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Preface

Ich schaffe, was ihr wollt, und schaffe mehr;

Zwar ist es leicht, doch ist das Leichte schwer.

Es liegt schon da, doch um es zu erlangen,

Das ist die Kunst! Wer weiss es anzufangen?

Goethe, Faust II

The present text centers around a fundamental task of measure and
integration theory, which has not found an adequate solution so far. It is
the task to produce, with unified and universal means, true contents and
above all measures from more primitive data, in order to extend elementary
contents and to represent so-called elementary integrals. The traditional
main tools are the Carathéodory extension theorem and the Daniell-Stone
representation theorem. These theorems are much too restrictive in order
to fulfil the needs.

Around 1970 a new development started in the work of Topsøe and
others. It was based on the notion of regularity, which for a set function
means to determine its values from a particular set system by approximation
from above or below. In traditional measure theory this notion is linked to
topology.

The present text wants to be a systematic treatment of the context in
the new spirit. It is based to some extent on personal work of the author.
The main results are equivalence theorems for the existence and uniqueness
of extensions and representations, which are not more complicated than
the traditional ones but much more powerful. With these results the text
clarifies and unifies the entire context. The main instruments are certain
new envelope formations which resemble the traditional Carathéodory outer
measure.

The systematic theory has numerous applications. The most important
application is the full extension of the classical Riesz representation theorem
in terms of Radon measures, from locally compact to arbitrary Hausdorff
topological spaces. As another application we note an extension and at
the same time simplification of the Choquet capacitability theorem, which
shows that the new formations can be useful for so-called non-additive set
functions as well. Some of the applications are treated without pronounced
technical sophistication. We rather want to demonstrate that certain basic
ideas and results are natural outflows from the new theory.



VIII PREFACE

The central parts of the text are chapters II and V. Their main substance
as well as their history and motivation are outlined in the introduction below.
It is an elaboration of a lecture which the author delivered at several places,
in the present form for the first time at the symposium in honour of Adriaan
C.Zaanen in Leiden in September 1993.

Chapters I and IV are filled with preparations. We need certain standard
material in unconventional versions which have to be developed. We also
need several new notations.

The application to the Riesz representation theorem is in chapter V
section 16. The other applications are in chapters III, VI and VII. We
emphasize that chapter VII develops an abstract product formation which
comprises the Radon product measure of Radon measures. The final chapter
VIII is an appendix which is independent of the central chapters II and V.
It wants to demonstrate that the unconventional notions of content and
measure introduced in chapter I can be useful in other areas of measure
theory as well.

All this says that the central themes of the present text are the funda-
mentals of measure and integration theory. The author hopes that its readers
will find it less technical than it looks at first sight. He thinks that the text
can be read with appreciation by anyone who has struggled through the
traditional abstract and topological theories. However, it is different from a
textbook in the usual sense. The presentation is ab ovo, though more like
in a book of research. The author hopes that the text will be used in future
courses. An ideal prerequisite would be the recent small book of Stroock
[1994], because on the one hand it provides the concrete material which
should precede this one, and on the other hand it does not take the reader
onto the traditional paths of abstract measure and integration theory which
the present work wants to restructure.

The author wants to express his warmest thanks to Gustave Choquet,
Jean-Paul Pier, Reinhold Remmert, Klaus D.Schmidt, Maurice Sion, and
Flemming Topsøe for insightful comments, encouragement, and good advice.
Likewise he thanks Robert Berger and Gerd Wittstock for constant help with
the resistful machine into which he typed the final version of the text. He
extends his thanks to the former and present directors of the Mathematical
Research Institute Oberwolfach, Martin Barner and Matthias Kreck, for
several periods of quiet work in the unique atmosphere of the Institute.

August 1996 Heinz König



Contents

Chapter I. Set Systems and Set Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1. Set Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Basic Notions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Inverse Images of Pavings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
The Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Complements for Ovals and σ Ovals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Set Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Basic Properties of Set Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Contents and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
New versus Conventional Contents and Measures . . . . . . . . . . . . . 15
The Main Example: The Volume in Rn . . . . . . . . . . . . . . . . . . . . . . . 19

3. Some Classical Extension Theorems for Set Functions . . . . . . . . . . . 22
The Classical Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
The Smiley-Horn-Tarski Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Extensions of Set Functions to Lattices . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter II. The Extension Theories Based on Regularity . . . . . . . . . . . . . . . 33

4. The Outer Extension Theory: Concepts and Instruments . . . . . . . . 33
The Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The Outer Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Complements for the Nonsequential Situation . . . . . . . . . . . . . . . . . 38
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The Theorem of �Loś-Marczewski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
The Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

19. Transplantation of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
The Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Specializations of the Existence Theorem . . . . . . . . . . . . . . . . . . . . 192
The Uniqueness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Extension of Baire Measures to Borel Measures . . . . . . . . . . . . . . 195

Chapter VII. Products of Contents and Measures . . . . . . . . . . . . . . . . . . . . . 201

20. The Traditional Product Formations . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Basic Product Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Traditional Product Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Product Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

21. The Product Formations Based on Inner Regularity . . . . . . . . . . . . 210
Further Properties of the Basic Product Formation . . . . . . . . . . 210
The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
The Sectional Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

22. The Fubini-Tonelli and Fubini Theorems . . . . . . . . . . . . . . . . . . . . . . . 222
Monotone Approximation of Functions . . . . . . . . . . . . . . . . . . . . . . .223
The Fubini-Tonelli Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
The Fubini Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Chapter VIII. Applications of the New Contents and Measures . . . . . . . 231

23. The Jordan and Hahn Decomposition Theorems . . . . . . . . . . . . . . . .231
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
The Infimum Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
The Jordan Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . .236



XII CONTENTS

The Existence of Minimal Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
The Hahn Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 241

24. The Lebesgue Decomposition and Radon-Nikodým Theorems . . 242
The Lebesgue Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . . 243
The Radon-Nikodým Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Subsequent Articles of the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



Introduction

The textbooks on measure and integration theory can often be sub-
divided into two parts of almost equal size: One part describes what can
be done when one is in possession of measures of one or another type. The
other part describes how to obtain these measures from more primitive data,
which as a rule are elementary contents or elementary integrals. The for-
mer part is based on some famous theories. But the latter part is in less
favourable state, because its main theorems do not fit the actual needs in
certain central points. We shall explain this statement, and then describe
how the situation can be repaired. To do this we sketch the main ideas and
results of our chapters II and V, which form the central parts of the present
text.

Construction of Measures from Elementary Contents

The classical theorem on the existence of measure extensions reads as follows.
Our technical terms are either familiar or obvious.

Theorem. Let ϕ : S→ [0,∞] be a content on a ring S of subsets in a
nonvoid set X. Then ϕ can be extended to a measure α : A → [0,∞] on a
σ algebra A iff ϕ is upward σ continuous.

There are few situations where this theorem can be applied without
complications. The reason is that the natural set systems which carry el-
ementary contents are almost never rings, but at most lattices. This is in
particular true for the basic set systems in topological spaces. Even to con-
struct the Lebesgue measure via rings forces us to work with the unnatural
half-open intervals, which might be adequate in order to produce sophisti-
cated counterexamples, but not for the foundations of one of the most basic
theories in analysis.

Like the theorem itself, also its usual proof due to Carathéodory [1914]
does not fit the actual needs as it stands. Let us recall that it is based on two
formations. On the one hand one defines for a set function ϕ : S → [0,∞]
on a set system S with ∅ ∈ S and ϕ(∅) = 0 the so-called outer measure
ϕ◦ : P(X)→ [0,∞] to be

ϕ◦(A) = inf
{

∞
∑

l=1

ϕ(Sl) : (Sl)l in S with A ⊂
∞
⋃

l=1

Sl

}

.
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On the other hand one defines for a set function φ : P(X) → [0,∞] with
φ(∅) = 0 the so-called Carathéodory class

C(φ) := {A ⊂ X : φ(S) = φ(S ∩A) + φ(S ∩A′) ∀S ⊂ X} ⊂ P(X).

Then for the nontrivial direction of the theorem one verifies that ϕ◦|C(ϕ◦)
is a measure on a σ algebra and an extension of ϕ.

We shall see that the formation C(·) is so felicitous that it will survive
the upheaval to come, at least within the present step of abstraction. In
contrast, we shall see that the specific form of the outer measure must be
blamed for the deficiencies around the extension theorem which will now be
described in more detail.

1) The outer measure is a beautiful tool in the frame of rings, but it
ceases to work beyond this frame. It does not even allow to extend the
theorem to the particular lattices S which fulfil B \ A ∈ Sσ for all A ⊂ B
in S, where the assertion will be seen to persist. The class of these lattices
is much more realistic than the class of rings. For example, it includes the
lattices of the closed subsets and of the compact subsets of a metric space.

2) The outer measure is an outer regular formation: The definition shows
that

ϕ◦(A) = inf{ϕ◦(S) : S ∈ Sσ with S ⊃ A} for all A ⊂ X,

that is ϕ◦ is outer regular S
σ. Now present-day analysis requires inner

regular formations perhaps even more than outer regular ones. However,
the definition of the outer measure is such that no inner regular counterpart
is visible.

The need for inner regular formations comes from the predominant role
of compactness in topological measure theory. It became clear that the most
important class of measures on an arbitrary Hausdorff topological space X
are the Radon measures, defined to be the Borel measures α : Bor(X)→
[0,∞] which are finite on the system Comp(X) of the compact subsets of X
and inner regular Comp(X). It is then an immediate problem to characterize
those set functions ϕ : Comp(X) → [0,∞[ which can be extended to (of
course unique) Radon measures, the so-called Radon premeasures. We
see that the classical extension theorem does not help in this problem for at
least two reasons.

3) The outer measure is a formation of sequential type. But present-day
analysis also requires non-sequential formations, once more for topological
reasons. However, the definition of the outer measure is such that no non-
sequential counterpart is visible.

4) It is a sad fact that the methods employed for contents and measures
have not much in common with those for so-called non-additive set functions
like capacities. Now the outer measure has a certain built-in additive charac-
ter. One can be suspicious that this fact is responsible for the imperfections
which we speak about.
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There were of course attempts to improve the situation. The main re-
sults of Pettis [1951] were complicated and hard to use because, as it seems
now, regularity had not yet attained its true position. Srinivasan [1955] was
restricted to the extension from rings, but was able to develop a symmet-
ric outer/inner extension procedure and anticipated the later expressions
in this frame. Around 1970 deliberate efforts started in order to develop
improved extension methods in terms of lattices, outer and inner regular-
ity, and sequential and non-sequential procedures. A decisive prelude was
the characterization of the Radon premeasures due to Kisyński [1968]. The
main achievements came from Topsøe [1970ab], albeit restricted to the inner
situation, from Kelley-Srinivasan [1971] and Kelley-Nayak-Srinivasan [1973],
Ridder [1971][1973], and later from Sapounakis-Sion [1983][1987] and oth-
ers. But the new methods were less simple and coherent than the traditional
ones and therefore did not find access to the textbooks. The reason was that
there were no universal substitutes for the outer measure. It is a surprise
that one did not resume the expressions of Srinivasan [1955] (as a result the
author himself did not look at that paper earlier than while he wrote the
present text). Also there was no adequate symmetric treatment of the outer
and inner cases. The basic symmetric formations were the crude outer and
inner envelopes ϕ⋆, ϕ⋆ : P(X) → [0,∞], defined for an isotone set function
ϕ : S→ [0,∞] with ∅ ∈ S and ϕ(∅) = 0 to be

ϕ⋆(A) = inf{ϕ(S) : S ∈ S with S ⊃ A},
ϕ⋆(A) = sup{ϕ(S) : S ∈ S with S ⊂ A},

which are adequate for contents but not for measures (otherwise the outer
measure would not have come into existence).

At this point we postpone further historical comments and turn to the
vita of the present author on which the plan for this text is based. In
an analysis course [1969/70] I wanted to construct the Lebesgue measure
without use of half-open intervals. I observed that the old proof extends
without further efforts from rings to the particular lattices described in 1),
provided that instead of the outer measure one uses the formation ϕσ :
P(X)→ [0,∞], defined for an isotone set function ϕ : S→ [0,∞] to be

ϕσ(A) = inf
{

lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↑ some subset ⊃ A
}

.

The formations ϕ◦ and ϕσ are of course close relatives, and are in fact
identical for contents on rings (as in elementary analysis infinite series are
equivalent to infinite sequences), but need not be identical beyond. We see
that ϕσ continues to work where ϕ◦ does not.

At that time I was content with this. But fifteen years later I returned
to the context and observed that besides 1) the new formation also removes
the deficiencies described in 2) and 3). In fact, the formation ϕσ has an
obvious inner regular counterpart ϕσ : P(X)→ [0,∞], defined via decreas-
ing sequences in S. Furthermore ϕσ and ϕσ have obvious non-sequential
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counterparts ϕτ , ϕτ : P(X) → [0,∞], defined via upward/downward di-
rected set systems instead of sequences in S. Then another five years later
I observed that the new formations permit to improve certain concepts and
results related to capacities, and thus contribute to 4) as well.

After this it is no surprise that the envelope formations ϕ⋆ ≧ ϕσ ≧ ϕτ

and ϕ⋆ ≦ ϕσ ≦ ϕτ permit to develop comprehensive extension theories
which fulfil the requirements described above. The theories are of uniform
structure in • = ⋆στ , and the outer and inner developments are parallel in
all essentials. For historical reasons the outer version looks more familiar,
but the inner version is perhaps more important. The Carathéodory class
C(·) is a basic notion in all cases.

There remains one more step. I observed that the outer and inner the-
ories are not only parallel, with their typical little peculiarities, but are in
fact identical. However, this presupposes a drastic step of extension and
abstraction: One has to admit lattices which avoid the empty set like the
entire space, and isotone set functions with values in R or R instead of
[0,∞[ or [0,∞] (not to be confused with the familiar signed measures which
of course need not be isotone). The previous envelope formations retain
their basic structure, but the Carathéodory class C(·) requires an essential
reformulation. I consider this extension to be quite essential for theoretical
reasons, but it is too technical for an introduction. Thus we return to the
previous step. We choose the inner situation for a short description of the
basic concepts and results.

Let ϕ : S→ [0,∞[ be an isotone set function on a lattice S with ∅ ∈ S

and ϕ(∅) = 0. The basic idea is to concentrate on a particular class of ex-
tensions of ϕ. For each choice of • = ⋆στ we define an inner • extension
of ϕ to be an extension of ϕ which is a content α : A→ [0,∞] on a ring A,
with the properties that A also contains S• (:=the system of the respective
intersections), and that

α is inner regular S•,
α|S• is downward • continuous (this is void when • = ⋆).

Thus we impose a characteristic combination of inner regularity and down-
ward continuity. We define ϕ to be an inner • premeasure iff it admits
inner • extensions. Our aim is to characterize those ϕ which are inner • pre-
measures, and then to describe all inner • extensions of ϕ. We shall obtain
a natural and beautiful solution.

The solution will be in terms of the inner envelopes ϕ• : P(X)→ [0,∞].
First note that ϕ⋆|S = ϕ, while for • = στ we have ϕ•|S = ϕ iff ϕ is
downward • continuous. This is of course a necessary condition in order
that ϕ be an inner • premeasure. Likewise ϕ•(∅) = 0 iff ϕ is (of course
downward) • continuous at ∅. This weaker condition is much easier and
sometimes even trivial, for example when ϕ : Comp(X) → [0,∞[ on a
Hausdorff topological space X. Also ϕ•(∅) = 0 ensures that the traditional
C(ϕ•) is defined. We turn to the main results.
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Proposition. If ϕ has inner • extensions then all these α : A→ [0,∞]
are restrictions of ϕ•|C(ϕ•).

Theorem. Assume that ϕ is supermodular. Then the following are
equivalent.

1) ϕ has inner • extensions, that is ϕ is an inner • premeasure.

2) ϕ•|C(ϕ•) is (defined and) an inner • extension of ϕ. Furthermore

if • = ⋆ : ϕ•|C(ϕ•) is a content on the algebra C(ϕ•),

if • = στ : ϕ•|C(ϕ•) is a measure on the σ algebra C(ϕ•).

3) ϕ•|C(ϕ•) is (defined and) an extension of ϕ in the crude sense, that is
ϕ•|S = ϕ and S ⊂ C(ϕ•).

4) ϕ(B) = ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5) ϕ•|S = ϕ; and ϕ(B) ≦ ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5’) ϕ•(∅) = 0; and ϕ(B) ≦ ϕ(A) + ϕB
• (B \ A) for all A ⊂ B in S. Here

ϕB
• :=

(

ϕ|{S ∈ S : S ⊂ B}
)

•
for B ∈ S.

We define ϕ to be inner • tight iff it fulfils the second partial condition
in 5’).

It follows that an inner • premeasure ϕ has a unique maximal inner •
extension, which is ϕ•|C(ϕ•). The above theorem and its outer counterpart
are our substitutes for the classical extension theorem. It is obvious that
the present characterizations and explicit representations stand and fall with
the new envelopes.

Construction of Measures from Elementary Integrals

This time we start with the traditional Daniell-Stone representation theo-
rem. It is the counterpart and also an extension of the classical measure
extension theorem.

Theorem. Let I : H → R be a positive (:=isotone) linear functional on
a Stonean lattice subspace H ⊂ RX of real-valued functions on a nonvoid
set X. Then the following are equivalent.

i) There exists a measure α : A→ [0,∞] on a σ algebra A which represents
I, that is all f ∈ H are integrable α with I(f) =

∫

fdα.

ii) I is σ continuous at 0, that is for each sequence (fl)l in H with pointwise
fl ↓ 0 one has I(fl) ↓ 0.

More famous than this is perhaps the traditional Riesz representation
theorem from topological measure theory.

Theorem. Let X be a locally compact Hausdorff topological space, and

CK(X, R) := {f ∈ C(X, R) : f = 0 outside of some K ∈ Comp(X)}.

Then there is a one-to-one correspondence between the positive linear func-
tionals I : CK(X, R) → R and the Radon measures α : Bor(X) → [0,∞].
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The correspondence is

I(f) =

∫

fdα for all f ∈ CK(X, R).

The drawbacks of the traditional Daniell-Stone theorem are like those
of the classical measure extension theorem. Thus it is of no visible use for
the proof of the traditional Riesz theorem. But this latter theorem does not
fulfil the needs either, because in present-day analysis one is often forced to
exceed the frame of local compactness. Then CK(X, R) becomes too small,
so that the theorem breaks down and has to be filled with new substance.
On the measure side one wants to adhere to the Radon measures. As to
the functional side, one observes that on each Hausdorff topological space
X there is a wealth of semicontinuous real-valued functions which vanish
outside of compact subsets, for example the multiples of the characteristic
functions χK of the K ∈ Comp(X). But this leads to function classes which
are lattice cones and as a rule not lattice subspaces. Thus it seems natural to
search for an extended Riesz theorem on appropriate lattice cones of upper
semicontinuous functions on X with values in [0,∞[.

With this in mind we return to the Daniell-Stone theorem in the abstract
theory. We want to develop the context in the spirit and scope of the
previous part on measure extensions. The above look at the Riesz theorem
confirms our intuitive impression that the former transition from rings to
lattices should reappear as a transition from lattice subspaces to lattice
cones. In fact, we shall see that the final Riesz theorem will become a direct
specialization of the final Daniell-Stone theorem.

We fix a lattice cone E ⊂ [0,∞[X of [0,∞[-valued functions on a nonvoid
set X. E is called primitive iff v − u ∈ E for all u ≦ v in E; equivalent is
E = H+ := {f ∈ H : f ≧ 0} for some (unique) lattice subspace H ⊂ RX .
It is of utmost importance that E need not be primitive. We assume E to
be Stonean, defined to mean that f ∈ E ⇒ f ∧ t, (f − t)+ ∈ E for all real
t > 0. In view of f = f ∧ t + (f − t)+ this is the familiar notion when E is
primitive. For E we define at once the set system

T(E) := {[f ≧ t] : f ∈ E and t > 0} = {[f ≧ 1] : f ∈ E},

which is a lattice with ∅ ∈ T(E).

Next we fix an elementary integral on E, defined to be an isotone
positive-linear functional I : E → [0,∞[. We are interested in integral
representations of I. We want to define a representation of I to be a
content α : A→ [0,∞] on a ring A such that

for all f ∈ E : f is measurable A and I(f) =

∫

fdα.
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This has to be made precise, except in the special case that A is a σ algebra
and α is a measure. We do this in that we require

for all f ∈ E : [f ≧ t] ∈ A ∀t > 0 and I(f) =

→∞
∫

0←

α([f ≧ t])dt.

The first part of the condition means that T(E) ⊂ A. Therefore α produces
the restriction α|T(E). The set function α|T(E) is of obvious importance,
because it suffices to reproduce I by the second part of the condition.

It is a Hahn-Banach consequence that I admits representations iff it has
the truncation properties

(0) I(f ∧ t) ↓ 0 for t ↓ 0 and I(f ∧ t) ↑ I(f) for t ↑ ∞ for all f ∈ E.

But the assumption that I is downward σ continuous does not enforce that
it admits measure representations, except in case that E is primitive where
this follows from the traditional Daniell-Stone theorem. All this shows that
the present notion is too superficial in order to be the central one in our
enterprise.

We turn to the true central notion. For • = ⋆στ we define a • rep-
resentation of I to be a representation α : A → [0,∞] of I such that α
is an inner • extension of α|T(E). This time the word inner is redundant,
because there will be no outer counterpart. Our aim is to characterize those
I which admit • representations, and then to describe all • representations
of I.

We start to define the crude outer and inner envelopes I⋆, I⋆ : [0,∞]X →
[0,∞] of I to be

I⋆(f) = inf{I(u) : u ∈ E with u ≧ f},
I⋆(f) = sup{I(u) : u ∈ E with u ≦ f}.

These envelopes induce set functions Δ,∇ : T(E)→ [0,∞[, defined to be

Δ(A) = I⋆(χA) and ∇(A) = I⋆(χA) for A ∈ T(E).

Of course I⋆ ≦ I⋆ and ∇ ≦ Δ. One proves the criterion which follows.

Proposition. Assume that I fulfils (0). A content α : A → [0,∞] on
a ring A which contains T(E) is a representation of I iff ∇ ≦ α|T(E) ≦ Δ.
If furthermore α|T(E) is downward σ continuous then α|T(E) = Δ.

This makes clear that the cases • = στ and • = ⋆ fall apart. In the
present introduction we shall restrict ourselves to the case • = στ , which is
the simpler and the more important one. From the former main theorem we
obtain at once what follows.

Consequence (for • = στ). I admits • representations iff it fulfils
(0) and Δ is an inner • premeasure. Then the • representations of I are
the inner • extensions of Δ. In particular I has the unique maximal •
representation Δ•|C(Δ•).
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This is not yet the desired characterization, because it is not in terms of
I itself. In order to achieve this we form for • = στ the precise counterparts
I• : [0,∞]X → [0,∞] of the previous inner • envelopes, that is

Iσ(f) = sup
{

lim
l→∞

I(ul) : (ul)l in E with ul ↓ some function ≦ f
}

,

and the respective Iτ (f). We also form for v ∈ E the satellites Iv
• : [0,∞]X →

[0,∞[ in the same sense as before. In these terms our main theorem then
reads as follows.

Theorem (for • = στ). For an elementary integral I : E → [0,∞[ the
following are equivalent.

1) I admits • representations.

2) I(v) = I(u) + I•(v − u) for all u ≦ v in E.

3) I•|E = I; and I(v) ≦ I(u) + I•(v − u) for all u ≦ v in E.

3’) I•(0) = 0; and I(v) ≦ I(u) + Iv
• (v − u) for all u ≦ v in E.

The two last results are the precise counterpart of the main theorem
on measure extensions for • = στ . It is our substitute for the traditional
Daniell-Stone theorem. We note that

I⋆ ≦ Iσ ≦ Iτ , and I⋆(f) = Iv
⋆ (f) ≦ Iv

σ(f) ≦ Iv
τ (f) for 0 ≦ f ≦ v ∈ E.

Also I⋆|E = I, and for • = στ the equivalents to I•|E = I and I•(0) = 0 are
as before. We define I to be • tight iff it fulfils the second partial condition
in 3’). The former crude envelope I⋆ allows to define I to be ⋆ tight iff

I(v) ≦ I(u) + I⋆(v − u) for all u ≦ v in E.

An earlier result due to Topsøe [1976] after Pollard-Topsøe [1975] was that
3’) with ⋆ tight instead of • tight implies 1). But the converse is not true.

In order to obtain the traditional Daniell-Stone theorem we assume for a
moment that E is primitive. Then each I is ⋆ tight and hence • tight. Thus I
admits • representations iff I•(0) = 0. In this case it has the unique maximal
• representation Δ•|C(Δ•), which in particular is a measure representation
of I. Thus we obtain for • = σ much more than the nontrivial direction in
the traditional Daniell-Stone theorem.

We next attempt to incorporate the Riesz representation theorem. We
assume X to be a Hausdorff topological space. Let E ⊂ [0,∞[X be a
Stonean lattice cone. We need certain conditions on E in order to relate E
to the compact subsets of X. One assumption is that E be concentrated
on compacts, defined to mean that T(E) ⊂ Comp(X). It implies that E
is contained in the class USC+(X) of [0,∞[-valued upper semicontinuous
functions on X, and that its members are bounded. On the other hand,
when E is contained in the subclass

USCK+(X) := {f ∈ USC+(X) : f = 0 outside of some K ∈ Comp(X)},
then E is of course concentrated on compacts. The other assumption is that
E be rich, defined to mean that

χK = inf{f ∈ E : f ≧ χK} for all K ∈ Comp(X).
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To see the relevance of this condition note that CK+(X, R) is rich iff X is
locally compact.

Then the • = τ version of our Daniell-Stone theorem, combined with the
classical Dini theorem, has as an almost immediate consequence the Riesz
type theorem which follows.

Theorem. Assume that the Stonean lattice cone E is concentrated on
compacts and rich. For an elementary integral I : E → [0,∞[ then the
following are equivalent.

0) I admits a Radon measure representation (note that T(E) ⊂ Comp(X) ⊂
Bor(X)).

1) I admits τ representations.

2) I(v) = I(u) + Iτ (v − u) for all u ≦ v in E.

3’) I(f ∧ t) ↓ 0 for t ↓ 0 for all f ∈ E (this is redundant when E ⊂
USCK+(X)); and I is τ tight.

In this case I has the unique Radon measure representation Δτ |Bor(X) with
Bor(X) ⊂ C(Δτ ), which therefore is a τ representation of I.

Let us look at the particular case E ⊂ USCK+(X). Then each Radon
measure α : Bor(X) → [0,∞] defines an elementary integral I on E via
I(f) =

∫

fdα for f ∈ E. This I is τ tight in view of 0)⇒3’). Thus we
obtain what follows.

Theorem. Assume that the Stonean lattice cone E ⊂ USCK+(X) is
rich. Then there is a one-to-one correspondence between the elementary
integrals I : E → [0,∞[ which are τ tight and the Radon measures α :
Bor(X)→ [0,∞]. The correspondence is I(f) =

∫

fdα for all f ∈ E.

It seems that this is the first Riesz representation theorem which applies
to all Hausdorff topological spaces X and contains the traditional Riesz
theorem as a direct specialization. In fact, if E is primitive then each I is
⋆ tight and hence τ tight, as we have seen above. Thus for locally compact
X and E = CK+(X, R) we obtain the the traditional Riesz theorem.
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Set Systems and Set Functions

The present text requires the usual concepts for set systems and set
functions, but with some nontrivial modifications and extensions. The first
chapter serves to introduce these notions and to develop their properties as
needed in the sequel. We also include certain classical extension theorems
for set functions which are not part of the later systematic development.

1. Set Systems

Basic Notions and Notations

Let X be a nonvoid set, and let as usual P(X) denote its power set. For
A ⊂ X the complement will be written A′. Besides the usual operations
with subsets we define the new formation

U |A|V := (U ∩A′) ∪ (V ∩A) for U, V,A ⊂ X.

Thus U |A|V is the unique subset of X which coincides with U on A′ and
with V on A. We list without proof some simple properties.

1.1. Properties. 1) U |A|V is isotone in U and in V . 2) U ∩ V ⊂
U |A|V ⊂ U ∪ V. 3) U |A|V = V |A′|U. 4) (U |A|V )′ = U ′|A|V ′ = V ′|A′|U ′. 5)
For U, V,A ⊂ X form P := U |A|V and Q := U |A′|V. Then P |A|Q = U and
P |A′|Q = V.

We understand a set system in X to be a collection of subsets of X,
that is a subset of P(X). A nonvoid set system is called a paving in X.
We emphasize that a paving need not have the member ∅ ⊂ X. We shall
meet different kinds of set systems. Basic properties of a set system S are

∪ : A,B ∈ S⇒ A ∪B ∈ S;
∩ : A,B ∈ S⇒ A ∩B ∈ S;
\ : A,B ∈ S with A ⊂ B ⇒ B \A := B ∩A′ ∈ S;
⊥ : A ∈ S⇒ A′ ∈ S.

We define S⋆ to consist of the unions
⋃

S∈M

S for the finite pavings M ⊂ S,

and S⋆ to consist of the respective intersections. Thus S⋆ = S iff S fulfils
∪, and S⋆ = S iff S fulfils ∩. We also form S⊥ := {A′ : A ∈ S}. We define
a paving S to be
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a lattice iff it has the properties ∪∩;
an oval iff U, V,A ∈ S⇒ U |A|V ∈ S;
a ring iff it fulfils ∪ ∩ \;
an algebra iff it fulfils ∪ ∩ ⊥.

We have thus added the new class of ovals to some familiar ones. We shall
see that the ovals are similar to rings, but form a more symmetric class. The
remarks and examples below contain some simple assertions which are left
as exercises.

1.2. Remarks and Examples. 1) We have ∪⊥ ⇔ ∩⊥. Thus an algebra
can be defined to fulfil ∪⊥, and likewise to fulfil ∩⊥. Furthermore we have
∪\ ⇒ ∩\ , but not⇐. Thus a ring can be defined to fulfil ∪\, but not to fulfil
∩\. 2) If S is a ring then A,B ∈ S⇒ B∩A′ ∈ S. 3) We have S algebra ⇒
S ring ⇒ S oval ⇒ S lattice . 4) S algebra ⇔ S ring with X ∈ S.
Likewise S ring ⇔ S oval with ∅ ∈ S. 5) If S is a lattice then S⊥ is a
lattice as well. The same holds true for ovals and for algebras, but not for
rings.

6) {∅, X} and P(X) are algebras. {∅} is a ring, but not an algebra.
Furthermore {A} is an oval for each A ⊂ X, but not a ring when A �= ∅. 7)
A set system which is totally ordered under inclusion ⊂ is a lattice. But it
is not an oval when it has at least three members.

8) Let X be a topological space. Then the system Op(X) of its open
subsets and the system Cl(X) of its closed subsets are lattices which contain
∅, but as a rule are not ovals.

9) Each paving S in X is contained in a unique smallest lattice L(S),
called the lattice generated by S. It is as usual the intersection of all lattices
which contain S. We likewise obtain the oval O(S), the ring R(S), and the
algebra A(S) generated by S. Thus L(S) ⊂ O(S) ⊂ R(S) ⊂ A(S). 10) If
S has ∩ then L(S) = S⋆.

11) The most important examples on R are the systems of the closed
bounded intervals [a, b] with real a ≦ b and of the open bounded intervals
]a, b[ with real a < b, each time combined with ∅, and their obvious coun-
terparts in Rn. The generated lattices consist of closed/open sets and hence
cannot be rings. 12) Another example on R is the system of the half-open
bounded intervals [a, b[ with real a < b, as above combined with ∅, and its
obvious counterpart in Rn. This time the generated lattice turns out to be
a ring. However, we shall not use this example for systematic purposes.

We turn to the relevant infinite formations. For a set system S we define
Sσ ⊂ Sτ to consist of the unions

⋃

S∈M

S for the countable/arbitrary pavings

M ⊂ S, and Sσ ⊂ Sτ to consist of the respective intersections. In the
sequel we shall use a simple and practical shorthand notation: The symbol
• means that in a fixed context it can be read as one of the symbols ⋆στ , at
times with restrictions as noted in the respective context. Thus we define
S to fulfil ∪ • / ∩ • iff S• = S/S• = S. In this connection we denote the
finite/countable/arbitrary pavings to be of type • = ⋆στ .
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Next let (Sl)l be a sequence of subsets of X. We write

Sl ↑ iff the sequence increases,
Sl ↑ S iff it increases with union S,
Sl ↑⊃ A iff it increases with some union S ⊃ A.

A set system S in X is defined to fulfil ↑σ iff for each sequence (Sl)l in S

with Sl ↑ S one has S ∈ S. All this also applies to ↓ alike, that is with
decrease to the intersection instead of increase to the union.

The nonsequential counterparts are as follows. A paving M in X is
called upward directed iff for each pair U, V ∈ M there exists W ∈
M with U, V ⊂ W . Note that M is upward directed when it has ∪. We
write

M ↑ iff M is upward directed,
M ↑ S iff M is upward directed with union S,
M ↑⊃ A iff M is upward directed with some union S ⊃ A.

A set system S in X is defined to fulfil ↑ τ iff for each paving M ⊂
S with M ↑ S one has S ∈ S. As before all this applies to ↓ alike, that
is with downward directed to the intersection instead of upward directed to
the union.

1.3. Exercise. 1) Let M be a finite paving. Then M ↑ S means that
S ∈ M and M ⊂ S ∀M ∈ M, that is that M has the maximum S under
inclusion. 2) Let M be a countable paving. Then M ↑ S means that there
exists a sequence (Sl)l in M with Sl ↑ S such that each M ∈M is contained
in some Sl.

1.4. Exercise. Assume that • = στ . 0) If S is a lattice then S• and
S• are lattices as well. 1) Let S be a set system with ∪. If S ∈ S• then
there exists a paving M ⊂ S of type • such that M ↑ S. Thus in case • = σ
there exists a sequence (Sl)l in S such that Sl ↑ S. 2) For each set system
S one has ∪• ⇔ ∪ and ↑•.

1.5. Exercise. 1) Prove that M ↑ S ⇔ (M⊥) ↓ S′. 2) For each set
system S one has (S•)⊥ = (S⊥)•.

We define a σ lattice/ σ oval/σ ring/σ algebra to be a lattice/oval/
ring/ algebra with ↑σ and ↓σ; in view of 1.4.2 this means that Sσ = Sσ =
S.

1.6. Remarks and Examples. 1) For lattices and ovals none of the
properties ↑ σ and ↓ σ implies the other. For rings we have ↑ σ ⇒↓ σ, but
not⇐. For algebras we have ↑σ ⇔↓σ. 2) {∅, X} and P(X) are σ algebras.
There are other obvious examples.

3) Each paving S in X is contained in a unique smallest σ lattice Lσ(S),
called the σ lattice generated by S. It is the intersection of all σ lat-
tices which contain S. We likewise obtain the σ oval Oσ(S), the σ ring
Rσ(S), and the σ algebra Aσ(S) generated by S. Thus Lσ(S) ⊂ Oσ(S) ⊂
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Rσ(S) ⊂ Aσ(S). However, the definitions of these set systems are so indi-
rect that their explicit description even for the simplest S can produce ex-
treme difficulties. Thus in order to handle these formations delicate methods
have been invented. Two of them will be presented later in this section.

4) Let X be a topological space. One defines the Borel σ algebra of
X to be

Bor(X) := Aσ(Op(X)) = Aσ(Cl(X));

its members are called the Borel subsets of X. Furthermore besides Op(X)
and Cl(X) one considers the smaller pavings

COp(X) := {[f �= 0] : f ∈ C(X, R)}, CCl(X) := {[f = 0] : f ∈ C(X, R)},
which are lattices as well. The definitions have numerous obvious variants,
of which we shall make free use. In case X is semimetrizable the new pavings
coincide with the former ones, but as a rule they are different. One defines
the Baire σ algebra of X to be

Baire(X) := Aσ(COp(X)) = Aσ(CCl(X));

its members are called the Baire subsets of X.

1.7. Exercise. ⋆) If S is a ring then S ∪ (S⊥) is an algebra. σ) If S

is a σ ring then S ∪ (S⊥) is a σ algebra.

We need one more notation. Let T be a set system in X. A subset
A ⊂ X is called

upward enclosable T iff A ⊂ T for some T ∈ T,
downward enclosable T iff A ⊃ T for some T ∈ T.

Let ⊏ T and ⊐ T consist of all these subsets. Also we form for set systems
S and T the set system

S ⊏ T := (⊐ S)∩ (⊏ T) = {A⊂X : S⊂A⊂T for some S ∈ S and T ∈ T}.
These set systems can of course be void.

1.8. Exercise. Let S be a paving. 1⋆) If S ↑ then ⊏ S is a ring. If
S ↓ then ⊐ S is an oval. 2⋆) We have

O(S) ⊂ (S⋆ ⊏ S⋆);
R(S) ⊂ (⊏ S⋆);
A(S) ⊂ {A ⊂ X : A or A′ in ⊏ S⋆}.

1σ) If Sσ = S then ⊏ S is a σ ring. If Sσ = S then ⊐ S is a σ oval. 2σ)
We have

Oσ(S) ⊂ (Sσ ⊏ Sσ);
Rσ(S) ⊂ (⊏ Sσ);
Aσ(S) ⊂ {A⊂X : A or A′ in ⊏ Sσ}.

Inverse Images of Pavings

This is the first of the two methods announced in 1.6.3) in order to handle
the formations for set systems introduced above. Let X and Y be nonvoid
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sets and ϑ : X → Y be a map. It is common to form

for A ⊂ X the image set ϑ(A) := {ϑ(x) : x ∈ A} ⊂ Y ,

for B ⊂ Y the inverse image set
−1
ϑ (B) := {x ∈ X : ϑ(x) ∈ B} ⊂ X.

The behaviour of the inverse images is much better than that of the direct
images. Thus one has

−1
ϑ (

⋃

B∈B

B) =
⋃

B∈B

−1
ϑ (B) and

−1
ϑ (

⋂

B∈B

B) =
⋂

B∈B

−1
ϑ (B)

for each paving B in Y , and
−1
ϑ (B′) = (

−1
ϑ (B))′ for each B ⊂ Y , but only

ϑ(
⋃

A∈A

A) =
⋃

A∈A

ϑ(A) and ϑ(
⋂

A∈A

A) ⊂
⋂

A∈A

ϑ(A)

for each paving A in X, and no relation between ϑ(A′) and (ϑ(A))′ for
A ⊂ X. Therefore our prime interest is to form for a paving B in Y the

inverse image paving
−1
ϑ (B) in X, defined to consist of the

−1
ϑ (B) for all

B ∈ B.

1.9. Remark. If the paving B in Y is a lattice/oval/ring/algebra or a
σ lattice/σ oval/σ ring/σ algebra then the same holds true for the paving
−1
ϑ (B) in X.

Proof. i) The above rules for inverse image sets show that the properties

B• = B and B• = B carry over to
−1
ϑ (B). Thus we obtain the assertion for

lattices and for σ lattices. ii) For U, V,B ⊂ Y we have

−1
ϑ (U |B|V ) =

−1
ϑ (U ∩B′) ∪

−1
ϑ (V ∩B)

=
(
−1
ϑ (U) ∩ (

−1
ϑ (B))′

)

∪
(
−1
ϑ (V ) ∩

−1
ϑ (B)

)

=
−1
ϑ (U)|

−1
ϑ (B)|

−1
ϑ (V ).

Thus we obtain the assertion for ovals and hence for σ ovals. iii) It is obvious

that ∅ ∈ B ⇒ ∅ ∈
−1
ϑ (B) and Y ∈ B ⇒ X ∈

−1
ϑ (B). Thus we obtain the

assertion for rings and algebras and hence for σ rings and σ algebras.

Now as a substitute for the direct image of a paving A in X we form the

set system ϑ[A] in Y , defined to consist of the B ⊂ Y such that
−1
ϑ (B) ∈ A.

Note that ϑ[A] can be void.

1.10. Remark. Let A be a paving in X such that ϑ[A] is nonvoid. If
A is a lattice/oval/ring/algebra or a σ lattice/σ oval/σ ring/σ algebra then
the same holds true for the paving ϑ[A] in Y .

Proof. i) As above one verifies that the rules for inverse image sets
imply that the properties A• = A and A• = A carry over to ϑ[A]. Thus we
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obtain the assertion for lattices and for σ lattices. ii) If A is an oval then
for U, V,B ∈ ϑ[A] we have as above

−1
ϑ (U |B|V ) =

−1
ϑ (U)|

−1
ϑ (B)|

−1
ϑ (V ) ∈ A and hence U |B|V ∈ ϑ[A].

Thus we obtain the assertion for ovals and hence for σ ovals. iii) It is
obvious that ∅ ∈ A ⇒ ∅ ∈ ϑ[A] and X ∈ A ⇒ Y ∈ ϑ[A]. Thus we obtain
the assertion for rings and algebras and hence for σ rings and σ algebras.

The two remarks combine to furnish the desired result.

1.11. Theorem. Let T denote one of the operations LORA or LσOσRσ

Aσ. Then T(
−1
ϑ (B)) =

−1
ϑ (T(B)) for each paving B in Y .

Proof. ⊂) By definition T(B) is a lattice/· · · which contains B. Hence
−1
ϑ (T(B)) contains

−1
ϑ (B), and is a lattice/· · · by 1.9. It follows that

T(
−1
ϑ (B)) ⊂

−1
ϑ (T(B)). ⊃) By definition the paving A := T(

−1
ϑ (B)) in X is a

lattice/· · · which contains
−1
ϑ (B). By its definition thus ϑ[A] contains B and

hence is nonvoid, and is a lattice/· · · by 1.10. It follows that T(B) ⊂ ϑ[A].

Since by definition
−1
ϑ (ϑ[A]) ⊂ A we obtain

−1
ϑ (T(B)) ⊂

−1
ϑ (ϑ[A]) ⊂ A =

T(
−1
ϑ (B)). The proof is complete.

1.12. Example. Let X ⊂ Y be nonvoid. Then each paving B in Y
produces a paving B ∩ X in X, defined to consist of the B ∩ X for all
B ∈ B, and called the trace of B on X. If ϑ : X → Y denotes the injection

then B ∩X =
−1
ϑ (B) in the above sense. Thus if B is a lattice/· · · then by

1.9 the trace B ∩ X is a lattice/· · · as well. Furthermore we have by 1.11
with the same abbreviation T(B ∩X) = (T(B)) ∩X for each paving B in
Y . Here of course the operation T is understood to be relative to X on the
left side, and relative to Y on the right side.

1.13. Exercise. Let Y be a topological space, and let the nonvoid subset
X ⊂ Y be equipped with the relative topology. 1) Prove that Bor(X) =
Bor(Y ) ∩X. 2) We have

Bor(X) ⊃ {A ∈ Bor(Y ) : A ⊂ X}.
Here we have equality iff X is in Bor(Y ). 3) Can the counterpart of 1) for
Baire(·) be answered in a similar manner? Deduce from a standard theorem
in topology that Baire(X) = Baire(Y ) ∩X at least if Y is normal and X is
closed in Y .

The Transporter

We turn to the second of the two methods announced in 1.6.3). The basic
idea seems to be due to Sierpiński; see Hoffmann-Jørgensen [1994] section
1.6. In the more recent literature it appears under the names monotone class
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theorem and Dynkin systems; see for example Halmos [1950] section 6 and
Bauer [1992] section 2. It will here be based on the notion of transporter as
introduced in König [1991].

For two pavings M and N in the nonvoid set X we define the trans-
porter M⊤N to consist of all subsets A ⊂ X such that M ∈ M ⇒
A ∩M ∈ N. Note that this set system can be void. In particular we write
M⊤M =: M⊤. The members of M⊤ are often called the local M sets.

1.14. Properties. 1) X ∈ M⊤N ⇔ M ⊂ N. In particular we have
X ∈ M⊤. 2) A ∈ M⊤ and B ∈ M⊤N ⇒ A ∩ B ∈ M⊤N. In other words
M⊤ ⊂ (M⊤N)⊤. In particular the paving M⊤ fulfils ∩. 3) M⊤ ⊂ M ⇔
X ∈M. Furthermore M⊤ ⊃M⇔M fulfils ∩. In particular M⊤⊤ = M⊤.
4) N fulfils \ ⇒M⊤N fulfils \. 5) Let • = στ . Then ↑• carries over from
N to M⊤N. The same holds true for ↓•.

Proof. All properties except 4) are obvious. To see 4) note that for
A,B,M ⊂ X with A ⊂ B one has (B \A) ∩M = B ∩A′ ∩M = (B ∩M) ∩
(A′ ∪M ′) = (B ∩M) \ (A ∩M).

We prepare the main theorem with a useful lemma.

1.15. Lemma. Let M be a paving. ⋆) If M fulfils \ then M⊤ is an
algebra. σ) If M fulfils \ and one of the properties ↑σ ↓σ then M⊤ is a σ
algebra.

Proof. Assume that M has \. ⋆) We have X ∈ M⊤ by the above
property 1), and M⊤ has \ by 4). Thus M⊤ has ⊥. Furthermore M⊤ has
∩ by 2). Thus M⊤ is an algebra. σ) If M has one of the properties ↑σ ↓σ
then M⊤ has the same by 5). Thus M⊤ is a σ algebra.

1.16. Theorem (The Transporter Theorem). Let N be a paving. ⋆) If
N fulfils \ then

A(M⊤) ⊂M⊤N for all pavings M ⊂ N.

σ) If N fulfils \ and one of the properties ↑σ ↓σ then

Aσ(M⊤) ⊂M⊤N for all pavings M ⊂ N.

Proof. Assume that N has \, and fix a paving M ⊂ N. ⋆) M⊤N

has \ by the above property 4). Hence by 1.15.⋆) (M⊤N)⊤ is an algebra.
Now M⊤ ⊂ (M⊤N)⊤ by 2) and hence A(M⊤) ⊂ (M⊤N)⊤. Furthermore
X ∈ M⊤N by 1) and hence (M⊤N)⊤ ⊂ M⊤N by 3). This combines to
produce the assertion. σ) If N has one of the properties ↑σ ↓σ then M⊤N

has the same by 5). Hence by 1.15.σ) (M⊤N)⊤ is a σ algebra. It follows as
above that Aσ(M⊤) ⊂ (M⊤N)⊤ ⊂M⊤N.

The transporter theorem will find substantial applications in later parts.
For the moment we continue with some simple but typical consequences. The
reader is warned that the transporter theorem becomes false in both parts
⋆) and σ), and even for M = N, if on the left side one writes M instead of
M⊤.
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1.17. Remark. Let S be a paving. Then

⋆) R(S) = A(S) ∩ (⊏ S⋆) and A(S) = R(S) ∪ (R(S)⊥);
σ) Rσ(S) = Aσ(S) ∩ (⊏ Sσ) and Aσ(S) = Rσ(S) ∪ (Rσ(S)⊥).

In particular if S is a σ ring then A(S) is a σ algebra.

Proof of ⋆). First assertion: The inclusion ⊂ is contained in 1.8.2⋆);
thus we have to prove ⊃. Since R(S) has \ we conclude from 1.15.⋆)
that (R(S))⊤ is an algebra; therefore A(S) ⊂ (R(S))⊤. Now (R(S))⊤ =
R(S)⊤R(S) ⊂ S⋆⊤R(S). Thus we have A(S) ⊂ S⋆⊤R(S). It follows that
A ∈ A(S) ∩ (⊏ S⋆)⇒ A ∈ R(S). Second assertion: To see ⊂ combine the
last assertion in 1.8.2⋆) with the first assertion above. The implication ⊃ is
obvious. The proof of σ) is left as an exercise.

1.18. Proposition. Let S be a paving. Then

⋆) {A ∈ A(S⊤) : A or A′ in ⊏ S⋆} ⊂ A(S),
σ) {A ∈ Aσ(S⊤) : A or A′ in ⊏ Sσ} ⊂ Aσ(S).

Proof of σ). We can assume that A ∈ Aσ(S⊤) is in ⊏ Sσ. Thus

A ⊂
∞
⋃

l=1

Sl or A =
∞
⋃

l=1

A ∩ Sl for a sequence (Sl)l in S. From 1.16.σ) applied

to N := Aσ(S) and M := S we obtain A ∈ S⊤Aσ(S). Therefore A ∩ Sl ∈
Aσ(S) ∀l ∈ N and hence A ∈ Aσ(S).

1.19. Consequence. Let S and K be pavings such that K ⊂ S ⊂ K⊤.
Then

⋆) A(K) = {A ∈ A(S) : A or A′ in ⊏ K⋆};
σ) Aσ(K) = {A ∈ Aσ(S) : A or A′ in ⊏ Kσ}.

Proof of σ). The inclusion ⊂ follows from 1.8.2σ). The inclusion ⊃
follows from 1.18.σ) since S ⊂ K⊤.

1.20. Example. Let X be a topological space, and let Comp(X) consist
of its compact subsets. We assume that X is Hausdorff, so that Comp(X) ⊂
Cl(X). Then 1.19.σ) applied to S := Cl(X) and K := Comp(X) furnishes
the important relation

Aσ(Comp(X)) = {A ∈ Bor(X) : A or A′ in ⊏ (Comp(X))σ}.
Another application of the transporter theorem 1.16.⋆) is a useful de-

scription of the ring generated by a lattice which contains ∅.

1.21. Exercise. Let S be a lattice with ∅ ∈ S. Then for each M ∈
R(S) there exists a finite sequence S1 ⊂ T1 ⊂ · · · ⊂ Sr ⊂ Tr in S such that

M =
r

⋃

l=1

(Tl \ Sl) (the converse is obvious).

Hint: 1) For subsets A ⊂ B and S ⊂ T one has

(B \A) ∩ (T \ S)′ =
(

(

A ∪ (B ∩ S)
)

\A
)

∪
(

B \
(

A ∪ (B ∩ T )
)

)

.
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Note that A ⊂ A ∪ (B ∩ S) ⊂ A ∪ (B ∩ T ) ⊂ B. 2) Define H to consist of
all subset H ⊂ X which can be written in the above form. Deduce from 1)
that H ∈ H implies H ∩ (T \ S)′ ∈ H for all S ⊂ T in S. Conclude that H

fulfils \. 3) Use 1.16.⋆) for S ⊂ H and note 1.8.2⋆).

Complements for Ovals and σ Ovals

The final subsection contains further material on these unfamiliar notions,
in particular on their relations to the more familiar ones.

1.22. Proposition. ⋆) Let S be an oval. Then U |A|V ∈ S for all
U, V ∈ S and A ∈ A(S). σ) Let S be a σ oval. Then U |A|V ∈ S for all
U, V ∈ S and A ∈ Aσ(S).

Proof. Let S be an oval. Define A to consist of all subsets A ⊂ X such
that U |A|V ∈ S ∀U, V ∈ S. Then S ⊂ A, and A has ⊥. ⋆) We show that
A has ∪ and hence is an algebra. To see this let A,B ∈ A. For U, V ∈ S

then W := U |B|V ∈ S since B ∈ A. It follows that

U |A ∪B|V =
(

U ∩ (A′ ∩B′)
)

∪
(

V ∩ (A ∪B)
)

= (U ∩A′ ∩B′) ∪ (V ∩A) ∪ (V ∩B)

= (U ∩B′ ∩A′) ∪ (V ∩B ∩A′) ∪ (V ∩A)

= (W ∩A′) ∪ (V ∩A) = W |A|V,

which is in S since A ∈ A. Thus we have indeed A∪B ∈ A. σ) We show that
A fulfils ↑σ and hence is a σ algebra. To see this let (Al)l in A with Al ↑ A.
For U, V ∈ S then Bl := U |Al|V ∈ S ∀l ∈ N. Now Bl ∩U,Bl ∩ V ∈ S since
S is a lattice. We have

Bl ∩ U = (U ∩A′
l) ∪ (U ∩ V ∩Al) = (U ∩ V ) ∪ (U ∩A′

l)

↓ (U ∩ V ) ∪ (U ∩A′),

Bl ∩ V = (U ∩ V ∩A′
l) ∪ (V ∩Al) = (U ∩ V ) ∪ (V ∩Al)

↑ (U ∩ V ) ∪ (V ∩A),

and hence by assumption P := (U ∩ V )∪ (U ∩A′) ∈ S and Q := (U ∩ V )∪
(V ∩A) ∈ S. Now

P ∪Q = (U ∩ V ) ∪ (U ∩A′) ∪ (V ∩A) = (U ∩A′) ∪ (V ∩A) = U |A|V,

which is in S since S is a lattice. Thus we have indeed A ∈ A.

1.23. Consequence. Let S be a paving. Then

⋆) O(S) = A(S) ∩ (S⋆ ⊏ S⋆);
σ) Oσ(S) = Aσ(S) ∩ (Sσ ⊏ Sσ).

Proof. This corresponds to part of 1.17. Let us prove σ). The inclusion
⊂ is contained in 1.8.2σ). Thus we have to prove ⊃. Let A ∈ Aσ(S)∩(Sσ ⊏

Sσ), that is A ∈ Aσ(S) and U ⊂ A ⊂ V with U ∈ Sσ ⊂ Oσ(S) and V ∈
Sσ ⊂ Oσ(S). From 1.22.σ) applied to Oσ(S) we obtain U |A|V ∈ Oσ(S).
But U |A|V = A since U ⊂ A ⊂ V . Thus A ∈ Oσ(S).
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The next assertions deal with the ring R(S) generated by an oval S.

1.24. Lemma. Let S be an oval. Define a(S) ⊂ A(S) to consist of those
A ∈ A(S) which are upward enclosable S and upward enclosable S⊥, that
is

a(S) = A(S) ∩ (⊏ S) ∩ (⊏ (S⊥)).

1) a(S) is a ring ⊂ R(S). 2) If ∅ ∈ S then a(S) = S. If ∅ /∈ S then a(S)
and S are disjoint. 3) For A ∈ a(S) and S ∈ S we have S ∪A,S ∩A′ ∈ S

and (S ∪A) \ (S ∩A′) = A.
4) a(S) = {V ∩ U ′ : U, V ∈ S} = {V \ U : U, V ∈ S with U ⊂ V }.
5) a(S) ∪S is a ring and hence = R(S).

Proof. 1) Follows from 1.8.1⋆) and 1.17.⋆). 2) If ∅ ∈ S then X ∈ S⊥
and hence a(S) = A(S)∩ (⊏ S) by 1.17.⋆). On the other hand, if A ∈ a(S)
is in S, then A ⊂ V ′ for some V ∈ S imples that ∅ = A ∩ V ∈ S. 3) We
have A ⊂ U and A′ ⊃ V for some U, V ∈ S. Thus S|A|U = (S ∩A′) ∪A =
S ∪ A and S|A|V = (S ∩ A′) ∪ ∅ = S ∩ A′ are in S by 1.22.⋆). The last
relation is an obvious identity. 4) The first inclusion ⊃ is clear by definition,
and the first inclusion ⊂ follows from 3). 5) Let P,Q ∈ a(S) ∪ S. Then
P ∪Q ∈ a(S)∪S in all cases by 1)3). On the other hand, in case Q ∈ a(S)
we have Q ∩ P ′ ∈ a(S) by definition. In case Q ∈ S we have Q ∩ P ′ ∈ S

for P ∈ a(S) by 3) and Q ∩ P ′ ∈ a(S) for P ∈ S by 4).

1.25. Remark. If S is a σ oval then a(S) and R(S) are σ rings. Hence
A(S) is a σ algebra by 1.17.

Proof. 1) Let (Pl)l be a sequence in a(S) with Pl ↑ P . Then for S ∈ S

we have by 1.24.3) S ∪ Pl, S ∩ P ′
l ∈ S and hence S ∪ P ∈ Sσ = S and

S ∩ P ′ ∈ Sσ = S. It follows that P ∈ a(S). 2) Let now (Pl)l be a sequence
in R(S) = a(S)∪S with Pl ↑ P . Then either P ∈ a(S) by 1), or P ∈ S by
assumption. Thus P ∈ R(S).

2. Set Functions

Basic Properties of Set Functions

We consider set functions ϕ : S → R which are defined on lattices S in
nonvoid sets X and take values in R := R ∪ {−∞,∞}. We recall that R

carries a natural total order, and a natural topology which is metrizable
and compact and is the order topology. But it is a problem to extend the
addition from R to R. We recall that for u, v ∈ R the sum u + v ∈ R is
well-defined except when u and v have opposite values ±∞. Our method to
handle this problem is expressed in the next remark.

2.1. Remark. There are exactly two binary operations R × R → R on
R which are associative and commutative and produce the usual addition
in all doubtless cases. These operations are

.
+ : ∞ .

+(−∞) = ∞ and +. :
∞+. (−∞) = −∞.
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In the sequel the symbol
.
+. means that in a fixed context it can be read

as of one of these additions.

2.2. Properties. 1) For u, v ∈ R we have u
.
+. v ∈ R ⇔ u, v ∈ R. 2)

Both
.
+ and +. are isotone in each argument. 3) −(u

.
+v) = (−u)+. (−v) for

all u, v ∈ R.

Proof of 2.1 and 2.2. i) The operations
.
+ and +. defined in 2.1 are

commutative and fulfil 2.2.1). We prove the associativity for +. . To be
shown is (u+. v)+. w = u+. (v+. w) for u, v, w ∈ R. If at least one of u, v, w is
= −∞ then both sides are = −∞ by definition. Thus we can assume that
u, v, w > −∞. If then at least one of u, v, w is = ∞ then both sides are
=∞. It remains the case u, v, w ∈ R which is clear. ii) Assume now that ◦
is a binary operation on R as described in 2.1. To be shown is that either
◦ =

.
+ or ◦ = +. . If not then (−∞) ◦ ∞ = ∞ ◦ (−∞) =: c ∈ R. For each

x ∈ R then

c = (−∞) ◦∞ =
(

x ◦ (−∞)
)

◦∞ = x ◦
(

(−∞) ◦∞)
)

= x ◦ c = x + c,

and hence x = 0. This proves the assertion. iii) We prove that +. is isotone
in the first argument. To be shown is u ≦ v ⇒ u+. a ≦ v+. a for u, v, a ∈ R.
This is clear for a = −∞. Thus we can assume that a > −∞. The assertion
is also clear for u = −∞. Thus we can assume that u > −∞ and hence
v > −∞ as well. But in this case the assertion is obvious. iv) The proof of
2.2.3) is left as an exercise.

After this we return to the set functions ϕ : S → R. The first notion
to be defined is that ϕ be additive in the appropriate sense; the traditional
name for this is modular. We define ϕ : S→ R to be modular

.
+. iff

ϕ(A ∪B)
.
+. ϕ(A ∩B) = ϕ(A)

.
+. ϕ(B) for all A,B ∈ S;

and furthermore to be submodular/supermodular
.
+. iff

ϕ(A ∪B)
.
+. ϕ(A ∩B) ≦/≧ ϕ(A)

.
+. ϕ(B) for all A,B ∈ S.

No specification
.
+. is needed when ϕ attains at most one of the values ±∞.

But otherwise the notions for
.
+ and +. do not coincide; see exercise 2.8

below. We also recall the older relatives of these notions. A set function
ϕ : S→ [0,∞] on a lattice S with ∅ ∈ S is called additive iff

ϕ(A ∪B) = ϕ(A) + ϕ(B) for all A,B ∈ S with A ∩B = ∅,

and subadditive/superadditive iff

ϕ(A ∪B) ≦/≧ ϕ(A) + ϕ(B) for all A,B ∈ S with A ∩B = ∅.

2.3. Examples. 1) For fixed x ∈ X define the Dirac set function δx :
P(X)→ [0,∞[ to be

δx(A) =

{

1 if x ∈ A
0 if x /∈ A

}

= χA(x) for A ⊂ X,

where as usual χA denotes the characteristic function of A. Then δx is
modular. 2) Assume that S is totally ordered under inclusion; see 1.2.7).
Then each set function ϕ : S→ R is modular

.
+. .
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2.4. Exercise. If ϕ : S → R is submodular
.
+ and �≡ ∞ then [ϕ <

∞] := {A ∈ S : ϕ(A) <∞} is a lattice. If ϕ is supermodular +. and �≡ −∞
then [ϕ > −∞] := {A ∈ S : ϕ(A) > −∞} is a lattice.

2.5. Exercise. 1) Let ϕ : S→ R be modular. Prove for A(1), · · ·A(r)

∈ S with A :=
r
⋃

l=1

A(l) that

ϕ(A) =
∑

∅�=T⊂{1,··· ,r}

(−1)#(T )−1ϕ
(

⋂

l∈T

A(l)
)

,

where #(T ) denotes the number of elements of T . 2) Combine this with
2.3.1) to obtain

χA =
∑

∅�=T⊂{1,··· ,r}

(−1)#(T )−1
∏

l∈T

χA(l).

Next we define the set function ϕ : S→ R to be isotone iff ϕ(A) ≦ ϕ(B)
for all A ⊂ B in S. In the present text all set functions in the mainstream
will be isotone until chapter VIII. Also the subsequent definitions will be
phrased for isotone set functions.

The most important notion is that of a regular set function. Assume
that M ⊂ S and T ⊂ S. Then an isotone set function ϕ : S → R is called
outer regular M at T iff

ϕ(S) = inf{ϕ(M) : M ∈M with M ⊃ S} for all S ∈ T,

and is called inner regular M at T iff

ϕ(S) = sup{ϕ(M) : M ∈M with M ⊂ S} for all S ∈ T,

with the usual conventions inf ∅ := ∞ and sup ∅ := −∞. In the most
frequent case T = S we call ϕ outer/inner regular M.

Next we define an isotone set function ϕ : S → R to be bounded
above iff ϕ ≦ c for some c ∈ R, to be finite above iff ϕ < ∞, and to be
semifinite above iff it is inner regular [ϕ < ∞]. We likewise define the
notions bounded/finite/semifinite below.

We turn to the important notion of a continuous set function. An isotone
set function ϕ : S→ R is called upward σ continuous iff

ϕ(Sl) ↑ ϕ(A) for all sequences (Sl)l in S with Sl ↑ A ∈ S;

and almost upward σ continuous iff this holds true whenever ϕ(Sl) >
−∞ ∀l ∈ N. ϕ is called upward τ continuous iff

sup
S∈M

ϕ(S) = ϕ(A) for all pavings M ⊂ S with M ↑ A ∈ S;

and almost upward τ continuous iff this holds true whenever ϕ(S) >
−∞∀S ∈M. We likewise define the obvious downward counterparts. Here
the exceptional value is of course ∞.
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2.6. Exercise. Let • = ⋆στ . Let us redefine an isotone set function
ϕ : S→ R to be upward • continuous iff

sup
S∈M

ϕ(S) = ϕ(A) for all pavings M ⊂ S of type • with M ↑ A ∈ S,

and almost upward • continuous iff this holds true whenever ϕ(S) >
−∞ ∀S ∈ M. Then these definitions coincide with the former ones when
• = στ . In case • = ⋆ the definitions are void since the required properties
are always fulfilled, but are practical for the sake of a uniform treatment of
the three cases. The downward counterparts are obvious as before.

At last we form for a set function ϕ : S→ R the upside-down trans-
form ϕ⊥ : S⊥ → R to be ϕ⊥(T ) = −ϕ(T ′) for T ∈ S⊥. It is obvious that
ϕ⊥⊥ = ϕ.

2.7. Exercise. Let ϕ : S → R be a set function. Prove the following
equivalences. 1) ϕ modular

.
+ ⇔ ϕ⊥ modular +. . Furthermore ϕ submod-

ular/supermodular
.
+ ⇔ ϕ⊥ supermodular/submodular +. . 2) ϕ isotone

⇔ ϕ⊥ isotone. For the remainder we assume that ϕ be isotone. 3) Let
M ⊂ S and T ⊂ S. Then ϕ outer regular M at T⇔ ϕ⊥ inner regular M⊥ at
T⊥. 4) ϕ bounded/finite/semifinite above ⇔ ϕ⊥ bounded/finite/semifinite
below. 5) ϕ (almost) upward • continuous ⇔ ϕ⊥ (almost) downward •
continuous.

2.8. Exercise. 1) Define on a set X of two elements an isotone set
function ϕ : P(X) → R which is modular +. but not submodular

.
+. In

particular the notions modular
.
+ and +. do not coincide. 2) Prove that each

isotone set function ϕ : S→ R fulfils

ϕ submodular
.
+⇒ ϕ submodular +. .

Note that the converse implication is false by 1). Thus it seems that the
combination of submodular with

.
+ is in a sense superior to the combination

of submodular with +. . See also 2.4 and 4.1.5) below.

2.9. Exercise. Construct examples of set functions ϕ : S → {0, 1} on
algebras S which are isotone and modular and fulfil

1) ϕ is not upward σ continuous;
2) ϕ is upward σ continuous but not upward τ continuous.

Hint for 1): Let X be an infinite countable set, and let S consist of those
subsets which are either finite or cofinite (:=of finite complement). Define
ϕ : S → {0, 1} to be ϕ(A) = 0 if A is finite and ϕ(A) = 1 if A is cofinite.
Hint for 2): Similar construction on an uncountable set X. Define the
cocountable subsets of X!

Contents and Measures

We come to the two central notions of measure theory. In the present text
the conventional versions will be specializations of more comprehensive new
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versions. However, it will be seen that in a sense the two versions are
equivalent.

We define a content
.
+. (or

.
+. content) to be a set function ϕ : S → R

on an oval S which is modular
.
+. and isotone and attains at least one finite

value. No specification
.
+. is needed when ϕ attains at most one of the values

±∞. In the special case that

∅ ∈ S, which means that S is a ring, and

ϕ(∅) = 0, which implies that ϕ : S→ [0,∞],

we speak of a conventional content, in short ccontent.

2.10. Remark. Let S be a ring. A set function ϕ : S → [0,∞] is a
ccontent iff it is additive and attains at least one finite value.

Proof. We have to show that the two conditions are sufficient. i) Let
A ∈ S with ϕ(A) ∈ R. For B := ∅ then ϕ(A) = ϕ(A) + ϕ(∅) and
hence ϕ(∅) = 0. ii) For A,B ∈ S we have the disjoint decompositions
A ∪ B = A ∪ (B ∩ A′) and B = (A ∩ B) ∪ (B ∩ A′), the members of which
are in S since S is a ring. It follows that

ϕ(A ∪B) + ϕ(A ∩B) =
(

ϕ(A) + ϕ(B ∩A′)
)

+ ϕ(A ∩B)

= ϕ(A) +
(

ϕ(B ∩A′) + ϕ(A ∩B)
)

= ϕ(A) + ϕ(B).

iii) For A ⊂ B in S we have the disjoint decomposition B = A ∪ (B \ A)
and ϕ(B) = ϕ(A) + ϕ(B \A) ≧ ϕ(A). Thus ϕ is isotone.

We define a measure
.
+. (or

.
+. measure) to be a set function ϕ : S→ R

on a σ oval S which is a content
.
+. and both almost upward σ continuous

and almost downward σ continuous. In the special case that

∅ ∈ S, which means that S is a σ ring, and

ϕ(∅) = 0, which implies that ϕ : S→ [0,∞],

we speak of a conventional measure, in short cmeasure. In this special
case it is well-known that the assumption that ϕ be almost downward σ
continuous is redundant. This fact extends to the present context as follows.

2.11. Proposition. Let ϕ : S → R be a content
.
+. on an oval. If ϕ is

semifinite below then

ϕ almost upward σ continuous ⇒ ϕ almost downward σ continuous.

If ϕ is semifinite above then

ϕ almost upward σ continuous ⇐ ϕ almost downward σ continuous.

Proof. In view of the upside-down transform method it suffices to prove
the first assertion. Let us fix (Sl)l in S with Sl ↓ S ∈ S and ϕ(Sl) <
∞ ∀l ∈ N. To be shown is ϕ(Sl) ↓ ϕ(S). i) We first prove this under
the assumption that ϕ(S) > −∞. Then ϕ(Sl), ϕ(S) ∈ R. We form Dl :=
S1|Sl|S = (S1 ∩ S′

l) ∪ S ∈ S. Then S ⊂ Dl ⊂ S1 and hence ϕ(Dl) ∈ R.
Furthermore Sl ∪Dl = S1 and Sl ∩Dl = S and hence

ϕ(S1) + ϕ(S) = ϕ(Sl) + ϕ(Dl).
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Now Dl ↑ (S1 ∩ S′) ∪ S = S1 and hence by assumption ϕ(Dl) ↑ ϕ(S1). It
follows that ϕ(Sl) ↓ ϕ(S). ii) Now we assume that ϕ(S) = −∞. We can also
assume that ϕ(Sl) > −∞ and hence ϕ(Sl) ∈ R ∀l ∈ N, since otherwise the
assertion were obvious. We fix a set T ∈ S such that T ⊃ S and ϕ(T ) ∈ R.
Since ϕ is modular

.
+. we then have ϕ(Sl ∪ T ), ϕ(Sl ∩ T ) ∈ R and

ϕ(Sl) + ϕ(T ) = ϕ(Sl ∪ T ) + ϕ(Sl ∩ T ).

From i) applied to Sl ∪ T ↓ T we obtain ϕ(Sl ∪ T ) ↓ ϕ(T ). It follows that

lim
l→∞

ϕ(Sl) = lim
l→∞

ϕ(Sl ∩ T ) ≦ ϕ(T ).

Now since ϕ is downward semifinite the values ϕ(T ) have the infimum −∞.
Therefore ϕ(Sl) ↓ −∞ = ϕ(S).

2.12. Exercise. The two semifiniteness assumptions in 2.11 cannot be
interchanged, even if one fortifies semifinite to bounded. As an example con-
struct a ccontent ϕ : P(N)→ [0,∞] which is almost downward σ continuous
but not (almost) upward σ continuous.

2.13. Exercise. 1) Let α : A → [0,∞] be a ccontent on an algebra A.
Define η : P(X)→ [0,∞] to be

η(A) =

{

0 if A is upward enclosable [α <∞]
∞ if not

}

.

Then η is a ccontent. 2) Let α : A → [0,∞] be a cmeasure on a σ algebra
A. Define η : P(X)→ [0,∞] to be

η(A) =

{

0 if A is upward enclosable [α <∞]σ

∞ if not

}

.

Then η is a cmeasure.

New versus Conventional Contents and Measures

The present subsection is of more theoretical interest and will not be used
before chapter VIII. We shall establish a correspondence between the new
and the conventional contents and measures which is almost one-to-one.
This correspondence expresses the new entities in terms of the conventional
ones. Also it makes clear how to transfer to them certain notions for which
the transfer is not obvious, for example the notion of null sets.

Let S be an oval in X. The treatment will be based on the last subsection
of section 1. We recall from 1.24 the ring a(S) ⊂ R(S) ⊂ A(S) and its
properties.

2.14. Proposition. Let ϕ : S → R be a content
.
+. on the oval S. Fix

P ∈ S with ϕ(P ) ∈ R and define ϕ∧ : A(S)→ [0,∞] to be

ϕ∧(A) =

{

ϕ(P ∪A) +
(

− ϕ(P ∩A′)
)

if A ∈ a(S)
∞ if A /∈ a(S)

}

;

note that in case A ∈ a(S) we have P ∪ A,P ∩ A′ ∈ S by 1.24.3), and
ϕ(P ∪ A) ≧ ϕ(P ) > −∞ and −ϕ(P ∩ A′) ≧ −ϕ(P ) > −∞, so that the
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above sum is defined and in [0,∞]. Then ϕ∧ is a ccontent on the algebra
A(S) and independent of P .

If in particular S is a ring and ϕ : S→ [0,∞] is a ccontent, then we can
take P := ∅ and obtain ϕ∧(A) = ϕ(A) if A ∈ a(S) = S and ϕ∧(A) =∞ if
A /∈ S.

Proof. i) It is obvious that ϕ∧(∅) = 0 and that ϕ∧ is isotone. ii) In
order to prove that ϕ is modular it suffices to consider A,B ∈ a(S) since
otherwise both sides of the assertion are = ∞. Then A ∪ B,A ∩ B ∈ a(S)
as well. We obtain

ϕ∧(A) + ϕ∧(B) = ϕ(P ∪A) +
(

− ϕ(P ∩A′)
)

+ ϕ(P ∪B) +
(

− ϕ(P ∩B′)
)

= ϕ
(

P ∪ (A ∪B)
)

+ ϕ
(

P ∪ (A ∩B)
)

+
(

− ϕ
(

P ∩ (A ∪B)′
)

− ϕ
(

P ∩ (A ∩B)′
)

)

= ϕ∧(A ∪B) + ϕ∧(A ∩B),

where we made repeated use of the fact noted above that all terms are
> −∞. iii) For the last assertion fix P,Q ∈ S with ϕ(P ), ϕ(Q) ∈ R. To be
shown is

ϕ(P ∪A) +
(

− ϕ(P ∩A′)
)

= ϕ(Q ∪A) +
(

− ϕ(Q ∩A′)
)

for A ∈ a(S).

Now we have

ϕ(P ∪A)
.
+. ϕ(Q ∩A′) = ϕ(P ∪Q ∪A)

.
+. ϕ(P ∩Q ∩A′),

because (P ∪A)∪ (Q∩A′) = P ∪Q∪A and (P ∪A)∩ (Q∩A′) = P ∩Q∩A′.
Since the right side is symmetric in P and Q it follows that

ϕ(P ∪A)
.
+. ϕ(Q ∩A′) = ϕ(Q ∪A)

.
+. ϕ(P ∩A′).

In case
.
+ we deduce that ϕ(P ∪ A) = ∞ ⇔ ϕ(Q ∪ A) = ∞, and then the

assertion is clear. If otherwise ϕ(P ∪ A), ϕ(Q ∪ A) ∈ R then it is clear as
well. In case +. we deduce that ϕ(Q ∩ A′) = −∞ ⇔ ϕ(P ∩ A′) = −∞, and
then the assertion is clear. If otherwise ϕ(Q ∩ A′), ϕ(P ∩ A′) ∈ R then it is
clear as well. The proof is complete.

We next define a collection of maps with the opposite direction.

2.15. Remark. Let φ : A(S) → [0,∞] be a ccontent. Fix P ∈ S and
define φP : S→ R to be

φP (A) = φ(A ∩ P ′)
.
+.

(

− φ(A′ ∩ P )
)

for A ∈ S.

Then φP is a content
.
+. on S with φP (P ) = 0.



2. SET FUNCTIONS 17

Proof. i) It is obvious that φP (P ) = 0 and that φP is isotone. ii) To
prove that φP is modular

.
+. let A,B ∈ S. Then

φP (A)
.
+. φP (B) = φ(A ∩ P ′)

.
+. φ(B ∩ P ′)

.
+.

(

− φ(A′ ∩ P )
) .
+.

(

− φ(B′ ∩ P )
)

=
(

φ(A ∩ P ′) + φ(B ∩ P ′)
)

.
+.

(

− φ(A′ ∩ P )− φ(B′ ∩ P )
)

=
(

φ
(

(A ∪B) ∩ P ′
)

+ φ
(

(A ∩B) ∩ P ′
)

)

.
+.

(

− φ
(

(A ∪B)′ ∩ P
)

− φ
(

(A ∩B)′ ∩ P
)

)

= φ
(

(A ∪B) ∩ P ′
) .
+. φ

(

(A ∩B) ∩ P ′
)

.
+.

(

− φ
(

(A ∪B)′ ∩ P
)

) .
+.

(

− φ
(

(A ∩B)′ ∩ P
)

)

= φP (A ∪B)
.
+. φP (A ∩B).

It turns out that the two processes defined above are inverse to each
other.

2.16. Theorem. Let S be an oval. 1) Let ϕ : S → R be a content
.
+. ;

thus ϕ∧ : A(S)→ [0,∞] is a ccontent with ϕ∧(A) =∞ when A /∈ a(S). For
each P ∈ S with ϕ(P ) ∈ R then (ϕ∧)P = ϕ−ϕ(P ). 2) Let φ : A(S)→ [0,∞]
be a ccontent with φ(A) = ∞ when A /∈ a(S); thus for each P ∈ S the set
function φP : S→ R is a content

.
+. with φP (P ) = 0. Then (φP )∧ = φ.

Proof. 1) For A ∈ S we have

(ϕ∧)P (A) = ϕ∧(A ∩ P ′)
.
+.

(

− ϕ∧(A′ ∩ P )
)

.

By definition A ∩ P ′, A′ ∩ P ∈ a(S) and hence

ϕ∧(A ∩ P ′) = ϕ
(

P ∪ (A ∩ P ′)
)

+
(

− ϕ
(

P ∩ (A′ ∪ P )
)

)

= ϕ(P ∪A)− ϕ(P ),

ϕ∧(A′ ∩ P ) = ϕ
(

P ∪ (A′ ∩ P )
)

+
(

− ϕ
(

P ∩ (A ∪ P ′)
)

)

= ϕ(P )− ϕ(P ∩A).

It follows that

(ϕ∧)P (A) =
(

ϕ(P ∪A)− ϕ(P )
) .
+.

(

ϕ(P ∩A)− ϕ(P )
)

= ϕ(P ∪A)
.
+. ϕ(P ∩A)− 2ϕ(P )

= ϕ(P )
.
+. ϕ(A)− 2ϕ(P ) = ϕ(A)− ϕ(P ).
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2) We have to prove that (φP )∧(A) = φ(A) for A ∈ a(S). In view of
φP (P ) = 0 we have (φP )∧(A) = φP (P ∪A) + (−φP (P ∩A′)). Here

φP (P ∪A) = φ
(

(P ∪A) ∩ P ′)
) .
+.

(

− φ
(

(P ′ ∩A′) ∩ P
)

)

= φ(A ∩ P ′),

φP (P ∩A′) = φ
(

(P ∩A′) ∩ P ′
) .
+.

(

− φ
(

(P ′ ∪A) ∩ P
)

)

= −φ(A ∩ P ).

It follows that (φP )∧(A) = φ(A ∩ P ′) + φ(A ∩ P ) = φ(A).

2.17. Consequence. Let S be an oval and P ∈ S. There is a one-to-
one correspondence between the set functions ϕ : S→ R which are contents.
+. with ϕ(P ) = 0, and the set functions φ : A(S) → [0,∞] which are
ccontents with φ(A) = ∞ when A /∈ a(S). The correspondence is φ = ϕ∧

and ϕ = φP .

We continue with the discussion of null sets. If ϕ : S → [0,∞] is a
ccontent on a ring S then it is common to define the null sets for ϕ to
be the sets A ∈ S with ϕ(A) = 0. If ϕ : S → R is a content

.
+. on an

oval S then this definition does not make sense. After the above results it
is reasonable to define the null sets for ϕ to be the sets A ∈ A(S) with
ϕ∧(A) = 0. Of course then A ∈ a(S). There are some useful reformulations.

2.18. Remark. For a subset A ∈ a(S) the following are equivalent. 0)
ϕ∧(A) = 0. 1) ϕ(S ∪A) = ϕ(S) for all S ∈ S. 2) ϕ(S ∩A′) = ϕ(S) for all
S ∈ S. Note that 1)2) make sense in view of 1.24.3).

Proof. Fix P ∈ S with ϕ(P ) ∈ R. Then

ϕ∧(A) =
(

ϕ(P ∪A)− ϕ(P )
)

+
(

ϕ(P )− ϕ(P ∩A′)
)

,

so that ϕ∧(A) = 0 is equivalent to ϕ(P ∪A) = ϕ(P ) = ϕ(P ∩A′).

1)⇒0) For S := P ∩A′ ∈ S we obtain ϕ(P ∪A) = ϕ(P ) = ϕ(P ∩A′).
2)⇒0) For S := P ∪A ∈ S we obtain ϕ(P ∩A′) = ϕ(P ∪A).
0)⇒1)2) For U, V ∈ S we have

ϕ(U ∪A)
.
+. ϕ(V ∩A′)

= ϕ
(

(U ∪A) ∪ (V ∩A′)
) .
+. ϕ

(

(U ∪A) ∩ (V ∩A′)
)

= ϕ(U ∪ V ∪A)
.
+. ϕ(U ∩ V ∩A′).

Since the right side is symmetric in U and V it follows that

ϕ(U ∪A)
.
+. ϕ(V ∩A′) = ϕ(V ∪A)

.
+. ϕ(U ∩A′).

Now put V := P and note that ϕ(P ∩ A′) = ϕ(P ) = ϕ(P ∪ A). It follows
that ϕ(U ∪A) = ϕ(U ∩A′) for all U ∈ S. This implies 1)2).

It remains to establish the connection between the new and the con-
ventional measures. The next two assertions are routine and will be left as
exercises.
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2.19. Exercise. Let ϕ : S→ R be a content
.
+. on the oval S which is

almost upward σ continuous and almost downward σ continuous. 1) ϕ∧|a(S)
is upward σ continuous. 2) ϕ∧ is upward σ continuous whenever a(S) is a
σ ring. 3) ϕ∧ need not be upward σ continuous.

2.20. Exercise. Let φ : A(S)→ [0,∞] be a ccontent such that φ|a(S)
is upward σ continuous. For each P ∈ S then φP : S→ R is almost upward
σ continuous and almost downward σ continuous.

2.21. Consequence. Let S be a σ oval, so that A(S) is a σ algebra
by 1.25, and let P ∈ S. Then there is a one-to-one correspondence between
the set functions ϕ : S → R which are measures

.
+. with ϕ(P ) = 0, and the

set functions φ : A(S) → [0,∞] which are cmeasures with φ(A) = ∞ when
A /∈ a(S). The correspondence is φ = ϕ∧ and ϕ = φP .

Proof. Combine the former correspondence 2.17 with 2.19 and 2.20.

The Main Example: The Volume in Rn

Let K = Kn = Comp(Rn) denote the system of the compact subsets of Rn.
We shall define and explore the set function λ = λn : K → [0,∞[ which
reflects the naive notion of volume in Rn. It will later become the basis
for the Lebesgue measure. We emphasize that its domain K = Kn is a
lattice which is by far not a ring, and which appears to be the most natural
domain for the naive volume, at best besides the lattice of the finite unions
of compact intervals. Thus the present procedure is in accordance with
the systematic theories of the next chapter, which start from set functions
defined on lattices.

We define Ws(s = 0, 1, 2, · · · ) to consist of those compact cubes Q ⊂ Rn

which arise under s consecutive midpoint subdivisions from the compact
cubes with corners in Zn, that is of the subsets

Q(p) :=
{

x = (x1, · · · , xn) ∈ Rn :
1

2s
(pl − 1) ≦ xl ≦

1

2s
pl (l = 1, · · · , n)

}

for p = (p1, · · · , pn) ∈ Zn. Let now K ∈ K. We define

Zs(K) := #
(

{Q ∈Ws : Q ∩K �= ∅}
)

(s = 0, 1, 2, · · · ).
Thus the naive interpretation of 1

2ns Zs(K) is the sum of the volumes of the
Q ∈Ws which meet K. It follows that

Zs+1(K) ≦ 2nZs(K) and hence
1

2n(s+1)
Zs+1(K) ≦

1

2ns
Zs(K).

In fact, under midpoint subdivision each Q ∈ Ws produces 2n cubes in
Ws+1, and Q∩K �= ∅ iff at least one of these subcubes meets K. We define

λ(K) = λn(K) := lim
s→∞

1

2ns
Zs(K) = inf

{ 1

2ns
Zs(K) : s ≧ 0

}

.

It is not hard to explore the basic properties of this set function. It is obvious
that λ(∅) = 0.
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2.22. Remark. Let A ∈ Km and B ∈ Kn and hence A × B ∈ Km+n.
Then λm+n(A×B) = λm(A)λn(B).

Proof. In obvious notation the Q ∈Wm+n
s are the products Q = U × V

of U ∈ Wm
s and V ∈ Wn

s . We have Q ∩ (A × B) �= ∅ ⇔ U ∩ A �= ∅ and
V ∩B �= ∅. It follows that Zm+n

s (A×B) = Zm
s (A)Zn

s (B). The assertion is
now obvious.

2.23. Remark. For a compact interval

K = [a, b] := {x ∈ Rn : al ≦ xl ≦ bl (l = 1, · · · , n)},
where a, b ∈ Rn with al ≦ bl (l = 1, · · · , n), we have

λ(K) = (b1 − a1) · · · (bn − an).

Proof. In view of 2.22 we can restrict ourselves to the case n = 1. i)
We first prove the assertion: For an interval [a, b] ⊂ R the number N :=
#(Z∩ [a, b]) fulfils (b− a)− 1 < N ≦ (b− a) + 1. In fact, take the m,n ∈ Z

with m−1 < a ≦ m and n ≦ b < n+1. Then N = n−m+1. But the above
inequalities can be written −a < −m + 1 ≦ −a + 1 and b− 1 < n ≦ b. The
assertion follows by addition. ii) Fix s ≧ 0. For p ∈ Z then Q(p)∩ [a, b] �= ∅

is equivalent to a ≦ 1
2s p and 1

2s (p− 1) ≦ b, hence to 2sa ≦ p ≦ 2sb + 1. By
i) we have 2s(b− a) < Zs(K) ≦ 2s(b− a) + 2. The assertion follows.

2.24. Remark. λ is isotone. This is obvious.

2.25. Proposition. λ is downward τ continuous.

Proof. Let M ⊂ K be a paving with M ↓ A, so that A ∈ K as well. We
have inf{λ(M) : M ∈ M} =: R ≧ λ(A); to be shown is R ≦ λ(A). 1) Let
V ⊂ Rn be open with A ⊂ V . Then M ⊂ V for some M ∈ M. In fact,
from {M ∩ V ′ : M ∈M} ↓ A∩ V ′ = ∅ it follows that M ∩ V ′ = ∅ for some
M ∈ M. 2) Fix integers 0 ≦ s ≦ t. We pass from Q = Q(p) ∈ Ws to a
larger compact cube Q∼, in that we extend each coordinate interval by 1

2t

on either side. Thus

Q∼ :
1

2s
(pl − 1)− 1

2t
=

1

2t

(

2t−s(pl − 1)− 1
)

≦ xl

≦
1

2s
pl +

1

2t
=

1

2t

(

2t−spl + 1
)

(l = 1, · · · , n).

We have Q ⊂ IntQ∼ ⊂ Q∼; and Q∼ consists of
n

∏

l=1

(

(

2t−spl + 1
)

−
(

2t−s(pl − 1)− 1
)

)

=
(

2t−s + 2
)n

cubes ∈Wt.

Now from
A ⊂

⋃

Q∈Ws,Q∩A�=∅

Q ⊂
⋃

Q∈Ws,Q∩A�=∅

IntQ∼

and from 1) we obtain an M ∈M such that

M ⊂
⋃

Q∈Ws,Q∩A�=∅

IntQ∼ ⊂
⋃

Q∈Ws,Q∩A�=∅

Q∼.
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The set on the right is a union of cubes from Wt, the number of which is
≦ (2t−s + 2)nZs(A). It follows that

R ≦ λ(M) ≦
1

2nt
Zt(M) ≦

1

2nt
(2t−s + 2)nZs(A)

=
( 1

2s
+

2

2t

)n
Zs(A).

This holds true for all 0 ≦ s ≦ t. We let t → ∞ and obtain R ≦ 1
2ns Zs(A)

for all s ≧ 0. It follows that R ≦ λ(A).

2.26. Proposition. λ is modular.

For nonvoid K ∈ K and δ > 0 we form K(δ) := {x ∈ Rn : dist(x, K) ≦

δ}. Thus K(δ) ∈ K and K ⊂ IntK(δ). Furthermore K(δ) ↓ K for δ ↓ 0.

Proof. Fix nonvoid A,B ∈ K. For s ≧ 0 we have Zs(A ∪ B) + Ns =
Zs(A) + Zs(B) with

Ns := #
(

{Q ∈Ws : Q ∩A,Q ∩B �= ∅}
)

.

Therefore

1

2ns
Ns → λ(A) + λ(B)− λ(A ∪B) =: D for s→∞.

Now we have Zs(A ∩ B) ≦ Ns ≦ Zs(A(δ) ∩ B) for all δ ≧ 1
2s

√
n. We let

s → ∞ and obtain λ(A ∩ B) ≦ D ≦ λ(A(δ) ∩ B) for all δ > 0. In view of
2.25 we have λ(A(δ) ∩ B) ↓ λ(A ∩ B) for δ ↓ 0. Hence D = λ(A ∩ B), and
the assertion follows.

2.27. Proposition. λ is upward σ continuous.

Proof. Let(Al)l be a sequence in K with Al ↑ A ∈ K. We have λ(Al) ↑
some R ≦ λ(A); to be shown is R ≧ λ(A). Let us fix ε > 0. 1) There exists
a sequence (Bl)l in K with the properties

i) Al ⊂ IntBl ⊂ Bl;
ii) λ(Bl) < λ(Al) + ε

(

1− 1
2l

)

;
iii) Bl ↑.

First note that by 2.25 there exists δl > 0 such that λ(Al(δl)) < λ(Al) + ε
2l .

We put Bl := A1(δ1) ∪ · · · ∪ Al(δl) ∈ K. Then i)iii) are clear. We prove ii)
via induction. For l = 1 the assertion is clear. To see 1 ≦ l ⇒ l + 1 note
that Bl+1 = Bl ∪ Al+1(δl+1). From 2.26 and the induction hypothesis we
see that

λ(Bl+1)− λ(Al+1)

= λ(Bl) + λ(Al+1(δl+1))− λ(Bl ∩Al+1(δl+1))− λ(Al+1)

≦
(

λ(Bl)− λ(Al)
)

+ λ(Al+1(δl+1))− λ(Al+1)

< ε
(

1− 1

2l

)

+
ε

2l+1
= ε

(

1− 1

2l+1

)

,
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where ≦ follows from Bl ∩ Al+1(δl+1) ⊃ Al. 2) Now from A =
∞
⋃

l=1

Al ⊂
∞
⋃

l=1

Int(Bl) we obtain an l ∈ N such that A ⊂ IntBl ⊂ Bl. It follows that

λ(A) ≦ λ(Bl) < λ(Al) + ε ≦ R + ε. This holds true for all ε > 0. For ε ↓ 0
we obtain the assertion.

3. Some Classical Extension Theorems for Set

Functions

The fundamental extension theorems of the next chapter will be based on
characteristic combinations of regularity and continuity requirements. The
classical extension theorems of the present section are important results as
well, but of different kind because regularity is not involved. The section
consists of three independent subsections. We assume that X is a nonvoid
set.

The Classical Uniqueness Theorem

The classical uniqueness theorem will be the first substantial application of
the transporter theorem 1.16. It will be obtained in ⋆ and σ versions.

3.1. Theorem. ⋆) Let ϕ,ψ : A→ [0,∞] be ccontents on a ring A in X.
Let S ⊂ A be a paving such that S ⊂ A(S⊤) (this weakens the requirement
S ⊂ S⊤ which means that S has ∩ ). If ϕ(S) = ψ(S) < ∞ for all S ∈ S

then ϕ = ψ on R(S).

σ) Let ϕ,ψ : A → [0,∞] be cmeasures on a σ ring A in X. Let S ⊂ A

be a paving such that S ⊂ Aσ(S⊤) (this weakens the requirement S ⊂ S⊤
which means that S has ∩ ). If ϕ(S) = ψ(S) <∞ for all S ∈ S then ϕ = ψ
on Rσ(S).

