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Preface 

The present book has been written for mathematically prepared 
readers who like to look beyond the boundary of a single topic in 
order to discover the interrelations with others. More concretely the 
author’s idea is to direct the attention of probabilists to the appli- 
cability of the enlightening notion of a group to probability theory. 

The interplay between probability theory and group theory is as 
old as the early investigations on translation invariant probability 
distributions and stochastic processes and has become an increas- 
ingly important field of research which meanwhile reached a certain 
state of maturity. 

While the traditional approach to the basic theorems of proba- 
bility theory often overshadows part of the structure of the prob- 
lems, the awareness of group - theoretical concepts leads to a quick 
detection of common features of apparently unrelated situations. In 
other words, the perception of algebraic-topological structures in the 
state space of stochastic processes does not only yield interesting and 
applicable generalizations of known results but also sets a limit to 
such generalizations by describing their domains of validity within 
the general framework. In practice this approach helps to provide at 
least more transparent proofs of well-established theorems including 
L6vy’s continuity theorem, the Lhvy-Khintchine representation of 
infinitely divisible probability measures, transience criteria for con- 
volution semi-groups and characterizations of recurrent or transient 
rand om walks . 

This primer in probabilities on Abelian topological groups with 
emphasis on separable Banach spaces and on locally compact Abelian 

V 



vi Preface 

groups is by its very conception an elementary introduction to the 
structural access to probability theory, no text book in the habitual 
understanding and by now means a monograph. It should be studied 
by graduate students along with the course work and will make in- 
teresting accompanying reading for their lecturers. At the same time 
the book provides information beyond the particular topic and lays 
bare the possibility of incorporating certain problems of probability 
theory into a wider setting which may be chosen according to the 
actual aims of study. 

Since the pioneering work of Grenander and Parthasarathy going 
back to the early 1960’s structural aspects of probability theory have 
been stressed in various monographs. For probabilities on locally 
compact groups we mention the books by Berg and Forst and by 
Revuz, both of 1975, as well as the author’s book of 1977. There is 
also an extensive literature on probabilities on linear spaces. We just 
cite the books by Araujo and Gin6 of 1980, by Linde of 1986 and by 
Vakhania, Tarieladze and Chobanyan of 1987. Our selection of topics 
from these sources has at least two motives: to stress the significance 
of the problems within the development of the theory, and to choose 
an approach to their solutions which at the same time is as direct and 
informative as possible. Clearly these aims can hardly be achieved 
without reference to some basic notions and facts from topological 
groups, topological vector spaces and commutative Banach algebras. 
Appendices at the end of the book are offered as desirable aids. 

In the first part of the book (Chapters 1 to 3) we start by collecting 
the necessary measure theory on metric spaces including the Riesz 
and Prohorov theorems. It follows a detailed analysis of the Fourier 
transform for separable Banach spaces. The main focus of the sub- 
sequent discussion is the arithmetic of probability measures on such 
spaces, in particular the study of infinitely divisible probability mea- 
sures. We establish the embedding of infinitely divisible probability 
measures into continuous convolution semigroups and then examine 
Gauss and Poisson measures. The Ito-Nishio theorem is applied to a 
construction of Brownian motion. The proof of the L&y-Khintchine 
representation is prepared by a detailed discussion of L6vy measures 
and generalized Poisson measures. It is clear that the theory exposed 
for general separable Banach spaces covers the case of Euclidean 
space and also various cases of function spaces. 
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The second half of the book (Chapters 4 to 6) begins with the no- 
tion of convolution of Radon measures on a locally compact group. 
The exposition continues by developing the duality theory of locally 
compact Abelian groups including positive definite functions and 
measures. Then negative definite functions on such groups are stud- 
ied, their duality with positive definite functions and their correspon- 
dence in the sense of Schoenberg with convolution semigroups. The 
construction of Lkvy functions for any locally compact Abelian group 
is the basic step towards a L6vy-Khintchine representation of nega- 
tive definite functions. The concluding chapter contains a discussion 
of transient convolution semigroups and random walks. A measure- 
theoretic proof of the Port-Stone transience criterion precedes the 
characterization of groups admitting recurrent random walks and 
the classification of transient random walks which solves the prob- 
lem of renewal of random walks on a locally compact Abelian group. 
The theory developed in this part of the book can be easily spe- 
cialized to the Euclidean case, but moreover to infinite dimensional 
lattices and tori. 

Now the methodical framework of the book becomes visible. For 
separable Banach spaces as well as for locally compact Abelian 
groups dual objects and Fourier transforms of measures as func- 
tions on these dual objects are employed in order to determine the 
structure of infinitely divisible probability measures and convolu- 
tion semigroups. For Banach spaces only restricted versions of the 
L6vy continuity theorem can be proved. In fact, by the lack of an 
appropriate Bochner theorem for positive definite functions har- 
monic analysis soon reaches its limits. In the case of locally compact 
Abelian groups, however, the Pontryagin duality provides a far more 
elaborate harmonic analysis which can be applied to obtain not only 
strong versions of the Lkvy continuity theorem but also deep re- 
sults on the potential theory of stochastic processes with stationary 
independent increments and random walks in the group. 

To write a primer in probabilities on algebraic-topological struc- 
tures became a matter of concern during the author’s lecturing over 
about three decades, mostly at the University of Tubingen in Ger- 
many. Along with his research work at the interface between prob- 
ability theory and harmonic analysis he taught on probability mea- 
sures on Banach spaces, locally compact groups and homogeneous 
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spaces. It turned out that graduate students majoring in probabil- 
ity theory or in analysis took those courses which led to seminars 
on ” Stochastics and Analysis” in which central limit theorems for 
generalized random variables, stochastic processes in and random 
fields over general algebraic-topological structures were discussed. In 
recent years also analogs of these probabilistic objects for general- 
ized convolution structures as Jacobi and Sturm-Liouville translation 
structures were considered. For the harmonic analysis of these struc- 
tures the presentation of the case of a locally compact Abelian group 
provides the appropriate basis. Consequently, the present book may 
also be used as a preparatory text for the study of probability mea- 
sures on hypergroups and hypercomplex systems. 

In conceiving his book the author received encouragement from 
many colleagues and friends spread over the globe. Various scientific 
agencies like the German and the Japanese Research Societies made 
it possible to test preliminary versions of the manuscript in work- 
shops and crash courses during research stays and sabbaticals at 
universities in Australia (Perth), Japan (Tokyo) and the US (San 
Diego). Acknowledgement of prime importance goes to Christian 
Berg and Gunnar Forst, to Werner Linde and to Daniel Revuz for 
their excellent monographs the contents of which reaches far beyond 
our exposition. Several people have read drafts of the text. Espe- 
cially valuable was Gyula Pap’s constructive criticism for which the 
author is most thankful. There were also capable secretaries who did 
a great job in preparing the typescript: Kerstin Behrends and Erika 
Gugl deserve praise for their skillful work. Last but not least I am 
grateful to M.M. Rao from the University of California at Riverside 
who invited the book into the series on Multivariate Analysis with 
World Scientific. 

The author expresses his expectation that all obscurities contained 
in the text will be communicated to him and that despite of such 
inevitable deficiencies the book may serve its modest purpose. There 
is no doubt that the following statement due to Pablo Picasso also 
applies to an author in mathematics 

”Ce que je fais aujourd’hui est d6jd vieux pour demain.” 

Tubingen, March 2004 Herbert Heyer 
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Probability Measures on Metric Spaces 

1.1 Tight measures 

Let ( E ,  d )  denote a metric space, O ( E ) ,  A ( E ) ,  K ( E )  the systems of 
open, closed and compact subsets of E respectively. On (E ,d)  we 
have the notions of the Borel a-algebra 

%(E)  := a(O(E))  = a(A(E) )  

of E and of a (Borel) measure on E ,  i.e. a non-negative extended 
real-valued a-additive set function p on B(E) with the properties 
that p(0) = 0 and p ( K )  < 00 for all K E K ( E ) .  

Definition 1.1.1 A finite measure p on  E is called 

(a)  regular if for  every B E B(E) and for  every E > 0 there exist 
A E A ( E )  and 0 E O(E)  such that A c B c 0 and 
p ( 0 )  - p(A)  < E ,  and 

(b)  tight if 
p(E) = sup{p(K) : K E K ( E ) } .  

Theorem 1.1.2 Let p be a finite measure on E .  Then  

1 
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( i )  p is  regular. 

( i i)  If p is  tight then it mus t  be inner-regular in the sense that 
f o r  each B E % ( E )  

p(B)  = ~up{p(K)  : K E K ( E ) ,  K c B } .  
In particular, f o r  f inite measures the notions of tightness and inner- 
regularity coincide. 

Proof. (i) Let 9 := Q p  be the system of all B E % ( E )  with respect 
to which p is regular. Then 9 is a Dynkin system in the sense that 
E E 9, B E 9 implies that E \ B E 9, and whenever (Bn)nl l  is a 
disjoint sequence in 9 then B := Un>l Bn E 9. 

The proof of the first property is clear, and for the second one we 
observe that if A E A ( E )  and 0 E O(E)  are chosen as in Definition 
l . l . l (u )  then E \ 0 c E \ B c E \ A and, noting that E \ 0 E A ( E )  
and E \ A  E O(E) ,  we have 

As for the third property, given E > 0 we can find An E A ( E )  and 
On E O ( E )  with An c Bn c On and 

& 
1 

P ( 0 n )  - P(An) < 2rr+2 
for all n E N. Let 0 := Un>l On, choose no with p(  Un>no An) < 
&/4 and put A := U:L1 An. Then A E A ( E ) ,  0 E O ( E ) ,  A c B C 
0 and 

n=l n>no 

Furthermore A ( E )  c 9. Indeed, given A E A ( E )  for each n E N 
we observe that 

n x E E : d(x,A) < - 
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is open, and from A? I A (which holds as E is metric) it follows 
that p(A$) 1 p(A). 

Now A ( E )  is n-stable, and therefore 

B ( E )  = a(A(E)) = D(A(E)) c D c B(E), 

whence 9 = B(E). Here D(A(E)) denotes the Dynkin hull of A@). 
(ii) Let B E B(E) and E > 0. Using (i) there exists A E A ( E )  

with A c B such that p ( B )  - p(A) < 5 ,  and also K E K ( E )  with 
p ( E )  - p ( K )  < 5 .  Then A n  K is a compact subset of B ,  and 

Corollary 1.1.3 If p is tight, then for every downward filtered family 
(A')'€I in A ( E )  

Proof. From A := nLEI.AL c A, we have p(A) I p(&) for all 
K E I ,  and hence p(A) 5 inf,EIp(A,). 

In the reverse direction, appealing to Theorem 1.1.2 (ii), to each 
E > 0 there exists K E K ( E )  with K c E \ A such that 

Now K c U,,,(E \ A, ) ,  and hence by compactness there exist 
L ~ ,  L ~ ,  ..., L ,  E I with K c U:=1(E\ALi). Also (E\A&I is an upward 
filtered family, and hence there exists L O  E I such that K c E \ A,, . 
From p ( E  \ K )  - p ( A )  < E it follows that 

and so E being arbitrary we obtain inf,EI p(&) I p(A). 

Theorem 1.1.4 Let p be a tight measure on E .  
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(i) There exists a smallest closed subset A0 of E with 
P V O )  = P(E). 

(ii) A0 is separable. 

(iii) A0 = { x  E E : p ( U )  > 0 for all open neighborhoods U of x } .  

Proof. (i). The family 

is downward filtered, even n-stable. The result now follows from 
Corollary 1.1.3. 

(ii). By Theorem 1.1.2(ii) there exists a sequence (Kn)n21 of com- 
pact and hence separable subsets of A0 with p(A0)  = sup,>1 p(Kn).  
Thus A := (UnZl Kn)- is separable and closed with A c Ao, from 
which it follows that 

and by (i), A = A0 so that A0 must be separable. 
(iii). Write 

Bo := { x  E E : p ( U )  > 0 for all open neighborhoods U of x }  . 
Given x E E \ A0 then E \ A0 is an open neighborhood of x with 
p(E \ Ao) = 0, and hence x E E \ Bo. In the reverse direction given 
z E E \ Bo there exists an open neighborhood U of II; with p ( U )  = 0. 
Hence p ( E  \ U )  = p ( E ) .  Thus A0 c E \ U and hence 2 E E \ Ao. 

Definition 1.1.5 The set A0 in Theorem 1.1.4 i s  called the support 
ofp,  and will be denoted by supp(p). 

Theorem 1.1.6 Let  (E ,d)  be a separable complete metric space. 
T h e n  every f inite measure p o n  E is  tight. 

Proof. Let {xk : k E N} be a dense subset of E. Then for each 
n E N  1 u B(xk, ;)- = E 

k z l  



Tight measures 5 

where 
B ( x , 6 )  := {y E E : d ( z , y )  < 6) 

is the open ball of radius 6 > 0 with centre x .  Choose E > 0. Then 
to each n E N there exists kn E N satisfying 

The set 
kn  1 

n>l k = l  

is closed and totally bounded. From the completeness of E it follows 
that K is compact. Finally 

Theorem 1.1.7 Let E ,  F be metric spaces, and cp  : E + F a contin- 
uous mapping. If p is a tight measure on E then the image measure 
p(p> of p under p is tight on F. 

Proof. Since cp  is a continuous mapping it must be B ( E )  - B(F)- 
measurable, and hence cp(p) is a finite measure on F .  Given E > 0 
there exists a compact subset K of E with p ( E  \ K )  < E.  Also p(K) 
is a compact subset of F ,  and 
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1.2 The topology of weak convergence 

Although in the following discussion the set M b ( E )  of all tight 
(finite Borel) measures on E and its subset M ' ( E )  := { p  E M b ( E )  : 
p(E)  = 1) of probability measures will remain the basic measure- 
theoretic objects, for some technical arguments we need a few facts 
on regular normed contents on E and related integrals. A content 
on E is a non-negative extended real-valued (finitely) additive set 
function p on the algebra %(O(E))  generated by O(E)  satisfying 
p(0) = 0. Regular (finite) contents and probability contents on E are 
introduced in analogy to regular (finite) and probability measures on 
E. 

Given a regular finite content p on E ,  the p-integral of a bounded 
real-valued function f on E is defined as follows. Let P be a partition 
of E consisting of finitely many pairwise disjoint sets E l ,  ... ,En E 
rU(O(E)). We put 

n 

j=l 

and 

j=1 

where Mj := sup{ f (z) : x E E j }  and mj := inf{f (z) : z E E j }  for 
j = 1, ..., n. f is said to be p-integrable  if 

inf Sp = sup s p y  
P P 

and in this case 
J f d p  := i n f s p  

P 

is the p-integral  of f. Obviously every bounded continuous function 
f is p-integrable, and 

r 

defines a normed positive linear functional on the vector space C b ( E )  
of bounded continuous functions on E.  Moreover, we have 
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Theorem 1.2.1 (F. Riesz) There is  a one-to-one correspondence 

between the set of regular finite (probability) contents p on  E and 
the set of bounded (norrned) positive linear functionals L ,  on  Cb(E)  
given by 

for  all f E Cb(E) .  

The Proof will be carried out only for the case in parentheses. 
1. Let L be a normed positive linear functional on Cb(E) ,  and let 

XL(A) := inf{l(f)  : f E Cb(E) ,  f 2 l ~ }  

for every A E A(E) .  AL : A ( E )  -+ [0,1] is a smooth probability 
content in the sense of the following four properties 

(b) A L ( A ~ )  5 X,5(A2) for all Al,A2 E A ( E )  with A1 c A2. 

(c) X L ( A ~  LJ A2) 5 X L ( A ~ )  + X L ( A ~ )  for all A l ,  A2 E A@), where 
equality holds whenever A1 n A2 = 0. 

(d) For all A E A(E)  

2. Now, XL can be uniquely extended to a regular probability content 
P L  : %(O(E))  + [0,1], and it turns out that 

for all f E Cb(E) .  
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In order to verify this identity we pick f E Cb(E)  with 0 5 f 5 1 
and introduce the sets 

Gi := {x E E :  f(x) > I }  E O ( E )  
n 

for all i = 0,1, .  . . , n, n 2 1. Clearly, Go 2 G1 3 . . . 3 Gn = 8. NOW 
we define functions ai E C([O, 11) by 

- 0  on [o,?] 
i-1 i linear on [nl 

on [ i ,1] n 

and functions fi on E by 

for i = O , l ,  . . . ,  n,n> 1. Then 

1 
- ai(t) = t 
n 

i = l  

for all t E [0,1], hence 

l n  I n  
-> : f i= f  and - n CWi) = L(f) . 

i = l  i=l 
n 

Since fi 2 l ~ ~ ,  and for any A E A ( E ) ,  A c Gi, 1~~ 2 1~ we obtain 
that fi 2 1~ and hence that 

From the regularity of p~ we infer that 
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and thus 

n-1 . 

For n -+ 00 we obtain that 

whenever f E Cb(E)  with 0 5 f 5 1. 

0 5 cf 5 1, hence 
But since f E C+(E) there exists a constant c > 0 such that 

Moreover, if f E 
f + c1 2 0 ,  hence 

= - L ( c f )  1 2 - 1 c f  1 d P L = / f  d P L .  
C C 

Cb(E) ,  there exists a constant c1 > 0 satisfying 

Thus we have 

JW L f d P L  



10 Probability Measures on Metric Spaces 

for all f E Cb(E) .  Replacing f by - f yields the assertion. 

3. The injectivity of the correspondence p I-+ L ,  can be seen as 
follows: Let p,  v be regular probability contents of E satisfying 

for all f E Cb(E) ,  and let A E A(E) .  There exist decreasing se- 
quences (Gn)n>_l and (Hn)n>l in O ( E )  with Gn 2 A and Hn 3 A 
for all n 2 1 such that 

and 
lim v ( H n )  = v ( A ) .  

n-+m 

But then Vn := Gn n Hn L A and 

as well as 
lim v(Vn) = v ( A ) .  

Choosing for every n 2 1 a function f n  E Cb(E)  with the properties 
0 5 f n  5 1, fn(A)  = (1) and fn(V:) = (0) (the existence of which 
follows from A n V,C = 8 for all n 2 1) we obtain 

n+m 

hence 
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thus 
p ( A )  = v(A) for all A E A ( E )  

and by the regularity of p,  u also 

p ( B )  = v (B)  for all B E U ( A ( E ) )  = U(O(E)) 

which implies that p = u. H 

At a later stage we will apply the following consequences of the 
theorem. 

Corollary 1.2.2 I f for  measures p,  u E M ~ ( E )  

holds whenever f E Cb(E)  then p = u ( o n  %(E) ) .  

Corollary 1.2.3 Let ( E ,  d )  be a compact metric space. There is a 
one-to-one correspondence 

between the set M b ( E )  and the set L i ( C ( E ) )  of positive normed 
linear functionals on  C ( E )  given by 

for all f E C ( E )  = C b ( ~ ) .  
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The Proof follows directly from Theorem 1.2.1 by applying the 
fact that for compact E every regular finite content on E is in fact 
a-additive and hence uniquely extendable to a measure in M b ( E ) .  
For the latter property see Theorem 1.3.1. 

We proceed to introducing a topology in M b ( E ) .  

Definition 1.2.4 Given p E M b ( E ) ,  n 2 1, f l ,  f 2 ,  ..., f n  E Cb(E) 
and E > 0,  define 

The weak topology rw on  M b ( E )  is the uniquely determined topol- 
ogy for  which 

is a neighborhood system of p for  each p E M b ( E ) .  

Remark 1.2.5 

(a) The weak topology on  M b ( E )  is Hausdorfl due to  Corollary 1.2.2. 

(b) A net ( p & ~  in M b ( E )  converges weakly (rw) to  ,LA E M b ( E )  
whenever 

for  all f E C b ( ~ ) ;  we write rw - lim, pL = p. 

(c)  I n  the functional-analytic context of Appendix B 10 one intro- 
duces for  the dual pair (Cb(E)I, Cb(E) )  of topological vector spaces 
the weak topology o n  Cb(E)' .  If E is compact, then Corollary 1.2.3 
yields the homeomorphism 
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and consequently the coincidence of the weak topology restricted to 
Cb(E)'+ with the weak topology rw on Mb(E) .  

Definition 1.2.6 Let p E M b ( E ) .  A set B E B(E) is called a p- 
continuity (p-null boundary) set if p(0B) = 0 where 
d B  := B-\Bo (E A ( E ) ) .  

Theorem 1.2.7 (Portemanteau) Let (/LL)LEI be a net  in M b ( E )  and 
p E M b ( E ) .  The following statements are equivalent: 

(2) rw - lim, p, = p. 

(iii) limLEIp,(E) = p ( E )  and l iminfLEIpL(0)  2 p ( 0 )  f o r  all 0 E 

W)* 

(iv) l imLEIpL(B) = p(B) for  all p-continuity sets B. 

Proof. 
(i) =+ (iz). As 1~ E Cb(E)  we have l imLEIpL(E) = p ( E ) .  Now 

consider A E A(E) .  Then, as Ah 1 A as n + 00, to each E > 0 we 
can find n E N with p(Ag) - p(A) < E.  Choose f E Cb(E)  with 
0 5 f 5 1, f (A) = (1) and f ( E  \ A$) = (0). Then 

(22) @ (izz). This follows by considering complements. 
(ii), (iii) + (iv). Let B be a p-continuity set. Then 

limsuppL(B) 5 limsupp,(B-) 5 p ( B - )  
L E I  L E I  
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and this yields the result. 
(iv) + (i). Let f E Cb(E).  Since f ( p )  contains at most countably 

many atoms, to each E > 0 there exists a strictly increasing sequence 
(ti)i=~,l,..., k in R with f ( p ) ( { t i } )  = 0 for all i = 0 , l  ,..., k ,  ti - 
ti-1 5 E for all i = 1 ,2 ,  ..., k ,  and f(E) C [ to&[.  For each z = 
1 , 2 ,  ..., k put Bi := f - l ( [ t i -1 , t i [ ) .  Then Bi E B(E) and, since 

we see that Bi is a p-continuity set. We now define 

k k 

g := ti-11~~ and h := tilgi . 
i=l i= l  

Then 
95f < g + ~  and h - & <  f 5 h  

and 

and 

lim inf / f dpL 2 lim inf 1 hdp, - &p(E)  
L E I  L E I  

k s i=l 

k 1 gdu = 5 ti-lu(Bi) and hdv = tiv(Bi) 

for all v E M b ( E ) ,  and E is a p-continuity set as dE = 8. It now 
follows that 

limsup J f dpL 5 J fdp  5 lim L E I  inf /' fdpL 
L E I  
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and this gives the desired equality. 

Corollary 1.2.8 Let p E M b ( E ) .  Then  each of the following is a 
rw -neighborhood basis of p. 

( a )  { u  E M b ( E )  : Iv(E) - p(E)J < E and v(Ai) < p(Ai) + E for  all 
i = 1,2,  ..., n}, where Al,A2, ... ,A, E A ( E ) ,  n E N and E > 0. 

(b)  { u  E M b ( E )  : ) v ( E )  - p(E)1 < E and u (0 i )  > p ( 0 i )  - E f o r  all 
i = 1 , 2 ,  ..., n},  where 0 1 , 0 2 ,  ..., 0, E CJ(E), n E N and E > 0. 

(c)  { u  E M b ( E )  : Iv(Bi) - p(Bi) l  < E for  all i = 1,2, ..., n}, where 
B1, B2, ..., Bn E B ( E )  are p-continuity sets with n E N and 
E > 0 .  

Theorem 1.2.9 Let O(LL)LEI be a net in M b ( E )  with rw - lim, pL = 
p E M b ( E ) .  Furthermore let f be a bounded Borel-measurable real- 
valued funct ion on E .  If the set D f  of discontinuity points of f  is  a 
p-null set, then 

r r 

lim] fdp, = ] f d p .  
L E I  

Proof. Let A E A(R). Since f-l(A)- c D f  u f-l(A) we can apply 
Theorem 1.2.7 to obtain 

In addition 

A second application of Theorem 1.2.7 gives rur - lim, f (p,)  = f ( p ) .  
Now consider cp E Cb(R) such that ResBcp = idB, where B is any 
bounded interval containing the bounded set f(B). Since cp o f = f 
we have 
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Corollary 1.2.10 Let ( / A L ) L E I  be a net in M b ( E )  satisfying rw - 
lim,pL = p E M b ( E ) ,  and let B E B(E) be a p-continuity set. 
Then for  the corresponding measures induced on  B we have rw - 
l i m , ( ~ L > ~  = PB. 

Proof. Let f E Cb(E) .  Then 

for all u E M b ( E ) .  From D f l e  c aB we see that D f l s  is a p-null 
set. In addition f 1~ is bounded and Bore1 measurable. Referring to 
Theorem 1.2.9 it follows that 

Theorem 1.2.11 The set D ( E )  := { E ,  : x E E }  of Dirac measures 
on  E is rw-closed in M b ( E ) ,  and x E, is a homeomorphism of E 
onto D(E) .  

Proof. Let ( x , ) , E I  be a net in E such that limLEI x ,  = z E E.  Then 

for all f E Cb(E) ,  and thus rw - lim, E,, = E, which shows that 
x H E, is a continuous mapping E + D(E) .  In addition z H E~ 

is injective, which is easily seen by simply choosing B E B(E) with 
x E B and y $ B,  and indeed B = { x }  will suffice. 

Now suppose that rw -lim, E ~ ,  = p E M b ( E ) .  From lirnLEI E , ~  ( E )  = 
p ( E )  we see that p ( E )  = 1, and hence supp(p) # 0. Choose z E 
supp(p) and an open neighborhood U of x. It follows from the prop- 
erties of supp(p) and Theorem 1.2.7 that 

lim inf E ~ ,  ( U )  2 p ( V )  > 0 
L E I  
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so that there exists LU E I with E ~ , ~  ( U )  > 0, and hence x, E U 
for all L > LU.  This shows that lirnLEIxL = x,  and in particular that 
E~ I---+ x is continuous. It follows that p = c X ,  since rw is Hausdorff, 
and therefore D ( E )  is rw-closed. 

Theorem 1.2.12 Let E , F  be metric spaces, and cp : E + F a 
continuous mapping. Then  p I-+ (p(p) is a r,,-continuous mapping 
from M b ( E )  into M b ( F ) .  

Proof. According to Theorem 1.1.7 we see that cp(p) E M b ( F )  for 
all p E M b ( E ) .  Let ( ~ L ) L E I  be a net in M b ( E )  with rw - lim, p, = 
p E M b ( E ) .  For each f E Cb(F)  we have f o cp E Cb(E) ,  and this 
implies that 

In the following we will show that we can restrict the study of weak 
convergence to bounded sequences. For this purpose we consider the 
metrizability of the space M b ( E )  for an arbitrary metric space ( E ,  d) .  

Lemma 1.2.13 The mapping p : M b ( E )  x M b ( E )  + R+ given by 

for all p,v E M b ( E )  is a metric on  M b ( E ) ,  called the Prohorov 
metr ic  ( I t  should be noted that the existence of numbers E > 0 sat- 
isfying the above is guaranteed by the boundedness of p,v). 

Proof. It is clear that p(p,v)  2 O,p(p,v) = p(v,p) and p(p ,p )  = 0 
for all p, v E M b ( E ) .  Now suppose p(p, v) = 0. For each A E A ( E )  
we know that Ak j, A .  Then p ( A )  = v(A) and hence by Theorem 

Finally, to prove that p satisfies the triangle inequality, consider 
A, p,  v E M b ( E )  and a ,  p > 0 with p(A, p )  < a and p(p, v) < ,8. By 
definition of p(p,v) we have 

1.1.2(i)) p = v. 
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for all B E %(E) .  From 

it follows that 

and correspondingly 

Thus p(A,v) 5 a + p. Now since a > p(A,p)  and p > p(p,v) were 
chosen arbitrarily it follows that 

Theorem 1.2.14 The Prohorou metric induces the weak topology rw 
on  M ~ ( E ) .  

Proof. In each .r,-neighborhood U of p E M b ( E )  there is an open 
p-ball centered in p. Without loss of generality we may assume U to 
be chosen as in Corollary 1.2.8(a). Now since p is continuous from 
above and A; J Aj as 6 J 0 there exists 6 EIO, :[ such that 

& 
p(Ag) < p ( A j )  + - for all j = 1,2 ,  ..., n .  

2 

Choose v E M b ( E )  satisfying p(p,v) < 6. Since E6 = E it follows 
that 

Iv(E) - 5 6 < E .  

Furthermore 

for all j = 1 , 2 ,  ..., n, and this implies that Y E U. 
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For the reverse direction it is to be shown that each open pball 
centered on p with radius E > 0 contains a .r,-neighborhood U. Let 
6 €10, :[. Since p is tight, by Theorem 1.1.4 there exists a a-compact 
set G c E with p(G) = p ( E ) .  To each x E G there corresponds 
S(z) €10, ;[ with p(aB(x,  6(z))) = 0. Note that 

For each n E N there exist finitely many q > 0 such that p ( d B ( z ,  q ) )  
2 $. Thus there exist only countably many q with p(aB(z,  7)) # 0. 
Since G c UsEG B(x ,  ~ ( L c ) ) ,  the a-compactness of G yields the exis- 
tence of a sequence (xn)n>l with 

For each n E N put G, := B(zn,  S(zn)). Then (Gn)n>l is a sequence 
of p-continuity sets with diameter less than 6, and 

Hence there exists k E N such that 

Put 

Now C is a finite system of p-continuity sets since 

It follows from Corollary 1.2.8 that 
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is a .r,-neighborhood of p. 

Co := uf=, Gn. Since CO E C we have 
We wish to show that for each u E U we have p(p,v) < E.  Put  

Y(C0) > p(C0) - s > p ( E )  - 2s > v(E)  - 3s. 

Now choose B E B ( E ) .  Then 

C c B' (as diam Gj < 6) and B c Cu(E\Co) (where Cn(E\Co) = 
0). Then 

and analogously 

v(B)  5 .(C) + v(E \ Co) < p(C) + 6 + 36 5 p(B4') + 46. 

Application 1.2.15 Let (Xn)nlo be a sequence of E-valued random 
variables on a probability space (R,U,P) with distributions Px ,  E 
M 1 ( E )  for n 2 0. Then 

X n  + Xo P-stochastically implies 

Px, + Px, weakly as n -+ 00. 

In fact, given E > 0, there exists n, 2 1 such that 

Let B E 113(E). Then 
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and analogously, 

For n >_ n, follows 

whenever B E B(E). But this implies 

thus Theorem 1.2.14 yields the assertion. 
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1.3 The Prohorov theorem 

As before ( E , d )  is a metric space, and the space M b ( E )  is given 
the topology r,, or equivalently the Prohorov metric p. Hence 
( M ~ ( E ) , ~ )  is a metric space. 

A finite content p on E is called inner-regular if 

p ( B )  = sup{p(K) : E K(E) ,K  C B }  

for all B E %(E) .  

Theorem 1.3.1 Every inner-regular content ,u o n  E is  a-additive, so 
that ,u E AP(E>. 

Proof. All that needs to be shown is that p is 0-continuous. Let 
(Bn)n>l  be a sequence in %(E) with B, J, 0, and E be given. For 
each n E N there exists a compact set K,  c B, such that 

Put L, := n;', Ki. Then 

for all n E N, and Ln 4 8. F!rom the finite intersection property there 
exists no E N such that L, = 8 for all n 2 n o ,  and hence ,u(L,) = 0 
for all n 2 no. Then p(B,) < E for all n 2 no, and we have shown 

rn that limn.+m p(B,) = 0. 

Corollary 1.3.2 Let ( p n ) n l l  be a n  increasing sequence in M b ( E )  
satisfying 

suppn(E) < - 
nrl 

T h e n  sup,>1 - pn E Adb@). 
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Proof. Write p(B)  := supn,,pn(B) for all B E 23(E). Clearly p 
is a finite content on 23(E).-Eom Theorem 1.1.2 we have that p n  
is inner-regular, and so p is an inner-regular content, and the result 
follows from Theorem 1.3.1. rn 

Theorem 1.3.3 Lei! ( E , d )  be a compact metric space. Then  for each 
a > O  

M q E )  := { p  E M b ( E )  : p ( E )  5 a) 
is rw -compact. 

Proof. According to Appendix B 14.1 (Alaoglu, Bourbaki), the set 

is weakly-compact, i.e compact with respect to the topology 
o(Cb(E)' ,  Cb(E)).  Hence 

is weakly compact. Furthermore by Corollary 1.2.3 the mapping 

is a bijection from M ( a ) ( E )  onto V p ) .  From the definition of rw 
it follows that it is a homeomorphism, and hence that M ( " ) ( E )  is 
.r,-compact. 

Definition 1.3.4 A set H c M b ( E )  is called uniformly tight if 

(b)  to  each E > 0 there exists a compact set K c E such that 

p ( E \ K ) < &  foral l  p u H .  
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Theorem 1.3.5 Suppose (E, d )  is separable complete. For each H c 
Mb(  E )  the following statements are equivalent: 

(a) H is uniformly tight. 

(ii) (a) sup{p(E) : p E H }  < 00; 

(b) For all E > 0 and n E N there exist XI, 22, ..., xlc E E such 
that 

p ( E  \Bn) < E fora l l  p E H 

Proof. (i)+(iZ). To each E > 0 there exists a compact set K c E 
such that p(E\K) < E for all p E H .  Also to each n E N there exist 
x1,x2, ..., xk E E such that K c B,, so that 

for all p E H.  

exists Bn c E such that Bn is the finite union of $balls and 
(ii)+(i). Let E > 0. From the assumption for each n E N there 

for all p E H. Put L := on,, Bn. Then p(E  \ L)  < E for all p E H. 
Now L is totally bounded,-and hence so is L-. As E is complete 
it follows that L- is compact. The result now follows from the fact 
that 

rn p ( E  \ L-)  5 p ( E  \ L )  < E for all p E H .  

Lemma 1.3.6 Let A E A@), p L  E M b ( E )  f o r  all L E I ,  p E Adb@), 
p~ E hfb(A) .  If rw - limLpL = p and rw - lim,ResAp, = p~ then 
PA <ResAp. 
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Proof. We can use Theorem 1.1.2(ii) to deduce that ReSAp E 
M b ( A ) .  Consider a continuous function g : A + [0,1]. By Tietze’s 
extension theorem there exists a continuous function f : E -+ [0,1] 
with ReSA f = g. Then 

and 

But in slight modification of Corollary 1.2.2 one obtains that for 
measures pcL, u E AP(E) satisfying 

/ f d p  5 / f d v  for all f E Cb(E)  with 0 5 f 5 1 

p 5 u holds. Therefore we need only prove that 

However this inequality follows immediately from the Portemanteau 
rn theorem 1.2.7, as clearly rw - lim, f ( p L )  = fp. 

Theorem 1.3.7 (Prohorou) Consider H c M b ( E ) .  

(i) If H is uniformly tight then H is rw-relatiuely compact. 

(ai) If E is  separable complete then any r,-relatiuely compact set H 
is  uniformly tight. 

Proof. (i). Let (Kn),21 be an increasing sequence of compact sub- 
sets of E satisfying p(E \ K,) < ; for all p E H .  Let (p&>l be 
a sequence in H .  We have to show that (p&l - possesses a rw- 
convergent subsequence. From 
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appealing to Theorem 1.3.3 we have that {ResK,p : p E H}(c 
M(") (Kn)) is .r,-relatively compact in M b  ( Kn) . By the metrizabil- 
ity of M b ( E ) ,  which is the content of Theorem 1.2.14, a diagonal 
argument provides for each n E N a measure uk E Mb(Kn) with 

rw - lim ResK,pk = uk . 
k 

Put 
vn(B) := v ~ ( B  n Kn) for all B E B(E). 

Then Vn E M b ( E )  for all n E N. Also from Lemma 1.3.6, u; 5 
ResK,v;+, and (recall that Kn C Kn+1) 

for all B E B(E) which says that (vn)n21 is an increasing sequence. 
Moreover, 

lim inf p k  ( E )  < 00 
k + m  

for all n E N. Now appeal to Corollary 1.3.2 to obtain 

u := supv, E M b ( E )  
n > l  

and moreover 

Let A E A@). Applying the Portemanteau theorem 1.2.7 we get 

k > l  

for all n E N, where for the second inequality 
that A n  Kn is closed, and for the third that 

we have used the fact 
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for all p E H .  Hence 

v(A) 2 limsuppk(A) 
k > l  

and 
v(E) = lim p k ( E ) .  

A further application of the Portemanteau theorem 1.2.7 gives r, - 
limk pk = u. Thus every sequence in H has a rw-convergent subse- 
quence, and this just says that H is rw-relatively compact. 

(22). Assume that H is T,-relatively compact and at the same time 
fails to be uniformly tight. The mapping 

k+oo 

P - P(E) = / 1 E d P  

is continuous, and this implies that 

sup(p(E) : p E H }  < 00.  

Let F = { F  c E : IF1 < m}. Theorem 1.3.5 implies that there exist 
E > 0 and n E N such that to each F E F there is p~ E H with 

The net ( ~ F ) F ~ F  contains a rw-convergent subnet ( ~ F ~ ) ~ E I  with 
limit p say. For each L E I define 

1 
B, = (J B ( X , - - ) .  

xEFL 

Now (E\BL)LC1 is a downward filtered family in A ( E )  with nLEI E\ 
B, = 8. It follows from Corollary 1.1.3 that 

inf p(E \ BL) = 0 .  
L E I  

On the other hand applying the Portemanteau theorem we have 

for all and this is a contradiction.



28 Probability Measures on Metric Spaces 

1.4 Convolution of measures 

In this section ( E ,  d) will denote a separable complete metric Abelian 
group which means that E is an Abelian group (with binary op- 
eration denoted by addition and 0 as neutral element), ( E ,  d) is 
a separable and complete metric space with distance function d,  
and the mapping (x ,y)  x - y from E x E into E is contin- 
uous. Along with ( E ,  d ) ,  ( E  x E ,  d x d )  is also a separable com- 
plete metric Abelian group. Here the metric d x d is defined by 

A prominent example of a separable complete metric Abelian group 
is a separable Banach space ( E ,  II.II) over R, where the distance func- 
tion is given by d(x,y) := 115 - yll for all x ,y  E E.  

For separable complete metric groups E we have that each finite 
measure on E is tight (Theorem 1.1.6) and that the notions “uniform 
tightness” and ‘?,-relative compactness” are equivalent (Prohorov’s 
theorem 1.3.7). 

d x d((x, Y) ,  (% 4) := m 4 - % 4 , d ( v ,  4 1  for all (x, Y), (u, 4 E E.  

Theorem 1.4.1 Let ( E , d )  be a separable complete metric Abelian 
group. 

(2) B(E x E )  = B(E) @B(E). 

(ai) The mapping (x, y) I-+ m(x,  y) := x + y f r o m  E x E into E is 
(B ( E )  8 B ( E )  , B ( E ) )  -measurable. 

Proof. (2). O ( E )  is a generator of B(E) with the exhaustion prop- 
erty which says that there exists a sequence (0,),>1 in O ( E )  such 
that 0, E.  Thus O ( E )  x O ( E )  is a generator ofB(E) 8 B(E). 
Furthermore O ( E )  x O ( E )  c O ( E  x E )  from which it follows that 
B(E) 8 B(E) c B(E x E ) .  Now choose a countable dense subset D 
of E ,  so that D x D is a countable dense subset of E x E. The open 
balls in E and E x E centered at points in D and D x D respectively 
and with rational radii make up countable bases B and C in O(E)  
and O(E x E )  respectively. Now 
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for the corresponding balls, and hence B x B 2 C. Now B and C are 
generators of B(E) and B(E x E )  respectively with the exhaustion 
property, which implies that B ( E )  @I B(E) 2 B(E x E) .  

(ii). The mapping m from E x E into E is continuous, and hence 
(23 ( E  x E )  , 23 (E))-measurable. Now apply (i) .  

Application 1.4.2 Let X , Y  be E-valued random variables o n  a 
probability space (0, U, P) . Then  by Theorem 1.4. l (ii) the mapping 
w H ( X  + Y ) ( w )  = X ( w )  + Y ( w )  f rom S-2 into E is  also an  E-valued 
random variable o n  (0, rU, P), since X + Y = m o ( X ,  Y ) .  

Definition 1.4.3 For p,  u E M b ( E )  we refer to  the measure p* u := 
m(p @I u)  o n  E as the convolution of p and u. 

We have the following properties of the convolution mapping. 

Properties 1.4.4 

1.4.4.1 For all f E Cb(E)  

J 

which fo ~ O W S  I om Fubini 'S theorem. 

1.4.4.2 In particular, for all B E B(E) 

1.4.4.3 For all B,C E %(E)  we have B + C E B(E) and 
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The latter can easily be seen as follows: 

1.4.4.4 The convolution is  commutative and associative, that is 

and 
(A  * p) * v = x * ( p  * v) 

for  all A,p)  v E M b ( E ) .  
The proof uses 1.4.4.1 in conjunction with the injectivity of the 

mapping 

from M b ( E )  into Cb(E)!+-. 

1.4.4.5 For each x E E and B E B(E) 

1.4.4.6 Prom 1.4.4.5 and 1.4.4.2 we have ~ * E O  = p and E ~ * E ~  = E ~ + ~  

for  all x, y E E .  

Application 1.4.5 Let X, Y be independent E-valued random vari- 
ables on  a probability space (0, U, P). Then Px+y = PX * Py . 

Proof. To show this we note that independence of X ,Y gives 
P(x,y) = Px @ Py which implies that 

Theorem 1.4.6 (Support formula) For p, v E M b ( E )  
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Proof. First we note that 

Thus by Theorem 1.1.4(i) 

To prove the reverse inclusion, consider z E supp ( p ) ,  U E m(x), y E 
supp(u) and V E D(y). Then U + V E D(z + y). Now Property 
1.4.4.3 together with Theorem 1.1.4(iii) gives 

To each W E D(x + y) there exist U E D(x) ,V E D(y) with U + 
V c W. A further application of Theorem 1.1.4(iii) gives x + y E 
supp ( p  + u).  Thus 

and this completes the proof. m 

Corollary 1.4.7 If p*  u is a Dirac measure then so are each of p )  u. 

Proof. We just observe that a measure is Dirac precisely when it 
has a single element support. 

Theorem 1.4.8 Let (pn)n?l)  (un)n>l be sequences with rW - limn 
p n  = I_L, Tw -limn Vn = u in M b ( E ) .  Then  rw-limn pn@un = p @ ~ .  

Proof. Appealing to Prohorov's theorem 1.3.7 to each E > 0 there 
exist K E K(E) with 

p n ( E  \ K )  < E and vn(E \ K )  < E 
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and a > 0 such that 

for all n E N. Clearly K x K E K ( E  x E ) ,  and 

for all n E N. Furthermore from Prohorov's theorem 1.3.7 we see 
that { p n  (€3 V, : n E N} is .r,-relatively compact. 

Let X E M b ( E  x E )  be a cluster point of the sequence (pn(€3vn)n l l ,  
that is, there exists a subsequence ( p n k  @ with limit A. Now 

E := (B1 x B2 E B(E) x B(E) : 
B1 x B2 is both a ,u (8 v- and a A-continuity set} 

is an n-stable generator of B(E)@B(E) = B ( E  x E) .  Let B1 x B2 E 
E .  Then 

a(& x B2) = (B ,  x 3232) u (dB1 x B,) . 

Therefore we have the following three cases to consider. 

(1) B1 is a p-continuity set and B2 is a v-continuity set. 

(3) v(B,) = 0. 

With the help of the Portemanteau theorem 1.2.7 we have 
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and similarly in the remaining case. 

Thus 

X(B1 x B2) = ( p 8  u)(B1 x B2) for all B1 x B2 E E 

and hence X = p 8 u. Hence the rw-relatively compact sequence 
( p n  8 un)nyl has a unique cluster point p 8 U, and it follows that 

rn rW - limn pn  8 vn = /L 8 V. 

Theorem 1.4.9 Let ( E , d )  be a separable complete metric Abelian 
group. T h e n  the space ( M b ( E ) ,  rw, *) with the convolution * defined 
above i s  a commutative metric semigroup, in the sense that 

( i )  ( M b ( E ) ,  rw) i s  a metric space (with the Prohorov metric indu- 
cing the topology rw), 

(i i)  ( M b ( E ) ,  *) i s  a commutative semigroup with neutral element 
E O ,  that is, EO * p = p for all p E M b ( E ) ,  and 

(iii) the mapping (p ,  u)  I-+ p * u f rom Mb(E) x Mb(E) into M b ( E )  
is  rw -continuous. 

Moreover, (M1(E),rw,*)  is  a sub-semigroup of (Mb(E) , rW,* ) .  

Proof. In view of the assumed metrizability it suffices to consider 
sequences. SO given sequences (pn)n217 ( V n ) n > l  with rW - limn p n  = 
p,rw - limn vn = u in M b ( E )  we have by Theorem 1.4.8 that rw - 
limn pn 8 vn = p 8 U. Then Theorem 1.2.12 gives 

This proves the continuity of ( p ,  u)  H p * u. The remaining asser- 
tions follow immediately from Properties 1.4.4.2 and 1.4.4.4 of the 
convolution. rn 
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2.1 Fourier transforms of probability measures 

Let ( E , ) )  - 11)  denote a separable Banach space over R. With the 
metric 

( E ,  11 . 1 1 )  is a complete metric space. We use E' to designate the 
topological dual of E.  For z E E and any (continuous real-valued) 
linear functional a E E' we put (2, a )  := a ( z ) .  It is well-known that 
E' separates the points of E ,  in the sense that for every 2 E E \ (0) 
there exists a E E' satisfying ( x , a )  # 0 (See Appendix B). 

Now let N(E)  denote the family of all closed sub (vector) spaces 
E of finite codimension. For every a E E' we have ker a E N(E) ,  and 
therefore n { N  : N E N(E)}  = (0). Finally, for every N E N (E)  let 
p~ denote the canonical mapping from E onto E / N .  

(GY) 112 - Yll 

Theorem 2.1.1 For every K E K ( E )  we have 

Proof. Clearly 

34 

2
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For the reverse inclusion, let x E K1. Then for every N E N(E)  the 
set 

is compact and non-empty. Moreover, given M ,  N E N ( E )  with 
M C N we have KM c KN.  Indeed, let P N M  denote the canoni- 
cal mapping from E / M  onto E / N  satisfying p l v ~  o p~ = p N .  Then 
for y E K M ,  

K N  := P,'(PN(X)) n K 

and thus y E K N .  
Next we observe that N ( E )  is n-stable, and consequently that 

( K N ) N E ~ ( E )  is a downward filtered family. Since each K N  is com- 

we have p ~ ( y )  = p ~ ( x )  whenever N E N ( E ) .  From n { N  : N E 
pact, n { K N  : N E A@)} # 0. But for y E n { K N  : N E N ( E ) }  

N ( E ) }  = { 0 }  we have x = y E K and consequently K1 c K. 

Definition 2.1.2 Let p E M b ( E ) .  T h e  mapping  ,!i : E' -+ C given  

,!i(a) := /' e+'")p(dx) 
bY 

for all a E E' is called the  Fourier transform of p. 
For Banach spaces E ,  F denote by L(E,  F )  the set of all continuous 

linear mappings from E into F ,  and consider T E L ( E , F ) .  The 
adjoint Tt  of T is continuous linear mapping from F' into E' given 
by (2, Ttb) = (Tz,  b) whenever x E E ,  b E F'.  

Lemma 2.1.3 L e t  p E M b ( E ) .  T h e n  fo r  a n y  T E L ( E , F )  

T ( P ) ~  = fi  o Tt  . 
Proof. We know already that T(p)  E M b ( F )  whenever p E M b ( E ) .  
Then for every b E F' ,  

= ( f i  o Tt)(b).  H 
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Theorem 2.1.4 (Uniqueness of the Fourier transform). Let p,u E 
M b ( E )  with jl= fi. Then p = u. 

Proof. From Lemma 2.1.3 we deduce that 

for every N E N(E) .  But from Appendix B 3 we infer that E/N E 
R P  with p :=dim(E/N) (in the sense of a topological isomorphism). 
Applying Property 4.2.16.3 on the uniqueness of the classical Fourier 
transform of bounded measures on R P  we obtain that p ~ ( p )  = p ~ ( v )  
for every N E N(E).  Then 

is a downward filtered family in A ( E )  satisfying (by Theorem 2.1.1) 
the equality 

It follows that 

From Theorem 1.1.6 and 1.1.2(ii) we now infer that p = v. rn 

Corollary 2.1.5 Every p E Mb(E) is uniquely determined by  the 
family (a(p> ; a E E')  of its one-dimensional marginal distributions. 

Proof. For z E E ,  a E E' and t E R we have 

( z , a t ( t ) )  = (a(z ) , t )  = ta(z)  = a(tz) = (tz,a> = ( q t a )  
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and hence at(l) = a. Then Lemma 2.1.3 yields a ( p ) " ( l )  = f i(a), and 

From now on we shall employ 6-topologies on El. Prominent 
choices for 6 are the families F ( E )  and K ( E )  of finite and com- 
pact subsets E respectively. For every S € 6 let 

Theorem 2.1.4 yields the assertion. 

whenever a E E'. We know from Appendix B 7, B 8 that ps is a 
seminorm on E'. The topologies generated in E' by the sets {ps : 
S E 6} for 6 equal to F ( E )  and K ( E )  of simple and compact 
convergence will be denoted by a(E' ,  E )  and T(E' ,  E )  respectively. 
Clear 1 y 

a(E1,  E )  + r (EI ,  E ) .  

Properties 2.1.6 Let p,u E M b ( E )  and a,b E E'. Then 

2.1.6.1 Ib(a)I 5 b(0) = p(E). 

2.1.6.2 P(-u) = ,G(u). 

2.1.6.4 ji is r (E' ,  E)-continuous. 

2.1.6.5 If H is a uniformly tight subset of M b ( E )  then {,G : p E H }  
is r( E', E )  -equicontinuous. 

2.1.6.6 Suppose there exists 6 > 0 such that b(a) = 1 for all a E El 
with llall < 6. Then p = E O .  

2.1.6.7 ( p  * v)" = b6. 
To show 

IiW = 

2.1.6.1 we just consider the equalities 
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Property 2.1.6.2 follows from 

Applying the Cauchy-Schwarz inequality we then obtain 

= 2 

= 2,5(0) ($0) - 1 Re ei(zya-b) 

= 2fi(O)(fi(O) - Re f i(u - b)) .  

(1 - cos(z,a - b))p(dz) f i (O)  

A d z ) )  

/ 

In order to show 2.1.6.4 given E > 0 we choose K E K ( E )  such 
that p(E \ K )  < 4 4 .  Moreover, there exists 6 > 0 such that 

for all s , t  E R with Is - tl < 6. Now suppose a,b E E' satisfy 
p K ( a  - b)  < 6. Then 

The proof of 2.1.6.5 is analogous to that of 2.1.6.4. As for 2.1.6.6 
we apply 2.1.6.3 in order to deduce that 
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for all a E E’. Now for a E E’ and 6 > 0 there exists k 2 1 satisfying 
) ) ~ / 2 ~ 1 ) )  5 6. By assumption F ( $ )  = 1 and consequently 

and hence p = E O .  

