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Preface

This volume discusses a construction situated at the intersection of two differ-
ent mathematical fields: Abstract harmonic analysis, understood as the theory
of group representations and their decomposition into irreducibles on the one
hand, and wavelet (and related) transforms on the other. In a sense the volume
reexamines one of the roots of wavelet analysis: The paper [60] by Grossmann,
Morlet and Paul may be considered as one of the initial sources of wavelet
theory, yet it deals with a unitary representation of the affine group, citing
results on discrete series representations of nonunimodular groups due to Du-
flo and Moore. It was also observed in [60] that the discrete series setting
provided a unified approach to wavelet as well as other related transforms,
such as the windowed Fourier transform.

We consider generalizations of these transforms, based on a representation-
theoretic construction. The construction of continuous and discrete wavelet
transforms, and their many relatives which have been studied in the past
twenty years, involves the following steps: Pick a suitable basic element (the
wavelet) in a Hilbert space, and construct a system of vectors from it by the
action of certain prescribed operators on the basic element, with the aim of
expanding arbitrary elements of the Hilbert space in this system. The associ-
ated wavelet transform is the map which assigns each element of the Hilbert
space its expansion coefficients, i.e. the family of scalar products with all el-
ements of the system. A wavelet inversion formula allows the reconstruction
of an element from its expansion coefficients.

Continuous wavelet transforms, as studied in the current volume, are ob-
tained through the action of a group via a unitary representation. Wavelet in-
version is achieved by integration against the left Haar measure of the group.
The key questions that are treated –and solved to a large extent– by means
of abstract harmonic analysis are: Which representations can be used? Which
vectors can serve as wavelets?

The representation-theoretic formulation focusses on one aspect of wavelet
theory, the inversion formula, with the aim of developing general criteria and
providing a more complete understanding. Many other aspects that have made
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wavelets such a popular tool, such as discretization with fast algorithms and
the many ensuing connections and applications to signal and image processing,
or, on the more theoretical side, the use of wavelets for the characterization
of large classes of function spaces such as Besov spaces, are lost when we
move on to the more general context which is considered here. One of the
reasons for this is that these aspects often depend on a specific realization
of a representation, whereas abstract harmonic analysis does not differentiate
between unitarily equivalent representations.

In view of these shortcomings there is a certain need to justify the use of
techniques such as direct integrals, entailing a fair amount of technical detail,
for the solution of problems which in concrete settings are often amenable to
more direct approaches. Several reasons could be given: First of all, the in-
version formula is a crucial aspect of wavelet and Gabor analysis. Analogous
formulae have been – and are being – constructed for a wide variety of set-
tings, some with, some without a group-theoretic background. The techniques
developed in the current volume provide a systematic, unified and powerful
approach which for type I groups yields a complete description of the possible
choices of representations and vectors. As the discussion in Chapter 5 shows,
many of the existing criteria for wavelets in higher dimensions, but also for
Gabor systems, are covered by the approach.

Secondly, Plancherel theory provides an attractive theoretical context
which allows the unified treatment of related problems. In this respect, my
prime example is the discretization and sampling of continuous transforms.
The analogy to real Fourier analysis suggests to look for nonabelian versions
of Shannon’s sampling theorem, and the discussion of the Heisenberg group
in Chapter 6 shows that this intuition can be made to work at least in special
cases. The proofs for the results of Chapter 6 rely on a combination of direct
integral theory and the theory of Weyl-Heisenberg frames. Thus the connec-
tion between wavelet transforms and the Plancherel formula can serve as a
source of new problems, techniques and results in representation theory.

The third reason is that the connection between the initial problem of char-
acterizing wavelet transforms on one side and the Plancherel formula on the
other is beneficial also for the development and understanding of Plancherel
theory. Despite the close connection, the answers to the above key questions
require more than the straightforward application of known results. It was
necessary to prove new results in Plancherel theory, most notably a precise
description of the scope of the pointwise inversion formula. In the nonuni-
modular case, the Plancherel formula is obscured by the formal dimension
operators, a family of unbounded operators needed to make the formula work.
As we will see, these operators are intimately related to admissibility con-
ditions characterizing the possible wavelets, and the fact that the operators
are unbounded has rather surprising consequences for the existence of such
vectors. Hence, the drawback of having to deal with unbounded operators,
incurring the necessity to check domains, turns into an asset.
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Finally the study of admissibility conditions and wavelet-type inversion
formulae offers an excellent opportunity for getting acquainted with the
Plancherel formula for locally compact groups. My own experience may serve
as an illustration to this remark. The main part of the current is concerned
with the question how Plancherel theory can be employed to derive admissibil-
ity criteria. This way of putting it suggests a fixed hierarchy: First comes the
general theory, and the concrete problem is solved by applying it. However,
for me a full understanding of the Plancherel formula on the one hand, and
of its relations to admissibility criteria on the other, developed concurrently
rather than consecutively. The exposition tries to reproduce this to some ex-
tent. Thus the volume can be read as a problem-driven – and reasonably
self-contained– introduction to the Plancherel formula.

As the volume connects two different fields, it is intended to be open to re-
searchers from both of them. The emphasis is clearly on representation theory.
The role of group theory in constructing the continuous wavelet transform or
the windowed Fourier transform is a standard issue found in many introduc-
tory texts on wavelets or time-frequency analysis, and the text is intended
to be accessible to anyone with an interest in these aspects. Naturally more
sophisticated techniques are required as the text progresses, but these are
explained and motivated in the light of the initial problems, which are exis-
tence and characterization of admissible vectors. Also, a number of well-known
examples, such as the windowed Fourier transform or wavelet transforms con-
structed from semidirect products, keep reappearing to provide illustration
to the general results. Specifically the Heisenberg group will occur in various
roles.

A further group of potential readers are mathematical physicists with an
interest in generalized coherent states and their construction via group repre-
sentations. In a sense the current volume may be regarded as a complement to
the book by Ali, Antoine and Gazeau [1]: Both texts consider generalizations
to the discrete series case. [1] replaces the square-integrability requirement by
a weaker condition, but mostly stays within the realm of irreducible represen-
tations, whereas the current volume investigates the irreducibility condition.
Note however that we do not comment on the relevance of the results pre-
sented here to mathematical physics, simply for lack of competence.

In any case it is only assumed that the reader knows the basics of locally
compact groups and their representation theory. The exposition is largely self-
contained, though for known results usually only references are given. The
somewhat introductory Chapter 2 can be understood using only basic notions
from group theory, with the addition of a few results from functional and
Fourier analysis which are also explained in the text. The more sophisticated
tools, such as direct integrals, the Plancherel formula or the Mackey machine,
are introduced in the text, though mostly by citation and somewhat concisely.
In order to accomodate readers of varying backgrounds, I have marked some
of the sections and subsections according to their relation to the core material
of the text. The core material is the study of admissibility conditions, dis-
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cretization and sampling of the transforms. Sections and subsections with the
superscript ∗ contain predominantly technical results and arguments which
are indispensable for a rigorous proof, but not necessarily for an understand-
ing and assessment of results belonging to the core material. Sections and
subsections marked with a superscript ∗∗ contain results which may be con-
sidered diversions, and usually require more facts from representation theory
than we can present in the current volume. The marks are intended to provide
some orientation and should not be taken too literally; it goes without saying
that distinctions of this kind are subjective.
Acknowledgements. The current volume was developed from the papers [52,
53, 4], and I am first and foremost indebted to my coauthors, which are in
chronological order: Matthias Mayer, Twareque Ali and Anna Krasowska. The
results in Section 2.7 were developed with Keith Taylor.

Volkmar Liebscher, Markus Neuhauser and Olaf Wittich read parts of the
manuscript and made many useful suggestions and corrections. Needless to
say, I blame all remaining mistakes, typos etc. on them.

In addition, I owe numerous ideas, references, hints etc. to Jean-Pierre
Antoine, Larry Baggett, Hans Feichtinger, Karlheinz Gröchenig, Rolf Wim
Henrichs, Rupert Lasser, Michael Lindner, Wally Madych, Arlan Ramsay,
Günter Schlichting, Bruno Torrésani, Guido Weiss, Edward Wilson, Gerhard
Winkler and Piotr Wojdy�l�lo.

I would also like to acknowledge the support of the Institute of Biomathe-
matics and Biometry at GSF National Research Center for Environment and
Health, Neuherberg, where these lecture notes were written, as well as addi-
tional funding by the EU Research and Training Network Harmonic Analysis
and Statistics in Signal and Image Processing (HASSIP).

Finally, I would like to thank Marina Reizakis at Springer, as well as the
editors of the Lecture Notes series, for their patience and cooperation. Thanks
are also due to the referees for their constructive criticism.

Neuherberg, December 5, 2004 Hartmut Führ
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1

Introduction

1.1 The Point of Departure

In one of the papers initiating the study of the continuous wavelet trans-
form on the real line, Grossmann, Morlet and Paul [60] considered systems
(ψb,a)b,a∈R×R′ arising from a single function ψ ∈ L2(R) via

ψb,a(x) = |a|−1/2ψ

(
x− b
a

)
.

They showed that every function ψ fulfilling the admissibility condition

∫
R′

|ψ̂(ω)|2
|ω| dω = 1 , (1.1)

where R
′ = R \ {0}, gives rise to an inversion formula

f =
∫

R

∫
R′
〈f, ψb,a〉ψb,a

da

|a|2 db , (1.2)

to be read in the weak sense. An equivalent formulation of this fact is that
the wavelet transform

f �→ Vψf , Vψf(b, a) = 〈f, ψb,a〉

is an isometry L2(R) → L2(R× R
′, db da|a|2 ). As a matter of fact, the inversion

formula was already known to Calderón [27], and its proof is a more or less
elementary exercise in Fourier analysis.

However, the admissibility condition as well as the choice of the measure
used in the reconstruction appear to be somewhat obscure until read in group-
theoretic terms. The relation to groups was pointed out in [60] –and in fact
earlier in [16]–, where it was noted that ψb,a = π(b, a)ψ, for a certain repre-
sentation π of the affine group G of the real line. Moreover, (1.1) and (1.2)

H. Führ: LNM 1863, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 1 Introduction

have natural group-theoretic interpretations as well. For instance, the measure
used for reconstruction is just the left Haar measure on G.

Hence, the wavelet transform is seen to be a special instance of the fol-
lowing construction: Given a (strongly continuous, unitary) representation
(π,Hπ) of a locally compact group G and a vector η ∈ Hπ, we define the
coefficient operator

Vη : Hπ � ϕ �→ Vηϕ ∈ Cb(G) , Vηϕ(x) = 〈ϕ, π(x)η〉 .

Here Cb(G) denotes the space of bounded continuous functions on G.
We are however mainly interested in inversion formulae, hence we consider

Vη as an operator Hπ → L2(G), with the obvious domain dom(Vη) = {ϕ ∈
Hπ : Vηϕ ∈ L2(G)}. We call η admissible whenever Vη : H → L2(G) is an
isometric embedding, and in this case Vη is called (generalized) wavelet
transform. While the definition itself is rather simple, the problem of identi-
fying admissible vectors is highly nontrivial, and the question whether these
vectors exist for a given representation does not have a simple general answer.
It is the main purpose of this book to develop in a systematical fashion criteria
to deal with both problems.

As pointed out in [60], the construction principle for wavelet transforms
had also been studied in mathematical physics, where admissible vectors η
are called fiducial vectors, systems of the type {π(x)η : x ∈ G} coherent
state systems, and the corresponding inversion formulae resolutions of
the identity; see [1, 73] for more details and references.

Here the earliest and most prominent examples were the original coherent
states obtained by time-frequency shifts of the Gaussian, which were studied
in quantum optics [114]. Perelomov [97] discussed the existence of resolutions
of the identity in more generality, restricting attention to irreducible repre-
sentations of unimodular groups. In this setting discrete series representa-
tions, i.e., irreducible subrepresentations of the regular representation λG of
G turned out to be the right choice. Here every nonzero vector is admissible
up to normalization. Moreover, Perelomov devised a construction which gives
rise to resolutions of the identity for a large class of irreducible representations
which were not in the discrete series. The idea behind this construction was
to replace the group as integration domain by a well-chosen quotient, i.e., to
construct isometries Hπ ↪→ L2(G/H) for a suitable closed subgroup H . In all
of these constructions, irreducibility was essential: Only the well-definedness
and a suitable intertwining property needed to be proved, and Schur’s lemma
would provide for the isometry property.

While we already remarked that [60] was not the first source to comment on
the role of the affine group in constructing inversion formulae, suitably general
criteria for nonunimodular groups were missing up to this point. Grossmann,
Morlet and Paul showed how to use the orthogonality relations, established for
these groups by Duflo and Moore [38], for the characterization of admissible
vectors. More precisely, Duflo and Moore proved the existence of a uniquely
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defined unbounded selfadjoint operator Cπ associated to a discrete series rep-
resentation such that a vector η is admissible iff it is contained in the domain
of Cπ, with ‖Cπη‖ = 1. A second look at the admissibility condition (1.1)
shows that in the case of the wavelet transform on L2(R) this operator is
given on the Plancherel transform side by multiplication with |ω|−1/2. This
framework allowed to construct analogous transforms in a variety of settings,
which was to become an active area of research in the subsequent years; a by
no means complete list of references is [93, 22, 25, 48, 68, 49, 50, 51, 83, 7, 8].
See also [1] and the references therein.

However, it soon became apparent that admissible vectors exist outside
the discrete series setting. In 1992, Mallat and Zhong [92] constructed a
transform related to the original continuous wavelet transform, called the
dyadic wavelet transform. Starting from a function ψ ∈ L2(R) satisfying
the dyadic admissibility condition

∑
n∈Z

|ψ̂(2nω)|2 = 1 , for almost every ω ∈ R (1.3)

one obtains the (weak-sense) inversion formula

f =
∫

R

∑
n∈Z

〈f, ψb,2n〉ψb,2n 2−ndb , (1.4)

or equivalently, an isometric dyadic wavelet transform L2(R) → L2(R ×
Z, db2−ndn), where dn denotes counting measure. Clearly the representation
behind this transform is just the restriction of the above representation π to
the closed subgroupH = {(b, 2n) : b ∈ R, n ∈ Z} of G, and the measure under-
lying the dyadic inversion formula is the left Haar measure of that subgroup.
However, in one respect the new transform is fundamentally different: The
restriction of π to H is no longer irreducible, in fact, it does not even contain
irreducible subrepresentations (see Example 2.36 for details). Therefore (1.3)
and (1.4), for all the apparent similarity to (1.1) and (1.2), cannot be treated
in the same discrete series framework.

The example by Mallat and Zhong, together with results due to Klauder,
Isham and Streater [67, 74], was the starting point for the work presented in
this book. In each of these papers, a more or less straightforward construction
led to admissibility conditions – similar to (1.1) and (1.3) – for representa-
tions which could not be dealt with by means of the usual discrete series
arguments. The initial motivation was to understand these examples under a
representation-theoretic perspective, with a view to providing a general strat-
egy for the systematic construction of wavelet transforms.

The book departs from a few basic realizations: Any wavelet transform
Vη is a unitary equivalence between π and a subrepresentation of λG, the left
regular representation of G on L2(G). Hence, the Plancherel decomposi-
tion of the latter into a direct integral of irreducible representations should
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play a central role in the study of admissible vectors, as it allows to analyze
invariant subspaces and intertwining operators.

A first hint towards direct integrals had been given by the representations
in [67, 74], which were constructed as direct integrals of irreducible repre-
sentations. However, the particular choice of the underlying measure was not
motivated, and it was unclear to what extent these constructions and the asso-
ciated admissibility conditions could be generalized to other groups. Properly
read, the paper by Carey [29] on reproducing kernel subspaces of L2(G) can be
seen as a first source discussing the role of Plancherel measure in this context.

1.2 Overview of the Book

The contents of the remaining chapters may be roughly summarized as follows:

2. Introduction to the group-theoretic approach to the construction of con-
tinuous wavelet transforms. Embedding the discussion into L2(G). Formu-
lation of a list of tasks to be solved for general groups. Solution of these
problems for the toy example G = R.

3. Introduction to the Plancherel transform for type I groups, and to the
necessary representation-theoretic machinery.

4. Plancherel inversion and admissibility conditions for type I groups. Exis-
tence and characterization of admissible vectors for this setting.

5. Examples of admissibility conditions in concrete settings, in particular for
quasiregular representations.

6. Sampling theory on the Heisenberg group.

Chapter 2 is concerned with the collection of basic notions and results,
concerning coefficient operators, inversion formulae and their relation to con-
volution and the regular representations. In this chapter we formulate the
problems which we intend to address (with varying degrees of generality) in
the subsequent chapters. We consider existence and characterization of in-
version formulae, the associated reproducing kernel subspaces of L2(G) and
their properties, and the connection to discretization of the continuous trans-
forms and sampling theorems on the group. Support properties of the arising
coefficient functions are also an issue. Section 2.7 is crucial for the following
parts: It discusses the solution of the previously formulated list of problems
for the special case G = R. It turns out that the questions mostly translate
to elementary problems in real Fourier analysis.

Chapter 3 provides the ”Fourier transform side” for locally compact groups
of type I. The Fourier transform of such groups is obtained by integrating func-
tions against irreducible representations. The challenge for Plancherel theory
is to construct from this a unitary operator from L2(G) onto a suitable di-
rect integral space. This problem may be seen as analogous to the case of
the reals, where the tasks consists in showing that the Fourier transform
defined on L1(R) induces a unitary operator L2(R) → L2(R). However, for
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arbitrary locally compact groups the right hand side first needs to be con-
structed, which involves a fair amount of technique. The exposition starts
from a representation-theoretic discussion of the toy example, and during the
exposition to follow we refer repeatedly to this initial example.

Chapter 4 contains a complete solution of the existence and character-
ization of admissible vectors, at least for type I groups and up to unitary
equivalence. The technique is a suitable adaptation of the Fourier arguments
used for the toy example. It relies on a pointwise Plancherel inversion for-
mula, which in this generality has not been previously established. In the
course of argument we derive new results concerning the Fourier algebra and
Fourier inversion on type I locally compact groups, as well as an L2-version of
the convolution theorem, which allows a precise description of L2-convolution
operators, including domains, on the Plancherel transform side 4.18. We com-
ment on an interpretation of the support properties obtained in Chapter 2 in
connection with the so-called ”qualitative uncertainty principle”. Using ex-
istence and uniqueness properties of direct integral decompositions, we then
describe a general procedure how to establish the existence and criteria for
admissible vectors (Remark 4.30). We also show that these criteria in effect
characterize the Plancherel measure, at least for unimodular groups. Section
4.5 shows how the Plancherel transform view allows a unified treatment of
wavelet and Wigner transforms associated to nilpotent Lie groups.

Chapter 5 shows how to put the representation-theoretic machinery de-
veloped in the previous chapters to work on a much-studied class of con-
crete representations, thereby considerably generalizing the existing results
and providing additional theoretic background. We discuss semidirect prod-
ucts of the type R

k
�H , with suitable matrix groups H . These constructions

have received considerable attention in the past. However, the representation-
theoretic results derived in the previous chapters allow to study generaliza-
tions, e.g. groups of the sort N � H , where N is a homogeneous Lie group
and H is a one-parameter group of dilations on N . The discussion of the Zak-
transform in the context of Weyl-Heisenberg frames gives further evidence for
the scope of the general representation-theoretic approach.

The final chapter contains a discussion of sampling theorems on the Heisen-
berg group H. We obtain a complete characterization of the closed leftinvari-
ant subspaces of L2(H) possessing a sampling expansion with respect to a
lattice. Crucial tools for the proof of these results are provided by the theory
of Weyl-Heisenberg frames.

1.3 Preliminaries

In this section we recall the basic notions of representation theory, as far
as they are needed in the following chapter. For results from representation
theory, the books by Folland [45] and Dixmier [35] will serve as standard
references.
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The most important standing assumptions are that all locally compact
groups in this book are assumed to be Hausdorff and second countable and all
Hilbert spaces in this book are assumed to be separable.

Hilbert Spaces and Operators

Given a Hilbert space H, the space of bounded operators on it is denoted by
B(H), and the operator norm by ‖ · ‖∞. U(H) denotes the group of unitary
operators on H. Besides the norm topology, there exist several topologies of
interest on B(H). Here we mention the strong operator topology as the
coarsest topology making all mappings of the form

B(H) � T �→ Tη ∈ H ,

with η ∈ H arbitrary, continuous, and the weak operator topology, which
is the coarsest topology for which all coefficient mappings

B(H) � T �→ 〈ϕ, Tη〉 ∈ C,

with ϕ, η ∈ H arbitrary, are continuous. Furthermore, let the ultraweak
topology denote the coarsest topology for which all mappings

B(H) � T �→
∑
n∈N

〈ϕn, T ηn〉

are continuous. Here (ηn)n∈N and (ϕn)n∈N range over all families fulfilling∑
n∈N

‖ηn‖2 <∞ ,
∑
n∈N

‖ϕn‖2 <∞ .

We use the abbreviations ONB and ONS for orthonormal bases and
orthonormal systems, respectively. dim(H) denotes the Hilbert space dimen-
sion, i.e., the cardinality of an arbitrary ONB of H. Another abbreviation is
the word projection, which in this book always refers to selfadjoint projec-
tion operators on a Hilbert space. For separable Hilbert spaces, the Hilbert
space dimension is in N ∪ {∞}, where the latter denotes the countably infi-
nite cardinal. The standard index set of cardinality m (wherever needed) is
Im = {1, . . . ,m}, where I∞ = N, and the standard Hilbert space of dimension
m is �2(Im).

If (Hi)i∈I is a family of Hilbert spaces, then
⊕

i∈I Hi is the space of vectors
(ϕi)i∈I in the cartesian product fulfilling in addition

‖(ϕi)i∈I‖2 :=
∑
i∈I
‖ϕi‖2 <∞ .

The norm thus defined on
⊕

i∈I Hi is a Hilbert space norm, and
⊕

i∈I Hi is
complete with respect to the norm. If the Hi are orthogonal subspaces of a
common Hilbert space H,

⊕
i∈I Hi is canonically identified with the closed

subspace generated by the union of the Hi.
If T is a densely defined operator on H which has a bounded extension,

we denote the extension by [T ].
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Unitary Representations

A unitary, strongly continuous representation, or simply representa-
tion, of a locally compact group G is a group homomorphism π : G→ U(Hπ)
that is continuous, when the right hand side is endowed with the strong op-
erator topology. Since weak and strong operator topology coincide on U(Hπ),
the continuity requirement is equivalent to the condition that all coefficient
functions of the type

G � x �→ 〈ϕ, π(x)η〉 ∈ C,

are continuous.
Given representations σ, π, and operator T : Hσ → Hπ is called inter-

twining operator, if Tσ(x) = π(x)T holds, for all x ∈ G. We write σ 
 π
if σ and π are unitarily equivalent, which means that there is a unitary in-
tertwining operator U : Hσ → Hπ. It is elementary to check that this defines
an equivalence relation between representations. For any subset K ⊂ Hπ we
let

π(G)K = {π(x)η : x ∈ G, η ∈ K} .

A subspace of K ⊂ Hπ is called invariant if π(G)K ⊂ K. Orthogonal comple-
ments of invariant subspaces are invariant also. Restriction of a representation
to invariant subspaces gives rise to subrepresentations. We write σ < π if
σ is unitarily equivalent to a subrepresentation of π. σ and π are called dis-
joint if there is no nonzero intertwining operator in either direction. A vector
η ∈ Hπ is called cyclic if π(G)η spans a dense subspace of Hπ . A cyclic rep-
resentation is a representation having a cyclic vector. All representations
of interest to us are cyclic. In particular our standing assumption that G is
second countable implies that all representations occurring in the book are
realized on separable Hilbert spaces. π is called irreducible if every nonzero
vector is cyclic, or equivalently, if the only closed invariant subspaces of Hπ
are {0} and Hπ. Given a family (πi)i∈I , the direct sum π =

⊕
i∈I πi acts on⊕

i∈I Hπi via
π(x) (ϕi)i∈I = (πi(x)ϕi)i∈I .

The main result in connection with irreducible representations is Schur’s
lemma characterizing irreducibility in terms of intertwining operators. See [45,
3.5] for a proof.

Lemma 1.1. If π1, π2 are irreducible representations, then the space of in-
tertwining operators between π1 and π2 has dimension 1 or 0, depending on
π1 
 π2 or not.
In other words, π1 and π2 are either equivalent or disjoint.

Using the spectral theorem the following generalization can be shown. The
proof can be found in [66, 1.2.15].
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Lemma 1.2. Let π1, π2 be representations of G, and let T : Hπ1 → Hπ2 be
a closed intertwining operator, defined on a dense subspace D ⊂ Hπ1 . Then
ImT and (kerT )⊥ are invariant subspaces and π1, restricted to (kerT )⊥, is
unitarily equivalent to the restriction of π2 to ImT ).
If, moreover, π1 is irreducible, T is a multiple of an isometry.

Given G, the unitary dual Ĝ denotes the equivalence classes of irreducible
representations of G. Whenever this is convenient, we assume the existence
of a fixed choice of representatives of Ĝ, taking recourse to Schur’s lemma to
identify arbitrary irreducible representations with one of the representatives
by means of the essentially unique intertwining operator.

We next describe the contragredient π of a representation π. For this pur-
pose we define two involutions on B(Hπ), which are closely related to taking
adjoints. For this purpose let T ∈ B(Hπ). If (ei)i∈I is any orthonormal basis,
we may define two linear operators T t and T by prescribing

〈T tei, ej〉 = 〈Tej, ei〉 , 〈Tei, ej〉 = 〈Tei, ej〉 .

It is straightforward to check that these definitions do not depend on the
choice of basis, and that T ∗ = T

t
, as we expect from finitedimensional matrix

calculus. Additionally, the relations T t = T
t

= T ∗ and (ST )t = T tSt, ST =
S T are easily verified.

Now, given a representation (π,Hπ), the (standard realization of the)
contragredient representation π acts on Hπ by π(x) = π(x). In general,
π �
 π.

Commuting Algebras

The study of the commuting algebra, i.e., the bounded operators intertwining
a representation with itself, is a central tool of representation theory. In this
book, the commutant of a subset M ⊂ B(H), is denoted by M ′, and it is
given by

M ′ = {T ∈ B(H) : TS = ST , ∀S ∈M} .

It is a von Neumann algebra, i.e. a subalgebra of B(H) which is closed un-
der taking adjoints, contains the identity operator, and is closed with respect
to the strong operator topology. The von Neumann density theorem [36, The-
orem I.3.2, Corollary 1.3.1] states for selfadjoint subalgebras A ⊂ B(H), that
closedness in any of the above topologies on B(H) is equivalent to A = A′′.

There are two von Neumann algebras associated to any representation π,
the commuting algebra of π, which is the algebra π(G)′ of bounded oper-
ators intertwining π with itself, and the bicommutant π(G)′′, which is the
von Neumann algebra generated by π(G). Since span(π(G)) is a selfadjoint
algebra, the von Neumann density theorem entails that it is dense in π(G)′′

with respect to any of the above topologies. Invariant subspaces are conve-
niently discussed in terms of π(G)′, since a closed subspace K is invariant
under π iff the projection onto K is contained in π(G)′.
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Von Neumann algebras are closely related to the spectral theorem for
selfadjoint operators, in the following way: Let A be a von Neumann algebra,
and let T be a bounded selfadjoint operator. If S is an arbitrary bounded
operator, it is well-known that S commutes with T iff S commutes with all
spectral projections of T . Applying this to S ∈ A′, the fact that A = A′′

yields the following observation.

Theorem 1.3. Let A is a von Neumann algebra on H and T = T ∗ ∈ B(H).
Then T ∈ A iff all spectral projections of T are in A.

A useful consequence is that von Neumann algebras are closed under the
functional calculus of selfadjoint operators, as described in [101, VII.7].

Corollary 1.4. Let A is a von Neumann algebra on H and T = T ∗ ∈ A
selfadjoint. Let f : R → R be a measurable function which is bounded on the
spectrum of T . Then f(T ) ∈ A.

Proof. Every spectral projection of f(T ) is a spectral projection of T . Hence
the previous theorem yields the statement.

For more details concerning the spectral theorem we refer the reader to
[101, Chapter VII]. The relevance of the spectral theorem for the representa-
tion theory of the reals is sketched in Section 2.7.

Tensor Products

The tensor product notation is particularly suited to treating direct sums of
equivalent representations. Let H,K be Hilbert spaces. The Hilbert space
tensor product H ⊗ K is defined as the space of bounded linear operators
T : K → H satisfying

‖T ‖2H⊗K :=
∑
j∈J

‖Tej‖2 <∞ .

Here (ej)j∈J is an ONB of K. The Parseval equality can be employed to show
that the norm is independent of the choice of basis, making H⊗K a Hilbert
space with scalar product

〈S, T 〉 =
∑
j∈J
〈Sej , T ej〉 .

Of particular interest are the operators of rank one. We define the elementary
tensor ϕ ⊗ η as the rank one operator K → H defined by K � z �→ 〈z, η〉ϕ.
The scalar product of two rank one operators can be computed as

〈η ⊗ ϕ, η′ ⊗ ϕ′〉H⊗K = 〈η, η′〉H〈ϕ′, ϕ〉K .
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Note that our definition differs from the one in [45] in that our tensor product
consists of linear operators as opposed to conjugate-linear in [45]. As a con-
sequence, our elementary tensors are only conjugate-linear in the K variable,
as witnessed by the change of order in the scalar product. However, the argu-
ments in [45] are easily adapted to our notation. For computations in H⊗K,
it is useful to observe that ONB’s (ηi)i∈I ⊂ H and (ϕj)j∈J ⊂ K yield an ONB
(ηi⊗ϕj)i∈I,j∈J of H⊗K [45, 7.14]. By collecting terms in the expansion with
respect to the ONB, one obtains that each T ∈ H⊗K can be written as

T =
∑
j∈J

aj ⊗ ϕj =
∑
i∈I

ηi ⊗ bi , (1.5)

where the aj and bi are computed by aj = Tϕj and bi = T ∗ηi, yielding

T =
∑
j∈J

(Tϕj)⊗ ϕj =
∑
i∈I

ηi ⊗ (T ∗ηi) , (1.6)

as well as
‖T ‖22 =

∑
j∈J

‖aj‖2 =
∑
i∈I
‖bi‖2 .

By polarization of this equation we find that given a second operator S =∑
j∈J cj ⊗ ϕj , the scalar product can also be computed via

〈T, S〉 =
∑
j∈J
〈aj , cj〉 .

Operators T ∈ B(H), S ∈ B(K) act on elements onH⊗K by multiplication.
On elementary tensors, this action reads as

(T ⊗ S)(η ⊗ ϕ) = T ◦ (η ⊗ ϕ) ◦ S = (Tη)⊗ (S∗ϕ) ,

which will be denoted by T ⊗ S ∈ B(H⊗ K). Keep in mind that this tensor
is also only sesquilinear. Given two representations π, σ, the tensor product
representation π⊗σ is the representation of the direct product G×G acting
on Hπ⊗Hσ via π⊗σ(x, y) = π(x)⊗σ(y)∗. On elementary tensors this action
is given by

(π ⊗ σ(x, y))(η ⊗ ϕ) = (π(x)η) ⊗ (σ(x)ϕ) .

Observe that the sesquilinearity of our tensor product notation entails that
the restriction of π ⊗ σ to {1}⊗G is indeed equivalent to dim(Hπ) · σ, where
σ is the contragredient of σ.

One can use the tensor product notation to define a compact realization
of the multiple of a fixed representation. Given such a representation σ, the
standard realization of π = m · σ acts on Hπ = Hσ ⊗ �2(Im) by

π(x) = σ(x) ⊗ Id�2(Im) .
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The advantage of this realization lies in compact formulae for the associated
von Neumann algebras, if σ is irreducible:

π(G)′ = 1⊗ B(�2(Im)) , (1.7)

which is understood as the algebra of all operators of the form IdHσ ⊗T , and

π(G)′′ = B(Hσ)⊗ 1 , (1.8)

with analogous definitions. The follow for instance by [105, Theorem 2.8.1].

Trace Class and Hilbert-Schmidt Operators

Given a bounded positive operator T on a separable Hilbert space H, T it is
called trace class operator if its trace class norm

‖T ‖1 = trace(T ) =
∑
i∈I
〈Tηi, ηi〉 <∞ ,

where (ηi)i∈I is an ONB of H. ‖T ‖1 can be shown to be independent of the
choice of ONB. An arbitrary bounded operator T is a trace class operator
iff |T | is of trace class. This defines the Banach space B1(H) of trace clase
operators. The trace

trace(T ) =
∑
n∈N

〈Tηi, ηi〉

is a linear functional on B1(H), and again independent of the choice of ONB. A
useful property of the trace is that trace(TS) = trace(ST ), for all T ∈ B1(H)
and S ∈ B∞(H).

More generally, we may define for arbitrary 1 ≤ p <∞ the Schatten-von
Neumann space of order p as the space Bp(H) of operators T such that
|T |p is trace class, endowed with the norm

‖T ‖p = ‖(T ∗T )p/2‖1/p1 .

Again Bp(H) is a Banach space with respect to ‖ · ‖p. An operator T is in
Bp(H) iff |T | has a discrete p-summable spectrum (counting multiplicities).
This also entails that Bp(H) ⊂ Br(H), for p ≤ r, and that these spaces are
contained in the space of compact operators on H. Moreover, it entails that
‖ · ‖∞ ≤ ‖ · ‖p.

As a further interesting property, Bp(H) is a twosided ideal in B(H), sat-
isfying

‖ATB‖p ≤ ‖A‖∞‖T ‖p‖B‖∞ .

We will exclusively be concerned with p = 1 and p = 2. Elements of the latter
space are called Hilbert-Schmidt operators) . B2(H) is a Hilbert space,
with scalar product
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〈S, T 〉 = trace(ST ∗) = trace(T ∗S) .

In fact, as the formula

trace(T ∗T ) =
∑
i∈I
‖Tηi‖2 = ‖T ‖2H⊗H

shows, B2(H) = H⊗H. In particular, all facts involving the role of rank-one
operators and elementary tensors presented in the previous section hold for
B2(H).

Measure Spaces

In this book integration, either on a locally compact group or its dual, is
ubiquitous. Borel spaces provide the natural context for our purposes, and we
give a sketch of the basic notions and results. For a more detailed exposition,
confer the chapters dedicated to the subject in [15, 17, 94].

Let us quickly recall some definitions connected to measure spaces. A
Borel space is a set X equipped with a σ-algebra B, i.e. a set of subsets
of X (containing the set X itself) which is closed under taking complements
and countable unions. B is also called Borel structure. Elements of B are
called measurable or Borel. A σ-algebra separates points, if it contains
the singletons. Arbitrary subsets A of a Borel space (X,B), measurable or
not, inherit a Borel structure by declaring the intersections A ∩B, B ∈ B, as
the measurable sets in A.

In most cases we will not explicitly mention the σ-algebra, since it is
usually provided by the context. For a locally compact group, it is generated
by the open sets. For countable sets, the power set will be the usual Borel
structure. A measure space is a Borel space with a (σ-additive) measure µ
on the σ-algebra. ν-nullsets are sets A with ν(A) = 0, whereas conull sets
are complements of nullsets.

If µ and ν are measures on the same space, µ is ν-absolutely continuous
if every ν-nullset is a µ-nullset as well. We assume all measures to be σ-finite.
In particular, the Radon-Nikodym Theorem holds [104, 6.10]. Hence absolute
continuity of measures is expressable in terms of densities.

Measurable mappings between Borel spaces are defined by the property
that the preimages of measurable sets are measurable. A bijective mapping
φ : X → Y between Borel spaces is a Borel isomorphism iff φ and φ−1 is
measurable. A mapping X → Y is µ-measurable iff it is measurable outside
a µ-nullset. For complex-valued functions f given on any measure space, we let
supp(f) = f−1(C \ 0). Inclusion properties between supports are understood
to hold only up to sets of measure zero, which is reasonable if one deals with
Lp-functions. Given a Borel set A, we let 111A denote its indicator function.

Given a measurable mapping Φ : X → Y between Borel spaces and a
measure µ on X , the image measure Φ∗(µ) on Y is defined as Φ∗(µ)(A) =
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µ(Φ−1(A)). A measure ν on Y is a pseudo-image of µ under Φ if ν is equiva-
lent to Φ∗(µ̃), and µ̃ is a finite measure on X which is equivalent to µ. µ̃ exists
if µ is σ-finite. Clearly two pseudo-images of the same measure are equivalent.

Let us now turn to locally compact groups G and G-spaces. A G-space
is a set X with a an action of G on X , i.e., a mapping G × X → X ,
(g, x) �→ g.x, fulfilling e.x = x and g.(h.x) = (gh).x. A Borel G-space is a
G-space with the additional property that G and X carry Borel structures
which make the action measurable; here G×X is endowed with the product
Borel structure. If X is a G-space, the orbits G.x = {g.x : g ∈ G} yield a
partition of X , and the set of orbits or orbit space is denoted X/G for the
orbit space. This notation is also applied to invariant subsets: If A ⊂ X is
G-invariant, i.e. G.A = A, then A/G is the space of orbits in A, canonically
embedded in X/G. If X is a Borel space, the quotient Borel structure
on X is defined by declaring all subsets A ⊂ X/G as Borel for which the
corresponding invariant subset of X is Borel. It is the coarsest Borel structure
for which the quotient map X → X/G is measurable.

For x ∈ X the stabilizer of x is given by Gx = {g ∈ G : g.x = x}. The
canonical map G � g �→ g.x induces a bijection G/Gx → G.x.
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Wavelet Transforms
and Group Representations

In this chapter we present the representation-theoretic approach to continuous
wavelet transforms. Only basic representation theory and functional analysis
(including the spectral theorem) are required. The main purpose is to clarify
the role of the regular representation, and to develop some related notions,
such as selfadjoint convolution idempotents, which are then used for the for-
mulation of the problems which the book addresses in the sequel. Most of
the results in this chapter may be considered well-known, or are more or less
straightforward extensions of known results, with the exception of the last
two sections: The notion of sampling space and the related results presented
in Section 2.6 are apparently new. Section 2.7 contains the discussion of an
example which is crucial for the following: It motivates the use of Fourier
analysis and thus serves as a blueprint for the arguments in the following
chapters.

2.1 Haar Measure and the Regular Representation

Given a second countable locally compact group G, we denote by µG a left
Haar measure on G, i.e. a Radon measure on the Borel σ-algebra of G which
is invariant under left translations: µG(xE) = µG(E). Since G is σ-compact,
any Radon measure ν on G is inner and outer regular, i.e., for all Borel sets
A ⊂ G and ε > 0 there exist sets C ⊂ A ⊂ V with C compact, V open such
that ν(V \ C) < ε.