Proof. Define N to consist of all subsets A ∈ A with ϕ(A) = ψ(A) <∞.
Then N has \, and in case σ) also ↓σ. By assumption S ⊂ N, so that N is
nonvoid. Thus the transporter theorem 1.16 furnishes

in case ⋆): A(S) ⊂ A(S⊤) ⊂ S⊤N;
in case σ): Aσ(S) ⊂ Aσ(S⊤) ⊂ S⊤N.

We now continue with σ); the case ⋆) is similar and simpler. i) For A ∈
Aσ(S) and S1, · · · , Sn ∈ S we have A ∩ S1 ∩ · · · ∩ Sn ∈ Aσ(S) ⊂ S⊤N

and hence A ∩ S1 · · · ∩ Sn = (A ∩ S1 · · · ∩ Sn) ∩ Sn ∈ N. ii) Let now
A ∈ Rσ(S). By 1.8.2σ) A is upward enclosable Sσ; thus there exists a

sequence (Sl)l in S such that A ⊂
∞
⋃

l=1

Sl. Hence the sequence of the subsets

Vn := S1 ∪ · · · ∪ Sn ∈ A satisfies A ∩ Vn ↑ A. iii) We apply exercise 2.5.1)
to the restrictions of ϕ and ψ to [ϕ < ∞] ∩ [ψ < ∞] and to the subsets
A∩S1, · · · , A∩Sn ∈ N. By i) all their intersections of nonvoid subfamilies are
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in N as well, and their union is A∩Vn. It follows that ϕ(A∩Vn) = ψ(A∩Vn).
For n→∞ we obtain ϕ(A) = ψ(A) from ii).

3.2. Exercise. The conclusions of 3.1.⋆) and 3.1.σ) do not persist when
one deletes <∞ from the assumptions, even when S is a lattice with ∅ ∈ S.
Hint: Let X = N and S consist of ∅ and of the cofinite subsets.

3.3. Exercise. The conclusion of 3.1.σ) does not persist when one
deletes <∞ from the assumption, even when S is a ring. Hint: 1) Construct
a ring S in a suitable X such that i) all nonvoid S ∈ S are uncountable,
but ii) there are nonvoid countable S ∈ Rσ(S). 2) On A := Rσ(S) then
define ϕ,ψ : A→ [0,∞] to be

ϕ(A) =

{

0 for A = ∅

∞ for A �= ∅

}

and ψ(A) =

{

0 for A countable
∞ for A uncountable

}

.

The Smiley-Horn-Tarski Extension Theorem

3.4. Theorem. Let ϕ : S→ R be a modular set function on a lattice S

in X. Then there exists a unique modular set function φ : O(S)→ R which
extends ϕ. If ϕ is isotone then φ is isotone as well.

The classical Smiley-Horn-Tarski theorem is for lattices S with ∅ ∈ S

and hence O(S) = R(S); see for example Rao-Rao [1983] chapter 3. We
shall comment on the usefulness of these results at the end of the subsection.
The proof requires an elaborate construction. The first lemma below is
obvious.

3.5. Lemma. Assume that A(1), · · · , A(r) ⊂ X. For the nonvoid index
sets T ⊂ {1, · · · , r} we form

D(T ) :=
⋂

l∈T

A(l) ∩
⋂

l /∈T

(A(l))′.

Then the D(T ) are pairwise disjoint. Furthermore

r
⋃

l=1

A(l) =
⋃

T

D(T ) and A(l) =
⋃

T∋l

D(T ) (l = 1, · · · , r).

3.6. Proposition. Let S be a paving with ∩. 1) R(S) consists of all
A ⊂ X such that

χA =

r
∑

l=1

alχA(l) with A(1), · · · , A(r) ∈ S and a1, · · · , ar ∈ Z.

2) O(S) consists of all A ⊂ X such that

χA =

r
∑

l=1

alχA(l) as above with

r
∑

l=1

al = 1.
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Proof. Define M to consist of all A ⊂ X such that χA can be represented
as above. i) Assume that A ∈M. By 3.5 then

χA =

r
∑

l=1

al

∑

T∋l

χD(T ) =
∑

T

(

∑

l∈T

al

)

χD(T ).

Now D(T ) ∈ R(S) since T �= ∅, and A is the disjoint union of some of the
D(T ). Hence A ∈ R(S). Now in case 2) consider R := {1, · · · , r}. We have

∑

l∈R

al =
r

∑

l=1

al = 1 and hence A ⊃ D(R).

Furthermore D(R) ∈ S by definition. From 1.17.⋆) and 1.23.⋆) we see that
A is in R(S)∩(⊐ S) = A(S)∩(S ⊏ S⋆) = O(S). Thus we have M ⊂ R(S)
in case 1) and M ⊂ O(S) in case 2). ii) For the converse note that S ⊂M.
Thus we have to show that M is a ring in case 1) and an oval in case 2).
This follows in case 1) from

χB∩A′ = χB − χB∩A = χB − χBχA,

χA∪B = χA + χB∩A′ = χA + χB − χBχA for A,B ⊂ X,

and in case 2) from

χU |A|V = χU∩A′ + χV ∩A = χU +
(

χV − χU

)

χA for U, V,A ⊂ X,

both times by the assumption that S has ∩.

For the next step we need an auxiliary formula.

3.7. Lemma. Let A(0), A(1), · · · , A(r) ⊂ X with r ≧ 1,and form U(p)

:=
p
⋃

l=0

A(l) for 0 ≦ p ≦ r. Then

r
∑

l=0

χA(l) =

r
∑

l=1

χU(l−1)∩A(l) + χU(r).

Proof. The case r = 1: Here we have U(0) = A(0) and U(1) = A(0) ∪
A(1). Thus the assertion is clear. The induction step 1 ≦ r ⇒ r + 1: Let
A(0), A(1), · · · , A(r + 1) ⊂ X with the U(p) for 0 ≦ p ≦ r + 1. By the
induction hypothesis

r+1
∑

l=0

χA(l) =

r
∑

l=0

χA(l) + χA(r+1) =

r
∑

l=1

χU(l−1)∩A(l) + χU(r) + χA(r+1),

and furthermore

χU(r) + χA(r+1) = χU(r)∩A(r+1) + χU(r+1).

The assertion follows.
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3.8. Proposition. Let ϕ : S→ R be a modular set function on a lattice
S. 1) For A(1), . · · · , A(r), B(1), · · · , B(r) ∈ S we have

r
∑

l=1

χA(l) =

r
∑

l=1

χB(l) ⇒
r

∑

l=1

ϕ(A(l)) =

r
∑

l=1

ϕ(B(l)).

2) Assume that ϕ is isotone. For A(1), · · · , A(r), B(1), · · · , B(r) ∈ S then

r
∑

l=1

χA(l) ≦

r
∑

l=1

χB(l) ⇒
r

∑

l=1

ϕ(A(l)) ≦

r
∑

l=1

ϕ(B(l)).

Proof. Both times the case r = 1 is obvious; thus it remains the induction
step 1 ≦ r ⇒ r + 1. 1) Let A(0), A(1), · · · , A(r), B(0), B(1), · · · , B(r) ∈ S

with
r

∑

l=0

χA(l) =
r

∑

l=0

χB(l), and form the U(p), V (p) ∈ S for 0 ≦ p ≦ r after

3.7. Then first of all U(r) = V (r). By 3.7 we obtain

r
∑

l=1

χU(l−1)∩A(l) =
r

∑

l=1

χV (l−1)∩B(l),

and hence by the induction hypothesis

r
∑

l=1

ϕ
(

U(l − 1) ∩A(l)
)

=
r

∑

l=1

ϕ
(

V (l − 1) ∩B(l)
)

.

Here the left side is
r

∑

l=1

(

ϕ(U(l − 1)) + ϕ(A(l))− ϕ(U(l))
)

=
r

∑

l=1

ϕ(A(l)) + ϕ(U(0))− ϕ(U(r)) =
r

∑

l=0

ϕ(A(l))− ϕ(U(r)).

The same applies to the right side. The assertion follows. 2) Let A(0), A(1),

· · · , A(r), B(0), B(1), · · · , B(r) ∈ S with
r

∑

l=0

χA(l) ≦
r

∑

l=0

χB(l), and form the

U(p), V (p) ∈ S for 0 ≦ p ≦ r as above. Then first of all U(r) ⊂ V (r). Now
pass to the subsets b(l) := B(l) ∩ U(r) ∈ S for 0 ≦ l ≦ r and once more
form the v(p) ∈ S for 0 ≦ p ≦ r as above. Then v(p) = V (p) ∩ U(r), hence

in particular v(r) = U(r). The assumption implies that
r

∑

l=0

χA(l) ≦
r

∑

l=0

χb(l),

which is obvious both on U(r) and outside of U(r). By 3.7 we obtain

r
∑

l=1

χU(l−1)∩A(l) ≦

r
∑

l=1

χv(l−1)∩b(l),

and hence by the induction hypothesis

r
∑

l=1

ϕ
(

U(l − 1) ∩A(l)
)

≦

r
∑

l=1

ϕ
(

v(l − 1) ∩ b(l)
)

≦

r
∑

l=1

ϕ
(

V (l − 1) ∩B(l)
)

.
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As in the proof of 1) it follows that
r

∑

l=0

ϕ(A(l))− ϕ(U(r)) ≦

r
∑

l=0

ϕ(B(l))− ϕ(V (r)).

We add ϕ(U(r)) ≦ ϕ(V (r)) and obtain the assertion.

3.9. Reformulation. Let ϕ : S → R be a modular set function on a
lattice S. 1) If A(1), · · · , A(r) ∈ S and a1, · · · , ar ∈ Z with

r
∑

l=1

al = 0 and
r

∑

l=1

alχA(l) = 0 then
r

∑

l=1

alϕ(A(l)) = 0.

2) Assume that ϕ is isotone. If A(1), · · · , A(r) ∈ S and a1, · · · , ar ∈ Z with
r

∑

l=1

al = 0 and

r
∑

l=1

alχA(l) ≦ 0 then

r
∑

l=1

alϕ(A(l)) ≦ 0.

Proof. Put al = pl − ql with pl, ql ∈ N for 1 ≦ l ≦ r. Then
r

∑

l=1

pl =

r
∑

l=1

ql =: n ∈ N. Thus 3.8 can be applied in the obvious manner.

Proof of 3.4. Let ϕ : S→ R be a modular set function on a lattice S. i)
Existence of an extension: Let A ∈ O(S). By 3.9.1) then all representations
of χA after 3.6.2) produce the same value

r
∑

l=1

alϕ(A(l)) =: φ(A).

Thus we obtain a set function φ : O(S)→ R which is an extension of ϕ. In
order to see that φ is modular let A,B ∈ O(S) and fix representations

χA =

r
∑

k=1

akχA(k) and χB =

s
∑

l=1

blχB(l)

after 3.6.2). Then

χA∩B = χAχB =

r
∑

k=1

s
∑

l=1

akblχA(k)∩B(l) with

r
∑

k=1

s
∑

l=1

akbl = 1

is a representation for A ∩ B ∈ O(S) of the same kind, and then χA∪B =
χA+χB−χA∩B with the above representations on the right likewise produces
a representation for A∪B ∈ O(S) of the same kind. Now it is obvious that
φ(A∪B) = φ(A) + φ(B)−φ(A∩B). ii) Assume that ϕ is isotone. Then by
3.9.2) the extension φ : O(S)→ R of ϕ obtained in i) is isotone as well. iii)
Uniqueness of the extension: Let φ : O(S) → R be a modular set function
which is an extension of ϕ. Fix A ∈ O(S) and a representation of χA after
3.6.2). Then apply 3.9.1) to φ : O(S)→ R and

r
∑

l=1

alχA(l) + (−1)χA = 0.
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It follows that
r

∑

l=1

alφ(A(l)) + (−1)φ(A) = 0 or φ(A) =

r
∑

l=1

alϕ(A(l)).

The proof is complete.

3.10. Exercise. Let ϕ : S → R be a modular set function on a lattice
S with ∅ /∈ S. 1) For each c ∈ R there exists a unique modular set function
φ : R(S) → R with φ|S = ϕ and φ(∅) = c. 2) Assume that ϕ is isotone.
Then the extension φ : R(S) → R of ϕ obtained in 1) is isotone iff ϕ is
bounded below and c ≦ inf ϕ.

Thus in the terms of section 2 each modular and isotone set function
ϕ : S → R on a lattice S has a unique extension φ : O(S) → R which
is a content on O(S). In particular each modular and isotone set function
ϕ : S→ [0,∞[ on a lattice S such that ∅ ∈ S and ϕ(∅) = 0 has a unique
extension φ : R(S)→ [0,∞[ which is a ccontent on R(S). This result looks
as beautiful and powerful as one could hope for. However, it is burdened
with a disastrous defect: The extension procedure can destroy sequential
continuity. Therefore it becomes useless as soon as one wants to pass from
contents to measures. In fact, we shall construct an example of a modular
and isotone set function ϕ : S → {0, 1} on a lattice S with ∅, X ∈ S

and ϕ(∅) = 0 which is upward and downward σ continuous, whereas the
ccontent φ : R(S)→ {0, 1} has values φ(Al) = 1 for some sequence (Al)l in
R(S) such that Al ↓ ∅.

3.11. Example. Let X be an infinite set, and let T ⊂ X be such that
both T and T ′ are infinite. Then form sequences of subsets

(Pl)l in X with Pl ↑ T but Pl �= T ∀l ∈ N, and P1 = ∅;
(Ql)l in X with Ql ↓ T but Ql �= T ∀l ∈ N, and Q1 = X.

The paving S := {Pl, Ql : l ∈ N} is a lattice in X by 1.2.7), and ϕ(Pl) = 0
and ϕ(Ql) = 1 defines a modular and isotone set function ϕ : S → {0, 1}
with ϕ(∅) = 0 by 2.3.2). It is obvious that ϕ is upward and downward σ
an even τ continuous. However, the sequence of the difference sets Al :=
Ql − Pl ∈ R(S) fulfils Al ↓ ∅ and φ(Al) = ϕ(Ql)− ϕ(Pl) = 1 for all l ∈ N.

Therefore essential new ideas are required for the extension of set func-
tions from lattices to the level of ovals and rings. Such an idea is regularity.
It will dominate the procedures of the next chapter.

Extensions of Set Functions to Lattices

The main extension theorems in this text start from set functions defined
on pavings which are at least lattices. The exception is the present sub-
section, where we complement those theorems with results how to obtain
well-behaved set functions on lattices from more primitive ones.

Let U be a paving with ∩ in the nonvoid set X. We know from 1.2.10)
that V := L(U) consists of the unions A1 ∪ · · · ∪ Ar for all finite sequences
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A1, · · · , Ar ∈ U. We fix a set function ϕ : U → R. The question whether
and when it admits modular extensions φ : V → R receives an immediate
hint from 2.5.1).

3.12. Remark. The set function ϕ : U→ R admits at most one modular
extension φ : V→ R. If it exists then

φ(A1 ∪ · · · ∪Ar) =
∑

∅�=T⊂{1,··· ,r}

(−1)#(T )−1ϕ(AT ) for A1, · · · , Ar ∈ U,

with the abbreviation AT :=
⋂

l∈T

Al ∈ U for the nonvoid T ⊂ {1, · · · , r}.

We are thus led to extend ϕ : U→ R to all finite sequences A1, · · · , Ar ∈
U by the definition

ϕ(A1, · · · , Ar) =
∑

∅�=T⊂{1,··· ,r}

(−1)#(T )−1ϕ(AT ).

It is obvious that ϕ(·, · · · , ·) is a symmetric function of its arguments. Also
ϕ(A1, · · · , Ar) = ϕ(A1 ∪ · · · ∪ Ar) in case U is a lattice and ϕ is modular.
We proceed to collect further properties which will be needed for the main
theorems.

3.13. Properties. 1) For A0, A1, · · · , Ar ∈ U we have the recursion
formula

ϕ(A0, A1, · · · , Ar) = ϕ(A0) + ϕ(A1, · · · , Ar)− ϕ(A0 ∩A1, · · · , A0 ∩Ar).

2) If A0, A1, · · · , Ar ∈ U are such that A0 ⊂ Al for some l ∈ {1, · · · , r} then
ϕ(A0, A1, · · · , Ar) = ϕ(A1, · · · , Ar). 3) For A1, · · · , Ar, B1, · · · , Bs ∈ U we
have

ϕ(A1, · · · , Ar, B1, · · ·Bs) + ϕ(A1 ∩B1, · · · , Ar ∩Bs)

= ϕ(A1, · · · , Ar) + ϕ(B1, · · · , Bs),

where the second argument on the left consists of all intersections Ak ∩ Bl

with k ∈ {1, · · · , r} and l ∈ {1, · · · , s}.

Proof. 1) The assertion follows when one splits the sum in

ϕ(A0, A1, · · · , Ar) =
∑

∅�=T⊂{0,1,··· ,r}

(−1)#(T )−1ϕ(AT )

into the three partial sums which consist of the term T = {0} alone, of the
terms with 0 /∈ T , and of the terms with 0 ∈ T except T = {0}. 2) We can
assume that A0 ⊂ A1. By 1) then in case r = 1

ϕ(A0, A1)− ϕ(A1) = ϕ(A0)− ϕ(A0 ∩A1) = ϕ(A0)− ϕ(A0) = 0,

and in case r ≧ 2

ϕ(A0, A1, · · · , Ar)− ϕ(A1, · · · , Ar) = ϕ(A0)− ϕ(A0 ∩A1, · · · , A0 ∩Ar)

= ϕ(A0)− ϕ(A0, A0 ∩A2, · · · , A0 ∩Ar),
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which is = 0 once more by 1). 3) The proof is by induction. The case
r = 1 is clear by 1). We turn to the induction step 1 ≦ r ⇒ r + 1. For
A0, A1, · · · , Ar, B1, · · · , Bs ∈ U we have by 1)

ϕ(A0 ∩B1, · · · , Ar ∩Bs) = ϕ(A0, A0 ∩B1, · · · , Ar ∩Bs)

−ϕ(A0) + ϕ(A0 ∩A0 ∩B1, · · · , A0 ∩Ar ∩Bs).

In view of 2) we can omit in the first term on the right all places A0∩Bl with
l ∈ {1, · · · , s}, and in the last term all places A0∩Ak∩Bl with k ∈ {1, · · · , r}
and l ∈ {1, · · · , s}. Thus the expression is

= ϕ(A0, A1 ∩B1, · · · , Ar ∩Bs)− ϕ(A0) + ϕ(A0 ∩B1, · · · , A0 ∩Bs)

= ϕ(A1 ∩B1, · · · , Ar ∩Bs)− ϕ(A0 ∩A1 ∩B1, · · · , A0 ∩Ar ∩Bs)

+ ϕ(A0 ∩B1, · · · , A0 ∩Bs),

once more by 1). Now we apply the induction hypothesis to the first two
terms on the right, and then 1) two times. The expression becomes

= ϕ(A1, · · · , Ar) + ϕ(B1, · · · , Bs)− ϕ(A1, · · · , Ar, B1, · · · , Bs)

− ϕ(A0 ∩A1, . . . , A0 ∩Ar)

+ ϕ(A0 ∩A1, · · · , A0 ∩Ar, A0 ∩B1, · · · , A0 ∩Bs)

=
(

ϕ(A0, A1, · · · , Ar)− ϕ(A0)
)

−
(

ϕ(A0, A1, · · · , Ar, B1, · · · , Bs)− ϕ(A0)
)

+ ϕ(B1, · · · , Bs)

= ϕ(A0, A1, · · · , Ar) + ϕ(B1, · · · , Bs)− ϕ(A0, A1, · · · , Ar, B1, · · · , Bs).

This is the assertion.

3.14. Exercise. For A1, · · · , Ar, B1, · · · , Bs ∈ U we have

ϕ(A1, · · · , Ar, B1, · · ·Bs) =
∑

∅�=T⊂{1,··· ,r}

(−1)#(T )−1ϕ(AT , B1, · · · , Bs).

3.15. Theorem. The set function ϕ : U→ R admits a modular extension
φ : V→ R (and hence a unique one) iff it satisfies

(mod) A1, · · · , Ar, A ∈ U with A1 ∪ · · · ∪Ar = A⇒ ϕ(A1, · · · , Ar) = ϕ(A).

Then φ(A) = ϕ(A1, · · · , Ar) for A1, · · · , Ar ∈ U with A1∪· · ·∪Ar = A ∈ V.
In this case the extension φ is isotone iff

(isot) A1, · · · , Ar, A ∈ U with A1 ∪ · · · ∪Ar ⊂ A⇒ ϕ(A1, · · · , Ar) ≦ ϕ(A).

Proof. i) If φ : V → R is a modular extension of ϕ then 3.12 says that
φ(A) = ϕ(A1, · · · , Ar) for A1, · · · , Ar ∈ U with A1 ∪ · · · ∪ Ar = A ∈ V.
In particular we have (mod). ii) Assume that (mod) is satisfied. Then for
A0, A1, · · · , Ar ∈ U with A0 ⊂ A1 ∪ · · · ∪Ar we have

ϕ(A0, A1, · · · , Ar)− ϕ(A1, · · · , Ar)

= ϕ(A0)− ϕ(A0 ∩A1, · · · , A0 ∩Ar) = 0,

thus ϕ(A0, A1, · · · , Ar) = ϕ(A1, · · · , Ar). This implies that for A1, · · · , Ar,
B1, · · · , Bs ∈ U with A1 ∪ · · · ∪Ar = B1 ∪ · · · ∪Bs we have

ϕ(A1, · · · , Ar) = ϕ(A1, · · · , Ar, B1, · · · , Bs) = ϕ(B1, · · · , Bs).
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Therefore there is a well-defined function φ : V → R such that φ(A) =
ϕ(A1, · · · , Ar) for A1, · · · , Ar ∈ U with A1 ∪ · · · ∪ Ar = A ∈ V. This set
function extends ϕ, and by 3.13.3) it is modular. iii) If φ is isotone then
(isot) is clear. It on the other hand (isot) is satisfied then for A1, · · · , Ar ∈ U

we have
ϕ(A0, A1, · · · , Ar)− ϕ(A1, · · · , Ar)

= ϕ(A0)− ϕ(A0 ∩A1, · · · , A0 ∩Ar) ≧ 0.

This implies that φ is isotone. The proof is complete.

3.16. Theorem. The set function ϕ : U→ R admits a modular extension
φ : V→ R such that

φ(Vl)→ φ(V ) for all sequences (Vl)l in V with Vl ↑ V ∈ V

(note that φ need not be isotone!) iff it satisfies

(modσ) (Al)l in U with
∞
⋃

l=1

Al = A ∈ U⇒ ϕ(A1, · · · , Ar)→ ϕ(A).

Proof. i) If φ : V → R is as required then (modσ) follows from the
assumption applied to the sequence of the Vr := A1 ∪ · · · ∪ Ar ∈ V. ii)
Assume now that (modσ) is satisfied. Then first of all (mod) is fulfilled
since ϕ(A1, · · · , Ar) = ϕ(A1, · · · , Ar, · · · , Ar) for A1, · · · , Ar ∈ U by 3.13.2).
iii) Consider a sequence (Vr)r in V with Vr ↑ V ∈ V. Then there is a
sequence (Al)l in U such that (Vr)r is a subsequence of (A1 ∪ · · · ∪ Ar)r.
Thus we can assume that Vr = A1 ∪ · · · ∪ Ar for r ∈ N. On the other
hand V = B1 ∪ · · · ∪ Bs for some B1, · · · , Bs ∈ U. Thus for each nonvoid

T ⊂ {1, · · · , s} we have
∞
⋃

l=1

(Al ∩BT ) = BT and hence by (modσ)

ϕ(BT , A1, · · · , Ar)− ϕ(A1, · · · , Ar)

= ϕ(BT )− ϕ(BT ∩A1, · · · , BT ∩Ar)→ 0.

Thus exercise 3.14 implies that

φ(V )− φ(Vr) = ϕ(B1, · · · , Bs)− ϕ(A1, · · · , Ar)

= ϕ(B1, · · · , Bs, A1, · · · , Ar)− ϕ(A1, · · · , Ar)

=
∑

T

(−1)#(T )−1
(

ϕ(BT , A1, · · · , Ar)− ϕ(A1, · · · , Ar)
)

→ 0.

The proof is complete.

We conclude with the specialization to an additional condition on the
paving U which is frequent in applications.

3.17. Special Case. Let U be a paving with ∩ and such that

A,B ∈ U with A,B ⊂ some U ∈ U⇒ A ∪B ∈ U.

Then a set function ϕ : U→ R admits a modular extension φ : V→ R (and
hence a unique one) iff it satisfies

(⋆) ϕ(A∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B) for all A,B ∈ U with A∪B ∈ U.
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In this case the extension φ is isotone iff ϕ is isotone. Furthermore φ sat-
isfies

φ(Vl)→ φ(V ) for all sequences (Vl)l in V with Vl ↑ V ∈ V

iff ϕ does the same on U.

Proof. For fixed U ∈ U the subpaving U(U) := {A ∈ U : A ⊂ U} of
U is a lattice. Under (⋆) the restriction ϕ|U(U) is modular. It follows that
ϕ(A1, · · · , Ar) = ϕ(A1 ∪ · · · ∪ Ar) for A1, · · · , Ar ∈ U(U). Therefore (mod)
is satisfied. Furthermore we have (modσ) as soon as ϕ is as required. Thus
we obtain all assertions.





CHAPTER II

The Extension Theories Based on
Regularity

The theme of the present chapter is the construction of contents
and measures from more primitive set functions. The construction is based
on interrelated regularity and continuity conditions. These conditions are
either both of outer or both of inner type. We want to demonstrate that the
outer and inner theories are identical. To achieve this we have to work with
the unconventional notions introduced in the first chapter, with set systems
which avoid the empty set like the entire set, and with isotone set functions
which take values in R or R. We start with the complete development of the
outer extension theory. Then the upside-down transform method initiated
in the first chapter will transform the outer into the inner extension theory.
The chapter concludes with a detailed bibliographical annex.

4. The Outer Extension Theory: Concepts and

Instruments

The Basic Definition

Let S be a lattice in a nonvoid set X. We start with the basic definition
which describes the final aim of the outer enterprise.

Definition. Let ϕ : S →] − ∞,∞] be an isotone set function �≡ ∞.
For • = ⋆στ we define an outer • extension of ϕ to be an extension of ϕ
which is a

.
+ content α : A → R on an oval A, such that also S• ⊂ A and

that

α is outer regular S•, and

α|S• is upward • continuous; in this connection note that α|S• > −∞.

We define ϕ to be an outer • premeasure iff it admits outer • extensions.
Thus an outer • premeasure is modular and upward • continuous.

The principal aim is to characterize those ϕ which are outer • premea-
sures, and then to describe all outer • extensions of ϕ. We shall obtain a
beautiful answer in natural terms. Our approach will be based on two for-
mations due to Carathéodory: On the one hand the so-called outer measure,
and on the other hand the so-called measurable sets. Both of them need
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substantial reformulation. These two tasks will be attacked in the present
section.

The restriction ϕ > −∞ imposed in the definition will be justified by
success. Without it the presentation would be burdened, at least in the cases
• = στ , with useless and unpleasant complications. We shall not pursue this
point.

The Outer Envelopes

Let ϕ : S→ R be an isotone set function on a lattice S in X. It is natural
to form its crude outer envelope ϕ⋆ : P(X)→ R, defined to be

ϕ⋆(A) = inf{ϕ(S) : S ∈ S with S ⊃ A} for A ⊂ X.

However, this set function does not allow an adequate treatment of our outer
• extension problem for • = στ . The decisive idea is to form for • = σ the
set function ϕσ : P(X)→ R, defined to be

ϕσ(A) = inf{ lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↑⊃ A} for A ⊂ X.

It is a variant of the traditional Carathéodory outer measure which itself will
not be used below. One of the benefits of ϕσ is that it has an immediate
nonsequential counterpart. This is the set function ϕτ : P(X)→ R, defined
to be

ϕτ (A) = inf{ sup
S∈M

ϕ(S) : M paving ⊂ S with M ↑⊃ A} for A ⊂ X.

These are the three outer envelopes ϕ• : P(X) → R of ϕ for • = ⋆στ
which will dominate the outer extension theory. From 1.3 we obtain the
common formula

ϕ•(A) = inf{ sup
S∈M

ϕ(S) : M paving ⊂ S of type • with M ↑⊃ A}.

We turn to the basic properties of these formations.

4.1. Properties. 1) ϕ⋆|S = ϕ. 2) ϕ⋆ ≧ ϕσ ≧ ϕτ . 3) ϕ• is isotone. 4)
ϕ• is outer regular [ϕ•|S• <∞] ⊂ S•. 5) Assume that ϕ is submodular

.
+.

Then ϕ⋆ is submodular
.
+, and ϕ• for • = στ is submodular

.
+ when either

ϕ > −∞ or ϕ• <∞.

Proof. 1)2)3) are obvious. 4) Fix A ⊂ X with ϕ•(A) < ∞. For fixed
real c > ϕ•(A) there exists a paving M ⊂ S of type • such that M ↑ some
M ⊃ A and sup

S∈M

ϕ(S) ≦ c. Then M ∈ S•, and by definition ϕ•(M) ≦ c. The

assertion follows. 5) Fix A,B ⊂ X. We can assume that ϕ•(A), ϕ•(B) <∞.
For fixed real a > ϕ•(A) and b > ϕ•(B) there exist pavings M,N ⊂ S of
type • such that

M ↑ some M ⊃ A and sup
S∈M

ϕ(S) ≦ a , N ↑ some N ⊃ B and sup
S∈N

(T ) ≦ b.
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From them we have the pavings

{S ∪ T : S ∈M and T ∈ N} ↑ M ∪N ⊃ A ∪B,

{S ∩ T : S ∈M and T ∈ N} ↑ M ∩N ⊃ A ∩B.

Now we start with • = ⋆. Here M ∈ M and N ∈ N. Thus we have
ϕ⋆(A ∪B) ≦ ϕ(M ∪N) and ϕ⋆(A ∩B) ≦ ϕ(M ∩N). It follows that

ϕ⋆(A ∪B)
.
+ϕ⋆(A ∩B) ≦ ϕ(M ∪N)

.
+ϕ(M ∩N) ≦ ϕ(M)

.
+ϕ(N) ≦ a + b,

and hence the assertion. We turn to the cases • = στ . We fix

P,Q ∈M and then S ∈M with P,Q ⊂ S,
U, V ∈ N and then T ∈ N with U, V ⊂ T ,

and obtain

ϕ(P ∪ U)
.
+ϕ(Q ∩ V ) ≦ ϕ(S ∪ T )

.
+ϕ(S ∩ T ) ≦ ϕ(S)

.
+ϕ(T ) ≦ a + b.

Therefore ϕ(P ∪ U), ϕ(Q ∩ V ) <∞. If some ϕ(Q ∩ V ) is ∈ R then

ϕ•(A ∪B) ≦ sup{ϕ(P ∪ U) : P ∈M and U ∈ N} ∈ R,

ϕ•(A ∩B) ≦ sup{ϕ(Q ∩ V ) : Q ∈M and V ∈ N} ∈ R,

and hence ϕ•(A ∪ B)
.
+ϕ•(A ∩ B) ≦ a + b. If not then ϕ•(A ∩ B) = −∞,

and by assumption ϕ•(A ∪B) <∞. Both times the assertion follows.

We shall later need a counterpart of the first assertion in 4.1.5) for
supermodular

.
+.

4.2. Remark. Let ϕ be supermodular
.
+. Assume that A,B ⊂ X are

separated S in the sense that

for each M ∈ S with A ∩B ⊂M
there exist S, T ∈ S with A ⊂ S and B ⊂ T such that S ∩ T ⊂M .

Then ϕ⋆(A ∪B)
.
+ϕ⋆(A ∩B) ≧ ϕ⋆(A)

.
+ϕ⋆(B).

Proof. We can assume that ϕ⋆(A ∪ B) < ∞ and hence all other values
ϕ⋆(·) <∞ as well. Fix M,N ∈ S with

M ⊃ A ∩B and ϕ(M) <∞, N ⊃ A ∪B and ϕ(N) <∞.

Then choose S, T ∈ S as assumed. It follows that

ϕ(N) + ϕ(M) ≧ ϕ
(

N ∩ (S ∪ T )
)

+ ϕ
(

N ∩ (S ∩ T )
)

= ϕ
(

(N ∩ S) ∪ (N ∩ T )
)

+ ϕ
(

(N ∩ S) ∩ (N ∩ T )
)

≧ ϕ(N ∩ S) + ϕ(N ∩ T ) ≧ ϕ⋆(A) + ϕ⋆(B).

This implies the assertion.

4.3. Exercise. Let ∅ ∈ S and ϕ(∅) = 0 and ϕ be superadditive. As-
sume that A,B ⊂ X with A ∩B = ∅ are separated S, that is

there exist S, T ∈ S with A ⊂ S and B ⊂ T such that S ∩ T = ∅.

Then ϕ⋆(A ∪B) ≧ ϕ⋆(A) + ϕ⋆(B).



36 II. THE EXTENSION THEORIES BASED ON REGULARITY

4.4. Exercise. The second assertion in 4.1.5) becomes false without
additional assumptions. Hint for an example: Let X be the disjoint union
of two infinite countable subsets U and V , and let S consist of its finite
subsets. Define ϕ : S → [−∞,∞[ to be ϕ(S) = #(S) if S meets both U
and V , and ϕ(S) = −∞ otherwise.

In contrast to ϕ⋆|S = ϕ the relation ϕ•|S = ϕ need not be true for
• = στ . It can be characterized as follows.

4.5. Proposition. For an isotone set function ϕ : S → R and • = στ
the following are equivalent.

i) ϕ•|S = ϕ;
ii) ϕ is upward • continuous.

In this case we have furthermore

iii) ϕ•|S• is upward • continuous;
iv) if {S ∈ S• : ϕ•(S) <∞} ⊂ S then ϕ• = ϕ⋆.

Proof. i)⇒ ii) Let A ∈ S and M ⊂ S be a paving of type • with M ↑ A.
By i) and the definition of ϕ• then

ϕ(A) = ϕ•(A) ≦ sup
S∈M

ϕ(S) and hence = sup
S∈M

ϕ(S).

ii) ⇒ i) Let A ∈ S and M ⊂ S be a paving of type • with M ↑⊃ A. Then
{S ∩A : S ∈M} is a paving ⊂ S of type • with ↑ A. By ii) therefore

ϕ(A) = sup
S∈M

ϕ(S ∩A) ≦ sup
S∈M

ϕ(S).

It follows that ϕ(A) ≦ ϕ•(A), and hence from ϕ•(A) ≦ ϕ⋆(A) ≦ ϕ(A) the
assertion. i) ⇒ iv) Assume that this is false. Fix A ⊂ X with ϕ•(A) <
ϕ⋆(A). By 4.1.4) there exists S ∈ S• with S ⊃ A and ϕ•(S) < ϕ⋆(A). By
assumption then S ∈ S and ϕ(S) = ϕ•(S) < ϕ⋆(A). This is a contradiction.

The most involved part of the proof is for the implication i) ⇒ iii). We
first prove a lemma.

4.6. Lemma. Let M ⊂ S• be a paving of type • with M ↑ A. Then of
course A ∈ S•. Furthermore there exists a paving N ⊂ S of type • with
N ↑ A such that N ⊂ (⊏ M).

Proof. Nontrivial are the cases • = στ . The case • = σ: Choose a
sequence (Mn)n in M with Mn ↑ such that each member of M is contained
in some Mn. Then Mn ↑ A. Now for each n ∈ N there exists a sequence (Sl

n)l

in S with Sl
n ↑Mn. We put Sl := Sl

1 ∪ · · · ∪Sl
l ∈ S. Then Sl ↑some S ⊂ X.

We have on the one hand Sl ⊂M1 ∪ · · · ∪Ml = Ml, and on the other hand
Sl ⊃ Sl

n for 1 ≦ n ≦ l. It follows that S ⊂ A and S ⊃ Mn for all n ∈ N, so
that S = A. Thus the paving N := {Sl : l ∈ N} ⊂ S is as required. The
case • = τ : Define N := {S ∈ S : S ⊂ some M ∈ M} ⊂ S. Then N is
nonvoid and has ∪ and is therefore upward directed. Furthermore
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⋃

S∈N

S =
⋃

M∈M

⋃

S∈S,S⊂M

S =
⋃

M∈M

M = A.

Thus N is as required.

Proof of 4.5.i) ⇒ iii). Consider a paving M ⊂ S• of type • with M ↑
A ∈ S•, and take N ⊂ S as obtained in 4.6. By i) then

ϕ(S) = ϕ•(S) ≦ sup
M∈M

ϕ•(M) for each S ∈ N,

and therefore by definition

ϕ•(A) ≦ sup
S∈N

ϕ(S) ≦ sup
M∈M

ϕ•(M).

The assertion follows.

The most remarkable fact about the outer envelopes is the sequential
continuity theorem which follows. Note that there is no continuity assump-
tion on the set function ϕ itself.

4.7. Theorem. Assume that ϕ : S → R is isotone and submodular
.
+.

Then ϕσ and ϕτ are almost upward σ continuous.

4.8. Lemma. Assume that ϕ : S→ R is isotone and submodular
.
+. For

P1, · · · , Pn, Q ∈ S with ϕ(P1), · · · , ϕ(Pn), ϕ(Q) <∞ then ϕ(P1 ∪ · · · ∪Pn ∪
Q) <∞ and

ϕ(P1 ∪ · · · ∪ Pn ∪Q) +

n
∑

l=1

ϕ(Pl ∩Q) ≦

n
∑

l=1

ϕ(Pl) + ϕ(Q).

Proof of 4.8. The case n = 1 is obvious. The induction step 1 ≦ n ⇒
n + 1: Let P0, P1, · · · , Pn, Q ∈ S with ϕ(P0), ϕ(P1), · · · , ϕ(Pn), ϕ(Q) < ∞.
We know from 2.4 that [ϕ < ∞] is a lattice. Thus from the induction
hypothesis we obtain

ϕ(P0 ∪ P1 ∪ · · · ∪ Pn ∪Q) +
n
∑

l=0

ϕ(Pl ∩Q)

= ϕ(P1 ∪ · · · ∪ Pn ∪ (P0 ∪Q)) +
n
∑

l=1

ϕ(Pl ∩Q) + ϕ(P0 ∩Q)

≦
n
∑

l=1

ϕ(Pl) + ϕ(P0 ∪Q) + ϕ(P0 ∩Q) ≦
n
∑

l=0

ϕ(Pl) + ϕ(Q).

Proof of 4.7. We fix a sequence (An)n of subsets of X with An ↑ A
and ϕ•(An) > −∞ ∀n ∈ N. Then ϕ•(An) ↑ R ≦ ϕ•(A). To be shown is
ϕ•(A) ≦ R. We can assume that R < ∞, so that the ϕ•(An) and R are
finite. We fix ε > 0, and then for each n ∈ N a paving M(n) ⊂ S of type •
such that M(n) ↑ some Mn ⊃ An and

sup
S∈M(n)

ϕ(S) ≦ ϕ•(An) + ε2−n−1.

1) We claim that

ϕ(S1 ∪ · · · ∪ Sn) < R + ε for Sl ∈M(l) (l = 1, · · · , n) and n ∈ N.
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To see this fix l ∈ {1, · · · , n}. Then {P ∩Q : P ∈M(l) and Q ∈M(n + 1)}
is a paving ⊂ S of type • which ↑Ml∩Mn+1 ⊃ Al∩An+1 = Al. Hence there
exist Pl ∈M(l) and Ql ∈M(n + 1) such that ϕ(Pl ∩Ql) ≧ ϕ•(Al)− ε2−l−1.
We can assume that Pl ⊃ Sl. Also there exists Q ∈ M(n + 1) with Q ⊃
Q1 ∪ · · · ∪Qn. It follows that

ϕ(Pl ∩Q) ≧ ϕ•(Al)− ε2−l−1 (l = 1, · · · , n).

Now from 4.8 we have ϕ(P1 ∪ · · · ∪ Pn ∪Q) <∞ and

ϕ(P1 ∪ · · · ∪ Pn ∪Q) +

n
∑

l=1

ϕ(Pl ∩Q) ≦

n
∑

l=1

ϕ(Pl) + ϕ(Q).

From the above we see that in this formula

the left side is ≧ ϕ(S1 ∪ · · · ∪ Sn) +

n
∑

l=1

(

ϕ•(Al)− ε2−l−1
)

,

the right side is ≦

n
∑

l=1

(

ϕ•(Al) + ε2−l−1
)

+
(

ϕ•(An+1) + ε2−n−2
)

.

It follows that

ϕ(S1 ∪ · · · ∪ Sn) < ϕ•(An+1) +

n+1
∑

l=1

ε2−l < R + ε.

2) Let M consist of all unions S1 ∪ · · · ∪ Sn with Sl ∈ M(l) (l = 1, · · · , n)
and n ∈ N. Then M is a paving ⊂ S of type •. It is clear that M is upward

directed and M ↑
∞
⋃

n=1
Mn ⊃

∞
⋃

n=1
An = A. Thus we have ϕ•(A) ≦ sup

S∈M

ϕ(S).

Combined with 1) we obtain ϕ•(A) ≦ R + ε for all ε > 0 and hence the
assertion.

Complements for the Nonsequential Situation

The sequential continuity theorem 4.7 has no nonsequential counterpart.
The present subsection is a short discussion of the complications which arise
from this fact.

4.9. Remark. Let S be a lattice with ∅ ∈ S and ϕ : S → [0,∞] be
an isotone and modular set function with ϕ(∅) = 0 which attains at least
one finite positive value. Assume that ϕ is upward τ continuous and that
Sτ = S. Then 4.5 implies that ϕτ = ϕσ = ϕ⋆ ≧ 0. In this situation it
can happen that ϕτ = ϕσ = ϕ⋆ is not upward τ continuous. For example
this is obvious when ϕτ (F ) = ϕσ(F ) = ϕ⋆(F ) = 0 for all finite F ⊂ X. As
the simplest example we anticipate from 5.14 the Lebesgue measure on Rn

restricted to Op(Rn).

However, the outer • main theorem requires a certain touch of upward
• continuity which is trivial for • = ⋆ and a consequence of 4.7 for • = σ.
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Let us define an isotone set function ϕ : S→ R to be upward • essential
iff

ϕ•(A) = sup{ϕ•(A ∩ S) : S ∈ [ϕ <∞]} for all A ⊂ X with

∞ > ϕ•(A) ≧ sup{ϕ•(A ∩ S) : S ∈ [ϕ <∞]} > −∞.

Then we obtain what follows.

4.10. Proposition. Let ϕ : S→ R be isotone. ⋆) ϕ is upward ⋆ essen-
tial. σ) If ϕ is submodular

.
+ then it is upward σ essential. τ) Assume that

ϕ is submodular
.
+ and such that each A ⊂ X with ϕτ (A) < ∞ is upward

enclosable [ϕ <∞]σ. Then ϕ is upward τ essential.

Proof. ⋆) is obvious since ϕ⋆(A) < ∞ implies the existence of some
S ∈ [ϕ < ∞] with S ⊃ A and hence A ∩ S = A. σ)τ) We prove for • = στ
and ϕ submodular

.
+ an intermediate assertion which implies both results:

If A ⊂ X is upward enclosable [ϕ <∞]σ and fulfils

sup{ϕ•(A ∩ S) : S ∈ [ϕ <∞]} > −∞ then

ϕ•(A) = sup{ϕ•(A ∩ S) : S ∈ [ϕ <∞]}.
In fact, let (Sl)l be a sequence in [ϕ <∞] with Sl ↑⊃ A, and let T ∈ [ϕ <∞]
with ϕ•(A ∩ T ) > −∞. Then Sl ∪ T ∈ [ϕ < ∞] since ϕ is submodular

.
+.

Furthermore A∩ (Sl ∪ T ) ↑ A and ϕ•(A∩ (Sl ∪ T )) > −∞. Thus we obtain
ϕ•(A ∩ (Sl ∪ T )) ↑ ϕ•(A) from 4.7.

In view of these results an isotone and submodular
.
+ set function ϕ :

S→ R will be called upward essential instead of upward τ essential.

We conclude with an example which will illuminate the outer τ main
theorems in the next section.

4.11. Example. We fix S in X and ϕ : S → [0,∞] as described in 4.9
above. Define Y to consist of two disjoint copies of X, that is Y := X×{0, 1}.
We write the subsets A ⊂ Y in the form A = A0 ⊔ A1 with A0, A1 ⊂ X.
Define T to consist of the subsets A = A0 ⊔ A1 ⊂ Y with A0 ∈ S and A1

finite ⊂ A0. Thus T is a lattice in Y with ∅ ∈ T. Furthermore Tτ consists
of the subsets A = A0 ⊔ A1 ⊂ Y with A0 ∈ S and A1 ⊂ A0. Then define
ψ : T→ [0,∞] to be ψ(S) = ϕ(S0) for S = S0 ⊔ S1 ∈ T. Thus ψ is isotone
and modular with ψ(∅) = 0. Also ψ is upward τ continuous. We prove
three assertions.

1) ψ has no outer τ extension.
2) ψτ (A) = ϕτ (A0 ∪A1) for A = A0 ⊔A1 ⊂ Y .
3) ψ is not upward τ essential.

For 3) we use that ϕτ (F ) = 0 for all finite F ⊂ X.

Proof of 1). Let α : A → R be an outer τ extension of ψ. Then
∅ ∈ A and α(∅) = 0, so that α is a ccontent on a ring A. Furthermore
α(A) = ψ(A) = ϕ(A0) for A = A0 ⊔ A1 ∈ T, and hence α(A) = ϕ(A0) for
A = A0 ⊔ A1 ∈ Tτ since α|Tτ is upward τ continuous. Now fix E ∈ S with
c := ϕ(E) ∈]0,∞[. Then on the one hand
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E ⊔∅ ∈ T with α(E ⊔∅) = ϕ(E) = c,
E ⊔E ∈ Tτ with α(E ⊔E) = ϕ(E) = c.

On the other hand ∅ ⊔ E ∈ A since A is a ring, and

α(∅ ⊔ E) = inf{α(A) : A ∈ Tτ with A ⊃ ∅ ⊔ E}
= inf{ϕ(A0) : A0 ∈ S and A1 ⊂ A0 with A1 ⊃ E}
= ϕ(E) = c,

since α is outer regular Tτ . These values combine to contradict the fact that
α is modular.

Proof of 2). Both directions ≦ and ≧ are routine verifications. Proof
of 3). Fix as above E ∈ S with c := ϕ(E) ∈]0,∞[. For A := ∅ ⊔ E ⊂ Y
then ψτ (A) = ϕτ (E) = ϕ(E) = c. On the other hand we obtain for S =
S0 ⊔ S1 ∈ T that ψτ (A ∩ S) = ψτ (∅ ⊔ (E ∩ S1)) = ϕτ (E ∩ S1) = 0 since S1

is finite. The assertion follows.

The Extended Carathéodory Construction

We turn to the second task of the present section. We consider a set function
φ : P(X)→ H, defined on the full power set P(X) of a nonvoid set X, and
with values in a nonvoid set H which carries an associative and commutative
addition +. We shall define and explore the so-called Carathéodory class
C(φ) of φ, a paving in X. The definition is classical in case that H has
the neutral element 0 and φ(∅) = 0. But in the present context there is
no restriction for φ(∅), it can in particular be a non-cancellable element of
H. Recall that a ∈ H is named cancellable iff for each pair u, v ∈ H the
implication u + a = v + a ⇒ u = v holds true. Thus H = R with

.
+ or +.

has the non-cancellable elements ±∞.

The new situation requires a drastic modification of the classical defi-
nition. We define the Carathéodory class C(φ) of φ to consist of those
subsets A ⊂ X which fulfil

φ(U) + φ(V ) = φ(U |A|V ) + φ(U |A′|V ) for all U, V ⊂ X.

We proceed to list its basic properties.

4.12. Properties. 1) ∅, X ∈ C(φ). Also C(φ) has ⊥. 2) Assume that
E ⊂ X has cancellable value φ(E) ∈ H. Then C(φ) consists of the subsets
A ⊂ X which fulfil

φ(P ) + φ(E) = φ(P |A|E) + φ(P |A′|E) for all P ⊂ X.

3) In particular assume that φ(∅) = 0 is neutral in H. Then C(φ) consists
of the subsets A ⊂ X which fulfil

φ(P ) = φ(P ∩A′) + φ(P ∩A) for all P ⊂ X.

Thus we come back to the traditional definition of the class C(φ). 4) If
A ∈ C(φ) then

(+) φ(P ) + φ(A) = φ(P ∪A) + φ(P ∩A) for all P ⊂ X.
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On the other hand a subset A ⊂ X which satisfies (+) need not be in C(φ);
by 2) it is in C(φ) when φ(A) ∈ H is cancellable. 5) Assume that there exists
an E ⊂ X such that φ(E) ∈ H is cancellable. Then C(φ) is an algebra.

Proof. 1) is obvious. 2) Let A ⊂ X be as described above. In order to
see that A ∈ C(φ) we fix P,Q ⊂ X and form U := P |A|Q and V := P |A′|Q.
By assumption

(

φ(U) + φ(E)
)

+
(

φ(V ) + φ(E)
)

=
(

φ(U |A|E) + φ(U |A′|E)
)

+
(

φ(V |A|E) + φ(V |A′|E)
)

=
(

φ(P |A|E) + φ(Q|A′|E)
)

+
(

φ(Q|A|E) + φ(P |A′|E)
)

=
(

φ(P |A|E) + φ(P |A′|E)
)

+
(

φ(Q|A|E) + φ(Q|A′|E)
)

=
(

φ(P ) + φ(E)
)

+
(

φ(Q) + φ(E)
)

,

and hence φ(U)+φ(V ) = φ(P )+φ(Q) since φ(E) is cancellable. This is the
assertion. 3) is an obvious special case of 2). 4) For A ∈ C(φ) the equation
(+) is the definition with V := A. For the converse a counterexample will
be in exercise 4.13 below. The last assertion is obvious. 5) We have to prove
that C(φ) has ∪. Fix A,B ∈ C(φ). For P ⊂ X we form U := P |A ∪ B|E
and V := P |(A∪B)′|E. With the notations M := P |A|E and N := P |A′|E
one computes that

M |B|E = (M ∩B′) ∪ (E ∩B)

= (P ∩A′ ∩B′) ∪ (E ∩A ∩B′) ∪ (E ∩B)

=
(

P ∩ (A ∪B)′
)

∪
(

E ∩ (A ∪B)
)

= P |A ∪B|E = U,

M |B′|E = (M ∩B) ∪ (E ∩B′)

= (P ∩A′ ∩B) ∪ (E ∩A ∩B) ∪ (E ∩B′)

= (P ∩A′ ∩B) ∪ (E ∩A′ ∩B′) ∪ (E ∩A)

= (V ∩A′ ∩B) ∪ (V ∩A′ ∩B′) ∪ (E ∩A)

= (V ∩A′) ∪ (E ∩A) = V |A|E,

N = P |A′|E = V |A′|E.

Since A,B ∈ C(φ) it follows that

φ(U) +
(

φ(V ) + φ(E)
)

= φ(U) +
(

φ(V |A|E) + φ(V |A′|E)
)

=
(

φ(M |B|E) + φ(M |B′|E)
)

+ φ(N) =
(

φ(M) + φ(E)
)

+ φ(N)

=
(

φ(P |A|E) + φ(P |A′|E)
)

+ φ(E) =
(

φ(P ) + φ(E)
)

+ φ(E),

and hence that φ(U) + φ(V ) = φ(P ) + φ(E). By 2) this is the assertion.

4.13. Exercise. Construct an example φ : P(X) → H such that there
exists a subset A ⊂ X which fulfils (+) but is not in C(φ), and that fur-
thermore there exists a subset E ⊂ X with cancellable value φ(E) ∈ H.
Hint: Let H := [0,∞] with the usual addition, and let X = Y ∪ Z with
nonvoid disjoint Y and Z. Define φ : P(X) → H to be φ(Y ) = φ(Z) = 0
and φ(A) = ∞ for all other A ⊂ X. Then proceed as follows. 0) For
E ⊂ X : φ(E) ∈ H is cancellable iff E = Y or Z. 1) For A ⊂ X : A fulfils
(+) iff A �= Y, Z. 2) For A ⊂ X : A ∈ C(φ) iff A = ∅ or X.
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In the sequel we concentrate on the particular case that H = R with
one of the additions

.
+ and +. . For a set function φ : P(X) → R we then

write C(φ,
.
+. ). No specification

.
+. is needed when φ attains at most one of

the values ±∞.

4.14. Remark. C(φ,
.
+. ) is an algebra.

Proof. By the above 4.12.5) it remains to consider the cases that the
value set of φ is one of the singletons {±∞} or {−∞,∞}. Then it suffices to
note that on {−∞,∞} the element −∞ is cancellable for

.
+ and the element

∞ is cancellable for +. .

4.15. Exercise. C(φ,+. ) = C(φ⊥,
.
+).

4.16. Remark (Symmetrization). Assume that A ⊂ X satisfies

φ(P )
.
+. φ(Q) ≧ φ(P |A|Q)

.
+. φ(P |A′|Q) for all P,Q ⊂ X.

Then A ∈ C(φ,
.
+. ).

Proof. We know from 1.1.5) that U := P |A|Q and V := P |A′|Q have
U |A|V = P and U |A′|V = Q. It follows that

φ(P |A|Q)
.
+. φ(P |A′|Q) = φ(U)

.
+. φ(V )

≧ φ(U |A|V )
.
+. φ(U |A′|V ) = φ(P )

.
+. φ(Q),

and hence the assertion.

The Carathéodory Class in the Spirit of the Outer Theory

We proceed to consider the Carathéodory class C(φ,
.
+) of an isotone set

function φ : P(X) → R under assumptions in the spirit of the outer the-
ory. We shall see that the definition of C(φ,

.
+) then admits substantial

simplifications. We start with a simple remark.

4.17. Remark. Let T be a paving in X and φ : P(X) → R be isotone
and outer regular T. If A ⊂ X satisfies

φ(P )
.
+φ(Q) ≧ φ(P |A|Q)

.
+φ(P |A′|Q) for all P,Q ∈ T,

then A ∈ C(φ,
.
+).

Proof. By symmetrization it suffices to prove that

φ(U)
.
+φ(V ) ≧ φ(U |A|V )

.
+φ(U |A′|V ) for all U, V ⊂ X.

We fix U, V ⊂ X and can assume that φ(U), φ(V ) < ∞. For fixed real
c > φ(U) + φ(V ) there are a, b ∈ R with c = a + b and with φ(U) < a
and φ(V ) < b. By assumption there exist P,Q ∈ T such that P ⊃ U and
φ(P ) < a, Q ⊃ V and φ(Q) < b. Hence

φ(U |A|V )
.
+φ(U |A′|V ) ≦ φ(P |A|Q)

.
+φ(P |A′|Q) ≦ φ(P )

.
+φ(Q) < a + b = c.

The assertion follows.

4.18. Exercise. Let α : A → R be a content
.
+ on an oval A. Then

A ⊂ C(α⋆,
.
+).
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The main point is that the verification of A ∈ C(φ,
.
+) can be reduced to

certain pairs of subsets P ⊂ Q of X. The basis is the fundamental lemma
which follows. We use the abbreviation P ⊏ Q := {P} ⊏ {Q} = {A ⊂ X :
P ⊂ A ⊂ Q}.

4.19. Lemma. Let P ⊂ Q ⊂ X. Assume that ϕ : P ⊏ Q → R is
submodular. If A ⊂ X satisfies

ϕ(P ) + ϕ(Q) ≧ ϕ(P |A|Q) + ϕ(P |A′|Q),

then

ϕ(U) + ϕ(V ) = ϕ(U |A|V ) + ϕ(U |A′|V ) for all U, V ∈ P ⊏ Q.

Proof. By symmetrization it suffices to prove the assertion with ≧. Fix
U, V ∈ P ⊏ Q. i) From the assumption we have

ϕ(P ) + ϕ(Q) + 2ϕ(U) ≧
(

ϕ(P |A|Q) + ϕ(U)
)

+
(

ϕ(P |A′|Q) + ϕ(U)
)

.

Since ϕ is submodular and P ⊂ U ⊂ Q this is

≧
(

ϕ(U |A|Q) + ϕ(P |A|U)
)

+
(

ϕ(U |A′|Q) + ϕ(P |A′|U)
)

;

and when we use submodularity for the two first terms in the brackets and
repeat the two second terms this is

≧ ϕ(Q) + ϕ(U) + ϕ(P |A|U) + ϕ(P |A′|U).

Thus we have

ϕ(P ) + ϕ(U) ≧ ϕ(P |A|U) + ϕ(P |A′|U).

Of course we have likewise

ϕ(P ) + ϕ(V ) ≧ ϕ(P |A|V ) + ϕ(P |A′|V ).

ii) We add the last two inequalities and use submodularity twice on the right
for the two pairs of terms which were in crosswise position. Then we obtain

2ϕ(P ) + ϕ(U) + ϕ(V ) ≧
(

ϕ(V |A|U) + ϕ(P )
)

+
(

ϕ(U |A|V ) + ϕ(P )
)

,

and hence the assertion.

From the lemma we deduce the next result which looks somewhat tech-
nical but will be a powerful tool.

4.20. Proposition. Assume that φ : P(X)→ R is an isotone set func-
tion. Let P ↓ and Q ↑ be pavings in X with nonvoid P ⊏ Q such that

φ|P and φ|Q are finite, and φ|P ⊏ Q is submodular.

Furthermore let H ↑ be a paving in X with Q ⊂ H such that

φ is outer regular P ⊏ H,

φ(T ) = sup
Q∈Q

φ(T ∩Q) for all T ∈ P ⊏ H.

If A ⊂ X satisfies

φ(P ) + φ(Q) ≧ φ(P |A|Q) + φ(P |A′|Q)

for all P ∈ P and Q ∈ Q with P ⊂ Q,

then A ∈ C(φ,
.
+).
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Proof. i) We know from 1.8.1⋆) that P ⊏ Q and P ⊏ H are ovals. ii)
For each pair P ∈ P and Q ∈ Q there exists a pair A ∈ P and B ∈ Q with
A ⊂ P and Q ⊂ B such that A ⊂ B. In fact, by assumption there exist
U ∈ P and V ∈ Q with U ⊂ V . Then by directedness there are A ∈ P with
A ⊂ P,U and B ∈ Q with B ⊃ Q,V . It is obvious that A and B are as
required. iii) For each pair P ∈ P and Q ∈ Q with P ⊂ Q we see from 4.19
that

φ(U) + φ(V ) = φ(U |A|V ) + φ(U |A′|V ) for all U, V ∈ P ⊏ Q.

By directedness it follows that

φ(U) + φ(V ) = φ(U |A|V ) + φ(U |A′|V ) for all U, V ∈ P ⊏ Q.

Note that U |A|V and U |A′|V are in P ⊏ Q as well. iv) In view of 4.17
applied to T := P ⊏ H it suffices to prove that

φ(U) + φ(V ) ≧ φ(U |A|V ) + φ(U |A′|V ) for all U, V ∈ T.

Note that U |A|V and U |A′|V are in T as well, and that φ|T > −∞. v) Fix
U, V ∈ T. Also fix M,N ∈ Q and then Q ∈ Q with M,N ⊂ Q. By ii) we
can assume that Q is downward enclosable P. Thus U ∩Q,V ∩Q ∈ P ⊏ Q.
By iii) therefore

φ(U) + φ(V ) ≧ φ(U ∩Q) + φ(V ∩Q)

= φ(U ∩Q|A|V ∩Q) + φ(U ∩Q|A′|V ∩Q)

= φ
(

(U |A|V ) ∩Q
)

+ φ
(

(U |A′|V ) ∩Q
)

≧ φ
(

(U |A|V ) ∩M
) .
+φ

(

(U |A′|V ) ∩N
)

.

Now the supremum over M,N ∈ Q of the right side is = φ(U |A|V ) +
φ(U |A′|V ) since the two partial suprema are both > −∞. By iv) the proof
is complete.

4.21. Addendum. Assume in addition that φ|P ⊏ Q is upward σ con-
tinuous. Then C(φ,

.
+) is a σ algebra.

Proof. Let (Al)l be a sequence in C(φ,
.
+) with Al ↑ A. To be shown is

A ∈ C(φ,
.
+). Fix P ∈ P and Q ∈ Q with P ⊂ Q. By assumption we have

φ(P ) + φ(Q) = φ(P |Al|Q) + φ(P |A′
l|Q)

= φ
(

P ∪ (Q ∩Al)
)

+ φ
(

P ∪ (Q ∩A′
l)

)

≧ φ
(

P ∪ (Q ∩Al)
)

+ φ
(

P ∪ (Q ∩A′)
)

,

since Al ⊂ A and hence A′
l ⊃ A′. Here all arguments are in P ⊏ Q and

hence all values are finite. By assumption it follows that

φ(P ) + φ(Q) ≧ φ
(

P ∪ (Q ∩A)
)

+ φ
(

P ∪ (Q ∩A′)
)

= φ(P |A|Q) + φ(P |A′|Q).

Thus from 4.20 we obtain A ∈ C(φ,
.
+).

We include another addendum to 4.20 for the sake of chapter VI.
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4.22. Addendum. Assume in addition that θ : P(X)→ R is an isotone
set function with θ ≧ φ such that

θ|P = φ|P and θ|Q = φ|Q,

θ(T ) = sup
Q∈Q

θ(T ∩Q) for all T ∈ P ⊏ H.

Then φ|C(φ,
.
+) is an extension of θ|C(θ,

.
+).

Proof. Fix A ∈ C(θ,
.
+). i) In order to prove that A ∈ C(φ,

.
+) let P ∈ P

and Q ∈ Q with P ⊂ Q. Then

φ(P ) + φ(Q) = θ(P ) + θ(Q) = θ(P |A|Q) + θ(P |A′|Q)

≧ φ(P |A|Q) + φ(P |A′|Q).

From 4.20 the assertion follows. ii) We claim that θ(P |A|Q) = φ(P |A|Q) ∈
R for all P ∈ P and Q ∈ Q. This follows at once from

φ(P ) + φ(Q) = θ(P ) + θ(Q) = θ(P |A|Q)
.
+θ(P |A′|Q)

≧ φ(P |A|Q)
.
+φ(P |A′|Q) = φ(P ) + φ(Q).

iii) It remains to prove that θ(A) ≦ φ(A) and hence θ(A) = φ(A). We fix
V ∈ P ⊏ H with V ⊃ A and have to show that θ(A) ≦ φ(V ). Let P ∈ P

with P ⊂ V and Q ∈ Q. Then on the one hand

θ(P |A|Q) ≧ θ(P ∩Q|A|V ∩Q) = θ
(

(P |A|V ) ∩Q
)

,

so that from the assumption and P |A|V ∈ P ⊏ H and from P |A|V ⊃
V ∩A = A we obtain

sup
Q∈Q

θ(P |A|Q) ≧ θ(P |A|V ) ≧ θ(A).

On the other hand we have P |A|Q ⊂ P ∪A ⊂ V and hence

sup
Q∈Q

φ(P |A|Q) ≦ φ(V ).

From ii) the assertion follows.

5. The Outer Extension Theory: The Main

Theorem

The Outer Main Theorem

In the last section we have developed the concepts and instruments which
we need in order to reach our principal aim as formulated after the basic
definition. The first theorem below is a clear hint that these devices are
adequate.

The present subsection is under the assumption that ϕ : S→]−∞,∞]
is an isotone set function �≡ ∞ on a lattice S in X.

5.1. Theorem. Assume that α : A → R is an outer • extension of ϕ.
Then α is a restriction of ϕ•|C(ϕ•,

.
+).
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Proof. i) ϕ = α|S is upward • continuous, and hence ϕ = ϕ•|S by 4.5.
Then α = ϕ = ϕ• on S implies α = ϕ• on S• by 4.3.iii), and hence α = ϕ•

on A by 4.1.4). ii) It remains to prove that A ⊂ C(ϕ•,
.
+). Fix A ∈ A. For

P,Q ∈ S• then

α(P )
.
+α(Q) = α(P |A|Q)

.
+(P |A′|Q),

where all arguments are in A since A is an oval. In fact, since α is modular.
+ both sides are = α(P ∪ Q)

.
+α(P ∩Q). Since now α = ϕ• on A by i) we

obtain A ∈ C(ϕ•,
.
+) from 4.17 applied to φ := ϕ• and T := S•.

We prepare the outer main theorem with the important next result.

5.2. Proposition. Let ϕ be submodular with ϕ•|S > −∞, and upward
essential in case • = τ . Fix pavings

P ⊂ [ϕ <∞] downward cofinal, that is such that [ϕ <∞] ⊂ (⊐ P),
Q ⊂ [ϕ <∞] upward cofinal, that is such that [ϕ <∞] ⊂ (⊏ Q).

If A ⊂ X satisfies

ϕ•(P ) + ϕ•(Q) ≧ ϕ•(P |A|Q) + ϕ•(P |A′|Q)

for all P ∈ P and Q ∈ Q with P ⊂ Q,

then A ∈ C(ϕ•,
.
+).

5.3. Addendum. For • = στ the class C(ϕ•,
.
+) is a σ algebra.

Proof of 5.2 and 5.3. We deduce the assertions from 4.20 and 4.21. i)
[ϕ < ∞] is a lattice by 2.4 and nonvoid by assumption. Therefore P ↓
and Q ↑, and P ⊏ Q ⊃ [ϕ < ∞] is nonvoid. ii) φ := ϕ• is isotone and
submodular

.
+ by 4.1.3)5). By assumption and 4.1.1)2) φ is finite on [ϕ <∞]

and hence on P ⊏ Q. iii) We define H := [ϕ•|S• < ∞] and note that
ϕ•|S• > −∞. Then [ϕ < ∞] ⊂ H and hence Q ⊂ H. By ii) and 2.4 H is
a lattice and hence H ↑. iv) ⊐ P contains [ϕ < ∞] and hence S, therefore
S• and in particular H. Thus H ⊂ P ⊏ H. By 4.1.4) therefore φ is outer
regular P ⊏ H. v) For T ∈ P ⊏ H we have by definition ϕ•(T ) < ∞ and
sup{ϕ•(T ∩ S) : S ∈ [ϕ < ∞]} > −∞. Since ϕ is upward • essential by
4.10.⋆)σ) and by assumption we have

φ(T ) = sup {φ(T ∩ S) : S ∈ [ϕ <∞]} = sup {φ(T ∩ S) : S ∈ Q}.
vi) After this the assertions follow from 4.20 and 4.21.

5.4. Consequence. Let ϕ be submodular with ϕ•|S > −∞, and upward
essential in case • = τ . Assume that Q ⊂ [ϕ <∞] is upward cofinal. Then

Q⊤C(ϕ•,
.
+) ⊂ C(ϕ•,

.
+).

Proof. We put P := [ϕ < ∞]. Fix A ∈ Q⊤C(ϕ•,
.
+). For P ∈ P and

Q ∈ Q we have A ∩Q ∈ C(ϕ•,
.
+) and hence

ϕ•(P ) + ϕ•(Q) = ϕ•(P |A ∩Q|Q) + ϕ•(P |(A ∩Q)′|Q).

In case P ⊂ Q the right side is = ϕ•(P |A|Q) + ϕ•(P |A′|Q). Thus from 5.2
we obtain A ∈ C(ϕ•,

.
+).

We come to the central result of the present chapter.
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5.5. Theorem (Outer Main Theorem). Let ϕ : S →] − ∞,∞] be an
isotone and submodular set function �≡ ∞ on a lattice S. Fix pavings

P ⊂ [ϕ <∞] downward cofinal, and
Q ⊂ [ϕ <∞] upward cofinal.

Then the following are equivalent.

1) There exist outer • extensions of ϕ, that is ϕ is an outer • premeasure.

2) ϕ•|C(ϕ•,
.
+) is an outer • extension of ϕ. Furthermore

if • = ⋆ : ϕ•|C(ϕ•,
.
+) is a content

.
+ on the algebra C(ϕ•,

.
+),

if • = στ : ϕ•|C(ϕ•,
.
+) is a measure

.
+ on the σ algebra C(ϕ•,

.
+).

3) ϕ•|C(ϕ•,
.
+) is an extension of ϕ in the crude sense, that is S ⊂ C(ϕ•,

.
+)

and ϕ = ϕ•|S.

4) ϕ(U) + ϕ(V ) = ϕ(M)
.
+ϕ•(U |M ′|V ) for all U ⊂M ⊂ V in S; note that

M = U |M |V . In case • = τ furthermore ϕ is upward essential.

5) ϕ = ϕ•|S; and ϕ(P ) + ϕ(Q) ≧ ϕ(M) + ϕ•(P |M ′|Q) for all P ⊂M ⊂ Q
with P ∈ P, Q ∈ Q, and M ∈ S and hence ∈ [ϕ < ∞]. In case • = τ
furthermore ϕ is upward essential.

Note that 5.4 then implies Q⊤S• ⊂ C(ϕ•,
.
+).

A posteriori it turns out that condition 5) is independent of the pavings
P and Q. But the present formulation is important for later specializations.

Proof. We prove 2)⇒1)⇒3)⇒4)⇒5)⇒2). The implication 2)⇒1) is
obvious, and 1)⇒3) follows from 5.1. 3)⇒4) The first assertion follows from
the definition of C(ϕ•,

.
+). It remains to show in case • = τ that ϕ is upward

τ essential. If not, then there exists A ⊂ X such that

∞ > ϕτ (A) > sup {ϕτ (A ∩ S) : S ∈ [ϕ <∞]} > −∞.

Let ε := ϕτ (A)− sup {ϕτ (A∩S) : S ∈ [ϕ <∞]} > 0. For S ∈ [ϕ <∞] then
ϕ(S) = ϕτ (S) ∈ R and S ∈ C(ϕτ ,

.
+). Therefore

ϕτ (S)
.
+ϕτ (A) = ϕτ (S|S|A)

.
+ϕτ (S|S′|A) = ϕτ (A ∩ S)

.
+ϕτ (A ∪ S),

with all terms finite, and hence

ϕ(S) + ϕτ (A) ≦ ϕτ (A)− ε + ϕτ (A ∪ S), or ϕ(S) + ε ≦ ϕτ (A ∪ S).

Fix a paving M ⊂ [ϕ <∞] with M ↑M ⊃ A and sup
S∈M

ϕ(S) <∞. By 4.5.iii)

then M ∈ Sτ and sup
S∈M

(S) = ϕτ (M) ∈ R. It follows that ϕτ (M) + ε ≦

ϕτ (M) and thus a contradiction. 4)⇒5) For V ∈ S and U = M ∈ [ϕ <∞]
contained in V we obtain from 4) that ϕ(V ) = ϕ•(V ).

It remains to prove the implication 5)⇒2). For the remainder of the
proof we assume 5). Then the assumptions of 5.2 and 5.3 are fulfilled. i)
C(ϕ•,

.
+) is an algebra by 4.14, and α := ϕ•|C(ϕ•,

.
+) is isotone and modular.

+ by 4.12.4). For • = στ the class C(ϕ•,
.
+) is a σ algebra by 5.3.
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ii) We conclude from 5.2 that S• ⊂ C(ϕ•,
.
+). Fix A ∈ S•. Then let

M ⊂ S be a paving of type • with M ↑ A. Furthermore fix P ∈ P and
Q ∈ Q with P ⊂ Q. For S ∈M we form

M := P |S|Q = P ∪ (Q ∩ S) ∈ S with P ⊂M ⊂ Q,

so that from 5) we obtain ϕ(P ) + ϕ(Q) ≧ ϕ(M) + ϕ•(P |M ′|Q). Here

P |M ′|Q = P ∪ (Q ∩M ′) = P ∪
(

Q ∩ P ′ ∩ (Q′ ∪ S′)
)

= P ∪ (Q ∩ P ′ ∩ S′) = P ∪ (Q ∩ S′) ⊃ P ∪ (Q ∩A′) = P |A′|Q,

so that

ϕ(P ) + ϕ(Q) ≧ ϕ
(

P ∪ (Q ∩ S)
)

+ ϕ•(P |A′|Q).

Now {P ∪ (Q∩S) : S ∈M} ↑ P ∪ (Q∩A) = P |A|Q. From 4.5.iii) it follows
that

ϕ(P ) + ϕ(Q) ≧ ϕ•(P |A|Q) + ϕ•(P |A′|Q).

Thus 5.2 implies that A ∈ C(ϕ•,
.
+) as claimed.

iii) In particular S ⊂ C(ϕ•,
.
+), so that α is an extension of ϕ. Thus α

attains at least one finite value and hence is a content
.
+. Furthermore α

is outer regular S• by 4.1.4), and α|S• is upward • continuous by 4.5.iii).
Therefore α is an outer • extension of ϕ. iv) It remains to prove that α
is a measure

.
+ when • = στ . By 4.7 α is almost upward σ continuous.

Thus by 2.11 α is almost downward σ continuous as well, provided that it
is semifinite below, that is outer regular [α > −∞]. But we know from ii)
that S• is in C(ϕ•,

.
+) and hence in [α > −∞]. Thus α is outer regular

[α > −∞]. The proof is complete.

The above outer main theorem fulfils the promise made after the basic
definition: Conditions 4) and 5) characterize the outer • premeasures. Com-
bined with 5.1 we see that for an outer • premeasure ϕ all outer • extensions
are restrictions of a unique maximal one, which is ϕ•|C(ϕ•,

.
+). Thus we ar-

rive at a natural and simple situation, and our concepts and instruments
prove to be adequate. We want to put particular emphasis on the role of
the Carathéodory class, because its initial creation was not at all connected
with regularity.

5.6. Remark. The outer main theorem would be false in case • = τ if
in 4)5) the condition that ϕ be upward essential would be omitted. To see
this we return to example 4.11 and adopt the former notations. The set
function ψ : T → [0,∞] then violates 1) as shown in 4.11.1). On the other
hand we anticipate from 5.14 that we could have started from a set function
ϕ : S → [0,∞] as described in 4.9 with ϕτ (F ) = 0 for all finite F ⊂ X
which has an outer τ extension and thus is an outer τ premeasure. Then
the set function ψ : T → [0,∞] fulfils the first part of 4). In fact, we see
from 4.11.2) and since ϕτ is submodular that this condition reads

ϕ(U) + ϕ(V ) = ϕ(M) + ϕτ (U |M ′|V ) for all U ⊂M ⊂ V in S,

and therefore is satisfied.
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5.7. Special Case (Traditional Type). Assume that S is an oval.
Then condition 5) simplifies to

5◦) ϕ = ϕ•|S; and ϕ is supermodular. In case • = τ furthermore ϕ is
upward essential.

Proof of 5◦)⇒5). If P ⊂M ⊂ Q are as in 5) then P |M ′|Q = Q|M |P =:
N ∈ S and hence ∈ [ϕ < ∞]. We have M ∩N = P and M ∪N = Q, and
hence ϕ(M)+ϕ•(N) = ϕ(M)+ϕ(N) ≦ ϕ(P )+ϕ(Q). Proof of 5)⇒5◦). One
notes that 5)⇒1) ⇒ ϕ is supermodular, or that 5) for P = Q = [ϕ <∞] ⇒
ϕ is supermodular.

We shall soon turn to the most important special cases. But first we
want to terminate the present context with a short comparison of the three
cases • = ⋆στ .

Comparison of the three Outer Theories

In the present subsection we assume that ϕ : S →] −∞,∞] is an isotone
and submodular set function �≡ ∞ on a lattice S.

5.8. Proposition. σ) In case ϕ = ϕσ|S we have C(ϕ⋆,
.
+) ⊂ C(ϕσ,

.
+).

τ) In case ϕ = ϕτ |S and ϕ upward essential we have C(ϕσ,
.
+) ⊂ C(ϕτ ,

.
+).

Proof. Combine ϕ⋆ ≧ ϕσ ≧ ϕτ with 5.2 for P = Q = [ϕ <∞].

5.9. Proposition. Assume that ϕ is modular. σ) In case ϕ = ϕσ|S
we have ϕ⋆(A) = ϕσ(A) for all A ∈ C(ϕ⋆,

.
+) with ϕ⋆(A) < ∞. τ) In case

ϕ = ϕτ |S we have ϕσ(A) = ϕτ (A) for all A ∈ C(ϕσ,
.
+) with ϕσ(A) <∞.

Proof. σ) Fix A ∈ C(ϕ⋆,
.
+) with ϕ⋆(A) < ∞. For P,Q ∈ [ϕ < ∞] we

have by 4.1.5)

ϕ(P ) + ϕ(Q) = ϕ⋆(P ) + ϕ⋆(Q) = ϕ⋆(P |A|Q) + ϕ⋆(P |A′|Q)

≧ ϕσ(P |A|Q) + ϕσ(P |A′|Q) ≧ ϕσ(P ∪Q) + ϕσ(P ∩Q)

= ϕ(P ∪Q) + ϕ(P ∩Q) = ϕ(P ) + ϕ(Q),

where all arguments are between P ∩Q and P ∪Q and hence all values are
finite. It follows that

ϕ⋆(P |A|Q) = ϕσ(P |A|Q) for all P,Q ∈ [ϕ <∞].

Since ϕ⋆(A) <∞ there exists Q ∈ [ϕ <∞] with Q ⊃ A. Then ϕ⋆(P ∪A) =
ϕσ(P ∪A) for all P ∈ [ϕ <∞]. Now we have to prove that ϕ⋆(A) ≦ ϕσ(A)
and can thus assume that ϕσ(A) <∞. Consider U ∈ Sσ with U ⊃ A, and
recall that ϕσ is outer regular Sσ. There are subsets P ∈ [ϕ <∞] such that
P ⊂ U . It follows that

ϕ⋆(A) ≦ ϕ⋆(P ∪A) = ϕσ(P ∪A) ≦ ϕσ(U),

and hence ϕ⋆(A) ≦ ϕσ(A).
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τ) Fix A ∈ C(ϕσ,
.
+) with ϕσ(A) < ∞. For P,Q ∈ [ϕ < ∞] we have as

above

ϕ(P ) + ϕ(Q) = ϕσ(P ) + ϕσ(Q) = ϕσ(P |A|Q) + ϕσ(P |A′|Q)

≧ ϕτ (P |A|Q) + ϕτ (P |A′|Q) ≧ ϕτ (P ∪Q) + ϕτ (P ∩Q)

= ϕ(P ∪Q) + ϕ(P ∩Q) = ϕ(P ) + ϕ(Q),

where all values are finite. It follows that

ϕσ(P |A|Q) = ϕτ (P |A|Q) for all P,Q ∈ [ϕ <∞].

Since ϕσ and ϕτ are upward σ continuous by 4.7 this implies that

ϕσ(P |A|Q) = ϕτ (P |A|Q) for all P,Q ∈ [ϕ <∞]σ.

Since ϕσ(A) <∞ there exists Q ∈ [ϕ <∞]σ with Q ⊃ A. Then ϕσ(P∪A) =
ϕτ (P ∪A) for all P ∈ [ϕ <∞]σ. Now we have to prove that ϕσ(A) ≦ ϕτ (A)
and can thus assume that ϕτ (A) < ∞. Consider U ∈ Sτ with U ⊃ A, and
recall that ϕτ is outer regular Sτ . There are subsets P ∈ [ϕ <∞] such that
P ⊂ U . It follows that

ϕσ(A) ≦ ϕσ(P ∪A) = ϕτ (P ∪A) ≦ ϕτ (U),

and hence ϕσ(A) ≦ ϕτ (A).

5.10. Exercise. σ) Construct an example which shows that 5.9.σ) be-
comes false without the condition ϕ⋆(A) < ∞. Hint: Let S consist of the
finite subsets of an infinite countable X, and let ϕ = 0. Determine C(ϕ⋆,

.
+)

with the aid of 5.2. τ) Do the same for 5.9.τ).

However, we shall see that the three properties of ϕ to be an outer
• premeasure for • = ⋆στ are independent, except that as a consequence
of 5.5.5) the combination + − + of these properties cannot occur. The
independence is plausible after 5.5.5): This condition can be subdivided
into two partial ones, such that the one increases and the other decreases
with • = ⋆στ . We shall come back to this point in 5.15 in the frame of the
conventional outer situation.

The Conventional Outer Situation

The above central theorem of the chapter will be most important in two
particular cases. These are the specializations

∅ ∈ S and ϕ(∅) = 0, and

X ∈ S and ϕ(X) = 0.

The first one is called the conventional outer situation. It will be the theme of
the present subsection. This specialization contains, and unifies and clarifies
those earlier extension procedures which were in visible or invisible manner
based on outer regularity. The other one is what later will become the con-
ventional inner situation. It will achieve the same for the earlier extension
procedures based on inner regularity. It is obvious that this specialization
should be treated via the upside-down transform method. However, it seems
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more natural to perform the upside-down procedure for the entire develop-
ment, and then to specialize to the case ∅ ∈ S and ϕ(∅) = 0 as before.
This will be done in the next section.

For the present we consider a lattice S with ∅ ∈ S and an isotone
set function ϕ : S → [0,∞] with ϕ(∅) = 0. There are certain immediate
simplifications: An outer • extension of ϕ is an extension of ϕ which is a
ccontent α : A → [0,∞] on a ring A, with the further properties as above.
Furthermore we have ϕ• : P(X) → [0,∞] with ϕ•(∅) = 0. Thus we can
write C(ϕ•) instead of C(ϕ•,

.
+). Also the definition of upward essential

simplifies in an obvious manner. It is natural to specialize 5.2 and 5.5 to
P = {∅}, and for simplicity we take Q = [ϕ <∞]. Let us then rewrite the
outer main theorem with these simplifications.

5.11. Theorem (Conventional Outer Main Theorem). Let S be a lattice
with ∅ ∈ S, and ϕ : S→ [0,∞] be an isotone and submodular set function
with ϕ(∅) = 0. Then the following are equivalent.

1) There exist outer • extensions of ϕ, that is ϕ is an outer • premeasure.

2) ϕ•|C(ϕ•) is an outer • extension of ϕ. Furthermore

if • = ⋆ : ϕ•|C(ϕ•) is a ccontent on the algebra C(ϕ•),

if • = στ : ϕ•|C(ϕ•) is a cmeasure on the σ algebra C(ϕ•).

3) ϕ•|C(ϕ•) is an extension of ϕ in the crude sense, that is S ⊂ C(ϕ•) and
ϕ = ϕ•|S.

4) ϕ(B) = ϕ(A)+ϕ•(B \A) for all A ⊂ B in S. In case • = τ furthermore
ϕ is upward essential.

5) ϕ = ϕ•|S; and ϕ(B) ≧ ϕ(A) + ϕ•(B \ A) for all A ⊂ B in [ϕ < ∞]. In
case • = τ furthermore ϕ is upward essential.

Note that 5.4 then implies [ϕ <∞]⊤S• ⊂ C(ϕ•).

Assume that S is a lattice with ∅ ∈ S. We define an isotone set function
ϕ : S→ [0,∞] with ϕ(∅) = 0 to be outer • tight iff it fulfils

ϕ(B) ≧ ϕ(A) + ϕ•(B \A) for all A ⊂ B in S,

as it appears in condition 5) above. It is obvious that

outer ⋆ tight ⇒ outer σ tight ⇒ outer τ tight .

We show on the spot that both converses⇐ are false. The counterexamples
will be isotone and modular set functions ϕ : S → [0,∞[ with ϕ(∅) = 0
which are upward τ continuous.

5.12. Exercise. We recall from 2.3.1) for a ∈ X the Dirac set functions
δa : P(X)→ {0, 1}. δa is a cmeasure and upward and downward τ continu-
ous. Now assume that X is a Hausdorff topological space. We consider the
set functions ϕ := δa|Op(X) and ψ := δa|Cl(X). 1) We have ϕ• = δa for all
• = ⋆στ . Therefore ϕ is outer • tight and an outer • premeasure. 2) We
have the equivalences

ψ outer • tight ⇐⇒ ψ•({a}′) = 0⇐⇒ {a} ∈ (Op(X))•.
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The condition on the right side can be different for • = ⋆στ : For • = ⋆
it means that a is an isolated point of X. For • = σ it means that in
classical notation {a} is a Gδ set. For • = τ it is always fulfilled. Thus we
obtain obvious counterexamples as announced above. Furthermore ψτ = δa;
therefore ψ is upward essential and hence an outer τ premeasure.

5.13. Special Case (Traditional Type). Assume that S is a ring.
Then condition 5) simplifies to
5◦) ϕ = ϕ•|S; and ϕ is supermodular. In case • = τ furthermore ϕ is
upward essential.

The conventional outer main theorem will henceforth be one of our sys-
tematic tools. A fundamental achievement will be the extension 7.12.1) of
the last special case. For the present it will be applied to the former main ex-
ample λ : K = Comp(Rn)→ [0,∞[ in order to obtain the Lebesgue measure
on Rn and its basic properties in the spirit of the outer theory.

The decisive fact follows from a simple observation which will be system-
atized below: For each pair A ⊂ B in K we have B \ A ∈ Kσ, that is there
exists a sequence (Kl)l in K such that Kl ↑ B \ A. Then A ∩Kl = ∅ and
A∪Kl ↑ B. We conclude from 2.26 that λ(A) + λ(Kl) = λ(A∪Kl) ≦ λ(B)
and hence

λσ(B \A) ≦ lim
l→∞

λ(Kl) ≦ λ(B)− λ(A);

note that 2.27 even implies that λ(A∪Kl) ↑ λ(B) and hence λ(Kl) ↑ λ(B)−
λ(A). Thus λ is outer σ tight. From 2.27 it follows that λ is an outer σ
premeasure. The achievement of the conventional outer main theorem is
then the cmeasure

Λ := λσ|C(λσ) = λσ|L on L := C(λσ),

defined to be the Lebesgue measure on Rn. The last assertion in 5.11
furnishes

Cl(Rn) ⊂ K⊤K ⊂ K⊤Kσ ⊂ C(λσ) = L and hence Bor(Rn) ⊂ L.

The restriction Λ|Bor(Rn) is called the Borel-Lebesgue measure on Rn.
All this is the first statement in the comprehensive theorem which follows.

5.14. Theorem. 1) λ : K = Comp(Rn) → [0,∞[ is an outer σ premea-
sure. The Lebesgue measure Λ := λσ|C(λσ) has the domain L := C(λσ) ⊃
Bor(Rn). 2) λ is not upward τ continuous and hence not an outer τ pre-
measure. 3) λ is not outer ⋆ tight and hence not an outer ⋆ premeasure.

4) λσ and hence Λ are outer regular Op(Rn). 5) Λ is inner regular
K = Comp(Rn). 6) Λ|Op(Rn) is upward τ continuous. 7) Λ|Op(Rn) =: ω
is an outer • premeasure for all • = ⋆στ . It satisfies ω• = λσ and hence
ω•|C(ω•) = Λ.

Proof. 1) has been proved above. 2) is obvious since λ(F ) = 0 for all
finite F ⊂ Rn. The next proofs require the preparations which follow. i)
For K ∈ K and ε > 0 there exists an open U ⊃ K with Λ(U) ≦ λ(K) + ε.
In fact, for K �= ∅ and K(δ) := {x ∈ Rn : dist(x, K) ≦ δ} we see from
2.24 that Λ(IntK(δ)) ↓ λ(K) for δ ↓ 0. ii) For A ∈ Kσ with Λ(A) < ∞
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and ε > 0 there exists an open U ⊃ A with Λ(U) ≦ Λ(A) + ε. To see this
choose a sequence (Kl)l in K with Kl ↑ A and open subsets Ul ⊃ Kl with
Λ(Ul) ≦ λ(Kl) + ε2−l. For the Vl := U1 ∪ · · · ∪ Ul one obtains via induction
Λ(Vl) ≦ λ(Kl) + ε(1 − 2−l). Thus Vl ↑ V furnishes an open V ⊃ A with
Λ(V ) ≦ Λ(A) + ε.

3) Let B := {x ∈ Rn : 0 ≦ x1, · · · , xn ≦ 1} be the unit cube of Rn and
D ⊂ IntB be a countable dense subset. From Λ(D) = 0 and ii) we obtain
an open subset U ⊃ D of IntB with Λ(U) < 1. Note that λ⋆(U) = 1. Thus
for the compact A := B \ U ⊂ B we have U = B \A and

λ(B) = λ(A) + Λ(U) < λ(A) + 1 = λ(A) + λ⋆(B \A).

It follows that λ is not outer ⋆ tight. 4) follows from 4.1.4) and the above
ii). 5) Since Rn is in Kσ we can restrict ourselves to A ∈ L such that
A ⊂ some K ∈ K. Fix ε > 0. By 4) there exists an open U ⊃ K ∩ A′ with
Λ(U) ≦ Λ(K ∩A′) + ε. Then K ∩ U ′ is compact ⊂ A, and we have

Λ(A) + Λ(K ∩ U) ≦ Λ(A) + Λ(U) ≦ Λ(A) + Λ(K ∩A′) + ε

= λ(K) + ε = λ(K ∩ U ′) + Λ(K ∩ U) + ε,

and hence Λ(A) ≦ λ(K ∩ U ′) + ε. 6) Let A ∈ Op(Rn), and M ⊂ Op(Rn)
be a paving with M ↑ A. For real c < Λ(A) we obtain from 5) a compact
K ⊂ A with c < λ(K). Now K ⊂ some M ∈M, and hence c < sup{Λ(M) :
M ∈ M}. The assertion follows. 7) We see from 4)6) that Λ is an outer •
extension of ω, so that ω is an outer • premeasure. Now ω• and λσ coincide
on Op(Rn) and are both outer regular Op(Rn). Therefore ω• = λσ. The
proof is complete.

5.15. Exercise. We can now prove that for the isotone and modular
set functions ϕ : S → [0,∞[ with ϕ(∅) = 0 the three properties to be an
outer • premeasure for • = ⋆στ are independent, as announced at the end
of the last subsection. There are 23 = 8 combinations of these properties.
We know that the combination + − + cannot occur. 1) Deduce examples
for −−+ and −++ from 5.12.2). 2) Deduce examples for −−− and +−−
from 3.11. 3) Deduce examples for − + − and + + + and also for + + −
from 5.14.

6. The Inner Extension Theory

The basic part of the present section obtains the inner extension theory
as a mere transcription of the outer extension theory via the upside-down
transform method. Thus the two extension theories are in fact identical.
We shall add a subsection on further results in the τ case, which in practice
is much more important in the inner than in the outer situation. Then we
specialize to the conventional inner situation as announced.
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The Basic Definition

Let as before S be a lattice in a nonvoid set X.

Definition. Let ϕ : S → [−∞,∞[ be an isotone set function �≡ −∞.
For • = ⋆στ we define an inner • extension of ϕ to be an extension of ϕ
which is a +. content α : A → R on an oval A, such that also S• ⊂ A and
that

α is inner regular S•, and
α|S• is downward • continuous; in this context note that α|S• < ∞.

We define ϕ to be an inner • premeasure iff it admits inner • extensions.
Thus an inner • premeasure is modular and downward • continuous.