Finally, 2.1.6.7 is immediate from the following chain of equalities: 

= j i ( u ) q u ) .  

Given 6 > 0 we now consider the set 

which by Appendix B 14.1 is equicontinuous, hence a(E’,E) - 
compact. Moreover, 

Resv,a(E’, E )  = Resv,r(E’, E )  . 

From Appendix B 14.2 we infer that, if E is assumed to the separable, 
Vd is metrizable with respect to the topologies a(E’, E )  and T(E’, E) .  

Let C(V6) := C(V~ ,T(E’ ,E) ,C)  denote the Banach space of all 
T(E’, E)-continuous complex-valued functions on V d ,  together with 
the sup norm 11 - Ilm. Then for any p E M b ( E )  we obtain 

Properties 2.1.7 (of the Fourier transform) 

2.1.7.1 Resv& E C(V6). 
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In the following we shall identify Resv$ with p. 

Theorem 2.1.8 For every rw-relatively compact subset H of M b ( E )  
the set H is relatively compact in C(V6). 

Proof. From Prohorov's theorem 1.3.7 we infer that H is uniformly 
tight. Then Property 2.1.7.2 implies that fi is bounded in C(Vd), and 
by Property 2.1.6.5, fi is equicontinuous. But then the ArzelA-Ascoli 
theorem yields the assertion. 

Theorem 2.1.9 (Continuity of the Fourier transform) 

Mb(  E )  . The following statements are equivalent: 
Let (pn)n>l  be a sequence of measures in M b ( E )  and let p E 

(i) (pn)n>l  converges with respect to rw. 

(ii) (pn)n>I  is rw-relatively compact, and for every 6 > 0 the se- 

quence (jin)n> - 1 converges uniformly on  Vs. 

(iii) (pn)n>l  is r,-relatively compact, and for every a E E' the 
sequence (Ij.n(a))n>l - converges in C .  

If an (i) we assume in addition that rw - limn-+m pn = p then in 
(iii) we have 

lim fin(a) = ji(a) 
n--+oo 

for all a E E'. 

Proof. (i) 3 (ii). From the rw-convergence of the sequence 
(pn)n>l  follows its rw-relative compactness. Then Theorem 2.1.8 
implies that (j in)n>l is relatively compact in C(V6) for every 6 > 0. 
But from T~ - limn-,oo pn = p it follows that 

for all a E E', since Re ei(*,a)  and Im e i (* fa)  belong to Cb(E)  when- 
ever a E E'. Note that this argument takes care of the last state- 
ment of the theorem. We conclude that all the accumulation points of 
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(pn),2l in C(V6) coincide with Resv,b, and hence that lim,,,p, = 
p uniformly on VJ. 
(ii) + (iii) is clear. 
(iii) + (2). Let 

y ( u )  := lim ,?,(a) 
7 2 4 0 0  

for all a E El. Moreover, let po be an accumulation point of 
(pn),z1, which means that Tw-limk.+mpnk = po for some subse- 
quence ( p n k ) k > l  of (pn)n>l .  But then 

for all a E El. The uniqueness theorem 2.1.4 implies that (pn),>l 
admits only one accumulation point, and consequently (p,),>l rw- 
converges to  it. 

We are now in a position to study the logarithm of the Fourier 
transform. 

Theorem 2.1.10 Consider p E M 1 ( E )  satisfying b ( a )  # 0 for  all 
a E E'. Then  there exists exactly one complex-valued function h o n  
E' admitting the following properties: 

(2 )  h(0) = 0. 

(ii) h is norm-continuous. 

(iii) For each a E El, 

f i(a) = exp h(a)  

In the sequel we shall write Log ,? instead of h. 

Example 2.1.11 For every x E E 

Log & = i(X;) . 
Proof of the theorem. Let 6 > 0. Since Va is compact and @ is 
r (E ' ,  E)-continuous by Property 2.1.6.4, we have that 

a := inf{lfi(a)l : a E V b }  > 0 .  
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It follows from Properties 2.1.6.3 and 2.1.6.4 that f i  is uniformly 
continuous on E‘ (with respect to the norm in E’)) and hence there 
exists E > 0 such that 

for all a ,  b E E’ with Ila - bll < E .  Let { t o ,  t l ,  ... ,t,} be a partition 
of [0,1] of mesh size less than ~ / 6 .  Then for all a E Vd and j E 
{1,2, ..., n}  we have 

a and therefore 
I j q t j U )  - b(tj-141 < 5 * 

Consequently 

whenever a E Vb and j E {I, 2, ..., n}. Now, let Log denote the main 
branch of the complex logarithm. We define 

for all a E Vd. Then hd is a complex-valued function on VJ with the 
following properties: 

(2‘) ha(0)=0. 

(ii’) hs is T(E’, E)-continuous, and hence also 11 . JJ,-continuous. 

We shall show that hd is uniquely determined by properties (i’) to 
(2i2’). In fact, let g~ be another complex-valued function satisfying 
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these three properties. Then for each a E Vs there exists k ( a )  E Z 
satisfying 

hs(a) - g&) = 27rik(a) 

(by (iii’)). But k is 11 . ll,-continuous on T/s (by (ii‘)) and satisfies 
k(O)=O (by (i’)). Since V b  is 11 . Il,-connected, k(V6) is a connected 
subset of Z. This implies k = 0, and hence hb = 96. 

Now, choose 0 < 61 < 8 2 .  By the above discussion we have 
Resv,, hsz = hsl, and hence h(a)  := h&) for all a E V6 defines 
the desired function on E’ which is certainly uniquely determined by 
properties (i) to (iii). 

Corollary 2.1.12 For every S > 0 Log ,!i is  r(E‘, E)-continuous o n  
V b ,  I n  particular 

Proof. The first assertion follows from the representation 

valid for all a E VJ, together with the T(E’, E)-continuity of ,!i 
(by Property 2.1.6.4). The second assertion is a consequence of the 
T( E’ , E)-compactness of Vs . 

Theorem 2.1.13 Let H c M’(E)  such that b(a) # 0 f o r  all a E 
E’, p E H .  Suppose there exist a,6 > 0 satisfying I@(a)l 2 a for  
all a E Vs, p E H ,  and such that I? is  equicontinuous on  Vs with 
respect to T(E’, E). Then 

{Resv6Log j i  : p E H }  

is relatively compact in C( Va) . 

Proof. From Property 2.1.6.3 together with the assumption, I? is 
uniformly equicontinuous on V b  with respect to the norm 1 1  - 11,. 
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Therefore there exists a partition { t o , t l ,  ..., t n }  of [0,1] with suffi- 
ciently small mesh such that 

for all j E {1,2, ..., n,} and 

for all a E V b ,  p E H (compare the proof of Theorem 2.1.10). But 
then 

{Resv,Log fi  : p E H }  

is bounded and equicontinuous with respect to T(E’ ,E) ,  and the 
Arzelh-Ascoli theorem yields the assertion. 

Lemma 2.1.14 Let 6 > 0 be given. For every x E E define 
J ( x ) ( a )  := ( x , a )  whenever a E V6. T h e n  J ( z )  E C(V6) f o r  all 
x E E ,  and i J  i s  a linear isometry f r o m  E onto a closed subspace 
of C(V6). 

Proof. We first note that J ( x )  is T(E’, E)-continuous. Moreover, J 
is a linear mapping from E into C(V6). By Appendix B 14.3 

for all x E E.  Therefore J is a linear isometry from E into C(V6). 
In particular, J ( E )  = J ( E )  is closed in C(V6). 

Corollary 2.1.15 (to Theorem 2.1.13). Let M c E be such that 

{Resv,2x : x E M }  

is  relatively compact in C(V6) (for some S > 0) .  T h e n  M i s  relatively 
compact in E .  Furthermore x ++ResV,t, i s  a homeomorphism f r o m  
E onto a closed subset of C(V6). 
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Proof. Firstly li,(a)l = 1 for all x E M ,  a E El. By assumption 
{i5 : x E M }  is equicontinuous on Vd with respect to r(E’, E ) .  Now 
we infer from the theorem that 

{Resv,Log i, : x E M }  

is relatively compact in C(Vd), and hence { J ( z )  E M }  is relatively 
H compact in C( Vd) . Lemma 2.1.14 yields the assertion. 

Corollary 2.1.16 Let ( p k ) k > l  be a sequence of measures with rw- 
limit p E M’(E)  such that ,%[a) # 0 ,  ,!ik(a) # 0 for all a E E ,  k 2 
1. Then 

lim Log p k  = Log fi  
k + m  

uniformly on bounded subsets of El. 

Proof. Let 6 > 0 be given. As in the proof of Theorem 2.1.10 we see 
that 

a := - inf ,!i(a) : a E Vd > 0 .  2 7 1 
Applying the continuity theorem 2.1.9 we obtain the existence of 
ko E N such that I j i k (a ) l  2 a for all a E Vd, k 2 ko. We now infer 
from Prohorov’s theorem 1.3.7 that {pk : k 2 ko} is uniformly tight, 
and from Property 2.1.6.5 that { f i k  : k 2 ko} is equicontinuous with 
respect to T(E’,E) .  But Theorem 2.1.13 implies that 

is relatively compact in C(V6). On the other hand the representa- 
tions of Log f i k  and Log ,!i on Vd (see the proof of Theorem 2.1.13) 
together with the continuity theorem 2.1.9 yield the limit relation- 
ship 

lim Log P k ( a )  = Log ,%(a) 
k+oo 

for all a E Vd. Since {Resv,Log ,!ik : k 2 ko} is relatively compact, 
H this convergence is uniform on V d  . 



46 The Fourier Transform an a Banach Space 

2.2 Shift compact sets of probability measures 

We start with two useful results, following from properties of the 
Fourier transform p I-+ j i  on the commutative topological semigroup 
( M 1 ( E ) ,  I, 7w). Here E is a given separable Banach space so that, 
by Theorem 1.4.9, ( M 1 ( E ) ,  *, +rW) is a metric semigroup. 

Lemma 2.2.1 Suppose p E M ' ( E )  has the property that (pn)n21 is 
rw-reEatively compact. T h e n  p = E Q .  

Proof. From Prohorov's theorem 1.3.7 together with Property 
2.1.6.5 (of the Fourier transform) we conclude that the set {(p")" : 
n E N} is equicontinuous with respect to T ( E ' , E ) .  But we have 
(p")" = (b)" for all n E N. Therefore there exists 6 > 0 such that 

whenever a E Vd, n E N. Consequently b(a) = 1 for all a E Vs as 
we shall see now. Indeed, let x E C with 11 - xn  I 5 1/2 for all n E N. 
Then Re xn 2 1/2 for all n E N, and 

1 
2 -  
- > 11 -xnl  = 11 - Z l l l  + x +  ... +z"-ll 

n 2 11 - zI(1 + R e  x+ ...+ Re xn-') 2 11 - x15 ,  

so that 11 - zI 5 l /n  for all n E N, and consequently x = 1. 
The assertion now follows from b(a) = 1 for all a E Vs with the 

help of Property 2.1.6.6 of the Fourier transform. 

Lemma 2.2.2 Let  p,  u E M 1 ( E )  such that p * u = u. T h e n  v = E O .  

Proof. Properties 2.1.6.1 and 2.1.6.4 of the Fourier transform give 
the existence of 6 > 0 satisfying j i (u)  # 0 for all a E Vd. Moreover, 
,G(a)C(a) = ,?(a) and hence ;(a) = 1 for all a E Vs. We now apply 
Property 2.1.6.6 of the Fourier transform in order to obtain v = E O .  
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Theorem 2.2.3 

compact. Then  { 
that ( p n  * V n  : 

Let (pn )n>_l ,  (un)nzl be sequences in M 1 ( E )  such 
n 2 1) and ( p n  : n 2 1) are both rw-relatively 
vn : n 2 1) is also rw-relatively compact. 

Proof. Let E > 0. By Prohorov's theorem 1.3.7 there exists K E 
K(E) such that for all n 2 1 

But 

so that vn(K - X) 2 1 - 2.5 whenever n 2 1. One more application 
of Prohorov's theorem 1.3.7 gives that {un : n 2 1) is rw-relatively 
compact. 

Corollary 2.2.4 Suppose that 

and 
rw - lim P n  * vn = X E M 1 ( E ) .  

72-00  

Moreover, assume b(a) # 0 for  all a E E'. Then  there exists v E 
M 1 ( E )  such that 

rw - lim u, = u 
n-00 

Proof. Theorem 2.2.3 implies that {Vn : n 2 1) is rw-relatively 
compact. Furthermore the continuity theorem 2.1.9 implies that for 
all a E E' 
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Another application of the continuity theorem 2.1.9 yields 

7, - lim V n  = U  E M 1 ( E ) .  
n-+m 

But then 
f i (U) /? (U)  = i ( u )  

or 
( p  * u>/'(a) = i ( u )  

for all a E E' which, by the uniqueness theorem 2.1.4, gives the 
desired result. rn 

Remark 2.2.5 The assumption made in the corollary that P(a) # 0 
for all u E E' cannot be dropped (without replacement). In fact, 
from Lukacs [29], Theorem 5.1.1, we know that there exist p,  u1, u2 E 
M 1  (R) with u1 # u2 such that p * u1 = p * u2. The sequence ( p  * 
u l ,  p * 1.9, p I u1, ...) obviously converges with respect to r,, but the 
sequence (u1,u2,ul, ...) does not. 

Definition 2.2.6 We refer to  H c M 1 ( E )  as being relatively shift 
compact if for every p E H there exists xp E E such that { p  * E~~ : 
p E H )  is r,-relatauely compact. 

We note by Prohorov's theorem 1.3.7 that relative shift compact- 
ness of a subset H is equivalent to the property that for every E > 0 
there exists K E K(E) such that 

for all p E H ,  which motivates the use of the alternative terminology 
shij? tightness. 

Let (pn)n>1 be a relatively shift compact sequence in M 1 ( E ) ,  so 
that there exists a sequence (2n)n>1 - in E such that 

is rw-relatively compact. We refer to (Zn),>1 - as a centralizing se- 
quence for (pn)n>l (equivalently, (zn)n>l - centralizes (pn>n>_l>. 
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Theorem 2.2.7 Let (Pn)n>l,  (Vn)n>l be sequences in M ' ( E )  
such that ( p n  * vn)n>l is rw-relatively compact. T h e n  both (Pn)n>l 

and (Vn)n>l are relatively shijl compact. Moreover, if (Xn)n>l is a 
centralizing sequence f o r  (Pn)n / l  then (-Xn)n>l is a centralizing 
sequence for  (vn)n> 1 .  

By assumption for every k E N there exists Kk E K ( E )  satisfying 

for all n E N. Let 

and put 
B n  := n B n k .  

k2l 

We have for all k 2 1 

so that 

and thus for all n 2 1 
1 

vn(Bn)  L 5. 
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In particular B n  # 8 and SO there exists x n  E E with 

for all k E N. This implies the .r,-relative compactness of ( p n  * 

But since 
E X ,  ) n 2 1 - 

p n  * vn = ( p n  * ~z,) * (vn  * ~-5,) 

for all n 2 1, Theorem 2.2.3 implies the .r,-relative compactness of 
( v  * E-z,)n>l. 

Corollary 2.2.8 The following statements are equivalent: 

Proof. (i) + (ii). Let (xn)n>l be a centralizing sequence for ( p n  * 
vn)n>1. Then Theorem 2.2.7 implies that (pn)n>l and ( vn  * Ex,)n>1 

are shift tight, and consequently (vn)n>1 - is also shift tight. 
(ii) * (2). Let (Zn)n>l,  (Yn)n>l be centralizing sequences for 

(pn )n>l ,  (vn)n>1 - respectively. Since 

for all n 2 1 and since the convolution (p ,  v) I--+ p*u is continuous on 
M’(E)  x M 1 ( E )  the sequence (xn+Yn)n>l - centralizes (pn*vn)n>l .  

rn 

Theorem 2.2.9 For every shift tight sequence (pn)n>1 in M 1 ( E )  
the following statements are equivalent: 

(a) (pn)n>l is rw -relatively compact. 

( i i)  Each centralizing sequence f o r  (pn)n> - 1 is relatively compact. 

(iii) There is a relatively compact centralizing sequence for (pn)n>l .  
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Proof. ( i )  * (ii). Let (xn)n>l be a centralizing sequence for 
(pn)n>l- Then the sequences ( p  * €,,),>I and (pn)n>l are both 
.r,-relatively compact. By Theorem 2.2.3 it follows that (Ex,)n>l is 
rw-relatively compact, and hence (xn)n> - 1 is relatively compact TSee 
Theorem 1.2.11). 
(ii) + (iii) is clear. 
(iii) + (i). Let (xn)n>l denote a relatively compact centralizing 
sequence for (pn)n>l. Then the sequences (p*E,,)n>1 - and (E-,,)n>l 
are rw-relatively compact. But 

for every n 2 1; this together with the continuity of the convolution 
in M 1  ( E )  yields the desired conclusion. 

Corollary 2.2.10 Given a centralizing sequence (xn)n>l f o r  (pn)n>l 

and an arbitrary sequence (Yn)n>l - in E the following statements are 
equival ent: 

(ii) (xn  - Yn)n>l is relatively compact. 

Proof. For every n 2 1 we have 

Therefore (pn * Ey,)n>l is shift tight and (xn  - Yn)n>l centralizes 
(pn * Ey,)nrl. The equivalence now follows from Theorem 2.2.9. 

Corollary 2.2.11 Let (pn)n>1, - (Zn)n>1 - be sequences in M 1 ( E )  and 
E respectively satisfying 

and 
rW - lim pn * E ~ ,  = u E M ~ ( E ) .  

n+oo 
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Then there exists x := limn+m xn, and v = p * E ~ .  

Proof. From Theorem 2.2.9 we conclude that (xn)n/l is relatively 
compact. Let II;, y be accumulation points of (Xn)n>l. Since the con- 
volution in M ~ ( E )  is continuous, 

Putting z := x - y we obtain p * E~ = p. But now Lemma 2.2.2 
applies to give x = 0, so that II; = y. Consequently limn+m x, = x, 
and this takes care of the assertion. 

Theorem 2.2.12 Let (pn)n>l  be a shifi tight sequence in M 1 ( E ) .  
The following statements are equivalent: 

(i) (pn)n> 1 is rw -relatively compact. 

(ii) For some (each) 6 > 0 the sequence (Resv,fin)n>l - is relatively 
compact in C(V6). 

(iii) For some (each) 6 > 0 the sequence (Resv,fin)n>l - is  equicon- 
tinuous in 0 with respect to r(E' ,  E ) .  

Proof. (ii) ++ (iii). Property 2.1.6.3 of the Fourier transform to- 
gether with lbnl < 1 for all n >_ 1 and the ArzelB-Ascoli theorem 
imply the assertion. 

(i) * (ii) follows from Prohorov's theorem 1.3.7 in conjunction 
with Property 2.1.6.5 of the Fourier transform. 

(iii) * (i). From Theorem 2.2.9 we see that it suffices to show the 
existence of a relatively compact centralizing sequence for (pn),> 1. 

Let therefore (Xn)n> l  be a centralizing sequence for (pn)n>l. By 
assumption and Property 2.1.6.5 of the Fourier transform we have, 
for every E > 0, K E K ( E )  and q > 0 such that 

and 
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for all a E V d  with p ~ ( a )  < 7 and all n 2 1. For such a and all n 2 1 
we then obtain the inequalities 

and hence that 

Consequently (Resv6 i zn )n>l  is equicontinuous in 0, and hence rela- 
tively compact in C(V6) by Property 2.1.6.3 of the Fourier transform. 
The homeomorphism x H Resv,ix between E and C(V6) provides 
the final step of the proof. 

Corollary 2.2.13 Let (pn )n>l ,  (Xn)n / l  be sequences in M 1 ( E ) ,  E 
respectively satisfying 

T h e n  the following statements are equivalent: 

(a) (pn)n>l i s  rw -convergent. 

(ii) For some (each) 6 > 0,  ($n)n>l - converges uniformly o n  V b .  

Proof. (i) + (ii). This follows directly from the continuity theorem 
2.1.9. 

(ii) + (i). By assumption (pn)n>l  is shift tight, and by Theo- 
rem 2.2.12 (Pn)n>l is rw-relatively compact. We now employ Theo- 
rem 2.2.3 and the homeomorphism x H E~ in order to obtain that 

is relatively compact in E.  Let x ,y  be accumulation points 
of (Xn)n>l. Moreover, let 

and
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(for some 6 > 0). Then by the continuity theorem 2.1.9 

for all a E &. But now i , (O)  = 1, and i, is 11 - ((-continuous by Property 
2.1.6.4 of the Fourier transform, hence there exists 6' ~ ] 0 , 6 ]  with 
i,(a) # 0 for all a E V&. It follows that 

for all a E V&, and hence x = y by Property 2.1.6.6 of the Fourier 
transform. Thus ( X n ) n > l  converges in E .  From the factorization 

together with the continuity of the convolution in M 1 ( E )  we con- 
elude that (pn)n>l - .r,-converges. 

Corollary 2.2.14 Let (pn)n>l be a shift tight sequence in M ' ( E )  
such that (fin)n>l converges uniformly on  bounded subsets of E'. 
Then  (pn)n>l r,,-converges. 

Proof. Theorem 2.2.12 yields the .r,-relative compactness of 
(pn)n>1. But then the continuity theorem 2.1.9 implies the assertion. 

The next topic will be the discussion of symmetrizing measures 
in M 1 ( E ) ,  which will place some of the preceding results in a more 
applicable setting. 

Definition 2.2.15 Given measures p,  u E M ' ( E )  we call p a factor 
of u if there exists X E M 1  ( E )  such that p * X = u, in which case we 
write p 4 u. 

Properties 2.2.16 (of the factorization). 

2.2.16.1 (Reflezivitg) p 4 p for each p E M 1 ( E ) .  
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2.2.16.2 (Weak symmetry) p + u and u + p for p,u E M ' ( E )  
implies p = u * E~ for some x E E. 

2.2.16.3 (Transitivity) p + u and u + IC, for p,  u, K E M 1 ( E )  implies 
p 4 K .  

2.2.16.4 (Permanence under convolution) If p1 + ul and p2 + u2 
for p l ,Vl ,p2 ,v2  E M ' ( E )  then p1 * p2 + V1 * V2.  

2.2.16.5 Let ( p n ) n l l  and (Vn)n>l be sequences in M ' ( E )  such that 
(Vn)n>l is shijl tight and pn  + Vn for all n E N. Then (pn)n>l is 
also shift tight. 

2.2.16.6 (Continuity of +) Let (pn)n>l and (Vn)n>l be sequences in 
M 1 ( E )  such that pn  3 vn for all n E N and both 

rW - lim pn = p,  rw - lim un = u .  
n+oo n+oo 

Then p + u. 

2.2.16.7 If p < u for p,  u E M ' ( E )  then 

IW 5 Ib(4 

a E E'. 

Proof. To prove 2.2.16.2, suppose p, * 
A, K E M 1 ( E ) .  Then p * X * K = p. From Lemma 2.2.2 we infer that 
X * K = E O ,  and hence by Corollary 1.4.7 that there exists z E E such 
that X = E - ~  and K = E ~ .  2.2.16.5 follows from Theorem 2.2.7. 

TO show 2.2.16.6, given pn  * An = U, for Xn E M 1 ( E ) ,  n E N, 
Theorem 2.2.3 yields the rw-relative compactness of (Xn)n>l. Let 
X be an accumulation point of (Xn)n>l. The continuity of the con- 
volution in M 1 ( E )  implies that p * X = u, and this is the desired 
assertion. 

And finally, 2.2.16.7 follows from $(a)fi(a) = ;.(a) for some X E 
M ' ( E )  together with I i (a)I 5 1 for all a E E'. 
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Definition 2.2.17 For every p E Mb(E)  the adjoint p- of p is 
defined (as a measure in Mb(E) )  b y  

p - ( B )  := p ( - B )  

whenever B E B(E). We refer to p as symmetric if p- = p. 

Properties 2.2.18 (‘of the adjoint). Let x E E ,  p, u E Mb(E) .  

2.2.18.1 ( E ~ ) -  = E - ~ .  

2.2.18.2 (p- )”  = 

2.2.18.3 p is symmetric if and only if I;  is real-valued, and this in 
turn holds if and only if 

a E E’. 

2.2.18.4 The mapping p I-+ p- from Mb(E)  into itself is rw- 
continuous. 

2.2.18.5 ( p - ) -  = p. 

2.2.18.6 ( p  * u)- = p- * u-. 

metric . 
In particular, the convolution of symmetric measures is again sym- 

Theorem 2.2.19 For every sequence (pn)n>l of symmetric mea- 
sures in M 1  ( E )  the following statements are equivalent: 

(i) (pn)n>1 is r,-relatively compact. 
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Proof. It suffices to demonstrate the implication (ii) + (i). Let 
(xn)n / l  be a centralizing sequence for (pn)n>l .  For every n E N we 
have that 

- 
( p n  * E X , ) -  = p n  * &-x, = pn * E-x ,  * 

Since the adjoint is a continuous mapping by Property 2.2.18.4, 
( - X n ) n ? l  is also a centralizing sequence for (pn)n>l .  But then 
( 2 ~ n ) n > 1  is relatively compact in E by Corollary 2.2.10, and Theo- 
rem 2.59 gives the result. 

Theorem 2.2.20 Let (pn)n>l be a sequence of symmetric mea- 
sures in M 1 ( E )  and ( X n ) n > l  any sequence in E such that ( p n  * 
Ex,)n>1 r,-conuerges. Then the sequences (pn)n>l and (xn)n>l con- 
verge i n  M 1  ( E )  and E respectively. 

Proof. From rw - limn-00 p n  * E ~ ,  = X E M 1 ( E )  it follows that 

rW - lim p n  * E - ~ ~  = X- . 
n+oo 

On the other hand we have 

for all n E N. From Corollary 2.2.11 we infer that limn-00 2x73 =: 
y E E exists, and hence 

1 x : =  lim zn= . 
72-00  zy 

Finally, the continuity of the convolution in M 1  ( E )  yields 

Theorem 2.2.21 Let (pn )n>l>  (Vn)n>l be sequences in M 1 ( E ) ,  
where each p n  is symmetric. I f  (pn*vn)n>l is a rw-relatiuely compact 
sequence, then so are (pn)n>l  and (Vn)n / l .  
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Proof. Theorem 
Theorem 2.2.19, 
2.2-3, ( V n ) n > 1  is 

2.2.7 implies that (pn)n>l  is shift tight. Then, by 
(pn)n>l  is rw-relatively compact and, by Theorem 
rw-relatively compact. 

Theorem 2.2.22 For every sequence (pn)n>1 in Mb(E) the follow- 
ing are equivalent: 

(i) (pn)n>l  is rw -relatively compact. 

(ii) (pn + p,)n>1 is r,-relatively compact. 

Proof. For every n 2 1 we have 

Let E > 0 and K E IC(E). If pn(E \ K )  < E then 

and K u  ( - K )  E K(E) .  On the other hand, if 

we obtain that pn(E \ K )  < E for every n 2 1. Prohorov's theorem 
1.3.7 yields both of the desired implications. 

Definition 2.2.23 For every p E M1(E) the measure 

lpI2 := p * p- E M1(E) 

is  called the symmetrization of p. 

Properties 2.2.24 (of the symmetrization). Let p,  u E M 1 ( E ) .  
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2.2.24.1 lpI2 is symmetric. 

2.2.24.2 Ip * vI2 = lpI2 * lv12, and in particular, 1pnI2 = ( 1 ~ 1 ' ) ~  for 
all n E N. 

2.2.24.3 (lpI2)*(u) = Ifi(u)12 for all a E E'. 

Proof. 2.2.24.1 is a simple application of Properties 2.2.18.5 and 
2.2.18.6. To show 2.2.24.2, it suffices to apply Property 2.2.18.6, and 
for 2.2.24.3 we just appeal to Properties 2.1.6.7 and 2.2.18.2 (of the 
Fourier transform). H 

Theorem 2.2.25 For every sequence (pn)n>l in M ' ( E )  the follow- 
ing are equivalent: 

(22) (lpn12)n>1 is rw-relatively compact. 

Proof. (i) 3 (ii). Fkom the rw-continuity of the mapping p I+ 

p- (Property 2.2.18.4) we obtain that (p;)n>l is shift tight. An 
application of Corollary 2.2.8 yields the shift tightness of (Ipn 12),>1. 

Finally, we employ Property 2.2.24.1 together with Theorem 2.219 
in order to see that ((pnI2)n>1 - is rw-relatively compact. 

H (ii) + (2). This follows directly from Corollary 2.2.8. 

Corollary 2.2.26 For every p E M 1 ( E )  the following are equivalent: 

(i) (pn)n>l - is shiB tight. 

(ii) p is a Dirac measure. 

Proof. It suffices to demonstrate the implication (i) + (ii). Theorem 
2.2.25 together with Property 2.2.24.2 implies that (( 1p12)n)n>1 is 
rw-relatively compact. But then Lemma 2.2.2 gives 1p12 = E O ,  and p 
itself must be a Dirac measure. H 
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2.3 Infinitely divisible and embeddable measures 

We start by giving the basic 

Definition 2.3.1 A measure p E M ' ( E )  is called infinitely divis- 
ible if f o r  every n E N there exists an n-th root of p i.e. a measure 
pn E M 1 ( E )  such that 

P: = p .  

B y  I ( E )  we denote the set of all infinitely divisible measures in 
M 1 ( E ) .  

Example 2.3.2 For every x E E the Dirac measure E~ belongs to 
I ( E ) -  

In fact, for every n E N 

since E is divisible. 
Clearly, I ( E )  is a (commutative) subsemigroup of M1 ( E )  . One 

just notes that for p,  v E I ( E )  admitting the representations p = p; 
and v = v," with pn,vn E M 1 ( E )  respectively (n E N), we have 

Moreover, the semigroup I ( E )  has a neutral element €0. 

Theorem 2.3.3 For each p E I ( E )  one has F(a) # 0 whenever 
a E El. 

Proof. Let p = p: with pn E M 1 ( E )  for every n E N. Then pn 4 p 
for all n E N, and by Property 2.2.16.5 (pn)n>l is shift tight, hence 
by Theorem 2.2.25 (1pnI2)n>1 is .r,-relatively compact. Let v be an 
accumulation point of (Ipn p )n> l .  - Then u is symmetric. Moreover, 
for all n 2 m we have that 
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and consequently that 
urn 4 Id2 

for all rn E N, since 4 is a closed relation. But then ( U ~ ) ~ Z ~  is a rw- 
relatively compact sequence, which follows with the help of Property 
2.2.16.5 and Theorem 2.2.19. Thus u = € 0  which implies that 

as n -+ 00 (in the topology 7,) and therefore by the continuity 
theorem 2.1.19 together with Property 2.2.24.3 that 

for all a E E'. But then for each a E E' there exists an n E N such 
that b,(a) # 0, thus 

Corollary 2.3.4 For every p E I ( E )  

( a )  there exists Log b, and 

(ii) if p is  symmetric, then Log j i  i s  real which implies that b(u) > 0 
whenever a E El. 

Proof. ( i )  follows from Theorem 2.1.10 on the existence of the func- 
tion h. Concerning 
(ii) we first note that ,2(E1) c R, since p is symmetric and hence ji 
is real. Next we realize that 

for all a E El, hence that 

(Log ji)(E') c R U 2 7 r i Z x .  
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As a continuous image of E’ the set (Log $)(El) is connected. But 
Log $(O) = 0, thus (Log $)(El)  c R and the remaining assertion 
follows. rn 

Theorem 2.3.5 (Uniqueness of roots) Let p E I ( E ) .  

such that p,” = p,  and 
For every n E N there exists exactly one (n-th root) p n  E M’(E) 

whenever a E El. 

symmetric (n E N). 
If, moreover, p is symmetric, then also each n-th root p n  of p is  

Proof. From Theorem 2.3.3 we conclude that b(a) # 0 for all a E El. 
But then also $,(a) # 0 for each n E N (a  E El). Theorem 2.1.10 
yields the existence of Log fin for every n E N. We also have that 

for each n E N (a  E E’), hence that 

The uniqueness of the Fourier transform (Theorem 2.1.4) implies the 
uniqueness of the n-th root p n  of p as asserted. 

Finally, Corollary 2.3.4 together with Property 2.2.18.3 yields the 
last assertion of the theorem. rn 

Theorem 2.3.6 (Convergence of roots) For p E I ( E )  with sequence 
(p&)n>l  of n-th roots p~ of p, 

or
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as n + 00 an the weak topology rw. 

Proof. Let 6 > 0. By Corollary 2.1.12 

sup(lL0g /qa)l : a E VS} < 00. 

From Theorem 2.3.5 we infer that 

= 1  
= &)(a) 

uniformly in a E VS. Since p~ 4 p for all n E N, the sequence 
(p+)n>l  is shift tight by PropeAy 2.2.16.5. But then Corollary 2.2.14 
applies, and with the help of the uniqueness and continuity theorems 
2.1.4 and 2.1.9 respectively the result follows. 

Theorem 2.3.7 (Closeness of I ( E )  in M 1 ( E ) ) .  Let (p&1 be a 
sequence of measures in I ( E )  such that 

as k + 00, with respect to  rw . Then  p E I (  E ) ,  and 

b k ) $  - P $  

as k -+ 00, with respect to rw, f o r  all n E N. 

Proof. 1. Let n E N be fixed. Then, by the continuity of the map- 
pings p I+ p- and (p,  u )  I+ p * u we obtain 

and 
Id2 - 1PI2 

as k -+ 00, with respect to rw. But then Property 2.2.16.5 and 
Theorem 2.2.19 apply and yield the rw-relative compactness of 
( I ( P k ) +  I2)k>1. 
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Moreover, Theorem 2.3.5 together with the continuity theorem 2.1.9 
implies that for all a E E' 

Applying the continuity theorem 2.1.9 again there exists a measure 
vn E M ' ( E )  satisfying 

Since this equality holds for every n E N, lpI2 E I ( E ) ,  hence by 
Theorem 2.3.3 

l@(4I2 = (1P12>A(4 f 0 

whenever a E El. 

2. From 1. and from the existence of the function h (Theorem 2.1.10) 
we infer that Log ,G exists. Then Corollary 2.1.16 implies that 

lim Log bk(a) = Log ,G(a) 
k+oo 

uniformly on bounded subsets of elements a of El. It follows from 
Theorem 2.3.5 that 

1 
k-oo lim ( ( p k ) + ) " ( a )  = k-oo lim exp (- n Log f i k ( a ) )  

= exp (k Log j i (a))  

uniformly on bounded subsets of elements a in E'. In addition, 
( (p&~)k> l  is a shift tight sequence (by Property 2.2.16.5), conse- 
quently, by Corollary 2.2.14 there exists a measure p n  E M ' ( E )  such 
that 

b k ) +  - p n  
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for all n E N ( k  + 00, with respect to T ~ ) .  But then the continuity 
of the convolution yields p: = p or p E I ( E ) .  By Theorem 2.3.5 we 

W have that p n  = p~ for all n E N. 
n 

Definition 2.3.8 A family (pt)tER+ of measures an M1(E)  is said 
to be a (continuous) convolution semigroup in M 1 ( E )  if it has 
the following properties: 

(c) The mapping t pt  from R+ into M 1  ( E )  is rw -continuous. 

Evidently, the measures p t  of a convolution semigroup (pt)tER+ 
in W ( E )  are elements of I @ ) ,  since 

for every n E N. For the converse we prove the subsequent 

Theorem 2.3.9 (Embedding) Let p E I ( E ) .  Then for every t E R+ 
there exists exactly one measure pt E M 1 ( E )  such that 

whenever a E El, and (p t ) teR+ is a convolution semigroup in 
M ~ ( E ) .  

In particular one has 
p1 = p .  

Proof. 1. Let t E QT and k ,  e, k' ,  el E N such that 
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By Theorem 2.3.5 we obtain that for all a E E' 

The uniqueness theorem 2.1.4 then implies that 

is uniquely determined, and 

P s  * Pt = Ps+t 

whenever s , t  E Qr.  
2. Let t E R+ and let @,),>I be a sequence in QP such that 

Since by 1. 

for all n E N, (pt,),>l is shift tight. This follows from Theorem 
2.2.7. 

t ,  = t .  Let, moreover, m E N with t ,  < m for all n E N. 

Ptn * Pm-t, = Pm 

Now, let 6 > 0 be given. We know that 

sup(lL0g P(a)l : a E VS} < 0 .  

But then 1. implies that 

= exp(t Log f i (a)) 

uniformly for a E VS. It follows from Corollary 2.2.14 and from the 
uniqueness and continuity properties of the Fourier transform that 
there exists exactly one measure pt E M 1 ( E )  satisfying 
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for all a E E’. Moreover, 

which shows the first assertion in the theorem. 

3. As a consequence of the previous discussion we obtain that 

P s  * Pt = Ps+t 

for all s , t  E R+. The continuity of t I+ pt follows as in 2. by 
choosing for t E R+ an arbitrary sequence @,),?I in FL: such that 

t ,  = t. 
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2.4 Gauss and Poisson measures 

In this section the prominent subsets of Gauss and Poisson measures 
within I ( E )  will be studied. 

Definition 2.4.1 A measure p E M 1 ( E )  is called a (symmetric) 
Gauss measure if there exists a symmetric linear mapping R : 
E' -+ E such that 

whenever a E El. 
Here we apply the symmetry of a mapping R : E' -+ E in the 

sense that 
( R a ,  b)  = (a ,  Rb) 

f o r  all a ,  b E El. 
R is  said to be the covariance operator of p. 
By G(E)  we abbreviate the totality of all Gauss measures on E .  

Examples 2.4.2 

2.4.2.1 Let E := RP. Then the p-dimensional normal distribu- 
tion N ( 0 ,  C> with mean (vector) 0 and covariance (matrix) C is 
a Gauss measure on  E .  

In fact, for all a E RP = (Rp)' we have that 

and C is symmetric. 

2.4.2.2 Let E := C ( I )  (equal to the space of continuous real-valued 
functions on the compact interval I := [ O , l ] ) .  Then the Wiener 
measure W is a Gauss measure on  E .  

In fact, from the theory of Brownian motion follows that 
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with 

for all x E C(I)’ E M b ( I )  - M b ( I ) ,  t E I .  It turns out that R is a 
linear mapping C(I)’ --$ C(1) which is shown to be symmetric (by 
Fubini’s theorem). 

2.4.3 Scholium on the Wiener measure. Let (R, U, P, (B t ) t ,~ )  
denote a Brownian motion in R with parameter set - I = [0,1]. For 
every t E I there exists a real-valued random variable Bt on (R, 94, P) 
with P([& # Bt])  = 0 such that for every w E R the mapping 
t &(w)  from I into R is continuous. The process (Q, a, P, (&)tE,) 
is called a Brownian motion with continuous paths. As a result of 
this modification we may assume without loss of generality that the 
initial Brownian motion (Q, GI, P, (Bt) t , I )  has continuous paths. It 
follows that the mapping 

from R x I into R is U 8 % ( I )  - %(R)-measurable, hence that the 
mapping B : + C ( I )  which sends w onto the path t B&) 
is - %@(I))-measurable. But then the Wiener measure W := 
PB = B(P) is a measure in M1(C(I)) with Fourier transform given 
by 

for all x E C(I)’,  t E I .  Since 

for all x E C(I)’,  tl,t2 E I, RX is Lipschitz continuous, in particu- 
lar, RX E C ( I ) .  Clearly, R is a continuous linear mapping C(I)’ --$ 
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C ( I ) .  Moreover, 

and therefore 

whenever x E C(I) l .  

Properties 2.4.4 of Gauss measures 

2.4.4.1 R i s  uniquely determined and positive in the sense that 

(Ra ,a)> 0 

f o r  all a E El. 
In fact, the uniqueness of R follows from the representation 

together with 

1 1 
4 4 

( R u , ~ ) =  - ( R ( a + b ) , a + b )  - - ( R ( a - b ) , a - b ) ,  

both equalities being valid for all a ,  b E El. 
The positivity of R is a consequence of 

valid for all a E El. 

2.4.4.2 Every Gauss measure is  symmetric,  since ,6 i s  real-valued. 

2.4.4.3 Let p , a  E G(E)  with covariance operators R and S respec- 
tively. T h e n  p * a E G(E)  with covariance operator R + S .  



Gauss and Poisson measures 71 

In particular, G ( E )  i s  a subsemigroup of M1 ( E ) .  
As for the proof of this property we just compute 

1 1 

1 

= exp (- 2 ( ~ a ,  a ) )  exp (- ( s a ,  a ) )  

= exp (- ( ( R a ,  a> + (Sa,  a ) ) )  
= exp(- i ( (R+ 1 S ) a , a ) )  

for all a E E' and observe that R + S is a symmetric linear mapping 
E' -+ E .  

2.4.4.4 Let p E G(E)  with covariance operator R and let T be a 
continuous linear mapping f r o m  E into another Banach spaces F .  
T h e n  T(p) E G ( F )  with covariance operator T o R o Tt. 

In fact, for all b E F' we have 

T(p)"(b) = p o Tt(b) = p(Ttb) = exp(-$2(Ttb) ,Ttb))  1 

=exp(--((ToRoTt)b,b)) ,  1 
2 

and T o  R o Tt  is a symmetric mapping F' + F. 

2.4.4.5 G ( E )  c I ( E )  
Moreover, for every p E G(E)  there exists a convolution. semigroup 

(Pt)tER+ given by 
Pt := H&(P) 

for all t E R+ such that p1 = p. 
Here the symbol Hr denotes the homothetical mapping x H rx  

(with r E R+) o n  E .  
For the proof of this property we first agree on R to be the covari- 

ance operator of p. Then by Property 2.4.4.4 H&) E G(E)  with 
covariance operator tR. It follows that 
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for every n E N, hence that p E I (E) .  The remaining part of the 
statement follows from the embedding theorem 2.3.9. 

2.4.4.6 Let s , t  E R with s2 + t2 = 1, and let T := T,,t be defined by  

for  all (x,y) E E x E. T is a continuous linear mapping o n  E x E.  
Then for every p E G(E)  

In fact, let R denote the covariance operator of p, and let 

q(a)  := ( R a , a )  

for all a E E'. Then 

and 
T t ( U ,  b) = (sa + t b ,  ta - sb) 

whenever a,b E E'. Here the identification ( E  x E)' = E' x E' is 
applied. 

It follows that for all (a ,b )  E E' x E' 

Lemma 2.4.5 (Fernique) For every p E G(E)  
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Proof. 1. The mapping T := T L  ,L defined as in Property 2.4.4.6 is 
invertible with T-' = T. Now, let z,y E E,  u,v E R+ with llzll 5 u 
and llyll > v. Then 

hf i  

and by Property 2.4.4.6 we obtain 

2. Now we choose YO := u sufficiently large such that 

1 
and we obtain 

P"ll * II > Vol )  *= 4 * 

vn := ( 2 y  - I) (A+ 1)vo 
Moreover, let 

for all n E N. Then 
v n + 1 -  vo = J2 vn  

for all n E Z+. The estimate achieved in 1. yields 

for all n E Z+,  hence by induction 
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3. It remains to be shown that 

In fact, from vn 5 4 ~ 0 2 %  and from the estimate in 2. we conclude 
that 

With this preparation we can approach the more profound prop- 
erties of Gauss measures on a (separable) Banach space. 

Theorem 2.4.6 (Integral representation of the covariance operator) 
Let p E G(E)  with covariance operator R. Then  

(i) Ra = s ( x ,  a)xp(dx) 

f o r  all a E E’, where the integral is  understood in the sense of 
Bochner. 

( i i)  R is a compact operator. 

Proof. ( i )  At first we observe that 

for all x E E,a  E E’. Therefore Lemma 2.4.5 implies that the map- 

x (z ,a)x 
ping 

is Bochner-integrable with respect to p. 
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We add a few remarks on Bochner integrability: Let (52,%,p) be 
a measure space, and let f : 52 -+ E be a mapping from 52 into a 
separable Banach space B. f is said to be Bochner integrable if 

(a) f is strongly measurable in the sense that there exist step func- 
tions f n  : 52 4 E such that 

fn + f 
as n --+ 00 strongly p-almost everywhere, and such that 

asn--+oo. 

In this case 

with the limit taken in the strong sense, is called the Bochner integral 
off with respect to p. 

Moreover one has the useful criterion that a strongly measurable 
function f : s1 -+ E is Bochner integrable with respect to p if and 
only if 11 f 1 1  is p-integrable (in the usual sense). 

We proceed with the proof of the theorem. Let 

Sa := (Ic, a)xp(dx)  s 
for all u E E'. S defines a linear mapping E' + E.  Moreover, for 
every b E E' we have 

This representation shows that S is symmetric. Now, for all a E E' 



76 The Fourier Transform an a Banach Space 

whenever t E R, hence by Property 2.4.4.4 together with the unique- 
ness of the Fourier transform 

But 
t2N(0 ,  ( R a , a ) ) ( d t )  

= p X ( p ) ( d t )  = (x,u)2p(dx) = (su ,u)  s 
for all a E E‘. Since R and S are symmetric, we obtain as in the 
proof of Property 2.4.4.1 that R = S. 

( i i )  Let ( a n ) n l l  be a bounded sequence in E’. Then there exists a 
6 > 0 such that llanII < 6 for all n E N. 

We know from Appendix B 14 that Vd is compact and metrizable 
with respect to the topology o(E’, E) .  Thus there exist a subsequence 
(unk)k21 of - and an a E VJ such that 

whenever 2 E E.  Applying (i) we now get 

In addition we have that 

for all x E E.  By Lebesgue’s dominated convergence theorem follows 

lim Ran,, = Ru, 
k+oo  

and this finishes the proof that R is compact. 

Theorem 2.4.7 (Characterization of Gauss measures). For every 
measure p E M’(E) the following statements are equivalent: 
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(ii) There exists a mapping q : E' -+ R+ with 

for all t E R, a E E' such that 

whenever a E El. 

(iii) a(p) E G(R) for all a E E'. 

Proof. (i) =$ (ii). Let p E G ( E )  with covariance operator R. Putting 

1 s ( 4  = z(Ra,  a )  

for all a E E' we immediately arrive at the assertion. 

(ii) 3 (iii). Let a E E'. Then for all t E R 

(iii) =$ (2). Let a(p) = N(0, h(a) )  with a function h : E' -+ R. Then 
for all a E E' 

h(a)  = 1 t2N(0 ,  h(a))(dt) = / t % ( P ) ( d t )  = /(x, u)2p(dz) (1) 

and 
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Now, for all II: E E ,  a E E’ we define 

By (1) Ta E L2(E,  p) €or all a E E‘, T is a linear mapping E’ + 
L2(E,p) ,  and by (1) and (2) 

whenever a E E‘. 

mapping 
Now, by Property 2.1.6.4 of the Fourier transform T is a continuous 

(E’, 4% E ) )  + (L2(E,P), II I l l  - 
Appendix B 13 (Arens, Mackey) provides us with the identification 

(E’,T(E’, E))’ +--+ E .  

Consequently, Tt  can be regarded as a mapping L2(E,  p) -+ E and 
hence R := Tt  o T is a linear mapping E‘ -+ E with 

( R a ,  b )  = (Tt(Ta),  b )  = (Ta,Tb) 

for all a,  b E E’. This shows that R is symmetric, and setting a = b 
one obtains that 

for all a E E‘, and p has been shown to belong to G(E) .  

Definition 2.4.8 For any given measure X E M b ( E )  the measure 

with Xo := EO is called the Poisson measure with exponent A. 
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B y  P ( E )  we shall abbreviate the totality of all Poisson measures 
in E .  

Discussion 2.4.9 of the genesis of Poisson measure in classical 
probability theory. Here we have E := R P .  Let X E M b ( E )  \ (0). 
Moreover, let 

(a)  (Xn)n>1 denote a sequence of independent E-valued random 
variables on a probability space (Cl,%,P) such that 

1 
P X ,  := -A 

IlXll 
f o r  all n 2 1 and let 

(b) N denote a &-valued random variable on (O,U,P) ,  indepen- 
dent of (X)n>1 - and such that 

where II( 1 1  All) denotes the elementary Poisson distribution with 
parameter 11 All. 

Now, for  every w E let 

k=l 

(with ~ ~ = l X k ( w )  := 0) .  Then  S, is  an  E-valued random variable 
on (O,U,P)  with 

Ps, = e(X). 

Properties 2.4.10 of Poisson measures 

2.4.10.1 For every a E E' 
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The following computation serves as a proof of the first assertion: 

The second statement follows from the existence of h := Log ,G 
(Theorem 2.1.10) together with the continuity of the Fourier trans- 
form. 

2.4.10.2 For A1J2 E M b ( E )  we have 

In particular, P (E)  is a subsemigroup of M 1 ( E ) .  
For the proof one just notes that 

(by Property 2.4.10.1) 

(again by Property 2.4.10.1)) whenever a E E'. 
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2.4.10.3 P ( E )  c I ( E ) .  
Moreover, for any e(A) E P ( E )  there exists a convolution semigroup 

e(A)t := e(tA) 
(e(A)t)tER+ given by 

for all t E R+ such that .(A), = .(A). 

the embedding theorem 2.3.9. 
This follows from Properties 2.4.10.1 and 2.4.10.2 together with 

2.4.10.4 Let XI, A2 E M b ( E )  with A 1  5 A2. Then 

In fact, looking at A2 = X1 + (A2 - X I )  with A2 - A 1  E M b ( E )  
Property 2.4.10.2 yields 

and hence the assertion. 

2.4.10.5 For every A E M b ( E )  we have .(A)- = e(X-)  
since for all a E E’ 

= (e(X-))”(a). 

2.4.10.6 Let X E M b ( E ) .  Then e(A + A-) = le(A)I2, since 

e(A + A-) = e(A) * e(X-) = e(A) * e(A)- 

by  Property 2.4.10.5, and furthermore 

Theorem 2.4.11 (Denseness o f P ( E )  in I @ ) )  P ( E )  is a r,-dense 
subsemigroup of I (  E )  . 
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I n  particular, f o r  any PJ E I ( E )  with sequence (Pk )n>l  of n-th 
roots PJ I  of PJ we have that 

n 

as n + 00 with respect to the topology T ~ .  

Proof. 1. Clearly, 

as n -+ 00, since 

(f)" L ( ; )n  5(i)" 
e-2n ( 2 7 ~ ) ~ ~  

(2n ) !  
- - 

for all n 2 1. 

