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Günter Lumer (1929–2005)



Life and Work of Günter Lumer

Günter Lumer was born in Frankfurt, Germany in 1929. With Nazism on the
rise, the Lumer family left Germany in 1933 and settled in France, where Günter
received his early education. Then, in 1941, the Lumer family fled once again, this
time to Uruguay, where Günter would become a citizen.

Possessing what would be a life-long passion for mathematics, Günter gradu-
ated in 1957 with a degree in electrical engineering from the University of Monte-
video. In fact, while at Montevideo, he was in the research group of Paul Halmos,
who would later dedicate a page to Günter in his book I Want to be a Mathe-
matician: an Automathography. Günter’s first paper “Square roots of operators,”
a joint work with P. Halmos and J.J. Schäffer, appeared in 1953 in the Proceedings
of the American Mathematical Society.

In 1956, Günter received a Guggenheim fellowship to study at the University
of Chicago. There he received his Ph.D. in Mathematics in 1959; his dissertation
was entitled Numerical Range and States and was written under the supervision
of Irving Kaplansky, thus earning himself a place among a long lineage of mathe-
maticians connected to Kaplansky.

Following Chicago, Günter Lumer held positions at UCLA (1959–1960), Stan-
ford University (1960–1961), University of Washington (1961–1974), University of
Mons-Hainaut (1973–2005), and the International Solvay Institutes for Physics
and Chemistry in Brussels (1999–2005).

Günter Lumer was a creative and prolific mathematician whose works have
great influence on the research community in mathematical analysis and evolution
equations. His scientific activities greatly contributed to the standing of the Bel-
gian Universities in general and the University of Mons-Hainaut in particular. In
1976, supported by the Belgium National Science Foundation, Günter founded a
contact group with the goal of organizing research and exchange meetings in the
fields of Partial Differential Equations and Functional Analysis. From the 1990s on,
building on the success of this group, Günter became a driving force and leading
contributor to several large-scale projects sponsored by the European Commu-
nity. The resulting conferences on Evolution Equations created a lasting network
supporting international research collaboration. These activities, combined with
Günter’s relentless energy and love for mathematics, were at the origin of the
breath-taking development of the field of evolution equations and the theory of
operator semigroups after the pioneering book of Hille and Phillips from 1957.



x Life and Work of Günter Lumer

In particular, between 1992 and 1997 he co-organized the North West European
Analysis Seminar that was held in 1992 at Saint Amand les Eaux (France), in
1993 at Schloss Dagstuhl (Germany), in 1994 at Noordwijkerhout (The Nether-
lands), in 1995 at Lyon (France), in 1996 at Glasgow (United Kingdom) and in
1997 at Blaubeuren (Germany). Those seminars covered a broad range of topics
in analysis and were a reflection of the true spirit of Günter Lumer, who always
enjoyed bringing together and working with a wide range of mathematicians and
scientists.

Although Günter Lumer’s professional focus was on functional analysis, par-
tial differential equations, and evolution equations, he nourished a broad interest
for almost all areas of mathematics and for science in general. He published more
than one hundred papers and edited many books. Probably his best known re-
sult is the celebrated Lumer-Phillips theorem, which gives necessary and sufficient
conditions on an operator to generate a strongly continuous semigroup of contrac-
tions on a general Banach space. This result, published in the Pacific Journal of
Mathematics in 1961, is a key contribution to the theory of operator semigroups.

Günter Lumer deeply loved mathematics. He considered his work as the most
precious thing he could leave to future generations. He was an independent and
original person, never influenced by fashion or convention. He used to say, “If a
crowd of a thousand unanimously condemns someone, then he must be innocent.
For it is unlikely for a thousand people to honestly agree on the same thing.”

With Günter Lumer we miss an inspiring teacher, a mentor and friend of
a generation of researchers, and a leader of our professional community. Günter
Lumer: a mathematician to be honored.
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Lect. Notes Math. 713, 156–177 (1979).
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(French), Séminaire de Théorie du Potentiel Paris, No. 8, Lect. Notes Math. 1235,
105–113 (1987).

Lumer, G., Perturbations “homotopiques”. Perturbations singulières et non singulières
de semi-groupes d’opérateurs et de familles résolventes (French), C.R. Acad. Sci.
Paris, Sér. I 306, No. 13, 551–556 (1988).

Lumer, G., Redheffer, R. and Walter, W., Estimates for solutions of degenerate second-
order differential equations and inequalities with applications to diffusion, Nonlinear
Anal., Theory Methods Appl. 12, No. 10, 1105–1121 (1988).

Lumer, G., Applications de l’analyse non standard à l’approximation des semi-groupes
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Cioranescu, I. and Lumer, G., Problèmes d’évolution régularisés par un noyau général
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Abridged English version), C.R. Acad. Sci. Paris, Sér. I 319, No. 12, 1273–1278
(1994).

Lumer, G., Models for diffusion-type phenomena with abrupt changes in boundary condi-
tions in Banach space and classical context. Asymptotics under periodic shocks, in
Clément, Ph. et al. (eds.), Evolution equations, control theory, and biomathematics,
Lect. Notes Pure Appl. Math. 155, Marcel Dekker, Basel, 337–351 (1993).

Lumer, G., On uniqueness and regularity in models for diffusion-type phenomena with
shocks, in Clément, Ph. et al. (eds.), Evolution equations, control theory, and bio-
mathematics, Lect. Notes Pure Appl. Math. 155, Marcel Dekker, Basel, 353–359
(1993).

Lumer, G., Singular problems, generalized solutions, and stability properties, in Lumer,
G. et al. (eds.), Partial differential equations. Models in physics and biology, Math.
Res. 82, Akademie Verlag, Berlin, 204–216 (1994).

Cioranescu, I. and Lumer, G., On K(t)-convoluted semigroups, in McBride, A.C. et al.
(eds.), Recent developments in evolution equations (Proceedings of a meeting held



xvi Life and Work of Günter Lumer

at the University of Strathclyde, UK, 25–29 July, 1994), Pitman Res. Notes Math.
Ser. 324, Longman Scientific & Technical, Harlow, 86–93 (1995).

Fong, C.K., Lumer, G., Nordgren, E., Radjavi, H. and Rosenthal, P., Local polynomials
are polynomials, Stud. Math. 115, No. 2, 105–107 (1995).

Lumer, G., Transitions singulières gouvernées par des équations de type parabolique
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In Remembrance of Günter Lumer

Heinz König

Günter Lumer was a close friend of mine for several decades. We had the same
age: our dates of birth were but 13 days apart. We met for the first time in the
fall of 1962 at a functional analysis conference in Oberwolfach. The year before
Günter had published two of his most important papers: the common paper with
Ralph Phillips on dissipative operators and the paper on semi-inner products.

The subsequent years were the grand period in the development of the func-
tional analytic theory of abstract analytic functions, known under the key words of
uniform algebras and Hardy spaces. We were both deeply involved, with quite often
different methods but close results. Günter obtained fundamental breakthroughs
in two situations: The first time in Bulletin Amer. Math. Soc. 70(1964), where he
was able to develop the abstract counterpart of the classical unit disk situation
on an arbitrary uniform algebra and for an individual multiplicative linear func-
tional, under the basic assumption that the functional in question has a unique
representing measure. Before that one needed global assumptions on the algebra
like to be Dirichlet or logmodular. After his work then 1965 Kenneth Hoffman-
Hugo Rossi and myself independently obtained the final abstract version of the
classical unit disk situation in terms of a fixed so-called Szegő measure for an
individual multiplicative linear functional.

The second breakthrough was in his 1968 Lecture Notes, this time for an
arbitrary multiplicative linear functional on any uniform algebra. Günter defined
its universal Hardy class and was able to transfer the classical concepts and results
to an amazing extent, in particular to establish an abstract conjugation operation
via extension of the classical Kolmogorov estimations. He then left the field in
the early seventies. I myself returned to it in a common frame with the extended
concept of Daniell-Stone integration due to Michael Leinert 1982, which produced
a definitive theory around 1990. But it is clear that to an essential extent the basic
contributions are due to Günter Lumer in the sixties.

In all these years we had close contacts. During the academic year 1967/68
Günter stayed at Strasbourg University, thus close to my home University Saar-
brücken. In the summer term 1967 he gave a series of lectures in Saarbrücken,
and in the winter term 1967/68, which I spent at Caltech in Pasadena, a little
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bus supplied by our University brought my students to his lectures in Strasbourg
every week. In the academic year 1969/70 Günter Lumer together with Irving
Glicksberg organized a Research Seminar on function algebras at their home
University, the University of Washington in Seattle. I had the good fortune to
participate for three months on his invitation.

After his move to Belgium in 1973/74 Günter was a regular visitor to Saar-
brücken, both private and for a further series of lectures and several colloquium
talks. He wrote a comprehensive survey article on evolution equations for our An-

nales Universitatis Saraviensis and published several papers in the Archiv

der Mathematik of which I had been the editor for abstract analysis. Our re-
lations became even closer because of the sequence of the North-West Euro-

pean Analysis Seminars 1992–1997, of which Günter was the unique creator
and driving force. We were common chairmen of the second seminar 1993 at Schloss
Dagstuhl in the Saar State, which is the Informatics counterpart of the Oberwol-
fach Institute. Thus we two are in the tiny group of “outside” mathematicians who
have ever been chairpersons of conferences at Schloss Dagstuhl. Unfortunately, in
1997 a serious hip joint operation forced Günter to discontinue the beautiful en-
terprise. There was no successor.

For me the first of the seminars 1992 in Saint-Amand-les-Eaux near Lille was
a moving event: Near its end I fell into heart trouble, and my doctor said on the
telephone that I should come to his hospital right away but must not drive a car.
What then happened was that Günter asked Luc Paquet to place his own car
next to his apartment in Brussels, and took the steering-wheel of my car (which
was new at the time) to drive us for at least 400 kilometers to Saarbrücken. We
arrived late at night, and my wife said later that I looked radiant with health but
Günter grey with exhaustion. This was the deepest evidence of friendship which I
ever experienced in my life.

Heinz König
Universität des Saarlandes
Fakultät für Mathematik und Informatik
D-66041 Saarbrücken, Germany
e-mail: hkoenig@math.uni-sb.de
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Expansions in Generalized Eigenfunctions
of the Weighted Laplacian
on Star-shaped Networks

Félix Ali Mehmeti, Robert Haller-Dintelmann and Virginie Régnier

In memory of Günter Lumer

Abstract. We are interested in evolution phenomena on star-shaped networks
composed of n semi-infinite branches which are connected at their origins.
Using spectral theory we construct the equivalent of the Fourier transform,
which diagonalizes the weighted Laplacian on the n-star. It is designed for
the construction of explicit solution formulas to various evolution equations
such as the heat, wave or the Klein-Gordon equation with different leading
coefficients on the branches.

Mathematics Subject Classification (2000). Primary 34B45; Secondary 42A38,
47A10, 47A60, 47A70.

Keywords. Networks, spectral theory, resolvent, generalized eigenfunctions,
functional calculus, evolution equations.

1. Introduction

We study the foundations for the understanding of evolution phenomena on star-
shaped networks composed of n semi-infinite branches which are connected at their
origins. To this end, we construct the equivalent of the Fourier transform which
diagonalizes the weighted Laplacian on the n-star, using spectral theory. This
allows us to formulate a functional calculus for the weighted Laplacian, designed
to construct explicit solution formulas to various evolution equations such as the
heat, wave or the Klein-Gordon equation with different leading coefficients on
the branches. The model of the n-star should lead to a comprehension of the
phenomena happening locally in time and space near the ramification nodes of

Parts of this work were done, while the second author visited the University of Valenciennes. He
wishes to express his gratitude to F. Ali Mehmeti and the LAMAV for their hospitality.
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more complicated networks. The investigation of evolution equations on networks
starts with G. Lumer [17] and subsequent papers. See [1, 4, 9] and the references
mentioned therein.

Let N1, . . . , Nn be n disjoint copies of (0; +∞) (n ∈ N, n ≥ 2) and ck > 0,
for k ∈ {1, . . . , n}. A vector (u1, . . . , un) of functions uk : Nk → C is said to satisfy
the transmission conditions

(T0), if ui(0) = uk(0) for all (i, k) ∈ {1, . . . , n}2,

(T1), if
n∑

k=1

c2
k∂xuk(0+) = 0.

A vector (uk)k=1,...,n satisfying (T0) can also be viewed as a function on N :=⋃n
k=1 Nk, where the n boundary points corresponding to 0 ∈ Nk are identified. This

domain is called a star-shaped network or n-star with the branches N1, . . . , Nn.
In this paper, we study the weighted Laplacian submitted to (T0) and (T1):⎧⎪⎨⎪⎩

D(A) :=
{

(uk) ∈
n∏

k=1

H2(Nk) | (uk) satisfies (T0) and (T1)
}

,

A(uk) := (−c2
k · ∂2

xuk)k=1,...,n.

This operator can be inserted for example in the abstract wave equation{
ü(t) + Au(t) = 0,

u(0) = u0, u̇(0) = v0,

which means in concrete terms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∂2
t − c2

k∂2
x]uk(t, x) = 0, ∀ k ∈ {1, . . . , n},

ui(t, 0) = uk(t, 0), ∀ (i, k) ∈ {1, . . . , n}2,
n∑

k=1

c2
k∂xuk(t, 0+) = 0,

uk(0, x) = u0
k(x), ∀ k ∈ {1, . . . , n},

∂tuk(0, x) = v0
k(x), ∀ k ∈ {1, . . . , n}

for x, t ≥ 0, where u0 = (u0
k)k=1,...,n, v0 = (v0

k)k=1,...,n and u(t) = (uk(t, ·))k=1,...,n.
The operator A is self-adjoint, its spectrum is [0; +∞) and has multiplicity n

(in the sense of ordered spectral representations, see Definition XII.3.15, p. 1216
of [14]). The analytical core of this paper is a representation of the kernel of the
resolvent of A in terms of a special choice of a family of n generalized eigenfunctions
parametrized by λ ∈ [0; +∞).

After having proved a limiting absorption principle for the resolvent, we insert
A in Stone’s formula to obtain a representation of the resolution of the identity of A
in terms of the generalized eigenfunctions. This classical procedure (see for example
[3]) should lead to an expansion formula for functions in H =

∏n
k=1 L2(Nk) in

terms of the family of generalized eigenfunctions.
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We observe that the transition from the formula for the resolution of the
identity to an expansion formula involving a generalized Fourier transform, which
diagonalizes A, is not straightforward in the case of the n-star. This comes from the
fact that the resolvent kernel, which is defined on N×N , changes its structure when
crossing the n diagonals of Nk ×Nk, k = 1, . . . , n. These diagonals cut N ×N into
n connected pieces in accordance with the structure of the resolvent. Our special
choice of the generalized eigenfunctions allows us to recombine the inner integral of
the formula for the resolution of the identity across the diagonals of Nk ×Nk to an
integral over all of N , furnishing the desired generalized Fourier transformation V
as well as its left inverse Z. It is not obvious, whether this recombination is possible
for all choices of generalized eigenfunctions, although theoretical results imply that
an expansion in generalized eigenfunctions always exists [11, 19]. Now, V can be ex-
tended to an isometry on H , which diagonalizes A, and an explicit functional calcu-
lus for A can be given. We plan to give explicit expressions for the solutions of evo-
lution equations like the weighted wave, heat and Klein-Gordon equations on the
n-star and to derive results on their qualitative behaviour in a subsequent paper.

Such expressions can be obtained (at least formally) also from representations
of the resolution of the identity which are not recombined to Fourier-type transfor-
mations. But these expressions would be sums of terms with very poor regularity
although their sum, representing the solution, is regular (like a decomposition of
a C∞-function by multiplying it with characteristic functions on sub-domains).
These artificial singularities are totally undesirable for any kind of investigations.
They occur for example in [13], a pioneering paper of theoretical physics explain-
ing the phenomenon of advanced transmission of dispersive wave packets crossing
a potential barrier. The authors obtain a solution formula using Laplace trans-
form in time, but which splits up into irregular terms. They do not attempt to
prove that their formula represents a solution of the original problem, which should
be possible only in some very weak sense. But this (artificial) lack of regularity
permits only to study the advanced transmission phenomenon for gaussian wave
packets using a highly special method.

In [7], the authors study the similar phenomenon of delayed reflection occur-
ring at semi-infinite barriers. They construct an expansion in generalized eigen-
functions and thus avoid those artificial singularities. This expansion is used to
define wave packets in frequency bands adapted to the transmission conditions.
Thus it is possible to study the dependence of propagation patterns, in particular
the delayed reflection, on the main frequency of the wave packets. In [8] it is pointed
out using similar methods, that classical causality is valid for nonlinear dispersive
waves hitting a semi-infinite barrier. In [6] a solution formula for the Klein-Gordon
equation on the n-star but with one finite branch with an end with prescribed exci-
tation is presented using Laplace transform in time. This result is not comparable
with the present paper, because it does not concern an initial value problem.

There remains an unsatisfactory point in the present paper: our Fourier-
type transformation V is not a spectral representation of A in the classical sense
although it diagonalizes this operator: the natural norm on the range of V making
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V an isometry, as in the theorem of Plancherel, is not just a weighted L2-norm on
some measure space. This is due to the fact that the back transformation Z has a
different expression on each branch, and this is caused by the ramification of the
domain.

It is not clear to us how one could find a family of generalized eigenfunctions
leading to a spectral representation of A. The existing general literature on expan-
sions in generalized eigenfunctions ([11, 19, 20] for example) does not seem to be
helpful for this kind of problem: their constructions start from an abstractly given
spectral representation. But in concrete cases you do not have an explicit formula
for it at the beginning.

In [10] the relation of the eigenvalues of the Laplacian in a L∞-setting on in-
finite, locally finite networks to the adjacency operator of the network is studied.
The question of the completeness of the corresponding eigenfunctions, viewed as
generalized eigenfunctions in an L2-setting, could be asked. The n-star we consider
is a particular case of the geometry studied by J. von Below and the completeness of
the eigenfunctions is established in a way. In a recent paper ([15]), the authors con-
sider general networks with semi-infinite ends. They give a construction to compute
some generalized eigenfunctions from the coefficients of the transmission conditions
(scattering matrix). The eigenvalues of the associated Laplacian are the poles of
the scattering matrix and their asymptotic behaviour is studied. But no attempt
is made to show the completeness of a given family of generalized eigenfunctions.
Spectral theory for the Laplacian on finite networks has been studied since the
1980ies for example by J.P. Roth, J.v. Below, S. Nicaise, F. Ali Mehmeti (see [1]).

Natural perspectives for our expansion result are investigations on the quali-
tative behaviour of solutions of evolution equations on the n-star. For the weighted
heat equation on the n-star, our expansion permits to prove Gaussian estimates
(this feature shall be treated in a subsequent paper). For bounded networks and
variable coefficients this has already been proved by D. Mugnolo ([18]) using dif-
ferent methods. In [16] the transport operator is considered on finite networks.
The connection between the spectrum of the adjacency matrix of the network
and the (discrete) spectrum of the transport operator is established. By adding
semi-infinite branches to the finite network, continuous parts of the spectrum and
generalized eigenfunctions might appear.

Many results have been obtained in spectral theory for elliptic operators on
various types of unbounded domains in Rn. Using the existing results on stratified
bands [12] for example, one could reduce the spectral analysis of the Laplacian on
networks of bands locally near the nodes to the case of the n-star. Time asymptotics
for the associated evolution equations have also been studied extensively. For the
Klein-Gordon equation on the n-star we conjecture that the maximum of the
absolute value of the solutions decays as t−1/2 when t tends to infinity as on
the real line. For two branches with potential step this has been already proved
using generalized eigenfunctions in [2]. An example for a three-dimensional coupled
domain with singularities is treated in [5]. See also the other literature mentioned
therein and in [3].
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2. Data and functional analytic framework

Let us introduce some notation which will be used throughout the rest of the
paper:

• Domain and functions: Let N1, . . . , Nn be n disjoint sets identified with
(0; +∞) (n ∈ N, n ≥ 2) and put N :=

⋃n
k=1 Nk. Furthermore, we write

[a, b]Nk
for the interval [a, b] in the branch Nk. For the notation of functions

two viewpoints are used:
– functions f on the object N taking their values in R and fk is then the

restriction of f to Nk.
– n-tuples of functions on the branches Nk; then sometimes we write f =

(f1, . . . , fn).
• Transmission conditions:

(T0): (uk)k=1,...,n ∈
n∏

k=1

C0(Nk) satisfies ui(0) = uk(0), ∀ (i, k) ∈ {1, . . . , n}2.

(T1): (uk)k=1,...,n ∈
n∏

k=1

C1(Nk) satisfies
n∑

k=1

c2
k · ∂xuk(0+) = 0.

• Definition of the operator: Define the real Hilbert space

H =
n∏

k=1

L2(Nk) with scalar product ((uk), (vk))H =
n∑

k=1

(uk, vk)L2(Nk)

and the operator A : D(A) −→ H by⎧⎪⎨⎪⎩
D(A) =

{
(uk) ∈

n∏
k=1

H2(Nk) | (uk) satisfies (T0) and (T1)
}

,

A(uk) = (Akuk)k=1,...,n = (−c2
k · ∂2

xuk)k=1,...,n.

Note that, if ck = 1 for every k ∈ {1, . . . , n}, A is the Laplacian in the sense
of the existing literature.

• Notation for the resolvent: The resolvent of an operator T is denoted by R,
i.e., R(z, T ) = (zI − T )−1 for z ∈ ρ(T ).

Proposition 2.1 (spectrum of A). The operator A : D(A) → H defined above is
self-adjoint and satisfies σ(A) = [0; +∞).

Proof. Simple adaptation of the proof of Lemma 1.1.5 in [3]. �

3. Expansion in generalized eigenfunctions

The aim of this section is to find an explicit expression for the kernel of the resolvent
of the operator A on the star-shaped network defined in the previous section.
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Definition 3.1 (generalized eigenfunction). Let λ ∈ C be fixed. An element f ∈∏n
k=1 C∞(Nk) is called generalized eigenfunction of A if it satisfies (T0), (T1) and

the formal differential expression Af = λf .

Proposition 3.2 (an expression of the resolvent). Let λ ∈ C be fixed. Let Im(λ) �= 0
and eλ

1 , eλ
2 be generalized eigenfunctions of A such that the Wronskian wλ

1,2(x)
satisfies for every x in N

wλ
1,2(x) = detW (eλ

1 (x), eλ
2 (x)) = eλ

1 (x) · (eλ
2 )′(x) − (eλ

1 )′(x) · eλ
2 (x) �= 0.

If for some k ∈ {1, . . . , n} we have eλ
1 |Nm ∈ H2(Nm) for all m �= k and eλ

2 |Nk
∈

H2(Nk), then we have for any f ∈ H, λ ∈ ρ(A) and x ∈ Nk

[R(λ, A)f ](x) =
1

c2
k(wλ

1,2)(x)
·
[∫

[x;+∞)Nk

eλ
1 (x)eλ

2 (x′)f(x′) dx′ (1)

+
∫

N\[x;+∞)Nk

eλ
2 (x)eλ

1 (x′)f(x′) dx′
]

.

Note that by integral over N , we mean the sum of the integrals over Nk, k =
1, . . . , n.

Proof. The arguments are the same as in the proof of Theorem 1.3.4 of [3] (see
also [2]) and the calculations are analogous. The integration by parts is replaced
here by the Green formula for the star-shaped network that is given in the next
lemma. �

Lemma 3.3 (Green’s formula on the star-shaped network with n semi-infinite
branches). Denote by Va1,...,an the subset of the network N defined by

Va1,...,an = {x ∈ N | x ∈ [0; ak), where k is the index such that x ∈ Nk}.
Then u, v ∈ D(A) implies∫

Va1,...,an

u′′(x)v(x) dx =
∫

Va1,...,an

u(x)v′′(x) dx −
n∑

k=1

u(ak)v′(ak) +
n∑

k=1

u′(ak)v(ak).

Proof. Two successive integrations by parts are used and since both u and v belong
to D(A), they both satisfy the transmission conditions (T0) and (T1). So

n∑
k=1

uk(0)v′k(0) = u1(0)
n∑

k=1

v′k(0) = 0.

Idem for
∑n

k=1 u′
k(0)vk(0). �

Definition 3.4 (generalized eigenfunctions of A). For j ∈ {1, . . . , n} let

sj := −c−1
j ·

∑
l �=j

cl, d1,j := (1 + sj)/2 and d2,j := (1 − sj)/2.



Generalized Eigenfunctions on Star-shaped Networks 7

The complex square root is chosen in such a way that
√

r · eiφ =
√

reiφ/2 with
r > 0 and φ ∈ [−π; π). For λ ∈ C and j, k ∈ {1, . . . , n}, F±,j

λ : N → C is defined
for x ∈ Nk by F±,j

λ (x) := F±,j
λ,k (x) with{

F±,j
λ,j (x) = d1,j · exp(±ic−1

j

√
λx) + d2,j · exp(∓ic−1

j

√
λx),

F±,j
λ,k (x) = exp(±ic−1

k

√
λx), for k �= j.

Remark 3.5.
• F±,j

λ satisfies the transmission conditions (T0) and (T1).
• Formally it holds AF±,j

λ = λF±,j
λ .

• Clearly F±,j
λ does not belong to H , thus it is not a classical eigenfunction.

• For Im(λ) �= 0, the function F±,j
λ,k , where the +-sign (respectively −-sign) is

chosen if Im(λ) > 0 (respectively Im(λ) < 0), belongs to H2(Nk) for k �= j.
This feature is used in the formula for the resolvent of A.

Definition 3.6 (kernel of the resolvent). For any λ ∈ C, j ∈ {1, . . . , n} and x ∈ Nj

we define

K(x, x′, λ) =

⎧⎪⎪⎨⎪⎪⎩
1

w(λ)
F±,j

λ,j (x)F±,j+1
λ,j (x′), for x′ ∈ Nj , x′ > x,

1
w(λ)

F±,j+1
λ,j (x)F±,j

λ (x′), for x′ ∈ Nk, k �= j or x′ ∈ Nj , x′ < x,

where w(λ) = ±i
√

λ ·
∑n

j=1 cj . In the whole formula + (respectively −) is chosen
if Im(λ) > 0 (respectively Im(λ) ≤ 0).

Here the index j is to be understood modulo n, that is to say, if j = n, then
j + 1 = 1.

Note that in particular, if cj = c for all j ∈ {1, . . . , n}, then w(λ) = ±inc
√

λ, for
all j ∈ {1, . . . , n}.
Theorem 3.7 (expansion of the resolvent in the family {F±,j

λ , j = 1, . . . , n}). Let
f ∈ H. Then, for x ∈ N and λ ∈ ρ(A)

[R(λ, A)f ](x) =
∫

N

K(x, x′, λ)f(x′) dx′.

Proof. In (1), the generalized eigenfunction eλ
1 can be chosen to be F±,j

λ . Then eλ
2

can be F±,l
λ with any l �= j so we have chosen j + 1 to fix the formula. The choice

has been done so that the integrands lie in L1(0, +∞) (cf. the last item in Remark
3.5). �
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4. Application of Stone’s formula and limiting absorption principle

Let us first recall Stone’s formula (see Theorem XII.2.11 in [14]).

Theorem 4.1 (Stone’s formula). Let E be the resolution of the identity of a linear
unbounded self-adjoint operator T : D(T ) → H in a Hilbert space H (i.e., E(a, b) =
1(a,b)(A) for (a, b) ∈ R2, a < b). Then, in the strong operator topology

h(T )E(a, b) = lim
δ→0+

lim
ε→0+

1
2πi

∫ b−δ

a+δ

h(λ)[R(λ − εi, T )− R(λ + εi, T )] dλ

for all (a, b) ∈ R2, a < b and for any continuous scalar function h defined on the
real line.

To apply this formula we need to study the behaviour of the resolvent R(λ, A) for
λ approaching the spectrum of A.

Theorem 4.2 (limiting absorption principle for A). For any (x, x′) ∈ N2 and
(λ, ε) ∈ (R+)2, it holds with sj , dj as defined in Definition 3.4:

1. limε→0 K(x, x′, λ − iε) = K(x, x′, λ),
2. |K(x, x′, λ − iε)| ≤ M · (

√
λ)−1 with

M = max
j∈{1,...,n}

⎡⎣max(1; |d1,j | + |d2,j |) · (
n∑

j=1

cj)−1

⎤⎦ .

Proof. 1. The complex square root is, by definition, continuous on {z ∈ C |
Im(z) ≤ 0} (cf. Definition 3.4), hence the continuity of K(x, x′, λ) at real pos-
itive numbers λ. (Note that x,x′ are fixed parameters in this context.)

2. In concrete terms, the kernel is for Im(μ) ≤ 0 and x ∈ Nj

K(x, x′, μ) =
1

w(μ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−i

√
μ(c−1

j x+c−1
k x′), x′ ∈ Nk, k �= j,

d2,je
−i

√
μc−1

j (x−x′) + d1,je
−i

√
μc−1

j (x+x′), x′ ∈ Nj , x′ < x,

d2,je
−i

√
μc−1

j (x′−x) + d1,je
−i

√
μc−1

j (x+x′), x′ ∈ Nj , x′ > x.

Now ∣∣∣ 1
w(μ)

∣∣∣ =
( n∑

j=1

cj

√
|λ − iε|

)−1

=
( n∑

j=1

cj

)−1

(λ2 + ε2)−1/4

≤
( n∑

j=1

cj

)−1

λ−1/2

for μ = λ − iε, λ > 0, ε ≥ 0. Moreover, if x′ < x,∣∣∣e−i(
√

λ−iε)c−1
j (x−x′)

∣∣∣ = eIm(
√

λ−iε)c−1
j (x−x′) ≤ 1,

since sgn(Im(
√

λ − iε)) = sgn(Im(λ − iε)) (cf. Lemma 2.5.1 of [3], see also [2]).
Idem for the other exponential terms. Hence the above estimate. �
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Remark 4.3. Note that, in particular, if cj = c, j = 1, . . . , n, then M = c(n−1)/n.

Lemma 4.4. For (x, x′) ∈ N2 and λ ∈ C, it holds K(x, x′, λ) = K(x, x′, λ).

Proof. The choice of the branch cut of the complex square root has been made
such that

√
λ =

√
λ for all λ ∈ C.

This implies ei
√

λx = ei
√

λx = e−i
√

λx for all λ ∈ C and x ∈ R. Thus it holds

F+,j
λ (x) = F−,j

λ
(x) and F−,j

λ (x) = F+,j

λ
(x)

for all λ ∈ C, x ∈ N and j ∈ {1, . . . , n}. In the same way we have w(λ) = −w(λ).
Observe, that switching from λ to λ the sign of the imaginary part is changing, so
in the definition of K(x, x′, λ) we have to take the other sign whenever there is a
±-sign in the formula. This gives the assertion. �

Proposition 4.5 (rewriting of the resolution of the identity of A). Take f ∈ H =∏n
j=1 L2(Nj), vanishing almost everywhere outside a compact set B ⊂ N and let

−∞ < a < b < +∞. Then, for x ∈ N

(E(a, b)f)(x) = Re
{

1
π

∫ b

a

n∑
j=1

σj(λ, x) · F−,j+1
λ (x)

(∫
N

f(x′) · F−,j
λ (x′) dx′

)
dλ

}
,

where E is the resolution of the identity of A (cf. Theorem 4.1) and

σj(λ, x) :=
1√
λ

σj(x), where σj(x) := 1Nj
(x) · 1

C
for j ∈ {1, . . . , n}.

Here C = (
∑

k ck) and the index j is to be understood modulo n, that is to say, if
j = n, then j + 1 = 1.

Note that in particular if cj = c for all j ∈ {1, . . . , n}, then C = nc, for all
j ∈ {1, . . . , n}.

Proof. The proof is analogous to that of Lemma 1.3.13 of [3] (see also [2]).
Let in addition g ∈ H be vanishing outside B. Then

(E(a, b)f, g)H

=

⎛⎝ lim
δ→0+

lim
ε→0+

1
2πi

b−δ∫
a+δ

[R(λ − εi, A) − R(λ + εi, A)] dλ f, g

⎞⎠
H

(2)

= lim
δ→0+

lim
ε→0+

1
2πi

⎛⎝ b−δ∫
a+δ

[R(λ − εi, A) − R(λ + εi, A)] dλ f, g

⎞⎠
H

(3)

= lim
δ→0+

lim
ε→0+

1
2πi

b−δ∫
a+δ

([R(λ − εi, A) − R(λ + εi, A)]f, g)H dλ (4)
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= lim
δ→0+

lim
ε→0+

1
2πi

b−δ∫
a+δ

⎛⎝∫
N

f(x′)[K(·, x′, λ − iε) − K(·, x′, λ + iε)] dx′, g(·)

⎞⎠
H

dλ

(5)

= lim
δ→0+

lim
ε→0+

1
2πi

b−δ∫
a+δ

⎛⎝∫
N

f(x′)[K(·, x′, λ − iε) − K(·, x′, λ − iε)] dx′, g(·)

⎞⎠
H

dλ

(6)

= lim
δ→0+

lim
ε→0+

1
2πi

b−δ∫
a+δ

⎛⎝∫
N

f(x′) 2i Im(K(·, x′, λ − iε)) dx′, g(·)

⎞⎠
H

dλ (7)

= lim
δ→0+

1
π

b−δ∫
a+δ

⎛⎝∫
N

f(x′)[ lim
ε→0+

Im(K(·, x′, λ − iε))] dx′, g(·)

⎞⎠
H

dλ (8)

=

⎛⎝ 1
π

b∫
a

∫
N

f(x′)Im(K(·, x′, λ − i0)) dx′ dλ, g(·)

⎞⎠
H

(9)

=
∫
N

1
π

b∫
a

[∫
N

f(x′)Im
[ 1√

λ

n∑
j=1

1Nj
(x)

−iC

(
1{x′∈Nj,x′>x}(x

′)F−,j
λ (x)F−,j+1

λ (x′)

+ 1N\{x′∈Nj,x′>x}(x
′)F−,j+1

λ (x)F−,j
λ (x′)

)]
dx′

]
dλ g(x) dx (10)

=
∫
N

1
π

b∫
a

[∫
N

f(x′)
1√
λ

n∑
j=1

1Nj
(x)Re

[ 1
C

(
1{x′∈Nj ,x′>x}(x

′)F−,j
λ (x)F−,j+1

λ (x′)

+ 1N\{x′∈Nj,x′>x}(x
′)F−,j+1

λ (x)F−,j
λ (x′)

)]
dx′

]
dλ g(x) dx (11)

=
∫
N

1
π

b∫
a

[∫
N

f(x′)
1

C
√

λ

n∑
j=1

1Nj
(x)Re

[
F−,j+1

λ (x)F−,j
λ (x′)

]
dx′

]
dλ g(x) dx (12)

=
∫
N

Re
[ 1
π

b∫
a

1
C
√

λ

n∑
j=1

1Nj
(x)F−,j+1

λ (x)
( ∫

N

f(x′)F−,j
λ (x′) dx′

)]
dλ g(x) dx.

Here, the justifications for the equalities are the following:

(2): Stone’s formula (Theorem 4.1) applied with h(λ) ≡ 1.
(3): After applying the operator-valued integral to f , the two limits are in H . So

they commute with the scalar product in H .
(4): (·f, g)H is a continuous linear form on L(H), and can therefore be commuted

with the vector-valued integration.
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(5): Theorem 3.7.
(6): Lemma 4.4.
(7): z − z = 2i · Im z ∀z ∈ C.
(8): Dominated convergence. Note that supp f , supp g and [a, b] are compact and

use the limiting absorption principle (Theorem 4.2).
(9): Fubini.

(10): Definition 3.6.
(11): Im(z) = Re(z/i) for all z ∈ C. Note that, if λ ∈ R−, then λ ∈ ρ(A) and thus

the integrand in Stone’s formula is zero.
(12): Note that⎧⎨⎩ (F−,j

λ,j )(x)(F−,j+1
λ,j )(x′) = d2,je

−ic−1
j

√
λ(x−x′) + d1,je

−ic−1
j

√
λ(x+x′),

(F−,j+1
λ,j )(x)(F−,j

λ,j )(x′) = d2,je
−ic−1

j

√
λ(x′−x) + d1,je

−ic−1
j

√
λ(x+x′).

Since e−ic−1
j

√
λ(x−x′) and e−ic−1

j

√
λ(x′−x) are conjugated for real λ, both ex-

pressions have the same real part. Thus the integrals on {x′ ∈ Nj , x
′ > x}

and its complement N \ {x′ ∈ Nj , x
′ > x} recombine to a single integral on

N . The formula of the theorem follows.

The assertion follows, because g was arbitrary with compact support. �

5. A Plancherel-type formula and a functional calculus
for the operator

Now we use the explicit formula for the resolution of the identity of the operator
A obtained in Proposition 4.5 to prove a Plancherel-type formula. As in [3] (see
also [2]), we define the Fourier-type transformation V associated with the system
of generalized eigenfunctions {F−,j

λ | λ ∈ [0; +∞), j ∈ {1, . . . , n}} on regular
functions using Proposition 4.5.

The main difficulty here is that the coefficient σj(x) appearing in Proposi-
tion 4.5 depends on x ∈ N : it is different on each branch of the star, unlike the
situation in [2] and [3]. Thus σj(x) does not commute with V and therefore the
scalar product making the range of V a Hilbert space and V an isometry cannot
be directly defined as in [2] and [3], but must be transferred from H via V . This
introduces some additional technicalities. Apart from this we follow the lines of [2]
and [3].

Definition 5.1.

1. For f ∈ L1(N) define Vjf : [0; +∞) → R by

Vjf(λ) =
∫

N

f(x) · F−,j
λ (x) dx, j = 1, . . . , n

and V f : [0; +∞) → Cn by V f = (Vjf)j∈{1,...,n}.
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2. Let σ be defined as in Proposition 4.5 and χ ∈ C∞(R) be such that χ ≡ 0
on (−∞, 1) and χ ≡ 1 on (2, +∞). For Kj ∈ C∞((0, +∞), C) such that
χKj ∈ S(R), for j ∈ {1, . . . , n} define Z(K) : N → R by

Z(K1, . . . , Kn)(x) =
1
π

Re
{∫ +∞

0

1√
λ

n∑
j=1

σj(x)Kj(λ)F−,j+1
λ (x) dλ

}
, x ∈ N.

Note that the integral on the right-hand side is absolutely convergent because
λ → 1/

√
λ is L1

loc, Kj is continuous and rapidly decreasing at +∞ and |F−,k
λ (x)| ≤

Const, for all λ ∈ (0; +∞), x ∈ N , k ∈ {1, . . . , n}.

Remark 5.2. Unlike W in [3], Z is not injective: an easy computation shows that
Z(K) = 0 is equivalent to

Re
[
F(Kj(·2) · 1[0;+∞)(·))(x)

]
= 0, ∀ x ∈ Nj, ∀ j ∈ {1, . . . , n},

where F denotes the Fourier transform. And there exist non-vanishing functions
Kj satisfying this equation.

Lemma 5.3 (asymptotic behaviour of Vjf). Consider f ∈ ∏n
k=1 D(Nk). Then

Vjf ∈ C0([0; +∞)) ∩ C∞((0; +∞)) and χVjf ∈ S(R) for any j ∈ {1, . . . , n}
with χ as in Definition 5.1.

Proof. For λ ∈ [0; +∞) and j ∈ {1, . . . , n}, it holds

Vjf(λ) =
∫

N

f(x)F−,j
λ (x) dx =

n∑
k=1

∫
Nk

fk(x)F−,j
λ,k (x) dx.

Due to the definition of F−,j
λ,k and due to the fact that fk is a test function having

its support in (0; +∞), each term of the right-hand side is the Fourier transform
of a test function and thus C∞ and rapidly decreasing in λ. �

Proposition 5.4 (left inverse of V ). For f ∈ H with f vanishing almost everywhere
outside a compact set B ⊂ N and −∞ < a < b < +∞, it holds

1. E(a, b)f = Z1(a,b)V f, 1

2. f = lim
a→−∞
b→+∞

E(a, b)f = ZV f, if f ∈
∏n

k=1 D(Nk),

3. V is injective on
∏n

k=1 D(Nk).

Proof. 1. Follows directly from Proposition 4.5, using Definition 5.1.

2. Let us fix f ∈ ∏n
k=1 D(Nk). Lemma 5.3 implies that there exists M1(f) ≥ 0,

such that

|Vjf(λ)| ≤ M1(f)
1 + λ2

, ∀ λ > 0, j ∈ {1, . . . , n}.

1This formula is well defined using the expression for Z as defined in 5.1 in spite of the discon-
tinuities introduced by the characteristic function
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Clearly there exists M2 ≥ 0, such that∣∣∣∣ 1√
λ

n∑
j=1

σj(x)F−,j+1
λ (x)

∣∣∣∣ ≤ M2√
λ

, ∀ λ > 0, x ∈ N.

Thus the theorem of Lebesgue implies that

1
π

Re
{∫ +∞

0

1√
λ
1(a,b)(λ)

n∑
j=1

σj(x)Vjf(λ)F−,j+1
λ (x) dλ

}
converges for a −→ −∞ and b −→ +∞ and almost every x ∈ N towards the same
expression with 1(a,b) replaced by 1.

3. Direct consequence of 2. �

Now we shall introduce a structure on the range of V which shall be later on
identified as a scalar product.

Theorem 5.5 (Plancherel-type formula). Let σ be defined as in the end of Proposi-
tion 4.5 and χ as in Definition 5.1. Let f ∈ ∏n

k=1 D(Nk) and G = (G1, . . . , Gn) ∈
(C∞(0; +∞))n ∩ (C0[0; +∞))n such that χGl ∈ S(R) for l ∈ {1, . . . , n}. Define

〈V f, G〉σ,V =
1
π

Re
{ n∑

j=1

∫ +∞

0

1√
λ

Vj+1(σj(·)f(·))(λ)Gj(λ) dλ

}
.

Then the integrals on the right-hand side are absolutely convergent and it holds
〈V f, G〉σ,V = (f, Z(G))H .

Proof. For λ ∈ (0; +∞), it holds∣∣∣∣ 1√
λ

Vj+1(σj(·)f(·))(λ)
∣∣∣∣ =

∣∣∣∣ 1√
λ

∫
N

σj(x)f(x)F−,j+1
λ (x) dx

∣∣∣∣ ≤ C
1√
λ

∫
N

|f(x)| dx.

(13)
Together with the fact that Gj is rapidly decreasing and continuous for any j ∈
{1, . . . , n}, the latter estimate ensures the absolute convergence of the integrals.

Estimate (13) also allows the application of the theorem of Fubini:

〈V f, G〉σ,V =
1
π

Re
{ n∑

j=1

∫ +∞

0

1√
λ

(∫
N

σj(x)f(x)F−,j+1
λ (x) dx

)
Gj(λ) dλ

}

=
1
π

Re
{ n∑

j=1

∫
N

1√
λ

(∫ +∞

0

σj(x)F−,j+1
λ (x)Gj(λ) dλ

)
f(x) dx

}
=

∫
N

Z(G)(x)f(x) dx = (f, Z(G))H . �

This Plancherel formula can now be combined with the fact that Z is the left
inverse of V to prove that 〈·, ·〉σ,V is a scalar product and that V is an isometry.
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Corollary 5.6.

1. Let (F, G) ∈ (V (
∏n

k=1 D(Nk)))2 and (f, g) ∈ (D(Nk))2, such that F = V f
and G = V g. Then 〈F, G〉σ,V = 〈V f, V g〉σ,V = (f, g)H .

2. 〈·, ·〉σ,V is a scalar product on V (
∏n

k=1 D(Nk)).
3. Let L2

σ,V be the completion of V (
∏n

k=1 D(Nk)) with respect to 〈·, ·〉σ,V . We
denote the extended scalar product by the latter bracket as well. Thus
(L2

σ,V , 〈·, ·〉σ,V ) is a Hilbert space.
4. V :

∏n
k=1 D(Nk) −→ V (

∏n
k=1 D(Nk)) extends to a surjective isometry Ṽ :

H −→ L2
σ,V .

5. Z = V −1 : V (
∏n

k=1 D(Nk)) −→
∏n

k=1 D(Nk ) extends to a surjective isometry
Z̃ : L2

σ,V −→ H. Thus Z̃ = Ṽ −1.

Proof. 1. Lemma 5.3 implies that V g is rapidly decreasing and thus Theorem 5.5
is applicable:

〈F, G〉σ,V = 〈V f, V g〉σ,V = (f, Z(V g))H = (f, g)H .

The last equality comes from Proposition 5.4.
2. V :

∏n
k=1 D(Nk) −→ RanV is linear and bijective (for the injectivity see Part

3 of Proposition 5.4). Thus 〈·, ·〉σ,V inherits the property of being a scalar product
from (·, ·)H .
3. and 4. Clear by construction.
5. Theorem 5.5 implies 〈V f, G〉σ,V = (f, Z(G))H for all f ∈ ∏n

k=1 D(Nk ) and
G ∈ V (

∏n
k=1 D(Nk)). Thus it follows from 1.

|(f, Z(G))H | = |〈V f, G〉σ,V | ≤ ‖G‖σ,V ‖V f‖σ,V = ‖G‖σ,V ‖f‖H . (14)

Due to the denseness of
∏n

k=1 D(Nk) in H , inequality (14) is valid for all f ∈ H .
Thus

‖Z(G)‖H ≤ ‖G‖σ,V .

Therefore Z extends by density-continuity to a continuous operator Z̃ on L2
σ,V .

�

Theorem 5.7. Let h ∈ C(R) and f ∈ H, such that λ → (h(λ)/
√

λ)Ṽ f(λ) is
absolutely integrable on [0; +∞). Then we have for x ∈ N

h(A)f(x) =
1
π

Re
{∫ +∞

0

h(λ)√
λ

n∑
j=1

σj(x)Vjf(λ)F−,j+1
λ (x) dλ

}
. (15)

Proof. The same proof as in Proposition 4.5, but this time using Stone’s formula
(Theorem 4.1) with arbitrary h ∈ C(R), yields

h(A)E(a, b)f(x) =
1
π

Re
{∫ +∞

0

h(λ)√
λ

1(a,b)(λ)
n∑

j=1

σj(x)Vjf(λ)F−,j+1
λ (x) dλ

}
.

Now, the assertion follows from dominated convergence and the fact that E(a, b)
commutes with h(A) and tends to the identity if a → −∞ and b → ∞. �
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Remark 5.8.
1. Formally (15) reads like

h(A)f = Z̃MhṼ f, (16)

where (MhK)(λ) := h(λ)K(λ). It should be investigated, if under the hy-
potheses of Theorem 5.7 we have MhṼ f ∈ L2

σ,V , and thus (16) is rigorously
valid.

2. Using Theorem 5.7, we can represent solutions of evolution equations in-
volving A (heat, wave, Klein-Gordon, . . . ) in view of obtaining qualitative
information like decay properties in time on the n-star. It remains the open
problem of describing the relation of the belonging of f to D(As) and the
decay of Ṽ f at infinity. This is important, because for example f ∈ D(A)
ensures the twice differentiability of u(t) = cos(

√
At)f and thus the validity

of the abstract wave equation ü(t) + Au(t) = 0.
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(www.arXiv.org:math.AP/060210).

[9] W. Arendt et al. (organizers), Evolution on Networks. Interdisciplinary workshop at
Blaubeuren (Germany) from April 28 to May 1, 2006;
https://graduateschool.mathematik.uni-ulm.de/wiki/index.php/Evolvnetworks2006

[10] J. von Below, J.A. Lubary, The eigenvalues of the Laplacian on locally finite net-
works. Result. Math. 47 (2005) no. 3-4, 199–225.

[11] J.M. Berezanskii, Expansions in eigenfunctions of selfadjoint operators. Transl.
Math. Monogr. vol. 17, American Mathematical Society, Providence, 1968.



16 F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier
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Laboratoire de Mathématiques et ses Applications de Valenciennes
Institut des Sciences et Techniques de Valenciennes
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Abstract. In this paper we summarize some of our recent results on diffusion
equations with finite speed of propagation. These equations have been intro-
duced to correct the infinite speed of propagation predicted by the classical
linear diffusion theory.
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1. Introduction

The speed of light c is the highest admissible velocity for transport of radiation
in transparent media, and, to ensure it, J.R. Wilson (in an unpublished work, see
[27]) proposed to use a flux limiter. The flux limiter merely enforces the physical
restriction that the flux cannot exceed energy density times the speed of light, that
is, the flux cannot violate causality. The basic idea is to modify the diffusion-theory
formula for the flux in a way that gives the standard result in the high opacity
limit, while simulating free streaming (at light speed) in transparent regions. As
an example, one of the expressions suggested for the flux of the energy density u is

F = −νu
Du

u + νc−1|Du| (1.1)

(where ν is a constant representing a kinematic viscosity and c the speed of light)
which yields in the limit ν → ∞ the flux F = −cu Du

|Du| . Observe also that when
c → ∞, the flux tends to F = −νDu, and the corresponding diffusion equation
becomes the heat equation, which has an infinite speed of propagation.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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The diffusion equation corresponding to (1.1) is

ut = ν div
(

uDu

u + ν
c |Du|

)
(1.2)

and is one among the various flux limited diffusion equations used in the theory of
radiation hydrodynamics [27].

The speed of sound is the highest admissible free velocity in a medium. This
property is lost in the classical transport theory that predicts the nonphysical
divergence of the flux with the gradient (as it happens with Fourier’s law). To
overcome this problem Ph. Rosenau ([32]) proposed to change the classical flux

q = −D0ux

associated with the Fokker-Plank equation

ut = [D0ux]x, (1.3)

by a flux that saturates as the gradient becomes unbounded. To do that, he asso-
ciated u and the flux q through the velocity v defined by

q = uv.

Then
v = −D0

ux

u
. (1.4)

According to (1.4), if |ux

u | ↑ ∞, so will do v. However, the inertia effects impose
a macroscopic upper bound on the allowed free speed, namely, the acoustic speed
C. With this aim, Rosenau modified (1.4) by taking

D0
ux

u
=

−v√
1 − v2

C2

. (1.5)

The postulate (1.5) forces v to stay in the subsonic regime. The sonic limit is
approached only if |ux

u | ↑ ∞. Solving (1.5) for v, we obtain

q = uv =
−D0ux√

1 +
(

D0ux

Cu

)2
. (1.6)

Using this new flux (1.6) in the conservation energy equation,

ut =

⎡⎣ D0uux√
u2 + D2

o

C2 u2
x

⎤⎦
x

(1.7)

is obtained. Equation (1.7) is the main result of [32].
Equation (1.7) was derived by Y. Brenier by means of Monge-Kantorovich’s

mass transport theory ([17]) and he named it as the relativistic heat equation. Many
well-known equations for probability densities can be recovered in the formalism
of gradient flows with respect to the optimal transport differential structure. This
point of view was introduced by F. Otto in a series of pioneering papers [28, 29, 30]
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and there are at least two different approaches to make it rigorous. One of them
is to decide that a gradient flow is an equation of the form

dρt

dt
∈ ∂−F (ρt),

where ∂− stands for some appropriate notion of subdifferential. This approach was
considered in [3]. Another strategy is to proceed with a time-discretization. This
was the approach first used by Jordan, Kinderlehrer and Otto [26] (see also [18])
for the linear Fokker-Planck equation and it does not require any study of tangent
spaces, subdifferentiability or related concepts. This subject has been considered
in depth in Agueh’s PhD thesis [1], where the following general equation

ut + div(uVu) = 0 (1.8)

is studied. Here
Vu := −∇k∗[∇(F ′(u))]

denotes the vector field describing the average velocity of a fluid evolving with the
continuity equation (1.8), and the unknown u(t, x) is the mass density of the fluid
at time t and position x. k∗ denotes the Legendre-Fenchel transform of the cost
function k : RN → [0,∞), that is,

k∗(z) = sup
x∈RN

{x · z − k(x)}.

The free energy associated with the fluid at time t ∈ [0,∞) is given by

E(u(t)) :=
∫

RN

F (u(t, x)) dx.

In [1] is assumed that the cost function k : RN → [0,∞) is strictly convex,
0 = k(0) < k(z), for z �= 0, k is coercive, and verifies

β|z|q ≤ k(z) ≤ α(|z|q + 1), for z ∈ RN , α, β > 0, and q > 1.

Besides the most important cost functions, namely k(z) = |z|, which corresponds
to the original Monge problem, and k(z) = |z|2

2 , which corresponds to the Monge-
Ampère equations – and is related to PDEs as different as the Euler equations of
incompressible flows [16] and the heat equation [26] – more general cost functions
have been considered in the literature (see for instance [25], [1] or [33]). Surpris-
ingly, an important cost function had not been considered, in spite of its obvious
geometric and relativistic flavor, namely

k(z) :=

⎧⎪⎪⎨⎪⎪⎩
c2

(
1 −

√
1 − |z|2

c2

)
if |z| ≤ c

+∞ if |z| > c.

(1.9)

This cost function was considered by Y. Brenier in [17], where he derived a rela-
tivistic heat equation as a gradient flow of the Boltzmann entropy for the metric
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corresponding to the cost (1.9). More precisely, since

k∗(z) = c2

(√
1 +

|z|2
c2

− 1

)
,

if we take
F (x) = ν(log(x) − 1)x,

we have

Vu := −∇k∗[∇(F ′(u))] = −∇k∗[∇(ν log(u))] = −ν

⎛⎝ Du√
u2 + ν2

c2 |Du|2

⎞⎠ ,

and, consequently, for this cost function equation (1.8) becomes

ut = ν div

⎛⎝ uDu√
u2 + ν2

c2 |Du|2

⎞⎠ . (1.10)

Observe that in the one-dimensional case equation (1.10) is similar to the
equation (1.7) derived by P. Rosenau.

Recently, in [5, 6, 7, 8, 9], we have studied the Neumann and Cauchy problem
for the quasi-linear parabolic equation

∂u

∂t
= div a(u, Du), (1.11)

where a(z, ξ) = ∇ξf(z, ξ) and f being a function with linear growth as ‖ξ‖ → ∞,
satisfying other additional assumptions, which are satisfied, in particular, by the
relativistic heat equation (1.10) and the flux limited diffusion equation (1.2). The
aim of this paper is to summarize some of our recent results about this type of
equations.

2. The Cauchy problem for a strongly degenerate
quasi-linear equation

2.1. Introduction

Consider the Cauchy problem⎧⎪⎨⎪⎩
∂u

∂t
= div a(u, Du) in QT = (0, T ) × RN

u(0, x) = u0(x) in x ∈ RN ,

(2.1)

where 0 ≤ u0 ∈ L1(RN ) ∩ L∞(RN ), a(z, ξ) = ∇ξf(z, ξ) and f is a function with
linear growth as ‖ξ‖ → ∞.
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Particular instances of problem (2.1) have been studied in [14] and [21], when
N = 1. Let us describe their results in some detail. In these papers the authors
considered the problem⎧⎪⎨⎪⎩

∂u

∂t
= (ϕ(u)b(ux))x in (0, T )× R

u(0, x) = u0(x) in x ∈ R

(2.2)

corresponding to (2.1) when N = 1 and a(u, ux) = ϕ(u)b(ux), where ϕ : R → R+

is smooth and strictly positive, and b : R → R is a smooth odd function such
that b′ > 0 and lims→∞ b(s) = b∞. Such models appear as models for heat and
mass transfer in turbulent fluids [12], or in the theory of phase transitions where
the corresponding free energy functional has a linear growth rate with respect to
the gradient [31]. As the authors observed, in general, there are no classical so-
lutions of (2.1), indeed, the combination of the dependence on u in ϕ(u) and the
constant behavior of b(ux) as ux → ∞ can cause the formation of discontinuities
in finite time (see [14], Theorem 2.3). As noticed in [14], the parabolicity of (2.2)
is so weak when ux → ∞ that solutions become discontinuous and behave like
solutions of the first-order equation ut = b∞(ϕ(u))x (which can be formally ob-
tained differentiating the product in (2.2) and replacing b(ux) by b∞). For this
reason, they defined the notion of entropy solution and proved existence ([14]) and
uniqueness ([21]) of entropy solutions of (2.2). Existence was proved for bounded
strictly increasing initial conditions u0 : R → R such that b(u′

0) ∈ C(R) (where
b(u′

0(x0)) = b∞ if u0 is discontinuous at x0), b(u′
0(x)) → 0 as x → ±∞ [14].

The entropy condition was written in Oleinik’s form and uniqueness was proved
using suitable test functions constructed by regularizing the sign of the difference
of two solutions. Moreover, the authors showed that there exist functions ϕ and
initial conditions u0 for which there exist solutions of (2.2) which do not satisfy
the entropy condition ([14], Theorem 2.2). Thus, uniqueness cannot be guaranteed
without an additional condition like the entropy condition.

In [15], the author considered the Neumann problem in an interval of R⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u

∂t
= (a(u, ux))x in (0, T )× (0, 1)

ux(t, 0) = ux(t, 1) = 0

u(0, x) = u0(x) in x ∈ (0, 1)

(2.3)

for functions a(u, v) of class C1,α([0,∞) × R) such that ∂
∂va(u, v) < 0 for any

(u, v) ∈ [0,∞) × R, a(u, 0) = 0 (and some other additional assumptions). After
observing that there are no, in general, classical solutions of (2.1), the author
associated an m-accretive operator to −(a(u, ux))x with Neumann boundary con-
ditions, and proved the existence and uniqueness of a semigroup solution of (2.3).
However, the accretive operator generating the semigroup was not characterized in
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distributional terms. An example of the equations considered in [15] is the so-called
plasma equation (see [24])

∂u

∂t
=

( u5/2ux

1 + u|ux|
)

x
in (0, T )× (0, 1), (2.4)

where the initial condition u0 is assumed to be positive. In this case u represents
the temperature of electrons and the form of the conductivity a(u, ux) = u5/2ux

1+u|ux|
has the effect of limiting heat flux. Thus, existence and uniqueness results for
higher-dimensional problems were not considered. This was the purpose of our
papers [5] and [6] in which we studied the Neumann problem for Lagrangians f
satisfying the coercivity and linear growth condition

C0‖ξ‖ − D0 ≤ f(z, ξ) ≤ M0(1 + ‖ξ‖) (2.5)

for some positive constants C0, D0, M0.
Now, there are some relevant cases like the relativistic heat equation (1.10)

for which the Lagrangian f(z, ξ) = c2

ν |z|
√

z2 + ν2

c2 |ξ|2 does not satisfy (2.5) but
verifies

C0(z)‖ξ‖ − D0(z) ≤ f(z, ξ) ≤ M0(z)(‖ξ‖ + 1) (2.6)

for any (z, ξ) ∈ R ×RN , and some positive and continuous functions C0, D0, M0,
such that C0(z) > 0 for any z �= 0. The purpose of the papers [7] and [8] was to
extend the results of [5] and [6] to the case of Lagrangians satisfying (2.6).

We proved in [6] existence and uniqueness results for the Cauchy problem
(2.1). For that, we considered in [5] the elliptic problem

u − div a(u, Du) = v in RN , (2.7)

we defined a notion of entropy solution for it, and we proved existence and unique-
ness results when the right-hand side 0 ≤ v ∈ L1(RN ) ∩ L∞(RN ). With this,
we associated an accretive operator B in L1(RN ) whose domain is contained in(
L1(RN ) ∩ L∞(RN )

)+ (which amounts to consider the right-hand side v of (2.7)
in

(
L1(RN ) ∩ L∞(RN )

)+) whose closure B is accretive in L1(RN ) and generates
a non-linear contraction semigroup T (t) in L1(RN ) ([13], [19]). However, B is not
characterized in distributional terms. In spite of this, the knowledge of the opera-
tor B and the fact that, if u is the entropy solution of (2.7), we have ‖u‖∞ ≤ ‖v‖∞,
allowed to use Crandall-Ligget’s iteration scheme and define

u(t) := T (t)u0 = lim
n→∞

(
I +

t

n
B
)−n

u0, u0 ∈
(
L1(RN ) ∩ L∞(RN )

)+
.

Then we proved that u(t) is an entropy solution of (2.1) (a notion that will be
defined later), and that entropy solutions are unique. As a technical tool we used
some lower semi-continuity results for energy functionals whose density is a func-
tion g(x, u, Du) convex in Du with a linear growth rate as |Du| → ∞, which were
proved in [20] and [22].
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2.2. Basic assumptions

Assume that the Lagrangian f : R×RN → R+ satisfies the following assumptions,
which we shall refer collectively as (H):
(H1) f is continuous on R × RN and is a convex differentiable function of ξ such
that ∇ξf(z, ξ) ∈ C(R × RN ). Further we require f to satisfy the linear growth
condition

C0(z)‖ξ‖ − D0(z) ≤ f(z, ξ) ≤ M0(z)(‖ξ‖ + 1) (2.1)
for any (z, ξ) ∈ R ×RN , and some positive and continuous functions C0, D0, M0,
such that C0(z) > 0 for any z �= 0. Let f0 denote the recession function of f ,
defined by

f0(z, ξ) = lim
t→0+

tf

(
z,

ξ

t

)
, (2.2)

We consider the function a(z, ξ) = ∇ξf(z, ξ) associated to the Lagrangian f .
By the convexity of f , we have

a(z, ξ) · (η − ξ) ≤ f(z, η) − f(z, ξ), (2.3)

and the following monotonicity condition is satisfied

(a(z, η) − a(z, ξ)) · (η − ξ) ≥ 0. (2.4)

Moreover, it is easy to see that for each R > 0, there is a constant M = M(R) > 0,
such that

‖a(z, ξ)‖ ≤ M ∀ (z, ξ) ∈ R × RN , |z| ≤ R. (2.5)
We also assume that a(z, 0) = 0 for all z ∈ R, and a(z, ξ) = zb(z, ξ) with

‖b(z, ξ)‖ ≤ M0 ∀ (z, ξ) ∈ R × RN , |z| ≤ R. (2.6)

We consider the function h : R × RN → R defined by

h(z, ξ) := a(z, ξ) · ξ.
By (2.4), we have

h(z, ξ) ≥ 0 ∀ ξ ∈ RN , z ∈ R. (2.7)
Moreover we assume that

h(z, ξ) ≤ M(z)‖ξ‖ (2.8)
for some positive continuous function M(z) and for any (z, ξ) ∈ R × RN . On the
other hand, from (2.3) and (2.1), it follows that

C0(z)‖ξ‖ − D1(z) ≤ h(z, ξ) (2.9)

for any (z, ξ) ∈ R × RN where D1(z) = D0(z) + f(z, 0). We assume that there
exist constants A, B > 0 and α, β ≥ 1, such that

|D1(z)| ≤ A|z|α + B|z|β for any z ∈ RN . (2.10)

(H2) We assume that ∂a
∂ξi

(z, ξ) ∈ C(R × RN ) for any i = 1, . . . , N .

(H3) h(z, ξ) = h(z,−ξ), for all z ∈ R and ξ ∈ RN and h0 exists.
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Observe that we have

C0(z)‖ξ‖ ≤ h0(z, ξ) ≤ M(z)‖ξ‖ for any (z, ξ) ∈ R × RN , |z| ≤ R.

(H4) f0(z, ξ) = h0(z, ξ), for all ξ ∈ RN and all z ∈ R.

(H5) a(z, ξ) · η ≤ h0(z, η) for all ξ, η ∈ RN , and all z ∈ R.

(H6) We assume that h0(z, ξ) can be written in the form h0(z, ξ) = ϕ(z)ψ0(ξ) with
ϕ a Lipschitz continuous function such that ϕ(z) > 0 for any z �= 0, and ψ0 being
a convex function homogeneous of degree 1.

(H7) For any R > 0, there is a constant C > 0 such that

|(a(z, ξ) − a(ẑ, ξ)) · (ξ − ξ̂)| ≤ C|z − ẑ| ‖ξ − ξ̂‖ (2.11)

for any z, ẑ ∈ R, ξ, ξ̂ ∈ RN , with |z|, |ẑ| ≤ R.

Observe that, by the monotonicity condition (2.4) and using (2.11), it follows
that

(a(z, ξ) − a(ẑ, ξ̂)) · (ξ − ξ̂) ≥ −C|z − ẑ| ‖ξ − ξ̂‖ (2.12)

for any (z, ξ), (ẑ, ξ̂) ∈ R × RN , |z|, |ẑ| ≤ R.

Remark 2.1. The function f(z, ξ) = c2

ν |z|
√

z2 + ν2

c2 |ξ|2 satisfies the assumptions

(H1)–(H7), with a(z, ξ) = ν |z|ξ√
z2+ ν2

c2
|ξ|2

. This particular case corresponds to the

relativistic heat equation (1.10). The Lagrangian

f(z, ξ) := cz
(
|ξ| − cz

ν
log

(
1 +

ν

cz
|ξ|

))
is associated with the flux limited diffusion equation (1.2) and satisfies also the
assumptions (H1)-(H7).The Lagrangian f(z, ξ) = |z|3/2|ξ| − |z|1/2 ln (1 + |z||ξ|),
which corresponds plasma equation (2.4) satisfies also the assumptions (H1)-(H7).

The notion of solution of the Cauchy problem (2.1) is certainly complex due
to assumption (2.1) and to give it we need some preliminaries.

2.3. Functions of bounded variations and some generalization

Due to the linear growth condition on the Lagrangian, the natural energy space
to study the problems we are interested in is the space of functions of bounded
variation. Recall that if Ω is an open subset of RN , a function u ∈ L1(Ω) whose
gradient Du in the sense of distributions is a vector-valued Radon measure with
finite total variation in Ω is called a function of bounded variation. The class of
such functions will be denoted by BV (Ω). For u ∈ BV (Ω), the vector measure Du
decomposes into its absolutely continuous and singular parts Du = Dau + Dsu.
Then Dau = ∇u LN , where ∇u is the Radon-Nikodym derivative of the measure
Du with respect to the Lebesgue measure LN . We also split Dsu in two parts: the
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jump part Dju and the Cantor part Dcu. It is well known (see for instance [2])
that

Dju = (u+ − u−)νuHN−1 Ju,

where Ju denotes the set of approximate jump points of u, and νu(x) = Du
|Du| (x),

Du
|Du| being the Radon-Nikodym derivative of Du with respect to its total variation
|Du|.

Due to the lack of coercivity, we need to consider the following truncature
functions. For a < b, let Ta,b(r) := max(min(b, r), a). As usual, we denote Tk =
T−k,k. We also consider truncature functions of the form T l

a,b(r) := Ta,b(r) − l

(l ∈ R). We denote
Tr := {Ta,b : 0 < a < b},

T + := {T l
a,b : 0 < a < b, l ∈ R, T l

a,b ≥ 0}
and

T − := {T l
a,b : 0 < a < b, l ∈ R, T l

a,b ≤ 0}.

We need to consider the function space

TBV +(RN ) :=
{
u ∈ L1(RN )+ : T (u) ∈ BV (RN ), ∀ T ∈ Tr

}
,

and to give a sense to the Radon-Nikodym derivative (with respect to the Lebesgue
measure) ∇u of Du for a function u ∈ TBV +(RN ). Using chain’s rule for BV-
functions we obtain the following result.

Lemma 2.2. For every u ∈ TBV +(RN ) there exists a unique measurable function
v : RN → RN such that

∇Ta,b(u) = vχ
[a<u<b] LN − a.e., ∀ Ta,b ∈ Tr. (2.13)

Thanks to this result we define ∇u for a function u ∈ TBV +(RN ) as the
unique function v which satisfies (2.13). This notation will be used throughout in
the sequel.

To prove the existence of solution of the Cauchy problem (2.1) we use the
nonlinear semigroup theory, so we need to study first the elliptic problem

u − λdiv a(u, Du) = v ∈ (L1(RN ) ∩ L∞(RN ))+. (2.14)

To give a sense to the differential operator div a(u, Du) we need several in-
gredients.

2.4. A generalized Green’s formula

In order to give a meaning to integrals of bounded vector fields with divergence
in L1 integrated with respect to the gradient of a BV function, we need several
results from Anzellotti [11] (see also [4]). Following Anzellotti, we denote

X1(RN ) =
{
z ∈ L∞(RN , RN ) : div(z) ∈ L1(RN )

}
. (2.15)
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If z ∈ X1(RN ) and w ∈ BV (RN ) ∩ L∞(RN ), we define the functional (z, Dw) :
D(RN ) → R by the formula

〈(z, Dw), ϕ〉 := −
∫

RN

w ϕdiv(z) dx −
∫

RN

w z · ∇ϕdx. (2.16)

Then (z, Dw) is a Radon measure in RN , and∫
RN

(z, Dw) =
∫

RN

z · ∇w dx, ∀ w ∈ W 1,1(RN ) ∩ L∞(RN ). (2.17)

Moreover, (z, Dw) is absolutely continuous with respect to |Dw|. We have the

following Green’s formula for z ∈ X1(RN ) and w ∈ BV (RN ) ∩ L∞(RN )∫
RN

w div(z) dx +
∫

RN

(z, Dw) = 0. (2.18)

To prove uniqueness of solutions of the elliptic problem (2.14), we use Kruzkov’s
technique of doubling variables. For that we need some entropy inequalities, and
to derive these entropy inequalities we multiply (2.14) by T (u)S(u)φ and integrate
by parts. So, we need to give sense to expressions of the form

a(u, Du) · D(S(u)T (u)) = S(u)a(u, Du) · DT (u) + T (u)a(u, Du) · DS(u).

This is possible if we observe that if

Jq(r) =
∫ r

0

q(s)ds,

then

S(u)a(u, Du) · DT (u) = a(u, Du) · DJT ′S(u)

T (u)a(u, Du) · DS(u) = a(u, Du) · DJS′T (u)

and we use Anzellotti’s results to give sense to pairings between gradients of BV
functions and bounded measurable vector fields with divergence in L1(RN ). Now,
to do all this rigorously we need to introduce the following functional calculus.

2.5. A functional calculus

Inspired in the relaxed energy functionals introduced by Dal Maso ([20]) for func-
tions with linear growth, we define the following Radon measures.

Assume that g : R × RN → [0,∞[ is a Borel function such that

C‖ξ‖ − D ≤ g(z, ξ) ≤ M(1 + ‖ξ‖) ∀(z, ξ) ∈ RN , |z| ≤ R, (2.19)
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for some constants C, D, M ≥ 0 which may depend on R. Given a function u ∈
BV (RN ) ∩ L∞(RN ), we define the Radon measure g(u, Du) in RN by

〈g(u, Du), φ〉 :=
∫

Ω

g(u(x),∇u(x))φ(x) dx +
∫

Ω

g0

(
ũ(x),

Du

|Du| (x)
)

φ(x) |Dcu|

+
∫

Ju

(∫ u+(x)

u−(x)

g0s, νu(x)) ds

)
φ(x) dHN−1(x), ∀φ ∈ Cc(RN ),

(2.20)
where g0 is the recession function of g, and ũ is the approximated limit of u.

Let us observe that if g0(z, ξ) = ϕ(z)ψ0(ξ), where ϕ is Lipschitz continuous
and ψ0 is an homogeneous function of degree 1, by applying the chain rule for
BV-functions, we have

〈g(u, Du), φ〉 =
∫

RN

φ(x)g(u,∇u)dx +
∫

RN

φ(x)ψ0

(
Du

|Du|

)
|DsJϕ(u)|. (2.21)

In this case we have

g(u, Du)s = ψ0

(
Du

|Du|

)
|DsJϕ(u)|. (2.22)

Let T ∈ T + ∪ T −. Then there is some Ta,b ∈ Tr and a constant c ∈ R such
that T = Ta,b − c. For u ∈ TBV +(RN )∩L∞(RN ) and T = Ta,b − c, we define the
Radon measure g(u, DT (u)) in RN by

〈g(u, DT (u)), φ〉 := 〈g(u, DTa,b(u)), φ〉 +
∫

[u≤a]

φ(x) (g(u(x), 0) − g(a, 0)) dx

+
∫

[u≥b]

φ(x) (g(u(x), 0) − g(b, 0)) dx. ∀φ ∈ Cc(RN ).

(2.23)
We denote by P the set of Lipschitz continuous functions p : [0, +∞[→ R

satisfying p′(s) = 0 for s large enough. We write P+ := {p ∈ P : p ≥ 0}.
Let u ∈ TBV +(RN ) ∩ L∞(RN ), S ∈ P+ and T ∈ T + ∪ T −. We denote by

hS(u, DT (u)), the Radon measure defined by (2.23) with g(z, ξ) := S(z)h(z, ξ),
being h(z, ξ) := a(z, ξ) · ξ. If −S ∈ P+ and T ∈ T + ∪ T −, by definition we set
hS(u, DT (u)) := −h(−S)(u, DT (u)).

We observe that formally we have a(u, Du)·DJT ′S(u) = hS(u, DT (u)). When
it comes to a rigorous proof, we have been able to prove only that a(u, Du) ·
DJT ′S(u) ≥ hS(u, DT (u)), but this is sufficient to derive Kruzkov’s inequalities
and prove uniqueness of entropy solutions with Kruzkov’s technique.

2.6. An existence and uniqueness result for the elliptic problem

We give the following concept of solution for the elliptic problem

v = −div a(u, Du) in RN . (2.24)
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Definition 2.3. Given v ∈ L∞(RN ) ∩ L1(RN ), v ≥ 0, we say that u ≥ 0 is an
entropy solution of (2.24) if u ∈ TBV +(RN ), and a(u,∇u) ∈ X1(RN ) satisfies

v = −div a(u,∇u)) in D′(RN ), (2.25)

hS(u, DT (u)) ≤ (a(u,∇u), DJT ′S(u)) as measures ∀S ∈ P+, T ∈ T +, (2.26)

h(u, DT (u)) ≤ (a(u,∇u), DT (u)) as measures ∀T ∈ T +. (2.27)

In [7] we obtain the following result.

Theorem 2.4 ([7]). Assume that assumptions (H) hold. Then, for any 0 ≤ v ∈
L∞(RN ) ∩ L1(RN ) there exists a unique entropy solution u ∈ TBV +(RN ) ∩
L∞(RN ) of the problem

u − div a(u, Du) = v in RN . (2.28)

Moreover, given v, v ∈ (L∞(RN )∩L1(RN ))+, if u, u are bounded entropy solutions
of the problems

u − div a(u, Du) = v in RN

and
u − div a(u, Du) = v in RN ,

respectively, then ∫
RN

(u − u)+ ≤
∫

RN

(v − v)+.

From the above result, using Crandall-Liggett’s Theorem we obtain that
problem (2.1) has a unique mild-solution. The main difficulty is to characterize
these mild-solutions in more classical terms.

2.7. The notion of entropy solution. Existence and uniqueness

To explain the notion of entropy solution, let us collect several observations:
a) We know that there are solutions which are discontinuous on a front which moves
at the speed of light. In that case ut is not a function and the best regularity we
can expect is that ut is a Radon measure(see [10]).
b) Admitting that we were able to prove that ut is a Radon measure, we would
obtain that div a(u, Du) is a Radon measure. In the formal computations we re-
quired the use of test functions of the form T (u) for some Lipschitz function T .
Observe that T (u) is at most in BV (RN ), hence we need that the Radon measure
div a(u, Du) can be integrated against BV functions. To be able to circumvent
this difficulty we observe that, being the divergence of a bounded measurable vec-
tor field, the expression div a(u, Du) defines an element of BV (RN )∗, i.e., the
dual of BV (RN ), and we can use test functions in BV (RN ). To be more pre-
cise, the time dependence has to be included and we have that div a(u, Du) ∈(
L1(0, T ; BV (RN ))

)∗ and we can use test functions in L1(0, T ; BV (RN )). To inte-
grate by parts we have to extend Anzellotti’s integration by parts formula to the
time-dependent case.
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The above remarks explain the requirements in the definition of entropy
solution.

To make precise our notion of solution we need to recall several definitions.
We define the space

Z(RN) :=
{
(z, ξ) ∈ L∞(RN , RN ) × BV (RN )∗ : div(z) = ξ in D′(RN )

}
.

We need to consider the space BV (RN )2, defined as BV (RN ) ∩ L2(RN ) en-
dowed with the norm

‖w‖BV (RN )2 := ‖w‖L2(RN ) + |Dw|(RN ).

Definition 2.5. Let ξ ∈
(
L1(0, T ; BV (RN )2)

)∗. We say that ξ is the time derivative
in the space

(
L1(0, T ; BV (RN )2)

)∗ of a function u ∈ L1((0, T )× RN) if∫ T

0

〈ξ(t), Ψ(t)〉dt = −
∫ T

0

∫
RN

u(t, x)Θ(t, x)dxdt

for all test functions Ψ ∈ L1(0, T ; BV (RN )) with compact support in time, which
admit a weak derivative Θ ∈ L1

w(0, T ; BV (RN )) ∩ L∞(QT ), that is, Ψ(t) =∫ t

0

Θ(s)ds, the integral being taken as a Pettis integral [23].

Note that if w ∈ L1(0, T ; BV (RN )) ∩ L∞(QT ) and z ∈ L∞(QT , RN ) is such
that there exists ξ ∈

(
L1(0, T ; BV (RN ))

)∗ with div(z) = ξ in D′(QT ), we can
define, associated to the pair (z, ξ), the distribution (z, Dw) in QT by

〈(z, Dw), φ〉 := −
∫ T

0

〈ξ(t), w(t)φ(t)〉 dt −
∫ T

0

∫
RN

z(t, x)w(t, x)∇xφ(t, x) dxdt.

(2.29)
for all φ ∈ D(QT ).

Definition 2.6. Let ξ ∈
(
L1(0, T ; BV (RN )2)

)∗ and z ∈ L∞(QT , RN ). We say that
ξ = div(z) in

(
L1(0, T ; BV (RN )2)

)∗ if (z, Dw) is a Radon measure in QT such
that ∫

QT

(z, Dw) +
∫ T

0

〈ξ(t), w(t)〉dt = 0,

for all w ∈ L1(0, T ; BV (RN )) ∩ L∞(QT ).

Our concept of solution for problem (2.1) is the following one.

Definition 2.7. A measurable function u : (0, T )×RN → R is an entropy solution of
(2.1) in QT =(0,T )×RN if u∈C([0,T ];L1(RN )), Ta,b(u(·))∈L1

loc,w(0,T ;BV (RN ))
for all 0 < a < b, and there exists ξ ∈

(
L1(0, T ; BV (RN )2)

)∗ such that
(i) (a(u(t),∇u(t)), ξ(t)) ∈ Z(RN ) a.e. in t ∈ [0, T ],
(ii) ξ is the time derivative of u in

(
L1(0, T ; BV (RN )2)

)∗ in the sense of Definition
2.5,

(iii) ξ = div a(u(t),∇u(t)) in the sense of Definition 2.6, and
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(iv) the following inequality is satisfied∫ T

0

∫
RN

φhS(u, DT (u)) dt +
∫ T

0

∫
RN

φhT (u, DS(u)) dt

≤
∫ T

0

∫
RN

JTS(u(t))φt(t) dxdt −
∫ T

0

∫
RN

a(u(t),∇u(t)) · ∇φ T (u(t))S(u(t)) dxdt

for truncatures S, T ∈ T + and any nonnegative smooth function φ of com-
pact support, in particular of the form φ(t, x) = φ1(t)ρ(x), φ1 ∈ D((0, T )),
ρ ∈ D(RN ).

In [8] we have obtained the following existence and uniqueness result.

Theorem 2.8 ([8]). Assume we are under assumptions (H). Then, for any initial da-
tum 0 ≤ u0 ∈ L∞(RN )∩L1(RN ) there exists a unique entropy solution u of (2.1) in
QT = (0, T )×RN for every T > 0 such that u(0) = u0. Moreover, if u(t), u(t) are
the entropy solutions corresponding to initial data u0, u0 ∈

(
L∞(RN ) ∩ L1(RN )

)+,
respectively, then

‖(u(t) − u(t))+‖1 ≤ ‖(u0 − u0)+‖1 for all t ≥ 0. (2.30)

3. The evolution of the support of the solutions
of the relativistic heat equation

In [9] we have proved that the support of solutions of the relativistic heat equation
evolves at constant speed, identified as light’s speed c. For that we constructed
entropy sub- and super-solutions which are fronts evolving at speed c and proved
the corresponding comparison principle between entropy solutions and sub- and
super-solutions, respectively. This enables us to prove the existence of discontinuity
fronts moving at light’s speed.

3.1. Sub and super-solutions. Comparison principles

Definition 3.1. Given 0 ≤ u0 ∈ L∞(RN ) ∩ L1(RN ), we say that a measurable
function u : (0, T )×RN → R is an entropy super-solution (respectively, entropy sub-
solution) of the Cauchy problem (2.1) in QT = (0, T )×RN if u ∈ C([0, T ]; L1(RN )),
u(0) ≥ u0 (resp. u(0) ≤ u0), Ta,b(u(·)) ∈ L1

loc,w(0, T, BV (RN )) for all 0 < a < b,
a(u(·),∇u(·)) ∈ L∞(QT ), and the following inequality is satisfied:∫

QT

hS(u, DT (u))φ +
∫

QT

hT (u, DS(u))φ (3.1)

≤
∫

QT

JTS(u)φt −
∫ T

0

∫
RN

a(u(t),∇u(t)) · ∇φT (u(t))S(u(t))dxdt,

(resp. with ≥ sign instead of ≤) for any φ ∈ D((0, T ) × RN ), φ ≥ 0, and any
T ∈ T +, S ∈ T −.
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Note that taking T (r) = 1 and S(r) = −1, for all r ∈ R, from (3.1), we get

∂u

∂t
≥ div a(u(·),∇u(·)) in D′(QT ). (3.2)

We cannot take these truncation functions directly, instead we can use T =T 1
n , 2

n
+1

and S =T 1
n , 2

n
−1, and then obtain (3.2) by a limit process.

We have the following comparison principle between entropy super-solutions
and entropy solutions.

Theorem 3.2 ([9]). Assume that there is some constant C > 0 such that the func-
tion M(z) in (2.8) satisfies M(z) ≤ Cz for z ≥ 0 small enough.

Assume that u is an entropy solution of (2.1) corresponding to initial datum
u0 ∈

(
L∞(RN ) ∩ L1(RN )

)+, and u is an entropy super-solution (or an entropy
sub-solution) of (2.1) corresponding to initial datum u0 ∈

(
L∞(RN ) ∩ L1(RN )

)+

such that u(t) ∈ BV (RN ) for almost all 0 < t < T . Then

‖(u(t) − u(t))+‖1 ≤ ‖(u0 − u0)+‖1 for all t ≥ 0. (3.3)

3.2. Some entropy super-solutions and sub-solutions of the
relativistic heat equation

To study the evolution of the support of entropy solutions of the relativistic heat
equation, we need to compute some explicit entropy super and sub-solutions.

Proposition 3.3 ([9]). Let C ⊂ RN a compact set, 0 < α ≤ β. For s > 0, let
C(s) := {x ∈ RN : d(x, C) ≤ s}. Then u(t, x) := βχ

C(ct)(x) is an entropy super-
solution of the Cauchy problem for the relativistic heat equation (1.10) with u0 =
αχC as initial datum.

Proposition 3.4 ([9]). Given R0, α0 > 0 and γ0 ≥ 0, there are values β1, β2 > 0
large enough such that

u(t, x) =

⎧⎪⎨⎪⎩
e−β1t−β2t2

(
α0

c
ν

√
R(t)2 − |x|2 + γ0

)
if |x| < R(t)

0 if |x| ≥ R(t),

where R(t) = R0 + ct, is an entropy sub-solution of (1.10).

3.3. The evolution of the support

Theorem 3.5 ([9]). Let C be an open bounded set in RN . Let u0 ∈ (L1(RN ) ∩
L∞(RN ))+ with support equals to C. Let u(t) be the entropy solution of the Cauchy
problem for the relativistic heat equation (1.10) with u0 as initial datum. Then

supp(u(t)) ⊂ C(ct) for all t ≥ 0. (3.4)

Moreover, if we assume that for any closed set F ⊆ C, there is a constant αF > 0
such that u0 ≥ αF in F , then

supp(u(t)) = C(ct) for all t ≥ 0.
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Finally, the following result can be derived from Proposition 3.4 and the
comparison principle with sub-solutions.

Proposition 3.6 ([9]). Let u0 ∈ (L1(RN ) ∩ L∞(RN ))+ and let u be the entropy
solution of the Cauchy problem for the equation (1.10) with u0 as initial datum.
Assume that u0(y) ≥ α > 0 for any y ∈ BR(x), R > 0. Then u(t, y) ≥ α(t) for
any y ∈ BR+ct(x) and any t > 0, for some function α(t) > 0. In particular, if u0

is continuous at x ∈ RN and u0(x) > 0, then u(t, x) > 0 for any t > 0.

This result implies the propagation of discontinuity fronts for any t > 0.
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Abstract. In this article we explore properties of subordinated d-parameter
groups. We show that they are semi-groups, inheriting the properties of the
subordinator via a transference principle. Applications range from infinitely
divisible processes on a torus to the definition of inhomogeneous d-dimensional
fractional derivative operators.
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1. Introduction

Let S be a strongly continuous uniformly bounded semigroup on L1(Rd) that
commutes with the translation operator (Taf)(x) = f(x+a) for all a ∈ Rd and let
B(X) denote the algebra of bounded linear operators on a general Banach space
X . Then, by [11, Theorem 1.4], S is given by

[S(t)f ](x) =
∫

Rd

f(x − s)μt
S(ds), f ∈ L1(Rd) (1.1)

where {μt
S}t≥0 is a family of bounded complex regular measures on Rd with

||S(t)||B(L1(Rd)) = |μt
S |(Rd) ≤ MS (1.2)
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for all t ≥ 0. The Fourier transform of S(t)f is given by

Ŝ(t)f(k) =
∫

Rd

e−i〈k,s〉S(t)f(s) ds = etψ(k)f̂(k) (1.3)

If, in addition, S is also positive; i.e., S(t)f ≥ 0 for all f, t ≥ 0, then S has a
Lévy-Khintchine representation (see, for example, [13]), namely ψ is given via1

ψ(k) = −c2 − i〈k, a〉 − 1
2
〈k, Qk〉 +

∫
x �=0

(
e−i〈k,x〉 − 1 +

i〈k, x〉
1 + |x|22

)
φ(dx) (1.4)

where a ∈ R, Q = {qij}d
i,j=1 is a symmetric non-negative definite d × d matrix

with real entries, and the Lévy measure φ is a σ-finite Borel measure on Rd \ {0}
such that ∫

x �=0

min{1, |x|22}φ(dx) < ∞. (1.5)

Let G be a d-parameter C0-group of operators on a Banach space X gener-
ated by {(Ai,D(Ai)) : i = 1 . . . d}. In this article we investigate the properties of
semigroups obtained by subordinating G by S; i.e., we investigate

GS(t)x =
∫

Rd

G(s)xμt
S(ds), x ∈ X, t ≥ 0. (1.6)

We develop a general theory of these subordinated d-parameter groups, includ-
ing a powerful transference principle Theorem 2.8 that can be used to show how
the subordinated group inherits many useful properties of the subordinator S in
L1(Rd).

In particular, we first show that GS is indeed a bounded semigroup and give a
core for its infinitesimal generator AS . Let (Mψ,D(Mψ)) denote the generator of
S on L1(Rd) with Fourier transform (1.3). We then prove a transference principle;
i.e., we establish that

‖g(AS)‖B(X) ≤ C‖g(Mψ)‖B(L1(Rd))

for all allowable functions g in the Hille-Phillips functional calculus. The constant
C does not depend on g. We thereby show, for example, how regularity of S
translates into regularity of GS .

Of special interest to applications is the case where S is positive and ‖S‖ = 1.
Note that if ψ(0) = 0, then, using (1.1) and (1.2), it is easy to see that the
two properties are equivalent. Then subordination has a stochastic interpretation
as randomising time (velocity) in each component against an infinitely divisible
distribution and ψ is given by the Lévy-Khintchine formula above with c = 0. If
{(Ai,D(Ai)), i = 1, 2, . . . , d} denotes the set of generators of the multi-parameter

1Throughout the paper for x ∈ Rd we denote |x|2 :=
(∑d

i=1 |xi|2
)1/2

in order to distinguish it

from the norm in an arbitrary Banach space.
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group G, we give in Theorem 2.12 the proof of an explicit generator formula for
all x ∈ ⋂d

i,j=1 D(AiAj); i.e.,

ASx =
d∑

i=1

aiAix +
1
2

d∑
i,j=1

qijAiAjx +
∫

s�=0

(
G(s)x − x −

d∑
i=1

siAix

1 + |s|22

)
φ(ds),

extending the result of Phillips [20]. In case that S is unilateral; i.e., for all t ≥ 0,
μt

S(Ω ∩ Rd−
i ) = 0 for all measurable Ω ⊂ Rd and all Rd−

i := {s ∈ Rd : si ≤ 0},
our theory readily applies to subordinating semi-groups and we generalise d = 1
results by Phillips [20], Carasso and Kato [6], Berg, Boyadzhiev and DeLaubenfels
[4] and Baeumer and Kovács [2].

2. The transference principle and generator formulas

Since the treatment of multi-parameter semigroups and groups are not standard
we first summarise some of their basic properties in the following proposition (see,
for example, [5, Propositions 1.1.8 and 1.1.9]).

Proposition 2.1. If T is a d-parameter C0-semigroup on X, then T is the product
of d one-parameter C0-semigroups Ti with generators (Ai,D(Ai)); i.e., for t =
(t1, . . . , td) we have T (t) =

∏d
i=1 Ti(ti) and the operators Ti(ti) commute with

each other, 0 ≤ ti < ∞ and i = 1, . . . , d. Moreover,
(i) If x ∈ D(Ai) then T (t)x ∈ D(Ai) and AiT (t)x = T (t)Aix, t ∈ Rd

+.
(ii) The set

⋂d
i=1 D(Ai) is a dense subspace of X and furthermore a Banach space

with norm ||x||⋂d
i=1 D(Ai)

:= ||x|| + ∑d
i=1 ||Aix||.

(iii) If x ∈ D(Ai) and x ∈ D(AiAj), then x ∈ D(AjAi) and AjAix = AiAjx.

For a d-parameter C0-semigroup T on X the set {(Ai,D(Ai)), i = 1, 2, . . . , d}
is called the set of generators.

Recall that X is a Banach space and G a bounded d-parameter C0-group on
X with set of generators {(Ai,D(Ai)), i = 1, . . . , d}. We define the subordinated
group GS via equation

GS(t)x =
∫

Rd

G(s)xμt
S(ds), x ∈ X, t ≥ 0.

where μt
S(ds) is given by (1.1). We will show first that GS is a bounded C0-

semigroup. The proof (and basically all of the proofs for the theorems that follow)
is based on the following commonly used construction.

Definition 2.2. Let G be a bounded d-parameter C0 -group on X , f ∈ L1(Rd),
and x ∈ X . We say that an element xf ∈ X is G-mollified or short mollified if it
is obtained by mollifying Rd � t → G(t)x with f ; i.e., if

xf =
∫

Rd

f(r)G(r)xdr. (2.1)
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The following lemma shows that the set of mollified elements is sufficiently
rich for our purposes.

Lemma 2.3. Consider the set of mollified elements B := {xf , x ∈ Y, f ∈ C ⊂
L1(Rd)}. If C is dense in L1(Rd) and Y is dense in X, then B is dense in X.

Proof. Assume that B is not dense in X . Then there is 0 �= x∗ ∈ X∗ such that
〈xf , x∗〉 = 0 for all xf ∈ B; i.e.,〈∫

Rd

G(s)xf(s) ds, x∗
〉

=
∫

Rd

〈G(s)x, x∗〉f(s) ds = 0, ∀f ∈ C, x ∈ Y.

Now Rd � s → 〈G(s)x, x∗〉 is continuous and bounded and hence belongs to
(L1(Rd))∗ = L∞(Rd). This implies that if C is dense in L1(Rd), 〈G(s)x, x∗〉 ≡ 0
for all x ∈ Y and s ∈ Rd. But G(0) = I and therefore 〈x, x∗〉 = 0 for all x ∈ Y
which implies that Y cannot be dense in X as x∗ �= 0. Hence C and Y being dense
implies that B has to be dense. �

Proposition 2.4. GS given by (1.6) is a bounded C0-semigroup on X.

Proof. The operator family GS is well defined since Rd � s → G(s)x is continuous
and μt

S is a bounded measure. If G is bounded by MG, then GS is bounded by
MSMG, where MS is the constant from (1.2). Let

A := {xf , x ∈ X, f ∈ L1(Rd)} (2.2)

be the set of mollified elements. By Fubini’s theorem, for xf ∈ A,

GS(t)xf =
∫

Rd

G(s)
∫

Rd

f(r)G(r)xdr μt
S(ds)

=
∫

Rd

∫
Rd

f(r)G(s + r)xdr μt
S(ds)

=
∫

Rd

G(v)x
∫

Rd

f(v − s)μt
S(ds) dv

=
∫

Rd

[S(t)f ](v)G(v)xdv = xS(t)f .

(2.3)

This shows that for xf ∈ A,

GS(0)xf = xS(0)f = xf ,

and

GS(t + s)xf = xS(t+s)f = xS(t)S(s)f = GS(t)xS(s)f = GS(t)GS(s)xf .

The map L1(Rd) � f → xf ∈ X is clearly linear, and since

‖xf‖ ≤ MG‖f‖L1(Rd)‖x‖, (2.4)

it is also continuous. Therefore,
‖GS(t)xf − xf‖ =‖xS(t)f − xf‖ = ‖xS(t)f−f‖

≤MG‖S(t)f − f‖L1(Rd)‖x‖,
(2.5)
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and since S is a C0-semigroup on L1(Rd), we obtain that t → GS(t)xf is continuous
at t = 0+. Finally, by Lemma 2.3, A is dense in X and since ‖GS(t)‖ ≤ MSMG,
t ≥ 0, the above holds for all x ∈ X and the proof is complete. �

Next we identify a reasonably large subset, i.e., a core of the domain of the
generator AS of GS .

Theorem 2.5. The set

C := {xf , x ∈ X, f ∈ D(Mψ)} ⊂ D(AS)

is a core for AS and

ASxf = xMψf , xf ∈ C, with ‖ASxf‖ ≤ MG‖Mψf‖L1(Rd)‖x‖.
Proof. Let xf ∈ C. Then f ∈ D(Mψ) and∥∥∥∥GS(h)xf − xf

h
− xMψf

∥∥∥∥ =

∥∥∥∥∥x(
S(h)f−f

h −Mψf

)
∥∥∥∥∥

≤MG

∥∥∥∥S(h)f − f

h
−Mψf

∥∥∥∥
L1(Rd)

‖x‖ → 0

as h ↘ 0. This proves that xf ∈ D(AS) and ASxf = xMψf . By (2.5) we see that
‖ASxf‖ ≤ MG‖Mψf‖L1(Rd)‖x‖. If f ∈ D(Mψ), then S(t)f ∈ D(Mψ). Therefore,
in view of (2.3), GS leaves C invariant. Also, D(Mψ) is dense in L1(Rd) and thus
C is dense in X by Lemma 2.3. Therefore, C is a core for AS by [8, Chapter II,
Proposition 1.7]. �

As a consequence we can transfer the action of Ai on mollified elements of
X to actions on their mollifiers.

Corollary 2.6. Let f ∈ W 2,1(Rd), x ∈ X. Then for all i = 1 . . . d, xf ∈ D(Ai) and

Aixf = −
∫

Rd

∂f(s)
∂si

G(s)xds = x− ∂f
∂si

.

Furthermore, for all i, j = 1, . . . , d, xf ∈ D(AiAj) ∩ D(AjAi) and

AiAjxf = AjAixf =
∫

Rd

∂2f(s)
∂si∂sj

G(s)xds = x ∂2f
∂si∂sj

.

Proof. It is well known that for the ith-coordinate wise right-translation semigroup

[Tr,i(t)f ](s1, . . . , si, . . . , sn) = f(s1, . . . , si − t, . . . , sn)

acting on L1(Rd) the generator is given by Mψf = − ∂f
∂xi

with domain D(Mψ) =
{f ∈ L1(Rd) : xi → f(x1, . . . , xi, . . . , xn) abs. cont. with − ∂f

∂xi
∈ L1(Rd)}. On

the other hand, Tr,i can be represented by equation (1.1), where μt
S = δ0 × · · · ×

δt × . . . δ0 where δt is the Dirac measure on R concentrated at t. Hence S = Tr,i,
GS = G, AS = Ai and the first statement follows directly from Theorem 2.5. The
proof is easily completed by repeating the above argument. �
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Now we are in a position to prove our main theorem, the transference of
the Hille-Phillips functional calculus, which has remarkable consequences. The
transference principle is a powerful tool which has been used in many fields of
analysis. For a general reference, see [7]. We recall a form of the Hille-Phillips
functional calculus briefly. Let (C,D(C)) generate a C0-semigroup TC bounded by
M ≥ 1. For a function g : C ↪→ C with representation

g(z) :=
∫ ∞

0

ezt dα(t) (Re z ≤ 0) (2.6)

where α : [0,∞) → C is a normalised2 function of bounded total variation, define

g(C)x :=
∫ ∞

0

TC(t)xdα(t), x ∈ X

where the integral can be understood either in the Riemann-Stieltjes or in the
Lebesgue-Stieltjes (Bochner) sense. In the latter case α is then replaced by the
complex Borel measure induced by α. It turns out that functions with represen-
tation (2.6) form an algebra and the map Ψ : g → g(C) ∈ B(X) is an algebra
homomorphism (see, for example, [10, Chapter XV] and [15]), where B(X) is the
algebra of bounded linear operators on X . In particular, for gλ(z) = 1/(λ− z) and
each λ with Re λ > 0, the resolvent is an element of the algebra; i.e., for x ∈ X
and Re λ > 0,

gλ(C)x = R(λ, C)x =
∫ ∞

0

TC(t)xe−λt dt.

Definition 2.7. A collection of functions {gn}n∈N ⊂ L1(Rd) is called an approximate
identity if gn ≥ 0, ‖gn‖L1(Rd) = 1 and limn→∞

∫
|s|2≥δ

gn(s) ds = 0 for any fixed
δ > 0.

It is straightforward to show that if x ∈ X and {fn}n∈N is an approximate
identity, then xfn → x as n → ∞.

Theorem 2.8 (Transference Principle). Let AS be the generator of the semigroup
GS and Mψ be the generator of the semigroup S. If g has representation (2.6),
then

‖g(AS)‖B(X) ≤ MG‖g(Mψ)‖B(L1(Rd)) (2.7)

where MG is independent of g.

2One may, for example, normalise α by setting α(0) = 0 and α(u) = α(u+)+α(u−)
2

for all u > 0,

see, for example [15],
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Proof. Let xf ∈ A where A is defined in (2.2) and g given by (2.6). Then, since
both GS and S are bounded C0-semigroups,

g(AS)xf =
∫ ∞

0

GS(t)xf dα(t) =
∫ ∞

0

xS(t)f dα(t)

=
∫ ∞

0

∫
Rd

[S(t)f ](r)G(r)xdr dα(t) (2.8)

=
∫

Rd

∫ ∞

0

[S(t)f ](r) dα(t)G(r)xdr = xg(Mψ)f .

where the interchange of the integrals is justified by Fubini’s theorem. Therefore,
by (2.4),

‖g(AS)xf‖ ≤ MG‖g(Mψ)f‖L1(Rd)‖x‖
≤ MG‖g(Mψ)‖B(L1(Rd))‖f‖L1(Rd)‖x‖.

Finally, take {fn}n∈N to be an approximate identity. Then xfn → x and since
g(AS) ∈ B(X) we also have that g(AS)xfn → g(AS)x for all x ∈ X . Thus,

‖g(AS)x‖ ≤ MG‖g(Mψ)‖B(L1(Rd))‖x‖, x ∈ X. �

We immediately obtain an important corollary which shows an example of
transference of regularity under subordination in the group case. Recall that a
C0-semigroup TC generated by (C,D(C)) is called a bounded analytic semigroup
of angle θ ∈ (0, π

2 ] if TC has a bounded analytic extension to a sectorial region
{z ∈ C : | arg z| < θ′} for all θ′ ∈ (0, θ). This is equivalent to (C,D(C)) being
a sectorial operator of angle θ; that is, the resolvent set of C, ρ(C), contains the
sectorial region

Σθ :=
{
λ ∈ C : | arg λ| <

π

2
+ θ

}
\ {0} ⊂ ρ(C)

and ‖R(λ, C)‖B(X) ≤ Mε

|λ| for all λ ∈ Σθ−ε and ε ∈ (0, δ) for some Mε ≥ 1 (see, for
example [1, Theorem 3.7.11]).

Corollary 2.9. If S is a bounded analytic semigroup of angle θ on L1(Rd), then
GS is a bounded analytic semigroup of angle θ on X.

Proof. Since both GS and S are bounded semigroups it follows that {λ ∈ C :
Re λ > 0} is contained in both, the resolvent set ρ(AS) and ρ(Mψ). If g(z) :=
(λ − z)−1 (Re λ > 0), then for the resolvent operators of AS and Mψ we obtain,
by Theorem 2.8,

‖R(λ, AS)‖B(X) ≤ MG‖R(λ,Mψ)‖B(L1(Rd)), Re λ > 0. (2.9)

Therefore,

sup
Re λ>0

‖λR(λ, AS)‖B(X) ≤ MG sup
Re λ>0

‖λR(λ,Mψ)‖B(L1(Rd)) < ∞

where the finite supremum on the right-hand side follows from the assumption that
S is an analytic semigroup on L1(Rd) (see, for example [1, Corollary 3.7.12]). Even
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more, the finiteness of above supremum is a necessary and sufficient condition for
the analyticity of a semigroup [1, Corollary 3.7.12]. Thus GS is indeed a bounded
analytic semigroup . Assume that S is a bounded analytic semigroup of angle θ, or,
equivalently, that Mψ is a sectorial operator of angle θ. Let λ ∈ Σθ−ε. Then there is
λ0 ∈ iR and r > 0 such that λ ∈ D(λ0, r) ⊂ ρ(Mψ), where D(λ0, r) is the open disc
with centre λ0 and radius r. It follows from (2.9) that λ0 ∈ ρ(AS). Therefore, by
Theorem 2.8, the algebra homomorphism property of the Hille-Phillips functional
calculus and the continuity of the resolvent,∥∥R(λ0, AS)k+1

∥∥
B(X)

≤ MG

∥∥R(λ0,Mψ)k+1
∥∥
B(L1(Rd))

.

Hence absolute convergence of
∑

(λ−λ0)kR(λ0,Mψ)k+1 implies absolute conver-
gence of

∑
(λ−λ0)kR(λ0, AS)k+1. Therefore, using the Taylor series representation

of the resolvent, λ ∈ ρ(AS) and ‖R(λ, AS)‖B(X) ≤ MεMG

|λ| . �

2.1. Positive subordinators

Of particular interest is the case where the subordinator S is positive as it applies
to stochastic models and the subordinator takes on the purpose of randomising
the time variable (or velocity) in each component. In this case we prove an explicit
generator formula using rather elementary tools. We need two preparatory results.

Proposition 2.10. Let T be a d-parameter C0-semigroup on a Banach space X with
set of generators {(Ai,D(Ai)) i = 1, . . . , d}. A subspace of

⋂d
i=1 D(Ai) which is

‖ · ‖-dense in X and invariant under T is ‖ · ‖⋂d
i=1 D(Ai)

-dense in
⋂d

i=1 D(Ai).

Proof. The proof is a straightforward generalisation of the proof of the well-known
one-parameter result (see, for example, [8, Chapter II, Proposition 1.7]) in view of
Proposition 2.1. �

Consider
⋂d

i,j=1 D(AiAj) with norm

||x||⋂d
i,j=1 D(AiAj)

:= ||x|| +
d∑

i=1

||Aix|| +
d∑

i,j=1

||AiAjx||.

Note that, by Proposition 2.1 (iii), similarly to Sobolev spaces, one could use an
equivalent norm by summing up the last term for 1 ≤ j ≤ i ≤ d, only.

Corollary 2.11. Let T be a d-parameter C0-semigroup on a Banach space X with set
of generators {(Ai,D(Ai)) i = 1, . . . , d}. A subspace D of X⋂

d
i,j=1 D(AiAj)

which is
‖·‖-dense in X and invariant under T is ‖·‖⋂d

i,j=1 D(AiAj)
-dense in X⋂d

i,j=1 D(AiAj)
.

Proof. Clearly, T is a d-parameter C0-semigroup on the Banach space(
d⋂

i=1

D(Ai), ‖ · ‖⋂d
i=1 D(Ai)

)
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in view of Proposition 2.1, with set of generators (Ai,
⋂d

j=1 D(AiAj)). Therefore,

by Proposition 2.10, D is dense in
⋂d

i,j=1 D(AiAj) with respect to the norm

|‖x‖| = ‖x‖⋂d
i=1 D(Ai)

+
d∑

j=1

‖Ajx‖⋂d
i=1 D(Ai)

≥ ||x||⋂d
i,j=1 D(AiAj)

,

which finishes the proof. �

Next we prove the generator formula.

Theorem 2.12. Let S be positive; i.e., the log-characteristic function is given by
the Lévy-Khintchine formula (1.4). Then

⋂d
i,j=1 D(AiAj) ⊂ D(AS) and

ASx = −c2x+
d∑

i=1

aiAix+
1
2

d∑
i,j=1

qijAiAjx+
∫

s�=0

(
G(s)x−x−

d∑
i=1

siAix

1 + |s|22

)
φ(ds),

(2.10)
for all x ∈ ⋂d

i,j=1 D(AiAj).

Proof. In [3, Theorem 2.2] it is shown that W 2,1(Rd) ⊂ D(Mψ) and

(Mψf) (s) = − c2f(s) − a · ∇f(s) + 1
2 ∇ · Q∇f(s)

+
∫

y �=0

(
f(s − y) − f(s) +

∇f(s) · y
1 + |y|22

)
φ(dy), f ∈ W 2,1(Rd).

Let D := {xf : x ∈ X, f ∈ W 2,1(Rd) ∩ C2(Rd)}. By Theorem 2.5, D ⊂ D(AS).
For xf ∈ D we have, using Corollary 2.6,

ASxf = xMψf

=
∫

Rd

[
− c2f(s) − a · ∇f(s) + 1

2 ∇ · Q∇f(s)

+
∫

y �=0

(
f(s − y) − f(s) +

∇f(s) · y
1 + |y|22

)
φ(dy)

]
G(s)xds

= −c2xf +
d∑

i=1

aiAixf +
1
2

d∑
i,j=1

qijAiAjxf

+
∫

Rd

(∫
v �=0

(
f(s − v) − f(s) +

∇f(s) · v
1 + |v|22

)
φ(dv)

)
G(s)xds

= −c2xf +
d∑

i=1

aiAixf +
1
2

d∑
i,j=1

qijAiAjxf

+
∫

v �=0

(
G(v)xf − xf −

d∑
i=1

viAixf

1 + |v|22

)
φ(dv), (2.11)
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where the interchange of the integrals is justified because ‖G(s)xf‖ ≤ MG‖xf‖
and because f ∈ W 2,1(Rd) ∩ C2(Rd) ⊂ D(Mψ) and thus

s →
∫

v �=0

(
f(s − v) − f(s) +

∇f(s) · v
1 + |v|22

)
φ(dv) ∈ L1(Rd).

Taylor’s formula for f ∈ W 2,1(Rd) ∩ C2(Rd) yields

f(s − v) = f(s) − v · ∇f(s) +
∫ 1

0

(1 − t)〈v, Ms−tvv〉 dt

where Mr is the Hessian matrix of f at r ∈ Rd. Thus for xf ∈ D, by Corollary 2.6
and Fubini’s theorem,

G(v)xf = xf(·−v) = xf−v·∇f+
∫ 1
0 (1−t)〈v,M·−tvv〉 dt

= xf +
d∑

i=1

viAixf +
∫ 1

0

(1 − t)G(tv)
d∑

i,j=1

vivjAiAjxf dt.

Hence, for |v|2 ≤ 1,∥∥∥∥∥G(v)xf − xf −
d∑

i=1

viAixf

1 + |v|22

∥∥∥∥∥
≤ ‖G(v)xf − xf −

d∑
i=1

viAixf‖ +

∥∥∥∥∥
d∑

i=1

viAixf −
d∑

i=1

viAixf

1 + |v|22

∥∥∥∥∥
≤ 1

2
MG

d∑
i,j=1

|vivj | ‖AiAjxf‖ +
|v|22

1 + |v|22

d∑
i=1

|vi| ‖Aixf‖

≤ C2
d

|v|22
2

MG

d∑
i,j=1

‖AiAjxf‖ + Cd
|v|32

1 + |v|22

d∑
i=1

‖Aixf‖

≤ C2
d

|v|22
1 + |v|22

MG

d∑
i,j=1

‖AiAjxf‖ + Cd
|v|22

1 + |v|22

d∑
i=1

‖Aixf‖

≤ KdMG||xf ||⋂d
i,j=1 D(AiAj)

|v|22
1 + |v|22

.

If |v|2 ≥ 1, then∥∥∥∥∥G(v)xf − xf −
d∑

i=1

viAixf

1 + |v|22

∥∥∥∥∥ ≤ (MG + 1)‖xf‖ + Cd
|v|2

1 + |v|22

d∑
i=1

‖Aixf‖

≤ (MG + 1)‖xf‖ + Cd
|v|22

1 + |v|22

d∑
i=1

‖Aixf‖
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≤ (MG + 1)
2|v|22

1 + |v|22
‖x‖ + Cd

|v|22
1 + |v|22

d∑
i=1

‖Aixf‖

≤ Ld(MG + 1)||xf ||⋂d
i,j=1 D(AiAj)

|v|22
1 + |v|22

.

Therefore, for all v ∈ Rd and xf ∈ D,∥∥∥∥∥G(v)xf − xf −
d∑

i=1

viAixf

1 + |v|22

∥∥∥∥∥ ≤ (Cd + Kd)(MG + 1)||xf ||⋂d
i,j=1 D(AiAj)

|v|22
1 + |v|22

,

(2.12)
which implies that∫

v �=0

∥∥∥∥∥G(v)xf − xf −
d∑

i=1

viAixf

1 + |v|22

∥∥∥∥∥ φ(dv)

≤ (Cd + Kd)(MG + 1)
∫

v �=0

|v|22
1 + |v|22

φ(dv)||xf ||⋂d
i,j=1 D(AiAj)

.

(2.13)

The set C is dense in L1(R) and therefore by Lemma 2.3, D is dense in X . It is
easy to see that G leaves D invariant and by Corollary 2.6, D ⊂ ⋂d

i,j=1 D(AiAj).

Thus by Corollary 2.11, D is ‖·‖⋂d
i,j=1 D(AiAj)

-dense in
⋂d

i,j=1 D(AiAj). Therefore,

if x ∈ ⋂d
i,j=1 D(AiAj), there is a sequence {(xn)fn} ⊂ D such that (xn)fn → x,

Ai(xn)fn → Aix, i = 1, . . . , d, and AiAj(xn)fn → AiAjx, i, j = 1, . . . , d, as
n → ∞. In particular, supn ‖(xn)fn‖⋂d

i,j=1 D(AiAj)
< ∞. Therefore, using (2.13)

and (2.12), the right-hand side of (2.11) converges to

−c2x +
d∑

i=1

viAix +
1
2

d∑
i,j=1

qijAiAjx +
∫

s�=0

(
G(v)x − x −

d∑
i=1

viAix

1 + |v|22

)
φ(dv).

Since xfn → x and AS is closed, x ∈ D(AS) and

ASx = − c2x +
d∑

i=1

viAix +
1
2

d∑
i,j=1

qijAiAjx

+
∫

s�=0

(
G(v)x − x −

d∑
i=1

viAix

1 + |v|22

)
φ(dv), x ∈

d⋂
i,j=1

D(AiAj). �

2.2. The semigroup case

In case that S is unilateral; i.e., for all t ≥ 0, μt
S(Ω ∩ Rd−

i ) = 0 for all measurable
Ω ⊂ Rd and all Rd−

i := {s ∈ Rd : si ≤ 0}, the above theory readily extends to the
point where we can allow G to be a bounded d-parameter semigroup T ; i.e., we
define

TS(t)x =
∫

Rd
+

T (s)xμt
S(ds), x ∈ X, (2.14)
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with generator (AS ,D(AS)). We denote, as above, the set of generators of T by
{(Ai,D(Ai)), i = 1, 2, . . . , d} and the generator of S, which is now considered as a
C0-semigroup on L1(Rd

+), by (Mψ,D(Mψ)). With the obvious modifications all of
the above theorems hold, in particular, we would like to highlight the Transference
Principle for semigroups.

Theorem 2.13 (Transference Principle for semi-groups). If g has the form (2.6),
then

‖g(AS)‖B(X) ≤ MT ‖g(Mψ)‖B(L1(Rd
+)) (2.15)

where MT is independent of g. �

The following corollary is more general then the one-dimensional result in
[6], as it also shows the transference of the angle of analyticity and is more general
then the corresponding one-dimensional statement in [4] as there is no restriction
on the measures. For the one-dimensional case, see also [2].

Corollary 2.14. If S is a bounded analytic semigroup on L1(Rd) of angle θ on
L1(Rd

+), then TS is a bounded analytic semigroup of angle θ on X.

The other special case we would like to highlight, is the case when S is positive
and unilateral. Then the Lévy-Khintchine representation simplifies to

ψ(k) = −c2 − i〈k, a〉 +
∫

x∈Rd
+\{0}

(
e−i〈k,x〉 − 1

)
φ(dx) (2.16)

with a ∈ Rd
+ and φ is a σ-finite Borel measure on Rd

+ \ {0} such that∫
min{1, |x|2}φ{dx} < ∞.

This result is originally due to Paul Lévy. The proof for d = 1 is outlined in Feller
[9, XVII.4(c) p. 571] but the proof extends immediately to the multivariate case
(see also [20]). The proof of the generator formula below is analogous to the proof
of Theorem 2.12 and therefore we only give an outline.

Theorem 2.15. Let S be positive and unilateral with log characteristic function
given by the Lévy-Khintchine formula (2.16). Then

⋂d
i=1 D(Ai) ⊂ D(AS) and

ASx = −c2x +
d∑

i=1

aiAix +
∫

Rd
+

(
T (s)x − x

)
φ(ds), x ∈

d⋂
i=1

D(Ai). (2.17)

Proof. The proof, the same way as in the group case, uses the result on L1(Rd
+),

namely, W 1,1
0 (Rd

+) ⊂ D(Mψ) and

Mψf(s) = −c2f(s) − a · ∇f(s) +
∫

Rd
+

(f(s − y) − f(s))φ(dy), f ∈ W 1,1
0 (Rd

+).

This can be shown exactly the same fashion as [3, Theorem 2.2] using the simplified
form of the Lévy-Kintchine formula (2.16). Then it is easily verified that D := {xf :
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x ∈ X, f ∈ C} ⊂ D(AS), where C := W 1,1
0 (Rd

+) ∩ C1(Rd
+), is || · ||⋂d

i=1 D(Ai)
-dense

in
⋂d

i=1 D(Ai) and that (2.17) holds for xf ∈ D. Finally, Taylor’s formula

T (v)xf = xf +
d∑

i=1

∫ 1

0

T (tv)viAixf dt, xf ∈ D, v ∈ Rd
+,

yields the estimate

‖(T (v)xf − xf ) ‖ ≤ Kd(MT + 1)
|v|2

1 + |v|2
||xf ||⋂d

i=1 D(Ai)
,

and the proof can be completed the same way as the proof of Theorem 2.12. �

3. Examples

3.1. Subordinating the d-parameter translation semigroup

Let X be any of the spaces C0(Rd), UCB(Rd) or Lp(Rd) (1 ≤ p < ∞).3 Then with
μt from (1.1) the semigroup

[S(t)f ](x) =
∫

Rd

f(x − y)μt(dy), f ∈ X, (3.1)

is strongly continuous on X and its generator is given by

(Mψf) (s) = − c2f(s) − a · ∇f(s) + 1
2 ∇ · Q∇f(s)

+
∫

y �=0

(
f(s − y) − f(s) +

∇f(s) · y
1 + |y|22

)
φ(dy), f ∈ D,

where D = {f ∈ X : Dαf ∈ X with multi-index |α| ≤ 2} for X = C0(Rd) or
X = UCB(Rd) and D = W 2,p(Rd) for X = Lp(Rd). The statement for X = C0(Rd)
can be found in [22, Theorem 31.5] (for the variable coefficient version, see, for
example, [21]) and now it is a corollary of Theorem 2.12 which is based on the
L1(Rd)-result [3, Theorem 2.2]. Thus, the semigroup S on the function space X
inherits several useful properties of the corresponding semigroup on the space
L1(Rd) as long as the d-parameter translation is strongly continuous on X .

3.2. Infinitely divisible processes on a d-dimensional torus

Let X be the space of continuous functions on a d-dimensional torus, i.e.,

X = Cπ([0, 2π]d)

with f ∈ Cπ([0, 2π]d) if and only if f is continuous and periodic in each dimension
(i.e., in each component the value at 2π has to agree with the value at zero). Take
Ai = − ∂

∂xi
with

D(Ai) =
{

f ∈ Cπ([0, 2π]d) :
∂

∂xi
f ∈ Cπ([0, 2π]d)

}
.

3Here, UCB(Rd) denotes the uniformly bounded and uniformly continuous functions on Rd and
C0(Rd) the continuous functions on Rd with zero limit as |x|2 → ∞.
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The d-parameter group is then given by

G(t1, . . . , td)f(x1, . . . , xd) = f(x1 − t1, . . . , xd − td) (3.2)

using the periodic extension of f . If S is positive with ‖S‖ = 1, i.e., S corresponds
to an infinitely divisible process in Rd, then GS is the corresponding infinitely
divisible process on the d-dimensional torus and Theorem 2.12 yields the generator
formula for this semigroup. This provides a simple proof of the formula in [12] in
this special case. Infinitely divisible processes on cylinders are defined analogously.

3.3. Inhomogeneous fractional derivatives

Consider X = L1(R2) and

Axf := − ∂

∂x
(v1(x)f(x, y)) ; Ayf := − ∂

∂y
(v2(y)f(x, y))

for continuously differentiable vi with vi(x) > 0 for all x and
∫ 0

−∞ 1/vi(x) dx =∫∞
0 1/vi(x) dx = ∞. It is easy to check that the two-parameter flow group is then

given by

T (t1, t2)f(x, y) = f(h1(x, t1), h2(y, t2))v1(h1(x, t1))v2(h2(y, t2))/(v1(x)v2(y))
(3.3)

where hi(x, t) are implicitly defined via∫ x

hi(x,t)

1
vi(s)

ds = t.

Suppose that S is defined by (1.1) where μt
S is a strictly operator stable

probability measure on Rd. Operator stable laws are infinitely divisible laws with
nice scaling properties, see [14, 17]. For a certain range of the scaling parameters,
it is shown in [18] that

ψ(k) = −μ · ik +
∫
‖θ‖=1

∫ ∞

0

(
e−ik·rHθ − 1 + ik · rHθ

) dr

r2
λ(dθ)

for some scaling matrix H and spectral measure λ. Operator stable semigroups
are important in applications to physics [16], hydrology [23], and finance [18],
partly because their generators involve multidimensional analogues of fractional
derivatives. Subordinating the flow group leads to the generator formula, using
substitution in (2.10),

ASf = μ1Axf +μ2Ayf +
∫
‖θ‖=1

∫ ∞

0

(
G(rHθ)f − f − 〈rHθ, (Axf, Ayf)〉

) dr

r2
λ(dθ)

for all f ∈ D(A2
x)∩D(A2

y)∩D(AxAy), generalising the fractional derivative operator
defined in [19] for v1 = v2 = 1.

In particular, if μ = 0 and H =
(

1/α 0
0 1/α

)
for some 1 < α < 2, using the

same argument as in Lemma 7.3.8 in [17], the log-characteristic function reduces
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to

ψ(k) = −Γ(1 − α)
∫
‖θ‖=1

〈ik, θ〉α λ(dθ).

Hence we obtain that in this case, using the functional calculus for group generators
developed in [2],

ASf = −Γ(1−α)
∫
‖θ‖=1

(−θ1Ax − θ2Ay)α
f λ(dθ), f ∈ D(A2

x)∩D(A2
y)∩D(AxAy).

Similarly, if λ is concentrated on the axes and H =
(

1/α1 0
0 1/α2

)
we obtain

in the simplest case
ASf = −|Ax|α1f − |Ay |α2f.

For example, if v1 = v2 ≡ 1, then the generator AS is a mixture of one variable
fractional derivatives.
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An Integral Equation in AeroElasticity

Alampallam V. Balakrishnan

Abstract. The integral equation that plays a key role in AeroElasticity is
known as the Possio Integral Equation, named after its discoverer. From its
inception in 1938, this equation was formulated in the Fourier Transform
domain using divergent integrals, until 2002 when a more precise formulation
valid in a right half-plane was given. In this paper we express it in the time-
domain, which requires the language of Functional Analysis, Lp spaces, 1 <
p < 2, and Semigroup Theory. A key role is played by the Finite Hilbert
Transform and the Tricomi-Sohngen airfoil equation, which may actually be
considered a special case.

Mathematics Subject Classification (2000). 45G05.

Keywords. Functional Analysis, Control.

1. Introduction

In this paper we treat the Possio Integral Equation purely from the mathematical
point of view, eschewing any discussion of its origin or application in AeroElasticity
except to refer the interested reader to [1, 2, 3; cf. 4, 5]. We begin in Section
2 with the formulation in the Laplace Domain (right half-plane), a little more
than replacing iω by λ! We show how the integral kernel can be simplified by
taking the (Lp − Lq) Fourier Transform in the spatial domain [4], from which it
follows in particular that the integral operator is a Mikhlin multiplier. An explicit
representation of the multiplier is developed that allows us, in Section 3, to obtain
the time-domain representations of the integral equation in terms of the shift-
semigroup on Lp(R1) and the Hilbert Transform. By using the Tricomi operator
we convert this equation to a Volterra-type equation, a type not covered by the
literature extant [6].

Hence we have to develop techniques special to our problem. Actually we
have to take Laplace Transforms, the familiar tool for solving Volterra equations.

Research supported in part under NSF Grant no. ECS-0400730.
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We illustrate this by considering a special case, M = 0, in Section 4. A key result
is due to Sears [7] on inverse Laplace Transforms.

In Section 5 we consider the general case, again taking Laplace Transforms,
imitating the technique used for M = 0 as far as we can. Although we are unable
to attain closure, we do wind up with a general formulation and obtain two useful
approximations on the way.

In Section 6 we indicate two generalizations of the problem, still largely un-
solved.

2. The Possio Equation

The original version [1] in Italian was published in 1938.We begin with the version,
circa 1954, quoted in the classic text on AeroElasticity [2], extending the Fourier
Transform to the Laplace Transform,

ŵ(λ·, x) =
∫ b

−b

P̂ (λ·, x − ξ)Â(λ, ξ) dξ, |x| < b < ∞ (2.1)

where Reλ > 0 (more generally, in a half-plane). The hat is there to indicate that
it is the Laplace Transform of a function of time t, 0 < t < ∞. We have an integral
equation for Â(λ, ·) for each λ in the half-plane, for given

ŵ(λ, ·) ∈ C1[−b, b] for each λ,

and the kernel

P̂ (λ, x) =
k√

1 − M2

[
M |x|

x
K1

( Mk

1 − M2
|x|

)
exp

( M2k

1 − M2
x
)

+ K0

( Mk

1 − M2
|x|

)
exp

( M2k

1 − M2
x
)

− k

∫ ∞

0

K0

( k|s|M
1 − M2

exp
(
− kx +

ks

1 − M2

)
ds

−
√

1 − M2 log
(1 +

√
1 − M2

M

)
exp(kx)

]
,

−∞ < x < ∞, k = λ/U, U > 0 given , 0 ≤ M < 1 (2.2)

The integrals in the kernel are convergent and the kernel may be defined on the
imaginary axis by taking limits,to obtain the original frequency version in [1, 2].
The function space for the solution Â(λ, ·) was not specified, but it is required that

Â(λ, x) → 0 as x → b.

From the presence of the Bessel K1(·) function we can see that the kernel is
singular at x = 0,so that we have a ‘singular convolution’ integral equation.

This was the state of affairs until 2002 when it was shown [4] that by going
back to where the Possio Integral came from viz. the Neumann type boundary-
value problem for a linear partial differential equation, and showing that P̂ (λ, ·) is
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in Lp(R1), 1 < p < 2, one could consider the Lp − Lq Spatial Fourier Transform
of P̂ (λ, ·). This yields

P̃ (λ, iω) =
∫ ∞

−∞
P̂ (λ, x)e−iωxdx, −∞ < ω < ∞

=
1
2

D(k, iω)
k + iω

, k = λ/U (2.3)

where

D(k, iω) =
√

k2M2 + 2kM2iω + (1 − M2)ω2 (2.4)

where the root in the right half-plane is to be taken.
Not only did this provide an enormous simplification over the original rep-

resentation but also made apparent the non-analyticity in M at 0 or 1. More
importantly, one could readily calculate that this is a Mikhlin multiplier Lp − Lq.
Moreover, setting M = 0 in 2.3, we see that it reduces to

P̃ (λ, iω) =
1
2

|ω|
k + iω

. (2.5)

In particular for k = 0 the equation is no more than the finite Hilbert Transform
or the ‘air-foil’, equation, whose solution was established by Tricomi [5], showing
in particular the need for the limit condition specified at x = b−, for uniqueness.
We shall return to this in the next section.

To obtain the equation in (2.1) in multiplier form, let Φ(M, λ) denote the
operator corresponding to the multiplier

1
2

√
D(k, iω)
k + iω

.

Then requiring that Â(λ, ·) be in Lp(−b, b), 1 < p < 2 (which we shall require
from now on), we can consider

Φ(M, λ)Â(λ, ·).

Since

Lp(−b, b) ⊂ Lp(R1)

and denoting by P the projection on Lp(R1) into Lp(−b, b), we may express (2.1)
in the ‘multiplier’ form as

ŵ(λ, ·) = PΦ(M, λ)Â(·, λ). (2.6)

We note that

P̃ (λ, 0) =
1
2
M =

limit
Reλ → ∞ P̃ (λ, iω) (2.7)
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3. Possio Integral: Time domain version

We note that showing existence of solution to (2.6) for each λ, Re λ > 0, is not
enough. We need to show that Â(λ, ·) is the Laplace Transform of a time-domain
function. This raises the question, can we express (2.1) or (2.4) as an equation in
the time-domain? This is done here for the first time, apparently! For this purpose
we need the representation theory in [4]. It is shown there that we can express

P̃ (λ, iω) =
1
2

√
D(k, iω)
k + iω

equivalently as
1
2
|ω|
iω

√
1 − M2

(
1 + kq̃(k, iω)

)
, −∞ < ω < ∞, ω �= 0 (3.1)

where

q̃(k, iω) =
−1√

1 − M2

1
k + iω

−
∫ α1

−α2

1
ks + iω

a(s)ds (3.2)

where

a(s) =
1
π

√
(α1 − s)(α2 + s)

1 − s

α1 =
M

1 + M
α2 =

M

1 − M
.

(3.3)

Note that α2 ≥ α1. Moreover it is shown in [4] that q̃(k, iω) is the Lp −Lq Fourier
Transform of a function

q̂(k, x), −∞ < x < ∞
q̂(k, ·) ∈ Lp(R1), p > 1

q̂(k, x) = − e−kx

√
1 − M2

−
∫ α1

0

e−ksxa(s)ds, x > 0

=
∫ α2

0

e−ks|x|a(−s)ds, x < 0

⎫⎪⎪⎬⎪⎪⎭ . (3.4)

Note that for M = 0, there is considerable simplification in that the integral terms
vanish.

Now the convolution, for f in Lp(−b, b):

ĝ(k, x) =
∫ b

−b

q̂(k, x − ξ)f(ξ)dξ, −∞ < x < ∞

can be expressed

ĝ(k, ·) =
∫ b

−b

S(ξ)q̂(k, ·)f(ξ)dξ

where S(·) is the shift group on Lp(R1) given by

S(t)q = q(· − t)

and since
Lp(−b, b) ⊂ L1(−b, b), b < ∞
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we have the familiar result (see[8]) (|| · ||p denoting the p-norm, as usual)

||ĝ(k, ·)||p ≤ ||q̂(k, ·)||p
∫ b

−b

|f(ξ)|dξ

≤ (2b)1/q||q̂(k, ·)||p||f ||p.
Hence

ĝ(k, ·) = q̂(k, ·)f (3.5)
defines q̂(k, ·) as a linear bounded operator on Lp(−b, b) into Lp(R1), 1 < p < 2.

Moreover, we can write

ĝ(k, ·) =
R(k)f√
1 − M2

−
∫ α1

−α2

R(ks)fa(s)ds (3.6)

where R(λ) is the resolvent of S(·):

R(λ)f =
∫ ∞

0

e−λtS(t)fdt

R(−λ)f = −
∫ ∞

0

e−λtS(−t)fdt.

Hence

ĝ(λ, ·) =
∫ ∞

0

e−λtL(t)fdt

where

L(t)f = −US(Ut)f√
1 − M2

−
∫ α1

−α2

US(Ut/s)f
a(s)ds

s
. (3.7)

This is formal in that the question of whether the integrals in (3.6), (3.7) are
well defined, needs to be resolved, because of the singularity at s = 0. To remove
the singularity, we may proceed as follows:∫ α1

−α2

R(λs)f a(s)ds =
∫ α1

−α2

R(λs)f a(0)ds +
∫ α1

−α2

sR(λs)f
(
a(s) − a(0)

)
/s ds

where in the second term we have only to note that

||R(λs)s|| ≤ 1
Re · λ

while the first term

= a(0)
∫ α1

0

∫ ∞

0

e−λstS(t)fdtds − a(0)
∫ α2

0

∫ ∞

0

e−λstS(−t)fdtds

= a(0)
∫ ∞

0

(1 − e−λα1t)
(

S(t)f − S(−t)f
λt

)
dt − a(0)

∫ α2

α1

∫ ∞

0

e−λstS(−t)fdtds

and
1
π

∫ ∞

0

S(t)f − S(−t)f
t

dt = Hf

by the Hille-Phillips operational calculus [9]. In other words, we need to interpret
the integral in (3.6) as a Cauchy Integral.
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The integral in the second term in (3.7) may be treated in a similar way by
expressing it as:∫ α1

0

(
S(Ut/s)fa(s) − S(−Ut/s)fa(−s)

)
ds

s
−

∫ α2

α1

S(−Ut/s)fa(−s)ds

s

where the first term can be expressed

a(0)
∫ α1

0

(
S(Ut/s)f − S(−Ut/s)f

)
ds

s

+
∫ α1

0

S(Ut/s)f
[
a(s) − a(0)

s

]
ds

−
∫ α1

0

S(−Ut/s)f
(

a(−s) − a(0)
s

)
ds.

We only need to examine the first term which can be expressed by a change of
variable:

a(0)
∫ ∞

t/α1

(
S(Uσ)f − S(−Uσ)f

)
σ

dσ

= πa(0)

(
Hf −

∫ t/α1

0

(
S(Uσ)f − S(−Uσ)f

)
σ

dσ

)
and the integral in the second term is taken in the Cauchy sense at zero, a0 as in
the definition of H .

Hence finally we obtain the time-domain representation for the Possio Equa-
tion as a Volterra-type equation in Lp(−b, b):

PHA(t) − d

dt

∫ t

0

PHL(t − σ)A(σ)dσ =
2w(t)√
1 − M2

, 0 < t (3.8)

where
w(·) ∈

(
L(0, T ), Lp(−b, b)

)
, 0 < T < ∞

and

L(t)f =
S(Ut)f√
1 − M2

+
∫ α1

−α2

S(Ut/s)f
a(s)
s

ds, t > 0

f ∈ Lp(−b, b); L(t)f ∈ Lp(R1).
(3.9)

We can convert (3.8) into a more familiar Volterra-type equation by invoking
a key result due to Tricomi-Sohngen (see [5]).

Theorem 3.1. Let w(·) ∈ C1(−b, b). Then the integral equation

w(·) = PHA

where
A ∈ Lp(−b, b) ⊂ Lp(R1), 1 < p < 2
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has a unique solution such that A(x) → 0 as x → b−. This solution is given by
A = T w where T is the Tricomi operator, a linear bounded operator on Lp(−b, b),
p = 4/3+, into Lp(−b, b), 1 < p < 4/3:

T f = g

g(x) =
1
π

√
b − x

b + x

∫ b

−b

√
b − x

b + x

f(ξ)
ξ − x

ds, |x| < b.
(3.10)

Proof. See [4].

From now on we assume that

w(t) ∈ c1(−b, b)∫ ∞

0

||w(t)||e−σtdt < ∞, σ > 0

where the norm is the Lp norm, 1 < p < 2, to be consistent. Then ‘operating’ on
both sides of (3.8) with T , noting that A(·) ∈ Lp(−b, b), 1 < p < 2, we obtain

2
T w(t)√
1 − M2

= A(t) − T d

dt

∫ t

0

PHL(t − s)A(s)ds, t > 0. (3.11)

We note in particular that the solution, if any, is in the range of T :

A(t, x) = 1/π

√
b − x

b + x

∫ b

−b

√
b + s

b − s

A1(t, s)
s − x

ds, |x| < b (3.12)

where
A1(t, ·) ∈ Lp(−b, b), 1 < p < 2.

4. Special case M = 0

In this section we shall specialize Φ(M, λ) to the case M = 0, where the solution
has been known since the 1940’s (see [1]). Here we follow a different technique of
solution based on Laplace Transformation. We shall extend this technique as far
as we can go, to the more general case 0 < M < 1, which is still not far enough
for solution.

With M = 0, the time-domain Possio Equation simplifies to

2T w(t) = A(t) − T d

dt

∫ t

0

PHS
(
U(t − σ)

)
A(σ)dσ, 0 < t. (4.1)

The first step here is clear: we decompose the integral:

PHS
(
U(t − σ)

)
A(σ) = PHPS

(
U(t − σ)

)
A(σ) + PH(I − P)S

(
U(t − σ)

)
A(σ)

so that

T PHS
(
U(t − σ)

)
A(σ) = S

(
U(t − σ)

)
A(σ) + T PH(I − P)S

(
U(t − σ)

)
A(σ).

Now for any f in Lp(−b, b), we note that denoting

g = S(Ut)f
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we have

g(x) = f(x − Ut)
= 0 x < −b for all t ≥ 0.

And for f(·) in Lp(R1) such that f(x) = 0, x < −b, we have

g = T PH(I − P)f

g(x) =
1
π

√
b − x

b + x

∫ b

−b

√
b + ξ

b − ξ

dξ

ξ − x

∫ ∞

b

f(σ)
ξ − σ

dσ

and as in [10]∫ b

−b

√
b + ξ

b − ξ

dξ

(ξ − x)(ξ − σ)
=

√
σ + b

σ − b
· 1
x − σ

, for σ > b.

Hence we have

g(x) =
1
π

√
b − x

b + x

∫ ∞

−b

√
σ + b

σ − b
· 1
x − σ

f(σ)dσ, |x| < b.

Denoting
Gf = T PH(I − P)f, f in Lp(R1), (4.2)

G linear bounded on Lp(R1) into Lp(−b, b), we have

T PH(I − P)S
(
U(t − σ)

)
A(σ) = GS

(
U(t − σ)

)
A(σ).

Hence we can express (4.1) as

2T w(t) = A(t) − d

dt

∫ t

0

PS
(
U(t − σ)

)
A(σ)dσ

− d

dt

∫ t

0

GS
(
U(t − σ)

)
A(σ)dσ, t > 0.

(4.3)

We stop here because it is as far as we can go in the time domain.
To go further, we need to switch to the Laplace Domain, which every treatise

on Volterra Equations [6] utilizes.
We may take Laplace Transforms in (4.3) formally, or require further that∫ ∞

0

(
||w(t)||p + ||A(t)||p

)
e−σtdt < ∞, σ > 0

so that, defining

ŵ(λ) =
∫ ∞

0

e−λtw(t)dt, Re λ > 0

Â(λ) =
∫ ∞

0

e−λtA(t)dt, Reλ > 0,

we have

2T ŵ(λ) = Â(λ) − kPR(k)Â(λ) − kGR(k)Â(λ), Re λ > 0. (4.4)
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Let
L(k) = PR(k)P .

Then L(k) is Volterra on Lp(−b, b) into itself and in fact,

L(k)f = g; g(x) =
∫ x

−b

e−k(x−σ)f(σ)dσ, |x| < b

and it is quickly verified that(
I − kL(k)

)−1 = I + kL(0). (4.5)

Further we see a remarkable simplification in that we can calculate:

GR(k)Â(λ) = −g(k)
∫ b

−b

e−k(b−ξ)Â(λ, ξ)dξ

where g(k) is the function in Lp(−b, b):

g(k, x) =
1
π

√
b − x

b + x

∫ ∞

0

√
2b + σ

σ

1
b − x + σ

e−kσdσ, |x| < b. (4.6)

We have a fixed element of Lp(−b, b), multiplied by a continuous Linear Functional
on Â(λ, ·), which is a key simplification of the problem. Thus ( 4.4 ) becomes:

2T ŵ(λ) = Â(λ) − kL(k)Â(λ) + kg(k)L
(
k, Â(λ)

)
(4.7)

where L(k) is a linear functional on Lp(−b, b) defined by

L(k, f) =
∫ b

−b

e−k(b−ξ)f(ξ)dξ.

Using (4.5), we can express (4.7) equivalently as:

ν̂(λ) = Â(λ) − kh(k)L
(
k, Â(λ)

)
(4.8)

where
ν̂(λ) = (I + kL(0))2T ŵ(λ)

h(k) = (I + kL(0))2T g(k).

We can solve for Â(λ) in (4.8) by noting that

L
(
k, ν̂(λ)

)
= L

(
k, Â(λ)

)(
1 + kL(k, h(k)

)
.

and assuming
1 + kL

(
k, h(k)

)
�= 0, Re k > 0. (4.9)

We see that the unique solution to (4.8) is given by:

Â(λ) = ν̂(λ) − 1
1 + kL

(
k, (h)k

)kh(k). (4.10)

To prove (4.9), we calculate first that

1 + kL
(
k, (h)k

)
= k

∫ ∞

0

e−kt

√
2b + t

t
dt
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and prove the assertion (see [6], p. 151). Next, to prove that

Â(λ, x) → 0 as x → b

we have only to note that

ν̂(λ, x) and h(k, x) → 0 as x → b.

Thus (4.10) provides an explicit solution of (4.4)
Finally we need to show that the inverse Laplace Transform of Â(λ) provides

the required solution for the time-domain equation we started with. Here all we
need is to invoke the key result due to Sears [7], who shows that

1
1 + kL

(
k, h(k)

) =
∫ ∞

0

e−ktc1(t)dt, c1(t) ≥ 0.

We refer to [7] for the proof.

5. The general case M �= 0, 0 < M < 1

In this section we treat the general case, M �= 0, M < 1 (cf. (3.10)):

2
T w(t)√
1 − M2

= A(t) − d

dt
T PH

∫ t

0

S(U(t − σ))A(σ)dσ (5.1)

− d

dt
T PH

∫ t

0

∫ α1

−α2

a(s)S(U(t − σ)/s)dsA(σ)dσ, t > 0.

It should be noted that (5.1) is not a generalization in the spirit of pure math-
ematics. Indeed, without the physical problem, it would have been impossible to
conceive what a meaningful generalization would be.

Lacking any general method to be found in the vast relevant literature to
tackle this ‘Volterra’ equation, we seek to generalize the technique we employed
for the case M = 0. We shall go as far as we can go, but not, unfortunately, far
enough for a solution to the problem.

Thus we begin by taking the Laplace Transformation and obtain:

2T ŵ(λ)√
1 − M2

= Â(λ) − T PHL̂(λ)Â(λ)

= Â(λ) − T PH

(
kR(k)Â(λ)√

1 − M2
+ k

∫ α1

−α2

a(s)R(ks)Â(λ)ds

)
= Â(λ) − P

(
kR(k)√
1 − M2

+ k

∫ α1

−α2

a(s)R(ks)Â(λ)ds

)
(5.2)

− T PH(I − P)
(

kR(k)Â(λ)√
1 − M2

+ k

∫ α1

−α2

a(s)R(ks)Â(λ)ds

)
.

Let as before
L(k) = PR(k)P .
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Then, modelling on (4.4), we can express (5.2) as

2T ŵ(λ)√
1 − M2

= A − kV (k)A + kW (k)A (5.3)

where

V (k)A =
1

1 − M2
L(k)A +

∫ α1

−α2

a(s)L(ks)Ads (5.4)

W (k)A =
1

1 − M2
g−(k, ·)L−(k, A) +

∫ α1

0

g−(ks, ·)L−(ks, A)a(s)ds

+
∫ α2

0

(
g+(ks, ·)j(ks, ·)

)
a(−s)L+(ks, A)ds

where the functionals

L+(k, A) =
∫ b

−b

e−k(b+ξ)A(ξ)dξ

L−(k, A) =
∫ b

−b

e−k(b−ξ)A(ξ)dξ

and finally the functions

g+(k, x) =
1
π

√
b − x

b + x

∫ ∞

0

√
σ

2b + σ

1
b + σ + x

e−kσdσ, |x| < b

g−(k, x) =
1
π

√
b − x

b + x

∫ ∞

0

√
2b + σ

σ

1
b + σ − x

e−kσdσ, |x| < b

j(k, x) = ek(b+x), |x| < b.

Here the main thing to note is that V (k) is Volterra on Lp(−b, b) into itself but
W (k) is quite a bit more complicated than the last term in (4.7).

Approximation for small k

One result that is immediate is that with

ν̂(λ) = (I − kV (k))−1 2T ŵ(λ)√
1 − M2

we have
ν̂(λ) = A − k(I − kV (k))−1W (k)A

and for small enough k we can obtain a solution in terms of a Neumann series:

A =
(
I − k(I − kV (k))−1W (k)

)−1
ν̂(λ)

=
∞∑
0

kn
(
I − kV (k))−1W (k)

)n
ν̂(λ).

This can be useful because in the applications in [11] we are primarily interested
in small k.
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Approximation for large k

We can also obtain a useful approximation for large k, U → 0 for fixed λ for
M �= 0. For this purpose, let

Q(k) =
−kR(k)√
1 − M2

−
∫ α1

−α2

kR(ks)a(s)ds, Re k > 0

on Lp(R1) into Lp(R1). We note that as Re k → ∞, Q(k) converges strongly
(strongly only!) to

Q(∞) = −I − M√
1 − M2

H.

This can be seen readily from the corresponding multiplier (defined in (3.2))

ν̂(k, iw) =
−k√

1 − M2

1
k + iw

−
∫ α1

−α2

k

ks + iw
a(s)ds

converges to

−1 − |w|
iw

M√
1 − M2

.

Hence for M �= 0, we can rewrite (2.6) where we started as:

2
M

ŵ(λ) = Â +
√

1 − M2

M
PH

(
Q(k) − Q(∞)

)
Â.

Let us denote

K(k) =
√

1 − M2

M
PH

(
Q(k) − Q(∞)

)
.

Then
K(k)nŵ(λ) → 0 as Re k → ∞, in any subsector.

Setting

Ân =
( n−1∑

0

(−1)mK(k)m
)2ŵ(λ)

M

we have that (
I + K(k)

)
Ân = (I + (−1)nK(k)n)

2
M

ŵ(λ)

where
||K(k)n · 2

M
ŵ(λ)|| → 0 as Re k → ∞, in any subsector.

Hence Ân yields the nth-order approximation to the solution for Re k large enough.
This result is useful also for the case ŵ(λ) = nonzero constant.

General solution. Getting back now to (5.3) written as

2T ŵ(λ)√
1 − M2

= A − k
(
V (k) − W (k)

)
A

we note that
k
(
V (k) − W (k)

)
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is compact on Lp(−b, b) into Lp(−b, b) and hence for existence and uniqueness of
solution we only need to prove that 1 is not in the Point Spectrum of k

(
V (k) −

W (k)
)

or equivalently of (I − kV (k))−1W (k). Then we need to prove that (I −
kV (k)−W (k))−1 is the Laplace Transform of a time domain function. This is an
open problem.

We can go a bit further if we wish to imitate the successful procedure in
Section 4. To take advantage of the special nature of the operator W (k), let ∧
denote the set

∧ = {(−α2, α1)U(1)}
and redefine the generalized function:

a(s) =
1√

1 − M2
δ(s − 1) +

1
π

√
(α1 − s)(α2 + s)

1 − s

and
g(ks) = g−(ks, ·), 0 < s < α1

g(ks) = g+(−ks, ·) + j(−ks, ·), −α2 < s < 0

L(ks, A) = L−(ks, A), 0 < s < α1

= L+(−ks, A), −α2 < s < 0

so that we can express

W (k)A =
∫
∧

g(ks)L(ks, A)a(s)ds,

obtaining

2T ŵ(λ)√
1 − M2

= A − k
(
V (k)A

)
+

∫
∧

g(ks)L(ks, A)a(s)ds.

Using the notations we have

h(ks) = (I − kV (k))−1g(ks)

ν̂(λ) =
2√

1 − M2
(I − kV (k))−1T ŵ(λ)

ν̂(λ) = A + k

∫
∧

h(ks)L(ks, A)a(s)ds.

Then, imitating the procedure in Section 4, we can take the linear functional on
both sides, ∫

∧
L(ks, ν̂(λ))ds = F (ks) + k

∫
∧

L(ks, h(σ))F (kσ)a(σ)dσ, (5.5)

yielding an integral equation for the function

F (ks), s ∈ ∧.

We need to prove existence and uniqueness of solution and then follow with
a generalization of the Sears result in Section 4 for M = 0.



64 A.V. Balakrishnan

6. Generalization

In this section we indicate two generalizations of the Possio Equation that arise in
AeroElasticity. These are not just mathematical generalizations!

6.1. Generalization to nonZero angle of attack

Given angle α, 0 < α < π/4

ŵ(λ, x) =
∫ b

−b

P̂ (λ, x − ξ)Â(λ, ξ)dξ, Re λ > 0

as before, but now∫ ∞

−∞
e−iωxP̂ (λ, x)dx

=
1
2

1
(k + iw cosα)

k2M2 + 2M2kiω cosα + ω2(1 − M2 cos2 α)√
k2M2 + 2M2kiω cosα + ω2(1 − M2)

.

(6.1)

Remark. For k = 0, (6.1) becomes

1
2
|ω|
iω

(1 − M2 cos2 α)√
1 − M2

sec α (6.2)

leading to the dichotomy (‘Transonic Dip’; see [12]):

as M → 1 (6.2) → 0 for α = 0

(6.2) → ∞ for α �= 0.

6.2. Generalization to 2 dimensions

Generalization in a different direction is the extension to 2 dimensions. Let

Ω = [ξ, η (−b < ξ < b; 0 < η < �)]. (6.3)

The (3D Possio) equation is:

ŵ(λ, x, y) =
∫

Ω

P̂ (λ, x − ξ, y − η)A(λ, s, η)dξdη, x, y ∈ Ω (6.4)

where the Lp − Lq transform∫ ∞

−∞

∫ ∞

−∞
e−iω1x−iω2yP̂ (λ, x, y)dxdy, −∞ < ω

=

√
M2k2 + 2M2kiω1 + (1 − M2)ω2

1 + ω2
2

(k + iω1)
(6.5)

A(λ, x, y) → 0 asx → b − .

We note that for k = 0, (6.5) becomes√
ω2

1(1 − M2) + ω2
2

iω1
, −∞ < ω1, ω2 < ∞.

Unfortunately nothing is known about this equation (for details, see [13]).
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Eigenvalue Asymptotics Under a Non-
dissipative Eigenvalue Dependent Boundary
Condition for Second-order Elliptic Operators

Joachim von Below and Gilles François

Abstract. The asymptotic behavior of the eigenvalue sequence of the eigen-
value problem

−Δϕ + q(x)ϕ = λϕ

in a bounded Lipschitz domain D ⊂ RN under the eigenvalue dependent
boundary condition

ϕn = σλϕ

with a continuous function σ is investigated in the case σ− �≡ 0, the dissipative
one σ ≥ 0 having been settled in [6]. For N = 1 the eigenvalues grow like k2

with leading asymptotic coefficient equal to the Weyl constant. For N ≥ 2
the positive eigenvalues grow like k2/N , while the negative eigenvalues grow
in absolute value like |k|1/(N−1). Moreover, asymptotic bounds in dependence
on the dynamical coefficient function σ are derived, firstly in the constant
case, secondly for σ of constant sign, and finally for a function σ changing
sign.

Mathematics Subject Classification (2000). 35P15, 35P20, secondary: 35K20,
47A75, 35K60.

Keywords. Laplacian, eigenvalue problems, eigenvalue dependent boundary
conditions, asymptotic behavior of eigenvalues, dynamical boundary condi-
tions for parabolic problems.

1. Introduction

Let D ⊂ RN be a bounded domain with Lipschitz boundary ∂D, and let n denote
its outer normal vector field. Let q(x) be a nonnegative bounded function and σ be
an arbitrary real number or a continuous function defined on ∂D. In this paper we
investigate the asymptotic behavior of the eigenvalues of the eigenvalue problem{

−Δϕ + q(x)ϕ = λϕ in D,
ϕn = σλϕ on ∂D.

(1.1)

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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The dissipative case σ ≥ 0 has to be distinguished from the non-dissipative one
σ− �≡ 0. The λ-dependent boundary condition stems, e.g., from parabolic problems
under dynamical time lateral boundary conditions σ∂tv + vn = 0. The considera-
tion of these boundary conditions, including a coefficient σ changing sign, is highly
motivated by various applications in control theory, conductor physics, chemical
kinetics a.m.o. They lead to greater flexibility in problems involving mixed bound-
ary conditions with energy decay or gain on the boundary, especially in ramified
structures, see, e.g., [4], [7], [14] and [16] and the references therein.

By a compact resolvent argument and extremal variational principles, it has
been shown in [1], [2], [5], [6] and [12] that the eigenvalues of (1.1) are real and
form an increasing sequence Λ = (λk)k∈I with N∗ ⊂ I ⊂ Z and

lim
k→+∞

λk = +∞.

In the dissipative case, Λ ≥ 0, while for σ− �≡ 0, negative eigenvalues exist, finitely
many for N = 1, and with an index set satisfying I ⊃ −N∗ for N ≥ 2. Moreover,
in the latter case

lim
k→−∞

λk = −∞.

Throughout we adopt here the index convention that a negative (resp. positive)
index will stand for a negative (resp. positive) eigenvalue. If zero is an eigenvalue
then it will be denoted by λ0. Moreover, a Hilbert basis of eigenfunctions in H1(D)
exists except in the resonance case |D| +

∫
∂D σ ds = 0 where it has to be supple-

mented by an additional element, see [2] for more details. The Rayleigh quotient
corresponding to Problem (1.1) reads

R(u; σ) =

∫
D

|∇u|2dx +
∫

D

q|u|2 dx∫
D

|u|2 dx +
∫

∂D

σ|u|2 ds
,

which is not positive definite for negative σ. Since q ∈ L∞(D), the asymptotic
eigenvalue behavior is the same as in the case q ≡ 0 by extremal variational
principles. Thus, for the asymptotic analysis it suffices to consider the case of a
vanishing potential term. By the same argument it follows that the asymptotic
results presented here remain valid for any q ∈ L∞(D) taking also negative values.
To overcome the difficulty of the indefinite denominator, we treat the asymptotic
behavior of the positive and the negative eigenvalues separately and decompose
R(u; σ)−1 in the latter case, up to some technical refinements, into the inverse
Rayleigh quotients stemming from the Steklov problem and from Problem (1.1)
under the Neumann boundary condition, i.e., σ ≡ 0:

R(u; σ)−1 = σ

∫
∂D

|u|2 ds∫
D

|∇u|2 dx

+

∫
D

|u|2 dx∫
D

|∇u|2 dx

.
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For N = 1, the eigenvalues grow like k2 in all the cases with leading asymp-
totic coefficient equal to the Weyl constant, see [6] and Sections 2 and 4 below.
For N ≥ 2, the eigenvalues for a positive continuous function σ grow also like
k1/(N−1). This is part of the following result in the dissipative case using the Weyl
and the Steklov constants of the domain.

Theorem 1. ([6]) Let σ be a positive continuous function. Then the eigenvalue
sequence (λk)k∈I of Problem (1.1) satisfies

1
21/(N−1)

CStek(D)
max
∂D

σ
≤ lim inf

k→∞

λk

k1/(N−1)
≤ lim sup

k→∞

λk

k1/(N−1)
≤ CStek(D)

min
∂D

σ

for N ≥ 3 and

1
2

CWeyl(D)CStek(D)
CWeyl(D)max

∂Ω
σ + CStek(D)

≤ lim inf
k→∞

λk

k
≤ lim sup

k→∞

λk

k

≤ min

⎧⎨⎩CWeyl(D),
CStek(D)

min
∂D

σ

⎫⎬⎭
for N = 2.

Note that in [6], Theorem 1 was shown for q ≡ 0, but by the aforementioned
zero potential reduction it holds also in the present case. For further references
and related topics we refer to [1]–[6] and [13].

The present contribution deals with the asymptotic behavior of the eigen-
values in the non-dissipative case and is organized as follows. In Section 2 it is
shown that for constant negative coefficient σ, the positive eigenvalues of (1.1)
grow like k2/N , which is in contrast to the dissipative case σ > 0 for N ≥ 2.
Moreover, it is shown that the negative eigenvalues grow in absolute value like
|k|1/(N−1) for N ≥ 2 with asymptotic bounds similar to the ones (Theorem 1) of
the (positive) eigenvalues in the dissipative case. In Section 3 the results are read-
ily generalized to the case of negative continuous σ. The final Section 4 is devoted
to dynamical coefficients changing sign. It turns out that mutatis mutandis the
asymptotic behavior splits into different growth orders as above, but with asymp-
totic bounds involving constants depending on the domain and σ as the ones of
the Steklov problem with a coefficient changing sign that has been investigated by
Sandgren [15].

Remark 1. For the sake of simplicity we treat only differential operators of the form
ϕ → −Δϕ + q(x)ϕ in this contribution. The results presented here for negative
σ can be generalized to symmetric uniformly elliptic principal parts of the form
−∑

i,j ∂i(aij(x)∂jϕ). In the dissipative case this has been done in [5] and [13].
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2. Eigenvalue asymptotics for constant dynamical coefficient

The aim of this section is to determine the growth order of the eigenvalue sequence
of Problem (1.1) if σ is constant. Since the case σ ≥ 0 is well known [6], we assume
here that

σ = const. < 0.

With the reduction q ≡ 0 we can confine ourselves to the problem

−Δϕ = λϕ in D, ϕn = σλϕ on ∂D. (2.1)

whose corresponding Rayleigh quotient reads

R(u; σ) =

∫
D

|∇u|2 dx∫
D

|u|2 dx + σ

∫
∂D

|u|2 ds

.

The positive eigenvalues of (2.1) and of (1.1) grow like k2/N and behave like those
under Dirichlet or Neumann boundary conditions. This is part of the following

Theorem 2. Suppose σ < 0. Then the sequence (λk)k∈N of nonnegative eigenvalues
of Problem (2.1) satisfies

αk ≤ λk ≤ ωk for all k ∈ N,

where (αk)k∈N denotes the eigenvalue sequence of the Laplacian in H1(D) un-
der the Neumann boundary condition and (ωk)k∈N the eigenvalue sequence of the
Laplacian in H1

0 (D). Thus, the positive part of the eigenvalue sequence of Problem
(1.1) satisfies

lim
k→+∞

λk

k2/N
= CWeyl(D),

where CWeyl(D) = 4π2(
vN |D|

)2/N denotes the Weyl constant of the domain D and vN

the volume of the Euclidean unit ball in RN .

Proof. If R(u; σ) ≥ 0 then R(u; σ) ≥ R(u; 0), which leads to αk ≤ λk. For the
other inequality recall that by the Courant–Fischer max-min-principle

λk = min
E∈Hk+1

max
u∈E\{0}

∫
D

|∇u|2 dx∫
D

|u|2 dx +
∫

∂D

σ|u|2 ds

,

where Hk denotes the class of the k-dimensional subspaces of H1(D). By restric-
tion to those subspaces of H1

0 (D) we deduce λk ≤ ωk. Since limk→+∞
αk

k2/N =
limk→+∞

ωk

k2/N = CWeyl(D) the assertion is shown. �

Thus, in contrast to the case σ ≥ 0, for σ < 0 the leading asymptotic coeffi-
cient does not depend on σ and amounts to the classical Weyl constant. For higher
dimensions the sequence of positive eigenvalues is thinned out when compared to
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the density in the dissipative case while negative eigenvalues occur of the latter
density as will be shown next.

For N = 1 there are at most finitely many negative eigenvalues, see [2]. There-
fore, the asymptotic behavior of the sequence (λk)k∈−N∗ of negative eigenvalues of
Problem (2.1) is only of interest in the case N ≥ 2. If R(u; σ) < 0 then

R(u; σ) ≤ − 1
|σ|

∫
D

|∇u|2 dx∫
∂D

|u|2 ds

.

Thus we conclude that

λk ≤ − 1
|σ|μ|k| for all k ∈ −N, (2.2)

where (μi)i∈N denotes the eigenvalue sequence of the Steklov problem{
Δu = 0 in D,

un = μu on ∂D.
(2.3)

It is well known that

lim
k→+∞

μk

k1/(N−1)
= CStek(D) > 0

with the Steklov constant CStek(D) depending only on N and ∂D, see [15]. Thus
we are led to the following

Theorem 3. Suppose σ < 0. Then the sequence (λk)k∈−N∗ of negative eigenvalues
of Problem (2.1) satisfies

lim sup
k→−∞

λk

|k|1/(N−1)
≤ CStek(D)

σ
< 0.

In fact, (|λk|)k∈−N∗ grows like |k|1/(N−1) for N ≥ 2. This is the contents of
the following theorems.

Theorem 4. Suppose σ < 0 and N ≥ 3. Then the sequence (λk)k∈−N∗ of negative
eigenvalues of Problem (2.1) satisfies

lim inf
k→−∞

λk

|k|1/(N−1)
≥ 21/(N−1) CStek(D)

σ
.

Proof. Consider Q(u; σ) = −R(u; σ)−1 in the orthogonal space of the constant
functions H1(D) � 1R. Then

|σ|

∫
∂D

|u|2 ds∫
D

|∇u|2 dx

= Q(u; σ) +

∫
D

|u|2 dx∫
D

|∇u|2 dx

. (2.4)
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As the variation of the three quadratic forms involved in (2.4) takes place in the
same space H1(D) � 1R, the positive eigenvalues of the corresponding compact
selfadjoint operators satisfy

∀k, m ∈ N\{0} :
|σ|

μk+m−1
≤ 1

−λ−k
+

1
αm

by a well-known spectral estimate for sums of compact hermitian operators, see,
e.g., [9], p. 925. For N ≥ 3 and for k > 0 sufficiently large, this yields

λ−k ≥ μ2k−1

σ

1
μ2k−1
σαk

+ 1
.

Moreover, in connection with

lim
k→∞

μ2k−1α
−1
k = 0, (2.5)

it follows that

lim inf
k→∞

λ−k

k1/(N−1)
≥ 21/(N−1) CStek(D)

σ
. �

For N = 2 the growth order amounts to |k|, but the proof is more complicated
and requires the following simple preparation.

Lemma 5. Suppose that u ∈ H1(D), σ ≤ τ < 0, R(u; σ) < 0 and R(u; τ) < 0.
Then R(u; τ) ≤ R(u; σ).

This applies especially to σ ≤ −
⌈

1
|σ|

⌉−1

, where �r� denotes the smallest
natural number bigger or equal to r ∈ [0,∞). Now we can state the

Theorem 6. Suppose σ < 0 and N = 2. Then the sequence (λk)k∈−N∗ of negative
eigenvalues of Problem (2.1) satisfies

lim inf
k→−∞

λk

|k| ≥ C(σ, D) > −∞

with a negative constant

C(σ, D) =

⎧⎪⎨⎪⎩
2CWeyl(D) CStek(D)

σCWeyl(D)+2CStek(D) for σ < σ1,

CStek(D)σ2

⌈
σ2
σ

⌉
for σ1 ≤ σ < 0,

(2.6)

where

σ1 := −2CStek(D)
CWeyl(D)

and σ2 := min

{
−2,− CStek(D)

CWeyl(D)
−

√
C2

Stek(D)
C2

Weyl(D)
+ 2

}
.

Proof. For N = 2, Formula (2.5) reads

lim
k→∞

μ2k−1α
−1
k = 2

CStek(D)
CWeyl(D)

.
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Thus, for σ < σ1 we can follow the proof of Theorem 4 and can choose

C(σ, D) = 2
CWeyl(D)CStek(D)

σCWeyl(D) + 2CStek(D)
.

For the remaining case σ1 ≤ σ < 0, by Lemma 5 it suffices to show the assertion
for all coefficients of the form

σ =
1
M

(σ1 − ε), M ∈ N∗

with some fixed

ε ≥ max

{
2 + σ1,

σ1

2
+

√
σ2

1

4
+ 2

}
. (2.7)

For M = 1 the case shown applies to σ1 − ε and yields

lim inf
k→∞

λ−k[σ1 − ε]
k

≥ −2
CStek(D)

ε
≥ CStek(D)(σ1 − ε),

where the brackets indicate the dependence on the dynamical coefficient. For M ≥
2, suppose for an induction argument that

lim inf
k→∞

λ−k[σ1−ε
M ]

k
≥ M CStek(D)(σ1 − ε). (2.8)

With the notation Q(u; σ) = −R(u; σ)−1 we get

ε + |σ1|
M(M + 1)

∫
∂D

|u|2 ds∫
D

|∇u|2 dx

+ Q
(

u;
σ1 − ε

M + 1

)
= Q

(
u;

σ1 − ε

M

)
.

Using a similar argument for sums of compact operators associated to the involved
quadratic forms, it follows as above that for k sufficiently large

1
−λ−2k+1[σ1−ε

M ]
≤ 1

−λ−k[σ1−ε
M+1 ]

+
ε + |σ1|

M(M + 1)μk
,

and
λ−k[σ1−ε

M+1 ]
k

≥ 1
k(ε+|σ1|)

M(M+1) μk
+ k

λ−2k+1[
σ1−ε

M ]

.

Thus, by (2.8),

lim inf
k→∞

λ−k[σ1−ε
M+1 ]
k

≥ 1
ε+|σ1|

M(M+1) CStek(D) −
ε+|σ1|

2M CStek(D)

=
2M(M + 1)CStek(D)

(σ1 − ε)(M − 1)
.

But 2M
(σ1−ε)(M−1) ≥ (σ1 − ε) due to (2.7) which permits to conclude

lim inf
k→∞

λ−k[σ1−ε
M+1 ]
k

≥ (M + 1)CStek(D)(σ1 − ε).
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Thus, (2.8) holds for all M ∈ N∗ and shows the assertion by Lemma 5 with the
minimal choice for ε and M =

⌈
σ2
σ

⌉
bearing in mind that σ1 − ε = σ2 in that

case. �

Corollary 7. Suppose σ < 0. Then the sequence (λk)k∈I of eigenvalues of Problem
(1.1) satisfies

(i) lim
k→+∞

λk

k2/N
= CWeyl(D),

(ii) lim sup
k→−∞

λk

|k|1/(N−1)
≤ CStek(D)

σ
< 0,

(iii) lim inf
k→−∞

λk

|k|1/(N−1)
≥ 21/(N−1) CStek(D)

σ
, for N ≥ 3,

(iv) lim inf
k→−∞

λk

|k| ≥ C(σ, D) for N = 2 with the negative constant defined in (2.6).

It should be noted that the aforementioned asymptotic bounds for negative
σ seem not to be optimal yet.

Example 1. For the unit disk D in R2 it is well known that

lim
k→∞

αk

k
= CWeyl(D) = 4,

see, e.g., [8], and that CStek(D) = 1
2 , see [10]. If σ > 0, then the eigenvalue

sequence (λk)k∈I of Problem (1.1) satisfies

2
8σ + 1

≤ lim inf
k→∞

λk

k
≤ lim sup

k→∞

λk

k
≤ min

{
4,

1
2σ

}
.

If σ < 0, then the eigenvalue sequence (λk)k∈I of Problem (1.1) satisfies

lim
k→∞

λk

k
= 4 and

4
4σ + 1

≤ lim inf
k→∞

λk

k
≤ lim sup

k→∞

λk

k
≤ 1

2σ

for σ < − 1
4 and

−
⌈

2
|σ|

⌉
≤ lim inf

k→∞

λk

k
≤ lim sup

k→∞

λk

k
≤ 1

2σ

for − 1
4 ≤ σ < 0.

3. Dynamical coefficient of constant sign

The results of Section 2 can easily be generalized to the case of a negative contin-
uous function σ by using Lemma 5. Omitting the details we are led to the

Theorem 8. Let N ≥ 2 and σ be a continuous negative function. Then the sequence
(λk)k∈I of eigenvalues of Problem (1.1) satisfies

(i) lim
k→+∞

λk

k2/N
= CWeyl(D),
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(ii) lim sup
k→−∞

λk

|k|1/(N−1)
≤ CStek(D)

min
∂Ω

σ
< 0,

(iii) lim inf
k→−∞

λk

|k|1/(N−1)
≥ 21/(N−1) CStek(D)

max
∂Ω

σ
, for N ≥ 3,

(iv) lim inf
k→−∞

λk

|k| ≥ C(max
∂Ω

σ, D) for N = 2 with the negative constant

C(max∂Ω σ, D) as defined in (2.6).

4. Dynamical coefficient changing sign

In this section, we suppose that σ is a continuous function on ∂D with a sign
change. To be more specific, introduce the decomposition

∂D = δ+ � δ0 � δ−

such that σ > 0 on δ+, σ = 0 on δ0 and σ < 0 on δ−. In view of Section 3 and the
results of [6], we can suppose that the positive part σ+ and the negative part σ−

of σ have each a positive maximum, writing σ = σ+ − σ−.
In dimension 1, Problem (2.1) in the interval J = (0, 1) reads⎧⎪⎨⎪⎩

−ϕ′′ = λϕ in J,

ϕ′(0) = −σ0λϕ(0)
ϕ′(1) = σ1λϕ(1)

(4.1)

where σ0σ1 < 0. Problem (4.1) has a finite number of negative eigenvalues, see [2].
The characteristic equation for the positive eigenvalues is given by

tan
√

λ =
(σ0 + σ1)

√
λ

σ0σ1λ − 1

from which we deduce

lim
k→+∞

λk

k2
= π2 = CWeyl(J).

In the particular case σ0 + σ1 = 0, the sequence (λk)k∈I coincides with the eigen-
value sequence of the Neumann problem.

In higher dimension the situation is more complicated. The eigenvalues of
Problem (2.1) will be related to the ones of following modified Steklov problem.
Let (μi)i∈I denote the eigenvalue sequence of the problem{

Δu = 0 in D,

un = σμu on ∂D.
(4.2)

It is well known [15] that

lim
i→+∞

μi

i1/(N−1)
= C+

Sand(D, σ) > 0 and lim
i→−∞

μi

|i|1/(N−1)
= C−

Sand(D, σ) < 0
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with the Sandgren constants C+
Sand(D, σ) and C−

Sand(D, σ) depending on N and
∂D, but on σ too. We note in passing that a comparison of the corresponding
Rayleigh quotient yields

C+
Sand(D, σ) ≥ CStek(D)

max
∂D

σ
and C−

Sand(D, σ) ≤ CStek(D)
min
∂D

σ
= −CStek(D)

max
∂D

σ− . (4.3)

For Problem (2.1), the Rayleigh quotient in question reads here

R(u; σ) =

∫
D

|∇u|2 dx∫
D

|u|2 dx +
∫

∂D

σ|u|2 ds

.

An upper bound for the positive eigenvalues of Problem (1.1) can be obtained by
using the Dirichlet eigenvalues (ωi)i∈N∗ in H1

0 (D).

Theorem 9. Under the aforementioned conditions on σ, the sequence (λk)k∈N∗ of
positive eigenvalues of Problem (2.1) satisfies

λk ≤ ωk for all k ∈ N∗.

Thus, the positive part of the eigenvalue sequence of Problem (1.1) satisfies

lim sup
k→+∞

λk

k2/N
≤ CWeyl(D).

Proof. As in [6], the min-max-principle applies

λk = min
E∈Hk+1

max
u∈E\{0}

∫
D

|∇u|2 dx∫
D

|u|2 dx +
∫

∂D

σ|u|2 ds

,

and a restriction to the k-dimensional subspaces of H1
0 (D) accomplishes the proof.

�

Before proving a result about a lower bound for the positive eigenvalue se-
quence (λk)k∈I , we need the following result that generalizes the lower bound
obtained in the dissipative case in [6].

Theorem 10. Under the aforementioned conditions on σ, the sequence (λk[σ+])k∈N∗

satisfies

lim inf
k→+∞

λk[σ+]
k1/(N−1)

≥ CWS(D) (4.4)

with a positive constant

CWS(D) =

⎧⎨⎩
C+

Sand(D,σ)

21/(N−1) for N ≥ 3,

1
2

CWeyl(D) C+
Sand(D,σ)

CWeyl(D)+C+
Sand(D,σ)

for N = 2.
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Proof. The spectral estimate for sums of compact operators already used yields

∀k, m ∈ N\{0} :
1

λk+m
≤ 1

αk
+

1
μm[σ+]

.

Thus, for all k > 0

λ2k[σ+]
(2k)1/(N−1)

≥ 1
21/(N−1)

μk[σ+]
k1/(N−1)

1
1 + μk[σ+]α−1

k

and
λ2k+1[σ+]

(2k + 1)1/(N−1)
≥ 1(

2 + 1
k

)1/(N−1)

μk[σ+]
k1/(N−1)

1
1 + μk[σ+]α−1

k+1

.

For N ≥ 3, both r.h.s. have the same limit 1
21/(N−1) C

+
Sand(D, σ), since

lim
k→+∞

μk[σ+]α−1
k = lim

k→+∞
μk[σ+]α−1

k+1 = 0. (4.5)

As

lim inf
k→+∞

λ2k[σ+]
(2k)1/(N−1)

, lim inf
k→+∞

λ2k+1[σ+]
(2k + 1)1/(N−1)

≥ 1
21/(N−1)

C+
Sand(D, σ),

and both sequences cover the eigenvalue sequence (λk)k∈I , the first part of the
theorem is shown.
For N = 2, Formula (4.5) reads

lim
k→+∞

μk[σ+]α−1
k = lim

k→+∞
μk[σ+]α−1

k+1 =
C+

Sand(D, σ)
CWeyl(D)

and it suffices to follow the proof of the first part by modifying the cofactor in the
above formulae correspondingly. �

The following theorem concerns a lower bound for the positive eigenvalues
(λk)k∈N∗ . Since the function σ has a positive part, the result cannot be as sharp
as Theorem 2.

Theorem 11. Under the aforementioned condition on σ, the sequence (λk)k∈N∗ of
positive eigenvalues of Problem (1.1) satisfies Formula (4.4).

Proof. If R(u; σ) > 0 then

R(u; σ) ≥

∫
D

|∇u|2 dx∫
D

|u|2 dx +
∫

∂D

σ+|u|2 ds

which yields
λk ≥ λk[σ+] for all k ∈ I.

Formula (4.4) being true for the eigenvalue sequence (λk[σ+])k∈N∗ , by Theorem
10, the assertion is proved. �
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For the negative eigenvalues of Problem (1.1), we observe that the inequality
R(u; σ) < 0 implies

∫
∂D

σ|u|2 ds < 0 and

R(u; σ) ≤

∫
D

|∇u|2 dx∫
∂D

σ|u|2 ds

.

This yields immediately the

Theorem 12. Under the aforementioned condition on σ and for N ≥ 2, the se-
quence (λk)k∈−N∗ of negative eigenvalues of Problem (2.1) satisfies

λk ≤ μk for all k ∈ −N∗.

Thus, the sequence (λk)k∈−N∗ of negative eigenvalues of Problem (1.1) satisfies

lim sup
k→−∞

λk

|k|1/(N−1)
≤ C−

Sand(D, σ) < 0.

The following theorem concerns an asymptotic lower bound for the negative
eigenvalues.

Theorem 13. Under the aforementioned condition on σ and for N ≥ 3, the se-
quence (λk)k∈−N∗ of negative eigenvalues of Problem (1.1) satisfies

lim inf
k→−∞

λk

|k|1/(N−1)
≥ −21/(N−1)C+

Sand(D, σ−).

Proof. By using the decomposition∫
∂D

σ−|u|2 ds∫
D

|∇u|2 dx

= Q(u; σ) +

∫
D

|u|2 dx +
∫

∂D

σ+|u|2 ds∫
D

|∇u|2 dx

in the orthogonal space of the constant functions, we are led to the spectral in-
equality

∀k, m ∈ N\{0} :
1

μk+m[σ−]
≤ 1

−λ−k
+

1
λm[σ+]

.

Therefore, we obtain for k > 0 sufficiently large

λ−k ≥ μ2k[σ−]
1

μ2k[σ−]
λk[σ+] − 1

. (4.6)

Since

lim
k→∞

μ2k[σ−]
λk[σ+]

= 0, (4.7)

Inequality (4.6) implies

lim inf
k→−∞

λk

|k|1/(N−1)
≥ −21/(N−1)C+

Sand(D, σ−). �
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For N = 2 the limit in (4.7) does not vanish, since

0 <
2C+

Sand(D, σ−)
CWS(D)

≤ lim inf
k→∞

μ2k[σ−]
λk[σ+]

≤ lim sup
k→∞

μ2k[σ−]
λk[σ+]

≤ 2C+
Sand(D, σ−)
CWeyl(D)

.

(4.8)

Thus, an argument using Inequality (4.6) must take into account the value of the
superior limit in (4.8), which is done in the next result in the form of Condition
(4.9).

Theorem 14. Suppose N = 2 and that

C+
Sand(D, σ−) <

CWeyl(D)
2

. (4.9)

Then, under the aforementioned conditions on σ, the sequence (λk)k∈−N∗ of neg-
ative eigenvalues of Problem (1.1) satisfies

lim inf
k→−∞

λk

|k| ≥ C2(σ−, D)

with a negative constant

C2(σ−, D) = 2
C+

Sand(D, σ−)CWeyl(D)
2C+

Sand(D, σ−) − CWeyl(D)
.

Proof. Inequalities (4.8) and (4.9) imply that

lim sup
k→∞

μ2k[σ−]
λk[σ+]

< 1.

Then we can follow the proof of Theorem 12 and conclude with (4.6) that

lim inf
k→−∞

λk

|k| ≥ 2C+
Sand(D, σ−)

1
2C+

Sand(D,σ−)

CWeyl(D) − 1
. �

Note that by (4.3), Condition (4.9) corresponds to the constant case condition
σ < σ1. The case C+

Sand(D, σ−) ≥ CWeyl(D)
2 corresponds to small values σ− and

is much more complicated. It turns out that the geometry of the domain D ⊂ R2

can play a crucial role in that case. For instance, for simply connected domains, a
technique analogous to the induction argument in the proof of Theorem 6 for small
negative constant dynamical coefficients can never work for a continuous function
σ under the hypotheses of this section. But for doubly connected domains D with
a boundary decomposition ∂D = δ+ � δ− into two connected parts δ+ and δ−,
Theorem 6 holds mutatis mutandis by comparison of the Rayleigh quotients, since
the induction argument can be applied owing to Inequality (4.3). The same holds
in n-fold connected domains, if σ has constant sign in each boundary component.
But for general domains in R2, this technique does not seem to apply for small
σ−. We omit the details here and refer to a work in progress about this parameter
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gap for the dynamical coefficient function in two dimensions and discuss here only
the case of an annulus.

Example 2. Let A = {x ∈ R2 r2 < x2
1 + x2

2 < R2} denote the annulus in R2 with
radii 0 < r < R. Then

CWeyl(A) =
4

R2 − r2
, CStek(A) =

1
2R + r

.

If σ is a positive function, then the eigenvalue sequence (λk)k∈I of Problem (1.1)
satisfies

2
R2 − r2 + (8R + 4r)max

∂A
σ
≤ lim inf

k→∞

λk

k
≤ lim sup

k→∞

λk

k

≤ min
{

4
R2 − r2

,
1

(2R + r)min
∂A

σ

}
.

If
δ− = {x ∈ R2 x2

1 + x2
2 = r2} and δ+ = {x ∈ R2 x2

1 + x2
2 = R2},

then a comparison argument for the corresponding Rayleigh quotients using (4.3)
shows that the eigenvalue sequence (λk)k∈I of Problem (1.1) satisfies

2
R2 − r2 + (8R + 4r)max

∂A
σ

≤ lim inf
k→+∞

λk

k
≤ lim sup

k→+∞

λk

k
≤ 4

R2 − r2

and
4

R2 − r2 − (4R + 2r)max
∂A

σ− ≤ lim inf
k→−∞

λk

|k| ≤ lim sup
k→−∞

λk

|k| ≤
1

(2R + r)min
∂A

σ

for C+
Sand(A, σ−) < 2

R2−r2 and

− σ2

2R + r

⌈
σ2

min
∂A

σ−

⌉
≤ lim inf

k→−∞

λk

|k| ≤ lim sup
k→−∞

λk

|k| ≤
1

(2R + r)min
∂A

σ

for C+
Sand(A, σ−) ≥ 2

R2−r2 , where

σ2 = min

{
−2,−R2 − r2

8R + 4r
−

√
(R2 − r2)2

16(2R + r)2
+ 2

}
.
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Feynman-Kac Formulas,
Backward Stochastic Differential Equations
and Markov Processes

Jan A. Van Casteren

This article is written in honor of G. Lumer
whom I consider as my semi-group teacher

Abstract. In this paper we explain the notion of stochastic backward dif-
ferential equations and its relationship with classical (backward) parabolic
differential equations of second order. The paper contains a mixture of sto-
chastic processes like Markov processes and martingale theory and semi-linear
partial differential equations of parabolic type. Some emphasis is put on the
fact that the whole theory generalizes Feynman-Kac formulas. A new method
of proof of the existence of solutions is given. All the existence arguments are
based on rather precise quantitative estimates.

1. Introduction

Backward stochastic differential equations, in short BSDEs, have been well studied
during the last ten years or so. They were introduced by Pardoux and Peng [20],
who proved existence and uniqueness of adapted solutions, under suitable square-
integrability assumptions on the coefficients and on the terminal condition. They
provide probabilistic formulas for solution of systems of semi-linear partial differ-
ential equations, both of parabolic and elliptic type. The interest for this kind of
stochastic equations has increased steadily; this is due to the strong connections
of these equations with mathematical finance and the fact that they provide a
generalization of the well-known Feynman-Kac formula to semi-linear partial dif-
ferential equations. In the present paper we will concentrate on the relationship
between time-dependent strong Markov processes and abstract backward stochas-
tic differential equations. The equations are phrased in terms of a martingale type
problem, rather than a strong stochastic differential equation. They could be called

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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weak backward stochastic differential equations. Emphasis is put on existence and
uniqueness of solutions. The paper in [27] deals with the same subject, but it
concentrates on comparison theorems and viscosity solutions.

The notion of squared gradient operator is implicitly used by Bally at al
in [4]. The latter paper was one of the motivations to write the present paper
with an emphasis on the squared gradient operator. In addition, our results are
presented in such a way that the state space of the underlying Markov process,
which in most of the other papers on BSDEs is supposed to be Rn, can be any
diffusion with an abstract state space, which throughout our text is denoted by
E. In fact in the existing literature the underlying Markov process is a (strong)
solution of a (forward) stochastic differential equation: see, e.g., [4], [8] and [7]
and [19]. For more on this see Remark 2.9 below. In particular our results are
applicable in case the Markov process under consideration is Brownian motion
on a Riemannian manifold. Our condition on the generator (or coefficient) of the
BSDE f in terms of the squared gradient is very natural. In the Lipschitz context
it is more or less optimal. Moreover, our proof of existence is not based on standard
regularization methods by using convolution products with smooth functions, but
on a homotopy argument due to Crouzeix [11], which seems more direct than the
classical approach. We also obtain rather precise quantitative estimates. Only very
rudimentary sketches of proofs are given; details will appear elsewhere.

For examples of strong solutions which are driven by Brownian motion the
reader is referred to, e.g., Section 2 in Pardoux [19]. If the coefficients x → b(s, x)
and x → σ(s, x) of the underlying (forward) stochastic differential equation are
linear in x, then the corresponding forward-backward stochastic differential equa-
tion is related to option pricing in financial mathematics. A BSDE may serve as
a model for a hedging strategy. For more details on this interpretation see, e.g.,
El Karoui and Quenez [16], pp. 198–199. Pardoux and Zhang [21] use BSDEs to
give a probabilistic formula for the solution of a system of Parabolic or elliptic
semi-linear partial differential equation with Neumann boundary condition. The
first author who discussed BSDEs was probably Bismut: see [6].

In Section 2 we introduce the relevant notions about time-dependent Markov
processes and generators of diffusions including the abstract notion of squared
gradient operator and (some) of its properties. It also contains the necessary ter-
minology and results on martingales and their Lp-properties which includes the
inequality of Burkholder-Davis-Gundy. In Section 3 we formulate one of the main
results of the paper: see Remarks 2.3 and 2.9 below as well. It includes a discussion
of the result by Crouzeix and the way it is applied here: see [11] and [10]. Section
4 contains the precise conditions under which we have existence and uniqueness
of solutions. It also contains a mathematical description of the stochastic phase
space in which solutions to our BSDE exist. In Section 5 a single probability space
is replaced by a Markov family of probability spaces.
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2. Preliminary results and auxiliary notation

In this paper we want to consider the situation where the family of operators L(s),
0 ≤ s ≤ T , generates a time-inhomogeneous Markov family of probability spaces
or a Markov process{

(Ω, Fτ
T , Pτ,x)(τ,x)∈[0,T ]×E , (X(t) : T ≥ t ≥ 0) , (E, E)

}
(2.1)

in the sense of Definition 2.4. The Markov property and a Markov process are de-
fined in Definition 2.3. We consider the operators L(s) as operators on (a subspace
of) the space of bounded continuous functions on E, i.e., on Cb(E) equipped with
the supremum norm: ‖f‖∞ = supx∈E |f(x)|, f ∈ Cb(E).

2.1. Definition. With the Markov process (2.1) the squared gradient operator Γ1

defined by

Γ1 (f, g) (τ, x) = lim
s↓τ

Eτ,x [(f (s, X(s)) − f (τ, X(τ))) (g (s, X(s)) − g (τ, X(τ)))]
s − τ

,

(2.2)
for f , g ∈ D (Γ1), is associated. A function f : [0, T ] × E → R is said to belong
to D (Γ1) ⊂ Cb ([0, T ]× E), if Γ1(f, f)(s, x) exists for all pairs (s, x) ∈ [0, T ] × E,
and if the resulting function is a member of Cb ([0, T ]× E).

It is assumed that D (Γ1) is dense in Cb ([0, T ]× E) for the topology of
uniform convergence on compact subsets. These squared gradient operators are
also called energy operators: see, e.g., Barlow, Bass and Kumagai [5]. In the se-
quel it is assumed that the family of operators {L(s) : 0 ≤ s ≤ T } possesses the
property that the space of functions u : [0, T ] × E → R for which the function

(s, x) → ∂u

∂s
(s, x) + L(s)u (s, ·) (x) belongs to C0 ([0, T ]× E) := C0 ([0, T ]× E; R)

is dense in the space C0 ([0, T ]× E). This subspace of functions is denoted by
D(L), and the operator L is defined by Lu(s, x) = L(s)u (s, ·) (x), u ∈ D(L). We
assume that the operator L, or that the family of operators {L(s) : 0 ≤ s ≤ T },
generates a diffusion in the sense of the following definition.

2.2. Definition. A family of operators {L(s) : 0 ≤ s ≤ T } is said to generate a
diffusion if for every C∞-function Φ : Rn → R, with Φ(0, . . . , 0) = 0, and every
pair (s, x) ∈ [0, T ]× E the following identity is valid

L(s) (Φ (f1, . . . , fn)) (s, x)

=
n∑

j=1

∂Φ
∂xj

(f1, . . . , fn)L(s)fj(s, x)

+
1
2

n∑
j,k=1

∂2Φ
∂xj∂xk

(f1, . . . , fn) (s, x)Γ1 (fj, fk) (s, x) (2.3)

for all functions f1, . . . , fn in an algebra of functions A, contained in the domain
of the operator L, which forms a core for L.
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Generators of diffusions for single operators are described in Bakry’s lecture
notes [1]. For more information on the squared gradient operator see, e.g., [3] and
[2] as well. Put Φ(f, g) = fg. Then (2.3) implies

L(s) (fg) (s, ·)(x) = L(s)f(s, ·)(x)g(s, x) + f(s, x)L(s)g(s, ·)(x) + Γ1 (f, g) (s, x),

provided that the three functions f , g and fg belong to A. Instead of using the full
strength of (2.3), i.e., with a general function Φ, we just need it for the product
(f, g) → fg: see Proposition 2.12.

By definition the gradient of a function u ∈ D (Γ1) in the direction of v ∈
D (Γ1) is the function (τ, x) → Γ1 (u, v) (τ, x). For given (τ, x) ∈ [0, T ] × E the
functional v → Γ1 (u, v) (τ, x) is linear: its action is denoted by ∇L

u (τ, x). Hence,
for (τ, x) ∈ [0, T ] × E fixed, we can consider ∇L

u (τ, x) as an element in the dual
of D (Γ1). The pair (τ, x) →

(
u (τ, x) ,∇L

u (τ, x)
)

may be called an element in the
phase space of the family L(s), 0 ≤ s ≤ T , (see Prüss [22]), and the process
s →

(
u (s, X(s)) ,∇L

u (s, X(s))
)

will be called an element of the stochastic phase
space.