As before the principal aim is to characterize those ϕ which are inner •
premeasures, and then to describe all inner • extensions of ϕ.

6.1. Exercise. Let ϕ : S→ [−∞,∞[ be an isotone set function �≡ −∞,
and hence ϕ⊥ : S⊥ →] − ∞,∞] an isotone set function �≡ ∞. Then a
set function α : A → R is an inner • extension of ϕ iff the set function
α⊥ : A⊥ → R is an outer • extension of ϕ⊥.

We also refer to the instructive exercise 9.21 below. It is ab-ovo and
could have been placed here, but will be postponed until it will be needed.

The Inner Envelopes

Let ϕ : S→ R be an isotone set function on a lattice S. As before we define
its crude inner envelope ϕ⋆ : P(X)→ R to be

ϕ⋆(A) = sup{ϕ(S) : S ∈ S with S ⊂ A} for A ⊂ X.

Likewise we define the inner envelopes ϕσ, ϕτ : P(X) → R as the coun-
terparts of the respective outer formations to be

ϕσ(A) = sup{ lim
l→∞

ϕ(Sl) : (Sl)l in S with Sl ↓⊂ A} for A ⊂ X,

ϕτ (A) = sup{ inf
S∈M

ϕ(S) : M paving ⊂ S with M ↓⊂ A} for A ⊂ X.

As before we have for • = ⋆στ the common formula

ϕ•(A) = sup{ inf
S∈M

ϕ(S) : M paving ⊂ S of type • with M ↓⊂ A}.

6.2. Exercise. (ϕ•)⊥ = (ϕ⊥)• for • = ⋆στ .

The upside-down transform method thus furnishes the inner counter-
parts of the respective properties proved in the outer situation. For conve-
nience we list the basic ones.

6.3. Properties. 1) ϕ⋆|S = ϕ. 2) ϕ⋆ ≦ ϕσ ≦ ϕτ . 3) ϕ• is isotone. 4)
ϕ• is inner regular [ϕ•|S• > −∞] ⊂ S•. 5) Assume that ϕ is supermodular
+. . Then ϕ⋆ is supermodular +. , and ϕ• for • = στ is supermodular +. when
either ϕ <∞ or ϕ• > −∞.
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6.4. Exercise. Let ϕ be submodular +. . Assume that A,B ⊂ X are
coseparated S in the sense that

for each M ∈ S with M ⊂ A ∪B
there exist S, T ∈ S with S ⊂ A and T ⊂ B such that M ⊂ S ∪ T .

Then ϕ⋆(A ∪B)+. ϕ⋆(A ∩B) ≦ ϕ⋆(A)+. ϕ⋆(B).

6.5. Proposition. For an isotone set function ϕ : S → R and • = στ
the following are equivalent.

i) ϕ•|S = ϕ;
ii) ϕ is downward • continuous.

In this case we have furthermore

iii) ϕ•|S• is downward • continuous;
iv) if {S ∈ S• : ϕ•(S) > −∞} ⊂ S then ϕ• = ϕ⋆.

6.6. Lemma. Let M ⊂ S• be a paving of type • with M ↓ A. Then of
course A ∈ S•. Furthermore there exists a paving N ⊂ S of type • with
N ↓ A and N ⊂ (⊐ M).

6.7. Theorem. Assume that ϕ : S→ R is isotone and supermodular +. .
Then ϕσ and ϕτ are almost downward σ continuous.

6.8. Lemma. Assume that ϕ : S → R is isotone and supermodular +. .
For P1, · · · , Pn, Q ∈ S with ϕ(P1), · · · , ϕ(Pn), ϕ(Q) > −∞ then ϕ(P1∩· · ·∩
Pn ∩Q) > −∞ and

ϕ(P1 ∩ · · · ∩ Pn ∩Q) +
n

∑

l=1

ϕ(Pl ∪Q) ≧

n
∑

l=1

ϕ(Pl) + ϕ(Q).

Next we define an isotone set function ϕ : S → R to be downward •
essential iff its upside-down transform ϕ⊥ : S⊥ → R is upward • essential.
One verifies that this means that

ϕ•(A) = inf{ϕ•(A ∪ S) : S ∈ [ϕ > −∞]} for all A ⊂ X with

−∞ < ϕ•(A) ≦ inf{ϕ•(A ∪ S) : S ∈ [ϕ > −∞]} <∞.

We obtain the counterpart of the former result.

6.9. Proposition. Let ϕ : S → R be isotone. ⋆) ϕ is downward ⋆
essential. σ) If ϕ is supermodular +. then it is downward σ essential. τ)
Assume that ϕ is supermodular +. and such that each A ⊂ X with ϕτ (A) >
−∞ is downward enclosable [ϕ > −∞]σ. Then ϕ is downward τ essential.

Therefore an isotone and supermodular +. set function ϕ : S → R will
be called downward essential instead of downward τ essential.

After these transcriptions we conclude the subsection with some simple
but important relations which involve envelopes of both kinds.

6.10. Proposition. 1) We have ϕ• ≦ ϕ⋆ on S•. Therefore ϕ• ≦

(ϕ⋆|S•)⋆. 2) The following are equivalent. i) ϕ = ϕ•|S. ii) ϕ• ≧ ϕ⋆

on S• and hence ϕ• = ϕ⋆ on S•. iii) ϕ• ≧ ϕ⋆. iv) ϕ• ≧ (ϕ⋆|S•)⋆ and
hence ϕ• = (ϕ⋆|S•)⋆.
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Proof. 1) Let A ∈ S• and M ⊂ S be a paving of type • with M ↑ A.
By definition then ϕ(S) ≦ ϕ⋆(A) ∀S ∈M and hence

ϕ•(A) ≦ sup
S∈M

ϕ(S) ≦ ϕ⋆(A).

The second relation is then clear. 2) The implications iii)⇒iv)⇒ii)⇒i) are
obvious. i)⇒iii) Let A ⊂ X. For S ∈ S with S ⊂ A then ϕ(S) = ϕ•(S) ≦

ϕ•(A). Thus ϕ⋆(A) ≦ ϕ•(A).

6.11. Exercise. 1) We have ϕ• ≧ ϕ⋆ on S•. Therefore ϕ• ≧ (ϕ⋆|S•)⋆.
2) The following are equivalent. i) ϕ = ϕ•|S. ii) ϕ• ≦ ϕ⋆ on S• and hence
ϕ• = ϕ⋆ on S•. iii) ϕ• ≦ ϕ⋆. iv) ϕ• ≦ (ϕ⋆|S•)⋆ and hence ϕ• = (ϕ⋆|S•)⋆.

In some earlier versions of the outer and inner extension theories the
above formations

ϕ(•) := (ϕ⋆|S•)⋆ and ϕ(•) := (ϕ⋆|S•)⋆

have been used in more or less explicit manner, in places where in the present
text the envelopes ϕ• and ϕ• are the natural means. For some details we
refer to the bibliographical annex to the chapter. Of course ϕ(⋆) = ϕ⋆

and ϕ(⋆) = ϕ⋆. For • = στ the formations ϕ(•) and ϕ(•) are much more
complicated than ϕ• and ϕ•. For example, it is unclear whether beyond
6.10.2) and 6.11.2) they preserve semimodularity in the appropriate sense.

The Carathéodory Class in the Spirit of the Inner Theory

The second tool in the outer extension theory was the Carathéodory class
C(·). Its definition and basic properties were not related to outer/inner
aspects. Thus there is no reason for transcription. However, there was a
subsequent subsection on the Carathéodory class in the spirit of the outer
theory. For the present context this subsection consisted of intermediate re-
sults which need not be transcribed, so that the transcription could proceed
to the next section on the main theorem. But the transcribed versions of
some former results will be needed later, and therefore will be inserted at
this point. For the transcription we refer to the earlier 4.15.

6.12. Remark. Let T be a paving in X and φ : P(X) → R be isotone
and inner regular T. If A ⊂ X satisfies

φ(P )+. φ(Q) ≦ φ(P |A|Q)+. φ(P |A′|Q) for all P,Q ∈ T,

then A ∈ C(φ,+. ).

6.13. Exercise. Let α : A → R be a content +. on an oval A. Then
A ⊂ C(α⋆,+. ).

6.14. Lemma. Let P ⊂ Q ⊂ X. Assume that ϕ : P ⊏ Q → R is
supermodular. If A ⊂ X satisfies

ϕ(P ) + ϕ(Q) ≦ ϕ(P |A|Q) + ϕ(P |A′|Q),

then

ϕ(U) + ϕ(V ) = ϕ(U |A|V ) + ϕ(U |A′|V ) for all U, V ∈ P ⊏ Q.
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6.15. Proposition. Assume that φ : P(X)→ R is an isotone set func-
tion. Let P ↓ and Q ↑ be pavings in X with nonvoid P ⊏ Q such that

φ|P and φ|Q are finite, and φ|P ⊏ Q is supermodular.

Furthermore let H ↓ be a paving in X with P ⊂ H such that

φ is inner regular H ⊏ Q,

φ(T ) = inf
P∈P

φ(T ∪ P ) for all T ∈ H ⊏ Q.

If A ⊂ X satisfies

φ(P ) + φ(Q) ≦ φ(P |A|Q) + φ(P |A′|Q)

for all P ∈ P and Q ∈ Q with P ⊂ Q,

then A ∈ C(φ,+. ).

As before we have two addenda.

6.16. Addendum. Assume in addition that φ|P ⊏ Q is downward σ
continuous. Then C(φ,+. ) is a σ algebra.

6.17. Addendum. Assume in addition that θ : P(X)→ R is an isotone
set function with θ ≦ φ such that

θ|P = φ|P and θ|Q = φ|Q,

θ(T ) = inf
P∈P

θ(T ∪ P ) for all T ∈ H ⊏ Q.

Then φ|C(φ,+. ) is an extension of θ|C(θ, +. ).

The Inner Main Theorem

We assume that ϕ : S → [−∞,∞[ is an isotone set function �≡ −∞ on a
lattice S in X. The assertions which follow are immediate consequences of
their outer counterparts via the upside-down transform method. We recall
6.1 and 6.2, and once more the earlier 4.15.

6.18. Theorem. Assume that α : A → R is an inner • extension of ϕ.
Then α is a restriction of ϕ•|C(ϕ•,+. ).

6.19. Proposition. Let ϕ be supermodular with ϕ•|S <∞, and down-
ward essential in case • = τ . Fix pavings

P ⊂ [ϕ > −∞] downward cofinal, and
Q ⊂ [ϕ > −∞] upward cofinal.

If A ⊂ X satisfies

ϕ•(P ) + ϕ•(Q) ≦ ϕ•(P |A|Q) + ϕ•(P |A′|Q)

for all P ∈ P and Q ∈ Q with P ⊂ Q,

then A ∈ C(ϕ•,+. ).

6.20. Addendum. For • = στ the class C(ϕ•,+. ) is a σ algebra.

The next assertion does not result from the upside-down technique but
is an immediate consequence of 6.19 as before.
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6.21. Exercise. Let ϕ be supermodular with ϕ•|S <∞, and downward
essential in case • = τ . Assume that Q ⊂ [ϕ > −∞] is upward cofinal.
Then

Q⊤C(ϕ•,+. ) ⊂ C(ϕ•,+. ).

After all the upside-down transform method furnishes the inner main
theorem.

6.22. Theorem (Inner Main Theorem). Let ϕ : S → [−∞,∞[ be an
isotone and supermodular set function �≡ −∞ on a lattice S. Fix pavings

P ⊂ [ϕ > −∞] downward cofinal, and
Q ⊂ [ϕ > −∞] upward cofinal.

Then the following are equivalent.

1) There exist inner • extensions of ϕ, that is ϕ is an inner • premeasure.

2) ϕ•|C(ϕ•,+. ) is an inner • extension of ϕ. Furthermore

if • = ⋆ : ϕ•|C(ϕ•,+. ) is a content +. on the algebra C(ϕ•,+. ),

if • = στ : ϕ•|C(ϕ•,+. ) is a measure +. on the σ algebra C(ϕ•,+. ).

3) ϕ•|C(ϕ•,+. ) is an extension of ϕ in the crude sense, that is S ⊂ C(ϕ•,+. )
and ϕ = ϕ•|S.

4) ϕ(U) + ϕ(V ) = ϕ(M)+. ϕ•(U |M ′|V ) for all U ⊂M ⊂ V in S; note that
M = U |M |V . In case • = τ furthermore ϕ is downward essential.

5) ϕ = ϕ•|S; and ϕ(P ) + ϕ(Q) ≦ ϕ(M) + ϕ•(P |M ′|Q) for all P ⊂M ⊂ Q
with P ∈ P, Q ∈ Q, and M ∈ S and hence ∈ [ϕ > −∞]. In case • = τ
furthermore ϕ is downward essential.

Note that 6.21 then implies Q⊤S• ⊂ C(ϕ•,+. ).

6.23. Special Case (Traditional Type). Assume that S is an oval.
Then condition 5) simplifies to

5◦) ϕ = ϕ•|S; and ϕ is submodular. In case • = τ furthermore ϕ is
downward essential.

Comparison of the three Inner Theories

We obtain the inner counterparts of the respective outer results. In the
present subsection let ϕ : S → [−∞,∞[ be an isotone and supermodular
set function �≡ −∞ on a lattice S.

6.24. Proposition. σ) In case ϕ = ϕσ|S we have C(ϕ⋆,+. ) ⊂ C(ϕσ,
+. ). τ) In case ϕ = ϕτ |S we have C(ϕσ,+. ) ⊂ C(ϕτ ,+. ).

6.25. Proposition. Assume that ϕ is modular. σ) In case ϕ = ϕσ|S
we have ϕ⋆(A) = ϕσ(A) for all A ∈ C(ϕ⋆,+. ) with ϕ⋆(A) > −∞. τ) In case
ϕ = ϕτ |S we have ϕσ(A) = ϕτ (A) for all A ∈ C(ϕσ,+. ) with ϕσ(A) > −∞.

However, as before the three properties of ϕ to be an inner • premeasure
for • = ⋆στ are independent, except that as a consequence of 6.22.5) the
combination +−+ of these properties cannot occur.
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Further Results on Nonsequential Continuity

In contrast to the ubiquitous σ continuity of measures the occurrence of τ
continuity is restricted to particular and foremost situations and bound to
severe limitations. The simplest illustration is as follows.

6.26. Example. Let S be a lattice in X which contains the finite subsets
of X, and let ϕ : S→ R be isotone with ϕ(S) = 0 for all finite S ⊂ X. If ϕ
is upward τ continuous then ϕ = 0.

In our extension theories the τ extensions are defined to possess a certain
τ continuity, but it is restricted to the direct descendants of the initial
domain S. In the sequel we deduce two further results on τ continuity. We
restrict this topic to the inner situation where it is much more important.
In the present subsection we assume ϕ : S→ [−∞,∞[ to be an isotone and
supermodular set function �≡ −∞ on a lattice S.

The main feature is the occurrence of the transporter S⊤Sτ , which of
course is = Sτ⊤Sτ = (Sτ )⊤ as well. As a rule the members of S⊤Sτ can
be much larger subsets of X than those of Sτ . We note that for an inner τ
premeasure ϕ we have

S⊤Sτ ⊂ [ϕ > −∞]⊤Sτ ⊂ C(ϕτ ,+. ),

and hence (S⊤Sτ )⊥ ⊂ C(ϕτ ,+. ) as well.

6.27. Proposition. Assume that ϕ = ϕτ |S. Then the restriction
ϕτ |S⊤Sτ is almost downward τ continuous.

6.28. Proposition. Assume that ϕ is an inner τ premeasure. Then the
restriction ϕτ |(S⊤Sτ )⊥ is almost upward τ continuous.

Proof of 6.27. Let M ⊂ S⊤Sτ be a paving with ϕτ (M) <∞ ∀M ∈M

such that M ↓ H; thus H ∈ S⊤Sτ . To be shown is

c := inf
M∈M

ϕτ (M) ≦ ϕτ (H).

We can assume that c > −∞ and hence c ∈ R. Then ϕτ (M) ∈ R ∀M ∈M,
but a priori ϕτ (H) = −∞ is possible. Let us fix real ε > 0 and λ > ϕτ (H).
i) Fix P ∈ M. By 6.3.4) there exists S ∈ Sτ with S ⊂ P such that
ϕτ (S) > ϕτ (P ) − ε. Note that ϕτ (S) ≦ ϕτ (P ) < ∞ and hence ϕτ (S) ∈ R.
ii) By assumption {M ∩ S : M ∈M} is a paving ⊂ Sτ with ↓ H ∩ S ∈ Sτ .
By 6.5.iii) therefore

inf
M∈M

ϕτ (M ∩ S) = ϕτ (H ∩ S) ≦ ϕτ (H) < λ.

Thus there exists Q ∈ M such that ϕτ (Q ∩ S) < λ. Since M ↓ we can
assume that Q ⊂ P , so that Q ∪ S ⊂ P . iii) By 6.3.5) we then have

c + ϕτ (S) ≦ ϕτ (Q) + ϕτ (S) ≦ ϕτ (Q ∪ S) + ϕτ (Q ∩ S)

≦ ϕτ (P ) + ϕτ (Q ∩ S) < ϕτ (S) + ε + λ,

and hence c < ε + λ. The assertion follows.
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Proof of 6.28. Let M ⊂ (S⊤Sτ )⊥ be a paving with ϕτ (M) > −∞ ∀M ∈
M such that M ↑ H; thus H ∈ (S⊤Sτ )⊥. To be shown is

c := sup
M∈M

ϕτ (M) ≧ ϕτ (H).

We can assume that c < ∞ and hence c ∈ R. Then ϕτ (M) ∈ R ∀M ∈ M,
but a priori ϕτ (H) =∞ is possible. Let us fix real ε > 0 and λ < ϕτ (H). i)
Fix P ∈ M. By 6.3.4) there exists S ∈ Sτ with S ⊂ P such that ϕτ (S) >
−∞ and hence ϕτ (S) ∈ R. ii) Once more by 6.3.4) there exists T ∈ Sτ with
T ⊂ H such that ϕτ (T ) > λ and hence ϕτ (T ) ∈ R. In view of S ⊂ P ⊂ H
we can assume that S ⊂ T . iii) By assumption {M ′ ∩ T : M ∈ M} is a
paving ⊂ Sτ with ↓ H ′∩T = ∅. Hence {(M ′∩T )∪S : M ∈M} is a paving
⊂ Sτ with ↓ S ∈ Sτ . By 6.5.iii) therefore

inf
M∈M

ϕτ ((M
′ ∩ T ) ∪ S) = ϕτ (S).

Thus there exists Q ∈ M such that ϕτ ((Q
′ ∩ T ) ∪ S) < ϕτ (S) + ε. Since

M ↑ we can assume that Q ⊃ P . iv) We have Q ∈ C(ϕτ ,+. ) and hence

ϕτ (S) + λ < ϕτ (S) + ϕτ (T ) = ϕτ (S|Q|T ) + ϕτ (S|Q′|T )

= ϕτ (Q ∩ T ) + ϕτ ((Q
′ ∩ T ) ∪ S)

< ϕτ (Q) + ϕτ (S) + ε ≦ c + ϕτ (S) + ε,

and therefore λ < c + ε. The assertion follows.

The Conventional Inner Situation

The conventional inner situation is defined to be the specialization that
∅ ∈ S and ϕ(∅) = 0. Thus we consider a lattice S with ∅ ∈ S and an
isotone set function ϕ : S→ [0,∞[ with ϕ(∅) = 0. Although the full inner
situation is known to be identical with the full outer situation, there are
characteristic discrepancies between the two conventional situations, as it
must be expected from traditional measure theory. Thus we have to assume
this time that ϕ <∞. As in the outer situation there are certain immediate
simplifications: An inner • extension of ϕ is a ccontent α : A → [0,∞]
on a ring A, with the further properties as above. Furthermore we have
ϕ• : P(X) → [0,∞] with 0 = ϕ(∅) = ϕ⋆(∅) ≦ ϕσ(∅) ≦ ϕτ (∅). Thus as
before we can write C(ϕ•) instead of C(ϕ•,+. ).

But there are two essential deviations from the conventional outer sit-
uation. One deviation is that this time all supermodular ϕ are downward
essential. This is obvious from the definition. Therefore the respective con-
dition can be deleted from the conventional inner results.

The other deviation from the conventional outer situation is that ϕ•(∅)
= 0 is a nontrivial condition when • = στ . This condition will be explored
in the course of the present subsection. We shall see that it is much weaker
than the full condition ϕ•|S = ϕ, and that its verification can be much easier
and sometimes even trivial. Therefore it is desirable to have the conventional
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inner main theorem with a variant of condition 5) in which ϕ•(∅) = 0 occurs
instead of ϕ•|S = ϕ. Of course then the subsequent partial condition in 5)
has to be fortified. For this purpose we need the so-called satellites of the
envelopes ϕ• which will be defined next.

For fixed • = ⋆στ and B ∈ S we define the satellite inner • envelopes
ϕB
• : P(X)→ [0,∞[ to be

ϕB
• (A) = sup{ inf

S∈M
ϕ(S) : M paving ⊂ S of type • with

S ⊂ B ∀S ∈M and M ↓⊂ A} for A ⊂ X.

We list the basic properties of these satellites.

6.29. Properties. 1) ϕB
• ≦ ϕ(B) < ∞. 2) ϕB

• is isotone. 3) If ϕ is
supermodular then ϕB

• is supermodular. 4) We have

ϕ•(A) = sup{ϕB
• (A) : B ∈ S} for A ⊂ X.

5) Assume that ϕ = ϕ•|S. Then ϕ•(A) = ϕB
• (A) for A ⊂ B ∈ S.

Proof. 1) and 2) are obvious, and 3) follows from 6.3.5) when one notes
that ϕB

• = (ϕ|{S ∈ S : S ⊂ B})•. 4) We have to prove ≦. Fix A ⊂ X, and
let M be a paving ⊂ S of type • such that M ↓⊂ A. For fixed B ∈M then
N := {S ∈M : S ⊂ B} is a paving ⊂ S of type • with N ↓⊂ A as well, and
we have

inf
S∈M

ϕ(S) = inf
S∈N

ϕ(S) ≦ ϕB
• (A).

The assertion follows. 5) Fix A ⊂ B ∈ S. We have to prove ≦. Let M

be a paving ⊂ S of type • such that M ↓ M ⊂ A. For fixed H ∈ M then
{S ∪ (H ∩ B) : S ∈ M} is a paving ⊂ S of type • with ↓ M ∪ (H ∩ B) =
H ∩B ∈ S. Hence by assumption and 6.5

inf
S∈M

ϕ(S) ≦ inf
S∈M

ϕ
(

S ∪ (H ∩B)
)

= ϕ(H ∩B).

Now N := {H∩B : H ∈M} is a paving ⊂ S of type • with N ↓M ∩B = M
as well. It follows that

inf
S∈M

ϕ(S) ≦ inf
S∈N

ϕ(S) ≦ ϕB
• (A),

and hence the assertion.

The decisive fact on the satellite inner • envelopes is the next lemma.

6.30. Lemma. Let ϕ be supermodular. Assume that ϕ•(∅) = 0 and that

ϕ(B) ≦ ϕ(A) + ϕB
• (B \A) for all A ∈ S and B ∈ Q with A ⊂ B,

where Q ⊂ S is upward cofinal. Then ϕ = ϕ•|S.

Proof. Fix A ∈ S. For B ∈ Q with B ⊃ A we combine the assumptions
with 6.29.3)1) to obtain

ϕB
• (A) + ϕ(B) ≦ ϕB

• (A) + ϕ(A) + ϕB
• (B \A)

≦ ϕ(A) + ϕB
• (B) + ϕB

• (∅) ≦ ϕ(A) + ϕ(B),
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and hence ϕB
• (A) ≦ ϕ(A). Since ϕB

• (·) is isotone in B ∈ S it follows from
6.29.4) that ϕ•(A) ≦ ϕ(A).

As before it is natural to specialize 6.19 and 6.22 to P = {∅} and Q = S.
We then obtain the conventional inner main theorem which follows.

6.31. Theorem (Conventional Inner Main Theorem). Let S be a lattice
with ∅ ∈ S, and ϕ : S→ [0,∞[ be an isotone and supermodular set function
with ϕ(∅) = 0. Then the following are equivalent.

1) There exist inner • extensions of ϕ, that is ϕ is an inner • premeasure.

2) ϕ•|C(ϕ•) is an inner • extension of ϕ. Furthermore

if • = ⋆ : ϕ•|C(ϕ•) is a ccontent on the algebra C(ϕ•),

if • = στ : ϕ•|C(ϕ•) is a cmeasure on the σ algebra C(ϕ•).

3) ϕ•|C(ϕ•) is an extension of ϕ in the crude sense, that is S ⊂ C(ϕ•) and
ϕ = ϕ•|S.

4) ϕ(B) = ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5) ϕ = ϕ•|S; and ϕ(B) ≦ ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

5’) ϕ•(∅) = 0; and ϕ(B) ≦ ϕ(A) + ϕB
• (B \A) for all A ⊂ B in S.

Note that 6.21 then implies S⊤S• ⊂ C(ϕ•).

Assume that S is a lattice with ∅ ∈ S. We define an isotone set function
ϕ : S→ [0,∞[ with ϕ(∅) = 0 to be inner • tight iff it fulfils

ϕ(B) ≦ ϕ(A) + ϕB
• (B \A) for all A ⊂ B in S,

as it appears in condition 5’) above. In case • = ⋆ this means that

ϕ(B) ≦ ϕ(A) + ϕ⋆(B \A) for all A ⊂ B in S.

It is obvious that

inner ⋆ tight ⇒ inner σ tight ⇒ inner τ tight.

As before we show on the spot that both converses ⇐ are false. The coun-
terexamples will be isotone and modular set functions ϕ : S → [0,∞[ with
ϕ(∅) = 0 which are downward τ continuous.

6.32. Exercise. Consider the situation of exercise 5.12. We have the
equivalences

ϕ inner • tight ⇐⇒ ϕ•({a}) = 1⇐⇒ {a} ∈ (Op(X))•.

Thus we obtain obvious counterexamples as announced above.

6.33. Special Case (Traditional Type). Assume that S is a ring.
Then conditions 5)5’) simplify to

5◦) ϕ = ϕ•|S; and ϕ is submodular.

5’◦) ϕ•(∅) = 0; and ϕ is submodular.
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We next consider the weakened condition ϕ•(∅) = 0 which occurs in
6.30 and in the conventional inner main theorem. For this discussion we
assume an isotone set function ϕ : S→ [0,∞] with ϕ(∅) = 0 on a lattice S

with ∅ ∈ S. We define ϕ to be • continuous at ∅ iff

inf
S∈M

ϕ(S) = 0 for each paving M ⊂ S of type • with M ↓ ∅,

and to be almost • continuous at ∅ iff this holds true whenever ϕ(S) <
∞ ∀S ∈ M. It is clear that ϕ is • continuous at ∅ iff ϕ•(∅) = 0. In order
to obtain an obvious but famous criterion we define S to be • compact iff
each paving M ⊂ S of type • with M ↓ ∅ satisfies ∅ ∈ M. The reason
for this notion is obvious: In each Hausdorff topological space X the lattice
Comp(X) of its compact subsets is τ compact. The next remark is then
clear.

6.34. Remark. If S is • compact then each isotone set function ϕ :
S→ [0,∞] with ϕ(∅) = 0 is • continuous at ∅.

It turns out that for • = στ the condition ϕ•(∅) = 0 is much weaker
than ϕ = ϕ•|S. We shall present a dramatic example at the end of the
subsection. The example will show in particular that the conventional inner
main theorem becomes false when instead of 5)5’) one forms the weaker
condition which combines the first part of 5’) with the second part of 5).

The most important and simplest nontrivial example for the conven-
tional inner situation is the familiar set function λ : K = Comp(Rn) →
[0,∞[. It has been an example for the conventional outer situation in 5.14.

6.35. Example. 1) λ is inner ⋆ tight and hence inner • tight for • = ⋆στ .
In fact, we know that for A ⊂ B in K there exists a sequence (Kl)l in
K with Kl ↑ B \ A and hence λ(Kl) ↑ λ(B) − λ(A). This implies that
λ⋆(B \ A) = λ(B) − λ(A). 2) λ is • continuous at ∅ in view of 6.34; we
even know from 2.25 that λ is downward • continuous. 3) Therefore the
conventional inner main theorem shows that λ is an inner • premeasure for
• = ⋆στ . 4) From 6.5.iv) we have λ⋆ = λσ = λτ . We shall see in 7.5
below that the common maximal inner • extension λ•|C(λ•) coincides with
Λ := λσ|C(λσ).

We conclude with the example announced above. It is quite complicated.

6.36. Exercise. Construct an example of an isotone and modular set
function ϕ : S → [0,∞[ on a lattice S with ∅ ∈ S and X =

⋃

S∈S

S �= ∅

such that

i) S is σ compact and hence ϕσ(∅) = 0, but
ii) ϕσ(A) =∞ for all nonvoid A ⊂ X.

One can proceed as follows. 1) Let E be an infinite set and X := E ×N. A
subset A ⊂ X is described via its sections A(s) := {m ∈ N : (s,m) ∈ A} ⊂ N

for s ∈ E. Define E to consist of the subsets A ⊂ X such that

1.i) A(s) ⊂ N is finite or cofinite for all s ∈ E;
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1.ii) A(s) = ∅ for all s ∈ E except a finite subset.

Then E is a lattice with ∅ ∈ E. Define φ : E→ [0,∞[ to be

φ(A) = #({s ∈ E : A(s) ⊂ N is cofinite}) for A ∈ E.

Then φ is isotone and modular with φ(∅) = 0. 2) If E is countable then
there exists a function θ : X → P(E) such that

2.i) θ(x) ⊂ E is infinite for all x ∈ X;
2.ii) for u �= v in X we have θ(u) ∩ θ(v) = ∅;
2.iii) E =

⋃

x∈X

θ(x);

2.iv) for x = (s,m) ∈ X we have s �∈ θ(x).

Hint: We can assume that E = N∪ (−N). Let I : N×N→ N be a bijection.
Define θ : X → P(E) to be

θ(x) = {−εI
(

n, I(p, q)
)

: n ∈ N} ⊂ E

for x = (εp, q) ∈ X with p, q ∈ N and ε ∈ {−1, 1}.
Then θ is as required. For the sequel we fix E and θ. 3) Define S to consist
of the subsets S ∈ E such that

x ∈ X \ S ⇒ S(s) ⊂ N is finite for all s ∈ θ(x).

Then S is a lattice with ∅ ∈ S. Define ϕ := φ|S. 4) S is σ compact. Hint:
Let (Sl)l be a sequence in S with Sl ↓ ∅. Fix a nonvoid finite subset F ⊂ E
such that S1(s) = ∅ for all s ∈ E \ F . Then let x1, · · · , xr ∈ X such that

F ⊂
r
⋃

k=1

θ(xk). If x1, · · · , xr �∈ Sl, which is true for almost all l ≧ 1, then Sl

is finite. This implies that Sl = ∅ for almost all l ≧ 1. 5) Fix a = (p, q) ∈ X
and a nonvoid finite F ⊂ θ(a) ⊂ E, and note that p �∈ θ(a) and hence p �∈ F .
For T ⊂ N cofinite we define S ⊂ X to be

5.i) S(p) := {q};
5.ii) S(s) := T for all s ∈ F ;
5.iii)S(s) := ∅ for all other s ∈ E.

Then S ∈ S with a ∈ S, and ϕ(S) = #(F ). Deduce that ϕσ({a}) ≧ #(F ).
6) It follows from 5) that ϕσ({a}) =∞ for all a ∈ X and hence ϕσ(A) =∞
for all nonvoid A ⊂ X.

7. Complements to the Extension Theories

The present section has two independent themes. The first one is to com-
pare the outer and inner extension theories. The other theme is to exhibit
certain classes of lattices with ∅ on which the relevant tightness conditions
will be automatic facts like on rings, but which are much more natural initial
domains than rings. The idea has been used for the Lebesgue measure in
both the outer and the inner situation. Its systematization will lead to an
essential increase of the frame of applications. The section concludes with a
bibliographical annex.
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Comparison of the Outer and Inner Extension Theories

The main result of the present subsection is for a set function ϕ : S→ R on
a lattice S which is both an outer and an inner • premeasure. We restrict
ourselves to • = ⋆σ since the case • = τ is unrealistic. The result will be
that the two maximal extensions ϕ•|C(ϕ•,

.
+) and ϕ•|C(ϕ•,+. ) coincide to

the extent which can be expected in view of the classical uniqueness theorem
3.1.

7.1. Lemma. Assume that ϕ : S → R and α : A → R are isotone set
functions on lattices S and A, and that α extends ϕ.

⋆) ϕ⋆ ≦ α ≦ ϕ⋆ on A, and ϕ⋆ ≦ ϕ⋆ on P(X).

σ) If A is a σ lattice and α is almost upward and downward σ continuous
then

ϕσ(A) ≦ α(A) for A ∈ A when (+) ϕ <∞ or ϕσ(A) <∞;

α(A) ≦ ϕσ(A) for A ∈ A when (−)−∞ < ϕ or −∞ < ϕσ(A);

ϕσ(A) ≦ ϕσ(A) for A ⊂ X when (+) and (−).

Proof. ⋆) is clear from the definitions. In σ) we can for the first assertion
assume that ϕσ(A) > −∞. Let (Sl)l be a sequence in S with Sl ↓ some
U ⊂ A. Then by definition lim

l→∞
ϕ(Sl) ≦ ϕσ(A), so that both times we

can assume that ϕ(Sl) < ∞ ∀l ∈ N. It follows that U ∈ Sσ ⊂ A and
ϕ(Sl) = α(Sl) ↓ α(U) ≦ α(A). Therefore ϕσ(A) ≦ α(A). The second
assertion is proved in the same manner. In order to prove the third assertion
assume that ϕσ(A) < ϕσ(A) and fix a real c with ϕσ(A) < c < ϕσ(A). By
4.1.4) and 6.3.4) there are

V ∈ Sσ ⊂ A with V ⊃ A and ϕσ(V ) < c,

U ∈ Sσ ⊂ A with U ⊂ A and ϕσ(U) > c.

We can apply the first assertion to U to obtain ϕσ(U) ≦ α(U), and the
second assertion to V to obtain α(V ) ≦ ϕσ(V ). It follows that α(V ) ≦

ϕσ(V ) < c < ϕσ(U) ≦ α(U) and hence a contradiction.

7.2. Lemma. Assume that ϕ : S → R is an isotone set function on a
lattice S, and that α : A→ R is an extension of ϕ which is

for • = ⋆ : a content
.
+. on an oval A;

for • = σ : a measure
.
+. on a σ oval A.

Then for S, T ∈ S and A ∈ A we have

α(S|A|T ) = ϕ•(S|A|T ) when A ∈ C(ϕ•,
.
+),

α(S|A|T ) = ϕ•(S|A|T ) when A ∈ C(ϕ•,+. ).

Proof. Fix S, T ∈ S and A ∈ A. Then S|A|T ∈ A and S|A′|T =
T |A|S ∈ A. From 7.1 we obtain

ϕ•(S|A|T ) ≦ α(S|A|T ) ≦ ϕ•(S|A|T ),
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and the same for A′. Furthermore note that S|A|T is between S ∩ T and
S ∪ T , and that in case • = σ the function ϕ is upward and downward σ
continuous. Thus

ϕ•(S|A|T ) ≦ ϕ•(S ∪ T ) = ϕ(S ∪ T ) <∞,

ϕ•(S|A|T ) ≧ ϕ•(S ∩ T ) = ϕ(S ∩ T ) > −∞,

so that the above values are all finite. The same is true for A′. Now we have
on the one hand

α(S|A|T ) + α(S|A′|T ) = α(S) + α(T ) = ϕ(S) + ϕ(T ),

since by the modularity
.
+. of α both sides are = α(S ∪ T ) + α(S ∩ T ). On

the other hand we have

for A ∈ C(ϕ•,
.
+) : ϕ•(S|A|T )+ϕ•(S|A′|T ) = ϕ•(S)+ϕ•(T ) = ϕ(S)+ϕ(T ),

for A ∈ C(ϕ•,+. ) : ϕ•(S|A|T )+ϕ•(S|A′|T ) = ϕ•(S)+ϕ•(T ) = ϕ(S)+ϕ(T ).

The combination furnishes the assertions.

The next result says that in a certain sense regularity can be turned
around at the Carathéodory class.

7.3. Proposition. Assume that φ : P(X) → R is isotone and sub-
modular

.
+. . Let T be a paving in X such that φ is outer regular T.

If A ∈ C(φ,
.
+. ) is such that there exists T ∈ T with T ⊂ A and −∞ <

φ(T ) ≦ φ(A) <∞ then

φ(A) = sup{φ(P ) : P ∈ O(T) with P ⊂ A}.
Proof. Fix ε > 0. i) By assumption there exists S ∈ T with S ⊃ A such

that φ(S) ≦ φ(A) + ε. Thus φ(S) ∈ R. Also fix T ∈ T as described above.
From A ∈ C(φ,

.
+. ) we conclude that

φ(T )
.
+. φ(S) = φ(T |A|S)

.
+. φ(T |A′|S) = φ(A)

.
+. φ(S|A|T ).

Therefore φ(S|A|T ) is finite and ≦ φ(T ) + ε. ii) By assumption there exists
H ∈ T with H ⊃ S|A|T such that

φ(H) ≦ φ(S|A|T ) + ε ≦ φ(T ) + 2ε.

Thus φ(H) ∈ R. Note that

H ⊃ S|A|T ⊃ T ∩A = T since T ⊂ A,

S ∩H ′ ⊂ S ∩ (S′|A|T ′) = S ∩ T ′ ∩A ⊂ A.

iii) Now define P := S|H|T ∈ O(T). The last inclusions show that T ⊂ P ⊂
A. Furthermore

P ∩H = T ∩H = T and P ∪H = (S ∩H ′) ∪H = S ∪H ⊃ S ⊃ A.

Since φ is submodular
.
+. this implies that

φ(A)
.
+. φ(T ) ≦ φ(P ∪H)

.
+. φ(P ∩H) ≦ φ(P )

.
+. φ(H),

and we know that all terms are finite. From this and from ii) it follows that
φ(A) + φ(T ) ≦ φ(P ) + φ(T ) + 2ε or φ(P ) ≧ φ(A) − 2ε. Thus we have the
assertion.

We shall also need the upside-down counterpart.
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7.4. Exercise. Assume that φ : P(X)→ R is isotone and supermodular.
+. . Let T be a paving in X such that φ is inner regular T. If A ∈ C(φ,

.
+. ) is

such that there exists T ∈ T with A ⊂ T and −∞ < φ(A) ≦ φ(T ) <∞ then

φ(A) = inf{φ(P ) : P ∈ O(T) with P ⊃ A}.

We can now obtain the desired comparison theorem.

7.5. Theorem. Let S be a lattice and • = ⋆σ. Assume that the set
function ϕ : S → R is both an outer and an inner • premeasure. Then
C(ϕ•,

.
+) = C(ϕ•,+. ) =: C. Furthermore ϕ•(A) = ϕ•(A) for all A ∈ C ∩

(S• ⊏ S•), except that in case • = σ one has also to admit that ϕσ(A) =∞
and ϕσ(A) = −∞.

Note that in the conventional situation ∅ ∈ S and ϕ(∅) = 0 the latter
exceptional case cannot occur.

Proof. 1) ϕ is isotone and modular and fulfils ϕ = ϕ•|S = ϕ•|S.
Thus 7.1 and 7.2 can be applied to both α := ϕ•|C(ϕ•,

.
+) and α :=

ϕ•|C(ϕ•,+. ). Each time it follows that ϕ• ≦ ϕ• on P(X), and that

ϕ•(S|A|T ) = ϕ•(S|A|T ) for S, T ∈ S and A ∈ C(ϕ•,
.
+) ∩ C(ϕ•,+. ).

In view of S ∩ T ⊂ S|A|T ⊂ S ∪ T the common value is finite. 2) We claim
that

ϕ•(S|A|T ) = ϕ•(S|A|T ) for S, T ∈ S and A ∈ C(ϕ•,
.
+).

To see this one applies 7.3 to φ := ϕ• and T := S•, and to the subset
S|A|T ∈ C(ϕ•,

.
+); note that S∩T ∈ S ⊂ S• is as required in 7.3. It follows

that

ϕ•(S|A|T ) = sup{ϕ•(P ) : P ∈ O(S•) with P ⊂ S|A|T}
= sup{ϕ•(P ) : P ∈ O(S•) with S ∩ T ⊂ P ⊂ S|A|T}.

Now for the P ∈ O(S•) of the last kind P = S∩T |P |S∪T . Furthermore we
have S• ⊂ C(ϕ•,

.
+)∩C(ϕ•,+. ) and hence P ∈ O(S•) ⊂ C(ϕ•,

.
+)∩C(ϕ•,+. ).

Thus 1) implies that

ϕ•(P ) = ϕ•(S ∩ T |P |S ∪ T ) = ϕ•(S ∩ T |P |S ∪ T ) = ϕ•(P ).

It follows that ϕ•(S|A|T ) ≦ ϕ•(S|A|T ) and hence = ϕ•(S|A|T ). Note that
the common value is finite as before. 2’) Likewise we have

ϕ•(S|A|T ) = ϕ•(S|A|T ) for S, T ∈ S and A ∈ C(ϕ•,+. ).

The proof is as in 2), but with 7.4 instead of 7.3.

3) We next prove that C(ϕ•,
.
+) ⊂ C(ϕ•,+. ). In fact, let A ∈ C(ϕ•,

.
+).

For S, T ∈ S we obtain from 2)

ϕ(S) + ϕ(T ) = ϕ•(S) + ϕ•(T ) = ϕ•(S|A|T ) + ϕ•(S|A′|T )

= ϕ•(S|A|T ) + ϕ•(S|A′|T ).
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Thus 6.19 implies that A ∈ C(ϕ•,+. ). 3’) We obtain C(ϕ•,+. ) ⊂ C(ϕ•,
.
+) as

in 3), but based on 2’) and 5.2 instead of 2) and 6.19. 4) So far we have
proved that C(ϕ•,

.
+) = C(ϕ•,+. ) =: C, and furthermore that

ϕ•(S|A|T ) = ϕ•(S|A|T ) ∈ R for S, T ∈ S and A ∈ C.

5) We finish the case • = ⋆. If A ∈ C ∩ (S⋆ ⊏ S⋆) = C ∩ (S ⊏ S) then
S ⊂ A ⊂ T for some S, T ∈ S. It follows that S|A|T = A and hence
ϕ⋆(A) = ϕ⋆(A).

6) We turn to the case • = σ. Fix A ∈ C ∩ (Sσ ⊏ Sσ). Thus P ⊂
A ⊂ Q where Pl ↓ P and Ql ↑ Q for some sequences (Pl)l and (Ql)l in S.
Furthermore fix S ∈ S. From 4) we obtain

Pl|A|S ↓ P |A|S = S ∩A and hence ϕσ(S ∩A) = ϕσ(S ∩A) <∞,

S|A|Ql ↑ S|A|Q = S ∪A and hence ϕσ(S ∪A) = ϕσ(S ∪A) > −∞.

Now 4.12.4) implies that

ϕ(S) + ϕσ(A) = ϕσ(S ∪A)
.
+ϕσ(S ∩A),

ϕ(S) + ϕσ(A) = ϕσ(S ∪A)+. ϕσ(S ∩A).

Thus if ϕσ(A) �= ϕσ(A) then we must have ϕσ(S∪A) = ϕσ(S∪A) =∞ and
ϕσ(S ∩ A) = ϕσ(S ∩ A) = −∞, and hence ϕσ(A) = ∞ and ϕσ(A) = −∞.
We shall see in exercise 7.7 below that this indeed can happen.

7.6. Example. For λ : K = Comp(Rn)→ [0,∞[ the maximal inner σ ex-
tension λσ|C(λσ), which is the common maximal inner • extension λ•|C(λ•),
coincides with Λ := λσ|C(λσ). This fact has been announced in 6.35.

We conclude with the example announced in connection with 7.5.

7.7. Exercise. Construct an example which shows that in 7.5 it can
happen that ϕσ(A) = ∞ and ϕσ(A) = −∞. Hint: On X = R define the
paving S to consist of all S ∈ Bor(X) such that S is bounded above and
S′ is bounded below. Note that S is an oval. We write R := [0,∞[ and
L :=]−∞, 0], and define ϕ : S→ R to be

ϕ(S) = Λ(S ∩R)− Λ(S′ ∩ L) for S ∈ S.

Then show that ϕσ(R) =∞ and ϕσ(R) = −∞.

Lattices of Ringlike Types

We restrict ourselves to the conventional outer and inner situations. The
most unfamiliar notion considered so far is that of tightness. Therefore
it is desirable to have transparent assumptions which ensure the relevant
tightness conditions. The simplest assumption of this type is that the initial
domain be a ring. However, the previous theories allow to work with certain
weaker assumptions which are much more realistic.
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Let S be a lattice in a nonvoid set X and • = ⋆στ . We define S to be

upward • full iff B \A ∈ S• for each pair A ⊂ B in S,
downward • full iff B \A ∈ S• for each pair A ⊂ B in S.

Thus we have

S ring ⇔ S upward ⋆ full

⇒ S upward σ full ⇒ S upward τ full;

S ring ⇔ S downward ⋆ full

⇒ S downward σ full ⇒ S downward τ full .

If S is upward • full then ∅ ∈ S, but trivial examples show that this need
not be true if S is downward • full.

7.8. Examples (for • = σ). 1) Let X be a topological space. For the
sublattices CCl(X) and COp(X) of Baire(X) defined in 1.6.4) we refer to
8.1 below. 2) Let X be a semimetrizable topological space. One verifies
that Cl(X) ⊂ (Op(X))σ and hence that Op(X) ⊂ (Cl(X))σ. It follows
that Cl(X) is upward σ full and Op(X) is downward σ full. 3) Let X be a
metrizable topological space. Then 2) implies that Comp(X) is upward σ
full. This has been used for X = Rn in 5.14.1) and 6.35.

7.9. Exercise. Let X be a Hausdorff topological space. Prove that

Cl(X) is always upward τ full, and downward τ full iff X is discrete;
Op(X) is always downward τ full, and upward τ full iff X is discrete.

This makes clear that the case • = τ is much less important than the cases
• = ⋆σ.

We come to the decisive point. We start with the upward fullness con-
ditions.

7.10. Proposition. Assume that S is upward • full. Let ϕ : S→ [0,∞]
be isotone and modular with ϕ(∅) = 0. 1) ϕ is outer • tight. 2) If ϕ < ∞
and ϕ = ϕ•|S then ϕ is inner ⋆ tight.

Proof. Fix A ⊂ B in S. By 1.4.1) there exists a paving M ⊂ S of type •
with M ↑ B\A. 1) To be shown is ϕ(A)+ϕ•(B\A) ≦ ϕ(B). We can assume
that ϕ(B) < ∞. For S ∈ M we have ϕ(A) + ϕ(S) = ϕ(A ∪ S) ≦ ϕ(B). It
follows that

ϕ(A) + ϕ•(B \A) ≦ ϕ(A) + sup
S∈M

ϕ(S) ≦ ϕ(B).

2) To be shown is ϕ(B) ≦ ϕ(A) + ϕ⋆(B \A). Now {A ∪ S : S ∈M} ⊂ S is
a paving of type • with ↑ B, so that by assumption sup

S∈M

ϕ(A ∪ S) = ϕ(B).

From ϕ(A ∪ S) = ϕ(A) + ϕ(S) for S ∈M we obtain

ϕ(B) = ϕ(A) + sup
S∈M

ϕ(S) ≦ ϕ(A) + ϕ⋆(B \A).
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7.11. Remark. We emphasize that

σ) if S is upward σ full then ϕ need not be outer ⋆ tight;
τ) if S is upward τ full then ϕ need not be outer σ tight.

Thus assertion 1) cannot be improved in this respect. For counterexamples
we refer to 5.12: In a Hausdorff topological space X let a ∈ X and ψ :=
δa|Cl(X). σ) If X is metrizable then Cl(X) is upward σ full by 7.8.2). But
if a is not an isolated point of X, that is if {a} /∈ Op(X), then ψ is not
outer ⋆ tight by 5.12.2). τ) Cl(X) is always upward τ full by 7.9. But if
{a} /∈ (Op(X))σ then ψ is not outer σ tight by 5.12.2).

The main consequence which follows will be restricted to the case • = σ.
The case • = ⋆ would be contained in the earlier 5.13 and 6.33, and the
case • = τ would be more involved and seems to be without substantial
applications.

7.12. Theorem. Assume that S is upward σ full. Let ϕ : S → [0,∞]
be isotone and modular with ϕ(∅) = 0 and ϕ = ϕσ|S. 1) ϕ is an outer σ
premeasure. 2) If ϕ <∞ then ϕ is an inner σ premeasure.

Let us add at once that for ϕ < ∞ it follows from 7.5 that C(ϕσ) =
C(ϕσ) =: C and ϕσ(A) = ϕσ(A) for all A ∈ C ∩ (⊏ Sσ).

Proof. 1) is clear from 7.10.1) and the conventional outer main theorem
5.11. 2) By 7.10.2) and the conventional inner main theorem 6.31 we have
to prove that ϕσ(∅) = 0. By 1) ϕ is an outer σ premeasure. Now consider
a countable paving M ⊂ S with M ↓ ∅. To be shown is inf

S∈M
ϕ(S) = 0. We

fix E ∈ M. Then likewise M(E) := {S ∈ M : S ⊂ E} ⊂ S is a countable
paving with ↓ ∅. To be shown is of course inf

S∈M(E)
ϕ(S) = 0. By assumption

we have {E \ S : S ∈ M(E)} ⊂ Sσ, and this is a countable paving with
↑ E ∈ S ⊂ Sσ. Thus we have

sup
S∈M(E)

ϕσ(E \ S) = ϕσ(E) = ϕ(E).

In view of ϕσ(E \ S) = ϕ(E)− ϕ(S) for S ∈M(E) this is the assertion.

7.13. Exercise. The above theorem becomes false in both parts when
instead of ϕ = ϕσ|S one assumes that ϕσ(∅) = 0. In fact, we shall construct
set functions ϕ : S→ [0,∞[ on upward σ full lattices which are isotone and
modular with ϕ(∅) = ϕσ(∅) = 0 but do not fulfil ϕ = ϕσ|S.

Let X be a Hausdorff topological space and a ∈ X such that {a} is not
open but ∈ (Op(X))σ. 1) Construct a set function ϕ : Cl(X)→ [0,∞[ which
is isotone and modular with ϕ(∅) = 0 but not upward σ continuous. Hint:
Consider on the real vector space B(X, R) of the bounded functions X → R

the sublinear functional ϑ : B(X, R)→ R, defined to be

ϑ(f) = lim sup
x→a

f(x) := inf{sup(f |U \ {a}) : a ∈ U open ⊂ X}.

Let after Hahn-Banach φ : B(X, R) → R be a linear functional ≦ ϑ. Note
that φ ≦ ϑ ≦ sup. Then define ϕ : Cl(X)→ [0,∞[ to be ϕ(A) = φ(χA) for
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A ∈ Cl(X). Consider for a sequence of open Ul ↓ {a} the sequence of the
closed subsets U ′

l ∪ {a}. 2) If in particular X is compact then ϕ must be σ
and even τ continuous at ∅.

Let us reformulate the last theorem in order that it looks like the classical
Carathéodory extension theorem. The latter theorem is the upper closed
path under the assumption that S be a ring, and likewise the earlier 5.13
for • = σ.

7.14. Reformulation. Assume that S is upward σ full. Let ϕ : S →
[0,∞] be isotone and modular with ϕ(∅) = 0. Then we have the implications
as shown below (the simple arrows are obvious implications).

ϕ can be extended to cmeasure on σ algebra which is outer regular Sσ

⇑ ↓
ϕ is upward σ continuous ← ϕ can be extended to cmeasure on σ algebra

⇓ ϕ <∞ ↑
ϕ can be extended to cmeasure on σ algebra which is inner regular Sσ.

We turn to the counterparts for the downward fullness conditions.

7.15. Proposition. Assume that S is downward • full with ∅ ∈ S. Let
ϕ : S→ [0,∞] be isotone and modular with ϕ(∅) = 0. 1) If ϕ <∞ then ϕ
is inner • tight. 2) If ϕ is almost • continuous at ∅ then ϕ is outer ⋆ tight.

Proof. Fix A ⊂ B in S. By 1.4.1) there exists a paving M ⊂ S of type
• with M ↓ B \ A. We can assume that S ⊂ B ∀S ∈ M. 1) To be shown
is ϕ(B) ≦ ϕ(A) + ϕB

• (B \ A). For S ∈ M we have A ∪ S = B and hence
ϕ(B) ≦ ϕ(B) + ϕ(A ∩ S) = ϕ(A ∪ S) + ϕ(A ∩ S) = ϕ(A) + ϕ(S). It follows
that

ϕ(B) ≦ ϕ(A) + inf
S∈M

ϕ(S) ≦ ϕ(A) + ϕB
• (B \A).

2) To be shown is ϕ(A)+ϕ⋆(B\A) ≦ ϕ(B). We can assume that ϕ(B) <∞.
Then {A ∩ S : S ∈ M} ⊂ S is a paving of type • with ↓ ∅, and all its
members have ϕ(·) < ∞. Hence by assumption inf

S∈M
ϕ(A ∩ S) = 0. For

S ∈M now

ϕ(B) + ϕ(A ∩ S) = ϕ(A ∪ S) + ϕ(A ∩ S)

= ϕ(A) + ϕ(S) ≧ ϕ(A) + ϕ⋆(B \A).

The assertion follows.

7.16. Theorem. Assume that S is downward σ full with ∅ ∈ S. Let
ϕ : S → [0,∞] be isotone and modular with ϕ(∅) = 0, and almost σ
continuous at ∅. 1) If ϕ < ∞ then ϕ is an inner σ premeasure. 2) If ϕ is
semifinite above then ϕ is an outer σ premeasure.

Let us add as before that for ϕ < ∞ we obtain from 7.5 that C(ϕσ) =
C(ϕσ) =: C and ϕσ(A) = ϕσ(A) for all A ∈ C ∩ (⊏ Sσ).

Proof. 1) In view of ϕ < ∞ we have ϕσ(∅) = 0. Hence the assertion
is clear from 7.15.1) and the conventional inner main theorem 6.31. 2) By
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7.15.2) and the conventional outer main theorem 5.11 we have to prove that
ϕ = ϕσ|S. Since ϕσ|S ≦ ϕ by 4.1.1)2) we have to show that ϕ ≦ ϕσ|S; and
since ϕ is assumed to be semifinite above it suffices to show that ϕ(A) ≦

ϕσ(A) for all A ∈ S with ϕ(A) < ∞. To achieve this we pass from S to
T := [ϕ < ∞] ⊂ S which is a lattice and downward σ full with ∅ ∈ T as
well. Also ψ := ϕ|T < ∞ is isotone and modular with ψ(∅) = 0, and σ
continuous at ∅. By 1) therefore ψ is an inner σ premeasure. Now fix A ∈ S

with ϕ(A) <∞, that is A ∈ T. We have to show that sup
S∈M

ϕ(S) = sup
S∈M

ψ(S)

is ≧ ϕ(A) = ψ(A) for each countable paving M ⊂ S with M ↑ A, which
implies that M ⊂ T. By assumption we have {A \ S : S ∈ M} ⊂ Tσ, and
this is a countable paving with ↓ ∅. Hence inf

S∈M
ψσ(A \ S) = 0. In view of

ψσ(A\S) = ψ(A)−ψ(S) for S ∈M this means that sup
S∈M

ψ(S) = ψ(A). The

proof is complete.

7.17. Exercise. Assertion 2) becomes false without the assumption that
ϕ be semifinite above, even if S is a ring. Hint for a counterexample: Let
X be an infinite countable set, and let S consist of its finite and cofinite
subsets. Define ϕ : S→ [0,∞] to be ϕ(A) = 0 if A is finite and ϕ(A) =∞
if A is cofinite.

As before we conclude with an obvious but useful reformulation.

7.18. Reformulation. Assume that S is downward σ full with ∅ ∈ S.
Let ϕ : S→ [0,∞] be isotone and modular with ϕ(∅) = 0. Then we have the
implications as shown below (the simple arrows are obvious implications).

ϕ can be extended to cmeasure on σ algebra which is outer regular Sσ

⇑ ϕ semifinite above ↓
ϕ is almost σ cont at ∅ ← ϕ can be extended to cmeasure on σ algebra

⇓ ϕ <∞ ↑
ϕ can be extended to cmeasure on σ algebra which is inner regular Sσ.

Bibliographical Annex

The present subsection attempts to describe the development of the exten-
sion theories for contents and measures on the basis of lattices and of outer
and inner regularity. We shall restrict ourselves to the conventional outer
and inner situations in the above sense, because we know of no prior work
in the full situations of isotone set functions with values in R or R. To be
sure, there has been extensive work devoted to set functions with values
in complete abelian Hausdorff topological groups, after the model of Sion
[1969]. But in these papers the words isotone and regular do not occur,
or at least attain different characters. Therefore we consider this work to
be a domain on its own, and specialize its results to isotone set functions
with values in [0,∞[⊂ R. In compensation, the results will be considered to
include regularity in the relevant sense whenever this can be read from the
context.
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Most of the papers to be discussed fall into the frame of the outer and
inner • extensions for • = ⋆στ , as defined at the outset in sections 4 and
6 above. The exceptions are the paper of Pettis [1951] cited in the intro-
duction, and the extension procedures which follow the traditional two-step
model of topological measure theory, in short from compact subsets via open
subsets to arbitrary subsets. These contributions culminate in the work of
Sapounakis-Sion [1983][1987] which will be discussed hereafter.

At present we start to formulate a scheme in order to describe the results
of the former papers. The scheme is shaped after the conventional outer and
inner main theorems 5.11 and 6.31, except that their properties 5) and 5)5’)
will be dropped and incorporated into 4). Let S be a lattice with ∅ ∈ S.
Assume that

in the outer situation (=:out): ϕ : S→ [0,∞] is isotone and submodular
with ϕ(∅) = 0,

in the inner situation (=:inn): ϕ : S→ [0,∞[ is isotone and supermodular
with ϕ(∅) = 0.

For fixed out/inn and • = ⋆στ we consider the properties of ϕ which follow.

(1) ϕ is an outer/inner • premeasure, that is ϕ has outer/inner • extensions.
It is equivalent to require that ϕ has an outer/inner • extension which is

for • = ⋆ : a ccontent on an algebra,

for • = στ : a cmeasure on a σ algebra.

The other properties of ϕ are with respect to a further isotone set function
φ : P(X)→ [0,∞]. The formation C(φ) is as defined above.

(2 for φ) φ|C(φ) is an outer/inner • extension of ϕ which is

for • = ⋆ : a ccontent on an algebra,

for • = στ : a cmeasure on a σ algebra.

(3 for φ) φ|C(φ) is an extension of ϕ in the crude sense.

(4 for φ) ϕ(B) = ϕ(A) + φ(B \A) for all A ⊂ B in S.

We consider one more condition for ϕ with respect to φ.

(U for φ) Each outer/inner • extension of ϕ is a restriction of φ|C(φ).

We note the obvious implications

(2 for φ) =⇒ (1)

‖ ⇓ (U for φ)

(2 for φ) =⇒ (3 for φ) =⇒ (4 for φ).

The most important of the above properties for ϕ is of course (1). For a
subordinate set function φ the most valuable properties are (2 for φ) and
(U for φ), because their combination means that φ dominates the set func-
tion ϕ in the formation of extensions of the respective kind. On the other
hand the most direct and simplest of the properties of ϕ relative to φ is of
course (4 for φ). Therefore the most needed implications are (4 for φ)⇒ · · · ,
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in order to obtain sufficient conditions for (1), and (1) ⇒ · · · , in particular
(U for φ), in order to have necessary conditions for (1).

Before we describe the historical development we recall that the present
conventional outer main theorem 5.11 asserts that in the outer cases • = ⋆στ
the properties (1) and (2 for ϕ•), (3 for ϕ•), (4 for ϕ•) are equivalent,
provided that in case • = τ one adds to (4 for ϕτ ) the requirement that ϕ
be upward essential. Furthermore 5.1 says that (U for ϕ•) holds true. The
present conventional inner main theorem 6.31 combined with 6.18 asserts
the same in the inner cases • = ⋆στ with respect to ϕ•, this time without
addendum in case • = τ . A provisional announcement of these facts was
in König [1992c]. We do not have to come back to the outer case • = τ ,
because it has not been treated before.

In the outer and inner cases • = ⋆ the results have been in the literature
for quite some time in more or less comprehensive versions. See for example
Topsøe [1970b] theorem 4.1 and Adamski [1984b] section 2. But the author
has not seen the complete formulations before König [1992b] theorem A13.

We turn to the outer and inner cases • = σ. We have to restrict our-
selves to the basic achievements of the individual papers, perhaps with small
simplifications. As the earlierst paper we mention Choksi [1958], because it
comprised several previous results. Its theorem 1 asserts that

inn: (4 for ϕ⋆) and S σ compact ⇒ (1).

The leap forward around 1970 started in Topsøe [1970a] theorem 1 and
[1970b] section 2 (and notes to section 5) with the results

inn: (4 for ϕ⋆) and ϕ σ continuous at ∅ ⇒ (2 for ϕ⋆) and (U for ϕ⋆),
when S fulfils ∩σ,

inn: (4 for ϕ⋆) and ϕ σ continuous at ∅ ⇒ (2 for ϕ(σ)),

with ϕ(σ) and its relatives as defined after 6.10 and 6.11. Kelley-Srinivasan
[1971] proved in corollary 2 that

out: (4 for ϕ◦) ⇒ (2 for ϕ◦) and hence ⇔ (2 for ϕ◦),

for the Carathéodory outer measure ϕ◦ as defined in the introduction. Thus
of course (4 for ϕ◦) ⇒ (1). The authors claimed without proof that even
(4 for ϕ◦) ⇔ (1), but the present author cannot see this. In propositions 8
and 9 they proved via ϕ◦ that

out: (4 for ϕ⋆) and ϕ upward σ continuous ⇔ (1), when S fulfils ∪σ,
inn: (4 for ϕ⋆) and ϕ σ continuous at ∅ ⇔ (1), when S fulfils ∩σ.

Ridder [1971][1973] proved the last implications ⇒ under the assumption
that S fulfils both ∪σ and ∩σ. Then Kelley-Nayak-Srinivasan [1973] ob-
tained an independent proof of the result of Topsøe [1970b] that

inn: (4 for ϕ⋆) and ϕ σ continuous at ∅ ⇒ (2 for ϕ(σ)).

The conditions ∪σ and ∩σ for S are of course severe restrictions which often
are not fulfilled.

From the present text we know that beyond these restrictions the con-
verses · · · ⇒ (4 for ϕ⋆) and · · · ⇒ (4 for ϕ⋆) of the above assertions are all
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false. From 5.14 we see that in the outer situation even λ : K = Comp(Rn)→
[0,∞[ is a counterexample. This expresses the basic inadequacy of the for-
mations ϕ⋆ and ϕ⋆ for the treatment of • = στ .

To this line of papers we add the work of Lipecki [1974], who in the
frame of abstract-valued set functions as described above proved an extended
version of the last-mentioned result.

At last we quote from Adamski [1982] the two results

out: (4 for ϕ⋆) and ϕ upward σ continuous ⇒ (2 for ϕ◦),
inn: (4 for ϕ⋆) and ϕ σ continuous at ∅ ⇒ (2 for ϕ(σ)),

declared as direct counterparts. These results are contained in the former
ones, the first one since its hypothesis implies at once (4 for ϕ◦). We quote
the results in their combination as an example for the odd kind of monopoly
which the Carathéodory outer measure held in the outer situation, in spite
of what we have said in the introduction. Another example is a note in the
recent book of Kelley-Srinivasan [1988] page 20 which says that, in a certain
sense, the properties (4 for ϕ◦) and (4 for ϕ⋆) are dual to each other.

We remain in the outer and inner cases • = σ. The next papers were
essential improvements, because of results in which ϕ⋆ and ϕ⋆ as well as ϕ◦

did no more occur. The main results in Fox-Morales [1983] theorems 3.16
and 3.10 were

out: (4 for ϕ(σ)) and ϕ upward σ continuous ⇒ (1),
inn: (4 for ϕ(σ)) and ϕ downward σ continuous ⇒ (1).

Then Găină [1986] proved

out: (4 for ϕ(σ)) and ϕ upward σ continuous ⇔ (2 for ϕ(σ)),
inn: (4 for ϕ(σ)) and ϕ downward σ continuous ⇔ (2 for ϕ(σ)).

Both papers were in the frame of abstract-valued set functions, the first one
still based on Sion [1969]. The independent work of König [1985] theorems
3.3 with 3.1 and 3.4 with 3.2 obtained

out: (4 for ϕσ) ⇔ (2 for ϕσ), and furthermore (U for ϕσ),
inn: (4 for ϕσ) ⇔ (2 for ϕσ), and furthermore (U for ϕσ),

and hence the full results as in the present text. We emphasize that the
important fortified counterparts 7.14 and 7.18 of the classical extension the-
orem can be deduced from the last three papers, but not from the earlier
ones. Their essence is in König [1985] theorems 3.8 and 3.9.

In the outer and inner cases • = σ it remains to review the work of
Glazkov [1988] which stands somewhat apart. It assumed an arbitrary
paving S with ∅ ∈ S and an arbitrary set function ϕ : S → [0,∞] with
ϕ(∅) = 0, and defined besides ϕ◦ the somewhat brutal inner counterpart
ϕ◦ : P(X)→ [0,∞] to be

ϕ◦(A) = sup{
r

∑

l=1

ϕ(Sl) : S1, · · · , Sr ∈ S pairwise disjoint ⊂ A}.



76 II. THE EXTENSION THEORIES BASED ON REGULARITY

As far as the present author knows, this formation had been considered in
earlier decades, but was later abandoned because of severe unsymmetries
with ϕ◦. Nevertheless the paper obtained some notable results, based on
appropriate definitions of outer and inner tightness. The outer result says
that ϕ◦|C(ϕ◦), which is known to be a cmeasure on a σ algebra, is an exten-
sion of ϕ iff ϕ is outer tight. However, the inner counterpart on ϕ◦|C(ϕ◦)
is not an equivalence assertion but restricted to certain sufficient conditions
which, except the requirement that ϕ be inner tight, do not look adequate
for an equivalence assertion. Thus there is not much hope for symmetry
based on the formations ϕ◦ and ϕ◦.

The review of the inner case • = τ is short. Prior to the present text
we quote the work of Topsøe [1970ab], also reproduced in Pollard-Topsøe
[1975]. It was our model in that it aimed at a uniform treatment of the
three cases • = ⋆στ . Thus Pollard-Topsøe [1975] theorem B asserts that

inn: (4 for ϕ⋆) and ϕ • continuous at ∅ ⇒ (2 for ϕ(•)).

The converse ⇐ is false for • = τ as it has been for • = σ. There are also
parts of the present comparison theorems 6.24 and 6.25 in Topsøe [1970b]
theorem 5.1, and of the present τ continuity theorem 6.27 inTopsøe [1970b]
lemma 2.3. At last Topsøe [1970a] lemma 1 seems to be the ancestor of the
results like the present lemma 6.30.

At the end of the subsection we want to discuss the work of Sapounakis-
Sion [1983][1987] as announced above. The concern here is Sapounakis-Sion
[1987] part I with the fundamental theorem 1.1 and its corollaries. We shall
later comment on certain applications. The reproduction will be a free one
in certain minor points.

The situation is that of a two-step extension procedure. Assume that S

and T are lattices in X which contain ∅ and fulfil S ⊂ T⊤⊥, and let ϕ :
S→ [0,∞[ be an isotone set function with ϕ(∅) = 0. We form ψ := ϕ⋆|T,
so that ψ : T→ [0,∞] is an isotone set function with ψ(∅) = 0. The aim is
to obtain a cmeasure α : A→ [0,∞] on a σ algebra A with the properties

I) A ⊃ S, and A ⊃ T and hence A ⊃ Tσ;
II) α|S = ϕ, and α is inner regular S at T and outer regular Tσ.

Although this task seems to be quite different from those in the present text,
we shall see that it can be incorporated into our extension theories. We do
this with the next theorem which is based on the main results of the present
chapter.

7.19. Theorem. Assume that S is upward enclosable [ψ <∞] = [ϕ⋆|T
< ∞]. Then there exists a cmeasure α : A → [0,∞] on a σ algebra A with
the above properties I)II) iff

i) ϕ is supermodular and inner ⋆ tight, and
ii) ψ = ϕ⋆|T is submodular and upward σ continuous.

In this case ψ is an outer σ and ⋆ premeasure, and ψσ|C(ψσ) is as re-
quired. Furthermore each cmeasure α which is as required is a restriction of
ψσ|C(ψσ).
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This theorem can serve as a substitute for Sapounakis-Sion [1987] theo-
rem 1.1 and some of the subsequent results. The main differences are that
these authors on the one hand postulate α := ψ◦|C(ψ◦) from the start, and
on the other hand do not present equivalence theorems in concrete terms
like the above one, but are content with sufficient conditions.

Proof of the theorem. We first assume that α : A→ [0,∞] is a cmeasure
on a σ algebra A with the properties I)II). Then α|T is an outer σ premeasure
with α|T = (α|S)⋆|T = ϕ⋆|T = ψ. Thus ψ is an outer σ premeasure, and
hence in particular fulfils ii). We see from 5.1 that α is a restriction of
ψσ|C(ψσ). Thus ψσ|C(ψσ) fulfils I)II) as well. Now we have to prove i).
Since ϕ = α|S is modular it remains to show that it is inner ⋆ tight. To
see this fix A ⊂ B in S, and then T ∈ T with α(T ) = ψ(T ) <∞ such that
B ⊂ T . In view of S ⊂ T⊤⊥ we have T \A ∈ T, of course with α(T \A) <∞.
We fix ε > 0 and then K ∈ S with K ⊂ T \ A and α(T \ A) ≦ α(K) + ε.
Now

α(B \A) + α(T \B) = α(T \A) ≦ α(K) + ε = α(K ∩B) + α(K ∩B′) + ε,

with all terms finite. On the other hand

K ∩B ∈ S with K ∩B ⊂ A′ ∩B = B \A,

K ∩B′ ⊂ T ∩B′ = T \B.

It follows that α(B \A) ≦ α(K ∩B) + ε. Therefore

ϕ(B)− ϕ(A) = α(B)− α(A) = α(B \A) ≦ α(K ∩B) + ε

= ϕ(K ∩B) + ε ≦ ϕ⋆(B \A) + ε,

and hence the assertion.

We next assume that ϕ and ψ fulfil i)ii). We first prove

(0) ϕ⋆(B ∩A) + ψ⋆(B ∩A′) ≦ ψ(B) = ϕ⋆(B) for A ⊂ X and B ∈ T.

We can assume that ψ(B) = ϕ⋆(B) < ∞ and hence ϕ⋆(B ∩ A) < ∞. We
fix ε > 0 and then S ∈ S with S ⊂ B ∩A such that ϕ⋆(B ∩A) ≦ ϕ(S) + ε.
Now

ϕ⋆(B) = ϕ⋆(B) + ϕ⋆(∅) ≧ ϕ⋆(B ∩ S) + ϕ⋆(B ∩ S′),

since ϕ⋆ is supermodular by 6.3.5). Here we have on the one hand

B ∩ S = S and hence ϕ⋆(B ∩ S) = ϕ(S) ≧ ϕ⋆(B ∩A)− ε.

On the other hand B ∩ S′ ∈ T in view of S ⊂ T⊤⊥; furthermore

B ∩ S′ ⊃ B ∩A′ and hence ϕ⋆(B ∩ S′) = ψ(B ∩ S′) ≧ ψ⋆(B ∩A′).

It follows that ϕ⋆(B) ≧ ϕ⋆(B ∩A)− ε + ψ⋆(B ∩A′). Thus (0) is proved.

Now (0) will be applied three times. 1) From (0) for A ⊂ B in T we
see that ψ is inner ⋆ tight and hence inner σ tight. Therefore ψ is an inner
⋆ and σ premeasure. From 5.8.σ) we know that C(ψ⋆) ⊂ C(ψσ), and from
5.9.σ) that ψ⋆(M) = ψσ(M) for all M ∈ C(ψ⋆) with ψ⋆(M) < ∞. Thus
α := ψσ|C(ψσ) is a cmeasure on a σ algebra ⊃ T which is outer regular Tσ.
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Furthermore we know from 5.11 that S⊥ ⊂ T⊤ = T⊤T ⊂ C(ψ⋆) ⊂ C(ψσ)
and hence S ⊂ C(ψ⋆) ⊂ C(ψσ).

It remains to prove α|S = ϕ. In fact, then we have also (α|S)⋆|T =
ϕ⋆|T = ψ = α|T, that is α is inner regular S at T. To see the assertion fix
A ∈ S. By assumption there exists B ∈ [ψ <∞] ⊂ T with A ⊂ B. 2) From
(0) and ii) with 4.1.5) we have

ϕ⋆(B ∩A) + ψ⋆(B ∩A′) ≦ ψ(B) = ψ⋆(B) + ψ⋆(∅)

≦ ψ⋆(B ∩A) + ψ⋆(B ∩A′),

so that B ∩ A = A furnishes ϕ(A) ≦ ψ⋆(A). 3) From (0) applied to A′ and
B and from A ∈ S ⊂ C(ϕ⋆) in view of i) we obtain

ϕ⋆(B ∩A′) + ψ⋆(B ∩A) ≦ ϕ⋆(B) = ϕ⋆(B ∩A′) + ϕ⋆(B ∩A),

with all terms finite. Thus B ∩ A = A furnishes ψ⋆(A) ≦ ϕ(A). Therefore
we have ϕ(A) = ψ⋆(A) < ∞ and hence ϕ(A) = ψσ(A) = α(A). The proof
is complete.

We mention at last that in Sapounakis-Sion [1983][1987] one requires but
∪ for S and ∩ for T, instead of S and T to be lattices as above. Maurice
Sion has pointed out to the author that it is a benefit of the Carathéodory
outer measure that it permits to start with pavings which fulfil ∩ but need
not be lattices. This aspect can of course become relevant, but it is expected
that the last subsection of the present section 3 will be able to take care of
it as well.



CHAPTER III

Applications of the Extension Theories

The most important consequences of the extension theories of chap-
ter II appear to be the representation theorems of Daniell-Stone and Riesz
type which will be obtained in chapter V. The present chapter is devoted
to a few direct applications of the extension theories to different areas in
the domain of set functions. All these are central areas of rich tradition and
extensive literature. We do not intend to compete with them in technical
depth and sophistication. We rather want to show that certain basic ideas
and results come as natural outflows from the above theories. We shall ar-
rive at certain forms which are more comprehensive and simpler, and also
more explicit than those found in the literature so far. An example is the
extension of the capacitability theorem due to Choquet in section 10. In
most but not all cases we shall be concerned with the conventional outer
and inner situations.

8. Baire Measures

Let X be a topological space. We recall from 1.2.8) and 1.6.4) the lattices
COp(X) ⊂ Op(X) and CCl(X) ⊂ Cl(X) and the σ algebras Baire(X) ⊂
Bor(X) in X. One defines the

Borel measures on X to be the cmeasures α : Bor(X)→ [0,∞],
Baire measures on X to be the cmeasures α : Baire(X)→ [0,∞].

The two kinds of measures have much in common, but also distinctive pecu-
liarities. The present section concentrates on certain fundamentals for Baire
measures.

Basic Properties of Baire Measures

We collect some essential properties of the lattices COp(X) and CCl(X).

8.1. Properties. 1) COp(X) and CCl(X) are lattices which contain
∅ and X, and CCl(X) = (COp(X))⊥. 2) COp(X) has ∪σ, and CCl(X)
has ∩σ. 3) CCl(X) ⊂ (COp(X))σ and COp(X) ⊂ (CCl(X))σ. 4) CCl(X)
is upward σ full, and COp(X) is downward σ full. 5) Assume that X is
completely regular. Then Cl(X) = (CCl(X))τ and Op(X) = (COp(X))τ .
6) Assume that X is normal. Then for each pair B ∈ Cl(X) and V ∈ Op(X)
with B ⊂ V there exist A ∈ CCl(X) and U ∈ COp(X) with B ⊂ U ⊂ A ⊂
V . 7) Consider for A ⊂ X the properties
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i) A ∈ COp(X);
ii) there exists a sequence of continuous fl : X → [0,∞[ with fl ↑ χA;
iii) A ∈ Op(X) and A ∈ (Cl(X))σ.

Then i)⇒ii)⇒iii); and iii)⇒i) when X is normal. 8) Assume that X is
semimetrizable. Then COp(X) = Op(X) and CCl(X) = Cl(X), and hence
Baire(X) = Bor(X).

Proof. 1) is known from 1.6.4). 2) We prove the first assertion. Let
(Al)l be a sequence in COp(X). We can assume that Al = [fl > 0] for some
fl ∈ C(X, R) with 0 ≦ fl ≦ 1. Then

f :=

∞
∑

l=1

1

2l
fl ∈ C(X, R) with

∞
⋃

l=1

Al = [f > 0] ∈ COp(X).

3) Once more we prove the first assertion. The set A ∈ CCl(X) of the form
A = [f ≦ 0] for some f ∈ C(X, R) is the intersection of the sets Al :=
[f < 1/l] ∈ COp(X) ∀l ∈ N. 4) follows from 1)3). 5) The assumption
means that for each pair A ∈ Cl(X) and u ∈ A′ there exists a function
f ∈ C(X, R) with f |A ≦ 0 and f(u) > 0. Thus A ⊂ [f ≦ 0] ∈ CCl(X) and
u /∈ [f ≦ 0]. This implies the assertion. 6) By the Urysohn lemma there
exists f ∈ C(X, R) with B ⊂ [f ≦ 0] ⊂ [f < 1] ⊂ V . Then U := [f < 1/2]
and A := [f ≦ 1/2] are as required. 7) For i)⇒ii) let A = [f �= 0] for some
f ∈ C(X, R). Then the fl := min(l|f |, 1) ∀l ∈ N are as required. ii)⇒iii) We
have

A =
∞
⋃

l=1

[fl > 0] ∈ Op(X), and A =
∞
⋃

l=1

[fl ≧ t] ∈ (Cl(X))σ for 0 < t < 1.

iii)⇒i) follows from 6). 8) is known from 1.6.4).

The result below shows in particular that the well-known regularity prop-
erties of Baire measures are immediate consequences of the extension theo-
ries of chapter II.

8.2. Proposition. Let α : Baire(X)→ [0,∞] be a cmeasure. 1) Define
S := {A ∈ CCl(X) : α(A) <∞} and ϕ := α|S. Then

i) S is a lattice with ∩σ which is upward σ full.
ii) ϕ is an outer and an inner σ premeasure.
iii) C(ϕσ) = C(ϕσ) =: C ⊃ Baire(X), and ϕσ = ϕσ on C ∩ (⊏ Sσ).
iv) ϕ⋆ = ϕσ.
v) ϕ⋆ = ϕσ ≦ α ≦ ϕσ on Baire(X).
vi) ϕ⋆ = ϕσ = α = ϕσ on Baire(X) ∩ (⊏ Sσ).

In particular if X ∈ Sσ then α is inner regular S.

2) Define T := {A ∈ COp(X) : α(A) <∞} and ψ := α|T. Then

i) T is a lattice which is downward σ full.
ii) ψ is an outer and an inner σ premeasure.
iii) C(ψσ) = C(ψσ) =: C ⊃ Baire(X), and ψσ = ψσ on C ∩ (⊏ Tσ).
iv) ψσ = ψ⋆.
v) ψσ ≦ α ≦ ψσ = ψ⋆ on Baire(X).
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vi) ψσ = α = ψσ = ψ⋆ on Baire(X) ∩ (⊏ Tσ).

In particular if X ∈ Tσ then α is outer regular T. Note that α is outer
regular T iff it is outer regular COp(X).

Proof of 1). i) follows from 8.1.1)2)4), and hence ii) from 7.12. iii)
follows from 7.5 and from CCl(X) ⊂ S⊤S ⊂ C(ϕσ) = C(ϕσ) in 5.11 and
6.31. iv) follows from 6.5.iv). Then v) results from 7.1.σ), and vi) from 7.5.

Proof of 2). i) follows from 8.1.1)2)4), and hence ii) from 7.16. iii)
follows from 7.5 and from COp(X) ⊂ T⊤T ⊂ C(ψσ) = C(ψσ) in 5.11 and
6.31. iv) follows from 4.5.iv). Then v) results from 7.1.σ), and vi) from 7.5.

8.3. Exercise. We have Tσ ⊂ Sσ, but the converse need not be true. It
fact, it can happen that X ∈ Sσ and α is not outer regular T, which implies
that X �∈ Tσ. One can even achieve that X is compact Hausdorff. Hint for an
example: Let X := N∪{∞}. Define Op(X) to consist of all subsets of N and
of all cofinite subsets of X which contain ∞. Note that CCl(X) = Cl(X)
and that Baire(X) = P(X). Let α : Baire(X) = P(X) → [0,∞] be the
counting measure, that is α(A) = #(A) for all A ⊂ X.

8.4. Exercise. Give an alternative proof of the two assertions

ϕ⋆(A) = α(A) for all A ∈ Baire(X) upward enclosable Sσ,
ψ⋆(A) = α(A) for all A ∈ Baire(X) upward enclosable Tσ,

which instead of 7.5 uses the classical uniqueness theorem 3.1.σ) (plus certain
facts around the transporter theorem).

8.5. Addendum. i) ϕ⋆ = ϕσ = α on [α <∞]σ.
ii) ϕ⋆ = ϕσ = α on Baire(X) iff α is semifinite above.

Therefore α is inner regular S iff it is semifinite above.

Proof. i) It suffices to prove that α(A) ≦ ϕ⋆(A) for A ∈ [α < ∞]. To
see this one applies 8.2.1) to the finite Baire measure S �→ α(S ∩A) and to
A. Then

α(A) = sup{α(S ∩A) : S ∈ CCl(X) with S ⊂ A}
= sup{α(S) : S ∈ S with S ⊂ A} = ϕ⋆(A).

ii) It α is semifinite above then i) implies that α(A) ≦ ϕ⋆(A) for all A ∈
Baire(X). On the other hand if ϕ⋆ = ϕσ = α on Baire(X) then α is
semifinite above by the definition.

The most important point in the present subsection is the extension
of set functions defined on CCl(X) and COp(X) to Baire measures. The
positive results below are immediate consequences of the former theorems
7.12=7.14 and 7.16=7.18. Note that each version contains some construction
of the Lebesgue measure.

8.6. Theorem. Let ϕ : CCl(X) → [0,∞] be isotone and modular with
ϕ(∅) = 0, and upward σ continuous.
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1) There exists a unique cmeasure α : Baire(X) → [0,∞] which extends ϕ
and is outer regular (CCl(X))σ. This is α = ϕσ|Baire(X). It need not be
outer regular COp(X).

2) Assume that ϕ <∞. Then there exists a unique cmeasure α : Baire(X)→
[0,∞] which extends ϕ. This is

α = ϕ⋆|Baire(X) = ϕσ|Baire(X) = ϕσ|Baire(X).

It is α <∞ and hence outer regular COp(X) and inner regular CCl(X).

Proof. 1) The lattice CCl(X) is upward σ full by 8.1.4). Thus ϕ is an
outer σ premeasure by 7.12.1). The assertion follows from the conventional
outer main theorem 5.11. The example constructed in 8.3 shows that α
need not be outer regular COp(X), even when X is compact Hausdorff.
2) The existence assertion follows from 1). Let now β be any Baire measure
extension of ϕ. Then β <∞. By 8.2.1) β is inner regular CCl(X) and hence
unique, and we have β = ϕ⋆|Baire(X) = ϕσ|Baire(X). Furthermore β must
be the extension α = ϕσ|Baire(X) obtained in 1). At last it is outer regular
COp(X) by 8.2.2).

8.7. Theorem. Let ϕ : COp(X) → [0,∞[ be isotone and modular with
ϕ(∅) = 0, and σ continuous at ∅. Then there exists a unique cmeasure
α : Baire(X)→ [0,∞] which extends ϕ. This is

α = ϕ⋆|Baire(X) = ϕσ|Baire(X) = ϕσ|Baire(X).

It is α <∞ and hence inner regular CCl(X) and outer regular COp(X).

Proof. The lattice COp(X) is downward σ full by 8.1.4). Thus ϕ is an
inner σ premeasure by 7.16.1). From the conventional inner main theorem
6.31 it follows that α := ϕσ|Baire(X) is a cmeasure which extends ϕ. Let
now β be any Baire measure extension of ϕ. Then β < ∞. By 8.2.2) β is
outer regular COp(X) and hence unique, and we have β = ϕ⋆|Baire(X) =
ϕσ|Baire(X). Furthermore β must be the extension α = ϕσ|Baire(X) ob-
tained above. At last it is inner regular CCl(X) by 8.2.1).

8.8. Remark. Theorem 8.6 becomes false when one replaces the as-
sumption that ϕ be upward σ continuous by the assumption of 8.7 that ϕ
be < ∞ and σ continuous at ∅. In fact, the example constructed in 7.13
shows that ϕ then need not be upward σ continuous.

8.9. Bibliographical Note. The author found no traces of 8.6 and
8.7 in the literature prior to his [1985]. A posteriori one sees that part
of 8.6 and 8.7 could have been obtained from Topsøe [1970a] and Kelley-
Srinivasan [1971], though on different paths. We restrict ourselves to 8.6,
and have to assume that ϕ <∞. From the assumptions one deduces on the
one hand that ϕ is inner ⋆ tight, as noted in 7.10.2), and on the other hand
that ϕ is σ continuous at ∅, which requires some nontrivial manipulation.
Then the results of the above papers imply that ϕ has a Baire measure
extension α which is inner regular CCl(X). Thus one obtains 8.6.2) except
that α = ϕσ|Baire(X). Also 8.6.1) does not seem to be accessible.



8. BAIRE MEASURES 83

Inner Regularity in Separable Metric Spaces

The subsequent result is restricted to metric spaces, where the Borel and
Baire formations are known to be identical. It serves to prepare the famous
theorem 9.9 in the next section.

Let X be a metric space with metric d. As usual we form for a ∈ X and
δ > 0

the open ball V(a, δ) := {x ∈ X : d(a, x) < δ}, and
the closed ball ∇(a, δ) := {x ∈ X : d(a, x) ≦ δ}.

We recall the relevant notions and results. A subset M ⊂ X is called
dispersed (or verstreut) iff there exists δ > 0 such that d(u, v) ≧ δ for all
pairs u, v ∈M with u �= v. It is a fundamental fact that for a subset A ⊂ X
the three properties below are equivalent.

1) For each δ > 0 there exists a finite F ⊂ A such that A ⊂
⋃

u∈F

V(u, δ).
2) Each dispersed subset of A is finite.
3) Each sequence in A has a subsequence which is a Cauchy sequence.

In this case A is called precompact (or totally bounded). It follows
that A is compact iff it is precompact and complete. But note that neither
precompactness nor completeness is a topological notion. The theorem in
question then reads as follows.

8.10. Theorem. Assume that X is a separable metric space. Let α :
Baire(X) = Bor(X) → [0,∞] be a cmeasure which is semifinite above, that
is inner regular

S := {A ∈ CCl(X) = Cl(X) : α(A) <∞}.
Then α is inner regular

{A ∈ CCl(X) = Cl(X) : A precompact with α(A) <∞}.
Proof. 1) We first assume α <∞ and prove that

α(X) = sup{α(A) : A ∈ Cl(X) precompact }.
Let {ul : l ∈ N} be a countable dense subset of X and δ > 0. For fixed

n ∈ N we have X =
∞
⋃

l=1

∇(ul, 1/n). Hence there exists k(n) ∈ N such that

Bn :=
k(n)
⋃

l=1

∇(ul, 1/n) fulfils α(Bn) ≧ α(X) − δ/2n or α(B′
n) ≦ δ/2n. Let

An := B1 ∩ · · · ∩Bn. Then A′
n = B′

1 ∪ · · · ∪B′
n and hence

α(A′
n) ≦

n
∑

p=1

α(B′
p) ≦ δ or α(An) ≧ α(X)− δ.

Now An ↓ A ∈ Cl(X) and hence α(A) ≧ α(X) − δ. But A is precompact
since A ⊂ An ⊂ Bn for all n ∈ N. 2) We turn to the assertion of the theorem.
Fix B ∈ Baire(X) = Bor(X) and a real c < α(B). By assumption there
exists P ∈ Cl(X) with P ⊂ B and c < α(P ) < ∞. We can apply 1) to the
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restriction α|Baire(P ) = Bor(P ), where Bor(P ) = {M ∈ Bor(X) : M ⊂ P}
by 1.13.2). Thus there exists A ⊂ P closed and precompact in P , and hence
in X, such that c < α(A). The assertion follows.

Extension of Baire Measures to Borel Measures

It is natural to ask whether and when a Baire measure α : Baire(X)→ [0,∞]
can be extended to Borel measures. This is known to be a hard problem.
The present subsection obtains an extension theorem which is an immediate
consequence of the extension theories of chapter II. It assumes a certain τ
behaviour and X to be completely regular, and connects the Borel and Baire
structures via 8.1.5). We note that there are extension theorems of different
type which are not based upon τ theories. We shall postpone them until
section 19.

8.11. Theorem. Assume that X is completely regular. Let the cmeasure
α : Baire(X) → [0,∞] be inner regular S := {A ∈ CCl(X) : α(A) < ∞},
that is semifinite above, and assume that ϕ := α|S is τ continuous at ∅.
Then

1) ϕ is an inner τ premeasure with C(ϕτ ) ⊃ Bor(X). The cmeasure β :=
ϕτ |Bor(X) extends α and is inner regular Sτ = Cl(X)∩(⊏ S). Furthermore
β|Cl(X) is almost downward τ continuous.

2) Each cmeasure ϑ : Bor(X)→ [0,∞] which extends ϕ = α|S and is inner
regular Sτ is = β.

Proof of 8.11.1). By the assumptions ϕ is an inner ⋆ premeasure and
τ continuous at ∅, and hence an inner • premeasure for • = ⋆στ by the
conventional inner main theorem 6.31. Besides Baire(X) ⊂ C(ϕσ) we see
from 6.31 that Cl(X) = (CCl(X))τ ⊂ S⊤Sτ ⊂ C(ϕτ ) and hence Bor(X) ⊂
C(ϕτ ). By 6.24.τ) and 6.25.τ) ϕτ |C(ϕτ ) is an extension of ϕσ|C(ϕσ) and
hence of α = ϕ⋆|Baire(X) = ϕσ|Baire(X). Therefore β := ϕτ |Bor(X) is
a cmeasure which extends α and is inner regular Sτ . By 8.1.5) we have
Sτ = Cl(X) ∩ (⊏ S). The last assertion follows from 6.27.