2. The sequence (e(npL)) ,>l  is .r,-relatively compact. 
n 

In fact, for E > 0 there exists by 1. an no E N such that 

for all n 2 no. Since the mapping t I+ P J ~  from R+ into M 1 ( E )  is 
continuous, the set {pt  : t E [0,2]} is relatively compact. But then 
Prohorov's theorem 1.3.7 applies, and there exists a set K E K(E) 
with 

P t ( W  2 1 - I5 
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for all t E [0,2]. This implies that for all n 2 no 

3. For all x E C one has 

as n + 00. It follows that 

whenever a E E'. We now apply 2. in order to use the continuity 
theorem 2.1.9 yielding 

lim e(np1)  = p .  
n-oo n 

Theorem 2.4.12 (Continuity of the Poisson mapping). Let (Xn)n,, 
be a sequence of measures in M b ( E ) .  
(i) If (An),>, - is r,-relatiuely compact, then so is (e(Xn)). 

(ii) The mapping e : M b ( E )  -+ M 1  ( E )  is continuous in the sense 
that the r,-convergence An -+ X E M b ( E )  implies the r,-con- 
uergence 

e ( L )  + e(x) 

a sn - -+oo .  
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Proof. ( i )  By Prohorov's theorem 1.3.7 

For given E > 0 there exists a ko E N satisfying 

But since {A: : 0 5 k 5 ko, n E N} is .r,-relatively compact (by the 
continuity of the convolution) Prohorov's theorem 1.3.7 provides us 
with the existence of a set K E K ( E )  such that 

E Ak(Kc) 5 - 
2e 

whenever 0 5 k 5 ko, n E N. Therefore 

Another application of Prohorov's theorem 1.3.7 yields (i). 

(ii) We apply Property 2.4.10.1 in order to obtain 

lim e(A,)"(a) = e(A)"(a) 
n-+m 

whenever a E E'. But then ( i )  together with the continuity theorem 
2.1.9 implies the assertion. 

Remark 2.4.13 The converse of statement (i) of Theorem 2.4.12 
does not  hold in general. In fact,  by Theorem 2.4.11 we have f o r  any 
p E I ( E )  that 

e(nP+) - P 
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as n + 00, but 

=sup  n = m .  
n>l 

R6sum6 2.4.14 A measure p E M 1 ( E )  is  called (continuously) 
embeddable if there exists a (continuous) convolution semigroup 
( p t ) t E ~ +  in M ' ( E )  such that p1 = p. 

By E M ( E )  we denote the totality of all embeddable measures on 
E.  Then E M ( E )  is a subsemigroup of M 1 ( E ) ,  and G(E)  as well 
as P(E)  are subsemigroups of the semigroup I ( E )  which by the 
embedding Theorem 2.3.9 is contained in E M ( E ) .  While I ( E )  is 
q,,-closed in M1(E) by Theorem 2.3.7, P ( E )  is q,,-dense in I ( E )  by 
Theorem 2.4.11. 



The Structure of Infinitely Divisible 

Probability Measures 

3.1 The Ito-Nishio theorem 

This section is devoted to studying the convergence behavior of sums 
of independent random variables taking their values in a separable 
Banach space E.  The discussion will provide a complete version of 
L6vy's continuity theorem which extends Theorem 2.1.9. 

Definition 3.1.1 A subset 2 of E is  said to  be a (measurable) 
cylinder set i f  there exist a finite set { a l ,  ..., a,} in E' and a set 
B E B(Rn) such that 

2 = Z(a1, ..., a,; B )  := {Z E E : ( ( x ) a I ) )  ...) (Z,a,)) E B } .  

Let 3(E) denote the system of cylinder sets of E .  

Properties 3.1.2 of cylinder sets 

3.1.2.1 3 ( E )  c B(E). 

86 

3
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3.1.2.2 3 ( E )  = B(E) if and only if d im E < 00. 

3.1.2.3 3 ( E )  is  an  algebra. 

In fact, we note that E = Z(a;R) for arbitrary a E E' and hence 
belongs to 3(E) .  Moreover, for Z := Z(a1,  ..., a,; B )  E 3 ( E )  also 
2" = Z ( a l ,  ..., a,; BC) E 3 ( E )  and with 2' := Z(a;, ..., uA; B') for 
{a:, ..., a A } ,  B' E B(R)m we have that 

z n Z' = Z(a1,  ..., an,  u;,  ..., u;; B x B') E 3(E) .  

3.1.2.4 3 ( E )  is  translation invariant. 

This property follows directly from 

for Z := Z(a1,  ..., a,; B )  with ( ~ 1 ,  ..., a,} c E', B E % ( R ) n  and 
y E E.  

3.1.2.5 a(3 (E) )  = %(I?). 

By Property 3.1.2.1 it suffices to show that 8 ( E )  c a(3(E)) .  
Moreover, applying the assumption that E is separable the proof is 
reduced to showing that B(z , r ) -  E a(3(E))  for all II: E E ,  r E RT. 
Finally, by Property 3.1.2.4 it remains to verify that B(0,r)-  E 
a(3(E))  for every r E RT. 

Let (xn)n>l be a sequence dense in E.  F'rom Appendix B 5 (Ba- 
nach, Hahn) we obtain a sequence (an)n>l in E' with Ilanll = 1 such 
that (xn ,  an) = 11xnII for all n 2 1. NOW, let 

Clearly, B, E a(3(E))  and hence the proof is finished once B(0, r ) -  = 
B, has been established. At first we note that B(0,r)  c B,. For the 
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reversed inclusion we pick x E B, to which there exists a subse- 
quence ( x n k ) k > l  of ( X n ) n / l  such that limkjm X n k  = 2. But the 
inequalities 

Discussion 3.1.3 of types of convergence for E-valued random vari- 
ables. 

Let (Yn)n>l be a sequence of E-valued random variables o n  a prob- 
ability space (0, U, P ) .  

P-a.s. + 3.1.3.1 (Yn)n>l converges P-a.s. (in symbols Yn 
i f f o r  all E > 0 

) i f  and only 

lim P([SUP llYn - YmII > E ] )  = 0 .  
m+m n2m 

P-stoch 3.1.3.2 (Yn)n>l converges P-stochastically (an symbols Yn + ) 
i f  and only i f  for all E > 0 

3.1.3.3 If Y denotes the P-a.s. or P-stoch limit of (Yn)n>l then the 
limiting relations hold for Y instead of Y, in 3.1.3.1 and 3.1.3.2 
respectively. 

We note that P-a.s. convergence implies P-stoch convergence, and 
P-stoch convergence implies convergence of (Yn)n> 1 in distribution 
which is defined as weak convergence of the sequence (Py,)n?l of 
distributions Py, of Yn as measures in M 1 ( E )  (in symbols Yn + ). d 

Theorem 3.1.4 (Ottauiani’s inequality). Let ( Y k ) l < k < n  be a se- 
quence of independent E-valued random variables o n  @,a; P). Then  
for  all E > 0 we have the inequality 
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Proof. For every k = 1, ..., n - 1 let 

Then B1, ..., Bn-1 are pairwise disjoint, and B k ,  c k  me independent 
for 1 5 k 5 n - 1. Since 

we obtain 

and hence 

n-1 n 

k=l k=l 
/n-1 \ 

/n-1 \ 

Corollary 3.1.5 For each e 2 1 let St := c",=, Yk. Then 

for all E > 0. 



90 The Structure of Infinitely Divisible Probability Measures 

Proof. Applying the theorem to each of the sequences ( Y k ) l < k < n  

(n 2 1) we obtain for all E > 0 
- -  

whenever m 2 1. But we have 

hence by the continuity from below of the measure P the assertion 
follows. 

Theorem 3.1.6 (Equivalence of types of convergence). Let 
be a sequence of independent E-valued random variables on (52,  %, P) 
with distributions X k  = Px,(k  2 1)) and let (Sn)n>l be the corre- 
sponding sequence of n-the partial sums Sn = C;=, X k ( n  2 1). For 
every n 2 1 we abbreviate 

Then the following statements are equivalent: 

(i) (Sn)n>l - converges P-a.s.. 

(ii) (Sn)n>l converges P-stoch. 

(iii) (Sn)n>l converges in distribution. 

Proof. (i) + (ii) (iii) are well-known implications valid for arbi- 
trary sequences of E-valued random variables on (52,  %, P ) .  (For the 
second implication see Application 1.2.15.) 
(ii) + ( i )  Let E > 0. For S €10) i] there exists an 7730 2 1 such that 
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whenever rno  5 rn < n. But Corollary 3.1.5 applied to the sequence 
of E-valued random variables Yn := Xm+n (n 2 1) yields 

1 
hence 

-P([ SUP IlSn - SmII > 2 4 )  L 6 
2 n l m  

for all m 2 rno ,  and this implies (i). 
(iii) j (ii). For 1 5 m < n we have 

and consequently 

P([ I ISn - SmII 1 4) = Pmn(B(0,  E) ' )  - 
P - stoch Now we assume that Sn + is not fulfillec , Then t iere 

exist subsequences ( r n k ) k > l ,  - ( n k ) k > l  - in N with m k  < nk and 
~ m k , n k ( B ( 0 ) & ) C )  2 E for all k 2 1. But since pmk * pmk,nk = run, for 
all k 2 1 and rw - limn-+m pn = p E M ' ( E )  by assumption, the se- 
quence (p, , ,n,)k>l is -r,-relatively compact. Without loss of general- 
ity we may therefore assume that rw -limk+m pmkrnk = u E Ad1 ( E ) .  
But then p * u = p by (iii) of Theorem 1.4.9 and hence u = E O  by 
Lemma 2.2.2. Finally, the sequence of inequalities 

O = E~(B(O) E ) " )  2 limsup pmk,nk (B(O) E ) " )  2 E > O 
k + m  
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yields the desired contradiction, and (ii) of the theorem has been 
established. 

Corollary 3.1.7 Let the sequence ( p n ) n z l  of distributions Ps, be 
shaj? tight in M 1 ( E ) .  Then there exists a sequence (Xn)n>1 - in E such 
that 

P-a.s. 
S n - x n l f i  + 

Proof. By Theorem 2.2.25 the sequence (vn)n>1 with vn := Ipnl2 

for all n 2 1 is .r,-relatively compact. Since lcnl = lj.inI2 by Property 

all n 2 1. By the continuity theorem 2.1.9 this implies that (vn)n>1 

is -r,-convergent. 
In the following we aim at representing the sequence (Vn)nZl as a 

sequence of distributions of E-valued random variables on an appro- 
priate probability space. Let 

2.2.24.3 and vn 4 vn+l, Property 2.2.16.7 yields 0 5 fin+l 5 fin for 

whenever (w1, w2) E 0 x 0 (n 2 1). Clearly, { Y l ,  2 1 ,  Y 2 , 2 2 ,  ...} is a 
sequence of independent E-valued random variables on the proba- 
bility space (a x 0, '% 8 24, P 8 P) such that 

for all n 2 1. As a consequence we obtain that the E-valued random 
variable 

has vn as its distribution (n 2 1) (See Application 1.4.5 and Property 
1.4.4.4). It follows that 

n 

k=l 
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Moreover, since (Yn - Zn)n>l is a sequence of independent E-valued 
random variables, the theorem applies and 

n 

k=l  

where W denotes an E-valued random variable on (R x R, %@%, P @  
P). But then there exists Q E % @  24 with (P 8 P)(Q) = 1 such that 

for all (q, w2) E Q. An application of Fubini’s theorem yields 

and hence provides us with an w2 E R such that P(Qw2) = 1. Choos- 
ing X n  := S n ( ~ 2 )  for all n 2 1 we obtain the sequence (xn)n>1 in E 
required in the assertion. 

The following two Lemmata are designed to prepare the main re- 
sult of the section. 

Lemma 3.1.8 L e t  X ,  Y, Y1, Y2, .. be E-valued  random variables o n  
(R,%,P) .  For  every n 2 1 t he  random variables X and Yn are as- 
sumed to be independent.  Moreover, by hypothesis 

for every a E El. T h e n  X and Y are independent.  

Proof. Let a l ,  ..., ak E El. For each n 2 1 we introduce the Rk- 
valued random variable 

P-stoch Then pn + cp := ((Y, a l ) ,  ..., (Y, a k ) ) ,  since 
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where by hypothesis the right hand side tends to 0 for all E > 0. 
Next we note that by assumption the random variables 

and vn are independent, and 

P - stoch vn@+ - v@$J-  

The equivalence theorem 3.1.6 together with Theorem 1.4.8 yields 

thus cp and + are independent. 

B(Rk) such that 
Now, let Z1,22 E 3(E) .  There exist a l ,  ..., ak E El and B1, & E 

zj = Zj(U1, ...) arc; Bj)  

for j = 1,2 .  From the above chain of equalities we deduce 

Since 3 ( E )  is a n-stable generator of B(E) by Properties 3.1.2.3 and 
3.1.2.5 we have shown that X and Y are independent. 

Lemma 3-1.9 Let (0, a, p, ( Y a ) u E E ' )  and (E, wql p,  ( ( . I  a ) ) a E E ' )  
denote two equivalent stochastic processes (with parameter set El and 
state space R). Then there exists an  E-valued random variable Y on 
(O,U,P) such that 

P( [YU = (Y, a ) ] )  = 1 

whenever a E El. 
I n  particular, Py = p. 
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Proof. With RN carrying the product topology we have that 
B(RN) = B(R)@N. Let (an),zl be a sequence in E' with 

for every r E R:. This follows from Appendix B 5 (Banach, Hahn) 
which indeed yields a sequence (a,),> - 1 in E' satisfying lla, 1 1  = 1 
and (x,a,) = llxll for all n 2 1. 

BY 
P(Z) := ( ( ~ r a n ) ) n 2 l  

for all x E E we introduce an injective continuous linear mapping 
from E into RN. Now, p E M 1 ( E )  is tight by Theorem 1.1.6. Hence 
there exists an increasing sequence (K,),>1 in K(E)  such that for 
C := Unzl K, we obtain that p(C) = l.-Clearly, C E B(E) and 
cp(C) = U,,lcp(K,) E B(RN). But then ResK,cp is a homeo- 
morphism from K, onto cp(K,) and hence Resccp turns out to be 
a bimeasurable bijection from (C, C n %(I?)) onto (cp(C), cp(C) n 
%(RN)). Consequently, there is a measurable mapping $ from 
(RN,%(RN)) into ( E , B ( E ) )  given by $(cp(x)) = x for all x E C. 
Now we put 

for all w E R. A is a measurable map from (0, U) into (RN, B(RN)). 
For every finite sequence (B1, ..., B k }  in 23 (R) we have by assump- 
tion that 

A(w) := (yUk(w))n>l 

P([A E B1 x ... x B ~ x R  x R x ...I 
= P([Yuj E Bj for j = 1, ..., 4) 
= p( [ ( . ,a j )  E Bj for j = 1, ..., k ] )  
= p ( [ p  E B1 x ... x BI, x R x R x ...I). 

But the system of sets of the form B1 x ... x BI, x R x R x ... is a 
n-stable generator of %(RN) = (%(R))@N, hence PA = pV. 

Analogously one shows that 
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for all a E E'. 
Now, for a E E' we form the set 

and introduce the E-valued random variable Y := $J o A. Then 

and the first statement of the Lemma has been established. 
For the remaining statement we take 

(for a l ,  ..., an E E', B E B(Rn)). Then 

Applying Properties 3.1.2.3 and 3.1.2.5 this implies that PY = p. W 

Theorem 3.1.10 (Ito, Nishio) Let ( & & > I  be a sequence of inde- 
pendent E-valued random variables XI, on-(fl, %, P )  with the prop- 
erty that Px ,  is symmetric for  all k > 1, and let (Sn)n>l be the 
corresponding sequence of n-th partial sums c ; = ,  XI,. 

The following statements are equivalent: 

(i) (Sn)n>l converges P-almost surely. 
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(ii) (Sn)n>l converges P-stochastically. 

(iii) (Sn)n> 1 converges in distribution. 

(iv) (Ps,)n>I is uniformly tight. 

(v) There exists an E-valued random variable S on (R ,U ,P)  such 
that 

P-stoch 
(Sn,a> 4 ( s , a )  

for all a E E'. 

(vi) There exists a measure p E M ' ( E )  such that 

for all a E E'. 

Proof. From the equivalence theorem 3.1.6 we deduce the equiva- 
lences 
(i) * (ii) @ (iii) 

(iii) * (iv). 
and from the continuity theorem 2.1.9 the implication 

We proceed to the proof of implication 
(iv) + (i). By assumption the sequence (Psn)n>l is uniformly tight, 
consequently Corollary 3.1.7 becomes applicable and hence there ex- 
ists a sequence (xn)n>l in E such that 

as n -+ 00. Since the random variables X I ,  are independent and their 
distributions Px, are symmetric for all k 2 1, we obtain 
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But this implies the limiting relation 

as n -+ 00. Observing that for every n 1 1 

we obtain the desired statement (i). 
(v )  + (iw). Let p := Ps. By the inner regularity of p (see Theorem 
1.1.2(ii)) for every E > 0 there exists a K E IC(E) such that p ( K C )  < 
E .  The set K1 := { i ( z  - y) : z, y E K }  is compact. Now, given k 2 1 
we note that for every n 2 1 the E-valued random variables X := SI ,  
and Yn := sk+n - Sk are independent, and by hypothesis 

P-stoch 
( y n , a )  = (Sk+n,a) - (Sk,a> - (s,a) - ( s k , a )  = (S -  Sk ,a)  

whenever a E E‘. Applying Lemma 3.1.8 this implies that the ran- 
dom variables X and Y := S-SI,  are independent. But with X + Y  = 
s and p k  := Ps, = * j = l  Px, we obtain k 

1 - & < p ( K )  = pk * PS-SI, ( K )  

= / P k ( K - x ) p S - S k ( d z ) ,  
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hence there exists an xk E E such that pk(K - x k )  > 1 - E .  This, 
however, implies that 

Since the inequalities are valid for each k 2 l , ( i w )  has been estab- 
lished. 
(wi) + (w) For each a E E' ((X,, a)),>l is a sequence of independent 
real-valued random variables on (0, (u,P), and for all n 2 1 

But then 

and 

whenever a E E', t E R. Now, by hypothesis 

for all t E R, and by the classical continuity theorem which follows 
from Theorem 4.3.8 we have 

or 
(sn,a> 5 - 

The equivalence theorem 3.1.6 now yields 
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where Y, is a real-valued random variable on (O,Iu, P). 
On the other hand the two stochastic processes 

are equivalent. 
In fact, let a l ,  ..., ak E El. Then for all ( t l ,  ..., t k )  E Rk assumption 

(wi) together with an application of Lebesgue's dominated conver- 
gence theorem implies that 

- 
- b((.lal)l ..., ( . , U k ) ) ( t l ,  '", tk) 

hence that 
P(Yal ,...,yak) = P((.,.l> ,.", (.,arc>> ' 

Finally, we apply Lemma 3.1.9 and obtain an E-valued random 
variable S := Y on ( n , U , P )  such that 

for all a E El. Consequently, 

thus 



The Ito-Nishio theorem 101 

whenever a E El. But this is (v). 

Corollary 3.1.11 Let (pn)n?l be a sequence of symmetric measures 
in M 1 ( E )  such that pn 3 pn+1 for all n _> 1, and let p E M ' ( E )  
such that 

for all a E El. Then 
p n  3 1-1- 

Proof. By assumption, for every n 2 2 there exists a An E M 1 ( E )  
with p n  = A, * pn-l. Moreover we put A1 := p1. Taking Fourier 
transforms and applying Properties 2.1.6.7 and 2.2.18.3 we see that 
An is symmetric for all n _> 1. 

Now, let (Xn)n>l be a sequence of independent E-valued random 
variables on ( R , U , P )  such that Px, = An for all n 2 1. Then the 
distribution of Sn := c ; = ,  XI, has the form 

Therefore (wi) of the theorem becomes applicable, and we obtain 
that 

p n  V E  M 1 ( E ) .  

It remains to apply the uniqueness and continuity properties of the 
Fourier transform (Theorems 2.1.4 and 2.1.9 respectively) in order 

H to see that v = p. 

Remark 3.1.12 Without the assumption of symmetry for the dis- 
tributions Px, of the random variables X I ,  ( k  2 1) the implication 
(v)+(i) of the Ito-Nishio theorem 3.1.10 does not remain valid. 

In fact, let E denote an infinite-dimensional separable Banach 
space with orthonormal basis {en : n 2 1). Let (0, a, P) be a prob- 
ability space, and let 
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for all w E R, n 2 1 (where eo := 0). Then (Xn)n>l is a sequence 
of independent E-valued random variables on (R, %, P ) .  Moreover 

for all w E R, n 2 1 Finally, we put S(w) := 0 for all w E 0. Then 

whenever a E El, and this implies (v ) .  
But 

lim Sn(u) # S(w),  n+oo 

since IlSn(w>II = 1 for all n 2 1 (w E R), hence ( i )  does not hold. 

As an immediate application of the Ito-Nishio theorem 3.1.10 we 
discuss the representation of E-valued Gaussian random variables as 
a.s.-convergent random series (in E) .  

Theorem 3.1.13 (Random series representation of Gaussian ran- 
d o m  variables). 

Let p be a Gauss measure o n  E .  T h e n  there exist a sequence 
( x n ) n l l  in E and a sequence (cn)n>l of independent real-valued ran- 
d o m  variables o n  a probability s p a c e ( R ,  %, P) with Ptn = N(0,l) f o r  
all n E N such that the series Jnxn is  P-a.s.  convergent, and - 

Proof. We recall the proof of Theorem 2.4.7 and realize that given 
p E G(E) there is a continuous linear mapping T : (El, T(E’, E ) )  + 

(L2(E,P), I1 II) such that 

for all a E El. Moreover, Tt  can be regarded as a mapping from 
L2(E, p) into E .  For a given orthonormal basis { f n  : n E N} of 
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L 2 ( E ,  p)  we define the sequence (xn)n>l in E by xn := Tt f n  for all 
n E N. 

Now let (t&l be a sequence of independent, identically dis- 
tributed real-valued random variables on (R ,U;P)  with P,tn = 
N(0,l) for all n E N. Employing the notation A, := Pt,,, we 
obtain for all a E E' that 

for all a E E' and that A, is symmetric (n E N). For p n  := A1 * ...* An 
we have 

jin(a> = i l  (a>* . . in(a> 

whenever a E E' (n  E N). But then Parseval's identity yields 

for all a E E', and from the Ito-Nishio theorem 3.1.10 together with 
the continuity theorem 2.1.9 the assertion follows. 
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3.2 Fourier expansion and construction of Brownian motion 

As an application of the results of the previous section we shall re- 
turn to the discussion of the Wiener measure introduced as a Gauss 
measure in Example 2.4.2.2 and its rise from Brownian motion in R. 
In particular we shall establish the Fourier expansion of Brownian 
motion in R and construct Brownian motions in R with continuous 
paths. 

In preparing the tools we recall the notion of p-dimensional 
standard normal distribution as the measure 

N(0)  I P )  := N(0)  l ) @ P  

in Ad1 (RP), where IP denotes the p-dimensional unit matrix. 

the Fourier representation 
It is well-known that for any linear mapping T from Rq into R P  

holds whenever a E R P .  

from Rq into R P  satisfying TTt = C the measure 
For any p x p-matrix C over R, q 2 1 and any linear mapping T 

N ( 0 )  C )  := T ( N ( 0 ,  I q ) )  

in M1(RP) turns out to be the (pdimensional) normal distribu- 
tion with mean (vector) O and covariance (matrix) C. 

Remarks 3.2.1 

3.2.1.1 By the uniqueness of the Fourier transform (Theorem 2.1.4) 
the measure N(0 ,  C> is  uniquely determined by its covariance C .  
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3.2.1.2 The covariance C = TTt is  obviously symmetric and positive 
semidefinite. Moreover, given a symmetric and positive semidefinite 
p x p-matrix C over R there exists a p x p-matrix R over R such 
that C = RRt, and consequently 

or 

N(O, C)A(a) = exp ( - +a, a) )  

for  all a E R P .  

3.2.1.3 Let X = ( X I )  ...,X,)t be an RP-valued random variable on  
a probability space ( R , U , P )  with PX = N(0 ,C) .  Then  IlXl12 is P- 
integrable, and for  the expectation vector and covariance (matrix) of 
X we obtain 

E ( X )  := ( E ( X 1 ) )  "', E ( X p ) y  = 0 

and 
C ( X )  := (COV ( X i ,  Xj ) ) l<i , j<p = C 

respective 1 y . 

The following 

Properties 3.2.2 of the normal distribution will be used in the 
discussion below. 

3.2.2.1 With D(r1, ..., r p )  denoting the diagonal matrix containing 
r1, ..., rp E R as diagonal elements we have 

P 

N (0 ,  D ( a l ,  ..., a:)) = @ N(O,ap) 
i=l  

3.2.2.2 Let X I ,  ..., X p  denote independent R-valued random vari- 
ables on  (O)%, P) with Pxi = N(0,  a:) for all i = 1, ...,p. Then  for  
X = (XI, ..., X p ) t  one obtains 

Px = N(O)D(o;)  ...)c$) 
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3.2.2.3 Let X = ( X I ,  ...,Xp)t be a n  RP-valued random variable o n  
(il, U, P) with Px = N(0, C) .  T h e n  the real-valued random variables 
X I ,  ..., X p  are independent i f  and only if X I ,  ..., X p  are uncorrelated. 

3.2.2.4 For any linear mapping S f r o m  R P  into RQ 

S(N(0,  C ) )  = N(0,  SCSt)  

3.2.2.5 Let (Cn)n>O be a sequence of symmetric and positive semidef- 
inite p x p-matrices over R. T h e n  the following statements are equiv- 
alent: 

(ii) Cn -+ Co, and the sequence (N(O,Cn)),>l - is rw-relatively 
compact (in Ad1 ( R P )  ) . 

While the proof of the implication (iii) + (i) is an immediate 
consequence of the classical continuity theorem for measures on R P  

the implication ( i )  + (ii) makes use of the continuity theorem 2.1.9. 
Now let (0, U, P, (Bt)tE=) denote a Brownian motion in R with 

parameter set I = [0,1]. By ;Ft(B) we abbreviate the closed lin- 
ear subspace of L 2 ( 0 ,  U, P) generated by the family {Bt : t E I }  
(of Brownian variables). It can be shown that X ( B )  is a separable 
Hilbert space with scalar product defined by 

for all J ,q  E E(B).  

Theorem 3.2.3 There i s  a unique linear isometry S f o r m  L 2 ( I )  := 
= L 2 ( I ,  % ( I ) ,  XI) onto N ( B )  satisfying 
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for all t E I .  

Proof. At first let f be an elementary (or step) function on I of the 
form n 

j=1 

for a subdivision 0 = t o  < tl < ... < tn  = 1 of I and coefficients 
f l y  *-.,fn E R. 

Moreover, let 

Then f w S(f) is a linear mapping from the space I ( I )  of all 
elementary functions on I into the Hilbert space 'FI(B) such that 

Therefore S ( I ( I ) )  is dense in 'FI(B). On the other hand I ( I )  is dense 
in ~ ~ ( 1 ) .  

Now, for every f E I ( I )  we have that 

Picking f E I ( I )  of the form f = c;.-, fj l [ t j - , , t j [  we see that 
f = C;=, f:l[tj-l , t j  [, and consequently 

n n n  n 

n n 

= Cfj2(tj - tj-1) = J f ( q 2 d t ,  
j=1 I 

where for the latter equality independence and normal distribution 
of the increments of the given Brownian motion have been applied. 
Thus S is a linear isometry between the dense subspaces I ( I )  and 
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S ( I ( I ) )  of L2(1) and H ( B )  respectively, and hence extendable to a 
linear isometry s from ~ ~ ( 1 )  onto N ( B ) .  

Finally we note that the set { l p t ]  : t E I }  is total in L2(1) .  As a 
consequence S is unique. 

Definition 3.2.4 For every f E L2( I )  the unique element S(f) of 
L2(f2, a, P )  (constructed in Theorem 3.2.3) is called the stochastic 
integral of f with respect to the Brownian motion (0, a, P, (B&I) 
and is abbreviated b y  

or 

Properties 3.2.5 of the stochastic integral 

3.2.5.1 FOT f , g  E L 2 ( I )  we have 

E ( / f d B )  = O  

and 

In particular 

For the proof we note that the mapping 5 dP from L2(Q,  94, P) 
into R is continuous and identically zero on the dense subspace 
S ( 7 ( I ) )  of N ( B ) .  Therefore it vanishes on 'FI(B). Now let f , g  E 
L2( I ) .  Since S( f )  and S(g) are centered and since S is an isometry 
we obtain that 
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The remaining identity follows by choosing g := f .  

3.2.5.2 For any finite family { f ( i )  : i = 1, ..., k }  of functions in L 2 ( I )  
the R'" -valued random variable 

has a (k-dimensional) normal distribution with mean 0 and covari- 

Moreover, the real-valued random variables [ f ( l ) d B ,  ..., s f ("dB 
are independent if and only if the functions f ( ), ..., f (Ic) E L 2 ( I )  are 
pairwise orthogonal. 

The second statement follows from the first one with the help of 
Property 3.2.2.3. For the proof of the first statement we first take 
functions f ( l) ,  ..., f ('1 E I ( I )  of the form 

ance ((f ( 2 ) )  f (j)))I<Z,j<'". 

m 

j=1 

with fj ( 2 )  E R and 0 = t o  < tl < ... < t ,  = 1 (1 5 i 5 k ,  1 5 j 5 m). 

BY 

R((zj)l<j<m) := (2  pq) 
j=1 l s i s k  

for all ( ~ j ) l ~ j ~ ~  E R" a linear mapping R from R" into R'" is 
defined. From the properties of Brownian motion the distribution of 
the R"-valued random vaxiable X = (Bt j  -Btj-l)lsjsm on (0, 94, P) 
is N(0,  C) with C := D ( t 1  - t o ,  ..., tm -tm-l) (See Property 3.2.2.2). 
But now 

hence by Property 3.2.2.4 ( S ( f ( 2 ) ) ) 1 < i < k  - -  is normally distributed. 
Next we pick f ( i ) ,  ..., f(') E L2(1)  arbitrarily. There are sequences 

(ft'),>l - in I ( I )  such that limndm Ilft' - f ( i ) ( ( 2  = 0 whenever 
i = 1, ..., k .  An application of Theorem 3.2.3 yields 

(S( f ( i ) ) ) l<i</c = R 0 X ,  
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Therefore the sequence (S( f2)))+1 converges stochastically to- 
wards Scf(i)) for all i = 1, ..., k, -and consequently the sequence 
((S( fit’)), ..., S( fik))))nzl converges stochastically towards (S( f (l)), 

..., S(  f (‘1)). Employing Application 1.2.15 we arrive at 

From the above discussion together with Property 3.2.5.1 

where Cn := ((f?), f ~ ) ) ) l ~ i , j ~ k  (for all n 2 1). 
Let C := ( ( f c i ) ,  f(j)))lsi,j<,+. Then limn+m llfp) - f(2))12 = 

0 (1 5 i 5 k )  implies limn+m Cn = C. But now Property 3.2.2.5 
yields 

3 N(O,C), 
’(S(.f?’ 1) 1 <is k 

hence 
P(s(f(i) ) ) l < i < k  = N(0 ,C)  

which completes the proof. 

Theorem 3.2.6 (Fourier expansion of 
(fn)n>l  be an  orthonormal basis of L 2 ( I ) .  

Brownian motion). Let 
For every n E N let 

Then  ((n)n> 1 is  a sequence of independent, identically distributed 
real-valued random variables on (0, %, P) with Pen = N(0 , l )  for 
every n E N, and 

uniformly in t E I P-a.s.. 
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Proof. By Theorem 3.2.3 (cn)n>l is an orthonormal basis of 7i(B). 
Let 

t 
bn( t )  := ( l [ o , t ]  f n >  = fn(u>du 

for all t E I (n  E N). Then 

n>l 

in L2(1). Again employing Theorem 3.2.3 we arrive at 

in L2(R,U, P). Now by Property 3.2.5.2 Pt, = N(0,l) for all n E 
N, and the sequence (Cn)n>l is independent. Since L2-convergence 
implies stochastic convergence the equivalence theorem 3.1.6 yields 
that 

In order to show the required uniform convergence P-a.s. we look 
at the sequence (Xn)n>1 of C(1)-valued random variables 

on (0, a, P). Since PE, = N(0,  l), Px, is symmetric for all n E N, 
and the sequence (Xn)nz1  is clearly independent. 

Let Sn := ~ ~ = , X ~  for every N. Then our assertion reads as 
Sn - B, where B is the (a- B(C(1))-measurable) C(1)-valued P-a.s .  
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random variable w H (t  B t ( w ) )  on ( O , % , P ) .  By the Ito-Nishio 
theorem 3.1.10 (and since C(1)’ = M b ( I )  - M b ( I ) )  it suffices to show 
that 

( S n , p >  (B,P) 

for all p E M b ( I ) ,  and for this limit relation it suffices in turn to 
show that 

P-stoch 

n+m lim / ’ l ( s n ’ p )  - ( B , ~ ) I ~ P  = 0 

whenever p E M’(1). Now we apply F’ubini’s theorem in order to 
obtain 

for all p E M b ( I )  (n E N). But 

and 

k>l k l l  

for all n E N (t E I ) .  By the dominated convergence theorem this 
implies 
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for all p E M b ( I ) ,  hence the assertion. 

Remark 
defined by  

3.2.7 Employing the orthonormal basis ( fn)n>l  of L2 ( I )  

fn ( t> := J2 sin(nnt) 

for  which obviously 

holds (for all t E I ,  n 2 1). Theorem 3.2.6 yields that 

holds uniformly in t E I P-as. .  
In the remaining part of this section we shall establish the existence 

of Brownian motion in R with continuous paths. In fact, the process 
constructed in Remark 3.2.7 has continuous paths due to the 

uniform convergence of the series and the continuity of the functions 
f n ,  n 2 1. 

Lemma 3.2.8 For every n E Z+ and k = 1, ..., 2n let 

- 6 1 [ ( 2 I c - 1 ) 2 - n - 1 ,  (2Ic)2-n-1[ - 
Moreover, let f l  := l p l ]  and 

for all n E Z+, k = 1, ..., 2n. 

basis of L2 ( I ) .  
Then the so defined Haar system (fn)n>l - is an orthonormal 

Proof. From 
(hik))2 = zn 1 [ ( I c -  1)2  --n, Ic2--n [ 
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follows 11 fm112 = 1 for all m E N, and f m  fn  = 0 a.e. or f m  fn  = Cfmr\n 
a.e. for all rn,n E N with m # n, where c = c(rn,n) denotes an 
appropriate constant, implies ( f m ,  fn) = 0 for rn # n. Thus 
is an orthonormal system in L 2 ( I ) .  In order to see that (fn)"?l is 
also a basis of L2 ( I )  we pick f E L2 ( I )  with (f, fn) = 0 for all n E N 
and set F ( t )  := f ( s ) d s  for all t E I .  Clearly F E C(1). Moreover, 
by induction one shows that F(k2-") = 0 for all n E Z+ and all 
k = 0,1, ..., 2". Since F is continuous, we obtain 

0 = F ( t )  = J, f ( s ) d s  

for all t E I ,  hence that f = 0 a.e.. 

Lemma 3.2.9 For every t E I and m 2 1 let 

Then bm(t)  2 0 for all t E I ,  rn E N and 

1 
2 

b k ( t )  5 -2-5 
2n <k52n+l 

whenever t E I ,  n E Z+. 

Proof. Evidently bm(t) 2 0 for all t E I ,rn E N, and for t E 
[(j - 1)2+, j 2 7  we have that 

whenever 1 5 j 5 2". 
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Lemma 3.2.10 Let (<n)n/l  be a sequence of independent, identi- 
cally distributed real-valued random variables o n  a probability space 
(a,%, P) with PCn = N(0,l) f o r  all n E N. Moreover, let (Xn)n>l 
be the sequence of C(I)-valued random variables o n  (0, U, P) defined 
by 

Xn(w)  := bn( - ) tn (w)  

fo r  all w E R, where the sequence (bn)n>l is 
3.2.9. Finally, let Sn := Cy=, X i  fo r  all n E N. 

given as in Lemma 

Then  there exists a C(I)-valued random variable Z o n  (R, U, P) 
such that 

P-a.s. sn + 2 .  

Proof. At first we establish the inequalities 

valid for all u E RT (n E N). But then 

An application of the Borel-Cantelli Lemma implies that 

Therefore for P-almost every w E R there exists an n(w) E N such 
that I<m(W>I 5 -\/31nm for all m > 2n(W), and hence we obtain 
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whenever n 2 n ( w ) .  But now Lemma 3.2.8 yields 

for all t E I and P-almost all w E 0. Consequently the series 
b,(t)J,(w) converges uniformly in t E I for P-almost all 

w w E R,  and the proof is complete. 

Theorem 3.2.1 1 (Existence of Brownian motion with continuous 
paths) 

Let Z denote the C(I)-valued random variable o n  (R,%,P)  es- 
tablished as the P-a.s.  limit of the sequence (Sn)n>1 introduced in 
L e m m a  3.2.10. For every t E I we consider the real-valued random 
variable Zt defined o n  (R,U,P)  by 

whenever w E R. 

t inuous paths. 
T h e n  (R,%, P ,  ( Z t ) t E I )  i s  a Brownian motion o n  R having con- 

Proof. Since Z ( w )  E C ( I )  for all w E R, the process (R,U,P ,  
( 2 t ) t E I )  has continuous paths. 

Clearly, Zo(w)  = 0 for P-almost all w E R. It remains to show that 
the process (a, U, P, (Z,>t,,) admits stationary independent incre- 
ments Zt - 2, with N(0 ,  t - s )  as their distributions (s, t E I ,  s < t ) .  
Let t l ,  ..., t k  E I with tl < t 2  < ... < t k  be fixed for the sequel. For 
every n E N let Tn := (bj(t i))l<i<k,l<j<n and V n  := ( [ l , . * . , t n ) t .  
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By Property 3.2.2.2 
deduce from (Sn(t l ) ,  ..., Sn(t,))t = Tnqn that 

P,, = N(0,In)j and by Property 3.2.2.4 we 

We now apply Lemma 3.2.10 in order to obtain that 

On the other hand 

as follows easily from the equalities 

n 
lim (TnTh)ij = lim bm(ti)bm(tj)  

n-mo n+w 
m=l 

valid for all 1 5 i 5 k, 1 5 j 5 n. 

ducing the linear mapping R : R'" + Rk given by 
But then Property 3.2.2.5 yields Pptl , . . . , Z t k )  = N(0,  C). Intro- 

for all (21, ..., z k )  E Rk we see that RCRt = D(t1,tz - t l ,  ..., t k  - 
t k - l ) ,  and once again applying Property 3.2.2.4 we obtain that 

Now, Properties 3.2.2.3 and 3.2.2.1 provide the final arguments. 
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3.3 Symmetric L6vy measures and generalized Poisson measures 

In this section we shall extend the notion of Poisson measure by ad- 
mitting not necessarily bounded though at least a-finite exponents. 
Let M'(E) denote the set of all a-finite measures on B ( E ) .  

Definition 3.3.1 A measure X E M'(E) is  said to be a symmetric 
Le'vy measure if it has the following properties: 

(a)  X is symmetric in the sense that A(-B) = A(B) for  all B E 
W E ) .  

(c) There exists a measure .(A) E M b ( E )  such that 

(cos(z,a) - I)X(dz) 

for  all a E E'. 

By L,(E) we abbreviate the totality of symmetric Lkvy measures 
on  E .  

Remarks 3.3.2 

3.3.2.1 &om the uniqueness of the Fourier transform (Theorem 
2.1.4) follows that E ( X )  is uniquely determined by  part (c)  of its def- 
inition. 

3.3.2.2 E ( X )  is  a symmetric measure in M 1 ( E )  as one concludes 
f rom the facts that ZF) is  real-valued and G(X)(E) = E(X)(O) = 1. 

3.3.2.3 The correspondence X H E(A) between the sets L,(E) and 
{ E ( X )  : X E L,(E)} is one-to-one. 

This assertion follows with some more effort as Theorem 3.3.11. 
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We will also see later that at this stage 

3.3.2.4 there is  no need to assume that 

S(1 - cos(rc,y))X(dz) < 00 

or that E v ) ( a )  # 0 for all a E El. 

3.3.2.5 Let X be a symmetric measure in M b ( E )  satisfying part (b) of 
Definition 3.3.1. Then X E L,(E), and E ( X )  is the Poisson measure 
e(X) with exponent X (as defined in 2.4.8). 

This observation motivates the extension of Poisson measures to 
generalized Poisson measures to be introduced later. 

3.3.2.6 For X1,X2 E L ( E )  the sum X1 + A2 E L,(E), and 

In fact, for every a E E' 

hence by the uniqueness of the Fourier transform (Theorem 2.1.4) 
the assertion follows. 

We now turn our attention to the study of sequences in the set 
P ( E )  of Poisson measures on E.  

For X E M'(E) and S E RT we introduce the abbreviations 
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where ua := {z f : llzll I 6). Clearly, A l g  + XId = A. Moreover, let 

C(A) := ( 6  E RT : A(aU6) = 0). 

Evidently C(A)" is a countable set. 

Theorem 3.3.3 Let (A,),,1 be a sequence in M b ( E )  such that 
(e(An)),>l as relatively shafi compact. Then for  every 6 E RT the 
sequence-(A, ld),21 is rw -relatively compact. 

Proof. 1. For 6 > 0 we have that A,(s + A,la = A,, hence that 
e(A,I6) + e(A,). But then Property 2.2.16.5 yields that (e(An)6))n>l 
is relatively shift compact. As a consequence we may assume without 
loss of generality that An(&) = 0, hence that A,I6 = A, for all 
n E N. Moreover, by Theorem 2.2.25 (le(A,)12)n>l is q,,-relatively 
compact, and from Property 2.4.10.6 we obtain le(x,)l2 = e(A,+A;) 
whenever n E N. Therefore, in view of Theorem 2.2.22 we may 
assume without loss of generality that A, is symmetric for all n E N. 
2. We show that d := supnL1 IIA,II < 00. 

Suppose that d = 00. By an eventual choice of an appropriate 
subsequence we may assume without loss of generality that IIA, 11 2 n 
for all n E N and that 

(See part 1. of this proof). For every n E N we now consider the 
measure on := h A n  which is symmetric and satisfies no, 5 A, as 
well as on(&) = 0. Moreover, we have that e(a,), 4 e(A,) for all 
n E N. Applying Property 2.2.16.5 and Theorem 2.2.19 yields the 
rw-relative compactness of (e(o,)),>l. - Let u be an accumulation 
point of (e(o,)),>l. From 

for all n 2 m follows that vrn 4 p for all m E N and hence that 
(urn),>l is rw-relatively compact. We now infer from Lemma 2.2.1 
that u = EO and thus that 
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Since 0 4 a ( U i ) ,  U i  is an Eo-continuity set, and the desired contra- 
diction follows from the inequalities 

O = EO(U~) = lim e(a,)(Ui) 
n+m 

3. Finally, let E > 0. From part 1. of this proof 

1 
e 

we conclude that 
5 E for all n E N. 

- 

there exists a set K E K(E) such that e(A,)(KC) 
Now we apply part 2. of this proof in order to arrive at the estimate 

valid for all n E N. But then (A,),,, is a .r,-relatively compact 
sequence by Prohorov's theorem 1.3.7: 

Theorem 3.3.4 Let (A,),,1 be a sequence in M b ( E )  such that 
(e(A,)),>1 - as relatively shift compact. For every n E N let 

whenever a E V1. Then (f,),>l - is  relatively compact in C(V1). 

Proof. Replacing A, by A, + A; changes f, by the factor 2. There- 
fore we may assume without loss of generality that A, is symmetric 
and that (e(An)),>1 is .r,-relatively compact. This can be justified 
by referring to Property 2.4.10.6 and Theorem 2.2.25 respectively. 
Thus, with the help of Theorem 2.1.8, we obtain that (e(A,)"),>l - is 
relatively compact in C(Vl). But now we observe that 1 - cos t 2 $ 
for all t E [-1, 11. It follows that 

&(a) 5 -3 (cos(z,a) - 1)A,(dz) = -3Log e(x,)"(a) .I 
for all a E E'. Moreover, e(A,)"(a) > 0 for all n E N. Thus the 
relative compactness of (e(A,)"),>l - in C(V1) implies that 

inf e(A,)"(a) > O 
rill 
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for all a E V1. 
In fact, for some subsequence (Xnk)k21 of (Xn),21 we have that 

where f i(a) # 0 for all a E E'. 
But then sup,>1 Ifn(a)l < 00 for all a E V1. On the other hand we 

know that the set {fn : n E N} is equicontinuous in 0 (with respect 

This is easily deduced from Property 2.1.6.5 together with the fact 
to T(E' ,E)) .  

that e(A,)"(O) = 1 for all n E N. 
Finally, 

Ifn(a>% - f n ( b ) %  

for all a ,  b E V1 satisfying a - b E Vl 
In fact, for such a,  b E V1 

5 fn(a - b) 

(and all n E N). 

hence 

From the inequality just established we infer that {fn : n E N} 
is equicontinuous everywhere on Vl (with respect to T(E' ,E) ) .  The 
Arzelh-Ascoli theorem yields the assertion. 
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Theorem 3.3.5 Let (Xn)n21 be a sequence of measures in L,(E) n 
M b ( E )  such that Xn 1 X E L,(E). Then 

E(Xn) = e(Xn) % E ( x > .  

Proof. By Property 2.4.10.4 we have that E(Xn) 4 i?(Xn+,) for all 
n E N. Since An 5 A, the Radon-Nikodym theorem provides a mea- 
surable function f n  : E + I such that An = fn  * X (n E N). From 
An X we infer that f n  T 1~ A-a.e.. Now the monotone convergence 
theorem applies and we obtain that 

= /(l - cos(2, a))X(dz), 

hence that 
lim E(Xn>'(a> = E ( X ) " ( U )  

for all a E E'. But every measure .(An) is symmetric (n E N). Thus, 
n-mo 

by the Ito-Nishio theorem 3.1.10 the assertion follows. 

Properties 3.3.6 of symmetric L4vy measures 
Let X E L,(E). 

3.3.6.1 For every 6 E RT we have X(v,") < 00. 

In fact, X being a-finite there exists a sequence (Xn)n,, of sym- 
metric measures in M b ( E )  with An T A. But then Theorem 3.3.5 
implies 

and hence Theorem 3.3.3 that 

3 E(x>,  
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3.3.6.2 For every sequence (hn)n>l in R: with 6, 0 we have that 

For a proof we note that from Property 3.3.6.1 together with Re- 
mark 3.3.2.5 follows that A, := X I b ,  E L,(E) n M b ( E )  for every 
n E N. Evidently A, A, so that Theorem 3.3.5 yields the assertion. 

In order to see this let ( S , ) , ~ ~  be a sequence in R: with 6, 1 0 
and let A, := A(6, for all n E N. Then An E M b ( E )  for all n E N by 
Property 3.3.6.1 and 

by Property 3.3.6.2. But then by Theorem 3.3.4 there exists an a E 
Rt satisfying 

E(A,) 2 .(A) 

1, (x,a>2An(dx> 5 a 

for all a E Vl, n E N, and since A, T A we obtain that 

(appealing to the proof of Theorem 3.3.5). 

3.3.6.4 (See Remark 3.3.2.4) 

/(l - cos(z,u))A(d2) < 00 

and 
1 - cos t ( Z ) U )  

lim 1 t 2  A(dx) = 0 
t - b m  

3.3.6.33.3.6.3
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for all a E El. 
For the proof let, given a E El, 

whenever z E E.  From Properties 3.3.6.1 and 3.3.6.3 we infer that 
fa is A-integrable. Since 1 - COSS 5 $ for all s E R we have that 

1 - cos t ( z , a )  
t 2  

I f U b >  

for all x E E ,  t 2 1. The special choice t = 1 yields the first asser- 
tion. The remaining one is implied by the limit relation 

1 - cos t ( x , a )  
t 2  

= o  lim 
t 4 o o  

valid for all x E E with the help of Lebesgue's dominated convergence 
theorem. 

Theorem 3.3.7 (Characterization of symmetric L h y  measures). 

the following statements are equivalent: 
Let X be a symmetric measure in M " ( E )  with X((0)) = 0. Then  

(i) X E L,(E). 

(ii) For each 6 E RT we have that X(U,") < 00, and for  some (each) 
sequence (S,),?, in R t  with 6, .J 0 the sequence (e(Xl'n))n21 
is rw-relatively compact. 

(iii) There exists a sequence (X,)n,1 of symmetric measures an 
X such that the sequence (."(Xn))n,1 is rW- M b ( E )  with An 

relatively compact. 

Proof. (i) j (ii) follows directly from Properties 3.3.6.1 and 3.3.6.2. 
(ii) + (iii). The choice A, := Xl'n for all n E N yields the implica- 
tion. 
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(iii) + (i). The defining properties (a) and (b)  of Definition 3.3.1 of 
a symmetric L6vy measure are part of the assumptions. From Xn X 
we obtain that for all a f E' 

(See the proof of Theorem 3.3.5). Then Properties 3.3.6.1 and 3.3.6.4 
imply that 

for all a E E'. From the continuity theorem follows property (c) of 
the definition 3.3.1 and hence (i). 

Corollary 3.3.8 Suppose that A E L,(E). 

(a) Let o be a symmetric measure on E with 0 5 A. Then 0 E 

Ls(E), and 
E(o) 4 .(A). 

(ii) E ( X )  E I ( E ) .  

Moreover, E (  A) is (continuously) embeddable (E E M  ( E ) )  with 
(continuous) embedding convolution semigroup ( E (  A) t ) t>o)  - where 

E(A)t := E ( t X )  

for all t E R. 

Proof. (i). Obviously the measure o belongs to M a ( E )  and fulfills 
properties (a) and ( b )  of the Levy measure. For every 6 E RT we 
deduce from Property 3.3.6.1 that o(Ut) 5 A(v,") < 00. Now let 
(6n)nr l  be a sequence in R: with S, -1 0. Then for every n E N we 
obtain that 

E(o16") * E((A - a)16") = E(X ld ">  
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holds and that E(oI6n) is symmetric. (See Properties 2.4.10.2 and 
2.4.10.5 and observe that 0 5 X - o 5 A). From Property 3.3.6.2 
and Theorem 2.2.21 we infer that the sequence (e (o ldn ) )n> l  is rw- 
relatively compact. Thus Theorem 3.3.7 implies the assertion. 

(ii). In view of Remark 3.3.2.6 and ( i )  of this corollary we have 
tX E L,(E) and 

Z(sX) * Z ( t X )  = E((s + t)X) 

for all s, t  E R+. This shows that E ( X )  E I@) .  The remaining part 
of the statement follows from 

Log e ( x ) y a )  = / (COS(Z)U)  - l)X(dZ) 

valid for all a E E‘ and from the embedding theorem 2.3.9 (Here we 
rely on Properties 2.1.6.4, 3.3.6.4 and on Theorem 2.1.10 for detailed 
arguments.). 

Definition 3.3.9 For X E L,(E) the measure E ( X )  E M’(E) intro- 
duced in Definition 3.3.1 is  called the generalized Poisson mea- 
sure with exponent A. 

