX

j=m

n

2 X

j=m

> 5]) =0
whatever € > 0. Therefore

i P-
stoch
DX =T X,

Jj=2

dP

n

2%

j=m

lim sup P(

m—0 n>m

where X is an F-valued random variable on (Q,2, P), hence

n
ZXj—d—> (as n — 00).

j=2
It follows that
e(An) -,
and from Theorem 3.3.7 that A € L;(F) with Px = e(}). [ |

Discussion 3.3.14 of assumption (b) of Theorem 3.3.13.
There exist measures A € Ly(E) with

/ (1A [lz[2)Mde) = oo

In fact, let 7 := [0,1], E := C(I) and (Z,)n>1 & sequence in
C(I) defined by z,(0) = ( ) = z,2° ) = z,(1) =
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~1

0, xn(%T") = n~% and extended linearly in between these
arguments. Then |[z,|| = n~# for all n € N. The measure

A=Y n7i(eq, +es,) € MO(E)

n>1

is symmetric and satisfies A({0}) = 0. Moreover,

[ elPex@) = Sntant =2 0 = o0

n>1 n>1

and A(U§) < oo for all 6 € R].

We now consider sequences (§,)n>1 and (£, )n>1 of independent
real-valued random variables on (2,2, P) with

P{n = Pg;t = H(n_%)

for all n € N. Then the E-valued random variables §,z,, and &z,
are independent and have distributions

Pioz, = Perg, = e(n“%exn)(n eN).

In fact, if £ is a real-valued random variable on (Q,A,P) with
P. =II(a)(= e(ae1)) and y € E then

Pfy = e(aay),
since for all a € E’ we have
(Pey)™(a) = / @D P, (dz) = / W0 P ()

- / WA P (df) = / £it3:9) [1( o) (d)
= ()" ({y,a)) = exp(a(e’® — 1)) = e(ae,)"(a).
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Next we obtain that

PYn = anmn—fﬁxn

-3 _3 -
—efnte,) ve(ntes,)

= e(n—%(emn + 8_zn)> (n € N),

where the C(I)-valued random variables Yy, := £,z — &, z,, are in-
dependent (on (2,2, P)). It follows that

n n -_g
Py 1y, = % Py, = % o5 4 (e, +62)))
i=1 =1

cel St ) | = (A TE) = (A,
e<;y (€a, +€ 3)) (M) = ()

where §, := (n +1)"# for all n € N. But now

lén = &l > 1] C [6n > 1JU £, > 1],

hence
Y Pl — &l > 1) <2) P(ln > 1)
n>1 n>1
=2 IOn~#({2,3,..}) <2> n¥ <.
n>1 n>1

Here we use the estimate I1()({2,3,...}) < a? which is obviously
obtained from

O(@)({0,1}) =e (1 +a) 2 (1 —a)(l+a)=1-a
for o € R} . Now the Borel-Cantelli Lemma applies and yields

P(limsup{|é, — &/ > 1]) =0

n—00
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or
P(liminf[l¢, — &, < 1)) =1.

Therefore, for P-almost all w € € there exists an n(w) € N such

that |£,(w) — &, (w)] < 1 whenever n > n(w). This implies that for
n>m > n(w)

> Yiw)
j=m
since [z; # 0] N [zx # 0] = O for § # k. But then

P—a.s.
Sy Py,
i>1

n

Y (65w) - gw))e;

Jj=m

1
<m”s

where Y is a C(I)-valued random variable on (2,2, P), hence
On\ — o T
e(Alr) = sz=1yj — Py.

Theorem 3.3.7 yields that A € Ly(E) with e()\) = Py.
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3.4 The Lévy-Khintchine decomposition

The aim of the subsequent discussion is to establish the canonical
decomposition of infinitely divisible probability measures on & sep-
arable Banach space as convolutions of measures of Poisson type,
Gauss measures and of Dirac measures. The first named measures
will be defined via not necessarily symmetric Lévy measures. For
symmetric Lévy measures the canonical decomposition can be de-
rived from the material of the previous section. In the nonsymmetric
case the proof depends on an additional technique: the centralization
of generalized Poisson measures.

For any measure A € MP®(E) we consider the Bochner integral
z(\) € E given by

z(A) == — /x A(dz).

U

Theorem 3.4.1 Let (\,)n>1 be a sequence in M®(E) such that the
sequence (e{An))n>1 15 relatively shift compact. Then the sequence
(e(An) * €g(rn) )21 18 Tw-Telatively compact.

Proof. Applying Theorem 3.3.3 it suffices to show that the sequence
(e(An|!) * €x(an))n>1 I8 Ty-relatively compact. We therefore may as-
sume without loss of generality that A, (Uf) = 0 for all n > 1. From
the inequalities

|1 — (e(An)*€z(rn)) " (a)]
1 —exp (/(e“x’“) -1~ i(:c,a))/\n(dz))‘
U,

< exp (%/(x,a)z)\n(dx)) -1

U

valid for all a € V; we deduce that the sequence ((e(An)*€z(x,)) " )n>1
is equicontinuous in C(Vj). Theorem 3.3.4 together with Theorem
2.2.12 yield the assertion. |
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Definition 3.4.2 For any (bounded) measure A € M®(E) the mea-
sure

es(A) = e(X) * eg(n)
is called the exponential of .
Introducing the kernel K by

K(z,a) == e® — 1 —i(z,a)1y, (z)

for all x € E,a € E' we observe that

ea(V)"(a) = exp ( / K(z,a)A(da))
E

whenever a € E'.

Clearly, es(X) € I(E) and es(X) = e()) provided X is symmetric.
In this case £(\) = 0.

Comparing the Fourier transform of the exponential egs()) of A
with that of the Poisson measure e(A) with exponent A the desired
generalization to nonsymmetric measures A relies on a systematic
replacement of the kernel (x,a) — cos(z,a) — 1 by the kernel K.

Theorem 3.4.3 Let (A,)n>1 be a Ty -relatively compact sequence in
MP®(E). Then for any § > 0 the sequence (Tn)n>1 defined by

T, =20 = /x An(dz)
Us

for all n € N is relatively compact in E.

Proof. From Prohorov’s theorem 1.3.7 we infer that for £ > 0 there
exists a compact, convex and balanced set K C FE such that

€
C —_—
A (K€) < 3
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for all n € N. But this implies that

“ / x An(d:c)“ <eg

USnKe

for all n € N. Thus it remains to show that the sequence (yn)n>1
defined by

Yo = / % An(da)

USnK

for all n € N admits a finite e-net. In fact, if this statement has been
established, the sequence (z,)n>1 admits a finite 2e-net, and this
being true for every € > 0 yields the assertion.

In order to finish the proof we just consider an a € E’ such that
|{(z,a)| <1 for all z € K. We obtain that

H(yn,a)] < M (K) < A (E) < d:= sup An(E),

hence by an application of the bipolar theorem that y,, € dK for all
n € N. But this implies that (y,)y>1 is relatively compact. |

Corollary 3.4.4 Let (A\,)n>1 be a sequence in MY(E) such that
An =5 A,

Then for every 6 € C(\) we have

Ty = /x An(dz) — /m A(dz)
Us

Us

as mn — OQ0.

Proof. From the theorem we know that (z,),>1 being relatively
compact admits a subsequence (z,/) such that

<xn’7a’> - <y)a’>
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for y € £ whenever a € E’. On the other hand Theorem 1.2.9 implies
that

<:L'n’)a’> - <$’a> /\(dCE)
/

for all a € E’. Since the limits of ((z,/,a)) coincide for all subse-
quences of (z,)n>1, the assertion has been proved. [ ]

Facts 3.4.5 of exponentials of bounded measures

3.4.5.1 For (A\p)n>1 in MY(E) the sequence (es(An))n>1 is relatively
shift compact if and only if it is T, -relatively compact, and both prop-
erties are equivalent to the relative shift compactness of the sequence

(e(An))n>1-
This fact follows directly from Theorem 3.4.1.

3.4.5.2 For (\y)n>1 in MY(E) with A, =% X and 1 € C()\), we
have

es(Mn) =% es(N).

This statement is a restricted version of the 7,-continuity of the
mapping A — e,()) from M%(E) into M!(G) the restriction being
crucial.

As for the proof of Fact 3.4.5.2 we just observe that

es()\n) = e()‘n) *Ex(Ay)s

where

mayz—/sz@

U,

for all » > 1, and apply Theorem 2.4.12(7i) together with Corollary
3.4.4.

Theorem 3.4.6 For any sequence (\,)n>1 in MY(E) with A, %
the following statements are equivalent:

(i) es(An) = (in M'(E)).
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(ii) z(A,) — (in E) (as n — 00).
Moreover, if either of these statements is available, we have that
es(Mn) T e5(A) ¥ e,

where
z= lim z(\,) — z(A)

= /m A(dz) — lim /:c An(dz)
U1 Ul

= lim lim / z An(da).
U,sﬂUf

Clearly, if 1 € C()) then z = 0.
Proof. For every n > 1 we have that

es(Mn) = e(An) x €500, -
Now we apply Theorem 2.4.12(4) together with Corollary 2.2.4 in

order to obtain the equivalence (i) <= (ii). As to the remaining
statements of the theorem we suppose that

€s ()‘n) T, 2

for some p € M1(E). But then lim z()\,) exists, and

n—00

p= lim (e(An) * £20,))

=e(A) * € lim z(2,)

= €s(A) ¥ € lim z(An)—z(N)-
The double limit representation of z = lim z(A,) — z(A\) follows

n—00

from Corollary 3.4.4. [ |
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Definition 3.4.7 A measure A € M?(E) is called a Lévy measure
if A+ X" is a symmetric Lévy measure (in the sense of Definition
3.3.1).

The totality of Lévy measures will be abbreviated by L(E).

The following

Properties 3.4.8 of a Lévy measure A are proved similarly to those
for a symmetric one (See 3.5.6)

3.4.8.1 A({0}) = 0.
3.4.8.2 For each ¢ > 0 we have that \U§) < oo.

3.4.8.3 For (8,)n>1 in RY the sequence (e(An|®))n>1 is relatively
shift compact.

3.4.8.4 sup {fm {(x,a)’\(dz) :a € Vl} < 00.

3.4.8.5 For (6,)n>1 in R with 6, | 0 the sequence (e(A|°*))n> is
Tw-Telatively compact.

3.4.8.6 If o € M7(FE) satisfies 0 < A, then o is also a Lévy measure.

The only properties deserving additional arguments are 3.4.8.3
and 3.4.8.5. For 3.4.8.3 we note that by Theorem 3.3.7 the sequence
(e(X + A7)[*))n>1 is Ty-relatively compact. But since

e(A’) < e((A+ 7))

for all n > 1, the sequence (e(A|%"))n>1 is relatively shift compact.
Property 3.4.8.5 is a direct consequence of Fact 3.4.5.1.

Theorem 3.3.7 can be extended to nonsymmetric Lévy measures.
Theorem 3.4.9 (Characterization of Lévy measures)

For any A € M°(E) satisfying A({0}) = 0 the following statements
are equivalent:
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(i) X € L(E).
(%) (a) For each a € E’

/|K(m,a)|)\(d:v) < 00,

and

(b) there exists a measure é5(\) € M1(E) such that

é:(\)\)(a) = exp (/K(z,a))\(dm))

for alla € F'.

(#31) There exists a sequence (\,)n>1 in MP(E) with A, T X such that
(es(M))n>1 is Ty -relatively compact.

(iv) For each § >0
(a) MU§) < 00, and

(b) for some (each) sequence (8p)n>1 with 8, | O the sequence
(es(Al°))n>1 is Ty-Telatively compact.

Proof. As the implication (i) = (iv) follows with the help of The-
orem 3.3.3, (i) = (itt) is trivial, and (i) = (%) is deduced from
Properties 3.3.6 (as in the proof of Theorem 3.3.7) by adapting the
arguments to the measures e;(\) and the kernel K; it remains to show
implication (i7) = (). For completeness we prove the full equivalence
(i) & (ii).

(1) = (it). Let A € L(E). From Properties 3.4.8.2 and 3.4.8.4 we
conclude that

/{K(w,a)M(dm) < 00

for all @ € E’, since |K(z,a)| < 3(z,a)? for all z € E satisfying
llz|| < 1. Moreover, choosing a sequence (8,)n>1 in R} with 6, | 0

and putting A, := ), := A% for all n > 1 we obtain that

limy, o, / K(2,0)(dz) = / K(z,a))(dz)
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for each a € E’. Now Property 3.4.8.5 can be employed in order to

establish the 7,,-convergence of the sequence (es(\,))n>1 towards a
measure €;(A) € M!(FE) such that

—

&N (@) = exp( / K(z,a)\(dz))
forall a € E’.

(it) = (i). Let A € M°(E) with A({0}) = 0 satisfy the conditions (a)
and (b) of (i5). Along with X also A\~ satisfies (i1), hence the function

a exp (/(cos(a:, a) = (A +A")(dz))

on E’ is the Fourier transform of the measure é5(\) x é;(A7) €
M (E). This proves (i). |

Definition 3.4.10 The measure é5(\) € M*(E) introduced in (ii)
of Theorem 3.4.9 is called the generalized exponential of the
Lévy measure .

Clearly, és(\) = é(\) whenever X € L(E).

Properties 3.4.11 of the generalized exponential mapping

3.4.11.1 The mapping és from L(E) into MY(E) is an involutive
semigroup homomorphism, i.e.

(a) L(E) + L(E) C L(E), and
Es(A1 + X2) = &(A1) * E5(A2)
whenever A1, Ag € L(E).
(b) L(E)~ C L(E), and

és(A\7) =¢es(\)”
whenever X € L(E).
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3.4.11.2 ¢,(L(E)) C EM(E), i.e. for every A € L(E) the generalized
exponential €5(A) of A is (continuously) embeddable with (continuous)
embedding semigroup (€5(A\)¢)e>1 given by

€s(N)t := E5(tA)
for all t € R.
3.4.11.3 For any A1, A2 € L(E) with A\; < Ay we have
€s(A1) < &s(Xe).
3.4.11.4 Let (An)n>1 be a sequence in MP(E) with M\, T M. Then
E0(n) = es(hn) T &),

3.4.11.5 For any sequence (Ap)n>1 in L(E) the sequence (€s(An))n>1
18 T-relatively compact provided it is relatively shift compact.

3.4.11.6 For any sequence (Ap)n>1 in L(E) such that (€(An))n>1
is relatively shift compact the sequence ()\nl‘s)nzl 1§ Ty-relatively
compact whenever § > 0.

While Properties 3.4.11.1 to 3.4.11.4 are obvious (in particular
with respect to their analogs in the symmetric case), we need only
note that Property 3.4.11.6 follows from Theorem 3.3.3 together with
Property 2.2.16.5 and that Property 3.4.11.5 is a consequence of
Theorem 3.3.4 in whose proof the boundedness of the Lévy measures
has not been used.

After all these preparations we are ready to approach the Lévy-
Khintchine decomposition. We start with the uniqueness of the de-
composition whose proof relies on a modification of Lemma 3.3.10
and Theorem 3.3.11.

Given A € L(E) and a € E’ we introduce the measure A* by

A(B) = /(1 — cos(z, a))\(dz)
B
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for all B € B(F). From Properties 3.4.8.2 and 3.4.8.4 we infer that
A® € MY(E).

Lemma 3.4.12 Let A\, A2 € L(E) satisfying A} = A§ foralla € E'.
Then A; = Ag.

Proof. The assumption yields the equality

()\1,6)“ = (Azla)a
for each 6 > 0 which, once

Arl® = Xgf°

has been shown, implies that A; = A,. It suffices therefore to perform
the proof of the assertion for A1, g € L(E)NMP®(E). But in this case
the proof of Lemma 3.3.10 takes care of the remaining reasoning. W
Theorem 3.4.13 The generalized exponential mapping é; : L(E) —

MY (E) is injective. Moreover, let A1,\s € L(E) and zq € E such
that

84 (A1) = (M) * &5,
Then A1 = A2 and g = 0.

Proof. We modify the arguments applied in the proof of Theorem
3.3.11 in the obvious manner. From the assumption we have that

&, (M)(a) = &,(A)(a)ei =0
for all @ € E’. On the other hand
K(z,a+b) + K(z,a — b) — 2K(z, a) = 2¢¥® (cos(z, b) — 1)

whenever z € FE,a,b € E’. Consequently
exp (2 / €29 (cos(z, b) — I)Al(d:c))
= exp (2 / "= (cos(x, b) — 1)/\2(d1:)),
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hence — —
Xo(a) - N3(a) = imh(a, b)

with k(a,b) € Z for a,b € E’. But since k(a,b) turns out to be 0 for
all b € E' we obtain A\ = )} for all b € E’, which by Lemma 3.4.12
implies that A; = As and clearly 2y = 0. |

Lemma 3.4.14 Let A € L(E). Then

lim t2/K(x,(—tL)}\(da:) =0

t—0
whenever a € E'.
Proof. For each © € Uf we have |K(z,a)| < 2, hence
lim £ / 1K (2, 2)\(dz) < 2lim PAUF) = 0 (a € ).
Ui

As a consequence of this it suffices to study the integral

/ K(z, %)\(da)
U

for a € E'. If x € U; we have

a (z,a)?
K(z, =) <
K@) <
and therefore
z,a)?

2 a {
| <
K (2,2 < 2

forall z € E,a € E' and t > 0. On the other hand
lim t* K (, g) =0
t—0 t
for all z € E and a € E’'. Property 3.4.8.4 enables us to apply the

dominated convergence theorem, and the assertion has been proved.
|
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Theorem 3.4.15 (Uniqueness of the canonical decomposition)
Let 01,02 € G(E), M, 2 € L(E) and z,,z2 € E such that

01 % s(A1) ke, = 02 ¥ E5(A2) * €4, .
Then 01 = 02, \1 = A2 and ©1 = 2.

Proof. By Theorem 2.4.7 there exists for j = 1,2 a mapping gq; :
E' — R, with the property

g;(ta) = t*q;(a)

whenever t € R such that §;(a) = exp(—g;(a)) for all a € E’. From
the assumption we deduce the equality

01(a)és(M1)" (@)éz, (@) = d2(a)Es(A2) " (a)éx, (a)

and by taking logarithms the equality

—qi(a) + /K(x,a)kl (dz) +i(z1,0a)
=~ + [ K(@,0)ha(ds) +i(en,a)

valid for all @ € E’. For given t > 0 we now replace a € E' by ¢
and multiply both sides of the above equality by ¢2. Taking limits for
t — 0 the limit relationship of Lemma 3.4.14 implies ¢, (a) = g2(a),
hence 91 (a) = g2(a) for all a € E’ and therefore by the uniqueness of
the Fourier transform that g; = g2. Finally Theorem 3.4.13 implies
that A\ = Xy and z; = z5. [ |

Remark 3.4.16 If €,(A\) x5, € G(E) for some A € L(E) and
29 € E, then A =0 and z¢ = 0.

Theorem 3.4.17 Let (A,)n>1 be a sequence in L(E) with

&s(\n) 2% pe MY(E).
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Moreover, let for every § € R} there exists an n(d) € N such that
A (U§) =0 for all n > n(8). Then

(i) p € G(E).
(1) pa) = exp(—3 limp_,00 f(x,a)?Ap(dz))
whenever a € E'.

Proof. From Theorem 3.3.12 (%ii) (obviously valid also for nonsym-
metric Lévy measures) we infer that

a—sup{/xa n(dz) aeVl,nEN}

For all @ € E' and n > n(§) we therefore obtain that
f (@, ) [*An(da) = / (@, ) *An(dz) < o 6 [lalf®.
E Us

This shows that
lim. / (2, a)PAn(dz) = 0 (1)
E

whenever a € E’. Along with K we now consider the kernel M
defined by

- (@0’

for all z € F,a € E’. It follows from the Taylor expansion of the
exponential function that (1) implies

M(z,a) := K(z,a) +

lim /M(x,a))\n(dx) =0

n—oo

for all @ € E’. Now we employ Theorems 2.3.7, 2.3.3 and Corollary
2.1.16 in order to obtain that

Log jfa) = lim /K(z,a))\n(dm)

hm {/M(a: a)A,(dz) — —/(az a da:)
= Jim (- 3 [0 @)
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whenever a € E’. The mapping q : E' — R defined by

— lim [ (z,a)*\,(dz)
'n.—->oo

for all a € E’ obviously has the property that
Y

q(ta) = t*q(a)

valid for all a € E’,t € R. Consequently by Theorem 2.4.7 4 € G(E).
|

Theorem 3.4.18 Let (A, )n>1 be a sequence in L(E) satisfying
Es(An) = ue MYE).

Then there erist measures A € L(E),p € G(E) and an element
z € E such that

p==¢es(A)*p*e,.
In particular,
(i) for every § € C()\) we have that

Anl® I NS,

(i2) —2 Log ¢(a) = hm lim sup / (z,a)? X\, (dx)

n—oo

= lim lim inf / (z,a)*\, (dx)

§l0 n—oo
Us

holds for all a € E', and
(#ii) z admits a representation

n—00
UlﬂUg UlﬂUg

z= / z A(dz) — lim / T Ap(dz)
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for 6 € C(A) N0, 1] which also equals

lim lim z Ap(dz).
810 n—oo
seC(N) Ushue
1

As a supplement we note that z =0 if 1 € C()).

Proof. 1. (Construction of A). From the assumption we conclude
that the sequence (€;(A,))n>1 is Ty-relatively compact, hence by
Property 3.4.11.6 also (A, |®),>1 is T-relatively compact (in M®(E)).
Next we show that there exist a subsequence (An/|°) of (An|®),>1 and
a measure A € M?(E) satisfying A\({0}) = 0 and

An’ |6 l"l.) )\|6

for each § € C()). But then Theorem 3.4.3 implies that (z(An|*))n>1
whenever § € C(A) N ]0,1[, and we may assume without loss of
generality that

-T(/\n'|5) — Z5

for some x5 € E. From Theorem 3.4.6 we now deduce that
38()‘71’16) 2 38(A|6) *Ezs)
where

Z§ =5 — .’L‘(}\|5)

=n;§rloo( / z A(dz) — / x)\n'(dm)>~

UlﬁUg U]ﬂUg

In view of Corollary 3.4.4 zs is independent of § and hence can be
named z. We obtain

63()‘11’|6) — 66()‘]6) * €z
whenever § € C'(A) N]0,1[. Since

GS(An’lé)*eS()‘n’b) o 1y
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there exists a measure g\ € M!(E) satisfying
Tw
es(/\n',(s) — 84,
and from Corollary 2.2.4 we infer that
_ s
p=es(Al°) % g5 x £,

as long as § € C(A) N ]0,1{. For any sequence (J;);>1 in C(A) with
8; | 0 the sequence (es(A|%));>1 is relatively shift compact by The-
orem 2.2.7, hence 7,,-relatively compact by Property 3.4.11.5, and
by the characterization theorem 3.4.9 we obtain that A € L(E) and
that

e (A7) T2 &,(3)

as j — oo. Applying Corollary 2.2.4 once more we achieve the 7,,-
convergence of the sequence (g;);>1 towards a measure o € M1(E)
and the representation

p==€(N)*xgxe,.

In fact, since
, Tw
€Eg (>\nJ '6] ) > 0

as j — oo for a suitable subsequence (A,,|%) we deduce from The-
orem 3.4.17 that ¢ € G(F) and hence the desired representation of
e
Now we show the remaining statements of the theorem.

(i). For an arbitrarily chosen § € C()) there exists a subsequence
(Ani)k>1 of (An)n>1 such that

Al 5 A5 € MY(E)

as k — oo. From Property 3.4.11.6 we infer that ()\n|5)n21 IS Top-
relatively compact. Now we proceed in analogy to part 1 of this
proof with (e An, Jk>1 in place of (e5(An))n>1 and achieve the rep-
resentation

po=s (A % oW xe .
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But then the uniqueness theorem 3.4.15 implies that A(Y) = X, and
again considering subsequences we obtain that As = \|® as the umque
accumulation point of the 7,,-relatively compact sequence (A |’ In>1.
(41). The proof runs in analogy to that of (7). We fix 6 € C()\) N ]0, 1],
observe that by Theorem 3.4.3 the sequence (z(An|%) — £(A%))p>1 is
relatively compact in E, and passing to suitable subsequences to-
gether with an application of the uniqueness theorem 3.4.15 yields

p==E€s(A)xpxe,

with
= lim z(\|%) — z()\]%)
n—oo

as asserted.
(). For each § € C'(A) N]0,1[ we have the limit relationships

Al T A

and
z(Anl®) — z+3(N)%).

Hence we apply Theorem 3.4.6 and obtain
es(Mnl®) = es(AP) xes,
consequently with the help of Corollary 2.2.4
es(Mal’) = o5,

where ps has been introduced in part 1. of this proof. Then Corollary
2.1.16 yields

Log gs(a) = lingo/K(x,a)/\n(dx)

for all @ € E'. Given § > 0 and a € E’ we choose a subsequence
(Ani )k>1 of (An)n>1 such that

k—00

Us Us

lim [ (z,a)?\n, (dz) = limsup / (z,a)2 M (d2) .
n—o0
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Clearly,
i 1
r(8,a) = klm;o/ (K(m,a) + a(w,a)))\nk (dz)
Us

is a well-defined element of C. But then

Log 65(a) = r(5,a) % Jim sup / (z,a)2 A (de)

n—oo

Us

Moreover, employing Theorem 3.3.4 a Taylor expansion argument
yields the estimate
|r(8,a)| < c(a)d

with a constant c(a) > 0, for all sufficiently small § > 0. Taking a
sequence (0;);>1 in C'(X\) with 6; > 0 and §; | 0 we obtain

Log §(a) = lim Log ds,(a)

__1 lim limsup / (z,a)2 M, (d2).
2.7_'00 n—oo .
8

But obviously the function

d— limsup/(m,a)z)\n(dx)

n—oo
Us

is increasing, thus (d;);>1 can be chosen in R arbitrarily, and the
first equality in (%) has been established. The second one is proved
similarly. |

In the special case of bounded Lévy measures the preceding theo-
rem can be improved slightly.

Theorem 3.4.19 Let (A)n>1 be a sequence in L(E) N M®(E) such
that
e(An) =% pe MYE).
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Then there exist uniquely A € L(E), ¢ € G(E) and z¢ € E satisfying
p==Es(A) *0 * €5, .

Moreover, X and o admit the representations given in Theorem
3.4.18, and

zo= lim lim [ z A,(dx).
611 n—00
s€C(XN) Us

Proof. Since
T
es(/\n) *E z(An) T M

the sequences (e;(An))n>1 and (z(Ay,)) are 7,-relatively compact and
relatively compact respectively. Indeed, one just applies Theorem
2.2.3 and Fact 3.4.5.1. Let (A,/) be a subsequence of (A,) such that

es(An) =% ve MYE).
Then Theorem 3.4.6 implies that
z(A) — 20 € E,

and one obtains the equality 4 = v * £_,,. On the other hand we
infer from Theorem 3.4.18 that

IJ' = éS(A) * Q *5z——zo,
where X € L(E) with

AP =1y — lm Apef®

for 6 € C(\) and

zw= lim (A |®) — (M%)

n

for 6 € C(A\) N10,1[. By Theorem 3.3.3 the sequence (Ap]®)n>1 i8 To-
relatively compact, thus by the uniqueness theorem 3.4.15 we have

YW LN
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as n — 00 ((3) of Theorem 3.4.18).

Moreover, the sequence (z(A|®))n>1 is relatively compact by The-
orem 3.4.3, hence the sequence (z(A,|®) — 2(As))n>1 has the same
property. Again applying the uniqueness theorem 3.4.15 we obtain

Zo:=Z—20

= lim (5(\l?) - 2()) — 2(A)

whenever § € C(A) N ]0,1[. An application of Corollary 3.4.4 pro-
vides us with the limit representation of z¢ ( (%) of Theorem 3.4.18).

Finally we prove the representation of — Log ¢ ((ii) of Theo-
rem 3.4.18). Let § € C(A\) N ]0,1[. By assumption

e(Mnl®) * e(Mnls) = w.
But Theorem 2.4.12(ii) implies that
eQnl’) =5 e(A?),

thus
e(Anls) 2oy ys € MI(E)

and
j=vs xe(Al°)

(by Corollary 2.2.4). From

2(Anls) = z(Aa) — z(Al’)
we conclude that

2(Aals) — ~z0 —z(A’)

hence that
es(Anld) T, Vs * & _go—z(A|5)-
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Now Theorems 3.4.18 and 3.4.15 applied to (es(An|s))n>1 instead of
(es(An))n>1 yield the equality
Vs ¥ E_py—z(A]5) = 68()"5) * 0,

hence the assertion. [ ]

Theorem 3.4.20 (Lévy-Khintchine decomposition of infinitely di-
visible measures)

Let y € I(E) with the sequence (11 )n>1 of its n-th roots. Then

there exist measures A € L(E), p € G(E) and an element zg of E
such that
p==Es(A) xpxey, .

Moreover, A,p and zo are uniquely determined and obtained as
follows:

(4) (np )l = A
for all § € C(N).

(i1) —2 Log §(a) = lim limsupn/(m,a)2u;(d:c)
610 n—oo n
Us

= lim lim infn/(x,a)z,u%(dm)

6l0 n—oo

for alla € F'.

(ii1) To = lim nlingonf z p1 (dz).
seC(n) Us

Proof. From the uniqueness of the roots g1 of u (Theorem 2.3.5)
we infer that for every n € N the measure

A =n(py = p2({0})eo)
belongs to L(E). But Property 2.4.10.2 tells us that

es(nu1) = es(An) * e5(np1 ({0})eo) = €5(An)
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for all n € N, and Theorem 2.4.11 implies that

es(An) —2 4.

In view of
A = (n/i;ll-)|6,
[@aadn) =n [ @0y @)
Us Us
and
/x Ao (d) = n/m 1 (d2)
Us Us
valid for all @ € E’,§ € R} (n € N) Theorem 3.4.19 implies the
assertion. n

Remark 3.4.21 In short Theorem 3.4.20 says that any p € I(E)
admits a Lévy-Khintchine representation of the form

i(a) = exp {i(mg,a)—%(Ra,a)+ / (e“”'y)—l—i(:c,a)lyl (:v))/\(dm)}

valid for all a € E', where o € E, R is a symmetric linear mapping
E’' — E and X a Lévy measure.

One observes that g is symmetric if and only if A is symmetric,
and in this case zg = 0.

On the other hand, if ) satisfies the condition

/ 2|2 A(dz) < oo,
Uy

then the kernel
(z,a) — €459 — 1 —i(z,a)ly,

(formerly abbreviated by K) can be replaced by the classical more
familiar one .
i{z,a)

z,a) — @ 1 - 2
(#:0) Tt ol
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In this case the measure v € I(F) given by

v(a) := exp{ - / (ei(x’“> —-1- %)A(dm)}

for all a € E’ is a translate of &5(\).



4

Harmonic Analysis of Convolution Semigroups

4.1 Convolution of Radon measures

We start with an adaptation of the concept of measure given in
Chapter 1 to locally compact spaces E. Complex Borel measures
i on E are introduced as complex-valued o-additive set functions p
on the Borel-o-algebra B(E) of E having the property that u(B)
is finite for each relatively compact subset B of E. The totality of
complex Borel measures will be abbreviated by Mo(E). Notice that
measures in My 4 (G) may take on the value co. For every u € My(FE)
one introduces the total variation |p| of u by

1l(B) i=sup { 3 |u(Bo)l : 1] < 00, B; € B(E)
i€l
for all i ¢ I, UBizB},
iel
whenever B € B(F). It is shown that |u| € My(E) and, of course,
|pe] > 0. p € My(FE) is said to be regular if for every B € B(E)

14/(B) = sup{Jul(K) : K € K(B), K C B)
= sup{|p|(0) : O € O(E), O > B}.

161
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The symbol M (E) will serve as a short form for the set of all regular
complex Borel measures in E. Finally, for u € My(E) we set

[lll = 1ul(E)

and recognize that the set
M*(E) := {p € M(E) : ||u|l < oo}

of all finite regular (complex Borel) measures in E forms a normed
vector space over C, with (u,v) — p+v and u — au as vector space
operations and || - || as the underlying norm. The following sequence
of implications

MY(E) c MY(E) C ME(E) C M&(E) := M*(E)
starting with the set
MY (E) = {n € M{(E): ||ull = 1)

of probability measures speaks for itself. As for the function spaces
applied in the sequel we have the sequence of implications of vector
spaces

C¢(E) c C°(E) c C*(E) c C(E),

where the corresponding symbols stand for the complex continu-
ous functions on F which have compact support, vanish at infinity,
are bounded and just continuous respectively. While C(E) carries
the topology 7., of compact convergence and C¢(E) the canonical
inductive limit topology, C°(E) and C®(E) are furnished with the
topology of uniform convergence. We note that C¢(E)~ = CO(E).
For any vector space B over C the symbols L?(B) or L (B) will
denote the sets of bounded or positive linear functionals on B re-
spectively.

In the above described extended set-up of measure theory the Riesz
representation theorem takes on a more general form valid beyond
the metric case.
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Theorem 4.1.1 There exists an isometric isomorphism
S and Lu

from M®(E) onto C°(E)* := LY(C°(E)) given by

L) = [ Fu

for all f € COE).

In fact, to every L € L*(C°(E)) there corresponds a unique u €
M?®(FE) satisfying L = L, and

sup{|L(f)| : f € CU(E), If || = 1} = ||l

In particular, (M®(E),|| - ||) is a Banach space over C.

It should be noted that a similar correspondence is available for
the sets L. (C°(E)) and M, (E) instead of L°(C°(E)) and M®(E)
respectively.

This correspondence justifies Bourbaki’s introduction of measures
on locally compact spaces F as continuous linear functionals on
C¢(E). In other words, M(FE) will be interpreted as the topological
dual C¢(E) of C¢(E), and M(E) will appear as the set of Radon
measures on E.

4.1.2 For any v € My (F) and p €]0,00[ one introduces the
Lebesgue space LP(E,v) of p-times v-integrable complex-valued
functions on E and notes that L?(E,v) is a Banach space provided
p > 1, a Hilbert space for p = 2, and that

LP(E,v) = C%(E)~

if v € M (E), i.e. if v is regular. Here the closure of C°(E) is taken
in the p-norm topology of L?(E,v).

For 1 € M®(E) and v € My + (E) the Radon-Nikodym equivalence
is available: p is v-(absolutely) continuous if and only if there exists
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a function f € LY(E,v) such that g = f - v. In particular, L*(E,v)
is isometrically embedded into M®(E), i.e.

lell = 11£1l,
for every u € MY(E) of the form p := f-v with f € L*(E,v).