2.3. Definition. The family of probability spaces and state variables{
(Ω, Fτ

T , Pτ,x)(τ,x)∈[0,T ]×E , (X(t) : T ≥ t ≥ 0) , (E, E)
}

(2.4)

is called a time-inhomogeneous Markov family or Markov process if

Eτ,x

[
f(X(t))

∣∣ Fτ
s

]
= Es,X(s) [f(X(t))] , Pτ,x-almost surely. (2.5)

Here f is a bounded Borel measurable function defined on the state space E and
τ ≤ s ≤ t ≤ T .

Suppose that the process X(t) in (2.4) has paths which are right-continuous
and have left limits in E. Then it can be shown that the Markov property for fixed
times carries over to stopping times in the sense that (2.5) may be replaced with

Eτ,x

[
Y

∣∣ Fτ
S

]
= ES,X(S) [Y ] , Pτ,x-almost surely. (2.6)

Here S : E → [τ, T ] is an Fτ
t -adapted stopping time and Y is a bounded stochastic

variable which is measurable with respect to the future (or terminal) σ-field after
S, i.e., the one generated by {X (t ∨ S) : τ ≤ t ≤ T }. For this type of result the
reader is referred to Chapter 2 in Gulisashvili et al. [12]. Markov processes for
which (2.6) holds are called strong Markov processes.

2.4. Definition. The family of operators L(s), 0 ≤ s ≤ T , is said to generate a
time-inhomogeneous Markov process, as described in (2.4) in Definition 2.3, if for
all functions u ∈ D(L), for all x ∈ E, and for all pairs (τ, s) with 0 ≤ τ ≤ s ≤ T
the following equality holds:

d

ds
Eτ,x [u (s, X(s))] = Eτ,x

[
∂u

∂s
(s, X(s)) + L(s)u (s, ·) (X(s))

]
. (2.7)
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Let the process X(t), t ∈ [0, T ], in (2.4) be a Markov process in the sense of
Definition 2.3, and put

Mu (s) − Mu (τ)

= u (s, X (s)) − u (τ, X (τ)) −
∫ s

τ

(
L(ρ)u (ρ, X(ρ)) +

∂u

∂ρ
(ρ, X(ρ))

)
dρ. (2.8)

In the following proposition we write Fτ
s , s ∈ [τ, T ], for the σ-field generated

by X(ρ), ρ ∈ [τ, s]. It shows that under rather general conditions the process
s → Mu(s)−Mu(τ), τ ≤ s ≤ T , as defined in (2.8) is a Pτ,x-martingale. The proof
is left to the reader.

2.5. Proposition. Fix t ∈ [τ, T ). Let the function u : [t, T ]× E → R be such that

(s, x) → ∂u

∂s
(s, x) + L(s)u (s, ·) (x)

belongs to C0 ([t, T ]× E) Then the process s → Mu(s)−Mu(τ) is adapted to the
filtration of σ-fields (Fτ

s )s∈[τ,T ]. Moreover, it is a Pτ,x-martingale if and only if
(2.7) is satisfied.

As explained in Definition 2.2 it is assumed that the subspace D(L) contains
an algebra A of functions which forms a core for the operator L.

2.6. Proposition. Let the family of operators L(s), 0 ≤ s ≤ T , generate a time-
inhomogeneous Markov process in the sense of Definition 2.4: see equality (2.7).
Then the process X(t) has a modification which is right-continuous and has left
limits.

In view of Proposition 2.6 we will assume that our Markov process has left
limits and is continuous from the right.

Proof. Let the function u : [0, T ] × E → R belong to the space D(L). Then the
process s → Mu(s) − Mu(t), t ≤ s ≤ T , as defined in (2.8), is a Pt,x-martingale.
The proof of Proposition 2.6 is based on the fact that the subspace D(L) is dense
in C0 ([0, T ]× E), and that martingales have left and right limits, as explained in,
e.g., Chapter II in Revuz and Yor [23]. Details are left to the reader. �

The hypotheses in Proposition 2.7 below are the same as in Proposition 2.6.
Its proof is skipped.

2.7. Proposition. Let the continuous function u : [0, T ]× E → R be such that for
every s ∈ [t, T ] the function x → u(s, x) belongs to D (L(s)) and suppose that the
function (s, x) → [L(s)u (s, ·)] (x) is bounded and continuous. In addition suppose
that the function s → u(s, x) is continuously differentiable for all x ∈ E. Then
the process s → Mu(s)−Mu(t) is a Ft

s-martingale with respect to the probability
Pt,x. If v is another such function, then the (right) derivative of the quadratic
co-variation of the martingales Mu and Mv is given by:

d

dt
〈Mu, Mv〉 (t) = Γ1 (u, v) (t, X(t)) .
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In fact the following identity holds as well:

Mu(t)Mv(t) − Mu(0)Mv(0)

=
∫ t

0

Mu(s)dMv(s) +
∫ t

0

Mv(s)dMu(s) +
∫ t

0

Γ1 (u, v) (s, X(s))ds. (2.9)

Here Ft
s, s ∈ [t, T ], is the σ-field generated by the state variables X(ρ),

t ≤ ρ ≤ s. Instead of F0
s we usually write Fs, s ∈ [0, T ]. The formula in (2.9) is

known as the integration by parts formula for stochastic integrals.

2.1. Remark. The quadratic variation process of the (local) martingale s → Mu(s)
is given by the process s → Γ1 (u (s, ·) , u (s, ·)) (X(s)), and therefore

Es1,x

[∣∣∣∣∫ s2

s1

dMu(s)
∣∣∣∣2
]

= Es1,x

[∫ s2

s1

Γ1 (u (s, ·) , u (s, ·)) (X(s)) ds

]
< ∞ (2.10)

under appropriate conditions on the function u. The formula in (2.10) is closely
related to a formula which occurs in Malliavin calculus: see Nualart [17] and [18].

2.2. Remark. It is worthwhile to observe that for Brownian motion (W (s), Px) the
martingale difference Mu (s2)−Mu (s1), s1 ≤ s2 ≤ T , is given by a stochastic inte-
gral Mu (s2) − Mu (s1) =

∫ s2

s1
∇u (τ, W (τ)) dW (τ). Its increment of the quadratic

variation process is given by

〈Mu, Mu〉 (s2) − 〈Mu, Mu〉 (s1) =
∫ s2

s1

|∇u (τ, W (τ))|2 dτ.

Next suppose that the function u solves the equation:

f
(
s, x, u (s, x) ,∇L

u (s, x)
)

+ L(s)u (s, x) +
∂

∂s
u (s, x) = 0. (2.11)

If moreover, u (T, x) = ϕ (T, x), x ∈ E, is given, then we have

u (t, X(t)) (2.12)

= ϕ (T, X(T )) +
∫ T

t

f
(
s, X(s), u (s, X(s)) ,∇L

u (s, X(s))
)
ds −

∫ T

t

dMu(s),

with Mu(s) as in (2.8). From (2.12) we get

u (t, x) = Et,x [u (t, X(t))] (2.13)

= Et,x [ϕ (T, X(T ))] +
∫ T

t

Et,x

[
f
(
s, X(s), u (s, X(s)) ,∇L

u (s, X(s))
)]

ds.

2.8. Theorem. Let u : [0, T ]× E → R be a continuous function with the property
that for every (t, x) ∈ [0, T ]×E the function s → Et,x [u (s, X(s))] is differentiable
and that

d

ds
Et,x [u (s, X(s))] = Et,x

[
L(s)u (s, X(s)) +

∂

∂s
u (s, X(s))

]
, t < s < T.

Then the following assertions are equivalent:
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(a) The function u satisfies the following differential equation:

L(t)u (t, x) +
∂

∂t
u (t, x) + f

(
t, x, u (t, x) ,∇L

u (t, x)
)

= 0.

(b) The function u satisfies the following type of Feynman-Kac integral equation:

u (t, x) = Et,x

[
u (T, X(T )) +

∫ T

t

f
(
τ, X(τ), u (τ, X(τ)) ,∇L

u (τ, X(τ))
)
dτ

]
.

(c) For every t ∈ [0, T ] the process

s → u (s, X(s)) − u (t, X(t)) +
∫ s

t

f
(
τ, X(τ), u (τ, X(τ)) ,∇L

u (τ, X(τ))
)
dτ

is an Ft
s-martingale with respect to Pt,x on the interval [t, T ].

(d) For every s ∈ [0, T ] the process

t → u (T, X(T ))− u (t, X(t)) +
∫ T

t

f
(
τ, X(τ), u (τ, X(τ)) ,∇L

u (τ, X(τ))
)
dτ

is an Ft
T -backward martingale with respect to Ps,x on the interval [s, T ].

2.3. Remark. Suppose that the function u is a solution to the following terminal
value problem:⎧⎨⎩L(s)u (s, ·) (x) +

∂

∂s
u (s, x) + f

(
s, x, u (s, x) ,∇L

u (s, x)
)

= 0;

u(T, x) = ϕ(T, x).
(2.14)

Then the pair
(
u (s, X(s)) ,∇L

u (s, X(s))
)

can be considered as a weak solution to
a backward stochastic differential equation. More precisely, for every s ∈ [0, T ] the
process

t → u (T, X(T ))− u (t, X(t)) +
∫ T

t

f
(
τ, X(τ), u (τ, X(τ)) ,∇L

u (τ, X(τ))
)
dτ

is an Ft
T -backward Ps,x-martingale on the interval [s, T ]. The symbol ∇L

uv (s, x)
stands for the functional v → ∇L

uv (s, x) = Γ1(u, v)(s, x), where Γ1 is the squared
gradient operator, which is defined in Definition 2.1. Possible choices for the func-
tion f are for example

f
(
s, x, y,∇L

u

)
= −V (s, x)y and (2.15)

f
(
s, x, y,∇L

u

)
=

1
2

∣∣∇L
u (s, x)

∣∣2 − V (s, x) =
1
2
Γ1 (u, u) (s, x) − V (s, x). (2.16)

2.4. Example. The choice in (2.15) turns equation (2.14) into the following heat
equation: ⎧⎨⎩

∂

∂s
u (s, x) + L(s)u (s, ·) (x) − V (s, x)u(s, x) = 0;

u (T, x) = ϕ(T, x).
(2.17)
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The function v(s, x) defined by the Feynman-Kac formula

v(s, x) = Es,x

[
e−

∫
T
s

V (ρ,X(ρ))dρϕ (T, X(T ))
]

(2.18)

is a solution candidate to equation (2.17).

In the next example we see how the classical Feynman-Kac formula is related
to backward stochastic differential equations.

2.5. Example. This example is copied from Remark 2.5 in Pardoux [19]. An impor-
tant example is one in which the function f is linear: f(t, x, r, z) = c(t, x)r+h(t, x)
and X(s) = Xt,x(s) is a solution to a stochastic differential of the form below:

Xt,x(s) − Xt,x(t) =
∫ s

t

b
(
τ, Xt,x(τ)

)
dτ +

∫ s

t

σ
(
τ, Xt,x(τ)

)
dW (τ), t ≤ s ≤ T ;

Xt,x(s) = x, 0 ≤ s ≤ t.

In this case the linear BSDE

Y t,x(s)

= g(Xt,x(T )) +
∫ T

s

[c(r, Xt,x(r))Y t,x(s) + h(r, Xt,x(r))] dr −
∫ T

s

Zt,x(r) dW (r),

has an explicit solution. From an extension of the classical “variation of constants
formula” (see the argument in the proof of the comparison Theorem 1.6 in Pardoux
[19]) or by direct verification we get:

Y t,x(s) = g
(
Xt,x(T )

)
e
∫

T
s

c(r,Xt,x(r)) dr +
∫ T

s

h
(
r, Xt,x(r)

)
e
∫ r

s
c(α,Xt,x(α)) dα dr

−
∫ T

s

e
∫

r
s

c(α,Xt,x(α))dαZt,x(r) dW (r).

Hence Y t,x(t) = E [Y t,x(t)], so that

Y t,x(t) = E

[
g(Xt,x(T ))e

∫
T
t

c(s,Xt,x(s)) ds +
∫ T

t

h
(
s, Xt,x(s)

)
e
∫

s
t

c(r,Xt,x(r))drds

]
,

which is the well-known Feynman-Kac formula. For more details and explicit for-
mulas see Remark 2.5 in Pardoux [19].

2.6. Example. The choice in (2.16) turns equation (2.14) into the following Hamil-
ton-Jacobi-Bellmann equation of Riccati type:⎧⎨⎩

∂

∂s
u (s, x) + L(s)u (s, X(s)) − 1

2
Γ1 (u, u) (s, x) + V (s, x)=0;

u (T, x) = − log ϕ(T, x),
(2.19)

where − log ϕ(T, x) replaces ϕ(T, x). The function SL defined by the genuine non-
linear Feynman-Kac formula

SL(s, x) = − log Es,x

[
e−

∫ T
s

V (ρ,X(ρ))dρϕ (T, X(T ))
]

(2.20)



BSDEs and Markov Processes 91

is a solution candidate to (2.19). Often these “solution candidates” are viscosity
solutions. However, this will be the main topic of [27]. For more details on the
equation in (2.19) in case of a diffusion on a manifold see Theorem 2.4 in Zambrini
[28]. The result in [28] is put in the (present) framework of diffusions with L(s) = L
in [25].

2.7. Remark. Suppose that the function u(t, x) satisfies one of the equivalent con-
ditions in Theorem 2.8. Put Y (τ) = u (τ, X(τ)), and let M(s) be the martingale
determined by M(0) = Y (0) = u (0, X(0)) and by

M(s) − M(t) = Y (s) +
∫ s

t

f
(
τ, X(τ), Y (τ),∇L

u (τ, X(τ))
)
dτ.

Then the expression ∇L
u (τ, X(τ)) only depends on the martingale part M of the

process s → Y (s). This entitles us to write ZM (τ) instead of ∇L
u (τ, X(τ)). The

mapping ZM (τ) : M2 (Ω, Fτ
T , Pτ,x) → R is then to be interpreted as the linear

functional N → d

dτ
〈M, N〉 (τ), where the process t → N(t) − N(τ), t ∈ [τ, T ],

is a Pτ,x-martingale in M2 (Ω, Fτ
T , Pτ,x). Here a process N(·) − N(τ) belongs to

M2 (Ω, Fτ
T , Pτ,x) whenever it is martingale in L2 (Ω, Fτ

T , Pτ,x). Notice that the func-
tional ZM (τ) is known as soon as the martingale M(·)−M(τ) ∈ M2 (Ω, Fτ

T , Pτ,x)
is known. From our definitions it also follows that

M(T ) = Y (T ) +
∫ T

0

f (τ, X(τ), Y (τ), ZM (τ)) dτ,

where we used the fact that Y (0) = M(0). For closely related notions see equalities
(5.4) and (5.5) in Section 5.

2.8. Remark. Let the notation be as in Remark 2.7. Then the variables Y (t) and
ZM (t) only depend on the space variable X(t), and as a consequence the mar-
tingale increments M (t2) − M (t1), 0 ≤ t1 < t2 ≤ T , only depend on Ft1

t2 =
σ (X(s) : t1 ≤ s ≤ t2). In Section 3 we give Lipschitz type conditions on the func-
tion f in order that the BSDE

Y (t) = Y (T )+
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds+M(t)−M(T ), τ ≤ t ≤ T, (2.21)

possesses a unique pair of solutions

(Y, M(·) − M(τ)) ∈ L2 (Ω, Fτ
T , Pτ,x) × M2 (Ω, Fτ

T , Pτ,x) .

For an explanation of the functional ZM (s) see Remark 2.7. Here M2 (Ω, Ft
T , Pt,x)

stands for the space of all (Ft
s)s∈[t,T ]-martingales in the space L2 (Ω, Ft

T , Pt,x).
Suppose that the σ (X(T ))-measurable variable Y (T ) ∈ L2 (Ω, Fτ

T , Pτ,x) is given.
In fact we will prove that the solution (Y, M) of the equation in (2.21) belongs to
the space S2 ×M2 := S2

(
Ω, Fτ

T , Pτ,x; Rk
)
×M2

(
Ω, Ft

T , Pτ,x; Rk
)
. For more details

see Definitions 2.9 and 4.1, and Theorem 5.1. We will also consider the bilinear
mapping Z(s) which associates with a pair of local semi-martingales (Y1, Y2) ∈
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S2×S2 a process which is to be considered as the right derivative of the covariation
process: 〈Y1, Y2〉 (s). We write

ZY1(s) (Y2) = Z(s) (Y1, Y2) =
d

ds
〈Y1, Y2〉 (s). (2.22)

Since this covariation process only depends on the martingale parts M1 and M2

of the processes Y1 and Y2 we also use the notation ZM1 instead of ZY1 . The
function f (i.e., the generator of the backward differential equation) will then be
of the form: f (s, X(s), Y (s), ZY (s)) = f (s, X(s), Y (s), ZM (s)); the deterministic
phase

(
u(s, x),∇Lu(s, x)

)
is replaced with the stochastic phase (Y (s), ZY (s)). We

should find an appropriate stochastic phase s → (Y (s), ZY (s)) = (Y (s), ZM (s)),
which we identify with the process s → (Y (s), M(s)) in the stochastic phase space
S2 ×M2, such that (2.21) is satisfied. The stochastic phase space S2 ×M2 plays a
role in stochastic analysis very similar to the role played by the first Sobolev space
H1,2 in the theory of deterministic partial differential equations.

2.9. Remark. In case we deal with strong solutions driven by standard Brownian
motion the martingale difference MY (s2) − MY (s1) can be written in the form
(martingale representation theorem)

∫ s2

s1
ZY (s)dW (s), provided that the martin-

gale MY (s) belongs to M2
(
Ω, G0

T , P
)
. Here G0

T is the σ-field generated by W (s),
0 ≤ s ≤ T . If Y (s) = u (s, X(s)), then this stochastic integral satisfies:∫ s2

s1

ZY (s)dW (s)

= u (s2, X (s2)) − u (s1, X (s1)) −
∫ s2

s1

(
L(s) +

∂

∂s

)
u (s, X (s)) ds. (2.23)

Such stochastic integrals are for example defined if the process X(t) is a solution
to a stochastic differential equation (in Itô sense):

X(s) = X(t) +
∫ s

t

b (τ, X(τ)) dτ +
∫ s

t

σ (τ, X(τ)) dW (τ), t ≤ s ≤ T. (2.24)

Here the matrix (σj,� (τ, x))d
j,�=1 is chosen in such a way that

aj,k(τ, x) =
d∑

�=1

σj� (τ, x) σk,� (τ, x) = (σ(τ, x)σ∗(τ, x))j,k . (2.25)

The process W (τ) is Brownian motion or Wiener process. It is assumed that
operator L(τ) has the form

L(τ)u(x) = b (τ, x) · ∇u(x) +
1
2

d∑
j,k=1

aj,k (τ, x)
∂2

∂xjxk
u(x). (2.26)

Then from Itô’s formula together with (2.23), (2.24) and (2.26) it follows that
the process ZY (s) has to be identified with σ (s, X(s))∗ ∇u (s, ·) (X(s)). For more
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details see, e.g., Pardoux and Peng [20], Pardoux [19], and Bally et al. [4]. In this
case the squared gradient operator is given by

Γ1 (u, v) (s, x) =
d∑

j,k=1

aj,k(s, x)
∂u

∂xj
(s, x)

∂v

∂xk
(s, x).

Since in our setup the squared gradient operator only depends on the coefficients
aj,k(s, x), 1 ≤ j, k ≤ d, and not on a matrix σ(s, x) satisfying (2.25) we see that
the solutions of the BSDE in (2.21) should be considered as weak solutions. In
the literature on this subject strong solutions depend on the matrix σ(s, x). In the
present paper that need not be the case.

2.10. Remark. Backward doubly stochastic differential equations (BDSDEs) could
have been included in the present paper: see Boufoussi, Mrhardy and Van Casteren
[8]. In our notation a BDSDE may be written in the form:

Y (t) − Y (T ) =
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds

+
∫ T

t

g (s, X(s), Y (s), ZM (s)) d
←−
B (s) + M(t) − M(T ). (2.27)

For an explanation of the functional ZM (s) see Remark 2.7. Here the expression∫ T

t

g (s, X(s), Y (s), ZM (s)) d
←−
B (s)

represents a backward Itô integral. The symbol 〈M, N〉 stands for the covariation
process of the (local) martingales M and N ; it is assumed that this process is
absolutely continuous with respect to Lebesgue measure. Moreover,

{(Ω, Fτ
T , Pτ,x) , (X(t) : T ≥ t ≥ 0) , (E, E)}

is a Markov process generated by a family of operators L(s), 0 ≤ s ≤ T , and

Fτ
t = σ {X(s) : τ ≤ s ≤ t} .

The process X(t) could be the (unique) weak or strong solution to a (forward)
stochastic differential equation (SDE):

X(t) = x +
∫ t

τ

b (s, X(s)) ds +
∫ t

τ

σ (s, X(s)) dW (s). (2.28)

Here the coefficients b and σ have certain continuity or measurability properties,
and Pτ,x is the distribution of the process X(t) defined as being the unique weak
solution to the equation in (2.28). The authors want to find a pair

(Y, M) ∈ S2 (Ω, Fτ
t , Pτ,x) × M2 (Ω, Fτ

t , Pτ,x)

which satisfies (2.27).
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We first give some definitions. Fix (τ, x) ∈ [0, T ]× E. In Definitions 2.9 and
2.10 the probability measure Pτ,x is defined on the σ-field Fτ

T . In Definition 4.1
we return to these notions. The following definition and implicit results described
therein shows that, under certain conditions, by enlarging the sample space a
family of processes may be reduced to just one process without losing the S2-
property.

2.9. Definition. Fix (τ, x) ∈ [0, T ] × E. An Rk-valued process Y is said to be-
long to the space S2

(
Ω, Fτ

T , Pτ,x; Rk
)

if Y (t) is Fτ
t -measurable (τ ≤ t ≤ T )

and if Eτ,x

[
sup

τ≤t≤T
|Y (t)|2

]
< ∞. It is assumed that Y (s) = Y (τ), Pτ,x-almost

surely, for s ∈ [0, τ ]. The process Y (s), s ∈ [0, T ], is said to belong to the space
S2

unif

(
Ω, Fτ

T , Pτ,x; Rk
)

if

sup
(τ,x)∈[0,T ]×E

Eτ,x

[
sup

τ≤t≤T
|Y (t)|2

]
< ∞,

and it belongs to S2
loc,unif

(
Ω, Fτ

T , Pτ,x; Rk
)

provided that

sup
(τ,x)∈[0,T ]×K

Eτ,x

[
sup

τ≤t≤T
|Y (t)|2

]
< ∞

for all compact subsets K of E.

If the σ-field Fτ
t and Pτ,x are clear from the context we write S2

(
[0, T ], Rk

)
or sometimes just S2. A similar convention is used for the space M2.

2.10. Definition. Let the process M be such that the process t → M(t) − M(τ),
t ∈ [τ, T ], is a Pτ,x-martingale with the property that the stochastic variable
M(T ) − M(τ) belongs to L2 (Ω, Fτ

T , Pτ,x). Then M is said to belong to the space
M2

(
Ω, Fτ

T , Pτ,x; Rk
)
. By the Burkholder-Davis-Gundy inequality (see inequality

(4.2) below) it follows that Eτ,x

[
sup

τ≤t≤T
|M(t) − M(τ)|2

]
is finite if and only if

M(T ) − M(τ) belongs to the space L2 (Ω, Fτ
T , Pτ,x). Here an Fτ

t -adapted process
M(·) − M(τ) is called a Pτ,x-martingale provided that Eτ,x [|M(t) − M(τ)|] < ∞
and

Eτ,x

[
M(t) − M(τ)

∣∣ Fτ
s

]
= M(s) − M(τ), Pτ,x-almost surely, for T ≥ t ≥ s ≥ τ .

The martingale difference s → M(s) − M(0), s ∈ [0, T ], is said to belong to the
space M2

unif

(
Ω, Fτ

T , Pτ,x; Rk
)

if

sup
(τ,x)∈[0,T ]×E

Eτ,x

[
sup

τ≤t≤T
|M(t) − M(τ)|2

]
< ∞,

and it belongs to M2
loc,unif

(
Ω, Fτ

T , Pτ,x; Rk
)

provided that

sup
(τ,x)∈[0,T ]×K

Eτ,x

[
sup

τ≤t≤T
|M(t) − M(τ)|2

]
< ∞
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for all compact subsets K of E. From the Burkholder-Davis-Gundy inequality (see
inequality (4.2) below) it follows that the process M(s) − M(τ) belongs to the
space M2

unif

(
Ω, Fτ

T , Pτ,x; Rk
)

if and only if

sup
(τ,x)∈[0,T ]×E

Eτ,x

[
|M(T )− M(τ)|2

]
= sup

(τ,x)∈[0,T ]×E

Eτ,x [〈M, M〉 (T ) − 〈M, M〉 (τ)] < ∞.

Here 〈M, M〉 stands for the quadratic variation process of the process t → M(t).

The notions in Definitions 2.9 and 2.10 will exclusively be used in case the
family of measures {Pτ,x : (τ, x) ∈ [0, T ]× E} constitutes the family of distribu-
tions of a Markov process which was defined in Definition 2.3.

2.11. Remark. Again let the Markov process, with right-continuous sample paths
and with left limits, be generated by the family of operators {L(s) : 0 ≤ s ≤ t}:
see Definitions 2.3 equality (2.5), and 2.4 equality (2.7). We define the family of
operators {Q (t1, t2) : 0 ≤ t1 ≤ t2 ≤ T } by

Q (t1, t2) f(x) = Et1,x [f (X (t2))] , f ∈ C0 (E) , 0 ≤ t1 ≤ t2 ≤ T.

Fix ϕ ∈ D(L). Then this family satisfies the Chapman-Kolmogorov identity:

Q (s, t′)ϕ (t′, ·) (x) = Q (s, t)Q (t, t′) ϕ (t′, ·) (x), 0 ≤ s ≤ t ≤ t′ ≤ T, x ∈ E.

If ϕ ∈ D(L) is such that L(ρ)ϕ (ρ, ·) (y) = −∂ϕ

∂ρ
(ρ, y), then it can be proved that

ϕ (s, x) = Q (s, t)ϕ (t, ·) (x) = Es,x [ϕ (t, X(t))] . (2.29)

For more details on propagators or evolution families see [12].

As a corollary to Theorems 2.8 and 4.6 we have the following result.

2.11. Corollary. Suppose that the function u solves the following⎧⎨⎩
∂u

∂s
(s, y) + L(s)u(s, ·) (y) + f

(
s, y, u(s, y),∇L

u (s, y)
)

= 0;

u (T, X(T )) = ξ ∈ L2 (Ω, Fτ
T , Pτ,x) .

(2.30)

Let the pair (Y, M) be a solution to

Y (t) = ξ +
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds + M(t) − M(T ), (2.31)

with M(τ) = 0. Then (Y (t), M(t)) = (u (t, X(t)) , Mu(t)), where

Mu(t) = u (t, X(t)) − u (τ, X(τ)) −
∫ t

τ

L(s)u (s, ·) (X(s)) ds −
∫ t

τ

∂u

∂s
(s, X(s)) ds.

Notice that the processes s → ∇L
u (s, X(s)) and s → ZMu(s) may be identified

and that ZMu(s) only depends on (s, X(s)).
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The decomposition

u (t, X(t)) − u (τ, X(τ))

=
∫ t

τ

(
∂u

∂s
(s, X(s)) + L(s)u (s, ·) (X(s))

)
ds + Mu(t) − Mu(τ) (2.32)

splits the process t → u (t, X(t)) − u (τ, X(τ)) into a part which is of bounded
variation (i.e., the part which is absolutely continuous with respect to the Lebesgue
measure on [τ, T ]) and a Pτ,x-martingale part Mu(t) − Mu(τ) (which in fact is
a martingale difference part). The following proposition connects the family of
generators of a Markov process and the family of squared gradient operators. Due
to lack of space its proof is omitted.

2.12. Proposition. Let the functions f , g ∈ D(L) be such that their product fg
also belongs to D(L). Then Γ1 (f, g) is well defined and for (s, x) ∈ [0, T ]× E the
following equality holds:

L(s) (fg) (s, ·) (x) − f(s, x)L(s)g (s, ·) (x) − L(s)f (s, ·) (x)g(s, x) = Γ1 (f, g) (s, x).

2.12. Remark. Suggestions for further research:
(a) Find “explicit solutions” to BSDEs with a linear drift part. This should be a

type of Cameron-Martin formula or Girsanov transformation.
(b) Treat weak (and strong) solutions BDSDEs in a manner similar to what is

presented here for BSDEs.
(c) Treat weak (strong) solutions to BSDEs generated by a function f which is

not necessarily of linear growth but for example of quadratic growth in one
or both of its entries Y (t) and ZM (t).

(d) Can anything be done if f depends not only on s, x, u(s, x), ∇u (s, x), but
on L(s)u (s, ·) (x) as well?

3. A probabilistic approach: weak solutions

In Section 5 we want treat equation (3.1). This means that we want to find a
function u (t, x) which satisfies the following partial differential equation:⎧⎨⎩

∂u

∂s
(s, x) + L(s)u (s, x) + f

(
s, x, u(s, x),∇L

u (s, x)
)

= 0;

u(T, x) = ϕ (T, x) , x ∈ E.
(3.1)

Here ∇L
f2

(s, x) is the linear functional f1 → Γ1 (f1, f2) (s, x) for smooth enough
functions f1 and f2. For s ∈ [0, T ] fixed the symbol ∇L

f2
stands for the linear

mapping f1 → Γ1 (f1, f2) (s, ·). The equation in (3.1) can be phrased in a semi-
linear stochastic setting as follows. Find a pair of adapted processes (Y, M) ∈
S2 × M2 := S2

(
Ω, Fτ

T , Pτ,x; Rk
)
× M2

(
Ω, Ft

T , Pτ,x; Rk
)

with Y (0) = M(0) and
Y (T ) = ϕ (T, X(T )) and which satisfies

Y (t) = Y (T ) +
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds + M(t) − M(T ), t ∈ [τ, T ]. (3.2)
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For a preliminary discussion on this topic see Theorem 2.8. Under certain Lipschitz
type hypotheses on the function f we will give existence and uniqueness results.
In this section and also in Section 4 we will study BSDEs on a single probability
space. In Section 5 we will consider Markov families of probability spaces. In
the present section we write P instead of P0,x, and similarly for the expectations
E and E0,x. We are discussing the martingale problem, which basically means
that only the distributions of the process t → X(t), t ∈ [0, T ], are involved.
Consequently, the solutions we obtain are of weak type. In most of the existing
literature (see, e.g., [4], [21], [19]) strong solutions driven by Brownian motion
are considered and a martingale representation theorem (in terms of Brownian
motion) is employed: see, e.g., [24] Theorem 5.4.2. In Section 5 we will use the
results of this section for probability measures of the form Pτ,x; the interval [0, T ]
is then replaced with [τ, T ]. We consider a pair of (Ft)t∈[0,T ] =

(
F0

t

)
t∈[0,T ]

-adapted

processes (Y, M) ∈ L2
(
Ω, FT , P; Rk

)
× L2

(
Ω, FT , P : Rk

)
such that Y (0) = M(0)

and such that (3.2) is satisfied. In [27] and in Section 5 we employ the results
of the present section with P = Pτ,x, where (τ, x) ∈ [0, T ] × E. In Section 5 we
will see that, in case we are dealing with a Markov family of probability spaces,
or what amounts to the same, a Markov process, the variable Y (s) is measurable
with respect to X(s). Hence it follows that in the Markov case, the process Y (s)
is of the form Y (s) = u (s, X(s)), where in many interesting cases the function
u : [0, T ]×E → R is continuous. From Theorem 2.8 it follows that the process s →
Y (s) = u (s, X(s)) with Y (T ) = u (T, X(T )) satisfies (3.2) provided the function
u satisfies the equation in (3.1). Conversely, if the process s → Y (s) satisfies (3.2),
then u(s, x) = Ps,x [Y (s)] satisfies (3.1). Since we almost exclusively deal with the
Markov property of the process X(t) solutions to (3.2) are weak solutions.

3.1. Proposition. Let the pair (Y, M) be as in (3.2), and suppose that Y (0) = M(0).
Then

Y (t) = M(t) −
∫ t

0

f (s, X(s), Y (s), ZM (s)) ds, (3.3)

Y (t) = E

[
Y (T ) +

∫ T

t

f (s, X(s), Y (s), ZM (s)) ds
∣∣ Ft

]
, and (3.4)

M(t) = E

[
Y (T ) +

∫ T

0

f (s, X(s), Y (s), ZM (s)) ds
∣∣ Ft

]
. (3.5)

The equality in (3.3) shows that the process M is the martingale part of the
semi-martingale Y .

Proof. The equality in (3.4) follows from (3.2) and from the fact that M is a
martingale. A calculation, in which (3.2) is used, then implies (3.5). Since

M(T ) = Y (T ) +
∫ T

0

f (s, X(s), Y (s), ZM (s)) ds

the equality in (3.3) follows. �
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In the following theorem z denotes ZM (s), (s, x) belongs to [0, T ]×E, and y
to Rk.

3.2. Theorem. Suppose that there exist finite constants C1 and C2 such that

〈y2 − y1, f (s, x, y2, z) − f (s, x, y1, z)〉 ≤ C1 |y2 − y1|2 ; (3.6)

|f (s, x, y, ZM2(s)) − f (s, x, y, ZM1(s))|2 ≤ C2
2

d

ds
〈M2 − M1, M2 − M1〉 (s). (3.7)

Then there exists a unique pair of adapted processes (Y, M) such that Y (0) = M(0)
and such that the process M is the martingale part of the semi-martingale Y :

Y (t) = M(t) − M(T ) + Y (T ) +
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds

= M(t) −
∫ t

0

f (s, X(s), Y (s), ZM (s)) ds. (3.8)

Outline of a proof of Theorem 3.2. The uniqueness follows from Corollary 4.4 of
Theorem 4.3 below. In the existence part of the proof of Theorem 3.2 the function
f is approximated by Lipschitz continuous functions fδ, 0 < δ < (2C1)

−1, where
each function fδ has Lipschitz constant δ−1, but at the same time the martingale
M is fixed. So the inequality (3.7) remains valid for fixed second variable with
C2 = 0. It follows that for the functions fδ (3.7) remains valid and that (3.6) is
replaced with

|fδ (s, x, y2, z) − fδ (s, x, y1, z)| ≤ 1
δ
|y2 − y1| . (3.9)

In the uniqueness part of the proof it suffices to assume that (3.6) holds. In The-
orem 4.6 we will see that the monotonicity condition (3.6) also suffices to prove
the existence. For details the reader is referred to the propositions 4.7 and 4.8,
Corollary 4.9, and to Proposition 4.10. In fact for M ∈ M2 fixed, and the func-
tion y → f (s, x, y, ZM (s)) satisfying (3.6) the function y → y − δf (s, x, y, ZM (s))
is surjective as a mapping from Rk to Rk and its inverse exists and is Lipschitz

continuous with constant
1

1 − δC1
. The Lipschitz continuity is part of Proposition

4.8. The surjectivity of this mapping is a consequence of Theorem 1 in [10]. As
pointed out by Crouzeix et al. the result follows from a non-trivial homotopy ar-
gument. A relatively elementary proof of Theorem 1 in [10] can be found for a
continuously differentiable function in Hairer and Wanner [13]: see Theorem 14.2
in Chapter IV. For a few more details see Remark 4.2. Let fs,M be the mapping
y → f (s, y, ZM (s)), and put

fδ (s, x, y, ZM (s)) = f
(
s, x, (I − δfs,x,M )−1 , ZM (s)

)
. (3.10)

Then the functions fδ, 0 < δ < (2C1)
−1, are Lipschitz continuous with constant

δ−1. Proposition 4.10 treats the transition from solutions of BSDE’s with generator
or coefficient fδ with fixed martingale M ∈ M2 to solutions of BSDE’s driven by
f with the same fixed martingale M . Proposition 4.7 contains the passage from
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solutions (Y, N) ∈ S2 × M2 to BBSDE’s with generators of the form (s, y) →
f (s, y, ZM(s)) for any fixed martingale M ∈ M2 to solutions for BSDE’s of the
form (3.8) where the pair (Y, M) belongs to S2×M2. By hypothesis the process s →
f (s, x, Y (s), ZM (s)) satisfies (3.6) and (3.7). Essentially speaking a combination
of these observations show the result in Theorem 3.2. �

3.1. Remark. In the literature functions with the monotonicity property are also
called one-sided Lipschitz functions. In fact Theorem 3.2, with f(t, x, ·, ·) Lipschitz
continuous in both variables, will be superseded by Theorem 4.5 in the Lipschitz
case and by Theorem 4.6 in case of monotonicity in the second variable and Lip-
schitz continuity in the third variable. The proof of Theorem 3.2 is part of the
results in Section 4. Theorem 5.1 contains a corresponding result for a Markov
family of probability measures. Its proof is omitted, it follows the same lines as
the proof of Theorem 4.6.

4. Existence and uniqueness of solutions to BSDEs

As explained in the beginning of Section 3, the equation in (3.1) can be phrased
in a semi-linear stochastic setting as follows. Find a pair of adapted processes
(Y, M) ∈ S2

(
[0, T ], Rk

)
× M2

(
[0, T ], Rk

)
satisfying (3.2), i.e.,

Y (t) = Y (T ) +
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds + M(t) − M(T ).

In fact in the present section we will also suppress the dependence of the generator
f as a function of the Markov process X . Instead of a family of measure spaces
(Ω, Fτ

T , Pτ,x), like in Section 5, we will consider a single measure space (Ω, F, P)
with a filtration (Ft)0≤t≤T =

(
F0

t

)
0≤t≤T

. In Section 5 we will employ the results
of this Section 4 to obtain results for Markov processes. As a consequence we write
f (s, Y (s), ZM (s)) instead of f (s, X(s), Y (s), ZM (s)). Next we define the spaces
S2

(
[0, T ], Rk

)
and M2

(
[0, T ], Rk

)
: compare with Definitions 2.9 and 2.10.

4.1. Definition. Let (Ω, F, P) be a probability space, and let Ft, t ∈ [0, T ], be a
filtration on F. Let t → Y (t) be a stochastic process with values in Rk which is
adapted to the filtration Ft and which is P-almost surely continuous. Then Y is

said to belong to S2
(
[0, T ], Rk

)
provided that E

[
sup

t∈[0,T ]

|Y (t)|2
]

< ∞.

4.2. Definition. The space of Rk-valued martingales in L2
(
Ω, F, P; Rk

)
is denoted

by M2
(
[0, T ], Rk

)
. So that a continuous martingale t → M(t) − M(0) belongs to

M2
(
[0, T ], Rk

)
if E

[
|M(T ) − M(0)|2

]
< ∞. Since the process

t → |M(t)|2 − |M(0)|2 − 〈M, M〉 (t) + 〈M, M〉 (0)
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is a martingale difference we see that

E
[
|M(T ) − M(0)|2

]
= E [〈M, M〉 (T ) − 〈M, M〉 (0)] , (4.1)

and hence a martingale difference t → M(t)−M(0) in L2
(
Ω, F, P; Rk

)
belongs to

M2
(
[0, T ], Rk

)
if and only if E [〈M, M〉 (T ) − 〈M, M〉 (0)] is finite. By the Burk-

holder-Davis-Gundy inequality this is the case if and only if

E

[
sup

0<t<T
|M(t) − M(0)|2

]
< ∞.

To be precise, let M(s), t ≤ s ≤ T , be a continuous local L2-martingale taking
values in Rk. Put M∗(s) = supt≤τ≤s |M(τ)|. Fix 0 < p < ∞. The Burkholder-
Davis-Gundy inequality says that there exist universal finite and strictly positive
constants cp and Cp such that

cpE
[
(M∗(s))2p

]
≤ E [〈M(·), M(·)〉p (s)] ≤ CpE

[
(M∗(s))2p

]
, t ≤ s ≤ T. (4.2)

If p = 1, then cp = 1
4 , and if p = 1

2 , then cp = 1
8

√
2. For more details and a proof

see, e.g., Ikeda and Watanabe [14].

The following theorem will be employed to prove continuity of solutions to
BSDEs. It also implies that BSDEs as considered by us possess at most unique
solutions. The variables (Y, M) and (Y ′, M ′) attain their values in Rk endowed
with its Euclidean inner-product 〈y′, y〉 =

∑k
j=1 y′

jyj , y′, y ∈ Rk. Processes of the
form s → f (s, Y (s), ZM (s)) are progressively measurable processes whenever the
pair (Y, M) belongs to the space mentioned in (4.3) of the next theorem.

4.3. Theorem. Let the pairs (Y, M) and (Y ′, M ′), which belong to the space

L2
(
[0, T ]× Ω, F0

T , dt × P
)
× M2

(
Ω, F0

T , P
)
, (4.3)

be solutions to the following BSDEs:

Y (t) = Y (T ) +
∫ T

t

f (s, Y (s), ZM (s)) ds + M(t) − M(T ), and (4.4)

Y ′(t) = Y ′(T ) +
∫ T

t

f ′ (s, Y ′(s), ZM ′(s)) ds + M ′(t) − M ′(T ) (4.5)

for 0 ≤ t ≤ T . In particular this means that the processes (Y, M) and (Y ′, M ′) are
progressively measurable and are square integrable. Suppose that the coefficient
f ′ satisfies the following monotonicity and Lipschitz condition. There exist some
positive and finite constants C′

1 and C′
2 such that the following inequalities hold

for all 0 ≤ t ≤ T :

〈Y ′(t) − Y (t), f ′ (t, Y ′(t), ZM ′(t)) − f ′ (t, Y (t), ZM ′(t))〉 ≤ (C′
1)

2 |Y ′(t) − Y (t)|2 ,

(4.6)
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and

|f ′ (t, Y (t), ZM ′(t)) − f ′ (t, Y (t), ZM (t))|2 ≤ (C′
2)

2 d

dt
〈M ′ − M, M ′ − M〉 (t).

(4.7)

Then the pair (Y ′ − Y, M ′ − M) belongs to S2
(
Ω, F0

T , P; Rk
)
×M2

(
Ω, F0

T , P; Rk
)
,

and there exists a constant C′ which depends on C′
1, C′

2 and T such that

E

[
sup

0<t<T
|Y ′(t) − Y (t)|2 + 〈M ′ − M, M ′ − M〉 (T )

]
≤ C′E

[
|Y ′(T ) − Y (T )|2 +

∫ T

0

|f ′ (s, Y (s), ZM (s)) − f (s, Y (s), ZM (s))|2 ds

]
.

4.1. Remark. From the proof it follows that for C′ we may choose C′ = 260eγT ,
where γ = 1 + 2 (C′

1)
2 + 2 (C′

2)
2.

By taking Y (T ) = Y ′(T ) and f (s, Y (s), ZM (s)) = f ′ (s, Y (s), ZM (s)) it also
implies that BSDEs as considered by us possess at most unique solutions. A precise
formulation reads as follows.

4.4. Corollary. Suppose that the coefficient f satisfies the monotonicity condition
(4.6) and the Lipschitz condition (4.7). Then there exists at most one pair (Y, M) ∈
L2

(
[0, T ]× Ω, F0

T , dt × P
)
×M2

(
Ω, F0

T , P
)

which satisfies the backward stochastic
differential equation (4.4).

Proof of Theorem 4.3. Put Y = Y ′ − Y and M = M ′ − M . The proof follows
from Itô’s formula applied to the process

∣∣Y (t)
∣∣2−〈

M, M
〉
(t) in conjunction with

the Burkholder-Davis-Gundy inequality (4.2) for p = 1
2 . For more details on the

Burkholder-Davis-Gundy inequality, see, e.g., Ikeda and Watanabe [14]. �
In Definitions 4.1 and 4.2 the spaces S2

(
[0, T ], Rk

)
and M2

(
[0, T ], Rk

)
are

defined.
In Theorem 4.6 we will replace the Lipschitz condition (4.8) in Theorem 4.5 of

the function Y (s) → f (s, Y (s), ZM (s)) with the (weaker) monotonicity condition
(4.14). Here we write y for the variable Y (s) and z for ZM (s). It is noticed that
we consider a probability space (Ω, F, P) with a filtration (Ft)t∈[0,T ] =

(
F0

t

)
t∈[0,T ]

where FT = F.

4.5. Theorem. Let f : [0, T ] × Rk ×
(
M2

)∗ → Rk be a Lipschitz continuous in
the sense that there exists finite constants C1 and C2 such that for any two pairs
of processes (Y, M) and (U, N) ∈ S2

(
[0, T ], Rk

)
× M2

(
[0, T ], Rk

)
the following

inequalities hold for all 0 ≤ s ≤ T :

|f (s, Y (s), ZM (s)) − f (s, U(s), ZM (s))| ≤ C1 |Y (s) − U(s)| , and (4.8)

|f (s, Y (s), ZM (s)) − f (s, Y (s), ZN (s))| ≤ C2

(
d

ds
〈M − N, M − N〉 (s)

)1/2

.

(4.9)
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Suppose that E
[∫ T

0 |f(s, 0, 0)|2 ds
]

< ∞. Then there exists a unique pair (Y, M) ∈
S2

(
[0, T ], Rk

)
× M2

(
[0, T ], Rk

)
such that

Y (t) = ξ +
∫ T

t

f (s, Y (s), ZM (s)) ds + M(t) − M(T ), (4.10)

where Y (T ) = ξ ∈ L2
(
Ω, FT , Rk

)
is given and where Y (0) = M(0).

For brevity we write

S2×M2 = S2
(
[0, T ], Rk

)
×M2

(
[0, T ], Rk

)
= S2

(
Ω, F0

T , P; Rk
)
×M2

(
Ω, F0

T , P; Rk
)
.

In fact we employ this theorem with the function f replaced with fδ defined by

fδ (s, y, ZM (s)) = f
(
s, (I − δfs,M )−1

, ZM (s)
)

, 0 < δ <
1

2C1
. (4.11)

Here fs,M (y) = f (s, y, ZM (s)). If the function f is monotone (or one-sided Lip-
schitz) in the second variable with constant C1, and Lipschitz in the second variable
with constant C2, then the function fδ is Lipschitz in y with constant δ−1.

Proof. The proof of the uniqueness part follows from Corollary 4.4.
In order to prove existence we proceed as follows. By induction we define a

sequence (Yn, Mn) in the space S2 × M2 as follows.

Yn+1(t) = E

[
ξ +

∫ T

t

f (s, Yn(s), ZMn(s)) ds
∣∣ Ft

]
, and (4.12)

Mn+1(t) = E

[
ξ +

∫ T

0

f (s, Yn(s), ZMn(s)) ds
∣∣ Ft

]
, (4.13)

Then, since the process s → f (s, Yn(s), Mn(s)) is adapted and belongs to S2×M2,
it is possible to prove, using for example Itô calculus and Burkholder-Davis-Gundy
inequality with p = 1

2 (see (4.2)), that the sequence (Yn, Mn) converges in the space
S2 × M2. �

In the following theorem we replace the Lipschitz condition (4.8) in Theorem
4.5 for the function Y (s) → f (s, Y (s), ZM (s)) with the (weaker) monotonicity
condition (4.14). Here we write y for the variable Y (s) and z for ZM (s).

4.6. Theorem. Let f : [0, T ] × Rk ×
(
M2

)∗ → Rk be monotone in the variable
y and Lipschitz in z. More precisely, suppose that there exist finite constants C1

and C2 such that for any two pairs of processes (Y, M) and (U, N) in the space
S2

(
[0, T ], Rk

)
× M2

(
[0, T ], Rk

)
the following inequalities hold for all 0 ≤ s ≤ T :

〈Y (s) − U(s), f (s, Y (s), ZM (s)) − f (s, U(s), ZM (s))〉 ≤ C1 |Y (s) − U(s)|2 ,

(4.14)

|f (s, Y (s), ZM (s)) − f (s, Y (s), ZN (s))| ≤ C2

(
d

ds
〈M − N, M − N〉 (s)

)1/2

,
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and

|f (s, Y (s), 0)| ≤ f(s) + K |Y (s)| . (4.15)

If E
[∫ T

0

∣∣f(s)
∣∣2 ds

]
< ∞, then there exists a unique pair (Y, M) ∈ S2

(
[0, T ], Rk

)
×

M2
(
[0, T ], Rk

)
such that

Y (t) = ξ +
∫ T

t

f (s, Y (s), ZM (s)) ds + M(t) − M(T ), (4.16)

where Y (T ) = ξ ∈ L2
(
Ω, FT , Rk

)
is given and where Y (0) = M(0).

The proof of Theorem 4.6 may be based on the next proposition. Its proof
uses the monotonicity condition (4.14) in an explicit manner.

4.7. Proposition. Suppose that for every ξ ∈ L2
(
Ω, F0

T , P
)

and M ∈ M2 there
exists a pair (Y, N) ∈ S2 × M2 such that

Y (t) = ξ +
∫ T

t

f (s, Y (s), ZM (s)) ds + N(t) − N(T ). (4.17)

Then for every ξ ∈ L2
(
Ω, F0

T , P
)

there exists a unique pair (Y, M) ∈ S2 × M2

which satisfies (4.16).

The following proposition can be viewed as a consequence of Theorem 12.4 in
[13]. The result is due to Burrage and Butcher [9] and Crouzeix [11]. The obtained
constants are somewhat different from ours. If C1 = 0, then they agree. The proof is
omitted. The surjectivity of the mapping y → y− δf (t, y, ZM(t)) is a consequence
of Theorem 1 in Croezeix et al. [10].

4.8. Proposition. Fix a martingale M ∈ M2, and choose δ > 0 in such a way
that δC1 < 1. Here C1 is the constant which occurs in inequality (4.14). Choose,
for given y ∈ Rk, the stochastic variable Ỹ (t) ∈ Rk in such a way that y =
Ỹ (t)− δf

(
t, Ỹ (t), ZM (t)

)
. Then the mapping y → f

(
t, Ỹ (t), ZM (t)

)
is Lipschitz

continuous with a Lipschitz constant equal to
1
δ

max
(

1,
δC1

1 − δC1

)
. Moreover, the

mapping y → y − δf (t, y, ZM (t)) is surjective and has a Lipschitz continuous

inverse with Lipschitz constant
1

1 − δC1
.

4.9. Corollary. For δ > 0 such that δC1 < 1 there exist processes Yδ and Ỹδ ∈ S2

and a martingale Mδ ∈ M2 such that the following equalities are satisfied:

Yδ(t) = Ỹδ(t) − δf
(
t, Ỹδ(t), ZM (t)

)
= Yδ(T ) +

∫ T

t

f
(
s, Ỹδ(s), ZM (s)

)
ds + Mδ(t) − Mδ(T ). (4.18)
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Proof. Suppose 0 < δC1 < 1. From Theorem 1 (page 87) in Crouzeix et al. [10] it
follows that the mapping y → y−δf (t, y, ZM (t)) is a surjective map from Rk onto
itself. If y2 and y1 in Rk are such that y2−δf (t, y2, ZM (t)) = y1−δf (t, y1, ZM (t)).
Then

|y2 − y1|2 = 〈y2 − y1, δf (t, y2, ZM (t)) − δf (t, y1, ZM (t))〉 ≤ δC1 |y2 − y1|2 ,

and hence y2 = y1. It follows that the continuous mapping y → y−δf (t, y, ZM (t))
has a continuous inverse. Denote this inverse by (I − δft,M )−1. Moreover, from

Proposition 4.8 it follows that the mapping y → f
(
t, (I − δft,M )−1

y, ZM(t)
)

is Lipschitz continuous with Lipschitz constant δ−1 where δ > 0 is such that
0 < 2δC1 < 1. The remaining assertions in Corollary 4.9 are consequences of
Theorem 4.5 where the Lipschitz condition in (4.8) was used with δ−1 instead of
C1. This establishes the proof of Corollary 4.9. �

4.2. Remark. The surjectivity property of the mapping y → y − δf (s, y, ZM (s))
follows from Theorem 1 in [10]. The authors use a homotopy argument to prove
this theorem for C1 = 0. Upon replacing f (t, y, ZM(t)) with

fC1 (t, y, ZM (t)) = etC1f
(
t, e−tC1y, e−tC1ZM (t)

)
− C1y

the result follows in our version: see Theorem 4.11. An elementary proof of The-
orem 1 in [10] can be found for a continuously differentiable function in Hairer
and Wanner [13]: see Theorem 14.2 in Chapter IV. The author is grateful to Karel
in’t Hout (University of Antwerp) for pointing out Runge-Kutta type results and
these references.

Proof of Proposition 4.7. The proof of the uniqueness part follows from Corollary
4.4.

Fix ξ ∈ L2
(
Ω, F0

T , P
)
, and let the martingale Mn−1 ∈ M2 be given. Then by

hypothesis there exists a pair (Yn, Mn) ∈ S2 × M2 which satisfies:

Yn(t) = ξ +
∫ T

t

f
(
s, Yn(s), ZMn−1(s)

)
ds + Mn(t) − Mn(T ). (4.19)

Another use of this hypothesis yields the existence of a pair (Yn+1, Mn+1) ∈ S2 ×
M2 which again satisfies (4.19) with n + 1 instead of n. Then it can be proved
that the sequence (Yn, Mn) is a Cauchy sequence in the space S2 ×M2. Again the
Burkholder-Davis-Gundy inequality with p = 1

2 (see (4.2)) is required. �

4.10. Proposition. Let the notation and hypotheses be as in Theorem 4.6. Let for
δ > 0 with 2δC1 < 1 the processes Yδ, Ỹδ ∈ S2 and the martingale Mδ ∈ M2 be
such that the equalities of (4.18) in Corollary 4.9 are satisfied. Then the family{

(Yδ, Mδ) : 0 < δ <
1

2C1

}
converges in the space S2 × M2 if δ decreases to 0,

provided that the terminal value ξ = Yδ(T ) is given.
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Let (Y, M) be the limit in the space S2 × M2. In fact from the proof of
Proposition 4.10 it may be deduced that the speed of convergence is O(δ) provided
that ‖Yδ2(T ) − Yδ1(T )‖L2(Ω,F0

T ,P) = O (|δ2 − δ1|).

Outline of a proof of Proposition 4.10. Let C1 be the constant which occurs in
inequality (4.14) in Theorem 4.6, and fix 0 < δ2 < δ1 < (2C1)

−1. Our estimates
give quantitative bounds in case we restrict the parameters δ, δ1 and δ2 to the
interval

(
0, (4C1 + 4)−1

)
. From the equalities in (4.18) we infer

Yδ(t) = Ỹδ(t) − δf̃δ(t) = Yδ(T ) +
∫ T

t

f̃δ(s)ds + Mδ(t) − Mδ(T ). (4.20)

First we prove that the family
{

(Yδ, Mδ) : 0 < δ < (4C1 + 4)−1
}

is bounded in the

space S2 × M2. Then it can also be shown that this family converges in the space
S2 ×M2 as δ ↓ 0. The continuity of the functions y → f (s, y, ZM (s)), y ∈ Rk. The
fact that the convergence of the family (Yδ, Mδ), 0 < δ ≤ (4C1 + 4)−1 is of order
δ, as δ ↓ 0, can be shown as well. �
Proof of Theorem 4.6. The proof of the uniqueness part follows from Corollary
4.4. The existence is a consequence of Theorem 4.5, Proposition 4.10 and Corollary
4.9. �

The following result shows that in the monotonicity condition we may always
assume that the constant C1 can be chosen as we like provided in Theorem 4.11
we replace the equation in (1) by the one in (2) and adapt its solution.

4.11. Theorem. Let the pair (Y, M) belong to S2
(
[0, T ], Rk

)
×M2

(
[0, T ], Rk

)
. Fix

λ ∈ R and put (Yλ(t), Mλ(t)) =
(

eλtY (t), Y (0) +
∫ t

0

eλsdM(s)
)

. Then the pair

(Yλ, Mλ) belongs to S2 × M2. Moreover, the following assertions are equivalent:
1. The pair (Y, M) ∈ S2 × M2 satisfies Y (0) = M(0) and

Y (t) = Y (T ) +
∫ T

t

f (s, Y (s), ZM (s)) ds + M(t) − M(T ).

2. The pair (Yλ, Mλ) satisfies Yλ(0) = Mλ(0) and

Yλ(t) = Yλ(T ) +
∫ T

t

eλsfλ

(
s, e−λsYλ(s), e−λsZMλ

(s)
)
ds (4.21)

where fλ(s, y, z) = eλsf
(
s, e−λsy, e−λsz

)
− λy.

4.3. Remark. If the function y →f (s,y,z) has monotonicity constant C1, then the
function y →fλ(s,y,z) has monotonicity constant C1−λ. It follows that by refor-
mulating the problem one always may assume that the monotonicity constant is 0.

Proof of Theorem 4.11. First notice the equality e−λsZMλ
(s) = ZM (s): see Re-

mark 2.7. The equivalence of (1) and (2) follows by considering the equalities in
(1) and (2) in differential form. �
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5. Backward stochastic differential equations and Markov processes

In this section the coefficient f of our BSDE is a mapping from [0, T ]× E × Rk ×(
M2

)∗ to Rk. Theorem 5.1 below is the analogue of Theorem 4.6 with a Markov
family of measure spaces {Pτ,x : (τ, x) ∈ [0, T ]× E} instead of a single measure
space. Put

fn(s) = f (s, X(s), Yn(s), ZMn(s)) ,

and suppose that the processes Yn(s) and ZMn(s) only depend of the state-time
variable (s, X(s)). Suppose that for every f ∈ C0(E) the function (τ, x, t) →
Eτ,x [f (X(t))] is continuous on the set {(τ, x, t) ∈ [0, T ]× E × [0, T ] : τ ≤ t ≤ T }.
Then it can be proved that the Markov process

{(Ω, Fτ
T , Pτ,x) , (X(t) : T ≥ t ≥ 0) , (E, E)} (5.1)

has left limits and is right-continuous: see, e.g., Theorem 2.22 in [12], and Proposi-
tion 2.6 in Section 1. Suppose that the Pτ,x-martingale t → N(t)−N(τ), t ∈ [τ, T ],
belongs to the space M2

(
[τ, T ], Pτ,x, Rk

)
(see Definition 2.10). It follows that the

quantity ZM (s)(N) is measurable with respect to σ
(
Fs

s+, N(s+)
)
: see equalities

the (5.4), (5.5) and (5.6) below. The following iteration formulas play an important
role:

Yn+1(t) = Et,X(t) [ξ] +
∫ T

t

Et,X(t) [fn(s)] ds, and

Mn+1(t) = Et,X(t) [ξ] +
∫ t

0

fn(s)ds +
∫ T

t

Et,X(t) [fn(s)] ds.

Then the processes Yn+1 and Mn+1 are related as follows:

Yn+1(T ) +
∫ T

t

fn(s)ds + Mn+1(t) − Mn+1(T ) = Yn+1(t).

Moreover, by the Markov property, the process

t → Mn+1(t) − Mn+1(τ)

= Eτ,X(τ)

[
ξ +

∫ T

τ

fn(s)ds
∣∣ Fτ

t

]
− Eτ,X(τ)

[
ξ +

∫ T

τ

fn(s)ds

]
is a Pτ,x-martingale on the interval [τ, T ] for every (τ, x) ∈ [0, T ]× E.

In Theorem 5.1 below we replace the Lipschitz condition (4.8) in Theorem
4.5 for the function Y (s) → f (s, Y (s), ZM (s)) with the (weaker) monotonicity
condition (5.7) for the function Y (s) → f (s, X(s), Y (s), ZM (s)). Sometimes we
write y for the variable Y (s) and z for ZM (s). Notice that the functional ZMn(t)
only depends on Ft

t+ :=
⋂

h:T≥t+h>t σ (X(t + h)) and that this σ-field belongs
the Pt,x-completion of σ (X(t)) for every x ∈ E. This is the case, because by
assumption the process s → X(s) is right-continuous at s = t: see Proposition 2.7.
In order to show this we have to prove equalities of the following type:

Es,x

[
Y

∣∣ Fs
t+

]
= Et,X(t) [Y ] , Ps,x-almost surely, (5.2)
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for all bounded stochastic variables which are Ft
T -measurable. By the monotone

class theorem and density arguments the proof of (5.2) reduces to showing these
equalities for Y =

∏n
j=1 fj (tj , X (tj)), where t = t1 < t2 < · · · < tn ≤ T , and the

functions x → fj (tj , x), 1 ≤ j ≤ n, belong to the space C0(E). Next suppose that
the bounded stochastic variable Y is measurable with respect to Ft

t+. From (5.2)
with s = t it follows that Y = Et,X(t) [Y ], Pt,x-almost surely. Hence, essentially
speaking, such a variable Y only depends on the space-time variable (t, X(t)).
Since X(t) = x Pt,x-almost surely it follows that the variable Et,x

[
Y

∣∣ Ft
t+

]
is

Pt,x-almost equal to the deterministic constant Et,x [Y ]. A similar argument shows
the following result. Let 0 ≤ s < t ≤ T , and let Y be a bounded Fs

T -measurable
stochastic variable. Then the following equality holds Ps,x-almost surely:

Es,x

[
Y

∣∣ Fs
t+

]
= Es,x

[
Y

∣∣ Fs
t

]
(5.3)

In particular it follows that an Fs
t+-measurable bounded stochastic variable co-

incides with the Fs
t -measurable variable Es,x

[
Y

∣∣ Fs
t

]
Ps,x-almost surely for all

x ∈ E. Hence (5.3) implies that the σ-field Fs
t+ is contained in the Ps,x-completion

of the σ-field Fs
t .

In addition, notice that the functional ZM (s) is defined by

ZM (s)(N) = lim
t↓s

〈M, N〉 (t) − 〈M, N〉 (s)
t − s

(5.4)

where

〈M, N〉 (t)−〈M, N〉 (s)= lim
n→∞

2n−1∑
j=0

(M (tj+1,n) − M (tj,n)) (N (tj+1,n) − N (tj,n)) .

(5.5)
For this the reader is referred to the remarks 2.7, 2.8, and to formula (2.22). The
symbol tj,n represents the real number tj,n = s + j2−n(t − s). The limit in (5.5)
exists Pτ,x-almost surely for all τ ∈ [0, s]. As a consequence the process ZM (s)
is Fτ

s+-measurable for all τ ∈ [0, s]. It follows that the process N → ZM (s)(N)
is Pτ,x-almost surely equal to the functional N → Eτ,x

[
ZM (s)(N)

∣∣ σ (Fτ
s , N(s))

]
provided that ZM (s)(N) is σ

(
Fτ

s+, N(s+)
)
-measurable. If the martingale M is

of the form M(s) = u (s, X(s)) +
∫ s

0 f(ρ)dρ, then the functional ZM (s)(N) is
automatically σ

(
Fs

s+, N(s+)
)
-measurable. It follows that, for every τ ∈ [0, s], the

following equality holds Pτ,x-almost surely:

Eτ,x

[
ZM (s)(N)

∣∣ σ
(
Fτ

s+, N(s+)
)]

= Eτ,x

[
ZM (s)(N)

∣∣ σ (Fτ
s , N(s+))

]
. (5.6)

In the next Theorem 5.1 the filtered probability space
(
Ω, F,

(
F0

t

)
t∈[0,T ]

, P
)

of
Section 4 is replaced with a Markov family of measure spaces(

Ω, Fτ
T , (Fτ

t )τ≤t≤T , Pτ,x

)
, (τ, x) ∈ [0, T ]× E.
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Its proof follows the lines of the proof of Theorem 4.6: it will not be given here. At
the relevant places the measure Pτ,x replaces P and f (s, Y (s), ZM (s)) is replaced
with the coefficient f (s, X(s), Y (s), ZM (s)).

5.1. Theorem. Let f : [0, T ]×E ×Rk ×
(
M2

)∗ → Rk be monotone in the variable
y and Lipschitz in z. More precisely, suppose that there exist finite constants C1

and C2 such that for any two pairs of processes (Y, M) and (U, N) in the space
S2

(
[0, T ], Rk

)
× M2

(
[0, T ], Rk

)
the following inequalities hold for all 0 ≤ s ≤ T :

〈Y (s) − U(s), f (s, X(s), Y (s), ZM (s)) − f (s, X(s), U(s), ZM (s))〉
≤ C1 |Y (s) − U(s)|2 , (5.7)

|f (s, X(s), Y (s), ZM (s)) − f (s, X(s), Y (s), ZN (s))|

≤ C2

(
d

ds
〈M − N, M − N〉 (s)

)1/2

, (5.8)

and

|f (s, X(s), Y (s), 0)| ≤ f (s, X(s)) + K |Y (s)| . (5.9)

Fix (τ, x) ∈ [0, T ] × E and let Y (T ) = ξ ∈ L2
(
Ω, Fτ

T , Pτ,x; Rk
)

be given. In

addition, suppose Eτ,x

[∫ T

τ

∣∣f (s, X(s))
∣∣2 ds

]
< ∞. Then there exists a unique pair

(Y, M) ∈ S2
(
[τ, T ], Pτ,x, Rk

)
× M2

(
[τ, T ], Pτ,x, Rk

)
with Y (τ) = M(τ) such that

Y (t) = ξ +
∫ T

t

f (s, X(s), Y (s), ZM (s)) ds + M(t) − M(T ). (5.10)

Next let ξ = ET,X(T ) [ξ] ∈
⋂

(τ,x)∈[0,T ]×E L2 (Ω, Fτ
T , Pτ,x) be given. Suppose that

the functions (τ, x) → Eτ,x

[
|ξ|2

]
and (τ, x) → Eτ,x

[∫ T

τ

∣∣f (s, X(s))
∣∣2 ds

]
are lo-

cally bounded. Then there exists a unique pair

(Y, M) ∈ S2
loc,unif

(
[τ, T ], Rk

)
× M2

loc,unif

(
[τ, T ], Rk

)
with Y (0) = M(0) such that equation (5.10) is satisfied.

Again let ξ = ET,X(T ) [ξ] ∈ ⋂
(τ,x)∈[0,T ]×E L2 (Ω, Fτ

T , Pτ,x) be given. Suppose

that the functions (τ, x) → Eτ,x

[
|ξ|2

]
and (τ, x) → Eτ,x

[∫ T

τ

∣∣f (s, X(s))
∣∣2 ds

]
are

uniformly bounded. Then there exists a unique pair

(Y, M) ∈ S2
unif

(
[τ, T ], Rk

)
× M2

unif

(
[τ, T ], Rk

)
with Y (0) = M(0) such that equation (5.10) is satisfied.

The notations

S2
(
[τ, T ], Pτ,x, Rk

)
= S2

(
Ω, Fτ

T , Pτ,x; Rk
)

and

M2
(
[τ, T ], Pτ,x, Rk

)
= M2

(
Ω, Fτ

T , Pτ,x; Rk
)
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S2
loc,unif

(
[0, T ], Rk

)
= S2

loc,unif

(
Ω, Fτ

T , Pτ,x; Rk
)
, and

M2
loc,unif

(
[0, T ], Rk

)
= M2

loc,unif

(
Ω, Fτ

T , Pτ,x; Rk
)
,

S2
unif

(
[0, T ], Rk

)
= S2

unif

(
Ω, Fτ

T , Pτ,x; Rk
)
, and

M2
unif

(
[0, T ], Rk

)
= M2

unif

(
Ω, Fτ

T , Pτ,x; Rk
)

are explained in Definitions 2.9 and 2.10 respectively. The probability measure
Pτ,x is defined on the σ-field Fτ

T . Since the existence properties of the solutions
to backward stochastic equations are based on explicit inequalities, the proofs
carry over to Markov families of measures. Ultimately these inequalities imply
that boundedness and continuity properties of the function (τ, x) → Eτ,x [Y (t)],
0 ≤ τ ≤ t ≤ T , depend the continuity of the function x → ET,x [ξ], where ξ is a
terminal value function which is supposed to be σ (X(T ))-measurable. In addition,
in order to be sure that the function (τ, x) → Eτ,x [Y (t)] is continuous, functions of
the form (τ, x) → Eτ,x [f (t, u (t, X(t)) , ZM (t))] have to be continuous, whenever
the following mappings

(τ, x) → Eτ,x

[∫ T

τ

|u(s, X(s))|2 ds

]
and (τ, x) → Eτ,x [〈M, M〉 (T ) − 〈M, M〉]

represent finite and continuous functions.
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[4] V. Bally, É Pardoux, and L. Stoica, Backward stochastic differential equations asso-
ciated to a symmetric Markov process, Potential Analysis 22 (2005), no. 1, 17–60.

[5] M.T. Barlow, R.F. Bass, and T. Kumagai, Note on the equivalence of parabolic
Harnack inequalities and heat kernel estimates,
http://www.math.ubc.ca/˜barlow/preprints/, 2005.
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Abstract. Let a ∈ W 1,∞(0, 1), a(x) ≥ α > 0, b, c ∈ L∞(0, 1) and consider the
differential operator A given by Au = au′′ + bu′ + cu. Let αj , βj (j = 0, 1)
be complex numbers satisfying (αj , βj) �= (0, 0) for j = 0, 1. We prove that a
realization of A with the boundary conditions

αju
′(j) + βju(j) = 0, j = 0, 1,

generates a cosine family on Lp(0, 1) for every p ∈ [1,∞). This result is
obtained by an explicit calculation, using simply d’Alembert’s formula, of the
solutions in the case of the Laplace operator.
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1. Introduction

We study well-posedness of the linear, one-dimensional wave equation with initial
and boundary conditions given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

utt = a(x)uxx + b(x)ux + c(x)u =: Au, x ∈ (0, 1), t ≥ 0,

u(0, x) = u0(x), x ∈ (0, 1),
ut(0, x) = u1(x), x ∈ (0, 1),
α0ux(t, 0) + β0u(t, 0) = 0, t ≥ 0,

α1ux(t, 1) + β1u(t, 1) = 0, t ≥ 0.

(1.1)

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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We suppose that the coefficients b and c belong to L∞(0, 1) and that a ∈ W 1,∞(0, 1)
satisfies a(x) ≥ α > 0 for some constant α. The initial values u0 and u1 are given in
some function spaces to be made precise, and the constants αj and βj are complex
numbers satisfying (αj , βj) �= (0, 0) for j = 0, 1.

The case αj �= 0 corresponds to Neumann or Robin boundary conditions.
Dirichlet boundary conditions are represented by the choice αj = 0 (while then
βj �= 0). The two boundary conditions at the end points of the interval (0, 1) may
be of different type, that is, we allow also mixed boundary conditions.

The aim of this paper is to prove well-posedness of the problem (1.1) in
Lp(0, 1) for every p ∈ [1,∞) and for every type of proposed boundary conditions.
The well-posedness on a space of continuous functions will be also investigated.
Recall that the problem (1.1) is well posed in some Banach function space if for
every choice of initial values u0, u1 in that Banach space there exists a unique
mild solution; see [1] or Section 2 below for precise definitions and equivalent
formulations of well-posedness.

It is well known that the wave equation with Au = uxx and with Dirichlet
boundary conditions is well posed on C0((0, 1)); see [2], [6], [14], [16]. For more
general second-order differential operators with Dirichlet boundary conditions on
C0((0, 1)) we refer to [2] or [16]. Generation results for second-order differential
operators on W 1,p(0, 1) resp. Lp(0, 1) (1 ≤ p < ∞) with Dirichlet or on W 1,p(0, 1)
resp. Lp(0, 1)×C2 with Wentzell type boundary conditions are contained in [3] resp.
[9], [13] and [17]. Note that in the case of the Laplace operator with Dirichlet or
Neumann boundary conditions, it is a classical fact that solutions can be computed
explicitly by considering first odd (resp. even) and then 2-periodic extensions of
the initial values and by using d’Alembert’s formula. This fact was mainly used in
the above mentioned articles. In [8], solutions in Lp(0, 1) were obtained in terms
of Fourier series. Their summability in Lp was derived from Gaussian estimates
with the advantage that the technique generalizes to the higher-dimensional case.

As in the literature cited above, our approach to proving well-posedness is
based on two ideas: first, in the case of the Laplace operator, we will obtain an
explicit local solution of (1.1) by simply using d’Alembert’s formula and by solving
suitable ordinary differential equations; that is, we show that d’Alembert’s formula
is also applicable when considering Robin boundary conditions. Second, we show
that the general case follows from the case of the Laplace operator by a similarity
argument and by perturbation. Such similarity and perturbation arguments were
used in [2] for Dirichlet boundary conditions, but see also [4, Proof of Theorem
4.3, p. 387] (for the similarity argument) and [3], [9].

Although we are able to treat all types of proposed boundary conditions, we
concentrate on the case of Robin (and mixed) boundary conditions.

The paper is organized as follows. In Section 2, we recall some well-known
results on cosine families and we state our main results. In Section 3, we investigate
explicitly the Laplace operator. We show that a realization of the Laplace operator
with Robin boundary conditions generates a cosine function in Lp(0, 1) and in
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C([0, 1]). We also obtain an explicit representation of the associated cosine function
for small times. Section 4 contains the proofs of the main results. Finally, in Section
5, we show that the results obtained on the interval (0, 1) can be extended to
unbounded intervals.

2. Preliminaries and results

If X is a Banach space, then we denote by L(X) the space of all bounded linear
operators on X .

In a Banach space X , a cosine family is a strongly continuous family
(C(t))t∈R ⊂ L(X) which satisfies C(0) = I and the abstract functional equation
known as d’Alembert’s equation:

C(t + s) + C(t − s) = 2C(t)C(s), t, s ∈ R.

The infinitesimal generator A of a cosine family (C(t))t∈R is defined by:

D(A) :=
{

x ∈ X, lim
t→0

C(t)x − x

t2
exists

}
,

Ax := 2 lim
t→0

C(t)x − x

t2
for x ∈ D(A).

It is known that A is closed and densely defined. The operator family (S(t))t∈R

given by

S(t) :=
∫ t

0

C(s)ds, t ∈ R,

is called the associated sine family.

The interest in cosine and sine families stems from the study of the abstract
second-order Cauchy problem{

ü(t) = Au(t), t ∈ R,

u(0) = u0, u̇(0) = u1.
(2.1)

In fact, a closed, densely defined, linear operator A on a Banach space X is the
generator of a cosine family if and only if for every u0, u1 ∈ X the second-order
problem (2.1) admits a unique mild solution u ∈ C(R; X) which by definition is a
function satisfying

∫ t

0 (t − s)u(s) ds ∈ D(A) and

u(t) = u0 + tu1 + A

∫ t

0

(t − s)u(s) ds for every t ∈ R.

The unique mild solution is given by u(t) = C(t)u0 + S(t)u1.

The following fundamental characterization of the generation of a cosine fam-
ily was proved by Kisyński (see [1, Theorem 3.14.11], [5, Theorem 1.3, Chapter
III] or [11]).
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Theorem 2.1. Let X be a Banach space, and let A be a closed linear operator in
X. Then the following assertions are equivalent:

(i) The operator A is the generator of a cosine family (C(t))t∈R.
(ii) There exists a Banach space V such that D(A) ⊂ V ⊂ X with continuous

embeddings (where D(A) is equipped with the graph norm) and such that

the operator A :=
(

0 I
A 0

)
with domain D(A) × V generates a strongly

continuous group in V × X.
The Banach space V is uniquely determined by (ii). The space V ×X is called the
phase space associated with (C(t))t∈R.

We note that if A generates a cosine family on X with phase space V ×X , then
for every u0 ∈ D(A) and u1 ∈ V the second-order problem (2.1) admits a unique
classical solution u, that is, the mild solution is twice continuously differentiable
(see, e.g., [1, Chapter 3]). For more details on cosine functions and the second-order
Cauchy problem, we refer to [1], [4], [5], [7], [10], [11] and [15].

Our main results of this paper show that the wave equation (1.1) is well
posed in the scale of the Lp(0, 1) spaces (1 ≤ p < ∞) and in a space of continuous
functions, no matter the boundary conditions. In the formulation of our results,
however, we exclude the case of pure Dirichlet boundary conditions which has
already been studied in the literature. One will see from our proofs that the case
of Dirichlet boundary conditions is even easier to study.

In our first main result we state well-posedness in Lp(0, 1) for every p ∈ [1,∞).

Theorem 2.2. Let αj, βj (j = 0, 1) be complex numbers satisfying (αj , βj) �= (0, 0).
Let a ∈ W 1,∞(0, 1) be such that a(x) ≥ α > 0 for every x ∈ [0, 1], and let b,
c ∈ L∞(0, 1). Let 1 ≤ p < ∞.
(a) (Robin and Neumann boundary conditions) Assume that α0, α1 �= 0. Then

the operator AR,p defined by

D(AR,p) := {u ∈ W 2,p(0, 1) : αju
′(j) + βju(j) = 0, j = 0, 1},

AR,pu := au′′ + bu′ + cu,

generates a cosine family on Lp(0, 1) with phase space W 1,p(0, 1) × Lp(0, 1).
(b) (Mixed boundary conditions) Assume that α0 = 0 and α1 �= 0. Then the

operator AM,p defined by

D(AM,p) := {u ∈ W 2,p(0, 1) : u(0) = 0 and α1u
′(1) + β1u(1) = 0},

AM,pu := au′′ + bu′ + cu,

generates a cosine function on Lp(0, 1) with phase space W0×Lp(0, 1), where
W0 := {u ∈ W 1,p(0, 1) : u(0) = 0}.
The second main result concerns generation of cosine functions on the space

of continuous functions. Compared to Theorem 2.2, we only require more regularity
of the coefficients a, b and c.
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Theorem 2.3. Let αj, βj (j = 0, 1) be complex numbers satisfying (αj , βj) �= (0, 0).
Let a ∈ C1([0, 1]) be such that a(x) ≥ α > 0 for every x ∈ [0, 1] and let b,
c ∈ C([0, 1]).

(a) (Robin and Neumann boundary conditions) Assume that α0, α1 �= 0. Then
the operator AR,∞ defined by

D(AR,∞) := {u ∈ C2([0, 1]) : αju
′(j) + βju(j) = 0, j = 0, 1},

AR,∞u := au′′ + bu′ + cu,

generates a cosine function on C([0, 1]) with phase space C1([0, 1])×C([0, 1]).
(b) (Mixed boundary conditions) Assume that α0 = 0 and α1 �= 0. Then the

operator AM,∞ defined by

D(AM,∞) := {u ∈ C2([0, 1]) : u(0) = a(0)u′′(0) + b(0)u′(0) = 0
and α1u

′(1) + β1u(1) = 0},
AM,∞u := au′′ + bu′ + cu,

generates a cosine function on X0 := {u ∈ C([0, 1]) : u(0) = 0} with phase
space (C1[0, 1] ∩ X0) × X0.

3. The case of the Laplacian

In this section, we investigate explicitly the Laplace operator on the interval, that
is, we will prove our main theorems in the case a = 1 and b, c = 0. In this
particular situation, we write ΔR,p instead of AR,p, so that D(ΔR,p) = D(AR,p)
and ΔR,pu = u′′. Similarly, we write ΔM,p instead of AM,p.

We first concentrate on Robin or Neumann boundary conditions.

Lemma 3.1 (Robin and Neumann boundary conditions). Assume α0, α1 �= 0, and
let 1 ≤ p ≤ ∞. Let u0 ∈ D(ΔR,p) and u1 ∈ W 1,p(0, 1) (u1 ∈ C1([0, 1]) in case
p = ∞) be given, and define the extensions

w0(s) :=

⎧⎪⎪⎨⎪⎪⎩
u0(−s) + 2 β0

α0
e
− β0

α0
s ∫ −s

0 e
− β0

α0
τ
u0(τ) dτ, s ∈ [−1, 0),

u0(s), s ∈ [0, 1],

u0(2 − s) − 2 β1
α1

e−
β1
α1

(s−1) ∫ s−1

0
e

β1
α1

τu0(1 − τ) dτ, s ∈ (1, 2],
(3.1)

and

w1(s) :=

⎧⎪⎪⎨⎪⎪⎩
u1(−s) + 2 β0

α0
e
− β0

α0
s ∫ −s

0 e
− β0

α0
τ
u1(τ) dτ, s ∈ [−1, 0),

u1(s), s ∈ [0, 1],

u1(2 − s) − 2 β1
α1

e−
β1
α1

(s−1) ∫ s−1

0
e

β1
α1

τu1(1 − τ) dτ, s ∈ (1, 2].
(3.2)
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For every t ∈ [0, 1] and x ∈ [0, 1] we set

u(t)(x) :=
1
2
(w0(x + t) + w0(x − t)) +

1
2

∫ x+t

x−t

w1(τ) dτ. (3.3)

Then

u ∈ C([0, 1]; D(ΔR,p)) ∩ C1([0, 1]; W 1,p(0, 1)) ∩ C2([0, 1]; Lp(0, 1)) if 1 ≤ p < ∞,

u ∈ C([0, 1]; D(ΔR,p)) ∩ C1([0, 1]; C1([0, 1])) ∩ C2([0, 1]; C([0, 1])) if p = ∞,

and u is a classical solution of the second-order problem{
ü(t) = ΔR,pu(t), t ∈ [0, 1],
u(0) = u0, u̇(0) = u1.

(3.4)

Proof. In this proof, we will sometimes identify u with a function depending on
the two variables t and x. There will be no danger of confusion. We fix p ∈ [1,∞).
The proof in the case p = ∞ is very similar and requires only an appropriate
change of the spaces.

First, we assume that u1 = 0, so that w1 = 0.
By assumption, u0 ∈ W 2,p(0, 1). This implies that w0 is of class W 2,p on

each of the intervals (−1, 0), (0, 1) and (1, 2). Since w0 is in addition continuous,
we find w0 ∈ W 1,p(−1, 2).

By assumption, u0 ∈ D(ΔR,p), which implies α0u
′
0(0) + β0u0(0) = 0 and

α1u
′
0(1) + β1u0(1) = 0. Using these two equalities, it is then easy to check that

w′
0 is continuous and therefore w0 ∈ W 2,p(−1, 2). As a consequence, by the

strong continuity of the left and right shift semigroups in Lp, W 1,p, and W 2,p,
u ∈ C([0, 1]; W 2,p(0, 1)) ∩ C1([0, 1]; W 1,p(0, 1)) ∩ C2([0, 1]; Lp(0, 1)).

It is also easy to check that on the interval [−1, 0] the function w0 is the
unique solution of the linear first-order initial value problem

α0(u′
0(t) + w′

0(−t)) + β0 (u0(t) + w0(−t)) = 0, t ∈ [0, 1],
w0(0) = u0(0).

Since w0 = u0 on [0, 1], this implies

α0ux(t, 0) + β0u(t, 0) = 0 for every t ∈ [0, 1].

Similarly, on the interval [1, 2] the function w0 is the unique solution of

α1(u′
0(1 − t) + w′

0(1 + t)) + β1(u0(1 − t) + w0(1 + t)) = 0, t ∈ [0, 1],
w0(1) = u0(1).

This implies
α1ux(t, 1) + β1u(t, 1) = 0 for every t ∈ [0, 1].

Hence, for every t ∈ [0, 1] we have u(t) ∈ D(ΔR,p) and thus u ∈ C([0, 1]; D(ΔR,p)).
Next, we assume that u0 = 0, so that w0 = 0.



The Wave Equation with Robin Boundary Conditions 119

By assumption, u1 ∈ W 1,p(0, 1). This implies that w1 is of class W 1,p on
each of the intervals (−1, 0), (0, 1) and (1, 2). Since w1 is in addition contin-
uous, we find w1 ∈ W 1,p(−1, 2). As a consequence, u ∈ C([0, 1]; W 2,p(0, 1)) ∩
C1([0, 1]; W 1,p(0, 1)) ∩ C2([0, 1]; Lp(0, 1)).

It is straightforward to check that on the interval [−1, 0] the function w1 is
the unique solution of the linear first-order initial value problem

α0(u1(t) − w1(−t)) + β0

(∫ t

0

u1(τ) dτ +
∫ 0

−t

w1(τ) dτ

)
= 0, t ∈ [0, 1],

w1(0) = u1(0).

Since w1 = u1 on [0, 1], this implies

α0ux(t, 0) + β0u(t, 0) = 0 for every t ∈ [0, 1].

Similarly, on the interval [1, 2] the function w1 is the unique solution of

α1(u1(1 − t) − w1(1 + t)) + β1

(∫ 1

1−t

u1(τ) dτ +
∫ 1+t

1

w1(τ) dτ

)
= 0, t ∈ [0, 1],

w1(1) = u1(1).

This implies
α1ux(t, 1) + β1u(t, 1) = 0 for every t ∈ [0, 1].

Hence, for every t ∈ [0, 1] we have u(t) ∈ D(ΔR,p) and thus u ∈ C([0, 1]; D(ΔR,p)).
Taking the two cases u0 ∈ D(ΔR,p) and u1 ∈ W 1,p(0, 1) together, by linearity,

we have proved the required regularity for the function u.
Formula (3.3) is nothing else than d’Alembert’s formula. It is straightforward

to see that u is a classical solution of (3.4). �

An analogous existence lemma is true for mixed Dirichlet/Robin boundary
conditions, that is, for example, when α0 = 0 and α1 �= 0. The case α0 �= 0 and
α1 = 0 is very similar.

In fact, in the analogous formulation, it suffices to assume in addition that
the initial values satisfy u0(0) = 0 and u1(0) = 0, and to replace the extensions
w0 and w1 by the following extensions

w0(s) :=

⎧⎪⎨⎪⎩
−u0(−s), s ∈ [−1, 0),

u0(s), s ∈ [0, 1],

u0(2 − s) − 2 β1
α1

e−
β1
α1

(s−1) ∫ s−1

0
e

β1
α1

τu0(1 − τ) dτ, s ∈ (1, 2],

and

w1(s) :=

⎧⎪⎨⎪⎩
−u1(−s), s ∈ [−1, 0),

u1(s), s ∈ [0, 1],

u1(2 − s) − 2 β1
α1

e
− β1

α1
(s−1) ∫ s−1

0 e
β1
α1

τ
u1(1 − τ) dτ, s ∈ (1, 2].
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Remark 3.2. Lemma 3.1 includes the case of Neumann boundary conditions. It
suffices to take β0 = β1 = 0. In this case, the extensions w0 resp. w1 are even
extensions of u0 resp. u1. Clearly, also the case of mixed Robin/Neumann boundary
conditions is included (β0 = 0 and β1 �= 0, for example).

It is known that the wave equation on the interval (0, 1) with Dirichlet bound-
ary conditions can be locally solved by considering odd extensions w0 and w1 of
the initial values u0 and u1, respectively (compare the extensions w0 and w1 de-
fined above). The odd extensions to the interval (−1, 0) appear as a limiting case
in Lemma 3.1 if one assumes β0 > 0 and if one lets α0 → 0 while keeping α0

negative, and similarly for the interval (1, 2).
Global solutions in the case of Dirichlet or Neumann boundary conditions

are obtained by considering 2-periodic extensions of w0 and w1, and by using
d’Alembert’s formula. We are not trying to give explicit global solutions in the
case of Robin boundary conditions. Obviously, it does not suffice to consider 2-
periodic extensions of w0 and w1.

From the proof of Lemma 3.1, it is not difficult to see that classical solutions
of the second-order problem (3.4) which are given by d’Alembert’s formula (3.3)
(for some functions w0 and w1) are necessarily unique.

The following lemma implies uniqueness of classical solutions of (3.4) without
any further condition. Indeed, uniqueness is shown in a slightly different and more
general context. Note that classical solutions of (3.4), when considered as functions
of two variables, are weak C1 solutions of the wave equation as considered in the
following lemma.

Lemma 3.3. Assume (αj , βj) �= (0, 0) (j = 0, 1). For every u0 ∈ C1([0, 1]) and
every u1 ∈ C([0, 1]), there exists at most one function

u ∈ C1([0, 1] × [0, 1])

which is a weak solution of the wave equation utt = uxx on (0, 1) × (0, 1), that is,∫ 1

0

∫ 1

0

u (ϕtt − ϕxx) dx dt = 0 for every ϕ ∈ D((0, 1) × (0, 1)),

and which satisfies the initial and boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(0, x) = u0(x), x ∈ [0, 1],
ut(0, x) = u1(x), x ∈ [0, 1],
α0ux(t, 0) + β0u(t, 0) = 0, t ∈ [0, 1],
α1ux(t, 1) + β1u(t, 1) = 0, t ∈ [0, 1].

(3.5)

Proof. We assume that αj �= 0 (j = 0, 1), the case αj = 0 (and βj �= 0) being very
similar.

By linearity, it suffices to prove that the only solution for the initial values
u0 = u1 = 0 is the trivial solution u = 0. So we assume that u0 = u1 = 0.
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Put v := ut+ux. Then v ∈ C([0, 1]×[0, 1]), and for every ϕ ∈ D((0, 1)×(0, 1))
one has∫ 1

0

∫ 1

0

v(ϕt − ϕx) =
∫ 1

0

∫ 1

0

(ut + ux)(ϕt − ϕx)

= −
∫ 1

0

∫ 1

0

u(ϕtt − ϕtx + ϕxt − ϕxx) = −
∫ 1

0

∫ 1

0

u (ϕtt − ϕxx) = 0,

i.e., v is a continuous weak solution of the linear transport equation{
vt − vx = 0, (t, x) ∈ [0, 1] × [0, 1],
v(0, x) = 0, x ∈ [0, 1].

(3.6)

The initial value of v follows from the definition of v and the assumption that u0 =
u1 = 0. Unique solvability of the linear transport equation implies that v(t, x) = 0
for every (t, x) ∈ [0, 1] × [0, 1] satisfying t ≤ 1 − x. In particular, v(t, 0) = 0 for
every t ∈ [0, 1]. By the definition of v, this means that ut(t, 0) + ux(t, 0) = 0 for
every t ∈ [0, 1]. Using the Robin boundary condition satisfied by u, we obtain

ut(t, 0) =
β0

α0
u(t, 0) for every t ∈ [0, 1] and u(0, 0) = 0.

Hence, u(t, 0) = 0 for every t ∈ [0, 1].
Next we put w := ut − ux. Similarly as above, one shows that w ∈ C([0, 1]×

[0, 1]) is a weak solution of the transport equation wt+wx = 0, w(0, x) = 0, so that
w(t, x) = 0 for every (t, x) ∈ [0, 1]× [0, 1] satisfying t ≤ x. In particular, w(t, 1) = 0
for every t ∈ [0, 1]. By the definition of w, this means that ut(t, 1) − ux(t, 1) = 0,
and when we use again the Robin boundary condition satisfied by u, then we
obtain

ut(t, 1) = −β1

α1
u(t, 1) for every t ∈ [0, 1] and u(0, 1) = 0.

Hence, u(t, 1) = 0 for every t ∈ [0, 1].
By the definition of v, this implies

v(t, 1) = ut(t, 1) + ux(t, 1) = ut(t, 1) − β1

α1
u(t, 1) = 0 for every t ∈ [0, 1].

This boundary condition and the transport equation (3.6) imply that v = 0 on
[0, 1]× [0, 1]. By the definition of v, the function u thus solves

ut + ux = 0 on [0, 1] × [0, 1],

with boundary conditions u(0, x) = 0 and u(t, 0) = 0. Hence, u = 0. �

Lemma 3.4. Let αj, βj (j = 0, 1) be complex numbers such that (αj , βj) �= (0, 0).
Then there exists ω > 0 such that for every f ∈ Lp(0, 1) (1 ≤ p ≤ ∞) the problem

ω2u + u′′ = f on (0, 1), αju
′(j) + βju(j) = 0 for j = 0, 1, (3.7)

admits a unique solution u ∈ W 2,p(0, 1).
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Proof. Fix 1 ≤ p ≤ ∞, and let f ∈ Lp(0, 1) be given. Every solution of the ordinary
differential equation ω2u + u′′ = f is of the form

u(x) = cos(ωx)u(0) +
1
ω

sin(ωx)u′(0) +
1
ω

∫ x

0

sin(ω(x − s))f(s) ds, x ∈ [0, 1].

The free variables u(0) and u′(0) are to be determined in a unique way such that
the boundary conditions in (3.7) are satisfied.

Assume first αj �= 0 and set λj := βj

αj
. From the preceding representation of

the solution (and thus also its derivative) and from the required Robin boundary
conditions we obtain the following system to be solved:(

− cosω +
λ0

ω
sin ω

)
u(0) + u(1) =

1
ω

∫ 1

0

sin(ω(1 − s))f(s) ds,

(ω sin ω + λ0 cosω)u(0) − λ1u(1) =
∫ 1

0

cos(ω(1 − s))f(s) ds.

This system in the unknowns u(0) and u(1) is uniquely solvable if and only if

λ1 �= ω sin ω + λ0 cosω

cosω − λ0
ω sin ω

.

From this relation for λ0 and λ1 it follows easily that there exists ω > 0 with the
required property.

The case α0 = 0 or α1 = 0 is solved similarly. �

Theorem 3.5. Let αj, βj, j = 0, 1 be complex numbers verifying (αj , βj) �= (0, 0).

(a) (Robin and Neumann boundary conditions) Assume that α0, α1 �= 0. For
every 1 ≤ p < ∞, the operator ΔR,p generates a cosine function on Lp(0, 1)
with phase space W 1,p(0, 1) × Lp(0, 1).

(b) (Robin and Neumann boundary conditions) Assume that α0, α1 �= 0. The
operator ΔR,∞ generates a cosine function on C([0, 1]) with phase space
C1([0, 1]) × C([0, 1]).

(c) (Mixed boundary conditions) Assume that α0 = 0 and α1 �= 0. For every
1 ≤ p < ∞, the operator ΔM,p generates a cosine function on Lp(0, 1) with
phase space W0 × Lp(0, 1), where W0 := {W 1,p(0, 1) : u(0) = 0}.

(d) (Mixed boundary conditions) Assume that α0 = 0 and α1 �= 0. The operator
ΔM,∞ generates a cosine function on C0((0, 1]) with phase space C1([0, 1])∩
C0((0, 1]) × C0((0, 1]).

Proof. (a) Fix 1 ≤ p < ∞ and consider the operator A =
(

0 I
ΔR,p 0

)
on

W 1,p(0, 1) × Lp(0, 1) with natural domain D(A) := D(ΔR,p) × W 1,p(0, 1). The
operator A is clearly closed and densely defined. Moreover, since ΔR,p has non-
empty resolvent set by Lemma 3.4, the operator A has non-empty resolvent set.
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By Lemma 3.1 and 3.3, for every U0 =
( u0

u1

)
∈ D(ΔR,p)×W 1,p(0, 1) = D(A)

there exists a unique classical solution

u ∈ C([0, 1]; D(ΔR,p)) ∩ C1([0, 1]; W 1,p(0, 1)) ∩ C2([0, 1]; Lp(0, 1))

of the second-order Cauchy problem (3.4). As a consequence, the function

U :=
( u

u̇

)
∈ C([0, 1]; D(A)) ∩ C1([0, 1]; W 1,p(0, 1) × Lp(0, 1))

is a classical solution of the first-order Cauchy problem{
U̇ = AU, t ∈ [0, 1],
U(0) = U0.

(3.8)

Conversely, if U =
( u

v

)
is a classical solution of this latter Cauchy problem, then

u̇ = v and u is a classical solution of the second-order problem (3.4). Hence, the
solution of (3.8) is unique.

It is a standard argument which implies that the solution of (3.8) can be
extended to a unique classical solution defined on R+. Hence, by [1, Theorem
3.1.12], the operator A is the generator of a C0-semigroup. However, the operator
A is the generator of a C0-semigroup if and only if −A is the generator of a C0-

semigroup. In fact,
( u

v

)
is a solution of U̇ = AU if and only if

( u
−v

)
is a solution

of U̇ = −AU . Therefore, the operator A generates a C0-group.
By Kisynski’s theorem, the operator ΔR,p is thus the generator of a cosine

function, and the associated phase space is W 1,p(0, 1) × Lp(0, 1).
The statements (b), (c) and (d) are proved similarly. �

4. Proof of the main results

In this section we prove the main results stated in Section 2. One key is the
following lemma (compare with Step (ii) in the proof of [2, Lemma 4.2] or with
the proof of Theorem 4.3 in [4, p. 387]).

Lemma 4.1. Let αj, βj (j = 0, 1) be complex numbers such that (αj , βj) �= (0, 0).
Let a ∈ W 1,∞(0, 1) satisfy a(x) ≥ α > 0 for every x ∈ [0, 1], and assume in
addition that

∫ 1

0
1
a = 1. Let 1 ≤ p < ∞ and consider the operators Aa,p and ΔR,p

in Lp(0, 1) defined by

D(Aa,p) := {u ∈ W 2,p(0, 1) : αju
′(j) + βju(j) = 0, j = 0, 1},

Aa,pu := a (au′)′ ,
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and

D(ΔR,p) := {u ∈ W 2,p(0, 1) :
αj

a(j)
u′(j) + βju(j) = 0, j = 0, 1},

ΔR,pu := u′′.

Then Aa,p and ΔR,p are similar.

Proof. Define

ϕ(s) :=
∫ s

0

1
a(r)

dr, s ∈ [0, 1].

By the assumptions on a, the function ϕ is strictly increasing and ϕ(1) = 1. Hence,
ϕ is invertible from [0, 1] onto [0, 1]. Since a ∈ W 1,∞(0, 1), and since a is strictly
positive, we have ϕ, ϕ−1 ∈ W 2,∞(0, 1).

As a consequence, for every 1 ≤ p < ∞, the linear operator Qϕ ∈ L(Lp(0, 1))
given by

Qϕu := u ◦ ϕ

is invertible with inverse Q−1
ϕ = Qϕ−1 .

Fix 1 ≤ p < ∞. We first show that

D(QϕΔR,pQ
−1
ϕ ) = D(Aa,p). (4.1)

Let u ∈ D(QϕΔR,pQ
−1
ϕ ) = QϕD(ΔR,p). Then u = v ◦ ϕ for some v ∈ D(ΔR,p).

Since v ∈ W 2,p(0, 1) and ϕ ∈ W 2,∞(0, 1), we have u ∈ W 2,p(0, 1). Moreover, since

u′(s) = v′(ϕ(s)) · ϕ′(s) = v′(ϕ(s)) · 1
a(s)

and since ϕ(j) = j for j = 0, 1, it follows that

αju
′(j) + βju(j) =

αj

a(j)
v′(ϕ(j)) + βjv(ϕ(j)) =

αj

a(j)
v′(j) + βjv(j) = 0.

Hence, u ∈ D(Aa,p).
Conversely, let u ∈ D(Aa,p) and set v := u ◦ϕ−1. Then v ∈ W 2,p(0, 1). Since

(ϕ−1)′(x) = 1
ϕ′(ϕ−1(x)) and ϕ−1(j) = j for j = 0, 1, we have that, (ϕ−1)′(j) =

1
ϕ′(j) = a(j). Since

v′(x) = u′(ϕ−1(x)) · (ϕ−1)′(x),

it follows that for j = 0, 1,
αj

a(j)
v′(j) + βjv(j) = αju

′(ϕ−1(j)) + βju(ϕ−1(j)) = αju
′(j) + βju(j) = 0.

Hence, u ∈ D(QϕΔR,pQ
−1
ϕ ) = QϕD(ΔR,p). We have shown (4.1).

Next, we show that for u ∈ D(Aa,p), we have

QϕΔR,pQ
−1
ϕ u = Aa,pu. (4.2)
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Let u ∈ D(Aa,p). Since (ϕ−1)′(s) = a ◦ ϕ−1(s) and u ◦ ϕ−1 ∈ C1([0, 1]), we have
that for all s ∈ [0, 1],

(u ◦ ϕ−1)′(s) = u′(ϕ−1(s)) · (ϕ−1)′(s) = u′(ϕ−1(s)) · (a ◦ ϕ−1)(s)
= (a · u′) ◦ ϕ−1(s).

Since (u ◦ ϕ−1)′ ∈ W 1,p(0, 1), it follows that (u ◦ ϕ−1)′ is absolutely continuous
on (0, 1) and the classical derivative of (u ◦ ϕ−1)′ agrees almost everywhere with
the weak derivative of (u ◦ ϕ−1)′ (see [12, Theorem 1.41]). Hence, for almost all
s ∈ (0, 1),

(u ◦ ϕ−1)′′(s) =
[
(a · u′) ◦ ϕ−1

]′
=

(
a2 · u′′ + aa′u′) ◦ ϕ−1.

This implies that for every u ∈ D(Aa,p), we have

QϕΔR,pQ
−1
ϕ u = ϕ ◦ (u ◦ ϕ−1)′′ = a2u′′ + aa′ · u′ = a(au′)′ = Aa,pu. (4.3)

It follows from (4.1) and (4.2) that the operators Aa,p and ΔR,p are similar.
�

Now we are ready to give a proof our main results; for the perturbation
argument used below, see also the proof of [2, Lemma 4.2].

Proof of Theorem 2.2.
(a) Fix 1 ≤ p < ∞, assume α0, α1 �= 0, and let the operator AR,p on Lp(0, 1) be
defined as in the statement.

(i) Set ã :=
√

a. By the assumptions on a, ã ∈ W 1,∞(0, 1). Let the operator Aã,p

in Lp(0, 1) be defined by

D(Aã,p) := D(AR,p) and Aã,pu := ã(ãu′)′.

Let c =
∫ 1

0
1
ã > 0. By Lemma 4.1, the operator c2Aã,p is similar to the

operator ΔR,p defined in Lemma 4.1. By Theorem 3.5 (a), the operator ΔR,p

generates a cosine function on Lp(0, 1) with phase space W 1,p(0, 1)×Lp(0, 1).
Hence, the operator Aã,p also generates a cosine function on Lp(0, 1) with
phase space Qϕ(W 1,p(0, 1)) × Lp(0, 1) = W 1,p(0, 1) × Lp(0, 1) (the constant
c2 does not change the generation property).

(ii) By the definition of AR,p and Aã,p, for every u ∈ D(AR,p)

AR,pu = au′′ + bu′ + cu = Aã,pu − (ãã′ − b)u′ + cu.

Define BR,p : W 1,p(0, 1) → Lp(0, 1) by

BR,pu := −(ãã′ − b)u′ + cu, u ∈ W 1,p(0, 1).

The operator BR,p is clearly bounded and AR,pu = Aã,pu+BR,pu. Since Aã,p

generates a cosine function on Lp(0, 1) with phase space W 1,p(0, 1)×Lp(0, 1),
it follows from [1, Corollary 3.14.13] that AR,p also generates a cosine function
on Lp(0, 1) with phase space W 1,p(0, 1) × Lp(0, 1).

(b) The proof of this part is similar to the proof of the first part by using Lemma
4.1 and Theorem 3.5 (c). �
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Proof of Theorem 2.3. The proof of Theorem 2.3 is similar to the proof of Theorem
2.2. One proves, for example, that the operators Aa,∞ and ΔR,∞ on C([0, 1])
given by

D(Aa,∞) := {u ∈ C2[0, 1] : αju
′(j) + βju(j) = 0, j = 0, 1},

Aa,∞u := a (au′)′ ,

and

D(ΔR,∞) := {u ∈ C2[0, 1] :
αj

a(j)
u′(j) + βju(j) = 0, j = 0, 1},

ΔR,∞u := u′′,

are similar if a ∈ C1([0, 1]) and if
∫ 1

0
1
a = 1. Then one proceeds as in the proof of

Theorem 2.2, using now Theorem 3.5 (b) or (d). �

5. Second-order elliptic operators on unbounded intervals

We remark that our generation results remain true if the interval (0, 1) is replaced
by the unbounded interval (0,∞), that is, if one considers the following wave
equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

utt = a(x)uxx + b(x)ux + c(x)u, x ∈ (0,∞), t ≥ 0
u(0, x) = u0(x), x ∈ (0,∞),
ut(0, x) = u1(x), x ∈ (0,∞),
α0ux(t, 0) + β0u(t, 0) = 0, t ≥ 0.

(5.1)

Here α0 and β0 are complex numbers. We will concentrate on Robin boundary
conditions and will therefore assume α0 �= 0, knowing that this case also includes
the case of Neumann boundary conditions.

By following our approach in the previous sections, that is, by solving explic-
itly the above wave equation in the case of the Laplace operator, and by a similarity
and perturbation argument, we obtain the following result which, in the case of
the Laplace operator, contains also global norm estimates on the corresponding
cosine family.

Theorem 5.1. Let α0, β0 be complex numbers such that α0 �= 0. Let a ∈ W 1,∞(0,∞)
be such that a(x) ≥ α > 0 for every x ≥ 0 and some constant α, and let b,
c ∈ L∞(0,∞). Let 1 ≤ p < ∞, and consider the operator AR,p in Lp(0,∞) de-
fined by

D(AR,p) := {u ∈ W 2,p(0,∞) : α0u
′(0) + β0u(0) = 0},

AR,pu := au′′ + bu′ + cu.

Then the following are true:
(a) The operator AR,p generates a cosine family (C(t))t∈R on Lp(0,∞) with phase

space W 1,p(0,∞) × Lp(0,∞).
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(b) Assume a = 1 and b, c = 0. If Re β0
α0

< 0, then the corresponding cosine
family (C(t))t∈R is bounded, i.e., there exists M ≥ 0 such that ‖C(t)‖ ≤ M
for every t ∈ R.

(c) Assume a = 1 and b, c = 0. If Re β0
α0

> 0, then the corresponding cosine
family is (exponentially) unbounded.

Proof. (a) Let ã :=
√

a. By considering the bijection ϕ : R+ → R+ given by

ϕ(s) :=
∫ s

0

1
ã(τ)

dτ, s ≥ 0,

and by considering the isomorphism Qϕ ∈ L(Lp(0,∞)) given by Qϕu := u◦ϕ, one
shows as in Lemma 4.1 that the operators Aã,p and ΔR,p in Lp(0,∞) given by

D(Aã,p) := {u ∈ W 2,p(0,∞) : α0u
′(0) + β0u(0) = 0},

Aã,pu := ã (ãu′)′ ,

and D(ΔR,p) := {u ∈ W 2,p(0,∞) :
α0

ã(0)
u′(0) + β0u(0) = 0},

ΔR,pu := u′′

are similar.
We show that ΔR,p is the generator of a cosine family by giving an explicit

formula for the cosine family. Assume for simplicity that a(0) = 1. Let u0 ∈
D(ΔR,p) and u1 ∈ W 1,p(0,∞) be given, and define the extensions w0 and w1 by

w0(s) :=

⎧⎨⎩ u0(−s) + 2 β0
α0

e−
β0
α0

s ∫ −s

0
e−

β0
α0

τu0(τ) dτ, s < 0,

u0(s), s ≥ 0,
(5.2)

and

w1(s) :=

⎧⎨⎩ u1(−s) + 2 β0
α0

e−
β0
α0

s ∫ −s

0
e−

β0
α0

τu1(τ) dτ, s < 0,

u1(s), s ≥ 0,

For every t ≥ 0 and every x ∈ (0,∞) we set

u(t)(x) :=
1
2
(w0(x + t) + w0(x − t)) +

1
2

∫ x+t

x−t

w1(s) ds.

Similarly as in the proof of Lemma 3.1 one shows that

u ∈ C(R+; D(ΔR,p)) ∩ C1(R+; W 1,p(0,∞)) ∩ C2(R+; Lp(0,∞)),

and that u is a classical solution of the abstract second-order problem{
ü = ΔR,pu, t ≥ 0,

u(0) = u0, u̇(0) = 0.

Uniqueness of classical solutions is shown by showing uniqueness of weak C1 so-
lutions of the wave equation utt = uxx on (0,∞) × (0,∞) with Robin boundary
conditions, as in Lemma 3.3.



128 R. Chill, V. Keyantuo and M. Warma

By passing to a first-order problem on the product space W 1,p(0,∞) ×
Lp(0,∞) and by using Kisynski’s theorem (Theorem 2.1), one deduces that ΔR,p

generates a cosine family, and the associated phase space is W 1,p(0,∞)×Lp(0,∞).
Hence, by similarity, the operator Aã,p generates a cosine family, and one

proves that the associated phase space is W 1,p(0,∞) × Lp(0,∞).
The rest of the proof follows exactly as in the proof of Theorem 2.2.

(b) If Re β0
α0

< 0, then the function s → e
β0
α0

s is integrable on R+. This
property, formula (5.2), and Young’s inequality for convolutions imply that for
every u0 ∈ D(ΔR,p) the extension w0 belongs to Lp(R) and

‖w0‖Lp(R) ≤ 2‖u0‖Lp(0,∞) + |2β0

α0
Re

α0

β0
| ‖u0‖Lp(0,∞).

Hence,

‖C(t)u0‖Lp(0,∞) = ‖1
2
(w0(·+ t)+w0(·− t))‖Lp(0,∞) ≤ ‖w0‖Lp(R) ≤ C ‖u0‖Lp(0,∞),

where C = 2 + |2 β0
α0

Re α0
β0
|. Since D(ΔR,p) is dense in Lp(0,∞), this proves that

(C(t))t∈R is bounded.

(c) Let u0(x) := e−
β0
α0

x for x ∈ (0,∞). Since Re β0
α0

> 0, it is clear that
u0 ∈ D(ΔR,p) for every 1 ≤ p < ∞. Moreover, the extension w0 defined in (5.2) is
given by

w0(s) = e−
β0
α0

s, s ∈ R.

In particular,

‖C(t)u0‖p
Lp =

1
2

∫ ∞

0

|e−
β0
α0

(x+t) + e
− β0

α0
(x−t)|p dx

=
1
2
‖u0‖p

Lp

∣∣∣e− β0
α0

t + e
β0
α0

t
∣∣∣p

→ ∞ as t → ∞.

This shows that (C(t))t∈R is (exponentially) unbounded. �

We conclude our article by formulating the theorem of generation of cosine
families in C0([0,∞)), the space of continuous functions on [0,∞) vanishing at
infinity.

Theorem 5.2. Let α0, β0 be complex numbers such that α0 �= 0. Let a ∈ C1
b ([0,∞))

be such that a(x) ≥ α > 0 for every x ≥ 0, and let b, c ∈ Cb([0,∞)). Consider the
operator AR,∞ defined on C0([0,∞)) by

D(AR,∞) := {u ∈ C2([0,∞)) : u, u′, u′′ ∈ C0([0,∞)), α0u
′(0) + β0u(0) = 0},

AR,∞u := au′′ + bu′ + cu.

Then AR,∞ generates a cosine family on C0([0,∞)).
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A similar generation result holds in Cub([0,∞)), the space of bounded and
uniformly continuous functions, if the coefficients a, a′, b and c are not only
bounded but also uniformly continuous.
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Global Smooth Solutions to a Fourth-order
Quasilinear Fractional Evolution Equation

Philippe Clément and Rico Zacher

Dedicated to the memory of Günter Lumer

Abstract. We study a quasilinear fractional evolution equation, which is of
order four in space and 1 + β in time, where β ∈ (0, 1). Under the restriction
β < 3/5 we are able to prove existence and uniqueness of global smooth
solutions. This result can be seen as the analogue of a result obtained by
Engler for a related problem of second order.
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1. Introduction

In this paper we investigate the existence and uniqueness of global smooth solutions
to the problem⎧⎪⎪⎨⎪⎪⎩

∂β
t (ut − u1) + σ(uxx)xx = f(t, x), t ∈ (0, T ], x ∈ [0, L]

u(t, 0) = u(t, L) = 0, t ∈ [0, T ]
uxx(t, 0) = uxx(t, L) = 0, t ∈ [0, T ]

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, L].

(1.1)

Here ∂β
t denotes the Riemann-Liouville fractional derivation operator of order

β ∈ (0, 1) defined by

∂β
t u(t) = ∂t

∫ t

0

g1−β(t − τ)u(τ) dτ, (1.2)

This work was partially supported by the European Community’s Human Potential Programme

[Evolution Equations for Deterministic and Stochastic Systems], contract code HPRN-CT-2002-
00281.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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where

gα(t) =
tα−1

Γ(α)
, t > 0, α > 0.

The nonlinearity σ is a smooth real-valued function satisfying the condition

0 < κ1 ≤ σ′(s) ≤ κ2, s ∈ R. (1.3)

The functions f , u0, and u1 are given data.
The corresponding second-order problem, that is,⎧⎨⎩ ∂β

t (ut − u1) − σ(ux)x = f(t, x), t ∈ (0, T ], x ∈ [0, L]
u(t, 0) = u(t, L) = 0, t ∈ [0, T ]

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ [0, L],
(1.4)

as well as variants of it have been studied by many authors. Existence of global
weak solutions but not uniqueness has been obtained in [10] for all β ∈ (0, 1).
Existence of global strong solutions for all β ∈ (0, 1) has been established in [8]
and [3] by means of a perturbation argument requiring the smallness of the number

κ2 − κ1

κ1
. (1.5)

We further mention Gripenberg’s result [9], where global weak solutions u with uxx

square integrable but no uniqueness were obtained under the condition β ≤ 1/2.
Restricting further β to be less than 1/3, Engler [7] was able to show existence
and uniqueness of global smooth solutions for a variant of (1.4) without smallness
condition on the number in (1.5).

In this paper we prove an analogue of Engler’s result [7] in the ‘fourth-order
case’, see Theorem 4.2. We also need to impose a restriction on β, which is β <
3/5. Assuming this condition together with (1.3) and suitable smoothness and
compatibility conditions on the data and the nonlinearity (see (H1)–(H4) below),
we establish global existence and uniqueness of smooth solutions of (1.1) (with
u1 = 0, see below).

Our proof consists of two parts. In the first step we obtain the local well-
posedness of (1.1) for all β ∈ (0, 1) in the framework of continuous interpolation
spaces, see Theorem 3.2. Here we make use of a recent result on abstract quasilinear
fractional evolution equations, [4, Theorem 13]. This result requires u1 = 0, which
will be assumed throughout this paper. We remark that by using the results in
[11], it is also possible to treat the case u1 �= 0. We recall that the method of
continuous interpolation spaces has been introduced by Da Prato and Grisvard in
[5] and extended by Angenent [2], Lunardi [12], and Simonett [13].

In the second part of our proof we derive a priori estimates which imply the
global well-posedness of (1.1). A crucial step here is to obtain an a priori bound
for uxx in a Hölder space, which is achieved by using Engler’s method, see [7]. In
order to justify the corresponding computations, we are forced to work with higher
regularity. So the parameters in our setting are chosen in such a way that a solution
on a time-interval [0, T ], say, necessarily belongs to the space C1([0, T ]; C4([0, L])).
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We remark that short-time existence and uniqueness of smooth solutions can be
shown under weaker assumptions on the function σ and the data.

Taking the a priori Hölder estimate for uxx as a starting point, we then carry
out a bootstrap argument, which eventually yields the global well-posedness of
(1.1). Note that in contrast to the second-order case, problem (1.4), here one is
confronted with an extra nonlinear term, which is of third order, as can be seen
by writing the first equation in (1.1) as

∂β
t (ut − u1) + σ′(uxx)uxxxx = −σ′′(uxx)u2

xxx + f(t, x), t > 0, x ∈ [0, L].

The paper is organized as follows. In Section 2 we fix some notation. Section
3 is devoted to the local well-posedness, while Section 4 is on a priori estimates
and global existence. Finally, in Section 5 we prove an auxiliary result, which is
needed in Section 3.

2. Preliminaries

By f ∗ g we mean the convolution defined by (f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ) dτ, t ≥ 0,

of two functions f, g supported on the positive half-line.
Let X be a Banach space and T > 0. We say that a function u ∈ L1((0, T ); X)

has a fractional derivative of order β ∈ (0, 1) if u = gβ∗f for some f ∈L1((0, T ); X).
In this case we write ∂β

t u = f .
We next consider functions defined on J0 := (0, T ] which have (at most) a

singularity of prescribed order at t = 0. Letting J = [0, T ] and μ ∈ (0, 1) we define
the space

BUC1−μ(J ; X) = {u ∈C(J0; X) : t1−μu(t) ∈ BUC(J0; X)

and lim
t→0+

t1−μ|u(t)|X = 0},

which becomes a Banach space when endowed with the norm

|u|BUC1−μ(J;X) = sup
t∈J0

t1−μ|u(t)|X .

We further introduce the following subspace of BUC1−μ(J ; X). For β ∈ (0, 1) we
set (cf. [4, p. 423])

BUC1+β
1−μ(J ; X) = {u ∈ BUC1−μ(J ; X) : u = x + g1+β ∗ f,

for some x ∈ X and f ∈ BUC1−μ(J ; X)}.

3. Local well-posedness

In order to prove existence and uniqueness of local (in time) smooth solutions of
(1.1) with u1 = 0, we will apply [4, Theorem 13]. In what follows we explain the
underlying setting and verify the assumptions needed in this result.
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Let L > 0 and set I = [0, L]. Let

F0 = {v ∈ C(I) : v(0) = v(L) = 0}
and

F1 = {v ∈ C4(I) : v(i)(0) = v(i)(L) = 0, i = 0, 2, 4},
endowed with the canonical norms. For s ∈ (0, 8) with s /∈ N we define

hs
bc(I) = {v ∈ hs(I) : v(i)(0) = v(i)(L) = 0 for all i ∈ {0, 2, 4, 6} with i < s},

where hs(I) stands for the little Hölder space with exponent s. It is well known,
see [12], that the continuous interpolation space

Fθ := (F0, F1)0θ,∞ = h4θ
bc (I), θ ∈ (0, 1), 4θ /∈ N.

Putting
E0 = h4θ

bc (I), E1 = h4+4θ
bc (I), θ ∈ (0, 1), 4θ /∈ N,

the following embeddings hold true:

E1 ↪→ F1 ↪→ E0 ↪→ F0.

We further set
Eη = (E0, E1)0η, ∞, η ∈ (0, 1).

Then
Eη = h4η+4θ

bc (I), θ ∈ (0, 1), 4θ /∈ N, η ∈ (0, 1), 4(η + θ) /∈ N. (3.1)
We next put

μ̂ =
μ + β

1 + β
,

and assuming that Eμ̂ ↪→ C3(I) (cp. (3.8) below) we may define

A(v)w = σ′(vxx)wxxxx, v ∈ Eμ̂, w ∈ E1,

and
F(v) = −σ′′(vxx)v2

xxx, v ∈ Eμ̂.

Then (1.1) with u1 = 0 can be written as an abstract quasilinear problem of the
form {

∂β
t ut + A(u)u = F(u) + f(t), t > 0

u(0) = u0, ut(0) = 0.
(3.2)

Letting μ, β ∈ (0, 1) and J = [0, T ], we choose

Ẽ0(J) := BUC1−μ(J ; E0)

as the base space for the fractional differential equation in (3.2) and seek solutions
in the corresponding maximal regularity class

Ẽ1(J) := BUC1+β
1−μ(J ; E0) ∩ BUC1−μ(J ; E1).

It has been shown in [4, Theorem 10], cf. also [11], that

Ẽ1(J) ↪→ BUC(1+β)(1−η)−(1−μ)(J ; Eη), 0 ≤ η ≤ μ̂. (3.3)

In particular, we have
Ẽ1(J) ↪→ BUC(J ; Eμ̂). (3.4)



Global Smooth Solutions to a Fractional Evolution Equation 135

Note that if μ+β > 1, then the Hölder exponent in (3.3) exceeds 1, provided η > 0
is sufficiently small.

We will next fix the parameters μ, θ ∈ (0, 1) appropriately, ensuring among
other things that Eμ̂ ↪→ C3(I) and Ẽ1(J) ↪→ C1(J ; C4(I)).

Let ε ∈ (0, β
4(1+β) ) and set

μ = 1 − ε(1 + β), θ =
1

1 + β
+ 3ε, η =

β

1 + β
− 2ε. (3.5)

Here we exclude those values of ε, for which the condition

4θ /∈ N, 4(η + θ) /∈ N, and 4(μ̂ + θ) /∈ N

is violated. Then

μ̂ =
μ + β

1 + β
= 1 − ε,

and it is readily checked that η ∈ (0, μ̂). We further have θ + η = 1 + ε, and

(1 + β)(1 − η) − (1 − μ) = (1 + β)(
1

1 + β
+ 2ε) − ε(1 + β)

= 1 + ε(1 + β).

Using (3.1) and (3.3), we thus see that

Ẽ1(J) ↪→ BUC(1+β)(1−η)−(1−μ)(J ; h4η+4θ
bc (I))

= BUC1+ε(1+β)(J ; h4(1+ε)
bc (I)) ↪→ C1(J ; C4(I)). (3.6)

Notice as well that

μ̂ + θ =
2 + β

1 + β
+ 3ε − ε ∈

( 3
2

+ 2ε, 2 − ε
)
. (3.7)

In particular, we have

Eμ̂ = h4μ̂+4θ
bc (I) ↪→ C6+8ε(I). (3.8)

We will assume that the data and the nonlinearity in (1.1) are subject to the
following conditions:

(H1) σ ∈ C7(R), σ(k)(0) = 0, k = 0, 2, 4;
(H2) 0 < κ1 ≤ σ′(s) ≤ κ2, s ∈ R;
(H3) f ∈ C1(R+; C(I)) ∩ C(R+; C4(I)),

f(t, 0) = f(t, L) = fxx(t, 0) = fxx(t, L) = 0, t ≥ 0;

(H4) u0 ∈ C8(I), u
(k)
0 (0) = u

(k)
0 (L) = 0, k = 0, 2, 4, 6; u1 = 0.

Observe that (H3) implies that f ∈ BUC1−μ([0, T ]; E0), for any T > 0, while
(H4) and (3.7) ensure that u0 ∈ Eμ̂ = h4μ̂+4θ

bc (I). Therefore condition (47) in [4]
is satisfied.

We remark that for the Theorems 3.2 and 4.2 below we do not need the full
regularity of u0 required in (H4). In fact, u0 ∈ h

4(μ̂+θ+ε)
bc (I) would be sufficient.
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For Banach spaces X , Y , and a mapping G of X into Y , we write G ∈
C1−

loc (X ; Y ), if every point x ∈ X has a neighbourhood U such that G restricted
to U is globally Lipschitz continuous. By B(X, Y ) we mean the space of bounded
linear operators from X into Y . We write B(X) = B(X, X) for short.

In order to be able to apply [4, Theorem 13], it remains to verify that (cf. [4,
condition (46)])

(A,F) ∈ C1−
loc (Eμ̂;Mβ, μ(E1, E0) × E0). (3.9)

Here Mβ, μ(E1, E0) denotes the space of all operators A ∈ B(E1, E0) satisfying
the following two conditions: (i) ∃ω ≥ 0 such that Aω := A + ωI is a nonnegative
closed operator in E0 with spectral angle ϕAω < π

2 (1 − β); (ii) ∂β
t ut + Au = h(t),

u(0) = 0, ut(0) = 0, has maximal regularity in Ẽ0(J), i.e., there exists C > 0 such
that for any h ∈ Ẽ0(J),

|u|Ẽ1(J) ≤ C|h|Ẽ0(J),

where u solves ∂β
t ut + Au = h(t), u(0) = 0, ut(0) = 0. Mβ, μ(E1, E0) is equipped

with the topology of B(E1, E0).
Let v ∈ Eμ̂ and w ∈ E1. Then, obviously, wxxxx ∈ E0 = h4θ

bc (I) and vxx ∈
h4μ̂+4θ−2

bc (I). Note that 2 < 4θ < 4 < 4μ̂ + 4θ − 2, due to (3.5) and (3.7). Since(
σ′(vxx)wxxxx

)
xx

= σ′(vxx)xxwxxxx + 2σ′′(vxx)vxxxwxxxxx

+ σ′(vxx)wxxxxxx,

and σ′′(0) = 0, by (H1), we see that (σ′(vxx)wxxxx)xx vanishes at x = 0 and x = L.
In view of (H1) (σ ∈ C6 is enough) it is then clear that A ∈ C1−

loc (Eμ̂;B(E1, E0)).
Similarly, one checks that F ∈ C1−

loc (Eμ̂, E0). Note that here one needs one deriv-
ative more for σ; σ ∈ C6 does not suffice. Notice also that(

σ′′(vxx)v2
xxx

)
xx

= σ′′′′(vxx)v4
xxx + 5σ′′′(vxx)v2

xxxvxxxx

+ 2σ′′(vxx)[v2
xxxx + vxxxvxxxxx],

which shows that (σ′′(vxx)v2
xxx)xx vanishes at x = 0 and x = L, by (H1).

Finally, let v ∈ Eμ̂ be fixed and define the operators

Ãw = σ′(vxx)wxxxx, w ∈ F1,

and

Aw = A(v)w = σ′(vxx)wxxxx, w ∈ E1.

Then it follows from (H2) and the preceding considerations that Ã and A are
isomorphisms mapping F1 into F0 and E1 into E0, respectively. Note that Av = Ãv
for all v ∈ E1. Furthermore, Ã as an operator in F0 is nonnegative with spectral
angle φÃ = 0. The latter property is a consequence of the following result.
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Lemma 3.1. Let L > 0 and F0 = {v ∈ C([0, L]; C) : v(0) = v(L) = 0} equipped
with the supremum norm. Suppose further that m ∈ C([0, L]) is strictly positive.
Then the operator Ã : D(Ã) ⊂ F0 → F0 defined by

D(Ã) = F1 = {v ∈ C4([0, L]; C) : v(i)(0) = v(i)(L) = 0, i = 0, 2, 4},

and

Ãw = mw′′′′, w ∈ D(Ã),

is invertible and sectorial with spectral angle φÃ = 0. We have C \ (0,∞) ⊂ ρ(Ã)
and for any ϑ ∈ [0, π) there exists M1(ϑ) > 0 such that

|(λ + Ã)−1|B(F0) ≤
M1(ϑ)
1 + |λ| , λ ∈ C \ {0}, |arg λ| ≤ ϑ. (3.10)

A proof of Lemma 3.1 is given in Section 5.
It follows now from [4, Theorem 11] applied to the operators Ã and A, that

A ∈ Mβ, μ(E1, E0). This shows that A(v) ∈ Mβ, μ(E1, E0) for all v ∈ Eμ̂. Hence
condition (3.9) is satisfied.

We are now in a position to apply [4, Theorem 13]. This establishes the local
well-posedness of (1.1) in the described setting.

Theorem 3.2. Let the assumptions (H1)–(H4) be satisfied. Let β ∈ (0, 1) and as-
sume that the parameters μ, θ ∈ (0, 1) are chosen as in (3.5). Then there exists
a unique maximal solution u defined on the maximal interval of existence [0, T0),
where T0 ∈ (0,∞], and such that for any T ∈ (0, T0) one has

u ∈ ZT := BUC1+β
1−μ([0, T ]; h4θ

bc ([0, L])) ∩ BUC1−μ([0, T ]; h4+4θ
bc ([0, L]))

and u solves (1.1) on [0, T ]. Further, for any T ∈ (0, T0), u ∈ C1([0, T ]; C4([0, L])).
If T0 < ∞ then

lim sup
t↑T0

|u(t)|h4δ+4θ
bc ([0,L]) = ∞, for any δ ∈ (μ̂, 1), where μ̂ =

μ + β

1 + β
.

4. A priori estimates and global well-posedness

In this section we will prove that the solution u of (1.1) constructed in Theorem
3.2 exists globally, i.e., T0 = ∞. We will make use of the following simple lemma.

Lemma 4.1. Let T > 0, β ∈ (0, 1), and v ∈ Lip(−∞, T ] with v(t) = v(0), t < 0.
Then∫ t

−∞
gβ(t − s)[v(s) − v(t)]s ds =

∫ t

−∞
ġβ(t − s)[v(s) − v(t)] ds, 0 < t ≤ T. (4.1)
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Proof. We split the integral on the right-hand side of (4.1) and integrate by parts.
This gives for t ∈ (0, T ],∫ t

−∞
ġβ(t − s)[v(s) − v(t)] ds =

∫ 0

−∞
. . . ds +

∫ t

0

. . . ds

= − [v(0) − v(t)] gβ(t) +
[
(v(t) − v(s)) gβ(t − s)

]s=t

s=0

+
∫ t

0

gβ(t − s)[v(s) − v(t)]s ds

=
∫ t

0

gβ(t − s)[v(s) − v(t)]s ds =
∫ t

−∞
gβ(t − s)[v(s) − v(t)]s ds.

Note that the first line shows that the integral on the right-hand side of (4.1) is well
defined. In the step before last we used the Lipschitz continuity of v to conclude
that lims↑t(v(t) − v(s)) gβ(t − s) = 0. �

The main result of the present paper is now the following.

Theorem 4.2. Let the assumptions (H1)–(H4) be satisfied. Assume that

0 < β <
3
5
,

and suppose that the parameters μ, θ ∈ (0, 1) are chosen as in (3.5). Then the
unique maximal solution u of (1.1) constructed in Theorem 3.2 exists globally, that
is, T0 = ∞: For any T > 0 one has

u ∈ ZT = BUC1+β
1−μ([0, T ]; h4θ

bc ([0, L])) ∩ BUC1−μ([0, T ]; h4+4θ
bc ([0, L]))

and u solves (1.1) on [0, T ].

Proof. Suppose that T0 < ∞ and let T ∈ [T0/2, T0). By means of a series of
estimates for u on [0, T ]× [0, L] (uniform with respect to T ), we will show that

lim sup
t↑T0

|u(t)|
h
4(μ̂+θ+ε)
bc ([0,L])

< ∞, (4.2)

where ε is the positive number that was used in the definition of θ and μ in (3.5).
By the blow up criterion given in Theorem 3.2, (4.2) leads to a contradiction,
which will imply that T0 = ∞.

The proof of (4.2) proceeds in four steps. In the first step we will obtain the
basic a priori bound for uxx in a space of Hölder continuous functions. In the Steps
2–4 we will carry out a bootstrap argument which eventually yields (4.2).

Step 1: An estimate for uxx in Cδ([0, T ]; Cδ(I)) with some δ > 0. Since u ∈
C1([0, T ]; C4([0, L])), by Theorem 3.2, and f ∈ C1([0, T ]; C([0, L])), due to (H3),
we may convolve the first equation in (1.1) with gβ and differentiate with respect
to time, thereby obtaining

utt + gβ ∗ [σ(uxx)xxt] = gβ ∗ (ft) + gβ(t)ϕ(x), (4.3)
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where ϕ(x) = f(0, x) − σ(u′′
0 (x))xx. Setting u(t, x) = u0(x) for t < 0, (4.3) can be

written as

utt(t, x) +
∫ t

−∞
gβ(t − s)[σ(uxx(s, x)) − σ(uxx(t, x))]xxs ds

= (gβ ∗ ft)(t, x) + gβ(t)ϕ(x),

which after an integration by parts, cf. Lemma 4.1, appears in the form

utt(t, x) +
∫ t

−∞
ġβ(t − s)[σ(uxx(s, x)) − σ(uxx(t, x))]xx ds

= (gβ ∗ ft)(t, x) + gβ(t)ϕ(x). (4.4)

We multiply (4.4) by ut, integrate over [0, L], and integrate by parts. This gives
(σ(0) = 0, by (H1))

1
2

d

dt

∫ L

0

ut(t, x)2 dx −
∫ t

−∞
ġβ(t − s)

∂

∂t
H(t, s) ds

=
∫ L

0

[(gβ ∗ ft)(t, x) + gβ(t)ϕ(x)]ut(t, x) dx, t ∈ (0, T ] (4.5)

where

H(t, s) =
∫ L

0

∫ uxx(t,x)

uxx(s,x)

[σ(y) − σ(uxx(s, x))] dy dx.

Since σ is strictly increasing, we see that H(t, s) ≥ 0 for all 0 ≤ s, t ≤ T . Also, by
continuity of uxxt on [0, T ]× [0, L], there exists a constant M > 0 such that

H(t, s) ≤ M |t − s|2, | ∂

∂t
H(t, s)| ≤ M |t − s|, 0 ≤ s, t ≤ T.

Therefore, setting

W (t) =
1
2

∫ L

0

ut(t, x)2 dx −
∫ t

−∞
ġβ(t − s)H(t, s) ds, t ∈ [0, T ],

we may rewrite (4.5) as

Ẇ (t) =
∫ L

0

[(gβ ∗ ft)(t, x) + gβ(t)ϕ(x)]ut(t, x) dx

−
∫ t

−∞
g̈β(t − s)H(t, s) ds, t ∈ (0, T ].

Since g̈β and H are nonnegative and by using Young’s inequality, we then obtain

Ẇ (t) ≤ W (t) +
1
2

∫ L

0

[(gβ ∗ ft)(t, x) + gβ(t)ϕ(x)]2 dx, t ∈ (0, T ],
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which yields the estimate

W (t) =
1
2

∫ L

0

ut(t, x)2 dx −
∫ t

−∞
ġβ(t − s)H(t, s) ds ≤ C, t ∈ [T0/2, T ], (4.6)

where the constant C depends only on W (T0/2) and the data.
It is not difficult to see (cf. [7, Lemma 3.3]) that

1
2κ2

|σ(uxx(t, x)) − σ(uxx(s, x))|2 ≤
∫ uxx(t,x)

uxx(s,x)

[σ(y) − σ(uxx(s, x))] dy. (4.7)

Proceeding as in Engler [7] (cf. Lemma 3.4), it follows from (4.6) and (4.7) that

|σ(uxx)(t, ·) − σ(uxx)(s, ·)|L2(I) ≤ C1|t − s|(1−β)/2, t, s ∈ [T0/2, T ], (4.8)

where the constant C1 depends only on W (T0/2) and the data. In fact, writing
ξ(t) = σ(uxx)(t, ·) ∈ L2(I) for t ∈ [T0/2, T ], (4.6) and (4.7) imply that∫ t

t−h

(t − τ)β−2|ξ(t) − ξ(τ)|2L2(I) dτ ≤ C̃, t ∈ [T0/2, T ], h ∈ (0, T0/2], (4.9)

where the constant C̃ depends only on W (T0/2) and the data. From (4.9) and
Hölder’s inequality we then obtain∫ t

t−h

|ξ(t) − ξ(τ)|L2(I) dτ ≤
√

C̃
(∫ t

t−h

(t − τ)2−β dτ
) 1

2 ≤ C̃1h
3−β

2

for all t ∈ [T0/2, T ] and h ∈ (0, T0/2], where C̃1 = C̃1(C̃, β). Setting

ξh(t) =
2
h2

∫ t

t−h

(τ − t + h)ξ(τ) dτ, t ∈ [T0/2, T ], h ∈ (0, T0/2],

this yields

|ξ(t) − ξh(t)|L2(I) =
2
h2

|
∫ t

t−h

(τ − t + h)(ξ(t) − ξ(τ)) dτ |L2(I)

≤ 2
h

∫ t

t−h

|ξ(t) − ξ(τ)|L2(I) dτ ≤ 2C̃1h
1−β

2

as well as

|ξ̇h(t)|L2(I) ≤
2
h2

∫ t

t−h

|ξ(t) − ξ(τ)|L2(I) dτ ≤ 2C̃1h
− 1+β

2 .

Hence, for T0/2 ≤ s < t ≤ T and h := t − s ∈ (0, T0/2) we have

|ξ(t) − ξ(s)|L2(I) ≤ |ξ(t) − ξh(t)|L2(I) + |ξh(t) − ξh(s)|L2(I) + |ξh(s) − ξ(s)|L2(I)

≤ 4C̃1h
1−β

2 + 2C̃1(t − s)h− 1+β
2 ≤ 6C̃1(t − s)

1−β
2 ,

which proves (4.8).
Thanks to (4.6), (4.8), and the smoothness of σ we obtain bounds for

ut ∈ L∞([0, T ]; L2(I)) and σ(uxx) ∈ C
1−β

2 ([0, T ]; L2(I)), (4.10)
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which depend only on the data, W (T0/2), and the corresponding bounds on the
interval [0, T0/2].

We now put v = 1 ∗ σ(uxx). Then we have a bound for v in the space
C1+(1−β)/2([0, T ]; L2(I)) in terms of the bound for σ(uxx) ∈ C

1−β
2 ([0, T ]; L2(I)).

On the other hand, we may integrate the first equation in (1.1) with respect to
time to the result

vxx = −g1−β ∗ ut + 1 ∗ f,

which yields a bound for v in the space C1−β([0, T ]; H2
2 (I)) in terms of the bound

for ut ∈ L∞([0, T ]; L2(I)) and the data. By means of interpolation (cp. [7, pp.
283–284]) and Sobolev embedding, we have the embeddings

C
3−β

2 ([0, T ]; L2(I)) ∩ C1−β([0, T ]; H2
2(I)) ↪→ C(1−τ) 3−β

2 +τ(1−β)([0, T ]; H2τ
2 (I))

↪→ C1+δ([0, T ]; Cδ(I))

for some δ > 0 and some τ ∈ (1
4 , 1−β

1+β ), the latter being possible, since β < 3/5.
Hence we obtain an a priori estimate for σ(uxx) in Cδ([0, T ]; Cδ(I)). Since σ is
strictly increasing and smooth, we get also an a priori bound for uxx itself in
the space Cδ([0, T ]; Cδ(I)). Note that this bound is uniform with respect to T ∈
[T0/2, T0).

Step 2: An estimate for u in BUC([0, T ]; C4+δ1(I)) with δ1 ∈ (0, δ). We write the
first equation in (1.1) as

∂β
t ut + σ′(uxx)uxxxx = f − σ′′(uxx)u2

xxx, t ∈ (0, T ], x ∈ [0, L], (4.11)

and view it as a linear equation for u of the form

∂β
t ut + m(t, x)uxxxx = f̃ , (4.12)

where m = σ′(uxx) and f̃ = f − σ′′(uxx)u2
xxx. Note that f̃(t, 0) = f̃(t, L) = 0,

t ∈ [0, T ], since, by assumptions, f enjoys the same property and σ′′(0) = 0. We use
then maximal regularity of (4.12) together with the boundary and initial conditions
as in (1.1), in the space Ẽ0([0, T ]) = BUC1−μ([0, T ]; h4θ

bc (I)) with μ ∈ (0, 1) and
θ ∈ (0, δ/4). Letting

Ẽ1([0, T ]) = BUC1+β
1−μ([0, T ]; h4θ

bc (I)) ∩ BUC1−μ([0, T ]; h4+4θ
bc (I)),

this gives the estimate

|u|Ẽ1([0,T ]) ≤ C
(
|f̃ |Ẽ0([0,T ]) + |u0|h4θ+4μ̂

bc (I)

)
, (4.13)

where C is a positive constant which depends only on the parameters and the
bound for uxx in Cδ([0, T ]; Cδ(I)). The space C4θ(I) forms an algebra with respect
to pointwise multiplication, and we have

|σ′′(uxx(t, ·))uxxx(t, ·)2|C4θ(I) ≤ |σ′′(uxx(t, ·))|C4θ(I)|uxxx(t, ·)|2C4θ(I), t ∈ [0, T ].

Since 4θ < δ, there exists η ∈ (0, 1/2) such that

|uxxx(t, ·)|C4θ(I) ≤ C1|uxx(t, ·)|η
C2+4θ(I)

|uxx(t, ·)|1−η
Cδ(I)

, t ∈ [0, T ],
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where C1 > 0 is a positive constant. Using these inequalities we may estimate

|f̃ |Ẽ0([0,T ]) ≤ |σ′′(uxx)u2
xxx|Ẽ0([0,T ]) + |f |Ẽ0([0,T ])

≤ C2 sup
t∈(0,T ]

t1−μ|uxx(t, ·)|2η
C2+4θ(I)

|uxx(t, ·)|2(1−η)

Cδ(I)
+ |f |Ẽ0([0,T ])

≤ C3|u|2η

BUC1−μ([0,T ];h4+4θ
bc (I))

+ |f |Ẽ0([0,T ]), (4.14)

where the constants C2, C3 depend on T0 and the bound for uxx in

Cδ([0, T ]; Cδ(I)).

It follows then from (4.13) and (4.14) that

|u|Ẽ1([0,T ]) ≤ C2C|u|2η

Ẽ1([0,T ])
+ C

(
|f |Ẽ0([0,T ]) + |u0|h4θ+4μ̂

bc (I)

)
.

Thanks to 2η < 1 and by Young’s inequality, this yields a bound for u in Ẽ1([0, T ])
in terms of T0, the parameters, the data, and |u|Cδ([0,T ];Cδ(I)). In view of (3.4),
(3.8), and θ < δ/4 the space ZT embeds into BUC([0, T ]; C4+4θ(I)). We thus
obtain a bound for u in the latter space in terms of the preceding set of quantities
and the corresponding bound on the interval [0, T0/2]. Putting δ1 = 4θ, this is the
desired bound of Step 2.

Step 3: An estimate for u in BUC([0, T ]; C6+δ2(I)) with some δ2 ∈ (0, δ1). We
differentiate the first equation in (1.1) twice with respect to x, which is possible
since f and σ(uxx)xx belong to the space C([0, T ]; C2(I)) (by (3.4), (3.8), (H1),
(H3)) and thus ∂β

t ut does so, by (1.1). Letting w = uxx we obtain

∂β
t wt + σ′(uxx)wxxxx =fxx − 4σ′′(uxx)uxxxwxxx − 3σ′′(uxx)u2

xxxx

− 6σ′′′(uxx)u2
xxxuxxxx − σ′′′′(uxx)u4

xxx. (4.15)

Furthermore

w(t, 0) = w(t, L) = wxx(t, 0) = wxx(t, L) = 0, t ∈ (0, T ],

and
w(0, x) = u′′

0(x), wt(0, x) = 0, x ∈ [0, L].

Denoting the right-hand side of (4.15) by f̃ , we have f̃(t, 0) = f̃(t, L) = 0,
t ∈ (0, T ], as fxx, uxx, and uxxxx enjoy this property, and σ′′(0) = σ′′′′(0) =
0, by assumption. By means of maximal regularity in the space Ẽ0([0, T ]) =
BUC1−μ([0, T ]; hδ2

bc(I)) with μ ∈ (0, 1) as in (3.5) and δ2 ∈ (0, min{δ1, 8ε}), there
is a positive constant C depending only on the parameters and the a priori bound
for uxx in Cδ([0, T ]; Cδ(I)) such that with

Ẽ1([0, T ]) = BUC1+β
1−μ([0, T ]; hδ2

bc(I)) ∩ BUC1−μ([0, T ]; h4+δ2
bc (I))

there holds the estimate

|w|Ẽ1([0,T ]) ≤ C
(
|f̃ |Ẽ0([0,T ]) + |u′′

0 |hδ2+4μ̂

bc
(I)

)
. (4.16)
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Since
|wxxx(t, ·)|Cδ2 (I) ≤ C1|wxx(t, ·)|1/2

C2+δ2 (I)
|uxxxx(t, ·)|1/2

Cδ2 (I)
,

we obtain, similarly to the argument in Step 2,

|f̃ |Ẽ0([0,T ]) ≤ C2

(
|w|1/2

Ẽ1([0,T ])
+ |fxx|Ẽ0([0,T ]) + 1

)
, (4.17)

where the constant C2 depends on T0, the parameters, and the a priori bounds for
u from Step 1 and Step 2. Combining (4.16) and (4.17), and employing Young’s
inequality, we find a bound for uxx in Ẽ1([0, T ]) in terms of T0, the parameters,
the data, and the a priori estimates for u from Step 1 and Step 2. In view of (3.4),
(3.8), and δ2 < 8ε, the space ZT embeds into BUC([0, T ]; C6+δ2(I)). Therefore we
obtain a bound for u in the latter space in terms of the preceding set of quantities
and the corresponding bound on the interval [0, T0/2]. This completes Step 3.

Step 4: An estimate for u in BUC([0, T ]; C4(θ+μ̂+ε)(I)) with θ, μ as in (3.5).
Letting again w = uxx, it follows from (4.15) and Step 3 that

∂β
t wt + σ′(uxx)wxxxx + 4σ′′(uxx)uxxxwxxx = g̃, (4.18)

where g̃ is a function which is a priori bounded in C([0, T ]; C2(I)), uniform with
respect to T ∈ [T0/2, T0), and satisfies g̃(t, 0) = g̃(t, L) = 0, t ∈ (0, T ].

Let θ and μ as in (3.5) and define

γ = 4θ + 4ε − 2. (4.19)

Note that γ ∈ (0, 2), because β ∈ (0, 3
5 ) and ε ∈ (0, β

4(1+β) ).

We then consider (4.18) as an equation for w in the space Ẽ0([0, T ]) =
BUC1−μ([0, T ]; hγ

bc(I)). The coefficients are a priori bounded in C([0, T ]; C2(I)),
uniform with respect to T ∈ [T0/2, T0). The linear term 4σ′′(uxx)uxxxwxxx is of
lower order, and hence by a perturbation argument, one has maximal regularity
in Ẽ0([0, T ]), that is, with

Ẽ1([0, T ]) = BUC1+β
1−μ([0, T ]; hγ

bc(I)) ∩ BUC1−μ([0, T ]; h4+γ
bc (I))

we get the estimate

|w|Ẽ1([0,T ]) ≤ C
(
|g̃|Ẽ0([0,T ]) + |u′′

0 |hγ+4μ̂
bc (I)

)
,

where C depends only on T0, the parameters, the data, and the bound for u from
Step 3. By the embedding

Ẽ1([0, T ]) ↪→ BUC([0, T ]; hγ+4μ̂
bc (I)),

we thus obtain a uniform bound for u in BUC([0, T ]; h2+γ+4μ̂
bc (I)). In view of

(4.19) this means we have a bound for u in BUC([0, T ]; h4(θ+μ̂+ε)
bc (I)), uniform

with respect to T ∈ [T0/2, T0). This contradicts the hypothesis that T0 < ∞.
Hence we have global existence. �
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5. Proof of Lemma 3.1

Proof. Define the operator B by means of

D(B) = {v ∈ C2([0, L]; C) : v(i)(0) = v(i)(L) = 0, i = 0, 2},
(Bu)(x) = −u′′(x), u ∈ D(B).

Then B : D(B) ⊂ F0 → F0 is invertible, i.e., 0 ∈ ρ(B), and it is sectorial with
spectral angle φB = 0. The same then holds for B2 : D(B2) ⊂ F0 → F0. We have
C \ (0,∞) ⊂ ρ(B2) and for any ϑ ∈ [0, π) there exists C0(ϑ) > 0 such that

|(λ + B2)−1|B(F0) ≤
C0(ϑ)
1 + |λ| , λ ∈ C \ {0}, |arg λ| ≤ ϑ.

Moreover, D(B2) = F1 = {v ∈ C4([0, L]; C) : v(i)(0) = v(i)(L) = 0, i = 0, 2, 4},
and by using standard interpolation inequalities we see that the graph norm of
B2 on D(B2) is equivalent to the usual norm of C4([0, L]). Again from standard
interpolation inequalities and from the identity

B2(λ + B2)−1 = I − λ(λ + B2)−1

we obtain for any ϑ ∈ [0, π) and 0 ≤ k ≤ 4,

|Dk(λ + B2)−1|B(F0) ≤ Ck(ϑ)
( 1

1 + |λ|
)1− k

4
, λ ∈ C \ {0}, |arg λ| ≤ ϑ, (5.1)

where D = d
dx , and Ck(ϑ) > 0 are constants depending only on k and ϑ.

Let now m ∈ C([0, L]) be strictly positive and set

m1 := min
x∈[0,L]

m(x), m2 := max
x∈[0,L]

m(x).

Define the operator M : F0 → F0 by means of

(Mu)(x) = m(x)u(x), x ∈ [0, L], u ∈ F0.

Then M ∈ Isom(F0), |M |B(F0) ≤ m2, and |M−1|B(F0) ≤ 1/m1. Furthermore
we have Ã = MB2 with D(Ã) = D(B2), and so clearly 0 ∈ ρ(Ã) and Ã−1 =
(B2)−1M−1.

In order to show that C \ (0,∞) ⊂ ρ(Ã), it is sufficient to prove that λ + Ã :
D(Ã) → F0 is bijective for any λ ∈ C\(−∞, 0). To this end, for such a λ, we define
the operator K : D(Ã) → F0 (D(Ã) equipped with the graph norm) as follows:

(Ku)(x) = λu(x), u ∈ D(Ã).

Then K is compact, and since Ã ∈ Isom(D(Ã), F0), it follows then from the
stability of the index under compact perturbations that the index of K + Ã is
zero.

The null space of K+Ã is {0}. Indeed, let u ∈ D(Ã) be such that Ku+Ãu = 0.
We divide this equation by m, multiply by ū, and integrate over [0, L]; this yields

λ

∫ L

0

1
m(x)

|u(x)|2 dx +
∫ L

0

|u′′(x)|2 dx = 0.
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In view of the positivity of m and due to λ ∈ C \ (−∞, 0), it follows that u = 0.
We conclude that K + Ã ∈ Isom(D(Ã), F0). Hence λ+ Ã ∈ Isom(D(Ã), F0) for all
λ ∈ C \ (−∞, 0).

As to (3.10), observe that by continuity of the resolvent and as a consequence
of what we have just proved, (3.10) holds provided |λ| ≤ ρ for ρ > 0, with M1(ϑ)
replaced with some M1(ϑ, ρ). Therefore it remains to show the following:{

∀ϑ ∈ [0, π) ∃ρ > 0 ∃M(ϑ, ρ) > 0 such that
|(λ + Ã)−1|B(F0) ≤ M(ϑ,ρ)

1+|λ| , |λ| ≥ ρ, |arg λ| ≤ ϑ.
(5.2)

Employing the resolvent estimates (5.1) for the operator B2 and using the conti-
nuity of m, (5.2) can be proved by the method of localization and perturbation
arguments, see, e.g., [1, pp. 479–480] or [6]. Due to limitations of space, we do not
carry out the details. �
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Positivity Property of Solutions of
Some Quasilinear Elliptic Inequalities

Lorenzo D’Ambrosio and Enzo Mitidieri

Abstract. Let f : R → R be a continuous function.We prove that under
some additional assumptions on f and A : R → R+, weak C 1

solutions of

the differential inequality −div(A(|∇u|)∇u) ≥ f(u) on RN are nonnegative.
Some extensions of the result in the framework of subelliptic operators on
Carnot Groups are considered.

1. Introduction

In this paper we shall study the following problem.
Let L be a second-order differential operator and let f : R → R be a contin-

uous function. Find additional assumptions on (L, f) that imply the positivity of
the possible solutions of the differential inequality

L(u) ≥ f(u) on RN . (1.1)

Some partial answers to this problem have been obtained in [4, 5]. In those
papers, the authors deal with elliptic inequalities of the form (1.1) in the case when
L is the Laplacian operator or the polyharmonic operator (−Δ)k in the Euclidean
setting or, more generally L is a sub elliptic Laplacian on a Carnot group and f
is non negative. The main strategy used in [4, 5] for proving positivity results was
via integral representation formulae. One essential difficulty using this approach
is that no assumptions on the behavior of the solutions at infinity are known. A
typical example in this direction is given by,

−Δu ≥ |u|q on RN , (1.2)

where N ≥ 3 and q > 1.

The following result holds (see [4]).

We are very pleased to acknowledge the support of INTAS-05-100000B-792.
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Theorem 1.1. Let N ≥ 3 and q > 1. Let u ∈ Lq
loc(R

N ) be a distributional solution
of (1.2) and let Leb(u) be the set of its Lebesgue points. If x ∈ Leb(u), then

u(x) ≥ CN

∫
RN

|u(y)|q
|x − y|N−2

dy,

where CN is an explicit positive constant.

From this result it follows that, if u is a solution of (1.2) then, either u(x) = 0
a.e. on RN , or u(x) > 0 a.e. on RN .

Obviously, the approach via representation formulae cannot be applied to
quasilinear problems. In this paper we shall consider a class of quasilinear model
problems for which the positivity property mentioned at the beginning of this
introduction holds.

More precisely, we shall deal with the case when L is the p-Laplacian operator,
namely Δpu = div(|∇u|p−2 ∇u), or the p sub-Laplacian operator on the Heisenberg
group, ΔH,pu = divH(|∇Hu|p−2 ∇Hu) where divH and ∇H are, respectively, the
horizontal divergence and horizontal gradient on Heisenberg group and f is a
continuous function. In this cases some results on positivity of solutions of (1.1)
are proved by using a suitable comparison Lemma (see Lemma 2.5 below). This
paper is organized as follows. In Section 2 we state and prove our main result and
present some special cases, while in Section 3 we briefly indicate some possible
generalizations.

2. Main result

In this section we shall study the main problem in two cases. Namely in the
Euclidean and in the Heisenberg group setting. In what follows, ∇L stands, either
for the usual gradient on RN or, for the horizontal vector field

∇H = (X1, . . . , Xn, Y1 . . . Yn)

in Hn ≡ R2n+1 ≡ RN . That is, for x = (ξ1, . . . , ξn, η1 . . . ηn, τ) ∈ R2n+1,

X1, . . . , Xn, Y1 . . . Yn

are defined as follows,

Xi :=
∂

∂ξ1
+ 2η1

∂

∂τ
, Yi :=

∂

∂η1
− 2ξ1

∂

∂τ
, i = 1, . . . , n.

We shall denote by divL the formal adjoint of ∇L, that is the usual divergence
operator in the Euclidean setting or, in the Heisenberg case, divL(h) =

∑n
i=1 Xihi+

Yihn+i for any smooth vector field h = (h1, . . . , h2n) : Ω ⊂ RN → R2n.

Definition 2.1. Let Ω ⊂ RN be an open set, let A : R → R and h : Ω → R be a
continuous functions. We say that u is a solution of

divL(A(|∇Lu|)∇Lu) ≥ h on Ω,
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if u ∈ C 1(Ω) and for any nonnegative φ ∈ C 1
0 (Ω), we have

−
∫

Ω

A(|∇Lu|)∇Lu · ∇Lφ ≥
∫

Ω

hφ.

In a similar manner we can define solutions of the inequalities

−divL(A(|∇Lu|)∇u) ≥ h and divL(A(|∇Lu|)∇u) ≤ h.

Our main result is the following.

Theorem 2.2. Let p > 1. Let f : R → R be a continuous function such that

f(t) > 0 if t < 0, f is non increasing on ] −∞, 0[ (2.3)

and ∫ −1

−∞

(∫ −1

t

f(s) ds

)− 1
p

dt < +∞. (2.4)

If u is a solution of

−divL(|∇Lu|p−2 ∇Lu) ≥ f(u) on RN , (2.5)

then u ≥ 0. Moreover if f(t) ≥ 0 for t ≥ 0 then, either u ≡ 0 or u > 0.

Corollary 2.3. Let p > 1 and q > 1. Let f : R → R be a continuous function such
that f(t) ≥ C |t|q for t < 0. Let u be a solution of

−divL(|∇Lu|p−2 ∇Lu) ≥ f(u) on RN . (2.6)

If q > p−1 then u ≥ 0. Moreover if f(t) ≥ 0 for t ≥ 0 then, either u ≡ 0 or u > 0.

Remark 2.4. The above assumptions on f are sharp in the following sense. If p = 2
and q = 1 = p − 1 the result is false. Indeed the equation

−Δu = |u| on RN ,

admits the explicit negative solution

u(x) := −Exp(x1), x ∈ RN ,

or solutions that changes sign (see [4]).
In the general case q = p − 1 the equation

Δpu = up−1 on RN

admits a positive solution (see for instance [6]). Therefore the equation

−Δpu = |u|p−1 on RN ,

has a negative solution.

Let us briefly describe the idea of the proof of our main result. Let u be
a solution of (2.5). Without loss of generality we will show that u(0) ≥ 0. The
function U := −u satisfies the inequality

divL(|∇LU |p−2 ∇LU) ≥ f(−U) on RN .
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Let v be a positive solution of

divL(|∇Lv|p−2 ∇Lv) = f(−v) on BR,

such that v(0) = a > 0 and v(x) → +∞ as |x| → R. The assumptions on f imply
the existence of v. Since U(x) ≤ v(x) for |x| close to R, by a comparison Lemma
(see Lemma below) it follows that U(x) ≤ v(x) for any |x| < R. In particular
U(0) ≤ v(0) = a. Letting a → 0 we have U(0) ≤ 0. Hence u(0) ≥ 0. Finally, if
f(t) ≥ 0 for t ≥ 0, by the weak Harnack inequality we get that, either u ≡ 0 or
u > 0.

2.1. A comparison Lemma

In this section, we shall prove a comparison Lemma that it is useful when consid-
ering solutions of inequalities of the form,

divL(A1(|∇Lu|)∇u) ≥ g1(x, u) on Ω, (2.7)

and
divL(A2(|∇Lv|)∇v) ≤ g2(x, v) on Ω. (2.8)

Here, for i = 1, 2, Ai is a continuous function such that Ai(t) > 0 for t > 0 and
gi : Ω × R → R is continuous.

Lemma 2.5. Let Ω be a bounded open set and let u and v be solutions of (2.7) and
(2.8) respectively. Assume that

1. (a) for any x ∈ Ω, t ≥ s ≥ 0 there holds g1(x, t) ≥ g2(x, s), g1(x, ·) is not
decreasing on ]0, +∞[ and v ≥ 0;

or
(b) for any x ∈ Ω, t ≥ s there holds g1(x, t) ≥ g2(x, s) and g1(x, ·) is not

decreasing;
2. (a) A1(t) ≥ A2(t) for t > 0 and the function tA2(t) is increasing for t > 0;

or
(b) A2(t) ≥ A1(t) for t > 0 and the function tA1(t) is increasing for t > 0;

3. u ≤ v on ∂Ω.

Then u ≤ v on Ω.

Proof. Let u and v be solutions of (2.7) and (2.8) respectively. Let ε > 0 be fixed
and set vε := v + ε. It is a simple matter to check that the function vε satisfies the
inequality

divL(A2(|∇Lw|)∇v) ≤ g1(x, w) on Ω.

Therefore, for any nonnegative φ ∈ C 1
0 (Ω) we have

−
∫

Ω

(A1(|∇Lu|)∇u − A2(|∇Lvε|)∇vε) · ∇Lφ ≥
∫

Ω

(g1(x, u) − g1(x, vε))φ. (2.9)

Next we choose φ as follows: φ := ((u−vε)+)2. It is clear that φ is nonnegative and
φ ∈ C 1(Ω). Moreover, since vε − u ≥ ε > 0 on ∂Ω, it follows that φ has compact
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support. Substituting φ in (2.9), we obtain

−
∫

Ω

(A1(|∇Lu|)∇u − A2(|∇Lv|)∇v) · (∇Lu −∇Lv)2(u − vε)+

≥
∫

Ω

(g1(x, u) − g1(x, vε))φ.

We claim that

(A1(|∇Lu|)∇u − A2(|∇Lv|)∇v) · (∇Lu −∇Lv) ≥ 0. (2.10)

Indeed,

(A1(|∇Lu|)∇u − A2(|∇Lv|)∇v) · (∇Lu −∇Lv)

= A1(|∇Lu|) |∇u|2 + A2(|∇Lv|) |∇v|2 − (A1(|∇Lu|) + A2(|∇Lv|))(∇Lu · ∇Lv)

=
(
A1(|∇Lu|) |∇u| − A2(|∇Lv|) |∇v|

)(
|∇Lu| − |∇Lv|

)
+

+
(
A1(|∇Lu|) + A2(|∇Lv|)

)(
|∇Lu| |∇Lv| − ∇Lu · ∇Lv

)
=: I1 + I2. (2.11)

Since Ai ≥ 0, we have I2 ≥ 0. Assume first that the case 2.(a) holds and g1(x, .) is
strictly increasing. The other cases are similar. From the inequality A1 ≥ A2 and
from the monotonicity of tA2(t), it follows that

I1 =
(
A1(|∇Lu|) |∇u| − A2(|∇Lv|) |∇v|

)(
|∇Lu| − |∇Lv|

)
≥

(
A2(|∇Lu|) |∇u| − A2(|∇Lv|) |∇v|

)(
|∇Lu| − |∇Lv|

)
≥ 0.

Therefore, since g1(x, ·) is increasing, the inequality (g1(x, u)− g1(x, vε)((u−
vε)+)2 ≥ 0 holds for every x ∈ Ω. As a consequence, (g1(x, u) − g1(x, vε)((u −
vε)+)2 = 0 on Ω.

This completes the proof in case (a) holds and g1(x, .) is strictly increasing.
For the general case we need an extra argument. Indeed, from (2.10) and (2.11)
we have that

∫
Ω
(I1 + I2)(u− vε)+ = 0. Let x ∈ Ω be such that u(x) ≥ vε(x). Since

I1 ≥ 0 and I2 ≥ 0 we have I1(x) = 0 = I2(x).
We claim that ∇Lu(x) = ∇Lv(x). Indeed, if ∇Lu(x) �= ∇Lv(x), from I2(x) = 0,

we deduce that |∇Lu(x)| �= |∇Lv(x)|1. Thus from I1(x) = 0, the injectivity of
tA2(t), it follows that

0 = A1(|∇Lu|) |∇u| − A2(|∇Lv|) |∇v| ≥ A2(|∇Lu|) |∇u| − A2(|∇Lv|) |∇v| �= 0.

This implies ∇L((u − vε)+)2 = 0 on Ω, that is ((u − vε)+)2 = φ = 0. Therefore,
letting ε → 0 in u ≤ v + ε the claim follows. �

Remark 2.6. The above lemma enables to compare solutions of differential inequal-
ities involving different operators. As an example, consider the following situation.

1if t, s are two different vectors in a Hilbert space such that (s · t) = |t| |s|, then 0 < |t − s| =

|t|2 + |s|2 − 2(s · t) = |t|2 + |s|2 − 2 |s| |t| = (|s| − |t|)2.
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Let g : R → R be a continuous and non decreasing function on ]0, +∞[. Let
γ : Ω → R be a bounded continuous function such that ‖γ‖∞ ≤ 1. Let u be a
solution of

divL(
∇Lu√

1 + |∇Lu|2
) ≥ g(u) on Ω,

and let v be a positive solution of

divL(∇Lv) ≤ γg(v) on Ω

with u ≤ v on ∂Ω. Then u ≤ v on Ω.

The proof of Theorem 2.2 relies on the following.

Theorem 2.7. Let p > 1 and let g : R → R be a continuous function such that,
g(t) > 0 if t > 0, g is non decreasing on ]0, +∞[, and∫ +∞

1

(∫ t

1

g(s) ds

)− 1
p

dt < +∞. (2.12)

For any a > 0, D > 1, there exists a function ϕ and R > 0 such that, ϕ is a
solution of(

rD−1 |ϕ′(r)|p−2
ϕ′(r)

)′
= rD−1g(ϕ(r)), ϕ(0) = a, ϕ′(0) = 0, (2.13)

φ is increasing on ]0, R[ and ϕ(r) → +∞ as r → R.

See [7] for a proof in the case p = 2 and [6] for the quasilinear case p �= 2.

Proof of Theorem 2.2. Let u be a solution of (2.5). Since the inequality is invariant
under translations, it is sufficient to prove that u(0) ≥ 0.

Let g(t) := f(−t). The function g satisfies the assumptions of Theorem 2.7.
Let D = Q > 1 be the homogeneous dimension. We know that D = Q = N if
we are dealing with the Euclidean case and D = Q = 2n + 2 in the Heisenberg
setting. Let a > 0 and let ϕ be a solution of (2.13) such that ϕ(r) → +∞ as
r → R. We set v(x) := ϕ(N2(x)), where N2(x) := |x| in the Euclidean case
and N2(x) := |x|H := ((

∑n
i=1 ξ2

i + η2
i )2 + τ2)1/4 in the Heisenberg setting. By

computation we have,

divL(|∇Lv|p−2 ∇Lv) = (p − 1)ψp |v′|p−2
(

v′′(r) +
Q − 1

r
v′(r)

)
r=N2

= ψpN1−Q
2

(
rQ−1 |v′(r)|p−2

v′(r)
)′

r=N2

where ψ = 1 in the Euclidean case or ψ =
∣∣∣∇L |x|H

∣∣∣ ≤ 1. Therefore, the function
v satisfies the differential equation

divL(|∇Lv|p−2 ∇Lv) = g2(x, v) := ψpg(v) on ΩR,
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where ΩR := {x | N2(x) < R}. On the other hand the function U := −u satisfies
the inequality

divL(|∇LU |p−2 ∇LU) ≥ g1(U) := g(U) on RN .

Since g1 ≥ g2 and U(x) ≤ v(x) for |x| close to R we are in the position to
apply the comparison Lemma 2.5. As a consequence, U(x) ≤ v(x) for any x ∈ ΩR.
In particular U(0) ≤ v(0) = a. Letting a → 0 it follows that U(0) ≤ 0. Hence
u(0) ≥ 0.

Next, if f ≥ 0, then u is a non negative super solution of the equation,
−divL(|∇Lu|p−2 ∇Lu) = 0 on RN . Hence, by the weak Harnack inequality (see [1])
it follows that, either u ≡ 0 or u > 0. �

3. Some extensions of the main result

3.1. Carnot Groups

Let RN ≡ G be a Carnot group and let ∇L be the horizontal gradient on G. Let
Γp be the fundamental solution of the quasilinear operator

−ΔL,pu = −divL(|∇Lu|p−2 ∇Lu)

at the origin. Set

Np :=

{
Γ

p−1
p−Q
p p > 1, p �= Q

exp(−Γp) p = Q

It is known that Np is a homogeneous norm on G. To the authors knowledge, the
best result on the regularity of Np is that it is Hölder continuous, see [1, 2]. In
what follows we shall assume that Np is smooth. This assumption is satisfied for
example for “Heisenberg type” groups. See for instance [2].

With the above notation, we have that if ζ : R → R is a smooth function,
then the radial function v := ζ ◦ Np : G → R satisfies

ΔL,pv = divL(|∇Lv|p−2 ∇Lv) = (p − 1)ψp |ζ′|p−2
(

ζ′′(r) +
Q − 1

r
ζ′(r)

)
r=NP

,

where ψ := |∇LNp| (see [3]). Hence we can apply the same arguments used in the
preceding section obtaining an analog of Theorem 2.2 in this more general setting.

Theorem 3.1. Let p > 1. Let f : R → R be a continuous function satisfying (2.3)
and (2.4). Let u be a solution of

−divL(|∇Lu|p−2 ∇Lu) ≥ f(u) on RN , (3.14)

then u ≥ 0. Moreover if f(t) ≥ 0 for t ≥ 0 then, either u ≡ 0 or u > 0.

Other extensions in this setting are also possible for quasilinear inequalities
of the type

−divL(A(|∇Lu|)∇Lu) ≥ f(u). (3.15)
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Theorem 3.2. Let f : R → R be a continuous function satisfying (2.3) and∫ −1

−∞

(∫ −1

t

f(s) ds

)− 1
2

dt < +∞. (3.16)

Let A be a positive continuous function such that, either

1. A(t) ≥ c for a positive constant c
or

2. A(t) ≤ c for a positive constant c and tA(t) is increasing for t > 0.

Let u be a solution of (3.15), then u ≥ 0.

We leave the proof of the above result to the interested reader. Let us just
observe that the proof is based on the possibility to compare the solutions of

divL(A(|∇Lu|)∇Lu) ≥ g(u),

and
Δ2.Lu = divL(∇Lu) ≥ g(u),

and applying Lemma 2.5.

Corollary 3.3. Let u be a solution of

−divL(
∇Lu√

1 + |∇Lu|2
) ≥ f(u) on RN ,

where f : R → R is a continuous function satisfying (2.3) and (3.16). Then u ≥ 0.

3.2. A differential inequality related to the mean curvature operator

In the Euclidean case, ∇L = ∇, the above corollary can be improved. Indeed, the
claim follows without the assumption (3.16) on f .

Theorem 3.4. Let f : R → R be a continuous function satisfying (2.3). Let u be a
solution of

−div(
∇u√

1 + |∇u|2
) ≥ f(u) on RN .

Then u ≥ 0.

The argument for proving the above result is exactly the same as in the proof
of Theorem 2.2, so we shall be brief.

Proof. Let g(t) := f(−t). Under the assumptions of Theorem 3.4, there exists a
radial solution v of div( ∇v√

1+|∇v|2
) ≥ g(v) such that v(0) = a > 0 and v(r) → +∞

as r → R, see [6]. By the comparison Lemma 2.5 we get u(0) ≥ −a. Letting a → 0,
the claim follows. �
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On a Stochastic Parabolic Integral Equation

Wolfgang Desch and Stig-Olof Londen

To the memory of Günter Lumer

Abstract. In this article we analyze the stochastic parabolic integral equation

u(t, x, ω) = cαt−1+α ∗ Δu +

∞∑
k=1

∫ t

0

gk(s, x, ω) dwk
s ,

where t ≥ 0, x ∈ Rd, α ∈ ( 1
2
, 1) and ω ∈ Ω. We take {wk

t | k = 1, 2, . . . } to be
a family of independent Ft-adapted Wiener processes defined on a probability
space (Ω,F , P ). Here Ft ⊂ F and Ft is an increasing filtration.

By applying and modifying the method of Krylov we obtain existence
and regularity results in Lp-spaces, p ≥ 2.

1. Introduction

Let (Ω,F , P ) be a probability space, with {Ft}t≥0 an increasing filtration of σ-
algebras satisfying Ft ⊂ F . Let P denote the predictable σ-algebra on R+ × Ω
generated by {Ft}t≥0, and assume {wk

t | k = 1, 2, . . . } is a family of independent
one-dimensional Ft-adapted Wiener processes defined on (Ω,F , P ).

In this setting, we consider the stochastic parabolic integral equation

u(t, x, ω) =
∫ t

0

k(t − s)Δu(s, x, ω) ds +
∞∑

k=1

∫ t

0

gk(s, x, ω) dwk
s , (1)

where the variables satisfy t ≥ 0, x ∈ Rd, ω ∈ Ω, and k(t) = cαt−1+α, with cα, α
given constants; α ∈ (1

2 , 1); and gk given functions. The infinite series of stochastic
integrals on the right side of (1) converges in a weak sense made precise below. By
modifying the analytic approach of Krylov [11], developed for stochastic parabolic
partial differential equations, we obtain an existence and uniqueness result on (1).
As in [11], the setting is Lp, with p ≥ 2, thus a Hilbert space framework is not
needed.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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While in [11], starting from a linear heat equation with a stochastic non-
homogeneous term, finally very general problems with space-dependent coefficients
and nonlinear (multiplicative) stochastic perturbations are treated, this paper is
considered to be just a first step in this direction, solving the linear equation with
Laplacian.

Before outlining the paper, we make some brief comments on the range of
α-values.

With α = 1, the equation (1) is a (much studied) parabolic stochastic partial
differential equation. See, e.g., [11], for further references. Our proofs require k ∈
L2(0, 1), thus α > 1

2 . For small α one may however formally argue as follows.
The equation (1) can be inverted to give

Dα
t u = Δu + F, (2)

where Dα
t u

def= 1
Γ(1−α)

d
dt(t

−α ∗u), t > 0, is the fractional time derivative of order α

of u (with u(0) = 0), and where F = d
dt (t

−α∗G), with G =
∑

k

∫ t

0
gk dwk

s . Suppose
that, in some sense, G ∈ Cδ; then F ∈ Cδ−α. Assume that δ−α > 0. Equations of
this type have been treated in Bessel potential spaces in [15], [16], and in Hölder
spaces in [3] and [4].

The case α ∈ (1, 2) will be included in future work.
Equations of type (1) have been considered in Hilbert spaces in [1] and [2] by

applying methods of [5]. In particular, certain regularity results on the stochastic
convolution associated with (1) were obtained in [1].

Stochastic integral equations of type (1) or (2) occur in models of anomalous
diffusion.

In Section 2, we introduce the necessary machinery and show how the sto-
chastic Banach spaces developed in [11] can be modified in order to apply to the
equations we consider.

In Section 3 we state and prove an existence result on (1). The fact that
α < 1 allows us to obtain additional time-regularity on the solution as compared
to the case α = 1. This we do in Section 4.

We will develop the present approach further in forthcoming work.

2. The stochastic machinery

Below, everywhere, p ≥ 2.
Let n ∈ R, and let Hn

p (Rd) be the Bessel potential space of distributions u

such that (1 − Δ)
n
2 u ∈ Lp(Rd), with norm

‖u‖n,p
def= ‖(1 − Δ)

n
2 u‖p.

Denote by l2 the set of real-valued sequences g = {gk | k = 1, 2, . . .} with norm
|g|2l2 =

∑
k|gk|2, and, for a function g : Rd → l2, ‖g‖p

def= ‖|g|l2‖p; ‖g‖n,p
def=

‖|(1 − Δ)
n
2 g|l2‖p.
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For τ a bounded stopping time, write

(0, τ ]] def= {(ω, t) | 0 < t ≤ τ(ω)},

Hn
p (τ) def= Lp((0, τ ]],P , Hn

p ),

Hn
p (τ, l2)

def= Lp((0, τ ]],P , Hn
p (Rd; l2)).

The stochastic solution spaces Ĥn
p (τ) of (1) are then defined as follows.

Definition 1. Let u ∈ ∩T>0Hn
p (τ ∧ T ). Then u ∈ Ĥn

p (τ) if uxx ∈ Hn−2
p (τ), and

there exist f ∈ Hn−2
p (τ), g ∈ Hn−1

p (τ, l2) such that for any φ ∈ C∞
0 (Rd), the

equality

(u(t, ·), φ(·)) =
∫ t

0

k(t − s)(f(s, ·), φ(·)) ds +
∞∑

k=1

∫ t

0

(gk(s, ·), φ(·)) dwk
s , (3)

holds for all t ≤ τ , a.s. The norm in the solution space is

‖u‖Ĥn
p (τ)

def
= ‖uxx‖Hn−2

p (τ) + ‖f‖Hn−2
p (τ) + ‖g‖Hn−1

p (τ,l2)
.

In (3), for v ∈ Hn
p , φ ∈ C∞

0 ,

(v, φ) def=
(
(1 − Δ)

n
2 v, (1 − Δ)−

n
2 φ

)
=

∫
Rd

(
(1 − Δ)

n
2 v(x)

)(
(1 − Δ)−

n
2 φ(x)

)
dx.

By the assumption on g, the series of stochastic integrals in (3) does converge
(uniformly in t) in probability on [0, τ ∧ T ], T < ∞.

Thus, if u ∈ Ĥn
p (τ), then u can be represented as the sum (in the weak sense

(3)), of a Lebesgue convolution integral and a series of stochastic integrals. (For
simplicity, we take u(t = 0) = 0.)

An obvious question is whether this representation is unique. For α = 1 the
well-known answer is yes. Below, in Lemma 2, we show that uniqueness holds also
for α ∈ (1

2 , 1).

Lemma 2. Take T > 0, α ∈ (1
2 , 1). Let f , {gk} satisfy

f ∈ L2((0, T ) × Ω), {gk} ∈ L2((0, T )× Ω, l2),

and let both be adapted to {Ft}t≥0. Suppose that for t ∈ [0, T ],∫ t

0

(t − s)α−1f(s, ω) ds =
∑

k

∫ t

0

gk(s, ω) dwk
s ,

a.s. Then f = gk = 0 a.s.

Proof of Lemma 2. Both ‖f(t, ·)‖2
L2(Ω) and ‖g(t, ·)‖2

L2(Ω;l2) are integrable over
(0, T ). Let t0 be a Lebesgue point of both functions. Consider the orthogonal
projection P in L2(Ω):

Pu = u − E(u | Ft0).
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If f1(s, ·) def= Pf(s, ·), then

P
(∫ t

0

(t − s)α−1f(s) ds
)

=
∫ t

0

(t − s)α−1f1(s) ds =
∫ t

t0

(t − s)α−1f1(s) ds,

where we used the fact that since f is adapted to Ft,

f(t) = E
(
f(t) | Ft0

)
, t ≤ t0.

The series
∑

k

∫ t

0
gk(s) dwk

s has the martingale property:

E
(∑

k

∫ t

0

g(s) dwk
s | Ft0

)
=

∑
k

∫ t0

0

gk(s) dwk
s , t ≥ t0.

We conclude that

P
(∑

k

∫ t

0

gk(s) dwk
s

)
=

∑
k

∫ t

t0

gk(s) dwk
s , t ≥ t0,

and therefore, a.s.,∫ t

t0

(t − s)α−1f1(s) ds =
∑

k

∫ t

t0

gk(s) dwk
s , t ∈ [t0, T ]. (4)

Use Hölder and the fact that P is an orthogonal projection in L2(Ω), to
estimate the L2-norms:

‖
∫ t

t0

(t − s)α−1f1(s) ds‖2
L2(Ω) ≤

(∫ t

t0

(t − s)2α−2 ds
)(∫ t

t0

‖f1(s)‖2
L2(Ω) ds

)
≤ 1

2α − 1
(t − t0)2α−1

∫ t

t0

‖f(s)‖2
L2(Ω) ds ≤ M(t − t0)2α,

(5)

with M = 1
2α−1 supt>t0

1
t−t0

∫ t

t0
‖f(s)‖2

L2(Ω) ds, which is finite since t0 is a Lebesgue
point of ‖f‖2

L2(Ω). By Itô’s identity,

‖
∑

k

∫ t

t0

gk(s) dwk
s ‖L2(Ω) =

∫ t

t0

∑
k

‖gk(s)‖2
L2(Ω) ds. (6)

Combine (4), (5) and (6), and use the fact that t0 is a Lebesgue point of∑
k‖gk(s)‖2

L2(Ω), to get

‖g(t0)‖2
L2(Ω;l2) = lim

t→t0
(t − t0)−1

∫ t

t0

‖g(s)‖2
L2(Ω;l2) ds

≤ lim
t→t0

(t − t0)−1M(t − t0)2α = 0,

where 2α > 1 was used. Lemma 2 follows.

To show that Ĥn
p (τ) is a Banach space, proceed as in [11], Theorem 3.7,

and use k ∈ L2(0, 1). We also recall the density result proved in [11], Theorem
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3.10: If g ∈ Hn
p (τ, l2), then there exist gj ∈ Hn

p (τ, l2); j = 1, 2, . . . , such that
‖g − gj‖Hn

p (τ,l2) → 0, as j → ∞, and such that

gk
j (t, x) =

j∑
i=1

I(τ j
i−1,τ j

i ](t)g
ik
j (x), k ≤ j, (7)

and gk
j = 0, for k > j. Here gik

j ∈ C∞
0 (Rd) and τ j

0 ≤ τ j
1 ≤ · · · ≤ τ j

j are bounded
stopping times.

3. Existence of solutions

Our goal is now to prove the existence result Theorem 4, formulated at the end of
this Section. In this proof, c will always denote a generic positive constant which
may vary from line to line.

Take n = 1 in the definition of Ĥn
p (τ). Thus g ∈ Lp = H0

p(τ, l2). Consider (1)
with finitely many stochastic terms, each gk being of the simple structure (7):

u(t, x, ω) =
∫ t

0

k(t − s)Δu(s, x, ω) ds +
m∑

k=1

∫ t

0

gk(s, x, ω) dwk
s . (8)

Define

u(t, x, ω) def=
m∑

k=1

∫ t

0

S(t − s)gk(s, x, ω) dwk
s . (9)

The resolvent S(t) ⊂ B(X) (take, e.g., X = Lp(Rd)) satisfies

S(t)y = y +
∫ t

0

k(t − s)ΔS(s)y ds, y ∈ D(Δ), t ≥ 0. (10)

In fact, see [13], one has a kernel representation for S, such that S(t−s)gk(x)
is bounded in x ∈ Rd, t ∈ [0, T ]. Hence u is well defined. By the stochastic Fubini
theorem, see, e.g., p. 159 of [12], and by (10), it follows that u as defined in (9)
satisfies (8) a.s., t ≥ 0.

Our next purpose is to obtain a priori bounds on u. In the case α = 1, these
are implied by the key result of [10]. This result is not immediately applicable in
the case α < 1, and so, to prove the needed estimates, we proceed differently.

Lemma 3. Let α ∈ (1
2 , 1), g ∈ Lp([0, T ] × Rd; l2). Then∫

Rd

∫ T

0

(∫ t

0

|∇S(t − s)g(s, x)|2l2 ds
) p

2
dt dx ≤ c

∫
Rd

∫ T

0

|g(t, x)|pl2 dt dx, (11)

where c = c(d, p, α, T ).

Proof of Lemma 3. Take the subadditive map

g →
(∫ t

0

|∇S(t − s)g(s, x)|2l2 ds
) 1

2
.
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If this is shown to map

L∞((0, T )× Rd; l2) → L∞((0, T ) × Rd; R), (12)

and
L2((0, T )× Rd; l2) → L2((0, T ) × Rd; R); (13)

then, by the Marcinkiewicz interpolation theorem, (11) follows.
To prove (12), one argues as follows.
Suppose we can show that for any hk ∈ L∞(Rd; l2), and for i = 1, . . . , d;

sup
x∈Rd

∣∣ ∂

∂xi
S(t)hk(x)

∣∣2
l2
≤ ct−α sup

x∈Rd

|hk(x)|2l2 , (14)

with c = c(α, d). Replace t by t− s in (14), and integrate in s over [0, t]. This gives

sup
x∈Rd,0≤t≤T

∫ t

0

|∇S(t − s)g(s, x)|2l2 ds ≤ c1 sup
x∈Rd,0≤t≤T

|g(t, x)|2l2 , (15)

with c1 = cdT 1−α/(1 − α), which is (12).
To prove (14), take Laplace transforms in t in the resolvent equation (10),

solve for the transform of S(t)hk(x), and invert. This results in

S(t)hk(x) = (2πi)−1

∫
Γ1,ψ

eλt[I − λ−αΔ]−1λ−1hk(x) dλ, (16)

where

Γ1,ψ = {eit | |t| ≤ ψ} ∪ {ρeiψ | 1 < ρ < ∞} ∪ {ρe−iψ | 1 < ρ < ∞},

and ψ ∈ (π
2 , π). In (16), use analyticity, change variables and apply ∂

∂xi
. This gives

∂

∂xi
S(t)hk(x) = (2πi)−1t−α

∫
Γ1,ψ

essα−1 ∂

∂xi
(μ − Δ)−1hk(x) ds, (17)

where μ = ( s
t )

α is complex-valued. Consequently, ∂
∂xi

(μ − Δ)−1hk(x) needs to be
evaluated. One obtains, after some calculations,

(μ − Δ)−1hk(x) = φμ ∗ hk with φμ(x) = c(d)
μ

ν
2

rν
Kν(μ

1
2 r), (18)

where ν = d
2 − 1, r2 =

∑d
i=1 x2

i , and where Kν(z) is the modified Bessel function
of second kind of order ν.

For infinite rays Γτ originating at the origin one has

|τ |νKν(τ) ∈ L1(Γτ ); |τ |ν+1K ′
ν(τ) ∈ L1(Γτ ), (19)

uniformly in |arg Γτ | ≤ θ < π
2 .

Now use (18) and (19) in (17), recall Hölder’s inequality, estimate, and sum
in k. The relation (14) follows – hence also (12).

To obtain (13) one argues in much the same way. Lemma 3 is proved.
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To proceed, fix some t > 0 and observe that
m∑

k=1

∫ r

0

∇S(t − s)gk(s, x, ω) dwk
s ,

considered as a stochastic process with respect to the time variable r ∈ [0, t], is a
martingale. Burkholder-Davis-Gundy’s inequality yields then

E

∫
Rd

|
∑

k

∫ r

0

∇S(t − s)gk(s, x, ω) dwk
s |p dx

≤ cE

∫
Rd

(∫ r

0

∑
k

|∇S(t − s)gk(s, x, ω)|2 ds

) p
2

dx

= cE

∫
Rd

(∫ r

0

|∇S(t − s)g(s, x, ω)|2l2 ds

) p
2

dx.

Now let r = t and use (11):

E

∫
Rd

∫ T

0

|∇u(t, x)|p dt dx = E

∫
Rd

∫ T

0

|
∑

k

∫ t

0

∇S(t − s)gk(s, x, ω) dwk
s |p dt dx

≤ cE

∫ T

0

∫
Rd

|g(s, x, ω)|pl2 dx ds.

The solution u can be estimated in an analogous fashion, using modified Bessel
functions, to obtain

E

∫ T

0

∫
Rd

|u(t, x)|p dx dt ≤ c(p, α, d, T )E
∫

Rd

∫ T

0

|g(s, x, ω)|pl2 ds dx. (20)

In addition, observe that ‖uxx‖p

H−1
p

≤ c‖ux‖p
Lp

, and so the right side of (20)

dominates ‖uxx‖p

H−1
p

.

Finally take an arbitrary g ∈ H0
p(l2), and approximate this g in the manner

above by simpler functions gj. Each gj gives a solution uj , and by the convergence
of {gj} in Lp(Ω × (0, T ) × Rd, l2), one has that {uj} is a Cauchy-sequence in Ĥ1

p.
By completeness, there exists some u to which {uj} converges. Some additional
analysis yields that u solves (1) in the sense of (3). One has proved the existence
part of the following Theorem 4.

In the proof of uniqueness, however, the stochastic forcing is cancelled imme-
diately, and one is left with the well-known uniqueness of weak solutions for the
deterministic integral equation

u(t, x) = cα

∫ t

0

(t − s)−1+αΔu(s, x) ds.

Theorem 4. Let α ∈ (1
2 , 1); p ≥ 2. Assume that

g ∈ Lp

(
(0, T ) × Ω,P , Lp(Rd; l2)

)
.
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Then there exists a unique u ∈ Ĥ1
p such that

E

∫ T

0

∫
Rd

|u|p dx dt + E

∫ T

0

∫
Rd

|∇u|p dx dt + ‖uxx‖p

H−1
p

≤ cE

∫ T

0

∫
Rd

|g(t, x, ω)|pl2 dx dt,

and such that, for φ ∈ C∞
0 (Rd),(

u(t, ·), φ(·)
)

=
∫ t

0

k(t − s)
(
Δu(s, ·), φ(·)

)
ds +

∞∑
k=1

∫ t

0

(
gk(s, ·), φ(·)

)
dwk

s ,

a.s. for all t ∈ [0, T ].

Remark 5. Since (1 − Δ)
β
2 is an isomorphism from Hn

p (Rd) to Hn−β
p (Rd), which

commutes with all operators in this setting, all regularity results in the theorem
above may be shifted. Thus, if g ∈ Lp((0, T ), Hβ

p (Rd, l2)), then u ∈ Ĥ1+β
p .