Clearly, 

Log E(A)^(a) = / ( C O S ( Z ) U )  - l)A(dz) 

for every a E E’. 

Lemma 3.3.10 Let X l , X 2  E L,(E) satisfying 

s,(1 - cos(z, a))X1(dz) - (1 - COS(Z) a))X2(dz) -s, 
for all B E B(E) and a E E’. Then  A 1  = X2. 

Proof. Remark 3.3.2.1 and property (b )  of the Lkvy measure to- 
gether with the fact that Ui T E \ (0) holds enable us to assume 
without loss of generality th i t  A 1  and A2 belong to M b ( E ) .  
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Now we define for every a E E' 

whenever x E E. Clearly ga E C ( E ) ,  0 5 ga 5 1, and ga(x) = 0 
if and only if ( x ,a )  = 0 (x E E) .  From Appendix B 5 (Banach, 
Hahn) we deduce the existence of a sequence (a j ) j l l  in E' with the 
property that ( x , a j )  = 0 for all j E N implies that x = 0. In fact, for 
every sequence (x&>l dense in E there exists a sequence (an)+l 
in E' satisfying llan 1 1  = 1 and (x, a,) = 11x,ll for all n E N. 

Now let I 

for all x E E.  Then h E C ( E ) ,  0 5 h 5 1, and h(z)  = 0 if and only 
if x = 0 (x E E ) .  By assumption 

for all B E % ( E ) ,  hence A@) = A 2 ( B )  for all B E % ( E )  with 
0 $ B. Property ( b )  of a L6vy measure leads to the assertion. 

Theorem 3.3.11 (Injectivity of the generalized Poisson mapping; 
see Remark 3.3.2.3). 

Let A 1 , X 2  E L,(E) with .(A,) = .(A,). Then A1 = A2. 

Proof. For each a E E' let 

fu(x) := 1 - cos(x,a) 

whenever x E E.  By assumption we have that 

= e ( X 2 ) A ( a )  
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hence after an application of Property 3.3.6.4 (of Lkvy measures) 
that /' f a d X l =  /' f a d ~ 2  

for all a E El. We note that 

(for 0, ,B E R) , hence that 

for all a ,b  E El. But then 

for all a ,  b E El. The uniqueness theorem 2.1.4 yields f b  - X1 = fb - X2 
for all b E E', and Lemma 3.3.10 completes the proof. 

Theorem 3.3.12 Let (Xn)n>l be a sequence in L,(E) such that the 
corresponding sequence ( E (  An)),> 1 of generalized Poisson measures 
is rw -relatively compact in M 1  (E) .  Then 

(i) for  every S E Rt the sequence (XnI6)n>1 - is rw-relatively compact 
an M ~ ( E ) ,  

(i i)  there exist a subsequence (Xnk)k/l of (Xn)n>l and a X E L,(E) 
such that 

XnkI6 % XI' 

for  all 6 E C(X), and 

(iii) the sequence ( fn)n>l  defined b y  
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for all a E V1, n E N, is relatively compact in C(V1). 

Proof. (i). From Corollary 3.3.8(i) we infer that E ( X , I 6 )  4 .(A,) 
for all n E N. Consequently, by Theorem 2.2.21 the sequence 
(Z(XnI6)),>l is .r,-relatively compact. Property 3.3.6.1 yields that 
Xn16 E Mb@) for all n E N. The desired assertion now follows from 
Theorem 3.3.3. 
(ii). The assumption together with part(i) of this proof supply us 
with a subsequence (Ank)k21 of (An)n21 satisfying 

and 

for all j E N (Here the usual diagonal procedure has been applied). 
The set C := njll C(X(j)) has a countable complement in RT. Let 
j ,m  E N and 6 E C with 6 > 3 and S > A. By Corollary 1.2.10 we 
obtain that 

Now let (Sj)j>l be a sequence in C with i$ 
j E N. We put 

3 A( j )  E M y E )  

X ( j ) ( 6  = X(m) )6 .  

A( B )  := sup( x(j) p ) ( B )  

0 and S j  > 3 for all 

j/l 

for all B E %(I?). Observing that A( j ) I6 j  = X ( j + l ) l b j  - < X(j+') lSj+l 
for all j E N we see that X is a symmetric measure in M a ( E )  with 
A((0)) = 0. Moreover, for given 6 E C(A) we choose j E N with 
6 j  < 6. Then S E C(X(j)), and from Corollary 1.2.10 we deduce that 

where XI6 E M b ( E ) .  Thus, it remains to show that X E L,(E). For 
this we first note that by Theorem 2.4.12(ii) we have that 

for all j E N. Next we employ Corollary 3.3.8(i) and Remark 3.3.2.6 
in order to obtain 
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valid for all i ,  j E N. Therefore Corollary 2.2.4 together with the 
fact that E(Xl'j)''(a> # 0 for all a E E' (Property 2.4.10.1) yields the 
existence of a measure vj E M 1 ( E )  such that 

for all j E N. Now Theorem 2.2.21 implies that the sequence 
(e(Xl ' j>) j>l is .r,-relatively compact, since the measures e(X1'j) 
are symmetric by Property 2.4.10.5. Finally, Theorem 3.3.7 yields 
the desired statement . 
(iii) is shown in analogy to the proof of Theorem 3.3.4. 

Theorem 3.3.13 (Construction of symmetric Livy measures). 

conditions: 
Let X be a symmetric measure in M a ( E )  satisfying the following 

Then X E L,(E). 

Proof. 1. Let X E M b ( E )  such that S IlxllX(dx) < 00. Then 

In order to see this we first establish the inequality 
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valid for all k E N. The proof runs by induction. While the case 
k = 1 is clear, we need only treat the step from k to k + 1. But this 
is easily done: 

Finally, 

P 

Here we note that 

2. From the assumptions on the symmetric measure X we now deduce 
that X E L,(E). We have X(U,") 5 s(l A Ilxll)X(dx) < 00 and X = 
XI1 +XI1. Without loss of generality we assume that X(U,") = 0. With 
An := X I 6  for all n E N we obtain that A 1  = 0 and X n  1' A. Moreover, 
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hence X E M " ( E )  and A, - X,-1 E M b ( E )  for all n 2 2. 

ables on a probability space (0, a, P) such that 
Let (Xn)n>a be a sequence of independent E-valued random vari- 

Then 
n 

But 

5 1 ~ ~ x ~ ~ ( A ,  - Xm-l)(dx) (by part 1. of this proof) 
P P 

- 
n 

Since Ju IlxllX(dx) < 00, Lebesgue's dominated convergence theo- 
rem yields 
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Now, the inequality 

valid for all 2 5 rn 5 n implies that 

lim sup P 
m400 n l m  

whatever E > 0. Therefore 

m 

dP 

where X is an E-valued random variable on (0, U, P), hence 

n 

It follows that 
e(Xn) 2 9 

and from Theorem 3.3.7 that X E Ls(E)  with Px = .(A). rn 

Discussion 3.3.14 of assumption (b) of Theorem 3.3.13. 
There exist measures X E Ls(E) with 

In fact, let I := [0,1], E := C ( I )  and (xn)n>l a sequence in 
C ( I )  defined by zn(0) = ~ ~ ( 2 - ~ )  = ~ n ( 2 - ( ~ - ' ) )  = xn(1) = 
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0, ~ & 2 - ~ )  = n-i and extended linearly in between these 
arguments. Then llxnll = n-i for all n E N. The measure 

is symmetric and satisfies X((0)) = 0. Moreover, 

and A(&) < 00 for all 6 E RZ. 

real-valued random variables on (0, U, P) with 
We now consider sequences (cn)n / l  and (<;),21 of independent 

for all n E N. Then the E-valued random variables Jnxn and tkxn 
are independent and have distributions 

In fact, if is a real-valued random variable on (R,U,P)  with 
P, = I@)(= e ( a q ) )  and y E E then 

since for all a E E' we have 
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Next we obtain that 

where the C(I)-valued random variables Yn := <nxn - <kxn are in- 
dependent (on ( n , % , P ) ) .  It follows that 

n n 

yj = * PYj = * e ( j - i  ( E X j  + Lj)) 
j = l  j=1 

where 6, := (n + 1)-$ for all n f N. But now 

hence 

Here we use the estimate II(a)({2,3, ...}) 5 a2 which is obviously 
obtained from 

for a E Rt. Now the Borel-Cantelli Lemma applies and yields 
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or 
P(lirninf[Ien - C61 5 I]) = 1. 

Therefore, for P-almost all w E Q there exists an n ( w )  E N such 
that I(n(w) - (k(w)l 5 1 whenever n 2 n ( w ) .  This implies that for 
n 2 m 2 n ( w )  

n+oo 

since [zj # 01 n [zk # 01 = 8 for j # k .  But then 

where Y is a C(1)-valued random variable on (0, P), hence 

Theorem 3.3.7 yields that X E L,(E) with e(A) = P y .  
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3.4 The L6vy-Khintchine decomposition 

The aim of the subsequent discussion is to establish the canonical 
decomposition of infinitely divisible probability measures on a sep- 
arable Banach space as convolutions of measures of Poisson type, 
Gauss measures and of Dirac measures. The first named measures 
will be defined via not necessarily symmetric Levy measures. For 
symmetric Levy measures the canonical decomposition can be de- 
rived from the material of the previous section. In the nonsymmetric 
case the proof depends on an additional technique: the centralization 
of generalized Poisson measures. 

For any measure X E M b ( E )  we consider the Bochner integral 
.(A) E E given by 

.(A) := - / x  X(dz) . 
u1 

Theorem 3.4.1 Let (Xn)n>l be a sequence in M b ( E )  such that the 
sequence (e( Xn))n>1 - is relatively shift compact. Then the sequence 
(.(An) * E,(X,))n>l is rw-relatively compact. 

Proof. Applying Theorem 3.3.3 it suffices to show that the sequence 
(e(Xnll) * E,(x,))~>~ is cr,-relatively compact. We therefore may as- 
sume without loss of generality that Xn(V,") = 0 for all n 2 1. From 
the inequalities 

valid for all a E V1 we deduce that the sequence ((e(An)*Ez(X,))A)n>i 
is equicontinuous in C( V1). Theorem 3.3.4 together with Theorem 
2.2.12 yield the assertion. 
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Definition 3.4.2 For any (bounded) measure X E M b ( E )  the mea- 
sure 

e s ( 4  := e(X) * &X(X) 

is  called the exponential of A .  
Introducing the kernel K by  

for  all x E E,a  E E' we observe that 

whenever a E E'. 

I n  this case x(X) = 0. 
Clearly, es(X) E I ( E )  and e,(X) = e(X)  provided X is symmetric. 

Comparing the Fourier transform of the exponential es(X) of X 
with that of the Poisson measure e(X) with exponent X the desired 
generalization to nonsymmetric measures X relies on a systematic 
replacement of the kernel ( x ,  a )  cos(z, a )  - 1 by the kernel K .  

Theorem 3.4.3 Let (Xn)n>, be a r,-relatively compact sequence in 
M b ( E ) .  Then  for any 6 > 0 the sequence ( X n ) n > l  defined by  

for  all n E N is relatively compact in E .  

Proof. From Prohorov's theorem 1.3.7 we infer that for E > 0 there 
exists a compact, convex and balanced set K c E such that 

Xn(Kc) < 
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for all n E N. But this implies that 

for all n E N. Thus it remains to show that the sequence ( y n ) ~ z l  
defined by 

P 

for all n E N admits a finite &-net. In fact, if this statement has been 
established, the sequence (xn)n>1 admits a finite 2 ~ - n e t ,  and this 
being true for every E > 0 yieldsthe assertion. 

In order to finish the proof we just consider an a E E' such that 
l(x, a)l 1 for all x E K .  We obtain that 

hence by an application of the bipolar theorem that y n  E dK for all 
n E N. But this implies that (y&>l is relatively compact. 

Corollary 3.4.4 Let (A,),,1 be a sequence in M b ( E )  such that 

Then for every S E C(A) we have 

x, := / x  An(dx) 3 / x  A(dx) 

Proof. F'rom the theorem we know that ( ~ , ) ~ > l  being relatively 
compact admits a subsequence (x,/) such that 
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for y E E whenever a E E'. On the other hand Theorem 1.2.9 implies 
that 

(xnoa)  4 ( x ) a )  X(dx) 
us s 

for all a E E'. Since the limits of ((Xnl) a)) coincide for all subse- 
quences of (xn)n>l,  the assertion has been proved. 

Facts 3.4.5 of exponentials of bounded measures 

3.4.5.1 For (An),>, in M b ( E )  the sequence (es(Xn))n>l is relatively 
shift compact if and only if it is r,-relatively compact, and both prop- 
erties are equivalent to the relative shift compactness of the sequence 
(e(Xn))n>1- 

This fact follows directly from Theorem 3.4.1. 

3.4.5.2 For (Xn)n>1 in M b ( E )  with Xn 3 
have 

X and 1 E C(X), we 

es(Xn) 3 e s ( ~ )  - 
This statement is a restricted version of the 7,-continuity of the 

mapping X I+ e,(X) from M b ( E )  into M'(G) the restriction being 
crucial. 

As for the proof of Fact 3.4.5.2 we just observe that 

where 

for all n 2 1, and apply Theorem 2.4.12(ii) together with Corollary 
3.4.4. 

Theorem 3.4.6 For any sequence (Xn)n?l an M b ( E )  with An 3 X 
the following statements are equivalent: 

(i) es(Xn) 3 (in M 1 ( E ) ) .  
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(ii) x(Xn) - (in E )  (as  n 00). 

Moreover, if either of these statements is available, we have that 

where 
x = lim .(An) - .(A) 

n-oo 

Clearly, if 1 E C(X) then x = 0. 

Proof. For every n 2 1 we have that 

Now we apply Theorem 2.4.12(ii) together with Corollary 2.2.4 in 
order to obtain the equivalence (i) (ii). As to the remaining 
statements of the theorem we suppose that 

for some p E All@). But then lim .(A,) exists, and 
n-+oo 

The double limit representation of x = lim .(An) - .(A) follows 
n--tm from Corollary 3.4.4. 
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Definition 3.4.7 A measure X E M"(E) is called a Le'vy measure 
if X + A- is a symmetric Le'vy measure (in the sense of Definition 
3.3.1). 

The totality of Le'vy measures will be abbreviated by  L(E) .  

The following 
Properties 3.4.8 of a Le'vy measure X are proved similarly to those 
for a symmetric one (See 3.3.6) 

3.4.8.1 X((0)) = 0. 

3.4.8.2 For each S > 0 we have that X(V,C) < 00. 

3.4.8.3 For (6,),>1 in R: the sequence (e(X,16"))n>l - is relatively 
shij? compact. 

3.4.8.4 sup ~u,(z ,u)2X(dz)  : u E Vl} < 00. { 
3.4.8.5 For (6,),~1 in RT with 6, -1 0 the sequence (e(XI6")),>1 - is 
rw -relatively compact. 

3.4.8.6 If a E M"(E) satisfies a 5 A, then a is also a Le'vy measure. 

The only properties deserving additional arguments are 3.4.8.3 
and 3.4.8.5. For 3.4.8.3 we note that by Theorem 3.3.7 the sequence 
(e(A + ~-)1~")),>1 - is .r,-relatively compact. But since 

for all n 2 1, the sequence (e(Al'n)),>l is relatively shift compact. 
Property 3.4.8.5 is a direct consequence of Fact 3.4.5.1. 

Theorem 3.3.7 can be extended to nonsymmetric L6vy measures. 

Theorem 3.4.9 (Characterization of Lkvy measures) 

For any X E M'(E) satisfying X((0)) = 0 the following statements 
are equivalent: 
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(i) X E L(E) .  
(ii) ( a )  For each a E El 

and 
( b )  there exists a measure &(A) E M ' ( E )  such that 

f o r  all a E El. 

(e ,  (An)),> - 1 is rw -relatively compact. 
(iii) There exists a sequence (Xn)n>l in M b ( E )  with An 

(iw) For each 6 > 0 

X such that 

( a )  X(u,") < 00, and 
(b)  f o r  some (each) sequence (6n)n>l with 5n 1 0 the sequence 

(eS(XI6n )>n>l - is rw-relativeZy compact. 

Proof. As the implication (i) r=$ (iw) follows with the help of The- 
orem 3.3.3, (iw) 3 (iii) is trivial, and (iii) + (ii) is deduced from 
Properties 3.3.6 (as in the proof of Theorem 3.3.7) by adapting the 
arguments to the measures eS(X) and the kernel K ;  it remains to show 
implication (ii) 3 (i). For completeness we prove the full equivalence 

(2) + (22). Let X E L ( E ) .  From Properties 3.4.8.2 and 3.4.8.4 we 
conclude that 

(2) * (22). 

for all a E El, since IK(x, a )  I 5 $ (x, a) 
llxll 
and putting An := An := XI6, for all n 2 1 we obtain that 

for all x E E satisfying 
1. Moreover, choosing a sequence (6n)nZl  in R: with 6, 1 0 
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for each a E E'. Now Property 3.4.8.5 can be employed in order to 
establish the .r,-convergence of the sequence (e,(X,)),>l - towards a 
measure Es (A) E M 1  ( E )  such that 

for all a E E'. 
(ii) 3 (i). Let X E M " ( E )  with X((0)) = 0 satisfy the conditions (a)  
and (b)  of (ii). Along with X also A-  satisfies (ii), hence the function 

a H exp (/(cos(z,a) - 1)(X + X - ) ( d z ) )  

on E' is the Fourier transform of the measure &(A) * E , ( X - )  E 
rn M 1  ( E ) .  This proves (2). 

Definition 3.4.10 The measure E s ( X )  E M ' ( E )  introduced in (ii) 
of Theorem 3.4.9 is called the generalized exponential of the 
Le'vy measure A. 

Clearly, E s  (A) = E (  A) whenever X E L, ( E ) .  

Properties 3.4.11 of the generalized exponential mapping 

3.4.11.1 The mapping Es f rom L ( E )  into M ' ( E )  is an  involutive 
semigroup homomorphism, a. e. 

whenever X 1 , A 2  E L(E) .  

(b)  L(E)-  C L(E) ,  and 

q x - )  = e&)- 
whenever X E L(E) .  
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3.4.11.2 Es(L(E)) c E M ( E ) ,  i.e. for  every X E L(E)  the generazzzed 
exponential Es (A) of X is (continuously) embeddable with (continuous) 
embedding semigroup (Es (X) t ) t21  given by 

E s ( X ) t  := E S ( t X )  

for all t E R. 

3.4.11.3 For any X 1 , X 2  E L(E)  with A1 5 Xz we have 

3.4.11.4 Let (Xn)nL1 be a sequence in M b ( E )  with An f A. Then 

3.4.11.5 For any sequence (An),>, inL(E)  the sequence (Es (An) )n>l  - 
is rw-relatively compact providedit is relatively shift compact. 

3.4.11.6 For any sequence (Xn)n>1 in L(E)  such that (Es(Xn))n>l  - 
is relatively shift compact the sequence (XnI6)n>l - is rw-relatively 
compact whenever S > 0. 

While Properties 3.4.11.1 to 3.4.11.4 are obvious (in particular 
with respect to their analogs in the symmetric case), we need only 
note that Property 3.4.11.6 follows from Theorem 3.3.3 together with 
Property 2.2.16.5 and that Property 3.4.11.5 is a consequence of 
Theorem 3.3.4 in whose proof the boundedness of the L6vy measures 
has not been used. 

After all these preparations we are ready to approach the L6vy- 
Khintchine decomposition. We start with the uniqueness of the de- 
composition whose proof relies on a modification of Lemma 3.3.10 
and Theorem 3.3.11. 

Given X E L(E)  and a E E' we introduce the measure A" by 
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for all B E B(E). From Properties 3.4.8.2 and 3.4.8.4 we infer that 
A" E Mb(E). 

Lemma 3.4.12 Let XI, A2 E L(E)  satisfying A? = A! for all a E E'. 
Then X1 = X2. 

Proof. The assumption yields the equality 

for each S > 0 which, once 

has been shown, implies that X I  = X2. It suffices therefore to perform 
the proof of the assertion for X I ,  A2 E L(E)nMb(E) .  But in this case 
the proof of Lemma 3.3.10 takes care of the remaining reasoning. H 

Theorem 3.4.13 The generalized exponential mapping Es : L(E)  ---$ 

M1(E)  is injective. Moreover, let E L(E)  and xo E E such 
that 

Es (A,) = Et? (A,) * Ex0 * 

Then X I  = A2 and xo = 0. 

Proof. We modify the arguments applied in the proof of Theorem 
3.3.11 in the obvious manner. From the assumption we have that 

for all a E E'. On the other hand 

whenever z E E ,  a, b E E'. Consequently 
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hence h 

X!(a) - Xi(.) = irk(a, b) 

with k ( a ,  b) E Z for a ,  b E E’. But since k(u,  b) turns out to be 0 for 
all b E E’ we obtain A! = X i  for all b E E‘, which by Lemma 3.4.12 
implies that A 1  = X2 and clearly 11;o = 0. 

Lemma 3.4.14 Let X E L(E) .  Then 

whenever a E E’. 

Proof. For each z E U,C we have IK(z, a)l 5 2, hence 

X(dz) 5 2 lim t2X(U,C) = 0 (a  E E’) . 
t-0 

As a consequence of this it suffices to study the integral 

for a E E’. If x E U1 we have 

and therefore 

for all z E E,a E E’ and t > 0. On the other hand 

a 
t-0 t lim t 2K(z ,  -) = o 

for all z E E and a E E’. Property 3.4.8.4 enables us to apply the 
dominated convergence theorem, and the assertion has been proved. 
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Theorem 3.4.15 (Uniqueness of the canonical decomposition) 
Let el,e;! E G ( E ) ,  A1J2 E L ( E )  and ~ 1 ~ x 2  E E such that 

Proof. By Theorem 2.4.7 there exists for j = 1,2 a mapping q j  : 
E' + R+ with the property 

whenever t E R such that & ( a )  = exp(-qj(a)) for all a E E'. From 
the assumption we deduce the equality 

and by taking logarithms the equality 

= -q,(a) + K ( z ,  a)Xz(dx) + i(x2, a )  s 
valid for all a E E'. For given t > 0 we now replace a E E' by 
and multiply both sides of the above equality by t2. Taking limits for 
t --+ 0 the limit relationship of Lemma 3.4.14 implies q l ( a )  = q2(a), 
hence 61 ( a )  = &(a) for all a E E' and therefore by the uniqueness of 
the Fourier transform that el = e2. Finally Theorem 3.4.13 implies 
that A1 = A2 and x1 = 22. H 

Remark 3.4.16 If &(A) I E~~ E G(E)  for some X E L ( E )  and 
xo E E ,  then X = 0 and 20 = 0. 

Theorem 3.4.17 Let (Xn)n>l be a sequence in L(E)  with 
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Moreover, let for every 6 E R;f there exists an  n(6) E N such that 
X,(V,") = O fo r  all n 2 n(6). Then 

(2) P E W). 
(ii) j.i(u) = exp(-i J(x, a)2Xn(dz))  

whenever a E El. 

Proof. From Theorem 3.3.12 (zii) (obviously valid also for nonsym- 
metric L6vy measures) we infer that 

a . : = ~ u p { ~ ( z , a ) ~ X , ( d z ) : a ~ V ~ , n ~ N  
Ul 

For all a E E' and n 2 n(6) we therefore obtain that 

This shows that #- 

whenever a E El. Along with K we now consider the kernel M 
defined by 

1 

for all z E E,a  E El. It follows from the Taylor expansion of the 
exponential function that (1) implies 

for all a E E'. Now we employ Theorems 2.3.7, 2.3.3 and Corollary 
2.1.16 in order to obtain that 
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whenever a E E'. The mapping q : E' + R defined by 

for all a E E' obviously has the property that 

valid for all a E El) t E R. Consequently by Theorem 2.4.7 p E G(E).  

Theorem 3.4.18 Let (Xn)n l l  be a sequence in L(E)  satisfying 

Then there exist measures X E L(E) ,  Q E G(E)  and an element 
x E E such that 

p = &(A) * Q *  EZ . 
In particular, 

(i) for every 6 E C(X) we have that 

(ii) 

holds for all a E E', and 
(iii) x admits a representation 

u1 nu; u1 nu; 
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for 6 E C(A) n ]0,1[ which also equals 

As a supplement we note that x = 0 i f  1 E C(A). 

Proof. 1. (Construction of A). From the assumption we conclude 
that the sequence ( E ,  (A,)),>, - is .r,-relatively compact, hence by 
Property 3.4.11.6 also (Xnlb),>1 is .r,-relatively compact (in IMb(E)). 
Next we show that there exist; subsequence (X,116> of (X,lg),21 and 
a measure X E M‘(E) satisfying X((0)) = 0 and 

for each 6 E C(X). But then Theorem 3.4.3 implies that (x(Anld))n>l 
whenever 6 E C(X) n ]0,1[, and we may assume without loss %f 
generality that 

for some xg E E. From Theorem 3.4.6 we now deduce that 

x(X,’lg) - Z 6  

where 

xg : = xg - x(X16) 

u1 nu; u1 nu; 

In view of Corollary 3.4.4 x g  is independent of 6 and hence can be 
named x .  We obtain 

e,(X,116) 3 eS(Xl6) * E, 

whenever 6 E C(X) n]0,1[. Since 
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there exists a measure ex E M 1 ( E )  satisfying 

and from Corollary 2.2.4 we infer that 

as long as S E C(X) n ]0,1[. For any sequence (Sj)j>l in C(X) with 
6j L O  the sequence (es(XlSj))j21 is relatively shift compact by The- 
orem 2.2.7, hence rw-relatively compact by Property 3.4.11.5, and 
by the characterization theorem 3.4.9 we obtain that X E L(E)  and 
that 

e,(Xl'j) 3 E,(x) 

as j --+ 00. Applying Corollary 2.2.4 once more we achieve the rw- 
convergence of the sequence towards a measure e E M ' ( E )  
and the representation 

p = &(A) * e * E, . 

In fact, since 
es(Xnj 1") 7.., e 

as j + 00 for a suitable subsequence (Anj  I 6 j )  we deduce from The- 
orem 3.4.17 that e E G(E)  and hence the desired representation of 
P. 

(i). For an arbitrarily chosen S E C(X) there exists a subsequence 
Now we show the remaining statements of the theorem. 

(An&l of (X,),>l such that 

as k + 00. From Property 3.4.11.6 we infer that (X,16)n21 is rw- 
relatively compact. Now we proceed in analogy to part 1 of this 
proof with (e,(X,,))k21 in place of (e,(X,>),>l - and achieve the rep- 
resent at ion 

p = e",(N) * ($1 * €,(1) . 
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But then the uniqueness theorem 3.4.15 implies that A(1) = A,  and 
again considering subsequences we obtain that As = XI' as the unique 
accumulation point of the .r,-relatively compact sequence ( A n  ('),>I. 
(222). The proof runs in analogy to that of (2). We fix S E C(X) n ] O , i [ ,  
observe that by Theorem 3.4.3 the sequence (x(Xn1') - x(X'))n>l is 
relatively compact in E ,  and passing to suitable subsequences to- 
gether with an application of the uniqueness theorem 3.4.15 yields 

p = Z,(x> * @ * E r  

with 
x := lim x(Xnl') - ~ ( X I ' )  

n-+m 

as asserted. 
(zi). For each 6 E C(A) n ]0,1[ we have the limit relationships 

and 
x(XnI6> - x +  XI">. 

Hence we apply Theorem 3.4.6 and obtain 

consequently with the help of Corollary 2.2.4 

where es has been introduced in part 1. of this proof. Then Corollary 
2.1.16 yields 

E E'. Given 6 > 0 and 
of (An),>, - such that 

a E E' we choose a subsequence 
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Clearly, 

is a well-defined element of C .  But then 

Moreover, employing Theorem 3.3.4 a Taylor expansion argument 
yields the estimate 

with a constant c(a) 2 0, for all sufficiently small 6 > 0. Taking a 
sequence ( S j ) ~ l  in C(X) with Sj > 0 and Sj J, 0 we obtain 

Ir(6, 41 I c ( 4 6  

Log c(u) = lim Log ;aj (a )  
3 4 0 0  

But obviously the function 

is increasing, thus (6 j ) j l l  can be chosen in R arbitrarily, and the 
first equality in (ii) has been established. The second one is proved 
similarly. 

In the special case of bounded L6vy measures the preceding theo- 
rem can be improved slightly. 

Theorem 3.4.19 Let (Xn)n>l be a sequence in L (E)  f l M b ( E )  such 
that 

.(.An) 3 p E M ~ ( E ) .  
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Then there exist uniquely X E L(E) ,  e E G(E)  and xo E E satisfying 

p =  &(A) * e  * E z o .  

Moreover, X and e admit the representations given in Theorem 
3.4.18, and 

r 

Proof. Since 
es(Xn) *€-z(An) 3 P ,  

the sequences (e ,  and (.(An)) are .r,-relatively compact and 
relatively compact respectively. Indeed, one just applies Theorem 
2.2.3 and Fact 3.4.5.1. Let ( A n t )  be a subsequence of (A,) such that 

Then Theorem 3.4.6 implies that 

and one obtains the equality p = v * E - ~ ~ .  On the other hand we 
infer from Theorem 3.4.18 that 

where X E L(E)  with 

for 6 E C(X) and 

for 6 E C(X) n ]0,1[. By Theorem 3.3.3 the sequence (XnI6)n>l is rw- 
relatively compact, thus by the uniqueness theorem 3.4.15 we have 
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as n + 00 ((2) of Theorem 3.4.18). 

Moreover, the sequence (.(An I6)),>l is relatively compact by The- 
orem 3.4.3, hence the sequence (z(Xi16) - z(X,>),,, has the same 
property. Again applying the uniqueness theorem 3.4.15 we obtain 

whenever 6 E C(X) n ]0,1[. An application of Corollary 3.4.4 pro- 
vides us with the limit representation of zo ((iii) of Theorem 3.4.18). 

Finally we prove the representation of - Log 6 ((ii) of Theo- 
rem 3.4.18). Let 6 E C(X) n ]0,1[. By assumption 

But Theorem 2.4.12(ii) implies that 

thus 

(by Corollary 2.2.4). From 

we conclude that 

hence that 

and
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Now Theorems 3.4.18 and 3.4.15 applied to (es(Xn16))n>l instead of 
(es(An))n>l - yield the equality 

- 

hence the assertion. 

Theorem 3.4.20 (Le'vy-Khintchine decomposition of infinitely di- 
visible measures) 

Let p E I ( E )  with the sequence ( p l ) n > l  of its n-th roots. Then  
there exist measures X E L ( E ) ,  ,g E G(E)  and an  element xo of E 
such that 

n -  

p = &(A) * @ * E,, . 
Moreover, A,@ and xo are uniquely determined and obtained as 

follows: 

for  all 6 E C(X). 

for  all a E E'. 
(iia) 

Proof. From the uniqueness of the roots p~ of p (Theorem 2.3.5) 
we infer that for every n E N the measure 

belongs to L(E) .  But Property 2.4.10.2 tells us that 

(ii)

(i)
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for all n E N, and Theorem 2.4.11 implies that 

and 

U6 ur5 
valid for all a E E',S E R t  (n E N) Theorem 3.4.19 implies the 
assert ion. 

Remark 3.4.21 In short Theorem 3.4.20 says that any ,u E I ( E )  
admits a Ldvy-Khintchine representation of the form 

valid for all a E E', where XO E E ,  R is a symmetric linear mapping 
E' + E and X a L h y  measure. 

One observes that p is symmetric if and only if X is symmetric, 
and in this case zo = 0. 
On the other hand, if X satisfies the condition 

then the kernel 

(formerly abbreviated by X) can be replaced by the classical more 
familiar one 

+I.> - 1 - i (x, 4 
1 + lI4l2 ' (x ,a> - e 

In view of
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In this case the measure u E I ( E )  given by 

for all a E E‘ is a translate of E,(A). 



Harmonic Analysis of Convolution Semigroups 

4.1 Convolution of Radon measures 

We stat  with an adaptation of the concept of measure given in 
Chapter 1 to locally compact spaces E. Complex Borel measures 
p on E me introduced as complex-valued a-additive set functions p 
on the Borel-a-algebra B(E) of E having the property that p(B) 
is finite for each relatively compact subset B of E.  The totality of 
complex Borel measures will be abbreviated by Mo(E).  Notice that 
measures in Mo,+(G) may take on the value 00. For every p E Mo(E) 
one introduces the total variation lpl of p by 

whenever B E B(E). It is shown that lpl E Mo(E) and, of course, 
1p1 2 0. p E Mo(E) is said to be regular if for every B E B(E) 

( K )  : K E K(E), K c B }  
(0) : 0 E 8 ( E ) )  0 3 B}.  

161 

4
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The symbol M ( E )  will serve as a short form for the set of all regular 
complex Borel measures in E. Finally, for p E Mo(E) we set 

llPl.11 := IPIP) 

and recognize that the set 

of all finite regular (complex Borel) measures in E forms a normed 
vector space over C ,  with ( p )  v) I+ p + v and p I+ a p  as vector space 
operations and 1 1  - 1 1  as the underlying norm. The following sequence 
of implications 

M 1 ( E )  c M!(E) c M&(E)  c M&(E)  := M b ( E )  

starting with the set 

M ' ( E )  := { p  E @ ( E )  : 11pll = 1) 

of probability measures speaks for itself. As for the function spaces 
applied in the sequel we have the sequence of implications of vector 
spaces 

C"(E) c CO(E)  c Cb(E)  c C ( E ) )  

where the corresponding symbols stand for the complex continu- 
ous functions on E which have compact support, vanish at infinity, 
are bounded and just continuous respectively. While C ( E )  carries 
the topology r,, of compact convergence and C"(E) the canonical 
inductive limit topology, Co(E)  and Cb(E) are furnished with the 
topology of uniform convergence. We note that C"(E)- = Co(E).  
For any vector space B over C the symbols Lb(B)  or L+(B) will 
denote the sets of bounded or positive linear functionals on B re- 
spectively. 

In the above described extended set-up of measure theory the Riesz 
representation theorem takes on a more general form valid beyond 
the metric case. 
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Theorem 4.1.1 There exists an isometric isomorphism 

from M b ( E )  onto Co(E)* := Lb(Co(E)) given by 

for all f E C'(E). 

M b ( E )  satisfying L = L,, and 
I n  fact, to every L E Lb(Co(E)) there corresponds a unique p E 

I n  particular, ( M b ( E ) ,  11 - 11) is a Banach space over C .  
I t  should be noted that a similar correspondence is  available for  

the sets L+(CC(E)) and M+(E) instead of Lb(Co(E))  and M b ( E )  
respectively. 

This correspondence justifies Bourbaki's introduction of measures 
on locally compact spaces E as continuous linear functionals on 
C"(E). In other words, M ( E )  will be interpreted as the topological 
dual CC(E)' of CC(E) ,  and M ( E )  will appear as the set of Radon 
measures on E.  

4.1.2 For any u E Mo,+(E) and p E]O,OO[ one introduces the 
Lebesgue space LP ( E ,  v) of p-times v-integrable complex-valued 
functions on E and notes that LP(E, u)  is a Banach space provided 
p 2 1, a Hilbert space for p = 2, and that 

L y E ,  u)  = C"(E)- 

if u E M+(E) ,  i.e. if v is regular. Here the closure of C C ( E )  is taken 
in the p-norm topology of Lp(E, u) .  

For p E M b ( E )  and v E Mo,+(E) the Radon-Nikodym equivalence 
is available: p is v-(absolutely) continuous if and only if there exists 
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a function f E L1(E,  u)  such that p = f . u. In particular, L1 ( E ,  u)  
is isometrically embedded into M b ( E ) ,  i.e. 

for every p E M b ( E )  of the form p := f - u with f E L1(E,  u). 

4.1.3 On M ( E )  the vague topology rw is introduced as the topol- 
ogy a(CC(E)' ,  Cc (E) )  for the dual pair (C"(E)',  C"(E)) arising from 
the normed vector space C c ( E ) .  On M b ( E )  the vague topology can 
be compared with the weak topology considered as the topology 
a(Cb(E)', Cb(E) )  for the dual pair arising from Cb(E).  In fact, rw is 
finer than rv . 

Proposition For any net ( p & ~  in M t ( E )  and any measure p E 
M t  ( E )  the following statements are equivalent: 

(2) rw - lim, pa = p. 

Proof. It suffices to show the implication (ii) + (i). Let (ii) be 
satisfied for a net ( P , ) ~ ~ A  and a measure p in M!(E).  We take a 
function f E Cb(E)  and fix E > 0. Since p is regular, there exists a set 
K E K ( E )  such that p ( K C )  < E. Now choose a function g E C"(E) 
satisfying 0 5 h 5 1 and h(z)  = 1 for all x E K .  By assumption we 

lim (1 -g)dp, = /(1 -g)dp 
have 

I p(K") < E 

S (Y 

and 

Consequently, there exists an a0 E A such that for all a E A with 
a 2 a0 the inequalities 
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and 1 / f g d P a  - J f g d P I  < & 

hold. But this implies for all a E A with a 2 a0 that 

hence that 
rw - lim pa = b. 

a 

It follows from the Proposition that on M 1 ( E )  the topologies rw 
and rv coincide. 

Further topological properties of concern the rv-metrizability of 
M+(E)  which holds if and only if E admits a countable basis of its 
topology, and the .r,-compactness of M 1 ( E )  which is equivalent to 
the compactness of E. 

From now on let E := G be a locally compact Abelian group. For 
every a E G the group translation x I-+ x + a can be extended to 
functions f on G by 

for all x E G and to measures p on G by 

for all f E CC(G). 

Definition 4.1.4 A measure p E M+(G) is called a Haar measure 
on  G if 1-1 # 0 and if 1-1 is translation invariant in the sense that 
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for  all f E C"(G) and a E G. 

Theorem 4.1.5 O n  any locally compact Abelian group G there exists 
a Haar measure. 

Proof. 1. Producing the crucial functional. 
In the following the space C"(G) is assumed to contain only functions 
# 0. For f, cp E CT(G) we define 

f n  n 

x c j  : f 5 x c j c p Z j  for ~ 1 ,  ..., cn E R+, 
j=l j=1 

and derive the following properties 

(1) (f : 'p) = (TJ : cp) for all y E G. 

(2) (fl + f 2  : cp) I (fl : cp) + (f2 : cp).  

(3) (cf : cp) = c ( f  : cp) for any c E R:. 

(5) (f : 9) 2 H. 

In these statements f, fl, fi and cp are functions in C$(G). 
In order to justify the above assertions it suffices to note that since 

the compact support of f can be covered by a finite number N of 
translates of the set 
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and hence (f : 'p) is well-defined. While properties (1) to ( 5 )  are easily 
verified, property (6) follows from the additional observation that for 

and m 

k = l  

with the obvious meaning of the summands involved, 

j=l k=l 

holds. 
Now, we fix fo E C$ (G) and define 

whenever f, cp E C:(G). From properties (1) to (4) we deduce that 
Icp is invariant, subadditive, homogeneous, and increasing. Moreover, 
by property (6) we obtain that 

2. A preparative inequality. 
We show that given fl, f2 E C$(G) and E > 0 there exists a V E g(0)  
such that 

~ p ( f 1 )  + Ip(f2) - < I cp (f l + f 2 ) + E  

whenever supp (cp)  c V. 

and let 6 > 0. Moreover, let h := fl + f2 + Sg and for 1 = 1,2 
In fact, let g E C:(G) such that g(z) = 1 for all z E supp (fl +f2), 
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with the convention that hi = 0 whenever fi = 0. Then hi E C;(G), 
hence there exists a V E D(0) such that 

for z - y E V(i = 1,2).  Now we take cp E C;(G) with supp (cp)  C V. 
If 

with the summands as described above, then 

j=1 
n 

j=l 

since Ihi(x) - hi(xj)\ < 6 whenever x - x j E SUPP (v). But we have 
hl + h2 5 1, hence obtain 

n n 

n 

j=1 

and taking the infimum over all sums of the form c;=, cj  , properties 
(2) and (3) imply that 

holds. Finally, property (7) yields 

Wfl + f 2  : fo) + 6(1+ 26)(g : fo) < & 



Convolution of Radon measures 169 

once 6 is chosen sufficiently small, and this proves the assertion. 

3. The completion of the proof. 

For each f E C$(G) let M i  denote the interval [ &, (f : fo)] 
arising from property (7)) and put M := IIfE~s(,+If.  Clearly, M 
is a compact space which by property (7) contains all mappings Iv 
for cp E C$(G). For each N E B(0) let c(V) denote the closure in M 
of the set of those Icp for which supp (9) c V. From 

for neighborhoods 6 E B(0) we conclude that the system of sets 
c(V) (V E D(0)) has the finite intersection property, hence the 
compactness of M secures the existence of an element I of M with 
I E c(V) for all V E B(0) which implies that every neighborhood of 
I in 111 contains mappings I p  with arbitrarily small supp ( c p ) .  This 
means that for any V E 'x7(0), any E > 0, and all fl, ...,fn E C$(G) 
there exists a cp E C$(G) satisfying supp (cp)  c V and 

for all j = 1, ..,, n. From properties (1) to (3) and part 2. of this proof 
we deduce that I is translation invariant, additive and homogeneous. 

Now, any f E C$(G) admits a representation f = g - h with 
g ,  h E C:(G). If, in addition f = g' - h' with g', h' E C:(G), then 
g + h' = h + g', hence 

yields a well-defined extension of I to a positive linear functional on 
H C"(G) which by the Riesz Theorem 4.1.1 is a Haar measure. 

and
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Theorem 4.1.6 For two Haar measures p and u on  G there exists 
a constant c E R; such that 

v = c  p .  

Proof. Let g E C"(G) with Jgdp = 1. Then, putting 

c := g(-z)v(dz) 
G s 

we obtain for any f E Cc(G) that 

G G G 

hence that u = c p. In the above chain of equalities the Fubini 
theorem was applicable since the integrands of the double integrals 

4 belong to C"(G x G). 

Convention 4.1.7 Since by Theorem 4.1.6 Haar measure is  unique 
up  to  a multiplicative constant, one talks about the Haar measure of 
G and denotes it by w = WG. 
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Properties 4.1.8 

4.1.8.1 w is positive o n  non-empty open subsets of G, i e .  
w ( 0 )  > 0 f o r  all 0 E O(G), 0 # 0. 

4.1.8.2 w is inverse invariant, i.e. 
w ( - B )  = w ( B )  for  all B E B(G). 

Definition 4.1.9 A pair (p ,u)  of measures in M(G)  is  said to be 
convolvable if the integral 

exists in C for  every f E C"(G). I n  this case the mapping 

is a continuous linear functional on CC(G),  hence a measure in 
M(G)(Z C"(G)'); it is  called the convolution of p and u and is 
denoted b y  p * u. 

I n  the case of convolvability the convolution viewed as a mapping 

from M(G) x M(G) into M(G) yields a commutative and associative 
operation. 

The following result subsuming various useful properties of the 
convolution is easily proved. 

Theorem 4.1.10 A n y  pair ( p )  u )  in Mb(G) x Mb(G)  is conuoluable, 
and together with convolution p * u and norm 11 1 1  the space Mb(G) 
becomes a commutative Banach algebra with EQ as (convolution) unit 
element. I n  particular, 
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whenever p, u E Mb(G). 

the involution p I+ pN given by  
Moreover, the Banach algebra Mb(G)  is involutive with respect to 

- 
for all f E CC(G), where f" = f * with f *(x) := f (-2) for all x E G. 
Here, the properties defining the involution read as follows 

( p * ~ ) ~  = p N * v W , a n d  

IF I1 = llclll~ 

whenever p,  u E Mb(G) .  
For measures p,  u E M t  the support formula 

holds 

4.1.11 Applying the convolution to measures of the form p := f - w ~  
for f E L1 (G, WG) one obtains a convolution in L1 (G, W G )  which for 
f , g  E L'(G,wG) is given by 

whenever z E G. 
Clearly, together with this convolution and the norm 11 - 111 the 

space L1 (G, W G )  becomes a closed ideal of Mb(G)  and therefore also 
a commutative Banach algebra with involution. 

Mb(G)  and L 1 ( G , w ~ )  are called the measure algebra and the 
group algebra of G respectively. 

While Mb(G)  has a unit EO,L~(G,WG) has a unit only if G is 
discrete. 
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For functions f , g  in an arbitrary Lebesgue space LP(G,wG) ( p  E 
[l, 001) the convolution f I g is introduced by 

provided that 

for all x E G. 

Proposition 4.1.12 For each f E Lp(G,wc) ( p  E [l,oo[) the map- 
ping x f x  from G into LP(G,wG) is uniformly continuous. 

Proof. Let f E LP(G,wG) and let E > 0. Since Cc(G) is dense in 
LP(G,wc), there exists a function g E C"(G) such that 

Let K := supp (9) .  From the uniform continuity of g we deduce the 
existence of a neighborhood V E W ( 0 )  such that 

for all x E V. Therefore 

and hence 

llf - f& 5 Ilf - g l l p  + 119 - Sxllp + llgx - fr l lp < 
whenever z E V. Finally we note that fa: - fy  = (f - fy- r ) r ,  so that 

Ilfr - f Y I l P  < & 



174 Harmonic Analysis of Convolution Semigroups 

whenever y - 2 E V. I 

Proposition 4.1.13 Let U be a neighborhood system of 0 E G. For 
each U E U let $Ju be a measurable function on G with compact 
support supp (&J) c U such that $u 1 0,  Q& = Qu and s $J~G!WG = 
1. Then 

llf * $u - f l l p  + 0 u -+ (0) 

for all f E P ( G , w c ) ,  p E [l, oo[. 

in Lp(G,wc). 
The family {$u : U E U} is said to be an upprozimute identity 

Proof. By Proposition 4.1.12 we choose U E U such that 

whenever y E G. But for each h E LQ(G,wG) (where q is conjugate 
to p )  F’ubini’s theorem and Holder’s inequality imply 

and therefore 
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4.2 Duality of locally compact Abelian groups 

Generalizing classical Fourier theory for Euclidean spaces two set- 
tings can be chosen in order to establish the appropriate analysis: 
locally convex vector spaces E ,  the structure underlying Chapters 
1 to 3, and locally compact Abelian groups G, the structure to re- 
main the basis of discussion in the subsequent chapters 4 to 6. The 
counterpart of the linear dual of E will be the group of continuous 
characters of G. 

Definition 4.2.1 Any homomorphism x : G + T is called a char- 
acter of G. 

The set G" of all continuous characters of G forms a group under 
addition in the sense that for x , p  E G" the sum is given b y  

the inverse -x of x b y  

and the neutral element 0 by  

O(x) := 1 

whenever x E G. 
In view of the duality between G and G" to be discussed at a later 

stage, G" is called the dual of G. 

In the sequel we shall show that G" can be furnished with a topol- 
ogy that makes it a locally compact group so that G and G" belong 
to the same category of objects and consequently G"" := (G")" can 
be formed. 

Theorem 4.2.2 There exists a one-to-one correspondence between 
the dual G" of G and the space M ( L 1 ( G , w ~ ) )  of all nonvanishing 
multiplicative linear functionals on the group algebra L (G, W G )  of G 
given as a mapping 

x Tx 
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Proof. 1. The mapping f w ~ ~ ( f )  is obviously linear. Moreover it 
is multiplicative, as follows from the following sequence of equalities 
valid for all f, g E L1 (G, W G )  and x E G" : 

The nonvanishing of the mapping f rx(f) follows from rx(f) # 0 
for some f E L1 (G, WG),  since lx(z) I = 1 for all z E G. One concludes 
that rX E M ( L 1 ( G , w ~ ) )  

2. Now, let r E M(L1(G,w~)) .  Since L1(G,wc) L m ( G , u ~ ) *  and 
r is a bounded linear functional with 1 1 ~ 1 1  = 1, there exists a function 
cp E L m ( G , w ~ )  with llcpll = 1 such that 

r(f)  = /f$' h G  

G 

for all f E L1(G,w~) .  For f , g  E L 1 ( G , w ~ )  we have 

with
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for wG-a.a. y E G. It follows from Proposition 4.1.12 that the conti- 
nuity of T implies the continuity of y I+ 7(fY) for each f E L1 (G, WG). 
Choosing f E L 1 ( G , w ~ )  such that ~ ( f )  # 0 we deduce from (1) that 
cp is wG-a.e. continuous. Hence cp can be assumed to be continuous, 
and (1) holds for all y E G. 

Now we replace y by x + y and then f by f5 in (1) in order to 
obtain 

7(f)cp(2 + Y) = T ( f Z + Y )  = T((fZ)Y) 

= T(fz)Cp(Y) = T(f)P(z)cp(Y) 
and consequently 

for all x, y E G. In particular, cp* = cp-l. Since 191 5 1 it follows that 
IcpI = 1, hence that cp E G" and so 7 = T ~ .  

cp(x + Y> = cp(x>cp(Y> 

3. As for the uniqueness of cp we just note that 

for x, p E G" and all f E L1(G,w~)  implies that 

for wG-a.a. 2 E G, but since x,p are continuous functions, even for 
all x E G. rn 

4.2.3 For every f E L 1 ( G , u ~ )  the function f = F ( f )  defined by 

for all x E GA is said to be the Fourier transform of f. 
In terms of Gelfand's theory as described in Appendix C 8 f is 

the Gelfand transform of f and f I+ fl the Gelfand mapping .F 
on L1(G,w~) .  The space 2M(L1(G,w~)) identified by Theorem 4.2.2 
with the dual G" of G can be interpreted as the Gelfand space 

consequently
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A ( L 1 ( G , w ~ ) )  of L 1 ( G , w ~ ) .  Since A(L1(G,wG)) is a locally com- 
pact space with respect to the weak topology induced by the set 

G" is also a locally compact space. This topology r9, sometimes 
named the Gelfand topology on G", admits a neighborhood system 
of xo E G" of the form 

where fl, ..., fn E L1(G,w~)  and E > 0. 
From the Gelfand theory we obtain the following essential 

Properties of F.  

4.2.3.1 A(G") i s  a selfadjoint subalgebra of Co(GA) which separates 
G", hence 

A(G")- = Co(G"). 

4.2.3.2 .F is a norm-decreasing inwolutiwe homomorphism of the 
group algebra L ~ ( G , w G )  into Co(GA). 

Theorem 4.2.4 The dual G" of a locally compact group G is again 
a locally compact group. 