One of the pillars of representation theory of locally compact groups is
the fact that Haar measure always exists and is unique up to normalization.
We use a simple dx to denote integration against µG, and |A| = µG(A) for
Borel subsets A ⊂ G. An associated rightinvariant measure, the so called
right Haar measure is obtained by letting µG,r(A) = |A−1|. The modular
function ∆G : G→ R

+ measures the rightinvariance of the left Haar measure.
It is given by ∆G(x) = |Ex|

|E| , for an arbitrary Borel set E of finite positive
measure. Using the fact that µG is unique up to normalization, one can show
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that ∆G is a well-defined continuous homomorphism, and independent of the
choice of E. The homomorphism property entails that ∆G is either trivial or
unbounded: ∆G(G) is a subgroup of the multiplicative R

+, and all nontrivial
subgroup of the latter are unbounded. ∆G can also be viewed as a Radon-
Nikodym derivative, namely

∆G =
dµG
dµG,r

,

see [45, Proposition 2.31]. Hence the following formula, which will be used
repeatedly [45, (2.32)]:

∫
G

f(x)dx =
∫
G

f(x−1)∆G(x−1)dx . (2.1)

G is called unimodular if ∆G ≡ 1, which is the case iff µG is rightinvariant
also.

We will frequently use invariant and quasi-invariant measures on quotient
spaces. If H < G is a closed subgroup, we let G/H = {xH : x ∈ G}, which is a
Hausdorff locally compact topological space. G acts on this space by y.(xH) =
yxH , and the question of invariance of measures on G/H arises naturally.
Given any measure ν on G/H let νg be the measure given by νg(A) = ν(gA).
Then ν is called invariant if νg = ν for all g ∈ G, and quasi-invariant if νg
and ν are equivalent. The following lemma collects the basic results concerning
quasi-invariant measures on quotients.

Lemma 2.1. Let G be a locally compact group, and H < G.

(a) There exists a quasi-invariant Radon measure on G/H. All quasi-invariant
Radon measures on G/H are equivalent.

(b) There exists an invariant Radon measure on G/H iff ∆H is the restriction
of ∆G to H.

(c) If there exists an invariant Radon measure µG/H on G/H, it is unique
up to normalization. After picking Haar measures on G and H, the nor-
malization of µG/H can be chosen such as to ensure Weil’s integral
formula ∫

G

f(x)dx =
∫
G/H

∫
H

f(xh)dhdµG/H(xH) . (2.2)

The invariance property of Haar measure implies that the left translation
action of the group on itself gives rise to a unitary representation on L2(G).
The result is the regular representation defined next.

Definition 2.2. Let G be a locally compact group. The left (resp. right)
regular representation λG (�G) acts on L2(G) by

(λG(x)f)(y) = f(x−1y) resp. (�G(x)f)(y) = ∆G(x)1/2f(yx)

The two-sided representation of the product group G×G is defined as
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(λG × �G)(x, y) = λG(x)�G(y) .

λG-invariant subspaces are called leftinvariant.

The convolution of two functions f, g on G is defined as the integral

(f ∗ g)(x) =
∫
G

f(y)g(y−1x)dy . (2.3)

This is well-defined, with absolute convergence for almost every x ∈ G,
whenever f, g ∈ L1(G). But L2-functions can be convolved also, if we employ
a certain involution.

Definition 2.3. Given any function f on G, define f∗(x) = f(x−1).

Remark 2.4. If f is p-integrable with respect to left Haar measure, then f∗ is
p-integrable with respect to right Haar measure, and vice versa. In general,
f∗ will not be in Lp(G) if f is. Notable exceptions are given by the (trivial)
case that G is unimodular, or more generally, that f is supported in a set on
which ∆−1

G is bounded.
The mapping f �→ f∗ is obviously a conjugate-linear involution. With

respect to convolution, the involution turns out to be an antihomomorphism:

(g ∗ f)∗(x) =
∫
G

g(y)f(y−1x−1)dy

=
∫
G

g∗(y−1)f∗(xy)dy

=
∫
G

f∗(y)g∗((x−1y)−1)dy

=
∫
G

f∗(x)g∗(y−1x)dy

= f∗ ∗ g∗(x) .

Note that our definition differs from the notation in [45, 35]. Our choice is
motivated by proposition 2.19 below which clarifies the connection between
the involution and taking adjoints of coefficient operators.

The following simple observation relates convolution to coefficient functions:

Proposition 2.5. For f, g ∈ L2(G),

(g ∗ f∗)(x) =
∫
G

g(y)f(x−1y)dy = 〈g, λG(x)f〉 , (2.4)

in particular the convolution integral g ∗ f∗ converges absolutely for every x,
yielding a continuous function which vanishes at infinity.
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Proof. Equation (2.4) is self-explanatory, and it yields pointwise absolute con-
vergence of the convolution product. Continuity follows from the continuity of
the regular representation. Recall that a function f on G vanishes at infinity
if for every ε > 0 there exists a compact set C ⊂ G such that |f | < ε outside of
C. If f and g are compactly supported, it is clear that g ∗f∗ also has compact
support, hence vanishes at infinity. For arbitrary L2-functions f and g pick
sequences fn → f and gn → g with fn, gn ∈ Cc(G). Then the Cauchy-Schwarz
inequality implies gm ∗ f∗

n → g ∗ f∗ uniformly, as m,n → ∞. But then the
limit vanishes at infinity also.

The von Neumann algebras generated by the regular representation are
the left and right group von Neumann algebras.

Definition 2.6. Let G be a locally compact group. The von Neumann algebras
generated by the left and right regular representations are

V Nl(G) = λG(G)′′ and V Nr(G) = �G(G)′′ .

V Nl(G) and V Nr(G) obviously commute; in fact V Nl(G)′ = V Nr(G). If the
group is abelian, V Nl(G) = V Nr(G) =: V N(G).

The equality V Nl(G)′ = V Nr(G) is a surprisingly deep result, known as the
commutation theorem. For a proof, see [109].

2.2 Coherent States and Resolutions of the Identity

In this section we present a general notion of coherent state systems. Basically,
the setup discussed in this section yields a formalization for the expansion
of Hilbert space elements with respect to certain systems of vectors. The
blueprint for this type of expansions is provided by ONB’s: If η = (ηi)i∈I is
an ONB of a Hilbert space H, it is well-known that the coefficient operator

Vη : H � ϕ �→ (〈ϕ, ηi〉)i∈I ∈ �2(I) (2.5)

is unitary, and that every ϕ ∈ H may be written as

ϕ =
∑
i∈I
〈ϕ, ηi〉ηi . (2.6)

The generalization discussed here consists in replacing I by a measure space
(X,B, µ), and summation by integration. In the following sections we will
mostly specialize to the case X = G, a locally compact group, endowed with
left Haar measure. However, in connection with sampling we will also need
to discuss tight frames (obtained by taking a discrete space with counting
measure), which is why have chosen to base the discussion on a slightly more
abstract level.
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Definition 2.7. Let H be a Hilbert space. Let η = (ηx)x∈X denote a family
of vectors, indexed by the elements of a measure space (X,B, µ).

(a) If for all ϕ ∈ H, the coefficient function

Vηϕ : X � x �→ 〈ϕ, ηx〉

is µ-measurable, we call η a coherent state system.
(b) Let (ηx)x∈X be a coherent state system, and define

dom(Vη) := {ϕ ∈ H : Vηϕ ∈ L2(X,µ)} ,

which may be trivial. Denote by Vη : H → L2(X,µ) the (possibly un-
bounded) coefficient operator or analysis operator with domain Dη.

(c) The coherent state system (ηx)x∈X is called admissible if the associated
coefficient operator Vη : ϕ �→ Vηϕ is an isometry, with dom(Vη) = H.

It would be more precise to speak of µ-admissibility, since obviously the
property depends on the measure. However, we treat the measure space
(X,B, µ) as given; it will either be a locally compact group with left Haar
measure, or a discrete set with counting measure.

We next collect a few basic functional-analytic properties of coherent state
systems. The following observation will frequently allow density arguments in
connection with coefficient operators:

Proposition 2.8. For any coherent state system (ηx)x∈X , the associated co-
efficient operator is a closed operator.

Proof. Let ϕn → ϕ, where ϕn ∈ dom(Vη). Assume in addition that Vηϕn →
F in L2(X,µ). After passing to a suitable subsequence we may assume in
addition pointwise almost everywhere convergence. Now the Cauchy-Schwarz-
inequality entails

|Vηϕn(x)− 〈ϕ, ηx〉| = |〈ϕn − ϕ, ηx〉| ≤ ‖ϕn − ϕ‖ ‖ηx‖ → 0 ,

hence F = Vηϕ a.e., in particular the right hand side is in L2(X,µ).

Next we want to describe adjoint operators. For this purpose weak integrals
will be needed.

Definition 2.9. Let (ηx)x∈X be a coherent state system. If the right-hand side
of

ϕ �→
∫
X

〈ϕ, ηx〉dµ(x)

converges absolutely for all ϕ, and defines a continuous linear functional on H,
we let the element of H corresponding to the functional by the Fischer-Riesz
theorem be denoted by the weak integral
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∫
X

ηxdµ(x) .

Hence we obtain the following defining relation for
∫
X ηxdµ(x):

〈
ϕ,

∫
X

ηxdµ(x)
〉

=
∫
X

〈ϕ, ηx〉dµ(x) (2.7)

For a family of operators (Tx)x∈X we define the weak operator integral
∫
X
Txdx

pointwise as (∫
X

Txdx

)
(ϕ) =

∫
X

Tx(ϕ) dx ,

whenever the right-hand sides converges weakly for every ϕ.

Proposition 2.10. Let (ηx)x∈X be a coherent state system. The associated
coefficient operator Vη is bounded on H iff dom(Vη) = H. In that case, its
adjoint operator is the synthesis operator, given pointwise by the weak in-
tegral

V ∗
η (F ) =

∫
X

F (x)ηxdµ(x) . (2.8)

Proof. The first statement follows from the closed graph theorem and the
previous proposition. For (2.8) we compute

〈Vηϕ, F 〉 =
∫
X

〈ϕ, ηx〉F (x)dµ(x) =
∫
X

〈ϕ, F (x)ηx〉dµ(x)

=
〈
ϕ,

∫
X

F (x)ηxdµ(X)
〉

.

We will next apply the proposition to admissible coherent state systems.
Note that for such systems η the isometry property entails that V ∗

η Vη is the
identity operator on H, and VηV ∗

η is the projection onto the range of Vη. The
first formula, the inversion formula, can then be read as a (usually continuous
and redundant) expansion of a given vector in terms of the coherent state sys-
tem. An alternative way of describing this property, commonly used in math-
ematical physics, expresses the identity operator as the (usually continuous)
superposition of rank-one operators. In order to present this formulation, we
use the bracket notation for rank-one operators:

|η〉〈ψ| : ϕ �→ 〈ψ|ϕ〉η . (2.9)

Note the attempt to reconcile mathematics and physics notation by letting
〈η|ϕ〉 = 〈ϕ, η〉. In particular, the bracket (2.9) is linear in η and antilinear in
ψ. Outside the following proposition, we will however favor the tensor product
notation η ⊗ ψ over the bracket notation.
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Proposition 2.11. If (ηx)x∈X is an admissible coherent state system, then
for every ϕ ∈ H, the following (weak-sense) reconstruction formula (or co-
herent state expansion) holds:

ϕ =
∫
X

〈ηx|ϕ〉ηxdµ(x) . (2.10)

Equivalently, we obtain the resolution of the identity as a weak operator
integral ∫

X

|ηx〉〈ηx|dµ(x) = IdH . (2.11)

Proof. Recall that by the defining relation (2.7) the right hand side of (2.10)
denotes the Hilbert space element ψ ∈ H satisfying for all z ∈ H the equation

〈ψ, z〉 =
∫
X

〈ϕ, ηx〉〈ηx, z〉dµ(x) .

But the right-hand side of this equation is just 〈Vηϕ, Vηz〉L2(X) = 〈ϕ, z〉, by
the isometry property of Vη. Hence ψ = ϕ. Equation (2.11) is just a rephrasing
of (2.10).

As a special case of (2.10) we retrieve (2.6) (with a somewhat weaker sense
of convergence), observing that by (2.5) ONB’s are admissible coherent state
systems. Next we identify the ranges of coefficient mappings.

Proposition 2.12. Let (ηx)x∈X be an admissible coherent state system. Then
the image space K̃ = Vη(H) ⊂ L2(X,µ) is a reproducing kernel Hilbert space,
i.e., the projection P onto K is given by

PF (x) =
∫
X

F (y)〈ηy , ηx〉dµ(y) .

Proof. Note that the integral converges absolutely since Vη(ηy) ∈ L2(X). If
we assume that Vη is an isometry, then P = VηV

∗
η . Plugging in (2.8) gives the

desired equation:

VηV
∗
η F (x) = 〈V ∗

η F, ηx〉

=
∫
X

F (y)〈ηy, ηx〉dµ(y) .

2.3 Continuous Wavelet Transforms and the Regular
Representation

We now introduce the particular class of coherent state expansions associated
to group representations which this book studies in detail. We first exhibit
the close relation to the regular representation of the group. After that we
investigate the functional-analytic basics of the coefficient operators in this
setting, i.e., domains and adjoints.
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Definition 2.13. Let (π,Hπ) denote a strongly continuous unitary represen-
tation of the locally compact group G. In the following, we endow G with left
Haar measure. Associate to η ∈ Hπ the orbit (ηx)x∈G = (π(x)η)x∈G. This is
clearly a coherent state system in the sense of Definition 2.7(a), in particular
the coefficient operators Vη can be defined according to 2.7(b).

(a) η is called admissible iff (π(x)η)x∈G is admissible.
(b) If η is admissible, then Vη : Hπ ↪→ L2(G) is called (generalized) con-

tinuous wavelet transform.
(c) η is called a bounded vector if Vη : Hπ → L2(G) is bounded on Hπ.

We note in passing that η is cyclic iff Vη, this time viewed as an operator
Hπ → Cb(G), is injective: Indeed, Vηϕ = 0 iff ϕ⊥π(G)η, and that is equivalent
to the fact that ϕ is orthogonal to the subspace spanned by π(G)η.

A straightforward but important consequence of the definitions is that

Vη(π(x)ϕ)(y) = 〈π(x)ϕ, π(y)η〉 = 〈ϕ, π(x−1y)η〉 = (Vηϕ)(x−1y) , (2.12)

i.e., coefficient operators intertwine π with the action by left translations on
the argument. The same calculation shows that dom(Vη) is invariant under π.

Our next aim is to shift the focus from general representations of G to
subrepresentations of λG. For this purpose the following simple proposition
concerning the action of the commuting algebra on admissible (resp. bounded,
cyclic) vectors is useful.

Proposition 2.14. Let (π,Hπ) be a representation of G and η ∈ Hπ. If T ∈
π(G)′, then

VTη = Vη ◦ T ∗ . (2.13)

In particular, suppose that K is an invariant closed subspace of Hπ, with
projection PK. If η ∈ Hπ is admissible (resp. bounded or cyclic) for (π,Hπ),
then PKη has the same property for (π|K,K).

Proof. VTηϕ(x) = 〈ϕ, π(x)Tη〉 = 〈T ∗ϕ, π(x)η〉 shows (2.13), in particular the
natural domain of Vη ◦ T ∗ coincides with dom(VTη). As a consequence VPKη
is the restriction of Vη to K. The remaining statements are immediate from
this: The restriction of an isometry (resp. bounded or injective operator) has
the same property.

The following rather obvious fact, which follows from similar arguments,
will be used repeatedly.

Corollary 2.15. Let T be a unitary operator intertwining the representations
π and σ. Then η ∈ Hπ is admissible (cyclic, bounded) iff Tη has the same
property.

We will next exhibit the central role of the regular representation for
wavelet transforms. In view of the intertwining property (2.12), the remaining
problems have more to do with functional analysis. The chief tool for this is
the generalization of Schur’s lemma given in 1.2.
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Proposition 2.16. (a) If π has a cyclic vector η for which Vη is densely
defined, there exists an isometric intertwining operator T : Hπ ↪→ L2(G).
Hence π < λG.

(b) If ϕ ∈ Hπ is such that Vϕ : Hπ → L2(G) is a topological embedding, there
exists an admissible vector η ∈ Hπ.

(c) Suppose that η is admissible and define H = Vη(Hπ). Then H ⊂ L2(G)
is a closed, leftinvariant subspace, and the projection onto H is given by
right convolution with Vηη.

Proof. For part (a) note that by assumption Vη is densely defined, and it
intertwines π and λG on its domain, by (2.12). Hence Lemma 1.2 applies.
Since η is cyclic, kerVη = 0, yielding π < λG.

For (b) define U = V ∗
η Vη and η = U−1/2ϕ. Note that by assumption U is a

selfadjoint bounded operator with bounded inverse, hence U−1/2 is bounded
also. Moreover, U ∈ π(G)′, hence 1.4 implies U−1/2 ∈ π(G)′.

Then by (2.13), V ∗
η Vη = U−1/2UU−1/2 = IdHπ . The statements in (c) are

obvious; for the calculation of the projection confer Proposition 2.12.

The proposition shows that up to unitary equivalence all representations
of interest are subrepresentations of the left regular representation. In this
setting, wavelet transforms are right convolution operators. We next want to
discuss adjoint operators in this setting. Before we do this, we need to insert
a small lemma.

Lemma 2.17. Let a be a measurable bounded function, b ∈ L2(G) such that
for all g ∈ L1(G) ∩ L2(G),

∫
G

a(x)g(x)dx = 〈b, g〉 .

Then g = f almost everywhere.

Proof. Assuming that a and b differ on a Borel set M of positive, finite mea-
sure, we find a measurable function g supported on M , with modulus 1 and
such that g(x)(b(x) − a(x)) > 0 on M . But then g ∈ L1(G)∩L2(G) yields the
desired contradiction.

Remark 2.18. The nontrivial aspect of this lemma is that its proof is not
just a density argument. Initially it is not even clear whether a is square-
integrable. For this type of argument, replacing L1(G)∩L2(G) by some dense
subspace generally does not work, as the following example shows: Consider
the constant function a(x) = 1 on G and the subspace H = {g ∈ L1(G) ∩
L2(G) :

∫
G g(x)dx = 0} ⊂ L2(G). H is dense if G is noncompact, and for all

g ∈ H, ∫
R

g(x)a(x)dx = 0 ,

with absolute convergence, but of course a �= 0 ∈ L2(R).
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One of the reasons we single this argument out is that we will meet it
again in connection with the Plancherel Inversion Theorem 4.15.

Proposition 2.19. Suppose that f ∈ L2(G).

(a) Vf : L2(G) → L2(G) is a closed operator with domain

dom(Vf ) = {g ∈ L2(G) : g ∗ f∗ ∈ L2(G)} ,

and acts by Vfg = g ∗ f∗. The subspace dom(Vf ) is invariant under left
translations.

(b) If f∆−1/2 ∈ L1(G), then f is a bounded vector, with ‖Vf‖ ≤ ‖f∆−1/2‖1.
This holds in particular when f has compact support.

(c) If f∗ ∈ L2(G) then L1(G) ∩ L2(G) ⊂ dom(Vf ).
(d) Suppose that f∗ ∈ L2(G). Then V ∗

f ⊂ Vf∗ . If one of the operators is
bounded, so is the other, and they coincide.

Proof. The first part of (a) was shown in Proposition 2.8. Vfg = g ∗ f∗ was
observed in equation (2.4). (b) and (c) are nonabelian versions of Young’s
inequality. We prove (b) along the lines of [45, Proposition 2.39], the proof of
part (c) is similar (and can be found in [45]). We write

g ∗ f∗(x) =
∫
G

g(y)f(x−1y)dy

=
∫
G

g(xy)f(y)dy

=
∫
G

(Ryg)(x)f(y)dy ,

where (Ryg)(x) = g(xy). An application of the generalized Minkowski in-
equality then yields

‖g ∗ f∗‖2 ≤
∫
G

‖Ryg‖2|f(y)|dy =
∫
G

‖g‖2∆G(y)−1/2|f(y)|dy

= ‖g‖2‖f∆−1/2
G ‖1 .

For the computation of the adjoint operator in (d), let g ∈ dom(V ∗
f ). For

all h ∈ L1(G) ∩ L2(G) ⊂ dom(Vf ), we note that
∫
G

∫
G

|h(x)f(y−1x)g(y)|dydx ≤
∫
G

|h(x)|‖f∗‖2‖g‖2dx <∞ ,

hence we may apply Fubini’s theorem to compute
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〈h, V ∗
f g〉 = 〈Vfh, g〉

=
∫
G

∫
G

h(x)f(y−1x)dxg(y)dy

=
∫
G

h(x)
∫
G

g(y)f(y−1x)dydx

=
∫
G

h(x)
∫
G

g(y)f∗(x−1y)dydx

=
∫
G

h(x)Vf∗g(x)dx

Note that Vf∗g here denotes the coefficient function as an element of Cb(G);
we have yet to establish that g ∈ dom(Vf∗ . Here Lemma 2.17 applies to prove
Vf∗g = V ∗

f g ∈ L2(G) and thus V ∗
f ⊂ Vf∗ . Assuming that Vf is bounded,

it follows that Vf∗ ⊃ V ∗
f is everywhere defined and closed, hence bounded.

Conversely, V ∗
f being contained in a bounded operator clearly implies that V ∗

f

is bounded.

Remark 2.20. Part (c) of the proposition implies that Vf is densely defined
for arbitrary f ∈ L2(G), when G is unimodular. This need not be true in the
nonunimodular case, see example 2.29 below.

We note the following existence theorem for bounded cyclic vectors.

Theorem 2.21. There exists a bounded cyclic vector for λG. Hence, an arbi-
trary representation π has a bounded cyclic vector iff π < λG.

Proof. Losert and Rindler [84] proved for arbitrary locally compact groups
the following statement: There exists f ∈ Cc(G) which is a cyclic vector for
λG iff G is first countable. Thus second countable groups have a cyclic vector
f ∈ Cc(G). But then 2.19 (b) entails that Vf is bounded on L2(G), i.e. f is
a bounded cyclic vector for L2(G). Propositions 2.14 and 2.16 (a) yield the
second statement.

Remark 2.22. When dealing with subrepresentations π1 < π2 and a vector
η ∈ Hπ1 ⊂ Hπ2 , the notation Vη is somewhat ambiguous. Nonetheless, we
refrain from introducing extra notation, since no serious confusion can occur:
Denoting V πi

η for the operator on Hπi (i = 1, 2), we find that V π2
η = V π1

η on
Hπ1 , and V π2

η = 0 on H⊥
π1

. Hence V π2
η is just the trivial extension of V π1

η .

We close the section with a first short discussion of direct sum represen-
tations.

Proposition 2.23. Let π =
⊕

i∈I πi, and η ∈ H. Let Pi denote the projection
onto Hπi , and ηi = Piη. Then the following are equivalent:

(a) η is admissible.
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(b) ηi := Piη is admissible for πi, for all i ∈ I, and Im(Vηi)⊥Im(Vηj ), for all
i �= j.

Proof. For (a) ⇒ (b), the admissibility of ηi is due to Proposition 2.14. More-
over, if Vη is isometric, then it respects scalar products; in particular, the
pairwise orthogonal subspaces (Pi(H))i∈I have orthogonal images. But since
Vη ◦Pi = Vηi , this is precisely the second condition. The converse direction is
similar.

One way of ensuring the pairwise orthogonality of image spaces in part (b)
of the proposition is to choose the representations πi as pairwise disjoint:

Lemma 2.24. Let π1 and π2 be disjoint representations, and ηi ∈ Hπi be
bounded vectors (i = 1, 2). Then Vη1(Hπ1)⊥Vη2(Hπ2) in L2(G).

Proof. V ∗
η2Vη1 : Hπ1 → Hπ2 is an intertwining operator, hence zero. Therefore,

for all ϕ1 ∈ Hπ1 and ϕ2 ∈ Hπ2 ,

0 = 〈V ∗
η2Vη1ϕ1, ϕ2〉 = 〈Vη1ϕ1, Vη2ϕ2〉 ,

which is the desired orthogonality relation.

2.4 Discrete Series Representations

The major part of this book is concerned with the following two questions:

• Which representations π have admissible vectors?
• How can the admissible vectors be characterized?

For irreducible representations (such as the above mentioned examples), these
questions have been answered by Grossmann, Morlet and Paul [60]; the key
results can already be found in [38]. Irreducible subrepresentations of λG are
called discrete series representations. The complete characterization of
admissible vectors is contained in the following theorem. We will not present
a full proof here, since the theorem is a special case of the more general results
proved later on. However, some of the aspects of more general phenomena
encountered later on can be studied here in a somewhat simpler setting, and
we will focus on these.

Theorem 2.25. Let π be an irreducible representation of G.

(a) π has admissible vectors iff π < λG.
(b) A nonzero η ∈ Hπ is admissible (up to normalization) if Vηη ∈ L2(G), or

equivalently, if Vηϕ ∈ L2(G), for some nonzero ϕ ∈ Hπ.
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(c) There exists a unique, densely defined positive operator Cπ with densely
defined inverse, such that

η ∈ Hπ is admissible ⇐⇒ η ∈ dom(Cπ), with ‖Cπη‖ = 1 . (2.14)

This condition follows from the orthogonality relation

〈Cπη′, Cπη〉〈ϕ,ϕ′〉 = 〈Vηϕ, Vη′ϕ′〉 , (2.15)

which holds for all ϕ,ϕ′ ∈ Hπ and η, η′ ∈ dom(Cπ). Conversely, Vψϕ �∈
L2(G) whenever ψ �∈ dom(Cπ) and 0 �= ϕ ∈ Hπ.

(c) Cπ = cπ × IdHπ for a suitable cπ > 0 iff G is unimodular, or equivalently,
if every nonzero vector is admissible up to normalization.

(d) Up to normalization, Cπ is uniquely characterized by the semi-invariance
relation

π(x)Cππ(x)∗ = ∆G(x)1/2Cπ . (2.16)

The normalization of Cπ is fixed by (2.15).

Proof. The ”only-if” part of (a) is noted in Proposition 2.16 (a). For the
converse direction assume π < λG, w.l.o.g. π acts by left translation on a
closed subspace of L2(G). Then projecting any η ∈ Cc(G) into Hπ yields
a bounded vector, by 2.19(b) and 2.14. Since Cc(G) is dense in L2(G), we
thus obtain a nonzero bounded vector η. Since π is irreducible, it follows that
Vη is isometric up to a constant (by Lemma 1.2), hence we have found the
admissible vector.

For the proof of part (b) note that the following chain of implications is
trivial:

η is admissible up to normalization ⇒ Vηη ∈ L2(G)
⇒ (∃ϕ ∈ Hπ \ {0} : Vηϕ ∈ L2(G)) .

For the converse direction, assume Vηϕ ∈ L2(G) for a nonzero ϕ. Then
dom(Vη) is nonzero and invariant, hence it is dense by irreducibility of π.
But then Lemma 1.2 applies to yield that Vη is isometric up to a constant.
Since Vηη �= 0, the constant is nonzero, and thus η is admissible up to nor-
malization.

The construction of the operators Cπ requires additional tools from func-
tional analysis. The basic idea is the following: Fix a normalized vector ϕ ∈ Hπ
and consider the positive definite sesquilinear form

Bϕ : (η, η′) �→ 〈Vη′ϕ, Vηϕ〉 ,

which is the right hand side of (2.15) for the special case that ϕ = ϕ′. The
domain of this form is D × D, where D is the space of vectors η which are
admissible up to normalization. Note that D is dense, being nonzero and
invariant.
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Recalling from linear algebra the representation theorem establishing a
close connection between quadratic forms and symmetric matrices, we are
looking for a positive selfadjoint operator A such that

Bϕ(η, η′) = 〈Aη, η′〉 ,

and then letting Cπ = A1/2 should do the trick. Here we are in the situation
that the domain is only a dense subset. We intend to use the representation
theorem [101, Theorem VIII.6], and for this we need to show that Bϕ is
closed. This amounts to checking the following condition, for every sequence
(ηn)n∈N and η ∈ Hπ such that ηn → η: If

Bϕ(ηn − ηm, ηn − ηm) → 0 , as n,m→∞ (2.17)

then η ∈ D and Bϕ(ηn− η, ηn− η) → 0. It turns out that this is precisely the
argument from the proof of Proposition 2.8: Observing that

Bϕ(η − η′, η − η′) = ‖Vη−η′ϕ‖22 = ‖Vηϕ− Vη′ϕ‖22 ,

we see that condition (2.17) is equivalent to saying that (Vηnϕ)n∈N is a Cauchy
sequence in L2(G). Hence after passing to a suitable subsequence we find that
Vηnϕ → F ∈ L2(G), both in L2 and pointwise almost everywhere. On the
other hand, ηn → η entails Vηnϕ → Vηϕ uniformly, by Cauchy-Schwarz.
Hence F = Vη, and η ∈ D by part (a). Therefore we obtain the operator A,
and letting Cπ = A1/2 yields

〈Vη′ϕ, Vηϕ〉 = 〈Cπη, Cπη′〉 (2.18)

The first step for deriving the general orthogonality relations consists in
observing that Bϕ (and consequently Cπ) is independent of the choice of
normed vector ϕ: Fixing an arbitrary admissible η, the fact that Vη is the
multiple of an isometry yields for all normed ϕ

Bϕ(η, η) = ‖Vηϕ‖22 = cη‖ϕ‖2

where cη is a constant independent of ϕ. By polarization this implies that
Bϕ is independent of ϕ. Hence we obtain for arbitrary ϕ ∈ H and admissible
vectors η, η′

〈Vη′ϕ, Vηϕ〉 = ‖ϕ‖2〈Cπη, Cπη〉 .

Polarization with respect to ϕ yields (2.15).
Part (c) follows from (d), for (d) we refer to [38].

We note that (2.16) entails that Cπ is unbounded in the nonunimodular
case, since the operator norm on B(Hπ) is invariant under conjugation with
unitaries. The operators Cπ are called Duflo-Moore operators. More details
on these operators can be found in Section 3.8. The proof given here basically
follows the argument in [60]. The main reason we have reproduced it in part is
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to demonstrate the close connection between the admissibility condition and
the construction of the operators: The admissibility criterion (2.14) implies the
orthogonality criterion (2.15) by polarization, and the latter was used to define
Cπ . Let us also point out the crucial role of irreducibility, which particularly
implies that the space of admissible vectors (up to normalization) is dense in
Hπ.

Remark 2.26. Note that the Duflo-Moore operators Cπ studied here relate to
the formal dimension operators Kπ in [38] as K−1/2

π = Cπ . The terminol-
ogy ”formal dimension operator” is best understood by considering compact
groups: Let π be an irreducible representation of a compact group G. Since
coordinate functions are bounded, it is obvious that π is square-integrable. G
is unimodular, thus Cπ is scalar. Now the Schur orthogonality relations for
compact groups [45, 5.8] yield for a normalized vector ϕ that

‖Vϕϕ‖22 = d−1
π ‖ϕ‖2

where dπ = dim(Hπ). Thus Cπ = d
−1/2
π · Hπ, and the formal dimension

operator Kπ = C−2
π is multiplication with the Hilbert space dimension of Hπ .

The theorem of Grossmann, Morlet and Paul provides a rich reservoir
of cases. In fact the large majority of papers dealing with the construction of
wavelet transforms refers to this result. We give a small sample which contains
the most popular examples.

Example 2.27. Windowed Fourier transform. Consider the reduced
Heisenberg group, given as the set Hr = R

2 × T, with the group law

(p, q, z)(p′, q′, z′) = (p+ p′, q + q′, zz′eπi(pq′−qp′)) .

Haar measure here is given by dpdqdz, where dz is the rotation-invariant
measure on the torus, normalized to one. G is unimodular. It acts on L2(R)
via the Schrödinger representation given by

(π(p, q, z)f)(x) = ze2πiq(x+p/2)f(x+ p) . (2.19)

Straightforward calculation allows to establish that

‖Vηg‖22 =
∫

R

∫
R

∫
T

∣∣∣∣
∫

R

g(x)ze−2πiq(x+p/2)η(x+ p)dx
∣∣∣∣
2

dzdqdp

=
∫

R

∫
R

∣∣∣∣
∫

R

g(x)e−2πiq(x+p/2)η(x + p)dx
∣∣∣∣
2

dqdp

=
∫

R

∫
R

∣∣∣∣
∫

R

g(x)e−2πiqxη(x + p)dx
∣∣∣∣
2

dqdp

=
∫

R

∫
R

|Ĥp(q)|2dpdq ,
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where Hp(x) = g(x)η(x + p), which for fixed p ∈ R is an integrable function.
An application of Fubini’s and Plancherel’s theorem for the reals yields

∫
R

∫
R

|Ĥp(q)|2dpdq =
∫

R

∫
R

|g(x)η(x + p)|2dxdp

= ‖η‖22‖g‖22 .

This relation implies first of all that π is irreducible: Vη is injective for every
nonzero η, i.e., η is cyclic. Moreover, every η ∈ L2(R) is admissible up to
normalization; more precisely, iff ‖η‖ = 1. This is what we are to expect by
Theorem 2.25: G is unimodular, hence the formal dimension operator is a
scalar multiple of the identity. In addition, we have established by elementary
calculation that the scalar equals one.

Since the torus acts by multiplication, we have |Vf (p, q, z)| = |Vf (p, q, 1)|,
for all z ∈ T. Hence the map Wf : g �→ (Vfg)|R2×{1} is isometric as well. Wf

is the windowed Fourier transform associated to the window f .
Hence we have derived for all f ∈ L2(R) with ‖f‖ = 1 the transform

Wfg(p, q) =
∫

R

g(x)e2πiq(x+p/2)f(x+ p) dx ,

with inversion formula

g(x) =
∫

R

∫
R

Wfg(p, q) e−2πiq(x+p/2)f(x+ p) dpdq .

Note that this inversion is to be understood in the weak sense and usually
does not hold pointwise.

Example 2.28. 1-D CWT. This is the original “continuous wavelet trans-
form” introduced in [60]. It is based on the ax + b group, the semidirect
product R � R

′. As a set G is given as G = R× R
′, with group law

(b, a)(b′, a′) = (b+ ab′, aa′) .

The left Haar measure is db|a|−2da, which is distinct from the right Haar
measure db|a|−1da. Wavelets arise from the quasi-regular representation
π acting on L2(R) via

(π(b, a)f)(x) = |a|−1/2f

(
x− b
a

)
.

Again, computing L2-norms of wavelet coefficients turns out to be an exercise
in real Fourier analysis. First observe that on the Fourier transform side π
acts as

(π(b, a)f)∧ (ω) = |a|1/2e−2πiωbf̂(aω)

Hence, using the Plancherel theorem for the reals we can compute
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‖Vηg‖22 =
∫
G

|〈g, π(b, a)η〉|2 dµG(b, a)

=
∫
G

|〈ĝ, (π(b, a)η)∧〉|2 dµG(b, a)

=
∫

R′

∫
R

∣∣∣∣
∫

R

f̂(γ)|a|1/2e2πiγbη̂(aγ)dγ
∣∣∣∣
2

|a|−2dbda

=
∫

R′

∫
R

∣∣∣∣
∫

R̂k

f̂(γ)e2πiγbη̂(aγ)dγ
∣∣∣∣
2

|a|−1dbda

=
∫

R′

∫
R

∣∣∣φ̂a(−b)
∣∣∣2 |a|−1dbda,

where φa(γ) = ĝ(γ)η̂(aγ). The Plancherel theorem allows thus to continue
∫

R′

∫
R

∣∣∣φ̂a(−b)
∣∣∣2 |a|−1dbda =

∫
R′

∫
R

∣∣ĝ(γ)η̂(aγ)
∣∣2 |a|−1dbda

=
∫

R

|ĝ(γ)|2
(∫

R′
|η̂(aγ)|2|a|−1da

)
dγ

=
(∫

R

|ĝ(γ)|2dγ
)
·
(∫

R′
|η̂(aγ)|2|a|−1da

)

= c2η‖g‖2 ,

where we used the fact that the measure a−1da is Haar measure of the mul-
tiplicative group R

′. Hence we have derived

‖Vηg‖22 = c2η‖g‖2 , (2.20)

where

c2η =
∫

R

|η̂(ω)|2
|ω| dω . (2.21)

Note that our calculations also include the case cη = ∞, where (2.20) means
that Vηf �∈ L2(G). For this additional observation we need the following ex-
tended version of the Plancherel theorem:

∀h ∈ L1(R) :
(
h ∈ L2(R) ⇐⇒ ĥ ∈ L2(R)

)
. (2.22)

Now “=⇒” is due to Plancherel’s theorem, but the other direction is not. In
order to show it, let g ∈ L2(R) denote the inverse Plancherel transform of ĥ,
we have to show g = h. But this follows from the injectivity of the Fourier
transform on the space of tempered distributions, since restriction to L1(G)
resp. L2(G) yields the Fourier- resp. Plancherel transform.

As in the case of the windowed Fourier transform, (2.20) implies that the
representation is irreducible. This time, the admissibility condition reads as:

η ∈ L2(R) is admissible ⇔ cη = 1 . (2.23)
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Comparing our findings to Theorem 2.25, we see that we have a discrete
series representation of a nonunimodular group. Accordingly, the admissibility
condition is more restrictive, requiring not just the right normalization. As
a matter of fact, it is straightforward to check the semi-invariance relation
(2.16) to show that the Duflo-Moore operator is given by

(Cπf)∧(ω) = |ω|−1/2f̂(ω) ,

as (2.21) suggests.

Example 2.29. As observed in Remark (2.20) above, Vf need not be densely
defined for arbitrary f ∈ L2(G), when G is nonunimodular. Here we construct
such an example for the case that G is the ax+b-group. For this purpose con-
sider the quasi-regular representation π from Example 2.28. Pick a ψ ∈ L2(R)
which is not in the domain of the Duflo-Moore operator, and an admissible
vector η. Defining f = Vηψ and H = Vη(L2(R)) ⊂ L2(G), we see that Vfg = 0
for g ∈ H⊥, whereas for g = Vηϕ ∈ H,

Vfg(x) = 〈Vηϕ, λG(x)Vηψ〉 = 〈ϕ, π(x)ψ〉 = Vψφ(x) ,

and the latter function is not in L2(G) by 2.25 (b) and the choice of ψ. Hence
dom(Vf ) = H⊥, and Vf = 0 on this domain.

Example 2.30. 2-D CWT. This construction was first introduced by Murenzi
[93], as a natural generalization of the continuous transform in one dimension.
We consider the similitude group G = R

2
� (SO(2)× R

+). Hence G is the
set R

2 × SO(2)× R
+ with the group law

(x, h, r)(x′, h′, r′) = (x+ rhx′, hh′, rr′) .

The group can be identified with the subgroup of the full affine group of the
plane generated the translations, the rotations and the dilations. It thus acts
naturally on R

2, which gives rise to the quasi-regular representation π acting
on L2(R2) via

(π(x, h, r)f)(y) = |r|−1f(r−1h−1(y − x)) .

An adaptation of the argument for the 1D CWT yields

‖Vηf‖22 = c2η‖f‖2 , (2.24)

where this time

c2η =
∫

R2

|f̂(ω)|2
|ω|2 dω .

Therefore the admissibility condition reads

η is admissible ⇐⇒
∫

R2

|f̂(ω)|2
|ω|2 dω = 1 .
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As in the case of the 1D-CWT, we obtain from the norm equality that π is
again irreducible. The Duflo-Moore operator is computed as

(Cπf)∧(ω) = |ω|−1f̂(ω) .