The proof of the second part requires a simple lemma.

8.12. Lemma. Let S be a lattice with ∅ ∈ S, and φ : S• → [0,∞] be
isotone with φ(∅) = 0. If φ|S is • continuous at ∅ then φ is • continuous
at ∅ as well.

Proof of 8.12. Let M ⊂ S• be a paving of type • with M ↓ ∅. By 6.6
there exists a paving N ⊂ S of type • with N ↓ ∅ and N ⊂ (⊐ M). Fix
N ∈ N. There exists M ∈ M with M ⊂ N and hence 0 ≦ φ(M) ≦ φ(N).
Therefore

0 ≦ inf
M∈M

φ(M) ≦ φ(N) and hence 0 ≦ inf
M∈M

φ(M) ≦ inf
N∈N

φ(N).

The assertion follows.

Proof of 8.11.2). Let ϑ : Bor(X)→ [0,∞] be a cmeasure which extends
ϕ = α|S and is inner regular Sτ . Then ϑ|Sτ is an inner ⋆ premeasure, and
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τ continuous at ∅ by 8.12. Thus ϑ|Sτ is an inner τ premeasure and hence
downward τ continuous. Therefore ϑ = ϕ = α = β on S implies that ϑ = β
on Sτ , and hence that ϑ = β since both sides are inner regular Sτ . The
proof is complete.

We emphasize that we have not only proved the existence and unique-
ness of the desired Borel extension, but have also obtained a certain explicit
description. We turn to the special case α <∞ which has a simpler formu-
lation, and then to the special case of a compact Hausdorff space X. The
latter case leads to Radon measures in the sense of the next section.

8.13. Special Case. Assume that X is completely regular. Let α :
Baire(X)→ [0,∞[ be a cmeasure such that ϕ := α|CCl(X) is τ continuous
at ∅. Then

1) ϕ is an inner τ premeasure with C(ϕτ ) ⊃ Bor(X). The finite cmeasure
β := ϕτ |Bor(X) extends α and is inner regular Cl(X). Furthermore β|Cl(X)
is downward τ continuous.

2) Each cmeasure ϑ : Bor(X)→ [0,∞[ which extends ϕ = α|CCl(X) and is
inner regular Cl(X) is = β.

8.14. Special Case. Assume that X is a compact Hausdorff space. Let
α : Baire(X)→ [0,∞[ be a cmeasure. Then

1) ϕ := α|CCl(X) is an inner τ premeasure with C(ϕτ ) ⊃ Bor(X). The
finite cmeasure β := ϕτ |Bor(X) extends α and is inner regular Cl(X). Fur-
thermore β|Cl(X) is downward τ continuous.

2) Each cmeasure ϑ : Bor(X)→ [0,∞[ which extends ϕ = α|CCl(X) and is
inner regular Cl(X) is = β.

8.15. Bibliographical Note. The essence of the extension theorem
8.11 is in Topsøe [1970b] theorem 5.1. A similar result is in Sapounakis-
Sion [1987] theorem 7.2, in the spirit of the two-step extension method of
this work as described in the bibliographical annex to chapter II. It extends
the initial result of Knowles [1967] which was for finite Baire measures. An
ab-ovo proof of the compact special case 8.14 is in Dudley [1989] section 7.3.

For the extensive literature on Borel and Baire measures we refer to the
survey articles of Gardner-Pfeffer [1984] and Wheeler [1983].

The Hewitt-Yosida Theorem

In the last subsection we return to the abstract situation of a nonvoid set X.
We want to add another application of the notion of upward σ full lattices.
We start with the classical decomposition theorem of Hewitt-Yosida [1952].

8.16. Theorem (Hewitt-Yosida). Let ϕ : S → [0,∞[ be a ccontent on
a ring S. Then there exists a unique decomposition ϕ = ξ + η of ϕ into
ccontents ξ, η : S→ [0,∞[ such that

i) ξ is upward σ continuous.

ii) η is σ discontinuous in the sense that there is no nonzero upward σ
continuous ccontent ϑ : S→ [0,∞[ with ϑ ≦ η.



86 III. APPLICATIONS OF THE EXTENSION THEORIES

We shall deduce from the outer σ extension procedure of chapter II that
there is an identical result when S is an upward σ full lattice. This extended
result will be a special case of a more comprehensive theorem. We need an
assertion which extends part of the conventional outer main theorem 5.11
for • = σ.

8.17. Proposition. Let S be a lattice with ∅ ∈ S, and ϕ : S→ [0,∞]
be isotone and submodular with ϕ(∅) = 0 as well as outer σ tight. Then
S ⊂ C(ϕσ).

Proof. Fix S ∈ S. By 5.2 applied to P := {∅} and Q := [ϕ < ∞] we
have to show that

ϕσ(Q) ≧ ϕσ(Q ∩ S) + ϕσ(Q ∩ S′) for all Q ∈ [ϕ <∞];

here we used that ϕσ(∅) = 0. So fix Q ∈ [ϕ <∞]. Let (Sl)l be a sequence
in S with Sl ↑ some V ⊃ Q. Since ϕ is outer σ tight we have ϕ(Sl) ≧

ϕ(Sl ∩ S) + ϕσ(Sl ∩ S′). Now on the one hand (Sl ∩ S)l is a sequence in
S with Sl ∩ S ↑ V ∩ S ⊃ Q ∩ S, so that by definition lim

l→∞
ϕ(Sl ∩ S) ≧

ϕσ(Q ∩ S). On the other hand Sl ∩ S′ ↑ V ∩ S′, so that 4.7 implies that
lim
l→∞

ϕσ(Sl∩S′) = ϕσ(V ∩S′) ≧ ϕσ(Q∩S′). Together we obtain lim
l→∞

ϕ(Sl) ≧

ϕσ(Q ∩ S) + ϕσ(Q ∩ S′). The assertion follows.

8.18. Theorem. Let S be a lattice with ∅ ∈ S, and ϕ : S → [0,∞] be
isotone and submodular with ϕ(∅) = 0 as well as outer σ tight. Then

i) ψ := ϕσ|S : S → [0,∞] is an outer σ premeasure with ψ ≦ ϕ and
ψσ = ϕσ.

ii) If ϑ : S → [0,∞] is isotone and upward σ continuous with ϑ ≦ ϕ then
ϑ ≦ ψ.

Proof of 1). i) ψ is isotone by 4.1.3) and submodular by 4.1.5), and
ψ(∅) = ϕσ(∅) = 0 and ψ ≦ ϕ by 4.1.1)2). By 4.7 ψ is upward σ continuous.
It follows that ϕσ = ψ = ψσ on S, hence ϕσ = ψσ on Sσ and therefore on
P(X) by 4.1.4). ii) ψ is upward σ continuous, and by the above 8.17 we
have S ⊂ C(ϕσ) = C(ψσ). Thus ψ is an outer σ premeasure. Proof of 2).
From the assumptions we obtain ϑ = ϑσ|S ≦ ϕσ|S = ψ.

The final assertion below is the announced extension of the Hewitt-
Yosida theorem.

8.19. Theorem. Let S be an upward σ full lattice, and ϕ : S → [0,∞[
be isotone and modular with ϕ(∅) = 0. Then there exists a unique decom-
position ϕ = ξ + η of ϕ with ξ, η : S→ [0,∞[ isotone and modular (and of
course ξ(∅) = η(∅) = 0) such that

i) ξ is upward σ continuous.

ii) η is σ discontinuous in the sense that there is no nonzero upward σ con-
tinuous isotone and modular ϑ : S→ [0,∞[ with ϑ ≦ η.

Here we have ξ = ϕσ|S.
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Proof. 1) We have ϕ = ξ + η with ξ := ϕσ|S ≦ ϕ and η := ϕ − ξ ≧ 0.
This decomposition is as required: i) ϕ is outer σ tight by 7.10.1), and hence
ξ an outer σ premeasure by 8.18.i). In particular ξ and η are modular. Of
course ξ is isotone, but it is nontrivial that η is isotone. To see this note
that for A ⊂ B in S we have

ξ(B)− ξ(A) = ξσ(B \A) = ϕσ(B \A) ≦ ϕ(B)− ϕ(A),

so that η(A) ≦ η(B). ii) It remains to show that η is σ discontinuous. Let
ϑ : S → [0,∞[ be as assumed. Then ϑ + ξ ≦ η + ξ = ϕ is isotone and
upward σ continuous. From 8.18.ii) we obtain ϑ + ξ ≦ ξ and hence ϑ = 0.

2) It remains to prove the uniqueness assertion. Assume that ϕ = ξ + η
is any decomposition of ϕ with the required properties. Also put ψ := ϕσ|S
as in 8.18. i) From 8.18.ii) applied to ϑ := ξ we obtain ξ ≦ ψ. ii) Therefore
ϑ := ψ − ξ ≧ 0 is modular with ϑ(∅) = 0. We claim that ϑ is isotone. Let
A ⊂ B in S, and consider a sequence (Sl)l in S with Sl ↑ B \ A. Then
A ∪ Sl ↑ B and hence

ψ(A) + ψ(Sl) = ψ(A ∪ Sl) ↑ ψ(B),

ξ(A) + ξ(Sl) = ξ(A ∪ Sl) ↑ ξ(B).

From ξ(Sl) ≦ ψ(Sl) we obtain ξ(B)− ξ(A) ≦ ψ(B)−ψ(A) or ϑ(A) ≦ ϑ(B).
iii) Now ϑ := ψ − ξ is upward σ continuous and satisfies ϑ ≦ η as well. By
assumption it follows that ϑ = 0 or ξ = ψ. The proof is complete.

8.20. Bibliographical Note. A result similar to 8.18 is in Sapouna-
kis-Sion [1987] theorem 12.1. It is restricted to the case that S has ∩σ
and that ϕ is bounded above, but on the other hand obtains a more refined
decomposition of ϕ. It is an extension of the initial result due to Knowles
[1967] theorem 4.3 which was in the context of a completely regular topo-
logical space X.

9. Radon Measures

Let X be a Hausdorff topological space. The present section centers
around a particular class of cmeasures on X which has turned out to be the
most fundamental one. It descends from the lattice K := Comp(X) ⊂ Cl(X)
of the compact subsets of X.

Radon Contents and Radon Measures

We define a Radon content on X to be a ccontent α : A→ [0,∞] on some
A ⊂ P(X) with K ⊂ A such that α|K < ∞ and α is inner regular K. Thus
the restriction ϕ := α|K reproduces α = ϕ⋆|A. When α is a cmeasure it is
called a Radon measure on X. It will be seen that Radon contents can be
extended to Radon measures and thus could be dismissed in principle. In
the literature the name Radon measure is often reserved for the Borel-Radon
measures α : Bor(X)→ [0,∞].
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The most natural problem is to characterize those set functions ϕ : K→
[0,∞[ which can be extended to Radon contents/measures, and then to
describe all these Radon contents/measures. It is plain that this problem
fits in the frame of our chapter II, and in fact it has been the historical
source of the entire development.

We recall at the start those properties of K which are decisive for the
present purpose. These properties are

I) K is a lattice with ∅ ∈ K and K = K⋆ = Kσ = Kτ .

II) If M ⊂ K is a paving such that M ↓ ∅ then ∅ ∈ M, that is K is τ
compact as defined before 6.34.

Then section 6 implies the characterization theorem which follows. Part
of the enumeration has been borrowed from the conventional inner main
theorem 6.31.

9.1. Theorem. Let ϕ : K → [0,∞[ be isotone and supermodular with
ϕ(∅) = 0. Then the nine conditions below are equivalent.

i) ϕ can be extended to a Radon content.
ii) ϕ can be extended to a Radon measure
iii) ϕ can be extended to a (unique) Borel-Radon measure.
1•) ϕ is an inner • premeasure (• = ⋆στ).
5’•) ϕ is inner • tight (• = ⋆στ).

Under these conditions ϕ⋆ = ϕσ = ϕτ . Furthermore φ := ϕ•|C(ϕ•) is
a Radon measure extension of ϕ with C(ϕ•) ⊃ Bor(X), and each Radon
content extension of ϕ is a restriction of φ.

Proof. 1) The conditions 6.31.1) and 6.31.5’) for • = ⋆στ will be called
1•) and 5’•). By the above I) then 1•) attains the form

1•) ϕ can be extended to a Radon content and is downward • continuous.

By the above II) and 6.34 we have ϕ•(∅) = 0, so that 5’•) attains the form

5’•) ϕ is inner • tight.

It is obvious that 1⋆)⇐ 1σ)⇐ 1τ) and 5′⋆)⇒ 5′σ)⇒ 5′τ). Now 6.31 says
that 1•) ⇔ 5′•) for each • = ⋆στ . It follows that all these six conditions
are equivalent, and also equivalent to i)=1⋆). Furthermore it is obvious that
iii)⇒ii)⇒i).

2) Let us assume i) and hence the seven equivalent conditions as above.
From 6.5.iv) we obtain ϕ⋆ = ϕσ = ϕτ . Then the common maximal inner •
extension φ := ϕ•|C(ϕ•) is a Radon measure, and we have Cl(X) ⊂ K⊤K ⊂
C(ϕ•) and hence Bor(X) ⊂ C(ϕ•). Thus we have iii). The last assertion
follows from 6.18. The proof is complete.

An isotone and supermodular set function ϕ : K→ [0,∞[ with ϕ(∅) = 0
which fulfils the equivalent conditions of the last theorem will be called a
Radon premeasure. Thus if α : A → [0,∞] is a Radon content then
ϕ := α|K is a Radon premeasure, and α = ϕ•|A with K ⊂ A ⊂ C(ϕ•).
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9.2. Example. We have seen in 6.35 that λ : Comp(Rn) → [0,∞[ is
a Radon premeasure. Then 7.6 says that its maximal Radon measure ex-
tension λ•|C(λ•) is the Lebesgue measure Λ = λσ|C(λσ) = λσ|L. Thus
Λ|Bor(Rn) is its unique Borel-Radon measure extension.

9.3. Theorem. Let ϕ : K → [0,∞[ be a Radon premeasure and φ :=
ϕ•|C(ϕ•). Then φ|K⊤K is almost downward τ continuous, and φ|(K⊤K)⊥
is upward τ continuous.

Proof. This follows from 6.27 and 6.28.

9.4. Consequence. Let α : Bor(X)→ [0,∞] be a Borel-Radon measure.
Then α|Cl(X) is almost downward τ continuous, and α|Op(X) is upward τ
continuous.

It is remarkable that there is an assertion in the opposite direction.

9.5. Lemma. Assume that ϕ : K→ [0,∞[ is isotone with ϕ(∅) = 0 and
fulfils ϕ(A∪B) ≦ ϕ(A) + ϕ(B) ∀A,B ∈ K, and is downward τ continuous.
Then ϕ is inner ⋆ tight.

Proof. Fix A ⊂ B in K. To be shown is ϕ(B) ≦ ϕ(A) + ϕ⋆(B \ A). i)
Define M ⊂ K to consist of all S ∈ K such that U∩B ⊂ S ⊂ B for some open
U ⊃ A. M is nonvoid since B ∈ M, and it has ∩. We claim that M ↓ A.
To see this fix v ∈ B \ A. Since A is compact there exist disjoint open U
and V with A ⊂ U and v ∈ V . Thus S := B ∩ V ′ ∈ K satisfies U ∩ B ⊂ S
and hence S ∈M. Since v /∈ S the assertion follows. ii) Now fix ε > 0. By
i) there exists S ∈M and hence an open U ⊃ A with U ∩B ⊂ S ⊂ B such
that ϕ(S) < ϕ(A) + ε. Then S, B ∩U ′ ∈ K with S ∪ (B ∩U ′) = B, and thus
by assumption

ϕ(B) ≦ ϕ(S) + ϕ(B ∩ U ′) < ϕ(A) + ε + ϕ(B ∩ U ′).

But B ∩ U ′ ⊂ B ∩ A′ = B \ A and hence ϕ(B ∩ U ′) ≦ ϕ⋆(B \ A). The
assertion follows.

9.6. Theorem. Assume that ϕ : K→ [0,∞[ is isotone and additive and
fulfils ϕ(A∪B) ≦ ϕ(A)+ϕ(B) ∀A,B ∈ K. Then ϕ is a Radon premeasure
iff it is downward τ continuous.

9.7. Exercise. 1) Let X be compact Hausdorff. If α : Bor(X) →
[0,∞[ is a finite cmeasure such that α|Cl(X) is downward τ continuous,
then α is a Radon measure. Hint: Compare α with the Borel-Radon
measure (α|Cl(X))•|Bor(X). 2) Let X be locally compact Hausdorff. If
α : Bor(X) → [0,∞[ is a finite cmeasure such that α|Op(X) is upward τ
continuous, then α is a Radon measure. Hint: Look at the paving of those
open subsets of X which are contained in compact subsets of X.

It is a nontrivial question whether all reasonable Borel measures α :
Bor(X) → [0,∞] with α|K < ∞ are Radon measures. The next subsection
will reproduce the classical counterexample where X is a compact Hausdorff
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space. There are partial positive results in 9.7 above. The most famous
partial positive result is 9.9.ii) below where X is a Polish space.

We come to the notion of local finiteness. A Borel measure α : Bor(X)→
[0,∞] on a topological space X is called locally finite iff each point u ∈ X
has an open neighbourhood U ⊂ X such that α(U) < ∞. When X is
Hausdorff this implies that α|K <∞. In several texts the definition of Borel-
Radon measures includes the requirement of local finiteness. The reason is
that for certain deeper results this restriction cannot be dispensed with.
The present text does not follow this habit. One basic reason is that the
Riesz representation theorem which will be obtained in chapter V involves
all Borel-Radon measures and not only the locally finite ones. Let us present
an example of a Borel-Radon measure which is not locally finite.

9.8. Example. Let X be an infinite countable set with a Hausdorff
topology which is not discrete but in which all compact subsets are finite.
There are several simple constructions of this kind; see for example König
[1993]. Then of course Bor(X) = P(X), and the counting measure α :
Bor(X) = P(X) → [0,∞] is a Radon measure. Let now a ∈ X be a point
such that {a} is not open. Then all open neighbourhoods U ⊂ X of a must
be infinite and hence have α(U) =∞. Thus α is not locally finite.

Related to local finiteness is the famous partial positive result announced
above. One defines a Polish space to be a separable topological space
which is metrizable under a complete metric. This is a fundamental notion
in topology.

9.9. Theorem. Let α : Bor(X) → [0,∞] be a cmeasure on a Polish
space. i) If α is semifinite above then it is inner regular {A ∈ K : α(A) <∞}.
ii) If α is locally finite then it is a Radon measure.

Proof. i) is an immediate consequence of 8.10. ii) We recall from topol-
ogy that a separable metrizable space X has a countable base and hence is
Lindelöf, that is each open cover of X has a countable subcover. Thus if α
is locally finite then there exists a sequence (Ul)l in Op(X) such that Ul ↑ X
and α(Ul) < ∞ ∀l. Therefore α is semifinite above. The assertion follows
from i).

The last theme of the present subsection is outer regularity. A Borel-
Radon measure α : Bor(X) → [0,∞] need not be outer regular Op(X),
because outer regularity Op(X) enforces local finiteness. The next exercise
formulates a simple idea which has a natural proof.

9.10. Exercise. Let α : Bor(X) → [0,∞] be a Borel-Radon measure.
1) If A ∈ Bor(X) has open supersets U ⊃ A with α(U) < ∞ then α(A) =
inf{α(U) : U open ⊃ A}. 2) α is outer regular Op(X) iff for each A ∈
Bor(X) with α(A) <∞ there exist open supersets U ⊃ A with α(U) <∞.

9.11. Bibliographical Note. In the fifties and sixties, under the in-
fluence of Bourbaki [1952][1956][1965][1967], the notion of a Radon measure
was restricted to locally compact Hausdorff topological spaces X. In this
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frame they were defined as certain positive linear functionals, in fact as those
which occur in the traditional Riesz representation theorem formulated in
the introduction. For such a functional Bourbaki defined two set functions
P(X)→ [0,∞], one of which produces a Borel-Radon measure in the present
sense. For a short description we refer to Berg-Christensen-Ressel [1984]
notes and remarks to chapter 2.

Radon measures on arbitrary Hausdorff spaces X appeared in Bour-
baki [1969] and in Schwartz [1973], with basic ideas due to Choquet. These
definitions required local finiteness. For a discussion of the different defini-
tions we refer to Schwartz [1973] and once more to Berg-Christensen-Ressel
[1984] notes and remarks to chapter 2. At about the same time, but with-
out connection to the above work, the fundamental paper of Kisyński [1968]
characterized those set functions ϕ : Comp(X) → [0,∞[ which can be ex-
tended to Borel-Radon measures, this time without local finiteness. Kisyński
proved the decisive equivalence iii)⇔5’⋆) in the present theorem 9.1. Within
a short time this work became the source of the extension theories based on
regularity as described in the bibliographical annex to chapter II. For the
role of local finiteness we refer to Fremlin [1975].

At last we mention the work of Anger-Portenier [1992a][1992b] which
has the aim to revive the functional-analytic aspects of the theory of Radon
measures. We shall come back to it in chapter V.

The Classical Example of a Non-Radon Borel Measure

The example in question is based on the order topology on a certain un-
countable well-ordered set. Its usual presentation involves ordinal numbers;
see for example Kelley-Srinivasan [1988] page 52. We want to offer an ab-ovo
presentation, based on the definitions of total order and well-order and on
the existence of an uncountable set which carries a well-order.

Let X be a nonvoid set equipped with a total order ≦. We form as usual

for u, v ∈ X with u ≦ v the interval [u, v] := {x ∈ X : u ≦ x ≦ v},
for u, v ∈ X with u < v the interval ]u, v[:= {x ∈ X : u < x < v},

and for a ∈ X

the upper ends [a, · := {x ∈ X : a ≦ x} and ]a, · := {x ∈ X : a < x},
the lower ends ·, a] := {x ∈ X : x ≦ a} and ·, a[:= {x ∈ X : x < a}.

Define B(≦) to consist of all these intervals ]u, v[ and all these ends ]a, ·
and ·, a[, and of ∅ and X. Then B(≦) has ∩ and is therefore the base of a
unique topology T(≦) on X, called the order topology on X. One verifies
that T(≦) is Hausdorff.

9.12. Remark. Each sequence in X has a monotone subsequence.

The proof is mathematical folklore. Let (xl)l be a sequence in X. We
define n ∈ N to be a top index iff xl ≦ xn for all l ≧ n. Then there are
two cases. 1) There are at most finitely many top indices. Thus there exists
an N ∈ N such that no n ≧ N is a top index. Hence for each n ≧ N
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there exists an l > n such that xl > xn. Therefore we obtain a sequence of
indices N = n(1) < · · · < n(p) < · · · such that the subsequence (xn(p))p is
strictly increasing. 2) There are infinitely many top indices. Assume that
the sequence of indices 1 ≦ n(1) < · · · < n(p) < · · · consists of top indices.
Then the subsequence (xn(p))p is decreasing.

For the remainder of the subsection we fix a set E equipped with a
well-order ≦ such that E is uncountable but for each a ∈ E the lower end
·, a] is countable. This situation can be produced as follows. Let X be an
uncountable set equipped with a well-order ≦. If for each a ∈ X the lower
end ·, a] is countable then we take E := X. Otherwise the nonvoid subset of
those a ∈ X for which ·, a] is uncountable has a first element e ∈ X. Then
E := ·, e[ is as required.

9.13. Properties. 1) For each a ∈ E the lower end ·, a] is compact. 2)
For each a ∈ E the lower end ·, a] is open. 3) For each nonvoid countable
A ⊂ E there is an a ∈ E such that A ⊂ ·, a[. 4) Each nonvoid compact
subset A ⊂ E is countable.

Proof. 1) Let A := ·, a], and fix a family (U(x))x∈A of open neighbour-
hoods U(x) of the points x ∈ A. Define F ⊂ E to consist of those u ∈ A
for which [u, a] can be covered by finitely many of these U(x) ∀x ∈ A. Then
F �= ∅ since a ∈ F . Thus there is a first element c ∈ F . If c is the first
element of E then we have [c, a] = ·, a] = A and hence the assertion. Other-
wise there exists an element u ∈ E with u < c, and hence an element u ∈ E
with u < c such that ]u, c[⊂ U(c). Then [u, c] is covered by U(c) and U(u),
so that u ∈ F , which contradicts the role of c. Therefore the second case
cannot happen. 2) The nonvoid subset ]a, · has a first element b ∈ E, and
for this we have ·, a] = ·, b[. 3) Assume not. Then for each a ∈ E there is
an x ∈ A with a ≦ x or a ∈ ·, x]. It follows that E =

⋃

x∈A

·, x], which is

impossible since E is uncountable. 4) The lower ends ·, x[ ∀x ∈ E form an
open cover of A. Therefore A ⊂ ·, x[ for some x ∈ E. Hence A is countable.

9.14. Remark. 1) Let (xl)l be a decreasing sequence in E. Then there
exists c ∈ E such that xl = c for almost all l ∈ N. Thus xl → c. 2) Let (xl)l

be an increasing sequence in E. If c ∈ E is the first element of the subset
{x ∈ X : xl ≦ x ∀l ∈ N} (which is nonvoid by 9.13.3) then xl → c. 3) E
is sequentially compact, that is each sequence in E has a subsequence which
converges to some element of E.

Proof. 1) Let c ∈ E be the first element of {xl : l ∈ N}. Then c = xl

for some l ∈ N and hence for almost all l ∈ N. 2) We can assume that c
is not the first element of E. Let U be an open neighbourhood of c. Then
there exists u ∈ E with u < c such that ]u, c[⊂ U . By the definition of c we
have u < xp for some p ∈ N. Once more by the definition of c it follows that
xl ∈ U for all l ≧ p. 3) Combine 1)2) with 9.12.
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9.15. Proposition. Assume that the subsets Al ⊂ E are closed and

uncountable ∀l ∈ N. Then A :=
∞
⋂

l=1

Al is closed and uncountable as well.

Proof. 1) To be shown is the second assertion. We first prove that A is
nonvoid. We perform an inductive construction which is based on the fact
that for each uncountable M ⊂ E and each u ∈ E there exists x ∈M with
u < x. Thus we construct in step n ∈ N elements xn

l ∈ Al for l = 1, · · · , n
such that x1

1 < · · · < xn
1 < · · · < xn

n · · · . For each fixed k ∈ N then

{x ∈ E : xn
k ≦ x for all n ≧ k} = {x ∈ E : xn

l ≦ x ∀n, l ∈ N with l ≦ n}.
Let c ∈ E be the first element of this common subset. For each fixed k ∈ N

then xn
k → c for n → ∞ by 9.14.2). Thus c ∈ Ak since Ak is closed. It

follows that c ∈ A. 2) For each fixed u ∈ E the subsets Al ∩ [u, · ⊂ E are
closed and uncountable ∀l ∈ N. Thus 1) shows that A ∩ [u, · is nonvoid. By
9.13.3) this implies that A is uncountable.

9.16. Proposition. Let A ∈ Bor(E). Then exactly one of the subsets
A and A′ contains an uncountable member of Cl(E).

Proof. By 9.15 we have to show that at least one of the subsets A and
A′ contains an uncountable member of Cl(E). Define N to consist of those
subsets N ⊂ E such that either N or N ′ contains an uncountable member
of Cl(E). To be shown is then that N is a σ algebra and that Cl(E) ⊂ N.

i) N is nonvoid since ∅, E ∈ N. It is obvious that N fulfils ⊥. ii) To
see that Nσ ⊂ N fix a sequence (Nl)l in N with intersection N . If each
Nl contains an uncountable member of Cl(E) then by 9.15 the same holds
true for N . Otherwise N ′

l ⊂ N ′ ∀l ∈ N shows that it holds true for N ′.
Thus N ∈ N. Therefore N is a σ algebra. iii) Now let N ∈ Cl(E). If N is
uncountable then of course N ∈ N. If N is countable then by 9.13.3) there
exists an a ∈ E such that N ⊂ ·, a[ and hence [a, · ⊂ N ′. But [a, · is closed
and uncountable, so that N ∈ N as well. It follows that Cl(E) ⊂ N.

So far we remainded within E. From 9.13.1)2) we know that E with
T(≦) is a locally compact Hausdorff space. Let now X := E ∪ {ω} be the
usual one-point compactification of E. That means that ω /∈ E, and that
the topology S of X consists of the subsets

A ⊂ E such that A ∈ Op(E), and of the
A ⊂ X with ω ∈ A such that A′ ∈ Comp(E).

It is standard that S is a compact Hausdorff topology on X with S|E =
T(≦). By 1.13.2) we have Bor(E) = {A ∈ Bor(X) : A ⊂ E}.

9.17. Theorem. Define α : Bor(X)→ {0, 1} to be

α(A) =

{

1 if A contains an uncountable member of Cl(E)
0 if A′ contains an uncountable member of Cl(E)

}

,

so that α is well-defined by 9.16. Then α is a Borel measure on X which is
not a Radon measure.
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Proof. i) We prove that α is a ccontent. By 2.10 it is to be shown that
α(A ∪ B) = α(A) + α(B) for all disjoint pairs A,B ∈ Bor(X). By 9.16
the values α(A) and α(B) cannot both be = 1. The assertion is clear when
one of them is = 1. So assume that α(A) = α(B) = 0. Then there are
uncountable members P,Q ∈ Cl(E) with P ⊂ A′ and Q ⊂ B′ and hence
P ∩Q ⊂ A′ ∩ B′ = (A ∪ B)′. By 9.15 it follows that α(A ∪ B) = 0. ii) By
2.11 α is a cmeasure as soon as it is downward σ continuous. Let (Al)l be a
sequence in Bor(X) with Al ↓ A. We can assume that α(Al) = 1∀l ∈ N. But
then it is immediate from 9.15 that α(A) = 1 as well. iii) We have α(E) = 1.
But for the K ∈ Comp(X) with K ⊂ E, that is for the K ∈ Comp(E), we
have α(K) = 0 since K is countable by 9.13.4). Therefore α is not inner
regular Comp(X). Thus the desired example has been obtained.

The Notion of Support and the Decomposition Theorem

Let α : Bor(X) → [0,∞] be a Borel-Radon measure on a Hausdorff topo-
logical space X. Then there exists a unique maximal open subset U ⊂ X
such that α(U) = 0. In fact, the paving {A ∈ Op(X) : α(A) = 0} is upward
directed to its union U ∈ Op(X). From 9.4 it follows that α(U) = 0. One
defines the closed subset U ′ =: Supp(α) to be the closed support of α.
One notes with dissatisfaction that this concept does not reflect the basic
character of a Radon measure, because the lattice K := Comp(X) does not
occur at all.

In fact, the notion of support does not seem to be a simple one. At first
an example will show that it cannot be defined in the previous manner even
for a finite cmeasure α : Bor(X) → [0,∞[ on a locally compact Hausdorff
space X, unless α|Op(X) is upward τ continuous, that is by 9.4 and 9.7.2)
unless α is a Radon measure. In the introduction of Schwartz [1973] this
is one of the reasons which the author invoked in order to plead for the
concentration on Borel-Radon measures.

9.18. Example. We return to the notations of the last subsection. The
restriction η := α|Bor(E) of the cmeasure α : Bor(X) → {0, 1} defined in
9.17 is a cmeasure η : Bor(E) → {0, 1} on the locally compact Hausdorff
space E such that η(E) = 1. But each point a ∈ E has an open neighbour-
hood U(a) := ·, a] ⊂ E such that η(U(a)) = 0.

The example makes clear that the notion of support requires a certain
τ behaviour. At this point we return to the abstract measure theory. It will
be seen that the extension theories of chapter II in their conventional inner
τ version lead to an adequate notion of support, provided that one accepts
a certain shift which a closer look at the Borel-Radon measure situation
reveals to be natural: The support will a priori be defined not for cmeasures
with certain properties, but for conventional inner τ premeasures. For Borel-
Radon measures the result then can be different from the former one, but
perhaps reflects their basic character better than before.
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The definition reads as follows. Let S be a lattice in a nonvoid set
X with ∅ ∈ S, and ϕ : S → [0,∞[ be an inner τ premeasure with
ϕ(∅) = 0 and with maximal inner τ extension φ := ϕτ |C(ϕτ ). We know
that S⊤Sτ ⊂ C(ϕτ ) and hence (S⊤Sτ )⊥ ⊂ C(ϕτ ), and from 6.28 that
φ|(S⊤Sτ )⊥ is upward τ continuous. As before this implies the existence of
a unique maximal subset V ∈ (S⊤Sτ )⊥ such that φ(V ) = 0. We define its
complement V ′ =: supp(ϕ) ∈ S⊤Sτ to be the support of ϕ.

9.19. Comparison. Assume that α : Bor(X)→ [0,∞] is a Borel-Radon
measure on a Hausdorff topological space X. Let ϕ := α|K <∞ be its Radon
premeasure and φ := ϕ•|C(ϕ•), so that α = φ|Bor(X). Then the formations

Supp(α) := U ′ ∈ Cl(X),

where U ∈ Op(X) is maximal with α(U) = 0,

supp(α|K) := V ′ ∈ K⊤K,

where V ∈ (K⊤K)⊥ is maximal with φ(V ) = 0

are linked through Supp(α) = supp(α|K).

We note that supp(α|K) need not be in Cl(X) (and that we even do
not know whether it must be in Bor(X)). However, the two notions are
identical in the so-called k spaces, defined to mean that K⊤K = Cl(X).
See for example Engelking [1989] pages 152-155.

Proof. We have Cl(X) ⊂ K⊤K or Op(X) ⊂ (K⊤K)⊥. i) Therefore
U ⊂ V or supp(ϕ) = V ′ ⊂ U ′ = Supp(α). ii) If A ⊂ V is open then
α(A) = φ(A) = 0 and hence A ⊂ U . Thus Int(V ) ⊂ U or Supp(α) = U ′ ⊂
(IntV )′ = V ′ = supp(ϕ). It follows that Supp(α) = supp(ϕ).

We continue on the spot with an example that the two supports Supp(α)
and supp(α|K) are different. It will be obvious that in the example supp(α|K)
is the better choice.

9.20. Example. Let X and a ∈ X be as in example 9.8. Define α :
Bor(X) = P(X) → [0,∞] to be the counting measure for X \ {a}, that is
α(A) = #(A ∩ {a}′) for all A ⊂ X. Then α is a Radon measure, and of
course α = φ. The subsets A ⊂ X with α(A) = 0 are precisely A = ∅ and
A = {a}. Now on the one hand K⊤K = P(X) since K consists of the finite
subsets of X, and hence V = {a} or supp(α|K) = X \ {a}. On the other
hand U = ∅ or Supp(α) = X.

We shall see in exercise 11.23 below that the new support defined above
fulfils certain natural requirements connected with the notion of support.

We want to pursue the present context for a moment, because this will
lead us to the fundamental decomposition theorem. We start with the ab-
ovo exercise which has been announced after the basic definition in section
6. It consists of simple verifications.

9.21. Exercise. Let ϕ : S → [−∞,∞[ be an inner • premeasure and
α : A → R be an inner • extension of ϕ. Fix an H ∈ A with α(H) > −∞,
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and define αH : A → R to be αH(A) = α(A ∩ H) for A ∈ A. Then ϕH :
= αH |S is an inner • premeasure and αH is an inner • extension of ϕH .

We return to the assumption that ϕ : S→ [0,∞[ is an inner τ premea-
sure on the lattice S with ∅ ∈ S and ϕ(∅) = 0, and put φ := ϕτ |C(ϕτ )
as before. Fix A ∈ C(ϕτ ). We see from 9.21 that ϕA := φ(· ∩ A)|S is
an inner τ premeasure and φ(· ∩ A) : C(ϕτ ) → [0,∞] is an inner τ exten-
sion of ϕA (perhaps not the maximal one). Thus we can form the subset
C(A) := supp(ϕA) ∈ S⊤Sτ . Its definition can be rephrased to mean that

for V ∈ (S⊤Sτ )⊥ : φ(V ∩A) = 0⇔ V ⊂ C(A)′.

We list some simple properties.

9.22. Properties. 1) If A ∈ S⊤Sτ then C(A) ⊂ A. 2) For A ⊂ B in
C(ϕτ ) we have C(A) ⊂ C(B). 3) For A ∈ C(ϕτ ) we have C

(

A ∩ C(A)
)

=
C(A).

Proof. 1) follows from the definition applied to V := A′. 2) For V :=
C(B)′ ∈ (S⊤Sτ )⊥ we have φ(V ∩B) = 0 and hence φ(V ∩A) = 0. Therefore
V ⊂ C(A)′. 3) To be shown is C

(

A ∩ C(A)
)

⊃ C(A). For V := C
(

A ∩
C(A)

)′ ∈ (S⊤Sτ )⊥ we have φ(V ∩ A ∩ C(A)) = 0. Furthermore φ(A ∩
C(A)′) = 0 and hence φ(V ∩ A ∩ C(A)′) = 0. Therefore φ(V ∩ A) = 0. It
follows that V ⊂ C(A)′ as claimed.

We define a subset A ∈ C(ϕτ ) to be full iff A ⊂ C(A) and 0 < φ(A) <∞.
The basic fact on these subsets is as follows.

9.23. Remark. Each A ⊂ X with ϕτ (A) > 0 contains a full subset
K ∈ Sτ .

Proof. Since ϕτ is inner regular Sτ there exists S ∈ Sτ with S ⊂
A and ϕτ (S) > 0. Let K := S ∩ C(S) ∈ Sτ . From 9.22.3) we have
C(K) = C(S) ⊃ S ∩ C(S) = K, and hence from 9.22.1) even C(K) = K.
Furthermore φ(S ∩ C(S)′) = 0 implies that 0 < φ(K) = φ(S) < ∞. Thus
K is as required.

We come to the basic definition. Let α : A → [0,∞] be a nonzero
cmeasure on a σ algebra. One defines a decomposition for α to be a
paving M ⊂ A of pairwise disjoint subsets M ∈ A with 0 < α(M) < ∞,
which is such that

each A ∈ A with 0 < α(A) <∞ fulfils α(A ∩M) > 0 for some M ∈M.

It is obvious that there exist decompositions for α whenever X ∈ [α <∞]σ.

Our aim is to prove that for the present φ : C(ϕτ ) → [0,∞] there exist
decompositions, and even decompositions with important further properties,
provided that φ is outer regular (S⊤Sτ )⊥ at Sτ . It is equivalent to require
that each K ∈ Sτ be contained in some U ∈ (S⊤Sτ )⊥ with φ(U) < ∞,
which for short could be named local finiteness; compare exercise 9.10.
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9.24. Theorem. Let ϕ : S → [0,∞[ be a nonzero inner τ premeasure
with ϕ(∅) = 0, and let φ := ϕτ |C(ϕτ ) be outer regular (S⊤Sτ )⊥ at Sτ . As-
sume that M ⊂ C(ϕτ ) is a maximal paving of pairwise disjoint full members
of C(ϕτ ) (this holds true in particular from 9.23 when M ⊂ Sτ is a maximal
paving of pairwise disjoint full members of Sτ ). Then M is a decomposition
for φ. If A ∈ C(ϕτ ) is contained in some U ∈ (S⊤Sτ )⊥ with φ(U) < ∞,
then A ∩M �= ∅ for at most countably many M ∈M.

9.25. Addendum. 1) For each family (P (M))M∈M in C(ϕτ ) with P (M)
⊂M ∀M ∈M we have

⋃

M∈M

P (M) ∈ C(ϕτ ). In particular
⋃

M∈M

M ∈ C(ϕτ ).

2) The complement D :=
(

⋃

M∈M

M
)′ ∈ C(ϕτ ) has φ(D) = 0.

Proof of 9.24 and 9.25. i) For A ∈ C(ϕτ ) with φ(A) <∞ it is clear that
φ(A ∩M) > 0 for at most countably many M ∈ M. ii) If U ∈ (S⊤Sτ )⊥
then φ(U ∩ M) = 0 implies that U ⊂ (C(M))′ ⊂ M ′ or U ∩ M = ∅.
Thus for U ∈ (S⊤Sτ )⊥ with φ(U) < ∞ we have U ∩M �= ∅ for at most
countably many M ∈ M. iii) By assumption each K ∈ Sτ is contained in
some U ∈ (S⊤Sτ )⊥ with φ(U) <∞. By ii) hence K ∩M �= ∅ for at most
countably many M ∈M.

We first prove 9.25. 1) Let P :=
⋃

M∈M

P (M). By 6.21 we have to prove

that S∩P ∈ C(ϕτ ) for each S ∈ S. From iii) we have S∩M = ∅ and hence
S ∩P (M) = ∅ except for at most countably many M ∈M. Thus the union
in S∩P =

⋃

M∈M

S∩P (M) is at most countable. This implies S∩P ∈ C(ϕτ ).

2) We see from 1) that D ∈ C(ϕτ ). By 9.23 the maximality of M enforces
that φ(D) = 0.

We turn to the proof of 9.24. Let A ∈ C(ϕτ ) with 0 < φ(A) < ∞.
Then there exists K ∈ Sτ with K ⊂ A and φ(K) > 0. By iii) the union in
K = (K ∩D)∪

⋃

M∈M

(K ∩M) is at most countable. From 9.25.2) we obtain

an M ∈M such that φ(K ∩M) > 0 and hence φ(A ∩M) > 0. The second
assertion is obvious from ii).

We shall present in 13.39 an example where φ is not outer regular
(S⊤Sτ )⊥ at Sτ , but X ∈ [φ < ∞]σ, so that there exist decompositions
for φ. It will be a continuous counterpart to the example in 9.8 and 9.20.

9.26. Bibliographical Note. For rich cmeasures like the present
ones the existence of a decomposition is equivalent to several fundamen-
tal properties. This context has been developed in Kölzow [1968]. The
present decomposition theorem 9.24 unifies the known versions of the former
topological decomposition theorem named after Godement-Bourbaki and
the abstract decomposition theorem due to Kölzow [1966]. The Godement-
Bourbaki theorem has been raised in Schwartz [1973] section I.6 to the lo-
cally finite Borel-Radon measures on arbitrary Hausdorff topological spaces.
The Kölzow theorem, for which we also refer to Floret [1981] appendix and
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Leinert [1995] chapter 14, had no equivalent development so far. It is a non-
trivial task to describe the precise class of cmeasures to which this theorem
applies. The presentations known to the author are based on the so-called
abstract Bourbaki integral, which is the nonsequential counterpart of the
traditional Daniell-Stone elementary integral, and is likewise in the histori-
cal headwaters of the present development in chapter V below. One proved
the existence of decompositions for the maximal cmeasures constructed in
the outer sense from these abstract Bourbaki integrals. This class of cmea-
sures has been characterized in Kölzow [1965][1967], in complicated terms
which could not replace their former descent.

For the sake of comparison we add a little anticipation of our chapter V.
This chapter is in the inner sense, with the result that we come at once to the
so-called essential measures. The class of elementary integrals will be much
more comprehensive than in the traditional situation. The class of relevant
cmeasures will have a simple characterization for both • = στ : We shall see
in 14.25.1) that it consists of the maximal inner • extensions φ := ϕ•|C(ϕ•) of
the inner • premeasures ϕ : S → [0,∞[ with ϕ(∅) = 0. Moreover 14.25.3)
will show that these φ are outer regular (S⊤S•)⊥ at S• whenever they
come from the traditional situation of a Stonean lattice subspace. Thus the
present decomposition theorem 9.24 contains both the Godement-Bourbaki
theorem of Schwartz [1973] and the theorem of Kölzow [1966], and to see
the latter fact does not require the characterization theorem due to Kölzow
[1965][1967].

10. The Choquet Capacitability Theorem

The theme of this section is a central topic in the domain of the so-
called non-additive set functions. The main result is an extension and also
simplification of the famous capacitability theorem due to Choquet [1959].
The theorem itself does not need the main results of the extension theories
of chapter II. It is more an application of the idea to form the new envelopes
ϕσ and ϕσ for isotone set functions ϕ : S → R on lattices S. Then we
combine the theorem with results of chapter II in order to obtain classical
applications to measures in the spirit of the present text. Thus the section
wants to contribute to the unification of the theories of additive and non-
additive set functions.

Suslin and Co-Suslin Sets

We start with the usual notations. For n ∈ N as usual Nn consists of
the sequences λ = (λ1, · · · , λn) of natural numbers λ1, · · · , λn. Then N∞

denotes the disjoint union of the Nn ∀n ∈ N. Thus N∞ is countable. At
last NN is defined to consist of the infinite sequences α = (αl)l of natural
numbers αl ∀l ∈ N. Thus NN is uncountable. For α ∈ NN we write α|n :=
(α1, · · · , αn) ∈ Nn ∀n ∈ N.
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Next let X be a nonvoid set. For each family (A(λ))λ∈N∞ of subsets
A(λ) ⊂ X ∀λ ∈ N∞ we form

the kernel
∧

λ∈N∞

A(λ) :=
⋃

α∈NN

∞
⋂

n=1
A(α|n) ⊂ X, and

the cokernel
∨

λ∈N∞

A(λ) :=
⋂

α∈NN

∞
⋃

n=1
A(α|n) ⊂ X.

If S is a set system in X then

S# consists of the kernels
∧

λ∈N∞

A(λ) of all families (A(λ))λ∈N∞ in S,

S# consists of the cokernels
∨

λ∈N∞

A(λ) of all families (A(λ))λ∈N∞ in S.

The subsets A ∈ S# are called the Suslin sets for S, and the A ∈ S# the

co-Suslin sets for S. As in 1.5.2) one verifies that (S#)⊥ = (S⊥)#.

10.1. Properties. 1) S ⊂ S#. 2) Sσ ⊂ S#. 3) Sσ ⊂ S#. 4)
S# ⊂ (Sσ ⊏ Sσ). Of course the same properties hold true for S#.

Proof. 1) If A ∈ S then take the family (A(λ))λ∈N∞ with A(λ) := A
for all λ ∈ N∞. 2) If (Al)l in S then take the family (A(λ))λ∈N∞ with
A(λ) := Aλ1 for all λ ∈ N∞. Then

∧

λ∈N∞

A(λ) =
⋃

α∈NN

Aα1 =

∞
⋃

l=1

Al.

3) If (Al)l in S then take the family (A(λ))λ∈N∞ with A(λ) = An for all
λ ∈ Nn. Then

∧

λ∈N∞

A(λ) =
⋃

α∈NN

∞
⋂

n=1

An =
∞
⋂

n=1

An.

4) is clear since N∞ is countable.

The next assertion is much harder. For the sake of completeness we
include a proof, although we do not need its full power.

10.2. Proposition. S## = S#. Hence of course S## = S#.

10.3. Consequence. S# and S# are σ lattices.

Proof of 10.2. Fix A ∈ S##. To be shown is A ∈ S#. By definition
there is a family (A(σ))σ∈N∞ in S# such that

A =
⋃

α∈NN

∞
⋂

p=1

A(α|p).

Thus for each σ ∈ N∞ there is a family (Aσ
λ)λ∈N∞ in S such that

A(σ) =
⋃

β∈NN

∞
⋂

q=1

Aσ
β|q.
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It follows that

A =
⋃

α∈NN

∞
⋂

p=1

⋃

β∈NN

∞
⋂

q=1

A
α|p
β|q .

We have to transfer this expression into the required form. 1) We start with
an auxiliary formula. Let (Mp

β)p∈N,β∈NN be a family of subsets of X. Then

∞
⋂

p=1

⋃

β∈NN

Mp
β =

⋃

τ∈NN×N

∞
⋂

p=1

Mp
τ(p,·).

In fact, an element x ∈ X is a member of the left side iff for each p ∈ N

there exists a sequence τ(p, ·) ∈ NN with x ∈ Mp
τ(p,·), that is iff there exists

a function τ ∈ NN×N such that x ∈
∞
⋂

p=1
Mp

τ(p,·). From this formula we obtain

A =
⋃

α∈NN

⋃

τ∈NN×N

∞
⋂

p=1

∞
⋂

q=1

A
α|p
(τ(p,1),··· ,τ(p,q)).

2) Let θ : N× N→ N be a fixed bijection with the properties that

∀p ∈ N : θ(p, ·) is a strictly increasing function N→ N,
∀q ∈ N : θ(·, q) is a strictly increasing function N→ N.

For example, we can enumerate the members of N× N in consecutive diag-
onals; for (p, q), (p′, q′) ∈ N × N we then have p + q < p′ + q′ ⇒ θ(p, q) <
θ(p′, q′), which implies the required properties. It follows that p, q ≦ θ(p, q)
for (p, q) ∈ N×N. We also need the inverse bijection ϑ := θ−1 : N×N← N,
which we write in the form ϑ(n) = (ξ(n), η(n)) ∀n ∈ N. 3) We next form
the maps

I : NN × NN×N → NN, defined to be
I : (α, τ) �−→ I(α, τ) = λ : λn = θ(αn, τ(ϑ(n)) ∀n ∈ N; and

J : NN → NN × NN×N, defined to be
J : λ �−→ J(λ) = (α, τ) : αn = ξ(λn) ∀n ∈ N,

τ(p, q) = η
(

λθ(p,q)

)

∀(p, q) ∈ N× N.

We claim that I and J are bijections which are inverse to each other. In
fact, for (α, τ) ∈ NN×NN×N and λ ∈ NN the relation I(α, τ) = λ means that
θ
(

αn, τ(ϑ(n))
)

= λn ∀n ∈ N, and hence is equivalent to

αn = ξ(λn) ∀n ∈ N and

τ(ϑ(n)) = η(λn) ∀n ∈ N or τ(p, q) = η
(

λθ(p,q)

)

∀(p, q) ∈ N× N,

that is to (α, τ) = J(λ).

4) We now define E(λ, n) ∈ S for λ ∈ NN and n ∈ N as follows. If

λ = I(α, τ) with (α, τ) ∈ NN × NN×N,

n = θ(p, q) with (p, q) ∈ N× N,



10. THE CHOQUET CAPACITABILITY THEOREM 101

then E(λ, n) := A
α|p
(τ(p,1),··· ,τ(p,q)) ∈ S. By the final formula of 1) it follows

that

A =
⋃

λ∈NN

∞
⋂

n=1

E(λ, n).

We next claim that for n ∈ N and λ, λ′ ∈ NN with λl = λ′
l ∀l = 1, · · · , n we

have E(λ, n) = E(λ′, n). In fact, let (p, q) ∈ N × N correspond to n, and
(α, τ), (α′, τ ′) ∈ NN × NN×N correspond to λ, λ′. Then

for l ≦ p : l ≦ p ≦ θ(p, q) = n and hence αl = α′
l;

for l ≦ q : θ(p, l) ≦ θ(p, q) = n and hence τ(p, l) = τ ′(p, l);

therefore E(λ, n) = E(λ′, n) as claimed. 5) The last assertion allows us to
define the family (B(σ))σ∈N∞ in S, in that for n ∈ N and σ = (σ1, · · · , σn) ∈
Nn we put

B(σ) := E
(

(σ1, · · · , σn, · · · ), n
)

with an arbitrary continuation of σ.

Thus E(λ, n) = B(λ|n) for all n ∈ N and λ ∈ NN. It follows that

A =
⋃

λ∈NN

∞
⋂

n=1

B(λ|n) =
∧

σ∈N∞

B(σ) ∈ S#.

The proof is complete.

The Extended Choquet Theorem

Let as above X be a nonvoid set. The present subsection considers an isotone
set function φ : P(X)→ R. There is also a lattice S in X. We prepare the
main theorem with some formal relations between φ and S.

On S we have φ = (φ|S)⋆, but φ ≦ (φ|S)σ, with = iff φ|S is downward σ
continuous. On the full power set P(X) we have (φ|S)⋆ ≦ φ, but (φ|S)σ ≦ φ
is likewise restricted to a special situation. It will be described below.

10.4. Remark. Let S be a lattice in X. Then the following are equiv-
alent. 1) (φ|S)σ ≦ φ. 2) (φ|S)σ ≦ (φ|Sσ)⋆. In this connection note the
obvious relation (φ|Sσ)⋆ ≦ φ. 3) For each sequence (Sl)l in S with Sl ↓ D
(which need not be in S) we have φ(Sl) ↓ φ(D).

Proof. 1)⇒3) Let (Sl)l be a sequence in S with Sl ↓ D. From the
definition of (φ|S)σ(D) and from 1) we obtain

φ(D) ≦ lim
l→∞

φ(Sl) ≦ (φ|S)σ(D) ≦ φ(D).

3)⇒2) Fix A ⊂ X with (φ|S)σ(A) > −∞. For each sequence (Sl)l in S

with Sl ↓ some D ⊂ A it follows from 3) and from D ∈ Sσ that

lim
l→∞

φ(Sl) = φ(D) ≦ (φ|Sσ)⋆(A).

2)⇒1) is obvious.

We proceed to the main theorem.
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10.5. Theorem. Assume that φ : P(X) → R is isotone and upward σ
continuous. Let S be a lattice in X. Then

φ(A) ≦ (φ|S)σ(A) for all A ∈ S#.

This is an extension of the classical Choquet theorem [1959]. In fact,
let S be a lattice. A Choquet capacity for S is defined to be an isotone
set function φ : P(X) → R which is upward σ continuous and satisfies the
equivalent conditions of 10.4 for the lattice S. The above theorem then
implies that

φ(A) = (φ|S)σ(A) = (φ|Sσ)⋆(A) for all A ∈ S#.

The classical Choquet theorem is φ(A) = (φ|Sσ)⋆(A) for all A ∈ S#, under
the additional restriction that ∅ ∈ S. Thus the introduction of the function
(φ|S)σ produces a more comprehensive and simpler result, above all because
no connection between φ and S has been assumed. The proof which follows
is an adaptation of an old proof due to Choquet [1959].

10.6. Construction. Let (A(λ))λ∈N∞ be a family of subsets of X. De-
fine the family (B(λ))λ∈N∞ to be

B(λ) :=
⋃

τ∈Np,τ≦λ

p
⋂

l=1

A(τ1, · · · , τl) for λ ∈ Np with p ∈ N.

Then

0)
∧

λ∈N∞

B(λ) =
∧

λ∈N∞

A(λ).

Furthermore (B(λ))λ∈N∞ has the monotonicity properties

1) B(λ, s) ⊂ B(λ) for λ ∈ N∞ and s ∈ N;
2) B(σ) ⊃ B(τ) for σ, τ ∈ Np with σ ≧ τ ∀p ∈ N.

If (A(λ))λ∈N∞ itself has these properties 1)2) then B(λ) = A(λ) ∀λ ∈ N∞.

Proof. 1)2) and the final assertion are obvious. Furthermore

for α ∈ NN and p ∈ N : B(α|p) ⊃
p

⋂

l=1

A(α|l) ⊃
∞
⋂

l=1

A(α|l),

which implies the inclusion ⊃ in 0). It remains to prove ⊂ in 0). For this
purpose fix x ∈

∧

λ∈N∞

B(λ). Thus by definition there exists α ∈ NN such that

x ∈
∞
⋂

p=1
B(α|p). Hence for each p ∈ N there exists (tp1, · · · , t

p
p) ∈ Np with

tpl ≦ αl ∀1 ≦ l ≦ p and x ∈ A(tp1, · · · , t
p
l ) ∀1 ≦ l ≦ p.

i) We construct via induction for l ∈ N an index τl ≦ αl and an infinite
subset N(l) ⊂ {l, l + 1, · · · } such that N ⊃ N(1) ⊃ · · · ⊃ N(l) ⊃ · · · and
that tpl = τl for all p ∈ N(l). The step l = 1: We have tp1 ≦ α1 ∀p ∈ N.
Hence there exists an index τ1 ≦ α1 and an infinite N(1) ⊂ N such that
tp1 = τ1 ∀p ∈ N(1). The step 1 ≦ l⇒ l + 1: We have tpl+1 ≦ αl+1 ∀p ≧ l + 1,
hence ∀p ∈ N(l)∩{l+1, · · · }. Therefore there exists an index τl+1 ≦ αl+1 and
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an infinite N(l+1) ⊂ N(l)∩{l+1, · · · } such that tpl+1 = τl+1 ∀p ∈ N(l+1).
This completes the inductive construction.

ii) Now let τ = (τl)l ∈ NN. Fix n ∈ N. For p ∈ N(n) then on the one
hand p ≧ n. On the other hand

for 1 ≦ l ≦ n : p ∈ N(l) and hence tpl = τl;

therefore (tp1, · · · , t
p
n) = (τ1, · · · , τn). We combine these facts to obtain x ∈

A(τ1, · · · , τn) = A(τ |n) for each n ∈ N. Thus x ∈
∞
⋂

n=1
A(τ |n) and hence

x ∈
∧

λ∈N∞

A(λ). This is the assertion.

10.7. Theorem. Assume that φ : P(X) → R is isotone and upward
σ continuous. Let (A(λ))λ∈N∞ be a family of subsets of X. Consider the
family (B(λ))λ∈N∞ after 10.6, so that

A :=
∧

λ∈N∞

A(λ) =
∧

λ∈N∞

B(λ), and B(α|l) ↓⊂ A for each α ∈ NN.

Then

φ(A) ≦ sup{ lim
l→∞

φ
(

B(α|l)
)

: α ∈ NN}.

It is obvious that 10.7 implies 10.5, and in fact furnishes a sharpened
version of 10.5: Let A ∈ S#. Fix any family (A(λ))λ∈N∞ in S with
A =

∧

λ∈N∞

A(λ), and let (B(λ))λ∈N∞ be as above. Then for each α ∈ NN

the sequence (B(α|l))l is in S and fulfils B(α|l) ↓⊂ A. Therefore the sec-
ond member in the assertion of 10.7 is ≦ (φ|S)σ(A). It is shaped like the
definition of (φ|S)σ(A), except that its supremum is not extended over all
sequences (Sl)l in S with Sl ↓⊂ A, but is restricted to the particular se-
quences (B(α|l))l. This is an essential fortification of 10.5.

Proof of 10.7. i) We form

D(α) :=

∞
⋂

l=1

B(α|l) for α ∈ NN.

From 10.6.2) then D(α) ⊃ D(β) for α, β ∈ NN with α ≧ β. Next we form

U(λ) :=
⋃

α∈NN,α|p=λ

D(α) for λ ∈ Np with p ∈ N.

It follows that U(σ) ⊃ U(τ) for σ, τ ∈ Np with σ ≧ τ . Furthermore U(λ) ⊂
B(λ) for all λ ∈ N∞, because for λ ∈ Np and α ∈ NN with α|p = λ we have
D(α) ⊂ B(α|p) = B(λ). ii) By definition we have

U(λ) =
∞
⋃

l=1

U(λ, l) for λ ∈ N∞,
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and hence from i) U(λ, l) ↑ U(λ). Likewise we have

A =
⋃

α∈NN

D(α) =

∞
⋃

l=1

U(l),

and hence from i) U(l) ↑ A. iii) To prove the assertion we can assume
that φ(A) > −∞. We fix a real c < φ(A). In view of ii) we can find via
induction numbers τl ∈ N ∀l ∈ N such that φ

(

U(τ1, · · · , τp)
)

> c ∀p ∈ N.

Thus τ = (τl)l ∈ NN satisfies φ
(

U(τ |p)
)

> c ∀p ∈ N. From i) it follows

that φ
(

B(τ |p)
)

> c ∀p ∈ N and hence lim
l→∞

φ
(

B(τ |l)
)

≧ c. This proves the

assertion.

We leave as an exercise the result which follows from 10.5 via the upside-
down transform method.

10.8. Exercise. Assume that φ : P(X) → R is isotone and downward
σ continuous. Let S be a lattice in X. Then

φ(A) ≧ (φ|S)σ(A) for all A ∈ S#.

Combination with Basic Properties of the σ Envelopes

We start with a simple but important remark, and then turn to the fun-
damental combinations of the main theorem with the sequential continuity
theorems 4.7 and 6.7.

10.9. Remark. Let φ : P(X)→ R be a Choquet capacity for the lattice
S. Assume that φ|S is < ∞ and supermodular. Then φ|S# is super-
modular +. .

Proof. By 6.3.5) the set function (φ|S)σ is supermodular +. . Thus we
obtain for A,B ∈ S# from 10.5 and 10.4

φ(A)+. φ(B) ≦ (φ|S)σ(A)+. (φ|S)σ(B)

≦ (φ|S)σ(A ∪B)+. (φ|S)σ(A ∩B) ≦ φ(A ∪B)+. φ(A ∩B).

10.10. Theorem. Let S be a lattice and ϕ : S→ R be isotone.

1) If ϕ is bounded below and submodular then ϕσ ≦ ϕσ on S#.
2) If ϕ is bounded above and supermodular then ϕσ ≦ ϕσ on S#.

Proof of 1). The set function φ := ϕσ is > −∞ and even bounded below,
and hence upward σ continuous by 4.7. Thus we obtain for A ∈ S# from
10.5 and 4.1.1)2)

ϕσ(A) = φ(A) ≦ (φ|S)σ(A) = (ϕσ|S)σ(A) ≦ ϕσ(A).

In this connection we want to mention a simple fact.

10.11. Exercise. Let S be a lattice and ϕ : S → R be isotone. Then
ϕσ > −∞ iff ϕ is bounded below.
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The Measurability of Suslin and Co-Suslin Sets

We continue with a classical theme of measure theory, adapted to the frame
of the present text. We start with an ad-hoc extension of a classical defini-
tion. An isotone set function α : A → R on a lattice A is called complete
iff U ⊂ A ⊂ V with U, V ∈ A and α(U) = α(V ) ∈ R implies that A ∈ A.

10.12. Theorem. Assume that A is a σ lattice and that α : A → R is
isotone, almost upward and almost downward σ continuous, and complete.
Let S ⊂ A be a lattice such that α|S is bounded below and submodular. If
A ∈ S# with (α|S)σ(A) <∞ or α|S <∞ then

A ∈ A and α(A) = (α|S)σ(A) = (α|S)σ(A).

Proof. By assumption the set function ϕ := α|S is bounded below and
submodular. Let us fix A ∈ S#. i) We first assume that ϕσ(A) < ∞. By
10.10.1) then −∞ < ϕσ(A) ≦ ϕσ(A) < ∞; in particular both values are
finite. By the regularity properties 6.3.4) and 4.1.4) there exist

U ∈ (Sσ)σ ⊂ A with U ⊂ A and ϕσ(U) = ϕσ(A);

V ∈ (Sσ)σ ⊂ A with V ⊃ A and ϕσ(V ) = ϕσ(A).

Then from 7.1.σ) we obtain ϕσ(U) ≦ α(U) and α(V ) ≦ ϕσ(V ). It follows
that

α(U) ≦ α(V ) ≦ ϕσ(V ) = ϕσ(A) ≦ ϕσ(A) = ϕσ(U) ≦ α(U);

hence we have = at all places, and the common value is finite. The assertion
follows. ii) We now assume that ϕ <∞. By 10.1.4) A is upward enclosable
Sσ; thus there exists a sequence (Sl)l in S with Sl ↑⊃ A and hence Sl ∩A ↑
A. Now Sl ∩ A ∈ S# since S# is a lattice by 10.3, and ϕσ(Sl ∩ A) ≦

ϕσ(Sl) = ϕ(Sl) < ∞ by 6.5 since ϕ is downward σ continuous. It follows
from i) that Sl ∩ A ∈ A and α(Sl ∩ A) = ϕσ(Sl ∩ A) = ϕσ(Sl ∩ A) ∈ R. By
assumption and 4.7 we conclude that A ∈ A and

α(A) = ϕσ(A) ≦ ϕσ(A) ∈ ]−∞,∞].

Now 7.1.σ) with ϕ < ∞ implies that ϕσ(A) ≦ α(A). Thus we obtain the
assertion.

10.13. Exercise. Assume that A is a σ lattice and that α : A → R is
isotone, almost upward and almost downward σ continuous, and complete.
Let S ⊂ A be a lattice such that α|S is bounded above and supermodular. If
A ∈ S# with (α|S)σ(A) > −∞ or α|S > −∞ then

A ∈ A and α(A) = (α|S)σ(A) = (α|S)σ(A).

The natural candidates for completeness are of course the maximal ex-
tensions obtained in the outer and inner main theorems 5.5 and 6.22. We
conclude the subsection with the proof of these facts.

10.14. Theorem. Let ϕ : S →] −∞,∞] be an outer • premeasure on
the lattice S. Then ϕ•|C(ϕ•,

.
+) is complete.
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10.15. Lemma. Assume that S is a lattice and that ϕ : S→ R is isotone
and modular

.
+. . Let U ⊂ V be in S with ϕ(U) = ϕ(V ) ∈ R. For all S ∈ S

then ϕ(S ∪ U) = ϕ(S ∪ V ) and ϕ(S ∩ U) = ϕ(S ∩ V ).

Proof of 10.15. i) Since ϕ is submodular
.
+. we obtain

ϕ(S ∪ U)
.
+. ϕ(V ) ≧ ϕ(S ∪ V )

.
+. ϕ((S ∪ U) ∩ V )

≧ ϕ(S ∪ V )
.
+. ϕ(U) = ϕ(S ∪ V )

.
+. ϕ(V ).

Thus ϕ(V ) ∈ R implies that ϕ(S∪U) ≧ ϕ(S∪V ) and hence that ϕ(S∪U) =
ϕ(S ∪ V ). ii) Since ϕ is supermodular

.
+. we obtain

ϕ(S ∩ V )
.
+. ϕ(U) ≦ ϕ((S ∩ V ) ∪ U)

.
+. ϕ(S ∩ U)

≦ ϕ(V )
.
+. ϕ(S ∩ U) = ϕ(U)

.
+. ϕ(S ∩ U).

Thus ϕ(U) ∈ R implies that ϕ(S ∩ V ) ≦ ϕ(S ∩ U) and hence ϕ(S ∩ V ) =
ϕ(S ∩ U).

Proof of 10.14. i) We form

T := {S ∈ C(ϕ•,
.
+) : ϕ•(S) ∈ R} ⊂ C(ϕ•,

.
+).

Then T is a lattice since ϕ•|C(ϕ•,
.
+) is modular

.
+, and [ϕ < ∞] = [ϕ ∈

R] ⊂ T. Now fix U ⊂ A ⊂ V with U, V ∈ C(ϕ•,
.
+) and ϕ•(U) = ϕ•(V ) ∈ R.

To be shown is A ∈ C(ϕ•,
.
+). First note that U, V ∈ T. Now let P,Q ∈ T

and apply 10.15 twice to ϕ•|C(ϕ•,
.
+). Then

ϕ•(Q ∩ U) = ϕ•(Q ∩ V ), and this is in R;

ϕ•(P ∪ (Q ∩ U)) = ϕ•(P ∪ (Q ∩ V )), and this is in R.

ii) We fix P,Q ∈ [ϕ < ∞] = [ϕ ∈ R] ⊂ T with P ⊂ Q. We note that all
arguments which occur below will be in P ⊏ Q, and hence all values ϕ•(·)
will be finite. We obtain

ϕ•(P |A|Q) + ϕ•(P |A′|Q) = ϕ•(P ∪ (Q ∩A)) + ϕ•(P ∪ (Q ∩A′))

≦ ϕ•(P ∪ (Q ∩ V )) + ϕ•(P ∪ (Q ∩ U ′))

= ϕ•(P ∪ (Q ∩ U)) + ϕ•(P ∪ (Q ∩ U ′))

= ϕ•(P |U |Q) + ϕ•(P |U ′|Q) = ϕ•(P ) + ϕ•(Q).

From 5.2 it follows that A ∈ C(ϕ•,
.
+).

10.16. Exercise. Let ϕ : S → [−∞,∞[ be an inner • premeasure on
the lattice S. Then ϕ•|C(ϕ•,+. ) is complete.

We specialize 10.12 and 10.13 on the basis of 10.14 and 10.16. For
the sake of a simple formulation we restrict ourselves to finite-valued set
functions ϕ : S→ R.

10.17. Theorem. Assume that the set function ϕ : S→ R on the lattice
S is

either an outer σ premeasure with A := C(ϕσ,
.
+),

or an inner σ premeasure with A := C(ϕσ,+. ).
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Then

if ϕ is bounded below: A ∈ S# implies A ∈ A and ϕσ(A) = ϕσ(A),
if ϕ is bounded above: A ∈ S# implies A ∈ A and ϕσ(A) = ϕσ(A).

10.18. Bibliographical Note. The first version of the theory of capac-
ities in Choquet [1953-54] was in the frame of Hausdorff topological spaces.
The abstract version quoted in the present text is in Choquet [1959]. It
is the proof of the capacitability theorem in this paper which could have
been adapted to furnish the present extended theorem 10.5. Our proce-
dure via 10.7 likewise furnishes the so-called precise capacitability theorem
of Dellacherie-Meyer [1988] chapter XI. The need for a more comprehensive
capacitability theorem like the present 10.5, where the set function φ and
the lattice S be not tied to each other, has been expressed much earlier in
Sion [1963] page 87.

For the subsequent parts of the present section we refer to Meyer [1966]
chapter III and Dellacherie-Meyer [1978] chapter III, and to Jacobs [1978]
chapter XIII. Let S be a lattice in a nonvoid set X with ∅ ∈ S, and ϕ :
S→ [0,∞] be an isotone and submodular set function. The above authors

assumed ϕ to be upward σ continuous and considered the formation ϕ(σ) :
P(X)→ [0,∞] defined above behind 6.10 and 6.11. They proved that ϕ(σ)

is submodular and upward σ continuous. These are of course special cases of
the present 4.1.5) and 4.7, in that the formation ϕσ is always submodular and

upward σ continuous, and ϕ(σ) = ϕσ iff ϕ is upward σ continuous by 6.10.2).
The authors then used the capacitability theorem and their above-mentioned
results to reprove a number of basic results in traditional measure theory, like
the Carathéodory extension theorem and the Daniell-Stone representation
theorem, theorem 9.9.ii) on Borel-Radon measures, and in particular the
traditional version of the present measurability theorem 10.12. But they
never went beyond the traditional frame of measure theory.





CHAPTER IV

The Integral

In the present chapter the integral will be understood as a formation
which is based upon a certain set function. The opposite concept will be
the topic of the next chapter.

The continuation of the present work requires the adequate concepts
and facts in the domain of integration. In spite of the vast literature on
integration we have not seen the presentation which we need. Therefore the
present chapter will offer a short but complete account, without claim for
essential innovation. The main point is that the next chapter will require
the integral for functions with values in [0,∞[ or [0,∞] instead of R or
R, but in return for more comprehensive classes of functions than usual.
Therefore we first concentrate on functions with values in [0,∞]. For these
functions the next two sections will define two different notions of an integral,
called the horizontal and the vertical integral. These notions are based
on the two respective natural ideas for the formation of an integral. The
horizontal integral will be in the spirit of the so-called non-additive theory
of integration. We shall see that the two integrals are equal whenever both
make sense.

Then for the sake of fairness and completeness it will be natural to
demonstrate how the two integrals combine and specialize in order to furnish
the conventional integral for functions with values in R or R. This will be
done in the final section of the chapter.

11. The Horizontal Integral

Upper and Lower Measurable Functions

Let S be a lattice with ∅ ∈ S in a nonvoid set X. We define a function
f : X → [0,∞] to be

upper measurable S iff [f ≧ t] ∈ S for all t > 0,
lower measurable S iff [f > t] ∈ S for all t > 0.

We define UM(S) and LM(S) to consist of all these functions.

In the sequel we write as usual u∨v := max(u, v) and u∧v := min(u, v)
for u, v ∈ R, and likewise for the pointwise combinations of functions with
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values in R. In connection with 11.1.2) below we note that u = u∧t+(u−t)+

for u ∈ R and t ∈ R.

11.1. Properties. 1) If f, g ∈ UM(S) then f ∨ g, f ∧ g ∈ UM(S); the
same for LM(S).

2) If f ∈ UM(S) then tf, f ∧ t, (f − t)+ ∈ UM(S) for all real t > 0; the
same for LM(S).

3) If S = Sσ then f, g ∈ UM(S) implies f + g ∈ UM(S). If S = Sσ then
f, g ∈ LM(S) implies f + g ∈ LM(S).

4) In case S = Sσ we have LM(S) ⊂ UM(S). In case S = Sσ we have
UM(S) ⊂ LM(S). Thus UM(S) = LM(S) =: M(S) when S is a σ lattice.

Proof. 1) is obvious. 2) For s > 0 we have

[f ∧ t ≧ s] =

{

∅ when t < s
[f ≧ s] when t ≧ s

}

and [(f − t)+ ≧ s] = [f ≧ t + s],

and likewise in case >. 3) will be deduced from the next lemma. 4) For
t > 0 we have [f > t− 1/n] ↓ [f ≧ t] and [f ≧ t + 1/n] ↑ [f > t].

11.2. Lemma. Assume that f, g : X →]−∞,∞] and t > 0. If D ⊂ R is
dense then

[f + g ≧ t] =
⋂

s∈D

[f ≧ s] ∪ [g ≧ t− s] and

[f + g > t] =
⋃

s∈D

[f > s] ∩ [g > t− s].

Proof of the first relation. ⊂) Assume that x ∈ X is not in the set on
the right. Thus there exists s ∈ D with f(x) < s and g(x) < t− s, so that
f(x) + g(x) < t. Hence x is not in the set on the left. ⊃) Assume that
x ∈ X is not in the set on the left. Thus f(x) + g(x) < t. It follows that
f(x) and g(x) are both finite, and f(x) < t − g(x). Choose s ∈ D with
f(x) < s < t − g(x). Then x /∈ [f ≧ s] ∪ [g ≧ t − s], so that x is not in
the set on the right. Proof of the second relation. ⊂) Assume that x ∈ X
is in the set on the left, that is f(x) + g(x) > t. If f(x) = ∞ or g(x) = ∞
then it is obvious that x is in the set on the right. So assume that f(x)
and g(x) are both finite, and thus f(x) > t − g(x). Choose s ∈ D with
f(x) > s > t − g(x). Then x ∈ [f > s] ∩ [g > t − s], so that x is in the set
on the right. ⊃) Assume that x ∈ X is in the set on the right. Thus there
exists s ∈ D with f(x) > s and g(x) > t− s, so that f(x) + g(x) > t. Hence
x is in the set on the left.

Proof of 11.1.3). i) Assume that S = Sσ and f, g ∈ UM(S), and let
t > 0. We have [f ≧ s] ∪ [g ≧ t − s] ∈ S for all s ∈ R with 0 < s < t;
furthermore [f ≧ s]∪[g ≧ t−s] = X for s ≦ 0 and for s ≧ t. The first relation
in 11.2 with countable D implies that [f + g ≧ t] ∈ S. ii) Assume that
S = Sσ and f, g ∈ LM(S), and let t > 0. We have [f > s]∩ [g > t− s] ∈ S

for all s ∈ R with s �= 0, t; to see this distinguish the cases s < 0 and s > t
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and 0 < s < t. The second relation in 11.2 with countable D and 0, t /∈ D
implies that [f + g > t] ∈ S.

11.3. Exercise. 1) Show by examples that UM(S) and LM(S) need not
be stable under addition, even when S is an algebra. 2) Show by examples
that neither UM(S) nor LM(S) need contain the other function class, even
when S is an algebra. Hint: Let X = N ∪ (−N), and let S consist of the
finite and cofinite subsets of X.

11.4. Proposition. Assume that f : X → [0,∞[ has a finite value set.
Then the following are equivalent. i) f ∈ UM(S). ii) f ∈ LM(S). iii) There
exist A(1), · · · , A(r) ∈ S and t1, · · · , tr > 0 such that

f =
r

∑

l=1

tlχA(l).

iv) The same as iii), but with the additional requirement that A(1) ⊃ · · · ⊃
A(r).

We define S(S) to consist of the functions f : X → [0,∞[ which fulfil
the equivalent properties in 11.4.

11.5. Lemma. Assume that f : X → [0,∞[ has a finite value set f(X) ⊂
{t(0), t(1), · · · , t(r)} with 0 = t(0) < t(1) < · · · < t(r) <∞. Then

f =
r

∑

l=1

(

t(l)− t(l − 1)
)

χ[f≧t(l)].

Furthermore note that [f ≧ t(l)] = [f > t] for t(l − 1) ≦ t < t(l) (l =
1, · · · , r).

Proof of 11.5. For x ∈ X with f(x) = 0 = t(0) the second member is

= 0, and in case f(x) = t(p)(p = 1, ..., r) it is =
p

∑

l=1

(

t(l)− t(l − 1)
)

= t(p).

Proof of 11.4. The implications i)⇒iv) and ii)⇒iv) follow from 11.5.
iv)⇒iii) is obvious. In order to prove iii)⇒i) and iii)⇒ii) note that for t > 0

[f ≧ t] is the union of the
⋂

l∈T

A(l) for the nonvoid T ⊂ {1, · · · , r}

with
∑

l∈T

tl ≧ t,

[f > t] is the union of the
⋂

l∈T

A(l) for the nonvoid T ⊂ {1, · · · , r}

with
∑

l∈T

tl > t.

We conclude the subsection with an estimation of related type which
will be a useful tool.
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11.6. Lemma. For f : X → R and real numbers a = t(0) < t(1) < · · · <
t(r) = b we have

r
∑

l=1

(

t(l)− t(l − 1)
)

χ[f≧t(l)] ≦ (f − a)+ ∧ (b− a)

≦

r
∑

l=1

(

t(l)− t(l − 1)
)

χ[f≧t(l−1)].

The same holds true for [f > ·] instead of [f ≧ ·].
Proof. Fix x ∈ X. 1) The first relation has to be proved for [f ≧ ·]. We

distinguish the cases

f(x) < t(1): left = 0 ≦ right;
t(p) ≦ f(x) < t(p + 1) with 1 ≦ p < r: left = t(p)− t(0) ≦ f(x)− a = right;
f(x) ≧ t(r): left = t(r)− t(0) = b− a = right.

2) The second relation has to be proved for [f > ·]. We distinguish the cases

f(x) ≦ t(0): right = 0 = left;
t(p− 1) < f(x) ≦ t(p) with 1 ≦ p < r: right = t(p)− t(0) ≧ f(x)− a ≧ left;
f(x) > t(r − 1): right = t(r)− t(0) = b− a ≧ left.

The proof is complete.

The Horizontal Integral

The notion to be defined is based on the elementary Riemann integral. We
recall this notion as follows. We assume for real a < b the proper Riemann

integral
∫ b
a F (t)dt of a function F : [a, b] → R which is Riemann integrable

and hence bounded. All monotone functions F : [a, b] → R are Riemann
integrable. We need for −∞ ≦ a < b ≦ ∞ the improper Riemann integral
of a monotone function F :]a, b[→ [0,∞]. It is defined to be

∫ →b

a←
F (t)dt := sup

{

∫ v

u
F (t)dt : a < u < v < b

}

if F is finite-valued,

and = ∞ if F attains the value ∞ at some point and hence on some non-
degenerate subinterval of ]a, b[. We shall make free use of the elementary
properties of these integrals.

We come to the definition. Let S be a lattice with ∅ ∈ S in a nonvoid
set X. Assume that ϕ : S→ [0,∞] is isotone with ϕ(∅) = 0. We define the
horizontal integral with respect to ϕ

for f ∈ UM(S) to be

∫

−fdϕ :=

∫ →∞

0←
ϕ([f ≧ t])dt ∈ [0,∞],

for f ∈ LM(S) to be

∫

−fdϕ :=

∫ →∞

0←
ϕ([f > t])dt ∈ [0,∞].

Thus the two formations are well-defined.

11.7. Remark. For f ∈ UM(S) ∩ LM(S) the two horizontal integrals
∫

−fdϕ defined above are equal.
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Proof. We form P : P (t) = ϕ([f ≧ t]) and Q : Q(t) = ϕ([f > t]) for
t > 0. Thus P,Q :]0,∞[→ [0,∞] are monotone decreasing. We claim that

Q(t+) = P (t+) ≦ Q(t) ≦ P (t) ≦ Q(t−) = P (t−) for t > 0,

which of course implies the assertion. In fact, we have i) Q(t) ≦ P (t) for
t > 0 and hence Q(t−) ≦ P (t−) and Q(t+) ≦ P (t+) for t > 0. The
monotonicity implies ii) P (t+) ≦ P (t) ≦ P (t−) and Q(t+) ≦ Q(t) ≦ Q(t−)
for t > 0. At last iii) P (v) ≦ Q(u) for 0 < u < v and hence P (t−) ≦ Q(t−)
and P (t+) ≦ Q(t+) for t > 0. The assertion follows.

11.8. Properties. 1) If f ∈ S(S) is represented in the form 11.4.iv)
then

∫

−fdϕ =
r

∑

l=1

tlϕ(A(l)).

In particular
∫

−χAdϕ = ϕ(A) for A ∈ S.

2) The horizontal integral is isotone on UM(S)/LM(S).

3) The horizontal integral is positive-homogeneous on UM(S)/LM(S), that
is

∫

−(cf)dϕ = c
∫

−fdϕ for real c > 0. But of course one cannot expect any
additivity property.

4) If f �→
∫

−fdϕ is subadditive/superadditive on S(S) then the set function
ϕ is submodular/supermodular.

5) For t > 0 we have

tϕ([f ≧ t]) ≦

∫

−fdϕ in case f ∈ UM(S),

tϕ[[f > t]) ≦

∫

−fdϕ in case f ∈ LM(S).

In both cases therefore
∫

−fdϕ <∞ implies that [f > 0] ∈ [ϕ <∞]σ.

Proof. 1) We put τ0 := 0 and τp :=
p
∑

l=1

tl for p = 1, · · · , r. Then f can at

most attain the values τ0, τ1, · · · , τr, and for x ∈ X and 1 ≦ p ≦ r we have
f(x) ≧ τp ⇔ x ∈ A(p). It follows for t > 0 that

[f ≧ t] =

{

A(p) when τp−1 < t ≦ τp with 1 ≦ p ≦ r
∅ when t > τr

}

.

Therefore we have by definition
∫

−fdϕ =
r

∑

p=1

∫ τp

τp−1←
ϕ([f ≧ t])dt =

r
∑

p=1

tpϕ(A(p)).

2) and 3) are obvious. 4) We prove the sub assertion. For A,B ∈ S we have
by 1) and by assumption

ϕ(A ∪B) + ϕ(A ∩B) =

∫

−
(

χA∪B + χA∩B

)

dϕ =

∫

−
(

χA + χB

)

dϕ

≦

∫

−χAdϕ +

∫

−χBdϕ = ϕ(A) + ϕ(B).
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The super assertion has the same proof. 5) is obvious.

The fundamental fact is that 11.8.4) admits a fortified converse.

11.9. Lemma. For f ∈ UM(S)/LM(S) and A ∈ S we have f + χA ∈
UM(S)/LM(S). If ϕ is submodular then

∫

−(f + χA)dϕ ≦

∫

−fdϕ + ϕ(A), and ≧ if ϕ is supermodular.

Proof. We restrict ourselves to the case UM(S). We have

for 0 < t ≦ 1 : [f + χA ≧ t] = A ∪ [f ≧ t],

for t > 1 : [f + χA ≧ t] = [f ≧ t] ∪
(

A ∩ [f ≧ t− 1]
)

,

so that f + χA ∈ UM(S). Now we treat the submodular/supermodular
cases at the same time. We can assume that

∫

−fdϕ < ∞ and ϕ(A) < ∞;
thus ϕ([f ≧ t]) <∞ ∀t > 0. Then

∫

−(f + χA)dϕ

=

∫ 1

0←
ϕ(A ∪ [f ≧ t])dt +

∫ →∞

1←
ϕ
(

[f ≧ t] ∪ (A ∩ [f ≧ t− 1])
)

dt

= lim
n→∞

(
∫ 1

0←
ϕ(A ∪ [f ≧ t])dt

+
n

∑

l=2

∫ l

(l−1)←
ϕ
(

[f ≧ t] ∪ (A ∩ [f ≧ t− 1])
)

dt

)

≦ / ≧ lim
n→∞

(
∫ 1

0←

(

ϕ(A) + ϕ([f ≧ t])− ϕ(A ∩ [f ≧ t])
)

dt

+

n
∑

l=2

∫ l

(l−1)←

(

ϕ([f ≧ t]) + ϕ(A ∩ [f ≧ t− 1])− ϕ(A ∩ [f ≧ t])
)

dt

)

= lim
n→∞

(

ϕ(A) +

∫ n

0←
ϕ([f ≧ t])dt−

∫ n

(n−1)←
ϕ(A ∩ [f ≧ t])dt

)

.

In view of
∫

−fdϕ <∞ the third integral on the right tends to 0 for n→∞.
Thus the right side tends to ϕ(A) +

∫

−fdϕ. The assertion follows.

11.10. Consequence. For f ∈ UM(S)/LM(S) and g ∈ S(S) we have
f + g ∈ UM(S)/LM(S). If ϕ is submodular then

∫

−(f + g)dϕ ≦

∫

−fdϕ +

∫

−gdϕ, and ≧ if ϕ is supermodular.

Proof. Combine 11.9 with 11.8.1).

11.11. Theorem. Assume that f, g ∈ UM(S)/LM(S) are such that f +
g ∈ UM(S)/LM(S). If ϕ is submodular then

∫

−(f + g)dϕ ≦

∫

−fdϕ +

∫

−gdϕ,

and the same with ≧ if ϕ is supermodular.
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Proof. As before we restrict ourselves to the case UM(S). We can
assume that

∫

−fdϕ < ∞ and
∫

−gdϕ < ∞, in the supermodular case also
∫

−(f + g)dϕ <∞. But in the submodular case we have
∫

−(f + g)dϕ <∞ as
a consequence of the two previous assumptions, because for t > 0

[f + g ≧ t] ⊂ [f ≧ t/2] ∪ [g ≧ t/2],

ϕ([f + g ≧ t]) ≦ ϕ([f ≧ t/2]) + ϕ([g ≧ t/2]),

and hence
∫

−(f + g)dϕ ≦ 2
∫

−fdϕ + 2
∫

−gdϕ < ∞. Therefore we can assume
that

∫

−fdϕ,
∫

−gdϕ <∞ and
∫

−(f + g)dϕ <∞.

1) Let us fix t : 0 = t(0) < t(1) < · · · < t(r) = b < ∞ and put
δ(t) := max{t(l)− t(l − 1) : l = 1, · · · , r}. We form the function

gt :=

r
∑

l=1

(t(l)− t(l − 1))χ[g≧t(l)] ∈ S(S).

From 11.6 we know that gt ≦ g. Furthermore we note for x ∈ X the
implications which follow.

i) g(x) ≧ b⇒ gt(x) = b.

ii) 0 ≦ g(x) < b⇒ g(x) < gt(x)+ δ(t). In fact, if t(p−1) ≦ g(x) < t(p) with
1 ≦ p ≦ r, then gt(x) = t(p − 1) and hence g(x) < t(p) =

(

t(p) − t(p − 1)
)

+ t(p− 1) ≦ δ(t) + gt(x).

iii) For 0 < t ≦ b we have

g(x) ≧ t + δ(t)⇒ gt(x) ≧ t,

f(x) + g(x) ≧ t + δ(t)⇒ f(x) + gt(x) ≧ t.

In fact, assume in one of these implications that the right relation is false.
Then gt(x) < t, hence g(x) < b by i), and hence g(x) < gt(x) + δ(t) by ii).
Therefore

in the first case: g(x) < gt(x) + δ(t) < t + δ(t),
in the second case: f(x) + g(x) < f(x) + gt(x) + δ(t) < t + δ(t),

so that each time the left relation must be false.

2) The first implication in iii) furnishes
∫

−gdϕ−
∫

−gtdϕ

≦

∫ →∞

0←
ϕ([g ≧ t])dt−

∫ b

0←
ϕ([gt ≧ t])dt

≦

∫ →∞

0←
ϕ([g ≧ t])dt−

∫ b

0←
ϕ([g ≧ t + δ(t)])dt

≦

∫ →∞

0←
ϕ([g ≧ t])dt−

∫ b

δ(t)
ϕ([g ≧ t])dt

=

∫ →∞

b
ϕ([g ≧ t])dt +

∫ δ(t)

0←
ϕ([g ≧ t])dt.
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Likewise the second implication in iii) furnishes
∫

−(f + g)dϕ−
∫

−(f + gt)dϕ

≦

∫ →∞

b
ϕ([f + g ≧ t])dt +

∫ δ(t)

0←
ϕ([f + g ≧ t])dt.

3) Now let ε > 0. Then we can choose the above t such that in the two
inequalities in 2) the last members are both ≦ ε. It follows that

∫

−gdϕ ≦

∫

−gtdϕ + ε and

∫

−(f + g)dϕ ≦

∫

−(f + gt)dϕ + ε.

So if ϕ is submodular then 11.10 implies that
∫

−(f + g)dϕ ≦

∫

−(f + gt)dϕ + ε ≦

∫

−fdϕ +

∫

−gtdϕ + ε

≦

∫

−fdϕ +

∫

−gdϕ + ε.

Likewise if ϕ is supermodular then 11.10 implies that
∫

−(f + g)dϕ ≧

∫

−(f + gt)dϕ ≧

∫

−fdϕ +

∫

−gtdϕ

≧

∫

−fdϕ +

∫

−gdϕ− ε.

Thus we obtain both assertions.

We continue with two examples in order to illustrate the wide extent of
the present notion.

11.12. Exercise. 1) We let X = R and S = P(R), so that UM(S) =
LM(S) consists of all functions f : R → [0,∞]. Define ϕ : P(X) → {0, 1}
to be

ϕ(A) =

{

1 if A is unbounded above
0 if A is bounded above

}

.

Prove that
∫

−fdϕ = lim sup
x→∞

f(x) for all f : R→ [0,∞].

2) The above example can be extended as follows. Let H be a paving of
nonvoid subsets of a set X. Define ϕ : P(X)→ {0, 1} to be

ϕ(A) =

{

1 if A ∩H �= ∅ for all H ∈ H

0 if A ∩H = ∅ for some H ∈ H

}

.

Prove that
∫

−fdϕ = inf
H∈H

sup
x∈H

f(x) =: lim sup
x↑H

f(x) for all f : X → [0,∞].
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11.13. Exercise. Let B(X, R) denote the real vector space of all
bounded functions X → R on a nonvoid set X. Let φ : B(X, R) → R

be a positive linear functional, that is φ(f) ≧ 0 for f ≧ 0; it follows of
course that φ is isotone. Define ϕ : P(X) → [0,∞[ to be ϕ(A) = φ(χA)
for A ⊂ X. Thus ϕ is isotone and modular with ϕ(∅) = 0. Prove that
∫

−fdϕ = φ(f) for all 0 ≦ f ∈ B(X, R). Hint: Use 11.6.

The next exercise is a remarkable theoretical application of the basic
theorem 11.11. It is of the type of a sandwich theorem.

11.14. Exercise. 1) Let X be a nonvoid set, and S be a nonvoid set of
functions X → [0,∞[ which is stable under addition. Assume that

Q : S → [0,∞[ is subadditive, and
P : S → [0,∞[ is superadditive with P ≦ Q.

Then there exists an additive functional φ : S → [0,∞[ such that P ≦ φ ≦ Q.
If Q is isotone then φ can be chosen to be isotone. This is a Hahn-Banach
type result. It can either be proved ab-ovo with the usual method or deduced
from the Hahn-Banach theorem due to Rodé. See Rodé [1978] or König
[1987].