4. Additional time-regularity

It is not difficult to observe that some time-regularity is lacking in Theorem 4
above. To see this, argue heuristically as follows. In (1), a time-derivative of order
α corresponds to a second-order derivative in space. The stochastic series in (1) is,
roughly, C

1
2 ((0, T ), Lp(Ω×Rd)). But, by Theorem 4, Δu ∈ H−1

p and the smoothing
out (in time) by the kernel t−1+α is not enough to give the deterministic integral
the same degree of smoothness as the stochastic series. One therefore conjectures
that Δu has some additional time-regularity. This is, in fact, the case:

Theorem 6. Let p, α, g be as in the assumptions of Theorem 4. Let u be the solution
given by Theorem 4. Take ε > 0 arbitrary, but such that 1

2 − ε �= 1
p , 1

2 − α
2 − ε �= 1

p .
Then

(i) u ∈ Lp

(
Ω; H

1
2−ε
p

(
[0, T ]; Lp(Rd)

))
,

(ii) u ∈ Lp

(
Ω; H

1
2−α

2 −ε
p

(
[0, T ]; H1

p(Rd)
))

,

(iii) u ∈ Lp

(
Ω; H

1
2−α−ε
p

(
[0, T ]; H2

p(Rd)
))

.

The norm of u in the respective space is bounded by (a constant times) the norm
of g in Lp

(
(0, T )× Ω × Rd; l2

)
.

An interpolation between (ii) and (iii) in Theorem 6 yields

(iv) u ∈ Lp

(
Ω; Lp([0, T ]; H

1
α−ε
p (Rd))

)
.

This is an immediate consequence of the following interpolation result whose proof
we defer to the end of the paper:
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Lemma 7. For α ∈ (1
2 , 1) and sufficiently small 0 < ε < δ, the following inclusion

holds (as a continuous embedding)

Lp

(
Ω; H

1
2−α

2 −ε
p

(
[0, T ]; H1

p(Rd)
))

∩ Lp

(
Ω; H

1
2−α−ε
p

(
[0, T ]; H2

p(Rd)
))

⊂ Lp

(
Ω; Lp

(
[0, T ]; H

1−2δ
α

p (Rd)
))

For α = 1 (the stochastic heat equation) the result obtained in [11] is u ∈
Lp

(
Ω; Lp([0, T ]; H1

p)
)
. In forthcoming work we will analyze the apparent loss of

regularity when moving from the stochastic heat equation to the stochastic integral
equation.

Outline of proof of Theorem 6 (ii). Again, throughout this proof, c will denote
a generic constant, which depends only on d, α, p, T, ε and may vary from line
to line. Let ε > 0 be such that 1

2 − α
2 − ε > 0. We claim that, for fixed ω,

ux ∈ H
1
2−α

2 −ε
p

(
[0, T ]; Lp(Rd)

)
. By [15], p. 29, this amounts to showing that

v
def=

( d

dt

) 1
2−α

2 −ε
ux =

d

dt

∑
k

(
t−

1
2+ α

2 +ε ∗ S ∗ gk
x

)
∈ Lp

(
(0, T )× Rd

)
with ‖v‖Lp((0,T )×Rd) being equivalent to ‖ux‖

H
1
2− α

2 −ε

p ([0,T ];Lp(Rd))
.

Let F (t) def= d
dt

(
t−

1
2+ α

2 +ε ∗S
)
. The convolution F ∗gx is well defined as an Itô

integral, since E
{ ∫ t

0 |F (t− s)gx(s)|2l2 ds
}

< ∞. Computing the Laplace transform
of F (t) gives

F̃ (λ) = cλ− 1
2−α

2 −ε
(
I − λ−αΔ

)−1
,

with c = Γ(1
2 + α

2 −ε). The complex inversion formula implies for any h ∈ Lp(Rd, l2)

(F (t)h)(x) = c(2πi)−1

∫
Γ1,ψ

es
(
st−1

)− 1
2 + α

2 −ε[(μ − Δ)−1h](x)t−1 ds,

where, as in the proof of Theorem 4, μ =
(
st−1

)α.
We use again the representation (18) for (μ − Δ)−1 and observe that φμ

satisfies the following estimates:∫
Rd

|φμ(x)| dx ≤ c|μ|−1 and
∫

Rd

| ∂

∂xi
φμ(x)| dx ≤ c|μ|− 1

2 . (21)

Therefore

‖ ∂

∂xi
(μ − Δ)−1h‖Lp(Rd,l2) ≤ ‖ ∂

∂xi
φμ‖L1(Rd)‖h‖Lp(Rd,l2) ≤ c|μ|− 1

2 ‖h‖Lp(Rd,l2).

We infer that

‖ ∂

∂xi
F (t)h‖Lp(Rd,l2) ≤ ct−1

∫
Γ1,ψ

e�(s)
( |s|

t

)− 1
2+ α

2 −ε( |s|
t

)−α
2 ‖h‖Lp(Rd,l2) ds

≤ ct−
1
2+ε‖h‖Lp(Rd,l2).
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The case p = ∞ yields

sup
x∈Rd

(∫ t

0

| ∂

∂xi
F (t − s)g(s, x)|2l2 ds

) 1
2 ≤ ctε‖g‖L∞((0,t)×Rd;l2),

while the case p = 2 yields[∫ T

0

∫
Rd

∫ t

0

| ∂

∂xi
F (t − s)g(s, x)|2l2 ds dx dt

] 1
2

≤ cT ε‖g‖L2((0,T )×Rd;l2).

The Marcinkiewicz interpolation theorem yields[∫ T

0

∫
Rd

(∫ t

0

| ∂

∂xi
F (t − s)g(s, x)|2l2 ds

) p
2 dx dt

] 1
p

≤ cT ε‖g‖Lp((0,T )×Rd;l2).

Hence, by the Burkholder-Davis-Gundy inequality,

E ‖ux‖p

H
1
2− α

2 −ε
p ([0,T ];Lp(Rd))

≤ cE

∫
Rd

∫ T

0

|v|p dt dx

= c

∫
Rd

∫ T

0

E
(∑

k

∫ t

0

∇F (t − s)gk(s, x, ω) dwk
s

)p
dt dx

≤ c

∫
Rd

∫ T

0

E
(∫ t

0

|∇F (t − s)g(s, x, ω)|2l2 ds
) p

2 dt dx

= c E

∫
Rd

∫ T

0

(∫ t

0

|∇F (t − s)g(s, x, ω)|2l2 ds
) p

2 dt dx

≤ c E

∫
Rd

∫ T

0

|g(t, x, ω)|pl2 dt dx,

which is (ii).
The relations (i), (iii) are proved in much the same fashion. Notice that in

the proof of (iii) we make use of the following fact which is not hard to prove using
the Marcinkiewicz multiplier theorem: Let η ∈ (0, 1), E any UMD-space, and
p ∈ (1,∞). Then, provided t−1+η ∗ u ∈ Lp((0, T ); E), one has u ∈ H−η

p ((0, T ); E).

We finally remark that the statements (i)–(iii) of Theorem 5 can be slightly
strengthened as follows. Take, e.g., (i), which states that

D
1
2−ε
t S ∗ g ∈ Lp

(
(0, T )× Ω × Rd

)
.

An examination of the proof reveals that one in fact has somewhat more:

Remark 8. With the assumptions of Theorem 4, let M(t) > 0 be such that∫ T

0

(tM2(t))−1 dt < ∞.

Then [(
M(t)

)−1
D

1
2
t S

]
∗ g ∈ Lp((0, T ) × Ω × Rd, l2).
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Outline of the proof of Remark 8: Let F1 =
(

d
dt

) 1
2 S. The Laplace transform is

F̃1(λ) = cλ− 1
2 (1 − λ−αΔ)−1

and the complex inversion formula yields for h ∈ Lp(Rd, l2)

F1(t)h = c

∫
Γ1,ψ

es
(s

t

)− 1
2+α

(μ − Δ)−1ht−1 ds,

with μ =
(

s
t

)α. By (21) we obtain

‖F1(t)h‖Lp(Rd,l2) ≤ ct−1

∫
Γ1,ψ

e�s

( |s|
t

)− 1
2

‖h‖Lp(Rd,l2) ≤ ct−
1
2 ‖h‖Lp(Rd,l2).

The case p = ∞ yields

‖
∫ t

0

M−1(t − s)F1(t − s)g(s) ds‖L∞(Rd,l2)

≤ c

∫ t

0

M−1(s)s−
1
2 ds ‖g‖L∞((0,T )×Rd,l2),

while the case p = 2 yields by Hölder’s inequality∫ T

0

‖
∫ t

0

M−1(t − s)F1(t − s)g(s) ds‖2
L2(Rd,l2)

dt

≤ c

∫ T

0

(∫ t

0

M(s)−2s−1 ds

)
‖g‖2

L2((0,t)×Rd,l2)
dt.

The Marcinkiewicz interpolation theorem concludes the proof of the remark.

Proof of Lemma 7. Let A be an UMD-space. For s ∈ R, ε > 0, and p ∈ (1,∞), q ∈
[1,∞),

Hs+ε
p (R; A) ⊂ Bs

p,q(R; A). (22)

([7], see also [8].) Define

Hs+ε
p ([0, T ]; A) def= {g |[0,T ]

∣∣ g ∈ Hs+ε
p (R; A)}

with ‖f‖Hs+ε
p ([0,T ];A)

def= inf
g∈S0,f

‖g‖Hs+ε
p (R;A),

where S0,f
def= {g ∈ Hs+ε

p (R, A)
∣∣ g |[0,T ]= f}.

Similarly, we define

Bs
p,q([0, T ]; A) def= {g |[0,T ]

∣∣ g ∈ Bs
p,q(R; A)}

with ‖f‖Bs
p,q([0,T ];A)

def= inf
g∈S1,f

‖g‖Bs
p,q(R;A),

where S1,f
def= {g ∈ Bs

p,q(R, A)
∣∣ g |[0,T ]= f}.
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Given f ∈ Hs+ε
p ([0, T ]; A) and g ∈ S0,f , we infer by (22) with some constant

c that g ∈ Bs
p,q(R; A) and ‖g‖Bs

p,q(R;A) ≤ c‖g‖Hs+ε
p (R;A), thus g ∈ S1,f , hence

f = g
∣∣
[0,T ]

∈ Bs
p,q([0, T ]; A), and

‖f‖Bs
p,q([0,T ];A) = inf

g∈S1,f

‖g‖Bs
p,q([0,T ];A) ≤ c inf

g∈S0,f

‖g‖Hs+ε
p (R;A) = c ‖f‖Hs+ε

p ([0,T ];A).

Thus, if 0 < ε < δ,

Lp

(
Ω; H

1
2−α

2 −ε
p

(
[0, T ]; H1

p(Rd)
))

∩ Lp

(
Ω; H

1
2−α−ε
p

(
[0, T ]; H2

p(Rd)
))

⊂ Lp

(
Ω; B

1
2−α

2 −δ
p,q

(
[0, T ]; H1

p(Rd)
))

∩ Lp

(
Ω; B

1
2−α−δ
p,q

(
[0, T ]; H2

p(Rd)
))

.

Let δ be sufficiently small so that

θ
def=

1
α
− 1 − 2δ

α
∈ (0, 1).

Use complex interpolation. From [14, p. 185,(11)] we have[
H1

p (Rd), H2
p (Rd)

]
θ

= H(1−θ)+2θ
p (Rd) = H

1−2δ
α

p (Rd).

Now use [14, p. 128,(4)] and subsequently [6, p. 179, (6.8)] to show that

Lp

(
Ω; B

1
2−α

2 −δ
p,q

(
[0, T ]; H1

p(Rd)
))

∩ Lp

(
Ω; B

1
2−α−δ
p,q

(
[0, T ]; H2

p(Rd)
))

⊂ Lp

(
Ω;

[
B

1
2−α

2 −δ
p,q

(
[0, T ]; H1

p(Rd)
)
, B

1
2−α−δ
p,q

(
[0, T ]; H2

p(Rd)
)]

θ

)
⊂ Lp

(
Ω; B0

p,q

(
[0, T ]; H

1−2δ
α

p (Rd)
))

.

Choose q = 1 and note that B0
p,1(R, A) ⊂ Lp(R, A), [9]. Now argue as above to

obtain that B0
p,1([0, T ], A) ⊂ Lp([0, T ], A). This proves Lemma 7.
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1. Introduction

Let Ω ⊂ R3 be an exterior domain in R3. Consider the Navier-Stokes system

∂tu − Δu + τ · (u · ∇)u + ∇p = h, div u = 0 in Ω × (0,∞), (1.1)

with the boundary conditions

u | ∂Ω× (0,∞) = 0, u(x, t) → e1 (|x| → ∞) for t ∈ (0,∞), (1.2)

where e1 := (1, 0, 0), and where the data h do not depend on the time variable t.
Let (u, p) be a solution to problem (1.1), (1.2), and let (U, P ) be a solution of the
corresponding stationary boundary value problem

−ΔU + τ · (U · ∇)U + ∇P = h, div U = 0 in Ω, (1.3)
U | ∂Ω = 0, U(x) → e1 (|x| → ∞). (1.4)

In this situation, the question arises as to whether u(t)−U tends to zero in some
sense for t tending to infinity, provided u(0) − U is small in a suitable way. This
“stability problem” attracted much attention for some time now; see [2], [8], [9],
[11], [12], [17], for example. Most of the results in these references are based on
smallness assumptions on U . However, as explained in [13], [14], one would also
like to find a criterion related to the spectrum of a suitable linear operator, similar
to the situation with ODE. Recently Neustupa [15] came rather close to such a
criterion. His result may be stated as follows:

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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Write P2 for the usual Helmholtz operator on L2(Ω)3. Define the operator
L by

L(v) := P2

(
Δv − τ · (U · ∇)v − τ · (v · ∇)U

)
,

with v from a suitable function space. Let Bsym denote the symmetric part of
an operator B given by B(v) := −(U · ∇)v − (v · ∇)U, and let H ′

0 be the finite-
dimensional subspace of L2(Ω)3 consisting of the eigenfunctions associated to the
positive eigenvalues of the operator P2

(
Δ+ ã ·τ ·Bsym

)
, where ã is some fixed real

number. (For rigorous definitions see Section 2.) Suppose there is some R > 0 and
some non-increasing, integrable and square-integrable function ϕ : [0,∞) → [0,∞)
such that

‖∇eLt(f) |BR‖2 ≤ ϕ(t) · ‖f‖2 for t ∈ (0,∞), f ∈ H ′
0. (1.5)

Then Neustupa [15] could show that for a strong solution (u, p) of (1.1), (1.3), the
relation ‖∇(u(t) − U)‖2 → 0 holds for t → ∞ if ‖u(0) − U‖1,2 is small. Neustupa
considers (1.5) as a substitute of the assumption that all eigenvalues of L have
negative real part.

In the work at hand, we show that this point of view is justified at least in
the case Ω = R3 (the case of the whole space). It turned out that for such Ω,
inequality (1.5) is valid provided all the eigenvalues of L have negative real part
and the point 0 is almost in the resolvent of L, in the same sense as the point 0 is
almost in the resolvent of respectively the Stokes and the Oseen operator. A precise
statement of these conditions may be found in assertion (C1) and (C2) in Section
2; our results are stated in Theorem 2.3. These results are by no means obvious
since the spectrum of L touches the imaginary axis from the left, independently
of the concrete form of the function U .

In this article, we are only able to indicate the way we proceed and elaborate
some selected points. More detailed proofs will be given in [5].

2. Notations, definitions and main result

For ε > 0, we put Bε(x) :=
{

y ∈ R3 : |y − x| < ε
}
. Set Bε := Bε(0). For A ⊂ R3,

we abbreviate Ac := R3\A. The length α1 + α2 + α3 of a multi-index α ∈ N3
0 is

denoted by |α|1.
If σ ∈ N, and if f : R3 → R, g : R3 → Rσ are measurable functions, with∫

R3
|f(x − y)| · |g(y)| dy < ∞ for a.e. x ∈ R3,

then we set

(f ∗ g)(x) :=
(∫

R3
f(x − y) · gj(y) dy

)
1≤j≤3

for a.e. x ∈ R3.

We define D1,2
0 (R3) as the space of all functions v ∈ W 1,1

loc (R3) ∩ L6(R3) such
that ∇v ∈ L2(R3)3; see [6, Remark II.5.2, Theorem II.5.1, II.6.1]. This space is
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equipped with the gradient norm. Furthermore, put D := [D1,2
0 (R3)3]′. We define

the norm ‖ ‖−1,2 on D by setting

‖F‖−1,2 := sup
{
|F (v)|/‖∇v‖2 : v ∈ D1,2

0 (R3)3, ∇v �= 0
}
. (2.1)

We note that in (2.1), it is sufficient to take the sup with respect to all functions
v ∈ C∞

0 (R3)3 with ∇v �= 0. Any function f ∈ L1
loc(R

3)3 with

γf := sup
{ ∣∣∣ ∫

R3
f · v dx

∣∣∣/‖∇v‖2 : v ∈ C∞
0 (R3)3, ∇v �= 0

}
< ∞

defines an element of D, which we also denote by f , and which verifies the relation
‖f‖−1,2 = γf . This is true in particular for f ∈ L6/5(R3)3, due to the standard
Sobolev estimate ‖v‖6 ≤ C · ‖∇v‖2 for v ∈ C∞

0 (R3)3.
For p ∈ (1,∞), let Hp(R3) denote the closure of the set

{
ϕ ∈ C∞

0 (R3)3 :
div ϕ = 0

}
with respect to the norm ‖ ‖p. Then, for any element f ∈ Lp(R3)3,

there is a unique function Ppf ∈ Hp(R3) and some g ∈ W 1,p
loc (R3) with Ppf +∇g =

f . The mapping Pp : Hp(R3) → Lp(R3)3 is linear and bounded. We refer to [6,
Section III.1] for these results. Since for any p, q ∈ (1,∞) and any f ∈ Lp(R3)3 ∩
Lq(R3)3, we have Ppf = Pqf , we will only write P instead of Pq in the following.

We fix τ ∈ (0,∞). Put s(x) := τ · (|x| − x1) for x ∈ R3, and define

E(0)(z) := (4 · π)−1 · |z|−1 · e−s(z)/2,

E(λ)(z) := (4 · π)−1 · |z|−1 · e−
√

λ+(τ/2)2·|z|+τ ·z1/2

for z ∈ R3\{0}, λ ∈ C\{0}. Then E(�), for � ∈ C with $� ≥ 0, is a fundamental
solution of the equation −Δv + τ · ∂1v + � · v = g.

Concerning the function h in (1.1) and (1.3), we suppose that h ∈ Ls(R3)3 for
s ∈ (1, 3 + ε], with some ε > 0. Then there is a pair (U, P ) ∈ H2

loc(R
3)3 ×H1

loc(R
3)

which solves (1.3) with Ω = R3, and which verifies the relations

U − e1 ∈ Ls(R3)3 for s ∈ (2, 3 + ε], (2.2)

∇U ∈ Ls(R3)9 for s ∈ [4/3, 3 + ε], with some ε > 0.

For this result, see [7, Section IX.7], [4, Theorem 4.9]. For the rest of this article,
we fix such a solution (U, P ).

For v ∈ W 1,1
loc (R3)3, we put

B(v) :=
(
−

3∑
k=1

(
∂kUj · vk + (U − e1)k · ∂kvj

))
1≤j≤3

,

Bsym(v) :=
(
(−1/2) ·

3∑
k=1

vk · (∂kUj + ∂jUk)
)

1≤j≤3
.

Further put D(L) := H2(R3) ∩ H2(R3)3, and define an operator L : D(L) →
H2(R3) by setting

Lv := P
(
Δv − τ · ∂1v + τ · B(v)

)
for v ∈ D(L),
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where we used implicitly that B(v) ∈ Lp(R3)3 for some p ∈ (1,∞). In fact, the
relation B(v) ∈ L2(R3)3 holds for v ∈ D. It should further be noted that

P
(
Δv − τ · ∂1v

)
= ΔPv − τ · ∂1Pv = Δv − τ · ∂1v

for v ∈ D(L), a relation which is not valid for functions in a corresponding space
on Ω with Ω �= R3. The ensuing theorem holds according to [1], [13], [14].

Theorem 2.1. The set D(L) is dense in H2(R3). The operator L is closed. Let
�(L) denote the resolvent set of L, and σ(L) the spectrum of L. Then there is a
countable set K of isolated eigenvalues of L such that

σ(L)\K ⊂
{

λ ∈ C : $λ ≤ −(%λ)2/τ2
}
. (2.3)

Moreover, there are a ∈ (0,∞), ϑ ∈ (π/2, π) such that

Sϑ,a :=
{

λ ∈ C\{a} : | arg(λ − a)| ≤ ϑ
}
⊂ �(L),

and there is C1 > 0 with

‖(λ · I − L)−1(Φ)‖2 ≤ C1 · |λ − a|−1 · ‖Φ‖2 (2.4)

for Φ ∈ H2(R3), λ ∈ Sϑ,a.

We require that the spectrum of L satisfies the following two conditions:

(C1) $λ < 0 for λ ∈ K.

(C2) For any G ∈ D, there is one and only one function u ∈ D1,2
0 (R3)3 with

div u = 0 and∫
R3

(
∇u · ∇v + τ · ∂1u · v − τ · PB(u) · v

)
dx = G(v)

for v ∈ C∞
0 (R3)3 with div v = 0.

Note that an existence and uniqueness result as in (C2) is valid for the Oseen
system ([7, Theorem IX.4.1]). Thus condition (C2) may be interpreted in the sense
that the term τ · PB(u) should not destroy this existence and uniqueness result
for the Oseen system.

We fix some ã ∈ R. For the ensuing theorem, we refer to [15].

Theorem 2.2. The set of all numbers λ ∈ (0,∞) with Δf + ã · τ ·PBsym(f) = λ ·f
for some f ∈ D(L) with f �= 0 is finite.

Let H ′
0 be the set consisting of these functions f and of the zero function.

Then H ′
0 is a vector space of finite dimension.

We remark that according to Lemma 5.1, the term PBsym(f) is well defined
for functions f as in Theorem 2.2. By Theorem 2.1, the operator −L is sectorial
([10, Definition 1.3.1]), and thus generates an analytic semigroup (eLt)t≥0 of linear
operators from H2(R3) into D(L); see [10, Theorem 1.3.4]. Our aim is to show the
following
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Theorem 2.3. Let R ∈ (0,∞). Then there is some C > 0 depending on τ, U, a, ϑ,
C1, ã and R such that

‖∇eLt(f) |BR‖2 ≤ C · (1 + t)−9/8 · ‖f‖2 for f ∈ H ′
0, t ∈ (0,∞).

Theorem 2.3 will be proved via resolvent estimates related to the operator
L. These estimates are stated in Theorem 5.3, 5.4 and Lemma 5.5 below. Since
L may be considered as a perturbed Oseen operator, we thus establish resolvent
estimates for a perturbed Oseen system.

Concerning the constants appearing in the following, the symbol C will denote
constants only depending on τ, U , the parameters a, ϑ and C1 from Theorem 2.1,
and on the constant ã appearing in Theorem 2.2. We will write C(γ1, . . . , γn)
for constants depending on the preceding quantities as well as on the parameters
γ1, . . . , γn. A constant which only depends on γ1, . . . , γn and on no other quantity
will be denoted by C(γ1, . . . , γn).

3. Convolutions of E(�); estimates of PB(E(�) ∗ Φ)

We begin by stating some estimates of the fundamental solution E(�) of the equa-
tion −Δv+τ ·∂1v+�·v = g. We remark that in this section and in the following, we
will use the letter � to denote complex numbers including 0, whereas the variable
λ stands for non-vanishing complex numbers.

Theorem 3.1. Let κ, γ ∈ [0,∞). Then

|∂α
z E(λ)(z)| ≤ C(τ, κ, γ) · |λ|−2·γ ·

(
|z|−γ−1−|α|1/2 + |z|−γ−1−|α|1 ) (3.1)

·
(
1 + s(z)

)−κ · e−μ·|λ|2·|z|

for z ∈ R3\{0}, α ∈ N3
0 with |α|1 ≤ 1, λ ∈ C\{0} with $λ ≥ 0 and |λ| ≤ (τ/2)2,

where μ is a constant only depending on τ . Moreover,

|∂α
z E(�)(z)| ≤ C(τ) ·

(
|z|−1−|α|1/2 + |z|−1−|α|1 ) · ( 1 + s(z)

)−1−|α|1/2 (3.2)

for z, α as in (3.1), and for � ∈ C with $� ≥ 0, |�| ≤ (τ/2)2.

Theorem 3.1, Young’s and Minkowski’s inequality and the Hardy-Littlewood-
Sobolev inequality yield

Theorem 3.2. Let p ∈ (1, 2], q ∈ [1, p] with p < 2 or q > 1. Then

‖ |E(λ)| ∗ |f | ‖p ≤ C(τ, p, q) · |λ|2−4·(1−1/q+1/p) · ‖f‖q (3.3)

for f ∈ Lq(R3), λ ∈ C\{0} with $λ ≥ 0, |λ| ≤ (τ/2)2.
Let q ∈ [1, 2) and

p ∈
(
(1/q − 1/2)−1, ∞] if q ≥ 3/2,

p ∈
(
(1/q − 1/2)−1, (1/q − 2/3)−1

)
if q < 3/2.

Then, for f ∈ Lq(R3), � ∈ C with $� ≥ 0 and |�| ≤ (τ/2)2,

‖ |E(�)| ∗ |f | ‖p ≤ C(τ, p, q) · ‖f‖q. (3.4)



176 P. Deuring

Let p, q ∈ [1,∞] with 1/q − 1/3 < 1/p < 1/q − 1/4. Then

‖ |∂lE
(�)| ∗ |f | ‖p ≤ C(τ, p, q) · ‖f‖q (3.5)

for 1 ≤ l ≤ 3 and for f and � as in (3.4). Finally

‖ |E(�)| ∗ |f | ‖6 + ‖ |∂lE
(�)| ∗ |f | ‖2 ≤ C(τ) · ‖f‖6/5

for 1 ≤ l ≤ 3, f ∈ L6/5(R3), � ∈ C with $� ≥ 0, |�| ≤ (τ/2)2.

Among other results, the next theorem gives a precise form of the assertion
that E(�) is a fundamental solution of the equation −Δv + τ · ∂1v + � · v = g.

Theorem 3.3. Let q ∈ (1, 2), f ∈ Lq(R3), � ∈ C with $� ≥ 0, |�| ≤ (τ/2)2. Then

E(�) ∗ f ∈ W 2,q
loc (R3), ∂l(E(�) ∗ f) = (∂lE

(�)) ∗ f (1 ≤ l ≤ 3),

−Δ(E(�) ∗ f) + τ · ∂1(E(�) ∗ f) + � · (E(�) ∗ f) = f,

‖∂l∂m(E(�) ∗ f) |BR‖q ≤ C(τ, q, R) · ‖f‖q

(
1 ≤ l, m ≤ 3, R > 0

)
. (3.6)

We note a consequence of Theorem 3.2 and a remark in [6, p. 391/392]:

Lemma 3.4. ‖∇E(�) ∗ w‖2 ≤ C(τ) · ‖w‖−1,2 for � ∈ C with $� ≥ 0, |�| ≤ (τ/2)2,
w ∈ C∞

0 (R3)3.

Due to this lemma, we may define convolutions of E(�) with elements of D:

Corollary 3.5. Let � ∈ C with $� ≥ 0, |�| ≤ (τ/2)2. Then there is a linear mapping
Γ := Γ� : D → L6(R3)3 with

Γ(Φ) ∈ W 1,1
loc (R3)3, ∇Γ(Φ) ∈ L2(R3)9, ∂1Γ(Φ) ∈ D,

‖∇Γ(Φ)‖2 ≤ C(τ) · ‖Φ‖−1,2 for Φ ∈ D,

Γ(Φ) = E(�) ∗ Φ for Φ ∈ C∞
0 (R3)3.

Moreover, Γ(w) = E(�) ∗w if w ∈ D∩Lq(R3)3 for some q ∈ (1, 2), or if � �= 0 and
w ∈ D ∩ L2(R3)3.

If w ∈ D ∩ L2(R3)3, then

∂lΓ(w) = (∂lE
(�)) ∗ w (1 ≤ l ≤ 3), Γ(w) ∈ W 2,1

loc (R3)3,

∂l∂mΓ(w) ∈ L2(R3)3 (1 ≤ l, m ≤ 3), −ΔΓ(w) + τ · ∂1Γ(w) + � · Γ(w) = w.

Finally, if w ∈ D ∩ H2(R3), the equation div Γ(w) = 0 holds.

The last statement of Corollary 3.5 means that for w ∈ D∩H2(R3), the pair
(v, π) with v = Γ(w), π = 0 is a solution in R3 of the resolvent problem

−Δv + τ · ∂1v + � · v + ∇π = w, div v = 0

associated to the Oseen operator. This observation explains why convolutions of
E(�) are studied here.

In the ensuing theorem, which is a consequence of (2.2), we evaluate the
operator PB applied to convolutions of E(�).
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Theorem 3.6. Let q ∈ (1, 2), p ∈ (1, 2]. Then B(E(�) ∗ Φ) ∈ Lq(R3)3 for Φ ∈
Lq(R3)3, and B

(
Γ�(w)

)
∈ Lp(R3)3 for w ∈ D, where � ∈ C with $� ≥ 0 and

|�| ≤ (τ/2)2. Moreover,

‖PB(E(�) ∗ Φ)‖q ≤ C(q) · ‖Φ‖q, ‖P
(
Γ�(w)

)
‖p ≤ C(p) · ‖w‖−1,2 (3.7)

for Φ, w, � as above. In addition, there are non-increasing functions D
(q)
1 , D

(p)
2 :

[0,∞) → (0,∞) such that D
(q)
1 (R) → 0, D

(p)
2 (R) → 0 for R → ∞, and

‖P
(
χBc

R
· B(E(�) ∗ Φ)

)
‖q ≤ D

(q)
1 (R) · ‖Φ‖q, (3.8)

‖P
(
χBc

R
· B(Γ�(w))

)
‖p ≤ D

(p)
2 (R) · ‖w‖−1,2

for Φ, w, � as above, and for R ∈ [R0,∞).

The following theorem, although technical, is a crucial part of our theory. Its
significance will become apparent in the next section.

Theorem 3.7. Let q ∈ (1, 2), p ∈ (1, 2]. Then there are constants δ
(q)
1 = δ1(τ, U, q),

δ
(p)
2 = δ2(τ, U, p) ∈ (0, 1) and non-decreasing functions γ

(q)
1 , γ

(p)
2 : (0,∞) → (0,∞)

such that the following holds:
Let λ ∈ C\{0} with $λ ≥ 0 and |λ| ≤ (τ/2)2. Let R ∈ [R0,∞), R̃ ∈

[2 · R + 1, ∞). Then

‖PB(E(λ) ∗ w) − PB(E(0) ∗ w)‖q

≤
(

2 · D(q)
1 (R) + C(q) · γ(q)

1 (R) · R̃−δ
(q)
1 + γ

(q)
1 (R̃) · |λ|1/3

)
· ‖w‖q

for w ∈ Lq(R3)3,

‖PB(E(λ) ∗ w) − PB
(
Γ0(w)

)
‖p

≤
(

2 · D(p)
2 (R) + C(p) · γ(p)

2 (R) ·
(
R̃−δ

(p)
2 +

(
ln(R̃/(R̃ − 1))

)1/2
)

+γ
(p)
2 (R̃) · |λ|1/3

)
· (‖w‖2 + ‖w‖1,2) for w ∈ L2(R3)3 ∩ D.

4. Solving a perturbed Oseen system

We are now looking for solutions in H2(R3) ∩ H2(R3)3 of the perturbed Oseen
system

−Δv + τ · ∂1v + λv − τ · PB(v) = f, div v = 0. (4.1)

To this end, we intend to use the formula

(−Δ + τ · ∂1 + λ · I − τ · PB)−1 (4.2)

= (−Δ + τ · ∂1 + λ · I)−1 ◦
(
I − τ · PB ◦ (−Δ + τ · ∂1 + λ · I)−1

)−1
.

Of course, this equation is only formal, and the problem consists in giving it a sense.
Our idea is to start with λ = 0. In that case, equation (4.2) may be transformed
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into something rigorous due to our assumption (C2) in Section 2. Then we use a
perturbation argument and Theorem 3.7 in order to deal with the case λ ∈ C\{0}
with $λ ≥ 0 and |λ| small. The results for this case will be used in Section 5 in
order to derive estimates of solutions of (4.1) (that is, resolvent estimates of the
operator L), under the assumptions that |λ| small, $λ ≥ 0, and the right-hand
side of f in (4.1) belongs to the space H ′

0 introduced in Theorem 2.2.
We begin by looking for a rigorous form of (4.2) in the case λ = 0. In a first

step, we deduce from Corollary 3.5 and a standard uniqueness result (see [6, p.
397 and p. 391]):

Theorem 4.1. Define D(A) as the space of all functions v ∈ L6(R3)3 ∩ W 2,1
loc (R3)3

such that ∂lv, ∂m∂lv ∈ L2(R3)3 for 1 ≤ l, m ≤ 3, ∂1v ∈ D and div v = 0.
Put Av := −Δv + τ · ∂1v for v ∈ D(A). Then the operator A : D(A) →

D ∩ H2(R3) is linear and bijective, with A−1 = Γ0, where Γ0 was introduced in
Corollary 3.5.

Theorem 4.1 and assumption (C2) imply

Corollary 4.2. The operator Ã : D(A) → D ∩ H2(R3), with Ãv := Av − τ · PB(v)
for v ∈ D(A), is linear and bijective.

In view of Corollary 4.2, we may use the simple operator calculus indicated
by (4.2). It follows with Corollary 3.5 and Theorem 3.6:

Corollary 4.3. The mapping

Z̃0 : D ∩ H2(R3) � w → w − τ · PB
(
Γ0(w)

)
∈ D ∩ H2(R3)

is linear, bounded, and bijective, and

‖w‖−1,2 + ‖w‖2 ≤ C ·
(
‖Z̃0(w)‖−1,2 + ‖Z̃0(w)‖2

)
for w ∈ D ∩ H2(R3).

But the invertibility Z̃0 implies that the operator Z
(q)
0 defined below and

acting on Lq-spaces is also invertible:

Theorem 4.4. Let q ∈ (1, 2). Then the operator

Z
(q)
0 : Lq(R3)3 � w → w − τ · PB(E(0) ∗ w) ∈ Lq(R3)3

is linear, bounded and bijective, with ‖w‖q ≤ C(q) · ‖Z(q)
0 (w)‖q for w ∈ Lq(R3)3.

The idea of the proof of Theorem 4.4 consists in showing that Zq is Fredholm
with index zero. This may be done by a compactness argument involving the spaces
W 2,q(BR) and Lq(BR) for R ∈ (0,∞) as well as inequality (3.6), and by referring
to a contraction principle and inequality (3.8) with large R. On the other hand, it
may be shown that Z

(q)
0 is one-to-one because Z̃0 has the same property. Theorem

4.4 then follows.
Now we use a perturbation argument together with Theorem 3.7 in order

to show that corresponding operators Z̃λ and Z
(q)
λ , with λ �= 0 but |λ| small, are

bijective, too. We get
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Theorem 4.5. There is ε1 ∈ (0, (τ/2)2] depending on τ and U such that for λ ∈
C\{0} with $λ ≥ 0 and |λ| ≤ ε1, the operator

Z̃λ : D ∩ H2(R3) � w → w − τ · PB(E(λ) ∗ w) ∈ D ∩ H2(R3)

is linear, bounded, and bijective, with

‖w‖−1,2 + ‖w‖2 ≤ C ·
(
‖Z̃λ(w)‖−1,2 + ‖Z̃λ(w)‖2

)
for w ∈ D ∩ H2(R3) and for λ as before.

Let q ∈ (1, 2). Then there is ε2 = ε2(q) = ε2(τ, U, q) ∈ (0, ε1] such that for
λ ∈ C\{0} with $λ ≥ 0 and |λ| ≤ ε2, the operator

Z
(q)
λ : Lq(R3)3 � w → w − τ · PB(E(λ) ∗ w) ∈ Lq(R3)3

is linear, bounded and bijective, with ‖w‖q ≤ C(q) · ‖Z(q)
λ (w)‖q for w ∈ Lq(R3)3

and for λ ∈ C\{0} with $λ ≥ 0, |λ| ≤ ε2.

Now, for the second time, we apply the straightforward operator calculus
implicit in (4.2). This argument combined with Theorem 4.5, Corollary 3.5 and
Theorem 3.2 (which yields that E(λ) ∗ w ∈ L2(R3)3 for w ∈ L2(R3)3, λ ∈ C\{0}
with $λ ≥ 0 and |λ| < (τ/2)2) implies the ensuing corollary.

Corollary 4.6. Let g ∈ D ∩ H2(R3), λ ∈ C\{0} with $λ ≥ 0, |λ| ≤ ε1. Put
ψ := Z̃−1

λ (g), u := E(λ) ∗ ψ. Then u ∈ H2(R3)3 ∩ H2(R3),

−Δu + τ · ∂1u + λ · u − τ · PB(u) = g, div u = 0.

If in addition q ∈ (1, 2), |λ| ≤ ε2(q) and g ∈ Lq(R3)3, we have ψ ∈ Lq(R3)3 and
Z

(q)
λ (ψ) = g.

In view of (C1) and Theorem 2.1, the preceding corollary implies

Corollary 4.7. Let λ ∈ C\{0} with $λ ≥ 0 and |λ| ≤ ε1, with ε1 from Theorem 4.5.
Then λ ∈ �(L), the operator Z̃λ (Theorem 4.5) is bijective, and (λ · I −L)−1(g) =
E(λ) ∗ Z̃−1

λ (g).

5. Some resolvent estimates for a perturbed Oseen system

The aim of this section is to present some estimates of solutions of equation (4.1).
We begin by an observation with respect to the operator Bsym. Hölder’s inequality,
the Sobolev imbedding ‖w‖∞ ≤ C · ‖w‖2,2 for w ∈ H2(R3), and the assumptions
in (2.2), imply

Lemma 5.1. Let q ∈ [1, 6/5]. Then ‖Bsym(w)‖q ≤ C(q) · ‖w‖2 for w ∈ L2(R3)3.
Let q ∈ (6/5, 2]. Then ‖Bsym(w)‖q ≤ C(q) · ‖w‖2,2 for w ∈ H2(R3)3.

The special role of the exponent 6/5 in Lemma 5.1 is due to the inequality
(1 − q/2)−1 · q ≤ 3, which is valid for q ∈ [1, 6/5]. This inequality and (2.2) yield
‖∇U‖(1−q/2)−1·q < ∞.
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Next we observe that for f ∈ D(L), σ ∈ (0,∞) with Δf + ã · τ ·PBsym(f) =
σ ·f , this function f verifies the Stokes resolvent system −Δf +σ ·f = g, div f = 0
with a right-hand side g given by g = ã · τ · PBsym(f). (Note that f ∈ D(L) ⊂
H2(R3), so that it is in fact the Stokes resolvent system which appears here.) Thus
we may combine Lemma 5.1 and the regularity theory for the Stokes resolvent
problem. The latter theory yields the inequality ‖∇f‖2 ≤ C · ‖ã · τ · PB(f)‖6/5,
and much more deep-lying W2,q-estimates; see [3], for example. As a consequence,
we get

Theorem 5.2. Let f ∈ D(L), and suppose that Δf + ã · τ · PBsym(f) = σ · f
for some σ ∈ (0,∞). (These assumptions are verified by the functions f from the
space H ′

0 introduced in Theorem 2.2.) Let s ∈ (1, 2].
Then f ∈ W 2,s(R3)3 and ‖f‖2,s ≤ C(s, σ) · ‖f‖2,2. In the case s ≤ 6/5, the

estimate ‖f‖2,s ≤ C(s, σ) · ‖f‖2 holds. Moreover, ‖∇f‖2 ≤ C · ‖f‖2.

The next theorem, which exploits Theorem 4.5, Corollary 4.6 and 4.7, as well
as Theorem 5.2, is the principal tool in the proof of Theorem 2.3. It yields resolvent
estimates for the operator L under the assumptions that the resolvent parameter
λ is small and the right-hand side in the resolvent equation (4.1) belongs to the
space H ′

0 from Theorem 2.2.

Theorem 5.3. Let f and σ be given as in Theorem 5.2. Let R ∈ (0,∞), δ ∈ (0, 1).
Then there is ε3 = ε3(δ) = ε3(τ, U, σ, ã, δ) ∈ (0, ε1] (the constant ε1 was

introduced in Theorem 4.5) such that for λ ∈ C\{0} with $λ ≥ 0, |λ| ≤ ε3, the
ensuing inequalities hold:

‖∇(λ · I − L)−1(f)‖2 ≤ C(σ) · ‖f‖2, (5.1)

‖∇(λ · I − L)−2(f) |BR‖2 ≤ C(σ, δ, R) · |λ|−δ · ‖f‖2, (5.2)

‖∇(λ · I − L)−1 ◦ (λ · I − L)−1(f) |BR‖2 (5.3)

≤ C(σ, δ, R) · |λ|−δ · ‖f‖2,

‖∇(λ · I − L)−3(f) |BR‖2 ≤ C(σ, δ, R) · |λ|−2−δ · ‖f‖2. (5.4)

Next we state a resolvent estimate valid for large values of |λ|.

Theorem 5.4. There is C̃ = C̃(τ, U, a, ϑ, C1) > 0 such that for λ ∈ Sϑ,a with
|λ| ≥ C̃, and for g ∈ H2(R3) ∩ H1(R3)3, the inequality

|λ| · ‖∇(λ · I − L)−1(g)‖2 ≤ C · ‖∇g‖2

is valid.

This theorem may be established by multiplying equation (4.1) by −Δv, with
v an abbreviation for (λ · I − L)−1(g), and then integrating by parts.

For values of |λ| which may be considered as neither large nor small, we
exploit the continuity of the resolvent, to obtain
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Lemma 5.5. Let κ1, κ2 ∈ (0,∞) with κ1 < κ2. Put

M :=
{

λ ∈ C : $λ ≥ 0, κ1 ≤ |λ| ≤ κ2

}
.

Then M ⊂ �(L) and ‖(λ · I − L)−1(w)‖1,2 ≤ C(κ1, κ2) · ‖w‖2 for w ∈ H2(R3).

Note that the relation M ⊂ �(L) holds by (2.3) and assumption (C1).

6. Estimate of the semigroup eLt

Put C := max
{

C̃, ε3(1/16), 2−1/2, a, 2 · a · tan(π − ϑ)
}
, where C̃ was introduced

in Theorem 5.4, ε3(1/16) in Theorem 5.3 (with δ = 1/16), and a and ϑ in Theorem
2.1.

Since C ≥ 2 · a · tan(π − ϑ) and C ≥ a, we may choose ϑ0 ∈ (π/2, ϑ) so close
to π/2 that for any s ∈ [C,∞), the relation{

s · ei·ϕ : ϕ ∈ [−ϑ0, ϑ0]
}
∪
{

r · ei·ϑ0 : r ∈ [s,∞)
}
⊂ Sϑ,a (6.1)

holds. Let α, β ∈ (0,∞) with α < β, β ≥ C. Then we define the curves Γ(α,β)
1 , . . . ,

Γ(α,β)
5 ⊂ C by

Γ(α,β)
1 :=

{
α · ei·ϕ : ϕ ∈ [−π/2, π/2]

}
, Γ(α,β)

2 :=
{

i · r : r ∈ [α, β]
}
,

Γ(α,β)
3 :=

{
i · β + r · ei·ϑ : r ∈ [0,∞)

}
,

Γ(α,β)
i :=

{
y : y ∈ Γ(α,β)

i−2

}
for i ∈ {4, 5}.

Let s ∈ [C,∞) and define

Λ(s)
1 :=

{
s · ei·ϕ : ϕ ∈ [−ϑ0, ϑ0]

}
, Λ(s)

2 :=
{

r · ei·ϑ0 : r ∈ [s,∞)
}
,

Λ(s)
3 :=

{
y : y ∈ Λ(s)

2

}
.

Then, in view of (6.1), (2.3), (C1) and the choice of C, the curves Γ(α,β)
ν and Λ(s)

μ

are contained in �(L) (1 ≤ ν ≤ 5, 1 ≤ μ ≤ 3), and we have by [10, Theorem 1.3.4],
for t ∈ (0,∞), w ∈ H2(R3):

eLt(w) = (2 · π · i)−1 ·
5∑

ν=1

∫
Γ

(α,β)
ν

eλ·t · (λ · I − L)−1(w) dλ (6.2)

= (2 · π · i)−1 ·
3∑

μ=1

∫
Λ

(s)
μ

eλ·t · (λ · I − L)−1(w) dλ.

A remark is perhaps in order with respect to the difficulties we have to face in this
section. In Theorem 2.3, it is claimed that for large t, the term ‖∇eLt(f) |BR‖2

is bounded by t−1−ε · ‖f‖2, for some ε > 0, times a factor independent of t and f .
(Incidentally we chose ε = 1/8, but this is only for definiteness.) We will obtain
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such an estimate by considering the first sum on the right-hand side of (6.2). This
means in particular that we have to show that∥∥∥∫

Γ
(α,β)
1

eλ·t · ∇(λ · I − L)−1(f) |BR dλ
∥∥∥

2
≤ C(R, ϑ, σ) · ‖f‖2 · t−1−ε.

In view of (5.1), this should require α ≤ t−1−ε. On other hand, in order to produce
a factor t−μ for some μ > 0 in the estimate of

∫
Γ

(α,β)
ν

eλ·t ·∇(λ ·I−L)−1(f) |BR dλ

for ν = 2 and ν = 4, we integrate by parts after introducing the local parameter
ϕ(r) := i · r (r ∈ [α, β]), so that the factor ei·r·t is transformed into ei·r·t · (i · t)−1.
But this means that a single partial integration does not suffice to generate a
factor t−1−ε. On the other hand, after two such integrations, we obtain a term
∇(i·r·I−L)−3(f) |BR, which gives rise to a factor r−2−δ for some δ > 0 (see (5.4)).
Integrating this term on the interval [α, β] leads to a factor α−1−δ = t(1+ε)(1+δ)

which cancels the effect of the second partial integration. Therefore, in view of the
fact that the term ∇(i · r · I −L)−2(f) |BR only produces a factor r−δ (see (5.2)),
we perform some kind of interpolation between one and two partial integrations.
To this end, we use fractional derivatives, as introduced in the next lemma.

Lemma 6.1. Let κ, b ∈ R with κ < b, μ ∈ (0, 1), h ∈ C1([κ, b]) with h(b) = 0.
Define h : [κ, b] → C by

h(r) := Γ(1 − μ)−1 ·
∫ b

r

(s − r)−1+μ · h(s) ds for r ∈ [κ, b].

Then h ∈ C1([κ, b]) with

h
′
(r) = Γ(1 − μ)−1 ·

∫ b

r

(α − r)−1+μ · h′(α) dα for r ∈ [κ, b]. (6.3)

Define γ : [κ, b] � r → Γ(μ)−1 ·
∫ b

r (s − r)−μ · h′
(s) ds ∈ C. Then h = −γ.

Now we prove an inequality which will be the key element in the estimate of
the integrals over Γ(α,β)

2 and Γ(α,β)
4 in (6.2).

Lemma 6.2. Let f and σ be given as in Theorem 5.2. Let R ∈ (0,∞), δ ∈
(0, 1/4). Abbreviate b := min

{
2−1/2, ε3(δ)

}
, with ε3(δ) from Theorem 5.3. Let

κ ∈ (0, b), t ∈ (0,∞). Then∥∥∥∫ b

κ

ei·r·t · ∇(i · r · I − L)−2(f) |BR dr
∥∥∥

2
≤ C(σ, δ, R) · t−1/4 · κ−δ · ‖f‖2.

To give some indications on the proof of this lemma, we first observe that by
(2.3) and (C1), we have

{
i · r : r ∈ [κ, b]

}
⊂ �(L). Therefore the mapping

g : [κ, b] � r → ∇(i · r · I − L)−1(f) |BR ∈ L2(BR)9

is in particular twice continuously differentiable, with

g(ν)(r) = (−i)ν · ν · ∇(i · r · I − L)−(ν+1)(f) |BR for ν ∈ {1, 2}, r ∈ [κ, b].
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Thus, due to the assumption b ≤ ε3(δ), inequalities (5.2) and (5.4) yield

‖g′(r)‖2 ≤ C(σ, δ, R) · ‖f‖2 · r−δ, ‖g′′(r)‖2 ≤ C(σ, δ, R) · ‖f‖2 · r−2−δ (6.4)

for r ∈ [κ, b]. Put h(r) := (i · t)−1 · (ei·r·t − ei·b·t) for r ∈ [κ, b]. Define h and γ as
in Lemma 6.1, with μ = 1/4. Then we get by partial integration∫ b

κ

ei·r·t · ∇(i · r · I − L)−2(f) |BR dr = −i ·
∫ b

κ

γ′(r) · g′(r) dr (6.5)

= i · Γ(1/4)−1 ·
∫ b

κ

h
′
(s) ·

(∫ s

κ

(s − r)−1/4 · g′′(r) dr
)

ds

+ i · Γ(1/4)−1 ·
∫ b

κ

(s − κ)−1/4 · h′
(s) ds · g′(κ).

Take s ∈ (κ, b). If s − s3 > κ, we have∫ s

κ

(s − r)−1/4 · g′′(r) dr

=
∫ s

s−s3
(s − r)−1/4 · g′′(r) dr − (1/4) ·

∫ s−s3

κ

(s − r)−5/4 · g′(r) dr

+ s−3/4 · g′(s − s3) − (s − κ)−1/4 · g′(κ).

Further observe that s ≤ b ≤ 2−1/2, hence s3 ≤ s/2. Now we find with (6.4), in
the case s − s3 > κ,∥∥∥∫ s

κ

(s − r)−1/4 · g′′(r) dr
∥∥∥

2
(6.6)

≤ C(σ, δ, R) · ‖f‖2 ·
(∫ s

s−s3
(s − r)−1/4 · r−2−δ dr

+
∫ s−s3

κ

(s − r)−5/4 · r−δ dr + s−3/4 · (s − s3)−δ + (s − κ)−1/4 · κ−δ
)

≤ C(σ, δ, R) · ‖f‖2 ·
(
s−2−δ ·

∫ s

s−s3
(s − r)−1/4 dr + κ−δ ·

∫ s−s3

κ

(s − r)−5/4 dr

+s−3/4 · κ−δ + (s − κ)−1/4 · κ−δ
)

≤ C(σ, δ, R) · ‖f‖2 · (s1/4−δ + κ−δ · s−3/4 + (s − κ)−1/4 · κ−δ),

where we used the inequality s3 ≤ s/2 and the assumption s − s3 > κ in the last
but one inequality. If s − s3 ≤ κ, we argue as follows, again using (6.4),∥∥∥∫ s

κ

(s − r)−1/4 · g′′(r) dr
∥∥∥

2
≤ C(σ, δ, R) · ‖f‖2 ·

∫ s

κ

(s − r)−1/4 · r−2−δ dr

≤ C(σ, δ, R) · ‖f‖2 · κ−2−δ ·
∫ s

s−s3
(s − r)−1/4 ds

≤ C(σ, δ, R) · ‖f‖2 · κ−2−δ · s9/4

≤ C(σ, δ, R) · ‖f‖2 · κ1/4−δ ≤ C(σ, δ, R) · ‖f‖2 · s1/4−δ,
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where the last but one inequality holds because s3 ≤ s/2 (see above), so that
s ≤ s3 + κ ≤ s/2 + κ, hence s ≤ 2 · κ. Therefore we see that inequality (6.6) holds
in any case. Starting from (6.5), and applying (6.6), we now find∥∥∥∫ b

κ

ei·r·t · ∇(i · r · I − L)−2(f) |BR dr
∥∥∥

2
(6.7)

≤ C(σ, δ, R) · max{|h′
(s)| : s ∈ [κ, b]}

·
(∫ b

κ

∥∥∥∫ s

κ

(s − r)−1/4 · g′′(r) dr
∥∥∥

2
ds + ‖f‖2 · κ−δ ·

∫ b

κ

(s − κ)−1/4 ds
)

≤ C(σ, δ, R) · max{|h′
(s)| : s ∈ [κ, b]} · ‖f‖2

·
(∫ b

κ

(
s1/4−δ + κ−δ · s−3/4 + κ−δ · (s − κ)−1/4

)
ds + κ−δ

)
≤ C(σ, δ, R) · max{|h′

(s)| : s ∈ [κ, b]} · ‖f‖2 · κ−δ.

This leaves us to consider |h′
(s)|, for s ∈ [κ, b]. In this respect, we observe that

|h(s)| ≤ 2 · t−1, |h′(s)| ≤ 2 for s ∈ [κ, b]. Thus, in the case s + 1/t < b, by (6.3)
and a partial integration,

|h′
(s)| = Γ(3/4)−1 ·

∣∣∣∫ s+1/t

s

(α − s)−3/4 · h′(α) dα

+(3/4) ·
∫ b

s+1/t

(α − s)−7/4 · h(α) dα − t3/4 · h(s + 1/t)
∣∣∣

≤ C ·
(∫ s+1/t

s

(α − s)−3/4 dα +
∫ b

s+1/t

(α − s)−7/4 dα · t−1 + t−1/4
)

≤ C · t−1/4.

If s ∈ [κ, b] with s + 1/t ≥ b, we deduce from (6.3) and the inequality |h′(s)| ≤ 2
for s ∈ [κ, b] that |h′

(s)| ≤ C · (b− s)1/4 ≤ C · t−1/4. The estimate |h′
(s)| ≤ C · t−1/4

thus holds in any case. When we insert this estimate into (6.7), we obtain the
inequality stated in the lemma. &

Lemma 6.2 enters into the proof of

Theorem 6.3. Let R ∈ (0,∞), t ∈ [max{ε3(1/16)−1, 21/2}, ∞), with ε3(1/16)
from Theorem 5.3 with δ = 1/16. Let f, σ be given as in Theorem 5.2. Then

‖∇eLt(f) |BR‖2 ≤ C(σ, R, ϑ) · ‖f‖2 · t−9/8.

Let us give some indications on the proof of this theorem. We consider the
first sum in (6.2), with α = t−2 (hence α = t−2 ≤ t−1 ≤ min{2−1/2, ε3(1/16)})
and β ∈ [C,∞), where C was introduced at the beginning of this section. Then
the gradient of the integral over Γ(α,β)

1 in (6.2) may be estimated in the L2-norm
on BR by a constant times t−2 · ‖f‖2, as follows from (5.1).
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The same norm of the gradient of the integrals over Γ(α,β)
3 and Γ(α,β)

5 is
evaluated by referring to Theorem 5.4 and to the last inequality in Theorem 5.2.
(Recall that β ≥ C ≥ C̃.) We obtain the upper bound C(σ) · (β · t)−1 · ‖f‖2.
This leaves us to consider the integrals over Γ(α,β)

2 and Γ(α,β)
4 . In this respect, we

observe that after a partial integration,∫
Γ

(α,β)
2

eλ·t · ∇(λ · I − L)−1(f) |BR dλ =
5∑

j=1

Nj ,

where

N1 := t−1 · ei·t·β · ∇(i · β · I − L)−1(f) |BR,

N2 := −t−1 · ei·t·α · ∇(i · α · I − L)−1(f) |BR,

N3 := (i/t) ·
∫ b

α

ei·t·r · ∇(i · r · I − L)−2(f) |BR dr,

N4 := (i/t) ·
∫ β

b

ei·t·r · ∇(i · r · I − L)−2(f) |BR dr,

with b := min{ε3(1/16), 2−1/2}. Note that b ≤ C ≤ β. The integral over Γ(α,β)
4 is

split into a sum
∑5

j=1 N j , where N j is defined in an analogous way as Nj (1 ≤
j ≤ 5). Now the terms ‖N1‖2 and ‖N1‖2 are estimated by Theorem 5.4 and 5.2;
we obtain the upper bound C(σ) · β−1 · ‖f‖2. Moreover, the resolvent formula and
(5.3) yield

‖N2 + N2‖2 ≤ C · (α + α15/16 · t−1) · ‖f‖2.

Concerning N3 and N3, we get by Lemma 6.2:

‖N3‖2 + ‖N3‖2 ≤ C · t−5/4 · α−1/16 · ‖f‖2.

Finally, in the integrals defining N4 and N4, we perform another partial integration
in order to generate an additional term t−1. The term ‖∇(i · r · I −L)−3(f) |BR‖2

arising in this way is evaluated for r ∈ [b, C] by referring to Lemma 5.5, and for
r ∈ [C, β] by applying Theorem 5.4 and 5.2. Combining all these estimates and
letting β tend to infinity, we arrive at Theorem 6.3

Theorem 6.3 dealt with the case of large t. This leaves us to consider small
and intermediate values of t. To this end, we use the representation of eLt(Φ) by
the second sum in (6.2), with

s = C if t ∈ [ C
−1

, max{ε3(1/16)−1, 21/2} ], s = 1/t if t ∈ (0, C
−1

].

By referring to Theorem 5.4 and 5.2, we then obtain

Theorem 6.4. Let t ∈ (0, max{ε3(1/16)−1, 21/2} ], and let f, σ be given as in
Theorem 5.2. Then ‖∇eLt(f)‖2 ≤ C(σ) · ‖f‖2.

Combining Theorem 6.3 and 6.4 yields Theorem 2.3.
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Abstract. In this short note we show that delay equations can be reformu-
lated as abstract weak∗-integral equations (AIE) involving dual semigroups,
even in the case of infinite delay and/or when the solution takes values in a
non-reflexive Banach space. The advantage is that for such (AIE) the stan-
dard local stability and bifurcation results are already available, see [8]. Our
motivation derives from models of physiologically structured populations, as
explained in more detail in [12].
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1. Introduction

The perturbation theory for dual semigroups, as developed in the series [3, 4, 5, 6, 7]
of papers, turned out to be a very powerful tool in the local stability and bifurcation
theory of delay differential equations (DDE) [8]. The key step is the reformulation
of the initial value problem for the DDE as an abstract integral equation

u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t − s)G(u(s))ds

)
. (AIE)

Here T0 is a strongly continuous semigroup of bounded linear operators on a Ba-
nach space X with sun-dual space X� (the subspace of the dual space X∗ on
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which the adjoint (or dual) semigroup T ∗
0 is strongly continuous), T�∗

0 is the ad-
joint semigroup of T�

0 := (T ∗
0 )∣∣X� , G is a nonlinear mapping from X into X�∗

and j is the natural injection of X into X�∗ defined by〈
ϕ�, jϕ

〉
=

〈
ϕ, ϕ�〉 , ϕ ∈ X, ϕ� ∈ X�. (1.1)

We refer to [2, 3, 8, 18] for more background information about dual semigroups.
Recently, it has been shown [12] that the sun-star-calculus based on (AIE)

is equally efficient for treating delay equations (DE) which are functional equa-
tions of Volterra type prescribing the value of the function itself in the right end
point, rather than the value of its derivative. The only real difference between the
treatment of (DDE) and of (DE) is the choice of the underlying function space.

In order for (AIE) to make sense, the convolution integral (which by definition
is a weak∗-Riemann integral on X�∗) should take values in j(X). It is known [3]
that it takes values in X��. So whenever X is sun-reflexive, that is, whenever
j(X) = X��, this is automatically guaranteed.

The theory developed in [3, 4, 5, 8] concentrates on the sun-reflexive case.
As a consequence, the application to delay equations requires a finite delay and
that the functions take values in a reflexive space. The aim of the present note is
to show that delay equations with infinite delay and involving functions that take
values in arbitrary Banach spaces can still be written in the form of an abstract
integral equation of the form (AIE). Because in the non-sun-reflexive case the
convolution integral in (AIE) need not belong to j(X), we have instead to impose
a range condition that for functions f taking values in an appropriate subspace of
X�∗, which contains the range of the function G, it is true that∫ t

0

T�∗
0 (t − s)f(s)ds ∈ j(X). (1.2)

It turns out that for delay equations it is easy to verify by direct computation
that (1.2) holds. Once (AIE) is justified, the methods and results of [8, 12] become
available and one obtains the principle of linearized stability, the centre manifold
theorem and the Hopf bifurcation theorem essentially for free (‘essentially’, because
the spectral analysis of T (t) is a bit more complicated in the case of infinite delay).

It was already noted in [3, 5, 8] that (AIE) also covers age-dependent popu-
lation models. More recently, Hans Metz and the present authors found a way to
formulate population models that incorporate more general physiological structure
(e.g., size structure) as abstract integral equations of type (AIE). This formulation
employs delay equations (DE) which do not involve any derivative. In a recent joint
work with Philipp Getto [12] we elaborated the details of the reformulation as an
(AIE) and its analysis in an L1-setting, assuming sun-reflexivity. In the present
paper we consider the same setting, but we neither impose an upper bound on
the delay (i.e., on the maximal attainable age), nor assume that the number of
possible states-at-birth is finite. Our results also allow the so-called interaction
variables [9, 10, 11] to take values in an infinite-dimensional space.
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As a general reference concerning (DDE) with infinite delay we mention
[16], while for (DDE) in infinite-dimensional spaces we refer to [1], [14, Ch. VI.6]
and [21].

2. The abstract setting

Let Y be a Banach space and let � ≥ 0. As the state space we choose the space
X = L1(R−; Y ) of all measurable functions ϕ : R− = (−∞, 0] → Y such that the
weighted Bochner integral

‖ϕ‖1 =
∫
R−

e�θ ‖ϕ(θ)‖ dθ (2.1)

is finite. On X we consider the strongly continuous semigroup T0 defined by trans-
lation and extension by zero:

(T0(t)ϕ) (θ) =

{
ϕ(t + θ), −∞ < θ ≤ −t,

0, −t < θ ≤ 0,
ϕ ∈ X, t ≥ 0. (2.2)

The reason that we chose X = L1(R−; Y ) and not a space of continuous functions
as state space is that in applications to delay equations the semigroup T0 occurs
and it does not leave the continuous functions invariant. It is also the right choice
for our biological applications, which is not the case of Lp, 1 < p < ∞, which from
a purely mathematical point of view could have been used.

It does not seem possible to give the dual space X∗ a representation in terms
of familiar functions or measures unless Y ∗ has the Radon-Nikodym property, in
which case X∗ is isometrically isomorphic to L∞(R+; Y ∗) [13, Theorem 1, p. 98].
And for the function spaces Y that most frequently occur in our applications,
viz. C and L1, the dual space Y ∗ does not possess the Radon-Nikodym property.
However, this is no problem because Greiner and van Neerven [15] (see also [18,
Theorem 7.3.11, p. 135]) have characterized the sun-dual X� = L1(R−; Y )� with
respect to the translation semigroup (2.2).

Proposition 2.1. Let Y be a Banach space and let the semigroup T0 be defined on
X = L1(R−; Y ) by (2.2). Then X� is isometrically isomorphic to the space of
all functions ϕ� : R+ → Y ∗ such that θ → eρθϕ�(θ) is bounded and uniformly
continuous with the norm∥∥ϕ�∥∥

∞ = sup
θ∈R+

e�θ
∥∥ϕ�(θ)

∥∥ < ∞ (2.3)

and the pairing 〈
ϕ, ϕ�〉

=
∫
R+

〈
ϕ(−θ), ϕ�(θ)

〉
dθ. (2.4)

The sun-dual semigroup T� is given by(
T�

0 (t)ϕ�)
(θ) = ϕ�(t + θ), 0 ≤ θ < ∞, ϕ� ∈ X�, t ≥ 0. (2.5)
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Note that on the right-hand side of (2.4) we have the duality pairing between
the spaces Y and Y ∗.

Proof. In [15] and [18] it was proven (without weights, � = 0) that L1(R; Y )� =
BUC(R; Y ∗) with respect to the translation semigroup on the whole real line. The
proof for the half-line case is identical. Because we work on weighted spaces, the
exponential weight enters in the characterization of X�. �

Because by Proposition 2.1 the elements of X� are represented by continuous
functions, we can unambiguously talk about the value ϕ�(θ), θ ∈ R+, of any
element ϕ� ∈ X�. In particular, the evaluation-in-zero map δ : X� → Y ∗ is well
defined through

δϕ� = ϕ�(0), ϕ� ∈ X�. (2.6)
The adjoint δ∗ of δ maps Y ∗∗ into X�∗. By restricting δ∗ to Y (using the canonical
embedding of a Banach space into its second dual) we obtain a linear mapping
� : Y → X�∗. Explicitly, it is defined via〈

ϕ�, �y
〉

=
〈
y, ϕ�(0)

〉
, y ∈ Y, ϕ� ∈ X�. (2.7)

Obviously, � is an isometric isomorphism of Y onto a closed subspace of X�∗.

Lemma 2.2. For every y ∈ Y and ϕ� ∈ X� one has〈
T�∗

0 (t)�y, ϕ�〉 =
〈
y, ϕ�(t)

〉
, t ≥ 0.

Proof.
〈
T�∗

0 (t)�y, ϕ�〉 =
〈
�y, T�

0 (t)ϕ�〉
=

〈
y,

(
T�

0 (t)ϕ�)
(0)

〉
= 〈y, ϕ�(t)〉 . �

Lemma 2.3. Let h : R+ → Y be a continuous function. Then, for every ϕ� ∈ X�

one has〈∫ t

0

T�∗
0 (t − τ)�h(τ) dτ, ϕ�

〉
=

∫ t

0

〈
h(t − τ), ϕ�(τ)

〉
dτ, t ≥ 0.

Proof. Using Lemma 2.2 one gets〈∫ t

0

T�∗
0 (t − τ)�h(τ) dτ, ϕ�

〉
=

∫ t

0

〈
T�∗

0 (t − τ)�h(τ), ϕ�〉
dτ =∫ t

0

〈
�h(τ), T�

0 (t − τ)ϕ�〉
dτ =

∫ t

0

〈
h(τ), ϕ�(t − τ)

〉
dτ∫ t

0

〈
h(t − τ), ϕ�(τ)

〉
dτ. �

As a corollary, we get the result alluded to in the introduction: the convolu-
tion integral

∫ t

0 T�∗
0 (t − τ)f(τ) dτ belongs to j(X), whenever f : R+ → X�∗ is

continuous with values in �(Y ).

Corollary 2.4. Let h : R+ → Y be a continuous function and define ϕ ∈ X =
L1(R−; Y ) by

ϕ(θ) =

{
h(t + θ) −t ≤ θ ≤ 0,

0, −∞ < θ < −t.
(2.8)
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Then ∫ t

0

T�∗
0 (t − τ)�h(τ) dτ = jϕ. (2.9)

In particular,
∫ t

0
T�∗

0 (t − τ)�h(τ) dτ ∈ j(X) and∥∥∥∥j−1

(∫ t

0

T�∗
0 (t − τ)�h(τ) dτ

)∥∥∥∥
1

≤ 1
�

(
1 − e−�t

)
sup

0≤τ≤t
‖h(τ)‖ , t ≥ 0. (2.10)

(If � = 0, the factor (1 − e−�t) /� has to be interpreted as the limiting value t.)

Proof. For each ϕ� ∈ X� we have by the definition of ϕ and Lemma 2.3:〈
ϕ, ϕ�〉

=
∫ 0

−∞

〈
ϕ(θ), ϕ�(−θ)

〉
dθ =

∫ 0

−t

〈
h(t + θ), ϕ�(−θ)

〉
dθ∫ t

0

〈
h(t − θ), ϕ�(θ)

〉
dθ =

〈∫ t

0

T�∗
0 (t − τ)�h(τ) dτ, ϕ�

〉
.

The definition (1.1) of the embedding j : X → X�∗ now yields (2.9). The estimate
(2.10) follows readily:∥∥∥∥j−1

(∫ t

0

T�∗
0 (t − τ)�h(τ) dτ

)∥∥∥∥
1

= ‖ϕ‖1 =
∫ 0

−∞
eρθ ‖ϕ(θ)‖ dθ =∫ 0

−t

e�θ ‖h(t + θ)‖ dθ = e−�t

∫ t

0

e�τ ‖h(τ)‖ dτ ≤ 1
�

(
1 − e−�t

)
sup

0≤τ≤t
‖h(τ)‖ . �

Theorem 2.5. Let F : X → Y be Lipschitz continuous. Then the abstract integral
equation

u(t) = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t − s)G(u(s))ds

)
, (AIE)

with T0 defined by (2.2) and G = � ◦ F , has a unique solution on [0,∞).

Proof. With Corollary 2.4 at hand, the proof is identical to the proof of the cor-
responding result in the sun-reflexive case [5, 8]. �

Next we consider steady states of the dynamical system Σ(t) induced by
(AIE) by declaring Σ(t)ϕ to be the solution u(t) of (AIE). We now realize why we
have to use weighted L1-spaces: Without a weight, nonzero constant functions on
an infinite interval do not belong to L1. Linearization around a steady state works
exactly as in the sun-reflexive case [5]:

Theorem 2.6. Let Σ(t)ϕ = ϕ and assume that the nonlinear operator F : X → Y
is continuously Fréchet differentiable. Then for every t > 0 the nonlinear operator
Σ(t) is Fréchet differentiable at ϕ. Its Fréchet derivative

T (t) = (DΣ(t))(ϕ) (2.11)
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defines a strongly continuous semigroup of bounded linear operators with generator
A given by

D(A) = {ϕ ∈ X : jϕ ∈ D(A�∗
0 ), A�∗

0 jϕ + �F ′(ϕ)ϕ ∈ j(X)},
Aϕ = j−1(A�∗

0 jϕ + �F ′(ϕ)ϕ).

Moreover, for every ϕ ∈ X, T (t)ϕ is the unique solution of the linear abstract
integral equation

T (t)ϕ = T0(t)ϕ + j−1

(∫ t

0

T�∗
0 (t − s)�F ′(ϕ)T (s)ϕds

)
. (LAIE)

The proofs of the principle of linearized stability, the centre manifold theorem
and the Hopf bifurcation theorem depend essentially on the linearization described
in Theorem 2.6.

3. Delay equations as abstract integral equations

We consider the initial value problem

x(t) = F (xt), t > 0 (DE)

x0(θ) = ϕ(θ), θ ∈ (−∞, 0], (IC)

consisting of a delay equation (DE) specifying the rule for extending the unknown
function x from the history given by (IC). Here the unknown function x takes
values in a Banach space Y and xt denotes for each t ≥ 0 the translated function
defined by

xt(θ) := x(t + θ), −∞ < t ≤ 0. (3.1)

As state space (history space) we choose the space X = L1(R−; Y ) of Bochner
integrable (with respect to the weight function θ → eρθ) functions on R−, see
Section 2. We therefore assume that F maps X into Y and that the initial value ϕ
belongs to X . In this section we show that the problem (DE) & (IC) is equivalent
to (AIE) with G = � ◦ F and T0 defined by (2.2). We shall always assume that T0

and G are chosen in this way.
An application of Corollary 2.4 to the function h = F ◦ u for a continuous

function u : R+ → X immediately gives the following result:

Lemma 3.1.(
j−1

∫ t

0

T�∗
0 (t − s)�F (u(s))ds

)
(θ) =

{
F (u(t + θ)), −t ≤ θ ≤ 0,

0, −∞ < θ < −t.

We are now ready to state and prove the equivalence of (DE) & (IC) and
(AIE).
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Theorem 3.2. Let ϕ ∈ X = L1 (R−; Y ) be given.

(a) Suppose that x ∈ L1
loc ((−∞,∞); Y ) satisfies (DE) & (IC). Then the function

u : [0,∞) → X defined by u(t) := xt is continuous and satisfies (AIE).

(b) If u : [0,∞) → X is continuous and satisfies (AIE), then the function x
defined by

x(t) :=

{
ϕ(t) for −∞ < t < 0,
u(t)(0) for t ≥ 0

(3.2)

is an element of L1
loc ((−∞,∞); Y ) and satisfies (DE) & (IC).

Proof. (a) The continuity of u(t) = xt follows from the continuity of translation
in L1. Fix t ≥ 0. By the definition of T0 one has for −t ≤ θ ≤ 0

u(t)(θ) − (T0(t)ϕ)( θ) = x(t + θ) − 0 = F (xt+θ) = F (u(t + θ))

and for −∞ < θ < −t

u(t)(θ) − (T0(t)ϕ)( θ) = x(t + θ) − ϕ(t + θ) = ϕ(t + θ) − ϕ(t + θ) = 0

Lemma 3.1 shows that in both cases u(t)(θ) − (T0(t)ϕ)( θ) equals(
j−1

∫ t

0
T�∗

0 (t − s)�F (u(s))ds
)

(θ) and thus u satisfies (AIE).

(b) Lemma 3.1 shows that for t > 0,

x(t) = u(t)(0) = (T0(t)ϕ)(0) +
(

j−1

∫ t

0

T�∗
0 (t − s)�F (u(s))ds

)
(0)

= F (u(t)). (3.3)

It thus remains to be shown that u(t) = xt. For −t < θ ≤ 0, (3.3) gives

xt(θ) = x(t + θ) = u(t + θ)(0) = F (u(t + θ)) = u(t)(θ)

and for −∞ < θ < −t, Lemma 3.1 gives

xt(θ) = x(t + θ) = ϕ(t + θ) = (T0(t)ϕ)(θ) = u(t)(θ)

so indeed u(t) = xt. �

4. A model involving cannibalistic behaviour

Consider a population structured by the size of individuals. We assume that in-
dividuals eat their conspecifics and that this cannibalistic behaviour is modelled
through the attack rate α(ξ, η), which is the rate at which individuals of size η kill
and eat individuals of size ξ. Usually the victim of cannibalism is smaller than the
attacker, so a(ξ, η) should be zero for ξ > η, but we will make no explicit use of
this assumption in what follows. We assume that all individuals are born with the
same size ξb.
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Cannibalism leads to an extra mortality in the population. If n(t, ·) denotes
the density of the size-distribution of the population at time t, then the extra
size-specific mortality rate due to cannibalism at time t is

M(t, ξ) =
∫ ∞

ξb

α(ξ, η)n(t, η)dη. (4.1)

Let c(η) be the energetic value of an individual of size η. Then the extra energy
intake due to cannibalism per unit of time of an individual of size ξ is

E(t, ξ) =
∫ ∞

ξb

c(η)α(η, ξ)n(t, η)dη. (4.2)

We assume that E is channelled into growth and affects “ordinary” mortality, that
is, mortality not due to cannibalism but due, e.g., to starvation. The traditional
PDE formulation then takes the form of the boundary value problem

∂

∂t
n(t, ξ) +

∂

∂ξ
(g(ξ, E(t, ξ))n(t, ξ)) =

− (μ(ξ, E(t, ξ)) + M(t, ξ))n(t, ξ), ξ > ξb (4.3)

g(ξb, E(t, ξb))n(t, ξb) =
∫ ∞

ξb

β(ξ)n(t, ξ)dξ,

where β(ξ) is the size-specific fecundity. If some of the extra energy intake is also
channelled into reproduction, then β depends also on E(t, ξ). Nothing essential
would change in the sequel, only the notation would be more cumbersome.

Next we want to write the model as a delay equation (DE) for the unknown

x(t) =
(

b(t)
I(t)

)
,

where b(t) is the population birth rate and I(t) is some conveniently chosen inter-
action variable. To this end, let I1(t, a) be the total per capita death rate and let
I2(t, a) be the individual growth rate of an individual of age a at time t:

I1(t, a) = μ(ξ, E(t, ξ)) + M(t, ξ), (4.4)
I2(t, a) = g(ξ, E(t, ξ)). (4.5)

Note that we use superscripts as indices because subscripts are reserved for trans-
lation, cf. (3.1).

We emphasize that age does not occur in the original model formulation and
that Eqs. (4.4) and (4.5) are meaningless as they stand. So for the time being
we assume that I1(t, a) and I2(t, a) are given. More precisely, we consider the
mappings t → I1(t, ·) and t → I2(t, ·) as mappings from R− to C(R+), the
Banach space of bounded continuous scalar-valued functions on R+. Later, when
we close the feedback loop, we shall see how the original ingredients, given in terms
of size, transform into quantities defined in terms of age.
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Consider an individual of age a at time t. It was born at time t − a. By
definition, it has grown according to

dξ

dτ
= I2(t − a + τ, τ), 0 < τ ≤ a, (4.6)

ξ(0) = ξb. (4.7)

The solution evaluated at τ = a gives the size of the individual at time t:

ξ(a) = ξb +
∫ a

0

I2(t − a + τ, τ)dτ = ξb +
∫ a

0

I2
t (τ − a, τ)dτ =: X2

(
I2
t

)
(a). (4.8)

Notice that the size of an individual of age a at time t is an affine (that is, constant
plus linear) mapping X2 of L1(R−; C(R+)) into C(R+).

The probability that an individual that was born at time t − a survives to
age a, given the history of I, is

e−
∫

a
0 I1(t−a+τ,τ)dτ = e−X1(I1

t )(a),

where, in analogy with the definition of X2, we have defined the linear mapping
X1 : L1(R−; C(R+)) → C(R+) by

X1
(
I1
t

)
(a) :=

∫ a

0

I1
t (τ − a, τ)dτ.

Therefore the birth rate

b(t) := g(ξb, E(t, ξb))n(t, ξb)

satisfies the renewal equation

b(t) =
∫ a

0

β
(
X2

(
I2
t

)
(a)

)
e−X1(I1

t )(a)bt(−a)da. (4.9)

Alternatively and equivalently, the renewal equation (4.9) could have been ob-
tained from the boundary condition in (4.3) by the change ξ = X2

(
I2
t

)
(a) of

variables. Similarly, we get from (4.1) and (4.2), respectively:

M(t, ξ) =
∫ ∞

0

α
(
ξ, X2

(
I2
t

)
(a)

)
e−X1(I1

t )(a)bt(−a)da (4.10)

and

E(t, ξ) =
∫ ∞

0

c
(
X2

(
I2
t

)
(a)

)
α
(
X2

(
I2
t

)
(a), ξ

)
e−X1(I1

t )(a)bt(−a)da. (4.11)
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We now substitute (4.8), (4.10) and (4.11) into (4.4) and (4.5) and obtain

I1(t,a)=

μ

(
X2

(
I2
t

)
(a),

∫ ∞

0

c
(
X2

(
I2
t

)
(τ)

)
α
(
X2

(
I2
t

)
(τ),X2

(
I2
t

)
(a)

)
e−X1(I1

t )(τ)bt(−τ)dτ

)
+
∫ ∞

0

α
(
X2

(
I2
t

)
(a),X2

(
I2
t

)
(τ)

)
e−X1(I1

t )(τ)bt(−τ)dτ (4.12)

I2(t,a)=

g

(
X2

(
I2
t

)
(a),

∫ ∞

0

c
(
X2

(
I2
t

)
(τ)

)
α
(
X2

(
I2
t

)
(τ),X2

(
I2
t

)
(a)

)
e−X1(I1

t )(τ)bt(−τ)dτ

)
(4.13)

Equations (4.9), (4.12) and (4.13) form a delay equation (DE) for the unknown

x(t) =

⎛⎝ b(t)
I1(t)
I2(t)

⎞⎠ ,

with F : L1(R−; Y ) → Y and Y = R × C(R+) × C(R+). The function F is of
course defined by declaring

F

⎛⎝ bt

I1
t

I2
t

⎞⎠ (a)

to be the vector with the right-hand sides of (4.9), (4.12) and (4.13) as components.
The formulation of the principle of linearized stability, the centre manifold

theorem and the Hopf bifurcation theorem involves the linearization described
in Theorem 2.6 as well as the location of the spectrum of the generator of the
linearized semigroup. Linearization is possible only if F is continuously Fréchet
differentiable. It is a pleasant fact that F is indeed continuously differentiable
under very natural conditions.

Theorem 4.1. Let g, β, μ, α and c have continuous partial derivatives with respect
to all variables. Then the mapping F : L1(R−; Y ) → Y is continuously Fréchet
differentiable.

Proof. F is linear in bt and hence continuously differentiable in bt. As noted above,
X1 and X2 are affine mappings, and hence continuously differentiable with values
in the continuous functions. X1(I1

t ) and X2(I2
t ) appear everywhere as arguments

of continuously differentiable mappings. Because the Nemytskĭı operator Ng : f →
g ◦ f is continuously differentiable from C to C if g is continuously differentiable,
the conclusion follows. �
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5. Conclusions

The reformulation of delay differential equations [8] and delay equations [12] as
abstract integral equations has proven to be useful because standard results from
the theory of ordinary differential equations such as linearized (in)stability and
Hopf bifurcation can easily be extended to this class of problems using the so-called
sun-star calculus of adjoint semigroups. In the references mentioned above, the
analysis was restricted to the case of delay (differential) equations with finite delay
and unknowns taking values in finite-dimensional spaces. The reason is that in this
case the state space is sun-reflexive with respect to the unperturbed semigroup and
standard results concerning adjoint semigroups show that the abstract integral
equation makes sense and has a unique solution. In this paper we have shown
that the assumption of sun-reflexivity can be relaxed. Indeed, we have shown that
the abstract integral equation (AIE) is well posed if the nonlinear operator G is
restricted to take on values in a certain subspace of X�∗. This is a very natural
approach because when the delay is infinite, one cannot give an easy representation
of X�∗, so one is anyhow forced to define the operator G as taking values in a
subspace that can be given a representation.

The natural state space is the space X = L1(R−; Y ) of suitably weighted
Bochner integrable functions. One cannot work with continuous functions because
they are not invariant under the unperturbed semigroup, which is translation and
extension by zero. A weight is needed to have nonzero steady states in the state
space. In applications to population problems, the components of the unknown are
typically rates, which integrated over a finite time interval yield finite numbers.
So L1 (and not, e.g., Lp) is the right state space.

From certain points of view the space L1 is not particularly nice. One com-
plication is that the Nemytskĭı (or substitution) operator Ng : f → g ◦ f is differ-
entiable in L1 if and only if g is affine, that is, a constant plus a linear map [17].
This appears to be a severe restriction, at least when the space Y is chosen in what
at first thought seems the most natural way. For instance, in [12] the principle of
linearized stability for the well-known Gurtin-MacCamy model

b(t) =
∫ ∞

0

β(a, N(t))e−
∫ a
0 μ(N(t−a+τ,τ)dτb(t − a)da, (5.1)

N(t) =
∫ ∞

0

e−
∫

a
0 μ(N(t−a+τ,τ)dτb(t − a)da (5.2)

with one-dimensional interaction variable N , could be established only if the per
capita death rate μ was affine: μ(a, N) = μ0(a) + μ1(N). This is somewhat un-
satisfactory because the principle of linearized stability has been proven in much
greater generality in [19, 20].

But in the present paper we allow for infinite-dimensional Y and hence
the Gurtin-MacCamy model (5.1) & (5.2) can be rewritten using the infinite-
dimensional interaction variable

I(t, a) = μ(a, N(t))
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as

b(t) =
∫ ∞

0

β

(
a,

∫ ∞

0

e−
∫

σ
0 It(τ−σ,τ)dτbt(−σ)dσ

)
e−

∫
a
0 It(τ−a,τ)dτbt(−a)da,

(5.3)

I(t, a) = μ

(∫ ∞

0

e−
∫

σ
0 It(τ−σ,τ)dτbt(−σ)dσ, a

)
. (5.4)

If β and μ are continuously differentiable, then the right-hand sides of (5.3) and
(5.4) are continuously differentiable in It as compositions of continuously differ-
entiable mappings on C and affine mappings L1 → C. For the Gurtin-MacCamy
model the shift from one-dimensional to infinite-dimensional interaction variable,
just to make the abstract framework functioning, may seem artificial because the
problem can be, and has been, solved by other means. But for the cannibalism
model treated in Section 4, in which the more obvious candidates for interaction
variables, viz. M(t, x) and E(t, x), already are infinite dimensional, the choice of
I1(t, a) and I2(t, a) as interaction variables is very natural.

The setting of this paper with an infinite-dimensional Y also allows for in-
finitely many states at birth in contrast to the assumption of only finitely many
states at birth made in [12].
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erators in spaces of summable functions. Translated from the Russian by T. Ando.
Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis.
Noordhoff International Publishing, Leiden, 1976.

[18] J. van Neerven, The adjoint of a semigroup of linear operators. Lecture Notes in
Mathematics, 1529. Springer-Verlag, Berlin, 1992.
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on Banach Spaces
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Abstract. A result of Huang and van Neerven [12] establishes weak individ-
ual stability for orbits of C0-semigroups under boundedness assumptions on
the local resolvent of the generator. We present an elementary proof for this
using only the inverse Fourier-transform representation of the orbits of the
semigroup in terms of the local resolvent.
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1. Introduction

This paper is originally motivated by the structure theory of relatively weakly
compact semigroups on Banach spaces as presented, for example, in Engel, Nagel
[6, Ch. V]. Suppose that a C0-semigroup (T (t))t≥0, with generator (A, D(A)), is
relatively weakly compact, that is each of the orbits {T (t)x : t ≥ 0} is a relatively
weakly compact subset of the Banach space X . Then the Jacobs–Glicksberg–de
Leeuw decomposition yields the existence of a projection Q ∈ L(X) commuting
with the semigroup (T (t))t≥0 such that

kerQ =
{
x ∈ X : 0 ∈ {T (t)x : t ≥ 0}σ}

,

rg Q = lin
{
x ∈ D(A) : ∃ α ∈ R withAx = iαx

}
.

In particular, if (T (t))t≥0 is a bounded semigroup on a reflexive Banach space X ,
then the semigroup is of course relatively weakly compact, and we always have the
existence of such a projection. If now the generator does not have point spectrum
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on the imaginary axis, then we have kerQ = X . So 0 belongs to the weak closure of
each orbit. There are however examples showing that generally we can not expect
weak stability, i.e., that all orbits converge to 0 in the weak topology (see [6,
ExampleV.2.11 ii)]). In fact, the “no eigenvalues on the imaginary axis” assumption
is roughly speaking equivalent to almost weak stability (i.e., convergence to zero
along a large set of time values) but, in general, not to weak stability, see [7], [9],
and also [8], [10].

Concerning stability questions for bounded semigroups the size of the spec-
trum on the imaginary line and the growth of the resolvent R(λ, A) in a neigh-
bourhood of it play an important role. The celebrated theorem of Arendt, Batty
[1] and Lyubich, Vũ [15] gives a sufficient condition on the boundary spectrum for
strong stability. They show that, in case of reflexive X , countable spectrum σ(A)
on the imaginary axis and no eigenvalues on iR imply strong stability of bounded
C0-semigroups. Later Batty [2] gave similar results for weak individual stability of
the orbit T (t)x0 under the above spectral assumptions and the boundedness of the
orbit (see also Batty, Vũ[5]).

In connection with individual stability or growth of orbits, the boundedness
of the local resolvent has gained wide recognition. In the sequel, we will say, with
a slight abuse of terminology, that a bounded local resolvent R(λ)x0 exists on C+

if the function ρ(A) � λ → R(λ, A)x0 admits a bounded, holomorphic extension
R(λ)x0 to the whole right half-plane C+ := {μ : $μ > 0}.

Huang and van Neerven [12] proved that if the Banach space X has Fourier
type p ∈ (1, 2], then the existence of a bounded local resolvent R(λ)x0 on C+

already implies the strong convergence T (t)R(μ, A)αx0 → 0 as t → +∞, for all
μ > ω0(A) and α > 1 (see also [11]).

Interestingly enough, weak convergence of the orbit may be also concluded
from the existence of bounded local resolvent. In [4] a functional calculus method
was developed for investigating asymptotic behaviour of C0-semigroups with boun-
ded local resolvents. A corollary of this approach is an alternative proof of the next
theorem (see[12] Theorem 0.3]).

Theorem (Huang, van Neerven [12], Theorem 0.3). Let (T (t))t≥0 be a C0-semi-
group with generator (A, D(A)), x0 ∈ X, and suppose that the local resolvent
R(λ)x0 exists on the open right half-plane and that it is bounded, i.e., there exists
some M > 0 such that

‖R(λ)x0‖ ≤ M for all λ ∈ C+.

Then it holds

T (t)R(μ, A)αx0 → 0 weakly as t → +∞ forall α > 1 and μ > ω0(A).

In [18] van Neerven obtains even the exponentα = 1 under an additional
positivity assumption.

Theorem (van Neerven [18]). Suppose that X is an ordered Banach space with
weakly closed normal cone C. If for some x0 ∈ X
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i) T (t)x0 ∈ C for all sufficiently large t, and
ii) R(·, A)x0 has a bounded holomorphic extension to C+,

then for all μ ∈ ρ(A) and y ∈ X ′

〈T (t)R(μ, A)x0, y〉 → 0 as t → +∞.

It is also known that the above eventual positivity assumption cannot be
omitted (see Batty [3], van Neerven [18]). Reformulating van Neerven’s assertion
we can write

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′). (1)

This is an individual stability result for the orbit of x0 under the semigroup. Our
aim is to give an elementary proof of such convergence in the presence of bounded
local resolvent without assumption on the Banach space, but only for y ∈ D(A′2).
This is the above mentioned result in the case α = 2. That we assume α = 2
instead of α > 1 is only technical to keep the arguments the simplest possible.

At the end, we formulate the analogous individual stability result for bi-
continuous semigroups (see [14] for general theory).

2. The result

Theorem 1. Let (T (t))t≥0 be a C0-semigroup with generator (A, D(A)), x0 ∈ X,
and suppose that the local resolvent R(λ)x0 exists on the open right half-plane and
that it is bounded, i.e., there exists some M > 0 such that

‖R(λ)x0‖ ≤ M for all λ ∈ C+.

Then the convergence

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′2)

holds.

Remark. To make distinction between the resolvent operator and the local resol-
vent, for the latter we will use the notation R(μ)x0, while the use of the symbol
R(λ, A) tacitly assumes that λ belongs to the resolvent set ρ(A), hence(λ − A)−1

is a bounded linear operator.

To prove the theorem we need the following series of lemmas.

Lemma 1. For all λ ∈ ρ(A) and μ ∈ C+

R(λ, A)x0 − R(μ)x0 = (μ − λ)R(λ, A)R(μ)x0 (2)

holds.

Proof. For a fixed λ ∈ ρ(A) both functions on the two sides of (2) are analytic on
C+. For large$μ the resolvent identity holds, so the assertion follows by uniqueness
of analytic functions. �
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Lemma 2. For all λ ∈ ρ(A) and μ ∈ C+ we have

‖R(λ, A)R(μ)x0‖ ≤ M + ‖R(λ, A)x0‖
|λ − μ| .

Proof. Use Lemma 1. �

Lemma 3. For y ∈ D(A′2) and a > ω0(T ) there exists a constant c := c(y, a) such
that

‖R2(a + is, A′)y‖ ≤ c

a2 + s2
for all s ∈ R.

Proof. Let us write λ = a + is. Then we have

R(λ, A′)y =
1
λ

(R(λ, A′)A′y + y) .

Thus

R(λ, A′)2y =
1
λ

(R(λ, A′)R(λ, A′)A′y + R(λ, A′)y)

=
1
λ2

(R(λ, A′)A′R(λ, A′)A′y + R(λ, A′)A′y + R(λ, A′)A′y + y) .

The assertion follows by noticing that the terms in parenthesis are bounded. �

Lemma 4. For y ∈ D(A′2), x ∈ X and a > ω0(T ) we have

〈T (t)x, y〉 =
1
2π

∫ +∞

−∞
e(a+is)t〈R(a + is, A)x, y〉ds

=
1

2πt

∫ +∞

−∞
e(a+is)t〈R2(a + is, A)x, y〉ds. (3)

Proof. The integral in (3) is just

1
2πt

∫ +∞

−∞
e(a+is)t〈x, R2(a + is, A′)y〉ds,

and it is absolutely convergent by Lemma 3. Integration by parts yields equality
of the two integrals. In particular, since the first integral converges, we obtain
immediately that it coincides with 〈T (t)x, y〉 as the inverse Laplace transform of
the resolvent (see [13, Lemma 2.4]). �

Lemma 5. For y ∈ D(A′2), x ∈ X, a > ω0(T ) and 0 < δ < a we have

〈T (t)x0, y〉 =
1
2π

∫ +∞

−∞
e(a+is)t〈R(a + is, A)x0, y〉ds

=
1
2π

∫ +∞

−∞
e(δ+is)t〈R(δ + is)x0, y〉ds.
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Proof. Let N be positive, then using the analyticity of R(λ)x0 on C+ and Cauchy’s
theorem, we obtain for some μ ∈ ρ(A)

∣∣∣ 1
2π

∫ +N

−N

e(a+is)t〈R(a + is, A)x0, y〉ds − 1
2π

∫ +N

−N

e(δ+is)t〈R(δ + is)x0, y〉ds
∣∣∣

≤ (a − δ) max
b∈[δ,a]

∣∣e(b+iN)〈R(b + iN)x0, y〉
∣∣+(a − δ) max

b∈[δ,a]

∣∣e(b−iN)〈R(b − iN)x0, y〉
∣∣

= (a − δ)
(

max
b∈[δ,a]

∣∣eb〈R(μ, A)R(b + iN)x0, (μ − A′)y〉
∣∣

+ max
b∈[δ,a]

∣∣eb〈R(μ, A)R(b − iN)x0, (μ − A′)y〉
∣∣),

but this converges to 0 by Lemma 2 as N → +∞. �

Proof of Theorem 1. According to (2) Lemma 1

R(δ + is)x0 =R(a + is, A)x0+(a − δ)R(a + is, A)R(δ + is)x0

=R(a + is, A)x0+(a − δ)R2(a + is, A)x0

+(a − δ)2R2(a + is, A)R(δ + is)x0.

Using Lemma 5 we obtain for y ∈ D(A′2)

2πe−δt〈T (t)x0, y〉 =
∫ +∞

−∞
eist〈R(δ + is)x0, y〉ds

=
∫ +∞

−∞
eist〈R(a + is, A)x0, y〉ds

+ (a − δ)
∫ +∞

−∞
eist〈R2(a + is, A)x0, y〉ds

+ (a − δ)2
∫ +∞

−∞
eist〈R2(a + is, A)R(δ + is)x0, y〉ds.

The functions fδ(s) := 〈R2(a + is, A)R(δ + is)x0, y〉 form a relatively compact
subset of L1(R). Indeed,we have

|fδ(s)| = |〈R2(a + is, A)R(δ + is)x0, y〉| = |〈R(δ + is)x0, R
2(a + is, A′)y〉|

≤ M‖R2(a + is, A′)y‖,

and the function on the right-hand side belongs to L1(R). This shows the family
fδ to be uniformly integrable (and bounded), thus relatively compact. So by com-
pactness we find a sequence δn → 0 such that fδn → f in L1(R)(n → ∞). Thus
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substituting δn in the above equality and letting n → ∞ we obtain

2π〈T (t)x0, y〉 =
∫ +∞

−∞
eist〈R(a + is, A)x0, y〉ds

+ a

∫ +∞

−∞
eist〈R2(a + is, A)x0, y〉ds

+ a2

∫ +∞

−∞
eistf(s) ds =: I1(t) + I2(t) + I3(t).

It is easy to deal with the last term I3. Since f belongs to L1(R) so by the Riemann–
Lebesgue Lemma its Fourier transform vanishes at +∞, i.e., I3(t) → 0 as t → +∞.
Since y ∈ D(A′2), we can rewrite I1 by Lemma 4 as

I1(t) =
∫ +∞

−∞
eist〈x0, R(a + is, A′)y〉ds =

1
t

∫ +∞

−∞
eist〈x0, R

2(a + is, A′)y〉ds.

The last integral is absolutely convergent by Lemma 3, hence

|I1(t)| ≤
1
t

∫ +∞

−∞
‖x0‖ · ‖R2(a + is, A′)y‖ ds → 0 ast → +∞.

As for I2 we first notice that 〈x0, R
2(a + i·, A′)y〉 ∈ L1(R), so by the Riemann–

Lebesgue Lemma we have

I2(t) = a

∫ +∞

−∞
eist〈x0, R

2(a + is, A′)y〉ds → 0 ast → +∞.

This concludes the proof. �

Let us draw the following consequences of the above result.

Corollary 1. Let (T (t))t≥0 be a C0-semigroup with generator (A, D(A)), and sup-
pose that {T (t)x0 : t ≥ 0} is bounded and that the local resolvent R(λ)x0 exists
and is bounded on C+. Then

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′).

Proof. Since (A′, D(A′)) is a Hille–Yosida operator, its part A′
0 generates a C0-

semigroup on D(A′). But D(A′
0
2) ⊆ D(A′2) ⊆ D(A′

0), so D(A′2) is dense in D(A′).
Now let ε > 0. For y ∈ D(A′) take y′ ∈ D(A′2) with ‖y − y′‖ ≤ ε/2M , where
‖T (t)x0‖ < M , t ≥ 0. For large t we have |〈T (t)x0, y

′〉| ≤ ε/2 by Theorem 1. So

|〈T (t)x0, y〉| ≤ |〈T (t)x0, y
′〉| + |〈T (t)x0, y − y′〉| ≤ ε/2 + M · ‖y − y′‖ ≤ ε,

for large t. �

Corollary 2. Let (T (t))t≥0 be a bounded C0-semigroup with generator (A, D(A)),
and suppose σp(A) ∩ iR = ∅. If (is − A)−1x0 exists and is bounded in s ∈ R for
some x0 ∈ X, then

〈T (t)x0, y〉 → 0 as t → +∞ for all y ∈ D(A′).



Weak Individual Stability of C0-semigroups 207

Proof. A version of the resolvent identity states that

(is − A)−1x0 − R(a + is, A)x0 = (λ − is)R(a + is, A)(is − A)−1x0.

Here the right-hand side is bounded for a > 0 and s ∈ R by the Hille–Yosida theo-
rem and by the assumption, so R(a + is, A)x0 is bounded. The proof is concluded
by applying Corollary 1. �

The above proof of Theorem 1 remains valid if the semigroup (T (t))t≥0 is
only strongly continuous for some coarser locally convex topology τ . More precisely,
one has to assume that the semigroup is τ -bi-continuous, see [14] for the theory.
Then the infinitesimal generator (A, D(A)) is a Hille–Yosida operator, but D(A)
is not necessarily dense with respect to the norm in X . It is dense however for
the topology τ , so in the following the adjoint A′ of A is understood with respect
to τ . In addition, the resolvent identity, and replacing the vector-valued integrals
by τ -strong integrals, all the above integral formulas remain valid, which were the
essential ingredients of the proof. This proves the following.

Theorem 2. For a bi-continuous semigroup (T (t))t≥0 with generator (A, D(A)) and
x0 ∈ X suppose that the local resolvent R(λ)x0 exists on the open right half-plane
and that it is bounded. Then for all y ∈ D(A′2)

〈T (t)x0, y〉 → 0

holds for t → +∞.
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[5] C.J.K. Batty, Vũ Q. Phóng, Stability of individual elements under one-parameter
semigroups, Trans. Amer. Math. Soc. 322 (1990), 805–818.

[6] K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations,
Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.

[7] T. Eisner, B. Farkas, R. Nagel, A. Serény, Weakly and almost weakly stable C0-
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Abstract. If X is a non-degenerate derivation on R and H = −X2 we examine
conditions for the closure of H to generate a weakly∗ continuous semigroup
on L∞ which extends to the Lp-spaces. We give an example which cannot be
extended and an example which extends but for which the real part of the
generator on L2 is not lower semibounded.
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1. Introduction

The Lumer–Phillips theorem [LuP] is a cornerstone of the theory of one-parameter
semigroups. The theorem characterizes the generator of a contraction semigroup
with the aid of a dissipativity condition. The latter is an extension of the ele-
mentary properties of the operator −d2/dx2 of double differentiation acting on
C0(R). In this note we analyze contraction semigroups S generated by squares
−X2 of derivations X = a d/dx acting on C0(R), or L∞(R). An integral part of
the analysis consists of examining the one-parameter group T generated by X .
Throughout we assume a > 0. If a is smooth this is the one-dimensional ana-
logue of Hörmander’s condition for vector fields [Hör] and the operator −X2 is the
simplest example of a Hörmander ‘sum of squares of vector fields’.

First, we identify the kernel of S acting on L∞(R). Secondly, T is a weakly∗

continuous group of contractions on L∞ and we derive necessary and sufficient
conditions for it to extend to a strongly continuous group on the Lp(R ; ρ dx)-
spaces with p ∈ [1,∞〉, where ρ : R → 〈0,∞〉 is a C1-function. These conditions
also ensure that S extends to a strongly continuous semigroup on Lp(R ; ρ dx).
Thirdly, we characterize those S, or T , which extend to a contraction semigroup,
or group, on Lp(R ; ρ dx) for some p ∈ [1,∞〉. Fourthly, we give an example of a

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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smooth derivation with a uniformly bounded coefficient for which neither T nor S
can be extended to any of the Lp-spaces with p < ∞. Fifthly, we give an example
of a smooth derivation with a uniformly bounded coefficient which is uniformly
bounded away from zero for which T and S extend to all the Lp-spaces but the real
part of the generator of S on L2(R ; ρ dx) is not lower semibounded. In particular
the L2-generator cannot satisfy a G̊arding inequality. Since the G̊arding inequality
is the usual starting point for the analysis of elliptic divergence form operators on
L2(R ; ρ dx), e.g., operators of the form X∗X , this example clearly demonstrates
that the theory of ‘non-divergent’ form operators such as −X2 on L∞(R) is very
different. Finally we discuss the volume doubling property for balls (intervals)
whose radius (length) is measured by the distance associated with X .

2. Preliminaries

Let a : R → 〈0,∞〉 be a C1-function. Further assume∫ ∞

0

dx a(x)−1 = ∞ =
∫ 0

−∞
dx a(x)−1 . (1)

Then define operators X∞ and X1 with action a d/dx and with domains D(X∞) =
C∞

c (R) and D(X1) = C1
c (R), respectively.

The ordinary differential equation ẋ = a(x) has a unique maximal solution,
for all initial data x(0) = x0 ∈ R (see, for example, [Pla] Theorem 7.1.8). Let
t → etXx0 denote this solution. Since a satisfies (1) this maximal solution is
defined for all t ∈ R. Moreover, esXetXx0 = e(s+t)Xx0 and∫ etXx0

x0

dx a(x)−1 = t (2)

for all s, t ∈ R and x0 ∈ R. In addition the map (t, x) → etXx is continuous from
R2 into R. If t ∈ R then the map y → e−tXy is a C1-diffeomorphism from R onto
R. Therefore one can define the map Tt : L∞ → L∞ by (Ttϕ)(y) = ϕ(e−tXy).
Then Tt is an isometry and T is a weakly∗ continuous group on L∞. Clearly the
generator of T is an extension of X1.

Proposition 2.1.

I. The operators X∞ and X1 are weakly∗ closable, the weak∗ closures X1 and
X∞ are equal and generate the weakly∗ continuous positive group T , i.e.,
Tt = e−tX1 .

II. The operator H1 = −X2
1 is weakly∗ closable and its weak∗ closure H1 gen-

erates a semigroup S, which is weakly∗ continuous, positive, contractive and
holomorphic in the open right half-plane.

III. H1 = −X1
2

and in particular X1
2

is weakly∗ closed.
IV. If a ∈ C∞(R) then H∞ = H1 where H∞ = −X2

∞ .
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Proof. If a = then T is the group of left translations and the proof of the
proposition is straightforward. We next argue that one can reduce the general
case to the case a = using a coordinate transformation which goes back at least
to Feller, [Fel] Section 7.

Define γ : R → R by γ(t) =
∫ t

0 a−1. Then it follows from (1) that γ is bijective
and since a ∈ C1(R) the map γ is a C2-diffeomorphism. Moreover, (γ−1)′(t) =
a(γ−1(t)) for all t ∈ R and γ−1(0) = 0. So γ−1(t) = etX0 for all t ∈ R.

Next define U : L∞(R) → L∞(R) by Uϕ = ϕ ◦ γ. Then U is an isometric
isomorphism. If ϕ ∈ L∞(R) then ϕ ∈ C1

c (R) if and only if Uϕ ∈ C1
c (R), and then

X1Uϕ = Ud1ϕ, where d1 is the differential operator d/dx on L∞ with domain
D(d1) = C1

c (R). Similarly, if a ∈ C∞(R) then X∞U = Ud∞, where d∞ = d1|C∞
c

.
Since γ is a C2-diffeomorphism one similarly obtains that UD(d2

1) = UC2
c (R) =

C2
c (R) = D(X2

1 ) and X2
1Uϕ = Ud2

1ϕ for all ϕ ∈ D(d2
1). If ϕ ∈ L∞ and ψ ∈ L1(R)

then ∫
ψ Uϕ =

∫ (
(a ψ) ◦ γ−1

)
· ϕ

and (a ψ) ◦ γ−1 ∈ L1(R). It is then easy to deduce that U and U−1 are weakly∗

continuous. Now the proposition follows easily. �
Throughout this paper we will use the notation etXx0, γ(t) and U introduced

above. Moreover, T and S denote the group and semigroup generated by X1 and
H1, respectively.

Remark 2.2. The group T satisfies the property TtC0(R) = C0(R) for all t ∈ R,
by definition. Moreover, the semigroup S is related to the group T through the
integral algorithm

St = (4πt)−1/2

∫ ∞

−∞
ds e−s2(4t)−1

Ts (3)

which is elementary if a = and follows by use of the map U if a �= . Therefore
StC0(R) ⊆ C0(R) for all t > 0, i.e., S is a Feller semigroup.

One can associate a distance [JeS] with the derivation X by the definition

d(x ; y) = sup{|ψ(x) − ψ(y)| : ψ ∈ C∞
c (R) , ‖Xψ‖∞ ≤ 1 } .

Clearly one has

|ψ(x) − ψ(y)| =
∣∣∣ ∫ y

x

dz ψ′(z)
∣∣∣ ≤ ∣∣∣ ∫ y

x

dz a(z)−1
∣∣∣

for all ψ ∈ C∞
c (R) with ‖X∞ψ‖∞ ≤ 1. So

d(x ; y) ≤
∣∣∣ ∫ y

x

dz a(z)−1
∣∣∣ .

But by regularizing a−1 on a compact interval one deduces that the inequality is
in fact an equality, i.e.,

d(x ; y) =
∣∣∣ ∫ y

x

a−1
∣∣∣ = |γ(y) − γ(x)| (4)
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for all x, y ∈ R. Note that by setting y = esXx and using (2) one finds

d(x ; esXx) =
∣∣∣ ∫ esXx

x

dz a(z)−1
∣∣∣ = |s| . (5)

Moreover,

d(etXx ; etXy) = d(etXx ; esXetXx) = |s| = d(x ; esXx) = d(x ; y)

for all t ∈ R, where we have used (5). Therefore the distance is invariant under
the flow in the sense that

d(etXx ; etXy) = d(x ; y)

for all x, y ∈ R and t ∈ R.
Equip R with the measure ρ dx where ρ : R → 〈0,∞〉 is a C1-function. Then

one can calculate the kernel of the semigroup S.

Proposition 2.3. The kernel K of the semigroup S on L∞(R) is given by

Kt(x ; y) = (4πt)−1/2
(
a(y)ρ(y)

)−1
e−d(x;y)2(4t)−1

(6)

for all x, y ∈ R and t > 0. Moreover, Kt is continuous and
∫

dy ρ(y)Kt(x ; y) = 1
for all x ∈ R.

Proof. First, if a = then the proposition is well known.
In general, if ϕ ∈ L∞(R) and t > 0 then

(Stϕ)(x) = (US
(1)
t U−1ϕ)(x) = (4πt)−1/2

∫
dy e−|γ(x)−y|2(4t)−1

(U−1ϕ)(y)

= (4πt)−1/2

∫
dy (a(y))−1 e−|γ(x)−γ(y)|2(4t)−1

ϕ(y)

for almost every x ∈ R, where S
(1)
t = e−td1

2

is the semigroup corresponding to
a = . The representation (6) then follows immediately from (4).

Clearly Kt is continuous and H1 = 0. So St = as elements of L∞.
Therefore

∫
dy ρ(y)Kt(x ; y) = 1 for all t > 0 and almost every x ∈ R. Moreover,

the map x →
∫

dy ρ(y)Kt(x ; y) is continuous. Hence
∫

dy ρ(y)Kt(x ; y) = 1 for all
t > 0 and x ∈ R. �

3. Extension properties

The group of isometries T and the contraction semigroup S are defined on L∞ but
they do not automatically extend to the Lp-spaces with p ∈ [1,∞〉. This requires
extra boundedness conditions on the coefficient function a and the density function
ρ. The following proposition gives necessary and sufficient conditions for T to
extend to a strongly continuous group and sufficient conditions for S to extend to
a strongly continuous semigroup.
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Proposition 3.1. The following conditions are equivalent for all C ≥ 1 and ω ≥ 0.
I. There exists a p ∈ [1,∞〉 such that T extends to a strongly continuous group

on Lp(R ; ρ dx) satisfying the bounds ‖Tt‖p→p ≤ C1/p eω|t|/p for all t ∈ R.
II. For all p ∈ [1,∞〉 the group T extends to a strongly continuous group on

Lp(R ; ρ dx) satisfying the bounds ‖Tt‖p→p ≤ C1/p eω|t|/p for all t ∈ R.
III. a(y)ρ(y) ≤ C eωd(x;y) a(x)ρ(x) for all x, y ∈ R.
Moreover, if these conditions are satisfied then the semigroup S extends to a
strongly continuous semigroup on all the Lp-spaces, p ∈ [1,∞〉, satisfying the
bounds

‖St‖p→p ≤
(
(2 C)1/p eω2t/p

)
∧
(
2 C1/p eω2t/p2)

if ω > 0 and ‖St‖p→p ≤ C1/p if ω = 0, for all t > 0.

Proof. First assume a = . If Condition I is satisfied then for all ϕ ∈ Lp one has

‖Ttϕ‖p
p =

∫
R

dy ρ(y) |ϕ(y − t)|p =
∫
R

dx ρ(x)
ρ(x + t)

ρ(x)
|ϕ(x)|p .

Therefore

sup
x∈R

(ρ(x + t)
ρ(x)

)1/p

= ‖Tt‖p→p ≤ C1/peω|t|/p

for all t ∈ R and x ∈ R. Hence ρ(x + t) ≤ Ceω|t|ρ(x) for all t ∈ R and x ∈ R.
Setting y = x + t and noting that d(x ; y) = |t| one deduces that Condition III is
satisfied. Conversely, the same calculation shows that if Condition III is satisfied
then

‖Ttϕ‖p ≤ C1/peω|t|/p‖ϕ‖p (7)
for all p ∈ [1,∞〉, ϕ ∈ Lp ∩ L∞ and t ∈ R. In addition if ϕ ∈ C∞

c then obviously
limt↓0 ‖(I−Tt)ϕ‖p = 0, so by the density of C∞

c in Lp one concludes that T extends
to a strongly continuous group on Lp satisfying the bounds (7), i.e., Condition II
is valid. The implication II⇒I is trivial. This proves the equivalence if a = .

In general, if ϕ ∈ Cc(R) and p ∈ [1,∞〉 then

‖Uϕ‖p
Lp(ρ) =

∫
dx ρ(x) |ϕ(γ(x))|p

=
∫

dx (aρ)(γ−1(x)) |ϕ(x)|p = ‖ϕ‖p
Lp((aρ)◦γ−1) . (8)

Moreover, it follows from (4) that ((aρ) ◦ γ−1)(x) ≤ C eω|x−y|((aρ) ◦ γ−1)(y) for
all x, y ∈ R if and only if Condition III is valid. This proves the general case.

If the conditions are satisfied then S extends to the Lp-spaces by (3). The
estimates on the norms of St are established in two steps. First, if ω > 0 then it
follows from (3) and the estimates on ‖Ts‖1→1 that

‖St‖1→1 ≤ 2 C eω2t

for all t > 0. Since S is contractive on L∞ one deduces from interpolation that

‖St‖p→p ≤ (2 C)1/p eω2t/p
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for all p ∈ 〈1,∞〉 and t > 0. Alternatively, one can reverse the reasoning and use
the interpolated bounds ‖Ts‖p→p ≤ C1/p eω|s|/p together with (3) to calculate that

‖St‖p→p ≤ 2 C1/p eω2t/p2

for all p ∈ [1,∞] and t > 0.
If ω = 0 similar arguments apply and both lead to the bounds ‖St‖p→p ≤

C1/p. �

Remark 3.2. It follows from (8) that U transforms the system with derivation
a d/dx and density function ρ, where a satisfies (1), into a new system with a =
and a different density function ρa. Moreover, if ρ = then ρa satisfies∫ ∞

0

ρa = ∞ =
∫ 0

−∞
ρa (9)

Conversely, every system with a = and a density function ρa satisfying (9) is the
image under U of a system with ρ = .

The situation described by the proposition simplifies if C = 1. Then Condi-
tion III together with (5) implies that

±(aρ)′(y) a(y) = lim
t↓0

t−1
(
(aρ)(e±tXy) − (aρ)(y)

)
≤ lim sup

t↓0
t−1(eωt − 1)(aρ)(y) = ω (aρ)(y)

for all y ∈ R. Thus ‖ρ−1(aρ)′‖∞ ≤ ω. Conversely, if ‖ρ−1(aρ)′‖∞ ≤ ω then

ρ(etXy)−1 d

dt

(
e−ωt (aρ)(e±tXy)

)
≤ 0

for all t ≥ 0. Hence Condition III is satisfied with C = 1. But the condition
‖ρ−1(aρ)′‖∞ ≤ ω can be expressed in terms of the derivation. Therefore one has
the following corollary.

Corollary 3.3. The following conditions are equivalent for all ω ≥ 0.

I. There exists a p ∈ [1,∞〉 such that T extends to a strongly continuous group
on Lp(R ; ρ dx) satisfying the bounds ‖Tt‖p→p ≤ eω|t|/p for all t ∈ R.

II. For all p ∈ [1,∞〉 the group T extends to a strongly continuous group on
Lp(R ; ρ dx) satisfying the bounds ‖Tt‖p→p ≤ eω|t|/p for all t ∈ R.

III. ‖ρ−1(aρ)′‖∞ ≤ ω .

IV. |(ψ, (X + X∗)ϕ)| ≤ ω ‖ψ‖q ‖ϕ‖p for all ϕ, ψ ∈ C∞
c (R) and for one pair (for

all pairs) of dual exponents p, q ∈ [1,∞].

Moreover, if these conditions are satisfied then for all p ∈ [1,∞〉 the semigroup S
extends to a strongly continuous semigroup on Lp, satisfying the bounds

‖St‖p→p ≤
(
21/peω2t/p

)
∧
(
2eω2t/p2)
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for all t > 0. In addition H1 satisfies a G̊arding inequality. More precisely,

Re(ϕ, H1ϕ) ≥ (1 − ε)‖Xϕ‖2
2 − (4ε)−1‖X + X∗‖2

2→2‖ϕ‖2
2

for all ϕ ∈ C∞
c (R) and ε > 0.

Proof. The equivalence of the first three conditions and the existence of the ex-
tension of the semigroup S follow from Proposition 2.1 and the above discussion.
Conditions III and IV are equivalent because

(ψ, Xϕ) + (Xψ, ϕ) =
∫
R

dx (aρ)(x)
(
ψ(x)ϕ′(x) + ψ′(x)ϕ(x)

)
= −

∫
R

dx ρ(x)
(
ρ(x)−1(aρ)′(x)

)
ψ(x)ϕ(x)

for all ϕ, ψ ∈ C∞
c (R). Finally if ϕ ∈ C∞

c (R) then

Re(ϕ, H1ϕ) = −Re(X∗ϕ, Xϕ)

= ‖Xϕ‖2
2 − Re((X∗ + X)ϕ, Xϕ)

≥ ‖Xϕ‖2
2 − ‖(X∗ + X)ϕ‖2‖Xϕ‖2

≥ (1 − ε)‖Xϕ‖2
2 − (4ε)−1‖X + X∗‖2

2→2‖ϕ‖2
2

for all ε > 0. �

The corollary, applied with ω = 0, gives the following criteria for T or S to
extend to a contraction group or semigroup on the Lp-spaces.

Proposition 3.4. The following are equivalent.
I. There is a p ∈ [1,∞〉 such that T extends to a strongly continuous contraction

group on Lp(R ; ρ dx).
II. For all p ∈ [1,∞〉 the group T extends to a strongly continuous contraction

group on Lp(R ; ρ dx).
III. There is a p ∈ [1,∞〉 such that S extends to a strongly continuous contraction

semigroup on Lp(R ; ρ dx).
IV. For all p ∈ [1,∞〉 the semigroup S extends to a strongly continuous contrac-

tion semigroup on Lp(R ; ρ dx).
V. The function aρ is constant.

Proof. The implications V⇔I⇔II⇒IV follow from Corollary 3.3 and the implica-
tion IV⇒III is trivial.

If Condition III is valid for some p ∈ [1, 2] then it follows by interpolation
with the contraction semigroup on L∞ that Condition III is valid for all p > 2.
Hence it suffices to show that if p ∈ 〈2,∞〉 and S extends to a strongly continuous
contraction semigroup on Lp(R ; ρ dx) then Condition V is valid. Moreover, using
the map U and (8), we may assume that a = , as in the proofs of Propositions 2.1
and 3.1.
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Fix p ∈ 〈2,∞〉 and assume S extends to a strongly continuous contraction
semigroup on Lp(R ; ρ dx). Then it follows from the Lumer–Phillips theorem, [LuP]
Theorem 3.1, that the generator H of the semigroup S on Lp(R ; ρ dx) is accretive.
Define the semi-inner product [ · , · ] on Lp(R ; ρ dx) by

[ψ, ϕ] =
∫

ρ ψ ‖ϕ‖2−p
p |ϕ|p−2 ϕ

with obvious modifications if ϕ = 0. Then Re[Hϕ, ϕ] ≥ 0 for all ϕ ∈ D(H).
If ϕ ∈ C2

c (R) then ϕ ∈ D(H1) and H1ϕ ∈ Lp(R ; ρ dx). So ϕ ∈ D(H) and
H1ϕ = Hϕ. Moreover, if in addition ϕ ≥ 0, then∫

d(ρ ϕp−1) (dϕ) =
∫

ρ ϕp−1 H1ϕ =
∫

ρ ϕp−1 Hϕ = ‖ϕ‖p−2
p [Hϕ, ϕ] ≥ 0

where d = d/dx. Hence ∫
d(ρ ϕp−1) (dϕ) ≥ 0 (10)

for all ϕ ∈ C1
c (R) with ϕ ≥ 0, by approximation.

Next fix an even function τ ∈ C∞
c (R) such that 0 ≤ τ ≤ 1, τ(0) = τ(1) = 1

and τ is decreasing on [0,∞〉. For all n ∈ N define ϕn ∈ C1
c (R) by

ϕn(x) = ρ(x)−p−1
τ(n−1x) .

Then

ϕ′
n(x) = −p−1ρ(x)−1−p−1

ρ′(x) τ(n−1x) + n−1ρ(x)−p−1
τ ′(n−1x) .

Similarly, (ρ ϕp−1
n )(x) = ρ(x)p−1

τ(n−1x)p−1 and

(ρ ϕp−1
n )′(x) = p−1ρ(x)−1+p−1

ρ′(x) τ(n−1x)p−1

+ n−1(p − 1)ρ(x)p−1
τ(n−1x)p−2 τ ′(n−1x) .

Then by (10) it follows that

0 ≤
∫

(ρ ϕp−1
n )′ ϕ′

n =
∫

dx
(
−p−2ρ(x)−2

(
ρ′(x)

)2
τ(n−1x)p

− n−1(1 − 2p−1) ρ(x)−1 ρ′(x) τ(n−1x)p−1 τ ′(n−1x)

+ n−2(p − 1) τ(n−1x)p−2
(
τ ′(n−1x)

)2
)

.

Using the estimate a b ≤ εa2 + (4ε)−1b2 for the second term, setting ε = (2p(p −
2))−1 and rearranging one finds

(2p2)−1

∫
dx ρ(x)−2

(
ρ′(x)

)2
τ(n−1x)p ≤ n−2

∫
dx p2τ(n−1x)p−2

(
τ ′(n−1x)

)2

= n−1

∫
p2τp−2 (τ ′)2
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for all n ∈ N. Then the monotone convergence theorem establishes that∫
ρ−2(ρ′)2 = lim

n→∞

∫
dx ρ(x)−2

(
ρ′(x)

)2
τ(n−1x)p

≤ lim
n→∞

2n−1 p4

∫
τp−2 (τ ′)2 = 0 .

Therefore ρ′ = 0 as required. �
In the unweighted case, i.e., ρ = , the proposition establishes that S extends

to a contraction semigroups on one of the Lp-spaces with p < ∞ only in the case
that X is proportional to d/dx.

4. Examples

Next we give two examples of rather unexpected properties although there is noth-
ing inherently pathological about the weight ρ or the coefficient a. In fact in both
examples ρ = and the coefficient a of the derivation is strictly positive, smooth
and uniformly bounded. The first example gives a weakly∗ continuous group T and
semigroup S which do not extend from L∞ to the other Lp spaces. The principal
reason for this singular behaviour is the fact that inf a = 0, i.e., there is a mild
degeneracy at infinity.

Example 4.1. Let ρ = 1. For all n ∈ N0 define hn = n!−1. Define yn ∈ R for all
n ∈ N0 by y0 = 0 and inductively

yn+1 = yn + 4−1(hn + hn+1) + 2−1

for all n ∈ N. Define ã : R → 〈0,∞〉 by

ã(x) =

⎧⎪⎨⎪⎩
hn if x ∈ [yn − 4−1hn, yn + 4−1hn〉 (n ∈ N0) ,

1 if x ∈ [yn + 4−1hn, yn + 4−1hn + 2−1〉 (n ∈ N0) ,

1 if x ∈ 〈−∞, 0] .

Then ã(yn) = hn and
∫ yn+1

yn
dx ã(x)−1 = 1 for all n ∈ N. Next we regularize ã−1.

For all n ∈ N0 let χn ∈ C∞
c (R) be such that χn ≥ 0,

∫
χn = 1, supp χn ⊆

[−8−1hn, 8−1hn] and χn(−x) = χn(x) for all x ∈ R. Define a ∈ C∞(R) by

a(x)−1 =

⎧⎪⎨⎪⎩
(χ0 ∗ ã−1)(x) if x ≤ 0 ,

(χn ∗ ã−1)(x) if n ∈ N0 and
x ∈ [yn − 4−1hn − 4−1, yn + 4−1hn + 4−1〉 .

Then a(y) = hn for all y ∈ [yn − 8−1hn, yn + 8−1hn] and
∫ yn+1

yn
dx a(x)−1 = 1 for

all n ∈ N. Hence d(yn ; yn+1) = 1 for all n ∈ N. But a(yn) = (n + 1) a(yn+1) for
all n ∈ N. Therefore Condition III of Proposition 3.1 is not valid. In particular
the group T does not extend to any of the other Lp spaces. Next we show that the
semigroup S also does not extend to another Lp space.

Let p ∈ [1,∞〉, t > 0 and let q be the dual exponent of p. For all n ∈ N
set In = [yn − 8−1hn, yn + 8−1hn]. Let n ∈ N. Set ϕ = In+1 and ψ = In . Then
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‖ϕ‖p = |In+1|1/p and ‖ψ‖q = |In|1/q. Moreover, d(x ; y) ≤ d(yn−1 ; yn+2) = 3 for
all x ∈ In and y ∈ In+1. Therefore

(ψ, Stϕ) = (4πt)−1/2

∫
In

dx

∫
In+1

dy a(y)−1 e−d(x;y)2(4t)−1

≥ (4πt)−1/2

∫
In

dx

∫
In+1

dy a(y)−1 e−3t−1

= (4πt)−1/2|In| |In+1|h−1
n+1 e−3t−1

.

So

‖St‖p→p ≥ (4πt)−1/2|In|1/p |In+1|1/q h−1
n+1 e−3t−1

= (64πt)−1/2(n + 1)1/p e−3t−1
.

Hence the operator St on L∞ does not extend to a continuous operator on Lp for
any p ∈ [1,∞〉 or t > 0. �

In the next example the coefficient a of X is uniformly bounded above and be-
low by a positive constant but sup a′ = ∞. The semigroup S extends to a strongly
continuous semigroup on all the Lp-spaces but the real part of the generator of
S on L2 is not lower semibounded. This contrasts with the case of continuous
self-adjoint semigroups where boundedness of the semigroup immediately implies
lower semiboundedness of the generator.

Example 4.2. First, let ρ = 1 and let χ ∈ C∞
c (R) be such that 0 ≤ χ ≤ 3,

χ′ ≥ 0, χ(x) = 0 if x ≤ 0, χ(x) = 3 if x ≥ 3 and χ(x) = x if 1 ≤ x ≤ 2. Define
a : R → [1, 4] by

a(x) = 1 +
∞∑

n=1

(
χ(n(x − 16n)) − χ(n(x − (16n + 8))

)
.

Thus a = 1 on an infinite sequence of intervals of length almost equal to 8 spaced at
distance 8 one from the other. On the intermediate intervals a increases smoothly
to the value 4 and then decreases in a similar fashion to the value 1. The rate of
increase and decrease, however, becomes larger with the distance of the interval
from the origin. Nevertheless a ∈ C∞(R) and the bounds of Proposition 3.1.III
are valid with C = 4 and ω = 0. In particular St extends to the Lp-spaces and
‖St‖p→p ≤ 81/p.

Secondly, let n ∈ N with n ≥ 4. Let ψ ∈ C∞(R) be such that ψ(x) = 3 for all
x ≤ 16n+8, 0 ≤ ψ′ ≤ n1/2, ψ′(x) = 0 for all x ≥ 16n+8+4n−1 and ψ′(x) = n1/2

for all x ∈ [16n +8 + n−1, 16n+ 8 + 2n−1]. Then 3 ≤ ψ(16n + 8 + 4n−1) ≤ 5. Now
define ϕ ∈ C∞

c (R) by

ϕ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χ(x − (16n + 4)) if x ≤ 16n + 8

ψ(x) if x ∈ [16n + 8, 16n + 8 + 4n−1]

3−1ψ(16n + 8 + 4n−1)
(
3 − χ(x − (16n + 8 + 4n−1)

)
if x ≥ 16n + 8 + 4n−1
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Then ‖ϕ‖2 ≤ 5 · (12)1/2 = (300)1/2 and

‖ϕ′‖2 ≤ 2‖χ′‖∞ + n1/2(4n−1)1/2 + 3−1ψ(16n + 8 + 4n−1)‖χ′‖∞ ≤ 2 + 4‖χ′‖∞ .

But a′ a ϕϕ′ ≤ 0 and

−(a′ϕ, Xϕ) ≥
∫ 16n+8+2n−1

16n+8+n−1
(−a′ a ϕϕ′) ≥

∫ 16n+8+2n−1

16n+8+n−1
n · 2 · 3 · n1/2 = 6n1/2

by the previous estimates. Therefore

Re(ϕ, H∞ϕ) = ‖Xϕ‖2
2 + Re(a′ϕ, Xϕ)

≤ ‖a‖2
∞(2 + 4‖χ′‖∞)2 − 8n1/2

≤ −300−1
(
6n1/2 − 16(2 + 4‖χ′‖∞)2

)
‖ϕ‖2

2 .

Consequently, Re H∞ is not lower semibounded. This is despite the uniform bound-
edness of S on L2.

Next, since S is uniformly bounded on each of the Lp-spaces, the spectrum
σ(H) of the generator H of the semigroup on Lp is contained in the right half-
plane. But a(x) ∈ [1, 4] for all x ∈ R. Therefore 4−1|x− y| ≤ d(x ; y) ≤ |x− y| and
Proposition 2.3 implies that

Kt(x ; y) ≤ (4πt)−1/2 e−|x−y|2(64t)−1

for all x, y ∈ R and t > 0. Hence it follows from [Kun] or [LiV] that σ(H) is
independent of p ∈ [1,∞]. On the other hand ReH∞ is not lower semibounded
on L2 and the above estimates establish that 〈−∞, 0] ⊂ Θ(H), the L2-numerical
range of H . Therefore Θ(H) �= σ(H) on L2.

In fact this example illustrates the extreme situation that the spectrum of H
is contained in the right half-plane but the numerical range is the whole complex
plane. This follows since one can establish that the numerical range Θ(H) = C by
a small modification of the foregoing estimates applied to the function ϕ̃ ∈ C∞

c (R)
defined by

ϕ̃(x) = eiλx τ(x) + ϕ(x) ,

where λ ∈ R and τ ∈ C∞
c (〈−1, 4〉) is fixed such that 0 ≤ τ ≤ 1 and τ |[0,3] = 1.

One also uses the observation that the numerical range is convex.
Finally note that the semigroup S has a bounded holomorphic extension to

the open right half-plane on each of the Lp-spaces, p ∈ [1,∞〉. This follows from
the explicit form of the kernel given in Propositions 2.3. Therefore the operator H
is of type S0+. Nevertheless, since Θ(H) = C the operator H is not sectorial. �

Example 4.2 has ρ = and a �= but using Remark 3.2 one can convert it into
an example with a = and ρ �= . Then ρ is an oscillating function satisfying (9).
Alternatively one can construct an example of the latter type directly by analogous
arguments with ρ bounded above and below, but now ρ′ rather than a′ has to
increase appropriately.



220 A.F.M. ter Elst and D.W. Robinson

5. Volume doubling

Let V (x ; r) denote the measure of the ball of radius r centred at x, i.e., the set
{y : d(x ; y) < r} = 〈e−rXx, erXx〉. Then V is defined, as usual, to have the volume
doubling property if there is a c > 0 such that

V (x ; 2r) ≤ c V (x ; r)

for all r > 0. This property can be immediately related to the conditions of Propo-
sition 3.1 which are necessary and sufficient for the continuous extension of T to
the Lp-spaces.

Proposition 5.1.

I. If the equivalent conditions of Proposition 3.1 are satisfied then

V (x ; 2r) ≤ 2 C2 e3ω V (x ; r) (11)

for all x ∈ R and r ∈ 〈0, 1] where C and ω are the parameters of Proposi-
tion 3.1. Moreover if ω = 0 then (11) is valid for all x ∈ R and r > 0.

II. If there exist c > 0 and a function v : 〈0,∞〉 → R such that

c−1 v(r) ≤ V (x ; r) ≤ c v(r)

for all x ∈ R and r ∈ 〈0, 1] then Condition III of Proposition 3.1 is satisfied
with ω = 0.

Proof. It follows by definition that

V (x ; r) =
∫ erXx

e−rXx

dy ρ(y) .

But
d

dr
V (x ; r) = (aρ)(erXx) + (aρ)(e−rXx) .

Hence

V (x ; r) =
∫ r

0

ds
(
(aρ)(esXx) + (aρ)(e−sXx)

)
=

∫ r

−r

ds (aρ)(esXx) .

Therefore if Condition III of Proposition 3.1 is satisfied one estimates that

2 C−1r e−ωr(aρ)(x) ≤ V (x ; r) ≤ 2 C r eωr(aρ)(x)

for all x ∈ R and r > 0. These bounds imply (11) for all x ∈ R and r ∈ 〈0, 1] or,
if ω = 0, for all r > 0.

If, however, the assumptions of the second statement are valid then

c−1 v(r) ≤ V (x ; r) =
∫ r

0

ds
(
(aρ)(esXx) + (aρ)(e−sXx)

)
≤ 2 r max

y∈[e−Xx,eXx]
(aρ)(y)

for all x ∈ R and r ∈ 〈0, 1]. Similarly

c v(r) ≥ r min
y∈[e−Xx,eXx]

(aρ)(y) .
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Hence there exists a c1 > 0 such that c−1
1 r ≤ v(r) ≤ c1 r for all r ∈ 〈0, 1]. But

then

2(aρ)(x) = lim
r↓0

r−1

∫ r

0

ds
(
(aρ)(esXx) + (aρ)(e−sXx)

)
= lim

r↓0
r−1 V (x ; r) ≤ lim sup

r↓0
r−1 c v(r) ≤ c c1

for all x ∈ R. Similarly 2(aρ)(x) ≥ (c c1)−1. Hence (2c c1)−1 ≤ aρ ≤ 2−1c c1 and
Condition III of Proposition 3.1 is satisfied with ω = 0. �
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Abstract. In this paper we show that the curve shorting flow with contact
angle and triple junction in a mirror symmetric configuration is locally well
posed in suitable Hölder spaces.
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1. Introduction

We study a diffusion model of a ternary alloy in a non-equilibrium state. Moreover
we consider a symmetric and plane configuration. To describe the system precisely,
let Ω ⊂ R2 be a bounded domain in which the alloy is located. It is further assumed
that three phases are separated by three moving boundaries Γi(t), i = 1, 2, 3, where
t ≥ 0 denotes the time variable. It is assumed that these interfaces meet in a triple
junction m(t) ∈ Ω at one of their end points and that they perpendicularly hit the
boundary ∂Ω of Ω at their other end points bi(t). The evolution of the interfaces
is governed by the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

for t > 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
along Γi(t) : Vi = σi (κi − κ̄i) ,

at bi(t) : Γi(t) ⊥ ∂Ω,
at m(t) : ∠(Γi(t), Γj(t)) = θk, for i, j, k

∈ {1, 2, 3} mutually different,
σ1κ1 + σ2κ2 + σ3κ3 = 0,

at t = 0 : Γi(0) = Γi0, m(0) = m0.

(1.1)

The second author is corresponding author. He is grateful to the DFG for financial support
through the Graduiertenkolleg 615 “Interaction of Modeling, Computation Methods and Software
Concepts for Scientific-Technological Problems ”.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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Here
κ̄i :=

1
|Γi|

∫
Γi

κids, (1.2)

with |Γi| being the length of Γi. Throughout this paper we write s for the arc
length parameter of Γi(t) running from m(t) to bi(t). We denote by Vi and κi the
normal velocity and the curvature of Γi(t), respectively. Let Ti(t) denote the unit
tangent vector of Γi(t) with respect to s and choose a unit normal vector Ni(t) such
that (Ti(t), Ni(t)) is a positive oriented Frenet frame. With this convention we can
clarify the orientation of Vi and κi: both quantities are always determined with
respect to Ni(t). Moreover, σi and θi are positive constants with the constraints
0 < θi < π, θ1 + θ2 + θ3 = 2π and satisfying Young’s law:

σ1

sin θ1
=

σ2

sin θ2
=

σ3

sin θ3
.

For a particular geometric configuration, system (1.1) has recently been investi-
gated in [2]. In this paper we study (1.1) for a configuration proposed by K. Ito
and Y. Kohsaka in [5] for the surface diffusion flow, see also [3]. Finally we also
refer to [7] and [1] where curve shortening flows with triple junction are considered.

Let us now parameterize the geometric set up we are interested in. We first
fix Ω by putting

Ω := [−a, 0]× [−b, b],
where a and b are positive sufficiently large constants, see Figure 1.

�

�

��
��

��

θ 0
x

y

−a

b

−b

�

�

�

�

−ξ(t)

Figure 1

Γ1(t)

Γ3(t)

Γ2(t)

We consider an evolution such that Γ1(t) is always a segment on the x-axis,
and Γ2(t) and Γ3(t) are symmetric with respect to the x-axis. For definiteness
assume that Γ3(t) lies in {(x, y) ∈ Ω; y ≥ 0} . Let θ ∈ (0, π/2) be given and set
θ1 = 2θ and θ2 := θ3 := π − θ. For simplicity we put σ2 = σ3 = 1. Then Young’s
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law implies that σ1 = 2 cos θ. Observe that the symmetry of the configuration
also forces the relation κ2 = −κ3. Thus the continuity of the chemical potential
σ1κ1+σ2κ2+σ3κ3 = 0 is automatically fulfilled. To have a neat representation, let
us introduce the following notations: given ξ ∈ (0, a) and u : [−ξ, 0] → [0, b), let

Λ1[u, ξ] := {(x, 0);−a ≤ x ≤ −ξ} ,
Λ2[u, ξ] := {(x,−u(x));−ξ ≤ x ≤ 0} ,
Λ3[u, ξ] := {(x, u(x));−ξ ≤ x ≤ 0} ,

and set Λ[u, ξ] :=
3⋃

i=1

Λi[u, ξ].

Definition 1.1.

(i) Let θ ∈ (0, π/2). We say that a union of three curves Γ belongs to Sθ, if
there are ξ ∈ (0, a) and non-negative function u ∈ C2[−ξ, 0] with u(−ξ) =
0, ux(−ξ) = tan θ, ux(0) = 0, such that Γ = Λ[u, ξ] and m is given by the
point (−ξ, 0).

(ii) Let A > 0 be a given constant. We say that a union of three curves Γ belongs
to CA if there are ξ ∈ (0, a) and non-negative function u ∈ C1[−ξ, 0] with
u(−ξ) = 0, ux(0) = 0, and

∫ 0

−ξ
u(x)dx = A such that Γ = Λ[u, ξ] and m is

given by the point (−ξ, 0).

Note that any union of three curves in Sθ or in CA is symmetric with respect
to the x-axis. In view of the structure of the evolution problem (1.1), it can be
expected that if Γ0 =

⋃3
i=1 Γi0 ∈ Sθ, then the solution Γ(t) of (1.1) also belongs

to Sθ for all t > 0 as long as it exists. So we proceed with the evolution problem
(1.1) on Sθ and set Γ(t) = Λ[u(t, ·), ξ(t)] with the moving triple point m(t) given
by (−ξ(t), 0) for t > 0. The initial conditions are denoted by Γ0 = Λ[u0, ξ0] with
m0 = (−ξ0, 0). Moreover, we also note that the spatial mean value of the curvature
is given by

κ̄3(t) = − θ

L3(t)
, (1.3)

where L3(t) is the length of Λ3(t). Indeed, if we let ω(t, s) denote the angle between
the unit normal of Λ3(t) and the x-axis, then κ3(t, s) = ∂ω/∂s(t, s), see [4]. Thus
it follows from (1.2) that

κ̄3(t) =
1

L3(t)

∫ L3(t)

0

∂ω

∂s
ds

=
1

L3(t)
(ω(t, L3(t)) − ω(t, 0)) .

By the boundary conditions at m(t) and b3(t), we have that ω(t, 0) = π/2 + θ and
ω(t, L3(t)) = π/2. This implies (1.3).

Let us now rewrite system (1.1) by using the new unknowns (u(t, x), ξ(t))
defined t ≥ 0 and −ξ(t) ≤ x ≤ 0 :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
uxx

1 + u2
x

+ (1 + u2
x)1/2θ∫ 0

−ξ(t)

(1 + u2
x)1/2dx

, −ξ(t) ≤ x ≤ 0,

ux(t,−ξ(t)) = tan θ,
ux(t, 0) = 0,
u(t,−ξ(t)) = 0,
u(0, x) = u0(x) for − ξ0 ≤ x ≤ 0,
ξ(0) = ξ0.

(1.4)

2. Local existence

In this section, we study local existence of (1.4) for the initial data Γ0 ∈ C2+α

with 0 < α < 1. We shall first derive the equation for ξ. To do so we assume that
(u, ξ) is a solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
uxx

1 + u2
x

+ (1 + u2
x)1/2θ∫ 0

−ξ(t)

(1 + u2
x)1/2dx

, −ξ(t) ≤ x ≤ 0,

ux(t,−ξ(t)) = tan θ,
ux(t, 0) = 0,
u(0, x) = u0(x) for − ξ0 ≤ x ≤ 0,
ξ(0) = ξ0.

(2.1)

Observe that (2.1) and (1.4) coincide except for the condition u(t,−ξ(t)) = 0. For
such a function the condition u(t,−ξ(t)) = 0 is equivalent to following equation

ξ̇(t) =
cos3 θ

sin θ
uxx(t,−ξ(t)) +

θ

sin θ

∫ 0

−ξ(t)

(1 + u2
x(t, x))1/2dx

, (2.2)

where ξ̇ := dξ/dt. Indeed, let us first assume that the equation u(t,−ξ(t)) = 0 is
satisfied. By differentiation with respect to t, then we get

[ut(t, x) − ux(t, x)ξ̇(t)]
∣∣∣
x=−ξ(t)

= 0.

Using the boundary condition ux(t,−ξ(t))) = tan θ, it follows that

ut(t, x)
∣∣∣
x=−ξ(t)

= cos2 θuxx(t,−ξ(t)) +
θ sec θ∫ 0

−ξ(t)

(1 + u2
x(t, x))1/2dx

.

Thus (2.2) holds true. Conversely, if (2.2) is satisfied, then we get

du(t,−ξ(t))
dt

= 0.

By virtue of Γ0 ∈ Sθ, we have u(0,−ξ(0)) = u0(−ξ0) = 0, so that u(t,−ξ(t)) = 0.
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In order to normalize the x-coordinate, we introduce the following change of
variables. Given t ≥ 0, let:

η = 1 +
x

ξ(t)
, v(t, η) = u(t, (η − 1)ξ(t)).

In these new coordinates (t, η) ∈ (0, T ]× [0, 1], system (2.1) and (2.2) is given by:

vt =
(η − 1)ξ̇vη

ξ
+

vηη

ξ2 + v2
η

+
θ(ξ2 + v2

η)1/2∫ 1

0

(ξ2 + v2
η)1/2dη

, (2.3)

vη(t, 0) = ξ(t) tan θ, (2.4)
vη(t, 1) = 0, (2.5)

v(0, η) = v0(η) := u0((η − 1)ξ0), (2.6)

ξ̇(t) =
cos3 θ

ξ2 sin θ
vηη(t, 0) +

ξθ

sin θ

∫ 1

0

(ξ2(t) + v2
η(t, η))1/2dη

, (2.7)

ξ(0) = ξ0. (2.8)

To solve this new system (2.3)–(2.8) locally in time, we need some preliminaries.
We shall first linearize (2.3)–(2.8) about the initial data. For convenience, we
introduce a parameter τ ≥ 0, which is regarded as initial time. Given a sufficiently
regular pair of functions (v̄, ξ̄), we define a linear differential operator Aτ , acting
on a C2-function U : [0, 1] � η → U(η) ∈ R, by

AτU :=
1

g(v̄, ξ̄)(τ, η)
∂2

ηU +
θ v̄η(τ, η)

L(v̄, ξ̄)(τ) g1/2(v̄, ξ̄)(τ, η)
∂ηU

+
(η − 1) cos3 θ

sin θ

v̄η(τ, η)
ξ̄3(τ)

∂2
ηU(0),

where

g(v, ξ)(t, η) = ξ2(t) + v2
η(t, η), and L(v, ξ)(t) =

∫ 1

0

g1/2(v, ξ)(t, η)dη.

If no confusion seems likely, we abbreviate g(v, ξ)(t, η) and L(v, ξ)(t) by g(t, η) and
L(t), respectively. In addition, we set

Fτ (v, ξ)(t, η) :=
(

1
g(t, η)

− 1
g(τ, η)

)
vηη(t, η)

+
{ vη(t, η)

L(t) g1/2(t, η)
− vη(τ, η)

L(τ) g1/2(τ, η)

}
θvη(t, η)

+
(η − 1) cos3 θ

sin θ

(
vη(t, η)
ξ3(t)

− vη(τ, η)
ξ3(τ)

)
vηη(t, 0)

+
θ

L(t)

(
(η − 1)vη(t, η)

sin θ
+

ξ2(t)
g1/2(t, η)

)
.
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Again, for simplicity, we denote Fτ (v, ξ)(t, η) by Fτ (t, η) if no confusion is possible.
Furthermore, we denote

ḡ(t, η) := g(v̄, ξ̄)(t, η), L̄(t) := L(v̄, ξ̄)(t) and F̄τ (t, η) := Fτ (v̄, ξ̄)(t, η).

Finally, we will introduce some function spaces we are concerned with. Let
I = [0, 1]. For 0 ≤ t0 < t1 < ∞ we set Rt0,t1 = (t0, t1]× I. Given 0 < γ < 1/2, 0 <
α < 1, 0 < μ < min{(1 − α)/2, 1/2 − γ} we define

Y2+α
γ, μ (Rt0, t1) = {v ∈ C(1−α)/2−μ([t0, t1], C1+α(I)) ∩ C1/2−μ([t0, t1], C1(I))

∩C1, 2+α(Rt0, t1); v(t0) ∈ C2+α(I) and ‖v‖Y2+α
γ, μ (Rt0, t1 ) < ∞},

Z1
γ [t0, t1] = {ξ ∈ C[t0, t1] ∩ C1(t0, t1]; ξ(t) > 0, for t ∈ [t0, t1]

and ‖ξ‖Z1
γ [t0, t1] < ∞},

where the norms of these spaces are defined by

‖v‖Y2+α
γ, μ (Rt0, t1 ) = ‖v‖C(1−α)/2−μ([t0, t1], C1+α(I)) + ‖v‖C1/2−μ([t0, t1],C1(I))

+ sup
0<δ<t1−t0

δγ‖vηη‖C0,α(Rt0+δ, t1 ) + sup
0<δ<t1−t0

δγ‖vt‖C0,α(Rt0+δ, t1 )

‖ξ‖Z1
γ [t0, t1] = ‖ξ‖C[t0, t1] + sup

0<δ<t1−t0

δγ‖ξ̇‖C[t0+δ, t1].

In the above definition the spaces such as C0,α(Rt0+δ, t1), C1,2+α(Rt0,t1) are the
usual anisotropic parabolic Hölder spaces, see [6]. Let us study the nonlinear part
Fτ (t, η).

Lemma 2.1. If 0 < T < ∞ and (v, ξ) ∈ Y2+α
γ, μ (Rτ, τ+T ) × Z1

γ [τ, τ + T ], then
Fτ (t, η) ∈ C(Rτ,τ+T )∩C0,α(Rτ,τ+T ). Moreover, if ‖v‖Y2+α

γ, μ (Rτ, τ+T ) +‖ξ‖Z1
γ [τ, τ+T ]

≤ K and T satisfies the following estimates: T ≤ 1, KT 1−γ ≤ ξ(τ)(1 − γ)/2 and
KT (1−α)/2−μ ≤ 1, then we have

‖Fτ (t, η)‖C(Rτ,τ+T ) ≤ CΣ(1 + K2T 1/2−μ−γ), (2.9)

sup
0<δ<T

δγ‖Fτ (t, η)‖C0,α(Rτ+δ,τ+T ) ≤ CΣ(T γ + K2T (1−α)/2−μ), (2.10)

where CΣ is dependent on 1/ξ(τ), ξ(τ) and ‖v(τ)‖C2+α(I).

Proof. Clearly Fτ (t, η) ∈ C(Rτ,τ+T ). Since for τ ≤ s < t ≤ τ + T, we have that

|ξ(t) − ξ(s)| =
∣∣∣∣∫ 1

0

ξ̇ (βt + (1 − β)s) (t − s)dβ

∣∣∣∣
≤

∫ 1

0

[β(t − s)]−γ [β(t − s)]γ‖ξ̇‖C[τ+β(t−s),τ+T ](t − s)dβ

≤ (t − s)1−γ

1 − γ
‖ξ‖Z1

γ
. (2.11)

The assumption of T implies that
1
2
ξ(τ) ≤ ξ(t) ≤ 3

2
ξ(τ) ≤ Cτ,1, (2.12)
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where Cτ,1 depends on ξ(τ). Since v ∈ C1/2−μ([τ, τ + T ], C1(I)), we know that

‖v(t)‖C1(I) ≤ ‖v(τ)‖C1(I) + KT 1/2−μ ≤ ‖v(τ)‖C1(I) + 1 ≤ Cτ,2, (2.13)

where Cτ,2 depends on ‖v(τ)‖C1(I). Let M = ξ(τ)/2, then

M2 ≤ g(t, η) ≤ C2
τ,3 and M ≤ L(t) ≤ Cτ,3, (2.14)

here, Cτ,3 depends on Cτ,1 and Cτ,2. Similarly v ∈ C(1−α)/2−μ([τ, τ +T ], C1+α(I))
ensures that

‖vη(t)‖Cα(I) ≤ ‖vη(τ)‖Cα(I) + KT (1−α)/2−μ ≤ ‖vη(τ)‖Cα(I) + 1 ≤ Cτ,4 (2.15)

where Cτ,4 depends on ‖v(τ)‖C1+α(I). To simplify our notation, set

Cτ := max{Cτ,1, Cτ,2, Cτ,3, Cτ,4}.

Recall that v ∈ C(1−α)/2−μ([τ, τ + T ], C1+α(I)) ∩C1/2−μ([τ, τ + T ], C1(I)). Thus,
given 0 ≤ η1 < η2 ≤ 1, we have

|vη(t, η1) − vη(s, η2)|
≤ |vη(t, η1) − vη(t, η2)| + |vη(t, η2) − vη(s, η2)|
≤ ‖vη(t)‖Cα(I)|η1 − η2|α + ‖v‖C1/2−μ([τ, τ+T ], C1(I))|t − s|1/2−μ

≤ Cτ |η1 − η2|α + K|t − s|1/2−μ.

(2.16)

Then, by (2.11)–(2.13), (2.16), and γ < 1/2, we get

|g(t, η1) − g(s, η2)|
≤

∣∣ξ2(t) − ξ2(s)
∣∣ +

∣∣v2
η(t, η1) − v2

η(s, η2)
∣∣

≤ 2Cτ

{
K|t − s|1−γ

1 − γ
+ Cτ |η1 − η2|α + K|t − s|1/2−μ

}
≤ CCτ

{
Cτ |η1 − η2|α + K|t − s|1/2−μ

}
.

(2.17)

Moreover, by (2.14), we have

|L(t) − L(s)| ≤
∫ 1

0

∣∣∣∣ g(t, η) − g(s, η)
g1/2(t, η) + g1/2(s, η)

∣∣∣∣ dη

≤ CCτ

M
K|t − s|1/2−μ.

(2.18)

Therefore, we obtain that∣∣∣∣ 1
g(t, η1)

− 1
g(s, η2)

∣∣∣∣ ≤ CCτ

M4

{
Cτ |η1 − η2|α + K|t − s|1/2−μ

}
, (2.19)∣∣∣∣ 1

g1/2(t, η1)
− 1

g1/2(s, η2)

∣∣∣∣ ≤ CCτ

M3

{
Cτ |η1 − η2|α + K|t − s|1/2−μ

}
, (2.20)∣∣∣∣ 1

L(t)
− 1

L(s)

∣∣∣∣ ≤ CCτ

M3
K|t − s|1/2−μ. (2.21)
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Due to (2.11)–(2.21), we have

|Fτ (t, η)| ≤
∣∣∣∣ 1
g(t, η)

− 1
g(τ, η)

∣∣∣∣ |vηη(t, η)| + |θvη(t, η)|
{ ∣∣∣∣vη(t, η) − vη(τ, η)

L(t) g
1
2 (t, η)

∣∣∣∣
+

∣∣∣∣vη(τ, η)
g

1
2 (t, η)

∣∣∣∣ ∣∣∣∣ 1
L(t)

− 1
L(τ)

∣∣∣∣ +
∣∣∣∣vη(τ, η)

L(τ)

∣∣∣∣ ∣∣∣∣ 1
g

1
2 (t, η)

− 1
g

1
2 (τ, η)

∣∣∣∣
}

+
∣∣∣∣(η − 1) cos3 θ

sin θ
vηη(t, 0)

∣∣∣∣
{ ∣∣∣∣vη(t, η) − vη(τ, η)

ξ3(t)

∣∣∣∣
+

∣∣∣∣ vη(τ, η)
ξ3(t) ξ3(τ)

∣∣∣∣ |ξ3(t) − ξ3(τ)|
}

+
∣∣∣∣ θ

L(t)

∣∣∣∣ (∣∣∣∣(η − 1)vη(t, η)
sin θ

∣∣∣∣ +
∣∣∣∣ ξ2(t)
g1/2(t, η)

∣∣∣∣)
≤ CCτ

M4
K(t − τ)1/2−μ|vηη(t, η)| + CCτ

{
K(t − τ)1/2−μ

M2

+
CC2

τ K(t − τ)1/2−μ

M4
+

CC2
τ K(t − τ)1/2−μ

M4

}
+ C|vηη(t, 0)|·{

K(t − τ)1/2−μ

M3
+

C3
τ K(t − τ)1−γ

M6

}
+

C

M
(Cτ +

C2
τ

M
)

≤ CΣ(1 + KT 1/2−μ + K2T 1/2−μ−γ)
≤ CΣ(1 + K2T 1/2−μ−γ),

where CΣ increases with 1/M and Cτ . By definition,

Fτ (τ, η) =
θ

L(τ)

(
(η − 1)vη(τ, η)

sin θ
+

ξ2(τ)
g1/2(τ, η)

)
.

Thus we get similarly that

|Fτ (t, η1) − Fτ (τ, η2)| ≤ CΣ

{
K(t − τ)1/2−μ(|vηη(t, η1)| + |vηη(t, 0)| + 1)

+|η1 − η2|α
}

≤ CΣ

{
K2(t − τ)1/2−μ−γ + |η1 − η2|α

}
.

This means that Fτ (t, η) ∈ C(Rτ,τ+T ) and

‖Fτ (t, η)‖C(Rτ,τ+T ) ≤ CΣ(1 + K2T 1/2−μ−γ). (2.22)

This proves (2.9). Since v ∈ C1,2+α(Rτ,τ+T ), it follows that Fτ ∈ C0,α(Rτ,τ+T ).
Also, due to v ∈ C(1−α)/2−μ([τ, τ + T ], C1+α(I)), we have

[vη(t, ·) − vη(s, ·)]α ≤ K|t − s|(1−α)/2−μ, (2.23)
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where [·]α is the Hölder seminorm of the space Cα(I). Invoking (2.13), (2.15) and
(2.16), we obtain[

v2
η(t, ·) − v2

η(s, ·)
]
α

≤ [vη(t, ·) − vη(s, ·)]α ‖vη(t, ·) + vη(s, ·)‖C(I)

+‖vη(t, ·) − vη(s, ·)‖C(I) [vη(t, ·) + vη(s, ·)]α
≤ 2Cτ (K|t − s|(1−α)/2−μ + K|t − s|1/2−μ)

≤ CΣK|t − s|(1−α)/2−μ.

Observe that
[g(t, ·)]α = [v2

η(t, η)]α ≤ 2C2
τ ≤ CΣ,

[g(t, ·) − g(s, ·)]α ≤ CΣK|t − s|(1−α)/2−μ.
(2.24)

Thus combining (2.14), (2.17), and (2.24), we find the estimates[
1

g(t, ·) − 1
g(s, ·)

]
α

≤ CΣK|t − s| 1−α
2 −μ, (2.25)[

1
g1/2(t, ·) − 1

g1/2(s, ·)

]
α

≤ CΣK|t − s| 1−α
2 −μ, (2.26)

where we used the following fact:[
1
h

]
α

≤ [h]α
Q2

, provided the function h satisfyies |h| > Q > 0.

Summarizing, (2.15), (2.19), (2.20), and (2.23)–(2.26) imply that

[Fτ (t, , ·)]α ≤ CΣ

{
K|t − τ |(1−α)/2−μ‖vηη(t)‖C(I)

+K|t− τ |1/2−μ‖vηη(t)‖Cα(I) + 1 +
(
K|t− τ |(1−α)/2−μ

+K|t− τ |1/2−μ + K|t − τ |1−γ |
)
|vηη(t, 0)|

}
≤ CΣ

(
1 + KT (1−α)/2−μ

(
‖vηη(t)‖Cα(I) + |vηη(t, 0)|

))
.

(2.27)
By means of (2.22) and (2.27), we conclude

sup
0<δ<T

δγ‖Fτ‖C0,α(Rτ+δ,τ+T ) ≤ CΣ(T γ + K2T 1/2−μ + K2T (1−α)/2−μ)

≤ CΣ(T γ + K2T (1−α)/2−μ).

This completes the proof. �
In the following, we will study the operator Aτ . We first decompose Aτ into

two operators A(1)
τ and A(2)

τ , by setting

A(1)
τ U :=

1
ḡ(τ, η)

∂2
ηU +

θ v̄η(τ, η)
L̄(τ) ḡ1/2(τ, η)

∂ηU,

A(2)
τ U :=

(η − 1) cos3 θ

sin θ

v̄η(τ, η)
ξ̄3(τ)

∂2
ηU(0).

Let X := C[0, 1], and define

D(A(1)
τ ) :=

{
U ∈ C2[0, 1]; ∂ηU(0) = ∂ηU(1) = 0

}
.
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Then A
(1)
τ : X ⊃ D(A(1)

τ ) � U → A(1)
τ U ∈ X is the realization of A(1)

τ in X. It is
known that A

(1)
τ is sectorial in X, see Corollary 3.1.21 in [6]. Thus A

(1)
τ generates

an analytic semigroup etA(1)
τ in X for t ≥ 0. The domain of definition D(A(1)

τ ),
endowed with the graph norm

‖v‖
D(A

(1)
τ )

= ‖v‖ + ‖A(1)
τ v‖,

is a Banach space. In addition, a family of intermediate spaces between D(A(1)
τ )

and X can be defined by

D
A

(1)
τ

(β,∞) =
{

φ ∈ X ; [φ]D
A

(1)
τ

(β,∞) = sup
0<t≤1

∥∥∥t1−βA(1)
τ etA(1)

τ φ
∥∥∥ < ∞

}
for 0 < β < 1. These spaces are Banach spaces with respect to the norm

‖φ‖D
A

(1)
τ

(β,∞) = ‖φ‖X + [φ]D
A

(1)
τ

(β,∞).

It is also known that

D
A

(1)
τ

(β,∞) =

⎧⎪⎨⎪⎩
C2β([0, 1]), if 0 < β <

1
2
,

C2β
B ([0, 1]), if

1
2

< β < 1,
(2.28)

with equivalence of the respective norms, see Theorem 3.1.30 in [6]. Here we used
the notation

C2β
B ([0, 1]) := {U ∈ C2β([0, 1]); ∂ηU(0) = ∂ηU(1) = 0}.

Now let A
(2)
τ : X ⊃ D(A(1)

τ ) � U → A(2)
τ U ∈ X be the realization of A(2)

τ in
X. Then we have the following lemma.

Lemma 2.2. The operator Aτ := A
(1)
τ + A

(2)
τ is sectorial in X.

Proof. First we prove that A
(2)
τ is a bounded linear operator from D(A(1)

τ ) into
Cβ [0, 1] for 0 < β < 1. Indeed,

‖A(2)
τ U‖Cβ[0,1] =

∥∥∥∥ (η − 1) cos3 θ

sin θ

v̄η(τ, η)
ξ̄3(τ)

∂2
ηU(0)

∥∥∥∥
Cβ [0,1]

≤ Cθ

∥∥∥∥ v̄η(τ, η)
ξ̄3(τ)

∥∥∥∥
Cβ [0,1]

· |∂2
ηU(0)|

≤ C‖U‖
D(A

(1)
τ

,

where C increases with 1/ξ̄(τ) and ‖v̄(τ, ·)‖C2+α[0,1]. By (2.28), we know that
A

(2)
τ ∈ L((A(1)

τ ), D
A

(1)
τ

(β/2,∞)). We already verified that A
(1)
τ is sectorial in X.

Thanks to Proposition 2.4.1(ii) in [6], we conclude that Aτ is also a sectorial
operator in X. �
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Remark 2.3. (i) The above Lemma implies that Aτ generates an analytic semi-
group etAτ for t ≥ 0. Recall that Aτ only depends on ξ̄(τ) and v̄(τ, ·).
(ii) We have the following estimates: for k ∈ N, β1, β2 ∈ (0, 1), there exists a
constant C = C(k, β1, β2, Aτ ) such that

‖tk−β1+β2Ak
τetAτ ‖L(DAτ (β1,p),DAτ (β2,p)) ≤ C for 0 < t ≤ 1, p ≥ 1. (2.29)

In particular,

‖tk−β1+β2Ak
τetAτ ‖L(DAτ (β1,∞),DAτ (β2,p)) ≤ C for 0 < t ≤ 1, p ≥ 1. (2.30)

It can be shown that this constant C increases with 1/ξ̄(τ) and ‖v̄(τ, ·)‖C2(I).

Lemma 2.4. Let A be a sectorial operator in the Banach space Y, and assume that
f ∈ C([τ, τ + T ], Y ). Let further

φ(t) :=
∫ t

τ

e(t−s)Af(s)ds for τ ≤ t ≤ τ + T.

Then for every μ < β < 1, we have that φ ∈ Cβ−μ([τ, τ + T ], (Y, D(A))1−β,1), and
there is a C independent of f such that

‖φ‖Cβ−μ([τ,τ+T ], (Y,D(A))1−β,1) ≤ CT μ‖f‖C([τ, τ+T ], Y ). (2.31)

Proof. The proof of this lemma is similar to that of Proposition 4.2.1 in [6]. �

Next, we consider the following problem:⎧⎪⎪⎨⎪⎪⎩
vt = Aτv + F̄τ (t, η) in Rτ,τ+T ,
vη(t, 0) = ξ̄(t) tan θ,
vη(t, 1) = 0,
v(τ, η) = v̄(τ, η).

(2.32)

Lemma 2.5. Let 0 < γ < 1/2, 0 < α < 1, and 0 < μ < min{1/2 − γ, (1 − α)/2}.
Assume that v0,τ ∈ C2+α(I) and ξ0,τ > 0 are given and satisfy

v0,τ (0) = 0, v′0,τ (0) = ξ0,τ tan θ, v′0,τ (1) = 0.

Then, given (v̄, ξ̄) ∈ Y2+α
γ, μ (Rτ, τ+T )×Z1

γ [τ, τ+T ] with (v̄(τ, ·), ξ̄(τ)) = (v0,τ (·), ξ0,τ ),
there exists a unique solution v ∈ Y2+α

γ, μ (Rτ, τ+T ) of (2.32).

Proof. By Lemma 2.1 and Lemma 2.2, we can invoke Theorem 5.1.2 and Theorem
5.1.4 in [6] to get a unique solution v ∈ Y2+α

γ, μ (Rτ, τ+T ) of (2.32). �

Suppose now that v ∈ Y2+α
γ, μ (Rτ, τ+T ) is a solution of (2.32), and consider the

following initial value problem:⎧⎨⎩ ξ̇(t) =
cos3 θ

sin θξ̄2(t)
vηη(t, 0) +

θξ̄(t)
sin θ L(v, ξ̄)(t)

,

ξ(τ) = ξ̄(τ).
(2.33)
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Then we have

Lemma 2.6. Given v ∈ Y2+α
γ, μ (Rτ, τ+T ), there exists a unique solution ξ ∈ Z1

γ [τ, τ +
T ] of (2.33).

Proof. Let us define

h(t) =
cos3 θ

sin θξ̄2(t)
vηη(t, 0) +

θξ̄(t)
sin θ L(v, ξ̄)(t)

, t ∈ (τ, τ + T ].

Then h ∈ C((τ, τ +T ]) and sup
0<δ<T

δγ‖h‖C[τ+δ, τ+T ] is bounded. Hence we conclude

that h ∈ L1(τ, τ + T ). Thus, setting

ξ(t) = ξ̄(τ) +
∫ t

τ

h(s)ds for τ ≤ t ≤ τ + T,

we see that ξ belongs to Z1
γ [τ, τ + T ] and satisfies (2.33). �

Before proving local existence, we shall obtain suitable a priori estimates for
v. In order to reduce the problem (2.32) to a problem with homogeneous boundary
conditions, we introduce an auxiliary function ψ by

ψ(t, η) := ξ̄(t) tan θh(η),

where h ∈ C∞(I) is a cut-off function with h′(η) < 0 for η ∈ (1/4, 3/4), h(η) ≡ 1
on η ∈ [0, 1/4], and h(η) ≡ 0 on η ∈ [3/4, 1]. Then v − ψ satisfies homogeneous
boundary conditions. From this fact and Lemma 2.2, we can represent v − ψ as
the variation of constant formula using the analytic semigroup etAτ . A simple
computation shows that

v(t, ·) = v1(t, ·) + v2(t, ·) + v3(t, ·),

where
v1(t, ·) = e(t−τ)Aτ (v̄(τ, ·) − ψ(τ, ·)) + ψ(τ, ·),

v2(t, ·) =
∫ t

τ

e(t−σ)Aτ
[
F̄τ (σ, ·) + Aτψ(σ, ·)

]
dσ,

v3(t, ·) = −Aτ

∫ t

τ

e(t−σ)Aτ [ψ(σ, ·) − ψ(τ, ·)] dσ

for τ ≤ t ≤ τ + T. Clearly, ψ(t, ·) ∈ C([τ, τ + T ], C∞(I)) and ψt(t, ·) = ξ̄ tan θh(·).
Moreover, using (2.11), we get

|ψ(σ, η) − ψ(s, η)| = |(ξ̄(σ) − ξ̄(s)| tan θh(η) ≤ C|σ − s|1−γ‖ξ̄‖Z1
γ [τ,τ+T ]

for σ, s ∈ [τ, τ+T ]. Applying the main results of Chapter 5 in [6], using Lemma 2.4,
(2.29), and the following facts

DAτ (β, 1) ⊂ C2β(I) for 0 < β < 1, and ‖v‖D(Aτ ) ≤ C‖v‖C2(I),
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we get

‖v1‖Y2+α
γ, μ (Rτ, τ+T ) ≤ C

(
‖v̄(τ, ·) − ψ(τ, ·)‖C2+α(I) + ‖ψ(τ, ·)‖C2+α(I)

)
,

‖v2‖Y2+α
γ, μ (Rτ, τ+T ) ≤ C

(
T μ‖F̄τ (t, ·) + Aτψ(t, ·)‖C[τ,τ+T ]

+ sup
0<δ<T

δγ‖F̄τ (t, ·) + Aτψ(t, ·)‖C0, α(Rτ+δ, τ+T )

)
,

‖v3‖Y2+α
γ, μ (Rτ, τ+T ) ≤ C

(
T μ‖Aτ (ψ(t, ·) − ψ(τ, ·))‖C[τ,τ+T ]

+ sup
0<δ<T

δγ‖Aτ (ψ(t, ·) − ψ(τ, ·))‖C0, α(Rτ+δ, τ+T )

)
.

If ‖v̄‖Y2+α
γ, μ (Rτ, τ+T ) + ‖ξ̄‖Z1

γ [τ, τ+T ] ≤ K and T satisfies

T ≤ 1, KT 1−γ ≤ ξ̄(τ)(1 − γ)/2 and KT (1−α)/2−μ ≤ 1, (2.34)

we obtain the estimates

‖ψ(τ, ·)‖C2+α(I) ≤ Cξ̄(τ)‖h‖C2+α(I),
‖Aτψ(t, ·)‖C[τ,τ+T ] ≤ C‖ξ̄(t)‖C[τ, τ+T ]‖h‖C2(I) ≤ C‖h‖C2(I),
‖Aτψ(t, ·)‖C0, α(Rτ, τ+T ) ≤ C‖ξ̄(t)‖C[τ, τ+T ]‖h‖C2+α(I) ≤ C‖h‖C2+α(I),

‖Aτ (ψ(t, ·) − ψ(τ, ·))‖C[τ,τ+T ] ≤ CKT 1−γ‖h‖C2(I),
‖Aτ (ψ(t, ·) − ψ(τ, ·))‖C0, α(Rτ, τ+T ) ≤ CKT 1−γ‖h‖C2+α(I).

By Lemma 2.1, we know that

‖v‖Y2+α
γ, μ (Rτ, τ+T ) ≤ Mτ + Pτ

(
T μ + T γ + K2T 1/2−γ + K2T (1−α)/2−μ

)
where Mτ , Pτ are constants depending on ξ̄(τ), ‖v̄(τ)‖C2+α(I), 1/ξ̄(τ), θ, γ, α and
μ. Letting 0 < ν < min {γ, μ, 1/2 − γ, (1 − α)/2 − μ} , we conclude that

‖v‖Y2+α
γ, μ (Rτ, τ+T ) ≤ Mτ + NτT ν , (2.35)

where Nτ = Pτ (T μ−ν +T γ−ν +K2T 1/2−γ−ν +K2T (1−α)/2−μ−ν). This means that
Nτ depends on ξ̄(τ), ‖v̄(τ)‖C2+α(I), 1/ξ̄(τ), θ, γ, α, μ, ν, and K.

Theorem 2.7 (Local well-posedness). Let 0 < γ < 1/2, 0 < α < 1, and 0 < μ <
min{1/2 − γ, (1 − α)/2}. Assume that v0 ∈ C2+α(I), and ξ0 > 0 are given and
satisfy

v0(0) = 0, v′0(0) = ξ0 tan θ, v′0(1) = 0.

Then, there exists a T0 = T0(1/ξ0, ‖v0‖C2+α(I)) > 0 such that (2.3)–(2.8) has a
unique solution (v, ξ) ∈ Y2+α

γ, μ (R0, T0) ×Z1
γ [0, T0].

Proof. In order to obtain local existence result for the full problem (2.3)–(2.8), we
shall use a fixed point argument. So we let

D :=
{
(v, ξ) ∈ Y2+α

γ, μ (R0, T ) ×Z1
γ [0, T ];

(v(0, ·), ξ(0)) = (v0(·), ξ0), ‖v‖Y2+α
γ, μ (R0, T ) + ‖ξ‖Z1

γ [0, T ] ≤ K
}
,
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for positive bounded parameters K, T satisfying (2.34). Moreover, we define a
mapping Ψ by

Ψ : D � (v̄, ξ̄) → (v, ξ) ∈ Y2+α
γ, μ (R0, T ) ×Z1

γ [0, T ],

where (v, ξ) is the unique solution of (2.32) and (2.33), established in Lemma 2.5
and Lemma 2.6, respectively, for the case τ = 0.

We shall first prove that Ψ maps D into itself, provided we suitably choose
K and T. By (2.35), we get

‖v‖Y2+α
γ, μ (R0, 0+T ) ≤ M0 + N0T

ν, (2.36)

where M0 is a constant depending on ξ0, ‖v0‖C2+α(I), 1/ξ0, θ, γ, α, μ, and N0 is a
constant depending on ξ0, ‖v0‖C2+α(I), 1/ξ0, θ, γ, α, μ, ν, K (for simplicity, through-
out this section any constant depending on the preceding quantities will be de-
noted by N0, whose value may be different on each occasion), and ν satisfies
0 < ν < min {γ, μ, (1 − α)/2 − μ} .

According to (2.11), (2.12), (2.33) and (2.36), we know

‖ξ‖Z1
γ [0,T ] ≤ ξ0 +

(
T 1−γ

1 − γ
+ 1

){
cos3 θ

sin θ
(

2
ξ0

)2(M0 + N0T
ν) +

3θ

sin θ

}
≤ ξ0 + (

1
1 − γ

+ 1)
{

cos3 θ

sin θ
(

2
ξ0

)2M0 +
3θ

sin θ

}
+ N0T

ν.

Hence, letting

K = 2
{

ξ0 + (4(
1

1 − γ
+ 1)

cos3 θ

sin θ
ξ−2
0 + 1)M0 + (

1
1 − γ

+ 1)
3θ

sin θ

}
, (2.37)

and choosing T̃ satisfying (2.34) and 4N0T̃
ν ≤ K, we obtain that

‖v‖Y2+α
γ, μ (R0, T ) + ‖ξ‖Z1

γ [0, T ] ≤ K for T ≤ T̃ . (2.38)

Thus, Ψ maps D into itself.
Next we prove that Ψ is a contraction on D for a suitable choice of T. Let

(v̄1, ξ̄1), (v̄2, ξ̄2) ∈ D with T ≤ T̃ , and put (v1, ξ1) = Ψ(v̄1, ξ̄1), (v2, ξ2) = Ψ(v̄2, ξ̄2).
Moreover let V = v1−v2, Ξ = ξ1− ξ2, V̄ = v̄1− v̄2, Ξ̄ = ξ̄1− ξ̄2. Then the function
V satisfies ⎧⎪⎪⎨⎪⎪⎩

Vt = A0V + F̃ (t, η) in R0,T ,
Vη(t, 0) = Ξ̄(t) tan θ,
Vη(t, 1) = 0,
V (0, η) = 0,

(2.39)

and the function Ξ satisfies⎧⎪⎪⎨⎪⎪⎩
d

dt
Ξ(t) =

cos3 θ

sin θξ̄2
1(t)

Vηη(t, 0) +
∫ 1

0
b1(t, η)Vη(t, η)dη

+[b2(t)v2ηη(t, 0) + b3(t)]Ξ̄(t),
Ξ(0) = 0,

(2.40)
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where

F̃ (t, η) = F0(v̄1, ξ̄1)(t, η) − F0(v̄2, ξ̄2)(t, η)

=

{
1

ξ̄2
1(t) + v̄2

1η(t)
− 1

ξ2
0 + v2

0η

}
V̄ηη + f1(ξ̄i, v̄iη)v̄2ηηV̄η

+f2(ξ̄i, v̄iη)v̄2ηηΞ̄ + · · · ,

and b1(t, η), b2(t), b3(t) are functions without significant singularities. Similar to
the priori estimate of v, we get

‖V ‖Y2+α
γ, μ (R0, T ) ≤ N0T

ν(‖V̄ ‖Y2+α
γ, μ (R0, T ) + ‖Ξ̄‖Z1

γ [0, T ]), (2.41)

and then, by means of (2.40) and (2.41),

‖Ξ‖Z1
γ [0, T ] ≤ (‖V̄ ‖Y2+α

γ, μ (R0, T ) + ‖Ξ̄‖Z1
γ [0, T ]).

Thus we derive at

‖V ‖Y2+α
γ, μ (R0, T ) + ‖Ξ‖Z1

γ [0, T ] ≤ N0T
ν(‖V̄ ‖Y2+α

γ, μ (R0, T ) + ‖Ξ̄‖Z1
γ [0, T ]). (2.42)

Consequently, Ψ is a contraction on D for T ≤ T0, where

T0 = min

{(
1

2N0

)1/ν

, T̃

}
. (2.43)

This completes the proof. �
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Abstract. The aim of this paper is to prove a priori error estimates for the
semi-discrete solution of the dual mixed method for the heat diffusion equation
in a polygonal domain. Due to the geometric singularities of the domain, the
solution is not regular in the context of classical Sobolev spaces. Instead, one
must use weighted Sobolev spaces. In order to recapture the optimal order
of convergence, the meshes are refined in an appropriate fashion near the
reentrant corners of the domain.
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1. Introduction

The purpose of this paper is to establish a priori error estimates for the dual mixed
method for the heat diffusion equation in a polygonal domain of R2. In the dual
mixed approach, additionally to the classical unknown the temperature u, one
considers as an additional unknown the heat flux −→p . In many applications, the
knowledge of the heat flux −→p is of particular importance. In such cases, the use of a
dual mixed finite element method might be preferred as long as it provides a better
accuracy for −→p . On the other hand, by using the Raviart–Thomas vector field of
degree 0 as approximation of −→p , the heat-balance equation is exactly satisfied
in the mean on each triangle. Let us point out that the difference with Vidar
Thomée’s work [6] is our a priori error estimates do not suppose H2-regularity for
ut (s) for almost every s in the interval [0, t] and H3-regularity for u (t) as it is
supposed in Theorem 17.2 p. 276 of [6], regularity properties which are not true in
general for solutions u of the heat diffusion equation in polygonal domains. Note

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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also that the approximating spaces are not the same in [6] p. 268 as ours. The same
remarks apply when comparing with Claes Johnson and Vidar Thomée’s work [8];
in their a priori error estimates, Theorem 2.1 p. 54, they do not clearly consider the
lowest-order case which is the most pertinent case in the presence of singularities.
In our context of polygonal domains, due to the presence of the singularities of the
solution, we have to work instead with weighted Sobolev spaces such as H2,α(Ω)
(see Pierre Grisvard’s book, Section 8.4 [2]). Also due to the singularities of the
temperature u and the heat flux −→p of the heat diffusion equation, we will need to
refine adequately our meshes near the reentrant corner of the polygonal domain
Ω, using the ideas of Geneviève Raugel [9], in order to obtain optimal order of
convergence in our a priori error estimates.
Let us close this introduction with a remark about the notations: when a norm
appears in our text without any index, it is assumed that it is the L2 norm.

2. Regularity of the solution of the heat diffusion equation

2.1. Regularity in time

Let Ω be a bounded open set of R2. For fixed T > 0, let us set Q := Ω×]0, T [ and
let us denote by Σ := Γ×]0, T [ the lateral boundary of the cylinder Q. Let us
consider the Cauchy problem for the heat diffusion equation in Ω up to time T :
given the right-hand side f ∈ L2

(
0, T ; L2(Ω

)
) and the initial condition g ∈ H1

0 (Ω),
find u ∈ H1

(
0, T ; L2(Ω

)
) ∩ L2(0, T ; H1

0(Ω)) solution of:⎧⎪⎪⎨⎪⎪⎩
ut(x, t) − Δu(x, t) = f(x, t), ∀ (x, t) ∈ Q

u(x, t) = 0, ∀ (x, t) ∈ Σ

u(x, 0) = g(x), ∀x ∈ Ω

(2.1)

where ut means
∂u

∂t
.

Let us note that as u ∈ H1
(
0, T ; L2(Ω

)
) and due to the embedding,

H1
(
0, T ; L2(Ω

)
) ↪→ C([0, T ]; L2(Ω))

that the initial condition u(., 0) = g has sense. Let us now recall the following
result [1] about existence, uniqueness and regularity of the solution of the Cauchy
problem:

Proposition 1. Problem (2.1) admits one and only one solution

u ∈ H1
(
0, T ; L2(Ω

)
) ∩ L2(0, T ; H1

0 (Ω)).

Moreover, there exist positive constants C1 and C2 such that

‖ut(.)‖L2(0,T ;L2(Ω)) ≤ C1(‖g‖H1
0 (Ω) + ‖f‖L2(0,T ;L2(Ω))) (2.2)

and
sup

0≤t≤T
‖u(t)‖ ≤ C2(‖g‖H1

0 (Ω) + ‖f‖L2(0,T ;L2(Ω))). (2.3)
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Remark 2. From inequalities (2.2) and (2.3), we have the following one:

‖u‖H1(0,T ;L2(Ω)) ≤ C(‖g‖H1
0 (Ω) + ‖f‖L2(0,T ;L2(Ω))) (2.4)

where C is a positive constant.

2.2. Regularity in the spatial variables in a polygonal domain of R2

In the sequel Ω will denote a bounded polygonal domain of R2. In particular the
boundary of Ω : ∂Ω = ∪N

j=1Γj for some N ∈ N, where Γj is an open segment of
a straight line of the plane R2, ∀ j = 1, 2, . . . , N . As is well known the geometric
singularities of the domain (the angles) induce in general singularities on the so-
lution of the Cauchy problem for the heat diffusion equation (see for example the
books of P. Grisvard [1], [2]). As shown in [2], [1], we may suppose without loss
of generality that Ω has only one nonconvex angle, in other words one reentrant
corner, and that its vertex is located at the origin. In the following, we denote the
measure of that angle by ω.

We introduce the following weighted Sobolev space (see [2], Definition 8.4.1.1
and Lemma 8.4.1.2 p. 388):

H2,α(Ω) = {v ∈ H1(Ω); rαDβ ∈ L2(Ω), ∀|β| = 2},
which is a Hilbert space for the norm

‖v‖2,α,Ω = (‖v‖2
1,Ω + |v|22,α,Ω)1/2,

where the semi-norm |.|2,α,Ω is defined by

|v|2,α,Ω =

⎛⎝ ∑
|β|=2

∥∥rαDβv
∥∥2

0,Ω

⎞⎠1/2

r denoting the distance to the origin of R2.
We prove now a regularity result in the spatial variables for the solution of

the Cauchy problem for the heat diffusion problem.
Before proceeding, let us mention that in the sequel we will use the notation
∀′t ∈ ]0, T [ which means for almost every t ∈ ]0, T [.

Proposition 3. Let u be the solution of the Cauchy problem (2.1). Then for any
α > 1 − π

ω ,

‖u‖L2(0,T ;H2,α(Ω)) ≤ C
(
‖f‖L2(0,T ;L2(Ω)) + ‖u‖H1(0,T ;L2(Ω))

)
, (2.5)

where C is a positive constant.

Proof. Let us introduce the closed operator A in the space L2(Ω) which is the
realization of the operator −Δ in the space L2(Ω); more precisely:

D(A) := {v ∈ H1
0 (Ω); Δv ∈ L2(Ω)} and Av = −Δv, ∀v ∈ D(A).

We know from Section 8.4 of [2] that D(A) ↪→ H2,α(Ω) for α > 1 − π
ω and that

‖v‖H2,α(Ω) ≤ C ‖Δv‖ . (2.6)
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Let u be the solution of the Cauchy problem for the heat diffusion problem (2.1).
The heat-balance equation

Δu(t) = −f(t) + ut(t) , ∀′t ∈ [0, T ]

and the regularity of u (see Proposition 1) implies that Δu(t) ∈ L2(Ω), ∀′t ∈ ]0, T [ .
Thus by (2.6), ∀′t ∈ ]0, T [ : u(t) ∈ H2,α(Ω) for any fixed α > 1 − π

ω and

‖u(t)‖H2,α(Ω) ≤ C ‖Δu(t)‖ ≤ C (‖f(t)‖ + ‖ut(t)‖) . (2.7)

Taking the squares of both members of the above inequality, then integrating both
sides from 0 to T, it follows that u ∈ L2(0, T ; H2,α(Ω)) and that

‖u‖L2(0,T ;H2,α(Ω)) ≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖ut‖L2(0,T ;L2(Ω))). (2.8)

From this last inequality, (2.5) follows immediately. The proof is complete. �
Let us now introduce the dual mixed formulation for the heat diffusion equa-

tion.

3. The dual mixed formulation for the heat diffusion equation

In the following H(div; Ω) denotes the space

H(div; Ω) := {−→q ∈ L2(Ω)2; div−→q ∈ L2(Ω)}
endowed with its natural norm (see for example [7]). Introducing the new variable
�p = �∇u = ( ∂u

∂x1
, ∂u

∂x2
)T , the heat-balance equation may be rewritten in the form:

div �p(x, t) = ut(x, t) − f(x, t).

Now, as the solution of (2.1) belongs to the space H1
(
0,T ;L2(Ω

)
)∩L2(0,T ;H1

0 (Ω))
(cf. Proposition 1), we have �p ∈ L2(0, T ; H(div; Ω)) and then

(�p, u) ∈ L2(0, T ; H(div; Ω)) × H1
(
0, T ; L2(Ω

)
).

In the following, we will also denote by X := H(div, Ω), by M := L2(Ω) and by I
the interval of time [0, T ]. In terms of (�p, u), we may rewrite the Cauchy problem
(2.1) for the heat diffusion equation as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

�p(x, t) =
−→∇u(x, t), ∀′x ∈ Ω, ∀′t ∈ I,

ut(x, t) − div �p(x, t) = f(x, t), ∀′ (x, t) ∈ Q,

u(x, t) = 0, ∀′ (x, t) ∈ Σ,

u(x, 0) = g(x), ∀′x ∈ Ω.

(3.1)

Let us set �p(t)(x) = �p(x, t) and u(t)(x) = u(x, t). Taking �q ∈ X , multiplying both
sides of (3.1)(i) by �q and using Green’s formula, we obtain:∫

Ω

�p(t).�q dx +
∫

Ω

u(t) div �q dx =
∫

Ω

(�∇u(t).�q + u(t) div �q)dx

=
∫

∂Ω

u(t) �q.�n ds, ∀′t ∈ I.
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As u ∈ L2(0, T ; H1
0 (Ω)), u(t)/∂Ω = 0 for almost every t ∈ I, so that:∫

Ω

�p(t).�q dx +
∫

Ω

u(t) div �q dx = 0, ∀�q ∈ X, ∀′t ∈ I.

On the other hand multiplying both sides of the heat-balance equation (3.1)(ii) by
v ∈ M and integrating over Ω, it follows that∫

Ω

div �p(t) v dx = −
∫

Ω

(f(t) − ut(t)) v dx, ∀v ∈ M, ∀′t ∈ I,

where f(t)(x) := f(x, t).
Thus if u ∈ H1

(
0, T ; L2(Ω

)
) ∩ L2(0, T ; H1

0 (Ω)) denotes the solution of the
Cauchy problem for the heat diffusion equation (2.1), then

(�p :=
−→∇u, u) ∈ L2(0, T ; H(div, Ω)) × H1(0, T ; L2(Ω))

and is a solution of the following system of equations⎧⎪⎪⎨⎪⎪⎩
∫
Ω �p(t).�q dx +

∫
Ω u(t) div �q dx = 0, ∀�q ∈ X, ∀′t ∈ I,∫

Ω
div �p(t) v dx = −

∫
Ω
(f(t) − ut(t)) v dx, ∀v ∈ M, ∀′t ∈ I,

u(0) = g ∈ H1
0 (Ω).

(3.2)

The system of equations (3.2) is called the dual mixed formulation for the heat
diffusion equation.

Theorem 4. For every initial condition g ∈ H1
0 (Ω) and every right-hand side f ∈

L2(0, T ; L2(Ω)), the dual mixed formulation (3.2) admits a unique solution (�p, u) ∈
L2(0, T ; H(div; Ω)) × H1(0, T ; L2(Ω)).

Proof. We have already proved the existence of a solution. It remains to prove
uniqueness. Let us consider (�p, u) ∈ L2(0, T ; H(div; Ω))×H1(0, T ; L2(Ω)) verifying
u(0) = 0 and{ ∫

Ω
�p(t).�q dx +

∫
Ω

u(t) div �q dx = 0, ∀�q ∈ X, ∀′t ∈ I,∫
Ω

div �p(t) v dx =
∫
Ω

ut(t) v dx, ∀v ∈ M, ∀′t ∈ I.
(3.3)

Let us observe that u ∈ H1(0, T ; L2(Ω)) implies ut(t) ∈ L2(Ω) ∀′t ∈ I and then∫
Ω ut(t) v dx has sense ∀v ∈ M, ∀′t ∈ I.