Next let us consider direct sums of discrete series representations. The
following theorem describes how far the discrete series arguments carry. Recall
that Proposition 2.23 gives criteria for direct sum representations, and the
orthogonality relations for the discrete series case allow to derive admissibility
criteria for multiplicities greater than one.

Theorem 2.31. Let π =
⊕

i∈I πi, where each πi is a discrete series represen-
tation. Denote by Pi the projection onto the representation space Hπi , and by
Cπi the associated Duflo-Moore operators. Since the πi are irreducible, there
exist (up to normalization) unique intertwining operators Si,j : Hπi → Hπj .
Then the following are equivalent:

(a) η is admissible.
(b) ηi ∈ dom(Cπi), with ‖Cπiηi‖ = 1. Moreover, for all i, j with πi 
 πj,

〈CπjSi,jηi, Cπjηj〉 = 0 (2.25)

Proof. We apply Proposition 2.23. By Theorem 2.25(c), ‖Cπiηi‖ = 1 is the ad-
missibility condition on ηi. Moreover, the orthogonality relation (2.15) shows
that whenever πi 
 πj ,

Im(Vηi )⊥Im(Vηi) ⇐⇒ 〈CπjSi,jηi, Cπjηj〉 = 0 .

Since any two irreducible representations are either equivalent or disjoint,
Lemma 2.24 yields Im(Vηi)⊥Im(Vηi) for arbitrary vectors ηi and ηj , whenever
πi �
 πj . Hence the proof is finished.

The following remark is a preliminary version of one of the main results
contained in this book: The existence criterion for admissible vectors given
in Theorem 4.22. Here we only consider the case of direct sums of discrete
series representations. Some of the phenomena encountered in the general case
can be already examined in this simpler setting, in particular the striking
difference between unimodular and nonunimodular groups and the role of the
formal dimension operators in this context.

Remark 2.32. Let π =
⊕

i∈I πi, where each πi is a discrete series represen-
tation. We associate a multiplicity function mπ : Ĝ → N0

⋃
{∞} to π, by

letting
mπ(σ) = |{i ∈ I : σ 
 πi}| ,
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where |·| denotes cardinality.mπ simply counts the multiplicity with which the
representation π is contained in π. Note that Hπ is assumed to be separable,
hence the cardinalities are countably infinite at most, and only countably
many σ have a nonzero multiplicity. Fix unitary intertwining operators Ti :
Hπi → Hσ, for the unique σ ∈ Ĝ with σ 
 πi. The uniqueness property of
the Duflo-Moore operators entails that Cσ = TiCπiT

∗
i .

Using the operators Ti, the admissibility conditions from Theorem 2.31
can also be written as

〈CσTiηi, CσTjηj〉 = 0 (πi 
 πj) (2.26)
‖Cπiηi‖ = 1 (∀i ∈ I) (2.27)

Both relations can be used to derive necessary conditions for the multiplicity
function: (2.26) clearly implies that

mπ(σ) ≤ dim(Hσ) . (2.28)

Moreover, the orthogonal decomposition of Hπ yields in particular that

∞ > ‖η‖2 =
∑
i∈I
‖Piη‖2 =

∑
i∈I
‖ηi‖2 . (2.29)

Now assume that G is unimodular. Then Cσ = cσ×IdHσ , with positive scalars
cσ. Hence (2.27) entails the necessary condition∑

σ∈Ĝ
mπ(σ)c−2

σ <∞ . (2.30)

Conversely, it is easily seen that vectors fulfilling (2.26) and (2.27) exist
once (2.28) and (2.30) hold, therefore we have found a characterization of
direct sums of discrete series representations with admissible vectors. Note
that (2.30) implies mπ(σ) <∞, which can be seen as a sharpening of (2.28).

In the nonunimodular case the situation is much less transparent. However,
it turns out that the restrictions actually vanish! To begin with, dim(Hσ) = ∞
follows from the existence of an unbounded operator Cσ on Hσ. In addition,
while (2.29) still holds, implying in particular that (at least for I infinite) the
norms of the ηi become arbitrarily small, it is no contradiction to (2.27). Here
the fact that the Cπi are unbounded makes it conceivable that there exist
vectors that actually fulfill both conditions. Note that we still need to ensure
(2.26), which requires more knowledge of the formal dimension operators than
we have currently at our disposal. In any case the existence of an unbounded
operator on Hσ entails dim(Hσ) = ∞, i.e., (2.28) holds trivially.

We will next study the space L2
π(G) spanned by all coefficient functions

associated to a fixed discrete series representation π. Most of the following
is due to Duflo and Moore. The results can be seen as precursors of the
Plancherel formula, or more precisely, as the contribution of the discrete series
to the Plancherel formula. They also provide further insight into the role of
Hilbert-Schmidt operators and the quasi-invariance relation (2.16).
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Theorem 2.33. Let π be a discrete series representation, and define

L2
π(G) = span{H : λG|H 
 π} .

(a) L2
π(G) = span{Vηϕ : ϕ, η ∈ Hπ such that Vηϕ ∈ L2(G)}.

(b) L2
π(G) is λG × �G-invariant, with λG × �G|L2

π(G) 
 π ⊗ π. In particular,
λG × �G|L2

π(G) is irreducible.
(c) Let (ηi)i∈I denote an ONB of Hπ contained in dom(C−1

π ). Then(
VC−1

π ηi
ηj

)
i,j∈I

is an ONB of L2
π(G).

(d) If σ is another discrete series representation with σ �
 π, then L2
σ(G)⊥

L2
π(G).

Proof. For part (a) we let H0 = span{Vηϕ : ϕ, η ∈ Hπ, η is admissible}. Then
for every f = Vηϕ ∈ H0, the leftinvariant space spanned by f is just the image
of Hπ under Vη, which is a unitary equivalence. Hence H0 ⊂ L2

π(G), which
extends to the closure of H0.

For the other direction we argue indirectly. Assume that there exists g ∈
L2(G) such that the restriction of λG to the leftinvariant subspace generated
by g is equivalent to π, yet g is not contained in the closed span ofH0. W.l.o.g.
we may assume that g⊥H0. Observe that H0 is rightinvariant also, since

Vπ(x)ηϕ(y) = 〈ϕ, π(yx)η〉 = ∆G(x)−1/2 (ρG(x)Vηϕ) (y) .

Let Q denote the projection onto the leftinvariant space generated by g. Pick
h ∈ Cc(G) such that Qh �= 0. Then we have

VQhg = Vhg = g ∗ h∗ ∈ L2(G)

by choice of h and 2.19 (b). Moreover, VQhg is nonzero since Qh and g are
nonzero and π is irreducible. By definition of H0 we have VQhg ∈ calH0. On
the other hand, rightinvariance of H0 yields that if g⊥H0, then g ∗ h∗⊥H0,
and we have the desired contradiction.

For part (b), consider the mapping

T : ϕ⊗ η �→ VC−1
π ηϕ ,

defined for all elementary tensors ϕ⊗η satisfying η ∈ dom(C−1
π ). Since C−1

π is
densely defined, these tensors span a dense subspace ofHπ⊗Hπ. Moreover, by
the orthogonality relation (2.15), T is isometric. Hence there exists a unique
linear isometry, also denoted by T : Hπ ⊗ Hπ → L2

π(G). By part (a), it
has dense image, hence T is in fact unitary. We will next show that T is an
intertwining operator. For this purpose observe that (2.16) gives rise to

π(x)C−1
π π(x)∗ = ∆G(x)−1/2C−1

π .

Then we compute
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T (ϕ⊗ π(x)η)(y) = 〈ϕ, π(y)C−1
π π(x)η〉

= 〈ϕ,∆1/2
G π(y)π(x)C−1

π η〉
= ∆G(x)1/2T (ϕ⊗ π)(yx)
= (�(T (ϕ⊗ π)) (y) .

This shows that T intertwines 1⊗ π with �G; the left half is obvious.
Now part (c) is obtained by applying T to the ONB (ηi ⊗ ηj)i,j∈I . Part

(d) follows from (a) and 2.24.

Observe that an ONB as in part (c) of the theorem always exists, since
dom(C−1

π ) is dense; simply apply Gram-Schmidt orthonormalization.
We will next show the announced contribution of π to the Plancherel

formula. For this purpose we need the following definition: For f ∈ L1(G) and
a representation π, let

π(f) =
∫
G

f(x)π(x)dx ,

where convergence is in the weak sense, which for f ∈ L1(G) is guaranteed.
This construction will be seen to yield the operator-valued Fourier trans-
form, which is discussed in more detail in Chapter 3. We postpone a more
complete discussion of the Fourier transform to that chapter, and only show
the following result.

Theorem 2.34. Let π be a discrete series representation. Denote by Pπ the
projection onto L2

π(G). Then, for all f ∈ L1(G) ∩ L2(G), π(f)C−1
π extends to

a Hilbert-Schmidt operator, with

‖π(f)C−1
π ‖ = ‖Pπ(f)‖ .

Proof. Let an ONB (ηi)i∈I ⊂ dom(C−1
π ) of Hπ be given. Then by part (c) of

the previous theorem, we can compute the norm of Pπ(f) as

‖Pπ(f)‖2 =
∑
i,j∈I

∣∣∣〈f, VC−1
π ηj

ηi〉
∣∣∣2

=
∑
i,j∈I

∣∣∣∣
∫
G

f(x)〈ηi, π(x)C−1
π ηj〉dx

∣∣∣∣
2

=
∑
i,j∈I

|〈π(f)C−1
π ηj , ηi〉|2 ,

where the last equation used the definition of the weak operator integral. But
the last term is just the Hilbert-Schmidt norm of π(f)C−1

π .

Let us now give a few examples for which the discrete series approach can-
not work. Clearly, if the underlying group is compact, then every irreducible
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representation is in the discrete series: Wavelet coefficients are bounded func-
tions and the Haar measure is finite, hence every wavelet coefficient is trivially
in L2. At the other end of the scale we have the reals: Every irreducible rep-
resentation is a character, i.e. a group homomorphism R → T. Matrix coeffi-
cients are constant multiples of that character, hence never square-integrable.
The following theorem extends this observation to a larger class. The result
is probably folklore, though I am not aware of a reference.

Theorem 2.35. Let G be a SIN-group, i.e., every neighborhood of unity
contains a conjugation-invariant neighborhood. If G has a discrete series rep-
resentation, then G is compact.
In particular, if G is discrete and has a discrete series representation, then
G is finite. If G is abelian and has a discrete series representation, then G is
compact.

Proof. Note that SIN-groups are unimodular: For any conjugation-invariant
neighborhood U of unity, and any x ∈ G we have |Ux| = |x−1Ux| = |U |.

Now let π be a discrete series representation. The first step consists in
showing that dim(Hπ) is finite. For this purpose pick a conjugation-invariant
neighborhood of unity such that π(111U ) �= 0. The existence of such a neighbor-
hood is seen as follows: Since the characteristic functions of a neighborhood
base at unity span a dense subspace of L1(G), we would otherwise obtain
π(f) = 0 for all f ∈ L1(G). This would contradict [35, 13.3.1], hence U exists.

We next show that π(111U ) is an intertwining operator. Using conjugation-
invariance of U and rightinvariance of Haar measure, we find

〈φ, π (111U )π(y)η〉 =
∫
G

111U (x)〈φ, π(x)π(y)η〉dµG(x)

=
∫
U

〈φ, π(xy)η〉dµG(x)

=
∫
Uy

〈φ, π(x)η〉dµG(x)

=
∫
yU

〈φ, π(x)η〉dµG(x)

=
∫
U

〈φ, π(yx)η〉dµG(x)

= 〈φ, π(y)π (111U ) η〉.

Hence, by Schur’s lemma, π(111U ) is a scalar, which is nonzero by choice of 111U .
On the other hand, π(111U ) is Hilbert-Schmidt. Hence dim(Hπ) <∞.

Now assume that G is not compact. Since G is σ-compact and locally
compact, there is a sequence (Cn)n∈N of compact sets in G with the property
that A ⊂ G is compact iff there exists n ∈ N such that A ⊂ Cn. Pick a
sequence (xn)n∈N ⊂ G with xn ∈ G \ Cn. Then for every compact set A ⊂ G
there exists nA ∈ N with xk �∈ C for all k ≥ nA, and this property is inherited
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by subsequences. Since dim(Hπ) < ∞, we may assume that Hπ = C
n and

π(G) ⊂ U(n). Since U(n) is compact, passing to a subsequence allows the
assumption that π(xn) → S ∈ U(n). Picking any unit vector η, we thus arrive
at

Vη(Sη)(xn) = 〈Sη, π(xn)η〉 → ‖Sη‖2 = 1 .

On the other hand, Vη(Sη) vanishes at infinity, by 2.19, which yields the
desired contradiction.

Note that the somewhat complicated choice of the sequence xn is only
made to avoid that any subsequence is relatively compact.

Let us close with an example that cannot be covered by the results in this
section.

Example 2.36. Dyadic wavelet transform. This construction was first con-
sidered by Mallat and Zhang [92], though without referring to any group
structure. We consider the group H = R � Z, where Z acts by powers of 2.
Hence H is the subgroup of the ax+ b-group generated by R×{0} and (0, 2);
let’s call it the 2kx+ b-group. We are interested in admissible vectors for the
restriction of the quasiregular representation from Example 2.28 to H . An
easy adaptation of the calculations there yields

‖Vηf‖22 =
∫

R

|f̂(ω)|2Φη(ω)dω , (2.31)

where the function Φη is given by

Φη(ω) =
∑
n∈Z

|η̂(2nω)|2 .

For the proof of a more general result we refer the reader to Theorem 5.8
below.

Unlike the previous examples, this representation is not irreducible: Con-
sider a function f such that f̂ is supported in [1, 1.5], and η with supp(η̂) ⊂
[1.5, 2]. Then Φη = 0 on the support of f , and thus (2.31) implies Vηf = 0.

On the other hand, (2.31) yields the admissibility criterion

η is admissible ⇔ Φη ≡ 1 ,

and it is easy to construct such functions, say η̂ = 111[−2,−1] + 111[1,2]. Hence
we have found a representation which is not covered by the discrete series
case. As a matter of fact, π does not contain irreducible subrepresentation:
Suppose that H ⊂ L2(R) is an irreducible subspace. Since π has admissible
vectors, the subrepresentation also does, by Proposition 2.14. Let η ∈ H be
admissible. Then π(G)η spans H, therefore relation (2.31) yields that

H⊥ = {ϕ ∈ L2(R) : Vηϕ = 0}
= {ϕ ∈ L2(R) : |supp(ϕ̂) ∩ supp(Φη|) = 0} .
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But the orthogonal complement of the latter space is easily computed, yielding

H = {ϕ ∈ L2(R) : supp(ϕ̂) ⊂ supp(Φη)}

Recall that supp denotes the measure-theoretic support, and inclusion is un-
derstood up to sets of measure zero. Now it is easy to construct two nonzero
vectors ξ1 and ξ2 such that Φξ1 and Φξ2 have disjoint supports, both con-
tained in supp(Φη). To see this observe that Φη(2nω) = Φη(ω) implies that
supp(Φη) ⊂ ∪n∈Z2nA, where A = [1, 2[∩supp(Φη). In particular, A has pos-
itive measure. Hence, if we pick B1, B2 ⊂ A disjoint with positive measure,
and let ξ̂i = 111Bi , we obtain two nonzero functions such that supp(Φξ1) and
supp(Φξ2 ) are disjoint. But then (2.31) implies Vξ1ξ2 = 0, in particular ξ1 is
not cyclic for H.

Thus π has no irreducible subrepresentation, in particular Theorem 2.31
has significance either.

2.5 Selfadjoint Convolution Idempotents and Support
Properties

We now continue the discussion of the subspaces of L2(G) which arise as im-
age spaces of wavelet transforms. The following notion describes the associated
reproducing kernels. After proving this observation, we will draw several con-
sequences from the properties of the reproducing kernel spaces. In particular,
we study support properties of wavelet transforms, as well as the existence of
admissible vectors for λG.

Definition 2.37. S ∈ L2(G) is called (right selfadjoint) convolution
idempotent if S = S ∗ S∗ = S∗.

Convolution idempotents in L1(G) have been studied for instance in [59],
and generally the existence of such idempotents is a strong restriction on
the group. By contrast, we will see that L2-convolution idempotents exist in
abundance. But first the connection between convolution idempotents and
generalized wavelet transforms.

Proposition 2.38. (a) Let S ∈ L2(G) be a convolution idempotent, and de-
note by H the closed leftinvariant subspace generated by S, i.e., H =
span(λG(G)S). Then the projection onto H is given by right convolution
with S, i.e. H = L2(G)∗S = {g ∗S : g ∈ L2(G). Moreover, if T is another
convolution idempotent in H with H = L2(G) ∗ T , then T = S.

(b) S is a selfadjoint convolution idempotent iff there exists a representation
π and an admissible η ∈ Hπ such that S = Vηη. Consequently, the image
spaces of continuous wavelet transforms are precisely the spaces of the
form L2(G) ∗ S.
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Proof. For (a) observe that clearly f = f ∗ S holds for all f ∈ span(λG(G)S),
as well as f ∗ S = 0 for all f⊥H. Hence on a dense subspace VS = PH, the
latter being the projection onto H. Since VS is closed, the result follows. The
uniqueness statement follows from T = T ∗ S and T = T ∗, hence

T = S∗ ∗ T ∗ = S ∗ T = S .

The “if”-part of (b) is due to 2.16 (c). For the other direction let π be the
restriction of λG to H = L2(G) ∗ S. Then f = f ∗ S = VSf for f ∈ H shows
that the inclusion map is a continuous wavelet transform. The last statement
is obvious by now.

The next property will be relevant for sampling theorems, allowing to
conclude uniform convergence from L2-convergence. Note that this observation
holds for a larger class of reproducing kernel Hilbert spaces.

Proposition 2.39. Let S ∈ L2(G) be a selfadjoint convolution idempotent,
then for all f ∈ H = L2(G) ∗ S we have ‖f‖∞ ≤ ‖f‖2‖S‖2.

Proof. This follows from the Cauchy-Schwarz inequality:

|f(x)| = |(f ∗ S∗)(x)| = |〈f, λG(x)S〉| ≤ ‖f‖2‖S‖2 .

The following proposition gives rise to a somewhat subtle distinction be-
tween unimodular and nonunimodular groups: In the unimodular case, any
invariant subspace of L2(G) which has admissible vectors possesses one in the
form of a convolution idempotent. This will not be the case for nonunimodular
groups, as will be clarified in Remark 2.43 below.

Proposition 2.40. Suppose that H ⊂ L2(G) is closed and leftinvariant. As-
sume that H has an admissible vector η with η∗ ∈ L2(G). Then there exists a
right convolution idempotent S ∈ H such that H = L2(G) ∗ S. In particular,
in such a case H ⊂ C0(G).

Proof. Suppose that an admissible vector η ∈ H exists, then the projection
onto H is given by Vη∗Vη. Since Vη is bounded, 2.19 (d) implies that S =
η∗∗η = V ∗

η η
∗ ∈ H. Hence, using associativity of convolution, f = (f ∗η∗)∗η =

f ∗S, for all f ∈ H, whereas f ∗(η∗∗η) = 0, for f⊥H. ThereforeH = L2(G)∗S,
and S is the desired selfadjoint convolution idempotent.

We use the proposition to prove the following result due to Rieffel [102].

Proposition 2.41. Let G be a unimodular group and H ⊂ L2(G) a closed,
leftinvariant subspace. Then H contains a nonzero selfadjoint convolution
idempotent.
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Proof. We start by choosing a nonzero bounded vector φ ∈ H: Pick φ0 ∈
Cc(G) with nontrivial projection PHφ in H. Then φ0 is a bounded vector
by 2.19(b), and Proposition 2.14 implies that φ = PHφ0 is bounded as well.
Pick a nonzero spectral projection Q of the selfadjoint operator U = V ∗

φ Vφ
corresponding to a subset in R

+ bounded away from zero. Then U restricted to
K := Q(H) is a topological mapping. It follows that as a mapping K → Vφ(K)
the operator Vφ = VQφ is topological. Now Proposition 2.16 (b) ensures the
existence of an admissible vector η in K, and then Proposition 2.40 entails
that K is generated by a convolution idempotent. (Note that the last step was
the only instance where we used that G is unimodular; otherwise we have no
way of checking η∗ ∈ L2(G).)

Our next aim is to decide for which unimodular groups G the regular
representation itself allows admissible vectors. Note that in view of Proposition
2.14, the existence of admissible vectors for λG provides admissible vectors for
all subrepresentations as well. Hence for these groups the necessary condition
π < λG is also sufficient, which yields a complete answer at least to the
existence part of our problem. For unimodular groups, this approach turns
out to be too bold, except for the somewhat trivial case of discrete groups.
The following theorem first appeared in [53], with a somewhat sketchy proof.

Theorem 2.42. Let G be unimodular. Then λG has an admissible vector iff
G is discrete.

Proof. First, if G is discrete, then the indicator function of {eG}, where eG is
the neutral element of G, is admissible: The associated wavelet transform is
the identity operator. Now assume that λG has an admissible vector, then by
Proposition 2.40 L2(G) consists of bounded continuous functions, in particular
L2(G) ⊂ L∞(G). In order to show that this implies discreteness of G, we first
show that for G nondiscrete there exist measurable sets of arbitrarily small,
positive measure. For suppose otherwise, i.e.,

ε := inf{|A| : A ⊂ G Borel , |A| > 0} > 0 .

Then the infimum is actually attained: For n ∈ N there exists Un such that
|Un| < ε+ 1/n. Using regularity, we find Vn ⊃ Un open with |Vn \Un| < 1/n.
Pick xn ∈ Vn, then x−1

n Vn is an open neighborhood of unity in G. It follows
that letting for arbitrary N ∈ N,

WN =
N⋂
n=1

x−1
n Vn

defines a decreasing series of open neighborhoods of unity satisfying

ε ≤ |WN | ≤ |VN | < ε + 2/N .

But then U =
⋂
n∈N

Un has measure ε.
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Next pick C ⊂ U ⊂ V , C compact, V open with µ(V \ C) < ε. C and
V exist by regularity of Haar measure. Then V \ C is open and has zero
measure (by minimality of ε), hence U = V is open. If U contains two distinct
points, they can be divided by two disjoint open sets contained in U , which
contradicts the minimality of µ(U). Hence U is an open singleton, and G is
discrete, contrary to our assumptions.

Now suppose G is nondiscrete. Pick a sequence of Borel sets Un ⊂ G with
the 0 < |Un| < n−6, and define f =

∑
n∈N

n · 111Un . Since ‖n111Un‖2 ≤ n−2,
the sum converges in L2(G), but clearly the limit is not in L∞(G). Hence
L2(G) �⊂ L∞(G).

Remark 2.43. We note that if G is nonunimodular and type I, Theorem 4.22
provides the existence of an admissible vector for λG, even though G is ob-
viously nondiscrete. Hence there is a sharp contrast between the unimodular
and the nonunimodular setting.

The admissible vector for λG also shows that the assumption η∗ ∈ L2(G)
in Proposition 2.40 cannot be dispensed with: If η is admissible for λG and
such that η∗ ∈ L2(G), the Proposition implies L2(G) ⊂ C0(G). But then the
proof of 2.42 can be adapted to show that G is discrete, which contradicts the
fact that G is nonunimodular.

As one application of the connection between wavelets and convolution
idempotents, we want to prove that wavelet coefficients have noncompact
supports, at least for a large class of groups. We will see later on that in the
abelian setting these results are related to the qualitative uncertainty property,
stating that any L2-function having support of finite Lebesgue measure both
in time and frequency domains must be zero. The analog of that theorem for
nonabelian groups will be given in Corollary 4.28 below.

But now let us show the result concerning the supports of wavelet coeffi-
cients. It was established by Wilczok both for the one-dimensional continuous
wavelet transform and for the windowed Fourier transform [115], but the rea-
soning can be extended to a much larger class of groups. This was done by
Arnal and Ludwig [14], who showed the unimodular version of 2.45, by an
adaptation of the proof by Amrein and Berthier [5]. The only contribution of
the author is realizing that with minor adjustments the proof goes through in
the general case as well. First a small lemma is needed. Recall for this lemma
that the connected component of a locally compact group is by definition
the connected component of the unit element. It is a closed subgroup.

Lemma 2.44. Let G be a locally compact group with noncompact connected
component. Let V ⊂ W be two measurable subsets of G such that 0 �=
|V |, |W | <∞. Then, whenever |V | > ε > 0, there exists x ∈ G such that

|V | − 2ε < |xV ∩W | < |V | − ε . (2.32)

Proof. The function φ : x �→ |xV ∩W | = 〈111W , λG(x)111V 〉 vanishes at infin-
ity, being a matrix coefficient associated to two L2-functions (confer Propo-
sition 2.5). Hence, if G0 is the connected component of G, φ(G0) ⊂ R

+ is a
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connected set, and since G0 is noncompact, the closure of φ(G0) contains 0.
On the other hand, φ(e) = |V |, hence φ(G) contains the half-open interval
]0, |V |]. Hence there exists x ∈ G0 such that |V | − 2ε < φ(x) < |V | − ε, which
is (2.32).

Theorem 2.45. Let G be a locally compact group with noncompact connected
component. Let f ∈ L2(G) and suppose that there exists S ∈ L2(G) such that
f = f ∗ S and S∗ ∈ L2(G). If f is supported in a set of finite Haar measure,
then f = 0.

In particular, if η ∈ Hπ is admissible for the representation π, and Vηϕ is
supported in a set of finite Haar measure, for some ϕ ∈ Hπ, then ϕ = 0.

Proof. Suppose that f �= 0 fulfills f = f ∗ S, and in addition C = f−1(C \
{0}) has finite Haar measure. We pick x0 = e, and apply the last lemma to
recursively pick x1, x2, . . . ∈ G satisfying

|C| − 1
2k−1

< |xkC ∩Ck−1| < |C| −
1
2k
, k ∈ N, (2.33)

where Ck−1 =
⋃k−1
i=0 xiC ⊃ C. Then, if we define C∞ =

⋃
i∈N

Ci, we find that
|C∞| <∞. Indeed, by (2.33), we have

|Ck+1| = |Ck ∪ xk+1C| = |Ck|+ |xk+1C \ Ck|

= |Ck|+ |xk+1C| − |Ck+1 ∩ xkCk| ≤ |Ck|+
1
2k

,

which entails the desired finiteness.
Now define ϕ = 111C∞ , and consider the operator K : g �→ ϕ·(g∗S). Writing

K(g)(x) = ϕ(x)
∫
G

g(y)S(y−1x)dy =
∫
G

g(y)ϕ(x)S(y−1x)dy

shows that K is an integral operator with kernel (x, y) �→ ϕ(x)S(y−1x). Since
∫
G

∫
G

|ϕ(x)S(y−1x)|2dydx = µG(C∞)‖S∗‖22 <∞ ,

K is a Hilbert-Schmidt operator [101, VI.23], hence compact.
On the other hand, (λG(xk)f)∗S = λG(xk)f and supp(λG(xk)f) = xkC ⊂

C∞ show that λG(xk)f is an eigenvector of K for the eigenvalue 1. In addition,
∣∣∣∣∣supp(λG(xk)f) \

k−1⋃
i=0

supp(λG(xi)f)

∣∣∣∣∣ > 0

by the lower inequality of (2.33), hence the λG(xk)f are linearly independent.
But this means that the eigenspace of K for the eigenvalue 1 is infinite-
dimensional, which contradicts the compactness.
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The condition concerning the connected component is clearly necessary:
If G is a compact group, the supports of the wavelet transforms are trivially
of finite measure, yet there are many nontrivial convolution idempotents in
L2(G), arising for instance from irreducible representations.

Using Theorem 2.45 and Proposition 2.40, we can formulate the following
sharpening of Theorem 2.42:

Corollary 2.46. Let G be a locally compact unimodular group with noncom-
pact connected component. Suppose that H ⊂ L2(G) is closed and leftinvari-
ant. If H contains a nonzero function whose support has finite Haar measure,
there is no admissible vector for H.

This concludes the discussion of the relations between continuous wavelet
transforms and λG. Let us summarize the main results:

• A necessary condition for π to have admissible vectors is that π < λG. For
nondiscrete unimodular groups, it is not sufficient.

• Embedding π into λG and making suitable identifications, we may assume
that Hπ = L2(G) ∗ S, with S a selfadjoint convolution idempotent.

• Admissible vectors in Hπ are those η for which f �→ f ∗ η∗ defines an
isometry on Hπ . For Hπ = L2(G) ∗ S, these vectors are characterized by
η∗ ∗ η = S.

Therefore, in order to give a complete classification of representations with
admissible vectors, we are faced with the following list of tasks:

T1 Give a concrete description of the closed, leftinvariant subspaces of
L2(G). In terms of the commuting algebra: Characterize the projections
in VNr(G).

T2 Given a leftinvariant subspace H, give admissibility criteria, i.e. cri-
teria for a right convolution operators g �→ g ∗ f∗, with f ∈ H, to be
isometric.

T3 Characterize the subspaces H for which the admissibility conditions can
be fulfilled. Equivalently, characterize the right convolution idempotents
S.

T4 Given a concrete representation π, decide whether π < λG; if yes, make
the criteria for T1 - T3 explicit.

Remark 2.47. Item T4 accounts for the fact that the discussion of the problem
in L2(G), while it makes perfect sense from a representation-theoretic point
of view, limits the scope of the characterizations for concrete cases, where the
realization of the representation is usually not given by left action on some
suitable subspace of L2(G). Indeed, in the case of the original wavelets arising
from the ax + b-group, the focus of interest is on the action of that group
on the real line by affine transformations, and the corresponding quasiregu-
lar representation. First finding an appropriate embedding into L2(G) hence
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turns out to be a serious obstacle which must be overcome before the results
presented here can be applied. However, for type I groups direct integral de-
compositions provide a systematic way of translating questions of containment
of representations to the problem of absolute continuity of measures on the
dual, and Chapter 5 contains a large class of examples to which this scheme
is applicable.

2.6 Discretized Transforms and Sampling

In this section we want to embed the discretization problem into the L2-
setting, in a way which is complementary to the treatment of continuous
transforms. In effect, we will only be able to do this in a satisfactory manner
for unimodular groups.

Definition 2.48. A family (ηx)x∈X of vectors in a Hilbert space H is called
a frame if the associated coefficient operator is a topological embedding into
�2(X), i.e., if there exist constants 0 < A ≤ B (called frame constants)
such that

A
∑
x∈X

|〈φ, ηx〉|2 ≤ ‖φ‖2 ≤ B
∑
x∈X

|〈φ, ηx〉|2 .

A frame is tight if A = B, and normalized tight if A = B = 1.

In the terminology established in Section 1.1., a normalized tight frame is
an admissible coherent state system based on a discrete space X with counting
measure. We next formalize the notion of discretization.

Definition 2.49. Let π be a representation and η ∈ Hπ an admissible vector.
Given a discrete subset Γ ⊂ G, the associated discretization of Vη is the
coefficient operator Vη,Γ : Hπ → �2(Γ ) associated to the coherent state system
(π(Γ )η).

Remark 2.50. (1) By 2.11 a discretization of Vη gives rise to the discrete re-
construction formula

f =
1
cη

∑
γ∈Γ

Vηf(γ) π(γ)η ,

which may be viewed as a Riemann sum version of the continuous reconstruc-
tion formula (2.10).
(2) Not all frames of the form π(Γ )η arise as discretizations of continuous
transforms, i.e., η need not be admissible. For instance, there exist frames
associated to representations which are only square-integrable on a suitable
quotient of the group [9]; these representations do not even possess admissible
vectors in the sense discussed here.

On the other hand, the admissibility of functions giving rise to wavelet
frames has been established in various settings, e.g., [33, 48, 8], which seems
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to indicate that under certain topological conditions on the sampling set there
is a strong connection between discrete and continuous transforms. See also
Proposition 2.60 for the case that the sampling set is a lattice.
(3) We deal with discretization in a rather restrictive way, since only isometries
are admitted. By now there exists extensive literature concerning the construc-
tion of wavelet frames and related constructions such as Gabor frames, see the
monograph [28] and the references therein. We have refrained from discussing
the discretization problem in full depth, since our focus is on Plancherel theory
and its possible uses in connection with discretization.

The same remark applies to the structure of the sampling set: As the
example of multiresolution ONB’s of L2(R) shows, the sampling set need not
be a subgroup, i.e. it is not required to be regular. However, we will mostly
concentrate on regular sampling, i.e., the sampling set will be a subgroup.
It is obvious that the scope of purely group-theoretic techniques for dealing
with irregular sampling will be limited, although examples like multiresolution
ONB’s are intriguing. A possible approach to obtain more general group-
theoretic results, even in the irregular sampling case, could consist in adapting
the techniques developed in [43] for certain discrete series representations (so-
called integrable representations) to a more general setting.

Clearly discretization is closely connected to sampling the continuous
transform. Hence the following notion arises quite naturally:

Definition 2.51. Let G be a locally compact group, Γ ⊂ G. Let H ⊂ L2(G)
be a leftinvariant closed subspace of L2(G) consisting of continuous functions.
We call H a sampling space (with respect to Γ ) if it has the following
two properties:

(S1) There exists a constant cH > 0, such that for all f ∈ H,
∑
γ∈Γ

|f(γ)|2 = cH‖f‖22 .

In other words, the restriction mapping RΓ : H � f �→ (f |Γ ) ∈ �2(Γ ) is a
scalar multiple of an isometry.

(S2) There exists S ∈ H such that every f ∈ H has the expansion

f(x) =
∑
γ∈Γ

f(γ)S(γ−1x) , (2.34)

with convergence both in L2 and uniformly.

The function S from condition (S2) is called sinc-type function. Further-
more, we say that a sampling space has the interpolation property if RΓ
maps onto all of �2(Γ ), i.e. any element in �2(Γ ) can be interpolated by a
function in H.
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It will become apparent below that the Heisenberg group allows a variety
of sampling spaces associated to lattices, but none that has the interpolation
property.

The definition is modelled after the following, prominent example:

Example 2.52 (Whittaker, Shannon, Kotel’nikov). Let G = R, Γ = Z

and
H = {f ∈ L2(R) : supp(f̂) ⊂ [−0.5, 0.5]} .

Then H is a sampling subspace with the interpolation property, with associ-
ated sinc-type function

S(x) = sinc(x) =
sin(πx)
πx

.

A short proof of this fact, which uses the notions developed here, can be found
in Remark 2.55 (1) below.

Our further discussion requires some basic and widely known facts about
tight frames.

Proposition 2.53. Let (ηi)i∈I ⊂ H be a tight frame with frame constant c.

(a) If H′ ⊂ H is a closed subspace and P : H → H′ is the projection onto H′,
then (Pηi)i∈I is a tight frame of H′ with frame constant c.

(b) Suppose that c = 1. Then (ηi)i∈I is an ONB iff ‖ηi‖ = 1 for all i ∈ I.
(c) If ‖ηi‖ = ‖ηj‖, for all i, j ∈ I, then ‖ηi‖2 ≤ c.
(d) (ηi)i∈I is an orthonormal basis iff c = 1 and the coefficient operator is

onto.

Proof. Part (a) follows from the fact that on H′ the coefficient operator asso-
ciated to (Pηi)i∈I coincides with the coefficient operator associated to (ηi)i∈I .
The “only-if”-part of (b) is clear. The “if”-part follows from

1 = ‖ηi‖2 =
∑
i∈I
|〈ηi, ηj〉|2 = 1 +

∑
i�=j
|〈ηi, ηj〉|2 ,

whence 〈ηi, ηj〉 vanishes for i �= j. Part (c) follows from a similar argument.
The “only if” part of (d) is obvious. For the converse let δi ∈ �2(I) be the
Kronecker-delta at i, and let T : H → �2(I) denote the coefficient operator.
Then 〈T ∗δi, ϕ〉 = 〈δi, Tϕ〉 = 〈ηi, ϕ〉 for all ϕ ∈ H implies T ∗δi = ηi, or
Tηi = δi (T is by assumption unitary), which is the desired orthonormality
relation.

The following proposition notes an elementary connection between sam-
pling and discretization.

Proposition 2.54. Let η ∈ Hπ be admissible, and such that π(Γ )η a tight
frame with frame constant cη. Then H = Vη(Hπ) is a sampling space, and
S = 1

cη
Vηη is the associated sinc-type function for H.
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Proof. Clearly Vη(Hπ) consists of continuous functions. Using the isometry
property of Vη together with the tight frame property of π(Γ )η, we obtain for
all f = Vηφ ∈ H

f = Vηφ = Vη


 1
cη

∑
γ∈Γ

〈φ, π(γ)η〉π(γ)η




=
∑
γ∈Γ

1
cη
Vηφ(γ)Vη(π(γ)η) =

∑
γ∈Γ

f(γ)S(γ−1·) ,

with convergence in ‖ · ‖2. Uniform convergence follows from this by Proposi-
tion 2.39, since Vη(Hπ) = L2(G) ∗ Vηη.

Remark 2.55. (1) The original sampling theorem in 2.52 can be seen to fit into
this setting. If we pick η to be the sinc-function, we find that Vη : H → L2(R) is
just the inclusion map, hence η is admissible. Moreover, the Fourier transform
of (λR(n)η)n∈Z

yields precisely the Fourier basis of L2([−1/2, 1/2]). Hence
Proposition 2.54 applies.
(2) The proposition shows that various results on the relation between discrete
wavelet or Weyl-Heisenberg systems and continuous ones give rise to sampling
theorems: For the wavelet case, the underlying group is the ax + b-group. A
result by Daubechies [33] ensures that every wavelet giving rise to a tight frame
is in fact an admissible vector (up to normalization), hence we are precisely in
the setting of the proposition. Similarly for discrete Weyl-Heisenberg system,
where the underlying group is the reduced Heisenberg group we encountered in
Example 2.27. Here admissibility of the window function is trivial. Again the
expansion coefficients are sampled values of the windowed Fourier transform,
which is the underlying continuous wavelet transform.

The following theorem serves various purposes. First of all it shows that,
at least for a unimodular groups, the definition of a sampling space is redun-
dant: Property (S2) follows from (S1). Moreover it shows that every sampling
space can be obtained from the construction in Proposition 2.54, hence the
construction of sampling subspaces and the discretization problem are (in a
somewhat abstract sense) equivalent.

Theorem 2.56. Assume that G is unimodular. Let H ⊂ L2(G) be a leftin-
variant closed space consisting of continuous functions, and assume that it has
property (S1). Then H is a sampling subspace. More precisely, there exists a
unique selfadjoint convolution idempotent S, such that 1

cH
S is the associated

sinc-type function, and in addition H = L2(G) ∗ S. In particular,

∀f ∈ H , ∀γ ∈ Γ : f(γ) = 〈f, λG(γ)S〉 ,

and thus λG(Γ )S is a tight frame for H. H has arbitrary interpolation iff
λG(Γ ) 1√

cH
S is an ONB of H.
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Proof. Define Sγ = R∗
Γ (δγ), where δγ ∈ �2(Γ ) is the Kronecker delta at γ.