4.1.3 On M(E) the vague topology 7, is introduced as the topol-
ogy o(C°(E),C¢(E)) for the dual pair (C°(E)’,C¢(FE)) arising from
the normed vector space C°(E). On M?(F) the vague topology can
be compared with the weak topology considered as the topology
o(C*(E),C*(E)) for the dual pair arising from C*(E). In fact, 7, is
finer than 7.

Proposition For any net (ita)aca in M2 (E) and any measure p €
ML (E) the following statements are equivalent:

(i) Tw — Nmg o = .
(“) Ty — liMg g = and lim, “lua“ = “lu’“

Proof. It suffices to show the implication (i) = (i). Let (ii) be
satisfied for a net (ia)aca and a measure y in M2 (E). We take a
function f € C?(F) and fix ¢ > 0. Since y is regular, there exists a set
K € K(E) such that u(K°¢) < e. Now choose a function g € C°(E)
satisfying 0 < h < 1 and h(z) = 1 for all z € K. By assumption we

have
hm/l— Yo = /(1—

<u(K®)<e

ligl/fgdua =/f9du~

Consequently, there exists an oy € A such that for all @ € A with
a > o the inequalities

and

/(1 — g)dpa <€
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‘/fgdua—/fgdu‘ <e

hold. But this implies for all @ € A with a > ag that

‘/fdﬂa_/fdﬂl < ’/fgdua—/fgdu’

+| [ £0- 9dual +| [ 10- 9] <1+ 2011),

and

hence that
Tw —~ Hmp, = . [ |
o

It follows from the Proposition that on M!(E) the topologies 7,
and 7, coincide.

Further topological properties of concern the 7,-metrizability of
M (E) which holds if and only if F admits a countable basis of its
topology, and the 7,-compactness of M'(E) which is equivalent to
the compactness of F.

From now on let E := G be a locally compact Abelian group. For
every a € G the group translation z — z + a can be extended to
functions f on G by

T.f@) = fol@) = f( = a)
for all ¢ € G and to measures z on G by
L) = [ J-ala)u(d)
~ [ (e + au(aa)
for all f € C(G).

Definition 4.1.4 A measure yn € M, (G) is called a Haar measure
on G if p# 0 and if u is translation invariant in the sense that

/J'(Taf) = /L(f)
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for all f € C°(G) and a € G.

Theorem 4.1.5 On any locally compact Abelian group G there exists
a Haar measure.

Proof. 1. Producing the crucial functional.

In the following the space C%(G) is assumed to contain only functions
# 0. For f,p € C$(G) we define

(f : ) :=inf { ch <L ch Y for c1,...,cn € Ry,
Jj=1 j=1

T1,.Zn € G7n Z 1}

and derive the following properties

(D) (f:o)=(Tyf:¢p) forall ye G.

Q) (A+f:e)S(fi:o)+(fa:9)

(3) (cf : ) =c(f : ¢) for any c€ R.

(4) (f1:9) < (f2: ) whenever f1 < f5.

(5) (f ) > {2

(6) (f: @) < (f:9)(¥: ) for any ¥ € CL(G).

In these statements f, f1, fo and ¢ are functions in C§(G).

In order to justify the above assertions it suffices to note that since
the compact support of f can be covered by a finite number N of
translates of the set

[z G o@)> S},

. f
(f¢) <2N |
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and hence (f :¢) is well-defined. While properties (1) to (5) are easily
verified, property (6) follows from the additional observation that for

n
F< Z Cj Pz;
i=1

and
m
9< Y diiy,
k=1

with the obvious meaning of the summands involved,

n m
f< Z_: kz Cj dk Pty

holds.
Now, we fix fo € C$(G) and define
_ 9 v)

whenever f,p € C$(G). From properties (1) to (4) we deduce that
I, is invariant, subaddltlve, homogeneous, and increasing. Moreover,
by property (6) we obtain that

(7) gy < Lo()) < (F < fo).

2. A preparative inequality.
We show that given f1, f2 € C$(G) and € > 0 there exists a V' € 5(0)
such that

I<p(f1) + Iga(fZ) S Iso(fl + f2) +e

whenever supp (¢) C V.

In fact, let g € C¢(G) such that g(z) = 1 for all x € supp (f1 + f2),
and let § > 0. Moreover, let h:= fi + fo+dg and for 1 =1,2

fi

hi =
h
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with the convention that h; = 0 whenever f; = 0. Then h; € C$(G),
hence there exists a V' € 2(0) such that

lhi(z) — hi(y)| < &

for x —~y € V(i = 1,2). Now we take ¢ € C$.(G) with supp (¢) C V.

If "
h < Z Ci Px;
j=1
with the summands as described above, then
fi(z) = h(z)hi(z)
h
<D i@ — zp)hi(a)

i=1

<chgo(:1: z;)(hi(z;) + 6),

since |hi(z) — hi(z;)| < 6 whenever x — x; € supp (). But we have
h1 + hy < 1, hence obtain

(free)+(fa:9) <D es(halms) +6) + D cj(ha(z;) +6)

7=1 j=1
n
<) (1 +26),
G=1

and taking the infimum over all sums of the form }: 1 Cj, properties
(2) and (3) imply that

Io(f1) + Io(f2) < (1 +26)1,(h)
S (A +28)To(f1 + f2) +01,(9))

holds. Finally, property (7) yields

26(f1+ f2: fo) + (1 +26)(g : fo) <e
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once d is chosen sufficiently small, and this proves the assertion.

3. The completion of the proof.

For each f € C$(G) let My denote the interval [(_fol_fj’( f: fo)]
arising from property (7), and put M :=II feCi(G)M #. Clearly, M
is a compact space which by property (7) contains all mappings I,

for ¢ € C$(G). For each N € (0) let ¢(V') denote the closure in M
of the set of those I, for which supp (¢) C V. From

A e ac(mvj)
=1

=1

for neighborhoods V; € 0(0) we conclude that the system of sets
c(V) (V € 2(0)) has the finite intersection property, hence the
compactness of M secures the existence of an element I of M with
I € ¢(V) for all V € B(0) which implies that every neighborhood of
I in M contains mappings I, with arbitrarily small supp (¢). This
means that for any V € 2(0), any € > 0, and all f,..., f, € C5(G)
there exists a ¢ € C$(G) satisfying supp (¢) C V and

((f5) —Lo(f5)l < e

for all j = 1,...,n. From properties (1) to (3) and part 2. of this proof
we deduce that [ is translation invariant, additive and homogeneous.

Now, any f € CS$(G) admits a representation f = g — h with
g,h € C$(G). If, in addition f = ¢’ — b/ with ¢’,h’ € C$(G), then
g+ h =h+g, hence

I(g) + I(K) = I(h) + I(¢),

and
I(f) = 1(g) — 1(g)

yields a well-defined extension of I to a positive linear functional on
C¢(G) which by the Riesz Theorem 4.1.1 is a Haar measure. n
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Theorem 4.1.6 For two Haar measures u and v on G there exists
a constant ¢ € R such that

v=c l.

Proof. Let g € C¢(@) with [ gdu = 1. Then, putting

= [ s(-auaa)

G

we obtain for any f € C°(G) that

[ sdv= [ awntay) [ sawiam)
G G

9(y)u(dy) / f(z 4+ y)v(dz)
G

I

( gy f(z +y)p (dy)) v(dz)

G
( / oy (dw) v(dz)
G

one )/g@—x) (dz)

:c/fdu,
G

hence that v = ¢ p. In the above chain of equalities the Fubini
theorem was applicable since the integrands of the double integrals
belong to C°(G x G). |

Q\ Q\ Q\ Q\ Q

Convention 4.1.7 Since by Theorem 4.1.6 Haar measure is unique
up to a multiplicative constant, one talks about the Haar measure of
G and denotes it by w = wg.
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Properties 4.1.8

4.1.8.1 w is positive on non-empty open subsets of G, i.e.
w(0) >0 for all O € O(G), O # 0.

4.1.8.2 w is inverse invariant, i.e.
w(—B) = w(B) for all B € B(G).

Definition 4.1.9 A pair (u,v) of measures in M(G) is said to be
convolvable if the integral

/ flz+y)pv(d(z,y))
GxG

exists in C for every f € C%(G). In this case the mapping

£ / f(@+ )p® v(dz,y))

GxG

is a continuous linear functional on C°(G), hence a measure in
M(G)(=2 C(G)'); it is called the convolution of p and v and is
denoted by 1t * v.

In the case of convolvability the convolution viewed as a mapping

(1,0) > px v

from M(G) x M(G) into M(G) yields a commutative and associative
operation.

The following result subsuming various useful properties of the
convolution is easily proved.

Theorem 4.1.10 Any pair (u,v) in M®(G) x M®(G) is convolvable,
and together with convolution u* v and norm | - || the space M®(G)
becomes a commutative Banach algebra with €y as (convolution) unit
element. In particular,

[l * vl < lullll [
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whenever p,v € M*(G).

Moreover, the Banach algebra M®(G) is involutive with respect to
the involution u— u~ given by

u™(f) = u(f~)

for all f € C%(Q), where f~ = f* with f*(z) := f(—=z) for allz € G.
Here, the properties defining the involution read as follows

~ A~

Bo=
(p*v)™ =p~ v~ ,and

™1 = ]l
whenever u,v € M®(G).
For measures p,v € M i the support formula

supp (p * v) = (supp (1) + supp (v))~

holds

4.1.11 Applying the convolution to measures of the form p := f-wg
for f € L'(G,wg) one obtains a convolution in L}(G,wg) which for
f,9 € L*(G,wcg) is given by

frgle) = / £(z - v)g(y)we(dy)

whenever z € G.

Clearly, together with this convolution and the norm || - ||; the
space L1(G,wq) becomes a closed ideal of M®(G) and therefore also
a commutative Banach algebra with involution.

M?Y(@) and L'(G,wg) are called the measure algebra and the
group algebra of G respectively.

While M?(G) has a unit €y, L'(G,wg) has a unit only if G is
discrete.
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For functions f, g in an arbitrary Lebesgue space L?(G,wg) (p €
[1,00]) the convolution f * g is introduced by

f (@) = / £z — )o(v)we(dy)
G

provided that
17 - ngwleotan) < oo
Ve,

for all z € G.

Proposition 4.1.12 For each f € LP(G,w¢g) (p € [1,00]) the map-
ping T — f; from G into LP(G,wg) is uniformly continuous.

Proof. Let f € LP(G,wg) and let € > 0. Since C¢(G) is dense in
LP(G,we), there exists a function g € C°(G) such that
3

Let K := supp (g). From the uniform continuity of g we deduce the
existence of a neighborhood V' € U(0) such that

lg - gall < —
T Bwe(K)b
for all z € V. Therefore
€
lg — gzllp < 3

and hence
If = fallo S Uf = gllp +1lg = gallp + gz = Ffellp <€
whenever z € V. Finally we note that f, — f, = (f — fy—x)x, S0 that

I1fz = fullo <€
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whenever y —z € V. |

Proposition 4.1.13 Let Y be a neighborhood system of 0 € G. For
each U € U let Yy be a measurable function on G with compact

support supp (Yy) C U such that hy > 0, ¥}, = Yy and [ Yydwe =
1. Then

I *%u — fll, > 0 as U — {0}
for all f € LP(G,wg), p €[1,00].
The family {¢yy : U € U} is said to be an approzimate identity
in LP(G,wg).
Proof. By Proposition 4.1.12 we choose U € i such that
If = fullp = 0 as U — {0}

whenever y € G. But for each & € LY(G,wq) (where q is conjugate
to p) Fubini’s theorem and Hoélder’s inequality imply

| [ 50 = phwe] <1l [ 17 = Bl @watan)
G G

and therefore

1w — Fllp < / 0 = Fullovu (v)wedy)
U

<swpllf - fyll, >0 U—{0}.  m
yelU
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4.2 Duality of locally compact Abelian groups

Generalizing classical Fourier theory for Euclidean spaces two set-
tings can be chosen in order to establish the appropriate analysis:
locally convex vector spaces E, the structure underlying Chapters
1 to 3, and locally compact Abelian groups G, the structure to re-
main the basis of discussion in the subsequent chapters 4 to 6. The
counterpart of the linear dual of E will be the group of continuous
characters of G.

Definition 4.2.1 Any homomorphism x : G — T 1is called o char-
acter of G.

The set G" of all continuous characters of G forms a group under
addition in the sense that for x,p € G" the sum is given by

(x + p)(z) = x(z)p(z),

the inverse —x of x by

and the neutral element 0 by
0(z) =1

whenever z € G.

In view of the duality between G and G to be discussed at a later
stage, G™ is called the dual of G.

In the sequel we shall show that G* can be furnished with a topol-
ogy that makes it a locally compact group so that G and G” belong
to the same category of objects and consequently G := (G™)” can
be formed.

Theorem 4.2.2 There exists a one-to-one correspondence between
the dual G of G and the space M(L'(G,wg)) of all nonvanishing
multiplicative linear functionals on the group algebra L'(G,wg) of G
given as a mapping

X P Ty
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with
)= [ Ixdog
G
for all f € LY(G,wg).
Proof. 1. The mapping f ~— 7,(f) is obviously linear. Moreover it

is multiplicative, as follows from the following sequence of equalities
valid for all f,g € L}(G,wg) and x € G :

ndfx9) = [(f +P@X@ we(ds)
/ ) we(dz) / £2(2)g() we (dy)
- / 9)X@) weldy) / £y @)x(—2 + y) we(dz)

= 73 (f)7x(9)-

The nonvanishing of the mapping f +— 7,(f) follows from 7, (f) # 0
for some f € Ll(G wg), since |x(z)| = 1 for all z € G. One concludes
that ,, € M(L'(G,wg))

2. Now, let 7 € M(L'(G,wg)). Since L}(G,wg) = L*®(G,wg)* and

7 is a bounded linear functional with ||7|| = 1, there exists a function
@ € L*°(G,w¢) with ||| = 1 such that

T(f)=G/f<P dwg

for all f € LY(G,wg). For f,g € L'(G,wg) we have
/ (Fge doa = 7(f)()
=T(f*g)=/(f*g)<p dwe

=/9dwc/fy (z)wg(dx)

- / 9 (fy)wa(dy),
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consequently

T(fely) = 7(fy) D

for wg-a.a. y € G. It follows from Proposition 4.1.12 that the conti-
nuity of 7 implies the continuity of y — 7(f,) for each f € LY(G,wg).
Choosing f € L}(G,w¢) such that 7(f) # 0 we deduce from (1) that
@ i8 wg-a.e. continuous. Hence ¢ can be assumed to be continuous,
and (1) holds for all y € G.

Now we replace y by x + y and then f by f, in (1) in order to

obtain
T(fle(z +y) = T(fac+y) =7((fa)y)
= 7(fa)e(y) = 7(fle(z)e(y)

and consequently
oz +y) = o(z)e(y)

for all z,y € G. In particular, ¢* = ¢~ . Since |¢| < 1 it follows that
|| =1, hence that ¢ € G" and so 7 = 7,,.

3. As for the uniqueness of ¢ we just note that

% (f) = 75(f)

for x,p € G" and all f € L'(G,w¢) implies that

x(x) = p(z)

for wg-a.a. x € G, but since Y, p are continuous functions, even for
all zx € G. [ |

4.2.3 For every f € L}(G,we) the function f = F(f) defined by

f(X) = 71y (f)

for all x € G” is said to be the Fourier transform of f.

In terms of Gelfand’s theory as described in Appendix C 8 fis
the Gelfand transform of f and f — f the Gelfand mapping F
on LY(G,we). The space M(L}(G,w¢)) identified by Theorem 4.2.2
with the dual G of G can be interpreted as the Gelfand space
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A(LY(G,wg)) of LYG,wg). Since A(LY(G,wg)) is a locally com-
pact space with respect to the weak topology induced by the set

A(GMN) = LYG,we)”,

G”" is also a locally compact space. This topology Tg, sometimes
named the Gelfand topology on G”, admits a neighborhood system
of xo € G” of the form

Vfl,...,fn;E(XO) = {X € GA : lﬁ(X) - .?'L(Xo)l <e forall i= 1,...,TL},

where f1, ..., fn € L}Y(G,wg) and € > 0.

From the Gelfand theory we obtain the following essential
Properties of F.

4.2.3.1 A(GM) is a selfadjoint subalgebra of C°(G™) which separates
G/, hence

A(GN)™ = C%GM).
4.2.3.2 F is a norm-decreasing involutive homomorphism of the

group algebra L'(G,wg) into CO(GM).

Theorem 4.2.4 The dual G" of a locally compact group G is again
a locally compact group.

Proof. Since we already know that G” is an Abelian group and
a locally compact space with respect to the Gelfand topology T, it
remains to show that the mapping

(x.;p)—x—p

from G" x G” into G" is continuous.
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1. We prove that the mapping

(z,x) = x(z)

from G x G into C is continuous.
First of all we note that for every f € L(G,wg) and z € G

F200) = fo0x(z)

holds whenever x € G”. Thus it suffices to show that

(z, %) = falx)

is continuous on G x G" for every f € L*(G,w¢g). So, take zo €
G,x0 € G" and £ > 0. There are neighborhoods V € Ug(zq) and
W € Den(xo) such that

| fz — fmonl <¢g

as well as e e
Ifﬂco(X) - faco(XO)l <eg

whenever z € V, x € W. This follows from Proposition 4.1.12 and
from the continuity of f,, respectively. But since

|Fzo (%) = Foo GO! < e = Foolls

we obtain R N
|fz(X) - fxo(XO)l < 2¢

whenever x € V and x € W, hence the assertion.

In the following two parts of the proof we shall employ the compact
open topology 7., in G".

2. For compact K C G and r > 0 the set
Vicri={x€G" :|x(z) ~ 1] <r for all z € K}

is an open subset of G/.



180 Harmonic Analysis of Convolution Semigroups

In fact, we choose a compact subset K of G, an r > 0 and a xgo €
Vi r- Part 1. of this proof implies that for every z¢ € K there exist
neighborhoods V € U (zp) and W € Vea(xo) such that |x(z)—1| <
r for all x € V,x € W. Since K is compact, finitely many of these
sets V cover K, hence the intersection Wy of the corresponding sets
W is a subset of Vg . Since Wy € Bgn(xo0), Vi, is open.

3. The family consisting of the sets Vi , and their translates generate
the topology 7ga of G/,

In order to see this we pick a neighborhood V of xo € G and show
that xo+ Vi, C V for some choice of K € K(G) and r > 0. Without
loss of generality let xo = 0. From the definition of the Gelfand
topology 7, in G* we deduce the existence of functions fi,..., fn €
L'(G,wg) and of £ > 0 such that

Nx e : G~ F@l <} V.

But now C¢(G) is dense in L'(G,wg), so we may assume that
fi, ..., fn vanish outside a compact subset K of G. With the choices

€
maxi<i<n ”fz'”l

r <
and x € Vg, we get

1500 - 70) < [ i@ - 11 Ifi(@walda)
K
< T“filll <Eg,
hence that Vg, C V.
4. The statement of the theorem now follows from the inclusion
(x+Vksg)—(pt+Vksz) Cx—p+ Vg,

valid for all x,p € G" and any Vi , € U~ (0). [
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4.2.5 From the proof of Theorem 4.2.4 we learn that on G" =
A(LY(G,wg)) the topologies 74 and 7, coincide. Therefore we may
consider G as a locally compact Abelian group furnished with either
of the topologies 7, or 7¢,. G" will be called the character group
or the dual (group) of G.

4.2.6 Since the norm of the spaces L?(G,wq) for p € [1,00] is in-
variant (with respect to translation in G) we have

I1f* glle < £ Mgl

whenever f € L(G,wg) and g € LP(G,wg), i.e. L*(G,wg) operates
linearly by means of g — f % g on LP(G,wg).

Let ||f|lz denote the norm of the operator defined on L?(G,wg)
by f € LY(G,wg). Then, clearly,

£l < 11£1I,

and

I1f *gll2 < Iflizlgll2
for all f € L}(G,wg) and g € L%(G,wg).

The completion of L}(G,wg) (or C¢(G)) with respect to the op-
erator norm || - || is called the extended group algebra of G and
will be denoted by A(G).

Properties of A(G).

4.2.6.1 A(G) is a commutative Banach algebra containing L' (G, wg)
as a subalgebra.

4.2.6.2 A(G) is an algebra of normal operators on the Hilbert space
L*(G,wg) and hence a commutative C*-algebra.

4.2.6.3 A(G) admits a unit element if and only if G is discrete.

4.2.6.4 For any f € A(G) and x € G" we have

Ixfllz = lFllr-
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4.2.7 For the Gelfand mapping F : f — f on A(G) we quote the
following

Properties
4.2.7.1 F(A(Q)) is a subalgebra of C°(A(A(G))).

4.2.7.2 F is a norm and involution preserving isomorphism from
A(G) onto C°(A(A(G))).

4.2.7.3 A(A(G)) = G
For the proof of 4.2.7.3 we take f € L(G,wg) with f # 0. By
Property 4.2.7.2 there exists 7’ € A(A(G)) such that 7/(f) # 0 for

all f € A(G). Now apply Theorem 4.2.2 in order to obtain x; € G
such that

7(5) = [ fridec.
G
For any x € G" we put
(1) = (0 =) = [ frdve

whenever f € L!(G,wg). Since

7O = 1" (a2 =)
<O =) lle = [l fllr

for all f € L}(G,wg), T can be uniquely extended to A(G). Clearly,
7 appears to be an element of A(A(G)).

4.2.8 Let Ay (G) and A2(G) denote the subsets of classes of || - |-
Cauchy sequences that contain at least one || - ||- or || - ||]2-Cauchy
sequence respectively. In the sequel A (G) and Ay(G) will be viewed
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as subsets of A(G). A2(G) will also be considered as a subset of
L%(G,wg).

Properties of the spaces Ao (G)) and Ax(G).
4.2.8.1 A(G) * C°(G) € As(G).

4.2.8.2 Ay(G) % As(G) C Ago(G).

4.2.8.3 A(G) * C°(G) * C%(G) C A(G).

4.2.8.4 If f € A(G) such that f is real or f > 0, then f(0) is real
or f(0) > 0 respectively.

The proof of Property 4.2.8.1 follows for f € A(G) of the form
f=1llr - lim fr
n—oo
with a sequence (f,)n>1 in L'(G,we) from the inequalities

1fn* 9= fm*glla < lfn = Fmlirligll2

and
1 fn*g— fm *gllr < |fn — frllzllgllz

valid for n,m > 1.
Similarly, Property 4.2.8.2 is implied by the analogous estimates

| fn * gn — fm * gm“ < ”(fn - fm) * gn“ + “fm * (gn - gm)”
< | fa = Fmll2llgnllz + | fmll2llgn — gmll2

and
an * gn — fm * gm“T < ”fn - fm”T”gn”T + ”fm”Tngn - gm”T-

Property 4.2.8.3 follows from Properties 4.2.8.1 and 4.2.8.2 with
the help of C¢(G) C Ax(G).



184 Harmonic Analysis of Convolution Semigroups

Finally, as for Property 4.2.8.4, we assume f > 0. Since by Prop-
erty 4.2.7.2 the Gelfand isomorphism f — f from A(G) onto C°(G")

is involution invariant, +\/-f: = g yields a hermitian function g with
g * g = f. This implies that

£(0) = g # 9(0) = / o(~)g(w)we(dy) = / 7~ ew)we(dy)

G

= [T@owwe) = / 190)Pwc(dy) > 0.
G

The case of f € A(GQ) such that F is real follows from the decompo-
sition f := g — h, where g, h € A(G) with g, h>0.

The aim of the following discussion is the proof of Pontryagin’s fun-
damental theorem stating that any locally compact Abelian group
G can be identified as a topological group with its double dual GM.
On the way we shall establish two useful tools of harmonic analy-
sis: the inversion formula for Fourier transforms and the Plancherel
isomorphism.

Lemma 4.2.9 Let f € A(G) such that f € CS(GM), and let e > 0.
There exist functions f1, f2 € Ax(G) satisfying

(i) fr, f» € Co(GM),
(ii) f1 > f > fa, and
(iii) f1(0) — f2(0) <e.
Proof. (i) Let C' := supp( f) There exists a neighborhood U €

Ve (0) such that A
lh(x) -1 <e

for all h € C$(G,U) with [, hdwg = 1 and for all x € C. In order
to see this one just chooses

U:={zeG:|x(z) -1 <e forall x€C}.
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Consequently there exists a go € C$(G) with go(x) > 1 forall x € C,
and for each § > 0 there is a g € C'$(Q) satisfying

1+62g(x)21-¢
whenever x € C. Now we define

fr:=f*(g+dg0)
and
fa:=f+(g-6g0).
Since there exist &, kg € C°(G) such that go = ho*hg and g = hxh™,

~

we obtain that fi, fo € A(G). And clearly, f1, f» € C¢(G).

(i) follows from

h=fo+dfo2f1-5+08)=f
and o X R i

f=71+6-8)2f3-0fgo=fa.
(43) Obviously,

f]_(O) - fz(O) = 25f %k 90(0) .
But R
(f*90)" = fgo > 0

implies f * go(0) > 0. A proper choice of § yields the assertion. ®

Theorem 4.2.10 (Inversion) Let f € Ao(G) with f € C(GM).

Then a Haar measure wgr on G can be chosen such that for all
z € G the inversion formula

f(z) = / FOOx(@)wen (da)

GA

holds.
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Proof. For every f € A(G) with f € C$ (G™) we introduce

F(f):=sup{g(0): § </, € Ax(G)}

=inf{h(0) : A > f, h € A(Q)},
where the equalities defining the mapping F : C$(G") — C are
justified by Lemma 4.2.9. Obviously F is additive and positive ho-

mogeneous on C§ (G"). Since Re C°(G") is a vector lattice, F' can be
extended to a linear functional on Re C'°(G") and hence on C¢(G").

Obviously F is positive, since for every f € A, (G) with f>0we
have F(f) = f(0) > 0.

Moreover, F' # 0. In fact, there exist an f € A(G), f # 0 with
f e oG and a g € C°(G) with b := f * g € A3(G) and h # 0.
But then £:= hx h™ € As(G) and therefore

F(8) = £(0) = h+h™(0) = |hll3 # 0.

In order to show the translation invariance of F' it suffices to note
that for every x € G" X
f x = (Xf )A

and
x(0)£(0) = f(0).

But then there exists a Haar measure wgs € My (G") satisfying
F(f)= / FOowan(dx)
GA

for all f € A(G) with f € C(GM).
For f € Auo(G) with f € C<(G") we have

F(f) = £(0),
hence o
1(@) = f-a(0) = F(F2)
- / 2 00wen (d)
an
- / Foox(@)wen (d),

GA
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whenever z € G. =
Theorem 4.2.11 (Plancherel)

(i) A2(G) is dense in L*(G,wg).

(ii) The mapping f — f from Ao(G) in CO(G?) is an isometry onto
a dense subset of L?(G",wgn) which can be extended uniquely
to an isometry from L*(G,wq) onto L*(G,wan).

(iii) For f,g € L*(G,wg) we have
/f§ de=/f§ dwgn .

Proof. From Properties 4.2.7.2 and 4.2.7.3 we deduce the existence
of a dense subset M of A(G) with M" = C°(G").

1. We show that the set
N:={fxg:feM, geCQ)}
is dense in L?(G,wg). Since N C Ay(G), we therefore obtain that
A2(G) is dense in L*(G,wg).
For the proof let f € L?(G,wg) and let € > 0. First of all there is a
g € C°(G) with ||f —g]| < €, and for this g there exists an h € C¢(G)

with ||g * b — g|j2 < €. Next, for h there exists a k € M such that
[lh — kllz < €. Our assertion now follows from the inequality

lkxg—Fllz<lkxg—h*glla+llh*g—gl2+llg—fl2
<|lk = hlizlgllz +&+e
<e&(e+|fllz +2).

2. For every f € N we obtain that f € C%(G") and [+ f~ € Ao (G).
Applying the inversion formula 4.2.10 the equalities

1712 = / 1T dwc = £ % §~(0)
G

=/(f*fN)AwG/\ = /f}‘ dwea :”.f”%
G/\

GA
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show that f — f is an isometry on N. But this isometry extends to
an isometry from A2(G) into L2(G",wgn).

3. For the statements (i) and (4%) it remains to be shown that Ay(G)"
is dense in L*(G",wg).

In fact, let ¢ € L%(G",wg) with [ . ¢ dw = 0 for all ¢ €
AQ(G)A. Then

/ Xe¥ dwen =0

G/\
whenever ¥ € G, thus (p¥)" = 0 and hence gy = 0 wgnr-a.e..
Since for each xo € G” there is a ¢ € Ay(G)" such that ¢ # 0

in some neighborhood of xp,% = 0 wg-a.e., the asserted density
property has been shown.

4. For the proof of (44¢) it suffices to refer to the well-known identity
Afg=1f + g’ = |f — gl +ilf +ig|* —ilf ~ig|®
valid for all f,g € L?(G,wg). [

Theorem 4.2.12 The group algebra L'(G,wg) is regular, i.e. to
every proper closed subset C of G™ and to every x € C® there exists
an f € LY(G,wg) such that f(C) =0 and f(x) # 0.

Proof. Let C be a proper closed subset of G*. We shall show that
there exists a function ¥ € LY(G,wg)" satisfying (C) = 0 and
P(x) # 0 for x € U := C° Let x = x1 + x2 with x1,x2 € G*. Then
there are open sets U, and Us with x1 € Uy, x2 € Uy and U1+ U, C
U. Now we choose functions f,g € L2(Q’, wg) with the properties
£,8 € CL(G"), fOa) #0, §(x2) #0, f(UT) =§(Us) = 0. Apply-
ing (74¢) of Theorem 4.2.11 we have

(fo)" = F*3g,

hence 1) := (fg)" satisfies the desired conditions: ¥ € L!(G,wg)",
P(C) = $(U°) = 0 and ¥(x) # 0. |
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Theorem 4.2.13 (Pontryagin) Let G be a locally compact Abelian

group with dual and double dual groups G" and G™" respectively.
For every z € G let Q; : G® — C be defined by

Qz(x) = x(z)
for all x € G". Then the homomorphism Q : G — G"" defined by
Qz) :=Qy

for all x € G is a topological isomorphism.
In short: GM 2 G.

Proof. 1. Q as a mapping from (G, 7) into (G*", 7, ) is continuous.

In fact, it is sufficient to show that €2 is continuous at 0 € G. Let
C be a compact subset of G* and & > 0. Then the set

Vore:={x€G" :|x(x) -1 <¢ for all x € C}
is a neighborhood W € U (0). By Part 1. of the proof of Theorem
4.2.4 the mapping (z,x)  x(z) from G x G into C is continuous.
Since C is compact, the set
Vi={zeG:|x(x)-1 <e forall x € C}
belongs to B(0), and (V) C W.

2. €1 is open.

It is to be shown that to each U € U (0) there exist a compact
subset C of G" and an € > 0 such that

Ix(z) -1 <e

for all y € C implies that z € U.
In fact, we choose g € L?(G,wg) with ||g]l2 = 1 such that

lg —g=ll <1
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implies € U. In order to see this, pick V € B(0) with V2 C U.
Moreover, take g € L2 (G,wg) with supp(g) C V and |[g|l2 = 1. If
z ¢ V then supp (g) Nsupp (g,) = @, hence

g — gzll2 > llgll2 = 1,
and we have a contradiction.

Next, let f € L} (G,we) with ||f||, = 1 satisfying the inequalities

1
1f+g=gla <3

and

1
I|f * gz — gell2 < 3

The triangle inequality immediately implies that

1
lf*xg—f*gella < 3
yields x € U. But since

Wf*xg—fxgellz=If*g— foxgl:2

= II(f = fo) * gll2
<If = falirs
we may continue the reduction procedure and obtain that
IF = ol < 3
z|IT = 3

yields z € U.
Moreover, we have that

If = fellr = sup{|7(f - fz)| : 7 € AA(G))}

Thus, the inequality )

|T(f— f:c)l < g
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valid for all 7 € A(A(G)) implies z € U. But

[7(f = f)l = I7(DlIx=(2) - 1,

where x, denotes the character associated with 7 by Property 4.2.7.3.
Now applying Property 4.2.7.1 we obtain that f := 7(f) € C°(G"),
thus there exists a compact subset C of G such that x, ¢ C implies

that
1

(i< g

Now, choose € := 5”71”;, and let x € G be such that
Ix(z) —1| <e

for all x € C. Then
1
|T(f - fx)l < 5

holds for all 7 € A(A(G)) and consequently = € U.

3. Q(G) is dense in GM.

Once we have shown this it will be clear that Q(G) as the image
of a locally compact and hence complete group G is itself complete
and therefore closed in G*”. The proof of the theorem will then be
terminated.

Assume that Q(G) is not dense in G*”. Then by Theorem 4.2.12
there exists a ¢ € L'(G",wgnr) with ¢ # 0 satisfying ¢(92(z)) = 0
for all z € G. Since ¢ # 0, there is a g € A(G) such that

/wumu>myum¢o.
Gl\

But C¢(G) is dense in A(G), hence there also exists an h € C¢(G)
such that

/ e(x)h(x)wan (dx) # 0.

GA
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On the other hand, by assumption we have

[ #t0htwen@ = [ e00( [ he)x@ies(d) Juon @)
Gn G

GA

~ [ 0@)( [ $008@ won @) )we(de)

G GA

- [ e)p(@a)wa(dn) =0,

G

which is the desired contradiction. ]

We draw a few consequences from Pontryagin’s duality theo-
rem 4.2.13.

Theorem 4.2.14
(i) G is compact if and only if G" is discrete.
(11) G is discrete if and only if G is compact.

Proof. An application of Theorem 4.2.13 reduces the proofs of (i)
and (it) to those of (') and (i¢’) below.

(¢') If G is compact, then G” is discrete.

The only subgroup of T whose elements z satisfy |z — 1| < v/3 is
the trivial one. Therefore the set

Vo s ={x€G":|x(z) -1 < V3 for all ze€G}={0}
is a neighborhood in Vg (0). But this means that G* is discrete.

(4') If G is discrete, then G” is compact.