Taking �q = �p(t) in equation (3.3)(i) and v = u(t) in equation (3.3)(ii), for a
fixed t ∈ I except a subset of measure zero, it follows that:{ ∫

Ω
|�p(t)|2 dx +

∫
Ω

u(t) div �p(t)dx = 0∫
Ω div �p(t) u(t) dx =

∫
Ω ut(t) u(t) dx.

Therefore ∫
Ω

|�p(t)|2 dx +
∫

Ω

ut(t) u(t) dx = 0 (3.4)

which implies ∫
Ω

|�p(t)|2 dx +
1
2

d

dt

∫
Ω

u(t)2dx = 0, ∀′t ∈ I.
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Consequently
d

dt

∫
Ω

u(t)2dx = −2
∫

Ω

|�p(t)|2 dx ≤ 0 , ∀′t ∈ I

which allows us to conclude that the function t →
∫
Ω

u(t)2dx is decreasing.
From

∫
Ω

u(0)2dx = 0, it now follows that∫
Ω

u(t)2dx = 0

for ∀t ∈ I as u ∈ C([0, T ]; L2(Ω)). Thus u = 0.
From (3.4), we conclude that∫

Ω

|�p(t)|2 dx = 0, ∀′t ∈ I

which implies �p(t) = 0, ∀′t ∈ I. Thus �p = 0 as an element of L2(0, T ; H(div; Ω)).
We have thus proved uniqueness. �

4. Semi-discrete solution of the dual mixed method for the heat
diffusion equation in a polygonal domain of R2

Let us consider a family of triangulations (Th)h>0 on Ω. For K a triangle belonging
to the triangulation Th, let us denote by hK the diameter of K and by ρK the
interior diameter of K, i.e., the diameter of the biggest disc included in K. As in
Theorem 8.4.1.6 p. 392 of [2], we suppose that the family of triangulations (Th)h>0

has the property that max
K∈Th

hK

ρK
is bounded by a positive constant independent of

the parameter h; in that case, one says usually that the family of triangulations is
regular (see for example [3] (17.1) p. 131). In accordance with the tradition (see
[3] Remark 17.1 p. 131) the same letter h may have also another significance, it
may denote instead:

h =: max
K∈Th

hK .

The true significance of h is always clear from the context.

Let us now define the semi-discretized problem. Firstly, let us define the
following finite-dimensional vector subspaces Xh of X respectively Mh of M :

Xh :=
{

�qh ∈ H(div; Ω);∀K ∈ Th : �qh/K ∈ RT0(K)
}

Mh :=
{

vh ∈ L2(Ω); vh/K ∈ P0 (K) , ∀K ∈ Th

}
where RT0(K) := P0(K)2 ⊕ P0(K)

(
x1
x2

)
denotes the real vectorial space of dimen-

sion three of the so-called Raviart-Thomas vector fields of degree 0 on the triangle
K (RT0(K) is denoted D1(K) in [4] p. 550) and P0 (K) the real vectorial space
of dimension one of the constant functions on the triangle K. We are now in a
position to define the semi-discretized problem:
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Find (�ph, uh) ∈ L2(0, T ; Xh) × H1(0, T ; Mh) such that⎧⎪⎪⎨⎪⎪⎩
∫
Ω

�ph(t).�qh dx +
∫
Ω

uh(t) div �qh dx = 0, ∀�qh ∈ Xh, ∀′t ∈ I,∫
Ω

vh div �ph(t) dx = −
∫
Ω
(f(t) − uh,t(t))vh dx, ∀vh ∈ Mh, ∀′t ∈ I,

uh(0) = gh ∈ Mh .

(4.1)

The initial condition gh in Mh will be precised later. Let us first show that the
above problem (4.1) possesses one and only one solution (�ph, uh) ∈ L2(0, T ; Xh)×
H1(0, T ; Mh):

Proposition 5. Problem (4.1) possesses one and only one solution

(�ph, uh) ∈ L2(0, T ; Xh) × H1(0, T ; Mh).

Moreover �ph ∈ H1(0, T ; Xh).

Proof. Let �q
(1)
h , . . . , �q

(J)
h a basis of Xh and v

(1)
h , . . . , v

(K)
h a basis of Mh. Expanding

�ph(t), respectively uh(t) in these respective basis, we obtain

�ph(t) =
J∑

j=1

αj(t)�q
(j)
h , uh(t) =

K∑
k=1

βk(t)v(k)
h

where αj(t) (j = 1, . . . , J) and βk(t) (k = 1, . . . , K) denote some real coefficients.
The semi-discrete mixed formulation (4.1) is equivalent to:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫
Ω

(∑J
j=1 αj(t)�q

(j)
h

)
.�q

(j′)
h dx

+
∫
Ω

(∑K
k=1 βk(t)v(k)

h

)
div �q

(j′)
h dx = 0, ∀j

′
= 1, 2, . . . , J∫

Ω v
(k′)
h (

∑J
j=1 αj(t) div �q

(j)
h )dx

= −
∫
Ω(f(t) −∑K

k=1 β̇k(t)v(k)
h ) v

(k′)
h dx, ∀k

′
= 1, 2, . . . , K

which can be rewritten in the form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑J
j=1(

∫
Ω

�q
(j)
h .�q

(j′)
h dx) αj(t)

+
∑K

k=1(
∫
Ω v

(k)
h div �q

(j′)
h dx) βk(t) = 0, ∀j

′
= 1, 2, . . . , J,∑J

j=1

(∫
Ω

v
(k′)
h div �q

(j)
h dx

)
αj(t)

= −
∫
Ω

f(t)v(k′)
h dx +

∑K
k=1(

∫
Ω

v
(k)
h v

(k′)
h dx)β̇k(t), ∀k

′
= 1, 2, . . . , K.

Let us now set:{
akk′ =

∫
Ω v

(k)
h v

(k′)
h dx, bjj′ =

∫
Ω �q

(j)
h · �q(j′)

h dx, cj′k′ =
∫
Ω(div �q

(j′)
h )v(k′)

h dx

∀ j, j
′
= 1, 2, . . . , J ; ∀ k, k

′
= 1, 2, . . . , K.

With these notations, the above differential system may be rewritten:⎧⎨⎩
∑J

j=1 bj′jαj(t) +
∑K

k=1 cj′kβk(t) = 0, ∀j′ = 1, 2, . . . , J∑J
j=1 cjk′αj(t) = −

∫
Ω

f(t)v(k′)
h dx +

∑K
k=1 akk′ β̇k(t), ∀k

′
= 1, 2, . . . , K.

(4.2)
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Let us introduce the following matrices:

A = (akk′ )1≤k,k′≤K ∈ R
K×K

;

B = (bj′j)1≤j′,j≤J ∈ RJ×J ;

C = (cj′k)1≤j′≤J,1≤k≤K ∈ RJ×K .

It is immediate that the matrices A and B are symmetric and positive definite.
Let us also introduce the vectors:

β(t) =

⎛⎜⎜⎜⎜⎝
β1(t)
·
·
·

βK(t)

⎞⎟⎟⎟⎟⎠ ∈ RK , α(t) =

⎛⎜⎜⎜⎜⎜⎜⎝
α1(t)
·
·
·
·

αJ (t)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ RJ ,

F (t) =

⎛⎜⎜⎜⎜⎝
∫
Ω

f(t)v(1)
h dx

·
·
·∫

Ω f(t)v(K)
h dx

⎞⎟⎟⎟⎟⎠ ∈ RK .

These matrices and vectors allow us to rewrite our differential system (4.2) in the
matrix form: {

B α(t) + C β(t) = 0

A β̇(t) = Cᵀα(t) + F (t) .

From the first matrix equation, it follows immediately that

α(t) = −B−1C β(t).

Thus: {
α(t) = −B−1C β(t),

A β̇(t) = −CᵀB−1C β(t) + F (t) .

It suffices thus to solve the following Cauchy problem{
A β̇(t) + CᵀB−1C β(t) = F (t), F ∈ L2(0, T ; RK)

β(0) = β0 ∈ RK

where the vector of initial conditions β0 is the vector of the components of gh in
the basis

v
(1)
h , . . . , v

(K)
h

of Mh, i.e.,
K∑

k=1

(β0)kv
(k)
h = gh ∈ Mh.
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This differential system of K equations in the K unknowns β1, . . . , βK may be
rewritten in the form

β̇(t) = −A−1CᵀB−1Cβ(t) + A−1F (t).

Using the contraction semigroup
(
e−tA−1CᵀB−1C

)
t≥0

generated by the symmetric

negative operator −A−1CᵀB−1C on the Euclidean space RK , the solution of the
above inhomogeneous Cauchy problem may be written [5]:

β(t) = e−tA−1CᵀB−1C β0 +
∫ t

0

e−(t−τ)A−1CᵀB−1C A−1F (τ) dτ.

It follows immediately from the equation

β̇(t) = −A−1CᵀB−1Cβ(t) + A−1F (t)

that β̇ ∈ L2(0, T ; RK) and thus that β ∈ C([0, T ]; RK). From α(t) = −B−1Cβ(t),
follows also that α ∈ C([0, T ]; RJ) and that α̇ ∈ L2(0, T ; RJ). Therefore

uh ∈ H1(0, T ; Mh) and �ph ∈ H1(0, T ; Xh).

This completes the proof of the result. �

5. A priori error estimates for the semi-discrete solution of the
dual mixed method for the heat diffusion equation

To prove error estimates on �ph and uh, we need to introduce an intermediate prob-
lem, the so-called elliptic projection problem, with which we are going to compare
firstly the exact solution (�p (t) , u (t)). The definition of the elliptic projection prob-
lem is similar to that one given by Vidar Thomée in his book ([6], (17.27) p. 276).
Let t ∈ I fixed such that f (t)− ut (t) ∈ L2(Ω); we know that it is true for almost
every t ∈ I.

Definition 6. We call elliptic projection of (�p(t), u(t)), the solution denoted
(�̃ph(t), ũh(t)) of the stationary discrete mixed formulation with right-hand side
,u(t) = div �p(t) = ut (t) − f (t) ∈ L2(Ω).

In other words (�̃ph(t), ũh(t)) is the solution of the system of equations:{ ∫
Ω

�̃ph(t).�qh dx +
∫
Ω

ũh(t) div �qh dx = 0, ∀�qh ∈ Xh,∫
Ω

vh div �̃ph(t) dx =
∫
Ω

Δu(t) vh dx, ∀vh ∈ Mh.
(5.1)

Note that Δu(t) = ut(t)−f(t) for almost every t in I, ut(t)−f(t) ∈ L2(Ω). Thus
for almost every t in I, we may state problem (5.1).

Proposition 7. For almost every t ∈ I, problem (5.1) admits one and only solution
(�̃ph(t), ũh(t)) ∈ Xh × Mh . Moreover �̃ph ∈ L2(0, T ; Xh) and ũh ∈ L2(0, T ; Mh).
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Proof. We use the same notations as those we have used in the proof of the ex-
istence and uniqueness of the semi-discrete solution. Thus, let us write �̃ph(t), re-
spectively ũh(t), in the basis

(
�q
(j)
h

)
j=1,...,J

of Xh, respectively
(
v
(k)
h

)
k=1,...,K

of Mh:

�̃ph(t) =
J∑

j=1

α̃j(t)�q
(j)
h , ũh(t) =

K∑
k=1

β̃k(t)v(k)
h

where α̃j(t) and β̃k(t) denote certain real coefficients. These coefficients must sat-
isfy the following system of equations:{

B α̃(t) + C β̃(t) = 0

C ᵀ α̃(t) + F̃ (t) = 0,
(5.2)

where

F̃ (t) =

⎛⎜⎜⎜⎜⎝
∫
Ω(f(t) − ut(t))v

(1)
h dx

·
·
·∫

Ω
(f(t) − ut(t))v

(K)
h dx

⎞⎟⎟⎟⎟⎠ ∈ RK .

This last expression of F̃ (t) shows that F̃ (·) ∈ L2(0, T ; RK). The system (5.2) is
equivalent to {

α̃(t) = −B−1C β̃(t), ∀′t ∈ I,

C ᵀα̃(t) + F̃ (t) = 0, ∀′t ∈ I.

Thus
(C ᵀB−1C)β̃(t) = F̃ (t)

where the matrix C ᵀB−1C ∈ RK×K . This last matrix is symmetric. Let us prove
that this matrix is also positive definite which will prove that it is invertible. Let
ξ ∈ RK\ {0}

(
(
C ᵀB−1C

)
ξ, ξ) = (

(
B−1C

)
ξ, Cξ) ≥ 1

max σ(B)
‖C ξ‖2

where maxσ(B) denotes the maximum of the eigenvalues of B. Let us note that(
CᵀB−1C

)
ξ ∈ RK and that

(
B−1C

)
ξ ∈ RJ .

The preceding inequality implies that

(C ᵀB−1Cξ, ξ) ≥ 0, ∀ξ ∈ RK\ {0} .

To prove that C ᵀB−1C is positive definite, it suffices to verify that the vector
Cξ ∈ RJ is nonzero, ∀ξ ∈ RK\ {0}. To prove this, let us suppose one moment that
Cξ = 0. This means that∫

Ω

(
div �q

(j′)
h

)(
K∑

k=1

v
(k)
h ξk

)
dx = 0, ∀j′ = 1, . . . , J.
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But �q
(1)
h , �q

(2)
h , . . . , �q

(J)
h is a basis of Xh. Thus ∀�qh ∈ Xh:∫

Ω

(div �qh)

(
K∑

k=1

v
(k)
h ξk

)
dx = 0 .

But
∑K

k=1 ξkv
(k)
h ∈ Mh so that by the inf-sup inequality (see for example Lemma

(1.2) p. 612 of [7]) it follows that
∑K

k=1 ξkv
(k)
h = 0 which implies ξ1 = ξ2 = · · · =

ξK = 0 as v
(1)
h , . . . , v

(K)
h is a basis of Mh and thus ξ = 0. This proves that the

matrix C ᵀB−1C is positive definite and thus invertible. Therefore

β̃(t) = (C ᵀB−1C)−1 F̃ (t).

As F̃ ∈ L2(0, T ; RK), it follows from the preceding formula that β̃ ∈ L2(0, T ; RK)
and consequently α̃ ∈ L2(0, T ; RJ) by the first equation of (5.2). Thus

ũh ∈ L2(0, T ; Mh) and �̃ph ∈ L2(0, T ; Xh).

The proof is complete. �

In the continuation, to obtain the error estimates, we will need also regularity
on ut, i.e., on the time derivative of u. To obtain it, we will assume more regularity
on the data.

Proposition 8. Let us suppose that:

f ∈ H1(0, T ; L2(Ω)) and that Δg + f(0) ∈ H1
0 (Ω),

where g which belongs to H1
0 (Ω) denotes the initial condition of the heat diffusion

equation. Then

ut ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)) ∩ L2(0, T ; H2,α(Ω)), (5.3)

and
ũh ∈ H1(0, T ; Mh) and �̃ph ∈ H1(0, T ; Xh). (5.4)

Proof. By hypothesis df
dt ∈ L2(0, T ; L2(Ω)). Let

v ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω))

be the solution of the following heat diffusion problem:{
dv
dt = Δv + df

dt , in Q

v(0) = Δg + f(0), in Ω .

As ,g + f(0) ∈ H1
0 (Ω) and df

dt ∈ L2(0, T ; L2(Ω)), by Proposition 1 v exists and is
unique and by the regularity result (2.5):

v ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0 (Ω)) ∩ L2(0, T ; H2,α(Ω).

Let us set

u (t) =

t∫
0

v (s) ds + g, ∀t ∈ I.
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One immediately checks that u so defined is the solution of (2.1) . Moreover du
dt = v.

By the above regularity properties of v follows immediately (5.3). On the other
hand, we have seen in the proof of the existence and uniqueness of the elliptic
projection that

β̃(t) = (C ᵀB−1C)−1 F̃ (t)

from which follows

dβ̃

dt
(t) = (C ᵀB−1C)−1 dF̃

dt
(t)

= (C ᵀB−1C)−1

⎛⎜⎜⎜⎜⎝
∫
Ω(df

dt (t) − dut

dt (t))v
(1)
h dx

·
·
·∫

Ω
(df

dt (t) −
dut

dt (t))v
(K)
h dx

⎞⎟⎟⎟⎟⎠ .

Thus
dβ̃

dt
∈ L2(0, T ; RK),

and from α̃(t) = −B−1Cβ̃(t), it now follows dα̃
dt ∈ L2(0, T ; RJ). Consequently

ũh ∈ H1(0, T ; Mh) and �̃ph ∈ H1(0, T ; Xh).

The proof is complete. �

Observing, that the solution of the elliptic projection problem
(
�̃ph(t), ũh(t)

)
is nothing else than the solution of the discretized mixed formulation for the Lapla-
cian with right-hand side

−Δu(t) = f(t) − ut(t) ∈ L2(Ω),

it follows from Theorem 1.13 p. 619 and Theorem 1.17 p. 623 of [7]:

Proposition 9. Let {Th} be a regular family of triangulations on Ω satisfying for
some fixed α ∈

]
1 − π

ω , 1
[

(let us recall that ω denotes the measure of the angle of
the reentrant corner located at the origin), the following rules of refinement:

(i) hK ≤ σh
1

1−α for every triangle K ∈ Th ∈ {Th} having one vertex at the
origin (the vertex of the reentrant corner),

(ii) hK ≤ c (infx∈K rα(x))h for every triangle K ∈ Th ∈ {Th} having no vertex
at the origin.
Then, there exists a constant C > 0 independent of the parameter h such that∥∥∥�p(t) − �̃ph(t)

∥∥∥
L2(Ω)2

≤ C h |u(t)|H2,α(Ω) (5.5)

and
‖u (t) − ũh(t)‖ ≤ C h( |u(t)|H1(Ω) + |u(t)|H2,α(Ω)). (5.6)
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Proposition 10. Let {Th} be a regular family of triangulations on Ω satisfying the
same refinement rules as stated in Proposition 9 for some α fixed in the interval]
1 − π

w , 1
[
. There exists a positive constant β∗ independent of h such that ∀′t ∈ I :

‖uh(t) − Ph u(t)‖ ≤ 1
β∗ ‖�p(t) − �ph(t)‖ (5.7)

where Ph denotes the orthogonal projection operator from M onto Mh (i.e., the
mean operator on each triangle of Th).

Proof. Taking �q = �qh in the first equation of the mixed formulation for the heat
diffusion problem (3.2), we obtain∫

Ω

�p(t).�qhdx +
∫

Ω

u(t) div �qh dx = 0. (5.8)

As div �qh is constant on each K ∈ Th, we have for every �qh ∈ Xh:∫
Ω

u(t) div �qh dx =
∑

K∈Th

∫
K

u(t) div �qh dx =
∑

K∈Th

div(�qh|K)
∫

K

Ph (u(t)) dx

=
∫

Ω

Ph (u(t)) div �qh dx .

Using this equality, equation (5.8) becomes:∫
Ω

�p(t).�qhdx +
∫

Ω

Ph (u(t)) div �qh dx = 0, ∀�qh ∈ Xh, ∀′t ∈ I, (5.9)

and taking its difference with the first equation of the semi-discretized mixed
formulation for the heat diffusion problem (4.1), we obtain∫

Ω

(�p(t) − �ph(t)) .�qhdx +
∫

Ω

(Ph(u(t)) − uh(t)) div �qh dx = 0, ∀�qh ∈ Xh, ∀′t ∈ I.

(5.10)
Now applying the uniform inf-sup inequality (see for example Corollary (1.15) of
[7]) and using (5.10), we obtain:

‖uh(t) − Ph u(t)‖ ≤ 1
β∗ ‖�p(t) − �ph(t)‖ , ∀′t ∈ I,

where β∗ denotes the positive constant appearing in the inf-sup inequality. The
proof is complete. �

The following result is a straightforward consequence of a well-known error
interpolation inequality (see for example inequality (45) p. 624 in [7]):

Lemma 11. Let {Th} be a regular family of triangulations on Ω. There exists a
positive constant C independent of h such that for almost every t ∈ I :

‖u(t) − Ph u(t)‖ ≤ C h |u(t)|H1(Ω). (5.11)
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Proposition 12. Let {Th} be a regular family of triangulations on Ω satisfying the
same refinement rules as stated in Proposition 9 for some α fixed in the interval]
1 − π

w , 1
[
. Assuming that the data f and g satisfy the hypotheses of Proposition 8,

there exists a constant C > 0 independent of h such that for every t ∈ I:

‖u(t) − uh(t)‖ ≤ C h |u(t)|H1(Ω) +
1
β∗

(
C h|u(t)|H2,α(Ω) +

∥∥∥�̃ph(t) − �ph(t)
∥∥∥) .

(5.12)

Proof. Applying the inequalities (5.11) and (5.7), we obtain for almost every t ∈ I :

‖u(t) − uh(t)‖ ≤ ‖u(t) − Phu(t)‖ + ‖Phu(t) − uh(t)‖ ∀′t ∈ I,

≤ C h|u(t)|H1(Ω) +
1
β∗ (‖�p(t) − �ph(t)‖)

≤ C h|u(t)|H1(Ω) +
1
β∗

(∥∥∥�p(t) − �̃ph(t)
∥∥∥ +

∥∥∥�̃ph(t) − �ph(t)
∥∥∥) .

Now applying inequality (5.5), we obtain for almost every t ∈ I:

‖u(t) − uh(t)‖ ≤ C h|u(t)|H1(Ω) +
1
β∗

(
C h|u(t)|H2,α(Ω) +

∥∥∥�̃ph(t) − �ph(t)
∥∥∥) .

But u ∈ H1
(
0, T ; L2(Ω

)
) ↪→ C([0, T ]; L2(Ω)) and uh is also a continuous function

implying that u−uh is a continuous function. Thus, the preceding inequality is in
fact true for all t ∈ I. �

We are now in a position to bound ‖�p(t) − �ph(t)‖ and ‖u(t) − uh(t)‖ . We
have the following a priori error estimates:

Theorem 13. Firstly, we suppose that f ∈ H1
(
0, T ; L2(Ω

)
), g ∈ H1

0 (Ω) and Δg +
f (0) ∈ H1

0 (Ω). Now, let us choose gh = ũh(0) as initial condition for the semi-
discrete mixed formulation and let {Th} be a regular family of triangulations on Ω
satisfying the same refinement rules as stated in Proposition 9 for some α fixed in
the interval

]
1 − π

w , 1
[
. Then there exists a constant C > 0 independent of h such

that for every t ∈ I :

‖�p(t) − �ph(t)‖ ≤ C h

(
|u(t)|H2,α(Ω) +

∥∥∥∥du

dt

∥∥∥∥
L2(0,T ;H2,α(Ω))

)
(5.13)

and

‖u(t) − uh(t)‖ ≤ C h

(
|u(t)|H1(Ω) + |u(t)|H2,α(Ω) +

∥∥∥∥du

dt

∥∥∥∥
L2(0,T ;H2,α(Ω))

)
.

(5.14)

Proof. Subtracting the first equation of (5.1) from the first one of (4.1), we obtain:∫
Ω

(
�ph(t) − �̃ph(t)

)
.�qh dx +

∫
Ω

(uh(t) − ũh(t)) div �qh dx = 0, ∀′t ∈ I , ∀�qh ∈ Xh.
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Let us set: �εh(t) = �ph(t) − �̃ph(t) and θh(t) = uh(t) − ũh(t). With these new
notations, the preceding equation may be rewritten:∫

Ω

�εh(t).�qh dx +
∫

Ω

θh(t) div �qh dx = 0 , ∀′t ∈ I ,∀�qh ∈ Xh. (5.15)

Due to our assumptions on the data, it follows from Proposition 5 and Propo-
sition 8 that �εh ∈ H1(0, T ; Xh) and θh ∈ H1(0, T ; Mh). We are thus allowed to
derive the preceding equality with respect to the time variable and we obtain:∫

Ω

d�εh

dt
(t).�qh dx +

∫
Ω

dθh

dt
(t) div �qh dx = 0, ∀′t ∈ I, ∀�qh ∈ Xh.

Choosing �qh = 2�εh(t), we obtain:

2
∫

Ω

d

dt
�εh(t).�εh(t) dx +

∫
Ω

2
dθh

dt
(t) div �εh(t) dx = 0, ∀′t ∈ I .

Thus
d

dt

∫
Ω

|�εh(t)|2 dx +
∫

Ω

2
dθh

dt
(t) div �εh(t) dx = 0, ∀′t ∈ I. (5.16)

In a similar way, subtracting the second equation of (5.1) from the second one of

(4.1), we obtain:∫
Ω

vh div �εh(t)dx =
∫

Ω

d(uh − u)
dt

(t) vh dx, ∀vh ∈ Mh, ∀′t ∈ I . (5.17)

To obtain from the first term of (5.17) the second term of (5.16), we choose vh =
2 dθh(t)

dt in (5.17) :∫
Ω

2
dθh

dt
(t) div(�εh(t)dx

= 2
∫

Ω

d

dt
(uh(t) − u(t))

dθh

dt
(t) dx, ∀′t ∈ I

= 2
∫

Ω

d

dt
(uh(t) − ũh(t))

dθh

dt
(t) dx + 2

∫
Ω

d

dt
(ũh(t) − u(t))

dθh

dt
(t) dx

= 2
∫

Ω

(
dθh

dt
(t)

)2

dx + 2
∫

Ω

d

dt
(ũh(t) − u(t))

dθh

dt
(t) dx. (5.18)

Equations (5.16), (5.18), and the Cauchy–Schwarz inequality implies

d

dt

∫
Ω

|�εh(t)|2dx+2
∫

Ω

(
dθh

dt
(t)

)2

dx=−2
∫

Ω

d

dt
(ũh(t)−u(t))

dθh

dt
(t)dx, ∀′t∈I
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�2

[∫
Ω

(
d

dt
(ũh(t)−u(t))

)2
]1/2[∫

Ω

(
dθh

dt
(t)

)2

dx

]1/2

≤
∫

Ω

(
d

dt
(ũh(t)−u(t))

)2

dx+
∫

Ω

(
dθh

dt
(t)

)2

dx.

After simplification, we obtain:

d

dt

∫
Ω

|�εh(t)|2 dx ≤
∫

Ω

(
d

dt
(ũh(t) − u(t))

)2

dx, ∀′t ∈ I.

Integrating the two sides of this last inequality from 0 to t, we obtain:∫
Ω

|�εh(t)|2 dx ≤
∫

Ω

|�εh(0)|2 dx +
∫ t

0

∫
Ω

(
du

dt
(t) − dũh

dt
(t)

)2

dx dt. (5.19)

Since uh(0) = gh = ũh(0), we have θh(0) = uh(0) − ũh(0) = gh − ũh(0) = 0.
Equation (5.15) with t = 0 gives us:∫

Ω

�εh(0).�qh dx = 0 , ∀�qh ∈ Xh.

Taking �qh = �εh(0) in this last equation, we obtain �εh(0) = 0. Inequality (5.19)
becomes: ∫

Ω

|�εh(t)|2 dx ≤
∫ t

0

(∫
Ω

(
du

dt
(t) − dũh

dt
(t)

)2

dx

)
dt

≡
∫ t

0

(∫
Ω

[
du

dt
(t) −

(
du

dt
(t)

)∼

h

]2

dx

)
dt

as the operators d
dt and the elliptic projection (.)∼h commute. Thus:∫

Ω

|�εh(t)|2 dx ≤
∫ t

0

∥∥∥∥du

dt
(t) −

(
du

dt
(t)

)∼

h

∥∥∥∥2

dt. (5.20)

Therefore, it suffices to bound
∥∥du

dt (t) −
(

du
dt (t)

)∼
h

∥∥ . Due to our hypotheses on the
data:

f ∈ H1(0, T ; L2(Ω)) and g ∈ H1
0 (Ω), Δg + f(0) ∈ H1

0 (Ω)

it follows from Proposition 8 that

ut ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0 (Ω)) ∩ L2(0, T ; H2,α(Ω)) .

As the elliptic projection of du
dt (t) is nothing else than the solution of the stationary

mixed discrete problem with datum −Δdu
dt (t), it follows from Proposition 9 that
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there exists a constant C > 0 independent of h such that∥∥∥∥du

dt
(t) −

(
du

dt
(t)

)∼

h

∥∥∥∥ ≤ C h

(∣∣∣∣du(t)
dt

∣∣∣∣
H1(Ω)

+
∣∣∣∣du(t)

dt

∣∣∣∣
H2,α(Ω)

)
.

From this last inequality and inequality (5.20), we get

‖�εh(t)‖ ≤ C h

∥∥∥∥du

dt

∥∥∥∥
L2(0,T ;H2,α(Ω))

, ∀′t ∈ [0, T ].

Using the triangle inequality and Proposition 9, it follows that

‖�p(t) − �ph(t)‖ ≤
∥∥∥�p(t) − �̃ph(t)

∥∥∥ +
∥∥∥�̃ph(t) − �ph(t)

∥∥∥
≤ C h

(
|u(t)|H2,α(Ω) +

∥∥∥∥du

dt

∥∥∥∥
L2(0,T ;H2,α(Ω))

)
.

Using inequality (5.12) and the above bound on ‖�εh(t)‖, it follows that:

‖u(t) − uh(t)‖ ≤ C h

(
|u(t)|H1(Ω) + |u(t)|H2,α(Ω) +

∥∥∥∥du

dt

∥∥∥∥
L2(0,T ;H2,α(Ω))

)
.

The proof is complete. �

References

[1] P. Grisvard, Singularities in Boundary Value Problems, Research Notes in Applied
Mathematics RMA 22, Masson Springer-Verlag (1992).

[2] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in
Mathematics 24, Pitman (1985).

[3] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, Handbook of Numerical
Analysis, Volume II, Finite Element Methods (Part 1), Elsevier Science Publishers,
North-Holland (1993), pp. 17–351.

[4] J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, Handbook of Numerical
Analysis, Volume II, Finite Element Methods (Part 1), Elsevier Science Publishers,
North-Holland (1993), pp. 523–639.

[5] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
equations, Applied Mathematical Sciences 44, Springer-Verlag (1983).

[6] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Series
in Computational Mathematics 25, Springer-Verlag (1997).

[7] H. El Sossa and L. Paquet, Refined Mixed Finite Element Method for the Poisson
Problem in a Polygonal Domain with a Reentrant Corner, Advances in Mathematical
Sciences and Applications, Gakkotosho, Tokyo, Vol.12, No. 2(2002), pp. 607–643.

[8] C. Johnson and V. Thomée, Error Estimates for some Mixed Finite Element Methods
for Parabolic Type Problems, R.A.I.R.O. Analyse numérique / Numerical Analysis,
vol.15, n◦1, 1981, p. 41–78.

[9] G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de
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Abstract. It is well known that the Helmholtz decomposition of Lq-spaces
fails to exist for certain unbounded smooth domains unless q = 2. Hence also
the Stokes operator and the Stokes semigroup are not well defined for these
domains when q �= 2. In this note, we generalize a new approach to the Stokes
operator in general unbounded domains from the three-dimensional case, see
[6], to the n-dimensional one, n ≥ 2, by replacing the space Lq , 1 < q < ∞,

by L̃q where L̃q = Lq ∩ L2 for q ≥ 2 and L̃q = Lq + L2 for 1 < q < 2. As
a main result we show that the nonstationary Stokes equation has maximal
regularity in Ls(0, T ; L̃q), 1 < s, q < ∞, T > 0, for every unbounded domain
of uniform C1,1-type in Rn.

Mathematics Subject Classification (2000). Primary 76D05, Secondary 35Q30.

Keywords. General unbounded domains; domains of uniform C1,1-type; Stokes
operator, maximal regularity.

1. Introduction

Throughout this paper, Ω ⊆ Rn, n ≥ 2, means a general unbounded domain with
uniform C1,1-boundary ∂Ω �= ∅, see Definition 1.1 below. As is well known, the
standard approach to the stationary and nonstationary Stokes equations in Lq-
spaces, 1 < q < ∞, cannot be extended to general unbounded domains unless
q = 2. One reason is the fact that the Helmholtz decomposition fails to exist
for certain unbounded smooth domains in Lq, q �= 2, see [4], [16]. On the other
hand, in L2 the Helmholtz projection and the Stokes operator are well defined
for every domain, the Stokes operator is self-adjoint, generates a bounded analytic
semigroup and has maximal regularity. This observation was used in [6] to consider

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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in the three-dimensional case the Helmholtz decomposition in the space

L̃q(Ω) =

{
Lq(Ω) ∩ L2(Ω), 2 ≤ q < ∞
Lq(Ω) + L2(Ω), 1 < q < 2

,

and to define and to analyze the Stokes operator in the space

L̃q
σ(Ω) =

{
Lq

σ(Ω) ∩ L2
σ(Ω), 2 ≤ q < ∞

Lq
σ(Ω) + L2

σ(Ω), 1 < q < 2
.

It was proved that for every unbounded domain Ω ⊆ R3 of uniform C2-type the
Stokes operator in L̃q

σ satisfies the usual resolvent estimate, that it generates an
analytic semigroup and has maximal regularity. Moreover, for every unbounded
domain Ω ⊆ Rn, n ≥ 2, of uniform C1,1-type, the Helmholtz decomposition of
L̃q(Ω) exists, see [7], and the Stokes operator generates an analytic semigroup in
L̃q

σ(Ω), see [8].
To describe these results, we introduce the space of gradients,

G̃q(Ω) =

{
Gq(Ω) ∩ G2(Ω), 2 ≤ q < ∞
Gq(Ω) + G2(Ω), 1 < q < 2

,

where Gq(Ω) = {∇p ∈ Lq(Ω) : p ∈ Lq
loc(Ω)} and recall the notion of domains of

uniform Ck- and Ck,1-type.

Definition 1.1. A domain Ω ⊆ Rn, n ≥ 2, is called a uniform Ck-domain of type
(α, β, K), k ∈ N, α > 0, β > 0, K > 0, if for each x0 ∈ ∂Ω we can choose
a Cartesian coordinate system with origin at x0 and coordinates y = (y′, yn),
y′ = (y1, . . . , yn−1), and a Ck-function h(y′), |y′| ≤ α, with Ck-norm ‖h‖Ck ≤ K
such that the neighborhood

Uα,β,h(x0) := {y = (y′, yn) : |yn − h(y′)| < β, |y′| < α}
of x0 implies Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

U−
α,β,h(x0) := {(y′, yn) : h(y′) − β < yn < h(y′), |y′| < α} = Uα,β,h(x0) ∩ Ω.

By analogy, a domain Ω ⊆ Rn, n ≥ 2, is called a uniform Ck,1-domain of type
(α, β, K), k ∈ N ∪ {0}, if the functions h mentioned above may be chosen in Ck,1

such that the Ck,1-norm satisfies ‖h‖Ck,1 ≤ K.

Theorem 1.2. [7] Let Ω ⊆ Rn, n ≥ 2, be a uniform C1-domain of type (α, β, K)
and let q ∈ (1,∞). Then each u ∈ L̃q(Ω) has a unique decomposition

u = u0 + ∇p, u0 ∈ L̃q
σ(Ω), ∇p ∈ G̃q(Ω),

satisfying the estimate

‖u0‖L̃q + ‖∇p‖L̃q ≤ c‖u‖L̃q , (1.1)

where c = c(α, β, K, q) > 0. In particular, the Helmholtz projection P̃q defined by
P̃qu = u0 is a bounded linear projection on L̃q(Ω) with range L̃q

σ(Ω) and kernel
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G̃q(Ω). Moreover, L̃q
σ(Ω) is the closure in L̃q(Ω) of the space C∞

0,σ(Ω) = {u ∈
C∞

0 (Ω)n : div u = 0},
(
L̃q

σ(Ω)
)′ = L̃q′

σ (Ω) and
(
P̃q

)′ = P̃q′ , q′ = q
q−1 .

Using the Helmholtz projection P̃q we define the Stokes operator Ãq as an
operator with domain

D(Ãq) =

{
Dq(Ω) ∩ D2(Ω), 2 ≤ q < ∞
Dq(Ω) + D2(Ω), 1 < q < 2

,

where Dq(Ω) = W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ(Ω), by setting

Ãqu = −P̃qΔu, u ∈ D(Ãq).

Moreover, we define the space W̃ 2,q = W̃ 2,q(Ω) by W 2,q(Ω) ∩ W 2,2(Ω) when 2 ≤
q < ∞ and W 2,q(Ω) + W 2,2(Ω) when 1 < q < 2. Let I be the identity and
Sε = {0 �= λ ∈ C; | arg λ| < π

2 + ε}, 0 < ε < π
2 , and let 〈·, ·〉 be the usual Lq-Lq′

-
pairing. Then in [8] the authors of this paper proved the following theorem:

Theorem 1.3. Let Ω ⊆ Rn be a uniform C1,1-domain of type (α, β, K) and let
1 < q < ∞.

(i) The Stokes operator

Ãq = −P̃q Δ : D(Ãq) ⊂ L̃q
σ(Ω) → L̃q

σ(Ω)

is a densely defined, closed operator and satisfies the duality relation

〈Ãqu, v〉 = 〈u, Ãq′v〉 for all u ∈ D(Ãq), v ∈ D(Ãq′ ). (1.2)

(ii) For any 0 < ε < π
2 and for all λ ∈ Sε, its resolvent (λI + Ãq)−1 : L̃q

σ(Ω) →
L̃q

σ(Ω) is well defined and u = (λI+Ãq)−1f , f ∈ L̃q
σ(Ω), satisfies the resolvent

estimate
‖λu‖L̃q

σ
+ ‖Ãqu‖L̃q ≤ C‖f‖L̃q

σ
, |λ| ≥ δ, (1.3)

where δ > 0 and C = C(q, ε, δ, α, β, K) > 0. Hence −Ãq generates an analytic
semigroup e−tÃq with bound

‖e−tÃq f‖L̃q
σ
≤ Meδt ‖f‖L̃q

σ
, f ∈ L̃q

σ, t ≥ 0, (1.4)

where M = M(q, δ, α, β, K) > 0.
(iii) Let f ∈ L̃q(Ω) and λ ∈ Sε. Then the Stokes resolvent equation

λu − Δu + ∇p = f, div u = 0 in Ω, u = 0 on ∂Ω,

has a unique solution (u,∇p) ∈ D(Ãq)×G̃q(Ω) defined by u = (λI+Ãq)−1P̃qf

and ∇p = (I − P̃q)(f + Δu) satisfying

‖λu‖L̃q + ‖∇2u‖L̃q + ‖∇p‖L̃q ≤ C‖f‖L̃q , |λ| ≥ δ, (1.5)

where δ > 0 and C = C(q, ε, δ, α, β, K) > 0. In particular, the norms ‖u‖W̃ 2,q

and the graph norm ‖u‖D(Ãq)
= ‖u‖L̃q + ‖Ãqu‖L̃q are equivalent with con-

stants depending only on q and (α, β, K).
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Note that δ > 0 in Theorem 1.3 may be chosen arbitrarily small, but that it
is not clear whether δ = 0 is allowed for a general unbounded domain and whether
the semigroup e−tÃq is uniformly bounded in L̃q

σ for 0 ≤ t < ∞.
Using the Stokes semigroup

{
e−tÃq ; t ≥ 0

}
we solve the instationary Stokes

system

ut − Δu + ∇p = f, div u = 0 in Ω × (0, T )
u(0) = u0, u|∂Ω

= 0. (1.6)

Now our main result reads as follows:

Theorem 1.4. Let Ω ⊆ Rn be a uniform C1,1-domain of type (α, β, K), and let
0 < T < ∞, 1 < q, s < ∞.

Then for each f ∈ Ls(0, T ; L̃q
σ(Ω)) and each u0 ∈ D(Ãq) there exists a unique

solution u ∈ Ls
(
0, T ;D(Ãq)

)
, ut ∈ Ls(0, T ; L̃q

σ(Ω)), of the system (1.6), satisfying
the estimates

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;L̃q

σ) + ‖Ãqu‖Ls(0,T ;L̃q
σ)

≤ C
(
‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q

σ)

) (1.7)

and

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;W̃ 2,q) ≤ C

(
‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q

σ)

)
(1.8)

with C = C(q, s, T, α, β, K) > 0.

Remark 1.5. (i) The assumption u0 ∈ D(Ãq) in this theorem is not optimal and
may be replaced by the weaker properties u0 ∈ L̃q

σ and
∫ T

0 ‖Ãqe
−tÃqu0‖s

L̃q
σ

dt < ∞.
Then the term ‖u0‖D(Ãq)

in (1.7), (1.8) may be substituted by the weaker norm

(∫ T

0

‖Ãqe
−tÃqu0‖s

L̃q
σ

dt
) 1

s

, 1 < q < ∞. (1.9)

(ii) Let f ∈ Ls(0, T ; L̃q
σ) in Theorem 1.4 be replaced by f ∈ Ls(0, T ; L̃q).

Then u ∈ Ls
(
0, T ;D(Ãq)

)
, defined by ut + Ãqu = P̃qf, u(0) = u0, and ∇p, defined

by ∇p(t) = (I − P̃q)
(
f + Δu

)
(t), is a unique solution pair of the system

ut − Δu + ∇p = f, u(0) = u0,

satisfying

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;W̃ 2,q) + ‖∇p‖Ls(0,T ;L̃q)

≤ C
(
‖u0‖D(Ãq) + ‖f‖Ls(0,T ;L̃q)

) (1.10)

with C = C(q, s, T, α, β, K) > 0.
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Using (2.1) below we see that in the case 1 < q < 2 the solution pair u,∇p
possesses a decomposition u = u(1) + u(2), ∇p = ∇p(1) + ∇p(2) such that

u(1) ∈ Ls(0, T ; W 2,2), u
(1)
t ∈ Ls(0, T ; L2

σ),

u(2) ∈ Ls(0, T ; W 2,q), u
(2)
t ∈ Ls(0, T ; Lq

σ), (1.11)

∇p(1) ∈ Ls(0, T ; L2), ∇p(2) ∈ Ls(0, T ; Lq),

and

‖ut‖Ls(0,T ;L̃q
σ) + ‖u‖Ls(0,T ;L̃q

σ) + ‖∇2u‖Ls(0,T ;L̃q) + ‖∇p‖Ls(0,T ;L̃q)

= ‖u(1)
t ‖Ls,2 + ‖u(1)‖Ls,2 + ‖∇2u(1)‖Ls,2 + ‖∇p(1)‖Ls,2 +

‖u(2)
t ‖Ls,q + ‖u(2)‖Ls,q + ‖∇2u(2)‖Ls,q + ‖∇p(2)‖Lr,q

where Ls,2 = Ls(0, T ; L2), Ls,q = Ls(0, T ; Lq).
(iii) Note that the constant C in (1.7), (1.8), (1.10) could depend on the given

interval (0, T ]. We do not know whether C can be chosen independently of T as
in the usual Lq-theory in bounded and exterior domains as well as in aperture
domains, see [14], [10].

Remark 1.6. The main application of these results concerns the instationary
Navier-Stokes system in the three-dimensional case, see [6]. It is proved that under
suitable assumptions on the external force f and the initial value u0 the Navier-
Stokes system has at least one (global) suitable weak solution u which satisfies even
Leray’s Structure Theorem. Using Theorems 1.2–1.4 this result, see [6], Theorem
2.7 and Remark 2.8, can be extended to unbounded domains with uniform C1,1-
boundary (instead of C2) provided that u0 ∈ D(Ã1/4

2 ); this last condition rather
than u0 ∈ L2

σ is needed to get [6], Remark 2.8.

2. Preliminaries

Let us recall some properties of sum and intersection spaces known from interpo-
lation theory, cf. [3], [19].

Consider two (complex) Banach spaces X1, X2 with norms ‖ · ‖X1 , ‖ · ‖X2 ,
respectively, and assume that both X1 and X2 are subspaces of a topological vector
space V with continuous embeddings. Further, we assume that X1 ∩X2 is a dense
subspace of both X1 and X2. Then the sum space

X1 + X2 := {u1 + u2; u1 ∈ X1, u2 ∈ X2} ⊆ V

is a well-defined Banach space with the norm

‖u‖X1+X2 := inf{‖u1‖X1 + ‖u2‖X2 ; u = u1 + u2, u1 ∈ X1, u2 ∈ X2}.
The intersection space X1 ∩ X2 is a Banach space with norm

‖u‖X1∩X2 = max(‖u‖X1 , ‖u‖X2).

Suppose that X1 and X2 are reflexive Banach spaces. Then an argument using
weakly convergent subsequences yields the following property: Given u ∈ X1 +X2
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there exist u1 ∈ X1, u2 ∈ X2 with u = u1 + u2 such that

‖u‖X1+X2 = ‖u1‖X1 + ‖u2‖X2 . (2.1)

The dual space (X1 + X2)′ of X1 + X2 is given by X ′
1 ∩ X ′

2, and we get

(X1 + X2)′ = X ′
1 ∩ X ′

2

with the natural pairing 〈u, f〉 = 〈u1, f〉 + 〈u2, f〉 for all u = u1 + u2 ∈ X1 + X2,
f ∈ X ′

1 ∩ X ′
2. Thus it holds

‖u‖X1+X2 = sup
{ |〈u1, f〉 + 〈u2, f〉|

‖f‖X′
1∩X′

2

; 0 �= f ∈ X ′
1 ∩ X ′

2

}
and

‖f‖X′
1∩X′

2
= sup

{ |〈u1, f〉 + 〈u2, f〉|
‖u‖X1+X2

; 0 �= u = u1 + u2 ∈ X1 + X2

}
;

see [3], [19]. By analogy,
(X1 ∩ X2)′ = X ′

1 + X ′
2

with the natural pairing 〈u, f1 + f2〉 = 〈u, f1〉 + 〈u, f2〉 for u ∈ X1 ∩ X2 and
f = f1 + f2 ∈ X ′

1 + X ′
2.

Consider closed subspaces L1 ⊆ X1, L2 ⊆ X with norms ‖ · ‖L1 = ‖ · ‖X1 ,
‖ · ‖L2 = ‖ · ‖X2 and assume that L1 ∩ L2 is dense in both L1 and L2. Then
‖u‖L1∩L2 = ‖u‖X1∩X2 , u ∈ L1 ∩L2, and an elementary argument using the Hahn-
Banach theorem shows that also

‖u‖L1+L2 = ‖u‖X1+X2 , u ∈ L1 + L2. (2.2)

In particular, we need the following special case. Let B1 : D(B1) → X1, B2 :
D(B2) → X2 be closed linear operators with dense domains D(B1) ⊆ X1, D(B2) ⊆
X2 equipped with graph norms

‖u‖D(B1) = ‖u‖X1 + ‖B1u‖X1 , ‖u‖D(B2) = ‖u‖X2 + ‖B2u‖X2 .

We assume that D(B1) ∩ D(B2) is dense in both D(B1) and D(B2) in the cor-
responding graph norms. Each functional F ∈ D(Bi)′, i = 1, 2, is given by some
pair f, g ∈ X ′

i in the form 〈u, F 〉 = 〈u, f〉 + 〈Biu, g〉. Using (2.2) with Li =
{(u, Biu); u ∈ D(Bi)} ⊆ Xi×Xi, i = 1, 2, and, on (X1×X1)+(X2×X2), the equal-
ity of norms ‖ · ‖(X1×X1)+(X2×X2) and ‖ · ‖(X1+X2)×(X1+X2), we conclude that for
each u ∈ D(B1)+D(B2) with decomposition u = u1+u2, u1 ∈ D(B1), u2 ∈ D(B2),

‖u‖D(B1)+D(B2) = ‖u1 + u2‖X1+X2 + ‖B1u1 + B2u2‖X1+X2 . (2.3)

For instationary problems we need the usual Banach space Ls(0, T ; X), 0 <
T ≤ ∞, of measurable X-valued (classes of) functions u with norm

‖u‖Ls(0,T ;X) =
( ∫ T

0

‖u(t)‖s
X dt

) 1
s

, 1 ≤ s < ∞,

where X is a Banach space. If X is reflexive and 1 < s < ∞, then the dual space
of Ls(0, T ; X) is given by Ls(0, T ; X)′ = Ls′

(0, T ; X ′), s′ = s
s−1 , with the natural
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pairing 〈u, f〉T =
∫ T

0 〈u(t), f(t)〉 dt, where 〈·, ·〉 denotes the pairing between X and
its dual X ′.

Let X = Lq(Ω), 1 < q < ∞. Then we use the notation

Ls,q := Ls(Lq(Ω)) = Ls(0, T ; Lq(Ω)), ‖u‖Ls,q =
(∫ T

0

‖u‖s
q dt

)1/s

.

The pairing of Ls(0, T ; Lq) with its dual Ls′
(0, T ; Lq′

) is given by 〈u, f〉T =
〈u, f〉Ω,T =

∫ T

0

( ∫
Ω u · f dx

)
dt. Moreover, we see that

(Ls,q + Ls,2)′ = (Ls,q)′ ∩ (Ls,2)′ = Ls′
(0, T ; Lq′ ∩ L2) = Ls(0, T ; Lq + L2)′,

where the pairing between Ls,q+Ls,2 and (Ls,q)′∩(Ls,2)′ is given by 〈u1+u2, f〉T =
〈u1, f〉T + 〈u2, f〉T for u1 ∈ Ls,q, u2 ∈ Ls,2, f ∈ (Ls,q)′ ∩ (Ls,2)′. Furthermore, we
can choose the decomposition u = u1 + u2 ∈ Ls(0, T ; Lq + L2) in such a way that

‖u‖Ls,q+Ls,2 = ‖u1‖Ls,q + ‖u2‖Ls,2 .

We conclude that

‖u1 + u2‖Ls,q+Ls,2 = sup
{ |〈u1 + u2, f〉T |
‖f‖(Ls,q)′∩(Ls,2)′

; 0 �= f ∈ Ls′
(0, T ; Lq′ ∩ L2)

}
.

In view of the identities Ls,q ∩ Ls,2 = Ls(0, T ; Lq ∩ L2) and – see above – Ls,q +
Ls,2 = Ls(0, T ; Lq + L2) we introduce the short notation

L̃s,q =

{
Ls,q ∩ Ls,2, 2 ≤ q < ∞
Ls,q + Ls,2, 1 < q < 2

.

Concerning Definition 1.1 for domains of uniform C1,1-type we need further
notations and discuss some properties. Obviously, the axes ei, i = 1, . . . , n, of
the new coordinate system (y′, yn) can be chosen in such a way that e1, . . . , en−1

are tangential to ∂Ω at x0. Hence at y′ = 0 we have h(y′) = 0 and ∇′h(y′) =
(∂h/∂y1, . . . , ∂h/∂yn−1)(y′) = 0. Since h ∈ C1,1, for any given constant M0 > 0,
we may choose α > 0 sufficiently small such that ‖h‖C1 ≤ M0 is satisfied.

It is easily shown that there exists a covering of Ω by open balls Bj = Br(xj)
of fixed radius r > 0 with centers xj ∈ Ω, such that with suitable functions
hj ∈ C1,1 of type (α, β, K)

Bj ⊂ Uα,β,hj(xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω. (2.4)

Here j runs from 1 to a finite number N = N(Ω) ∈ N if Ω is bounded, and
j ∈ N if Ω is unbounded. Moreover, as an important consequence, the covering
{Bj} of Ω may be constructed in such a way that not more than a fixed number
N0 = N0(α, β, K) ∈ N of these balls have a nonempty intersection. Related to this
covering, there exists a partition of unity {ϕj}, ϕj ∈ C∞

0 (Rn), such that

0 ≤ ϕj ≤ 1, supp ϕj ⊂ Bj , and
N∑

j=1

ϕj = 1 or
∞∑

j=1

ϕj = 1 on Ω. (2.5)
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The functions ϕj may be chosen so that |∇ϕj(x)|+ |∇2ϕj(x)| ≤ C uniformly in j
and x ∈ Ω with C = C(α, β, K).

If Ω is unbounded, then Ω can be represented as the union of an increasing
sequence of bounded uniform C1,1-domains Ωk ⊂ Ω, k ∈ N,

Ω1 ⊂ · · · ⊂ Ωk ⊂ Ωk+1 ⊂ · · · , Ω =
∞⋃

k=1

Ωk, (2.6)

where each Ωk is of the same type (α′, β′, K ′). Without loss of generality we assume
that α = α′, β = β′, K = K ′.

Using the partition of unity {ϕj} we will perform the analysis of maxi-
mal regularity of the Stokes operator by starting from well-known results for
certain bounded and unbounded domains. For this reason, consider a function
h ∈ C1,1(Rn−1) satisfying h(0) = 0, ∇′h(0) = 0 and with compact support supph
contained in the (n − 1)-dimensional ball B′

r(0) of radius r = r(α, β, K) ∈ (0, α)
and center 0. Then we introduce the bounded domain

H = Hα,β,h;r = {y = (y′, yn) ∈ Rn : h(y′) − β < yn < h(y′), |y′| < α} ∩ Br(0) ;

here we assume that Br(0) ⊂ {y ∈ Rn : |yn − h(y′)| < β, |y′| < α}.
On H we consider the classical Sobolev spaces W k,q(H) and W k,q

0 (H), k ∈ N,
the dual space W−1,q(H) =

(
W 1,q′

0 (H)
)′ and the space

Lq
0(H) =

{
u ∈ Lq(H) :

∫
H

u dx = 0
}

of Lq-functions with vanishing mean on H .

Lemma 2.1. Let 1 < q < ∞ and H = Hα,β,h;r.

(i) There exists a bounded linear operator

R : Lq
0(H) → W 1,q

0 (H)

such that div ◦ R = I on Lq
0(H) and a constant C = C(α, β, K, q) > 0 such

that

‖Rf‖W 1,q ≤ C‖f‖Lq(H) for all f ∈ Lq
0(H)

‖Rf‖W 2,q ≤ C‖f‖W 1,q(H) for all f ∈ Lq
0(H) ∩ W 1,q

0 (H)
(2.7)

and R
(
Lq

0(H) ∩ W 1,q
0 (H)

)
⊂ W 2,q

0 (H).
(ii) There exists C = C(α, β, K, q) > 0 such that for every p ∈ Lq

0(H)

‖p‖q ≤ C‖∇p‖W−1,q = C sup
{ |〈p, div v〉|

‖∇v‖q′
: 0 �= v ∈ W 1,q′

0 (H)
}

. (2.8)

Proof. (i) It is well known that there exists a bounded linear operator R : Lq
0(H) →

W 1,q
0 (H) such that u = Rf solves the divergence problem div u = f. Moreover,

the estimate (2.7)1 holds with C = C(α, β, K, q) > 0, see [12], III, Theorem 3.1.
The second part follows from [12], III, Theorem 3.2.
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(ii) A duality argument and (i) yield (ii), see [7] and [17], II.2.1; we may
set p = R′(∇p) where R′ : W−1,q(H) → Lq

0(H) means the dual operator of
R : Lq′

0 (H) → W 1,q′
0 (H). �

The next lemma concerns the instationary Stokes systems

ut − Δu + ∇p = f, u(0) = u0 or − ut − Δu + ∇p = f, u(T ) = u0, (2.9)

in the domain H . To describe this crucial result we define the Stokes operator as
usual by Aq = −PqΔ with domain D(Aq) = Lq

σ(H) ∩ W 1,q
0 (H) ∩ W 2,q(H).

Lemma 2.2. Let 0 < T < ∞, u0 ∈ D(Aq) and f ∈ Lq
(
0, T ; Lq(H)

)
be given.

Assume that u ∈ Lq
(
0, T,D(Aq)

)
, p ∈ Lq

(
0, T ; W 1,q(H)

)
solve (2.9) and satisfy

supp u0 ∪ supp u(t) ∪ supp p(t) ⊆ Br(0) for a.a. t ∈ [0, T ].
Then there is a constant C = C(q, α, β, K, T ) > 0 such that

‖ut‖Lq(0,T ;Lq(H)) + ‖u‖Lq(0,T ;W 2,q(H)) + ‖∇p‖Lq(0,T ;Lq(H)) (2.10)

≤ C
(
‖u0‖W 2,q(H) + ‖f‖Lq(0,T ;Lq(H))

)
.

Proof. In the case u(0) = u0 this estimate follows from [18], Theorem 4.1, (4.2)
and (4.21′), see also [15]. A careful inspection of the proofs shows that the constant
C = C(Ω) in (2.10) depends only on the type (α, β, K) and on q, T ; actually, it
suffices to assume the boundary regularity C1,1 since only the boundedness of
second order derivatives of functions locally describing the boundary is used.

The second case −ut − Δu +∇p = f , u(T ) = u0, can be reduced to the first
one by the transformation ũ(t) = u(T − t), f̃(t) = f(T − t), p̃(t) = p(T − t). �

We note that the relatively strong assumption u0 ∈ D(Aq) is used for simplic-
ity and can be weakened as in Remark 1.5, (i). Note that the conditions u(0) = u0

or u(T ) = u0, resp., are well defined since ut ∈ Lq(0, T ; Lq
σ).

Next we collect several results on Sobolev embeddding estimates for a bounded
C1,1-domain.

Lemma 2.3. Let Ω ⊆ Rn be a bounded C1,1-domain.
(i) Let 1 < q < ∞, 0 < ε ≤ 1. Then there is a constant C = C(q, ε, α, β, K) > 0

such that
‖∇u‖Lq ≤ ε‖∇2u‖Lq + C‖u‖Lq (2.11)

for all u ∈ W 2,q(Ω).
(ii) If 2 ≤ q < ∞, 0 < ε ≤ 1, then there is a constant C = C(q, ε, α, β, K) > 0

such that
‖u‖Lq ≤ ε‖∇2u‖Lq + C

(
‖∇2u‖L2 + ‖u‖L2

)
(2.12)

for all u ∈ W 2,q(Ω).
(iii) The Stokes operator Aq = −PqΔ : D(Aq) → Lq

σ(Ω) generates a bounded
analytic semigroup e−tAq , t ≥ 0, on Lq

σ(Ω). Moreover, 〈Aqu, v〉 = 〈u, Aq′v〉
for all u ∈ D(Aq), v ∈ D(Aq′ ) and A′

q = Aq′ .
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(iv) The graph norm of Aq is equivalent to the usual W 2,q(Ω)-norm, i.e., there
exists a constant C = C(q, α, β, K) > 0 such that

1
C
‖u‖W 2,q ≤ ‖Aqu‖Lq ≤ C‖u‖W 2,q .

for all u ∈ D(Aq).

Proof. The proofs of (i), (ii) are easily reduced to the case u ∈ W 2,q
0 (Ω′), Ω ⊂ Ω′,

Ω′ a bounded C1,1-domain, using an extension operator on Sobolev spaces the
norm of which is shown to depend only on q and (α, β, K). In (ii) we choose
some r ∈ [2, q) such that ‖u‖Lq ≤ ε‖∇2u‖Lr + Cε‖u‖Lr , ε ∈ (0, 1) and use the
interpolation inequality

‖v‖Lr ≤ γ
(1

ε

)1/γ

‖v‖L2 + (1 − γ)ε1/(1−γ)‖v‖Lq , (2.13)

with γ ∈ (0, 1), 1
r = γ

2 + 1−γ
q , for v = u and v = ∇2u for suitable ε > 0 to get

(2.12). For basic details see [1], IV, Theorem 4.28, [11] and [17], II.1.3.
(iii) These assertions are well known, see, e.g., [9], [13], [18]. Part (iv) is

proved in [8], Lemma 3.1. �

Lemma 2.4.

(i) Let 1 < q, s < ∞, 0 < T < ∞ and let Ω ⊆ Rn be a bounded C1,1-domain.
Define the operators Js,q, J ′

s,q by

(Js,qf)(t) =
∫ t

0

e−(t−τ)Aqf(τ) dτ, (J ′
s,qf)(t) =

∫ T

t

e−(τ−t)Aqf(τ) dτ

for f ∈ Ls(0, T ; Lq
σ(Ω)) and 0 ≤ t ≤ T. Then the nonstationary Stokes system

ut + Aqu = f, u(0) = u0,

with initial value u0 ∈ D(Aq) has a unique solution u ∈ Ls
(
0, T ;D(Aq)

)
given

by u(t) = e−tAqu0 + (Js,qf)(t) and satisfies the estimate

‖ut‖Ls,q + ‖u‖Ls,q + ‖Aqu‖Ls,q ≤ C
(
‖u0‖D(Aq) + ‖f‖Ls,q

)
(2.14)

with a constant C = C(q, s, T, Ω). Analogously, the nonstationary Stokes sys-
tem −ut + Aqu = f , u(T ) = u0, has a unique solution u ∈ Ls

(
0, T ;D(Aq)

)
,

namely, u(t) = e−(T−t)Aqu0 + (J ′
s,qf)(t); this solution satisfies (2.14) with

the same constant C. Moreover, there holds the duality relation

(Js,q)′ = J ′
s′,q′ . (2.15)

(ii) In the case q = 2 the constant C = C(2, s, T, Ω) in (2.14) does not depend on
the domain Ω.

Proof. For (i) [14], [18]. The assertions on J ′
s,q follow from the transformation

ũ(t) = u(T − t), f̃(t) = f(T − t) and by duality arguments. For (ii) – including
even general unbounded domains – we refer to [17], IV.1.6. �
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3. Proof of Theorem 1.4

Given 0 < T < ∞, 1 < s, q < ∞, and a bounded or unbounded domain Ω ⊆
Rn, n ≥ 2, of C1,1-type (α, β, K) we define the subspace L̃s,q

σ := Ls(0, T ; L̃q
σ(Ω) of

L̃s,q := Ls(0, T ; L̃q(Ω)) with norm ‖ · ‖L̃s,q
σ

= ‖ · ‖Ls(0,T ;L̃q(Ω)σ). In addition to the
operators Js,q, J ′

s,q for bounded domains, see Lemma 2.4, we define J̃s,q, J̃ ′
s,q by

(J̃s,qf)(t) =
∫ t

0

e−(t−τ)Ãqf(τ) dτ, (J̃ ′
s,qf)(t) =

∫ T

t

e−(τ−t)Ãqf(τ) dτ,

for f ∈ L̃s,q
σ and 0 ≤ t ≤ T . Since (Ãq)′ = Ãq′ , we obtain for all f ∈ L̃s,q

σ , g ∈ L̃s′,q′
σ

that

〈J̃s,qf, g〉T = 〈f, J̃ ′
s′,q′g〉T .

3.1. Maximal regularity in a bounded domain Ω when s = q ≥ 2

We consider the case u0 = 0 and s = q. Then u = J̃q,qf solves the equation
ut+Ãqu = f , u(0) = 0, and u = J̃ ′

q,qf is the solution of the system −ut+Ãqu = f ,
u(T ) = 0. Our aim is to prove in both cases the estimate (1.8) with a constant C =
C(T, q, α, β, K) > 0. Obviously it suffices to consider the case u = J̃q,qf only since
the other case follows using the transformation ũ(t) = u(T − t), f̃(t) = f(T − t).
By Lemma 2.4 we know that u = J̃q,q solves

ut + Ãqu = ut − Δu + ∇p = f ∈ Lq(0, T ; L̃q
σ), u(0) = 0,

with ∇p = (I−P̃q)Δu, and that u satisfies (2.14) with a constant C = C(Ω, q) > 0;
note that the norms ‖u‖W 2,q and ‖u‖D(Aq) are equivalent. Thus it remains to prove
that C in (2.14) can be chosen depending only on T, q and (α, β, K).

For this reason, we use the system of functions {hj}, 1 ≤ j ≤ N , the covering
of Ω by balls {Bj}, and the partition of unity {ϕj} as described in Section 2. Let

Uj = U−
α,β,hj

(xj) ∩ Bj if xj ∈ ∂Ω and Uj = Bj if xj ∈ Ω, 1 ≤ j ≤ N.

On Uj let w = R
(
(∇ϕj) · u

)
∈ Lq

(
0, T ; W 2,q

0 (Uj)
)
, and let Mj = Mj(p) be a

constant depending on t defined by p − Mj = R′(∇p) ∈ Lq
(
0, T ; Lq

0(Uj)
)
, see

Lemma 2.3, and the proof of Lemma 2.1, (ii). Since div w = (∇ϕj) ·u and div wt =
(∇ϕj) · ut for a.a. t ∈ (0, T ), (ϕju − w) solves the local equation

(ϕju − w)t − Δ(ϕju − w) + ∇
(
ϕj(p − Mj)

)
= ϕjf − wt + Δw − 2∇ϕj · ∇u − (Δϕj)u + (∇ϕj)(p − Mj)

(3.1)

in Uj .
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From (2.7), (2.8) using wt = R
(
(∇ϕj) · ut

)
and ∇p = f − ut + Δu we obtain

for all ε ∈ (0, 1) the estimates

‖wt‖Lq(Lq(Uj)) ≤ C‖ut‖Lq(L2(Uj)) + ε‖ut‖Lq(Lq(Uj)),

‖∇2w‖Lq(Lq(Uj)) ≤ C
(
‖u‖Lq(Lq(Uj)) + ‖∇u‖Lq(Lq(Uj))

)
, (3.2)

‖p− Mj‖Lq(Lq(Uj)) ≤ C
(
‖f‖Lq(Lq(Uj)) + ‖ut‖Lq(L2(Uj)) + ‖∇u‖Lq(Lq(Uj))

)
+ε‖ut‖Lq(Lq(Uj))

with C = C(q, T, ε, α, β, K) > 0. In fact, for the proof of (3.2)1, choose r ∈ [2, q)
such that the embedding W 1,r(Uj) ⊂ Lq(Uj) holds with an embedding constant
c = c(q, r, α, β, K) > 0 independent of j. Then

‖wt‖Lq(Uj) ≤ c‖wt‖W 1,r(Uj) ≤ c‖ut‖Lr(Uj)

for a.a. t ∈ (0, t). Finally the interpolation inequality (2.13) proves (3.2)1,
and (2.7)2 implies (3.2)2. For the proof of (3.2)3 we use (2.8), the embedding
W 1,q′

(Uj) ⊂ Lr′
(Uj) with an embedding constant c = c(q, r, α, β, K) > 0 indepen-

dent of j and apply the previous interpolation argument to ut.
Applying the local estimate (2.10) to (3.1) and using (3.2) we get that

‖ϕjut‖q
Lq(Lq(Uj))

+ ‖ϕju‖q
Lq(Lq(Uj))

+ ‖ϕj∇2u‖q
Lq(Lq(Uj))

+ ‖ϕj∇p‖q
Lq(Lq(Uj))

≤ C
(
‖f‖q

Lq(Lq(Uj))
+ ‖u‖q

Lq(W 1,q(Uj)) + ‖ut‖q
Lq(L2(Uj))

)
+ ε‖ut‖Lq(Lq(Uj))

with C = C(T, q, ε, α, β, K) > 0. Taking the sum over j = 1, . . . , N and exploiting
the crucial property of the number N0 we are led to the estimate

‖ut‖q
Lq,q + ‖u‖q

Lq,q + ‖∇2u‖q
Lq,q + ‖∇p‖q

Lq,q

=
∫ T

0

∫
Ω

(∣∣∣∑
j

ϕjut

∣∣∣q +
∣∣∣∑

j

ϕju
∣∣∣q +

∣∣∣∑
j

ϕj∇2u
∣∣∣q) dx dt

+
∫ T

0

∫
Ω

∣∣∣∑
j

ϕj∇p
∣∣∣q dx dt

≤
∫ T

0

∫
Ω

N
q
q′
0

(∑
j

|ϕjut|q +
∑

j

|ϕju|q +
∑

j

|ϕj∇2u|q +
∑

j

|ϕj∇p|q
)

dx dt

≤ CN
q
q′
0

(∑
j

‖f‖q
Lq(0,T ;Lq(Uj))

+
∑

j

‖u‖q
Lq(0,T ;W 1,q(Uj))

+
∑

j

‖ut‖q
Lq(0,T ;L2(Uj))

)
+ εN

q

q′
0

∑
j

‖ut‖q
Lq(0,T ;Lq(Uj)) . (3.3)

Choosing ε > 0 sufficiently small in (2.11) and in (3.3), exploiting the absorp-
tion principle and again the property of the number N0, (3.3) may be simplified
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to the estimate

‖ut‖Lq,q +‖u‖Lq,q +‖∇2u‖Lq,q +‖∇p‖Lq,q ≤ C
(
‖f‖Lq,q +‖u‖Lq,q +‖ut‖Lq,2

)
(3.4)

where C = C(q, α, β, K) > 0; note that in order to deal with the sum of the terms
‖ut‖Lq(0,T ;L2(Uj)) we also used the reverse Hölder inequality

∑
a

q/2
j ≤

(∑
aj

)q/2

for nonnegative real numbers aj . Now, concerning the term ‖u‖q
Lq,q , we use (2.12)

with ε > 0 sufficiently small and exploit the absorption principle. Finally we apply
Lemma 2.4, i.e., we add the estimate (2.14) with q = 2 to (3.4), and use the
equivalence of the norm ‖u‖W 2,q(Ω) to the graph norm ‖u‖D(Aq), see Lemma 2.3
(iv). This argument proves estimate (1.8) for bounded domains when s = q > 2.
Again using the equivalence of the norms ‖u‖W 2,q(Ω) and ‖u‖D(Aq), we get (1.7)
for s = q.

To prove (1.7) with u0 ∈ D(Ãq) we solve the system ũt + Ãqũ = f̃ , ũ(0) = 0,
with f̃ = f − Ãqu0. Then u(t) = ũ(t) + u0 yields the desired solution with u0 ∈
D(Ãq). This proves Theorem 1.4 for bounded Ω and s = q ≥ 2.

3.2. The case Ω bounded, 1 < s = q < 2
In this case we consider for f ∈ Lq,q

σ + Lq,2
σ = Lq,q

σ and the initial value u0 = 0
the Stokes system ut + Ãqu = f , u(0) = 0. By Lemma 2.4 there exists a unique
solution u(t) = Jq,qf(t) = J̃q,qf(t); here we used that P̃q = Pq and Ãq = Aq. For
the following duality argument we need that the space

C∞
0 (C∞

0,σ) =
{
v ∈ C∞

0 (Ω × (0, T )); div v(x, t) = 0 ∀t ∈ (0, T )
}

is dense in Lq′,q′
σ ∩ Lq′,2

σ =
(
Lq,q

σ + Lq,2
σ

)′. Then the identity

〈ut + Ãqu, Ãq′v〉 = 〈u, (−∂t + Ãq′ )Ãq′v〉 = 〈Ãqu, (−∂t + Ãq′)v〉

holds for u = Jq,qf and every v ∈ Ã−1
q′

(
C∞

0 (C∞
0,σ)

)
, since (J̃ ′

q′,q′)′ = J̃q,q. Let
g = −vt + Ãq′v. Then we obtain by (1.7) with s = q replaced by s′ = q′ ≥ 2 and
u replaced by v that

‖f‖Lq,q
σ +Lq,2

σ
= sup

{
|〈ut + Ãqu, Ãq′v〉T |
‖Ãq′v‖

Lq′,q′
σ ∩Lq′,2

σ

; 0 �= v ∈ Ã−1
q′ C∞

0 (C∞
0,σ)

}

= sup

{
|〈Ãqu, g〉T |

‖Ãq′v‖
Lq′,q′

σ ∩Lq′,2
σ

; 0 �= v ∈ Ã−1
q′ C∞

0 (C∞
0,σ)

}
;

≥ 1
C
‖Ãqu‖Lq,q

σ +Lq,2
σ

,

(3.5)

where C = C(T, q′, α, β, K) > 0. Here we used that the estimate (1.7) also holds
with u, u0, f replaced by v, v(T ) = 0, g due to the transformation in time in the
proof of Lemma 2.4, (ii), and that due to Theorem 1.2 the norm ‖ · ‖Lq

σ+L2
σ

is
equivalent to sup

{ |〈·,h〉|
‖h‖

L
q′
σ ∩L2

σ

; 0 �= h ∈ Lq′
σ ∩ L2

σ

}
with constants depending only
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on q and (α, β, K). Hence we obtain the estimate ‖Ãqu‖Lq,q
σ +Lq,2

σ
≤ C‖f‖Lq,q

σ +Lq,2
σ

,
and it follows

‖ut‖Lq,q
σ +Lq,2

σ
+ ‖Ãqu‖Lq,q

σ +Lq,2
σ

≤ C‖f‖Lq,q
σ +Lq,2

σ
. (3.6)

From the equivalence of norms ‖ · ‖D(Aq) and ‖ · ‖W 2,q with constants depending
only on q and (α, β, K), and from (2.3) with B1 = Aq, B2 = A2, we conclude
that also the norms ‖u‖W 2,q+W 2,2 and ‖u‖Lq

σ+L2
σ

+ ‖Aqu‖Lq
σ+L2

σ
are equivalent

with constants depending only on q and (α, β, K). Then (3.6) and the identity
∇p = f − ut + Δu lead to the estimate

‖ut‖Lq,q
σ +Lq,2

σ
+ ‖u‖Lq(0,T ;W 2,q+W 2,2) + ‖∇p‖Lq,q+Lq,2 ≤ C‖f‖Lq,q

σ +Lq,2
σ

(3.7)

with C = C(q, ε, α, β, K) > 0.
Now the proof of Theorem 1.4 is complete for bounded domains in the case

s = q.

3.3. The case Ω unbounded

Consider the sequence of bounded subdomains Ωj ⊆ Ω, j ∈ N, of uniform C1,1-
type as in (2.6), let f ∈ L̃q,q

σ and fj := P̃
(j)
q f |Ωj

where P̃
(j)
q denotes the Helmholtz

projection in L̃q(Ωj). Then consider the solution (uj ,∇pj) of the instationary
Stokes equation

∂tuj − P̃qΔuj = ∂tuj − Δuj + ∇pj = fj , ∇pj = (I − P̃q)Δuj in Ωj × (0, T )

with initial condition uj(0) = 0. From (1.7) with s = q we obtain the estimate

‖∂tuj‖L̃q,q + ‖uj‖Lq(0,T ;W̃ 2,q(Ωj)) + ‖∇pj‖L̃q,q ≤ C‖f‖L̃q,q
σ

(3.8)

on Ωj with C = C(T, q, α, β, K) > 0 independent of j ∈ N. Extending uj and
∇pj for a.a. t ∈ (0, T ) from Ωj by 0 to vector fields on Ω we find, suppressing
subsequences, weak limits

u = w− lim
j→∞

uj in L̃q,q
σ (Ω), ∇p = w− lim

j→∞
∇pj in L̃q,q(Ω)

satisfying u ∈ Lq(0, T ; L̃q
σ(Ω), ∂tu − Δu + ∇p = ∂tu + Ãqu = f in Ω × (0, T ) and

the a priori estimate (1.7) with u0 = 0; it follows (1.8) for this case. Note that
each ∇pj when extended by 0 need not be a gradient field in Ω; however, by de
Rham’s argument, the weak limit of the sequence {∇pj} is a gradient field in Ω.
Hence we solved the instationary Stokes equation ∂tu+ Ãqu = ∂tu−Δu+∇p = f ,
u(0) = u0, in Ω × (0, T ) and proved (1.7), (1.8).

Up to now we considered only the case when s = q. However, an abstract
extrapolation argument shows that the validity of (1.7) with s = q immediately
extends to all s ∈ (1,∞), see [2], p. 191, and [5], (1.12), where A has to be replaced
by −Ãq − δI with δ > 0 as in (1.4). The case u(0) = u0 �= 0 can be reduced to the
case u0 = 0 in the same way as in Subsection 3.1.
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Finally, to prove uniqueness let v ∈ Ls(0, T ; W̃ 2,q) satisfy ∂tv + Ãqv = 0 and
v(0) = 0. Given f ′ ∈ L̃s′,q′

let u ∈ Ls′
(0, T ; W̃ 2,q′

) be a solution of −ut + Ãq′u =
P̃q′f ′, u(T ) = 0. Then

0 = 〈vt + Ãqv, u〉T = 〈v, (−∂t + Ãq′ )u〉T = 〈v, P̃q′f ′〉T = 〈v, f ′〉T
for all f ′ ∈ L̃s′,q′

; hence, v = 0.
Now Theorem 1.4 is completely proved. �
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Linear Control Systems in Sequence Spaces

Hector O. Fattorini

Abstract. Pontryagin’s maximum principle in its infinite-dimensional version
provides (separate) necessary and sufficient conditions for both time and norm
optimality for the system y′ = Ay + u (A an infinitesimal generator). The
question whether targets in D(A) guarantee a smooth costate has been open.
We show the answer is “no” by means of a counterexample involving an
analytic semigroup. Another analytic semigroup sheds some light on other
subjects such as the existence of hypersingular time optimal controls (thus
answering another open question) and the characterization of the reachable
space and of singular functionals in its dual.

Mathematics Subject Classification (2000). 93E20, 93E25.

Keywords. Linear control systems in Banach spaces, norm optimal problem,
time optimal problem, costate.

1. Introduction

We consider the control system

y′(t) = Ay(t) + u(t) , y(0) = ζ (1.1)

with controls u(·) ∈ L∞(0, T ; E), whereA is the infinitesimal generator of a strongly
continuous semigroup S(t) in a Banach space E. In the norm optimal problem we
drive the initial point ζ to a point target,

y(T ) = ȳ (1.2)

in a fixed time interval 0 ≤ t ≤ T minimizing ‖u(·)‖L∞(0,T ;E), while in the time
optimal problem we drive to the target with a bound on the norm of the control,
say ‖u(·)‖L∞(0,T ;E) ≤ 1, in optimal time T . Solutions or trajectories

y(t) = S(t)ζ +
∫ t

0

S(t − σ)u(σ)dσ (1.3)

of the initial value problem (1.1) are denoted by y(t) = y(t, ζ, u). Controls in
L∞(0, T ; E) with norm ‖u(·)‖∈L∞(0,T ;E) ≤ 1 are named admissible.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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Separate necessary and sufficient conditions for norm or time optimality can
be given in terms of the maximum principle, which requires as a preliminary the
construction of a space of multipliers (final values of the costates). We summarize
[6] or [10], Section 2.3 for the case (sufficient for this paper) where S(t) is analytic
and A has a bounded inverse. Let E∗

−1 be the completion of E∗ in the norm

‖y∗‖E∗
−1

= ‖(A−1)∗y∗‖E∗ . (1.4)

For each t ≥ 0 S(t)∗ can be extended to an operator S(t)∗ : E∗
−1 → E∗ (equally

named) and the space Z(T ) consists of all z ∈ E∗
−1 such that

‖z‖Z(T ) =
∫ T

0

‖S(t)∗z‖E∗dt < ∞ . (1.5)

Equipped with ‖ · ‖Z(T ), Z(T ) is a Banach space. All spaces Z(T ) coincide and all
norms ‖ · ‖Z(T ) are equivalent for T > 0.

A control ū(t) in the interval 0 ≤ t ≤ T satisfies the strong maximum principle
(or simply the maximum principle) if there exists z ∈ Z(T ) such that S(t)∗z is
not identically zero in 0 < t ≤ T and

〈S(T − t)∗z, ū(t)〉 = max
‖u‖≤ρ

〈S(T − t)∗z, u〉 a. e. in 0 ≤ t ≤ T , (1.6)

where 〈· , ·〉 is the duality of the space E and the dual E∗; we call z the multiplier
and z(t) = S(T − t)∗z the costate. It is known [6] Theorem 5.1, [10] Theorem 2.5.1
that if ū(t) drives ζ ∈ E to ȳ = y(T, ζ, ū) with1

ȳ − S(T )ζ ∈ D(A) (1.7)

then the strong maximum principle (1.6) is a necessary condition for norm opti-
mality, with ρ the optimal norm. If ρ = 1, (1.6) is a necessary condition for time
optimality. Conversely, the maximum principle is a sufficient condition for norm
optimality and it is also sufficient for time optimality when ρ = 1 under suitable
conditions on the initial condition ζ and the target ȳ.2

The following problem has remained open: Does the maximum principle (1.6)
under (1.7) imply that the multiplier z belongs to E∗ (rather than to the larger
space Z(T ))? We show in this paper that the answer is negative. The counterex-
ample (Theorem 3.6) involves a smooth (analytic) semigroup in the nonsmooth
sequence space �1. We point out that the question has a trivial affirmative answer
for special classes of semigroups; for instance, if S(t) is a group or, more generally,
if S(T )E = E (t > 0) then3 Z(T ) = E∗ [6], [10] Theorems 2.2.5 and 2.2.6.

A multiplier space Z ⊇ E∗ is a linear space Z such that S(t)∗ can be extended
to Z for all t ≥ 0 and S(t)∗Z ⊆ E∗ for t > 0. (Z(T ) is a particular multiplier
space.) If ū(t) satisfies (1.6) for some z in a multiplier space Z such that S(t)∗z

1This condition can be relaxed toȳ − S(T )ζ ∈ D(A), where the bar indicates closure in R∞(T ).
For the definition of this space see below.
2These conditions are ȳ = y(T, ζ, ū) ∈ D(A) , ‖Aȳ‖ < 1 or ζ ∈ D(A) , ‖Aζ‖ < 1 , S(t)∗z �= 0 in

0 ≤ t < T . They are satisfied if either ζ = 0 or ȳ = 0 [9], [10] Theorem 2.5.7.
3The condition ȳ − S(T )ζ ∈ D(A) is not needed in this case.
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is not identically zero in 0 < t ≤ T we say that ū(t) satisfies the weak maximum
principle and that ū(t) is weakly regular; if z ∈ Z(T ) the control is regular, and if
z ∈ E∗ the control is strongly regular. It can be shown that, for a class of semigroups
including analytic semigroups in Hilbert space every optimal control satisfies the
weak maximum principle with no conditions on ζ, ȳ [5], [10, Section 3.2], but the
weak maximum principle is no longer a sufficient condition for optimality [7], [10]
Section 3.5.

A time optimal control ū(t) is called singular if it does not satisfy the max-
imum principle (1.6) for any z in any multiplier space Z, hypersingular if it does
not satisfy the maximum principle in any interval [t0, t1], 0 ≤ t0 < t1 ≤ T ; this
means, there is no z in any multiplier space Z such that S(t)∗z is not identically
zero in t0 ≤ t ≤ t1 and4

〈S(t1 − t)∗z, ū(t)〉 = max
‖u‖≤ρ

〈S(t1 − t)∗z, u〉 a. e. in t0 ≤ t ≤ t1 . (1.8)

Singular time optimal controls were constructed in [8], see also [10] Theorem 2.8.4,
but existence of hypersingular time optimal controls was left open there. We con-
struct in this paper a hypersingular control; the example provided by Corollary
6.3 involves a smooth (analytic) semigroup in the nonsmooth sequence space �0.

The examples in this paper throw also some light on the reachable space and
on its dual. Given t > 0, the reachable space R∞(t) (at time t) of the system (1.1)
consists of all

y = y(t, 0, u) =
∫ t

0

S(t − σ)u(σ)dσ , u(·) ∈ L∞(0, t; E) , (1.9)

and is equipped with the norm

‖y‖R∞(t) = inf
{
‖u‖L∞(0,t;E);

∫ t

0

S(t − σ)u(σ)dσ = y

}
, (1.10)

which makes R∞(t) a Banach space. All spaces R∞(t) coincide (with equivalent
norms) for t > 0 [3], [10] Section 2.1. Characterization of the reachable space
R(T ) and its dual R∞(T )� lie at the heart of the theory of optimal problems for
(1.1), in particular the time and norm optimal problems; in fact, the maximum
principle (1.6) is obtained separating the target ȳ from the ball B∞

ρ (T ) of radius
ρ in R∞(T ) by means of functionals in R∞(T )�. A complete characterization of
R∞(T ) and R∞(T )� exists only when S(t)E = E for t > 0, which is a necessary
and sufficient condition for the equality R∞(T ) = E [6], [10], (2.2.2) and Theorem
2.2.3. Here, the norm of R∞(T ) and that of E are equivalent, which implies that
R∞(T )� = E∗ with equivalent norms. In the general case, however there is no
usable characterization of R∞(T ) and only some functionals in R∞(T )� can be

4The notion of hypersingular control is only interesting in the time optimal problem. In fact,

a control that is time optimal in [0, T ] is also time optimal in any [t0, t1] ⊆ [0, T ], while norm
optimality is not inherited from [0, T ] by subintervals.
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identified. These are the regular functionals ξz defined by〈〈
ξz ,

∫ T

0

S(T − σ)u(σ)dσ

〉〉
=

∫ T

0

〈S(T − σ)∗z, u(σ)〉dσ (1.11)

where z ∈ Z(T ) and 〈〈ξ, y〉〉 denotes the application of a functional ξ ∈ R∞(T )� to
an element y ∈ R∞(T ). The integral (1.11) exists and∣∣∣∣ ∫ T

0

〈S(T − σ)∗z, u(σ)〉dσ

∣∣∣∣ ≤ ∫ T

0

‖S(T − σ)∗z‖E∗dσ · ‖u(·)‖L∞(0,T ;E)

=
∫ T

0

‖S(σ)∗z‖E∗dσ · ‖u(·)‖L∞(0,T ;E) = ‖z‖Z(T )‖u(·)‖L∞(0,T ;E) ,

which implies ‖ξ‖R∞(T )� ≤ ‖z‖Z(T ); it can be shown that ‖ξ‖R∞(T )� = ‖z‖Z(T ).
We denote by R(T ) ⊆ R∞(T )� the space of all regular functionals.

We have D(A) ⊆ R∞(T ). Functionals ξs ∈ R∞(T )� that vanish on D(A) are
called singular and S(T ) ⊆ R∞(T ) denotes all of them. Of course, S(T ) �= {0} if
and only if D(A) �= R∞(T ) , where the bar indicates closure in R∞(T ). There is a
large class of infinitesimal generators that satisfy this condition [6], [10] Section 2.9
(among them, unbounded generators of analytic semigroups) but it seems to be
an open problem whether there exists any unbounded infinitesimal generator with
R∞(T ) �= E such that D(A) = R∞(T ). Regular and singular functionals totally
describe the dual R∞(T )�; in fact, we have

R∞(T )� = R(T ) ⊕ S(T ) (1.12)

algebraic and metrically [10] Theorem 2.4.1; the direct sum is L1 if S(t) is an
analytic semigroup [10] Theorem 2.4.3. The statement “totally describe” is of
course, tempered by the fact that singular functionals are the spawn of the Hahn-
Banach theorem in a nonseparable space, thus it is not surprising that all that
can proved on singular functionals is their existence; actual examples of singular
functionals are totally lacking. However, we examine an example in Section 7 where
R∞(T ) can be easily described and where R∞(T )� and the direct sum (1.12) can
be “visualized” up to a point.

2. The first example

The space is �1, consisting of all sequences y = {y1, y2, . . . } = {yn} with

‖y‖1 = ‖{yn}‖1 =
∞∑

n=1

|yn| < ∞ ,

which is a Banach space equipped with ‖ · ‖1. The (densely defined, unbounded)
infinitesimal generator and the semigroup are

A{yn} = {−nyn} , S(t){yn} = {e−ntyn} , (2.1)



Linear Control Systems in Sequence Spaces 277

D(A) the set of all {yn} ∈ �1 with {nyn} ∈ �1. We have (�1)∗ = �∞, the space of
all sequences y∗ = {y∗

1 , y
∗
2 , . . . } = {y∗

n} with

‖y∗‖∞ = ‖{y∗
n}‖∞ = sup

n≥1
|y∗

n| < ∞

equipped with ‖ · ‖∞, the duality of �1 and �∞ given by

〈y∗, y〉 = 〈{y∗
n}, {yn}〉 =

∞∑
n=1

y∗
nyn .

The adjoint semigroup S(t)∗is

S(t)∗{y∗
n} = {e−nty∗

n} , (2.2)

analytic in t > 0 but not strongly continuous at t = 0; for instance, for {y∗
n} =

{1, 1, . . .} we have ‖S(t)∗{y∗
n}−{y∗

n}‖∞ → 1 as t → 0 . The space E∗
−1 = (�1)∗−1 =

�∞−1 consists of all sequences z = {z1, z2, . . . } = {zn} with

‖z‖∞,−1 = ‖{zn}‖∞,−1 = sup
n≥1

∣∣∣zn

n

∣∣∣ < ∞ , (2.3)

and Z(T ) is the subspace of �∞−1 determined by the condition∫ T

0

‖{zne−nσ}‖∞dσ < ∞ . (2.4)

The subspace �0 ⊂ �∞ of all x = {xn} such that limn→∞ xn = 0 is closed, hence
a Banach space equipped with ‖ · ‖0 = ‖ · ‖∞. We have �1 = (�0)∗ with duality

〈y, x〉 = 〈{yn}, {xn}〉 =
∞∑

n=1

ynxn .

We consider the control system (1.1)in �1 with A given by (2.1) and controls
in L∞(0, T ; �1). Since �1 is separable and the dual of the Banach space �0, the
assumptions needed in existence theory [10], 3.1 apply and we have (a) if ζ ∈ �1

can be driven to a target ȳ ∈ �1 in time T then there exists a control doing the
same drive norm optimally in the same time, (b) if ζ can be driven to ȳ in any time
t > 0 by means of an admissible control, then there exists an admissible control
doing the same drive in optimal time T .

3. The maximum principle and optimal controls

If ū(t) = {un(t)} drives (norm, time) optimally ζto ȳ ∈ D(A) then (1.7) holds and
there exists z = {zn} ∈ Z(T ) such that

〈S(T − t)∗z, ū(t)〉 = max
‖u‖1≤ρ

〈S(T − t)∗z, u〉 a. e. in 0 ≤ t ≤ T (3.1)

where ρ is the optimal norm (for the time optimal problem ρ = 1). Conversely,
(3.1) is a sufficient condition for optimality when ζ = 0 or ȳ = 0. Let Z∞ be the
set of all sequences z = {zn} such that {e−ntzn} ∈ �∞ for all t > 0. Obviously, we
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can extend S(t)∗ to Z∞ by S∗(t){zn} = {e−ntzn} ∈ �∞, thus Z∞ is a multiplier
space5 according to the definition in Section 1. The weak maximum principle (1.6)
with z ∈ Z∞ is

∞∑
n=1

zne−n(T−t)ūn(t) = max
‖{un}‖1≤ρ

∞∑
n=1

zne−n(T−t)un , (3.2)

which characterizes uniquely the control {ūn(t)} for every t for which the sequence
{zne−n(T−t)} has a unique maximum or, equivalently, for which the set

M(t, z) = M(t, {zn}) =
{
m; |zm|e−m(T−t)

= ‖{zne−n(T−t)}‖∞ = max
n≥1

|zn|e−n(T−t)
}

(3.3)

contains exactly one element m = m(t, {zn}); in fact, for such a t we have

{ūn(t)} = sign znρ δmn , (3.4)

δmn the Kronecker delta. Characterization of the optimal control {ūn(t)} for those
values of t where M(t, {zn}) contains more than one element is mostly a moot point
in view of the next result, where we take ρ = 1.

Lemma 3.1. Let z ∈ Z∞. Then M(t, {zn}) consists of a single element m(t, {zn})
except for a finite or infinite sequence {tn} accumulating, if infinite, at T .

Proof. It is sufficient to show that every t for which M(t, {zn}) has more than one
element is isolated in the interval 0 ≤ t < T . Let t ≥ 0 be such that

M(t, {zn}) = {m1, m2, . . . , mk} (m1 < m2 < · · · < mk, k > 1) ,

which means

|zmj |e−mj(T−t) = max
n≥1

|zn|e−n(T−t) = M (j = 1, . . . , k) .

We have |zn|e−n(T−t) → 0, thus there exists ε > 0 such that

|zn|e−n(T−t) ≤ M − ε (n �= mj , j = 1, . . . , k) .

Accordingly, if t > 0 there exists δ > 0 such that

|zn|e−n(T−t−τ) ≤ M − ε

3
(|τ | ≤ δ, n �= mj, j = 1, . . . , k) ,

|zmj |e−mj(T−t−τ) ≥ M − ε

3
(|τ | ≤ δ, j = 1, . . . , k) .

This means

M(τ, {zn}) = {m1} (t ≤ τ ≤ t + δ) , (3.5)
M(τ, {zn}) = {mk} (t − δ ≤ τ ≤ t) . (3.6)

In case t = 0 we take τ ≥ 0 and obtain (3.5). �

5The space Z∞ is in fact the largest multiplier space.
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We call {un(t)} the control associated with the costate z. Lemma 3.1 says
that {un(t)} is uniquely defined except at the switchings or switching points tn,
{tn} the sequence in Lemma 3.1. In the intervals (tn, tn+1) between switchings we
have M(t, z) = {mn} and equalities (3.5)–(3.6) imply that the sequence {mn} is
increasing, thus

M(t, z) = {mn} (tn < t < tn+1) m1 < m2 < . . . (3.7)

It also follows from (3.5)–(3.6) that at the switching tn+1 we have

|zmn |e−mn(T−tn+1) = |zmn+1 |e−mn+1(T−tn+1) ,

which can be written in the form

|zmn+1 | = |zmn |e(mn+1−mn)(T−tn+1) (3.8)

and implies |zmn+1| > |zmn |. The control produced by (3.1) or, rather by its
consequence (3.4) is

ūmn(t) =
{

sign zmn t ∈ [tn, tn+1]
0 t /∈ [tn, tn+1]

(n = 0, 1, . . . ) (3.9)

with uk(t) = 0 for all k not included in (3.9), that is, for k �= mn (n = 1, 2, . . . ).
We call the mn the live coordinates of the control and the {ūmn(t)} the live
components. Note that (3.7) implies that the index of the live coordinates increases
with the index of the switchings; in other words live coordinates come into play in
ascending order as time increases. Costates such that

sup
n≥1

|zn| = |zm| for some m ≥ 1 (3.10)

produce controls {ūn(t)} with a finite number of switchings. In fact, if m is the
smallest index such that (3.10) holds we have

|zm|e−m(T−t) > |zn|e−n(T−t) (n ≥ m , 0 ≤ t < T ) , (3.11)

thus there are no live coordinates > m.
The following result goes in a direction opposite to that of Lemma 3.1: the

costate is produced from the switchings.

Lemma 3.2. Let {tn} be an arbitrary sequence with 0 = t1 < · · · < tn < · · · < T ,
if infinite with tn → T . Then there exists {zn} ∈ Z∞, zn ≥ 0 such that the control

ūn(t) =
{

1 t ∈ [tn, tn+1]
0 t /∈ [tn, tn+1]

(n = 0, 1, . . . ) (3.12)

produced by (3.1) ⇒ (3.4) has the tn as switchings. If the number of switchings is
infinite then zn > 0 for all n; if the number of switchings is finite= N then zn > 0
for n = 1, 2, . . . , N , zn = 0 for n > N .

Proof. The sequence zn is defined on the basis of (3.8) for the particular case
mn = n and zn ≥ 0,

zn+1 = zne((n+1)−n)(T−tn+1) = zne(T−tn+1) .



280 H.O. Fattorini

We arbitrarily set z1 = 1 and apply (3.8) inductively,

z2 = z1e
(T−t2) = e(T−t2) , z3 = z2e

(T−t3) = e(T−t3)e(T−t2) , . . .

Putting all inductive steps together,

zn = e(T−tn)+(T−tn−1)+···+(T−t2) . (3.13)

We have

e−n(T−t)zn = e(T−tn)+(T−tn−1)+···+(T−t2)−n(T−t) = eφ(n,t)

with φ(n, t) = (T − t2) + · · ·+ (T − tn) − n(T − t). Now, if tn < t < tn+1 we have

φ(n, t) = φ(n − 1, t) + (T − tn) − (T − t) ,

and it follows that φ(n, t), as a function of n, is

increasing if T − tn > T − t ⇐⇒ tn < t ,

decreasing if T − tn < T − t ⇐⇒ tn > t .

Accordingly, φ(n, t) reaches its unique maximum in n at the largest n such that
tn < t, which means that {ūn(t)} satisfies (3.12). �

Corollary 3.3. The multiplier {zn} ∈ �∞ if and only if
∞∑

n=1

(T − tn) < ∞ . (3.14)

Proof. Follows from (3.13). �

Remark 3.4. Let {mn} be a sequence of integers such that

1 ≤ m1 < m2 < · · · < mn < . . . (3.15)

The construction in Theorem 3.2 can be modified in such a way that the live co-
ordinates of {zn} are the entire sequence {mn} in the case of infinite switchings
or the finite sequence {m1, m2, . . . , mN} in the case of N switchings. The modi-
fications are rather obvious. We set = 0 a priori all coordinates of zn outside the
sequence {mn}. Then we use (3.8) for the inductive definition of the sequence,
which leads to

zn = eφ(n,t) (3.16)

with

φ(n, t) = (m2 − m1)(T − t2) + · · · + (mn − mn−1)(T − tn) − mn(T − t)
= φ(n − 1, t) + (mn − mn−1)(T − tn) − (mn − mn−1)(T − t) (3.17)

so that φ(n, t) reaches its unique maximum at the largest n such that tn < t and
the construction of the control is

ūmn(t) =
{

1 t ∈ [tn, tn+1]
0 t /∈ [tn, tn+1]

(n = 0, 1, . . . ) , (3.18)
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all other coordinates being zero. The companion of condition (3.14) for the costate
to be in �∞ is

∞∑
n=1

(mn − mn−1)(T − tn) < ∞ . (3.19)

Remark 3.5. Obviously, condition (3.8) determines uniquely the live coordinates
zm(n) of {zn}. We have set the other coordinates = 0 for convenience’s sake, but
we can fix them in other ways as long as they don’t interfere with the condition

max zne−n(T−t) = zmne−mn(T−t) (T − tn+1 ≤ t ≤ T − tn) .

For instance, the two multipliers

{zn} = {1, 2, 0, 0, . . .} , {ζn} = {1, 2, 2, 2, . . .}
produce via (3.1) =⇒ (3.4) the same control {un(t)} in the interval 0 ≤ t ≤ 1,
where

un(t) =
{

1 t ∈ [0, t0)
0 t /∈ [t0, 1] , u2(t) = u3(t) = · · · = 0 ,

and t0 = 0.306853 is the only solution of the equation

e−(1−t0) − 2e−2(1−t0) = 0 .

In the case (covered by Lemma 3.2) where all coordinates of {ūn(t)} are live the
multiplier {zn} is uniquely determined up to a constant (we can set z1 arbitrary).

The counterexample announced in Section 1 is in Theorem 3.6. below. The
sufficiency conditions there guarantee that this control will be time optimal.

Theorem 3.6. There exists a control {ūn(t)} driving from the origin to a target
{ȳn} ∈ D(A) time optimally such that {ūn(t)} does satisfies the maximum princi-
ple (1.6) with {zn} ∈ Z(T ) but not with {zn} ∈ �∞.

Proof. We construct the control from its switching points. Given an arbitrary
sequence {tn}, 0 < t1 < t2 < · · · < T , tn → T we define

ȳn =
∫ tn+1

tn

e−n(T−σ)dσ =
e−n(T−tn+1) − e−n(T−tn)

n
. (3.20)

We have
nȳn = e−n(T−tn+1) − e−n(T−tn) = ne−nθn(tn+1 − tn) (3.21)

with T − tn+1 ≤ θn ≤ T − tn. We take

tn = T − log(n − 1)
n − 1

(n ≥ 4) . (3.22)

Since (log x/x)′ = −(log x−1)/x2 < 0 for x > e, {log(n−1)/(n−1)} is decreasing
(so that {tn} is increasing) for n ≥ 4 and tn → T . We pick t1, t2, t3 arbitrary as
long as 0 ≤ t1 < t2 < t3 < t4. We have

T − tn+1 =
log n

n
≤ θn ≤ log(n − 1)

n − 1
= T − tn (n ≥ 4) (3.23)



282 H.O. Fattorini

so that, using (3.21),

tn+1 − tn = nȳn · enθn

n
≥ nȳn · elog n

n
· nȳn = nȳn ,

and we obtain
∞∑

n=1

nȳn ≤
∞∑

n=1

(tn+1 − tn) = lim
n→∞

tn − t1 = T − t1 ,

hence ȳ = {ȳn} ∈ D(A). On the other hand, we have
∞∑

n=4

(T − tn) ≥
∞∑

n=4

log(n − 1)
n − 1

= ∞ ,

which, in view of Corollary 3.3 shows that if {zn} is the multiplier constructed
from the switching points via Lemma 3.2, then {zn} /∈ �∞. We finally check that
{zn} ∈ Z(T ). The construction in Lemma 3.2 implies that

‖S(T − t)z‖∞ = ‖zne−n(T−t)‖∞ = zne−nt (tn ≤ t ≤ tn+1) ,

thus ∫ T

0

‖S(T − t)z‖∞dt = zn

∫ tn+1

tn

e−ntdt

=
∞∑

n=1

zn
e−n(T−tn+1) − e−n(T−tn)

n
=

∞∑
n=1

zn

n
· nȳn

after (3.21), hence∫ T

0

‖S(T − t)z‖∞dt ≤
(

sup
n≥1

zn

n

) ∞∑
n=1

nȳn ≤ ‖z‖∞,−1‖ȳ‖D(A) ,

thus {zn} ∈ Z(T ) as claimed. �

4. The second example

The (densely defined) infinitesimal generator and semigroup are

A{yn} = {−nyn} , S(t){yn} = {e−ntyn} , (4.1)

in the space �0 (the semigroup in Sections 2 and 3 is actually the dual of this
one). We consider the control system (1.1) in E = �0 with the operator A in
(4.1). The natural control space is L∞(0, T ; �0), not a good space for existence of
optimal controls. We use instead L∞

w (0, T ; �∞) as control space. Given a Banach
space X , the space L∞(0, T ; X∗) consists of all X∗-valued functions u(t) which
are X-weakly measurable (this means t → 〈u(t), u〉 is measurable for all u ∈ X)
and such that

〈u(t), u〉 ≤ C‖u‖ (u ∈ X) . (4.2)
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The norm of u(·) in L∞
w (0, T ; X∗) is the least C that does the job6 in (4.2).

This norm makes L∞
w (0, T ; X∗) a Banach space and we have L∞

w (0, T ; X∗) =
L1(0, T ; X)∗[11] Theorem 7, p. 94, which is the basis of existence theory for op-
timal controls for (1.1) [10] Theorem 4.8.1. Of course, we must show that the
trajectories take values in �0. This follows from the result below, where it is shown
that the reachable spaces corresponding to both choices of control space are the
same.

Lemma 4.1. R∞(T ) ⊂ �0 is the space �∞1 of all sequences {yn} such that

‖{yn}‖∞,1 = sup
n≥1

n|yn| < ∞ , (4.3)

the norm (4.3) equivalent to ‖·‖R∞(T ). The reachable space is the same for controls
in L∞(0, T ; �0) or in L∞(0, T ; �∞).

Proof. Let {un(·)} ∈ L∞
w (0, T ; �∞) ⊇ L∞(0, T ; �0). The equation

{yn} =
∫ T

0

S(T − σ){un(σ)}dσ (4.4)

splits into the separate (and independent) equations∫ T

0

e−n(T−σ)un(σ)dσ = yn (n = 1, 2, . . . ) . (4.5)

Accordingly, we have

|yn| ≤
∫ T

0

e−n(T−σ)|un(σ)|dσ

≤ 1 − e−nT

n
‖u(·)‖L∞

w (0,T ;�∞) ≤
1
n
‖u(·)‖L∞

w (0,T ;�∞) . (4.6)

Conversely, let {yn} ∈ �∞1 . Set u(t) = {un(t)} with

un(t) =

⎧⎪⎨⎪⎩
nyn

1 − e−1
T − T

n
≤ t < T

0 0 < t < T − T

n

(4.7)

The control {un(t)} is constant in the intervals [T − T/n, T − T/(n + 1)) and
un(t) = 0 for n large enough for each t < T , thus {un(·)} ∈ L∞(0, T ; �0) with
norm

‖{un(·)}‖L∞(0,T ;�0) ≤
1

1 − e−1
‖{yn}‖∞,1 . (4.8)

6If X is separable the norm of L∞
w (0, T ;X∗) is the same as the ordinary L∞ norm; we have

‖u(·)‖L∞
w (0,T ;X∗) = ess sup ‖u(t)‖X∗ . This observation applies to the separable space X = �1

and its dual X∗ = �∞.
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We have∫ T

0

S(T − σ)u(σ)dσ =
{∫ T

0

e−n(T−σ)un(σ)dσ

}
=

{∫ T

0

e−nσun(T − σ)dσ

}
=

{
nyn

1 − e−1

∫ 1/n

0

e−nσdσ

}
= {yn} . (4.9)

Inequality (4.6) implies the first of the estimates

‖{yn}‖∞,1 ≤ ‖{yn}‖R∞(T ) , ‖{yn}‖R∞(T ) ≤
1

1 − e−1
‖{yn}‖∞,1 , (4.10)

and (4.8) and (4.9) imply the second. �

5. The time optimal problem

To simplify, we limit ourselves to drives from ζ = 0 to targets ȳ = {ȳn} ∈ R∞(T ).
It follows from all equations (4.5) that if the admissible control {un(t)} drives 0
to {ȳn} in time T we have

|ȳn| ≤
∫ T

0

e−n(T−σ)|un(σ)|dσ

≤
∫ T

0

e−n(T−σ)dσ =
1 − e−nT

n
(n = 1, 2, . . . ) , (5.1)

so that

ρ = sup
n≥1

{ n|ȳn|
1 − e−nT

}
≤ 1 . (5.2)

On the other hand, if (5.2) holds, the admissible (constant) control

{un(t)} =
{ nȳn

1 − e−nT

}
(5.3)

drives 0 to {ȳn} in time T .

Lemma 5.1. Assume that ρ = 1 and that{ m|ȳm|
1 − e−mT

}
= 1 = sup

n≥1

{ n|ȳn|
1 − e−nT

}
(5.4)

for some m. Then T is the optimal driving time from 0 to {ȳn} and we have

ūm(t) =
mȳm

1 − e−mT
(5.5)

for any optimal control {um(t)}.
Proof. We can drive from 0 to {ȳn} in time T with the constant admissible control
(5.3), thus the optimal time is ≤ T . On the other hand, assuming that we can drive
from 0 to {ȳn} with an admissible control {un(t)} in time T ′ < T we have

1 − e−mT

m
= |ym| ≤ 1 − e−mT ′

m
,
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a contradiction, thus T is the optimal time as claimed. Obviously, (5.5) is the only
solution of equation (4.5) for n = m satisfying |um(t)| ≤ 1. �

Lemma 5.1 produces extreme nonuniqueness examples of time optimal con-
trols. For the target{yn} = {δmn(1 − e−mπ)/m} (m fixed) Lemma 5.1 says that
any control {ūn(t)} with

ūm(t) = 1 , ūn(t) = αn sinnt (n �= m) (5.6)

(which is admissible if |αn| ≤ 1) drives 0 to {ȳn} in optimal time π. The following
is a criterion for optimality different from that in Lemma 5.1.

Theorem 5.2. Let {Tn} be a sequence

0 = T0 < T1 < · · · < Tn · · · < T , Tn → T (5.7)

and assume that

1 ≥ n|ȳn|
1 − e−nT

> ρn =
1 − e−nTn

1 − e−nT
. (5.8)

Then the constant admissible control (5.3) drives 0 to {ȳn} time optimally.

Proof. Assume we have an admissible control {un(t)} driving 0 to {ȳn}in time
T ′ < T . Then we can also drive from0 to{ȳn} in time7 Tm > T ′. By virtue of (5.1)
we have

ρn
1 − e−nT

n
≤ |ȳn| ≤

1 − e−nTm

n
or, using (5.8.)

1 − e−nTn < |ȳn| ≤ 1 − e−nTm

which is a contradiction for n = m. �

6. Hypersingular controls

We have E∗ = (�0)∗ = �1. The space E∗
−1 = (�0)∗−1 consists of all sequences

z = {zn} such that

‖z‖1,−1 = ‖{zn}‖1,−1 =
∞∑

n=1

|zn|
n

< ∞ . (6.1)

If z = {zn} ∈ (�0)∗−1 then (1.5) is automatically satisfied: in fact,∫ T

0

‖S(T − σ)∗z‖1dσ =
∫ T

0

( ∞∑
n=1

|zn|e−n(T−σ)
)
dσ

=
∞∑

n=1

|zn|
n

(1 − e−nT ) ≤
∞∑

n=1

|zn|
n

= ‖{zn}‖1,−1 , (6.2)

7If u(t) drives 0 to {yn} in time T ′ < Tm the control v(t) = 0 (0 ≤ t ≤ Tm − T ′), v(t) =
u(t − (Tm − T ′)) (Tm − T ′ ≤ t ≤ Tm) drives 0 to {ym} in time Tm.
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so that Z(T ) = (�0)∗−1. Let Z1 be the set of all sequences z = {zn} such that
{e−ntzn} ∈ �1 for all t > 0. Obviously, we can extend S(t)∗to Z1 by S∗(t){zn} =
{e−ntzn} ∈ �1, thus Z1 is a multiplier space8 according to the definition in Section
1. The weak maximum principle (1.6) with z ∈ Z1 and ρ = 1 is

∞∑
n=1

zne−n(T−t)ūn(t) = max
‖{un}‖∞≤1

∞∑
n=1

zne−n(T−t)un , (6.3)

(the choice of {un} in �∞ instead of in �0 is a consequence of the choice of
L∞(0, T ; �∞) as control space). It follows from (6.3) that

ūm(t) = sign zm (6.4)

for all m for which zm �= 0. This equality has the following curious consequence:

Lemma 6.1. An admissible control {ūn(t)} satisfies the weak maximum principle
if and only if ūm(t) = 1 (0 ≤ t ≤ T ) or ūm(t) = −1 (0 ≤ t ≤ T ) for at least one
m ≥ 1.

Proof. It suffices to set {zn} = {δmn}. �
It follows from Lemma 6.1 that the question formulated in Section 1 (which

has a negative answer in general) can be conditionally answered “yes” (in a some-
what weird way) for the control system in the last two sections; the maximum
principle (1.6) under (1.7) implies that (1.6) will be satisfied as well with a multi-
plier z having a single nonzero coordinate.

An admissible control {ūn(t)} that satisfies the maximum principle with a
multiplier z ∈ Z(T ) drives 0 to {ȳn} = y(t, 0, {ūn}) time optimally (Section 1)
thus we have

Corollary 6.2. Let {ūn(t)} be an admissible control. Assume that either ūm(t) = 1
(0 ≤ t ≤ T ) or ūm(t) = −1 (0 ≤ t ≤ T ) for at least one m ≥ 1. Then {ūn(t)}
drives 0 to{ȳn} = y(T, 0, {ūn}) time optimally.

Corollary 6.3. Hypersingular time optimal controls exist.

Proof. We use Theorem 5.2 for an arbitrary sequence {Tn}. All controls {ūn(t)}
constructed there are time optimal. If the first inequality (5.8) is reinforced from
≤ to < then we have |ūn(t)| = |ūn| < 1 for all n, thus by Corollary 6.2 {ūn(t)}
cannot satisfy (1.6) for any multiplier z. Clearly, the same argument shows that
{ūn(t)} cannot satisfy the weak maximum principle (1.8) in any subinterval t0 ≤
t ≤ t1. �

Far more irregular hypersingular controls can be constructed using the fol-
lowing result, whose proof can be found in [12], Exercise 8, p. 88:

Lemma 6.4. There exists disjoint measurable sets d, e ⊂ [0, T ], d ∪ e = [0, T ] such
that the intersection of any nonempty interval (a, b) ⊆ [0, T ] with both d and e has
positive measure.

8The space Z1 is in fact the largest multiplier space.
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This result granted, we “deform” one of the constant hypersingular controls con-
structed in Corollary 6.3. We take εn > 0 and define{

ũn(t) = ūn(t) + χd(t)εn

ũn(t) = ūn(t) − χe(t)εn
(6.5)

where χd(t) (resp. χd(t)) is the characteristic function of d (resp. of e) and δn > 0
is determined from εn by the equation

δn

∫
e

e−n(T−σ)dσ = εn

∫
d

e−n(T−σ)dσ ,

which implies∫
d

e−n(T−σ)ũn(σ)dσ =
∫ T

0

e−n(T−σ)ūn(σ)dσ (n = 1, 2. . . . ) , (6.6)

so that {ũn(t)} and {ūn(t)} drive 0 to the same target in time T . For εn small
enough, δn will be so small that {ũn(t)} is admissible. Thus, {ũn(t)} is time opti-
mal, and no ũn(t) is constant in subintervals, thus ũn(t) is hypersingular as well.
At this point, it is natural to ask whether there exist targets {ȳn} such that 0 can
be driven to {ȳn} time optimally only by a hypersingular control. We don’t know
the answer to this question. If “hypersingular” is replaced by “singular”, however,
the answer is an easy “yes”.

Corollary 6.5. There exist targets {ȳn} such that 0 can be driven time optimally
to {ȳn} only by a singular control.

Proof. Just a rehash of Corollary 6.3. Let {ȳn}, {ūn(t)} be the target and the
control in Corollary 6.3, with the first inequality (5.8) reinforced to <. Assume
that 0 can be driven to{ȳn} by another admissible control {v̄(t)} satisfying the
maximum principle (1.6) with an arbitrary multiplier z ∈ Z1. Then, by Lemma
6.1 there exists m ≥ 1 such that v̄m(t) = ±1. Since both controls drive to the
same target, all equations (4.5) have to be satisfied for both {ūn(t)} and {v̄n(t)}.
In particular, ∫ T

0

e−m(T−σ)ūm(σ)dσ =
∫ T

0

e−m(T−σ)v̄m(σ)dσ

which is impossible since ūm(t) is a constant < 1. �

We check that “singular” cannot be upgraded to “hypersingular” in Corollary
6.5 making use of yet another deformation of the constant control {ūn(t)} = {ūn}
in Corollary 6.3. We select a sequence {εn}, εn > 0 from the equation

e−nεn − e−nT

n
=

∫ T

εn

e−n(T−σ)dσ = sign ūn

∫ T

0

e−n(T−σ)undσ

= |ȳn| =
n|ȳn|

1 − e−nT
· 1 − e−nT

n
> ρn

1 − e−nT

n
, (6.7)
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which implies e−nεn > ρn + (1 − ρn)e−nT > ρn, thus εn → 0. It follows from (6.7)
that the control {v̄n(t)} defined by

v̄n(t) =
{

0 0 ≤ t ≤ εn

sign zn εn < t ≤ T
(6.8)

drives 0 to {ȳn} in time T , accordingly it is time optimal. Lemma 6.1 says that
{v̄(t)} cannot satisfy the weak maximum principle in 0 ≤ t ≤ T , thus {v̄n(t)}
is singular. It is not hypersingular; in fact, it is “nearly regular” since, again by
Lemma 6.1 it satisfies the maximum principle in each interval εn ≤ t ≤ T .

7. Singular functionals

Since D(A) �= R∞(T ), singular functionals exist. We note as a curiosity that
singular functionals can be “characterized” in this example although the charac-
terization is far from constructive. We have E∗ = (�0)∗ = �1, (�1)∗ = �∞, and
the construction requires the dual of �∞. Set Z = {1, 2, . . .}. A measure μ defined
in all subsets of Z is finitely additive if μ(e1 ∪ e2) = μ(e1) + μ(e2) for any two
disjoint subsets of Z. The absolute value |μ| of μ is defined for an arbitrary e ⊆ Z
by |μ(e)| = sup

∑
j |μ(ej)| the sup taken over all finite partitions {ej} of e; μ is

a finitely additive measure as well. We say that μ is bounded if |μ|(Z) < ∞. The
integral

∫
Z

ynμ(dn) can be defined using the standard theory in [2], Chapter III
which is designed to accommodate finitely additive measures. It follows from the
definition and that of the absolute value |μ| that∣∣∣∣ ∫

Z

ynμ(dn)
∣∣∣∣ ≤ ‖{yn}‖∞|μ|(Z) .

We denote by Σ(Z) the space of all finitely additive bounded measures in Z
equipped with the norm ‖μ‖ = |μ|(Z). The following result is a particular case of
[2], Theorem 1, p. 258:

Theorem 7.1. We have (�∞)∗ = Σ(Z) algebraically and metrically, the duality
given by

〈μ, {yn}〉 =
∫

Z

ynμ(dn) .

Corollary 7.2. We have R∞(T )� = Σ(Z), algebraically and metrically, the duality
given by

〈μ, {yn}〉 =
∫

Z

nynμ(dn) .

Proof. Immediate consequence of Theorem 7.1 and of the identification of R∞(T )
in Lemma 4.1. �
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A finitely additive measure μ in Z is locally null if μ({n}) = 0 for n = 1, 2, . . . ,
and it is easily seen that μ ∈ Σ(Z) is locally null if and only if∫

Z

ynμ(dn) = 0 ({yn} ∈ �0) .

The space of all locally null functionals is called Σ0(Z). An “example” of a locally
null measure is

μ(e) = LIM
n→∞

χe(n)

where LIM
n→∞

is a Banach limit [1], p. 34, [2], p. 73 and χe is the characteristic

function of e. The space R(T ) of all regular functionals can be identified with �1

with duality 〈〈ξz , y〉〉 =
∑∞

n=1 nznyn and the L1 direct sum (1.12) has the following
interpretation:

Lemma 7.3. We have R∞(T )� = Σ(Z) = �1 ⊕ Σ0(Z) with L1 direct sum.

8. Conclusions and new questions

This paper answers two questions that were open by the time [10] was written.
However, the solutions beg for new questions. It is clear that the example given
in Theorem 3.6 on targets in D(A) that require costates S(T − t)∗z with z /∈ E∗

depends on the extreme nonsmoothness of the space �1, which makes natural to
ask: is it possible to construct a similar example in a smooth space (for instance,
in a Hilbert space)?

In a similar vein, the example of time optimal hypersingular control provided
in Corollary 6.3 can hardly be considered definitive. The main objection is that,
due to the extreme nonuniquess of optimal controls (itself a consequence of the
nonsmoothness of the space �0) all we can show is, among the controls that drive
0 to a given target {ȳn} there are hypersingular controls. The strict convexity
condition ‖x‖ = ‖y‖ = 1 , x �= y =⇒ ‖x + y‖ < 2 implies uniqueness of
time optimal controls, thus we may ask: are there examples of hypersingular time
optimal controls in a strictly convex space (in particular in a Hilbert space)? A
“yes” answer to this question would imply that there exists a system (1.1) in a
strictly convex space E and a target ȳ ∈ E such that 0 can be driven to ȳ only by
a hypersingular time optimal control, a result stronger than Corollary 6.3, since
the time optimal drive from 0 to {ȳn} there can be performed by a hypersingular
control but also by then early regular control (6.8).
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On the Motion of Several Rigid Bodies
in a Viscous Multipolar Fluid

Eduard Feireisl and Šárka Nečasová

1. Introduction

The mathematical theory of viscous multipolar fluids, based on the general ideas of
Green and Rivlin [8], was proposed by Nečas and Šilhavý [17] (see also Nečas et al.
[15], [16] for relevant existence theory) in order to develop a general framework for
studying viscous fluids and to present a suitable alternative to the boundary layer
theory (see Bellout et al. [1]). The theory is compatible with the basic principles
of thermodynamics as well as with the principle of material frame indifference.
The present paper is concerned with the mathematical description of the motion
of one or several rigid bodies immersed in a viscous multipolar fluid. The principal
and very natural idea behind the analysis presented below is the fact that the
dissipation of mechanical energy, being much stronger than for classical newtonian
fluids, yields better estimates on the gradient of the velocity field, in particular,
the streamlines are well defined, which seems crucial for this class of problems
partially formulated in terms of the Lagrangian coordinate system.

1.1. Bodies and motions

From the mathematical viewpoint, a rigid body can be identified with a connected
compact subset S of the Euclidean space R3, the motion of which is represented
as a mapping η : (0, T )× R3 → R3, where

η(t, ·) : R3 → R3 is an isometry (1.1)

for any time t ∈ (0, T ). Throughout the whole text, we adopt the Eulerian (spatial)
description of motion, where the coordinate system is attached to a fixed region
of the physical space currently occupied by the fluid. The place x and the time
t ∈ (0, T ) play the role of independent variables.

The work of E.F. supported by Grant IAA100190606 of GA ASCR, the work of Š.N. supported

by Grant IAA100190505 of GA ASCR, both being part of the general research programme of
the Academy of Sciences of the Czech Republic, Institutional Research Plan AV0Z10190503.
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As the mappings η(t, ·) are isometries, we can write

η(t,x) = Xg(t) + O(t)(x − Xg(0)),

where Xg stands for the position of the center of mass at a time t, and O(t) is
a matrix satisfying OT O = I. Assuming the motion to be absolutely continuous
with respect to time, we introduce

d
dt

Xg = Ug – the translation velocity, (1.2)

and
d
dt

O(t)OT (t) = Q(t) – the angular velocity. (1.3)

Accordingly, the solid velocity in the Eulerian coordinate system can be writ-
ten in the form

uS(t,x) =
∂η

∂t
(t, η−1(t,x)) = Ug(t) + Q(t)(x − Xg(t)),

where Xg is determined through (1.2).
The total force FS acting on the body S can be written as a sum of the body

force and the contact force, more specifically,

FS(t) =
∫

S(t)

�SgS dx +
∫

∂S(t)

Tn dσ,

where T denotes the Cauchy stress, gS is the specific body force, and

S(t) = η(t, S).

Thus Newton’s second law gives rise to

m
d
dt

Ug(t) =
d
dt

∫
S(t)

�SuS dx =
∫

S(t)

�SgS dx +
∫

∂S(t)

Tn dσ, (1.4)

where m denotes the total mass of the body.
On the other hand, as the angular velocity Q is skew-symmetric, there exists

a vector ω such that

Q(t)(x − Xg) = ω(t) × (x − Xg).

The balance of moment of momentum reads
d
dt

(Jω) =
d
dt

∫
S(t)

�S(x − Xg) × uS dx = (1.5)∫
∂S(t)

(x − Xg) × Tn dσ +
∫

S(t)

�S(x − Xg) × gS dx,

where J is the inertial tensor that can be identified through formula

Ja · b =
∫

S(t)

�S(a × (x − Xg)) · (b × (x − Xg)) dx.

Equations (1.4), (1.5) determine completely the motion of the rigid body
initially occupying the spatial domain S.
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1.2. The fluid motion

In what follows, we shall assume that the state of the fluid is completely determined
by its density �f and the velocity uf satisfying the standard mass and momentum
balance equations:

∂�f + divx(�fuf ) = 0, (1.6)
∂t(�fuf ) + divx(�fuf ⊗ uf ) + ∇xp = divxS + �fgf , (1.7)

where the symbol p denotes the pressure, gf is the specific body force, and S
denotes the viscous stress tensor related to the total stress through Stokes’ law:

T = S − pI. (1.8)

In the present paper, the effect of the temperature on the motion will be
ignored. On the other hand, we consider a general compressible fluid so that the
state equation relates the pressure to the fluid density through an empirical formula

p = p(�f ). (1.9)

1.3. Viscosity

The heart of the theory of multipolar fluids lies in a particular choice of consti-
tutive equations relating the fluid stress expressed through S to the symmetric
component of the velocity gradient. Very roughly indeed, one can say that, in
contrast to the classical theory of newtonian fluids, the stress tensor depends on
higher-order gradients of the velocity field. This piece of information is sufficient
in order to obtain a priori estimates yielding, in particular, strong compactness of
the density �.

Following the seminal paper by Nečas and Šilhavý [17] we assume the viscous
stress tensor S to be given as

S[u] =
k−1∑
n=0

(−1)nΔn
[
μn

(
∇xu + ∇xut − 2

3
divxu I

)
+ ζndivxuI

]
, u = uf , (1.10)

where μn, ζn are (constant) viscosity coefficients, and the symbol Δ stands for the
standard Laplace operator. Accordingly, one can speak about a k-polar fluid, the
classical newtonian fluids being identified as monopolar with k = 1.

As expected, the presence of higher-order viscosities provides very strong
a priori estimates on the velocity gradient, in particular, the streamlines are well
defined allowing for the Lagrangian description of motion. Note that the theory
of multipolar fluids requires additional “higher-order” stresses to be introduced in
the energy equation in order to comply with the second law of thermodynamics
(see Nečas and Šilhavý [17]).

1.4. Boundary conditions

A proper choice of the boundary conditions represents one of the most delicate
issues of the present theory. We adopt the hypothesis of complete adherence of the
fluid to the boundaries of rigid objects yielding the full-stick boundary conditions

Dj
xu

f = Dj
xu

S , j = 0, . . . , k − 1, on ∂S(t), (1.11)
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and
Dj

xu
f = 0, j = 0, . . . , k − 1, on ∂Ω (1.12)

provided the flow is confined to a fixed spatial domain Ω ⊂ R3.
Here, the symbol Dj

x denotes the vector of all spatial derivatives of order j,
and conditions (1.11), (1.12) are different from those considered in [17], the latter
being of “Neumann-type”. Clearly, the boundary conditions depend on the physical
properties of a given fluid and as such must be determined by experiments. In the
present setting, the flowing rigid objects are supposed to be “sticky”, in particular,
they may be thought of as integral parts of the surrounding fluid of extremely high
viscosity.

1.5. Global-in-time solutions and collisions of rigid objects

The motion of one or several rigid bodies in a viscous fluid has been a topic of
numerous theoretical studies. Desjardins and Esteban [3] establish the existence
of local-in-time solutions for incompressible newtonian fluids, where “local” is to
be understood “up to the first collision of two rigid objects” if Ω ⊂ R2, or “up
to the blow-up of the velocity gradient in a certain Sobolev norm” in the case
Ω ⊂ R3. Similar methods are proposed in [4] in order to study both compressible
and incompressible case. Similar existence results “up to the first collision” were
obtained by Conca et al. [2], Gunzburger et al. [9], Hoffmann and Starovoitov [12],
among others.

As we have seen, the problem of existence or rather non-existence of colli-
sions is important not only because of its practical implications, but also from the
purely theoretical point of view. To the best of our knowledge, this issue remains
largely open even for a two-dimensional physical domain Ω. In the 2-D case, how-
ever, there is a remarkable result by San Martin et al. [18] stating, in particular,
that possible collisions, if any, must be “smooth”, that means, with zero relative
velocities. Another strong evidence of absence of collisions in the 2-D geometry
is provided independently by Hesla [10] and Hillairet [11]. These authors show,
roughly speaking, that newtonian viscosity is strong enough to prevent collisions
provided the rigid objects are discs. As already pointed out, the question is com-
pletely open for a linearly viscous fluid in the realistic situation Ω ⊂ R3 (for partial
results see Starovoitov [20]).

The main objective of the present paper is to establish the existence of global-
in-time solutions for problem (1.1–1.12) provided k ≥ 3. In particular, we show
that collisions cannot occur in a finite time unless they were already included in the
initial data. The paper is organized as follows. In Section 2, we introduce a varia-
tional (weak) formulation of the problem in the spirit of Galdi [7], Hoffmann and
Starovoitov [12], Serre [19]. The main results concerning global-in-time solutions
are stated in Section 3. Suitable approximate solutions are constructed in Section 4
by means of a scheme similar to that used in [6]. In particular, the method of con-
struction is based on the idea of San Martin et al. [18], where the rigid objects are
approximated by a fluid of large viscosity. Such an approach is of course intimately
related to our choice of the boundary conditions specified through (1.11), (1.12).
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In Section 5, we derive suitable uniform estimates on the sequence of approximate
solutions based on strong dissipation of the kinetic energy for multipolar fluids.
In particular, the velocity field is uniformly Lipschitz continuous which facilitates
the subsequent analysis considerably. Using the uniform energy estimates, we pass
to the limit in the sequence of approximate solutions in order to obtain a suitable
variational solution of the original problem (see Section 6).

2. Variational formulation

Similarly to a major part of the reference material mentioned above, our approach
is based on a suitable variational formulation of the problem. In what follows, we
shall assume that Ω ⊂ R3 is a bounded domain with smooth (C∞) boundary.

2.1. Kinematics of the rigid bodies

The reference position Si, i = 1, . . . , m, of the ith rigid body is a bounded domain
in R3 with smooth boundary. The motions are described through affine isometries
ηi(t, ·) : R3 → R3, i = 1, . . . , m, that are absolutely continuous as functions of the
time t ∈ [0, T ]. Furthermore, we set

Si(t) = ηi(t, Si), i = 1, . . . , m,

and

QS =
{

(t,x)
∣∣∣ t ∈ (0, T ), x ∈ ∪m

i=1S
i(t)

}
.

2.2. Conservation of mass

The solid densities �Si

as well as the fluid density �f can be extended to be zero
outside Si(t), and the fluid region Qf = ((0, T )×Ω)\Q

S
, respectively. In a similar

way, we introduce a “global” velocity field u,

u(t,x) =

⎧⎪⎨⎪⎩
uSi

for t ∈ (0, T ), x ∈ S
i
(t),

uf for t ∈ (0, T ), x ∈ Ω \ ∪m
i=1S

i
(t),

0 for t ∈ (0, T ), x ∈ R3 \ Ω.

The physical principle of mass conservation can be expressed through conti-
nuity equation

∂t� + divx(�u) = 0 in D′((0, T ) × R3). (2.1)

2.3. Momentum equation

For a given family of motions ηi, i = 1, . . . , m, we introduce the set of admissible
velocity fields

Vadm(t) = {w ∈ Ck(R3; R3) | w ≡ 0 on R3\Ω, ∇xw+∇xwt ≡ 0 on ∪m
i=1ηi(t, Si)}.

(2.2)
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Following Nečas [14], we introduce a bilinear form ((·, ·)) associated to the
stress tensor S given by (1.10), specifically,

((v,w)) =
∫

Ω

S[v] : ∇xw dx for any v, w ∈ D(Ω; R3). (2.3)

Under the natural hypothesis

μn, ηn ≥ 0, μk−1 > 0, ηk−1 > 0, (2.4)

it is straightforward to see that ((·, ·)) can be extended to a scalar product on
the Sobolev space W k,2

0 (Ω; R3) defined as a completion of the set of compactly
supported smooth functions with respect to the norm

‖v‖2
W k,2

0 (Ω;R3)
=

k∑
n=0

∫
Ω

|Dn
xv|2 dx

(see Nečas [14]).
Assuming continuity of the stresses on the boundaries of rigid objets, we can

reformulate equations (1.4), (1.5), (1.7) in terms of � and u as integral identity∫ T

0

∫
R3

(
�u · ∂tw + �u⊗ u : ∇xw + p divxw

)
dx dt = (2.5)

∫ T

0

((u,w)) dt −
∫ T

0

∫
R3

�g · w dx dt −
∫

R3
�0u0 · w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ]; Ck(R3)), w(T ) = 0, w(t) ∈ Vadm(t) for any t ∈ [0, T ]. (2.6)

Note that (2.5) includes the initial conditions

(�u)(0, ·) = �0u0. (2.7)

2.4. Compatibility of the “global” velocity with rigid motions

We shall say that a velocity field u is compatible with the family of rigid motions
ηi, i = 1, . . . , m provided

u(t,x) = uSi

(t,x) =
∂ηi

∂t
(t, (ηi)−1(t,x)) for all x ∈ ηi(t, Si), i = 1, . . . , m. (2.8)

Relation (2.8) is to be satisfied for any t ∈ [0, T ].

2.5. Energy inequality

The velocity field associated to a multipolar fluid is expected regular because of
the strong kinetic energy dissipation in the high velocity gradient regime. Indeed
taking (formally) a test function w = −ψ(t)u, in (2.5) we obtain energy inequality

E(t2) +
∫ t2

t1

((u,u)) dt ≤ E(t1) +
∫ t2

t1

∫
Ω

�g · u dx (2.9)
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for any 0 ≤ t1 ≤ t2 ≤ T , with

E(t) =
∫

Ω

(1
2
�|u|2 + �P (�)

)
dx, (2.10)

where P is related to the pressure p through

P (�) = �

∫ �

1

p(z)
z2

dz. (2.11)

2.6. Weak (variational) solutions

Having collected all the preliminary material, we are in a position to introduce the
concept of weak solution to our problem referred to hereafter as problem (P).

Definition 2.1. Let the initial distribution of the density and the velocity field be
determined through given functions �0 and u0, respectively; the initial position
of the rigid bodies being Si ⊂ Ω, i = 1, . . . , m. We say that a family �, u, ηi,
i = 1, . . . , m, represent a variational solution of problem (P) on a time interval
(0, T ) provided the following conditions are satisfied:

• The density � is a non-negative bounded function, the velocity field u belongs
to the space L∞(0, T ; L2(Ω; R3)) ∩ L2(0, T ; W k,2

0 (Ω; R3)), and they satisfy
energy inequality (2.9) for t1 = 0 and a.a. t2 ∈ (0, T ), with

E(0) = E0 =
∫

Ω

(1
2
�0|u0|2 + �0P (�0)

)
dx.

• We have � ∈ C([0, T ]; L1(Ω)), �(0) = �0, and continuity equation (2.1) holds
on (0, T )× R3 provided � and u were extended to be zero outside Ω.

• Momentum equation (the integral identity) (2.5) holds for any admissible test
function w satisfying (2.6).

• The mappings ηi, i = 1, . . . , m are affine isometries of R3 compatible with
the velocity field u in the sense of (2.8).

3. Global existence – main results

Our main goal is to prove the following existence result.

Theorem 3.1. Let the viscous stress tensor S be given by (1.10), with k ≥ 3. Let
Ω ⊂ R3, Si ⊂ R3, i = 1, . . . , m be a family of bounded domains with boundaries of
class C∞ such that

S
i ∩ S

j
= ∅ for i �= j, S

i ⊂ Ω for i = 1, . . . , m. (3.1)

Furthermore, assume that �0 is a measurable function such that

0 < � ≤ �0(x) ≤ � for a.a. x ∈ Ω, (3.2)

and that
u0 ∈ W k,2

0 (Ω; R3) ∩ Vadm(0). (3.3)
Finally, let g ∈ L∞(Ω; R3), and p ∈ C[0,∞) – a non-decreasing function be given.
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Then problem (P) admits a variational solution �, u, ηi, i = 1, . . . , m, in the
sense of Definition 2.1 on an arbitrary time interval (0, T ). Moreover, we have

S
i
(t) ∩ S

j
(t) = ∅ for i �= j, S

i
(t) ⊂ Ω for i = 1, . . . , m (3.4)

for any t ∈ [0, T ], that means, the motion is smooth without any collision of two
or several rigid objects in a finite time.

As already pointed out several times, the main ingredient of the proof are
strong dissipation estimates resulting from energy inequality (2.9). Since k ≥ 3,
the velocity field u is a priori bounded in the space L2(0, T ; C1

0(Ω)), in particular,
the streamlines (characteristics) can be identified with the unique solution of the
system

d
dt

X(t,x) = u(t,X(t,x)), t > 0, X(0,x) = x. (3.5)

Accordingly, the (unique) weak solution � of (2.1) satisfying �(0) = �0 is
given by formula

�(t,X(t,x)) = �0(x) exp
(
−

∫ t

0

divxu(s,X(s,x)) ds
)
, x ∈ R3. (3.6)

Note that, in the absence of collisions, one can deduce from (2.5) that

∂t(�u) ∈ L2(0, T ; W−k,2(Ω; R3)), (3.7)

which, combined with (2.9), gives rise to

u ∈ C([0, T ]; L2(Ω; R3)). (3.8)

In particular, formula (3.6) makes sense for any weak solution in the sense of
Definition 2.1.

The rest of the paper is devoted to the proof of Theorem 3.1.

4. Approximate problems

Let {vn}∞n=1 ⊂ D(Ω; R3) be a basis of the Hilbert space W k,2
0 (Ω; R3). Following

San Martin et al. [18] we introduce the approximate problem (P)n,ε:∫ T

0

∫
R3

(
�n,εun,ε · ∂tw + �n,εun,ε ⊗ un,ε : ∇xw + p(�n,ε) divxw

)
dx dt = (4.1)

∫ T

0

∫
Ω

Mε(χn,ε)[∇xun,ε + ∇t
xun,ε] : [∇xw + ∇t

xw] dx dt+∫ T

0

((un,ε,w)) dt −
∫ T

0

∫
R3

�n,εg · w dx dt −
∫

R3
�0u0 · w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ]; Xn), w(T ) = 0, Xn = span{v1, . . . ,vn}. (4.2)
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Here, �n,ε is determined through formula

�n,ε(t,Xn,ε(t,x)) = �0(x) exp
(
−

∫ t

0

divxun,ε(s,Xn,ε(s,x)) ds
)
, x ∈ R3 (4.3)

while
χn,ε(t,Xn,ε(t,x)) = χ0,ε(x) ≥ 0, (4.4)

where
d
dt

Xn,ε(t,x) = un,ε(t,Xn,ε(t,x)), t > 0, Xn,ε(0,x) = x. (4.5)

Note that χn,ε is the unique distributional solution of the equation

∂tχn,ε + un,ε · ∇xχn,ε = 0, χn,ε(0) = χ0,ε

(cf. DiPerna and Lions [5]).
The functions Mε belong to the class C1[0,∞)∩BC[0,∞) for any fixed ε > 0.
Problem (P)n,ε can be solved by means of the standard fixed-point argument

used in [13, Section 2], the presence of the additional viscosity coefficient Mε

requiring only minor modifications.

5. Uniform estimates

Similarly to Section 2.5, one can show that the approximate solutions �n,ε, un,ε

satisfy energy equality

En,ε(t2)+
∫ t2

t1

∫
Ω

Mε(χn,ε)|∇xun,ε+∇t
xun,ε|2 dx dt+

∫ t2

t1

((un,ε,un,ε)) dt = (5.1)

En,ε(t1) +
∫ t2

t1

∫
Ω

�n,εg · un,ε dx

for any 0 ≤ t1 ≤ t2 ≤ T , with

En,ε(t) =
∫

Ω

(1
2
�n,ε|un,ε|2 + �n,εP (�n,ε)

)
dx, (5.2)

En,ε(0) = E0 =
∫

Ω

(1
2
�0|u0|2 + �0P (�0)

)
dx. (5.3)

Under the hypotheses of Theorem 3.1, it is a routine matter to check that
(5.1–5.3) give rise to uniform estimates:

{un,ε}n,ε bounded in L2(0, T ; W k,2
0 (Ω; R3)), (5.4)

� exp
(
− T ‖divxun,ε‖L1(0,T ;L∞(Ω))

)
≤ �n,ε(t,x)

≤ � exp
(
T ‖divxun,ε‖L1(0,T ;L∞(Ω))

) (5.5)

for a.a. t ∈ (0, T ), x ∈ Ω, and

{un,ε}n,ε bounded in L∞(0, T ; L2(Ω; R3)). (5.6)
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In addition,∫ T

0

∫
Ω

Mε(χn,ε)|∇xun,ε + ∇t
xun,ε|2 dx dt ≤ const, (5.7)

where the bound is uniform with respect to n, ε.

6. Convergence

6.1. The limit n → ∞
With ε > 0 fixed, our aim is to let n → ∞ in the family of approximate solutions
�n,ε, un,ε constructed in Section 4. To begin with, estimates (5.4), (5.6) yield

un,ε → uε weakly in L2(0, T ; W k,2
0 (Ω; R3)) and weakly-(*) in L∞(0, T ; L2(Ω; R3))

(6.1)
for n → ∞, at least for a suitable subsequence.

Similarly, by virtue of (4.3), (5.5), we can assume that

�n,ε → �ε in Cweak([0, T ]; L1(Ω)) and weakly-(*) in L∞(0, T ; L∞(Ω)). (6.2)

Consequently, combining (6.1), (6.2), we conclude that

�n,εun,ε → �εuε weakly-(*) in L∞(0, T ; L2(Ω; R3)). (6.3)

Moreover, it follows from (4.1) that

{t →
∫

Ω

(�n,εun,ε)(t) ·vn dx}→{t →
∫

Ω

(�εuε)(t) ·vn dx} in C[0,T ] for n=1,2,...;

whence
�n,εun,ε → �εuε in Cweak([0, T ]; L2(Ω; R3)). (6.4)

Relations (6.1), (6.4) imply

�n,εun,ε · un,ε → �εuε · uε weakly in L2((0, T ) × Ω); (6.5)

therefore, in view of (4.3),

un,ε → uε in L2(0, T ; L2(Ω; R3)). (6.6)

Consequently, (6.1), (6.6) and a simple interpolation argument yield

un,ε → uε in L2(0, T ; W k−1,2
0 (Ω; R3)), (6.7)

in particular,

divxun,ε → divxuε in L2(0, T ; W k−2,2
0 (Ω; R3)). (6.8)

Since �n,ε satisfy continuity equation (2.1), one can deduce from (6.2), (6.8)
that

�n,ε → �ε in L1((0, T ) × Ω). (6.9)
In a similar way, one can show

χn,ε → χε in L1((0, T ) × Ω). (6.10)
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Thus we have shown there are functions �ε, uε such that∫ T

0

∫
R3

(
�εuε · ∂tw + �εuε ⊗ uε : ∇xw + p(�ε) divxw

)
dx dt (6.11)

=
∫ T

0

∫
Ω

Mε(χε)[∇xuε + ∇t
xuε] : [∇xw + ∇t

xw] dx dt

+
∫ T

0

((uε,w)) dt −
∫ T

0

∫
R3

�εg ·w dx dt −
∫

R3
�0u0 ·w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ]; W k,2
0 (Ω, R3)), w(T ) = 0. (6.12)

Furthermore, we have

�ε(t,Xε(t,x)) = �0(x) exp
(
−

∫ t

0

divxuε(s,Xε(s,x)) ds
)
, x ∈ R3 (6.13)

and
χε(t,Xε(t,x)) = χ0,ε(x) ≥ 0, (6.14)

where
d
dt

Xε(t,x) = uε(t,Xε(t,x)), t > 0, Xε(0) = x. (6.15)

In addition, the energy inequality

Eε(t2) +
∫ t2

t1

∫
Ω

Mε(χε)|∇xuε + ∇t
xuε|2 dx dt +

∫ t2

t1

((uε,uε)) dt (6.16)

≤ Eε(t1) +
∫ t2

t1

∫
Ω

�εg · uε dx

holds for any 0 ≤ t1 ≤ T and a.a. t2 ∈ (t1, T ), where

Eε(t) =
∫

Ω

(1
2
�ε|uε|2 + �εP (�ε)

)
dx, Eε(0) = E0 =

∫
Ω

(1
2
�0|u0|2 + �0P (�0)

)
dx.

6.2. The limit for ε → 0
Adopting the idea of San Martin et al. [18] we take

Mε(z) =
1
ε

max{z, 0}, (6.17)

χε,0 = χ0 ∈ C1(Ω), χ0(x) =

{
0 for x ∈ Ω \ ∪m

i=1S
i
,

> 0 for x ∈ ∪m
i=1S

i.
(6.18)

Our ultimate goal is to let ε → 0 in (6.11–6.16) in order to recover the global-in-
time solution of problem (P), the existence of which is claimed in Theorem 3.1.

To begin with, we can assume, by virtue of (6.16), that

uε → u weakly in L2(0, T ; W k,2
0 (Ω; R3)) (6.19)
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passing to a suitable subsequence as the case may be. Moreover, as {�ε}ε>0 is
bounded below away from zero in view of (6.13), we have

uε → u weakly-(*) in L∞(0, T ; L2(Ω; R3)). (6.20)

As stated in (6.13), {�ε}ε>0 solve (in the sense of distributions) continuity
equation (2.1) supplemented with the initial datum �0; whence we have

�ε → � in, say, Cweak([0, T ]; L2(Ω)), (6.21)

�εuε → �u weakly-(*) in L∞(0, T ; L2(Ω; R3)). (6.22)

Thus we are allowed to conclude that �, u, extended to be zero outside Ω,
solve equation (2.1). In addition, � is uniquely determined by �0 and the velocity
field u, and � ∈ C([0, T ]; L1(Ω)) (cf. DiPerna and Lions [5]).

In order to identify the family of isometries ηi, i = 1, . . . , m, we need the
following auxiliary result proved in [6, Proposition 5.1].

Lemma 6.1. Let uε = uε(t,x) be a family of Carathéodory functions such that∫ T

0

‖uε(t)‖2
W 1,∞(R3;R3) dt ≤ const

uniformly with respect to ε → 0. Let Sε ⊂ R3 be a family of open sets such that

db[Sε] → db[S] in Cloc(R3),

where S ⊂ R3 is an open set and the symbol db denotes the signed distance from
the boundary:

db[S](x) = dist[x, R3 \ S] − dist[x, S], dist[x, K] ≡ min
y∈K

|x − y|.

Denote by Xε the unique solution of the problem

d
dt

Xε(t,x) = uε(t,Xε(t,x)), 0 < t < T, Xε(0,x) = x. (6.23)

Then, extracting a suitable subsequence if necessary, we have

uε → u weakly-(*) in L2(0, T ; W 1,∞(R3; R3)),

and
Xε(t, ·) → X(t, ·) in Cloc(R3) uniformly in t ∈ [0, T ],

where X solves
d
dt

X(t,x) = u(t,X(t,x)), 0 < t < T, X(0,x) = x. (6.24)

Moreover,

db[Sε(t)] → db[S(t)] in Cloc(R3) uniformly in t ∈ [0, T ],

where we have set
Sε(t) = Xε(t, Sε), S(t) = X(t, S).



Motion of Rigid Bodies in a Viscous Multipolar Fluid 303

Consider the domains Si(t), i = 1, . . . , m occupied by the images of the rigid
bodies Si, i = 1, . . . , m under the flow induced by (6.24):

Si(t) = X(t, Si), i = 1, . . . , m.

Since the velocity field u belongs to the class L2(0, T ; C1(R3; R3), we have, in
accordance with hypothesis (3.1),

S
i
(t) ∩ S

j
(t) = ∅ for i �= j, S

i ⊂ Ω for i = 1, . . . , m (6.25)

for all t ∈ [0, T ], that is to say, there is no collision of two or more “rigid” objects.
Let

(t,x) ∈ ∪t∈(0,T )S
i(t).

In accordance with Lemma 6.1, there is a small open neighbourhood V of (t,x)
such that

V ⊂ V ⊂ ∪t∈(0,T )Xε(t, Si) for all ε > 0 small enough,

where Xε are determined through (6.15).
Consequently, combining energy inequality (6.16) with (6.14), (6.17), (6.18)

we conclude that
∇xu + ∇t

xu = 0 a.a. on V.

As the point (t,x) was arbitrary, we have

∇xu + ∇t
xu = 0 a.a. on ∪m

i=1 ∪t∈(0,T )S
i(t). (6.26)

It is a routine matter to deduce from (6.24), (6.26) that

X(t, ·) : Si → R3 is an isometry for any i = 1, . . . , m and any fixed t ∈ [0, T ];

whence we can set

ηi(t, ·) : R3 → R3, ηi(t,x) = X(t,x) for all x ∈ Si, t ∈ [0, T ], i = 1, . . . , m (6.27)

Clearly, the family ηi, i = 1, . . . , m is compatible with the vector field u in the
sense of Definition 2.1.

In order to complete the proof of Theorem 3.1, we have to pass to the limit
for ε → 0 in (6.11) to recover momentum equation (2.5). To this end, first observe
that

{�εuε}ε>0 is precompact in Cweak([t1, t2], L2(B; R3)) (6.28)

whenever ([t1, t2] × B) ∩ ∪m
i=1 ∪t∈[0,T ] S

i
(t) = ∅.

In particular, in accordance with (6.20),

�εuε ⊗ uε → Q weakly in L2(0, T ; L2(Ω; R3×3)), (6.29)

where
Q = �u⊗ u on Ω \ ∪m

i=1 ∪t∈(0,T ) Si(t). (6.30)

As a byproduct of (6.30) we get

uε → u in L2
(
Ω \ ∪m

i=1 ∪t∈(0,T ) Si(t); R3
)
; (6.31)
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whence, having used the estimates on divxuε resulting from (6.16), we conclude
that

divxuε → divxu in L1((0, T ) × Ω). (6.32)

Since �ε solve the continuity equation, relation (6.32) implies

�ε → � in L1((0, T )× Ω). (6.33)

Using (6.29), (6.33) one can let ε → 0 in (6.11) in order to recover (2.5) at
least for any test function w such that

w ∈ C1([0, T ]; Ck(R3)), w(T ) = 0, w(t) ∈ V δ
adm(t) for any t ∈ [0, T ],

where

V δ
adm(t) = {w ∈ Ck(R3; R3) | w ≡ 0 on a δ-neighbourhood of R3 \ Ω,

∇xw + ∇xwt ≡ 0 on a δ-neighbourhood of ∪m
i=1 ηi(t, Si)}, δ > 0.

Note that∫ T

0

∫
Ω

�εuε ⊗ uε : ∇xw dx dt =
1
2

∫ T

0

∫
Ω

�εuε ⊗ uε : (∇xw + ∇t
xw) dx dt.

Since there is no contact of rigid objets (see (6.25)), it is easy to extend
validity of (2.5) to all test functions in the class (2.6) via density argument.

Finally, by virtue of (6.19), (6.33), energy inequality (2.9) holds for t1 = 0
and a.a. t2 ∈ (0, T ) as required in Definition 2.1. Theorem 3.1 has been proved.
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[15] J. Nečas, A. Novotný, and M. Šilhavý. Global solution to the ideal compressible heat-
conductive multipolar fluid. Comment. Math. Univ. Carolinae, 30:551–564, 1989.
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On the Stokes Resolvent Equations in Locally
Uniform Lp Spaces in Exterior Domains

Matthias Geissert and Yoshikazu Giga

Abstract. The Stokes resolvent equations are studied in locally uniform Lp

spaces where the domain is an exterior of a bounded domain. The unique
existence of a solution of the Stokes resolvent equations is proved with a
resolvent estimate. In particular, the analyticity of the Stokes semigroup is
established. An interesting aspect of locally uniform Lp spaces is that these
spaces contain non-decaying functions.

1. Introduction

In this note we consider the Stokes resolvent equations in locally uniform Lp spaces
in an exterior domain, which is a complement of the closure of a bounded open set.
We shall prove the analyticity of the Stokes semigroup in these spaces. Note that
these spaces contain non-decaying functions. Although there is a huge literature
for the analyticity of the Stokes semigroup, results are only known for spaces which
exclude non-decaying functions if the domain is an exterior domain.

Throughout this note let p ∈ (1,∞) and Ω ⊂ Rn, n ≥ 2, be an exterior
domain with C2+μ-boundary for some μ ∈ (0, 1) and let G = Ω or G = Rn. We
consider the Stokes equations

λu − Δu + ∇π = f, in G

div u = 0, in G (1)
u = 0, on ∂G

in locally uniform spaces, i.e.,

Lp
uloc(G) = {u ∈ Lp

loc(G) : ‖u‖Lp
uloc(G) < ∞},

where

‖u‖Lp
uloc(G) = sup

x0∈Zn

‖u‖Lp(B(x0,2)∩G).

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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Note that the choice of radius 2 for the balls is not important. Indeed, any radius
r such that Ω ⊂ ⋃

i∈N B(xi, r) leads to the same spaces Lp
uloc(G). There are even

more possibilities to define locally uniform spaces, see [2] and [7].
Our aim is to show that (1) has a unique solution for solenoidal f in locally

uniform Lp spaces in exterior domains and establish a resolvent estimate for large
λ which yields analyticity of the Stokes semigroup (Theorem 3.1 and Theorem 3.4).

The advantage of locally uniform spaces is that Lp
uloc(Ω) inherit many proper-

ties of the usual Lp(Ω) spaces but it contains non-decaying functions. In particular,
L∞(Ω) ⊂ Lp

uloc(Ω).
Since locally uniform spaces coincide with the usual Lp-spaces if the domain

is bounded, unbounded domains are of interest only. Unfortunately, we cannot
expect the Helmholtz-projection to be bounded since it is unbounded in locally
uniform spaces in Rn. Up to now, [7] is the only work that deals with the Navier-
Stokes equations in locally uniform spaces. The authors of [7] prove existence
and uniqueness of a mild solution to the Navier-Stokes equations in Rn by using a
variant of the Fujita-Kato iteration. In order to do so, they use kernel estimates for
the heat-semigroup to show Lp−Lq smoothing estimates. For further development
see [8].

In contrast to the case Rn there are no kernel estimates for exterior domains
available. However, we can construct a solution of (1) using the resolvent of the
Laplacian in Rn in locally uniform spaces, see [2], and the solution of the general-
ized Stokes resolvent problem in Lp(Ω), see [4]. This is possible since the boundary
of Ω is compact and thus Lp(∂Ω) = Lp

uloc(∂Ω), see the proof of Theorem 3.1 below.
The Stokes resolvent problem has not yet been studied much in a space

which contains non-decaying functions if G is a domain with non-empty boundary.
A few exception is a result by Desch, Hieber and Prüss [3] which established the
boundedness and the analyticity of the Stokes semigroup in L∞ space if the domain
is a half-space by using an explicit representation of a solution. To show existence
and uniqueness of a solution of the Navier-Stokes equations the analyticity of the
semigroup is usually not enough so we do not touch this problem in this note.
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Mathematics of Hokkaido University and the Graduate School of Mathematical
Sciences of University of Tokyo. Their hospitality is gratefully acknowledged. The
work of the first author is partly supported by the Japan program of the German
Research Foundation (DFG) and the German Union of Mathematicians (DMV).
The work of the second author is partly supported by the Grant-in-Aid for Scien-
tific Research, No. 17654037, No. 18204011, the Japan Society of the Promotion
of Science (JSPS) and by COE ‘Mathematics of Nonlinear Structures via Singu-
larities’ (Hokkaido University) sponsored by JSPS.
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2. Preliminaries

Analogous to the homogeneous Sobolev space Ŵ 1,p(G) we define

Ŵ 1,p
uloc(G) = {u ∈ Lp

loc(G) : ∇u ∈ Lp
uloc(G)}.

Next, we define the space of solenoidal vector fields.

Lp
ulσ(G) = {u ∈ Lp

uloc(G) : div u = 0, u · ν = 0 on ∂G}.
Here, ν denotes the outer normal and the boundary condition u · ν = 0 on ∂G is
understood in the sense of the trace theorem based on Gauss’ divergence theorem
similar as in the Lp-setting. For the convenience of the reader we discuss the
differences to the proof for the Lp-setting given in [5, Chapter III.2]. A major
difference to the usual Lp-setting is that C∞

c (Ω) is not dense in

Hp(Ω) :=
{
u ∈ L1

loc(Ω) : ‖u‖Hp < ∞
}

,

where ‖u‖Hp = ‖u‖Lp(Ω) + ‖div u‖Lp(Ω). But it is not difficult to show that
BC∞(Ω) = {u ∈ C∞(Ω) : ∂αu is bounded for all α ∈ Nn} is dense in

Hp,uloc(Ω) :=
{
u ∈ L1

loc(Ω) : ‖u‖Hp,uloc < ∞
}

,

where ‖u‖Hp,uloc = ‖u‖Lp
uloc(Ω) + ‖div u‖Lp

uloc(Ω). For u ∈ BC∞(Ω) we obtain∫
∂Ω

uνΨdx =
∫
Ω

u∇Ψdx +
∫
Ω

Ψdiv udx, Ψ ∈ C∞
c (Rn). (2)

Obviously, the right-hand side does not make sense for all Ψ ∈ W 1,p′
(Ω), where

1/p + 1/p′ = 1. Hence, we have to impose stronger decay properties on Ψ for
|x| → ∞ in order to makes sense out of (2). More precisely, let us define

Lp
sum(G) = {u ∈ Lp

loc(G) : ‖u‖Lp
sum(G) < ∞},

where

‖u‖Lp
sum(G) =

∑
x0∈Zn

‖u‖Lp(B(x0,2)∩G).

In contrast to the situation for locally uniform spaces, C∞
c (G) is dense in Lp

sum(G).
Furthermore, we have Lp

sum(G) � Lp(G) � Lp
uloc(G).

Since C∞
c (Ω) is dense in W 1,p′

sum(Ω), by Hölder’s inequality, (2) is valid for
ϕ ∈ W 1,p′

sum(Ω) with 1/p + 1/p′ = 1. Now, we can proceed as in [5, Chapter III.2]
since the trace space of W 1,p′

sum(Ω) is W 1−1/p′,p′
(∂Ω).

Lemma 2.1. Let 1/p + 1/p′ = 1. Then

Lp
ulσ(G) =

⎧⎨⎩f ∈ Lp
uloc(G) :

∫
G

f∇ϕdx = 0 for all ϕ ∈ W 1,p′
sum(G)

⎫⎬⎭ . (3)

Proof. This easily follows from (2). �
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Next, we characterize all π ∈ Ŵ 1,p
uloc(G) satisfying ∇π ∈ Lp

ulσ(G). We start
with the case G = Rn.

Lemma 2.2. Let π ∈ Ŵ 1,p
uloc(R

n) satisfy ∇π ∈ Lp
ulσ(Rn). Then ∇π = K for some

K ∈ Cn.

Proof. We only prove the assertion for n ≥ 3. The case n = 2 follows similarly.
Let α, β ∈ Nn

0 and ϕ ∈ C∞
c (Rn). We set Ψ = E ∗ ∂αϕ, where E denotes the

fundamental solution of the Laplace equation. Then, an explicit calculation for
x /∈ supp ϕ yields∣∣∂βΨ(x)

∣∣ =
∣∣((∂α+βE) ∗ ϕ

)
(x)

∣∣ ≤ C(ϕ)
dist (x, supp ϕ)n−2+|α|+|β| .

Moreover, Ψ ∈ C∞(Rn) and ΔΨ = ∂αϕ.
Since ∇π ∈ Lp

uloc(Ω) is harmonic, we have ∇π ∈ L∞(Rn) ∩ C∞(Rn). Hence,
|π(x) − π(0)| ≤ ‖∇π‖L∞(Rn)|x|, x ∈ Rn. Therefore, integration by parts yields

0 =
∫

Rn

∇π∇Ψdx = −
∫

Rn

πΔΨdx = −
∫

Rn

π∂αϕdx =
∫

Rn

∂απϕdx

provided |α| is large enough. Since π ∈ Ŵ 1,p
uloc(R

n) by assumption, ∇π = K for
some K ∈ Cn. �

In particular, it follows from the previous lemma that K ∈ Lp
ulσ(Rn). Hence,

Lp
σ(Rn) � Lp

ulσ(Rn).

Lemma 2.3. Let π ∈ Ŵ 1,p
uloc(Ω) satisfy ∇π ∈ Lp

ulσ(Ω). Then π = pK +Kx for some
K ∈ Cn and pK ∈ Ŵ 1,p(Ω), where pK is uniquely determined. In particular, if
π ∈ Ŵ 1,p(Ω) then ∇π ≡ 0.

Proof. Let π̃ denote a smooth extension of π to Rn. Then∫
Rn

∇π̃∇Ψdx =
∫
Ω

∇π∇Ψdx +
∫
Ωc

∇π̃∇Ψdx =
∫
Ωc

f∇Ψdx, Ψ ∈ C∞
c (Rn),

where f = ∇π̃|Ωc . Then the solution π̂ of Δπ̂ = div f in Rn satisfies π̂ ∈ Ŵ 1,p(Rn).
Since ∫

Rn

∇(π̃ − π̂)∇Ψdx = 0, Ψ ∈ C∞
c (Rn),

and C∞
c (Rn) is dense in W 1,p

sum(Rn), by Lemma 2.2, there exists K ∈ Cn with
∇(π̃ − π̂) = K. Hence, ∇π = ∇π̂|Ω + K. �
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3. The Stokes operator in Lp
uloc spaces in exterior domains

In this section we present our main results for the Stokes operator in locally uniform
spaces in exterior domains. We define Σθ := {λ ∈ C \ {0} : | argλ| < θ}. Here and
in the following, we always assume θ ∈ (0, π).

Theorem 3.1. Fix γ > 0 and let λ ∈ Σθ with |λ| ≥ γ. Then, for f ∈ Lp
ulσ(Ω)

there exists u ∈ W 2,p
uloc(Ω) ∩ Lp

ulσ(Ω) and p ∈ Ŵ 1,p(Ω) satisfying (1) with G = Ω.
Moreover, there exists C > 0, independent of u, p, f and λ, such that

λ‖u‖Lp
uloc(Ω) + ‖u‖W 2,p

uloc(Ω) + ‖∇p‖Lp(Ω) ≤ C‖f‖Lp
ulσ(Ω). (4)

Proof. Let f̃ denote the extension of f by 0. By [2, Proposition 2.1 and Theorem
2.1] there exists a solution u1 to

λu1 − Δu1 = f̃ , in Rn,

satisfying

‖u1‖W 2,p
uloc(R

n) + |λ|‖u1‖Lp
uloc(R

n) ≤ C1‖f̃‖Lp
uloc(R

n) = C1‖f‖Lp
uloc(Ω), (5)

where C1 > 0 is independent of f . Furthermore, we have div u1 = 0. However, the
boundary conditions are not fulfilled since u1 is a solution in the whole space only.

Since Ωc is compact, u1|Ωc ∈ W 2,p(Ω). Let E denote a strong 2-extension
operator for Ωc (see [1, Thm. 5.22]) and set u2 = Eu1. We then have u2 = u1 in
Ωc, and there exist C2, C3 > 0, independent of u1, such that

‖u2‖W s,p(Rn) ≤ C2‖u1‖W s,p(Ωc) ≤ C2C3‖u1‖W s,p
uloc(R

n), s = 0, 1, 2. (6)

By [4, Thm. 2.1], there exists u3 ∈ W 2,p(Ω), p3 ∈ Ŵ 1,p(Ω) such that

λu3 − Δu3 + ∇p3 = λu2 − Δu2, in Ω,

div u3 = div u2, in Ω,

u3 = 0, on Ω.

Moreover, it follows from (5), (6) and [4, Thm. 2.1] that

|λ|‖u3‖Lp(Ω) + ‖∇2u3‖Lp(Ω) + ‖∇p‖Lp(Ω) ≤ C4

(
‖u2‖W 2,p(Ω) + |λ|‖u2‖Lp(Rn)

)
≤ C1C2C3C4‖f‖Lp

uloc(Ω),

where C4 is independent of u2 but it may depend on γ. Finally, we set u :=
u1 − u2 + u3 and p := p3. Then (u, p) satisfies (4) and

λu − Δu + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

The proof is complete. �

Next, we investigate uniqueness of solutions to (1). Again, we start with the
case G = Rn.
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Lemma 3.2. Let p ∈ (1,∞), λ ∈ Σθ ∪ {0}. Assume that u ∈ W 2,p
uloc(R

n) and
π ∈ Ŵ 1,p

uloc(R
n) satisfy (1) with f ≡ 0 and G = Rn. Then π = λKx and u = K for

some K ∈ Cn.

Proof. Multiplying (1) by ∇Ψ, where Ψ ∈ W 1,p′
sum(Rn), and integrating by parts,

we obtain ∫
Rn

∇π∇Ψdx = 0.

Hence, by Lemma 2.2, ∇π = K for some K ∈ Cn. Obviously, ũ := K/λ and
π = Kx is a solution of (1) for λ �= 0. Since the solution is unique by [2, Proposition
2.1] the lemma follows for λ �= 0. The case λ = 0 follows by standard arguments
using the fact that ∇u is harmonic. �

Lemma 3.3. Let p ∈ (1,∞), λ ∈ Σθ and let u ∈ W 2,p
uloc(Ω) and π ∈ Ŵ 1,p

uloc(Ω) satisfy
(1) with f = 0 and G = Ω. Then u = uK + K and π = πK + λKx with some
K ∈ Cn, uK ∈ W 2,p(Ω) and πK ∈ Ŵ 1,p(Ω). In particular, if π ∈ Ŵ 1,p(Ω), then
u = 0, ∇π = 0.

Proof. We follow the ideas of the proof of [9, Theorem 1.2]. Let ũ, π̃ be a (smooth)
extension to Rn. Then ũ and π̃ solve

λũ − Δũ + ∇π̃ = f̃ , in Rn

div ũ = g̃, in Rn

where g̃ := div ũ and f̃ = λũ − Δũ + ∇π̃. Note that g̃ and f̃ are compactly
supported. Hence, g̃ ∈ W 1,p(Rn) and f̃ ∈ Lp(Ω). Taking divergence, we obtain

Δπ̃ = div f̃ − λg̃ − Δg̃ = div f̃ − λdiv ũ − Δg̃. (7)

We set π̂ = E ∗ (div f̃ − λdiv ũ) + g̃, where E denotes the fundamental solution
of the Laplace equation. It then follows that π̂ ∈ Ŵ 1,p(Rn). Moreover, π̂ satisfies
(7). Hence,

û := (λ − Δ)−1(f̃ −∇π̂) ∈ W 2,p(Rn) ∩ Lp
σ(Rn)

and π̂ satisfies (1) with G = Rn and f = 0. Therefore, Lemma 3.2 yields û− ũ = K
and π̂ − π̃ = λKx for some K ∈ Rn. In particular, u = K − û and π = π̂ − λKx.
If π ∈ Ŵ 1,p(Ω), then K must be zero so that u ∈ W 2,p(Ω) and π ∈ Ŵ 1,p(Ω). By
uniqueness results in Lp(Ω) (see [6], [4]), we have u = 0 and ∇π = 0. �

Our existence and uniqueness result yields the analyticity of the Stokes semi-
group in locally uniform Lp spaces. Let R(λ)f denote the solution u of (1) in
Theorem 3.1. The estimate (4) implies that R(λ) is a bounded linear operator
from Lp

ulσ(Ω) to W 2,p
uloc(Ω) for λ ∈ Σ = C\(−∞, 0]. We define a closed linear

operator in Lp
ulσ(Ω) by

A := λI − R(λ)−1
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whose domain equals the range of R(λ) where λ ∈ Σ. We call this operator the
Stokes operator in Lp

ulσ(Ω). Apparently, the definition depends on λ. However, we
easily obtain from (1) the ‘resolvent identity’

R(λ) − R(μ) = (μ − λ)R(λ)R(μ) = (μ − λ)R(μ)R(λ)

by observing that the difference w = R(λ)f − R(μ)f solves

(λ − Δ)w + ∇q = (μ − λ)R(μ)f in G

div w = 0 in G

w = 0 on ∂G

with some q ∈ Ŵ 1,p(Ω). The resolvent identity implies that the definition of the
operator A is independent of λ ∈ Σ. Now, Theorem 3.1 yields the analyticity of
the semigroup generated by A.

Theorem 3.4. The operator −A generates an analytic semigroup e−tA in Lp
ulσ(Ω).

Remark 3.5. The estimate (4) in Theorem 3.1 is not enough to claim that e−tA is
a bounded analytic semigroup since (4) is not uniform near λ = 0. Moreover, e−tA

is not expected to be a C0-semigroup since the domain is not dense in Lp
ulσ(Ω) and

it is not C0 even for G = Rn.
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Abstract. This paper is devoted to study the generation of analytic semi-
group for a family of degenerate elliptic operators (with unbounded coeffi-
cients) which includes well-known operators arising in mathematical finance.
The generation property is proved by assuming some compensation conditions
among the coefficients and applying a suitable modification of the techniques
developed in [16]. Using the results proved in [11] concerning the generation in
the space L2(Rd), we prove the generation results in Lp(Rd) for p ∈ [1, +∞].
These results have several consequences in connection with the financial ap-
plications [3, 11].
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Keywords. Generation of analytic semigroup, second-order degenerate partial
differential equations of elliptic and parabolic type, localization method.

1. Introduction

In this paper we study the generation of analytic semigroups in Lp(Rd), with p in
[1, +∞] for a family of degenerate elliptic operators with unbounded coefficients.

These results can be employed to obtain existence, uniqueness and regular-
ity estimates for the solutions of the associated (linear or semilinear) parabolic
problems, through the well-known theory of analytic semigroups (e.g., [12]). This
has been done in [3] for the so-called “no-arbitrage” operators arising in pricing

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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contingent claims. We consider the following differential operator in Rd

A(x, D) =
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)Di,j +
d∑

i=1

bi(x)Di − γ2(x)

(denoted simply by A in the following) where the weights ψi : Rd → R, i = 1, . . . , d,
are differentiable sublinear functions vanishing in not more than a negligible set
Z, the matrix {ai,j}i,j=1,...,d is bounded and uniformly elliptic, the coefficients
bi : Rd → R, i = 1, . . . , d, are measurable functions and the function γ : Rd → R
is differentiable and locally square integrable with its first derivatives. The main
difficulty to overcome here is the need of managing both the possible unbounded-
ness of all the coefficients and the presence of zero’s for those of the second-order
terms. In general these operators do not generate analytic nor strongly continuous
semigroups (for instance the Ornstein-Uhlenbeck operator in one dimension, where
ψ = 1, b(x) = x, γ = 0). However, we prove that choosing suitable compensation
conditions on the coefficients this become possible.

In [11] we considered the operator A defined in the whole space Rd and we
proved the generation of analytic semigroup in the space L2(Rd), by an application
of Hilbert space techniques. This was possible thanks to some preliminary a priori
estimates, which are established by an appropriate choice of some compensation
conditions among the coefficients of the operator. Then we obtained a characteri-
zation of the domain of the operator in L2(Rd) by a localization procedure which
was adapted to the growth rate of the weights ψ’s at infinity and close to the
negligible set Z of all zeros of the ψ’s.

The aim of this paper is to pass from the L2(Rd) case to the Lp(Rd) one,
when 1 ≤ p ≤ +∞, by using a suitable modification of the Stewart’s method
[15, 16, 17]. Of course the fitting localization procedure become more complicated
here, since it now depends also on the growth rate of the zero-order coefficient γ.

A first result of our semigroup generation analysis is the existence of solu-
tions of the no-arbitrage pricing problems, which is a central topic in the modern
mathematical finance. However, a general existence result can be obtained via the
probabilistic approach. So the main motivation to study these generation prob-
lems is based on the question of regularity of solutions. This also in order to apply
suitable numerical methods.

The paper is organized as follows. In Section 2 we introduce the notation
and recall some results about the generation of analytic semigroup in the spaces
L2(Rd) proved in [11] . In Section 3 we prove the generation of analytic semigroup
and we obtain the domain characterization in the spaces Lp(Rd), 2 < p < ∞ and
L∞(Rd). This result implies the generation of analytic semigroup in the spaces
Lp(Rd) for 1 ≤ p < 2 using duality techniques.
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2. Preliminary material and notation

Let Ω be an open subset of the d-dimensional Euclidean space Rd. We denote by
C∞(Ω) the linear space of all infinitely differentiable complex-valued functions on
Ω, and we write C∞

c (Ω) for the linear submanifold of C∞(Ω) of all functions with
compact support in Ω.
We denote by Wn,p(Ω) the usual Sobolev space (see, e.g., [1]), defined as the com-
pletion of C∞

c (Ω) with respect to the norm

‖u‖W n,p(Ω) ≡
∑
|α|≤n

(∫
Ω

|Dαu(x)|p dx
)1/p

writing Lp(Ω) [resp. Hn(Ω)] rather than W 0,p(Ω) [resp. Wn,2(Ω)], and using the
shorthands Wn,p and Lp for Wn,p(Rd) and Lp(Rd), respectively.
We denote by Wn,p

loc [resp. Lp
loc, Hn

loc] the linear space of all measurable complex-
valued functions on Rd belonging to Wn,p(Ω) [resp. Lp(Ω), Hn(Ω)] for every open
subset Ω of Rd having compact closure, and, for any fixed real-valued function
ξ ∈ Wn,p

loc , we define the weighted Sobolev space Wn,p
ξ as the completion of C∞

c (Rd)
with respect to the weighted norm

‖u‖W n,p
ξ

≡ ‖ξu‖W n,p .

It is well known that Wn,p
ξ can also be defined as the space of all measurable

functions u such that ξu ∈ Wn,p. Similarly, for any choice of the functions α, βi,
i = 1, . . . , d, δi,j , i, j = 1, . . . , d belonging to Lp

loc, with essinf |α| > 0, we introduce
the weighted Sobolev spaces W 1,p

(α,β) and W 2,p
(α,β,δ) defined as the completion of

C∞
c (Rd) with respect to the weighted norm

‖u‖W 1,p
(α,β)

≡ ‖αu‖Lp +
d∑

i=1

‖βiDiu‖Lp

and

‖u‖W 2,p
(α,β,δ)

≡ ‖αu‖Lp +
d∑

i=1

‖βiDiu‖Lp +
d∑

i,j=1

‖δi,jDi,ju‖Lp

respectively and we introduce also the spaces W 1,p
ξ,(α,β) [resp. W 2,p

ξ,(α,β,δ)] of all mea-

surable functions u such that ξu ∈ W 1,p
(α,β) [resp. ξu ∈ W 2,p

(α,β,δ)], endowed with the
norms

‖u‖W 1,p
ξ,(α,β)

≡ ‖ξu‖W 1,p
(α,β)

[resp. ‖u‖W 2,p
ξ,(α,β,δ)

≡ ‖ξu‖W 2,p
(α,β,δ)

].

Lastly we denote with Lp
ξ the space W 0,p

ξ .
Let us now consider the formal second-order differential operator

Au ≡
d∑

i,j=1

ψi(x)ψj(x)ai,j(x)Di,ju +
d∑

i=1

bi(x)Diu − γ2(x)u. (1)
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Assumption 2.1.

1. For all i, j = 1, . . . , d, the coefficients ai,j(x) are bounded differentiable real-
valued functions on Rd such that ai,j(x) = aj,i(x), and satisfying the strong
ellipticity condition

Re
d∑

i,j=1

ai,j(x)zizj ≥ E |z|2 ∀z ∈ Cd,

for a suitable ellipticity modulus E > 0 independent of x ∈ Rd;
2. for every i = 1, . . . , d, the coefficients bi(x) are measurable real-valued func-

tions on Rd, while γ(x) is a real-valued function in L2
loc with essinf(γ) ≥ 1;1

3. for all i = 1, . . . , d the coefficients ψi(x) are differentiable, and we have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x) ∀x ∈ Rd,

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x) ∀x ∈ Rd,

(2)

for suitable constants B1 and B2 such that B1 + B2 < 2 and measurable
positive functions η1,i(x) and η2,i,j(x) satisfying

d∑
i=1

η2
1,i(x) = d

d∑
i,j=1

η2
2,i,j(x) = 1.

Assumption 2.1 allows us to reduce the analysis of the nonvariational case to the
analysis of the variational one. Indeed, introducing the sesquilinear form a(·, ·)
associated to the operator A, given by

a(u, v) ≡ â(u, v) −
∫

Rd

d∑
i,j=1

Dj(ψi(x)ψj(x)ai,j(x))Diu(x)v(x)dx,

for all u ∈ H1,p
(γ,ψ) 1 < p < ∞ and v ∈ H1,q

(γ,ψ) where q is the conjugate of p , and
writing

D(Ap) ≡
{
u∈H1,p

(γ,ψ) : ∃K(u) > 0 s.t. |a(u, ϕ)| ≤ K(u)‖ϕ‖q ∀ϕ ∈C∞
c (Rd)

}
,

one can study the realization Ap : D(Ap) → Lp of A by considering for each λ ∈ C
such that Reλ > 0, the equation

(λ −Ap)u = f. (3)

In [11] the following results are proved:

Theorem 2.2. Under Assumption 2.1, the operator A2 : D(A2) → L2 generates an
analytic semigroup on L2.

1This condition could be replaced by the seemingly more general essinf γ > 0, provided to employ
a standard normalization procedure.
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Moreover,

Corollary 2.3. Under Assumption 2.1, for every solution u ∈ D(A2) of (3), we
have

|λ|1/2 ‖γu‖L2 ≤ K ′‖f‖L2 and |λ|1/2 ‖ψiDiu‖L2 ≤ K ′′‖f‖L2,

for suitably chosen K ′, K ′′ > 0 independent of λ.

In order to obtain suitable estimates for the first-order derivatives we need the
following assumption:

Assumption 2.4. Under 1. and 2. of Assumption 2.1, suppose in addition that γ
is continuously differentiable and that, for all i, j = 1, . . . , d and x ∈ Rd, we have

|bi(x)| ≤ B1E
1/2η1,i(x) |ψi(x)| γ(x),

|Dj(ψi(x)ψj(x)ai,j(x))| ≤ B2E
1/2η2,i,j(x) |ψi(x)| γ(x),

2 |ψj(x)Djγ(x)ai,j(x)| ≤ B3E
1/2η3,i,j(x)γ2(x),

for suitable constants B1, B2 and B3 such that B1 + B2 + B3 < 2 and suitable
measurable functions η1,i(x), η2,i,j(x) and η3,i,j(x) on Rd satisfying

∑d
i=1 η1,i(x) =

d
∑d

i,j=1 η2
2,i,j(x) = d

∑d
i,j=1 η2

3,i,j(x) = 1.

We have

Theorem 2.5. Under Assumption 2.4, both γ2u and ψiγDiu belong to L2, for every
i = 1, . . . , d. More precisely, u belongs to H1

(γ2,γψ), and

‖u‖H1
(γ2,γψ)

≤ K‖f‖L2

holds true for a suitable K > 0. In particular, for every i = 1, . . . , d, also biDiu
belongs to L2, and we have

d∑
i=1

‖biDiu‖L2 ≤ d2B1E
1/2

d∑
i=1

‖ψiγDiu‖L2.

Aiming to show that for all i, j = 1, . . . , d the single summand ψi(x)ψj(x)Di,ju(x)
belongs to L2, we need to strengthen our hypotheses on the coefficients ψi(x)’s.
Therefore, having in mind our examples, we will assume then the negligibility of
the set

Z ≡
{
x ∈ Rd : ψi(x) = 0, for some i = 1, . . . , d

}
,

of all zeros of the ψi(x)’s, and the existence of a suitable countable covering of
Rd − Z which allows us to perform a localization procedure. Such a covering will
be made by rectangles of the type

R(x0, rψ) ≡
{

x ∈ Rd : |xi − x
(0)
i | ≤ r|ψi(x0)|, i = 1, . . . , d

}
,

for x0 ≡ (x(0)
1 , . . . , x

(0)
d ) ∈ Rd − Z and r > 0.
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Assumption 2.6. Under Assumption 2.4, suppose in addition that
(i) for every i = 1, . . . , d, the differentiable function ψi(x) belongs to H1

loc and
the set Z is negligible;

(ii) there exist real numbers r1 > 0 and L > 0 such that for every 0 < r ≤ r1 we
can find a countable set Nr ⊂ Rd − Z such that
(a) the family F1 ≡ {R(x, rψ)}x∈Nr

is a covering of Rd − Z;
(b) each rectangle of the family F2 ≡ {R(x, 2rψ)}x∈Nr

does not contain
any element of Z and has a nonempty intersection with at most a fixed
number n0 of other rectangles of F2 itself;

(c) we have

1
L

≤ min
i=1,...,d

inf
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ max
i=1,...,d

sup
x∈R(x0,2rψ)

|ψi(x)|
|ψi(x0)|

≤ L,

for each x0 ∈ Nr.

Remark 2.7. Assumption 2.6 is convenient for proving the characterization result.
However, it is not easy to check it for given operators. In [11] it is proved that 2.6
is verified under a more treatable assumption, befitted with examples coming from
financial mathematics. More precisely, it was shown that Assumption 2.8 below
implies 2.6.

Assumption 2.8. Under Assumption 2.4, suppose in addition that
(i) Part (i) of Assumption 2.6 holds true;
(ii) there exist r0 > 0 (small), R0 > 0 (large), and α > 0 such that for every

x ∈
{
x ∈ Rd : dist(x, Z) < r0 or dist(x, 0) > R0

}
≡ D (r0, R0) and every i =

1, . . . , d we have
|Djψi(x)| ≤ α;

(iii) for every i = 1, . . . , d the function ψi(x) depends only on the variable xi.

Theorem 2.9. Under Assumption 2.6, the functions

ψi(x)ψj(x)Di,ju(x)

belong to L2 for all i, j = 1, . . . , d. More precisely, we have u ∈ H2
(γ2,γψ,ψ2) and

the estimate

|λ|‖u‖L2 + |λ|1/2‖u‖H1
(γ,ψ)

+ ‖u‖H2
(γ2,γψ,ψ2)

≤ K‖f‖L2

holds true for a suitable K > 0.

Such results can be extended to the case of weighted Sobolev spaces:

Theorem 2.10. Assume that Assumption 2.4 still holds true when replacing the
first-order term of the operator A with

d∑
i=1

biDi +
d∑

i,j=1

ψiψjai,j

(Diξ

ξ
Dj +

Djξ

ξ
Di

)
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and the zero-order term with

−γ2 +
d∑

i,j=1

ψiψjai,j

(Di,jξ

ξ
+ 2

DiξDjξ

ξ2

)
+

d∑
i=1

bi
Diξ

ξ
;

then the operator A has a realization A2,ξ : D(A2,ξ) → L2
ξ which generates an

analytic semigroup on L2
ξ. Moreover, for each λ ∈ C such that Re λ > 0, the

resolvent equation λu − A2,ξu = f has, for every f ∈ L2, a unique solution u ∈
D(A2,ξ), which satisfies the estimate

|λ|‖u‖L2
ξ
+ |λ|1/2‖u‖H1,2

ξ,(γ,ψ)
+ ‖u‖H2,2

ξ,(γ2,γψ,ψ2)
≤ C‖f‖L2

ξ
,

for a suitable constant C > 0. In particular we have D(A2,ξ) = H2
ξ,(γ2,γψ,ψ2).

Remark 2.11. By using the Korn’s argument it is possible to pass from generation
results in the case of differentiable coefficients to similar result in the case of
continuous coefficients. However, in such a general setting, it is impossible to find
a general approach leading to this kind of results. This can be done in particular
cases with different procedures.

3. Generation of analytic semigroups on Lp(Rd)

In order to prove the Lp estimates we need an additional assumption. Actually
we need the existence of a suitable countable covering of Rd − Z which allows us
to perform a localization procedure. Let rγ(x0) be the minimum between r and
γ(x0)−1. Let

R(x0, rψ,γ) ≡
{
x ∈ Rd : |xi − x

(0)
i | ≤ rγ(x0)|ψi(x0)|, i = 1, . . . , d

}
,

for x0 ≡ (x(0)
1 , . . . , x

(0)
d ) ∈ Rd − Z and r > 0.

Assumption 3.1. Under Assumption 2.4, suppose in addition that

(i) Part (i) of Assumption 2.6 holds true;
(ii) There exist real numbers r1 > 0 and L > 0 such that for every 0 < r ≤ r1

we can find a countable set Nr ⊂ Rd − Z such that
(a) the family F1 ≡ {R(x, rψ,γ)}x∈Nr

is a covering of Rd − Z;
(b) each rectangle of the family F2 ≡ {R(x, 2rψ,γ)}x∈Nr

does not contain
any element of Z and has a nonempty intersection with at most a fixed
number n0 of other rectangles of F2 itself;

(c) we have

1
L

≤ inf
x∈R(x0,2rψ,γ)

|γ(x)|
|γ(x0)|

≤ sup
x∈R(x0,2rψ,γ)

|γ(x)|
|γ(x0)|

≤ L,

for each x0 ∈ Nr.
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Remark 3.2. As done in Remark 2.7, it is possible to find stronger conditions
that imply Assumption 3.1 and that are usually satisfied by the classical problems
arising from financial mathematics.

Lemma 3.3. Under Assumption 3.1, assume to have proved that for a p ≥ 2 the
solution u of the resolvent equation (3), related to some λ ∈ C such that Re λ > 0
belongs to W 2,p

(γ2,γψ,ψ2) and satisfies the estimate

|λ|‖u‖Lp + |λ|1/2‖u‖W 1,p
(γ,ψ)

+ ‖u‖W 2,p

(γ2,γψ,ψ2)
≤ C′‖f‖Lp (4)

for some C′ > 0 and for each f ∈ Lp.
Let q ∈ (p, p∗) and let f ∈ Lq. Assume that u ∈ W 1,p

(γ2,γψ) is a solution of (3).
Then u satisfies the estimate

|λ|‖u‖Lq + |λ|1/2‖u‖W 1,q
(γ,ψ)

+ ‖u‖W 1,q

(γ2,γψ)
≤ C‖f‖Lq , (5)

for every λ ∈ C whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ. Moreover if p > d we may choose
q = ∞.

Proof. For each x0 ≡ (x0
1, . . . , x

0
d) ∈ Rd−Z, we also consider the change of variables

Tx0,ψ : Rd → Rd defined by

Tx0,ψ(x)
def
= ((x1 − x0

1)/ |ψ1(x0)| , . . . , (xd − x0
d)/ |ψd(x0)|),

of inverse
T−1

x0,ψ(x) = (x0
1 + |ψ1(x0)|x1, . . . , x

0
d + |ψd(x0)|xd).

Furthermore, for every r > 0 we denote by B(x0, r) the d-dimensional ball centered
at 0 with radius r and we write B(x0, rψ) for the d-dimensional ellipsoid centered
at x0 with semiaxes r |ψ1(x0)| , . . . , r |ψd(x0)|. Clearly

Tx0,ψ(B(x0, rψ)) = B(0, r) and T−1
x0,ψ(B(0, r)) = B(x0, rψ).

Consider the change of variables

ũ(x)
def
= (u ◦ T−1

x0,ψ)(x),

and let θ(x) be any smooth cut-off function such that{
θ(t) = 1 if t ∈ [0, 1]
θ(t) = 0 if t ∈ [2, +∞[ ,

for each 0 < r ≤ r0 we can define a cut-off function on Rd by setting

θr(x)
def
= θ

( |x|
r

)
,

and we can consider the function

v(x) = θr(x)ũ(x).



Generation of Analytic Semigroups and Domain Characterization 323

Clearly v ∈ Lp satisfies the following equation

d∑
i,j=1

ψ̃i(x)ψ̃j(x)
ψi(x0)ψj(x0)

ãi,j(x)Di,jv(x) +
d∑

i=1

b̃i(x)
ψi(x0)

Div(x) − γ̃2v(x) − λv(x)

= θr(x)f̃ (x) +
d∑

i=1

b̃i(x)
ψi(x0)

Diθr(x)ũ(x)

+
d∑

i,j=1

ψ̃i(x)ψ̃j(x)
ψi(x0)ψj(x0)

ãi,j(x)[ũ(x)Di,jθr(x) + Diθr(x)Dj ũ(x) + Djθr(x)Diũ(x)],

whose right side h̃ satisfies

h̃ ∈ Lp(B(0, 2r)) and h̃ = 0 on ∂B(0, 2r).