Then 1
cη
R∗
ΓRΓ = IdH shows that

f =
∑
γ∈Γ

f(γ)
1
cH
Sγ , (2.35)

with convergence in the norm. The orthogonal projection P : �2(Γ ) → RΓ (H)
is given by P = 1

cH
RΓR

∗
Γ . Moreover, we compute

f(γ) = 〈RΓ f, δγ〉 = 〈f,R∗
Γ δγ〉 = 〈f, Sγ〉 . (2.36)

Next use Zorn’s lemma to pick a maximal family (Hi)i∈I of nontrivial
pairwise orthogonal closed subspaces of the form Hi = L2(G) ∗ Si, where the
Si are selfadjoint convolution idempotents in L2(G). Then Proposition 2.41
implies that H =

⊕
i∈I Hi; this is the only place where we need that G is

unimodular. Since right convolution with Si is the orthogonal projection onto
Hi, equation (2.36) implies for all f ∈ Hi

〈f, Sγ ∗ Si〉 = 〈f ∗ Si, Sγ〉 = 〈f, Sγ〉 = f(γ) = 〈f, λG(γ)Si〉 .

Here the first equality used 2.19(d) and Si = S∗
i , and the second one used

f = f ∗ Si. As a consequence, Sγ ∗ Si = λG(γ)Si. For all γ ∈ Γ ,

Sγ =
∑
i∈I

Sγ ∗ Si =
∑
i∈I

λG(γ)Si , (2.37)

with unconditionally converging sums. Since λG(γ) is unitary, we can thus
define

S =
∑
i∈I

Si

and conclude from (2.37) that

Sγ = λ(γ)S .

Moreover, Si = S∗
i for all i ∈ I implies S = S∗. Finally, for all f ∈ H,

(f ∗ S∗)(x) = 〈f, λG(x)S〉 = 〈f,
∑
i∈I

λG(x)Si〉 =

(∑
i∈I

f ∗ Si

)
(x) = f(x) .

Hence H = L2(G) ∗ S, and uniqueness of S was noted in Proposition 2.38.
Now (2.35) and (2.37) shows that for 1

cHS to be the associated sinc-type
function, only the uniform convergence of the sampling expansion remains to
be shown, which follows from the normconvergence by Proposition 2.39. The
statement concerning the tight frame property of λG(Γ )S is now obvious. The
last statement follows from Proposition 2.53 (d).
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We next collect some additional observations which concerning regular
sampling.

Definition 2.57. A discrete subgroup Γ < G is called a lattice if the quotient
G/Γ carries a finite invariant measure. If a lattice exists, G is unimodular.
If A ⊂ G is any Borel transversal mod Γ , which exists by 3.4, we let

covol(Γ ) = |A| ,

which is independent of the choice of A.

The well-definedness of covol(Γ ) is immediate from Weil’s integral formula
(2.2). The existence of a lattice implies that G is unimodular.

Proposition 2.58. Let Γ < G, and suppose that there exists a frame of the
form π(Γ )ϕ, with ϕ ∈ Hπ. Then there exist η ∈ Hπ such that π(Γ )η is a tight
frame.

Proof. First note that up to normalization the tight frame property is precisely
admissibility for the restriction of π to Γ . Hence the statement is immediate
from 2.16 (b).

Proposition 2.59. Let G be unimodular and Γ < G a discrete subgroup .
Assume that H ⊂ L2(G) is a sampling subspace for Γ . Then Γ is a lattice,
with covol(Γ ) = 1

cH
.

Proof. If f ∈ H is any nonzero vector, and A is any measurable transversal,
we compute

‖f‖2 =
∫
A

∑
γ∈Γ

|f(xγ)|2dµG(x) =
∫
A

cH‖λG(x−1)f‖2dµG(x)

= ‖f‖2cH covol(Γ ) .

The following general observation was pointed out to the author by K.
Gröchenig:

Proposition 2.60. Let Γ < G be a lattice and assume that π(Γ )η is a nor-
malized tight frame. Then 1

covol(Γ )η is admissible, i.e., the frame is a dis-
cretization of a continuous wavelet transform.

Proof. For arbitrary φ ∈ Hπ and any measurable transversal A mod Γ

‖Vηφ‖22 =
∫
A

∑
γ∈Γ

|〈φ, π(xγ)η〉|2dx

=
∫
A

∑
γ∈Γ

|〈π(x)∗φ, π(γ)η〉|2dx

=
∫
A

‖λG(x−1)φ‖2dx

= |A|‖φ‖2 .
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The next proposition gives a representation-theoretic criterion for sampling
spaces with the interpolation property.

Proposition 2.61. Let Γ < G be a lattice. There exists a sampling space
H ⊂ L2(G) with interpolation property with respect to Γ iff there exists a
representation π of G such that π|Γ 
 λΓ .

Proof. For the “only-if” part pick π = λG|H. For the “if”-part, if T : H →
�2(Γ ) is a unitary equivalence, then η = T−1(δ0) is such that π(Γ )η is an
ONB of H. Now the previous proposition implies that Vη : Hπ → L2(G) is an
isometric embedding, and H = Vη(Hπ) has the interpolation property.

At least for unimodular groups, Theorem 2.56 implies that the discretiza-
tion problem fits quite well into the framework developed for the continuous
transforms. In particular the construction of sampling spaces and the dis-
cretization of continuous transforms are equivalent problems. We thus find
one more task for our list:

T5 Characterize those convolution idempotents S ∈ L2(G) such that in
addition λG(Γ )S is a tight frame ofH = L2(G)∗S. For the interpolation
property, decide which of these frames are in fact ONB’s.

2.7 The Toy Example

In this section, we solve T1 through T5 for the group G = R. This example
will provide orientation for the further development, since in this setting the
solutions turn out to be fairly simple exercises in real Fourier analysis; maybe
with the exception of T4, which requires more sophisticated arguments.

As we saw in Section 2.3 , every representation of interest can be realized on
some translationinvariant subspace on L2(R). Moreover, in this setting wavelet
transforms are convolution operators, hence it is quite natural to expect that
the convolution theorem plays a role. Usually the convolution theorem is given
on L1, however for our purposes the following L2-version will be more useful:

Theorem 2.62. Let f, g ∈ L2(R). Then f ∗ g∗ ∈ L2(R) iff f̂ ĝ ∈ L2(R̂). In
that case, (f ∗ g∗)∧ = f̂ ĝ.

Proof. The computation

(f ∗ g∗)(x) = 〈f, λR(x)g〉
= 〈f̂ , e−2πix·ĝ〉

=
∫

R

f̂(ω)ĝ(ω)e2πixωdx

shows that the convolution theorem boils down to the ”extended Plancherel
formula” (2.22) proved in Example 2.28.
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Solution to T1

Given a measurable subset U ⊂ R̂, define

HU = {f ∈ L2(R) : supp(f̂) ⊂ U} ,

where as usual inclusion is understood up to sets of measure zero. Then it is
straightforward to show that HU is a closed, translationinvariant subspace of
L2(R). The following theorem, which is essentially [104, 9.16], shows that this
construction of translationinvariant subspaces is exhaustive.

Theorem 2.63. The mapping

{U ⊂ R̂ measurable }/ nullsets −→ {H ⊂ L2(G) closed, leftinvariant} ,

U �→ HU

is a bijection.

Solution to T2

Theorem 2.64. Let f ∈ HU , for some measurable U ⊂ R̂.

f is admissible ⇐⇒ |f̂ | = 1 a.e. on U , (2.38)

f is a bounded vector ⇐⇒ f̂ ∈ L∞(U) , (2.39)

f is cyclic ⇐⇒ f̂ �= 0 (almost everywhere on U) . (2.40)

Proof. Given any f ∈ L2(R), denote byMf̂ the multiplication operator with f̂ ,

with the natural domain {g ∈ L2(R) : f̂g ∈ L2(R)}. Then the L2-convolution
theorem implies that Vf and Mf̂ are conjugate under the Plancherel trans-
form, including the domains. Now the equivalences follow immediately.

Solution to T3

Theorem 2.65. HU ⊂ L2(R) has admissible vectors iff |U | <∞. S ∈ L2(R)
is a convolution idempotent iff S = SU := 111∨U , for U ⊂ R̂ with |U | <∞.

Proof. Any admissible vector f ∈ HU has to fulfill |f̂ | = 1 on U , and of
course f̂ ∈ L2(U). Thus follows the first condition. The characterization of
convolution idempotents is immediate from the convolution theorem and f̂∗ =
f̂ .

Remark 2.66. The arguments for T1 through T3 generalize directly to locally
compact abelian groups G. Simply replace R̂ by the character group Ĝ and
Lebesgue measure by Haar measure on that group. This applies in particular
to the cases G = T,Z.
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Support Properties and the Qualitative Uncertainty Principle

Combining Theorems 2.65 and 2.45 yields the qualitative uncertainty principle
over the reals:

Corollary 2.67. If f ∈ L2(R) fulfills |supp(f)| < ∞ and |supp(f̂)| < ∞,
then f = 0.

Proof. |supp(f̂)| < ∞ implies f = f ∗ S = VSf for a suitable convolution
idempotent in L2(R). Hence 2.45 applies.

Solution to T4

The arguments in this subsection were developed together with Keith Taylor.
Suppose that (π,Hπ) is an arbitrary representation of R. A detailed descrip-
tion of such representation is obtainable by a combination of Stone’s theorem
and the spectral theorem for (possibly unbounded) operators. More precisely,
Stone’s theorem [101, VIII.8] implies the existence of an infinitesimal gener-
ator, i.e., a densely defined selfadjoint operator A on Hπ, such that

π(t) = e−2πitA .

In order to understand this formula, we need to recall the spectral theorem
[101, Chapter VIII]. Let Π denote the spectral measure of A. Then Π is
a map from the Borel σ-algebra of R to the set of orthogonal projections
on H mapping disjoint sets to projections with orthogonal ranges, satisfying
Π(A ∩ B) = Π(A) ◦ Π(B) as well as Π(R) = IdHπ . Π assigns to each pair
of vectors x, y ∈ dom(A) a complex measure Πx,y on R by letting Πx,y(E) =
〈Π(E)x, y〉. The spectral measure describes A via

〈Ax, y〉 =
∫ ⊕

R

sdΠx,y(s) .

Th shorthand for this formula we use

A =
∫

R

sdΠ(s) .

The spectral theorem can be viewed as a diagonalization of the selfadjoint op-
erator. In particular, exponentiating amounts to exponentiating the diagonal
elements, hence

〈e−2πitAx, y〉 =
∫ ⊕

R

e−2πistdΠx,y(s) ,

defines the unitary operator e−2πitA.
We want to decide in terms of the spectral measure whether admissible

vectors exist. Recall that admissible vectors are in particular cyclic. The fol-
lowing lemma translates cyclicity into a property of the spectral measure, for
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which the construction of the representation π takes a somewhat more con-
crete form. The result is well-known, see for instance [95, Chapter I, Proposi-
tion 7.3]. For the proof of the Lemma we need one more ingredient, namely the
Fourier-Stieltjes transform on R. For this purpose let M(R) denote the space
of complex (finite) measures on R. For every µ ∈M(R), the exponentials are
absolutely integrable with respect to |µ|, hence the Fourier-Stieltjes-transform
µ̂ : R → C of µ, given by

µ̂(ω) =
∫

R

e−2πiωxdµ(x)

is well-defined. The crucial property of the Fourier-Stieltjes transform is that
it is injective on M(R) [45, 4.17]. As a consequence, to be used repeatedly in
the next proof, we conclude for all positive ν ∈ M(R) that the exponentials
are total in L2(R, ν): If 0 �= f ∈ L2(R, ν) ⊂ L1(R, ν), then fν ∈ M(R), and
thus the Fourier-Stieltjes transform of fν is nonzero. But the Fourier-Stieltjes
transform of fν is just the family of scalar products of f with the exponentials,
taken in L2(R, ν).

Lemma 2.68. The following are equivalent:

(i) π is cyclic.
(ii) There exists a positive, finite Borel-measure µ on R and a unitary map

T : Hπ → L2(R, µ) such that, for all B ∈ B(R), we have

Π(B) = T−1PBT , (2.41)

where PB : L2(R, µ) → L2(R, µ) denotes multiplication with 111B, as well
as

π(t) = T−1MtT , (2.42)

where Mt is multiplication with e−2πit·.

The measure µ is unique up to equivalence.

Proof. “(i) ⇒ (ii)”: Let η be a cyclic vector, and define µ = Πη,η. Since µ is
finite, all the characters e−2πit· are in L2(R, µ), and the equality

〈π(t)η, π(s)η〉 =
∫

R

e−2πi(t−s)ωdΠη,η = 〈e−2πit·, e−2πis·〉L2(R,µ)

implies that the mapping π(t)η �→ e−2πit· may be extended linearly to an
isometry T : Hπ → L2(R, µ); here we used that π(R)η spans a dense subspace
of Hπ. It is onto, since T (Hπ is closed and contains the exponentials, which
are total in L2(R, µ).
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For equation (2.41), we compute

〈TΠ(B)π(s)η, e−2πit·〉 = 〈Π(B)π(s)η, π(t)η〉

=
∫
B

e−2πi(s−t)λdΠη,η(λ)

=
∫

R

111B(λ)e−2πisλe−itλdµ(λ)

= 〈PBT (π(s)η), e−2πit·〉 ,

and thus TΠ(B) = PBT : The exponentials are total in L2(R, µ), and η is
cyclic. Equation (2.42) is immediate on π(R)η, and extends to all of H in the
same way.
“(ii) ⇒ (i)”: The totality of the exponentials in L2(R, µ) implies that the
constant function 1 is a cyclic vector with respect to the representation t �→
Mt. Hence η = T−1(1) is cyclic for π.

For the uniqueness result we observe that (2.41) clearly implies µ(B) = 0
iff Π(B) = 0.

Now we can characterize arbitrary representations with admissible vectors.
The argument is obtained by sharpening the proof of the lemma.

Theorem 2.69. π has admissible vectors iff it is cyclic, and in addition the
real-valued measure µ associated to its spectral measure by the previous lemma
is absolutely continuous with respect to Lebesgue measure, with support in a
set of finite Lebesgue measure.

Proof. Suppose that η is an admissible vector for π. The proof consists essen-
tially in repeating the construction proving the previous lemma and seeing
that for admissible vectors η the measure µ is as desired. For this purpose we
calculate

Vηφ(t) = 〈φ, π(t)η〉
= 〈φ, e−2πitAη〉

=
∫

R

e2πitωdΠη,φ(ω) ,

which exhibits Vηφ as the Fourier-Stieltjes transform of the measure Πη,φ. On
the other hand, Vηφ is an L2-function, hence Πη,φ turns out to be absolutely
continuous with respect to Lebesgue-measure λ. We let

Tη(φ) =
dΠφ,η

dλ
. (2.43)

This sets up an isometry between H and some subspace of L2(R). Let us next
show that the projection onto T (H) is given by restriction to an appropriately
chosen subset Σ. For this purpose we compute Tη(Π(B)η), for an arbitrary
measurable subset B. On the one hand,
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〈Π(B)η, η〉 =
∫

R

dµΠ(B)η,η(λ) =
∫
B

dΠη,η(λ) =
∫
B

T (η)(λ)dλ .

On the other hand, the isometry property of Tη gives that

〈Π(B)η, η〉 = 〈Tη(Π(B)η), Tη(η)〉 =
∫

R

Tη(Π(B))(λ)Tη(η)(λ)dλ

=
∫
B

Tη(η)(λ)Tη(η)(λ)dλ .

Since this holds for all subsets B, we obtain that Tη(η)(λ) = Tη(η)(λ)Tη(η)(λ)
a.e., which entails Tη(η)(λ) ∈ {0, 1}. On the other hand, Tη(η) is square-
integrable, hence it is the characteristic function of a set Σ of finite Lebesgue
measure. To show that Tη(H) = L2(Σ, dx), we note that Tη(Π(B)η) = 111B ,
and the characteristic functions span a dense subspace of L2.

Replacing Π(B)η by µ(B)φ in the above argument gives Tη(Π(B)φ) =
111BTη(φ). Similarly we obtain Tη(π(t)φ) = e−2πit·Tη(φ), and we have shown
the “only-if”-direction.

For the other direction, we construct an admissible vector for the equiv-
alent representation acting on L2(Σ), by picking η = 111Σ. Then for every
φ ∈ L2(Σ) ⊂ L1(Σ)

Vηφ(t) =
∫
Σ

e2πitλφ(λ)dλ = φ̂(−t) ,

which immediately implies ‖Vηφ‖L2 = ‖φ‖.

Remark 2.70. Given a representation π with admissible vector, we have now
found two different ways to arrive at an equivalent representation π̂U acting
on L2(U, dx) ⊂ L2(R) for some measurable U ⊂ R by

(π̂(t)f) (ω) = e−2πitωf(ω) .

The first one consists in embedding Hπ in L2(G) via Vη, and then applying
Theorem 2.63 to see that π 
 π̂U for a suitable U .

A shortcut is described by the mapping Tη constructed in the proof of
2.69. In fact, it is not hard to see that we have the following commutative
diagram

Vη
Hπ −→ HU

Tη ↘ ↓ F
L2(U, dx)

.

Indeed, observing that Tη(ϕ) ∈ L2(Σ) ⊂ L1(Σ), we can apply the Fourier
inversion formula to (2.43), obtaining

T (ϕ)∨(s) =
∫

R

e2πistT (ϕ)(t)dt =
∫

R

e2πistdΠϕ,η(t) = 〈ϕ, e−2πisAη〉

= Vηϕ(s) .
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Note also that the admissibility condition obtained in 2.64 coincides with
the admissibility condition which is derived in the proof of Theorem 2.69.
This is owed to the fact that both are just the admissibility conditions for
the representation π̂U , translated to the respective settings by the associated
intertwining operators.

Solution to T5

Here we focus on regular sampling, i.e., Γ = αZ is assumed to be a lattice,
with α > 0. The following theorem can be seen as a refinement of Shannon’s
sampling theorem. It can be regarded as folklore. Similar results for arbitrary
locally compact groups were obtained for instance by Kluvánek [76].

Theorem 2.71. Let HU with associated idempotent S = 111∨U . The following
are equivalent:

(a) λR(Γ )S is a tight frame, i.e., HU is a sampling space. The constant cH
associated to HU is 1/α.

(a’) There exists f ∈ HU such that λR(Γ )f is a frame.
(a”) There exists f ∈ HU such that λR(Γ )f is total.
(b) |U ∩ 1

αk + U | = 0, for all 0 �= k ∈ Z

Regarding the interpolation property, we have the following equivalent condi-
tions:

(i) HU is a sampling space with interpolation property.
(ii) |U ∩ k

α + U | = 0, for all 0 �= k ∈ Z, and |U | = 1
α .

Proof. (a) ⇒ (a’) ⇒ (a”) is obvious. Now assume that (a”) holds. If λR(Γ )f
is total in HU then f is a cyclic vector for the translation action of λR on HU .
Hence f̂ �= 0 almost everywhere on U , by condition (2.40). Suppose that (b) is
violated, i.e., there exists A ⊂ U measurable with |A| > 0 and k

α +A ⊂ U , for
a suitable nonzero k. Possibly after passing to a smaller set A we may assume
that |f̂(ω + αk)| ≥ ε for some fixed ε > 0 and all ω ∈ A. Then letting

ĝ(ω) =

{
1 for ω ∈ A
− f̂(ω−k/α)

f̂(ω)
for ω ∈ k

α +A

defines an L2-function supported on A ∪ k
α +A satisfying

f̂(ω)ĝ(ω) = −f̂(ω +
k

α
)ĝ(ω +

k

α
)

on A. Given � ∈ Z, the 1/α-periodicity of exp(2πiα�·) then implies that

〈g, λR(α�)f〉 = 〈ĝ, e−2πiα�·f̂〉 = 0 .

Hence λR(αZ)f is not complete, which gives the desired contradiction.
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Now assume (b). Pick a Borel set V ⊃ U fulfilling (b) and such that in
addition, |B| = 1/α. In other words, V is a measurable transversal containing
U . Then the 1/α-periodicity of the exponentials and the fact that the expo-
nentials (suitably normalized) form an ONB of L2([0, 1/α]) implies that they
also form an ONB of L2(V ). Then the restriction of the exponentials to U are
the image of an ONB under a projection operator, i.e., still a normalized tight
frame with frame constant 1/α, by 2.53(a). Pulling this back to HU gives the
desired statement. Moreover, we have also shown (ii) ⇒ (i).

For (i) ⇒ (ii) we note that the first condition in (ii) follows by (a) ⇒ (b),
whereas the second one follows from the requirement that α1/2‖S‖2 = 1.

We close the section with the observation that not every continuous trans-
form can be regularly sampled to give a discrete transform.

Example 2.72. There exists a space HU which has admissible vectors but does
not admit frames of the form λR(αZ)f . For this purpose, pick U ⊂ R̂ open,
dense and of finite measure, say a union of suitably small open balls around
the rationals. Then there exist admissible vectors by Theorem 2.63, but since
for t ∈ R arbitrary U ∩ t+U is open and nonempty, condition (b) of Theorem
2.71 is always violated.
Question: Does there exist a discrete set Γ ⊂ R and η ∈ HU such that
λR(Γ )η is a frame?



3

The Plancherel Transform
for Locally Compact Groups

This chapter provides, for general locally compact groups, the Fourier side that
has proved so useful for the treatment of the toy example. We start out by
taking a second look at the toy example, this time with a more representation-
theoretic slant.

3.1 A Direct Integral View of the Toy Example

This section contains a first, nonrigorous introduction to direct integrals. The
purpose is twofold: We use the arguments given in Section 2.7 as an illustration
of the direct integral view, and thus obtain an overview of the results needed
to extend the reasoning to other groups.

Abstract harmonic analysis as used in this book can be described as the
endeavor to completely understand the representation theory of a given group
in terms of its irreducible representations. The idea behind this approach is
that irreducible representations should serve as building blocks, and that a
technique of uniquely decomposing arbitrary into those building blocks would
allow to compare different representations, to characterize intertwining oper-
ators etc.

For illustration purposes let us first consider a finite group G. Then any
given representation π of G can be decomposed into a direct sum of irre-
ducibles,

π 

⊕
i∈I

σi . (3.1)

If we define the associated multiplicity function on Ĝ by

mπ(σ) = |{i ∈ I : σi 
 σ}|

as in Remark 2.32, we can rewrite the decomposition as

π 

⊕
σ∈Ĝ

mπ(σ) · σ . (3.2)

H. Führ: LNM 1863, pp. 59–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



60 3 The Plancherel Transform for Locally Compact Groups

One of the advantages of (3.2) over (3.1) is that the invariant subspaces cor-
responding to mπ(σ) · σ in (3.2) are unique, by contrast to the subspaces
carrying the irreducible subrepresentations σi in (3.1). Now the significance
of (3.2) is that, given a second representation π̃ with associated multiplicity
function mπ̃ it can be shown that

π < π̃ ⇔ ∀σ ∈ Ĝ : mπ(σ) ≤ mπ̃(σ) . (3.3)

In other words, we are able to break the problem of deciding equivalence or
containment of arbitrary representations down into classifying and counting
the irreducible components.

Thus the basic task in representation theory can be stated in form of the
following two questions:

1. Which subrepresentations occur?
2. For those irreducible that do occur, what is their multiplicity?

While the multiplicity function contains the answers to both questions, the
advantage of this formulation is that it generalizes to more general, in par-
ticular noncompact, groups. This will become clear if we switch attention to
the case G = R. The first thing to realize is that direct sums of irreducible
representations no longer suffice to describe all representations of R. The sim-
plest example is λR: We have already observed before, in Theorem 2.35, that
noncompact abelian groups do not have a discrete series. Therefore λR cannot
have irreducible subrepresentations; though in a sense made more transparent
below they occur infinitesimally in the decomposition.

The correct generalization of the decomposition theory of finite groups,
which includes the real case, thus turns out to be provided by direct inte-
grals, which we sketch next. Suppose we are given a family (or bundle) of
(separable) Hilbert space (Hω)ω∈R

. On each Hω, we let R act unitarily by the
character πω given by

πω(s)η = e−2πiωsη .

Hence, πω 
 mπ(ω) · χω, where mπ(ω) = dim(Hω). We define vector fields
as cross-sections to the bundle, i.e. mappings f : R →

⋃
ω∈R

Hω satisfying
f(ω) ∈ Hω . The idea is to let the group act on vector fields f by acting on each
fibre f(ω) by the corresponding representation πω . The means of synthesizing
the different representation spaces into one Hilbert space is now obtained by
introducing a positive measure νπ on R, defining the direct integral space

Hπ =
∫ ⊕

R

Hωdνπ(ω)

as the set of all vector fields satisfying

‖f‖22 :=
∫

R

‖f(ω)‖2dνπ(ω) <∞ .



3.1 A Direct Integral View of the Toy Example 61

All measure-theoretic detail necessary to make the construction rigorous will
be given in the following sections. The only purpose of this section is to provide
motivation, and we use direct integrals in a purely formal fashion. The scalar
product of two elements f, g ∈ Hπ is given by

〈f, g〉 =
∫

R

〈f(ω), g(ω)〉Hω
dνπ(ω) .

The representation π =
∫ ⊕

R
πωdνπ(ω) acts on Hπ by

(π(t)f) (ω) = πω(t)f(ω) = e−2πiωtf(ω) .

Since each πω is unitary, it is intuitively clear that π is unitary. The measure
ν prescribes which irreducible representations occur (and how), whereas mπ

prescribes the multiplicities. Now the central statements of direct integral
theory for R (extending to groups of type I) are:

1. Every representation is unitarily equivalent to a direct integral represen-
tation, and the associated pair (νπ,mπ) is unique up to measure-theoretic
technicalities: ν is unique up to equivalence, and mπ is unique up to νπ-
nullsets.

2. π < π̃ iff νπ is νπ̃-absolutely continuous, and mπ ≤ mπ̃, νπ-almost every-
where.

Let us now reexamine the Fourier arguments used in Section 2.7 in terms
of direct integrals.

Containment in the Regular Representation

Straightforward calculation yields that the Plancherel transform on R has the
following intertwining property:

(λR(x)f)∧(ω) = χω(x)f̂ (ω) (3.4)

We consider f̂ as a vector field (f̂(ω))ω∈R, where each f̂(ω) = Hω = C. Then
the square-integrability property of f̂ yields

f̂ ∈
∫ ⊕

R

Hωdω .

Hence the Plancherel formula yields that the Fourier transform is a unitary
equivalence intertwining the regular representation of R with a direct integral
representation π̂, where νπ̂ is Lebesgue measure and the multiplicity function
νπ̂ ≡ 1.

We first apply this observation to Theorem 2.69. If π is an arbitrary rep-
resentation of R, we can write
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π 

∫ ⊕

R

mπ(ω) · χω dνπ(ω) .

Direct integrals provide a refinement of the argument in the proof of Theorem
2.69 using the spectral theorem: For a Borel set B ⊂ R let Π(B) be the
projection operator on Hπ given by

Π(B)f(ω) = 111B(ω)f(ω) .

Then we can, at least formally, define an operator A via the relations

〈Ax, y〉 =
∫

R

ωdΠx,y(ω)

with Πx,y(B) = 〈Π(B)x, y〉. This definition entails π(t) = e−2πitA. Hence we
have retrieved from the direct integral all the data used in the proof of 2.69.
Lemma 2.68 can now be understood as a characterization of cyclic represen-
tations in terms of the multiplicity function: A representation of R is cyclic iff
mπ ≡ 1, at least νπ-almost everywhere. Moreover 2.69 becomes an instance
of the general procedure for checking containment: After we have established
that the measure underlying the decomposition of λR is Lebesgue measure,
with multiplicity function ≡ 1, every subrepresentation necessarily arises from
a Lebesgue-absolutely continuous measure, with multiplicity ≤ 1.

A second instance of this argument applies to Theorem 2.71. Let us con-
sider a representation πU of R acting on a space HU , and its restriction to
Γ = αZ. We are looking for tight frames of the form π(Γ )η, i.e. admissible
vectors η ∈ HU for the restriction πU |Γ .

First we apply similar reasoning to Z instead of R to obtain that the
Fourier transform on �2(Z) yields a decomposition

λZ 

∫ ⊕

[0,1]

χω dω (3.5)

where χω(n) = e−2πinω denotes obviously an element of Ẑ. Hence the decom-
position of λZ is based on Lebesgue measure on the interval, and multiplicity
≡ 1.

Next consider the representation π0 of Z defined by π0(k) = πU (αk).
Again we need to compute a decomposition into a direct integral of irreducible
representations over Z. For this purpose we start out by writing

L2(R) 

∫ ⊕

[0,1/α[

�2(Z)dω . (3.6)

This can be seen by mentally rearranging functions f ∈ L2(R) as families of
sequences ((Fω(k))k∈Z)ω∈[0,1/α], where

Fω(k) = f(ω + k/α) .
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The map f → F then implements (3.6). Now let Iω = {k ∈ Z : ω+ k/α ∈ U},
and

mπ0(ω) =
∑
k∈Z

111U (ω + k/α) = dim(�2(Iω)) .

From the definition of Iω we obtain immediately that the restriction of the
operator yielding (3.6) to L2(U) provides

L2(U) 

∫ ⊕

[0,1/α[

�2(Iω)dω . (3.7)

Finally, the fact that the restrictions of χω and χω+t to Γ are equivalent iff
t is an integer multiple of 1/α yields that (3.7) effects a decomposition into
irreducible representations,

π0 

∫ ⊕

[0,1/α]

mπ0(ω) · χωdω (3.8)

Now checking π0 < λZ amounts to comparing (3.5) with (3.8), yielding
the necessary condition

mπ0(ω) ≤ 1 , for almost every ω ∈ [0, 1/α[ ,

which is condition (b) from Theorem 2.71. It is also sufficient: Since Z is
discrete, λZ has an admissible vector, and thus every subrepresentation does,
by 2.14.

Invariant Subspaces and the Decomposition of the Commuting
Algebra

The characterization of invariant subspaces given in Theorem 2.63 also has
a representation-theoretic background. Since invariant subspaces correspond
to projection in π(G)′, it is natural to extend the decomposition theory to
commuting algebras. For this purpose let us take a look at direct sum decom-
positions, i.e. consider again

π =
⊕
i∈I

σi

with irreducible σi. Write an operator T in the commuting algebra as a block
matrix operator (Ti,j)i,j∈I , where Ti,j : Hσi → Hσj is the restriction of Pj ◦T
toHi, with Pj denoting the projection ontoHσj . Clearly Ti,j is an intertwining
operator, therefore Ti,j = 0 whenever σi �
 σj , by Schur’s lemma. Hence,
rewriting again the decomposition of π as

π =
⊕
σ∈Ĝ

mπ(σ) · σ (3.9)
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we observe that every intertwining operator T has block diagonal structure
(Tσ)σ∈Ĝ, where each Tσ intertwines mπ(σ) ·σ with itself. (As a matter of fact,
it is this property of the decomposition (3.9) that guarantees the contain-
ment criterion (3.3).) Now the correct generalization of the decomposition of
intertwining operators to the case G = R is

3. If π =
∫ ⊕

R
mπ(ω) ·χω dνπ(ω) is a direct integral of irreducibles, then every

intertwining operator T of π has the form

(Tf)(ω) = Tωf(ω) ,

where Tω : Hω → Hω are suitably chosen operators. Here Hω denotes the
representation space of mπ(ω) · χω.

An application of this fact to the decomposition of the regular represen-
tation yields that every operator commuting with the regular representation
decomposes on the Fourier side into operators Tω : C → C, i.e., functions.
Since operator multiplication translates to pointwise multiplication, and tak-
ing adjoints to complex conjugation, we find in particular that projections
correspond to functions with values in {0, 1}. Hence the projection onto an
invariant subspace is given by multiplication with the characteristic function
of a suitable Borel set, which is precisely the statement of Theorem 2.63.

Wavelet Transform, Admissible Vectors and Plancherel Inversion

Finally let us take a closer look at the admissibility conditions. For U ⊂ R̂ of
finite measure, let π̂U denote the representation acting on L2(U) via

(π̂(x)F )(ω) = e−2πiωxF (ω) ,

then obviously

π̂U =
∫ ⊕

U

χωdω

and the representation is conjugate under the Plancherel transform to the
restriction of λR to HU . Now, picking η ∈ L2(U) we obtain

VηF (x) =
∫
U

F (ω)η(ω)e2πiωxdx ,

hence Vη is pointwise multiplication with η, followed by Plancherel inversion.
Since the latter is unitary, Vη is an isometry iff |η| = 111U ; and similar properties
of η such as cyclicity, boundedness etc. are just as easily read off.
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Summary

Our discussion of the toy example used the following representation-theoretic
facts:

1. Representations of R (and Z) can be decomposed uniquely into irre-
ducibles; containment of representations can be checked by comparing
measures and multiplicities.

2. The commuting algebras of the representations are decomposed as well.
3. The Plancherel transform on L2(R) yields the decomposition of λR into ir-

reducible representations. Given a realization of the representation on the
Plancherel transform side, admissibility conditions and wavelet transforms
are closely related to pointwise Plancherel inversion.

For the remainder of this chapter we will be concerned with deriving and
constructing the analogous results and objects for general type I groups. The
chief object of interest will be the Plancherel transform. The aim is to con-
struct a unitary operator

P : L2(G) →
∫ ⊕

Ĝ

B2(Hσ) dνG(σ) , (3.10)

having properties analogous to 1. through 3. from above. The following sec-
tions are dedicated to elucidating the various objects occurring on the right
hand side, and the necessary assumptions to guarantee their existence: Section
3.2 contains the basic notions concerning Borel spaces. In particular, regular-
ity properties of such spaces are crucial to make direct integral theory work.
We discuss direct integrals, their construction, as well as existence and unique-
ness of the decomposition of unitary representations into irreducible represen-
tations, in Section 3.3. Section 3.5 then presents the Plancherel theorem for
unimodular groups. Nonunimodular groups require a different treatment; the
construction needs to be modified by use of a family of unbounded operators,
the Duflo-Moore-operators. These operators are intimately related to ad-
missibility conditions, thus a detailed study is indispensable. This requires an
excursion into Mackey’s theory (Section 3.6), as well as a section containing
somewhat technical results concerning operator-valued integral kernels (Sec-
tion 3.7). Section 3.8 finally presents the Plancherel formula for nonunimodu-
lar groups. We include a proof of the isometry part of the Plancherel formula
which illustrates the role of Mackey’s theory in establishing the Plancherel
formula for the group.

The definitions and results presented in the course of this chapter are not
intended as a self-contained introduction to direct integral decompositions
and the Plancherel transform, but rather as a guided tour of key results. For a
more complete exposition we refer the reader to the monographs [35, 45, 82].
However, we intend to give sufficient details and references to guarantee a
rigourous use of the results in the following chapters.
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3.2 Regularity Properties of Borel Spaces∗

Regularity of Borel spaces is an important issue in direct integral theory. Here
the central notion is that of a standard Borel space:

Definition 3.1. A Borel space X is called

1. countably separated if there exists a countable family (An)n∈N of mea-
surable sets such that for all x ∈ X : {x} =

⋃
{An : x ∈ An}.

2. standard if there exists a Borel isomorphism X → Y , where Y is a com-
plete separable metric space, endowed with the Borel σ-algebra generated
by the topology.

3. analytic if it is countably separated, and in addition there exists a sur-
jective Borel map Y → X, where Y is a standard Borel space.

That standardness is a rather strong property of Borel spaces can be read
off a famous classification result due to Kuratowski: Every standard Borel
space is Borel isomorphic either to a countable (discrete) space or to [0, 1]
endowed with the usual structure [94, Theorem 2.14]. Furthermore we obtain
the following useful result [94, Theorem 2.13].

Theorem 3.2. Let φ : X → Y be an injective measurable mapping, where X
is standard and Y is analytic. Then φ(X) is a Borel subset of Y . In particular,
if Y is standard as well and φ is bijective, it is a Borel isomorphism.

As an immediate consequence we see that a subset of a standard Borel
space is standard itself iff it is Borel in the larger space.

We will say that a measure µ is countably separated (or standard)
if there exists a measurable subset X ′ ⊂ X with µ(X \ X ′) = 0 which is

countably separated (standard).
An interesting and important question is the behavior of Borel structures

when passing to quotients. If R ⊂ X × X is an equivalence relation, the
quotient Borel structure on the quotient space X/R is the finest σ-algebra
making the projection map X → X/R measurable. Hence a subset of X/R is
in the quotient σ-algebra iff its preimage under the projection map is in the
σ-algebra on X . The key problem here, which is closely related to the type I
condition discussed in more detail below, is the fact that X/R need not be
standard even when X is.

Given a locally compact group G and H < G, G/H become Borel spaces in
the usual way by taking the σ-algebra generated by the open sets. If the group
is second countable, it is in fact completely metrizable and thus standard; the
same holds for the quotients. As a consequence of these facts and Theorem 3.2
we note that under mild conditions on the given group action, quotients and
orbits can be identified measure-theoretically. This fact will be used repeatedly
throughout the text to identify quotients and orbit in a measure-theoretic
sense.
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Proposition 3.3. Let X be an analytic Borel G-space. Then for all x ∈ X
the canonical map G � g �→ g.x induces a Borel isomorphism between G/Gx
and G.x. Hence the latter is a Borel subset of X.

We will sometimes need measurable cross-sections and transversals. De-
noting by qH : G → G/H the quotient map, a cross-section α : G/H → G
is a right inverse to q, i.e., a map fulfilling α(xH)H = xH , for all x ∈ G. A
transversal (mod H) is a set A ⊂ G meeting each right coset xH in precisely
one point. There is a natural bijection between cross-sections and transver-
sals: Every transversal A induces a cross-section α by letting α(xH) = y ∈ A
with yH = xH . Conversely, α(G/H) ⊂ G is clearly a transversal, if α is a
cross-section. The close connection extends to measurability properties: The
cross-section is a Borel map iff the associated transversal is a Borel set; this
is seen by applying 3.2 to the cross-section. We have the following existence
result:

Lemma 3.4. Let G be second countable and H < G closed. Then there exists
measurable cross-sections and transversals of G/H.

Proof. See e.g. [86, Lemma 1.1].

3.3 Direct Integrals

In this section we discuss the construction of direct integrals of Hilbert spaces
and von Neumann algebras.

3.3.1 Direct Integrals of Hilbert Spaces

We use the definition of direct integrals in [45]. Given a family (Hx)x∈X of
separable Hilbert spaces, the fibre spaces indexed by elements of a Borel
space X , a vector field is cross-section, i.e. a mapping η : X →

⋃
x∈X Hx

satisfying η(x) ∈ Hx for all x ∈ X . Direct integral spaces are spaces of vector
fields which are square-integrable. Thus we need to have a notion of mea-
surability. Not surprisingly, measurable vector fields are defined in terms of
coordinates with respect to certain bases (or at least total systems) of the fibre
spaces. More precisely, a measurable structure on (Hx)x∈X is a family of
vector fields (enx)x∈X (n ∈ N) having the properties

• For all m,n, the mapping x �→ 〈emx , enx〉 is Borel.
• For all x ∈ X , the family (enx)n∈N is total in Hx.