Proof. Since we already know that G" is an Abelian group and 
a locally compact space with respect to the Gelfand topology rg it 
remains to show that the mapping 

from G" x G" into G" is continuous. 
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1. We prove that the mapping 

from G x G" into C is continuous. 
First of all we note that for every f E L 1 ( G , w ~ )  and x E G 

holds whenever x E G". Thus it suffices to show that 

is continuous on G x G" for every f E L'(G,wG). SO, take zo E 
G , X O  E G" and E > 0. There are neighborhoods V E r 2 3 ~ ( ~ 0 )  and 
W E DGA(x~) such that 

I l fz  - fzoII1 < E 

as well as 
Ifzo (x) - g (x0)l < & 

whenever x E V, x E W. This follows from Proposition 4.1.12 and 
from the continuity of fzo respectively. But since 

we obtain 

whenever x E V and x E W, hence the assertion. 

open topology r,, in G". 
In the following two parts of the proof we shall employ the compact 

2. For compact K c G and r > 0 the set 

V K , ~  := {x E G" : Ix(x) - 11 < r for all J: E K }  

is an open subset of G". 
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In fact, we choose a compact subset K of G, an r > 0 and a xo E 
V K , ~ .  Part 1. of this proof implies that for every 20 E K there exist 
neighborhoods V E DG(z~) and W E DGA (xo) such that Ix(x) - 11 < 
r for all 2 E V, x E W. Since K is compact, finitely many of these 
sets V cover K ,  hence the intersection WO of the corresponding sets 
W is a subset of V K , ~ .  Since WO E DGA(XO), V K , ~  is open. 

3. The family consisting of the sets V K , ~  and their translates generate 
the topology TGA of G". 

In order to see this we pick a neighborhood V of xo E G" and show 
that x o + V ~ , ~  c V for some choice of K E K(G) and r > 0. Without 
loss of generality let xo = 0. From the definition of the Gelfand 
topology rg in G" we deduce the existence of functions f l ,  ..., fn E 
L 1 ( G , w ~ )  and of E > 0 such that 

n 

But now Cc(G) is dense in L 1 ( G , u ~ ) ,  so we may assume that 
f l ,  ..., fn vanish outside a compact subset K of G. With the choices 

and x E V K , ~  we get 

hence that VK,T c V. 

4. The statement of the theorem now follows from the inclusion 

valid for all x , p  E G" and any V& E 'DGA(O). rn 
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4.2.5 From the proof of Theorem 4.2.4 we learn that on G" E 
A(L1 (G, W G ) )  the topologies rg and r,, coincide. Therefore we may 
consider G" as a locally compact Abelian group furnished with either 
of the topologies r9 or r,,. G" will be called the character group 
or the dual (group) of G. 

4.2.6 Since the norm of the spaces LP(G,WG) for p E [l,co[ is in- 
variant (with respect to translation in G )  we have 

Ilf * 9llP 5 llf1111911P 

whenever f E L 1 ( G , w ~ )  and g E LP(G,WG), i.e. L 1 ( G , w ~ )  operates 
linearly by means of g H f * g on Lp(G,wc). 

Let l l f l l ~  denote the norm of the operator defined on L 2 ( G , w ~ )  
by f E L ~ ( G , w G ) .  Then, clearly, 

and 

for all f E L 1 ( G , w ~ )  and g E L 2 ( G , u ~ ) .  
The completion of L ~ ( G , w G )  (or Cc(G))  with respect to the op- 

erator norm 11 . 1 1 ~  is called the extended group algebra of G and 
will be denoted by A(G). 

Ilf * 9112 5 llf"Tll9112 

Properties of A(G). 

4.2.6.1 A(G) is a commutative Banach algebra containing L1(G, W G )  

as a subalgebra. 

4.2.6.2 A(G) is an  algebra of normal operators on the Hilbert space 
L2(G, W G )  and hence a commutative C* -algebra. 

4.2.6.3 A(G) admits a unit element i f  and only if G is discrete. 

4.2.6.4 For any f E A(G) and x E G" we have 

IlXfllT = IlfllT * 
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4.2.7 For the Gelfand mapping .F : f 
following 

f on A(G) we quote the 

Properties 

4.2.7.1 F(A(G))  is a subalgebra of Co(A(A(G))). 

4.2.7.2 F is a norm and involution preserving isomorphism from 
A(G) onto CO(A(A(G))). 

4.2.7.3 A(A(G)) 2 G" 

For the proof of 4.2.7.3 we take f E L ~ ( G , w G )  with f # 0. By 
Property 4.2.7.2 there exists r' E A(A(G)) such that r ' ( f )  # 0 for 
all f E A(G). Now apply Theorem 4.2.2 in order to obtain x1 E G" 
such that 

T'(f)  = /fXldwc * 

G 

For any x E G" we put 

whenever f E L1 (G, W G ) .  Since 

for all f E L1 (G, W G ) ,  r can be uniquely extended to A(G). Clearly, 
r appems to be an element of A(A(G)). 

4.2.8 Let Am(G) and Aa(G) denote the subsets of classes of 11 - 1 1 ~ -  
Cauchy sequences that contain at least one 11 - 11- or 11 - 112-Cauchy 
sequence respectively. In the sequel A,(G) and A2(G) will be viewed 
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as subsets of A(G). A2(G) will also be considered as a subset of 
L2 (G, W G ) .  

Properties of the spaces A,(G)) and A2(G). 

4.2.8.1 A(G) * C"(G) c A2(G). 

4.2.8.2 A2(G) * A2(G) c Am(G). 

4.2.8.3 A(G) * C"(G) * C"(G) c A,(G). 

4.2.8.4 Iff E A(G) such that fl is real or  fl 2 0, then f(0) is real 
or f ( O )  2 0 respectively. 

The proof of Property 4.2.8.1 follows for f E A(G) of the form 

with a sequence ( f n ) n l l  in L 1 ( G , w ~ )  from the inequalities 

valid for n, m 2 1. 
Similarly, Property 4.2.8.2 is implied by the analogous estimates 

and 

Property 4.2.8.3 follows from Properties 4.2.8.1 and 4.2.8.2 with 
the help of CC(G) c A2(G). 

and
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Finally, as for Property 4.2.8.4, we assume f 2 0. Since by Prop- 
erty 4.2.7.2 the Gelfand isomorphism f w i from A(G) onto Co(GA) 

is involution invariant, + fi = ij yields a hermitian function g with 
g * g = f. This implies that 

The case of f E A(G) such that f̂  is real follows from the decompo- 
sition f := g - h, where g, h E A(G) with 4, h 2 0. 

The aim of the following discussion is the proof of Pontryagin's fun- 
damental theorem stating that any locally compact Abelian group 
G can be identified as a topological group with its double dual G"". 
On the way we shall establish two useful tools of harmonic analy- 
sis: the inversion formula for Fourier transforms and the Plancherel 
isomorphism. 

Lemma 4.2.9 Let f E A(G) such that f E CZ(GA), and let E > 0. 
There exist functions f l ,  f2 E A,(G) satisfying 

( 4  fl(0) - f2 (0)  < &. 

Proof. (i) Let C := supp (f^). There exists a neighborhood U E 
DG(O) such that 

IL(x) - 11 < & 

for all h E CT(G, U )  with JG h d ~ ~  = 1 and for all x E C. In order 
to see this one just chooses 

U := {z E G : Ix(z) - 11 < E for all x E C}. 
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Consequently there exists a go E C$(G) with jo(x) 2 1 for all x E C ,  
and for each 6 > 0 there is a g E C:(G) satisfying 

whenever x E C. Now we define 

fl := f * (g + 6go) 

and 
f 2  := f * (g - 6go). 

Since there exist h, ho E Cc(G) such that go = ho*h," and g = h*h", 
we obtain that fl, f 2  E A,(G). And clearly, p1, p 2  E CC(GA). 

(ii) follows from 

p1 = pi + 6 f i o  2 f(1- 6 + 6) = p 
and 

p = f(l + 6 - 6) 2 pij - 6fG0 = p2, 
(iii) Obviously, 

!do) - f2 (0 )  = 2Sf * go(0) * 

But 
(f = p i 0  L 0 

implies f * go(0) 2 0. A proper choice of 6 yields the assertion. 

Theorem 4.2.10 (Inversion) Let f E A,(G) with ,f E C"(G"). 

x E G the inversion formula 
Then a Haar measure W G A  on GA can be chosen such that for all 

holds. 
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Proof. For every f E A(G) with f E CZ(G") we introduce 

F ( j )  : = sup(g(0) : 4 L j ,  f € A&)} 
= inf(h(0) : h 2 f, h E A,(G)}, 

where the equalities defining the mapping F : C$(G") + C are 
justified by Lemma 4.2.9. Obviously F is additive and positive ho- 
mogeneous on CZ(G"). Since Re CC(G") is a vector lattice, F can be 
extended to a linear functional on Re Cc(G") and hence on Cc(GA). 

Obviously F is positive, since for every f E A,(G) with f 2 0 we 
have F ( f )  = f(0) 2 0. 

Moreover, F # 0. In fact, there exist an f E A(G), f # 0 with 
f E C"(G") and a g E Cc(G) with h := f * g E A2(G) and h # 0. 
But then e := h * h" E A,(G) and therefore 

F ( i )  = l ( 0 )  = h * h"(0) = lIhlli # 0 .  

In order to show the translation invariance of F it suffices to note 
that for every x E G" 

and 

But then there exists a Haar measure W G A  E M+(G") satisfying 

= ( X f P  

X ( O > f ( O >  = f(0) * 

F(.f)  = . f ( X ) U G A ( d X )  
G s A 

for all f E A(G) with f E CC(G"). 
For f E A,(G) with f E Cc(GA) we have 

F ( f )  = f ( O h  
hence 

= J  G A  

= J  GA 
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whenever II: E G. rn 

Theorem 4.2.11 (Plancherel) 

(i) A2(G) is dense in L 2 ( G , w ~ ) .  

(ii) The mapping f I+ f from &(G) in Co(GA) is an isometry onto 
a dense subset of L 2 ( G A , w ~ ~ )  which can be extended uniquely 
to an isometry from L ~ ( G , ~ ~ )  onto L~(G,wGA). 

(iii) For f , g  E L 2 ( G , w ~ )  we have 

Proof. From Properties 4.2.7.2 and 4.2.7.3 we deduce the existence 
of a dense subset M of A(G) with M A  = Cc(GA). 

1. We show that the set 

N := {f * g :  f E M ,  g E C"(G)} 

is dense in L 2 ( G , w ~ ) .  Since N c A2(G), we therefore obtain that 
Az(G) is dense in L2(G,wc).  

For the proof let f E L 2 ( G , w ~ )  and let E > 0. First of all there is a 
g E Cc(G) with I l f  -911 < E ,  and for this g there exists an h E Cc(G)  
with 119 * h - 9112 < E.  Next, for h there exists a k E M such that 
llh - k l l ~  < E .  Our assertion now follows from the inequality 

Ilk * g - f I12 5 Ilk * 9 - h * 9112 + llh * 9 - 9112 + 119 - f l l 2  

< Ilk - hllTllgIl2 + E + E 

< 4 E  + llf 112 + 2). 

2. For every f E N we obtain that f E C"(G") and f * f" E A,(G). 
Applying the inversion formula 4.2.10 the equalities 

llf11; = Sff h G  = f * f N ( 0 )  
G 
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show that f I-+ f is an isometry on N .  But this isometry extends to 
an isometry from &(G) into L 2 ( G A , u ~ ~ ) .  

3. For the statements (i) and (ii) it remains to be shown that h2(G)" 
is dense in L2(G" , W G ) .  

In fact, let $ E L 2 ( G A , ~ G )  with JGA cpd dw = 0 for all cp E 
A2(G)". Then / x p i ~  ~ w G A  = o 

GA 

whenever 2 E G"", thus (cp.1cI>" = 0 and hence cpq = 0 wp-a.e.. 
Since for each xo E G" there is a p E A2(G)" such that cp # 0 
in some neighborhood of X O , $  = 0 wG-a.e., the asserted density 
property has been shown. 

4. For the proof of (iii) it suffices to refer to the well-known identity 

2 4fg = If + gI2 - If - gI2 + ilf + igI2 - ilf - igl 

valid for all f, g E L2(G, W G ) .  

Theorem 4.2.12 The group algebra L1(G,wG) is regular, i.e. to 
every proper closed subset C of G" and to every x E Cc there exists 
an  f E L 1 ( G , w ~ )  such that f ( C )  = 0 and f ( x )  # 0. 

Proof. Let C be a proper closed subset of G". We shall show that 
there exists a function $J E L 1 ( G , w ~ ) "  satisfying +(C) = 0 and 
$(x)  # 0 for x E U := C". Let x = X I +  x2 with ~ 1 ~ x 2  E G". Then 
there are open sets U1 and U2 with x1 E U1, x2 E U2 and U1 +U2 c 
U. Now we choose functions f , g  E L 2 ( G , w ~ )  with the properties 

ing (iii) of Theorem 4.2.11 we have 
L G  E q ( G " ) ,  f(x1) # 0, i (x2)  # 0, m;) = i(v2") = 0. Apply- 

hence $ := ( f g ) "  satisfies the desired conditions: IIC) E L 1 ( G , w ~ ) " ,  
2CI(C) = $ ( U C )  = 0 and $ ( X I  # 0. 
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Theorem 4.2.1 
group with dual 
For every x E G 

.3 (Pontryagin) Let  G be a locally compact Abelian 
and double dual groups G" and G"" respectively. 
let QX : G" -+ C be defined by 

fo r  all x E G". T h e n  the homomorphism R : G * G"" defined by 

fqx) := R, 

fo r  all x E G i s  a topological isomorphism. 
I n  short: GA" G. 

Proof. 1. R as a mapping from (G,T) into (G"",T~-) is continuous. 
In fact, it is sufficient to show that R is continuous at 0 E G. Let 

C be a compact subset of G" and E > 0. Then the set 

V C , ~  := {z E G"" : lx(x) - 11 < E for all x E C} 

is a neighborhood W E DGAA (0). By Part 1. of the proof of Theorem 
4.2.4 the mapping ( x , ~ )  H x(x) from G x G" into C is continuous. 
Since C is compact, the set 

V := {x E G : ( ~ ( z )  - 11 < E for all x E C]  

belongs to D6(0), and R(V) c W. 

2. R is open. 

subset C of GA and an E > 0 such that 
It is to be shown that to each U E m ~ ( 0 )  there exist a compact 

for all x E C implies that x E U. 
In fact, we choose g E L 2 ( G , w ~ )  with 119112 = 1 such that 
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implies x E U. In order to see this, pick V E Z l ~ ( 0 )  with V2 c U. 
Moreover, take g E L~(G,uG) with supp (9) c V and llgll2 = 1. If 
x $ V then supp(g) nsupp(g,) = 8, hence 

and we have a contradiction. 
Next, let f E L:(G,uG) with llflll = 1 satisfying the inequalities 

and 

The triangle inequality 

1 
llf * gz - 9x112 < - 3 '  
immediately implies that 

1 
llf * g - f * sx112 F 3 

yields x E U. But since 

we may continue the reduction procedure and obtain that 

yields z E U. 
Moreover, we have that 

Thus, the inequality 
1 1.u - f Z ) l  < j 
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valid for all r E A(A(G)) implies x E U. But 

where xT denotes the character associated with r by Property 4.2.7.3. 
Now applying Property 4.2.7.1 we obtain that f := r ( f )  E Co(GA), 
thus there exists a compact subset C of G" such that x7 @ C implies 
that 

1 
I T ( f > l  < S' 

Now, choose E := - and let x E G be such that 
3ll.f /IT ' 

for all x E C. Then 
1 

holds for all r E A(A(G)) and consequently x E U. 

3. O(G) is dense in GAA. 
Once we have shown this it will be clear that O(G) as the image 

of a locally compact and hence complete group G is itself complete 
and therefore closed in G"". The proof of the theorem will then be 
terminated. 

Assume that O(G) is not dense in GAA.  Then by Theorem 4.2.12 
there exists a cp E L 1 ( G A , w ~ ~ )  with cp # 0 satisfying $(O(x)) = 0 
for all x E G. Since cp # 0, there is a g E A(G) such that 

But CC(G)  is dense in A(G), hence there also exists an h E CC(G)  
such that 
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On the other hand, by assumption we have 

which is the desired contradiction. 

We draw a few consequences from Pontryagin's duality theo- 
rem 4.2.13. 

Theorem 4.2.14 

(i) G is compact if and only if.G" is discrete. 

(ii) G is discrete if and only if G" is compact. 

Proof. An application of Theorem 4.2.13 reduces the proofs of (2) 

and (ii) to those of (i') and (ii') below. 
(i') If G is compact, then G" is discrete. 

The only subgroup of T whose elements x satisfy Iz - 11 < fi is 
the trivial one. Therefore the set 

V G , ~  := { X  E G" : I X ( Z )  - 1 

is a neighborhood in 'ZGA (0). But 

< fi for all x E G} = { 0 }  

this means that G" is discrete. 

(ii') If G is discrete, then G" is compact. 
It follows from the assumption that the function fo on G defined 

by fo(0)  = 1 and fo(x) = 0 for all x E G with 2 # 0 is a unit of 
the group algebra L 1 ( G , u ~ ) .  Consequently, by Preparation C 4.2 
A ( L 1 ( G , w ~ ) )  and by Theorem 4.2.2 also G" is compact. 
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Definition 4.2.15 The Fourier(-Stieltjes) transform fi  of a mea- 
sure p E Mb(G)  is given by 

for all x E G". 

Properties 4.2.16 of the Fourier  mapping 

.F = FG : Mb(G)  + Cb(GA)  

given by 
F ( p )  := /2 

for all p E M ~ ( G ) .  

4.2.16.1 .F maps Mb(G)  into the space C"(G") of uniformly con- 
tinuous bounded functions o n  G". 

4.2.16.2 F is  a norm-decreasing homomorphism of inuolutiue alge- 
bras. 

4.2.16.3 F is  injective. 

By the isometric embedding of the group algebra L 1 ( G , u ~ )  into 
the measure algebra Mb(G)  analogous properties remain valid for the 
restriction of .F to L 1 ( G , u ~ ) .  In particular M b ( G )  and L 1 ( G , u ~ )  
are semisimple Banach algebras. 

We content ourselves with the proof of 4.2.16.3. By Pontryagin's 
Theorem 4.2.13 it suffices to show the injectivity of the inverse 
Fourier mapping 

: Mb(G") -+ Cb(G) 

defined by 
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for all p E Mb(G"),  where 

whenever x E G. 

have 
So, let p E Mb(G") such that fi  = 0. For every f E L1(G,wc) we 

GA 

G G" 

Since A(GA) is dense in Co(GA) by Property 4.2.3.1 we obtain that 

g d p  = 0 
G s 

for every g E Co(G") which implies that 1-1 = 0. 

4.2.17 T h e  following functorial properties of the duality of locally 
compact Abelian groups will be useful for i ts  application to  harmonic 
analysis. 

Let G and H be locally compact Abelian groups and let cp ; G -+ H 
be a continuous homomorphism. For every x E H A  let 

cp"(x) := x 0 cp E G" . 

Therefore, with the notation of Theorem 4.2.13, 

whenever x E G , x  E H". Moreover, p" i s  a continuous homomor- 
phism H A  -+ G". 

Indeed, the duality A is  a contravariant functor  in the category of 
locally compact Abelian groups (together with continuous homomor- 
phisms as morphisms). 
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For any subset M of G let 

M' := {x E G" : x(x) = 1 for all x E M} 

be the annihilator or orthogonal complement of M .  
Clearly M'- is a closed subgroup of G". From Pontryagin's theo- 

rem 4.2.13 we infer that M * l  := ( M L ) l  is a closed subgroup of G. 
For N c M one has M* c N*, and M c Ad'-* which implies 

hence M1 = M*'-l. 

4.2.17.1 The closed subgroup [MI- generated b y  a subset M of G 
coincides with M**. 

It is clear that GI := [MI- c Ad'--'-. For the remaining inclusion 
we consider the canonical projection 7r from G onto GIG1 and take an 
element CI: $ GI. Since G" separates G (by the Pontryagin theorem 
4.2.13) there exists x E (G/Gl)" such that x o ~ ( x )  # 1. Hence 
x o T E G" with x 0 n ( y )  = 1 for all y E M but x 0 n(x) # 1, so 
x # ML1. 

As an immediate consequence of this property we note that 

4.2.17.2 the mapping 
H H H ~  

is  a bijection from the class of closed subgroups of G onto the class 
of closed subgroup of G" 

4.2.1'7.3 ( G I H )  A and H I  are (canonically) isomorphic locally com- 
pact Abelian groups. 

Again we define for every x f  E (GIH)" the character x E G" by 

whenever y E G. The mapping xf I-+ x from (GIH)" into G" serves 
as the desired topological isomorphism. 
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It follows 

4.2.17.4 that H A  is  isomorphic to  G A / H L .  
One just has to observe the identifications 

4.2.17.5 H is  a compact subgroup of G i f  and only i f  H I  is open in 
GA . 

This statement follows from Property 4.2.17.4 together with The- 
orem 4.2.14 

Examples 4.2.18 of locally compact Abelian groups and their duals. 

4.2.18.1 (Rd)" E Rd, so Rd is self dual for  any d 2 1. 

4.2.18.2 (Td)" E Zd for d 2 1. 

4.2.18.3 (Zd)^  E Td for  d 2 1. 

In order to establish these identifications the characters of the 
underlying groups have to be exhibited, and the Gelfand topology 
has to be recognized as the natural topology in each case. 

In this context we mention the evident fact that 

4.2.18.4 for locally compact Abelian groups G I ,  ..., G, the identifi- 
cation 

holds. 

the validity of the following fundamental structure results. 
This property helps to see further special dualities once one accepts 

Theorem 4.2.19 Let G be a compactly generated locally compact 
Abelian group. 
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Then 
G E Rd x Ze x K ,  

where d,e 2 0 and K is a compact Abelian group. 
From this theorem follows without difficulty 

Theorem 4.2.20 (Pontryagin, van Karnpen) For every locally corn- 
pact Abelian group G there exists an open subgroup GI of G of the 
form 

GI Rd x K ,  

where d 2 0 and K denotes a compact Abelian group. 
If, in addition, G is connected, then 

G 2 Rd x K ,  

where d 2 0 and K is a connected compact Abelian group. 

to Guichardet [15]. 
For a proof of these assertions the reader is referred for example 
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4.3 Positive definite functions 

The constituents of this title are important tools of the harmonic 
analysis of locally compact Abelian groups. For the first definition 
and its basic properties we note that a matrix A = (a i j )  E M(n x 
n, C) is said to  be positive hemi t ian  if for all c1,. . . , c, E C 

If B = ( b i j )  E M(n x n,C) is another positive hermitian matrix, 
then SO is the product AB = ( d i j ) ,  where d;j := aijbij for all i ,  j = 
1,. . . ,n. 

Now let G be a locally compact group. 

Definition 4.3.1 A complex-valued function cp on G is called pos- 
itive definite if for all n 2 1 and all 21,. . . , x, E G the matrix 
(cp(xi - zj)) E M(n x n, C) is positive hermitian. 

The totality of positive definite functions on G will be abbrevi- 
ated by PD(G). At a later stage we shall exclusively employ the set 
CPD(G) := PD(G) n C(G). 

Properties 4.3.2 of a function cp E PD(G). 

4.3.2.1 cp- = cp and IcpI 5 cp(O), in particular 'p is bounded, and 

4.3.2.2

4.3.2.3
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4.3.2.4 If Re cp is lower semicontinuous at 0, then cp is uniformly 
continuous. 

For proofs of these properties we consider specially chosen positive 

Clearly, cp(0) 2 0. Moreover, for every 12: E G the matrix 
her mitian matrices. 

is positive hermitian. This fact takes care of Property 4.3.2.1. 

the matrix 
Next, we consider the case n = 3, i.e. for any z,y E G we look at 

cp(d cp(x - d  
under the assumption that p(x) # ~ ( y )  we choose for X E R the 
complex numbers c1 : = 1,c2 : = XJcp(z) - cp(y)((cp(z) - cp(y))-', and 
c3 : = -c2. The positive hermitian property of the above matrix 
yields the inequality 

valid for all X E R, and since the discriminant of the polynomial in 
X occurring in this inequality is 5 0, we obtain Property 4.3.2.2. 

In order to show Property 4.3.2.3 we observe that a positive her- 
mitian matrix of the form 

has a determinant 2 0, hence 

or equivalently, 
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Applying this inequality to the matrix in terms of cp and employing 
Property 4.3.2.1 implies the assertion. 

Concerning Property 4.3.2.4 we note that from the assumption 
follows that Re cp is continuous at 0. This is a consequence of the 
equality 

together with Re p 5 IcpI 5 cp(0) (Property 4.3.2.1). But then Prop- 
erty 4.3.2.2 provides the remaining argument. 

4.3.2.5 Let H be an  open subgroup of G and let cp E C P D ( H ) .  Then 
the function cpo defined by 

i f x E H  
otherwise 

belongs to CPD(G). 

For the proof of the positive-definiteness of cpo we pick a finite 
set in G and for each x E F ,  let c, E C .  The set F intersects only 
finitely many distinct cosets w ~ H , .  . . ) w,H of H .  With the notation 
Fk := F f l  ( W k H )  for k = 1,. . . ,n  we then obtain 

where 
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Clearly, cpo extends cp continuously. 

Properties 4.3.3 of the set PD(G) 

4.3.3.1 The set PD(G) is closed under formation of complex conju- 
gates and real parts. 

4.3.3.2 The constant function 2 0 on G belongs to PD(G). 

4.3.3.3 PD(G) is closed under formation of products. 

4.3.3.4 PD(G) is a conuex cone closed with respect to the topology 
rp, CPD(G) is a conuex cone closed with respect to r,, (in C(G)) .  

Only Property 4.3.3.3 requires an argument, and this has been 
quoted at the beginning of the section. 

Examples 4.3.4 Besides the constant function 2 0 
4.3.4.1 all characters x of G are elements of PD(G). 

This follows from the inequalities 

n n 

i,j=l i = l  

valid for all 72 2 1, X I , .  . . , x ,  E G and c1,. . . ,c, E C .  

4.3.4.2 any positive definite function cp : G --+ T is a character of 
G, as is evident from Property 4.3.2.3. 
4.3.4.3 The Fourier transform of a measure p E M:(GA) belongs to 
CPD(G). 

In fact, for all n 2 1, 21,.  . . , xn E G and c1, . . . , cn E C we have 
as in 4.3.4.1 

On the other hand, 

n n n 

I 

i,j=l i=l 
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hence 
4.2.16.1. 

E PD(G). The continuity of ji follows from Proposition 

The converse of this property is the statement of 
Theorem 4.3.5 (Bochner) For every cp E CPD(G) there exists a 
unique measure ,B := ,Ov E M!(GA) such that 

F ( p )  = B  = c p .  

,B is said to be the Bochner measure of cp. It satisfies ll,Oll = cp(0). 
Proof. 1. We first show that cp E CPD(G) is of positive type in the 
sense that it satisfies 

for all f E Cc(G) 
all f E L1(G,wG). 
defined by 

for all (z,y) E G 
continuous. For K 

and, since CC(G) is dense in L 1 ( G , u ~ ) ,  also for 
For a given f E Cc(G) the function F on G x G 

F ( W )  := f (4 f  (z>(P(z - 9)  

x G belongs to CC(G x G), hence is uniformly 
:= suppf we have suppF  c K x K ,  and K x K 

can be covered by finitely many open sets U x U such that the 
variation of F on each of these sets is less than a prescribed E > 0. 
By neglecting overlaps we therefore obtain a partition { E l ,  . . . , En} 
of K and z1 E El ( I  = 1,. . . ,n) such that IF(z ,y)  - F(zi,Zj)I < E 

whenever (z,y) E Ei x Ej ( i ,  j , .  . . ,n). But then 

n 

n 

i , j = l  
n 

i , j = l  
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where 

Since by the positive definiteness of 'p 

i ,  j=l 

and E was chosen arbitrarily, the assertion has been proved. 

2. Next we construct a linear functional 

.f H J VfdwG 

on the Fourier algebra A(G") = L1(G,u& Without loss of gen- 
erality we assume that ~ ( 0 )  = 1. From the Schwarz inequality we 
deduce that the positive Hermitian (sesquilinear) form 

on L1 (G, WG) satisfies 

for all f, g E L1 (G, W G ) .  Letting g run through an approximate iden- 
tity {?,Lq, : U E U} in L ~ ( G , w G )  with 

(Proposition 4.1.13) we obtain that 
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But along with {+u : U E U} also {+& * +u : U E U} is an 
approximate identity in L 1 ( G , w ~ ) .  In fact, if supp+u c U then 
supp (+& * +u) c U - U ,  and 

It follows that 

for all f E L ~ ( G , w G ) .  For the function h := f *  * f we have h* = 
h. Applying the above inequality to the functions f, h, h(2) := h * 
h, h(3) := h * h I h, . . . we obtain 

where llpllm = p(0) = 1 has been applied. Now we infer from Theo- 
rem C 6 that 

Thus the mapping f I+ cp f dwG induces a linear functional 

on A(G"). 

3. Since by Property 4.2.3.1 A(G") is dense in Co(GA) this linear 
functionals extends to a linear functional F on Co(G") with IlFll 5 1. 
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Riesz representation theorem 4.1.1 in order to 
E Mb(G") with llvll 5 1 satisfying 

for all f E L1 (G, W G )  or equivalently 

for all x E G, hence 'p = ,6 for p := u*. From 1 = cp(0) = @(G") 5 
llpll 5 1 we conclude that P(G") = llpll 2 0, so that ,B E M$(G"). 

H The desired representation of cp has been established. 

Remark 4.3.6 Replacing G by  G" and applying the Pontryagin the- 
orem 4.2.13 Theorem 4.3.5 can be rephrased as follows: The Fourier 
mapping F := FG is a bijection of the cone M:(G) onto the cone 
CPD(G"). I n  particular, F maps the convex set M ' ( G )  onto the 
convex set ('p E CPD(G") ; 'p(0) = 1). 

We may now deepen our knowledge about this bijection by prov- 
ing that 

Theorem 4.3.7 F is  a homeomorphism of the cone (M: (G),  rw ) 
onto the cone (CPD(G"),  rco). 

Proof. Let ( p & ~  be a net in M i ( G )  such that 

Then, clearly, 

for all x E G". 

1. At first we show that for each E > 0 there exists a V E DGA(O) 
and there exists an a0 E A such that for all a 2 a0 and for all 
X I ,  x 2  E G" with x1 - x2 E V the inequality 
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holds. 
In fact, let E > 0 be given, choose 6 > 0 such that 6(3 + llp11) 5 E 

and then pick cp E C$(G) with 0 5 cp 5 1 and s(l -cp)clp < 6. Since 
pn  -% p, there is an a0 E A such that the inequalities 

and 

are satisfied for all a 2 ao. Now let V be a neighborhood in Z?GA (0) 
of the form V := l&pp(p,6. For a E A and ~ 1 ~ x 2  E G" with a 2 
ao,x1 - x2 E V we obtain 

2. Next we show that 
@a 3 f i .  

Let K be a compact subset of G", and let E > 0. We choose a0 

and V as above, and by taking the limits along a it follows that 

whenever X I ,  x2 E G" satisfy X I -  x2 E V. Since K is compact, there 
exist x i , .  . . , X n  E K such that K c U (xi + V ) ,  hence there exist 

n 

i=l  
al , .  . . ,an E A with 
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for all a 2 ai (i = 1,. . . ) n). Let a* E A be chosen such that 
a* > ai for i = 0, 1 , .  . . ) n. Then, for x E xi + V and a 2 a* we 
obtain the estimate 

Ibcy (XI - N X >  I 

and hence that 

which is the desired statement. 

3. We now suppose that 
ficy = f i  

and show that 
Pa 2 P .  

From the hypothesis follows that 

Therefore, as a consequence of Proposition 4.1.3 it suffices to verify 
the limit relationship 

Pa! 2 P -  

For cp E C$(G) and E > O we choose f E C"(G*) such that 

But then 
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hence by assumption 

which implies the assertion. 

Theorem 4.3.8 (Sequential continuity of the Fourier transform) 

Let (Pn)n>l be a sequence of measures in M i ( G ) ,  and let cp be a 
complex-valued function on  GA which is  continuous at 0 E GA such 
that 

bnk )  + P(X>  
for  all x E GA.  Then there exists a measure p E M t ( G )  with fi  = cp 
such that 

pn % r ~ .  

Proof. Clearly, fi  E CPD(G") for all n 2 1. From Property 4.3.3.4 
we infer that 

and Property 4.3.2.4 yields that cp E C(G"), hence cp E CPD(G"). 
Now we apply the Bochner theorem 4.3.5 and obtain a measure p E 
M t ( G )  satisfying ,!i = cp. It remains to be shown that for all $ E 
C W A )  r r 

As in the proof of part 3 of Theorem 4.3.7 we establish the inequality 

But the dominated convergence theorem implies 

hence the assert ion. 



Positive definite measures 209 

4.4 Positive definite measures 

We proceed to the study of Fourier transforms of not necessarily 
bounded positive definite measures on a locally compact Abelian 
group G. Our next aim will be to prove an analog of Theorem 4.3.7 
for nonnegative positive definite measures on G. 

Some measure-theoretical supplements will facilitate the compre- 
hension. 

Definition 4.4.1 A measure p E M ( G )  is  said to  be shift bounded 
if 

p * C"(G) c Cb(G) .  
It is easily seen that p is shift bounded if and only if the set 

{T,(p) : a E G} of translates of p is .r,-bounded. 

Properties 4.4.2 

4.4.2.1 Along with p also p* and pN are shift bounded measures. 

4.4.2.2 If p is  shift bounded, also lpl is shift bounded. 

4.4.2.3 Any pair ( p )  u)  consisting of a shift bounded measure p and 
a bounded measure v is  convolvable. 

4.4.2.4 A measure p E M+(G) is shift bounded if and only i f  f o r  
each set K E K(G) the funct ion 

x - p(K + x) 
i s  bounded. 

ing Property 4.4.2.2 we look at the inductive limit representation 
Only Properties 4.4.2.2 and 4.4.2.3 deserve an argument. Concern- 

C"(G) = lim 4 C"(G,K) 
K € K ( G )  

in the sense of Appendix B 4. Suppose that f E CT(G, K ) .  Then for 
any g E CC(G) with 191 5 f we have 
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where CK is a constant 2 0. In particulas we obtain for all IC E G 
that 

IPl * f(4 = /(f*LC dlPl 

= SUP 1 /(s*). d p (  
1d1f 

Id<f 
= SUP IP * 9 ( 4  

5 C K  1l.f 1100 

which says that Ip 

As for Property 
have 

is shift bounded. 

4.4.2.3 we just note that for each f E CZ(G) we 

since Ip*l * f is a bounded function on G. 

Definition 4.4.3 A measure p E M(G)  is  said t o  vanish at infin- 

p * C"(G) c Co(G). 
ity if 

With the obvious notation Msb(G)  and M"(G) for the measures 
defined in 4.4.1 and 4.4.3 respectively we note that 

Mb(G)  c Mm(G) c Msb(G) .  

Examples 4.4.4 

4.4.4.1 The Haar measure WG of G belongs t o  Msb(G),  and 

4.4.4.2 WG E MOO(G) if and only if G is compact. 
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Properties 4.4.5 

4.4.5.1 For p E MSb(G)  the linear mapping f I+ p * f from C"(G) 
into Cb(G) is continuous. 

4.4.5.2 Moreover, 
p * C"(G) c Cu(G) 

whenever p E Msb(G).  

While Property 4.4.5.1 is an easy consequence of Appendix B 6 
(closed graph theorem), Property 4.4.5.2 requires a proof. Given 
E > 0 and a compact symmetric neighborhood VO E g ~ ( 0 ) .  Then 
Property 4.4.2.4 implies that 

a := sup Ipl(V0 - supp (f)  + 2)  < 00.  
x E G  

Since f E Cu(G), there exists a V E a~(0) with V c Vo such that 

for all x, y E G with x - y E V .  But for such x , y  it follows that 

As a motivation for the notion of positive definite measures on G 
we note that a function cp E C(G) is positive definite if and only if 
it is of positive type in the sense of the inequality 

valid for all f E C"(G) (See part 1. of the proof of Theorem 4.3.5). 
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Definition 4.4.6 A measure p E M(G)  is called positive definite 
i f  f o r  all f E CC(G) one has 

The set of positive definite measures on  G will be denoted b y  

Obviously Mp(G) is a .r,-closed cone in M(G)  which is stable 
M P W  

under formation of reflections and complex conjugates. 

As first 

Examples 4.4.7 of positive definite measures we mention E~ and 
W G -  

Facts 4.4.8 

4.4.8.1 For a function cp E C(G) such that cp - W G  E M,(G) it is  
necessary and suficient that cp E PD(G).  
4.4.8.2 If f o r  p E M(G)  the pair (p ,  p-)  is  convolvable, then p*pN E 

4.4.8.3 If cp E CPD(G) with Bochner measure ,B E M$(G"), then 
for  any f E Cc(G) the function 'p I f * f belongs to  CPD(G) and 
has Bochner measure I f 1 2  - p. 

In order to ?ee this we show that the inverse Fourier transform of 
the measure I f  l2 . p E M$(G) is 'p * f * f N ,  and this in turn follows 
from the subsequent computation valid for all IL: E G : 

M P W  
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With this statement as a motivation we proceed by looking at the 
positive definiteness of functions p * f * f" with measures p instead 
of functions cp. 

4.4.9 Proposition Let p E M(G) .  
(i) p E Mp(G)  if and only if p*f*f" E CPD(G) for  all f E C"(G). 
(ii) If p E Mp,+(G) := Mp(G)  n M+(G), then p E M s b ( G ) .  

Proof. (i) Let p E Mp(G)  and let f,g E CC(G). Then p * f * f" E 
C(G),  and 

The statement preceding Definition 4.4.6 implies that p * f * f" E 
CPD(G). 

Conversely, if p * f * f" E CPD(G) for all f E Cc(G), then 
p * f * f"(0) 2 0 which says that 

/f* * ( f * ) " d p  2 0 

for all f E C"(G), hence that p E Mp(G).  
(ii) Let p E Mp,+(G) and f E Ct(G).  There exists a function g E 
Ci.(G) such that f 5 g * 9". It follows that 

p*f L P * 9 * 9 " ,  

where p * g * g" E CPD(G) ( by (i)) and hence bounded. Conse- 
quently p * f E Cb(G), i.e. p E MSb(G) .  

Theorem 4.4.10 (Existence of generalized Bochner measure) Let 
p E Mp(G).  There exists a unique measure ,O E M+(G") such that 
for  all f E C"(G) the following conditions hold: 

f i) s IBI24PI < 00- 
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(ii) p * f * f "(x) = s x(x)lf(x)12P(dx) whenever x E G. 
p is called the generalized Bochner measure associated with 

P. 

Proof. We first note that by Proposition 4.4.9 (i) p * f * f" E 
CPD(G) for all f E C"(G). Now Theorem 4.3.5 provides us with a 
Bochner measure ,Of E M: (G") satisfying 

* f * f" = pf . 
Since for f, g E C"(G) 

(lf12P9)v = P * f * f - * 9 * 9- = M 2 P f  IV, 
the uniqueness of the Bochner measure yields 

But for every p E M+(G") satisfying (i) and (ii) of the theorem we 
must have 

Ifl2 = Pf 
whenever f E C"(G) , so we define P accordingly. 

In order to show that /3 is well-defined we verify that the integral s h dP is uniquely determined for every h E Cc(GA). Indeed, choose 

g E C"(G) with i j  # 0 on supp h (by applying Property 4.2.3.1) such 
G A  

that 

where denotes the function in C"(G") given as m 

( 0 otherwise. 

It now follows from (2) that 

9. 

h dP is independent of the choice of 
G A  
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Clearly, h I--+ h dP is a positive linear functional on C"(G"), 

hence by the Riesz representation theorem 4.1.1 P E M+(G"). It 
remains to show that ,f? satisfies the conditions (i) and (ii) of the 
theorem. For this it suffices to establish the equality 

G A  

whenever f E C"(G). Indeed let h E C"(G"), choose again g E 
C"(G) with i j  # 0 on supp (h)  and apply again (2) together with the 
definition of p. Then the inequalities 

imply the assertion. H 

Theorem 4.4.11 For any measure p E M ( G )  the following state- 
ments are equivalent: 

(ii) There exists a measure CJ E M+(GA) such that 
(i) P E ~ p ( G ) *  

whenever f E CC(G). 
If (i) is  fulfilled, then o is the generalized Bochner measure pcl 

associated with p. 

Proof. (ii) * (i). Let p be a measure in M ( G )  for which there 
exists o E M+(G") satisfying the equality (3) valid for all f E C"(G). 
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Then obviously ,u belongs to Mp(G). We now fix f E CC(G) and 
x E G. With f replaced by f" (ii) yields 

i.e. condition (i) of Theorem 4.4.10. Moreover, polarization of the 
equality in (ii) implies 

whenever g E CC(G). Replacing f by Tz and g by shows that 
condition (ii) of Theorem 4.4.10 is fulfilled and therefore a = p. 
( i i )  I (2). If conversely p E Mp(G)  then the generalized Bochner 
measure p associated with p (by Theorem 4.4.10) satisfies the equal- 
ity (3) for each f E Cc(G). One needs only replace f by f * and 
specialize condition (i i)  of Theorem 4.4.10 to x = 0. 

Corollary 4.4.12 T h e  mapping p I-+ pp f r o m  M,(G) in to  M+(GA) 
established an the theorem (and envisaged to  serve as a generalization 
of the Fourier mapping) i s  injective. 

Proof. Suppose that measures p )  u E Mp(G)  admit the same gener- 
alized Bochner measure p. By the theorem we have that 

for all f E CC(G),  and by polarization we immediately obtain 

whenever f , g  E Cc(G). Letting g run through an approximate iden- 
tity in Cc(G) (See Proposition 4.1.13) we achieve that 
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holds for all f E Cc(G) ,  i.e. p = v. 

Consequences 4.4.13 of the proceeding discussion 

4.4.13.1 If p E Mp(G) then ,Bp E Msb(GA). If, in addition, p << WG 

then pcl E Mm(G) .  
We show the first statement. Clearly, 

x(f * f-1 = (xf) * (xf)" 
for all x E G A ,  f E Cc(G). Replacing f by zf in (3) this implies 

We observe that 

is a bounded function, since (f * f") . p E Mb(G) .  But for every 
function $J E C$(GA) there exists a function f E C"(G) with $J 5 
I f 1 2  (which is a consequence of Property 4.2.3.2), hence ,Bp * + E 
Cb(G") for all $J E C$(G"). 
4.4.13.2 Let p E Mp(G) with generalized Bochner measure &, 
and let cp E CPD(G)  with Bochner measure p,. Then cp - p E 
Mp(G) ,  (Pp,  &) is  a convolvable pair, and 

Pp * IP12 = ((f * f") * PIA 

From 4.4.13.1 we infer that ,LIP E Msb(GA). For every f E CC(G) 
we have 
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and since the last double integral is 2 0, p p  E M,(G). The rest 
follows from Theorem 4.4.11. 
4.4.13.3 Given p E Mp(G)  with generalized Bochner measure Pp 
we have that Tx(&) = ,Bp f o r  all x E G" if and only if x = 1 o n  
supp(p) f o r  all x E G". 

In fact, for x E G", ,Bx = E ~ ,  hence PX+ = E~ * ,Bp = TX& by 
Consequence 4.4.13.2. But now Corollary 4.4.12 applies and yields 
that Tx(Pp) = pcL if and only if xsp = p holds. This statement, 
however, is equivalent to x = 1 on supp ( p ) .  

4.4.13.4 Since EO E M,(G), Consequence 4.4.13.3 implies that 

hence b y  Theorem 4.4.10 that 

f o r  all f E C"(G) and x E G. I n  particular, for  x = 0 we obtain 

and hence that ,Op = W G A .  

W e  have regained the classical version of the Plancherel theorem. 

Theorem 4.4.14 For any measure p E Mb(G)  the following state- 
ments are equivalent: 

(2) I-1 E M*(G)* 
(ii) b(x) 2 0 for  all x E G". 
If any of these equivalent conditions is  satisfied then 
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Proof. ( i )  3 (ii). For p E Mb(G)  we have I,G(x)l 5 llpll, hence 

whenever f E Cc(G) .  F'rom Consequence 4.4.13.4 (with p, replaced 
by W G A )  we infer that for all f E Cc(G) and II; E G 

holds. Thus the measure fi  LJGA fulfills the conditions (i) and (ii) of 
Theorem 4.4.10 Since p E Mp(G),P,  = f i . u ~ ~  and therefore P, 2 0. 
It follows that b 2 0. 
(ii) + (i). If conversely ji 2 0 then (4) implies that 

for all f E C"(G), hence that p E Mp(G) .  

Definition 4.4.15 For any measure p E Mp(G)  with associated 
Bochner measure p, E M+(G") the generalized Fourier trans- 
form of p is given by 

Clearly, the generalized Fourier mappingF := FG : Mp(G)  -+ 
M+ (GA) is additive, positive homogeneous and injective, the latter 
property following from Corollary 4.4.12. 

In analogy to Theorem 4.3.7 we now prove 

Theorem 4.4.16 Fc i s  a homeomorphism of the cone (Mpl+(G),  rv) 
onto the cone (Mp,+(GA),  rv) with FE1 = FGA. 

Proof. 1. FG maps CPD+(G) into Mpl+(GA), and 



220 Harmonic Analysis of Convolution Semigroups 

In fact, let cp E CPD+(G) with Bochner measure p := F~cp. Then 

whenever x E G. Theorem 4.4.14 implies that p E Mpl+(GA), hence 
the assert ion follows. 
2. Now we show that 

Let p E Mpl+(G). Given an approximate identity {$u : U E U} in 
C" (G) for which necessarily 

or ?j(J 3 1 as u + (0) 

holds (Theorem 4.3.7), for every U E U the function $ulp := p * $u * 
$; belongs to CPD+(G), hence 

This implies that 

for all g E C"(G") and all U E U. For U --+ (0) this yields 

for all g E Cc(G"), and this shows that .FG~ E M,,+(G"). 
3. Next we prove that FGAFG = Id (on Mp,+(G)). Let p E Mp,+(G), 
{qu : U E U} and q ~ , ~  (U E U) be as in part 2. of this proof. 
Applying Consequence 4.4.13.2 with G replaced by G" we obtain on 
the one hand 



Positive definite measures 221 

on the other hand with the help of part 1. of this proof 

since $w,, E CPD+(G) for all U E U. Consequently 

for all U E U and in the limit as U -+ (0) the desired identity 
F G A F G ~  = p. 
4. It remains to be shown that FG is a homeomorphism. For the 
purpose of that proof it is sufficient to verify the continuity of the 
Fourier mapping FG : Mp,+(G) + Mp,+(GA) .  Employing part 3. of 
this proof and interchanging the roles of G and G" yields the final 
statement. 

Let ( , u ~ ) ~ E A  be a net in Mp,+(G) such that 

It is easy to see that this implies 

p , * f * f N  = p * f * f "  

for all f E Cc(G). By Theorem 4.3.7 

Now, for any II, E Cc(GA) we choose f E C"(G) such that f (x)  # 0 
for all x E supp (9). The function 

I o  otherwise 
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belongs to Cc(GA). Then 

which implies 

P r 

and hence that 
FGPa F G p -  

On the way of showing that Haar measures W H  of closed subgroups 
H of G are positive definite we are starting by studying the invariance 
set of a measure on G. 

Definition 4.4.17 A measure p E M ( G )  is said to be a - invar ian t  
with invariance point a E G i f  

p * & a = p .  

The totality of all invariance points of p which obviously is  a closed 
subgroup of G, will be called the invariance g r o u p  of p.  

Both notions are also employed for  functions f E C(G) by consid- 
ering f as the measure fwG. 

The invariance groups of p and f are denoted by Inv(p) and 
Inv (f) respectively. 

Finally, p E M ( G )  is said to be H - i n v a r i a n t  for some subset H 
of G i f  H c Inv(p). 

Clearly, for any closed subgroup H of G Haar measure W H  of H 
(viewed as a measure in M+(G)) is H-invariant (with s u p p ( w ~ )  = 
H ) .  If p E Mb(G)\{O} then Inv(p) is a compact subgroup of G. 

In fact, there exists a function f E CC(G) such that g := /A* f # 0. 
For any zo E G with g(z0) # 0 we obtain the inclusion 
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Since Mb(G) c Mm(G),  the set {z E G : g(z) = g ( x 0 ) )  is compact, 
hence Inv ( p )  is compact. 

Properties 4.4.18 of invariance groups. 
4.4.18.1 For measures p E Mb(G) we have that 

We only argue in favor of the first equality. By the injectivity of 
the Fourier mapping (Property 4.2.16.3) a E G is an invariance point 
of p if and only if 

x(a>Nx> = C ( X >  

for all x E G" and this in turn holds if and only if x ( a )  = 1 for all 
x E supp (ji) which says that a E (supp @))I. 
4.4.18.2 For functions cp E CPD(G) with Bochner measure P, E 
M$(G") we have that 

Inv(cp) = {x E G : p(z) = p(0)) 

= (SUPP (P,)>l.  

At first we infer from Property 4.4.18.1 that 

Now, any invariance point of cp satisfies ~ ( z )  = cp(0). On the other 
hand, if cp(z) = cp(0) for z E G then Property 4.3.2.3 implies that 

whenever y E G. But this yields J: E Inv (cp) .  

and
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4.4.18.3 For measure p E Mp(G) we have that 

While the last equality follows from Consequence 4.4.18.3, the first 
one requires a detailed proof. From formula (ii) of Theorem 4.4.10 
modified by polarization we deduce that 

valid for all f , g  E C"(G) and a E G. If a E Inv(p), then this 
equality implies that the bounded measures f2 - F p  and tuf2 - Fp 
have the same inverse Fourier transforms and hence are equal. But 
then x ( a )  = 1 for all x E supp(Fp)  and hence a E (supp (Fp))'-. 
If, conversely, a E G satisfies x ( a )  = 1 for all x E supp (Fp) ,  then 
( 5 )  implies that 

holds for all f, g E C"(G) and all x E G. Letting f and g run through 
an aporoximate identity in CC(G) we achieve p = p * E ,  or a E 
Inv ( p )  as desired. 

Now, let H be a closed subgroup of the given locally compact 
Abelian group G, and let T denote the canonical homomorphism 
from G onto the quotient group GIH. For every H-invariant func- 
tion f E C(G) there exists exactly one quotient function f E C(G/H)  
such that f 0 IT = f .  Let W H  be a fixed Haar measure of H .  Since, for 
any f E C"(G) the function W H  * f is H-invariant, its quotient func- 
tion (WH * f ) '  is uniquely determined and an element of CC(GIH). 
Consequently we obtain a mapping o : C"(G) + CC(G/H) defined 
by  

a(f) := ( O H  * f ) '  

and
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for all f E C"(G) which is linear, positive and continuous (with 
respect to  the topology T~-). The transpose ot of 0 maps M(G/H) 
linearly into the set M(G, H) of H-invariant measures in M(G). 