It follows from the assumption that the function fg on G defined
by fo(0) = 1 and fo(z) = 0 for all z € G with z # 0 is a unit of
the group algebra L!(G,w¢q). Consequently, by Preparation C 4.2
A(L'(G,wg)) and by Theorem 4.2.2 also G* is compact. [ |
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Definition 4.2.15 The Fourier(-Stieltjes)transform fi of a mea-
sure u € M®(G) is given by

i) = / X@u(dz)

G

for all x € G,

Properties 4.2.16 of the Fourier mapping
F=Fg: M*G) — C*(G")

given by
Fu)=p
for all p € M®(Q).

4.2.16.1 F maps M®(G) into the space C¥*(G") of uniformly con-
tinuous bounded functions on G™.

4.2.16.2 F is a norm-decreasing homomorphism of involutive alge-
bras.

4.2.16.3 F is injective.

By the isometric embedding of the group algebra L(G,wg) into
the measure algebra M®(G) analogous properties remain valid for the
restriction of F to L'(G,w¢). In particular M®(G) and LY(G,wg)
are semisimple Banach algebras.

We content ourselves with the proof of 4.2.16.3. By Pontryagin’s
Theorem 4.2.13 it suffices to show the injectivity of the inverse
Fourier mapping

F: M*GN) - C'(G)

defined by
Flp) = p
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for all 4 € M%(G"), where

(@) 1= For(wi@ki= [ x@nldy)
GA

whenever z € G.
So, let u € M*(G") such that i = 0. For every f € LY(G,wg) we

have
/ fdp = / ( / mfm)wc:(dw))u(dx)
G/\

G~ G
- [ f@wetds) [x@uta) =o.
G Gn
Since A(G") is dense in C°(G”") by Property 4.2.3.1 we obtain that

/gdu=0

G

for every g € C°(G”) which implies that p = 0. [

4.2.17 The following functorial properties of the duality of locally
compact Abelian groups will be useful for its application to harmonic
analysis.

Let G and H be locally compact Abelian groups and let ¢ : G — H
be a continuous homomorphism. For every x € H” let

P™x) = xopeG".

Therefore, with the notation of Theorem 4.2.13,

Qe (0" (%)) = Qo) (),

whenever £ € G,x € H". Moreover, " is a continuous homomor-
phism H" — G/.

Indeed, the duality ® is a contravariant functor in the category of
locally compact Abelian groups (together with continuous homomor-
phisms as morphisms).
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For any subset M of G let
M+ :={xeG":x(z)=1 for all z€ M}

be the annihilator or orthogonal complement of M.

Clearly M+ is a closed subgroup of G”. From Pontryagin’s theo-
rem 4.2.13 we infer that M++ := (M*1)1 is a closed subgroup of G.
For N C M one has M+ ¢ N+, and M ¢ M+~ which implies

MJ_ ») (M_LJ_)_L - (MJ_)J__L S MJ',
hence M+ = M++1,

4.2.17.1 The closed subgroup [M]~ generated by a subset M of G
coincides with ML+,

It is clear that Gy := [M]~ C M=*+. For the remaining inclusion
we consider the canonical projection 7 from G onto G/G; and take an
element z & G. Since G” separates G (by the Pontryagin theorem
4.2.13) there exists x € (G/G1)" such that x o m(z) # 1. Hence
xom € GN with xom(y) = 1 for all y € M but xy on(z) # 1, so
rd ML+t

As an immediate consequence of this property we note that
4.2.17.2 the mapping
Hv+— H*
is a bijection from the class of closed subgroups of G onto the class

of closed subgroup of G

4.2.17.3 (G/H)" and H' are (canonically) isomorphic locally com-
pact Abelian groups.

Again we define for every x’ € (G/H)”" the character x € G" by

x(y) = x'(yH)

whenever y € G. The mapping x’ — x from (G/H)" into G" serves
as the desired topological isomorphism.
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It follows

4.2.17.4 that H" is isomorphic to G"/H*.

One just has to observe the identifications
G/\/HJ_ o (G/\/HJ_)/\/\ o~ (HJ__L)/\ — H/\ )
4.2.17.5 H 1is a compact subgroup of G if and only if H is open in
G".

This statement follows from Property 4.2.17.4 together with The-
orem 4.2.14

Examples 4.2.18 of locally compact Abelian groups and their duals.
4.2.18.1 (RY)" = R4, so R? is self dual for any d > 1.

4.2.18.2 (TH" =2 Z¢ for d > 1.

4.2.18.3 (ZH" = T? ford > 1.

In order to establish these identifications the characters of the
underlying groups have to be exhibited, and the Gelfand topology
has to be recognized as the natural topology in each case.

In this context we mention the evident fact that

4.2.18.4 for locally compact Abelian groups G1,...,Gy, the identifi-

cation A
( II Gi) ~J[et
i=n i=1

holds.

This property helps to see further special dualities once one accepts
the validity of the following fundamental structure results.

Theorem 4.2.19 Let G be a compactly generated locally compact
Abelian group.
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Then
G~R?*xZ¢ x K,
where d,e > 0 and K is a compact Abelian group.
From this theorem follows without difficulty

Theorem 4.2.20 (Pontryagin, van Kampen) For every locally com-
pact Abelian group G there exists an open subgroup G, of G of the
form
G1 = Rd x K 5
where d > 0 and K denotes a compact Abelian group.
If, in addition, G is connected, then

G=R%xK,

where d > 0 and K is a connected compact Abelian group.

For a proof of these assertions the reader is referred for example
to Guichardet [15].
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4.3 Positive definite functions

The constituents of this title are important tools of the harmonic
analysis of locally compact Abelian groups. For the first definition
and its basic properties we note that a matrix A = (a;;) € M{n x
n, C) is said to be positive hermitian if for all ¢;,...,¢, € C

3
Z a,-jciEj 2 0.
t,j=1
If B = (b;j) € M(n x n,C) is another positive hermitian matrix,

then so is the product AB = (d;;), where d;; := a;;b;; for all 4,7 =
1,...,n.

Now let G be a locally compact group.
Definition 4.3.1 A complez-valued function ¢ on G is called pos-

itive definite if for alln > 1 and all z,,...,z, € G the matriz
(o(z; — z4)) € M(n x n,C) is positive hermitian.

The totality of positive definite functions on G will be abbrevi-
ated by PD(G). At a later stage we shall exclusively employ the set
CPD(G) := PD(G)NnC(G).

Properties 4.3.2 of a function ¢ € PD(G).
4.3.2.1 o~ = p and |p| < ©(0), in particular p is bounded, and
sup ()] = ¢(0).
4.3.2.2 For any z,y € G we have
lo(2) — pW)I* < 20(0)((0) — Re p(z — )
4.3.2.3 If p(0) = 1, then

lp(z + ) = p@)e@)* < (1= lp@))A = )
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4.3.2.4 If Re ¢ is lower semicontinuous at 0, then @ is uniformly
continuous.

For proofs of these properties we consider specially chosen positive
hermitian matrices.

Clearly, ¢(0) > 0. Moreover, for every z € G the matrix

(@(0) w(—w)>
p(z)  9(0)
is positive hermitian. This fact takes care of Property 4.3.2.1.

Next, we consider the case n = 3, i.e. for any z,y € G we look at

the matrix - R

p(0)  pl(2) v(y)

plz)  ¢0) plz-y)

o) elz-y)  ¢0)
under the assumption that ¢(z) # ¢(y) we choose for A € R the
complex numbers c¢; 1= 1,c2 1 = Ap(z) ~ ¢(y)|(w(z) — w(y)) !, and
¢3 := —co. The positive hermitian property of the above matrix
yields the inequality

p(0)(1 +2X%) + 2X|p(2) — o(y)| — 2A* Re p(z —y) > 0

valid for all A € R, and since the discriminant of the polynomial in
A occurring in this inequality is < 0, we obtain Property 4.3.2.2.

In order to show Property 4.3.2.3 we observe that a positive her-
mitian matrix of the form

1 21 22
zZ1 1 2z
Z 73 1

has a determinant > 0, hence
= == 2 2 2
L+ 212223 + 7212023 > |21|" + |22|” + 23]
or equivalently,

lz3 — Z122]” < (1 —J21?)(1 — |22|?).
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Applying this inequality to the matrix in terms of ¢ and employing
Property 4.3.2.1 implies the assertion.

Concerning Property 4.3.2.4 we note that from the assumption
follows that Re ¢ is continuous at 0. This is a consequence of the
equality

{z € G:Re p(z) € 1p(0) — £,¢(0) +¢[}
= {z € G:Re ¢(z) > ¢(0) — ¢}

together with Re ¢ < |¢| < ¢(0) (Property 4.3.2.1). But then Prop-
erty 4.3.2.2 provides the remaining argument.

4.3.2.5 Let H be an open subgroup of G and let ¢ € CPD(H). Then
the function pq defined by

| e(z) ifze H
polx) := { 0 otherwise

belongs to CPD(G).

For the proof of the positive-definiteness of ¢g we pick a finite
set in G and for each x € F, let ¢, € C. The set F' intersects only
finitely many distinct cosets w1 H,...,w,H of H. With the notation
F, .= FN(wgH) for k=1,...,n we then obtain

NN wolr-weat =Y > D e-yady,
T F yeF k=1 z€Fy yEFy

where

S o@ -yl
zeF, yeFg
= T el - w) - - wn)edy

z€F) yeFy

Z Z ©(U — V)Cutwy Cotwy 2 0.

ueFy—wy vEF—wg
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Clearly, o extends ¢ continuously.
Properties 4.3.3 of the set PD(G)

4.3.3.1 The set PD(G) is closed under formation of complex conju-
gates and real parts.

4.3.3.2 The constant function > 0 on G belongs to PD(G).
4.3.3.3 PD(G) is closed under formation of products.

4.3.3.4 PD(G) is a convex cone closed with respect to the topology
75, CPD(G) is a convex cone closed with respect to T, (in C(G)).

Only Property 4.3.3.3 requires an argument, and this has been
quoted at the beginning of the section.

Examples 4.3.4 Besides the constant function > 0
4.3.4.1 all characters x of G are elements of PD(G).
This follows from the inequalities

Z )6 = |Zx(xt Yei|> >0

valid foralln > 1, z,...,2, € Gand ¢3,...,c, € C.
On the other hand,

4.3.4.2 any positive definite function ¢ : G — T is a character of
G, as is evident from Property 4.3.2.3.

4.3.4.3 The Fourier transform of a measure u € M8 (G") belongs to
CPD(G).

In fact, foralln > 1, z4,...,2, € G and ¢, ...,¢, € C we have
as in 4.3.4.1

H

n n
2
Z flz: — z5)eic; = \Z zi)ei| =20
i=1

i,j=1
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hence i € PD(G). The continuity of {i follows from Proposition
4.2.16.1.

The converse of this property is the statement of

Theorem 4.3.5 (Bochner) For every ¢ € CPD(G) there exists a
unique measure 3 := (B, € M2 (G") such that

FB=B=¢p.

B is said to be the Bochner measure of . It satisfies ||B|| = ¢(0).

Proof. 1. We first show that ¢ € CPD(G) is of positive type in the
sense that it satisfies

[ pe=0

for all f € C¢(G) and, since C¢(G) is dense in L'(G,wg), also for
all f € L(G,wg). For a given f € C°(G) the function F on G x G
defined by

F(z,y) = f(z)f(z)p(z — y)

for all (z,y) € G x G belongs to C°(G x G), hence is uniformly
continuous. For K := supp f we have suppF C K x K, and K x K
can be covered by finitely many open sets U x U such that the
variation of F' on each of these sets is less than a prescribed € > 0.
By neglecting overlaps we therefore obtain a partition {E1,..., E,}
of K and z; € Ey (I =1,...,n) such that |F(z,y) — F(z;,z;)| < ¢
whenever (z,y) € E; x Ej (4,],...,n). But then

[t pe duc
://F(x,y)wc(dm)wc(d’y)

= }5 / / F(z,y)wg(dr)we(dy)

h,i=1 E; E]'

= Z F(z;,zj)we(Ei)we(E;) + R

h,j=1

= Y fl@)we(E:) (e we(B)p(@: —z;) + R (1)

h,j=1
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where
n
RI=| Y [ ) - Faiz)eoldaus(dy)| < e woK)?.
i,j=1 E; Ej

Since by the positive definiteness of ¢

Z f(@iwe(E) f(z;)we(Ej)e(z; —x5) 20

and £ was chosen arbitrarily, the assertion has been proved.

2. Next we construct a linear functional
fro [ tduc

on the Fourier algebra A(G") = LY(G,wg)". Without loss of gen-
erality we assume that ¢(0) = 1. From the Schwarz inequality we
deduce that the positive Hermitian (sesquilinear) form

(19) = fudly = [ 97" «g)dac
on L (G, wg) satisfies

I[fig]¢|2 S [f,f]so[gag]tp

for all f,g € L1(G,w¢). Letting g run through an approximate iden-
tity {¢v : U € 4} in LY(G, wg) with

P x f — f (in LY{(G,wg))

(Proposition 4.1.13) we obtain that

o)~ [[ef doe s U — {0},
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But along with {ypy : U € i} also {¢; vy : U € 4} is an
approximate identity in L'(G,w¢). In fact, if suppyy C U then
supp (¥ * Yy) C U — U, and

/W/*lbudwc:l/zbudwc;r:l.

It follows that )
| [etavs| <15,
for all f € LY(G,we). For the function h := f* * f we have h* =

h. Applying the above inequality to the functions f,h,h(?) = h %
h,h® := hxhxh,... we obtain

1
l/gofdwg) < /gohdwa ?

1
/ <,0h(2)dwc|4

IN

AN

I
an+1

IA

/ cph(”)dw(;

Tealka

IA

’

where ||¢]|cc = ¢(0) = 1 has been applied. Now we infer from Theo-
rem C 6 that

Jim [ACNFT = (AL = (115 = 1l
Thus the mapping f — [ ¢fdwe induces a linear functional
fr /sofdwc
on A(G").

3. Since by Property 4.2.3.1 A(G”) is dense in C%(G”) this linear
functionals extends to a linear functional F' on C%(G*) with || F|| < 1.
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We now apply the Riesz representation theorem 4.1.1 in order to
obtain a measure v € M°(G") with |v| < 1 satisfying

() = [ fav= [ [ s@x@vldowatis)

for all f € L'(G,wg) or equivalently

o(z) = / x(@)* (dx)

for all z € G, hence ¢ = 3 for 8 := v*. From 1 = ¢(0) = B(G") <
18]l < 1 we conclude that S(G") = ||8]| > 0, so that 8 € M2(G").
The desired representation of ¢ has been established. ]

Remark 4.3.6 Replacing G by G™ and applying the Pontryagin the-
orem 4.2.18 Theorem 4.3.5 can be rephrased as follows: The Fourier
mapping F = Fg is a bijection of the cone Mi(G) onto the cone
CPD(G"). In particular, F maps the conver set M'(G) onto the
convez set {¢ € CPD(G") : ¢(0) = 1}.

We may now deepen our knowledge about this bijection by prov-
ing that

Theorem 4.3.7 F is a homeomorphism of the cone (M (G),1y)
onto the cone (CPD(G"),7co).

Proof. Let (12a)aca be anet in M2 (G) such that

fa —5 pe ME(G).

Then, clearly,
fra(x) — B(X)
for all x € GM.
1. At first we show that for each € > 0 there exists a V € Uga(0)
and there exists an ag € A such that for all @« > «p and for all

X1, X2 € G" with x1 — x2 € V the inequality

lBa(x1) — falx2)l <€
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holds.

In fact, let € > 0 be given, choose § > 0 such that §(3 + [|u||) < e
and then pick ¢ € C$(G) with 0 < ¢ <1 and [(1—y)du < 6. Since
tn — p, there is an ag € A such that the inequalities

el < flull + 1

and
/ (1 - p)dpq <8
are satisfied for all a > ay. Now let V be a neighborhood in U g (0)

of the form V := Vyypp05. For o € A and x1,x2 € G" with o >
o, X1 — X2 € V we obtain

Jha2) = aa)| < [ bis(a) = xa(@)a(do)
< [ 1= (1 = x2) @lel@)na(da)
+ [ 1= G = )@ - p(@))a(d)
<3 [ laualiz) + 2 [ 11 p(@)lpa(do)
< a(lull + 1)+ 25 <.

2. Next we show that
Tco ~

fro = fb.

Let K be a compact subset of G*, and let € > 0. We choose ag
and V as above, and by taking the limits along o it follows that

[a(x1) — Alx2)l <€

whenever x1, x2 € G” satisfy x; —x2 € V. Since K is compact, there
n
exist x1,...,Xn € K such that K C |J (x; + V), hence there exist

i=1
ai,...,0, € A with

lia(xi) — A(x:)| <€
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for all @ > a; (¢ = 1,...,n). Let o* € A be chosen such that
a* > o for ¢ = 0,1,...,n. Then, for Y € x; + V and a > a* we
obtain the estimate

lAa(x) — (X

< ira(x) = Balxa)l + e (i) — A0G)] + 1806) — 2(X)]
<3¢

and hence that
sup |ia(x) — i(x)| < 3¢
xeK

which is the desired statement.

3. We now suppose that
~ Teco ~
Ha — W

and show that

fa —5 .
From the hypothesis follows that
1m [t = im a(0) = 3(0) = ]
Therefore, as a consequence of Proposition 4.1.3 it suffices to verify

the limit relationship

o —5 L.

For ¢ € C%(G) and € > 0 we choose f € C¢(G") such that
e — Fenr flf <e.
But then
] Jedua — fwd#] < ] Jlp = For fldua

+| JForf dpa — [Farf d“’ + l JFerf - w)dul

< elllwall + el + f1aa() — B001 1F (0 lwen (dz),
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hence by assumption

timsup | [ da = [ o du| < 26l

which implies the assertion. |
Theorem 4.3.8 (Sequential continuity of the Fourier transform)

Let (jin)n>1 be a sequence of measures in M2 (G), and let ¢ be a
complez-valued function on G which is continuous at 0 € G such
that

fn(x) — o(x)

for all x € G™. Then there ezists a measure u € M2 (G) with i = ¢
such that
P — .

Proof. Clearly, i € CPD(G") for all n > 1. From Property 4.3.3.4
we infer that
¢ = lim A, € PD(G"),

and Property 4.3.2.4 yields that ¢ € C(G"), hence ¢ € CPD(G").
Now we apply the Bochner theorem 4.3.5 and obtain a measure u €
M? (G) satisfying i = ¢. It remains to be shown that for all ¥ €
o5 (@)

im [ Ydp, = / Ydp.

n—oo

As in the proof of part 3 of Theorem 4.3.7 we establish the inequality
| [ ¥dun — [ dp|

< e(lan ]l + il + / in () — BOOIIS (@) lwen (de).
G

But the dominated convergence theorem implies

Jim [ 100 = 4601 1700 ker (@) =0,

hence the assertion. [ |
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4.4 Positive definite measures

We proceed to the study of Fourier transforms of not necessarily
bounded positive definite measures on a locally compact Abelian
group G. Our next aim will be to prove an analog of Theorem 4.3.7
for nonnegative positive definite measures on G.

Some measure-theoretical supplements will facilitate the compre-
hension.

Definition 4.4.1 A measure p € M(G) is said to be shift bounded
if
p*C%(G) C C¥(G).

It is easily seen that p is shift bounded if and only if the set
{Ta(p) : a € G} of translates of p is 7,-bounded.

Properties 4.4.2
4.4.2.1 Along with p also p* and p™ are shift bounded measures.
4.4.2.2 If u is shift bounded, also |p| is shift bounded.

4.4.2.3 Any pair (u,v) consisting of a shift bounded measure y and
a bounded measure v is convolvable.

4.4.2.4 A measure yp € M (Q) is shift bounded if and only if for
each set K € K(G) the function

z— (K + x)

s bounded.
Only Properties 4.4.2.2 and 4.4.2.3 deserve an argument. Concern-
ing Property 4.4.2.2 we look at the inductive limit representation

C(G)= lim C°G,K)

KEK(G)

in the sense of Appendix B 4. Suppose that f € C$ (G, K). Then for
any g € C¢(G) with |g} < f we have

[l % glloo < Crellglloo < Ckllf oo
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where Ck is a constant > 0. In particular we obtain for all z € G
that

Il (@) = / () dll
sz | [
= sup |u * g(z)]
lg|<f

which says that |p| is shift bounded.

As for Property 4.4.2.3 we just note that for each f € C$(G) we
have

([ 16+ @) wttas) = [l = D@IIG) < oo

since |u*| * f is a bounded function on G.

Definition 4.4.3 A measure p € M(QG) is said to vanish at infin-
ity if
u* C%Q) C C°(@).

With the obvious notation M*°(G) and M (G) for the measures
defined in 4.4.1 and 4.4.3 respectively we note that

M(G) c M*®(G) c M**(G).
Examples 4.4.4

4.4.4.1 The Haar measure we of G belongs to M*(G), and

4.4.4.2 wg € M>®(G) if and only if G is compact.
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Properties 4.4.5

4.4.5.1 For u € M**(G) the linear mapping f — p* f from C(G)
into C®(G) is continuous.

4.4.5.2 Moreover,
u*C(G) C C*(G)

whenever p € M(G).

While Property 4.4.5.1 is an easy consequence of Appendix B 6
(closed graph theorem), Property 4.4.5.2 requires a proof. Given
¢ > 0 and a compact symmetric neighborhood Vg € Ug(0). Then
Property 4.4.2.4 implies that

¢ 1= Sup ||(Vo — supp (f) + ) < 0.
TE
Since f € C*(@G), there exists a V € Y (0) with V' C V4 such that

|f(z) - fly)| <

Rlm

for all z,y € G with x —y € V. But for such z,y it follows that

I f(z) —px fY)| <

<

|f(z = 2) = f(y — 2)l|p|(dz)

|u|(Vo — supp (f) +z) <e.

Q| —

As a motivation for the notion of positive definite measures on G
we note that a function ¢ € C(G) is positive definite if and only if
it is of positive type in the sense of the inequality

f o(f * f~)dw > 0

valid for all f € C°(G) (See part 1. of the proof of Theorem 4.3.5).
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Definition 4.4.6 A measure u € M(G) is called positive definite
if for all f € C°(GQ) one has

[rerauzo.

The set of positive definite measures on G will be denoted by

My (G).

Obviously M,(G) is a T,-closed cone in M(G) which is stable
under formation of reflections and complex conjugates.

As first

Examples 4.4.7 of positive definite measures we mention €, and
wea -

Facts 4.4.8

4.4.8.1 For a function ¢ € C(G) such that ¢ -we € My(G) it is
necessary and sufficient that ¢ € PD(G).

4.4.8.2 If for p € M(G) the pair (p, u~) is convolvable, then pxp™ €
M (G).

4.4.8.3 If ¢ € CPD(G) with Bochner measure 3 € M. (G"), then
for any f € C¢(G) the function ¢ * f  f~ belongs to CPD(G) and
has Bochner measure |f[? - 3.

In order to see this we show that the inverse Fourier transform of
the measure |f|?- 8 € MY(G) is ¢ * f * f~, and this in turn follows
from the subsequent computation valid for all z € G :

Fer(i0) = [ (x@) [XW)F « 1~ wpwoldn) (a0
= [ ([ xwr £ = ypotan))aian

= f o) * (@ - Y)we(dy)
— ox fr f(@).
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With this statement as a motivation we proceed by looking at the
positive definiteness of functions y * f * f~ with measures p instead
of functions .

4.4.9 Proposition Let u € M(G).
(i) p € My(G) if and only if pxf=f~ € CPD(G) for all f € C%(G).
(it) If u € My 1 (G) := M,(G) N M(G), then u € M*(G).

Proof. (i) Let u € M,(G) and let f,g € C%(G). Then px f* f~ €
C(G), and

/mf*r(g*f)dwc=/(f**g)*(f**g)“‘du
:l/f**gd,urZO.

The statement preceding Definition 4.4.6 implies that pw* f * f~ €
CPD(G).

Conversely, if u * f x f~ € CPD(G) for all f € C%(G), then
p* f* f~(0) > 0 which says that

[reora

for all f € C°(G), hence that u € M,(G).

(ii) Let p € M,  (G) and f € C$(G). There exists a function g €
C5(G) such that f < g g™. It follows that

prxf<puxgxg™,

where p* g * g~ € CPD(G) ( by (i)) and hence bounded. Conse-
quently u * f € C*(G), i.e. u € M*(G). [

Theorem 4.4.10 (Ezistence of generalized Bochner measure) Let
p € My(G). There ezists a unique measure § € M, (G") such that
for all f € C%(G) the following conditions hold:

(i) J 1/l < co.
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(it) px f* f~(z) = [ x(@)|f (x)|*B(dx) whenever z € G.
B is called the generalized Bochner measure associated with
L

Proof. We first note that by Proposition 4.4.9 (i) px* f*x f~ €

CPD(G) for all f € C°(G). Now Theorem 4.3.5 provides us with a
Bochner measure 3; € M3 (G") satisfying

prfef~=p.
Since for f,g € C°(G)
(f1780)Y = px fx F~ xgx g™ = (18°8y)",
the uniqueness of the Bochner measure yields
\71265 = 131751 2

But for every § € M, (G") satisfying (i) and (7i) of the theorem we
must have .
|fI? = B¢

whenever f € C¢(G), so we define 3 accordingly.

In order to show that 3 is well-defined we verify that the integral
J h dB is uniquely determined for every h € C¢(G"). Indeed, choose

e}
g € C°(G) with § # 0 on supp h (by applying Property 4.2.3.1) such

that h
hw=/<—w,
/ Pl
GA Gr

where ]?hp denotes the function in C¢(G*) given as

i 900 #0
0 otherwise.

It now follows from (2) that [ h df is independent of the choice of
GH
g.
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Clearly, h +— [ h df is a positive linear functional on C¢(G"),

G
hence by the Riesz representation theorem 4.1.1 8 € M (GM). It
remains to show that § satisfies the conditions (i) and (%) of the
theorem. For this it suffices to establish the equality

By =If-8
whenever f € C%(G). Indeed let h € C°(G"), choose again g €

C°(G) with ¢ # 0 on supp (k) and apply again (2) together with the
definition of 8. Then the inequalities

7 2h dB = |f|2h’ d
G GA

h .
Z/W |g1%dBy
G/\

=G/A h dB;

imply the assertion. |

Theorem 4.4.11 For any measure p € M(G) the following state-
ments are equivalent:

(i) e My(G).
(ii) There exists a measure o € M (G") such that

[ #x17du= [ Forrao 3)

whenever f € C¢(G).

If (i) is fulfilled, then o is the generalized Bochner measure 3,
associated with p.

Proof. (ii) = (i). Let u be a measure in M(G) for which there
exists o € M (G") satisfying the equality (3) valid for all f € C(G).
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Then obviously u belongs to M,(G). We now fix f € C°(G) and
z € G. With f replaced by f~ (i) yields

[1edo= [ £ xFau<os

i.e. condition (i) of Theorem 4.4.10. Moreover, polarization of the
equality in (%) implies

/f*gNdu=/7fcf?cgda

whenever g € C°(G@). Replacing f by f, and g by f shows that
condition (%) of Theorem 4.4.10 is fulfilled and therefore o = 3.

(1) = (i). If conversely p € M,(G) then the generalized Bochner
measure  associated with x (by Theorem 4.4.10) satisfies the equal-
ity (3) for each f € C¢(G). One needs only replace f by f* and
specialize condition (%) of Theorem 4.4.10 to z = 0. |

Corollary 4.4.12 The mapping p+— B, from M,(G) into M (G")
established in the theorem (and envisaged to serve as a generalization
of the Fourier mapping) is injective.

Proof. Suppose that measures y,v € My(G) admit the same gener-
alized Bochner measure 3. By the theorem we have that

[resau=[se5av

for all f € C°(G), and by polarization we immediately obtain

/f*g”du=/f*g”dv

whenever f,g € C¢(G). Letting g run through an approximate iden-
tity in C¢(G) (See Proposition 4.1.13) we achieve that

[ rau= [ rav
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holds for all f € C¢(G), i.e. u=v. [ |
Consequences 4.4.13 of the proceeding discussion

4.4.13.1 If p € M,(G) then B, € M**(G"). If, in addition, p < wg
then B, € M*°(G).

We show the first statement. Clearly,
X(f*+ f7) = (xf) = (xf)~
for all x € G*, f € C°(G). Replacing f by X¥f in (3) this implies

[X@1 1 @tan) = [176c= oPsaae)
= B+ |FP00.
We observe that A
B 112 = ((f * ) )

is a bounded function, since (f * f~) - u € M®Q). But for every
function ¢ € C$(G™) there exists a function f € C%(G) with ¢ <

|2 (which is a consequence of Property 4.2.3.2), hence Bu*v €
C*(G") for all ¢ € CS(GM).

4.4.13.2 Let p € My(G) with generalized Bochner measure [,
and let ¢ € CPD(G) with Bochner measure B,. Then ¢ - p €
M,(G), (Bu,By) is a convolvable pair, and

Bu * By = Lo -

From 4.4.13.1 we infer that 8, € M®(G"). For every f € C%(G)
we have

[e@)r = s @uiam) = [ (5@ [ x@(0)utd)
= [(f xt ey dn) (a0
= [ (| FatunPds,) .0
_ / / [FefP(x + 0)8.(de)B,(dx),
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and since the last double integral is > 0, ¢-p € M,(G). The rest
follows from Theorem 4.4.11.

4.4.13.3 Given u € My(G) with generalized Bochner measure 3,
we have that T, (8,) = B, for all x € G" if and only if x = 1 on
supp (1) for all x € G*.

In fact, for x € G*, B, = €y, hence fy., = &, * B, = T, 8, by
Consequence 4.4.13.2. But now Corollary 4.4.12 applies and yields

that T, (8,) = B, if and only if x-4 = p holds. This statement,
however, is equivalent to x = 1 on supp (u).

4.4.13.4 Since €9 € M,(G), Consequence 4.4.13.8 implies that
/850 = wWan,

hence by Theorem 4.4.10 that

f () = / X(@)| £ 0028, (dx)

for all f € C°(G) and x € G. In particular, for £ = 0 we obtain

[11@Pust@n) = [176018.(@0

and hence that 8, = wgn.

We have regained the classical version of the Plancherel theorem.

Theorem 4.4.14 For any measure u € M®(G) the following state-
ments are equivalent:

(i) 1 € M,(G).
(i) ii(x) > 0 for all x € G™.

If any of these equivalent conditions is satisfied then

ﬂu = ﬂ-wGA .
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Proof. (i) = (). For p € M®(G) we have |(x)| < 1|, hence

/ FOORIAGO ke (dx) < Ilul / 1700 Pwen (dx) < oo

whenever f € C%(G). From Consequence 4.4.13.4 (with 3, replaced
by wgn) we infer that for all f € C°(G) and z € G

e fr f(@) = / x(@) F GO AG)wen () (4)

holds. Thus the measure i -wg~ fulfills the conditions (%) and (i) of
Theorem 4.4.10 Since p € Mp(G), B, = fi-wg~ and therefore §, > 0.
It follows that 4 > 0.

(it) = (). If conversely fi > 0 then (4) implies that

[ 1+ 5= [ FoiGolatouen(dx) 2 0
for all f € C°(G), hence that u € M,(G). [ |

Definition 4.4.15 For any measure p € My(G) with associated
Bochner measure 8, € M (G") the generalized Fourier trans-
Jorm of u is given by

F(u) = Fau) = Bu.
Clearly, the generalized Fourier mapping F := Fg : My(G) —

M, (G") is additive, positive homogeneous and injective, the latter
property following from Corollary 4.4.12.

In analogy to Theorem 4.3.7 we now prove

Theorem 4.4.16 F¢ is a homeomorphism of the cone (Mp, +(G), )
onto the cone (M, +(G"),,) with Fg' = Fan.

Proof. 1. ¢ maps CPD, (G) into M, ;(G"), and

Res cpp, (¢)FerFe =Idepp, (a) -
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In fact, let ¢ € CPD, (G) with Bochner measure 8 := Fgp. Then
ForB(z) = FarB(~z) = p(-z) = ()

whenever z € G. Theorem 4.4.14 implies that 3 € M, , (G"), hence
the assertion follows.

2. Now we show that
FaMy1(G) C My, (G").

Let u € M, ,(G). Given an approximate identity {¢py : U € U} in
C*(G) for which necessarily

YU -we — €
or bv %1 as U — {0}

holds (Theorem 4.3.7), for every U € 4 the function ¥y, := puxyy *
Y7 belongs to CPD,(G), hence

Febuu = [9ul? - Fop € M, (G).

This implies that
[ o9l dFom > 0

for all g € C°(G") and all U € 4. For U —— {0} this yields

/g * g~ d(Fgu) >0

for all g € C°(G"), and this shows that Feu € M,  (G").

3. Next we prove that For Fg = Id (on M, 4 (G)). Let 4 € M, +(G),
{¥v : U € U} and ¢y, (U € U) be as in part 2. of this proof.
Applying Consequence 4.4.13.2 with G replaced by G” we obtain on
the one hand

Fer(Fabu,,) =For([Pul? - Fou)
=Yy * g * FarFa i



Positive definite measures 221
on the other hand with the help of part 1. of this proof
Fan (fG"pU,p) = 2;bU,;L
= wU * ¢(7 *

since Yy, € CPD(G) for all U € 4. Consequently

Yu x Yy * ForFou =Yy * Py * p

for all U € 4 and in the limit as U — {0} the desired identity
ForFop = p.

4. It remains to be shown that F¢ is a homeomorphism. For the
purpose of that proof it is sufficient to verify the continuity of the
Fourier mapping F¢ : M, +(G) — M, +(G"). Employing part 3. of
this proof and interchanging the roles of G and G” yields the final
statement.

Let (fta)aca be a net in M, , (@) such that
Ho = HeE MP;+(G) :
It is easy to see that this implies
pa frf~ T s fxf~
for all f € C%(G). By Theorem 4.3.7
7w = lim |/ Fopa = 1w = lim Fo(pa * f+ f7)

=Fa(u*f=*f~)
= |fPFap.

Now, for any ¢ € C¢(G") we choose f € C¢(G) such that f(x) # 0
for all x € supp (¢). The function

B i f
x»—»h(x):z{ﬁ%ﬁ% if f(x) #0

0 otherwise
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belongs to C¢(G”). Then

lim f W Pd(Fopa) = [ Bl Pd(Fop)

which implies

iy [ 4 d(Fora) = [ ¥ d(Fen

and hence that
Foha —5 Fop.

On the way of showing that Haar measures wg of closed subgroups
H of G are positive definite we are starting by studying the invariance
set of a measure on G.

Definition 4.4.17 A measure p € M(G) is said to be a-invariant
with invariance point a € G if

p*Eq=pi.