If a measurable structure exists, (Hx)x∈X is a measurable field of Hilbert
spaces. Vector fields (ηx)x∈X are defined to be measurable if all map-
pings x �→ 〈ηx, emx 〉 are Borel. The following Proposition [45, Proposition
7.27], shows that if measurable structures exist, they can come in the form
of measurable fields of ONB’s. The following proposition rests among other
things on the observation that Gram-Schmidt orthonormalization does not
affect measurability.
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Proposition 3.5. Let (Hx)x∈X be a measurable field of Hilbert spaces. Then
the mapping d : x �→ dim(Hx) is a measurable mapping. Moreover, there
exists an equivalent measurable family of ONB’s, i.e., a family (enx)x∈X
such that for all x ∈ X, the vectors (enx)n=1,...d(x) are an ONB of Hx, and in
addition, ((enx)x∈X)n∈N has the same measurable vector fields as the original
measurable structure.

Given a measure ν on X , a ν-measurable field of Hilbert spaces is a field
of Hilbert spaces with the property that there exists a ν-nullset Y such that
(Hx)x∈X\Y is a measurable field of Hilbert spaces based on X \ Y .

Now, given a Borel measure ν and a ν-measurable field (Hx)x∈X of Hilbert
space, the direct integral space H =

∫ ⊕
X
Hxdν(X) is given as the space of

measurable vector fields (ηx)x∈X satisfying
∫
X

‖ηx‖2dν(x) <∞ ,

where, as usual, ν-almost everywhere agreeing fields are identified. H is a
Hilbert space with scalar product

〈(ηx)x∈X , (ϕx)x∈X〉 =
∫
X

〈ηx, ϕx〉dν(x) .

While the space of measurable vector fields depends on the particular mea-
surable structure, the direct integral space is, up to a canonical unitary equiv-
alence, unique. Also, changes on a ν-nullset clearly do not affect the construc-
tion.

A particular case of direct integrals, also arising in the context of induced
representations, is of a constant field of Hilbert spaces, i.e. we consider

∫ ⊕

X

Hxdν(x) , Hx = H .

Clearly the simplest realization of this is obtained by taking a fixed ONB of
H to induce a measurable structure. Thus we see that

∫ ⊕

X

Hxdν(x) = L2(X, ν;H) ,

the space of all measurable, square-integrable vector fields on X with values in
H. Here H is endowed with the Borel structure induced by the weak topology,
which for separable Hilbert spaces coincides with the Borel structure induced
by the norm topology. For later use we note the following result which shows
that L2(X, ν;H) is closely related to the tensor product L2(X, ν)⊗H.

Lemma 3.6. If (φj)j∈J is an ONB of L2(X, ν) and (ei)i∈I an ONB of H,
then (φjei)i∈I,j∈J constitutes an ONB of L2(X, ν;H)
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Proof. It is clear that the system is an ONS. Hence it remains to show that
it is total. For this purpose let F ∈ L2(X, ν;H) be nonzero. Since

‖F (x)‖2 =
∑
i∈I
|〈F (x), ei〉|2

does not vanish identically, it follows that at least one of the functions

fi(x) = 〈F (x), ei〉

is nonzero. Then the completeness of the φj implies that at least for one j ∈ J

0 �= 〈fi, φj〉 = 〈φjei, F 〉 .

For use with the Plancherel formula, we will also need direct integrals
of operator spaces. Given a measurable field (Hx)x∈X of Hilbert spaces, the
direct integral space ∫ ⊕

X

B2(Hx)dν(x)

can be conveniently constructed from the direct integral of the Hx. E.g., a
measurable structure (enx)n∈Ix for

∫ ⊕
X
Hxdx yields a measurable structure

(enx⊗ emx )m,n∈Ix for
∫ ⊕
X B2(Hx)dx. Using (1.5), any field T of Hilbert-Schmidt

operators can be written as

Tx =

(∑
n∈Ix

ϕnx ⊗ enx

)
,

where the (enx)n∈Ix are the ONB of Hx provided by the measurable structure,
and it is immediate to check that T is measurable iff (ϕnx)n∈N is a measurable
vector field, for each n ∈ N. These criteria may be applied to check the
following result which will be used below.

Lemma 3.7. Let a measurable field (Hx)x∈X of Hilbert spaces be given, and
let (Ax)x∈X be a measurable field of Hilbert-Schmidt operators. Let Ax =
Ux|Ax| be the polar decomposition of Ax. Then (Ux)x∈X and (|Ax|)x∈X are
measurable as well.

3.3.2 Direct Integrals of von Neumann Algebras

Measurable operator fields are families of (not necessarily bounded) oper-
ators Tx : Hx → Hx such that x �→ 〈ηx, Txϕx〉 is measurable for all measurable
vector fields η, ϕ with ϕx ∈ dom(Tx). For a given measure ν, ν-measurable
operator fields are defined in the obvious sense. In order to check measurabil-
ity, it is sufficient to plug in elements of the measurable structure for η, and
for ϕ if a measurable structure with elements in dom(Tx) exists.
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Given a measurable field of bounded operators Tx such that the operator
norms are essentially bounded, then

(∫ ⊕

X

Txdν(x)
)

(η) = (Txηx)x∈X

defines a bounded operator
∫ ⊕
X
Txdν(x) on

∫ ⊕
X
Hxdν(x). Operators of this

type are called decomposable; if almost all Tx are scalar, the operator is
called diagonalizable.

In connection with commuting algebras, the decomposition of von Neu-
mann algebras into direct integrals will be crucial. In the following let
H =

∫ ⊕
X
Hxdν(x) and a family of von Neumann algebras (Ax)x∈X with

Ax ⊂ B(Hx) be given. As might be expected, there is a measure-theoretic
condition involved [36, II.3.2 Definition 1]:

Definition 3.8. (Ax)x∈X is measurable if there exists a countable family of
measurable operator fields ((T nx )x∈X)n∈N

such that, for ν-almost every x ∈ X,
(T nx )n∈N generates Ax.

Obvious examples of measurable fields of von Neumann algebras are Ax =
B(Hx), or Ax = C · IdHx .

A direct integral of a measurable field of von Neumann algebras (Ax)x∈X
is constructed in the expected manner, i.e.,

∫ ⊕

X

Axdν(x)

consists of all ν-measurable operator fields (Tx)x∈X , essentially bounded in the
operator norm, such that Tx ∈ Ax (ν-a.e.). Conversely, given a von Neumann
algebra

A ⊂ B(
∫ ⊕

X

Hxdν(x)) ,

we say that A decomposes if

A =
∫ ⊕

X

Axdν(x)

for some measurable field of von Neumann algebras. Obviously the algebras of
decomposable resp. diagonalizable operators are decomposable von Neumann
algebras. In fact, it is obvious from the definition that these are the largest
resp. smallest decomposable von Neumann algebras. Note that not every von
Neumann algebra consisting of decomposable operators is decomposable; the
former condition only means that A ⊂

∫ ⊕
X
B(Hx)dµ(x).

In all cases of interest for us, taking commutants behaves in the expected
way ([36, II.3.3 Theorem 4])
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Theorem 3.9. Suppose that X is standard. If

A =
∫ ⊕

X

Axdν(x)

then

A′ =
∫ ⊕

X

A′
xdν(x) .

3.4 Direct Integral Decomposition

Now let H =
∫ ⊕
X
Hxdν(x). For a group G, let a family (σx)x∈X of unitary

representations, with σx acting on Hx, be given. The family is called mea-
surable field of representations if for all g ∈ G, (σx(g))x∈X is measurable.
The direct integral representation

(∫ ⊕

X

σxdν(x)
)

(g) =
∫ ⊕

X

σx(g)dν(x)

is a unitary representation of G, which is again well-defined and unique up to
unitary equivalence.

Recall that our principal aim is direct integral decomposition, meaning
that we are looking for ways of establishing a unitary equivalence between a
given representation and a direct integral, hopefully with useful uniqueness
properties. Also, we would like to be able to use the dual Ĝ as base space X .
As will be seen below, the general case requires that we need to put up with
a usually larger (and less transparent) carrier space for direct integrals, the
quasi-dual Ǧ.

Our main source for this section is [35]. Results given there for C∗-algebras
are cited here for the group case, without further comment. The justification
for this is given by [35, 13.3.5,13.9]. One further piece of vocabulary that is
useful for checking the citations from [35] is the word ”postliminal” which
keeps reappearing in [35]. Recall that we always assume the underlying group
to be second countable. Here ”postliminal” is synonymous to ”type I” [35,
13.9.4], and the latter will be defined in the next subsection.

3.4.1 The Dual and Quasi-Dual of a Locally Compact Group∗

Definition 3.10. Let G be a locally compact group. A factor representa-
tion of G is a representation π fulfilling π(G)′ ∩ π(G)′′ = C · IdHπ .

The suitable equivalence relation between factor representations is quasi-
equivalence, as can be seen by the following statement [35, Corollary 5.3.6].

Proposition 3.11. Let π, σ be factor representations. Then either π ≈ σ or
π and σ are disjoint.
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The equivalence classes of factor representations modulo ≈ yield the quasi-
dual Ǧ of G. Clearly, irreducible representations are factor representations.
The following proposition notes that there is in fact a canonical embedding
Ĝ ↪→ Ǧ. The first statement follows from [35, 5.3.4], the second statement is
[35, 5.3.3]

Proposition 3.12. Let π = m · σ with σ ∈ Ĝ. Then π is a factor representa-
tion. Moreover, π ≈ n · σ′, for σ′ ∈ Ĝ, iff σ 
 σ′.

Factor representations corresponding to elements of Ĝ are also called factors
of type I. In view of this terminology (which originates from the theory of
von Neumann algebras), the following definition is natural. However, the full
scope of this notion will only become clear later on.

Definition 3.13. G is called type I if Ĝ = Ǧ.

Remark 3.14. Since the type I property of the underlying group will be a
standing assumption below, a few remarks regarding the type I condition are
in order.

The class of type I groups contains the abelian and the compact groups.
In the connected Lie group case, the exponential solvable (in particular the
nilpotent) groups, confer [23, Chap. VI, 2.11], as well as the semisimple ones
[63], are known to be type I. Other groups obtained from these classes via
group extensions can be dealt with using the Mackey machine; see in partic-
ular Theorem 3.39(c). This result allows to check for instance that many of
the semidirect product groups arising in mathematical physics, such as the
Poincaré and Euclidean motion groups, are type I.

By contrast, a discrete group G is of type I only occurs if it contains a
normal abelian subgroup of finite index [111]. Thus the following hardly ever
applies to discrete groups, with the lucky exception of the group considered
in Section 5.5.

For integration on Ǧ and Ĝ we need Borel structures on these spaces. For
this purpose let us fix Hilbert spaces Hn (n ∈ N ∪ {∞}) of Hilbert space
dimensions n. Now let

Repn(G) = {π : π representation of G on Hn}

and endow it with the smallest σ-algebra for which all the coefficient maps

π �→ 〈η, π(x)ξ〉 ,

with x ∈ G, η, ξ ∈ Hn, are measurable. Moreover, let

Rep(G) =
⋃

n∈N∪{∞}
Repn

and endow it with the direct sum structure
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A ⊂ Rep(G) measurable ⇔ ∀n ∈ N ∪ {∞} : A ∩Repn ⊂ Repn measurable .

Let Fac(G) ⊂ Rep(G) denote the subset of factor representations. Since G
is separable by assumption, every factor representation can be realized up to
unitary equivalence on some Hn, thus we obtain a canonical bijection

Fac(G)/ ≈→ Ǧ ,

which serves to endow Ǧ with the quotient structure, the Mackey Borel
structure. Ĝ ⊂ Ǧ is endowed with the relative structure. Given that this
construction goes through several steps, it is conceivable that measurability
questions can become quite tedious. At least we know that the Borel structure
separates points, i.e., singletons in Ǧ are Borel [35, 7.2.4]. Moreover, Ĝ is a
Borel set in Ǧ [35, 7.3.6].

The next lemma shows sheds some more light on the Mackey Borel struc-
ture. Its purpose is to identify an arbitrary direct integral, based on some
standard Borel space, as a direct integral against a standard Borel measure
on Ǧ. Statements of this type are often used implicitly, however we have felt
the need to clarify this point. This is the purpose of the next statement.

Lemma 3.15. Assume that (σx)x∈X is a measurable field of factor rep-
resentations of the group G, based on the standard Borel space Y . Then
Φ : X � x �→ [σx]≈, where [σx]≈ denotes the quasi-equivalence class, is a
Borel map into Ǧ, endowed with the Mackey Borel structure.

Proof. In order to relate X to Ǧ, let n(x) = dim(Hx). Using the measurable
field of ONB’s (ϕnx)x∈X,n∈N and fixed ONB’s (ψin)i=1,...,n on the Hn for the
Hx, we can set up a field of unitary equivalences Ux : Hx → Hn(x), by letting

Uxϕ =
∑

i∈In(x)

〈ϕ,ϕix〉ψin .

This yields a mapping Φ̃ : X → Fac(G). The measurability of the ONB’s
implies that the sets Xn = {x ∈ X : dim(Hx) = x} are a measurable partition
of X , and it is enough to show that Φ̃ is measurable on these. For this property
we need to check measurability of the mappings

x �→ 〈η, Φ̃(x)(g)ξ〉 = 〈U∗
xη, σx(g)U∗

xξ〉 , (3.11)

for all g ∈ G and η, ξ ∈ Hn. Now it is straightforward to verify that

x �→ U∗
xη , x �→ U∗

xξ

are measurable vector fields, hence the measurability requirement on the σx
yields (3.11). Thus Φ̃ is measurable.

Φ is obtained by concatenating Φ̃ with the quotient map Fac(G) → Ǧ,
which is measurable by the choice of Borel structure on Ǧ. ��
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3.4.2 Central Decompositions∗

Unfortunately no useful decomposition theory, valid for all representations of
all locally compact groups, can be based on the unitary dual. In this section
we will see that Ǧ provides a certain substitute for this. This substitute has at
least two shortcomings: The first is the empirical observation that in the cases
where Ĝ and Ǧ in fact differ, the latter is virtually impossible to compute.
Note that already the computation of Ĝ for large classes of groups G (e.g., for
group extensions, nilpotent or exponential Lie groups) marks milestones in
harmonic analysis of the past fifty years. By contrast, to my knowledge there
does not seem to be a single group G, not of type I, for which Ǧ is actually
known explicitly.

The second drawback is the fact that the uniqueness property of the de-
composition has to be taken with caution. A representation π may be decom-
posable into factors in several essentially different ways. A uniqueness result
is only available if we stipulate in addition that the center of the commuting
algebra, π(G)′ ∩π(G)′′, is decomposed as well. This central decomposition
is the subject of the next theorem.

Theorem 3.16. Let π be a representation of G.

(a) Existence.
There exist
• a standard measure νπ on Ǧ,
• a νπ-measurable field of representations (σϑ)ϑ∈Ǧ with σ ∈ ϑ,
• a unitary operator T : Hπ →

∫ ⊕
Ǧ
Hσϑ

dνπ(ϑ)
such that T gives rise to the following equivalences

π 

∫ ⊕

Ǧ

σϑdνπ(ϑ) (3.12)

π(G)′ ∩ π(G)′′ 

∫ ⊕

Ǧ

C · IdHπϑ
dνπ(ϑ) . (3.13)

(b) Uniqueness.
Let ν̃ be a standard measure on Ǧ and (σ̃ϑ)ϑ∈Ǧ a measurable field of
representatives, effecting decompositions analogous to (3.12) and (3.13),
then ν̃ is equivalent to νπ, and there exists a νπ-almost everywhere defined
measurable field of unitary equivalences between σϑ and σ̃ϑ.

(c) The operator T from part (a) in addition yields

π(G)′′ 

∫ ⊕

Ǧ

σϑ(G)′′dνπ(ϑ) (3.14)

π(G)′ 

∫ ⊕

Ǧ

σϑ(G)′dνπ(ϑ) (3.15)
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Proof. Parts (a) and (b) are [35, 8.4.2]. For (3.14) observe that since G is
separable, π(G)′′ is generated, as a von Neumann algebra, by a countable set,
and π(G)′′∩π(G)′ consists of the diagonal operators by (3.13). Then [35, A.88]
applies to show (3.14). The statement about the commutant follows from this
and Theorem 3.9.

Note that instead of (3.13), one could also require (3.14) to characterize the
central decomposition. Indeed, (3.15) follows again, and taking intersections
on both sides, observing that σϑ(G)′ ∩ σϑ(G)′′ = C · IdHπϑ

, yields (3.13).
Let us shortly comment on the practical use of the central decomposition.

The main problem with this decomposition is that it does not work backwards:
If we have a direct integral representation

π =
∫ ⊕

Ǧ

σϑdν(ϑ) ,

the right hand need not be the central decomposition from Theorem 3.16.
For this it remains to check that π(G)′ ∩ π(G)′′ coincides with the diagonal
operators, which may be rather hard to prove even when it is true. Hence
the uniqueness statement is not as easily applicable as one might have hoped.
For instance, it can be shown that every representation can be decomposed
into a direct integral of irreducible representations (e.g., [45, 7.38]). However,
if we have started with a factor representation π (not of type I), it coincides
with its central decomposition, with measure concentrated on {[π]≈} ⊂ Ǧ\Ĝ,
whereas the decomposition into irreducibles is supported in Ĝ. Thus we have
obtained two disjoint supports, and an example of a decomposition which is
not central.

Nonetheless, the decomposition of the commuting algebras allows to for-
mulate the following result relating quasicontainment and absolute continuity
[35, 8.4.4,8.4.5].

Theorem 3.17. Let π1, π2 be representations, and let νπ1 , νπ2 be the measures
underlying the respective central decompositions. Then π1 is quasi-equivalent
to a subrepresentation of π2 iff νπ1 is absolutely continuous with respect to
νπ2 . In particular π1 ≈ π2 iff νπ1 and νπ2 are equivalent.

This yields the following characterization of disjointness. Recall that two mea-
sures on the same space are called disjoint if every set is a nullset with respect
to at least one of them.

Corollary 3.18. Let π1, π2 be representations, and let νπ1 , νπ2 be the mea-
sures underlying the respective central decompositions. Then π1 and π2 are
disjoint iff νπ1 and νπ2 are disjoint measures.

3.4.3 Type I Representations and Their Decompositions

From the discussion so far one might expect that a decent decomposition
theory is obtained by considering those representations whose central decom-
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position is supported on Ĝ. This intuition actually works, and the represen-
tations which fall in this category can be characterized in a way which does
not directly refer to the central decomposition.

Definition 3.19. A representation π is called multiplicity-free if π(G)′ is
commutative. π is called type I if it is quasi-equivalent to a multiplicity-free
representation.

Multiplicity-free representations owe their name to the following charac-
terization:

Proposition 3.20. Given a representation π, the following are equivalent:

(a) π is multiplicity-free.
(b) There exists a standard measure νπ on Ĝ such that

π 

∫ ⊕

Ĝ

σ dνG(σ)

as well as

π(G)′ 

∫ ⊕

Ĝ

C · IdHσ dνG(σ) .

In other words, the central decomposition of π is supported on Ĝ, and each
σ ∈ Ĝ occurs with multiplicity (at most) one.

A combination of Proposition 3.20 and Theorem 3.17 yields the following
criterion.

Theorem 3.21. Let π be a representation, and νπ the associated measure of
the central decomposition. Then π is type I iff νπ(Ǧ \ Ĝ) = 0.

As a corollary, we find that we can split each representation into a well-
behaved and a pathological part.

Corollary 3.22. Let π be a representation. Then Hπ = HI
π⊕HI⊥

π , where the
corresponding restrictions πI and πI⊥ are disjoint representations, and every
invariant subspace carrying a type I subrepresentation is contained in HIπ.

Proof. Note that the characteristic functions of the measurable sets Ĝ and
Ǧ \ Ĝ give rise to projection operators in the commuting algebra, acting as
pointwise multiplication on the central decomposition side. This yields the
two invariant subspaces. The disjointness statement follows from 3.17.

For type I groups, the decomposition theory takes the expected form. The
following theorem relates the type I property to the regularity of the dual.

Theorem 3.23. For a second countable group G the following are equivalent:

(a) G is type I.
(b) Every representation of G is type I.
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(c) Ĝ is a standard Borel space.

Proof. (a) ⇒ (b) follows from Theorem 3.21, since ν(Ǧ \ Ĝ) = 0 is trivial by
assumption. The converse is clear: If G is not type I, there exist factors which
are not of type I. For (a) ⇔ (c), confer [45, Theorem 7.6].

Theorem 3.24. Let π be a representation of the type I group G.

(a) There exists a standard measure νπ on Ĝ and a multiplicity function mπ :
Ĝ→ N0 ∪ {∞} such that

π 

∫ ⊕

Ĝ

mπ(σ) · σ dνπ(σ) . (3.16)

(b) The unitary equivalence effecting (3.16) also induces a decomposition of
the von Neumann algebras associated to π, yielding

π(G)′ 

∫ ⊕

Ĝ

1⊗ B(�2(Imπ(σ))) dνπ(σ)

and

π(G)′′ 

∫ ⊕

Ĝ

B(Hσ)⊗ 1 dνπ(σ) .

Next to the uniqueness statement. The formulation of the following theo-
rem may seem excessively general, involving arbitrary Borel spaces. However,
it implies that it is enough to realize that a certain direct integral decom-
position, not necessarily based on a subset of the dual, is the unique direct
integral decomposition into irreducibles, after a suitable identification of the
underlying measure space. The fact that the identification comes in the form
of a Borel isomorphism onto a suitable subset of Ĝ is part of the statement.
Moreover, it shows that any decomposition of a representation of a type I
group into a direct integral of irreducible representations is in fact the cen-
tral decomposition, unlike the case we sketched at the end of the previous
subsection.

Theorem 3.25. Let G be a type I group. Let X be a standard Borel space
with measure ν, and (σx)x∈X a measurable field of irreducible representations
of G satisfying σx �
 σy for x �= y. Let m : X → N0 ∪{∞} be measurable, and
define

π =
∫ ⊕

X

m(x) · σxdν(x) .

Assume that π has the central decomposition

π 

∫ ⊕

Ĝ

mπ(σ) · σ dνπ(σ) . (3.17)
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Then the injective mapping Φ : x �→ [σx]� is a Borel isomorphism from X

onto a Borel subset of Ĝ, νπ is equivalent to the image measure of ν under Φ,
and m = mπ ◦Φ (nuπ- almost everywhere). Now the uniqueness statement of
[35, 8.6.6] yields the rest.

Proof. By assumption, Φ : X ↪→ Ĝ is an injection. Moreover, since the field
of representations is measurable, Φ is measurable also, by 3.15. Since it is
an injective mapping between the standard spaces X and Ĝ, 3.3 that it is a
Borel isomorphism onto a subspace of Ĝ, and the image measure is a standard
measure on Ĝ.

As a consequence of the uniqueness theorem, we obtain the containment cri-
terion.

Theorem 3.26. Let π, � be two type I representations, and let νπ, mπ, ν�,
m� denote the associated measures and multiplicity functions. Then π < � iff
νπ is ν�-absolutely continuous, with mπ ≤ m�, νπ-almost everywhere.

Proof. The ”if”-part is straightforward: If mπ(σ) ≤ m�(σ), then there is a
canonical embedding �2(Imπ(σ)) ⊂ �2(Im�(σ)). This can be used to construct
a canonical isometric intertwining operator

Tσ : Hσ ⊗ �2(Imπ(σ)) ↪→ Hσ ⊗ �2(Im�(σ)) .

It is elementary to check that this is a measurable field of intertwining oper-
ators.

For the ”only-if” part we identify � with its central decomposition, i.e

� =
∫ ⊕

Ĝ

m�(σ) · σ dν�(σ) .

Then π is equivalent to a restriction of � to some invariant subspace K. The
projection ontoK is in �(G)′, thus given by a field (1⊗Pσ)σ∈Ĝ. This establishes
that

π 

∫ ⊕

Ĝ

mπ(σ) · σ dνπ(σ) ,

where mπ(σ) = rank(Pσ) ≤ m�(σ). Moreover, every intertwining operator
on K is decomposed (it intertwines �), thus we have obtained the central
decomposition, by the remark following Theorem 3.16.

We observe that the irreducible subrepresentations of a representations
correspond to the atoms of the measure underlying the decomposition of π
into irreducibles.

Corollary 3.27. Let G be a type I group, and π a representation with π 
∫ ⊕
Ĝ
mπ(σ) · σ dνπ(σ). Then σ0 ∈ Ĝ is contained in π iff νπ({σ0}) > 0.
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3.4.4 Measure Decompositions and Direct Integrals

The direct integral decompositions obtained in the later chapters are not so
much constructed but recognized as direct integrals. By this we mean that
the initial representation space Hπ is mapped into a suitable L2-space, and
then the latter is seen to be a direct integral by use of a measure decomposi-
tion. This is a geometrically intuitive way of viewing direct integrals, already
used by Mackey [87]. We have already encountered a particularly simple ex-
ample in the discussion in Section 3.1: The unitary equivalence (3.7) was
obtained by identifying the function f ∈ L2(U) with the family of sequences
((f(ω + k/α))k∈Z)ω∈[0,1/α[, yielding a unitary equivalence

L2(U) 

∫ ⊕

[0,1/α[

�2(Iω) dω .

The identification is unitary because of the simple equality∫
U

|f(ω)|2dω =
∫

[0,1/α[

∑
k∈Iω

|f(ω + k/α)|2dω

which we interpret by an integral first over the set ω + Iα, and then an in-
tegral over [0, 1/α[. But this is nothing but a measure decomposition (or
disintegration) of Lebesgue measure on U , along the partition given by the
sets {ω + k/α : k ∈ Iω}, where ω through [0, 1/α[.

Before we show that this procedure works generally, let us give criteria for
the existence of measure decompositions. Again the regularity conditions for
Borel spaces prove useful.

Proposition 3.28. Let (X,B, µ) be a standard measure space. Let R be an
equivalence relation on X, such that X/R is a countably separated measure
space. Then there exists a Borel measure µ on X/R and on each equivalence
class [x] a measure ν[x], such that for all Borel sets B ⊂ X, the mapping

φB : X/R � [x] �→ νA([x] ∩B)

is µ-measurable on X/R and fulfills
∫
X/R

φB([x])dµ([x]) = µ(B) .

The measure class of µ is unique, and given a fixed choice of µ, the ν[x] are
uniquely defined (µ-almost everywhere).

Proof. See [40, Lemma 4.4]

The following proposition tells how to read certain representations act-
ing on an L2-space with measure decomposition as direct integrals. The
representation-theoretic part was also used in Section 3.1.
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Proposition 3.29. Let π be a representation of G acting on Hπ = L2(X, dµ;
H0), with (X,µ) standard. Suppose that there exists an equivalence relation
R on X such that X/R is standard, and let (ν[x])[x]∈X/R and µ be a measure
decomposition as in Proposition 3.28.

(a) Let f ∈ L2(X, dµ;H0), then, for µ-almost [x] ∈ X/R, f |[x] ∈ L2([x], ν[x];
H0). This gives rise to a unitary equivalence

L2(X, dµ;H0) 

∫ ⊕

X/R
L2([x], dν[x];H0)dµ([x]) .

(b) Assume moreover that there exist unitary representations (σ[x])[x]∈X/R,
with σ[x] acting on L2([x], ν[x];H0), such that for all f ∈ Hπ and µ-almost
all [x] ∈ X/G, we have

(π(y)f)|[x] = π[x](y)(f |[x]) .

Then the operator S from (a) implements a unitary equivalence

π 

∫ ⊕

X/R
σ[x]dµ[x] .

Proof. This is a special case of [40, Lemma 4.5]. As a matter of fact, only the
equivalence in part (b) is given there, but a closer look at the proof shows
that the intertwining operator is obtained by the construction in (a).

3.5 The Plancherel Transform for Unimodular Groups

Plancherel theory describes the decomposition of the regular representation
into a direct integral of irreducible representations. We already know that such
a decomposition exists if we only assume that G (or, more generally, λG) is
type I. In this connection, we give a formal definition of the term ”Plancherel
measure”.

Definition 3.30. Let G be a second countable locally compact group with type
I regular representation. A standard measure νG on Ĝ is called Plancherel
measure if it yields the central decomposition

λG 

∫ ⊕

Ĝ

m(σ) · σ dνG(σ) .

It follows from the results in Section 3.3 that Plancherel measures exist,
and that all Plancherel measures are equivalent. If Plancherel theory is only
understood in the sense of providing some deomposition of the regular repre-
sentation, the answers given in section 3.3 are thus wholly sufficient. However,
the special feature of the Plancherel theorem below is that it gives a concrete
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description of the intertwining operator implementing the decomposition, as
well as the fibre spaces in the direct integral decomposition. In addition, for
unimodular groups it will be possible to single out a particularly useful choice
of Plancherel measure from the equivalence class.

The key turns out to be provided by the operator-valued Fourier trans-
form: As in the case of the reals, the construction of the Plancherel transform
for a type I unimodular group proceeds by first defining a Fourier transform on
L1(G) and extending it (with suitable modifications) to L2(G). The operator-
valued Fourier transform (or group Fourier transform) on G maps each
f ∈ L1(G) to the family F(f) = (σ(f))σ∈Ĝ of operators, where each σ(f) is
defined by the weak operator integral

σ(f) :=
∫
G

f(x)σ(x)dx . (3.18)

This defines a field of bounded operators, in fact, a simple estimate establishes

‖σ(f)‖∞ ≤ ‖f‖1 . (3.19)

Indeed,

|〈σ(f)η, ϕ〉| =
∣∣∣∣
∫
G

f(x)〈σ(x)η, ϕ〉dx
∣∣∣∣

≤
∫
G

|f(x)| |〈σ(x)η, ϕ〉| dx

≤ ‖f‖1‖η‖ ‖ϕ‖ .

Note that the definition of F is entirely analogous to the definition of the
Fourier transform over the reals, by the usual parametrization of R̂.

Another simple computation shows the convolution theorem on L1(G),
namely the fact that convolution becomes operator multiplication on the
Fourier side:

σ(f ∗ g) = σ(f) ◦ σ(g) . (3.20)

This is justified by

〈σ(f ∗ g)η, ϕ〉 =
∫
G

(fastg)(x)〈σ(x)η, ϕ〉 dx

=
∫
G

∫
G

f(y)g(y−1x)〈σ(x)η, ϕ〉 dy dx

=
∫
G

∫
G

f(y)
∫
G

g(y−1x)〈σ(x)η, ϕ〉 dx dy

=
∫
G

∫
G

f(y)
∫
G

g(x)〈σ(y)σ(x)η, ϕ〉 dx dy

=
∫
G

∫
G

f(y)
∫
G

g(x)〈σ(x)η, σ(y)∗ϕ〉 dx dy



82 3 The Plancherel Transform for Locally Compact Groups

=
∫
G

f(y)〈σ(g)η, σ(y)∗ϕ〉 dy

= 〈σ(f)(σ(g)η), ϕ〉 .

A similar computation establishes for f ∈ L1(G) and g(x) = f(y−1xz)

σ(g) = σ(y)σ(f)σ(z)∗ , (3.21)

if the group is unimodular.
While in the real case there is a natural Hilbert space to contain the images

of L2(R)∩L1(R) under the Fourier transform, namely L2(R), in the nonabelian
case this Hilbert space needs to be constructed. We have spent the previous
sections mainly with providing the elements of this construction: The Fourier
transform (σ(f))σ∈Ĝ forms a field of bounded operators, indexed by elements
of Ĝ. Furthermore, this field is measurable, as follows from the definition of the
Mackey Borel structure on Ĝ, and it intertwines the action of the twosided
regular representation with the canonical action from left and right. It is
thus reasonable to expect H to be the direct integral over the measure space
(Ĝ, νG), with νG the measure underlying the central decomposition of λG.
The natural choice for the fibres is given by the Hilbert-Schmidt operators
Hσ → Hσ.

The following Plancherel theorem contains the rigorous formulation of
these facts; see [35, 18.8] for a proof.

Theorem 3.31. Let G be a unimodular type I group. There exists a Plancherel
measure νG on Ĝ with the following properties:

(a) For all f ∈ L1(G) ∩ L2(G), σ(f) ∈ B2(Hσ), for νG-almost all σ ∈ Ĝ, and

‖f‖22 =
∫
Ĝ

‖σ(f)‖22 dνG(σ) . (3.22)

(b) F extends uniquely to a unitary operator

P : L2(G) →
∫ ⊕

Ĝ

B2(Hσ) dνG(σ) , (3.23)

the Plancherel transform of G.
(c) P implements the following unitary equivalences

λG 

∫ ⊕

Ĝ

σ ⊗ 1 dνG(σ) (3.24)

�G 

∫ ⊕

Ĝ

1⊗ σ dνG(σ) (3.25)

V Nl(G) 

∫ ⊕

Ĝ

B(Hσ)⊗ 1 dνG(σ) (3.26)

V Nr(G) 

∫ ⊕

Ĝ

1⊗ B(Hσ) dνG(σ) (3.27)
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(d) νG satisfies the inversion formula

f(x) =
∫
Ĝ

trace(f̂(σ)σ(x)∗) dνG(σ) , (3.28)

for all f in a suitable dense J ⊂ L2(G). Either of (3.22) and (3.28) fixes
νG uniquely.

We call the choice of νG fulfilling (3.22) and (3.28) the canonical choice
of Plancherel measure for G. One obvious requirement for the space J
is that the integral in (3.28) converges in a suitable sense. A possible choice
is the space spanned by (L1(G) ∩ L2(G)) ∗ (L1(G) ∩ L2(G)) [45, p. 234]. A
substantial part of Chapter 4 will be concerned with the proof of Theorem
4.15 containing a precise description of the scope of (3.28), and a version for
nonunimodular groups.

Remark 3.32. In the following, we use ̂ to denote the Plancherel transform,
which should not be confused with the Fourier transform. The direct integral
Hilbert space on the right hand side of (3.23) is denoted by B⊕

2 . The scalar
product of two elements Ai ∈ B⊕

2 , i = 1, 2, consisting of the measurable fields
(Ai(σ) ∈ B2(Hσ))σ∈Ĝ, is thus given by

〈A1, A2〉B⊕
2

=
∫
Ĝ

trace (A1(σ)A2(σ)∗) dνG(σ).

Given an element T ∈ V Nl(G), the operator field corresponding to it accord-
ing to (3.26) is denoted by (T̂σ ⊗ 1)σ∈Ĝ, and we write T 
 (T̂σ ⊗ 1)σ∈Ĝ. We
define the analogous notation T 
 (1⊗ T̂σ)σ∈Ĝ for T ∈ V Nr(G).

Remark 3.33. Since we use the toy example G = R as orientation, it is in-
structive to see how the reals fit into the general scheme. This can be seen
using the following dictionary:

unitary dual ←→ R̂ 
 R, via R � ω �→ χω := e−2πiω·

Fourier transform ←→ F(f)(ω) =
∫

R
f(x)χω(x)dx

Cσ ←→ IdC

Plancherel measure ←→ dω

B⊕
2 ←→ L2(R̂) ∼=

∫ ⊕
R̂

C dω

projection field (P̂σ)σ∈Ĝ ←→ U ⊂ R̂

Most of the table is self-explanatory, maybe except for the last two lines.
Since the representation spaces of the characters are one-dimensional, the
corresponding Hilbert-Schmidt-spaces (or tensor products) are again conve-
niently identified with C. Measurable complex-valued functions on R can thus
be viewed as measurable fields of operators C → C. This allows to view L2(R̂)
as direct integral of one-dimensional operator spaces, and to view the charac-
teristic function 111U as a field of projections
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P̂σ =
{

IdC for σ ∈ U
0 otherwise .

In particular, Theorem 2.63 is now easily recognised as a special case of Corol-
lary 4.17.

Finally, we observe that inserting

trace(f̂(ω)χω(x)∗) = f̂(ω)χω(x) = f̂(ω)e2πiωx

into the inversion formula (3.28) yields the well-known Fourier inversion for-
mula

f(x) =
∫

R

f̂(ω)e2πiωxdω .

Note that this inversion formula holds for all f ∈ L2(R) with f̂ ∈ L1(R),
which is the natural domain for inversion formulae. The analog of this space
for nonabelian groups is described in Chapter 4.

The following remark explains how the discrete series representations fit
into the Plancherel picture.

Remark 3.34. By 3.27 it is clear that π ∈ Ĝ is in the discrete series iff
νG({π}) > 0. Let η, ϕ, η′, ϕ′ ∈ Hπ and consider the rank-one operators
Aπ = ϕ⊗η and Bπ = ϕ′⊗η′. Since {π} is Borel, we can extend these trivially
to measurable operator fields (Aσ)σ∈Ĝ ∈ B

⊕
2 and (Bσ)σ∈Ĝ. Let a, b ∈ L2(G)

denote the respective preimages under the Plancherel transform. Assuming
that the inversion formula (3.28) is applicable, we find that

a(x) =
∫
Ĝ

trace(Aσσ(x)∗) dνG(σ) = νG({π})〈ϕ, π(x)η〉 = νG({π})Vηϕ(x) ,

and likewise for b. Note that here the absolute convergence of the integral
is trivially guaranteed; this fact allows us to justify the use of Plancherel
inversion by referring to Theorem 4.15 below. Since Plancherel transform is
unitary, we obtain

〈Vηϕ, Vη′ϕ′〉 = νG({π})−2〈a, a′〉

= νG({π})−2

∫
Ĝ

trace(AσB∗
σ)dνG(σ)

= νG({π})−2〈ϕ,ϕ′〉〈η′, η〉 .

A comparison of this equation with the orthogonality relation (2.15), observing
in addition that Cπ = cπ · IdHπ , yields that

cπ = νG({π})−1 .

In particular, computing the constant cπ, which is the only step necessary for
establishing admissibility conditions, is equivalent to computing the canonical
Plancherel measure of the singleton set {π}.
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3.6 The Mackey Machine∗

In this book the Mackey machine is the chief technical tool for the computa-
tion of duals and Plancherel formulae. It serves two purposes: On the one hand
we need Mackey’s theory to obtain an explicit description of the Plancherel
measure of a nonunimodular group, using the unimodular normal subgroup
N = Ker(∆). Moreover, the examples given in Chapter 5 all rely on computa-
tion of Plancherel measure for group extensions, which is based on Mackey’s
theory. We therefore include a short survey, which will also allow to fix some
notation. For a more complete exposition we refer the reader to [45].

Let G be a locally compact group, and N �G closed. Then G operates on
N by conjugation, i.e.

x.n = xnx−1

is a left action of G on N by automorphisms. This gives rise to a left action,
the dual action of G on N̂ , if we let (x.σ) denote the representation acting
on Hσ by

(x.σ)(n) = σ(x−1.n) = σ(x−1nx) .

ClearlyN acts trivially on N̂ , since σ(n) acts as intertwining operator between
σ and n.σ, if n ∈ N . Hence we obtain an action of the factor group H = G/N

on Ĝ, which is also called the dual action. Given γ ∈ N̂ , the associated
stabilizer in G is denoted by Gγ . The little fixed group Hγ denotes the
quotient Gγ/N . In the case that G is a semidirect product G = N � H ,
the Hγ can be identified with subgroups of H . The associated dual orbit is
denoted by O(γ). The dual action respects the Mackey Borel structure, more
precisely, N̂ is a Borel G-space. In particular, whenever N is type I, N̂ is
standard, and then 3.3 implies that O(γ) ∼= G/Gγ ∼= H/Hγ as Borel spaces.
This identification will be used later on frequently in the discussion of quasi-
invariant measures on the dual orbits.