On the other hand, by the assumption of the lemma the solution v ∈ Lp satisfies
the estimate

|λ|‖v‖Lp + |λ|1/2‖v‖W 1,p
(γ,ψ)

+ ‖v‖W 2,p

(γ,ψγ,ψ2)
≤ C1‖h̃‖Lp ,

for a suitable C > 0 independent of λ.
Furthermore we can also prove that

‖h̃‖Lp ≤ C2

[
‖f̃‖Lp(B(0,2r)) +

1
r2

‖ũ‖Lp(B(0,2r)) +
1
r
‖Dũ‖Lp(B(0,2r))

+
1
r
‖γ̃ũ‖Lp(B(0,2r))

]
,

for a suitable C2 > 0 where the last estimate comes from equation (2).
Combining the above estimates, we obtain

|λ|‖ũ‖Lp(B(0,r)) + |λ|1/2
[
γ(x0)‖ũ‖Lp(B(0,r)) + ‖Dũ‖Lp(B(0,r))

]
+γ2(x0)‖ũ‖Lp(B(0,r)) + γ(x0)‖Dũ‖Lp(B(0,r)) + ‖D2ũ‖Lp(B(0,r))

≤ C

[
‖f̃‖Lp(B(0,2r)) +

1
r2

‖ũ‖Lp(B(0,2r)) +
1
r
‖Dũ‖Lp(B(0,2r))

+
1
r
γ(x0)‖ũ‖Lp(B(0,2r))

]
, (6)

where we suppose r small enough in order that Assumption 3.1 holds. Now, if we
take q ∈ (p, p∗) and δ(q) = d/q − d/p + 1, for every ε > 0 there exists (see [13, p.
66]) C(ε) > 0 such that

‖ũ‖Lq(B(0,r)) ≤ εrδ(q)‖Dũ‖Lp(B(0,r)) + C(ε)rδ(q)−1‖ũ‖Lp(B(0,r)), (7)

and

‖Dũ‖Lq(B(0,r)) ≤ εrδ(q)‖D2ũ‖Lp(B(0,r)) + C(ε)rδ(q)−2‖ũ‖Lp(B(0,r)). (8)
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Combining estimates (7) and (8) we have

1
r2

‖ũ‖Lq(B(0,r)) +
1
r
‖Dũ‖Lq(B(0,r))

≤ 1
r2

[
εrδ(q)‖Dũ‖Lp(B(0,r)) + C(ε)rδ(q)−1‖ũ‖Lp(B(0,r))

]
+

1
r

[
εrδ(q)‖D2ũ‖Lp(B(0,r)) + C(ε)rδ(q)−2‖ũ‖Lp(B(0,r))

]
,

and, rearranging the terms,

1
r2

‖ũ‖Lq(B(0,r)) +
1
r
‖Dũ‖Lq(B(0,r))

≤ C(ε)rδ(q)−3‖ũ‖Lp(B(0,r)) + εrδ(q)−2‖Dũ‖Lp(B(0,r)) + εrδ(q)−1‖D2ũ‖Lp(B(0,r)).

Taking into account (6), the above estimate implies

1
r2

‖ũ‖Lq(B(0,r)) +
1
r
‖Dũ‖Lq(B(0,r))

≤
[
C(ε)rδ(q)−3(|λ| + γ(x0)2)−1 + εrδ(q)−2(|λ| 12 + γ(x0))−1 + εrδ(q)−1

]
[
‖f̃‖Lp(B(0,2r)) +

1
r2

‖ũ‖Lp(B(0,2r)) +
1
r
‖Dũ‖Lp(B(0,2r)) +

1
r
γ(x0)‖ũ‖Lp(B(0,2r))

]
.

By the Hölder inequality we get

1
r2

‖ũ‖Lq(B(0,r)) +
1
r
‖Dũ‖Lq(B(0,r))

≤
[
C(ε)r−2(|λ| + γ(x0)2)−1 + εr−1(|λ| 12 + γ(x0))−1 + ε

]
[
‖f̃‖Lq(B(0,2r)) +

1
r2

‖ũ‖Lq(B(0,2r)) +
1
r
‖Dũ‖Lq(B(0,2r)) +

1
r
γ(x0)‖ũ‖Lq(B(0,2r))

]
.

Finally, if we take:

• ε > 0 a small number to be chosen later
• r0 = (|λ| 12 + γ(x0))−1

• r = αr0, where α is a number to be chosen later,

then we obtain

1
α2

(|λ| 12 + γ(x0))2‖ũ‖Lq(B(0,r0)) +
1
α

(|λ| 12 + γ(x0))‖Dũ‖Lq(B(0,r0))

≤
[
C(ε)

1
α2

+ ε
1
α

+ ε

] [
‖f̃‖Lq(B(0,2r0)) +

1
α2

(|λ| 12 + γ(x0))2‖ũ‖Lq(B(0,2r0))

+
1
α

(|λ| 12 + γ(x0))‖Dũ‖Lq(B(0,2r0)) +
1
α

(|λ| 12 + γ(x0))γ(x0)‖ũ‖Lq(B(0,2r0))

]
(9)
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So, if q < ∞, by changing variable back, summing up to the covering and using
Assumption 3.1, we have

1
α2

(|λ|‖u‖Lq + ‖γ2u‖Lq +
1
α

(|λ|1/2‖Du‖Lq + ‖γDu‖Lq)

≤ 2L4n0

[
C(ε)

1
α2

+ ε
1
α

+ ε

] [
1
α2

(|λ|‖u‖Lq + ‖γ2u‖Lq)

+
1
α

(|λ|1/2‖γu‖Lq + ‖γ2u‖Lq) +
1
α

(|λ|1/2‖Du‖Lq + ‖γDu‖Lq) + ‖f‖Lq

]
.

The statement follows from the above estimate choosing ε = 1
8L4n0

and α =
4C(ε)L4n0. If q = ∞ the argument is easier. Actually by changing variable back
and by localizing around the points where u(x), γ2(x)u(x), Du(x), ψ(x)Du(x) and
γ(x)ψ(x)Du(x) attain the maximum, the result follows directly from (9) without
using a covering argument. �
Remark 3.4. Assume f ∈ L∞. Arguing as in [15] from the proof of the previous
lemma it is possible to get an estimate for the second derivatives. Actually, starting
from equation (6), by the Hölder inequality and choosing a suitable r = α(|λ| 12 +
γ(x0))−1, one gets that for each q > d:

sup
x0∈Rd

(|λ| 12 + γ(x0))
d
q ‖ψ2D2u‖Lq(B(x0,r0ψ)) ≤ C‖f‖L∞. (10)

Remark 3.5. Estimate (4) implies the uniqueness of the solution of (3) in W 1,q
γ2,γψ.

Lemma 3.6. Under the assumptions of Lemma 3.3 we have that u ∈ W 2,q
γ2,γψ,ψ2 and

‖ψ2D2u‖Lq ≤ C‖f‖Lq .

Proof. Using the notation of the previous lemma we have that the function ũ(x)
satisfies the following equation in B(x0, 2r)

d∑
i,j=1

ψ̃i(x)ψ̃j(x)
ψi(x0)ψj(x0)

ãi,j(x)Di,j ũ(x)) = −
d∑

i=1

b̃i(x)
ψi(x0)

Diũ(x)− γ̃2ũ(x) + f̃(x) = h̃(x).

Noting that the second-order differential operator

ũ(x) →
d∑

i,j=1

ψ̃i(x)ψ̃j(x)
ψi(x0)ψj(x0)

ãi,j(x)Di,j ũ(x)

is a strongly elliptic operator in B(0, 2r) and, thanks to known regularity results
(see [6] and also [9, Theor. 17.2, p. 67], [10, 8.3, p. 173]) it follows that ũ(x) ∈
W 2,q(B(0, r)) and

‖ D2ũ‖Lq(B(x0,2r) ≤ C‖h̃‖Lq(B(x0,2r).

The statement follows changing variable back, summing up to the covering and
applying the results of Lemma 3.3. �
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Theorem 3.7. Assume that 3.1 holds. Then for each 2 ≤ q ≤ ∞ the operator
Aq : D(Aq) → Lq generates an analytic semigroup on Lp. Moreover if q < ∞ for
every solution u ∈ D(Aq) of (3), we have

|λ|‖u‖Lq + |λ| 12 ‖u‖W 1,q
(γ,ψ)

+ ‖u‖W 2,q

(γ2,γψ,ψ2)
≤ C‖f‖Lq (11)

for every λ ∈ C whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.
If q = ∞ then for every solution u ∈ D(A∞) of (3), we have

|λ|‖u‖L∞ + |λ| 12 ‖u‖W 1,∞
(γ,ψ)

+ ‖u‖W 1,∞
(γ2,γψ)

≤ C‖f‖L∞ (12)

for every λ ∈ C whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.

Proof. This Theorem is true for p = 2. Let q ∈ (2, 2∗] where 2∗ is the Sobolev
exponent. Let u be a solution of (3) and assume that f ∈ L2 ∩ Lq. By applying
Lemmata 3.3 and 3.6 we have that (11) holds.
If f ∈ Lq, we consider a sequence of functions fn ∈ L2 ∩Lq converging to f in Lq.
Then the sequence of associated solutions un is a Cauchy sequence in W 2,q

(γ2,γψ,ψ2)

converging to a function u that is a solution of (3). Moreover this solution is unique
by Remark 3.5. Therefore the result is proved for any q ∈ (2, 2∗].
If q ∈ (2∗, (2∗)∗) one can prove the result iterating the previous argument. After
a finite number of steps the statement follows. �

Using duality techniques one may prove a generation result in Lp with 1 ≤ p < 2.

Theorem 3.8. Assume 3.1 holds. Let 1 ≤ p < 2, then the operator Âp : D(Ap) → Lp

generates an analytic semigroup on Lp.

Proof. The statement follows if we show that a solution of (3) for 1 ≤ p < 2 exists
and is unique, and moreover

|λ|‖u‖Lp ≤ C‖f‖Lp (13)

for every λ ∈ C whose real part is greater than a suitable fixed positive real number
ω and for a suitable C > 0 independent of λ.
Assume first f ∈ Lp ∩ L2 so one has the existence of a solution of (3). Let Â the
operator in variational form

Âu ≡
d∑

i,j=1

Dj(ψi(x)ψj(x)ai,j(x)Diu) +
d∑

i=1

bi(x)Diu − γ2(x)u,

and let Â∗ its adjoint.
Define the function space H = {g ∈ Lp′

: ‖g‖Lp′ = 1} where p′ is the conjugate of
p. Then

‖u‖Lp = sup
g∈H

∫
ugdx.
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For each g ∈ H , let vg be the solution of the equation

(Â∗ − λ)vg = g. (14)

By Theorem 3.7
|λ|‖vg‖Lp′ ≤ C‖g‖Lp′ ≤ C.

Therefore

‖u‖Lp = sup
g∈H

∫
u(Â∗ − λ)vgdx = sup

g∈H

∫
(Â − λ)uvgdx = sup

g∈H

∫
fvgdx

≤ C|λ|−1|‖f‖Lp.

Note that the duality argument implies directly the uniqueness of a variational
solution of (3). We have only to prove the existence in the general case. If f ∈ Lp

we can find a sequence of function fn ∈ Lp ∩ L2 converging to f ∈ Lp. By the
previous estimate we have that the solutions un are a Cauchy sequence in Lp. Using
the regularity of the coefficients, it is not difficult to prove that the functions un

converge to the solution u of (3) that satisfies estimate (13). �

Remark 3.9. If one assumes more regular coefficients, one may characterize the
domain also in the case p < 2. Precisely for every solution u ∈ D(Ap) of (3) we
have

|λ|‖u‖Lp + |λ| 12 ‖u‖W 1,p
(γ,ψ)

+ ‖u‖W 2,p

(γ2,γψ,ψ2)
≤ C‖f‖Lp (15)

or
|λ|‖u‖L1 + |λ| 12 ‖u‖W 1,1

(γ,ψ)
+ ‖u‖W 1,1

(γ2,γψ)
≤ C‖f‖L1 (16)

according to wether 1 < p < 2 or p = 1, for every λ ∈ C whose real part is greater
than a suitable fixed positive real number ω and for a suitable C > 0 independent
of λ.
Briefly let f ∈ Lp ∩ L2 (the general case follows as before from standard density
arguments). So for every g in H there exists a solution vg of (14) and by Theorem
3.7 we have

|λ|‖vg‖Lp′ + |λ| 12 ‖vg‖W 1,p′
(γ,ψ)

+ ‖vg‖W 2,p′
(γ2,γψ,ψ2)

≤ C (17)

if 1 < p < 2 or

|λ|‖vg‖L∞ + |λ| 12 ‖vg‖W 1,∞
(γ,ψ)

+ ‖vg‖W 1,∞
(γ2,γψ)

≤ C

if p = 1.
Now (15) easily follows from (17) and estimates

‖u‖Lp ≤ ‖vg‖Lp′‖f‖Lp

‖u‖
W 1,p′

(γ,ψ)
≤ ‖vg‖W 1,p′

(γ,ψ)
‖f‖Lp

‖u‖W 2,p

(γ2,γψ,ψ2)
≤ ‖vg‖W 2,p′

(γ2,γψ,ψ2)

‖f‖Lp .

Similarly for (16).
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Example. Consider the PDE for the price of a European contingent claim in the
multifactor case, under the so-called no-arbitrage assumption

Dtv + Av = 0,

where

Av =
1
2
Tr ((σdiagx) (Di,jv) (σdiagx)∗) + (r − ρ)(1 − ε)

d∑
i=1

xiDiv − rv,

with terminal condition v(x, T ) = g(x) (see, e.g., [18]). Here (diagx) is the diagonal
matrix with the components of x ≡ (x1, . . . , xd) on the main diagonal, r is the
interest rate of a reference riskless asset in the market, σ is a given d-order matrix
such that, writing σ∗ for the transpose of σ, the matrix σ∗σ is positive definite,
ρ ≡ ρ(x, t) is the dividend rate and ε ≡ ε(x, t) is the tax rate on dividends. The
solution v ≡ v(x, t) represents the no-arbitrage price of a contingent claim having
payoff g ≡ g(x) at the expiration time T . In the case d = 1, ρ = 0, ε = 0 and
g(x) = (x − E)+, where E is the maturity price of the option, we obtain the
well-known Black and Scholes equation described in [4]. Also multifactor models,
such as the ones appearing in [8], options on futures contracts, and swaps can be
treated in our framework ([3, 18]), along with the example below.

Example. We consider here the structure model of interest rate derivatives. For
the so-called affine single-term structure model the interest rate is modeled by the
stochastic process (Xt)t≥0 satisfying the differential equation

dXt = (α1(t) + α2(t)Xt) dt + (β1(t) + β2(t)Xt) dWt. (18)

Suitably choosing the coefficients α1(t), α2(t), β1(t) and β2(t), different term-
structure models can be obtained. In particular two models fitting our framework
can be obtained by choosing

1. α1 = α2 = β1 = 0 [7]
2. β1 = 0 [5].

The price of a zero-coupon bond maturing at date T is the solution of the Cauchy
problem

Dtv + Av = 0,

with the end terminal condition v(x, T ) = 1, where

Av =
1
2
(β1 + β2x)2Dx,xv + (α1 + α2x)Dxv.

We remark in addition that our results allow us to treat also multifactor models
with time-dependent coefficients (see [8, 3]), and also semilinear perturbations of
the above equations.

Example. The following equation, coming from nonlinear filtering, is considered in
[2, 14]:

Dt = Dx,x + xDxv − x2v, t > 0, x ∈ R
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with initial condition v(0, x) = g(x). It can be easily checked that the second-
order operator defined by the right-hand side of the above equation satisfies our
assumptions.
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Numerical Approximation of Generalized
Functions: Aliasing, the Gibbs Phenomenon
and a Numerical Uncertainty Principle

Patrick Guidotti

To the memory of Günter Lumer

Abstract. A general recipe for high-order approximation of generalized func-
tions is introduced which is based on the use of L2-orthonormal bases consist-
ing of C∞-functions and the appropriate choice of a discrete quadrature rule.
Particular attention is paid to maintaining the distinction between point-wise
functions (that is, which can be evaluated point-wise) and linear functionals
defined on spaces of smooth functions (that is, distributions). It turns out
that “best” point-wise approximation and “best” distributional approxima-
tion cannot be achieved simultaneously. This entails the validity of a kind
of “numerical uncertainty principle”: The local value of a function and its
action as a linear functional on test functions cannot be known at the same
time with high accuracy, in general.

In spite of this, high-order accurate point-wise approximations can be
obtained in special cases from a high accuracy distributional approximation
when more information is available concerning the function which is to be
approximated. A few special cases with application to PDEs are considered
in detail.

Keywords. Generalized functions, approximation, Gibbs phenomenon.

1. Introduction

Let Ω ⊂ Rn be open. Starting with the spaces

D(Ω) = C∞
c (Ω) = {ϕ ∈ C∞(Ω) | supp(ϕ) is compact} and C∞(Ω)

of test functions, generalized functions are introduced as

D′(Ω) = L
(
D(Ω), K

)
= {u : D(Ω) → K |u is linear and continuous}

E ′(Ω) = L
(
C∞(Ω), K

)
= {u : C∞(Ω) → K |u is linear and continuous}

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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continuous linear functionals on the former. If (en)n∈N is an orthonormal basis of
L2(Ω), then one has

[ϕ =
∑
n∈N

ϕnen → (ϕn)n∈N] ∈ GL
(
L2(Ω), l2(N)

)
is an isometry. In particular one has Bessel’s equality

‖ϕ‖2 =
(∑
n∈N

ϕ2
n

)1/2 (1.1)

and Parseval’s identity ∫
Ω

ϕψ dx =
∑
n∈N

ϕnψn . (1.2)

Unfortunately, even for ϕ ∈ D(Ω) the “Fourier series”
m∑

n=1

ϕnen −→
m→∞

ϕ (1.3)

merely converges in the L2(Ω)-topology, in general. Whenever it converges in the
topology of C∞(Ω) for all ϕ ∈ D(Ω), then one also has Parseval’s identity

〈u, ϕ〉 = 〈u,

m∑
n=1

ϕnen〉 =
m∑

n=1

ϕn〈u, en〉 =:
m∑

n=1

ϕnun (1.4)

for pairs (u, ϕ) ∈ E ′(Ω) ×D(Ω).

Remarks 1.1. (a) The fact that the basis functions are in most cases fully supported
in the domain Ω entails that the convergence in (1.3) can only occur in C∞(Ω) even
though ϕ ∈ D(Ω). For the same reason only compactly supported distributions
u ∈ E ′(Ω) can be approximated by their coefficient series

m∑
n=1

unen .

(b) In numerical analysis one is often confronted with the fact the approximations
which are high order in the interior of the domain deteriorate as the boundary is
approached. This is related to the previous remark.

The approximation procedure introduced in Section 3 for u ∈ E ′(Ω) is ob-
tained bearing (1.4) in mind and is based on the choice of a convergent quadrature
rule (xm, qm) given by

xm = (xm
j )j=1, ...,g(m) , qm = (qm

j )j=1, ...,g(m) .

In particular

qm · ϕm =
g(m)∑
j=1

ϕm
j qm

j −→
m→∞

∫
Ω

ϕ(x) dx , ϕ ∈ D(Ω)
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for ϕm :=
(
ϕ(xm

j )
)
j=1, ...,g(m)

. Given (en)n∈N it is desirable to choose the quadra-
ture rule in such a way that the underlying orthogonality structure is preserved,
that is,

em
j · em

k = δjk , 1 ≤ j, k ≤ g(m)

and g(m) = m. In the case of classical Jacobi polynomials this would correspond
to working with Gauß quadrature.
Consider now the problem of approximating a general element u ∈ E ′(Ω). Only the
information loss associated to analytically exact projections is considered here. For
smooth or piecewise smooth functions one can choose to project either in physical
space with PP or Fourier space with PF . The projections are defined through

PPu := um =
(
u(xm

j )
)
j=1, ...,m

(1.5)

PFu :=
m∑

n=1

unem
n =

( m∑
n=1

unen(xm
j )

)
j=1, ...,m

. (1.6)

The two projections have ranges of the same dimension. In the case of general
distributions only the second projection can be used. A particularly interesting
situation is that of piecewise smooth functions where one has the choice of using
either projection. If one chooses PP then one is confronted with the problem of
aliasing, whereas the Gibbs phenomenon imposes limitations on the use of PF .
The two well-known effects are dual to each other. The Gibbs phenomenon, or the
appearance of oscillations at points of non-smoothness, is in reality the manifes-
tation of the fact that the approximation defined by PF is spectrally accurate in
the sense of distributions (as will be shown in Section 4).
In any case it cannot be expected to obtain approximations which are of a high
point-wise and distributional degree of accuracy simultaneously. The dual effects
of aliasing and the Gibbs phenomenon make this an impossible goal to achieve.
This is what is labeled numerical uncertainty principle in this paper.
The rest of the paper is organized as follows. In Section 2 a brief review of the
basic concepts and facts about Schwartz’ theory of distributions is given. Section
3 is devoted to introducing the fundamental concept of approximation family for
a distribution. It will play a central role in the rest of the paper. A few simple con-
crete examples will be given. In Section 4 the important question of convergence
of general approximation families is addressed. The rest of the paper is devoted to
applications and examples. Section 5.2 deals with the Gibbs phenomenon and its
resolution. In Section 6 a simple illustrative PDE example is considered.
The topic of this paper is clearly of interest but it does not seem to have received
much attention in the literature, at least not directly and not in this form. Some
references are given throughout the paper pointing to research papers in specific
areas where some of the ideas presented here are at least implicitly present. The
author is not aware of any relevant references specifically dealing with the issues
considered here. A helpful reference might be the book by Devore [3] about con-
structive approximation.
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2. Basics of the theory of distributions

A very brief summary of the main basic concepts and results of Schwartz’ theory
of distributions is needed to set the stage. The reader familiar with the theory can,
however, skip this section and move on to the its numerical implications presented
in the rest of the paper. A central role in the theory of generalized functions is
played by the underlying duality structure. One of its advantages is that it allows
to define and carry out many important (linear) operations for distributions at the
level of test functions. At the discrete level it might seems pedantic and superfluous
to want to keep a distinction between classical functions and distributions. It,
however, turns out that many seemingly bad point-wise approximations are indeed
good distributional ones. Here only a sketchy and incomplete overview of the theory
of distributions is given. The interested reader is therefore referred to the literature
[9, 8, 4, 12] for more in depth treatment. For Ω be a bounded open subset of Rn

with n ∈ N, the space of infinitely many times differentiable functions of compact
support D(Ω) is defined as

D(Ω) =
{
u ∈ C∞(Ω)

∣∣ supp(u) = [u �= 0] ⊂⊂ Ω
}

where “⊂⊂” means “compactly contained”. To be able to generate the appropriate
associated class of distributions this space needs to be endowed with the inductive
limit topology obtained by means of the following family of locally convex spaces

DΩ′(Ω) =
({

u ∈ D(Ω)
∣∣ supp(u) ⊂ Ω′ ⊂⊂ Ω

}
, P =

{
pΩ′,m |m ∈ N

})
where P is the separating family of semi-norms defined through

pΩ′,m(u) = sup
x∈Ω′ , |α|≤m

|∂αu (x)| , m ∈ N

and choosing the smallest topology which makes the following inclusions continu-
ous

DΩ′(Ω) ↪→ D(Ω) , Ω′ ⊂⊂ Ω .

The reader can find the details of this topological construction in [4]. The cor-
responding space of distributions (generalized functions) is then obtained as the
topological dual of D(Ω), that is,

D′(Ω) = D(Ω)′ .

It is endowed with its weak* topology. Since the main focus of this paper is on finite
discrete approximations particular interest lies in the convergence of sequences
and series. In the chosen topologies their convergence is equivalent to “point-
wise”convergence. Indeed, let (un)n∈N and (ϕn)n∈N be sequences in D′(Ω) and
D(Ω), respectively. Then the first converges to a limit u∞ ∈ D′(Ω) if and only if

〈un, ϕ〉 := un(ϕ) → u∞(ϕ) = 〈u∞, ϕ〉 for each ϕ ∈ D(Ω)

whereas the second converges towards a limit ϕ∞ ∈ D(Ω) if and only if there exists
Ω′ ⊂⊂ Ω such that supp(ϕn) , supp(ϕ∞) ⊂ Ω′ for n ∈ N and

〈u, ϕn〉 → 〈u, ϕ∞〉 for each u ∈ D′(Ω)
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Given any f ∈ L1,loc(Ω) in the space of locally integrable functions, a distribution
uf can be defined by

〈uf , ϕ〉 :=
∫

Ω

f(x)ϕ(x) dx , ϕ ∈ D(Ω) .

In other words, locally integrable functions naturally act on test functions. Any
distribution of this form is called regular. The duality between distributions and
test functions and, in particular, the integral duality between regular distribu-
tions and test functions is exploited in the definition of all standard operations
for distributions and will soon play an essential role in understanding “discrete
distributions”. Another space of test functions, E(Ω) = C∞(Ω) is endowed with its
natural locally convex topology generated by the separating family{

pΩ′,m
∣∣Ω′ ⊂⊂ Ω , m ∈ N

}
.

Its dual E ′(Ω) of E(Ω) can also naturally be viewed as a space of distributions. It
actually is the space of distributions of compact support, where the support of a
distribution u is defined as the closure of the complement of{

x ∈ Ω
∣∣ there exists a neighborhood Ω′ of x s.t. 〈u, ϕ〉 = 0 , ϕ ∈ D(Ω′)

}
It turns out that all compactly supported distributions are of finite order. The
order of a distribution is defined as follows. Any u ∈ D′(Ω) is said to be of order
m ∈ N if and only if for any given Ω′ ⊂⊂ Ω there is a constant C = C(Ω′) > 0
such that

|〈u, ϕ〉| ≤ C pm,Ω′(ϕ) , ϕ ∈ DΩ′(Ω) .

In particular, the compactly supported distributions ∂αδy ∈ E ′(Ω), α ∈ Nn and
y ∈ Ω, defined by

〈∂αδy, ϕ〉 = (−1)|α|(∂αϕ)(y) , ϕ ∈ E(Ω) (2.1)

are of finite order |α|. The space of finite regularity test functions is given by

Dm(Ω) =
{
ϕ ∈ Cm(Ω)

∣∣ supp(ϕ) ⊂⊂ Ω
}

(2.2)

in a way similar to D(Ω), by duality one obtains the space Dm(Ω)′ of distributions
of order at most m ∈ N. Correspondingly, Em(Ω) = Cm(Ω) gives rise to the space
Em(Ω)′ of compactly supported distribution of order at most m ∈ N.
It is important to point out that

D(Ω)
d

↪→ E(Ω)
d

↪→ L1,loc(Ω)
d

↪→ D′(Ω) , (2.3)

where the “d ” indicates density of the inclusion. The Hilbert space L2(Ω) and
orthonormal bases on it are also basic ingredients of the approach presented here.
It will be convenient to work with bases of smooth functions. They usually do not
have compact support, however. Just think of all eigenfunction bases associated
to boundary value problems. Given an orthonormal basis (en)n∈N for L2(Ω) with

en ∈ C∞(Ω) ,
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(uk)k∈N ∈ RN and a distribution u ∈ E ′(Ω) of compact support, it follows that
m∑

k=1

ukek −→
m→∞

u in D′(Ω)

if and only if

〈
m∑

k=1

ukek, ϕ〉 =
m∑

k=1

ukϕk −→
m→∞

〈u, ϕ〉 , ϕ ∈ D(Ω) ,

where

ϕk =
∫

Ω

ek(x)ϕ(x) dx .

The following simple but important relation

〈u, ϕ〉 =
〈
u,

∞∑
k=1

〈ek, ϕ〉 ek

〉
=

∞∑
k=1

〈u, ek〉〈ek, ϕ〉 =
〈 ∞∑

k=1

〈u, ek〉 ek , ϕ
〉
,

u ∈ E ′(Ω) , ϕ ∈ D(Ω) (2.4)

shows that the basis coefficients of u can be computed by

uk = 〈u, ek〉 , k ∈ N (2.5)

whenever convergence takes place. Unfortunately nothing can be said about the
latter in general. In view of the duality construction used to introduce distributions,
however, it is always the case that if either the series

∞∑
k=1

〈ϕ, ek〉 ek (2.6)

converges in E(Ω) or
∞∑

k=1

〈u, ek〉 ek (2.7)

converges in D′(Ω) then the validity of (2.4) is assured.

Remark 2.1. Formula (2.4) shows in particular that

〈u, ϕ〉 =
∞∑

k=1

〈u, ek〉〈ek, ϕ〉 =
∞∑

k=1

ukϕk , u ∈ E ′(Ω) , ϕ ∈ D(Ω) , (2.8)

whenever there is convergence. Assuming that all functions and distributions con-
sidered be real-valued and switching to the case where u, ϕ ∈ L2(Ω), (2.8) becomes
Parseval’s identity. It is therefore legitimate to call it generalized Parseval’s iden-
tity.

Remarks 2.2. (a) The requirement that (2.6)–(2.7) be convergent in the given
topologies is essentially a “smoothness and boundary behavior assumption” on u
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and ϕ with respect to the basis (en)n∈N. If no further information about prop-
erties of the basis are available, it is, however, not possible to measure this reg-
ularity in classical function spaces. Fortunately, many basis of practical interest
consist of eigenfunctions of some operator. In that case more can be said about
the convergence of (2.6)–(2.7) and consequently of (2.8). More details are found
in Subsection 4.

(b) So far only the real-valued case is considered. The complex-valued case can
clearly be covered with only minor modifications caused by the incongruence of
the sesquilinearity of the scalar product and the bilinearity of the duality pairing.

Turning to a simple concrete example, let y ∈ Ω and α ∈ Nn and consider
the series

∂αδy = (−1)|α|
∑
k∈Z

(∂αēk)(y) ek . (2.9)

It will provide with a smooth approximation[
(−1)|α|

∑
|k|≤m

(∂αēk)(y) ek

]
m∈N

(2.10)

to ∂αδ whenever the series converges in the sense of distributions. This is a very
natural way of taking advantage of the duality built-in in the distributional frame-
work without completely giving up the benefits of orthogonal expansions which are
restricted to Hilbert spaces. A particular case of the above is given by Fourier se-
ries of periodic functions. Any test function of the periodicity cube Bn = [−π, π]n

can be viewed as a periodic function. It can therefore be developed in a Fourier
series

ϕ =
1

(2π)n/2

∑
k∈Zn

ϕ̂k exp(ik · x) (2.11)

with Fourier coefficients given by

ϕ̂k =
1

(2π)n/2

∫
Bn

ϕ(x) exp(−ik · x) dx . (2.12)

In this case one has

Lemma 2.3. Let ϕ ∈ D(Bn). Then its Fourier series expansion (2.11) converges
in the topology of E(Bn). For any distribution u ∈ E ′(Bn) its Fourier coefficient
uk is defined to be

uk =
1

(2π)n/2
〈u, exp(−ik · x)〉 . (2.13)

Then
1

(2π)n

m∑
k=−m

uk exp(ik · x) → u (m → ∞) in D′(Bn) . (2.14)

Proof. The proof follows from the general convergence result of Theorem 4.1. �
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Example 1. Consider the distribution ∂αδ for α ∈ Nn. Then (2.13) gives

(∂αδ)k = (−ik)α/(2π)n/2

and
1

(2π)n

m∑
k=−m

(−ik)α exp(ik · x) −→
m→∞

∂αδ in D′(Bn) . (2.15)

Remarks 2.4. (a) More in general if a distribution is of finite order, then conver-
gence in a weaker topology than that of E(Ω) suffices to obtain convergence of its
basis development in a stronger topology than that of the space E ′(Ω) . This point
will be raised again in Section 4.
(b) Specializing to u = δ and n = 1, the one-dimensional Dirac distribution sup-
ported in the origin, one sees that its approximating Fourier sum coincides with
the classical Dirichlet kernel

Dm(x) =
1
2π

m∑
k=−m

exp(ik · x) . (2.16)

These very simple facts and examples turn out to be very important when
approaching the problem of discretization. The problem of discretizing a (gen-
eralized) function is in fact not independent of the problem of discretizing the
underlying duality structure between test functions and distributions. For this
reason the discretization of functions and that of the duality pairing have to be
related to each other in order to produce optimal results.

3. Approximating families

Next the discrete version of the above concepts is considered. Vectors will appear
instead of distributions but the distinction between function and distribution in the
duality sense will not be given up. This might seem a minor point since every finite-
dimensional space is naturally isomorphic to its dual but it is not. It determines,
among other things, the way in which the information content of a given vector
of finite length has to be read. The main concept introduced in this section is
that of approximation family for a distribution. It is meant to faithfully reproduce
the continuous analytical structure at the finite-dimensional, discrete level. To
realize a discrete duality pairing quadrature rules are used. Assume that a family
of discretization points has been chosen

xm = (xm
1 , . . . , xm

g(m)) , m ∈ N (3.1)

where the strictly increasing function g : N → N with g(m) ≥ m counts the total
number of grid points. A discrete quadrature rule for Ω with respect to a family of
discretization points (xm)m∈N is a family of vectors

qm = (qm
1 , . . . , qm

g(m)) (3.2)
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such that
g(m)∑
k=1

qm
k ϕ(xm

k ) −→
m→∞

∫
Ω

ϕ(x) dx , ϕ ∈ E(Ω) . (3.3)

The quadrature rules for Ω shall be denoted by
(
xm , qm

)
m∈N

or simply by (qm)m∈N

if it is clear which discretization points have been fixed. The following definition
plays a central and fundamental role.

Definition 3.1. Let u ∈ D′(Ω)
[
E ′(Ω)

]
be a given distribution. Then

[um, xm, qm]m∈N

is called a discretization family (in the sense of distributions) for u iff

(i) um ∈ Rg(m) , m ∈ N . (3.4)

(ii)
(
xm , qm

)
m∈N

is quadrature rule for Ω . (3.5)

(iii) um · ϕm :=
g(m)∑
k=1

um
k ϕ(xm

k )qm
k −→

m→∞
〈u, ϕ〉 for each ϕ ∈ D(Ω)

[
E(Ω)

]
. (3.6)

If it is assumed that the approximated distribution is regular, that is, if
u ∈ L1,loc(Ω), then the above definition entails that

um · ϕm →
∫

Ω

u(x)ϕ(x) dx for each ϕ ∈ D(Ω) . (3.7)

It follows that the definition is the discrete version of the classical concept of weak
convergence for sequences of functions.

Remarks 3.2. (a) It should be pointed out that by modifying the definition of the
approximating sequence as follows

ũm = (qm
1 um

1 , . . . , qm
g(m)u

m
g(m))

the discrete duality pairing could be normalized to be the Euclidean scalar product.
This will always be done whenever dealing with concrete examples. For abstract
calculations, however, it is preferable to have the quadrature rule appear explicitly
in the formulæ.
(b) Choosing um = (1, . . . , 1), m ∈ N, one can think of some distributions (read
measures) as being approximated by quadrature rules. Or better still, one could
view quadrature rules as discretizations families of measures in the sense of dis-
tributions. In the above definition quadrature rules are obviously encoded in the
choice of duality pairing.

A few prototypical examples are considered next.

Example 2. Let y ∈ (0, 1) and 1m = (1, . . . , 1︸ ︷︷ ︸
m times

) and consider the family

[δm
y , xm, qm] =

[
2

m∑
k=0

sin(kπy) sin(kπxm) , xm = (k/m)k=1,...,m−1 ,
1
m

1m−1

]
m∈N
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It approximates the Dirac distribution δy supported at y ∈ (0, 1) with respect to
the trapezoidal rule of quadrature.

Proof. For any given test function ϕ ∈ D(0, 1) the duality pairing is given by

δm
y · ϕm =

m∑
j=1

(
2

m∑
k=1

sin(kπy) sin(kπxm
j )

)
ϕ(xm

j )
1
m

=
m∑

k=1

√
2 sin(kπy)

( 1
m

m∑
j=1

√
2 sin(kπxm

j )ϕ(xm
j )

)
.

The inner sum in the second line appears to be a trapezoidal rule discretization of

√
2
∫ 1

0

sin(kπx)ϕ(x) dx = 〈ϕ,
√

2 sin(kπ·)〉 = ϕk

and it is therefore obtained that

δm · ϕm −→
∞∑

k=1

ϕk sin(kπy) = ϕ(y) (m → ∞) (3.8)

which proves the claim. The convergence of the trapezoidal rule, which has implic-
itly been used, is elementary and omitted. �

Remark 3.3. In this case

ek(x) :=
√

2 sin(kπx) , x ∈ (0, 1) , k ∈ N (3.9)

build an orthonormal basis of L2(0, 1) with ek ∈ C∞[0, 1] , k ∈ N . It is very
important that this basis consists of solutions (eigenfunctions) of

−∂xxu = λu , u(0) = u(1) = 0 .

In more general situations, like in Example 5, this will provide the means for
proving convergence.

This simple but important example can easily be extended to any dimension.

Example 3. Let y ∈ Ω = (0, 1)n, α ∈ Nn and

xm = ⊗n
k=1x

m , (δα
y )m = ⊗n

k=1(δ
α
yk

)m (3.10)

for

(δα
yk

)m = 2
m∑

j=0

(−jπ)|αk|(∂αk sin
)
(jπyk) sin(jπxm

k ) , k = 1, . . . , n .

Then (δα
y )m is a discretization family for δα

y = ∂αδy ∈ E ′(0, 1).

In a periodic context this construction essentially produces the Dirichlet ker-
nel Dm evaluated at the grid points.
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Example 4. Let Ω = (−π, π) and let

xm =
π

m

(
−m,−m + 1, . . . , m − 1, m

)
be the tuple of 2m + 1 equidistant discretization points. Fix the trapezoidal rule

qm =
(1
2
, 1, . . . , 1︸ ︷︷ ︸
2m−1-times

,
1
2
)

as the associated quadrature rule. Then the following modified Dirichlet kernel

δm =
1
2π

+
1
π

m−1∑
k=1

cos(kxm) +
1
2π

cos(m xm) =

1
2π

sin
(
(m − 1

2 )xm
)

sin(xm

2 )
+

1
2π

cos(m xm) = Dm−1(xm) +
1
2π

cos(m xm) (3.11)

defines a discretization family for δ ∈ E ′(−π, π).

Proof. The proof is identical to that of Example 2. �
Remarks 3.4. (a) In Example 4 the so-called alternating point trapezoidal rule
given by the family of weights

qm = (1, 0, 2, 0, . . . , 2, 0, 1)

with 2m + 1 equidistant discretization points as above could have been chosen.
(b) The approximating family obtained in Example 2 is closely related to that of
Example 4. In fact

2
m∑

k=0

sin(kπy) sin(kπxm) = πDm(π(x − y)) − πDm(π(x + y)) . (3.12)

(c) Disregarding the role played by the quadrature rule in the construction of the
a discrete approximation for the Dirac distribution in the above example, it would
seem natural to use the Dirichlet kernel (2.16) to produce a discretization family
for δ. Even though this would be a viable discretization, it would unfortunately
converge more slowly than (3.11).

Lastly a genuinely higher-dimensional example is considered.

Example 5. Let Ω = B2 be the open unit circle parameterized by spherical coor-
dinates and

em,n(r, θ) =
1

cmn
Jm(r

√
λmn)eim θ , r ∈ [0, 1] , θ ∈ [−π, π)

be the orthonormal basis of L2(Ω) given by the eigenfunctions of the Dirichlet
problem

−,u = λu in Ω , u = 0 on ∂Ω .

to eigenvalues λmn, n ∈ N given by the positive zeros of the Bessel function Jm,
m ∈ N. The constants cmn are chosen so that ‖emn‖L2(Ω) = 1.
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Discretization points are

rM
j = j/M , 0 ≤ j ≤ M and θN

j = π(−1 + j/N) , 0 ≤ j ≤ 2N , M, N ∈ N .

For quadrature, the trapezoidal rule is used in both variables, that is,

qM
r =

1
M

(rM
0 , rM

1 , . . . , rM
M ) , qN

θ =
π

N
12N+1 , M, N ∈ N .

Then the family
M∑

m=0

N∑
n=−N

1
c2
mn

Jm(r0

√
λmn)Jm(rM

√
λmn)eim(θN−θ0) (3.13)

defines a discretization family for δ(r0,θ0) for any (r0, θ0) ∈ Ω. Let now Γ be a
closed smooth curve completely contained in Ω. Denote by δΓ the line integral
distribution defined through

〈δΓ, ϕ〉 =
∫

Γ

ϕ(x) dσΓ(x) , ϕ ∈ C∞(Ω) .

where σΓ is the surface measure. Then
M∑

m=0

N∑
n=−N

Imn

cmn
Jm(rM

√
λmn)eim θN

(3.14)

with

Imn =
1

cmn

∫
Γ

Jm(r
√

λmn)e−im θ dσΓ(r, θ) . (3.15)

defines an approximation family for δΓ.

Proof. As for the Dirac distribution the claim would be a direct consequence of
(2.4)–(2.5) and (2.9) combined with the know fact that

(
em,n

)
m,n∈N

is indeed an
orthonormal basis of L2(Ω) and with the convergence of the chosen quadrature
rule if

M∑
m=0

N∑
n=−N

ϕmnem,n

converged at least in C(Ω) as M, N → ∞ for any ϕ ∈ E(Ω). This will be considered
in a more general setting in Section 4. In the case of the line integral distribution
the proof is similar and uses the complex version of (2.4)–(2.5). �

Remarks 3.5. (a) In the last example (3.15) can not be evaluated analytically. It
can, however, be easily approximated numerically with high order of accuracy.
(b) Wavelet bases can of course also be used. One of their main purpose is, how-
ever, to provide localized basis functions. They also usually have finite degree of
smoothness. Unless C∞ wavelets are used, these two facts concur in making it im-
possible to achieve spectrality (in the sense of distributions) of any approximation
method based on their use. Their main advantage lies of course in their multi-scale
resolution properties.
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4. Convergence

Definition 3.1 of approximation family given in the previous section leads to use-
ful discrete approximations provided (2.8) does indeed converge for the chosen
basis (en)n∈N. A criterion for their convergence is therefore derived which entails
convergence of general discretization families. The standard basic tool is to trade
smoothness for convergence.
Looking at Examples 2–5 given in Section 3 it is recognized that they all share
a specific structure which yields the desired convergence. One starts with some
operator pair (A,B) where

A =
∑

|α|≤m

aα∂α , aα ∈ RM and B =
∑
|α|≤k

bα∂α , bα ∈ RM (4.1)

are a vector of differential operators on Ω of order m ≥ 1 and a vector of boundary
differential operators on ∂Ω of order k < m, respectively. It is always possible to
introduce

L : domL ⊂ L2(Ω) → L2(Ω)M (4.2)

where

dom(L) = Hm
B (Ω) :=

{
u ∈ Hm(Ω)

∣∣Bu = 0
}

and Lu = Au , u ∈ dom(L) , (4.3)

with the understanding that the homogeneous boundary condition has to be im-
posed in the sense of traces whenever it makes sense and has to considered empty
otherwise. Then, if L is closed and densely defined, the self-adjoint operator

A = L′L : dom(A) ⊂ L2(Ω) → L2(Ω) (4.4)

can be defined. If the latter turns out to be invertible, it has a compact resolvent
by the compact embedding

dom(A) ⊂ H2m(Ω) ↪→ L2(Ω) .

It is therefore possible to introduce an orthonormal basis (en)n∈N on L2(Ω) consist-
ing of the necessarily smooth eigenfunctions of A to the ordered family of positive
eigenvalues (λn)n ∈ N. Then this basis has all the needed properties.

Theorem 4.1. Assume that (A,B) is such that the operator L defined through
(4.2)–(4.3) be closed and densely defined. Let the self-adjoint operator A given in
(4.4) have finite-dimensional kernel, then∑

k∈N

〈ek, ϕ〉ek
k→∞−→ ϕ in E(Ω) (4.5)

for any ϕ ∈ D(Ω) and ∑
k∈N

〈u, ek〉ek
k→∞−→ u in D′(Ω) (4.6)

for any u ∈ E ′(Ω).
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Proof. Factoring out the finite-dimensional kernel, if necessary, it can be assumed
that A is invertible and therefore has compact inverse by the Rellich-Kondratev
embedding theorem, [11, Proposition 4.4]. The spectral theory of compact oper-
ators implies that (ek)k∈N is indeed a orthonormal basis of L2(Ω). Series (4.5)
therefore converges in L2(Ω) at least. Now

ϕ ∈ dom(Am) , m ∈ N ,

since D(Ω) ⊂ dom(A) and Aϕ ∈ D(Ω) for any ϕ ∈ D(Ω). The closure of A implies
that

Am
∑
k∈N

〈ek, ϕ〉ek =
∑
k∈N

〈ek, ϕ〉Amek =
∑
k∈N

〈λm
k ek, ϕ〉ek =

∑
k∈N

〈ek, Amϕ〉ek

which yields Hm(Ω) convergence for the series since ‖Am · ‖L2(Ω) is an equivalent
norm on Hm(Ω) and Amϕ ∈ L2(Ω). Notice that factoring the kernel has no im-
pact on the convergence of the series in any way, since it is assumed to be finite
dimensional. Sobolev embedding theorem (cf. [11, Prop. 1.5])

Hs(Ω) ↪→ Cs−n/2(Ω) , s > 0 with s − n/2 > 0

then implies convergence in Cs(Ω) for every s > 0 which implies the first assertion.
The second convergence claim follows from (2.4). �

Example 6. In Examples 2–3 and 5 the basis functions are eigenfunctions of the
Laplacian on L2(Ω) with Dirichlet boundary conditions for Ω = (0, 1) , (0, 1)n and
B2, respectively.

Example 7. Taking the operator L = ∇ with domain of definition

dom(L) = H1
p

(
(−π, π)n

)
where the subscript “p” stands for periodic on the periodicity box (−π, π)n, one
has that

L′ = − div

with same domain of definition, and therefore

A = − div(∇·)

with domain dom(A) = H2
p

(
(−π, π)n

)
. This is the case of Fourier series, Exam-

ple 4.

This, together with the proofs given there, shows that the families of Ex-
amples 2–4 are indeed discretization families in the sense of definition 3.1. As to
the general situation, assume that an orthonormal basis (ek)k∈N of L2(Ω) is given.
Let u ∈ E ′(Ω) and ϕ ∈ D(Ω) be given. Choose a family of discretization points
(xm)m∈N and an associated convergent quadrature rule (qm)m∈N. Let ūm and ϕ̄m
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be approximations to the exact coefficient vector um and to the exact grid point
values ϕm, respectively. Then

〈u, ϕ〉 − ūm · ϕ̄m =
∞∑

k=m+1

ukϕk +
m∑

k=1

ukϕk − um · ϕm

+ (um − ūm) · ϕ̄m + um · (ϕm − ϕ̄m)

=
∞∑

k=m+1

ukϕk +
m∑

k=1

uk(ϕk − ϕ̂m
k ) + (um − ūm) · ϕ̄m + um · (ϕm − ϕ̄m) (4.7)

where

ϕ̂m
k = em

k · ϕm =
m∑

k=1

ek(xm
k )ϕ(xm

k )qm
k .

Disregarding the numerical error in the approximation of the coefficients, the error
depends on the order of the distribution u and on the difference between the exact
and discrete basis coefficients of the test function ϕ. The first determines the
polynomial growth rate of the uk’s, the latter is super-algebraically convergent for
any test function ϕ. More precisely, since the distribution u is of finite order, one
has that

|uk| ≤ c(u)kp , k ∈ N

for some positive constants c(u) and some order p ∈ N. As for the test function,
for every P ≥ 0 a constant c(P, ϕ) ≥ 0 can be found such that

|ϕk| ≤ c(P, ϕ)k−P , k ∈ N .

It follows that

|
∞∑

k=m+1

ukϕk| ≤ c(P ′, u, ϕ)
1

mP ′

for any P ′ ≥ 0. As for the error |ϕk − ϕ̂k| incurred in the computation of the
discrete basis coefficient, it is determined by the effect of aliasing and can be
bound as follows. It can be easily seen from

ϕ =
∞∑

k=1

ϕkek

that the discrete basis coefficient differs from the exact one in the amount

|ϕj − ϕ̂j | = |
∞∑

k=m+1

ϕkem
k · em

j | .

This follows from the choice of the discrete duality pairing which preserves orthog-
onality of the first m basis functions. Again, since ϕ is a test function and since
em

k · em
j = O(1), it follows

|ϕj − ϕ̂j | ≤ c(P, ϕ)
1

mP

for any P ≥ 0 and suitable constant c(P, ϕ) ≥ 0. Therefore one obtains
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Theorem 4.2. Let u ∈ E ′(Ω) and ϕ ∈ D(Ω). Then for any P ≥ 0, a constant
c = c(P, u, ϕ) can be found such that

|〈u, ϕ〉 − um · ϕm| ≤ c(P, u, ϕ)
1

mP
(4.8)

Remark 4.3. Approximations for test functions are best generated and handled in
physical space. This is due to the fact that there is no easy way to tell when a
rapidly convergent basis expansion will have compact support. On the other hand,
special distributions often allow for an easy computation of their exact coefficients
in the basis expansion. This implies that, in many cases of interest, the errors
neglected in (4.7) can be made very small as well.

5. Interpolation

The general procedure described above applied to special distributions leads to
recovering many interesting applications. One of them is interpolation. It can be
naturally viewed as the approximation of (derivatives of the) Dirac distributions.
In this case the above procedure delivers an “optimal” interpolation functional. It
also turns out that a high order (in the sense of distributions) approximation of a
(possibly only piecewise) smooth function has to carry non vanishing oscillations at
the right scale. Put differently, even if singularities occur at non-grid points, their
locations and intensity are captured via oscillations which degrade the point-wise
quality of the approximation. However, if the oscillations are not viewed point-
wise but rather in the sense of distributions, they are seen contain high-order
information concerning the approximated object. In the case of piecewise regular
functions this allows for developing “recovery” methods which produce genuinely
point-wise approximation. Even though it is not formulated in the general abstract
terms of this paper, this is precisely what a series of methods proposed in the
literature implicitly exploit (see for instance [6, 5]).

In general, however, the oscillatory behavior of high-order distributional ap-
proximation causes a limitation in the point-wise accuracy that can be achieved
without giving up non-local out-of-grid information concerning the limit. Even
worse, the high-order implicit information encoded in the oscillations can, in gen-
eral, not be made explicit. This is precisely what has earlier been labeled as nu-
merical uncertainty principle.

5.1. Location and intensity of singularities

So far it has been observed that distributions give rise to oscillations when they
are approximated. Next the question is investigated of how to find out which
distribution (if any) is represented by some given set of data with oscillatory
behavior. To answer this question, the concept of ϕ-sweep, or test function sweep,
is introduced. Consider the test functions given by

ϕx0,α,β(x) =

{
exp

(
−α ψ2(x,x0,β)

1−ψ2(x,x0,β)

)
, |x − x0| ≤ β

0 , |x − x0| > β
(5.1)
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for
ψ(x, x0, β) =

x − x0

β
. (5.2)

and α, β > 0 . To distinguish the continuous test function from its discrete coun-
terpart, the latter is denoted by ϕm

x0,α,β .

Definition 5.1. If um is a vector of discrete values approximating some distribution
u ∈ D′(Ω) with supp(u) ⊂⊂ Ω, the function defined by

S
(
um, ϕm

·,α,β

)
(x) = um · ϕm

x,α,β , x ∈ Ω , (5.3)

is called a ϕm
α,β-sweep of um.

Assume um is the manifestation of a Dirac distribution c0δx0 supported at
x0 ∈ Ω and with intensity c0 ∈ R, for instance. By applying a ϕ-sweep to it, an
approximation to ϕx0,α,β would be produced since

〈c0δx0 , ϕx,α,β〉 = c0 ϕ·,α,β(x0) = c0 ϕx0,α,β(x) , x ∈ Ω ,

by definition of ϕ-sweep. Consequently the location of the peak would point to
the location of the singularity and the height of the peak to its intensity. For a
one-dimensional illustration, take

m = 64 , um = δm
π/6 − 0.5δm

1/
√

2
(π/6 ≈ 0.5236 , 1/

√
2 ≈ 0.7071)

and compute its ϕ-sweep
S
(
um, ϕm

·,α,β

)
with α = 10, β = 0.1 at N = 256 equidistant grid points. Figure 1 shows the
result. The peaks are located at

x1 = 0.5273 and x2 = 0.7109

and their heights are
p1 ≈ 0.9996 and p2 ≈ 0.4999 ,

respectively. The example shows that, given oscillations due to Dirac singularities
on a certain grid, it is possible to approximately locate their support with the help
of test function sweeps, even if it is located outside the grid.

Remarks 5.2. (a) The above simple example has illustrative purposes only. The
approximate location of the singularities is taken as the grid point at which the
maximum is reached. By interpolation or, equivalently, by using finer sweeps better
results can be achieved (up to a limit depending on m).
(b) If one is given some random oscillatory data without further information it
wont be possible to use sweeps to find out anything, in general. Fortunately, in
many cases, the information available is not confined to the data set itself.
(c) In general, how would can it be checked if the singularities observed are of
δ-type, and not worse: say of δ′-type, for instance? A rough diagnosis can be given
by looking at order of the discretization family, that is, at the power p for which
um = O(mp). It roughly points to the order of the distributions.
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Figure 1. Locating singularities with a ϕ-sweep.

It is now possible to go back to the interpolation problem for discontinuous
functions.

5.2. A remark about Gibbs phenomenon

Gibbs phenomenon is a widely observed phenomenon with which everybody work-
ing in numerical analysis or applied mathematics is very familiar with. It is ob-
served whenever a discontinuous function is approximated by its Fourier series.
The approximating series converges (albeit poorly) away from the jump disconti-
nuity but keeps oscillating around it and does therefore not converge point-wise
to its limit (due to persistent overshooting in the standard example). An histori-
cal perspective on the topic which raises and answers questions about the correct
attribution of the discovery of this phenomenon can be found in [6]. This paper
also contains a selection of many useful references from the vast literature about
this problem.

Consider the simple sawtooth function

s0(x) =

{
−(x/π + 1)/2 , x ∈ [−π, 0]
(1 − x/π)/2 , x ∈ (0, π]

defined on the interval [−π, π]. This is one of the standard one-dimensional example
used to illustrate Gibbs phenomenon. The function s0 is to be considered as a 2π-
periodic function. It obviously has a jump discontinuity at x = 0. If one tries to
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approximate s0 by its Fourier series∑
n∈Z∗

1
πn

exp(inx) , x ∈ [−π, π) ,

then one can observe “experimentally” that the oscillations around the discontinu-
ity point will concentrate but never disappear or attenuate no matter how many
terms in the series are taken into the approximating sum. The series of course
converges in L2(−π, π) but this is not quite good enough for many purposes. It is
actually more advantageous to think of s0 as a distribution than it is to consider
it a function. It can in fact be argued that the most interesting convergence which
is taking place is the one in the sense of distributions.
Now, if the L2,p(0, 1) convergence is not good enough, why would one be interested
in an even weaker convergence?
Well, this should be clear in light of the analysis presented in the previous sections.

It can be argued that Gibbs phenomenon, at the discrete level, is essentially
an interpolation phenomenon. Truncating a Fourier series one always obtains an
approximation with finite-dimensional information content. Now, if one plots the
truncated Fourier series as a function of a continuous variable one is in a sense
implicitly interpolating the value of the approximation at infinitely many points.
In the presence of a singularity this automatically leads to oscillations. However,
at the discrete level, it is more natural to evaluate the truncated Fourier series at
a finite number of points only. If the points are chosen appropriately[

xm
j → δm,xm

j
· zm , j = 1, . . . , m

]
,

then one obtains an approximating sequence which converges (albeit poorly) to
z. Oscillations are still observed but are now decaying. In fact even for the Dirac
distribution itself, one has “point-wise” convergence in the sense that

1
2πm

Dm,xjm (xj) = δjjm + O(
1
m

) , j = −m, . . . , m ,

assuming that its support always sits on a grid point. This again indicates that
persistent oscillations are manifestation of the fact that of out-of-grid information
needs to be approximated or accounted for (read interpolated). But even when
oscillations occur, their exact behavior carries the information needed to determine
the location of the singularity. The information has, however, to be read in the sense
of distributions. As for the rest, the oscillatory approximation is as good any point-
wise converging approximation. In fact, since finite-dimensional approximations
are used, the space of test functions can be spanned by finitely many “functions”
and the distributional information content of an oscillating approximation and
that of a point-wise approximation do indeed have to coincide. It just needs to be
extracted in the proper way. In many concrete applications it is not known where
exactly a singularity might be located and the occurrence of persistent oscillations
will be the rule rather than the exception. The point-wise convergence observed
in that case, however, is so poor that the local method is always preferred.
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Dirichlet’s kernel (2.16) is nothing but the manifestation of a very general
way of producing discretization families for the Dirac distribution. See (2.9) and
Example 3, in particular. A δm-sweep (defined similarly to a test function sweep)
by means of Dirichlet’s kernel for a function ψ can be rephrased in terms of a
convolution with it in view of the periodic structure. Or, in other words,

Dm,x0(x) = Dm(x − x0) , x ∈ [−π, π] .

In terms of the distributional framework, one sees that

S
(
Dm,x0 , ψm) =

m∑
k=−m

ψ̂k
m exp(ikx0) , x0 ∈ (−π, π)

for the approximate discrete Fourier coefficients (computed w.r.t. the trapezoidal
rule)

ψ̂k
m = ψm · exp(−ikxm)

in this particular case. This means that oscillations observed whenever using a
δ-sweep to represent or interpolate a discontinuous function are in this particular
case what is known as Gibbs phenomenon. By using localized biased δ-sweeps
obtained by multiplication with both test functions like (5.1) and with one-sided
functions like

h−
x0,γ(x) =

(
1 − tanh(γ (x − x0))

)
,

h+
x0,γ(x) = 1 − hx0,γ(x) , x ∈ [−π, π] , γ > 0

it is possible to take advantage of the oscillations and get rid of them at the same
time. To be able to effectively use one-sided localization one needs to estimate the
location of the singularity. This can be done by using left- and right-sided (local)
δ-sweeps and observing their difference. It is large where left and right limit do
not coincide. The results obtained by approximating

z(x) :=

{
π + x , x ≤ 1√

2

x − π , x > 1√
2

are depicted in Figure 2. n = 129 equidistant discretization points are used for
(−π, π) in order to perform sweeps at N = 257 points (midpoints of the original
intervals are added). The choice of the discontinuity point makes sure it is never
a grid point. As to the other parameters

α =
10
π

, β =
π

5
, γ = 100 .

A global δ-sweep produces zb
128 whereas a local δ-sweep with one-sided bias within

distance π/5 of the singularity yields zg
128 from the discrete information con-

tained in

z64 =
(

z

(
j

64
π

))
j=−64,...,64

.
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The definition of test function is adapted to the periodic case in that (5.1) is still
used but (5.2) is modified to

ψ(x, x0, β) =
[
min

(
max(x, x0) − min(x, x0), 2π − max(x, x0) + min(x, x0)

)]
/β

which is the periodic distance function.

Figure 2. “Good and bad” approximations zg
128 and zb

128 of z.

Both approximations are equivalent in the sense of distributions, that is,
in the sense that zb

128 and zg
128 both determine perfectly valid and equivalent

discretization families for the distribution z.
It is also observed in [6] that Gibbs phenomenon is observed when develop-

ing smooth functions with finitely many jump discontinuities in the more general
framework of Gegenbauer polynomials. It follows from distributional perspective
adopted here that oscillations are to be expected whenever approximating distri-
butions by means of bases of smooth (oscillatory) functions and that oscillations,
at the discrete level at least, are the nonlocal way in which local singular behavior
manifests itself.

6. Oscillations in the wave equations

Finally an example is presented where a distribution or its approximation is not
the starting point but rather where it appears as the solution of an equation.
The example will demonstrate that the oscillations observed when solving the
wave equation for discontinuous data are an approximation to the exact solution
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provided they are interpreted in the sense of distributions. A standard test problem
in this context is provided by the propagation of box waves. Here the natural
problem of propagating Dirac impulses is chosen. In other words, the fundamental
solution (Riemann function) of the wave operator will be computed numerically.

Consider the one-dimensional wave equation⎧⎪⎨⎪⎩
utt − uxx = f(t, x) , t ∈ R , x ∈ (0, 1)
u(t, 0) = u(t, 1) = 0 , t ∈ R

u(0, x) = u0(x) , ut(0, x) = u1(x) , x ∈ [0, 1] .
(6.1)

To compute the fundamental solution one needs to solve (6.1) for(
f, u0, u1

)
=

(
0, 0, δy

)
, y ∈ (0, 1) . (6.2)

Taking the analytical view point first, let

A : dom(A) ⊂ L2(0, 1) −→ L2(0, 1)

be the operator defined through

dom(A) = H2(0, 1) ∩ H1
0(0, 1) , Au = −uxx , u ∈ dom(A)

A is a positive definite self-adjoint operator with compact resolvent and therefore
admits a calculus (cf. [10]). With it one can define

A−1/2 sin(tA) ∈ L
(
L2(Ω), L2(Ω)

)
for every t ∈ R (6.3)

by

A−1/2 sin(tA)u =
∞∑

k=1

sin(kt)〈u, ek〉ek

for ek = sin(kπ·) . Unfortunately the Dirac distribution δy �∈ L2(Ω) and the func-
tional calculus approach breaks down. The distributional framework, however,
comes to rescue and one has

A−1/2 sin(tA)δy =
∞∑

k=1

1
k

sin(kt)〈δy, ek〉ek =
∞∑

k=1

1
k

sin(kt) sin(kπy) sin(kπx) (6.4)

converges in the sense of distributions and represents the Riemann function.
When numerically solving the above equation by any consistent scheme, one ex-
pects to obtain some discrete approximation to (6.4) and, consequently, oscilla-
tions. Finding a numerically acceptable solution therefore becomes the problem of
filtering the information out in the spirit of Subsection 5.1. Since the propagation
ut of the initial Dirac impulse ut(0) = δy is of interest, the problem is reformulated
into the wave equation with initial condition

u(0, x) = δy , ut(0, x) = 0 . (6.5)
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The analytical expression for the solution then reads

∞∑
k=1

cos(kπt) sin(kπy) sin(kπx)

=
∞∑

k=1

1
2
[
sin(kπ(y − t)) + sin(kπ(y + t))

]
sin(kπx) . (6.6)

The discretization is chosen as in Example 2, that is, a discretization with n
equidistant points xn

j , j = 1, . . . , n is used. In addition the spatial differential op-
erator is discretized by means of a centered second-order finite difference approx-
imation to −∂xx. The same is done for ∂tt. Then the scheme consists in marching
implicitly in time. More specifically, if

um = (0, u2, . . . , un−1, 0)

is the solution vector at time mdt, then

um+1 =
(
1 +

dt2

dx2
An

)−1(2um − um−1
)

(6.7)

where An is defined by

A(j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 , |j − k| = 0 , 1 < j, k < n ,

−1 , |j − k| = 1 , 1 < j, k < n ,

1 , j = k = 1 , j = k = n

0 , otherwise .

As to the initial conditions it is chosen

u0 = ejm
0

/dx , u1 = 0 , jm
0 = 13, 33 , m = 32, 64 .

The solution is computed up to time t = 0.13 as to make sure that distributions
which live on a grid point are avoided. To ensure convergence a small time step dt =
t/104. Figure 3 show the solutions u10000

n obtained for n = 32, 64. The functions
Sn,100 , n = 32, 64 obtained by using a ϕ10,0.1-sweep at N = 100 equidistant points
are depicted in Figure 4. The peaks are located at

x−
32 = 0.36 , x+

32 = 0.62 and x−
64 = 0.37 , x+

64 = 0.63

and the maxima are

M−
32 = 0.4952 , M+

32 = 0.4954 and M−
64 = 0.4911 , M+

64 = 0.4979 ,

respectively.
This shows that the location, type and intensity of the singularity can be com-

puted approximately by means of the oscillatory finite difference approximations
to (6.5) to obtain

u(t, ·) ≈ M−
n δx−

n (t) + M+
n δx+

n (t) . (6.8)
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Figure 3. The finite difference solutions un, n = 32, 64.

Figure 4. Test function sweeps Sn,100 of um
n , n = 32, 64, m = 104.
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Remark 6.1. In this example it would have also been possible to work in the space

H−1(0, 1) =
(
H1

0(0, 1)
)′

in order to look for the mild solution (cf. [7] for a definition) of the weak formulation
of (6.1) with (6.5) as a function u : R → H−1(0, 1) satisfying{

〈utt, ϕ〉 + a(u, ϕ) = 0 , ϕ ∈ H1
0(0, 1) ,

u(0) = δy , ut(0) = 0 , t = 0

where a : H1
0(0, 1) × H1

0(0, 1) → R is defined through

a(u, ϕ) =
∫ 1

0

ux(ξ)ϕx(ξ) dξ .

The above discussion then shows that the numerical scheme automatically
produces the mild weak solution of (6.5) and that it needs to be interpreted as
such. A convergence analysis would reveal that the formal order of the scheme
employed is indeed realized if understood in the sense of distributions.
It has been observed ( cf. [1, 2] and the overview and references in the second
paper) that the accuracy of “weak” solutions obtained by finite element methods
can be improved by post-processing techniques. This is possible since the solution
has a higher degree of accuracy in negative Sobolev norms. That is a further
manifestation of the general point made in this paper albeit in the context of
normed spaces and can be understood and explained by the framework proposed
here.

7. Conclusion

In this paper it is shown how the theory of distribution can naturally be linked to
and used in the discrete world. Actually, even more is true. The use of the natural
duality structure existing between distributions and test functions in the discrete
world paves the way to a systematic understanding of numerical techniques and the
treatment of problems in which distributions are natural key players. It turns out
that a central role in this approach is played by smooth orthonormal bases (with
respect to L2(Ω)) which can be used to effectively approximate any compactly
supported distribution. The discretization obtained can be viewed as a kind of
abstract spectral method. Bases consisting of functions with only a finite degree of
smoothness m only allow for approximating distributions of finite order at most
m. In particular, bases consisting of merely L2(Ω) functions can only approximate
L2(Ω) functions. Many methods have been developed which can be found in the
literature (a small part of which is cited here) which take implicit advantage of
the structure made explicit in this paper.
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Abstract. Nonlinear evolution equations in the theory of exothermic chemi-
cal reactions lead to semilinear parabolic and elliptic boundary value prob-
lems with exponential nonlinearities. In contrast to a commonly employed
(Frank–Kamenetskii) approximation, which permits similarity variables for
the asymptotic analysis of solution behavior near thermal runaway, we show
that the more correct (Arrhenius–Semenov) equation permits no radial sym-
metries. We also establish that a more general class of thermal nonlinearities
also possess no symmetries.
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1. Introduction

In a series of papers [1–8] about 20 years ago, the first named author (K. G.) and
his Ph.D. students (B. Eaton and E. Ash) investigated the number of solutions,
and how to count them, for the Arrhenius–Semenov thermal explosion equation

−Δu = λe
u

1+εu , ε > 0, λ > 0. (1.1)

Here Δ is the Laplacian operator
∑

∂2u/∂x2
i in one, two, or three dimensions. The

parameter ε is essentially the reciprocal of the activation energy for the material.
Thus large ε corresponds to relatively low activation energy and not much tendency
on the part of the material to spontaneously ignite. On the other hand, small ε
implies a material prone to spontaneous ignition.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):



358 K. Gustafson and E. Ash

A more commonly studied equation in the combustion and mathematical
literature is the Frank–Kamenetskii thermal explosion equation

−Δu = λeu, λ > 0. (1.2)

As can be seen, (1.2) is a simplification of (1.1) obtained by taking ε = 0 in (1.1).
Physically, this amounts to assuming an infinite activation energy for the material.
The equation (1.2) carries many other names from its appearance in different
contexts, most notably, the equation of Bratu, the equation of Poisson–Boltzman,
the equation of Chandrasekhar. Both (1.1) and (1.2) are the steady-state equations
of the time-dependent evolution equations

∂u

∂t
− Δu = RHS of (1.1) or (1.2) (1.3)

describing the evolution of a positive solution u(x, t) from a positive initial profile
u(x, 0), along with various given boundary conditions.

For more background as to the physical issues, the analytical issues, the
numerical issues, and the historical issues (e.g., names attached to these equations),
we refer the reader to our survey [4]. Those who study these explosion equations
may be seen to separate into two communities, which for convenience here we will
simply call the elliptic and the parabolic equation communities. We are in the
former and our goal is to understand the multiple solutions of (1.1) or (1.2). These
steady solutions then govern the possible limiting behaviors as time increases of the
parabolic equations (1.3). Equation (1.2) has no solution for λ beyond some critical
value λ∗. This led us to take the position that the ‘artificial’ assumption of infinite
activation energy that simplifies (1.1) to (1.2) should be avoided. Accordingly, we
concentrate our investigations on the Arrhenius–Semenov equation (1.1). Under
appropriate boundary conditions, for (1.1) solutions exist for all λ > 0. However
for λ in critical bands, there can be multiple solutions. This situation pertains
whether one is speaking of either the Equations (1.1) or (1.2).

A rather good concise history and description of these explosion equations
from the chemical-mathematical point of view may be found in the 1983 paper of
Boddington, Feng, and Gray [9]. As for the chemists, our original interests [1–4]
were to see how well we could refine and tune mathematical numerical techniques
to determine as precisely as possible the critical ignition parameters λc and εc for
the true Arrhenius rate law equation (1.1) for the slab, cylinder, and sphere geome-
tries. The critical λc(ε) is that value of the exothermicity parameter λ for which
the smallest positive solution of (1.1) reaches an infinite change of temperature
u with respect to λ. Such λc is then taken to be the critical ignition parameter
for given ε. The largest ε for which such ignition occurs is called εc and is of sub-
stantial physical importance. As Tables 3 and 6 of [9] show, our numerical meth-
ods produced competitive answers: εc(slab) = 0.245780, εc(cylinder) = 0.242106,
εc(sphere) = 0.238797.

There exists a wide literature in the chemistry, engineering, and mathematical
communities about such equations and their criticalities, and we have no intention
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of providing any full overview here. However, let us note a few key mathematical
results. Consider just the slab, cylinder, sphere geometries, respectively the unit
1-, 2-, and 3-dimensional spheres, along with Dirichlet boundary conditions u = 0
at ||x|| = 1. Consider the general partial differential equation boundary value
problem {

−Δu = f(u) in ||x|| < 1

u = 0 at ||x|| = 1
(1.4)

Then Gidas, Ni, and Nirenberg [10] showed that any positive solution u is nec-
essarily spherically symmetric. It was assumed that f be C1 and u be C2(Ω).
Earlier Keller and Cohen [11] and Sattinger [12] had shown that if also f(u) > 0,
f ′(u) > 0, and f(u) is unbounded; then there exists a critical λ∗ for which no
solutions to (1.4) exist for λ > λ∗. On the other hand, should f(u) be bounded
for u > 0, then solutions to (1.4) exist for all λ > 0. See Lacey [13] and Amann
[14] for further related early mathematical basic results.

Possibly because it is a simpler equation, there followed a substantial number
of mathematical investigations of the Frank–Kamenetskii equation (1.2) and its
solution ‘blow-up’. Also, we may comment that the terminology ‘blow-up’ is more
dramatic that the terminology ‘thermal runaway’ that was used originally by the
chemists and scientists studying the Arrhenius–Semenov equation (1.1). For the
thermal runaway point of view we refer the reader especially to the fine early
studies [15, 16] of the Arrhenius kinetics, which employed sophisticated inner and
outer expansions, and analytical studies of the dynamics of the passage of solutions
through criticalities to the higher temperature stable solutions.

The bifurcation diagram for the Arrhenius–Semenov equation (1.1) is quite
interesting. See for example [4] or [6]. For small activation energy (large ε), one has
unique solutions and a one-to-one relationship between ||u|| = maximum temper-
ature over the region Ω, and the (material exothermicity) bifurcation parameter
0 < λ < ∞. However, as ε decreases (higher activation energies), the bifurcation
diagram (see, e.g., Figure 1 of [4]) becomes more S-like, and at the critical εc, one
reaches ‘thermal runaway’ in the sense that there is a critical λc(εc) for which
d||u||/dλ = ∞. For any higher activation energies (smaller ε), one has multiple
solutions to the problem, most notably, a stable lower branch (small ||u||) and a
stable higher branch (large ||u||), with a number of unstable branches in between.
These intermediate solutions carry physical meanings such as extinction and re-
ignition, snapback thyristor, other, as one passes through the turning points. See
for example [7, 8] and the papers [15, 16, 17, 18] for more details.

To conclude this introduction, our interests [5–8] became more analytical,
even as we found the 34 numerical solutions to (1.1) at ε = 0.01 that we reported
in the paper [6]. We also at that time had carried out a local Lie group analysis of
(1.1) to determine the radial symmetries it may have. Such symmetries if present
would provide a reduction for its solution. It surprised us that they are not present,
except in the Frank–Kamenetskii simplified equation (1.2). We vaguely [6, p. 559,
bottom] mentioned such results and promised a paper to appear. However, our
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interests at that time went elsewhere and we never got around to publishing that
interesting analysis and finding. Therefore I take this opportunity to present those
results here.

2. No symmetries in the Arrhenius–Semenov equation

For the local transformation group techniques which we will use without further
comment in the following, see [19–23] and the bibliographies cited therein. Such
Lie-group based methods are now well known, although they are sometimes ex-
tremely tedious. Indeed, symbolic manipulation computer schemes are sometimes
used to automate the work. As we did this analysis in the late 1980’s, our principal
guide was the classic book Bluman and Cole [21]. For (1.1), by the result of Gidas,
Ni, Nirenberg [10], for the classical spherical domains we need only consider the
ordinary differential equation

y′′ +
m

x
y′ + exp(y/(1 + εy)) = 0,

i.e., the radial part of (1.1). Here m = n− 1 where n is the space dimension. From
the theory of local Lie groups [20,21] we see that the second-order differential
equation Ω(x, y, y′, y′′) = 0 is invariant under the group generated by U = ξ ∂

∂x +
η ∂

∂y iff U ′′ = 0 where U ′′ = ξ ∂
∂x + η ∂

∂y + η′ ∂
∂(y′) + η′′ ∂

∂(y′′) , η′ = dη
dxη − y′ d

dxξ, and
η′′ = d

dx − y′′ d
dxξ. Our no-symmetries result for (1.1) is the following.

Theorem 2.1. The Arrhenius–Semenov differential equation

Ω(x, y, y′y,′′ ) ≡ y′′ +
m

x
y′ + exp

(
y

1 + εy

)
= 0, ε > 0,

has only the symmetry group generated by ξ(x, y) = e, η(x, y) = 0, if m = 0,
e ∈ R, and ξ(x, y) = 0, η(x, y) = 0, if m �= 0.

Proof. We seek group invariant solutions for

Ω(x, y, y′, y′′) ≡ y′′ +
m

x
y′ + exp

(
y

1 + εy

)
= 0.

Let

ω(x, y, y′) = −
(

m

x
y′ + exp

(
y

1 + εy

))
.

The condition U ′′Ω = 0 implies

−ξ
∂ω

∂x
− η

∂ω

∂y
−

{
ηx + (ηy − ξx)y′ − ξy(y′)2

} ∂ω

∂(y′)
+ ηxx

+(2ηxy − ξxx)y′ + (ηxx − 2ξxy)(y′)2 − ξyy(y′)3 + {ηy − 2ξx − 3ξyy′}ω(x, y, y′) = 0
for all x, y, y′. Now

∂ω

∂x
=

my′

x2
,

∂ω

∂y
= − exp

{
y

1 + εy

}
1

(1 + εy)2
, and

∂ω

∂(y′)
= −m

x
.
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Let

f(y) = exp
{

y

1 + εy

}
1

(1 + εy)2

and

g(y) = exp
{

y

1 + εy

}
.

Hence we must have[
ηf(y) + ηx

m

x
+ ηxx − (ηy − 2ξx)

]
+

[
−ξ

m

x2
+ 2ηxy − ξxx + 3ξyg(y)

]
y′

+
[
−2m

x
ξy + ηyy − 2ξxy

]
(y′)2 + [−ξyy] (y′)3 = 0

for all x, y, y′. Thus we are led to the four equations which must be satisfied
simultaneously:

−ξyy = 0 (2.1)
2m

x
ξy + ηyy − 2ξxy = 0 (2.2)

−ξ
m

x2
+

m

x
ξx + 2ηxy − ξxx + 3ξyg(y) = 0 (2.3)

ηf(y) + ηx
m

x
+ ηxx − (ηy − 2ξx)g(y) = 0. (2.4)

From (2.1) we get
ξ(x, y) = a(x)y + b(y)

for some functions a and b. From (2.2)

ηyy = 2
[
a′(x) − m

x
a(x)

]
≡ α(x)

for some function α. Hence

η(x, y) =
1
2
α(x)y2 + β(x)y + γ(x)

for some functions β and γ. Inserting the above expressions for ξ and η into (2.4)
and collecting similar terms involving powers of y and g(y) yields the following
equations. From the y0 terms,

m

x
γ′(x) + γ′′(x) = 0, (2.5)

y terms,

2ε
(m

x
γ′(x) + γ′′(x)

)
+

(m

x
β′(x) + β′′(x)

)
= 0, (2.6)

y2 terms,

ε2
(m

x
γ′(x) + γ′′(x)

)
+ 2ε

(m

x
β′(x) + β′′(x)

)
+ ε

m

2x
α′(x) +

1
2
α′′(x) = 0, (2.7)

y3 terms,

ε2
(m

x
β′(x) + β′′(x)

)
+ ε

(m

x
α′(x) + α′′(x)

)
= 0, (2.8)
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y4 terms,
ε2

2

(m

x
α′(x) + α′′(x)

)
= 0, (2.9)

g(y) terms,
γ(x) + 2b′(x) − β(x) = 0, (2.10)

yg(y) terms,
β(x) + (2a′(x) − α(x)) + 2ε(2b′(x) − β(x)) = 0, (2.11)

y2g(y) terms,
1
2
α(x) + ε2(2b′(x) − β(x)) + 2ε(2a′(x) − α(x)) = 0, (2.12)

and y3g(y) terms,
ε2(2a′(x) − α(x)) = 0. (2.13)

We now treat the case m �= 1. From equations (2.5), (2.6), and (2.7) we
obtain

γ(x) = cγx1−m + dγ , β(x) = cβx1−m + dβ , and α(x) = cαx1−m + dα

for some constants cα, cβ , cγ , dα, dβ , dγ ∈ R. Equations (2.8) and (2.9) are also
satisfied. From Equation (2.13),

a′(x) =
1
2
α(x) =

cα

2
x1−m +

dα

2
.

Hence

α(x) =

{
cax2−m + dax + ea, if m �= 2
ca log x + dax + ea, if m = 1

where

ca =

{
cα

2(2−m) , if m �= 2
cα

2 , if m = 2

da =
dα

2
, ea ∈ R.

From (2.12) we get

b′(x) =
1
2
β(x) − 1

4ε2
α(x).

Hence

b(x) =

⎧⎪⎨⎪⎩
1

4ε2

[
2ε2cβ−cα

2−m x2−m + (2ε2dβ − dα)x + eb

]
if m �= 2

1
4ε2

[
2ε2cβ−cα

2−m log x + (2ε2dβ − dα)x + eb

]
if m = 2.

From (2.11),

b′(x) =
(

2ε − 1
4ε

)
β(x)

and
α(x) = εβ(x),
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and from equation (2.10)

γ(x) =
1
2ε

β(x).

Recapitulating, from Equation (2.4) the following must be satisfied.

α(x) = cx1−m + d, c, d ∈ R

β(x) = 1
ε α(x)

γ(x) = 1
2ε2 α(x)

a(x) =

⎧⎨⎩
c

2(2−m)x
m−2 + d

2x + ea, m �= 2, ea ∈ R

c
2 log x + d

2x + ea, m = 2, ea ∈ R

b(x) =

⎧⎨⎩
1

4ε2

[
2ε−1
2−m cx2−m + (2ε − 1)x + eb

]
, m �= 2, eb ∈ R

1
4ε2 [(2ε − 1)c log x + (2ε − 1)x + eb] , m = 2, eb ∈ R

b′(x) =
2ε − 1

4ε
β(x).

From equation (2.3) we have

ξy = a(x) = 0.

This further implies α = β = γ = β′ = 0. Hence if m �= 0, 1 we have ξ = 0, η = 0,
and if m = 0 we have ξ(x, y) = eb and η(x, y) = 0.

Now we restrict ourself to the case m = 1. In this case,

α(x) = cα log x + dα, β(x) = cβ log x + dβ , and γ(x) = cγ log x + dγ .

Equations (2.10) and (2.11) yield as before β(x) = 1
ε α(x) and γ(x) = 1

2ε2 α(x).
Equation (2.13) gives

a(x) =
1
2
cα(log x − 1)x +

dα

2
+ ea.

Again from (2.3) a(x) = 0, and therefore α = β = γ = β′ = 0. Equation (2.3)
further implies that b(x) = 0.

Therefore in any case, the only symmetry groups for the Arrhenius–Semenov
equation are given by ξ(x, y) = eb, η(x, y) = 0, if m = 0, and ξ(x, y) = 0, η(x, y) =
0, if m �= 0. �

Next, we consider a more general nonlinearity.

Theorem 2.2. The nonlinear differential equation

Ω(x, y, y′, y′′) ≡ y′′ +
m

x
y′ + f(y) = 0

has group invariant solutions only if f(y) = ceky, c, k ∈ R. Hence it is necessary
for f to be of the Frank–Kamenetskii type for group invariant solutions to exist.
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Proof. We seek the general form of f which insures group invariant solutions to

y′′ +
m

x
y′ + f(y) = 0.

Here we have
Ω(x, y, y′, y′′) ≡ y′′ − ω(x, y, y′)

where
ω(x, y, y′) = −

(m

x
y′ + f(y)

)
.

The condition
U ′′Ω = 0 when Ω = 0

gives

− ξ
∂ω

∂x
− η

∂ω

∂y
− {ηx + (ηy − ξx)y′ − ξy(y′)2} ∂ω

∂(y′)
+ ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)(y′)2 − ξyy(y′)3 + {ηy − 2ξx − 3ξyy}ω = 0

for all x, y, y′, and
∂ω

∂x
=

m

x2
y′,

∂ω

∂y
= −f ′(y),

∂ω

∂(y′)
= −m

x
.

Collecting like terms involving powers of y′, we are led to consider the following
equations.

ξyy = 0 (2.14)

−m

x
ξy + ηyy − 2ξxy + 3

m

x
ξy = 0 (2.15)

−ξ
m

x2
+

m

x
ξx + 2ηxy − ξxx + 3ξyf(y) = 0 (2.16)

ηf ′(y) +
m

x
ηx + ηxx − f(y)(ηy − 2ξx) = 0 (2.17)

for all x, y. These equations resemble (2.1) through (2.4) but here we are consid-
ering a more general nonlinearity.

As before, (2.14) gives

ξ(x, y) = a(x)y + b(x)

for some functions a and b. Equation (2.15) gives

ηyy = 2
(
a′(x) − m

x
a(x)

)
.

Let
α(x) = a′(x) − m

x
a(x).

Then
η(x, y) = α(x)y2 + β(x)y + γ(x)

for some functions β and γ. From Equation (2.16) we have if

ξy = a(x) �= 0
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that
f(y) =

1
3ξy

[
ξ

m

x2
− m

x
ξx + ξxx − 2ηxy

]
.

Thus
f ′(y) =

1
3ξy

[
ξy

m

x2
− m

x
ξxy + ξxxy − 2ηxyy

]
.

Since
ξxy = a′(x), ξxxy = a′′(x),

and

ηxyy = 2α′(x) = 2a′′(x) − 2
d

dx

(m

x
a(x)

)
we have

f ′(y) = − 1
3a(x)

[
a′′(x) − m

x
a′(x) +

m

x2
a(x)

]
which is a function of x. Therefore f ′(y) = k for some constant k. If ξy �= 0, then
f(y) = ky and a(x) must satisfy the equation

a′′(x) − m

x
a′(x) +

(
3k − m

x2

)
a(x) = 0.

This linear case (ξy �= 0) f(y) = ky does not interest us here. However, the
second-order differential equation for a(x) just given, along with a comparable
equation for b(x), could be pursued to obtain ξ(x, y), should there be interest.

In the case that ξy = a(x) = 0, Equation (2.16) becomes

−m

x2
ξ +

m

x
ξx + 2ηxy − ξxx = 0 (2.16′)

where ξ(x, y) = b(x) and η(x, y) = β(x)y + γ(x).
Equation (2.17) implies

(βy + γ)f ′(y) +
m

x
(β′y + γ) + β′′y + γ′′ − f(y)(β − 2b′) = 0. (2.17′)

Differentiating (2.17′) twice with respect to y gives

βf ′′(y) + (βy + γ)f (3)(y) + 2f ′′(y)b′ = 0.

If we suppose β �= 0 then

f ′′(y) + yf (3)(y) + A(x)f (3)(y) + B(x)f ′′(y) = 0 (2.18)

where

A(x) =
γ(x)
β(x)

and B(x) =
2b′(x)
β(x)

.

Differentiating both sides of (2.18) with respect to x yields

A′(x)f (3)(y) + B′(x)f ′′(y) = 0

or
f (3)(y)
f (2)(y)

= −B′(x)
A′(x)

= k
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for some constant k. Hence f(y) = k1e
ky + k2y + k3, k0, k1, k2 ∈ R. Substituting

this expression for f(y) back into Equation (2.18) yields

k2k1[1 + ky + kA(x) + B(x)] = 0.

Hence if k1 �= 0 then k = 0 and f(y) is linear.
Now assuming β(x) = 0, and therefore that

η(x, y) = γ(x), ξ(x, y) = b(x),

from Equation (2.17)

ηf ′(y) +
m

x
ηxx − 2f(y) = 0.

Differentiating both sides of (2.17) with respect to y gives

ηf ′′(y) + 2f ′(y)ξx = 0

or
f ′′(y)
f ′(y)

= −2ξx

η
= k

for some constant k. Therefore f(y) = k1e
ky + k2. Equation (2.16) gives

b′′(x) − m

x
b′(x) +

m

x2
b(x) = 0.

Equation (2.17) gives

γ′′(x) +
m

x
γ′(x) − k2kγ(x) = 0.

By considerations as above, the above equations for b and γ yield the following
conclusions. Of course we have assumed that f(y) possesses the needed regularity
as we have differentiated it in the above analysis.

If m = 0, the one space dimensional case, then either

f(y) = k1e
ky + k, ξ(x, y) = b, η(x, y) = 0, for b ∈ R,

or

f(y) = k1e
ky, ξ(x, y) = ax + b, η(x, y) = −2a

k
for a, b ∈ R.

If m = 1, the two space dimensional case, then

f(y) = k1e
ky , ξ(x, y) = ax log x + bx, η(x, y) = −2

k
(a log x + (a + b)), a, b ∈ R.

If m > 1, the three and higher space dimensional case, then

f(y) = k1e
ky, ξ(x, y) = ax, η(x, y) = −2a

k
, a ∈ R. �
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3. Conclusions and discussion

In Section 1 we reviewed the important Arrhenius–Semenov equation of thermal
explosion theory. In Section 2 we proved the previously unknown result that the
Arrhenius–Semenov equation (1.1) possesses no radial symmetries. We also estab-
lished that among a more general class of thermal nonlinearities, the only one which
possesses symmetries is the Frank–Kamenetskii equation (1.2). To our knowledge,
that is also a previously unknown fact.

In proving their result that positive solutions must be spherically symmetric,
for a class of equations that includes both (1.1) and (1.2), Gidas, Ni and Niren-
berg [10] employed the maximum principle for elliptic partial differential equations,
plus an interesting device of ‘moving parallel planes’. They did not do a Lie group
analysis as we have done in the present paper. However, their result that posi-
tive solutions on spherical domains must be spherically symmetric, does indeed
constitute a group symmetry, i.e., solution invariance under SO(n). Thus within
the context of [10], especially in view of our Theorem 2.2 which looks at general
nonlinearities f , our results may be viewed as extending and complementing [10].
That is, [10] established a symmetry in the angular variable. We have established
the nonsymmetry for the Arrhenius–Semenov equation, and the symmetries for
the Frank–Kamenetskii equation, in the radial variable.

For space dimensions 2 and higher (m > 0) we showed that the infinitesimal
generator U = ξ ∂

∂x +η ∂
∂y (and its prolongations) admitted no radial symmetries for

the Arrhenius–Semenov equation. In one space dimension (m = 0) from Theorem
2.1 we do get the spatial translation invariance of solutions. This fact can be
seen without a Lie group analysis just from the one-dimensional Laplacian y′′(x).
That operator also enjoys (see [22]) an SO(2) symmetry in x and y, but from our
results we see that the nonlinear term precludes such for the Arrhenius–Semenov
equation.

Our Theorem 2.2 does establish the infinitesimal generators for the radial
symmetries of the Frank–Kamenetskii equation. These infinitesimal symmetries
may be exponentiated by the standard methods (e.g., see [22]) to determine the
corresponding symmetry group. We do not do the details here. Let us briefly
comment. For m = 0 we get the trivial spatial translation invariance mentioned
above, plus a scale and translation invariance in x coupled with a translation of the
dependent variable y. The m > 1 (space dimension 3 or higher) is similar. However,
the space dimension 2 (m = 1) has a more complicated symmetry group, reflecting
the nature of the fundamental singularity for the Laplacian in 2 dimensions.

One could perform a similar local transformation group analysis of the time
dependent equation (1.3) with the Arrhenius–Semenov nonlinearity. We do not
know if that has been done. In the literature usually one finds the Frank–Ka-
menetskii approximation imposed (see [24] and citations therein) and then use
of auxiliary variables such as τ = − ln(T − t), y = x(T − t)−1/2 permits an
asymptotic analysis near the ‘blow-up’ time T . In both cases (1.1) and (1.2), the
solution narrows to a ‘hot spot’, see our δ-function-like solution profiles which
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we computed in [6]. However, the Arrhenius–Semenov equation enables these hot
spots to eventually spread out as one passes through criticality. Thus in our opinion
the asymptotics of the fold points on the Arrhenius–Semenov bifurcation curve
are more interesting than the approximation ‘blow-up’. These Arrhenius–Semenov
fold dynamics have been studied in the work of Kapila [15,16], the later work of
Winters and Cliffe [17] and Van de Velde and Ward [18], and also in the chemistry
literature, see, e.g., Boddington, Gray, and Kay [25]. When these asymptotics are
combined with initial value profiles, one finds [26,27] that one needs to start with
an initial profile u0 which has moment properties resembling a Gaussian, i.e., the
tendency to concentrate heat should already be in the initial distribution. Also
[27] the initial maximum temperature should be small enough that one does not
evolve into the unstable steady solution profiles. There is also interesting travelling
wave behavior [28] that has been detected.

Our result that the Arrhenius–Semenov equation (1.1) possesses no radial
symmetries raises a number of questions that could be suitable for further inves-
tigation. We just mention a few here. Analytic solutions for the simpler equation
(1.2) are known in n = 1, 2 dimensions (see [4]). What is the general relation of our
result to integrability? Does it fit into a larger class of equations for which no sym-
metries and no integrability are related? What about the implications of our result
for other combustion nonlinearities that one finds in use, e.g., e−1/u, u1/2e−1/u, and
other boundary conditions such as ∂u/∂n + βu = 0? It should be noted that we
did not impose any boundary conditions during our analysis. It must be admitted
(in our opinion) that, generally speaking, Lie Group methods for determining the
group symmetries of a differential equation, do not naturally extend to accommo-
date boundary conditions.
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Abstract. We obtain spectral conditions that characterize mild well-posed in-
homogeneous differential equations in a general Banach space X. Lp periodic
solutions of first and second-order equations are considered. The results are
expressed in terms of operator-valued Fourier multipliers. Our approach pro-
vides a unified framework for various notions of strong and mild solutions.
Applications to semilinear equations of second order in Hilbert spaces are
given.
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1. Introduction

Operator-valued Fourier multipliers and their applications to differential equations
have received much attention recently. Among the many papers on the subject,
we mention Arendt-Bu [5], Weis [18] and Denk-Hieber-Prüss [10]. Mild solutions
of abstract differential equations are of great importance and are connected to
operator semigroups and cosine functions for first and second-order problems re-
spectively (see, e.g., the monograph [3]). It was discovered recently that for strong
solutions of the first-order problem, well-posedness did not require that the opera-
tor involved be the generator of a semigroup. In Arendt-Bu [5], a very simple and
elegant characterization of strong well-posedness was established for periodic so-
lutions. However the problem of characterizing mild well-posedness was left open,
except when the operator A generates C0-continuous semigroup. See the remark
after Proposition 3.4. in [5].
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H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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The main objective of this paper is to establish a characterization of mild
well-posedness for periodic solutions of differential equations of first and second
order. We work with a different definition of mild solution and show that, for the
first-order Cauchy problem, it coincides with the one adopted by Arendt and Bu
[5] in case A generates a strongly continuous semigroup. Actually, the definition
of mild solutions that we adopt is inspired by Staffans [15] where he worked with
a first-order equation in Hilbert space.

Let A be a closed and densely defined operator in a Banach space X . We
consider the inhomogeneous problem with periodic boundary conditions

Pper(f)
{

u′(t) = Au(t) + f(t), t ∈ [0, 2π],
u(0) = u(2π),

where f ∈ Lp((0, 2π); X), 1 ≤ p < ∞. A strong Lp-solution of Pper(f) is a func-
tion u ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) such that Pper(f) is satisfied t-a.e.
Assuming that X is a UMD space, Arendt and Bu [5] (see also Arendt [2]) have
characterized strong Lp-well-posedness of the periodic problem Pper(f) in terms
of the R-boundedness of the set {k(ikI − A)−1 : k ∈ Z}.

Let 1 ≤ p < ∞. We will prove that Pper(f) is (W 1,p, Lp) mildly well posed (see
Definition 3.1) if and only if iZ ⊂ ρ(A) and ((ikI−A)−1)k∈Z is an Lp-multiplier. In
the case of the Cauchy problem of second order, we introduce two new notions of
mild solutions and this allows us to distinguish between having ((−k2I−A)−1)k∈Z

and (ik(−k2I − A)−1)k∈Z as Lp-multipliers. The latter gives a more transparent
description of the concept of C1-mild solution of the second-order problem (see
[8], [13] and [14]).

The interest in using Fourier multipliers comes from the fact that sufficient
conditions for operator-valued Fourier multipliers have been established recently
(see [5], [10], [18] and [12]).

The paper is organized as follows. In Section 2, we give some preliminaries
on operator-valued Fourier multipliers and strong well-posedness of Pper(f). In
Section 3, we establish a characterization of mild well-posedness of Pper(f) and
its connection to strongly continuous semigroups. Section 4 is concerned with
the second-order problem. There, we present two notions of mild well-posedness
and characterize them through Fourier multipliers. Furthermore, we examine the
situation when A is the generator of a strongly continuous cosine function on X .
In Section 5, we present a unified approach to mild well-posedness for the first-
and second-order problems in UMD Banach spaces using Hardy-Sobolev spaces.
Finally, in Section 6, an application to semilinear equations in Hilbert spaces is
considered.

2. Preliminaries

Let X be a Banach space. We denote by L(X) the Banach algebra of all bounded
linear operators on X . If Y is another Banach space, we write L(X, Y ) for the
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space of bounded linear operators from X to Y . By ρ(A) we denote the resolvent
set of the operator A, and we write R(λ, A) = (λ − A)−1 when λ ∈ ρ(A).

For f ∈ L1((0, 2π); X) denote by

f̂(k) =
1
2π

∫ 2π

0

e−iktf(t)dt

the kth Fourier coefficient of f , where k ∈ Z. The Fourier coefficients determine
the function f ; i.e., f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e.

We shall frequently identify the spaces of (vector or operator-valued) func-
tions defined on [0, 2π] with their periodic extensions to R. Thus, throughout, we
consider the space Lp

2π(R; X) (which is also denoted by Lp((0, 2π); X), 1 ≤ p ≤
∞) of all 2π-periodic Bochner measurable X-valued functions f such that the
restriction of f to [0, 2π] is p-integrable (essentially bounded if p = ∞).

We recall the notion of operator-valued Fourier multiplier.

Definition 2.1. Let 1 ≤ p < ∞. A sequence (Mk)k∈Z ⊂ L(X) is an Lp-multiplier
if, for each f ∈ Lp((0, 2π); X) there exists a function g ∈ Lp((0, 2π); X) such that

Mkf̂(k) = ĝ(k), k ∈ Z.

If a sequence (Mk)k∈Z ⊂ B(X) is an Lp-multiplier, then there exists a unique
bounded operator M : Lp((0, 2π); X) → Lp((0, 2π); X) such that

(̂Mf)(k) = Mkf̂(k),

for all k ∈ Z and all f ∈ Lp((0, 2π); X).
Recall that a family T ⊂ L(X, Y ) is called R-bounded if there is a constant

C ≥ 0 such that

||
n∑

j=1

rj ⊗ Tjxj ||Lp(0,1;Y ) ≤ C||
n∑

j=1

rj ⊗ xj ||Lp(0,1;X) (2.1)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N, for some p ∈ [1, ∞). More
information on R-boundedness and its relationship to Lp multipliers can be found
in the references [5], [10], [18]. If X is isomorphic to a Hilbert space, then, R-
boundedness in L(X) is equivalent to boundedness. On the other hand, in any
Banach space, R-boundedness is a necessary condition for Lp multipliers (see [5,
Proposition 1.11, Proposition 1.13 and Proposition 1.17]).

We say that problem Pper(f) is strongly Lp-well posed if for each f ∈ Lp((0, 2π); X)
there exists a unique strong Lp-solution of Pper(f).

In [5, Theorem 2.3] the following remarkable result was established: if X is a
UMD space and 1 < p < ∞ then the following assertions are equivalent:

(i) Pper(f) is strongly Lp-well posed.
(ii) iZ ⊂ ρ(A) and (kR(ik, A))k∈Z is an Lp-multiplier.
(iii) iZ ⊂ ρ(A) and (kR(ik, A))k∈Z is R-bounded.
The equivalence (i)⇔(ii) is valid in any Banach space and for p = 1 as well.
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The concept of mild solution studied in [5, Section 3] is the following. Let
f ∈ L1((0, 2π); X). A function u ∈ C([0, 2π]; X) is called a mild solution of the
problem Pper(f) if u(0) = u(2π) and⎧⎪⎪⎨⎪⎪⎩

∫ t

0

u(s)ds ∈ D(A), and

u(t) − u(0) = A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds

(2.2)

for all t ∈ [0, 2π]. It is clear that every strong Lp-solution is a mild solution.

We say that problem Pper(f) is Lp mildly well posed if for each f ∈ Lp((0, 2π); X)
there exists a unique mild solution of Pper(f).

Now recall from [5, Proposition 3.4] that if D(A) = X , and the problem
Pper(f) is Lp mildly well posed then we have that iZ ⊂ ρ(A) and (R(ik, A))k∈Z

is an Lp-multiplier. In the following section we will use the above condition to
characterize mild well-posedness of Pper(f), adopting a different notion of mild
solution.

3. Mild-well-posedness and Lp-multipliers

Let A be a closed operator in X with domain D(A) and 1 ≤ p < ∞. Define the
operator A on Lp((0, 2π); X) by D(A) = W 1,p((0, 2π); X)∩Lp((0, 2π); D(A)) and

Au = u′ − Au.

Here W 1,p((0, 2π); X) is the vector-valued Sobolev space. When considering the
space Lp((0, 2π); D(A)), we equip D(A) with the graph norm. We now define the
notion of mild solution that we will use.

Definition 3.1. We say that the problem Pper(f) is (W 1,p, Lp) mildly well posed if
there exists a linear operator B that maps Lp((0, 2π); X) continuously into itself
as well as W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)). In this case the function Bf is
called the (W 1,p, Lp) mild solution of Pper(f) and B the solution operator.

Clearly, the solution operator B above is unique, if it exists at all. The above
notion of well-posedness is suggested by the paper Staffans [15] in case where p = 2
and X is a Hilbert space.

Our first main result in this paper characterizes (W 1,p, Lp) mildly well-
posedness in terms of operator-valued Lp-multipliers in Banach spaces.

Theorem 3.2. Let A be closed linear operator and assume D(A) = X. Let 1 ≤ p <
∞. Then the following assertions are equivalent:

(i) Pper(f) is (W 1,p, Lp) mildly well posed.
(ii) iZ ⊂ ρ(A) and (R(ik, A))k∈Z is an Lp-multiplier.
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Proof. (ii) → (i). Let B be the operator which maps f ∈ Lp((0, 2π); X) into the
function u ∈ Lp((0, 2π); X) whose kth Fourier coefficient is R(ik, A)f̂(k), i.e.,

(̂Bf)(k) = R(ik, A)f̂(k) = û(k), (3.1)

for all k ∈ Z and all f ∈ Lp((0, 2π); X). By the remark following Definition
2.1, B is a bounded linear operator on Lp((0, 2π); X). Let g ∈ W 1,p((0, 2π); X) ∩
Lp((0, 2π); D(A)) and set h = Bg. Then,

ikĥ(k) = R(ik, A)ikĝ(k) = R(ik, A)ĝ′(k), (3.2)

for all k ∈ Z. Since g′ ∈ Lp((0, 2π); X), there exists w ∈ Lp((0, 2π); X) such that

ŵ(k) = R(ik, A)ĝ′(k) (3.3)

for all k ∈ Z. Hence from (3.2), (3.3) and [5, Lemma 2.1] we obtain h ∈
W 1,p((0, 2π); X). Note that ĥ(k) ∈ D(A), k ∈ Z since ĥ(k) = R(ik, A)ĝ(k). From
(3.2), it follows that

Aĥ(k) = AR(ik, A)ĝ(k) = R(ik, A)ĝ′(k) − ĝ(k) (3.4)

for all k ∈ Z. Hence from (3.3), [5, Lemma 3.1] and the closedness of A, we conclude
that h(t) ∈ D(A) and Ah(t) = w(t)−g(t) for almost all t ∈ [0, 2π]. We have proved
that B that maps W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) into itself. Continuity of
B follows from the Closed Graph Theorem since the space W 1,p((0, 2π); X) ∩
Lp((0, 2π); D(A)) embeds continuously into Lp((0, 2π); X).

Finally, for u ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) we have

(̂Au)(k) = (ikI − A)û(k), (3.5)

for all k ∈ Z. Hence from (3.1) and [5, Lemma 3.1] we obtain ABu = BAu = u.
(i) → (ii). Let x ∈ X and xn ∈ D(A) such that xn → x. Fix k ∈ Z and let
fn(t) = eiktxn for all n ∈ N and f0(t) = eiktx. Note that f̂n(k) = xn and f̂n(j) = 0
for j �= k. Clearly fn → f0 in the Lp-norm. Let un = Bfn. Then we have

ikûn(k) − Aûn(k) = (̂Aun)(k) = ̂(ABfn)(k) = f̂n(k) = xn.

Since B is bounded on Lp((0, 2π); X), un → u0 := Bf0 in the Lp-norm, we conclude
that ûn(k) → û0(k), and

ikû0(k) − Aû0(k) = x.

Hence, for all k ∈ Z, (ikI − A) is surjective.
Let x ∈ D(A) be such that (ikI−A)x = 0, for k ∈ Z fixed. Define u(t) = eiktx.

Then, clearly, u ∈ W 1,p((0, 2π); X)∩Lp((0, 2π); D(A)) and u′(t)−Au(t) = Au = 0.
Hence

u = BAu = 0,

and therefore x = 0. Since A is closed, we have proved that iZ ⊂ ρ(A).
Next we show that (R(ik, A))k∈Z is an Lp-multiplier. Let f ∈ Lp((0, 2π); X).

We observe that since D(A) = X and 1 ≤ p < ∞, the space W 1,p((0, 2π); X) ∩
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Lp((0, 2π); D(A)) is dense in Lp((0, 2π); X). Hence there exists a sequence fn ∈
W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) such that fn → f in the Lp-norm. Define

gn = Bfn, n ∈ N.

Then gn ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) and

g′n − Agn = Agn = ABfn = fn, n ∈ N.

Taking the Fourier coefficients, and using the fact that iZ ⊂ ρ(A), we obtain from
the above

ĝn(k) = (ikI − A)−1f̂n(k) (3.6)
for all k ∈ Z. Next, we note that {gn}n∈N is a Cauchy sequence in Lp((0, 2π); X).
By continuity of B, there exists g ∈ Lp((0, 2π); X) such that gn → g in the
Lp-norm. From this and using Hölder’s inequality we deduce that ĝn(k) → ĝ(k)
and, analogously, f̂n(k) → f̂(k). Therefore we conclude from (3.6) that ĝ(k) =
(ikI − A)−1f̂(k), for all k ∈ Z. The claim is proved. �

When X is a Hilbert space, the result was obtained by Staffans for p = 2.
Even in this case, he could not obtain the full range 1 ≤ p < ∞ since his proof
relied on Plancherel’s theorem which is only valid when X = H is a Hilbert space
and p = 2.

Indeed, in the case of a Hilbert space, and for 1 < p < ∞, a sequence
(Mk)k∈Z ⊂ L(H) is an Lp-multiplier if

sup
k∈Z

(‖Mk‖ + ‖k(Mk+1 − Mk)‖) < ∞. (3.7)

However, if in addition p = 2, then as a consequence of Plancherel’s theorem,

sup
k∈Z

(‖Mk‖) < ∞ (3.8)

is a necessary and sufficient condition for (Mk)k∈Z ⊂ L(H) to be a multiplier.
In a general Banach space, even finite-dimensional, this is no longer the case.

In [5, Theorem 1.3] (see also [2]), it is shown that for UMD spaces, R-boundedness
of the sequences (Mk)k∈Z and (k(Mk+1 − Mk))k∈Z is sufficient for (Mk)k∈Z to be
an Lp-multiplier for 1 < p < ∞. In the case of Hilbert spaces, the sufficiency of
condition (3.7) is much older (see, e.g., [6, Theorem 6.1.6, p. 135]). It is known
that in a Banach space X , if condition (3.7) always implies that (Mk)k∈Z ⊂ L(X)
is an Lp multiplier for 1 < p < ∞, then X is isomorphic to a Hilbert space (see
[5, Section 1]).

If follows from the proof that the concept of mild solution considered here is
related to the one studied by Da Prato and Grisvard in [9]. In that paper, they call
strict solutions (“solutions strictes”) what we call strong solutions and they term
strong solutions (“solutions fortes”) what corresponds to our (W 1,p, Lp) mild solu-
tions. In a sense, the present concept of mild solutions seems more natural. They
appear as strong limits (in Lp) of strong solutions. Such solutions are important
in the analysis of nonlinear problems.
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It should also be noted that the solution u(·) in Theorem 3.2 depends con-
tinuously on the function f . Specifically, there exists a positive constant C such
that

‖u‖Lp((0,2π);X) ≤ C‖f‖Lp((0,2π);X), f ∈ Lp((0, 2π); X). (3.9)
This is clear from the proof and is otherwise a consequence of Definition 3.1.

As direct consequence of [5, Proposition 3.4] we obtain the following result.

Corollary 3.3. Let X be a Banach space and assume D(A) = X. If Pper(f) is Lp

mildly well posed then Pper(f) is (W 1,p, Lp) mildly well posed.

Using Theorem 3.2 and [5, Theorem 3.6] we obtain the following consequence
in case A generates a C0-semigroup.

Corollary 3.4. Let A be the generator of a C0-semigroup (T (t))t≥0 on X and let
1 ≤ p < ∞. Then the following are equivalent.

(i) Pper(f) is Lp mildly well posed.
(ii) Pper(f) is (W 1,p, Lp) mildly well posed.
(iii) iZ ⊂ ρ(A) and (R(ik, A))k∈Z is an Lp-multiplier.
(iv) 1 ∈ ρ(T (2π)).

It is important to note that the mild solutions provided by this corollary are
continuous.

Remark 3.5. We observe that according [5, Proposition 1.11] condition (ii) in
Theorem 3.2 implies that
(iii) iZ ⊂ ρ(A) and (R(ik, A))k∈Z is R-bounded.
However the converse is false. This was proved in [5, Example 3.7]

4. Mild solutions for second-order equations

This section is concerned with second-order inhomogeneous problems of the form

P 2
per(f)

⎧⎨⎩
u′′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π
u(0) = u(2π),
u′(0) = u′(2π),

(4.1)

in the space Lp
2π(R; X), 1 ≤ p < ∞.

A strong Lp-solution of P 2
per(f) is a function

u ∈ W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A))

such that P 2
per(f) is satisfied t-a.e.

We say that problem P 2
per(f) is strongly Lp well posed if for each f ∈ Lp((0, 2π); X)

there exists a unique strong Lp-solution of P 2
per(f).

We define the operator A on Lp((0, 2π); X) by D(A) = W 2,p((0, 2π); X) ∩
Lp((0, 2π); D(A)) and

Au = u′′ − Au for u ∈ D(A).
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Mild solutions of second-order problems have been studied in the paper [13]
(see also [8] and [14]). There, two notions of mild solutions where considered.
These notions, roughly speaking, correspond to integrating equation (4.1) once
and twice respectively. Here, we introduce two new notions of mild solutions for
(4.1) and establish characterizations which differentiate between the corresponding
well-posedness in terms of Fourier multipliers even in case of Hilbert spaces. We
show that when A generates a strongly continuous cosine function, then the notions
of mild solutions introduced here coincide with those studied in [13].

Definition 4.1. We say that the problem P 2
per(f) is (W 2,p, Lp) mildly well posed if

there exists a linear operator B that maps Lp((0, 2π); X) continuously into itself
as well as W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)). In this case the function Bf is
called the mild solution of order 2 (or (W 2,p, Lp) mild solution) of P 2

per(f) and B
the solution operator.

Proceeding as in the previous section, one obtains the following analog of
Theorem 3.2.

Theorem 4.2. Let A be closed and assume D(A) = X. Let 1 ≤ p < ∞. Then the
following assertions are equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well posed.

(ii) {−k2, k ∈ Z} ⊂ ρ(A) and (R(−k2, A))k∈Z is an Lp-multiplier.

Proof. (ii) → (i). For each f ∈ Lp((0, 2π); X), let B be the operator which maps f

into the function u ∈ Lp((0, 2π); X) whose kth Fourier coefficient is R(−k2, A)f̂(k),
i.e.,

(̂Bf)(k) = R(−k2, A)f̂(k) = û(k), (4.2)

for all k ∈ Z and all f ∈ Lp((0, 2π); X). Clearly, B is a bounded linear operator
on Lp((0, 2π); X). Let g ∈ W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) and set h = Bg.
Then,

− k2ĥ(k) = R(−k2, A)(ik)2ĝ(k) = R(−k2, A)ĝ′′(k), (4.3)

for all k ∈ Z. Since g′′ ∈ Lp((0, 2π); X), there exists w ∈ Lp((0, 2π); X) such that

ŵ(k) = R(−k2, A)ĝ′′(k) (4.4)

for all k ∈ Z. Hence from (4.2), (4.3) and [5, Lemma 2.1] we obtain

h ∈ W 2,p((0, 2π); X).

Since h = Bg, from (4.2) and (4.3) it follows that

Aĥ(k) = AR(−k2, A)ĝ(k) = −k2R(−k2, A)ĝ(k) − ĝ(k)

= R(−k2, A)ĝ′′(k) − ĝ(k)
(4.5)



Mild Well-posedness of Abstract Differential Equations 379

for all k ∈ Z. Hence from (4.4), [5, Lemma 3.1] and the closedness of A, we conclude
that h(t) ∈ D(A) and Ah(t) = w(t)−g(t) for almost all t ∈ [0, 2π]. We have proved
that B that maps W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) into itself. Continuity of
B follows from the Closed Graph Theorem since the space W 2,p((0, 2π); X) ∩
Lp((0, 2π); D(A)) embeds continuously into Lp((0, 2π); X).

Finally, for u ∈ W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)) we have

(̂Au)(k) = (−k2I − A)û(k), (4.6)

for all k ∈ Z. Hence from (4.2) and [5, Lemma 3.1] we obtain ABu = BAu = u.

(i) → (ii). We shall only give a sketch of the proof since it is analogous to the proof
of the corresponding implication in Theorem 3.2. For x ∈ X, k ∈ Z, fixed, we let
xn → x where xn ∈ D(A), n ∈ N ∪ {0}. Set fn(t) = eiktxn and f0(t) = eiktx.
One first establishes that {−k2, k ∈ Z} ⊂ ρ(A) and then using an approximation
procedure, one proves that (R(−k2, A))k∈Z is an Lp-multiplier. Note that B̂f(k) =
R(−k2, A)f̂(k), k ∈ Z. �

Suppose A generates a strongly continuous cosine function C(t) and denote
by S(t) the associate sine function. In what follows, we shall make use of the set

E = {x ∈ X : t → C(t)x is once continuously differentiable },

which under the norm ||x||E = ||x|| + sup0≤t≤1 ||AS(t)x|| is a Banach space (cf.
[11] and [3, Section 3.14 ]).

Observe that if (x, y) ∈ D(A) × E and f is continuously differentiable on
[0, 2π], then the formula

u(t) = C(t)x + S(t)y +
∫ t

0

S(t − s)f(s)ds, (4.7)

defines a strong (classical) solution of the differential equation in (4.1) (see, e.g.,
Travis and Webb [16, Proposition 2.4] or [3, Chapter 3] or [11]).

Using [13, Theorem 4.6] one immediately has the following corollary to The-
orem 4.2.

Corollary 4.3. Let A be the generator of a strongly continuous cosine function C(t)
and denote by S(t) the associated sine function. For 1 ≤ p < ∞ the following are
equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well posed.

(ii) For any f ∈ Lp
2π(R; X) there exists a unique (x, y) ∈ X × X such that u

given by (4.7) is differentiable at t = 0 and 2π-periodic, i.e., u(0) = u(2π)
and u′(0) = u′(2π).

(iii) S(2π) ∈ B(X, E) is invertible.



380 V. Keyantuo and C. Lizama

In the context of Hilbert spaces, using [13, Cor. 4.7] we have the following.

Corollary 4.4. Let H be a Hilbert space and let A be the generator of a strongly
continuous cosine family C(t). For 1 ≤ p < ∞ the following are equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well posed.

(ii) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||R(−k2; A)|| < ∞.

We introduce the following definition of mild solution to equation (4.1).

Definition 4.5. We say that the problem P 2
per(f) is (W 2,p, W 1,p) mildly well posed

if there exists a linear operator B that maps Lp((0, 2π); X) continuously into itself
with range in W 1,p((0, 2π); X), as well as W 2,p((0, 2π); X)∩Lp((0, 2π); D(A)) into
itself and which satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)). In this case the function Bf is
called the mild solution of order 1 (or (W 2,p, W 1,p) mild solution) of P 2

per(f) and
B the solution operator.

Observe that this new notion of mild solutions is stronger than the previous
one, namely the (W 2,p, Lp) mild solution. This will be apparent in what follows.

When X and Y are Banach spaces, we write X ↪→ Y to indicate that X is
continuously embedded into Y . The assertions contained in the following lemma
are well known.

Lemma 4.6. Let X, Y and Z be Banach spaces such that Y ↪→ Z. Then the fol-
lowing hold:

(i) If the linear operator T : X −→ Y is continuous, then T : X −→ Z is
continuous.

(ii) If the linear operator T : X −→ Z is continuous and T (X) ⊂ Y , then
T : X −→ Y is continuous.

Proof. (i) follows by direct verification while (ii) is an immediate consequence of
the Closed Graph Theorem. �

In view of the lemma, in Definition 4.5, we can instead require that the
solution operator B map Lp((0, 2π); X) into W 1,p((0, 2π); X) continuously. One
obtains the following result which, together with the above theorems, recognizes
the multipliers establishing the differences between strong solutions, mild solutions
of order one and mild solutions of order two.

Theorem 4.7. Let A be closed and assume D(A) = X. Let 1 < p < ∞. Then the
following assertions are equivalent:

(i) P 2
per(f) is (W 2,p, W 1,p) mildly well posed.

(ii) {−k2, k ∈ Z} ⊂ ρ(A) and (ikR(−k2, A))k∈Z is an Lp-multiplier.
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Proof. (ii) → (i). Observe that if (ikR(−k2, A))k∈Z is an Lp-multiplier, then so is
(R(−k2, A))k∈Z. Again from the proof of Theorem 4.2, we have that from (ii) it
follows that we can construct a solution operator B. It remains to show that B maps
Lp((0, 2π); X) into W 1,p((0, 2π); X). Since (ikR(−k2, A))k∈Z is an Lp-multiplier,
for any f ∈ Lp((0, 2π); X), we can find a function w ∈ Lp((0, 2π); X) such that
ikR(−k2, A)f̂(k) = ŵ(k), k ∈ Z. Recall that B̂f(k) = R(−k2, A)f̂(k), k ∈ Z.
Hence, ikB̂f(k) = ŵ(k), k ∈ Z. Application of [3, Lemma 2.2] yields that Bf ∈
W 1,p((0, 2π); X).
(i) → (ii). From the definition of well-posedness and Theorem 4.2, we see that (i)
implies that {−k2, k ∈ Z} ⊂ ρ(A) and (R(−k2, A))k∈Z is an Lp-multiplier. We
have to show that (ikR(−k2, A))k∈Z is an Lp-multiplier. Let f ∈ Lp((0, 2π); X).

Since B maps Lp((0, 2π); X) into W 1,p((0, 2π); X) and there exists g ∈
W 1,p((0, 2π); X) such that B̂f(k) = ĝ(k) = R(−k2, A)f̂(k), k ∈ Z, it follows from
[5, Lemma 2.1], Definition 2.1 and the relation ĝ′(k) = ikĝ(k) = ikR(−k2, A)f̂(k),
k ∈ Z that (ikR(−k2, A))k∈Z is an Lp-multiplier. �
Remark 4.8. Observe that we have the following string of implications

Strongly Lp well-posed =⇒ (W 2,p, W 1,p) mildly well-posed

=⇒ (W 2,p, Lp) mildly well-posed.

Finally, from [13, Theorem 5.3 and Corollary 5.4] we obtain the following
corollaries.

Corollary 4.9. Let A be the generator of a strongly continuous cosine family
(C(t))t∈R and let 1 ≤ p < ∞. Then the following assertions are equivalent:

(i) P 2
per(f) is (W 2,p, W 1,p) mildly well posed.

(ii) For any f ∈ Lp(0, 2π; X) there exists a unique (x, y) ∈ E × X such that u
given by (4.7) is of class C1 and 2π-periodic, i.e., u(0) = u(2π) and u′(0) =
u′(2π).

(iii) I − C(2π) ∈ B(X ; X) is invertible.

In the context of Hilbert spaces, we have:

Corollary 4.10. Let H be a Hilbert space and A the generator of a strongly contin-
uous cosine family C(t) and let 1 ≤ p < ∞. Then the following are equivalent:

(i) P 2
per(f) is (W 2,p, W 1,p) mildly well posed.

(ii) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||kR(−k2; A)|| < ∞.

Of course these two assertions are equivalent to assertion (ii) of the previous
corollary.

5. Fractional differentiation and well-posedness

Let us consider the first-order problem Pper(f). We note from an examination of
the proof of Theorem 3.2 that if in the definition of well-posedness (Definition 3.1)
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we further require that B map Lp((0, 2π); X) into W 1,p((0, 2π); X), one can show
that this is equivalent to say that {ik}k∈Z ⊂ ρ(A) and (ikR(ik, A))k∈Z is an Lp

multiplier. This shows that strong well-posedness (see Section 1 and [5, Theorem
2.3]) fits well into our framework. More precisely we have:

Theorem 5.1. Let A be a closed and densely defined linear operator on X and let
1 ≤ p < ∞. The following assertions are equivalent:

(i) Problem Pper(f) is (W 1,p, Lp) mildly well posed and the solution operator B
maps Lp((0, 2π); X) continuously into itself with range in W 1,p((0, 2π); X)

(ii) {ik}k∈Z ⊂ ρ(A) and (ikR(ik, A))k∈Z is an Lp-multiplier.

Remark 5.2. Observe that if Pper(f) is strongly Lp well posed then condition (i)
is satisfied. The converse is valid in UMD spaces by [5, Theorem 2.3].

Likewise, for the second-order problem P 2
per(f), we have the following theorem

(Compare [5, Theorem 6.1] and [13, Theorem 2.1 (with α = 0 )]). See Section 4 to
recall the definition of strongly Lp well-posedness for problem P 2

per(f).

Theorem 5.3. Let A be a closed and densely defined linear operator on X and let
1 ≤ p < ∞. The following assertions are equivalent:

(i) Problem P 2
per(f) is (W 2,p, Lp) mildly well posed and the solution operator B

maps Lp((0, 2π); X) continuously into itself with range in W 2,p((0, 2π); X).
(ii) {−k2}k∈Z ⊂ ρ(A) and (k2R(−k2, A))k∈Z is an Lp multiplier.

Remark 5.4. Note that if P 2
per(f) is strongly Lp well posed then condition (i) is

satisfied. The converse is valid in UMD spaces, which follows by the proof of [5,
Theorem 6.1] (see also [13, Theorem 2.11]).

In UMD spaces, if 1 < p < ∞, the multiplier conditions (ii) in Theo-
rem 5.1 and Theorem 5.3 are equivalent respectively to the R-boundedness of
(ikR(ik, A))k∈Z and (k2R(−k2, A))k∈Z (see [5]).

Comparing with [5] and [13], the difference is that here, we require the domain
of A to be dense in X (see however Remark 5.8 below). And here we employ
different proofs.

The above suggests that one can consider a one parameter family of concepts
of well-posedness. In what follows, we shall restrict ourselves to the case of UMD
spaces. So, let X be a UMD space. For 1 < p < ∞ and 0 ≤ α, we define
the space Hα,p((0, 2π); X) as: Hα,p((0, 2π); X) = {f ∈ Lp((0, 2π); X), ∃g ∈
Lp((0, 2π); X) such that ĝ(k) = |k|αf̂(k), k ∈ Z}.

In the case of Hilbert spaces, this situation was studied by O. Staffans [15].
We note due to the UMD property (more precisely the continuity of the Hilbert
transform on Lp(0, 2π); X), we have

Wm,p((0, 2π); X) = Hm,p((0, 2π); X), for 1 < p < ∞ and m ∈ N∪ {0} (5.1)

(see for example [17, Chapter III], [1] and for the relationship with intermedi-
ate spaces, see [7, Chapter IV, especially Section 4.4, p.272]). Now we give the
definition of (α, p) well-posedness for Pper(f).
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Definition 5.5. We say that the problem Pper(f) is (α, p) mildly well posed if there
exists a linear operator B that maps Lp((0, 2π); X) continuously into itself with
range in Hα,p((0, 2π); X), as well as W 1,p((0, 2π); X)∩Lp((0, 2π); D(A)) into itself
and which satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π); X) ∩ Lp((0, 2π); D(A)).

Then we have the following.

Theorem 5.6. Let X be a UMD space and 0 ≤ α ≤ 1. Let A be closed linear
operator and assume D(A) = X and 1 ≤ p < ∞. Then the following assertions
are equivalent:

(i) Pper(f) is (α, p) mildly well posed.
(ii) iZ ⊂ ρ(A) and (|k|αR(ik, A))k∈Z is an Lp-multiplier.

Proof. The proof is a modification of the proof of Theorem 3.2 and we omit it. �

In a similar manner, we can deal with the second-order problem P 2
per(f).

For the definition of (α, p) mild well-posedness, we now modify Definition 4.5
(or Definition 4.1 for that matter) to require that B map Lp((0, 2π); X) into
H2α,p((0, 2π); X) for 0 ≤ α ≤ 1.

The result is the following theorem.

Theorem 5.7. Let X be a UMD space and 0 ≤ α ≤ 1. Let A be closed linear
operator and assume D(A) = X and 1 ≤ p < ∞. Then the following assertions
are equivalent:

(i) P 2
per(f) is (α, p) mildly well posed.

(ii) {−k2}k∈Z ⊂ ρ(A) and (|k|2αR(−k2, A))k∈Z is an Lp-multiplier.

In UMD spaces, the case α = 1 and 1 < p < ∞ in Theorem 5.6 is Theo-
rem 5.1. The reason is the continuity of the Hilbert transform on Lp((0, 2π); X).
Clearly, Theorem 5.7 with α = 1 corresponds to Theorem 5.3. On the other hand,
if α = 1/2 in Theorem 5.7, then we see that Theorem 5.7 corresponds to Theorem
4.7.

Corresponding results may be stated in general Banach spaces. However,
given the recently proved theorems on operator-valued Lp multipliers in UMD
spaces (see [5], [10] and [18]), it seems reasonable to single out this family of spaces.
Observe that the spaces Hα,p((0, 2π); X) were used in [5, Section 4] in conjunction
with Sobolev embedding theorems to obtain continuity of mild solutions, the latter
however being defined differently than ours.

For α = 0, the first-order problem admits continuous mild solutions if we as-
sume that A generates a strongly continuous semigroup. In the case of the second-
order problem, continuous mild solutions are obtained under the condition that A
be the generator of a strongly continuous cosine function. We refer to [5] and [13]
respectively.
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Remark 5.8. Suppose X is a reflexive Banach space. Let A be a closed linear
operator with domain and range in X . Then, as is well known, if {(λn)} ⊂ ρ(A),
lim

n→∞
|λn| = ∞ and (λnR(λn, A)) is bounded, then D(A) = X . Therefore, when

the condition (ii) in Theorem 5.1 or Theorem 5.3 is satisfied in a reflexive Banach
space (in particular a UMD space), the closed operator A is automatically densely
defined.

In order to justify the reasonableness of the restriction on α (i.e., 0 ≤ α ≤ 1)
in the previous theorems, we establish the following proposition. It is probably
well known but we do not have a ready reference.

Proposition 5.9. Let X be a Banach space (X �= {0}) and A : D(A) ⊂ X → X be
a closed linear operator. Suppose that (λn)n∈N ⊂ ρ(A) and lim

n→∞
|λn| = ∞. Then

for every ε > 0, (|λn|1+εR(λn, A)) is unbounded.

Proof. Suppose to the contrary that (|λn|1+εR(λn, A)) is bounded, that is, there
exists M > 0 such that |λn|1+ε‖R(λn, A))‖ ≤ M, n ∈ N. Let x ∈ D(A). Then
there exist μ ∈ ρ(A) and y ∈ X such that x = R(μ, A)y. Clearly we may assume
that |μ| < |λn|, n ∈ N.

Using the resolvent equation, we have

|λn|1+εR(λn, A)x = |λn|1+εR(λn, A)R(μ, A)y

=
|λn|1+ε

μ − λn
(R(λn, A)y − R(μ, A)y)

It follows that |λn|1+ε

|μ−λn| ‖R(λn, A)y − R(μ, A)y‖ ≤ M‖x‖ and thus

|λn|1+ε

|μ − λn|
‖R(μ, A)y‖ ≤ M‖x‖ +

|λn|1+ε

|μ − λn|
‖R(λn, A)y‖ ≤ M

(
‖x‖ +

‖y‖
|μ − λn|

)
for all n ∈ N. Obviously, since lim

n→∞
|λn| = ∞, this is only possible if R(μ, A)y = 0

and thus y = 0, that is, x = 0. �

In the light of this proposition, we see that the range of the parameter α in
the last two theorems is the right one. Moreover, in view of the fact that every
Fourier multiplier is bounded, we can say that the condition (ii) of Theorem 5.1
or Theorem 5.3 are the strongest possible.

6. Application to semi-linear equations in Hilbert spaces

Let X be a Hilbert space and denote by

Z := W 2,p((0, 2π); X) ∩ Lp((0, 2π); D(A)).

In this section we consider the semilinear problem of second order

u′′(t) = Au(t) + f(t, u(t)), t ∈ [0, 2π], (6.1)

where f is a continuous mapping of Lp((0, 2π); X) into itself.
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We say that a closed linear operator A belongs to the class K2(X) if

{−k2 : k ∈ Z} ⊆ ρ(A) and sup
k∈Z

||k2R(−k2; A)|| < ∞. (6.2)

Define the Nemytskii’s superposition operator N : Z → Lp((0, 2π); X) by
N (v)(t) = f(t, v(t)) and the bounded linear operator

B := A−1 : Lp((0, 2π); X) → Z

by B(g) = u where u is the unique solution of the linear problem

u′′(t) = Au(t) + g(t).

Then, in order to obtain strong solutions for (6.1), i.e., u ∈ Z such that (6.1) is
satisfied, we have to show that the operator H : Z → Z defined by H = BN has
a fixed point.

For example, if we assume that B is a compact operator, and we suppose that
for some M > 0,

sup
‖u‖≤M

‖N (u)‖Lp((0,2π);X) ≤ M/‖B‖, (6.3)

then one may apply Schauder’s fixed point theorem to H in the ball

{u ∈ Lp((0, 2π); X) : ‖u‖ ≤ M}
to get existence of a strong solution for (6.1). This way one obtains the existence
of solutions on [0, 2π]. More precisely, by applying the preceding argument, one
proves the following result in Hilbert spaces.

Theorem 6.1. Let H be a Hilbert space, and suppose A ∈ K2(H). Assume that the
closed unit ball of D(A) is compact in H. Let f be given such that (6.3) is satisfied.
Then the equation (6.1) has a strong solution, with ‖u‖L2((0,2π);H) ≤ M .

Proof. Since A ∈ K2(H), for each K ∈ Z we can define operators
BK : L2((0, 2π); H) → L2((0, 2π); H) by

(BKg)(t) =
K∑

k=−K

R(−k2, A)ĝ(k)eikt. (6.4)

Since the closed unit ball of D(A) is compact in H , for each K, the operator
BK is a finite sum of compact operators, hence compact. Now, because of (6.2),
as K → ∞, BK converges in norm to B, so B is compact. The conclusion of the
theorem is achieved by applying Schauder’s fixed point theorem to the equation
u = Bf(u) in {u ∈ Z : ‖u‖ ≤ M}. �

Remark 6.2. Note that if P 2
per(f) is strongly Lp well posed then A ∈ K2(H).

Indeed, we have by (ii) in Theorem 5.3 that {−k2 : k ∈ Z} ⊆ ρ(A). Moreover, by
Remark 5.4 and the comments following Definition 2.1, we know that

sup
k∈Z

‖k2R(−k2, A)‖ < ∞. (6.5)
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On the other hand, we also obtain A ∈ K2(H) under the weaker condition (i) in
Theorem 5.3.

We can also obtain mild solutions for the semilinear problem (6.1) by relying
instead on Corollary 4.10. Here, we take

Z = W 1,p((0, 2π); X).

We say that a closed linear operator A belongs to the class K1(X) if A is
the generator of a strongly continuous cosine family C(t) on X and satisfies

{−k2 : k ∈ Z} ⊆ ρ(A) and sup
k∈Z

||kR(−k2; A)|| < ∞.

If A belongs to the class K1(X) then, by Corollary 4.10, there exists a bounded
linear operator

B : Lp((0, 2π); X) → Z.

We say that u ∈ Z is a (W 2,p, W 1,p) mild solution for (6.1) if u is a fixed point of
the equation

u = Bf(u)
With the same arguments as above, we arrive at:

Theorem 6.3. Let H be a Hilbert space, and A ∈ K1(H). Assume that the unit ball
of D(A) is compact in H. Let f be given such that (6.3) is satisfied. Then equation
(6.1) has a (W 2,p, W 1,p) mild solution, with ‖u‖L2((0,2π);H) ≤ M .
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häuser Verlag, 2001.

[4] W. Arendt, C. Batty, S. Bu. Fourier multipliers for Hölder continuous functions
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Backward Uniqueness in Linear
Thermoelasticity with Time and
Space Variable Coefficients

Herbert Koch and Irena Lasiecka

Abstract. Backward uniqueness for thermoelastic plates and thermoelastic
waves with time- and space-dependent coefficients is established. While this
result has been proved recently, in the case of time-independent coefficients,
it is new for the case of time-dependent coefficients. The proof relies on a
combination of energy and Carleman’s estimates, hence it is very different
from the one given in [LRT], which is based on complex analysis methods.
These latter methods are not applicable to nonlinear models and to models
with time-dependent coefficients. Our results have consequences for several
nonlinear models of thermoelasticity.

1. Introduction

In a recent paper [I] Isakov has proved observability from the boundary of part of
the temperature and the displacement field from the boundary. Backward unique-
ness complements this result to full observability from the boundary provided
the time is sufficiently large. This has been shown in [LRT] for time-independent
coefficients. It is the purpose of this note to provide an alternative proof based
on Carleman inequalities, which is applicable to time-dependent coefficients and
which requires very little regularity. We consider this result to be of interest in its
own right. It also has consequences for nonlinear thermoelasticity, since backward
uniqueness for nonlinear problems follows from backward uniqueness for linear
variable coefficient problems.

The equations of linear thermoelasticity consist of a coupled system of hy-
perbolic and parabolic equations. For both of them backward uniqueness is well
known: The hyperbolic equation is well posed backward in time whereas Carleman
estimates imply backward uniqueness for the parabolic problem.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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We use this observation in order to prove backward uniqueness for the system
of thermoelasticity. This will be accomplished by establishing appropriate indepen-
dent Carleman inequalities for the parabolic and the hyperbolic component. Large
parameters appearing in the Carleman estimates allow to “decouple” the system.

2. Main result

We consider equations of thermoelasticity on a bounded domain Ω ⊂ Rn, n ≥ 2
with sufficiently smooth boundary Γ. We shall consider two classes of models:
one arising in the modeling of thermoelastic plates, and the other one describing
thermoelastic waves.

2.1. Thermoelastic plates

Thermoelastic plate can be modeled by the following coupled heat and plate equa-
tions [LL, L2, L1]:

Mγwtt + A(x, t, ∂)2w − B(x, t, ∂)θ + F (x, t, w) = 0 in Q = Ω × (0, T );

θt − C(x, t, ∂)θ + B(x, t, ∂)wt = 0 in Q; (1)

w(0) = w0, wt(0) = w1, θ(0) = θ0, in Ω.

Here γ > 0 is a parameter accounting for rotational forces, and it is assumed to
be small. Mγ is a stiffness operator and is defined by

Mγ ≡ I − γΔ

A(x, t, ∂),B(x, t, ∂), C(x, t, ∂) denote second-order, strongly elliptic operator with
sufficiently smooth coefficients which are time- and space-dependent.

Assumption 2.1. More specifically we shall assume

A(x, t, ∂)u = −∂i(aij∂ju)

where the coefficients aij(x, t) are symmetric and uniformly Lipschitz continuous.
We assume ellipticity in the form

λ−1|ξ|2 ≤ aijξiξj ≤ λ|ξ|2

and some time regularity
|(∂ta

ij)ξiξj | ≤ μ|ξ|2.
We assume that the coefficients (bij) and (cij) of the second-order divergence form
operators B(x, t, ∂) and , C(x, t, ∂) are symmetric, elliptic

λ−1|ξ|2 ≤ bijξiξj ≤ λ|ξ|2, λ−1|ξ|2 ≤ cijξiξj ≤ λ|ξ|2,
Lipschitz continuous

|(∂tb
ij)ξiξj | + |(∂xbij)ξiξj | ≤ μ|ξ|2, |(∂tc

ij)ξiξj | + |(∂xcij)ξiξj | ≤ μ|ξ|2

and satisfy
|(∂t∂xbij)ξiξj | ≤ μ|ξ|2, |(∂t∂xcij)ξiξj | ≤ μ|ξ|2.
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These coefficients (aij) describe the elastic response, the coefficients (cij)
the heat transfer, and the coefficients (bij) describe generation of heat through
deformations, and the body forces due to temperature changes. Lower-order terms
do not alter the arguments in any significant way.

Assumption 2.2. The forcing term F (x, t, w) ∈ L∞(0, T, H−1(Ω)) is assumed lin-
ear in w and satisfies:

‖F (x, t, w)‖H−1(Ω) ≤ M0‖w‖H2(Ω), x ∈ Ω, t ∈ (0, T )

for some positive constant M0 which is uniform in w ∈ H2(Ω), and x, t ∈ Q.

A typical example is the following:
n∑

i=1

n∑
j,k=1

∂id
ijk(x, t)∂2

jk

with bounded and measurable coefficients dijk.
We complement the system by adding boundary conditions.

Assumption 2.3. We assume that the temperature θ satisfies either Dirichlet (fixed
temperature) of natural (insulated) boundary conditions.

With (1) we associate two types of canonical boundary conditions:
The hinged plate

w = A(x, t, ∂)w = θ = 0, on Σ ≡ Γ × (0, T ) (2)

and the clamped plate

w =
∂

∂ν A
w = θ = 0, on Σ. (3)

where ∂
∂ν A stands for conormal derivative.

The main goal of this note is to prove backward uniqueness for the ther-
moelastic model presented above. By backward uniqueness property, we mean:
Suppose that (w, θ) satisfies (1) and (w(., t), wt(., T ), θ(., T )) = (0, 0, 0). Then
(w(t), wt(t), θ(t)) ≡ 0, for all 0 ≤ t ≤ T .

It is well known that the above property holds true if γ = 0 and time-
independent coefficients. This holds because the model not accounting for rota-
tional inertia (i.e., γ = 0 ) defines an analytic semigroup [LR, LT, LT1], for which
backward uniqueness obviously holds.

The situation is more complicated in the “hyperbolic” case (when γ > 0)
and results and techniques depend on the model. The hinged plate with time-
independent coefficients is the simplest case. Then the problem is spectral, i.e., it
admits a Riesz basis spanned by the eigenfunctions of the underlying operator and
the conclusion on backward uniqueness is straightforward. This simple argument
fails both for other boundary conditions and for time-dependent coefficients.

Backward uniqueness has been shown for the hinged, clamped and free plate
with time-independent coefficients in [LRT] using Phragmen Lindeloff Theorem
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combined with several (static) trace estimates. This method is not applicable to
time-dependent problems.

Our goal is to prove backward uniqueness for time-dependent models.

Theorem 2.4. Suppose that the Assumptions 2.1, 2.3 and 2.2 hold, that

w ∈ C([0, T ]; H2(Ω)) ∩ C1([0, T ]; H1(Ω))), and θ ∈ L2([0, T ]; H1(Ω))

satisfy (1) equipped with either hinged or clamped boundary conditions. If, more-
over, w(T ) = wt(T ) = θ(T ) = 0 then (w, θ) ≡ 0.

Remark 2.5. Result and conclusion are true even when lower-order perturbations
are added to the differential operators A(x, t, ∂),B(x, t, ∂), C(x, t, ∂).

Remark 2.6. Theorem 2.4 can be applied to some nonlinear models such as von
Karman thermoelastic plates or semilinear problems: We apply it to the difference
of two solutions and conclude that they are the same if their Cauchy data coincide
at one time T .

Remark 2.7. The result stated above applies to hinged or clamped boundary con-
ditions. It remains true if we have Neumann boundary conditions for the thermal
variable. However, there are other boundary conditions coupling thermal and me-
chanical variables which do not fit the framework presented below. While the
backward uniqueness property has been established for such model in the static
case, the situation of time-dependent coefficients is not completely understood.

2.2. Thermoelastic waves

Let Ω ⊂ Rn be a bounded domain with a Lipschitz boundary. Denote

‖u‖ ≡ ‖u‖[L2(Ω)]n , and (u, v) ≡ (u, v)[L2(Ω)]n .

In what follows C denotes a generic constant, different in different occurrences.
Critical dependence of the constants on the parameters involved will be appropri-
ately emphasized.

We consider the following abstract version of a system of thermoelasticity
describing thermoelastic waves in a bounded domain Ω:

wtt −A(x, t, ∂)w + E(x, t, ∂)θ = 0

θt − C(x, t, ∂)θ + F (x, t, ∂)wt = 0
(4)

where the operator C(x, t, ∂) has the form −∂ic
ij∂j with the (time- and space-

dependent) uniformly Lipschitz continuous coefficients. We assume that the coef-
ficients cij satisfy conditions listed in Assumption 2.1. For simplicity we assume
that both w and θ satisfy homogeneous Dirichlet boundary conditions:

w = 0 and θ = 0 on ∂Ω.

The operator A(x, t, ∂) describes the elastic properties. We assume it to be
positive and self-adjoint on [L2(Ω)]n. In addition we impose the following assump-
tion.
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Assumption 2.8.

1. There exist positive constants λ, μ such that

λ−1‖∇u‖2 ≤ (A(x, t, ∂)u, u),

|(A(x, t, ∂)u, v)| +
∣∣∣( d

dt
A(x, t, σ)u, v

)∣∣∣ ≤ μ‖∇u‖‖∇v‖.
(5)

for all w and θ vanishing at the boundary and all (x, t) ∈ Q.
2. The linear operators F (x, t, ∂) and E(x, t, ∂) are assumed to have the follow-

ing mapping properties: there exists a positive constant M0 such that

‖E(x, t, ∂)θ‖ ≤ M0‖θ‖H1
0 (Ω), ‖F (x, t, ∂)u‖H−1(Ω) ≤ M0‖u‖. (6)

for all w and θ vanishing at the boundary and all (x, t) ∈ Q.

Theorem 2.9. Suppose that the coefficients of system (4) satisfy Assumption 2.8
e, and assume that

w ∈ C([0, T ], [H1(Ω)]n) ∩ C1([0, T ], [L2(Ω)]n), θ ∈ L2([0, T ], H1(Ω))

satisfies (4) in a weak sense as well as homogeneous Dirichlet boundary conditions.
If w(T ) = wt(T ) = θ(T ) = 0 then (w, θ) ≡ 0.

Remark 2.10. In classical applications to thermoelastic waves in an isotropic ma-
terial one has

[A(x, t, ∂)u]j = −
n∑

i=1

∂i

(
λ(

n∑
k=1

εkk(u))δij + 2νεij(u)

)
,

F (x, t, ∂) =f j(x, t)∂j , E(x, t, ∂) = ej(x, t)∂j ,

where λ and ν are the Lame coefficients and εij is strain tensor given by εij =
1/2(∂xiu

j + ∂xj u
i). The arguments work also for other boundary conditions.

3. The energy estimates

Our strategy is to derive Carleman inequalities for solutions compactly supported
on [0, T ] of the following non-homogeneous plate problem

Mγwtt + A(x, t, ∂)2w − B(x, t, ∂)θ + F (x, t, w) = f in Q;
θt − C(x, t, ∂)θ + B(x, t, ∂)wt = g in Q, (7)

and the wave problem

wtt + A(x, t, ∂)w + E(x, t, ∂)θ = f in Q;
θt − C(x, t, ∂)θ + F (x, t∂)wt = g in Q, (8)

where f, g are prescribed forcing terms supported on (0, T ). Here and in the sequel
we suppress the x dependence in the notation whenever this is convenient. In
the first step we shall derive energy estimates for the plate equation and for the
wave equation. Energy estimates backward in time trivially imply strong Carleman
inequalities.
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3.1. Energy estimates for the plate equation

We introduce the following energy functional

Ew(t) ≡
∫

Ω

(Mγwt(t), wt(t)) + |A(x, t, ∂)w(t)|2 dx.

Lemma 3.1. Let w and θ solution to (7) with homogeneous Dirichlet boundary
conditions for θ and either clamped or hinged boundary conditions for w. Suppose
that both are supported in (0, T ). Then the following inequality holds.

Ew(t) ≤ C

∫ ∞

t

[‖θ(s)‖2+Ew(s)+‖f(s)‖2
H−1(Ω)+‖g(s)‖2

H−1(Ω)]ds+C‖θ(t)‖2
H−1(Ω)

(9)
where the constant C is an intrinsic constant depending only on Ω and the con-
stants M0, λ, μ introduced in Assumption 2.1, Assumption 2.2.

Proof. In the sequel we make formal manipulations. It is not hard to see that
they can be justified. We note that we can use the second equation in (7) and the
boundary condition for θ to write

θ = C−1[−θt + Bwt + g]

where −C, −B stand for (unbounded) operators, defined on L2(Ω) and corre-
sponding to C(x, t, ∂),B(x, t, ∂) with zero Dirichlet boundary conditions. Similarly
we denote by A the operator corresponding to A(x, t, ∂)2 and equipped with ei-
ther hinged or clamped boundary conditions. M denotes Mγ equipped with zero
Dirichlet data on the boundary.

With the above notation we represent dynamics of thermoelastic plate via
the following abstract equation:

Mwtt + Aw + BC−1Bwt − BC−1θt + F (w) = f − BC−1g (10)

For notational simplicity we assume that T = ∞.
Recalling Assumption 2.1 and Assumption 2.2, we obtain for all t ∈ [0, T ]

(F (w), wt(t)) ≤ ‖wt(t)‖H1
0 (Ω)‖F (w)‖H−1(Ω) ≤ C[E(t) + ‖w(t)‖2

H2(Ω)] ≤ CE(t)

where generic constant C depends on M0, λ, μ and Ω.
Standard energy arguments applied to (10), followed by integration from t to

∞, give

Ew(t) +
∫ ∞

t

(BC−1θt, wt)ds ≤ C
[ ∫ ∞

t

[Ew(s) + ‖f(s)‖2
H−1(Ω) + ‖g(s)‖2

H−1(Ω)]ds
]
,

and∣∣∣∣∫ ∞

t

[(BC−1θt, wt) + (BC−1θ, wtt)]ds + ((BC−1θ(t), wt(t))
∣∣∣∣ ≤ C

∫ ∞

t

‖wt‖‖θ‖ds.

where we used that
d

dt
(BC−1) = BtC−1 − BC−1CtC−1
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is bounded in L2. This is the point where the Lipschitz continuity (with respect
to x) of the coefficients enters along with the boundedness of the coefficients bij

xt

and cij
xt asserted by Assumption 2.1.
Since C : H1

0 (Ω) → H−1(Ω) is invertible we can estimate (for all t ∈ R )∣∣((BC−1θ(t), wt(t))
∣∣ ≤ C‖θ(t)‖H−1(Ω)‖wt(t)‖H1

0 (Ω)

≤ C

ε
‖θ(t0‖2

H−1(Ω) + ε‖wt(t)‖2
H1

0 (Ω),

and we arrive at (with a different small ε)

Ew(t) ≤ C

ε)

∫ ∞

t

[Ew(s) + ‖θ(s)‖2
L2(Ω) + ‖f(s)‖2

H−1(Ω) + ‖g(s)‖2
H−1(Ω)]ds

+ ε

∫ ∞

t

‖wtt(s)‖2
L2(Ω)ds +

C

ε
‖θ(t)‖2

H−1
0 (Ω)

(11)

where the constant C is generic and depends only on M0, μ, λ and Ω. We need to
estimate the L2 norm of wtt. In order to accomplish this we first write

wtt = −M−1[Aw + Bθ + F (w) − f ].

As above, BM−1 is bounded on L2, and thus the same is true for its adjoint M−1B.
We obtain for all t ∈ [0, T ]

‖wtt(t)‖L2(Ω) ≤ C[‖θ(t)‖L2(Ω) + ‖M−1f(t)‖L2(Ω)

+ ‖M−1Aw(t)‖L2(Ω) + ‖M−1F (w)‖L2(Ω)].
(12)

The main difficulty of the proof is to provide a good bound for the third term. For
hinged boundary conditions this estimate is straightforward and follows from the
estimate

‖M−1Aw(t)‖L2(Ω) ≤ C‖w(t)‖H2(Ω)∩H1
0 (Ω) ≤ cE

1
2
w(t) (13)

which, in turn, is a consequence of the boundedness of

A : H2 ∩ H1
0 → (H2 ∩ H1

0 )∗,

and
M−1 : L2 → H2 ∩ H1

0 ,

and hence by duality
M−1 : (H2 ∩ H1

0 )∗ → L2.

Thus, in the hinged case

‖wtt(t)‖L2(Ω) ≤ C[‖θ(t)‖L2(Ω) +E1/2
w (t)+‖M−1f(t)‖L2(Ω) +‖M−1F (w)(t)‖L2(Ω)],

(14)
and we complete the proof by

‖M− 1
2 F (w)(t)‖L2(Ω) ≤ C‖w(t)‖H2(Ω).

with a generic constant C depending only on the data of the problem ( M0, λ, μ, Ω).
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The clamped case is more delicate because there is no natural embedding of
(H2)∗ into (H2∩H1

0 )∗. In particular, (13) does not make sense, and it is even false
on C∞

0 (Ω).
Instead, in the clamped case we obtain the following more involved estimate:

Proposition 3.2. Suppose that w and θ satisfy (7), that θ is zero at the bound-
ary and that the clamped boundary conditions hold. If moreover w is supported
compactly in (0,∞) then for all t ∈ [0, T ]∫ ∞

t

‖M−1Aw(s)‖2
L2(Ω)ds ≤ C

∫ ∞

t

[Ew(s) + ‖θ(s)‖2
L2(Ω) + ‖f(s)‖2

H−1(Ω)] ds

+ C[E(t) + ‖θ(t)‖2
H−1(Ω)].

where the constant C depends only on M0, λ, μ, Ω.

A priori it is not clear that the left-hand side is well defined. It suffices to
verify a uniform a priori estimate for smooth solutions to a smooth problem. We
omit the technical aspects.

Proof. By duality it suffices to provide good bounds for (M−1Aw,z)=(Aw,M−1z).
We compute by using Green’s formula

(A(x, t, ∂)2w, M−1z) ≤ C‖w‖H2(Ω)‖M−1z‖H2(Ω)

+ ‖A(x, t, ∂)w|Γ‖H−1/2(Γ)‖
∂

∂ν
M−1z|Γ‖H1/2(Γ)

≤ C[‖w‖H2(Ω) + ‖A(x, t, ∂)w|Γ‖H−1/2(Γ)]‖z‖L2(Ω)

(15)

where in the last step we used trace theorem. On the other hand, by applying mul-
tiplier techniques on the problem at hand one obtains the following trace estimate:∫ ∞

t

‖A(x, t, ∂)w|Γ‖2
L2(Γ)ds ≤ C

∫ ∞

t

[Ew(s) + ‖θ(s)‖2
L2(Ω) + ‖f(s)‖2

H−1(Ω)] ds

+ C[E(t) + ‖θ(t)‖2
H−1(Ω)]. (16)

where the constant C depends only on M0, λ, μ, Ω. Indeed, the above estimate is
obtained by multiplying the original plate equation by h(x)∇w with the vector field
h(x) parallel to the normal on the boundary. The technical details are very similar
to these given in [LRT]. The argument does not depend on time independence of
the coefficients, under the regularity of the coefficients stated in the theorem. We
do not repeat the proof. Combining (15) and (16) yields the desired estimate in
Proposition 3.2. �

We are now ready to prove the counter part of (14) for the clamped plate.
From (12) and the estimate in Proposition 3.2 we obtain∫ ∞

t

‖wtt(s)‖2
L2(Ω)ds ≤ C

∫ ∞

t

[‖θ(s)‖2
L2(Ω) + Ew(s) + ‖f(s)‖2

H−1(Ω)]ds

+ C[Ew(t) + ‖θ(t)‖2
H−1(Ω)].

(17)
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In our final step we combine estimate in (11) with the one obtained in (17)
(or (14) in the hinged case). This gives

Ew(t) ≤ C

ε

∫ ∞

t

[Ew(s) + ‖θ(s)‖2
L2(Ω) + ‖f(s)‖2

H−1(Ω) + ‖g(s)‖2
H−1(Ω)] ds

+ ε[Ew(t) + ‖θ(t)‖2
H−1(Ω)]

Taking ε sufficiently small yields the desired result in Lemma 3.1. �
3.2. Energy estimate for the wave equation

Let
Pu ≡ utt −A(x, t, ∂)u

We define energy function by

Eu(t) =
∫

Ω

[‖
√
A(x, t, ∂)u‖2 + ‖ut‖2]dt

The following energy estimate is standard:

Lemma 3.3. Let u ∈ C(R; [H1
0 (Ω)]n) ∩ C1(R; [L2(Ω)]n). Then, for 0 ≤ s, t < ∞,

Eu(t) ≤ CEu(s) +
∣∣∣∣∫ t

s

‖Pu‖dτ

∣∣∣∣2 . (18)

a where the constant C depends only on λ, ν, M0 -constants introduced in Assump-
tion 2.8 and also on Ω.

4. Carleman estimates for parabolic equations

We recall the assumptions on the coefficients cij : they are measurable, uniformly
elliptic and uniformly Lipschitz continuous in time. More precisely we assume

λ−1|ξ|2 ≤ cijξiξj ≤ λ|ξ|2,
|(∂tc

ij)ξiξj | ≤ μ|ξ|2,
and study the operator

Pu = ut − ∂i(cij∂ju).
Let h(t) = τeκt with κ 1 μ.

Lemma 4.1. Let

u ∈ L2([0, T ]; H1(Ω)); ut ∈ L2([0, T ]; H−1(Ω))

satisfy u(T ) = u(0) = 0. Then, there exists a constant c > 0, depending only on
λ, μ, Ω, T , such that

τ1/2‖ehu‖L2([0,T ];H−1(Ω))+‖ehu‖L2([0,T ]×Ω) + τ−1/2‖eh∇u‖L2([0,T ]×Ω)

≤ c‖ehPu‖L2([0,T ];H−1(Ω)),
(19)

and also

τ1/2‖ehu‖L2([0,T ]×Ω) + ‖eh∇u‖L2([0,T ]×Ω) ≤ c‖ehPu‖L2([0,T ]×Ω). (20)
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Proof. We extend u by zero to all t ∈ R, and we prove first that for κ large enough
(depending on λ, μ, Ω one has:

√
τ‖ehu‖L2(Ω×R) ≤ c‖ehPu‖L2(Ω×R). (21)

for some constant c > 0 depending on λ, μ, Ω, T . Introducing the notation v ≡ ehu
we obtain

Pτv := Pv − h′v = ehPu. (22)

and (21) is equivalent to
√

τ‖v‖L2(R×Ω) ≤ c‖Pτv‖L2(R×Ω). (23)

We expand

‖Pτv‖2
L2(R×Ω) = ‖vt‖2

L2(R×Ω) + ‖(C − h′)v‖2
L2(R×Ω) + 2

∫
R

(vt, (C − h′)v)ds

since the support of v ∈ [0, T ]

= ‖vt‖2
L2(R×Ω) + ‖(C − h′)v‖2

L2(R×Ω) +
∫

R

([C − h′, ∂t]v, v)ds, (24)

where the commutator [A, B] ≡ AB − BA.
Direct calculations give

[C − h′, ∂t] = h′′ − ∂i(∂tc
ij)∂j ; (25)

where we recall, h′′ = κh′ ≥ CT κ2τ on [0, T ]. Equality in (24 ), after accounting
for non-negativity of the first two terms on the right side of (24), and (25) imply:

κ‖(h′)
1
2 v‖2

L2(R×Ω) ≤ ([C − h′, ∂t]v, v) + μ‖∇v‖2
L2(R×Ω).

≤ ‖Pτv‖2
L2(R×Ω) + μ‖∇v‖2

L2(R×Ω). (26)

Energy estimate applied to (22) and followed by (26) gives

λ−1‖∇v‖2
L2(R×Ω) ≤

∫
R

[(h′v, v) + (Pτv, v)]dt

≤ κ−1(‖Pτv‖2
L2(R×Ω) + μ‖∇v‖2

L2(R×Ω)) + ε‖v‖2
L2(R×Ω) +

4
ε
‖Pτv‖2

L2(R×Ω) (27)

Selecting large κ and small ε so that λ−1 − κ−1ν − εCΩ > 1/2λ−1 leads to

‖∇v‖2
L2(R×Ω) ≤ C‖Pτv‖2

L2(R×Ω) (28)

where κ is large enough and positive constant C depends on λ, μ, Ω.
Estimate in (28) when combined with (26) leads to (23), hence (21) has been

proved. (28) and (21) imply the final conclusion in (20).
The proof of (19) proceeds along similar lines. We first establish (for κ large

enough) √
τ‖v‖L2(R,H−1(Ω)) ≤ c‖Pτv‖L2(R;H−1(Ω)), (29)

where κ is large enough and positive constant c depends only on λ, μ, T, Ω.
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The map C(t) : H1
0 (Ω) → H−1(Ω) is an isomorphism and we denote its inverse

again by C(t)−1. Since C(t) is uniformly elliptic with the bounds independent on
t, we can afford using an abbreviated notation C. Then, expanding as in (24)∫

R

‖Pτv‖2
H−1(Ω)dt ∼

∫
R

(C−1Pτv, Pτv)dt

=
∫

R

[(C−1(Cv − h′v), Cv − h′v) + (C−1vt, vt) + ([v − C−1h′, ∂t]v, v)]dt.

The commutator is
C−1h′′ − C−1(

d

dt
C)C−1h′,

where, again, the first term yields a good positive term

(C−1h′′v, v) ≥ κ(C−1h′v, v),

and the second one can be estimated by∣∣∣∣(C−1(
d

dt
C)C−1h′v, v)

∣∣∣∣ ≤ μ‖(h′)
1
2 v‖2

H−1(Ω).

Hence

κ

∫
R

(C−1h′v, v)dt ≤ Cλ

∫
R

[‖Pτv‖2
H−1(Ω) + μ‖(h′)

1
2 v‖2

H−1(Ω)]dt. (30)

Selecting κ large enough so 1
2κ − CΩμ > 0 leads to

κ

∫
R

(C−1h′v, v)dt ≤ Cλ,μ

∫
R

‖Pτv‖2
H−1(Ω)dt (31)

Recalling kh′ > CT κ2τ , we obtain inequality (29) from (31).
In the second step we apply energy estimate to (22), which give

(Pv − h′v, v) = (ehPu, v) ⇒
1
2

d

dt
|v|2L2(Ω) + λ−1|C1/2v|2L2(Ω) ≤ |ehPu|H−1(Ω)|C1/2v|L2(Ω) + Cλ|h′v|2H−1(Ω).

Hence

λ−1

∫
R

‖C1/2v‖2
L2(Ω)dt ≤ ‖ehPu‖2

L2(R;H−1(Ω)) + Cλκτ‖(h′)
1
2 v‖2

L2(R;H−1(Ω)) (32)

Combining this inequality with (25) gives

‖∇v‖L2(R×Ω) ≤ cτ1/2‖ehPu‖L2(R;H−1(Ω)), (33)

where the positive constant Cdepends only on μ, λ, Ω, T . By interpolation

‖v‖2
L2(R×Ω) ≤ ‖v‖L2(R;H−1(Ω))‖∇v‖L2(R×Ω) ≤ c‖ehPu‖2

L2(R;H−1(Ω)),

where we have used once more (29). The first inequality (19) in Lemma 4.1 follows
by combining the above inequality with (29) and (33). �

Remark 4.2. It is obvious that the same arguments work for systems as well as
for different boundary conditions.
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5. Carleman estimates for thermoelastic system

5.1. Thermoelastic plates

Lemma 5.1. There exists κ 1 1 (depending on λ, μ, M0, Ω) such that for all τ ≥ 1
and for all solutions w ∈ C(R; H2(Ω))∩C1(R; H1(Ω)), θ ∈ L2(R; H1(Ω)) satisfying
(7) with one of the previous choices of boundary conditions and which are compactly
supported in (0,∞) we have∫

R

Ew(t)e2h(t)dt ≤ 1
τ

∫
R

‖eh(t)f(t)‖2
H−1(Ω) + ‖eh(t)g(t)‖2

H−1(Ω) dt. (34)

Proof. We multiply both sides of the inequality in Lemma 3.1 by e2h(t) and inte-
grate over R. This gives by Fubini’s Theorem after accounting for h′ ≥ κτ∫

R

Ew(t)e2h(t)dt ≤
∫

R

∫ ∞

t

[e2h(t)−2h(s)[Ew(s)e2h(s) + ‖θ(s)eh(s)‖2
L2(Ω)

+ ‖f(s)eh(s)‖2
H−1(Ω) + ‖g(s)eh(s)‖2

H−1(Ω)]dsdt

+ C

∫
R

‖θ(s)eh(s)‖2
H−1(Ω)ds

≤ C

κτ

∫
R

[Ew(s)e2h(s) + ‖θ(s)eh(s)‖2
L2(Ω)

+ ‖f(s)eh(s)‖2
H−1(Ω) + ‖g(s)eh(s)‖2

H−1(Ω)]ds

+ C

∫
R

‖θ(s)eh(s)‖2
H−1(Ω)ds,

(35)

where the constant C > 0 depends only on λ, μ, M0, Ω. The heat component
is estimated by the Carleman estimate in Lemma 4.1 applied with u = θ and
Pu = −B(x, t, ∂)wt + g:

√
τ‖ehθ‖L2(R;(H−1(Ω)) + ‖ehθ‖L2(R,L2(Ω))

≤ C[‖ehg‖L2(R;H−1(Ω)) + ‖ehBwt‖L2(R:(H−1(Ω))]

≤ C[‖ehg‖L2(R;H−1(Ω)) + ‖ehwt‖L2(R,H1(Ω))]

≤ C[‖ehg‖L2(R,H−1(Ω)) + |e2hEw(.)|1/2
L2(R)].

(36)

Combining (35) with (36) we obtain∫
R

Ew(t)e2h(t)dt ≤ C

κτ

∫
R

[Ew(s)e2h(s) + ‖f(s)eh(s)‖2
H−1(Ω) + ‖g(s)eh(s)‖2

H−1(Ω)]ds,

(37)
where the constant C > 0 depends only on λ, μ.M0, Ω. Taking κ large yields the
result stated in Lemma 5.1. �

5.2. Thermoelastic waves

The Carleman estimate below follows for thermoelastic waves in the same way as
for the thermoelastic plate. We state the Carleman estimate for completeness.
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Lemma 5.2. There exists κ 1 1 (depending only on λ, μ, M0, Ω) such that for all
τ ≥ 1 and all

w ∈ C(R; [H1(Ω)]n) ∩ C1(R, [L2(Ω)]n), θ ∈ L2(R, H1(Ω))

satisfying (8) with Dirichlet boundary conditions and compactly supported in (0,∞)
we have

τ2

∫
R

e2h(t)Ew(t)dt ≤ C

∫
R

[τ‖eh(t)g(t)‖2
H−1(Ω) + ‖eh(t)f(t)‖2]dt (38)∫

R

[τ‖eh(t)θ(t)‖2
H−1(Ω) + ‖eh(t)θ(t)‖2

L2(Ω) + τ−1‖eh(t)θ(t)‖2
H1(Ω)] dt

≤ C

∫
R

[‖eh(t)g(t)‖2
H−1(Ω) + τ−2‖eh(t)f(t)‖2] dt,

(39)

where the constant C > 0 depends only on λ, μ, M0, Ω.

Proof. From (18) we obtain

Eu(t) ≤
(∫ ∞

t

‖Pu‖ds

)2

hence∫
R

e2hEudt ≤ C

∥∥∥∥∫ ∞

t

eh(t)−h(s)‖eh(s)Pu‖ds

∥∥∥∥2

L2(R)

≤ C

∥∥∥∥∫ ∞

t

eκτ(t−s)‖eh(s)Pu‖ds

∥∥∥∥2

L2(R)

≤ C

(κτ)2
‖ehPu‖2

L2(Ω×R),

where we used h′ ≥ κτ and Young’s inequality for convolutions in the last step.
The constant C depends on λ, μ, M0, Ω. Thus

κ2τ2

∫
R

e2h(t)Ew(t)dt ≤ C

∫
R

[‖eh(t)θ(t))‖2
H1(|Ω) + ‖eh(t)f(t)‖2]dt (40)

and from (4.1)∫
R

[τ‖eh(t)θ(t)‖2
H−1(Ω) + ‖eh(t)θ(t)‖2 + τ−1‖eh(t)θ(t)‖2

H1(Ω)] dt

≤ C

∫
R

[‖eh(t)g(t)‖2
H−1(Ω) + ‖eh(t)wt(t)‖2]dt.

(41)

Combining the two estimates yields∫
R

τ2‖eh(t)wt‖2dt ≤ τ2

∫
R

[e2h(t)Ew(t)dt (42)

≤ C

∫
R

[τ‖eh(t)wt‖2 + ‖eh(t)f(t)‖2 + τ‖eh(t)g(t)‖2
H−1(Ω)]dt.

Taking κ large gives the estimate in the first inequality of the Lemma. The second
inequality follows by combining (41) and (42). �
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6. Completion of the proof

We suppose that w and θ vanish of t ≥ T . We may and do assume that T = 1. Let
χ be a smooth cutoff function, which is 1 in [−1/2, 3/2], with support in (0,∞).
Let w̄ = χw and θ̄ = χθ.

6.1. Proof of Theorem 2.4
With the above notation, the estimate in Lemma 5.1 holds with w replaced by w̄
and with

f = [Mγ , χ]w = χtwt + χttw − γχtΔwt − γχttΔw

g = [Dt, χ]θ + [B(x, t, ∂)Dt, χ]w = χtθ + χtB(x, t, ∂)w,

where both f and g are supported on, say, [0, 1/2]. In addition

‖f(t)‖H−1(Ω) ≤ C
(
‖wt(t)‖H1(Ω) + ‖w(t)‖H1(Ω)

)
‖g(t)‖H−1(Ω) ≤ C

(
‖θ(t)‖H−1(Ω) + ‖w(t)‖H1(Ω)

)
.

Hence

‖ehf‖2
L2(R;H−1(Ω)) + ‖ehg‖2

L2(R;H−1(Ω)) ≤ C

∫ 1/2

0

[‖ehf‖2
H−1(Ω) + ‖ehg‖2

H−1(Ω)]dt

≤ Ceh(1/2)[Ew(0) + ‖θ(0)‖2
L2(Ω)]. (43)

where the constant C depends on Ω. Now uniqueness follows by the standard
arguments. From Lemma 5.1 and (43) we obtain∫ ∞

1/2

e2hEw(t)dt ≤ C

τ
eh(1/2)[Ew(0) + ‖θ(0)‖2

L2(Ω)],

where the constant C > 0 depends only on λ, μ, M0, Ω. Taking τ → ∞ implies
that w ≡ 0 on (1/2, 1), hence, from the equation θ ≡ 0 on (1/2, 1). Thus vanishing
at T = 1 implies vanishing in [1/2, 1]. This conclusion applies to any time shift
and we obtain the desired statement.

6.2. Proof of Theorem 2.9
Theorem 2.9 follows in the same way from Lemma 5.2 applied to w̄ = χw and
θ̄ = χθ with f ≡ χtwt + χttw and g ≡ χtθ gives

τ

∫
R

e2h(t)Ew̄(t)dt ≤ C

∫
R

[||eh(t)θ(t)||2 + τ−1‖eh(t)wt(t)‖2 + τ1‖eh(t)w(t)‖2]dt,

(44)
and similarly we obtain from Lemma 4.1∫

R

τ‖eh(t)θ̄(t)‖2
H−1(Ω) + ‖eh(t)θ̄(t)‖2dt

≤ Cτ−2

∫
R

[|eh(t)θ(t)|2H−1(Ω) + ‖eh(t)wt‖2 + ‖eh(t)w‖2]dt.

(45)
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where the constant C > 0 depends only on λ, μ.M0.|omega. Proceeding as before
and taking τ large in (44 ) and (45) yields the conclusion w̄ ≡ 0 and θ̄ ≡ 0, as
desired.
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The theory of measure and integral had been created by Borel and Lebes-

gue around 1900 as the concrete theory of the Lebesgue measure on R. The decisive
point was a small collection of entirely new and powerful theorems: the theorems
of type Beppo Levi-Fatou-Lebesgue, Fubini-Tonelli, . . . . The theory soon became
a kind of foundation of mathematical analysis.

Likewise the theory soon turned into an abstract one. This is the usual fate of
mathematical theories, but in the case of measure and integral a powerful impact
came from the fact that the whole of mathematical analysis, like the whole of
mathematics, went through a continuous chain of vivid abstractions all over the
20th century: Each new step of abstraction required its specific class of measures, in
order that those powerful theorems could be put into action. Examples of first rank
were the locally compact topological groups (Haar 1933, von Neumann 1934/36,
André Weil 1940) and the mathematical theory of probability (Wiener 1923,
Kolmogorov 1933, Doob 1953).

It so happened that for measure and integral the process of abstraction in-
volved a particular twofold task : It is, in order to develop the theory for some
abstract frame, the task to discover on the one hand the adequate concepts and
classes of measures, and on the other hand the adequate procedures which lead to
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produce these measures from basic data of preconceived nature. As a rule these
are hard problems, but decisive for the success of the enterprise.

In the course of the 20th century thus two comprehensive abstract theories
of measure and integral came into existence: the traditional abstract theory, as
presented for example in the famous 1950 textbook of Halmos [4], and the theory
of Radon measures on Hausdorff topological spaces, developed in particular in the
1952–69 treatise of Bourbaki [1]. For all their power and splendour, both theories
came to show some essential weaknesses with respect to the above particular tasks.
We shall attempt to describe these weaknesses in Sections 1 and 2.

The time of release then came with the end of the 20th century. The second
part of this article will describe the systematization due to the present author,
based on ideas which date back to 1968–70. Another development of different
nature is the monumental treatise 2000–2003 of Fremlin [3]. Its basic aim is
the comprehensive description of measure and integral in both the abstract and
topological theories, rather than their unification under new concepts like the
present premeasures. Even so it is plain that there are overlaps in facts and spirit,
in particular in the emphasis on inner regular and nonsequential procedures.

1. The two abstract theories of the 20th century

The Traditional Abstract Theory. The basic notion is that of a measure
α : A → [0,∞], understood to be defined on a σ algebra A of subsets of a nonvoid
set X . The fundamental weakness of the theory is its total limitation to sequential
procedures, inclusive of its neglect of regularity: In the main parts of the textbooks,
devoted to the abstract situation, there is, aside from the ubiquitous σ:=sequential
upward/downward continuity (almost always in the unfortunate guise of count-
able additivity), no τ :=nonsequential upward/downward continuity (defined via
directed set systems) and no outer/inner regularity. Examples of instant conse-
quences of this impoverishment are the lack of uniqueness results, for instance for
finite products of measures and for Daniell-Stone representation, and the small-
ness of domains of certain fundamental constructions, for instance for finite and
infinite products.

Then in the back of the textbooks there are specific chapters where X is
assumed to be a Hausdorff topological space, with its usual set systems Op(X)
and Cl(X) ⊃ Comp(X) and its Borel σ algebra Bor(X). Here one finds, for the
Borel measures α : Bor(X) → [0,∞] and related ones, the concepts which were
absent so far, but this time restricted in specific manner to Op(X) and Comp(X),
as it had been most common in the concrete case of the Borel-Lebesgue measure
λ : Bor(R) → [0,∞]:

λ outer regular Op(R) λ inner regular Comp(R),
λ|Op(R) upward τ continuous λ|Comp(R) downward τ continuous.
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In the course of time it became clear that inner regularity is much more important
than outer one, due to the predominant rôle of compactness in topology. This was
the point of departure for the opponent Radon measure theory.

The Radon Measure Theory. Here one assumes X to be a Hausdorff
topological space. A measure α : A → [0,∞] on X is called Radon iff A ⊃ Comp(X)
such that α|Comp(X) < ∞ (in part of the literature fortified to local finite-
ness) and such that α is inner regular Comp(X). One deduces that α|Comp(X)
is downward τ continuous. A simple extension procedure permits to assume that
A ⊃ Bor(X). One then proves that α|Op(X) is upward τ continuous. But as a
rule α is not outer regular Op(X).

The most common particular cases are: 1) λ is a Radon measure. 2) When
X is compact then not all finite Borel measures must be Radon. 3) When X is
Polish then all locally finite Borel measures are Radon.

The present definition of Radon measures is not the one in Bourbaki [1],
but the two definitions are equivalent (up to local finiteness). The explanation
is the credo of Bourbaki that the theory of measure and integral must be based
on integrals and not on set functions. But of course set functions are the bones
in the body of measure and integral, and hence an essential part of the basic
labour is predestined to produce the fundamental set functions from whatever
had been declared to be the basic entities. In his treatise Bourbaki was able to
develop his conception in the frame of locally compact spaces X : we call this the
initial version of the Radon measure theory. But in his last chapter, where X is
an arbitrary Hausdorff space, Bourbaki seemed to have made peace with the basic
rôle of set functions. The final end of the conception then came with the 1973
treatise of Laurent Schwartz [14] – which does not mean that all authors of
textbooks have realized this fact.

We list a few achievements of the Radon measure theory: 1) Existence and
uniqueness of finite products. 2) Existence and uniqueness in the Riesz represen-
tation theorem. 3) The notion of support for Radon measures. 4) The existence of
(countable or uncountable) decompositions of measure spaces based on compact
subsets, the so-called concassages.

It follows that success in these points is due to inner regularity – of course in
strict connection with topological compactness. For the traditional abstract theory
this is a serious hint and challenge. On the other side, for Radon measures the strict
attachment to topological compactness can be a severe obstacle. An important
instance are the infinite products. We shall see that here neither theory will be
satisfactory.

Infinite Products and Projective Limits. Let T be an infinite index
set and (Yt)t∈T be a family of nonvoid sets with product set X = Π

t∈T
Yt.

The traditional abstract theory assumes a family of probability (=:prob) mea-
sure spaces (Yt, Bt, βt)t∈T (defined to mean that βt(Yt) = 1). In X one forms the
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product σ algebra A, defined to be generated by the product sets

A = Π
t∈T

Bt with Bt ∈ Bt and Bt = Yt for almost all t ∈ T,

where as usual almost all means all except finitely many. Then there exists a unique
product measure α : A → [0,∞], in the sense that

α(A) = Π
t∈T

βt(Bt) for the above A = Π
t∈T

Bt.

However, in the case of an uncountable T this result has the basic defect that its
domain A can be much too small : its members A ∈ A are all countably determined
in the intuitive sense. Thus let for example T = [0,∞[ and Yt = R for t ∈ T , so
that the members of X = RT are the paths x : T = [0,∞[→ R. Then the subset
C(T, R) ⊂ X of the continuous paths is not countably determined, and even worse,
any countably determined A ⊂ C(T, R) must be A = ∅.

On the other side the Radon measure theory starts from a family of Hausdorff
topological spaces (Yt)t∈T , with the product topology on X . One assumes Bt =
Bor(Yt) and Borel-Radon prob measures βt for t ∈ T . Then the previous A satisfies
A ⊂ Bor(X), and hence the desired result would be that the previous product
measure α : A → [0,∞[ has an extension to a Radon measure β : Bor(X) → [0,∞[.
However, this is far from true: It is quite obvious that such an extension does not
exist when T is uncountable and βt|Comp(Yt) < 1 for all t ∈ T . The reason is the
smallness of the compact sets in X .

After this we turn to the context of projective limits. Let I = I(T ) consist
of the nonvoid finite subsets p, q, . . . of T . For p ∈ I we form the product set
Yp = Π

t∈p
Yt and the canonical projection Hp : X → Yp, and for p ⊂ q in I

the canonical projection Hpq : Yq → Yp. Let us assume the traditional abstract
situation: From (Bt)t∈T as above we form the family (Bp)p∈I of the product
σ algebras Bp in Yp, and then from (βt)t∈T as above the family (βp)p∈I of the
product measures βp on Bp. Then on the one hand the family (βp)p∈I is consistent
in the sense that

(↔) βp(B) = βq(H−1
pq (B)) ∀B ∈ Bp for all p ⊂ q in I,

and on the other hand the above characterization of the product measure α : A →
[0,∞[ of (βt)t∈T can be written

(⇔) βp(B) = α(H−1
p (B)) ∀B ∈ Bp for all p ∈ I,

that is in terms of the family (βp)p∈I . All this evokes a natural variant of the
previous product formation: From a prescribed family of prob measures (βp)p∈I ,
assumed to be consistent (↔), one is asked to produce a prob measure α : A →
[0,∞[ which satisfies (⇔). Then α must be unique and is called the projective limit
of the family (βp)p∈I .

It is clear first of all from (↔) (⇔) that each prob measure α : A → [0,∞[
is the projective limit of a unique consistent family (βp)p∈I , much in contrast to
the previous product formation which furnishes but a small portion of these α.
But of course the essential point is to determine those consistent families (βp)p∈I
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which produce prob measures α : A → [0,∞[, that is those which via (⇔) come
from these α. Let us call them solvable. It is known that not all consistent families
(βp)p∈I are solvable; it seems that some kind of compactness is involved. For the
moment we quote the famous positive result due to Kolmogorov [6]: If Yt is
a Polish topological space and Bt = Bor(Yt) ∀ t ∈ T then all consistent families
(βp)p∈I are solvable. A comprehensive answer will be presented at the end of this
article; it will at the same time be able to overcome the barrier of countably
determined A ⊂ X .

The present context of projective limits is the basis of the traditional theory
of stochastic processes. Here one assumes that Yt = Y and Bt = B independent of
t ∈ T . A stochastic process for T and (Y, B) can be defined to be a prob measure
α : A → [0,∞[ of the above kind, so that it is equivalent to be a solvable consistent
family (βp)p∈I (the usual definition looks quite different, it is in the guise of so-
called versions of α). After this definition the members A ∈ A are those sets of
paths x : T → Y in the path space X = Y T which the stochastic process α is able
to measure. Thus the fact that all A ∈ A are countably determined can lead to
misfortune in the case that T is uncountable. A specific problem are those subsets
of the path space which support the essential features of a stochastic process α
and could be named the essential sets for α; they can a priori be far from obvious.
The most prominent example is the stochastic process of Brownian motion = the
Wiener measure α, with T = [0,∞[ and Y = R (in one dimension). Here the prime
candidate for an essential set is C(T, R) ⊂ X . It must be noted that the idea for
this candidate came from experimental observations outside of mathematics ; the
mathematical side has to admit that the set is not countably determined and hence
not in A. In its more than 50 years the traditional theory of stochastic processes
has not been able to produce an adequate notion of essentials sets.

Insertion: Set-Theoretical Compactness. We recall the set-theoretical
notions of compactness initiated in Marczewski [12]. These notions are weaker
and more flexible than topological compactness, and in our new development all
aspects of compactness will be based on them. Let X be a nonvoid set. A lattice
S in X with ∅ ∈ S is called σ/τ compact iff each nonvoid countable/arbitrary
subsystem M ⊂ S which is downward directed with intersection ∅, in symbols
M ↓ ∅, satisfies ∅ ∈ M.

We list some immediate properties:

1) If X is a Hausdorff topological space then Comp(X) is τ compact.
2) If S is σ/τ compact then S ∪ {X} is σ/τ compact as well.
3) If X is a non-compact Hausdorff space then the τ compact lattice Comp(X)∪

{X} does not come via 1) from any Hausdorff topology on X .

We use the occasion to introduce some further notations. For a nonvoid set
system M in X we define M� ⊂ Mσ ⊂ Mτ to consist of the unions of the nonvoid
finite/countable/arbitrary subsystems of M, and M� ⊂ Mσ ⊂ Mτ to consist of
the respective intersections. Likewise for a nonvoid function system M ⊂ R

X
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we define M� ⊂ Mσ ⊂ M τ to consist of the pointwise suprema of the nonvoid
finite/countable/arbitrary subsystems of M , and M� ⊂ Mσ ⊂ Mτ to consist of the
respective infima.

In conclusion we want to introduce the shorthand notation • = �στ , to mean
that • can in a fixed context be read as one and the same of the symbols �/σ/τ or
of the words finite/countable/arbitrary, like variables are in common use all over
mathematics.

2. The generation of measures in the two previous theories

The Traditional Abstract Theory: Carathéodory 1914. In the tradi-
tional abstract theory the method of Carathéodory [2] is the most fundamental
source of nontrivial measures. Let X be a nonvoid set. The basic idea is to form
for a set function Θ : P(X) → [0,∞] with Θ(∅) = 0 the set system

C(Θ) := {A ⊂ X : Θ(M) = Θ(M ∩ A) + Θ(M ∩ A′) ∀M ⊂ X},
the members of which are called measurable Θ. One proves that Θ|C(Θ) is a content
on an algebra. On the other side one defines for a set function ϕ : S → [0,∞] on
a set system S in X with ∅ ∈ S and ϕ(∅) = 0 the so-called outer measure
ϕ◦ : P(X) → [0,∞] to be

ϕ◦(A) = inf{
∞
Σ

l=1
ϕ(Sl) : (Sl)l in S with A ⊂

∞
∪

l=1
Sl},

which is a familiar formation since Borel and Lebesgue. These two ideas of Cara-
théodory then furnish the theorem: Assume that S is a ring. If ϕ is a content and
upward σ continuous, then ϕ◦|C(ϕ◦) is a measure and an extension of ϕ. Thus a
set function on a ring can be extended to a measure iff it is a content and upward
σ continuous.

For all its power the above theorem has been under quite some criticism. In
the traditional frame the attacks are towards the formation C(·), as an unmotivated
and artificial one, while as a rule no doubt falls upon the outer measure formation.
However, we shall see that the opposite is true: There are in fact serious weaknesses
around the theorem, but it is the particular form of ϕ → ϕ◦ which must be blamed
for them, whereas the formation C(·) remains the decisive methodical idea and even
improves when put into the adequate context. We formulate the main deficiencies
of the Carathéodory theorem as follows:

1) The formation ϕ◦ and hence the measure ϕ◦|C(ϕ◦) are outer regular Sσ by
their very definition: first ↑ then ↓. It is mysterious how an inner regular
counterpart could look.

2) The sequential character of ϕ◦ implies that sequential continuity carries over
from ϕ to ϕ◦|C(ϕ◦). It is mysterious how a nonsequential counterpart could
look. Both times the sum in the definition of ϕ◦ is a crucial obstacle.
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3) The domains S of basic data ϕ : S → [0,∞] are as a rule not rings but
at most lattices. This becomes even more obvious when regularity and non-
sequential continuity enter the scene (while the so-called semirings will not
be in demand). But the proof of the Carathéodory theorem suffers a total
breakdown when one attempts to pass from rings to lattices S.
With respect to 3) the present author produced a certain relief in an analysis

course 1969/70: Instead of ϕ◦ he defined for an isotone set function ϕ : S → [0,∞]
on a set system S with ∅ ∈ S and ϕ(∅) = 0 the formation ϕσ : P(X) → [0,∞]
to be

ϕσ(A) = inf{ lim
l→∞

ϕ(Sl) : (Sl)l in S isotone with A ⊂
∞
∪

l=1
Sl}.

It is obvious that ϕσ = ϕ◦ when ϕ is a content on a ring S, so that the Carathéo-
dory theorem persists when formulated with ϕσ instead of ϕ◦. But for ϕσ the same
proof furnishes a much more comprehensive theorem: Let us define a set function
ϕ : S → [0,∞] on a lattice S with ∅ ∈ S to be a content iff it is isotone with
ϕ(∅) = 0 and modular in the sense that

ϕ(A ∪ B) + ϕ(A ∩ B) = ϕ(A) + ϕ(B) for all A, B ∈ S,

which is the old notion when S is a ring. Then for ϕσ the Carathéodory theorem
carries over from rings to the class of lattices S with the condition

B \ A ∈ Sσ for all pairs A ⊂ B in S.

Note for example that this condition is fulfilled for the lattices Cl(X) and Comp(X)
in a metric space X ! Yet the author saw no trace of the extended theorem in the
traditional abstract theory.

Much later then he realized that the formation ϕσ is superior to ϕ◦ with
respect to the other defects 1) 2) as well. This will be one of the two decisive
points in the present enterprise. The author dares say that the world of measure
and integral in the 20th century would have been another one if Carathéodory in
1914 had conducted his ideas with ϕσ instead of ϕ◦.

Both Theories: Positive Linear Functionals. In the traditional ab-
stract theory another fundamental source of nontrivial measures are the positive
linear functionals via the Daniell-Stone theorem. Later the initial version of the
Radon measure theory adopted and adapted the idea. The common set-up is as
follows: On the nonvoid set X one assumes a vector space of real-valued functions
F ⊂ RX which is a lattice under the pointwise max and min operations ∨∧ and
Stonean, defined to mean that f ∈ F ⇒ f ∧ t ∈ F for 0 < t < ∞. One considers
the linear functionals J : F → R which are isotone (=: positive). The traditional
abstract theory assumes J to be σ continuous, to mean that the pointwise con-
vergence fn ↓ 0 implies that J(fn) ↓ 0, or that each countable nonvoid M ⊂ F
which is downward directed with pointwise infimum 0, in symbols M ↓ 0, satisfies
inf

f∈M
J(f) = 0. The initial Radon measure theory assumes X to be a locally com-

pact Hausdorff topological space and F = CK(X, R) to consist of the continuous
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real-valued functions with compact support. The Dini theorem then implies that
the J : F → R are τ continuous, to mean that an arbitrary nonvoid M ⊂ F such
that M ↓ 0 in the above sense satisfies inf

f∈M
J(f) = 0. Bourbaki in fact defines

these J to be the Radon measures on X . We think that our discussion should
combine the two cases, that means assume the functional J to be • continuous for
some • = στ . The procedure then runs as follows: the fundamental point is that
it is of outer regular character like the previous Carathéodory 1914 procedure.

One defines the outer envelope J• : R
X → R to be

J•(f) = inf{ sup
u∈M

J(u) : M ⊂ F nonvoid • with M ↑� f},

where M ↑� f means that M is upward directed with sup
u∈M

u � f ; thus one

has first ↑ then ↓ as before. As a descendant of J• one forms the inner envelope
J• : R

X → R to be J•(f) = −J•(−f) or

J•(f) = sup{ inf
u∈M

J(u) : M ⊂ F nonvoid • with M ↓� f},

where M ↓� f means that M is downward directed with inf
u∈M

u � f . One notes

that J• � J• and J•|F = J•|F = J , and

(◦) for f ∈ R
X

: inf
u∈F

J•(|f − u|) = 0 ⇐⇒ J•(f) = J•(f) ∈ R.