The totality of all invariance points of u which obviously is a closed
subgroup of G, will be called the invariance group of p.

Both notions are also employed for functions f € C(G) by consid-
ering f as the measure fwg.

The invariance groups of u and f are denoted by Inv(u) and
Inv (f) respectively.

Finally, u € M(G) is said to be H-invariant for some subset H
of G if HC Inv(u).

Clearly, for any closed subgroup H of G Haar measure wy of H
(viewed as a measure in M (G)) is H-invariant (with supp (wg) =
H). If p € M%(G)\{0} then Inv(u) is a compact subgroup of G.

In fact, there exists a function f € C%(G) such that g := puxf #0.
For any zo € G with g(zo) # 0 we obtain the inclusion
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zo+ Inv(p) C {z € G: g(z) = g(z0)} -

Since M®(G) C M®(G), the set {z € G : g(x) = g(z0)} is compact,
hence Inv (u) is compact.

Properties 4.4.18 of invariance groups.
4.4.18.1 For measures u € M%(G) we have that

Inv (1) = (supp ()

and

Inv () = (supp (1))" .

We only argue in favor of the first equality. By the injectivity of
the Fourier mapping (Property 4.2.16.3) a € G is an invariance point
of p if and only if

x(@)i(x) = (x)

for all x € G" and this in turn holds if and only if x(a) = 1 for all
X € supp (fi) which says that a € (supp (&))*.

4.4.18.2 For functions ¢ € CPD(G) with Bochner measure 3, €
M?E (G") we have that

Inv(p) = {z € G : p(z) = ¢(0)}
= (supp (ﬂtp))l
At first we infer from Property 4.4.18.1 that

Inv () = (supp (63))*

= (supp (B,))"-

Now, any invariance point of ¢ satisfies ¢(x) = ¢(0). On the other
hand, if p(z) = ¢(0) for z € G then Property 4.3.2.3 implies that

plz +y) = o(y)

whenever y € G. But this yields z € Inv (y).



224 Hormonic Analysis of Convolution Semigroups

4.4.18.3 For measure u € My(G) we have that

Inv (1) = (supp (Fu))*

and
Inv (Fu) = (supp ()"

While the last equality follows from Consequence 4.4.18.3, the first
one requires a detailed proof. From formula (ii) of Theorem 4.4.10
modified by polarization we deduce that

pkeqn frg(z) = / X@X@FF0Fud) ()

valid for all f,g € C%(G) and a € G. If a € Inv(u), then this
equality implies that the bounded measures fg-Fupand &,f5-F [’
have the same inverse Fourier transforms and hence are equal. But
then x(a) = 1 for all x € supp (Fu) and hence a € (supp (Fu))*
If, conversely, a € G satisfies x(a) = 1 for all x € supp (Fpu), then
(5) implies that

px frg™(z)=preq* frg™(z)

holds for all f,g € C¢(G) and all z € G. Letting f and g run through
an approximate identity in C°(G) we achieve p = p * €, or a €
Inv (1) as desired.

Now, let H be a closed subgroup of the given locally compact
Abelian group G, and let m denote the canonical homomorphism
from G onto the quotient group G/H. For every H-invariant func-
tion f € C(G) there ezists exactly one quotient function feC(G/H)
such that forw = f. Let wy be a fized Haar measure of H. Since, for
any f € C¢(G) the function wy * f is H-invariant, its quotient func-
tion (wg * f)* is uniquely determined and an element of C°(G/H).
Consequently we obtain a mapping o : C¢(G) — C°(G/H) defined
by

o(f) = (wa * f)’
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for all f € C¢(G) which is linear, positive and continuous (with
respect to the topology T.,). The transpose o! of o maps M(G/H)
linearly into the set M (G, H) of H-invariant measures in M(G).

Properties 4.4.19 of the mapping o.
4.4.19.1 o is a surjection from C°(G) onto C¢(G/H)

4.4.19.2 o satisfies the invariance condition

O'(Taf) = Tw(a)a(f)

valid for all f € C°(G),a € G.

4.4.19.3 Given Haar measures we and wg of G and H respectively
there exists a unique Haar measure wg/g of (G/H) such that

Jt(wG/H) = Wwag .

4.4.19.4 Let p € M, (G, H). Then there exists a unique quotient
measure j € M, (G/H) (associated with 1) such that

ot (1) = p
More generally,

4.4.19.5 o' is an isomorphism from M(G/H) onto M (G, H).

While Properties 4.4.19.2 through 4.4.19.4 follow from obvious
computations, Property 4.4.19.1 requires a proof. Let h € C$(G/H).
Since 7 is a proper mapping, there exists a compact set K C G with
7(K) = supp (h). Now we choose ¥ € C°(G) with the property that
1 = 1 on K and define

YT if wyy * P(x) # 0

flz):=

0 otherwise.

Then f € C$(G), hence

0 otherwise

wg * f(z) = {how(w) if wy *Y(z) # 0
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and consequently o(f) = h.

4.4.19.6 Given the Haar measure we of G and a fired Haar mea-
sure wy of the closed subgroup H of G there exists a Haar measure
wg/a of G/H satisfying

ot (wg/n) =we .

4.4.19.7 For a closed subgroup H of G any Haar measure wy of H
belongs to Mp(G), and the generalized Fourier transform Fwp of wy
is a Haar measure of the closed subgroup H* of G.

In fact, for any f € C%(G) we obtain from Property 4.4.19.6 that

/f*me:/(wH*?)f dug
_ / o (£)[? dw sz,

hence that wy € Mp(G). From Property 4.4.18.3 we infer that Fowp
is Ht-invariant. The rest is clear. |

Special Case 4.4.20 Let K be a compact subgroup of G and let wk
be the normed Haar measure of K in the sense that wx € M(G).
Then

d}K = 1KJ~1
and
].K/\ cwaa = waK
is a Haar measure of K.

The normed Haar measure wg of a compact subgroup K of G
will play an important role in the probabilistic implications of this
section to be discussed in Chapter 6.



5

Negative Definite Functions

and Convolution Semigroups

5.1 Negative definite functions

In the present section we are going to study a notion dual to positive
definiteness in order to obtain an analytic tool for the description of
convolution semigroups of measures on the locally compact Abelian
group G with dual group G".

Definition 5.1.1 A complez-valued function 1 on G" is called neg-
ative definite if for all n > 1 and for all x1,...,xn € G" the
matriz

(W) +¥(x;) — ¥(xi — x5)) € M(n xn,C)
1s hermitian.

Let ND(G") denote the totality of all negative definite functions
on G, and let CND(G") := ND(G") nC(G").

Properties 5.1.2 of a function » € ND(G").
5.1.2.1 1(0) > 0.

227
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5.1.2.2 ¥~ = ¢ and Re ¢ > 1(0).

5.1.2.3 \/|¢| is subadditive.

For proofs we note that Property 5.1.2.2 follows from the fact that
for every x € G" the matrix

< B0 +B00 - ¥(0) w<x>+W—¢(X>) eM(2x2,0)

$(0) +9(x) —¥(=x)  ¥(0) +%(0) — %(0)

is positive hermitian, and that Property 5.1.2.3 is a consequence of
the positive hermiteness of the matrix

( »(x) + ¥ (x) — (0) w<x)+”(e_)~w(x—g))
14

)+90) —vle—x)  v(e) +1(e) — ¥(0)
e M(2x2,C)

valid for all x, o € G". In fact, applying that ¢~ = 1 one obtains
the inequalifies

[v(x) + ¥(e) — ¥(x — o)I?
< (2Re P(x) — ¥(0))(2Re ¥(0) — ¥(0))
< 4l v (el

hence

[W(x + o)l < (VIv0ol+ vVIv/(e)])?,
and this yields the subadditivity of 1/]¢].

Properties 5.1.3 of the set ND(G").

5.1.3.1 ND(G") is closed under formation of complex conjugates
and real parts.

5.1.3.2 The constant function > 0 belongs to ND(G").

5.1.8.3 ND(G") is a 7p- closed convez cone, CND(G") a 7co- closed
convez cone (in C(G")).
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The proofs of these properties are obvious.

Theorem 5.1.4 For any complez-valued function v on G* the fol-
lowing statement are equivalent:

(i) ¥ € ND(GM).
(i) (a) ¥(0) 20
(b)Y~ =1, and

(c) for alln > 1, x1,...,Xn € G" and cy, ..., cn € C with
n

> ¢ =0 one has
i=1

Z¢ Xi — X5)eigG < 0.

1,j=1

Proof (i) = (ii). Given ¢y € ND(G") it remains to show (c). Let
n
n>1, x1,...,Xxn €G" and ¢3,...,¢, € C with 3 ¢; = 0. Then

i=1

n

0< 57 (W0a) +B0G) - Y06 — x3))eits

ij=1
=S 5( S vta) + e S 9000 )
j=1 i=1 i=1  j=1
- Z 7»[] XJ cmcg
i,j=1
- Z ¢ XJ ciCy
i,j=1

(it) = (i). Let 1 satisfy (@) to (c) of (i), and assume given
Xi,--+,Xn €GN, c1...,c, € C. Considering the sequences {0, x1,
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., xn}and {c,c1,...,cp} withc:= — E c; we obtain from (¢) that

=1

$(0)[cf* + Zw(xz Jeit + Zw( Xi)cTj + Z $(xi = x3)eity <0

7=1 2,7=1

and with the help of (a) that

D W) +90;) — ¥l — x;)eit; = $(0)lef? > 0,

ij=1
ie. (i). m
Further Properties 5.1.5

5.1.5.1 If ) € ND(G™), then also 1 — 1(0) € ND(G").

In fact, for x1,...,Xn € G, ¢1,...,cn € Cwith 3 7, ¢; =0 we
obtain that

n

Z (Wi — Xj) ¥(0) )C,CJ Z Y(x: — XJ)C’LCJ <0

i,5=1 i,j=1

by assumption. But the function ¢ —1)(0) clearly satisfies the condi-
tions (a) and (b) of (i) of Theorem 5.1.4. The theorem implies that
it belongs to ND(G").

5.1.5.2 If o € PD(G"), then ¢(0) — p € ND(G").
Again, we see that for x1,...,xn € G" and c1,...,c, € C with
>~ ¢; =0 the positive definiteness of ¢ implies that

n

D (0(0) = lxi — x3)eiT = — Y, ¢lxi — x;)eiT < 0.

i,5=1 i,5=1

Since the function ¢(0) — ¢ satisfies the conditions (a) and (b) of (ii)
of Theorem 5.1.4, p(0) — ¢ turns out to belong to ND(G").
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The following result describes the connection between the sets
PD(G") and ND(G").

Theorem 5.1.6 (Schoenberg duality, noncontinuous case) For any
complez-valued function v on G the subsequent statements are
equivalent:

(i) v € ND(G").
(it) (a) ¥(0) >0 and
(b) exp (—ty) € PD(G") for all t > 0.

Proof (i) = (i). Given ¢ € ND(G") it suffices to show that
exp(—y) € PD(G"). Let therefore x1,...,xn € G*. Since the ma-
trix

(W) +¥(x5) — ¥(xi — x5)) € M(n x n,C)

is positive hermitian, also the matrix

(exp(¥(xi) + ¥ (x5) — v — x5)))

is positive hermitian. But then we obtain for ¢;,...,c, € C that

Z exp(—¥(x: — Xj))CiC;
= Z exp(v(xi) + ¥0) — ¥ ~ X5)) exp(—¥(x:))

- exp(—¥(x;))cic;

n

Z p($ (i) + ¥ 0) — 0 ~ x5))did; > 0,

where d; = exp(—¥(x:))e; € C for i = 1,...,n, and this is the
assertion.



232 Negative Definite Functions and Convolution Semigroups

(i) = (i). Suppose now that ¢ satisfies (a) and (b) of (ii). From
(a) we infer that exp (—t1(0)) < 1 for all ¢ > 0, hence by Property
5.1.5.2 that

21— exp (~19)) € ND(GY)
for all £ > 0. Moreover we have that
% = lim (1 — exp(—t1))
t—0 {
on G”, hence by Property 5.1.3.3 that ¥ € ND(G"). [ ]
The Schoenberg duality permits to prove two more important
Properties 5.1.7 of functions ¢ € ND(G").

5.1.7.1 (Forming the inverse). If (0) > 0 then % € PD(G").

By Theorem 5.1.6 the function exp(—ty) belongs to PD(G") for
all t > 0. Moreover,

lexp (—t9)] < exp (—t(0))

for all £ > 0. Consequently

0

5.1.7.2 (Approxzimation) There exist sequences (an)n>1 in Ry and
(Pn)n>1 tn PD(G") such that for the sequence (tn)n>1 with

Yn = an + (Pn(o) — ¥n (n > 1)

the limit relationship

Y =1,— lim ¢

n—oo

holds (on G™).
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In fact, considering the sequence (@p)n>1 of functions

pu =1 (== ()~ $(0))

which by Theorem 5.1.6 belong to PD(G"), and the sequence
(an)n>1 of numbers a, := 1(0) € Ry we obtain that for any x € G

. 2 _ 3
500~ a0 = 1 {(¢<x) 1) CT0) +}

hence

900 — 00l < — exp(iB(x) ~ $(0))
holds.

We note that given sequences (an)n>1 in Ry and (¢p)p>1 in
PD(G") the sequence (¥ )n>1 defined in Property 5.1.7.2 clearly
belongs to ND(G") as follows from Properties 5.1.3 and 5.1.5.2.

Examples 5.1.8 of functions in ND(G").

5.1.8.1 Any homomorphism h from G into R belongs to ND(G").
Moreover,

5.1.8.2 given a real function h on G” the function ¢ = th belongs
to ND(G") if and only if h is a homomorphism.

In fact, for all ¢ > 0 the function

x = pr(x) = exp(—tp(x))

is positive definite with [p;| = 1. But then from Example 4.3.4.2 we
conclude that ¢; € G" and therefore

exp(—tih(x + o)) = exp(—ti(h(x) + h(e)))

which implies that

h(x + e) = h(x) + h(e)
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whenever x, o € G*.

5.1.8.3 Any quadratic form g > 0 on G” belongs to ND(G").
We recall that quadratic forms q on G” defined by

g(x + o) +a(x — o) = 2[g(x) + e(0)]

for all x,p0 € G have the properties ¢(0) = 0,q9(x) = ¢(—x) and
q(nx) = n%q(x) whenever x € G* and n € N. The mapping Q :
G" x G™ — R given by

Q(x,0) = q(x) + q(e) —a(x — 0)

for all x,0 € G" is non-negative, symmetric and additive in both
variables the latter property following from the subsequent sequence
of equalities (related to the first variable):

a(x) +q(0) — a(x — o) + q(o) + q(e) — 9(c — @)
= q(0) + alo) + 2q(0) - %[Q(x —eto-o)+alx—eo~(o-0)
= 4 +4(0) — 5a0x ~ o) + 2a(e) — 5[2a0x+ 0 — o)+
2q(0) — q(x + o))
= L+ ) +22(0) — alx + 0~ o)~ ale) + 5alx +0)
=q(x+0) +q(0) —g(x+0 - 0),

X, 0,0 being taken from G”". But now

> lalx) +a0x) — alxs — x)leits = Qx,x) 2 0

1,5=1

n
forn>1, x1,..-,Xn € G",c1,...,¢n € Z and x := Ecixi, and

=1
this suffices to see that ¢ € ND(G").
For later application we note that
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5.1.8.4 given a constant ¢ > 0, a homomorphism h : G — R and
a quadratic form q > 0 on G the function

hi=c+ih+g

belongs to ND(G").
This follows from Properties 5.1.3.
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5.2 Convolution semigroups and resolvents

We are now prepared to discuss the representation of continuous
negative definite functions on G” in terms of measures on G. For
this purpose we introduce the subset

M(G) = {u & MY(C) : lul] < a)
of nonnegative measures on G bounded by a > 0.

Definition 5.2.1 A (one-parameter) family (ut)i>0 of measures in
MJ(FI) (G) is called a semigroup (of measures) in MJ(rl)(G) if the

mapping t — p from R} into Mil)(G) is a homomorphism (of
semigroups,).

(t)e>0 is said to be T,- or Ty, - continuous if this homomorphism
18 Ty- OT Ty-cOntinuous respectively. In the case of T,-continuity

Ho = Ty — lim Hi
t—0

exists, and g is an idempotent measure in M4(_1) (G).

(ut)¢>o 1s called a convolution semigroup in MJ(rl)(G) if it is
Ty -continuous and if

Ho = €p -
We then write (pt)i>0 instead of (Lt)i>o-

Remark 5.2.2 For a convolution semigroup (f¢)i>o0 in MS)(G) the
Ty- and T,,-continuities coincide.

In fact, let (ut)i>0 be 7,-continuous. Then for f € C°(G) with
0 < f<1and f(0) =1 one sees that
1 = £(0) = limy [ Faus
< llgll}(l)lf flase l

< limsup [Jufl] < 1,
t—0
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hence by Proposition 4.1.3 that
T =l gy = €.
For t,tg > 0 and x € G" we have that

[Ae(x) — Bt OO < Bt (X) — 1

holds. The above limit relationship together with a double applica-
tion of Theorem 4.3.7 for t — tg yields the assertion.

By S(G) and C S(G) we shall denote the set of semigroups and
. : : 1) .
convolution semigroups in M} ’(G) respectively.

Theorem 5.2.3 (Schoenberg correspondence) There is a one-to-one
correspondence

(Ht)ez0 — ¥
between the sets C S (G) and CND(G") given by

fre = exp(—ty)

for allt > 0.
In the situation of this correspondence (p¢)i>o and v are said to
be associated (with each other). Symbolically we shall write

(He)ez0 — V.

Proof. 1. Let (1)¢>0 € C S(G) and define for any fixed x € G" the
complex-valued function ¢, by

whenever ¢ > 0. By Remark 5.2.2 ¢, is continuous and satisfies

Px (b + u) = oy (t)oy (1)
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for t,u € R as well as

lim t)=1.

;s Px(t)
Consequently ¢, is of the form

ox = exp(—t(x))

for some unique ¥ (x) € C (¢t > 0). Clearly the function

X — ¥(x)

satisfies 1(0) > 0, and the function

X — exp(—t(x)) = fie(x)

belongs to CPD(G") for all ¢t > 0. From Schoenberg’s duality theo-
rem 5.1.6 we now infer that ¢ € ND(G"). In order to show that 1
is indeed continuous we look at the equalities

[ et = [ exp(-tta+ v
0 0 1
T 1900

valid for all x € G and note that the left hand integral of the first
equality is the Fourier transform of the Radon measure

o [ ()

in MJ(FI)(G), and as such it is continuous.

2. Conversely, let v € CND(G"). Then for every ¢ > 0 the function
exp(—ty) belongs to CPD(G") by Theorem 5.1.6. From Bochner’s
theorem 4.3.5 we conclude that there exists a measure y¢ € M3 (G)
satisfying

fie = exp(—tip)
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for each t > 0. We shall show that (u:):>0 € C S(G). First of all
¥%(0) > 0 implies that ||u¢|| <1 for all ¢ > 0. Next we conclude from
the equalities

() s (x) = exp(—t(x)) exp(—sv(x))
= exp(—(t + s)1(x))
= ﬂt+s(X)

valid for all x € G” that ¢t — p, is a homomorphism from R into

MS)(G), as follows from the injectivity of the Fourier transform
stated as Property 4.2.16.3. Since ¥ is continuous, hence bounded
on compact sets, we obtain that

lim i, = lim exp(—ty) = 1
with respect to the topology 7.,. But Theorem 4.3.7 yields
Tw — im py = €0
which implies the assertion. |

Corollary 5.2.4 (Schoenberg duality, continuous case). For any
complez-valued function ¥ on G" the following statements are equiv-
alent:

(i) € CND(GM).
(it) (a) ¥(0) >0 end
(b) exp(—th) € CPD(G™) for all t > 0.
Corollary 5.2.5 Let (ut)i>0 € C S(G) and ¢ € CND(G") with

(ut)tzo —— ¥ .
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Then

() Yl = exp(=£4p(0)) for all t > 0.

In particular,
(it) pe € M(G) for all t > 0 if and only if ¥(0) = 0.
The proofs of these corollaries are clear.
Application 5.2.6 (Generation of convolution semigroups)

5.2.6.1 (Symmetry) A semigroup (ut)i>0 € S(G) is said to be sym-

metric if py = pg for allt > 0. Let (ut)i>0 € CS(G) and ¢ €
CND(G") with

(i)tz0 —— .
Then _
(B )tz0 — ¥ .

Clearly (pi)i>0 € C S(G) is symmetric if and only if ¥ is real.
For any (ut)i>0 € CS(G) the convolution semigroup (s * u3 )i>o 18
symmeltric.

If (e)e>0 is symmetric, then py € M, +(G), since
He = Py * 4y
forallt > 0.
5.2.6.2 (Convolutions) For i = 1,2 let (,ugi))tzo € CS(G),¢; €
CND(G") with '
)20 — i
and let o; € RY. Then

a1t + opthy —— (/-‘gl)t * ufz)t)tzo .

5.2.6.3 (Products) For i = 1,2 let G; be a locally compact Abelian
group with dual G,",
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(45”)ez0 € CS(Gy), i € CND(Gy") such that

h; —— (ﬂgi))»o .

Then the function i on G1" x Go" defined by

Y(x1, x2) = P1(x1) + Y2 (x2)
for all (x1,x2) € G1" x Go" belongs to CND(G1" x G2™), and

¥ — uleun?.

5.2.7 First Examples of convolution semigroups

5.2.7.1 A semigroup in Mg_l) (G) is called a translation semigroup

in MJ(rl)(G) if there exists a continuous semigroup homomorphism
z: R4 — G such that

Bt = Ex(t)
for all t > 0.
One observes that (ut)i>0 € C S(G).
Extending x to a continuous group homomorphism ¢ : R — G by

L =) if s20
w(s) = {fx?s) lif Ss <0

and looking at the dual homomorphism h := ¢" : G* — R one
obtains that
€x(t) = exp(—tih)

forallt > 0.

Conversely, given a continuous homomorphism h : G* — R and
introducing
z:=Resg,h":Ry - GM =G

the translation semigroup (£q4(t))i>0 € C S(G) satisfies the above
Fourier representation. Here Pontryagin’s theorem 4.2.13 has been
applied.
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In summing up we have established a one-to-one correspondence
between the sets of translation semigroups (€,())tz0 n M4(_1)(G’) and
of continuous homomorphisms h : G® — R such that

(Ext) >0 < ¥,

where 1 = ih.

5.2.7.2 For pn € M2 (G) with ||ul| € « one introduces the convolution
semigroup (fit)s>0 N Mf,_l)(G) by
pe = e~ exp(tp)

with

exp(tp) ==Y QZT)TL

n>0
for all t > 0, where u® := eq. Obviously

fir = exp(—t(o — 1))
with a — i € CND(G"), hence

(Be)tz0 —— a = fi.

For o :=1 (1e)e>0 9s said to be the Poisson semigroup
determined by .

In order to stress the determining measure p we shall write

(e{p)t)i>0 instead of (w¢)e>o. But then (e(eq,)t)i>0 appears to be
the (classical) Poisson semigroup with parameter zg € G.

Let (pt)t>0 be a semigroup in S(G). For every t > 0 we shall
examine the set

Hi:={x€G": u(x) # 0}.
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Properties 5.2.8

5.2.8.1 H; is independent of t > 0 and will therefore be denoted by
H.

5.2.8.2 H is an open subgroup of G".

5.2.8.3 K := H+ = Inv(y) for allt > 0, and K will be called the
invariance group of the semigroup (1t)i>o0.

5.2.8.4 If (ut)t>0 is symmetric then
Tw — }1_13[1) Mt = WK ,

hence (pt)i>0 € C S(G).
More generally,

5.2.8.5 (ut)i>0 € S(G) is Ty-continuous if and only if the limit
relationship of Property 5.2.8.4 holds.

5.2.8.6 (u:)t>0 € S(G) is a convolution semigroup (€ C S(G)) if
and only if (uy)i>o s Ty -continuous and has invariance group K =
{0}.

It suffices to provide arguments for Properties 5.2.8.1 to 5.2.8.4.
Concerning 5.2.8.1 we note that from the homomorphism property
of ¢ — p; we obtain that

H;CH=H, C H,

whenever 0 < t < s and n € N is chosen such that s < nt. The
assertion follows.

For 5.2.8.2 we observe that H is a subgroup of G if and only if
1y € PD(G). In order to show this characterizing property we as-
sume without loss of generality that (u;):>0 is symmetric; the general
case follows via symmetrization (See 5.2.6.1) by just looking at the

equality
Hy={x € G": (u»us ) (x) # 0}
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for t > 0. For symmetric (4¢)t>0, however, we have 0 < fi; < 1, hence
— lim {2 = lim 4%
™~ fim iy = lim i

=1H>

i
n

and from Property 4.3.3.4 we conclude that 1y € PD(G"). Since
{1 > 0 in a neighborhood of 0, H is open (hence closed), thus 15 €
CPD(G").

For a proof of 5.2.8.3 one just refers to the fact that supp (fi;) = H
and applies Property 4.4.18.1.

Finally we provide an argument for 5.2.8.4. Since the function
t — fiy(x) is decreasing for each x € G” and consequently

T, — lim 1y =1
P t—-»out H

holds (by the above limit relations), the continuity theorem 4.3.8
applies, and together with 4.4.22 it implies that

Tw — lim py = wie .
t—0

In the subsequent discussion we shall employ the symbol S(G, K)
for the set of all 7,,-continuous semigroups in S(G) admitting K as
invariance group. Clearly, S(G, {0}) = C S(G).

Theorem 5.2.9 (Generalized Schoénberg correspondence). There is
a one-to-one correspondence

(Mt)ts0 —— ¥

between the set S(G, K) and the set CN D(H) of continuous negative
definite functions ¢ on the open subgroup H := K+ of G" given by

1(x) = {exp(—t¢(X)) if xe H
Xy = 0 if x & H.

Remark 5.2.10 First of all we realize that by 4.2.17.5 K= is in-
deed an open subgroup of G™.
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Moreover, given any open subgroup H of G and 1 € CND(H)
the T -continuous semigroup (ps)i>o € S(G) with

(Ut)e>0 «—— ¥

has K := H* as its invariance group, hence belongs to S(G, K).

The proof of the theorem is performed similar to that of Theorem
5.2.3. One just has to observe that in constructing the semigroup
(pt)t>0 € S(G) the functions appearing in the Fourier representa-
tion of (u:)i>o are belonging to CND(G"). But this follows from
Property 4.3.2.5, since H is an open subgroup of G”.

Remark 5.2.11 For the special choice K = {0}, i.e. H = G*, the
correspondence theorems 5.2.3 and 5.2.9 coincide.

Until now we studied convolution semigroups corresponding to
continuous negative definite functions. A further object to associate
with them is the resolvent family originating from the potential the-
ory of semigroups of operators.

Definition 5.2.12 A (one-parameter) family (0))x>o0 of measures
in M8(G) with |Aoxll < 1 for all X > 0 is called a resolvent (of
measures) in M3 (G) if it satisfies the resolvent equation

ox — 0p = (L—A)oxr * 0,

valid for all A\, > 0.

In analogy to the invariance group of a semigroup of measures we
introduce for a resolvent of measures (0x)r>0 in M2 (G) the set

Ly = {X eGM: @)\(X) #* 0}
for A > 0 and show the following
Properties 5.2.13

5.2.13.1 L) s independent of A > 0 and will therefore be denoted by
L.
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5.2.13.2 L is an open subgroup of G™.

5.2.13.3 M := L+ = Inv(py) for all X > 0, and M will be called
the invariance group of the resolvent (g))x>a-

5.2.13.4
Tw — lim )\Q)\ = Wpr .
A—o00

For the proofs of these properties we simulate the arguments
provided for the Properties 5.2.8. It suffices to verify that 1, €
CPD(G").

In fact
Tp — lim /\@,\ = ].L,
A—00
since .
By = 01
AT 1+ (A= 1)p

for all A > 0 by the resolvent equation, and this implies

lim Adx(x) =1

n—oo

whenever x € L. Property 4.3.3.4 together with the openness of L
yields the assertion.

In what follows we shall use the symbol R(G, M) for the set of all
resolvents in M? (G) admitting M as their invariance group. An ana-
logue of the generalized Schoenberg correspondence theorem reads
as follows

Theorem 5.2.14 (Resolvent correspondence). There is a one-to-one
correspondence

()0 +— (02)r>0

between the sets S(G, K) and R(G, K) given by

o0
ox = / e My, dt,
0



Convolution semigroups and resolvents 247

where this equality is understood as an equality of Radon measures

on G.

In the case of this correspondence (iit)i>0 and (0x)a>o0 are said to
be associated.

Proof 1. Starting with a semigroup (u:)i>0 € S(G, K) we define
Radon measures gy € M, (G) by

fonce [ ()

for all f € C°(G). Applying the generalized Schoenberg correspon-
dence theorem 5.2.9 in the sense of

(tt)t>0 &
with 1 € CND(H), where H := K1, we obtain that ||Aox| < 1,
hence that gy € M%(G), and that
0 if xé¢&H.

Ox =

From this Fourier representation it follows that (¢)x>0 is a resolvent
in M%(G), and that it determines the function % as well as the 7~
continuous semigroup (f¢)¢>o uniquely. It is clear that (g))a>o has
the same invariance group as ()0, hence € R(G, K).

2. Now, let x € H := K'. From the resolvent equation we deduce
that the number .
_1-2a)

VAl : ox(x)

is independent of A > 0. Consequently ¥ := ) is a well-defined
complex-valued function on H. In the proof of Properties 5.2.13 we
showed that

lg=1— )\lim A0y -
On the other hand

A0 ()Y(x) = A1 = Ada(x))
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for all x € H, A > 0, hence
¥(x) =1 (x)$00 = lim 2x()p(x) = lim A1 - Aéa(x))

for all x € H, and consequently vy € CND(H) by Property 4.3.3.4.
But now Theorem 5.2.9 implies the assertion, since

* At " 1
- dt] =——1g=9p
(A € Ht ) A'{"'ﬂb H Ox,

whenever X > 0. |

Corollary 5.2.15 A resolvent (0x)x>o0 in MS(G) determines a con-
volution semigroup (ut)i>o in Mg_l) if and only if the invariance
group of (0x)x»0 equals {0}.

This is immediate from the theorem together with Property
5.2.8.5.

Theorem 5.2.16 (Support correspondence) Let (u¢)e>0 € C S(GQ),
and let (ox)a>0 be a resolvent in M8 (G) with

(#t)tzo — (oa)r>0-

Then for each A > 0

) supplon) = (U supp(0))

(i) supp(g\) is a o—compact semigroup in G with 0 € supp (0,),

and

(#i) S :=[|J supp ()]~ is o—compact.
>0

Proof. We fix A > 0 and f € C$(G). Then

/fdg,\zo ifandonlyif/fd,ut:O forall ¢t >0.
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Since by assumption on (1 )¢>0
Ty — lim py = €
v im0 H 0

f(0) > 0 implies [ fdox = 0, hence 0 € supp (). Similarly, given
an open subset U of G we have

supp (gx) C U¢if and only if supp (u;) C U°

for all t > 0, and

supp (o) = (U supp (ut))

t>0

as asserted in (%).

From the support formula quoted in Theorem 4.1.10 we conclude
that for s,t > 0

supp (us) + supp (i) C supp (fi+s),

hence that B
(U supp (ut))
t>0

is a semigroup which we have shown to contain 0. Since every mea-
sure in M3 (G) has o-compact support, (4) implies (4i).
Finally,

S = [ supp ()]~ = (supp (e) — supp (21))™ -
t>0

But the set supp (gx) — supp (0») being o-compact, also its closure
and hence S is o-compact. This proves (%ii). [ |

Theorem 5.2.17 Let (p)i>0 € C S(G) and ¢ € CND(G") with

(Mt)tzo — ’d))
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and let S := [|J supp (pe)]”-
>0
Then

(i) T:= Inv(y) ={x € G":¥(x) = ¥(0)}.
and
(ii) S =T+, hence T = S+,

Proof. For each t > 0 we define the set

Ay :={x € G" : exp(—th(x)) = exp(—t1(0))} .

Clearly,
x € Inv () if and only if x € Inv (exp(—ty))
for all ¢ > 0. By Property 4.4.18.2 this implies that

Inv (w) = m At = {X € GA "/)(X) = ¢(0)}>

>0
hence (3).

Moreover, Properties 4.4.18.1 and 4.4.18.2 lead to

Ay = Inv () = (supp (u1))*
for all ¢ > 0, and therefore to

1
(Inv(y))* = (ﬂ(supp (Nt))J_)

t>0

11
= (ﬂ supp (m))

t>0

which by Property 4.2.17.1 yields the assertion in (%).

By passing to quotient groups and applying the Pontryagin duality
the discussion starting with Properties 4.4.19 can be extended in an

obvious way.
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Properties 5.2.18

5.2.18.1 If (141)¢>0 95 a semigroup in ME) (G) with invariance group
K, then (fut):>0 is a semigroup in Mfrl)(G/ K) with invariance group

{0} (in (G/K)).

If, moreover, (u:)i>o0 € S(G, K), then (fit)t>0 € S(G/K,{0}) =
C S(G/K).
5.2.18.2 Let (0x)a>0 € R(G, K) and let (111)1>0 € S(G, K) with

(#t)i>0 < (ox)r>o0 -
Then (9x)r>0 i a resolvent in M2 (G/K) with
(0x)a>0 < (f1)i>0 € C S(G/K).
5.2.18.3 Let (pt)i>0 € C S(G) and € CND(G") with
(t)tz0 «— ¢

Then the quotient function 1) € CND(G/S) corresponds to (u:)s>0

considered as an element of C S(T'), where S = Inv(¢) and T :=
S+t
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5.3 Lévy functions

In the previous section it was shown that the constant functions, ho-
momorphisms and nonnegative quadratic forms on the dual G* of a
locally compact Abelian group G are negative definite. The question
arises of whether these types of negative definite functions can be
viewed as building blocks of general negative definite functions on
G”. An answer to this question can be given within different frame
works. In probabilistic terms it covers the canonical decomposition
due to P. Lévy and A.I. Khintchine of infinitely divisible or embed-
dable probability measures on Euclidean space (See Theorem 3.4.20).
In the present exposition we shall present a canonical representation
of negative definite functions on the dual G" of a locally compact
Abelian group G which by the Schoenberg correspondence provides
also a canonical representation of the associated convolution semi-
groups on G.