The discussion somewhat simplifies if G is in fact a semidirect product
G = N � H . This is the case if H can be identified with a closed subgroup
of G, i.e., there exists a cross-section G/N → G which is a continuous group
homomorphism. Then we can write elements of G as pairs (n, h), with group
law (n, h)(n′, h′) = (nαh(n′), hh′). Here αh is the automorphism ofN obtained
by conjugating with h. In this setting the little fixed group Hγ is also a
subgroup of G, and Gγ = N �Hγ .

The following regularity condition on the dual orbit space turns out to be
central for the complete description of the dual of a group extension.

Definition 3.35. Let N �G and H = G/N . N is called regularly embed-
ded if the quotient space N̂/H is countably separated.

We can now state the objectives of Mackey’s theory. Given a group exten-
sion N � G fulfilling certain additional assumptions, we want to compute Ĝ
from the following data:
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• the dual orbit space N̂/H
• for each γ ∈ N̂ , the associated little fixed group Hγ and its dual Ĥγ

The procedure which allows to construct all elements of Ĝ from these ingredi-
ents is induction. There exist several realizations of induced representations;
for our purposes the most useful one uses cross-sections. For a proof, see for
instance [50, Proposition 2.6.3]. A version for right cosets instead of left ones
may be found in [75].

Proposition 3.36. Let G be a locally compact group and H < G. Suppose
that � is a representation of H. Pick a quasi-invariant measure µ on G/H,
and let

Hπ := L2(G/H, µ;Hσ) .

Given x ∈ G, define the measure µx by µx(E) = µ(Ex). Let α : G/H → G
denote a Borel-measurable cross-section. Letting

(π(x)f) (yH) :=

√
dµx−1

dµ
(yH)σ

(
α(yH)−1xα(x−1yH)

)
f(x−1yH), (3.29)

defines a unitary representation π with π 
 IndGHσ.

We will not give Mackey’s theorem in its most general form, since this
would necessitate to discuss projective representations. The following defini-
tion formulates the technical condition which allows to avoid this.

Definition 3.37. Let N � G, and σ ∈ N̂ . If σ can be extended to a unitary
representation of Gσ on Hσ, it is said to have a trivial Mackey obstruc-
tion.

Remark 3.38. Let us explain the notion of Mackey obstruction some more. For
simplicity assume that G = N � H , and let σ ∈ N̂ . Then for every h ∈ Hσ

there exists a unitary operator T (h) : Hσ → Hσ intertwining σ and h.σ.
Hence σ(αh(n)) = T (h)σ(n)T (h)∗. By Schur’s lemma, T (h) is unique up to
an element in T. Now the Mackey obstruction is trivial precisely if we can
choose the mapping h �→ T (h) to be a homomorphism.

For the purposes of Chapter 5, we introduce an auxiliary notion. Given a
semidirect product G = N �H , we say that the Mackey obstruction of σ ∈ N̂
is particularly trivial if (n, h) �→ σ(n) is a representation of Gγ = N �Hγ .
Let us mention two cases where the obstruction is particularly trivial: If N is
abelian, then T (h) and σ(n) commute, as linear operators on one-dimensional
space. Hence we may as well choose T (h) = 1. The other, even more obvious,
case is N = Gγ . These two cases cover all examples in Chapter 5.

The following theorem shows how the induction procedure allows to com-
pute the duals of group extensions with regularly embedded normal subgroup.
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Theorem 3.39. [Mackey]
Let N �G, and assume that all σ ∈ N̂ have trivial Mackey obstruction.

(a) Given γ ∈ N̂ , let γ̃ denote a fixed extension of N to Gγ . Given � ∈ Ĥγ,
let

(γ × �)(y) := γ̃(y)�(yN) .

This defines a representation of Gγ which satisfies IndGGγ
γ × � ∈ Ĝ.

(b) Let N � G be regularly imbedded, with N is type I. Pick a measurable
transversal Σ ⊂ N̂ of N̂/H. Then the Mackey correspondence

{(γ, �) : γ ∈ Σ, � ∈ Ĥγ} → Ĝ (3.30)

(γ, �) �→ IndGGγ
γ × � (3.31)

is a bijection.
(c) Suppose that N is regularly embedded and type I. Then G is type I iff all

the Hγ are.

We remark that N need not be regularly embedded for G to be type I, as
witnessed by a counterexample in [17].

Besides allowing to derive all of Ĝ by brute force calculation, Mackey’s
theory also provides a geometric intuition which can be exploited for various
purposes. More precisely, the Mackey correspondence allows to view Ĝ as
a fibred set

Ĝ =
⋃

O(σ)∈N̂/H
{IndGGσ

σ × � : � ∈ Ĥσ} ≡
⋃

O(σ)∈N̂/H
{σ} × Ĥσ

with base space N̂/H and fibre {O(σ)} × Ĥσ ≡ Ĥσ associated to O(σ) ∈
Ĝ/H . This view allows an educated guess concerning the Plancherel measure
of G: All fibres carry respective Plancherel measure, which can be ”glued
together” using a pseudoimage of νG under the projection map N̂ → N̂/H .
The following theorem shows that this construction works. Note that it is
somewhat more general than the version of Mackey’s theorem given above,
since 3.40 only requires good behavior of the dual action on a conull set. An
even more general version can be found in [75, I, Theorem 10.2]. The procedure
for obtaining the correct normalization of the canonical Plancherel measure
for the case that G is unimodular follows from [82, Ch. III,Theorem 6].

Theorem 3.40. [Kleppner/Lipsman]
Let G and N � G be type I. Suppose that N is unimodular and regularly
embedded, and that there is a G-invariant Borel conull subset Σ ⊂ N such
that all σ ∈ Σ have trivial Mackey obstruction. Then a νG-conull subset of Ĝ
is given by the set

Ω =
⋃

O(σ)∈Σ/H
{IndGGσ

σ × � : � ∈ Ĥσ} ≡
⋃

O(σ)∈Σ/H
{σ} × Ĥσ .
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The class of Plancherel measure is obtained by the following procedure: Pick
a pseudo-image νN of νN on Σ/H. Then there exists, for almost all O(γ) ∈
Σ/H, a normalization of Plancherel measure νHγ (which is necessarily unique
in the unimodular case) such that

dνG = dνHγdνN . (3.32)

For G unimodular, the correct normalizations are obtained as follows:

• There exists a unique family of measures µO(γ) on the G-orbits in Σ such
that

dµO(γ)dνN (O(γ)) = dνN (γ) .

• Since G is unimodular, the µO(γ) are H-invariant, at least νN -almost ev-
erywhere. Hence there exists a unique choice of Haar measure µHγ such
that Weil’s formula

dµNdµHγdµO(γ) = dµG

holds.
• Normalizing νHγ according to the choice of µHγ in the previous step en-

sures (3.32).

Since discrete series correspond to the atoms with respect to Plancherel
measure, the following result follows directly from the fibred measure theorem
of Kleppner and Lipsman:

Corollary 3.41. Let G and N�G be as in Theorem 3.40. Then π is a discrete
series representation iff π = IndGGσ

σ×�, where σ ∈ N̂ is such that νN (O(σ)) >
0 and � is in the discrete series of Hσ.

For the sake of illustration, let us discuss the theorems for the groups from
Section 2.4.

Remark 3.42. Consider the group Hr = R
2 × T as in Example 2.27, with the

group law

(p, q, z)(p′, q′, z′) = (p+ p′, q + q′, zz′eπi(q′p−qp′)) ,

and inversion (p, q, z)−1 = (−p,−q, z). Then N = {0} × R × T is an
abelian normal subgroup, and the dual group is parameterized by R× Z, via
χ(ω,n)(0, q, z) = zne−2πiωq. Letting H = R×{0}×{1}, we see that Hr = N�H ,
and the conjugation action of H on N is given by

(p, 0, 1)(0, q, z)(−p, 0, 1) = (p, 0, 1)(−p, q, zeπiqp) = (0, q, ze2πipq) .

The dual action is then computed as

[(p, q, z).χ(ω,n)](q0, z0) = [(p, 0, 1).χ(ω,n)](q0, z0) = (ω, n)(q0, z0e2πipq)

= zn0 e2πinpq0e−2πiωq0 = χ(ω−np,n)(q0, z0) .
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Therefore, the dual orbits are given by

O(ω,0) = {(ω, 0)} , ω ∈ R

On = R× {n} , n ∈ Z \ {0} .

The little fixed groups associated to the orbits are H in the first case, and
trivial in the second case. Thus Mackey’s Theorem yields

Ĥr = {σr,s : r, s ∈ R}
⋃
{πk : k ∈ Z \ {0}} . (3.33)

Here σr,s(p, q, t) = e−2πi(rp+sq), the characters of the quotient group G/({0}×
{0} × T, and πk = IndHr

N χ0,k. Identifying R × {n} with R, and observing
once again that the representation of to be induced acts on C, we realize the
induced representations on L2(R), using the cross-sections α : R → Hr given
by α(ω) = (−ω/n, 0, 1). We note that Lebesgue measure is in fact invariant
under the shift action in formula (3.29), hence the Radon-Nikodym derivative
equals one. Computing

α(ω)−1(p, q, z)α((p, q, z)−1ω) = (ω/n, 0, 1)(p, q, z)α(ω + np)
= (ω/n, 0, 1)(p, q, z)(−ω/n− p, 0, 1) = (0, q, ze2πiq(ω/k+p/2))

Plugging this into (3.29) yields

πk(p, q, z)f(ω) = χ(0,k)(0, q, ze2πiq(p/2+ω/k))f(ω + kp) = zke2πiq(ω+pk/2) .

Comparing this to Equation (2.19), we see that π−1 is identical to the repre-
sentation π considered in Example 2.27. In order to establish that the repre-
sentation is in the discrete series (which is of course known by the discussion
in 2.27), we next compute Plancherel measure, or at least its measure class.
The Plancherel measure on N̂ ≡ R × Z is dωdn, where dω is Lebesgue mea-
sure, and dn counting measure. It is obvious that taking Lebesgue measure on
the continuous part of Ĝ (i.e., on the {σr,s : r, s ∈ R}) and counting measure
on the complement is a pseudoimage of this. This yields the measure class; in
particular, νG({π−1}) > 0 establishes once again that the representation from
Example 2.27 is in the discrete series. Moreover, our discussion has provided
the additional discrete series representations {πk : k �= 0,−1}.

Remark 3.43. There are different possible ways of viewing the reduced reduced
Heisenberg group as a group extension. However, not every possibility allows
to apply Theorem 3.39. For instance, consider the central subgroup Z = {0}×
{0}×T. Then clearly Z�G, withG/Z ∼= R

2. Since Z is central, the conjugation
action of G on Z is trivial, and so is the dual action. It follows that Gγ = G

for all γ ∈ Ẑ. Assuming that all Mackey obstructions were trivial, this would
imply that all irreducible representations are extensions of elements of Ẑ.
Thus they would act in onedimensional spaces, i.e. all elements of Ĝ would
be homomorphisms G → T. Since Ĝ separates points, this would imply that
G is abelian, which it is not.



90 3 The Plancherel Transform for Locally Compact Groups

Remark 3.44. Let G be the ax + b-group, G = R � R
′ from Example 2.28.

A more detailed study of the representations of this group, including the
Plancherel formula, may be found in the papers by Khalil [71] and Eymard
and Terp [42]. These papers may also be considered as precursors to the results
of Kleppner and Lipsman, and Duflo and Moore, on the Plancherel formula
for general nonunimodular groups.

The arguments given here for the ax+ b-group will be applied to general
semidirect products in Chapter 5. The role of the normal subgroupN is played
by the subset {(b, 1) : b ∈ R}, whereas the quotient group is isomorphic to the
subgroup {(0, a) : a ∈ R

′} ∼= R
′. Using

(0, a)(b, 1)(0, a−1) = (ab, 1)

we find that

(a.χω)(b) = χω(a−1b) = e−2πia−1bω = χa−1ω(b) . (3.34)

Thus we have two dual orbits in N̂ ≡ R, namely {0} and R
′, with associated

fixed groups G and N , respectively. The trivial representation of N , which
corresponds to the orbit {0}, clearly extends to the trivial representation of
G. Hence the trivial orbit contributes the representations

�t(b, a) = aitsign(a)ε (t ∈ R
+, ε ∈ {0, 1}) ,

which is just the dual of the quotient group G/N ≡ R
∗.

We pick χ1 ∈ N̂ as a representative of the other orbit. It is clear from
(3.34) that the little fixed group is trivial, thus the orbit contributes precisely
one more representation

σ = IndGNχ1 .

Noting that χ1 has C as representation space, we realize π on the space
L2(R, dx), using the cross-section α : R

′ → G given by α(ω) = (0, ω−1).
With a view to evaluating (3.29) we compute

α(ω)−1(b, a)α((b, a)−1, ω) = (0, ω)(b, a)(0, a−1ω−1) = (ωb, 0) .

Plugging this into (3.29) yields

[σ(b, a)f ](ω) = |a|1/2e−2πibωf(aω) .

Note that the factor |a|1/2 is the Radon-Nikodym derivative term in (3.29),
as it serves to making σ(b, a) unitary.

A comparison to Example 2.28 shows that σ, being the only infinite-
dimensional irreducible representation of G, must be equivalent to the ir-
reducible representation π which we studied in 2.28. A straightforward com-
putation shows that

(π(b, a)f) (ω) = e−2πiωb|a|1/2f(aω) =
(
σ(b, a)f̂

)
(ω) ,
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which means that the Plancherel transform on L2(R) intertwines σ and π.
This is also our reason for realizing IndGNχ1 on L2(R, dx), instead of choosing
the measure |x|−1dx, which is invariant under the dual action. The induced
representation would look slightly simpler, but the unitary equivalence to the
representation from 2.28 is less easy to see.

We next turn to the Plancherel measure, which is a rather easy exercise:
νN is supported on the conull orbit R

′, which contributes the representation
σ. Now Theorem 3.40 yields that, since the other orbit {0} has measure zero,
the Plancherel measure of G is supported in {σ}. In other words, the

λG 
 ∞ · σ ,

and the Plancherel theorem implies that

f �→ σ(f)Cσ

defined on L1(G) ∩ L2(G), extends to a unitary operator L2(G) → B2(Hσ).
The similitude group considered in Example 2.30 can be treated much in

the same way. Again the dual action has two orbits, {0} and its complement,
and on the latter, the action is free. As for the 1D case, this implies that
λG 
 ∞ · σ, for a single irreducible representation σ.

The following remark dealing with the dyadic wavelet transform can be
seen as a precursor to the discussion in Chapter 5, in particular the first three
sections therein.

Remark 3.45. Finally let us consider the 2kx+ b-group underlying the dyadic
wavelet transform. Since this is a subgroup of the ax+ b-group containing R,
we obtain the same dual action as in Remark 3.44, which yields the following
orbit space

{{2kx : k ∈ Z} : x ∈ ±[1, 2[∪{0}∪} ≡ ±[1, 2[∪{0}

The associated little fixed groups are trivial for orbits different from {0},
whereas the little fixed group of the latter is obviously Z. Thus we find that

Ĝ = {χγ : γ ∈ [0, 1[} ∪ {σω : ω ∈ ±[1, 2[} ,

with χγ(b, k) = e−2πiγk, and σω = IndGNω. Proceeding as in the previous
example, we realize σω on �2(Z), yielding

σω(b, k)f(n) = e2πiωnf(n− k) . (3.35)

Let us describe the Plancherel measure. The group being nonunimodular, only
the measure class will be of interest. We may safely ignore the representations
χγ , since they correspond to the orbit {0} which has zero measure. For the
complement, the fact that the dual action is free there implies that it remains
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to compute a pseudoimage of Plancherel measure on R̂ under the quotient
map associated to the dual action. Clearly Lebesgue measure on

±[1, 2[≡ {σω : ω ∈ ±[1, 2[}

serves this purpose. As a first simple observation we note that this measure
does not have atoms, and hence G has no discrete series representations.

Let us now consider the quasi-regular representation π from Example 2.36.
We already know that π has admissible vectors, and we want to express this
in terms of Plancherel measure. For this purpose we compute the action of
the representation π̂ obtained by conjugating π with the Fourier transform.
In the last remark, we have already computed this action for the full affine
group, obtaining

(π̂(b, k)f) (ω) = |2|k/2e−2πiωkf(2kω) . (3.36)

In order to relate this to the Plancherel decomposition, we associate to each
ξ ∈ ±[1/2, 1[ the Hilbert space Hξ = �2(2Zξ, 2kdk). That is, elements of
�2(2Zξ, 2kdk) are sequences indexed by {2kξ : k ∈ Z} which are square-
summable w.r.t. (weighted) counting measure. The motivation for this def-
inition is that if we parameterize R

′ by ±[1, 2[×Z � (ξ, k) �→ 2kξ. Lebesgue
measure is then given by dξ2k−1dk, with dξ Lebesgue measure on the intervals,
and dk counting measure. Hence any element of L2(R) corresponds uniquely
to a family (f |2Zξ)ξ∈±[1,2[, yielding a unitary equivalence

L2(R) 

∫
±[1,2[

Hξdξ .

As a matter of fact, this argument is yet another instance of the general pro-
cedure of viewing a measure decomposition as direct integral decomposition
of the associated L2-spaces, confer Subsection 3.4.4. The relevance of this par-
ticular decomposition is that a second look at (3.36) convinces us that we also
have a decomposition of representations,

π̂ 

∫
±[1,2[

πξdξ

where the action of πξ on Hξ is

(πξ(b, k)f) (ω) = |2|k/2e−2πiωkf(2kω) . (3.37)

Now the comparison to (3.35) allows to check immediately that the operator
Tξ : �2(Z) → Hξ, defined by

(Tξ(f)) (2kξ) = 2k/2f(k)

intertwines σξ with πξ. Thus we arrive at
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π 

∫ ⊕

±[1,2[

σξdξ ,

and the right-hand side is a multiplicity-free direct integral representation
with Plancherel measure as underlying measure. Thus we have established
π ≈ λG. In particular, π has no irreducible subrepresentations either, a fact
we have already derived by other means in Example 2.36.

3.7 Operator-Valued Integral Kernels∗

The Plancherel formula for nonunimodular groups is obtained by applying
the results of the previous section to the normal subgroup N = Ker(∆G).
This involves explicit calculation using induced representations, and operator-
valued integral kernels arise naturally in this context.

It is a well-known fact that for a given measure space (X,µ) the Hilbert-
Schmidt operators on L2(X) can be conveniently identified with integral ker-
nels in L2(X × X,µ ⊗ µ). In this section we discuss the extension of this
observation to vector-valued L2-spaces, mostly with the aim of computing a
trace formula. Abstract computation –ignoring possible unpleasant linearity-
vs.-sesquilinearity issues– allows to figure out what to expect:

B2(L2(X ;H)) 
 (L2(X)⊗H)⊗ (L2(X)⊗H) 
 L2(X ×X)⊗ B2(H)

 L2(X ×X ;B2(H)) ;

hence replacing the scalar-valued kernels by Hilbert-Schmidt-valued ones
should do the trick.

In this section we give a proof of this correspondence, and then give a trace
formula which is our chief motivation for using operator-valued kernels. For
the proof of the trace formula Bochner integration is a useful tool. Following
[117], we call a function f : X → B, where X is a measure space and B a
Banach space, strongly measurable if it is the pointwise limit (in the norm)
of measurable finite-valued functions X → B. Here measurability for finite-
valued functions simply means that all preimages are measurable. For sepa-
rable Banach spaces, this turns out to be equivalent to weak measurability
[117, V.4 Theorem], which is defined by the requirement that φ ◦ f : X → C

is measurable, for all φ ∈ B∗. For the cases under consideration, this mea-
surability condition is straightforward to check and will not be addressed
explicitly. By [117, V.5], it is possible to construct a Bochner integral as-
signing every strongly measurable f such that x �→ ‖f(x)‖B is integrable,
a unique value

∫
X
f(x)dµ(x). The following lemma makes the identification

B2(L2(X, dµ;H)) 
 L2(X ×X, dµ;B2(H)) explicit.

Lemma 3.46. Let X be a measure space, with measure µ, and consider the
mapping T : L2(X ×X ;B2(H)) → B2(L2(H ;H)), F �→ TF given by
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(TF )(g)(x) =
∫
H

F (x, ξ)g(ξ)dµ(ξ) . (3.38)

Here the right-hand side converges for every x ∈ H satisfying the condition
F (x, ·) ∈ L2(X, dµ;B2(H)), as an H-valued Bochner integral. T is a unitary
map, fulfilling (TF )∗ = TF∗, where F ∗(ξ, ξ′) = (F (ξ′, ξ))∗.

Proof. We compute
∫
X

‖F (x, ξ)g(ξ)‖dµ(ξ) ≤
∫
H

‖F (x, ξ)‖∞‖g(ξ)‖dµ(ξ)

≤
∫
X

‖F (x, ξ)‖2‖g(ξ)‖dµ(ξ)

≤ ‖F (x, ·)‖2‖g‖2 ,

where the last inequality is due to Cauchy-Schwarz. Fubini’s theorem implies
that F (x, ·) ∈ L2(X,B2(H)) for almost all x. For these x we have thus proved
convergence of the right hand side of (3.38), while

∫
H

‖(TF g)(x)‖22dµ(x) ≤
∫
H

‖F (x, ·)‖22‖g‖22dµ(x) ≤ ‖F‖22‖g‖2

entails ‖TF‖∞ ≤ ‖F‖2. Hence TFn → TF in ‖ · ‖∞ whenever Fn → F in
L2(X ×X ;B2(H)).

Next pick ONB’s (ei)i∈I ofH and (ϕj)j∈J of L2(X, dµ). Then (φiej)i∈I,j∈J
is an ONB of L2(X, dµ;H) by 3.6, and then ((ϕke�)⊗ (ϕmen))k,�,m,n is an
ONB of B2(L2(X, dµ;H)). It is easily seen that the preimage under K of
these operators is given by the operator-valued functions

ϕkϕm e� ⊗ ek : (ξ, ξ′) �→ ϕk(ξ)ϕm(ξ′)e� ⊗ ek ,

but the latter are an ONB of L2(X ×X, dµ;B2(H)).
An arbitrary F ∈ L2(X × X ;B2(H)) can be expanded in this ONB.

Then the partial sums are mapped under T to a convergent sequence in
B2(L2(X, dµ;H)), while on the other hand, they converge to TF in ‖ · ‖∞.
This shows TF ∈ B2(L2(X, dµ;H)) and ‖TF ‖B2 = ‖F‖2. The statement con-
cerning adjoints is immediate.

The next lemma studies how operator multiplication and taking traces
relates to the integral kernels. Since the result is of a strictly auxiliary nature,
we do not consider the problem in full generality. In particular, we restrict
attention to the case where X = H , a locally compact group, and µ = µH .

Note that B1 ⊂ B2 implies that each trace class operator on L2(H ;H)
also has a unique Hilbert-Schmidt kernel. In the case of multiplication, the
behavior is as expected, i.e., the formula for the kernel of TF ◦ TG turns out
to be a continuous analogue of matrix multiplication. On the other hand, the
first guess for a trace formula,
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trace(TA) =
∫
H

trace(A(ξ, ξ))dξ

is clearly problematic: Unless H is discrete, the diagonal in H × H is a set
of measure zero. Hence if the operator field (A(ξ, ξ′))ξ,ξ′∈H is just viewed
as an element of L2(H × H ;B2(H)), the formula does not even make sense.
The following lemma shows however that the integral kernels of trace class
operators can be chosen in such a way that not only the trace of TA, but also
the traces of related operators can be computed by integrating the traces on
certain subsets A ⊂ H ×H of product measure zero.

Lemma 3.47. Let H be a locally compact group. Let F,G ∈ L2(H×H,B2(H)),
and define

A(ξ, ξ′′) =
∫
H

F (ξ, ξ′)G(ξ′, ξ′′)dξ′ (3.39)

whenever F (ξ, ·), G(·, ξ′′) ∈ L2(H,B2(H))

(a) The set {(ξ, ξ′′) : F (ξ, ·), G(·, ξ′′) ∈ L2(H,B2(H))} ⊂ H×H has a comple-
ment of measure zero. On this set the right hand side of (3.39) converges
as a B1(H)-valued Bochner integral. In particular, A(ξ, ξ) is well-defined
for almost every ξ ∈ H.

(b) A as defined in (3.39) fulfills A ∈ L2(H ×H ;B2(H)) and TA = TF ◦ TG.
(c) Let A be given by (3.39). Let γ ∈ H, and (Uξ′′)ξ′′∈H a measurable field of

unitary operators on H. Then the operator kernel

B : (ξ, ξ′′) �→ A(ξ, γ−1ξ′′)Uξ′′

is in L2(H ×H,B2(H)), with TB trace class. The trace is computed as

trace(TB) =
∫
H

trace
(
A(ξ, γ−1ξ)Uξ

)
dξ . (3.40)

We moreover obtain the inequality
∫
H

‖A(ξ, γ−1ξ)Uξ‖1dξ ≤ ‖F‖2‖G‖2 (3.41)

Proof. Clearly, F (ξ, ξ′)G(ξ′, ξ′′) ∈ B1(H). Now the calculation
∫
H

‖F (ξ, ξ′)G(ξ′, ξ′′)‖1dξ′ ≤
∫
H

‖F (ξ, ξ′)‖2‖G(ξ′, ξ′′)‖2dξ′

≤ ‖F (ξ, ·)‖2‖G(·, ξ′′)‖2

establishes the convergence statement of (a). That the sets on which this
convergence holds are conull (both in H × H and on the diagonal) follows
from Fubini’s Theorem.

For part (b) we observe that Bochner convergence of (3.39) in B1(H) entails
Bochner convergence in B2(H), hence
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∫
H

∫
H

‖A(ξ, ξ′′)‖22dξdξ′′ ≤

≤
∫
H

∫
H

(∫
H

‖F (ξ, ξ′)‖2‖G(ξ′, ξ′′)‖2dξ′
)2

dξdξ′′

≤
∫
H

∫
H

(∫
H

‖F (ξ, x)‖22dx
)(∫

H

‖G(y, ξ′′)‖22dy
)
dξdξ′′

= ‖F‖22‖G‖22 .

Hence A ∈ L2(H×H,B2(H)), and TA = TF ◦TG is verified by a straightforward
calculation.

For the proof of part (c) we first observe that

B(ξ, ξ′′) =
∫
H

F (ξ, ξ′)K(ξ′, ξ′′)dξ′ ,

where
K : H ×H � (ξ′, ξ′′) �→ G(ξ′, γ−1ξ′′)Uξ′′ .

Leftinvariance of the measure and the fact that the Uξ′′ are unitary ensure
that K ∈ L2(H ×H,B2(H)). Now the same argument as for (a) yields that

B(ξ, ξ) =
∫
H

F (ξ, ξ′)G(ξ′, γ−1ξ)Uξ dξ′ , (3.42)

with Bochner convergence in B1(H) whenever ‖F (ξ, ·)‖2, ‖G(·, γ−1ξ)‖2 <∞,
i.e., for almost every ξ. More precisely, we obtain for these ξ that

‖B(ξ, ξ)‖1 ≤ ‖F (ξ, ·)‖2‖G(·, γ−1ξ)‖2 .

Integration over ξ yields

∫
H

‖B(ξ, ξ)‖1dξ ≤
(∫

‖F (ξ, ·)‖22dξ
)1/2(∫

‖G(·, γ−1ξ)‖22dξ
)1/2

=‖F‖2‖G‖2 ,

i.e., (3.41).
For the proof of (3.40), observe that F �→ TF is unitary. Then the definition

of the scalar product on L2(H ×H,B2(H)) entails

trace(TB) = trace(TF ◦ TK) = 〈TF , T ∗
K〉 = 〈TF , TK∗〉

=
∫
H

∫
H

trace(F (ξ, ξ′) ((K∗)(ξ, ξ′))∗) dξdξ′

=
∫
H

∫
H

trace
(
F (ξ, ξ′)G(ξ′, γ−1ξ)Uξ

)
dξ′dξ , (3.43)

where we used the definition of the adjoint kernel K∗ in the previous lemma
to compute

(K∗)(ξ, γ−1ξ′) = U∗
ξ′G(ξ′, γ−1ξ)∗ .
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Now the Bochner convergence of (3.42) together with the fact that the trace
is a continuous functional on B1(H) allow to pull the trace out of the inner
integral of (3.43), by [117, V.5, Corollary 2], thus leaving us with the desired
relation.

3.8 The Plancherel Formula for Nonunimodular Groups

In this section we give an outline of the construction of the Plancherel trans-
form of a nonunimodular type I group, as it was derived by Duflo and Moore
[38, Paragraph 6]. Similar results were obtained by Tatsuuma [110], as well as
Kleppner and Lipsman [75].

3.8.1 The Plancherel Theorem

The following theorem summarizes both the unimodular and the nonunimod-
ular cases.

Theorem 3.48. Let G be a locally compact group. Assume that G and N =
Ker(∆G) are type I groups, with N regularly embedded. Then there exist

• a Plancherel measure νG on Ĝ,
• a measurable field (Cσ)σ∈Ĝ of densely defined selfadjoint positive operators

with densely defined inverses,

such that the following statements hold:

(a) For all f ∈ L1(G) ∩ L2(G) and the closure of the operator σ(f)C−1
σ is in

B2(Hσ), and

‖f‖22 =
∫
Ĝ

‖[σ(f)C−1
σ ]‖22 dνG(σ) . (3.44)

(b) F extends uniquely to a unitary operator

P : L2(G) → B⊕
2 =

∫ ⊕

Ĝ

B2(Hσ) dνG(σ) , (3.45)

the Plancherel transform of G.
(c) P implements the following unitary equivalences

λG 

∫ ⊕

Ĝ

σ ⊗ 1 dνG(σ) (3.46)

�G 

∫ ⊕

Ĝ

1⊗ σ dνG(σ) (3.47)

V Nl(G) 

∫ ⊕

Ĝ

B(Hσ)⊗ 1 dνG(σ) (3.48)

V Nr(G) 

∫ ⊕

Ĝ

1⊗ B(Hσ) dνG(σ) (3.49)
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(d) νG and the operator field (Cσ)σ∈Ĝ can be chosen to satisfy the inversion
formula

f(x) =
∫
Ĝ

trace([σ(f)C−2
σ ]σ(x)∗) dνG(σ) , (3.50)

for all f in a suitable dense D ⊂ L2(G). The inversion formula converges
absolutely in the sense that νG-almost every σ(f)C−2

σ extends to a trace-
class operator, and the integral over the trace-class norms is finite.

(e) The pair (νG, (Cσ)σ∈Ĝ is essentially unique: The semi-invariance rela-
tion

σ(x)Cσσ(x)∗ = ∆G(x)1/2Cσ (3.51)

fixes each Cσ uniquely up to multiplication by a scalar, and once these are
fixed, so is νG. Conversely, one can fix νG (which is a priori only unique
up to equivalence) and thereby determine the Cσ uniquely.

(f) G is unimodular if and only if for νG-almost all σ, Cσ is a multiple of the
identity IdHσ on Hσ. In this case the requirement Cσ = IdHσ , yields that
νG is the canonical Plancherel measure.
If G is nonunimodular, Cσ is an unbounded operator for (νG-almost all)
σ ∈ Ĝ.

Let us clarify the relation between the normalizations of νG and the Cσ:
Assume that ν̃G,

(
C̃σ

)
σ∈Ĝ

also fulfill the properties of the theorem. In par-

ticular, since (3.44) holds with ν̃G and C̃σ in the place of νG and C̃σ, one
deduces

C̃σ =
(
dνG
dν̃G

(σ)
)−1/2

Cσ .

Let us repeat the observation, already made in Section 2.4 for the discrete
series case, that if the group is nonunimodular, relation (3.51) necessarily
entails that Cσ is unbounded.

Remark 3.49. The inversion formula (3.50) generalizes (3.28). It was shown in
[38] to hold for the space of Bruhat functions D introduced in [26]. This space
is defined as

D(G) =
⋃
{C∞

c (G/K) : K ⊂ G compact such that G/K is a Lie group } ,

where C∞
c (G/K) is the space of arbitrarily smooth functions on G/K with

compact support, canonically embedded into Cc(G). Theorem 4.15 below con-
tains an extension of this formula to the natural maximal domain of this for-
mula, which will turn out to be crucial for establishing admissibility criteria.

We adopt the notations fixed in Remark 3.32 for unimodular groups for the
general case. In particular, the distinction between the Fourier and Plancherel
transform, and the fact that we reserve the notation ·̂ for the latter, becomes all
the more important due to the fact that the two now differ even for functions
in L1(G) ∩ L2(G).
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3.8.2 Construction Details∗

The results presented in this subsection are indispensable for our purposes,
as they provide concrete realizations of the representations entering the
Plancherel formula, along with a detailed description of the Duflo-Moore op-
erators and their domains. Both are needed to prove the results in Chapter
4.

We already remarked that the key technique for the construction of the
Plancherel measure of a nonunimodular group G is to apply Theorem 3.40 to
the group extension

1 → N → G→ H → 1 ,

where N = Ker(∆G) and H = G/N . This approach provides in particular
an explicit description of the Duflo-Moore operators, which will be crucial for
the construction of admissible vectors. While the measure-theoretic details are
somewhat tedious, there is a quite intuitive scheme behind these results, based
on the double role of the factor group H : On the one hand the identification,
via cosets, of G ≡ N × H gives rise to a measure decomposition of µG in
terms of µN , µH and ∆G. On the other hand, it turns out that the operation
of H on N̂ is free νN -almost everywhere, giving rise to a Borel isomorphism
N̂ ≡ V × H . Now V can be suitably identified with a subset of Ĝ, via the
induction map, and the measure decomposition of νN along V and H provides
a measure of V , which turns out to be the Plancherel measure of G. The
connection between the various objects will be provided by the operator-
valued kernel calculus.

The following proposition spells out the measure-theoretic technicalities.
We will not provide a full proof that the construction actually yields the
Plancherel measure, however we will show that the transform constructed
from the Cσ and νG is indeed an isometry L1(G) ∩ L2(G) → B⊕

2 . The direct
computation showing this provides a nice illustration of the interplay between
the measure decompositions on G and N̂ .

Proposition 3.50. Let G be nonunimodular and type I, with N = Ker(∆G)
type I and regularly embedded. Then there exists an H-invariant Borel subset
U ⊂ N̂ with the following properties:

(i) νN (N̂ \ U) = 0. The quotient space U/H is a standard Borel space.
(ii) For every σ ∈ U , IndGNσ ∈ Ĝ. Moreover, H operates freely on the orbit

O(σ).
(iii) The mapping (O(�)) �→ IndGN� is a Borel isomorphism U/H → V =

Ind(U), where V is a standard Borel subset of Ĝ. Moreover, there exists
a Borel cross section τ : V → U , such that H ×V � (H,σ) �→ Hτ(σ) ∈ U
is a Borel isomorphism. In particular, both U and τ(V ) are standard.

(iv) Let the function ψ : U → R
+ be defined by pulling the mapping H × V �

(γ, σ) �→ ∆G(H)−1/2 back to U via τ . Then ψ is measurable.
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(v) Plancherel measure on V ∼= U/H is obtained by a measure disintegration
along H-orbits: If each orbit O(τ(σ)) is endowed with the image µO(τ(σ))

of Haar measure under the (bijective) projection map H � γ �→ γ.τ(σ),
there exists a unique measure νG on V such that

dνN (�) = ψ(�)−2dµO(τ(σ))(�)dνG(σ) ; (3.52)

the measure νG thus obtained is the Plancherel measure of G.
(vi) If νG is constructed as in (v), and σ = IndGNτ(σ) ∈ U is realised on

L2(H, dµH ;Hτ(σ)) via cross sections, then Cσ is given by multiplication
with ∆−1/2

G :
(Cση)(γ) = ∆G(γ)−1/2η(γ) ,

and dom(Cσ) is the set of all η ∈ L2(H, dµΓ ;Hτ(σ)) for which this product
is also in L2(H, dµΓ ;Hτ(σ)).

Proof. Part (i) is given by [38, Theorem 6, 1., 2.], using in addition that λG
is type I. The choice of U also guarantees Ind(U) ⊂ Ĝ, [38, Lemma 8] which
is the first statement of (ii). The second statement of (ii) then follows by [38,
Lemma 7]. That Ind induces a Borel isomorphism U/H → V is due to [38,
Lemma 13], possibly after passing to a smaller set U ′ ⊂ U while preserving
all other properties. The existence of a Borel cross section and the resulting
Borel isomorphism are observed in the proof of [38, Proposition 10]; again we
might have to pass to a νN -negligibly smaller set. In particular, both U and
τ(V ) are standard, as Borel-isomorphic images of standard Borel spaces. Part
(iv) is obvious. Parts (v) and (vi) are [38, Theorem 6, 3.].

A pleasant consequence of part (ii) is that the Mackey obstructions for all
σ0 ∈ U are particularly trivial in the sense of 3.38.

Corollary 3.51. If λG is type I and G is nonunimodular, then λG 
 ∞ · λG.

Proof. Since R
+ has no nontrivial noncompact subgroups, H is infinite. Hence

Hσ = L2(H, dµH ;Hτ(σ)) is infinite-dimensional. Accordingly, the left opera-
tion of σ on B2(Hσ) has infinite multiplicity, for almost every σ ∈ Ĝ. Since
λG is the direct integral of these representations, the analogous statement for
λG follows.

In the following computations we refer to an explicit construction of the
direct integral space B⊕

2 . This amounts to making several concrete choices.

• We pick a fixed measurable τ : V → N̂ and let U0 = τ(V ).
• We fix a measurable realization of U0, which exists by [88, Theorem 10.2],

and since U0 is standard.
• For γ ∈ H and σ0 ∈ U0, we realize γ.σ0 on Hσ0 by (γ.σ0)(x) =

σ0(α(γ)−1xα(γ)).
• The induced representations IndGNσ0 are realized onHσ = L2(H, dµH ;Hσ0)

using the cross-section α; see Proposition 3.36 for construction details.
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• The measurable structure on the Hσ is defined as follows: Given a measur-
able family of ONB’s (enσ0

)σ∈U0 , of the Hσ0 , and given an ONB (an)n∈N of
L2(H), (aneσk )n,k is an ONB of Hσ = L2(H, dµH ;Hτ(σ)) 
 Hσ0 ⊗ L2(H),
except for the zero vectors belonging to the indices k > dim(Hτ(σ)),
and it is straightforward to check that it is a measurable structure on
(Hσ)σ∈U . Moreover, it is easy to construct a measurable family of ONB’s
from this: First note that the sets V� := {σ : dim(Hτ(σ)) = �}, for
� ∈ N ∪ {∞}, are Borel sets [88, Theorem 8.7]. On each V�, pick a fixed
bijection s� : N × {1, . . . , �} → N (where {1, . . . ,∞} := N). Then letting
uσs�(n,k)

:= ane
σ
k , for σ ∈ V�, removes the zero vectors from our measur-

able structure (anekσ)σ∈U . Moreover, on each V�, the measurability is easily
checked, and this is sufficient.

• We make the identification

H × U0 ≡ U via H × U0 � (γ, σ0) �→ γ.σ0 . (3.53)

In this parametrization,

ψ((γ, σ0)) = ∆
−1/2
G (γ)

and
dνN (γ, σ0) = ∆G(γ)dνG(σ)dµH(γ) , (3.54)

where σ and σ0 are related by σ0 = τ(σ).