One defines f ∈ R
X

to be • integrable J iff it fulfils the two equivalent properties
in (◦). Then one passes from J to a set function: One forms the set system a :=
{A ⊂ X : χA is • integrable J}, which turns out to be a lattice, and its transporter
A := {A ⊂ X : A∩M ∈ a ∀M ∈ a} ⊃ a, and on A one defines β(A) = J•(χA) (we
suppress the mark • = στ for a, A and β). In both cases • = στ one has the result:
The set function β : A → [0,∞] is a measure. A function f ∈ R

X
is • integrable

J iff it is measurable A and integrable β, and then J•(f) =
∫

fdβ. Moreover one
proves that the set system

N := {[f > t] : f ∈ F and 0 < t < ∞}
satisfies N• ⊂ A, and that J•(χ.) and hence β are outer regular N•.

In the traditional abstract theory one has • = σ. Thus the measure β : A →
[0,∞] furnishes the usual Daniell-Stone theorem and is outer regular Nσ. As a rule
the traditional abstract theory is content with this result, as it is content with the
result from the Carathéodory method, even though both results are outer regular
and not inner regular measures. Both times the ideas of the traditional theory do
not suffice to provide the construction of an inner regular measure with respect
to an appropriate set system. In particular it is not clear whether in place of J•

the inner envelope J• could be used: note that in the left of (◦) one cannot simply
replace the subadditive J• with the superadditive J•!

In the initial Radon measure theory J : F = CK(X, R) → R one has • = τ
and Nτ = Op(X), so that the measure β is outer regular Op(X) ⊂ Bor(X) ⊂ A.



Measure and Integral 413

As a rule β is not Radon. Thus there is an even more severe contrast to the aim,
which is to produce a true Radon measure. There are several textbooks which
are content with the result as it is, and thus formulate the Riesz representation
theorem with β in place of a true Radon measure. Not so Bourbaki: Faute de mieux
one continued to utilize the outer envelope Jτ as the basic construction, but then
went on to put a second one on top of it, named the essential construction: As
before Bourbaki applied the left side of (◦), but in place of Jτ to its so-called
essential upper integral Jτ

◦ : [0,∞]X → [0,∞] defined to be

Jτ
◦ (f) = sup{Jτ (fχK) : K ∈ Comp(X)}.

The expression improves somewhat when one notes that it can be written

Jτ
◦ (f) = sup{Jτ (u) : 0 � u � f with Jτ (u) < ∞}.

Thus Jτ
◦ (f) = Jτ (f) when Jτ (f) < ∞, and in particular Jτ

◦ (f) = J(f) for f � 0
in F . This formation Jτ

◦ happens to work for the present purpose. Since it remains
subadditive one can follow the former procedure. One comes back to the former
A, where this time one defines α(A) = Jτ

◦ (χA), to obtain the result which follows:
The set function α : A → [0,∞] is a Radon measure. A function f ∈ R

X
is τ

integrable with respect to Jτ
◦ (=: essentially τ integrable J) iff it is measurable A

and integrable α, and in case f � 0 then Jτ
◦ (f) =

∫
fdα. It follows that the map

J → α is one-to-one to all Borel-Radon measures α : Bor(X) → [0,∞]. This is the
true Riesz representation theorem: it identifies the present ad-hoc Radon measures
with the true Borel-Radon measures.

All the above is restricted to locally compact spaces X . In the final chapter of
Bourbaki [1] the development continues with the definition and construction of his
ad-hoc Radon measures on arbitrary Hausdorff spaces X and their identification
with the true Borel-Radon measures.

Summary. The overall picture at the end of the 20th century shows that the
foundations of measure and integral are in conflictful condition. One knows from
both old concrete facts and the Radon measure theory that regularity, above all
inner regularity, and nonsequential continuity are fundamental and indispensable
concepts and tools. But we have said that the textbooks in the unspoilt traditional
abstract fields pass over these concepts in complete silence. However, in an unbe-
lievable contrast, the two central methods which serve to produce measures from
basic data are such that the resultant measures are all equipped with a natural
outer regular structure. Thus regularity exists in silent omnipresence – in form of
outer regularity.

But that is about all what the two abstract theories of the 20th century have
to offer: In the traditional abstract theory the method of Carathéodory 1914 shows
no hint at all how to produce inner regularity nor nonsequential continuity. In the
representation theory for positive linear functionals it is, in order to produce in-
ner regular outcomes, far from appropriate to continue with the weapons of the
outer arsenal – and this must in fact be repaired at once and wherever with that
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unfortunate essential construction. All that will look even less natural when in
our final section compared with the new conception. The subsequent Radon mea-
sure theories on arbitrary Hausdorff topological spaces X in Bourbaki 1969 and
Schwartz 1973 improved the access to inner regular set functions; but after all
the exposition of Bourbaki is based on the former one, and Schwartz insisted that
a Radon measure be tied to an outer regular companion. Above all the develop-
ment remained restricted to the topological context. In the abstract context there
were a few lines of research with an emphasis on inner regularity, in particular the
somewhat isolated area around the compact and perfect measures, for example in
[3, Sections 342 and 451]. But on the whole the fundamental relevance of inner
regularity and nonsequential continuity had been left without adequate structure.

3. The origin of the new systematization

The turn to the release started with two natural ideas: The first idea is to consider
in a Hausdorff topological space X those set functions ϕ : Comp(X) → [0,∞[ that
can be extended to Radon measures, and to characterize these set functions. Of
course one can assume that ϕ is isotone with ϕ(∅) = 0. Then the second idea is to
extend this characterization to the abstract situation of a lattice S with ∅ ∈ S in
a nonvoid set X , that is to characterize those isotone set functions ϕ : S → [0,∞[
with ϕ(∅) = 0 that can be extended to measures which are inner regular S. It is
immediate that the respective extensions α : A → [0,∞] are unique: If one defines
the crude inner envelope ϕ� : P(X) → [0,∞] of ϕ to be

ϕ�(A) = sup{ϕ(S) : S ∈ S with S ⊂ A},
then each such α : A → [0,∞] must be α = ϕ�|A.

As for the first idea, we note three theorems in the literature which charac-
terize those isotone set functions ϕ : Comp(X) → [0,∞[ with ϕ(∅) = 0 that can
be extended to Radon measures, henceforth called the Radon premeasures.

Choquet 1953: ϕ is a locally bounded Radon premeasure iff it is modular
and continuous from above: for any A ∈ Comp(X) and ε > 0 there exists an open
U ⊃ A such that all compact K ⊂ U fulfil ϕ(K) < ϕ(A) + ε. Note that the last
condition implies that ϕ is downward τ continuous.

Bourbaki 1969: Assume that ϕ is locally bounded (which in fact can be
dispensed with). Then ϕ is a Radon premeasure iff it is modular and downward τ
continuous.

Kisyński 1968: ϕ is a Radon premeasure iff

ϕ(B) = ϕ(A) + ϕ�(B \ A) for all A ⊂ B in Comp(X).

As for the second idea, the three theorems are of different kind. The Cho-
quet condition, where besides Comp(X) also Op(X) comes in, is so close to the
topological context that the natural attempts at extension lead back to that con-
text. The Bourbaki condition breaks down even for certain bounded ϕ on certain
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lattices S with ∅ ∈ S which fulfil S = Sτ and are τ compact, like the former
S = Comp(X) (for an example see [8, Remark 3.3]). The miraculous event is the
Kisyński [5] theorem: It was not recorded in Bourbaki 1969 and Schwartz

1973. But in no time Topsøe [15, 16] realized that this theorem is capable of an
abstract extension. His basic achievement is for both • = στ :

Topsøe 1970: Let ϕ : S → [0,∞[ on the lattice S with ∅ ∈ S be isotone
with ϕ(∅) = 0. Consider the properties

1) ϕ can be extended to a measure which is inner regular S, and ϕ is downward
• continuous.

2) ϕ(B) = ϕ(A)+ϕ�(B\A) for all A ⊂ B in S, and ϕ is downward • continuous
at ∅.

Then 1)⇒2) is obvious, and 2)⇒1) holds true when S = S•.
However, without S = S• the implication 2)⇒1) becomes false. What re-

mains true is the implication 2)⇒1•) ϕ can be extended to a measure of domain
⊃ S• which is inner regular S•, and ϕ is downward • continuous. But this time
the converse 1•)⇒2) becomes false without S = S•. Thus it appears that beyond
S = S• the formulation of 2) in terms of the crude inner envelope ϕ� of ϕ ceases
to be adequate and prevents an equivalence assertion. As another evidence we
invoke the outer situation of Carathéodory 1914, which did not use the obvious
crude outer counterpart ϕ� of ϕ�, but the more subtle ϕ◦ or the later ϕσ.

All this underlines that new envelopes are required as the fundamental tools
for systematization – while the basic ideas of Kisyński and Topsøe must remain in
force. These new envelopes and the subsequent systematization are the contribu-
tion of the present author around the end of the 20th century.

4. The new theory

The new systematization is structured in order to meet both of the particular tasks
formulated in the introduction. Its first and central aim is to produce certain dis-
tinguished classes of measures from certain particular classes of basic data, in the
spirit that can be expected from what has been said so far. The foundational part
consists of an inner and an outer theory, which are parallel in almost all essentials
and have been developed in parallel at the outset [7]. But it soon became clear
that the inner version is the superior one in the most decisive places. Therefore
in the present article the explicit description will be restricted to the inner theory.
The development will be almost uniform in the three columns • = �στ , thanks to
an adequate formulation of the basic notions.

In the sequel we assume that S is a lattice with ∅ ∈ S in a nonvoid set X and
that ϕ : S → [0,∞[ is an isotone set function with ϕ(∅) = 0. The basic definitions
are as follows: We define an inner • extension of ϕ to be a content α : A → [0,∞]
on a ring A which is an extension of ϕ, and is such that even S ⊂ S• ⊂ A with

α is inner regular S• and
α|S• is downward • continuous (void for • = �).

We define ϕ to be an inner • premeasure iff it possesses inner • extensions.
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The subsequent inner extension theorem characterizes those ϕ which are inner
• premeasures, and then describes all inner • extensions of ϕ. The decisive weapons
are the new inner • envelopes ϕ• : P(X) → [0,∞] announced above and defined
to be

ϕ•(A) = sup{ inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂ A},

where M ↓⊂ A means that M is downward directed with ∩
M∈M

M ⊂ A; thus

one has first ↓ then ↑. It follows that ϕ• is inner regular S•. For A ∈ S we
have ϕ(A) � ϕ•(A), and ϕ(A) = ϕ•(A) iff ϕ is downward • continuous at A.
Furthermore ϕ� � ϕσ � ϕτ , and ϕ� is the previous crude inner envelope, while ϕσ

can be defined via sequences like the previous outer counterpart. We also need the
satellites ϕB

• : P(X) → [0,∞] with B ⊂ X , defined via limitation to those M ⊂ S
as above which consist of subsets M ⊂ B.

Inner Extension Theorem: Let ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0.
Then the following are equivalent.

0) ϕ is an inner • premeasure.
1) ϕ(B) � ϕ(A) + ϕ•(B \ A) for all A ⊂ B in S, and ϕ is supermodular and

downward • continuous.
2) ϕ(B) � ϕ(A) + ϕB

• (B \ A) for all A ⊂ B in S, and ϕ is supermodular and
downward • continuous at ∅.

3) The set function ϕ•|C(ϕ•) is an extension of ϕ.
In this case Φ := ϕ•|C(ϕ•) is an inner • extension of ϕ; it is a complete content,
and a measure when • = στ . All inner • extensions of ϕ are restrictions of Φ.

The prominent rôle of Φ = ϕ•|C(ϕ•) as the unique maximal inner • extension
of ϕ emphasizes the fundamental nature of the formation C(·) due to Carathéodory.
It appears that not until the present new theory this formation has achieved its
adequate position. There is no such position in the traditional abstract theory!

The inner extension theorem has several important addenda. First of all the
Localization Principle: If A ⊂ X fulfils A ∩ S ∈ C(ϕ•) for all S ∈ S then
A ∈ C(ϕ•). Also note that S ⊂ S• ⊂ C(ϕ•), and in particular in case • = τ that
Sτ can be of an immense size.

An important special case for • = στ is that S is • compact. In this case the
above set functions ϕ are all downward • continuous at ∅. Thus the equivalent
condition 2) in the inner extension theorem becomes much simpler.

The most natural example is the topological case: Let X be a Hausdorff
topological space and S = Comp(X). For each • = �στ then ϕ is an inner •
premeasure iff it is a Radon premeasure, and in this case the envelopes ϕ• and
hence the measures Φ = ϕ•|C(ϕ•) are the same for • = �στ . Thus the common Φ
is the unique maximal Radon measure extension of ϕ.

A brief word on the parallel new outer theory • = �στ and on the connections
between the two theories: The outer theory starts with ϕ : S → [0,∞], but this
deviation finds its natural explanation in the extended version of the two theories
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developed in [7] – in that extended version they are even identical ! The outer
theory is based on the outer • envelopes ϕ• : S → [0,∞] of ϕ, of which ϕ� is the
obvious crude outer one and ϕσ the previous 1969/70 variant of the Carathéodory
formation ϕ◦. The resultant outer extension theorem corresponds to the present
inner one in the essentials, except that it has of course no extra condition with
the senseless upward • continuity at ∅ and hence no satellites, but in return a
certain safety barrier at ∞ in case • = τ . The case • = σ contains the result of
Carathéodory 1914 and its 1969/70 extension, but goes far beyond.

In conclusion we want to recall the two decisive ideas which combine to
form the basis of the present new theories: The first one is the idea of Kisyński
and Topsøe how to express the existence of inner regular extensions for set func-
tions defined on lattices. The second one is the 1969/70 idea to pass from the
Carathéodory formation ϕ◦ to its variant ϕσ. It is remarkable that these two ideas
came up in the same small period of time before 1970. Much later then the present
author returned to the context and noticed that, in contrast to ϕ◦, the formation
ϕσ has an obvious inner counterpart ϕσ, and that the two of them have obvious
nonsequential counterparts ϕτ and ϕτ , defined via directed set systems. What then
remained was the systematization, to start off with an adequate formulation of the
basic notions in order to arrive at the necessary and sufficient conditions in our
inner and outer extension theorems.

5. The further development in a few examples

In the last few years the present author was pleased to note that the inner and
outer extension theorems – and in particular the nature of their basic concepts
– opened the road for an extensive development in measure and integration and
beyond, the results of which are not more complicated and at times even simpler
to formulate, but can be much more powerful and comprehensive than the earlier
ones. In particular the author thinks it is for the first time that an abstract theory
of measure and integral contains the respective topological theory as an explicit
special case. He developed a number of topics in [7] and in subsequent papers. All
this has been summarized in the survey articles [9, 11]. The present section wants
to offer a few examples, related to the points of criticism in Sections 1 and 2.

The Choquet Integral. We shall need the notion of the integral due to
Choquet 1953/54. Our version will be adapted to our situation of two parallel
theories. Let S be a lattice with ∅ ∈ S in the nonvoid set X . We define the
function classes Inn(S) and Out(S) to consist of the functions f ∈ [0,∞]X with
[f � t] ∈ S and [f > t] ∈ S respectively for 0 < t < ∞. Then for ϕ : S → [0,∞]
isotone with ϕ(∅) = 0 the Choquet integral

∫
−fdϕ ∈ [0,∞] is defined to be

=
→∞∫
0←

ϕ([f � t])dt for f ∈ Inn(S) and =
→∞∫
0←

ϕ([f > t])dt for f ∈ Out(S),

both times as an improper Riemann integral of a decreasing function � 0. One
verifies that for f ∈ Inn(S) ∩ Out(S) the two second members are equal. In
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particular
∫
−χAdϕ = ϕ(A) for A ∈ S. When S is a σ algebra then Inn(S) =

Out(S) consists of the usual f ∈ [0,∞]X measurable S, and when moreover ϕ is
a measure then

∫
−fdϕ is the usual integral

∫
fdϕ. This notion of an integral is so

natural and simple that one could wonder why it did not become the foundation
for all of integration theory. But the basic hardship with the Choquet integral is
that it is a priori obscure whether and when it is additive. For this context we refer
to [10].

Positive Linear Functionals. Our first point is the representation of
positive linear functionals as discussed in Section 2. Let as before F ⊂ RX be a
Stonean vector lattice and J : F → R be a positive linear functional, assumed to
be • continuous for some • = στ . Besides J• and J• we form the crude envelopes

J� : J�(f) = inf{J(u) : u ∈ F with u � f},
J� : J�(f) = sup{J(u) : u ∈ F with u � f};

and besides N we form the set system

M := {[f � t] : f ∈ F and 0 < t < ∞},
both of which are lattices with ∅. Note that F+ := {f ∈ F : f � 0} ⊂ Inn(M) ∩
Out(N).

The basic trouble in Section 2 was with inner regular representations. We
restricted ourselves to the particular initial Radon measure situation with • = τ
and described the route via Jτ

◦ due to Bourbaki. Now in the new systematization
the inner extension theorem produces the answer which follows, in the full situation
and in striking contrast to the former one.

Inner Representation Theorem: There is a unique inner • premeasure
ϕ : M → [0,∞[ which represents J in the sense that J(f) =

∫
−fdϕ for all f ∈ F+.

This is ϕ = J�(χ.)|M. It even fulfils J•(f) =
∫
−fdϕ• for all f ∈ [0,∞]X , and

hence J•(χ.) = ϕ• = Φ�. It follows that Φ = ϕ•|C(ϕ•) represents J in the sense
that all f ∈ F are integrable Φ with J(f) =

∫
fdΦ.

In the particular initial Radon measure case one has Mτ = Comp(X), so
that Φ is the unique maximal Radon measure which represents J . One proves that
in fact Φ = α. In this context a final word on the old formation Jτ

◦ : One proves
that Jτ

◦ (f) =
∫
−fdΦ� for all f ∈ [0,∞]X , and hence Jτ

◦ (χ.) = Φ�. This shows
that the formation is of hybrid type: From its definition it is of inner type, but
its properties are more like those of an outer formation. For example, as a rule
Jτ
◦ (χ.) = Φ� = α� is far from inner regular Comp(X). Therefore Jτ

◦ has no place
in the new systematization.

The new outer procedure is parallel to the new inner one. But it is of course
closer to the old procedure, which after all has been of outer character: it is in
terms of N and ends up at the former β.

On the whole it seems clear that we are arrived at the adequate method
of representation. The two new representation theorems are in [9] in much more
comprehensive versions than described above: thus their domains are subsets of
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[0,∞[X and [0,∞]X , assumed to be positive-homogeneous with 0 and Stonean
lattices in the appropriate sense, but need not even be stable under addition.
The final theorems are the precise counterparts of the earlier inner and outer
extension theorems for set functions. In particular the inner theorem furnishes a
wide extension of the Riesz representation theorem to the class of all Hausdorff
topological spaces X . We note that all these results have substantial predecessors
in Pollard-Topsøe [13] and Topsøe [17].

Finite Products. It is well known and has been noted in Section 1 that the
two abstract theories of the 20th century are quite different in their treatment of
finite products of measures: thus the Radon product measure of two Radon measures
is out of reach of the traditional abstract theory. Our next point is to show that
with the new systematization the situation becomes totally different. We note at
once that this point – like the final one – is a domain of the inner theory: there is
no full outer counterpart.

We fix nonvoid sets X and Y . For nonvoid set systems S in X and T in Y
we have the usual product set system S × T := {S × T : S ∈ S and T ∈ T} in
X ×Y . For lattices S and T with ∅ then R := (S×T)� is a lattice with ∅ as well
(and the same for rings and algebras). Now let ϕ : S → [0,∞] and ψ : T → [0,∞]
be isotone set functions with ϕ(∅) = ψ(∅) = 0. One proves for E ∈ R that the
function x → ψ(E(x)), where E(x) := {y ∈ Y : (x, y) ∈ E} ∈ T is the vertical
section of E at x ∈ X , is in Inn(S) ∩ Out(S). We define the product set function

ϑ = ϕ × ψ : R → [0,∞] to be ϑ(E) =
∫
−ψ(E(·))dϕ.

It follows that ϑ is isotone with ϑ(∅) = 0 and fulfils ϑ(S × T ) = ϕ(S)ψ(T )
for S ∈ S and T ∈ T (with 0∞ = 0 as usual). Also ϑ inherits from ϕ and ψ the
properties to be modular, to be finite, and to be finite and downward • continuous.
The fundamental fact is the

Product Theorem: Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are
inner • premeasures (• = �στ). Then ϑ = ϕ × ψ : R → [0,∞[ is an inner •
premeasure as well, and Θ := ϑ•|C(ϑ•) is an extension of the product Φ × Ψ of
Φ = ϕ•|C(ϕ•) and Ψ = ψ•|C(ψ•).

If in particular X and Y are Hausdorff topological spaces with S = Comp(X)
and T = Comp(Y ) then one notes that Rτ = Comp(X × Y ). Thus if ϕ and ψ
are Radon premeasures on X and Y with ϑ = ϕ × ψ, then π := ϑτ |Rτ is a
Radon premeasure on X × Y and fulfils πτ = π� = (ϑτ |Rτ )� = ϑτ , so that
Θ = ϑτ |C(ϑτ ) = πτ |C(πτ ) is an extension of Φ × Ψ which is maximal Radon on
X × Y .

Projective Limits. Our final point is the context of projective limits as
discussed in Section 1. The aim is a comprehensive projective limit theorem in
terms of the new inner theory. As before we fix an infinite index set T and a
family (Yt)t∈T of nonvoid sets with product set X , and we recall the index set
I = I(T ) and the family (Yp)p∈I of partial product sets, with the projections
Hp : X → Yp and Hpq : Yq → Yp for p ⊂ q in I.
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This time now we assume, in the spirit of the new inner systematization, a
family (Kt)t∈T of lattices Kt in Yt, such that Kt contains the finite subsets of Yt

and is • compact for some fixed • = στ . We form the family (Kp)p∈I of partial
product lattices Kp = { Π

t∈p
Kt : Kt ∈ Kt}� in Yp, which retain these properties. The

decisive formation is

S := { Π
t∈T

St : St ∈ Kt ∪ {Yt} with St = Yt for almost all t ∈ T }�,

which is a lattice in X with ∅, X ∈ S and likewise • compact. Our theorem then
reads as follows.

Projective Limit Theorem: There is a one-to-one correspondence between
the inner • prob premeasures ϕ : S → [0,∞[ (i.e. ϕ(X) = 1) and
the families (ϕp)p∈I of inner • prob premeasures ϕp : Kp → [0,∞[
which are projective in the sense that
(↔) ϕp(B) = (ϕq)•

(
H−1

pq (B)
)
∀B ∈ Kp for all p ⊂ q in I.

The correspondence reads
(⇔) ϕp(B) = ϕ

(
H−1

p (B)
)
∀B ∈ Kp for all p ∈ I.

One even has for all B ⊂ Yp and p ∈ I

(ϕp)•(B) = ϕ•
(
H−1

p (B)
)

and B ∈ C((ϕp)•) ⇔ H−1
p (B) ∈ C(ϕ•).

Moreover one has for A ∈ S•

Hp(A) ∈ C((ϕp)•) ∀ p ∈ I and Φ(A) = inf
p∈I

Φp(Hp(A)).

In the context of stochastic processes one assumes that Yt = Y and Kt = K
independent of t ∈ T . In the spirit of the new inner systematization a stochastic
process for T and (Y, K) can be defined to be an inner τ prob premeasure ϕ : S →
[0,∞[. It is fundamental to take • = τ : Then Φ = ϕτ |C(ϕτ ) is a measure on the
path space X = Y T with an immense domain S ⊂ Sτ ⊂ C(ϕτ ), which in case of
an uncountable T reaches far beyond the frame of countably determined subsets
of X = Y T . This situation opens the chance for an adequate definition: we define
the essential sets for the stochastic process ϕ : S → [0,∞[ to be those subsets
E ∈ C(ϕτ ) which have full measure Φ(E) = 1. At the same time we obtain the τ
continuities which are in the • = τ version of our inner systematization.

In case that Y is a Polish topological space with B = Bor(Y ) and K =
Comp(Y ) one proves that there is a one-to-one correspondence between

the traditional stochastic processes α : A → [0,∞[ for T and (Y, B) and
the new stochastic processes ϕ : S → [0,∞[ for T and (Y, K).

The correspondence rests upon S ⊂ A ⊂ C(ϕτ ) and reads ϕ = α|S and α = Φ|A.
Moreover ϕτ = (α�|Sτ )�. In the example of the Brownian motion = Wiener
measure with T = [0,∞[ and Y = R one proves that C(T, R) ∈ C(ϕτ ) with
Φ(C(T, R)) = 1. Thus C(T, R) is in fact an essential set for this stochastic process.
The present development has been summarized in [11]. It should be compared with
the previous ones, for example in Fremlin [3, Chapter 45].
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In conclusion we want to specialize the new projective limit theorem to the
case of infinite products. Assume that (ϑt)t∈T is a family of inner • prob pre-
measures ϑt : Kt → [0,∞[. For p ∈ I we define the inner • prob premeasure
ϕp : Kp → [0,∞[ to be the product of the finite family (ϑt)t∈p under the obvious
extension of the product formation in the last example to any finite number of
factors. One verifies that (ϕp)p∈I is a projective family in the sense of the present
theorem. Thus it produces an inner • prob premeasure ϕ : S → [0,∞[. Then
Φ = ϕ•|C(ϕ•) has the obvious position of the natural infinite product of the fam-
ily (Θt)t∈T of the prob measures Θt = (ϑt)•|C((ϑt)•). This formation is far more
comprehensive than the former one for Radon prob measures. It makes clear that
in the present context the adequate notion of compactness is not the topological
but the set-theoretical • one.
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Abstract. We prove a Post-Widder inversion formula for the Laplace trans-
form of hyperfunctions with compact support in [0,∞). We observe that any
hyperfunction with support in [0,∞) has Laplace transforms which are an-
alytic on the right half-plane C+, and we extend the Post-Widder inversion
formula to suitably bounded representatives of arbitrary hyperfunctions with
support in [0,∞).
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Introduction

Ever since Heaviside introduced the method of operational calculus at the end of
the 19th century there have been attempts to base it on rigorous mathematical
grounds. This was one reason for the development of Laplace transform theory (cf.
G. Doetsch’s books). But also L. Schwartz refers back to Heaviside in the preface
to the first edition (1950) of his book on distribution theory.

A lack of Laplace transform methods is that, in order to be Laplace trans-
formable, a function or distribution has to be exponentially bounded in some sense.
This has been overcome by Prof. Lumer and Frank Neubrander (cf. [9]) who intro-
duced an asymptotic Laplace transform for L1

loc-functions, based on earlier work
of C. Vignaux from 1939.

A few years earlier, H. Komatsu developed a Laplace transform theory for
hyperfunctions (cf. [3], [4], [5]). The (asymptotic) Laplace transform of (generalized
and hyper-) functions has been our favorite topic in discussions with Prof. Lumer
whenever we met, and I always enjoyed the talks he gave on his research in that
field and admired his deep insight into the subject.

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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It was shown in [10] that, after suitably modifying the definition from [9], the
asymptotic Laplace transform coincides for L1

loc-functions with the Laplace trans-
form of hyperfunctions in the sense of Komatsu. This is preserved when extending
asymptotic Laplace transform to hyperfunctions (cf. [10, Sect. 4]).

In the present paper we study Post-Widder type inversion formulae for the
Laplace transform of hyperfunctions. The possibility of such a formula relies on
the property that, for any hyperfunction, there is always a Laplace transform that
is analytic on the right half-plane C+. Although this does not seem to be stated
explicitly anywhere, it follows immediately from Komatsu’s argument to prove
surjectivity of the natural map Bexp([a,∞)) → B([a,∞) (cf. [4], [10, Lem. 1.1],
we reproduce the argument in Section 2 below). Nevertheless, things are always
conceptually easier for hyperfunctions with compact support, and for this case
we formulate and prove the formula in Section 1. In Section 2 we revise general
hyperfunctions with support in [0,∞), indicating and discussing the possibility of
“half-space theories” of (asymptotic) Laplace transforms. In the final Section 3 we
give an extension of our Post-Widder inversion formula to the general case.

We restrict ourselves to the scalar-valued case here, but the results can easily
be generalized to hyperfunctions with values in an arbitrary Banach space.

Throughout the paper we write, for any G ⊂ C, f : G → C and ε > 0:
Gε := {z ∈ C : d(z, G) < ε} and ‖f‖∞,G := sup{|f(z)| : z ∈ G}. For ω ∈ (0, π)
we denote by Σ(ω) the open sector Σ(ω) := {z ∈ C \ {0} : |arg z| < ω} where the
argument is taken with values in (−π, π].

1. Hyperfunctions with compact support

In this section we recall the basics for hyperfunctions with compact support in R,
and we prove the Post-Widder inversion formula for hyperfunctions with compact
support in [0,∞) (Theorem 1.1 and Corollary 1.3).

For a compact subset K of R we denote by A ′(K) the set of linear functionals
T on the set of entire functions A (C) such that, for all open and bounded supersets
U ⊂ C of K, there is a constant CU such that, for all ϕ ∈ A (C),

|T (ϕ)| ≤ CU‖ϕ‖∞,U .

It is clearly sufficient to consider U = Kε in the definition, and A ′(K) is a Fréchet
space for the best constants CK1/n

, n ∈ N, as seminorms. By continuity, a T ∈
A ′(K) can be extended to any function ϕ analytic in a complex neighborhood of
K (cf. [2, 9.1.2]), and T is uniquely determined by it values on polynomials.

Let T ∈ A ′(K) and U, V ⊂ C be open and bounded supersets of K, bounded
by finitely many closed piecewise C1-curves and such that V ⊂ V ⊂ U . Then we
have, orienting ∂U in the usual way, for any ϕ analytic in a neighborhood of U by
Cauchy’s formula

ϕ =
1

2πi

∫
∂U

ϕ(z)
z − · dz on V .
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This leads, for such ϕ, to the representation

T (ϕ) =
1

2πi

∫
∂U

T
( 1

z − ·
)
ϕ(z) dz. (1.1)

Here, the analytic function CT : C\K, z → T ( 1
z−·) is called the Cauchy transform

of T . The representation (1.1) implies the estimate

|CT (z)| ≤ CV

d(z, V )
for z �∈ V ,

in particular CT is analytic at ∞ and C T (∞) = 0.
On the other hand, if U is a complex neighborhood of K and the function F

is analytic on U \ K then

T (ϕ) =
1

2πi

∫
∂V

F (z)ϕ(z) dz (1.2)

defines an element of A ′(K) where the open neighborhood V is chosen such that
V ⊂ V ⊂ U , V is bounded by finitely many closed piecewise C1-curves, and ϕ is
analytic on a neighborhood of V .

Writing O(V ) for the set of analytic functions on the open subset V ⊂ C, we
thus have

A ′(K) 4 O(C \ K)/O(C) 4 O(U \ K)/O(U)
for any open complex neighborhood U of the compact set K.

Laplace transform. For K ⊂ R compact and T ∈ A ′(K), the Laplace transform
L T of T is given by

L T (λ) := T (e−λ·) =
1

2πi

∫
∂V

CT (z)e−λz dz, λ ∈ C, (1.3)

where V is an open and bounded complex neighborhood of K, bounded by finitely
many piecewise C1-curves. For K = [a, b] ⊂ [0,∞), the case we shall contrate on,
we have, for each ε > 0, estimates

|L T (λ)| ≤
{

Cε exp(−aReλ + ε|λ|) , Re λ ≥ 0
Cε exp(−bReλ + ε|λ|) , Re λ < 0 (1.4)

which characterize Laplace transforms of elements in A ′([a, b]) (cf. [2, Sect. 9.1]).
Another characterization can be found in [8].

The following is our first version of Post-Widder inversion.

Theorem 1.1. Let [a, b] ⊂ (0,∞) be compact and T ∈ A ′([a, b]). Then for all
θ ∈ (0, π/2) there is a constant Cθ such that, for all n ∈ N0,

sup
λ>0

|λn+1 (−1)n

n!
(L T )(n)(λ)| ≤ Cθ

(cos θ)n+1
. (1.5)

For any v, w ∈ C \ [0,∞) we have, as n → ∞,∫ ∞

0

(n

t

)n+1 (−1)n

n!
(L T )(n)

(n

t

)( 1
w − t

− 1
v − t

)
dt −→ CT (w) − C T (v). (1.6)
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Let us recall (cf. [1]) that Post-Widder inversion asserts(n

t

)n+1 (−1)n

n!
(L g)(n)

(n

t

)
→ g(t) as n → ∞, (1.7)

if g ∈ L∞(0,∞) is continuous at t > 0. Theorem 1.1 is proved via the following
more general result.

Lemma 1.2. Under the assumptions of Theorem 1.1 let ϕ be analytic and bounded
on some sector Σ(ω), where ω ∈ (0, π/2), and such that

r → ϕ(reiθ) ∈ L1[0,∞), |θ| < ω. (1.8)

Then ∫ ∞

0

(n

t

)n+1 (−1)n

n!
(L T )(n)

(n

t

)
ϕ(t) dt −→ T (ϕ) as n → ∞. (1.9)

Clearly, the assumption (1.8) holds for ϕ = (w − ·)−1 − (v − ·)−1, v, w ∈
C \ [0,∞). Hence it suffices to prove the lemma.

Proof. We write F := C T and G := L T . Moreover, we let

Gn(λ) := λn+1 (−1)n

n!
(L T )(n)(λ) for λ > 0 and n ∈ N0.

First we deform the contour in the integral (1.3) to Γ(θ) := ∂Σ(θ) where θ ∈ (0, ω).
Then we have, for any n ∈ N0 and λ > 0,

Gn(λ) = λn+1 (−1)n

n!
G(n)(λ) =

1
2πi

∫
Γ(θ)

λn+1F (z)
zn

n!
e−λz dz,

and for Γ± := {z ∈ Γ(θ) : arg z = ±θ} we obtain

1
2π

∫
Γ±

λn+1|F (z)| |z|
n

n!
e−λRe z |dz| ≤ 1

π
‖F‖∞,Γ(θ)(cos θ)−(n+1),

where we wrote z = re±iθ and substituted r = s
λ cos θ .

This implies that the following integral is absolutely convergent and that we
may apply Fubini to obtain∫ ∞

0

Gn

(n

t

)
ϕ(t) dt =

∫ ∞

0

(n

t

)n+1 (−1)n

n!
G(n)

(n

t

)
ϕ(t) dt

=
1

2πi

∫
Γ(θ)

F (z)
∫ ∞

0

(n

t

)n+1 zn

n!
e−nz/tϕ(t) dt dz

=
1

2πi

∫
Γ(θ)

F (z)
∫ e−iarg z∞

0

(n

s

)n+1 1
n!

e−n/sϕ(sz) ds dz,

where we used the substitution t = sz. Now we replace
∫ e∓iθ∞
0 . . . ds by

∫∞
0 . . . ds

by Cauchy’s theorem. Indeed, for γR(u) := Reiu, ±u ∈ (0, θ) and n ∈ N, we have∣∣∣∣∫
γR

. . . du

∣∣∣∣ ≤ CnR−nθ‖ϕ‖∞,Σ(θ) → 0 as R → ∞.
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Thus we are lead to∫ ∞

0

Gn

(n

t

)
ϕ(t) dt =

1
2πi

∫
Γ(θ)

F (z)
∫ ∞

0

(n

s

)n+1 1
n!

e−n/sϕ(sz) ds dz,

and another Fubini argument and the substitution s = 1/r yield

=
∫ ∞

0

nn+1

n!
rn e−nr 1

2πi

∫
Γ(θ)

F (z)
1
r
ϕ
(z

r

)
dz dr. (1.10)

Letting gϕ(r) := 1
2πi

∫
Γ(θ)

F (z) 1
r ϕ( z

r ) dz we have

|gϕ(r)| ≤ 1
2π

‖F‖∞,Γ(θ)‖ϕ‖L1(Γ(θ)), r > 0,

i.e., gϕ ∈ L∞(0,∞), and the expression (1.10) equals

= nn+1 (−1)n

n!
(L gϕ)(n)(n).

Since it can easily be shown that gϕ is continuous at t = 1, the Post-Widder
inversion formula (1.7) asserts convergence, as n → ∞, to

gϕ(1) =
1

2πi

∫
Γ(θ)

F (z)ϕ(z) dz = T (ϕ).

This ends the proof. �

The problem with a = 0 in Theorem 1.1 is that (1.5) need not hold (cf.
the estimates (1.4)). For T ∈ A ′([0, b]) and ε > 0, the translation Tε : ϕ →
Tε(ϕ) := T (ϕ(ε + ·), belongs to A ′([ε, b + ε]) and satisfies L Tε(λ) = e−ελL T (λ)
and C Tε(z) = C T (z − ε). Thus we have the following.

Corollary 1.3. Let T ∈ A ′([0, b]). Then we have for any ε > 0 and v, w ∈ C\[0,∞),
as n → ∞,∫ ∞

0

(n

t

)n+1 (−1)n

n!
(e−ε·L T )(n)

(n

t

)( 1
w − t

− 1
v − t

)
dt −→ CT (w−ε)−CT (v−ε).

2. Hyperfunctions on [0,∞)

In this section we recall definitions and properties of hyperfunctions supported
in [0,∞) and we sketch the possibility of “half-space theories” for their Laplace
transforms. We also refer to [2, Sect. 9.2] and [7].

For any open subset Q ⊂ R the set B(Q) of hyperfunctions on U is defined
as O(U \ Q)/O(U) where U is an open complex neighborhood of Q such that
U ∩R = Q. The definition does not depend on U . It is clear that there are canon-
ical restriction mappings B(Q) → B(Q′) if Q ⊃ Q′. Actually, these restriction
mappings are surjective and this fact is referred to as the flabbiness of hyperfunc-
tions. Given an open subset Q ⊂ R and T = [F ] ∈ B(Q) the support supp T
of T is the complement (in Q) of all points t ∈ Q such that F is analytic in a
neighborhood of t.
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For a ∈ [0,∞), the set B([a,∞)) is defined as the set of hyperfunctions with
support in [a,∞), i.e., we have

B([a,∞)) 4 O(C \ [a,∞))/O(C) 4 O(U \ [a,∞))/O(U), (2.1)

where U is an arbitrary open complex neighborhood of [a,∞).
The idea behind Komatsu’s Laplace transform of hyperfunctions is to replace

arbitrary analytic functions in this representation by analytic functions that are
exponentially bounded in a suitable sense. The key observation is that coclasses
in (2.1) contain such exponentially bounded representatives. The argument from
[4] actually yields representatives which are bounded in a certain sense.

We introduce the following notation: For any a ∈ [0,∞) we let Ob
a denote the

set of functions that are analytic on C \ [a,∞) and bounded outside any set Σ(θ)ε

for θ ∈ (0, π/2) and ε > 0. We also let Ob
∞ :=

⋂
a>0 Ob

a denote the set of all entire
functions that are bounded on any set C \ (a + Σ(θ)) where a > 0, θ ∈ (0, π/2).

Theorem 2.1. Let T ∈ B([0,∞)), ε > 0 and U be a complex neighborhood of [0,∞).
Then there exists a representing function F ∈ O(C \ [0,∞)) such that |F (z)| ≤ ε
for z ∈ C \ U . In particular we have B([0,∞)) 4 Ob

0/Ob
∞.

We start with the following decomposition result.

Lemma 2.2. Any T ∈ B([0,∞)) can be written as T =
∑∞

j=1 Tj where, for each
j ∈ N, Tj ∈ A ′([j − 1, j]), and the sum is understood locally, i.e., restricted to
bounded open intervals where it is actually a finite sum.

Proof. The lemma follows if, for b > a ≥ 0, we can write S ∈ B([a,∞)) as
S = S0 + S1 with S0 ∈ A ′([a, b]) and S1 ∈ B([b,∞)). To this end we define
S̃0 ∈ B(R \ {b}) to be equal to S on (−∞, b) and equal to 0 on (b,∞). Then we
extend S̃0 to S0 by flabbiness and let S1 := S − S0. �
Proof of Theorem 2.1. We find a sequence (α(j))j∈N with

⋃
j [j − 1, j]α(j) ⊂ U .

Using Lemma 2.2 we write T =
∑

j Tj . Now we replace subsequently the summands
Tj by summands T̃j ∈ A ′([j − 1, j]) whose Cauchy transforms F̃j are bounded by
2−jε outside [j − 1, j]α(j). Then the series F (z) :=

∑∞
j=1 F̃j(z) converges locally

uniformly for z ∈ C\[0,∞), and F represents T . We start with T1 and approximate
F1 := C T1 outside [0, 1]α(1) with a polynomial P1 (without constant term) in
(z−1)−1 such that |F1(z)−P1((z−1)−1| ≤ ε/2 for z ∈ C\[0, 1]α(1). This is possible
by Runge’s theorem. The function z → P1((z − 1)−1) is the Cauchy transform of
a Schwartz distribution S1 with support in {1}, and we let T̃1 := T1−S1. Observe
that T̃1 = T1 on [0, 1). In the next step we let F2 := C (T2 + S1) and find a
polynomial P2 such that |F2(z) − P2((z − 2)−1)| ≤ 2−2ε for z ∈ C \ [1, 2]α(2).
Again, z → P2((z − 2)−2) is the Cauchy transform of a Schwartz distribution S2

with support in {2}, and we let T̃2 := T2 +S1−S2. Observe that T̃1 + T̃2 = T1 +T2

on [0, 2). We apply this procedure successively to any index j > 2, and this proves
the first assertion of the theorem.

We find representatives in Ob
0 if U :=

⋃
j [j − 1, j]2−j . �
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For any F ∈ Ob
0 we denote by [F ] the induced hyperfunction in B([0,∞)).

Laplace transform. For any F ∈ Ob
0 we define the Laplace transform L F by

L F (λ) =
1

2πi

∫
∂(Σ(θ)∪B(0,ε))

F (z)e−λz dz for λ ∈ C+. (2.2)

This definition is independent of ε > 0 and θ ∈ (0, π/2) if Re λ > tan θ|Im λ|.
Observe also that, for a hyperfunction T ∈ A ′([a, b]) with compact [a, b] ⊂ [0,∞),
the Laplace transform L T in the sense of Section 1 coincides with L (C T ) (by an
argument similar to the one used in the proof of Lemma 1.2). If F ∈ Ob

a for some
a > 0 we may take ε = 0. For λ ∈ C+ and θ ∈ (0, π/2) with Re λ > tan θ|Im λ| we
then easily see

|L F (λ)| ≤ Cθ(Re λ − tan θ|Im λ|)−1.

For T = [F ], the function L F is a Laplace transform of T in the sense of
Komatsu ([5]) and it is an asymptotic Laplace transform of T in the sense of
Lumer/Neubrander ([10]). Observe that L F is analytic on C+.

Remark 2.3. Of course, Ob
0 is too small to be closed under multiplication with poly-

nomials. This can be remedied by considering Op
0 := {p·F : F ∈ Ob

0 , p polynomial }
instead. Observe that (2.2) makes sense for F ∈ Op

0 and that L F is analytic on
C+ for such F . Moreover, one has L (−zF )(λ) = (L F )′(λ) for F ∈ Op

0 (cf. [10]
for a discussion of this property). This would yield a Laplace transform theory
similar to the one for tempered Schwartz distributions with support in [0,∞).

If one is also interested in having L (eazF )(λ) = L F (λ − a) for a > 0 then
one should consider Oe

0 :=
⋃

a>0 ea(·) ·Op
0 . For each F ∈ Oe

0 the Laplace transform
L F exists on a half-plane {Reλ > a} for some a > 0. This would yield a Laplace
transform theory that parallels the one for exponentially bounded distributions
with support in [0,∞).

A reason for requiring “post-sectors” in [3, 4, 5, 9, 10] (see [9] for the defi-
nition) and not half-planes as domains of analyticity is, of course, that otherwise
Ouchi’s characterization for the existence of hyperfunction fundamental solutions
to abstract Cauchy problems (cf. [5]) could not be derived within the theory. Actu-
ally, this already happens for distributional fundamental solutions (cf. Chazarain’s
characterization quoted in [5, 6] which involves “logarithmic regions”). This may
be a hint that hyperfunction fundamental solutions have a bit more structure than
general hyperfunctions (cf. [6] where it is shown that this is the case for distribu-
tional fundamental solutions compared to general distributions).

The question we evoke here is the “consistency” of Laplace transforms L F
with Laplace transforms of T = [F ] obtained by other means, e.g., by the classical
Laplace transform for exponentially bounded functions on [0,∞) or by the method
in [6] for distributions in W′ (cf. [6] for the definition). In any case, Laplace trans-
forming hyperfunctions requires to consider them as linear functionals (cf., e.g.,
Lemma 3.2 below) which in turn seems to be impossible without having to deal
with coclasses, in the sense that a single hyperfunction gives rise to a bunch of
functionals.
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3. Post-Widder inversion for general hyperfunctions

In this section we comment on Post-Widder inversion for general hyperfunctions
T ∈ B([a,∞)) or rather, on Post-Widder inversion for their representations F ∈
Ob

a. Since the case a = 0 may again be treated by translation (cf. Corollary 1.3)
we study only the case a > 0.

Theorem 3.1. Let a > 0 and T = [F ] ∈ B([a,∞)) where F ∈ Ob
a. Then for all

θ ∈ (0, π/2) there is a constant Cθ such that, for all n ∈ N0,

sup
λ>0

|λn+1 (−1)n

n!
(L F )(n)(λ)| ≤ Cθ

(cos θ)n+1
. (3.1)

For any v, w ∈ C \ [0,∞) we have, as n → ∞,∫ ∞

0

(n

t

)n+1 (−1)n

n!
(L F )(n)

(n

t

)( 1
w − t

− 1
v − t

)
dt −→ F (w) − F (v). (3.2)

In particular, we can use (3.2) to reconstruct T from L F .

The proof of Lemma 1.2 also proves the following.

Lemma 3.2. Let a > 0 and F ∈ Ob
a. Then

S(ϕ) :=
1

2πi

∫
Γ(θ0)

F (z)ϕ(z) dz (3.3)

is well defined for any bounded ϕ ∈ O(Σ(ω)) with ω ∈ (0, π/2) satisfying (1.8) and
independent of θ0 ∈ (0, ω). For such ϕ we have∫ ∞

0

(n

t

)n+1 (−1)n

n!
(L F )(n)

(n

t

)
ϕ(t) dt −→ S(ϕ) as n → ∞. (3.4)

Proof of Theorem 3.1. Again, the function ϕ = (w − ·)−1 − (v − ·)−1 satisfies the
assumptions of Lemma 3.2 and it rests to prove S(ϕ) = F (w)−F (v). We consider
(3.3) for 0 < θ0 < min{|argw|, |arg v|} and, for R > max{|v|, |w|} large, the
contour γR given by γR(σ) := Re−iσ, σ ∈ [θ, 2π − θ]. We observe supz∈γR

|ϕ(z)| =
O(R−2) as R → ∞. Hence∫

γR

|F (z)||ϕ(z)| dz = O(R · R−2) = O(R−1) as R → ∞.

Denoting ΓR := {z ∈ Γ(θ0) : |z| ≤ R}, oriented in the same way as Γ(θ0), we have
by Cauchy’s theorem

F (w) − F (v) =
1

2πi

∫
ΓR−γR

F (z)ϕ(z) dz −→ S(ϕ) as R → ∞,

which ends the proof. �
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Abstract. We prove optimal Schauder estimates for classical solutions of the
nonhomogeneous Cauchy problem associated with a class of elliptic operators
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1. Introduction

In the last years the interest towards elliptic operators L with unbounded coeffi-
cients has grown considerably due to their numerous applications in many fields of
sciences (mainly mathematical finance). Most of the literature is concerned with
the autonomous case in which the coefficients of the operator L depend only on
space variables. The study of such operators goes back to the pioneering papers
by Azencott and Itô (see [1, 9] and also [21]) who proved that, under very weak
assumptions on the smoothness of the coefficients and assuming growth conditions
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only on the potential term (i.e., it should be bounded from above), the homoge-
neous Cauchy problem{

Dtu(t, x) = Lu(t, x), t > 0, x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(1.1)

admits, for any bounded and continuous function f , (at least) one classical solution
(i.e., a function u which is (i) bounded and continuous in [0, T ]×RN , for any T > 0,
(ii) once continuously differentiable with respect to time and twice continuously
differentiable with respect to space variables in R+ × RN , (iii) solves the Cauchy
problem (1.1)).

The most famous example of an elliptic operator with unbounded coefficients
is the Ornstein-Uhlenbeck operator, given by

Lu(x) = Tr(QD2u(x)) + 〈Ax, Du(x)〉, x ∈ RN , (1.2)

where Q and A are N ×N matrices with Q (strictly) positive definite (see, e.g., [5,
6, 8, 13, 17, 20, 22, 23] and the monograph [4]) In such a situation, a representation
formula for the (unique) classical solution to the Cauchy problem (1.1) is available.
More precisely,

u(t, x) := (T (t)f)(x) =
1

(4π)N/2(detQt)1/2

∫
RN

e−
1
2 〈Q

−1
t y,y〉f(y − etAx)dy,

for any t > 0 and any x ∈ RN , where

Qt =
∫ t

0

esAQesA∗
ds, t > 0.

The family {T (t)} defines a semigroup of bounded operators in Cb(RN ) (the space
of bounded and continuous functions in RN ). Such a semigroup is neither strongly
continuous nor analytic in Cb(RN ) and in BUC(RN ) (the subspace of Cb(RN ) of
all uniformly continuous functions). Nonetheless it exhibits smoothing properties
that are typical of semigroups associated with elliptic operators with bounded
coefficients. For instance, for any f ∈ Cb(RN ) and any t > 0, the function T (t)f
belongs to C∞(RN ) and all its derivatives are bounded. Moreover, for any h, k > 0,
with 0 ≤ h ≤ k, and any f ∈ Ch

b (RN ) there exists a positive constant Ch,k such
that

‖T (t)f‖Ck
b (RN ) ≤ Ch,kt−

k−h
2 ‖f‖Ch

b (RN ), t ∈]0, 1]. (1.3)
Such estimates have been used as the keystone to prove optimal Schauder estimates
for the classical solution to the nonhomogeneous Cauchy problem{

Dtu(t, x) = Lu(t, x) + g(t, x), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(1.4)

when f, g are bounded and smooth enough functions. To be more precise, it is
well known that, if f ∈ C2+θ

b (RN ) (for some θ ∈]0, 1[) and g ∈ Cb([0, T ] × RN ) is
such that g(t, ·) is in Cθ

b (RN ) for any t ∈ [0, T ], with supt∈[0,T ] ‖g(t, ·)‖Cθ
b (RN ) <

+∞, then problem (1.4) admits a unique classical solution u, Moreover, u(t, ·) ∈
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C2+θ
b (RN ) for any t ∈ [0, T ] and the sup of the C2+θ

b -norms (when t runs in [0, T ])
can be estimated in terms of the data. We refer the reader to [6] for the proof of
the previous results.

Uniform estimates similar to (1.3) and, consequently, optimal Schauder esti-
mates for the solutions of the Cauchy problem (1.4) have been recently proved in
[3, 18] for a rather general class of elliptic operators with unbounded x-dependent
coefficients. In such a situation, a different approach based on the classical Bern-
stein method (see [2]) has been applied, since no representation formulas for the
solution to (1.1) are available.

Aim of this paper is to extend these results to a class of elliptic operators
with unbounded coefficients, depending also on time. More precisely, we consider
the following class of elliptic operators

Lu(t, x) = Tr(Q(t, x)D2u(t, x)) + 〈A(t)x + b(t, x), Du(t, x)〉, t > 0, x ∈ RN ,
(1.5)

under suitable assumptions on the function matrices Q and A and on the vector
function b, that will be made clear in Section 2. Note, that in the case when Q
and A are constant and b ≡ 0, the operator L reduces to the Ornstein-Uhlenbeck
operator in (1.2), whereas in the case when the coefficients Q and b of L in (1.5) are
independent of x and periodic in t, the operator L has been extensively studied in
[7], where the authors proved that one can associate a backward evolution family
{P (t, s)} with the Cauchy problem{

Dsu(s, x) + Lu(s, x) = 0, s ∈] −∞, t[,

u(t, t) = f ∈ Cb(RN ).

Moreover, they studied the asymptotic behaviour of the function P (t, s)f both
when s tends to −∞ (and t is fixed) and when t tends to +∞ (and s is fixed).

The main results we prove in this paper are collected in the following two
theorems. The first one deals with the case when the coefficients of the operator
L are continuous in the pair (t, x).

Theorem 1.1. Let Hypotheses 2.1 in Section 2 be satisfied and fix θ ∈]0, 1[. Further,
suppose that f ∈ C2+θ

b (RN ) and g ∈ Cb([0, T ]×RN ) is such that g(t, ·) ∈ Cθ
b (RN )

for any t ∈ [0, T ] and
sup

t∈[0,T ]

‖g(t, ·)‖Cθ
b (RN ) < +∞.

Then, the Cauchy problem (1.4) admits a unique classical solution u. For any
t > 0, the function u(t, ·) belongs to C2+θ

b (RN ) and there exists a positive constant
C, depending only on the ellipticity constant and the sup-norms of the coefficients
of the operator L, such that

sup
t∈[0,T ]

‖u(t, ·)‖C2+θ
b (RN ) ≤ C

(
‖f‖C2+θ

b (RN ) + sup
t∈[0,T ]

‖g(t, ·)‖Cθ
b (RN )

)
. (1.6)

Our results extend [10, 11, 12] where similar results have been proved for
elliptic operators with bounded coefficients.
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The latter result that we prove is concerned with the case when the coeffi-
cients of the operator L are only measurable with respect to the pair (t, x) and
they are Hölder continuous with respect to the space variables. Before stating it,
we give the definition of solution to problem (1.4) adapted to our situation.

Definition 1.2. Suppose that the coefficients of the operator L are everywhere
defined, bounded and measurable in [0, T ] × RN for some T > 0. Further, let
f ∈ C2

b (RN ) and g ∈ Cb([0, T ] × RN ). A function u : [0, T ] × RN → R is called a
solution to (1.4) if the following conditions are satisfied:

(i) the function u is Lipschitz continuous in [0, T ]×B(R) for any R > 0, its first-
and second-order space derivatives are bounded and continuous functions in
[0, T ]× RN ;

(ii) u(0, x) = f(x) for any x ∈ RN ;
(iii) there exists a set F ⊂ [0, T ] × RN , with negligible complement, such that

Dtu(t, x) = Lu(t, x) + g(t, x) for any (t, x) ∈ F . Moreover, for any x ∈ RN ,
the set F (x) = {t ∈ [0, T ] : (t, x) ∈ F} is measurable with measure T .

Theorem 1.3. Let Hypotheses 2.2 in Section 2 be satisfied and fix θ ∈]0, 1[. Fur-
ther, suppose that f ∈ C2+θ

b (RN ) and g is a bounded and measurable function,
everywhere defined in [0, T ] × RN , such that g(t, ·) ∈ Cθ

b (RN ) for any t ∈ [0, T ]
and

sup
t∈[0,T ]

‖g(t, ·)‖Cθ
b (RN ) < +∞.

Then, the Cauchy problem (1.4) admits a unique solution u according to Definition
1.2. For any t > 0, the function u(t, ·) belongs to C2+θ

b (RN ) and there exists a
positive constant C such that (1.6) holds true.

Theorem 1.3 extends to the case of unbounded coefficients the results in
[14]. We quote the monograph [19] for related results for elliptic operators with
discontinuous coefficients.

We stress that the proof of this theorem essentially relies on the maximum
principle in Proposition 2.3 and the results in Theorem 1.1, which allow us to
apply a compactness argument to prove the existence and the uniqueness of the
solution of the Cauchy problem (1.4) in the sense of Definition 1.2. Note that the
techniques in Section 5 apply also to the situation considered in [14] and allow to
obtain the same results in a simpler and elegant way from those in [10, 11, 12].

The paper is structured as follows. First, in Section 2, we state the main
assumptions on the coefficients that we need in this paper and prove a maximum
principle. Next, in Sections 3 and 4, we consider the case when the coefficients of
L are continuous with respect to (t, x). First, in Section 3, we prove Theorem 1.1
in the case when the coefficients Q and b are independent of x. For this purpose,
we prove that we can associate an evolution family {P (t, s)} with the operator
L. We also estimate the sup-norm of the space derivatives (up to the third-order)
of the function P (t, s)f when f belongs to several spaces of (Hölder) continu-
ous functions. These estimates will provide us with a fundamental tool to prove
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Theorem 1.1 via an interpolation argument. Then, in Section 4, we consider the
operator L in its general form. Using the classical method of continuity, we prove
Theorem 1.1 in its generality. In Section 5, we turn our attention to the case when
the coefficients of the operator L are measurable with respect to (t, x) and satisfy
Hypotheses 2.2. Using an approximation argument and Theorem 1.1, we prove
Theorem 1.3.

Notations

Given an open set Ω ⊂ RN , a smooth function u : Ω → R and a multi-index
α = (α1, . . . , αN ), we denote by Dαu the derivative ∂|α|u

∂x
α1
1 ,...∂x

αN
N

, where |α| denotes
the length of the vector α. When k = 1, 2 we use the notation Diu and Diju to
denote the derivatives ∂u

∂xi
and ∂2u

∂xixj
, respectively. For a general k ∈ N and x ∈ Ω,

we denote by Dku(x) the vector of all the kth-order derivatives of u at x. Moreover,
we set ‖Dku‖∞ = supx∈Ω |Dαu(x)|, where |Dαu(x)| denotes the Euclidean norm
of the vector Dαu(x).

By Cb(RN ) we denote the space of all bounded and continuous functions u :
RN → R, and we endow it with the sup-norm. For any k > 0, we denote by Ck

b (RN )
the subspace of Cb(RN ) of functions u which are continuously differentiable in RN

up to the [k]th-order with all the derivatives which are bounded and, those of
maximal order, (k − [k])-Hölder continuous in RN . Here, [k] denotes the integer
part of k. We endow the space Ck

b (RN ) with the norm

‖u‖Ck
b (RN ) =

∑
|α|≤[k]

‖Dαu‖Cb(RN ) +
∑

|α|=[k]

[Dαu]
C

k−[k]
b (RN )

,

where [ · ]
C

k−[k]
b (RN )

denotes the (k − [k])-Hölder seminorm in RN .

For any θ ∈]0, 3[ and any T > 0, we denote by B0,θ([0, T ]×RN) the space of all
bounded and measurable functions f : [0, T ]×RN → R such that f(t, ·) ∈ Cθ

b (RN )
for any t ∈ [0, T ] and the sup of the Cθ

b -norms of f(t, ·), when t runs in [0, T ], is
finite. We norm B0,θ([0, T ]× RN ) by setting

‖f‖B0,θ([0,T ]×RN ) := sup
t∈[0,T ]

‖f(t, ·)‖Cθ
b (RN ).

Similarly, by C0,θ([0, T ]×RN) we denote the subset of B0,θ([0, T ]×RN) of functions
f which are continuous in [0, T ]× RN together with their space derivatives up to
the [θ]-order. We endow C0,θ([0, T ] × RN ) with the norm of B0,θ([0, T ] × RN ).
Further, by Cb([0, T ] × RN ) we denote the set of all bounded and continuous
functions f : [0, T ]×RN → R, endowed with the sup-norm. Finally, if a, b ∈ R and
a < b, we denote by Lip([a, b] × RN ) the set of all functions f : [a, b] × RN → R
which are Lipschitz continuous in [a, b]×RN , but not therein necessarily bounded.

By B(R) we denote the open ball in RN with centre at the origin and radius
R, and by B(R) its closure. If A is a measurable set in RN , we denote by χA the
characteristic function of the set A. Given two Banach spaces X and Y , we denote
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by L(X, Y ) the set of all bounded linear operators from X to Y . When X = Y ,
we simply write L(X).

For any N × N matrix Q = (qij), we denote, respectively, by Q∗ and Tr(Q)
the transpose matrix and the trace of Q. Moreover, we denote by ‖Q‖ its Euclidean
norm, i.e., ‖Q‖2 =

∑N
i,j=1 |qij |2, and, when the entries of Q depend on y in some

set F and are bounded, we set ‖Q‖∞ = supy∈F ‖Q(y)‖.
Finally, by 〈x, y〉 we denote the Euclidean inner product of the vectors x, y ∈ RN .

2. Main assumptions and preliminaries

In this section we list the assumptions on the coefficients of the operator L in (1.5)
and we prove a maximum principle that we need in what follows.

2.1. Hypotheses

Throughout this paper we assume that either of Hypotheses 2.1 or 2.2 are satisfied.

Hypotheses 2.1.
(i) qij = qji ∈ C0,θ([0, T ]× RN ) for some θ ∈]0, 1[ and any i, j = 1, . . . , N , and

N∑
i,j=1

qij(t, x)ξiξj ≥ ν|ξ|2, t ∈ [0, T ], x, ξ ∈ RN , (2.1)

for some positive constant ν;
(ii) A = (aij) with aij ∈ C([0, T ]) for any i, j = 1, . . . , N ;
(iii) b = (bj) with bj ∈ C0,θ([0, T ]× RN ) for any j = 1, . . . , N .

Hypotheses 2.2.
(i) qij = qji ∈ B0,θ([0, T ] × RN) for some θ ∈]0, 1[ and any i, j = 1, . . . , N , and

condition (2.1) is satisfied by any t ∈ D and any x, ξ ∈ RN , where [0, T ] \ D
is a negligible set;

(ii) A = (aij) with aij everywhere defined, bounded and measurable in [0, T ] for
any i, j = 1, . . . , N ;

(iii) b = (bj) with bj ∈ B0,θ([0, T ]× RN ) for any j = 1, . . . , N .

2.2. A maximum principle

Here, we state a maximum principle for elliptic operators with unbounded coeffi-
cients that we need in what follows. Its proof can be found, e.g., in [18] in the case
of elliptic operators with continuous coefficients independent of t. Since we need to
extend it to the case when the coefficients are t-dependent and satisfy Hypotheses
2.2, we go into details.

Proposition 2.3. Let L be the elliptic operator defined by

Lu(t, x) =
N∑

i,j=1

qij(t, x)Diju(t, x) +
N∑

j=1

bj(t, x)Dju(t, x),
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where the coefficients qij and bj are measurable, bounded and everywhere defined
in ]0, T [×RN (i, j = 1, . . . , N), and condition (2.1) is satisfied. Further, assume
that there exists a smooth (Lyapunov) function ϕ : [0, T ]× RN → R such that

lim
|x|→+∞

inf
t∈[0,T ]

ϕ(t, x) = +∞ (2.2)

and
N∑

i,j=1

qij(t, x)Dijϕ(t, x) +
N∑

j=1

bj(t, x)Djϕ(t, x) − Dtϕ(t, x) − λϕ(t, x) ≤ C, (2.3)

for any t ∈ [0, T ], any x ∈ RN and some positive constants λ and C. Let u :
[0, T ]× RN → R be a bounded and continuous function such that

(i) u admits continuous first- and second-order space derivatives in ]0, T ]×RN ;
(ii) u ∈ Lip(K) for any compact set K ⊂]0, T ] × RN and is differentiable with

respect to time in C × RN , where C ⊂]0, T ] has a negligible complement;
(iii) Dtu = Lu + g in C × RN and u(0, ·) = f , where f ∈ Cb(RN ) and g is

everywhere defined, bounded and measurable in ]0, T ]× RN .

If g ≤ 0 then u ≤ sup f+, where f+(x) = max{f(x), 0}. Similarly, if g ≥ 0, then
u ≥ inf f−, where f−(x) = min{f(x), 0}. In particular, the Cauchy problem (1.4)
admits at most one solution in the sense of Definition 1.2.

Proof. Without loss of generality we can limit ourselves to proving the first state-
ment of the proof. Indeed, the second one will follow easily by replacing u with
−u. Similarly, we can assume that C ≤ 0 in (2.3) and ϕ is everywhere positive in
[0, T ]×RN : it suffices to replace ϕ with ϕ+M for a suitable positive constant M .

Let u be a solution to problem (1.4) and, for any n ∈ N, let us introduce the
function vn : [0, T ]× RN → R defined by

vn(t, x) = e−λtu(t, x) − 1
n

ϕ(t, x), (t, x) ∈ [0, T ]× RN .

By (2.2),
lim

|x|→+∞
inf

t∈[0,T ]
vn(t, x) = −∞. (2.4)

Moreover, the function vn is a solution to the problem{
Dtvn(t, x) − Lvn(t, x) + λvn(t, x) ≤ eλtg(t, x), t ∈ C, x ∈ RN ,

vn(0, x) ≤ f(x), x ∈ RN .
(2.5)

Since vn ∈ W 1,∞
loc (]0, T [×B(R)) for any R > 0, from property (i) in the statement

of the proposition, vn belongs to the parabolic Sobolev space W 1,2
N+1(]0, T [×B(R))

for any R > 0, and it is a solution to (2.5) in the sense of distributions. From the
Nazarov-Ural’tseva maximum principle (see [24, Theorem 1]) we deduce that

vn(t, x) ≤ sup
x∈B(R)

f+(x) + sup
(t,x)∈]0,T [×∂B(R)

v+
n (t, x),
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for any (t, x) ∈ [0, T ] × B(R) and any R > 0. Thanks to (2.4), we can determine
a positive number Rn such that sup(t,x)∈]0,T [×∂B(R) v+

n (t, x) = 0, for any R ≥ Rn.
It follows that

vn(t, x) ≤ sup
x∈RN

f+(x), (t, x) ∈ [0, T ]× RN .

Now, the assertion follows letting n go to +∞. �

3. The case of continuous coefficients independent
of the space variables

In this section we consider the case when the coefficients Q and b of the operator
L are independent of x. Therefore, here L is given (on smooth functions u) by

Lu(t, x) =
N∑

i,j=1

qij(t)Diju(t, x) +
N∑

i,j=1

(aijxj + bj(t))Diu(t, x), (3.1)

for any t ∈ [0, T ] and any x ∈ RN .
As a first step, we prove that, for any s ∈ [0, T [ and any ϕ ∈ Cb(RN ), the

Cauchy problem{
Dtu(t, x) = Lu(t, x), t ∈]s, T ], x ∈ RN ,

u(s, x) = ϕ(x), x ∈ RN ,
(3.2)

admits a unique classical solution u and we find out its representation formula.
For this purpose, we introduce the evolution family {U(t, s)} defined as follows:{

DtU(t, s) = U(t, s)A(t), t ∈]s, T ],

U(s, s) = I.

Here, I denotes the identity matrix. Further, we introduce the families of matrices
{Q(s, t)} and functions {B(t, s)} defined by

Q(s, t) =
∫ t

s

U(t, r)Q(r)U(t, r)∗dr, B(t, s) =
∫ t

s

U(r, s)b(r)dr,

for any 0 ≤ s ≤ t ≤ T . As it is immediately seen, U(t, s) is defined for any
s, t ∈ [0, T ]. Moreover, U(s,r)U(t,s)=U(t,r) for any 0≤ r≤ s≤ t≤T . Therefore,
U(t, s) is invertible for any 0 ≤ s ≤ t ≤ T and U(t, s)−1 = U(s, t). As a byproduct,
it follows that the matrix Q(s, t) is strictly positive definite for any s < t. Finally,

‖U(t, s)‖ ≤ e‖A‖∞T , s, t ∈ [0, T ]. (3.3)

We can now prove the following result.

Theorem 3.1. Assume that Hypotheses 2.1(i)–(iii) are satisfied with the coefficients
of the operator L being independent of x. Then, the Cauchy problem (3.2) admits
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a unique classical solution u : [s, T ] × RN → R for any f ∈ Cb(RN ) and any
s ∈ [0, T [. The function u is given by the following representation formula:

u(t, x) =
1

(4π)N/2(det Q(s, t))1/2

∫
RN

e−
1
4 〈Q(s,t)−1y,y〉f(y − U(t, s)x − B(t, s))dy,

(3.4)
for any (t, x) ∈ [0, T ]× RN .

Proof. A straightforward computation shows that the function u in (3.4) is a clas-
sical solution of problem (3.2) (see also the proof of Theorem 3.2). The uniqueness
part of the theorem follows from Proposition 2.3. Indeed, the function ϕ : RN → R,
defined by ϕ(x) = 1+ |x|2 for any x ∈ RN , is a Lyapunov function for the operator
L since

Lϕ(t, x) = 2Tr(Q(t)) + 2〈A(t)x + b(t), x〉
≤ 2

√
N‖Q‖∞ + 2‖A‖∞|x|2 + ‖b‖∞|x|

≤ λϕ(x),

for any t > 0 and any x ∈ RN , where λ = max{2
√

N‖Q‖∞ + ‖b‖2
∞, 1 + 2‖A‖∞}.

�

Now, for any s, t ∈ [0, T ], with s < t, and any f ∈ Cb(RN ), we set P (t, s)f =
u(t, ·), where u is the solution to problem (3.2) provided by Theorem 3.1. By
Proposition 2.3, P (t, s) is a bounded linear operator satisfying

‖P (t, s)‖L(Cb(RN )) ≤ 1, 0 ≤ s < t ≤ T. (3.5)

Moreover, {P (t, s)} is an evolution family. To see it, it suffices to observe that, for
any 0 ≤ r < s < t ≤ T , the functions v(t, x) = (P (t, s)P (s, r)f)(x) and w(t, x) =
(P (t, r)f)(x) turn out to be solutions to the differential equation Dtu(t, x) =
Lu(t, x) for any t ∈]s, T ] and any x ∈ RN , and they satisfy the same initial
condition v(s, ·) = w(s, ·) = P (s, r)f .

3.1. Estimates of the derivatives of the evolution family {P (t, s)}
In this subsection we prove some uniform estimates for the space derivatives of
the function P (t, s)f , when f belongs to several spaces of (Hölder-) continuous
functions. Such estimates will be the keystone to prove, in Subsection 3.2, Theorem
1.1 in the case when Q and b are independent of x. We are going to show that, for
any 0 ≤ h ≤ k ≤ 3, there exist positive constants Ch,k such that

‖DkP (t, s)f‖∞ ≤ Ch,k(t − s)−
k−h

2 ‖f‖Ch
b (RN ), 0 ≤ s < t ≤ T. (3.6)

The main effort consists in proving estimate (3.6) when h and k are integers.
Indeed, the general case then will follow by a classical interpolation argument.

Theorem 3.2. For any h, k = 0, . . . , 3, with h ≤ k, there exists a positive constant
Ch,k such that (3.6) holds true.
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Proof. Throughout the proof we denote by Cj (j ∈ N) positive constants, inde-
pendent of s and t.

As a first step, we estimate the norm of Q(s, t)−1/2. For this purpose, we
observe that, since U(t, s)−1 = U(s, t) and ‖U(t, s)∗‖ = ‖U(t, s)‖ for any 0 ≤ s ≤
t ≤ T , from (3.3) we deduce that |U(t, s)∗ξ| ≥ C1|ξ|, for any ξ ∈ RN and any
s, t ∈ [0, T ]. Hence, taking (2.1) into account, we obtain

〈Q(t, s)ξ, ξ〉 =
∫ t

s

〈U(t, r)Q(r)U(t, r)∗ξ, ξ〉dr ≥ ν

∫ t

s

|U(t, r)∗ξ|2dr ≥ C2(t − s)|ξ|2,

for any ξ ∈ RN , so that

‖Q(t, s)−
1
2 ‖ ≤

√
C2(t − s)−

1
2 , 0 ≤ s < t ≤ T. (3.7)

Let us now prove (3.6) with h = 0 and k = 1. For this purpose, we rewrite
P (t, s)f as follows:

(P (t, s)f)(x) =
1

(4π)N/2(det Q(s, t))1/2

×
∫

RN

e−
1
4 〈Q(s,t)−1(y+U(t,s)x),y+U(t,s)x〉f(y − B(t, s))dy,

for any (t, x) ∈]s, T ] × RN . By the dominated convergence theorem, we deduce
that u is differentiable with respect to the space variables in ]s, T ]× RN and

(DjP (t, s)f)(x) = − 1
2N+1πN/2

∫
RN

〈Q(s, t)−1/2y, U(t, s)j〉e−
1
4 |y|

2

×f(Q(t, s)1/2y − U(t, s)x − B(t, s))dy,

for any j = 1, . . . , N , where U(t, s)j denotes the jth column of the matrix U(t, s).
Hence, by (3.3) and (3.7), we get

‖DP (t, s)f‖∞ ≤ 1
2N+1πN/2

‖Q(s, t)−1/2‖ ‖U(t, s)‖ ‖f‖∞
∫

RN

|y|e− 1
4 |y|

2
dy

≤ C3(t − s)−
1
2 ‖f‖∞, (3.8)

that is (3.6).
Now, we assume that f ∈ C1

b (RN ) and observe that

(DP (t, s)f)(x) = − 1
(4π)N/2(detQ(s, t))1/2

×
∫

RN

e−
1
4 〈Q(s,t)−1y,y〉U(t, s)∗Df(y −U(t, s)x−B(t, s))dy

= −U(t, s)∗(P (t, s)Df)(x),

for any (t, x) ∈]s, T ] × RN . Therefore, taking (3.3) into account, we get

‖DP (t, s)f‖∞ ≤ ‖U(t, s)∗‖ ‖Df‖∞ ≤ e‖A‖∞T ‖Df‖∞, 0 ≤ s < t ≤ T,
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that is, (3.6) with h = k = 1. Now, to get (3.6) in the remaining cases it suffices
to recall that {P (t, s)} is an evolution family. For instance, suppose that h = 0,
k = 2 and fix s, t ∈ [0, T ] with s < t. Then, setting r = (t + s)/2, we get

DijP (t, s)f = DijP (t, r)P (r, s)f =
N∑

h=1

U(t, r)∗jhDi (P (t, r)DhP (r, s)f) ,

for any i, j = 1, . . . , N . Hence, using (3.3) and, twice, (3.8), yields

‖DijP (t, s)f‖∞ ≤ C4(t − s)−
1
2 ‖DjP (r, s)f‖∞ ≤ C5(t − s)−1‖f‖∞,

and (3.6) follows also in this case. The remaining cases can be treated likewise. �

Corollary 3.3. Estimate (3.6) holds true for any h, k ∈ [0, 3] such that h ≤ k.

Proof. As it has been already claimed, the proof follows by an interpolation ar-
gument. Two are the main ingredients needed to make the interpolation argu-
ment work. The first one is the well-known set equality (Ch

b (RN ), Ck
b (RN ))θ,∞ =

C
h+θ(k−h)
b (RN ), with equivalence of the corresponding norms, which holds for any

h, k ≥ 0 and any θ ∈]0, 1[ (see, e.g., [15, Corollary 1.2.18]). The latter one is the
fact that, given a quadruplet of Banach spaces Yi, Xi (i = 1, 2) with Yi continu-
ously embedded in Xi (i = 1, 2), any linear operator T which belongs to L(X1, X2)
and to L(Y1, Y2) is bounded also from (X1, Y1)θ,∞ to (X2, Y2)θ,∞, for any θ ∈]0, 1[,
and there exists a positive constant C such that

‖T ‖L((X1,Y1)θ,∞,(X2,Y2)θ,∞) ≤ C‖T ‖1−θ
L(X1,X2)

‖T ‖θ
L(Y1,Y2)

.

See, e.g., [15, Proposition 1.2.6]. �

Remark 3.4. Repeating the same arguments as in the proofs of Theorem 3.2 and
Corollary 3.3, one can show that estimate (3.6) actually holds true for any h, k ≥ 0
such that h ≤ k.

3.2. The nonhomogeneous case

In this section, we prove Theorem 1.1 in the case when L is given by (3.1). The
candidate to be the solution to such a problem is the function u given by the
pointwise variation-of-constants formula, i.e.,

u(t, x) = (P (t, 0)f)(x) +
∫ t

0

(P (t, r)g(r, ·))(x)dr := (P (t, 0)f)(x) + v(t, x), (3.9)

for any t ∈ [0, T ] and any x ∈ RN . Note that the function v is well defined for any
(t, x) ∈ [0, T ] × RN and it is therein bounded and continuous. This can be easily
seen from (3.4), performing the natural change of variable z = Q(t, s)1/2y in the
integral term.

In view of the results in Theorem 3.1 and in Subsection 3.1, to prove that the
function u is, actually, a solution to the Cauchy problem (1.4), we need to study
the smoothness of the function v. For this purpose, we will take advantage of the
following lemma, whose proof can be found in [16, Section 3].
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Lemma 3.5. Let θ, α ∈]0, 1[ be such that θ < α and let I ⊂ R be an interval.
Further, let ϕ : I → Cθ

b (RN ) be any function with the following properties:

(i) the function t → (ϕ(t))(x) is measurable for any x ∈ RN ;
(ii) ‖ϕ(t)‖Cα

b (RN ) ≤ c(t) (resp. ‖ϕ(t)‖C2+α
b (RN ) ≤ c(t)) for any t ∈ I and some

function c ∈ L1(I).

Then, the function ψ : RN → R, defined by

ψ(x) =
∫

I

(ϕ(t)(x))dt, x ∈ RN ,

belongs to Cα
b (RN ) (resp. C2+α

b (RN )) and there exists a positive constant C, in-
dependent of ϕ and c, such that

‖ψ‖Cα
b (RN ) ≤ C‖c‖L1(I), (resp. ‖ψ‖C2+α

b (RN ) ≤ C‖c‖L1(I)).

The main properties of the function v defined in (3.9) are contained in the following
proposition.

Proposition 3.6. Fix θ ∈]0, 1[. For any g ∈ C0,θ([0, T ]×RN), the function v belongs
to C0,2+θ([0, T ] × RN ). Moreover, there exists a positive constant C, independent
of g, such that

‖v‖C0,2+θ([0,T ]×RN ) ≤ C‖g‖C0,θ([0,T ]×RN ). (3.10)

Finally, v is continuously differentiable with respect to t in [0, T ]×RN and solves
the Cauchy problem (1.4) with f ≡ 0.

Proof. To begin with, let us show that the function v belongs to C0,2+θ([0, T ]×RN)
and satisfies (3.10). Since C2+θ

b (RN ) = (Cα
b (RN ), C2+α

b (RN ))1−(α−θ)/2,∞ with
equivalence of the corresponding norms, for any α ∈]θ, 1[, to prove that v(t, ·) ∈
C2+θ

b (RN ) for any t ∈ [0, T ], as well as estimate (3.10), it suffices to show that, for
any ξ ∈]0, 1[ and any t ∈ [0, T ], there exist two functions aξ(t, ·) ∈ Cα

b (RN ) and
bξ(t, ·) ∈ C2+α

b (RN ) such that v(t, ·) = aξ(t, ·) + bξ(t, ·) and

‖aξ(t, ·)‖Cα
b (RN ) + ξ‖bξ(t, ·)‖C2+α

b (RN ) ≤ C1ξ
1−(α−θ)/2‖g‖C0,θ([0,T ]×RN ), (3.11)

for some positive constant C1, independent of ξ, t and g. For this purpose, we set

aξ(t, ·) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ t

t−ξ

(P (t, r)g(r, ·))(x)dr, ξ ∈ [0, t[,∫ t

0

(P (t, r)g(r, ·))(x)dr, otherwise,

and

bξ(t, ·) =

⎧⎪⎨⎪⎩
∫ t−ξ

0

(P (t, r)g(r, ·))(x)dr, ξ ∈ [0, t[,

0, otherwise.
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By Theorem 3.2, we can apply Lemma 3.5 to the functions aξ(t, ·) and bξ(t, ·),
showing that they belong to Cα

b (RN ) and C2+α
b (RN ), respectively, for any α ∈]θ, 1[,

and that (3.11) holds.
With a similar argument, one can also show that the function v belongs

to Cb([0, T ] × RN ). Hence, in particular, v ∈ C([0, T ]; C(B(R))) for any R >
0. Recalling that C2(B(R)) belongs to the class J2/(2+θ) between C(B(R)) and
C2+θ(B(R)), it follows that

‖u(t, ·) − u(s, ·)‖C2(B(R)) ≤ C2‖u(t, ·) − u(s, ·)‖θ/(2+θ)

C2+θ(B(R))
‖u(t, ·) − u(s, ·)‖2/(2+θ)

C(B(R))

≤ C3‖g‖θ/(2+θ)

C0,θ([0,T ]×RN)
‖u(t, ·) − u(s, ·)‖2/(2+θ)

C(B(R))
, (3.12)

for any s, t ∈ [0, T ] and some positive constants C2 and C3, independent of s and
t. Since the last side of (3.12) vanishes as |t − s| tends to 0, it follows that all the
space derivatives of u up to the second-order are continuous in [0, T ]× RN .

To conclude the proof, we just need to show that the function v is differen-
tiable with respect to time in [0, T ]×RN and Dtv = Lv + g. For this purpose, we
show that v is differentiable from the right in [0, T [×RN and the right derivatives
D+

t v equals Lv + g in [0, T [×RN . Then, [25, p. 239] will allow us to conclude. As
a straightforward computation shows, for any (t, x) ∈ [0, T [×RN and any h > 0
sufficiently small, it holds that

v(t + h, x) − v(t, x)
h

=
1
h

∫ t

0

((P (t + h, r) − P (t, r)) g(r, ·))(x)dr

+
1
h

∫ t+h

t

(P (t + h, r)g(r, ·))(x)dr

= I
(1)
h (t, x) + I

(2)
h (t, x). (3.13)

Let us observe that D+
t (P (t, r)g(r, ·))(x) = (LP (t, r)g(r, ·))(x) for any r, t ∈]0, T [,

with r < t, and any x ∈ RN . Moreover, by (3.5) and (3.10) we know that

sup
0≤r<s≤T

(s − r)1−
θ
2 |(L(P (s, r)g(r, ·)))(x)| ≤ C4‖g‖C0,θ([0,T ]×RN),

for some positive constant C4 = C4(x). Hence, we can take the limit as h tends to
0+ in the first integral term in (3.13) obtaining

lim
h→0+

I
(1)
h (t, x) =

∫ t

0

(L(P (t, s)g(s, ·)))(x)ds = Lv(t, x).

Since the function (t, s) → (P (t, s)g(s, ·))(x) is continuous in D = {(t, s) ∈ [0, T ]×
[0, T ] : s ≤ t} (this can be easily checked by a straightforward change of variables
in the representation formula (3.4)), we easily deduce that I

(2)
h (t, x) tends to g(t, x)

as h tends to 0+. Therefore, v is differentiable (from the right) with respect to t
at the point (t, x) ∈ [0, T [×RN and D+

t v(t, x) = Lv(t, x) + g(t, x). This completes
the proof. �
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Corollary 3.7. Assume that L is given by (3.1) with the coefficients satisfying
Hypotheses 2.1. Then, Theorem 1.1 holds true. In particular, for any f and g as
in the statement of Theorem 1.1, the unique classical solution to (1.4) is given by
(3.9).

Proof. From Theorem 3.1 and Proposition 3.6, we know that the function u in
(3.9) is a classical solution to problem (1.4) and satisfies (1.6). The uniqueness of
the solution to problem (1.4) follows from Proposition 2.3. �

4. The general case (when the coefficients are continuous in (t, x))

In this section we assume that the coefficients Q and b of the operator L depend
also on the space variables. First, in Subsection 4.1 we prove that, if u is a solution
to the Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dtu(t, x) =
N∑

i,j=1

qij(t, x)Diju(t, x) +
N∑

i,j=1

aij(t)xjDiu(t, x)

+
N∑

j=1

bj(t, x)Dju(t, x) + g(t, x), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(4.1)

corresponding to f ∈ C2+θ
b (RN ) and g ∈ C0,θ([0, T ] × RN ), then there exists a

positive constant C, depending only on ν (see (2.1)) and the sup-norm of the
coefficients of the operator L, such that

‖u‖C0,2+θ([0,T ]×RN) ≤ C
(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN )

)
. (4.2)

Such an a priori estimate will be the keystone to apply the classical method of
continuity and prove Theorem 1.1.

4.1. Proof of (4.2)
Theorem 4.1. Let u ∈ C0,2+θ([0, T ]×RN) be a classical solution to problem (4.1).
Then, there exists a positive constant C, depending only on the ellipticity constant
ν and on the sup-norm of the coefficients of the operator L, such that estimate
(4.2) holds true.

Proof. The proof can be obtained adapting the proof of [14, Theorem 4.1]. For the
reader’s convenience we go into details. We split the proof into two steps. In the
first one, we prove that there exists a positive constant Ĉ such that

‖u‖C0,2+θ([0,T∗]×RN ) ≤ Ĉ
(
‖u‖Cb([0,T∗]×RN ) + ‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T∗]×RN )

)
,

(4.3)
for any T ∗ ∈]0, T ]. Then, in Step 2, using (4.3) we will conclude the proof.

Step 1. To prove (4.3) we use a localization argument freezing the diffusion and
(part of) the drift coefficients of the operator L. For this purpose, let us fix T ∗ ∈
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]0, T [. With any δ > 0 and any x0 ∈ RN , we introduce the function ψδ,x0 defined
by

ψδ,x0(x) = ψ((x − x0)/δ), x ∈ RN ,

where ψ ∈ C3(RN ) is any function such that χB(1/2) ≤ ψ ≤ χB(1). As it is easily
seen, the function vδ,x0 = uψδ,x0 solves the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

Dtwδ,x0(t, x) = Lx0vδ,x0(t, x) + g(t, x)ψδ,x0(t, x) − hδ,x0(t, x) + kδ,x0(t, x),

t ∈]0, T ∗], x ∈ RN ,

vδ,x0(0, x) = f(x)ψδ,x0(x), x ∈ RN ,
(4.4)

where

Lx0vδ,x0(t, x) = Tr(Q(t, x0)D2vδ,x0(t, x)) + 〈A(t)x + b(t, x0), Dvδ,x0(t, x)〉,

hδ,x0(t, x) = 2〈Q(t, x)Du(t, x), Dψδ,x0(t, x)〉 + u(t, x)Lψδ,x0(t, x)

and

kδ,x0(t, x) =
N∑

i,j=1

(qij(t, x) − qij(t, x0))D2
ijvδ,x0(t, x)

+
N∑

j=1

(bj(t, x) − bj(t, x0))Djvδ,x0(t, x), (4.5)

for any (t, x) ∈]0, T ∗] × RN . To simplify the notation, in the rest of the proof of
this step we drop out the dependence on δ and x0 of the functions we deal with.

As a straightforward computation shows, the functions fψ and h belong to
C2+θ

b (RN ) and C0,θ([0, T ∗]×RN ), respectively, and there exists a positive constant
C1(δ) such that

‖fψ‖C2+θ
b

(RN ) + ‖gψ‖C0,θ([0,T∗]×RN ) + ‖h‖C0,θ([0,T∗]×RN )

≤ C1(δ)
(
‖f‖C2+θ

b
(RN ) + ‖g‖C0,θ([0,T∗]×RN ) + ‖u‖C0,1+θ([0,T∗]×RN )

)
. (4.6)

Note that the constant C1(δ) may blow up as δ goes to +∞.
Let us now estimate the function k. For this purpose, we observe that

| (qij(t, x) − qij(t, x0)) D2
ijv(t, x)| ≤ [qij(t, ·)]Cθ

b
(RN )|x − x0|θ‖D2

ijv‖∞
≤ [qij(t, ·)]Cθ

b (RN )δ
θ‖D2

ijv‖∞, (4.7)

for any (t, x) ∈ [0, T ∗] × RN and any i, j = 1, . . . , N . Similarly, for any t ∈ [0, T ∗]
and any x1, x2 ∈ x0 + B(δ), one has

| (qij(t, x2) − qij(t, x0))D2
ijv(t, x2) − (qij(t, x1) − qij(t, x0))D2

ijv(t, x1)|
≤ |qij(t, x2) − qij(t, x1)||D2

ijv(t, x2)|
+ |qij(t, x1) − qij(t, x0)||D2

ijv(t, x2) − D2
ijv(t, x1)|. (4.8)
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Since D2
ijv(t, ·) vanishes on x0 + ∂B(δ) (i, j = 1, . . . , N), we easily deduce that

|D2
ijv(t, x2)| = |D2

ijv(t, x2) − D2
ijv(t, x∗)|

≤ [D2
ijv(t, ·)]Cθ

b (RN )|x2 − x∗|θ

≤ [D2
ijv(t, ·)]Cθ

b (RN )δ
θ, (4.9)

where x∗ = x0 + δ(x − x0)|x − x0|−1. Estimates (4.8) and (4.9) now give

| (qij(t, x2) − qij(t, x0))D2
ijv(t, x2) − (qij(t, x1) − qij(t, x0))D2

ijv(t, x1)|
≤ 2δθ‖qij‖C0,θ([0,T ]×RN )[D

2
ijv(t, ·)]Cθ

b (RN )|x2 − x1|θ, (4.10)

for any t ∈ [0, T ∗] and any x1, x2 ∈ x0 +B(δ). Estimates (4.7) and (4.10) now give

sup
t∈[0,T∗]

‖ (qij(t, ·) − qij(t, x0))D2
ijv(t, ·)‖Cθ(x0+B(δ))

≤ 2δθ‖qij‖C0,θ([0,T∗]×RN )‖D2
ijv‖C0,θ([0,T∗]×RN ). (4.11)

Since v identically vanishes outside the ball x0 + B(δ), it follows that the function
(t, x) → (qij(t, x) − qij(t, x0))D2

ijv(t, x) belongs to C0,θ([0, T ∗] × RN ) and (4.11)
holds true with the ball x0 + B(δ) being replaced by RN .
Similarly, we can estimate the terms in the second sum of (4.5). We finally obtain
that k belongs to C0,θ([0, T ∗] × RN ) and

‖k‖C0,θ([0,T∗]×RN ) ≤ C2δ
θ‖v‖C0,2+θ([0,T∗]×RN ), (4.12)

where C2 is a positive constant, independent of δ, T ∗ and v. Hence, from (4.4),
(4.6), (4.12) and Corollary 3.7, we deduce that there exists a positive constant C3,
independent of δ and T ∗, such that

‖v‖C0,2+θ([0,T∗]×RN ) ≤ C3

(
C1(δ)‖g‖C0,θ([0,T∗]×RN ) + C1(δ)‖u‖C0,1+θ([0,T∗]×RN )

+C1(δ)‖f‖C2+θ
b (RN ) + C2δ

θ‖v‖C0,2+θ([0,T∗]×RN )

)
.

(4.13)

Now, fixing δ sufficiently small, we can get rid of the term ‖v‖C0,2+θ([0,T∗]×RN ) in
the right-hand side of (4.13). Recalling that v ≡ u in [0, T ] × x0 + B(δ/2) and
covering RN with balls of radius δ/2, we obtain

‖u‖C0,2+θ([0,T∗]×RN )

≤ C4(δ)
(
‖u‖C0,1+θ([0,T∗]×RN ) + ‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T∗]×RN )

)
,

for some positive constant C4(δ), independent of x0. Recalling that, for any ε > 0,
there exists a positive constant C5(ε) such that

‖�‖C1+θ
b (RN ) ≤ ε‖�‖C2+θ

b (RN ) + C5(ε)‖�‖Cb(RN ),

for any � ∈ C2+θ
b (RN ), estimate (4.3) now easily follows.
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Step 2. We now conclude the proof. Again, we freeze part of the coefficients at x0.
Namely, we rewrite problem (4.1) as follows:{

Dtu(t, x) = Lx0u(t, x) + g(t, x) + m(t, x), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,

where m is given by the right-hand side of (4.5), with the function vδ,x0 being
replaced by u. Taking (4.3) into account, it is easy to show that the function m
belongs to C0,θ([0, T ]× RN ) and there exists a positive constant C6, independent
of x0, s, u, f and g, such that

‖m‖C0,θ([0,s]×RN) ≤ C6

(
‖u‖Cb([0,s]×RN ) + ‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,s]×RN )

)
,

for any s ∈]0, T [. Now, by the proof of Corollary 3.7, we know that u can be written
as follows:

u(t, x) = (P (t, 0)f)(x) +
∫ t

0

{P (t, s)(g(s, ·) + m(s, ·))}(x)ds,

for any (t, x) ∈ [0, T ∗] × RN , where {P (t, s)} is the evolution family associated
with the operator Lx0 . By estimate (3.5), we know that

|u(t, x)| ≤ ‖f‖Cb(RN ) + C6T
(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN)

)
+C6

∫ t

0

‖u‖Cb([0,s]×RN )ds,

for any (t, x) ∈ [0, T ] ∈ RN or, better,

‖u‖Cb([0,t]×RN ) ≤ ‖f‖Cb(RN ) + C6T
(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN )

)
+C6

∫ t

0

‖u‖C([0,s]×RN)ds,

for any t ∈ [0, T ]. Now, the Gronwall lemma applies and gives

‖u‖Cb([0,T ]×RN ) ≤ C7

(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN)

)
, (4.14)

for some positive constant C7, depending on T , but being independent of u, f and
g. Replacing (4.14) into (4.3), estimate (4.2) easily follows. This completes the
proof. �

4.2. The method of continuity: proof of Theorem 1.1
In this subsection we prove Theorem 1.1 in the general case, taking advantage of
the classical method of continuity.

Proof of Theorem 1.1. For any λ ∈ [0, 1], let Lλ be the differential operator defined
by

Lλ = λL + (1 − λ)(Δ + 〈A(t)x, D〉) := Tr(Qλ(t, x)D2) + 〈A(t)x + bλ(t, x), D〉.
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As it is immediately seen, the operator Lλ is uniformly elliptic and 〈Qλ(t, x)ξ, ξ〉 ≥
min{ν, 1}|ξ|2, for any t ∈ [0, T ] and any x, ξ ∈ RN . Moreover, the coefficients Qλ

and bλ belong to C0,θ([0, T ]× RN ) with norms that can be estimated from above
by positive constants independent of λ.

We now denote by F the set of λ ∈ [0, 1] such that the problem{
Dtu(t, x) = Lλu(t, x) + g(t, x), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(4.15)

admits a unique classical solution uλ ∈ C0,2+θ([0, T ]×RN) for any f ∈ C2+θ
b (RN )

and any g ∈ C0,θ([0, T ] × RN ). From Theorem 4.1 it follows that, if λ ∈ F , then
there exists a positive constant C1, independent of λ, f and g, such that the
solution uλ to problem (4.15) satisfies

‖uλ‖C0,2+θ([0,T ]×RN) ≤ C1

(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN )

)
. (4.16)

We are going to prove that F is both open and closed in [0, 1]. This will be
enough to conclude that F = [0, 1], and Theorem 1.1 will follow. Let us first show
that F is closed. For this purpose, we fix λ ∈ F . Then, there exists a sequence
{λn} ⊂ F converging to λ as n tends to +∞. From (4.16), we immediately de-
duce that the sequence {uλn} is bounded C0,2+θ([0, T ]×RN). Moreover, from the
differential equation in (4.15), we get

‖uλn‖Lip([0,T ]×B(R)) ≤ C2

(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN )

)
, (4.17)

for any R > 0 and some positive constant C2, depending on R, but being in-
dependent of n. Hence, uλn ∈ Lip([0, T ]; C(B(R))) and it is bounded in [0, T ]
with values in C2+θ(B(R)). Arguing as in the proof of (3.12), we deduce that
un(·, x), Diuλn(·, x) and Dijuλn(·, x) belong to Cθ/(2+θ)([0, T ]) for any x ∈ B(R).
Moreover, (4.16) (with λn instead of λ) and (4.17) yield

sup
x∈B(R)

(
‖uλn(·, x)‖Cθ/(2+θ)([0,T ]) + ‖Diuλn(·, x)‖Cθ/(2+θ)([0,T ])

+‖Dijuλn(·, x)‖Cθ/(2+θ)([0,T ])

)
≤ C3

(
‖f‖C2+θ

b (RN ) + ‖g‖C0,θ([0,T ]×RN )

)
, (4.18)

for any i, j = 1, . . . , N and some positive constant C3, independent of f and g.
Combining estimates (4.16) and (4.18), it follows that the restriction to [0, T ] ×
B(R) of the function uλn and its space derivatives up to the second-order satisfy
the assumptions of the Ascoli-Arzelà theorem. By the arbitrariness of R > 0, we
infer that, up to a subsequence, the functions uλn , Duλn and D2uλn converge
locally uniformly in [0, T ]×RN to u, Du and D2u, respectively, for some function
u : [0, T ] × RN → R. Moreover, u ∈ C0,2+θ([0, T ]× RN ). The previous arguments
also show that Dtuλn converges locally uniformly in [0, T ]×RN . Hence, u is differ-
entiable with respect to time in [0, T ] and satisfies (4.15). This implies that λ ∈ F ,
so that F is closed.
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To conclude the proof, we show that F is open in [0, 1]. So, we fix λ0 ∈ F
and prove that there exists a neighborhood of λ0 contained in F . For this purpose,
we observe that a function uλ is a solution to problem (4.15), for some λ ∈ [0, 1],
if and only if it solves the Cauchy problem{

Dtu(t, x) = Lλ0u(t, x) + g(t, x) + hλ,λ0(t, x, u), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,

where

hλ,λ0(t, x, u) = (λ − λ0)
{
Tr((Q(t, x) − I)D2u(t, x)) + 〈b(t, x), Du(t, x)〉

}
,

for any t ∈ [0, T ] and any x ∈ RN . As it is immediately seen, for any u in
C0,2+θ([0, T ] × RN ), the function h(·, u) belongs to C0,θ([0, T ] × RN ) and there
exists a positive constant C4, independent of λ and λ0, such that

‖hλ,λ0(·, u)‖C0,θ([0,T ]×RN ) ≤ C4|λ − λ0|‖u‖C0,2+θ([0,T ]×RN). (4.19)

According to Corollary 3.7, any classical solution to problem (4.15) is a fixed point
of the operator Γ ∈ L(C0,2+θ([0, T ] × RN )) defined by

(Γ(u))(t, x) = (P (t, 0)f)(x) +
∫ t

0

(P (t, s)(g(s, ·) + hλ,λ0(s, ·, u)))(x)ds,

for any (t, x) ∈ [0, T ]×RN . Here, {P (t, s)} is the evolution family associated with
the operator Lx0 . Taking advantage of the estimates (1.6) and (4.19), we infer that

‖Γ(u2) − Γ(u1)‖C0,2+θ([0,T ]×RN ) ≤ C5|λ − λ0| ‖u2 − u1‖C0,2+θ([0,T ]×RN ),

for some positive constant C5, independent of λ, λ0, u1 and u2. It turns out that Γ
is a contraction provided that C5|λ − λ0| < 1. Therefore, for such λ’s the Cauchy
problem (4.15) is (uniquely) solvable with a classical solution u which belongs to
C0,2+θ([0, T ]×RN ). This means that λ0 is an interior point of F and, hence, F is
open in [0, 1]. This completes the proof. �

5. The case when the coefficients are only measurable
with respect to (t, x)

In this section, we extend the results in the previous sections to the case when
the coefficients of the operator L are only measurable with respect to (t, x) ∈
[0, T ] × RN and are θ-Hölder continuous with respect to the space variables (see
Hypotheses 2.2). For this purpose, we begin by a lemma that we need in the proof
of Theorem 1.3.

Lemma 5.1. Under Hypotheses 2.2, there exist three sequences Q(n) = (q(n)
ij ),

A(n) = (a(n)
ij ) and B(n) = (b(n)

j ) such that q
(n)
ij , b

(n)
j belong to C0,θ([0, T ] × RN)

and a
(n)
ij belongs to C([0, T ]) for any i, j = 1, . . . , N and any n ∈ N. Moreover:
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(i) there exists a measurable set E ⊂ [0, T ], whose complement is negligible, such
that, for any i, j = 1, . . . , N , q

(n)
ij (t, x), a

(n)
ij (t) and b

(n)
ij (t, x) converge point-

wise, respectively to qij(t, x), aij(t) and bj(t, x), as n tends to +∞, for any
(t, x) ∈ E × RN ;

(ii) ‖a(n)
ij ‖C([0,T ]) ≤ ‖aij‖L∞(]0,T [), ‖q(n)

ij ‖C0,θ([0,T ]×RN ) ≤ ‖qij‖B0,θ([0,T ]×RN ) and

‖b(n)
j ‖C0,θ([0,T ]×RN ) ≤ ‖bj‖B0,θ([0,T ]×RN ) for any i, j = 1, . . . , N ;

(iii) there exists a positive constant ν0 such that 〈Q(n)(t, x)ξ, ξ〉 ≥ ν0|ξ|2 for any
t ∈ [0, T ], any x, ξ ∈ RN and any n ∈ N.

Proof. We limit ourselves to proving the statements related to the matrix function
Q, the other ones being similar and even simpler. We define the matrix Q(n)(t, x)
at any (t, x) ∈ [0, T ]× RN , by setting

q
(n)
ij (t, x) =

( n

4π

) 1
2
∫ T

0

qij(s, x) exp
(
−n

4
|t − s|2

)
ds, i, j = 1, . . . , N, n ∈ N.

Note that the functions q
(n)
ij are well defined in [0, T ]×RN for any i, j = 1, . . . , N

and any n ∈ N. Indeed, if ψ ∈ B0,θ([0, T ]×RN ), then, by the Fubini theorem, the
function ψ(·, x) is measurable for any x ∈ Ê , where RN \ Ê is negligible. Actually,
Ê = RN . Indeed, for any x ∈ RN , we can find out a sequence {xn} ⊂ Ê converging
to x as n tends to +∞. Since ψ(t, ·) ∈ Cθ

b (RN ), then ψ(t, xn) tends to ψ(t, x) as n
tends to +∞, for any t ∈ [0, T ], so that ψ(·, x) is measurable.

Now, a straightforward computation shows that Q(n) belongs to C0,θ([0, T ]×
RN ) and the C0,θ-norms of the coefficients satisfy condition (ii) in the statement
of the lemma. Moreover, taking Hypotheses 2.2(i) into account, we get

〈Q(n)(t, x)ξ, ξ〉 ≥ ν|ξ|2
( n

4π

) 1
2
∫ T

0

e−
n
4 |t−s|2ds

= ν|ξ|2
( n

4π

) 1
2
{∫ t

0

e−
n
4 s2

ds +
∫ T−t

0

e−
n
4 s2

ds

}
≥ ν|ξ|2

( n

4π

) 1
2
∫ T/2

0

e−
n
4 s2

ds

≥ ν|ξ|2 1
2
√

π

∫ T/2

0

e−
1
4 s2

ds,

for any ξ ∈ RN and any (t, x) ∈ [0, T ]× RN . Further, since q
(n)
ij (·, x) converges to

qij(·, x) in Lp(]0, T [) for any p ∈ [1, +∞[, any x ∈ RN and any i, j = 1, . . . , N ,
we can find out an increasing sequence {nk(x)} ⊂ N such that the subsequence
q
(nk(x))
ij (t, x) converges to qij(t, x) as n tends to +∞ a.e. in [0, T ].

By a classical diagonal procedure, we can determine an increasing sequence
{nk} ⊂ N and a measurable set E ⊂ [0, T ], whose complement is negligible in
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[0, T ], such that

lim
k→+∞

q
(nk)
ij (t, x) = qij(t, x), (t, x) ∈ E × QN , i, j = 1, . . . , N. (5.1)

Let us now show that we can extend (5.1) to any (t, x) ∈ E × RN . For this
purpose, we fix (t, x) ∈ E×RN and denote by {xm} any sequence in QN converging
to x as m tends to +∞. Since q

(nk)
ij ∈ C0,θ([0, T ]×RN) and qij ∈ B0,θ([0, T ]×RN)

for any k ∈ N and any i, j = 1, . . . , N , taking condition (ii) into account, we can
write

|q(nk)
ij (t, x) − qij(t, x)|

≤ |q(nk)
ij (t, xm) − q

(nk)
ij (t, x)| + |q(nk)

ij (t, xm) − qij(t, xm)|
+ |qij(t, xm) − qij(t, x)|

≤ 2‖qij‖B0,θ([0,T ]×RN )|x − xm|θ + |q(nk)
ij (t, xm) − qij(t, xm)|, (5.2)

for any k, m ∈ N. Taking, first, the limsup when k goes to +∞ in the first- and
last-side of (5.2), and letting, then, m go to +∞, (5.1) follows, for any x ∈ RN . �

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The uniqueness of a solution to problem (4.1), in the sense of
Definition 1.2, follows immediately from Proposition 2.3. So, we just need to show
the existence part of the theorem. For this purpose, for any n ∈ N we introduce
the operator L(n) defined by

L(u)u(t, x) = Tr(Q(n)(t, x)D2u(t, x)) + 〈A(n)(t)x + b(n)(t, x), Du(t, x)〉,
for any (t, x) ∈ [0, T ] × RN , where Q(n), A(n) and b(n) are given by Lemma 5.1.
Further, let f and g be as in the statement of the theorem. Using the same argu-
ments as in the proof of the quoted lemma, we approximate the function g with a
sequence {gn} of functions in C0,θ([0, T ]×RN ), such that their C0,θ([0, T ]×RN )-
norms can be estimated from above by ‖g‖B0,θ([0,T ]×RN ), for any n ∈ N. From
Theorem 1.1, we know that the problem{

Dtu(t, x) = L(n)u(t, x) + g(n)(t, x), t ∈ [0, T ], x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,

admits a unique classical solution un which belongs to C0,2+θ([0, T ]×RN ). More-
over, there exists a constant C1 (which can be taken independent of n due to
Lemma 5.1) such that

‖un‖C0,2+θ([0,T ]×RN ) ≤ C1

(
‖f‖C2+θ

b (RN ) + ‖g(n)‖C0,θ([0,T ]×RN)

)
≤ C1

(
‖f‖C2+θ

b (RN ) + ‖g‖B0,θ([0,T ]×RN )

)
.

Arguing as in the proof of Theorem 1.1, we can now show that the functions
un, Diun and Dijun (i, j = 1, . . . , N , n ∈ N) are equibounded and equicontinu-
ous in [0, T ] × B(R) for any R > 0. Moreover, any un is Lipschitz continuous in
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[0, T ] × B(R), with Lipschitz norm that can be estimated from above by a posi-
tive constant, independent of n. By the arbitrariness of R > 0 and invoking the
Ascoli-Arzelà theorem, we infer that there exists an increasing sequence {nk} ⊂ N
such that unk

and its first- and second-order space derivatives converge, locally
uniformly in [0, T ]×RN , to a function u ∈ C0,2+θ([0, T ]×RN) which belongs also
to Lip([0, T ] × B(R)) for any R > 0. Hence, u is differentiable a.e. in [0, T ] × RN

with respect to t. To prove that the function u(·, x) is differentiable a.e. in [0, T ]
for any arbitrarily fixed x ∈ RN , we observe that

unk
(t, x) = f(x) +

∫ t

0

Dtunk
(s, x)ds

= f(x) +
∫ t

0

(
L(nk)unk

(s, x) + g(nk)(s, x)
)

ds, (5.3)

for any (t, x) ∈ [0, T ] × RN and any n ∈ N. By Lemma 5.1, we deduce that there
exists a measurable set E ⊂ [0, T ], whose complement is negligible in [0, T ], such
that

lim
k→+∞

{L(nk)unk
(t, x) + g(nk)(t, x)} = Lu(t, x) + g(t, x), (t, x) ∈ E × RN .

Moreover, the sup-norm of L(nk)unk
, when (t, x) runs in [0, T ]× B(R) and R > 0

is arbitrarily fixed, is bounded from above by a positive constant independent of
n. Hence, we can take the limit as n tends to +∞ in (5.3), getting

u(t, x) = f(x) +
∫ t

0

(Lu(s, x) + g(s, x)) ds, (t, x) ∈ [0, T ]× RN . (5.4)

Since the function Lu+ g is locally bounded in [0, T ]×RN , it follows that, for any
x ∈ RN , there exists a set G(x) with measure T such that u(·, x) is differentiable in
G(x) and Dtu(t, x) = Lu(t, x)+g(t, x) for any t ∈ G(x). Let now G =

⋂
x∈QN G(x).

Of course, G is measurable with measure T . We are going to prove that, for any
x ∈ RN , the function u(·, x) is differentiable in G and Dtu = Lu + g in G × RN .
For this purpose, we denote by w the integral function in (5.4). Moreover, we fix
(t, x) ∈ G × RN and let {xn} ⊂ QN ∩ B(|x| + 1) be any sequence converging
to x as n tends to +∞. For notational convenience we denote by Δhw(t, x) the
incremental ratio (with respect to the time variable) of the function w at the point
(t, x). Then, there exists a positive constant C2, independent of h, n and t, such
that

|(Δhw)(t, x) − (Δhw)(t, xn)|

=
∣∣∣∣ 1h

∫ t+h

t

(Lu(s, x)+ g(s, x)−Lu(s, xn)− g(s, xn)) ds

∣∣∣∣
≤ C2|x − xn|θ.

Here, we have used the fact that, for any t ∈ [0, T ], the function (Lu)(t, ·) + g(t, ·)
is θ-Hölder continuous in B(|x| + 1), with Hölder norm being independent of t.
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Hence,

|(Δhw)(t, x) − Lu(t, x) − g(t, x)|
≤ |(Δhw)(t, x) − (Δhw)(t, xn)| + |(Δhw)(t, xn) − Lw(t, xn) − g(t, xn)|

+ |Lw(t, x) + g(t, x) − Lw(t, xn) − g(t, xn)|
≤ |(Δhw)(t, xn) − Lw(t, xn) − g(t, xn)| + C3|x − xn|θ, (5.5)

for some positive constant C3, independent of h and n. Taking the limsup when
h tends to 0 in (5.5) and, then, letting n go to +∞, we deduce that w(·, x) is
differentiable with respect to time at t and Dtu(t, x) = Lu(t, x) + g(t, x).

Finally, we observe that (5.4) also implies that u(0, ·) ≡ f . Hence, u is a
solution to problem (4.1) in the sense of Definition 1.2. �
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[2] S. Bernstein, Sur la généralisation du problème de Dirichlet, I, Math. Ann. 62 (1906),
253–271.

[3] M. Bertoldi, L. Lorenzi, Estimates of the derivatives for parabolic operators with
unbounded coefficients, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2627–2664.

[4] M. Bertoldi, L. Lorenzi, Analytical methods for Markov semigroups, Vol. 283 of Pure
and applied mathematics, Chapman Hall/CRC Press (2006).

[5] R. Chill, E. Fasangova, G. Metafune, D. Pallara, The sector of analyticity of the
Ornstein-Uhlenbeck semigroup on Lp spaces with respect to invariant measure, J.
London Math. Soc. (2) 71 (2005), no. 3, 703–722.

[6] G. Da Prato, A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous
functions, J. Funct. Anal. 131 (1995), no. 1, 94–114.

[7] G. Da Prato, A. Lunardi, Ornstein-Uhlenbeck operators with time periodic coeffi-
cients, preprint (2006).

[8] W.G. Faris, Ornstein-Uhlenbeck and renormalization semigroups, Mosc. Math. J. 1
(2001), no. 3, 389–405.
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Time-dependent Nonlinear Perturbations
of Analytic Semigroups

Robert H. Martin, Jr., Toshitaka Matsumoto,
Shinnosuke Oharu and Naoki Tanaka

Abstract. This paper is concerned with time-dependent relatively continuous
perturbations of analytic semigroups and applications to convective reaction-
diffusion systems. A general class of time-dependent semilinear evolution
equations of the form ut = (A + B(t))u(t), t ∈ (s, τ ); u(s) = v ∈ D(s) is in-
troduced in a general Banach space X. Here A is the generator of an analytic
semigroup in X and B(t) is a possibly nonlinear operator from a subset of the
domain of a fractional power (−A)α into X and D(t) = D(B(t)) ⊂ D((−A)α).
This type of semilinear evolution equations admit only local and mild solu-
tions in general. In order to restrict the growth of mild solutions and for-
mulate a Lipschitz conditions in a local sense for B(t), a lower semicon-
tinuous functional ϕ : D((−A)α) → [0, +∞] is introduced and the growth
condition of u(·) is formulated in terms of the nonnegative function ϕ(u(·))
and the nonlinear operator B(t) is assumed to be Lipschitz continuous on
Dρ(t) ≡ {v ∈ D(t) : ϕ(v) ≤ ρ} for ρ > 0. The main objective is to establish
a generation theorem for a nonlinear evolution operator which provides mild
solutions to the semilinear evolution equation under the assumption that a
consistent discrete scheme exists under a growth condition with respect to ϕ
as well as closedness condition for the noncylindrical domain

⋃
({t}×Dρ(t)).

Moreover, a characterization theorem for the existence of such evolution op-
erator is established in terms of the existence of ϕ-bounded discrete schemes.
Our generation theorem can be applied to a variety of semilinear convective
reaction-diffusion systems. We here make an attempt to apply our result to a
mathematical model which describes a complex physiological phenomena of
bone remodeling.
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1. Introduction

Of concern in this paper are the semilinear evolution equations in a Banach space
(X, | · |) of the form

(SE) u′(t) = (A + B(t))u(t), s < t < τ,

under the initial conditions

(IC) u(s) = v ∈ D(s) ⊂ Y, 0 ≤ s < τ.

Here A is assumed to be the generator of an analytic semigroup {T (t) : t ≥ 0} in
X , Y is a Banach space which is contained in X and has a stronger norm defined
through a fractional power of −A, and {B(t) : t ≥ 0} is a one-parameter family of
nonlinear operators from subsets of Y . The set D(s) stands for the domain of the
nonlinear operator B(s). The objective of the present paper is to discuss the time-
dependent nonlinear perturbations of analytic semigroups in the case where D(A)
is not necessarily dense in X and Y is supposed to be a subspace of the domain of
a fixed fractional power (−A)α equipped with its graph norm and B(t) is locally
Lipschitz continuous from Y with the stronger norm into the original space X .
Accordingly, A + B(t) are understood to be time-dependent relatively continuous
perturbations of the analytic semigroup {T (t) : t ≥ 0} in X . Generation and
characterization of evolution operators providing mild solutions to the semilinear
problem (SE)-(IC) are discussed.

The importance of semilinear problems of the type (SE)-(IC) has constantly
been recognized in various branches of mathematical sciences. In fact, many of
mathematical models describing nonlinear convective diffusion phenomena are for-
mulated as semilinear evolution problems for reaction-diffusion systems, quasilin-
ear transport-diffusion systems and so on.

In this paper we introduce a general class of time-dependent locally Lipschitz
continuous perturbations of analytic semigroups in X and discuss the necessary
and sufficient condition for the family {A+B(t)} of semilinear operators to provide
the mild solutions to the problem (SE)-(IC) in a global sense. This is the most
significant feature of our argument. Those necessary and sufficient conditions are
formulated in terms of existence of approximate difference scheme to (SE)-(IC). By
means of those approximate difference schemes, approximate solutions to (SE)-(IC)
are constructed. In consequence, generation and characterization of the associated
evolution operators is discussed. Namely, under the assumption that an evolution
operator provides mild solutions to (SE)-(IC), the existence of those approximate
difference scheme can be derived.

So far, semilinear problems of the type (SE)-(IC) have been studied by many
authors. First, let D be a closed subset of X and D(t) ≡ D∩Y in (IC). Lightbourne
and Martin discussed in [11] the construction of mild solutions to (SE) under the
subtangential condition

(s.1) lim inf
h↓0

h−1d(v + hB(t)v, D) = 0 for t ∈ [0, τ) and v ∈ D ∩ Y
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and the assumption that D is invariant under T (t) in the sense that T (t)[D] ⊂ D.
H. Amann then considered in [2] the time-dependent case

(SP)

{
u′(t) = (A(t) + B(t))u(t), 0 < t < τ,

u(0) = v ∈ D(0)

and treated the existence of mild solutions to (SP) under (s.1) and the assumption
that U(t, s)[D] ⊂ D, where U(t, s) denotes the evolution operator generated by
{A(t)}. Secondly, we consider the case where D(t) be a closed subset of the Banach
space [D((−A(t))α)] equipped with the graph norm in (IC). In this setting J. Prüss
showed in [27] that for the existence of local mild solutions to (SP) it is necessary
and sufficient that the generalized subtangential condition below holds :

(s.2) There is a constant η > 0 such that for every t ∈ [0, τ), v ∈ D(t) and ε > 0,
there exist h > 0 and wh ∈ D(t + h) and

zh = U(t + h, t)v +
∫ t+h

t

U(t + h, ξ)B(t)v dξ − wh

satisfies |zh| ≤ εh and |(−A(t + h))αzh| ≤ εhη.

Thirdly, it is also natural to treat the case in which D be a closed subset of X and
put D(t) = D ∩D((−A(t))α) for t ∈ [0, τ ]. Under the condition of flow invariance
U(t, s)[D] ⊂ D, Chen showed in [4] that Pavel’s subtangential condition

(s.3) lim
h↓0

h−1d(U(t + h, t)v + hB(t)v, D) = 0

gives a necessary and sufficient condition for the existence of local mild solutions
to (SP).

On the other hand, Oharu and Pazy [22], Oharu [21] and Oharu and Tebbs
[24] considered the time-independent case B(t) ≡ B and treated necessary and
sufficient conditions on A and B for the existence of mild solutions to (SE) in a
global sense. This problem is important from both theoretical and practical points
of view. They interpret this problem as a characterization problem of a nonlinear
semigroup which provides mild solutions to (SE) satisfying an appropriate growth
condition and discuss the characterization of such nonlinear semigroup in terms of
the range condition of the form

(R) R(I − λ(A + B)) � y for y ∈ D(B), λ ∈ (0, λ(y)) and some λ(y) > 0

under the convexity condition on D(B) and ϕ(·).
The arguments in [22] contain three features: First, a lower semicontinuous

functional ϕ : Y → [0, +∞] is employed to define a local Lipschitz continuity of
B and restrict the growth of solutions to (SE) by means of nonnegative function
ϕ(u(·)). Secondly, the semilinear operator A + B is assumed to satisfy the range
condition (R). We here employ the same point of view as in [22] and interpret the
semilinear problem (SE)-(IC) as the generation problem of a nonlinear evolution
operator which gives the mild solutions.
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As mentioned in the Abstract, we employ a general functional ϕ : Y →
[0, +∞] to define the local Lipschitz continuity of the operators B(t) and restrict
the growth of mild solutions to (SE) as well as the time-dependence of B(t). In
this paper we employ the growth condition of the form

(G) ϕ(u(t)) ≤ Ψ(τ, 0; ϕ(v))

for t ∈ [0, τ ] and v ∈ D(0). Here the function Ψ is determined in various ways
in accordance with the properties of the semilinear operators A + B(t). In fact,
(G) is nothing else but a boundedness condition for the solutions of the semilinear
problem (SE)-(IC), and so Ψ is often found through a priori estimates for the
solutions.

First, we establish a characterization theorem for such evolution operators
under much weaker assumptions than those imposed in [22]. We here show that
the existence of approximate scheme is a necessary and sufficient condition for the
existence of an evolution operator associated with the problem (SE)-(IC). With
this result, we investigate the uniqueness and the regularity of the mild solutions
of the semilinear problem (SE)-(IC).

In this paper we apply two basic fundamental concepts. One of the important
tools of deriving our main results is the so-called measure of noncompactness. In
[22] it is shown with the aid of measure of noncompactness that the existence of a
nonlinear semigroup associated with (SE) implies the range condition for A + B.
Here we also use the measure of noncompactness to establish a generation theorem
for a nonlinear evolution operator which provides mild solutions to (SE). Another
important tool is discrete local multiple Laplace transform which is used for the
proof of characterization theorem.

This paper is organized as follows: In Sections 2 and 3, we summarize the
definition and properties of analytic semigroups as well as their fractional powers.
Fundamental notions such as mild solution and nonlinear evolution operators are
introduced and basic assumptions are imposed in Section 4. Under these assump-
tions the main results of this paper are also stated in this section. Section 5 deals
with the uniqueness and regularity of mild solutions to the problem (SE)-(IC).
Section 6 is devoted to the proof of the generation theorem for nonlinear evolu-
tion operators providing mild solutions to the problem (SE)-(IC). In Section 7
we discuss discrete local multiple Laplace transforms. Applying these results to
Section 8, we demonstrate that the existence of an evolution operator associated
with (SE)-(IC) implies the existence of approximate difference schemes. Accord-
ingly, necessary and sufficient conditions for the global existence of mild solutions
to the semilinear problem are obtained. Finally, in Section 9, the approximation-
solvability of a mathematical model for bone-remodeling phenomena is verified by
applying our result. The solvability of this model has not been known so far.
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2. A linear theory

In this section we outline the definition and the characterization theorem of ana-
lytic semigroups.

Definition 2.1. Let T ≡ {T (t) : t ≥ 0} be a semigroup in X . Let 0 < θ < π
2 . We

say that T is an analytic semigroup in the sector Σθ = {t ∈ C : | arg t| < θ} if it
satisfies the following conditions:

(T1) T can be continued analytically to Σθ.

(T2) For each 0 < ε < θ,

lim
t→0

| arg t|≤θ−ε

T (t)x = x for x ∈ D(A).

The theorem below gives the characterization of such analytic semigroups.

Theorem 2.2. Let A be a closed linear operator in X. Then A is the generator of
an analytic semigroup satisfying

(C) For each 0 < ε < θ there is a constant Mε > 0 such that∣∣e−ωtT (t)
∣∣ ≤ Mε for some ω ∈ R and t ∈ Σθ−ε

if and only if A satisfies the following two conditions:

(A1) ρ(A) ⊃ {λ ∈ C : | arg(λ − ω)| < π
2 + θ}.

(A2) For each 0 < ε < θ there is a constant Mε > 0 such that

|(λ − A)−1| ≤ Mε

|λ − ω| for λ with | arg(λ − ω)| ≤ π

2
+ θ − ε.

Remark 2.3. T is defined by

T (t) =
1

2πi

∫
Γ

eλt(λ − A)−1 dλ for t ∈ Σθ, (2.1)

where Γ is a smooth curve in Σθ running from ∞e−i(θ−ε) to ∞ei(θ−ε) in the
complex plane. T is not of class (C0) but has properties similar to those in the
case of D(A) = X . For details we refer to Sinestrari [28]. The limit limt→0 T (t)x
exists if and only if x ∈ D(A). In this case we have limt→0 T (t)x = x. By Da Prato
and Sinestrari [5, Theorem 10.2], we have

(λ − A)−1x =
∫ ∞

0

e−λtT (t)xdt for λ > 0 and x ∈ X. (2.2)

It should be noted here that A is the generator of the integrated semigroup
{W (t) =

∫ t

0 T (s) ds : t ≥ 0}. For details on integrated semigroups and related
topics we refer to [3, 5, 9, 12, 20, 29, 30, 31].
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Exponential formula

Finally, we demonstrate that the analytic semigroup T is obtained by the so-called
exponential formula. Without loss of generality, we may assume that ω = 0. Let
τ > 0. For each ε ∈ (0, 1) we choose a sequence {tεj}

N(ε)
j=0 in the time interval [0, τ ]

satisfying

0 = tε0 < tε1 < · · · < tεN(ε) ≤ τ,

max{tεj − tεj−1 : 1 ≤ j ≤ N(ε)} < ε, (2.3)

lim
ε↓0

tεN(ε) = τ.

Set hε
j = tεj − tεj−1, (1 ≤ j ≤ N(ε)). We then define an operator-valued function

Jε(·) over [0, tεN(ε)] by

Jε(t) =

⎧⎪⎪⎨⎪⎪⎩
I for t = 0,

k∏
j=1

(I − hε
jA)−1 for t ∈ (tεk−1, t

ε
k] and 1 ≤ k ≤ N(ε).

Theorem 2.4. Let A be a closed linear operator in X and τ > 0. Suppose that
A satisfies (A1) and (A2). Then the analytic semigroup T ≡ {T (t) : t > 0} is
represented as

T (t)x = lim
ε↓0

Jε(t)x for x ∈ X and t ∈ (0, τ ], (2.4)

and for each δ ∈ (0, τ) the convergence is uniform on [δ, τ ]. In particular we have

T (t)x = lim
n→∞

(
I − t

n
A

)−n

x for x ∈ X and t ∈ (0, τ ].

Proof. Since the integral representation (2.1) of T (t) does not depend on the choice
of Γ, we take the following integral path:

Γ = Γ3 ∪ Γ2 ∪ Γ1, Γ1 : λ = reiφ, Γ2 : λ = eiψ (|ψ| ≤ φ),

Γ3 : λ = re−iφ, φ =
π

2
+ θ − ε, 1 ≤ r < ∞.

We first show that
k∏

j=1

(I − hε
jA)−1 =

1
2πi

∫
Γ

k∏
j=1

(1 − hε
jλ)−1(λ − A)−1 dλ (2.5)

holds for t ∈ (tεn−1, t
ε
n]. The elementary inequality (1+a)−1(1+b)−1 ≤ (1+a+b)−1

for a, b > 0 and the fact that cosφ < 0 imply the inequality

k∏
j=1

(1 − hε
jr cosφ)−1 ≤

⎧⎨⎩1 − (
k∑

j=1

hε
j)r cosφ

⎫⎬⎭
−1

. (2.6)
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Using this inequality we obtain∫
Γ1

∣∣∣∣∣∣
k∏

j=1

(1 − hε
jλ)−1(λ − A)−1

∣∣∣∣∣∣ dr

≤
∫ ∞

1

k∏
j=1

{
(1 − hε

jr cosφ)2 + (hε
jr sin φ)2

}−1/2 Mε

r
dr

≤
∫ ∞

1

⎡⎣ k∏
j=1

(1 − hε
jr cosφ)−1

⎤⎦ Mε

r
dr

≤
∫ ∞

1

⎧⎨⎩1 − (
k∑

j−1

hε
j)r cosφ

⎫⎬⎭
−1

Mε

r
dr < +∞.

Similarly, we see that∫
Γ3

∣∣∣∣∣∣
k∏

j=1

(1 − hε
jλ)−1(λ − A)−1

∣∣∣∣∣∣ dr < +∞,

and that∫
Γ2

∣∣∣∣∣∣
k∏

j=1

(1 − hε
jλ)−1(λ − A)−1

∣∣∣∣∣∣ dψ ≤
∫ φ

−φ

Mε

k∏
j=1

(1 − hε
j)

−1 dψ < +∞.

Hence the integral on the right-hand side of (2.5) makes sense. We then take a
real number R > max{h−1

j : 1 ≤ j ≤ n} and set

ΓR ≡ Γ3
R ∪ Γ2 ∪ Γ1

R, Γ1
R : λ = reiφ, Γ3

R : λ = re−iφ (1 ≤ r ≤ R)

CR : λ = Reiψ (|ψ| ≤ φ).

It follows from the residual theorem that

1
2πi

∫
ΓR

k∏
j=1

(1 − hε
jλ)−1(λ − A)−1 dλ

=
1

2πi

∫
CR

k∏
j=1

(1 − hε
jλ)−1(λ − A)−1 dλ +

k∏
j=1

(I − hε
jA)−1.

It is also seen that∫
CR

∣∣∣∣∣∣
k∏

j=1

(1 − hε
jλ)−1(λ − A)−1

∣∣∣∣∣∣ dψ ≤
∫ φ

−φ

M
k∏

j=1

(1 − hε
jR)−1 dψ

−→ 0 as R → ∞.
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Thus we have asserted that (2.5) holds. Since (2.6) holds for λ ∈ Γ1 ∪ Γ3, (2.4)
follows by taking the limit as k → ∞ in (2.5).

We next show that the convergence is uniform with respect to t ∈ [δ, τ ] for
δ ∈ (0, τ). Take δ ∈ (0, τ) and fix it. Let {tεj}

N(ε)
j=0 ⊂ [0, 2τ ] be the sequence in

(2.3) replaced τ by 2τ . Then there exists ε0 ≡ ε0(δ, τ) ∈ (0, 1) such that, to each
ε ∈ (0, ε0] and each t ∈ [δ, τ ], there corresponds n ≥ 2 satisfying t ∈ (tεn−1, t

ε
n].

Assume δ ∈ (tεk−1, t
ε
k] and set

J ′
ε(δ)x =

k−1∏
j=1

(I − hε
jA)−1x, and K = {J ′

ε(δ)x : ε ∈ (0, ε0]} ∪ {T (δ)x}.

Then it is easily seen that K is a compact subset of D(A). Since the restriction of
T on D(A) is a C0-semigroup on D(A), we have

lim
ε↓0

n∏
j=k

(I − hε
jA)−1y = T (t − δ)y for t ∈ [δ, τ ] and y ∈ K (2.7)

and the convergence is uniform. By (2.2) we see that there exists M > 0 satisfying∣∣∣∣∣∣
n∏

j=k

(I − hε
jA)−1

∣∣∣∣∣∣ ≤ M.

Take arbitrary η > 0. Then it follows from (2.4) and (2.7) that there exists ε1 ∈
(0, ε0) satisfying ∣∣∣∣∣∣T (δ)x −

k−1∏
j=1

(I − hε
jA)−1x

∣∣∣∣∣∣ ≤ η

2M
(2.8)

and ∣∣∣∣∣∣
n∏

j=k

(I − hε
jA)−1T (δ)x − T (t − δ)T (δ)x

∣∣∣∣∣∣ ≤ η

2
(2.9)

for ε ∈ (0, ε1) and t ∈ [δ, τ ]. (2.8) and (2.9) together imply∣∣∣∣∣∣
n∏

j=1

(I − hε
jA)−1x − T (t)x

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

n∏
j=k

(I − hε
jA)−1T (δ)x − T (t − δ)T (δ)x

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∏

j=k

(I − hε
jA)−1

∣∣∣∣∣∣
∣∣∣∣∣∣T (δ)x −

k−1∏
j=1

(I − hε
jA)−1x

∣∣∣∣∣∣
≤ η.

for t ∈ [δ, τ ]. This completes the proof. �
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3. Fractional powers of non-densely defined closed linear operators

In this section we outline the properties of the fractional powers of non-densely
defined closed linear operators in X .

Let ω ∈ (0, π/2). Following Pazy [25], we make the two assumptions below:

(A1)′ A is a closed linear operator in X for which

ρ(A) ⊃ Σ+ = {X : 0 ≤ | argλ| ≤ π − ω} ∪ V.

where V is a neighborhood in C of zero.

(A2)′ There exists a constant M > 0 such that

|(λ − A)−1| ≤ M

1 + |λ| for λ ∈ Σ+.

Note that A is the generator of an analytic semigroup T ≡ {T (t) : t ≥ 0}
and 0 ∈ ρ(A). As in the case of D(A) = X ([13, Lemma 2.1.6 and Chapter 2,
Section 2.2]), a fractional power (−A)−α is defined by

(−A)−α =
1

Γ(α)

∫ ∞

0

tα−1T (t) dt. (3.1)

The integral converges in the uniform topology for every α > 0. Since (−A)−α

is injective, a fractional power of −A is defined by

D((−A)α) = Ran ((−A)−α),

(−A)α = ((−A)−α)−1 for α > 0 and (−A)0 = I.

For 0 < α < 1 and x ∈ D(A), the fractional power (−A)αx has an integral
representation

(−A)αx =
− sinπα

π

∫ ∞

0

tα−1A(tI − A)−1xdt. (3.2)

The proof is exactly same as in [25, Theorem 6.9]. For details we refer to [13,
Chapter 2].

We need the following two lemmas for the subsequent arguments.

Lemma 3.1. Assume (A1)′ and (A2)′. Then the following are valid:

(a) D((−A)α) = D(A) for every α > 0.

(b) D(A)
|·|α = {x ∈ D((−A)α) : (−A)αx ∈ D(A)},

where | · |α is the graph norm of (−A)α.

Proof. We first show that (a) holds. Since T (t) : X → D(A) by (2.1) for t > 0, we
obtain from (3.1) that

D((−A)α) = R((−A)−α) ⊂ D(A),
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and so that D((−A)α) ⊂ D(A). We denote by A0 the part of A in D(A). Then
A0 is the infinitesimal generator of an analytic semigroup on D(A) and we have
D(A0) = D(A). Since D(An

0 ) = D(A) for n ≥ 1 and D(An
0 ) ⊂ D(An) ⊂ D(A),

we obtain D(An) = D(A) for n ≥ 1. Since D((−A)α) ⊃ D(An) for α ≤ n, it is
seen that assertion (a) holds. Using the fact that

lim
λ↓0

(I − λA)−1x = x for x ∈ D(A),

for y ∈ {x ∈ D((−A)α) : (−A)αx ∈ D(A)}, we obtain

lim
λ↓0

(−A)α(I − λA)−1y = lim
λ↓0

(I − λA)−1(−A)αy = (−A)αy.

This implies that D(A)
|·|α ⊃ {x ∈ D((−A)α) : (−A)αx ∈ D(A)}. Conversely, let

x ∈ D(A). Then we have by (3.2) (−A)αx ∈ D(A). This implies that D(A)
|·|α ⊂

{x ∈ D((−A)α) : (−A)αx ∈ D(A)}. �

Lemma 3.2. (Moments Inequality) Let 0 ≤ α < β < γ ≤ 1. Then there exists a
constant Cα,β,γ > 0 such that for every x ∈ D((−A)γ) and ρ > 0, we have

|(−A)βx| ≤ Cα,β,γ(ρβ−α|(−A)αx| + ρβ−γ |(−A)γx|)
and

|(−A)βx| ≤ 2Cα,β,γ |(−A)αx|(γ−β)/(γ−α)|(−A)γx|(β−α)/(γ−α).

The proof is same as in [6, Theorem 5.34].

4. Nonlinear perturbations of analytic semigroups

We consider the semilinear problem in a Banach space (X, | · |) of the form

u′(t) = (A + B(t))u(t), s < t < τ, (SE)

u(s) = v ∈ D(s), s ∈ [0, τ). (IC)

Here A is the generator of an analytic semigroup T ≡ {T (t) : t ≥ 0} which satisfies
condition (C) stated in Section 2 and Y is a subspace of the domain D((−A)α)
of the fractional power of A equipped with the graph norm. Throughout this
paper we fix the time interval [0, τ ], the exponent α ∈ (0, 1) and p ∈ [1,∞].
Let D = {D(t) : t ∈ [0, τ ]} be a family of nonempty subsets of Y . For each
t ∈ [0, τ ], B(t) is assumed to be a possibly nonlinear operator in X such that
the domain D(t) ≡ D(B(t)) is a subset of Y . To restrict the time-dependence
of the nonlinear operators B(t) we introduce the following family of nonnegative
functions defined on all of [0, τ ]2. f ∈ Lp((0, τ) × (0, τ)) belongs to Fp if and only
if there exists a Banach space (Z, ‖ · ‖Z), g ∈ Lp(0, τ ; Z) and a nondecreasing
function ψ : [0,∞) → [0,∞) such that limr→0 ψ(r) = 0 and f is represented as
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f(s, t) = ‖g(s)−g(t)‖+ψ(|t−s|). It is easily seen that f ∈ Fp satisfies the following
properties:

f(s, t) ≥ 0, f(s, t) = f(t, s), f(s, s) = 0,

f(s, t) ≤ f(r, s) + f(r, t), f(·, s) ∈ Lp(0, τ),

lim
h↓0

h−1

∫ s+h

s

f(ξ, s)p dξ = 0 for almost all s ∈ [0, τ).

In this section we investigate the semilinear problem (SE)-(IC) from the same
point of view as in Oharu and Pazy [22].

We begin by making assumptions on the operators A and B(t) in the Banach
space (X, | · |). Since the semilinear operator A + B(t) can be represented as A +
B(t) = (A − ωI) + (B(t) + ωI), we may assume that the analytic semigroup T
satisfies the following condition:

(H1) There exist M ≥ 1 and ω > 0 such that

|T (t)| ≤ Me−ωt for t > 0.

We introduce a new Banach space (Y, ‖ · ‖) defined by

‖v‖ = |(−A)αv| for v ∈ D((−A)α), Y = D(A)
‖·‖

.

By Theorem 3.1, Y may be represented as

Y = {v ∈ D((−A)α) : (−A)αv ∈ D(A)}.
To restrict the growth of solutions of (SE) and Lipschitz continuity in a local

sense of the nonlinear operator B(t), we employ a nonnegative lower semicontin-
uous functional ϕ on the Banach space (Y, ‖ · ‖). That is, we impose the following
condition:

(H2) For each t ∈ [0, τ ] the domain of B(t) coincides with D(t) and D(t) ⊂ D(ϕ) ≡
{y ∈ Y : ϕ(y) < ∞}.

(H3) For each ρ > 0 there exist ωρ ≥ 0 and fρ ∈ Fp such that

|B(s)v − B(t)w| ≤ ωρ‖v − w‖ + fρ(s, t)

for s, t ∈ [0, τ ], v ∈ Dρ(s) and w ∈ Dρ(t).

Because of the localized condition (H3) on B(t) the semilinear problem (SE)-
(IC) may admit only local solutions, and it is necessary to impose an appropriate
growth condition to construct global solutions. In this paper we employ a function
Ψ : [0, τ ]2 × [0,∞) → [0,∞) such that for each s ∈ [0, τ ], t ∈ [s, τ ] and each
ρ ≥ 0, Ψ(t, s; ·) and Ψ(·, s; ρ) are nondecreasing, respectively. Using this function,
we impose the growth condition of the form

(G) ϕ(u(t)) ≤ Ψ(τ, s; ϕ(v)) for t ∈ [s, τ ].
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As mentioned in the introduction, the function Ψ is often constructed through
a priori estimates for the solutions to the semilinear problems (SE)-(IC). On the
other hand, one of the features of our generation argument is that appropriate
discrete solutions to a discretization in time of the semilinear problem are first
constructed and then boundedness of the discrete solutions with respect to an
appropriate lower semicontinuous functional ϕ is investigated, and so that bounds
of those discrete solutions would suggest a concrete form of such function Ψ.

For the semilinear problem (SE)-(IC) we introduce the following notion of
generalized solution.

Definition 4.1. Let 0 ≤ s < τ . A Y -valued function u(·) on [s, τ ] is said to be a mild
solution of the problem (SE)-(IC), if u(·) ∈ C([s, τ ]; X) ∩ Lp(s, τ ; Y ), u(t) ∈ D(t)
and satisfies

u(t) = T (t − s)v +
∫ t

s

T (t − ξ)B(ξ)u(ξ) dξ for t ∈ [s, τ ],

where the integral is taken in the Banach space (X, |·|) and in the sense of Bochner.

We next introduce the notion of nonlinear evolution operator associated with
the semilinear problem (SE)-(IC).

Definition 4.2. A two-parameter family U ≡ {U(t, s) : 0 ≤ s ≤ t ≤ τ} of nonlinear
operators from Y into itself is called a nonlinear evolution operator in Y , if it
satisfies the two properties below :

(E1) U(t, s) : D(s) → D(t), U(r, r)v = v,
U(t, r)v = U(t, s)U(s, r)v for 0 ≤ r ≤ s ≤ t ≤ τ and v ∈ D(r).

(E2) For each s ∈ [0, τ) and v ∈ D(s), U(·, s)v ∈ C([s, τ ]; X) ∩ Lp(s, τ ; Y ).

A nonlinear evolution operator U is said to be locally equi-Lipschitz contin-
uous on D , if it satisfies the following condition:

(E3) For each ρ > 0 there exists a constant M(ρ) ≥ 1 such that

‖U(t, s)v − U(t, s)w‖ ≤ M(ρ)‖v − w‖
for s ∈ [0, τ), t ∈ [s, τ ] and v, w ∈ Dρ(s).

The main result of this paper is to investigate the relationship between the
two statements below :

(I) There exists a locally equi-Lipschitz continuous evolution operator U in Y
such that, for s ∈ [0, τ), t ∈ [s, τ ] and v ∈ D(s),

(I.a) U(t, s)v = T (t− s)v +
∫ t

s

T (t − ξ)B(ξ)U(ξ, s)v dξ,

(I.b) ϕ(U(t, s)v) ≤ Ψ(τ, s; ϕ(v)).

(II) For each ε > 0, s ∈ [0, τ) and v ∈ D(s) there exists a partition Δ = {s =
t0 < t1 < · · · < tN+1 = τ} and finite sequences {t̂i}N

i=1 in [0, τ ], {vi}N
i=0 in X ,
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{ui}N
i=1 in Y and {zi}N

i=1 in X satisfying max1≤i≤N+1{ti−ti−1} < ε, t̂i ∈ [ti−1, ti],
v0 = v, vi ∈ D(A), ui ∈ D(t̂i),

∑N
i=1(ti−ti−1)‖ui−vi‖ < ε,

∑N
i=1(ti−ti−1)|zi| < ε

and the following four conditions:

(II.a) vi − (ti − ti−1)(Avi + B(t̂i)ui) − vi−i = (ti − ti−1)zi, for i = 1, 2, . . . , N.

(II.b) ϕ(ui) ≤ Ψ(τ, s; ϕ(v)) + ε (≡ Rε) for i = 1, 2, . . . , N.

(II.c)
N∑

i=1

∫ ti

ti−1

fRε(t̂i, ξ) dξ < ε.

where fRε is a function in Fp specified in (H3) replaced r by Rε.

(II.d) If (t̂i, ui) → (t, u) in [0, τ ] × Y as ε → 0, then u ∈ DR0(t).

Condition (I) states that given initial-data s and v ∈ D(s) there exists a
mild solution on [s, τ ] to (SE)-(IC). Accordingly, the implication (II) ⇒ (I) may
be called the generation theorem.

We here make two remarks.

Remark 4.3. First, for each s ∈ [0, τ) the semilinear operator A + B(s) is the
infinitesimal generator of the evolution operator U(t, s) in the sense that

lim
h↓0

h−1[U(s + h, s)v − v] = (A + B(s))v for v ∈ D(A) ∩ D(s).

In fact, let ρ > 0 and s ∈ [0, τ). Under (I.b), condition (H3) implies that

B(·)U(·, s)v ∈ Lp(s, τ ; X) for v ∈ Dρ(s).

Secondly, suppose that v ∈ D(A) ∩ Dρ(s), and that

lim
h↓0

h−1

∫ h

0

fR(ξ + s, s) dξ = 0,

for some R > Ψ(τ, s; ρ). Then we see from (I) that

lim
h↓0

h−1[U(s + h, s)v − v] = (A + B(s))v.

Indeed, for v ∈ D(A) ∩ Dρ(s),

U(s + h, s)v → v in Y as h ↓ 0, and

|B(s + ξ)U(s + ξ, s)v − B(s)v| ≤ ωR‖U(s + ξ, s)v − v‖ + fR(s + ξ, s).

Therefore we see with the aid of the given properties of fR that

h−1[U(s + h, s)v − v] = h−1[T (h)v − v] + h−1

∫ h

0

T (h − ξ)B(s)v dξ

+ h−1

∫ h

0

T (h − ξ)[B(s + ξ)U(s + ξ, s)v − B(s)v] dξ

converges to (A + B(s))v in X as h ↓ 0.
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Remark 4.4. In many applications to semilinear evolution equations, what is called
‘semi-implicit’ schemes (SI) as mentioned below play an important role to construct
discrete approximate solutions.

(SI) For each ε̄ > 0, s ∈ [0, τ) and v ∈ D(s) there exist sequences {tk}N
k=0

in [s, τ ], {vk}N
k=0 in Y such that v0 = v, t0 = s, tN = τ , 0 < tk − tk−1 < ε̄,

vk ∈ D(A) ∩ D(tk), k = 1, 2, . . . , N and

vk = (I − hkA)−1(vk−1 + hkB(tk−1)vk−1),

ϕ(vk) ≤ Ψ(τ, s; ϕ(v0)) + ε̄,

where hk = tk − tk−1, i = 1, 2, . . . , N .

Now the statement (II) may be regarded as a generalization of (SI). In fact, it is
shown that (SI) implies (II) under some additional conditions. Suppose that (H1)
and (H2) hold. Assume further that (H3) holds with Fp replaced by FC = {f ∈
C([0, τ ]2) : f(s, t) = f(t, s), f(t, t) = 0 for s, t ∈ [0, τ ]} and that (H4) holds:

(H4) If ti ∈ [0, τ ], xi ∈ D(A)∩D(ti), ti ↑ t, xi → x in Y as i → ∞, then x ∈ D(t).

Then (SI) implies (II). Actually, let ε > 0, s ∈ [0, τ), v ∈ D(s) and set R =
Ψ(τ, s; ϕ(v))+ε. One then finds a large number ν so that MαωRΓ(1−α)να−1 < 1/2.
Let γ ∈ (α, 1) and R̂ = 2(M +1)eντ‖v‖+2Mαeντ (|fR|∞ + |B(s)v|)(1−α)−1τ1−α.
We then choose an ε̄ ∈ (0, ε) small enough to satisfy

sup
h∈[0,ε̄]

‖(I − hA)−1v − v‖ < ε/(2Mτ), fR(t, ξ) ≤ ε/τ for |t − ξ| ≤ ε̄ and

(ωRR̂ + |B(s)v| + |fR|∞)(Mα + Mγ−αMγ(1 − γ)−1)τ1−γ ε̄ < ε/(2τ).

Then there exist sequences {tk}N
k=0 in [s, τ ] and {vk}N

k=0 in Y satisfying (SI). Set
uk = vk−1, t̂k = tk−1 and zk = 0 for k = 1, 2, . . . , N . We have only to prove that∑N

k=1(tk − tk−1)‖uk − vk‖ =
∑N

k=1 hk‖vk − vk−1‖ < ε. To this end, we first verify
that {vk}N

k=1 is bounded in Y . Since {vk} satisfies the identity

vk =
k∏

j=1

(I − hjA)−1v +
k∑

j=1

hj

k∏
i=j

(I − hiA)−1B(tj−1)vj−1 (4.1)

for k = 1, 2, . . . , N , we have

e−νtk‖vk − v‖ ≤ (M + 1)‖v‖

+ MαωR

k∑
j=1

hje
−ν(tk−tj−1)(tk − tj−1)−αe−νtj−1‖vj−1 − v‖

+ Mα

k∑
j=1

hj(tk − tj−1)−α(|fR|∞ + |B(s)v|)
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≤ (M + 1)‖v‖

+ MαωR

∫ tk

s

e−ν(tk−ξ)(tk − ξ)−α dξ sup
1≤j≤N+1

e−νtj−1‖vj−1 − v‖

+ Mα(|fR|∞ + |B(s)v|)
∫ tk

s

(tk − ξ)−α dξ

≤ (M + 1)‖v‖ + Mα(|fR|∞ + |B(s)v|)(1 − α)−1τ1−α

+ MαωRΓ(1 − α)να−1 sup
0≤j≤N

e−νtj‖vj − v‖.

This implies that sup1≤k≤N ‖vk − v‖ ≤ R̂. and thus {vk}N
k=1 is bounded in Y .

We now apply this fact and use (4.1) to get

‖vk − vk−1‖ ≤ M‖(I − hkA)−1v − v‖ + hk‖(I − hkA)−1B(tk−1)vk−1‖

+

∥∥∥∥∥∥((I − hkA)−1 − I)
k−1∑
j=1

hj

k−1∏
i=j

(I − hiA)−1B(tj−1)vj−1

∥∥∥∥∥∥
≤ ε/(2τ) + h1−α

k Mα(ωR‖vk−1 − v‖ + fR(tk−1, s) + |B(s)v|)

+ Mγ−αMγhγ−α
k

k−1∑
j=1

hj(tk−1 − tj−1)−γ(ωR‖vj−1 − v‖

+ fR(tj−1, s) + |B(s)v|)

≤ ε/(2τ) + ε̄1−αMα(ωRR̂ + |B(s)v| + |fR|∞)

+ Mγ−αMγ ε̄γ−α(ωRR̂ + |B(s)v| + |fR|∞)
∫ tk−1

s

(tk−1 − ξ)−γ dξ

< ε/τ.

Hence
∑N

k=1 hk‖vk − vk−1‖ < ε and the implication (SI) ⇒ (II) is verified.

Finally, we need the following theorem in Section 8 and the proof is similar
to [23].

Theorem 4.5. Let A and B(t) satisfy conditions (H1), (H2) and (H3). Let U ≡
{U(t, s) : 0 ≤ s ≤ t ≤ τ} be a nonlinear evolution operator in Y such that
B(·)U(·, s)v ∈ Lp(s, τ ; X) for each v ∈ D(s). Then the following are equivalent:

(a) For s ∈ [0, τ), v ∈ D(s) and t ∈ [s, τ ],

U(t, s)v = T (t − s)v +
∫ t

0

T (t − s)B(ξ)U(ξ, s)v dξ.
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(b) For s ∈ [0, τ), v ∈ D(s),
∫ t

s
U(ξ, s)v dξ ∈ D(A) and

U(t, s)v = v + A

∫ t

s

U(ξ, s)v dξ +
∫ t

s

B(ξ)U(ξ, s)v dξ for t ∈ [s, τ ].

We are now in a position to state our main result.

Theorem 4.6. (Characterization Theorem) Under conditions (H1) through (H3),
(I) and (II) are equivalent.

The implication (II) ⇒ (I) is called a generation theorem, while the impli-
cation (I) ⇒ (II) may be called a characterization theorem. The above theorem
extends Theorem 1.1 in Oharu-Pazy [22] to the time-dependent case under con-
siderably weaker conditions. The precise proof of Theorems 4.6 is given in Section
6 through Section 8.

5. Uniqueness and regularity of mild solutions

In this section we discuss the continuous dependence of the mild solutions on
initial-data in the Banach space Y . We also investigate the regularity in the original
Banach space X of mild solutions. Throughout this section we assume that A and
B(t) satisfy conditions (H1), (H2) and (H3).

Before starting the uniqueness and regularity arguments, we prepare a useful
inequality which are often applied in the subsequent discussions. The following
statements and its proof is given in Henry [8, Lemma 7.1.1].

Lemma 5.1. (Henry’s inequality) Suppose a, b ≥ 0, α < 1. Suppose further that
u(t) is nonnegative and locally integrable on [0, τ) and satisfies

u(t) ≤ a + b

∫ t

0

(t − s)−αu(s) ds for t ∈ [0, τ).

Then, we have
u(t) ≤ aE1−α(θt) for t ∈ [0, τ),

where E1−α(t) =
∑∞

n=0 tn(1−α)/Γ(n(1 − α) + 1) and θ = (bΓ(1 − α))1/(1−α).

Now our uniqueness argument is given as follows:

Theorem 5.2. Let s ∈ [0, τ) and let v, v̂ be two initial values given in D(s). Suppose
that u(·) and û(·) are the corresponding mild solutions to (SE)-(IC) and that

u(t), û(t) ∈ DR(t) for t ∈ [s, τ ] and some R > 0.

Then we have

‖u(t) − û(t)‖ ≤ ME1−α(θα(t − s))‖v − v̂‖ for t ∈ [s, τ ],

where θα = (MαωRΓ(1 − α))1/(1−α).
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Proof. Since u(·) and û(·) satisfy the integral equations in Definition 4.1, we have

‖u(t) − û(t)‖ ≤ M‖v − v̂‖ + Mα

∫ t

0

(t − s)−α|B(s)u(s) − B(s)û(s)| ds

≤ M‖v − v̂‖ + MαωR

∫ t

0

(t − s)−α‖u(s) − û(s)‖ ds.

By applying Henry’s inequality, we obtain the desired estimate. �

Let β ∈ (0, 1) and let V be a Banach space. In order to state the regularity
of mild solutions we introduce the following two function spaces:

Cβ([a, b]; V ) ≡
{

f ∈ C([a, b]; V ) : sup
{ |f(s) − f(t)|

|s − t|β : s, t ∈ [a, b], s �= t

}
< ∞

}
,

Cβ
�oc(0,∞; V ) ≡ {f ∈ C((0,∞); V ) : f ∈

⋂
b>a>0

Cβ([a, b]; V )}.

Our regularity theorem may be stated as follows:

Theorem 5.3. (Regularity Theorem) Let s ∈ [0, τ), v ∈ D(s) and let u(·) be the
associated mild solution of the problem (SE)-(IC) satisfying the growth condition
(G). Then we have:

(a) If α ∈ (0, 1 − p−1), then

u(·) ∈ C([s, τ ]; Y ) ∩ Cδ
loc((s, τ ]; D((−A)γ))

for γ ∈ [α, 1 − p−1) and δ ∈ (0, 1 − p−1 − γ).

(b) If α ∈ [1 − p−1, 1), then

u(·) ∈ Cδ([s, τ ]; D((−A)γ)) for γ ∈ [0, 1 − p−1) and δ ∈ (0, 1 − p−1 − γ).

Proof. Let q be the conjugate exponent to p and set g(ξ) = B(ξ)u(ξ). We first
show that u(·) ∈ C([s, τ ]; Y ). Let t ∈ [s, τ) and h ∈ [0, τ − t]. Using the identity

u(t + h) − u(t) = T (t − s)(T (h)v − v) +
∫ t

s

T (t− ξ)(T (h)g(ξ) − g(ξ)) dξ

+
∫ t+h

t

T (t + h − ξ)g(ξ) dξ,

we have

‖u(t + h) − u(t)‖ ≤ M‖T (h)v − v‖ + Mα

∫ t

s

(t − ξ)−α|T (h)g(ξ) − g(ξ)| dξ

+ Mα

∫ t+h

t

(t + h − ξ)−α|g(ξ)| dξ

≤ M‖T (h)v − v‖ + Mα(1 − qα)−1/qτ1/q−α|T (h)g(·) − g(·)|Lp

+ Mα(1 − qα)−1/qh1/q−α|g|Lp
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This implies that u(·) is right continuous on [s, τ) in Y . The left continuity of u(·)
is proved in a similar way.

Let 0 ≤ s < τ , v ∈ D(s). Take any positive number μ such that 0 < 2μ < τ−s.
Let fR be a function given in Fp by (H3) and let γ ∈ [α, 1−p−1). Note that qγ < 1.
Let δ ∈ (0, 1− p−1 − γ), t ∈ [s +μ, τ) and h ∈ (0, τ − t]. Then it is easily seen that
u(·) ∈ L∞

loc(s, τ ; D((−A)γ+δ)). This implies the estimate

|(T (h) − I)u(t)|D((−A)γ) ≤ Cγ,δh
δ|u(t)|D((−A)γ+δ) ≤ NCγ,δh

δ,

where N = sup{|u(ξ)|D((−A)γ+δ) : s + μ ≤ ξ ≤ τ}. Using the relation

u(t + h) − u(t) = (T (h) − I)u(t) +
∫ h

0

T (h − ξ)g(ξ + t) dξ.

and Hölder’s inequality, we obtain that∣∣∣∣∣(−A)γ

∫ h

0

T (h− ξ)g(ξ + t) dξ

∣∣∣∣∣ ≤ Mγ

∫ h

0

(h − ξ)−γ |g(ξ + t)| dξ

≤ Mγ |g|Lp(0,τ ;X)(1 − qγ)−1/qh1/q−γ .

Therefore, we have
|u(t + h) − u(t)|D((−A)γ) ≤ C′hδ

and this shows that (a) holds. Assertion (b) is proved in a way similar to the proof
of (a). �

For further regularity results on mild solutions to (SE)-(IC) we refer to [1, 13].

6. Generation of nonlinear evolution operator U in Y

In this section we give proof of the implication (II) ⇒ (I) of Theorem 4.6. Through-
out this section we assume conditions (H1), (H2), (H3) and (II). The proof is
divided into four steps. We notice that the proof is similar to that in [15].

Step 1. Let n ≥ 1, s ∈ [0, τ) and choose an initial-value v ∈ D(s). Let R =
Ψ(τ, s; ϕ(v))+1 and fR a function given in (H3). We then choose a real number ν >
0 so that 8Mα(1+ωR)Γ(1−α)να−1 < 1. Then condition (II) implies that for each
positive integer n there exists a partition Δn = {s = tn0 < tn1 < · · · < tnN(n)+1 = τ}
and finite sequences {t̂nk : k = 1, . . . , N(n)} in [0, τ ], {vn

k : k = 0, . . . , N(n)} in
Y , {un

k : k = 1, . . . , N(n)} in X and {zn
k : k = 1, . . . , N(n)} in X such that,

for k = 1, 2, . . . , N(n), tnk − tnk−1, τ0 − tnN(n) ≤ 1/n, t̂nk ∈ [tnk−1, t
n
k ], vn

k ∈ D(A),
un

k ∈ D(t̂nk ),
N(n)∑
k=1

(tnk − tnk−1)‖vn
k − un

k‖ ≤ 1/n,

N(n)∑
k=1

(tnk − tnk−1)|zn
k | ≤ 1/n,
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vn
k − vn

k−1 − (tnk − tnk−1)(Avn
k + B(t̂nk )un

k ) = (tnk − tnk−1)z
n
k , vn

0 = v, (6.1)

ϕ(un
k ) ≤ Ψ(τ, s; ϕ(v)) + 1/n, (6.2)

N(n)∑
k=1

∫ tn
k

tn
k−1

fR(t̂nk , ξ) dξ < 1/n. (6.3)

By induction we have

vn
k =

k∏
j=1

(I −hn
j A)−1v +

k∑
j=1

hn
j

k∏
i=j

(I −hn
i A)−1B(t̂nj )un

j +
k∑

j=1

hn
j

k∏
i=j

(I −hn
i A)−1zn

j ,

(6.4)
for k = 1, 2, . . . , N(n), where hn

k = tnk − tnk−1.
For simplicity in notation, we introduce the following eight step functions:

σn(t) =

{
s for t ∈ {s} ∪ (tnN(n), τ ],

t̂nk for t ∈ (tnk−1, t
n
k ], 1 ≤ k ≤ N(n),

vn(t) =

{
v for t ∈ {s} ∪ (tnN(n), τ ],

vn
k for t ∈ (tnk−1, t

n
k ], 1 ≤ k ≤ N(n),

un(t) =

{
v for t ∈ {s} ∪ (tnN(n), τ ],

un
k for t ∈ (tnk−1, t

n
k ], 1 ≤ k ≤ N(n),

zn(t) =

{
0 for t ∈ {s} ∪ (tnN(n), τ ],

zn
k for t ∈ (tnk−1, t

n
k ], 1 ≤ k ≤ N(n),

Jn(t) =

⎧⎪⎪⎨⎪⎪⎩
I for t ∈ {s} ∪ (tnN(n), τ ],

k∏
j=1

(I − hn
j A)−1 for t ∈ (tnk−1, t

n
k ], 1 ≤ k ≤ N(n),

Jn(t, r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k∏

i=j

(I − hn
i A)−1 for t ≥ r, t ∈ (tnk−1, t

n
k ], and r ∈ [tnj−1, t

n
j ),

1 ≤ j ≤ k ≤ N(n),

0 otherwise,

Qn(t) =

⎧⎪⎨⎪⎩
s for t ∈ {0}⋃ (tnN(n), τ ],∫ tn

k

0

J(tnk , s)B(σn(s))un(s) ds for t ∈ (tnk−1, t
n
k ], 1 ≤ k ≤ N(n),

Θn(t) =

⎧⎪⎨⎪⎩
s for t ∈ {0}⋃ (tnN(n), τ ],∫ tn

k

0

J(tnk , s)zn(s) ds for t ∈ (tnk−1, t
n
k ], 1 ≤ k ≤ N(n).
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Using these functions, we may rewrite (6.2) and (6.4) in the following forms:

vn(t) = Jn(t)v + Qn(t) + Θn(t), (6.5)

ϕ(un(t)) ≤ Ψ(τ, s; ϕ(v)) + n−1 ≤ R, (6.6)

un(t) ∈ D(σn(t)), for t ∈ [s, τ ]. (6.7)

Also, (6.3) implies ∫ τ

s

fR(σn(ξ), ξ) dξ ≤ 1/n. (6.8)

In order to estimate terms on the right-hand side of (6.5), we need the two
lemmas below.

Lemma 6.1. (G. Nakamura and S. Oharu [19]) Let β ∈ (0, 1), 1 ≤ j ≤ k ≤ N(n)
and ξ ∈ [tnj−1, t

n
j ). Then we have

|(−A)βJn(tnk , ξ)| ≤ Mβ(tnk − tnj−1)
−β ≤ Mβ(tnk − ξ)−β

for some constant Mβ > 0.

Lemma 6.2. Let β ∈ [0, 1), ν > 0 and u(·) ∈ L1(s, τ ; X). Then we have

N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt dt

∫ tn
k

s

|(−A)βJn(tnk , ξ)u(ξ)| dξ

≤ MβΓ(1 − β)νβ−1eν|Δn|
∫ tN(n)

s

e−νξ|u(ξ)| dξ,

where |Δn| = max{|tnk − tnk−1| : k = 1, 2, . . . , N(n)}.

The proof of Lemma 6.2 is given at the end of this section. First we demon-
strate that {un(·) : n ≥ 1}, {Qn(·) : n ≥ 1} and {Θn(·) : n ≥ 1} are all bounded
in the space L1(s, τ ; Y ) endowed with the norm defined by

‖v‖1 =
∫ τ

s

e−νt‖v(t)‖ dt.

If t ∈ (tnk−1, t
n
k ], k = 1, 2, . . . , N(n), then it follows from (6.5) that

e−νt‖vn(t) − v‖ ≤ M‖v‖ + e−νt

∫ tn
k

s

|(−A)αJn(tnk , ξ)[B(σn(ξ))un(ξ) − B(s)v]| dξ

+ e−νt

∫ tn
k

s

|(−A)αJ(tnk , ξ)[B(s)v + zn(ξ)]| dξ. (6.9)

Noting that ∫ τ

s

e−νt‖vn(t) − v‖ dt =
N(τ)∑
k=1

∫ tn
k

tn
k−1

e−νt‖un(t) − v‖ dt,
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we have∫ τ

s

e−νt‖vn(t) − v‖ dt ≤ M(τ − s)‖v‖

+
N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt dt

(∫ tn
k

s

|(−A)αJn(tnk , ξ)[B(σn(ξ))un(ξ) − B(s)v]| dξ

)

+
N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt

(∫ tn
k

s

|(−A)αJ(tnk , ξ)[B(s)v + zn(ξ)]| dξ

)
. (6.10)

By Lemmas 6.1 and 6.2, we have

N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt

∫ tn
k

s

|(−A)αJn(tnk , ξ)[B(σn(ξ))un(ξ) − B(s)v]| dξ

≤ MαΓ(1 − α)να−1eν/n

∫ τ

s

e−νξ|B(σn(ξ))un(ξ) − B(s)v| dξ

≤ MαΓ(1 − α)να−1eν/n

[
ωR

∫ τ

s

e−νξ‖un(ξ) − v‖ dξ

+
∫ τ

s

(fR(σn(ξ), ξ) + fR(ξ, s)) dξ

]
and

N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt dt

∫ tn
k

s

|(−A)αJn(tnk , ξ)[B(s)v + zn(ξ)]| dξ

≤ MαΓ(1 − α)να−1eν/n((τ − s)|B(s)v| + 1).

Combining these estimates with (6.10) and noting that 4MαΓ(1−α)(1+ωR)να−1

< 1, we obtain∫ τ

s

e−νt‖vn(t) − v‖ dt ≤ K +
1
2

∫ τ

s

e−νt‖un(t) − v‖ dt

for n ≥ ν/ log 2, where K = M(τ − s)‖v‖ + (τ − s)|B(s)v| + 1 +
∫ τ

s fR(ξ, s) dξ.
Hence we have ∫ τ

s

e−νt‖un(t) − v‖ dt ≤ 2(K + 1). (6.11)

This shows that {un(·) : n ≥ 1} is bounded in L1(s, τ ; Y ). The boundedness of
{vn(·) : n ≥ 1} and {Qn(·) : n ≥ 1} follows from that of {un(·) : n ≥ 1}. It is
easily shown that {Θn(·) : n ≥ 1} is also bounded in L1(s, τ ; Y ).

Step 2. Here we demonstrate that {un(·) : n ≥ 1} is precompact in L1(s, τ ; Y ).
For this purpose we use the what is called ball measure of noncompactness β(·).
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For a bounded subset V of a Banach space E we define the ball measure of non-
compactness β(V ) by

β(V ) = inf{r > 0 : V admits a finite covering by balls of radius r}.
We need the following typical properties of β(·) below:

Lemma 6.3. Let V and W be bounded subsets of E. Then the following are valid:

(a) β(V + W ) ≤ β(V ) + β(W ).

(b) β(μW ) = μβ(W ) for μ > 0.

(c) β(V ) = 0 if and only if V is precompact in E.

(d) β(W ) = 0 implies β(V ∪ W ) = β(V ).

We refer to [14] for the proof of this lemma and for further properties of β. In
particular, the fourth property refers to the notion of measure on noncompactness.

Let � be a natural number satisfying � ≥ ν/ log 2. Set V� = {un(·) : n ≥ �}
and W� = {Qn(·) : n ≥ �}. We denote by S(r; y) a ball of radius r with center y.
Let η > 0 and set δ = β(V ) + η. By the definition of β(·) there exist y1(·), y2(·),
. . . , ym(·) in L1(s, τ ; Y ) such that

V ⊂
m⋃

i=1

S(δ; yi(·)). (6.12)

By choosing ui(·) ∈ V with ‖ui(·) − yi(·)‖1 < δ, we may rewrite (6.12) as

V ⊂
m⋃

i=1

S(2δ; ui(·)),

where ‖w(·)‖1 denotes the norm of w ∈ L1(0, τ ; Y ). For each i we define a step
function Qi

n(·) on [0, τ ] by

Qi
n(t) =

⎧⎪⎨⎪⎩
0 for t ∈ {s}

⋃
(tnN(n), τ ]∫ tn

k

s

Jn(tnk , ξ)B(σi(ξ))ui(ξ) dξ for t ∈ (tnk−1, t
n
k ], k = 1, 2, . . . , N(n).

We set W i
� = {Qi

n(·) : n ≥ �} for i = 1, 2, . . . , m and show that each W i
� is

precompact in L1(s, τ ; Y ). It should be noted that for each compact subset K ⊂ X ,
Jn(t, ξ)v converges uniformly to T (t − ξ)v in X with respect to ξ, t ∈ [s, τ ] with
ξ ≤ t and v ∈ K. This implies that for each i

Qi
n(·) −→

∫ ·

s

T (· − ξ)B(σi(ξ))ui(ξ) dξ in L1(s, τ ; X) as n → ∞. (6.13)

Let γ ∈ (α, 1). Since the sequence (−A)γQi
n(·) is bounded in L1(s, τ ; X) by Lemma

6.1, the convergence (6.13), the moments inequality

|(−A)αw| ≤ C(α, γ)|w|1−α/γ |(−A)γw|α/γ for w ∈ D((−A)γ)
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and Hölder’s inequality together implies that

Qi
n(·) −→

∫ ·

s

T (· − ξ)B(σi(ξ))ui(ξ) dξ in L1(s, τ ; Y ).

This means that each W i
� is precompact in L1(s, τ ; Y ). Therefore there exist a

finite number of elements ζi,j(·) ∈ L1(s, τ ; Y ), j = 1, 2, . . . , ν(i), such that

W i
� ⊂

ν(i)⋃
j=1

S(η; ζi,j(·)). (6.14)

Set κ = 2MαΓ(1 − α)να−1(ωRδ + 2/�) + η. Then

W� ⊂
m⋃

i=1

ν(i)⋃
j=1

S(κ; ζi,j(·)) (6.15)

holds. In fact, it follow from (6.12) and (6.14) that for each un(·) ∈ V� there exist
ui(·) and ζi,j(·) such that un(·) ∈ S(2δ; ui(·)) and Qi

l(·) ∈ S(η; ζi,j(·)). In view of
this fact, Lemmas 6.1 and 6.2, we obtain∫ τ

s

e−νt‖Qn(t) − ζi,j(t)‖ dt

≤
∫ τ

s

e−νt‖Qn(t) − Qi
n(t)‖ dt +

∫ τ

s

e−νt‖Qi
n(t) − ζi,j(t)‖ dt (6.16)

≤ 2MαΓ(1 − α)να−1(ωRδ + 2/�) + η.

This shows that (6.15) is valid. Letting η ↓ 0 in (6.16), we have

β(W�) ≤ 2MαΓ(1 − α)να−1(ωRβ(V�) + 2/�) ≤ β(V�)/2 + 1/�. (6.17)

Since Jn(t)v → T (t − s)v and Θn(t) → 0 in L1(s, τ ; Y ) as n → ∞, the sets
{Jn(·)v : n ≥ 1} and {Θn(·) : n ≥ 1} are precompact in L1(s, τ ; Y ). So, using the
inclusion

V� ⊂ {Jn(·)v : n ≥ �} + W� + {Θn(·) : n ≥ �} + {un − vn : n ≥ �}

and Lemma 6.3 (a), we infer that β(V�) ≤ β(W�) + 1/�. This together with (6.17)
implies

β(V�) ≤
3
�
.

Since β(V�) = β(V1) for all � ≥ 1 by Lemma 6.3 (d), we see that β(V1) ≤ 0. There-
fore, the application of Lemma 6.3 (c) implies that V is precompact in L1(s, τ ; Y ).

Step 3. Since V is precompact in L1(s, τ ; Y ), we can choose a convergent subse-
quence {unl

(·)}∞l=1. Let unl
(·) converge to u(·) in L1(s, τ ; Y ) as l → ∞. In this step

we show that u(·) is a local mild solution to (SE)-(IC). Without loss of generality
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we may assume that un(·) converges to u(·). It follows from (6.6), (6.7) and (II.d)
that

ϕ(u(t)) ≤ Ψ(τ, s; ϕ(v)),

u(t) ∈ D(t) for a.e. t ∈ [s, τ ].
(6.18)

Since

|B(σn(ξ))un(ξ) − B(ξ)u(ξ)| ≤ ωR‖un(ξ) − u(ξ)‖ + fR(σn(ξ), ξ)

for a.e. ξ ∈ [s, τ ], B(σn(·))un(·) converges to B(·)u(·) in L1(s, τ ; X) as n → ∞. We
now define a step function Q̂n(·) over [0, τ ] by

Q̂n(t) =

⎧⎪⎨⎪⎩
0 for t ∈ {s}⋃ (tnN(n), τ ]∫ tn

k

s

Jn(tnk , ξ)B(ξ)u(ξ) dξ for t ∈ (tnk−1, t
n
k ], k = 1, 2, . . . , N(n).

Then we infer from Lemma 6.1 that∥∥∥∥Qn(·) −
∫ ·

s

T (· − ξ)B(ξ)u(ξ) dξ

∥∥∥∥
1

≤ ‖Qn(·) − Q̂n(·)‖1 +
∥∥∥∥Q̂n(·) −

∫ ·

s

T (· − ξ)B(ξ)u(ξ) dξ

∥∥∥∥
1

≤ 2MαΓ(1 − α)να−1

∫ τ

s

e−νξ|B(σn(ξ))un(ξ) − B(ξ)u(ξ)| dξ

+
∥∥∥∥Q̂n(·) −

∫ ·

s

T (· − ξ)B(ξ)u(ξ) dξ

∥∥∥∥
1

for n ≥ ν/ log 2. Since the dominated convergence theorem implies

Q̂n(·) −→
∫ ·

s

T (· − ξ)B(ξ)u(ξ) dξ in L1(s, τ ; Y ) as n → ∞,

it follows that Qn(·) converges to
∫ ·

s
T (·−ξ)B(ξ)u(ξ) dξ in L1(s, τ ; Y ). Hence (6.5)

implies the identity

u(t) = T (t − s)v +
∫ t

s

T (t− ξ)B(ξ)u(ξ) dξ for a.e. t ∈ [s, τ ]. (6.19)

We next show that u(·) ∈ Lp(s, τ ; Y ). By (6.19) we have

‖u(t) − v‖ ≤ C(t) + MαωR

∫ t

s

(t − ξ)−α‖u(ξ) − v‖ dξ (6.20)

for a.e. t ∈ [s, τ ], where

C(t) = (M + 1)‖v‖ + Mα(1 − α)−1τ1−α|B(s)v| + Mα

∫ t

s

(t − ξ)−αfR(ξ, s) dξ.
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By Henry’s inequality, Lemma 5.1, we obtain that

‖u(t) − v‖ ≤ C(t) + θα

∫ t

s

E′
1−α(θα(t − ξ))C(ξ) dξ for t ∈ [s, τ ],

where θα is a positive constant given in Theorem 5.2. This implies that u(·) ∈
Lp(s, τ ; Y ). Since B(·)u(·) ∈ Lp(s, τ ; X), it is easily seen that u(·) is continuous in
X . Thus, we have shown that u(·) is a mild solution to (SE)-(IC).

Step 4. From the lower semicontinuity of ϕ(·) it is seen that a mild solution u(·)
constructed in the previous steps satisfies the growth condition (G). Furthermore,
Theorem 5.2 asserts that u(·) is uniquely determined by the initial value v.

For each s ∈ [0, τ) and v ∈ D(s) we write u(·; s, v) for the unique mild solution
to (SE)-(IC). Hence we may define a two parameter family of nonlinear operators
U = {U(t, s) : 0 ≤ s ≤ t ≤ τ} in Y by setting

U(t, s)v = u(t; s, v) for t ∈ [s, τ ] and v ∈ D(s).

In view of Theorem 5.2 and the construction of u(·; s, v), it is verified that U
forms a locally equi-Lipschitz continuous evolution operator in Y satisfying (I.a)
and (I.b). Thus the proof of the generation part of our main theorem, Theorem
4.6, is complete.

Finally, we close this section by giving:

Proof of Lemma 6.2. Applying Lemma 6.1, we have
N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt dt

∫ tn
k

s

|(−A)βJn(tnk , ξ)u(ξ)| dξ

≤
N(n)∑
k=1

∫ tn
k

tn
k−1

e−νt dt

k∑
j=1

∫ tn
j

tn
j−1

Mβ(tnk − tnj−1)
−β |u(ξ)| dξ

= Mβ

N(n)∑
j=1

∫ tn
j

tn
j−1

|u(ξ)| dξ

N(n)∑
k=j

∫ tn
k

tn
k−1

(tnk − tnj−1)
−βe−νt dt

≤ Mβ

N(n)∑
j=1

∫ tn
j

tn
j−1

|u(ξ)| dξ

∫ tn
N(n)

tn
j−1

(t − tnj−1)
−βe−νt dt

≤ MβΓ(1 − β)νβ−1eν|Δn|
∫ tn

N(n)

s

e−νξ|u(ξ)| dξ. �
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7. Discrete local multiple Laplace transforms

As discussed in [19], the concept of local multiple Laplace transform is considerably
useful to discuss products of resolvents of semilinear operators. In order to verify
the implication from (I) to (II) in Theorem 4.6. We need various technical estimates
for the local multiple Laplace transforms which are organized in this section.

For each i ≥ 1 we consider the set Vi(t) = {(s1, . . . , si) ∈ Ri
+ :

∑i
j=1 si ≤ t}

and Ei(ξ1, . . . , ξi; s1, . . . , si) = exp(−s1/ξ1) exp((1/ξ1 − 1/ξ2)s2) · · · exp((1/ξi−1 −
1/ξi)si), and then define Fi : [0,∞) × (0,∞)i → [0,∞) by

Fi(t, ξ1, ξ2, . . . , ξi)

=
1∏i

j=1 ξj

∫
· · ·

∫
Vi(t)

e−
∑ i

j=1 sj/ξj ds1 · · · dsi

=
1∏i

j=1 ξj

∫ t

0

∫ s1

0

· · ·
∫ si−1

0

Ei(ξ1, ξ2, . . . , ξi; s1, s2, . . . , si) dsi · · ·ds1.

To investigate the maximum and minimum of Fi under the condition that∑i
j=1 ξi = constant, we need the following lemma:

Lemma 7.1. Let t > 0 and λ > 0. Let g be a continuous function over [0, +∞).
For each ξ2 > ξ1 > 0 satisfying ξ1 + ξ2 = λ we set

h(t, ξ1, ξ2) =
1

ξ1ξ2

∫ t

0

∫ s

0

e−(t−s)/ξ1e−(s−r)/ξ2g(r) dr ds (7.1)

=
1

ξ2 − ξ1

∫ t

0

(e−(t−s)/ξ2 − e−(t−s)/ξ1)g(s) ds. (7.2)

Then for any ε ∈ (0, ξ1)

h(t, λ/2, λ/2) ≤ h(t, ξ1, ξ2) ≤ h(t, ξ1 − ε, ξ2 + ε) ≤
∫ t

0

e−(t−r)/λg(r) dr. (7.3)

Proof. Noting the relation ξ2 = λ− ξ1 and differentiating both sides of (7.1) with
respect to ξ1, we have

hξ1(t, ξ1, ξ2) = − 1
ξ1

h +
1

ξ3
1ξ2

∫ t

0

∫ s

0

(t − s)e−(t−s)/ξ1e−(s−r)/ξ2g(r) dr ds

+
1
ξ2

h − 1
ξ1ξ3

2

∫ t

0

∫ s

0

(s − r)e−(t−s)/ξ1e−(s−r)/ξ2g(r) dr ds. (7.4)

We show that hξ1 < 0. By integration by parts and using the identity∫ s

0

e−(s−r)/ξ2g(r) dr = ξ1ξ2hs + ξ2h, (7.5)
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the second term of the above identity is calculated as follows:

1
ξ3
1ξ2

∫ t

0

∫ s

0

(t − s)e−(t−s)/ξ1e−(s−r)/ξ2g(r) dr ds

=
1

ξ3
1ξ2

∫ t

0

(t − s)e−(t−s)/ξ1(ξ1ξ2hs + ξ2h) ds

=
1
ξ2
1

∫ t

0

(t − s)e−(t−s)/ξ1hs ds +
1
ξ3
1

∫ t

0

(t − s)e−(t−s)/ξ1h(s) ds

=
1
ξ2
1

∫ t

0

e−(t−s)/ξ1h(s) ds

=
1
ξ1

h − ht +
∫ t

0

e−(t−s)/ξ1hss(s) ds.

Similarly, the forth term of (7.4) is written as below:

− 1
ξ1ξ3

2

∫ t

0

∫ s

0

(s − r)e−(t−s)/ξ1e−(s−r)/ξ2g(r) dr ds

= − 1
ξ1ξ3

2

∫ t

0

∫ s

0

e−(t−s)/ξ1e−(s−r)/ξ2

∫ r

0

e−(r−η)/ξ2g(η) dη dr ds

= − 1
ξ1ξ3

2

∫ t

0

∫ s

0

e−(t−s)/ξ1e−(s−r)/ξ2(ξ1ξ2hη + ξ2h) dη dr ds

= − ξ1

ξ2(ξ2 − ξ1)

∫ t

0

(e−(t−s)/ξ2 − e−(t−s)/ξ1)hs dr ds

− 1
ξ2(ξ2 − ξ1)

∫ t

0

(e−(t−s)/ξ2 − e−(t−s)/ξ1)h dr ds

= − 1
ξ2
2

∫ t

0

e−(t−s)/ξ2h ds

= − 1
ξ2

h + ht −
∫ t

0

e−(t−s)/ξ2hss ds.

Here we have used the identity (7.2) replaced g by h and hη. Thus we obtain

hξ1(t, ξ1, ξ2) =
∫ t

0

(e−(t−s)/ξ1 − e−(t−s)/ξ2)hss ds < 0.

Hence the first and the second inequalities of (7.3) are verified. Taking the limit
as ξ1 → 0 in (7.2) gives the third inequality of (7.3). �

Since Fi(τ, ξ1, ξ2 . . . , ξi) is invariant under the permutation of ξj , the follow-
ing two lemmas are consequences of successive applications of the previous lemma.
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Lemma 7.2. Let τ > 0, λ > 0, i ≥ 1 and let ξj > 0, j = 1, 2, . . . , i. Assume that∑i
j=1 ξj = λ. Then

Fi(τ, ξ1, ξ2, . . . , ξi) ≥ Fi(τ, λ/i, . . . , λ/i) =
1

(i − 1)!

(
i

λ

)i ∫ τ

0

si−1e−is/λ ds. (7.6)

Lemma 7.3. Let τ > 0, λ > 0, i ≥ 1 and let η ∈ (0, 1). Take a natural number l
satisfying (l − 1)η < λ ≤ lη. Then we have

Fi(τ, ξ1, ξ2, . . . , ξi) ≤ Fl(τ, λ − (l − 1)η, η, . . . , η)

for ξj satisfying ξj ∈ (0, η], j = 1, 2, . . . , i, and
∑i

j=1 ξj = λ.

Let N ≥ 2. Let Δ = {0 = σ0 < σ1 < · · · < σN+1 = 1} be a partition of [0, 1]
and set ξi = σi − σi−1. We introduce two families of functions by

Gi(t) =
1

ξi+1

∫ t

0

e−(t−s)/ξi+1Gi−1(s) ds, G0(t) = ξ−1
1 e−t/ξ1 , (7.7)

for t ∈ [0, 1] and i = 1, 2, . . . , N , and

ai(t) =
∫ t

0

Gi−1(s) ds = Fi(t, ξ1, ξ2, . . . , ξi) (7.8)

for t ≥ 0 and i = 1, 2, . . . , N + 1.

Lemma 7.4. Let n ≥ 1. Then

nn

(n − 1)!

∫ 1

0

sn−1e−ns ds > 1/2. (7.9)

Proof. Since n2(n−i) ≥ ∏i
j=i+1(2n − j)j for 0 ≤ i ≤ n − 1, we see that

n−1∑
i=0

ni

i!
≤

n−1∑
i=0

n2n−i−1

(2n − i − 1)!
=

2n−1∑
i=n

ni

i!
<

∞∑
i=n

ni

i!
.

This together with the representation

nn

(n − 1)!

∫ 1

0

sn−1e−ns ds = 1 − e−n
n−1∑
i=0

ni/i!

implies the desired result. �

The following three lemmas show some technical but useful properties of ai(t)
and Gi(t).

Lemma 7.5.

(i) For t > 0 and i = 1, 2, . . . , N , ai(t) > ai+1(t).

(ii) For i = 1, 2, . . . , N + 1, limt→∞ ai(t) = 1 and ai(1) > 1/2.

(iii)
∑N+1

i=1 ξiGi−1(t) ≤ 1 for t ∈ [0, 1] and
∫ 1

0
Gi−1(t) dt < 1.
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Proof. Integrating (7.8) by parts, we have

ai+1(t) = −ξi+1Gi(t) + ai(t) < ai(t). (7.10)

The assertion ai(1) > 1/2 follows from (7.10), Lemmas 7.1 and 7.4. It follows
from direct calculations that limt→∞ ai(t) = 1. Next we verify assertion (iii). Set
QN (t) =

∑N+1
i=1 ξiGi−1(t). Then we see that

QN (t)′ = −GN(t) ≤ 0.

This together with QN (0) = 1 implies that QN (t) ≤ 1 for t ∈ [0, 1]. Finally, it
follows from Lemma 7.5 that∫ 1

0

Gi−1(t) dt = ai(1) ≤ a1(1) < 1.

The proof is now complete. �

Lemma 7.6. Let δ ∈ (0, 1) and η ∈ (0, δ/2). Then, for each partition Δ of [0, 1]
satisfying |Δ| ≤ η, it holds that

ai(σi − δ) ≤
√

1
2πη

(1 − δ)−1/δ
(
(1 − δ)eδ

)1/η
for σi ∈ (δ, 1].

Proof. Let l be a natural number satisfying (l − 1)η < σi ≤ lη. By Lemma 7.3 we
see that

ai(σi − δ) ≤ Fl(σi − δ, σi − (l − 1)η, η, . . . , η)

=
1

(l − 2)!ηl−1(σi − (l − 1)η)

∫ σi−δ

0

∫ t

0

sl−2e−(t−s)/(σi−(l−1)η)e−s/η ds dt

= − 1
(l − 2)!ηl−1

e−(σi−δ)/(σi−(l−1)η)

∫ σi−δ

0

sl−2es(lη−σi)/(η(σi−(l−1)η) ds

+
1

(l − 2)!ηl−1

∫ σi−δ

0

sl−2e−s/η ds

≤ 1
(l − 2)!ηl−1

∫ σi−δ

0

sl−2e−s/η ds.

Since s → sl−2e−s/η is monotone increasing over the interval [0, σi − δ], and since
the function x → xl−1e−x is monotone decreasing over [l − 1,∞), we have

1
(l − 2)!ηl−1

∫ σi−δ

0

sl−2e−s/η ds ≤ 1
(l − 2)!ηl−1

(σi − δ)l−1e−(σi−δ)/η

=
1

(l − 2)!

(
σi

η

)l−1

e−σi/η (1 − δ/σi)
l−1

eδ/η

≤ (l − 1)l−1

(l − 2)!
e−(l−1) (1 − δ/σi)

l−1
eδ/η ≤

√
l − 1
2π

(1 − δ/σi)
l−1

eδ/η.
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Here we have used the Stirling’s formula to show the last inequality. Since x →
(1 − δ/x)x is monotone increasing over (δ, 1] and l/σi ≥ 1/η, we have√

l − 1
2π

(1 − δ/σi)
l−1 eδ/η ≤

√
1

2πη
((1 − δ/σi)σi)(l−1)/σi eδ/η

≤
√

1
2πη

(1 − δ)−1/δ
(
(1 − δ)eδ

)1/η
. �

Lemma 7.7. Let δ ∈ (0, 1) and η ∈ (0, δ+(1−δ) log(1−δ)]. Then, for any partition
Δ = {0 = σ0 < σ1 < · · · < σN+1 = 1} of [0, 1] satisfying |Δ| ≤ η, it holds that

1 − ai(σi + δ) ≤
√

1 − δ

2π

1√
η

(
(1 − δ)δ−1e−δ

)1/η
for σi ∈ (0, 1 − δ].

Proof. Let δ ∈ (0, 1), η ∈ (0, δ +(1− δ) log(1− δ)] and let Δ be a partition of [0, 1]
satisfying |Δ| ≤ η. Let σi ∈ (0, 1 − δ). Since s → se−s/σi is decreasing for s > σi,
we have, by Lemma 7.2 and Stirling’s formula,

1 − ai(σi + δ) ≤ 1 − 1
(i − 1)!

(
i

σi

)i ∫ σi+δ

0

si−1e−is/σi ds

=
1

(i − 1)!

(
i

σi

)i ∫ ∞

σi+δ

si−1e−is/σi ds

≤ 1
(i − 1)!