2) Let S be a lattice in X with ∅ ∈ S, and consider set functions

β : S→ [0,∞[ isotone and submodular with β(∅) = 0,
α : S→ [0,∞[ isotone and supermodular with α(∅) = 0,

such that α ≦ β. Then there exists ϕ : S → [0,∞[ isotone and modular
such that α ≦ ϕ ≦ β. Hint: Define the functionals P,Q : S(S) → [0,∞[ to
be

P (f) =

∫

−fdα and Q(f) =

∫

−fdβ for f ∈ S(S),

amd combine 11.11 with 1).

11.15. Remark. The horizontal integral has the pleasant property that
it retains its value under extension of the underlying set function: Assume
that ψ : T → [0,∞] is an extension of ϕ : S → [0,∞] of the same kind.
Then UM(S) ⊂ UM(T) and LM(S) ⊂ LM(T), and it is obvious from the
definition that

∫

−fdϕ =

∫

−fdψ for all f ∈ UM(S)/LM(S).

This applies in particular to the extensions ϕ⋆, ϕ⋆ : P(X)→ [0,∞] of ϕ, the
relevant properties of which are collected in 4.1 and 6.3.

Regularity and Continuity of the Horizontal Integral

The last subsection presents some of the most important properties of the
horizontal integral. We assume as before that S is a lattice with ∅ ∈ S and
that ϕ : S→ [0,∞] is isotone with ϕ(∅) = 0.

11.16. Theorem.
∫

−fdϕ⋆ = sup{
∫

−udϕ : u ∈ S(S) with u ≦ f} for all
f : X → [0,∞].
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Proof. Let M ∈ [0,∞] denote the supremum on the right. To be shown
is

∫

−fdϕ⋆ ≦ M . 1) We can assume that ϕ⋆([f ≧ t]) < ∞ ∀t > 0. In
fact, if ϕ⋆([f ≧ t]) = ∞ for some t > 0 then for each R > 0 there exists
a subset A ∈ S with A ⊂ [f ≧ t] and tϕ(A) ≧ R, which implies that
u := tχA ∈ S(S) fulfils u ≦ f and

∫

−udϕ = tϕ(A) ≧ R, and hence that
M ≧ R. Therefore M = ∞. 2) We fix 0 < a < b < ∞ and have to prove

that
∫ b
a ϕ⋆([f ≧ t])dt ≦ M . Let ε > 0. By definition of the Riemann integral

there exists a subdivision a = t(0) < t(1) < · · · < t(r) = b with
∫ b

a
ϕ⋆([f ≧ t])dt ≦

r
∑

l=1

(

t(l)− t(l − 1)
)

ϕ⋆([f ≧ t(l)])dt + ε.

Then there exist subsets A(l) ∈ S with A(l) ⊂ [f ≧ t(l)] and

ϕ⋆([f ≧ t(l)]) ≦ ϕ(A(l)) +
ε

b− a
∀l = 1, · · · , r.

In view of [f ≧ t(r)] ⊂ · · · ⊂ [f ≧ t(1)] we can achieve that A(r) ⊂ · · · ⊂
A(1). It follows that

∫ b

a
ϕ⋆([f ≧ t])dt ≦

r
∑

l=1

(

t(l)− t(l − 1)
)

ϕ(A(l)) + 2ε.

Now we form

u :=

r
∑

l=1

(

t(l)− t(l − 1)
)

χA(l) ∈ S(S).

By 11.6 then u ≦ (f − a)+ ∧ (b− a) ≦ f , and hence from 11.8.1) we obtain
∫ b
a ϕ⋆([f ≧ t])dt ≦

∫

−udϕ + 2ε. The assertion follows.

We turn to the theorems on downward and upward • continuity for
• = στ . In case • = σ these are archetypes of the Beppo Levi theorem. It
is fundamental that they are also true for • = τ . We present the proof in
the downward situation which is somewhat more involved, and then add the
upward one as an exercise.

11.17. Theorem. Assume that ϕ is almost downward • continuous.
Then the horizontal integral f �→

∫

−fdϕ is almost downward • continuous
on UM(S) in the natural sense: If M ⊂ UM(S) is nonvoid of type • and
downward directed in the pointwise order with M ↓ F ∈ UM(S), and if
∫

−fdϕ <∞ for all f ∈M , then inf{
∫

−fdϕ : f ∈M} =
∫

−Fdϕ.

Proof. 1) For f ∈M we define f̂ :]0,∞[→ [0,∞[ to be f̂(t) = ϕ([f ≧ t])

< ∞ ∀t > 0. Thus f̂ is monotone decreasing with
∫

−fdϕ =
∫ →∞
0← f̂(t)dt <

∞. Furthermore f ≦ g implies that f̂ ≦ ĝ. 2) For fixed t > 0 we have

{[f ≧ t] : f ∈ M} ↓ [F ≧ t]. Thus by assumption inf{ϕ([f ≧ t]) = f̂(t) :

f ∈ M} = ϕ([F ≧ t]) =: F̂ (t), with F̂ :]0,∞[→ [0,∞[ as above. It follows

that {f̂ : f ∈ M} ↓ F̂ pointwise. 3) We fix P ∈ M and ε > 0, and then
0 < a < b <∞ with

∫ a

0←
P̂ (t)dt ≦ ε and

∫ →∞

b
P̂ (t)dt ≦ ε.



11. THE HORIZONTAL INTEGRAL 119

For f ∈M with f ≦ P then
∫

−fdϕ =

∫ →∞

0←
f̂(t)dt ≦

∫ b

a
f̂(t)dt + 2ε.

4) By definition of the Riemann integral there exists a subdivision a = t0 <
t1 < · · · < tr = b with

r
∑

l=1

(tl − tl−1)F̂ (tl−1) ≦

∫ b

a
F̂ (t)dt + ε.

Then by 2) there exist functions fl ∈ M ∀l = 1, · · · , r such that f̂l(tl−1) ≦

F̂ (tl−1) + ε/b− a. Thus for the functions f ∈M with f ≦ f1, · · · , fr, P we
obtain from 3)

∫

−fdϕ ≦

∫ b

a
f̂(t)dt + 2ε ≦

r
∑

l=1

(tl − tl−1)f̂(tl−1) + 2ε

≦

r
∑

l=1

(tl − tl−1)f̂l(tl−1) + 2ε ≦

r
∑

l=1

(tl − tl−1)F̂ (tl−1) + 3ε

≦

∫ b

a
F̂ (t)dt + 4ε ≦

∫

−Fdϕ + 4ε.

The assertion follows.

11.18. Exercise. Assume that ϕ is upward • continuous. Then the
horizontal integral f �→

∫

−fdϕ is upward • continuous on LM(S) in the
natural sense: If M ⊂ LM(S) is nonvoid of type • and upward directed in the
pointwise order with M ↑ F ∈ LM(S), then sup{

∫

−fdϕ : f ∈M} =
∫

−Fdϕ.

We continue with the important specialization to Borel-Radon measures.

11.19. Remark. Let X be a topological space. Then UM(Cl(X)) is the
class USC(X, [0,∞]) of the upper semicontinuous functions f : X → [0,∞],
and LM(Op(X)) is the class LSC(X, [0,∞]) of the lower semicontinuous
functions f : X → [0,∞].

11.20. Consequence. Let α : Bor(X)→ [0,∞] be a Borel-Radon mea-
sure on the Hausdorff topological space X. Then the horizontal integral
f �→

∫

−fdα is almost downward τ continuous on USC(X, [0,∞]) and upward
τ continuous on LSC(X, [0,∞]).

Proof. We know from 9.4 that α|Cl(X) is almost downward τ continuous
and α|Op(X) is upward τ continuous. Therefore the assertions follow from
11.17 and 11.18.

11.21. Exercise. 1) Let X be a completely regular topological space.
Assume that f ∈ USC(X, [−∞,∞[) is such that there exists some u ∈
C(X, R) with u ≧ f . Then f is the pointwise infimum of {u ∈ C(X, R) :
u ≧ f}. 2) Let α : Bor(X) → [0,∞[ be a finite Borel-Radon measure on a
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completely regular Hausdorff space X. Assume that f ∈ USC(X, [0,∞[) is
bounded above. Then

∫

−fdα = inf{
∫

−udα : u ∈ C(X, [0,∞[) bounded with u ≧ f}.

11.22. Exercise. This is another variant of 11.17 whose proof is similar
and simpler. Assume that ϕ is almost • continuous at ∅. If M ⊂ UM(S) is
nonvoid of type • such that M ↓ 0 in the pointwise order, and if

∫

−fdϕ <∞
for all f ∈M , then inf{

∫

−fdϕ : f ∈M} = 0.

The last exercise continues the discussion of the two notions of support
defined in section 9.

11.23. Exercise. Let S be a lattice with ∅ ∈ S and ϕ : S→ [0,∞] be
isotone with ϕ(∅) = 0. By definition

for f ∈ UM(S) :

∫

−fdϕ = 0⇔ ϕ([f ≧ t]) = 0 ∀t > 0,

for f ∈ LM(S) :

∫

−fdϕ = 0⇔ ϕ([f > 0]) = 0 ∀t > 0.

It follows that
∫

−fdϕ = 0 does not enforce that f = 0. For example, for
A ∈ S with ϕ(A) = 0 we have

∫

−χAdϕ = ϕ(A) = 0 by 11.8.1), but of course
A need not be void. Moreover

∫

−fdϕ = 0 does not even enforce that f = 0 on
that part of X on which ϕ is concentrated in some reasonable sense, except
under additional assumptions on f . In this context the previous notions of
support become relevant.

0) The Borel-Lebesgue measure α =: Λ|Bor(Rn) fulfils

Supp(α) = supp(α|K) = Rn.

Hint: K⊤K = Cl(Rn).
1) Let α : Bor(X) → [0,∞] be a Borel-Radon measure on a Hausdorff

topological space X. Then

for f ∈ LSC(X, [0,∞]) = LM(Op(X)) :

∫

−fdα = 0⇒ f = 0 on Supp(α).

The example above shows that the same assertion need not be true for
f ∈ USC(X, [0,∞]) = UM(Cl(X)). These are well-known facts. The posi-
tive assertion is considered as an indication that the notion of support is a
reasonable one. It is remarkable that it has a counterpart for the new notion
of support.

2) Let S be a lattice with ∅ ∈ S in the nonvoid set X, and let ϕ : S→
[0,∞[ be an inner τ premeasure with ϕ(∅) = 0 and φ := ϕτ |C(ϕτ ). Then

for f ∈ LM((S⊤Sτ )⊥) :

∫

−fdφ = 0⇒ f = 0 on supp(ϕ).

3) Deduce 1) from 2).
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11.24. Bibliographical Note. The concept of the horizontal integral
was the basic idea of Lebesgue for the formation of an integral, while the
vertical integral of the next section was the basic idea of Riemann. See for
example Stroock [1994] introduction to chapter II. In recent textbooks the
horizontal integral occurs in case that ϕ : S→ [0,∞] is a σ finite cmeasure
on a σ algebra, but without much systematization. See for example Bauer
[1992] Satz 23.8. The full notion of the horizontal integral appeared in
Choquet [1953-54], so that this work formed the start of the so-called non-
additive theory of integration. The fundamental result 11.11 is from Choquet
[1953-54], Topsøe [1978] section 8, and Kindler [1986]. For more details we
refer to Denneberg [1994] chapter 6. For the sandwich type results in 11.14
and their development see for example Kindler [1986]. The results in the
last subsection are basic facts for Borel-Radon measures; see for example
Dellacherie-Meyer [1978] chapter III section 3. The more comprehensive
versions of the present text will be needed for the main results of chapters
V and VII below. There have been hints in this direction in the literature
before, for example in Topsøe [1978] section 8.

12. The Vertical Integral

Definition and Main Properties

This time we assume that A is a ring in a nonvoid set X and that α : A→
[0,∞] is a ccontent. We define the vertical integral for f : X → [0,∞]
with respect to α to be

∫

∗

fdα : = sup
{

r
∑

l=1

tlα(A(l)) : A(1), · · · , A(r) ∈ A pairwise disjoint

and t1, · · · , tr > 0 with f |A(l) ≧ tl ∀l = 1, · · · , r
}

= sup
{

r
∑

l=1

tlα(A(l)) : A(1), · · · , A(r) ∈ A pairwise disjoint

and t1, · · · , tr ≧ 0 with f |A(l) ≧ tl ∀l = 1, · · · , r
}

,

where the second expression is under the usual convention 0∞ := 0. The
first expression is the supremum of a nonvoid subset of [0,∞] since ∅ ∈ A

and α(∅) = 0. It is clear that the two expressions are equal and with value
in [0,∞].
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12.1. Remark. For f : X → [0,∞] we have
∫

∗

fdα : = sup
{

r
∑

l=1

tlα(A(l)) : A(1), · · · , A(r) ∈ A

and t1, · · · , tr > 0 with f ≧

r
∑

l=1

tlχA(l)

}

= sup
{

r
∑

l=1

tlα(A(l)) : A(1), · · · , A(r) ∈ A

and t1, · · · , tr ≧ 0 with f ≧

r
∑

l=1

tlχA(l)

}

.

Proof. As above it is clear that the two expressions on the right are
equal. Let I ∈ [0,∞] denote their common value. To be shown is I ≦

∫

∗
fdα,

since the reverse is obvious. We can assume that
∫

∗
fdα <∞, so that A ∈ A

with f |A ≧ t > 0 implies that α(A) < ∞. Now fix A(1), · · · , A(r) ∈ A and

t1, · · · , tr > 0 with f ≧
r

∑

l=1

tlχA(l). Thus α(A(l)) < ∞ ∀l = 1, · · · , r. As in

the earlier obvious lemma 3.5 we form the subsets

D(T ) :=
⋂

l∈T

A(l) ∩
⋂

l∈T ′

(A(l))′ ∈ A for the nonvoid T ⊂ {1, · · · , r}.

These subsets are pairwise disjoint with A(l) =
⋃

T∋l

D(T ) or

χA(l) =
∑

T∋l

χD(T ) and hence α(A(l)) =
∑

T∋l

α(D(T )) ∀l = 1, · · · , r.

We also put τT :=
∑

l∈T

tl > 0. Then on the one hand

r
∑

l=1

tlχA(l) =
r

∑

l=1

∑

T∋l

tlχD(T ) =
∑

T

∑

l∈T

tlχD(T ) =
∑

T

τT χD(T ),

and on the other hand
r

∑

l=1

tlα(A(l)) =

r
∑

l=1

∑

T∋l

tlα(D(T )) =
∑

T

∑

l∈T

tlα(D(T )) =
∑

T

τT α(D(T )).

The first relation shows that f |D(T ) ≧ τT for all T . Therefore the common
value in the second relation is ≦

∫

∗
fdα. This is the assertion.

12.2. Properties. 1)
∫

∗
χAdα = α(A) for A ∈ A. 2) The vertical integral

is isotone. 3) Assume that α is semifinite above. Then
∫

∗

fdα = sup{
∫

∗

χP fdα : P ∈ A with α(P ) <∞} for all f : X → [0,∞].
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4) The vertical integral is positive-homogeneous. Furthermore
∫

∗

(f + g)dα ≧

∫

∗

fdα +

∫

∗

gdα for f, g : X → [0,∞].

Proof. 1) On the one hand χA|A ≧ 1 implies by definition that
∫

∗
χAdα ≧

α(A). On the other hand let A(1), · · · , A(r) ∈ A be pairwise disjoint and
t1, · · · , tr > 0 with χA|A(l) ≧ tl ∀l = 1, · · · , r. This implies that A(l) ⊂ A,
and that A(l) = ∅ when tl > 1. It follows that

r
∑

l=1

tlα(A(l)) ≦

r
∑

l=1

α(A(l)) ≦ α(A).

Therefore
∫

∗
χAdα ≦ α(A). 2)3) and the first part of 4) are obvious. It

remains to prove the second part of 4). Let

A(1), · · · , A(r) ∈ A be pairwise disjoint
and s1, · · · , sr ≧ 0 with f |A(k) ≧ sk ∀k = 1, · · · , r,
B(1), · · · , B(s) ∈ A be pairwise disjoint
and t1, · · · , ts ≧ 0 with g|B(l) ≧ tl ∀l = 1, · · · , s.

We can assume that
r
⋃

k=1

A(k) =
s
⋃

l=1

B(l). Then (f + g)|A(k)∩B(l) ≧ sk + tl

implies that
∫

∗

(f + g)dα ≧

r
∑

k=1

s
∑

l=1

(sk + tl)α
(

A(k) ∩B(l)
)

=
r

∑

k=1

s
∑

l=1

skα
(

A(k) ∩B(l)
)

+
r

∑

k=1

s
∑

l=1

tlα
(

A(k) ∩B(l)
)

=

r
∑

k=1

skα(A(k)) +

s
∑

l=1

tlα(B(l)),

and hence the assertion.

12.3. Proposition. For f, g : X → [0,∞] we have
∫

∗

(f + g)dα =

∫

∗

fdα +

∫

∗

gdα,

provided that at least one of the two functions is in UM(A) ∪ LM(A).

Proof. We assume that f ∈ UM(A)∪LM(A). By 12.2.4) we have to prove
the direction ≦. Fix pairwise disjoint A(1), · · · , A(r) ∈ A and t1, · · · , tr > 0
with (f + g)|A(l) ≧ tl ∀l = 1, · · · , r. Furthermore fix n ∈ N. For 1 ≦ l ≦ r
then form

Ak(l) :=

{

A(l) ∩ [f ≧ (k/n)tl] when f ∈ UM(A)
A(l) ∩ [f > (k/n)tl] when f ∈ LM(A)

}

∈ A ∀k = 1, · · · , n.
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Thus we have An(l) ⊂ · · · ⊂ A1(l) ⊂ A0(l) := A(l), and hence the decom-
position

A(l) =

n
⋃

k=1

(

Ak−1(l) \Ak(l)
)

∪An(l).

In both cases we have

for 1 ≦ k ≦ n on Ak−1(l) \Ak(l) : f ≧
k − 1

n
tl and g ≧

n− k

n
tl.

Therefore by definition
∫

∗

fdα ≧

r
∑

l=1

( n
∑

k=1

k − 1

n
tlα

(

Ak−1(l) \Ak(l)
)

+ tlα
(

An(l)
)

)

,

∫

∗

gdα ≧

r
∑

l=1

( n
∑

k=1

n− k

n
tlα

(

Ak−1(l) \Ak(l)
)

)

,

and hence
∫

∗

fdα +

∫

∗

gdα ≧
n− 1

n

r
∑

l=1

tlα(A(l)).

Now let n→∞. Then the assertion follows.

12.4. Consequence. For f1, · · · , fr : X → [0,∞] we have
∫

∗

(

r
∑

l=1

fl

)

dα =

r
∑

l=1

∫

∗

fldα,

provided that all these functions except at most one are in UM(A)∪LM(A).

12.5. Special Case. If f ∈ S(A) is represented in the form 11.4.iii)
then

∫

∗

fdα =

r
∑

l=1

tlα(A(l)).

We conclude with some useful remarks.

12.6. Remark. For each f : X → [0,∞] we have 1)
∫

∗
(f ∧ t)dα ↑

∫

∗
fdα

for t ↑ ∞ and 2)
∫

∗
(f − t)+dα ↑

∫

∗
fdα for t ↓ 0.

Proof. We can assume that
∫

∗
fdα > 0. Let

∫

∗
fdα > c > 0. By definition

there exist pairwise disjoint A(1), · · · , A(r) ∈ A and t1, · · · , tr > 0 such that

f |A(l) ≧ tl ∀l = 1, · · · , r and
r

∑

l=1

tlα(A(l)) ≧ c. 1) For t ≧ t1, · · · , tr we have

(f ∧ t)|A(l) ≧ tl ∀l = 1, · · · , r and hence
∫

∗
(f ∧ t)dα ≧ c. 2) For 0 < t < ε :=

min(t1, · · · , tr) we have (f − t)|A(l) ≧ tl − t ≧ (1− t/ε)tl ∀l = 1, · · · , r and
hence

∫

∗
(f − t)+dα ≧ (1− t/ε)c.
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12.7. Remark. Assume that f : X → [0,∞] and A ∈ A with [f > 0]
⊂ A. Then

∫

∗
fdα ≦ (sup f)α(A).

Proof. By 12.6.1) we can assume that sup f <∞. But then the assertion
follows from 12.2.1).

Regularity and Continuity of the Vertical Integral

The next assertion is an immediate consequence of the definition combined
with 12.5.

12.8. Proposition.
∫

∗
fdα = sup

{∫

∗
udα : u ∈ S(A) with u ≦ f

}

for all

f : X → [0,∞].

The continuity theorem will be this time on upward σ continuity and a
consequence of 4.7. It is a version of the famous Fatou theorem.

12.9. Theorem. Assume that α is upward σ continuous. Let (fn)n be
a sequence in UM(A) or in LM(A), and f : X → [0,∞] with f ≦ lim inf

n→∞
fn.

Then
∫

∗
fdα ≦ lim inf

n→∞

∫

∗
fndα.

Proof. We can assume that
∫

∗
fdα > 0. Let

∫

∗
fdα > c > 0. By definition

there exist pairwise disjoint A(1), · · · , A(r) ∈ A and t1, · · · , tr > 0 such

that f |A(l) ≧ tl ∀l = 1, · · · , r and
r

∑

l=1

tlα(A(l)) > c. Then choose 0 < δ <

t1, · · · , tr with
r

∑

l=1

(tl − δ)α(A(l)) > c; this can be done in all cases. 1) For

1 ≦ l ≦ r we form

Dl
n :=

∞
⋂

p=n

(

A(l) ∩ [fp > tl − δ]
)

∀n ∈ N.

Thus Dl
n ↑ in n ∈ N. For x ∈ A(l) we have tl ≦ f(x) ≦ lim inf

n→∞
fn(x) and

hence tl−δ < fp(x) for almost all p ∈ N; thus x ∈ Dl
n for almost all n ∈ N. It

follows that Dl
n ↑ A(l) for n→∞. From 4.7 we obtain ασ(Dl

n) ↑ ασ(A(l)).
Thus Dl

n ⊂ A(l) ∩ [fn ≧ / > tl − δ] ⊂ A(l) with 4.5 implies that

α
(

A(l) ∩ [fn ≧ / > tl − δ]
)

→ α(A(l)) for n→∞.

2) For n ∈ N we have by definition
∫

∗

fndα ≧

r
∑

l=1

(tl − δ)α
(

A(l) ∩ [fn ≧ / > tl − δ]
)

.

We know from 1) that the right side is > c for almost all n ∈ N. It follows
that lim inf

n→∞

∫

∗
fndα ≧ c. This is the assertion.

As a consequence we obtain a special case of the Beppo Levi theorem.
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12.10. Consequence. Assume that α is upward σ continuous. Let (fn)n

be a sequence in UM(A) or in LM(A), and fn ↑ f : X → [0,∞]. Then
∫

∗
fndα ↑

∫

∗
fdα for n→∞.

Proof. From 12.9 we obtain
∫

∗
fdα ≦ lim

n→∞

∫

∗
fndα. On the other hand

∫

∗
fndα ≦

∫

∗
fdα for n ∈ N and hence lim

n→∞

∫

∗
fndα ≦

∫

∗
fdα.

Comparison of the two Integrals

The next theorem says that the horizontal and the vertical integral are equal
whenever they are both defined.

12.11. Theorem. Assume that α : A→ [0,∞] is a ccontent on a ring A

in X. Then
∫

−fdα =

∫

∗

fdα for all f ∈ UM(A) ∪ LM(A).

Proof. We define the function F :]0,∞[→ [0,∞] to be

F (t) =

{

α([f ≧ t]) when f ∈ UM(A)
α([f > t]) when f ∈ LM(A)

}

for t > 0.

Thus F is monotone decreasing, and by definition
∫

−fdα =
∫ →∞
0← F (t)dt. If

F (t) =∞ for some t > 0, then
∫ →∞
o← F (t)dt =∞ by definition, and

∫

∗
fdα =

∞ by definition as well. Thus we can assume that F (t) < ∞ for all t > 0.
1) We first claim that

∫

∗

(f − u)+ ∧ (v − u)dα =

∫ v

u
F (t)dt for 0 < u < v <∞.

In fact, for each subdivision u = t(0) < t(1) < · · · < t(r) = v we have by
11.6

r
∑

l=1

(

t(l)− t(l − 1)
)

χ[f≧t(l)] ≦ (f − u)+ ∧ (v − u)

≦

r
∑

l=1

(

t(l)− t(l − 1)
)

χ[f≧t(l−1)],

and the same for [f > ·] instead of [f ≧ ·]. Upon application of
∫

∗
it follows

from 12.5 that in both cases
r

∑

l=1

(

t(l)− t(l − 1)
)

F (t(l)) ≦

∫

∗

(f − u)+ ∧ (v − u)dα

≦

r
∑

l=1

(

t(l)− t(l − 1)
)

F (t(l − 1)).
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By the definition of the Riemann integral the assertion follows. 2) For

0 < u < v <∞ we have (f − u)+ ∧ (v− u) =
(

(f ∧ v)− u
)+

, so that 1) says
that

∫

∗

(

(f ∧ v)− u
)+

dα =

∫ v

u
F (t)dt.

We conclude from 12.6.2) for u ↓ 0 that
∫

∗

(f ∧ v)dα =

∫ v

0←
F (t)dt for v > 0,

and then from 12.6.1) for v ↑ ∞ that
∫

∗
fdα =

∫ →∞
0← F (t)dt. This is the

assertion.

12.12. Consequence. Assume that α : X → [0,∞] is a ccontent on a
ring A on X. Then

∫

−fdα⋆ =

∫

∗

fdα for all f : X → [0,∞].

Proof. From 11.16 and 12.8 we obtain
∫

−fdα⋆ = sup
{

∫

−udα : u ∈ S(A) with u ≦ f
}

,
∫

∗

fdα = sup
{

∫

∗

udα : u ∈ S(A) with u ≦ f
}

.

Thus the assertion follows from 12.11.

In spite of the above results it is wise to retain the different notations for
the two types of integrals, because this will allow to see where the arguments
come from. We shall reserve the common notation

∫

fdα :=
∫

−fdα =
∫

∗
fdα

for the particular case that α : A→ [0,∞] is a cmeasure on a σ ring A and
that f ∈ M(A) := UM(A) = LM(A).

12.13. Bibliographical Note. The definition of the vertical integral
is in essence the usual definition of the integral for functions with values in
[0,∞] in most recent textbooks, except that the latter definition assumes
α : A → [0,∞] to be a cmeasure on a σ ring A and f : X → [0,∞] to be
measurable A. Also it is effected in two steps, where the first step is for the
function class S(A) of the so-called elementary functions. For a few variants
we refer to Bauer [1992], Cohn [1980], and Stroock [1994].

We next comment on the connection with the so-called finitely-additive
theory of Riemann integration with respect to a ccontent α : A → [0,∞[
or [0,∞] on an algebra A, and its extension due to Dunford [1935]. We
refer to Rao-Rao [1983] and in particular to the recent survey of Luxemburg
[1991]. These theories are for function classes which arise as the closures of
S(A), and likewise of UM(A) and/or of LM(A), under some seminorm or
semimetric of the type of an outer integral. We do not follow this procedure,
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not alone because it need not lead to complete function spaces. The deci-
sive reason is that the present set-up is in perfect accord with the precise
requirements of the next chapter. The present comparison theorem 12.11 is
contained in Luxemburg [1991] theorem 4.13.

13. The Conventional Integral

The present section develops the conventional integral for functions with
values in R or R on the basis of the two former sections. Apart from this it
follows the usual lines from the start. It is for the sake of completeness that
we want a short but complete treatment. We note that there will be almost
no use of the present section in chapter V.

Measurable Functions

Let X and Y be nonvoid sets and f : X → Y be a map. Assume that A/B

are pavings in X/Y . Then it is natural to consider for f the properties

A ∈ A⇒ f(A) ∈ B and f−1(B) ∈ A⇐ B ∈ B.

It turns out that, opposite to naive opinion, the second relation is the much
more profound one. For example, if A/B are topologies on X/Y then the
second relation means that f is continuous, while the first relation means
that f is open, which for example is violated as a rule when f is constant.
Thus we define f to be measurable A → B iff it satisfies the second
relation above, that is once more iff B ∈ B ⇒ f−1(B) ∈ A. In order that
this notion be non-pathological the pavings A and B must have a certain
richness. For the purpose of measure and integration a minimal requirement
appears to be that A and B be algebras. For example, in case B �= {∅} the
constant functions f : X → Y are not all measurable A→ B unless X ∈ A.
But this minimal requirement does not suffice, as a look at the notions of
section 11 and the subsequent related exercise will show.

13.1. Example. On [0,∞] define S to consist of the subsets [t,∞] and
T of the subsets ]t,∞] for all real t > 0. Let A be a lattice with ∅ ∈ A on X.
Then a function f : X → [0,∞] is measurable A → S iff f ∈ UM(A), and
measurable A → T iff f ∈ LM(A). We know from 11.1 and 11.3 that these
function classes need not be stable under addition and need not be equal
even when A is an algebra, but that all this is true when A is a σ lattice.

13.2. Exercise. On R define S to consist of the subsets [t,∞] and T

of the subsets ]t,∞] for all t ∈ R. 1) Aσ(S) = Aσ(T) = Bor(R). 2) A(S)
and A(T) do not coincide. In fact, for A ∈ A(S) the function χA|R is right
continuous, so that for example the members of T are not in A(S). Likewise,
for A ∈ A(T) the function χA|R is left continuous, so that for example the
members of S are not in A(T). Hint: Use 3.6.1) combined with 1.17.⋆).



13. THE CONVENTIONAL INTEGRAL 129

It is thus clear that certain important points will need σ algebras instead
of algebras. We start with some formal properties.

13.3. Remark. Assume that A and B are σ algebras, and that B =
Aσ(T) for a set system T ⊂ B. Then f is measurable A → B ⇔ f is
measurable A→ T.

Proof of ⇐). By 1.11 we have f−1(B) = f−1(Aσ(T)) = Aσ
(

f−1(T)
)

⊂
Aσ(A) = A.

13.4. Properties. 1) If f : X → Y is measurable A→ B and g : Y → Z
is measurable B→ C then g ◦ f : X → Z is measurable A→ C. 2) Assume
that f : X → T ⊂ Y . Then f is measurable A → B ⇔ f is measurable
A → B ∩ T . 3) Assume that f : X → Y is measurable A → B. For
nonvoid S ⊂ X then f |S : S → Y is measurable A ∩ S → B. 4) Assume

that X =
∞
⋃

l=1

Sl with nonvoid Sl ∈ A ∀l ∈ N, and that A is a σ lattice.

If f |Sl : Sl → Y is measurable A ∩ Sl → B ∀l ∈ N then f is measurable
A→ B.

Proof. 1)2)3) are obvious. 4) For B ∈ B we have f−1(B) ∩ Sl =
(f |Sl)

−1(B) ∈ A ∩ Sl ⊂ A since Sl ∈ A ∀l ∈ N, and hence f−1(B) ∈ A since
Aσ = A.

The next point is the connection with topology and continuity. Let X be
equipped with a paving A and Y be a topological space. Then for f : X → Y
one has to distinguish between measurable A → Bor(Y ) and measurable
A → Baire(Y ). But in case that Bor(Y ) = Baire(Y ), in particular when Y
is semimetrizable, we can in short call this measurable A. Let us note a
useful consequence of 13.2.1) and 13.3.

13.5. Remark. Let A be a σ algebra in X. Then f : X → R is measur-
able A iff [f ≧ t] ∈ A ∀t ∈ R, and likewise iff [f > t] ∈ A ∀t ∈ R.

Another shorthand notation is as follows. Let X and Y be topologi-
cal spaces. Then f : X → Y will be called Borel measurable iff it is
measurable Bor(X)→ Bor(Y ), and Baire measurable iff it is measurable
Baire(X)→ Baire(Y ).

13.6. Exercise. If f : X → Y is continuous then it is Borel measurable
as well as Baire measurable.

We combine these remarks for a useful reduction principle.

13.7. Proposition. Let X be equipped with a σ algebra A and Y be a
topological space. Then f : X → Y is measurable A→ Baire(Y )

⇔ for each ϕ ∈ C(Y, R) the function ϕ ◦ f : X → R is measurable A.

Proof. ⇒) is obvious from 13.6. ⇐) Let B ∈ CCl(Y ), that is B = [ϕ = 0]
for some ϕ ∈ C(Y, R). Then f−1(B) = [ϕ ◦ f = 0] which is in A by
assumption. The assertion follows from 13.3.
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We turn to the combination of functions, in particular to sequences of
functions. For the remainder of the subsection we assume that A is a σ
algebra in X. We start with the easiest facts.

13.8. Remark. Let f, g : X → R be measurable A. Then the sets [f <
g], [f ≦ g], [f = g], and [f �= g] are in A.

Proof. It suffices to prove the assertion for [f < g]. But [f < g] is the
union of the subsets [f < t] ∩ [t < g] for all t ∈ D, where D ⊂ R is any
countable dense subset.

13.9. Proposition. Let fl : X → R be measurable A ∀l ∈ N. 1) The
functions sup

l∈N

fl and inf
l∈N

fl are measurable A. Of course this implies the

same fact for finite sequences of functions. 2) The functions lim sup
l→∞

fl and

lim inf
l→∞

fl are measurable A.

Proof. 1) For t ∈ R we have

[sup
l∈N

fl > t] =

∞
⋃

l=1

[fl > t] and [inf
l∈N

fl ≧ t] =

∞
⋂

l=1

[fl ≧ t],

so that the assertion follows from 13.5. 2) We have lim sup
l→∞

fl = inf
n∈N

sup
l≧n

fl

and lim inf
l→∞

fl = sup
n∈N

inf
l≧n

fl.

13.10. Proposition. Let Y be a topological space. Assume that the
fl : X → Y are measurable A→ Baire(Y ) ∀l ∈ N, and that fl → f : X → Y
pointwise. Then f is measurable A→ Baire(Y ).

Proof. In view of 13.7 we can assume that Y = R; but the proof below
works for all metrizable Y . Let B ∈ CCl(Y ) = Cl(Y ). Then

A(l, n) := f−1
l

(

[dist(·, B) ≦ 1/n]
)

∈ A ∀l, n ∈ N, and hence

A :=
∞
⋂

n=1

∞
⋃

p=1

∞
⋂

l=p

A(l, n) ∈ A.

For x ∈ X now x ∈ A means that for each n ∈ N there exists p ∈ N with
x ∈ A(l, n) ∀l ≧ p, that is with dist(fl(x), B) ≦ 1/n ∀l ≧ p. Thus x ∈ A
means that dist(fl(x), B)→ 0 for l→∞, that is dist(f(x), B) = 0, and that
is f(x) ∈ B since B is closed. Thus A = f−1(B). The assertion follows.

The next assertion is an important addendum.

13.11. Proposition. Let Y be a Polish space. Assume that the fl : X →
Y are measurable A ∀l ∈ N. Then the subset

T := {x ∈ X : there exists lim
l→∞

fl(x) =: f(x) ∈ Y } ⊂ X

is in A. Note that by 13.10 the function f : T → Y is measurable A ∩ T .
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Proof. Let d be a complete metric on Y which furnishes its topology,
and let D ⊂ Y be a countable dense subset. We form

Mn(p, q) :=
⋃

u∈D

f−1
p

(

∇(u, 1/n)
)

∩ f−1
q

(

∇(u, 1/n)
)

∈ A for p, q, n ∈ N;

A :=
∞
⋂

n=1

∞
⋃

r=1

∞
⋂

p=r

∞
⋂

q=r

Mn(p, q) ∈ A.

It is a routine verification that

{x ∈ X : d(fp(x), fq(x)) < 1/n} ⊂Mn(p, q)

⊂ {x ∈ X : d(fp(x), fq(x)) ≦ 2/n} for p, q, n ∈ N.

Thus A consists of those x ∈ X in which the sequence (fl(x))l is Cauchy in
d, that is convergent in d. Therefore T = A ∈ A as claimed.

In view of 11.1.3) and 11.2 it is perhaps no surprise that the most com-
plicated task is to handle sums, products,· · · of scalar-valued measurable
functions. For this purpose we introduce a notion which will be central in
chapter VII.

Assume that S1, · · · ,Sr are pavings in X1, · · · , Xr. Then we form their
product paving

S1 × · · · ×Sr := {S1 × · · · × Sr : Sl ∈ Sl ∀l = 1, · · · , r},

which is a paving in X1 × · · · ×Xr. Furthermore we form S1 ⊗ · · · ⊗Sr :=
Aσ(S1 × · · · ×Sr), which is called their product σ algebra in case that
S1, · · · ,Sr are σ algebras themselves. The next assertion is then obvious
but will be useful.

13.12. Remark. Let A be a σ algebra in X and T1, · · · ,Tr be pavings
in Y1, · · ·Yr. Assume that fl : X → Yl is measurable A → Tl ∀l = 1, · · · , r.
Then f = (f1, · · · , fr) : X → Y1× · · · ×Yr is measurable A→ T1⊗ · · · ⊗Tr.

In fact, for B = B1 × · · · ×Br ∈ T1 × · · · × Tr we have

f−1(B) =

r
⋂

l=1

f−1
l (Bl) ∈ A,

so that the assertion follows from 13.3. In the sequel we restrict ourselves
to products of two factors.

13.13. Exercise. Consider pavings S in X and T in Y . 1) We have
Y ∈ Tσ ⇒ S×Aσ(T) ⊂ S⊗T; and of course X ∈ Sσ ⇒ Aσ(S)×T ⊂ S⊗T

as well. Hint: Show that
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B := {B ⊂ Y : S ×B ∈ S⊗ T ∀S ∈ S} is a σ algebra in Y.

2) If X ∈ Sσ and Y ∈ Tσ then Aσ(S)⊗Aσ(T) = S⊗ T.

13.14. Consequence. For topological spaces X and Y we have

Bor(X)⊗ Bor(Y ) = Op(X)⊗Op(Y )

⊂ Aσ
(

Op(X × Y )
)

= Bor(X × Y ),

of course for the product topology on X × Y .

We shall see in 13.19 below that Bor(X)⊗Bor(Y ) and Bor(X×Y ) need
not be equal. But one has an important partial result.

13.15. Remark. For topological spaces X and Y with countable bases
we have Bor(X)⊗ Bor(Y ) = Bor(X × Y ).

Proof. Let {Al : l ∈ N} and {Bl : l ∈ N} be respective countable bases.
By the definition of the product topology then Op(X × Y ) = {Ap × Bq :
p, q ∈ N}σ ⊂ Op(X)⊗Op(Y ) and hence the assertion.

We come to the main consequence in the present context.

13.16. Proposition. Assume that the function H : R×R→ R is Borel
measurable (which in particular is true when R×R is an at most countable
union of Borel subsets on which H is continuous). Then

f, g : X → R measurable A⇒ H(f, g) : X → R is measurable A.

Proof. The assertion in brackets follows from 13.6 and 13.4.4). Now
(f, g) : X → R × R is measurable Bor(R) ⊗ Bor(R) by 13.12. Thus from
13.15 and 13.4.1) the assertion follows.

13.17. Examples. The functions H : H(u, v) = u
.
+. v and = uv ∀u, v ∈ R

are as required in 13.16, the product with the usual convention 0(±∞) := 0.
Therefore if f, g : X → R are measurable A then the functions f

.
+. g and

fg : X → R are measurable A as well.

13.18. Special Case. 1) A function f : X → [0,∞] is measurable A

iff f ∈ M(A). 2) A function f : X → R is measurable A iff the functions
f+, f− : X → [0,∞] are measurable A, that is iff f+, f− ∈ M(A).

Proof. 1) We have [f ≧ t] = X ∈ A for t ≦ 0, so that the assertion
follows from 13.5. 2) ⇒ follows from 13.9.1), and ⇐ follows from 13.17
since f = f+

.
+. (−f−). Note that the last implication also has an obvious

direct proof.

13.19. Exercise. This exercise serves to demonstrate the possible
smallness of Bor(X) ⊗ Bor(Y ). We follow Dudley [1989] exercise 4.1.11
and start with a set-theoretical result. 1) Let X be a set which has no in-
jective map into R. Then the diagonal D := {(x, x) : x ∈ X} ⊂ X ×X is
not a member of P(X) ⊗P(X). Hints: i) Let S be a paving in a nonvoid
set X. Then

Aσ(S) =
⋃

P

Aσ(P) over the countable pavings P ⊂ S.
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ii) Let S and T be pavings in nonvoid sets X and Y . Then

Aσ(S× T) =
⋃

P,Q

Aσ(P×Q)

over the countable pavings P ⊂ S and Q ⊂ T.

iii) Let P = {Pn : n ∈ N} be a countable paving in a nonvoid set X. Then
the subsets

P (S) :=
⋂

n∈S

Pn ∩
⋂

n/∈S

P ′
n for the subsets S ⊂ N

form a disjoint cover of X. iv) Let P := {Pn : n ∈ N} and Q := {Qn : n ∈ N}
be countable pavings in nonvoid sets X and Y . Assume the notation of iii).
Then each subset E ∈ Aσ(P ×Q) is a union of subsets P (S) ×Q(T ) with
S, T ∈ N. v) Consider iv) in the special case that X = Y and E := D ∈
Aσ(P×Q). Then each of the P (S) and Q(T ) is either void or a singleton.
vi) Deduce the assertion from ii) and v).

2) Let E be a nonvoid set. Prove with bare hands that there is no
injective map f : P(E)→ E. Hint: Consider

A := {u ∈ X : u = f(U) for some U ⊂ X with u /∈ U},
and a := f(A). Show that both a ∈ A and a /∈ A are impossible.

3) Assume that X carries a Hausdorff topology and has no injective map
into R. Then the diagonal D ⊂ X ×X is not in Bor(X)⊗ Bor(X). On the
other hand D is closed and hence in Bor(X ×X).

Integrable Functions and the Integral

In the present subsection we assume that A is a σ algebra in X and that
α : A → [0,∞] is a cmeasure. We are thus much more restrictive than
in sections 11 and 12. The basic link to these former sections is 13.18. We
recall from 12.11 that for f : X → [0,∞] measurable A, we have the common
integral

∫

fdα :=

∫

−fdα =

∫

∗

fdα ∈ [0,∞],

and its properties obtained in sections 11 and 12. In particular, both 11.11
with 11.1.3) and 12.3 show that the common integral is additive.

We define a function f : X → R to be integrable α iff it is measurable
A and has

∫

f+dα <∞ and
∫

f−dα <∞. Thus a function f : X → [0,∞]

is integrable α iff it is measurable A and has
∫

fdα < ∞. For f : X → R

integrable α we define the integral to be
∫

fdα :=
∫

f+dα−
∫

f−dα ∈ R. In
case f : X → [0,∞] it coincides with the previous one, so that the notation
is correct. We also write as usual

∫

fdα =
∫

f(x)dα(x) = · · · , in particular
when other dependences are involved.

13.20. Properties. 1) If f : X → R is integrable α then so is cf with
c ∈ R, and we have

∫

(cf)dα = c
∫

fdα. 2) If f, g : X → R are integrable α
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then so are f
.
+. g, and we have

∫

(f
.
+. g)dα =

∫

fdα +
∫

gdα.

3) If f :→ R is integrable α then so is |f |, and we have |
∫

fdα| ≦
∫

|f |dα.
Furthermore

∫

|f |dα ≦ (sup |f |)α
(

[f �= 0]
)

.

We isolate the relation on which the proof of 13.20.2) is based.

13.21. Exercise. For u, v, w ∈ R we have u
.
+. v = w ⇒ u+ + v+ + w− =

u− + v− + w+. We also have ⇐, except when u and v have opposite values
±∞.

Proof of 13.20. 1) The case c = 0 results from the convention 0(±∞) :=
0, and the case c > 0 from the respective previous assertions. The case
c = −1 is obvious. 2) The function f

.
+. g =: h is measurable A by 13.17. By

13.21 we have f+ + g+ + h− = f− + g− + h+. It follows that h+ ≦ f+ + g+

and h− ≦ f− + g−, so that h is integrable α. Then we obtain the final
relation, since the integral is known to be additive on M(A). 3) The first
assertion results from |f | = f+ + f−, and the second one from 12.7.

The next properties of the integral are based on the notion of a null set
for α, which in a much wider context had been considered in section 2. The
null sets for α are the sets N ∈ A with α(N) = 0. We note two obvious
facts. 1) Each subset of a null set which is in A is a null set as well. 2) Each
countable union of null sets is a null set as well.

13.22. Exercise. 1) If N ⊂ X is a null set for α then a subset A ⊂ N
need not be in A. 2) All subsets of null sets for α are in A (and hence are
null sets as well) iff the measure α is complete in the sense of section 10.

One says that a property of the points of X holds almost everywhere
with respect to α, in short ae α, iff the subset of those points in which it
is violated is contained in a null set for α. We see from the above that some
caution is required with this expression.

13.23. Properties. 1) Assume that f : X → R is integrable α. Then
[|f | = ∞] is a null set for α, that is f is finite ae α. 2) Assume that
f : X → [0,∞] is measurable A. Then

∫

fdα = 0⇔ [f > 0] is a null set for
α, that is f is = 0 ae α.

Proof. 1) From 11.8.5) we obtain

tα([|f | =∞]) ≦ tα([|f | ≧ t]) ≦

∫

|f |dα <∞ for real t > 0,

and hence the assertion for t → ∞. 2⇒) By 11.8.5) the [f ≧ t] ∀t > 0 are
null sets for α, and hence [f > 0] is a null set for α. 2⇐) follows from 12.7.

For the next proofs we introduce a useful new formation. If X is a
nonvoid set and A ⊂ X then we define, besides the characteristic function
χA of A, the function ωA : X → [0,∞] to be ωA(x) = ∞ for x ∈ A and
ωA(x) = 0 for x /∈ A. It will be applied as follows.
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13.24. Exercise. 1) Let A be a lattice in X with ∅ ∈ A. For A ⊂ X
then both ωA ∈ UM(A) and ωA ∈ LM(A) are equivalent to A ∈ A. For
α : A→ [0,∞] isotone with α(∅) = 0 then

∫

−ωAdα =

{

∞ if α(A) > 0
0 if α(A) = 0

}

.

2) Let A be a ring in X and α : A→ [0,∞] be a ccontent. For A ⊂ X then

∫

∗

ωAdα =

{

∞ if α⋆(A) > 0
0 if α⋆(A) = 0

}

.

3) We return to the context of the present subsection. For A ⊂ X then ωA

is measurable A iff A ∈ A, and ωA is integrable α iff A is a null set for α.
In the latter case

∫

ωAdα = 0.

13.25. Properties. 1) Let f, g : X → [0,∞] be measurable A. Then

f ≦ g ae α⇒
∫

fdα ≦

∫

gdα,

f = g ae α⇒
∫

fdα =

∫

gdα.

2) Let f, g : X → R be integrable α. Then

f ≦ g ae α⇒
∫

fdα ≦

∫

gdα,

f = g ae α⇒
∫

fdα =

∫

gdα.

3) Let f, g : X → R be integrable α with f ≦ g ae α and
∫

fdα =
∫

gdα.
Then f = g ae α.

4) Let f : X → R be measurable A and P,Q : X → R be integrable α with
P ≦ f ≦ Q ae α. Then f is integrable α. In particular P and Q can be
constants when α is finite.

Proof. 1) We have to prove the first assertion. The subset N := [f > g]
is in A by 13.8 and hence a null set for α. By definition f ≦ g + ωN . Since
the integral is isotone and additive on M(A) we obtain

∫

fdα ≦

∫

(g + ωN )dα =

∫

gdα +

∫

ωNdα =

∫

gdα.

2) If f ≦ g ae α then f+ ≦ g+ and g− ≦ f− ae α. Therefore
∫

fdα ≦
∫

gdα
by the definition of the integral and 1). 3) We know that N := [f > g] is
a null set for α, and by 13.8 the subset M := [f < g] is in A. Likewise for
t > 0 we have M(t) := [f + t ≦ g] ∈ A. Then f + tχM(t) ≦ g on N ′ and thus

ae α. This implies that tχM(t) ≦ f− + g+ ae α, and hence by 1) that χM(t)
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is integrable α. Then from 13.20.2) and 2) we obtain
∫

fdα + tα(M(t)) =

∫

fdα +

∫

tχM(t)dα

=

∫

(f + tχM(t))dα ≦

∫

gdα =

∫

fdα,

and hence α(M(t)) = 0. Now M(t) ↑M for t ↓ 0. It follows that α(M) = 0,
which is the assertion. 4) We have f+ ≦ Q+ and f− ≦ P− ae α. Thus the
assertion follows from 1).

We turn to the classical theorems due to Fatou, Beppo Levi, and Lebes-
gue on the σ continuity properties of the integral.

13.26. Theorem (Fatou). Let fn, f : X → [0,∞] ∀n ∈ N be measurable
A with f ≦ lim inf

n→∞
fn ae α. Then

∫

fdα ≦ lim inf
n→∞

∫

fndα.

Proof. Let N ⊂ X be a null set for α such that f ≦ lim inf
n→∞

fn outside of

N . Then the assertion follows from the previous version 12.9 applied to the
fn + ωN and to f + ωN .

13.27. Theorem (Beppo Levi). Let fn : X → R ∀n ∈ N be integrable
α and f : X → R be measurable A with fn ↑ f ae α. Thus

∫

fndα ↑
some c ∈] − ∞,∞] by 13.25.2). Then f is integrable α iff c ∈ R. In this
case

∫

fdα = c.

Proof. Let N ⊂ X be a null set for α such that fn ↑ f outside
of N ; by 13.23.1) we can also achieve that f1 is finite-valued outside of
N . Then fn

.
+(−f1)

.
+ωN ↑ f

.
+(−f1)

.
+ωN , and all these functions are in

M(A). Thus
∫ (

fn
.
+(−f1)

.
+ωN

)

dα ↑
∫ (

f
.
+(−f1)

.
+ωN

)

dα by the previous
version 12.10. By 13.20.2) the functions fn

.
+(−f1)

.
+ωN are integrable α and

∫ (

fn
.
+(−f1)

.
+ωN

)

dα =
∫

fndα−
∫

f1dα→ c−
∫

f1dα. It follows that

c =

∫

f1dα +

∫

(

f
.
+(−f1)

.
+ωN

)

dα.

Therefore c ∈ R iff f
.
+(−f1)

.
+ωN is integrable α; in view of f

.
+(−f1)

.
+ωN.

+f1 = f ae α it is equivalent that f is integrable α. In this case then

c =
∫

f1dα +
(

∫

fdα−
∫

f1dα
)

=
∫

fdα.

13.28. Theorem (Lebesgue). Let fn, f : X → R ∀n ∈ N be measurable
A with fn → f ae α. Assume that there exists an F : X → [0,∞] integrable
α such that |fn| ≦ F ae α ∀n ∈ N. Then all functions fn and f are integrable
α, and we have

∫

fndα→
∫

fdα.

Let us first remark that the two properties

(|fn| ≦ F ae α) ∀n ∈ N and (|fn| ≦ F ∀n ∈ N) ae α

are equivalent (why?). This is an example of a situation where the expression
ae α ought to be handled with caution.

Proof. From −F ≦ fn, f ≦ F ae α we see by 13.25.4) that all functions
fn and f are integrable α. We form the functions Pn := inf

l≧n
fl and Qn :=
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sup
l≧n

fl ∀n ∈ N, which by 13.9.1) are measurable A, and hence integrable α

since −F ≦ Pn ≦ Qn ≦ F ae α. Now Pn ↑ lim inf
l→∞

fl and Qn ↓ lim sup
l→∞

fl, and

hence Pn ↑ f and Qn ↓ f ae α. Thus
∫

Pndα ↑
∫

fdα and
∫

Qndα ↓
∫

fdα
by the Beppo Levi theorem. At last we have Pn ≦ fn ≦ Qn ∀n ∈ N. It
follows that

∫

fndα→
∫

fdα.

The last topic in the present subsection will be the extension to complex-
valued functions.

13.29. Remark. Assume that f : X → C, and write f = P + iQ with
P,Q : X → R. Then f is measurable A ⇔ P and Q are measurable A. In
this case the function |f | : X → [0,∞[ is measurable A as well.

Proof. The implication⇒ and the last assertion follow from 13.4.1) and
13.6, since the functions Re, Im, |·| : C→ R are continuous. The implication
⇐ follows from 13.12 and 13.15.

We define f = P + iQ : X → C to be integrable α iff P and Q are
integrable α, and then its integral to be

∫

fdα :=
∫

Pdα + i
∫

Qdα ∈ C.
The notions and results on the integral have often obvious counterparts for
complex-valued functions. We shall not enter into the details, except when
there is a particular reason. Here is one such case.

13.30. Remark. Assume that f : X → C is measurable A. Then f is
integrable α⇔ |f | is integrable α. In this case |

∫

fdα| ≦
∫

|f |dα.

Proof. Let f = P + iQ. The first assertion follows from |P |, |Q| ≦ |f | ≦
|P |+ |Q|. Assume now that f is integrable α. Fix a complex c with |c| = 1
such that |

∫

fdα| = c
∫

fdα =
∫

(cf)dα. Then
⏐

⏐

⏐

∫

fdα
⏐

⏐

⏐
=

∫

Re(cf)dα ≦

∫

|cf |dα =

∫

|f |dα,

as claimed.

Integration over Subsets

As before we fix a σ algebra A in X and a cmeasure α : A→ [0,∞].

Let T ⊂ X be a nonvoid subset. In 1.12 we defined the trace A ∩ T :=
{A ∩ T : A ∈ A} of A on T , which is a σ algebra as well. In case T ∈ A

we have A ∩ T = {A ∈ A : A ⊂ T}. It is then obvious that the restriction
α|A ∩ T : A ∩ T → [0,∞] is a cmeasure on A ∩ T ; it will be called the
restriction α|T of α to T. We recall one more fact from 13.4.3): If
f : X → R is measurable A then its restriction f |T : T → R is measurable
A ∩ T . We have the basic theorem which follows.

13.31. Theorem. Consider a nonvoid subset T ∈ A, and note that χT :
X → [0,∞[ is measurable A. 1) For f : X → [0,∞] measurable A we have

∫

(f |T )d(α|T ) =

∫

fχT dα =:

∫

T

fdα.
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2) For f : X → R measurable A we have f |T integrable α|T ⇔ fχT is
integrable α.Then

∫

(f |T )d(α|T ) =

∫

fχT dα =:

∫

T

fdα.

Under the equivalent conditions in 2) the function f is defined to be
integrable α over T . In both cases

∫

T

fdα is called the integral over T .

Furthermore we define
∫

∅

fdα :=
∫

fχ∅dα = 0 for all f : X → R measur-

able A.

Proof. 1) We have

∫

fχT dα =

∫

−fχT dα =

→∞
∫

0←

α
(

[fχT ≧ t]
)

dt

=

→∞
∫

0←

(α|T )
(

[f |T ≧ t]
)

dt =

∫

−(f |T )d(α|T ) =

∫

(f |T )d(α|T ).

2) f |T integrable α|T means by definition that
∫

(f |T )±d(α|T ) are both
finite. By 1) now

∫

(f |T )±d(α|T ) =

∫

(f±|T )d(α|T ) =

∫

f±χT dα =

∫

(fχT )±dα.

Thus we obtain all assertions.

The next result describes the integral as a function of its domain.

13.32. Theorem. Let f : X → [0,∞] be measurable A. Define ϑ : A→
[0,∞] to be

ϑ(A) =

∫

A

fdα =

∫

fχAdα for A ∈ A.

Then ϑ is a cmeasure. Furthermore α(A) = 0⇒ ϑ(A) = 0.

Proof. This follows from the fact that the integral is additive on M(A)
and from 13.23.2), and from the Beppo Levi theorem in the version 12.10.

We conclude with a special case. Let T ⊂ X be a nonvoid subset. For a
function f : T → R we define its null extension f ♮ : X → R to be f ♮|T = f
and f ♮|T ′ = 0. The next assertion is then an immediate consequence of
13.31.

13.33. Remark. Consider a nonvoid T ∈ A. For f : T → R measurable
A ∩ T then f ♮ : X → R is measurable A. 1) If f ≧ 0 and hence f ♮ ≧ 0 then

∫

fd(α|T ) =

∫

f ♮dα =

∫

T

f ♮dα.
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2) f is integrable α|T ⇔ f ♮ is integrable α. Then
∫

fd(α|T ) =

∫

f ♮dα =

∫

T

f ♮dα.

In clear situations it is common to abbreviate the restriction α|T as α
itself. Then 13.31 can be interpreted to say that this is a harmless step.
For example, in the next subsection we shall consider the restriction of the
Lebesgue measure Λ on R to a nondegenerate compact interval T = [a, b] ⊂
R. We shall then write Λ instead of Λ|T .

Comparison with the Riemann Integral

As announced we fix a compact interval T = [a, b] ⊂ R with real a < b.
Assume that f : T → R is a bounded function, and let denote α := inf f and
β := sup f . We start to recall the elementary Riemann integral. For each
subdivision t : a = t0 < t1 < · · · < tr = b of T we form δ(t) := max{tl−tl−1 :
l = 1, · · · , r} and the subintervals Tl := [tl−1, tl] (l = 1, · · · , r). We associate
with t

the lower sum S(f, t) :=
r

∑

l=1

inf(f |Tl)(tl − tl−1), and

the upper sum S(f, t) :=

r
∑

l=1

sup(f |Tl)(tl − tl−1).

One proves that S(f, s) ≦ S(f, t) for all s and t. Therefore

S(f) := sup
t

S(f, t) ≦ inf
t

S(f, t) =: S(f).

The function f is defined to be Riemann integrable iff S(f) = S(f). Then
the common value S(f) := S(f) = S(f) is called the Riemann integral
of f .

We next form the envelopes P,Q : T → R of f , defined to be

P (x) = lim inf
z→x

f(z) := sup
{

t ∈ R : f > t on some neighbourhood of x
}

,

Q(x) = lim sup
z→x

f(z) := inf
{

t ∈ R : f < t on some neighbourhood of x
}

.

Thus α ≦ P ≦ f ≦ Q ≦ β. It follows from the definition that

P is lower semicontinuous : [P > t] ⊂ T is relative open ∀t ∈ R,

Q is upper semicontinuous : [Q < t] ⊂ T is relative open ∀t ∈ R.

Furthermore we associate with each subdivision t of T the functions

Pt : Pt(x) = min
{

inf(f |Tl) : l = 1, · · · , r with x ∈ Tl

}

,

Qt : Qt(x) = max
{

sup(f |Tl) : l = 1, · · · , r with x ∈ Tl

}

for x ∈ T.

Thus α ≦ Pt ≦ Qt ≦ β, and the functions Pt and Qt are constant on the
open intervals int(Tl).
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13.34. Lemma. 1) Pt ≦ P and Q ≦ Qt. Therefore α ≦ Pt ≦ P ≦

f ≦ Q ≦ Qt ≦ β. 2) For each sequence (t(n))n of subdivisions t(n) with
δ(t(n))→ 0 we have the pointwise convergence Pt(n) → P and Qt(n) → Q.

Proof. We restrict ourselves to the assertions on P and the Pt. 1) Let
x ∈ T . Then there exists δ > 0 such that V(x, δ)∩T is contained in the union
of all Tl with x ∈ Tl. It follows that Pt(x) ≦ inf

(

f |V(x, δ) ∩ T
)

≦ P (x). 2)
Fix x ∈ T and t ∈ R with P (x) > t, and then δ > 0 with f |V(x, δ) ∩ T > t.
Now δ(t(n)) < δ for almost all n ∈ N; then the subdivision t(n) has all
its subintervals Tl with x ∈ Tl contained in V(x, δ) ∩ T . It follows that
Pt(n)(x) ≧ inf

(

f |V(x, δ) ∩ T
)

≧ t for these n ∈ N. Combined with 1) this
implies the assertion.

We turn to the connection with the restriction Λ|T := Λ of the Lebesgue
measure Λ := λσ|L = λ•|L on R. We see from the above that P and Q and
all Pt and Qt are measurable Bor(T ) = Bor(R) ∩ T , and hence integrable Λ
because they are bounded. By definition we have

∫

PtdΛ =

r
∑

l=1

∫

Ptχint(Tl)dΛ =

r
∑

l=1

inf(f |Tl)(tl − tl−1) = S(f, t).

Thus from 13.34 and the Lebesgue theorem 13.28 we obtain
∫

PdΛ = S(f).

13.35. Proposition. For each bounded function f : T → R the en-
velopes P,Q : T → R are measurable Bor(T ) and integrable Λ, and we have

∫

PdΛ = S(f) and

∫

QdΛ = S(f).

We are now close to a famous characterization of the Riemann integrable
functions.

13.36. Remark. For x ∈ T we have P (x) = Q(x)⇔ f is continuous in
x.

Proof. ⇐). For each ε > 0 we have f(x) − ε < f < f(x) + ε on some
neighbourhood of x and hence f(x)− ε ≦ P (x) and Q(x) ≦ f(x) + ε. Thus
Q(x) ≦ f(x) ≦ P (x) and hence the assertion. ⇒) For each ε > 0 we have
f(x)− ε = P (x)− ε < f < Q(x) + ε = f(x) + ε on some neighbourhood of
x. Thus f is continuous in x.

13.37. Theorem. A bounded function f : T → R is Riemann integrable
iff it is continuous ae Λ. In this case f is measurable L ∩ T and integrable
Λ|T =: Λ with S(f) =

∫

fdΛ.

Proof. 1) We have the equivalences

f is Riemann integrable ⇔
∫

PdΛ =

∫

QdΛ by 13.35

⇔ P = Q ae Λ by 13.25.2)3)

⇔ f continuous ae Λ by 13.36.
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We then have S(f) =
∫

PdΛ =
∫

QdΛ. 2) In this case we have P ♮ ≦ f ♮ ≦ Q♮

and P ♮ = f ♮ = Q♮ ae Λ on R. For t ∈ R therefore [P ♮ ≧ t] ⊂ [f ♮ ≧ t] ⊂
[Q♮ ≧ t], where [P ♮ ≧ t] and [Q♮ ≧ t] are in L with Λ([P ♮ ≧ t]) = Λ([Q♮ ≧

t]) <∞. Since Λ is complete by 10.14 it follows that [f ♮ ≧ t] ∈ L and hence
[f ≧ t] ∈ L ∩ T . Thus f is measurable L ∩ T . The proof is complete.

13.38. Example. It is a classical result that a Riemann integrable
bounded function f : T → R need not be measurable Bor(T ) = Bor(R)∩ T .
In order to present an example we assume without proof another classical
result: There exists a compact subset K ⊂ T with Λ(K) = λ(K) = 0 which
contains subsets A /∈ Bor(T ) (K can be taken as the so-called Cantor set).
In fact, the function χA is then Riemann integrable, since it is continuous
in the points of T \K, but it is not measurable Bor(T ).

We conclude the section with the example announced in connection with
9.24. We construct for • = στ an inner • premeasure ϕ : S → [0,∞[ on a
lattice S with ∅ ∈ S and ϕ(∅) = 0 such that φ := ϕ•|C(ϕ•) is not outer
regular (S⊤S•)⊥ at S• and that X ∈ [φ <∞]σ.

13.39. Exercise. Let X = [0, 1]. We form the function R : R(x) = 1/x
for 0 < x ≦ 1 and R(0) = 0. Define S to consist of all closed subsets
S ⊂ X with

∫

S

RdΛ < ∞, and ϕ : S → [0,∞[ to be ϕ(S) =
∫

S

RdΛ for

S ∈ S. 1) S is a lattice with ∅ ∈ S, and ϕ is isotone and modular
with ϕ(∅) = 0. 2) ϕ is upward σ continuous and hence inner ⋆ tight.
Hint: 7.10.2). 3) ϕ is τ continuous at ∅. Hint: 6.34. Therefore ϕ is
an inner • premeasure. Define φ := ϕ•|C(ϕ•). 4) S = S• and hence
ϕ⋆ = ϕ•. 5) S⊤S = Cl(X) = Comp(X) and hence (S⊤S)⊥ = Op(X).
Therefore Bor(X) ⊂ C(ϕ•). 6) φ(A) =

∫

A

RdΛ for all A ∈ Bor(X). 7) All

U ∈ Op(X) with 0 ∈ U have φ(U) = ∞. Therefore φ is not outer regular
(S⊤S)⊥ = Op(X) at {0}. 8) X ∈ [φ < ∞]σ. It follows that ϕ is as
required.





CHAPTER V

The Daniell-Stone and Riesz
Representation Theorems

The present chapter contains the most important consequences of the
extension theories of chapter II. We shall obtain the representation theorems
of Daniell-Stone and Frédéric Riesz in the spirit and scope of the extension
theories. The Daniell-Stone theorem will be established in versions • = ⋆στ
as above, and based on inner regularity this time. The Riesz theorem will
be a direct specialization of the case • = τ . It will involve all Borel-Radon
measures on all Hausdorff topological spaces. We have sketched all this in
the introduction. A substantial tool will be the combination of the horizontal
and vertical integrals developed in sections 11 and 12.

14. Elementary Integrals on Lattice Cones

After an introduction the present section defines the elementary integrals
on lattice cones. These are the functionals which are to be represented. Then
several kinds of representations will be introduced.

Introduction

For nonvoid sets X and Y we let as usual Y X consist of all functions X →
Y . On defines a subset H ⊂ R

X
to be a lattice iff f, g ∈ H ⇒ f ∨ g,

f ∧ g ∈ H. If H ⊂ RX is a linear subspace then either condition suffices,
and one speaks of a lattice subspace (or a vector lattice). Justified by

success, we define H ⊂ R
X

to be Stonean iff

f ∈ H ⇒ f ∧ t, (f − t)+ ∈ H for all real t > 0.

If H ⊂ RX is a linear subspace then in view of f = f ∧ t + (f − t)+ this
means that f ∈ H ⇒ f ∧ t ∈ H ∀t > 0, or that f ∈ H ⇒ f ∧ 1 ∈ H.

We start to recall the traditional Daniell-Stone and Riesz representation
theorems; see for example Dudley [1989] and Bauer [1992]. We note that a
linear functional I : H → R on a linear subspace H ⊂ RX is isotone iff it is
positive, that is f ≧ 0⇒ I(f) ≧ 0 for f ∈ H.

14.1. Theorem (Traditional Daniell-Stone Theorem). Let I : H → R

be a positive linear functional on a Stonean lattice subspace H ⊂ RX . Then
the following are equivalent.
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i) There exists a cmeasure α : A → [0,∞] on a σ algebra A in X which
represents I, that is all f ∈ H are integrable α with I(f) =

∫

fdα.

ii) I is σ continuous at 0, that is for each sequence (fl)l in H with pointwise
fl ↓ 0 one has I(fl) ↓ 0.

Note that i)⇒ii) follows from the Beppo Levi theorem 13.27.

The above theorem has a certain usefulness, because it ensures for exam-
ple that the classical σ continuity properties 13.26 and 13.28 of the integral
hold true for I. But in principle its deficiencies are like those of the main
extension theorem in traditional abstract measure theory as discussed in the
introduction: There is no room for a nonsequential version, and above all
there is no room for the aspect of regularity. These are basic points in the
traditional Riesz theorem to which we turn next.

For a Hausdorff topological space X we define CK(X, R) to consist of
all continuous functions f ∈ C(X, R) such that f vanishes outside of some
compact subset of X (which of course can depend on f). Note that CK(X, R)
is a Stonean lattice subspace. Also note that by 13.25.4) the functions
f ∈ CK(X, R) are integrable with respect to each Borel-Radon measure
α : Bor(X)→ [0,∞].

14.2. Theorem (Traditional Riesz Theorem). Let X be a locally compact
Hausdorff topological space. There is a one-to-one correspondence between
the positive linear functionals I : CK(X, R)→ R and the Borel-Radon mea-
sures α : Bor(X)→ [0,∞]. The correspondence is

I(f) =

∫

fdα for all f ∈ CK(X, R).

This fundamental result will be a direct specialization of our Riesz rep-
resentation theorem in section 16. We add that it is not hard to obtain a
direct proof for it from what we have developed so far. This will be done
in form of an exercise at the end of the present subsection, also because it
offers an occasion to recall some topological facts.

It is obvious that the traditional Daniell-Stone theorem is of no visible
use for the proof of the traditional Riesz theorem. This would require a
version of the Daniell-Stone theorem which is based on regularity. The
extension theories of chapter II evoke the intuitive impression that such
versions must not be based on lattice subspaces H ⊂ RX of functions X →
R, but rather on lattice cones, and hence on lattice cones E ⊂ [0,∞[X of
functions X → [0,∞[, and on the appropriate kind of functionals I : E →
[0,∞[. The present chapter will confirm this impression.

There is another reason to pass from lattice subspaces to lattice cones,
which comes from the Riesz theorem itself. In present-day analysis one is
often forced to exceed the frame of locally compact Hausdorff topological
spaces. Since the Borel-Radon measures have been realized as the funda-
mental class of cmeasures on the class of all Hausdorff topological spaces, it
is desirable to have the Riesz representation theorem in this comprehensive
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frame. But then its traditional version breaks down as soon as one leaves
the class of locally compact Hausdorff spaces. The reason is that the lattice
subspace CK(X, R) becomes too small. For example, it is the null subspace
in case that no nonvoid open subset of X is contained in a compact sub-
set; in this context note exercise 14.3 below. Now on each Hausdorff space
X there is a wealth of semicontinuous real-valued functions which vanish
outside of compact subsets, for example the characteristic functions χK of
the compact subsets K ⊂ X and their scalar multiples. Therefore it seems
natural to base the extension of the Riesz theorem on the upper semicontin-
uous or the lower semicontinuous functions on X, of course in such a manner
that the traditional Riesz theorem is contained in the new result. But these
function classes are lattice cones and as a rule not lattice subspaces. Thus
we arrive at lattice cones once more. As above it is natural to work with
lattice cones E ⊂ [0,∞[X of functions X → [0,∞[ which vanish outside of
compact subsets of X. This forces us to choose the upper semicontinuous
functions; see exercise 14.4 below.

Thus we have obtained the frame for the present chapter. We shall see
that the aspects of regularity and of • = στ continuity will turn up in a
natural manner, to an extent that we shall obtain a complete counterpart
to the extension theories of chapter II, but this time restricted to the inner
situation as remarked above. We shall first consider the cases • = στ . There
is also a Daniell-Stone theorem for • = ⋆, but in this case the complete
answer will be different. It will be postponed until section 17.

14.3. Exercise. Let X be an infinite-dimensional Hausdorff topological
vector space. Then no nonvoid open subset of X is contained in a compact
subset.

14.4. Exercise. Let X be a Hausdorff topological space such that no
nonvoid open subset of X is contained in a compact subset. If f ∈
USC(X, R)/LSC(X, R) vanishes outside of some compact subset of X then
f ≧ 0/f ≦ 0.

14.5. Exercise. The aim of this exercise is a direct proof of the tra-
ditional Riesz representation theorem 14.2. We assume that X is a lo-
cally compact Hausdorff topological space. 1) X is completely regular.
Hint: The one-point compactification of X is normal. 2) Let K ⊂ X be
compact nonvoid. Then there exists a function f ∈ CK(X, R) such that
χK ≦ f ≦ 1. 3) Define USCK(X, [−∞,∞[) to consist of all functions
f ∈ USC(X, [−∞,∞[) such that f vanishes outside of some compact subset
of X. For each f ∈ USCK(X, [−∞,∞[) then {u ∈ CK(X, R) : u ≧ f} is
nonvoid and has the pointwise infimum f . Hint: Combine 11.21.1) with
2). 4) Let α : Bor(X) → [0,∞] be a Borel-Radon measure on X. Define
I : CK(X, R)→ R to be I(f) =

∫

fdα ∀f ∈ CK(X, R). Then I is an isotone
linear functional. Furthermore

∫

fdα = inf{I(u) : u ∈ CK(X, R) with u ≧ f} ∀f ∈ USCK(X, [0,∞[).



146 V. THE DANIELL-STONE AND RIESZ REPRESENTATION THEOREMS

Hint: 11.20. In particular

α(K) = inf{I(u) : u ∈ CK(X, R) with u ≧ χK} ∀ compact K ⊂ X.

Therefore the map α �→ I is injective.

5) The Dini Theorem: Let K be a compact topological space. Assume
that M ⊂ USC(K, [−∞,∞[) is nonvoid and downward directed ↓ F : K →
[−∞,∞[, so that F ∈ USC(K, [−∞,∞[) as well. Then inf{max f : f ∈M}
= max F .

For the remainder of the exercise we assume that I : CK(X, R)→ R is a
positive linear functional. We define its extension I : USCK(X, [−∞,∞[)→
[−∞,∞[ to be

I(f) = inf{I(u) : u ∈ CK(X, R) with u ≧ f} ∀f ∈ USCK(X, [−∞,∞[).

6) USCK(X, [−∞,∞[) is a lattice cone. The extended I is isotone and
sublinear. 7) Assume that M ⊂ USCK(X, [−∞,∞[) is nonvoid and down-
ward directed ↓ F ∈ USCK(X, [−∞,∞[). Then inf{I(f) : f ∈ M} =
I(F ). Hint: Fix u ∈ CK(X, R) with u ≧ F and P ∈ M , and apply 5)
to {(f − u)+ : f ∈ M with f ≦ P}. Then use 2). 8) The extension
I : USCK(X, [−∞,∞[) → [−∞,∞[ is additive. Hint: Use 7). 9) Define
the set function ϕ : K = Comp(X)→ [0,∞[ to be ϕ(K) = I(χK) for K ∈ K.
Then ϕ is a Radon premeasure. Hint: Use 9.6. Let α := ϕ•|Bor(X) denote
its Borel-Radon measure. 10) We have I(f) =

∫

fdα for all f ∈ CK(X, R).
Hint: Use 11.6 to prove I(f) =

∫

−fdϕ for 0 ≦ f ∈ CK(X, R).

Lattice Cones

The present subsection starts with a few remarks and examples on lattice
cones, and then turns to a fundamental definition. Let X be a nonvoid set.

For a subset M ⊂ R
X

we write M+ := {f ∈M : f ≧ 0}. In this connection

recall the notations f+ := f ∨ 0 and f− := (−f) ∨ 0 for f ∈ R
X

.

14.6. Exercise. If E ⊂ [0,∞[X is a lattice cone then E − E ⊂ RX is a
lattice subspace. If in addition E is Stonean then E −E is Stonean as well.

14.7. Remark. For a lattice cone E ⊂ [0,∞[X the following are equiv-
alent.

0) If u, v ∈ E with u ≦ v then v − u ∈ E.
1) There exists a linear subspace H ⊂ RX with E = H+.
2) There exists a lattice subspace H ⊂ RX with E = H+.

In this case there exists a unique lattice subspace H ⊂ RX with E = H+;
and this is H = E − E.

Proof. If H ⊂ RX is a lattice subspace with E = H+ then H = H+ −
H+ = E − E. i) The implication 2⇒1) is obvious. ii) To see 1)⇒0) let
u, v ∈ E with u ≦ v. Then v−u is ∈ H and ≧ 0, and hence v−u ∈ H+ = E.
iii) To see 0)⇒2) we have to show that E = (E − E)+. But E ⊂ (E − E)+

is obvious, and (E − E)+ ⊂ E is a mere transcription of 0).
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The lattice cones E ⊂ [0,∞[X which fulfil the equivalent conditions of
14.7 are called the primitive ones. It is of utmost importance that the
present chapter is not restricted to primitive lattice cones, which in essence
means to lattice subspaces.

14.8. Examples. Let X be a topological space. We introduce some
new notations. 1) C(X) := C(X, R) is a lattice subspace, and C+(X) :=
C(X, [0,∞[) is a primitive lattice cone. USC(X) := USC(X, [−∞,∞[) and
USC+(X) := USC(X, [0,∞[) are lattice cones which as a rule are not primi-
tive. It is a nontrivial little proof that USC(X) is stable under addition. All
these function classes are Stonean. We recall from 11.19 that USC(X, [0,∞])
= UM(Cl(X)) and hence USC+(X) = UM(Cl(X)) ∩ [0,∞[X . 2) Let X
be Hausdorff. CK(X) := CK(X, R) is a lattice subspace, and CK+(X) :=
CK(X, [0,∞[) is a primitive lattice cone. The obvious USCK(X) :=
USCK(X, [−∞,∞[) and USCK+(X) := USCK(X, [0,∞[) are lattice cones
which as a rule are not primitive. All these function classes are Stonean.
There is one more class which will be of particular importance. From

UM(Comp(X)) = {f ∈ [0,∞]X : [f ≧ t] compact ∀0 < t <∞},

as defined in section 11, we derive the function class

UMK(X) : = UM(Comp(X)) ∩ [0,∞[X

= {f ∈ [0,∞[X : [f ≧ t] compact ∀0 < t <∞}.

It follows that USCK+(X) ⊂ UMK(X) ⊂ USC+(X). UMK(X) is a lattice
cone which is Stonean and as a rule not primitive as well. We think of the
functions f ∈ UMK(X) as to be concentrated on the compact subsets of X.

14.9. Exercise. 1) Give an example of a lattice cone E ⊂ [0,∞[X which
is not Stonean. 2) Give an example of a cone E ⊂ [0,∞[X which is Stonean
but not a lattice. Hint: Let X = N. Define E to consist of the sequences
u = (ul)l ∈ [0,∞[N with ul → 0 for l → ∞, such that either ul = 0 for

almost all l ∈ N or
∞
∑

l=1

ul =∞.

14.10. Remark. Let E ⊂ [0,∞[X be a Stonean lattice cone. Then f ∧
t− f ∧ s ∈ E for all f ∈ E and 0 < s < t.

Proof. We have f ∧ t− f ∧ s = f ∧ t− (f ∧ t) ∧ s = (f ∧ t− s)+ ∈ E.

We come to the most important notion of the subsection. For a lattice
cone E ⊂ [0,∞[X we define the two natural pavings

t(E) := {A ⊂ X : χA ∈ E},
T(E) := {[f ≧ t] : f ∈ E and t > 0} = {[f ≧ 1] : f ∈ E}.

We list some properties which are all obvious. The third one will soon
become relevant when we need the horizontal integral of section 11 for the
members of E.
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14.11. Properties. 1) t(E) and T(E) are lattices in X with ∅ ∈ t(E) ⊂
T(E). 2) If E is Stonean then T(E) = {[f = 1] : f ∈ E with f ≦ 1}. 3) Let
S be a lattice in X with ∅ ∈ S. Then E ⊂ UM(S)⇔ T(E) ⊂ S.

14.12. Exercise. 1) Consider E = CK+(R) on X = R. Then t(E) =
{∅} and T(E) = Comp(R). Thus t(E) and T(E) can be far apart. 2) Let
X be a topological space. For E = USC+(X) then t(E) = T(E) = Cl(X).
3) Let X be a Hausdorff topological space. For E = USCK+(X) and E =
UMK(X) then t(E) = T(E) = Comp(X).

Elementary Integrals

Let E ⊂ [0,∞[X be a lattice cone of functions X → [0,∞[. We define an
elementary integral on E to be a functional I : E → [0,∞[ which is
positive-linear, that is additive and fulfils I(tf) = tI(f) for all f ∈ E and
t ≧ 0, and isotone. These are the natural functionals to be considered on a
lattice cone.

14.13. Exercise. Let E ⊂ [0,∞[X be a primitive lattice cone and H :=
E − E. Then there is a one-to-one correspondence between the elementary
integrals I : E → [0,∞[ and the isotone linear functionals L : H → R. The
correspondence is I = L|E.

Let I : E → [0,∞[ be an elementary integral. We start to consider the
most naive type of integral representations of I. Let ϕ : T(E) → [0,∞]
be an isotone set function with ϕ(∅) = 0. We have seen in 14.11.3) that
E ⊂ UM(T(E)). Therefore the horizontal integral

∫

−fdϕ is defined for all
f ∈ E. We define ϕ to be a source of I iff I(f) =

∫

−fdϕ for all f ∈ E.
Then I <∞ enforces that ϕ : T(E)→ [0,∞[.

These sources of I are of course far from those representations which we
want to obtain. But on the other hand we shall see that the sources of I
have a natural and simple characterization.

To this end we define the crude outer envelope I⋆ : [0,∞]X → [0,∞]
and the crude inner envelope I⋆ : [0,∞]X → [0,∞] of I to be

I⋆(f) = inf{I(u) : u ∈ E with u ≧ f} and

I⋆(f) = sup{I(u) : u ∈ E with u ≦ f} for f ∈ [0,∞]X .

We list some simple properties.

14.14. Properties. 1) I⋆ and I⋆ are isotone. 2) I⋆ ≦ I⋆ and I⋆|E =
I⋆|E = I. 3) I⋆ is sublinear, and I⋆ is superlinear. 4) For f, g ∈ [0,∞]X we
have

I⋆(f ∨ g) + I⋆(f ∧ g) ≦ I⋆(f) + I⋆(g) and

I⋆(f ∨ g) + I⋆(f ∧ g) ≧ I⋆(f) + I⋆(g).

5) For A ∈ T(E) we have I⋆(χA) ≦ I⋆(χA) <∞.
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Proof. All properties except the last one are obvious. To see 5) note
that A ∈ T(E) means that A = [f ≧ 1] for some f ∈ E. Then χA ≦ f and
hence I⋆(χA) ≦ I(f) <∞.

The two envelopes I⋆ and I⋆ induce the two set functions Δ : T(E) →
[0,∞[ and ∇ : T(E)→ [0,∞[, defined to be

Δ(A) = I⋆(χA) and ∇(A) = I⋆(χA) for A ∈ T(E).

Their finiteness follows from 14.14.5). Once more we list some simple prop-
erties.

14.15. Properties. 1) Δ and ∇ are isotone. 2) ∇ ≦ Δ and ∇(A) =
Δ(A) = I(χA) for A ∈ t(E). 3) Δ is submodular, and ∇ is supermodular.

We come to the representation theorem announced above. It is in essence
due to Greco [1982]; see also Denneberg [1994] chapter 13.

14.16. Theorem. Let I : E → [0,∞[ be an elementary integral on the
Stonean lattice cone E ⊂ [0,∞[X . 0) I admits sources iff it has the trunca-
tion properties

(0) I(f ∧ t) ↓ 0 for t ↓ 0 and I(f ∧ t) ↑ I(f) for t ↑ ∞ for all f ∈ E.

1) Assume that I fulfils (0). Then an isotone set function ϕ : T(E)→ [0,∞[
is a source of I iff ∇ ≦ ϕ ≦ Δ. 2) If ϕ : T(E)→ [0,∞[ is a source of I and
downward σ continuous then ϕ = Δ.

Proof. i) Assume that ϕ : T(E)→ [0,∞[ is a source of I, that is

I(f) =

∫

−fdϕ =

→∞
∫

0←

ϕ([f ≧ s])ds for all f ∈ E.

Since for t > 0 we have [f ∧ t ≧ s] = [f ≧ s] when s ≦ t and [f ∧ t ≧ s] = ∅

when s > t, we conclude that

I(f ∧ t) =

t
∫

0←

ϕ([f ≧ s])ds.

It follows that I has the truncation properties (0). ii) Assume now that I
fulfils (0). We claim that Δ and ∇ are sources of I. Thus all isotone set
functions ϕ : T(E) → [0,∞[ with ∇ ≦ ϕ ≦ Δ will be sources of I as well.
In fact, for f ∈ E and 0 < s < t one verifies that

χ[f≧t] ≦
1

t− s

(

f ∧ t− f ∧ s
)

≦ χ[f≧s].

Also the middle term is in E by 14.10, and hence we have

I
( 1

t− s
(f ∧ t− f ∧ s)

)

=
1

t− s

(

I(f ∧ t)− I(f ∧ s)
)

.
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It follows that

Δ([f ≧ t]) = I⋆
(

χ[f≧t]

)

≦
1

t− s

(

I(f ∧ t)− I(f ∧ s)
)

≦ I⋆

(

χ[f≧s]

)

= ∇([f ≧ s]).

Thus for 0 < a = t(0) < t(1) < · · · < t(r) = b <∞ we obtain

r
∑

l=1

(

t(l)− t(l − 1)
)

Δ([f ≧ t(l)]) ≦ I(f ∧ b)− I(f ∧ a)

≦

r
∑

l=1

(

t(l)− t(l − 1)
)

∇([f ≧ t(l − 1)]).

The definition of the Riemann integral implies that

b
∫

a

Δ([f ≧ t])dt ≦ I(f ∧ b)− I(f ∧ a) ≦

b
∫

a

∇([f ≧ t])dt,

and hence = both times. For a ↓ 0 and b ↑ ∞ we obtain

I(f) =

→∞
∫

0←

Δ([f ≧ t])dt =

→∞
∫

0←

∇([f ≧ t])dt,

as claimed. iii) Next assume that ϕ : T(E) → [0,∞[ is a source of I. Fix
A ∈ T(E). For f ∈ E with f ≦ χA we have [f ≧ t] ⊂ A when t > 0
and [f ≧ t] = ∅ when t > 1, and hence I(f) ≦ ϕ(A). Therefore ∇(A) =
I⋆(χA) ≦ ϕ(A). Likewise for f ∈ E with f ≧ χA we have [f ≧ t] ⊃ A when
0 < t ≦ 1, and hence I(f) ≧ ϕ(A). Therefore Δ(A) = I⋆(χA) ≧ ϕ(A).
Thus we have proved ∇ ≦ ϕ ≦ Δ. iv) It remains to prove 2). Assume that
ϕ : T(E)→ [0,∞[ is a source of I which is downward σ continuous. We fix
f ∈ E and form

P : P (t) = ϕ([f ≧ t]) and Q : Q(t) = Δ([f ≧ t]) for t > 0.

Then P and Q are monotone decreasing with P ≦ Q. We know from i) that

t
∫

0←

P (s)ds =

t
∫

0←

Q(s)ds = I(f ∧ t) for t > 0.

This implies that P (t−) = Q(t−) ≧ Q(t) for t > 0. Now by assumption the
function P is left continuous. Thus P (t) ≧ Q(t) and hence P (t) = Q(t) for
t > 0. It follows that ϕ = Δ. The proof is complete.

14.17. Consequence. Let I : E → [0,∞[ be an elementary integral on
the Stonean lattice cone E ⊂ [0,∞[X which fulfils (0). Then

I⋆(f) =

∫

−fd∇⋆ for all f ∈ [0,∞]X .
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Proof of ≦. From 14.16.1) we see for u ∈ E with u ≦ f that I(u) =
∫

−ud∇ =
∫

−ud∇⋆ ≦
∫

−fd∇⋆. It follows that I⋆(f) ≦
∫

−fd∇⋆. Proof of ≧. Fix

f ∈ [0,∞]X . By 11.16 we have
∫

−fd∇⋆ = sup{
∫

−ud∇ : u ∈ S(T(E)) with u ≦ f}.

Now for u ∈ S(T(E)), represented after 11.4.iv) in the form

u =
r

∑

l=1

tlχA(l) with A(1) ⊃ · · · ⊃ A(r) in T(E) and t1, · · · , tr > 0,

we have from 11.8.1) and 14.14.3)

∫

−ud∇ =

r
∑

l=1

tl∇(A(l)) =

r
∑

l=1

tlI⋆(χA(l)) ≦ I⋆

(

r
∑

l=1

tlχA(l)

)

= I⋆(u).

It follows that
∫

−fd∇⋆ ≦ I⋆(f). The proof is complete.

The last two results will be the basis for the future representation the-
orems. But the main work is still to be done in the subsequent sections. It
will be prepared in the next subsection with the definition of the relevant
type of representations.

14.18. Exercise. Let S be a lattice in X with ∅ ∈ S, and take E =
S(S) as defined after 11.4. 1) E is a Stonean lattice cone. 2) t(E) =
T(E) = S. 3) Each elementary integral I : E → [0,∞[ fulfils (0). 4) Let
I : E → [0,∞[ be an elementary integral, and define ϕ : ϕ(A) = I(χA) for
A ∈ S. Then ϕ : S → [0,∞[ is isotone and modular with ϕ(∅) = 0, and
is the unique source of I. 5) Let ϕ : S → [0,∞[ be isotone and modular
with ϕ(∅) = 0, and define I : I(f) =

∫

−fdϕ for f ∈ E = S(S). Then
I : E → [0,∞[ is an elementary integral, and of course ϕ(A) = I(χA) for
A ∈ S. Hint: 11.11. 6) The two maps defined in 4)5) constitute a one-to-
one correspondence between the elementary integrals I : E = S(S)→ [0,∞[
and the isotone and modular set functions ϕ : S→ [0,∞[ with ϕ(∅) = 0.

Representations of Elementary Integrals

We fix a lattice cone E ⊂ [0,∞[X of functions X → [0,∞[ on a nonvoid
set X. Let I : E → [0,∞[ be an elementary integral. We start with the
crude notion of a representation. We define a representation of I to be a
ccontent α : A→ [0,∞] on some A ⊂ P(X) such that

E ⊂ UM(A) and I(f) =

∫

−fdα =

∫

∗

fdα for all f ∈ E;

the two integrals are equal by 12.11. By 14.11.3) and 11.15 the definition
means that

T(E) ⊂ A and α|T(E) is a source of I,
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in short that α is an extension of some source of I. When α : A→ [0,∞] is
a cmeasure on a σ algebra A then the definition means that all f ∈ E are
measurable A with I(f) =

∫

fdα.

We obtain an existence result which looks perfect, but as we shall see is
not.

14.19. Proposition. If E is Stonean and I fulfils (0) then I has at least
one representation.

Proof. From 11.14.2), which combines the basic fact 11.11 with the
Hahn-Banach type result 11.14.1), and from 14.15 we see that there exists
an isotone and modular set function ϕ : T(E) → [0,∞[ with ∇ ≦ ϕ ≦ Δ.
By 14.16.1) ϕ is a source of I. Then the Smiley-Horn-Tarski theorem 3.4
asserts that ϕ can be extended to a ccontent.

Thus the result is a counterpart of the Smiley-Horn-Tarski theorem 3.4.
With this theorem it shares a disastrous defect: When I is downward σ
continuous in the natural sense then it need not have representations which
are almost downward σ continuous, that means representations which are
cmeasures. It suffices to return to the old counterexample.

14.20. Example. Consider the set function ϕ : S → [0,∞[ of example
3.11. By 14.18 there is an elementary integral I : E → [0,∞[ with (0) on
the Stonean lattice cone E = S(S) such that ϕ is the unique source of I.
Since ϕ is downward • continuous for • = στ it follows from 11.17 that I is
downward • continuous in the sense of that theorem. But we know that ϕ
cannot be extended to a cmeasure.

To be sure, the desired existence of a cmeasure representation holds true
in case that the Stonean lattice cone E is primitive. This is the traditional
Daniell-Stone theorem 14.1, combined with 14.6 and 14.13. It is the precise
counterpart to the traditional main theorem at the outset of the present
text, which said that the then desired existence of a cmeasure extension
holds true in case that the initial lattice S is a ring. Herewith we were back
to the frame which we want to surpass. We have to conclude that our basic
notion of a representation must be another one, and must be of the same
kind as before. At this point the natural definition is as follows.