We start with the discussion of a fundamental centering method

developed in terms of a centering function (or local inner product)
for G.

Definition 5.3.1 A function g € C(G x G") is called a Lévy func-
tion for G if the following conditions are satisfied

(LF1) For every compact C C G"

sup sup |g(z, x)| < oo.
z€G x€C

(LF2) g(z,x + o) = g9(z,x) + 9(z, 0)

and
g(=z,x) = —g(z,X)
for all z € G,x,0 € G.

(LF3) For every compact C C G there ezists a U := Uc € V(0)
such that

x(z) = expig(z,x)
whenever x € U, x € C.
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(LF4) For every compact C C G"

lim sup g(z,x) =0.
z—0 x€C

Examples 5.3.2 of Lévy functions

5.3.2.1 If G := R ford > 1 and if for everyi = 1,...,d a function
¢; € C°(R) is given with the properties that

Gt) =t
for all t from some U € UV(0) and that
G(=t) = —Gi(?)

for all t € R, then the function g : R¢ x R? — R defined by

d
9(z,y) =Y Gl
i=1

forallz = (x1,...,%4) andy := (y1,...,¥a) in R? is a Lévy function

for G.

5.3.2.2 Let G := T¢ for d > 1. Then G can be viewed as the group
{(z1,...,2¢) ER%:z; €] - L1 foralli=1,...,d}

with addition modulo 2. Employing for everyi = 1,...,d the function

¢; introduced in the previous example one obtains a Lévy function g
for G by putting

d
gl@,m) == G(z:)m
i=1
for all z = (z1,...,z4) € T and m := (my,...,mq) € Z°.

5.3.2.3 Let G := Q" (the dual of the discretely topologized ra-
tionals), ¢ € C®(G), and let xo € Qq with xo # 0 be such that
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expiC(z) = xolx) for all x in some U € V(1). Then the real-valued
function g on G x G" defined by

X
9(z,x) == {(z) ==
X0
for all z € G,x € G" is a Lévy function for G.

5.3.2.4 If G is totally disconnected, then the zero function on G x G"
is a Lévy function for G, since every homomorphism from G” into
R is trivial.

Properties 5.3.3 of Lévy functions

5.8.3.1 (Products) Let G = G1 x Gy be the product of two locally
compact Abelian groups G1 and G admitting Lévy functions g1 and
g2 respectively. Then G admits the Lévy function g given by

9(z,x) == g1(21, X1) + g2(22, X2)
whenever T == (21,22) € Gy X G2 and X = (x1,Xx2) € Gi" x G

5.3.3.2 (Extensions) Let H be an open subgroup of a locally compact
Abelian group G admitting a Lévy function go. Let ©" denote the
canonical homomorphism G® — H" 2 G"/HL. Then the function
g on G x G" defined by

9(z,x) = {go(m,gA(x)) iii Z g

and all x € G" is a Lévy function for G.

In fact, g € C(GxG"), since H is an open, hence a closed subgroup
of G. The remaining properties of g follow from those of gq.

Theorem 5.3.4 On any locally compact Abelian group G there exists
a Lévy function.

Proof 1. From Property 5.3.3.2 we infer that it is sufficient to
prove the theorem for an open subgroup H of G. Choosing H as the
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subgroup generated by an open compact neighborhood of 0 € G we
can apply the structure theorem 4.2.19 and obtain the direct product
decomposition

H2RYxZ°x K

where d,e > 0 and K is a compact Abelian group. But now it is
obvious by Property 5.3.3.1 that we may without loss of generality
assume G to be a compact group, since for R and Z¢ Lévy functions
exist by Examples 5.3.2.1 and 5.3.2.2 respectively.

2. Let G be a compact Abelian group. For the connected component
Gy of the identity 0 € G we have

G 2 GN/Gyt and (G/Go) = Gyt

by the functorial properties 4.2.17 of the duality. Since G¢ is con-
nected and compact, Go” is a discrete group in which each element
is of infinite order. An application of Zorn’s lemma yields a maximal
family {d, : @ € A} in Go” with the following linear independence

property: If
!
Z Na;Ga; =0
i=1

for some [ € N,ng,,...,Ne, € Z and da,,...,ds, € {da : @ € A},
then n,, = 0 for all 4 = 1,...,1. But then for any d € Go" there
exist dg,y...,do, € {da : @ € A} and n,nq,...,n5 € Z,n > 0 such
that

k
nd =" nida,, (1)
i=1

where the representation is unique within multiplication by integers.
Each element of Gy” being a coset of Got in G” we take the coset d,,
and choose an element x, € G from this coset. x, will be fixed for
the moment. One observes that there exists a function h,, € C(G)
having the following properties:

Ithl S ,



256 Negative Definite Functions and Convolution Semigroups

for all x € G, and
Xa(z) = exp thxa(z)

for all z € G such that |xa(z) — 1] < 4. Next we define

9(z,Xa) = hxa(T)

for all z € G and o € A.

Now, let x € G" be arbitrary. Then x belongs to some coset of Got
being an element of G /Go*. This element d admits a representation
of the form (1) with n,ny,...,nx € Z,n > 0and da,,...,do, € {da:
a € A} (k > 1). The function g defined by

k
9(z,%) = D L g(2, Xay)

for all z € G,x € G" will serve as a Lévy function for G. We shall
show the required properties in
3. First of all ¢ € C(G x G"), since = — g(z,x) is continuous on
G for each x € G" and G” is discrete. Properties (LF1) and (LF2)
follow directly from the construction.

Since compact sets in G” are finite it suffices to prove Property
(LF3) for each x € G*. For any x € G" we denote the coset of Go™
to which x belongs, by x. Then (1) can be rewritten in the form

k
nx = Z N5 X, - (2)
=1

Clearly, x1 — x2 € Go* whenever x1, x2 € x. Since Go* = (G/Go)"
is totally disconnected, every element of Go? is of finite order. Hence
for any x € GoT there exists a neighborhood V € 5 (0) such that
x(z) = 1 for all z € V, and consequently, for xi,x2 € x we have
x1(z) = x2(z) for all z in some Vi € V(0).

But now we refer to the construction of the function h,, above.
There exists a neighborhood V4 € Ue(0) such that

Xolz) = exp ig(z, Xa)
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for all z € V3 (a € A). For arbitrary x € G we employ (2) in order
to obtain the representation

k
ny = Z(Xajl + oo Xayny ) (3)
j=1

where Xa,1,-++yXa;n; € Xa; for j = 1,...,k. For the above dis-
cussion it follows that there exists a neighborhood V3 € U (0)
(depending on the characters xq,r and xq,) such that

Xoyr(T) = Xay; (2)
forallz € V3 (r=1,...,n;,7=1,...,k). Let U; denote the inter-
section of all neighborhood of type V3 arising from the choices of the

Xayr(r =1,...,n5,5=1,...,k). Then

Xayr(2) = Xa, (€) (4)

forallz € Uy,r=1,...,n;,j=1,...,k. But (3) and (4) imply that

X(x)n = H Xoéj (x)nj

for all z € U;. Since there are neighborhoods € U(0), on which
Xa; = €xpig(*; Xa;)

holds, there is also a neighborhood € U(0) where
X" = exp(ing(-, X))

is valid. x and expig(-, x) being continuous and # 0 at the identity
0 of G' we obtain the desired neighborhood U € % (0) such that

x(x) = expig(x, x)

forall z e U, x € G".
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Finally we note that Property (LF4) follows from the facts that
g € C(G x G") and that g(z, x) = 0 whenever either x or  are the
identities of G or G” respectively. The proof is complete. [ |

Applying a Lévy function g for G we can provide a new type of
continuous negative definite functions on G” which will be crucial
for the canonical representation we are aiming at

Theorem 5.3.5 Let g be a Lévy function for G, and let u € M (G™)
with G* := G\{0} be such that

/(I—Rex)du<oo
G)(

for all x € G™. Then the function v, on G defined by
m
/ (1= X(@) + gz, x))ulds)

for all x € G" belongs to CND(G").

Proof. For a fixed yg € G" and a compact neighborhood W €
Ve (0) there exists by Property (LF3) of g a neighborhood U =
U(W) € D(0) such that

x(z) = exp ig(z, x)

for all z € U and x € xo + W. Then Property (LF4) implies the
existence of a neighborhood U’ € B(0) satisfying the inequality

|sing(z, x) — g9(z,x)| <1-cosg(z,x)

valid for all z € U’ and x € xo + W. It follows that for all z € U’
and y € xo+ W

|1 - X(@) +1 g(z,x)] = |1 — cos g(z, x) — ising(z, X) + i g(z, X)|
< 2[1 - Re x(z)| (5)
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Since u(G*\U’) < oo by assumption, Property (LF1) implies that
Yu(xo) is a well-defined number € C and moreover that there exists
a constant ¢ := ¢(xo) > 0 such that

W);L(X)l <2Re "pu(X) + C(XO) (6)

whenever x € xo + W. Since for every z € G the functions

x = 1—x(x) +ig(z, x)
and
x — 1 —Re x(z)
belong to ND(G"), also v, and Re ¢, are elements of ND(G").
Here Example 5.1.8.2 and Properties 5.1.3 are applied.

It remains to show that 1, is continuous. Once we know that
Re 1, is locally bounded, inequality (6) justifies the local bounded-
ness of +,,. Let therefore 1, be of the form

X /(1—Re x)dp .
GX

Let K denote the family of the compact subsets K of G with 0 ¢ K,
and set for each K €

ur = Res gu.
Clearly ,, € CND(G") for all K € K, hence

Py, = sup Y., € ND(G")
Kek

is lower semicontinuous. For every n > 1 the set A, = {x € G" :
Yu(x) < n} is closed. Since 9, is finite everywhere we have G =

U A, and by Baire’s theorem there exists an ng > 1 such that
n>1

Any # 0. Let V' be an open neighborhood € U (0) and let x1 € Ap,
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be such that x; + V C Ap,. Since ¢, € ND(G") we obtain from
Property 5.1.2.3 for all x € xo+V (x0 € G) and x5 := xo — x1 that

V00 = y/ulx = x2 + x2)
< \/';Z)u(X — X2) + \/d’u(X?)

< v Yu(x2) + /1o,

hence that 1, is locally bounded. Since 1), is a complex linear combi-
nation of linear semicontinuous functions, it is locally wgA-integrable,
and given a function f € C§(G") satisfying f(x) = f(—x) for all
x € G" and [ fdwgs = 1 we conclude that

w100 = [ 1= o) [ (1= 2@+ g(a, )tdo) ) (do)
G Gx

= [ X@ e f(0) +i s(a0)nida)

GX
=000+ [ X@)(1 - For f(@)ilde)
GX

whenever y € G”. But this implies the continuity of v, since the
last integral in the above chain of equalities is the Fourier transform

of the measure (1 — Fgn f) - p € ME(G*) considered as a measure
on G. ]
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5.4 The Lévy-Khintchine representation

For any locally compact space E we denote by M¢(E) the set of
Radon measures with compact support. In the case of a locally com-
pact Abelian group G with dual G” the set

S:={oce MH{GNNMG"):0=0"}

of symmetric probability measures on G”* with compact support will
be efficiently applied.

Theorem 5.4.1 Let p € CND(G"). Then

(i) for any o € S the functions i o — 1 belongs to CPD(G") and
hence admits a Bochner measure i, € MS(G) in the sense that

Foteg =th*x0—1.

(it) There exists a measure y € M (G*) satisfying (1 —Fgro)-p =
Res gx pis whenever o € S.

(vii) If 1 is associated with a convolution semigroup (p¢)i>o in
Mil) (@) according to the Schoenberg correspondence, then

il

.1
2 Tv — }l_r'% ERGS ax Mt .

Remark 5.4.2 The relevant references to statements (i) and (i) of
the theorem are Theorems 4.3.5 and 5.2.3 respectively.

Definition 5.4.3 The measure u established in Theorem 5.4.1 is
called the Lévy measure for the continuous negative definite func-

tion 3 or for the convolution semigroup (pt)i>0 associated with 1.

Proof of Theorem 5.4.1. Let 9 < (u:)i>0 (via Theorem 5.2.3) and
let ¢ € S. Then for any t > 0

1
(1 — .7:6/\0') : ?/.l/t c M_?_(G)
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and

Fol(1 = Fona) - zul0) = ;. [ X@H1 ~ Foro()pu(da)

= %/W(l —/Q(:L’)U(dQ))ﬂt(dm)
= %(/Jt(X) - / / (x — Q)(w)a(de)u(dt))
= ~(a00) — i+ o ()
= %(1 —exp(—tyY) * (o — €0))(x)
for all x € G*. Since
Teo — hm ! (1 — exp(—tp)) =
we obtain that
) 1
lim F5[(1 - Fgno) - Tl =Yxa -9

in either of the topologies 7, and 7,. As a conclusion we obtain that
Yxo—1 € CPD(G"), and by an application of Theorem 4.3.7 that

) 1
Tw — }13(1)(1 — Fgnro) - THE = o
where p, € M3 (G) such that

foo =% *0—19.

Given 9 € C$(G) with supp () C G* we choose o € S such that
Foro(z) < 3 for all z in a neighborhood of supp (¢). The function
¢ on G deﬁned by

, ﬁ”é% if € supp (i)
@' (z) =
0 otherwise
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belongs to C$(G), and

i [0 d(gm) =t [ (0= Foro o)

= / ¢'dpg .

This implies that there exists a measure u € M, (G*) such that
.1
p=1, - lim ZReS Gx Mt

and that
(1 —Fgro) - = Res gx o

holds for all o € S. [ ]
5.4.4 Properties of Lévy measures

5.4.4.1 Any Lévy measure ¢ of a function v € CND(G") (or of

its associated convolution semigroup in Mil)(G) ) has the following
properties:

(a) /(1 ~Re x)dp < 00
Gx
for all x € G*.
(b) For every compact neighborhood V € B (0)
Res yep € M:’L(G)
While the statement in (a) follows directly from Theorem 5.4.1 by

specializing o to the measure %(EX +e_y) for x € G", the statement
in (b) makes use of the existence of o € S satisfying

1 - Fgro(z) >

[Nl
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for all z in the complement V¢ of a compact neighborhood V €
V(0); one just applies (ii) of Theorem 5.4.1 and deduces the in-
equalities

/@du32/¢ﬂﬂ—f@wrﬂ

=2/¢Ww

valid for each ¢ € C$(G) with supp (p) C V.

5.4.4.2 Let ¢, € CND(G") be the function introduced for a given
measure p € M4 (G*) in Theorem 5.3.5. The Lévy measure of v, is
Just p, hence p is uniquely determined by 1,,.

In fact, for o € S and x € G we obtain the identity

Y000 =00 = [ X@I(L = Faro)(a)u(da)

Gx

and it follows that the measure (1 — Fgnaco) - p considered as an
element of M (G) has 9, * o — ¢, as its Fourier transform.

5.4.4.3 Let 1,92 € CND(G") (associated with convolution semi-

groups (/L,(gl))tzo and (p§2))t20 respectively) admit py and pg as their
Lévy measures. Then the function ¥ := 13 + 2 € CND(G") (asso-
ciated with the convolution semigroups (,ugl) * ,u§2))t20) admits pu =

11+ po as its Lévy measure.

Example 5.4.5 Let p € M2 (G) with ||p|| < 1. Then by Ezample
5.2.7.2 = 1— [ is the continuous negative definite function asso-
ciated with the convolution semigroup determined by p. It turns out
that the Lévy measure for 1 is Res gx .

By a simple computation of Fourier transforms and an application
of their sequential bicontinuity (Theorem 4.3.8) one shows that any

convolution semigroup (u¢)t>0 in MJ(rl) (@) with associated resolvent
(0x) x>0 can be obtained as a limit of convolution semigroups (13):>0
determined by A%p, in the sense that

: A
pt = Ty — lim
A—o00



The Lévy-Khintchine representation 265

for all ¢ > 0. It is easy to see that for the Lévy measure u of (14¢)i>0
one obtains
u =T, — lim Res gx Aoy
A—o0

We are now prepared to characterize the two types of continuous
negative definite functions introduced in Examples 5.1.8.2 and 5.1.8.3
in terms of measures in S.

5.4.6.1 A real-valued function h € C(G") with h(0) = 0 is a (group)
homomorphism if and only if hxo —h =0 for alloc € §.

In fact, for any homomorphism & : G* — R and each 0 € S we
have
/ h(g)o(de) = / h(—e)o™ (de)
— - [ hootde)

hence [ hdo =0 and consequently

h*o(x) = /h(X ~ 0)o(do)

=Mm—/h@d@)
= h(x)

whenever x € G". If conversely this latter condition holds for o € S,
then we obtain for x,0 € G" and 0 := %(5x +e_,) that

0=h=*o(e) — h(e) = Z[h{e — x) + k(e + X)] — h(o),

N

in particular for the choice ¢ = 0 that

SR(=x) + k(0] = 0.

Analogously we obtain

0= 2{hlx — ) + hlx + &)l — (),
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hence adding the two equalities yields

h(x + @) = h(x) + k(o).

As an immediate consequence of this property we note that

5.4.6.2 the Lévy measure for a function ¥ € CND(G") of the form
Y := ih with a continuous homomorphism h : G — R is the zero
measure.

With similar arguments one proves that

5.4.6.3 for a function v € CND(G") with Lévy measure u the func-
tion i Im ¥ € CND(G") if and only if u is symmetric.

5.4.6.4 A symmetric real-valued function ¢ € C(G") with ¢(0) = 0
is a quadratic form on G” if and only if there exists a constant c € R
such that

g*xoc—q==c

whenever o € S. In the affirmative case ¢ > 0 if and only if
gxoc—q20

forallo € S.

For the proof let ¢ be a quadratic form on G”. Then for ¢ € S
and x € G we have

gro(x) = / q(x — 0)o(de)
= / a(x + e)o(de)
= / %[Q(X —0) +q(x + 0)lo(do)
= 160 + at@otdo)

= 400 + / a(0)o(do).
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If conversely g x 0 — q equals to a constant ¢ € R for all o € §,
then for x, 0 € G and o := (¢, + £_,) we obtain

g*a(x) —q(x) = g¢*o(0) — ¢(0)

or
%[Q(X +0)+alx—0)]—alx) = %[q(e) + q(—0)] = q(0) -

These equalities also yield the remaining part of the assertion.

As an immediate consequence of 5.4.6.4 we arrive at the assertion
that

5.4.6.5 a real-valued function ¢p € CND(G") with ¥(0) = 0 having
Lévy measure p is a quadratic form > 0 if and only if j is the zero
measure.

In fact, from 5.4.6.4 follows that 1 is a quadratic form if and only
if the measure u, introduced in (%) of Theorem 5.4.1 is supported
by {0} for all & € S. But this statement is equivalent to g being the
ZEr0 measure.

Theorem 5.4.7 (Canonical representation of continuous negative
definite functions)

Let g be a Lévy function for G. For any complez-valued function
¥ on G the following statements are equivalent:

(i) ¥ € CND(G).
(i3} There exist a constant ¢ > 0, a continuous homomorphism h :

G" — R, a nonnegative continuous quadratic form on G and
a measure u € M (G*) satisfying

/(1—Rex)du<oo

G X

for all x € G™ such that

Vi) =+ 00+ 900+ [ (1= X + i )u(da) (1)
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whenever x € G*.

Moreover, the canonical quadruple (c,h,q, 1) with ¢ := ¥(0), ¢
giwen by

.1
g(x) = lim —5 Re 9(nx) (8
for all x € G, and u being the Lévy measure for v is uniquely
determined by 1, the function ih, however, depending on the choice

of the Lévy function g.

Proof. (i) = (ii). Let € CND(G"). The Lévy measure p of 9
coincides with the Lévy measure ¢’ := 1—c. Introducing the function

v =y =,

where 1), has been defined in Theorem 5.3.5, we obtain that

v xo -9 = pu,({0]), (9)

where u, € M2(G) for o € S has Fourier transform

fa(ua)=¢*0-¢

(See the proof of Property 5.4.4.2). In fact,

qb” *a—qb” =o' xo - — (W, xo—1,)
= Fc (ko ({0})e0 + Res gxpio) — Fa((1 — Fgro) - )
= ps({0}).

Now taking real and imaginary parts in the identity (9) we arrive at
the equalities

(Re ") xo—Re )’ = puq({0})

and

Imyp Vxo—Imy =0

for all & € S. Since ¢ is a difference between negative definite
functions we have that

Im " (0) =Re s (0)=0
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and . .
Re ¢ (x) =Re v (—x)

for all x € G*. Application of the characterizations 5.4.6.1 and
5.4.6.5 provides the desired homomorphism h = Im 1/)” and the non-
negative quadratic form g := Res 4 . The representation (7) has
been established.

(it) = (i). We are now given the function v represented as in (7) via
the quadruple (c,l,q, ). Then Example 5.1.8.4 and Theorem 5.3.5
imply that ¥ € CND(G"). But by Property 5.4.4.2 together with
characterizations 5.4.6.1 and 5.4.6.5 p is the Lévy measure for ¢ and
¢ = 1(0). It remains to be shown that g satisfies the limit relation
(8). Since h is a homomorphism and g a quadratic form (on G*), we
have 1
a(x) = —a(nx)
1 1. c 1
= —¥(nx) -~ i) - 5 — S¥u(nx)

for all x € G" and n > 1. Hence it suffices to prove that

) 1
lim Fw“(nx) =0

n—oe

or by the dominated convergence theorem that

lim i(1 —nx(z) +1ig(z,nx)) =0

n—oo ’n,2

as well as

1 .
ﬁll —nx(z) +1i g(z,nx)| < C|1 — Re x(z)]

holds for all x € G,n > 1 and some constant C' > 0. While the above
limiting relationship is evident, the inequality requires a look back
to the estimate (5) in the proof of Theorem 5.3.5 and an argument
in support of the inequality

%(1 — Re nx(z)) < C(1 - Re x(z))
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valid for all z € G,n > 1. The latter can be established as follows:
For fixed z € G and x € G” there exists ¥ € [~m, ] such that
x(z) = €*. It follows that

%(1 — Re nx(x)) = —1—2(1 — cosnd)

2 sin® 22 ’"9 2sin?

n2 2 sin?

since the functions y — s‘—gﬂ is bounded away from 0 on [, Z].

Now, by Property 5.4.4.2 the quadruple (¢, b, g, 1) is uniquely de-
termined by 7 and deserves to be called canonical. [ |

Remark 5.4.8 In the special cases of bounded or symmetric Lévy
measures pu for v the canonical representation given in Theorem 5.4.7
does not require the use of the Lévy function g which had been in-
troduced in order to achieve the absolute convergence of the integral

defining v¥,,.

Discussion 5.4.9 of the classical Lévy-Khintchine formula
(See Remark 3.4.21).

In the case G = G" = R? (d > 1) warious Lévy functions (apart
from the one introduced in Example 5.8.2.1) can be given. Unfortu-
nately the classical function go defined by

(z,y)
)= T e

for all (z,y) € R% x R? is not a Lévy function in the sense of Def-
inition 5.3.1. A slight modification of the above approach, however,
makes it possible to obtain the classical analogue of Theorem 5.4.7.
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In fact, for a measure u € M ((R%)X) the condition

/ (1 — Re e"#®¥))(dz) < 0o
(R2)x

valid for all y € R? is equivalent to the condition

[ talPutaz) + [ uian) <,

Ui\ {0} Uy

where U; denotes the unit ball with center 0 and radius 1. Moreover,
it can be shown that for any compact subset K of R? there exist a
neighborhood V' € YR« (0) and a constant ¢ > 0 such that

11— @) 1+ igo(z,y)| < cllzl®

for all x € V,y € K. This inequality together with the above finite-
ness condition is the proper replacement for the canonical estimate
(5) in the proof of Theorem 5.3.5.

With these tools at hand the previous arguments yield the equiva-
lence of the following statements valid for any complex-valued func-
tion ¥ on R4

(i’) ¥ € CND(RY).

(ii’) There is a canonical quadruple (c, h,q,p') as in (ii) of Theorem
5.4.7 with a bounded Lévy measure u' € My ((R%)*) such that

Y(y) = c+ih(y) + a(y)

o ilmy) \ 1+ [l?
+ / (1—6’(m’y)+ ) dx
T i) el * @

(R2)x

for all y € R%.

In order to relate Theorem 5.4.7 for locally compact Abelian
groups to the Lévy-Khintchine decomposition theorem 3.4.20 for
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separable Banach spaces we proceed as follows. As a direct conse-
quence of Theorem 5.4.7 we obtain

Theorem 5.4.10 (Canonical representation of convolution semi-
groups)
Let g be a Lévy function for the underlying locally compact Abelian

group G. Then any convolution semigroup (pi)i>0 € C S(G) has a
Fourier representation

fit = exp(~ty)

valid for all t > 0, where the negative definite function 1 € CND(G")
associated with (ut)i>0 admits a canonical quadruple (c, h,q, 1) of the
form (7) in Theorem 5.4.7.

The proof of this statement follows from the Schoenberg corre-
spondence theorem 5.2.3 (together with Theorem 5.4.7).

As in Section 2.3 for separable Banach space we may also for locally
compact Abelian group G introduce the notions of infinite divisibility
and embeddability of probability measures on G.

Definition 5.4.11 A measure u € M'(G) is called infinitely di-
visible if for every n € N there exists an n-th root of pu, i.e. a
measure pu, € M(G) such that

fin = B

w € MY(G) is said to be embeddable if there exists a convolution
semigroup (ut)e>o0 in MY (G) such that py = p.

The sets of infinitely divisible and embeddable probability measures
on G will be denoted by I(G) and EM(G) respectively.

Clearly,
EM(G) c I(G),

but the inverse inclusion fails to be true in general. In the special
case G := R%, however, the sets I(G) and EM(G) coincide (See the
embedding theorem 2.3.9 for arbitrary separable Banach spaces).

With this notation we add
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Corollary 5.4.12 (to Theorem 5.4.10). Any measure u € EM(G)
with embedding convolution semigroups (p¢)i>0 € C S(G) has a
Fourier representation

= exp(~1),

where v € CND(G") associated with (ps)e>0 admits a canonical
quadruple (¢, h,q, ) of the form (7) in Theorem 5.4.7.



6

Probabilistic Properties

of Convolution Semigroups

6.1 Transient convolution semigroups

The probabilistic notions of transience and recurrence for stationary
independent increment processes can be discussed in terms of convo-
lution semigroups. This analytic treatment yields further interesting
results of potential-theoretic nature.

Let G denote a locally compact Abelian group. For a convolution
semigroup (u¢):>0 in C S(G) with associated resolvent (0x)x>0 and
any function f € C$(G) we observe that the mapping

AH/fdQA=/0°° e M g (f)dt

for R} into R is decreasing. Hence the monotone convergence theo-
rem implies that

gg/wm=A we(f)dt < oo.

274
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Definition 6.1.1 A convolution semigroup (pt)i>0 in C S(G) is
called transient if

[e o]
lim /fdg,\ =/ pe(f)dt < oo
A—0 0
for all f € C$(G), and in this case

Ki=T, — )1‘1_.1?% ox € M+(G)

is said to be the potential measure of (jut)i>0-

(pt)i>0 is called recurrent if (u.)i>o is not transient.
Discussion 6.1.2

6.1.2.1 Theorem 5.2.16 and its proof imply that the potential mea-
sure & of a transient convolution semigroup (ui)i>o0 € C S(G) with
associated resolvent (9x)x>o has the property that

supp (x) = supp (ex) = (| supp (1))~
t>0

(for all A > 0) and that supp (k) is a semigroup in G.
6.1.2.2 Let (p1)t>0 € C S(G) and ¢y € CND(G") with

(Ut)t>0 «— V.

If 9(0) > 0 then (ut)i>o0 is transient, K € M(G) with

I = 575

d
an 1

E .
On the other hand we shall see later, that there exist transient as
well as recurrent convolution semigroups (ut)i>0 in M (G) with

k=

(U)o «— ¥
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such that ¥(0) = 0. In fact, for convolution semigroups (ut)i>o in
MY(G) the potential measure & is always unbounded.

6.1.2.3 If G is compact, a convolution semigroup (is)i>0 € C S(G)
with

(Mt)tzo — 1),

where ¢p € CND(G™), is transient if and only if ¥(0) > 0. This
equivalence holds true for an arbitrary locally compact Abelian group
G provided there ezists a compact subset K of G such that

supp (u:) C K

forallt > 0.
We add an important

Example 6.1.3 Let (u)i>0 be the Poisson semigroup determined

by a measure u € Mf)(G) introduced in Example 5.2.7.2. We recall
that

p = e~ exp(tp)

for allt >0,

(ue) is transient if and only if the series

Z u" is 7, — convergent .
n>0

In this case Y, o 1" € M (G), and as such it coincides with the
potential measure K of (t)e>0-

In fact, for the resolvent (px)a>o0 with

(ea)as0 +— (pt)t>o0
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we obtain the following equalities for Radon measures

e}
g>\=/ e Me ! exp(tu)dt
0

% () ¢
=/ e Zmu dt

0 n>0

nlfoon—(A+1)t
=E ut— t"e dt
ntJy

hence for A — 0 the assertion.

We note that measures k € M, (G) of the form

m:=2u"

n>0
with € MJ(rl) (G) are called elementary kernels determined by u.

Properties 6.1.4 of potential measures of transient convolution
semigroups (u¢)i>0 € C S(G) with associated ¥ € CND(G") and
resolvent (0x)r>o0-

6.1.4.1 For every X > 0 we have that
1 ~
S(ox+0x™) € My(G),

hence that 1
5(”’ +£~) € My,

and Kk € M*®(G).
6.1.4.2 Inv (k) = {0}.
6.1.4.3 For each A > 0 the measure

Ak + €9
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is the elementary kernel determined by the measure Aoy .

Both Properties 6.1.4.1 and 6.1.4.3 are proved by taking Fourier
transforms. For Property 6.1.4.1 we just note that %(ox + 0}) €
M,(G), since

1 -~ 1
fc[g(éb\'i'g,\ )] = Re v

A+ Re
=275
A+92

(See Theorem 4.4.14). The 7,-closeness of M,(G) in M(G) implies
that % (k+ &™) € Mp(G), and the assertion follows from Proposition
4.4.9 (is).
In the proof of Property 6.1.4.3 one verifies the equality

oy = Z(/\ _ )\/)ng)‘n+1

n>0

for X' €]0, A[ by applying the Fourier transform and then takes the
limit for A | A.

Terminology 6.1.5 Let € CND(G").

a) The function % is said to be integrable over some measurable
0z
subset W of G™ provided

¥ # 0 [wga] on W

and % (defined [wagr] on W) is (wgn - )integrable over W.

(b) The real function Re % is said to be locally integrable (on G™)
if there exists a neighborhood U € Bea(0) such that

’(p#o [wG/\] on U

and Re % s Res 7 wagn -integrable.

We note that Re % is locally integrable if and only if it is integrable
over every open, relatively compact subset of G™.
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With this slightly sophisticated terminology in mind we are able
to establish a generalization of Property 5.1.7.1

Proposition 6.1.6 Let v € CND(G") and assume that i is inte-

grable over some open, relatively compact neighborhood € LA (0).
Then

(i) % is locally integrable
and
(ii) i-ng\ € M,(G).

Proof. From the discussion 6.1.2.3 we know that it suffices to con-
sider the case that (0) = 0. Let K be a compact subset of G". If
¥(x) # 0 for all ¥ € K, we have that

1
——wgn(dy) < 0.
| gy @
K
Now let 9(x) = 0 for some x € K. Then the set

Ky i={x € K :¢(x) = 0}
is compact, hence

Kl C U(Xt + V)a

i=1

where x1,...,xn € K; and V is an open, relatively compact neigh-
borhood € Yg~ (0) such that % is integrable over V. The set

F =K\ ﬁ(Xi +V)

i=1
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being compact with ¥(x) # 0 for all x € F we see that ¢ #0 [wx~]
on K, and that

1
| o0
K

1
SF/WMGAMX)—}_ ) / B )le/\(dX)
U Ga+v)

1 - 1
< | e+ [ greer @0 <

Here we employed the fact that K; C Inv () which is part of The-
orem 5.2.17.

We turn to the proof of statement (%) of the theorem. For a given
f € C(G") and n > 1 we have

/f*fwwil

n

dwer 2> 0,

since w—l— € CPD(G") by Property 5.1.7.1. The function f * f~ L

is defined [wgn], and

—faf

lim fx f~ v

n—o00 'l/) + 1 [UJG/\] (On GA) *

But Re 1 > 0 implies that
1
¥} < ‘z/) + —‘
n

for all n > 1, hence Lebesgue’s dominated convergence theorem
yields the assertion (7). [

Remark 6.1.7 Proposition 6.1.6 remains valid if one replaces % by

Re % with the modification that (ii) reads as Re % ‘wgn € ML (GM).
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We are now aiming at a characterization of transience of convolu-
tion semigroups in terms of integrability of their associated negative
definite functions. The following statement takes care of the less so-
phisticated part of that equivalence.

Theorem 6.1.8 Let (ut)i>0 € C S(G) and ¢y € CND(G") with

(Mt)tzo — 1.

If (ut)e>0 is transient, then (ui)i>o is locally integrable in the

sense that Re % 1s locally integrable.

Proof. Without loss of generality we assume that ¥(0) = 0. We
know that the set

T:={x€G":¢(x) =0}
is a closed subgroup of G and by Theorem 5.2.17 (ii) that
supp (ue) € T+

for all ¢+ > 0. Since (u¢)¢>0 is transient by assumption, T is not
compact, hence 7T is not open. But a closed subgroup of G is either
open or a local wga-null set. This implies that ¥ # 0 locally [wga]
on G*. Now, let K be a compact subset of G*. As usual we choose
a function f € C$(G) with

|Feofl>1on K.

But then the monotone convergence theorem together with formula
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(4) in the proof of Theorem 4.4.14 yields

1 . 1
/Re Edng = /}l\l_l’% Re mdu)g/\
K K

< /li&nigf |Faf|*Re
GN

< Ii&nigf / |Faf|* Re
G/\

dwc/\

1
A+

1
dwan

Aty ©

. . i a 1 ~
=hf\n_}61f/ |.7:Gfl2-7:G[§(Q,\+Q>\ )dwan

G/\

.1 ~ ~

=h£\n—}(r)1f§/f*f d(QA+Q)\)
G

=%/f*f~d(n+n’“)<oo,
G

where, as in the proof of Property 6.1.4.1, the identity

1
A+

1
]:G[E(QA + 05)] = Re

has been applied (for A > 0), (gx)r>0 and « being as usual associated
with (4s)>0- u

Corollary 6.1.9 Let p € MJ(FI) (G) be such that

E u™ s T, — convergent .
n>0

Then Re l—ip is locally integrable (on G).