(
i

σi

)i

((σi + δ)e−(σi+δ)/σi)i−1

∫ ∞

σi+δ

e−s/σi ds

≤
√

i

2π
(1 + δ/σi)i−1e−iδ/σi

≤
√

1 − δ

2π

√
i

σi
((1 + δ/σi)σie−δ)i/σi .

Since ξ → (1 + δ/ξ)ξ is increasing for ξ ∈ (0, 1− δ], (1 − δ)δ−1e−δ < 1, i/σi ≥ 1/η
and since x → √

x((1− δ)δ−1e−δ))x is decreasing for x ≥ 1/(δ +(1− δ) log(1− δ)),
we conclude that

1 − ai(σi + δ) ≤
√

1 − δ

2π

1√
η
((1 − δ)δ−1e−δ)1/η. �

Now we introduce the notion of discrete local multiple Laplace transforms
and investigate some properties of them.

Let (Z, ‖ · ‖Z) be a Banach space and v : [0, 1] → Z. Let Δ = {0 = σ0 < σ1 <
· · · < σN+1 = 1} be a partition of [0, 1]. Then we define a discrete local multiple
Laplace transform of v by

v̂Δ(σi) =
1

ai(1)

∫ 1

0

Gi−1(t)v(t) dt for i = 1, 2, . . . , N + 1.
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Lemma 7.8. Let (Z, ‖ · ‖Z) be a Banach space and let v ∈ C([0, 1]; Z). Then, to
each ε > 0, there corresponds η > 0 such that for any partition Δ = {0 = σ0 <
σ1 < · · · < σN+1 = 1} satisfying |Δ| < η, we have

‖v̂Δ(σi) − v(σi)‖ < ε/2, for i = 1, 2, . . . , N + 1.

Proof. Let ε > 0. Then there exists δ > 0 such that |v(t) − v(σi)| < ε/12 for
t ∈ [σi − δ, σi + δ]∩ [0, 1] and i = 1, 2, . . . , N + 1. Choose a positive number η such
that η < min{δ + (1 − δ) log(1 − δ), δ/2} and

η−1/2 max{(1 − δ)δ−1e−δ, (1 − δ)eδ}1/η <
(1 − δ)1/δε

24(1 + ‖v‖∞)
,

where ‖f‖∞ = max{‖f(t)‖Z : t ∈ [0, 1]}. By Lemmas 7.6 and 7.7, we obtain

‖v̂Δ(σi) − v(σi)‖

≤ 2
∫ (σi−δ)∨0

0

Gi−1(t)‖v(t) − v(σi)‖Z dt + 2
∫ 1

(σi+δ)∧1

Gi−1(t)‖v(t) − v(σi)‖Z dt

+ 2
∫ (σi+δ)∧1

(σi−δ)∨0

Gi−1(t)‖v(t) − v(σi)‖Z dt

≤ 4‖v‖∞
(∫ (σi−δ)∨0

0

Gi−1(t) dt +
∫ 1

(σi+δ)∧1

Gi−1(t) dt

)
+ ε/6

≤ 4‖v‖∞(ai((σi − δ) ∨ 0) + ai(1) − ai((σi + δ) ∧ 1)) + ε/6

< ε/2,

where s ∨ t = max{s, t} and s ∧ t = min{s, t}. Thus the proof is obtained. �

Lemma 7.9. Let (Z, ‖ · ‖Z) be a Banach space, g ∈ L1(0, 1; Z), and let ε > 0. Then
there exists a partition Δ = {0 = σ0 < σ1 < · · · < σN+1 = 1} of [0, 1] such that
|Δ| < ε and

N∑
i=1

ξi‖ĝΔ(σi) − g(σi)‖Z + ξN+1‖ĝΔ(1) − g(σN )‖Z < ε,

where ξi = σi − σi−1 and i = 1, 2, . . . , N + 1.

Proof. Let g ∈ L1(0, 1) and ε > 0. Then there exists a continuous function v over
[0, 1] such that

∫ 1

0 ‖g(t) − v(t)‖Z dt < ε/16. Let η0 be a positive number such
that ‖v(s) − v(t)‖Z < ε/16 for s, t ∈ [0, 1] with |s − t| < η0. Let η be a positive
number specified as in Lemma 7.8. By [10, Lemma 3.3.1] there exists a partition
Δ : 0 = σ0 < σ1 < · · · < σN+1 = 1 satisfying |Δ| ≤ min{η0, η, ε} and

N∑
i=1

∫ σi

σi−1

‖g(s) − g(σi)‖Z ds +
∫ 1

σN

‖g(s) − g(σN )‖Z ds < ε/16. (7.11)
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Then we have
N∑

i=1

ξi‖ĝΔ(σi) − g(σi)‖Z + ξN+1‖ĝΔ(1) − g(σN )‖Z

≤
N∑

i=1

1
ai(1)

∫ σi

σi−1

∫ 1

0

Gi−1(t)‖g(t) − g(σi)‖Z dt ds

+
ξN+1

aN+1(1)

∫ 1

0

GN (t)‖g(t) − g(σN )‖Z dt

≤
N+1∑
i=1

1
ai(1)

∫ σi

σi−1

∫ 1

0

Gi−1(t)‖v(t) − v(s)‖Z dt ds + 4
∫ 1

0

‖v(t) − g(t)‖Z dt

+ 2
N∑

i=1

∫ σi

σi−1

‖g(s) − g(σi)‖Z ds + 2
∫ 1

σN

‖g(s) − g(σN )‖Z ds

≤
N+1∑
i=1

1
ai(1)

∫ σi

σi−1

∫ 1

0

Gi−1(t)‖v(t) − v(σi)‖Z dt ds + ε/2 < ε.

Here we have used Lemma 7.5 (iii). Thus, the proof is complete. �

8. Characterization of nonlinearly perturbed analytic semigroups

In this section we give the proof of implication (I) ⇒ (II) in Theorem 4.6. Once this
is done, then we will have our characterization theorem. Throughout this section
we assume (H1) through (H3) and (I).

Let ε > 0, s ∈ [0, τ), v ∈ D(s) and set R = Ψ(τ, s; ϕ(v)). Let U be the evolu-
tion operator satisfying (I), ωR a positive constant and fR ∈ Fp a function specified
in (H3) replaced r by R. We then set u(t) = U(t, s)v and C = sups≤t≤τ |u(t)|. We
also choose σ∗ ∈ (0, 1) so that σ∗ is close enough to 1 and

|u(τ) − u(s + (τ − s)σ)| < ε/16 for σ ∈ [σ∗, 1].

Let η0 be a positive number such that 8C
√

2/πx−1/2(σ−σ∗∗ eσ∗−1)1/x < ε for x ∈
(0, η0]. Note that σ−σ∗∗ eσ∗−1 < 1. Finally, let η be a positive number specified in
Lemma 7.8 replaced Z, v(t) and ε by Y , u(s + (τ − s)t) and ε/8(1 + ωRτ + τ),
respectively. Then by Lemma 7.9 replaced ε by min{η0, η, 1 − σ∗, ε/4(τ − s)} and
(7.11), there exists a partition {0 = σ0 < σ1 < · · · < σN+1 = 1} of [0, 1] such that
max{σi − σi−1} < min{η0, η, 1 − σ∗, ε/4(τ − s)} and

N∑
i=1

∫ σi

σi−1

fR(s + (τ − s)t, s + (τ − s)σi) dt <
ε

τ − s
, (8.1)

N∑
i=1

ξi

ai(1)

∫ 1

0

Gi−1(t)fR(s + (τ − s)σi, s + (τ − s)t) dt <
ε

4(τ − s)
. (8.2)
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Set ti = s+(τ−s)σi, i = 0, 1, . . . , N+1. Then Δ = {s = t0 < t1 < · · · < tN+1 = τ}
is a partition of [s, τ ]. Set hi = ti− ti−1 for i = 1, 2, . . . , N +1. We define sequences
{vi : 0 ≤ i ≤ N} and {Biv : 1 ≤ i ≤ N} in X, and a sequences {ui : 1 ≤ i ≤ N} in
Y by v0 = v, ui = u(ti) and

vi = ai(1)−1

∫ 1

0

Gi−1(t)u(s + (τ − s)t) dt,

Biv = ai(1)−1

∫ 1

0

Gi−1(t)B(s + (τ − s)t)u(s + (τ − s)t) dt,

where ai(t) and Gi−1(t) are the functions defined by (7.7) and (7.8) with σi =
ti/(τ − s) and ξi = (ti − ti−1)/(τ − s) for i = 1, 2, . . . , N . The integral is taken in
X in the sense of Bochner.

The next result is crucial for the subsequent discussions.

Lemma 8.1. The sequences {vi}, {Biv} and {ui} have the following properties:

(i) vi ∈ D(A) and (I − hiA)vi can be written as

vi−1 + hiBiv + hi((τ − s)ai(1))−1Gi−1(1)(vi−1 − u(τ)) for i = 1, 2, . . . , N .

(ii) ui ∈ D(ti) and ϕ(ui) ≤ Ψ(τ, s; ϕ(v)) for i = 1, 2, . . . , N .

(iii) For i = 1, 2, . . . , N

‖vi − ui‖ < ε/τ and
N∑

i=1

hi|Biv − B(ti)ui| < ε/2.

Proof. Let s ∈ [0, τ) and v ∈ D(s) and let u(·) be a mild solution to (SE)-(IC)-(G).
Assertion (ii) is obvious. We next prove assertion (i). To this end, we employ a
function pi(t) defined by pi(t) = (ai(1))−1ai(t). By Theorem 4.5 (b), it holds that

A

∫ (τ−s)t

0

u(s + r) dr = u(s + (τ − s)t) − v

−
∫ (τ−s)t

0

B(s + r)u(s + r) dr for t ∈ [0, 1]. (8.3)

Multiplying both sides of the above identity by (ai(1))−1Gi−1(t) and integrating
the resultant equation over [0, 1], we have

(ai(1))−1

∫ 1

0

(
Gi−1(t)A

∫ (τ−s)t

0

u(s+r)dr

)
dt

=vi−v−(ai(1))−1

∫ 1

0

Gi−1(t)
∫ (τ−s)t

0

B(s+r)u(s+r)drdt

=vi−v+(τ −s)
∫ 1

0

pi(t)B(s+(τ −s)t)u(s+(τ −s)t)dt−
∫ τ−s

0

B(s+r)u(s+r)dσ.
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In view of (8.3) the last term on the right-hand side is replaced by

u(τ) − v − A

∫ τ

s

u(r) dr.

On the other hand, the left-hand side can be written as

A

(
−(τ − s)

∫ 1

0

pi(t)u(s + (τ − s)t) dt +
∫ τ

s

u(r) dr

)
and thus we obtain

− (τ − s)A
∫ 1

0

pi(t)u(s + (τ − s)t) dt

= vi − u(τ) + (τ − s)
∫ 1

0

pi(t)B(s + (τ − s)t)u(s + (τ − s)t) dt (8.4)

for i = 1, 2, . . . , N . Assume that i ≥ 2. Using the relation

pi(t) = −ξiai(1)−1Gi−1(t) + (ai−1(1)/ai(1))pi−1(t),

we have, by (8.4),

hiAvi = vi − u(τ) − hiBiv +
ai−1(1)
ai(1)

(τ − s)A
∫ 1

0

pi−1(t)u(s + (τ − s)t) dt

+
ai−1(1)
ai(1)

(τ − s)
∫ 1

0

pi−1(t)B(s + (τ − s)t)u(s + (τ − s)t) dt

= vi − u(τ) − hiBiv +
ai−1(1)
ai(1)

(u(τ) − vi−1).

This together with (7.10) implies assertion (i) for i ≥ 2. The case where i = 1 is
proved in a similar way. Finally, assertion (iii) follows from Lemmas 7.8, 7.9 and
(8.2). �

The implication (I) ⇒ (II) in our Characterization Theorem, Theorem 4.6,
is a direct consequence of the theorem below:

Theorem 8.2. Let s ∈ [0, τ), ε > 0 and let v ∈ D(s). Then there exists a partition
Δ : s = t0 < t1 < · · · < tN+1 = τ , finite sequences {vi}N+1

i=0 , {ui}N
i=1 in Y and

{zi}N
i=1 in X such that v0 = v, vi ∈ D(A), ui ∈ D(ti),

‖vi − ui‖ < ε/τ,

N∑
i=1

(ti − ti−1)|zi| < ε,

N∑
i=1

∫ ti

ti−1

fR(ti, ξ) dξ < ε,

vi − (ti − ti−1)(Avi + B(ti)ui) = vi−1 + (ti − ti−1)zi,

ϕ(ui) ≤ Ψ(τ, s; ϕ(v)), for i = 1, 2, . . . , N,

and such that if (ti, ui) → (t, u) as ε → 0, then u ∈ D(t).
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Proof. Let s ∈ [0, τ), ε > 0 and let v ∈ D(s). Let Δ, {vi} and {ui} be a par-
tition and sequences employed in Lemma 8.1. Set zi = Biv − B(ti)ui + ((τ −
s)ai(1))−1Gi−1(1)(vi−1 − u(τ)). In view of Lemma 8.1 and (8.1), we have only to
show that

1
(τ − s)ai(1)

N∑
i=1

hiGi−1(1)|vi−1 − u(τ)|

≤ 2
τ − s

N∑
i=i

hiGi−1(1)|vi−1 − u(τ)| < ε/2. (8.5)

By Lemmas 7.5 and 7.8 we have

2
τ − s

N+1∑
i=i∗+1

hiGi−1(1)|vi−1 − u(τ)| < ε/4, (8.6)

where i∗ is the minimum integer of the set {i : σ∗ ≤ σi < 1}. Since the function
x → (e/x)x is monotone increasing on (0, 1], we have, by (7.10) and Lemma 7.7,

2
τ − s

i∗∑
i=1

hiGi−1(1)|vi−1 − u(τ)| ≤ 4C

(
ξ1G0(1) +

i∗∑
i=2

(ai−1(1) − ai(1))

)
= 4C(1 − ai∗(1))

≤ 2C
√

2/πη−1/2(σ−σi∗
i∗ eσi∗−1)1/η (8.7)

≤ 2C
√

2/πη−1/2(σ−σ∗
∗ eσ∗−1)1/η

< ε/4.

Combining (8.6) with (8.7), we obtain (8.5). The proof is now complete. �

9. Applications to convective reaction-diffusion systems

As an application of our characterization theorem, Theorem 4.6, we here deal with
the existence and uniqueness of mild solutions to a convective reaction-diffusion
system describing the bone remodeling phenomena. The mathematical model takes
the following form :

(RDS)

⎧⎪⎨⎪⎩
ut = d1Δu − α1E · ∇u + γwu − βvu − c1u, (t, x) ∈ (0, τ) × Ω,

vt = d2Δv − α2E · ∇v + a2∇u · ∇v + ε2uv − c2v,

wt = d3Δw + α3E · ∇w − a3∇u · ∇w − ε3uw + c3w

under the initial condition

(IC) u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, w(0, x) = w0(x) ≥ 0
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and the boundary condition

(BC)
∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0.

Here Ω ⊂ Rn is a bounded domain with smooth boundary, τ > 0 and ν denotes
the outward unit normal to ∂Ω. Coefficients di, αi, ci, aj , εj , i = 1, 2, 3, j = 2, 3,
β and γ are all positive constants. We assume that E ∈ C([0, τ ]; (L∞(Ω))n).

In this model, u = u(t, x) represents the concentration of calcium at (t, x) ∈
[0, τ ]×Ω. v = v(t, x) and w = w(t, x) stand for the cell densities of osteoblasts and
osteoclasts, respectively. E represents an electric filed generated by stress-strain
distribution through the bone. Advection effects along the negative and positive
directions of physical and chemical stimulation E are denoted by the convection
terms −α1E · ∇u, −α2E · ∇v and α3E · ∇w. The terms a2∇v · ∇u and a3∇w · ∇u
describe the advection effects on osteoblasts and osteoclasts along the gradient
of the concentration of u. This model was first introduced in [17] and [18] as a
mathematical model which describes a complex physiological phenomena of bone
metabolism. In [16] an attempt was made to show the solvability of the model,
although this section contains a complete version of the proof.

Now we rewrite the nonlinear problem (RDS)-(BC)-(IC) as the abstract
Cauchy problem in the product Banach space (L∞(Ω))3. First, we introduce a
Banach space X = (L∞(Ω))3 equipped with the norm |v|X = max

k=1,2,3
|vk|∞ for

v = (v1, v2, v3) ∈ X . By L∞
+ (Ω) we denote the set of all nonnegative elements

in (L∞(Ω))3 and set X+ = (L∞
+ (Ω))3. Let ω0 > 0. A linear operator A in X is

defined by

D(A) = {v = (vk) : vk ∈ W 2,p(Ω) for p > n and ∂vk/∂ν = 0, k = 1, 2, 3},

Av = (A1v1, A2v2, A3v3) for v ∈ D(A),

A1v1 = d1Δv1 − ω0v1, A2v2 = d2Δv2 − ω0v2, A3v3 = d3Δv3 − ω0v3.

Then it is known that each Ai generates an analytic semigroup Ti(t) on L∞(Ω)
satisfying

|Ti(t)|∞ ≤ e−ω0t for t ≥ 0, (9.1)

and hence A generates an analytic semigroup T (t) = (T1(t), T2(t), T3(t)) on X
satisfying

|T (t)|X ≤ e−ω0t for t ≥ 0. (9.2)

For details we refer to [13, Corollaries 3.1.21 and 3.1.24].
Choose a real number θ ∈ (1/2, 1). We then introduce another Banach space
(Y, ‖ · ‖Y ) defined by

Y = {v ∈ D((−A)θ) : (−A)θv ∈ D(A)},

‖v‖Y = |(−A)θv|X for v ∈ Y .
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We here remark that (−A)θ is represented as

(−A)θv = ((−A1)θv1, (−A2)θv2, (−A3)θv3) for v ∈ Y .

It is well known that there exists a constant Mθ ≥ 1 satisfying

|v|∞ ≤ Mθ|(−Ai)θv|∞, (9.3)

|(I − λAi)−1v − v|∞ ≤ Mθλ
θ|(−Ai)θv|∞ for v ∈ D((−Ai)θ), i = 1, 2, 3, (9.4)

|(−Ai)θ(I − λAi)−1v|∞ ≤ Mθλ
−θ|v|∞ for λ > 0 and v ∈ L∞(Ω), (9.5)

Y is embedded into (C1(Ω))3, and that there exists a constant c0 such that

‖v‖(C1(Ω))3 ≤ c0‖v‖Y for v ∈ Y . (9.6)

Next, for each t ∈ [0, τ ], we define a nonlinear operator B(t) by

D(t) := D(B(t)) = Y, B(t) = Bc(t) + Br, (9.7)

Bc(t)v = (Bc,1(t)v, Bc,2(t)v, Bc,3(t)v), Brv = (Br,1v, Br,2v, Br,3v),

Bc,1(t)v = −α1E(t) · ∇u, Bc,2(t)v = −α2E(t) · ∇v + a2∇u · ∇v,

Bc,3(t)v = α3E(t) · ∇w − a3∇u · ∇w,

Br,1v = γwu − βuv + (ω0 − c1)u, Br,2v = ε2uv + (ω0 − c2)v,

Br,3v = −ε3uw + (ω0 + c3)w for v = (u, v, w) ∈ Y .

We also employ a continuous functional ϕ on Y defined by

ϕ(v) = ‖v‖Y for v ∈ Y . (9.8)

Lemma 9.1. For each λ > 0, we have

|(I − λAi)−1v|∞ ≤ (1 + λω0)−1|v|∞ for v ∈ L∞(Ω) and i = 1, 2, 3.

For the proof of Lemma 9.1 we employ 0-1 measures defined as follows:

Definition 9.2. Let (S, Σ, μ) be a measure space. A measure μ on Σ is said to be
0-1 measure, if either μ(E) = 1 or μ(Ec) = 1.

Let M be the class of all Lebesgue measurable subsets of Ω and ba(Ω) the set
of all finitely additive bounded measures on M which vanish on sets of Lebesgue
measure zero. Let μ ∈ ba(Ω) be a 0-1 measure. We set M (μ) = {E ∈ M : μ(E) =
1}. Then it is known that there exists a unique point a ∈ Ω such that for any
neighborhood U of a, U ∩ Ω ∈ M (μ),

⋂
M (μ) = {a} and

⋂
M (μ) = ∅, where

M (μ) = {E : E ∈ M (μ)}. (See [26, Theorem 3.1.3].) The singleton set {a} of the
uniquely determined point a is called the essential support of μ.

We here state some crucial properties of 0-1 measures in ba(Ω):
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Lemma 9.3. Let μ ∈ ba(Ω) be a 0-1 measure with the essential support at a ∈ Ω.
By 〈f, w〉 we denote the value of w ∈ L∞(Ω)∗ at f ∈ L∞(Ω). Then the following
are valid:
(a) ba(Ω) = L∞(Ω)∗.
(b) ‖μ‖ = 1 and 〈f, μ〉 = f(a) for f ∈ C(Ω).
(c) 〈fg, μ〉 = 〈f, μ〉〈g, μ〉 for f , g ∈ L∞(Ω).

For details we refer to [26, 32].

The next lemma is used in the proofs of Lemmas 9.1 and 9.7.

Lemma 9.4. Let u ∈ W 2,p(Ω) for some p > N and Δu ∈ L∞(Ω). Assume that
u has nonnegative maximum at some a ∈ Ω. Assume also either (i) a ∈ Ω, or
(ii) a ∈ ∂Ω, u(a) > u(x) for x ∈ Ω and (∂u/∂ν)(a) = 0. Then there exists a 0-1
measure μ ∈ ba(Ω) such that μ has the essential support at a and 〈Δu, μ〉 ≤ 0.

Proof. The arguments in the following are the combination of those of [7, Lemma
3.4] and [26, Lemma 4.3.2]. By B(x; r) we denote a ball with center at x and radius
r. Let r > 0 and set Er = {x ∈ B(a; r)∩Ω : Δu ≤ 0}. First we show that m(Er) > 0
for sufficiently small r, where m denotes the Lebesgue measure. Assume to the
contrary that Δu > 0 a.e. in B(a; r)∩Ω. In the case of (i), we choose r0 > 0 small
enough to satisfy B(a; r0) ⊂ Ω. Then, by strong maximum principle ([7, Theorem
9.6]), u must be a constant on B(a; r) for r ∈ (0, r0). This is a contradiction. Hence
m(Er) > 0 for r ∈ (0, r0). In the case of (ii), the proof is given as follows. Since
∂Ω is smooth, there exists a ball B(y; R) ⊂ B(a; r) ∩ Ω with a ∈ ∂B(y; R). For
ρ ∈ (0, R) we define an auxiliary function v by v(x) = e−δ|x−y|2 − e−δR2

, where
δ = 1/(2ρ2). Then we see that

Δv(x) = e−δ|x−y|2{4δ2|x − y|2 − 2nδ}
holds on D := B(y; R) \ B(y; ρ). Hence we have Δv ≥ 0 on D provided that δ is
chosen large enough. Since u(x)−u(a) < 0 on ∂B(y; ρ), there is a constant η > 0 for
which u(x)−u(a)+ηv(x) ≤ 0 on ∂B(y; ρ). This inequality also holds on ∂B(y; R).
Note that v(x) = 0 on the boundary. Thus we have Δ(u(x)− u(a) + ηv(x)) ≥ 0 in
D, and u(x)−u(a)+ηv(x) ≤ 0 on ∂D. The weak maximum principle ([7, Theorem
9.1]) implies that u(x) − u(a) + ηv(x) ≤ 0 on D. Taking the normal derivative at
a, we obtain (∂u/∂ν)(a) ≥ −η(∂v/∂ν)(a) = −ηv′(R) > 0. This contradicts the
assumption that (∂u/∂ν)(a) = 0. Therefore we have shown that m(Er) > 0 in
both cases.

Let E = {Er : r ∈ (0, r0)}. Then for any finite subsets F of E , the Lebesgue
measure of the intersection of all elements in F is positive. Hence, by [32, Theorem
4.1], there exists a 0-1 measure μ with the property that μ(E) = 1 for any E ∈ E .
It follows from the definition of E that the essential support of μ is {a}. Thus we
have

〈Δu, μ〉 =
∫

Ω

Δu dμ =
∫

Er

Δu dμ ≤ 0.

The proof is now complete. �
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Proof of Lemma 9.1. Since the resolvent (I − λAi)−1 exists for sufficiently large
λ, we show that Ai − ω0 is dissipative in L∞(Ω). Let v ∈ D(Ai). Without loss
of generality, we may assume that |v|∞ = v(a) ≥ 0. Let μ be the 0-1 measure
obtained by Lemma 9.4. Let λ > 0 and set f = v − λAiv. Then, we have

〈v, μ〉 = λ〈(diΔ − ω0)v, μ〉 + 〈f, μ〉

≤ −λω0|v|∞ + |f |∞.

Since 〈v, μ〉 = v(a) = |v|∞, this means that Ai − ω0 is dissipative. �

The next lemma directly follows from the definitions of Br and Bc(t).

Lemma 9.5.

(i) There exists a nondecreasing function Lr : [0,∞) → [0,∞) such that

|Brv|X ≤ Lr(|v|X)(1 + ‖v‖X) for v ∈ Y .

(ii) For v = (u, v, w) ∈ Y ∩ X+ it holds that

|Br,1v|∞ ≤ (γ + ω0)|w|∞|u|∞,

|Br,2v|∞ ≤ (ε2 + ω0)|v|∞|u|∞,

|Br,3v|∞ ≤ (c3 + ω0)|w|∞.

(iii) There exists a positive constant Cc such that

|Bc,1(t)v|∞ ≤ Cc|(−A1)θu|∞,

|Bc,2(t)v|∞ ≤ Cc(1 + |(−A1)θu|∞)|(−A2)θv|∞,

|Bc,3(t)v|∞ ≤ Cc(1 + |(−A1)θu|∞)|(−A3)θw|∞.

Therefore we have

|Bc(t)v|X ≤ Cc(1 + ‖v‖Y )‖v‖Y for t ∈ [0, τ ] and v = (u, v, w) ∈ Y . (9.9)

For each ρ > 0 and t ∈ [0, τ ] we set Dρ(t) = {v ∈ Y : ϕ(v) ≤ ρ}. We need
the following four lemmas:

Lemma 9.6. (Local Lipschitz condition) For each ρ > 0 there exists a constant
ωB,ρ ≥ 0 and a nondecreasing function gρ : [0, τ ] → [0,∞) such that limr↓0 gρ(r) =
gρ(0) = 0 and

|Brv − Brv̂|X ≤ ωB,ρ|v − v̂|X , (9.10)

|Bc(s)v − Bc(t)v̂|X ≤ ωB,ρ‖v − v̂‖Y + gρ(|t − s|) (9.11)

for s, t ∈ [0, τ ], v ∈ Dρ(s) and v̂ ∈ Dρ(t).
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Proof. Let s, t ∈ [0, τ ] and ρ > 0. Let v = (u, v, w) ∈ Dρ(s) and v̂ = (û, v̂, ŵ) ∈
Dρ(t). Then by (9.3) and (9.6) we have

|Br,1v − Br,1v̂|∞ ≤ (2(β + γ)Mθρ + c1 + ω0)|v − v̂|X ,

|Br,2v − Br,2v̂|∞ ≤ (2ε2Mθρ + c2 + ω0)|v − v̂|X ,

|Br,3v − Br,3v̂|∞ ≤ (2ε3Mθρ + c3 + ω0)|v − v̂|X ,

and

|Bc,1(s)v − Bc,1(t)v̂|∞ ≤ α1‖E‖∞c0‖v − v̂‖Y + gρ(|t − s|),

|Bc,2(s)v − Bc,2(t)v̂|∞ ≤ (α2‖E‖∞ + 2a2c0ρ)c0‖v − v̂‖Y + gρ(|t − s|),

|Bc,3(s)v − Bc,3(t)v̂|∞ ≤ (α3‖E‖∞ + 2a3c0ρ)c0‖v − v̂‖Y + gρ(|t − s|),
where ‖E‖∞ = max{|E(t)|∞ : t ∈ [0, τ ]} and

gρ(r) = ρ max{α1, α2, α3}c0 max{|E(s) − E(t)|∞ : s, t ∈ [0, τ ], |s − t| ≤ r}.
These inequalities together imply the desired estimates. �

Lemma 9.7. (Subtangential condition and positivity preserving property)
(i) For each R > 0 and ε̃ > 0 there exists λ0 = λ0(R, ε̃) ∈ (0, ε̃) such that to

each s ∈ [0, τ), v0 = (u0, v0, w0) ∈ DR(s) and λ ∈ (0, λ0] ∩ (0, τ − s] there
corresponds vλ ∈ D(A) satisfying

vλ − λ(A + Bc(s + λ))vλ = v0 + λBrv0. (9.12)

(ii) If v0 ∈ DR(s) ∩ X+, then vλ obtained above belongs to D(A) ∩ X+.

Proof. Let R > 0 and ε̃ > 0. Choose λ0 ∈ (0, ε̃) small enough to satisfy

λ1−θ
0 Mθ(Lr(MθR)(1 + MθR) + Cc(2 + R)R) < 1,

MθωB,R+1λ
1−θ
0 < 1/2 and λ0((β + ε3)MθR + c1 + c2) < 1.

Let s ∈ [0, τ), v0 ∈ DR(s) and λ ∈ (0, λ0] ∩ (0, τ − s]. We then introduce a closed
subset W ⊂ D(s + λ) = Y and a mapping F : W → Y defined by

W = {w : ‖w‖Y ≤ R + 1} and

Fw = (I − λA)−1(v0 + λBrv0 + λBc(s + λ)w) for w ∈ W .

For w, ŵ ∈ W we apply (9.3), (9.5), Lemmas 9.5 and 9.6 to get

‖Fw‖Y ≤ ‖v0‖Y + Mθλ
1−θ(Lr(|v0|X)(1 + |v0|X) + Cc(1 + ‖w‖Y )‖w‖Y )

≤ ‖v0‖Y + Mθλ
1−θ
0 (Lr(MθR)(1 + MθR) + Cc(2 + R)R) < R + 1

and

‖Fw − F ŵ‖Y ≤ MθωB,R+1λ
1−θ‖w − ŵ‖Y < (1/2)‖w − ŵ‖Y .

By the contracting mapping theorem, one finds vλ ∈ W satisfying vλ = Fvλ. This
shows assertion (i).
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Next we prove assertion (ii) by contradiction. Let s∈ [0,τ), v0 =(u0,v0,w0)∈
DR(s)∩X+, λ ∈ (0, λ0] and let vλ = (uλ, vλ, wλ) ∈ D(A) satisfy (9.12). Suppose
to the contrary that vλ �∈ X+. We consider the case where uλ is not nonnegative.
Then, −uλ attains its positive maximum at a ∈ Ω. Since uλ satisfies (BC), it
follows from Lemma 9.4 that there exists a 0-1 measure μ such that 〈Δuλ, μ〉 ≥ 0.
Noting that uλ ∈ C1(Ω), ∇uλ(a) = 0, and the identity

uλ − λ(d1Δ − ω0)uλ − λα1E(s + λ) · ∇uλ = (1 + λ(ω0 + γw0 − βv0 − c1))u0,

we have
(1 + λω0)uλ(a) ≥ (1 − λ(β|v0|∞ + c1))u0(a) ≥ 0.

This contradicts uλ(a) < 0. Similarly, the other cases lead to a contradiction. Thus
assertion (ii) is proved. �
Lemma 9.8. (A priori estimate with respect to X norm)
Let s ∈ [0, τ) and v0 = (u0, v0, w0) ∈ D(s)∩X+. Assume that there exist sequences
{ti}N

i=0 in [s, τ ] and {vi}N
i=1 in D(A) ∩ X+ satisfying t0 = s and

vi − hi(A + Bc(ti))vi = vi−1 + hiBrvi−1, i = 1, 2, . . . , N, (9.13)

where hi = ti − ti−1, i = 1, 2, . . . , N . Then it holds that

|vi|X ≤ C(τ, |v0|X) ≡ max{exp(γτ |v0|X exp(c3τ))|v0|X , exp(c3τ)|v0|X , κ}
for i = 1, 2, . . . , N , where κ = exp(ε2τ |v0|X exp(γτ |v0|X exp(c3τ)))|v0|X .

Proof. Let s ∈ [0, τ) and v0 = (u0, v0, w0) ∈ D(s) ∩ X+. Let {ti}N
i=0 in [s, τ ]

and {vi}N
i=1 in D(A) ∩ X+ satisfy (9.13). We first show that |wi|∞ ≤ ec3τ |w0|∞,

i = 1, 2, . . . , N . Let wi attain its nonnegative maximum at a ∈ Ω and let μ be a 0-1
measure specified in Lemma 9.4 with u replaced by wi. Noting that ∇wi(a) = 0
and

wi − hi(d3Δ − ω0)wi − hi(α3E(ti) · ∇wi − a3∇ui · ∇wi) = wi−1 + hiBr,3vi−1,

Lemma 9.5 implies

(1 + hiω0)wi(a) ≤ |wi−1|∞ + hi(c3 + ω0)|wi−1|∞.

Since wi(a) = |wi|∞, the above inequality implies

|wi|X ≤ ec3τ |w0|∞, i = 1, 2, . . . , N.

Similarly, we have

(1 + hiω0)|ui|∞ ≤ |ui−1|∞ + hi(γ + ω0)|wi−1|∞|ui−1|∞
≤ |ui−1|∞ + hi(γ + ω0)ec3τ |w0|∞|ui−1|∞

and

(1 + hiω0)|vi|∞ ≤ |vi−1|∞ + hi(ε2 + ω0)|ui−1|∞|vi−1|∞ for i = 1, 2, . . . , N .

These inequalities imply that

|ui|∞ ≤ exp(γτ |w0|∞ exp(c3τ))|u0|∞
|vi|∞ ≤ exp(ε2τ |u0|∞ exp(γτ |w0|∞ exp(c3τ)))|v0|∞. �
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Lemma 9.9. (A priori estimate with respect to Y norm)
There exists a function Ψ : [0, τ ]2 × [0,∞) → [0,∞) having the following two
properties:

(i) For each s ∈ [0, τ ], t ∈ [s, τ ] and r ≥ 0, Ψ(t, s; ·) and Ψ(·, s; r) are monotone
nondecreasing.

(ii) For all sequences {ti}N
i=0 in [s, τ ] and {vi}N

i=0 in X+ satisfying t0 = s, v0 ∈
Dρ(s), vi ∈ D(A), |Δ| ≤ ((1 − θ)/(2MθCc))1/(1−θ) and

vi − hi(A + Bc(ti))vi = vi−1 + hiBrvi−1, i = 1, 2, . . . , N, (9.14)

where hi = ti − ti−1 and |Δ| = max{hi : 1 ≤ i ≤ N}, the following estimate
holds;

‖vi‖Y ≤ Ψ(τ, s; ρ), for i = 1, 2, . . . , N .

Proof. Let s ∈ [0, τ), ρ > 0 and v0 ∈ Dρ(s)∩X+. Let {ti}N
i=0 in [s, τ ] and {vi}N

i=1

in D(A) ∩ X+ satisfy (9.14). By (9.14), we see that

vi =
i∏

j=1

(I − hjA)−1v0 +
i∑

j=1

hj

i∏
k=j

(I − hkA)−1(Bc(tj)vj + Brvj−1) (9.15)

holds for i = 1, 2, . . . , N . First we give the estimate for |(−A1)θui|∞. By (9.5),
(9.15), Lemmas 6.1 and 9.5, we have

‖(−A1)θui‖∞ ≤ |(−A1)θu0|∞ + Mθ

i∑
j=1

hj(ti − tj−1)−θCc|(−A1)θuj|∞ (9.16)

+ Mθ

i∑
j=1

hj(ti − tj−1)−θ(γ + ω0)|wj−1|∞|uj−1|∞, i = 1, 2, . . . , N,

We define

q(s) = |(−A1)θu0|∞ and

q(t) = max{|(−A1)θu0|∞, |(−A1)θu1|∞, . . . , |(−A1)θui|∞}
for t ∈ (ti−1, ti] and i = 1, 2, . . . , N . By (9.16), we have for t ∈ (ti−1, ti], i =
1, 2, . . . , N ,

q(t) ≤ |(−A1)θu0|∞ + MθCc

∫ ti

s

(ti − ξ)−θq(ξ) dξ + C̃(τ, ρ)
∫ ti

s

(ti − ξ)−θ dξ

≤ Kρ + MθCc

∫ ti

s

(ti − ξ)−θq(ξ) dξ

≤ Kρ + MθCc

∫ ti

ti−1

(ti − ξ)−θq(ξ) dξ + MθCc

∫ ti−1

s

(ti − ξ)−θq(ξ) dξ

≤ Kρ + MθCc(1 − θ)−1|Δ|1−θq(t) + MθCc

∫ t

s

(t − ξ)−θq(ξ) dξ,
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where Kρ = ρ+(1−θ)−1τ1−θC̃(τ, ρ), C̃(τ, ρ) = (γ+ε2+c3+ω0)MθC(τ, Mθρ)2 and
C(τ, Mθρ) is a constant specified in Lemma 9.8. Since MθCc(1−θ)−1|Δ|1−θ ≤ 1/2,
we obtain

q(t) ≤ 2Kρ + 2MθCc

∫ t

s

(t − ξ)−θq(ξ) dξ for t ∈ [s, tN ].

Applying Henry’s inequality, Lemma 5.1, we conclude that

q(t) ≤ 2KρE1−θ(δθ(t − s)) for t ∈ [s, tN ],

where δθ = (2MθCcΓ(1 − θ))1/(1−θ). This implies that

|(−A1)θui|∞ ≤ 2KρE1−θ(δθ(τ − s)) for i = 1, 2, . . . , N.

Next we show the estimate for |(−A2)θvi|∞. By (9.15) we have

|(−A2)θvi|∞ ≤ |(−A2)θv0|∞ + C̃(τ, ρ)
i∑

j=1

hj(ti − tj−1)−θ

+ Mθ

i∑
j=1

hj(ti − tj−1)−θCc(1 + |(−A1)θuj|∞)|(−A2)θvj |∞

≤ ρ + C̃(τ, ρ)
i∑

j=1

hj(ti − tj−1)−θ

+ MθCc(1 + 2KρE1−θ(δθτ))
i∑

j=1

hj(ti − tj−1)−θ|(−A2)θvj |∞

for i = 1, 2, . . . , N . In a way similar to the estimate for |(−A1)θui|∞, we obtain

|(−A2)θvi|∞ ≤ 2KρE1−θ(δ̂θ(τ − s)) for i = 1, 2, . . . , N ,

where δ̂θ = (2MθCc(1+2KρE1−θ(δθτ))Γ(1−θ))1/(1−θ). Finally |(−A3)θwi| satisfies
the same estimate as |(−A2)θvi|. Since δθ < δ̂θ, assertion (ii) holds for the function

Ψ(t, s; ρ) = 2KρE1−θ(δ̂θ(t − s)). (9.17)

Accordingly, a growth condition in this model is given by the above function Ψ.
�

Theorem 9.10. For each u0 ∈ Y ∩X+ there exists a unique mild solution u(·) ∈ X+

to (RDS)-(BC)-(IC) satisfying

|u(t)|X ≤ C(τ, |u0|X), for t ∈ [0, τ ].

‖u(t)‖Y ≤ Ψ(τ, 0; ‖u0‖Y ) for t ∈ [0, τ ],

where Ψ is a function determined by (9.17).



500 R.H. Martin, Jr., T. Matsumoto, S. Oharu and N. Tanaka

Proof. In (9.2), (9.7), (9.8) and Lemma 9.6, we have checked that assumptions (H1)
through (H3) in Theorem 4.6 hold. If we could check assumption (II) in Theorem
4.6, then the desired result would be obtained by Theorem 4.6 and Lemma 9.8.
To this end, let ε > 0, s ∈ [0, τ) and v0 ∈ D(s) ∩ X+, and set ρ = ϕ(v0) and
R = Ψ(τ, s; ρ) + ε. Let λ∗ be the maximum of the numbers satisfying λ ∈ (0, 1)
and λθωB,R(MθR + CcR(1 + R) + Lr(MθR)(1 + MθR)) < ε. Let gR be a function
specified in Lemma 9.6. Since limr↓0 gR(r) = 0, there exists η > 0 such that
|gR(r)| < ε/τ for r < η. Set ε̃ = min{ε, η, ((1 − θ)/(2MθCc))1/(1−θ), λ∗}. Then,
it follows from Lemmas 9.7 and 9.9 that there exist λ0 = λ0(R, ε̃) ∈ (0, ε̃) and
v1 ∈ D(A) ∩ X+ such that

v1 − λ1(A + B(s + λ1))v1 = v0 + λ1z1 and ϕ(v1) ≤ R,

where λ1 = min{λ0, τ − s} and z1 = Brv0 − Brv1. From Lemmas 9.5, 9.6, (9.3)
and (9.4), we infer that

|z1|X ≤ ωB,R|v0 − v1|X

≤ ωB,R(|(I − λ1A)−1v0 − v0|X + λ1|Brv0|X) + λ1|Bc(t1)v1|X)

≤ λθ
1ωB,R(MθR + CcR(1 + R) + Lr(MθR)(1 + MθR)) < ε.

Letting t1 = s + λ1 and using Lemmas 9.5, 9.6, 9.7, 9.9, (9.3) and (9.4) again, we
can find v2 ∈ D(A) ∩ X+ satisfying

v2 − λ2(A + B(t1 + λ2))v2 = v1 + λ2z2 and ϕ(v2) ≤ R.

Here λ2 = min{λ0, τ − t1}, z2 = Brv1−Brv2 and |z2|X < ε. Repeating the above
arguments finite times, we obtain the sequences {ti}N+1

i=0 in [s, τ ], {vi}N
i=0 in Y ∩X+

and {zi}N
i=1 in X satisfying assumption (II) with ui = vi, zi = Brvi−1 − Brvi

and fR = gR. The proof is now complete. �
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Verlag, Basel, 1995.

[14] R.H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces.
Wiley-Interscience, New York, 1976.

[15] T. Matsumoto, Time-dependent nonlinear perturbations of analytic semigroups in
Banach spaces. Adv. Math. Sci. Appl. 7 (1997), 119–163.

[16] Y. Matsuura, S. Oharu and D. Tebbs, On a class of reaction-diffusion systems de-
scribing bone remodeling phenomena. Nihonkai Math. J. 13 (2002), 17–32.

[17] Y. Matsuura, S. Oharu, T. Takata and A. Tamura, Mathematical approaches to bone
reformation phenomena and numerical simulations. J. Comput. Appl. Math. 158,
no. 1 (2003), 107–119.

[18] Y. Matsuura and S. Oharu, Mathematical models of bone remodeling phenomena and
numerical simulations, I – modeling and computer simulations –. Adv. Math. Sci.
Appl. 13, No. 2 (2003), 401–422.

[19] G. Nakamura and S. Oharu, Estimation of multiple Laplace transforms of convex
functions with an application to analytic (C0)-semigroups. Proc. Japan Acad. 62,
Ser. A (1986), 253–256.

[20] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy
problem. Pacific J. 135 (1988), 111–155.

[21] S. Oharu, Nonlinear perturbations of analytic semigroups. Semigroup Forum 42
(1991), 127–146.

[22] S. Oharu and A. Pazy, Locally Lipschitz perturbations of analytic semigroups in
Banach spaces. preprint.

[23] S. Oharu and T. Takahashi, Characterization of nonlinear semigroups associated with
semilinear evolution equations. Trans. Amer. Math. Soc. 311 (1989), 593–619.

[24] S. Oharu and D. Tebbs, Locally relatively continuous perturbations of analytic semi-
groups and their associated evolution equations. Japan J. Math. 31 (2005), 97–129.

[25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations. Springer Verlag, Berlin, 1983.

[26] J.J. Peiris, On the duality mapping of L∞ spaces. Hiroshima Math. J. 29 (1999),
89–115.



502 R.H. Martin, Jr., T. Matsumoto, S. Oharu and N. Tanaka

[27] J. Prüss, On semilinear parabolic evolution equations on closed sets. J. Math. Anal.
Appl. 77 (1980), 513–538.

[28] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of contin-
uous functions. J. Math. Anal. Appl. 107 (1985), 16–66.

[29] N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups. Semigroup Fo-
rum 38 (1989), 253–261.

[30] N. Tanaka and I. Miyadera, Exponentially bounded C-semigroups and integrated
semigroups. Tokyo J. Math. 12 (1989), 99–115.

[31] H.R. Thieme, Integrated semigroups and integral solutions to abstract Cauchy prob-
lems. J. Math. Anal. Appl. 152 (1990), 416–447.

[32] K. Yosida and E. Hewitt, Finitely additive measures. Trans. Amer. Math. Soc. 72
(1952), 46–66.

Robert H. Martin, Jr.
Department of Mathematics
North Carolina State University
255 Harrelson Hall
Box 8205
Raleigh, North Carolina 27695, USA
e-mail: rhmartin@math.ncsu.edu

Toshitaka Matsumoto
Department of Mathematical and Life Sciences
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
e-mail: mats@math.sci.hiroshima-u.ac.jp

Shinnosuke Oharu
Department of Mathematics
Faculty of Science and Engineering
Chuo University
Tokyo 112-8551, Japan
e-mail: oharu@math.chuo-u.ac.jp

Naoki Tanaka
Department of Mathematics
Faculty of Science
Shizuoka University
Shizuoka 422-8529, Japan
e-mail: sntanak@ipc.shizuoka.ac.jp



Functional Analysis and Evolution Equations. The Günter Lumer Volume. 503–514

c© 2007 Birkhäuser Verlag Basel/Switzerland
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Strongly Damped Wave Equations
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Abstract. We discuss a Hilbert space method that allows to prove analytical
well-posedness of a class of linear strongly damped wave equations. The main
technical tool is a perturbation lemma for sesquilinear forms, which seems to
be new. In most common linear cases we can furthermore apply a recent result
due to Crouzeix–Haase, thus extending several known results and obtaining
optimal analyticity angle.
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1. Introduction

Of concern of this note are complete second-order abstract Cauchy problems of
the form {

ü(t) + Au(t) + Bu̇(t) = 0, t ≥ 0,
u(0) = u10, u̇(0) = u20,

(1.1)

where the elastic operator A is in the literature usually assumed to be a self-adjoint,
strictly positive definite operator on a Hilbert space H . It is known that such elastic
systems exhibit good properties whenever B is a multiplication operator: e.g., they
are forward as well as backward solvable, they admit energy decay estimates if B
is dissipative, or else blow-up estimates if B is accretive, see, e.g., [20, 21, 23] and
references therein.

It is interesting to note that, in particular, the standard model of an electrical
transmission line by means of the telegraph equation fits this framework, the case
of B negative multiplication operator corresponding to viscous damping.

In [8], Chen–Russell proposed a family of different, strongly (or structural)
damping effects: theoretical arguments and empirical studies motivated them to

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):



504 D. Mugnolo

consider damping operators that are unbounded on H , cf. references in [8]. For
the sake of simplicity, they mostly investigated the special cases of B = A and
B = 2ρA

1
2 . However, they also pointed out that the crucial property is the so-called

frequency response estimate

‖λR(iλ,A)‖ ≤ M, λ ∈ ,

satisfied by the resolvent operator of A, where

A :=
(

0 −I
A B

)
(1.2)

is the reduction matrix associated with (1.1). Thus, following Chen–Russell the
issue becomes to find conditions on A, B ensuring that A (or rather its closure)
generates an analytic semigroup in the candidate phase space H := D(A

1
2 ) × H .

Ever since, several authors including Dautray–Lions, Chen–Triggiani, Xiao–
Liang, and Chill–Srivastava have further investigated these kind of parabolic sys-
tems, significantly extending the results of Chen–Russell. Chen–Triggiani still im-
posed the assumption that the damping effect is at most as strong as the elastic
one, i.e., that

B = ρAα, for α ∈ [0, 1] and ρ ∈ (0,∞), (1.3)

and then showed, by methods based on spectral analysis, that the semigroup gen-
erated by the closure (of a suitable part) of −A is analytic if and only if α ∈ [ 12 , 1],
cf. [9, Thm. 1.1]. Successively, Xiao–Liang have proved similar results in the slightly
more general case where B = f(A) for a suitable class of functions f , cf. [30,
Thm. 6.4.2]. Similar, less sharp results have also been obtained in [15, § 6.3] by
a technique based on the theory of operator matrices. We observe that strongly
damped wave equations are also of interest in the framework of control theory,
see, e.g., [7, 22], and references therein. Energy decay estimates have also been
extensively investigated, see, e.g., [19, 5].

More recently, Chill–Srivastava have discussed Lp-maximal regularity prop-
erties for the solution to{

ü(t) + Au(t) + Bu̇(t) = f(t), t ∈ [0, T ],
u(0) = 0, u̇(0) = 0.

(1.4)

While they are not directly interested in the analyticity of the semigroup generated
by −A, their results in some sense extend those of [9, 30]: if (1.3) holds and A
is a sectorial operator on an Lq-space, q ∈ (1,∞), and under further technical
assumptions, it turns out that (1.4) has maximal Lp-regularity if α ∈ (1

2 , 1], cf. [11,
Thm. 4.1]. Observe that, in particular, if (1.4) has Lp-maximal regularity, then a
differentiable semigroup governs (1.1) on a certain phase space, cf. [11, Cor. 2.5].

The case of D(B) ⊂ D(A) has been treated less frequently, see, e.g., [28, 26];
moreover, most authors have not discussed analyticity properties. In [25, Thm. 6.2],
we have showed that if B generates a cosine operator function with phase space
V × H , and if A is bounded from V to H , then (1.1) is governed by an analytic
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semigroup of angle π
2 . In many relevant cases this amounts to saying that A = ρBα,

for α ≤ 1
2 and ρ ∈ .

Aim of this paper is to discuss (1.1) under assumptions on B that comple-
ment, or perhaps interpolate, those of the above mentioned papers. In fact, we
will assume B to be at least as unbounded as A. The quoted results suggest that
α = 1

2 is a critical exponent, whenever (1.3) holds. In fact, we will show that the
exponent α = 1 is critical, too. More precisely if α = 1, then the leading term
in (1.1) is not A anymore, but B. In fact, we show that (1.1) is governed by an
analytic semigroup under quite weak boundedness assumptions on A, whenever
B is associated with a closed, H-elliptic form. In particular, we show that no
closedness or spectral conditions on A are necessary. Our method is based on the
introduction of a suitable weak formulation of (1.1), and then on the application
of the theory of sesquilinear forms on complex Hilbert spaces. We refer to [27, 2]
for comprehensive treatments of this mature theory that goes back to Kato and
Lions, and to [14] for a similar, slightly less general approach to damped wave
equations due to Dautray–Lions.

In Section 2 we introduce our general framework and show a first well-
posedness result for (1.1). To this aim we prove a perturbation lemma for sesquilin-
ear forms that may be of independent interest. We also obtain a first estimate on
the angle of analyticity. In Section 3 we impose slightly stronger conditions and,
by means of a recent result due to Crouzeix–Haase, we find sufficient condition
in order that the semigroup is analytic of angle π

2 : this includes the relevant case
of self-adjoint damping operator B. Some applications to semilinear problems are
also considered.

Remark added in revision: The anonymous referee has informed us that a vari-
ational approach to linear damped wave equations has also been pursued in [14,
§ XVIII.5.1], see also [14, § XVIII.6]. Indeed, Dautray–Lions’ methods are quite
similar to those presented in Section 2 below, and they also consider the neutral
equation Cü(t) + Au(t) + Bu̇(t) = 0, t ≥ 0, even in the nonautonomous case,
where D(B) ⊂ D(A). Though, the assumptions in [14, § XVIII.5.1] are restricted
to the case of A, B differential operators whose principal part is self-adjoint and (in
the case of B) also strictly positive definite, and no angle of analyticity is proved
there. However, their main result [14, Thm. XVIII.1] is admittedly very close to
Corollary 3.2 below.

2. First well-posedness results

Let V, H be complex Hilbert spaces such that V is continuously and densely imbed-
ded in H . Let a : V × V → , b : V × V → be sesquilinear forms1.

1One can often think of sesquilinear forms in terms of physical quantities. In fact, if a, b are

symmetric, 2a(u, u), 2b(u, u) merely represent the energy functionals associated with the elastic
and damping operators A, B that appear in (1.1), respectively.
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More precisely, we recall that the operator associated with a is by definition
given by

D(A) := {f ∈ V : ∃h ∈ H s.t. a(f, g) = (h | g)H ∀g ∈ V } ,
Af := h,

and likewise for the operator associated with b.

The following perturbation lemma seems to be of independent interest. It
is the form equivalent of a well-known perturbation result for operators due to
Desch–Schappacher. In the following we denote by Hα any interpolation space
between V and H that verifies the interpolation inequality

‖f‖Hα ≤ Mα‖f‖α
V ‖f‖1−α

H , f ∈ V. (2.1)

Lemma 2.1. Let a : V ×V → be a sesquilinear mapping. Let α ∈ [0, 1) such that
a1 : V ×Hα → and a2 : Hα×V → be continuous sesquilinear mappings. Then
a is H-elliptic if and only if a + a1 + a2 : V × V → is H-elliptic.

Proof. Let a be H-elliptic and let

|a1(f, g)| ≤ M‖f‖V ‖g‖Hα and |a2(g, f)| ≤ M‖g‖V ‖f‖Hα ,

for some constant M > 0 and for all f ∈ V , g ∈ Hα, so that by (2.1) we can
estimate both |a1(f, f)| and |a2(f, f)| by MMα‖f‖1+α

V ‖f‖1−α
H .

By Young’s inequality one has for all α ∈ [0, 1) and all x, y > 0 that

xy ≤ 1 + α

2
x

2
1+α +

1 − α

2
y

2
1−α .

Thus, for all ε > 0 letting x = (
√

ε‖f‖V )1+α and y = ( 1√
ε
‖f‖V )1−α one obtains

‖f‖1+α
V ‖f‖1−α

H ≤ 1 + α

2
ε‖f‖2

V +
1 − α

2ε
‖f‖2

H , f ∈ V.

Accordingly, for all ε > 0 there exists M(ε) > 0 such that

−ε‖f‖2
V + M(ε)‖f‖2

H ≤ a1(f, f) + a2(f, f), f ∈ V.

By assumption a is H-elliptic, i.e., Rea(f, f) ≥ α‖f‖2
V − ω‖f‖2

H for some α > 0
and ω ∈ . Thus, that for ε = α/2

Re(a + a1 + a2)(f, f) = Rea(f, f) + a1(f, f) + a2(f, f)
≥ α‖f‖2

V − ω‖f‖2
H − ε‖f‖2

V − M(ε)‖f‖2
H

≥ α

2
‖f‖2

V − (ω + M(ε))‖f‖2
H ,

for all f ∈ V . This completes the proof. �
With the aim of discussing the abstract damped wave equation (1.1) we

introduce V := V ×V as well as the candidate energy space H := V ×H . Observe
that V is continuously and densely imbedded into H and that both V and H have
a canonical Hilbert space structure. Define

a(u,v) := −(u2 | v1)V + a(u1, v2) + b(u2, v2), (2.2)
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where we have considered

u = (u1, u2)�,v = (v1, v2)� ∈ V,

i.e., a is a sesquilinear form with domain V. Observe that a is in general not
symmetric.

Lemma 2.2. The following assertions hold.
1) The form a is continuous with respect to V if and only if a, b are continuous

with respect to V .
2) The form a is H-elliptic if and only if b is H-elliptic.
3) Let Rea(u, v) = Re(u | v)V for all u, v ∈ V . If b is accretive, then a is

accretive.
4) If if a is accretive, then b is accretive.

Observe that, as a direct consequence of the sesquilinearity of a, Rea(u, v) =
Re(u | v)V for all u, v ∈ V if and only if Rea(u, v) ≥ Re(u | v)V for all u, v ∈ V .

Proof. 1) Let a be continuous. Then for some constant Ma > 0 and all u, v ∈ V
one has

|b(u, v)| = |a(u,v)| ≤ Ma‖u‖V‖v‖V = Ma‖u‖V ‖v‖V ,

where we have set u := (0, u)� and v := (0, v)�. Similarly, setting u := (u, 0)�

and v := (0, v)� we obtain that

|a(u, v)| = |a(u,v)| ≤ Ma‖u‖V‖v‖V = Ma‖u‖V ‖v‖V .

Let now a, b be continuous, i.e., assume that for some Ma, Mb ≥ 0 there holds

|a(u, v)| ≤ Ma‖u‖V ‖v‖V , u, v ∈ V,

as well as
|b(u, v)| ≤ Mb‖u‖V ‖v‖V , u ∈ V.

A tedious computation then shows that

|a(u,v)|2 ≤ ‖u2‖2
V ‖v1‖2

V + M2
a‖u1‖2

V ‖v2‖2
V + M2

b ‖u2‖2
V ‖v2‖2

V

+2Ma‖u1‖V ‖u2‖V ‖v1‖V ‖v2‖V + 2Mb‖u2‖2
V ‖v1‖V ‖v2‖V

+2MaMb‖u1‖V ‖u2‖V ‖v2‖2
V

≤ M2
a(‖u1‖2

V + ‖u2‖2
V )(‖v1‖2

V + ‖v2‖2
V ),

i.e., |a(u,v)| ≤ Ma‖u‖V‖v‖V, where

M2
a :=

Ma

2
+ MaMb + max

{
M2

a , 1, M2
b

}
. (2.3)

2) To begin with, consider the form a0 : V × V → defined by

a0(u,v) := b(u2, v2).

A direct computation shows that a0 is H-elliptic if and only if b is H-elliptic.
Similarly, define the continuous sesquilinear mappings a1 : H × V → and a2 :
V × H → by

a1(u,v) := −(u2 | v1)V and a2(u,v) := a(u1, v2).
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By Lemma 2.1 we conclude that a = a0 + a1 + a2 is H-elliptic if and only if a0 is
H-elliptic if and only if b is H-elliptic.

3) If b is accretive and Rea(u, v) = Re(u | v)V for all u, v ∈ V , then

Rea(u,u) = Reb(u2, u2) ≥ 0, u = (u1, u2)� ∈ V,

i.e., a is accretive.
4) Conversely, if a is accretive, we obtain that for all u ∈ V

Reb(u, u) = Rea(u,u) ≥ 0,

where we have set u := (0, u). �

By [27, Prop. 1.51 and Thm. 1.52] we can now state the following.

Theorem 2.3. Let a, b be continuous. Let further b be H-elliptic. Then the operator
associated with a is closed. It generates a C0-semigroup (e−ta)t≥0 on H which is
analytic of angle π

2 − arctanM , where Ma is defined as in (2.3). The semigroup
(e−ta)t≥0 is contractive if b is accretive and Rea(u, v) = Re(v | u)V for all u, v ∈ V .

We emphasize that in the above theorem we are assuming a neither to be
H-elliptic, nor to be (quasi-)accretive. In other words, the operator A associated
with a need not be closed or (quasi-)dissipative. Thus, in the limiting case of A
bounded from D(B) to H , where B is the operator associated with b, Theorem 2.3
extends the well-posedness results of [9, 30, 11]. In this sense, we say that the
leading term in (1.1) is not the elastic, but rather the damping one.

Remark 2.4. 1) Let V �= {0}. The form a is self-adjoint if and only if b is self-
adjoint and a(·, ·) = −(· | ·)V . Let in fact u := (u, 0)� and v := (0, v)�, with
u, v ∈ V , v �= 0 �= u. Then, one has

a(u,v) = a(u, v) and a(v,u) = −(v | u)V .

On the other hand, if u := (0, u)� and v := (0, v)�, with u, v ∈ V , v �= 0 �= u,
then

a(u,v) = b(u, v) and a(v,u) = b(v, u).
To prove the converse implication, it suffices to observe that if b is self-adjoint and
a(·, ·) = −(· | ·)V , then

a(u,v) = b(u2, v2) = b(v2, u2) = a(v,u).

2) The form a is not coercive, unless V = {0}. Let in fact u := (u, 0)�, with
0 �= u ∈ V . Then one has

Rea(u,u) = 0 < ‖u‖2
V.

This shows that there exists no ε > 0 such that the estimate ‖e−ta‖ ≤ e−εt holds
for all t ≥ 0. This should be compared with the exponential stability result in [9,
Thm. 1.1].

3) In the relevant case of dim V = ∞ the imbedding of V in H is not
compact. Thus if Theorem 2.3 applies, then (e−ta)t≥0 is not compact.
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4) An advantage of dealing with sesquilinear forms instead of operators is the
flexibility of this theory. Let us briefly discuss the case of time-dependent damped
wave equations. Consider families (at)t∈[0,T ] and (bt)t∈[0,T ] of sesquilinear forms
with joint (time-independent) dense domain V . Assume them to be equicontinuous.
Let furthermore the mappings t → at(u, v) and t → bt(u, v) be measurable for all
u, v ∈ V . If finally (bt)t≥0 is equi-H-elliptic, i.e.,

Rebt(u, u) + ω‖u‖2
H ≥ α‖u‖2

V , u ∈ V, t ≥ 0,

for some ω ∈ , α > 0, then it is easy to see that the family of sesquilinear forms
(at)t≥0 defined by

at(u,v) := −(u2 | v1)V + at(u1, v2) + bt(u2, v2),

fits the framework presented in [29, Chapt. 3], and we conclude that the nonau-
tonomous abstract Cauchy problem associated with (at)t≥0 is well posed in a
suitably weak sense. We refer to [29] for details.

In order to interpret Theorem 2.3 as a well-posedness result for (1.1), we still
have to determine the operator (A, D(A)) associated with a, which by definition is

D(A) := {u ∈ V : ∃z ∈ H s.t. a(u,v) = (z | v)V for all v ∈ V},
Au := z.

In fact, the expression “Au + Bu̇” in (1.1) is in general purely formal, as the
solution u to (1.1) need not satisfy u ∈ C( +, D(A)) ∩ C1( +, D(B)). However,
in our framework a direct computation shows that the following holds.

Proposition 2.5. The operator A on V associated with the form a is given by

D(A) = {u ∈ V : ∃w ∈ H s.t. a(u1, v) + b(u2, v) = (w | v)H for all v ∈ V },
Au = (u2, w)�.

In the remainder of this section we assume V, H to be function spaces over a
measure space (X, μ). The following is a direct consequence of the above proposi-
tion and should be compared with the results of [10].

Corollary 2.6. Let ρ ∈ H such that ρu ∈ V and a(u, v) = b(ρu, v) for all u, v ∈ V .
Then

D(A) = {u ∈ V : ∃w ∈ H s.t. b(ρu1 + u2, v) = (w | v)H for all v ∈ V }
= {u ∈ V : ρu1 + u2 ∈ D(B)},

Au = (u2, B(ρu1 + u2))�.

where B denotes the operator associated with b.

While throughout the paper we consider complex Hilbert spaces, it is of
interest for applications to ensure that solutions to (1.1) are in fact real whenever
the initial data are real. In the following we denote the closed convex subsets V
and H defined by the real-valued functions belonging to V and H , respectively.
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Proposition 2.7. Let a, b be continuous and b be H-elliptic. Assume further that
Reu ∈ V a(Reu, Imu), (Reu | Imu)V ∈ for all u ∈ V . Then (e−ta)t≥0 is real
(i.e., it leaves invariant V ×H ) if and only if the semigroup associated with b is
real (i.e., it leaves invariant H ).

Proof. Without loss of generality we can assume both b and a to be accretive, since
reality of a semigroup is invariant under rescaling. Let the semigroup associated
with b be real. Then by [27, Prop. 2.5] one has Reu ∈ V for all u ∈ V and
b(Reu, Imu) ∈ . Thus, for an arbitrary u = (u1, u2)� ∈ V, one has Reu =
(Reu1, Reu2)� ∈ V and moreover

a(Reu, Imu) = −(Reu2 | Imu1)V + a(Reu1, Imu2) + b(Reu2, Imu2) ∈ .

Since the projection P of H onto H is given by

Pu = (Reu1, Reu2), u = (u1, u2)� ∈ H,

the claim follows by [27, Thm. 2.2]. Conversely, let (e−ta)t≥0 be real and let
u ∈ V . Set u := (0, u)� ∈ V. Then, Reu = (0, Reu) ∈ V and b(Reu, Imu) =
a(Reu, Imu) ∈ . �

3. Interpolation spaces and nonlinear problems

In Theorem 2.3 we have shown that if a, b are continuous and b is H-elliptic, the
form a is associated with an analytic semigroup on H. We can sharpen this result
under the additional assumption that for some constant Mb > 0

|Imb(u, u)| ≤ Mb‖u‖H‖u‖V , u ∈ V. (3.1)

Theorem 3.1. If (3.1) holds, then the operator A associated with a generates a
cosine operator function on H. Moreover, the form domain V is isometric to the
fractional power domain D(λ + A)

1
2 , for λ > 0 large enough.

Proof. We first show that |Ima(u,u)| ≤ Ma‖u‖V‖u‖H for some constant Ma and
all u ∈ V. Let to this aim u = (u1, u2)� ∈ V. Since |a(u, v)| ≤ Ma‖u‖V ‖v‖V for
some Ma > 0 and all u, v ∈ V , there holds

|Ima(u,u)|2 ≤ (1 + M2
a )‖u1‖2

V ‖u2‖2
V + M2

b ‖u2‖2
H‖u2‖2

V

+2Ma‖u1‖2
V ‖u2‖2

V + 2Mb(1 + Ma)‖u1‖V ‖u2‖H‖u2‖2
V

≤
(
(1 + Ma)2‖u1‖2

V + M2
b ‖u2‖2

H

)
‖u2‖2

V

+Mb(1 + Ma)
(
‖u1‖2

V + ‖u2‖2
H

)
‖u2‖2

V

≤ (1 + Ma + Mb)2
(
‖u1‖2

V + ‖u2‖2
H

)
‖u2‖2

V

≤ (1 + Ma + Mb)2‖u‖2
H‖u‖2

V.

This shows in particular that the numerical range of a is contained in a parabola
(see [17, p. 204]) and thus, applying a result due to Crouzeix [13], we promptly
obtain that A generates a cosine operator function on H.
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Moreover, by Haase’s converse of Crouzeix’s theorem (see [1, § 5.6.6]) there
exists an equivalent scalar product ((· | ·))H on H and λ > 0 such that the
numerical range of aλ := a + λ((· | ·))H lies in a parabola. Now it follows by a
result due to McIntosh (see again [1, § 5.6.6]) that A has the square root property.
This concludes the proof. �

The following result should be compared with [14, Thm. XVIII.5.1].

Corollary 3.2. Let B = B0 + B1, where B0 is a self-adjoint and strictly positive
definite operator. Assume A to be bounded from D(B

1
2
0 ) to D(B− 1

2
0 ) and B1 to

be bounded from D(B
1
2
0 ) to H. Then problem (1.1) is governed by an analytic

semigroup of angle π
2 on D(B

1
2
0 ) × H.

In particular, (1.1) admits a unique mild solution for all initial data u10 ∈
D(B

1
2
0 ) and u20 ∈ H. If A = ρB for ρ ∈ , then (1.1) admits a unique classical

solution for all u10, u20 ∈ D(B
1
2
0 ) such that ρu10 + u20 ∈ D(B).

Proof. Let b0 : D(B0) × D(B0) → the coercive, symmetric sesquilinear form
associated with B0. In particular, B0 has the square root property (cf. [1, § 5.5.1])
and therefore the form norm of b0 is isomorphic to D(B

1
2
0 ). Since now for the

sesquilinear form b associated with B holds

|Imb(u, u)| = |Im(B0u | u)H + Im(B1u|u)H | ≤ ‖B1u‖H‖u‖H ≤ M‖u‖D(B0)‖u‖H

for some constant M > 0, one sees that (3.1) is satisfied. After defining by a
the sesquilinear form associated with A, Theorem 3.1 can be applied. Since every
cosine operator function generator also generates an analytic semigroup of angle
π
2 (see [3, Thm. 3.14.17]), the claim holds. �

Example 3.3. For an open bounded domain Ω ⊂ n with C2-boundary ∂Ω consider
the complete second-order problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

ü(t, x) = ∇ ·
(
α(x)∇u(t, x) + β(x)∇u̇(t, x)

)
, t ≥ 0, x ∈ Ω,

u(t, z) = u̇(t, z) = 0, t ≥ 0, z ∈ ∂Ω,
u(0, x) = u10(x), x ∈ Ω,
u̇(0, x) = u20(x), x ∈ Ω,

where α, β ∈ C1(Ω) such that 0 < β(x) for all x ∈ Ω.
Let B = −∇ · (β∇) and A = −∇ · (α∇) on H := L2(Ω), and accordingly

introduce the forms

b(f, g) :=
∫

Ω

β(x)∇f(x)∇g(x) and a(f, g) :=
∫

Ω

α(x)∇f(x)∇g(x).

Then D(B
1
2 ) = H1

0 (Ω) and by Corollary 3.2 and Corollary 2.6 one concludes that
the operator

D(A) =
{
(u1, u2)� ∈ (H1

0 (Ω))2 : α∇u1 + β∇u2 ∈ H1
0 (Ω)

}
,

Au = (u2,∇ (α∇u1 + β∇u2))
�

.
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generates on H1
0 (Ω) × L2(Ω) an analytic semigroup of angle π

2 . This semigroup is
contractive if α ≡ 1 (and more generally also whenever α > 0, up to considering
weighted phase space). It yields the solutions to the above problem, which are real
valued whenever u10 ∈ H1

0 (Ω) and u20 ∈ L2(Ω) are real valued.
The analytical well-posedness of the above problem has been shown in [9] only

in the case of α strictly positive, whereas we allow for α to be a complex-valued
function.

We can now exploit the technique developed in [24, Chapt. 7] for semilinear
parabolic problems, which heavily relies on interpolation theory. In order to avoid
technicalities, we consider in the remainder of this section the special case of A =
ρB for some ρ ∈ . This case is relevant in many concrete contexts, e.g., whenever
investigating semilinear strongly damped equations like the Klein–Gordon one,
see, e.g., [18, 4, 16, 6]. As an example of a possible application, we formulate the
following, which is a direct consequence of [24, Thm. 7.1.3 and 7.1.10]. More refined
results, also yielding global well-posedness, can be obtained by applying further
tools from [24, § 7.2].

Corollary 3.4. Let B satisfy the assumptions of Corollary 3.2. Assume G : [0, T ]×
D(B

1
2 )×D(B

1
2 ) → H to be a continuous mapping that is locally Hölder continuous

with respect to the first variable and locally Lipschitz continuous with respect to the
second and third ones. Then for small initial data u10, u20 ∈ D(B

1
2 ){

ü(t) + B(ρu + u̇)(t) = G(t, u1(t), u̇2(t)), t ∈ [0, T ],
u(0) = u10, u̇(0) = u20,

has a unique classical solution, locally in time.

Theorem 3.1 also allows to apply the theory developed in [12] for quasilinear
parabolic problems, where determining interpolation spaces is a crucial step, too.
A prototypical result is the following, which can be compared with [11, Thm. 5.1].

Corollary 3.5. Let D be a subspace of H with D ↪→ V . Let the mapping

B : V × V → L({(u, v)� ∈ V × V : ρu + v ∈ D}, H)

be well defined and locally Lipschitz continuous. Let u10, u20 ∈ V and assume
the operator B(u10, u20) to satisfy the assumptions of Corollary 3.2 with
D(B(u10, u20)

1
2 ) = V . Then for all f ∈ L2( +, H) and all g ∈ Lip( + × V, H)

there exists τ > 0 such that the problem{
ü(t) + B(u(t), u̇(t))(ρu(t) + u̇(t)) = f(t) + g(t, u(t)), t ∈ (0, τ),
u(0) = u10, u̇(0) = u20,

has a solution u ∈ H2((0, τ), H) ∩ H1((0, τ), V ) with ρu + u̇ ∈ L2((0, τ), D).
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[20] M.G. Krĕın and H. Langer, On some mathematical principles in the linear theory of
damped oscillations of continua. I, Int. Eq. Oper. Theory 1 (1978), 364–399.
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for the Wave Equation and Maxwell’s System
with Memory Boundary Conditions
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Abstract. We give exponential and polynomial stability results for the wave
equation with variable coefficients in a bounded domain of Rn, subject to
a Dirichlet boundary condition on one part of the boundary and boundary
conditions of memory type on the other part of the boundary. Moreover,
analogous stability results are given for a system of Maxwell’s equations in
heterogeneous media subject to dissipative boundary conditions with memory.
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1. Introduction

In this paper we consider the wave equation with variable coefficients with Dirich-
let boundary condition on one part of the boundary and a dissipative boundary
condition of memory type on the other part of the boundary.

Let Ω ⊂ Rn be an open bounded set with a smooth boundary Γ. We assume
that Γ is divided into two closed and disjoint parts Γ0 and Γ1, i.e., Γ = Γ0 ∪ Γ1

and Γ0 ∩ Γ1 = ∅. Moreover we assume that the measure of Γ0 is positive.
Consider the problem

utt + Au = 0 in Ω × (0, +∞) (1.1)
u = 0 on Γ0 × (0, +∞) (1.2)
∂u

∂νA
(t) +

∫ t

0

k(t − s)ut(s)ds + but(t) = 0 on Γ1 × (0, +∞) (1.3)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) in Ω (1.4)

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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where the operator A is defined by

Au = − div(A∇u) (1.5)

when A is a symmetric matrix

A(x) = (aij(x))1≤i,j≤n (1.6)

with coefficients aij ∈ C1(Ω) and satisfying
n∑

i,j=1

aij(x)ξiξj ≥ α
n∑

i=1

ξ2
i , ∀x ∈ Ω, ∀ξ ∈ Rn, (1.7)

for some constant α > 0.
In condition (1.3), k : [0, +∞) → R is a function of class C2, b is a positive

constant and ∂u
∂νA is the co-normal derivative

∂u

∂νA
= 〈A∇u, ν〉, (1.8)

where 〈·, ·〉 is the usual inner product in Rn and ν(x) denotes the outward unit
normal vector to the point x ∈ Γ. In the sequel we will also use v ·w to denote the
usual inner product between two vectors v, w.

The integral boundary condition (1.3) describes the memory effect which can
be caused, for instance, by the interaction with another viscoelastic element. This
boundary condition is quite general and covers a fairly large variety of physical
configurations. We refer to [22] for some discussions about this model.

Frictional dissipative boundary condition (i.e., the case k = 0 in (1.3)) for the
wave equation was studied by many authors, see [10, 11, 12] and their references.
On the contrary for boundary condition with memory, only a few number of papers
exists [1, 2, 3, 6, 9, 24, 25, 26]. In these papers, the authors consider the wave
equation with constant coefficients and prove the decay of the energy by combining
the multiplier method with the use of a suitable Lyapounov functional or integral
inequalities.

Here we extend the previous results to the case of variable coefficients by
using the approach from differential geometry initiated in [27] and by introducing
suitable Lyapounov functionals.

Moreover, we consider in a bounded domain Ω ⊂ R3 with smooth boundary
Γ, the homogeneous Maxwell’s system

D′ − curl(μB) = 0 in Ω × (0, +∞) (1.9)
B′ + curl(λD) = 0 in Ω × (0, +∞) (1.10)
div D = div B = 0 in Ω × (0, +∞) (1.11)
D(0) = D0 and B(0) = B0 in Ω (1.12)

λμDτ (t) = k0B(t) × ν +
∫ t

0

k(s)B(t − s) × νds on Γ × (0, +∞) (1.13)
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where D, B are three-dimensional vector-valued functions of t, x = (x1, x2, x3);
μ = μ(x) and λ = λ(x) are scalar functions in C2(Ω) bounded from below by a
positive constant, i.e.,

λ(x) ≥ λ0 > 0, μ(x) ≥ μ0 > 0, ∀x ∈ Ω; (1.14)

D0, B0 are the initial data in a suitable space. As before, in the boundary condition
(1.13), ν denotes the outward unit normal vector to the boundary Γ and k :
[0, +∞) → R is a positive function of class C2. Moreover, k0 is a positive constant
and Dτ denotes the tangential component of the vector field D, that is

Dτ = ν × (D × ν).

The integral boundary condition (1.13) describes the memory effect and
means that the boundary is a medium with a high but finite electric conductivity
[5, 8, 15].

As for the scalar wave equation, frictional dissipative boundary condition for
Maxwell’s system (i.e., the case k = 0 in (1.13)) was studied by many authors, see
[4, 7, 10, 11, 16, 17, 20, 21]. On the contrary, in the case of boundary conditions
with memory, we know only a few number of papers [5, 8, 15]. In these papers,
the authors consider Maxwell’s equations with constant coefficients and prove the
exponential decay of the energy by combining the multiplier method with the use
of Pazy’s theorem.

Here we extend the previous results to the case of variable coefficients by
using the multiplier method and by introducing a suitable Lyapounov functional.
Under appropriate assumptions on k, we also prove the polynomial decay of the
energy.

The paper is organized as follows.
In Section 2 we give exponential and polynomial stability results for the wave

equation while in Section 3 we consider the stabilization of Maxwell’s equations.
Finally, in Section 4 we give some examples where our assumptions are illustrated.

2. The wave equation

To obtain our stability estimates we assume that the kernel k(·) in the boundary
condition (1.3) satisfies one of the following sets of assumptions:

k(t) ≥ 0, k′(t) ≤ −γ0k(t), k′′(t) ≥ −γ1k
′(t) (2.1)

for positive constants γ0, γ1; or

k(t) ≥ 0, k′(t) ≤ −γ0[k(t)]1+
1
p , k′′(t) ≥ γ1[−k′(t)]1+

1
p+1 (2.2)

for positive constants γ0, γ1 and for some p > 1.
Note that assumptions (2.1) imply that the function k and −k′ are exponen-

tially decaying to 0; while assumptions (2.2) imply that k and −k′ are polynomially
decaying to 0 as 1/(1 + t)p and 1/(1 + t)p+1 respectively.
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These assumptions are relatively standard, see [9, 25]. Note that in [1, 3, 6],
the asymptotic behaviour of k is a little bit weaker but other conditions at 0 and
on u0 are imposed.

With our assumptions (2.1) or (2.2), problem (1.1)–(1.4) can be formulated
as an evolutionary integral equation of variational type [22, 23]. Therefore the
results from [22, 23] allow to state the following results, where we recall that

H1
Γ0

(Ω) := {u ∈ H1(Ω) : u = 0 on Γ0}.

Theorem 2.1. Let the above assumptions on k be satisfied. Then for all initial data
(u0,u1)∈H1

Γ0
(Ω)×L2(Ω), there exists a unique weak solution u∈C1(R+;L2(Ω))∩

C(R+;H1
Γ0

(Ω)) of (1.1)–(1.4). If furthermore (u0, u1) ∈ (H2(Ω)∩H1
Γ0

(Ω))×H1
Γ0

(Ω)
satisfies the compatibility condition

∂u0

∂νA
+ bu1 = 0 on Γ1,

then the weak solution u of (1.1)–(1.4) has the regularity

u ∈ C2(R+; L2(Ω)) ∩ C1(R+; H1
Γ0

(Ω)) ∩ C(R+; H2(Ω)).

Remark 2.2. In [3, 25, 26], instead of (1.3) the authors consider the boundary
condition

u(t) +
∫ t

0

g(t − s)
∂u

∂ν
(s)ds = 0 on Γ1 × (0, +∞), (2.3)

for some function g. But in these papers it was shown that this boundary condition
is equivalent to (1.3) under the assumption u0 = 0 on Γ1, where k is the resolvent
kernel of g. Therefore our results below also hold for such a boundary condition.
Note further that any strong solution of problem (1.1), (1.2), (2.3) and (1.4) sat-
isfies u(0) = 0 on Γ1 and therefore the assumption u0 = 0 on Γ1 is necessary to
have strong solutions to that system.

We define the energy of the problem (1.1)–(1.4) by

E(t) :=
1
2

∫
Ω

{
u2

t + 〈A∇u,∇u〉
}

dx +
1
2

∫
Γ1

k(t)[u(t) − u(0)]2dΓ

− 1
2

∫
Γ1

∫ t

0

k′(t − s)[u(t) − u(s)]2dsdΓ.

(2.4)

This is a “good” definition of the energy in order to obtain stability results. Indeed,
a direct computation shows that the energy defined by (2.4) is decreasing. For any
regular solution of the problem (1.1)–(1.4) we have

E′(t) =
1
2

∫
Γ1

k′(t)[u(t) − u(0)]2dΓ − b

∫
Γ1

u2
tdΓ

− 1
2

∫
Γ1

∫ t

0

k′′(t − s)[u(t) − u(s)]2dsdΓ ≤ 0.

(2.5)
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Now, we want to give sufficient conditions on Ω and on the operator A in
order to guarantee the exponential decay of the energy under the assumption (2.1)
and the polynomial decay under assumption (2.2).

According to [27] (see also [13]) let us introduce the Riemannian metric gen-
erated by the spatial operator. Let

G(x) = (gij(x))1≤i,j≤n = A−1(x).

For any x ∈ Rn define the inner product and the norm on the tangent space
Rn

x = Rn by

g(X, Y ) = 〈X, Y 〉g =
n∑

i,j=1

gij(x)αiβj , ∀ X =
n∑

i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rn

x ;

(2.6)

|X |g = 〈X, X〉
1
2
g , ∀ X =

n∑
i=1

αi
∂

∂xi
∈ Rn

x . (2.7)

Denote the Levi-Civita connection in the Riemannian metric g by D. Let

H =
n∑

i=1

hi
∂

∂xi
, X =

n∑
i=1

ξi
∂

∂xi

be vector fields on (Rn, g). The covariant differential DH of H determines a bilinear
form on Rn

x × Rn
x , for any x ∈ Rn, defined by

DH(Y, X) = 〈DXH, Y 〉g ∀X, Y ∈ Rn
x

where DXH is the covariant derivative of H with respect to X

DXH =
n∑

k=1

DX

(
hk

∂

∂xk

)
=

n∑
k=1

X · ∇hk
∂

∂xk
+

n∑
k,j=1

hkξjD∂/∂xj

(
∂

∂xk

)
, (2.8)

where

D∂/∂xj

(
∂

∂xk

)
=

n∑
l=1

Γl
jk

∂

∂xl
, (2.9)

Γl
jk being the Christoffel symbols of the connection D,

Γl
jk =

1
2

n∑
p=1

alp

(
∂gkp

∂xj
+

∂gjp

∂xk
− ∂gjk

∂xp

)
. (2.10)

Then, by (2.9) and (2.10)

DXH =
n∑

l=1

⎛⎝X · ∇hl +
n∑

k,i=1

hkξiΓl
ik

⎞⎠ ∂

∂xl
. (2.11)
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Therefore, by (2.11)

DH(X, X) = 〈DXH, X〉g =
n∑

i,j=1

⎛⎝ n∑
l=1

∂hl

∂xi
glj +

n∑
k,l=1

hkgljΓl
ik

⎞⎠ ξiξj . (2.12)

See [27] for more details.

Assumptions on A. As in [27] we assume that there exists a C1 vector field H in
the Riemannian metric (Rn, g) such that

〈DXH, X〉g ≥ a0|X |2g, ∀x ∈ Ω, ∀X ∈ Rn
x , (2.13)

for some positive constant a0.
Moreover we assume that

sup
Ω

div H < inf
Ω

div H + 2a0, (2.14)

and
H · ν ≤ 0, on Γ0 and H · ν ≥ δ on Γ1, (2.15)

for a constant δ > 0.

Remark 2.3. Assumption (2.13) has been first introduced by Yao in [27] to extend
to the case of variable coefficients the standard identity with multiplier. Obviously
it holds in the case of constant coefficients taking as H the standard multiplier
m(x) = x − x0. Note that in this case also (2.14) is verified. We refer to [27, 13]
for examples of function H verifying this assumption in the non constant case. We
also refer to Section 4 for examples verifying the assumptions (2.13) and (2.14).

Remark 2.4. Observe that assumption (2.13) is verified if there exists a function
v of class C2 strictly convex with respect to the metric g, that is a function v such
that

D2v(X, X) = 〈DX(∇gv), X〉g ≥ a0|X |2g, ∀x ∈ Ω, ∀X ∈ Rn
x .

In that case (2.13) holds with H = ∇gv, see [13].

Consider the standard energy

E(t) :=
∫

Ω

{
u2

t + 〈A∇u,∇u〉
}

dx , (2.16)

and define
Mu = 2(H · ∇u) + θu , (2.17)

where H is defined in assumption (2.13) and θ is a constant such that

sup
Ω

div H − 2a0 < θ < inf
Ω

div H. (2.18)

From assumption (2.14) it follows that such a constant θ exists. We can give the
following estimate. Its proof is based on Green’s formula, the assumptions (1.7)
and (2.13), Young’s inequality and Poincaré’s theorem.
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Proposition 2.5. Assume that k satisfies (2.1). Then, for any regular solution of
the problem (1.1)–(1.4), we have

d

dt

{∫
Ω

utMudx

}
≤ −c0E(t) + C

{∫
Γ1

u2
t dΓ +

∫
Γ1

k(t)[u(t) − u(0)]2dΓ

−
∫

Γ1

∫ t

0

k′(t − s)[u(t) − u(s)]2dsdΓ
}

,
(2.19)

for suitable positive constants c0, C.

By introducing the Lyapounov functional

Ẽ(t) := E(t) + γ̂

∫
Ω

ut(t)Mu(t)dx , (2.20)

where γ̂ is a positive constant sufficiently small, and using (2.19), we can deduce
the exponential stability result for problem (1.1)–(1.4). See [18] for the full details.

Theorem 2.6. Assume that Γ = Γ0 ∪ Γ1 with Γ0, Γ1 closed sets with Γ0 ∩ Γ1 = ∅,
that the matrix A satisfies (1.7) and that b > 0. Furthermore, assume that there
exists a C1 vector field H verifying (2.13), (2.14), (2.15). If the memory kernel
k satisfies (2.1), then there exist two positive constants C1, C2 such that for any
regular solution of problem (1.1)–(1.4),

E(t) ≤ C1E(0)e−C2t, ∀t > 0. (2.21)

Assuming that the function k in the boundary condition (1.3) satisfies the
assumptions (2.2) we can give a polynomial stability result. In this case, instead
of Proposition 2.5, we use the following estimate.

Proposition 2.7. Assume that k satisfies (2.2). Then, any regular solution of the
problem (1.1)–(1.4) satisfies

d

dt

{∫
Ω

utMudx

}
≤ −c0E(t) + C

{∫
Γ1

u2
t dΓ +

∫
Γ1

[k(t)]1+
1
p [u(t) − u(0)]2dΓ

+
∫

Γ1

∫ t

0

[−k′(t − s)]1+
1

p+1 [u(t) − u(s)]2dsdΓ
}

,

(2.22)
for suitable positive constants c0, C.

Using (2.22) and the Lyapounov functional (2.20) we obtain the polynomial
stability estimate. See [18] for the proof of such a result.

Theorem 2.8. Assume Γ = Γ0 ∪ Γ1 with Γ0, Γ1 closed sets with Γ0 ∩ Γ1 = ∅, that
the matrix A satisfies (1.7) and that b > 0. Furthermore, assume that there exists
a C1 vector field H verifying (2.13), (2.14), (2.15) and that the memory kernel k
satisfies (2.2). Let r be a real number such that

1
p + 1

< r < 1 .
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Then, for any regular solution u of problem (1.1)–(1.4), we have

E(t) ≤ C

(1 + t)(1−r)(p+1)
, ∀t > 0 , (2.23)

for a suitable positive constant C depending on E(0).

Remark 2.9. If H(x) · ν(x) = 0 for some x ∈ Γ1, then a term like∫ T

0

∫
Γ1

|∇τu|2dΓdt,

where ∇τ denotes the tangential gradient, remains in the estimate of boundary
terms. For the standard boundary condition

∂u

∂ν
+ ut = 0 ,

this term is usually eliminated (see, e.g., [13]) using micro-local analysis and a
compactness argument. This compactness argument cannot be used here since we
need an estimate independent of T .

Remark 2.10. Note that everything still holds if the function k depends also on
the variable space, that is

k := k(x, t) , k : Γ1 × [0,∞) → R , k ∈ C2(Γ1 × [0,∞)) .

The same remark applies to the following section.

3. Maxwell’s equations

In this section, we consider the system (1.9)–(1.13) and give exponential and poly-
nomial stability results. We assume that the function k(·) in the boundary condi-
tion (1.13) satisfies the following assumptions:

k′(t) ≤ 0, k′′(t) ≥ 0. (3.1)

With our assumptions (3.1), problem (1.9)–(1.13) can be formulated as a
standard evolution equation u̇ + Au = 0, u(0) = u0 [15] with an appropriate
operator A, which generates a strongly continuous semigroup (proved using the
same techniques as the ones from Theorem 2.1 of [15]). This allows to obtain the
following results:

Theorem 3.1. Let assumption (3.1) be satisfied. Then, for all initial data D0, B0 ∈
L2(Ω)3 such that div D0 = div B0 = 0 in Ω, curl(μB0), curl(λD0) ∈ L2(Ω)3 and
satisfying the compatibility condition

λμD0τ (t) = k0B0 × ν on Γ,

there exists a unique solution (D, B) of (1.9)–(1.13) with the regularity D, B ∈
C1(R+; L2(Ω)3), curl(μB) ∈ C(R+; L2(Ω)3), curl(λD) ∈ C(R+; L2(Ω)3).
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We define the energy of our system (1.9)–(1.13) by

E(t) :=
1
2

∫
Ω

{
λ|D(t)|2 + μ|B(t)|2

}
dx +

1
2

∫
Γ

k(t)
∣∣∣∣∫ t

0

B(t − τ) × νdτ

∣∣∣∣2 dΓ

− 1
2

∫
Γ

∫ t

0

k′(s)
∣∣∣∣∫ s

0

B(t − τ) × νdτ

∣∣∣∣2 dsdΓ. (3.2)

Note that our definition is different from the one in [8, 15] and is inspired from the
definition of the energy for the wave equation with memory boundary conditions.

For any regular solution of the Maxwell’s system (1.9)–(1.13) the energy is
decreasing since

E′(t) = −k0

∫
Γ

|B(t) × ν|2dΓ +
1
2

∫
Γ

k′(t)
∣∣∣ ∫ t

0

B(t − τ) × νdτ
∣∣∣2dΓ

− 1
2

∫
Γ

∫ t

0

k′′(s)
∣∣∣ ∫ s

0

B(t − τ) × νdτ
∣∣∣2dsdΓ ≤ 0.

(3.3)

We assume that there exists a C1 vector field q such that

λdiv q|ξ|2 − 2λ

3∑
i,k=1

∂qi

∂xk
ξiξk − q · ∇λ|ξ|2 ≥ ρλ|ξ|2 , ∀x ∈ Ω, ∀ξ ∈ R3 , (3.4)

and

μ div q|ξ|2 − 2μ
3∑

i,k=1

∂qi

∂xk
ξiξk − q · ∇μ|ξ|2 ≥ ρμ|ξ|2 , ∀x ∈ Ω, ∀ξ ∈ R3 . (3.5)

We further assume that q · ν > 0 on Γ. Therefore, for a suitable positive
constant δ,

q · ν ≥ δ on Γ . (3.6)
Moreover, in order to have an exponential stability estimate we assume that

the integral kernel k satisfies assumption (2.1).
Now we recall a standard identity with multiplier. For a proof see Lemma 2.2

of [21] that extended to variable λ, μ a previous identity by Komornik [10].

Proposition 3.2. Let (D, B) be a regular solution of problem (1.9)–(1.12) and let
q be a C1 vector field. Then the following identity holds:

2
∫

Ω

(B × D)′qdx = −
∫

Ω

(div q)(λ|D|2 + μ|B|2)dx

+ 2
∫

Ω

3∑
i,k=1

∂qi

∂xk
(λDiDk + μBiBk)dx +

∫
Ω

{(q · ∇λ)|D|2 + (q · ∇μ)|B|2}dx

+
∫

Γ

{(λ|D|2 + μ|B|2)(q · ν) − 2μ(q · B)(ν · B) − 2λ(q · D)(ν · D)}dΓ. (3.7)

Remark 3.3. Note that identity (3.7) holds without assuming any particular bound-
ary condition.
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Using the boundary condition (1.13), Young’s and Cauchy-Schwarz’s inequal-
ities and the assumption (2.1), we can estimate the boundary terms in (3.7) as
follows.

Proposition 3.4. Assume that (2.1) holds. Let (D, B) be a solution of problem
(1.9) − (1.13) and let q be a C1 vector field verifying (3.4), (3.5), (3.6). Then,∫

Γ

{(λ|D|2 + μ|B|2)(q · ν) − 2μ(q · B)(ν · B) − 2λ(q · D)(ν · D)}dΓ

≤ C

{
k0

∫
Γ

|B(t) × ν|2dΓ +
∫

Γ

k(t)
∣∣∣ ∫ t

0

B(t − τ) × νdτ
∣∣∣2dΓ

−
∫

Γ

∫ t

0

k′(s)
∣∣∣ ∫ s

0

B(t − τ) × νdτ
∣∣∣2dsdΓ

}
,

(3.8)

for a suitable positive constant C.

By the estimate (3.8) and the assumptions (3.4), (3.5) on q, (3.7) gives

2
∫

Ω

(B × D)′qdx ≤ −ρ

∫
Ω

(λ|D|2 + μ|B|2)dx

+C

{
k0

∫
Γ

|B(t) × ν|2dΓ +
∫

Γ

k(t)
∣∣∣ ∫ t

0

B(t − τ) × νdτ
∣∣∣2dΓ

−
∫

Γ

∫ t

0

k′(s)
∣∣∣ ∫ s

0

B(t − τ) × νdτ
∣∣∣2dsdΓ

}
.

(3.9)

Now, we can give the exponential stability result. We need to introduce the Lya-
pounov functional

Ẽ(t) := E(t) + 2γ̂

∫
Ω

(B × D) · qdx, (3.10)

where γ̂ is a positive constant chosen sufficiently small and q a C1 vector field
verifying (3.4), (3.5) and (3.6). To obtain the stability estimate we use the deriva-
tive of the energy (3.3), inequality (3.9) and the new functional (3.10). A complete
proof of such a result is given in [19].

Theorem 3.5. Assume that (3.4), (3.5), (3.6) and (2.1) hold. Then, for any regular
solution (D, B) of problem (1.9)–(1.13),

E(t) ≤ C1E(0)e−C2t, ∀t > 0, (3.11)

for suitable positive constants C1, C2.

In order to have a polynomial stability estimate we assume that the function
k in the boundary condition (1.13) satisfies (2.2).
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Instead of Proposition 3.4 we have, in this case, the following result.

Proposition 3.6. Assume that (2.2) holds. Let (D, B) be a solution of problem
(1.9) − (1.13) and let q be a C1 vector field verifying (3.4), (3.5), (3.6). Then,∫

Γ

{(λ|D|2 + μ|B|2)(q · ν) − 2μ(q · B)(ν · B) − 2λ(q · D)(ν · D)}dΓ

≤ C

{
k0

∫
Γ

|B(t) × ν|2dΓ +
∫

Γ

[k(t)]1+
1
p

∣∣∣ ∫ t

0

B(t − τ) × νdτ
∣∣∣2dΓ

+
∫

Γ

∫ t

0

[−k′(s)]1+
1

p+1

∣∣∣ ∫ s

0

B(t − τ) × νdτ
∣∣∣2dsdΓ

}
,

(3.12)

for a suitable positive constant C.

By the estimate (3.12) and the assumptions (3.4), (3.5) on q, (3.7) gives

2
∫

Ω

(B × D)′qdx ≤ −ρ

∫
Ω

(λ|D|2 + μ|B|2)dx

+ C

{
k0

∫
Γ

|B(t) × ν|2dΓ +
∫

Γ

[k(t)]1+
1
p

∣∣∣ ∫ t

0

B(t − τ) × νdτ
∣∣∣2dΓ

+
∫

Γ

∫ t

0

[−k′(s)]1+
1

p+1

∣∣∣ ∫ s

0

B(t − τ) × νdτ
∣∣∣2dsdΓ

}
. (3.13)

We are ready to give the stabilization result. To prove the polynomial stabi-
lization we use the derivative of the energy (3.3), the Lyapounov functional (3.10)
and the above estimate (3.13). For the details we refer to [19].

Theorem 3.7. Assume that (3.4), (3.5), (3.6) and (2.2) hold. Let (D, B) be a regular
solution of problem (1.9)–(1.13) and let r be such that

1
p + 1

< r <
p

p + 1
.

Then,

E(t) ≤ C

(1 + t)(1−r)(p+1)−1
, ∀t > 0 , (3.14)

for a suitable positive constant C.

4. Examples

We end up with some examples that illustrate the geometric assumption (2.13)
and the assumption (2.14) (Subsection 4.1) and some examples that illustrate the
assumptions (3.4) and (3.5) (Subsection 4.2).
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4.1. Examples for the wave equation

Example (1). We take A such that aij(x) = a(x)δij , for some smooth function a
satisfying a ≥ α > 0 in Ω. Then clearly gij(x) = a(x)−1δij , and direct calculations
yield

Γl
jk = − 1

2a

(
∂a

∂xj
δkl +

∂a

∂xk
δjl −

∂a

∂xl
δjk

)
.

We now choose H(x) = a(x)(x − x0) for some x0 ∈ Rn and again standard
calculations give

DH(X, X) = a−1
n∑

i,j=1

(
aδij +

∂a

∂xi
(xj − x0j) −

1
2
(x − x0) · ∇aδij

)
ξiξj .

Therefore the assumption (2.13) is equivalent to

a|X |2 +X · ∇aX · (x− x0)−
1
2
|X |2(x−x0) · ∇a ≥ a0|X |2, ∀x ∈ Ω, X ∈ Rn, (4.1)

where |X | means the Euclidean norm of X . Since Cauchy-Schwarz’s inequality
leads to∣∣∣∣X · ∇aX · (x − x0) −

1
2
|X |2(x − x0) · ∇a

∣∣∣∣ ≤ 3
2
‖x − x0‖∞‖∇a‖∞|X |2,

where ‖w‖∞ = supx∈Ω |w(x)|, the estimate (4.1) will be true if

a − 3
2
‖x − x0‖∞‖∇a‖∞ ≥ a0 in Ω,

or equivalently if
3
2
‖x − x0‖∞‖∇a‖∞ < inf

x∈Ω
a(x), (4.2)

and in that case we may take

a0 = inf
x∈Ω

a(x) − 3
2
‖x − x0‖∞‖∇a‖∞.

Since
div H(x) = na(x) + ∇a(x) · (x − x0),

the condition (2.14) is equivalent to

sup
x∈Ω

(na(x) + ∇a(x) · (x − x0)) < inf
x∈Ω

(na(x) + ∇a(x) · (x − x0)) + 2a0. (4.3)

Again using Cauchy-Schwarz’s inequality, this estimate is satisfied if

n‖a‖∞ + 2‖x − x0‖∞‖∇a‖∞ < n inf
x∈Ω

a(x) + 2a0.

Taking the above value of a0, we deduce that (2.14) holds if

n‖a‖∞ + 5‖x − x0‖∞‖∇a‖∞ < (n + 2) inf
x∈Ω

a(x). (4.4)

Roughly speaking the conditions (4.2) and (4.4) hold together if a does not
vary too much in Ω.
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Example (2). We keep the setting of example 1 with a(x) = 1 + |x|2 and H(x) =
a(x)x. Then from the above considerations (2.13) reduces to (see (4.1))

|X |2(1 + |x|2) + 2(X · x)2 − |X |2|x|2 ≥ a0|X |2, ∀x ∈ Ω, X ∈ Rn,

that is a0|X |2 ≤ |X |2 + 2(X · x)2, which always holds by choosing a0 = 1.
Concerning (2.14), it is equivalent to (with the choice a0 = 1)

(n + 2)r2
max < (n + 2)r2

min + 2.

where for brevity we write

rmin = inf
x∈Ω

|x|, rmax = sup
x∈Ω

|x|.

In other words, (2.14) is equivalent to

r2
max − r2

min < 2/(n + 2).

For instance it holds if Ω = B(0, rmax) \B(0, rmin) with the above constraint
between rmin and rmax. In that case Γ0 = S(0, rmin) and Γ1 = S(0, rmax).

Example (3). As in Example 4.1 of [27] we take

aij(x) = (1 + |x|2)2δij .

Here contrary to [27] we simply take H(x) = (1 + |x|2)2x. As before (2.13) is
equivalent to

|X |2(1 + |x|2) + 4(X · x)2 − 2|X |2|x|2 ≥ a0

1 + |x|2 |X |2, x ∈ Ω, X ∈ Rn. (4.5)

This inequality will be satisfied if

|X |2(1 + |x|2) − 2|X |2|x|2 ≥ a0

1 + |x|2 |X |2, x ∈ Ω, X ∈ Rn,

or equivalently
1 − |x|2 ≥ a0

1 + |x|2 , x ∈ Ω.

If Ω̄ ⊂ B(0, 1) = {x ∈ Rn : |x| < 1}, then the above condition holds with
a0 = 1− r4

max. Since div H(x) = (1 + |x|2)(n + (4 + n)|x|2), the condition (2.14) is
equivalent to

(1 + r2
max)(n + (4 + n)r2

max) < (1 + r2
min)(n + (4 + n)r2

min) + 2 − 2r4
max,

which is satisfied if rmax is not too far from rmin.

Example (4). We take the matrix A(x) as a perturbation of a symmetric positive
definite matrix A. More precisely we take

A(x) = A − R(x),

and assume that the perturbation R is small in the sense that there exists r ∈ (0, 1)
such that

sup
x∈Ω

‖A−1‖2‖R(x)‖2 ≤ r, max
k=1,...,n

sup
x∈Ω

‖ ∂R

∂xk
‖2 ≤ r, (4.6)
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where ‖ · ‖2 means the Euclidean matrix norm. This condition implies that

‖A−1R(x)‖2 ≤ ‖A−1‖2‖R(x)‖2 < 1,

and using a Neumann series, the matrix A(x) is invertible and its inverse matrix
is given by

G(x) = A(x)−1 =
∞∑

k=0

(A−1R(x))kA−1. (4.7)

From this expression, we see that

∂G

∂xk
=

∞∑
k=1

k(A−1R(x))k−1A−1 ∂R

∂xk
A−1,

and therefore by the assumptions (4.6), we deduce that

‖ ∂G

∂xk
‖2 ≤ r

(1 − r)2
‖A−1‖2

2. (4.8)

Now we choose
H(x) = A(x)(x − x0),

and find
∂hi

∂xk
= aik(x) +

n∑
j=1

∂rij

∂xk
(xj − x0j).

From this identity and the estimate (4.8), we deduce that

DH(X, X) = |X |2 + (R1(x)X, X), ∀x ∈ Ω, X ∈ Rn,

where the matrix function R1(x) satisfies

‖R1(x)‖2 ≤ Cr, ∀x ∈ Ω,

for some C > 0. Therefore for r small enough, the assumption (2.13) will be
satisfied.

Similarly as
div H(x) = tr A + r2(x),

with
|r2(x)| ≤ Cr, ∀x ∈ Ω,

for some C > 0, the condition (2.14) holds if r is small enough.

4.2. Examples for Maxwell’s equations

Example (5). If we take λ and μ satisfying for any x ∈ Ω,

λ(x) −∇λ(x) · (x − x0) ≥ cλ(x), (4.9)

μ(x) −∇μ(x) · (x − x0) ≥ cμ(x), (4.10)
for a given point x0 ∈ Ω and a positive constant c, then (3.4) and (3.5) hold for
the standard multiplier q(x) := x−x0. If the domain Ω is strictly star-shaped with
respect to x0, then (3.6) also holds. In particular (4.9) and (4.10) hold if

∇λ(x) · (x − x0) ≤ 0, ∇μ(x) · (x − x0) ≤ 0, ∀x ∈ Ω.
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Example (6). If λ ≡ μ and q := λ2(x)(x − x0), then (3.4) and (3.5) become
1
2
∇λ2 · (x− x0)|ξ|2 +λ2|ξ|2 − 2(∇λ2 · ξ)((x−x0) · ξ) ≥ ρ|ξ|2, ∀x ∈ Ω, ∀ξ ∈ R3.

In particular, this is verified if

‖x − x0‖∞‖∇λ2‖∞ <
2
5
(inf

Ω
λ)2.

Example (7). If λ ≡ μ ≡ 1 + |x|2 and if we take q := x, then (3.4) and (3.5) are
equivalent to

(1 + |x|2)|ξ|2 − x · ∇(1 + |x|2)|ξ|2 ≥ ρ(1 + |x|2)|ξ|2,
that is

(1 − |x|2)|ξ|2 ≥ ρ(1 + |x|2)|ξ|2.
Consequently if Ω ⊂ { x ∈ R3 : |x| < 1 }, then there exists ρ > 0 such that this
condition is satisfied.
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1. Introduction

In this contribution we consider degenerate evolution equations on the real line that
have the distinguished feature that they contain an exponential weight function.
More precisely, we consider evolution equations of the type

esx∂tu + h(∂x)u = f, u(0) = u0, (1.1)

where s > 0 is a fixed number, x ∈ R and u = u(t, x). Here h(∂x) is a pseudo-
differential operator whose symbol h = h(iξ) is meromorphic in a vertical strip
around the imaginary axis and satisfies appropriate growth conditions.

Our interest is motivated by problems that arise from elliptic or parabolic
equations on angles and wedges, and by free boundary problems with moving
contact lines. To describe the class of symbols we have in mind, let us consider the
case of dynamic boundary conditions. It can be shown that the boundary symbol
for the Laplace equation Δu = 0 on an angle G = {(r cosφ, r sin φ); r > 0 φ ∈
(0, α)} in R2 with Dirichlet condition u = 0 on φ = α and dynamic boundary
condition ∂tu + ∂νu = g on φ = 0 is given by

∂te
x + ψ0(−(∂x + β)2), ψ0(z) =

√
z coth(α

√
z), z ∈ C.
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Here β ∈ R is a parameter that will ultimately determine the weight function
corresponding to the angle α. Similarly, if one considers the one-phase Mullins-
Sekerka problem in two dimensions with boundary intersection and prescribed
contact angle α ∈ (0, π], one is led to the boundary symbol

∂te
3x − ψ1(−(∂x + β)2)(∂x + β + 1)(∂x + β + 2),

where this time ψ1(z) =
√

z tanh(α
√

z). The free boundary problem for the sta-
tionary Stokes equations with boundary contact and prescribed contact angle in
two dimensions leads to

∂te
x + ψ(∂x + β),

where

ψ(z) = (1 + z)
cos(2αz) − cos(2α)
sin(2αz) + z sin(2α)

,

in the slip case and

ψ(z) =
(1 + z)

4
sin(2αz) − z sin(2α)
z2 sin2(α) − cos2(αz)

in the non-slip case. This motivates the study of equations of the type (1.1) and
its parametric form

νesxu + h(∂x)u = f, (1.2)

where s > 0, ν ∈ C.
It is our goal to identify function spaces such that the operators in (1.1)

and (1.2) become topological isomorphisms between these spaces, i.e., to obtain
optimal solvability results. We will do this in the framework of Lp-spaces. Our
main tools are recent results on sums of sectorial operators, their H∞-calculi, and
R-boundedness of associated operator families, see for instance [1, 2, 3, 4, 6, 7, 9].

Once this goal is achieved, one can go on to study symbols of higher-dimen-
sional or time-dependent problems. The symbols for the Mullins-Sekerka problem
in higher dimensions, for the Stefan problem with surface tension, and for the free
boundary of the non-steady Stokes problem will be the subject of future work.

The case where h is a second-order polynomial is studied in detail in [8], and
an application to a parabolic evolution equation in a wedge domain with dynamic
boundary conditions is given.

Observe that equations (1.1) and (1.2) are highly degenerate, due to the
presence of the exponentials. Therefore they are not directly accessible by standard
methods for pseudo-differential operators. Moreover, the basic ingredients of these
symbols, namely ex and ∂x, do not commute. Still, there is a close relation between
these operators. In fact, esx is an eigenfunction of ∂x with eigenvalue s, or to put
it in a different way, the commutator between esx and ∂x is sesx. It is this relation
we base our approach on. It allows us to apply abstract results on sums of non-
commuting operators.

The plan for this paper is as follows. In Section 2 we introduce the symbol
class Mr

a,b. Our first main result, Theorem 2.5, states that parametric symbols of
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the form (1.2) lead to sectorial operators in Lp(R) which admit a bounded H∞-
calculus. This result is used in Section 3 to show that problem (1.1) generates
a bounded, strongly continuous, analytic semigroup on Lp(R) for every symbol
h ∈ Mr

a,b, see Theorem 3.1 We can also show that the degenerate evolution equa-
tion (1.1) enjoys Lp-maximal regularity, provided h is replaced by ω0 + h with
an appropriate nonnegative number ω0, see Proposition 3.2. We pose the open
question whether or not ω0 can in fact be chosen to be zero, and we answer this
question in the affirmative in case that p = 2. Finally, in Section 5 we study some
of the functions introduced above, and we characterize values of β so that the
associated symbol hβ belongs to the symbol class Mr

a,b.

In order to keep this paper short, we refer to [2, 7] for the definitions and for
background material on sectorial operators, their H∞-calculus, and the concept
of R-boundedness. For the reader’s convenience, we will include a recent result
on an H∞-calculus for the sum of non-commuting operators. For this, we con-
sider two sectorial operators A and B and we assume that A and B satisfy the
Labbas-Terreni commutator condition [5], which reads as follows.⎧⎪⎪⎨⎪⎪⎩

0 ∈ ρ(A). There are constants c > 0, 0 ≤ α < β < 1,
ψA > φA, ψB > φB , ψA + ψB < π,
such that for all λ ∈ Σπ−ψA , μ ∈ Σπ−ψB

‖A(λ + A)−1[A−1(μ + B)−1 − (μ + B)−1A−1]‖ ≤ c/(1 + |λ|)1−α|μ|1+β .
(1.3)

Assuming this condition we have the following generalization of a result by Kalton-
Weis [3] on sums of operators to the non-commuting case, see [7].

Theorem 1.1. Suppose A ∈ H∞(X), B ∈ RS(X) and suppose that (1.3) holds for
some angles ψA > φ∞

A , ψB > φR
B with ψA + ψB < π.

Then there is a number ω0 ≥ 0 such that ω0 + A + B is invertible and sectorial
with angle φω0+A+B ≤ max{ψA, ψB}. Moreover, if in addition B ∈ RH∞(X) and
ψB > φR∞

B , then ω0 + A + B ∈ H∞(X) and φ∞
ω0+A+B ≤ max{ψA, ψB}.

2. Parametric symbols

In this section we consider the parametric problem

νesxu + h(∂x)u = f, (2.1)

where f ∈ Lp(R) for 1 < p < ∞, ν ∈ Σθ, s ∈ R, s �= 0, and h(∂x) is a pseudo-
differential operator whose symbol h belongs to the class Mr

a,b defined below. We
study the unique solvability of (2.1) in Lp(R) with optimal regularity. This means
that we are looking for a unique solution u of (2.1) such that esxu ∈ Lp(R) and
u ∈ Hr

p (R), where r ∈ R denotes the order of the symbol h(z). It is an important
objective to obtain estimates for the solutions that are uniform in ν ∈ Σθ.
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We introduce now the class of symbols. For this purpose we consider the
vertical strip

S(a,b) = {z ∈ C : a < Re z < b} where 0 ∈ (a, b).

Definition 2.1. Let r ≥ 1 be a fixed number.
Then h is said to belong to the class Mr

a,b if
(i) h(z) is a meromorphic function defined on the strip S(a,b),
(ii) h(z)/|z|r → 1 as |z| → ∞, z ∈ S(a,b),
(iii) there are constants C, N > 0 such that

|zh′(z)| ≤ C(1 + |z|r), z ∈ S(a,b), |z| ≥ N,

(iv) h has no poles on the line iR,
(v) there exists a number c0 > 0 such that Re h(iξ) ≥ c0 for all ξ ∈ R.

Remark 2.2. The following properties are easy consequences of Definition 2.1.
(a) Suppose h satisfies (i)–(ii) in Definition 2.1. Then h has only finitely many

poles in S(a,b).
(b) Suppose h satisfies (i)–(ii) and (iv)–(v) in Definition 2.1. Let

θh := sup{|argh(iξ)| : ξ ∈ R}.
Then θh < π/2.

In the next proposition, we study some mapping properties of h(∂x) and we derive
an expression for the commutator [esx, h(∂x)].

Proposition 2.3. Let r > 0 and 1 < p < ∞. Suppose 0,−s ∈ (a, b) and suppose
that

(i) g : S(a,b) → C is meromorphic,
(ii) there are positive constants C and N such that

|g(z)| + |zg′(z)| ≤ C(1 + |z|r), z ∈ S(a,b), |z| ≥ N,

(iii) g has no poles on the lines iR and iR − s.
Let g(∂x) and g(∂x − s) be the pseudo-differential operators defined by

g(∂x)u := F−1(g(iξ)Fu), g(∂x − s)u := F−1(g(iξ − s)Fu), u ∈ S(R),

respectively, where F denotes the Fourier transform, and S(R) is the Schwartz
space of rapidly decaying functions. Then
(a) the operators g(∂x) and g(∂x − s) are well defined and

g(∂x), g(∂x − s) ∈ B(Hr
p(R), Lp(R)).

(b) For any function v ∈ Hr
p(R) such that esxv ∈ Hr

p (R) we have the identity

esxg(∂x)v(x) = g(∂x − s)esxv(x) + esx
∑

k

∫
R

pk(x − y)ezk(x−y)v(y)dy,

for x ∈ R, where zk denote the finitely many poles with order mk of g in the
strip S(−s,0) and pk(x) are polynomials of order mk − 1.
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Proof. (a) Let mσ be defined by mσ(ξ) = h(iξ − σ)/(1 + |ξ|2)r/2 for ξ ∈ R and
σ = 0, s. It is not difficult to see that mσ satisfies supξ∈R(|mσ(ξ)|+ |ξm′

σ(ξ)|) < ∞,
and the assertion follows from Mikhlin’s multiplier theorem.

(b) Let v ∈ D(R) be a test function. Then by definition of the pseudo-differential
operator g(∂x) we have

g(∂x)v(x) =
1
2π

∫
R

eixξg(iξ)Fv(ξ)dξ, x ∈ R.

Note that by assumption (ii) there are only finitely many poles zk in the strip
S(−s,0). Multiplying with esx and applying the residue theorem yields

esxg(∂x)v(x) =
1
2π

∫
R

e(s+iξ)xg(iξ)Fv(ξ)dξ

=
1
2π

∫
R

eiξxg(iξ−s)Fv(ξ + is)dξ + esx
∑

k

Res[ezxg(z)Fv(−iz)]z=zk

= g(∂x−s)esxv(x) + esx
∑

k

∫
R

ezk(x−y)pk(x − y)v(y)dy,

where the pk(x) are polynomials of order mk − 1 corresponding to the order mk

of the pole of g(z) at z = zk. The assertion now follows from an approximation
argument. �

Next we state a result on kernel bounds for h(∂x)−1 which is also of independent
interest.

Proposition 2.4. Suppose r ≥ 1 and

(i) h : S(−d,d) → C is holomorphic for some d > 0,
(ii) there are positive constants c, C such that

|h(z)| ≥ c(|z|r + 1) and |h(z)| + |zh′(z)| ≤ C(1 + |z|r), z ∈ S(−d,d).

Then

(a) the operator h(∂x) is well defined and

h(∂x) ∈ Isom(Hr
p (R), Lp(R)).

(b) h(∂x)−1 is a convolution operator with kernel k, where eδ|·|k ∈ L1(R) for
some δ > 0.

Proof. (a) Mikhlin’s theorem implies that h(∂x) is a well-defined invertible oper-
ator with domain Hr

p(R).

(b) The kernel of h(∂x)−1 is given by the inverse Fourier transform of h(iξ)−1, i.e.,

k(x) =
1
2π

∫
R

eiξx dξ

h(iξ)
, x ∈ R.
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Shifting the path of integration by 2δ < d to the left or to the right, we obtain by
Cauchy’s theorem

e±2δxk(x) =
1
2π

∫
R

eiξx dξ

h(iξ ∓ 2δ)
, x ∈ R.

Plancherel’s theorem then yields e2δ|x|k ∈ L2(R). Using that eδ|x|k = e−δ|x|e2δ|x|k
we obtain from Hölder’s inequality that eδ|x|k ∈ L1(R). �

We will now state our main result for problem (2.1). Before doing so, we introduce
the following spaces

X0 :=Lp(R),

X1 :=Hr
p (R) ∩ {v ∈ Lp(R) : esxv ∈ Lp(R)).

(2.2)

Theorem 2.5. Let 1 < p < ∞, r ≥ 1, and a, b ∈ R with 0,−s ∈ (a, b). Suppose the
symbol h belongs to the class Mr

a,b and let θh be as in Remark 2.2. Then

(a) (νesx + h(∂x)) ∈ Isom (X1, X0) for each ν ∈ Σπ−θh
.

(b) For each θ > θh there is a positive number Mθ such that

‖(νesx + h(∂x))−1‖B(Lp,Hr
p) + ‖νesx(νesx + h(∂x))−1‖B(Lp) ≤ Mθ, (2.3)

for every ν ∈ Σπ−θ.
(c) (νesx + h(∂x)) ∈ H∞(Lp(R)) for each ν ∈ Σπ−θh

.

Proof. (1) Let θ > θh be fixed and choose ν ∈ Σπ−θ. Let A be the operator in
X0 = Lp(R) defined by means of (Au)(x) = νesxu(x), x ∈ R, for

u ∈ D(A) = {u ∈ Lp(R) : esxu ∈ Lp(R)}.
A is a multiplication operator, hence it is sectorial and admits a bounded H∞-
calculus with angle φ∞

A = φA = | arg ν| ≤ π − θ. Next we introduce the operator
B in X0 given by

Bu = h(∂x)u, u ∈ D(B) = Hr
p (R).

As in the proofs of Proposition 2.3 and Proposition 2.4 we obtain from Mikhlin’s
theorem that B is well defined, invertible, sectorial, and admits a bounded H∞-
calculus with angle φ∞

B = θh.
We would now like to apply Theorem 1.1 to the sum A+B. For this purpose

we have to check the commutator condition (1.3). In order to do so, it turns out to
be convenient to first remove the poles of h in the strip S̄(−s,0), decomposing h as
h = h1 + h2, where h1 is holomorphic in S(−s−ε,ε) and h2 is rational and bounded
at infinity. By adding a sufficiently large constant to h1 (and subtracting it off
from h2) we can assume that Re h1(iξ−σ) ≥ c0 > 0 for all σ ∈ [0, s], and also that
θh1 ≤ θh. Therefore, the operators h1(∂x) and h1(∂x −s) have the same properties
as B. In particular, the parabolicity condition φ∞

A + φ∞
h1(∂x) ≤ π − θ + θh < π is
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satisfied. For η > 0 fixed we obtain from Proposition 2.3(b), with g = (μ + h1)−1

and (a, b) = (−s − ε, ε), that

(η + A)(λ + η + A)−1[(η + A)−1, (μ + h1(∂x))−1]

= (λ + η + A)−1[(μ + h1(∂x))−1, A](η + A)−1

= −(λ + η + A)−1(μ + h1(∂x − s))−1[h1(∂x) − h1(∂x − s)]

· (μ + h1(∂x))−1A(η + A)−1.

Since |h1(iξ) − h1(iξ − s)| ∼ |ξ|r−1 we see that the function m defined by

m(ξ) :=
h1(iξ) − h1(iξ − s)

(1 + ξ2)(r−δ)/2

belongs to L2(R), and also that m′ ∈ L2(R) for each δ ∈ (0, 1/2). This implies
that m is the Fourier transform of an L1-function and it follows that

(h1(∂x) − h1(∂x − s)) ∈ B(Hr−δ
p (R), Lp(R)).

Hence we obtain the estimate
‖(η + A)(λ + η + A)−1[(η + A)−1, (μ + h1(∂x))−1]‖
≤ C(|λ| + η)−1|μ|−1‖h1(∂x) − h1(∂x − s)‖B(Hr−δ

p ,Lp)‖(μ + h1(∂x))−1‖B(Lp,Hr−δ
p )

≤ Cη(1 + |λ|)−1|μ|−(1+δ/r),

and (1.3) holds with α = 0, β = δ/r, and ψA > φA, ψB > φB such that ψA +ψB <
π. Thus by Theorem 1.1 and [7, Remark 2.1] there is a sufficiently large ω0 such
that ω0 + A + h1(∂x) is invertible, sectorial, and belongs to H∞(X0) with angle
less than max{ψA, ψB}. Since h2(∂x) is bounded, the same results hold for

ω0 + A + B = ω0 + A + h1(∂x) + h2(∂x),

possibly at the expense of enlarging ω0. This implies in particular that A+B with
domain

D(A + B) = D(A) ∩ D(B) = X1

is closed.
In the remaining part of the proof we want to remove ω0 by means of a

Fredholm type argument. Suppose we know that ω + A + B is injective and has
closed range for all ω ∈ [0, ω0]. Then these operators are semi-Fredholm, hence their
index is well defined and constant, by the well-known result on the continuity of
the Fredholm index. Now, for ω = ω0 this index is zero since ω +A+B is bijective
as proved above. Then it must be zero for all ω ∈ [0, ω0], hence the operators
ω + A + B must also be surjective since they are injective. We can then conclude
from [2, Proposition 2.7] that A+B is sectorial and admits a bounded H∞-calculus
as well.

(2) Let us first consider the easiest case p = 2. Suppose u ∈ D(A)∩D(B) satisfies

νesxu + ωu + h(∂x)u = f.
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Taking the inner product with u in L2(R) yields

ν‖esx/2u‖2
2 + ω‖u‖2

2 + (h(∂x)u|u) = (f |u).

By means of Plancherel’s theorem we have

(h(∂x)u|u) = (F(h(∂x)u)|Fu) = (h(iξ)Fu|Fu),

and by taking real parts we obtain

c0‖u‖2
2 ≤ Re (h(∂x)u|u) ≤ ‖f‖2‖u‖2,

provided Re ν ≥ 0. This implies the a priori bound

‖u‖2 ≤ c−1
0 ‖f‖2,

which is independent of ω ≥ 0 and Re ν ≥ 0, i.e., injectivity and closed range of
ω + A + B follow. In the case of a general angle θ > θh we set ρ = tan θh. Then

|Im h(iξ)| ≤ ρReh(iξ), ξ ∈ R.

Taking real parts we get this time

Re ν‖esx/2u‖2
2 + ω‖u‖2

2 +
∫

R

Re h(iξ)|Fu|2 dξ ≤ ‖f‖2‖u‖2,

and taking imaginary parts we obtain

|Im ν| ‖esx/2u‖2
2 −

∫
R

|Im h(iξ)||Fu|2 dξ ≤ ‖f‖2‖u‖2.

Thus

(|Imν|+(ε+ρ)Reν)‖esx/2u‖2
2+

∫
R

(
(ε+ρ)Reh(iξ)−|Imh(iξ)

)
|Fu|2dξ≤c‖f‖2‖u‖2.

For |Im ν| + (ε + ρ)Re ν ≥ 0 we may now conclude that

‖u‖2 ≤ (1 + ρ + ε)/c0ε)‖f‖2.

The assumptions | arg ν| ≤ π − θ and θ > θh allow for such a choice of ε > 0.
Hence in any case we have shown that ω + A+B is injective and has closed range
for all ω ≥ 0, which completes the proof of the theorem for p = 2.

(3) We next prove injectivity for all p ∈ (1,∞). Suppose u ∈ X1 satisfies

νesxu + ωu + h(∂x)u = 0.

Then u, esxu ∈ Lp(R) implies that eσxu ∈ Lp(R) for all σ ∈ [0, s]. But this gives

e−εxu = −e−εx(ω + h(∂x))−1νesxu = −(ω + h(∂x + ε))−1νe(s−ε)xu,

where ε > 0 is so small that Re h(iξ + σ) ≥ c0/2 for all ξ ∈ R and 0 ≤ σ ≤ ε.
It follows that eσxu ∈ Lp(R) for all σ ∈ [−ε, s]. Using the Sobolev embedding
Hr

p (R) ↪→ C0(R) and Hölder’s inequality we get∫
R

|u|2 dx ≤ ‖u‖∞(
∫

R

e−εp′|x| dx)1/p′
(
∫

R

eεp|x||u|p dx)1/p
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and we conclude that u ∈ L2(R). Uniqueness in L2(R) now implies u = 0, i.e.,
ω + A + B is injective in Lp(R) for all ω ≥ 0.

(4) Closedness of the ranges is more involved for p �= 2 since we cannot refer
to Parseval’s theorem. Moreover, B will in general not be accretive in Lp(R). So
assume to the contrary that R(ω + A + B) is not closed in Lp(R), for some ω ≥ 0.
Then there is a sequence (un) ⊂ D(A) ∩ D(B) with

‖un‖p = 1 and fn := (ω + A + B)un → 0 in Lp(R) as n → ∞.

Since ω0 +A+B is invertible by step (1) this implies that un is bounded in Hr
p(R)

and esxu is bounded in Lp(R). By reflexivity of these spaces there exists a function
u ∈ Hr

p (R)∩Lp(R, epsxdx) and a subsequence (w.l.o.g. the full sequence) such that

un ⇀ u in Hr
p (R), Bun ⇀ Bu in Lp(R) and esxun ⇀ esxu in Lp(R).

The function u then satisfies νesxu + ωu + h(∂x)u = 0. Hence u = 0 by the
uniqueness result proved in the previous step.

We want to show un → 0 in Lp(R) which gives a contradiction to ‖un‖p = 1.
To achieve this we use the embedding Hr

p(R) ↪→ BUCα(R) for α = r − 1/p > 0.
Since un converges weakly to 0 in Lp(R) and is relatively compact in C(R) w.r.t the
topology of uniform convergence on compact sets by the Arzela-Ascoli theorem,
we may conclude that un → 0 locally uniformly. Let a ∈ R be a fixed number.
Then given any ε > 0 there exists numbers b > a and k ∈ N such that for any
n ≥ k∫ ∞

a

|un|pdx ≤ e−sbp

∫ ∞

b

|unesx|pdx +
∫ b

a

|un|pdx

≤ e−sbp sup
n

|unesx|pp + (b − a) sup{|un(x)|p : x ∈ [a, b], n ≥ k} ≤ ε.

Hence
∫∞

a
|un|pdx → 0 as n → ∞ for each a ∈ R.

We will now apply Proposition 2.4 to ω + h(z) and we find that its inverse has a
kernel k such that eδ|x|k ∈ L1(R) for δ > 0 sufficiently small. This yields

un = (ω + h(∂x))−1(fn − νesxun) = k ∗ fn − k ∗ νesxun =: k ∗ fn − vn.

Observe that e−δxvn =(e−δxk)∗(νe(s−δ)xun). Since e(s−δ)xun is uniformly bounded
in Lp(R) with respect to n and e−δxk ∈ L1(R) we conclude that e−δxvn is also
uniformly bounded in Lp(R). Let ε > 0 be given. Then we can find numbers a ∈ R
and k ∈ N such that

(
∫ a

−∞
|un|pdx)1/p ≤ ‖k‖1‖fn‖p + eδa(

∫ a

−∞
|e−δxvn|pdx)1/p

≤ ‖k‖1‖fn‖p + eδa‖e−δxvn‖p ≤ ε

whenever n ≥ k. (This can be done by choosing first a sufficiently negative and
then k sufficiently large.) Hence un → 0 in Lp(R), and so the range of ω + A + B
must be closed for each ω ≥ 0.
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(5) Finally we prove the estimate (2.3) by a scaling argument. Let τa denote
the translation group on Lp(R), i.e., (τav)(x) = v(x + a), and observe that h(∂x)
commutes with this group. Then with a = 1

s ln |ν| and ϑ = arg ν we have

νesxu(x) + h(∂x)u(x) = f(x), x ∈ R,

if and only if
eiϑesxτ−au + h(∂x)τ−au = τ−af.

Setting Tϑ = eiϑesx(eiϑesx + h(∂x))−1 this gives the representation

νesxu = νesx(νesx + h(∂x))−1f = τaTϑτ−af.

The family {Tϑ}ϑ∈[−θ,θ] ⊂ B(Lp(R)) is continuous in ϑ, hence uniformly bounded.
Since the translations are isometries on Lp(R) we obtain the estimate

‖νesx(νesx + h(∂x))−1‖B(Lp(R)) ≤ sup
|ϑ|≤θ

‖Tϑ‖B(Lp(R)) < ∞. (2.4)

This proves estimate (2.3) since h(∂x) ∈ B(Hr
p(R), Lp(R)) is an isomorphism. �

3. The evolution equation

By means of the transformation v(x) = esxu(x), (2.1) is equivalent to the para-
metric problem

νv + h(∂x)e−sxv = f. (3.1)
We thus consider the new operator C on X = Lp(R) given by

Cv = h(∂x)(e−sxv), v ∈ D(C) = {v ∈ Lp(R) : e−sxv ∈ Hr
p (R)}. (3.2)

We have the following result.

Theorem 3.1. Let the assumptions of Theorem 2.5 be satisfied. Then C is sec-
torial with φC = θh < π/2. Hence −C is the generator of a bounded analytic
C0-semigroup on X.

Proof. It is clear that C is densely defined, since D(R) ⊂ D(C). Observing that

ν(ν + C)−1 = νesx(νesx + h(∂x))−1, ν ∈ Σπ−θh
, (3.3)

it follows from Theorem 2.5(b) that C is sectorial with angle θh. This shows that
−C is the generator of a bounded analytic C0-semigroup in X = Lp(R). The
ergodic theorem X = N(C) ⊕ R(C) shows also that the range of C is dense in X
since obviously C is injective. �

We pose the question whether the Cauchy problem

v̇ + Cv = f, v(0) = 0, (3.4)

has maximal Lp-regularity. This is not clear from Theorem 2.5, but the first step
of its proof shows that (3.4) has in fact maximal Lp-regularity if C is replaced
by Cω = (ω + h(∂x))e−sx with ω ≥ ω0, where ω0 is an appropriate nonnegative
number. It is an interesting open question whether ω0 can be chosen to be 0.
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Due to the transformation u(t, x) = e−sxv(t, x) is is clear that every solution of
the Cauchy problem (3.4) is also a solution of the following degenerate Cauchy-
problem

esx∂tu(t, x) + h(∂x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = 0.
(3.5)

Thanks to Theorem 3.1 we know that problem (3.4) admits a unique solution v for
an appropriate function f , and hence, problem (3.5) also admits a unique solution
(whose regularity properties can be deduced from the regularity properties of v
via the transformation u = e−sxv).

It is an open problem whether or not (3.5) has maximal regularity. In that
direction, we can only prove the following weaker result.

Proposition 3.2. Let the assumptions of Theorem 2.5 be satisfied. Then there exists
a non-negative number ω0 such that

esx∂tu(t, x) + ωu(t, x) + h(∂x)u(t, x) = f(t, x), t > 0, x ∈ R,

u(0, x) = 0,
(3.6)

admits a unique solution u with maximal Lp-regularity for every ω ≥ ω0. That is,
for each f ∈ Lp(J × R), problem (3.6) admits a unique solution u ∈ Lp(J, Hr

p (R))
such that esx∂tu ∈ Lp(J ×R) where J = (0, T ). There is a constant M = Mω > 0,
independent of f , such that

‖esx∂tu‖Lp(J×R) + ‖u‖Lp(J,Hr
p(R)) ≤ M‖f‖Lp(J×R).

Moreover, the operator L = ∂te
sx + ω + h(∂x) admits a bounded H∞-calculus on

Lp(J × R) for ω ≥ ω0.

Proof. Repeating step (1) of the proof of Theorem 2.5 in Lp(J×R) = Lp(J, Lp(R))
with A replaced by A = ∂te

sx, we obtain a number ω0 such that the operator

ω0 + ∂te
sx + h(∂x),

with natural domain, is invertible and admits a bounded H∞-calculus. Proposi-
tions 1.3.(iv) and 2.7 in [2] imply that this is also true for any ω ≥ ω0. �

On the other hand, we do obtain maximal Lp-regularity for problem (3.5) in
case that X = L2(R). This is the statement of the next theorem.

Theorem 3.3. Let the assumptions of Theorem 2.5 be satisfied. Then for each
f ∈ Lp(J, L2(R)), problem (3.6) admits a unique solution u ∈ Lp(J, Hr

2 (R)) such
that esx∂tu ∈ Lp(J, L2(R)). There is a constant M > 0, independent of f , such
that

‖esx∂tu‖Lp(J,L2(R)) + ‖u‖Lp(J,Hr
2 (R)) ≤ M‖f‖Lp(J,L2(R)).

The operator L = ∂te
sx + h(∂x) admits a bounded H∞-calculus on Lp(J, L2(R)).
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Proof. Let X = L2(R). According to Theorem 3.1 we know that the operator
C is sectorial with φC = θh. Since X is a Hilbert space, we have that C is, in
addition, also R-sectorial with φR

C = θh, see for instance [2, Remark 3.2.(3)]. This
implies that the Cauchy problem (3.4) has maximal Lp-regularity, see for instance
[2, Theorem 4.4]. Since ω + h(z) satisfies the same assumptions as h(z) for each
ω ≥ 0 we deduce that the Cauchy problem (3.4) with C replaced by Cω also has
maximal Lp-regularity. That is, for each f ∈ Lp(J, X), with X = L2(R), there is a
unique solution v ∈ H1

p (J, X) of (3.4), and there is a positive constant M = M(ω)
independent of f such that

‖v̇‖Lp(J,X) + ‖Cωv‖Lp(J,X) ≤ M‖f‖Lp(J,X), f ∈ Lp(J, X).

Going to (3.6) via the transformation u = e−sxv yields a unique solution of (3.6)
and the estimate

‖esx∂tu‖Lp(J,X) + ‖(ω + h(∂x))u‖Lp(J,X) ≤ M‖f‖Lp(J,X), f ∈ Lp(J, X).

Since ω + h(∂x) ∈ B(Hr
p(R), Lp(R)) is an isomorphism for each ω ≥ 0, this yields

invertibility of the operators ω+∂te
sx+h(∂x) on Lp(J, L2(R)) with natural domain,

for each ω ≥ 0. As in Theorem 3.1 we obtain that there is a number ω0 ≥ 0 such
that ω0 + ∂te

sx + h(∂x) admits a bounded H∞-calculus on Lp(J, L2(R)). Using [2,
Proposition 2.7] we conclude that ∂te

sx + h(∂x) is invertible, sectorial and admits
a bounded H∞-calculus on Lp(J, L2(R)), and this completes the proof. �

4. Examples

In this section we discuss some of the examples introduced in Section 1.

(i) We first consider the symbol of the Laplace equation in an angle G =
{(r cosφ, r sin φ) : r > 0, φ ∈ (0, α)} with homogeneous Dirichlet condition on
φ = α and dynamic boundary condition ∂tu + ∂νu = g on φ = 0. Then we obtain
a problem of the form (1.1) with s = 1 and

hβ(z) = ψ0(−(z + β)2) with ψ0(ζ) =
√

ζ coth(α
√

ζ).

Since the function coth(ζ) is odd, ψ0 is a meromorphic function on C with poles
in {ζk = −r2

k = −k2(π/α)2 : k ∈ N}. Since coth ζ → 1 for |ζ| → ∞, | arg(ζ)| ≤
θ < π/2, it is easy to see that hβ(z)/|z| → 1 as |z| → ∞, in any strip S(a,b). In
particular r = 1 and h satisfies (i)–(iii) of Definition 2.1 in S(a,b) for all a < b.
Next we determine the values of β which are admissible. The parabola Pβ =
{−(iξ + β)2 : ξ ∈ R} passes through a pole of ψ0 if and only if |β| = rk for some
k ∈ N. Therefore Definition 2.1(iv) is satisfied if and only if |β| �= rk for all k ∈ N.
To check Definition 2.1(v), we compute the real part of hβ(iξ), to the result

Re hβ(iξ) =
|ξ| sinh(2α|ξ|) + β sin(2αβ)

cosh(2α|ξ|) − cos(2αβ)
.
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This shows that the real part of hβ(iξ) is strictly positive for all values of ξ ∈ R
if and only if Rehβ(0) > 0, which in turn is equivalent to |β| cot(α|β|) > 0. This
yields the range

|β| ∈ [0, π/2α)
⋃
k≥1

(kπ/α, (k + 1/2)π/α).

(ii) If in (i) we change the Dirichlet condition on φ = α into a Neumann condition
then the function h becomes

hβ(z) = ψ1(−(z + β)2) with ψ1(ζ) =
√

ζ tanh(α
√

ζ).

Here we have again a meromorphic function, s = r = 1, but the poles are this time
in {ζk = −s2

k = −(2k + 1)2(π/2α)2 : k ∈ N0}. The admissible values of β then are
|β| �= sk for k ∈ N0. For the real part of hβ(iξ) we get

Re hβ(iξ) =
|ξ| sinh(2α|ξ|) − β sin(2αβ)

cosh(2α|ξ|) + cos(2αβ)
.

Thus the real part of hβ(iξ) is in this case strictly positive for all ξ ∈ R if and
only if Re hβ(0) > 0 which in turn is equivalent to |β| tan(α|β|) < 0. This yields
the range |β| ∈ ∪k≥1(kπ/α, (k + 1/2)π/α).

(iii) We next discuss the symbol of the two-dimensional Mullins-Sekerka
problem

hβ(z) = −ψ1(−(z + β)2)(z + β + 1)(z + β + 2),

with ψ1 as in (ii), where we restrict attention to the physically relevant range
α ∈ (0, π). Here again h is meromorphic and we have s = r = 3. The poles are
the same as in (ii), and for the real part of hβ(iξ) we get the more complicated
expression

Rehβ(iξ)=
|ξ|sinh(2α|ξ|)(ξ2−3β(β +2)−2)+(β +1)sin(2αβ)(β(β +2)−3ξ2)

2(sinh2(αξ)+cos2(αβ))
.

For β > 0 we set ξ2
0 = β(β + 2)/3 to see that ξ2

0 − 3β(β + 2) − 2 < 0, hence
Re hβ(iξ0) < 0. If β = 0, then we also have Re hβ(iξ) < 0 for ξ sufficiently small.
Thus nonnegative values of β are not admissible, and neither are small negative
values of β. On the other hand, if β ≤ −2 then the same choice of ξ0 shows
Re hβ(iξ0) ≤ 0, so that such values of β do also not meet (iv) of Definition 2.1.
This shows that the admissible values of β are contained in the interval (−2, 0).
Next we look at hβ(0) which is

hβ(0) = |β| tan(α|β|)(β + 1)(β + 2).

There are two distinguished cases, namely −2 < β < −1 and −1 < β < 0, as
hβ(0) = 0 for β = −1. If −1 < β < 0 we always have the window −π/2α < β < 0.
Restricting attention to this range, a sufficient condition for Rehβ(iξ) ≥ c0 > 0 is

max{−1,−π/2α} < β < −1 + 1/
√

3.
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In fact, we then have sin(2α|β|) > 0 as well as 3|β|(β + 2) − 2 > 0, which implies
Re hβ(iξ) > 0 for all ξ ∈ R. On the other hand, if ξ2 is such that the coefficient of
sinh(2α|ξ|)|ξ| is negative, i.e., if ξ2 − 3β(β + 2) − 2 < 0, then we may estimate

sin(2αβ)(β + 1)(−3ξ2 + β(β + 2)) + sinh(2α|ξ|)|ξ|(ξ2 − 3β(β + 2) − 2)

≤ 2α|β|(1 − |β|)
[
3ξ2 + |β|(2 − |β|)

]
+ 2αξ2

[
ξ2 + 3|β|(2 − |β|) − 2

]
= 2α

[
ξ4 − (2 + 6|β|2 − 9|β|)ξ2 + |β|2(1 − |β|)(2 − |β|)

]
.

The last line becomes negative for some value of ξ2 > 0 if and only if

|β|2(1 − |β|)(2 − |β|) < (1 + 3|β|2 − 9|β|/2)2,

which shows that the range −0.195 ≤ β < 0 is forbidden. Computations with a
computer algebra system suggest that there is an increasing function β∗(α) such
that the range of well-posedness is given by −1 < β < β∗(α), and −0.32 < β∗(α) <
−0.195.

(iv) Finally we discuss the symbol of the stationary Stokes problem with boundary
contact and prescribed contact angle in the slip case in two dimensions. This
symbol reads as

hβ(z) = ψ(z + β) with ψ(ζ) = (1 + ζ)
cos(2αζ) − cos(2α)
sin(2αζ) + ζ sin(2α)

.

This symbol is much more complex than those discussed before, and we do not
intend to present a complete discussion here. Obviously, β = 0 leads to a first
order pole, hence neither of the intervals [−δ, 0] and [0, δ] are admissible. We want
to concentrate on a neighborhood of β = 1. Computing the real part of ψ(1 + iξ)
leads to the expression

Reψ(1 + iξ) =
(cosh(2αξ) − 1)(ξ sinh(2αξ) + ξ2 sin(4α)/2)

sin2(2α)(cosh(2αξ) + 1)2 + (cos(2α) sinh(2αξ) + ξ sin(2α))2
.

This representation of Reψ(1+iξ) shows that it is strictly positive except at ξ = 0.
Thus β = 1 is not admissible. We expand the symbol at (β, ξ) = (1, 0) to the result

hβ(iξ) = 2α(1 − β − iξ) + o(|β − 1| + |ξ|).
This shows by means of a compactness argument that Re hβ(iξ) is bounded below
for ξ ∈ R when β is restricted to an interval (β∗(α), 1) with β∗(α) < 1. This
range of β is admissible, i.e., for such numbers β the conditions (iv) and (v) of
Definition 2.1 are satisfied.



Degenerate Evolution Equations 545

References

[1] Ph. Clément, J. Prüss. Some remarks on maximal regularity of parabolic prob-
lems. Evolution equations: applications to physics, industry, life sciences and eco-
nomics (Levico Terme, 2000), Progress Nonlinear Differential Equations Appl. 55,
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Abstract. The objective of this paper is to provide an analytic theory for
pricing of Asian options of European type. We present a partial differential
equation describing the fair price process of an Asian option. This appears as

(∂t − A − x · ∇y)u = 0

and the associated payoff function as the end value. Here the operator A is
the d-dimensional Black-Scholes operator, and B = x ·∇y represents the path
dependence in terms of the price averaging in Asian options. The main result
will be to prove, that a solution of this partial differential equation exists, is
unique, and depends continuously on the data in appropriate function spaces,
i.e., that the problem is well posed. On our way we are going to employ
semigroup methods, in particular the Lumer-Phillips theorem.

Mathematics Subject Classification (2000). 35J70, 35L80, 35M10, 47D06,
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Keywords. Asian options, Black-Scholes, elliptic-hyperbolic pde, noncommut-
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1. Introduction

Let J := [0, T ] and (Ω, F, P ) a complete probability space with filtration {Ft}t∈J ;
thus

F0 = {∅, Ω} ∪ N ⊂ Fs ⊂ Ft ⊂ FT ⊂ F s, t ∈ J, s < t,

and N = {N ∈ F : P (N) = 0}. We consider a market containing d + 1 assets, the
0th being riskless, the remaining d being risky with prices Si

t : Ω → R, i = 0, . . . , d,
in time t ∈ J . Let {St} = {(S0

t , . . . , Sd
t )T } ∈ L2(J ×Ω;Rd+1) be the {Ft}-adapted

vectorial price process. We assume as usual that the asset price processes St are

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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driven by stochastic differential equations⎧⎪⎪⎨⎪⎪⎩
dS0

t = r(t)S0
t dt, S0

0 = 1

dSi
t = μi(t)Si

tdt +
m∑

j=1

σi
j(t)S

i
tdBj

t , Si
0 > 0 given

(1.1)

where i = 1, . . . , d and t ∈ J .
Here r ∈ L∞(J) is the deterministic rate of interest of the riskless asset at

time t, μi ∈ L∞(J × Ω) the growth rate of asset i, σi
j ∈ L∞(J) the variances,

also known as volatilities of the market which is assumed to be complete, i.e., the
matrix (σi

j) is surjective. The process {Bt}t∈J denotes a m-dimensional Brownian
motion with independent components Bj

t .
Henceforth Ft is assumed to be the complete σ-algebra, which is induced by the
history of the Brownian motion {Bs}s<t. Moreover we assume that {μi(t)} is an
adapted process, i.e., μi(t) is Ft-adapted. We define

μ(t) := (μ1(t), . . . , μd(t))T

and
σ(t) := (σi

j(t))i,j .

Our objective is to find a self-financing portfolio strategy θt and the fair price
for an option at time t, if a function g ∈ C((0, T ]×Rd

+ ×Rd
+) is appointed, which

replicates g, i.e.,

Z := g(T, S∗
T , I(S∗

T )), with S∗
t :=

(
S1

t , . . . , Sd
t

)T

and

I(S∗
t ) :=

(
I(S1

t ), . . . , I(Sd
t )
)T

is defined by I(Sk
t ) :=

∫ t

0

Sk
τ dτ.

Subject to these conditions Yt := θt·St is the fair price at time t with end constraint
YT = Z. Our candidates of interest for g are

g(t, S∗
t , I(S∗

t )) =
[
1
t
I(Sk

t ) − K

]
+

(average price call on asset k),

g(t, S∗
t , I(S∗

t )) =
[
Sk

t − 1
t
I(Sk

t )
]
+

(average strike call on asset k),

g(t, S∗
t , I(S∗

t )) =
[
K − 1

t
I(Sk

t )
]
+

(average price put on asset k),

g(t, S∗
t , I(S∗

t )) =
[
1
t
I(Sk

t ) − Sk
t

]
+

(average strike put on asset k),

with k = 1, . . . , d. We restrict our attention to the “European case” which means
that an option can only be executed at expiration time T . Therefore it will suffice
to evaluate the payoff function g in t = T and we will write g(T, x, y) =: g(x, y).
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In the following section we will construct a 2d + 1-dimensional partial dif-
ferential equation of elliptic-hyperbolic type, describing the fair price process of
an Asian option. Then, in Section 3, the Lumer-Phillips theorem is employed to
obtain well-posedness of the Euler transformed problem on the spaces

X∞ := C0(Rd ×Rd
+) :=

{
u ∈ C(Rd ×Rd

+) : lim
|x|+|y|→∞

u(x, y) = 0
}

endowed with norm ‖u‖∞ = supx∈Rd,y∈Rd
+
{|u(x, y)|}, and

Xp := Lp(Rd ×Rd
+), 1 ≤ p < ∞,

equipped with their natural norm. We will make use of Yosida approximation
to verify the generator property of a sum of noncommuting generators. Finally in
Section 4 we present an appropriate scaling of the end conditions and we show that
well-posedness is invariant under this scaling. Lastly the Lumer-Phillips theorem
is the key to obtain the well-posedness results.

We introduce some notations. The dot between two vectors a and b denotes
the inner product, i.e., a · b =

∑d
i=1 aibi. A double dot between two matrices A

and B similarly denotes the double summation, i.e., A : B =
∑d

i=1

∑d
j=1 aijbij .

Moreover ∇2
x means (∇2

x)ij = ∂xi∂xj and we define (xy)i := xiyi, (xx∇2
x)ij :=

xixj∂xi∂xj for x, y ∈ Rd.

2. The Black-Scholes approach

The basic idea consists in the approach following the fundamental work of Black-
Scholes [BS73]. We use the ansatz Yt = u(t, S∗

t , I(S∗
t )) and try to determine the

function u(t, x, y) with t ∈ J , x = (x1, . . . , xd) ∈ Rd
+, and y = (y1, . . . , yd) ∈ Rd

+.
We already know that u satisfies the end constraint u(T, S∗

T , I(S∗
T )) = YT = Z =

g(S∗
T , I(S∗

T )), i.e.,

u(T, x, y) = g(x, y), x ∈ Rd
+, y ∈ Rd

+. (2.1)

Applying Itô’s formula we have

dYt = ∂tudt + ∂xudS∗
t + ∂yudIt +

1
2
∂2

xudS∗
t dS∗

t + ∂2
xyudS∗

t dIt

+
1
2
∂2

yudItdIt

= ∂tudt +
d∑

i=1

∂xiudSi
t +

d∑
i=1

∂yiudIi
t +

1
2

d∑
i=1

d∑
k=1

∂xi∂xk
udSi

tdSk
t

+
d∑

i=1

d∑
k=1

∂xi∂yk
udSi

tdIk
t +

1
2

d∑
i=1

d∑
k=1

∂yi∂yk
udIi

tdIk
t .

(2.2)
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The relation dIk
t = Sk

t dt and (1.1) yield

dYt = ∂tudt +
d∑

i=1

∂xiu

⎡⎣μi
tS

i
tdt +

m∑
j=1

σi
jS

i
tdBj

t

⎤⎦ +
d∑

i=1

∂yiu
[
Si

tdt
]

+
1
2

d∑
i=1

d∑
k=1

∂xi∂xk
u

⎡⎣⎛⎝μi
tS

i
tdt +

m∑
j=1

σi
jS

i
tdBj

t

⎞⎠⎛⎝μk
t Sk

t dt +
m∑

j=1

σk
j Sk

t dBj
t

⎞⎠⎤⎦
+

d∑
i=1

d∑
k=1

∂xi∂yk
u

⎡⎣⎛⎝μi
tS

i
tdt +

m∑
j=1

σi
jS

i
tdBj

t

⎞⎠(
Sk

t dt
)⎤⎦

+
1
2

d∑
i=1

d∑
k=1

∂yi∂yk
u
[(

Si
tdt

) (
Sk

t dt
)]

.

With subject to the common conventions (dt)2 = dt · dBt = 0 and (dBt)2 = dt,
the following equation follows

dYt =

⎡⎣∂tu +
d∑

i=1

μi
tS

i
t∂xiu +

d∑
i=1

Si
t∂yiu +

1
2

d∑
i=1

d∑
k=1

⎛⎝ m∑
j=1

σi
jσ

k
j

⎞⎠Si
tS

k
t ∂xi∂xk

u

⎤⎦
︸ ︷︷ ︸

deterministic part

dt

+
m∑

j=1

(
d∑

i=1

∂xiuσi
jS

i
t

)
︸ ︷︷ ︸

stochastic part

dBj
t . (2.3)

On the other hand Yt = θt · St = θ∗t · S∗
t + θ0

t · S0
t , hence with the self-financing

condition
dθt · St + dθt · dSt = 0 (2.4)

another representation of dYt arises as

dYt = θt · dSt = θ0
t rtS

0
t dt +

d∑
i=1

θi
tS

i
tμ

i
tdt +

d∑
i=1

m∑
j=1

θi
tS

i
tσ

i
jdBj

t

=

[
θ0

t rtS
0
t +

d∑
i=1

θi
tS

i
tμ

i
t

]
︸ ︷︷ ︸

deterministic part

dt +
m∑

j=1

d∑
i=1

θi
tS

i
tσ

i
j︸ ︷︷ ︸

stochastic part

dBj
t .

(2.5)

Thanks to the uniqueness of the Itô transform we are able to compare the deter-
ministic and stochastic coefficients of both representations (2.3) and (2.5).

The comparison of the stochastic parts yields

σT
t · (S∗

t ∇xu) = σT
t · (θ∗t S∗

t )
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and due to the injectivity of the matrix σT
t we obtain

θ∗t = ∇xu(t, S∗
t , I(S∗

t )). (2.6)

The comparison of the deterministic coefficients provides

∂tu+ (S∗
t μt) · ∇xu +S∗

t · ∇yu+
1
2
σtσ

T
t : (S∗

t S∗
t ∇2

xu) = θ0
t rtS

0
t + θ∗t · (S∗

t μt). (2.7)

After insertion of (2.6) the remaining equation reads as follows

∂tu + S∗
t · ∇yu +

1
2
(σtσ

T
t ) : (S∗

t S∗
t ∇2

xu) = θ0
t rtS

0
t . (2.8)

Since u(t, S∗
t , I(S∗

t )) = Yt = θ∗t · S∗
t + θ0

t S
0
t we have

θ0
t S0

t = u − θ∗t · S∗
t

(2.6)
= u − S∗

t · ∇xu

and therefore

θ0
t = (S0

t )−1 [u(t, S∗
t , I(S∗

t )) − S∗
t · ∇xu(t, S∗

t , I(S∗
t ))] . (2.9)

As a last step we have to insert (2.9) into (2.8) and resubstitute S∗
t with x and

I(S∗
t ) with y, so that the following partial differential equation arises

∂tu + x · ∇yu +
1
2

(σtσ
T
t )︸ ︷︷ ︸

=:at

: xx∇2
xu = rt(u − x · ∇xu), x, y ∈ Rd

+.

Hence we derived a 2d + 1-dimensional partial differential equation with in-
verse time direction⎧⎪⎪⎨⎪⎪⎩

∂tu +
d∑

i=1

xi∂yiu +
1
2

d∑
i=1

d∑
k=1

aik(t)xixk∂xi∂xk
u = r(t)

[
u −

d∑
i=1

xi∂xiu

]
,

u(T, x, y) = g(T, x, y),
(2.10)

where x, y ∈ Rd
+ and t ∈ J .

For simplicity, we assume, that a(t) ≡ a and r(t) ≡ r. By doing so we can
write (2.10) as⎧⎪⎪⎨⎪⎪⎩

∂tu +
d∑

i=1

xi∂yiu +
1
2

d∑
i=1

d∑
k=1

aikxixk∂xi∂xk
u = r

[
u −

d∑
i=1

xi∂xiu

]
,

u(T, x, y) = g(x, y),

(2.11)

with x, y ∈ Rd
+ and t ∈ [0, T ].

This is the basic model for the pricing of an Asian option of European style.
In short form it is written as

∂tu + x · ∇yu +
1
2
a : xx∇2

xu = r(u − x · ∇xu), t ∈ [0, T ), x, y ∈ Rd
+,

u(T, x, y) = g(x, y).
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In order to eliminate the strong degeneracy of the coefficients in (2.11) we are
going to run an Euler transformation. Therefore we substitute xi � eξi and u � v
with

v(t, ξ, y) = u(t, x, y) = u(t, eξ, y) = v(t, log x, y),

where eξ = (eξ1 , . . . , eξd)T and log x = (log x1, . . . , log xd)T . Hence the first
partial derivative of v with respect to ξ is

∂ξiv(t, ξ, y) = xi∂xiu(t, x, y) (2.12)

and the relevant second partial derivation results as

∂ξi∂ξj v(t, ξ, y) = (xj∂xj )(xi∂xiu)(t, x, y)

=

{
xixj∂xi∂xju(t, x, y) : i �= j

(xi)2∂2
xi

u(t, x, y) + xi∂xiu(t, x, y) : i = j
.

(2.13)

Thus the differential equation in v appears as

∂tv +
d∑

i=1

eξi∂yiv +
1
2

d∑
i=1

d∑
k=1

aik∂ξi∂ξk
v = r

[
v −

d∑
i=1

∂ξiv

]
+

1
2

d∑
i=1

aii∂ξiv.

Time direction can be inverted with a time reflection by substituting t � T − t
and v � w with w(t, ξ, y) = v(T − t, ξ, y). Thus the final problem can be written
as

−∂tw +
d∑

i=1

eξi∂yiw +
1
2

d∑
i=1

d∑
k=1

aik∂ξi∂ξk
w = r

[
w −

d∑
i=1

∂ξiw

]
+

1
2

d∑
i=1

aii∂ξiw,

w(0, ξ, y) = g
(
eξ, y

)
,

with ξ ∈ Rd, y ∈ Rd
+ and t ∈ [0, 1]. Introducing the vector b by bi := r − aii

2 we
obtain the following problem⎧⎨⎩ ∂tw + rw − b · ∇ξw − 1

2
a : ∇2

ξw = eξ · ∇yw, t ∈ (0, 1], ξ ∈ Rd, y ∈ Rd
+,

w(0, ξ, y) = w0(ξ, y) := g
(
eξ, y

)
.

(2.14)

It is this problem we will study mathematically, the inverse Euler transform is left
to the reader.

3. Well-posedness of the problem

Our objective is to prove that the problem (2.14) is well posed in the spaces Xp,
1 < p ≤ ∞, introduced in Section 1, i.e., that its solution exists, is unique, and
depends continuously on the data. We start providing two preliminary lemmata.
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Lemma 3.1. The family of operators {TB(t)}t≥0 ⊂ B(Xp), 1 ≤ p ≤ ∞ given by

(TB(t)u0)(ξ, y) = u0(ξ, y + teξ), t ≥ 0, ξ ∈ Rd, y ∈ Rd
+

defines a C0-semigroup of contractions in Xp.

Proof. It is obvious that {TB(t)}t≥0 satisfies the semigroup property. The following
equation assures the contractivity of semigroup {TB(t)}t≥0 for 1 ≤ p < ∞

‖TB(t)u0(ξ)‖p
p =

∫
Rd

+

∣∣u0

(
ξ, y + teξ

)∣∣p dy

=
∫

U⊂Rd
+

|u0(ξ, z)|p dz, (with z = y + teξ)

≤ ‖u0(ξ)‖p
p.

Integrating over ξ ∈ Rd yields the claim. For p = ∞ we receive

‖TB(t)u0(ξ)‖∞ = sup
y∈Rd

+

∣∣u0

(
ξ, y + teξ

)∣∣ ≤ sup
y∈Rd

+

|u0(ξ, y)| = ‖u0(ξ)‖∞ .

This implies that ‖TB(t)u0‖p ≤ ‖u0‖p holds for 1 ≤ p ≤ ∞.
The C0 property for 1 ≤ p < ∞ follows directly from the fact that the space of
test functions is dense in Xp. �

In the sequel we denote with B the generator of {TB(t)}t≥0; note that B =
eξ · ∇y holds at least on C∞

0 (Rd ×Rd
+) ⊂ D(B).

Lemma 3.2. The operator A : D(A) ⊂ Xp → Xp, 1 < p ≤ ∞, defined by

Au :=
1
2
a : ∇2

ξu + b · ∇ξu − ru

with domain

D(A) =

⎧⎨⎩W 2
p

(
Rd; Lp(Rd

+)
)

for 1 < p < ∞,{
u ∈ C0(Rd) ∩ ⋂

q>1
W 2

q,loc(R
d) : Au ∈ C0(Rd)

}
for p = ∞

generates an analytic C0-semigroup of contractions in Xp.

Proof. Lunardi proved in [Lun95, Corollary 3.1.9] that A generates an analytic
C0-semigroup {TA(t)}t≥0. This semigroup is given by

(TA(t)u0)(ξ, y) = e−rt

∫
Rd

u0(ξ − η, y)γtb,ta(η)dη, (3.1)

where γμ,σ(η) is the Gaussian distribution, i.e.,

γμ,σ(η) =
1√

(2π)d detσ
exp

{
−1

2
(σ−1(η − μ) | η − μ)

}
.
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Since γμ,σ(η) ≥ 0 and
∫
Rd γμ,σ(η)dη = 1 we obtain by Young’s inequality

‖TA(t)‖p ≤ e−rt

for all 1 ≤ p ≤ ∞. �
In the following Bλ := B(I−λB)−1 denotes the Yosida-approximation of the

operator B. It is well known that limλ→0+ Bλx = Bx for x ∈ D(B) and also that
if B is a generator of a C0-semigroup of contractions then so is Bλ.

Proposition 3.1. Let X be a reflexive Banach space. Let A and B be dissipative
generators and suppose that the solution uλ of

ωu − Au − Bλu = f (3.2)

satisfies
sup

λ∈(0,1)

|Bλuλ| < ∞ (3.3)

for a dense set of right-hand sides f . Then A + B is the generator of a C0-
semigroup of contractions in X.

Proof. We employ the theorem of Lumer and Phillips [LP61]. Obviously A + B
is dissipative. Due to the assumption that {Bλuλ} is bounded it holds that {uλ}
is bounded and hence {Auλ} is bounded as well. Since X is reflexive there is
a sequence (λn) ⊂ R with λn → 0 such that un := uλn ⇀ u, Aun ⇀ v, and
Bλnun ⇀ w. Because graph(A) is closed and convex we have

graph(A) � (un, Aun) ⇀ (u, v) ∈ graph(A) in X × X (3.4)

and thus (u, v) = (u, Au) with u ∈ D(A). Moreover, since (I − λnB)−1un ⇀ u as
well, we obtain also

Bλnun = B(I − λnB)−1un ⇀ w = Bu (3.5)

with u ∈ D(B). Summarizing, we have proven that un converges weakly to a
solution u ∈ D(A) ∩ D(B) of

ωu − Au − Bu = f (3.6)

for a dense set of right-hand sides f ; hence R(w − Au − Bu) = X and the theorem
of Lumer-Phillips applies. �

Theorem 1. Let the operator L : D(L) ⊂ Xp → Xp, 1 < p ≤ ∞, be defined as

Lw :=
1
2
a : ∇2

ξw + b · ∇ξw − rw + eξ∂yw,

with domain D(L) = D(A) ∩ D(B) and consider the abstract Cauchy problem{
∂tw − Lw = 0 in (0, T ] ×Rd ×Rd

+,

w = w0 on {t = 0} ×Rd ×Rd
+.

(3.7)

Then problem (3.7) is well posed in Xp.
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Proof. Lemma 3.2 resp. Lemma 3.1 the Lumer-Phillips theorem [LP61] imply that
the operator A given by Au = 1

2a : ∇2
ξu+b·∇ξu−ru and the operator B introduced

after Lemma 3.1 are dissipative generators. We want to show that the range of
ω + A + B is dense in Xp. So we consider the equation

ωuλ − Auλ − Bλuλ = f (3.8)

which admits a unique solution uλ ∈ D(A), λ > 0. Here we take f ∈ C∞(Rd×Rd
+),

supp f compact; this set is dense in Xp for each 1 ≤ p ≤ ∞.
Since A and eξj , j = 1, . . . , d, do not commute we obtain

ω(eξj uλ) − A(eξj uλ) − Bλ(eξj uλ)

= eξj f − A(eξj uλ) + eξj Auλ

= eξj f − [A, eξj ]uλ, j = 1, . . . , d,

(3.9)

where [A, eξj ] denotes the commutator of A and eξj . Employing the sum convention
we have

[A, eξj ]v =
aik

2
∂i∂k(eξj v) + bi∂i(eξj v) − eξj

aik

2
∂i∂kv − eξj bi∂iv

=
aik

2
∂i(eξj ∂kv + δjkeξj v) + eξj bi(∂iv + δjiv) − eξj

aik

2
∂i∂kv − eξj bi∂iv

=
aik

2
(
δjie

ξj ∂kv + δjkeξj ∂iv + δjiδjkeξj v
)

+
(
r − ajj

2

)
eξj v

=
ajk

2
eξj ∂kv +

aij

2
eξj ∂iv + reξj v

= ajkeξj ∂kv + reξj v

= ajk∂k(eξj v) − ajj(eξj v) + r(eξj v),

due to bj = r − ajj/2 and since (aij) is symmetric. Thus we obtain the equation

(ω + r − ajj)(eξj uλ) − A(eξj uλ) − Aj(eξj uλ) − Bλ(eξj uλ) = eξj f (3.10)

with Ajv := −ajk∂kv. Because the operators Aj are also dissipative we choose

ω > 2 max{ajj − r : j = 1, . . . , d}
and it results

‖eξj uλ‖p ≤ 2
ω
‖eξj f‖p as well as ‖eξj∂yk

uλ‖p ≤ 2
ω
‖eξj∂yk

f‖p. (3.11)

This implies that

‖Bλuλ‖p =

∥∥∥∥∥ 1
λ

(
1
λ
− B

)−1

Buλ

∥∥∥∥∥
p

≤ c1‖Buλ‖p ≤ c

for 1 < p ≤ ∞ and Proposition 3.1 applies for 1 < p < ∞. For the case p = ∞
it follows that ‖Auλ‖∞ ≤ c and we obtain ∂ξiuλ ∈ Cα

ξ as well as ∂ξi∂yk
uλ ∈ Cα

ξ

with α ∈ (0, 1). Thus there is a sequence (λn) ⊂ R+ with limn→∞ λn = 0, such
that ∇yuλn → ∇yu and uλn → u as n → ∞ uniformly on compact sets. In
particular this means that for every ball Br(0) with radius r ∈ N we find a
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sequence (λr,n)n ⊂ R+ with limn→∞ λr,n = 0 such that Bλr,nuλr,n → Bu and
Auλr,n → Au as n → ∞ uniformly on Br(0). By a diagonal-sequence argument
we obtain the existence of a sequence (λk) ⊂ R+ with limk→∞ λk = 0 such that
Bλk

uλk
→ Bu as well as Auλk

→ Au as k → ∞ on an arbitrary compact set
K ⊂ Rd ×Rd

+. This implies

ωu + Au + Bu = f (3.12)

also in the case p = ∞, and the theorem is proved. �

4. The call-put parity

Suppose that uc is a solution of problem (2.11) with g(x, y) = [ 1
T yk − K]+ resp.

g(x, y) = [xk − 1
T yk]+. Accordingly suppose that up is a solution of (2.11) with

g(x, y) = [K − 1
T yk]+ resp. g(x, y) = [ 1

T yk − xk]+. Since problem (2.11) is linear,
we obtain that uc−up is a solution for g(x, y) = 1

T yk−K resp. g(x, y) = xk− 1
T yk.

In this section we will present an appropriate scaling g̃ of the end conditions
g, such that g̃ ∈ X∞ holds and that the scaled problem is still well posed. Then
the Lumer-Phillips theorem results that in particular the solutions of the scaled
problem, hence the solutions of (2.11), are unique. Thus the following propositions
provide the call-put-parities for the average price option resp. the average strike
option.

Proposition 4.1. u(t, x, y) = er(t−T )
[
T−1

(
yk + r−1xk

(
er(T−t) − 1

))
− K

]
is a so-

lution of (2.11) with g(x, y) = 1
T yk − K.

Proof. Obviously, the end condition with the postulated g holds. Thus it remains
to prove, that u is a solution of the partial differential equation (2.11):

∂tu +
d∑

i=1

xi∂yiu +
1
2

d∑
i,j=1

aijxixj∂xi∂xj u

= er(t−T )

[
1
T

(ryk − xk) − rK

]
+

1
T

er(t−T )xk

=
r

T
er(t−T )yk − 1

T
er(t−T )xk − rer(t−T )K +

1
T

er(t−T )xk

=
r

T
er(t−T )yk +

1
T

xk − 1
T

er(t−T )xk − rer(t−T )K − 1
T

xk +
1
T

er(t−T )xk

= r

[
u −

d∑
i=1

xi∂xiu

]
. �

Proposition 4.2. u(t, x, y) = xk − T−1er(t−T )
[
yk + xkr−1

(
er(T−t) − 1

)]
is a solu-

tion of (2.11) with g(x, y) = xk − 1
T yk.
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Proof. The end condition with the postulated g holds obviously. Thus it remains
to prove, that u is a solution of the partial differential equation (2.11):

∂tu +
d∑

i=1

xi∂yiu +
1
2

d∑
i,j=1

aijxixj∂xi∂xj u

=
1
T

er(t−T ) (xk − ryk) − xk
1
T

er(t−T )

= − r

T
er(t−T )yk +

1
T

er(t−T )xk − 1
T

er(t−T )xk

= rxk − r

T
er(t−T )yk − 1

T
xk +

1
T

er(t−T )xk − rxk +
1
T

xk − 1
T

er(t−T )xk

= r

[
u −

d∑
i=1

xi∂xiu

]
.

�

Consider the scaling of the end condition

v0 =
u0

1 + |x|2 + |y|2 , u0 ∈
{
[xk − 1

T yk]+; [K − 1
T yk]+

}
(4.1)

for x, y ∈ Rd
+, where |x|2 =

∑d
i=1 x2

i . Hence we have u = (1 + |x|2 + |y|2)v and we
compute the relevant derivatives, i.e.,

∂tu = (1 + |x|2 + |y|2)∂tv (4.2)

∂xiu = (1 + |x|2 + |y|2)∂xiv + 2xiv (4.3)

∂yiu = (1 + |x|2 + |y|2)∂yiv + 2yiv (4.4)

∂xj ∂xiu = (1 + |x|2 + |y|2)∂xj ∂xiv + 2xj∂xiv + 2xi∂xj v + δij2v. (4.5)

By means of sum convention and equation (2.11) we have

∂tv + xi∂yiv +
1
2
aijxixj∂xi∂xj v − r (v − xi∂xiv)

= −m(x, y)(2aijxix
2
j∂xi + aiix

2
i + r|x|2 + 2yi)v, (4.6)

with m(x, y) := 1/(1 + |x|2 + |y|2). To run an Euler transform in x, i.e., xi �
exi , i = 1, . . . , d and v � w with w(t, ξ, y) = v(t, eξ, y), we use the calculated
derivatives (2.12) and (2.13) and receive

∂tw + eξi∂yiw + bi∂ξiw +
1
2
aij∂ξi∂xj w − rw

= −m(eξ, y)(2aije
2ξj ∂ξi + aiie

2ξi + r|eξ|2 + 2yi)v, (4.7)
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with vector b given by bi = r− aii

2 . As a last step we invert the time, i.e., t � T −t,
and denote the inverted function again with w; hence

∂tw − eξi∂yiw − bi∂ξiw − 1
2
aij∂ξi∂xj w + rw

= m(eξ, y)(2aije
2ξj ∂ξi + aiie

2ξi + r|eξ|2 + 2yi)w (4.8)

holds. Let us introduce the operators G and H by

Gw := 2m(eξ, y)
d∑

i=1

d∑
j=1

aije
2ξj ∂ξiw

Hw := m(eξ, y)

(
d∑

i=1

aiie
2ξi + r|eξ|2 + 2yi

)
and recall that the left-hand side of equation (4.8) precisely is (∂t − L)u with
L = A + B as defined in Theorem 1. With an easy calculus we obtain that

A + G =
1
2
a : ∇2

ξ + b̃(ξ) · ∇ξ − r, (4.9)

with b̃i(ξ) := bi+2m(eξ, y)
∑d

j=1 aije
2ξj , i = 1, . . . , d, is the ω-dissipative generator

of an analytic C0-semigroup with ω ≤ sup{| div b̃(ξ)| : ξ ∈ Rd}, provided the right-
hand side of this inequality is finite. And indeed we have

| div b̃(ξ)| =

∣∣∣∣∣∣
d∑

i=1

∂ξim(eξ, y)
d∑

j=1

aije
2ξj

∣∣∣∣∣∣
≤ 2

⎛⎝ d∑
i=1

d∑
j=1

|aij |
∣∣∣∣ e2ξie2ξj

(1 + |eξ|2)2
∣∣∣∣ +

d∑
i=1

|aii|
∣∣∣∣ e2ξi

1 + |eξ|2
∣∣∣∣
⎞⎠ ≤ 4d2Ma,

where Ma := max{|aij| : i, j = 1, . . . , d}. Thus Theorem 1 applies for the shifted
operator sum (η + A + G) and B, η sufficiently large, i.e., the sum A + G + B
generates a C0-semigroup. Since the operator H is linear and bounded the Bounded
Perturbation Theorem (e.g., [EN00]) applies and thus A + G + B + H generates
a C0-semigroup and we obtain the existence of a solution of the scaled problem
(4.8) with initial value w(0, ξ, y) = v0(eξ, y).
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1. Introduction

In this paper, we shall address two problems in the theory of age-dependent popu-
lation dynamics as developed by Glenn F. Webb ([7] and references therein). In its
abstract form, the general age-dependent population problem (ADP) is formulated
for population densities φ ∈ L1 := L1(R +, R n) as follows: Let F be a mapping
from L1 to R n, let G be a mapping from L1 to L1, and let φ ∈ L1. For given
T > 0, a function u ∈ C([0, T ], L1) will be called a solution of (ADP) with initial
age distribution φ provided it satisfies the following laws:

lim
h→0+

∫ ∞

0

∥∥h−1(u(t + h)(a + h) − u(t)(a)) − G(u(t))(a)
∥∥da = 0, 0 ≤ t < T (1.1)

(the balance law of the population),

lim
h→0+

h−1

∫ h

0

‖u(t + h)(a) − F (u(t))‖da = 0, 0 ≤ t < T (1.2)

(the birth law of the population), and

u(0) = φ (1.3)

(the initial age distribution of the population).

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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F is called the birth function, and G is called the aging function of the
population. In the classical Gurtin-McCamy model ([4]), F and G have the forms

F (φ) =
∫ ∞

0

β(a, Pφ)φ(a)da, and G(φ)(a) = −μ(a, Pφ)φ(a), φ ∈ L1, a ∈ R +,

respectively, where the fertility modulus β, and the mortality modulus μ are non-
negative functions of two variables, and P (φ) =

∫∞
0 φ(a)da.

In [7], problem (ADP) is considered under the following general assumptions
on the birth and on the aging functions:

(A1) F : L1 → R n, and G : L1 → L1 are Lipschitz on norm-balls of L1.

(A2) F (L1
+) ⊂ R n

+, and there is an increasing function c : R + → R + such
that if r > 0, and φ ∈ L1

+ with ‖φ‖ ≤ r, then G(φ) + c(r)φ ∈ L1
+ (where

L1
+ := L1(R +, R n

+)).

It is shown in [7, Thm. 2.4] that under these assumptions, given φ ∈ L1
+, there

exists a unique solution u of (ADP) on a maximal interval of existence [0, Tφ),
0 < Tφ ≤ ∞, with u(t) ∈ L1

+ for all t ∈ [0, Tφ).
Notice that the notion of a solution to (ADP) as given by (1.1)–(1.3) looks

like the notion of a kind of a “mild” solution to the evolution problem

u̇(t) + u(t)a − Gu(t) = 0, u(0) = φ, and u(t)(0) = Fu(t), t ≥ 0. (1.4)

This will be made more precise in Section 3, and will be the basis for our consid-
erations here.

The object of this paper is the answer to the following problems in the above
context of (ADP):
(Q1) Under which conditions on the mappings F and G does there hold a prin-

ciple of linearized stability for (ADP)? More precisely: assume that, under
the above conditions (A1) and (A2), there exists an equilibrium solution
φe ∈ L1

+ to (ADP), and that the functions F and G have a “Fréchet-”
derivative F̃ [φe] ∈ B(L1, R n) and G̃[φe] ∈ B(L1), respectively (to be
made precise in the next section). Assume, moreover, that the correspond-
ing linear (ADP), with F and G being replaced by F̃ [φe] and G̃[φe], re-
spectively, is exponentially asymptotically stable. Is it then true that the
equilibrium φe is locally exponentially stable for the original (nonlinear)
(ADP)?

(Q2) Under which (differentiability-) conditions on the mappings F and G are
solutions to (ADP) regular; i.e., such that they are absolutely continuous
and differentiable (with respect to age a ∈ R +) a.e. a ∈ R + for t in their
interval of existence, and, roughly speaking, classical solutions to (1.4)?

These problems have already been addressed by G.F. Webb [7] and J. Prüß [6]
under global differentiability conditions on F and G, and, in the case of (Q1),
under additional assumptions on special forms of F and G. The essential point of
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our results will be a considerable weakening of the differentiability assumptions on
F and G, as well as no further restriction on the forms of F and G.

The methods of proof of the corresponding results (Theorems 2.2 and 2.3 in
Section 2) will be based on the nonlinear semigroup generated by the solutions to
(ADP), and will be carried out in terms of the general theory of accretive operators
and nonlinear semigroups (Section 3).

Notation and terminology. Throughout the paper, we shall denote the space
L1(R +, R n) by L1, and its positive cone L1(R +, R n

+) by L1
+. For (real) Ba-

nach spaces X and Y , B(X, Y ) will denote the space of bounded linear operators
from X to Y , and, for X = Y , we shall abbreviate this to B(X). As for the norms,
we shall indiscriminately use the symbol ‖·‖ for the norms of R n, of L1, as well
as of B(X, Y ).

Given a subset D of a real Banach space X, cl D will denote its closure in X .
Recall that a subset C ⊂ X ×X is said to be accretive in X if for each λ > 0 and
each pair [xi, yi] ∈ C, i ∈ {1, 2}, we have ‖(x1 + λy1) − (x2 + λy2)‖ ≥ ‖x1 − x2‖,
and ω-accretive in X for some ω ∈ R , if (C + ωI) is accretive. If, in addition,
R(I + λC) = X for all λ > 0 with λω < 1, then C is said to be ω − m-accretive.
If C ⊂ X × X is ω-accretive, then, for any λ > 0 with λω < 1, JC

λ = (I + λC)−1

denotes the resolvent of C. For all these notions and the general theory of accretive
sets and evolution equations, the reader is referred to [1, 5].

2. Linearized stability and regularity for (ADP)

In this section, we formulate and discuss our results on linearized stability and on
regularity of solutions for problem (ADP). The proofs will be given in Section 3
below.

The following notions of (relative) Fréchet-differentiability of a nonlinear map
from X to Y, X and Y Banach spaces, will be basic for our considerations.

Definition 2.1.
1. A mapping H : D(H) ⊂ X → Y is said to be F-differentiable at x ∈ D(H)

(relative to its domain of definition D(H)) if the following holds: There exists
H̃ [x] ∈ B(X, Y ) such that, given any ε > 0, there exists δ > 0 such that, if
z ∈ D(H), and ‖z − x‖ < δ, then∥∥∥Hz − Hx − H̃ [x](z − x)

∥∥∥ ≤ ε‖z − x‖.

2. A mapping H : D(H) ⊂ X → Y is said to be continuously F-differentiable
on D ⊂ D(H) if it is F-differentiable at each x ∈ D (in the sense of 1. above),
and if the map {x → H̃ [x]} is continuous from D to B(X, Y ).

Notice that, in contrast to classical Fréchet-differentiability, the approxima-
tion is only required on a relative neighbourhood (with respect to D(H)) (as D(H),
in general, may not even contain any X-open subset).
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Assumptions on F and G. In order to keep assumptions to a minimum, and since
we are interested only in nonnegative solutions to (ADP), we shall, from now on,
require F and G only to be defined on L1

+, and to fulfill the following assumptions:

(A1*) F : L1
+ → R n

+, and G : L1
+ → L1 are Lipschitz on norm-balls of L1

+.
(A2*) There exists an increasing function c : R + → R + such that if r > 0, and

φ ∈ L1
+ with ‖φ‖ ≤ r, then G(φ) + c(r)φ ∈ L1

+.

The following is our result on linearized stability for equilibria of (ADP).

Theorem 2.2. Assume that there exists an equilibrium solution φe ∈ L1
+ to (ADP)

(i.e., u(t) ≡ φe for all t ≥ 0). Assume, moreover, that both F and G have F-
differentials F̃ [φe] ∈ B(L1, R n) and G̃[φe] ∈ B(L1) at φe, respectively. If the
zero solution to the linearized (ADP), with F and G replaced by F̃ [φe] and G̃[φe],
respectively, is exponentially stable, then the equilibrium φe is locally exponentially
stable for (the original nonlinear) (ADP); i.e., there exist δ > 0, M ≥ 1, and α > 0
such that for all φ ∈ L1

+, with ‖φ − φe‖ < δ, the solution uφ to (ADP) exists for
all times (Tφ = ∞), uφ(t) ∈ L1

+ for all t ≥ 0, and

‖uφ(t) − φe‖ ≤ Me−αt‖φ − φe‖ for all t ≥ 0.

In order to formulate our result on regularity of solutions to (ADP) – and
to keep this formulation short, we temporarily introduce the following (kind of)
regularity subset R(ADP ) of L1

+ for the problem (ADP):

R(ADP ) := {φ ∈ L1
+ | φ is absolutely continuous

on R +, φ′ ∈ L1, and φ(0) = F (φ)}.

Theorem 2.3. Assume that F and G are continuously differentiable on L1
+ (in

the sense of Definition 2.1, 2., above). Let φ ∈ R(ADP ), and let uφ denote the
corresponding solution to (ADP) on [0, Tφ). Then the following hold:

(i) uφ(t) ∈ R(ADP ) for all t ∈ [0, Tφ), the function {t → uφ(t)} is continuously
differentiable from [0, Tφ) to L1, and uφ is a classical solution to (1.4).

(ii)
∥∥∥∥ d

dt
uφ(t)

∥∥∥∥ ≤ etω̃(t)‖φ′ − Gφ‖ for all 0 ≤ t ≤ T < Tφ,

with ω̃(t) := sup0≤s≤t

∥∥∥F̃ [uφ(s)]
∥∥∥ + sup0≤s≤t

∥∥∥G̃[uφ(s)]
∥∥∥.

(iii) The mapping
{

t → d

dt
uφ(t)

}
is a mild solution to the linearized nonau-

tonomous version of (ADP)

(ADP )lin

⎧⎪⎪⎨⎪⎪⎩
v̇(t) + v(t)a − G̃[uφ(t)]v(t) = 0, 0 ≤ t ≤ T < Tφ,

v(0) = −φ′ + G(φ),

v(t)(0) = F̃ [uφ(t)]v(t), 0 ≤ t ≤ T < Tφ.
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Remarks 2.4.
1. Assertion (iii) of Theorem 2.3 means that u̇φ(t) = U(t, 0)(−φ′ + G(φ)), 0 ≤

t ≤ T < Tφ, where {U(t, s) | 0 ≤ s ≤ t ≤ T } is the (linear) evolution system
generated by (ADP )lin (for details, see the corresponding proof in Section 3
below).

2. Both of Theorems 2.2 and 2.3 have been proved in [7] (see [7, Thm. 4.13
and Thm. 2.10]; for Thm. 2.2, compare also [6]) under the following global
stronger differentiability assumptions on F and G : both F and G are F-
differentiable on L1 (in the sense of Definition 2.1, 1., above), and the maps
{φ → F̃ [φ]} and {φ → G̃[φ]} are (not only continuous, but) Lipschitz on balls
of L1. In addition, both in [7] and [6], for the analogue of Theorem 2.2, the
authors have assumed (various kinds of) special forms of F and G.

3. Aside from the weakening in the assumptions from local Lipschitz-continuity
to simply continuity of the differential-maps in the above Theorems, the main
point of Theorem 2.2 is the fact that we dispense with global differentiability
properties of F and G altogether, and require F-differentiability of both F
and G only at the equilibrium point φe. Moreover, we pose no extra conditions
on a special form of F and G. (It should be noted, however, that both in [7]
and [6], the authors have used the assumptions on special forms of F and G
to (a) deduce concrete criteria for the linearized problem to be exponentially
asymptotically stable, and (b) to complement the stability result by a result
on instability of the equilibrium φe.)

3. Proofs of Theorems 2.2 and 2.3

Our methods of proof will entirely be based on the (nonlinear) semigroup approach
to problem (ADP) as developed by G.F. Webb [7]. The following are the basic
results we shall need. Throughout this section, we assume the general hypotheses
(A1*) and (A2*) to be in place.

We associate with (ADP) the operator A in L1 defined by{
D(A) = {φ ∈ L1

+ | φ absolutely continuous on R +, φ′ ∈ L1, φ(0) = F (φ)},
Aφ := φ′ − G(φ) , φ ∈ D(A).

Then, if in addition, both F and G are globally Lipschitz on L1
+, and we let

ω = ‖F‖Lip + ‖G‖Lip, we have from [7, Props. 3.8 and 3.9]:

(W1) (A + ωI) is accretive, R(I + λA) = L1
+ for all λ > 0 with λω < 1, and

cl D(A) = L1
+. Finally, if for φ ∈ L1

+, uφ denotes the corresponding solu-
tion to (ADP) (global in this case), then uφ(t) = S(t)φ for all t ≥ 0, where
(S(t))t≥0 denotes the semigroup of operators on L1

+ generated by −A (in
the sense of Crandall-Liggett). In this sense, uφ is a mild solution to (1.4).

(An independent proof of the latter fact will be given in the Appendix below.)
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Furthermore, this approach can be ‘localized’, i.e., adapted to the general
locally Lipschitz-case (for F and G) and associated, possibly only local solutions
by (the method of proof of) [7, Thm. 3.3]: If, under our general standing hypotheses
(A1*) and (A2*), uφ is a local solution to (ADP) on [0, Tφ), and 0 < T < Tφ is
given, we can let, say, r = sup 0≤t≤T ‖uφ(t)‖ + 1, and consider the operator Ar

corresponding to A above with F and G being replaced by their radial truncations
Fr and Gr to conclude that uφ(t) = Sr(t)φ for 0 ≤ t ≤ T , with (Sr(t))t≥0 the
semigroup generated by −Ar. Here, for a mapping H : D(H) ⊂ X → Y , the radial
truncation Hr for r > 0 is defined by

Hr(x) =

⎧⎨⎩
Hx for ‖x‖ ≤ r

H

(
r

x

‖x‖

)
for ‖x‖ ≥ r.

Thus, in the following, for the proofs of Theorems 2.2 and 2.3 we shall arrange
things for having both F and G globally Lipschitz, and use (W1).

We start with a technical Lemma that will be the starting point for the proofs
of Theorems 2.2 and 2.3.

Let φ = φe (Theorem 2.2), or φ ∈ L1
+ arbitrary (Theorem 2.3). Then, under

the assumptions of Theorems 2.2 and 2.3, respectively, together with the (nonlin-
ear) operator A as above, for 0 < T < Tφ, we also consider the family of (linear)
operators {Ã(t) | 0 ≤ t ≤ T }, defined by⎧⎪⎨⎪⎩

D(Ã(t)) = {ψ ∈ L1 | ψ absolutely continuous

on R +, ψ′ ∈ L1, and ψ(0) = F̃ [S(t)φ](ψ)},
Ã(t)ψ := ψ′ − G̃[S(t)φ](ψ) , ψ ∈ D(Ã(t)).

We shall use in the following that, according to [7, Prop. 3.11], any one of these
operators is ω̃t − m-accretive with domain dense in L1, where

ω̃t =
∥∥∥F̃ [S(t)φ]

∥∥∥ +
∥∥∥G̃[S(t)φ]

∥∥∥.

Notation. For the remainder of this section, we shall use the following notational
conventions for t ∈ [0, T ], and φ as above:

1. ω̃(t) := sup 0≤r≤t

∥∥∥F̃ [S(r)φ]
∥∥∥ + sup 0≤r≤t

∥∥∥G̃[S(r)φ]
∥∥∥.