The following lemma computes the Haar measure of G in terms of µN and
µH , and fixes the normalization we use in the following.

Lemma 3.52. Fix a measurable cross-section α : H → G. Then the mapping
N ×H � (g0, γ) �→ g0α(γ) ∈ G is a Borel isomorphism. We use the notation
g = g0α(γ) ≡ (g0, γ). Then

dµG(g0, γ) = dµN (g0)∆G(γ)dµH(γ) (3.55)

is a left Haar measure.

Proof. Fix g = g0α(γ), g′ = g′0α(γ′) ∈ G, then

gg′ = g α(γ)g′α(γ)−1 α(γ)α(γ)′α(γγ′)−1 α(γγ′)

with α(γ)g′0α(γ)−1, α(γ)α(γ)′α(γγ′)−1 ∈ N (observing N � G). Hence right
translation on G corresponds to right translation in the variables g0, γ, though
not by g′0, γ

′. Now the rightinvariance of µN , µH entails that dµN (g0)dµH(γ)
is a right Haar measure on G. But then ∆GdµNdµH is a left Haar measure.

In order to check the Parseval equality of the Plancherel transform con-
structed from the Cσ and νG as in the proposition, we need a few technical
lemmas. The first one computes the action of IndGN (σ0), for σ0 ∈ U .
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Lemma 3.53. Let σ0 ∈ U0 and σ = IndGNσ0. Define the cocycle Λ : H×H →
N by

Λ(γ, ξ) = α(ξ)−1α(γ)α(α(γ)−1ξ) .

If we realize σ on L2(H, dµγ ;Hσ) via the cross-section α, we obtain for x =
g1α(γ)

(σ(x)f) (ξ) = (σ0ξ)(g1)σ0(Λ(γ, ξ))f(γ−1ξ) . (3.56)

Proof. Since the measure is invariant, formula (3.29) for induction via cross-
sections yields

(σ(g0, γ)f) (ξ) = σ0

(
α(ξ)−1g0α(γ)α(α(γ)−1g−1

0 ξ
)
f(α(γ)−1g−1

0 ξ)

= σ0

(
α(ξ)−1g0α(ξ)Λ(γ, ξ)

)
f(γ−1ξ)

= (ξ.σ0)(g0)σ0(Λ(γ, ξ))f(γ−1ξ) ,

where α(γ)−1g−1
0 ξ = α(γ)−1ξ is due to N �G .

The next step consists in showing how the integrated representation
IndGNσ0 acts via an operator-valued integral kernel, thus bringing the tech-
niques from Section 3.7 into play.

Lemma 3.54. Let σ0 ∈ U0 and σ = IndGNσ0. For g ∈ L1(G) let gγ := g(·, γ).
Then σ(g) : L2(H, dµH ;Hσ0) → L2(H, dµH ;Hσ0) can be written as

σ(g)f(ξ) =
∫
H

k(ξ, γ)f(γ)dγ ,

where k is an operator valued integral kernel given by

k(ξ, γ) = (ξ.σ0)(gγ−1ξ) ◦ σ0(Λ(γ−1ξ, ξ)) ·∆G(γ−1ξ) .

Proof. First note that by Fubini’s theorem gγ ∈ L1(N), for almost every γ ∈
H , which justifies the use of (ξ.σ0)(gγ−1ξ). The following formal calculations
can be made rigorous by plugging them into scalar products, according to the
definition of the weak operator integral. Using the previous lemma, we see
that

(σ(g)f)(ξ) =
∫
H

∫
N

g(g1, γ)(ξσ0)(g1)σ0(Λ(γ, ξ))f(γ−1ξ)dg1∆G(γ)dγ

=
∫
Γ

(ξ.σ0)(gγ)σ0(Λ(γ, ξ))f(γ−1ξ)∆G(γ)dγ

=
∫
H

(ξ.σ0)(gγ−1)σ0(Λ(γ−1, ξ))f(γξ)∆G(γ−1)dγ

=
∫
H

(ξ.σ0)(gγ−1ξ)σ0(Λ(γ−1ξ, ξ))∆G(γ−1ξ)f(γ)dγ ,

which is the desired formula.
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Now we can prove that on L1(G) ∩ L2(G) the Plancherel transform pre-
serves the L2-norm. Recall that the operator σ(g)C−1

σ has the operator kernel

(ξ.σ0)(gγ−1ξ) ◦ σ0(Λ(γ−1ξ, ξ)) ·∆G(γ−1ξ) ·∆G(γ)1/2 ,

and therefore∫
Ĝ

∥∥σ(g)C−1
σ

∥∥2
2
dνG(σ)

=
∫
U

∫
H∫

H

∥∥∥(ξ.σ0)(gγ−1ξ)σ0(Λ(γ−1ξ, ξ))∆G(γ−1ξ)∆G(γ)1/2
∥∥∥2

2
dξ

dγdνG(σ)

=
∫
U

∫
H

∫
H

∥∥∥(γξ.σ0)(gξ)∆G(ξ)∆G(γ)1/2
∥∥∥2

2
dξdγdνG(σ) (3.57)

=
∫
H

(∫
U

∫
H

∥∥∥(γ.σ0)(gξ)∆G(ξ)∆G(γξ−1)1/2
∥∥∥2

2
dγdνG(σ)

)
dξ (3.58)

=
∫
H

(∫
U

∫
H

‖(γ.σ0)(gξ)‖22∆G(γ)dγdνG(σ)
)
∆G(ξ)dξ

=
∫
H

(∫
Ĝ

‖�(gξ)‖22 dνN (�)
)
∆G(ξ)dξ (3.59)

=
∫
H

‖gξ‖22∆G(ξ)dξ (3.60)

= ‖g‖22 . (3.61)

Here the various equalities are justified as follows: (3.57) is obtained by drop-
ping the unitary operators σ0(Λ(γ−1ξ, ξ)), and a change of variables. (3.58) is
Fubini’s theorem, and again a change of variables. In line (3.59) we used the
measure decomposition (3.54) of νG. (3.60) is an application of the Plancherel
formula for N , while the last equality uses the measure decomposition (3.55).
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4

Plancherel Inversion and Wavelet Transforms

This chapter fully exhibits the relationship between the continuous wavelet
transforms discussed in Chapter 2 with the Plancherel formula. A first instance
of the connection was discernible in Remark 3.34 dealing with discrete series
representations of unimodular groups: Computing the constant cπ governing
the admissibility condition for such representations π was found to be equiv-
alent to computing the Plancherel measure of the set {π}, and the wavelet
transform was found to be a particular case of inverse Plancherel transform.

These observations are systematically expanded in the course of this chap-
ter. We thus start out by discussing Fourier inversion, first as a mapping
between a direct integral space B⊕

1 of trace class operators and the Fourier
Algebra A(G). We then prove a Plancherel inversion formula (Theorem 4.15),
from which the L2-convolution Theorem 4.18 follows immediately. The same
argument as for the toy example then yields admissibility conditions from
the convolution theorem (Theorem 4.20). We characterize when admissible
vectors exist (Theorem 4.22). Remark 4.30 offers a strategy for the solution
of T4, sketching a systematic approach to treat arbitrary representations via
direct integral theory. In the unimodular case it can actually be shown that
the scheme from 4.30 characterizes the canonical Plancherel measure. We also
discuss briefly how the scheme relates to the type I assumption. The final sec-
tion of the chapter is devoted to a short diversion treating Wigner functions
associated to nilpotent Lie groups.

The standing assumptions throughout this chapter are: G and N =
Ker(∆G) are type I, with N regularly embedded.

4.1 Fourier Inversion and the Fourier Algebra∗

The natural domain for Fourier and Plancherel inversion formulae is given by
the Fourier algebra A(G) and its counterpart B⊕

1 on the Fourier side. In order
to motivate the latter space, recall the situation over the reals: Formally, the
inverse Plancherel transform of f ∈ L2(R) is given as

H. Führ: LNM 1863, pp. 105–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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f(x) =
∫

R̂

f̂(ω)e2πixωdω ,

and it is a well-known fact in Fourier analysis that this equation holds
rigourously pointwise almost everywhere whenever f̂ ∈ L1(R), which is the
natural condition to ensure absolute convergence of the integral. The analo-
gous formula for general locally compact groups will be

a(x) =
∫
Ĝ

trace(Aσσ(x)∗)dνG(σ) . (4.1)

The operator fields A for which this formula makes sense constitute the Ba-
nach space B⊕

1 defined in the next lemma. Its proof is standard and therefore
omitted.

Lemma 4.1. Let B⊕
1 be the space of measurable fields (B(σ))σ∈Ĝ of trace

class operators, for which the norm

‖B‖B⊕
1

:=
∫
Ĝ

‖B(σ)‖1 dνG(σ)

is finite. Here we identify operator fields which agree νG-almost everywhere.
Then (B⊕

1 , ‖·‖B⊕
1

) is a Banach space.

Let us next define the space of functions arising as left-hand sides of (4.1,
which is the Fourier algebra.

Definition 4.2. The Fourier algebra of G is defined as

A(G) := L2(G) ∗ L2(G)∗ = {f ∗ g∗ : f, g ∈ L2(G)} .

Endowed with the norm

‖u‖A(G) = inf{‖f‖2‖g‖2 : u = f ∗ g∗}

A(G) becomes a Banach space of C0-functions, with ‖u‖A(G) ≥ ‖u‖∞. A(G) is
closed with respect to pointwise multiplication and conjugation, which makes
A(G) a Banach-*-algebra.

Remark 4.3. (a) By definition, A(G) is just the space of coefficient functions
for λG and its subrepresentations. Hence it seems a natural object of study
in connection with continuous wavelet transforms. However, neither the norm
on A(G) nor its algebra structure seem to be related in a canonical way to
questions concerning admissible vectors and wavelet transforms. Hence the
usefulness of A(G) in this connection is dubious. For our purposes, focussing
on the Plancherel transform and its inversion, the benefit of considering A(G)
mainly lies in clarifying the role of the von Neumann algebra V Nl(G) in con-
nection with inversion formulae, and in the notion of positivity which will be
useful for convergence issues.
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(b) Note that 4.2 is not the initial definition of A(G) given in [41], but equiva-
lent to the original definition because of [41, Théorème, p. 218]. Likewise, the
norm given here is not the original definition in [41], but it coincides with it
by [41, Lemme 2.14].
(c) If u ∈ A(G), so are u∗, u and ǔ, the latter defined as ǔ(x) = u(x−1); see
[41, Proposition 3.8]. Moreover, we have

‖u∗‖A(G) = ‖u‖A(G) = ‖ǔ‖A(G) .

The following theorem was given in [81] for unimodular groups.

Theorem 4.4. Let A = (Aσ)σ∈Ĝ ∈ B
⊕
1 . Then

a(x) = F−1
A(G)(A)(x) =

∫
Ĝ

trace(Aσσ(x)∗)dνG(σ)

defines a function a ∈ A(G). It satisfies the Parseval equality
∫
G

f(x)a(x)dx =
∫
Ĝ

trace(σ(f)A∗
σ)dνG(σ) , (4.2)

for all f ∈ L1(G). The linear operator F−1
A(G) : B⊕

1 → A(G) is onto.

Proof. Let Aσ = Uσ|Aσ| be the polar decomposition of Aσ. Then B1,σ =
Uσ|Aσ|1/2 and B2,σ = |Aσ|1/2 defines elements B1, B2 ∈ B⊕

2 , since

‖B1‖2B⊕
2

=
∫
Ĝ

trace(B1,σB
∗
1,σ)dνG(σ)

=
∫
Ĝ

trace(U∗
σUσ|Aσ |)dνG(σ)

= ‖A‖B⊕
1

,

and similarly ‖B2‖2B⊕
2

= ‖A‖B⊕
1

. For measurability confer Lemma 3.7. Denot-

ing by b1, b2 ∈ L2(G) the respective preimages under the Plancherel transform,
we find

a(x) =
∫
Ĝ

trace(Aσσ(x)∗)dνG(σ)

=
∫
Ĝ

trace(B1,σB2,σσ(x)∗)dνG(σ)

= 〈b1, λG(x)b2〉
= (b1 ∗ b∗2)(x) ,

hence a ∈ A(G). If, conversely, a = b1 ∗ b∗2 ∈ A(G), define (Bi,σ)σ∈Ĝ = b̂i. If
we then let Aσ = B1,σB

∗
2,σ, the same calculation shows that a = F−1

A(G)(A).
Hence the mapping is onto.
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Finally, let us show the Parseval equality. Let Aσ = B1,σB2,σ as above, and
denote by h1, h2 the inverse Plancherel transform of (B∗

2,σ)σ∈Ĝ and (B1,σ)σ∈Ĝ,
respectively. It follows that
∫
Ĝ

trace(σ(f)A∗
σ)dνG(σ) =

∫
Ĝ

trace(σ(f)B∗
2,σB

∗
1,σ)dνG(σ)

=
∫
Ĝ

trace((f ∗ h1)∧(σ)B∗
1,σ)dνG(σ)

=
∫
G

(f ∗ h1)(x)h2(x)dx

=
∫
G

f(y)
∫
G

h1(y−1x)h2(x)dxdy

=
∫
G

f(y)
∫
G

h2(x)h1(y−1x)dx dy

=
∫
G

f(y)
∫
Ĝ

trace(B1,σB∗
σ,2σ(y)∗)dνG(σ) dy

=
∫
G

f(y)a(y)dy .

Remark 4.5. Below we will show that the Fourier inversion formula maps B⊕
1

isometrically onto A(G). Now we are faced with the somewhat puzzling situa-
tion that on the one hand, Plancherel measure – which defines the norm on B⊕

1

– is not uniquely given, whereas the norm on A(G) is defined independently
of a choice of Plancherel measure.

This apparent contradiction is easily resolved: Suppose that ν1 and ν2 are
two different choices of Plancherel measure. Denote the corresponding spaces
of integrable trace class fields by B⊕

1 (νi). Then there exists a canonical isomet-
ric isomorphism T : B⊕

1 (ν1) → B⊕
1 (ν2), given by pointwise multiplication with

dν1
dν2

. Moreover, if we denote the corresponding Fourier inversion operators by

F−1
i : B⊕

1 (νi) → A(G) ,

an easy computation establishes that F−1
2 = F−1

1 ◦ T .
It is similarly remarkable that the Duflo-Moore operators do not make a

single appearance in this section.

A most useful feature of A(G) is its close relationship to the left von
Neumann algebra V Nl(G), as witnessed by the next theorem [41, Théorème
3.10]:

Theorem 4.6. Let A(G)′ denote the Banach space dual of A(G). For all T ∈
V Nl(G), there exists a unique linear functional ϕT ∈ A(G)′ such that,

ϕT ((f ∗ g∗)∨) = 〈Tf, g〉 .
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Here ∨ denotes the involution from Remark 4.3(c). The mapping T �→ ϕT
is an isometric isomorphism V Nl(G) → A(G)′, which is bicontinuous if
V Nl(G) is equipped with the ultra-weak topology and A(G)′ with the weak∗-
topology σ(A(G)′, A(G)). Conversely, the ultra-weakly continuous linear forms
on V Nl(G) are precisely given by the mappings T �→ ϕT (u), for fixed
u ∈ A(G).

Definition 4.7. The predual property of A(G) allows to lift the action of
V Nl(G) on itself to an action on A(G), via duality [41, 3.16]. More precisely,
for T ∈ V Nl(G), let T �→ Ť denote the adjoint of the involution a �→ ǎ. Given
u ∈ A(G), the functional

V Nl(G) � S �→ ϕŤ S(u)

is ultraweakly continuous, hence corresponds to a unique element Tu ∈ A(G).

For u ∈ A(G) ∩ L2(G) and T ∈ V Nl(G) the notation Tu is ambiguous, but
[41, Proposition 3.17] notes that the two possible meanings coincide, and that
u �→ Tu is in fact norm-continuous on A(G). Hence an alternative way of
defining the mapping u �→ Tu could proceed by extending it by continuity
from A(G) ∩ L2(G), which by [41, Proposition 3.4] is dense in A(G).

Positivity, as defined next, will be useful in connection with convergence
issues.

Definition 4.8. A function u on G is called of positive type if for all n ∈ N

and all x1, . . . , xn ∈ G the matrix (u(x−1
i xj))i,j=1,...,n is positive semi-definite.

In such a case we write u $ 0. If u1, u2 $ 0 with u1 − u2 $ 0, we write
u1 $ u2.

Remark 4.9. u$ 0 implies u(x) = u(x−1), i.e. u = u∗. Moreover, it is obvious
that u$ 0 iff u$ 0. Particular examples of functions of positive type are

x �→ 〈π(x)ξ, ξ〉 , x �→ 〈ξ, π(x)ξ〉 ,

where π is an arbitrary unitary representation, and ξ ∈ Hπ. For the first
example, confer [35, 13.4.5], while the second is just the complex conjugate
of the first. The first example is the typical way of referring to functions of
positive type, while the second is more adapted to coefficient functions.

Taking π = λG, we find in particular for all f ∈ L2(G) that f ∗ f∗ $ 0.
Conversely, [57, p.73, Théorème 17] states that for all u ∈ A(G) with u $ 0
there exists f ∈ L2(G) such that u = f ∗ f∗.

Next let us take a closer look at the duality between V Nl(G) and A(G) on
the Fourier side. For this purpose we need an invariance property of Plancherel
measure under the taking contragredients. The result is probably folklore; it
is mentioned for instance in [81, Section 3]. We have not been able to locate
a proof, though. If π, σ are two irreducible representations with π 
 σ, we
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use the unique unitary intertwining operator Hπ → Hσ to identify π with
the standard realization of σ. This needs to be kept in mind in the next two
lemmas, where we do not explicitly distinguish between operators on Hσ and
operators on Hσ, even though for a given measurable realization of Ĝ the
representative of [σ] will not necessarily be the standard realization of the
representative of [σ].

Lemma 4.10. (a) If G is unimodular and νG is the canonical choice of
Plancherel measure, then νG is invariant under the mapping σ �→ σ.

(b) If G is nonunimodular, and νG is constructed from the canonical Plancherel
measure of Ker(∆G) according to Proposition 3.50, then νG is invariant
under the mapping σ �→ σ.

Proof. For part (a) we let ν denote the measure given by ν(A) = νG({σ : σ ∈
A}). We first show that ν is νG-absolutely continuous. For this purpose observe
that λG × �G 


∫
Ĝ
σ ⊗ σdνG(σ). Now the fact that taking contragredients

commutes with taking direct integrals and tensor products shows that λG 

�G. On the other hand, λG 
 �G via the involution f �→ ∆

−1/2
G f∗. Hence

λG 
 λG. Now π =
∫ ⊕
Ĝ
σdνG(σ) is multiplicity-free and quasi-equivalent to

λG, while π =
∫ ⊕
Ĝ
σdν(σ) is multiplicity-free and quasi-equivalent to �G 
 λG.

Hence π ≈ π, which by [35, 5.4.6] entails that π 
 π. But then νG and ν are
equivalent.

In addition, we obtain that the unique unitary operators Hσ �→ Hσ in-
tertwining the realization of σ used in the Plancherel decomposition with the
standard realization on Hσ, constitute a measurable field of operators (out-
side a νG-nullset); confer [36, Theorem 4, p.238]. Hence the identification of
operators on Hσ and Hσ can be obtained by a measurable field of operators.

As a first consequence, we see that the operator

(Aσ)σ∈Ĝ �→ (Aσ)σ∈Ĝ ,

defined for all A ∈ B⊕
2 for which the right hand side is in B⊕

2 , is densely
defined and closed: It factors into the unitary map

T : (Aσ)σ∈Ĝ �→
(
Aσ

√
dν

dνG
(σ)

)

σ∈Ĝ
followed by the densely defined closed operator consisting in pointwise multi-

plication with
√

dνG

dν .
Next we recall that the canonical choice of Plancherel measure entails for

f ∈ L1(G) ∩ L2(G) that f̂(σ) = σ(f). A simple computation establishes

T (f̂)(σ) = σ(f) = σ(f ) = f̂(σ) . (4.3)

Note that this entails in particular that P(L1(G) ∩ L2(G)) ⊂ dom(T ). Since
taking conjugates of L2-functions and Hilbert-Schmidt operators are obviously
isometric operations, we obtain that
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(f̂(σ))σ∈Ĝ �→
(
f̂(σ)
)
σ∈Ĝ

is a unitary operator on B⊕
2 , and T is a densely defined closed operator co-

inciding with it on a dense subspace. Hence T is unitary itself. But then the
multiplication operator arising from the Radon-Nikodym derivative is unitary
also, which entails dν

dνG
≡ 1.

This proves the statement concerning unimodular G. The statement for
nonunimodular groups follows from this, the fact that IndGNσ 
 IndGNσ [86,
Theorem 5.1], and the construction of νG from a measure decomposition of
νKer(∆G), as sketched in Section 3.8.

Lemma 4.11. Let A ∈ B⊕
1 , and a = F−1

A(G)(A). Let T 
 (T̂σ ⊗ 1)σ∈Ĝ ∈
V Nl(G). Then

ϕT (a) =
∫
Ĝ

trace(T̂σAtσ)dνG(σ) . (4.4)

Proof. In view of 4.10 we may assume that the Plancherel measure is invariant
under taking contragredients. Hence, if (Aσ)σ∈Ĝ ∈ B

⊕
1 , then (Atσ)σ∈Ĝ ∈ B

⊕
1

as well. In particular, for fixed A the right hand side of (4.4) is ultraweakly
continuous as a function of T .

By Theorem 4.6, the mapping T �→ ϕT (a) is ultraweakly continuous as
well, hence it remains to check (4.4) for T = λG(x), x ∈ G (these operators
span a dense subalgebra). But here we have by [41, 3.14 Remarque], that

ϕT (a) = a(x)

=
∫
Ĝ

trace(Aσσ(x)∗)dνG(σ)

=
∫
Ĝ

trace(Aσσ(x)∗)dνG(σ)

=
∫
Ĝ

trace(Atσσ(x))dνG(x)

=
∫
Ĝ

trace(σ(x)Atσ)dνG(x) .

Here the penultimate equality used the relations σ(x)∗ = σ(x)t and trace
(ST t) = trace(StT ). Since λG(x) 
 (σ(x) ⊗ 1)σ∈Ĝ, we are done.

Now we can establish the Fourier transform on A(G). For unimodular
groups, the theorem is [81, Theorem 3.1], for nonunimodular groups it is new.

Theorem 4.12. (a) F−1
A(G), as defined in Theorem 4.4, is one-to-one. The

inverse operator
FA(G) : A(G) → B⊕

1

is thus a bijection, in fact an isometry of Banach spaces.
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(b) If T 

(
T̂σ ⊗ 1

)
σ∈Ĝ

∈ V Nl(G) and a ∈ A(G), then

FA(G)(Ta) =
(
T̂σFA(G)(a)(σ)

)
σ∈Ĝ

.

(c) Let a = F−1
A(G)(A). Then

a$ 0 ⇐⇒ Aσ ≥ 0 (νG − a.e.)

Proof. Define a = F−1
A(G)(A), and let Aσ = Uσ|Aσ| denote the polar de-

composition. Define B1,σ and B2,σ as in the proof of 4.4. We recall that
‖Bi‖B⊕

2
= ‖A‖1/2B⊕

1
, and F−1

A(G)(A) = b1 ∗ b∗2. Then a = b1 ∗ b∗2 implies that

‖f‖A(G) ≤ ‖b1‖2‖b2‖2 = ‖A‖B⊕
1

.

For the converse direction define T ∈ V Nl(G) as T̂σ = (U∗
σ)t ⊗ 1. Then the

previous lemma entails

ϕT (a) =
∫
Ĝ

trace(UσU∗
σ |Aσ|)dνG(σ) = ‖A‖B⊕

1
.

But a �→ ϕ•(a) is an isometric embedding of A(G) into V Nl(G)′, by 4.6.
In addition, ‖T ‖∞ ≤ 1, being defined by a field of partial isometries. Hence
‖a‖A(G) ≥ ‖A‖B⊕

1
, and F−1

A(G) is shown to be isometric, in particular one-to-
one. This closes the proof of (a).

For the proof of (b) fix T ∈ V Nl(G), and denote the corresponding operator
field on the Plancherel transform side by (T̂σ⊗1)σ∈Ĝ. Consider the mappings

1. a �→ Ta

2. a �→ F−1
A(G)

((
T̂σFA(G)(a)(σ)

)
σ∈Ĝ

)

on A(G). We claim that they coincide on the subspace Cc(G)∗Cc(G) ⊂ A(G),
which is dense by [41, Proposition 3.4]. Indeed, let a = f∗g∗ with f, g ∈ Cc(G).
The usual calculation shows that FA(G)(a) = (f̂(σ)ĝ(σ)∗)σ∈Ĝ. g is a bounded
vector by 2.19, i.e., Vg ∈ V Nr(G). Since V Nl(G) and V Nr(G) commute,

[T (a)](x) = [T (Vgf)](x) = [Vg(T (f))](x) = [T (f) ∗ g∗](x)

=
∫
Ĝ

trace
(
T̂σf̂(σ)ĝ(σ)∗σ(x)∗

)
dνG(σ) ,

which shows the claim. Now mapping 1. is bounded with respect to ‖ · ‖A(G)

by [41, Proposition 3.17]. On the other hand, since FA(G) is isometric, we
only need to show that (T̂σ⊗ 1)σ∈Ĝ acts as a bounded operator on B⊕

1 , which
follows trivially from the boundedness of T . Hence we have shown (b) on all
of A(G).
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For (c) first assume Aσ > 0, νG-almost everywhere. Then taking ĝσ = A
1/2
σ

defines ĝ ∈ B⊕
2 , and the calculation

F−1
A(G)(A)(x) =

∫
Ĝ

trace(ĝσĝ∗σσ(x)∗)dνG(σ) = g ∗ g∗(x)

shows that indeed F−1
A(G)(A) $ 0. Conversely, if a = F−1

A(G)(A) $ 0, then a =
g ∗ g∗, and a similar calculation establishes that FA(G)(a) = (ĝ(σ)ĝ(σ)∗)σ∈Ĝ,
which clearly is a field of positive operators.

The following lemma will be instrumental in establishing the Plancherel
inversion formula.

Lemma 4.13. Let G be unimodular. Suppose that u1, u2 ∈ L2(G) ∩ A(G),
with u2 $ u1 $ 0, and that u1 is a bounded vector. Then ‖u2‖2 ≥ ‖u1‖2.

Proof. It suffices to show that

〈u1, u2〉 ≥ ‖u1‖22 ,

since this implies

‖u2‖22 − ‖u1‖22 ≥ ‖u2‖22 + ‖u1‖22 − 2〈u1, u2〉 = ‖u2 − u1‖22 .

By assumption, there exists ψ ∈ L2(G) such that u2 − u1 = ψ ∗ ψ. Pick
(ϕn)n∈N ⊂ Cc(G) converging to ψ in ‖ · ‖2. Then

|〈ψ, u1 ∗ ψ〉 − 〈ϕn, u1 ∗ ϕn〉| ≤ |〈ψ − ϕn, u1 ∗ ψ〉|+ |〈ϕn, u1 ∗ (ϕn − ψ)〉|
≤ ‖ψ − ϕn‖2‖u1 ∗ ψ‖2 + ‖ϕn‖2‖u1 ∗ (φn − ψ)‖2 → 0

using the boundedness of u1. On the other hand, 〈ϕn∗ϕ∗
n, u1〉 ≥ 0 by positivity

of u1 ([35, 13.4.4], observe that for unimodular groups our involution coincides
with the one in [35]). Hence

〈u2 − u1, u1〉 = lim
n→∞〈ϕn ∗ ϕ

∗
n, u1〉 ≥ 0 ,

which finishes the proof.

4.2 Plancherel Inversion∗

In this section we discuss the L2-functions which can be obtained by the
Fourier inversion formula (4.1). Clearly these functions are precisely the in-
tersection A(G)∩L2(G). However, the description on the Plancherel transform
side is much less obvious. In view of the last section, any theorem describing
pointwise Plancherel inversion via (4.1) will contain some statement on the
relationship between the spaces B⊕

1 and B⊕
2 and the operators P and FA(G).
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A first conjecture, which turns out to be correct for unimodular groups, could
be that F−1

A(G) maps B⊕
2 ∩ B⊕

1 bijectively onto L2(G) ∩A(G). This statement
implies in particular that FA(G) and P coincide on L2(G) ∩A(G).

In the nonunimodular case however, this cannot be expected. Using the
next lemma, it is possible to compute at least for Vgf , f ∈ L2(G), g ∈ Cc(G),
what the image under Plancherel transform is:

(Vgf)∧(σ) = f̂(σ)σ(∆−1/2
G g∗) = [f̂(σ)ĝ(σ)∗Cσ] .

Recalling that operator fields of the form (f̂(σ)ĝ(σ))σ∈Ĝ are typical elements
of B⊕

1 , this calculation motivates the conjecture that L2(G) ∩ A(G) is the
image under F−1

A(G) of the space

{(Aσ)σ∈Ĝ ∈ B
⊕
1 : ([AσCσ])σ∈Ĝ ∈ B

⊕
2 } .

Theorem 4.15 below proves this conjecture. But first a few basic computations
concerning the interplay between convolution with functions in Cc(G) and the
Duflo-Moore operators. Not all of them are needed, but we include them for
completeness.

Lemma 4.14. Let f ∈ Cc(G).

(i) For νG-almost every σ, we have f̂(σ)∗ = C−1
σ σ(∆−1

G f∗). In particular the
right hand side is everywhere defined and bounded.

(ii) For νG-almost every σ, we have

[σ(f)C−1
σ ] = C−1

σ σ(∆−1/2
G f) ,

in particular the right hand side is everywhere defined and bounded.
(iii) For all g ∈ L2(G), we have

(ĝ ∗ f)(σ) = ĝ(σ)σ(∆−1/2
G f) ,

(f̂ ∗ g)(σ) = σ(f) .

(iv) For all g ∈ L2(G), we have

(∆−1/2
g g∗)∧(σ) = ĝ(σ)∗ .

Proof. For part (i) we invoke [104, Theorem 13.2], to find that, since C−1
σ

is selfadjoint and σ(f) is bounded, (σ(f)C−1
σ )∗ = C−1

σ σ(f)∗. Moreover, since
f̂(σ) is bounded, the right hand side of the last equation is everywhere defined.
We conclude the proof of (i) by computing

〈σ(∆−1
G f∗)φ, η〉 =

∫
G

〈∆−1
G (x)f(x−1)σ(x)φ, η〉dx

=
∫
G

〈φ, f(x−1)σ(x−1)η〉∆G(x)−1dx

=
∫
G

〈φ, f(x)σ(x)η〉dx

= 〈φ, σ(f)η〉 .
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For (ii) we first note that by (i), applied to ∆
−1/2
G f ∈ Cc(G), the right

hand side is bounded and everywhere defined. Moreover, the left-hand side is
bounded since f ∈ L1(G) ∩ L2(G). It thus remains to show that the equality
holds on the dense subspace dom(C−1

σ ): For φ, η ∈ dom(C−1
σ ) the definition

of the weak operator integral yields

〈φ, σ(f)C−1
σ η〉 =

∫
G

〈φ, σ(x)C−1
σ η〉f(x)dµG(x)

=
∫
G

〈φ,∆G(x)−1/2C−1
σ σ(x)η〉f(x)dµG(x)

=
∫
G

〈C−1
σ φ, σ(x)η〉∆G(x)−1/2f(x)dµG(x)

= 〈C−1
σ φ, σ(∆−1/2

G f)η〉
= 〈φ,C−1

σ σ(∆−1/2
G f)η〉 ,

where the second equality uses the semi-invariance relation (3.51), and the
selfadjointness of C−1

σ was used on various occasions. This shows (ii).
Part (iii) is then immediate from (i) and (ii), at least for g ∈ L1(G) ∩

L2(G). It extends by continuity to all of L2(G): The left-hand sides are con-
tinuous operators, being convolution operators with f ∈ Cc(G) (see 2.19(b)),
and the right hand sides are continuous because of inequality (3.19).

For part (iv), we first observe that both sides of the equation are unitary
mappings, hence it is enough to check the equality on Cc(G). Here (i) and
(ii) give ĝ(σ)∗ = C−1

σ σ(∆−1
G g∗) = σ(∆−1/2

G g∗)C−1
σ = (∆−1/2

G g)∧(σ).

The following theorem is one of the central new results of this book. For
unimodular groups, it is stated in [81, Corollary 2.4, Corollary 2.5], though
we will point out below that the argument in [81] seems to contain a gap. In
any case, the nonunimodular part is new; one direction was proved in [4].

Theorem 4.15. Let (Aσ)σ∈Ĝ ∈ B
⊕
1 , and define

a(x) =
∫
Ĝ

trace(Aσσ(x)∗)dνG(σ) . (4.5)

Then a ∈ L2(G) iff ([AσCσ])σ∈Ĝ ∈ B
⊕
2 . In that case we have ([AσCσ])σ∈Ĝ = â.

Proof. First assume that ([AσCσ])σ∈Ĝ ∈ B
⊕
2 , and let b be the inverse image

of that under the Plancherel transform. Then for any g ∈ L1(G) ∩ L2(G),
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〈g, b〉 =
∫
Ĝ

trace(ĝ(σ)[AσCσ]∗)dνG(σ)

=
∫
Ĝ

trace([σ(g)C−1
σ ][AσCσ]∗)dνG(σ)

=
∫
Ĝ

trace(σ(g)A∗
σ)dνG(σ)

=
∫
G

g(x)a(x)dx ,

where the last equation is due to (4.2). Now Lemma 2.17 yields b = a almost
everywhere, and thus â = ([AσCσ])σ∈Ĝ.

Let us now show the converse direction. Assume that a ∈ L2(G). Let
Aσ = Uσ|Aσ| be the polar decomposition of Aσ, let U 
 (Uσ ⊗ 1)σ∈Ĝ the
element in V Nl(G) corresponding to the partial isometries, and let

h(x) =
∫
Ĝ

trace(|Aσ |σ(x)∗)dνG(σ) .

By Theorem 4.12(b) we have that h = U∗a, where the right hand side denotes
the action of V Nl(G) on A(G). But a ∈ L2(G) then implies h ∈ L2(G), by [41,
3.17]. Since (Aσ)σ∈Ĝ ∈ B

⊕
2 iff (|Aσ|)σ∈Ĝ ∈ B

⊕
2 , we may thus assume w.l.o.g.

that Aσ ≥ 0.
Now assume G to be unimodular. Pick an increasing sequence of Borel

sets Σn ⊂ Ĝ with ‖Aσ‖2 ≤ n on Σn, νG(Σn) <∞ and
⋃
n∈N

Σn = Ĝ (up to
a Plancherel nullset). Consider the fields An = (111Σn(σ)Aσ)σ∈Ĝ ∈ B

⊕
2 . Then

the direction proved first shows that

an(x) =
∫
Ĝ

trace(Anσσ(x)∗)dνG(σ)

defines a sequence in L2(G), with ân = (Anσ)σ∈Ĝ. Observe that

(a− an)(x) =
∫
Ĝ\Σn

trace(Aσσ(x)∗)dνG(σ) ,

whence Theorem 4.12 (c) yields a $ an. Next we check that the an are
bounded vectors: By construction, ‖Anσ‖∞ ≤ ‖Anσ‖2 ≤ n, hence for all f ∈
L2(G)

Vanf(x) =
∫
Ĝ

trace(f̂(σ)Anσσ
∗(x))dνG(σ)

where (f̂(σ)Anσ)σ∈Ĝ ∈ B
⊕
2 . Hence the previously established direction yields

Vanf ∈ L2(G), i.e., an is bounded. Now we may apply Lemma 4.13, implying
‖an‖2 ≤ ‖a‖2. But then ‖An‖B⊕

2
≤ ‖a‖2, and thus A ∈ B⊕

2 .
Hence it remains to prove a ∈ L2(G) ⇒ ([AσCσ])σ∈Ĝ ∈ B

⊕
2 for G nonuni-

modular. In the following we use the notations from Subsection 3.8.2. Recall
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in particular, that σ = IndGNσ0, and that Aσ is given by a Hilbert-Schmidt
valued kernel (Aσ(ξ, ξ′))ξ,ξ′∈H . Again writing Aσ = FσGσ, with Fσ, Gσ ∈ B⊕

2 ,
we appeal to 3.47 (a) and find that the integral kernel of Aσ is computed from
the kernels of Fσ, Gσ by

Aσ(ξ, ξ′′) =
∫
H

Fσ(ξ, ξ′)Gσ(ξ′, ξ′′)dµ(ξ′) ,

whenever Fσ(ξ, ·), Gσ(·, ξ′′) ∈ L2(H ;B2(Hσ)) .

Lemma 3.47 (a) states that the right hand side is a Bochner integral converging
in B⊕

1 (Hσ0 ).
We next compute the integral kernel of Aσσ(g)∗. Relation (3.56) implies

for g = g0α(γ) and σ0 = τ(σ) that σ(g)A∗
σ has the integral kernel

(ξ, ξ′) �→ (ξ.σ0)(g0) ◦ σ0(Λ(γ, ξ)) ◦Aσ(ξ′, γ−1ξ)∗ .

Transposing yields the kernel

Bσ,γ : (ξ, ξ′) �→ Aσ(ξ, γ−1ξ′) ◦ σ0(Λ(γ, ξ′))∗ ◦ (ξ′.σ0)(g0)∗

for Aσσ(g)∗.
By Fubini’s theorem, the mapping a(·, γ) : g0 �→ a(g0, γ) is in L2(N), for

almost all γ. We intend to apply the unimodular part of the theorem to these
functions. Plugging in the kernel for Aσσ(g)∗ and using the trace formula
(3.40), we obtain

a(g0, γ) =

=
∫
Ĝ

trace(Aσσ(x)∗) dνG(σ)

=
∫
Ĝ

∫
H

trace
(
Aσ(ξ, γ−1ξ)σ0(Λ(γ, ξ))(ξ′.σ0)(g0)∗

)
dξdνG(σ)

=
∫
N̂

trace
(
Aσ(ξ, γ−1ξ)σ0(Λ(γ, ξ))∆G(ξ)−1σ(g0)∗

)
dνN (ξ, σ0) , (4.6)

where the last equation uses (3.54). Next we estimate
∫
N̂

‖Aσ(ξ, γ−1ξ)σ0(Λ(γ, ξ))∆G(ξ)−1‖1dνN (ξ, σ0) =

=
∫
Ĝ

∫
H

‖Aσ(ξ, γ−1ξ)‖1dξdνG(σ)

≤
∫
Ĝ

‖Fσ‖2‖Gσ‖2dνG(x) ≤ ‖F‖B⊕
2
‖G‖B⊕

2
,

where the first inequality is due to (3.41), and the second is again Cauchy-
Schwarz. Hence we see that

Dγ(σ0, ξ) = Aσ(ξ, γ−1ξ)σ0(Λ(γ, ξ))∆G(ξ)−1 (σ0 ∈ U0, ξ ∈ H)
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defines a measurable operator field Dγ ∈ B⊕
1 (N), and that (4.6) is Fourier

inversion applied to this field. Now for every γ with a(·, γ) ∈ L2(N) the
unimodular part of the theorem implies that Dγ ∈ B⊕

2 (N), with

‖a(·, γ)‖22 =
∫
N̂

‖Dγ(σ0, ξ)‖22dνN (σ0, ξ) .