Definition. Let I : E → [0,∞[ be an elementary integral. For• = ⋆στ
we define a • representation of I to be a representation α : A → [0,∞]
of I such that α is an inner • extension of α|T(E). We define I to be a •
preintegral iff it admits • representations.

This time it is redundant to use the word inner, because there will
be no outer counterpart. Our aim is to characterize those I which are
• preintegrals, and then to describe all • representations of I. The first
formulation below is not more than a combination of the definitions which
are involved.

14.21. Proposition. Let I : E → [0,∞[ be an elementary integral and
• = ⋆στ . Then I is a • preintegral iff it has sources which are inner •
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premeasures. In this case the • representations of I coincide with the inner
• extensions of those sources of I which are inner • premeasures.

14.22. Example. An elementary integral I : E → [0,∞[ with (0) on a
Stonean lattice cone E can be without • representations for all • = ⋆στ ,
even when I has a unique source and this source can be extended to a
cmeasure which is almost downward τ continuous. As an example consider
the elementary integral I : E → [0,∞[ from 14.20 and its unique source
ϕ : S → [0,∞[. We know from 3.11 that ϕ is downward τ continuous, and
one verifies that it is not inner τ tight. Hence ϕ is not an inner • premeasure
for all • = ⋆στ .

Now we have to realize that the cases • = στ and • = ⋆ fall far apart.
In fact, we see from 14.16.2) that each source of an elementary integral
I : E → [0,∞[ on a Stonean lattice cone E which is an inner • premeasure
for • = στ must be = Δ, while this cannot be concluded for • = ⋆. Thus
we obtain what follows.

14.23. Theorem (for • = στ). Let I : E → [0,∞[ be an elementary
integral on a Stonean lattice cone E ⊂ [0,∞[X . Then I is a • preintegral iff
I fulfils (0) and Δ : T(E) → [0,∞[ is an inner • premeasure. In this case
the • representations of I are the inner • extensions of Δ. In particular I
has the unique maximal • representation α := Δ•|C(Δ•).

The next section will be devoted to the cases • = στ . We see that its
prime task will be to characterize those elementary integrals I : E → [0,∞[
which fulfil (0) and for which Δ : T(E) → [0,∞[ is an inner • premeasure.
Then section 17 will be devoted to the case • = ⋆ which will be quite
different. In fact, we present on the spot an example of an elementary
integral I : E → [0,∞[ on a Stonean E with two different sources �= Δ
which are both inner ⋆ premeasures.

14.24. Exercise. Let X = N ∪ (−N). We define E ⊂ [0,∞[X to con-
sist of all functions f : X → [0,∞[ such that the two sequences n �→
f(n), f(−n) ∀n ∈ N are monotone increasing and have equal finite limits
for n → ∞. 1) E is a Stonean lattice cone. Next define the paving T on N

to consist of the subsets {n, n + 1, · · · } ∀n ∈ N. 2) t(E) consists of ∅ and
of the subsets P ∪ (−Q) ⊂ X with P,Q ∈ T. T(E) consists of ∅ and of the
subsets P,−Q,P ∪ (−Q) ⊂ X with P,Q ∈ T. Now we define

I : E → [0,∞[ to be I(f) = lim
n→±∞

f(n) for f ∈ E.

3) I is an elementary integral which fulfils (0). 4) We have

I⋆(f) = sup f and I⋆(f) = lim inf
n→±∞

f(n) for f ∈ [0,∞]X .
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In particular we see for A ∈ T(E) that

Δ(A) =

{

1 if A �= ∅

0 if A = ∅

}

and

∇(A) =

{

1 if A = P ∪ (−Q) with P,Q ∈ T

0 otherwise

}

.

At last we define ϕ,ψ : T(E)→ [0,∞[ to be

ϕ(A) =

{

1 if A ∩ N �= ∅

0 if A ⊂ −N

}

and ψ(A) =

{

1 if A ∩ (−N) �= ∅

0 if A ⊂ N

}

.

5) ϕ and ψ are isotone with ∇ ≦ ϕ,ψ ≦ Δ and hence sources of I. Further-
more ϕ,ψ and ∇,Δ are all different. 6) ϕ and ψ are inner ⋆ premeasures.

We conclude the section with an exercise which centers around a natural
problem: To characterize those inner • premeasures ϕ : S → [0,∞[ with
ϕ(∅) = 0 which occur in 14.23. We shall see that all of them can occur.

14.25. Exercise (for • = στ). 1) Let ϕ : S → [0,∞[ be an inner •
premeasure on a lattice S in X with ∅ ∈ S and ϕ(∅) = 0. Then there
exists an elementary integral I : E → [0,∞[ on a Stonean lattice cone
E ⊂ [0,∞[X which is a • preintegral and satisfies T(E) = S and Δ = ϕ
(and has in fact the unique source ϕ). Hint: 14.18.

In the remainder of the exercise we assume that E ⊂ [0,∞[X is a prim-
itive Stonean lattice cone. We shall see that the situation will then be
different. 2) For f ∈ E and s > 0 we have

[f > s] ⊂
(

T(E)⊤T(E)
)

⊥.

Thus for each A ∈ T(E) there exist U ∈
(

T(E)⊤T(E)
)

⊥ and B ∈ T(E)
with A ⊂ U ⊂ B. 3) Let I : E → [0,∞[ be an elementary integral which is a
• preintegral, and let as above Δ : T(E)→ [0,∞[ and α := Δ•|C(Δ•). Then
α is outer regular

(

T(E)⊤(T(E))•
)

⊥ at (T(E))•. We recall from 13.39 that
there exist inner • premeasures ϕ : S → [0,∞[ with ϕ(∅) = 0 such that
φ := ϕ•|C(ϕ•) is not outer regular (S⊤S•)⊥ at S•.

15. The Continuous Daniell-Stone Theorem

Preparations on Lattice Cones

Let E ⊂ [0,∞[X be a lattice cone of functions X → [0,∞[ on the nonvoid
set X. We define for • = ⋆στ the function classes

E• :=
{

inf
f∈M

f : M ⊂ E nonvoid of type •
}

⊂ [0,∞[X .

Since

inf
f∈M

f = inf
f∈N

f for N := {f1 ∧ · · · ∧ fn : f1, · · · , fn ∈M and n ∈ N},
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we can restrict ourselves to the nonvoid subsets M ⊂ E of type • which are
downward directed. Thus E⋆ = E and

Eσ =
{

lim
l→∞

fl : (fl)l in E antitone
}

,

Eτ =
{

F ∈ [0,∞[X : F = inf
f∈E,f≧F

f
}

.

We list the relevant properties.

15.1. Exercise. (E•)• = E•. Furthermore if M ⊂ E• is nonvoid of type
• with M ↓ F then there exists N ⊂ E nonvoid of type • with N ↓ F , and
such that each u ∈ N is ≧ some f ∈ M . This is an obvious counterpart of
6.6 and proved in the same manner.

15.2. Properties. 1) E• is a lattice cone, and E = E⋆ ⊂ Eσ ⊂ Eτ . 2) If
E is Stonean then E• is Stonean. 3) T(E•) = (T(E))• and t(E•) ⊃ (t(E))•.
4) If • = στ and E is Stonean then T(E•) = t(E•). Therefore

(T(E))• = T(E•) = t(E•) ⊃ (t(E))•.

Proof. 1)2) are obvious. 3) On the one hand we have

[ inf
f∈M

f ≧ 1] =
⋂

f∈M

[f ≧ 1] for nonvoid M ⊂ E.

This proves T(E•) = (T(E))•. On the other hand we have

for A ⊂ X and nonvoid M ⊂ P(X) : A =
⋂

M∈M

M ⇒ χA = inf
m∈M

χM .

This proves t(E•) ⊃ (t(E))•. 4) requires the lemma which follows. Its proof
consists of immediate verifications.

15.3. Lemma. For real 0 ≦ x ≦ 1 and 0 ≦ t < 1 define

x<t> :=
1

1− t
(x− t)+.

Then 1) 0 ≦ x<t> ≦ x ≦ 1. 2) The function (x, t) �→ x<t> is continuous.
3) For fixed 0 ≦ t < 1 the function x �→ x<t> is monotone increasing with

x<t> = 0 for 0 ≦ x ≦ t and x<t> = 1 for x = 1.

4) For fixed 0 ≦ x ≦ 1 the function t �→ x<t> is monotone decreasing, and
for t ↑ 1 we have

x<t> ↓ 0 when 0 ≦ x < 1, and x<t> ↓ 1 when x = 1.

Proof of 15.2.4). i) We first prove T(E) ⊂ t(Eσ). Let A ∈ T(E), that
is A = [f = 1] for some f ∈ E with f ≦ 1. For 0 ≦ t < 1 now f<t> ∈ E,
and for t ↑ 1 we have f<t> ↓ χA by 15.3.4). Therefore χA ∈ Eσ, that is
A ∈ t(Eσ). ii) By 15.2.1)2) E• is a Stonean lattice cone. Thus from i) and
15.1 we obtain T(E•) ⊂ t((E•)σ) = t(E•) and hence the assertion.
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Preparations on Elementary Integrals

We start to formulate the natural notions of continuity, after the model of
11.17. Assume that E ⊂ [0,∞]X is a lattice and that I : E → [0,∞] is
isotone, and let • = στ . We define I to be downward • continuous iff
inf{I(f) : f ∈ M} = I(F ) for all M ⊂ E nonvoid of type • and downward
directed in the pointwise order with M ↓ F ∈ E; and almost downward
• continuous iff this holds true whenever I(f) <∞ ∀f ∈M . Furthermore
if 0 ∈ E and I(0) = 0 then we define I to be • continuous at 0 iff
inf{I(f) : f ∈ M} = 0 for all M ⊂ E nonvoid of type • and downward
directed ↓ 0; and almost • continuous at 0 iff this holds true whenever
I(f) <∞ ∀f ∈M .

Now assume that E ⊂ [0,∞[X is a lattice cone and that I : E → [0,∞[
is an elementary integral.

15.4. Remark. Let • = στ . 1) I is • continuous at 0 ⇒ I⋆|E• is •
continuous at 0 as well. 2) I is downward • continuous ⇒ I⋆|E• is an
elementary integral and downward • continuous as well.

Proof. 1) is obvious from 15.1 applied to F = 0. 2) We first prove that
I⋆|E• is downward • continuous. Fix F ∈ E• and M ⊂ E• nonvoid of type
• with M ↓ F , and let N ⊂ E be as in 15.1. For fixed v ∈ E with v ≧ F
the subset {u ∨ v : u ∈ N} ⊂ E is nonvoid of type • and ↓ F ∨ v = v. By
assumption it follows that

inf
f∈M

I⋆(f) ≦ inf
u∈N

I(u) ≦ inf
u∈N

I(u ∨ v) = I(v).

Thus the infimum on the left is ≦ I⋆(F ) and hence = I⋆(F ). This proves
that I⋆|E• is downward • continuous. Then an immediate consequence is
that I⋆|E• is additive and hence an elementary integral.

15.5. Proposition. Assume that E is Stonean and that I fulfils (0).
Let • = στ . 1) I is • continuous at 0 ⇒ Δ is • continuous at ∅. 2) The
following are equivalent.

i) I is downward • continuous.
ii) Δ is modular and downward • continuous.
iii) Δ is downward • continuous.

Proof. 1) By 15.4.1) and by definition the set function A �→ I⋆(χA)
on t(E•) is • continuous at ∅. But we know from 15.2.4) that t(E•) =
(T(E))• ⊃ T(E). 2) The implication i)⇒ii) follows from 15.4.2) and 15.2.4)
as before. ii)⇒iii) is obvious. iii)⇒i) By 14.16.1) Δ is a source of I. There-
fore the assertion is contained in 11.17.

At this point we recall from 14.20 that the equivalent properties in
15.5.2) do not enforce that I has at least one cmeasure representation.

The New Envelopes for Elementary Integrals

After this we proceed as in the inner extension theory of chapter II. Let
I : E → [0,∞[ be an elementary integral on the lattice cone E ⊂ [0,∞[X .
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We define besides I⋆ the inner • envelopes I• : [0,∞]X → [0,∞] for • = στ
to be

I•(f) = sup
{

inf
u∈M

I(u) : M ⊂ E nonvoid of type •

with M ↓ some function ≦ f
}

for f ∈ [0,∞]X .

Furthermore we define for fixed v ∈ E the satellite inner • envelopes
Iv
• : [0,∞]X → [0,∞[ to be

Iv
• (f) = sup

{

inf
u∈M

I(u) : M ⊂ E nonvoid of type • with

u ≦ v ∀u ∈M and M ↓ some function ≦ f
}

for f ∈ [0,∞]X .

Both formulas include the case • = ⋆. The properties of these functionals
correspond to those of the former envelopes.

15.6. Properties. 1) I• and Iv
• are isotone. 2) I• is superlinear. 3)

I⋆ ≦ Iσ ≦ Iτ and Iv
⋆ ≦ Iv

σ ≦ Iv
τ . 4) For • = στ we have

I•|E = I ⇔ I is downward • continuous,

I•(0) = 0 ⇔ I is • continuous at 0.

5) Iv
⋆ ≦ I(v) <∞. 6) We have

I•(f) = sup{Iv
• (f) : v ∈ E} for f ∈ [0,∞]X .

7) Assume that I = I•|E. Then I•(f) = Iv
• (f) for f ≦ v ∈ E. 8) We have

I = I•|E iff I⋆ = I• on E•. 9) If I = I•|E and E• = E then I• = I⋆.

Proof. 1)2)3)5) are obvious, and both parts of 4) are routine verifications
from the definitions. 6) follows the model of 6.29.4), and 7) follows the model
of 6.29.5). 8) One proves as in 6.10 and 6.11 that i) I⋆ ≦ I• on E•, and
that ii) I = I•|E ⇒ I⋆ ≧ I•. Then the assertion follows. 9) is an obvious
consequence of 8).

The next step are the important two propositions which follow.

15.7. Proposition. Assume that E is Stonean and that I fulfils (0). Let
• = στ , and assume that Δ is downward • continuous. Then

I⋆(f) = I•(f) =

∫

−fdΔ• for f ∈ E•.

Furthermore I⋆|E• = I•|E• is downward • continuous.

15.8. Proposition. Assume that E is Stonean and that I fulfils (0). Let
• = στ , and assume that Δ is an inner • premeasure with α := Δ•|C(Δ•).
Then

I•(f) =

∫

−fdΔ• =

∫

∗

fdα for all f ∈ [0,∞]X .

Proof of 15.7. 0) We know from 14.16.1) that I(u) =
∫

−udΔ for all u ∈ E.
i) We have Δ•|T(E) = Δ by 6.5. In particular Δ•(∅) = 0, so that the
horizontal integral

∫

−fdΔ• is defined for all f ∈ [0,∞]X . Next Δ•|(T(E))•
is downward • continuous by 6.5.iii). Hence by 11.17 the horizontal integral
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f �→
∫

−fdΔ• is almost downward • continuous on UM
(

(T(E))•
)

. ii) We

have T(E•) = (T(E))• by 15.2.3) and hence E• ⊂ UM
(

(T(E))•
)

by 14.11.3).
Since each function f ∈ E• is ≦ some member of E it follows from (0) that
∫

−fdΔ• < ∞. Thus i) implies that f �→
∫

−fdΔ• is downward • continuous
on E•. iii) On the other hand we know from 15.5 that I is downward •
continuous, and hence from 15.4.2) then I⋆|E• is downward • continuous.
Now I = I•|E by 15.6.4) and hence I⋆ = I• on E• by 15.6.8). iv) We have
seen that the two functionals I⋆|E• = I•|E• and f �→

∫

−fdΔ• on E• are
equal on E and are both downward • continuous, and therefore must be
equal on E•. This completes the proof of 15.7. v) In order to prepare the
proof of 15.8 we add the remark that I•(f) ≦

∫

−fdΔ• for all f ∈ [0,∞]X .

In fact, fix f ∈ [0,∞]X and let M ⊂ E be nonvoid of type • such that
M ↓ F ≦ f . Then F ∈ E•, and from the above we obtain

inf
u∈M

I(u) = inf
u∈M

I•(u) = I•(F ) =

∫

−FdΔ• ≦

∫

−fdΔ•.

The assertion follows.

Proof of 15.8. i) We first note that Δ• = α⋆. In fact, the two set
functions are equal on C(Δ•), and because of (T(E))• ⊂ C(Δ•) are both
inner regular C(Δ•). ii) From i) and 12.12 we conclude that

∫

−fdΔ• =

∫

∗

fdα for all f ∈ [0,∞]X .

iii) In view of part v) of the last proof it remains to show that
∫

−fdΔ• ≦ I•(f)

for f ∈ [0,∞]X . Because of ii) and 15.7 this is a consequence of
∫

∗

fdα = sup{
∫

∗

udα : u ∈ E• with u ≦ f} for f ∈ [0,∞]X .

iv) In order to prove the last assertion we recall from 12.1 that
∫

∗

fdα = sup
{

r
∑

l=1

tlα(A(l)) : A(1), · · · , A(r) ∈ C(Δ•)

and t1, · · · , tr > 0 with f ≧

r
∑

l=1

tlχA(l)

}

.

For each choice of the entities in the brackets we have a function

u :=

r
∑

l=1

tlχA(l) ∈ S(C(Δ•)), and

∫

∗

udα =

r
∑

l=1

tlα(A(l)) by 12.5 .

But since α is inner regular (T(E))• we can restrict ourselves to choices
A(1), · · · , A(r) ∈ (T(E))•, which by 15.2.4) is = T(E•) = t(E•). It follows
that χA(l) ∈ E• (l = 1, · · · , r) and hence u ∈ E•. This completes the proof
of 15.8.
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The Main Theorem

We come to the main theorem of the present context. It furnishes the
characterization of the • preintegrals for • = στ as announced after 14.23.
The theorem is structured like the main extension theorems of chapter II.

15.9. Theorem (Continuous Daniell-Stone Theorem • = στ). Let I :
E → [0,∞[ be an elementary integral on a Stonean lattice cone E ⊂ [0,∞[X .
Then the following are equivalent.

1) There exist • representations of I, that is I is a • preintegral.

1’) I fulfils (0); and Δ : T(E)→ [0,∞[ is an inner • premeasure.

2) I(v) = I(u) + I•(v − u) for all u ≦ v in E.

3) I•|E = I; and I(v) ≦ I(u) + I•(v − u) for all u ≦ v in E.

3’) I•(0) = 0; and I(v) ≦ I(u) + Iv
• (v − u) for all u ≦ v in E.

In this case I has the unique maximal • representation α := Δ•|C(Δ•).
Furthermore we have

I⋆(f) = I•(f) =

∫

fdα for all f ∈ E•,

I•(f) =

∫

∗

fdα for all f ∈ [0,∞]X .

The equivalence 1)⇔1’) has been obtained in 14.23. Also 1) implies the
first final assertion by 14.23, and 1’) implies the second final assertion by
15.7 and 15.8.

The implications 1’)⇒2)⇒3)⇒3’) can be settled in a few words. 1’)⇒2)
Let α := Δ•|C(Δ•) be the maximal inner • extension of Δ. For u ≦ v in E
we combine 12.3 with E ⊂ UM(T(E)) ⊂ UM(C(Δ•)) to obtain

∫

∗

vdα =

∫

∗

(

u + (v − u)
)

dα =

∫

∗

udα +

∫

∗

(v − u)dα.

By 15.7 and 15.8 this means that I(v) = I(u)+ I•(v−u). 2)⇒3) is obvious.
3)⇒3’) follows with the aid of 15.6.7).

It remains to prove the implication 3’)⇒1’). Thus we shall assume 3’)
all the time. By 15.6.4) the first condition I•(0) = 0 means that I is •
continuous at 0. The proof will be divided into five steps.

i) I fulfils (0).
ii) Δ is • continuous at ∅.
iii) Assume that B ∈ T(E) and B = [v = 1] for some v ∈ E with v ≦ 1. In
the notation of 15.3 we have v<t> ∈ E for 0 ≦ t < 1, and 15.3.4) implies
that v<t> ↓ χB for t ↑ 1. We claim that I(v<t>) ↓ I⋆(χB) =: Δ(B) for t ↑ 1.
iv) Δ is modular.
v) Δ is inner • tight.

It is clear that this will complete the proof of the implication 3’)⇒1’) and
hence of the theorem.

Proof of i). For f ∈ E and t > 0 we have f ∧ t, (f − t)+ ∈ E with
f = f ∧ t + (f − t)+ and hence I(f) = I(f ∧ t) + I((f − t)+). We use that I
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is • continuous at 0. For t ↓ 0 we have f ∧ t ↓ 0 and hence I(f ∧ t) ↓ 0, and
for t ↑ ∞ we have (f − t)+ ↓ 0 and hence I(f ∧ t) ↑ I(f).

Proof of ii). This follows from 15.5.1).

Proof of iii). iii.1) We fix u ∈ E with u ≧ χB. To be shown is

lim
t↑1

I(v<t>) ≦ I(u).

In view of v ≧ χB we can assume that u ≦ v ≦ 1. Furthermore fix ε > 0.
iii.2) By the second condition in 3’) there exists an M ⊂ E nonvoid of type
• with M ↓ some F ≦ v − u such that

h ≦ v and I(h) ≧ I(v)− I(u)− ε for all h ∈M.

iii.3) The subset {h ∧ v<t> : h ∈ M and 0 ≦ t < 1} ⊂ E is nonvoid of
type • and downward directed ↓ F ∧ χB. Here we have F ∧ χB = 0 because
0 ≦ F ∧ χB ≦ (v − u) ∧ χB and v = u = 1 on B. Since I is • continuous at
0 it follows that

inf
{

I(h ∧ v<t>) : h ∈M and 0 ≦ t < 1
}

= 0.

iii.4) For h ∈M and 0 ≦ t < 1 we have

I(v)− I(u)− ε + I(v<t>) ≦ I(h) + I(v<t>)

= I
(

h ∨ v<t>

)

+ I
(

h ∧ v<t>

)

≦ I(v) + I
(

h ∧ v<t>

)

,

where we have used h ∨ v<t> ≦ v because of 15.3.1). It follows that

I(v<t>) ≦ I(u) + ε + I
(

h ∧ v<t>

)

.

From iii.3) we obtain the assertion.

Proof of iv). Let A,B ∈ T(E), and fix u, v ∈ E with u, v ≦ 1 such
that A = [u = 1] and B = [v = 1]. Then A ∪ B = [u ∨ v = 1] and
A ∩B = [u ∧ v = 1]. Now for 0 ≦ t < 1

(u ∨ v)<t> = u<t> ∨ v<t> and (u ∧ v)<t> = u<t> ∧ v<t>;

this is clear since the function x �→ x<t> is monotone increasing by 15.3.3).
Thus we have

I
(

(u ∨ v)<t>

)

+ I
(

(u ∧ v)<t>

)

= I(u<t>) + I(v<t>).

For t ↑ 1 we conclude from iii) that Δ(A∪B) + Δ(A ∩B) = Δ(A) + Δ(B).

Proof of v). We fix A ⊂ B in T(E) and ε > 0. v.1) Let u, v ∈ E with
u, v ≦ 1 such that A = [u = 1] and B = [v = 1]. We can achieve that

I(u) ≦ I⋆(χA) + ε = Δ(A) + ε and I(v) ≦ I⋆(χB) + ε = Δ(B) + ε,

and then that u ≦ v. v.2) By the second condition in 3’) there exists an
M ⊂ E nonvoid of type • with M ↓ some F ≦ v − u such that

h ≦ v and I(h) ≧ I(v)− I(u)− ε ≧ Δ(B)−Δ(A)− 2ε for all h ∈M.

v.3) For h ∈M and 0 ≦ t < 1 we have

h + v<t> ≦
(h

ε
∧ v

)

<t>
+

ε

t
v + v.
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In fact, this holds true

for v ≦ t since v<t> = 0 and h ≦ v,

for v ≧ t and h ≦ ε since v<t> ≦ v and h ≦ ε ≦
ε

t
v,

for v ≧ t and h ≧ ε since
h

ε
∧ v = v and h ≦ v.

It follows that

I(h) + I(v<t>) ≦ I
(

(h

ε
∧ v

)

<t>

)

+
ε

t
I(v) + I(v).

For t ↑ 1 we conclude from iii) that

I(h) + Δ(B) ≦ Δ
(

[
h

ε
∧ v = 1]

)

+ εI(v) + I(v)

= Δ
(

[h ≧ ε] ∩B
)

+ εI(v) + I(v).

We combine this with v.1) and v.2) to obtain

Δ(B)−Δ(A) ≦ Δ([h ≧ ε] ∩B) + ε
(

Δ(B) + ε + 3
)

for all h ∈M.

v.4) The paving {[h ≧ ε] ∩ B : h ∈ M} ⊂ T(E) is of type • and downward
directed ↓ [F ≧ ε] ∩B ⊂ [v − u ≧ ε] ∩B ⊂ B \A, where we have used that
v = u = 1 on A. Thus by definition

inf
{

Δ([h ≧ ε] ∩B) : h ∈M
}

≦ ΔB
• (B \A).

v.5) From v.3) and v.4) we obtain

Δ(B)−Δ(A) ≦ ΔB
• (B \A) + ε

(

Δ(B) + ε + 3
)

for all ε > 0,

and hence the assertion. This completes the proof of the theorem.

We define for • = στ an elementary integral I : E → [0,∞[ on a Stonean
lattice cone E to be • tight iff it fulfils

I(v) ≦ I(u) + Iv
• (v − u) for all u ≦ v in E,

as it appears in condition 3’) above. Besides these notions one also defines
I to be ⋆ tight iff it fulfils

I(v) ≦ I(u) + I⋆(v − u) for all u ≦ v in E;

here of course I⋆ and Iv
⋆ amount to the same. We shall see that this notion

is sometimes convenient but has no basic importance. As in chapter II it is
obvious that

I is ⋆ tight ⇒ I is σ tight ⇒ I is τ tight .

We show on the spot that both converses ⇐ are false. The counterexample
for the left converse will be an I which is a σ preintegral and a ⋆ preintegral.
Therefore the above theorem becomes false at least for • = σ when one
formulates condition 3’) with ⋆ tight instead of • tight. The modified 3’)
remains a sufficient condition for 1)1’) but ceases to be an equivalent one.
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15.10. Example. Let S be a lattice with ∅ ∈ S, and ϕ : S→ [0,∞[ be
an isotone and modular set function with ϕ(∅) = 0 which is downward τ
continuous. From 14.18 we obtain an elementary integral I : E = S(S) →
[0,∞[ such that ϕ is the unique source of I. Then 14.16 implies ϕ = Δ.
Furthermore I•|E = I by 15.5.2) and 15.6.4). Therefore 15.9 says for • = στ
that the following are equivalent. 1) I is a • preintegral. 1’) ϕ is an inner •
premeasure. 3’) I is • tight. Thus 6.32 furnishes an example where I is τ
tight but not σ tight.

15.11. Exercise. We turn to the counterexample for the left converse.
Define E ⊂ [0,∞[X on X =]0, 1[ to consist of the bounded lower semicon-
tinuous functions X → [0,∞[. 1) E is a Stonean lattice cone which is not
primitive. 2) t(E) = Op(X) and T(E) = (Op(X))σ. Hint for the second

inclusion ⊃: For A =
∞
⋂

l=1

A(l) with a sequence (A(l))l in Op(X) consider

the function f :=
∞
∑

l=1

1/2lχA(l). For the sequel note that T(E) ⊃ Comp(X).

Now define I : E → [0,∞[ to be

I(f) =

∫

fdΛ =

∫

−fdΛ

for f ∈ E ⊂ UM(T(E)) ⊂ UM(Bor(X)) ⊂ UM(L ∩X),

with Λ|X =: Λ as usual. 3) I is an elementary integral. 4) Λ is a σ
representation and a ⋆ representation of I. Thus I is a σ preintegral and
a ⋆ preintegral. 5) I is not ⋆ tight. Hint: Take u = χA for an open dense
subset A ⊂ X with Λ(A) < 1 as in the proof of 5.14.3), and v = 1.

Next we want to incorporate the traditional Daniell-Stone theorem 14.1.
It is contained in the special case of 15.9 that the Stonean lattice cone E is
primitive. In this case all elementary integrals I : E → [0,∞[ are ⋆ tight and
hence • tight for • = ⋆στ . Thus the same happens as in the conventional •
extension theories when one specializes from lattices S with ∅ ∈ S to rings.
The result is as follows.

15.12. Special Case (for • = στ). Let I : E → [0,∞[ be an elementary
integral on a primitive Stonean lattice cone E ⊂ [0,∞[X . Then the following
are equivalent.

1) There exist • representations of I, that is I is a • preintegral.

1’) I fulfils (0); and Δ : T(E)→ [0,∞[ is an inner • premeasure.

3’) I•(0) = 0.

We specialize once more to the case • = σ.

15.13. Special Case. Let I : E → [0,∞[ be an elementary integral
on a primitive Stonean lattice cone E ⊂ [0,∞[X . Then the following are
equivalent.

0) There exists a cmeasure representation of I.

1) There exist σ representations of I, that is I is a σ preintegral.
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1’) I fulfils (0); and Δ : T(E)→ [0,∞[ is an inner σ premeasure.

3’) Iσ(0) = 0.

In fact, 1)1’)3’) are equivalent by 15.10. It remains to incorporate condi-
tion 0). On the one hand 1) implies that I has the cmeasure representation
α := Δσ|C(Δσ), so that 0) is fulfilled. On the other hand 0)⇒3’) follows
from the Beppo Levi case • = σ of 11.17.

The last equivalence 0)⇔3’) is the traditional Daniell-Stone theorem
14.1. We see that the specialization 15.13 contains much more: It furnishes
the cmeasure representation α := Δσ|C(Δσ) of I which is explicit in a sense,
and is inner regular (T(E))σ = T(Eσ) = t(Eσ).

15.14. Bibliographical Note. The roots of the traditional Daniell-
Stone theorem 14.1 are Daniell [1917-1918] and Stone [1948-1949]. However,
it required additional work to obtain the theorem in its present form. For
example, Glicksberg [1952] considered a certain topological special case of
14.1 to be a new result which needed an ab-ovo proof. The above theorem
14.1 is in the textbooks since the sixties. See for example Royden [1963],
Zaanen [1967], Meyer [1966] theorem II.24, and Bauer [1968] Satz 39.4.
The last-mentioned version included an assertion of regularity, which at
once led to important consequences like Korollar 39.5. The nonsequential
counterpart of the traditional Daniell-Stone theorem 14.1 has been treated
in terms of the so-called abstract Bourbaki integral. For recent versions we
refer to Leinert [1995] chapter 14 and König [1992a] appendix. It is of course
in • = τ of the present 15.12.

The work in the present context started, as far as the author is aware,
in Pollard-Topsøe [1975] and Topsøe [1976]. The first paper was still re-
stricted to primitive Stonean lattice cones E and obtained the equivalence
15.12.1)⇔3’). The second paper then obtained the implication 15.9.3’)⇒1),
but with 3’) fortified to ⋆ tightness instead of • tightness which was still
unknown. We know that the converse of this modified implication is false,
so that it is not an equivalence result. Thus the situation was the same as
described in the bibliographical annex to chapter II on the extension the-
ories. Both papers also contained variants where the role of T(E) passed
over to other lattices. The essentials are contained in 15.15 below. The
work of Anger-Portenier [1992a] presents related refinements and is more
comprehensive in certain aspects, but it is complicated and also based on
⋆ tightness from the start. The present version 15.9 is due to the author
[1995]. Its proof owes much to Topsøe [1976].

An Extended Situation

We conclude the section with a final proposition, in order to cover an ex-
tended situation which has been considered in the literature as mentioned
above. Let I : E → [0,∞[ be a • preintegral on a Stonean lattice cone
E ⊂ [0,∞[X . The aim is that the role of T(E) passes over to some other
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lattice K with ∅ ∈ K, which of course must be related to T(E). But we shall
not require that K ⊂ T(E).

15.15. Proposition (for • = στ). Let I : E → [0,∞[ be a • preintegral
on a Stonean lattice cone E ⊂ [0,∞[X , and α := Δ•|C(Δ•). Assume that
K is a paving in X such that K ⊂ (T(E))• ⊂ K⊤K. Then the following are
equivalent.

0) For each pair f ∈ E and ε > 0 there exists K ∈ K such that

I(v) ≦ I(u) + ε for all u, v ∈ E with u ≦ v ≦ f and u|K = v|K.

1) Δ• is inner regular K.
1’) Δ• is inner regular K at T(E).
2) All • representations of I are inner regular K.
2’) There exists a • representation of I which is inner regular K.

In this case, and if K is a lattice with ∅ ∈ K, then α is an inner • extension
of α|K = Δ•|K. Furthermore (α|K)• = Δ• and K⊤K• ⊂ C(Δ•).

Condition 0) says that in a sense the elementary integral I is concen-
trated on K.

In view of 14.23 the implications 1)⇒2)⇒2’)⇒1’) are clear. Thus for
the first part we have to prove that 0)⇒1) and 1’)⇒0).

Proof of 0)⇒1). By 6.3.4) we have to show that Δ• is inner regular
K at (T(E))•. We recall from 15.2.4) that (T(E))• = T(E•) = t(E•). Fix
A ∈ (T(E))• and ε > 0. Thus χA ∈ E•, so that there exists f ∈ E with
χA ≦ f ≦ 1. From the assumption 0) we obtain K ∈ K such that all u ∈ E
with u ≦ f and u|K = f |K fulfil I(f) ≦ I(u)+ε. If now v ∈ E with v ≧ χK

then f ∧ v ∈ E fulfils f ∧ v = f on K, and hence I(f) ≦ I(f ∧ v) + ε or
I(f ∨ v) ≦ I(v)+ ε. By assumption K ∈ (T(E))• and hence χK ∈ E•. Thus
on the one hand I(f ∨v) =

∫

(f ∨v)dα ≧ α(A∪K). On the other hand 15.7
with 11.8.1) implies that

inf{I(v) : v ∈ E with v ≧ χK} = I⋆(χK) =

∫

−χKdΔ• = Δ•(K) = α(K).

It follows that α(A∪K) ≦ α(K)+ε or α(A) ≦ α(A∩K)+ε. Since A∩K ∈ K

in view of (T(E))• ⊂ K⊤K the assertion follows.

Proof of 1’)⇒0). Fix f ∈ E and ε > 0, and then 0 < a < b < ∞ such
that

a
∫

0←

α([f ≧ t])dt ≦ ε/4 and

→∞
∫

b

α([f ≧ t])dt ≦ ε/4.

From the assumption 1’) applied to [f ≧ a] ∈ T(E) we obtain K ∈ K with
K ⊂ [f ≧ a] such that α([f ≧ a]) ≦ α(K) + ε/2(b − a). Now let u, v ∈ E
with u ≦ v ≦ f and u|K = v|K. Then [v ≧ t] ⊂ [f ≧ t] for t > 0 and hence

I(v) =

∫

−vdα ≦

b
∫

a

α([v ≧ t])dt + ε/2.
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For t ≧ a furthermore [v ≧ t] ⊂ [u ≧ t] ∪ ([f ≧ a] \K) and hence

α([v ≧ t]) ≦ α([u ≧ t]) + ε/2(b− a).

It follows that I(v) ≦ I(u) + ε.

The remainder of the proof is routine. We see from K• ⊂ (T(E))• and
2) that α is an inner • extension of α|K. Thus α|K is an inner • premeasure.
From 6.18 it follows that α = (α|K)•|C(Δ•). Therefore (α|K)• = Δ• on
(T(E))• and hence on P(X). Then K⊤K• ⊂ C((α|K)•) = C(Δ•) follows
from 6.31. The proof is complete.

16. The Riesz Theorem

In the present section we obtain the extended Riesz representation the-
orem as a specialization of the continuous Daniell-Stone theorem 15.9 in the
τ version.

Preliminaries

We assume X to be a Hausdorff topological space and write as before K :=
Comp(X). We recall from 14.8 the Stonean lattice cones

CK+(X) ⊂ USCK+(X) ⊂ UMK(X) ⊂ USC+(X),

with the definition

UMK(X) := UM(K) ∩ [0,∞[X= {f ∈ [0,∞[X : [f ≧ t] ∈ K for all t > 0}.
The members of UMK(X) are viewed as concentrated on the compact sub-
sets of X.

In the present context we have to consider Stonean lattice cones E ⊂
[0,∞[X which are related to compactness. Thus on the one hand we assume
that T(E) ⊂ K, which means that E ⊂ UMK(X). On the other hand we
have to impose a certain richness condition on E. We define E to be rich
iff it satisfies the equivalent conditions which follow.

16.1. Remark. For a Stonean lattice cone E ⊂ UMK(X) the follow-
ing are equivalent. 1) (T(E))τ = K. 2) χK ∈ Eτ for all K ∈ K. 3)
USCK+(X) ⊂ Eτ .

16.2. Lemma. S(K) ⊂ USCK+(X). Furthermore

f = inf
u∈S(K),u≧f

u for all f ∈ USCK+(X).

Proof of 16.2. Assume that f ∈ USCK+(X) vanishes outside of the
nonvoid K ∈ K. Fix a ∈ X and ε > 0. Then

u :=
(

max f − f(a)
)

χ[f≧f(a)+ε] +
(

f(a) + ε
)

χK

is in S(K), and it satisfies u ≧ f and u(a) ≦ f(a) + ε.

Proof of 16.1. 1)⇔2) We have (T(E))τ = T(Eτ ) = t(Eτ ) by 15.2.4).
2)⇒3) follows from 16.2, and 3)⇒2) is obvious.
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16.3. Remark. CK+(X) is rich ⇔ X is locally compact.

Proof. ⇒) Let K ∈ K. Then χK ≦ f for some f ∈ CK+(X). Thus K
is contained in the open subset [f > 0], which in turn is contained in some
compact subset of X. In particular X is locally compact. ⇐) is known from
14.5.3).

We need one more fact. The main assertion is a consequence of the
classical Dini theorem in 14.5.5).

16.4. Remark. For an elementary integral I : E → [0,∞[ on a
Stonean lattice cone E ⊂ UMK(X) the following are equivalent.

1) I is τ continuous at 0.
2) I fulfils (0).
3) I(f ∧ t)→ 0 for t ↓ 0 for all f ∈ E.

These conditions are satisfied when E is rich and ⊂ USCK+(X), but need
not be satisfied when E is rich ⊂ UMK(X).

Proof. i) We have seen 1)⇒2) as the first part in the proof of 15.9.
2)⇒3) is obvious. Thus we have to prove 3)⇒1). Let M ⊂ E be nonvoid
with M ↓ 0. To be shown is inf{I(u) : u ∈ M} = 0. Fix f ∈ M and ε > 0.
We claim that

inf{I(u) : u ∈M with u ≦ f} ≦ I(f ∧ ε),

which implies the assertion. Consider the compact subset K := [f ≧ ε].
The claim is obvious when K = ∅, since then f ∧ ε = f . In case K �= ∅ the
Dini theorem asserts that

inf{sup(u|K) : u ∈M with u ≦ f} = 0.

Now for u ∈M with u ≦ f we have

u ≦ 1/ε sup(u|K)f + f ∧ ε,

I(u) ≦ 1/ε sup(u|K)I(f) + I(f ∧ ε),

and hence the claim. ii) Assume that E is rich and ⊂ USCK+(X). Let
f ∈ E. Then f vanishes outside of some K ∈ K. Since E is rich we have
χK ≦ F for some F ∈ E. For t > 0 therefore f ∧ t ≦ tχK ≦ tF and hence
I(f ∧ t) ≦ tI(F ). Thus 3) is fulfilled. iii) The last assertion follows from the
counterexample below.

16.5. Example. On X = [0,∞[ define E ⊂ [0,∞[X to consist of the
continuous functions f : X → [0,∞[ such that the finite limit I(f) :=
lim

x→∞

(

xf(x)
)

exists. One verifies that E is a rich Stonean lattice cone ⊂
UMK(X) and that I : E → [0,∞[ is an elementary integral. However, we
have I(f) = I(f ∧ t) for all f ∈ E and t > 0, so that condition 16.4.3) is
violated.
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The Main Theorem

16.6. Theorem (Riesz Representation Theorem). Let I : E → [0,∞[ be
an elementary integral on a rich Stonean lattice cone E ⊂ UMK(X). Then
the following are equivalent.

0) There exists a Borel-Radon measure α : Bor(X) → [0,∞] which is a
representation of I.

1) There exist τ representations of I, that is I is a τ preintegral.

2) I(v) = I(u) + Iτ (v − u) for all u ≦ v in E.

3’) I(f ∧ t) → 0 for t ↓ 0 for all f ∈ E (this is automatic when E ⊂
USCK+(X)); and I is τ tight.

In this case I has the unique Borel-Radon measure representation α :=
Δτ |Bor(X) with Bor(X) ⊂ C(Δτ ), which therefore is a τ representation of
I. Furthermore we have

I⋆(f) = Iτ (f) =

∫

fdα for all f ∈ Eτ ,

Iτ (f) =

∫

∗

fdα for all f ∈ [0,∞]X .

Proof. We recall that

T(E) ⊂ (T(E))τ = K ⊂ Cl(X) ⊂ Bor(X).

i) Let α : Bor(X) → [0,∞] be a Borel-Radon measure which is a represen-
tation of I. Thus on the one hand α|T(E) is a source of I, and 14.16.2)
implies that α|T(E) = Δ. On the other hand

α is inner regular K = (T(E))τ ,

α|K = α|(T(E))τ <∞ is downward τ continuous by 9.4.

Thus α is an inner τ extension of the source Δ of I and hence a τ representa-
tion of I. Also α is a restriction of Δτ |C(Δτ ). Thus we have the implication
0)⇒1) and the first of the two final assertions.

ii) The conditions 1)2)3’) are equivalent by 15.9 and 16.4.

iii) Assume 1). Then 14.23 says that Δ : T(E) → [0,∞[ is an inner τ
premeasure, and that I has the unique maximal τ representation Δτ |C(Δτ ).
From

Cl(X) ⊂ K⊤K ⊂ T(E)⊤K = T(E)⊤(T(E))τ ⊂ C(Δτ )

we see that Bor(X) ⊂ C(Δτ ). Furthermore Δτ |K = Δτ |(T(E))τ < ∞, and
Δτ is inner regular K = (T(E))τ . Thus α := Δτ |Bor(X) is a Borel-Radon
measure. Of course α is a representation of I since it is a restriction of
Δτ |C(Δτ ). It follows that 1)⇒0).

iv) Assume the equivalent conditions 0)1)2)3’). For φ := Δτ |C(Δτ ) then
φ⋆ = Δτ , since this holds true on C(Δτ ), and both sides are inner regular
C(Δτ ). For α := Δτ |Bor(X) likewise α⋆ = Δτ . Therefore α⋆ = φ⋆. Thus
12.12 implies that

∫

∗

fdα =

∫

−fdα⋆ =

∫

−fdφ⋆ =

∫

∗

fdφ for all f ∈ [0,∞]X .
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From 15.7 and 15.8 we obtain the second final assertion. The proof is com-
plete.

The theorem attains a more familiar form when we look at the particular
case that E ⊂ USCK+(X). First note that for each Borel-Radon measure α :
Bor(X)→ [0,∞] and all f ∈ USCK+(X) we have

∫

fdα <∞. Now consider
a rich Stonean lattice cone E ⊂ USCK+(X); examples are E = USCK+(X)
and E = S(K). Then each Borel-Radon measure α : Bor(X) → [0,∞]
defines an elementary integral I : E → [0,∞[ via I(f) =

∫

fdα for f ∈ E.
Of course α is a representation of I. Now we invoke 16.6. The implication
0)⇒3’) shows that I is τ tight. The final uniqueness assertion shows that
the map α �→ I is injective. But above all it follows from 3’)⇒0) that each
elementary integral I : E → [0,∞[ which is τ tight can be obtained in this
manner. Thus we have the result which follows.

16.7. Theorem (Riesz Representation Theorem). Assume that E ⊂
USCK+(X) is a rich Stonean lattice cone. There is a one-to-one corre-
spondence between the elementary integrals I : E → [0,∞[ which are τ tight
and the Borel-Radon measures α : Bor(X)→ [0,∞]. The correspondence is
I(f) =

∫

fdα for all f ∈ E.

We emphasize that this result involves all Borel-Radon measures on X,
and in particular is not restricted to the locally finite ones.

16.8. Remark. 1) The question whether 16.6.3’) and 16.7 hold true with
⋆ tight instead of τ tight must remain open (in one direction). We know
that the answer is no in the continuous Daniell-Stone theorem 15.9.3’), at
least for • = σ. But the former example 15.11 does not settle the present
question. 2) However, in the particular case that Eτ = E we can write
16.6.3’) and 16.7 with ⋆ tight instead of τ tight. This follows from 15.6.9)
combined with the implication 16.6.3’)⇒2).

We turn to the special case that E is primitive. Of course this means
that one is not far from continuous functions.

16.9. Special Case. Let I : E → [0,∞[ be an elementary integral on a
primitive rich Stonean lattice cone E ⊂ UMK(X). Then the following are
equivalent.

0) There exists a Borel-Radon measure α : Bor(X) → [0,∞] which is a
representation of I.

1) There exist τ representations of I, that is I is a τ preintegral.

3’) I(f ∧ t) → 0 for t ↓ 0 for all f ∈ E (this is automatic when E ⊂
USCK+(X)).

In this case I has the unique Borel-Radon measure representation α :=
Δτ |Bor(X) with Bor(X) ⊂ C(Δτ ), and this is a τ representation of I.

16.10. Special Case. Assume that E ⊂ USCK+(X) is a primitive
rich Stonean lattice cone. There is a one-to-one correspondence between
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the elementary integrals I : E → [0,∞[ and the Borel-Radon measures α :
Bor(X)→ [0,∞]. The correspondence is I(f) =

∫

fdα for all f ∈ E.

If X is locally compact then E := CK+(X) is as required in view of 16.3.
This furnishes the traditional Riesz representation theorem 14.2. Thus 14.2
is indeed a direct special case of the new Riesz representation theorem 16.7.

An Extended Situation

After these main results we conclude the section with a final theorem, in
order to cover an extended situation which has been considered in the lit-
erature. In the sequel we consider a Stonean lattice cone E ⊂ USC+(X),
which means that T(E) ⊂ Cl(X). We do not require that E ⊂ UMK(X),
that is T(E) ⊂ K. Nevertheless we ask the question when an elementary in-
tegral I : E → [0,∞[ has a representation which is a Borel-Radon measure.
It is clear that then I itself must be concentrated on the compact subsets of
X in some sense or other. We shall see that an appropriate condition is the
specialization of 15.15.0) above, that is

(comp) For each pair f ∈ E and ε > 0 there exists K ∈ K such that

I(v) ≦ I(u) + ε for all u, v ∈ E with u ≦ v ≦ f and u|K = v|K.

Furthermore we extend the former richness condition on E to mean that
K ⊂ (T(E))τ . This amounts to a condition of separation. Then we obtain
the result which follows.

16.11. Theorem. Let I : E → [0,∞[ be an elementary integral on a
rich Stonean lattice cone E ⊂ USC+(X). Then the following are equivalent.

0) There exists a Borel-Radon measure α : Bor(X) → [0,∞] which is a
representation of I.

1) I is a τ preintegral and fulfils (comp).

3’) I is τ tight and fulfils (comp).

In this case I has the unique Borel-Radon measure representation α :=
Δτ |Bor(X) with Bor(X) ⊂ C(Δτ ), and this is a τ representation of I.

Proof. 0)⇒1) We start as in the proof of 16.6. Let α : Bor(X)→ [0,∞]
be a Borel-Radon measure which is a representation of I. Then on the one
hand α|T(E) is a source of I and hence = Δ. On the other hand

α is inner regular K and hence inner regular (T(E))τ ,
α|(T(E))τ <∞ is downward τ continuous by 9.4.

Thus α is an inner τ extension of α|T(E) = Δ and hence a τ representation
of I, so that I is a τ preintegral. Since α is inner regular K it follows from
15.15.2’)⇒0) that I fulfils (comp). Also α is a restriction of Δτ |C(Δτ ). Thus
we have 0)⇒1) and the final assertion. 1)⇒0) We obtain from 15.15.0)⇒2)
that Δτ |C(Δτ ) is inner regular K. Furthermore Cl(X) ⊂ K⊤K ⊂ C(Δτ ) and
hence Bor(X) ⊂ C(Δτ ). Thus α := Δτ |Bor(X) is a Borel-Radon measure
representation of I.
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1)⇒3’) is in 15.9. 3’)⇒1) In view of 15.9.3’)⇒1) it remains to prove
that Iτ (0) = 0. To see this let M ⊂ E be nonvoid ↓ 0. To be shown is
inf{I(f) : f ∈ M} = 0. Fix f ∈ M and ε > 0, and choose K ∈ K as in
(comp). Since K ∈ K ⊂ (T(E))τ = T(Eτ ) = t(Eτ ) or χK ∈ Eτ by 15.2.4)
there exists h ∈ E with χK ≦ h. Now for each δ > 0 the Dini theorem
14.5.5) furnishes a function v ∈ M with v|K ≦ δ, and we can achieve that
v ≦ f . From (comp) applied to v ∧ (δh) ≦ v we obtain

I(v) ≦ I(v ∧ (δh)) + ε ≦ I(δh) + ε = δI(h) + ε.

From this the assertion follows. The proof is complete.

Once more we specialize to the case that E is primitive. Note that in
this case condition (comp) admits an obvious simplification.

16.12. Special Case. Let I : E → [0,∞[ be an elementary integral on a
primitive rich Stonean lattice cone E ⊂ USC+(X). Then the following are
equivalent.

0) There exists a Borel-Radon measure α : Bor(X) → [0,∞] which is a
representation of I.

1) I is a τ preintegral and fulfils (comp).

3’) I fulfils (comp).

In this case I has the unique Borel-Radon measure representation α :=
Δτ |Bor(X) with Bor(X) ⊂ C(Δτ ), and this is a τ representation of I.

If X is completely regular then E = C+(X) and E = CB+(X), defined
to consist of the bounded functions in C+(X), are examples of primitive rich
Stonean lattice cones ⊂ USC+(X).

16.13. Bibliographical Note. The traditional Riesz representation
theorem 14.2 for locally compact Hausdorff topological spaces X is in the
recent textbooks. See for example Cohn [1980] theorem 7.2.8 and Bauer
[1992] Satz 29.1 with 29.3. For the historical development which led to this
theorem we refer to the survey article of Batt [1973]. A more comprehen-
sive version is due to Bauer [1956]; see for example Anger-Portenier [1992a]
theorem 14.14.5. This version is contained in the present 16.9.

The next step culminated in the work of Pollard-Topsøe [1975]. These
authors applied their Daniell-Stone type theorem to obtain a Riesz type the-
orem on arbitrary Hausdorff topological spaces X, but restricted to C+(X)
since the paper assumed primitive Stonean lattice cones from the start.
Their result is in essence equal to 16.12. An excellent ab-ovo presentation is
in Berg-Christensen-Ressel [1984] theorem 2.2.2; see also Topsøe [1983]. For
the particular cases of 16.12 noted after its formulation we refer to Bourbaki
[1969] proposition 5.5 and also to Behrends [1987] chapter V, based on ideas
of Erik Thomas.

The subsequent article of Topsøe [1976] started to abandon the primitive
Stonean lattice cones. Its basic intention was to pave the road to incorporate
USC+(X), but there was no explicit treatment of the Riesz theorem itself.
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In Anger-Portenier [1992a] there are results of the type 3’)⇒0) in the
present theorems 16.6 and 16.11. We also refer to the companion article
Anger-Portenier [1992b] which is less complicated, in particular to theorem
4.2 combined with 5.5. The entire work presupposes conditions like ⋆ tight-
ness from the start (the authors adhere to the Bourbaki viewpoint to place
positive-linear functionals above measures).

The present version 16.6 is due to the author [1995], while 16.11 appears
here for the first time. As far as the author can see there were no such
equivalence theorems in the literature before.

17. The Non-continuous Daniell-Stone Theorem

We return to the abstract situation. The present section obtains the
counterpart • = ⋆ of the so-called continuous Daniell-Stone theorem 15.9
which was for • = στ . We recall that 15.9 was structured like the basic
extension theorems of chapter II, nearest for certain to the conventional
inner main theorem 6.31. Since these former theorems were uniform in
• = ⋆στ one could expect that the same holds true in the present context.
That this is not so can be no surprise after the end of section 14. But the
complete answer will be a surprise, and that it has no resemblance to the
continuous cases • = στ . Then in the next chapter it will come as another
surprise that the basic existence theorems on the so-called transplantation of
premeasures will be of the same structure like the main result of the present
section.

Introduction

The present section assumes an elementary integral I : E → [0,∞[ on
a Stonean lattice cone E ⊂ [0,∞[X in a nonvoid set X. We recall the
final subsection of section 14. Our aim is to characterize those I which
are ⋆ preintegrals, and then to describe all ⋆ representations of I. The ⋆
representations are those representations α : A→ [0,∞] of I which are inner
regular T(E). The connection with the sources of I has been formulated in
14.21.

We recall the essential differences between the cases • = στ and • = ⋆
which previous examples have disclosed.

1) In the cases • = στ no source other than Δ : T(E)→ [0,∞[ can be an
inner • premeasure. However, example 14.25 shows that I can have several
sources different from Δ and ∇ which are inner ⋆ premeasures. In example
14.25 the extremal sources Δ and ∇ themselves are not modular and hence
not inner ⋆ premeasures.

2) In the cases • = στ the continuous Daniell-Stone theorem 15.9 char-
acterizes those I which are • preintegrals. The natural counterpart would
be that

I is ⋆ preintegral ⇐⇒ I is ⋆ tight .



172 V. THE DANIELL-STONE AND RIESZ REPRESENTATION THEOREMS

However, example 15.11 shows that the implication ⇒ is false. We shall see
in 17.11 that the implication ⇐ is true whenever I fulfils (0). This result is
due to Topsøe [1976]. Its value is that ⋆ tightness can be easily verified in
important situations. But ⋆ tightness fails to be a fundamental condition in
case • = ⋆, as it failed to be in the cases • = στ .

The Maximality Lemma

Let us turn to positive results. The first step toward the main theorem is
the lemma which follows.

17.1. Lemma. Assume that ϕ,ψ : T(E) → [0,∞[ are sources of I with
ϕ ≦ ψ such that ϕ is an inner ⋆ premeasure and ψ is superadditive. Then
ϕ = ψ.

We isolate part of the assertion for later reference.

17.2. Lemma. Let S be a lattice with ∅ ∈ S, and ϕ,ψ : S → [0,∞[
with ϕ(∅) = ψ(∅) = 0 and ϕ ≦ ψ. Assume that ϕ is an inner ⋆ premeasure
and that ψ is isotone and superadditive. If A ∈ S is such that there exists
B ⊃ A with ϕ⋆(B) = ψ⋆(B) <∞ then ϕ(A) = ψ(A).

Proof of 17.2. Fix A ∈ S. 1) We claim that

ϕ(S)− ϕ(A) ≦ ψ(S)− ψ(A) for all S ∈ S with S ⊃ A.

In fact, we have

ϕ(S)− ϕ(A) ≦ ϕ⋆(S \A) = sup{ϕ(K) : K ∈ S with K ⊂ S \A},
and here ϕ(K) ≦ ψ(K) ≦ ψ(K ∪ A)− ψ(A) ≦ ψ(S)− ψ(A). 2) From 1) it
follows that

ϕ⋆(B)− ϕ(A) ≦ ψ⋆(B)− ψ(A) for all B ⊃ A.

If we choose B ⊃ A as assumed then ϕ(A) ≧ ψ(A) and hence ϕ(A) = ψ(A).

Proof of 17.1. 1) Fix f ∈ E. From 14.16 we have

I(f) =

→∞
∫

0←

∇([f ≧ t])dt =

→∞
∫

0←

Δ([f ≧ t])dt.

Therefore ∇([f ≧ t]) = Δ([f ≧ t]) for all t > 0 except on some countable
subset. 2) Now let A ∈ T(E), that is A = [f ≧ 1] for some f ∈ E. From 1)
we obtain 0 < t < 1 such that B := [f ≧ t] ∈ T(E) satisfies ∇(B) = Δ(B).
Then B ⊃ A and ϕ(B) = ψ(B). From 17.2 we obtain the assertion.

We add a first application of the maximality lemma. We define I to be
separative iff for each choice of A,B ∈ T(E) with A ∩ B = ∅ and ε > 0
there exist u, v ∈ E with u ≧ χA and v ≧ χB such that I(u ∧ v) ≦ ε.

17.3. Remark. I is separative iff Δ is superadditive, that is iff Δ is
additive.
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Proof. i) Assume that I is separative, and let A,B ∈ T(E) with
A ∩ B = ∅. Fix ε > 0 and first choose w ∈ E with w ≧ χA∪B and
I(w) ≦ Δ(A ∪B) + ε. Then choose u, v ∈ E as in the definition above. We
can assume that u, v ≦ w. It follows that

Δ(A) + Δ(B) ≦ I(u) + I(v) = I(u ∨ v) + I(u ∧ v)

≦ I(w) + I(u ∧ v) ≦ Δ(A ∪B) + 2ε,

and hence the assertion. ii) To see the converse fix A,B ∈ T(E) with
A∩B = ∅ and ε > 0. Then let u, v ∈ E with u ≧ χA and v ≧ χB such that
I(u) ≦ Δ(A) + ε and I(v) ≦ Δ(B) + ε. It follows that

Δ(A ∪B) + I(u ∧ v) ≦ I(u ∨ v) + I(u ∧ v) = I(u) + I(v)

≦ Δ(A) + Δ(B) + 2ε ≦ Δ(A ∪B) + 2ε,

and hence I(u ∧ v) ≦ 2ε.

The combination of 17.1 and 17.3 produces a certain substitute for the
uniqueness result 14.16.2) which was intended for • = στ .

17.4. Proposition. Assume that I is separative. If ϕ : T(E) → [0,∞[
is a source of I which is an inner ⋆ premeasure then ϕ = Δ.

Subtight Sources

We come to the central notion of the section. We prepare the definition with
the next remark.

17.5. Remark. Let ϕ : T(E) → [0,∞[ be a source of I which is super-
modular. Then

I(v)− I(u) ≧

∫

−(v − u)dϕ⋆ for all u ≦ v in E.

Proof. By 6.3.5) the set function ϕ⋆ : P(X) → [0,∞] is supermodular
as well. Consider u ≦ v in E. From 11.11 we obtain

∫

−(v − u)dϕ⋆ +

∫

−udϕ⋆ ≦

∫

−vdϕ⋆.

Now
∫

−udϕ⋆ =
∫

−udϕ = I(u), and the same for v. The assertion follows.

After this we define a source ϕ : T(E) → [0,∞[ of I to be subtight iff
it satisfies the opposite relation to the above, that is

I(v)− I(u) ≦

∫

−(v − u)dϕ⋆ for all u ≦ v in E.

We define Σ(I) to consist of all sources ϕ : T(E) → [0,∞[ of I which are
supermodular and subtight. We shall see that Σ(I) can be void.

17.6. Remark. If Σ(I) is nonvoid then it is upward inductive in the
argumentwise order.



174 V. THE DANIELL-STONE AND RIESZ REPRESENTATION THEOREMS

Proof. Let T ⊂ Σ(I) be nonvoid and totally ordered. Then ϑ := sup
ϕ∈T

ϕ

is a well-defined isotone set function with ∇ ≦ ϑ ≦ Δ. Thus ϑ is a source of
I. i) To see that ϑ is supermodular fix A,B ∈ T(E). If α, β ∈ T then one
of them ϕ ∈ T fulfils α, β ≦ ϕ. Therefore

α(A) + β(B) ≦ ϕ(A) + ϕ(B) ≦ ϕ(A ∪B) + ϕ(A ∩B)

≦ ϑ(A ∪B) + ϑ(A ∩B).

It follows that ϑ(A) + ϑ(B) ≦ ϑ(A ∪ B) + ϑ(A ∩ B). ii) To see that ϑ is
subtight consider u ≦ v in E. Then I(v) − I(u) is ≦

∫

−(v − u)dϕ⋆ for all
ϕ ∈ T and hence ≦

∫

−(v − u)dϑ⋆. It follows that ϑ ∈ Σ(I).

The importance of the subtight sources results from the theorem which
follows.

17.7. Theorem. For a source ϕ : T(E) → [0,∞[ of I the following are
equivalent. 1) ϕ is an inner ⋆ premeasure. 2) ϕ is a maximal member of
Σ(I).

Proof of 1)⇒2). i) We first prove that ϕ is subtight and hence in Σ(I).
Let α := ϕ⋆|C(ϕ⋆) be its maximal inner ⋆ extension. Then α⋆ = ϕ⋆, because
this is true on C(ϕ⋆) and both sides are inner regular C(ϕ⋆). By 12.12 we
have

∫

∗

fdα =

∫

−fdα⋆ =

∫

−fdϕ⋆ for all f ∈ [0,∞]X ,

in particular
∫

∗
fdα = I(f) for f ∈ E. Consider now u ≦ v in E. By 12.3

then
∫

∗

vdα =

∫

∗

(v − u)dα +

∫

∗

udα and hence I(v)− I(u) =

∫

−(v − u)dϕ⋆.

ii) ϕ is a maximal member of Σ(I). In fact, we see from 17.1 that ϕ is
even equal to each source ψ : T(E) → [0,∞[ of I with ϕ ≦ ψ which is
supermodular.

The proof of the implication 2)⇒1) is more involved. We isolate the
basic step in a lemma. We recall the class ⊏ T(E) of the subsets of X which
are upward enclosable T(E). Thus if ϕ : T(E) → [0,∞[ is isotone then
ϕ⋆ <∞ (and even ϕ⋆ <∞) on ⊏ T(E).

17.8. Lemma. Assume ϕ ∈ Σ(I). Fix a subset T in ⊏ T(E), and define
ψ : T(E)→ [0,∞[ to be

ψ(A) = ϕ⋆(A ∪ T ) + ϕ⋆(A ∩ T )− ϕ⋆(T ) for A ∈ T(E).

Then ψ ∈ Σ(I) and ϕ ≦ ψ.

Proof of 17.8. i) ψ is isotone with ψ(∅) = 0. ii) ψ ≧ ϕ ≧ ∇ since ϕ⋆

is supermodular by 6.3.5). iii) ψ is supermodular, once more since ϕ⋆ is
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supermodular. This is a routine verification. iv) I(v)− I(u) ≦
∫

−(v− u)dψ⋆

for all u ≦ v in E. This follows from ϕ⋆ ≦ ψ⋆. v) We have

I(f) =

∫

−fdψ for all f ∈ E with f ≦ 1 and [f = 1] ⊃ T.

In fact, by the definition of ψ we have

∫

−fdψ =

→∞
∫

0←

ψ([f ≧ t])dt =

1
∫

0←

ψ([f ≧ t])dt

=

1
∫

0←

(

ϕ⋆([f ≧ t] ∪ T ) + ϕ⋆([f ≧ t] ∩ T )− ϕ⋆(T )
)

dt;

in view of [f ≧ t] ⊃ [f ≧ 1] = [f = 1] ⊃ T for 0 < t ≦ 1 this is

=

1
∫

0←

(

ϕ⋆([f ≧ t]) + ϕ⋆(T )− ϕ⋆(T )
)

dt =

1
∫

o←

ϕ⋆([f ≧ t])dt

=

1
∫

0←

ϕ([f ≧ t])dt =

→∞
∫

0←

ϕ([f ≧ t])dt =

∫

−fdϕ = I(f).

vi) We can now prove that I(f) =
∫

−fdψ for all f ∈ E. This will complete
the present proof. Fix f ∈ E. For 0 < t < ∞ then u := 1/t(f ∧ t) ∈ E
with u ≦ 1. Now by assumption there exists B ∈ T(E) with B ⊃ T . Let
B = [g = 1] for some g ∈ E with g ≦ 1. We put v := g ∨ u ∈ E. Then
u ≦ v ≦ 1 and [v = 1] ⊃ [g = 1] = B ⊃ T , and hence I(v) =

∫

−vdψ by v).
From iv) and 11.11 we obtain

∫

−udψ + I(v)− I(u) ≦

∫

−udψ⋆ +

∫

−(v − u)dψ⋆ ≦

∫

−vdψ⋆ = I(v),

and hence I(u) ≧
∫

−udψ. By the definition of u it follows that

I(f ∧ t) = tI(u) ≧

∫

−(tu)dψ =

∫

−(f ∧ t)dψ

=

→∞
∫

0←

ψ([f ∧ t ≧ s])ds =

t
∫

0←

ψ([f ≧ s])ds.

For t ↑ ∞ we obtain I(f) ≧
∫

−fdψ. On the other hand I(f) =
∫

−fdϕ ≦
∫

−fdψ
by ii). The proof is complete.

Proof of 17.7.2)⇒1). Assume that ϕ : T(E) → [0,∞[ is a maximal
member of Σ(I). Then first of all ϕ is an isotone and supermodular set
function with ϕ(∅) = 0. From 17.8 we obtain

ϕ⋆(A ∪ T ) + ϕ⋆(A ∩ T ) = ϕ(A) + ϕ⋆(T )

for all A ∈ T(E) and T ∈⊏ T(E).
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If we take A ⊂ B in T(E) and T := B \ A then it follows that ϕ(B) =
ϕ(A)+ϕ⋆(B \A). Thus ϕ is inner ⋆ tight and hence an inner ⋆ cpremeasure.
The proof is complete.

The Main Theorem

We combine the last result with the former 14.21 which relates the ⋆ rep-
resentations of I to those sources of I which are inner ⋆ premeasures. The
main theorem which follows has indeed no resemblance to the continuous
Daniell-Stone theorem 15.9.

17.9. Theorem (Non-continuous Daniell-Stone Theorem). Let I : E
→ [0,∞[ be an elementary integral on a Stonean lattice cone E ⊂ [0,∞[X .
Then the following are equivalent.

1) There exist ⋆ representations of I, that is I is a ⋆ preintegral.

2) The set Σ(I) of the supermodular and subtight sources of I is nonvoid.

In this case Σ(I) is upward inductive in the argumentwise order. The sources
of I which are inner ⋆ premeasures are the maximal members of Σ(I).

We add two important assertions which express the particular roles of
the two extremal sources Δ and ∇.

17.10. Proposition. Assume that I fulfils (0). Then the following are
equivalent.

1) I is a ⋆ preintegral and separative.
2) Δ is the unique source of I which is an inner ⋆ premeasure.
3) Δ is an inner ⋆ premeasure.

Proof. 1)⇒2) follows from 17.4. 2)⇒3) is obvious. 3)⇒1) The assump-
tion implies that Δ is modular. Hence I is separative by 17.3.

The second assertion considers the condition that I be ⋆ tight.

17.11. Proposition. Assume that I fulfils (0). Then

I is ⋆ tight ⇐⇒ ∇ is a member of Σ(I).

Thus if I is ⋆ tight then I is a ⋆ preintegral. We know that the converse is
false.

Proof. ∇ is a source of I, and it is supermodular by 14.15.3). Further-
more 14.17 shows that I is ⋆ tight iff

I(v)− I(u) ≦

∫

−(v − u)d∇⋆ for all u ≦ v in E,

that is iff ∇ is a subtight source of I.

We insert another example which contributes to both these assertions.
It constructs an I such that a unique one ϕ : T(E) → [0,∞[ of its sources
is an inner ⋆ premeasure. On the one hand this ϕ will be different from the
two extremal sources Δ and ∇. On the other hand I will not be ⋆ tight
(whereas the example I in 14.24 is ⋆ tight). The present example is quite
complicated.
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17.12. Exercise. Let X = N ∪ {∞}, and let E ⊂ [0,∞[X consist of all
functions f : X → [0,∞[ such that f |N is monotone increasing and bounded
with f(∞) ≦ lim

n→∞
f(n). 1) E is a Stonean lattice cone. Next define the

paving T on N to consist of the subsets {n, n + 1, · · · } ∀n ∈ N. 2) t(E)
consists of ∅ and of the subsets T, T ∪ {∞} with T ∈ T. T(E) consists of
t(E) and {∞}. Now define

I : E → [0,∞[ to be I(f) = f(∞) + lim
n→∞

f(n) for f ∈ E.

3) I is an elementary integral which fulfils (0). 4) For f ∈ [0,∞]X we have

I⋆(f) = f(∞) + sup f and I⋆(f) = f(∞) ∧
(

lim inf
n→∞

f(n)
)

+ lim inf
n→∞

f(n).

5) I is not ⋆ tight. Hint: Take u, v ∈ E with u(∞) < v(∞) and u(n) = v(n)
for n ∈ N. 6) Compute the set functions Δ,∇ : T(E) → [0,∞[. 7) I has
a unique source ϕ : T(E) → [0,∞[ which is an inner ⋆ premeasure. ϕ is
�= Δ,∇.

17.13. Exercise. Let I : E → [0,∞[ be an elementary integral on a
Stonean lattice cone E ⊂ [0,∞[X . Assume that α : A → [0,∞] is a ⋆
representation of I. Then

I⋆(f) =

∫

∗

fdα for all f ∈ [0,∞]X ⇔ α|T(E) = ∇.

Hint: Use 12.12 and 14.17.

As before we specialize to the case that E is primitive. Then each
elementary integral I : E → [0,∞[ is ⋆ tight.

17.14. Special Case. Let E ⊂ [0,∞[X be a primitive Stonean lattice
cone. Then each elementary integral I : E → [0,∞[ with (0) is a ⋆ preinte-
gral.

We add a consequence which looks quite narrow but is of considerable
interest.

17.15. Consequence. Let E ⊂ [0,∞[X be a primitive Stonean lattice
cone such that

i) E consists of bounded functions and contains the positive constants.
ii) All elementary integrals I : E → [0,∞[ are separative.

Then all elementary integrals I : E → [0,∞[ fulfil (0). There is a one-to-
one correspondence between the elementary integrals I : E → [0,∞[ and the
inner ⋆ premeasures ϕ : T(E)→ [0,∞[ with ϕ(∅) = 0. The correspondence
is
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I �→ ϕ := the unique source Δ of I which is an inner ⋆ premeasure;

ϕ �→ I : I(f) =
∫

−fdϕ for f ∈ E.

Proof. 1) It is an obvious consequence of i) that each elementary integral
I : E → [0,∞[ fulfils (0), and hence is a ⋆ preintegral by 17.14. Thus by
ii) and 17.10 each I has its Δ as the unique source which is an inner ⋆
premeasure. 2) On the other hand i) implies that X ∈ T(E). Furthermore
for each isotone set function ϕ : T(E)→ [0,∞[ with ϕ(∅) = 0 we have

∫

−fdϕ ≦ (sup f)ϕ(X) <∞ for all f ∈ E.

If ϕ is modular then the functional I : I(f) =
∫

−fdϕ ∀f ∈ E thus defined
is an elementary integral by 11.11. 3) It follows that the two maps I �→ ϕ
and ϕ �→ I as above are well-defined, and that their two compositions are
the respective identities. This is the assertion.

As an example let X be a topological space, and define as above E =
CB+(X) to consist of the bounded functions in C+(X). Thus E ⊂ [0,∞[X

is a primitive Stonean lattice cone with 17.15.i). One verifies that

1) T(E) = CCl(X).

2) For each pair A,B ∈ CCl(X) with A∩B = ∅ and each ε > 0 there exist
functions u, v ∈ E with u ≧ χA and v ≧ χB such that u ∧ v ≦ ε. In fact, if
u, v ∈ E with u, v ≦ 1 such that A = [u = 1] and B = [v = 1] then

un :=
( 1− v

(1− u) + (1− v)

)n
and vn :=

( 1− u

(1− u) + (1− v)

)n
,

with sufficiently large n ∈ N, are as required.

It follows that E fulfils 17.15.ii). We thus obtain the famous representation
theorem due to Alexandroff [1940-43].

17.16. Theorem (Alexandroff Representation Theorem). Let X be a
topological space. There is a one-to-one correspondence between the el-
ementary integrals I : CB+(X) → [0,∞[ and the inner ⋆ premeasures
ϕ : CCl(X) → [0,∞[ with ϕ(∅) = 0. The correspondence is I(f) =

∫

−fdϕ
for all f ∈ CB+(X).

17.17. Bibliographical Note. The main result of Topsøe [1976] is
equivalent to the final positive assertion of 17.11, combined with the unique-
ness assertion 17.10 in case I is separative. The special case that E is prim-
itive was in Pollard-Topsøe [1975], and also the notion of a separative I.
Both papers contained variants as described in 15.14 and afterwards. For
the Alexandroff representation theorem we refer to Varadarajan [1965] and
Knowles [1967]. In Anger-Portenier [1992a] there are fortified results in the
frame of ⋆ tightness. However, the present main theorem 17.9 is new, as far
as the author is aware, and appears here for the first time.



CHAPTER VI

Transplantation of Contents and Measures

The present chapter is another application of the extension theories
of chapter II. It develops a certain method for the formation of contents and
measures from initial ones on the basis of regularity. The point is that one
has to switch from the initial lattice of regularity to another prescribed one.
Thus the procedure is more than an extension, it seems that transplantation
is a better name.

We start in section 18 with the non-continuous case • = ⋆. We consider
the full inner situation in the sense of chapter II, this time for inner ⋆ pre-
measures with finite values. In view of the upside-down transform method it
would be equivalent to consider the full outer situation. The main theorem
18.9 contains some well-known previous results which could be named the
Henry-Lembcke-Bachman-Sultan-Lipecki-Adamski theorem. As announced
in section 17 it is in close formal resemblance to the former main theorem
17.9.

Then section 19 considers the case • = σ, via reduction to the former
• = ⋆ (in case • = τ certain basic facts are not true). Here we restrict
ourselves to the conventional inner situation, in order not to overload the
chapter. We conclude with the application to existence and uniqueness
theorems on the extension of Baire measures to Borel measures in topological
spaces, as announced before 8.11.

18. Transplantation of Contents

Introduction and Preparations

We start with a short description of what will be done. Let X be a nonvoid
set.

Assume that ϕ : S → R is an inner ⋆ premeasure on a lattice S in X,
and φ := ϕ⋆|C(ϕ⋆,+. ) its maximal inner ⋆ extension. We fix another lattice
T in X and ask for the inner ⋆ premeasures ψ : T→ R on T such that

(⋆) ψ⋆|C(ψ⋆,+. ) is an extension of φ = ϕ⋆|C(ϕ⋆,+. ).

These ψ can be viewed as the transplants of ϕ onto T. Of course without
further assumptions there will be neither existence nor uniqueness. We
do not assume from the start that S ⊂ T, when the transplants ψ were
extensions of ϕ to T. But an essential overall assumption will be that the



180 VI. TRANSPLANTATION OF CONTENTS AND MEASURES

members of T be upward and downward enclosable S, that is T ⊂ (S ⊏ S).
Then we shall prove what follows.

1) An isotone and supermodular set function ψ : T → R satisfies (⋆)
iff ψ⋆|S = ϕ. This follows from the important earlier result 6.15 with
addendum 6.17, which is the inner transcription of 4.20 with 4.22. It will
be obtained at the end of the present subsection.

2) After this we form the collection ⋆(ϕ,T) of all isotone and supermod-
ular set functions ψ : T → R with (⋆), that is with ψ⋆|S = ϕ. It turns
out that ⋆(ϕ,T) is upward inductive in the argumentwise order. The main
fact is that a member ψ : T→ R of ⋆(ϕ,T) is maximal in this order iff it is
an inner ⋆ premeasure. Thus we obtain a fundamental existence theorem:
There are inner ⋆ premeasures ψ : T → R with (⋆) iff ⋆(ϕ,T) is nonvoid.
This result has several important specializations. The most obvious one is
the case S ⊂ T, where ⋆(ϕ,T) is nonvoid because it contains ψ := ϕ⋆|T.

3) At last we obtain a uniqueness result, which however requires the
assumption that S ⊂ T. First note that all ψ ∈ ⋆(ϕ,T) fulfil ψ ≦ φ⋆|T. Then
the result says that there is a unique inner ⋆ premeasure ψ : T→ R with (⋆)
iff the set function φ⋆|T (which is finite and isotone) is supermodular, and
in this case we have ψ = φ⋆|T. One direction is an immediate consequence
of the previous facts, while the other direction requires extensive further
preparations.

We conclude the introduction with the remark that the earlier presenta-
tions were all restricted to the conventional situation and to the particular
case that ϕ : S → [0,∞[ is a ccontent on a ring (but sometimes the value
∞ was admitted).

After this we turn to some preparations. The exercise below will be a
useful tool.

18.1. Exercise. Let ϕ : S→ R and ψ : T→ R be isotone set functions
on lattices S and T. Then the following are equivalent. 0) For each pair
S ∈ S and T ∈ T with T ⊂ S one has ψ(T ) ≦ ϕ(S). 1) ψ ≦ ϕ⋆|T. 2)
ψ⋆|S ≦ ϕ.

We pass to the above result 1).

18.2. Proposition. Let ϕ : S → R and ψ : T → R be isotone and
supermodular on lattices S and T. Assume that T ⊂ (S ⊏ S). Then
ψ⋆|S = ϕ implies that ψ⋆|C(ψ⋆,+. ) is an extension of ϕ⋆|C(ϕ⋆,+. ) (note
that the converse is true when ϕ is an inner ⋆ premeasure).

Proof. 1) ϕ⋆ and ψ⋆ are isotone and supermodular +. by 6.3.5). On S

we have by assumption ψ⋆ = ϕ = ϕ⋆, and this is finite. This implies that
ψ⋆ ≧ ϕ⋆ since ϕ⋆ is inner regular S by 6.3.4). 2) Now the assertion follows
from 6.17 applied to P = Q = H := S and to φ := ψ⋆ and θ := ϕ⋆. In fact,
the assumptions of 6.15 are fulfilled since φ = ψ⋆ is inner regular T by 6.3.4)
and hence inner regular S ⊏ S by assumption.
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The Existence Theorem

We assume that ϕ : S→ R is an isotone and supermodular set function on
a lattice S. We fix another lattice T such that T ⊂ (S ⊏ S). As above
we define ⋆(ϕ,T) to consist of all isotone and supermodular set functions
ψ : T→ R such that ψ⋆|S = ϕ.

18.3. Properties. Let ψ ∈ ⋆(ϕ,T). 1) ψ⋆|C(ψ⋆,+. ) is an extension of
ϕ⋆|C(ϕ⋆,+. ). 2) We have ψ ≦ φ⋆|T with φ := ϕ⋆|C(ϕ⋆,+. ). 3) ψ⋆ ≧ ϕ⋆.

Proof. 1) is 18.2. 2) follows from 1) and 18.1 applied to φ and ψ. 3)
follows from ψ⋆|S = ϕ since ϕ⋆ is inner regular S.

18.4. Proposition. If ⋆(ϕ,T) is nonvoid then it is upward inductive in
the argumentwise order.

Proof. Assume that E ⊂ ⋆(ϕ,T) is nonvoid and totally ordered. We
form ε := sup

ψ∈E
ψ. Thus ε : T →] − ∞,∞] is isotone. 1) For ψ ∈ E we

have ψ⋆|S = ϕ and hence ψ ≦ ϕ⋆|T by 18.1. It follows that ε ≦ ϕ⋆|T and
hence ε⋆|S ≦ ϕ by 18.1. On the other hand ψ ≦ ε for ψ ∈ E and hence
ϕ = ψ⋆|S ≦ ε⋆|S. Therefore ε⋆|S = ϕ. 2) We have ϕ⋆|T < ∞ since T is
upward enclosable S. Thus from 1) we obtain ε : T → R. 3) To see that ε
is supermodular fix A,B ∈ T. If α, β ∈ E then one of them ψ ∈ E fulfils
α, β ≦ ψ. Therefore

α(A) + β(B) ≦ ψ(A) + ψ(B) ≦ ψ(A ∪B) + ψ(A ∩B)

≦ ε(A ∪B) + ε(A ∩B).

It follows that ε(A) + ε(B) ≦ ε(A ∪B) + ε(A ∩B). The proof is complete.

18.5. Proposition. Assume that ψ ∈ ⋆(ϕ,T) is an inner ⋆ premeasure.
Then ψ is a maximal member of ⋆(ϕ,T).

The proof is based on the lemma below, which is a close relative to 17.2.
The difference is that 17.2 has a weaker assumption but is limited to the
conventional situation.

18.6. Lemma. Let T be a lattice. Assume that ψ : T → [−∞,∞[ is an
inner ⋆ premeasure, and that ϑ : T→ R is isotone and supermodular +. with
ψ ≦ ϑ. If T ∈ T is such that there exist A,B ⊂ X with A ⊂ T ⊂ B and

a := ψ⋆(A) = ϑ⋆(A) ∈ R and b := ψ⋆(B) = ϑ⋆(B) ∈ R,

then ψ(T ) = ϑ(T ).

Proof of 18.6. Fix ε > 0 and then

P ∈ T with P ⊂ A and a− ε ≦ ψ(P ) ≦ ϑ(P ) ≦ a,

Q ∈ T with Q ⊂ B and b− ε ≦ ψ(Q) ≦ ϑ(Q) ≦ b.

We can assume that T ⊂ Q ⊂ B. Thus P ⊂ A ⊂ T ⊂ Q ⊂ B, with
P ⊂ T ⊂ B in T. Since ψ is an inner ⋆ premeasure and ϑ⋆ is supermodular
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+. by 6.3.5) we have

a + b− 2ε = (a− ε) + (b− ε) ≦ ψ(P ) + ψ(Q) = ψ(T ) + ψ⋆(P |T ′|Q)

≦ ϑ(T ) + ϑ⋆(P |T ′|Q) ≦ ϑ(P ) + ϑ(Q) ≦ a + b,

where all values are finite. It follows that 0 ≦ ϑ(T )−ψ(T ) ≦ 2ε for all ε > 0
and hence ψ(T ) = ϑ(T ).

Proof of 18.5. Let ϑ ∈ ⋆(ϕ,T) with ψ ≦ ϑ. Fix T ∈ T. By assumption
there exist A,B ∈ S with A ⊂ T ⊂ B. Therefore

ψ⋆(A) = ϑ⋆(A) = ϕ(A) ∈ R and ψ⋆(B) = ϑ⋆(B) = ϕ(B) ∈ R.

Thus we obtain ψ(T ) = ϑ(T ) from 18.6.

18.7. Proposition. Assume that ϕ is an inner ⋆ premeasure. Then
each maximal ψ ∈ ⋆(ϕ,T) is an inner ⋆ premeasure.

Once more we isolate the basic step in a lemma.

18.8. Lemma. Assume that ϕ is an inner ⋆ premeasure. Fix ψ ∈ ⋆(ϕ,T)
and E ∈ S ⊏ S and define

ϑ : ϑ(T ) = ψ⋆(T ∪E) + ψ⋆(T ∩E)− ψ⋆(E) for T ∈ T.

Note that all arguments are in S ⊏ S and hence all values are finite, so that
ϑ : T→ R. We claim that ϑ ∈ ⋆(ϕ,T) and ϑ ≧ ψ.

Proof of 18.8. i) ψ⋆ is supermodular +. by 6.3.5). ii) From i) we obtain
ϑ ≧ ψ and hence ϑ⋆ ≧ ψ⋆. iii) From i) we conclude that ϑ is supermodular.
Of course ϑ is isotone. iv) For U ⊂ E we have ϑ⋆(U) ≦ ψ⋆(U) and hence
ϑ⋆(U) = ψ⋆(U). To see this we can assume that ϑ⋆(U) > −∞. Let T ∈ T

with T ⊂ U . Then T ⊂ E and hence ϑ(T ) = ψ⋆(T ) ≦ ψ⋆(U). It follows
that ϑ⋆(U) ≦ ψ⋆(U). v) For V ⊃ E we have ϑ⋆(V ) ≦ ψ⋆(V ) and hence
ϑ⋆(V ) = ψ⋆(V ). To see this we can assume that ϑ⋆(V ) > −∞. Let T ∈ T

with T ⊂ V . Then T ∪ E ⊂ V and hence ϑ(T ) ≦ ψ⋆(T ∪ E) ≦ ψ⋆(V ). It
follows that ϑ⋆(V ) ≦ ψ⋆(V ). vi) We can now prove that ϑ⋆|S = ϕ. This will
complete the present proof. By assumption ϕ is an inner ⋆ premeasure, so
that ϕ⋆|C(ϕ⋆,+. ) is a content on the algebra C(ϕ⋆,+. ) ⊃ S. By 18.3.1) then
ψ⋆|C(ψ⋆,+. ) is an extension of ϕ⋆|C(ϕ⋆,+. ), that is ψ⋆ = ϕ⋆ on C(ϕ⋆,+. ) ⊂
C(ψ⋆,+. ). Now fix A ∈ S and then U, V ∈ S with U ⊂ A,E ⊂ V . We
obtain

ψ⋆(U) + ψ⋆(V ) = ψ⋆(A) + ψ⋆(U |A′|V )

≦ ϑ⋆(A)+. ϑ⋆(U |A′|V ) termwise by ii)

≦ ϑ⋆(U)+. ϑ⋆(V ) by 6.3.5)

= ψ⋆(U) + ψ⋆(V ) by iv)v).

Thus all terms are finite. It follows that ϑ⋆(A) = ψ⋆(A) = ϕ(A).

Proof of 18.7. Fix U ⊂ T ⊂ V in T and put E := U |T ′|V = U∪(V ∩T ′) ∈
S ⊏ S. Then T∪E = V and T∩E = U . Now for the set function ϑ ∈ ⋆(ϕ,T)
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formed in 18.8 we have ϑ = ψ. Therefore

ψ⋆(T ∪E) + ψ⋆(T ∩ E) = ψ⋆(E) + ψ(T ),

ψ(U) + ψ(V ) = ψ(T ) + ψ⋆(U |T ′|V ).

From 6.22.4)⇒1) we obtain the assertion.

The three propositions proved so far furnish result 2) of the introduction.

18.9. Theorem. Assume that ϕ : S → R is an inner ⋆ premeasure on
a lattice S. Let T be a lattice with T ⊂ (S ⊏ S). If ⋆(ϕ,T) is nonvoid
then it is upward inductive. The maximal members of ⋆(ϕ,T) are the inner
⋆ premeasures ψ : T→ R with ψ⋆|S = ϕ.

Thus we obtain a fundamental existence theorem, which will be formu-
lated once more in explicit terms.

18.10. Theorem. Assume that ϕ : S→ R is an inner ⋆ premeasure on
a lattice S. Let T be a lattice with T ⊂ (S ⊏ S). Then

for each ϑ : T→ R isotone and supermodular with ϑ⋆|S = ϕ

there exists ψ : T→ R inner ⋆ premeasure with ψ⋆|S = ϕ

such that ψ ≧ ϑ.

18.11. Exercise. The above theorem becomes false when one weakens
the assumption T ⊂ (S ⊏ S) to T ⊂ (⊏ S) or to T ⊂ (⊐ S), even if S ⊂ T.
Hint for T ⊂ (⊐ S): Fix a nonvoid proper subset A ⊂ X. Let S consist of
∅ and A, and define ϕ : S→ R to be ϕ(∅) = 0 and ϕ(A) = 1. Then let T

consist of S and X, and define ϑ : T→ R to extend ϕ with ϑ(X) > 1.

Specializations of the Existence Theorem

A remarkable specialization is S = {∅, X}. Then each real c ≧ 0 defines
the inner ⋆ premeasure ϕ : S→ [0,∞[ with ϕ(∅) = 0 and ϕ(X) = c. Thus
18.10 reads as follows.

18.12. Theorem. Let T be a lattice with ∅ ∈ T. Then for each bounded
isotone and supermodular ϑ : T → [0,∞[ with ϑ(∅) = 0 there exists an
inner ⋆ premeasure ψ : T → [0,∞[ with ψ(∅) = 0 such that ψ ≧ ϑ and
sup ψ = sup ϑ.

This result is a close relative to the so-called core theorem in cooperative
game theory.

18.13. Exercise. The above theorem becomes false when one removes
the assumption that ϑ : T→ [0,∞[ be bounded. Hint for a counterexample:
Let T consist of the finite subsets of an uncountable set X. Define ϑ : T→
[0,∞[ to be ϑ(T ) = (#(T ))2 for T ∈ T.

18.14. Exercise. Compare 18.12 with the Hahn-Banach type result
11.14.2).
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We turn to the specialization S ⊂ T which has been mentioned in the
introduction.

18.15. Theorem. Assume that ϕ : S→ R is an inner ⋆ premeasure on
a lattice S. Let T be a lattice with S ⊂ T ⊂ (S ⊏ S). Then there exists an
inner ⋆ premeasure ψ : T→ R such that ψ|S = ϕ.

In fact, the set function ϑ := ϕ⋆|T is as required in 18.10.

18.16. Consequence. Assume that ϕ : S→ R is an inner ⋆ premeasure
on a lattice S. Then ϕ can be extended to a +. content β : P(X)→ R with
β(X) = sup ϕ.

Proof. From 18.15 applied to T := S ⊏ S we obtain an inner ⋆ premea-
sure ψ : T→ R such that ψ|S = ϕ. By 18.3.1) ψ⋆|C(ψ⋆,+. ) is an extension of
ϕ⋆|C(ϕ⋆,+. ). Now from 6.12 applied to φ := ψ⋆ we obtain C(ψ⋆,+. ) = P(X).
In fact, for A ⊂ X and P,Q ∈ T we have P |A|Q,P |A′|Q ∈ T as well, and
φ|T = ψ⋆|T = ψ is modular. Therefore β := ψ⋆|C(ψ⋆,+. ) is as required.

We come to an important extension of the specialization S ⊂ T. It is
based on the so-called Marczewski condition.

18.17. Remark. Let ϕ : S → R be an isotone set function on a lattice
S, and T be a lattice. 1) (ϕ⋆|T)⋆|S ≦ (ϕ⋆|T)⋆|S ≦ ϕ, with equalities in case
S ⊂ T. The relation (ϕ⋆|T)⋆|S = ϕ is called the Marczewski condition.
It means that ϕ⋆ is inner regular T at S . 2) If the Marczewski condition is
fulfilled then (ϕ⋆|T)⋆ = ϕ⋆. This means that ϕ⋆ is inner regular T .

Proof. 1) is obvious. 2) We obtain (ϕ⋆|T)⋆ ≧ ϕ⋆ since ϕ⋆ is inner regular
S. The converse ≦ is obvious.

18.18. Theorem. Assume that ϕ : S → R is an inner ⋆ premeasure
on a lattice S. Let T be a lattice with T ⊂ (S ⊏ S). Assume that the
Marczewski condition is fulfilled. Then there exists an inner ⋆ premeasure
ψ : T→ R such that ψ⋆|S = ϕ.

This follows from 18.10 applied to ϑ := ϕ⋆|T.

18.19. Remark. Assume that ϕ : S → R is an inner ⋆ premeasure on
a lattice S. Let T be a lattice with T ⊂ (S ⊏ S). Consider the condition

(ex) there exists an inner ⋆ premeasure ψ : T→ R with ψ⋆|S = ϕ.