Proof. We lock at the convolution semigroup (u):>0 determined by
the measure p and its associated function ¥ = 1 — i € CND(G").
By Example 6.1.3 (12¢);>0 is transient, hence the theorem implies the
assertion. n
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The discussion in the remaining part of this section will be devoted
to the implication (inverse to that of Theorem 6.1.8)

(TC) ()0 locally integrable = (u¢)¢>0 transient.

Remark 6.1.10 Until now the implication (T'C) is only available in
the special case of a compact group G. See Discussion 6.1.2.3.

In other words, (T'C') holds for convolution semigroups (jut)e>0 in
M?(G) which are not in M*(G).

If, in fact, ||pefl < 1 for some ¢t > 0, then (u¢)>o is transient, and
for the associated ¥ € CND(G") we have Re ¢ > 0 by Corollary
5.2.5 (ii).

For the somewhat lengthy proof of the implication (T'C') which
in its course will contain useful side results on transient convolution
semigroups in Mil) (G) we shall prepare several steps of reducing the
statement to be shown and two basic facts from the potential theory
of convolution semigroups in M m(G).

+

6.1.11 Properties (Reducing the proof of (TC)).
6.1.11.1 Let H be a compact subgroup of G and let (fit)i>0 €

C S(G/H) be the canonical image of (ut)i>0 € C 8(G). Then (TC)
holds for (u:)¢>0 provided it holds for (fi¢)t>o.

In fact, given a recurrent convolution semigroup (u;);>0 € C S(G),
(ut)t>o0 is a recurrent convolution semigroup € C S(G/H). Since
(G/H)" is isomorphic to the open subgroup H+ of G" by the func-
torial property 4.2.17.3 and since v € CND((G/H)") with

% —— (fut)ez0

coincides with Res 11, where

P — (Mt)tzm

Re % is not locally integrable.

6.1.11.2 Without loss of generality the given (u:)i>0 € C S(G) can
be assumed to be adapted in the sense that

S = {U supp (m)} =G.

t>0
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In fact, if (¢+):>0 is not adapted, then we replace G by S. Con-
sidering the canonical surjection 7 : G = G /S+ = S (Functorial
property 4.2.17.4) we obtain that

p=don
holds for ¢y € CND(G") with 9 «— (u)¢>0 and ¢ € CND(S")
with ]
Y — (llt)tzo .

But then Re % is locally integrable on G” if and only if Re ir is locally
integrable on S/.

6.1.11.3 It is sufficient to prove (T'C) for adapted convolution semi-
groups in C S(G), where G is of the form

G=R%x2Z°

ford,e > 0.
This follows from the structure theorem 4.2.20 which implies that

G/H = R% x Z°

for some compact subgroup H of G and integers d,e > 0. In fact,
since every closed subgroup of a group of the form R? x Z¢ is of the
same type (being a closed subgroup of R%*+¢), the previous properties
yield the assertion.

Finally

6.1.11.4 it is sufficient to establish (T'C) for (adapted) Poisson semi-
groups on G = R® x R¢ ford,e > 0.

In order to see this one employs the resolvent (g))x>0 associated
with (p¢)¢>0 and considers the Poisson semigroup (e(p1)):>0 deter-
mined by p; € M_(Fl)(G). It is easily shown that (T'C) for (ut)i>o is
a consequence of the implication

(et(01))e>0 locally integrable = Z o7 is T,-convergent .
n>0
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Moreover,
[supp (1)]” =G

by Theorem 5.2.16, once (u:)¢>0 is adapted.

Theorem 6.1.12 (The Choquet-Deny convolution equation) Let
G be a locally compact Abelian group, and let 0 € MY (G) be a fived
measure with support subgroup

G(0) := [supp(o)]~ .

Then, for every measure ;1 € M, (G) the following statements are
equivalent:

(i) p € M*(G) and
L* O = [

(1) Inv (1) D G(o).

Proof. It suffices to verify the implication (i) = (it). Let u € M, (G)
be a measure satisfying (%) of the theorem. For ¢ € C°(G) we intro-
duce the function f := f, on G defined by

f(=z):= / oz + y)u(dy)

whenever x € G. Clearly, f is uniformly continuous (with respect to
the uniform structure of G), and it is bounded since u € M%(Q).
Moreover, f satisfies the integral equations

f(z) = / f(@ + 2)o(dz)

for all x € G. Then for a € supp (o) the functions T_,f and g :=
T_of — f are uniformly continuous, bounded and satisfy the above
integral equation.

Now-.let ¢ € R, be such that |g| < c and let

1
7= 5 sup g(w).
z€G
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There is a sequence (2, ),>1 in G satisfying
lim g(z,) =2v.
n—oo

Then the set {g, : n € N} of functions g, = T_, g (n > 1)
is equicontinuous, since g is uniformly continuous. Hence, by the
Arzela-Ascoli theorem there exists a subnet (gn,)aca Of (gn)n>1
which converges with respect to the topology 7., towards a function
h € C(G) with |h| £ c. Furthermore h satisfies the above integral
equation. But then

2y = il& 9(Tn,)
= Cl)tlg.lA gna (e)

= h(e)

= / hdo.

From h < 2y we conclude that hA(z) = 2y for all z € supp (o). Given
z € supp (o) we further obtain

2y = h(z) = /h(m + 2)o(dz),
hence
h(z + z) = 2y

for all z € supp (). An iteration procedure yields
h(z) = 2y

for all z belonging to the closed semigroup generated by supp (o)
and therefore

h(ka) = 2

for all a € supp (o), k > 1. Now, for every [ > 1 there exists an o € A
with

g’na (ka) > ’Y
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whenever k = 1,...,[, provided v > 0. But then by looking at the
equalities

Gng (ka) = f(zn, + ka+a) — f(zn, + ka)
= f(mn,(1 + (k + l)a’) - f(mna + ka’))

and after summing for k = 1,...,! we obtain
f(x'ﬂ-a + (l -+ 1)0’) —f(xnu +a) > l’Y'

Since f is bounded, this yields a contradiction. Therefore v < 0,
hence g < 0. Replacing g by —g one gets —g < 0, thus altogether
g=0or

f=T,.f

for all a € supp (o). From this follows

/ww+@mww3/wwmwx

hence

H*Eq = U
for all a € supp (0) and finally for all a € G(o). |
Corollary 6.1.13 (Characterizing idempotent measures) For any
p € M8 (G)\{0} the following statement are equivalent:
(1) pxp = p.
(i) p = wyg for some compact subgroup H of G.

Proof. Again it suffices to show the implication (i) = (). Without
loss of generality we may assume that p € M(G), since for u €
M?(G)\{0} one has

e el = Nualtllall = Nell,

hence ||p|| = 1.
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From the boundedness of u follows that Inv (i) is a compact sub-
set of G (See the discussion following Definition 4.4.17). Now, The-
orem 6.1.12 says that

G(p) C Inv(u),

hence that H := G(u) is a compact subgroup of G and u is H-
invariant on H. Thus 4 = wgy (the normed Haar measure of H).
|

The following result from potential theory of convolution semi-

groups goes back to Deny and has been reproved in the book [6] of
Berg and Forst.

Theorem 6.1.14 (Ezistence of an equilibrium measure). Let G be
a locally compact Abelian group, (ui)i>o0 @ convolution semigroup
€ C S(G) with potential measure k € M, (G), and let W be an
open, relatively compact subset of G. Then there exists an equilib-

rium measure v € M2 (G) for (ut)i>0 which by definition has the
following properties:

(a) supp () C W
(b) kxv <wg
(c) kxvy=wg on W.

Corollary 6.1.15 For every o € Mil)(G) and f € C$(G) with
supp (f~) € W we have that

kxyx(gg—0a)x f(0) >0.

The proof follows immediately from the inequalities
Kk y* (g0 — 0) % (f(0) = (kv x f)(0) — (5 xv+0* [)(0)
= /dewG —/f”d(n*fy*a) >0,

since
Kxyx0 Swe*0 Swg. |
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6.2 The transience criterion

This section will be devoted entirely to the announced measure - the-
oretic proof of the famous transience criterion for convolution semi-
groups which for second countable locally compact Abelian groups
and with probabilistic methods has been established by Port and
Stone in [34].

Theorem 6.2.1 (The Port-Stone criterion) Let G be a compactly

generated locally compact Abelian group. For any (u:)i>0 € C S(G)
the following statements are equivalent:

(1) (pt)e>o0 ts transient.
(1) (pt)e>o is locally integrable.

In view of the proof of Theorem 6.2.1 we now restrict the discussion
to adapted convolution semigroups (ut):>0 € C S(G) with

(1t)t>0 — 1« (@x)r>0-

Lemma 6.2.2 (The Chung-Fuchs criterion) Suppose there ezists a
relatively compact neighborhood U € VA (0) such that

1
li R d < 00.
IT_S,gpf e P wer < 00

Then (ut)i>o0 is transient.

Proof. Since (p;):>0 is adapted, we infer from Theorem 5.2.17 that
P(x) # 0 for x # 0. Taking into account that

1 A+ Rey
Re <
Aty T PP

the hypothesis of the lemma yields

1
lim su Re —— dwenr < @
)\—»Op/ A+ ¢
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for all compact subsets C' of G*. It follows that

1
li R “dwer <
1r§1j51pc[ e P fxf G 00

for all f € C*(G™). But given g € C(G) there exists an f € C*(G")
with |f|? > g. This implies that

- 1 ~ ) s o 1 N
hmsup/gd{—(gwrgx )] < hmsup/lflzd [=(oxn + 0Y)]
A—0 2 A—0 2

G
1
= limsu * f~ Re dwan < o0,
’\"Opc,[f f ro e

where the last equality follows from formula (4) in the proof of The-
orem 4.4.14 together with Theorem 4.4.16. So we have

limsup/gdg,\ < 00,
A—0

hence by monotonicity that the limit

I
lim /G gdex
exists and is finite for all g € C$(G). [ ]

Remark 6.2.3 Applying Theorem 6.1.8 one obtains the converse of
the statement in Lemma 6.2.2.

Lemma 6.2.4 If (u¢)¢>o is locally integrable and recurrent, then for
every f € C$(G) with f # 0 one has

(a)  limsup Aoy * g} * f* f~(0) = oo
A—0

and

() doxxgy xfxf~(0)>0
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whenever A > 0.

Proof. Since (u¢)¢>0 is assumed to be locally integrable, we have for
all relatively compact neighborhoods U € DA (0) that

/ M—dwa/\ < Re Tpde/\
U

A + 9|2 |2
1
=/Re ldcu(;A < co. W
Y
U

But we also assumed (y4)¢>0 to be recurrent. This implies by Lemma
6.2.2 that

. A+ Re . / 1

lim su ————— dwea = limsu Re dwonr = 0. (2

A—-»Op D +gz ¢ ,\—»op Ay ¢ @)
U U

Moreover, for f € C§(G) with f 0, and all A >0

Nox* £ x (ox * £)~(0) = A / lon * [P dwe
G

=\ / G121 Pdwen
G/\

; A
:/]f|2|A+¢|2deA > 0.
an

We note that in fact

/'f'2|x+w|2d“’0 /|A+w|2d“’@ |

where « is chosen such that f(0) > @ > 0 and U is a relatively
compact neighborhood in Yga(0) within the set {x € G : |f(x)| >
a}. Together with (1) and (2) this yields

limsup Agy * f * (ox * )~ (0) = 00. n
A—0
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Principal Lemma 6.2.5 Let G be a non-compact second countable
locally compact Abelian group, and let (pt)i>o0 be an adapted contin-
uous convolution semigroup in M*(G). Suppose that

(@) ()0 s locally integrable
and that
(B8) there exists an f € C$(G) with f # 0 such that

sup o x fx f7(0) < o0,
A€l0,1]
where 1
ox = 3(ex +65) — Aer ¥ 6y € M3(G).

Then (put)t>0 is transient.

Proof. 1. Assuming that (u);>0 is recurrent we infer from Lemma
6.2.4 that with the notation

@y = Agx * QY * [ * o)t

the statements
lim inf a;l =

—0

and
-1
a, > 0

for all A > 0 are available. One notes that the numbers ay (A > 0)
depend on the choice of a function f € C$(G) with f # 0. Let
(ax)aejo,1) be a bounded subfamily of ("*)\)AeRi' Then (axox)aejo,)

is a 7,-relatively compact subset of M, (G).
In order to see this it suffices to prove that

sup ax(ox + o3 )(K) < oo
A€jo.1]
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for each compact subset K of G. But this will be clear from the fol-

lowing reasoning: We choose a compact subset K of G and a number
¢ > 0 such that

Li={zeG:f*xf~(z)>c}#0.

Then, for a suitable sequence {z1,...,z,} in G (n > 1) we get

It follows that

(or + X)) (K) <D (oa+ ¥)(wi — L)

=1

—Z ox+o%) * [ ™ (ws).

QO |

Since gx + o5 € Mp(G), Proposition 4.4.9 implies that (o + 0%) *
f* f~ € CPD(G), and the above sequence of inequalities can be
extended to

<%§=j o +65) * f £(0)
= -C—(a>\ * fx f7(0) -i-a;l)

for all A €]0,1].

2. The assumptions on G imply that M, (G) is 7,-metrizable. There-
fore there exists a sequence (Ag)k>1 in ]0, 1] with Ag | 0 such that

lim a), =0
k—o0

and
(=) lim ay,0n, =: ¢ € My(G).
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From

(5(C+CN) % [ % £7(0) = lim ox, (3 (or, +3,) =+ ~(0)

= kli_)rgoa)\kcr)\k x fxfY0)+1=1
we conclude that ¢ # 0.
3. The next aim will be to show that
(8) ¢eM*HG)
and that

(b) ¢ =AC*oy forall A > 0.

This being done Theorem 6.1.12 together with Theorem 5.2.16 (and

the adaptation of (u)¢>0) will imply that
¢ = cwg

for some ¢ > 0.

Now concerning (a) we just note that ( + (™~ € Mp(G), since

ox + 0% € M,(G), hence { + ¢~ € M*®® and so also ( € M*°.

As for the proof of (b) we deduce from the resolvent equation that

()‘ - )‘k)g)\ * a)\kQAk S a)\kgAk

for every A > 0 and k > 1. Given A > 0 we choose € €]0,A[ and

suppose that A\g €]0,¢[. Then

(A—¢€)or *ax,0x, < Ax0xcs

hence
()\_E)Q}\*CSC1

and for € — 0 we arrive at

A xor<(
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valid for all A > 0.
Suppose now that A{ * o) # ¢ for some A > 0. Since

D Qen)k#((=deax ) =C— (Ra)" T * ¢ <,

k=0

the series Y (Agx)™ norm-converges for A > 0, and
n>1

Yokl =13 (hen)¥l
k=0 k=0
ol
€ = Aox (||
But as in the proof of Property 6.1.4.3 we apply the formula
ox = (- X)gyt!
n>0
valid for A’ €]0, A[ and obtain
. 1 n
lim o =+ ;()\Q,\)

which implies the transience of (u¢)¢>0, hence a contradiction.

295

4. Now let W be an open, relatively compact subset of G such that
supp (f * f~) C W. For each k > 1 we consider the convolution
semigroup (e~ !uf");>0 € C S(G) with potential measure oy, and
equilibrium measure vy, depending on W, the latter existing by The-

orem 6.1.14. For every k > 1 we introduce the measure
l/Ak = a;,clf}/)\k >
and we obtain
o Wyoren ) < [ [ 157 (e +1)m (d)es, (@)

= (v *x 0%, ) (W = W)
<we(W -W) < 0.
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Since .
liminf ay, ox, (W) > 0,
k—o0

the sequence (v, (W))k>1 is bounded, and since supp (v, ) C W for
all £ > 1,(Vk)k>1 is norm-bounded. Without loss of generality we
may assume that (v, )rx>1 To-converges to a measure v € M, (G). v
is bounded, since supp (v) C W, and v # 0. The latter statement
requires a detailed argument. First of all we have that

0< (A)G(W) =Vx, *GAkQ:k(W)

—an, / / Lw (z + )va, (do)eF, (dy)

< ay, / /d'/,\,c doy,

wow \w
= Q) Va, (I/V)g;lc (W -W).

Since W is relatively compact, there exists a function g € C$(G)
such that

lwow-w) < g

which implies that

limsup vy, (W) < hm 1 V), (9) =v(g).

k—oo

Under the assumption that v = 0 we obtain

lim vy, (W) =0.
k—o0

limsup ay, 05, (W — W) < hm aAkQ)\k(g)

k—oo

("(g) <o

we conclude that the sequence (ay, 0%, (W — W))i>1 is bounded, so
the product sequence (ax, 0y, (W — W)y, (W))g>1 tends to 0 and
its members are not > wg(W) > 0 which provides a contradiction.
Consequently v € M3 (G)\{0}.
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5. By the resolvent equation
Jim Aeox, * @5, * (€ = (A = Mr)ar) * v, (3)

= Hm AgoX, * vky * Ox,
k—o00

and this limit equals 0. For the latter assertion we need to realize
that .
AkO%, * Un, * 0x < ay Ak(ox *wa)

= a5 Mllorllwe

and to prove that
lim a3 A\ = 0.
i %
This limit relationship can be shown as follows: From the proof of
Lemma 6.2.4 we infer that

-1 _ 712 AIc 2
= [V () deer
G/\

for all & > 1. The integrands are bounded by | {12 and converge (for
k — oo) pointwise to 0 on G*\{0} (since 9(x) # 0 for x # 0).
An application of the Plancherel theorem 4.2.11 (iii) yields that it is
also wgn-integrable. But then the dominated convergence theorem
implies the assertion.

6. We are ready to finish the proof by establishing a contradiction to
the boundedness of (ax, )x>1-

By the choice of F' and W according to 4. of this proof we note
that

supp (f * f~)~ =supp(f x f7) CW.

Moreover
(A = Ax)erll <1

for all A > Ay (k> 1). Corollary 6.1.15 now yields

o, * (€0 — (A= Xp)or) *va, * f+ f7(0) > 0 (4)
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for A > . But 0, € M,(G), since

by= 2V
GNP

Hence
T * fx f~ <o *f*fN(O)
and consequently,
Oxe * (€0 — (A = Ak)or) x va = f* f7(0)
= [on s £ )00 - (A= Me) @) )

G
< o x F o FT (0w lllleo = (A = Ak )l

But this expression admits a bound M (independent of A) for all
Ak < A, since (o, * f * f~(0))k>1 is bounded by assumption and

lleo — (A = Ae)erll < T+ [[(A = Ae)exll
ST+l <2

Now we deduce from (3) that
klirx;oAk * 06, % 0%, * (€0 — (A= Ap)ow) xun, x f+ f~(0) =0,
whence by (5)

limsup(gy, + 0%, ) * (€0 — (A = Ax)er) * va, x [+ f~(0) <2M

k—oo

and thus by (4)

lim sup g, * (€0 — (A — Ak)ok) *va, *x f x f~(0) <2M

k— oo

which together with the resolvent equation implies that

limsup gy *x va, * f * f~(0) < 2M .

k—o00
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From 7, — klim vy, = v (Part 4. of the proof) and the norm-
—00

boundedness of (v, )x>1 we derive
oxx v fx f7(0) < 2M,

i.e.

/VN*f*deQ)\SQM

for all A > 0, in particular for A := A, whenever k& > 1. Consequently
the sequence

(@5} [ d o fdlonon)es

G
is bounded. On the other hand

klim /I/N * [ fTd(ax, 06,) = /VN * f o+ frd¢ >0,
G

¢

the strict positivity following from the facts that ( = cwg for ¢ > 0
and that

Uk fx f 20,

But then (GX:)/czl must be bounded, and this contradicts the as-
sumption made in Part 1. of the proof. The demonstration of the
lemma is finally complete. |

Proof of the Port-Stone criterion 6.2.1 By Property 6.1.11.4
it suffices to establish the implication (T'C) for an adapted Poisson
semigroup (p;)¢>0 determined by a measure 4 € M'(G), where G
is of the form R% x Z¢ for a,e > 1. For the associated continuous
negative definite function of the form ¢ =1 — i we assume Re % to
be locally integrable. It will be shown that (u:):>o is transient.

1. The case d + e > 3.

The dual GN = R? x T¢ of G will be interpreted as the subset
R?x] — 7, 7]¢ of R4*+¢ equipped with the FEuclidean norm || - |}.
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At first we show that there exists a constant ¢ > 0 such that

Re ¢(y) > ||yl (6)

for all y in a relatively compact neighborhood U € g (0).

In fact, since G = [supp (u)]~, one finds m := d + e linearly inde-
pendent elements z1,...,Zm € supp(u). Let V :={z € G : |jz| <
v}, where v := max {||z;|| : ¢ = 1,...,m}. The quadratic form Q
defined by

Q) = [ v@Putas)

\'4

for all y € G” is positive definite, hence its smallest eigenvalue 7 is
strictly positive and

Qy) = lyll?
for all y € G™. On the other hand

Re 9(y) = [ (1~ cosy(@))u(da)

G

<2 [ s (Gy()nldo)

v

for all y € G*. But the modulus of the latter integrand being >
%|y(:c)| if ly(z)| < 7 we obtain that

2
Re ¥(y) > — [ ly(@) 2 (d),
™ Jw
for all y € G™, where

W= {zeC:lle| < ly@) <}

If ly]l < & and ||z]| < we obtain [y(z )| £ 7. But then

Re v(y >—]|y Pu(dz) > =iyl
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for all y in the relatively compact neighborhood U := {u € G :
[ull € 2} € Bea(0). With c:= 27 we arrive at the assertion.

Applying the inequality (6) we now obtain that

1 1 1
R )\d-}-e / d+e < _/ }\d-}—e d
/ e tRe 0D S FIE (
U U

and the Chung-Fuchs criterion 6.2.2 yields the transience of (u¢);>q,
provided d + e > 3.

In
2. the case d + e = 2 we note that for all A > 0

A A
— T _d\ < /————d)\2
/|A+¢|2 < | PTRe9p
U U
A
< A 2
</ CrdyPr @
U
1
<[ 1 e
< R/ Tt el (W) <o

On the other hand we obtain from the hypothesis that

DE = s A+ Re ¢

1 2
sup /Re = sup ————dA* < 00
relo. ) A+ xelo,1] ) [A+ )2

which, again by Lemma 6.2.2, implies the assertion.
It remains to treat
3. the case d+ e =1, i.e. the groups G =R or G = Z.

From Principal Lemma 6.2.5 we infer that it suffices to establish the
existence of a function f € C$(G) with f # 0 satisfying

sup ox* fx f7(0) < o0.
A€]0,1]
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At first we observe that for all f € C$(G)

or s [ f(0) = f (ox % H)Fduwg = / ox ¥ f Fdwon

GN

G
s Rev |,
= 2dw A:/___ 2dwen
G[ﬂlfl ¢ I/\+¢I2|fl ¢

Rezp

|,¢|2 |f|de’\ /Re _lfIdeG/\

If G = Z, the last integral is finite, since G = T is compact.

Now let G = R. For each relatively compact neighborhood U €
B (0) we have that

oxx fx f7(0) < /Re %lflzdwm

GN

1 - 1, 4
= [ Re — Zde+/Re— 2dwan.
! | FPduc S\ fPdu

Ue

Obviously the integral over U exists. Given a symmetric measure
v € M3 (R) with compact support such that

< —;—(u*uw)

holds we introduce the desired function f on R by
= [ 1o~ ulv(ay) - s
R

whenever £ € R. Since v # &g, we may assume that v is not a
multiple of &9, hence f(0) # 0. It is easily shown that f € C$(R)
and that

f(&) = 2l - (=)
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for all z € R*. From the inequalities

0< v - 9(z) = / (1 - cos zy)v(dy)

< [0 - cosapuldy) = 1~ Re i)
= Re 9¥(z) <2

valid for all z € R we conclude that

[re sli@PAE < | ARe 9(@))” ) (4
Ue

P(z) z* Re ¢(z)

Uc

< / 8 \(de) < oo.

4
Ue

The proof of the Port-Stone criterion 6.2.1 now is complete also for
G =R. [ ]

Examples 6.2.6

We are considering continuous convolution semigroups (ft¢)¢>0 in
MY(G) with associated continuous negative definite function ¢ on
G admitting a canonical quadruple (in the sense of Theorem 5.4.7)
of the form (0,h,q,0). These semigroups determined by

v =1th+q

with a homomorphism h : G* — R and a positive quadratic form q
on G are called (non symmetric) Gaussian. The subsequent dis-
cussion is designed to study the transience of Gaussian semigroups.

6.2.6.1 Let (e,(t))e>0 e a translation semigroup in M Y(G) as intro-
duced in Example 5.2.7.1. Recall that the mapping z : Ry — G can
be extended to a continuous homomorphism ¢ : R — G. It was shown
in Ezample 5.2.7.1 that (,())t>0 admits a canonical quadruple of
the form (0, k,0,0).
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Now, the semigroup (e5())e>o0 15 transient if and only if o(R) is
not compact (in G), and in the affirmative case its potential measure
can be described as the image (k) under ¢ of the potential measure

K= ].Ri A E M+(R,)
of the translation semigroup (¢)i>0 tn M (R). In other words,

©(k) = Res pRY) Yo(R) -

In fact, by Appendix A 3.6 a continuous homomorphism ¢ : R —
G admits the following alternative: either (1) ¢(R) is compact or (2)
 is a homeomorphism onto ¢(R), and ¢(R) is a closed subgroup of
G. In the case (1) (e4(t))t>0 is obviously recurrent (See Discussion
6.1.2.3), in the case (2) it is transient, since for every f € C'$(G) the
set supp (f) N ¢(R) is compact, hence for some ¢y > 0

/fdfx(t) =fopt)=0

whenever t > tg.

6.2.6.2 Here we discuss the transience of symmetric Gaussian semi-
groups (v;)i>0 admitting a canonical quadruple of the form (0,0, ¢,0).
More specifically, we restrict ourselves to the case that G = R% (d >
1) and to the symmetric Brownian semigroup (vi¢)i>o given by

Vg =Ny - Ad with
1 z||?
ng(x) = ——— exp (—L[‘tl—)
(4rt)?

for all z € R? (¢t > 0).

The following computation shows (by an application of the Schoen-
berg correspondence theorem 5.2.8) that the function ) on R¢ defined

by
P(y) = [yl
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for all y € R? is the continuous negative definite function associated
with (Vt)t?_[)-

Indeed, for all y € R%,¢ > 0 we have

7it(y) =R/d exp(—i(w,w)@ exp (_ﬂ%ﬁ) dz

d 1 z2
. k
= — _ —==3d
kl:[l/exp( 1TeYk) (47”5)% eXP( 4t> Tk
—R
d
= ] exp(—tw3) = exp(—t|yll*)
k=1

(with the obvious notation z, and yy for the k-th component of the
vectors = and y respectively).

Now the Port-Stone criterion 6.2.1 implies that (v;)s>q is transient
if and only if d > 3.

This result can also be obtained by an explicit computation of the
potential measure. In fact, one easily sees that

0 ifd=1,2forall z € RY,

/°° (@)dt andif d >3 forz =0
T \x =
(¢
0 T(Z)——||x||2'd if d>3andz € R%,z#0.
272 (d - 2)
Putting for d > 3
L'(3)
Cg = ——=———
T - 2)

and

z||?~¢ ifzeRY,z#£0
Ny(z) == {“ " 0 a

we see that the potential measure

Kq = Cde . )\d
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of (14)¢>0 is a multiple of the classical Newton kernel N, - X4, We
also note that kg € M°(RY).

6.2.6.3 Symmetric stable semigroups of order a €]0,2] are
gwen as families (uf)i>0 of measures in MY (R?) (d > 1) admitting
a Fourier representation

1 (y) = exp(—tlly[|%)

for all y € R%,t > 0. It can be shown that a symmetric stable semi-
group (ug)i>o0 of order a is a convolution semigroup subordinated
to the symmetric Brownian semigroup (v¢);>o0 defined in Ezample
6.2.6.2 by means of the one-sided stable semigroup of order 5.

Clearly, the symmetric stable semigroup of order a = 2 coincides
with the symmetric Brownian semigroup in M*(R¢9).

Since & € L*(R?, \%), an application of the inverse Fourier trans-
form (introduced next to Properties 4.2.16) yields an integral rep-
resentation of the A%-density m@ of u¢ as a function in C9(R%). In
the special cases o = 1 and a = 2 one may compute m§ explicitly.
It turns out that

Loy o 4] t
(%) F( 2 )[w<||mu2+t2)1d—zﬂ

whenever z € R%,t > 0. If, in addition, d = 1, then (u})e>o0 reduces
to the Cauchy semigroup.

Since
(N?)tzo — /‘/"a

where 9(y) = ||y[|* for all y € R, the A%local integrability of
which occurs exactly in the cases

d=1 anda€)0,1],
d=2 anda €]0,2],
d>3 anda €]0,2]

implies the transience of (ug):>0 exactly for these choices of d and
.
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For d =1 and o € [1,2] as well as for d = 2 and o = 2 the
convolution semigroup (uf)¢>o is recurrent.

In the cases of transience the potential measure Kq,, of (1)i>0
appears to be the Riesz kernel of order o having a A%density

==

For the computation of this density one employs the construction
of (ug)t>0 by means of subordination.

6.2.6.4 Let (u1)i>0 denote the heat semigroup in M1(R? x R) de-
fined by

Mt =1 Q &y

for all t > 0, where (v)1>0 and (e¢)¢>0 denote the Brownian and
the translation semigroups discussed in Examples 6.2.6.2 and 6.2.6.1
respectively. One has,

(ue)e=0 — ¢
with
Y(y, ) = lyll* +is
whenever (y,s) € R? x R. Clearly, (111):>0 is locally integrable, and
hence the Port-Stone criterion 6.2.1 implies the transience of (t)¢>0-

The transience of (1:)i>0 can also be obtained from an explicit
computation of the potential measure.

In fact, let (14¢)¢>0 <— (0a)a>0. Then for each g € C*(R? x R)
we have that

ox(g) = /000 e us(g)ds

:/Oooe-ks /g(m,s)ns(x)dax ds (A >0).

Rd
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But the function & on R? x R given by

ns(z) if z € R%se R}
k(z,s) := () d’ *
0 ifzeR%s¢gRJ
is locally (A%*1-) integrable, hence (u4):>0 is transient with potential

measure
Kk =k )1,

Moreover, £ € M (R? x R).

6.2.6.5 Let G := Z and let (ui)i>0 denote the Poisson semigroup
determined by the measure

— a 1
pi=>y lognen € MY@G)
n>2

with a suitably chosen a > 0.

nzzz,u"

n>0

exists, since supp (™) C {2n,2n + 1,...} (n € N). Observe that
k(n) =0 for alln < 0. Thus (11)e>0 is transient. Moreover it follows
from Spitzer’s book [42] that k € M >(G).

On the other hand, (ui)i>0 being determined by p is associated
with the negative definite function ¥ on T given by

@) =1-40) =Y — o (1= cos(n?)) +iY

logn
n>2 n>2 n &

Clearly,

a

sin(nd)

whenever ¥ € R (after suitable identification of functions on Z" = T
and R). A result in Zygmund’s book [49] yields

P(9) ~ 1ad log |log VY|

for 9 — 0+, hence % s not integrable over any neighborhood of 0.

Altogether we have seen that (ui)i>o is transient, hence Re % 18

locally integrable by the transience criterion 6.1.8, but % is not locally
integrable.
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6.3 Recurrent random walks

Until now we have studied convolution semigroups on an arbitrary
locally compact Abelian group G without particular reference to
probability theory. In the case of a second countable group G this
reference can be easily established. Given a convolution semigroup
(Bt)ter, in MY(G) there exists by the Kolmogorov consistency the-
orem a translation invariant Markov process in G whose transition
semigroup (P;)ier, (of Markov kernels P; on K x B(G)) is related
to (ue)ter, by

P,(2,B) = * &2(B) M

for all (z,B) € G x B(G),t € R,. More precisely, there is a one-
to-one correspondence between convolution semigroups (p¢)ier, in
M*(G) and stationary independent increment processes with transi-
tion semigroup (P;):cr, given by (1).

In the present section we shall study stationary independent in-
crement processes in G with transition function (P,)ncz,, where
P, := P" for some transition kernel P of the form

P(z,B) := pu*e.(B)

for all (z, B) € GxB(G) with a measure y in M1(G). Such processes
are called random walks in G with law u.

A sketch of the construction of such random walks now follows.
Given P and a measure v € M!(G) there exists a measurable space
(,2) with Q := G%+ and A := B(G)®%+ and a measure P¥ on
(£2,2) such that the sequence (X,)nez, of projections X, : GZ+ —
G (generating the o-algebra ) forms a Markov chain in G with
transition kernel P and starting measure v. This statement can be
made precise by the defining properties

EY(f o Xy | %) = P(f 0 X;) [P]

for all bounded measurable functions f on G, where 2, := o({ Xo, X1,
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..., Xp}) for every n € Z,, and
P*([Xo € B]) = v(B)

for all B € B(G).

In the special case v := g, for z € G we shall write E* and P¥ in
place of E¥ and P" respectively.

Introducing the shift operator € on €2 by

0((z0,T1y- -y Tmy---)) 1= (L1, %25+« oy Trgy---)

for all (zg,z1,...,%n,...) € ) one obtains the Markov property of
the chain (X,)nez, in the form

EY(Z o 6™ | 2A,) = E*(Z)[P"]

for every 2A-measurable function Z > 0 on Q,n € Z,.

Moreover, it turns out that (X,)ncz, enjoys the strong Markov
property : Given any stopping time 7 for (X,)ncz, then for every
A-measurable function Z > 0 on Q

EY(Z 00, | F.) = EX(Z) [P"],

where 6., F, and X, denote the 7-shift, 7-past and the 7-stopped
chain respectively.

The random walk in G with law u € M'(G) will be abbreviated
by X (i) if no other specification is needed.

It is easy to see that the random walk X (u) constructed above has
independent increments Z,, := X, — X,,—1(n > 1) (with respect to
P¥) and that these increments are identically distributed with

(P)z, = p

for all n > 1.

For a given random walk X (1) with law p € M*(G) we introduce
the notation

S(w) := (supp (1))~
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and
Gp) = [S(w)]™ -

Observation 6.3.1 z € S(u) if and only if for each V € Ve(z)
there exists an n > 1 such that

V) = PO([X, € V]) > 0.