2. Jλ = Jλ
A, and, for r > 0, J̃λ(r) = J

Ã[r]
λ , for any λ > 0 with λmax(ω, ω̃r) < 1.

Lemma 3.1. Let φ, and 0 < T < Tφ be as above, and choose λ0 > 0 such that
λ0ω < 1, and λ0ω̃(T + δ) < 1, and λ0 < δ, where δ > 0 is chosen such that
(T + δ) < Tφ. Further, let ω̃ = ω̃(T + δ). Then, for ψ ∈ L1

+, and n ∈ N so large
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that t < nλ0, and 1 < nδ, we have, for λ = t
n ,

(1 − λω̃)(n+1)

∥∥∥∥∥∥Jλ
nψ − Jλ

nφ −
n∏

j=1

J̃λ(jλ)(ψ − φ)

∥∥∥∥∥∥ ≤
∫ (n+1)λ

λ

(1 − λω̃)[τ/λ] (3.1)

×
∥∥∥F (Jλ

[τ/λ]ψ) − F (Jλ
[τ/λ]φ) − F̃ [Jλ

[τ/λ]φ](Jλ
[τ/λ]ψ − Jλ

[τ/λ]φ)
∥∥∥dτ

+
∫ (n+1)λ

λ

(1 − λω̃)[τ/λ]
∥∥∥G(Jλ

[τ/λ]ψ) − G(Jλ
[τ/λ]φ) − G̃[Jλ

[τ/λ]φ]

(Jλ
[τ/λ]ψ − Jλ

[τ/λ]φ)
∥∥∥ dτ +

∫ (n+1)λ

λ

(1 − λω̃)[τ/λ]
∥∥∥(F̃ [Jλ

[τ/λ]φ]

− F̃ [S(λ[τ/λ])φ])(Jλ
[τ/λ]ψ − Jλ

[τ/λ]φ)
∥∥∥ dτ +

∫ (n+1)λ

λ

(1 − λω̃)[τ/λ]

×
∥∥∥(G̃[Jλ

[τ/λ]φ] − G̃[S(λ[τ/λ])φ])(Jλ
[τ/λ]ψ − Jλ

[τ/λ]φ)
∥∥∥dτ,

(where [τ/λ] denotes the largest integer less than or equal to τ/λ).

Proof. The proof will be an easy induction argument. The basic inequality we
need is the following: Let ρ ∈ L1

+, and let ρλ = Jλρ, i.e., ρλ solves the differential
equation ρλ + λρ′λ − λG(ρλ) = ρ, ρλ(0) = F (ρλ). Thus,

ρλ(a) = exp (−a

λ
)

⎧⎨⎩F (ρλ) +
∫ a

0

e

b

λ [(G(ρλ) +
1
λ

ρ)(b)] db

⎫⎬⎭ , a ∈ R +.

Thus,

‖ρλ‖ ≤ ‖ρ‖ + λ(‖F (ρλ)‖ + ‖G(ρλ)‖) (3.2)

In the following, for φ, ψ ∈ L1
+, k ∈ N, and λ > 0 small enough, let

ak =

∥∥∥∥∥∥Jλ
kψ − Jλ

kφ −
k∏

j=1

J̃λ(jλ)(ψ − φ)

∥∥∥∥∥∥
bk =

∥∥∥F (Jλ
kψ) − F (Jλ

kφ) − F̃ [Jλ
kφ](Jλ

kψ − Jλ
kφ)

∥∥∥
ck =

∥∥∥G(Jλ
kψ) − G(Jλ

kφ) − G̃[Jλ
kφ](Jλ

kψ − Jλ
kφ)

∥∥∥
dk =

∥∥∥(F̃ [Jλ
kφ] − F̃ [S(kλ)φ])(Jλ

kψ − Jλ
kφ)

∥∥∥, and

ek =
∥∥∥(G̃[Jλ

kφ] − G̃[S(kλ)φ])(Jλ
kψ − Jλ

kφ)
∥∥∥

(Notice that, for φ = φe, dk = ek = 0.)
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Then, for λ0 and 0 < t < T , and ω̃ as in Lemma 3.1, and for 0 < λ < λ0, for
all k ∈ {1, . . . , [t/λ]},

(1 − λω̃)(k+1)ak ≤ λ
k∑

j=1

(1 − λω̃)j(bj + cj + dj + ej). (3.3)

Proof. For k = 1, we use (3.2) to conclude that

a1 =
∥∥∥Jλψ − Jλφ − J̃λ(λ)(ψ − φ)

∥∥∥
≤ λ

∥∥∥F (Jλψ) − F (Jλφ) − F̃ [S(λ)φ]J̃λ(λ)(ψ − φ)
∥∥∥

+ λ
∥∥∥G(Jλψ) − G(Jλφ) − G̃[S(λ)φ]J̃λ(λ)(ψ − φ)

∥∥∥
≤ λ[b1 + c1 + d1 + e1 + (

∥∥∥F̃ [S(λ)φ]
∥∥∥ +

∥∥∥G̃[S(λ)φ]
∥∥∥)a1]

Rearranging, and noting that
(∥∥∥F̃ [S(λ)φ]

∥∥∥ +
∥∥∥G̃[S(λ)φ]

∥∥∥) ≤ ω̃ proves the case of
k = 1.

Similarly, for the step from k to (k + 1), we conclude by means of (3.2) that

ak+1 =

∥∥∥∥∥∥Jλ(Jλ
kψ) − Jλ(Jλ

kφ) − J̃λ((k + 1)λ)
k∏

j=1

J̃λ(jλ)(ψ − φ)

∥∥∥∥∥∥
≤ ak + λ

∥∥∥∥∥∥F (Jλ
k+1ψ) − F (Jλ

k+1φ) − F̃ [S((k + 1)λ)φ]
k+1∏
j=1

J̃λ(jλ)(ψ − φ)

∥∥∥∥∥∥
+ λ

∥∥∥∥∥∥G(Jλ
k+1ψ) − G(Jλ

k+1φ) − G̃[S((k + 1)λ)φ]
k+1∏
j=1

J̃λ(jλ)(ψ − φ)

∥∥∥∥∥∥
≤ ak + λ[bk+1 + ck+1 + dk+1 + ek+1 + (

∥∥∥F̃ [S((k + 1)λ)φ]
∥∥∥

+
∥∥∥G̃[S((k + 1)λ)φ]

∥∥∥)ak+1]

Rearranging, and invoking the induction hypothesis completes the proof of (3.3).
The estimate (3.1) now follows from (3.3) by the particular choice of k = n

and λ = t
n with n, t as in Lemma 3.1, and by replacing any of the summands to

the right of estimate (3.3) by an appropriate integral, such as, for instance, for bj :

λ(1 − λω̃)j bj =
∫ (j+1)λ

jλ

(1 − λω̃)[τ/λ]

×
∥∥∥F (Jλ

[τ/λ]ψ) − F (Jλ
[τ/λ]φ) − F̃ [Jλ

[τ/λ]φ](Jλ
[τ/λ]ψ − Jλ

[τ/λ]φ)
∥∥∥dτ.

This completes the proof of Lemma 3.1. �
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Proof of Theorem 2.2. If φe ∈ L1
+ is an equilibrium for (ADP), then, according

to [7, Prop. 4.1], φe ∈ D(A), and Aφe = 0. Let r := (‖φe‖ + 1), and consider
the operator A in L1 as above, with F and G being replaced by their respective
r-truncations. Then, as Jλφe = φe, and S(t)φe = φe, t ≥ 0, the corresponding
(linear) operators Ã(t) as above are constant, denoted by, say, Ã. Denoting the
(linear) semigroup generated by −Ã by (S̃(t))t≥0, we thus read from Lemma 3.1

for this particular case that, for ω̃ = (
∥∥∥F̃ [φe]

∥∥∥+
∥∥∥G̃[φe]

∥∥∥), and for any given t > 0,

e−ω̃t
∥∥∥S(t)ψ − φe − S̃(t)(ψ − φe)

∥∥∥ (3.4)

≤
∫ t

0

e−ω̃τ
∥∥∥F (S(τ)ψ) − Fφe − F̃ [φe](S(τ)ψ − φe)

∥∥∥dτ

+
∫ t

0

e−ω̃τ
∥∥∥G(S(τ)ψ) − Gφe − G̃[φe](S(τ)ψ − φe)

∥∥∥dτ.

Given ε > 0, choose a joint δ′ > 0 for F̃ [φe] and G̃[φe] as in Definition 2.1, 1., and let
δ := e−ωtδ′. Then, as ‖S(τ)ψ − φe‖ ≤ eωτ‖ψ − φe‖, and thus ‖S(τ)ψ − φe‖ ≤ δ′

for all τ ∈ [0, t] and all ψ ∈ L1
+ with ‖ψ − φe‖ < δ, we read from (3.4) that∥∥∥S(t)ψ − φe − S̃(t)(ψ − φe)

∥∥∥ ≤ εM(t)‖ψ − φe‖

for all ψ ∈ L1
+ with ‖ψ − φe‖ < δ, and some positive constant M(t). This shows

that, given any t > 0, S̃(t) is an F-differential of S(t) in the sense of Definition
2.1, 1. As, by the assumptions of Theorem 2.2, the semigroup (S̃(t))t≥0 is exponen-
tially stable, a result of Desch and Schappacher [2, Prop. 2.1] (compare also propo-
sition 2. of the Final remarks below) implies that there exist 0 < δ < 1, M ≥ 1,
and α > 0 such that for all φ ∈ L1

+, with ‖φ − φe‖ < δ,

‖S(t)φ − φe‖ ≤ Me−αt‖φ − φe‖ for all t ≥ 0.

Replacing now the δ in this assertion by 0 < δ1 < M−1δ, then we also have that
‖S(t)φ‖ < (‖φe‖ + 1) = r for all t ≥ 0, and for all φ ∈ L1

+, with ‖φ − φe‖ < δ1.
Thus, for all such φ, both F (S(t)φ) = Fr((S(t)φ) and G(S(t)φ) = Gr((S(t)φ), so
that uφ(t) = S(t)φ also is a global solution to (the un-truncated, original) (ADP).
This completes the proof of Theorem 2.2. �
Proof of Theorem 2.3. Given φ ∈ R(ADP ) as in Theorem 2.3, let 0 < T < Tφ, and
choose δ > 0 such that (T + δ) < Tφ. Let C(φ) be the closed convex hull of the
set {uφ(s) | 0 ≤ s ≤ (T + δ)}. Let ρ = (sup{‖ψ‖ | ψ ∈ C(φ)} + 1) and consider
the operator A in L1 as above, with F and G being replaced by their respective
ρ-truncations. Then, as explained at the beginning of this section, uφ(s) = S(s)φ
for 0 ≤ s ≤ (T + δ). Moreover, as will be needed later on, at points of C(φ), the
F-derivatives of the ρ-truncations of F and G can be taken as those of the original
maps F and G.

Step 1: We consider the family {Ã(s) | 0 ≤ s ≤ t} of linear operators in L1

as defined above. These operators are all densely defined, and ω̃(t) − m-accretive
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(with ω̃(t) as defined in Theorem 2.3, (ii)). Moreover, using the definitions and
the basic inequality (3.2), it is easy to check that, given λ0 > 0, with λ0ω̃(t) < 1,
there exists C ≥ 1 such that∥∥∥J̃λ(r)ψ − J̃λ(s)ψ

∥∥∥ ≤ λC(
∥∥∥F̃ [S(r)φ] − F̃ [S(s)φ]

∥∥∥ (3.5)

+
∥∥∥G̃[S(r)φ] − G̃[S(s)φ]

∥∥∥)‖ψ‖

for all 0 ≤ r, s ≤ t, ψ ∈ L1, and all 0 < λ < λ0. Thus, as it is assumed that
the maps {ψ → the F-differential atψ} are continuous on L1

+ for both F̃ and G̃,
we conclude from [1, Thm. 2.1] that the family {Ã(s) | 0 ≤ s ≤ t} generates an
evolution family {U(s, r) | 0 ≤ r ≤ s ≤ t} of bounded linear operators on L1,
which is given by

U(s, r)ψ = lim
n→∞

n∏
j=1

J̃(s−r)/n(r + j(
s − r

n
))ψ (3.6)

(for 0 ≤ r < s ≤ t; while U(r, r) = I), and fulfills the estimate

‖U(s, r)ψ − U(s, r)ρ‖ ≤ eω̃(t)(s−r)‖ψ − ρ‖ (3.7)

for all 0 ≤ r ≤ s ≤ t, and all ψ, ρ ∈ L1. (Actually, in [1, Thm. 2.1], the assumption
on the controlling function in estimate (3,5) is that it be a continuous function with
values in X . But, in the course of the proof, it is only the modulus of continuity
of the function that comes into play; so the continuous control of (3.5) works as
well.)

From (3.6), by using continuity of the differential maps for F̃ and G̃, and
invoking Lebesgue’s Dominated Convergence Theorem, we conclude from (3.1) of
Lemma 3.1 that

e−ω̃t‖S(t)ψ − S(t)φ − U(t, 0)(ψ − φ)‖

≤
∫ t

0

e−ω̃τ
∥∥∥F (S(τ)ψ) − F (S(τ)φ) − F̃ [S(τ)φ](S(τ)ψ − S(τ)φ)

∥∥∥dτ

+
∫ t

0

e−ω̃τ
∥∥∥G(S(τ)ψ) − G(S(τ)φ) − G̃[S(τ)φ](S(τ)ψ − S(τ)φ)

∥∥∥dτ

for all ψ ∈ L1
+ (with ω̃ as defined in Lemma 3.1).

If we specialize this estimate for ψ = S(h)φ, with h ∈ [0, δ), we arrive at

e−ω̃t‖S(t + h)φ − S(t)φ − U(t, 0)(S(h)φ − φ)‖ (3.8)

≤
∫ t

0

e−ω̃τ
∥∥∥F (S(τ + h)φ) − F (S(τ)φ) − F̃ [S(τ)φ](S(τ + h)φ − S(τ)φ)

∥∥∥dτ

+
∫ t

0

e−ω̃τ
∥∥∥G(S(τ + h)φ) − G(S(τ)φ) − G̃[S(τ)φ](S(τ + h)φ − S(τ)φ)

∥∥∥dτ.

Step 2: In order to get a uniform estimate on the integrands on the right-hand side
of (3.8), we use the following “convexity-trick”:
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Given a mapping H : D(H) ⊂ X → Y, X and Y real Banach spaces, that
is continuously F-differentiable on a convex subset C ⊂ D(H) in the sense of
Definition 2.1, 2., and given x, y ∈ C, define the map R : [0, 1] → Y by

R(α) := H(x + α(y − x)) − αH̃ [x](y − x).

Then, R′(α) = (H̃ [x + α(y − x)] − H̃ [x])(y − x) for all 0 < α < 1. By continuity
of both R and the differential map,

R(1) − R(0) =
∫ 1

0

(H̃ [x + α(y − x)] − H̃[x])(y − x)dα. (3.9)

We now specialize this result to the maps F and G in the context of (3.8): For
h ∈ [0, δ), and τ ∈ [0, t] as above, let

R(α) := F (S(τ)φ+α(S(τ+h)φ−S(τ)φ))−αF̃ [S(τ)φ](S(τ+h)φ−S(τ)φ), α ∈ [0, 1].

Then, from (3.9),∥∥∥F (S(τ + h)φ) − F (S(τ)φ) − F̃ [S(τ)φ](S(τ + h)φ − S(τ)φ)
∥∥∥ (3.10)

≤ ‖S(τ + h)φ − S(τ)φ‖
∫ 1

0

∥∥∥F̃ [S(τ)φ + α(S(τ + h)φ − S(τ)φ)] − F̃ [S(τ)φ]
∥∥∥dα.

At this point, note that the set C(φ) is (convex and) compact. Hence, the (continu-
ous) differential map {ψ → F̃ [ψ]} is uniformly continuous on C(φ). Let ε > 0, and
choose δ1 > 0 such that, if ψ, ρ ∈ C(φ), with ‖ψ − ρ‖ < δ1, then

∥∥∥F̃ [ψ] − F̃ [ρ]
∥∥∥ <

εe−ωt. Now, choose 0 < δ2 < δ (δ from the beginning of the proof), such that, for
h ∈ [0, δ2), ‖S(h)φ − φ‖ < δ1e

−ωt. Then,

(S(τ)φ + α(S(τ + h)φ − S(τ)φ)), S(τ)φ ∈ C(φ), and

‖(S(τ)φ + α(S(τ + h)φ − S(τ)φ) − S(τ)φ)‖ = α‖S(τ + h)φ − S(τ)φ‖ < δ1,

and thus ∥∥∥F̃ [S(τ)φ + α(S(τ + h)φ − S(τ)φ)] − F̃ [S(τ)φ]
∥∥∥ < εe−ωt (3.11)

for all 0 ≤ h ≤ δ2, and all α ∈ [0, 1], and τ ∈ [0, t].
By (3.10), this yields∥∥∥F (S(τ + h)φ) − F (S(τ)φ) − F̃ [S(τ)φ](S(τ + h)φ − S(τ)φ)

∥∥∥ (3.12)

≤ ε‖S(h)φ − φ‖
for all 0 ≤ h < δ2, and all τ ∈ [0, t].

As the same reasoning also works for G, we can thus conclude from (3.8) that
there exists 0 < δ3 < δ such that

‖S(t + h)φ − S(t)φ − U(t, 0)(S(h)φ − φ)‖ ≤ εM(t)‖S(h)φ − φ‖ (3.13)

for all 0 ≤ h < δ3, and some positive constant M(t).
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Step 3: In [7, Thm. 3.1] it has been shown that, under our hypotheses, the oper-
ator −A is (not only the generator in the sense of Crandall-Ligget, but also) the
infinitesimal generator of S(t))t≥0, i.e.,⎧⎨⎩

D(A) = {ψ ∈ L1
+ | lim

h→0+
h−1(S(h)ψ − ψ) exists}, and

−Aψ = lim
h→0+

h−1(S(h)ψ − ψ) , ψ ∈ D(A).

As, by assumption, φ ∈ D(A), we thus conclude from (3.13) that uφ(t) = S(t)φ ∈
D(A) for all 0 ≤ t < Tφ. (3.13) as well yields that, for 0 < t < Tφ, uφ = S(·)φ is
actually differentiable (not just from the right), so that, altogether, uφ in fact is a
classical solution to (1.4).

Moreover, as limh→0+ h−1(S(h)φ − φ) = −Aφ = (−φ′ + Gφ), we read from
(3.13) that u̇φ(t) = U(t, 0)(−φ′ + Gφ) for 0 ≤ t < Tφ, so that it is a mild solution
to the evolution equation

(ADP )lin

⎧⎪⎪⎨⎪⎪⎩
v̇(t) + Ã(t)v(t) = 0, 0 ≤ t ≤ T < Tφ,

v(0) = −φ′ + G(φ),

v(t)(0) = F̃ [uφ(t)]v(t), 0 ≤ t ≤ T < Tφ.

Finally, the estimate of proposition (ii) of Theorem 2.3 now follows from (3.7).
This completes the proof of Theorem 2.3. �

Final remarks. 1. Notice that, aside from the concrete problem (ADP), for our
results in a general framework, the space R n could be replaced by just any real
Banach lattice X . In this context, the corresponding result to Theorem 2.2 for
the operator A with G ≡ 0 has been given in [3, Thm. 4.4] under the assumption
that F be (globally defined and) Fréchet-differentiable (in the usual sense) at the
equilibrium, and with recourse to the Desch-Schappacher result as well.
2. In fact, the latter result [2, Prop. 2.1] has been proved for a (nonlinear) semi-
group (S(t))t≥0 defined on an open subset C of a Banach space X , and for Fréchet-
differentiability of S(t) at the equilibrium in the classical sense. However, the proof
as given in [2] works as well for just any subset C ⊂ X with S(t)C ⊂ C, and F-
differentiability of S(t) at an equilibrium xe ∈ C in the relative C-sense as in
Definition 2.1, 1., above. As, in addition, the paper [2] may not always be eas-
ily accessible, we briefly indicate the arguments of proof of [2, Prop. 2.1] in this
general context:
Given a semigroup of nonlinear operators S(t) : C → C, C ⊂ X any subset of
X , such that, for some ω ≥ 0, ‖S(t)x − S(t)y‖ ≤ eωt‖x − y‖, x, y ∈ C, and with
F-differentials S̃(t) ∈ B(X) at an equilibrium xe ∈ C (in the relative C-sense as
in Definition 2.1, 1., above), assume there exist ω̃ > 0, and M̃ ≥ 1 such that∥∥∥S̃(t)

∥∥∥ ≤ M̃e−ω̃t for t ≥ 0. Fix k ∈ N such that
∥∥∥S̃(k)

∥∥∥ ≤ (1/4). Then, for
ε = (1/4), there exists δ = δ(ε, k) > 0 such that, for all x ∈ C with ‖x − xe‖ < δ,

‖S(k)x − xe‖ ≤ (1/4)‖x − xe‖ +
∥∥∥S̃(k)(x − xe)

∥∥∥ ≤ (1/2)‖x − xe‖ < (1/2)δ.
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At this point, choose any α > 0 such that 0 < α < (ln2/k), and let κ := (1/2)eαk.
Then 0 < κ < 1, and eαk‖S(k)x − xe‖ ≤ κ‖x − xe‖ for all x ∈ C with ‖x − xe‖ <
δ. By induction on n ∈ N, we actually get

eαnk‖S(nk)x − xe‖ ≤ κn‖x − xe‖ for all x ∈ C with ‖x − xe‖ < δ, and n ∈ N.

At this point, let δ1 := e−ωkδ, and let x ∈ C with ‖x − xe‖ < δ1. Given any t ≥ k,
let t = ntk + γt, with nt ∈ N, and 0 ≤ γt < k. By noting that ‖S(γt)x − xe‖ ≤
eωγt‖x − xe‖ < δ, we get

eαt‖S(t)x − xe‖ = eαγteαntk‖S(ntk)S(γt)x − xe‖ ≤ e(α+ω)kκnt‖x − xe‖.
Also, for 0 ≤ t ≤ k, we have eαt‖S(t)x − xe‖ ≤ e(α+ω)k‖x − xe‖. Thus, letting
M := e(α+ω)k, we have ‖S(t)x − xe‖ ≤ Me−αt‖x − xe‖ for all t ≥ 0, and for all
x ∈ C with ‖x − xe‖ < δ1. This completes the proof.

4. Appendix

The fact that the semigroup solutions uφ = S(·)φ, φ ∈ L1
+, of the semigroup

(S(t))t≥0 generated by the operator (−A) as defined in the second paragraph of
Section 3 above are solutions to problem (ADP) has been shown in [7] via an
equivalent integral equation (equation (1.49) in [7, Section 1.4]). In order to keep
the present paper self-contained, we here give a direct proof. We restrict ourselves
to the case of globally (on L1

+) Lipschitz continuous mappings F and G; the local
case can be dealt with via the radial truncations of these mappings.

With the notations as in Section 3 above, given φ ∈ L1
+, λ > 0, and k ∈

N ∪ {0}, we have

Jk+1
λ φ − Jk

λφ = λG(Jk+1
λ φ) − λ(Jk+1

λ φ)′.

Given 0 ≤ s < t, and 0 < λ < t, summing this equation from k = [s/λ] to
k = ([t/λ] − 1) yields

J
[t/λ]
λ φ − J

[s/λ]
λ φ = λ

k=tλ−1∑
k=sλ

G(Jk+1
λ φ) − λ

k=tλ−1∑
k=sλ

(Jk+1
λ φ)′ (4.1)

=
∫ (tλ+1)λ

(sλ+1)λ

G(J [τ/λ]
λ )dτ −

∫ (tλ+1)λ

(sλ+1)λ

(J [τ/λ]
λ φ)′dτ,

with sλ = [s/λ], and tλ = [t/λ].
Letting fn =

∫ (tλn+1)λn

(sλn+1)λn
(J [τ/λn]

λn
φ)dτ, for any sequence 0 < λn → 0, the se-

quence (fn)n converges in L1 to
∫ t

s
S(τ)φdτ . From (4.1) we read that the sequence

(f ′
n)n is L1-convergent as well, and, by closedness of the operator of differentiation

in L1, we actually get from (4.1) that

(
∫ t

s

S(τ)φdτ)′ =
∫ t

s

G(S(τ)φ)dτ − (S(t)φ − S(s)φ) (4.2)
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for all 0 ≤ s ≤ t. Moreover, as both (fn)n and (fn)′n are L1-convergent, the
sequence (fn)n is actually uniformly equicontinuous on R +, and uniformly con-
vergent on compacta, so that, altogether, all functions

∫ t

s
S(τ)φdτ, 0 ≤ s ≤ t, are

continuous, and, particularly for a = 0,

(
∫ t

s

S(τ)φdτ)(0) =
∫ t

s

F (S(τ)φ)dτ. (4.3)

At this point, letting M(a, b, s, t) :=
∫ b

a (
∫ t

s S(τ)φdτ)(ξ)dξ, with 0 ≤ a ≤ b, and
0 ≤ s ≤ t, and, for h ≥ 0, N(h) := M(a + h, b + h, s + h, t + h), (4.2) implies that
N ′(h) =

∫ b+h

a+h (
∫ t+h

s+h G(S(τ)φ)dτ)(ξ)dξ, so that

∫ b+h

a+h

(
∫ t+h

s+h

S(τ)φdτ)(ξ)dξ −
∫ b

a

(
∫ t

s

S(τ)φdτ)(ξ)dξ

= N(h) − N(0)

=
∫ h

0

N ′(ρ)dρ

=
∫ h

0

[
∫ b+ρ

a+ρ

(
∫ t+ρ

s+ρ

G(S(τ)φ)dτ)(ξ)dξ)]dρ.

Thus,

(
∫ t

s

S(τ + h)φdτ)h −
∫ t

s

S(τ)φdτ =
∫ h

0

(
∫ t

s

G(S(τ + ρ)φ)dτ)ρdρ (4.4)

for all 0 ≤ s ≤ t, and all h ≥ 0, where the suffix h, respectively ρ, indicates
the respective translation of the function by h, respectively ρ. This implies that
(S(t + h)φ)h − S(t)φ =

∫ h

0 (G(S(t + ρ)φ))ρdρ, and thus

L1 − lim
h→0+

1
h

[(S(t + h)φ)h − S(t)φ] = G(S(t)φ).

This shows that uφ = S(·)φ fulfills the balance law (1.1).
As for the birth law (1.2), notice that, by continuity of the functions on the

left-hand side of equation (4.4), (4.4) evaluated at a = 0, in conjunction with (4.3)
implies

1
ρ
(
∫ t+ρ

t

S(τ + ξ)φdτ)(ξ) − 1
ρ

∫ t+ρ

t

F (S(τ)φ)dτ (4.5)

=
∫ ξ

0

1
ρ
(
∫ t+ρ

t

G(S(τ + η)φ)dτ)(η)dη
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for all ρ > 0, and all t, ξ ≥ 0. Thus, for h, ρ > 0,

1
h

∫ h

0

‖(S(h)φ)(ξ) − F (φ)‖dξ (4.6)

≤ 1
h

∫ h

0

∥∥∥∥∥(S(h)φ)(ξ) − 1
ρ
(
∫ h+ρ

h

S(τ)φdτ)(ξ)

∥∥∥∥∥dξ

+
1
h

∫ h

0

∥∥∥∥∥1
ρ
(
∫ h−ξ+ρ

h−ξ

S(τ + ξ)φdτ)(ξ) − 1
ρ

∫ h−ξ+ρ

h−ξ

F (S(τ)φ)dτ

∥∥∥∥∥dξ

+
1
h

∫ h

0

∥∥∥∥∥1
ρ

∫ h+ρ

h

F (S(τ − ξ)φ)dτ − F (φ)

∥∥∥∥∥dξ

By (4.5), the second term on the right-hand side of (4.6) is equal to

1
h

∫ h

0

∥∥∥∥∥
∫ ξ

0

1
ρ
(
∫ h+ρ

h

G(S(τ + η − ξ)φ)dτ)(η)dη

∥∥∥∥∥dξ.

Notice that, as ρ → 0+, 1
ρ

∫ h+η+ρ

h+η
G(S(τ − ξ)φ)dτ is L1-convergent to G(S(h +

η − ξ)φ) uniformly over 0 ≤ ξ, η ≤ h. Thus, letting ρ → 0+ in (4.6),

1
h

∫ h

0

‖(S(h)φ)(ξ) − F (φ)‖dξ

≤ 1
h

∫ h

0

∥∥∥∥∥
∫ ξ

0

G(S(h + η − ξ)φ)(η)dη

∥∥∥∥∥dξ +
1
h

∫ h

0

‖F (S(h − ξ)φ) − F (φ)‖dξ

≤ 1
h

∫ h

0

(
∫ u

0

‖G(S(u)φ)(v)‖dv)du + sup
0≤ξ≤h

‖F (S(h − ξ)φ) − F (φ)‖,

where, in the last step, an interchange of the order of integration was used. As,
given h0 > 0, the set {G(S(u)φ) | 0 ≤ u ≤ h0} is L1-relatively compact, and
thus uniformly integrable, and as F is Lipschitz continuous, both terms on the
right-hand side tend to 0 as h → 0+. Replacing φ by S(t)φ, with φ ∈ L1

+, and
t ≥ 0, reveals that uφ = S(·)φ fulfills the birth law (1.2) as well. This completes
the proof.
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Space Almost Periodic Solutions
of Reaction Diffusion Equations

Bruno Scarpellini

Abstract. We consider reaction diffusion equations of the form (*) ∂tu =
νΔu + ζu + P(u), P(u) =

∑m
z akuk and seek solutions on Rn which are

almost periodic in the space variables x. Such solutions are constructed in
the space H0(Rn) of almost periodic functions f(x) subject to (**) f(x) =∑

fkeiΛkx,
∑ |fk| < ∞, provided that the coefficients ak in (*) are also in

this class. Such solutions are obtained via an instable manifold construction,
which yields solutions on t ∈ (−∞, 0] of slow exponential decay. An extension
of the method to Fourier transforms of complex measures is outlined.

Mathematics Subject Classification (2000). 35B15 37K57 35Q53.

Keywords. Inhomogenic Bénard equation, travelling waves, Hopf bifurcation.

0. Introduction

In what follows we are interested in solutions of reaction diffusion equations such
as

∂tu = νΔu + ζu + P(u), P(u) =
m∑
2

qkuk, ζ > 0 (0.1)

or related equations such as the Ginzburg-Landau equation, which are defined
and bounded on Rn but which do not necessarily tend to zero as |x| → ∞. Such
solutions have been studied in different contexts and for various reasons; see eq.
[2] and the references therein. A class of possible solutions is provided by functions
which are space almost periodic (s.a.p) in one sense or the other. Among these,
a class of functions which are s.a.p. in the sense below has turned out to be
particularly suited, i.e.:

f(x) =
∑

akeiΛkx,
∑

|ak| < ∞, Λk ∈ Rn, x ∈ Rn. (0.2)

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):
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Functions of type (0.2) where used in [9] to construct almost periodic breather
solutions on a half-line for the one-dimensional wave equation

∂2
t u = ∂2

xu = ζu + P(u), ζ > 0, x ∈ R+. (0.3)

The procedure in [9] was based on a stable manifold construction which turns out
to be applicable in modified form to (0.1). That is, we use an instable manifold
construction based on arguments put forward in [9] in order to construct solutions
of (0.1) which are defined on (−∞, 0], which decay exponentially as t → −∞,
whereby the exponential decay may be chosen to be arbitrarily slow in a sense
to be made precise below. In some cases this result can be combined with the
maximum principle or another result which guarantees global existence for t ≥ 0
so as to get a solution defined for t ∈ R. As side result one infers Ljapounov
instability.

There exists quite a literature on almost periodic solutions of nonlinear ODE’s
and PDE’s ([3],[8]). However the interest is mostly in solutions almost periodic in
time; solutions almost periodic in the space variables have found less interest, at
least as far as dissipative systems are concerned. In [6] however, quasiperiodic
solutions of elliptic equations on a strip are investigated, a step which aims at
the construction s.a.p. equilibrium solutions of the Bénard problem, a task yet
unsolved.

1. Notation

R, C denote real and complex numbers, with x the complex conjugate of x ∈ C
and |x| its absolute value; if x = (x1, . . . , xn) ∈ Rn then x2 = Σx2

j .
C0

b (Rn) is the space of bounded and uniformly continuous functions f pro-
vided with the supnorm ‖f‖C0 = ‖f‖∞ = supx |f(x)|.

The nonlinearity P(u) in (0.1) is assumed to be of the form

P(u) = Σaαβuαuβ , 2 ≤ α + β ≤ m (1.1)

with coefficients aαβ subject to (0.2), but in order to simplify the presentation we
work with polynomials P (u), i.e.,

P(u) = Σaαuα, 2 ≤ α ≤ m, (1.2)

with the a′
αs subject to (0.2). However, the estimates which will be proved for

P(u) given by (1.2) hold without restriction for P(u) given by (1.1). Finally, S is
the σ-algebra of Borel sets of Rn. If X is a Banach space, ‖ ‖X denotes the norm
of X ; in a fixed context we simply may write ‖ ‖.

2. Spaces of almost periodic functions

As indicated, we interpret eq. (0.1) in the space of functions (0.2), to be discussed
in more detail below. To this end we recall the Banach space of Bohr almost
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periodic functions B(Rn) ([1], [13]). A function f(x) ∈ B(Rn) has an associated
Fourier series

f(x) ∼ ΣakeiΛkx, where Λk = (Λ1
k, . . . ,Λn

k ), x = (x1, . . . , xn) ∈ Rn

and ΣΛj
kxj = Λkx, Λ2

k = Σ(Λj
k)2, x2 = Σx2

j ,
(2.1)

endowed with a number of properties.

Definition 1. Let f ∈ B(Rn) and f ∼ ΣakeiΛxx; for s ≥ 0 we stipulate that
f ∈ Hs(Rn) iff ‖f‖s = Σ(1 + Λ2

k)
s
2 |ak| < ∞.

Remarks

(1) If f ∈ Hs(Rn) then f coincides with its formal Fourier series: f = ΣakeiΛkx,
x ∈ Rn.

(2) Hs(Rn) is a Banach space under the norm ‖ ‖s; if s = 0 it is even a Banach
algebra, i.e., if f, g ∈ H0(Rn) then ‖fg‖0 ≤ ‖f‖0‖g‖0 as one easily verifies,
([9]).

(3) For n fixed we also set Hs = Hs(Rn); likewise we set ‖ ‖ = ‖ ‖0, i.e.,
‖f‖ = Σ|ak| for f ∈ H0.

(4) In order to put (0.1) into the functional frame of Definition 1, we specify the
data in (0.1) more precisely. We assume

ν = 1 + iα, some α ∈ R. (2.2)

If α = 0 and if P(u) is given by (1.2) with real coefficients aα, then we have a
reaction diffusion equation; if α �= 0 and with P(u) as in (1.1) then we have an
equation of Landau-Ginzburg type (see [2] for an instance of physical interest).
In order to treat (0.1) as an evolution equation on H0(Rn) we first consider the
Laplacian Δ:

Definition 2

(a) dom(Δ) = H2(Rn),
(b) if f = ΣakeiΛkx ∈ H2(Rn) then Δf = −ΣakΛ2

keiΛkx.

Lemma 2.1. (1+ iα)Δ is a holomorphic semigroup generator on H0(Rn), i.e., there
are V = V(α) ∈ (0, π

2 ) and C = C(α) > 0 as follows: if ζ = reiϕ, ϕ ∈ [−π
2 −V , π

2 +V ]
and r > 0 then

ζ ∈ �((1 + iα)Δ) and ‖((1 + iα)Δ − ζ)−1‖ ≤ C|ζ|−1. (2.3)

The proof of Lemma 2.1 is based on the next proposition whose elementary
proof we omit:

Proposition 2.1. Given α ∈ R, there are V ∈ (0, π
2 ) and ε > 0 as follows: if

ϕ ∈ [−π
2 − V , π

2 + V ], r > 0 and λ ≥ 0 then
ε
2 (|ζ| + λ) ≤ |(1 + iα)λ + ζ|. (2.4)
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Proof of Lemma 2.1. With a ∈ R fixed, we let V = V(α), ε = ε(α) be given
according to Prop. 2.1; we also set

SV = {reiϕ/r > 0 & − π
2 − V ≤ ϕ ≤ π

2 + V}. (2.5)

Moreover we set C = C(α) = 2ε−1 and fix ζ = reiϕ in SV . Given g = ΣgkeiΛkx in
H0, a solution f of

((1 + iα)Δ − ζ)f = −g (2.6)
is formally given by

f = ΣfkeiΛkx, fk = ((1 + iα)Λ2
k + ζ)−1gk. (2.7)

In order to show that indeed f ∈ H2(Rn) we invoke Prop. 2.1 according to which

(1 + Λ2
k)|(1 + iα)Λ2

k + ζ|−1 ≤ C(1 + Λ2
k)(Λ2

k + |ζ|)−1 ≤ C1 (2.8)

for some C1 = C1(|ζ|) independent of k whence

‖f‖2 = Σ(1 + Λ2
k)|(1 + iα)Λ2

k + ζ|−1|gk| ≤ C1Σ|gk| = C1‖g‖ (2.9)

On the other hand we have again by Prop. 2.1:

‖f‖ = Σ|(1 + iα)Λ2
k + ζ|−1 |g|k ≤ CΣ(Λ2

k + |ζ|)−1|gk|
≤ C|ζ|−1‖g‖, ζ ∈ SV .

(2.10)

Moreover, a solution f ∈ H2(Rn) of (2.6) is unique since its Fourier coefficients
are given by (2.7). To sum up, the operator (1 + iα)Δ − ζ maps H2(Rn) one-one
onto H0(Rn), has a bounded inverse by (2.10) and is thus closed. It also satisfies
the resolvent estimate (2.10).

Since dom(Δ) = H2(Rn) is dense in H0(Rn) it follows that −(1 + iα)Δ is
sectorial and thus (1 + iα)Δ a holomorphic semigroup generator ([7], Theorem
2.5.1) �

Formal arguments suggest that the semigroup Wt, t ≥ 0 generated by (1 +
iα)Δ acts on f = ΣfkeiΛkx according to

Wtf = Σe−(1+iα)Λ2
kteiΛkxfk, t ≥ 0 (2.11)

We first note

Proposition 2.2. Wt, t ≥ 0 given by (2.11) is a contraction semigroup:
(a) ‖Wt‖ ≤ 1,
(b) WtWs = Wt+s,
(c) Wh → I strongly as h ↓ 0.

Proof. (a), (b) follow directly from (2.11). As to (c) we define

HT (Rn) is the space of finite sums f =
∑

eiΛtxfk, 0 ≤ k ≤ N. (2.12)

We also stipulate

if f =
∑

fkeiΛkx then fN =
∑

fkeiΛkx, k ≤ N. (2.13)
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In order to prove (c) we note:

‖Whg − g‖ → 0 as h ↓ 0 for g ∈ HT (Rn). (2.14)

Now assume f =
∑

fkeiΛkx ∈ H0(Rn). Then, using (a), we have

‖Whf − f‖ ≤ ‖Whf − WhfN‖ + ‖WhfN − fN‖ + ‖fN − f‖
≤ 2‖f − fN‖ + ‖WhfN − fN‖.

(2.15)

Clause (c) now follows by a standard argument from (2.13), (2.14). �

Lemma 2.2. (1 + iα)Δ generates Wt, t ≥ 0.

Proof. Based on Definition 1 we set L = (1 + iα)Δ and let L̃ be the generator of
Wt, t ≥ 0. Straightforward computation shows:

if g ∈ HT (Rn) then g ∈ dom(L) ∩ dom(L̃) and Lg = L̃g. (2.16)

Next let f ∈ dom(L) = H2(Rn); with fN as in (2.13) one has:

‖f − fN‖2 → 0, whence ‖Lf − LfN‖ → 0 as N ↑ ∞. (2.17)

Thus L̃fN = LfN → Lf and fN → f in H0(Rn). Since L̃ is closed this entails

f ∈ dom(L̃) and L̃f = Lf, i.e., L ⊆ L̃. (2.18)

Since both L, L̃ are semigroup generators, (2.18) implies L = L̃, proving the
Lemma. �

Corollary. (1+ iα)Δ+ζ is the generator of the holomorphic semigroup Vt = eζtWt

which acts on f =
∑

fkeiΛkx according to

Vtf =
∑

fke(−(1+iα)Λ2
k+ζ)teiΛkx, t ≥ 0. (2.19)

3. Slow instable manifolds

As indicated in the introduction, our aim is to construct small solutions y(t) ∈
H0(Rn), t ≤ 0 which are of slow exponential decay as t → −∞, a concept to be
made precise later. To this end we first construct instable manifolds ([4], Theorem
5.1.3) along established lines. The only point in which our present construction
differs from that in [4] is that here we have no spectral sets. Since such situations
are treated in some detail in [11], our presentation will be brief. We recall that ζ
in (0.1) is assumed to satisfy ζ > 0. To start with we fix β with

0 < β < ζ, with ζ > 0 as in (0.1), (3.1)

and define an operator Qβ acting on H0(Rn) via

Qβf =
∑

β≤−Λ2
k+ζ

fkeiΛkx where f =
∑

fkeiΛkx; (3.2)
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if no confusion arises we simply set Q = Qβ. Q is a bounded projection operator
(i.e., Q2 = Q) which commutes with Vt,whereby

QVtf = VtQf =
∑

β≤−Λ2
k+ζ

fke−(1+iα)Λ2
k+ζ)teiΛkx. (3.3)

Now while Vt, given by (2.19), is defined for t ≥ 0 only, VtQ admits an obvious
extension to (−∞, 0) as follows from (3.3) and in fact satisfies an estimate

‖VtQ‖ = ‖QVt‖ ≤ eβt, t ≤ 0, (3.4)

as one reads off from (3.3). Likewise we infer from (3.3):

‖(1 − Q)Vt‖ = ‖Vt(1 − Q)‖ ≤ eβt, t ≥ 0. (3.5)

Next we define the Banach space Bβ
− via

y ∈ Bβ
− iff y ∈ C0((−∞, 0], H0(Rn)) and

[y]β = sup
t≤0

e−βt‖y(t)‖ < ∞; (3.6)

if no confusion arises we write [ ] instead of [ ]β . We then define a mapping F

which associates with η ∈ rg(Q) and y ∈ Bβ
− the image F (η, y) = ỹ ∈ Bβ

− via

ỹ(t) = Vtη −
∫ 0

t

Vt−sQP (y(s)) ds +
∫ t

−∞
Vt−s(1 − Q)P (y(s)) ds, t ≤ 0. (3.7)

Mappings such as (3.7), related to instable resp. stable manifolds are discussed at
various places, see, e.g., [4], Theorem 5.1.3, [12], Section 11.3, [9], Section 3. We
refer to these texts but elaborate some points which will be needed later. To this
end we list some estimates related to the nonlinearity P(u) in (1.2).

Let y ∈ Bβ
−; since H0(Rn) is a Banach algebra and since

‖y(t)‖ ≤ eβt[y]; [yn] ≤ [y]n

we have that

‖P (y(t))‖ ≤ [y]2e2βtφ([y]) where φ(z) =
m∑
2

‖aα‖zα−2. (3.8)

Setting

F1(t, y) =
∫ 0

t

Vt−sQP (y) ds, F2(t, y) =
∫ t

−∞
Vt−s(1 − Q)P (y) ds

we infer from (3.4), (3.5), (3.8):

‖F2(t, y)‖ ≤
∫ t

−∞
eβ(t−s)e2βs ds[y]2φ([y])

≤ e2βt

β
[y]2φ([y]), t ≤ 0.

(3.9)
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Likewise we obtain

‖F1(t, y)‖ ≤ eβt

β
[y]2φ([y]), t ≤ 0. (3.10)

On the other hand by repeating the arguments in either of [9], proof of Prop. 3.3
or [12], Section 11.3 one infers

Fj(t, y), j = 1, 2 are in C0((−∞, 0], H0(Rn)). (3.11)

From (3.9)–(3.11) we thus get

Proposition 3.1. ỹ, given by (3.7) is in Bβ
− and satisfies:

[ỹ] ≤ ‖η‖ + 2
β [y]2φ([y]), (φ as in (3.8)) •

In order to estimate [Fj(·, y1) − Fj(·, y2)] for y1, y2 ∈ Bβ
− we invoke without proof

the elementary

Proposition 3.2. With the polynomial P (z) =
∑m

2 aαzα, aα ∈ H0(Rn), there is
associated a polynomial φ̂(z) =

∑m−2
0 bjz

j, bj ≥ 0, as follows: if u1, u2 ∈ H0(Rn)
then

‖P (u1) − P (u2)‖ ≤ ‖u1 − u2‖max(‖u1‖, ‖u2‖)φ̂(max(‖u1‖, ‖u2‖)) •

From Prop. 3.2 we infer that if y1, y2 ∈ Bβ
− then the following holds:

‖P (y2(t)) − P (y1(t))‖ ≤ [y2 − y1] max([y1], [y2])φ̂(max([y1], [y2]))e2βt, t ≤ 0.
(3.12)

Using (3.12) we can argue as in (3.9) so as to get the estimates:

[Fj(·, y1) − Fj(·, y2)] ≤ 1
β [y2 − y1] max([y1], [y2])φ̂(max([y1], [y2])) (3.13)

where y1, y2 ∈ Bβ
−, j = 1, 2. From (3.7), (3.13) we thus get

Proposition 3.3. If y1, y2 ∈ Bβ
− then we have

[ỹ2 − ỹ1] ≤ 2
β [y2 − y1] max([y1], [y2])φ̂(max([y1], [y2]) •

In order to construct a fixpoint of the mapping given by (3.7) we define spheres

S(ε) = {η/η ∈ rg(Q)&‖η‖ ≤ ε}
Sβ(ε) = {y/y ∈ Bβ

−&[y] ≤ ε}.
(3.14)

Lemma 3.1. Set ε0 = min
(

β
4φ(1) ,

β

4φ̂(1)
, 1

)
, let ε ≤ ε0, fix η ∈ S( ε

2 ). Then the map-

ping which associates with y ∈ Sβ(ε) the image ỹ ∈ Bβ
− via (3.7) is a contraction

of Sβ(ε) which has a fixpoint y = ϕ(η) ∈ Sβ(ε), i.e., which satisfies

y(t) = Vtη −
∫ 0

t

Vt−sQP (y) ds +
∫ t

−∞
Vt−s(1 − Q)P (y) ds (3.15)
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for t ≤ 0, with y = y(s). One has the estimate

[ϕ(η1) − ϕ(η2)] ≤ 2‖η1 − η2‖, η1, η2 ∈ S
(

ε
2

)
(3.16)

•
Proof. With ε ≤ ε0, η ∈ S( ε

2 ), y ∈ Sβ(ε) assumed, we have by Prop. 3.1:

[ỹ] ≤ ‖η‖ + 2
β [y]2φ([y]) ≤ ε

2 +
(

2
β φ(1)ε

)
ε ≤ ε,

that is, the mapping in (3.7) maps Sβ(ε) into itself. Next with η ∈ S( ε
2 ), y1, y2 ∈

Sβ(ε) assumed, let ỹj be the image of yj via (3.7), j = 1, 2. By Prop. 3.3 we have

[ỹ2 − ỹ1] ≤ 2
β [y1 − y2]

(
β

4φ̂(1)

)
φ̂(1) ≤ 1

2 [y2 − y1],

i.e., the mapping in (3.7) is a contraction of Sβ(ε). This entails that there is a
unique fixpoint y = ϕ(η) of the mapping in (3.7) restricted to Sβ(ε), which thus
satisfies (3.15).

In order to prove (3.16) we fix η1, η2 ∈ S( ε
2 ) and let yj = ϕ(ηj) be the

associated fixpoints in Sβ(ε). We also recall the expressions Fj(t, y), j = 1, 2 in
(3.9), (3.10). Equation (3.15), satisfied by y1, y2, is then written as follows:

yj(t) = Vtηj − F1(t, yj) + F2(t, yj), t ≤ 0, j = 1, 2

whence

y2(t) − y1(t) = Vt(η2 − η1) − (F1(t, y2) − F1(t, y1)) + (F2(t, y2) − F2(t, y1))

and thus

[y2 − y1] ≤ ‖η2 − η1‖ + [F1( , y2) − F1( , y1)] + [F2( , y2) − F2( , y2)].

Recalling ε ≤ ε0 and yj ∈ Sβ(ε), we invoke (3.13) so as to infer from the last
inequality:

≤ ‖η2 − η1‖ + 2
β [y2 − y1] β

4φ̂(1)
φ̂(1)

≤ ‖η2 − η1‖ + 1
2 [y2 − y1].

(3.17)

From (3.17), clause (3.16) readily follows. �
Remarks. The fixpoint y = ϕ(η) in Lemma 3.1 satisfies by construction equation
(3.15). Standard computations show that y also satisfies:

y(t) = Vt−τy(τ) +
∫ t

τ

Vt−sP (y(s)) ds, τ ≤ t ≤ 0. (3.18)

From (3.18) one infers by classical arguments ([14], proof of Theorem 3.1, pg. 196)
that y(t) is even a solution of (0.1) in the usual sense:

y(t) ∈ dom(Δ), t ≤ 0, y ∈ C1((−∞, 0], H0(Rn)) and

yt(t) = ((1 + iα)Δ + ζ)y(t) + P (y(t)), t ≤ 0 pointwise.
(3.19)

Thus Lemma 3.1 yields a solution y(t), t ≤ 0 of (0.1) which decays exponentially
as t → −∞. Our aim is to obtain an improvement of Lemma 3.1, i.e.,
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Theorem 1. Let 0 < β < μ < ζ. Then there is a solution y ∈ Bβ
− of (0.1) with

y /∈ Bμ
−.

Remarks. A similar result was obtained in [10] in a Hilbert space setting for stable
manifolds, but instable manifolds, which require a different treatment, were not
considered. As a preparation we fix 0 < β < γ < ζ and associate with γ a
projection operator R via

Rf =
∑

γ≤−Λ2
k
+ζ

fkeiΛkx, where f =
∑

fkeiΛkx. (3.20)

The projection Q given by (3.2), commutes with R, i.e., QR = RQ = R, and Q−R
is given by

(Q − R)f =
∑

β≤−Λ2
k+ζ<γ

fkeiΛkx. (3.21)

Moreover, one easily verifies the estimate

‖Vt(Q − R)‖ ≤ eγt, t ≥ 0. (3.22)

Proposition 3.4. Let γ < μ and let y ∈ Bμ
− be a solution of (0.1). Then

(Q − R)y(t) =
∫ t

−∞
Vt−s(Q − R)P (y(s)) ds, t ≤ 0. (3.23)

Proof. With y ∈ Bμ
− a solution of equation (0.1), it satisfies its integrated version

(3.18). Multiplication of (3.18) with Q − R yields

(Q − R)y(t) = Vt−τ (Q − R)y(τ) +
∫ t

τ

Vt−s(Q − R)P (y(s)) ds, (3.24)

for τ ≤ t ≤ 0. We claim that the integral

I =
∫ t

−∞
Vt−s(Q − R)P (y(s)) ds, t ≤ 0

exists absolutely. In fact, using (3.8) with [ ] = [ ]μ and recalling (3.22) we get,
since γ < μ,

‖I‖ ≤
∫ t

−∞
‖Vt−s(Q − R)‖e2μsφ([y]μ)[y]2μ ds

≤ eγt

∫ t

−∞
e(2μ−γ)s ds φ([y]μ)[y]2μ < ∞.

(3.25)

On the other hand, since γ < μ, and in view of (3.22), we have that

‖Vt−τ (Q − R)y(τ)‖ ≤ eγ(t−τ)[y]μeμτ → 0 as τ → −∞. (3.26)

By (3.25), (3.26) we can pass to the limit τ → −∞ in (3.24) so as to get (3.23) �
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In our last step we fix 0 < β < γ < ζ and ε ≤ ε0 with ε0 given by Lemma
3.1, while Q, R are the projections associated with β, γ via (3.2), (3.20) resp. Let
ϕ( ) be the mapping from S( ε

2 ) to Sβ(ε) provided by Lemma 3.1.
Our principal claim is

Lemma 3.2. Assume in addition γ < 2β. Then there is C = C(β, γ) as follows: if
η ∈ S( ε

2 ) and η ∈ rg(Q − R), if moreover ϕ(η) = y is in Bμ
− for some γ < μ, then

‖η‖ ≤ C‖η‖2. (3.27)

Proof. By our assumptions, ϕ(η) = y ∈ Sβ(ε) is a solution of the integral equation
(3.15), i.e.,

y(t) = Vtη −
∫ 0

t

Vt−sQP (y(s)) ds +
∫ t

−∞
Vt−s(1 − Q)P (y(s)) ds t ≤ 0. (3.28)

As pointed out in the remark following (3.17), y is then a solution to (0.1) on
(−∞, 0]. Since by assumption also y ∈ Bμ

− for some γ < μ, we can apply Prop. 3.4
and infer

(Q − R)y(t) =
∫ t

−∞
Vt−s(Q − R)P (y(s)) ds, t ≤ 0. (3.29)

We now apply (Q−R) to (3.28), using that (Q−R)(1−Q) = 0 and (Q−R)η = η,
so as to get

(Q − R)y(t) = Vtη −
∫ 0

t

Vt−s(Q − R)P (y(s)) ds, t ≤ 0. (3.30)

By combining (3.29), (3.30) and after setting t = 0 we get

η =
∫ 0

−∞
V−s(Q − R)P (y(s)) ds. (3.31)

We now apply (3.8) and (3.22) to (3.31) so as to get

‖η‖ ≤
∫ 0

−∞
e−γs[y]2βφ([y]β)e2βs ds

≤
∫ 0

−∞
e(2β−γ)s ds φ(1)[y]2β .

(3.32)

But y = ϕ(η) and ϕ(0) = 0 whence [y]β = [ϕ(η)]β ≤ 2‖η‖ by (3.16), what together
with (3.32) and 2β > γ implies

‖η‖ ≤ 4(2β − γ)−1‖η‖2φ(1),

what proves the lemma �

Proof of Theorem 1. For 0 < β < ζ let β < μ; pick γ such that β < γ < ζ, γ < μ
and γ < 2β. Fix ε ≤ ε0 with ε0 given by Lemma 3.1, and let ϕ : S( ε

2 ) → Sβ(ε) be
the mapping given by Lemma 3.1; let also Q, R be the projections related to β, γ
via (3.2), (3.20) resp.



Space Almost Periodic Solutions of Reaction Diffusion Equations 587

Finally, fix η such that

η ∈ rg(Q − R), η �= 0, ‖η‖ < min( ε
2 , C−1) (3.33)

with C as in Lemma 3.2. The assumptions of Lemma 3.2 are thus satisfied. It
follows that ϕ(η) = y is a solution of (0.1) in Bβ

−, and that if also y ∈ Bμ
− then

‖η‖ ≤ C‖η‖2; since η �= 0 this entails C−1 ≤ ‖η‖, contradicting (3.33) �

Example. We consider the Landau-Ginzburg equation

ut = (1 + iα)Δu + u − (1 − iδ)u2u, α, δ ∈ R (3.34)

([2]). Here the nonlinearity is of the form (1.1), but as stressed in Section 1,
amenable to our estimates (Prop. 3.1–3.3) without restriction. We thus can apply
any of Lemma 3.1, or Theorem 1 to (3.34). As a result we find for β ∈ (0, 1)
small solutions y ∈ Bβ

−, y �= 0 of (3.34). By Theorem II.1 in [2] each of these
solutions admits an extension to [0,∞) into a classical solution y(t), t ≥ 0 such
that supx |y(x, t)| ≤ K, t ≥ 0, (some K) provided that n = 1, 2 or n = 3 and
α, δ > 0. It can be shown that these extensions are Bohr almost periodic in x ∈ Rn.
The problem arises whether this extension remains in H0(Rn) for t ≥ 0 and
satisfies supt≤T ‖y(t)‖ < ∞ for any T > 0 or whether there is T < ∞ such that
y(·, t) ∈ H0(Rn) for t < T but with lim supt→T ‖y(t)‖ = ∞.

We do not know if such a loss of regularity is possible. The application of
Lemma 3.1 or Theorem 1 to (3.34) at the same time shows that the trivial equi-
librium u = 0 of (3.34) is Ljapounov unstable with respect to perturbations in
H0(Rn).

Remark. If ν = 1 in (0.1), i.e., α = 0 in (2.2), and if P(u) has the form (1.2) with
coefficients aα ∈ H0(Rn) real, then one is interested in real solutions of (0.1). Now
it is routine to show that the construction in Section 3 can be carried out in the
subspace H0

r (Rn) of real elements of H0(Rn). As a result we obtain real versions
of Lemmas 3.1, 3.2 and Theorem 1, i.e., we obtain real solutions y ∈ Bβ

− of (0.1),
endowed with all relevant properties.

4. Outlook

(I) The reasons why we have considered eq. (0.1) in the narrow space H0(Rn)
(Definition 1) are as follows. On the one hand it is easy to construct the projec-
tion operators Q, R ((3.2), (3.20)), indispensable for all manifold constructions,
although the linearity (1 + iα)Δ + ζ has continuous spectrum and no spectral
gaps; see [9], [11] for different but comparable situations. On the other hand the
nonlinearity P(u) ((1.1), (1.2)) maps H0(Rn) smoothly into itself, thanks to the
Banach algebra property of H0(Rn). It is now natural to seek broader spaces in
which our constructions can still be carried out. For reasons of space we have to
refrain from a discussion of the various possibilities and content us with a discus-
sion of just one case. First we observe that an element f ∈ H0(Rn), i.e., subject
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to (0.2), may be viewed as the Fourier transform of a complex measure μ:

f(x) =
∫

eiλxdμ(λ), where μ(E) =
∑

Λk∈E

ak, E ∈ S. (4.1)

This causes us to consider the space Ĉ(Rn) of Fourier transforms of finite complex
measures, i.e.:

f(x) =
∫

eixλ dμ(λ), μ a finite complex measure. (4.2)

For simplicity we restrict our alternation to the Banach space Ĉr(Rn) of Fourier
transforms of measures μ of the form

μ = μd + μa, μd discrete, μa absolutely continuous. (4.3)

Fourier transforms f = μ̂ of such measures are of the form

f(x) =
∑

akeiΛkx +
∫

Rn

g(λ)eiλx dλ,
∑

|ak| < ∞, g ∈ L1(Rn). (4.4)

A norm ‖f‖ on Ĉr(Rn) is then given by

‖f‖ =
∑

|ak| +
∫

|g(λ)| dλ. (4.5)

One easily verifies that the representation in (4.4) is unique and that Ĉr(Rn) is
Banach under the norm ‖ ‖ in (4.5). Projection operators Pd, Pa are then defined
via

Pdf =
∑

akeiΛkx, Paf =
∫

g(λ)eiλx dλ (4.6)

which give rise to the direct sum representation

Ĉr(Rn) = PdĈr(Rn) ⊕ PaĈr(Rn) = H0(Rn) ⊕ PaĈr(Rn). (4.7)

Below, Fourier transforms
∫

g(λ)eiλx dλ are denoted by ĝ, (g(λ))∧ or ĝ(x) accord-
ing to the case. In order to extend the considerations in Section 2.3 to the present
context we need

Definition 3. f(x), given by (4.4), is in dom(Δ) iff
∑

|ak|Λ2
k +

∫
λ2|g(λ)| dλ < ∞;

in this case
−Δf =

∑
Λ2

kakeiΛkx +
∫

λ2g(λ)eiλ dx.

By Definition 3 and (4.6) it follows that Δ commutes with Pd, Pa:

PdΔ ⊆ ΔPd, PaΔ ⊆ ΔPa (4.8)

what implies that the spaces PdĈr(Rn), PaĈr(Rn) are invariant under Δ. Moreover,
PdΔ coincides with Δ given by Definition 2, as a comparison shows. From these
observations it follows that Lemma 2.1 remains valid when interpreted in the
present context. In fact, Lemma 2.1 has already been proved for PdΔ in Section 2.

For PaΔ however, the lemma follows straightforwardly from the identity

((1 + iα)Δ − ζ)−1ĝ = −(((1 + iα)λ2 + ζ)−1g)∧, g ∈ L1(Rn), ζ ∈ SV
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and from Prop. 2.1 by the same arguments put forward in the proof of Lemma
2.1, Section 2. Routine arguments, similar to those used in the proof of Lemma
2.2 then show that the semigroup generated by (1 + iα)Δ + ζ (some ζ > 0) acts
on f , given by (4.4), according to

Vtf =
∑

ake(−(1+iα)Λ2
k+ζ)teiΛkx +

∫
e(−(1+iα)λ2+ζ)tg(λ)eiλx dλ. (4.9)

Vt, given by (4.9), commutes with Pa, Pd and is the direct sum of semigroups PaVt,
PdVt acting on PaĈr(Rn), PdĈr(Rn) respectively, with PdVt given by (2.13). Next
we also need projections corresponding to Q, R in (3.2), (3.20) respectively. As to
Q we stipulate:

Qf =
∑

β≤−Λ2
k+ζ

akeiΛx +
∫

x[0,ζ−β](λ2)g(λ)eiλx dλ, (4.10)

with f given by (4.4) and χ
I

the characteristic function of I. Assuming as in
Section 3 that 0 < β < γ < ζ, the projection R is defined accordingly, i.e., via
(4.10) but with γ in place of β. It is then routine to show that the estimates (3.4),
(3.5), (3.22) remain valid in the present context, i.e., with Vt and Q, R defined via
(4.9), (4.10) resp.

While the above remarks settle the linear part of our considerations, we also
have to take care of the nonlinearity P(u) ((1.1), (1.2)). This reduces to a discussion
of the multiplication in Ĉr(Rn).

The proposition below summarizes those parts of Theorems (19.15), (19.18),
(19.20) in [5], 269–273, which are of relevance here. Below, ∗ denotes convolution:
if g, h ∈ L1(Rn) then

‖g ∗ h‖L1 = ‖g‖L1‖h‖L1 and (g ∗ h)∧ = ĝĥ. (4.11)

Proposition 4.1

(A) Let T =
∑

akeiΛkx ∈ H0(Rn), g ∈ L1(Rn); then ϕ( ) =
∑

akg(· − Λk) is in
L1(Rn), ϕ̂ = T ĝ and

‖ϕ̂‖ = ‖ϕ‖L1 ≤ (
∑

|ak|)‖g‖L1 = ‖T ‖ ‖ĝ‖.

(B) Let Tj ∈ H0(Rn), gj ∈ L1(Rn), i.e., Tj + ĝj ∈ Ĉr(Rn), j = 1, 2. Then

(T1 + ĝ1)(T2 + ĝ2) = T1T2 + T1ĝ2 + T2ĝ1 + (g1 ∗ g2)∧ ∈ Ĉr(Rn)

and ‖(T1 + ĝ1)(T2 + ĝ2)‖ ≤ ‖T1 + ĝ1‖ ‖T2 + ĝ2‖. •

Remarks. While (A) is proved by elementary estimates, (B) follows from (4.11)
and (A) by straightforward computation. With estimates (3.4), (3.5), (3.22) valid
in the present setting, and having established that Ĉr(Rn) is a Banach algebra, it is
now straightforward to show that Lemma 3.1 and Theorem 1 still hold when inter-
preted in Ĉr(Rn); the proofs remain the same. We content us to restate Theorem
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1 properly. To this end we redefine Bβ
− according to

y ∈ Bβ
− iff y ∈ C0((−∞, 0], Ĉr(Rn)) and

[y]β = sup
t≤0

e−βt‖y(t)‖ < ∞ (‖ ‖ the norm in (4.5)). (4.12)

Theorem 2. If 0 < β < μ < ζ there is a solution y ∈ Bβ
− (via (4.12) of (0.1) such

that y �∈ Bμ
−.

Remarks
(0) Theorem 2 remains valid if we restrict our considerations to the subspace

PaĈr(Rn) of Fourier transforms of absolutely continuous measures which is
invariant under all operations involved in the proof of Theorem 2.

(1) The so generalized Theorem 1 and Lemma 3.1 apply to example (3.34) and
thus yield a larger class of solutions of (3.34), defined on all of R.

(2) It can be shown that Lemma 3.1 and Theorem 1 hold in the space Ĉ(Rn)
of Fourier transforms (4.2) of complex, finite, σ-additive measures μ. While
the proof is still along the lines of Sections 2, 3 a certain amount of measure
theory as treated in [5], Chapters 3, 5 cannot be avoided; the details will be
presented elsewhere.

(II) We conclude with an outline of the structure which eq. (0.1) assumes in
the Banach algebra Ĉr(Rn). For simplicity we let α = 0 in (2.2) and let P(u)
be a polynomial via (1.2), i.e., with coefficients in H0(Rn). We then have the
representation

P (u + v) = P(u) + vQ(u, v), Q(0, 0) = 0 (4.13)
with Q(u, v) a polynomial in u, v with coefficients in H0(Rn). Now let u( ) be a
solution cf. (0.1) on I = [0, τ):

u(t) ∈ dom(Δ) for t ∈ I, Δu ∈ C0(I, Ĉr(Rn)),

u ∈ C1([I, Ĉr(Rn)), u(0) = u0 and u satisfies (0.1) pointwise.
(4.14)

Based on the direct sum property (4.7), the solution u in (4.14) admits the de-
composition

u = T + ĝ with Pdu = T ∈ H0(Rn), Pau = ĝ, g ∈ L1(Rn). (4.15)

We insert (4.15) into (0.1) by taking care of (4.13) and of Prop. 4.1; as a result we
obtain a coupled system equivalent to (0.1):

∂tT = (Δ + ζ)T + P (T ), Pdu(0) = T (0), (4.16a)

∂tĝ = (Δ + ζ)ĝ + ĝQ(T, ĝ), Pau(0) = ĝ(0). (4.16b)

From (4.16) we read off that the almost periodic part Pdu = T of the solution
u of (0.1) is dominating: if [0, τ), τ < ∞ is the maximal interval of existence
of (4.16a) for the initial condition Pdu(0) = T (0), then the maximal interval of
existence [0, τ ′) for the whole system (4.16a) + (4.16b) satisfies τ ′ ≤ τ regardless
how Pau(0) = ĝ(0) is chosen. Likewise, if τ = ∞ but lim supt→∞ ‖T (t)‖ = ∞
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then either τ ′ < ∞ or else τ ′ = ∞ and lim supt→∞ ‖u(t)‖ = ∞ for the solution
u = T + ĝ of (4.16a)+(4.16b), i.e., of (0.1), regardless how Pau(0) = ĝ(0) is chosen.
That is, the absolutely continuous part Pau(0) of the initial condition u(0) has no
stabilizing effect.

Appendix

We add a few remarks concerning the relations between our considerations and the
space S(Rn) of Stepanov almost periodic functions. In order to define S(Rn), let
Q ⊆ Rn denote any n-cube of length L and assume f ∈ L2

loc(R
n). By definition,

f ∈ L2
b(R

n) iff
‖f‖L2

b
= sup

Q
‖f‖L2(Q) < ∞. (A.1)

Likewise, f ∈ Hm
b iff f ∈ Hm

loc(R
n) and

‖f‖Hm
b

= sup
Q

‖f‖Hm(Q) < ∞. (A.2)

L2
b and Hm

b are Banach spaces endowed with norms (a1), (a2) respectively. It is
easily seen that up to norm equivalence, L2

b and Hm
b do not depend on L. As

to S(Rn) we recall the space HT (Rn) of finite trigonometric sums in (2.12) and
stipulate

f ∈ S(Rn) iff there is a sequence TN ∈ HT (Rn) with lim
N

‖f − TN‖L2
b

= 0. (A.3)

Likewise, f ∈ HSm(Rn) iff there is a sequence TN ∈ HT (Rn) with

lim ‖f − TN‖Hm
b

= 0.

A function f ∈ S(Rn) has a series of properties, similar to those of the Bohr almost
periodic functions ([15]). In particular, f has an associated Fourier series

f 4 ΣfkeiΛkx.

However the relation between f and its Fourier series is less simple than in case
of f ∈ Hs(Rn) (Definition 1).

It is now straightforward to interpret equation (0.1) (with ν > 0 for simplic-
ity) as an evolution equation in S(Rn). To this end we stipulate

dom(Δ) = HS2(Rn), Δf = Σ∂2
j f, f ∈ dom(Δ). (A.4)

It turns out that Δ so defined is the generator of a holomorphic semigroup, i.e.,
the heat semigroup Wt, t ≥ 0, restricted to S(Rn). Fractional power spaces Bγ

can then be defined in terms of (1 − Δ)γ , what gives the possibility to define the
polynomial nonlinearity P (u) in (0.1) properly. This leads to an interpretation of
(0.1) as an evolution equation in S(Rn) in the sense of [14], pg. 196. We note that
the spaces Hm(Rn) in Definition 1 are continuously embedded in HSm(Rn):

Hm(Rn) ↪→ HSm(Rn). (A.5)
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Since ζ > 0 in (0.1) by assumption, one expects that u = 0, considered as a
solution of (0.1) in the space S(Rn), is Ljapunov unstable. One might try to prove
this instability by construction of an instable manifold with the aid of a projection
operator Q, endowed with properties similar as Q given by (3.2). However, it is
here where the difficulties appear; in fact we were not able to construct a suitable
projection operator Q. A way out is to rely on Lemma 3.1, i.e., we fix η ∈ S( ε

2 ),
η �= 0 in the terminology of Lemma 3.1 and seek the solution y ∈ Sβ(ε), y = ϕ(η)
of (0.1) which satisfies (3.15). By the embedding (A.5) we have that y(t), t ≤ 0
is also a solution of (0.1) when considered as an equation in S(Rn). On the other
hand, Qy(0) = η �= 0 by (3.15) whence

‖y(0)‖L2
b

= d > 0 (A.6)

as is easily seen. We now fix δ > 0, T0 > 0 arbitrarily; since y ∈ Bβ
− there is T > T0

such that ‖y(−T )‖k < δ where k is an embedding constant such that

‖y(t)‖L2
b
≤ k‖y(t)‖, t ≤ 0 (A.7)

obtained from (A.5). Finally we set y0(t) = y(t−T ), t ∈ [0, T ]. We then have that
y0 is a solution of (0.1) in S(Rn) such that

‖y0(0)‖L2
b
≤ k‖y(−T )‖, t ≤ 0

obtained from (A.5).
We then have that y0 is a solution of (0.1) in S(Rn) such that

‖y0(0)‖L2
b
≤ k‖y(−T )‖ < δ, ‖y0(T )‖L2

b
= ‖y(0)‖L2

b
= d.

Thus Ljapounov instability of u = 0 as a solution of (0.1) in S(Rn) follows.
While Ljapounov instability of (0.1) in S(Rn) thus follows from the consid-

erations in Section 3, the situation is less favorable in case of solutions of slow
exponential decay. In fact, if y ∈ Bβ

− is a solution of (0.1) in H0(Rn) such that

sup
t≤0

e−μt‖y(t)‖ = ∞, some β < μ,

we cannot necessarily infer

sup
t≤0

eμt‖y(t)‖L2
b

= ∞ (A.8)

since we have only (A.7) at disposal. An attempt to construct a manifold of solu-
tions of (0.1) in S(Rn), exhibiting slow exponential decay in the sense of Lemma
3.2 resp. Theorem 1, fails since we cannot construct the necessary projection op-
erators Q, R. We therefore have to content us with a partial result. In order to
outline the construction of solutions of (0.1) in S(Rn) which exhibit slow exponen-
tial decay in some sense we assume that the coefficients ak in (0.1) are constant
and let (for simplicity) n = 1. Next we recall ε0 in Lemma 3.1; we fix ε ≤ ε0

and 0 < β < γ < ζ such that γ < 2β. We then pick a ∈ C, a �= 0 such that
|a| ≤ min(C−1, ε

2 ) (with C = C(β, γ) as in Lemma 3.2) and set

η = 1
2 (aeiΛx + ae−iΛx) where β ≤ ζ − Λ2 < γ. (A.9)
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Thus ‖η‖ = |a| �= 0 and η ∈ S( ε
2 ) what entails that ϕ(η) = y ∈ Sβ(ε) is a solution

of (0.1) in H0(R) such that

y ∈ Bβ
− and y �∈ Bμ

− for γ < μ. (A.10)

Now η in (A.9) is 2π
Λ -periodic; invariance arguments show that the solution y =

ϕ(η) of (0.1) (in H0(R)) is 2π
Λ -periodic too. By looking at y as a solution of (0.1)

in a 2π
Λ -periodic Sobolev setting we find

y ∈ C1((−∞, 0)], H1
per((0, 2π

Λ )) (A.11)

where Hk
per((0, 2π

Λ )) are the usual 2π
Λ -periodic Sobolev spaces. Now let

y(t) = Σak(t)ei 2π
Λ kx.

From (A.11) we then infer

‖y(t)‖2
H1

per
= Σ|ak(t)|2(1 + (2π

Λ )2k2) < ∞
what in turn entails

‖y(t)‖ ≤ c‖y(t)‖H1
per

(t ≤ 0), some constant c,

whence
∞ = sup

t≤0
e−μt‖y(t)‖ ≤ sup

t≤0
e−μt‖y(t)‖H1

per
.

In a last step one then infers from (A.14):

sup
t≤0

e−μt‖y(t)‖H1
b

= ∞.

Thus a solution y of (0.1) in S(Rn) has been found which exhibits slow exponential
decay in the H1

b -norm.
Whether this result can be improved so as to yield solutions of slow expo-

nential decay in the L2
b-norm is open.
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[6] K. Kirchgässner: Preference in pattern and cellular bifurcation in fluid dynamics. In:
Applications of bifurcation theory, P. Rabinowitz (ed.), Academic Press, New York
(1977).

[7] G. Ladas, V. Laksmithkantam: Differential equations in abstract spaces. Academic
Press, New York, London (1972).



594 B. Scarpellini

[8] B. Levitan, V. Zhikov: Almost periodic functions and differential equations. Cam-
bridge Univ. Press, New York (1982).

[9] B. Scarpellini, P. Vuillermot: Smooth manifolds for semilinear wave equations: on the
existence of almost periodic breathers. J. Diff. Eq., Vol. 77, No. 1, 123–166 (1989).

[10] B. Scarpellini: Solutions of evolution equations of slow exponential decay. “Analysis”
20, (2000), 255–283.

[11] B. Scarpellini: Instable solutions of nonlinear parabolic equations in R3. J. Diff. Eq.,
Vol. 70, (1987), 197–225.

[12] B. Scarpellini, Stability, instability and direct integrals. Chapman & Hall/CRC, Boca
Raton, (1999).

[13] M. Shubin: Almost periodic functions and partial differential operators. Russian
Math. Survey 33:2, (1978), 1–52.

[14] A. Pazy: Semigroups of linear operators and applications to PDE’s. Appl. Math. Sci.
44, Springer, New York (1983).
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c© 2007 Birkhäuser Verlag Basel/Switzerland

On the Oseen Semigroup with Rotating Effect

Yoshihiro Shibata

Dedicated to the memory of Günter Lumer

Abstract. This paper is concerned with the generation of C0 semigroup as-
sociated with the Oseen equation with rotating effect and its Lp-Lq decay
estimate. The theorems presented in this paper give us one of the key steps
in order to show a globally in time existence of solutions to the Navier-Stokes
equations describing the motion of viscous incompressible fluid flow past a
rotating rigid body.
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1. Introduction and main results

Let Ω be an exterior domain in the Euclidean 3-space R3 with C1,1 boundary ∂Ω.
In this paper, we report the existence of solutions and their decay property of the
initial boundary value problem:

ut + Lk,au + ∇π = 0, div u = 0 in Ω × R+,

u|∂Ω = 0, u|t=0 = f. (1.1)

Here, R+ = (0,∞) and Lk,au = −Δu + k∂3u − (ω × x) · ∇u + ω × u,
k is a real constant, ω = ae3 (e3 = (0, 0, 1)T 1), a a real constant,
u = (u1, u2, u3)T unknown velocity field, π unknown pressure,
t the time variable, x = (x1, x2, x3) the space variable in R3,
∂t = ∂/∂t, ∂j = ∂/∂xj, Δ =

∑3
j=1 ∂2

j , ut = (∂tu1, ∂tu2, ∂tu3),
Δu = (Δu1, Δu2, Δu3), (ω × x) · ∇ = a(x1∂2 − x2∂1),
and ∇π = (∂1π, ∂2π, ∂3π).

This work is partially supported by Grant-in-Aid for Scientific Research (B) – 15340204, Japan

Society for the Promotion of Science.
1MT denotes the transposed M .

H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise, J. von Below (eds):



596 Y. Shibata

The first equation of (1.1) can be written in the componentwise:

∂u1

∂t
− Δu1 + k

∂u1

∂x3
− a(x1∂2 − x2∂1)u1 − u2 +

∂π

∂x1
= 0,

∂u2

∂t
− Δu2 + k

∂u2

∂x3
− a(x1∂2 − x2∂1)u2 + u1 +

∂π

∂x2
= 0,

∂u3

∂t
− Δu3 + k

∂u3

∂x3
− a(x1∂2 − x2∂1)u3 +

∂π

∂x3
= 0.

The problem (1.1) is obtained as a linearized problem of the Navier-Stokes equa-
tions describing the motion of incompressible viscous fluid flow past a rotating
rigid body O = R3 \ Ω with axis of rotation ω = ae3 = a(0, 0, 1)T (a �= 0) which
is moving with velocity k �= 0 in the direction of its axis of rotation.

To be more precise, let us consider the Navier-Stokes equations:

vt + v · ∇v − Δv + ∇π = g in Ω(t), t > 0,

div v = 0 in Ω(t), t > 0,

v(y, t) = ω × y on ∂Ω(t), t > 0,

v(y, t) → u∞ �= 0 as |y| → ∞, t > 0

(1.2)

with an initial value v(y, 0) = v0(y) in the time-dependent exterior domain

Ω(t) = O(at)Ω,

where O(t) denotes the orthogonal matrix

O(t) =

⎛⎝cos t − sin t 0
sin t cos t 0
0 0 1

⎞⎠ .

Then, introducing

x = O(t)T y, u(x, t) = O(t)T (v(y, t) − u∞), p(x, t) = π(y, t), (1.3)

we see that (u, p) satisfies the modified Navier-Stokes equations:

ut + u · ∇u − Δu + (O(t)T u∞) · ∇u

−(ω × x) · ∇u + ω × u + ∇π = f in Ω × (0,∞),

div u = 0 in Ω × (0,∞),

u(x, t) = ω × x −O(t)u∞ on ∂Ω × (0,∞),

u(x, t) → 0 as |x| → ∞, t > 0

(1.4)

with an initial data u(x, 0) = v0(x). In this paper, we consider only the case where
u∞ = ke3, so that O(t)T u∞ = ke3 for all t > 0. Therefore, (1.4) leads to the
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system:

ut + u · ∇u − Δu + k∂3u

−(ω × x) · ∇u + ω × u + ∇π = f in Ω × (0,∞),

div u = 0 in Ω × (0,∞),

u(x, t) = ω × x − ke3 on ∂Ω × (0,∞),

u(x, t) → 0 as |x| → ∞, t > 0

(1.5)

with an initial data u(x, 0) = v0(x). Dropping the nonlinear term u · ∇u, the
external force f and boundary force ω × x − ke3, we have (1.1).

The mathematical analysis of viscous flow past rotating obstacles started
with [1], where weak non-stationary solutions have been constructed in an even
more general setting allowing for time-dependent functions ω(t) and u∞(t). And,
Farwig [2] proved the Lq estimate of second derivatives of u and the first derivatives
of p, where u and p solve the equations:

−Δu + k∂3u − (ω × x) · u + ω × u + ∇p = f, div u = g in R3.

The author could not find any other papers published in any mathematical journal
concerning the evolution equation (1.5) with non-zero k and ω.

To formulate (1.1) in the semigroup setting, we eliminate the pressure term
p, because p has no evolution. For this purpose, we introduce the Helmholtz de-
composition. Let D be one of R3, Ω and ΩR = Ω∩BR (BR = {x ∈ R3 | |x| < R}).
Let R be a large number such that BR−5 ⊃ R3 \ Ω and 1 < q < ∞. Set

Lq(D)3 = {f = (f1, f2, f3) | fi ∈ Lq(D)(i = 1, 2, 3)}, Jq(D) = C∞
0,σ(D)

Lq(D)
,

Gq(D) = {∇π | π ∈ Ŵ 1
q (D)}, C∞

0,σ(D) = {u ∈ C∞
0 (D)3 | div u = 0 in D},

Ŵ 1
q (D) = {π ∈ Lq,loc(D) | ∇π ∈ Lq(D)3,

∫
ΩR

π dx = 0}.

Then, we have

Lq(D)3 = Jq(D) ⊕ Gq(D), ⊕ : direct sum.

To obtain such decomposition, given f ∈ Lq(D)3 we take π such that π is a weak
solution to the Laplace equation:

Δπ = div f in D, ∂νπ = ν · f. (1.6)

Here, ν = (ν1, ν2, ν3) is the unit outer normal to ∂D and ∂ν = ν ·∇. In particular,
we know that Jq(D) = {g ∈ Lq(D) | div g = 0 in D, ν · g|∂D = 0}. When
f = g + ∇π with g ∈ Jq(D) and π ∈ Ŵ 1

q (D), we set

PDf = g, QDf = π. (1.7)

In particular, PD is a bounded linear operator from Lq(D)3 onto Jq(D) and QDf ∈
Ŵ 1

q (D).
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Applying PD to Lk,a, we define the operator LD with domain Dq(D) as
follows:

LDu = PDLk,au = PD(−Δu + k∂3u − (ω × x) · ∇u + ω × u) (u ∈ Dq(D)),

Dq(D) = {u ∈ Jq(D) ∩ W 2
q (D) | u|∂D = 0, (ω × x) · ∇u ∈ Lq(D)}. (1.8)

Using these symbols, (1.1) is written as follows:

ut + LΩu = 0 in Jq(Ω) for t > 0,

u|t=0 = f u(t) ∈ Dq(Ω) for t > 0.
(1.9)

Theorem 1.1. Let 1 < q < ∞. Then, LΩ generates a C0 semigroup {T (t)}t≥0 on
Jq(Ω).

Remark 1.2. Theorem 1.1 was proved by Hishida [6] when q = 2 and k = 0 and
by Geissert-Heck-Hieber [5] when 1 < q < ∞ and k = 0. Our proof is different
from previous results and based on some new consideration on the pressure terms

According to Kato’s theory [8], we know that so-called Lq-Lr estimate of the
Stokes semigroup plays an essential role to show the stability of stationary flow.
In the following theorem, we state such Lq-Lr estimates of solutions to (1.1).

Theorem 1.3. Let 1 < q < ∞, k0 > 0 and a0 > 0. Assume that |a| ≤ a0 and
|k| ≤ k0. Then, there hold the following estimates for f ∈ Jq(Ω) and t > 0:

‖T (t)f‖
Lr(Ω) ≤ Cq,rt

− 3
2 ( 1

q − 1
r )‖f‖

Lq(Ω) 1 < q ≤ r ≤ ∞, q �= ∞,

‖∇T (t)f‖
Lr(Ω) ≤ Cq,rt

− 1
2− 3

2 ( 1
q − 1

r )‖f‖
Lq(Ω) 1 < q ≤ r ≤ 3.

Here, the constant Cq,r depends on a0 and k0 but is independent of a, k, t and f
whenever |a| ≤ a0 and |k| ≤ k0.

Remark 1.4. When k = 0, Theorem 1.3 was proved by Hishida and Shibata [7].

2. Analysis in R3

If we consider the equation (1.1) in R3 with initial data f ∈ Jq(R3), then the
solution u is given by the following formula:

u(t) = SR3(t)f = (4πt)−3/2

∫
R3

exp
(
−|O(at)x − y − ke3t|2

4t

)
O(at)T PR3f(y) dy

= F−1
[
e−(|ξ|2+ikξ3)tO(at)TF [PR3f ](O(at)ξ)

]
(x).

Here PR3 and QR3 are given by the following formulas:

PR3f = F−1

[(
δjk − ξjξk

|ξ|2
)

f̂(ξ)
]

(x), QR3f = F−1

[
ξ · f̂(ξ)
i|ξ|2

]
(x) + c(f)
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and c(f) is a constant such that
∫
ΩR

QR3f dx = 0. To show Theorems 1.1 and
1.3, we consider the resolvent problem. The resolvent of the problem (1.1) in R3

is given by the Laplace transform of SR3(t)f . Set

AR3,a,k(λ)f = A(λ)f =
∫ ∞

0

e−λtSR3(t)PR3f dt

= F−1
[∫ ∞

0

e−(λ+|ξ|2+iξ3k)tO(at)T P̂R3f(O(at)ξ) dt
]
(x).

If we restrict ourselves to the case where f has a compact support, we have rather
plenty of information to prove Theorems 1.1 and 1.3 as follows:

Theorem 2.1. Let 1 < q < ∞, k0 > 0 and a0 > 0. Assume that |k| ≤ k0 and
|a| ≤ a0.

(1) Let γ > 0, 0 < ε < π/2 and N ∈ N with N ≥ 4. Set

Cγ = {λ ∈ C | Reλ ≥ γ}, C+ = {λ ∈ C | Re λ > 0},
Σε = {λ ∈ C \ {0} | | argλ| ≤ π − ε},
Lq,R−1(R3) = {f ∈ Lq(R3)3 | f(x) = 0 for x �∈ BR−1},
LR(R3) = L(Lq,R−1(R3), W 2

q (R3)3).

Then, AR3,a,k(λ) ∈ Anal(C+,LR(R3)) and there exist three operators:

AN
1,a(λ), ÃN

1,a(λ) ∈ Anal(C \ (−∞, 0],LR(R3)),

AN
2,a(λ) ∈ Anal(C+,LR(R3))

such that

AR3,a,k(λ)f = AN
1,a(λ) + AN

2,a(λ),

AN
1,a(λ) = (λ − ΔR3 + k∂3)−1PR3 + ÃN

1,a(λ),

‖∂β
xAN

1,a(λ)f‖
Lq(R3)

≤ C|λ|−(1−(|β|/2))‖f‖
Lq(R3)

(λ ∈ Σε, |λ| ≥ cε > 0),

‖∂β
x ÃN

1,a(λ)f‖
Lq(R3)

≤ C|λ|−((3/2)−(|β|/2))‖f‖
Lq(R3)

(λ ∈ Σε, |λ| ≥ cε > 0),

‖∂β
xAN

2,a(λ)f‖
Lq(R3)

≤ C γ−1|λ|−(N/2)+(|β|/2)‖f‖
Lq(R3)

(λ ∈ Cγ)

for any f ∈ Lq,R−1(R3) provided that |β| ≤ 2 and |λ| ≥ 1, where the constants cε

and C depend on ε, a0 and k0 but are independent of a and k and we have set

(λ − ΔR3 + k∂3)−1g = F−1
ξ [(λ + |ξ|2 + ikξ3)−1ĝ(ξ)](x).

Here and hereafter, L(X, Y ) denotes the set of all bounded linear operators from
X into Y and Anal(I, X) the set of all X-valued analytic functions defined on I.

Theorem 2.2. Let 1 < q < ∞, k0 > 0, a0 > 0, γ0 and K ≥ 10a0 + 2. Assume that
|k| ≤ k0, |a| ≤ a0 and 0 ≤ γ ≤ γ0. Set LR,comp(R3) = L(Lq,R−1(R3), W 2

q (BR)3)
and denote the operator norm of LR,comp(R3) by [ · ]R3,R.
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Then, A(λ) = AR3,a,k(λ) ∈ C(C+,LR,comp(R3)) and satisfies the conditions:

sup
|s|≤K

[A(γ + is)]R3,R ≤ Cγ0,a0,K ,∫ K

−K

[(∂λA)(γ + is)]
3
2
R3,R ds ≤ Cγ0,a0,K ,

sup
0<|h|≤1

|h|−1/2
(∫ K

−K

[A(γ + i(s + h)) −A(γ + is)]3R3,R ds
) 1

3 ≤ Cγ0,a0,K ,

sup
0<|h|≤1

|h|−1/2

∫ K

−K

[(∂λA)(γ + i(s + h)) − (∂λA)(γ + is)]R3,R ds ≤ Cγ0,a0,K ,

‖(∂m
λ AR3,a)(γ + is)‖

L(Lq,R−1(R3),W j
q (BR)3)

≤ Cγ0,a0,K |s|−m−(1−(j/2))

for m = 0, 1, 2, 3 and j = 0, 1, 2; s ∈ R with |s| ≥ K − 2. Moreover, we have

lim
γ→0+

sup
s∈R

[A(γ + is) −A(is)]R3,R = 0,

lim
γ→0+

∫ ∞

−∞
[(∂λA)(γ + is) − (∂λA)(is)]R3,R = 0,

lim
r→∞

r−1

∫
r≤|x|≤2r

|[A(λ)f ](x)|2 dx = 0 (k �= 0),

lim
r→∞

r−2

∫
r≤|x|≤2r

|[A(λ)f ](x)|2 dx = 0 (k = 0),

‖A(λ1)f −A(λ2)f‖W2
q (BR)

≤ Cq,R|λ1 − λ2|1/4‖f‖
Lq(R3)

for any λ, λ1 and λ2 ∈ C+ = {λ ∈ C | Re λ ≥ 0} provided that f ∈ Lq,R−1(R3).

3. Rough ideas of proofs of Theorems 1.1 and 1.3

To show Theorem 1.1, the following theorem is a key step.

Theorem 3.1. Let 1 < q < ∞ and set

Lq,R−1(D) = {f ∈ Lq(D)3 | f(x) = 0 for |x| > R − 1}

with D = Ω or R3. For every f ∈ Lq,R−1(Ω), the problem (1.1) replacing f by
PΩf admits a unique (u, π) having the following regularity properties:

u ∈ C0([0,∞), Jq(Ω)) ∩ C1((0,∞), Lq(Ω)) ∩ C0((0,∞), W 2
q (Ω)),

π ∈ C0((0,∞), Ŵ 1
q (Ω))
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and satisfying the following estimates:

‖u(t)‖
Lq(Ω) + t1/2‖∇u(t)‖

Lq(Ω) + t(‖ut(t)‖Lq(Ω) + ‖u(t)‖
W2

q (Ω)
+ ‖∇π(t)‖

Lq(Ω))

≤ Cγeγt‖f‖
Lq(Ω) ,

t(1/2)(1+(1/q))(‖ut(t)‖Lq(Ωb) + ‖π(t)‖
Lq(Ωb)) ≤ Cγ,be

γt‖f‖
Lq(Ω)

for any t > 0. Here, Ωb = Bb ∩ Ω (b > R), γ > 0 is any real number, and Cγ and
Cγ,b are constants depending on a0 and k0 whenever |a| ≤ a0 and |k| ≤ k0 but are
independent of a, k, t and f .

Moreover, if f ∈ Lq,R−1(Ω) ∩ Dq(Ω),

u ∈ C0([0,∞), W 2
q (Ω)) ∩ C1([0,∞), Lq(Ω)),

‖u(t)‖
W2

q (Ω)
+ ‖ut(t)‖Lq(Ω) ≤ Cγeγt‖f‖

W2
q (Ω)

.

Now, we shall give a sketch of proof of Theorem 1.1 by using Theorem 3.1.
Let us define the operator SΩ(t) by the formula: SΩ(t)f = u(t) for f ∈ Lq,R−1(Ω),
where u(t) is a vector of functions mentioned in Theorem 3.1.

Theorem 3.1 ⇒ Theorem 1.1
First step: Given f ∈ Dq(Ω), let f̃ be an element in Dq(R3) such that

f̃ = f on Ω and ‖f̃‖Dq(R3)
≤ Cq‖f‖Dq(Ω)

where
‖f‖Dq(D) = ‖f‖

W2
q (D)

+ ‖(ω × x) · ∇f‖
Lq(D) .

Let ϕ be a function in C∞
0 (R3) such that ϕ(x) = 1 for |x| ≤ R − 2 and ϕ(x) = 0

for |x| ≥ R − 1 and set

v(t) = (1 − ϕ)SR3(t)f̃ + B[(∇ϕ) · SR3(t)f̃ ].

Here, B denotes the Bogovskǐı-Pileckas operator satisfying the estimates:

‖B[(∇ϕ) · v]‖
W

j
q (R3)

≤ C‖v‖
W

j−1
q (supp (∇ϕ))

, j = 1, 2;

‖B[(∇ϕ) · ∇v]‖
W

j
q (R3)

≤ C‖v‖
W

j
q (supp (∇ϕ))

, j = 0, 1, 2.

2nd step: To obtain the solution u(t) of (1.1), we set u(t) = v(t) + w(t), and then
w(t) and π(t) should satisfy the equations:

wt + Lk,aw + ∇π = F, div w = 0 in Ω × (0,∞),

w|∂Ω = 0, w|t=0 = ϕf − B[(∇ϕ) · f ] = g.

Here,

F = − 2(∇ϕ) · ∇SR3(t)f̃ − (Δϕ)SR3 (t)f̃ + k(∂3ϕ)SR3(t)f̃

− ((ω × x) · ∇ϕ)SR3(t)f̃ + (∂t + Lk,a)B[(∇ϕ) · SR3(t)f̃ ].
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Observe that

∂tB[(∇ϕ) · SR3(t)f̃ ] = B[(∇ϕ) · ∂tSR3(t)f̃ ]

= B[(∇ϕ) · ΔSR3(t)f̃ ] + B[(∇ϕ) · (−k∂3 + ((ω × x) · ∇ − ω×)SR3(t)f̃)].

Therefore, we have

‖F (t)‖
W2

q (Ω)
≤ Cγt−1/2eγt‖f‖Dq(Ω) , ‖F (t)‖

Lq(Ω) ≤ Cγt−1/2eγt‖f‖
Lq(Ω) .

If we write

w(t) = SΩ(t)g +
∫ t

0

SΩ(t − s)F (s) ds,

then by Theorem 3.1 we have

w(t) ∈ C0([0,∞), W 2
q (Ω)) ∩ C1([0,∞), Lq(Ω),

‖w(t)‖
W2

q (Ω)
+ ‖wt(t)‖Lq(Ω) ≤ Cγeγt‖f‖Dq(Ω) ,

‖w(t)‖
Lq(Ω) ≤ Cγeγt‖f‖

Lq(Ω) .

Therefore, we can construct a solution

u(t) ∈ C0([0,∞), W 2
q (Ω)) ∩ C1([0,∞), Lq(Ω))

which satisfies the estimate:

‖u(t)‖
W2

q (Ω)
+ ‖ut(t)‖Lq(Ω) ≤ Cγeγt‖f‖Dq(Ω) ,

‖u(t)‖
Lq(Ω) ≤ Cγeγt‖f‖

Lq(Ω) .

If we define {T (t)}t≥0 by the formula: T (t)f = u(t), then the uniqueness of solu-
tions and the denseness of Dq(Ω) in Jq(Ω) imply that {T (t)}t≥0 is a C0 semigroup
on Jq(Ω). Since we can show that the resolvent set of Lq contains the complex
plane with positive real part, we see that the generator of {T (t)}t≥0 is Lq, which
completes the proof of Theorem 1.1.

An idea of Proof of Theorem 1.3

By Young’s inequality, we see easily that

‖∇jSR3(t)f‖
Lr(R3)

≤ Cq,rt
− j

2− 3
2 ( 1

q − 1
r )‖f‖

Lq(R3)

for 1 < q ≤ r ≤ ∞ with q �= ∞ and t > 0. Combining this estimate with Theorem
3.1 and the following local energy decay theorem by cut-off technique, we have
Theorem 1.3.

Theorem 3.2 (Local Energy Decay). Let 1 < q < ∞, a0 > 0 and k0 > 0. Then, we
have

‖∂j
t T (t)PΩf‖

W2
q (ΩR)

≤ Cqt
− 3

2 ‖f‖
Lq(Ω) , t > 1

for any f ∈ Lq,R−1(Ω) and j = 0, 1. Here, Cq denotes a constant depending on a0

and k0 whenever |a| ≤ a0 and |k| ≤ k0 but are independent of a, k, t and f .
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4. On some new treatment of the pressure term

Although there are several new ideas are necessary to prove Theorems 1.1 and 1.3,
the most important idea is a new treatment of the pressure term, which will be
discussed in what follows. To explain our idea, for the simplicity instead of (1.1)
we shall consider the resolvent problem for the usual Stokes operator with non-slip
boundary condition:

λu − Δu + ∇θ = f, div u = 0 in D, u|∂D = 0 (4.1)

where D is one of Ω or ΩR. We know the following theorem (cf. [10], [3] and
references therein) except for the additional estimate of θ.

Theorem 4.1. Let 1 < q < ∞, 0 < ε < π/2 and λ0 > 0. For every f ∈ Jq(D)
and λ ∈ Σε with |λ| ≥ λ0, the problem (4.1) admits a unique solution (u, θ) ∈
W 2

q (D)3 × Ŵ 1
q (D) possessing the estimate:

|λ|‖u‖
Lq(D) + |λ|1/2‖∇u‖

Lq(D) + ‖∇2u‖
Lq(D)

+ |λ|(1/2)(1−(1/q))(|λ|‖u‖
W

−1
q (ΩR)

+ ‖θ‖
Lq(ΩR)) ≤ Cε,λ0‖f‖Lq(D) .

Here, Σε = {λ ∈ C \ {0} | | argλ| ≤ π − ε}.

To get the additional estimate for θ, we use the following propositions con-
cerning the Laplace equation with Neumann boundary condition.

Proposition 4.2. Let 1 < q < ∞ and D be a bounded domain in Rn with C1,1

boundary ∂D. Let f ∈ Lq(D) and assume that
∫

D f dx = 0. Then, there exists a
unique u ∈ W 2

q (D) which satisfies:

Δu = f in D, ∂νu|∂D = 0,

∫
D

u dx = 0,

‖u‖
W2

q (D)
≤ Cq{‖f‖Lq(D) + ‖g‖

W1
q (D)

}.

Proposition 4.3. Let 1 < q < ∞ and assume that Ω is an exterior domain in Rn

with C1,1 boundary ∂Ω. Set

Ŵ 2
q (Ω) = {u ∈ Lq,loc(Ω) | ∇u ∈ W 1

q (Ω)},

L̂q,R−1(Ω) = {f ∈ Lq(Ω) | f(x) = 0 for |x| ≥ R − 1,
∫

Ω

f dx = 0}.

Then, for every f ∈ L̂q,R−1(Ω) there exists a u ∈ Ŵ 2
q (Ω) which satisfies:

Δu = f in Ω, ∂νu = 0,

‖u‖
Lq(Ω∩BR) + sup

|x|≥R

|x|n−1|u(x)| + ‖∇u‖
W1

q (Ω)
≤ C‖f‖

Lq(Ω) .
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To estimate θ itself in ΩR, we take any ϕ ∈ C∞
0 (ΩR) and set ϕ̃ = ϕ −

|ΩR|−1
∫
ΩR

ϕdx. Let ψ be a solution to Δψ = ϕ̃ in ΩR and ∂νψ|∂ΩR = 0, and then
noting that

∫
ΩR

θ dx = 0, we have

(θ, ϕ)ΩR = (θ, ϕ̃)ΩR = (θ, Δψ)ΩR = −(∇θ,∇ψ)ΩR = (λu − Δu − f,∇ψ)ΩR

= −λ(div u, ψ)ΩR − (∂νu,∇ψ)∂ΩR + (∇u,∇2ψ)ΩR − (f,∇ψ)ΩR .

Since f ∈ Jq(Ω), (f,∇ψ)D = 0. Therefore, noting that div u = 0 in Ω and using
the interpolation inequality about the trace operator, we have

|(θ, ϕ)ΩR ≤ C{‖∂νu‖
Lq(∂ΩR) + ‖∇u‖

Lq(D)}‖ψ‖W2
q′ (ΩR)

≤ C{‖∇2u‖1/q
Lq(ΩR)

‖∇u‖1−(1/q)
Lq(ΩR)

+ ‖∇u‖
Lq(ΩR)}‖ϕ‖L

q′ (Ω)

which implies that

‖θ‖
Lq(ΩR) ≤ C{‖∇2u‖1/q

Lq(ΩR)
‖∇u‖1−(1/q)

Lq(ΩR)
+ ‖∇u‖

Lq(ΩR)}.

Since ‖u‖
W

−1
q (ΩR)

can be estimated by ‖(θ,∇u, f)‖
Lq(ΩR) , we have the required

estimate for θ and λu.
Now, for large λ we shall construct the parametrix of the solutions to the

equations:
λu − Δu + ∇θ = f, div u = 0 in Ω, u|∂Ω = 0. (4.2)

Let ϕ be a function in C∞
0 such that ϕ = 1 for |x| ≤ R−2 and ϕ = 0 for |x| ≥ R−1.

Given f ∈ Lq,R−1(Ω), f0(x) = f(x) for x ∈ Ω and f0(x) = 0 for x ∈ R3 \ Ω and
f |ΩR denotes the restriction of f to ΩR. Set

Φ0(λ)f = (1 − ϕ)R0(λ)PR3f0 + ϕR0,ΩR(λ)PΩRf |ΩR

+ B[(∇ϕ) · (R0(λ)PR3f0 − R0,ΩR(λ)PΩRf |ΩR)],

Ψ0f = (1 − ϕ)QR3f0 + ϕ(QΩRf |ΩR + p0,ΩR(λ)PΩRf |ΩR).

Here,

R0(λ)g = F−1[(λ + |ξ|2)−1ĝ(ξ)], and u = R0,ΩR(λ)PΩRh and θ = p0,ΩR(λ)PΩRh

solve the equations:

λu − Δu + ∇θ = PΩRh, div u = 0 in ΩR, u|∂Ω = 0

for h ∈ Lq(ΩR). In particular, we have

λu − Δu + ∇(θ + QΩRh) = h in ΩR.

By the Fourier multiplier theorem, we have

(λI − Δ)R0(λ)g + ∇QR3g = g, div R0(λ)g = 0 in R3, (4.3)

|λ|‖R0(λ)g‖
Lq(R3)

+ |λ|1/2‖∇R0(λ)g‖
Lq(R3)

+ ‖∇2R0(λ)g‖
Lq(R3)

(4.4)

+ ‖∇QR3f‖
Lq(R3)

≤ Cq,ε‖g‖Lq(R3)



On the Oseen Semigroup with Rotating Effect 605

for any g ∈ Lq(R3) and λ ∈ Σε (0 < ε < π/2). By Theorem 4.1 we have

(λI − Δ)R0,ΩR(λ)f + ∇(QΩRf + p0,ΩR(λ)f) = f in ΩR,

div R0
0,ΩR

(λ)f = 0 in ΩR, (4.5)

R0,ΩR(λ)f = 0 on ∂ΩR,

|λ|‖R0,ΩR(λ)f‖
Lq(ΩR) + |λ|1/2‖∇R0,ΩR(λ)f‖

Lq(ΩR) + ‖∇2R0,ΩR(λ)f‖
Lq(ΩR)

+‖∇p0,ΩR(λ)f‖
Lq(ΩR) + (1 + |λ|)(1/2)(1−(1/q))‖p0,ΩR(λ)f‖

Lq(ΩR) (4.6)

+‖QΩRf‖
W1

q (ΩR)
≤ Cq,ε‖f‖Lq(ΩR)

for any f ∈ Lq(ΩR) and λ ∈ Σε ∪ {λ ∈ C | |λ| ≤ σ0}.
Combining (4.3), (4.4), (4.5) and (4.6), we have

λΦ0(λ)f − ΔΦ0(λ)f + ∇Ψ0(λ)f = (I + T )f + S0(λ)f,

div u = 0 in Ω, Φ0(λ)f |∂Ω = 0.

Here, T is the operator from Lq,R−1(Ω) into Lq,R−1(Ω) ∩ W 1
q (Ω) given by the

formula:

Tf = −(∇ϕ)(QR3f0 − QΩRf |ΩR) − B[(∇ϕ) · ∇(QR3f0 − QΩRf |ΩR)], (4.7)

and S0(λ) is the operator from Lq,R−1(Ω) into Lq,R−1(Ω) ∩ W 1
q (Ω) such that

‖S0(λ)f‖
Lq(Ω) ≤ C|λ|−(1/2)(1−(1/q))‖f‖

Lq(Ω) . (4.8)

In fact, we have such remainder terms from the following observation:

λB[(∇ϕ) · (R0(λ)PR3f0 − R0,ΩR(λ)PΩRf |ΩR ]

= B[(∇ϕ) · Δ(R0(λ)PR3f0 − R0,ΩR(λ)PΩRf |ΩR)]

− B[(∇ϕ) · ∇(QR3f0 − QΩRf |ΩR)]

+ B[(∇ϕ) · ∇p0,ΩR(λ)f |ΩR ].

Lemma 4.4 (Key Lemma). Let 1 < q < ∞. Then, there exists the inverse operator
(I + T )−1 ∈ L(Lq,R−1(Ω)).

In view of (4.8) and the Key lemma, there exists a large λ0 such that for any
λ ∈ Σε with |λ| ≥ λ0 we have the solution formula of (4.2) given by the formula:

(u, θ) = (Φ0(λ), Ψ0(λ))(I + T + S0(λ))−1f,

where

(I + T + S0(λ))−1 =
{ ∞∑

j=0

((I + T )−1S0(λ))j
}
(I + T )−1.

Especially, the representation formula of θ seems to be a new treatment of the
pressure term, from which we can see that the pressure term is represented by
δ(t)a0(x)+ t−((1/2)(1+1/q)a1(x)+ continuous function up to t = 0, where δ(t) is the
Dirac delta function with respect to time variable t. This gives us some information
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about the initial layer. Moreover, (I +T )−1 plays an essential role to construct the
parametrix for (1.1).

A proof of the Key Lemma. By (4.4) and (4.6) we have

|λ|‖Φ0(λ)f‖
Lq(Ω) + ‖Φ0(λ)f‖

W2
q (Ω)

+ ‖ϕp0,ΩRPΩRf |ΩR‖W1
q (Ω)

+ |λ|(1/2)(1−(1/q))‖ϕp0,ΩRPΩRf |ΩR‖Lq(Ω) ≤ Cq,ε‖f‖Lq(Ω) (4.9)

for any λ ∈ Σε with |λ| ≥ 1. From (4.9) we see that there exist a sequence {λj}∞j=1

and a v ∈ Lq(Ω) such that limj→∞ λj = ∞ and

lim
j→∞

λjΦ0(λj)f = v weakly in Lq(Ω). (4.10)

On the other hand, by (4.9) we have

‖Φ0(λj)f‖Lq(Ω) ≤ C|λj |−1‖f‖
Lq(Ω) → 0, ‖Φ0(λj)f‖W2

q (Ω)
≤ C‖f‖

Lq(Ω) ,

‖ϕp0,ΩRPΩRf |ΩR‖Lq(Ω) ≤ C|λj |−(1/2)(1−(1/q))‖f‖
Lq(Ω) → 0,

‖∇(ϕp0,ΩRPΩRf |ΩR)‖
Lq(Ω) ≤ C‖f‖

Lq(Ω)

as j → ∞, and therefore we have

lim
j→∞

ΔΦ0(λj)f = 0, lim
j→∞

∇(ϕp0,ΩR(λj)f |ΩR) = 0 weakly in Lq(Ω). (4.11)

In particular, we have

lim
j→∞

∇Ψ0(λj)f = ∇((1 − ϕ)QR3f0 + ϕQΩRf |ΩR) weakly in Lq(Ω). (4.12)

Since λjΦ0(λj)f ∈ Jq(Ω), we see that v ∈ Jq(Ω). Therefore, letting j → ∞ in the
relation: λΦ0(λj)f −ΔΦ0(λj)f +∇Ψ0(λj)f = (I +T )f +S0(λ)f , by (4.11), (4.12)
and (4.13) we have

v + ∇((1 − ϕ)QR3f0 + ϕQΩRf |ΩR) = (I + T )f in Ω. (4.13)

Since Tf ∈ W 1
q (Ω) and supp Tf ⊂ DR−2,R−1 as follows from (4.7), T is a compact

operator on Lq,R−1(Ω), and therefore to show the invertibility of I + T it suffices
to show the injectivity of I + T on Lq,R−1(Ω). Let f be a vector of functions in
Lq,R−1(Ω) such that (I + T )f = 0, which implies that

f = −Tf = 0 for x �∈ DR−2,R−1. (4.14)

By (4.13) we have By (4.13) we have

v + ∇((1 − ϕ)QR3f0 + ϕQΩRf |ΩR) = 0 in Ω (4.15)

with some v ∈ Jq(Ω). Since the Helmholtz decomposition is unique, it follows from
(4.15) that

∇((1 − ϕ)QR3f0 + ϕQΩRf |ΩR) = 0,

which implies that
(1 − ϕ)QR3f0 + ϕQΩRf |ΩR = c (4.16)
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with some constant c. Since ϕ(x) = 1 for |x| ≤ R−2 and ϕ(x) = 0 for |x| ≥ R−1,
by (4.16) we have

QR3f0 = c in |x| ≥ R − 1, QΩRf |ΩR = c in |x| ≤ R − 2. (4.17)

If we define w(x) by the formula: w(x) = (QΩRf |ΩR)(x) for x ∈ ΩR and w(x) = c
for x �∈ Ω, then by (1.6) with D = ΩR, (4.17) and (4.14) we see that w ∈ W 1

q (BR)
and w is a weak solution to the equation:

Δw = div f0 in BR, ∂νw = 0 on SR, (4.18)

because ∂ΩR = ∂Ω ∪ SR.
On the other hand, by (1.6) with D = R3 we have

ΔQR3f0 = div f0 in R3

which combined with (4.17) implies that QR3f0 also satisfies (4.18) weakly. There-
fore, by the uniqueness of weak solutions we have that w − QR3f0 = d with some
constant d. In particular, QΩRf |ΩR − QR3f0 = d in ΩR, which combined with the
facts that

∫
ΩR

QΩRf |ΩR dx =
∫
ΩR

QR3f0 dx = 0 implies that d = 0. Namely, we
have QΩRf |ΩR − QR3f0 = 0 in ΩR, which inserted into (4.7) implies that Tf = 0.
Recalling that f + Tf = 0, we have f = 0, which implies the injectivity of I + T
on Lq,R(Ω). This completes the proof of the lemma.

5. The idea of proofs of Theorems 3.1 and 3.2

Now, let us consider the resolvent problem:

λu − Δu + Mk,au + ∇π = f, div u = 0 in Ω, u|∂Ω = 0.

Here, Mk,au = k∂3u − (ω × x) · ∇u + ω × u. We construct the parametrix of the
form:

Φ(λ)f = (1 − ϕ)AR3,a,k(λ)f0 + ϕRΩR(λ)PΩRf |ΩR

+ B[(∇ϕ) · (AR3,a,k(λ)f0 − ϕRΩR(λ)PΩRf |ΩR)],

Ψ(λ)f = (1 − ϕ)QR3f0 + ϕ(QΩRf |ΩR + pΩR(λ)PΩRf |ΩR)

for λ ∈ C+ = {λ ∈ C | Re λ > 0}. Here, u = RΩR(λ)g and θ = pΩR(λ)g solve the
equation:

λu − Δu + Mk,au + ∇θ = PΩRg in ΩR,

div u = 0 in ΩR,

u|∂ΩR = 0.

We see that

(λ − Δ + Mk,a)Φ(λ)f + ∇Ψ(λ)f = (I + T )f + S(λ)f,

div Φ(λ)f = 0 in Ω, u|∂Ω = 0.
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Here T is the operator defined in (4.7) and S(λ) is a linear operator from Lq,R−1(Ω)
into Sq,R−1(Ω) ∩ W 1

q (Ω) such that ‖S(λ)f‖
Lq(Ω) ≤ C|λ|−(1/2)(1−(1/q))‖f‖

Lq(Ω) for
λ ∈ C+ with |λ| ≥ 1.

In fact, S(λ) is defined as follows:

S(λ)f = 2(∇ϕ) : ∇(Ca(λ)f) + (Δϕ)Ca(λ)f − k(∂3ϕ)Ca(λ)f

+ [(ω × x) · ∇ϕ]Ca(λ)f + B[(∇ϕ) · ΔCa(λ)f ] − B[(∇ϕ) · Mk,aCa(λ)f ]

+ B[(∇ϕ) · ∇BΩR,a(λ)f |ΩR ] − ΔB[(∇ϕ) · Ca(λ)f ] + Mk,aB[(∇ϕ) · Ca(λ)f ]

+ (∇ϕ)BΩR,a(λ)f |ΩR ,

Ca(λ)f = AR3,a(λ)f0 −AΩR,a(λ)f |ΩR .

Then, we have

(I + T + S(λ))−1 =
(

I +
∞∑

j=1

((I + T )−1S(λ))j

)
(I + T )−1 = I + T1(λ) + T2(λ).

Moreover, by Theorem 2.1 we see that

T1(λ) ∈ Anal(Σ̃ε,L(Lq,R−1(Ω))),

‖T1(λ)f‖
Lq(Ω) ≤ C|λ|−(1/2)(1−(1/q))‖f‖

Lq(Ω) (λ ∈ Σ̃ε, |λ| ≥ 1),

T2(λ) ∈ Anal(C+,L(Lq,R−1(Ω))),

‖T2(λ)f‖
Lq(Ω) ≤ Cγ |λ|−3‖f‖

Lq(Ω) (5.1)

for λ ∈ C+ with |λ| ≥ 1 and Re λ ≥ γ > 0. Here, 0 < ε < π/2,

Σ̃ε = C+ ∪ {λ ∈ C \ {0} | | argλ| ≤ π − ε, |λ| ≥ c(ε)}
and c(ε) is some constant depending on ε, a0 and k0 whenever |a| ≤ a0 and |k| ≤ k0.

Set (R(λ), Ξ(λ)) = (Φ(λ), Ψ(λ))(I + T + S(λ))−1. Then, (R(λ), Ξ(λ)) is the
solution operator to the equations:

(λ − Δ + Mk,a)u = f, div u = 0 in Ω, u|∂Ω = 0.

Moreover, by Theorem 2.1 and (5.1) we have

R(λ) = R1(λ) + R2(λ), Ξ(λ) = Ξ0 + Ξ1(λ) + Ξ2(λ),

R1(λ) ∈ Anal(Σ̃ε,L(Lq,R−1(Ω), W 2
q (Ω)),

R2(λ) ∈ Anal(C+,L(Lq,R−1(Ω), W 2
q (Ω)),

Ξ0 ∈ L(Lq,R−1(Ω), Ŵ 1
q (Ω)),

Ξ1(λ) ∈ Anal(Σ̃ε,L(Lq,R−1(Ω), Ŵ 1
q (Ω))),

Ξ2(λ) ∈ Anal(C+,L(Lq,R−1(Ω), Ŵ 1
q (Ω))),

‖∇jR1(λ)f‖
Lq(Ω) ≤ C|λ|−1+(j/2)‖f‖

Lq(Ω) ,

|λ|(1/2)(1−(1/q))‖Ξ1(λ)f‖
Lq(Ωb) + ‖∇Ξ1(λ)f‖

Lq(Ω) ≤ Cb‖f‖Lq(Ω)
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for λ ∈ Σ̃ε with |λ| ≥ 1,

‖R2(λ)f‖
W2

q (Ω)
≤ Cγ |λ|−3‖f‖

Lq(Ω) ,

‖Ξ2(λ)f‖
Lq(Ωb) + ‖∇Ξ2(λ)f‖

Lq(Ω) ≤ Cb|λ|−3‖f‖
Lq(Ω)

for λ ∈ C+ with |λ| ≥ 1 and Re λ ≥ γ > 0. Combining the resolvent estimate in
the whole space and the above estimates by cut-off technique, we have

Theorem 5.1. Let 1 < q < ∞. Then, the resolvent set of Lq contains C+.

For f ∈ Lq,R−1(Ω) we set

u(t) =
1

2πi

∫
Γ

eλtR1(λ)f dλ +
1

2πi

∫ γ+i∞

γ−i∞
eλtR2(λ)f dλ,

θ(t) =
1

2πi

∫
Γ

eλt(Ξ0f + Ξ1(λ)f) dλ +
1

2πi

∫ γ+i∞

γ−i∞
eλtΞ2(λ)f dλ,

where
Γ =

⋃
±
{σ + se±iκ | s ≥ 0}

with large σ > 0 and π/2 < κ < π. Then, we can show Theorem 3.1. In view
of Theorem 2.2, we can show the local energy decay (Theorem 3.2), by shifting
the contour in the definition of u(t) to the imaginary axis and using the following
lemma:

Lemma 5.2. Let 0 < κ < 1. Let X and ‖ · ‖X be a Banach space and its norm,
respectively. Let f(s) be a function in L1(R, X), which satisfies the condition:

sup
0<|h|≤1

|h|−κ

∫
R

‖f(s + h) − f(s)‖X ds ≤ CκM (5.2)

for some M > 0. Set g(t) =
∫

R
eitsf(s) ds. Then, we have

‖g(t)‖X ≤ |e−i − 1|−1Mt−κ

for any t ≥ 1.

6. Remark on the stability theorem

Let us consider the problem (1.5) in the case where f = f(x) and assume that the
existence of solution w(x) with some pressure term θ(x) of the stationary problem:

w · ∇w − Δw + k∂3w

−(ω × x) · ∇w + ω × w + ∇θ = f in Ω,

div w = 0 in Ω,

w = ω × x − ke3 on ∂Ω,

w(x) → 0 as |x| → ∞.

(6.1)
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In this case, we set u(x, t) = w(z)+ z(x, t) and π(x, t) = θ(x)+κ(x, t) in (1.5) and
then we have the equations for z and κ as follows:

zt + z · ∇z + z · ∇w + w · ∇z − Δz + k∂3z

−(ω × x) · ∇z + ω × z + ∇κ = 0 in Ω × (0,∞),

div z = 0 in Ω × (0,∞),

z = ω × x − ke3 on ∂Ω × (0,∞),

z(x) → 0 as |x| → ∞ t > 0

(6.2)

with an initial data v0(x)−w(x). Following Kato [8], instead of (6.2) we consider
the integral equation:

z(t) = T (t)(v0 − w) −
∫ t

0

T (t − s)[z(s) · ∇z(s) + z(s) · ∇w + w · ∇z(s)] ds. (6.3)

Then, using Theorem 1.3 and employing the same argument as in Shibata [9], we
have the following stability theorem.

Theorem 6.1. Let σ be a small positive number and 3 < p < ∞. Then, there exists
a small positive number ε depending on σ and p such that if v0 − w ∈ J3(Ω) and

‖w‖
L3−σ(Ω)∩L3+σ(Ω) + ‖∇w‖

L(3/2)−σ(Ω)∩L(3/2)+σ(Ω) + ‖v0 − w‖
L3(Ω) ≤ ε, (6.4)

then problem (6.3) admits a unique solution

z(t) ∈ C([0,∞), Jq(Ω)) ∩ C((0,∞), Lp(Ω) ∩ W 1
3 (Ω))

such that

[z]3,0,t + [z]p,μ(p),t + [∇z]3,1/2,t ≤
√

ε,

lim
t→0+

(‖z(t) − (v0 − w)‖
L3(Ω) + [z]p,μ(p),t + [∇z]3,1/2,t) = 0.

Here, we have put

[z]q,ρ,t = sup
0<s<t

sρ‖z(·, s)‖
Lq(Ω) , μ(p) =

3
2

(
1
3
− 1

p

)
=

1
2
− 3

2p
.

Remark 6.2. Recently, Galdi and Silvestre [4] proved the existence of stationary
solutions, but the author has not yet checked their stability.
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Exact Controllability in L2(Ω)
of the Schrödinger Equation
in a Riemannian Manifold with
L2(Σ1)-Neumann Boundary Control

Roberto Triggiani

Abstract. We consider the Schrödinger equation, with H1-level terms having
variable coefficients in time and space, as defined on an open bounded con-
nected set Ω of an n-dimensional complete Riemannian manifold. We show
that it is exactly controllable on the state space L2(Ω) on an arbitrarily
small interval [0, T ], by means of Neumann boundary controls in the class
L2(0, T ; L2(Γ1)), where Γ1 = ∂Ω \ Γ0, and the equation is homogeneous on
Γ0, either in the Dirichlet or in the Neumann B.C. Different geometric con-
ditions apply in the two cases. This result is a vast generalization over the
literature.
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1. Introduction. Problem statement. Assumptions

Preliminary notation. Throughout this paper, M is a complete n-dimensional,
Riemannian manifold of class C3 with C3-metric g( · , · ) = 〈 · , · 〉 and squared
norm |X |2 = g(X, X). We may, on occasion, append a subscript g : 〈 · , · 〉g;
| · |g. We shall denote it by (M, g). Let Ω be an open, bounded, connected set of
M with smooth boundary (say, of class C2) ∂Ω ≡ Γ = Γ0 ∪ Γ1. Here, Γ0 is the
uncontrolled or unobserved part of Γ and Γ1 is the controlled or observed part of
Γ, both relatively open in Γ. We let ν denote the outward unit normal field along
the boundary Γ. Further, we denote by ∇ the gradient, by D the Levi-Civita
connection, by D2 the Hessian, by Δ = div(∇) the Laplace (Laplace-Beltrami)
operator [Do.1, p. 55, p. 83, p. 141], [Le.1, p. 28, pp. 43–44, p. 54, p. 68].
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Model. In this paper, we consider the following mixed Schrödinger problem in the
(complex-valued) unknown w(t, x) defined on Q,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iwt + Δw = F (w) in Q ≡ (0, T ]× Ω;

w(0, · ) = w0 in Ω;

either w|Σ0 ≡ 0, or else 〈Dw, ν〉|Σ0 ≡ 0, in Σ0 = (0, T ]× Γ0;

〈Dw, ν〉|Σ1 ≡ u, in Σ1 ≡ (0, T ]× Γ1,

(1.1a)

(1.1b)

(1.1c)

(1.1d)

with Neumann boundary control L2(0, T ; L2(Γ1)). In the case w|Σ0 ≡ 0, we also
assume Γ0 ∩ Γ1 = ∅. In (1.1a), we have set

F (w) = −i〈R(t, x), Dw〉 + q0(t, x)w, (1.2a)

where the coefficients are subject to the following assumptions. First:
(A.1) q0 is a complex-valued function on [0, T ] × Ω and R(t, x) is a real-

valued vector field on Rt×M (structural property [R-S.1]) satisfying the following
regularity hypotheses

q0 ∈ L∞(Q), R ∈ L∞(0, T,X (M))[He.1], (1.2b)

so that for the energy level term F , we have

|F (w)|2 ≤ CT {|Dw|2 + |w|2}, ∀ (t, x) ∈ Q a.e., (1.2c)

where Dw = ∇w for the scalar function w. Thus, Dw ∈ X (M) = the set of all C2

complex-valued vector fields on M .
Next, recall that the covariant differential (a 2-0 tensor T 0

2 ) of R ∈ X (M)
determines a bilinear form on TM ×TM , for each x ∈ M , defined by DR(X, Y ) =
〈DXR, Y 〉g. Then, we require that:

(A.2) {
|DR(X, Y )| = |〈DXR, Y 〉| ≤ C|X | |Y |, 0 ≤ t ≤ T,

or DR ∈ L∞(0, T ; T 0
2 );

(1.2d)

and moreover,
|Dq0| ∈ L∞(Q). (1.2e)

Remark 1.1. Henceforth, we shall focus on the case dim M ≥ 2, and leave the case
dim M = 1 as a more direct generalization of [L-T-Z.2, Appendix A, Theorem
A.1], whereby a change of variables eliminates the first-order term. �

Remark 1.2. Modulo a first-order additive operator (Df)(w), we have that Δgw
models the principal part of a second-order elliptic operator with variable coef-
ficients aij(x) in space, defined on an n-dimensional Euclidean bounded domain.
See Section 6.1 below. In this case, the Riemannian manifold is (Rn, g), where
the Riemannian metric g is derived from an inversion on the symmetric matrix
{aij(x)}. See [C-H.1], [Du.1]. �
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Exact controllability of the w-problem on L2(Ω). The goal of this paper is to
establish the new property (see literature below) of exact controllability of the
mixed w-problem in (1.1a-b-c), on the state space L2(Ω), within the class of
L2(0, T ; L2(Γ1))-boundary controls in the Neumann B.C., where T > 0 is arbi-
trarily preassigned. To this end, we introduce two geometrical conditions, one for
the Dirichlet homogeneous B.C. w|Σ0 ≡ 0, the other for the Neumann homoge-
neous B.C. 〈Dw, ν〉|Σ0 ≡ 0 in (1.1c).

Geometric assumptions. In addition to the standing assumptions (A.1) = (1.2b),
(A.2) = (1.2d–e) on the first-order operator F in (1.2a), the following hypotheses
(A.3) and (A.4) are postulated throughout this paper. (See Section 6 for classes
of examples.)

(A.3) Given the triple {Ω, Γ0, Γ1}, ∂Ω = Γ0 ∪ Γ1, there exists a non-negative,
real-valued function d : Ω ⇒ R+ of class C3 that is strictly convex in the metric g.
This means that the Hessian D2d of d (a two-order tensor) satisfies D2d(X, X) > 0,
∀ x ∈ Ω, ∀ X ∈ TxM = the tangent space at x. By compactness of Ω, we can
always achieve that: There exists a constant ρ > 0 such that

D2d(X, X) ≡ 〈DX(Dd), X〉g ≥ ρ|X |2g, ∀ x ∈ Ω, ∀ X ∈ TxM ; (1.3)

(A.4) moreover,

(a) 〈Dd, ν〉 ≤ 0 on Γ0, in the case of the Dirichlet B.C. w|Σ0 ≡ 0
in (1.1c), whereby Γ0 ∩ Γ1 = ∅; (1.4)

(b) 〈Dd, ν〉 = 0 on Γ0, in the case of the Neumann B.C.
〈Dw, ν〉|Σ0 ≡ 0 in (1.1c); (1.5)

�

Remark 1.3. In the Euclidean case, the geometric requirement in (1.4) in the case of
Dirichlet B.C. is standard on Γ0 (but also the geometrical condition 〈Dd, ν〉 ≥ 0 on
Γ1 was traditionally made, which, however, we dispense with here, as in [L-T-Z.1],
[L-T-Z.2], [L-T.2], [Tr.2]. The stronger geometrical requirement (1.5) in the case
of Neumann B.C. in (1.1c) was introduced in [Tr.1, Section 5]. Reference [L-T-Z.1,
Appendices A–C] provides, by different mathematical techniques, several general
classes of triples {Ω, Γ0, Γ1}, Γ0 ∪ Γ1 = Γ, in the Euclidean setting Rn, n ≥ 2,
where assumptions (A.3) = (1.3), as well as the geometrical requirement on (1.5)
are satisfied for a suitably constructed strictly convex function d. Reference [T-Y.2,
Appendix B] extends a general sufficient condition of [L-T-Z.1] to the Riemannian
setting. These results are also reported in [G-L-L-T.1]. We also refer to [T-X.1,
Section 10] for additional insight and illustrations, partly reported in Section 6.2
below. �

An a priori energy estimate at the L2-level [L-T-Z.2]. Here below we shall consider
smooth solutions of the Schrödinger equation (1.1a), with a forcing term f , that is

izt + Δz = F (z) + f ≡ −i〈R(t, x), Dz〉 + q0(t, x)z + f, (1.6)
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satisfying, in addition,

either z|Σ0 ≡ 0, in which case 〈Dd, ν〉 ≤ 0 on Γ0, (1.7a)

or else 〈Dz, ν〉 ≡ 0, in which case 〈Dd, ν〉 ≡ 0 on Γ0, (1.7b)

where d is the strictly convex function of hypothesis (A.3). No other boundary
conditions on Γ1 are imposed on z. Indeed, the traces of z on Σ1 = (0, T ]×Γ1 will
be explicitly contained in the following a priori estimate.

Theorem 1.1. Assume that (A.1) = (1.2b), (A.2) = (1.2d–e). Let z be a solution
of Eqn. (1.6) satisfying, in addition, either the Dirichlet case (1.7a), or else the
Neumann case (1.7b). Let T > 0 be arbitrary. Finally, let f ∈ L2(0, T ; L2(Ω)).
Then, the following inequality holds true: There exists a constant CT > 0 such
that ∫ T

0

[
‖z‖2

L2(Ω) + ‖zt‖2
H−2(Ω)

]
dt + ‖z(0)‖2

L2(Ω) + ‖zt(0)‖2
H−2(Ω)

≤ CT

{
‖z‖2

L2(Σ1) + ‖〈Dz, ν〉|Γ1‖2
H−1

a (Σ1)

+
∫ T

0

∫
Γ1

|〈Dz, ν〉|Γ1 | |z|dΓ1dt + ‖z‖2
H−1(Q) + ‖f‖2

L2(Q)

}
, (1.8)

where H−1
a (Σ1) is the dual space to the anisotropic space H1

a(Σ1), with respect to
the pivot space L2(Σ1):

H−1
a (Σ1) = (H1

a(Σ1))′; H1
a(Σ1) ≡ H

1
2 (0, T ; L2(Γ1)) ∩ L2(0, T, H1(Γ1)). (1.9)

�

Remark 1.4. The natural energy level for the Schrödinger equation is the H1(Ω)-
level, not the L2(Ω)-level. Indeed, the proof of the energy estimate (1.8) at the
L2(Ω)-level for (1.6) requires a heavy use of pseudo-differential/micro-local anal-
ysis machinery [L-T-Z.2, Sect. 10], to shift the more natural H1(Ω)-level energy
estimate to the L2(Ω)-level. As a matter of fact, the proof in [L-T-Z.2, Sect. 10]
refers specifically to an Euclidean domain Ω in Rn, ∂Ω = Γ0 ∪ Γ1. It is based on
partition of unity of Ω, flattening the boundary locally, and consequent analysis
in the half-space, by taking, as a starting point, the a-priori energy estimate at
the H1(Ω)-level from [Tr.2], in the Euclidean case. However, it was already noted
in [L-T-Z.2, Remark 2.6.2], that by taking this time, as a starting point, the a-
priori H1(Ω)-energy level estimate in the Riemannian case from [T-Y.1], the same
proof works also in the case where Ω is an open, bounded, connected set Ω of an
n-dimensional, Riemannian manifold M , as in the present paper. �

We can now state our main result.

Theorem 1.2. With reference to the mixed problem (1.1a-b-c-d), assume hypotheses
(A.3), as well as (A.4a) = (1.4) in the Dirichlet case or (A.4b) = (1.5) in the
Neumann case. Let the coefficients of F satisfy assumptions (A.1) = (1.2b), (A.2)
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= (1.2d–e). Then, the w-problem (1.1a-b-c-d) is exactly controllable in the following
sense. Let T > 0 be arbitrary. Given w0 ∈ L2(Ω) [respectively, w1 ∈ L2(Ω)],
there exists a boundary control u ∈ L2(0, T ; L2(Γ1)) such that the corresponding
solution of the w-problem (1.1) due to the data {w0, u} [respectively, due to the
data {w0 = 0, u}] satisfies w(T ) = 0 [respectively, w(T ) = w1].

As in the case for most of the exact controllability results for hyperbolic and
Petrowski-type evolution equations in the literature, the proof of Theorem 1.2 is by
duality: that is, it consists of establishing the equivalent continuous observability
inequality [L-T.3], [Tr.2], [T-Y.1], [G-L-L-T.1]. (An exception is the direct work
of W. Littman [Li-Ta.1], [H-L.1, H-L.2].) In our present case, establishment of
the continuous observability inequality in Section 3 relies critically on the L2(Ω)-
energy level estimate (1.9).

Literature. Theorem 1.2 is new even in the Euclidean case and with no H1-level
terms (R(t, x) ≡ 0). Theorem 1.2 is a generalization of [Ma.1] in various direc-
tions. First, [Ma.1] considers only the pure Schrödinger equation iwt +Δw ≡ 0 on
Q, in the Euclidean case. Variable coefficients (in space) of the principal part
are not permitted, nor are H1-energy level terms, by the multiplier methods
used in [Ma.1]. The same multiplier is just one tool used also in [L-T.3], [L-T.5,
Sect. 10.9, p. 1042] in the more demanding case of Dirichlet boundary control,
particularly in the corresponding uniform stabilization problem, which requires,
in addition, a non-trivial shift of topologies. Unlike the Neumann case in [Ma.1],
the results of [L-T.3] in the Dirichlet case are topologically optimal. Second, in the
aforementioned more restricted setting, [Ma.1] claims exact controllability with
L2(0, T ; L2(Γ1))-Neumann control and w|Σ0 ≡ 0 only, however, on the state space
H1(Ω), not in L2(Ω) as in the present Theorem 1.2. Third, the case ∂w

∂ν ≡ 0 on Σ0

in the Euclidean treatment of [Ma.1] is excluded. Subsequent references, beginning
with [Ta.1] and continuing with [Tr.2], [Ta.2], [T-Y.1], [L-T-Z.2], and [T-X.1], have
greatly generalized the original pure Schrödinger equation in the Euclidean domain
of [Ma.1], [L-T.3]. However, in all cases, exact controllability results of (1.1) (with
w|Σ0 ≡ 0) with L2(Σ1)-Neumann controls are still given in the state space H1(Ω),
not L2(Ω). Different approaches have been pursued, all sharing the goal of seeking
preliminary Carleman-type estimates: a unifying pseudo-differential approach in
[Ta.1, Ta.2] under a pseudo-convexity assumption; different Riemannian geomet-
ric approaches yielding Carleman-type estimates with lower-order terms [T-Y.1]
(following the Euclidean case of [Tr.2], counterpart of [L-T.4] for second-order hy-
perbolic equations) or without lower-order terms [T-X.1] (following the Euclidean
case of [L-T-Z.2]). Thus, [L-T-Z.2] and [T-X.1] yield new global uniqueness results
over, say, [Is.1, Is.2]. Two of these are critically invoked in the proof of Section 3
(just above Eqn. (3.18) and Eqn. (3.22)). Specialization of the present Riemannian
setting to capture the case of variable coefficients (in space) of the principal part
over a Euclidean domain is deferred to Section 6.1 below. Paper [L-T-Z.2, Sect. 11]
gives, in the linear Euclidean case, a companion uniform stabilization result of the
conservative pure Schrödinger equation at the L2(Ω)-level, by means of a boundary
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feedback control (dissipation) in the Neumann B.C. (L2 in time and space). The
corresponding uniform stabilization result, this time with a nonlinear boundary
dissipation in the Neumann B.C., in the same topological setting with state space
L2(Ω) is given in [L-T.6]. �

Remark 1.5. The above result, Theorem 1.2, complements [L-T.7, Sect. 8.2], which
shows – at least for the pure Schrödinger equation on a half-space, in dimension ≥
2, with Neumann L2(ΣT )-boundary control – that the range of the input-solution
operator {w0 = 0, u} → w(T ), applied to all of L2(Σ1), is not contained in Hε(Ω),
∀ ε > 0. In contrast, our result shows that the totality of solutions points w(T )
due to the class of L2(Σ1)-controls in the Neumann-boundary conditions fill all of
L2(Ω). �

Remark 1.6. The next task is to seek a global exact controllability result in
the semilinear case, following the abstract strategy of [L-T.8], [Tr.3]. Moreover,
the case of plate equations needs to be revisited. A general Riemannian treat-
ment where, however, the Carleman estimates have lower-order terms is given in
[L-T-Y.2]. �

2. The adjoint problem and the equivalent COI under the working
assumption 〈R, ν〉 ≡ 0 on Γ1 (resp. on Γ)

The goal of the present section is two-fold. First, we shall seek to establish the
PDE system which is obtained by duality or transposition over the mixed control
problem (1.1a–d). This is the ϕ-problem (2.8) below. To this end, we shall make a
temporary working assumption, (A.5) = (2.4) below, to be later removed in Section
5. Second, we shall obtain the relevant Continuous Observability Inequality (COI)
for the ϕ-problem (2.8) which is equivalent to the exact controllability property of
the w-problem in (1.1), as spelled out in the statement of Theorem 1.2. We begin
by setting, for short

Aw ≡ iΔw − 〈R(t, x), Dw〉 − iq0(t, x)w, (2.1)

with R(t, x) the real-valued vector field on Rt ×M , as in assumption (1.2a), (A.1).
With reference to problem (1.1), define the operator A : L2(Ω ⊃ D(A) → L2(Ω)
(depending on t), by

Aw ≡ Aw, D(A) ≡ {w ∈ H2(Ω) : w|Γ0 = 〈Dw, ν〉|Γ1 ≡ 0}, (2.2a)

or else

D(A) ≡ {w ∈ H2(Ω) : 〈Dw, ν〉|Γ ≡ 0}. (2.2b)
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A preliminary identity. For w, ϕ ∈ H1(Ω), we compute via the divergence (Green)
formula [Do.1], [Le.1], [L-T-Y.1]:∫

Ω

〈R, Dw〉ϕ dΩ =
∫

Γ

wϕ〈R, ν〉dΓ −
∫

Ω

w div(ϕR)dΩ

(if w|Γ0 = 0) =
∫

Γ1

wϕ〈R, ν〉dΓ1 −
∫

Ω

w div(ϕR)dΩ.

(2.3a)

(2.3b)

Accordingly, throughout this section, we shall impose the following working as-
sumption:

(A.5){
either 〈R(t, x), ν〉 ≡ 0 on Γ, if 〈Dw, ν〉|Γ0 ≡ 0,

or else 〈R(t, x), ν〉 ≡ 0 on Γ1, if w|Γ0 ≡ 0.

(2.4a)

(2.4b)

This assumption will facilitate the analysis in establishing Theorem 1.2 at first.
Later on, in Section 5, we shall dispense with assumption (A.5) = (2.4), by means
of a natural change of variable, as in [L-T-Z.2, Appendix A, Proposition A.4,
Eqn. (A.18), p. 107], whereby the geometrical assumption (A.5) = (2.4) will be
satisfied by the new variable and exact controllability in the original variable will
be equivalent to exact controllability in the new variable.

Thus, for w, ϕ ∈ H1(Ω), under both assumption (A.5) = (2.4a) and (A.5) =
(2.4b), we have from (2.3):∫

Ω

〈R, Dw〉ϕ dΩ = −
∫

Ω

w div(ϕR)dΩ. (2.5)

The adjoint operator A∗ of A under (A.5) = (2.4). The L2(Ω)-adjoint of the
operator A in (2.2), subject to either (A.5) = (2.4a) or (A.5) = (2.4b), is:

A∗ϕ = −iΔϕ + 〈R(t, x), Dϕ〉 + iq̃0ϕ, q̃0 = q0 − div R ∈ L∞(Q), (2.6a)

and either

D(A∗) = D(A) = {ϕ ∈ H2(Ω) : ϕ|Γ0 = 〈Dϕ, ν〉|Γ1 ≡ 0}, (2.6b)

in case (2.2a), or else

D(A∗) = D(A) = {ϕ ∈ H2(Ω) : 〈Dϕ, ν〉|Γ ≡ 0}, (2.6b′)

in case (2.2b). A direct computation using either assumption (A.5) = (2.4a), or
else (A.5) = (2.4b), hence identity (2.5) in both cases, yields in fact, starting from
(2.1):

(Aw, ϕ)L2(Ω) =
∫

Ω

(Aw)ϕ dΩ =
∫

Ω

w(A∗ϕ)dΩ = (w, A∗ϕ)L2(Ω),

w, ϕ ∈ D(A) = D(A∗). (2.7)
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The problem adjoint to (1.1a–d). On the basis of the operator A∗ in (2.6) (under
(A.5) = (2.4)), we consider the problem

ϕt = −A∗ϕ, ϕ(T ) = ϕ0;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕt = iΔϕ − 〈R, Dϕ〉 − iq̃0ϕ, in Q;

ϕ|t=T = ϕ0, in Ω;

either ϕ|Σ0 ≡ 0, or 〈Dϕ, ν〉|Σ0 ≡ 0, in Σ0;

〈Dϕ, ν〉|Σ1 ≡ 0, in Σ1.

(2.8a)

(2.8b)

(2.8c)

(2.8d)

When the I.C. w0 = 0 in (1.1b), then the ϕ-problem (2.8a–d) is the adjoint
to the control w-problem (1.1a–d). More precisely, we have:

Proposition 2.1. With reference to problems (1.1) and (2.8), assume (A.1), (A.2),
and (A.5). The closed map

LT : {w0 = 0, u} → LT u = w(T ), from L2(Σ1) ⊃ D(LT ) to L2(Ω), (2.9)

and the map

L∗
T : ϕ0 → L∗

T ϕ0 = −iϕ( · ; ϕ0)|Σ1 from L2(Ω) ⊃ D(L∗
T ) to L2(Σ1), (2.10)

are adjoint of each other: for u ∈ D(LT ) and ϕ0 ∈ D(L∗
T ),

(LT u, ϕ0)L2(Ω) = (w(T ), ϕ0)L2(Ω) =
∫

Ω

w(T )ϕ0dΩ (2.11)

=
∫ T

0

∫
Γ1

u(−iϕ)dΣ1 = (u,−iϕ)L2(Σ1) = (u,L∗
T ϕ0)L2(Σ1).

Proof. Multiply Eqn. (1.1a) by ϕ and integrate by parts over Q, invoking w0 = 0
and the B.C. (1.1c–d) for w, and (2.8a–d) for ϕ. Details are straightforward using
(2.5). �

Duality between exact controllability of the w-problem (1.1) with w0 = 0 and
continuous observability of the ϕ-problem (2.8). Exact controllability of problem
(1.1a–d) with w0 = 0, as spelled out in the statement of Theorem 1.2, over the
interval [0, T ] on the state space L2(Ω), within the class of Neumann-boundary
controls L2(0, T ; L2(Γ1)) means precisely that the (closed) map LT in (2.9) satisfies

LT : L2(0, T ; L2(Γ1)) ⊃ D(LT ) onto−→ L2(Ω). (2.12)

Equivalently then [T-L.1, p. 235], the adjoint operator L∗
T in (2.10) is bounded

below: there exists a constant c′T > 0 such that

‖L∗
T z‖L2(0,T ;L2(Γ1)) ≥ c′T ‖z‖L2(Ω), z ∈ D(L∗

T ). (2.13)

Recalling (2.10) for L∗
T , we obtain the Continuous Observability Inequality (COI)

in terms of the adjoint ϕ-problem (2.8), under the working assumption (A.5).

Proposition 2.2. Assume (A.1), (A.2), (A.5). The exact controllability property of
problem (1.1a–d) spelled out in the statement of Theorem 1.2 (in symbols: property
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(2.12)) is equivalent to the following COI: There exists a constant cT > 0 such
that the solution of problem (2.8) satisfies

‖ϕ0‖2
L2(Ω) ≤ cT

∫ T

0

∫
Γ1

|ϕ( · ; ϕ0)|2dΣ1, (2.14)

whenever the right-hand side of (2.14) is finite.

Remark 2.1. A similar qualification as the last line of Proposition 2.2 occurs in
the COI corresponding to the exact controllability on H1(Ω)×L2(Ω) of the wave
equation with L2(Σ)-Neumann controls [L-T.1]. �

3. Proof of the COI (2.14) under (A.5)

The goal of this section is to establish the Continuous Observability Inequality
(2.14) for the adjoint ϕ-problem (2.8a-b-c-d), under the working assumption (A.5).

Regularity. First, however, we need to establish the regularity of problem (2.8).

Theorem 3.1. Let T > 0 be arbitrary. Assume (A.1), (A.2) (so that q̃0 ∈ L∞(Q),
see (2.6a)). With reference to the ϕ-problem (2.8a–d) with ϕ0 ∈ L2(Ω), we have
that the solution map

ϕ0 ∈ L2(Ω) → ϕ ∈ C([0, T ]; L2(Ω)) (3.0)

is continuous.

The proof is given in Section 4.

Continuous Observability Inequality. We next establish inequality (2.14) at first
under the working assumption (A.5). This will be removed in Section 5.

Theorem 3.2. Let T > 0 be arbitrary. With reference to the ϕ-problem (2.8a–
d) with ϕ0 ∈ L2(Ω), assume (A.1), (A.2) for the coefficients, namely DR ∈
L∞(0, T ; T 0

2 ) and q̃0 ∈ L∞(Q). Further, assume the geometrical conditions (A.3)
= (1.3), as well as (A.4a) = (1.4) in the Dirichlet case ϕ|Σ0 ≡ 0 in (2.8c), and
(A.4b) = (1.5) in the Neumann case 〈Dϕ, ν〉|Σ0 ≡ 0 in (2.8c). Further, assume the
working assumption (A.5). Then, the following estimate holds true: There exists a
constant cT > 0, independent of ϕ0, such that

‖ϕ0‖2
L2(Ω) ≤ cT

∫ T

0

∫
Γ1

|ϕ|2dΣ1, (3.1)

whenever the right-hand side of (3.1) is finite.

Proof. Step 1. We shall first show the estimate∫ T

0

∫
Γ1

|ϕ|2dΣ1 + ‖ϕ‖2
H−1(Q) ≥ c̃T ‖ϕ0‖2

L2(Ω), (3.2)
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for c̃T > 0 independent of ϕ0, which is inequality (3.1) polluted by an interior
lower-order term. The key inequality (3.2) is readily seen to be a direct applica-
tion of estimate (1.8) (with f ≡ 0) of Theorem 1.2, after using the homogeneous
Neumann B.C. in (2.8c).

Step 2. Naturally, for cT > 0 independent of ϕ0, (3.2) implies a fortiori∫ T

0

∫
Γ1

|ϕ|2dΣ1 + ‖ϕ‖2
L∞(0,T ;H−1(Ω) ≥ cT ‖ϕ0‖2

L2(Ω), (3.3)

as the interior term in (3.3) dominates the interior term in (3.2).

Step 3. Next, we need to absorb the interior l.o.t. ϕ ∈ L∞(0, T ; H−1(Q)) by a
compactness/uniqueness argument, as usual. The uniqueness part is the delicate
point. Thus, we seek to establish the following result in order to complete the proof
of Theorem 3.2.

Lemma 3.3. Assume the hypotheses of Theorem 3.2, and let ϕ be a solution of
problem (2.8) satisfying inequality (3.3). Then, in fact,

‖ϕ‖2
L∞(0,T ;H−1(Ω)) ≤ kT

∫ T

0

∫
Γ1

|ϕ|2dΣ1, (3.4)

for a constant kT > 0 independent of ϕ0.

Proof of Lemma 3.3. Assume by contradiction, as usual, that there exists a se-
quence ϕn of solutions of problem (2.8) with ϕn|t=T = ϕn,0 such that

‖ϕn‖L∞(0,T ;H−1(Ω)) ≡ 1, n = 1, 2, . . . ;
∫ T

0

∫
Γ1

|ϕn|2dΣ1 → 0, as n → ∞. (3.5)

Under present assumptions, each ϕn satisfies inequality (3.3), so that by
(3.5), we have ‖ϕn,0‖L2(Ω) ≤ const, for all n. Thus, there is a subsequence, still
called ϕn,0 converging weakly in L2(Ω) to some ϕ0 ∈ L2(Ω). Call ψ the solution
of problem (2.8) with such initial condition ϕ0: ψ|t=0 = ϕ0. Thus, ψ solves the
following problem [same as (2.8)]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iψt + Δψ = −i〈R, Dψ〉 + q̃0ψ ≡ F̃ (ψ) in Q;

ψ(T, · ) = ϕ0 in Ω;

either ψ|Σ0 ≡ 0, or else 〈Dψ, ν〉|Σ0 ≡ 0, in Σ0;

〈Dψ, ν〉|Σ1 ≡ 0, in Σ1,

(3.6a)

(3.6b)

(3.6c)

(3.6d)

corresponding to the I.C. ϕ0 ∈ L2(Ω) given by the above limit point. By Theorem
3.1, we have

ψ ∈ C([0, T ]; L2(Ω)). (3.7)
It then follows, as usual, that:{

ϕn → ψ in L∞(0, T ; L2(Ω)) weak-star;

(ϕn)t → ψt in L∞(0, T ; H−2(Ω)) weak-star,

(3.8a)

(3.8b)
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and hence ϕn and (ϕn)t are accordingly uniformly bounded:

‖ϕn‖L∞(0,T ;L2(Ω)) + ‖(ϕn)t‖L∞(0,T ;H−2(Ω)) ≤ const, ∀ n. (3.9)

Since the injection L2(Ω) ↪→ H−1(Ω) is compact (Ω being bounded), it follows
from (3.9) via Aubin-Simon [A.1], [Si.1] with 0 < T < ∞, that the injection

W ↪→ L∞(0, T ; H−1(Ω)) is likewise compact, (3.10)

where W is the Banach space equipped with the norm on the LHS of (3.9).
Accordingly, by (3.10), there is a subsequence, still called ϕn, such that

ϕn → ψ in L∞(0, T ; H−1(Ω)), strongly, (3.11)

so that by (3.5), (LHS), we obtain

‖ψ‖L∞(0,T ;H−1(Ω)) = 1. (3.12)

Moreover, from (3.5) (RHS), and (3.11), we have that ψ also satisfies

ψ|Σ1 ≡ 0, in Σ1. (3.13)

Combine (3.6) with (3.13) and conclude that the limit function ψ in (3.11)
satisfies either one or the other of the following two over-determined problems:

either

⎧⎪⎪⎨⎪⎪⎩
iψt + Δψ = F̃ (ψ)

ψ(T, · ) = ϕ0

ψ|Σ ≡ 0; 〈Dψ, ν〉|Σ1 ≡ 0

; or

⎧⎪⎪⎨⎪⎪⎩
iψt + Δψ = F̃ (ψ) in Q;

ψ(T, · ) = ϕ0 in Ω;

ψ|Σ1 ≡ 0; 〈Dψ, ν〉|Σ ≡ 0

(3.14a)

(3.14b)

(3.14c)

with ϕ0 ∈ L2(Ω), recalling F̃ (ψ) in (3.6a). In either case, we seek to establish that
ψ ≡ 0 in Q, which is a contradiction with (3.12). Thus, the proof is complete,
as soon as we establish that either one of the over-determined problems in (3.14)
implies that ψ ≡ 0 in Q. This will be done next following ideas from [L-T.8,
p. 133–134] (see also [Tr.3, p. 284]).

Assume at first the problem on the LHS of (3.14), with over-determined B.C.:
Homogeneous Dirichlet B.C. on all of Σ = (0, T ]× Γ, and homogeneous Neumann
B.C. on Σ1 = (0, T ]×Γ1. Under present assumptions on the coefficients of (3.6a),
and the geometry {Ω, Γ0, Γ1} as in (A.3), (A.4a), and only invoking the B.C. ψ|Σ ≡
0, we can then conclude with the continuous observability inequality, polluted by
interior l.o.t., as in [Tr.2, Proposition 2.4.1, Eqn. (2.4), p. 488] in the Euclidean
case, and [T-Y.1, Eqn. (146), p. 657] in the Riemannian case; this holds true
yielding

‖ϕ0‖2
H1(Ω) ≤

∫ T

0

∫
Γ1

|〈Dψ, ν〉|2dΣ1 + constτ‖ψ‖2
C([0,T ];L2(Ω)) (3.15)

(by (3.14c)) ≤ constτ‖ψ‖2
C([0,T ];L2(Ω)) < ∞, (3.16)

invoking (3.7) on ψ and 〈Dψ, ν〉|Σ1 = 0 by (3.14c) (LHS). Thus, in effect, the
over-determined B.C.’s in (3.14c) (LHS) imply that

ϕ0 ∈ H1(Ω), (3.17)
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a boost in the regularity of the initial condition by one unit over the assumed
ϕ0 ∈ L2(Ω). Armed with (3.17), and on the basis of the present assumptions on
the coefficients of F̃ (ψ) in (3.6a) and the geometry {Ω, Γ0, Γ1} as in (A.3) = (1.3),
(A.4a) = (1.4), and only invoking the B.C. ψ|Σ ≡ 0, we can then conclude with
the continuous observability inequality as in [L-T-Z.1, Thm. 2.3.1, Eqn. (2.3.2a)]
in the Euclidean case and its generalization as [T-X.1, Thm. 8.2, Eqn. (8.8)] in the
Riemannian case: This holds true and yields∫ T

0

∫
Γ1

|〈Dψ, ν〉|2dΣ1 ≥ kϕ,τE(0) = kϕ,τ‖ϕ0‖2
H1(Ω), (3.18)

as justified by (3.17). But, because of the over-determined B.C. in (3.14c) (LHS),
〈Dψ, ν〉|Σ1 ≡ 0, the left-hand side of (3.18) is zero.

Thus, we obtain that the I.C. ϕ0 is zero: ϕ0 = 0. But then it follows that for
the solution of problem (3.6) with ϕ0 = 0 we have ψ ≡ 0 in Q, as desired. Lemma
3.3 is proved at least in the case of problem (3.14a-b-c) (LHS).

Next, assume the problem on the RHS of (3.14), with over-determine B.C.:
Homogeneous Neumann B.C. on all of Σ = (0, T ]×Γ; and homogeneous Dirichlet
B.C. on Σ1 = (0, T ] × Γ1. Under present assumptions on the coefficients of F̃ (w)
in (3.6a) and the geometry {Ω, Γ0, Γ1} as in (A.3) = (1.3), (A.4b) = (1.5), and
only invoking the B.C. 〈Dψ, ν〉|Σ = 0, we can then conclude with the continuous
observability inequality polluted by interior l.o.t., as in [Tr.2] in the Euclidean case,
and [T-Y.1] in the Riemannian case: this holds true yielding again by (3.7) on ψ:

‖ϕ0‖2
H1(Ω) ≤ Cτ

[∫ T

0

∫
Γ1

|ψψt〈Dd, ν〉|dΣ1

]
+ constτ‖ψ‖2

C([0,T ];L2(Ω)) (3.19)

(by (3.14c)) ≤ constτ‖ψ‖2
C([0,T ];L2(Ω)) < ∞. (3.20)

As a matter of fact, the above inequality (3.19) is not explicitly written out in
the latter two references [Tr.2] and [T-Y.1], as these did not consider explicitly
exact controllability of problem (1.1) with 〈Dw, ν〉|Σ0 ≡ 0 in (1.1c), hence the ψ-
problem at the RHS of (3.14). However, in this case of problem (3.14) (RHS), the
validity of Eqn. (3.19) can immediately be deduced from the Carleman estimates
(second version) of these two references, by simply applying the hypotheses at
hand (∗): ψ|Σ1 ≡ 0, 〈Dψ, ν〉|Σ ≡ 0 (via (3.14c)) and 〈Dh, ν〉|Γ0 = 0 (via (A.4b) =
(1.5)). Indeed, the starting point is the Carleman estimate in [Tr.2, Thm. 2.1.2,
Eqn. (2.1.12), p. 466] (Euclidean case) and [T-Y.1, Thm. 3.4, Eqn. (64), p. 641]
(Riemannian case), where the boundary terms in [Tr.2, Eqn. (2.1.14), p. 466] and
[T-Y.1, Eqn. (65), p. 641] yield, at first, BT1|Σ = BT |Σ since 〈Dψ, ν〉|Σ ≡ 0. Next,
by [Tr.2, Eqn. (2.1.10), p. 465] and [T-Y.1, Eqn. (58), p. 640], one obtains

BT |Σ =
1
2

∣∣∣∣ ∫
Σ1

ψψte
τφ〈Dd, ν〉dΣ1

∣∣∣∣, (3.21)

by using all of the three aforementioned properties (∗) at hand, whereby then, on
Σ1 where ψ|Σ1 ≡ 0, we have: |Dψ|2 ≡ |∇gψ|2 ≡ |〈Dψ, ν〉| ≡ 0. Then, the quoted
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Carleman estimates of these two references yield at once the desired inequality
(3.19), by use of (3.21) with Cτ = 1

2 supΣ1
eτφ.

Thus, in effect, this time the over-determined B.C.’s in (3.14c) (RHS) imply
again the boost ϕ0 ∈ H1(Ω) in (3.17) in regularity of the initial condition over
the assumed ϕ0 ∈ L2(Ω). Armed with (3.17), and on the basis of the present
assumptions on the coefficients of F̃ (ψ) in (3.6a) and the geometry {Ω, Γ0, Γ1},
as in (A.3) = (1.3), (A.4b) = (1.5), and only invoking the B.C. 〈Dψ, ν〉|Σ = 0,
we can then conclude with the continuous observability inequality as in [L-T-Z.2,
Thm. 2.4.1, Eqn. (2.4.2), plus absorption of �.o.t.] in the Euclidean as and its
generalization as in [T-X.1, Thm. 8.4, Eqn. (8.11)] in the Riemannian case; which is∫ T

0

∫
Γ1

|ψt|2dΣ1 ≥ cT E(0) = cT ‖ϕ0‖2
H1(Ω), (3.22)

as justified by (3.17) in our present case. But, because of the over-determined
B.C. in (3.14c) (RHS): ψ|Σ1 ≡ 0, hence ψt|Σ1 ≡ 0, the left-hand side of (3.22) is
zero. Thus, we obtain once again that ϕ0 = 0, and hence ψ ≡ 0 in Q. Lemma 3.3
is proved also in the case of problem (3.14a-b-c) (RHS). �

The working assumption (A.5) = (2.4) will be removed, after the analysis of
Section 4, by use of the change of variable (4.3).

4. Proof of Theorem 3.1

We return to problem (2.8a–d) rewritten for convenience as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕt = iΔϕ − 〈R, Dϕ〉 − iq0ϕ, in Q

ϕ(0, · ) = ϕ0, in Ω;

either ϕ|Σ0 ≡ 0, or else 〈Dϕ, ν〉|Σ0 ≡ 0 in Σ0;

〈Dϕ, ν〉|Σ1 ≡ 0 in Σ1,

(4.0a)

(4.0b)

(4.0c)

(4.0d)

under assumption (A.1) for R and q0: R ∈ L∞(0, T ;X (M)), q0 ∈ L∞(Q) [so that
in the case of (2.8a), where actually the coefficient of ϕ is q̃0 = q0 − i div R, we
have q̃0 ∈ L∞(Q), as required, by invoking (A.2) = (1.2d)]. In this section, we find
more convenient to call q0 ∈ L∞(Q) the coefficient of ϕ in (4.0a).

We next list a few properties of problem (4.0a–d), which will play a critical
role in this section. For definiteness, we shall explicitly focus on the case ϕ|Σ0 ≡ 0
in (4.0c).

1. A preliminary identity (for R real). Identity (2.3b) for w = ϕ ∈ H1(Ω), with
ϕ|Σ0 = 0 yields

Re
{∫

Ω

〈R, Dϕ〉ϕdΩ
}

=
1
2

{∫
Γ1

|ϕ|2〈R, ν〉dΓ1 −
∫

Ω

|ϕ|2 div R dΩ
}

. (4.1)
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In fact, by (2.3b), expanding its last term:∫
Ω

〈R, Dϕ〉ϕ dΩ =
∫

Γ1

|ϕ|2〈R, ν〉dΓ1 −
∫

Ω

|ϕ|2 div R dΩ −
∫

Ω

〈R, Dϕ〉ϕdΩ, (4.2)

and (4.1) follows from (4.2), as desired, as 〈R, Dϕ〉ϕ = 〈R, Dϕ〉ϕ.

2. Change of variables. [L-T-Z.2, Appendix A, Proposition A.4, and Proposition
A.5]. Let dim Ω ≥ 2, let p(t, x) be a real-valued scalar function, subject to the
assumptions pt, |Dp|, Δp ∈ L∞(Q). Then, the change of variable

χ(t, x) = e−
i
2 p(t,x)ϕ(t, x) (4.3)

has the following effects:
(a) It transforms the Schrödinger equation (4.0a) with |R|, q0 ∈ L∞(Q), into

the new form

χt = iΔχ − 〈R(t, x) + Dp(t, x), Dχ〉 − iq1(t, x)χ, (4.4)

where

q1 =
[
q0 +

1
2

pt −
i

2
Δp − 1

4
|Dp|2 +

1
2
〈R + Dp, Dp〉

]
∈ L∞(Q), (4.5)

still with purely real coefficient R̃ ≡ (R + Dp) of the energy level term Dχ, and
still with |R̃|, q1 being preserved in L∞(Q);

(b) it transforms the boundary conditions (4.0c) (LHS), (4.0d) of Neumann
type for ϕ into

χ|Σ0 ≡ 0; 〈Dχ, ν〉 +
(

i

2
〈Dp, ν〉

)
χ ≡ 0 on Σ1, (4.6)

of Robin type for χ. Moreover, given the original real-valued vector field R(t, x),
it is always possible to select, in infinitely many ways, a smooth real function p
such that

inf
Γ1

〈R̃, ν〉 = inf
Γ1

[〈R, ν〉 + 〈Dp, ν〉] ≥ 0, (4.7)

by means of the inverse trace theorem.

3. The case where the coefficients R and q0 in (4.0a) are time-independent. Here,
at first, we further assume that

(A.6)
the coefficients R and q0 are time-independent, (4.8)

recalling (4.0a) and (2.6a). We then have a more precise result:

Theorem 4.1. Assume hypotheses (A.1) = (1.2b), (A.2) = (1.2d–e), (A.6) on the
coefficients R, q0 of (4.0a), as well as

(i) preliminarily,
〈R, ν〉 ≥ 0 on Γ1. (4.9)

Then, with reference to problem (4.0a–d), the map

ϕ0 ∈ L2(Ω) → ϕ ∈ C([0, T ]; L2(Ω))
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defines – after a suitably large translation – a s.c. contraction semigroup on L2(Ω).
More precisely, let

Af = iΔf − 〈R, Df〉 − iq0f, f ∈ D(A); (4.10a)

D(A) =
{
f ∈ H2(Ω) : f |Γ0 = 〈Df, ν〉|Γ1

≡ 0
}

. (4.10b)

Let k2 be a sufficiently large constant, say

k2 >
1
2
|div R|L∞(Ω) + |q0|L∞(Ω). (4.11)

Then: (i1) the operator (A− k2I) : L2(Ω) ⊃ D(A) → L2(Ω) is maximal dissipative
and, accordingly, it generates a s.c. contraction semigroup, so that∥∥eAt

∥∥
L(L2(Ω))

≤ 1 · ek2t, t ≥ 0. (4.12)

(ii) Assumption (4.9) is redundant: more precisely, under the sole assump-
tions (A.1) = (1.2b), (A.2) = (1.2d–e) on the coefficients [but without assumption
(4.9)], the operator A generates a s.c. semigroup eAt on L2(Ω). Thus, a fortiori,
Theorem 3.1 holds true for time-independent coefficients. �

Proof (i). Dissipativity. For f ∈ D(A) in (4.10b), we compute by virtue of identity
(4.1), where ( , ) denotes the L2(Ω)-inner product:

Re(Af, f) = Re{i(Δf, f)} − Re
∫

Ω

〈R, Df〉f̄ dΩ − Re{i(q0f, f)} (4.13)

(by (4.1)) = − 1
2

∫
Γ1

|f |2〈R, ν〉dΓ1 +
1
2

∫
Ω

|f |2div R dΩ − Re{i(q0f, f)}, (4.14)

using also that (Δf, f) is real. [If q0 happens to be real, the last term in (4.14)
would vanish.] Next, under assumption (4.9) and recalling (4.11), we then obtain
from (4.14),

Re((A − k2I)f, f) ≤
[
1
2
|divR|L∞(Ω) + |q0|L∞(Ω) − k2

]
‖f‖2

L2(Ω) (4.15)

(by (4.11)) ≤ 0, (4.16)

and dissipativity is proved.

Maximality. We must show the range condition: that for k2 sufficiently large, for
λ > 0 and g ∈ L2(Ω), there exists an f ∈ D(A) such that [λI − (A − k2)]f = g.
Via (4.10) for A, this yields a corresponding elliptic problem{

−iΔf + 〈R, Df〉 + iq0f + (λ + k2)f = g on Ω;

f |Γ0 ≡ 0; 〈Df, ν〉|Γ1
≡ 0 on Γi, i = 0, 1,

(4.17a)

(4.17b)

and elliptic theory yields the desired conclusion. Part (i) is established.
(ii) The proof of Part (i) applies to the χ-system consisting of Eqn. (4.4) and

the B.C. (4.6), via a suitable smooth function p for which the required estimate
(4.7) holds true. Then, the property that χ0 → χ, defines a s.c. semigroup on
L2(Ω) transfers to the map ϕ0 → ϕ via the change of variable (4.3) �
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4. The case of time-varying coefficients: |R|, q0 ∈ L∞(Q). Here, we omit assump-
tion (A.6) = (4.8) and prove likewise Theorem 3.1 in its full strength by energy
methods.

Proof of Theorem 3.1. We multiply Eqn. (4.0a) by ϕ̄ and integrate over Ω. With
‖ ‖ and ( · , · ) the L2(Ω)-norm and inner product, and recalling identity (4.1),
we obtain:

1
2

d

dt
‖ϕ‖2 = Re(ϕt, ϕ) = −Re(〈R, Dϕ〉, ϕ) − Re{i(q0ϕ, ϕ)} (4.18)

(by (4.1)) = − 1
2

∫
Γ1

|ϕ|2〈R, ν〉 dΓ1 +
1
2

∫
Ω

|ϕ|2div R dΩ − Re{i(q0ϕ, ϕ)}. (4.19)

Hence, integrating in time over [0, t], 0 < t ≤ T0 ≤ T , we obtain

‖ϕ(t)‖2 +
∫ t

0

∫
Γ1

|ϕ|2〈R, ν〉 dΓ1dτ

= ‖ϕ(0)‖2 +
∫ t

0

∫
Ω

|ϕ|2div R dΩ dt − 2 Re
{

i

∫ t

0

∫
Ω

q0|ϕ|2dΩ dτ

}
(4.20)

≤ ‖ϕ(0)‖2 + T0CT,R,q0‖ϕ‖2
C([0,T0];L2(Ω)), 0 ≤ t ≤ T0, (4.21)

where ∫ t

0

∫
Ω

[|div R| + 2|q0|]dΩ dt ≤ T0

{
‖div R‖L∞(QT ) + 2‖q0‖L∞(QT )

}
≡ T0CT,R,q0 , 0 ≤ t ≤ T0, (4.22)

where QT ≡ (0, T ]× Ω.
(i) Assume, at first, hypothesis (4.9) on R. Thus, for T0 sufficiently small,

whereby [1 − T0CT,R,q0 ] > 0, we obtain from (4.21) by taking the sup in t over
[0, T0]:

‖ϕ‖2
C([0,T0];L2(Ω)) ≤

1
1 − T0CT,R,q0

‖ϕ(0)‖2. (4.23)

In fact, one first obtains inequality (4.23) with the C([0, T0]; L2(Ω))-norm replaced
by the L∞(0, T ; L2(Ω))-norm; then one boosts the regularity from L∞(0, T0; L2(Ω))
to C([0, T0]; L2(Ω)) by an approximation/density argument. We next repeat the
argument starting from (4.19) and integrating now over [T0, 2T0]. We obtain the
counterpart of (4.23):

‖ϕ‖2
C([T0,2T0];L2(Ω)) ≤

1
1 − T0CT,R,q0

‖ϕ(T0)‖2 (4.24)

(by (4.23) =
(

1
1 − T0CT,R,q0

)2

‖ϕ(0)‖2. (4.25)

After a finite number of steps we obtain

‖ϕ‖2
C([0,T ];L2(Ω)) ≤ constT,R,q0‖ϕ(0)‖2, (4.26)

and Theorem 3.1 is proved, at least under the additional assumption (4.9) on R.
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(ii) Next, we remove assumption (4.9). Namely, in view of the change of
variable (4.3) and of property (4.7) for a smooth real function p, we apply the first
part (i) of the proof to the χ-problem (4.4), (4.6), and obtain the counterpart of
(4.26):

‖χ‖C([0,T ];L2(Ω)) ≤ constT ‖χ(0)‖. (4.27)

Next, inequality (4.27) is transferred to ϕ, whereby inequality (4.26) holds
true again (with a different constant), by virtue of the change of variable (4.3).
Thus, Theorem 3.1 is proved. �

5. Proof of Theorem 1.2: Removal of Assumption (A.5) = (2.4)

In this section we complete the proof of Theorem 1.2 in its full strength, by remov-
ing the working assumption (A.5) = (2.4). To this end, we perform in the original
w-problem a change of variable as the one taken in (4.3) for the dual ϕ-problem
(2.8a–d) or (4.0a–d); that is, we set

y(t, x) = e−
i
2 p(t,x)w(t, x), (5.1)

for a smooth real function p(t, x). Then, the problem in y corresponding to the
w-problem (1.1a–d) is⎧⎪⎪⎨⎪⎪⎩

yt = iΔy − 〈R(t, x) + Dp(t, x), Dy〉 − iq1(t, x)y, in Q

either y|Σ0 ≡ 0, or else
[
〈Dy, ν〉 + i

2 〈Dp, ν〉y
]
Σ0

≡ 0. in Σ0;

〈Dy, ν〉 +
(

i
2 〈Dp, ν〉

)
y = e−

i
2 p(t,x)u in Σ1,

(5.2a)

(5.2b)

(5.2c)

where R̃(t, x) ≡ R(t, x)+Dp(t, x) is a real-valued vector field on Rt×M , satisfying
the same assumptions R̃ ∈ L∞(0, T ;X (M)) and DR̃ ∈ L∞(0, T ; T 0

2 ), as (A.1) =
(1.2b) and (A.2) = (1.2d) for R. Similarly, q1 – which is given by (4.5) – satisfies
q1, |Dq1| ∈ L∞(Q), as required by (1.2b), (1.2c). Moreover, given the original real-
valued vector field R(t, x) in (1.2a), it is always possible to select, in infinitely
many ways, a smooth real function p such that

〈R̃, ν〉|Σ = [〈R, ν〉 + 〈Dp, ν〉]Γ = 0. (5.3)

Thus, to the y-problem (5.2), we can apply the same duality argument used in
Section 3 with respect to the original w-problem in (1.1) (except for the noncritical
fact that the B.C. (5.2c) for y is of Robin-type, while the B.C. (1.1d) for w is of
Neumann-type. Accordingly, by Section 3, Theorem 3.2 is applied to the dual of
the y-problem (5.2). We conclude that the y-problem (5.2) is exactly controllable
on the state space L2(Ω) by means of L2(0, T ; L2(Γ1)) controllers of the type
e−

i
2 p(t,x)u(t, x). But then by (5.1), the w-problem (1.1a-b-c) is likewise exactly

controllable on the state space L2(Ω), by means of controllers of the type u in
L2(0, T ; L2(Γ1). Theorem 1.2 is fully proved.
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6. Illustrations and examples

In this section, we provide classes of examples of strictly convex functions on
the Riemannian manifold {M, g}; that is, satisfying assumption (A.3) = (1.3).
Two main cases will be emphasized. Subsection 6.1 is devoted to the case aris-
ing from Schrödinger equations with variable coefficient (in space) principal part,
which are defined on a Euclidean bounded domain Ω ⊂ Rn. Here, then, the Rie-
mannian manifold is {Rn, g}, where the metric g is derived from the coefficients
aij(x) of the basic differential operator; in fact, [gij(x)] = [aij(x)]−1. For this case
– a primary reason for studying Schrödinger equations on a Riemannian mani-
fold – several classes of examples of strictly convex functions were already given
explicitly in prior references [T-Y.1], [L-T-Y.1], [Y.1], [Y.2]. Subsection 6.2 consid-
ers instead additional genuine Riemannian manifolds {M, g}, M �= Rn, following
[T-X.1, Sect. 10].

6.1. Variable coefficient Schrödinger equations defined
on a bounded Euclidean domain

Schrödinger equations on a Euclidean domain. In this section, Ω̃ is an open
bounded domain in Rn, with boundary ∂Ω̃ = Γ̃ of class, say, C2. Let x =
[x1, x2, . . . , xn], and let

Aw = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂w

∂xj

)
;

n∑
i,j=1

aij(x)ξiξj ≥ a

n∑
i=1

ξ2
i , x ∈ Ω̃, (6.1.1)

be a second-order differential operator, with real coefficients aij = aji of class
C1, see Remark 6.1.1 below, satisfying the uniform ellipticity condition for some
positive constant a > 0. Thus, we can extend aij(x) smoothly to all of Rn, so that
the matrices

A(x) = (aij(x)); G(x) = [A(x)]−1 = (gij(x)), i, j = 1, . . . , n, x ∈ Rn (6.1.2)

are positive definite on any x ∈ Rn.
Let F̃ be a linear, first-order differential operator: F̃ (w) = R̃(t, x) · ∇0w +

r(t, x)w, satisfying

|F̃ (w)| ≤ CT [|∇0w|2 + |w|2], t, x ∈ Q̃ = (0, T ] × Ω̃ a.e., (6.1.3)

where ∇0 is the gradient in Rn and “ · ” is the Rn-inner product. The correspond-
ing Schrödinger equation on Ω̃ is

iwt + Aw = F̃ (w) in Q̃ (6.1.4)

to be supplemented by the initial condition and by boundary conditions.

Riemannian metric. It is easily checked that (Rn, g) is a complete Riemannian
manifold with the Riemannian metric g =

∑n
i,j=1 gijdxidxj . (If A(x) = I, i.e.,

A = −Δ, then G(x) = I and g is the Euclidean Rn-metric.) One also has [Y.2,
Eqn. (2.2.11), p. 393]

Aw = −Δgw + (Df)(w); f(x) =
1
2

ln det[aij(x)], (6.1.5)
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where Δg is the corresponding Laplace-Beltrami operator; that is, under the
change of metric, from the original Euclidean metric to g, we have that the second-
order elliptic operator (6.1.1) becomes Δg on (Rn, g), modulo a first-order term.
Thus, Eqn. (6.1.4) is turned into Eqn. (1.1), where (1.2c) is satisfied.

Remark 6.1.1. Let the coefficients aij in (6.1.1) be of class C1, as assumed. Then
the entries gij in (6.1.2) are of class C1 as well. Thus, the connection coefficients
(Christoffel symbols) Γ�

ik, see [Do.1, p. 54], are of class C0. The geodesic solutions
to a corresponding second-order, nonlinear ordinary differential equation [Do.1,
p. 62] are then of class C2. Thus, the square of the distance function dist2g(x, x0)
is in C2. Typically, but by no means always, the required strictly convex function
is taken to be dist2g(x, x0), under suitable assumptions on the sectional curvature.
See below. We also notice that in our case, where the manifolds are complete, the
geodesics exist globally. �

Classes of examples of strictly convex functions d(x) in the Riemannian metric
g. Several classes of (aij(x)) yielding strictly convex functions d(x) in the metric
g induced by (gij(x)) = (aij(x))−1 on all of Rn are given in [L-T-Y.1], [T-Y.1],
[Y.1], [Y.2]. Thus, any (sufficiently smooth) open bounded domain may be taken.
Often, Green-Wu’s [G-W.1] theorem is invoked, see Theorem 6.2.2.2 below. This
assortment of examples can also be derived from the more systematic treatment
of Section 6.2 to follow.

6.2. The general Riemannian case {M, g}
Orientation. In this subsection, we briefly summarize the treatment in [T-X.1,
Section 10.2], aimed at providing classes of examples of strictly convex functions
(that is, satisfying (A.1)) on a general Riemannian manifold {M, g}. To this end,
[T-X.1, Section 10.2] proceeds according to the following strategy:

(i) At first, one provides strictly convex functions d(x) on three canonical
Riemannian manifolds: the sphere (Sn, can); the Euclidean space (Rn, can); the
hyperbolic space (Hn, can), with canonical metrics. These are the typical manifolds
with constant sectional curvature K: respectively, K > 0, K = 0, K < 0. In these
three canonical cases, the required strictly convex function d(x) is constructed
as a composition d(x) = h(ρ(x)) of a suitable function h( · ) and the underlying
distance function ρ(x) = distg(x, x0), x0 ∈ M .

(ii) Subsequently, the Hessian Comparison Theorem is invoked and used to
further enlarge the class of examples in point (i), by making a comparison with
the three canonical cases.

Here we omit Step (1) and refer to [T-X.1, Section 10.2.1]. Instead, we quote
its consequences.

The Hessian Comparison Theorem. Using the Hessian Comparison Theorem
[S-Y.1, Thm. 1.1], we obtain the following results:

Proposition 6.2.1 (Square of distance function). If all sectional curvatures of
(M, g) have an upper bound K, then:
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(i) if K > 0: d(x) = 1
2dist2(x, x0) is a strictly convex function on M when

dist(x, x0) < π
2
√

K
, ∀ x0 ∈ M ;

(ii) if K ≤ 0: d(x) = 1
2dist2(x, x0) is a strictly convex function on M , where M

is simply connected. �

Proposition 6.2.2. Let h(t) be defined by

h(t) =

⎧⎪⎪⎨⎪⎪⎩
− cos(

√
Kt), K > 0;

1
2

t2, K = 0;

cosh(
√
−Kt), K < 0.

If all sectional curvatures of (M, g) have an upper bound K, then:
(i) if K > 0: d(x) = h(ρ(x)) is a strictly convex function on M when ρ(x) =

dist(x, x0) < π
2
√

K
, ∀ x0 ∈ M ;

(ii) if K ≤ 0: d(x) = h(ρ(x)) is a strictly convex function on M , where M is
simply connected. �

Remark 6.2.1. When K ≤ 0, the reason why we require M to be simply connected
is in order to eliminate examples such as a flat torus or Hn/G [Do.1]. Indeed, when
M is simply connected and has K ≤ 0, then M is homeomorphic to Rn by the
exponential map expx0

: Tx0M ≡ Rn → M . �

Two general results of the existence of strictly convex functions. We report here
two known results: one of recent origin and valid on 2-dimensional manifolds dim
n = 2, and one very established and well-known.

Theorem 6.2.3 ([B-G-L.1] Strictly convex function in 2-D case via curvature flows).
Let Ω̄ be a two-dimensional, smooth, compact, Riemannian surface whose boundary
∂Ω has positive second fundamental form. Assume there are no closed geodesics in
Ω, then there exists a C2 strictly convex function in Ω̄.

This theorem is proved in [B-G-L.1] by using a nonlinear parabolic equation
which arises in a quite unrelated geometric problem of curve-shortening flows.

Theorem 6.2.4 (Theorem 1(a) in [G-W.1]. Complete non-compact manifold with
positive sectional curvature). If M is a complete, non-compact, Riemannian man-
ifold of everywhere positive sectional curvature, then there exists a C∞ Lipschitz
continuous strictly convex exhaustion function on M .

Here a function f : M → R is an exhaustion function if for every λ ∈ R,
f−1((−∞, λ]) is a compact subset of M .

6.3. Examples of strictly convex functions d(x) satisfying the geometrical condi-
tion (1.5): 〈Dd, ν〉|Γ0 = ∂d

∂ν |Γ0 = 0
6.3.1. Geodesic flat boundary. Let (M, g) be a complete Riemannian manifold
with metric g. Let Ω be an open, bounded, connected subset of M with smooth
boundary (say, of class C2) ∂Ω = Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅.
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Definition 6.3.1. An open subset Γ0 of the boundary Γ is called “locally geodesic
flat” if for any two close points x1, x2 ∈ Γ0, the unique geodesic γ(t) joining x1

and x2 with respect to the metric g is contained in Γ0.

Now assume that Ω is chosen as to satisfy Proposition 6.2.1 or 6.2.2, and Γ0

be a locally geodesic flat connected part of boundary ∂Ω. In order to define the
strictly convex function d(x), we need only to choose a suitable point x0. Choose
x0 ∈ M\Ω such that x0 is on a locally geodesic flat hypersurface S of M which
includes Γ0 as a subset. Define first ρ(x) = dist(x, x0) ∀x ∈ Ω, and then define
d(x) = h(ρ(x)) as in Proposition 6.2.1 or 6.2.2. We then know that d(x) is a strictly
convex function on Ω.

Next we check that ∂d
∂ν |Γ0 = 0: Using a geodesic frame on a neighborhood of

S, one has ∂ρ(x)
∂ν = 0, ∀ x ∈ S. Hence

∂d(x)
∂ν

=
∂h(ρ(x))

∂ν
= h′(ρ)

∂ρ(x)
∂ν

= 0, ∀x ∈ Γ0, as desired.

Remark 6.3.1. In the Euclidean setting Rn, we can choose Γ0 to be an open subset
of a hyperplane and define d(x) = ‖x − x0‖2 with x0 on the hyperplane but away
from Γ0 to get ∂d

∂ν = 2(x−x0) · ν = 0 on Γ0 [L-T-Z.1, p. 288]. The present concept
of “geodesic flat boundary” is a natural generalization of the Euclidean case. �

6.3.2. Strictly convex function d(x), as a perturbation of d0 with ∂d0
∂ν |Γ0 ≤ 0. Let

(M, g) be an n-dimensional Riemannian manifold with Levi-Civita connection D.
Let Ω be an open, bounded, connected subset of M with smooth boundary (say,
of class C2) ∂Ω = Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅. The portion Γ0 of ∂Ω is defined as
follows: Let � : M → R be a function of class C2. Then we define

Γ0 = {x ∈ ∂Ω : �(x) = 0} with D� = gradg� �= 0, on Γ0. (6.3.1)

Theorem 6.3.2. ([T-Y.1, Theorem B.1]). In above setting, assume that:
(i) (Convexity of � near Γ0) D2�(X, X)(x) ≥ 0, ∀ x ∈ Γ0, ∀ X ∈ TxM ;
(ii) there exists a function d0 : Ω̄ → R of class C2, such that

(ii1) D2d0(X, X)(x) ≥ ρ0|X |2g, where ρ0 > 0, ∀ x ∈ Γ0, ∀ X ∈ TxM ;

(ii2)
∂d0

∂ν

∣∣∣∣
Γ0

= 〈Dd0, ν〉g ≤ 0, on Γ0.

Then, there exists a function d : M → R of class C2 (which is explicitly constructed
in a layer (collar) of Γ0, the critical set), such that it satisfies the following two
conditions:
(a) ∂d

∂ν |Γ0 = 〈Dd, ν〉g = 0, on Γ0;
(b) D2d(X, X)(x) ≥ (ρ0 − ε)|X |2g, ∀ x ∈ Γ0, ∀ X ∈ TxM,

where ε > 0 is arbitrarily small.

The function d(x) is explicitly constructed near Γ0, within Ω, as a perturba-
tion of the original function d0 assumed in (ii) above. For details of proof, we refer
to [T-Y.2, Appendix B].
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Régnier, Virginie, 1
Robinson, Derek W., 209
Ruess, Wolfgang M. , 561

Scarpellini, Bruno, 577
Shibata, Yoshihiro, 595
Simonett, Gieri, 531
Sohr, Hermann, 257
Sperlich, Stefan, 547

Tanaka, Naoki, 457
Triggiani, Roberto, 613

Vespri, Vincenzo, 315

Warma, Mahamadi, 113
Wilke, Mathias, 547

Zacher, Rico, 131


	Cover
	Functional Analysis and Evolution Equations
	Contents
	Life and Work of Günter Lumer
	In Remembrance of Günter Lumer
	Expansions in Generalized Eigenfunctions of the Weighted Laplacian on Star-shaped Networks
	Diffusion Equations with Finite Speed of Propagation
	Subordinated Multiparameter Groups of Linear Operators: Properties via the Transference Principle
	An Integral Equation in AeroElasticity
	Eigenvalue Asymptotics Under a Non-dissipative Eigenvalue Dependent Boundary Condition for Second-order Elliptic Operators
	Feynman-Kac Formulas, Backward Stochastic Differential Equations and Markov Processes
	Generation of Cosine Families on Lp (0,1) by Elliptic Operators with Robin Boundary Conditions
	Global Smooth Solutions to a Fourth-order Quasilinear Fractional Evolution Equation
	Positivity Property of Solutions of Some Quasilinear Elliptic Inequalities
	On a Stochastic Parabolic Integral Equation
	Resolvent Estimates for a Perturbed Oseen Problem
	Abstract Delay Equations Inspired by Population Dynamics
	Weak Stability for Orbits of C0-semigroups on Banach Spaces
	Contraction Semigroups on L∞(R)
	On the Curve Shortening Flow with Triple Junction
	The Dual Mixed Finite Element Method for the Heat Diffusion Equation in a Polygonal Domain, I
	Maximal Regularity of the Stokes Operator in General Unbounded Domains of ℝn  
	Linear Control Systems in Sequence Spaces
	On the Motion of Several Rigid Bodies in a Viscous Multipolar Fluid
	On the Stokes Resolvent Equations in Locally Uniform Lp Spaces in Exterior Domains
	Generation of Analytic Semigroups and Domain Characterization for Degenerate Elliptic Operators with Unbounded Coefficients Arising in Financial Mathematics. Part II
	Numerical Approximation of Generalized Functions: Aliasing, the Gibbs Phenomenon and a Numerical Uncertainty Principle
	No Radial Symmetries in the Arrhenius-Semenov Thermal Explosion Equation
	Mild Well-posedness of Abstract Differential Equations
	Backward Uniqueness in Linear Thermoelasticity with Time and Space Variable Coefficients
	Measure and Integral: New Foundations after One Hundred Years
	Post-Widder Inversion for Laplace Transforms of Hyperfunctions
	On a Class of Elliptic Operators with Unbounded Time- and Space-dependent Coefficients in ℝN  
	Time-dependent Nonlinear Perturbations of Analytic Semigroups
	A Variational Approach to Strongly Damped Wave Equations
	Exponential and Polynomial Stability Estimates for the Wave Equation and Maxwell’s System with Memory Boundary Conditions
	Maximal Regularity for Degenerate Evolution Equations with an Exponential Weight Function
	An Analysis of Asian options
	Linearized Stability and Regularity for Nonlinear Age-dependent Population Models
	Space Almost Periodic Solutions of Reaction Diffusion Equations
	On the Oseen Semigroup with Rotating Effect
	Exact Controllability in L2(Ω) of the Schrödinger Equation in a Riemannian Manifold with L2(Σ1)-Neumann Boundary Control
	back-matter.pdf