Then we have the implications

Marczewski condition ⇒ (ex) ⇒ (ϕ⋆|T)⋆|S = ϕ.

The converse implications ⇐ are both false, even when S is an algebra.

Proof. The left implication⇒ is 18.18. To prove the right implication⇒
note that ψ ≦ ϕ⋆|T by 18.1 and hence ϕ = ψ⋆|S ≦ (ϕ⋆|T)⋆|S. The converse
≧ is in 18.17.1). Counterexamples for the two converse implications ⇐ will
be in 18.20 and 18.21 below.
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18.20. Example. Let S consist of ∅ and X, and define ϕ : S→ R to be
ϕ(∅) = 0 and ϕ(X) = 1. Then fix a nonvoid proper subset A ⊂ X. Let T

consist of ∅ and A, and define ψ : T→ R to be ψ(∅) = 0 and ψ(A) = 1. Of
course ϕ and ψ are inner ⋆ premeasures, and T ⊂ (S ⊏ S). One verifies that
ψ⋆|S = ϕ. On the other hand ϕ⋆|T = 0, so that the Marczewski condition
is violated.

18.21. Example. Let X :=]0, 1]. 1) We define S to consist of ∅ and of
the finite unions of the subsets

I l
n := ]l − 1/2n, l/2n] for integer n ≧ 0 and l = 1, · · · , 2n.

Thus S is an algebra, and each nonvoid S ∈ S has the form

S =
⋃

l∈M

I l
n for some n ≧ 0 and nonvoid M ⊂ {1, · · · , 2n}.

Let ϕ := Λ|S, which is a ccontent and hence an inner ⋆ premeasure. 2) Fix
dense subsets El

n ⊂ I l
n such that the El

n for all n ≧ 0 and l = 1, · · · , 2n

are pairwise disjoint. For example one can take El
n := (cn + Q) ∩ I l

n with
cn ∈ R ∀n ≧ 0 which are linearly independent over Q. Define T to consist of
∅ and of the finite unions of the sets El

n for n ≧ 0 and l = 1, · · · , 2n. Thus
T is a lattice (and even a ring). 3) The condition (ϕ⋆|T)⋆|S ≧ ϕ is fulfilled.
In fact, write the nonvoid S ∈ S in the form S =

⋃

l∈M

I l
n as above, and let

T :=
⋃

l∈M

El
n ∈ T. Then T ⊂ S, and each A ∈ S with T ⊂ A fulfils S ⊂ A.

Thus ϕ⋆(T ) = ϕ(S) and hence the assertion. 4) We do not have (ex). To
see this let ψ : T → R be an inner ⋆ premeasure with ψ⋆|S = ϕ. Fix a
nonvoid T ∈ T. Let p ≧ 0 be such that the sets El

n ⊂ T have all n ≦ p, and
let q > p. Then T ∩ Ik

q ∀k = 1, · · · , 2q contains no nonvoid member of T, so

that ψ⋆(T ∩ Ik
q ) = 0. Now T ∩ Ik

q ∈ C(ψ⋆,+. ) since C(ϕ⋆,+. ) ⊂ C(ψ⋆,+. ) by
18.3.1). Thus

T =
2q
⋃

k=1

T ∩ Ik
q implies that ψ(T ) = ψ⋆(T ) =

2q
∑

k=1

ψ⋆(T ∩ Ik
q ) = 0.

Therefore ψ = 0 and hence ϕ = 0. This is the desired contradiction.

We conclude with a concrete particular case of 18.18.

18.22. Consequence. Let X be a Hausdorff topological space. Assume
that ϕ : S → [0,∞[ is an inner ⋆ premeasure on a lattice S with ∅ ∈ S

and ϕ(∅) = 0. Also assume that Comp(X) is upward enclosable S. If ϕ⋆

is inner regular Comp(X) at S then α := ϕ⋆|C(ϕ⋆) can be extended to a
Radon measure (in the sense of section 9).

18.23. Bibliographical Note. The main theorem 18.9 has been ob-
tained in König [1992b] in a more special situation, but with the same ideas.
This work owes much to Adamski [1987].

We turn to the subsequent specializations. For 18.12 and its context
we refer to Adamski [1987] section 2, also for the counterexample 18.13,
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and to Kindler [1987]. In the mainstream the basic specialization 18.15 was
the independent result of Lembcke [1970] and Bachman-Sultan [1980]. Its
extension 18.18 has been obtained in Lipecki [1987] and Adamski [1987].
The topological result 18.22 is due to Henry [1969]. At last the nontrivial
example 18.21 is from König [1992b] example 2.11.

The Theorem of �Loś-Marczewski

The present subsection has the aim to prove a basic extension theorem
due to �Loś-Marczewski [1949], transferred to the frame of ovals. The �Loś-
Marczewski result furnishes explicit formulas for certain extensions of a
simple-step type. It corresponds to the simple-step extension procedure
used in the traditional proof of the Hahn-Banach theorem. We shall need
the extended �Loś-Marczewski theorem for the uniqueness theorem of the
next subsection.

We start with three lemmata. The first two ones require the rules 4.2
and 6.4 for semimodular set functions which are based on separation.

18.24. Lemma. Let α : A→ R be an isotone set function on an oval A.
Fix subsets E,F ⊂ X with E ∩ F = ∅. Then

α content
.
+ ⇒ S �→ α⋆

(

(S ∩ E) ∪ F
)

is a content
.
+ on A;

α content +. ⇒ S �→ α⋆

(

(S ∩ E) ∪ F
)

is a content +. on A.

Proof. Fix P,Q ∈ A and put A := (P ∩ E) ∪ F and B := (Q ∩ E) ∪ F .
Then A∪B =

(

(P∪Q)∩E
)

∪F and A∩B =
(

(P∩Q)∩E
)

∪F . i) For the first
assertion we have to prove that α⋆(A∪B)

.
+α⋆(A∩B) = α⋆(A)

.
+α⋆(B). From

4.1.5) we know that ≦. In order to deduce ≧ from 4.2 we have to show that
A,B are separated A. Thus let M ∈ A with A∩B = (P ∩Q∩E)∪F ⊂M .
We form

S := M ∪ (P ∩Q′) = P ∪M |Q|M ∈ A,

T := M ∪ (Q ∩ P ′) = Q ∪M |P |M ∈ A.

It is obvious that S ∩ T = M . Furthermore

A = (P ∩E) ∪ F ⊂ (P ∩Q ∩ E) ∪ (P ∩Q′) ∪ F ⊂M ∪ (P ∩Q′) = S,

and likewise B ⊂ T . The assertion follows. ii) For the second assertion we
use 6.4 and have to show that A,B are coseparated A. Thus let M ∈ A

with M ⊂ A ∪B =
(

(P ∪Q) ∩ E
)

∪ F . We form

S := M ∩ (P ∪Q′) = M |Q|M ∩ P ∈ A,

T := M ∩ (Q ∪ P ′) = M |P |M ∩Q ∈ A.

It is obvious that M = S ∪ T . Furthermore

S = M ∩ (P ∪Q′) ⊂
(

A ∪ (Q ∩ P ′)
)

∩ (P ∪Q′) ⊂ A,

and likewise T ⊂ B. The assertion follows.
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18.25. Lemma. Let α : A→ R be a content
.
+ on an oval A. Fix E ⊂ X.

For P,Q,U, V ∈ A with 1) P ⊂ Q and U ⊂ V and 2) Q ∩ V ⊂ P ∪ U then

α⋆(U |E|Q)
.
+α⋆(V |E|P ) = α⋆(V |E|Q)

.
+α⋆(U |E|P ).

Proof. From 1) we see that

(U |E|Q) ∪ (V |E|P ) = V |E|Q and (U |E|Q) ∩ (V |E|P ) = U |E|P.

Thus from 4.1.5) we know that ≧. In order to deduce ≦ from 4.2 we have
to show that U |E|Q and V |E|P are separated A. Thus let M ∈ A with
U |E|P ⊂M . We form

S := M ∪ (Q ∩ P ′) = Q ∪M |P |M ∈ A,

T := M ∪ (V ∩ U ′) = V ∪M |U |M ∈ A.

Then on the one hand

U |E|Q ⊂ (U |E|P ) ∪ (Q ∩ P ′) ⊂M ∪ (Q ∩ P ′) = S,

and likewise V |E|P ⊂ T . On the other hand we obtain from 2)

S ∩ T = M ∪ (Q ∩ P ′ ∩ V ∩ U ′) = M ∪
(

Q ∩ V ∩ (P ∪ U)′
)

= M.

The assertion follows.

The third lemma below is a basic step.

18.26. Lemma. Let α : A→ R be a finite content on an oval A. 0) The
set functions α⋆ and α⋆ are finite on A ⊏ A. 1) For E ⊂ X and A,B ∈ A

we have
α⋆(A|E|B) + α⋆(A|E′|B) = α(A) + α(B).

Proof. 0) For M ∈ A ⊏ A there are by definition A,B ∈ A with
A ⊂M ⊂ B. Therefore

−∞ < α(A) ≦ α⋆(M) ≦ α⋆(M) ≦ α(B) <∞.

1) Fix E ⊂ X and A,B ∈ A, and put S := A|E|B and T := A|E′|B =
B|E|A. Then S ∪ T = A ∪ B =: V and S ∩ T = A ∩ B =: U are in A.
It remains to prove that α⋆(S) + α⋆(T ) = α(U) + α(V ), since the right
side is = α(A) + α(B). i) Fix M ∈ A with U ⊂ S ⊂ M ⊂ V and form
N := U ∪ (V ∩M ′) = V |M |U ∈ A. It is obvious that M ∪ N = V and
M ∩ N = U . Also U ⊂ N ⊂ T . Therefore α(U) + α(V ) = α(M) + α(N)
is ≦ α(M) + α⋆(T ) and hence ≦ α⋆(S) + α⋆(T ). ii) Fix N ∈ A with
U ⊂ N ⊂ T ⊂ V and form M := U ∪ (V ∩ N ′) = V |N |U ∈ A. It is
obvious that M ∪ N = V and M ∩ N = U . Also S ⊂ M ⊂ V . Therefore
α(U)+α(V ) = α(M)+α(N) is ≧ α⋆(S)+α(N) and hence ≧ α⋆(S)+α⋆(T ).
The proof is complete.

We head for the main results. For a lattice A in X and a subset E ⊂ X
we define

A(E) := {M |E|N : M,N ∈ A},
A[E] := {M |E|N : M ⊂ N in A} = {M ∪ (N ∩ E) : M,N ∈ A}.

We list the relevant properties.
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18.27. Properties. 1) A ⊂ A[E] ⊂ A(E) ⊂ (A ⊏ A). 2) E ∈ A[E] ⇔
E ∈ A(E)⇔ E ∈ A ⊏ A. 3) A(E) and A[E] are lattices. 4) A oval ⇒ A(E)
is an oval. A ring ⇒ A(E) is a ring. 5) A(E) = A(E ′).

Proof. 1)2)3)5) are clear. 4) The ring case is clear as well. So assume
that A is an oval. Fix P,Q,A ∈ A(E). Thus P = P1|E|P2, Q = Q1|E|Q2,
and A = A1|E|A2 with P1, P2, Q1, Q2, A1, A2 ∈ A. Then on E′ we have P =
P1, Q = Q1, A = A1 and hence A′ = A′

1, and therefore P |A|Q = P1|A1|Q1.
Likewise P |A|Q = P2|A2|Q2 on E. It follows that

P |A|Q = (P1|A1|Q1)|E|(P2|A2|Q2) ∈ A(E).

18.28. Remark. Let α : A → R be an isotone set function on an oval
A. Fix subsets E,F ⊂ X with E ∩ F = ∅. Then

α content
.
+ ⇒ S �→ α⋆

(

(S ∩E) ∪ F
)

is a content
.
+ on A(E);

α content +. ⇒ S �→ α⋆

(

(S ∩ E) ∪ F
)

is a content +. on A(E).

This is an immediate consequence of 18.24.

18.29. Proposition. Let α : A → R be a finite content on an oval A.
Fix E ⊂ X and U ∈ A. Define ϕ,ψ : A(E)→ R to be

ϕ(S) = α⋆(U |E|S) + α⋆(U |E′|S)− α(U),

ψ(S) = α⋆(U |E′|S) + α⋆(U |E|S)− α(U);

note that all terms are finite by 18.27.1) and 18.26.0).

1) ϕ and ψ are contents on A(E).
2) ϕ|A = ψ|A = α.
3) ϕ(S) = α⋆(S) and ψ(S) = α⋆(S) for all S ∈ A[E] with U ⊂ S.

Proof. 1) follows from 18.28, and 2) follows from 18.26.1). It remains to
prove 3). Fix S ∈ A[E] with U ⊂ S. Thus S = P |E|Q = P ∪ (Q ∩ E) with
P ⊂ Q in A. We can assume that U ⊂ P ⊂ Q. i) From 18.26.1) we obtain

ϕ(S) = α⋆(U |E|Q) + α⋆(U |E′|P )− α(U)

= α⋆(U |E|Q) + α(P )− α⋆(U |E|P )

= α⋆(U |E|Q) + α⋆(P |E|P )− α⋆(U |E|P ).

Thus from 18.25 applied to P,Q,U and V := P it follows that ϕ(S) =
α⋆(P |E|Q) = α⋆(S). ii) Define T := P |E′|Q = P ∪(Q∩E′). Thus T ∈ A[E′]
with U ⊂ T . Now the first assertion in 3) which has been proved in i) can
be applied to E′, U and T . We obtain

α⋆(U |E′|T ) + α⋆(U |E|T )− α(U)− α⋆(T ) = 0,

α⋆(U |E′|Q) + α⋆(U |E|P )− α(U)− α⋆(P |E′|Q) = 0.

On the other hand

ψ(S)− α⋆(S) = α⋆(U |E′|P ) + α⋆(U |E|Q)− α(U)− α⋆(P |E|Q).

Addition of the last two equations and three applications of 18.26.1) furnish
ψ(S)− α⋆(S) = 0. The proof is complete.
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18.30. Theorem. Let α : A → R be a finite content on an oval A. Fix
E ⊂ X. Then α⋆ and α⋆ are finite and modular on A[E].

Proof. The finiteness is known from 18.26.0). Fix S, T ∈ A[E] and then
U ∈ A such that U ⊂ S, T . Then from 18.29 applied to E and U we obtain
α⋆(S ∪ T ) + α⋆(S ∩ T ) = α⋆(S) + α⋆(T ) and the same for α⋆. This is the
assertion.

18.31. Consequence. Let α : A→ R be a content
.
+. on an oval A, and

let S ⊂ A be a lattice on which α is finite. Fix E ⊂ X. Then α⋆ and α⋆ are
finite and modular on S[E].

Proof. E := {A ∈ A : α(A) ∈ R} ⊂ A is an oval, and ε := α|E is a finite
content on E. One verifies that ε⋆ ≧ α⋆ and ε⋆ ≦ α⋆, and that ε⋆ = α⋆ and
ε⋆ = α⋆ on E ⊏ E. By 18.30 therefore α⋆ and α⋆ are finite and modular on
E[E]. The assertion follows.

The Uniqueness Theorem

One direction of the uniqueness theorem is a simple consequence of the first
two subsections.

18.32. Proposition. Assume that ϕ : S→ R is an inner ⋆ premeasure
on a lattice S with φ := ϕ⋆|C(ϕ⋆,+. ). Let T be a lattice with T ⊂ (S ⊏ S)

such that ⋆(ϕ,T) is nonvoid. If φ⋆|T is supermodular then it is the unique
inner ⋆ premeasure ψ : T→ R with ψ⋆|S = ϕ.

18.33. Addendum. In the conventional situation ∅ ∈ S with ϕ(∅) = 0
and ∅ ∈ T it suffices to assume that φ⋆|T is superadditive.

Proof of 18.32 and 18.33. For ψ := φ⋆|T we see from 18.1 that
ψ⋆|C(ϕ⋆,+. ) ≦ φ and hence ψ⋆|S ≦ ϕ. By 18.9 there are inner ⋆ pre-
measures ϑ : T → R with ϑ⋆|S = ϕ. By 18.3.2) each of them fulfils ϑ ≦ ψ.
Therefore ϕ = ϑ⋆|S ≦ ψ⋆|S ≦ ϕ and hence ϑ⋆|S = ψ⋆|S = ϕ. It follows
that ϑ = ψ, in the full situation from 18.6 and in the conventional situation
from 17.2.

The other direction requires the restriction S ⊂ T. We do not know
whether it can be avoided.

18.34. Proposition. Assume that ϕ : S→ R is an inner ⋆ premeasure
on a lattice S with φ := ϕ⋆|C(ϕ⋆,+. ). Let T be a lattice with S ⊂ T ⊂ (S ⊏

S). If there is a unique inner ⋆ premeasure ψ : T → R with ψ|S = ϕ then
ψ = φ⋆|T.

Proof. Fix E ∈ T. We use the last subsection in that we conclude from
18.31 that φ⋆|S[E] is supermodular. By 18.32 thus η := φ⋆|S[E] is an inner
⋆ premeasure η : S[E]→ R with η|S = ϕ (and in fact the unique one). By
18.27.2) we have E ∈ S[E] and then η(E) = φ⋆(E). Now S[E] ⊂ T. By
18.15 there exists an inner ⋆ premeasure ϑ : T → R such that ϑ|S[E] = η.
Thus ϑ|S = η|S = ϕ and ϑ(E) = η(E) = φ⋆(E). Now the uniqueness
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assumption enforces that ϑ = ψ. Therefore ψ(E) = φ⋆(E). This is the
assertion.

18.35. Theorem. Assume that ϕ : S→ R is an inner ⋆ premeasure on
a lattice S with φ := ϕ⋆|C(ϕ⋆,+. ). Let T be a lattice with S ⊂ T ⊂ (S ⊏ S).
Then there is a unique inner ⋆ premeasure ψ : T→ R with ψ|S = ϕ iff φ⋆|T
is supermodular. In this case ψ = φ⋆|T.

18.36. Addendum. In the conventional situation ∅ ∈ S with ϕ(∅) = 0
and hence ∅ ∈ T it is equivalent that φ⋆|T is superadditive.

18.37. Bibliographical Note. The last result 18.36 is due to Tarash-
chanskii [1989]. For other uniqueness assertions we refer to Lipecki [1983]
[1988][1990].

In the present section we have stressed the formal resemblance to section
17 in the existence results. There is no such connection with respect to
uniqueness. In fact, one can see from 17.12 that 18.35 has no counterpart
in section 17.

We conclude with a simple example for non-uniqueness.

18.38. Example. Let S consist of ∅ and X, and define ϕ : S → R

to be ϕ(∅) = 0 and ϕ(X) = 1. Then fix nonvoid subsets P,Q ⊂ X with
P ∪Q = X and P ∩Q = ∅. Let T consist of S and P,Q. Then the inner ⋆
premeasures ψ : T→ R with ψ|S = ϕ are the extensions of ϕ with

ψ(P ) = t and ψ(Q) = 1− t for some 0 ≦ t ≦ 1.

On the other hand φ := ϕ⋆|C(ϕ⋆) = ϕ has φ⋆(P ) = φ⋆(Q) = 1.

19. Transplantation of Measures

The present section considers the case • = σ. We restrict ourselves to
the conventional inner situation since the full inner situation would be much
less simple. But there are some preparations which can be done for the full
inner situation with the same effort.

Preparations

We start with the application of 6.15 with 6.17 as in the last section.

19.1. Proposition. Let ϕ : S → R and ψ : T → R be isotone and
supermodular on lattices S and T with ϕσ|S = ϕ. Assume that T ⊂ (S ⊏

S). Then ψσ|S = ϕ implies that ψσ|C(ψσ,+. ) is an extension of ϕσ|C(ϕσ,+. )
(note that the converse is true when ϕ is an inner σ premeasure).

Proof. 1) ϕσ and ψσ are isotone and supermodular +. by 6.3.5). On S

we have by assumption ψσ = ϕ = ϕσ, and this is finite. Hence ψσ = ϕσ

on Sσ by 6.7, and ψσ ≧ ϕσ since ϕσ is inner regular Sσ by 6.3.4). 2) Now
the assertion follows from 6.17 applied to P = Q := S and H := Sσ and to
φ := ψσ and θ := ϕσ, combined with Tσ ⊂ (Sσ ⊏ S) and 6.7.

We need one more lemma, which is devoted to an obvious comparison.
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19.2. Lemma. Let S be a lattice. 1) Assume that ϕ : S → [−∞,∞[ is
an inner σ premeasure. Then ξ := ϕσ|Sσ is an inner ⋆ premeasure, and
downward σ continuous and hence an inner σ premeasure as well. Further-
more ξσ = ξ⋆ = ϕσ. 2) Assume that ξ : Sσ → [−∞,∞[ is an inner σ
premeasure. Then ϕ := ξ|S is an inner σ premeasure as well. Furthermore
ξσ = ξ⋆ = ϕσ, and hence in particular ξ = ϕσ|Sσ.

Proof of 1). ξ : Sσ → [−∞,∞[ is isotone and supermodular, and an
extension of ϕ and hence �≡ −∞. We have ξ⋆ = ϕσ since ϕσ is inner regular
Sσ. Furthermore ξ⋆|C(ξ⋆,+. ) = ϕσ|C(ϕσ,+. ) is an extension of ξ in the crude
sense. Thus 6.22 implies that ξ is an inner ⋆ premeasure. Next ξ is downward
σ continuous by 6.5.iii), and hence an inner σ premeasure as a consequence
of 6.22. At last ξσ = ξ⋆ follows from 6.5.iv).

Proof of 2). It is clear that ϕ �≡ −∞. i) By 6.5.iv) we have ξσ = ξ⋆.
ii) α := ξσ|C(ξσ,+. ) is a content +. on an algebra which is an extension of
ξ and hence of ϕ. In particular Sσ ⊂ C(ξσ,+. ). Furthermore α|Sσ = ξ is
downward σ continuous, and α is inner regular Sσ. Therefore α is an inner
σ extension of ϕ. Thus ϕ is an inner σ premeasure. iii) Now 6.18 implies
that α is a restriction of ϕσ|C(ϕσ,+. ). Thus ξσ = ϕσ on C(ξσ,+. ) and in
particular on Sσ. Therefore ξσ = ϕσ since both sides are inner regular Sσ.
The proof is complete.

The Existence Theorem

Let S be a lattice with ∅ ∈ S, and ϕ : S → [0,∞[ be an isotone and
supermodular set function with ϕ(∅) = 0 and ϕσ|S = ϕ. We fix another
lattice T such that ∅ ∈ T ⊂ (⊏ S). As before we define σ(ϕ, T) to consist
of all isotone and supermodular set functions ψ : T → [0,∞[ such that
ψσ|S = ϕ.

19.3. Properties. Let ψ ∈ σ(ϕ, T). 0) ψ(∅) = ψσ(∅) = 0. 1) ψσ|C(ψσ)
is an extension of ϕσ|C(ϕσ). 2) We have ψσ|Tσ ≦ φ⋆|Tσ with φ := ϕσ|C(ϕσ).
3) ψσ|Sσ = ϕσ|Sσ. Therefore ψσ ≧ ϕσ.

Proof. 0) follows from 0 ≦ ψ(∅) ≦ ψσ(∅) = ϕ(∅) = 0. 1) is contained
in 19.1. 2) We have (ψσ|Tσ)⋆ = ψσ since ψσ is inner regular Tσ. Thus 1)
implies that (ψσ|Tσ)⋆|C(ϕσ) = ψσ|C(ϕσ) = φ. Then the assertion follows
from 18.1. 3) ψσ|Sσ = ϕσ|Sσ follows from ψσ|S = ϕ = ϕσ|S and 6.7. Then
ψσ ≧ ϕσ since ϕσ is inner regular Sσ.

We now obtain the counterparts to 18.9 and 18.10, except that we are
restricted to the conventional situation.

19.4. Theorem. Assume that ϕ : S→ [0,∞[ is an inner σ premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕσ|C(ϕσ). Let T be a
lattice with ∅ ∈ T ⊂ (⊏ S), and assume that φ⋆|T is σ continuous at ∅.
If σ(ϕ, T) is nonvoid then it is upward inductive in the argumentwise order.
The maximal members of σ(ϕ, T) are the inner σ premeasures ψ : T→ [0,∞[
with ψσ|S = ϕ.
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19.5. Theorem. Assume that ϕ : S→ [0,∞[ is an inner σ premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕσ|C(ϕσ). Let T be a
lattice with ∅ ∈ T ⊂ (⊏ S), and assume that φ⋆|T is σ continuous at ∅.
Then

for each ϑ : T→ [0,∞[ isotone and supermodular with ϑσ|S = ϕ

there exists ψ : T→ [0,∞[ inner σ premeasure with ψσ|S = ϕ

such that ψ ≧ ϑ.

For the proof of 19.4 and 19.5 we first isolate the three main points.
Then the assertions will be reduced to the former 18.9 and 18.10.

0) ξ := ϕσ|Sσ is an extension of ϕ, and an inner ⋆ premeasure by 19.2.1).
Furthermore ξ⋆ = ϕσ and hence φ = ξ⋆|C(ξ⋆).

1) Assume that ϑ ∈ σ(ϕ, T) and form θ := ϑσ|Tσ. Then θ⋆ = ϑσ since
ϑσ is inner regular Tσ. We have θ(∅) = 0 by 19.3.0), and θ⋆|Sσ = ϑσ|Sσ =
ϕσ|Sσ = ξ and hence θ ∈ ⋆(ξ,Tσ) by 19.3.3).

2) Let η ∈ ⋆(ξ,Tσ) be an inner ⋆ premeasure. Then ψ := η|T is an
inner σ premeasure with ψσ = η⋆ and hence ψ ∈ σ(ϕ, T). In fact, we have
η ≦ φ⋆|Tσ by 18.3.2). Thus η is σ continuous at ∅ as a consequence of 8.12,
and hence an inner σ premeasure by 6.31. Then the assertion follows from
19.2.2).

Proof of 19.5. Let ϑ ∈ σ(ϕ, T) and then θ ∈ ⋆(ξ,Tσ) as in 1) above. By
18.10 and 0) there exists an inner ⋆ premeasure η ∈ ⋆(ξ,Tσ) with η ≧ θ.
Then 2) says that ψ := η|T is an inner σ premeasure in σ(ϕ, T). On T we
have ψ = η ≧ θ = ϑσ ≧ ϑ. This is the assertion.

Proof of 19.4. i) Fix ϑ ∈ σ(ϕ, T). If ϑ is a maximal member of σ(ϕ, T)
then 19.5 shows that ϑ is an inner σ premeasure. Now assume that ϑ is
an inner σ premeasure, and that ϑ ≦ ψ for some ψ ∈ σ(ϕ, T). We have to
prove that ϑ = ψ. By 1) above θ := ϑσ|Tσ and η := ψσ|Tσ are in ⋆(ξ,Tσ)
with θ ≦ η, and θ is an inner ⋆ premeasure by 19.2.1). From 18.9 it follows
that θ = η. On T therefore ϑ = ϑσ = θ = η = ψσ ≧ ψ and hence ϑ = ψ. ii)
It remains to prove that σ(ϕ, T) is upward inductive in the argumentwise
order. Assume that E ⊂ σ(ϕ, T) is nonvoid and totally ordered. By 1)
above then {ϑσ|Tσ : ϑ ∈ E} is ⊂ ⋆(ξ,Tσ), and of course nonvoid and totally
ordered as well. From 18.9 we obtain an inner ⋆ premeasure η ∈ ⋆(ξ,Tσ)
such that ϑσ|Tσ ≦ η for all ϑ ∈ E. By 2) above ψ := η|T is an inner σ
premeasure in σ(ϕ, T). On T now ϑ ≦ ϑσ ≦ η = ψ for all ϑ ∈ E. The proof
is complete.

Specializations of the Existence Theorem

The specializations in the last section started with S = {∅, X}. It is simple
to see that in this case, due to its inherent discreteness, the new result 19.5
is contained in the old one 18.10.

The counterparts of the subsequent former specializations require a non-
trivial lemma.
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19.6. Lemma. Let ϕ : S→ [−∞,∞[ be an isotone and supermodular set
function on a lattice S. Then (ϕ⋆| ⊏ S)σ = ϕσ.

Proof. We have ≧ since ϕ⋆| ⊏ S is an extension of ϕ. Thus to be shown
is ≦. We fix A ⊂ X and can assume that (ϕ⋆| ⊏ S)σ(A) > −∞. We fix a
sequence (Dl)l in ⊏ S with Dl ↓ some D ⊂ A and lim

l→∞
ϕ⋆(Dl) =: c > −∞,

which implies that all ϕ⋆(Dl) are finite. To be shown is c ≦ ϕσ(A). Let
ε > 0 and choose Sl ∈ S with Sl ⊂ Dl such that ϕ(Sl) ≧ ϕ⋆(Dl) − ε/2l.
Then form Tl := S1∩· · ·∩Sl ∈ S, so that Tl ⊂ Sl ⊂ Dl and hence Tl ↓ some
T ⊂ D ⊂ A. i) We claim that

ϕ(Tl) ≧ ϕ⋆(Dl)− ε(1− 1/2l) for l ≧ 1.

This is clear for l = 1. For the induction step 1 ≦ l ⇒ l + 1 note that
Tl ∩ Sl+1 = Tl+1 and Tl ∪ Sl+1 ⊂ Dl ∪ Dl+1 = Dl. By assumption and by
the induction hypothesis therefore

ϕ(Tl) + ϕ(Sl+1) ≦ ϕ(Tl ∪ Sl+1) + ϕ(Tl ∩ Sl+1)

≦ ϕ⋆(Dl) + ϕ(Tl+1)

≦ ϕ(Tl) + ε(1− 1/2l) + ϕ(Tl+1),

ϕ(Sl+1) ≦ ε(1− 1/2l) + ϕ(Tl+1),

which implies the assertion. ii) From i) we obtain c := lim
l→∞

ϕ⋆(Dl) ≦

lim
l→∞

ϕ(Tl) + ε ≦ ϕσ(A) + ε for all ε > 0. The assertion follows.

The next result is the counterpart to the above 18.18 which was based
on the Marczewski condition.

19.7. Theorem. Assume that ϕ : S→ [0,∞[ is an inner σ premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕσ|C(ϕσ). Let T be a
lattice with ∅ ∈ T ⊂ (⊏ S), and let φ⋆|T be σ continuous at ∅. Assume
that (ϕ⋆|T)σ|S ≧ ϕ, which implies that (ϕ⋆|T)σ|S = ϕ. Then there exists
an inner σ premeasure ψ : T→ [0,∞[ such that ψσ|S = ϕ.

Proof. For the set function ϑ := ϕ⋆|T we see from 19.6 that

ϑσ = (ϕ⋆|T)σ ≦ (ϕ⋆| ⊏ S)σ = ϕσ and hence ϑσ|S ≦ ϕ.

Thus ϑσ|S ≧ ϕ implies in fact that ϑσ|S = ϕ. Therefore ϑ is as required in
19.5.

An obvious special case is the subsequent counterpart to the above 18.15.

19.8. Theorem. Assume that ϕ : S→ [0,∞[ is an inner σ premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕσ|C(ϕσ). Let T be a
lattice with S ⊂ T ⊂ (⊏ S), and let φ⋆|T be σ continuous at ∅. Then there
exists an inner σ premeasure ψ : T→ [0,∞[ such that ψ|S = ϕ.

19.9. Bibliographical Note. The above 19.7 is in Adamski [1987]
theorem 3.4(b), but with the sharper old Marczewski condition instead of
the new one. A close relative of 19.8 is in Adamski [1984a] theorem 3.3(a).
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The Uniqueness Theorem

This time we have to assume that S ⊂ T from the start. We also need
another nontrivial lemma. It is true for • = ⋆στ .

19.10. Lemma. Assume that ϕ : S → [0,∞[ is an inner • premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕ•|C(ϕ•). Let T be a
lattice with S ⊂ T ⊂ (⊏ S). If φ⋆|T is supermodular then it is inner • tight.

Proof. Let ψ := φ⋆|T. By assumption ψ : T → [0,∞[ is isotone and
supermodular and an extension of ϕ. 1) We have

ϕ(P ) ≦ φ⋆(A) + ϕ•(P \A) for P ∈ S and A ⊂ P.

To see this let H ∈ C(ϕ•) with A ⊂ H ⊂ P . Then

ϕ(P ) = φ(P ) = φ(H) + φ(P \H) = φ(H) + ϕ•(P \H)

≦ φ(H) + ϕ•(P \A).

This implies the assertion. 2) Let A ⊂ B in T. We fix ε > 0 and P ∈ S

with A ⊂ B ⊂ P . From 1) we obtain

ψ(B)− ψ(A) = ψ(B)− φ⋆(A) ≦ ψ(B)− ϕ(P ) + ϕ•(P \A).

Note that ϕ•(P \A) = ϕP
• (P \A) by 6.29.5). Thus there is a paving M ⊂ S

of type • with M ↓⊂ P \ A and S ⊂ P ∀S ∈ M such that inf
S∈M

ϕ(S) ≧

ϕ•(P \A)− ε. For S ∈M therefore

ψ(B)− ψ(A) ≦ ψ(B)− ϕ(P ) + ϕ(S) + ε = ψ(B)− ψ(P ) + ψ(S) + ε.

Since ψ is supermodular and B ∪ S ⊂ P it follows that ψ(B) − ψ(A) ≦

ψ(B ∩ S) + ε. Now {B ∩ S : S ∈ M} ⊂ T is a paving of type • with
↓⊂ B ∩ (P \ A) = B \ A and all members ⊂ B ∩ P = B. It follows that
ψ(B)− ψ(A) ≦ ψB

• (B \A) + ε and hence the assertion.

We come to the uniqueness theorem. The simultaneous appearance of
properties 2)3)4) is a little imperfection which we could not avoid.

19.11. Theorem. Assume that ϕ : S→ [0,∞[ is an inner σ premeasure
on a lattice S with ∅ ∈ S and ϕ(∅) = 0, and φ := ϕσ|C(ϕσ). Let T be a
lattice with S ⊂ T ⊂ (⊏ S), and assume that φ⋆|T is σ continuous at ∅.
Then the following are equivalent.

1) There is a unique inner σ premeasure ψ : T→ [0,∞[ with ψ|S = ϕ (note
that the existence is clear from 19.8).

2) φ⋆|T is supermodular.
3) φ⋆|Tσ is supermodular.
4) φ⋆|Tσ is superadditive.

In this case the unique inner σ premeasure ψ : T→ [0,∞[ with ψ|S = ϕ is
ψ = φ⋆|T.

Proof. We start with the implication 1) ⇒ ψ = φ⋆|T. Note that it
contains the implication 1)⇒ 0) φ⋆|T is an inner σ premeasure .
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i) Fix E ∈ T. We see from the definition and from 18.27.1)2)3) that
S[E] is a lattice with S ⊂ S[E] ⊂ T and E ∈ S[E]. ii) We conclude
from 18.31 that φ⋆|S[E] is finite and supermodular. Then 19.10 implies
that φ⋆|S[E] is inner σ tight. Furthermore φ⋆|S[E] is σ continuous at ∅ by
assumption. It follows that η := φ⋆|S[E] is an inner σ premeasure. Let us
put ν := ησ|C(ησ). iii) We have η|S = φ⋆|S = φ|S = ϕ. Thus ησ|S = ϕ so
that η ∈ σ(ϕ, S[E]). From 19.3.1) we see that ν is an extension of φ. This
implies that 0 ≦ ν⋆ ≦ φ⋆. Therefore ν⋆|T is σ continuous at ∅. iv) Now
19.8 can be applied to η : S[E] → [0,∞[ with ν and to T. It follows that
there exists an inner σ premeasure ϑ : T → [0,∞[ such that ϑ|S[E] = η.
In particular ϑ|S = η|S = ϕ. Thus assumption 1) implies that ϑ = ψ.
Therefore ψ(E) = ϑ(E) = η(E) = φ⋆(E). This is the assertion.

The remainder of the proof consists of the two chains of implications
0)⇒3)⇒4)⇒1) and 0)⇒3)⇒2)⇒0). Here 3)⇒4) and 3)⇒2) are obvious,
while 2)⇒0) is an immediate consequence of 19.10. Thus it remains to
prove 0)⇒3) and 4)⇒1).

Proof of 0)⇒3). Since ψ := φ⋆|T is an inner σ premeasure it is clear
that ψσ|Tσ is modular. Thus it suffices to prove that ψσ|Tσ = φ⋆|Tσ. Now
on the one hand ψ ∈ σ(ϕ, T), and hence ψσ|Tσ ≦ φ⋆|Tσ by 19.3.2). On the
other hand let P ∈ Tσ and (Pl)l in T with Pl ↓ P . Then φ⋆(P ) ≦ φ⋆(Pl) =
ψ(Pl) = ψσ(Pl) implies that φ⋆(P ) ≦ ψσ(P ).

Proof of 4)⇒1). Let ψ : T → [0,∞[ be an inner σ premeasure with
ψ|S = ϕ. By 19.2.1) then η := ψσ|Tσ is an inner ⋆ premeasure, and η ≦

φ⋆|Tσ by 19.3.2). Now 17.2 can be applied to these two set functions because
of the hypothesis 4). For each A ∈ Tσ there exists B ∈ S with A ⊂ B, and
we have

η⋆(B) = η(B) = ψσ(B) = ψ(B) = ϕ(B),

(φ⋆|Tσ)⋆(B) = φ⋆(B) = φ(B) = ϕ(B).

It follows that η = φ⋆|Tσ, and hence in particular ψ = φ⋆|T. The proof is
complete.

Extension of Baire Measures to Borel Measures

Let X be a topological space. The present subsection returns to the prob-
lem to extend a Baire measure α : Baire(X) → [0,∞] to Borel measures
β : Bor(X) → [0,∞]. The previous treatment in section 8 was based on
the inner τ theory. This time the problem will be treated as an applica-
tion of the transplantation procedure of the present section. Thus as before
we shall obtain, in the spirit of the present text and in consequence of its
main theorems, not the sheer existence or uniqueness of Borel extensions,
but rather the existence or uniqueness of Borel extensions with certain nat-
ural regularity properties. In the present context we have of course inner
regularity, as in the earlier treatment.

Let α : Baire(X) → [0,∞] be a cmeasure. We define as before S :=
{A ∈ CCl(X) : α(A) < ∞} and ϕ := α|S. The basic properties of these
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formations are collected in 8.2.1) and 8.5. Thus S is a lattice with ∅ ∈ S

and Sσ = S, and ϕ : S → [0,∞[ is an inner σ premeasure. Furthermore
α is inner regular S at [α < ∞]σ, and is inner regular S iff it is semifinite
above. We form the cmeasure φ := ϕσ|C(ϕσ) = ϕ⋆|C(ϕ⋆). It follows that
φ = α on [α <∞]σ, and φ = α on Baire(X) iff α is semifinite above.

19.12. Remark. For φ := ϕσ|C(ϕσ) we have φ⋆ ≦ α⋆, and φ⋆ = α⋆ on
⊏ Sσ.

Proof. We use some of the properties listed in 8.2.1). With the notation
C := C(ϕσ) = C(ϕσ) ⊃ Baire(X) as in iii) we have

φ⋆ = (ϕσ|C)⋆ ≦ (ϕσ|Baire(X))⋆ since we pass to a restriction

≦ α⋆ ≦ (ϕσ|Baire(X))⋆ by v)

= ϕσ = (ϕσ|C ∩ (⊏ Sσ))⋆ since ϕσ is outer regular Sσ

= (ϕσ|C ∩ (⊏ Sσ))⋆ by iii)

= (ϕσ|C)⋆ = φ⋆ on ⊏ Sσ.

This implies both assertions.

Next we look at the Borel side. The remark below is a recollection of
essentials from 6.31 with 6.18.

19.13. Remark. Let T be a lattice in X with T ⊂ Cl(X) ⊂ (T ⊏ T)
(which implies ∅ ∈ T). Then there is a one-to-one correspondence between
the inner σ premeasures ψ : T → [0,∞[ with ψ(∅) = 0 and the cmeasures
β : Bor(X) → [0,∞] with β|T < ∞ which are inner regular Tσ. The
correspondence is

ψ �→ β := ψσ|Bor(X) and β �→ ψ := β|T;

also recall that Bor(X) ⊂ C(ψσ).

We turn to the transition from the Baire side to the Borel side. Let as
above α : Baire(X)→ [0,∞] be a cmeasure with S and ϕ := α|S. We define
T := Cl(X) ∩ (⊏ S). Thus T is a lattice in X with T ⊂ Cl(X) ⊂ (T⊤T)
and Tσ = T (and even with Tτ = T). For these data then 19.13 furnishes a
one-to-one correspondence between the inner σ premeasures ψ : T→ [0,∞[
with ψ|S = ϕ and the cmeasures β : Bor(X) → [0,∞] with β = α on S

which are inner regular T. We use this correspondence in order to obtain
the desired extension theorem.

On the one hand we translate known properties of ψ into properties
of β. From 19.3.1) we know that ψσ|C(ψσ) is an extension of ϕσ|C(ϕσ).
On Baire(X) this means that β = ϕσ = ϕ⋆ by v) in 8.2.1). Therefore
β|Baire(X) is inner regular S. It follows that β|Baire(X) = α iff α is inner
regular S, that is iff α is semifinite above. In all cases we have β = α on
[α <∞]σ ⊂ Baire(X) by 8.5.i).

On the other hand the existence theorem 19.8 and the uniqueness theo-
rem 19.11 translate into existence and uniqueness results for the cmeasures
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β : Bor(X)→ [0,∞]. For an adequate formulation we note from 19.12 that
φ⋆|T = α⋆|T. Thus we have proved what follows.

19.14. Theorem. Let α : Baire(X) → [0,∞] be a cmeasure with S :=
{A ∈ CCl(X) : α(A) <∞} and ϕ := α|S. Define T := Cl(X) ∩ (⊏ S).

0) If β : Bor(X)→ [0,∞] is a cmeasure with

0.i) β = α on S,
0.ii) β is inner regular T,

then it also fulfils

0.iii) β = α on [α <∞]σ ⊂ Baire(X),
0.iv) β|Baire(X) = α iff α is semifinite above,
0.v) β|Baire(X) is inner regular S.

1) Assume that α⋆|T is σ continuous at ∅. Then

1.i) there exist cmeasures β : Bor(X)→ [0,∞] as in 0).

1.ii) There exists a unique cmeasure β : Bor(X) → [0,∞] as in 0) iff α⋆|T
is superadditive. In this case β = α⋆ on T.

Before we proceed we want to compare the present result with the former
extension theorem 8.11. We fix a cmeasure α : Baire(X) → [0,∞] with S

and ϕ := α|S as in both theorems, and also assume α to be inner regular
S from the start as in 8.11. Then 8.11 imposes the two essential further
assumptions

1) X is completely regular, and

2) ϕ is τ continuous at ∅.

From assumption 1) and 8.1.5) we see that T = Sτ , which means that
the central sublattices of Bor(X) in the two theorems are equal. Then
assumption 2) combined with 8.12 implies that α⋆|T is τ continuous at ∅.
Thus with simple means we obtain much more than the initial assumption in
the new 19.14.1), which implies its existence assertion. In adequate relation
the existence result in 8.11.1) is much sharper. It is the explicit assertion
that ϕ : S → [0,∞[ is an inner τ premeasure with C(ϕτ ) ⊃ Bor(X), and
that β := ϕτ |Bor(X) is an extension as required. Now let us turn to the
uniqueness assertions. The explicit existence result in 8.11.1) implies that
β|T = ϕτ |Sτ is downward τ continuous. It follows that β = α⋆ on T = Sτ ,
and hence that α⋆|T is modular. Therefore we are in the case of uniqueness
in 19.14.1). Thus in the situation of 8.11 the new assertion of uniqueness is
equal to the old one.

19.15. Exercise. The last theorem has a remarkable consequence
which does not involve regularity: Let α : Baire(X) → [0,∞] be a cmea-
sure with S and T as above. Assume that α⋆|T is σ continuous at ∅. Then
there exist cmeasures β : Bor(X) → [0,∞] which extend α. Hint: Combine
the existence assertion in 19.14.1) with 2.13.2).

In the remainder of the subsection we consider properties of the topolog-
ical space X which ensure that all Baire measures on X fulfil the conditions
which occur in 19.14.1). This will lead to earlier forms of extension theorems.
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The two definitions which follow are for lattices S and T with ∅ ∈ S,T
in a nonvoid set X. For • = στ one defines on the one hand T to be •
dominated S iff for each paving N ⊂ T of type • with N ↓ ∅ there exists
a paving M ⊂ S of type • with M ↓ ∅ such that M ⊂ (⊐ N). On the other
hand one defines T to be separated S iff each pair of subsets A,B ∈ T

with A∩B = ∅ is separated S in the sense of 4.2, that is there are S, T ∈ S

with A ⊂ S and B ⊂ T such that S ∩ T = ∅.

19.16. Remark. 1) S• is • dominated S whenever S is a lattice with
∅ ∈ S. This is a special case of 18.5. 2) T is σ dominated S ⇔ for each
sequence (Tl)l in T with Tl ↓ ∅ there is a sequence (Sl)l≧k in S for some

k ≧ 1 such that Sl ↓ ∅ and Tl ⊂ Sl for l ≧ k.

Proof of 19.16.2). ⇒) By assumption there exists a countable paving
M ⊂ S with M ↓ ∅ such that each M ∈ M contains some Tl. Let (Mk)k

be a sequence in M with Mk ↓ ∅. We can assume that Mk ⊃ Tl(k) with 1 ≦

l(1) < · · · < l(k) < · · · . Now define Sl := Mk for l(k) ≦ l < l(k + 1) ∀k ≧ 1.
Then the sequence (Sl)l≧l(1) is as required. ⇐) Let N ⊂ T be a countable

paving with N ↓ ∅. Fix a sequence (Tl)l in N with Tl ↓ ∅, and let (Sl)l≧k

in S be as in the assumption. Then the paving M := {Sl : l ≧ k} ⊂ S is as
required.

19.17. Remark. Let X be a topological space. 1) Assume that Cl(X) is
σ dominated Baire(X). For each cmeasure α : Baire(X)→ [0,∞] then α⋆|T
is σ continuous at ∅. 2) Assume that Cl(X) is separated Baire(X). For
each cmeasure α : Baire(X) → [0,∞] then α⋆|T is subadditive. Of course
T ⊂ Cl(X) is as defined in 19.14.

Proof. 1) Let (Tl)l be a sequence in T with Tl ↓ ∅. Fix a sequence
(Sl)l≧k in Baire(X) such that Sl ↓ ∅ and Tl ⊂ Sl for l ≧ k. By the

definition of T we can assume that α(Sl) < ∞ for l ≧ k. Thus α(Sl) ↓ 0.
From 0 ≦ α⋆(Tl) ≦ α(Sl) it follows that α⋆(Tl) ↓ 0. 2) is an immediate
consequence of 4.3 applied to α : Baire(X)→ [0,∞].

19.18. Theorem. If Cl(X) is σ dominated Baire(X) then for each cmea-
sure α : Baire(X)→ [0,∞] there exists a cmeasure β : Bor(X)→ [0,∞] such
that

19.14.0.i) β = α on S := {A ∈ CCl(X) : α(A) <∞},
19.14.0.ii) β is inner regular T := Cl(X) ∩ (⊏ S).

If in addition Cl(X) is separated Baire(X) then β is unique, and β = α⋆ on
T.

There are well-known sufficient properties of the topological space X
which are in direct terms of Op(X) and Cl(X). Let us define X to be σ

paracompact iff Cl(X) is σ dominated Op(X). For a normal Hausdorff
space this is equivalent to countable paracompactness in the usual sense;
see Engelking [1989] corollary 5.2.2. Recall that X is defined to be normal
iff Cl(X) is separated Op(X). From these definitions and from 8.1.6) it
follows that
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i) if X is σ paracompact and normal then Cl(X) is σ dominated COp(X)
and CCl(X), and hence in particular σ dominated Baire(X);

ii) if X is normal then Cl(X) is separated COp(X) and CCl(X), and hence
in particular separated Baire(X).

Therefore 19.18 implies the final result which follows.

19.19. Consequence. Assume that X is σ paracompact and normal.
Then for each cmeasure α : Baire(X) → [0,∞] there exists a unique cmea-
sure β : Bor(X)→ [0,∞] such that

19.14.0.i) β = α on S := {A ∈ CCl(X) : α(A) <∞},
19.14.0.ii) β is inner regular T := Cl(X) ∩ (⊏ S).

We have β = α⋆ on T.

19.20. Bibliographical Note. 19.18 is in Adamski [1984a] theorem
3.14, and likewise the respective special case of 19.15. The author has not
seen the complete 19.14 in the literature.

The ancestor of all extension theorems of the present kind is the famous
result due to Mar̆́ık [1957]. It is under the same assumptions as 19.19, but
supposes the cmeasure α : Baire(X)→ [0,∞] to be outer regular COp(X).
It obtains a unique Borel measure extension β : Bor(X)→ [0,∞] of α which
is characterized in the spirit of the two-step extension method as described
in the bibliographical annex to chapter II. The same applies to the related
result in Sapounakis-Sion [1987] theorem 7.1.





CHAPTER VII

Products of Contents and Measures

The present chapter develops the product formation for contents and
measures in the spirit of chapter II. We also use the extended integration
procedures of chapter IV. These means will be adequate for a comprehensive
treatment. The central part is the second section which in particular con-
tains the Radon product measure of Radon measures. We restrict ourselves
to the case of two factors.

20. The Traditional Product Formations

The first subsection uses the horizontal integral of section 11 to define
a product formation on which all subsequent ones will be based. The re-
mainder of the section will be devoted to the traditional product theory, in
the sense that the factors are ccontents and cmeasures. In the latter case
it is well-known that there need not be a unique product measure except
under countable finiteness of the factors. However, we shall obtain natural
uniqueness assertions in terms of regularity.

The Basic Product Formation

Let X and Y be nonvoid sets. For a subset E ⊂ X × Y we define the
vertical sections

E(x) := {y ∈ Y : (x, y) ∈ E} for x ∈ X,

and the vertical projection

Pr(E) := {y ∈ Y : (x, y) ∈ E for some x ∈ X} =
⋃

x∈X

E(x) ⊂ Y.

Of course one likewise forms the horizontal sections E[y] ⊂ X for y ∈ Y
and the horizonal projection Pr[E] ⊂ X. We list some properties which
are all obvious.

20.1. Properties. 1) For A ⊂ X and B ⊂ Y we have

(A×B)(x) =

{

B when x ∈ A
∅ when x ∈ A′

}

,

Pr(A×B) =

{

B when A �= ∅

∅ when A = ∅

}

.
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2) For E ⊂ X × Y and x ∈ X we have E′(x) = (E(x))′. 3) Let (Et)t∈I be a
family of subsets of X × Y . For all x ∈ X then

(

⋃

t∈I

Et

)

(x) =
⋃

t∈I

Et(x) and
(

⋂

t∈I

Et

)

(x) =
⋂

t∈I

Et(x).

In section 13 we defined for pavings S in X and T in Y the product
paving

S× T := {S × T : S ∈ S and T ∈ T} in X × Y.

We list some properties.

20.2. Properties. 1) If S and T are

lattices then L(S× T) = (S× T)⋆,
rings then R(S× T) = (S× T)⋆,
algebras then A(S× T) = (S× T)⋆.

2) If S is a ring and T is a lattice then each E ∈ (S×T)⋆ can be represented
in the form

E =
r

⋃

l=1

Al ×Bl with A1, · · · , Ar ∈ S pairwise disjoint and B1, · · · , Br ∈ T.

Proof. 1) The lattice case follows from 1.2.10). To see the ring case one
verifies for A,S ⊂ X and B, T ⊂ Y that

(A×B) ∩ (S × T )′ = (A× (B ∩ T ′)) ∪ ((A ∩ S′)×B).

The algebra case is then clear. 2) has an obvious proof via 3.5.

20.3. Remark. Let S and T be lattices with ∅. For E ∈ (S× T)⋆ then

1) E(x) ∈ T for all x ∈ X.

2) Assume that ψ : T→ [0,∞] is isotone with ψ(∅) = 0. Then the function
ψ

(

E(·)
)

: X → [0,∞] has a finite value set and is in UM(S) ∩ LM(S).

Proof. Let E =
r
⋃

l=1

Al × Bl with A1, · · · , Ar ∈ S and B1, · · · , Br ∈ T.

For x ∈ X one verifies that

E(x) = {y ∈ Y : (x, y) ∈ E =

r
⋃

l=1

Al ×Bl} =
⋃

l:x∈Al

Bl.

It follows that E(x) ∈ T, and the first assertion in 2). The proof of the
second assertion in 2) can be restricted to UM(S). Fix t > 0. For x ∈ X
then

ψ
(

E(x)
)

= ψ
(

⋃

l:x∈Al

Bl

)

≧ t

⇔ ∃ nonvoid D ⊂ {1, · · · , r} such that x ∈
⋂

l∈D

Al and ψ
(

⋃

l∈D

Bl

)

≧ t.
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Therefore

[ψ
(

E(·)
)

≧ t] =
⋃

D

⋂

l∈D

Al

over the nonvoid D ⊂ {1, · · · , r} with ψ
(

⋃

l∈D

Bl

)

≧ t.

It follows that [ψ
(

E(·)
)

≧ t] ∈ S and hence the assertion.

We come to the basic product formation. The definition makes sense in
virtue of 20.3.

20.4. Proposition. Let S and T be lattices with ∅, and

ϕ : S→ [0,∞] be isotone with ϕ(∅) = 0,
ψ : T→ [0,∞] be isotone with ψ(∅) = 0.

We define the set function ϕ× ψ : (S× T)⋆ → [0,∞] to be

(ϕ× ψ)(E) =

∫

−ψ
(

E(·)
)

dϕ for E ∈ (S× T)⋆.

Then ϕ× ψ =: ϑ has the properties

1) ϑ is isotone.

2) ϑ(A×B) = ϕ(A)ψ(B) for A ∈ S and B ∈ T, with the usual convention
0∞ := 0. In particular ϑ(∅) = 0. Furthermore ϑ <∞ when ϕ,ψ <∞.

3) If ϕ and ψ are modular then ϑ is modular as well.

Proof. 1) is obvious. 2) Let E := A×B. From 20.1.1) we have

ψ
(

E(x)
)

=

{

ψ(B) when x ∈ A
0 when x ∈ A′

}

.

Therefore

ϑ(E) =

→∞
∫

0←

ϕ
(

[ψ
(

E(·)
)

≧ t]
)

dt

with [ψ
(

E(·)
)

≧ t] =

{

A when ψ(B) ≧ t
∅ when ψ(B) < t

}

.

It follows that ϑ(E) = ϕ(A)ψ(B) in all cases.

3) Let E,F ∈ (S× T)⋆. i) We first deduce from 20.3.2) that ψ
(

E(·)
)

+

ψ
(

F (·)
)

is in UM(S). In fact, let W ⊂ [0,∞] be a finite set which contains

the value sets of ψ
(

E(·)
)

and ψ
(

F (·)
)

. For t > 0 then

[ψ
(

E(·)
)

+ ψ
(

F (·)
)

≧ t] = {x ∈ X : ψ
(

E(x)
)

+ ψ
(

F (x)
)

≧ t}
=

⋃

u,v∈W with u+v≧t

{x ∈ X : ψ
(

E(x)
)

≧ u} ∩ {x ∈ X : ψ(F (x)
)

≧ v}

=
⋃

u,v∈W with u+v≧t

[ψ
(

E(·)
)

≧ u] ∩ [ψ
(

F (·)
)

≧ v].



204 VII. PRODUCTS OF CONTENTS AND MEASURES

This union is in S since each time at least one of the numbers u and v is
> 0. ii) Since ψ is modular we see from 20.1.3) that

ψ
(

(E ∪ F )(·)
)

+ ψ
(

(E ∩ F )(·)
)

= ψ
(

E(·) ∪ F (·)
)

+ ψ
(

E(·) ∩ F (·)
)

= ψ
(

E(·)
)

+ ψ
(

F (·)
)

.

Since ϕ is modular the assertion follows from 11.11 and i).

20.5. Proposition. Let S and T be lattices with ∅, and

ϕ : S→ [0,∞] be isotone and modular with ϕ(∅) = 0,
ψ : T→ [0,∞] be isotone and modular with ψ(∅) = 0.

Then there exists a unique set function ϑ : (S × T)⋆ → [0,∞] which is
isotone and modular and fulfils

ϑ(A×B) = ϕ(A)ψ(B) for all A ∈ S and B ∈ T.

This is ϑ = ϕ× ψ.

Proof. Assume that ϑ : (S × T)⋆ → [0,∞] is as formulated above. To
be shown is that ϑ equals ϕ× ψ. Fix

E =
r

⋃

l=1

Al ×Bl with A1, · · · , Ar ∈ S and B1, · · · , Br ∈ T.

i) Assume that ϕ(Al)ψ(Bl) =∞ for some l = 1, · · · , r. Then ϑ(Al × Bl) =
∞ = (ϕ× ψ)(Al ×Bl) and hence ϑ(E) =∞ = (ϕ× ψ)(E). ii) Assume now
that ϕ(Al)ψ(Bl) < ∞ and hence ϑ(Al × Bl) = ϕ(Al)ψ(Bl) = (ϕ× ψ)(Al ×
Bl) < ∞ for all l = 1, · · · , r. Then ϑ(E), (ϕ × ψ)(E) < ∞. From 2.5.1)
applied to the restrictions of ϑ and ϕ × ψ to the lattice {M ∈ (S × T)⋆ :
M ⊂ E} we obtain ϑ(E) = (ϕ× ψ)(E).

20.6. Consequence. The set function ϕ × ψ : (S × T)⋆ → [0,∞] has
the symmetrized representation

(ϕ× ψ)(E) =

∫

−ϕ
(

E[·]
)

dψ for E ∈ (S× T)⋆.

We deduce from 11.15 that the basic product formation is compatible
with restrictions.

20.7. Remark. Let S ⊂ A and T ⊂ B be lattices with ∅, and

α : A→ [0,∞] be isotone with α(∅) = 0,
β : B→ [0,∞] be isotone with β(∅) = 0.

Then the restrictions ϕ := α|S and ψ := β|T fulfil

ϕ× ψ = (α× β)|(S× T)⋆.

Proof. Let E ∈ (S × T)⋆ ⊂ (A ×B)⋆. For x ∈ X then E(x) ∈ T ⊂ B,
and the function β

(

E(·)
)

= ψ
(

E(·)
)

is in UM(S) ⊂ UM(A). From 11.15 we
obtain

(α× β)(E) =

∫

−β
(

E(·)
)

dα =

∫

−ψ
(

E(·)
)

dα =

∫

−ψ
(

E(·)
)

dϕ = (ϕ× ψ)(E).
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We conclude with a first look at the particular case which will be met
in the remainder of the present section.

20.8. Proposition. Assume that

ϕ : S→ [0,∞] is a ccontent on a ring S in X,
ψ : T→ [0,∞] is a ccontent on a ring T in Y ,

so that ϕ× ψ is a ccontent on the ring (S× T)⋆. Then

(ϕ× ψ)(E) =

∫

∗

ψ
(

E(·)
)

dϕ for E ∈ (S× T)⋆.

If ϕ and ψ are upward σ continuous then ϕ× ψ is upward σ continuous as
well.

Proof. The first assertion follows from 12.11, and the second one from
12.10. In fact, let (El)l be a sequence in (S× T)⋆ with El ↑ E ∈ (S× T)⋆.
By 20.1.3) then El(x) ↑ E(x) for x ∈ X. Since ψ is upward σ continuous we
have ψ

(

El(·)
)

↑ ψ
(

E(·)
)

pointwise on X. Since ϕ is upward σ continuous
we obtain (ϕ× ψ)(El) ↑ (ϕ× ψ)(E) from 12.10.

The Traditional Product Situation

For the remainder of the section we assume that

α : A→ [0,∞] is a ccontent on an algebra A in X,
β : B→ [0,∞] is a ccontent on an algebra B in Y .

From the above subsection we obtain the product content

Δ := α× β on the algebra P := (A×B)⋆ in X × Y.

We also consider the finite restrictions of α and β to the rings a := [α <∞]
and b := [β <∞]. They produce the finite narrow product content

δ := (α|a)× (β|b) on the ring p := (a× b)⋆ in X × Y.

We have δ = Δ|p by 20.7. If α and β are upward σ continuous then Δ and
δ are upward σ continuous as well by 20.8.

Since P and p are rings it is clear that

Δ is outer ⋆ tight and hence outer σ tight,
δ is outer ⋆ tight and hence outer σ tight,
δ is inner ⋆ tight and hence inner σ tight,

while the cases • = τ are not realistic. Our main concerns are the outer
σ extensions of Δ and hence the envelope Δσ, and the inner σ extensions
of δ and hence the envelope δσ. We prepare the next subsection with some
relevant facts.

20.9. Lemma. Let E ∈ P with Δ(E) <∞. Then there exist K ∈ p and
null sets M ∈ [α = 0] and N ∈ [β = 0] such that

K ⊂ E ⊂ K ∪ (X ×N) ∪ (M × Y ).
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Therefore we have

K ⊂ E ⊂ K ∪ F for some F ∈ P with Δ(F ) = 0.

Note that this implies Δ(E) = Δ(K) = δ(K).

Proof. Let E ∈ P be represented as in 20.2.2). Thus

Δ(E) =
r

∑

l=1

α(Al)β(Bl) <∞.

It is obvious that the subsets

K :=
⋃

l:α(Al),β(Bl)<∞

Al ×Bl, M :=
⋃

l:β(Bl)=∞

Al and N :=
⋃

l:α(Al)=∞

Bl

are as required.

20.10. Lemma. ⋆) δ⋆|P ≦ Δ. If α and β are semifinite above then
δ⋆|P = Δ. σ) Assume that α and β are upward σ continuous. Then δσ|P ≦

Δ. If α and β are semifinite above then δσ|P = Δ.

Proof of ⋆). i) We have δ⋆ = (Δ|p)⋆ ≦ Δ⋆ and hence δ⋆|P ≦ Δ. ii) Let
E ∈ P with Δ(E) < ∞. Then 20.9 shows that Δ(E) = Δ(K) = δ(K) ≦

δ⋆(E). iii) Assume that α and β are semifinite above. It remains to prove
for E ∈ P with Δ(E) =∞ that δ⋆(E) =∞. There exist A ∈ A and B ∈ B

with A × B ⊂ E and α(A)β(B) = ∞. In all cases there are increasing
sequences

(Al)l in A with Al ⊂ A such that 0 < α(Al) <∞ and α(Al) ↑ α(A),
(Bl)l in B with Bl ⊂ B such that 0 < β(Bl) <∞ and β(Bl) ↑ β(B).

Therefore (Al×Bl)l is an increasing sequence in p with Al×Bl ⊂ A×B ⊂ E
such that δ(Al ×Bl) = α(Al)β(Bl) ↑ ∞. The assertion follows.

Proof of σ). i) We fix P ∈ P. Let (El)l be a sequence in p with
El ↓ E ⊂ P . Then (El ∪ (E1 ∩ P ))l is a sequence in p with El ∪ (E1 ∩ P ) ↓
E ∪ (E1 ∩ P ) = E1 ∩ P ∈ p. Since δ is downward σ continuous it follows
that

δ(El) ≦ δ
(

El ∪ (E1 ∩ P )
)

↓ δ(E1 ∩ P ) ≦ Δ(P ).

Therefore δσ(P ) ≦ Δ(P ). ii) Assume that α and β are semifinite above.
Then ⋆) and i) combine to Δ = δ⋆|P ≦ δσ|P ≦ Δ. Therefore δσ|P = Δ.

Product Measures

In the present subsection we assume that the ccontents α : A→ [0,∞] and
β : B → [0,∞] are upward σ continuous. From section 13 we recall the
notation A ⊗B := Aσ(A ×B). We define a cmeasure ν : A ⊗B → [0,∞]
to be a product measure of α and β iff

ν(A×B) = α(A)β(B) for all A ∈ A and B ∈ B, that is iff ν|P = Δ,

and a narrow product measure of α and β iff

ν(A×B) = α(A)β(B) for all A ∈ a and B ∈ b, that is iff ν|p = δ,
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where the two equivalences follow from 20.2.2) or 20.5. We shall obtain
such cmeasures from the simplest specializations of the extension theories
of chapter II.

We know that the product content Δ : P → [0,∞] is an outer σ pre-
measure. Of course A⊗B ⊂ C(Δσ). It follows that Δσ|A⊗B is a product
measure of α and β, and the unique one which is an outer σ extension of
Δ. Now a product measure ν : A ⊗B → [0,∞] of α and β is an outer σ
extension of Δ iff it is outer regular Pσ, by the basic definition of section
4. The cases δ : p → [0,∞[ are alike, except that one has to note that
P ⊂ p⊤p. Combined with 20.10.σ) we obtain the theorem which follows.

20.11. Theorem. Assume that α and β are upward σ continuous.

1) Δσ|A⊗B is the unique product measure of α and β which is outer regular
Pσ.

2) δσ|A⊗B is the unique narrow product measure of α and β which is outer
regular pσ.

3) δσ|A⊗B is the unique narrow product measure of α and β which is inner
regular pσ. If α and β are semifinite above then it is a product measure of
α and β.

We continue with the classical uniqueness theorem.

20.12. Theorem. The narrow product measures of α and β are all equal
on those subsets E ∈ A⊗B which are upward enclosable pσ, that is upward
enclosable aσ × bσ. In particular if

X ∈ aσ and Y ∈ bσ,

then there is a unique narrow product measure of α and β.

We present two proofs. The first proof is within the present extension
theories. The second proof is close to the usual one via the classical unique-
ness theorem 3.1.σ).

First proof. Let ν : A ⊗B → [0,∞] be a narrow product measure of α
and β. From 7.1.σ) applied to δ and ν we obtain δσ ≦ ν ≦ δσ on A ⊗B.
Then 7.5 applied to δ furnishes δσ(E) = ν(E) = δσ(E) for all E ∈ A ⊗B

upward enclosable pσ.

Second proof. In view of 3.1.σ) all narrow product measures of α and β
coincide on Rσ(p) ⊂ A ⊗B. From 1.19.σ) and p ⊂ P ⊂ p⊤p we see that
Aσ(p) = {E ∈ A ⊗ B : E or E′ in ⊏ pσ}, and hence from 1.17.σ) that
Rσ(p) = {E ∈ A⊗B : E in ⊏ pσ}. The assertion follows.

The first example below will show that α and β can have more than
one product measure, even when one of them is finite and the other one
is semifinite above. The second example will show that under the same
circumstances a narrow product measure need not be a product measure of
α and β.
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20.13. Example. Let X = Y be the unit interval I = [0, 1] and A = B =
Bor(I). We know from 13.15 that A ⊗B = Bor(I × I). Let α : Bor(I) →
[0,∞[ be the Borel-Lebesgue measure and β : Bor(I)→ [0,∞] defined to be

β(B) =
∑

x∈B

G(x) for B ∈ Bor(I),

where G : I → [0,∞[ is some prescribed function. By 20.11.1)3) both
Δσ|Bor(I × I) and δσ|Bor(I × I) are product measures of α and β. For
the present purpose we assume that G ≧ some ε > 0. We claim that then
Δσ(D) =∞ and δσ(D) = 0 for the diagonal

D := {(x, x) : x ∈ I} ∈ Cl(I × I) ⊂ Bor(I × I).

Therefore the two product measures are different.

Proof. i) The subsets E ∈ p are of the form

E =

r
⋃

l=1

Al × {bl} with A1, · · · , Ar ∈ Bor(I) and b1, · · · , br ∈ I.

Therefore pσ = p, and hence δσ = δ⋆ by 6.5.iv). In case E ⊂ D we have in
the above representation Al ⊂ {bl} (l = 1, · · · , r), and hence δ(E) = 0. It
follows that δσ(D) = δ⋆(D) = 0. ii) Let E ∈ P with Δ(E) < ∞. We use
20.9 to obtain E ⊂ K ∪ (I ×N) ∪ (M × I) with

K ∈ p and hence from i) K ⊂ I × F with finite F ⊂ I,
M ∈ [α = 0], and N ∈ [β = 0] and hence N = ∅.

Thus E ⊂ (I × F ) ∪ (M × I). iii) Assume now that Δσ(D) < ∞. Then
there exists a sequence (El)l in P with all Δ(El) < ∞ such that El ↑⊃ D.
Thus ii) implies that D ⊂ (I × N) ∪ (M × I) with countable N ⊂ I and
M ∈ [α = 0], and hence I ⊂ M ∪ N . This is a contradiction which proves
that Δσ(D) =∞.

20.14. Example. We know that ν := δσ|A ⊗ B is a narrow product
measure of α and β. We claim that in the above example it is not a product
measure. In fact, if A ∈ A is nonvoid and B ∈ B is not upward enclosable bσ

then A×B is not upward enclosable pσ and hence ν(A×B) = δσ(A×B) =∞.
Therefore in case α(A) = 0 we do not have ν(A×B) = α(A)β(B).

The last point in the subsection will be to extend the sectional represen-
tation from the product contents to the product measures. We shall need
the next result, whose second part will be deduced from the transporter
theorem 1.16.σ).

20.15. Proposition. Assume that A and B are σ algebras. 0) If E ∈
A ⊗ B then E(x) ∈ B for all x ∈ X. i) Assume that E ∈ A ⊗ B has
Pr(E) ⊂ Y upward enclosable bσ. Then the function β

(

E(·)
)

: X → [0,∞]
is measurable A.

Proof of 0). Fix x ∈ X and consider the map h : Y → X × Y defined to

be y �→ (x, y). For E ⊂ X×Y then
−1
h (E) = E(x). Thus to be shown is that
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h is measurable B → A ⊗B. Now
−1
h (A ×B) = B by 20.1.1). Therefore

1.11 implies that

−1
h (A⊗B) =

−1
h

(

Aσ(A×B)
)

= Aσ
(
−1
h (A×B)

)

= Aσ(B) = B.

The assertion follows.

Proof of i). Define N to consist of all subsets E ∈ A ⊗ B such that
the function β

(

E(·)
)

: X → [0,∞] is < ∞ and measurable A. 1) We have
A× b ⊂ N by 20.1.1). Furthermore N fulfils \ by 20.1.2) and 13.16, and ↓ σ
by 20.1.3) and 13.10. Thus 1.16.σ) applied to M := A × b and combined
with A×B ⊂M⊤ furnishes A⊗B ⊂ (A× b)⊤N, that is

E ∩ (A×B) ∈ N for E ∈ A⊗B and A×B ∈ A× b.

2) Assume now that E ∈ A⊗B has Pr(E) ⊂ Y upward enclosable bσ. Let
(Bl)l be a sequence in b with Bl ↑⊃ Pr(E). Then El := E ∩ (X × Bl) ↑ E,
and hence β

(

El(·)
)

↑ β
(

E(·)
)

from 0). We know from 1) that the El are in

N. It follows that the function β
(

E(·)
)

is measurable A.

20.16. Example. The size restriction in 20.15.i) cannot be dispensed
with. In fact, in example 20.13 with E := D ∈ Bor(I × I) = A ⊗ B one
has D(x) = {x} and hence β

(

D(x)
)

= G(x) for x ∈ I. Thus β
(

D(·)
)

= G,
which of course need not be measurable A = Bor(I).

The above proposition is the basis for the result which follows. Its proof
is a series of obvious verifications.

20.17. Theorem. Assume that α and β are cmeasures on σ algebras A

and B. Define δ : A⊗B→ [0,∞] to be

δ(E) =

{ ∫

β
(

E(·)
)

dα if Pr(E) ⊂ Y is upward enclosable bσ

∞ if not

}

.

Then δ is a cmeasure which fulfils

δ(A×B) = α(A)β(B) for all A ∈ A and B ∈ bσ,

and hence is a narrow product measure of α and β.

We combine the last theorem with the uniqueness result 20.12.

20.18. Consequence. Each narrow product measure ν : A⊗B→ [0,∞]
fulfils

ν(E) =

∫

β
(

E(·)
)

dα for all E ∈ A⊗B upward enclosable pσ,

that is for all E ∈ A⊗B upward enclosable aσ × bσ.

20.19. Bibliographical Note. The material of the first subsection
should be known, but we cannot name a complete reference. The traditional
product theory is in most textbooks restricted to the so-called σ finite case
that

X ∈ aσ and Y ∈ bσ.
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Exceptions are Weir [1974] and Behrends [1987]. The author has not seen
characterizations as in 20.11 in the literature. The most important aspect
is the use of inner regularity in terms of the envelope δσ. This is the route
which will be pursued in the next section.

21. The Product Formations Based on Inner

Regularity

The present section obtains the main theorems of the chapter. We de-
velop the product formation on the basis of the conventional inner extension
theory of chapter II. This includes the case • = τ and hence can be special-
ized to Radon measures.

Further Properties of the Basic Product Formation

Let X and Y be nonvoid sets. We fix lattices S in X and T in Y with
∅, and the notation R := (S × T)⋆. Like S• and T• we shall often meet
R• = ((S× T)⋆)•, an expression which does not look simple. Therefore we
start with a few remarks on this expression, with formal relations and with
natural and important examples.

21.1. Exercise. We have S• × T• ⊂ R• and

(S⊤S•)× (T⊤T•) ⊂ R⊤R•.

21.2. Remark. Assume that

U is a lattice in X with ∅, X ∈ U,
V is a lattice in Y with ∅, Y ∈ V.

Then ((U×V)•)⊥ = (((U⊥)× (V⊥))⋆)•.

Proof. We put M := U⊥ and N := V⊥. From

(A×B)′ = (A′ × Y ) ∪ (X ×B′) for A ⊂ X and B ⊂ Y

we see that (U × V)⊥ ⊂ (M × N)⋆ or U × V ⊂ ((M × N)⋆)⊥, and hence
(U ×V)⋆ ⊂ ((M ×N)⋆)⊥ since the second member is a lattice. Thus (U×
V)⋆ = ((M×N)⋆)⊥ since the situation is symmetric. From 1.5.2) we obtain

(U×V)• = (((M×N)⋆)⊥)• = (((M×N)⋆)•)⊥.

This is the assertion.

21.3. Remark. Let X and Y be topological spaces. 1) Then

Op(X × Y ) = (Op(X)×Op(Y ))τ ,

Cl(X × Y ) = ((Cl(X)× Cl(Y ))⋆)τ .

2) Assume that X and Y are Hausdorff. Then

Comp(X × Y ) = ((Comp(X)× Comp(Y ))⋆)τ .
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Proof. 1) The first relation is the definition of the product topology. The
second relation then follows from 21.2. 2) A subset E ⊂ X × Y is compact
iff it is closed and contained in the product A×B of some compact subsets
A ⊂ X and B ⊂ Y .

We turn to the main results of the subsection. We assume that

ϕ : S→ [0,∞[ is isotone with ϕ(∅) = 0,

ψ : T→ [0,∞[ is isotone with ψ(∅) = 0,

and let ϑ = ϕ × ψ : R → [0,∞[ be the basic product formation defined in
20.4.

21.4. Proposition. Assume that ϕ and ψ are downward • continuous.
Then ϑ is downward • continuous as well.

Proof. Let M ⊂ R be a paving of type • with M ↓ E ∈ R. For x ∈ X
we see from 20.3.1) and 20.1.3) that {M(x) : M ∈ M} ⊂ T is a paving of
type • with ↓ E(x) ∈ T. Since ψ is downward • continuous we have

inf{ψ
(

M(x)
)

: M ∈M} = ψ
(

E(x)
)

.

By 20.3.2) therefore {ψ
(

M(·)
)

: M ∈ M} ⊂ UM(S) is nonvoid of type •
and downward directed in the pointwise order with ↓ ψ

(

E(·)
)

∈ UM(S).

Furthermore ϑ(M) =
∫

−ψ
(

M(·)
)

dϕ < ∞ for M ∈M. Since ϕ is downward
• continuous it follows from 11.17 that

inf{
∫

−ψ
(

M(·)
)

dϕ : M ∈M} =

∫

−ψ
(

E(·)
)

dϕ,

which is the assertion.

21.5. Exercise. Assume that ϕ and ψ are • continuous at ∅. Then ϑ
is • continuous at ∅ as well. Hint: Use 11.22 instead of 11.17.

21.6. Lemma. Assume that ϕ and ψ are downward • continuous. For
each E ∈ R• then

i) E(x) ∈ T• and ψ•

(

E(x)
)

<∞ for all x ∈ X;

ii) the function ψ•

(

E(·)
)

: X → [0,∞[ is in UM(S•);

iii) ϑ•(E) =
∫

−ψ•

(

E(·)
)

dϕ• <∞.

We can assume that • = στ . We recall from 6.5 that ϕ•|S• and ψ•|T•

are finite extensions of ϕ and ψ and are downward • continuous. By 21.4
likewise ϑ•|R• is a finite extension of ϑ and is downward • continuous. We
also recall the restriction formula 20.7. We note that

ϕ• × ψ• : (P(X)×P(Y ))⋆ → [0,∞],

while the expression
∫

−ψ•

(

E(·)
)

dϕ• ∈ [0,∞] is defined for all E ⊂ X × Y .

Proof. Define K to consist of all E ∈ R• which fulfil i)ii)iii). Thus R ⊂ K

from 20.3. It remains to prove that K satisfies ↓ •. Let M ⊂ K be a paving
of type • with M ↓ E. Then E ∈ R•. i) For x ∈ X we see from 20.1.3)
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that {M(x) : M ∈ M} ⊂ T• is a paving of type • with ↓ E(x). Therefore
E(x) ∈ T•. It is obvious that ψ•

(

E(x)
)

<∞. ii) We have

inf{ψ•

(

M(x)
)

M ∈M} = ψ•

(

E(x)
)

.

For t > 0 therefore
⋂

M∈M

[ψ•

(

M(·)
)

≧ t] = [ψ•

(

E(·)
)

≧ t],

which is ∈ S•. It follows that ψ•

(

E(·)
)

: X → [0,∞[ is in UM(S•). iii)

{ψ•

(

M(·)
)

: M ∈ M} ⊂ UM(S•) is nonvoid of type • and downward

directed in the pointwise order with ↓ ψ•

(

E(·)
)

∈ UM(S•). Thus 11.17
combined with 11.15 implies that

inf{
∫

−ψ•

(

M(·)
)

dϕ• : M ∈M} =

∫

−ψ•

(

E(·)
)

dϕ•.

On the other hand we know that inf{ϑ•(M) : M ∈ M} = ϑ•(E). The
assertion follows.

21.7. Exercise. Assume that ϕ and ψ are downward • continuous. De-
duce from 21.6 that ϑ•(A×B) = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y .

We conclude with one more lemma.

21.8. Lemma. Assume that

α : A→ [0,∞] is a ccontent on a ring A ⊃ S and inner regular S,

β : B→ [0,∞] is a ccontent on a ring B ⊃ T and inner regular T.

Then the ccontent α×β : (A×B)⋆ → [0,∞] is inner regular (S×T)⋆ = R.

Proof. Fix E ∈ (A×B)⋆. By 20.2.2) then

E =

r
⋃

l=1

Al ×Bl with A1, · · · , Ar ∈ A pairwise disjoint and B1, · · · , Br ∈ B,

so that (α× β)(E) =
r

∑

l=1

α(Al)β(Bl). To be shown is

(α× β)(E) = sup{(α× β)(M) : M ∈ R with M ⊂ E}.
i) Assume that (α × β)(E) = ∞. Then α(Al)β(Bl) = ∞ for some l =
1, · · · , r, and thus α(Al), β(Bl) > 0 by the usual convention. In this case
the assertion is obvious. ii) Assume that (α × β)(E) < ∞ and hence
α(Al)β(Bl) <∞ for all l = 1, · · · , r. Fix ε > 0. Then take

Sl := ∅ and Tl := ∅ in case α(Al)β(Bl) = 0;

and in case α(Al)β(Bl) > 0 and hence 0 < α(Al), β(Bl) <∞ take

Sl ∈ S with Sl ⊂ Al and α(Sl) ≧ (1− ε)α(Al),

Tl ∈ T with Tl ⊂ Bl and β(Tl) ≧ (1− ε)β(Bl).
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Then we have

M :=

r
⋃

l=1

Sl × Tl ∈ R with M ⊂ E and (α× β)(M) =

r
∑

l=1

α(Sl)β(Tl),

since S1, · · · , Sr are pairwise disjoint, and hence

(α× β)(M) ≧ (1− ε)2(α× β)(E).

The assertion follows.

The Main Theorem

The theorem below fulfils what can be expected.

21.9. Theorem. Assume that

ϕ : S→ [0,∞[ is an inner • premeasure with ϕ(∅) = 0,
ψ : T→ [0,∞[ is an inner • premeasure with ψ(∅) = 0.

Then ϑ = ϕ× ψ : R→ [0,∞[ is an inner • premeasure. Moreover if

Φ := ϕ•|C(ϕ•) and Ψ := ψ•|C(ψ•),

then θ := ϑ•|C(ϑ•) is an extension of Φ×Ψ.

21.10. Remark. Assume that ϕ and ψ are both inner σ and inner τ
premeasures. Hence ϑ = ϕ×ψ is both an inner σ and an inner τ premeasure
as well. By 6.24 and 6.25 then ϑσ|C(ϑσ) is a restriction of ϑτ |C(ϑτ ). However,
we shall see that the increase

in the domains from C(ϑσ) to C(ϑτ ), and
in the lattices of inner regularity from Rσ to Rτ

can have fundamental implications.

Proof of 21.9. 1) We consider the product formation η := (ϕ•|S•) ×
(ψ•|T•) <∞ on the lattice H := (S•×T•)

⋆. From 21.1 we have R ⊂ H ⊂ R•

and hence H• = R•. From 21.4 we know that η is downward • continuous.
Furthermore ϑ = η|R by 20.7 and ϑ•|H = η by 21.6. We claim that ϑ• = η•.
The relation ≦ is obvious since ϑ is a restriction of η. In order to prove ≧

we fix E ⊂ X×Y . Let M ⊂ H be a paving of type • with M ↓ some D ⊂ E.
Then D ∈ H• = R•. It follows that

inf{η(M) : M ∈M} = inf{ϑ•(M) : M ∈M} = ϑ•(D) ≦ ϑ•(E),

since ϑ•|R• is known to be downward • continuous. Therefore η•(E) ≦

ϑ•(E) as claimed.

2) From S• ⊂ C(ϕ•) and T• ⊂ C(ψ•) we have H ⊂ (C(ϕ•) × C(ψ•))
⋆.

From 20.7 also η = (Φ×Ψ)|H. Now 21.8 implies that Φ×Ψ is inner regular
H. Therefore Φ×Ψ is an inner ⋆ extension of η.

3) We next prove that ϑ is an inner • premeasure. By the conventional
inner main theorem 6.31 we have to show that

ϑ(Q) ≦ ϑ(P ) + ϑ•(Q \ P ) for all P ⊂ Q in R.
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Now we see from 2) and 1) that

ϑ(Q)− ϑ(P ) = (Φ×Ψ)(Q)− (Φ×Ψ)(P ) = (Φ×Ψ)(Q \ P )

= sup{η(H) : H ∈ H with H ⊂ Q \ P}
= sup{ϑ•(H) : H ∈ H with H ⊂ Q \ P} ≦ ϑ•(Q \ P ).

This is the assertion.

4) We know from 2) that Φ × Ψ is an inner ⋆ extension of η. Thus η
is an inner ⋆ premeasure, and Φ × Ψ is a restriction of η⋆|C(η⋆). Since η
is downward • continuous it follows from 6.24 and 6.25 that η⋆|C(η⋆) is a
restriction of η•|C(η•). At last we know from 1) that η• = ϑ•. Therefore
Φ×Ψ is a restriction of ϑ•|C(ϑ•) = θ. This finishes the proof of the theorem.

We add a few words of comparison with the traditional product forma-
tions in section 20. The proofs alone make clear that the former procedures
are much more superficial than the present one. Nevertheless the traditional
product formations are not superfluous, because the new procedure contains
part iii) of the former main result 20.11 as a primitive specialization, but
not parts i) and ii). In the other direction the previous inner results can be
of some use in case • = σ, but are of no use at all in case • = τ . However,
this case can be spectacular, as we shall see next.

We turn to the specialization to Radon measures. Let X and Y be
Hausdorff topological spaces. We assume that

α : Bor(X)→ [0,∞] is a Borel-Radon measure on X,
β : Bor(Y )→ [0,∞] is a Borel-Radon measure on Y ,

and form the restrictions

ϕ := α|S to S := Comp(X),
ψ := β|T to T := Comp(Y ).

Thus ϕ and ψ are Radon premeasures in the sense of 9.1, that is inner •
premeasures for all • = ⋆στ . We write as usual

Φ := ϕ•|C(ϕ•), so that α = Φ|Bor(X),
Ψ := ψ•|C(ψ•), so that β = Ψ|Bor(Y ).

Then 21.9 says that ϑ = ϕ × ψ : R → [0,∞[ is an inner • premeasure for
• = ⋆στ as well. Moreover it says that

(Bor(X)× Bor(Y ))⋆ ⊂ (C(ϕ•)× C(ψ•))
⋆ ⊂ C(ϑ•),

and that θ := ϑ•|C(ϑ•) satisfies

θ|(Bor(X)× Bor(Y ))⋆ = α× β.

In both cases • = στ therefore θ|Bor(X)⊗ Bor(Y ) is a product measure of
α and β. But θ|Bor(X)⊗Bor(Y ) need not be a Radon measure on X×Y in
the sense of section 9, for the simple reason that its domain Bor(X)⊗Bor(Y )
need not contain the compact subsets of X × Y , as we have seen in 13.19.
It would be unnatural to expect much more from C(ϑσ), but we do not plan
to deepen this point.
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However, in case • = τ the picture is different. From 21.3.2) we obtain

Rτ = Comp(X × Y ),

Cl(X × Y ) ⊂ R⊤Rτ ⊂ C(ϑτ ) and hence Bor(X × Y ) ⊂ C(ϑτ ).

Since ϑτ is inner regular Rτ = Comp(X × Y ) it follows that θ := ϑτ |C(ϑτ )
is a Radon measure. Hence ν := θ|Bor(X ×Y ) = ϑτ |Bor(X ×Y ) is a Borel-
Radon measure on X × Y . Of course its restriction ν|Bor(X)⊗Bor(Y ) is a
product measure of α and β, that is

ν(A×B) = α(A)β(B) for all A ∈ Bor(X) and B ∈ Bor(Y ).

Our final result looks as follows.

21.11. Theorem. Assume that α : Bor(X) → [0,∞] and β : Bor(Y ) →
[0,∞] are Borel-Radon measures on Hausdorff topological spaces X and Y .
Then there exists a unique Borel-Radon measure ν : Bor(X × Y ) → [0,∞]
on X × Y such that

ν(A×B) = α(A)β(B) for all A ∈ Comp(X) and B ∈ Comp(Y ).

We have

ν = (ϕ× ψ)τ |C
(

(ϕ× ψ)τ

)

with ϕ := α|Comp(X) and ψ := β|Comp(Y ).

The restriction ν|Bor(X)⊗ Bor(Y ) is a product measure of α and β.

Proof. It remains to prove the uniqueness assertion. Assume that ν :
Bor(X×Y )→ [0,∞] is a Borel-Radon measure on X×Y as in the theorem.
Thus in the former notations

ν(A×B) = ϑ(A×B) for all A ∈ S and B ∈ T.

Then ν(E) = ϑ(E) for all E ∈ R from the uniqueness assertion in 20.5.
Therefore ν(E) = ϑτ (E) = θ(E) for all E ∈ Rτ = Comp(X × Y ) and hence
for all E ∈ Bor(X × Y ). This completes the proof.

The Sectional Representation

The present subsection is under the assumption that

ϕ : S→ [0,∞[ is an inner • premeasure with ϕ(∅) = 0,
ψ : T→ [0,∞[ is an inner • premeasure with ψ(∅) = 0,

where • = στ . We know from 21.9 that ϑ = ϕ× ψ : R→ [0,∞[ is an inner
• premeasure as well. If as before

Φ := ϕ•|C(ϕ•) and Ψ := ψ•|C(ψ•),

then θ := ϑ•|C(ϑ•) is an extension of Φ × Ψ. Our aim is to extend the
sectional representation of the traditional product measure θ|C(ϕ•)⊗C(ψ•),
as obtained in 20.18, to the whole of θ, as far as this is possible. We shall
see that the situation is more involved than before. The final results for the
future will be 21.12, 21.16 with 21.13, and 21.19.
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For the sequel we have the choice between a downward and an upward
procedure. Both times the central result 21.15 and its consequences would
be the same. We prefer the upward procedure, because in it the important
21.12 will not be burdened with finiteness conditions. The upward procedure
will be based on the formations U := (S⊤S•)⊥ and V := (T⊤T•)⊥. We
see from 21.2 and 21.1 that

((U×V)•)⊥ = (((S⊤S•)× (T⊤T•))
⋆)•,

R• ⊂ ((U×V)•)⊥ ⊂ R⊤R•.

This has to be combined with the old fact R⊤R• ⊂ C(ϑ•) from 6.31. It
follows that (U×V)• ⊂ C(ϑ•).

21.12. Theorem. Let P ⊂ U and Q ⊂ V be lattices with ∪•. For each
E ∈ (P×Q)• then

0) E(x) ∈ Q for all x ∈ X;

i) the function Ψ
(

E(·)
)

: X → [0,∞] is in LM(P);

ii) θ(E) =
∫

−Ψ
(

E(·)
)

dΦ.

Proof. Define K to consist of all E ∈ (R⊤R•)⊥ which fulfil 0)i)ii).
Then (P × Q)⋆ ⊂ K. In fact, 0)i) result from 20.3, and ii) results from
21.9 since (P × Q)⋆ ⊂ (C(ϕ•) × C(ψ•))

⋆ where θ = Φ × Ψ. Therefore it
remains to prove that K satisfies ↑ •. Let M ⊂ K be a paving of type •
with M ↑ E. Then E ∈ (R⊤R•)⊥. 0) For x ∈ X we see from 20.1.3) that
{M(x) : M ∈M} ⊂ Q is a paving of type • with ↑ E(x). Hence E(x) ∈ Q.
i) The restriction Ψ|(T⊤T•)⊥ is upward • continuous, in case • = τ by 6.28.
Thus we have

sup{Ψ
(

M(x)
)

: M ∈M} = Ψ
(

E(x)
)

for x ∈ X.

For t > 0 therefore
⋃

m∈M

[Ψ
(

M(·)
)

> t] = [Ψ
(

E(·)
)

> t],

which is in P. It follows that Ψ
(

E(·)
)

: X → [0,∞] is in LM(P). ii)

{Ψ
(

M(·)
)

: M ∈M} ⊂ LM(P) is nonvoid of type • and upward directed in

the pointwise order with ↑ Ψ
(

E(·)
)

∈ LM(P). Furthermore Φ|(S⊤S•)⊥ is
upward • continuous. Thus 11.18 combined with 11.15 implies that

sup{
∫

−Ψ
(

M(·)
)

dΦ : M ∈M} =

∫

−Ψ
(

E(·)
)

dΦ.