Since G is assumed to be second countable, this tmplies that

P’ (ﬂ (X, € S(u)l) =1

and, after translation in G,

P | () X, € G(u)] | =1

n2>0

for all x € G. This means that G(u) is an absorbing set of X (u),
hence we may assume without loss of generality that

Gu)=G.
In terms of Fourier transforms this hypothesis can be rewritten as

{x € G" : i(x) = 1} = {0}.

Indeed, if i is adapted in the sense of the hypothesis, then 1 being
an extremal point of the unit disk, i(x) = 1 implies that x(z) =1
for 4 - a.a. £ € G, hence for all z € G(p), and thus (by adaption of
w) for all z € G (without exception). Thus x is the unit character 0
in G".

In the following we shall look at sets of the form

R(B) := limsup[X,, € B]

n—oo
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= [X,, € B for infinitely many n > 0],
where B € B(Q).

Definition 6.3.2 z € G is said to be recurrent if for every V €
Ve (z) one has
PYR(V)) =1.

x € G is called transient if X is not recurrent.

Theorem 6.3.3 (Dichotomy) For each random walk X (u) in G one
has the following alternative: Either

(1) every element of G is recurrent
or

(2) every element of G is transient.

Proof. Let R, denote the set of recurrent elements (for X(u)).
Plainly, R, is a closed set, and hence it suffices to show that

R,—S(u) C R, .

In fact, if this implication holds true, then R, C S(u) and conse-
quently
R,-R,CR,.
So, if R, # 0, then R, is a closed subgroup of G. But R, O —S(u)
implies that R, = G, since X () is adapted.

Now, let z € R, and y € S(u). We shall show that z—y € R,. Let
U be a neighborhood € U y(z—y). Clearly, U+ (y — ) € Bs(0), and
there exists a neighborhood V' € B (0) such that V-V C U+(y—xz).
On the other hand, V + y € Ug(y), hence there exists a k € Z,
satisfying

P%([Xx € V +y]) >0,

since y € S(u). Let
A=[XreV+y].

If w € A, the relation X, x(w) € V + z implies that

(Xnsk — Xp)w) EV+z—(V+y) CU.
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As z is recurrent, for P% - a.a. w € A there exists an infinity of
integers n € Z4 such that X, 1x(w) € V + z, therefore we obtain

PO(limsup[X, 1% — X € U] N A) = PY(A).

n-—oo

The members of the sequences (Xp4x — Xi)nez, and (Xp)nez, are
independent G-valued random variables having the same distribution
and are independent of A, therefore

P°(limsup[X, € U]) =1

n—oo

andz —y € R,. [ |
The dichotomy theorem enables us to make the following

Definition 6.3.4 A random walk X (u) with law u € M (G) is said
to be recurrent if it satisfies (1) of the theorem. Otherwise X(u) is
said to be transient.

A locally compact Abelian group G is called recurrent provided
there exists an adapted recurrent random walk on it, and transient
otherwise.

We recall the notion of (first) return time of X (u) into a set
B € B(G) defined by ‘

{inf{nGN:XneB} f{neN:X,eB}#0
RB = .
o0 otherwise.
It is known that Rp is a stopping time for X (u) (with respect to the
canonical filtration (2Ap)nez, )

Theorem 6.3.5 A (n adapted) random walk X(p) with law p €
MY(G) is recurrent if and only if for each neighborhood V € U (0)
one has

P°([Ry < o)) =1.

Proof. It suffices to prove that the condition is sufficient for X (y) to
be recurrent. Let V' be a symmetric neighborhood € U (0) and let W
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be a compact symmetric neighborhood € 25 (0) such that W c V.
Clearly, there exists an open neighborhood U € U (0) satisfying

W+Ve=-W4VecU°.
It follows that
Xi4n €VIN[ Xy € W] C [Xppgn — X € U],
hence that

P° ([Xm eWIN [ Kmin & V])

n>1

<SP X € WIN ) [Xmtn — Xm € U]
n>1

=P%([X,, € W])P°([Ry = o0)),

since P% X = P% , and Xppyn — Xm is independent of
Xm (m,ne€Zy). But by hypothesis

PO([Xm € WIN [ [Xmsn € VD) =0

for all m € Z,. Let therefore (W,),>: denote an increasing se-
quence of compact symmetric neighborhoods W, € U¢(0) such that

Uw.=V.
r>1
Since
[Xm €V]= Jim [Xm € W,
one has

PO | [Xm € VIN[) [Xman € V]| =0

n>1

for all m € Z,. Let now

T:=sup{m >0: X, €V}.
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Then

PY(T < o)) = ) PY(T =m))

m2>0

- Z PO([Xm € V] N n [Xm+n ¢ V]) = 0,

m>0 n>1

hence 0 and therefore X (p) is recurrent. [ ]

If X(u) is a random walk in G with law p € M(G) admitting a
transition kernel P, we introduce the potential kernel K of X (u)
by

Kf(z):=)_ P"f(z)=E*()_foXy,)

n>0 n>0

for all measurable functions > 0 on G and all z € G.
Properties 6.3.6 of the potential kernel

6.3.6.1 K satlisfies the mazximum principle in the sense that
sup K f (z) = sup{K f(y) : y € supp(f)}
for all measurable functions f on G.
6.3.6.2 For each measurable function f > 0 on G one has
f+PKf=f+KPf,
hence
6.3.6.3 the Poisson equation
(I-PKf=f

is fulfilled whenever K f is finite.
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6.3.6.4 For all x € G one has the commutation relationship

T,P=PT,.

The proofs of these properties are straightforward except that of
Property 6.3.6.1. Let z € G and let R* denote the return time into
supp (f) of the random walk X (u) starting at z (Here we refer to
the sequence (S%),>¢ of shifted sums

Sﬁ = iXk +x
k=1

(n > 1) and S% := z). One has

Kf(z) = E* (ZfoXn

n>0

=E* Z foX, R® <
\nZRE

:Ez ZfOXnoeRm;Rw<Oo

n>0

= E® | EX&® ZfoXn iRy < 00

n>0
(by the strong Markov property of X (u))
= Ez(KfOXRa:;Rz < OO),

hence the assertion by taking the supremum over all z € G.
For each pair (z,B) € G x B(G) we set
K(z,B):= Klpg(z)
= K % £4(B),
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where
n>0

is the elementary kernel determined by p € M!(G) in the sense of
Example 6.1.3.

Theorem 6.3.7 Let X (1) be an adapted random walk in G with law
e MY(G).
Then
(1) X(u) is recurrent if and only if K(U) = oo for every non-empty
open subset U of G.
(it) X () is transient if and only if K(U) < oo for every relatively
compact open subset U of G.

Proof. It suffices to show that X () is recurrent provided «(U) = oo
for each relatively compact open neighborhood U from a neighbor-
hood base of 0.

We are retaining the notation of the proof Theorem 6.3.5.

First of all we justify that without loss of generality we can choose
U to be a symmetric relatively compact neighborhood € Ug(0). In
fact, let

N
KN :=Z,u"forN21.

n=0
We have
N
K(U) = B (Z lyo Xn>
n=0
N
=1+E° ( > 1UoXn) ,
n=Ry
hence

N
NN(U) < 1+E0 (ZlUOXnoeRu>
n=0

=14+E° [E* | Y lyo X, |;Ry < oo |,

nz>0
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which follows from the strong Markov property of X(u), and by
Property 6.3.6.4 we obtain that

rn(U) <E%kn(U - Xg, ); Ru < 00)
S """N(U_ U))

where U — U is a symmetric relatively compact open neighborhood
€ Ye(0). Letting N — oo, one deduces that

K(U—-U)=o00.

Now let U be a symmetric relatively compact open neighborhood
in B(0) such that
k(U)=00.

One has

1> PY[T < o0))

=Y PO ([Xm eUIN (| Kmen & U])

m>0 n>1

and, since y — = ¢ 2U implies y € U (for z € U),

1>3 P° ([XmeU]ﬂﬂ[Xm+n—Xm¢2U]> .

m=>0 n>1

It follows that
1> k(U) PO[Ryy = o],

and since k(U) = oo by assumption, that
P°([Ryy = x]) =0,

hence that
P%([Ryy < o0]) = 1,

which by Theorem 6.3.5 completes the proof. [ ]
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Corollary 6.3.8 If X(u) is transient, then

(i) K is a proper kernel in the sense that G =, ., Gn for an
increasing sequence (Gn)n>1 tn G such that K(-,Gr) is a
bounded function for all n > 1.

(ii) K(z,-) € M{(G) for allz € G.
(iii) The set {K(z,-) : x € G} is T,-relatively compact in M1 (G).
Proof. From the theorem we infer that there exists an open U €&
B (0) such that k(U) < co. Let V be an open neighborhood € B (0)
satisfying V' — V C U. Then we obtain for each x € V that

K(z,V)=&(V —z) <k(V -V) < k)
and by the maximum principle 6.3.6.1 that

K(z,V) < w(U)

for all z € G. For every compact subset C' of G there is a sequence

{z1,...,2,} in C such that the sequence {V —z; : i = 1,...,n}
forms an open covering of C. But then

K(z,0) < iK(iE,V—xi)
i=1

i=1

< nk(V)

for all z € G which implies all the assertions (i) to (iii) at one time.
|

First Examples 6.3.9 of recurrent random walks

6.3.9.1 If G is compact, every (adapted) random walk X (p) in G is
recurrent.
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In fact, the potential kernel (measure) x of X (u) satisfies

=E°() 1goX,) =00

n>0
for the (relatively) compact open (sub)set G.

6.3.9.2 For the Bernoulli walk X(u) in Z with determining mea-
sure

1 1
= = —e_, € MY(Z
W= ge1t ge-1 € M(Z)

(arising as the common law of independent Z-random wvariables
Yi(k > 1) leading to partial sums X, = Y .y Y& (n > 1)) one
computes

2n\ 1
0D = X i ((0) = S P =) = 3 (77)
n>0 n>0 n>0

where

2n 1 _2n! 1 1

n ) 220 plpl 220 NETD
(by Stirling’s formula), and obtain that k({0}) = oo which says that
Zisa recurrent group.

We note (and shall show later) that the 'random walk X(p) in Z
with determining measure

j = per +ge_q,
where p,q > 0,p+q=1butp#gq =,é , 18 transient.

6.3.9.3 Considering the random walk X () in Z2 with determining
measure

(e(1,0) + €(-1,0) T €0,1) T E(0,-1)) € MY (Z?)

Jklr—-\

W=
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one obtains that

£({(0,0}) = Y P([X2n = (0,0)])

n>0

_Z Z mtjljl <—)2n’

n>0 i+j=n
where the inner sums

= (1) 0 200

i+i=n
B l 2n 2_n 2
T \4 n

are asymptotically equal to = as n — oo, hence that x({(0,0)}) =
oo. Consequently Z? is recurrent.

We are now going to describe the class R of all recurrent (locally
compact Abelian) groups. By a method similar to that applied in the
proof of the Chung - Fuchs criterion 6.2.2 we shall at first characterize
transient random walks in G.

Theorem 6.3.10 For any random walk X (p) with law p € M(G)
the following statements are equivalent:

(i) X (u) ts transient.

(i) There exists a neighborhood W € Ba(0) such that

1
lirnsup/ Re —dwan < 00.
111 Jw 1-ta

Proof. (i) = (i). For any compact symmetric neighborhood V ¢
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B (0) we have

( / ;(917_)wc;'\(dx))2

v

-/ i@( / 1v<g)1v(x—g>wm(de>> wen(dx)

aGN

- / X@war(V N (V + x))wen (dx),
G/\

whenever « € G. Integration with respect to u yields

/ AOwen (V O (V + x))wen (dx)

A
=G/(/V3<'(}‘)wm(dx)> p(dx).

This identity holding true for the p™ instead of u, we may multiply
by t" for t € [0,1] and sum over n in order to obtain

/ 1—%&)@/\ (V N (V + X))wc/\ (dx)

=Zt"/

n>0 G

( /V x(@wen (dx)) 2 " (dx) -

Now let W be a symmetric compact neighborhood € LA (0) and
choose V € Via(0) such that 2V ¢ W. The function

x — wer (VN (V +x))

on G is zero on W€, hence the left-hand side of the above equality
is a real number

1
1—th

< wGA(V)/Re dwgn .
w
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Since the function

z — (/VX(Q:) dWG/\)2

on G is continuous and takes the value wga(V)? at z = 0, it is
> %((.UG/\ (V))? on some neighborhood U € B(0). As a consequence
we obtain

1
2 R dwen > wen(V t"P°([X,, € U]).
| e rozdion 2 wen ) 2P, €U)

If, now, X (u) is recurrent, then

1
lim Re —
11 Jw 1-—ti

dwgr = 0,

and the implication (i) = (ii) has been proved.

(1) = (ii). Let X (u) be transient, and let V be a compact symmetric
neighborhood € B(0). The function

yr— (y * Iy % w)(y) = /G wel(V + ) O (V +z))p(dz)

is an element of CPD(G)NL!(G,wg), hence it is the inverse Fourier
transform of the function

2
x— i00( [ xduc)
\4
and consequently

J 860 ( [ % due) war(a = 1y + 1 < )0)

= /GwG(V N(V + z))p(dz) < we(V)p(2V).
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As in the first part of this proof we look at this inequality with u™
instead of y, multiply on both sides by ¢t™ for ¢t € [0, 1] and sum over
n. It follows that

/GA (/‘/dec):—_;—(ﬁwm (dx)

< we(V) D " P([X, € 2V]).
n2>0

Now we choose a compact symmetric neighborhood W € YA (0)
and the neighborhood V' such that £(2V) < oo and Re x(z) > 3 for
all (z,x) € V x W. We obtain that

1
w V/ Re — dwan < 4 t" PE(|X,, € 2V
oV) | Re 1=z duor <4 Y 1 P(X, € 2V)

n>0
hence that 1
lim sup / Re —dwga < o0
t11 w 1—ti
which implies the assertion. n

Corollary 6.3.11 If X (p) is transient, then for every compact neigh-
borhood W € WA (0) the function
1

R
el——ﬂ

is integrable over W.

Proof. For all ¢t € [0,1[ and x € G" we have that

and that

t11 1—tﬂ= 1-4
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By the Fatou Lemma together with the theorem we obtain

/Re
w

at first for the neighborhood W constructed in the proof of the the-
orem, but since

dwer < liminf / Re dwea < 00
tT1 w

1
1-4 1—th

1
1-4

is continuous and # 0 on G"\{0}, also for every compact neighbor-
hood W € Ugna (0)

Re

Remark 6.3.12 The Corollary implies that every compact group G
is recurrent (Compare Example 6.3.9.1).

In fact, if G is compact, then G is discrete, so that wga({0}) >
0. But this contradicts the wea-integrability of Re {27 over any
compact neighborhood € VA (0).

Applying the characterization theorem 6.3.10 we can now decide
on recurrence or transience of random walks on a significant class of
locally compact Abelian groups.

Theorem 6.3.13 Let X (1) be a random walk with law p € M*(G),
where G has the form
G =R%x 2Z°

for d,e > 0. Then
(i)ifd+e=11ie. G=R orG=17, and if

[ telutaz) < o0

as well as
/mp(dz) =0,

then X (u) is recurrent.
(tt) If d+ e =2 and

[ oftutda) < o0
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as well as
/ zp(dz) =0,

then X (u) is recurrent.
(1i5) If d + e > 3, then X (u) is transient.

Proof. (i) One easily verifies the estimates

1 1-¢

R >
*T-th = Re(l—t0))2 + 2(Im )2

and
(Re (1 —2))" = (1 - t) + Re (¢(1 - 4)))?

< 2(1—t)2 4+ 2t2(Re (1 — 1))?
valid for all ¢ € [0,1[. By the assumption on the first moment of u
we see that [ is continuously differentiable and that 4'(0) = 0. Now
we apply the Taylor expansion and obtain the ex1stence ofana >0
such that fory e R®* * Rory € Z" 2 T 2| — n,7] C R with
ly| < a we have

IIm f(y)| < ely|

as well as
Re (1 — a(y)) < elyl.

It follows that

: 1 1
e T W =00 2(1 — )7 + 3ty

1 —ti(y)
1 1
g/__g.? 1+ g2y? Ady),

5 A(dy)

hence that

¢ 1
li —A
e T ) 2 5
Now suppose that X (u) is transient. Then there exists an ag > 0
such that 1

Re ———— >0
1 —ta(y)
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for all y € [—ao, op) and

ag

1
lim Re ————\(dy) == M < o0
11 o 1—ti(y) ()

For o < ag, however,

(24

1
lim Re ——A)\ dy) < M < oQ,
it J o 1—ti(y) () <
but this contradicts the fact that € was chosen arbitrarily.
(ii) is proved similarly to (i) by embedding G = R? x T® into R4+
with d + e = 2.
For the proof of

(iii) we embed G* = R? x T* into R4t® with d + e > 3 and infer
from part 1. of the proof of the transience criterion 6.2.1 that there
exist a relatively compact neighborhood U € B ;A (0) and a constant
¢ > 0 satisfying Re (y) > 0 and

Re (1 - i(y)) = cllyl?
for all y € U But then for ¢t < 1 we obtain

1 d+-e 1 d+e
/Remm/\+(d)</ e Ta )
1/

v vl

provided d + e > 3 which implies that all random walks in R® x Z¢
with d + e > 3 are transient. [ |

—— e (dy) < o0,

Examples 6.3.14 of groups in R
6.3.14.1 All compact groups belong to R.

6.3.14.2 All groups of the form G = R% x Z¢ with d+ e < 2 are
elements of R.
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Properties 6.3.15 of the class R

6.3.15.1 Any open subgroup of a group in R belongs to R.
In particular,

6.3.15.2 every subgroup of a discrete group in R belongs to R.

For the proof of Property 6.3.15.1 we start with an adapted ran-
dom walk X(p) in G and consider the Markov chain (Z,)nen in an
open subgroup H of G given by

Zn = Xpn,
where the return times R}, into H are defined recursively by
n =Ry '+ Ryo Opn-1 (n>2)

and
RY = Ry.
Since X (u) is assumed to be recurrent,

PO([RT, < oo]) = 1

for every n € N, (Z,)nen is a well-defined random walk X (v) with
law
v:=(PYg, € M}(H).

Moreover, we have

limsup[Z, € O] = limsup[X, € O]
— 0

n—oo n

for all open subsets O of H. Therefore, the recurrence of X (1) yields

P°(limsup[Z, € 0]) =1

n—0

which says that X (v) is recurrent in H.

6.3.15.3 Let H be a compact subgroup of G. Then G € R if and only
if G/H € R.
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In order to see this we take u € M!(G) and let i denote the
image of 1 under the canonical homomorphism 7 : G — G/H. Now,
for each compact neighborhood V € L(0) the sets VH and n(V H)
are compact neighborhoods in U¢(0) and in Vg, 1(0) respectively.
The identity

DS urVH) =) i (x(VH))

n—0 n>0

yields the assertion.

Theorem 6.3.16 (Characterization of the class R) Let G be a sec-
ond countable locally compact Abelian group which by the structure
theorem 4.2.20 is of the form

G= Rd X Gl,
where G contains a compact open subgroup K such that
G/{0} x K = R% x G

with a countable group Gy of rank r. Then G € R if and only if
d+r <2

The proof of the theorem relies on

Theorem 6.3.17 (Dudley) A countable (Abelian) group G belongs
to R if and only if rank (G) < 2.

Proof. 1. If rank (G) > 2, then there exists a subgroup of G that
is isomorphic to the group Z* which by Theorem 6.3.13 (iii) is not

recurrent. On the other hand we infer from Property 6.3.15.2 that
G¢ZR.

2. Conversely, we assume that rank (G) < 2. There exists a sequence
(@n)neN generating G and such that a,,y1 does not belong to the
subgroup G, generated by {a1,...,a,} (m > 1). From the struc-
ture of finitely generated Abelian groups proved in the book [19] by
Hewitt and Ross we infer that for every m > 1 the group G,, is of
the form Z2 x F or Z x F or F, where F' denotes a finite group.
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Applying Theorem 6.3.13 and Property 6.3.15.3 this implies that all
random walks in G, are recurrent (m > 1).

Now we define a sequence (4(™),,>, of measures u(™ € M(G,,)
by
1
p(ar) = u®(-a1) = 3,
1™ (z) = (1 = gm) ™ ()

form > 2 and all x € G,,_1, and

1
K™ (am) = ™) (=) = 5m

(with a proper choice of g,,). To every x € G there exists an m > 1
such that z € G,,. The number

ul@) = JI (1~ g™ ()

i>m+1

is independent of m. If the product [] (1 — ¢;) converges, then
i>2

> ulg)= lim > pulg)

zeG T€Gm
= lim II a-a=1

i>m41

hence p € M'(G). Plainly y is adapted. Our aim will be to show
that the number g; can be chosen such that the random walk X (y)
with law p is recurrent.

For every m > 1 let X(™) be the random walk with law p,, defined
by the canonical probability measure me). ‘We choose once for all a

sequence (7 )nen in |0, 1] such that

H(l—rn) < 00.

n>1
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Next we choose a number /; € N and a sequence (agl))jeN in ]0, 1]
such that

15

[T -oy P Py (X = o) > 1.

i>1 k=1

For go :=7r1 A a( ) the random walk X® in G» leads to

H(l (2))12 Z P(2) X(2)-—0]) 1

izl k=l +1

with the proper choice of l5 and (ag. ))JeN With g3 := 13 A a( A

af) we obtain the random walk X®) in G3 satisfying an analogous
inequality. The inductive process continues and ends up with the
inequality

[T -al™y- Z P _,(xMV=0)>1 (2

le k= ln 1+1
together with the definition

Gn = Tp_1 A a(l) (2) LA a,(ln__ll) :

The choices taken are justified by the recurrence of the random walks
X)),

It is clear that

H(l—qi) < 0

i>1
For the potential kernel x of X(x) we have that

K(e) > Y PO(|Xg = 0])

k>1

In
=>. > PUxi=0)

21 k=lp_i+1

In
>3 >[I - PY_y(xf =),

n>1 k=lp_1+1 i>n+1
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where the k-th entry in the finite sum can be interpreted as the
probability for X (4) to be in 0 € G at time k without having left
Gp—1.

Moreover, by (2) we obtain that

ln
k@)=Y S I - PY_y(x& =0)

n>l k=lp_1+1 i>n+l

ln
>3, 3 IMa-e) Py =0) = oo,

n>1 k=lp_1+1 i>1
thus X (u) is recurrent, and G € R. |

The Proof of Theorem 6.3.16 follows from Property 6.3.15.3 to-
gether with the equivalence that R® x G is recurrent if and only if
d+ r < 2, where for both implications Dudley’s theorem 6.3.17 is
applied. [ |

Remark 6.3.18 If in the theorem 6.3.16 d+ e < 2, then G contains
the dense subgroup Q% x G, which belongs to R. Consequently we
have further

Examples 6.3.19 of groups in R

6.3.19.1 Q? x K with a compact group K belongs to R.

6.3.19.2 The group Q, of p-adic numbers belongs to R.
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6.4 Classification of transient random walks

In order to study the asymptotic behavior of random walks with law
on a locally compact Abelian group we need to modify their canonical
construction by compactifying G in the sense of Alexandrov.

Considering a transition kernel P on (G, B(G)) and picking a point
A not in G we extend P to (Ga,B(Ga)), where Ga = GU{A}
and B(Ga) = o(B(G) U {A}), by

1-Plz,G)ifz# A

Pz, {4}) :{ 1 ifz=A.

In this situation the canonical (product) measurable space will be
(€2,9) with
Q= G? and

A = SB(GA>®Z+ .

Moreover, the sequence (X,)ncz, of projections X, : Gi* — Ga
will be supplemented by

Xoo(w) == A
for all w € Q. So the measures P for v € M!(G) governing the

Markov chain (X, )ncz, with transition kernel P will be interpreted
as measures on the (enlarged) measurable space (2,2).

We start the discussion by proving some general renewal results
for transient random walks X (x) with law p € M*(G) admitting a
potential kernel K.

Proposition 6.4.1 Let Fj, denote the set of accumulation points of
Fk = {K(z,') :z € G}
obtained as £ — /. Then

Fr C{cwg:c>0}.
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Proof. From Corollary 6.3.8 we infer that Fg is 7,-relatively com-
pact. Let (z,)nen be a sequence in G with z,, — A and

Ty — lim K(zn,)=v € M (G).

n—oo
Since

Ty = lim e, =0,
n—0o0

the equality
Egp ¥ K =€y, + Ez, ¥R * LU

valid for all n € N, leads as n — oo to
V=V,

Now, the Choquet-Deny theorem 6.1.12 applies (to the adapted ran-
dom walk with law 4 € M'(G)), such that v is y-invariant and hence
a Haar measure of the form ¢ wg with ¢ > 0. n

Proposition 6.4.2 Let f € C$(G). Then

(i) K f is uniformly continuous.
(i) lim (Kf(z+y) - Kf(z))=0
uniformly for all y from any compact subset C of G.

(iis) liminf K f(z) = 0.

(3v) zh_r)nA Kf(z)Kf(—z)=0.

Since (i) implies that the mapping x — K(z,') is continuous,
hence determining the set Fy is equivalent to determining the closure
Fr of Fx in M (G) (with respect to T,).

Proof. (i) From the 7,-relative compactness of Fx we infer that
for every compact subset C' of G there exists a constant M¢c > 0
such that

K("L‘) C) < M¢
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whenever z € G. Let H := supp(f) and let V' be a compact neigh-
borhood in Us(0). Since f is uniformly continuous, for any € > 0 we
can choose a compact V; € U(0),V; C V such that

[f(z+y) - flz)| <e
for all y € V; and all z € G. For y € V; the function
z— g(z) = flz+y) - f(=z)
vanishes outside the compact set C := H + V, and
Kg(z) = Kf(z +y) — Kf(z)
whenever z € G. Now, from the boundedness of K we deduce that
|Kf(z+y)— Kf(z)| <eM¢

for all z € G,y € V, and this implies the assertion.

(i) Proposition 6.4.1 tells us that every sequence in G converging to
A (as n — oo) contains a subsequence (Zn)nen such that

Ty — nli_{lgoK(xn,-) =cwg

for some ¢ > 0. But then for y € G

lim (K f(zn +y) — K f(zn)) = ¢ (/fd(wa*ey)—/fdwa> —0

n— 00

which shows that this limit exists. For every € > 0 there exists a
compact subset Cy of G satisfying

Kf@+y) - Kf@)| <3

whenever z € C,,°.

Since by (i) Kf is uniformly continuous, for each € > 0, every
y € G has a neighborhood Uy, € U (y) such that for z € U, we have

K fa+2) - Kf(y+2) < 5
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uniformly in z € G. But then
IKf(z+2)— Kf(z)l <e

whenever z € Uy and = € Cy°. Covering the given compact set C' by
finitely many of the sets C for y € G yields the assertion.

(111) With the abbreviation

a:= :nglfG K f(x)

we have that
a < P"Kf(x)

for every n > 1 and all z € G. Letting n tend to oo this yields @ = 0.
Now let K f be strictly positive. Then

limi‘IAIfo(IL') =0.

If Kf is not strictly positive, then there exists o € G such that
K f(zo) = 0, hence that

Pan(LL‘o) =0

for every n € N. But for any compact subset C of G there exists an
n € Z, such that
P"(a:o,Cc) > 0,

hence there is an z € C¢ with K f(z) = 0. Thus, also in this case we
arrive at the assertion.

(iv) Fixing € > 0 we obtain from (i) that there is a compact subset
C. of G such that for z € C.° and for every y € D := supp (f) we
have
Kf(z) < Kf(z+y)+e,
hence
K=K (y)

%7l <Kflz+y)+e. (1)
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By the maximum principle 6.3.6.1 we obtain the validity of (1) for
all z € C. and all y € G.

Now (%ii) provides us with a point y. € D such that

Kf(y) <e.
Replacing y by —z + y. in (1) this yields

Kf(z)Kf(—z+ye) <2 Kf|e.

But
lim K f(~z) ~ Kf(~2+3:) =0,
T—
thus (7v) has been established. [

Theorem 6.4.3 Fj 3 0, and there exists at most one measure
p € Fi,pu # 0 which necessarily has the form

p=cuwg
for some ¢ > 0.
Proof. In view of Proposition 6.4.1 we have
Fre C{ewg:c20}.
Let now (z,)nen be a sequence in G with z,, — A such that

7o — lim K(z,, -)=v#0.

n—oo

Then, by Proposition 6.4.2 (iv),

Ty — im K(z,, -)=0.

n—o0

This takes care of the first statement of the theorem.

For the proof of the second statement we assume that there exist
two non-zero accumulation points in F . Then there exists a function
f € C$(G) with D := supp (f) such that the set

(Kf(@):z e G}
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admits two limit points 0 < ! < m as z — A. Fixing ¢ > 0 we now
construct inductively a sequence (Zp)nen in G such that the support
of the function

z—g(@) = f(x)+ flz+z1)+ ...+ flz+zn)

n
is contained in | (—z; + K).
i=0
In fact, the construction starts with o := 0. Then, by Proposition
6.4.2 (i) and (%) we choose z; € G such that

K f(21) <z+25—2,

Kf(_zl) < 26_21

K f(21) — Kf(z1+ )| <

and .
(K f(~21) = Kf(=a1+9)| < 5

the latter two inequalities holding true for all z € D. Since the sets
DU(—z; + D) and DU (z; + D) are compact we can choose z3 € G
satisfying analogous inequalities with 2, replaced by z2,2? by 23 and
D by DU(—z; + D) and D U (z; + D) respectively, and so on until
we arrive at an z,, € G satisfying the inequalities

&
Kf(.’l?n) <1+ 2n_+1—’
K 13
f(—ﬂl'n) < W)
g
Kf(xn) — Kf(:l:n+$)| < 27_5

and .
K f(=2n) = Kf(=2a +2)| < 57
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n—1
the latter two inequalities being valid for all z € |J (—z; + D) or
i=0

n—1
z € |J (z; + D) respectively. Clearly,
i=0
n
supp (g) C | J(-z: + D).
i=0
Now, let z € z, + D for 1 < p < n. Then

Kf(z+zp) < |KSll,

Kf(z+zpyi) = Kf(zpyi) + Kf(z + Tppi) — Kf(Tpis)

<l £
St 2(p+i)+1 + o(p+i)+1
whenever i =1,...,n —p, and

Kf(z+zpi) = Kf(z - zp),

whenever z =z, + 2+ 2p_; €xp—; + D and i =1,...,p, so that
€ €

Forming the sum over all these inequalities we obtain that
Kgz)<||Kf|+nl+e

for all z € J;_o(—=; + D). The maximum principle 6.3.6.1 implies
that this inequality holds for all € G. Another application of Propo-
sition 6.4.2 (i) yields

limsup Kg¢(z) = (n + 1) limsup K f(z),
oA A

hence

i Kf(e) < 7+ EELRES
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for every n € N. Since ! was the smallest of the presupposed two ac-
cumulation points > 0, the desired contradiction has been achieved.
[ ]

The previous theorem justifies the following

Definition 6.4.4 A transient random walk X (1) in G with potential
kernel K is said to be of type I if

Tv—maniK(x,-) =0.

X(u) is said to be of type II if Fy. contains a measure ¢ wg # 0
(for ¢ >0).

Remark 6.4.5 Theorem 6.4.3 implies the dichotomy that every ran-
dom walk in G is either of type I or of type II.

Clearly, any symmetric random walk X (¢) in G in the sense that
its determining measure x € M(G) is symmetric, is of type I.

In view of a general approach towards characterizing random walks
of type I we first treat the special (classical) cases G = R and G = Z.
We shall apply the symbol X for the Lebesgue measure on R as well
as for the counting measure on Z. The Alexandrov compactification
G of G will be understood as G U {—o0, o0}.

Concerning the renewal of the groups R and Z we first prove

Proposition 6.4.6 Let G be R or Z, and let X(u) be a transient
random walk in G with potential kernel K. Then

(%) To— lim K(z,-) = cxA.

r—+oo

(i) At least one of the constants cy and c_ equals 0 the other one
being > 0 or = 0.

Proof. 1. Let G = Z, and suppose that there exist two measures in
Fi (as £ — o00). By Theorem 6.4.3 these are the measures 0 and
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cwg for ¢ > 0. But then for any function f € C{(G), any € > 0 and
for sufficiently large = we have either

Kf(z) > cwa(f)—¢

or

Kf(z)<e.

Consequently there exists a sequence (z,)neN In G with z, — oo
satisfying the above inequalities with x replaced by z, + 1 and z,
respectively, for all n € N. Hence Proposition 6.4.2 (i7) implies a
contradiction.

2. For the case G = R we note that if there are two measures 0 and
cwg for ¢ > 0 in Fy, then for any f € C$(G) the entire interval
[0,we(f)] is contained in F, since K f is continuous by Proposition
6.4.2 (i). The desired contradiction follows from Theorem 6.4.3. W

A function f on R is called directly Riemann integrable (R-
integrable) if the series g(f,h) and &(f,h) defined below converge
and if for every € > 0

E(f,h)—g’_(f,h) <&

whenever h > 0 is sufficiently small. Here, for A > 0 we define
U, (f,h) and U, (f,h) as the minimum and the maximum of f taken
over [(n — 1)h,nh] (n € N) and set

g(—) (fa h) =h i Qfmn)(fa h)

h=—o0

respectively. Clearly, the set R(R) of R-integrable functions on R
contains C°(R). For functions f on R that vanish on | — 00, 0|, de-
crease on [0, 00[ and satisfy f(oo) = 0 the series ¢ and 7 either both
diverge or both converge. Thus f € R(R) if and only if f € L}(R, A).

|

Proposition 6.4.7 If f € R(R), then K f is bounded, and

Jim Kf=ce Mf).
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Proof. 1. We first show the assertion for functions of the form
fn = 1(m—1)h,nh|
for fixed h € R} (n € N). By the maximum principle 6.3.6.1 there

exists a constant M > 0 such that Kf, < M for all n € N. Let
(an)nez denote a sequence in R such that > -2 a, < 0o. Then

n=—oc
for -~
f = Z a'nfn
we obtain that
m m
> aKfie(z) <Kf(z) < D axKfiu(z)+ M ) a
k=-m k=—m |k|>m

for all z € G and m € N, which implies the boundedness of K f. The
asserted convergence follows from the 7,-convergence of the potential
kernels K(z,-) as £ — oo (z — —00).