Properties 4.4.19 of the mapping 0. 
4.4.19.1 o is a surjection from Cc(G) onto C"(G/H) 
4.4.19.2 0 satisfies the invariance condition 

valid for all f E C"(G),a E G.  
4.4.19.3 Given Haar measures WG and W H  of G and H respectively 
there exists a unique Haar measure W G / H  of (GIH) such that 

4.4.19.4 Let p E M+(G, H ) .  Then there exists a unique quotient 
measure C; E M+(G/H)  (associated with p)  such that 

More generally, 

4.4.19.5 ot is an isomorphism from M ( G / H )  onto M ( G ,  H ) .  
While Properties 4.4.19.2 through 4.4.19.4 follow from obvious 

computations, Property 4.4.19.1 requires a proof. Let h E C $ ( G / H ) .  
Since 7r is a proper mapping, there exists a compact set K c G with 
r ( K )  = supp(h). Now we choose $ E Cc(G)  with the property that 
$ = 1 on K and define 

( 0  otherwise. 

Then f E CT(G), hence 

h 0 r ( Z )  

W H * f ( X ) = {  0 otherwise 
if W h  * $(Z) # 0 
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and consequently a( f) = k .  

4.4.19.6 Given the Haar measure WG of G and a fixed Haar mea- 
sure W H  of the closed subgroup H of G there exists a Haar measure 
w G / H  of G f H satisfying 

4.4.19.7 For a closed subgroup H of G any Haar measure W H  of H 
belongs to Mp(G) ,  and the generalized Fourier transform FwH of w~ 
is  a Haar measure of the closed subgroup H I  of G! 

In fact, for any f E CC(G)  we obtain from Property 4.4.19.6 that 

hence that W H  E Mp(G) .  From Property 4.4.18.3 we infer that FGWH 
is HI-invariant. The rest is clear. H 

Special Case 4.4.20 Let K be a compact subgroup of G and let W K  

be the normed Haar measure of K in the sense that W K  E M1(G) .  
Then  

GK = 1 K I ,  

is a Haar measure of K I .  
The normed Haar measure W K  of a compact subgroup K of G 

will play an important role in the probabilistic implications of this 
section to be discussed in Chapter 6 .  

and



Negative Definite Functions 

and Convolution Semigroups 

5.1 Negative definite functions 

In the present section we are going to study a notion dual to positive 
definiteness in order to obtain an analytic tool for the description of 
convolution semigroups of measures on the locally compact Abelian 
group G with dual group G". 

Definition 5.1.1 A complex-valued function $J on G" is  called neg- 
ative definite i f  for all n 2 1 and for all X I ,  ... ,xn E G" the 
matrix 

(+(Xi> + + ( X j >  - +(Xi - X j > >  E M(n x n,c> 
is hermitian. 

on G, and let CND(G") := ND(G") n C(G"). 
Let ND(G") denote the totality of all negative definite functions 

Properties 5.1.2 of a function II) E ND(G") .  

5.1.2.1 $(O) 2 0. 

227 

5
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5.1.2.2 $" = $ and Re $ 2 $(O). 

5.1.2.3 fl is subadditive. 

for every x E G" the matrix 
For proofs we note that Property 5.1.2.2 follows from the fact that 

is positive hermitian, and that Property 5.1.2.3 is a consequence of 
the positive hermiteness of the matrix 

E M(2 x 2,C)  

valid for all x, 
the inequalities 

E G". In fact, applying that $w = $ one obtains 

hence 

and this yields the subadditivity of JI'J;i. 
Properties 5.1.3 of the set ND(G") .  

5.1.3.1 ND(G")  is  closed under formation of complex conjugates 
and real parts. 

5.1.3.2 The constant function >_ 0 belongs to  N D ( G A ) .  

5.1.3.3 N D ( G A )  is  a rp- closed convex cone, CND(GA) a rco- closed 
convex cone ( in  C(G")).  
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The proofs of these properties are obvious. 

Theorem 5.1.4 For any complex-valued function @ o n  G" the fol- 
lowing statement are equivalent: 

(i) .1c, E N D ( G A ) .  

(b)  .lc,w = $, and 

(c) for all n 2 1, x i , .  . . ,xn E GA and c1,. . . ,cn E C with 
n 

i=l 
ci = 0 one has 

Proof (i) j (iz). Given @ E ND(G") it remains to show (c). Let 

n 2 1, x i , .  . . ,xn E GA and c1,. . . , cn € C with C ci = 0. Then 
n 

i=l 

n n n n 

n 

i,j=l 

ilj=l 

(zi) + (2). Let $ satisfy (a)  to (c)  of (ii), and assume given 
x i ,  . . . , X n  E G", ~1 . . . , C, E C .  Considering the sequences (0, X I ,  



230 Negative Definite Functions and Convolution Semigroups 

n 

i=l 
. . . , x n }  and {c,  c1,. . . , cn} with c := - C ci we obtain from (c) that 

i=l j=l i , j= l  

and with the help of (a) that 

i.e. (2). 

Further Properties 5.1.5 

5.1.5.1 If + E ND(G") ,  then also $ - +(O) E ND(G").  

obtain that 
In fact, for X I , .  . . , xn  E G", C I , .  . . ,cn E C with C:', ci = O we 

n n 

i,j==l i,j=l 

by assumption. But the function $ - $(O) clearly satisfies the condi- 
tions (a) and (b)  of (ii) of Theorem 5.1.4. The theorem implies that 
it belongs to ND(G").  

5.1.5.2 If cp E PD(G"), then cp(0) - cp E ND(GA) .  

ci = 0 the positive definiteness of cp implies that 

Again, we see that for X I , .  . . , Xn E GA and c1,. . . , Cn E C with 
n 

i= l  

Since the function cp(0) - cp satisfies the conditions (a) and (b)  of (ii) 
of Theorem 5.1.4, cp(0) - cp turns out to belong to ND(G").  
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The following result describes the connection between the sets 
PD(G") and ND(G"). 

Theorem 5.1.6 (Schoenberg duality, noncontinuous case) For any 
complex-valued function $ on GA the subsequent statements are 
equivalent: 

(i) $ E ND(GA) .  

(ii) (a) $ ( O )  2 0 and 

(b)  exp (-t$) E PD(G") for  all t > 0. 

Proof (i) + (ii). Given $ E ND(G") it suffices to show that 
exp(-$> E PD(G"). Let therefore X I , .  . . , Xn E G". Since the ma- 
trix 

(+(Xi> + +(Xj) - +(Xi - X j > >  E M(n x n, c> 
is positive hermitian, also the matrix 

is positive hermitian. But then we obtain for c1,. . . , cn E C that 

alj=l 

i,j=l 

where di  := exp(-+(Xi))ci E C for i = 1,. . . ,n, and this is the 
assert ion. 
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(ii) 3 (2). Suppose now that $ satisfies (a)  and (b)  of (ii). F'rom 
(a)  we infer that exp (-t$(O)) 5 1 for all t > 0, hence by Property 
5.1.5.2 that 

1 
-(I - exp (-t+)) E ND(G") t 

for all t > 0. Moreover we have that 

on G", hence by Property 5.1.3.3 that + E ND(G").  

The Schoenberg duality permits to prove two more important 

Properties 5.1.7 of functions + E ND(G"). 

5.1.7.1 (Forming the inverse). If $ ( O )  > 0 then $ E PD(G"). 

all t > 0. Moreover, 
By Theorem 5.1.6 the function exp(-t+) belongs to PD(G") for 

for all t > 0. Consequently 

5.1.7.2 (Approximation) There exist sequences (an)n>l in R+ and 
((Pn)n>l in PD(G") such that for the sequence (+n)n>l with 

the limit relationship 

$ = r P -  lim $n 
n+m 

holds (on  G"). 
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In fact, considering the sequence (p,),>l - of functions 

which by Theorem 5.1.6 belong to PD(G"),  and the sequence 
(u,),~l of numbers a, := $(O) E R+ we obtain that for any x E G" 

1 
hence 

I$(x> - $n(X>l I ; exp(l$(x> - $ ( O N  
holds. 

We note that given sequences (a,),?l in R+ and (p,),>l in 
PD(GA) the sequence ($,),21 defined in Property 5.1.7.2 clearly 
belongs to ND(G")  as follows from Properties 5.1.3 and 5.1.5.2. 

Examples 5.1.8 of functions an ND(G").  

5.1.8.1 Any homomorphism h from G" into R belongs to ND(G") .  
Moreover, 

5.1.8.2 given a real function h on G" the function $ := ih belongs 
to ND(G") if and only if h is a homomorphism. 

In fact, for all t > 0 the function 

is positive definite with lptl = 1. But then from Example 4.3.4.2 we 
conclude that pt E G" and therefore 

which implies that 



234 Negative Definite Functions and Convolution Semigroups 

whenever x ,  e E G". 

5.1.8.3 Any quadratic f o r m  q 2 0 on G" belongs to  ND(G"). 
We recall that quadratic forms q on G" defined by 

for all x, E G" have the properties q(0) = O,q(x)  = q(-x) and 
~ ( n x )  = n2q(x) whenever x E G" and n E N. The mapping Q : 
GA x GA -+ R given by 

for all x ,e  E G" is non-negative, symmetric and additive in both 
variables the latter property following from the subsequent sequence 
of equalities (related to the first variable): 

x ,  e, 0 being taken from G". But now 

n 

i=l 
for n 2 1, X I , .  . . ,xn E G " , c ~ ,  . . . ,cn E Z and x := C Cixi, and 

this suffices to see that q E ND(G"). 
For later application we note that 
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5.1.8.4 given a constant c >_ 0,  a homomorphism h : GA -+ R and 
a quadratic fo rm q 2 0 on GA the function 

? ) :=c+ ih+q  

belongs to ND(G”). 
This follows from Properties 5.1.3. 
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5.2 Convolution semigroups and resolvents 

We are now prepared to discuss the representation of continuous 
negative definite functions on G" in terms of measures on G. For 
this purpose we introduce the subset 

of nonnegative measures on G bounded by a > 0. 

Definition 5.2.1 A (one-parameter) family (pt)t>o of measures in 
M y ) ( G )  is  called a semigroup (of measures) in M Y ) ( G )  if the 
mapping t pt f rom into M Y ) ( G )  is  a homomorphism (of 
semigroups). 

(p&O is  said to be rv- or rw - continuous i f  this homomorphism 
is  rv - or rw -continuous respectively. I n  the case of rv -continuity 

po := rv - lim pt 
t-0 

(1) exists, and po is an  idempotent measure in M+ (G).  

rv -continuous and i f  
(pt)t>O is  called a convolution semigroup in M Y ) ( G )  if it is  

Po = Eo * 

W e  then write (pt)t>O - instead of (&>O. 

Remark 5.2.2 For a convolution semigroup (pt)t>O - in M y ) ( G )  the 
rv - and rw -continuities coincide. 

In fact, let (p&o be cr,-continuous. Then for f E Cc(G)  with 
0 5 f 5 1 and f ( O ) =  1 one sees that 
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hence by Proposition 4.1.3 that 

T~ - lim pt = ~ 0 ,  
t-0 

For t ,  t o  > 0 and x E G" we have that 

holds. The above limit relationship together with a double applica- 
tion of Theorem 4.3.7 for t --+ t o  yields the assertion. 

By S(G) and C S(G) we shall denote the set of semigroups and 
convolution semigroups in M+ (1) (G) respectively. 

Theorem 5.2.3 (Schoenberg correspondence) There is  a one-to-one 
correspondence 

(Pt)t>o IL) 

between the sets C S (G) and CND(G") given b y  

for all t 2 0. 

be associated (with each other). Symbolically w e  shall write 
I n  the situation of this correspondence (pt)t>O and IL) are said to 

(Pt)t>o - IL)' 

Proof. 1. Let (pt)t>o E C S(G) and define for any fixed x E G" the 
complex-valued function ' p x  by 

whenever t > 0. By Remark 5.2.2 ' p x  is continuous and satisfies 
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for t ,u E RT as well as 

lim'p,(t) = 1. 
t-0 

Consequently 'px is of the form 

for some unique $(x) E C (t > 0). Clearly the function 

satisfies $ ( O )  2 0, and the function 

belongs to CPD(G") for all t > 0. From Schoenberg's duality theo- 
rem 5.1.6 we now infer that $ E ND(G").  In order to show that $J 
is indeed continuous we look at the equalities 

P o o  roo 

valid for all x E G" and note that the left hand integral of the first 
equality is the Fourier transform of the Radon measure 

in M Y ) ( G ) ,  and as such it is continuous. 

2. Conversely, let $ E CND(G").  Then for every t > 0 the function 
exp(-t$J) belongs to CPD(G") by Theorem 5.1.6. From Bochner's 
theorem 4.3.5 we conclude that there exists a measure pt E M t ( G )  
satisfying 

bt = exp(-W) 
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for each t > 0. We shall show that (p&O E C S(G). First of all 
$ ( O )  2 0 implies that llpt 11 5 1 for all t 2 j. Next we conclude from 
the equalities 

valid for all x E G" that t I+ pt is a homomorphism from RT into 
M y ) ( G ) ,  as follows from the injectivity of the Fourier transform 
stated as Property 4.2.16.3. Since $ is continuous, hence bounded 
on compact sets, we obtain that 

lim jit = lim exp(-t$) = 1 
t-0 t + O  

with respect to the topology rco. But Theorem 4.3.7 yields 

rw - lim pt = EO 
t + O  

which implies the assertion. 

Corollary 5.2.4 (Schoenberg duality, continuous case). For any 
complex-valued function $ on G" the following statements are equiv- 
alent: 

(i) $ E CND(GA) .  

(iz) (a) $(O) 2 0 and 

(b) exp(-t+) E CPD(GA) for all t > 0. 

Corollary 5.2.5 Let (p&o - E C S(G) and $ E C N D ( G A )  with 
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Then 

(i) llptll = exp(-t$(O)) for  all t > 0. 

I n  particular, 

(22) pt  E M'(G) for  all t >_ 0 if and only if $(O)  = 0. 

The proofs of these corollaries are clear. 

Application 5.2.6 (Generation of convolution semigroups) 

5.2.6.1 (Symmetry) A semigroup (pt)t>o E S(G) is said to be sym- 
metric if pt = py f o r  all t > 0.  Let (p&o E C S(G) and 1c) E 
CND(G") with 

(Pt)t>o - $ ' 

Clearly ( p t ) t i o  E C S(G) is  symmetric i f  and only i f  q!~ i s  real. 
For any (pt)t>O E CS(G)  the convolution semigroup ( p t  * p;)t20 is 
symmetric. 

If (pt)t?o is symmetric, then pt E Mp,+(G), since 

for  all t 2 0.  

5.2.6.2 (Convolutions) For i = 1,2 let (pf))tZo E C S(G),& E 
CND(GA) with 

(P i i ) ) t20 - '1cli 

and let ai E R:. Then 

5.2.6.3 (Products) For i = 1,2 let Gi be a locally compact Abelian 
group with dual Gi", 

eThen
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(pii))t>o E C S(Gi),$i  E CND(GiA) such that 

Then  the function $ on  G/' x G2' defined by 

for  all ( ~ 1 ~ 2 )  E GI" x G2' belongs to  CND(GIA x G/),  and 

5.2.7 First Examples of convolution semigroups 

5.2.7.1 A semigroup in MY)(G) is called a translation semigroup 

x R+ -+ G such that 
in M+ (1) (G) i f  there exists a continuous semigroup homomorphism 

Pt = Ex@) 

One observes that ( P ~ ) ~ > o  - E C S(G). 
Extending x to  a continuous group homomorphism cp R -+ G by 

for  all t 2 0. 

x ( s )  if s 2 O 
-x(s)  if s < O 

p(s) := 

and looking at the dual homomorphism h := qA : GA 
obtains that 

R one 

i,(t) = exp(-t i h) 

for  all t 2 0. 

introducing 
Conversely, given a continuous homomorphism h : GA + R and 

x := Res R+hA : R+ + GAA G 

the translation semigroup ( E x ( t ) ) t > O  E C S(G) satisfies the above 
Fourier representation. Here Poni%yagin's theorem 4.2.13 has been 
applied. 
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I n  summing up we have established a one-to-one correspondence 
between the sets of translation semigroups ( E x ( t ) ) t z O  in MY'(G) and 
of continuous homomorphisms h : GA + R such that 

where $ := ih. 

5.2.7.2 For p E M$(G) with llpll 5 Q one introduces the convolution 
semigroup (pt)t>o in M y ) ( G )  by 

pt := e-ta exp ( tp )  

with 

for all t 2 0,  where po := EO.  Obviously 

f i t  = exp( - t (a  - ji)) 

with a - @ E CND(G") ,  hence 

For a := 1 (pt)t>O is said to  be the Poisson semigroup 

In order to  stress the determining measure p we shall write 
determined by $. 

(e(p) t ) t>o instead of (Pt)t>o. But then (e(Ex,)t)t>O appears to be 
the (classical) Poisson semigroup with parameter xo E G. 

Let (pt)t>o b e  a semigroup i n  S(G).  For every t > 0 we shall 
examine the  set 
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Properties 5.2.8 

5.2.8.1 Ht is independent o f t  > 0 and will therefore be denoted by  
H .  

5.2.8.2 H is an open subgroup of GA. 

5.2.8.3 K := H I  = Inv(pt) for  all t > 0,  and K will be called the 
invariance group of the semigroup (pt)t>o. 

5.2.8.4 If (pt)t>O is symmetric then 

rw - lim pt = W K  ) 

t+O 

5.2.8.5 (p&O E S(G) is r,-continuous if and only if the limit 
relationship of Property 5.2.8.4 holds. 

5.2.8.6 (pt)t>O E S(G) is a convolution semigroup (E C S(G)) i f  
and only i f  (pt)t>O is r,-continuous and has invariance group K = 

It suffices to provide arguments for Properties 5.2.8.1 to 5.2.8.4. 
Concerning 5.2.8.1 we note that from the homomorphism property 
of t I+ pt  we obtain that 

(0) a 

whenever 0 < t < s and n E N is chosen such that s < nt. The 
assertion follows. 

For 5.2.8.2 we observe that H is a subgroup of G if and only if 
1~ E PD(G). In order to show this characterizing property we as- 
sume without loss of generality that (pt)t>o is symmetric; the general 
case follows via symmetrization (See 5.2.6.1) by just looking at the 
equality 

Ht = {x E GA : (P t  * p m x )  # 0) 
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for t > 0. For symmetric (pt)t>o, however, we have 0 5 f i t  5 1, hence 

and from Property 4.3.3.4 we conclude that 1~ E PD(G"). Since 
,GI > 0 in a neighborhood of 0, H is open (hence closed), thus 1H E 
CPD(G"). 

For a proof of 5.2.8.3 one just refers to the fact that supp ( p t )  = H 
and applies Property 4.4.18.1. 

Finally we provide an argument for 5.2.8.4. Since the function 
t t-+ &(x) is decreasing for each x E G" and consequently 

rP - lim ,Gt = l H  
t+O 

holds (by the above limit relations), the continuity theorem 4.3.8 
applies, and together with 4.4.22 it implies that 

rw - lim pt = WK . 
t+O 

In the subsequent discussion we shall employ the symbol S(G, K )  
for the set of all .r,-continuous semigroups in S(G) admitting K as 
invariance group. Clearly, S(G, (0)) = C S(G). 

Theorem 5.2.9 (Generalized Schoenberg correspondence). There is 
a one-to-one correspondence 

between the set S(G, K )  and the set CND(H)  of continuous negative 
definite functions $ on the open subgroup H := K' of GA given b y  

Remark 5.2.10 First of all we realize that by 4.2.17.5 K' is  in- 
deed an open subgroup of G". 
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Moreover, given any open subgroup H of GA and $J E C N D ( H )  
the r,-continuous semigroup (pt)t>O E S(G) with 

has K := H I  as its invariance group, hence belongs to S(G, K ) .  
The proof of the theorem is performed similar to that of Theorem 

5.2.3. One just has to observe that in constructing the semigroup 
(p&O E S(G) the functions appearing in the Fourier representa- 
tion of (pt)t>O are belonging to CND(GA) .  But this follows from 
Property 4.3.2.5, since H is an open subgroup of G*. 

Remark 5.2.11 For the special choice K = {0},  i.e. H = G A ,  the 
correspondence theorems 5.2.3 and 5.2.9 coincide. 

Until now we studied convolution semigroups corresponding to 
continuous negative definite functions. A further object to associate 
with them is the resolvent family originating from the potential the- 
ory of semigroups of operators. 

Definition 5.2.12 A (one-parameter) family (ex)x>O of measures 
in M!(G) with IlXexII 5 1 for  all X > 0 is  called a resolvent (of 
measures) in M i  (G) if it satisfies the resolvent equation 

valid for  all X,p > 0.  

introduce for a resolvent of measures (ex)x>o in M t ( G )  the set 
I n  analogy to  the invariance group of a semigroup of measures we 

for  X > 0 and show the following 

Properties 5.2.13 

5.2.13.1 LA is  independent of X > 0 and will therefore be denoted by 
L. 



246 Negative Definite Functions and Convolution Semigroups 

5.2.13.2 L is an open subgroup of GA. 

5.2.13.3 M := L' = Inv(ex) for  all X > 0,  and M will be called 
the invariance group of the resolvent (ex)x>o, 

5.2.13.4 

For the proofs of these properties we simulate the arguments 
provided for the Properties 5.2.8. It suffices to verify that 1~ E 
CPD(GA). 

In fact 

since 
61 

1 + (A - l)& fiix = 

for all X > 0 by the resolvent equation, and this implies 

whenever x E L. Property 4.3.3.4 together with the openness of L 
yields the assertion. 

In what follows we shall use the symbol R(G, M )  for the set of all 
resolvents in M$(G) admitting M as their invariance group. An ana- 
logue of the generalized Schoenberg correspondence theorem reads 
as follows 

Theorem 5.2.14 (Resolvent correspondence). There is a one-to-one 
correspond en  ce 

between the sets S(G, K )  and R(G, K )  given by  

(Pt)t>O - (@X)A>O 
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where this equality is  understood as an equality of Radon measures 
on  G. 

I n  the case of this correspondence (pt)t>O and (ex)x>o are said to  
be associated. 

Proof 1. Starting with a semigroup (,!.&>O E S(G,K)  we define 
Radon measures ex E Ad+ (G) by 

for all f E CC(G). Applying the generalized Schoenberg correspon- 
dence theorem 5.2.9 in the sense of 

with $J E C N D ( H ) ,  where H := KL, we obtain that l lXQx)I  5 1, 
hence that ex E M$(G) ,  and that 

From this Fourier representation it follows that (ex)x>o is a resolvent 
in M!(G), and that it determines the function $J as well as the rw- 
continuous semigroup (pt)t>0 uniquely. It is clear that (ex)x>o has 
the same invariance group as (pt)t>o, hence E R(G,K). 
2. Now, let x E H := KL. From the resolvent equation we deduce 

is independent of X > 0. Consequently $J := $Jx is a well-defined 
complex-valued function on H .  In the proof of Properties 5.2.13 we 
showed that 

1~ = rp - lim Xex .  
X + W  

On the other hand 

that the number
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for all x E H, X > 0, hence 

for all x E H, and consequently $ E C N D ( H )  by Property 4.3.3.4. 
But now Theorem 5.2.9 implies the assertion, since 

whenever X > 0. I 

Corollary 5.2.15 A resolvent (QX)X>O in M t ( G )  determines a con- 
volution semigroup (pt)t>o in MY’ if and only if the inuariance 

This is immediate from the theorem together with Property 
group of (@X)X>O equals {Q. 

5.2.8.5. 

Theorem 5.2.16 (Support correspondence) Let ( p t ) t > o  - E C S(G) ,  
and let (QX)X>O be a resolvent in M$(G)  with 

Then  for each X > 0 

(ii) supp (ex> is  a a-compact semigroup in G with 0 E supp (@A) ,  

and 

(iii) S := [ U supp (pt)]- is  a-compact. 
t>O 

Proof. We fix X > 0 and f E Ct(G). Then 

1 f d e x  = 0 if and only if 1 f d p t  = 0 for all t > 0 .  

(i)
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Since by assumption on (pt)t>o - 

rv - limpt = E O ,  
t-0 

f(0) > 0 implies 
an open subset U of G we have 

f d e x  = 0, hence 0 E supp (ex). Similarly, given 

supp (ex) c U" if and only if supp ( p t )  c U" 

for all t > 0, and 

as asserted in (i). 

that for s, t > 0 
From the support formula quoted in Theorem 4.1.10 we conclude 

hence that 

is a semigroup which we have shown to contain 0. Since every mea- 
sure in M:(G) has a-compact support, (2) implies (ii). 
Finally, 

But the set supp (ex) - supp (ex) being 0-compact, also its closure 
and hence S is a-compact. This proves (iii). 

Theorem 5.2.17 Let (pt)t>o - E C S(G) and 1c) E CND(GA) with 
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and let S := [ U supp(pt)]-. 
t>O 

Then 

(i) T := Inv($) = {x E G" : $(x) = $(O)}. 

and 

(ii) S = T I ,  hence T = SI. 

Proof. For each t > 0 we define the set 

At := {x E G" : exp(-t$(X)) = exp(-t$(O))}. 

Clearly, 

x E Inv ($) if and only if x E Inv (exp(-t$)) 

for all t > 0. By Property 4.4.18.2 this implies that 

($1 = n At = {x GA : $(x) = $(OH, 
t>O 

hence (2). 

Moreover, Properties 4.4.18.1 and 4.4.18.2 lead to 

At = Inv (bt) = (SUPP ( P t ) ) l  

for all t > 0, and therefore to 

which by Property 4.2.17.1 yields the assertion in (zi). w 

By passing to quotient groups and applying the Pontryagin duality 
the discussion starting with Properties 4.4.19 can be extended in an 
obvious way. 
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Properties 5.2.18 

5.2.18.1 If  (pt)t>O is a semigroup in M Y ) ( G )  with invariance group 
K ,  then (,&)t>O is a sernigroup in M y ) ( G / K )  with invariance group 
(01 (in (GIK)) .  
If, moreover, (pt)t>o E S ( G , K ) ,  then (@t)t>O E S(G/K,{O}) = 

C S ( G / K ) .  

5.2.18.2 Let (ex)x>o E R(G,  K )  and let (pt)t>o E S(G, K )  with 

M t > O  - (ex)x,o ' 

Then ( d ~ ) ~ > o  is a resolvent in M$(G/K)  with 

Then the quotient function 4 E CND(G"/S)  corresponds to (p&o - 
considered as an element of C S(T),  where S := Inv($) and T := 
9. 

5.2.18.3
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5.3 Levy functions 

In the previous section it was shown that the constant functions, ho- 
momorphisms and nonnegative quadratic forms on the dual G" of a 
locally compact Abelian group G are negative definite. The question 
arises of whether these types of negative definite functions can be 
viewed as building blocks of general negative definite functions on 
G". An answer to this question can be given within different frame 
works. In probabilistic terms it covers the canonical decomposition 
due to P. L6vy and A.I. Khintchine of infinitely divisible or embed- 
dable probability measures on Euclidean space (See Theorem 3.4.20). 
In the present exposition we shall present a canonical representation 
of negative definite functions on the dual GA of a locally compact 
Abelian group G which by the Schoenberg correspondence provides 
also a canonical representation of the associated convolution semi- 
groups on G. 

We start with the discussion of a fundamental centering method 
developed in terms of a centering function (or local inner product) 
for G. 

Definition 5.3.1 A function g E C(G x G") is called a L&vy func- 
tion for  G if the following conditions are satisfied 
( L F l )  For every compact C c GA 

and 
g(-x,x) = -g(x,x) 

for  all x E G,x,e E G". 
( L F 3 )  For every compact C c G" there exists a U := U c  E ~ G ( O )  
such that 

x(x) = exp i d x ,  x) 
whenever x E U,x E C. 

( L F 2 )
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(LF4) For every compact C c GA 

lim sup g ( x , x )  = 0 .  
2-0 X E C  

Examples 5.3.2 of L h y  functions 

5.3.2.1 If G := Rd for d 2 1 and i f  for every i = 1, . . . , d a funct ion 
ci E Cb(R) i s  given with the properties that 

f o r  all t f r o m  some U E 2 3 ~ ( O )  and that 

for all t E R, then the funct ion g : Rd x Rd + R defined by 

f o r  all x = ( X I , .  . . , x d )  and y := (yl ,  . . . ) Y d )  in Rd i s  a L i v y  funct ion 
for G. 

5.3.2.2 Let G := Td for d 2 1. T h e n  G can be viewed as the group 

{(xi,. . . x d )  E Rd : xi E] - 1,1] for all i = 1,. . . , d }  

with addition modulo 2. Employing for every i = 1, . . . ) d the funct ion 
Ci introduced in the previous example one obtains a Levy funct ion g 
for G by putting 

d 

i= 1 

for all x = (XI,. . . , xd) E Td and m := (m1,. . . , m d )  E Zd.  

5.3.2.3 Let G := QdA (the dual of the discretely topologized ra- 
tionals), < E Cb(G) ,  and let xo E Qd with xo # 0 be such that 
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exp i<(x) = X O ( X )  for  all x in some U E 2?~(1). Then the real-valued 
function g on  G x G" defined by  

for  all x E G , x  E G" is a Le'vy function for  G. 

5.3.2.4 If G is  totally disconnected, then the zero function on  G x G" 
is  a Levy function for  G, since every homomorphism from G" into 
R is  trivial. 

Properties 5.3.3 of Le'vy functions 

5.3.3.1 (Products) Let G = G1 x G2 be the product of two locally 
compact Abelian groups G1 and G2 admitting L ivy  functions g1 and 
92 respectively. Then G admits the Ldvy function g given by  

whenever x := ( X I ,  x2) E G1 x G2 and x := ( X I ,  x2) E GI" x G2". 

5.3.3.2 (Extensions) Let H be an open subgroup of a locally compact 
Abelian group G admitting a Le'vy function g o .  Let d' denote the 
canonical homomorphism G" + HA G"/HL.  Then the function 
g on  G x G" defined by  

and all x E G" is a Le'vy function for G. 

of G. The remaining properties of g follow from those of go. 
In fact, g E C(GxG"),  since H is an open, hence a closed subgroup 

Theorem 5.3.4 O n  any locally compact Abelian group G there exists 
a Le'vy function. 

Proof 1. From Property 5.3.3.2 we infer that it is sufficient to 
prove the theorem for an open subgroup H of G. Choosing H as the 
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subgroup generated by an open compact neighborhood of 0 E G we 
can apply the structure theorem 4.2.19 and obtain the direct product 
decomposition 

H = R~ x ze x K 

where d,e  2 0 and K is a compact Abelian group. But now it is 
obvious by Property 5.3.3.1 that we may without loss of generality 
assume G to be a compact group, since for Rd and Zd Lbvy functions 
exist by Examples 5.3.2.1 and 5.3.2.2 respectively. 
2. Let G be a compact Abelian group. For the connected component 
Go of the identity 0 E G we have 

by the functorial properties 4.2.17 of the duality. Since Go is con- 
nected and compact, Go" is a discrete group in which each element 
is of infinite order. An application of Zorn's lemma yields a maximal 
family {d, : a E A }  in Go" with the following linear independence 
property: If 

x n a i d a i  = o 
1 

i=l  

for some 1 E N,n,, , .  . . , n a 1  E Z and d,,,. . .  ,d,, E {d, : a E A } ,  
then nai = 0 for all i = 1 , .  . . ,1. But then for any d E Go" there 
exist d,,, . . . ,d,, E { d ,  : a E A }  and n,nl,.  . . ,721, E Z,n  > 0 such 
that 

k 

n d  = nid,, , 
i=l 

where the representation is unique within multiplication by integers. 
Each element of Go" being a coset of GoL in G" we take the coset d, 
and choose an element X, E G" from this coset. x, will be fixed for 
the moment. One observes that there exists a function hx,  E C(G) 
having the following properties: 
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for all x E G, and 
x,l.(x) = exp ihx,(x) 

for all z E G such that Ix,(x) - 11 < - $. Next we define 

for all x E G and a E A. 
Now, let x E G" be arbitrary. Then x belongs to some coset of GoL 

being an element of GA/GoL. This element d admits a representation 
oftheform(1) wi thn ,n l ,  ..., n k  E Z , n  > Oandd,, ,..., d,, E {d, : 
a E A }  ( k  2 1). The function g defined by 

for all x E G , x  E G" will serve as a L6vy function for G. We shall 
show the required properties in 
3. First of all g E C(G x G"), since z I+ g(z ,x )  is continuous on 
G for each x E G" and GA is discrete. Properties (LF1) and (LF2) 
follow directly from the construction. 

Since compact sets in G" are finite it suffices to prove Property 
(LF3)  for each x E G". For any x E G" we denote the coset of Go* 
to which x belongs, by 2. Then (1) can be rewritten in the form 

Clearly, x1 - x 2  E GoL whenever X I ,  x2 E 2. Since GoL = (G/G# 
is totally disconnected, every element of GoL is of finite order. Hence 
for any x E GoL there exists a neighborhood V E D6(0) such that 
x ( x )  = 1 for all x E V ,  and consequently, for x1,x2 E 2 we have 
XI(.) = x2(z) for all x in some V1 E DG(O). 

But now we refer to the construction of the function h,, above. 
There exists a neighborhood Vz E DG(O) such that 
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for all z E V2 (a E A ) .  For arbitrary x E G" we employ (2) in order 
to obtain the representation 

where xajl,. . . , x a j n j  E xaj  for j = 1,. . . , k .  For the above dis- 
cussion it follows that there exists a neighborhood V3 E 2?~(0)  
(depending on the characters xajr and xaj) such that 

for all II; E V3 (T = 1,. . . ,n j ,  j = 1,. . . , k ) .  Let U1 denote the inter- 
section of all neighborhood of type V3 arising from the choices of the 
xajr(r = 1,. . . ,nj, j = 1,. . . , k ) .  Then 

for all II; E U1,r = 1,. . . ,n j ,  j = 1,. . . , k .  But (3) and (4) imply that 

for all II; E U1. Since there are neighborhoods E 2?~(0) ,  on which 

holds, there is also a neighborhood E 2 ? ~ ( 0 )  where 

is valid. x and exp ig(-) x) being continuous and # 0 at the identity 
0 of G we obtain the desired neighborhood U E 2 ? ~ ( 0 )  such that 

for all x E U, x E G". 
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Finally we note that Property (LF4) follows from the facts that 
g E C(G x G") and that g(z,x) = 0 whenever either z or x are the 

Applying a Levy function g for G we can provide a new type of 
continuous negative definite functions on G" which will be crucial 
for the canonical representation we are aiming at 

identities of G or G" respectively. The proof is complete. 

Theorem 5.3.5 Let g be a Le'vy function for G, and let p E M+(GX)  
with GX := G\{O} be such that 

1 (1 - Re x)dp < oo 
GX 

for all x E G". Then  the function qP o n  G defined by 

for all x E GA belongs to CND(G").  

Proof. For a fixed 
DGA (0) there exists 
U(W)  E !?3~(0) such 

for all x E U and x 

xo E G" and a compact neighborhood W E 
by Property (LF3) of g a neighborhood U = 
that 

E xo + W. Then Property (LF4)  implies the 
existence of a neighborhood U' E a~(0) satisfying the inequality 

valid for all x E U' and x E x o  + W. It follows that for all 2 E U' 
and x E xo + W 



Le'vy functions 259 

Since p(GX\U') < 00 by assumption, Property (LF1) implies that 
+,(xo) is a well-defined number E C and moreover that there exists 
a constant c := c(x0) 2 0 such that 

whenever x E xo + W .  Since for every z E G the functions 

and 
x I+ 1 - Re x(z) 

belong to ND(G") ,  also q, and Re qCL are elements of ND(G").  
Here Example 5.1.8.2 and Properties 5.1.3 are applied. 

It remains to show that q, is continuous. Once we know that 
Re qp is locally bounded, inequality (6) justifies the local bounded- 
ness of $,. Let therefore +, be of the form 

Let K: denote the family of the compact subsets K of G with 0 $ K ,  
and set for each K E K: 

p~ := Res ~ p .  

Clearly qpK E CND(G") for all K E K:, hence 

is lower semicontinuous. For every n 2 1 the set An := {x E G" : 
+,(x) 5 n} is closed. Since $, is finite everywhere we have G" = 
U A,  and by Baire's theorem there exists an no 2 1 such that 

n / l  
An, # 0. Let V be an open neighborhood E DG(O) and let x1 E An, 
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be such that xi + V c Ano. Since qbp E ND(G") we obtain from 
Property 5.1.2.3 for all x E xo + V ( X O  E G) and x2 := xo - x1 that 

L 

I 

hence that qp is locally bounded. Since $p  is a complex linear combi- 
nation of linear semicontinuous functions, it is locally W G A  -integrable, 
and given a function f E C:(G*) satisfying f ( x )  = f ( - x )  for all 
x E G" and ~ ~ W G A  = 1 we conclude that 

whenever x E G". But this implies the continuity of qbp,  since the 
last integral in the above chain of equalities is the Fourier transform 
of the measure (1 - F G A ~ )  - p E M i ( G X )  considered as a measure 
on G. 



The Lhy-Khintchine representation 261 

5.4 The Levy- K hint chine representation 

For any locally compact space E we denote by M C ( E )  the set of 
Radon measures with compact support. In the case of a locally com- 
pact Abelian group G with dual G" the set 

S := {a E M1(G") n Mc(G") : 0 = a-} 

of symmetric probability measures on G" with compact support will 
be efficiently applied. 

Theorem 5.4.1 Let + E CND(G").  Then 
(i) f o r  any a E S the functions + * a - q!J belongs to CPD(G") and 

hence admits a Bochner measure pa E M$(G) in the sense that 

&pa = + * a - + . 
(ii) There exists a measure p E M+ ( GX ) satisfying (1 - FGA a) - p = 

Res ~ x p ~  whenever a E S.  

(iii) If q!J is associated with a convolution semigroup (&>O - in 
M+ (1) (G)  according to  the Schoenberg correspondence, then 

1 
p = rv - lim -Res GXpt. 

t-0 t 

Remark 5.4.2 The relevant references to  statements ( i )  and (iii) of 
the theorem are Theorems 4.3.5 and 5.2.3 respectively. 

Definition 5.4.3 The measure p established in Theorem 5.4.1 is 
called the Le'vy measure for  the continuous negative definite func- 
tion $J or for  the convolution semigroup (pt)t>O - associated with q!J. 

Proof of Theorem 5.4.1. Let + ++ (pJt>o (via Theorem 5.2.3) and 
let a E S. Then for any t > 0 
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and 

for all x E G". Since 

1 
t-0 t T~~ - lim -(I - exp(-tcp)) = $, 

we obtain that 

in either of the topologies T~ and T ~ ~ .  As a conclusion we obtain that 
$ * o - $ E CPD(G"), and by an application of Theorem 4.3.7 that 

where pa E M!(G) such that 

Given $ E Ct(G) with supp(cp) c GX we choose o E S such that 
for all x in a neighborhood of supp (9). The function FGA~(x) 5 

cp' on G defined by 

1-3G~ V ( X >  U ( X )  if x E supp(cp) 
cp'(x) := 

I 0  otherwise 
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belongs to CS_(G), and 

This implies that there exists a measure p E M+(GX)  such that 

1 
p = rv - lim -Res GXpt 

t + O  t 

and that 
( l - F ~ ~ a ) . p = R e s ~ x p ,  

holds for all 0 E S. 

5.4.4 Properties of Le'vy measures 

5.4.4.1 A n y  Le'vy measure IIC) of a function + E CND(G")  (or of 
i ts  associated convolution semigroup in M Y )  (G))  has the following 
properties: 

/ ( l - R e X ) d p < o o  
GX 

f o r  all x E GA. 

(b) For every compact neighborhood V E 527~(0) 

Res v C , u  E M t ( G ) .  

While the statement in (a) follows directly from Theorem 5.4.1 by 
specializing 0 to the measure $ ( E ~  + E - ~ )  for x E G", the statement 
in (b) makes use of the existence of 0 E S satisfying 

(a)
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for all x in the complement V" of a compact neighborhood V E 
2?~(0) ;  one just applies (ii) of Theorem 5.4.1 and deduces the in- 
equalities 

valid for each cp E CF(G) with supp(cp) c V". 

5.4.4.2 Let qP E CND(GA)  be the function introduced for  a given 
measure p E M+(GX) in Theorem 5.3.5. The Le'vy measure of +p is  
just  p, hence p is  uniquely determined by $cl. 

In fact, for o E S and x E GA we obtain the identity 

and it follows that the measure (1 - F G A ~ )  - p considered as an 
element of M i ( G )  has $, * a - 1CIcl as its Fourier transform. 

5.4.4.3 Let $1 ) '$2 E C N D ( G A )  (associated with convolution semi- 

Levy measures. Then  the fukct ion $ := $1 + $2 E C N D ( G A )  (asso- 
ciated with the convolution semigroups (p i ' )  * pi2))t20) admits p := 
p1 -/- p2 as its Le'vy measure. 

groups (pil))t>o and (pt (2 ) )t>o respectively) admit p1 and p2 as their 

Example 5.4.5 Let p E M$(G) with 11p11 5 1. Then b y  Example 
5.2.7.2 $ := I - ji is  the continuous negative definite function asso- 
ciated with the convolution semigroup determined b y  p. I t  turns out 
that the L i v y  measure for  $ is  Res ~ x p .  

By a simple computation of Fourier transforms and an application 
of their sequential bicontinuity (Theorem 4.3.8) one shows that any 
convolution semigroup (pt)t>O in M+ (G)  with associated resolvent 
(ex)A,O can be obtained as alimit of convolution semigroups (p&o 
determined by X2ex in the sense that 

(1) 

x pt = rw - lim pt 
x-+a 
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for all t > 0. It is easy to see that for the L6vy measure p of (p&O - 
one obtains 

p = rv - lim Res G X  X2ex . 
x--too 

We are now prepared to characterize the two types of continuous 
negative definite functions introduced in Examples 5.1.8.2 and 5.1.8.3 
in terms of measures in S. 
5.4.6.1 A real-valued function h E C(G") with h(0) = 0 is a (group) 
homomorphism i f  and only i f  h * a - h = 0 for all o E S.  

In fact, for any homomorphism h : G" + R and each CT E S we 
have 1 h(e)o(de) = 1 h(-e)o"(de) 

hence hda = 0 and consequently 

whenever x E GA. If conversely this latter condition holds for o E S, 
then we obtain for x ,  e E G" and 0 := + ( E ~  + E - ~ )  that 

in particular for the choice e = 0 that 

Analogously we obtain 
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hence adding the two equalities yields 

As an immediate consequence of this property we note that 

5.4.6.2 the Le'vy measure for  a function 1c) E CND(G")  of the form 
1c) := ih with a continuous homomorphism h : G" + R is the zero 
measure. 

With similar arguments one proves that 

5.4.6.3 for  a function $ E CND(G")  with L iuy  measure p the func-  
tion i Im II, E CND(G") i f  and only if p is symmetric. 

5.4.6.4 A symmetric real-valued function q E C(G") with q(0)  = 0 
is  a quadratic form on G" i f  and only i f  there exists a constant c E R 
such that 

q * o - q = c  

whenever CT E S. I n  the afirmatiue case q 2 0 if and only if 

q * o - q > o  

for  all CT E S .  

and x E G" we have 
For the proof let q be a quadratic form on G". Then for 0 E S 
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If conversely q * 0 - q equals to a constant c E R for all o E S, 
then for x, e E GA and o := $ ( E e  + e-@) we obtain 

or 

These equalities also yield the remaining part of the assertion. 

that 
As an immediate consequence of 5.4.6.4 we arrive at the assertion 

5.4.6.5 a real-valued function $ E CND(G")  with $(O) = 0 having 
Le'vy measure p is a quadratic f o r m  2 0 i f  and only if ,u is  the zero 
measure. 

In fact, from 5.4.6.4 follows that $ is a quadratic form if and only 
if the measure pO introduced in (i)  of Theorem 5.4.1 is supported 
by (0) for all 0 E S. But this statement is equivalent to p being the 
zero measure. 

Theorem 5.4.7 (Canonical representation of continuous negative 
definite functions) 

Let g be a Le'vy function for G. For any complex-valued function + on  G the following statements are equivalent: 
( i )  + E C N D ( G A ) .  

(ii) There exist a constant c 2 0,  a continuous homomorphism h : 
GA - R, a nonnegative continuous quadratic form on  G A  and 
a measure p E M + ( G X )  satisfying 

/ ( l - R e X ) d p < m  
G X  

for all x E GA such that 



268 Negative Definite Functions and Convolution Semigroups 

whenever x E G"'. 
Moreover, the canonical quadruple (c, h, q, p )  with c := $(O), q 

1 
n-oo n2 

given by 

(8) q ( x )  = lim -Re $(nx) 

for all x E G", and p being the Le'vy measure for $ is uniquely 
determined by $, the function ih, however, depending on the choice 
of the Le'vy function 9. 

Proof. (i) 3 (ii). Let $ E CND(G").  The L6vy measure p of $ 
coincides with the L6vy measure $' := $-c. Introducing the function 

where $p has been defined in Theorem 5.3.5, we obtain that 

where po E M$(G) for o E S has Fourier transform 

(See the proof of Property 5.4.4.2). In fact, 

Now taking real and imaginary parts in the identity (9) we arrive at 
the equalities 

(Re $ I 1 )  * CT - Re $ ' I  = ~ ~ ( ( 0 ) )  

and 
(Im + I 1 >  * o - Im +I1 = o 

for all 0 E S. Since $ I 1  is a difference between negative definite 
functions we have that 

Im $" (0) = Re $" (0) = 0 
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and 
Re ?,b”(x) = Re ?,b”(-x) 

for all x E G“. Application of the characterizations 5.4.6.1 and 
5.4.6.5 provides the desired homomorphism h = Im $” and the non- 
negative quadratic form q := Res $”. The representation (7) has 
been established. 
(ii) =$ (2). We are now given the function $ represented as in (7) via 
the quadruple (c, I ,  q, p) .  Then Example 5.1.8.4 and Theorem 5.3.5 
imply that ?,b E CND(G*). But by Property 5.4.4.2 together with 
characterizations 5.4.6.1 and 5.4.6.5 p is the L6vy measure for $ and 
c = $(O). It remains to be shown that q satisfies the limit relation 
(8). Since h is a homomorphism and q a quadratic form (on G”), we 
have 

1 d x )  = -&nx) 
1 1 c 1  

= --$(nx) n2 - ;i Z(x) - n2 - 3 1 ( I P b X )  

for all x E G” and n 2 1. Hence it suffices to prove that 

or by the dominated convergence theorem that 

1 
n+m n2 
lim -(I - nX(x) + i g(z, nx)) = O 

as well as 

holds for all x E G , n  2 1 and some constant C > 0. While the above 
limiting relationship is evident, the inequality requires a look back 
to the estimate (5) in the proof of Theorem 5.3.5 and an argument 
in support of the inequality 

1 

A(1 - Re nX(z)) I C(1 - Re ~ ( z ) )  
n2 
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valid for all x E G, n 2 1. The latter can be established as follows: 
For fixed x E G and x E G" there exists 6 E [-'rr,7r] such that 
x(x) = ei8. It follows that 

1 1 
-(1 - Re nX(x)) = -(1 - cos n8) 
n2 n2 

since the functions y H is bounded away from 0 on [- 4, $1. 
Now, by Property 5.4.4.2 the quadruple ( c , h , q , p )  is uniquely de- 

termined by q!~ and deserves to be called canonical. 

Remark 5.4.8 I n  the special cases of bounded or symmetric Levy 
measures p f o r  $ the canonical representation given in Theorem 5.4.7 
does not require the use of the Le'vy function g which had been in- 
troduced in order to achieve the absolute convergence of the integral 
defining $ p .  

Discussion 5.4.9 of the classical Le'vy- Khintchine formula 
(See Remark 3.4.21). 

I n  the case G = GA = Rd (d  2 1) various Levy functions (apart 
from the one introduced in Example 5.3.2.1) can be given. Unfortu- 
nately the classical function go defined b y  

f o r  all (x,y) E Rd x Rd is  not a Livy function in the sense of Def- 
inition 5.3.1. A slight modification of the above approach, however, 
makes it possible to obtain the classical analogue of Theorem 5.4.7. 
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In fact, for a measure p E M + ( ( R d ) x )  the condition 

valid for all y E Rd is equivalent to the condition 

where Ul denotes the unit ball with center 0 and radius 1. Moreover, 
it can be shown that for any compact subset K of Rd there exist a 
neighborhood V E m R d ( 0 )  and a constant c > 0 such that 

for all z E V,y E K. This inequality together with the above finite- 
ness condition is the proper replacement for the canonical estimate 
( 5 )  in the proof of Theorem 5.3.5. 

With these tools at hand the previous arguments yield the equiva- 
lence of the following statements valid for any complex-valued func- 
tion $ on Rd 

(i') $ E C N D ( R d ) .  

(ii 7 There is a canonical quadruple (c,  h, q, p ' )  as in (ii) of Theorem 
5.4.7 with a bounded Le'vy measure p' E M+((Rd) ' )  such that 

f o r  all y E Rd. 
In order to relate Theorem 5.4.7 for locally compact Abelian 

groups to the L6vy-Khintchine decomposition theorem 3.4.20 for 
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separable Banach spaces we proceed as follows. As a direct conse- 
quence of Theorem 5.4.7 we obtain 

Theorem 5.4.10 (Canonical representation of convolution semi- 

Let g be a Le'vy function for  the underlying locally compact Abelian 
group G. Then  any convolution semigroup (pt)t>o - f C S(G) has a 
Fourier representation 

groups) 

valid for  all t > 0 ,  where the negative definite function $J E CND(GA)  
associated with (pt)t>O admits a canonical quadruple (c,  h, q, p )  of the 
fo rm (7) in Theorem 5.4.7. 

The proof of this statement follows from the Schoenberg corre- 
spondence theorem 5.2.3 (together with Theorem 5.4.7). 

As in Section 2.3 for separable Banach space we may also for locally 
compact Abelian group G introduce the notions of infinite divisibility 
and embeddability of probability measures on G. 

Definition 5.4.11 A measure p E M 1 ( G )  is  called infinitely di- 
visible if for  every n E N there exists an n-th root of p, i.e. a 
measure pn E M 1 ( G )  such that 

p E M1(G) is  said to be embeddable i f  there exists a convolution 
semigroup ( & l o  in M1(G)  such that p1 = p. 

The sets of infinitely divisible and embeddable probability measures 
on  G will be denoted by  I (G)  and E M ( G )  respectively. 

Clearly, 
E M @ )  c W),  

but the inverse inclusion fails to be true in general. In the special 
case G := Rd, however, the sets I (G)  and E M ( G )  coincide (See the 
embedding theorem 2.3.9 for arbitrary separable Banach spaces). 

With this notation we add 
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Corollary 5.4.12 (to Theorem 5.4.10). Any measure p E E M ( G )  
with embedding convolution semigroups (p&O - E C S(G) has a 
Fourier representation 

where $ E CND(G')  associated with (pt)t>O admits a canonical 
quadruple (c,  h , q , p )  of the form (7) in Theorem 5.4.7. 

b = exP(-$), 



Probabilistic Properties 

of Convolution Semigroups 

6.1 Transient convolution semigroups 

The probabilistic notions of transience and recurrence for stationary 
independent increment processes can be discussed in terms of convo- 
lution semigroups. This analytic treatment yields further interesting 
results of potential-theoretic nature. 