On the other hand θ|(R⊤R•)⊥ is upward • continuous as well. Hence
sup{θ(M) : M ∈M} = θ(E). The assertion follows.

Next we combine this with 1.11 and 1.16.σ).

21.13. Remark. Let P in X and Q in Y be lattices. For each E ∈
Aσ

(

(P×Q)•
)

then E(x) ∈ Aσ(Q•) for all x ∈ X.
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Proof. Fix x ∈ X and consider the map h : Y → X × Y defined to be

y �→ (x, y). For E ⊂ X ×Y then
−1
h (E) = E(x). Thus to be shown is that h

is measurable Aσ(Q•)→ Aσ
(

(P×Q)•
)

. From 1.11 and 20.1.1) we obtain

−1
h

(

Aσ
(

(P×Q)•
)

)

= Aσ
(−1

h
(

(P×Q)•
)

)

= Aσ
(

(
−1
h (P×Q)

)•
)

⊂ Aσ
(

(Q ∪ {∅})•
)

= Aσ(Q•).

This is the assertion.

21.14. Proposition. Assume that Φ(X) < ∞ and Ψ(Y ) < ∞. Let
P ⊂ U and Q ⊂ V be lattices with ∪•. For each E ∈ Aσ

(

(P×Q)•
)

then

i) the function Ψ
(

E(·)
)

: X → [0,∞[ is measurable Aσ(P);

ii) θ(E) =
∫

Ψ
(

E(·)
)

dΦ <∞.

Proof. We can assume that X ∈ P and Y ∈ Q. 1) Define N to consist
of all E ∈ Aσ

(

(P×Q)•
)

such that

i) the function Ψ
(

E(·)
)

: X → [0,∞[ is measurable Aσ(P);

ii) θ(E) =
∫

Ψ
(

E(·)
)

dΦ.

Then N satisfies \ and ↓ σ. This is clear from standard facts in section 13
combined with 20.1.2)3). 2) Let M := (P×Q)•. Then M ⊂ N from 21.12.
Furthermore M⊤ = M since M is a lattice and X × Y ∈ M. Thus the
transporter theorem 1.16.σ) furnishes

Aσ
(

(P×Q)•
)

= Aσ(M⊤) ⊂M⊤N ⊂ N.

This is the assertion.
The above result 21.14 admits an essential extension. We need a little

interlude which is based on the former lemma 9.21.

We fix subsets P ∈ C(ϕ•) with Φ(P ) <∞ and Q ∈ C(ψ•) with Ψ(Q) <
∞, and define

ΦP : C(ϕ•)→ [0,∞[ to be ΦP (A) = Φ(A ∩ P ) for A ∈ C(ϕ•),

ΨQ : C(ψ•)→ [0,∞[ to be ΨQ(B) = Ψ(B ∩Q) for B ∈ C(ψ•).

From 9.21 we see that

ϕP := ΦP |S is an inner • premeasure,
and ΦP is an inner • extension of ϕP ,

ψQ := ΨQ|T is an inner • premeasure,
and ΨQ is an inner • extension of ψQ.

We conclude from 21.9 that ϑPQ = ϕP × ψQ : R → [0,∞[ is an inner •
premeasure as well. On the other side we consider the subset P × Q ∈
C(ϕ•)× C(ψ•) ⊂ C(ϑ•). Once more from 9.21 we see that θ(· ∩ (P ×Q))|R
is an inner • premeasure, and θ(· ∩ (P × Q)) is an inner • extension of
θ(· ∩ (P ×Q))|R. We first claim that

ϑPQ(E) = θ
(

E ∩ (P ×Q)
)

for all E ∈ R.
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In fact, in virtue of 2.5.1) it suffices to show this for E = S × T with S ∈ S

and T ∈ T. But for these subsets we have

ϑPQ(E) = ϑPQ(S × T ) = (ϕP × ψQ)(S × T ) = ϕP (S)ψQ(T )

= ΦP (S)ΨQ(T ) = Φ(S ∩ P )Ψ(T ∩Q)

= θ
(

(S ∩ P )× (T ∩Q)
)

= θ
(

E ∩ (P ×Q)
)

.

Now let θPQ := (ϑPQ)•|C
(

(ϑPQ)•
)

be the maximal inner • extension of

ϑPQ = θ
(

· ∩(P ×Q)
)

|R. Then it follows that C(ϑ•) ⊂ C
(

(ϑPQ)•) and

θPQ(E) = θ
(

E ∩ (P ×Q)
)

for all E ∈ C(ϑ•).

This is the intermediate result which we need.

21.15. Theorem. Let P ⊂ U and Q ⊂ V be lattices with ∪•. For each
E ∈ Aσ

(

(P×Q)•
)

, and for Q ∈ C(ψ•) with Ψ(Q) <∞, then

i) the function Ψ
(

E(·) ∩Q
)

: X → [0,∞[ is measurable Aσ(P);

ii) θ
(

E ∩ (X ×Q)
)

=
∫

Ψ
(

E(·) ∩Q
)

dΦ.

Proof. Besides Q ∈ C(ψ•) with Ψ(Q) < ∞ we fix P ∈ C(ϕ•) with
Φ(P ) <∞ until the last step of the proof, and retain the former notations.
The assertions will be obtained upon application of 21.14 to ϕP and ψQ with
the respective ϑPQ and θPQ. Note that the inner • extensions ΦP and ΨQ of
ϕP and ψQ are not claimed to be their maximal ones. Let E ∈ Aσ

(

(P×Q)•
)

.

We obtain assertion i) since ΨQ

(

E(x)
)

= Ψ
(

E(x) ∩ Q
)

for x ∈ X. Next
21.14.ii) reads

θPQ(E) =

∫

ΨQ

(

E(·)
)

dΦP <∞.

The first member is = θ
(

E ∩ (P ×Q)
)

in virtue of our intermediate result.
Let us rewrite the second member. For the cmeasures Φ and ΦP on C(ϕ•)
and for an f : X → [0,∞] measurable C(ϕ•) we have

∫

fdΦP =

∫

−fdΦP =

→∞
∫

0←

ΦP

(

[f ≧ t]
)

dt =

→∞
∫

0←

Φ
(

[f ≧ t] ∩ P
)

dt

=

→∞
∫

0←

Φ
(

[χP f ≧ t]
)

dt =

∫

−χP fdΦ =

∫

χP fdΦ.

We use this relation for f := ΨQ

(

E(·)
)

= Ψ
(

E(·) ∩Q
)

. Then we obtain

θ
(

E ∩ (P ×Q)
)

=

∫

χP Ψ
(

E(·) ∩Q
)

dΦ.

At last we form the supremum over all P ∈ C(ϕ•) with Φ(P ) <∞. For the
first member we note that θ is inner regular R•, and for the second member
we invoke 12.2.3). Then assertion ii) follows.
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21.16. Consequence. Let P ⊂ U and Q ⊂ V be lattices with ∪•. As-
sume that E ∈ Aσ

(

(P×Q)•
)

has Pr(E) ⊂ Y upward enclosable [Ψ <∞]σ.
Then

i) the function Ψ
(

E(·)
)

: X → [0,∞] is measurable Aσ(P);

ii) θ(E) =
∫

Ψ
(

E(·)
)

dΦ.

Proof. This is an obvious consequence of 21.15 combined with standard
facts in section 13.

The most important of the above results will be specialized to Radon
measures at the end of the subsection. Before this we keep the present main
road and pass to the final step.

21.17. Theorem. Assume that E ∈ C(ϑ•). For fixed Q ∈ C(ψ•) with
Ψ(Q) <∞ then

0) E(x) ∩Q ∈ C(ψ•) for all x ∈ X except on some N(Q) ∈ C(ϕ•) with
Φ

(

N(Q)
)

= 0;

i) the function ψ•

(

E(·) ∩Q
)

: X → [0,∞[ is measurable C(ϕ•);

ii) θ
(

E ∩ (X ×Q)
)

=
∫

ψ•

(

E(·) ∩Q
)

dΦ.

The null sets N(·) ∈ C(ϕ•) in 0) cannot be dispensed with, as the next
example will show. It is for Q := Y with Ψ(Y ) <∞.

21.18. Example. We assume on the one hand a nonvoid subset N ∈
C(ϕ•) with Φ(N) = 0, and on the other hand a subset T ⊂ Y which is not
in C(ψ•). From 21.9 we have

N × Y ∈ C(ϕ•)× C(ψ•) ⊂ C(ϑ•) with θ(N × Y ) = Φ(N)Ψ(Y ) = 0.

Thus 10.16 implies that E := N × T is in C(ϑ•). But for x ∈ N we have
E(x) = T /∈ C(ψ•).

Proof of 21.17. For the first steps we fix Q ∈ C(ψ•) with Ψ(Q) <∞ and
P ∈ C(ϕ•) with Φ(P ) <∞. 1) We have E ∩ (P ×Q), E′ ∩ (P ×Q) ∈ C(ϑ•)
with values θ(·) <∞. Since θ is inner regular R• there exist sequences

(Al)l in R• with Al ↑ A ⊂ E ∩ (P ×Q) and θ(A) = θ
(

E ∩ (P ×Q)
)

,

(Bl)l in R• with Bl ↑ B ⊂ E′ ∩ (P ×Q) and θ(B) = θ
(

E′ ∩ (P ×Q)
)

.

Of course A,B ∈ C(ϑ•). Note that A,B ⊂ P ×Q implies that A(x), B(x) ⊂
Q for x ∈ X and A(x) = B(x) = ∅ for x ∈ P ′. 2) We recall U and V,
and note that A,B ∈ Aσ

(

(U×V)•
)

. Thus from 21.13 and 21.15 applied to
P := U and Q := V and to A and B we obtain

0) A(x), B(x) ∈ Aσ(V) ⊂ C(ψ•) for all x ∈ X;

i) the functions Ψ
(

A(·)
)

,Ψ
(

B(·)
)

: X → [0,∞] are measurable Aσ(U) ⊂
C(ϕ•);

ii) θ(A) =
∫

Ψ
(

A(·)
)

dΦ and θ(B) =
∫

Ψ
(

B(·)
)

dΦ.
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3) We pass from B to D := (P ×Q) \B ∈ C(ϑ•). We have on the one hand
A ⊂ E ∩ (P ×Q) ⊂ D ⊂ P ×Q with

θ(A) = θ
(

E ∩ (P ×Q)
)

= θ(P ×Q)− θ
(

E′ ∩ (P ×Q)
)

= θ(P ×Q)− θ(B) = θ(D).

On the other hand D(x) = ∅ for x ∈ P ′, while for x ∈ P we have D(x) =
Q \ B(x) ∈ C(ψ•) and hence Ψ

(

D(x)
)

= Ψ(Q) − Ψ
(

B(x)
)

. Therefore the

function Ψ
(

D(·)
)

: X → [0,∞[ is measurable C(ϕ•). We have

θ(D) = θ(P ×Q)− θ(B) =

∫

P

(

Ψ(Q)−Ψ(B(·))
)

dΦ =

∫

Ψ
(

D(·)
)

dΦ.

4) We come to the decisive point. We have A(x) ⊂ E(x) ∩ Q ⊂ D(x) for
x ∈ P , and

∫

P

Ψ
(

A(·)
)

dΦ = θ(A) = θ(D) =
∫

P

Ψ
(

D(·)
)

dΦ. Thus if we define

N(P,Q) := {x ∈ P : Ψ
(

A(x)
)

< Ψ
(

D(x)
)

} ∈ C(ϕ•),

then 13.25.3) furnishes Φ
(

N(P,Q)
)

= 0. For x ∈ P \N(P,Q) then Ψ
(

A(x)
)

= Ψ
(

D(x)
)

, and 10.16 applied to ψ furnishes E(x) ∩Q ∈ C(ψ•).

For the next steps we keep Q ∈ C(ψ•) with Ψ(Q) < ∞. 5) In order to
prove assertion 0) we form

N(Q) := {x ∈ X : E(x) ∩Q /∈ C(ψ•)} ⊂ X.

For each P ∈ C(ϕ•) with Φ(P ) < ∞ then 4) implies that P ∩ N(Q) ⊂
N(P,Q). Thus from 10.16 applied to ϕ we obtain P ∩N(Q) ∈ C(ϕ•) with
Φ

(

P ∩ N(Q)
)

= 0. This holds true in particular for all P ∈ S. Thus 6.21

implies N(Q) ∈ C(ϕ•), and we have Φ
(

N(Q)
)

= 0 since Φ is inner regular
S•. This proves 0). 6) In order to prove assertion i) we form

L(Q, t) := [ψ•

(

E(·) ∩Q
)

≧ t] ⊂ X for t > 0.

For fixed P ∈ C(ϕ•) with Φ(P ) < ∞ we have on the one hand L(Q, t) ∩
N(P,Q) ∈ C(ϕ•) from 4) and 10.16 applied to ϕ. On the other hand we see
for x ∈ P \N(P,Q) that ψ•

(

E(x)∩Q
)

= Ψ
(

A(x)
)

and hence L(Q, t)∩
(

P \
N(P,Q)

)

= [Ψ
(

A(·)
)

≧ t]∩
(

P \N(P,Q)
)

∈ C(ϕ•). Therefore L(Q, t)∩P ∈
C(ϕ•). As before we conclude from 6.21 that L(Q, t) ∈ C(ϕ•). This proves
i). 7) In order to prove assertion ii) we once more fix P ∈ C(ϕ•) with
Φ(P ) <∞. From the representation formula for θ(A) in 2) and from 4) we
obtain

θ
(

E ∩ (P ×Q)
)

= θ(A) =

∫

Ψ
(

A(·)
)

dΦ =

∫

χP ψ•

(

E(·) ∩Q
)

dΦ.

At last we form the supremum over all P ∈ C(ϕ•) with Φ(P ) < ∞. As at
the end of the proof of 21.15 then assertion ii) follows.

21.19. Consequence. Assume that E ∈ C(ϑ•) has Pr(E) ⊂ Y upward
enclosable [Ψ <∞]σ. Then

0) E(x) ∈ C(ψ•) for all x ∈ X except on some N ∈ C(ϕ•) with Φ(N) = 0;
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i) the function ψ•

(

E(·)
)

: X → [0,∞] is measurable C(ϕ•);

ii) θ(E) =
∫

ψ•

(

E(·)
)

dΦ.

Proof. This is an immediate consequence of 21.17 combined once more
with 10.16 applied to ϕ and with standard facts in section 13.

As announced above we conclude with the specialization to Radon mea-
sures. We assume that α : Bor(X) → [0,∞] and β : Bor(Y ) → [0,∞] are
Borel-Radon measures on Hausdorff topological spaces X and Y , and that
ν : Bor(X × Y ) → [0,∞] is the unique Borel-Radon product measure of α
and β obtained in 21.11. As before we form the restrictions ϕ := α|S to
S := Comp(X) and ψ := β|T to T := Comp(Y ), so that α = Φ|Bor(X)
and β = Ψ|Bor(Y ). The present context allows to take P := Op(X) ⊂ U

and Q := Op(Y ) ⊂ V. From 21.3.1) then (P × Q)τ = Op(X × Y ) and
hence Aσ

(

(P×Q)τ
)

= Bor(X × Y ). Therefore the above results 21.12 and
21.16 with 21.13 specialize as follows. We do not specialize the final 21.19,
because there is no particular reason to do so.

21.20. Theorem. For each E ∈ Op(X × Y ) we have

0) E(x) ∈ Op(Y ) for all x ∈ X;

i) the function β
(

E(·)
)

: X → [0,∞] is in LSC(X, [0,∞]);

ii) ν(E) =
∫

β
(

E(·)
)

dα.

21.21. Theorem. For each E ∈ Bor(X × Y ) we have

0) E(x) ∈ Bor(Y ) for all x ∈ X.

If Pr(E) ⊂ Y is upward enclosable [β <∞]σ then

i) the function β
(

E(·)
)

: X → [0,∞[ is Borel measurable;

ii) ν(E) =
∫

β
(

E(·)
)

dα.

We add a drastic example which shows that the size restriction in 21.21,
and hence in 21.16 and 21.19, cannot be dispensed with.

21.22. Example. Let X = [0, 1] with the usual topology, and let α =
Λ|Bor(X) be the Borel-Lebesgue measure. Let Y = [0, 1] with the discrete
topology, and let β : Bor(Y ) = P(Y ) → [0,∞] be the counting measure.
Both α and β are Borel-Radon measures. The diagonal D ⊂ X×Y is closed
in the product topology and hence in Bor(X × Y ). We have on the one
hand D(x) = {x} ∈ Comp(Y ) and hence β

(

D(x)
)

= 1 for x ∈ X.Therefore
∫

β
(

D(·)
)

dα = 1. On the other hand, if Q ∈ Bor(Y ) has β(Q) < ∞
and hence is finite, then β

(

D(·) ∩ Q) = χQ and hence ν
(

D ∩ (X × Q)
)

=
∫

β
(

D(·)∩Q
)

dα = 0 from 21.21. Since ν is inner regular Comp(X×Y ) and
since each compact subset of X × Y is contained in X × Q for some finite
Q ⊂ Y , it follows that ν(D) = 0. Thus ν(D) =

∫

β
(

D(·)
)

dα is not true.

21.23. Bibliographical Note. It is one of the serious failures of tra-
ditional measure theory that the abstract theory had no natural method
of product formation which in case of two Borel-Radon measures, even on
locally compact Hausdorff topological spaces, furnishes an outcome of the
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same sort. The site where the need for this was most vital, and where an
appropiate answer then arose, was the context of the Haar measure on lo-
cally compact topological groups; see for example Hewitt-Ross [1963] with
its historical notes. The answer was the construction of the Borel-Radon
product measure on locally compact Hausdorff topological spaces via the
traditional Riesz representation theorem 14.2. It became a show-piece in
the development à la Bourbaki, and perhaps an essential motivation for it.
For presentations in recent textbooks we refer to Cohn [1980] chapter 7.6
and Floret [1981] section 13.

For the construction of the Borel-Radon product measure on locally
compact Hausdorff spaces also direct methods were developed, for example
in Johnson [1966] and Kelley-Srinivasan [1988]. We also quote the work
of Bledsoe-Morse [1955] to which we shall come back below. There is a
comprehensive comparison theorem in Godfrey-Sion [1969].

After the Borel-Radon measures had been defined on arbitrary Hausdorff
topological spaces, the theorem on the existence and uniqueness of the Borel-
Radon product measure was extended to this context; see Bourbaki [1969]
section 2.5. In Henry [1969] it has been obtained as an application of the
basic transplantation theorem which is the essence of the present 18.22. For
the present notion of a Borel-Radon measure we refer to the presentation in
Berg-Christensen-Ressel [1984] chapter 2.1. It is even for so-called Radon
bimeasures. Results similar to 21.11 are in Sapounakis-Sion [1987] section
8, as before in the spirit of the two-step extension method of this paper.

After the result of Henry [1969] quoted above one can expect that the
abstract transplantation theorems as treated in chapter VI lead to abstract
versions of the Borel-Radon product measure. This has in fact been achieved
in Adamski [1984a] theorem 3.12, based on the close relative of the present
19.8 quoted at that place. However, it appears that the transplantation
techniques are not an adequate direct method for the present purpose.

As far as the author is aware, there is but one other place in the lit-
erature where the Borel-Radon product measure could have been deduced
from abstract measure theory. This is the paper of Bledsoe-Morse [1955]
quoted above. However, this work has different and less simple basic ideas
and is quite technical. For easier descriptions we refer to the final part of
its introduction, to Godfrey-Sion [1969] and Bledsoe-Wilks [1972] section 2,
and to the illustrative exercise 4.4.14 in Dudley [1989].

After all the present main theorem 21.9 unmasks the formation of the
Borel-Radon product measure as a special case of an extensive and simple
principle in abstract measure theory. It appears here for the first time.

22. The Fubini-Tonelli and Fubini Theorems

The present section obtains the Fubini-Tonelli and Fubini theorems
which pertain to the product formations treated above. It is natural that
they come in several versions. The substance of the Fubini-Tonelli theorems
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is contained in the above results on sectional representations. What remains
is to pass from measurable subsets of the product set to measurable func-
tions with values in [0,∞], both times in the respective sense. This is the
work of a standard theorem on monotone approximation which will be sup-
plied in the first subsection. In view of its importance the first subsection
will be more extensive than needed in the sequel.

Monotone Approximation of Functions

Let X be a nonvoid set. We start with the result which will be needed in
the next subsection.

22.1. Proposition. Let S be a lattice in X with ∅ ∈ S. For each
f ∈ UM(S) ∪ LM(S) there exists a sequence (fn)n in S(S) such that

i) fn ↑ f pointwise;

ii) fn ≦ f ∧ 2n ≦ fn + 1/2n.

Note that ii) implies for 0 < c < ∞ on [f ≦ c] the uniform estimation
0 ≦ f − fn ≦ 1/2n when 2n ≧ c.

22.2. Addendum. The functions fn can be chosen to be

fn := (1/2n)
22n
∑

l=1

χ[f≧l/2n] in case f ∈ UM(S),

fn := (1/2n)
22n
∑

l=1

χ[f>l/2n] in case f ∈ LM(S).

Proof of 22.1 and 22.2. We see from 11.4 that the functions fn defined
in 22.2 are in S(S). In the sequel we restrict ourselves to the case ≧. It
will be obvious that the case > has the same proof. 1) From 11.6 applied to
[a, b] := [0, 2n] and to the subdivision points t(l) := l/2n for l = 0, 1, · · · , 22n

we obtain

fn ≦ f ∧ 2n ≦ (1/2n)
22n
∑

l=1

χ[f≧(l−1)/2n]

= (1/2n)
22n
∑

l=1

(

χ[f≧l/2n] + χ[l/2n>f≧(l−1)/2n]

)

= fn + (1/2n)
22n
∑

l=1

χ[l/2n>f≧(l−1)/2n] ≦ fn + 1/2n.

2) We have

[f ≧ l/2n] = [f ≧ 2l/2n+1] ⊂ [f ≧ (2l − 1)/2n+1] for l = 0, 1, · · · , 22n,
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and therefore

fn ≦ (1/2n+1)
22n
∑

l=1

(

χ[f≧2l/2n+1] + χ[f≧(2l−1)/2n+1]

)

= (1/2n+1)
22(n+1)
∑

l=1

χ[f≧l/2n+1] = fn+1.

3) From 1)2) it is clear that fn(x) ↑ f(x) at all points x ∈ X where f(x) <
∞. But in case f(x) = ∞ we have fn(x) = 2n from the definition. This
completes the proof.

We know from 11.1 and 11.3 that certain simple manipulations with the
function classes UM(S) and LM(S) require severe limitations. This explains
the restrictive assumption in the consequence which follows.

22.3. Proposition. Let A be a σ algebra in X. For each f : X →
R measurable A there exists a sequence (fn)n of functions fn : X → R

measurable A with finite value sets such that

i) 0 ≦ fn ↑ f pointwise on [f ≧ 0], and 0 ≧ fn ↓ f pointwise on [f ≦ 0].
Therefore fn → f pointwise and |fn| ≦ |f |.
ii) For 0 < c <∞ we have on [|f | ≦ c] the uniform estimation |f−fn| ≦ 1/2n

when 2n ≧ c.

Proof. Let (un)n and (vn)n be sequences in S(A) as asserted in 22.1 for
the functions f+ := f ∨ 0 and f− := (−f) ∨ 0. Define

fn := unχ[f≧0] − vnχ[f≦0],

so that the fn : X → R are measurable A with finite value sets. One verifies
all assertions.

The final theorem below looks similar but it of different type. We use
the notations of chapter V.

22.4. Theorem. Let E ⊂ [0,∞[X be a primitive lattice cone with 1 ∈ E,
and let A := Aσ

(

T(E)
)

, that is the smallest σ algebra in X such that all

f ∈ E are measurable A. Assume that H ⊂ [0,∞[X contains E and is
stable under monotone pointwise convergent sequences. Then H contains
all functions f : X → [0,∞[ measurable A.

We define E to consist of all functions sets H ⊂ [0,∞[X as assumed in
the theorem. This collection is nonvoid, since it contains the function set

M(A) ∩ [0,∞[X= {f ∈ [0,∞[X : f measurable A}.
Let Ê be the intersection of all H ∈ E. It is obvious that Ê itself is a
member of E. We shall prove that Ê contains all functions f : X → [0,∞[
measurable A, and hence coincides with the set M(A) ∩ [0,∞[X of these

functions. However, we do not claim that each f ∈ Ê is the pointwise limit
of some sequence or even monotone sequence in E.
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Proof. 1) Ê is a lattice cone. This is a familiar two-step conclusion. In
the first step one fixes f ∈ E and forms

H := {u ∈ [0,∞[X : u + f, u ∨ f, u ∧ f, cu ∈ Ê for all c ≧ 0}.
One verifies that H ∈ E and concludes that H contains Ê. In the second
step one does the same with f ∈ Ê. Then the assertion follows. 2) We claim
that

χ[u<v], χ[u≦v] ∈ Ê for all u, v ∈ E.

In fact, first note that (n(v−u∧v))∧1 ∈ E and ↑ χ[u<v], so that χ[u<v] ∈ Ê.

Then χ[u<v+1/n] ↓ χ[u≦v] for n → ∞, so that χ[u≦v] ∈ Ê. 3) We form

M := {A ⊂ X : χA ∈ Ê} and N := M ∩ (M⊥). From 2) we see that
[u ≦ v] ∈ N for all u, v ∈ E. In particular [f ≧ t] ∈ N for all f ∈ E

and t > 0, that is T(E) ⊂ N. 4) From 1) and from the definition of Ê we
conclude that M fulfils ∪σ and ∩σ. The same then follows for N. Combined
with 3) this implies that N is a σ algebra and A = Aσ

(

T(E)
)

⊂ N ⊂M. 5)

Thus we have χA ∈ Ê for all A ∈ A. From 1) and 22.1 the assertion follows.

22.5. Bibliographical Note. The assertions 22.1 to 22.3 are mathe-
matical folklore. Results of the type 22.4 are called monotone class theorems
for functions. For related versions we refer to Revuz-Yor [1991] theorem 0.2.2
and to Hackenbroch-Thalmaier [1994] Satz 1.4.

The Fubini-Tonelli Theorems

In the last two sections on product formations we obtained four final results
on sectional representations. These were

in section 20: 20.18 with 20.15;

in section 21: 21.12, and its specialization 21.20 to Radon measures;
21.16 with 21.13, and its specialization 21.21 to Radon measures;
21.19.

Between these results there are substantial differences. They are all impor-
tant in their specific contexts, so that none of them should be put aside.
Therefore we shall extend all four of them to theorems of the Fubini-Tonelli
type. The proofs will follows the same pattern based on 22.1. We start with
the traditional product situation of section 20.

22.6. Theorem. Assume that

α : A→ [0,∞] is a cmeasure on a σ algebra A in X,
β : B→ [0,∞] is a cmeasure on a σ algebra B in Y ,

and that ν : A ⊗B → [0,∞] is a narrow product measure of α and β. Let
f : X × Y → [0,∞] be measurable A⊗B. Then

0) f(x, ·) : Y → [0,∞] is measurable B for all x ∈ X.

If Pr([f > 0]) ⊂ Y is upward enclosable [β <∞]σ then

i) the function f0 : f0(x) =
∫

f(x, ·)dβ for x ∈ X is measurable A.
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If [f > 0] ⊂ X × Y is upward enclosable [α <∞]σ × [β <∞]σ then

ii)
∫

fdν =
∫

f0dα.

The proof below and the subsequent ones will need two obvious formal
remarks. 0) If f : X × Y → [0,∞] and t > 0 then [f(x, ·) ≧ t] = [f ≧ t](x)
for all x ∈ X. The same holds true for > instead of ≧. 1) If f = χE with
E ⊂ X × Y then f(x, ·) = χE(x) for all x ∈ X.

Proof of 22.6. 0) follows from 20.15.0) combined with formal remark
0). i) Define H to consist of all functions f : X × Y → [0,∞] measurable
A ⊗B which fulfil i). From standard facts in section 13 it is clear that H
is a cone and stable under isotone sequences. From 20.15.i) combined with
formal remark 1) we see that H contains f = χE when E ∈ A ⊗ B has
Pr(E) ⊂ Y upward enclosable [β < ∞]σ. Therefore 22.1 implies that H
contains all f : X × Y → [0,∞] with Pr([f > 0]) ⊂ Y upward enclosable
[β < ∞]σ. ii) Define H to consist of all functions f : X × Y → [0,∞]
measurable A⊗B which fulfil i)ii). From 20.18 we conclude as before that
H contains all f : X × Y → [0,∞] measurable A⊗B with [f > 0] ⊂ X × Y
upward enclosable [α <∞]σ × [β <∞]σ.

The next theorems resume the situation of section 21. We assume as
above that

ϕ : S→ [0,∞[ is an inner • premeasure with ϕ(∅) = 0,
ψ : T→ [0,∞[ is an inner • premeasure with ψ(∅) = 0,

and let Φ := ϕ•|C(ϕ•) and Ψ := ψ•|C(ψ•), where • = στ . Furthermore let
U := (S⊤S•)⊥ and V := (T⊤T•)⊥. We know from 21.9 that ϑ = ϕ × ψ :
R → [0,∞[ is an inner • premeasure as well, and that θ := ϑ•|C(ϑ•) is an
extension of Φ×Ψ.

22.7. Theorem. Assume that P ⊂ U and Q ⊂ V are lattices with ∪•.
Let f ∈ LM

(

(P×Q)•
)

. Then

0) f(x, ·) ∈ LM(Q) for all x ∈ X;

i) the function f0 : f0(x) =
∫

−f(x, ·)dΨ for x ∈ X is in LM(P);

ii)
∫

−fdθ =
∫

−f0dΦ.

Proof. 0) follows from 21.12.0) combined with formal remark 0). i)
Define H to consist of all functions f ∈ LM

(

(P × Q)•
)

which fulfil i)ii).
We note that the classes LM(·) which occur are cones by 11.1.3) and stable
under isotone sequences by the definition. Then we conclude from 11.11
and 11.18, or from standard facts in section 13, that H is a cone and stable
under isotone sequences. From 21.12.i)ii) combined with formal remark 1)
we see that H contains f = χE when E ∈ (P×Q)•. Therefore 22.1 implies
that H contains all f ∈ LM

(

(P×Q)•
)

.

22.8. Theorem. Assume that P ⊂ U and Q ⊂ V are lattices with ∪•.
Let f : X × Y → [0,∞] be measurable Aσ

(

(P×Q)•
)

. Then

0) f(x, ·) : Y → [0,∞] is measurable Aσ(Q) for all x ∈ X.

If Pr([f > 0]) ⊂ Y is upward enclosable [Ψ <∞]σ then
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i) the function f0 : f0(x) =
∫

f(x, ·)dΨ for x ∈ X is measurable Aσ(P);
ii)

∫

fdθ =
∫

f0dΦ.

This time the proof is so close to the former ones that we can save the
details.

22.9. Theorem. Let f : X × Y → [0,∞] be measurable C(ϑ•), and let
Pr([f > 0]) ⊂ Y be upward enclosable [Ψ <∞]σ. Then there exists a subset
N ∈ C(ϕ•) with Φ(N) = 0 such that

0) f(x, ·) : Y → [0,∞] is measurable C(ψ•) for all x ∈ X \N ;

i) each function f0 : X → [0,∞] with f0(x) =
∫

f(x, ·)dΨ for x ∈ X \N
is measurable C(ϕ•);

ii)
∫

fdθ =
∫

f0dΦ.

Proof. Define H to consist of all functions f : X×Y → [0,∞] measurable
C(ϑ•) for which there exists a subset N ∈ C(ϕ•) with Φ(N) = 0 and with
0)i)ii). We conclude from 10.16 that instead of N one can take any other
null set which contains N . By standard facts in section 13 thus H is a cone
and stable under isotone sequences. From 21.19.i)ii) combined with 10.16
and formal remark 1) we see that H contains f = χE when E ∈ C(ϑ•) has
Pr(E) ⊂ Y upward enclosable [Ψ < ∞]σ. Therefore 22.1 implies that H
contains all f : X×Y → [0,∞] measurable C(ϑ•) such that Pr([f > 0]) ⊂ Y
is upward enclosable [Ψ <∞]σ.

The above theorems have the usual consequences which assert that un-
der the obvious assumptions the order of the two componential integration
processes can be reversed. We shall not enter the details, and do the same
in the next subsection on the Fubini theorems.

As in section 21 we conclude with the specialization of 22.7 and 22.8 to
Radon measures. We assume that α : Bor(X) → [0,∞] and β : Bor(Y ) →
[0,∞] are Borel-Radon measures on Hausdorff topological spaces X and
Y , and that ν : Bor(X × Y ) → [0,∞] is the unique Borel-Radon product
measure of α and β obtained in 21.11.

22.10. Theorem. Let f ∈ LSC(X × Y, [0,∞]). Then

0) f(x, ·) ∈ LSC(Y, [0,∞]) for all x ∈ X;

i) the function f0 : f0(x) =
∫

f(x, ·)dβ for x ∈ X is in LSC(X, [0,∞]);
ii)

∫

fdν =
∫

f0dα.

22.11. Theorem. Assume that f : X ×Y → [0,∞] is Borel measurable.
Then

0) f(x, ·) : Y → [0,∞] is Borel measurable for all x ∈ X.

If Pr([f > 0]) ⊂ Y is upward enclosable [β <∞]σ then

i) the function f0 : f0(x) =
∫

f(x, ·)dβ for x ∈ X is Borel measurable;

ii)
∫

fdν =
∫

f0dα.
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The Fubini Theorems

The Fubini theorem for each of the present contexts arises from the respec-
tive Fubini-Tonelli theorem when one passes from measurable functions with
values in [0,∞] to integrable functions with values in R. One knows that it
is often less simple. In the present subsection we obtain the Fubini theorems

for the context of section 20 from 22.6, and
for the context of section 21 from 22.8 and 22.9,

while 22.7 has no Fubini counterpart. We even attempt a simultaneous
proof.

22.12. Theorem (Addendum to 22.6). Let f : X ×Y → R be integrable
ν, and let [f �= 0] ⊂ X × Y be upward enclosable [α < ∞]σ × [β < ∞]σ.
Then there exists a subset N ∈ A with α(N) = 0 such that

0) f(x, ·) : Y → R is integrable β for all x ∈ X \N ;

i) the function f0 : X → R, defined to be

f0(x) =

{ ∫

f(x, ·)dβ for x ∈ X \N
0 for x ∈ N

}

, is integrable α;

ii)
∫

fdν =
∫

f0dα.

In short words: There exists a null set N ∈ A such that the iterated integral
∫

X\N

( ∫

f(x, y)dβ(y)
)

dα(x) exists in the sense of integrable functions and is

=
∫

fdν.

22.13. Theorem (Addendum to 22.8 and 22.9). We adopt the natural
abbreviations

in case 22.8 : α := Φ|Aσ(P) on A := Aσ(P),
β := Ψ|Aσ(Q) on B := Aσ(Q),
ν := θ|Aσ

(

(P×Q)•
)

on C := Aσ
(

(P×Q)•
)

;

in case 22.9 : α := Φ on A := C(ϕ•),
β := Ψ on B := C(ψ•),
ν := θ on C := C(θ•).

Let f : X × Y → R be integrable ν, and let Pr([f �= 0]) ⊂ Y be upward
enclosable [Ψ <∞]σ. Then there exists a subset N ∈ A with α(N) = 0 such
that

0) f(x, ·) : Y → R is integrable β for all x ∈ X \N ;

i) the function f0 : X → R, defined to be

f0(x) =

{ ∫

f(x, ·)dβ for x ∈ X \N
0 for x ∈ N

}

, is integrable α;

ii)
∫

fdν =
∫

f0dα.
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In short words: There exists a null set N ∈ A such that the iterated integral
∫

X\N

(

f(x, y)dβ(y)
)

dα(x) exists in the sense of integrable functions and is

=
∫

fdν.

Proof of 22.12 and 22.13. 1) From the respective former theorems applied
to f± : X×Y → [0,∞] we obtain a subset M ∈ A with α(M) = 0 such that

0) f±(x, ·) : Y → [0,∞] are measurable B for all x ∈ X \M ;

i) the functions (f±)0 : X → [0,∞], defined to be

(f±)0(x) =

{ ∫

f±(x, ·)dβ for x ∈ X \M
0 for x ∈M

}

, are measurable A;

ii)
∫

f±dν =
∫

(f±)0dα <∞.

One can take M = ∅ in cases 22.6 and 22.8. We note that f = f+
.
+. (−f−).

2) In view of ii) the functions (f±)0 are integrable α. Thus by 13.23.1)
there exists a subset N ∈ A with α(N) = 0 such that (f±)0(x) < ∞
for all x ∈ X \ N . We can assume that M ⊂ N . It follows that for
x ∈ X \N the functions f±(x, ·) and hence the function f(x, ·) are integrable
β. 3) Define f0 : X → R as in i) of the theorems. By 13.20.2) then
f0(x) = (f+)0(x) − (f−)0(x) for x ∈ X \N . Hence f0 is integrable α, and
once more from 13.20.2) we have

∫

f0dα =

∫

(f+)0dα−
∫

(f−)0dα =

∫

f+dν −
∫

f−dν =

∫

fdν.

The proof is complete.

This time we shall not write out the specialization to Radon measures.
We have said above that 22.7 has no Fubini counterpart. The part of 22.13
which comes from 22.8 has been formulated in such a manner that it co-
incides with its specialization when one fortifies the assumption upward
enclosable [Ψ <∞]σ to upward enclosable [β <∞]σ.

22.14. Bibliographical Note. The traditional Fubini-Tonelli and
Fubini theorems 22.6 and 22.12 are in all textbooks.

For the specialization of the further Fubini-Tonelli and Fubini theorems
to Borel-Radon measures on locally compact Hausdorff topological spaces we
refer to Hewitt-Ross [1963] section 13, Bourbaki [1967] section 8, and Cohn
[1980] section 7.6.

For Borel-Radon measures on arbitrary Hausdorff topological spaces
there are versions of the present 22.10 and 22.9 in Bourbaki [1969] section
2.6. The full result 22.10 and the essence of 22.11 are in Berg-Christensen-
Ressel [1984] theorem 2.1.12.





CHAPTER VIII

Applications of the New Contents and
Measures

The present final chapter is independent of the extension theories
of chapter II and of the subsequent chapters III and V to VII. It returns
to chapter I and in particular to the new notions of contents and measures
defined in section 2. The main purpose of these notions was to form the
soil on which the outer and inner extension theories of chapter II became
identical. The present chapter wants to demonstrate that the new notions
can be useful in other contexts as well, in order to obtain more reasonable
forms of the results, or to contribute to their proofs and to their mutual
relations. We consider the domain of some famous decomposition theorems.

23. The Jordan and Hahn Decomposition

Theorems

We start with the Jordan theorem which is for contents, like the Lebesgue
decomposition theorem of the next section. The subsequent Hahn theorem
will be for measures.

Introduction

Let A be an algebra in a nonvoid set X. We start with the conventional
versions of the Jordan decomposition problem.

The finite version assumes a modular set function ϕ : A → R with
ϕ(∅) = 0. Wanted are representations ϕ = β − α, where α, β : A → [0,∞[
are finite ccontents. An obvious necessary condition for the existence of such
a representation is that ϕ be bounded, because it implies that −α(X) ≦

ϕ ≦ β(X). The converse result will be that if ϕ is bounded then there exist
representations, and a unique one which is optimal in an appropriate sense.
We add a useful remark.

23.1. Remark. 1) A modular set function ϕ : A→ R is bounded above
iff it is bounded below. 2) There exist modular set functions ϕ : A → R

which are not bounded. For an example let A consist of the finite and
cofinite subsets of an infinite X, and define ϕ : A→ R to be

ϕ(A) =

{

#(A) for A finite
−#(A′) for A cofinite

}

.

It is a simple verification that ϕ is modular.
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The infinite version assumes, in order to avoid the difficulties with the
addition in R for which we have invented the operations

.
+ and +. , for in-

stance a modular set function ϕ : A →] −∞,∞] with ϕ(∅) = 0. Wanted
are representations ϕ = β − α, where this time of course α : A → [0,∞[ is
a finite ccontent and β : A → [0,∞] is a ccontent. An obvious necessary
condition for the existence of such a representation is that ϕ be bounded
below, because it implies that ϕ ≧ −α(X). The converse result will be that
if ϕ is bounded below then there exist representations, and a unique one
which is optimal in an appropriate sense.

We want to remove the asymmetry in the latter representations. We
shall see that it is not due to the restriction from R to ]−∞,∞], but that
the condition ϕ(∅) = 0 must be blamed for it. Thus we assume a modular
set function ϕ : A →] −∞,∞] which is �≡ ∞, so that in particular we do
not require that ϕ(∅) <∞. Wanted are representations

ϕ(A) = α(A′) + β(A) for all A ∈ A,

where α, β : A →] − ∞,∞] are isotone modular set functions �≡ ∞, that
means contents in the new sense. Then α and β are bounded below with
α(∅), β(∅) ∈ R, and hence ϕ ≧ α(∅) + β(∅) is likewise bounded below. As
before the converse result will be that if ϕ is bounded below then there exist
representations, and (up to an additive real constant) a unique one which is
optimal in an appropriate sense. The new representations fulfil

ϕ(∅) = α(X) + β(∅) and ϕ(X) = α(∅) + β(X).

Thus ϕ(∅) < ∞ is equivalent to α < ∞, and ϕ(X) < ∞ is equivalent
to β < ∞. We assert that in case ϕ(∅) = 0 the new representations are
equivalent to the former ones. In fact, a new representation furnishes the
old one

ϕ(A) = α(A′) + β(A) =
(

β(A)− β(∅)
)

−
(

α(A)− α(∅)
)

for A ∈ A,

and an old representation furnishes the new one

ϕ(A) = β(A)− α(A) =
(

α(A′)− α(X)
)

+ β(A) for A ∈ A.

In the sequel we shall concentrate on the new concepts.

We conclude the introduction with a short discussion of what can happen
when one passes from ]−∞,∞] to R.

23.2. Remark. Assume that ϕ : A →] − ∞,∞] is modular and not
bounded below. Then it cannot be represented in the above sense. But ϕ
can have representations

ϕ(A) = α(A′)
.
+ β(A) for all A ∈ A,

where α, β : A → R are contents
.
+ in the new sense. For an example

let A consist of the finite and cofinite subsets of an infinite X, and define
ϕ : A→]−∞,∞] to be

ϕ(A) =

{

−#(A) for A finite
∞ for A cofinite

}

.
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One verifies that α : A→ [−∞, 0] and β : A→ [0,∞], defined to be

α(A) =

{

−∞ for A finite
−#(A′) for A cofinite

}

and

β(A) =

{

0 for A finite
∞ for A cofinite

}

,

are as required. However, in the present case all such representations are
pathological in a sense. This is the interpretation which will later be attrib-
uted to the final remark below.

We recall from 2.14 that each
.
+. content α : A → R defines a certain

ccontent α∧ : A→ [0,∞]. In particular if α(∅) ∈ R then α∧ = α− α(∅).

23.3. Remark. Assume that ϕ : A →] − ∞,∞] is modular and not
bounded below. If α, β : A→ R are contents

.
+ with

ϕ(A) = α(A′)
.
+ β(A) for all A ∈ A,

then α∧(A′) + β∧(A) =∞ for all A ∈ A.

Proof. Assume not, and fix Q ∈ A with α∧(Q′) + β∧(Q) < ∞ and
hence with α∧(Q′), β∧(Q) < ∞. Also fix P ∈ A with ϕ(P ) ∈ R and hence
with α(P ′), β(P ) ∈ R. We claim that α(∅), β(∅) ∈ R, which implies a
contradiction. 1) By definition we have

α∧(Q′) =
(

α(P ′ ∪Q′)− α(P ′)
)

+
(

α(P ′)− α(P ′ ∩Q)
)

,

β∧(Q) =
(

β(P ∪Q)− β(P )
)

+
(

β(P )− β(P ∩Q′)
)

.

This implies that

1.i) α(P ′ ∪Q′) ∈ R and β(P ∪Q) ∈ R,

1.ii) α(P ′ ∩Q) ∈ R and β(P ∩Q′) ∈ R.

From 1.i) we see that α(Q′) < ∞ and β(Q) < ∞. On the other hand
ϕ(Q) = α(Q′)

.
+β(Q) > −∞. Therefore α(Q′), β(Q) ∈ R. 2) From

α(P ′ ∪Q′)
.
+ α(P ′ ∩Q′) = α(P ′)

.
+ α(Q′),

β(P ∪Q)
.
+ β(P ∩Q) = β(P )

.
+ β(Q),

and from the finiteness of the right sides we conclude that α(P ′ ∩ Q′) ∈ R

and β(P ∩Q) ∈ R. 3) Now

α(P ′ ∩Q′)
.
+ α(P ′ ∩Q) = α(P ′)

.
+ α(∅),

β(P ∩Q)
.
+ β(P ∩Q′) = β(P )

.
+ β(∅).

On the left the first terms are finite by 2), and the second terms are finite
by 1.ii). It follows that α(∅), β(∅) ∈ R as claimed.
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The Infimum Formation

Let as before A be an algebra in a nonvoid set X.

23.4. Theorem. Assume that α, β : A →] − ∞,∞] are modular and
bounded below. Define

λ : λ(A) = inf{α(A ∩ P ′) + β(A ∩ P ) : P ∈ A} for A ∈ A.

Then λ : A→]−∞,∞] is modular and bounded below.

23.5. Addendum. Let M ∈ A with λ(M) < ∞, and let (Pl)l be a se-
quence in A with

α(M ∩ P ′
l ) + β(M ∩ Pl)→ λ(M) for l→∞.

Then α(A ∩ P ′
l ) + β(A ∩ Pl)→ λ(A) for all A ∈ A with A ⊂M .

The proof requires a simple remark.

23.6. Remark. Let α : A → R be modular
.
+. . If P ⊂ A ⊂ Q in A with

α(P ), α(Q) ∈ R then α(A) ∈ R.

Proof of 23.6. For B := Q|A|P = (Q \ A) ∪ P ∈ A we have A ∪ B = Q
and A ∩B = P . Therefore

α(A)
.
+. α(B) = α(P )

.
+. α(Q) ∈ R.

The assertion follows.

Proof of 23.4 and 23.5. We can assume that α and β are �≡ ∞, since
otherwise λ ≡ ∞. It is obvious that λ is bounded below. The proof that λ
is modular will be combined with that of the addendum.

1) If A,B ∈ A with λ(A), λ(B) < ∞ then λ(A ∪ B) < ∞. In fact, by
definition there exist

P ∈ A with P ⊂ A and α(A \ P ), β(P ) ∈ R,
Q ∈ A with Q ⊂ B and α(B \Q), β(Q) ∈ R.

Since α and β are modular we have β(P ∪Q) ∈ R, and

α
(

(A \ P ) ∩ (B \Q)
)

∈ R and α
(

(A \ P ) ∪ (B \Q)
)

∈ R.

One verifies that

(A \ P ) ∩ (B \Q) ⊂ (A ∪B) \ (P ∪Q) ⊂ (A \ P ) ∪ (B \Q).

Thus 23.6 implies that α
(

(A ∪ B) \ (P ∪ Q)
)

∈ R. The results combine to
furnish λ(A ∪B) <∞. 2) We have to prove that

λ(A) + λ(B) = λ(A ∪B) + λ(A ∩B) for A,B ∈ A.

In case λ(A ∪B) =∞ this follows from 1), and in case λ(A ∪B) <∞ it is
a consequence of 23.5. Thus it remains to prove the addendum.

3) We need an intermediate computation. Let P,Q and A ⊂ M be
subsets of X, and put Z := Q|A|P . One verifies that

A ∩ P ′|A|M ∩Q′ = A ∩Q′ and A ∩ P ′|A′|M ∩Q′ = M ∩ Z ′,

A ∩ P |A|M ∩Q = A ∩Q and A ∩ P |A′|M ∩Q = M ∩ Z.
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Thus if P,Q,A,M ∈ A and hence Z ∈ A then
(

α(A ∩Q′) + β(A ∩Q)
)

+
(

α(M ∩ Z ′) + β(M ∩ Z)
)

= α
(

(A ∩ P ′) ∪ (M ∩Q′)
)

+ α
(

(A ∩ P ′) ∩ (M ∩Q′)
)

+ β
(

(A ∩ P ) ∪ (M ∩Q)
)

+ β
(

(A ∩ P ) ∩ (M ∩Q)
)

=
(

α(A ∩ P ′) + β(A ∩ P )
)

+
(

α(M ∩Q′) + β(M ∩Q)
)

.

4) Assume that A ⊂M in A. From 3) we have
(

α(A ∩Q′) + β(A ∩Q)
)

+ λ(M)

≦
(

α(A ∩ P ′) + β(A ∩ P )
)

+
(

α(M ∩Q′) + β(M ∩Q)
)

for P,Q ∈ A.

The definition of λ(A) furnishes
(

α(A ∩Q′) + β(A ∩Q)
)

+ λ(M)

≦ λ(A) +
(

α(M ∩Q′) + β(M ∩Q)
)

for Q ∈ A.

Now assume that λ(M) <∞, and let (Pl)l be as in 23.5. Then for Q := Pl

and l→∞ we obtain the assertion.

23.7. Special Case. Assume that α, β : A→ [0,∞] are ccontents. Then
23.4 furnishes a ccontent λ : A→ [0,∞]. It has the properties

i) λ ≦ α, β;
ii) each ccontent ϑ on A with ϑ ≦ α, β fulfils ϑ ≦ λ.

Hence it is the unique ccontent on A with these properties.

The assertions are all obvious. The above special case is the reason for
the infimum type notation λ =: α ∧ β in all cases. Note that this formation
is symmetric.

We are led to a basic definition. The ccontents α, β : A → [0,∞] are
defined to be singular (to each other) iff α ∧ β = 0, that is iff

inf{α(P ′) + β(P ) : P ∈ A} =: (α ∧ β)(X) = 0.

In this case we write α⊥β. Moreover the
.
+. contents α, β : A→ R are called

singular iff α∧, β∧ are singular. In this case we likewise write α⊥β.

23.8. Remark. Let α, β : A→ [0,∞] be ccontents. Then

α, β are singular ⇐= there exists P ∈ A with α(P ′) = β(P ) = 0.

Moreover we have =⇒ when A is a σ algebra and α, β are cmeasures.

Proof. ⇐) is obvious. ⇒) In case (α∧β)(X) = 0 there exists a sequence

(Al)l in A with α(A′
l), β(Al) ≦ 1/2l+1. For Pn :=

∞
⋃

l=n

Al ∈ A then on the one

hand β(Pn) ≦ 1/2n. On the other hand

for l ≧ n : Al ⊂ Pn or P ′
n ⊂ A′

l and hence α(P ′
n) ≦ 1/2l+1,

so that α(P ′
n) = 0. Now Pn ↓ some P ∈ A. It follows that β(P ) = 0 and

α(P ′) = 0.
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23.9. Bibliographical Note. The above theorem 23.4 looks too nar-
row when compared with Rao-Rao [1983] proposition 2.5.2. There it is
claimed that for each pair of modular set functions α, β : A →] − ∞,∞]
with α(∅) = β(∅) = 0, bounded below or not, the identical formation
λ : A → R is a so-called charge, which in particular means that it cannot
attain both of the values ±∞. But this assertion is false, as the counterex-
ample below will show. Thus one-sided boundedness seems to play a key
role, in accordance with the present exposition. The author did not attempt
to overlook the possible impact of the false 2.5.2 on Rao-Rao [1983].

23.10. Exercise. Let X be the union of two disjoint infinite subsets S
and T . Define S to consist of the finite and cofinite subsets of S, and T to
consist of the finite and cofinite subsets of T , and let

A := {A ⊂ X : A ∩ S ∈ S and A ∩ T ∈ T}.
As in earlier examples define ϕ : S→ R and ψ : T→ [0,∞] to be

ϕ(A) =

{

#(A) for A ⊂ S finite
−#(A′) for A ⊂ S cofinite

}

and

ψ(A) =

{

0 for A ⊂ T finite
∞ for A ⊂ T cofinite

}

.

Then define α, β : A→]−∞,∞] to be

α(A) = 2ϕ(A ∩ S) + ψ(A ∩ T ),

β(A) = ϕ(A ∩ S) + ψ(A ∩ T ) for A ∈ A.

It is obvious that α and β are modular with α(∅) = β(∅) = 0. To be
verified is that the formation λ : A→ R as in 23.4 satisfies λ(S) = −∞ and
λ(T ) =∞.

The Jordan Decomposition Theorem

We return to the context of the introduction. Assume that ϕ : A→]−∞,∞]
is modular and bounded below �≡ ∞. Then I := inf ϕ ∈ R. As above we
understand a representation of ϕ to be a couple of contents α, β : A →
]−∞,∞] such that

ϕ(A) = α(A′) + β(A) for A ∈ A.

This equation can be written

ϕ(A) = α∧(A′) + β∧(A) + α(∅) + β(∅) for A ∈ A.

Formation of the infimum over the A ∈ A shows that (α∧) ∧ (β∧) is a finite
ccontent with

I =
(

(α∧) ∧ (β∧)
)

(X) + α(∅) + β(∅).

Thus I ≧ α(∅) + β(∅), and I = α(∅) + β(∅) iff α⊥β. We turn to the basic
assertions on existence and uniqueness.
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23.11. Theorem. Assume that ϕ : A→]−∞,∞] is modular and bounded
below �≡ ∞. Define

σ : σ(A) = inf{ϕ(A′ ∩ P ) : P ∈ A} − I and

τ : τ(A) = inf{ϕ(A ∪ P ) : P ∈ A} − I for A ∈ A.

Then σ, τ : A→ [0,∞] are ccontents and fulfil

ϕ(A) = σ(A′) + τ(A) + I for all A ∈ A.

Thus σ⊥τ . Therefore (σ + a), (τ + b) with real constants a + b = I form a
representation of ϕ with (σ + a)⊥(τ + b).

23.12. Addendum. Let (Pl)l be a sequence in A with ϕ(Pl)→ I. Then

ϕ(A′ ∩ Pl) → σ(A) + I and

ϕ(A ∪ Pl) → τ(A) + I for all A ∈ A.

Proof of 23.11 and 23.12. 0) For a set function ϑ : A → R we define
ϑ′ : A → R to be ϑ′(A) = ϑ(A′) for A ∈ A. It should not be confused
with the upside-down transform ϑ⊥ : A⊥ = A→ R of ϑ defined before 2.7.
There are obvious equivalences like those in 2.7, of which we shall make free
use.

For the remainder of the proof we adapt the notations to those of 23.4
and 23.5. 1) We note that

if α = 0 and β = ϕ : α(A′ ∩ P ′) + β(A′ ∩ P ) = ϕ(A′ ∩ P ) for A,P ∈ A,

(α ∧ β)(A′) = σ(A) + I for A ∈ A;

if α = ϕ′ and β = 0 : α(A′ ∩ P ′) + β(A′ ∩ P ) = ϕ(A ∪ P ) for A,P ∈ A,

(α ∧ β)(A′) = τ(A) + I for A ∈ A.

Thus we see that σ = (0∧ϕ)′− I and τ = (ϕ′ ∧ 0)′− I. It follows from 23.4
that σ, τ : A→]−∞,∞] are modular. The definitions themselves show that
σ, τ ≧ 0 and σ(∅) = τ(∅) = 0. Thus 2.10 says that σ and τ are ccontents.
2) In both cases considered in 1) we obtain for A = ∅

α(P ′) + β(P ) = ϕ(P ) for P ∈ A,

(α ∧ β)(X) = I ∈ R.

Thus 23.5 applied to M := X asserts that for each sequence (Pl)l in A with
ϕ(Pl)→ I we have

α(A′ ∩ P ′
l ) + β(A′ ∩ Pl)→ (α ∧ β)(A′) for all A ∈ A.

This means that

if α = 0 and β = ϕ : ϕ(A′ ∩ Pl)→ σ(A) + I,

if α = ϕ′ and β = 0 : ϕ(A ∪ Pl)→ τ(A) + I,

as claimed in 23.12. 3) For A ∈ A we obtain from 2)

ϕ(A) + ϕ(Pl) = ϕ(A ∩ Pl) + ϕ(A ∪ Pl)→ σ(A′) + τ(A) + 2I,

since all terms are > −∞. It follows that ϕ(A) = σ(A′) + τ(A) + I. This
completes the proof.
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23.13. Theorem. Assume that ϕ : A→]−∞,∞] is modular and bounded
below �≡ ∞. Then the representations α, β : A→]−∞,∞] of ϕ are in one-
to-one correspondence with

the finite ccontents λ : A→ [0,∞[ and the couples a, b ∈ R

such that λ(X) + a + b = I.

The correspondence is

α := σ + a + λ and β := τ + b + λ,

and its inverse is λ := (α∧) ∧ (β∧) and a := α(∅), b := β(∅). In particular
α⊥β iff λ = 0, that is iff α, β is one of the particular representations obtained
in 23.11.

Proof. 1) We start with a finite ccontent λ : A → [0,∞[ and a, b ∈ R

with λ(X) + a + b = I, and form α := σ + a + λ and β := τ + b + λ. Then
α, β : A→]−∞,∞] are contents. For A ∈ A we have

α(A′) + β(A) =
(

σ(A′) + τ(A)
)

+ (a + b) +
(

λ(A′) + λ(A)
)

= (ϕ(A)− I) + (a + b) + λ(X) = ϕ(A),

so that α, β form a representation of ϕ. We claim that (α∧) ∧ (β∧) and
α(∅), β(∅) lead back to λ and a, b. It is clear that α(∅) = a and β(∅) = b.
Then for A,P ∈ A we have

α∧(A ∩ P ′) + β∧(A ∩ P ) =
(

α(A ∩ P ′)− a
)

+
(

β(A ∩ P )− b
)

= σ(A ∩ P ′) + τ(A ∩ P ) + λ(A).

Thus the infimum over P ∈ A furnishes
(

(α∧) ∧ (β∧)
)

(A) = (σ ∧ τ)(A) + λ(A) = λ(A) for A ∈ A,

which is the assertion.

2) We start with a representation α, β : A →] −∞,∞] of ϕ, and form
λ := (α∧) ∧ (β∧) and a := α(∅), b := β(∅). We have seen above that
λ : A → [0,∞[ is a finite ccontent with λ(X) + a + b = I. We claim that
σ + a + λ and τ + b + λ lead back to α and β. This will complete the proof.
i) We fix a sequence (Pl)l in A with ϕ(Pl)→ I. This means that

α∧(P ′
l ) + β∧(Pl) = α(P ′

l ) + β(Pl)− (a + b) = ϕ(Pl)− (a + b)

→ I − (a + b) = λ(X) =
(

(α∧) ∧ (β∧)
)

(X) ∈ R.

Thus 23.5 applied to M := X asserts that for all A ∈ A

α∧(A ∩ P ′
l ) + β∧(A ∩ Pl) →

(

(α∧) ∧ (β∧)
)

(A) = λ(A),

α(A ∩ P ′
l ) + β(A ∩ Pl) → λ(A) + (a + b).

We combine this with 23.12 to obtain

ϕ(A′ ∩ Pl) + α(A ∩ P ′
l ) + β(A ∩ Pl) → σ(A) + I + λ(A) + (a + b),

ϕ(A ∪ Pl) + α(A ∩ P ′
l ) + β(A ∩ Pl) → τ(A) + I + λ(A) + (a + b).
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ii) We reformulate the left sides of the last two relations. For the first relation
we obtain

α(A ∪ P ′
l ) + β(A′ ∩ Pl) + α(A ∩ P ′

l ) + β(A ∩ Pl)

= α(A) + α(P ′
l ) + β(Pl) + β(∅) = α(A) + ϕ(Pl) + b→ α(A) + I + b.

It follows that α(A) = σ(A) + λ(A) + a. For the second relation we obtain

α(A′ ∩ P ′
l ) + β(A ∪ Pl) + α(A ∩ P ′

l ) + β(A ∩ Pl)

= α(P ′
l ) + α(∅) + β(A) + β(Pl) = β(A) + ϕ(Pl) + a→ β(A) + I + a.

It follows that β(A) = τ(A) + λ(A) + b. The proof is complete.

We see that 23.11 furnishes the (up to an additive real constant) unique
representation α, β of ϕ which fulfils α⊥β. In the conventional special case
ϕ(∅) = 0 we have

0 = ϕ(∅) = σ(X) + I and hence σ <∞,

ϕ(A) =
(

σ(X)− σ(A)
)

+ τ(A) + I = τ(A)− σ(A) for A ∈ A,

that is ϕ = τ − σ. Therefore we write τ =: ϕ+ and σ =: ϕ− in all cases.

The Existence of Minimal Sets

Let ϕ : S → R be a set function on a lattice S in X. We recall that
the different notions of continuous set functions, like most of the notions
defined in section 2, assumed ϕ to be isotone. The present context requires
an appropriate extension of the definition. Justified by success, we define
ϕ : S→ R to be upward σ continuous iff

ϕ(S) ≦ lim inf
l→∞

ϕ(Sl) for all sequences (Sl)l in S such that Sl ↑ or ↓ S ∈ S.

This is the previous notion when ϕ is isotone. However, we must admit that
a more natural definition seems to be

(↑) ϕ(Sl)→ ϕ(S) for all sequences (Sl)l in S with Sl ↑ S ∈ S.

Therefore we insert a short comparison of the two definitions. It is clear
that the comparison requires that S be at least an oval.

23.14. Exercise. Assume that ϕ : S →] − ∞,∞] is a modular set
function on an oval S. 1) The implication upward σ continuous ⇐ (↑) is
true. 2) The implication upward σ continuous ⇒ (↑) need not be true, even
when S is a σ algebra and ϕ ≧ 0. Hint: Let α : S→ [0,∞] be a cmeasure,
and define ϕ : S → [0,∞] to be ϕ(S) = α(S′) for S ∈ S. Let (Al)l be a
sequence in S such that Al ↓ ∅ and α(Al) = ∞ for all l ∈ N, and consider
the sequence (Sl)l of the complements Sl := A′

l. 2’) The implication upward
σ continuous ⇒ (↑) is true when for each T ∈ S there exists S ∈ S such
that S ⊂ T and ϕ(S) < ∞. In particular it suffices that S is a ring and
ϕ(∅) <∞.

The fundamental step which follows will lead from the Jordan theorem
to the Hahn theorem.
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23.15. Theorem. Assume that S is a σ lattice and that ϕ : S →] −
∞,∞] is submodular and upward σ continuous. Then there exists P ∈ S

such that ϕ(P ) = inf ϕ. In particular ϕ is bounded below.

Proof. We can assume that ϕ �≡ ∞. Thus I := inf ϕ < ∞. For A ∈ S

with ϕ(A) <∞ we define

δ(A) := sup{ϕ(A)− ϕ(S) : S ∈ S with S ⊂ A} ∈ [0,∞].

1) We claim that

for each pair A ∈ S with ϕ(A) <∞ and ε > 0
there exists B ∈ S with B ⊂ A and ϕ(B) ≦ ϕ(A) and δ(B) ≦ ε.

Assume that this is false. Then there exists a pair A ∈ S with ϕ(A) < ∞
and ε > 0 such that

each B ∈ S with B ⊂ A and ϕ(B) ≦ ϕ(A) has δ(B) > ε,
that is it has S ∈ S with S ⊂ B and ϕ(S) < ϕ(B)− ε.

We iterate this procedure B �→ S, and start with B := A. Then we
obtain a sequence of subsets A = A0 ⊃ A1 ⊃ · · · ⊃ An−1 ⊃ An ⊃
· · · in S with ϕ(An) < ϕ(An−1)−ε for n ≧ 1. It follows that An ↓ some S ∈
S and ϕ(An) ↓ −∞. But this cannot happen since ϕ is upward σ continuous.
Thus the intermediate claim is proved.

2) Next we fix two sequences of real numbers

(cn)n with cn > I for n ≧ 1 and cn ↓ I,

(εn)n with εn > 0 for n ≧ 1 and
∞
∑

n=1
εn <∞.

From the definition of I we obtain subsets An ∈ S with ϕ(An) < cn, and
then from 1) subsets Bn ∈ S with ϕ(Bn) < cn and δ(Bn) ≦ ε for n ≧ 1. We
form

Bq
p :=

q
⋃

l=p

Bl ∈ S for 1 ≦ p ≦ q.

Then Bq+1
p = Bq

p ∪Bq+1 and hence

ϕ(Bq
p) + ϕ(Bq+1) ≧ ϕ(Bq+1

p ) + ϕ(Bq
p ∩Bq+1).

This implies first of all that ϕ(Bq
p) <∞ for 1 ≦ p ≦ q. From the definition

of δ(·) we obtain

ϕ(Bq+1)− ϕ(Bq
p ∩Bq+1) ≦ δ(Bq+1) ≦ εq+1,

ϕ(Bq+1
p ) ≦ ϕ(Bq

p) + εq+1.

It follows that

ϕ(Bq
p) ≦ ϕ(Bp) +

q
∑

l=p+1

εl < cp +

q
∑

l=p+1

εl 1 ≦ p ≦ q.
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3) For fixed p ≧ 1 and q →∞ we have Bq
p ↑ Pp :=

∞
⋃

l=p

Bl ∈ S. From 2) and

since ϕ is upward σ continuous it follows that

ϕ(Pp) ≦ cp +
∞

∑

l=p+1

εl for p ≧ 1.

Now Pp ↓ some P ∈ S. Once more from the assumption that ϕ is upward
σ continuous it follows that ϕ(P ) ≦ I. Therefore ϕ(P ) = I. The proof is
complete.

The Hahn Decomposition Theorem

The present subsection assumes that A is a σ algebra in X. Let ϕ : A →
] − ∞,∞] be modular and upward σ continuous �≡ ∞. Then first of all
23.15 asserts that ϕ is bounded below and thus fulfils the assumptions of
the Jordan type theorems 23.11 to 23.13. We retain the former notations
I := inf ϕ ∈ R and σ, τ . Above all 23.15 asserts that there exist subsets
P ∈ A such that ϕ(P ) = I. The theorem below collects the principal
consequences.

23.16. Theorem. Assume that ϕ : A→]−∞,∞] is modular and upward
σ continuous �≡ ∞. Define P to consist of the subsets P ∈ A with ϕ(P ) = I.
0) The subset P ∈ A is in P iff σ(P ′) = τ(P ) = 0. 1) If P ∈ P then

σ(A) = ϕ(A′ ∩ P )− I and

τ(A) = ϕ(A ∪ P )− I for all A ∈ A.

2) σ and τ are cmeasures.

Proof. 0) is obvious from 23.11, and 1) from 23.12. 2) It is evident from
1) that σ and τ are upward σ continuous in the new sense.

We add one more fact in the conventional special case ϕ(∅) = 0. Then
σ <∞ and ϕ = τ − σ. Therefore 23.16.0) implies for each P ∈ P that

if A ∈ A with A ⊂ P : τ(A) = 0 and hence ϕ(A) = −σ(A) ≦ 0,

if A ∈ A with A ⊂ P ′ : σ(A) = 0 and hence ϕ(A) = τ(A) ≧ 0.

This is the essential point in the usual treatments of the Jordan and Hahn
theorems.

23.17. Exercise. Under the present assumptions the paving P ⊂ A is
a σ oval.

We conclude with an equivalence result which justifies the present defi-
nition of upward σ continuous.

23.18. Proposition. Assume that ϕ : A →] − ∞,∞] is modular and
�≡ ∞. Then the following are equivalent.
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1) There exist couples of measures α, β : A →] −∞,∞] such that ϕ(A) =
α(A′) + β(A) for all A ∈ A.

2) ϕ is upward σ continuous.

We see from 23.14.2) that the equivalence becomes false when one formu-
lates 2) with (↑). However, in virtue of 23.14.1)2’) the equivalence remains
true under the restriction ϕ(∅) <∞.

Proof of 23.18. The implication 2)⇒1) follows from 23.16.2). In order to
prove 1)⇒2) consider a sequence (Sl)l in A such that Sl ↑ or ↓ some S ∈ A.
The assumption reads

ϕ(Sl) = α(S′
l) + β(Sl) for all l and ϕ(S) = α(S′) + β(S).

The assertion is ϕ(S) ≦ lim inf
l→∞

ϕ(Sl). The case Sl ↑ S: On the one hand

β(Sl) ↑ β(S). On the other hand we have S′
l ↓ S′. If α(S′

l) = ∞ ∀l then
ϕ(Sl) = ∞ ∀l, which implies the assertion. Otherwise α(S′

l) ↓ α(S′). Since
all values α(·) and β(·) are > −∞ it follows that ϕ(Sl) → ϕ(S). The case
Sl ↓ S and hence S′

l ↑ S′ has the same proof.

23.19. Bibliographical Note. The usual proofs of the conventional
Jordan and Hahn theorems are for cmeasures and in the reverse order, and
therefore do not make clear that the Jordan theorem is of much wider scope
than the (crude) Hahn theorem. In the frame of ccontents a comprehensive
older reference is Dunford-Schwartz [1958] chapter III, where the conven-
tional Jordan theorem is in the finite version. The author cannot resist to
remark that there is a counterpart for linear functionals which is a simple
consequence of the Hahn-Banach theorem; see König [1972]. General con-
ventional Jordan theorems are due to Schmidt [1982a][1982b] and to Rao-
Rao [1983] theorem 2.5.3. The existence theorem 23.15 is an elaboration
of the short paper of Doss [1980], which is based on an older idea of proof.
At last we mention that there are more sophisticated versions of the Hahn
theorem in the frame of ccontents. See for example Rao-Rao [1983] theorem
2.6.2 and Luxemburg [1991] theorem 8.1.

24. The Lebesgue Decomposition and

Radon-Nikodým Theorems

The present final section serves to round off the last chapter and does
not claim material innovation. We want to demonstrate that the main tool
theorems of the last section, the infimum formation 23.4 and the minimum
theorem 23.15, are also adequate means for the theorems of the present title.
On the one side we want to be faithful, for example in that we establish the
Lebesgue decomposition theorem for ccontents instead of cmeasures as most
textbooks do. On the other side we want to avoid technical complications,
as we did in other parts of this text, and therefore shall confine ourselves
to basic versions. Also we shall not enter into the theories of bands and of
Riesz spaces.



24. THE LEBESGUE DECOMPOSITION AND RADON-NIKODÝM THEOREMS 243

The Lebesgue Decomposition Theorem

We assume that A is an algebra in X. Let α,ϕ : A → [0,∞] be ccontents.
One defines α to be absolutely continuous with respect to ϕ iff

sup{α(A) : A ∈ A with ϕ(A) ≦ δ} → 0 for δ ↓ 0.

In this case we write α≪ ϕ.

24.1. Remark. Let α,ϕ : A→ [0,∞] be ccontents. Then

α≪ ϕ =⇒ if A ∈ A has ϕ(A) = 0 then α(A) = 0.

Moreover we have ⇐= when A is a σ algebra and α,ϕ are cmeasures with
α <∞.

Proof. ⇒) is obvious. ⇐) Assume not. Then there exists a sequence
(Al)l in A with ϕ(Al) ≦ 1/2l+1 and α(Al) ≧ some ε > 0 for l ≧ 1. For

Pn :=
∞
⋃

l=n

Al ∈ A then ϕ(Pn) ≦ 1/2n and α(Pn) ≧ ε. Now Pn ↓ some P ∈ A.

Then ϕ(P ) = 0, and α < ∞ implies that α(P ) ≧ ε. Thus we arrive at a
contradiction.

24.2. Theorem (Lebesgue Decomposition Theorem). Let ϕ : A →
[0,∞] be a ccontent. Then each finite ccontent λ : A→ [0,∞[ has a unique
decomposition

λ = α + β into ccontents α, β : A→ [0,∞[ with α≪ ϕ and β⊥ϕ.

We have α = lim
t↑∞

λ ∧ (tϕ).

24.3. Exercise. In the above decomposition λ = α + β we have α⊥β.

Proof of 24.2. We start with the existence assertion. 0) Define αt :=
λ∧ (tϕ) for t > 0. We see from 23.7 that αt : A→ [0,∞[ is a finite ccontent
with αt ≦ λ. Furthermore αs ≦ αt for 0 < s < t. Thus the finite limit
α(A) := lim

t↑∞
αt(A) exists for all A ∈ A and defines a ccontent α : A→ [0,∞[

with α ≦ λ. Likewise β := λ− α is a finite ccontent ≦ λ. 1) We claim that
α≪ λ. In fact, for t > 0 and A ∈ A we have α(A)−αt(A) ≦ α(X)−αt(X)
and hence

α(A) ≦
(

α(X)− αt(X)
)

+ αt(A) ≦
(

α(X)− αt(X)
)

+ tϕ(A).

For t > 0 and δ > 0 therefore

sup{α(A) : A ∈ A with ϕ(A) ≦ δ} ≦
(

α(X)− αt(X)
)

+ tδ.

We perform δ ↓ 0 for fixed t > 0, and then t ↑ ∞. The assertion follows. 2)
We claim that β⊥ϕ. We fix t > 0 and obtain from αt := λ∧ (tϕ) a sequence
(Pl)l in A such that λ(P ′

l ) + tϕ(Pl)→ αt(X). Thus

δl :=
(

λ(P ′
l )− αt(P

′
l )

)

+
(

tϕ(Pl)− αt(Pl)
)

→ 0,
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where both brackets are ≧ 0. It follows that

β(P ′
l ) + ϕ(Pl)

=
(

λ(P ′
l )− α(P ′

l )
)

+ (1/t)
(

tϕ(Pl)− αt(Pl)
)

+ (1/t)αt(Pl)

≦
(

λ(P ′
l )− αt(P

′
l )

)

+ (1/t)
(

tϕ(Pl)− αt(Pl)
)

+ (1/t)αt(Pl)

≦ (1 + 1/t)δl + (1/t)λ(X).

For l → ∞ we obtain (β ∧ ϕ)(X) ≦ (1/t)λ(X). Thus t ↑ ∞ furnishes the
assertion. This completes the existence proof.

We turn to the uniqueness assertion. Assume that λ = α0 + β0 with
ccontents α0, β0 : A → [0,∞[ such that α0 ≪ ϕ and β0⊥ϕ. There exists a
sequence (Pl)l in A such that ϕ(Pl)→ 0 and both β(P ′

l )→ 0 and β0(P
′
l )→

0. Then both α(Pl) → 0 and α0(Pl) → 0. It follows for A ∈ A that
α(A ∩ Pl)→ 0 and α0(A ∩ Pl)→ 0, and hence

λ(A ∩ P ′
l ) = α(A ∩ P ′

l ) + β(A ∩ P ′
l )→ α(A),

λ(A ∩ P ′
l ) = α0(A ∩ P ′

l ) + β(A ∩ P ′
l )→ α0(A).

Therefore α = α0. The proof is complete.

24.4. Exercise. The assertion of 24.2 becomes false when one removes
the assumption that λ < ∞, even in case that A is a σ algebra and ϕ and
λ are cmeasures with ϕ < ∞. Hint: Let A consist of the countable and
cocountable subsets of an uncountable set X. Define ϕ : A→ [0,∞[ to be

ϕ(A) =

{

0 for A countable
1 for A cocountable

}

,

and let λ : A→ [0,∞] be the counting measure.

24.5. Bibliographical Note. The unique basic textbook known to
the author in which the Lebesgue decomposition theorem is for ccontents
instead of cmeasures is Jacobs [1978] theorems VIII.4.2 and IX.3.8. For more
details we refer to Rao-Rao [1983] chapter 6 with its notes and comments.

A fundamental extension of the Lebesgue decomposition theorem is its
version for bands. For the notion of a band we refer to Jacobs [1978] chap-
ter IX and to the textbooks on Riesz spaces, for example Meyer-Nieberg
[1991]. The band version of the Lebesgue decomposition theorem appears
in connection with its application to the abstract F.and M.Riesz theorem
for complex function algebras. See Gamelin [1969] section II.7 and Barbey-
König [1977] chapters II and III; more recent presentations are Rudin [1980]
chapter 9 and Conway [1991] chapter V.

The Radon-Nikodým Theorem

The present subsection assumes that ϕ : A → [0,∞] is a cmeasure on a σ
algebra in a nonvoid set X. We recall 13.32: If f : X → [0,∞] is measurable
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A then the set function

α : A→ [0,∞], defined to be α(A) =

∫

A

fdϕ for A ∈ A,

is a cmeasure. Furthermore ϕ(A) = 0 ⇒ α(A) = 0. Thus α ≪ ϕ when
α <∞, that is when f is integrable ϕ. We write α =: fϕ.

24.6. Remark. We have
∫

hdα =
∫

(hf)dϕ for all functions h : X →
[0,∞] measurable A. This is an immediate consequence of the approximation
theorem 22.1.

We first note that the map f �→ fϕ is often, but not always injective in
the appropriate sense.

24.7. Remark. Assume that f, g : X → [0,∞] are measurable A. i) If
f = g ae ϕ then fϕ = gϕ. ii) fϕ = gϕ does not enforce that f = g ae ϕ.
iii) However, if M ∈ A satisfies

∫

A

fdϕ =

∫

A

gdϕ <∞ for all A ∈ A with A ⊂M,

then f = g ae ϕ on M .

Proof. i) is in 13.25.1). ii) will be seen in the next example. iii) Let
A := M ∩ [f ≧ g + δ] with δ > 0. Thus fχA ≧ gχA + δχA. The assumption
implies that ϕ(A) = 0. Therefore ϕ(M ∩ [f > g]) = 0; and likewise ϕ(M ∩
[f < g]) = 0.

24.8. Example. Let A consist of the countable and cocountable subsets
of an uncountable set X. Define ϕ : A→ [0,∞] to be

ϕ(A) =

{

0 for A countable
∞ for A cocountable

}

.

For f : X → [0,∞] measurable A then
∫

fdϕ =

∫

−fdϕ =

{

0 if [f > 0] is countable
∞ if [f > 0] is cocountable

}

.

Therefore all functions f : X →]0,∞] measurable A fulfil fϕ = ϕ.

We come to the main point. The example below will show that a cmea-
sure α : A → [0,∞] such that α ≪ ϕ, even when it is finite, need not be
of the form α = fϕ for some f : X → [0,∞] measurable A. After this
comes the famous affirmative Radon-Nikodým theorem in form of several
equivalence assertions.

24.9. Example. We continue with example 24.8 and define α : A →
[0,∞[ as in 24.4 to be

α(A) =

{

0 for A countable
1 for A cocountable

}

.

It is obvious that α ≪ ϕ. But 24.8 shows that α is not of the form fϕ for
some f : X → [0,∞] measurable A.
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24.10. Theorem (Radon-Nikodým Theorem). For a finite cmeasure
α : A→ [0,∞[ the following are equivalent.

1) α≪ ϕ, that is ϕ(A) = 0⇒ α(A) = 0 for A ∈ A.

2) There exists a function f : X → [0,∞] measurable A such that

α(A) =

∫

A

fdϕ for all A ∈ A with ϕ(A) <∞.

3) There exists a function f : X → [0,∞[ measurable A such that

α(A) ≧

∫

A

fdϕ for all A ∈ A, and α(A) =

∫

A

fdϕ whenever ϕ(A) <∞.

The implications 3)⇒2) and 2)⇒1) are obvious. The proof of 1)⇒3)
will be based on the lemma which follows.

24.11. Lemma. Let ϑ : A → [0,∞[ be a finite cmeasure such that
i) ϑ≪ ϕ and

ii) for P ∈ A and ε > 0: If εϕ(A) ≦ ϑ(A) for all A ∈ A with A ⊂ P then
ϕ(P ) = 0.

Then all A ∈ A with ϕ(A) <∞ have ϑ(A) = 0.

Proof of 24.11. Assume not. Then there exists E ∈ A with ϕ(E) < ∞
and ϑ(E) > 0. We fix ε > 0 with εϕ(E) < ϑ(E) and put θ := εϕ− ϑ. Thus
θ : A →] −∞,∞] is modular with θ(∅) = 0, and upward σ continuous by
23.14.1). Thus 23.15 asserts that there exists P ∈ A such that θ(P ) ≦ θ(A)
for all A ∈ A. In particular θ(P ) ≦ θ(E) < 0. For A ⊂ P we have

θ(A) + θ(P ) ≦ θ(A) + θ(P \A) = θ(P ) and hence θ(A) ≦ 0.

Thus ϕ(P ) = 0 from ii), and then ϑ(P ) = 0 from i). It follows that θ(P ) = 0
and hence a contradiction.

Proof of 24.10.1)⇒3). Define H to consist of the functions h : X →
[0,∞[ measurable A such that

∫

A

hdϕ ≦ α(A) for all A ∈ A. H is nonvoid

since 0 ∈ H. Moreover all members of H are integrable ϕ. i) We claim that
u, v ∈ H ⇒ u ∨ v ∈ H. In fact, for A ∈ A we have

∫

A

(u ∨ v)dϕ =

∫

A∩[u>v]

udϕ +

∫

A∩[u≦v]

vdϕ

≦ α
(

A ∩ [u > v]
)

+ α
(

A ∩ [u ≦ v]
)

= α(A).

ii) Define I := sup{
∫

hdϕ : h ∈ H}, so that 0 ≦ I ≦ α(X) < ∞. We
claim that I =

∫

fdϕ for some f ∈ H. To see this let (ul)l be a sequence
in H with

∫

uldϕ → I. By i) we can pass to the sequence of the functions
u1 ∨ · · · ∨ ul ∈ H and hence assume that ul ↑ some u : X → [0,∞]. We
conclude from standard facts in section 13 that u is measurable A and fulfils
∫

A

udϕ ≦ α(A) for A ∈ A and
∫

udϕ = I. Thus the function f := uχ[u<∞] is

as required.
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iii) We fix f ∈ H with I =
∫

fdϕ as obtained in ii). Then fϕ is a finite
cmeasure ≦ α, and hence ϑ := α − fϕ a finite cmeasure as well. We claim
that ϑ fulfils assumption ii) in 24.11. Then 24.11 will furnish the assertion
3). To see this fix P ∈ A and ε > 0 such that εϕ(A) ≦ ϑ(A) for all A ∈ A

with A ⊂ P . For all A ∈ A then
∫

A

(εχP + f)dϕ = εϕ(A ∩ P ) +

∫

A∩P

fdϕ +

∫

A∩P ′

fdϕ

≦ ϑ(A ∩ P ) +

∫

A∩P

fdϕ + α(A ∩ P ′)

= α(A ∩ P ) + α(A ∩ P ′) = α(A).

Thus by definition εχP + f ∈ H. Therefore
∫

(εχP + f)dϕ ≦ I =
∫

fdϕ and
hence ϕ(P ) = 0. This is the present claim. The proof is complete.

24.12. Consequence. For a finite cmeasure α : A→ [0,∞[ the follow-
ing are equivalent.

1) α ≪ ϕ. Moreover each A ∈ A with α(T ) = 0 for all T ∈ A with T ⊂ A
and ϕ(T ) <∞ has α(A) = 0.

2) There exists a function f : X → [0,∞] measurable A such that α = fϕ.

3) There exists a function f : X → [0,∞[ integrable ϕ such that α = fϕ.

Proof. 1)⇒3) Fix f : X → [0,∞[ as in 24.10.3), and form P := [f > 0]
and N := [f = 0] in A. Let A ∈ A. i) For t > 0 we have ϕ([f ≧ t]) < ∞
from 11.8.5) and hence

α
(

A ∩ [f ≧ t]
)

=

∫

A∩[f≧t]

fdϕ.

For t ↓ 0 therefore α(A ∩ P ) =
∫

A∩P

fdϕ. ii) For T ∈ A with T ⊂ A ∩N and

ϕ(T ) <∞ we have α(T ) =
∫

T

fdϕ = 0. Therefore α(A ∩N) = 0 =
∫

A∩N

fdϕ.

From i)ii) the assertion follows. 3)⇒2) is obvious. 2)⇒1) The function
f : X → [0,∞] as assumed in 2) is integrable ϕ. Thus ϕ([f ≧ t]) < ∞ for
t > 0 as above. Now

α(A) ≧ α
(

A ∩ [f ≧ t]
)

=

∫

A∩[f≧t]

fdϕ

=

→∞
∫

0←

ϕ
(

A ∩ [f ≧ t] ∩ [f ≧ s]
)

ds ≧

→∞
∫

t

ϕ(A ∩ [f ≧ s])ds.

Therefore

α(A) = sup{α(A ∩ [f ≧ t]) : t > 0}.
In particular if α(A ∩ [f ≧ t]) = 0 for all t > 0 then α(A) = 0. The proof is
complete.
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We conclude with another equivalence version which is of particular
interest.

24.13. Theorem. Assume that ϕ < ∞. Then for a cmeasure α : A →
[0,∞] the following are equivalent.

1) If A ∈ A has ϕ(A) = 0 then α(A) = 0.

2) There exists a function f : X → [0,∞] measurable A such that α = fϕ.

Proof. We have to prove 1)⇒2). We form

I := sup{ϕ(A) : A ∈ A with α(A) <∞} ≦ ϕ(X) <∞,

and fix a sequence (Bl)l in A with α(Bl) <∞ such that ϕ(Bl)→ I. We can
assume that Bl ↑ some B ∈ A. i) For an A ∈ A with A ⊂ B′ this enforces
that α(A) <∞⇒ ϕ(A) = 0. Thus we have

either ϕ(A) = 0 and hence α(A) = 0 from 1),
or ϕ(A) > 0 and hence α(A) =∞.

ii) We put B0 := ∅. From 24.10 applied to the restrictions of ϕ and α to
Bl \ Bl−1 we obtain for l ≧ 1 functions fl : Bl \ Bl−1 → [0,∞[ integrable
ϕ|Bl \Bl−1 such that

α(A) =

∫

A

fldϕ for all A ∈ A ∩ (Bl \Bl−1).

Then define f : X → [0,∞] to be

f |Bl \Bl−1 := fl for l ≧ 1 and f |B′ :=∞.

Thus f is measurable A, and in virtue of i) it is as required.

24.14. Bibliographical Note. The scheme of the present proof of
24.10 is from Cohn [1980] and Bauer [1992]. We note that the use of 23.15
helps to make it transparent. The well-known different proof of the Radon-
Nikodým theorem due to von Neumann uses the elementary theory of Hilbert
spaces; see for example Dudley [1989] section 5.5.
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Tarashchanskii, M.T. [1989] Uniqueness of extension of a regular measure.
Ukr. Mat. Zhurn. 41, 372-377. Engl. Transl. Plenum [1989] 329-333.

Topsøe, F. [1970a] Compactness in spaces of measures. Studia Math. 36,
195-212.

Topsøe, F. [1970b] Topology and Measure. Lect. Notes Math. 133, Springer.

Topsøe, F. [1976] Further results on integral representations. Studia Math.
55, 239-245.

Topsøe, F. [1978] On construction of measures. Topology and Measure I
(Zinnowitz 1974) Part 2, 343-381. Ernst-Moritz-Arndt Univ. Greif-
swald.

Topsøe, F. [1983] Radon measures, some basic constructions. Measure The-
ory and its Applications (Sherbrooke 1982) 303-311. Lect. Notes Math.
1033, Springer.

Varadarajan, V.S. [1965] Measures on topological spaces. Amer. Math. Soc.
Transl. 48, 161-228.

Weir, A.J. [1974] General Integration and Measure. Cambridge Univ. Press.

Wheeler, R.J. [1983] A survey of Baire measures and strict topologies. Expos.
Math. 2, 97-190.

Zaanen, A.C. [1967] Integration. North-Holland.



List of Symbols

ϕ◦ XIII

P(X) 1

A′ 1

U |A|V 1

∪ ∩ \⊥ 1

S⋆ S⋆ 1

S⊥ 1

Op(X) Cl(X) 2

L(S) 2

O(S) 2

R(S) 2

A(S) 2

Sσ Sσ 2

Sτ Sτ 2

∪ • ∩ • 2

Sl ↑ Sl ↓ 3

Sl ↑ S Sl ↓ S 3

Sl ↑⊃ A Sl ↓⊂ A 3

↑ σ ↓ σ 3

M ↑ M ↓ 3

M ↑ S M ↓ S 3

M ↑⊃ A M ↓⊂ A 3

↑ τ ↓ τ 3

Lσ(S) 3

Oσ(S) 3

Rσ(S) 3

Aσ(S) 3

Bor(X) 4

COp(X) CCl(X) 4

Baire(X) 4

⊏ T ⊐ T 4

S ⊏ T 4
−1
ϑ (B) 5

ϑ[A] 5

B ∩X 6

M⊤N M⊤ 7

Comp(X) 8

a(S) 10

R 10
.
+ +.

.
+. 10 11

δx 11

χA 11

#(T ) 12

ϕ⊥ 13

ϕ∧ 15

φP 16

λ = λn 19

ϕ(A1, · · · , Ar) 28

ϕ⋆ ϕσ ϕτ ϕ• 34

C(φ) 40

C(φ,
.
+. ) 42

Λ := λσ|L L := C(λσ) 52

ϕ⋆ ϕσ ϕτ ϕ• 54

ϕ(•) ϕ(•) 56

ϕB
• 61

V(a, δ) ∇(a, δ) 83

Supp(α) 94

supp(ϕ) 95

C(A) 96

N∞ NN 98



256 LIST OF SYMBOLS

∨ ∧

99

S# S# 99

UM(S) LM(S) 109

u ∨ v u ∧ v 109

M(S) 110

S(S) 111
∫

− 112

USC(X, ·) LSC(X, ·) 119 120
∫

∗
121

S1 × · · · ×Sr S1 ⊗ · · · ⊗Sr 131

ωA 134

α|T 137

f ♮ 138

Y X 143

CK(X, R) 144

USCK(X, ·) 145

M+ 146

f+ f− 146

C(X) C+(X) 147

USC(X) USC+(X) 147

USCK(X) 147

USCK+(X) 147

UMK(X) 147

t(E) T(E) 147

I⋆ I⋆ 148

Δ ∇ 149

(0) 149

E• 154

x<t> 155

I• 157

Iv
• 157

(comp) 169

CB+(X) 170

Σ(I) 174

⋆(ϕ,T) 180 181

A(E) A[E] 187

σ(ϕ, T) 191

E(x) E[y] 201

Pr(E) Pr[E] 201

ϕ× ψ 203

R 210

U V 216

α ∧ β 235

α⊥β 235

ϕ+ ϕ− 239

α≪ ϕ 243

fϕ 245



Index

Absolutely continuous 243
additive 11
ae = almost everywhere 134
algebra 1
- σ 3
Alexandroff representation

theorem 178
almost • continuous

at ∅, 0 63 156
- downward • continuous 12 13 156
almost everywhere = ae 134
almost upward • continuous 13

Baire σ algebra 4
Baire measurable 129
Baire measure 79
Baire subset 4
basic product formation 201
Beppo Levi

theorem 118 126 136
Borel σ algebra 4
Borel measurable 129
Borel-Lebesgue measure 52
Borel measure 79
Borel-Radon measure 87
Borel subset 4
bounded
- above 12
- below 12
- totally 83

Cancellable 40
capacitability theorem 102
- - precise 107
capacity 102
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