2. Let now f € R(R), f > 0. Setting

oo

i(_) = Z Q’Sz'—) In
n=—oo
we immediately see that
Kf<Kf<Kf,

hence that

hm Kf(:n)<hm1anf(a:)<hmsupKf(m)< hm K f(z)

r—too
and finally that

cx o< hmlanf(m) <limsup K f(z) < c4G

r— 300
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for all 2 € G. This implies both assertions of the Proposition at once.
|

It follows the computation of the constants c; and c_.

Proposition 6.4.8 Let X (p) admit a first moment in the sense that

[ Ielutds) < o

in which case the mean

m = /:c,u,(da:)

(of X(p)) exists. Then X (u) is of type II.
Moreover,
(1) m # 0, since X (u) is transtent.
(2) If m >0 (m < 0), then co = L and ¢+ =0
+ —_

(3) If supp (i) C Ry(:= Ry U {oo}), then c_ = L (and, of course
Cy = 0)

Proof. In order to show the main statement and (2) of the Proposi-

tion we need to introduce two auxiliary functions g and k on R and
R? by
u(l-z,00) iz <O

g(z) : =
—p()—oo0,—z]) fz>0
and
lifz<0,y> -z
klz,y):=¢ -1 ifz>0,y< ~2z

0 otherwise
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respectively. An application of the Fubini theorem to the integral

/ (2, y)Mdz)u(dy)
R2

for which
/ k(2 y)A(de) u(dy) = / lylpu(dy) < oo
R?2 .

holds, yields that

o0

/ ()N (dz) = m.

—0oQ

Consequently, g € R(R) and so Kg is bounded by Proposition 6.4.7.
For h := 1)_o,0] we have

Ph(z) = p(] — o0, —z])
whenever z € R, hence
(I-Ph=g.
Applying the Choquet-Deny theorem 6.1.12 to the measures y :=
l-wg € M‘Sb(G) with
=h—-Kg

and o := pu € MY(G) we obtain that ! is constant = a [wg]. Now
sequences (Zn)en and (yYn)nen in R can be found which converge
to —oo and oo respectively and which satisfy {(z,,) = I(y,) = a for
every n € N. On the other hand we have

h(zn) = Kg(zn) + l(zy),

where z,, denotes either x,, or y,. In the limit for n — oo we obtain
from Proposition 6.4.7 that

l=c.m+a
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and
O=cym+a

according to the choices (z, )neN and (yn)neN respectively. But ¢, >

0 is impossible, since this yields ¢ = 0,4 = 1, hence A < 0. We

therefore have ¢, = 0, hence a = 0 and consequently c_ = 7—11-

As to the proof of (3) we first observe that the statement is true
for m < 0o by what we just showed. In the case A = co we note that
g vanishes on ]0, 00, Kg > 0 and K¢ = h, since h vanishes on ]0, oo].
Moreover, for every n € N the function

gn = gli—n,0 € R(R)

and
Kg, < Kg=h.

In the limit for £ — —oo this inequality leads to

. /_ " (@) (dz) <1

for all n € N. But this is a contradiction unless ¢ = 0. [ ]

Given a random walk X (u) in G with law 4 € M(G) and tran-
sition kernel P one introduces for any stopping time 7 for X (u) the
stopped transition kernel P, by

P.(z,B) :=P*([X, € B)])
for all z € G,B € B(G). In the special case that 7 is the (first)
entry time (or hitting time) Hp of X(u) into the set B € B(G)
defined by

infineZy : X,(w) e B}if{neZ,: X,(w) € B} #0
o0 otherwise,

Haw) = {

the strong Markov property of X (x) implies that

Ki@ = [ Pug, @d)K1@)
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valid for all measurable functions f > 0 on G,z € G.

In the following we shall write H, instead of Hﬁ+.
Properties 6.4.9

6.4.9.1 If
mt = / zp(dz) = oo,
0
then
Ty — lim Py (z,')=0.

T——0o0

In fact, if supp (1) C R, then by Proposition 6.4.8 (3)

lim Kf(z)=0,

T——00

and since K f > f, this yields the assertion. Let us now suppose that
p is not carried by R;. We define a sequence (7,)nen of stopping
times 7, for X(u) by induction as follows:

T i=Hy,
infilneZy X, >X;,_,} f{neZ; :X,>X, ,}#0

T 1=
o0 otherwise

for £ > 1. Clearly, the random variables X, — X, | (k > 1) are
independent and equally distributed with distribution

p =Py (0,").

Thus the sequence (X, )ren forms a random walk X (x’) in R with
supp (') C Ry, and since p' > Res R, #» We obtain that

/000 zp' (dz) = 00.
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Now the distributions of entry into R, with respect to X(u) and
X (u') coincide. The first part of this proof applied to p’ instead of
1 yields the assertion.

6.4.9.2 If
0
m- = / (—z)p(dz) < 00
-0
and if m > 0, then
forallz € R.

For the proof we assume that m* < oo; the case m* = oo can be
treated by truncating X (u). Since m* < oo, the strong law of large
numbers implies

lim 1Xn =m [P].

n—oo N

Thus
lim X, = oo [PY,

n—oo

and the assertion follows.

Theorem 6.4.10 (Renewal under non-existence of first moments)

If the transient random walk X (1) in G = R or G = Z admits no
first moment, then it is of type L

Proof. We suppose that c_ > 0, hence ¢ = 0, and that m* = co.
Then the strong Markov property of X (u) implies that

ki)~ | " Py, (@ d)K ()

holds for each function f € C$(G) vanishing on | — 0o,0[ and all
z € G. From ¢, = 0 we infer that given € > 0 there exists an a > 0
such that K f(y) < ¢ for all y € G with y > a. But then

Kf(z) < / " P, (o, dy) K1(y) + ¢
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for all x € G. Moreover,

v~ z_l_l)r_noo Pu,(z,) =0, (1)

thus K f(z) < 2e for sufficiently small z € G. This, however, con-
tradicts the assumption that c_ > 0. It follows that m*™ < oo,
hence that m™ = oo. Replacing X (u) by its dual in the sense that
p € MY(G) is replaced by u~, the above assumption is equivalent to
supposing that ¢_ = 0, hence ¢, > 0 and m~ < 00, hence m* = cc.
Then

P*{{Hy < o0) =1

for every z € R, and by (1)

0=c_-we(f)

= lim Kf(z)

=00

= lim [R Py (z,dy)K f(y)

T——00
= lim K f(y)
y—o0

= ¢t -we(f)-
This is the desired contradiction. [ ]

The previous theorem extends to random walks in groups of the
foorm G = R x K and G = Z x K, where K is a compact group.
We shall prove the extension only for G = R x K, where wg is
chosen to be A ® wi with wg € M1(K). Let p denote the canonical
projection from G onto R. Then we shall employ the convention that
z — 400 (—00) in G provided p(z) — 400 (—o0) in R.

Theorem 6.4.11 Let G X R x K or G =2 Z x K, and let X(u) be
a random walk with law p € M*(G) which is of type II.
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Then
(i) [ pl@luids) < .
(1) If m = /p(a:)u(da:) >0,
G
then

0 fA =00
7o — lim K(z,) =

z—N .
ﬁ)\ if A =—cc.

Proof. From Proposition 6.4.1 we infer that for every sequence in
G there exists a subsequence (Z,)neN With 2, := (Yn, kn) € R X K
such that

To— lim K(z,,) =cwg
n—o0

with ¢ > 0. Let f € C$(G) be constant on the K-cosets of G. Then
(i) of Proposition 6.4.2 leads to

lim Kf(z,)= lim Kf(y,,0).
Yn—0

Ly —00

Now we consider the random walk X (i) with law g = p(u) €
M*!(R). With the suggestive notation for f (with f(y) = f(z) for all
y = K + z) and K we obtain

Kf(yn,0) = kf(yn)
for all n € N, and by the discussion starting with Proposition 6.4.8
we have . _
lim Gf(yn) = cx - A(f)
Yn —00

where ¢y > 0 if and only if

+o0
/ ly|i(dy) = /G Ip(z)|u(dz) < 0 and < 0.

—0



350 Probabilistic Properties of Convolution Semigroups

As _
’\(f) = WG(f),

the theorem has been proved. |

The final step of our analysis will be to establish the renewal of
random walks for general locally compact Abelian groups.

We note that the (locally compact Abelian) group G remains to be
second countable. The function f appearing in the proofs is always
taken from C$(G) and # 0.

Theorem 6.4.12 Let Gy, be a compactly generated, non-compact
open subgroup of G such that G/G1 is infinite.

Then all transient radom walks in G are of type I.

Proof. We suppose that the given random walk in G with potential
kernel K is of type II and at the same time that there exists a
sequence (T, )neN in G such that

Ty — nh—vnéo K(zp,") =cwg

for ¢ > 0. The aim is to derive a contradiction.

Given the sequence (z,)neN We may assume without loss of gen-
erality that the Gp-cosets G1+z, of G (n € N) are pairwise disjoint.

In fact, if there is no subsequence of (z,,)nen with this property,
then there exists a Gi-coset containing infinitely many z,, hence
(Tn)nen is contained in one (and the same) G1-coset. Now we choose
a sequence (Yx)reN in G such that the cosets Gy + yi (k € N) are
pairwise disjoint. From (i5) of Proposition 6.4.2 we infer that for
every k € N we have that

nan;oKf(xn +y) = cwa(f),

hence that 1

[ F (@ + 31) — cwa(D] < o

for some ny € N. The sequence (zx)ren With 2y := z,, + yi fulfills
the requirements.
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Since (G is compactly generated and non-compact, there exists an
z € Gy such that nz — A as n — oo. Applying properties (i) and
(tv) of Proposition 6.4.2 one obtains

lim K f(nz)=0

or

lim Kf(—nz)=0.
n—o

Without loss of generality we restrict our subsequence arguments to
the first limit relationship. For every n there is a smallest integer m,,
such that

Kf(z, +n'z) < —;-c wa(f)

whenever n’ > m,,. This follows again from (%) of Proposition 6.4.2.
But for fixed {

lim Kf(z, +lz) = cwe(f),

n—00

hence m,, > 1 for sufficiently large n. We obtain, for such =,

K (5~ mnz — ) > sews(f)

and 1
Kf(zn +mpzx) < Ecwg(f),

consequently, in the limit for n — oo, cwe(f) and 0 respectively.

On the other hand G is open, hence G/G, is discrete and every
subset of G is contained in the union of finitely many G;-cosets of
G. Thus

lim (z, +nz) = A

n—od
uniformly in n, and one more application of (ii) of Proposition 6.4.2
yields

lim |K f(zp + mpz — ) — K f(zn +mpz)| =0

n—oo

which serves as a contradiction. | |
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Corollary 6.4.13 If G =2 R% x Z¢ x K withd+e > 1 and a compact
group K, then all transient random walks on G are of type L

Proof. From the proof of Theorem 6.4.11 we infer that it suffices to
consider groups of the foom G = R¥ x Z¢ ford+e > 1. If e > 1,
the above theorem yields the result. If, however, G = R? for d > 1,

then G = |J G, for an increasing sequence (G, )nen of compact
n>1

subsets G, of G such that G,° is connected (n € N). Suppose that
for f € C$.(G), f # 0 we have

lim Gf(a) =a#0.

Then every point in {0, a] is a limit point of Gf(z) (for z — A). But
this contradicts the statement of Theorem 6.4.3. |

Theorem 6.4.14 If every element of G is compact, then all transient
random walks in G are of type I

Proof. As in the proof of the previous theorem we assume that there
“is a random walk of type IT in G and aim at deriving a contradiction.
Let (z,)neNn be a sequence in G such that

T — lim K(Z,,") = cwe
n—0

with ¢ > 0. For every n € N the set S := {kz, : k € N} is a
compact subsemigroup, hence a subgroup of G. Indeed, if 0 is not an
accumulation point of S, then S will be discrete. Since S is compact,
this is a contradiction. But 0 being an accumulation point of S, -z
is also one. This shows that S = —S, hence that S is a group.

As a consequence of this we may also choose a sequence (kp)pen
in N such that

lim kpzn = —2,.

p—=0o0

Thus, for every € > 0 there is k,, € N satisfying

K f(kn@n) < K f(~2n) + %
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By (iv) of Proposition 6.4.2

lim K f(-z,) =0,

n—oo

hence

lim K f(k,z,)=0.

n—oo
Now we choose a constant M such that M > || K f|| V gc wg(f). For
sufficiently large n > 1 and the largest positive integer m, < kj,, the
inequalities

wa(f)?
Kf(mnxn) 2 —4—']\—4',—'
e ()
Cwg
Kf((mp +1)z,) < M
imply that

K f () K £ (@) < M(e + Kf((mn + 1),))

Furthermore, for sufficiently large n we have that
Kf(za) > sewo(f)

which leads to

K f(mpzy,)

IA

2M
W(Kﬂ(mn + 1)zn) +€)
2Me

cwe(f) + cocd

cwa(f)+ %e

<

<

[N R

and
cwe(f)?
8M?

Now, by an appropriate choice of £ we arrive at the inequalities

—e < Kf((mp+ 1)z,,).

0<a<Kflmyz,) <B<cuws(f)
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and
0 <y < Kf((mp+1Dzy,) < <cwa(f).

Since z, — A as n — 00, at least one of the sequences (mnZp)nen
and ((mp, + 1)z )nen admits a subsequence (yn)nen With y, — A.
But the sequence (K f(yn))nen has at most 0 and cwg(f) for ¢ > 0
as accumulation points. This shows the desired contradiction. [ |

Theorem 6.4.15 (General renewal theorem). Let G be a second

countable locally compact Abelian group, and suppose that there exists
a random walk of type II in G. Then

G2ZRxK or G=2ZXxK,

where K is a compact group, and the renewal results of Theorem
6.4.11 apply.

Proof. From Theorem 6.4.14 we infer that there exists a non-

compact element y € G. Since by Appendix A 3.6 G admits a
compactly generated open subgroup Gy, the subgroup

G2 :=[G1 U {y}]
is non-compact, compactly generated and open. Thus, by Theorem
6.4.12 the group G/G5 must be finite, hence G itself compactly gen-
erated. But then, by the structure theorem 4.2.19

G=RxZ°x K

with a compact group K. Corollary 6.4.13 implies the assertion. W



Appendices

Appendices on topological groups, topological vector spaces and on
commutative Banach algebras are added in order to provide the
reader with the necessary prerequisites from these topics to be em-
ployed throughout the book. The exposition of basic notions and
facts from functional analysis organized along specific references and
presented in a unified terminology is intended to facilitate the read-
ing of the main text.

There are excellent text books and monographs available which
contain the knowledge layed out in the appendices. The citations
on topological groups are justified in Chapter II of Volume I of [19]
(Hewitt, Ross). The quoted material on topological vector spaces is
contained in the graduate text [41] (Schaefer). A systematic treat-
ment of the facts collected on commutative Banach algebras is given
in chapters IV and V of the monograph [28] (Loomis). Only a few
very special references are documented in the main text of the book.

A Topological groups

A group G (written additively with neutral element 0) which is also
a topological space is said to be a topological group if the mapping
(z,y) — z —y from G x G into G is continuous.

Clearly the translates ¢ — a+x and © — x+ b for a,b € G as well
as the inversion x — —z are homeomorphisms from G onto G. As
a consequence one notes that for open sets 4, B of G also the sets
A+ B,B+ A and —A are open. If A is closed and B is compact,
then A 4+ B is compact in G.

355
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Let U(z) denote the neighborhood filter of z € G with the abbre-
viation U for U(0). Then V(a) = a + BV =V + a whenever a € G.

Theorem A1 (Determination of the topology of a topological group)
(i) Let G be a topological group with neighborhood filter V. Then
(1) for every U € U there exists V € U such that V +V c U.
(2) If U € B, then —-U € V.
(8) 0 €U for allU €.
(4) IfU € B,a € G, thena+U —a €.

(i) Let G be a group and let U be a filter in G satisfying the condi-
tions (1) to (4) of (i). Then there exists exzactly one topology in

G such that G is a topological group and U is the neighborhood
filter of 0.

For every a € G one has
Ba)=a+PV=V+a.

We note that for every topological group the closed symmetric
neighborhoods of 0 form a fundamental system of neighborhoods of
0.

Properties A2 of subgroups, products and quotients of a topo-
logical group

A 2.1 For every subgroup H of the topological group G its closure
H is again a subgroup of G.

A 2.2 Let (G)icr be a family of topological groups. The product

topology in G := ;1 G; is compatible with the group structure in
the sense that the mapping

(%3, ¥i))icr = (i — Yidier

from ;e (G; x G;) into G is continuous.
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A 2.3 Let G be a topological group and let H be a normal subgroup
of G. There exists an equivalence relation

tRyszz—-—yeH.

The group G/H := G/R is a topological group with respect to the
quotient topology induced by the canonical mapping G — G/H in
the sense that B(0+ H) satisfies the conditions (1) to (4) of Theorem
Al

One observes that an open subgroup of a topological group G is
closed. Moreover, open and closed subgroups H of G can be gener-
ated by a symmetric neighborhood U € 90 in the form H = | J, ., nU.

Properties A3 of locally compact groups

A 3.1 A Hausdorff (topological) group G is locally compact if and
only if 0 possesses a compact neighborhood.

A 3.2 Buvery closed subgroup of a locally compact group is also locally
compact.

A 3.3 If G is a Hausdorff group and H a subgroup which is locally
compact with respect to the relative topology, then H is closed.

A 3.4 Let G be a locally compact group and let H be a normal
subgroup of G. Then G/H is a Hausdorff locally compact group if
and only if H is closed.

A 4 A topological group G is said to the compactly generated if
it contains a compact subset F' for which the subgroup generated by
I coincides with G, i.e.

G =[F]:={0}u |Jn(Fu(-F)).

n>1

For locally compact groups G this property is equivalent to the
requirement that there is an open relatively compact subset U (or a
neighborhood U € ) such that G = [U].
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Further Properties A3

A 3.5 Let G be a locally compact group and F' a compact subset of G.
Then there exists an open and closed compactly generated subgroup
H of Gwith HDF.

A 3.6 Let G be a locally compact group, let H be a subgroup of
R furnished with the relative topology, and let ¢ be a continuous
homomorphism from H into G. Then either ¢(H)~ is a compact
Abelian subgroup of G or ¢ is a topological isomorphism from H
onto p(H).

B Topological vector spaces
We now turn to the discussion of commutative groups, in particular
to topological vector spaces which are vector spaces £ over R
and at the same time topological spaces such that the mappings
(z,y) — z+y from E x F into E and (A, z) — Az from R x E into
FE are continuous.
Examples B1 of topological vector spaces are semi-normed vector
spaces E in the sense that they admit a semi-norm p with the defining
properties
(i) p > 0.
(ii) p(z +y) < p(z) + ply) for all z,y € E.
(1i1) p(Ax) = |Alp(z) for all X € R,z € E.
The function p on E x E given by
o(z,y) =p(z —y)

for all z,y € E provides a quasi-metric on E.

B 1.1 Every (real) Banach space is a normed vector space, hence the
spaces R and C are normed vector spaces (over R).
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Let A and B be subsets of a vector space F. A is said to absorb
B if there exists an o € R such that B C AA for all A € R with
|A] > @. A C E is called absorbing (radial) if A absorbs every
finite subset of F, and bounded if it absorbs each neighborhood of
0. Finally, A C E is called balanced (circled) if AA C A whenever
X € R with || > 1.

Theorem B2 (Characterization of topological vector spaces by local
properties)

(i) In every topological vector space E there exists a fundamental
system U of closed neighborhoods of 0 such that

(1) every U € U is balanced and absorbing.
(2) For every U € U thereisa V e Y with V +V C U.

(ii) Let E be a vector space and let L be o filter base in E satisfy-
ing properties (1) and (2) of (i). Then there exists exactly one
topology in E compatible with the vector space structure of E
and such that Y is a fundamental system of neighborhoods of 0.

For topological vector spaces one introduces linear subspaces,
products and quotients in analogy to the corresponding structures
for topological groups.

Theorem B 3 (Characterization of finite dimensional vector spaces)

Let E be a Hausdorff topological vector space with dim E = d (<
o0). Then every linear mapping from R® onto E is an isomorphism
and a homeomorphism.

In particular every such topological vector space is isomorphic (as
a topological vector space) to R%.

It is a famous result of F. Riesz that a Hausdorff topological vector
space F is finite dimensional if and only if E is locally compact.

A topological vector space FE is said to be a locally convex space
if £ admits a fundamental system of convex neighborhoods of 0.

Clearly every semi-normed space, hence every Banach space is
locally convex.
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There is a characterization of locally convex spaces by local prop-
erties analogous to Theorem B 2. In fact, the topology of a locally
convex space E is determined by a fundamental system of conver,
symmetric and absorbing closed neighborhoods of 0.

Let E be an arbitrary vector space, (p;);cr a family I' of semi-
norms on E, and let i be the system of all sets V of the form

ﬂ{x € E:p;i(z) < N}

icdJ

where J is a finite subset of I,A; > 0 for all i € J. Then U is a
filter base, every set {z € E : p;(z) < A} (i € J, ) > 0) is convex,
symimnetric and absorbing, hence every V' € {{ has these properties,
and consequently there exists exactly one locally convex topology
in F such that { is a fundamental system of neighborhoods of 0.
This topology is called the topology defined by the set T' of
semi-norms on F and will be denoted by 7r.

Obviously the choice I' := {p} yields the topology of the space F
semi-normed by p.

Theorem B 4 Every locally convex topology T on the vector space
E is of the form T for some family I’ of semi-norms on E.

It is a standard procedure to introduce the inductive limit of locally
convex vector spaces. A prominent example of a (strict) inductive
limit of locally convex vector spaces is the space F := C¢(X) for a
locally compact space X. In fact,

C(X)= lim C%X,K)

KeK(X)

where for each K € K(X) the linear subspace C(X,K) :={f € E:
supp (f) C K} of C°(X) carries the topology of uniform convergence.

Theorem B 5 (Banach, Hahn) Let E be a vector space, p a semi-
norm on E,M a linear subspace of E and f a linear functional on
M.



Topological vector spaces 361

The following statements are equivalent:

(i) f can be extended to a linear functional f on E satisfying

£ ()| < p(z)

foralxze E.

(i7) |f ()] < p(=z)
whenever x € M.

Theorem B 6 (Closed graph) Let E and F be Banach spaces. Then
any linear mapping from E into F whose graph is a closed subset of
E x F is continuous.

In the remaining part of this appendix we are collecting useful
notions and results on the duality of topological vector spaces.

Let E and F be topological vector space, and let L(E, F') denote
the vector space of all continuous linear mappings from FE into F.
For a set S of a given non empty family & of bounded subsets of E
and for each V' € U (0) we introduce the set

T(S,V):={ue L(E,F) :u(S) C V}.

Te denotes the system of all finite intersections of sets of the form
T(S,V). There exists exactly one topology 7 on L(E,F) which is
compatible with the vector space structure such that 7 is a funda-
mental system of neighborhoods of 0 for 7. The topology 7 deter-
mined by 7g is said to be the G-topology on L(E, F').

Discussion B 7 of the G-topology

B 7.1 If F is a locally convex space, then the S-topology is locally

CONVET.
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B 7.2 Let F be a locally conver space, and let I' denote the set of
semi-norms determining the topology of F' (See Theorem B 4). For
p €T and S € & we introduce the semi-norm pg on L(E, F) by

ps(u) == sup p(u(z))
€S

forallu e L(E,F). WithV :={y € F : p(y) < 1} we obtain
T(S,V)={ue L(E,F):ps(u) <1}.

Therefore the family {ps : S € G,p € T'} of semi-norms defines an
&-topology on L(E, F).

By Lg(E, F) we abbreviate the vector space L(E, F') equipped with
the G-topology.

B 7.3 Let E,F be topological vector spaces, let F be a Hausdorff
space, and let Jgeg S be a dense subset of E. Then Lg(E, F) is
Housdorff.

Special cases B 8 of G-topologies

B 8.1 If G is the family F(F) of finite subsets of E, then Tg yields
the topology of simple (pointwise) convergence.

B 8.2 For 6 := K(E) 7g determines the topology of compact
convergence.

B 8.3 If G is the family B(E) of bounded subsets of E, then g
defines the topology of bounded convergence (which appears to be
the finest of all G-topologies).

A set H C L(E,F) is said to be equicontinuous if for every
V € Br(0) there exists a U € Vg (0) such that

wWU)cV
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for all u € H, or equivalently if for every V' € U r(0) we have

() v™(V) € B(0).

ueH

Properties B 9 of equicontinuous sets

B 9.1 For any equicontinuous subset H of L(E, F) the closure H of
H taken with respect to the topology of simple convergence (and hence
with respect to any finer topology) on L(E, F) is also equicontinuous.

B 9.2 FEvery equicontinuous subset H of L(E,F) is bounded with
respect to each &-topology.

B 9.3 If E and F are Banach spaces, then every simply bounded
subset of L(E, F) is equicontinuous.

B 9.4 If E and F' are Banach spaces, then L(E, F) is itself a Banach
space with respect to the topology of bounded convergence.

Let F' and G be vector spaces, and let B be a bilinear form on
F x G. One says that (F,G) forms a dual pair with respect to B if
for all z € F,z # 0 there exists a y € G such that B(z,y) # 0, and
if for all y € G,y # 0 there exists an x € F such that B(z,y) # 0.

If E is a locally convex Hausdorff space and E’ := L{(E,R) its
topological dual (space), then (E,E’) forms a dual pair with re-
spect to the bilinear form

(z,z') — B(z,z') = (z,z') == z'(z)

on E x E'.

For a dual pair (F, G) with respect to a bilinear form B also (G, F')
is a dual pair with respect to B. In the sequel we shall employ the
notation (z,y) — B(z,y) =: {z,y) for the bilinear forms defining the
dual pairs (F,G) and (G, F).

Given a dual pair (F, G) the weak topology o(F, G) is introduced
on F by the property that all linear functionals z — (z,y) (y € G)
are continuous.
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Properties B 10 of the weak topology

B 10.1 o(F,G) is determined by the set {p, : y € G} of semi-norms
py on F' given by

py(2) = [z, 9)|
forallz e F.

B 10.2 o(F,G) is a locally convexr Hausdorff topology.

B 10.3 F and o(F,G) determine G within isomorphisms, i.e. F' =
G, where the prime refers to the topology o(F,G).

Let E be a locally convex Hausdorff space with topology 7. Then
the weakened topology o(E, E’) on E is coarser than 7, and F’ is
also the topological dual of E with respect to o(E, E’).

Theorem B 11 (Alaoglu, Bourbaki) For a locally convex space E
any equicontinuous subset H of E’ is o(E', E)-relatively compact.

Let (F,G) be a dual pair of vector spaces. Without loss of gener-
ality we assume that G C F*, where F* denotes the algebraic dual
of F. A locally convex topology 7 on F' is said to the compatible
with the duality if G = F’, where the prime refers to the topology
7. In particular, o(F,G) is compatible with the duality.

One shows by employing Mazur’s separation theory that all topolo-
gies on F' compatible with the duality yield the same system of closed
convex sets. For each convex subset of F' all topologies compatible
with the duality lead to the same closure.

Theorem B 12 Let (F,G) be a dual pair.

(i) Every locally conver Hausdorff topology 7 on F is compatible
with the duality.

(i1) T is the &-topology for a covering & of G by convez, symmetric
and o(G, F)-compact subsets.
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The finest among the G-topologies of (i1) (called the Mackey topol-
ogy and denoted by 7(F, R)) is defined by the system & of all convex,
symmetric and o(G, F)-compact subsets of G. The coarsest among
those G-topologies is o(F,G).

Theorem B 13 (Arens, Mackey) A locally conver topology 7 on F
s compatible with the duality if and only if

o(F,G) » 7> 1(F,G).
Application B 14 to the dual pair (E,E") of a Banach space E.

Let
H:={d'€FE :|z'| <1}

be the unit ball of E'. Then
B 14.1 H is equicontinuous, hence o(E’, E)-compact.

In fact, H is o(E’, E)-relatively compact by Theorem B 11. More-
over, H is easily seen to be o(E’, E) - closed.

B 14.2 If E is separable, then H is o(E’, E)-metrizable.

One just notes that along with E also E’ is separable and that
under this hypothesis every equicontinuous subset of E’ is metrizable
with respect to the topology of simple convergence.

B 14.3 For every x € E one has

Izl = sup Nz, 2}
IIEE,
l=fi<t

This identity follows from the fact that the unit ball of E is the
polar of the unit ball of E’,
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C Commutative Banach algebras

Let A be a normed algebra in the sense that A is an algebra and
a normed vector space over C such that for the norm || - || in A the
inequality

lzyll < ll=lllyl

holds whenever z,y € A. If A admits a multiplicative unit 1 then A
may be renormed such that || - || = 1. For the subsequent discussion
we assume this renorming being done.
Theorem C 1 (Gelfand, Mazur) Every commutative normed algebra
A which at the same time is a field, is algebraically and topologically
isomorphic to C.

Now let A be a commutative Banach algebra with unit 1. An ideal
I of A is said to be maximal if I # A and if for every ideal I of A
with I C J C A one has either J= A or J = 1.
Properties C 2 of ideals I of A
C 2.1 1 is an ideal of A.
C 2.2 If I is maximal then I is closed.

C 2.3 For each closed ideal I of A the quotient A/I is a Banach
algebra.

Theorem C 3 (Gelfand) For each subset I of a commutative Banach
algebra with unit 1 the following statements are equivalent:

(i) I is a mazimal ideal of A.
(it) I is a closed mazimal ideal of A.

(iii) There ezxists a continuous epimorphism f : A — C such that

7o) =1

(iv) There exists an epimorphism f: A — C such that f~1(0) = I.
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For the proof of the implication (i) = (4i¢) one observes that by
Property C 2.3 A/I is a Banach algebra and by the maximality of I
that A/I is a field. But this implies the existence of an algebraic and

topological isomorphism g : A/I — C. Considering the canonical
mapping p: A — A/I and putting f := g o p the equalities

O =p (g 0) =p(0) =1
yield the desired statement.
Preparations C 4
C 4.1 Bvery continuous epimorphism h : A — C satisfies ||h|| < 1.

Let A(A) denote the set of all (continuous) epimorphism from A
onto C.

C 4.2 A(A) is a g(A’, A)-compact subset of the unit ball of A’.

A(A) is said to be the mazimal ideal space or the spectrum of

For every z € A the mapping & : A(A) — C defined by

for all h € A(A) is continuous, the mapping z — & from A into
C(A(A)) is a homomorphism, and

£l = sup [|&(h)]= sup [h(z)| < |=|
hEA(A) heA(A)

whenever z € A.

C 4.3 A:= {2 :x € A} is a subalgebra of C(A(A)) which separates
A(A) and contains 1.

In general, A is not closed in C(A(A)).
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C 4.4 The topology of A(A) is the initial topology with respect to the
set A.

This topology 74 on A(A) is called the Gelfand topology. In this

connection we also introduce the Gelfand transform z of x € A
and the Gelfand mapping (representation) z — & from A into

C(A(A)).

Theorem C 5 Let A be a commutative Banach algebra with unit 1.
Then

(i) Every epimorphism h from A onto C is of the form
h(&) = Z(h)
for some h € A(A).
(ii) Bvery h € A(A) defines an epimorphism
& — &(h)
from A onto C.

A Banach algebra A is said to involutive if A admits an involution
z — z~ defined as a mapping A — A with the properties that

D) (z+y)~=z"+y",
(2) (Az)™~ = Az™,

(3) (zy)~ =y~z", and
@)z~ =2z

whenever z,y € A, X € C.
Moreover, an involutive Banach algebra A is called a C*-algebra
if
lzz™ || = [l
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for all z € A.

Theorem C 6 (Gelfand’s formula) Let A be a commutative Banach
algebra with unit and Gelfand mapping © — Z. Then, for each z € A
the formula .

&l = lim ="

holds.

Theorem C 7 Every commutative C*-algebra A with 1 is semisim-
ple in the sense that the Gelfand mapping x — & of A is a norm-
and involution preserving isomorphism from A onto C(A(A)).

For the proof one starts by showing that z ~ £ is involution-
preserving. Here preparation C 4.1 is applied. The property of z —
Z being norm-preserving is established with the help of Gelfand’s
formula C 6.

In fact, we know already that ||£|| < ||lz|| holds for all x € A. For
the inverse inequality we first choose x € A with = ™. Then

Iz} = llzz™1l = llell?,
hence ||z2||% = ||z|, and by induction
"1 = lja]

whenever n > 1. Now, Theorem C 6 applies and yields

T ny L
2] = lim {jz"]=
= lim |27 =
Jim 2|77 = ||z

Next, for arbitrary x € A we have (zz™)~ = zz™, hence
lz]? = llza™|

and therefore 5 N A
=* = llzz™|| = ||(zz™)"||

= |2z~

= ||IZz|]

= |11 1t = (1[I,
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Finally, A being an involutive subalgebra of C(A(A)) with unit
which separates A(A) is dense in C(A(A)). But along with 4 also A
is complete, hence closed, and A = C(A(A)) has been established.

Now, let A be an involutive commutative Banach algebra which
does not admit a unit. By A(A) we again denote the set of all continu-
ous epimorphisms from A onto C, furnished with the initial topology
with respect to the mappings h — h(z) from A(A) into C (for all
z € A). Let A := A® {1} denote the involutive commutative algebra
arising from adjoining a unit element 1. A can be given a norm such
that it becomes a Banach algebra with unit 1 and Gelfand mapping

z — & (related to A(A) and A). Let hg € A(A) be defined by

_J0 ifze A
ho(z) '“{1 if ¢ =1.

Clearly, A(A)\{ho} is a locally compact space, and the mapping h —
Res4h is a homeomorphism from A(A)\ {ho} onto A(A). Therefore
A(A) is locally compact, and z € A belongs to A if and only if
(restricted to A(A)) vanishes at infinity.

Theorem C 8 Let A be an involutive commutative Banach algebra.
Then

(i) A is a subalgebra of C°(A(A)).

(ii) If, in addition, A is a C*-algebra, then A is semisimple in the
sense that x — & is a norm- and involution preserving isomor-
phism from A onto C°(A(A)).

While (7) is clear by the remarks preceding the theorem, only (%)
requires an argument. In fact, there exists a unique norm on A which
extends to A and makes A a C*-algebra. From Theorem C 7 we
conclude that A is semisimple. Restricting the Gelfand mapping z —
% to A and CY(A(A)) respectively we reach the desired conclusion.
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