Let G denote a locally compact Abelian group. For a convolution 
semigroup (pt)t20 in C S(G) with associated resolvent (ex)x>o and 
any function f E C:(G) we observe that the mapping 

for R: into R is decreasing. Hence the monotone convergence theo- 
rem implies that 

274 

6
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Definition 6.1.1 A convolution semigroup (,ut)t>o in C S(G) is  
called transient if 

f o r  all f E CZ(G), and in this case 

K := T~ - lim ex E M+(G) 
x-0 

is  said to  be 
(Pt ) tzo is  

Discussion 

the potential measure of (pt)t?O. 

called recurrent i f  (pt)t>O - is  not transient. 

6.1.2 

6.1.2.1 Theorem 5.2.16 and its  proof imply that the potential mea- 
sure K of a transient convolution semigroup (pt ) t lo  E C S(G) with 
associated resolvent ( e ~ ) x > o  has the property that 

suPP (4 = SUPP (ex) = (U supp (pt))- 
t > O  

( for  all X > 0 )  and that supp ( K )  is  a semigroup in G. 
6.1.2.2 Let (pt)t>O E C S(G) and $ E CND(G*) with 

If $(O) > 0 then (pt)tLo is transient, K E M t ( G )  with 

1 
j&- 

and 

1cI' 
O n  the other hand we shall see later, that there exist transient as 

well as recurrent convolution semigroups (pt)t>o - in M1(G)  with 
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such that $(O) = 0. I n  fact, f o r  convolution semigroups (p&o - in 
M' (G)  the potential measure K is always unbounded. 

6.1.2.3 I f  G is compact, a convolution semigroup (pt)t>o - E C S(G) 
with 

where $ E CND(GA) ,  is transient'if and only i f  $(O) > 0. This 
equivalence holds true for  an arbitrary locally compact Abelian group 
G provided there exists a compact subset K of G such that 

f o r  all t 2 0. 

We add an important 

Example 6.1.3 Let (pt)t>O - be the Poisson semigroup determined 
by  a measure p E M Y )  (G) introduced in Example 5.2.7.2. W e  recall 
that 

pt = e-t exp(tp) 

for  all t 2 0. 

(pt )  is transient if and only i f  the series 

C pn is rv - convergent. 
n > O  

In this case 
potential measure K of (pt)t>O. - 

pn E M+(G), and as such it coincides with the 

In fact, for the resolvent (ex)x>o - with 
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we obtain the following equalities for Radon measures 

hence for X -+ 0 the assertion. 

We note that measures K E M+(G) of the form 

n > O  

with p E M y ) ( G )  are called elementary kernels determined by p. 

Properties 6.1.4 of potential measures of transient convolution 
semigroups (p&o E C S(G) with associated $J E CND(G") and 
resolvent (e&o. 
6.1.4.1 For every X > 0 we have that 

1 
Z(ex + ex") E 1M,(G), 

hence that 
1 
2 - ( K  + K") E Mp, 

and K E M S b  (G) . 
6.1.4.2 Inv(K) = (0). 
6.1.4.3 For each X > 0 the measure 
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is  the elementary kernel determined by  the measure Aex. 
Both Properties 6.1.4.1 and 6.1.4.3 are proved by taking Fourier 

transforms. For Property 6.1.4.1 we just note that ;(ex + &') E 
M' (G) , since 

(See Theorem 4.4.14). The T,-closeness of Mp(G)  in M ( G )  implies 
that ( K  + K")  E M,(G), and the assertion follows from Proposition 

In the proof of Property 6.1.4.3 one verifies the equality 
4.4.9 (ii). 

for A' E]O,X[ by applying the Fourier transform and then takes the 
limit for A' J, A. 

Terminology 6.1.5 Let $ E CND(G").  
(a)  The function $ is  said to  be integrable over some measurable 
subset W of G" provided 

and $ (defined [w@] on  W )  is c integrable over W .  

(b) The real function Re $ is  said to be locally integrable (on  G") 
i f  there exists a neighborhood U E DGA(O) such that 

and Re is  Res u ~ ~ ~ - i n t e g r u b l e .  

W e  note that Re $ is locally integrable af and only if it is integrable 
over every open, relatively compact subset of G". 
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With this slightly sophisticated terminology in mind we are able 
to establish a generalization of Property 5.1.7.1 

Proposition 6.1.6 Let IIC) E CND(G") and assume that $ as ante- 
grable over some open, relatively compact neighborhood E BGA (0) .  
Then  

(a) $ as locally integrable 

and 

(ii) -$ * WGA E M,(G). 

Proof. From the discussion 6.1.2.3 we know that it suffices to con- 
sider the case that $ ( O )  = 0. Let K be a compact subset of G". If 
$(x) # 0 for all x E K ,  we have that 

Now let $(x) = 0 for some x E K .  Then the set 

K1 := {x E K : +(x) = 0) 

is Compact, hence 
n 

K1 c U ( X i  + V ) ,  
i=l 

where X I ,  . . . , xn E KI and V is an open, relatively compact neigh- 
borhood E !~?GA(O) such that $ is integrable over V .  The set 
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being compact with $(x )  # 0 for all x E F we see that $ # 0 
on K ,  and that 

[ W K A ]  

Here we employed the fact that K1 c Inv ($) which is part of The- 
orem 5.2.17. 

We turn to the proof of statement (ii) of the theorem. For a given 
f E C"(G") and n 2 1 we have 

since -& E CPD(G") by Property 5.1.7.1. The function f * f w $  
is defined [ W G A ] ,  and 

1 
lim f * f"- 

n+oo 

But Re $ 2 0 implies that 

1 I4 L 1cI + - I n  

[u@] (on G") . 

for all n 2 1, hence Lebesgue's dominated convergence theorem 
yields the assertion (ii). 

Remark 6.1.7 Proposition 6.1.6 remains valid if one replaces $ by 
Re $ with the modification that (ii) reads as Re $ . WGA E M+(GA).  
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We are now aiming at a characterization of transience of convolu- 
tion semigroups in terms of integrability of their associated negative 
definite functions. The following statement takes care of the less so- 
phisticated part of that equivalence. 

Theorem 6.1.8 Let (pt)t>O - E C S(G) and II) E CND(G") with 

If (pt)t>O is  transient, then (pt)t>o - is  locally integrable in the 
sense t h a t R e  $ is locally integrable. 

Proof. Without loss of generality we assume that II)(O) = 0. We 
know that the set 

T := {x E G" : II)(x) = 0) 

is a closed subgroup of G" and by Theorem 5.2.17 (22) that 

for all t > 0. Since (pt)t>O is transient by assumption, 2''- is not 
compact, hence T is not open. But a closed subgroup of GA is either 
open or a local wGA-null set. This implies that ?,b # 0 locally [UGA] 

on G". Now, let K be a compact subset of G". As usual we choose 
a function f E Ct(G) with 

But then the monotone convergence theorem together with formula 
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(4) in the proof of Theorem 4.4.14 yields 

where, as in the proof of Property 6.1.4.1, the identity 

has been applied (for A > 0), (@A)A>o and K being as usual associated 
with ( & l o .  rn 

Corollary 6.1.9 Let p E M y ) ( G )  be such that 

C pn is rv - convergent. 
n20 

Then Re & is  locally integrable (on GA). 

Proof. We look at the convolution semigroup (pt)t>o determined by 
the measure p and its associated function $ = 1 --fi E C N D ( G A ) .  
By Example 6.1.3 (p&o - is transient, hence the theorem implies the 
assert ion. 1 
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The discussion in the remaining part of this section will be devoted 
to the implication (inverse to that of Theorem 6.1.8) 

(TC) (p&o locally integrable 3 (&>o - transient. 

Remark 6.1.10 Until now the implication (TC) is only available in 
the special case of a compact group G. See Discussion 6.1.2.3. 

In other words, (TC) holds for convolution semigroups (pt)t>O - in 
M i ( G )  which are not in M'(G).  

If, in fact, llptII < 1 for some t > 0, then (pt)t>o is transient, and 
for the associated $ E CND(G") we have Re 4 > 0 by Corollary 
5.2.5 (ii). 

For the somewhat lengthy proof of the implication (TC) which 
in its course will contain useful side results on transient convolution 

statement to be shown and two basic facts from the potential theory 
semigroups in M+ (1) (G)  we shall prepare several steps of reducing the 

of convolution semigroups in M+ (1) (G).  

6.1.11 Properties (Reducing the proof of (TC)). 
6.1.11.1 Let H be a compact subgroup of G and let (ht)t>O E 
C S ( G / H )  be the canonical image of (p&O E C S(G). Then (TC) 
holds for (p&o - provided at holds for (@t)L>O. - 

In fact, given a recurrent convolution semigroup (pt)t>O E C S(G) ,  
(pt)t>o is a recurrent convolution semigroup E c s(G/H). Since 
(GIH)" is isomorphic to the open subgroup H I  of G" by the func- 
torial property 4.2.17.3 and since $ E C N D ( ( G / H ) " )  with 

4 - (ht)tyo 

coincides with Res HL$, where 

$ - (Pt)t>O, 

Re is not locally integrable. 

6.1.11.2 Without loss of generality the given (pt)t>o - E C S(G) can 
be assumed to be adapted in the sense that 
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In fact, if (p&>o is not adapted, then we replace G by S. Con- 
sidering the canonikal surjection 7r : G" + G A / S L  = S" (Functorial 
property 4.2.17.4) we obtain that 

holds for $ E CND(G") with $ +- (pt)t>o and 6 E CND(S")  
with 

6 - (bt)t>o - 
But then Re $ is locally integrable on G" if and only if Re 
integrable on S". 

is locally G 

6.1.11.3 It is suugicient to  prove (TC) for  adapted convolution semi- 
groups in C S(G), where G is of the fo rm 

G = R ~  x ze 

for  d,e 2 0. 
This follows from the structure theorem 4.2.20 which implies that 

GIN E Rd x Z" 

for some compact subgroup H of G and integers d,e  2 0. In fact, 
since every closed subgroup of a group of the form Rd x Z" is of the 
same type (being a closed subgroup of Rd+") , the previous properties 
yield the assertion. 

Finally 

6.1.11.4 it is suugicient to  establish (TC) for  (adapted) Poisson semi- 
groups on  G = Rd x Re for d,e > 0. 

In order to see this one employs the resolvent (px)x>o associated 
with (p&o - and considers the Poisson semigroup (et (p&>o - deter- 
mined by el E MY)(G) .  It is easily shown that (TC) for (&>o - is 
a consequence of the implication 

(et(pl))t20 locally integrable + 1 p;" is .r,-convergent . 
n > O  



Transient convolution semigroups 285 

Moreover, 

by Theorem 5.2.16, once (pt)t>o - is adapted. 

bPP(e1)l-  = G 

Theorem 6.1.12 (The  Choquet-Deny convolution equation) Let 
G be a locally compact Abelian group, and let o E M 1 ( G )  be a fixed 
measure with support  subgroup 

G(o) := [supp(o)]-. 

Then,  for every measure p E M+(G) the following statements are 
equivalent: 
(2) p E Msb(G) and 

(ii) Inv(p) 3 G(o).  

Proof. It suffices to verify the implication (i) + (ii). Let p E M+(G) 
be a measure satisfying (2) of the theorem. For cp E Cc(G) we intro- 
duce the function f := fv on G defined by 

whenever x E G. Clearly, f is uniformly continuous (with respect to 
the uniform structure of G), and it is bounded since 1-1 E Msb(G). 
Moreover, f satisfies the integral equations 

for all x E G. Then for a E supp(a) the functions T-,f and g := 
T-,f - f are uniformly continuous, bounded and satisfy the above 
integral equation. 

Now-let c E R+ be such that lg1 5 c and let 

1 
y := 2 supg(x).  

x E G  
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There is a sequence (z,),>I - in G satisfying 

lim g(xn) = 27. 
n-oo 

Then the set {gn : n E N} of functions gn := T-,,g (n 2 I) 
is equicontinuous, since g is uniformly continuous. Hence, by the 
ArzelA-Ascoli theorem there exists a subnet (gn,)aEA of (gn)n>l 
which converges with respect to the topology r,, towards a function 
h E C(G) with lhl 5 c. Furthermore h satisfies the above integral 
equation. But then 

27 = lim g(xn,) 

= lim gn, ( e )  

= h(e) 

= / hda. 

f f E A  

aEA 

From h 5 27 we conclude that h(z) = 27 for all x f supp (a). Given 
tl: E supp (a) we further obtain 

2y = h(x) = 1 h(z + z)a(dx), 

hence 
h(z + z )  = 27 

for all x E supp (a). An iteration procedure yields 

h(z) = 27 

for all x belonging to the closed semigroup generated by supp(a) 
and therefore 

h(ka)  = 27 

for all a E supp (a), k 2 1. Now, for every 1 2 1 there exists an a E A 
with 

gna(ka> > Y 
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whenever Ic = 1 , .  . . ) 1 ,  provided y > 0. But then by looking at the 
equalities 

and after summing for k = 1). . . ) 1 we obtain 

f (xn, + (1 

Since f is bounded, this 
hence g 5 0. Replacing g 
g = O o r  

for all a E supp (a). €+om 

J d Y  + 

hence 

+ 1)a) - f (zna + a )  > Zy . 

yields a contradiction. Therefore y 5 0, 
by -g one gets -g 5 0, thus altogether 

f =T-af 
this follows 

for all a E supp (a)  and finally for all a E G(0). 

Corollary 6.1.13 (Characterizing idempotent  measures) For any 
p E Mt(G)\{O} the following statement are equivalent: 

( i )  P * P = P-  
(aa) p = W H  for some compact subgroup H of G. 

Proof. Again it suffices to show the implication (2) + (22). Without 
loss of generality we may assume that p E M1(G), since for p E 
Mt(G)\{O} one has 

IIP * PI1 = llPllllP11 = IlPIL 
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From the boundedness of p follows that Inv ( p )  is a compact sub- 
set of G (See the discussion following Definition 4.4.17). Now, The- 
orem 6.1.12 says that 

hence that H := G ( p )  is a compact subgroup of G and ,u is H- 
invariant on H .  Thus p = W H  (the normed Haar measure of H ) .  

The following result from potential theory of convolution semi- 
groups goes back to Deny and has been reproved in the book [6] of 
Berg and Forst. 

Theorem 6.1.14 (Existence of an equilibrium measure). Let G be 
a locally compact Abelian group, (,ut)t?o a convolution semigroup 
E C S(G) with potential measure K E M+(G), and let W be an  
open, relatively compact subset of G. Then there exists an  equilib- 
rium measure y E M t ( G )  for  (pt)t?O which by definition has the 
following properties: 
(a) SUPPkY) c w 
(b)  K * y < L G  

(c)  ~ * y = w G  on  W .  

Corollary 6.1.15 For every a E A@(G) and f E C$(G) with 
supp(f") c W we have that 

K * y * (€0  - a)  * f(0) 2 0 .  

The proof follows immediately from the inequalities 

since 
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6.2 The transience criterion 

This section will be devoted entirely to the announced measure - the- 
oretic proof of the famous transience criterion for convolution semi- 
groups which for second countable locally compact Abelian groups 
and with probabilistic methods has been established by Port and 
Stone in [34]. 

Theorem 6.2.1 (The Port-Stone criterion) Let G be a compactly 
generated locally compact Abelian group. For any ( , u t ) t > O  - E C S(G) 
the following statements are equivalent: 

(a) (pt)t>O - is transient. 

(ii) (pt)t>o is locally integrable. 

In view of the proof of Theorem 6.2.1 we now restrict the discussion 
to adapted convolution semigroups (pJt>o - E C S(G) with 

Lemma 6.2.2 (The Chung-Fuchs criterion) Suppose there exists a 
relatively compact neighborhood U E T?GA(O) such that 

dUGA < O O .  limsup Re - 1 
A 4 0  J A + +  

U 

Then (pt)t20 is transient. 

Proof. Since (pt)t>O is adapted, we infer from Theorem 5.2.17 that 
+(x) # 0 for x # 0- Taking into account that 

the hypothesis of the lemma yields 
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for all compact subsets C of G". It follows that 

for all f E Cc(GA). But given g E C+(G) there exists an f E Cc(G") 
with 2 g .  This implies that 

where the last equality follows from formula (4) in the proof of The- 
orem 4.4.14 together with Theorem 4.4.16. So we have 

limsup gdex < 00, 
X+O s 

G 

hence by monotonicity that the limit 

exists and is finite for all g E CT(G). 

Remark 6.2.3 Applying Theorem 6.1.8 one obtains the converse of 
the statement in Lemma 6.2.2. 

Lemma 6.2.4 If (&>O is locally integrable and recurrent, then for 
every f E C$(G) withf $ 0  one has 
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whenever X > 0. 

Proof. Since (p&>O is assumed to be locally integrable, we have for 
all relatively compact neighborhoods U E %?GA (0)  that 

But we also assumed (p&O - to be recurrent. This implies by Lemma 
6.2.2 that 

Moreover, for f E Cz(G) with f $ 0, and all X > 0 

We note that in fact 

where a is chosen such that f(0) > a > 0 and U is a relatively 
compact neighborhood in Q?GA(O) within the set {x E G" : lf(x)l 2 
a}. Together with (1) and (2) this yields 

limsup XeA * f * (ex * f)"(O) = 00. 
A-0 

m 
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Principal Lemma 6.2.5 Let G be a non-compact second countable 
locally compact Abelian group, and let (pt)t>O be an  adapted contin- 
uous convolution semigroup in M1 (G) . Suppose that 

( a )  (pt) t lo i s  locally integrable 

and that 

(p)  there exists an  f E C$(G) with f $ 0 such that 

sup 
XEIOJI 

ax * f * f N ( 0 )  < 00, 

Proof. 1. Assuming that (pt)t>o - is recurrent we infer from Lemma 
6.2.4 that with the notation 

ax := X@x * @;: * f * f"(O)-l  

the statements 
liminfuyl = 00 

X+O 

and 
ax1 > o 

for all X > 0 are available. One notes that the numbers ax (A > 0) 
depend on the choice of a function f E C$(G) with f $ 0. Let 

is a .r,-relatively compact subset of M+(G). 
(ax)xE]o,l] be a bounded subfamily of (aX)&q  * Then (axex)xE]o, l ]  

In order to see this it suffices to prove that 

where
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for each compact subset K of G. But this will be clear from the fol- 
lowing reasoning: We choose a compact subset K of G and a number 
c > 0 such that 

L := {Z E G :  f * f N ( x )  > c} # 0 .  

Then, for a suitable sequence (21,. . . ,z~} in G (n 2 1) we get 

n 

K c  U ( Z i - L ) .  
i=l 

It follows that 

(ex + e i v )  

Since ex + &' E Mp(G) ,  
f * f" E CPD(G), and 
extended to 

n 

i= 1 
I n  
1 
I - C Ccex + e?) * f * f"(Zi). 

i= 1 

Proposition 4.4.9 implies that (ex + ,oy) * 
the above sequence of inequalities can be 

i=l 

2n 
= -(ox * f * f"(0) + ax1) 

C 

for all X €10, I]. 

2. The assumptions on G imply that M+(G) is .r,-metrizable. There- 
fore there exists a sequence (X&1 - in ]0,1] with XI, 0 such that 

lim axk = 0 
k-wx 

and 
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From 

we conclude that 5 # 0. 

3. The next aim will be to show that 

and that 

(b) C = A( * for all X > 0. 

This being done Theorem 6.1.12 together with Theorem 5.2.16 (and 
the adaptation of (pt)t>O) - will imply that 

for some c > 0. 

ex + & E Mp(G) ,  hence C + 
Now concerning (a) we just note that 5 + C" E Akfp(G), since 

As for the proof of (b) we deduce from the resolvent equation that 
E Adsb and so also 5 E Adsb. 

for every X > 0 and k 2 1. Given X > 0 we choose E €10, A[ and 
suppose that XI, E ] O , E [ .  Then 

hence 
(X - &)@A * 5 I c,  

and for E + 0 we arrive at 
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valid for all X > 0. 
Suppose now that AS * ex # 5 for some X > 0. Since 

the series (Aex)" norm-converges for X > 0, and 
n / l  

n n 

k=O k=O 

IICII 
I lC - xex * Sll 

' 5 

But as in the proof of Property 6.1.4.3 we apply the formula 

valid for A' E]O,X[  and obtain 

which implies the transience of (pt)t>o, - hence a contradiction. 

4. Now let W be an open, relatively compact subset of G such that 
supp(f * f") c W .  For each k 2 1 we consider the convolution 
semigroup (e-XktpT) t>o E C S(G) with potential measure ,o& and 
equilibrium measure yx, depending on W ,  the latter existing by The- 
orem 6.1.14. For every k > 1 we introduce the measure 

and we obtain 
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Since 

the sequence ( V x k  (W))k>l is bounded, and since supp (yxk) C w for 
all k 2 1, is norm-bounded. Without loss of generality we 
may assume that ( V x k ) k > 1  .r,-converges to a measure u E M+(G). Y 
is bounded, since supp(v) c w, and u # 0. The latter statement 
requires a detailed argument. First of all we have that 

Since W is relatively compact, there exists a function g E Ct(G) 
such that 

lWU(W-W) L 9 

which implies that 

lim sup vxk (W)  5 lim vxI, (9) = ~ ( g )  . 
k+oo k-oo 

Under the assumption that u = 0 we obtain 

lim uAk(W) = 0 .  
k+oo 

From 

we conclude that the sequence (ax,, @Yk (W - w))k>l - is bounded, so 
the product sequence (uxk@yk(W - W>vx,(W))k>l tends to 0 and 
its members are not 2 WG(W) > 0 which provides a contradiction. 
Consequently v E @(G)\{O}. 
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5. By the resolvent equation 

= lim * vxcx * ex, 
k + m  

and this limit equals 0. For the latter assertion we need to realize 
that 

A k @ y k  * ' ,-!I, * @,-! 5 aT:Ak(Q.A * UG) 
-1 = axk X k  llex llwG 

and to prove that 

This limit relationship can be shown as follows: From the proof of 
Lemma 6.2.4 we infer that 

for all k 2 1. The integrands are bounded by l f I 2  and converge (for 
k -+ 00) pointwise to 0 on G"\{O} (since $(x) # 0 for x # 0). 
An application of the Plancherel theorem 4.2.11 (iii) yields that it is 
also wGA-integrable. But then the dominated convergence theorem 
implies the assertion. 

6. We are ready to finish the proof by establishing a contradiction to 
the boundedness of ( a x k ) k 2 1 .  

By the choice of F and W according to 4. of this proof we note 
that 

supp (f * f-)- = supp (f * f") c w . 

for all X 2 X I ,  ( k  2 1). Corollary 6.1.15 now yields 

Moreover
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Hence 
OAI, * f * f" 5 * f * f"(0) 

and consequently, 

But this expression admits a bound M (independent of A) for all 
5 A, since ( a ~ ~  * f * f " (O) )k> l  - is bounded by assumption and 

Now we deduce from (3) that 

whence by ( 5 )  

and thus by (4) 

which together with the resolvent equation implies that 

limsup * vxk * f * f N ( 0 )  5 2 M .  
k-co 
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From T~ - lim uxk = u (Part 4. of the proof) and the norm- 
boundedness of (q,,)k>l we derive 

k-oo 

i.e. 

for all > 0, in particular for := whenever k 2 1. Consequently 
the sequence 

is bounded. On the other hand 

the strict positivity following from the facts that < = W G  for c > 0 
and that 

u- * f * f" 9 0 .  

But then ( a i i ) k > l  must be bounded, and this contradicts the as- 
sumption made & Part 1. of the proof. The demonstration of the 
lemma is finally complete. 

Proof of the Port-Stone criterion 6.2.1 By Property 6.1.11.4 
it suffices to establish the implication (TC) for an adapted Poisson 
semigroup (p&o determined by a measure p E M 1 ( G ) ,  where G 
is of the form Rd x Ze for a, e 2 1. For the associated continuous 
negative definite function of the form $J = 1 - we assume Re $ to 
be locally integrable. It will be shown that ( , u ~ ) ~ > O  - is transient. 

1. The case d + e 2 3. 

Rd X ]  - T ,  7rIe of Rd+e equipped with the Euclidean norm 11 - 11.  
The dual G" = Rd x Te of G will be interpreted as the subset 
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At first we show that there exists a constant c > 0 such that 

for all y in a relatively compact neighborhood U E DGA (0). 
In fact, since G = [supp ( p ) ] - ,  one finds m := d + e linearly inde- 

pendent elements x ~ , .  . . , x, E supp ( p ) .  Let V := {x E G : 11x11 5 
y}, where y := max {IlxiII : i = 1,. . . ,m}. The quadratic form Q 
defined by 

Q(d := / Y ( ~ ) ~ P ( W  
V 

for all y E G” is positive definite, hence its smallest eigenvalue r is 
strictly positive and 

Q(Y) L ~ Y I I ~  
for all y E GA. On the other hand 

for all y E G”. But the modulus of the latter integrand being 2 
‘Iy(x)l n- if (y(x)( 5 7r we obtain that 

for all y E G”, where 

7r. But then 

2 
L -~11Y1I2 712 



The transience criterion 301 

for all y in the relatively compact neighborhood U := {u E GA : 
llull 5 :} E Z?GA(O). With c := $r we arrive at the assertion. 

Applying the inequality (6) we now obtain that 

1 1 
A+ReII, 

U U U 

and the Chung-F’uchs criterion 6.2.2 yields the transience of (pt)t>o, - 

provided d + e 2 3. 
In 

2. the case d + e = 2 we note that for all X > 0 

1 
X2(dy) < 00. 

I s (1 + cllY112)2 
R2 

On the other hand we obtain from the hypothesis that 

which, again by Lemma 6.2.2, implies the assertion. 

It remains to treat 

3. the case d + e = 1, i.e. the groups G = R or G = 2. 

From Principal Lemma 6.2.5 we infer that it suffices to 
existence of a function f E Cz(G) with f $ 0 satisfying 

<oo 

establish the 

sup O X  * f * f N ( 0 )  < 00.  
XEIOJI 
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At first we observe that for all f E C$(G) 

If G = Z, the last integral is finite, since GA = T is compact. 

DGA(O) we have that 
Now let G = R. For each relatively compact neighborhood U E 

Obviously the integral over U exists. Given a symmetric measure 
v E M$(R) with compact support such that 

holds we introduce the desired function f on R by 

whenever z E R. Since u # E O ,  we may assume that u is not a 
multiple of E O ,  hence f(0) # 0. It is easily shown that f E Ct(R) 
and that 

2 
P ( 4  = 2(1141 - ;(4> 
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for all 12: E RX. From the inequalities 

valid for all z E R we conclude that 

The proof of the Port-Stone criterion 6.2.1 now is complete also for 
G = R. 

Examples 6.2.6 

W e  are considering continuous convolution semigroups (p&o in 
M 1  (G) with associated continuous negative definite function $ on 
G" admitting a canonical quadruple ( in  the sense of Theorem 5.4.7) 
of the fo rm (0, h, q, 0 ) .  These semigroups determined by 

$ = i h + q  

with a homomorphism h ; G" --+ R and a positive quadratic f o rm q 
on G" are called (non symmetric) Gaussian. The subsequent dis- 
cussion is  designed to  study the transience of Gaussian semigroups. 

6.2.6.1 Let (E , ( t ) ) t>o  be a translation semigroup in M 1 ( G )  as intro- 
duced in Example 527.1. Recall that the mapping x ; R+ --+ G can 
be extended to  a continuous homomorphism cp : R + G. It was shown 
in Example 5.2.7.1 that (E , ( t ) ) t>O - admits a canonical quadruple of 
the form (0, h, 0,O). 
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Now, the semigroup is  transient if and only if cp(R) is  
not  compact ( in  G), and in the-afirmative case i ts  potential measure 
can be described as the image P ( K )  under cp of the potential measure 

K = 1 X E M+(R) R: 

of the translation semigroup ( E t ) t > o  in M1(R). In other words, 

In fact, by Appendix A 3.6 a continuous homomorphism cp : R + 
G admits the following alternative: either (1) p(R) is compact or (2) 
cp is a homeomorphism onto cp(R), and cp(R) is a closed subgroup of 
G. In the case (1) ( E ~ ( ~ ) ) ~ > O  is obviously recurrent (See Discussion 
6.1.2.3)) in the case (2) it is transient, since for every f E CT(G) the 
set supp ( f )  n cp(R) is compact, hence for some t o  > 0 

whenever t >_ t o .  

6.2.6.2 Here we discuss the transience of symmetric Gaussian semi- 
groups (v&O admitting a canonical quadruple of the fo rm (O ,O,  q,  0 ) .  
More specifically, we restrict ourselves to the case that G = Rd ( d  2 
1) and to  the symmetric Brownian semigroup (v&o given by 
ut = nt - Ad with 

1 
nt(2) = - 

(47rt) 

for  all x E Rd (t > 0) .  
The  following computation shows (by an  application of the Schoen- 

berg correspondence theorem 5.2.3) that the function .Ic) o n  Rd defined 
by
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for all y E Rd is  the continuous negative definite function associated 
with (&O. 

Indeed, for all y E Rd, t > 0 we have 

(with the obvious notation xk and y k  for the Ic-th component of the 
vectors x and y respectively). 

Now the Port-Stone criterion 6.2.1 implies that ( v t ) t > O  - is transient 
if and only i f  d 2 3. 

This result can also be obtained by an explicit computation of the 
potential measure. In fact, one easily sees that 

00 

r(') llz112-d 

if d = 1 , 2  for all x E Rd, 
and if d 2 3 for z = 0 

if d 2 3 and x E Rd,z # 0. 
27ri (d - 2) 

lm nt (x)dt = 

Putting for d 2 3 

and 
if x E Rd,x # 0 
i f x = O  

&(z) := 

we see that the potential measure 
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of (vt)t>O is a multiple of the classical Newton kernel Nd . Ad. We 
also note that Kd E M m ( R d ) .  

6.2.6.3 Symmetric stable semigroups of order a ~ ] 0 , 2 ]  are 
given as families (p?)t>o of measures in M1(Rd) (d  2 1) admitting 
a Fourier representation 

for all y E Rd,t  2 0. It can be shown that a symmetric stable semi- 
group (pp) t>o  of order a is a convolution semigroup subordinated 
to the symmetric Brownian semigroup (ut)t>O defined in Example 
6.2.6.2 by  means of the one-sided stable semigroup of order 4 .  

Clearly, the symmetric stable semigroup of order Q = 2 coincides 
with the symmetric Brownian semigroup in M1 (Rd). 

Since 2 E L1 (Rd, Ad),  an application of the inverse Fourier trans- 
form (introduced next to Properties 4.2.16) yields an integral rep- 
resentation of the Ad-density rnp of ,$! as a function in C!(Rd). In 
the special cases a = 1 and a = 2 one may compute rnr explicitly. 
It turns out that 

whenever x E Rd,t 2 0. If, in addition, d = 1, then (p&>o - reduces 
to the Cauchy semigroup. 

Since 
( P 3 t y o  - $ 9  

where $ ( y )  := llyll" for all y E Rd, the Ad-local integrability of $ 
which occurs exactly in the cases 

d = 1 and a ~ ] 0 , 1 [ ,  
d = 2 and a ~ ] 0 , 2 [ ,  
d 2 3 and a ~ ] 0 , 2 ]  

implies the transience of (pF)tro exactly for these choices of d and 
a. 
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For d = 1 and a E [1,2] as well as for d = 2 and a = 2 the 

In the cases of transience the potential measure K d , a  of (p&o 

convolution semigroup (pr)t>o is recurrent. 

appears to be the Riesz kernel of order a having a Ad-density 

For the computation of this density one employs the construction 
of (py)t>O - by means of subordination. 

6.2.6.4 Let (pt)t>O - denote the heat semigroup in M1(Rd x R) de- 
fined by 

pt := vt 8 E t  

for all t 2 0 ,  where (ut)t>0 and (Et)t>O denote the Brownian and 
the translation semigroupsdiscussed in>xamples 6.2.6.2 and 6.2.6.1 
respectively. One has, 

(Pt)t>o - IL) 

whenever ( y , s )  E Rd x R. Clearly, (pt)t>O is locally integrable, and 
hence the Port-Stone criterion 6.2.1 impl& the transience of (p&>o. - 

The transience of (pt)t>O can also be obtained from an explicit 
computation of the potential measure. 

In fact, let (pt)t?O - (ex)x>o. Then for each g E Cc(Rd x R) 
we have that 

with
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But the function k on Rd x R given by 

n,(x) 
0 

if x E R ~ , S  E R: 
if I[; E Rd,s $Rf  

k ( x ,  s) := 

is locally (Ad+'- )  integrable, hence (pt)t>o - is transient with potential 
measure 

Moreover, K E Mm(Rd x R). 
K = k .  p + 1 .  

6.2.6.5 Let G := Z and let (pt)t>o - denote the Poisson semigroup 
determined b y  the measure 

a 
p : = x -  En E M1(G) 

n2 log n n22 

with a suitably chosen a > 0. 
Clearly, 

K := x p n  
n>O 

exists, since supp (p") c {2n, 2n + 1,. . .} (n E N). Observe that 
K ( n )  = 0 for  all n < 0. Thus (pt)t>O is  transient. Moreover it follows 
from Spitxer's book 1421 that K E Mm(G).  

O n  the other hand, (pt)t>O being determined by  p is associated 
with the negative definite function 1c) on T given b y  

a a sin(n6) (1 - cos(n6)) + i - 
n2 log n n22 n>2 

whenever 6 E R (after suitable identification of functions on  Z A = T 
and R). A result in Zygmund's book [49] yields 

$(a) - ia6log I log61 

f o r  6 --+ 0+, hence f as not integrable over any neighborhood of 0.  
Altogether we have seen that (pt)t>O - is  transient, hence Re f is  

locally integrable b y  the transience criterion 6.1.8, but f is not locally 
in t egra b 1 e . 
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6.3 Recurrent random walks 

Until now we have studied convolution semigroups on an arbitrary 
locally compact Abelian group G without particular reference to 
probability theory. In the case of a second countable group G this 
reference can be easily established. Given a convolution semigroup 
(pt) tE~+ in M'(G)  there exists by the Kolmogorov consistency the- 
orem a translation invariant Markov process in G whose transition 
semigroup ( P t ) t E ~ +  (of Markov kernels Pt on K x B(G)) is related 
to (pt)tER+ by 

for all (2, B )  E G x B(G), t E R+. More precisely, there is a one- 
to-one correspondence between convolution semigroups ( p & ~ +  in 
M1 (G) and stationary independent increment processes with transi- 
tion semigroup ( P t ) t E ~ +  given by (1). 

In the present section we shall study stationary independent in- 
crement processes in G with transition function ( P n ) n E ~ + ,  where 
P, := P" for some transition kernel P of the form 

P(a, 23) := p * &&3) 

for all (a ,  B )  E G x B(G) with a measure p in M1 (G). Such processes 
are called random walks in G with law p. 

A sketch of the construction of such random walks now follows. 
Given P and a measure v E M'(G)  there exists a measurable space 
(0,U) with 0 := GZ+ and U := B(G)@'+ and a measure P" on 
(0,U) such that the sequence (X,) ,€Z+ of projections X, : GZ+ + 
G (generating the 0-algebra U) forms a Markov chain in G with 
transition kernel P and starting measure u. This statement can be 
made precise by the defining properties 

for all bounded measurable functions f on G, where U, := O( {Xo, Xi , 
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. . . , X n  }) for every n E Z+ ) and 

P”([XO E B ] )  = v(B)  

for all B E B(G). 

place of E” and P” respectively. 
In the special case v := E~ for z E G we shall write E” and Pz in 

Introducing the shift operator 6’ on R by 

for all ( ~ 0 ~ x 1 , .  . . ,x,, . . .) E R one obtains the Murkow property of 
the chain (Xn)”,=z+ in the form 

E”(Zo 8” I 94,) = Exn(Z)[P”] 

for every %-measurable function 2 2 0 on R, n E Z+. 
Moreover, it turns out that (X,),,,, enjoys the strong Murkow 

property : Given any stopping time r for ( X n ) n E ~ +  then for every 
%-measurable function 2 2 0 on R 

where O,, FT and X ,  denote the .r-shift, .r-past and the .r-stopped 
chain respectively. 

The random walk in G with law p E M1(G) will be abbreviated 
by X ( p )  if no other specification is needed. 

It is easy to see that the random walk X ( p )  constructed above has 
independent increments Zn := X n  - Xn-l(n 2 1) (with respect to 
P”) and that these increments are identically distributed with 

for all n 2 1. 

the notation 
For a given random walk X ( p )  with law p E M’(G) we introduce 

S(P) := b P P  w- 
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and 

Observation 6.3.1 x E S(p) i j  and only i j j o r  each V E ~ ? G ( x )  
there exists an n 2 1 such that 

p"(V) = P"[X, E V ] )  > 0 .  

Since G is assumed to  be second countable, this implies that 

and, after translation in G,  

f o r  all x E G. This means that G(p) is an absorbing set of X ( p ) ,  
hence we may assume without loss of generality that 

G(p) = G .  

I n  terms of Fourier transforms this hypothesis can be rewritten as 

{x E GA : fi(x) = 1) = (0). 

Indeed, if p is adapted in the sense of the hypothesis, then 1 being 
an extremal point of the unit disk, P(x) = 1 implies that x ( x )  = 1 
for p - a.a. x E G, hence for all x E G(p), and thus (by adaption of 
p )  for all z E G (without exception). Thus x is the unit character 0 
in GA. 

In the following we shall look at sets of the form 

R(B) := limsup[X, E B] 
n-mo 
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= [Xn E B for infinitely many n 2 01, 

where B E B(G). 

Definition 6.3.2 x E G is said to  be recurrent if for every V E 
~ G ( x )  one has 

Po(R(V)) = 1. 

x E G is  called transient if X is  not recurrent. 

Theorem 6.3.3 (Dichotomy) For each random walk X ( p )  in G one 
has the following alternative: Either 
(1) every element of G is  recurrent 
or 
(2) every element of G is  transient. 

Proof. Let R, denote the set of recurrent elements (for X ( p ) ) .  
Plainly, R, is a closed set, and hence it suffices to show that 

In fact, if this implication holds true, then R, c S(p) and conse- 
quently 

So, if R, # 8, then R, is a closed subgroup of G. But R, 3 -S(p) 
implies that R, = G, since X ( p )  is adapted. 

Now, let x E R, and y E S(p). We shall show that x- y E R,. Let 
U be a neighborhood E V , ( x  - y). Clearly, U + (y - x) E DG(O), and 
there exists a neighborhood V E 'LTG(O) such that V-V c U+(y-2). 
On the other hand, V + y E T?G(~) ,  hence there exists a k E Z+ 
satisfying 

R, - R, c R,. 

Po([& E v + Y1) > 0, 

since y E S(p). Let 
A := [ X ,  E V + y] . 

If w E A,  the relation X,+&) E V + z implies that 

(Xn+k - X,)(w) E v + x - (V + y) c u. 
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As x is recurrent, for Po - a.a. w E A there exists an infinity of 
integers n E z+ such that X n + k ( W )  E V + x, therefore we obtain 

Po(limsup[Xn+k - XI, E V ]  n A)  = Po(A) . 
12-00 

The members of the sequences (Xn+k - X k ) n E ~ +  and (Xn)nEZ+ are 
independent G-valued random variables having the same distribution 
and are independent of A,  therefore 

Po(limsup[Xn E V ] )  = 1 
n-00 

and x - y E R,. 

The dichotomy theorem enables us to make the following 

Definition 6.3.4 A random walk X(p) with law p E M1(G) is said 
to be recurrent if it satisfies (1) of the theorem. Otherwise X(p) is 
said to be transient. 

A locally compact Abelian group G is called recurrent provided 
there exists an  adapted recurrent random walk on it, and transient 
otherwise. 

We recall the notion of (first) return time of X ( p )  into a set 
B E B(G) defined by 

inf{n E N : Xn E B }  if {n E N : Xn E B }  # 8 
00 otherwise. RB := 

It is known that Rg is a stopping time for X ( p )  (with respect to the 
canonical filtration (Un)n,,+). 

Theorem 6.3.5 A (n adapted) random walk X ( p )  with law p E 
M1(G) is recurrent if and only if for  each neighborhood V E DG(O) 
one has 

PO([& < 001) = 1. 

Proof. It suffices to prove that the condition is sufficient for X(p) to 
be recurrent. Let V be a symmetric neighborhood E DG (0) and let W 
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be a compact symmetric neighborhood E m ~ ( 0 )  such that W c V. 
Clearly, there exists an open neighborhood U E DG(O) satisfying 

It follows that 

hence that 

since P$m+n-xm = PRn,  and Xm+n - X m  is independent of 
Xm (m,n E Z+). But by hypothesis 

for all rn E Z+. Let therefore ( W r ) r > l  denote an increasing se- 
quence of compact symmetric neighborhoods WT E DG(O) such that u W,=V. 
r> l  

Since 
[Xm E V] = lim [Xm E Wr], 

r+Oo 

for all m E Z+. Let now 

T := sup{m 2 0 : X m  E V } .  
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Then 

hence 0 and therefore X ( p )  is recurrent. 

If X ( p )  is a random walk in G with law p E M'(G)  admitting a 
transition kernel P,  we introduce the potential kernel K of X ( p )  
bY 

n20 n>O 

for all measurable functions 2 0 on G and all z E G. 

Properties 6.3.6 of the potential kernel 

6.3.6.1 K satisfies the maximum principle in the sense that 

for  all measurable functions f on G. 

6.3.6.2 For each measurable function f 2 0 on G one has 

f + P K f  = f  + K P f ,  

hence 

6.3.6.3 the Poisson equation 

( I  - P)Kf  = f 

is fulfilled whenever K f is finite. 
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6.3.6.4 For all x E G one has the commutation relationship 

TxP = PT,. 

The proofs of these properties are straightforward except that of 
Property 6.3.6.1. Let x E G and let R" denote the return time into 
supp (f)  of the random walk X ( p )  starting at x (Here we refer to 
the sequence (Sz)n>o of shifted sums 

k = l  

(n 2 1) and Sg := x). One has 

(by the strong Markov property of X ( p ) )  

= E"(Kf o X ~ x i  R" < OO), 

hence the assertion by taking the supremum over all x E G. 
For each pair (x, B )  E G x B(G) we set 

K ( x , B )  : = K l B ( Z )  
= K * &,(B), 



where 
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K : =  c p n  

n20 

is the elementary kernel determined by p E M1 (G) in the sense of 
Example 6.1.3. 

Theorem 6.3.7 Let X ( p )  be an  adapted random walk in G with law 
p E M1(G). 

Then  
(a) X ( p )  is  recurrent i f  and only i f  K ( U )  = 00 for every non-empty 

(i i)  X ( p )  is  transient if and only i f  K ( U )  < 00 for every relatively 
open subset U of G. 

compact open subset U of G. 

Proof. It suffices to show that X ( p )  is recurrent provided K ( U )  = 00 

for each relatively compact open neighborhood U from a neighbor- 
hood base of 0. 

We are retaining the notation of the proof Theorem 6.3.5. 
First of all we justify that without loss of generality we can choose 

U to be a symmetric relatively compact neighborhood E 2 ? ~ ( 0 ) .  In 
fact, let 

N 

E N  := x p n  for N 2 I. 
n=O 

We have 

hence 
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which follows from the strong Markov property of X ( p ) ,  and by 
Property 6.3.6.4 we obtain that 

where U - U is a symmetric relatively compact open neighborhood 
E a~(0). Letting N + 00, one deduces that 

Now let U be a symmetric relatively compact open neighborhood 
in DG(O) such that 

.(U) = 00.  

One has 

1 2  PO([T < 003) 

and, since y - x e 2U implies y 4 U (for x E U ) ,  

It follows that 
1 >_ .(U) PO [ R 2 U  = 001, 

and since .(U) = 00 by assumption, that 

P0([R2u = 001) = 0, 

which by Theorem 6.3.5 completes the proof. 

hence that
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Corollary 6.3.8 If X ( p )  is  transient, then 
(i) K is a proper kernel in the sense that G = Un,l Gn for  an  

increasing sequence (Gn)n>l in G such that KT.,G,) is  a 
bounded function fo r  all n 2 1. 

(ii) K ( z ,  .) E M+(G) for  all x E G. 

(iii) The set { K ( x ,  .) : x E G )  is rv-relatively compact in M+(G). 

Proof. From the theorem we infer that there exists an open U E 
2 ? ~ ( 0 )  such that K ( U )  < 00. Let V be an open neighborhood E DG(O) 
satisfying V - V c U .  Then we obtain for each x E V that 

K ( x ,  V )  = K(V - II;) 5 K(V - V )  I K ( U )  

and by the maximum principle 6.3.6.1 that 

for all x E G. For every compact subset C of G there is a sequence 
{ X I , .  . . ,xn}  in C such that the sequence {V - xi : i = 1 , .  . . ,n}  
forms an open covering of C. But then 

n 

K ( x ,  C) I K ( x ,  v - X i )  
i= 1 
n 

= K ( x  + 
i=l  

for all II; E G which implies all the assertions ( i )  to (iii) at one time. 

First Examples 6.3.9 of recurrent random walks 

6.3.9.1 If G is compact, every (adapted) random walk X ( p )  in G is 
recurrent. 
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In fact, the potential kernel (measure) K of X ( p )  satisfies 

for the (relatively) compact open (sub)set G. 

6.3.9.2 For the Bernoulli walk X ( p )  in Z with determining mea- 
sure 

1 1 
p := - E l +  2 -&-I 2 E M l ( Z )  

(arising as the common law of independent Z-random variables 
Yk(k 2 1) leading to partial sums X n  := Yk (n 2 i ) )  one 
computes 

where 
1 

N -  

d= 
(by Starling's formula), and obtain that ~ ( ( 0 ) )  = 00 which says that 
Z is  a recurrent group. 

W e  note (and shall show later) that the random walk X ( p )  in Z 
with determining measure 

p := p E 1  + q E - 1 ,  

where p , q  2 0 , p  + q = 1 but p # q # 3, is  transient. 

6.3.9.3 Considering the random walk X ( p )  in Z2 with determining 
measure 

1 
p := i(E(1,O) + & ( - L O )  + E ( 0 , l )  + & ( 0 , - 1 ) )  E M1(Z2) 
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one obtains that 

2 n  

=C n / O  i+j=n c -(:) ' 

where the inner sums 

are asymptotically equal to  as n -+ 00, hence that ~({(0,0)}) = 
00. Consequently z2  is  recurrent. 

We are now going to describe the class R of all recurrent (locally 
compact Abelian) groups. By a method similar to that applied in the 
proof of the Chung - F'uchs criterion 6.2.2 we shall at first characterize 
transient random walks in G. 

Theorem 6.3.10 For any random walk X ( p )  with law p E M'(G)  
the following statements are equivalent: 

( i )  X ( p )  is transient. 

( i i)  There exists a neighborhood W E 2.3~~ ( 0 )  such that 

Proof .  ( i i)  + (i). For any compact symmetric neighborhood V E 
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I X I G A  (0 )  we have 

whenever x E G. Integration with respect to p yields 

This identity holding true for the p n  instead of p )  we may multiply 
by tn for t E [0,1[ and sum over n in order to obtain 

Now let W be a symmetric compact neighborhood E DGA(O) and 
choose V E IXIGA(O) such that 2V c W. The function 

on GA is zero on W", hence the left-hand side of the above equality 
is a real number 

1 
< w G A ( V )  Re - d W G A .  s 1 - t p  

W 
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Since the function 

on G is continuous and takes the value W G A ( V ) ~  at 2 = 0, it is 
2 ~ ( W G A  (V))2 on some neighborhood U E f U ~ ( 0 ) .  As a consequence 
we obtain 

PPO( [Xn E U ] )  . 
n20 

If, now, X ( p )  is recurrent, then 

dWGA = 00 ,  
1 

JW Re 

and the implication (i) + (ii) has been proved. 

(i) + (zi). Let X ( p )  be transient, and let V be a compact symmetric 
neighborhood E DG (0). The function 

is an element of CPD(G) nL1(G,uG), hence it is the inverse Fourier 
transform of the function 

and consequently 
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As in the first part of this proof we look at this inequality with p n  
instead of pcL, multiply on both sides by tn for t E [0,1[ and sum over 
n. It follows that 

Now we choose a compact symmetric neighborhood W E DGA (0) 
and the neighborhood V such that 42V)  < 00 and Re x ( x )  2 for 
all ( x , x )  E V x W .  We obtain that 

which implies the assertion. 

Corollary 6.3.11 If X ( p )  is transient, then for every compact neigh- 
borhood W E DGA ( 0 )  the function 

1 
Re - 1-fi 

is integrable over W .  

Proof. For all t E [0,1[ and x E G" we have that 

1 
Re - 2 0  1 - tfi 

1 and that 
=Re-. lim Re - 

1 
tT1 1- tfi 1-fi 

hence that
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By the Fatou Lemma together with the theorem we obtain 

P 1 

at first for the neighborhood W constructed in the proof of the the- 
orem, but since 

-I 

1 
Re - 

1-ji 

is continuous and # 0 on G"\{O}, also for every compact neighbor- 
hood W E 12.7~~(0).  

Remark 6.3.12 The Corollary implies that every compact group G 
is recurrent (Compare Example 6.3.9.1). 

In fact, if G is compact, then G" is discrete, so that WGA({O}) > 
0. But this contradicts the wGA-integrability of Re & over any 
compact neighborhood E DGA (0). 

Applying the characterization theorem 6.3.10 we can now decide 
on recurrence or transience of random walks on a significant class of 
locally compact Abelian groups. 

Theorem 6.3.13 Let X ( p )  be a random walk with law p E hll(G), 
where G has the form 

G = Rd x Z" 

for d , e  2 0. Then  
(i) if d + e = 1, i.e. G = R or G = Z, and if 

as well as 
xp(dz) = 0, s 

then X ( p )  is recurrent. 
(ii) If d + e = 2 and 
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as well as 

then X ( p )  is recurrent. 
(iii) If d + e 2 3, then X ( p )  is transient. 

Proof. (i) One easily verifies the estimates 

1 - t  
(Re (1 - tf i))2 + t2(Im f i )2  

1 
Re - 

1 - tfi 

and 
(Re (1 - tfi))2 = ((1 - t) + Re (t(1 - f i ) ) ) 2  

5 2(1 - t)2 + 2t2(Re(l - ,G))2 

valid for all t E [0,1[. By the assumption on the first moment of p 
we see that f i  is continuously differentiable and that ,G'(O) = 0. Now 
we apply the Taylor expansion and obtain the existence of an a > 0 
such that for y E R" 2 R or y E Z" E T g] - T,T] c R with 
IyJ < a we have 

IIm ,G(Y>l 5 ElYl 

It follows that 

1 7.r Q hence that s_, Re 1 - t,G(y) XdY) 2 G '  

Now suppose that X ( p )  is transient. Then there exists an a0 > 0 
1 such that 

as well as
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for all y E [-Qo, ao] and 

X(dy)  =: M < 00 
1 

For a < ao, however, 

but this contradicts the fact that E was chosen arbitrarily. 
(ii) is proved similarly to (i) by embedding G" = Rd x Te into Rd+" 
with d + e = 2. 

(iii) we embed G" = Rd x Te into Rd+e with d + e 2 3 and infer 
from part 1. of the proof of the transience criterion 6.2.1 that there 
exist a relatively compact neighborhood U E Z?GA (0) and a constant 
c > 0 satisfying Re /G(y) 2 0 and 

For the proof of 

for all y E U But then for t < 1 we obtain 

provided d + e 2 3 which implies that all random walks in Rd x Z e  
rn with d + e 2 3 are transient. 

Examples 6.3.14 of groups in R 

6.3.14.1 All compact groups belong to  R. 

6.3.14.2 All groups of the f o r m  G. = Rd x Z" with d + e I 2 are 
elements of R. 
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Propert ies  6.3.15 of the class R 

6.3.15.1 Any open subgroup of a group an R belongs to R. 
In particular, 

6.3.15.2 every subgroup of a discrete group in R belongs to R. 
For the proof of Property 6.3.15.1 we start with an adapted ran- 

dom walk X ( p )  in G and consider the Markov chain ( Z n ) n E ~  in an 
open subgroup H of G given by 

where the return times RE into H are defined recursively by 

Rl;i = Rn-1 +Riy0ORn-i ( n >  2) 
H 

and RL := R H .  

Since X ( p )  is assumed to be recurrent, 

Po([RE < 003) = 1 

for every n E N, ( 2 n ) n E N  is a well-defined random walk X ( Y )  with 
law 

v := (PO)RH E M 1 ( H ) .  

Moreover, we have 

for all open subsets 0 of H .  Therefore, the recurrence of X ( p )  yields 

which says that X(v) is recurrent in H .  

6.3.15.3 Let H be a compact subgroup of G. Then G E R if and only 
if G f H  E R. 
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In order to see this we take p E M1(G) and let f i  denote the 
image of p under the canonical homomorphism 7r : G - G/H. Now, 
for each compact neighborhood V E DG(O) the sets V H  and 7r(VH) 
are compact neighborhoods in 2 3 ~  (0) and in 2 3 ~ / ~  (0) respectively. 
The identity 

n+O n20 

yields the assertion. 

Theorem 6.3.16 (Characterization of the class R) Let G be a sec- 
ond countable locally compact Abelian group which by the structure 
theorem 4.2.20 is of the fo rm 

G = Rd x G I ,  

where G1 contains a compact open subgroup K such that 

G/{O} x K Rd x G2 

with a countable group G2 of rank r .  Then  G E R if and only if 
d + r < 2 .  

The proof of the theorem relies on 

Theorem 6.3.17 (Dudley) A countable (Abelian) group G belongs 
to R if and only if rank (G)  5 2. 

Proof. 1. If rank (G) > 2, then there exists a subgroup of G that 
is isomorphic to the group Z3 which by Theorem 6.3.13 (iii) is not 
recurrent. On the other hand we infer from Property 6.3.15.2 that 
G $ R. 
2. Conversely, we assume that rank (G) 5 2. There exists a sequence 
( a n ) n E N  generating G and such that am+l does not belong to the 
subgroup G, generated by { a l ,  . . . , am} (m 2 1). from the struc- 
ture of finitely generated Abelian groups proved in the book [19] by 
Hewitt and Ross we infer that for every m 2 1 the group Gm is of 
the form Z2 x F or Z x F or F ,  where F denotes a finite group. 
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Applying Theorem 6.3.13 and Property 6.3.15.3 this implies that all 
random walks in Gm are recurrent (rn 2 1). 

Now we define a sequence (/.i(m))m>l - of measures p(m)  E M1(Gm) 
by 

1 
p ( l )  ( U l )  = 

~ ( ~ ) ( z )  = (1 - qm)p (m-1) (z) 
(-a1) = j, 

for m 2 2 and all x E Gm-1, and 

(with a proper choice of qm). To every x E G there exists an m 2 1 
such that z E Gm. The number 

is independent of m. If the product n (1 - q i )  converges, then 
i>2 

hence p E M1(G). Plainly p is adapted. Our aim will be to show 
that the number qi can be chosen such that the random walk X ( p )  
with law p is recurrent. 

For every m 2 1 let X(")  be the random walk with law p m  defined 
by the canonical probability measure PY,,. We choose once for all a 
sequence (Tn),EN in ]0,1[ such that 



such that 

For 4 2  := rl 
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Next we choose a number 11 E N and a sequence  EN in ]0,1[ 

A a!') the random walk X ( 2 )  in G2 leads to 

with the proper choice of 12 and (aj  ( 2 )  ) j g ~ .  With 43 := 7-2 A a2 ( l )  A 

a?) we obtain the random walk X ( 3 )  in G3 satisfying an analogous 
inequality. The inductive process continues and ends up with the 
inequality 

together with the definition 

The choices taken are justified by the recurrence of the random walks 
x(n). 

It is clear that 

22 1 

For the potential kernel K of X ( p )  we have that 



332 Probabilistic Properties of Convolution Semigroups 

where the Ic-th entry in the finite sum can be interpreted as the 
probability for X ( p )  to be in 0 E G at time k without having left 
Gn-1. 

Moreover, by (2) we obtain that 

n / l  k=Zn-l +1 

1n 

thus X ( p )  is recurrent, I 

The Proof of Theorem 6.3.16 follows from Property 6.3.15.3 to- 
gether with the equivalence that Rd x G:! is recurrent if and only if 
d + r 5 2, where for both implications Dudley's theorem 6.3.17 is 
applied. 

Remark 6.3.18 If in the theorem 6.3.16 d + e 5 2, then G contains 
the dense subgroup Qd x G, which belongs to  R. Consequently we 
have further 

Examples 6.3.19 of groups in R 

6.3.19.1 Q2 x K with a compact group K belongs to  R. 

6.3.19.2 The group Q p  of p-adic numbers belongs to R. 
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6.4 Classification of transient random walks 

In order to study the asymptotic behavior of random walks with law 
on a locally compact Abelian group we need to modify their canonical 
construction by compactifying G in the sense of Alexandrov. 

Considering a transition kernel P on (G, !B(G)) and picking a point 
A not in G we extend P to (Gn,B(Gn)), where Gn := G U {A} 
and !B(Ga) := a(%(G) U {A}), by 

P(x ,  {A}) := { l ; P ( x , G ) i f z f A  
i f x = A .  

In this situation the canonical (product) measurable space will be 
(a,%) with 

R : = G ?  and 

U := B(Gn)@’+ . 

Moreover, the sequence (Xn)nEZ+ of projections Xn : G? + Gn 
will be supplemented by 

X,(W) := A 

for all w E C2. So the measures P” for u E M’(G) governing the 
Markov chain ( X n ) n E ~ +  with transition kernel P will be interpreted 
as measures on the (enlarged) measurable space (0,U). 

We start the discussion by proving some general renewal results 
for transient random walks X ( p )  with law p E M‘(G) admitting a 
potential kernel K .  

Proposition 6.4.1 Let .Fh denote the set of accumulation points of 

.FK := {K(x,.) : x E G) 

obtained as x + A. Then 

Fk c { C W G  : c 2 0) .  
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Proof. Fkom Corollary 6.3.8 we infer that FK is .r,-relatively corn- 
pact. Let (Z,),~N be a sequence in G with x, -+ A and 

rv - lim K(x,, 0 )  = u E M+(G) .  
n-oo 

Since 
rv = lim E ~ ,  = 0, 

n+oo 

the equality 

valid for all n E N, leads as n + 00 to 

&x, * K = Ex, + &xn * K * p 

Now, the Choquet-Deny theorem 6.1.12 applies (to the adapted ran- 
dom walk with law p E M1 (G)), such that u is p-invariant and hence 
a Haar measure of the form c WG with c 2 0. 3 

Proposition 6.4.2 Let f E CT(G). Then 
( i )  Kf is uniformly continuous. 

uniformly for all y from any compact subset C of G. 

(iii) liminf K f (x) = 0. 
x+A 

lim K f ( z ) K f ( - z )  = 0. 
X + A  

(iv) 

Since (a) implies that the mapping x H K(x , . )  as continuous, 
- hence determining the set 3k is equivalent to determining the closure 
F K  of FK in M+(G) (with respect to rv). 

Proof. (2,) From the q,-relative compactness of .FK we infer that 
for every compact subset C of G there exists a constant MC > 0 
such that 

K(x ,C)  I M c  

(ii)
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whenever z E G. Let H := supp(f) and let V be a compact neigh- 
borhood in g ~ ( 0 ) .  Since f is uniformly continuous, for any E > 0 we 
can choose a compact Vl E Z?(O), Vl c V such that 

Ifb + Y) - fb>I < E 

for all y E Vl and all x E G. For y E Vl the function 

x 9 b )  := f(z + Y) - f(x) 
vanishes outside the compact set C := H + V ,  and 

whenever x E G. Now, from the boundedness of K we deduce that 

for all II; E G,y E V ,  and this implies the assertion. 
(ii) Proposition 6.4.1 tells us that every sequence in G converging to 
A (as n + 00) contains a subsequence ( z n ) n E N  such that 

rV - lim K(zn ,*)  = c WG 
n-mo 

for some c 2 0. But then for y E G 

which shows that this limit exists. For every E > 0 there exists a 
compact subset Cy of G satisfying 

whenever x E Cyc. 

y E G has a neighborhood Uy E 
Since by (2,) Kf is uniformly continuous, for each E > 0, every 

such that for x E Uy we have 
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uniformly in x E G. But then 

whenever x E Uy and 2 E Cy". Covering the given compact set C by 
finitely many of the sets Cy for y E G yields the assertion. 
(zii) With the abbreviation 

a := inf K f ( z )  
x E G  

we have that 
a 5 P " K f ( z )  

for every n 2 1 and all z E G. Letting n tend to 00 this yields a = 0. 
Now let Kf be strictly positive. Then 

lim inf Kf (z) = 0 . 
XAA 

If Kf is not strictly positive, then there exists xo E G such that 
Kf( z0 )  = 0, hence that 

P"Kf(z0) = 0 

for every n E N. But for any compact subset C of G there exists an 
n E Z+ such that 

Pn(xo,cc)  > 0, 

hence there is an x E C" with K f ( z )  = 0. Thus, also in this case we 
arrive at the assertion. 
(iv) Fixing E > 0 we obtain from (ii) that there is a compact subset 
CE of G such that for z E C," and for every y E D := supp(f) we 
have 

K f ( 4  5 Kf(z + Y) + E ,  

hence 
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By the maximum principle 6.3.6.1 we obtain the validity of (1) for 
all x E CEc and all y E G. 

Now (iii) provides us with a point yE E D such that 

Replacing y by -x + yE in (1) this yields 

But 

thus (iw) has been established. rn 

Theorem 6.4.3 .Fk 3 0 ,  and there exists at most  one measure 
p E FL, p # 0 which necessarily has the f o r m  

f o r  some c > 0. 

Proof. In view of Proposition 6.4.1 we have 

Let now (z,),~N be a sequence in G with Z, -+ A such that 

Then, by Proposition 6.4.2 (iw), 

This takes care of the first statement of the theorem. 
For the proof of the second statement we assume that there exist 

two non-zero accumulation points in Fk. Then there exists a function 
f E C$(G) with D := supp(f) such that the set 

{Kf ( x )  : x E G )  
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admits two limit points 0 < I < m as x --+ A. Fixing E > 0 we now 
construct inductively a sequence (Z,),~N in G such that the support 
of the function 

x g(x)  := f(z) + f(x + Zl) + a  * + f(J: + %a) 

n 

i=O 
is contained in U (-xi + K ) .  

In fact, the construction starts with xo := 0. Then, by Proposition 
6.4.2 (ii) and (iv) we choose x1 E G such that 

and 

the latter two inequalities holding true for all x E D. Since the sets 
D U (-XI + D )  and D U (21 + D )  are compact we can choose 22 E G 
satisfying analogous inequalities with x1 replaced by x2, 22 by 23 and 
D by D U (-XI + 0) and D U ( 2 1  + 0) respectively, and so on until 
we arrive at an x, E G satisfying the inequalities 

and 
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n-1 

i=O 
the latter two inequalities being valid for all x E u (-xi + 0) or 

x E U (xi + D )  respectively. Clearly, 
n-1 

i=O 

Now, let x E x p  + D for 1 I p 5 n. Then 

whenever i = 1,. . . ) n - p ,  and 

K f ( x  + xp-i) = K f ( z  - x p ) ,  

whenever x = x p  + x + xp-i E xp-i + D and i = 1 , .  . . , p ,  SO that 

Forming the sum over all these inequalities we obtain that 

for all x E Uy=o(-xi + D) .  The maximum principle 6.3.6.1 implies 
that this inequality holds for all x E G. Another application of Propo- 
sition 6.4.2 (ii) yields 

hence 
nl IIEr'fll + E  l imsupKf(2) 5 - + 

x+A n + l  n 
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for every n E N. Since 1 was the smallest of the presupposed two ac- 
cumulation points > 0, the desired contradiction has been achieved. 

The previous theorem justifies the following 

Definition 6.4.4 A transient random walk X ( p )  in G with potential 
kernel K is said to be of type I i f  

rv - lim K(z , . )  = 0 .  
X + A  

X ( p )  is said to be of type 11 i f  F& contains a measure c WG # 0 
(for c > 0). 

Remark 6.4.5 Theorem 6.4.3 implies the dichotomy that every ran- 
dom walk in G is either of type I or of type II. 

Clearly, any symmetric random walk X ( p )  in G in the sense that 
its determining measure p E M1(G) is symmetric, is of type I. 

In view of a general approach towards characterizing random walks 
of type I we first treat the special (classical) cases G = R and G = Z. 
We shall apply the symbol X for the Lebesgue measure on R as well 
as for the counting measure on Z. The Alexandrov compactification 
Gn of G will be understood as G U {--oo,oo}. 

Concerning the renewal of the groups R and Z we first prove 

Proposition 6.4.6 Let G be R or Z, and let X ( p )  be a transient 
random walk in G with potential kernel K .  Then 

( i i)  At least one of the constants c+ and c- equals 0 the other one 
being > 0 or = 0. 

Proof. 1. Let G = Z, and suppose that there exist two measures in 
.Fk (as 17; + 00). By Theorem 6.4.3 these are the measures 0 and 

(i)



Classification of transient random walks 341 

CWG for c > 0. But then for any function f E C$(G), any E > 0 and 
for sufficiently large x we have either 

or 
K f ( x )  < E .  

Consequently there exists a sequence (xn)nEN in G with xn --+ w 
satisfying the above inequalities with x replaced by xn + 1 and xn 
respectively, for all n E N. Hence Proposition 6.4.2 (ii) implies a 
contradict ion. 
2. For the case G = R we note that if there are two measures 0 and 
CWG for c > 0 in Fk, then for any f E C$(G) the entire interval 
[O, wG( f ) ]  is contained in F&, since Kf is continuous by Proposition 
6.4.2 (2). The desired contradiction follows from Theorem 6.4.3. 

A function f on R is called directly R i e m a n n  integrable (R- 
integrable) if the series g(f, h) and a(f, h) defined below converge 
and if for every E > 0 

whenever h > 0 is sufficiently small. Here, for h > 0 we define un(f, h) and U n ( f ,  h) as the minimum and the maximum of f taken 
over [(n - l)h,nh] (n  E N) and set 

00 

respectively. Clearly, the set R(R) of R-integrable functions on R 
contains CC(R). For functions f on R that vanish on ] - w,O[, de- 
crease on [0, w[ and satisfy f(w) = 0 the series a and 8 either both 
diverge or both converge. Thus f E R(R) if and only i f f  E L1(R, A). 

rn 

Proposition 6.4.7 Iff E R(R), t h e n  K f  is bounded, and  

lim Kf = ch A ( f )  . 
X - f m  
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Proof. 1. We first show the assertion for functions of the form 

for fixed h E RT 
exists a constant 
(an )nEZ  denote a 1 

(n E N). By the maximum principle 6.3.6.1 there 
M > 0 such that Kfn  5 M for all n E N. Let 
sequence in R: such that Cn=-cx,un < 00. Then 00 

for 
00 

n=--00 

we obtain that 

m m 

k=-m k=-m 

for all x E G and m E N, which implies the boundedness of K f. The 
asserted convergence follows from the .r,-convergence of the potential 
kernels K ( x , - )  as x -+ 00 (z -+ -00). 

2. Let now f E R(R), f > 0. Setting 

00 

we immediately see that 

hence that 

and finally that 
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for all x E G. This implies both assertions of the Proposition at once. 
rn 

It follows the computation of the constants c+ and c-. 

Proposition 6.4.8 Let X ( p )  admit af irs t  moment  in the sense that 

in which case the mean 

m := /xp(dx) 

( o f X ( p ) )  exists. Then  X ( p )  is  of type II. 

Mo reoue r, 
(‘I) m # 0, since X ( p )  is transient. 
(‘2) I f m  > 0 (m < 0 ) ,  then c - = 

(3) If supp ( p )  c R+ (:= R+ LJ {oo}), then c- = $ (and, of course 

and c + = 0. 
(+) (-1 

c+ = 0). 

Proof. In order to show the main statement and (2) of the Proposi- 
tion we need to introduce two auxiliary functions g and k on R and 
R2 by 

p ( [ - x ,  m[) 

-p(]  - 00, -x[) 

if x 5 O 

if z > O 
g(x) : = 

and 
1 i f x < O ,  9 2 - x  

-1 if x 2 0, y < -x 

0 otherwise 
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respectively. An application of the F'ubini theorem to the integral 

for which 

00 

-00 

holds, yields that 
00 

P 

J g(x)X(dx) = m .  
-00 

Consequently, g E R(R) and so Kg is bounded by Proposition 6.4.7. 
For h := 1 1 - ~ , ~ [  we have 

whenever x E R, hence 

( I  - P)h = g . 

Applying the Choquet-Deny theorem 6.1.12 to the measures p := 
1 - WG E Msb(G) with 

and CT := p E M'(G)  we obtain that 1 is constant = a [ W G ] .  Now 
sequences (x,)€N and (Y,),€N in R can be found which converge 
to -00 and 00 respectively and which satisfy Z(zn) = Z(y,) = a for 
every n E N. On the other hand we have 

l : = h - K g  

where x, denotes either x, or y,. In the limit for n + 00 we obtain 
from Proposition 6.4.7 that 

l = c - m + a  
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and 
0 = c+m + a 

according to the choices (X,),€N and ( Y n ) n E N  respectively. But c+ > 
0 is impossible, since this yields c- = 0,a = 1, hence X < 0. We 
therefore have c+ = 0, hence a = 0 and consequently c- = $. 

As to the proof of (3) we first observe that the statement is true 
for m < oo by what we just showed. In the case X = oo we note that 
g vanishes on 30, oo[, Kg 2 0 and Kg = h, since h vanishes on 10, oo[. 
Moreover, for every n E N the function 

In the limit for x -+ -oo this inequality leads to 

for all n E N. But this is a contradiction unless c- = 0. 

Given a random walk X ( p )  in G with law p E M ' ( G )  and tran- 
sition kernel P one introduces for any stopping time r for X ( p )  the 
stopped transition kernel Pr by 

for all II: E G , B  E B(G). In the special case that r is the (first) 
entry time (or hitting time) H B  of X ( p )  into the set B E B(G) 
defined by 

inf{n E Z+ : X&) E B }  if {n E Z+ : X n ( w )  E B }  # 0 
00 otherwise, H B ( W )  := 

the strong Markov property of X ( p )  implies that 

and
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valid for all measurable functions f 2 0 on G , x  E G. 

In the following we shall write H+ instead of HE+. 

Properties 6.4.9 

00 
6.4.9.1 If 

m+ = zp(dz) = 00, 

then 
rv - lim PH+(x,.) = 0 .  

z+-m 

In fact, if supp(p) c R+, then by Proposition 6.4.8 (3) 

lim K f ( z )  = 0, 
z+-m 

and since Kf 2 f, this yields the assertion. Let us now suppose that 
p is not carried by R+. We define a sequence (T,) ,~N of stopping 
times for X ( p )  by induction as follows: 

inf{n E Z+ : X n  > XTk-l} 

00 otherwise 

if .(n E Z+ : X ,  > X,k-l} # O 
Tk := 

for k 2' 1. Clearly, the random variables X,, - X,,-, ( k  2 1) are 
independent and equally distributed with distribution 

p' := P H +  (0, .) . 

Thus the sequence (XTk)kEN forms a random walk X ( p ' )  in R with 
supp (p ' )  c R+, and since p' 2 Res ~ + p ,  we obtain that 

J, xp'(dx) = 00.  
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Now the distributions of entry into E+ with respect to X ( p )  and 
X ( p ' )  coincide. The first part of this proof applied to p' instead of 
p yields the assert ion. 
6.4.9.2 If 

0 m - = S__(z)P(dX) < 0 

and if m > 0,  then 
P"([H+ < 003) = 1 

for all x E R. 
For the proof we assume that m+ < 00; the case m+ = 00 can be 

treated by truncating X ( p ) .  Since m+ < 00, the strong law of large 
numbers implies 

i 

and the assertion follows. 

Theorem 6.4.10 (Renewal under non-existence of first moments) 

first moment, then it is of type I. 
If the transient random walk X ( p )  in G = R or G = Z admits no 

Proof. We suppose that c- > 0, hence c+ = 0, and that m+ = 00. 

Then the strong Markov property of X ( p )  implies that 

holds for each function f E C$(G) vanishing on ] - 00, O[ and all 
2 E G. From c+ = 0 we infer that given E > 0 there exists an a > 0 
such that K f ( y )  < E for all y E G with y > a. But then 

ra 

Thus
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for all ~t: E G. Moreover, 

T~ - 5+-m lim PH+(x,-) = 0, (1) 

thus K f ( z )  5 2~ for sufficiently small ~t: E G. This, however, con- 
tradicts the assumption that c- > 0. It follows that m+ < 00, 

hence that rn- = 00. Replacing X ( p )  by its dual in the sense that 
p E M1(G) is replaced by pw,  the above assumption is equivalent to 
supposing that c- = 0, hence c+ > 0 and m- < 00, hence m+ = 00. 

Then 
PX(["+ < 003) = 1 

for every x E R, and by (1) 

= lim K f ( z )  
2+-m 

= lim K f ( y )  
v-00 

This is the desired contradiction. 

The previous theorem extends to random walks in groups of the 
form G = R x K and G = 2 x K ,  where K is a compact group. 
We shall prove the extension only for G = R x K ,  where W G  is 
chosen to be X @I W K  with W K  E M 1 ( K ) .  Let p denote the canonical 
projection from G onto R. Then we shall employ the convention that 
x + +oo (-00) in G provided p(x) + +00 (-00) in R. 

Theorem 6.4.11 Le t  G 
a random walk with law p E M 1 ( G )  which is of type II. 

R x K or G E Z x K ,  and let X ( p )  be 
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Then 

(i) 

(ii) If m := p ( x ) p ( d x )  > 0, 
G s 

then 

0 i f A = o o  

LA i fA=-oo .  
rv - lim K(z , . )  = 

x 4 A  

Proof. From Proposition 6.4.1 we infer that for every sequence in 
G there exists a subsequence ( z , )nEN with zn := (yn,k,) E R x K 
such that 

rv - lim K(z,,.) = C W G  
n-ca 

with c 2 0. Let f E C$(G) be constant on the K-cosets of G. Then 
(ii) of Proposition 6.4.2 leads to 

Now we consider the random walk X(P1 with law := p ( p )  E 
M1(R). With the suggestive notation for f (with f(y) = f(z) for all 
y = K + z) and I?' we obtain 

for all n E N, and by the discussion starting with Proposition 6.4.8 
we have 

lim Gf(yn) = c+ . A(?) 
Yn-m 

where c+ > 0 if and only if 
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As 

the theorem has been proved. w 
The final step of our analysis will be to establish the renewal of 

random walks for general locally compact Abelian groups. 
We note that the (locally compact Abelian) group G remains to be 

second countable. The function f appearing in the proofs is always 
taken from C$(G) and # 0. 

Theorem 6.4.12 Let GI, be a compactly generated, non-compact 
open subgroup of G such that GIG1 is  infinite. 

Then  all transient radom walks in G are of type I. 

Proof. We suppose that the given random walk in G with potential 
kernel K is of type I1 and at the same time that there exists a 
sequence (Z,),€N in G such that 

rv - lim K(x,,.) = C W G  
n+ca 

for c > 0. The aim is to derive a contradiction. 
Given the sequence (x,)nEN we may assume without loss of gen- 

erality that the GI-cosets G1 +xn of G (n E N) are pairwise disjoint. 
In fact, if there is no subsequence of ( X , ) , ~ N  with this property, 

then there exists a G1-coset containing infinitely many x,, hence 
(z,),€N is contained in one (and the same) GI-coset. Now we choose 
a sequence ( Y ~ ) ] F € N  in G such that the cosets G1 + yk ( k  E N) are 
pairwise disjoint. From (iz) of Proposition 6.4.2 we infer that for 
every k E N we have that 

1 
hence that 

IKf(xnk + ’!h) - c wG(f) l  < 2” 
for some nk E N. The sequence ( x ~ ) R ~ N  with xk := x,, + yk fulfills 
the requirements. 
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Since G1 is compactly generated and non-compact, there exists an 
x E G1 such that nx -+ A as n + 00. Applying properties (ii) and 
(iv) of Proposition 6.4.2 one obtains 

or 
lim Kf( -nz )  = 0 .  

n+m 

Without loss of generality we restrict our subsequence arguments to 
the first limit relationship. For every n there is a smallest integer mn 
such that 

whenever n’ 2 mn. This follows again from (ii) of Proposition 6.4.2. 
But for fixed Z 

hence mn > 1 for sufficiently large n. We obtain, for such n, 

consequently, in the limit for n + 00, C U G ( ~ )  and 0 respectively. 
On the other hand G1 is open, hence G/G1 is discrete and every 

subset of G is contained in the union of finitely many G1-cosets of 
G. Thus 

lim (xn + nx)  = A 

uniformly in n, and one more application of (22) of Proposition 6.4.2 
yields 

n+m 

which serves as a contradiction. U 

and
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Corollary 6.4.13 If G 
group K ,  then all transient random walks on  G are of type I. 

Rd x Ze x K with d+e > 1 and a compact 

Proof. From the proof of Theorem 6.4.11 we infer that it suffices to 
consider groups of the form G = Rd x Z" for d + e > 1. If e 2 1, 
the above theorem yields the result. If, however, G = Rd for d > 1, 
then G = u Gn for an increasing sequence (Gn)nEN of compact 

subsets Gn of G such that G," is connected (n  E N). Suppose that 
for f E C$(G), f # 0 we have 

n2l 

lim G f ( x ) = u # O .  
x+A 

Then every point in [0, a] is a limit point of G f (z) (for 2 -+ A). But 
this contradicts the statement of Theorem 6.4.3. 

Theorem 6.4.14 If every element of G is  compact, then all transient 
random walks an G are of type I. 

Proof. As in the proof of the previous theorem we assume that there 
is a random walk of type I1 in G and aim at deriving a contradiction. 
Let (Zn)ncN be a sequence in G such that 

with c > 0. For every n E N the set S := {kzn : k E N} is a 
compact subsemigroup, hence a subgroup of G. Indeed, if 0 is not an 
accumulation point of S, then S will be discrete. Since S is compact, 
this is a contradiction. But 0 being an accumulation point of S ,  -z 
is also one. This shows that S = -S, hence that S is a group. 

As a consequence of this we may also choose a sequence ( k p ) p E ~  
in N such that 

lim k P z ,  = -2,. 
P-=Q 

Thus, for every E > 0 there is Icn E N satisfying 
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By (zw) of Proposition 6.4.2 

lim Kf(-2,) = 0, 
n+oo 

hence 
lim Kf(knzn)  = 0 .  

Now we choose a constant M such that M > IlKfll V : c u ~ ( f ) .  For 
sufficiently large n 2 1 and the largest positive integer m, < kn the 
inequalities 

n+oo 

c2wG (f )2  
Kf(mnzn)  L 4M 

and 

imply that 

Furthermore, for sufficiently large n we have that 

which leads to 

and 

Now, by an appropriate choice of E we arrive at the inequalities 
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and 

Since x, --+ A as n -+ 00, at least one of the sequences ( ~ , Z , ) , ~ N  
and ((m, + ~ ) z , ) , ~ N  admits a subsequence (Y,),~N with yn + A. 
But the sequence ( K ~ ( Y , ) ) , ~ N  has at most 0 and c u c ( f >  for c > 0 
as accumulation points. This shows the desired contradiction. 

Theorem 6.4.15 (General renewal theorem). Let G be a second 
countable locally compact Abelian group, and suppose that there exists 
a random walk of type 11 in G. Then 

G Z R x K or G E Z x K ,  

where K is a compact group, and the renewal results of Theorem 
6.4.11 apply. 

Proof. From Theorem 6.4.14 we infer that there exists a non- 
compact element y E G. Since by Appendix A 3.5 G admits a 
compactly generated open subgroup GI ,  the subgroup 

is non-compact, compactly generated and open. Thus, by Theorem 
6.4.12 the group G/Ga must be finite, hence G itself compactly gen- 
erated. But then, by the structure theorem 4.2.19 

G E R~ x ze x K 

with a compact group K .  Corollary 6.4.13 implies the assertion. 



Appendices 

Appendices on topological groups, topological vector spaces and on 
commutative Banach algebras are added in order to provide the 
reader with the necessary prerequisites from these topics to be em- 
ployed throughout the book. The exposition of basic notions and 
facts from functional analysis organized along specific references and 
presented in a unified terminology is intended to facilitate the read- 
ing of the main text. 

There are excellent text books and monographs available which 
contain the knowledge layed out in the appendices. The citations 
on topological groups are justified in Chapter I1 of Volume I of [19] 
(Hewitt, Ross). The quoted material on topological vector spaces is 
contained in the graduate text [41] (Schaefer). A systematic treat- 
ment of the facts collected on commutative Banach algebras is given 
in chapters IV and V of the monograph [28] (Loomis). Only a few 
very special references are documented in the main text of the book. 

A Topological groups 

A group G (written additively with neutral element 0) which is also 
a topological space is said to be a topological group if the mapping 
( L C , ~ )  I+ CL: - y from G x G into G is continuous. 

Clearly the translates x I-+ a + x and x I-+ x + b for a ,  b E G as well 
as the inversion z I+ -z are homeomorphisms from G onto G. As 
a consequence one notes that for open sets A,  B of G also the sets 
A + B,  B + A and - A  are open. If A is closed and B is compact, 
then A + B is compact in G. 

355 
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Let 23(z) denote the neighborhood filter of z E G with the abbre- 
viation 23 for 23(0). Then D(a) = a + W = 23 + a whenever a E G. 

Theorem A1 (Determination of the topology of a topological group) 
(i) Let G be a topological group with neighborhood filter 23. Then 

(1) for  every U E 23 there exists V E 23 such that V + V c U. 
(2) If U E 23, then -U E 23. 

(3) 0 E U for all U E 23. 

(4) If U E 23) a E G, then a + U - a E W. 
(ii) Let G be a group and let 23 be a filter in G satisfying the condi- 

tions (1) to (4) of (i). Then there exists exactly one topology in 
G such that G is a topological group and W is the neighborhood 
filter of 0. 

For every a E G one has 

a(a) = a + W = B + a .  

We note that for every topological group the closed symmetric 
neighborhoods of 0 form a fundamental system of neighborhoods of 
0. 

Properties A2 of subgroups, products and quotients of a topo- 
1 og i cal group 

- A 2.1 For every subgroup H of the topological group G its closure 
H is again a subgroup of G. 

A 2.2 Let (Gi) icI  be a family of topological groups. The product 
topology in G := IIieIGi is compatible with the group structure in 
the sense that the mapping 

from IIicI(Gi x Gi) into G is continuous. 
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A 2.3 Let G be a topological group and let H be a normal subgroup 
of G. There exists an  equivalence relation 

ZRY H z - y E H . 

The group G / H  := GIR as a topological group with respect to the 
quotient topology induced by the canonical mapping G -+ GIH in 
the sense that a(O+ H )  satisfies the conditions (1) to  (4) of Theorem 
A l .  

One observes that an open subgroup of a topological group G is 
closed. Moreover, open and closed subgroups H of G can be gener- 
ated by a symmetric neighborhood U E a in the form H = u,>l nu. 

Properties A3 of locally compact groups 

A 3.1 A Hausdorff (topological) group G is  locally compact i f  and 
only if 0 possesses a compact neighborhood. 

A 3.2 Every closed subgroup of a locally compact group is also locally 
compact. 

A 3.3 If G is  a Hausdorff group and H a subgroup which i s  locally 
compact with respect to  the relative topology, then H is  closed. 

A 3.4 Let G be a locally compact group and let H be a normal 
subgroup of G. Then  G I H  is  a Hausdorff locally compact group if 
and only i f  H i s  closed. 

A 4 A topological group G is said to the compactly generated if 
it contains a compact subset F for which the subgroup generated by 
F coincides with G, i.e. 

G = [F]  := (0) u u n ( F U  (4')). 
n2.l 

For locally compact groups G this property is equivalent to the 
requirement that there is an open relatively compact subset U (or a 
neighborhood U E a) such that G = [U]. 
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Further Properties A3 

A 3.5 Let G be a locally compact group and F a compact subset of G. 
T h e n  there exists a n  open and closed compactly generated subgroup 
H of G with H 3 F .  

A 3.6 Let G be a locally compact group, let H be a subgroup of 
R furnished with the relative topology, and let cp be a continuous 
homomorphism f r o m  H into G. T h e n  either cp(H)- is a compact 
Abelian subgroup of G or cp is  a topological isomorphism f r o m  H 
onto cp(H). 

B Topological vector spaces 

We now turn to the discussion of commutative groups, in particular 
to topological vector spaces which are vector spaces I3 over R 
and at the same time topological spaces such that the mappings 
(x, y) t-+ x + y from E x E into E and (A, 2) t-+ Ax from R x E into 
E are continuous. 

Examples B1 of topological vector spaces are semi-normed vector 
spaces E in the sense that they admit a semi-norm p with the defining 
pro pert i e s 

(iii) ~ ( X X )  = IXlp(x) for all X E R , x  E E. 

The funct ion ,g o n  E x E given by 

f o r  all x, y E E provides a quasi-metric o n  E.  

B 1.1 Every (real) Banach space is a norrned vector space, hence the 
spaces R and C are normed vector spaces (over R). 
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Let A and B be subsets of a vector space E.  A is said to absorb 
B if there exists an a E R: such that B c XA for all X E R with 
1x1 2 a. A c E is called absorbing (radial) if A absorbs every 
finite subset of E ,  and bounded if it absorbs each neighborhood of 
0. Finally, A c E is called balanced (circled) if XA c A whenever 
X E R with 1x1 2 1. 
Theorem B2 (Characterization of topological vector spaces by  local 
propertaesj 

(a )  In e v e y  topological vector space E there exists a fundamental 
system U of closed neighborhoods of 0 such that 
(1) every U E U is  balanced and absorbing. 
(2) For every U E U there is a V E U with V + V c U. 

(ii) Let E be a vector space and let U be a filter base in E satisfy- 
ing properties (1) and (2) of (2). Then  there exists exactly one 
topology in E compatible with the vector space structure of E 
and such that U is a fundamental system of neighborhoods of 0.  

For topological vector spaces one introduces linear subspaces, 
products and quotients in analogy to the corresponding structures 
for topological groups. 

Theorem B 3 (Characterization of finite dimensional vector spaces) 

Let E be a Hausdorfl topological vector space with d im E = d (< 
00). Then every linear mapping from Rd onto E is an isomorphism 
and a homeomorphism. 

I n  particular every such topological vector space is isomorphic (as 
a topological vector space) to R ~ .  

It is a famous result of F. Riesz that a Hausdorff topological vector 
space E is finite dimensional if and only if E is locally compact. 

A topological vector space E is said to be a locally convex space 

Clearly every semi-normed space, hence every Banach space is 
if E admits a fundamental system of convex neighborhoods of 0. 

locally convex. 
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There is a characterization of locally convex spaces by local prop- 
erties analogous to Theorem B 2. In fact, the topology of a locally 
convex space E is determined by a fundamental system of convex, 
symmetric and absorbing closed neighborhoods of 0. 

Let E be an arbitrary vector space, (p&l a family r of semi- 
norms on E ,  and let U be the system of all sets V of the form 

where J is a finite subset of I ,  X i  > 0 for all i E J .  Then U is a 
filter base, every set {x E E : p&) 5 A} (i E J,  A > 0) is convex, 
symmetric and absorbing, hence every V E U has these properties, 
and consequently there exists exactly one locally convex topology 
in E such that U is a fundamental system of neighborhoods of 0. 
This topology is called the topology defined by the set I' of 
semi-norms on E and will be denoted by Tr. 

Obviously the choice r := { p }  yields the topology of the space E 
semi-normed by p .  

Theorem B 4 Every locally convex topology r on the vector space 
E is of the fo rm rr for  some family r of semi-norms on  E .  

It is a standard procedure to introduce the inductive limit of locally 
convex vector spaces. A prominent example of a (strict) inductive 
limit of locally convex vector spaces is the space E := C " ( X )  for a 
locally compact space X. In fact, 

C " ( X )  = lim - C c ( X , K )  
K € K ( X )  

where for each K E K ( X )  the linear subspace C"(X ,K)  := {f E E : 
supp (f) c K }  of C " ( X )  carries the topology of uniform convergence. 

Theorem B 5 (Banach, Hahn) Let E be a vector space, p a semi- 
norm on E , M  a linear subspace of E and f a linear functional on 
M .  
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The following statements are equivalent: 

( i )  f can be extended to a linear functional f on  E satisfying 

If(4 5 P ( 4  

for all x E E.  

(ii) 

whenever x E M .  

Theorem B 6 (Closed graph) Let E and F be Banach spaces. Then  
any linear mapping f rom E into F whose graph is  a closed subset of 
E x F is continuous. 

In the remaining part of this appendix we are collecting useful 
notions and results on the duality of topological vector spaces. 

Let E and F be topological vector space, and let L ( E , F )  denote 
the vector space of all continuous linear mappings from E into F .  
For a set S of a given non empty family 6 of bounded subsets of E 
and for each V E !Z?F(O) we introduce the set 

T ( S ,  V )  := {U E L(E,  F )  : u(S)  c V } .  

7-6 denotes the system of all finite intersections of sets of the form 
T(S ,  V). There exists exactly one topology r on L(E,  F )  which is 
compatible with the vector space structure such that 70 is a funda- 
mental system of neighborhoods of 0 for r. The topology r deter- 
mined by r~ is said to be the 6-topology on L(E,  F ) .  

Discussion B 7 of the 6-topology 

B 7.1 If F is  a locally conuex space, then the 6-topology is locally 
conuex. 



362 Appendices 

B 7.2 Let F be a locally convex space, and let I' denote the set of 
semi-norms determining the topology of F (See Theorem B 4). For 
p E r and S E 6 we introduce the semi-norm p s  on  L(E,  F )  by  

for  all u E L ( E ,  F ) .  With V := {y E F : p ( y )  5 1) we obtain 

T (S ,  V )  = {u E L(E ,  F )  : P S ( Z L )  5 1). 

Therefore the family { p s  : S E 6 , p  E I'} of semi-norms defines an 
6-topology on  L(E,  F ) .  

By L e ( E ,  F )  we abbreviate the vector space L ( E ,  F )  equipped with 
the 6-topology. 

B 7.3 Let E ,  F be topological vector spaces, let F be a Hausdorf 
space, and let UsEeS be a dense subset of E .  Then  L e ( E , F )  is  
Hausdorf. 

Special cases B 8 of 6-topologies 

B 8.1 If 6 is  the family F ( E )  of finite subsets of E ,  then re yields 
the topology of simple (pointwise) convergence. 

B 8.2 For 6 := K ( E )  
convergence. 

76 determines the topology of compact 

B 8.3 If 6 is  the family B (E)  of bounded subsets of E ,  then 
defines the topology of bounded convergence (which appears to be 
the finest of all 6topologies). 

A set H c L(E,  F )  is said to be equicontinuous if for every 
V E DF(0) there exists a U E DE(O) such that 

u(U)  c v 
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for all u E H ,  or equivalently if for every V E BF(0) we have 

n .-y~) ~ ~ ( 0 ) .  
u E H  

Properties B 9 of equicontinuous sets 

B 9.1 For any equicontinuous subset H of L(E,  F )  the closure H of 
H taken with respect to the topology of simple convergence (and hence 
with respect to  any finer topology) on  L(E,  F )  is  also equicontinuous. 

B 9.2 Every equicontinuous subset H of L (E ,F)  is bounded with 
respect to  each 6-topology. 

B 9.3 If E and F are Banach spaces, then every simply bounded 
subset of L(E,  F )  is equicontinuous. 

B 9.4 If E and F are Banach spaces, then L(E,  F )  is itself a Banach 
space with respect to  the topology of bounded convergence. 

Let F and G be vector spaces, and let B be a bilinear form on 
F x G. One says that (F, G) forms a dual pair with respect to B if 
for all x E F,x  # 0 there exists a y E G such that B(x ,  y )  # 0 ,  and 
if for all y E G, y # 0 there exists an x E F such that B(x ,  y )  # 0. 

If E is a locally convex Hausdorff space and E‘ := L ( E , R )  its 
topological dual (space), then ( E ,  El) forms a dual pair with re- 
spect to the bilinear form 

(x,d) H B(x,x’)  = (x,x’) := x’(2) 

on E x El. 

For a dual pair (F, G) with respect to a bilinear form B also (G, F )  
is a dual pair with respect to B. In the sequel we shall employ the 
notation (x, y )  I+ B(x ,  y )  =: (x, y )  for the bilinear forms defining the 
dual pairs (F ,  G) and (G, F ) .  

Given a dual pair (F ,  G) the weak topology a(F, G)  is introduced 
on F by the property that all linear functionals z H (x, y) ( y  E G) 
are continuous. 
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Properties B 10 of the weak topology 

B 10.1 a ( F ,  G)  is determined b y  the set { p ,  : y E G )  of semi-norms 
p ,  on  F given b y  

PY(4 := l (Z7Y)l  

for  all x E F .  

B 10.2 a ( F , G )  is a locally convex Hausdorff topology. 

B 10.3 F and a ( F ,  G)  determine G within isomorphisms, i.e. F' 
G,  where the prime refers to  the topology a ( F ,  G). 

Let E be a locally convex Hausdorff space with topology r. Then 
the weakened topology a(E ,  El) on E is coarser than r ,  and E' is 
also the topological dual of E with respect to a(E,E') .  

Theorem B 11 (Alaoglu, Bourbaki) For a locally convex space E 
any equicontinuous subset H of E' is  a(E', E)-relatively compact. 

Let ( F ,  G) be a dual pair of vector spaces. Without loss of gener- 
ality we assume that G c F * ,  where F* denotes the algebraic dual 
of F .  A locally convex topology r on F is said to the compatible 
with the duality if G = F',  where the prime refers to the topology 
r.  In particular, a(F,G) is compatible with the duality. 

One shows by employing Mazur's separation theory that all topolo- 
gies on F compatible with the duality yield the same system of closed 
convex sets. For each convex subset of F all topologies compatible 
with the duality lead to the same closure. 

Theorem B 12 Let (F ,  G)  be a dual pair. 

( i )  Every locally convex Hausdorff topology r on  F is  compatible 
with the duality. 

(ii) r is  the 6-topology for  a covering 6 of G by convex, symmetric 
and a(G, F)-compact subsets. 
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The finest among the 6-topologies of (ii) (called the Mackey topol- 
ogy and denoted by r ( F ,  G)) is defined by the system 6 of all convex, 
symmetric and a(G, F)-compact subsets of G. The coarsest among 
those 6topologies is a(F,  G). 

Theorem B 13 (Arens, Mackey) A locally convex topology r on F 
is compatible with the duality if and only if 

a (F ,  G )  + r + r ( F ,  G) . 

Application B 14 to the dual pair ( E ,  E')  of a Banach space E .  

Let 
H := {x' E E' : 11x'II 5 l} 

be the unit ball of E'. Then 

B 14.1 H is equicontinuous, hence a(E',  E)-compact. 

In fact, H is a(E',  E)-relatively compact by Theorem B 11. More- 
over, H is easily seen to be a(E', E )  - closed. 

B 14.2 If E is separable, then H is a(E',  E)-metrizable. 

One just notes that along with E also E' is separable and that 
under this hypothesis every equicontinuous subset of E' is metrizable 
with respect to the topology of simple convergence. 

B 14.3 For every x E E one has 

This identity follows from the fact that the unit ball of E is the 
polm of the unit ball of E'. 
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C Commutative Banach algebras 

Let A be a normed algebra in the sense that A is an algebra and 
a normed vector space over C such that for the norm 11 - 11 in A the 
inequality 

holds whenever x ,  y E A.  If A admits a multiplicative unit 1 then A 
may be renormed such that 1 1  - 1 1  = 1. For the subsequent discussion 
we assume this renorming being done. 

I b Y  II 5 llxll IIY II 

Theorem C 1 (Gelfand, Mazur) Every commutative normed algebra 
A which at the same time is afield,  is  algebraically and topologically 
isomorphic to C. 

Now let A be a commutative Banach algebra with unit 1. An ideal 
I of A is said to be maximal if I # A and if for every ideal I of A 
with I c J c A one has either J = A or J = I .  

Properties C 2 of ideals I of A 

C 2.1 7 is  an  ideal of A .  

C 2.2 If I is  maximal then I is  closed. 

C 2.3 For each closed ideal I of A the quotient AII is  a Banach 
algebra. 

Theorem C 3 (Gelfand) For each subset I of a commutative Banach 
algebra with unit 1 the following statements are equivalent: 

( i )  I is  a maximal ideal of A .  

(i i)  I is  a closed maximal ideal of A .  

(iii) There exists a continuous epimorphism f : A + C such that 
f-'(0) = I .  

(iv) There exists a n  epimorphism f : A + C such that f - l (O)  = I .  
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For the proof of the implication (i) + (iii) one observes that by 
Property C 2.3 A/ I  is a Banach algebra and by the maximality of I 
that A/I  is a field. But this implies the existence of an algebraic and 
topological isomorphism g : A/I  * C. Considering the canonical 
mapping p : A 3 A/I  and putting f := g o p the equalities 

f - y o )  = p-l(g-l(0)) = p-l(0) = I 

yield the desired statement. 

Preparations C 4 

C 4.1 Every continuous epimorphism h : A + C satisfies llhll 5 1. 

Let A(A) denote the set of all (continuous) epimorphism from A 
onto C .  

C 4.2 A(A)  is a a(A',A)-compact subset of the unit ball of A'. 

A (A)  is said to be the maximal ideal space or the spectrum of 
A. 

For every x E A the mapping 5 : A(A)  3 C defined by 

2(h)  := h(x) 

for all h E A(A) is continuous, the mapping x H 5 from A into 
C(A(A) )  is a homomorphism, and 

whenever x E A.  

C 4.3 A := {i? : x E A }  i s  a subalgebra of C(A(A)) which separates 
A(A)  and contains 1. 

In general, A is not closed in C(A(A)) .  
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C 4.4 The topology of A(A) is  the initial topology with respect to the 
set A. 

This topology rg on A(A) is called the Gelfand topology. In this 
connection we also introduce the Gelfand transform ii of x E A 
and the Gelfand mapping (representation) x H 2 from A into 
C ( A ( A ) )  * 

Theorem C 5 Let A be a commutative Banach algebra with unit 1. 
Then 

( i )  Every epimorphism i from A onto C is of the form 

for  some h E A(A). 

(ii) Every h E A(A) defines an epimorphism 

from A onto C. 

A Banach algebra A is said to involutive if A admits an involution 
x H x" defined as a mapping A -+ A with the properties that 

(1) (z + y)" = x- + y-, 

(2) (Ax)" = Xx-, 

(3) (zy)" = yNxN, and 

(4) x-- = x 

whenever x, y E A,  X E C. 

if 
Moreover, an involutive Banach algebra A is called a C*-algebra 

llxz"II = 11412 
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for all x E A.  

Theorem C 6 (Gelfand's formula) Let A be a commutative Banach 
algebra with unit and Gelfand mapping x I+ 2.  Then, for each x E A 
the formula 

112ll = lim 11x72 11 i 
72-00 

holds. 

Theorem C 7 Every commutative C*-algebra A with 1 is sernisirn- 
ple  in the sense that the Gelfand mapping x 2 of A is a norm- 
and involution preserving isomorphism from A onto C( A(A)). 

2 is involution- 
preserving. Here preparation C 4.1 is applied. The property of x I+ 

2 being norm-preserving is established with the help of Gelfand's 
formula C 6. 

In fact, we know already that 11211 5 llxll holds for all x E A.  For 
the inverse inequality we first choose x E A with x = x"'. Then 

For the proof one starts by showing that x 

hence llx211* = IIxII, and by induction 

whenever n 2 1. Now, Theorem C 6 applies and yields 

Next, for arbitrary x E A we have (xx")" = xx"', hence 
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Finally, A being an involutive subalgebra of C(A(A)) with unit 
which separates A(A) is dense in C(A(A)). But along with A also A 
is complete, hence closed, and A = C(A(A)) has been established. 

Now, let A be an involutive commutative Banach algebra which 
does not admit a unit. By A(A) we again denote the set of all continu- 
ous epimorphisms from A onto C ,  furnished with the initial topology 
with respect to the mappings h - h(x) from A(A) into C (for all 
x E A ) .  Let A := A@ (1) denote the involutive commutative algebra 
arising from adjoining a unit element 1. A can be given a norm such 
that it becomes a Banach algebra with unit 1 and Gelfand mapping 
x H 2 (related to A(A) and A).  Let ho E A@) be defined by 

h 

Clearly, A ( A )  \ { ho } is a locally compact space, and the mapping h 
ResAh is a homeomorphism from ACA) \ {ho} onto A(A). Therefore 
A(A) is locally compact, and x E A belongs to A if and only if 2 
(restricted to A(A)) vanishes at infinity. 

Theorem C 8 Let A be a n  inuolutiue commutative Banach algebra. 
T h e n  

(a) A is  a subalgebra of Co(A(A)). 

(i i)  If, in addition, A is  a C*-algebra, then A is  semisimple in the 
sense that x H 2 is  a norm- and involution preserving isomor- 
phism from A onto Co(A(A)). 

While ( i )  is clear by the remarks preceding the theorem, only (ii) 
requires an argument. In fact, there exists a unique norm on A which 
extends to A and makes A a C*-algebra. From Theorem C 7 we 
conclude that A is semisimple. Restricting the Gelfand mapping x H 
2 to A and Co(A(A)) respectively we reach the desired conclusion. 
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