But then Fubini’s theorem and (3.55) imply

‖a‖22 =
∫
H

‖a(·, γ)‖22∆G(γ)dγ

=
∫
H

∫
U0

∫
H

‖Dγ(σ0, ξ)‖22∆G(ξ)dξdνG(σ0)∆G(γ)dγ

=
∫
H

∫
Ĝ

∫
H

‖Aσ(ξ, γ−1ξ)σ0(Λ(γ, ξ))‖22∆G(γξ−1)dγdνG(σ)

=
∫
Ĝ

∫
H

∫
H

‖Aσ(ξ, γ−1ξ)‖22∆G(γξ−1)dγdξdνG(σ)

=
∫
Ĝ

∫
H

∫
H

‖Aσ(ξ, γ)‖22∆G(γ−1)dγdξdνG(σ)

=
∫
Ĝ

∫
H

∫
H

‖Aσ(ξ, γ)∆G(γ)−1/2‖22dγdξdνG(σ) .

Hence we find in particular that for νG-almost every σ ∈ Ĝ the operator with
kernel

(ξ, γ) �→ Aσ(ξ, γ)∆G(γ)−1/2

is Hilbert-Schmidt. On the other hand, recalling that Cσ acts via the multipli-
cation with ∆G(γ)−1/2, we see that AσCσ coincides with this Hilbert-Schmidt
operator on dom(Cσ). Hence [AσCσ] exists and is in B2(Hσ), and we conclude

‖a‖22 =
∫
Ĝ

‖[AσCσ]‖22dνG(σ) ,

which finishes the proof.

Remark 4.16. (a) The unimodular version of the Plancherel inversion theorem
was shown in [81], and the proof of

([AσCσ])σ∈Ĝ ∈ B
⊕
2 ⇒ a ∈ L2(G) (4.7)

immediately carries over to the general setting. Note that the argument relies
on Lemma 2.17.
This observation is crucial in connection with the proof for the converse di-
rection

a ∈ L2(G) ⇒ ([AσCσ])σ∈Ĝ ∈ B
⊕
2 .

The argument given in [81] for unimodular groups uses (4.2) to establish
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∫
G

a(x)k(x)dx =
∫
Ĝ

trace(Aσ k̂(σ)∗)dνG(σ) ,

for all k ∈ L1(G)∩L2(G), and then concludes by density of P(L1(G)∩L2(G))
in B⊕

2 that â = A. This is the mirror image of the argument for ([AσCσ])σ∈Ĝ ∈
B⊕

2 ⇒ a ∈ L2(G), with P(L1(G) ∩ L2(G)) replacing L1(G) ∩ L2(G). But in
Remark 2.18 we saw that density alone is insufficient, and an analogue of 2.17
for P(L1(G)∩L2(G)) instead of L1(G)∩L2(G) does not seem easily available.

This is why the argument presented here is rather more complicated than
the one given in [81]. Note in particular that we used the action of V Nl(G)
on A(G) and the notion of positivity from Section 4.1. A substantially shorter
argument could be provided if the following rather intuitive result from inte-
gration theory were true. Unfortunately I have not been able to prove it:
Let a sequence (an)n∈N ⊂ L2(G) be given with an → a uniformly. Suppose
that the an have orthogonal increments. Then a ∈ L2(G), with ‖a‖2 ≥ ‖an‖2
for all n.
Note however that this observation only allows to shorten the unimodular
part of the proof.
(b) The implication (4.7), with a much more complicated proof, may be found
in [4]. This direction allows to prove sufficient admissibility conditions, as
shown in [53]. For necessity of these conditions however, the converse of (4.7)
seems indispensable.

4.3 Admissibility Criteria

In this section we solve T1 through T3 for the general setting, and discuss
the qualitative uncertainty property.

Since leftinvariant subspaces correspond to projections in V Nr(G), we
obtain an answer to T1 as an immediate consequence of the Theorem 3.48
(c).

Corollary 4.17. Let H ⊂ L2(G) be a closed leftinvariant subspace. The pro-
jection P onto H corresponds to a field of projections P 
 (1 ⊗ P̂σ)σ∈Ĝ, i.e.

(Pf)∧(σ) = f̂(σ) ◦ P̂σ . (4.8)

Next let us consider admissible vectors. The proof turns out to be largely
analogous to the proof for the toy example, once the L2-convolution theorem
is established. But this is now a formality.

Theorem 4.18. For f, g ∈ L2(G) we have Vgf ∈ L2(G) iff ([f̂(σ)ĝ(σ)∗

Cσ])σ∈Ĝ ∈ B
⊕
2 . In this case, we have νG-almost everywhere

(Vgf)∧(σ) = [f̂(σ)ĝ(σ)∗Cσ] . (4.9)

In terms of operator domains, this means that

dom(Vg) = {f ∈ L2(G) : ([f̂(σ)ĝ(σ)∗Cσ])σ∈Ĝ ∈ B
⊕
2 } .
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Proof. Apply Theorem 4.15 to Aσ := f̂(σ)ĝ(σ)∗, and observe that the unitar-
ity of Plancherel transform yields

(Vgf)(x) = 〈f, λG(x)g〉 =
∫
G

tr(Aσσ(x)∗)dνG(x) .

Now we only need to note some technical facts concerning multiplication
operators on tensor products, and the criteria for admissibility and bounded-
ness can be derived.

Lemma 4.19. Let H,K1,K2 be Hilbert spaces. Given a densely defined oper-
ator A : K2 → K1, consider the operator A : H ⊗ K1 → H ⊗ K2 defined by
letting T �→ [TA], for all T ∈ H ⊗ K1 for which a bounded extension from
dom(A) exists and is in H⊗K2.

(a) A is closed.
(b) A is bounded iff A has a bounded extension.
(c) Now assume A = S∗C, where S ∈ H⊗K1, and C : H → H is selfadjoint,

with K1,K2 ⊂ H. If S =
∑
j∈J aj ⊗ϕj, for some ONB (ϕj)j∈J of K, then

A is isometric ⇔ (aj)j∈J ⊂ dom(C) and (Caj)j∈J is an ONS .
(4.10)

Proof. For part (a) we pick a basis (ηi)i∈I of H1 to write arbitrary elements
of H⊗K1 as

S =
∑
i∈I

ηi ⊗ bi .

Then dom(A) consists of all such S for which (bi)i∈I ⊂ dom(A∗) with∑
i∈I ‖A∗bi‖2 <∞, and then

AS =
∑
i∈I

ηi ⊗A∗bi .

Since A∗ is closed, it is easy to conclude from this that A is closed.
Moreover observe that the fact

‖AS‖2 =
∑
i∈I
‖A∗bi‖2 ,

clearly entails that A is bounded iff A∗ is bounded, which entails (b).
For part (c) observe that the same argument proving (b) yields that A

is isometric iff A∗ = CS is isometric. It is straightforward to conclude that
(aj)j∈J ⊂ dom(A), and

CS =
∑
j∈J

(Caj)⊗ ϕj .

Since an isometry is characterized by the fact that the ONB (ϕj)j∈J must be
mapped onto an ONS, (Caj)j∈J is an ONS iff CS is isometric.



4.3 Admissibility Criteria 121

Compare the following theorem to Theorem 2.64. The sufficiency of the
criteria may be found in [53]. For unimodular groups, the characterization
of selfadjoint convolution operators on the Fourier side was proved by Carey
[29].

Theorem 4.20. Let H ⊂ L2(G) be a leftinvariant closed subspace, with or-
thogonal projection P 
 (1⊗ P̂σ)σ∈Ĝ. Then we have the following equivalences
for η ∈ H

η is admissible ⇐⇒ [Cσ η̂(σ)] is an isometry on P̂σ(Hσ) , (4.11)
η is bounded ⇐⇒ σ �→ ‖[Cσ η̂(σ)]‖∞ is essentially bounded , (4.12)

η is cyclic ⇐⇒ σ �→ ‖[Cσ η̂(σ)]‖∞ is injective on P̂σ(Hσ) . (4.13)

Bounded vectors fulfill ‖Vη‖∞ = ess supσ∈Ĝ ‖Cσ η̂(σ)‖∞. Moreover, S ∈ L2(G)
is a selfadjoint convolution idempotent iff [CσŜ(σ)] is a projection, for νG-
almost every σ.

Proof. The chief technical difficulty remaining for the proof of necessity is that
the L2-convolution theorem for Vηf holds only pointwise a.e. on the Plancherel
transform side, and in principle the conull set may depend on f . Hence we
need some additional functional analysis to make the argument work.

Pick a countable total subset S ⊂ L2(G). Then {f̂(σ) : f ∈ S} is total in
Hσ, for almost every σ; otherwise one could construct (measurably) the pro-
jections onto the nontrivial complements and obtain a nontrivial complement
in L2(G). Suppose that η is a bounded vector, say ‖Vη‖∞ ≤ k. Then we find
by Theorem 4.18 that for all f ∈ S

∫ ⊕

Ĝ

‖[f̂(σ)η̂(σ)∗Cσ]‖22dνG(σ) ≤ k2

∫ ⊕

Ĝ

‖f̂(σ)‖22dνG(σ) .

Passing from f̂ to (f̂(σ)111B(σ))σ∈Ĝ, for a Borel subsetB, we see that we replace
Ĝ as integration domain on both sides by B. Since B can be arbitrary, this
implies the inequality for the integrands, i.e.,

‖[f̂(σ)ĝ(σ)∗Cσ]‖22 ≤ k2‖f̂(σ)‖22 .

Now the totality of {f̂(σ) : f ∈ S} shows that the inequality holds on a dense
subspace of Hσ, for almost all σ ∈ Ĝ. Then parts (a) and (b) of Lemma 4.19
apply to yield that η̂(σ)∗Cσ is bounded, and norm ≤ k almost everywhere
follows by density considerations.

The remaining necessary conditions in (4.12) and (4.11), as well as the
norm equality

‖Vη‖∞ = ess sup
σ∈Ĝ

‖Cσ η̂(σ)‖∞ .

(4.13) follow similarly. The converse directions are immediate from Theorem
4.18. Since S is a selfadjoint convolution idempotent iff VS is a projection
operator, the last statement is immediate.
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Remark 4.21. The differences between the unimodular and the nonunimodular
cases can be exemplified by the following observation: To any f ∈ L1(G) ∩
L2(G) we can associate at least three objects on the Fourier transform side:
The Fourier transform (σ(f))σ∈Ĝ, the Plancherel transform (f̂(σ))σ∈Ĝ, and
the decomposition of the operator Vg 
 (1⊗ T̂σ)σ∈Ĝ. In the unimodular case,
all three objects are basically identical: f̂(σ) = σ(f) and T̂σ = σ(f)∗. In the
nonunimodular case however, they all differ by suitable powers of the Duflo-
Moore operator.

Now we can easily characterize the subrepresentations of λG with admissi-
ble vectors. The statement concerning unimodular groups is partly contained
in [29, Theorem 2.10]; in this form the theorem appeared in [53]. A special
case of the theorem for the reals was given in Theorem 2.65. Also, the dis-
cussion of direct sums of discrete series representations contained in Remark
2.32, in particular for unimodular groups, is a special case of this theorem.

Theorem 4.22. Let H ⊂ L2(G) be a leftinvariant closed subspace, and let
P 
 (1⊗P̂σ)σ∈Ĝ denote the projection onto H. Then H has admissible vectors
iff either

• G is unimodular, almost all P̂σ have finite rank and

νH =
∫
Ĝ

rank(P̂σ)dνG(σ) <∞ . (4.14)

In this case every admissible vector g ∈ H fulfills ‖g‖2 = νH.
• G is nonunimodular. In that case, there exist admissible vectors with ar-

bitrarily small or big norm.

Proof. Assume first that G is unimodular. Suppose g is an admissible vector
for H, and define h = g∗ ∗ g. Then we have P = (Vg)∗ ◦ (Vg) = Vg∗ ◦ Vg = Vh
and h = Vg∗g

∗ ∈ L2(G) (note that Vg∗ is a bounded operator on all of L2(G)).
Applying Theorem 4.18 first to Vh and then to Vg∗ yields

Pσ = ĥ(σ)∗ = ĝ(σ)∗ĝ(σ) ,

νG-almost everywhere. Hence

‖g‖2 =
∫
Ĝ

tr(ĝ(σ)ĝ(σ)∗)dνG(σ)

=
∫
Ĝ

tr(ĝ(σ)∗ĝ(σ))dνG(σ)

=
∫
Ĝ

rank(Pσ)dνG(σ) .

For the sufficiency of (4.14) we note that (P̂σ)σ∈Ĝ ∈ B⊕
2 , and we let g be the

inverse Plancherel transform of that. Then Theorem 4.18 shows that P = Vg,
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which means that Vg is the identity operator on H, and g is admissible.
In the nonunimodular case, the statement follows from Theorem 4.23 and its
corollary.

Theorem 4.23. Let G be nonunimodular. Then there exists an operator field
(Aσ)σ∈Ĝ ∈ B

⊕
2 such that [CσAσ] is an isometry, for νG-almost every σ ∈ Ĝ.

As a consequence, if a ∈ L2(G) is the preimage of A under the Plancherel
transform, a is admissible for λG.

Proof. The proof uses the techniques and objects described in detail in Sec-
tion 3.8.2, in particular the notions from Proposition 3.50. We first give
the Aσ pointwise and postpone the questions of measurability and square-
integrability. Pick c > 1 in such a way that {γ ∈ H : 1 ≤ ∆

−1/2
G (γ) < c}

has positive Haar measure, and define, for n ∈ N, Sn := {γ ∈ H : cn ≤
∆

−1/2
G (γ) < cn+1}. Let (uσn)n∈N ⊂ Hσ = L2(H, dµH ;Hτ(σ)) be an ONB.

Moreover let (vσn)n∈N ⊂ L2(H, dµH ;Hτ(σ)) be a sequence of unit vectors with
supp(vσn) ⊂ Sn. Define the operator Aσ by

Aσ =
∑
n∈N

‖∆−1/2
G vσn‖−1vσn ⊗ uσn .

This defines a Hilbert-Schmidt operator, since ‖∆−1/2
G vσn‖ ≥ cn.

On the other hand, the construction of the vσn implies that Aσ maps Hσ
into dom(Cσ). In fact, given any f =

∑
n∈N

〈f, uσn〉uσn, the disjointness of the
supports of the vσn implies for all h ∈ H that

Aσf(h) =
∑
n∈N

‖∆−1/2
G vσn‖−1〈f, uσn〉vσn(h)

=
{
‖∆−1/2

G vσn‖−1〈f, uσn〉vσn(h) : h ∈ Sn for some n
0 : otherwise

.

Thus

‖CσAσf‖2 =
∑
n∈N

∫
Sn

‖∆−1/2
G vσn‖−2

∣∣∣∆−1/2
G (h)〈f, uσn〉 vσn(h)

∥∥∥2

=
∑
n∈N

|〈f, uσn〉|2 ‖∆
−1/2
G vσn‖−2

∫
Sn

‖∆−1/2
G (h)vσn(h)‖2dh

= ‖f‖2 .

Therefore CσAσ is an isometry.
Let us next address the measurability requirement. We have already con-

structed a measurable family (uσn)n∈N of ONB’s, so we only have to ensure
that the images (‖∆−1/2

G vσn‖−1vσn)n∈N can be chosen measurably as well. Pick
any family (bn)n∈N ⊂ L2(H) of unit vectors, such that bn is supported in Sn.
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Moreover, let (ξσ)σ∈V be a measurable field of unit vectors ξσ ∈ Hτ(σ), and
define vσn = bnξ

σ. Then

σ �→ 〈‖∆−1/2
G an‖−1vσn , ane

σ
k 〉 = ‖∆−1/2

G an‖−1〈bn, an〉〈ξσ , eσk〉

is measurable by the choice of the ξσ.
Finally, let us provide for square-integrability. For this purpose we ob-

serve that we may assume the constant c picked above to be ≥ 2, and
then ‖Aσ‖22 < 2. Moreover, if we shift the construction in the sense that
uσn �→ ‖∆−1/2

G vσn+k‖−1vσn+k, for k > 0, we obtain ‖Aσ‖22 < 21−k, while preserv-
ing all the other properties of Aσ. With this in mind, we can easily modify the
construction to obtain an element of B⊕

2 : Since G is separable, νG is σ-finite,
i.e., Ĝ =

⋃
n∈N

Σn with the Σn pairwise disjoint and νG(Σn) <∞. Shifting on
Σn by kn ∈ N with νG(Σn)2−kn < 2−n ensures square-integrability without
destroying measurability. (The latter is obvious on Σn.) Hence we are done.

The shifting argument employed in the proof also provides the following
fact.

Corollary 4.24. The operator field (Aσ)σ∈Ĝ from Theorem 4.23 can be con-
structed with arbitrarily small or big norm.

The following corollary is obtained by combining Theorems 2.42 and 4.22.
We expect that it has already been noted elsewhere; it can also be derived
from the results in the paper by Arnal and Ludwig [14].

Corollary 4.25. Let G be a nondiscrete unimodular group. Then
∫
Ĝ

dim(Hσ)dνG(σ) = ∞ .

For completeness, we note the following characterization of unimodularity,
which follows from Theorems 2.42 and 4.22.

Corollary 4.26. Let G be a nondiscrete group. Then λG has an admissible
vector iff G is nonunimodular

Theorem 4.22 and Corollary 3.51 imply the following remarkable property.

Corollary 4.27. Suppose that G is a nonunimodular group. Let π be a repre-
sentation of G, and assume that π =

⊕
n∈N

πn. If each πn has an admissible
vector, so does π.

The corollary can be applied to the results of Liu and Peng [83] to con-
struct a continuous wavelet transform on the Heisenberg group H. The authors
considered a particular group extension H�R and its action on L2(H) for the
construction of wavelet transforms. They established that this representation
decomposes into an infinite direct sum of discrete series representations, and
they gave admissibility conditions for each. Now the corollary provides the
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existence of an admissible vector for the whole representation. Corollary 5.28
below shows that this type of construction in fact works for arbitrary homo-
geneous Lie groups.

We next give a generalization of the qualitative uncertainty principle to
nonunimodular groups. For the unimodular version, confer [14].

Corollary 4.28. Suppose that G has a noncompact connected component. For

f ∈ L2(G) let Pσ denote the projection onto
(

Ker(f̂(σ))
)⊥

, and assume that

r(σ) = ‖[PσC−1
σ ]‖22

is well-defined and finite νG-almost everywhere. Note that in the unimodular
case r(σ) = rank(f̂(σ)). Suppose that f fulfills

(i) |supp(f)| <∞ and
(ii)
∫
Ĝ
r(σ)dνG(σ) <∞.

Then f = 0.

Proof. Consider the operators Ŝσ = [C−1
σ Pσ], by assumption (Ŝσ)σ∈Ĝ ∈ B

⊕
2 .

If we let S denote the inverse Plancherel transform of that, the L2-convolution
Theorem entails that

(VSf)∧ =
(

[f̂(σ)PσC−1
σ Cσ]

)
σ∈Ĝ

= f̂ ,

since by construction f̂(σ) ◦ Pσ = f̂(σ). In other words, f = VSf = f ∗ S∗.
Moreover, since [CσŜσ] = Pσ is a projection operator, S = S∗ by Theorem
4.20, and thus f = f ∗S. Now assumption (i) and Theorem 2.45 imply f = 0.

Remark 4.29. In the real case condition (ii) specializes to the well-known con-
dition |supp(f̂)| <∞; this is our excuse for calling Corollary 4.28 a qualitative
uncertainty principle. In the unimodular case the analogy to the qualitative
uncertainty property is still quite comprehensible: The Plancherel measure of
the support of f̂ is simply weighted with the rank of f̂(σ). If we let H denote
the leftinvariant closed subspace generated by f , then

∫
Ĝ
r(σ)dνG(σ) = νH,

the latter being the constant encountered in Theorem 4.22.
For nonunimodular groups the quantity

∫
Ĝ
r(σ)dνG(σ) is more difficult to

interpret. It is however independent of the choice of Plancherel measure: If we
pass to an alternative pair (ν̃G, (C̃σ)σ∈Ĝ) of Plancherel measure and associated
Duflo-Moore-operators and define r̃ using the C̃σ, the renormalizations of ν̃G
and C̃σ cancel to yield

∫
Ĝ

r̃(σ)dν̃G(σ) =
∫
Ĝ

r(σ)dνG(σ) .
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Let us next consider T4, i.e., the question how to make the criteria derived for
the regular representation applicable to arbitrary representations π. We in-
tend to employ the existence and uniqueness of direct integral decompositions
for this task: Decomposing π into irreducibles, we can check containment in
λG by comparing the underlying measure to Plancherel measure, and compar-
ing multiplicities (if necessary). Moreover, once containment is established in
this way, the admissibility conditions for λG directly carry over to the direct
integral decomposition of π, much in the way that we could directly establish
admissibility criteria for representations of R, as described in Remark 2.70.
Using Lemma 4.19(c), we can in addition break the admissibility condition
formulated for operator fields down to conditions involving rank-one opera-
tors. Thus we obtain orthogonality conditions generalizing the discrete series
case from Theorem 2.31.

Remark 4.30. Given an arbitrary representation (π,Hπ) of a type I group, the
following steps need to be carried out for establishing admissibility conditions:

• Explicitly construct a unitary intertwining operator

T : Hπ →
∫ ⊕

Ĝ

Hmπ(σ)
σ dν̃(σ)

π 

∫ ⊕

Ĝ

mπ(σ) · σ dν̃(σ)

where ν̃ is a suitable measure on Ĝ and m is a multiplicity function.
• There exist admissible vectors if and only if the following questions are

answered in the affirmative:
– Is ν̃ νG-absolutely continuous?
– Is mπ(σ) ≤ dim(Hσ), ν̃-almost everywhere?
– If G is unimodular, does the relation∫

Ĝ

mπ(σ)dνG(σ) <∞

hold?
Note that if G is nonunimodular, the answer to the second question is
”yes” by Corollary 3.51.

• Compute the Radon-Nikodym derivative dν̃
dνG

.
If G is nonunimodular, compute the Duflo-Moore operators Cσ, using e.g.
the description in Proposition 3.50, or the semi-invariance relation (3.51).
T maps vectors η ∈ Hπ to measurable families ((Tη)(σ, i))σ∈Ĝ,i=1,...,mπ(σ).
Then η is admissible iff it fulfills the following orthonormality relations,
for νG-almost every σ ∈ Σ:(

dν̃

dνG
(σ)
)1/2

‖Cσ(Tη)(σ, i)‖ = 1, for 1 ≤ i ≤ mπ(σ) (4.15)

〈Cσ(Tη)(σ, i), Cσ(Tη)(σ, j)〉 = 0, for 1 ≤ i < j ≤ mπ(σ) (4.16)
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Note that conditions (4.15) and (4.16) implicitly contain that (Tη)(σ, i) ∈
dom(Cσ). Clearly, for the admissibility conditions to be explicit, T , the Cσ
and dν̃

dνG
need to be known explicitly. The next chapter is devoted to carrying

this program out for a rather general setting.

In the simplest possible case, i.e, G unimodular, π multiplicity-free and
ν̃ = νG, the admissibility condition reduces to

‖(Tη)(σ)‖ ≡ 1, νG − almost everywhere on Σ . (4.17)

We close the section with a partial converse of the results in the last
remark, at least for unimodular groups: Any admissibility condition which has
a similar structure as the admissibility criterion (4.15) and (4.16) necessarily
has to coincide with it. Also, the admissibility condition characterizes the
canonical Plancherel measure. We expect this statement to hold for arbitrary
groups, but have preferred only to deal with the unimodular case and to
avoid the problems that arise from the Duflo-Moore operators. For certain
representations however, an analogous result is derived in Theorem 5.23.

In any case the next theorem provides further evidence for the central
thesis of this book, namely that computing admissible vectors is in a sense
equivalent to computing Plancherel measure. The following subsection will
show that this observation actually extends to the type I condition.

Theorem 4.31. Let G be unimodular. Suppose that

π =
∫ ⊕

X

m(x)σx dν(x) (4.18)

is a direct integral representation, where X is a standard Borel space with
σ-finite measure ν, m : X → N ∪ {∞} is a Borel map and (σx)x∈X is a mea-
surable field of representations of G. Assume that the admissibility criterion

(ηix)x∈X,i=1,...,m(x) is admissible
⇐⇒ (ηix)i=1,...,m(x) is an ONS for ν-a.e.x ∈ X .

(4.19)

holds and that there exist vectors η fulfilling it.

(a) There exists a ν-conull subset X ′ ⊂ X such that x �→ σx is a Borel
embedding X ′ ↪→ Ĝ.

(b) In this identification, ν is the restriction of νG to a suitable subset of Ĝ.

Proof. Let π0 =
∫ ⊕
X σxdν(x), and Hπ0 the associated representation space.

We first prove that (4.19) entails
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‖Vηφ‖22 =
∫
X

‖ηx‖2 ‖φx‖2dν(x) , (4.20)

for all vector fields η = (ηx)x∈X , φ = (φx)x∈X ∈ Hπ0 , in the extended sense
that Vηφ �∈ L2(G) whenever the right hand side is infinite. For this purpose
define the auxiliary vector field η̃ ∈ Hπ, by letting

η̃x,1 = ‖ηx‖−1ηx ,

and choosing η̃x,i, i = 2, . . . ,m(x) orthonormal to each other and to ηx, when-
ever ηx �= 0. For those x for which ηx = 0, we pick an arbitrary orthonormal
system η̃x,i, i = 1, . . . ,m(x) (arbitrary within the measurability requirement,
that is). Note that the assumption that there exists a square-integrable vector
field fulfilling the admissibility condition implies that m(x) ≤ dim(Hx), as
well as ∫

X

m(x) dν(x) <∞ .

Hence η̃ can be constructed and is square-integrable as well. Moreover it is
admissible by assumption. Next define a vector field φ̃ by

φ̃x,i =
{
‖ηx‖φx i = 1

0 i = 2, . . . ,m(x) ,

and assume for the moment that φ̃ is square-integrable, i.e., in Hπ. Then

Vη̃φ̃(y) =
∫
X

m(x)∑
i=1

〈φ̃x,i, σx(y)η̃x,i〉dν(x)

=
∫
X

〈φx, σx(y)ηx〉dν(x)

= Vηφ(y) .

Hence admissibility of η̃ entails

‖Vηφ‖22 = ‖φ̃‖2 =
∫
X

‖ηx‖2 ‖φx‖2dν(x) .

This proves (4.20) for the case that the right-hand side is finite; the general
case is easily obtained by plugging in restrictions of φ to suitable Borel subsets
B ⊂ X .

Now part (a) follows from Theorem 4.32 below. For part (b) we note that
by part (a) (4.18) is a decomposition into irreducibles, hence Theorem 3.25
yields that νG and ν are equivalent.

Moreover, we can conclude in the same way that (4.20) holds also with νG
replacing ν, by the admissibility criterion (4.17). Plugging in η with ‖ηx‖ = 1
almost everywhere yields∫

X

‖ϕx‖2dνG(x) =
∫
X

‖ϕx‖2dν(x)

for all vector fields ϕ. Hence ν = νG.
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4.4 Admissibility Criteria and the Type I Condition∗∗

In this section we comment on the relation of the type I property to the
existence of admissibility conditions. A major motivation for tackling non-
type I groups is provided by discrete G: Here λG is type I iff G itself is [70],
and the latter is the case only if G is a finite extension of an abelian normal
subgroup [111], i.e., very rarely.

The following theorem shows that for any direct integral representation π
with associated admissibility conditions as in Remark 4.30, π is necessarily
type I. Thus admissibility criteria outside the type I setting will have to be of
a different nature.

Theorem 4.32. Let G be unimodular, not necessarily of type I. Suppose that
π =
∫ ⊕
X
m(x)σx dν(x) is a direct integral representation, where X is a standard

Borel space with σ-finite measure ν, m : X → N ∪ {∞} is a Borel map
and (σx)x∈X is a measurable field of representations of G. Assume that the
admissibility criterion

(ηix)x∈X,i=1,...,m(x) is admissible
⇐⇒ (ηix)i=1,...,m(x) is an ONS for ν-a.e.x ∈ X .

(4.21)

holds and that there exist vectors η fulfilling it. Then π is type I.

Proof. Just as in the proof of Theorem 4.31, let π0 =
∫ ⊕
X σxdν(x), and Hπ0

the associated representation space. Recall from the proof of 4.31 that

‖Vηφ‖22 =
∫
X

‖ηx‖2 ‖φx‖2dν(x) . (4.22)

Observe that the proof of that equation did not rely on the type I property
of π.

We are going to show that π0 is multiplicity-free. Since π ≈ π0, the type I
property of π then follows immediately. Let K ⊂ Hπ0 be an invariant subspace.
π is cyclic by assumption, hence there exists a cyclic vector ψ for the subspace
K as well. Then (4.22) allows to compute the orthogonal complement of K in
Hπ0 as

K⊥ = {φ : Vψφ = 0}
= {φ : ‖φx‖‖ψx‖ = 0, ν − almost everywhere } .

But this entails that the projection onto K is given by pointwise multiplica-
tion with the characteristic function of {x ∈ X : ψx �= 0}. It follows that
all invariant projections commute, and thus the commuting algebra of π0 is
commutative.

Remark 4.33. If π is as in the theorem, then π is a subrepresentation of λIG,
the type I part of λG, and ν is absolutely continuous with respect to the
measure νG on Ĝ underlying the decomposition of λIG into irreducibles.
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We are not aware of a systematic treatment of admissibility conditions
outside the type I setting. There exists a substitute for the Plancherel theorem,
see e.g. [35, 18.7.7], which uses the theory of traces and their decomposition.
Some use of this result can be made to formulate admissibility criteria in the
general setting, see [55].

4.5 Wigner Functions Associated to Nilpotent Lie
Groups∗∗

In this section we sketch the construction of Wigner functions associated to
certain representations of nilpotent Lie groups. A full understanding of the
results requires knowledge of Kirillov’s theory of coadjoint orbits and their use
in constructing the unitary dual. We refrain from giving an introduction to
this theory here, and refer the interested reader to [30, 72] for details. While
the results only hold in a specific context, they serve as an example how
representation theory can provide a unified view of phenomena connected
to continuous wavelet transforms. Also, several ideas that have occurred in
the discussion so far make their appearance in this section: The extension of
orthogonality relations to Hilbert-Schmidt-operators, as used in the proof of
2.33, or the problem of decomposing operators over a direct integral space.
The latter problem will be seen to connect nicely to Kirillov’s orbit theory.

The Wigner transform is intended as a symbol calculus associating to an
operator on a certain Hilbert space a function on a phase space, i.e., to an
observable in the quantum mechanical sense an observable in the classical
sense. The original Wigner transform is closely related to the Heisenberg group
(see the next subsection). The authors of [24] demonstrated how one could
replace the Heisenberg group by the affine group and thus arrive at a different
symbol calculus. As a matter of fact, there are various constructions based on
different choices of groups around, see for instance [11, 12, 96, 24, 2]. In the
following we will be concerned only with [2] and a variation of the construction,
presented in [4]. The appeal of the approach presented here derives from the
way it highlights the role of the Plancherel transform in the construction. The
relations between this construction and the various other definitions of symbol
calculi to be found in the literature are not entirely clear to us, and we do not
have a particular claim to originality.

The authors of [2] singled out two main ingredients of the construction:
A discrete series representation of the underlying group, with the associated
orthogonality relations, and a Euclidean Fourier transform on the group ob-
tained from an identification with its Lie algebra via the exponential map. [4]
then showed how this construction generalizes to cases where discrete series
representations are not available. We present a discussion which is suited to
simply connected, connected nilpotent Lie groups; extensions to exponential
Lie groups are possible.
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The Original Wigner Transform

The starting point of the construction is the Heisenberg group H. As a set,
G = R

3, with the group law

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ + (q′p− qp′)/2) .

The comparison with Example 2.27 shows that the reduced Heisenberg group
Hr is the quotient group of H by the discrete central subgroup {0} × {0} ×
{2πZ}. For the time being, this difference does not really matter, since in this
subsection we are dealing with the windowed Fourier transform and ignore the
action of the center {0} × {0} × R. However, for the connection to Kirillov’s
theory later on it is crucial to have a simply connected group.

Recall that

Wfg(p, q) =
∫

R

g(x)f(x + p)e−2πiq(x+p/2)dx .

Now the fact that Wf is isometric iff ‖f‖ = 1 entails that

‖Wfg‖L2(R2) = ‖f‖2
∥∥∥W f

‖f‖
g
∥∥∥ = ‖f‖2 ‖g‖2 ,

for arbitrary 0 �= f, g ∈ L2(R). Then polarization provides the biorthogo-
nality relation

〈Wf1g1,Wf2g2〉L2(R2) = 〈f2, f1〉〈g1, g2〉 ; (4.23)

similar arguments were used in connection with the orthogonality relations
(2.15) for general discrete series representations. Since the right-hand side is
nothing but the Hilbert-Schmidt scalar product of the two rank-one operators
g1 ⊗ f1 and g2 ⊗ f2, we find that the mapping

W : (f, g) �→ Wfg

linearly extends to a unique isometry W : B2(L2(R)) → L2(R2). As a matter
of fact the map is onto, hence unitary. Now the Wigner transform, which
we denote by W, is obtained by taking the usual scalar-valued Plancherel
transform after W , i.e., formally

W(g ⊗ f)(p∗, q∗) =
∫

R

∫
R

Wfg(p, q)e−2πi(p∗p+q∗q)dpdq

=
∫

R

e−2πip∗pg
(
−q∗ − p

2

)
f
(
−q∗ +

p

2

)
dp . (4.24)

Here the second equality is Fourier inversion.
Let us collect the main properties of the operator W : B2(L2(R)) →

L2(R2):
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• Unitarity, usually expressed in the overlap condition [2], or Moyal’s
identity

〈W(g1 ⊗ f),W(g2 ⊗ f2)〉 = 〈g1, g2〉〈f2, f1〉 .

• Covariance: If A ∈ B2(L2(R)), then

W(π(p, q, t)Aπ(p, q, t)∗)(p′, q′) = W(A)(p′ − p, q′ − q) .

This is verified by direct calculation for rank-one operators and extends
by density to arbitrary Hilbert-Schmidt operators.

• Reality: If A ∈ B2(L2(R)), then

W(A∗) = W(A) .

Again, this is easily seen for rank-one operators.

Note that our calculations in this subsection are somewhat ad hoc. In
particular the group-theoretic significance is not clear, since we considered re-
strictions to the subset R

2×{1} ⊂ G, which is not a subgroup. The construc-
tion of the Fourier-Wigner operator from (restrictions of) wavelet coefficients
closely resembles Plancherel inversion. This observation will be the basis of
the general approach for the construction of a transform with the above three
properties, which works for arbitrary simply connected nilpotent groups.

Wigner Functions Associated to Nilpotent Lie Groups

Let N be a simply connected, connected nilpotent Lie group, with Lie algebra
n. The basic facts concerning these groups, as used in the following, are con-
tained in [30]. N is an exponential Lie group, i.e., the exponential mapping
exp : n → N is bijective. Moreover, the image measure under exp of Lebesgue
measure on n turns out to be left- and rightinvariant on N [30, Proposition
1.2.9]. Let L2(n) denote the L2-space with respect to Lebesgue measure, then
we obtain a unitary map EXP∗ : L2(N) � f �→ f ◦ exp ∈ L2(n). Finally, we
let Pn : L2(n) → L2(n∗) denote the usual Euclidean Plancherel transform,
defined on L2(n) ∩ L1(n) by

Pn(f)(X∗) =
∫

n

f(X)e−i〈X,X
∗〉dX ,

where dX is Lebesgue measure and 〈X,X∗〉 denotes the duality between n
and n∗. For a suitable normalization of Lebesgue measure on n∗ the map is
unitary. Now we define the global Wigner transform W : B⊕

2 → L2(n∗) as

W = Pn ◦ EXP∗ ◦ P−1

The construction entails the following theorem. We let Ad and Ad∗ denote
the adjoint resp. coadjoint actions of N on n resp. n∗. Ad is obtained by
differentiating the conjugation action of N on itself, which gives rise to a
linear action of N on n. Ad∗ is obtained by transposing this action.
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Theorem 4.34. (a) W is unitary.
(b) W is covariant: For all (Aσ)σ∈N̂ ∈ B

⊕
2 , for all x ∈ N ,

W((σ(x)Aσσ(x)∗)σ∈N̂ )(X∗) = W(Ad∗(x)X∗) almost everywhere.

(c) W is real: For all (Aσ)σ∈N̂ ∈ B
⊕
2 ,

W((A∗
σ)σ∈N̂ )(X∗) = W((Aσ)σ∈N̂ )(X∗) .

Proof. Part (a) is obvious from the definition. For part (b) we first use
the intertwining property of the Plancherel transform to see that, for a =
P−1((Aσ)σ∈N̂ ),

P−1((σ(x)Aσσ(x)∗)σ∈N̂ )(y) = a(x−1yx) .

Moreover, we have the fundamental relation (see [30])

exp((Ad)(x)Y ) = x exp(Y ) x−1 ,

as well as

Pn(f ◦Ad(x))(X∗) =
∫

n

f(Ad(x)Y )ei〈Y,X
∗〉dX

=
∫

n

f(Y )ei〈Ad(x−1)Y,X∗〉dX

=
∫

n

f(Y )ei〈Y,Ad∗(x)X∗〉dX

= Pn(f)(Ad∗(x)X∗) .

Combining these covariances gives (b). For part (c) observe that by Lemma
4.14 (iv)

PN(a∗) = (A∗
σ)σ∈N̂ ,

and we recall that a∗(x) = a(x−1). Since exp(−X) = exp(X)−1, EXP∗ inter-
twines the involution on L2(N) with the analogous involution on n, viewed as
a vector group. But this implies (c).

While this result was pleasantly simple to prove, it is still not clear how
to recover the original Wigner transform from it; after all the latter maps
single Hilbert-Schmidt operators to functions in two variables, not fields of
operators to functions in three variables. As will be seen below, the missing
link is provided by the role of the coadjoint orbits in the computation of N̂
and µN . This brings up Kirillov’s orbit method.

The central result of harmonic analysis on nilpotent Lie group is the exis-
tence of the Kirillov correspondence, which is a bijection

κ : n∗/Ad∗(N) → N̂ .
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In fact it is a Borel isomorphism, if we endow the right hand side with the
Mackey Borel structure and the left hand side with the quotient structure.
We denote the inverse mapping by κ−1(σ) = O∗

σ. The orbit space is countably
separated, i.e., N is type I.

Besides providing a scheme to compute N̂ , or at least a parametrization of
it, the coadjoint orbits also give access to the Plancherel measure: Since the
orbit space is countably separated, there exists a measure decomposition

dX∗ = dµO(X∗)dν(O)

of Lebesgue measure on n∗ (see Proposition 3.28), and it can be chosen in
such a way that the image measure of ν under κ is precisely νN [72].

By Proposition 3.29 the measure decomposition gives rise to a direct inte-
gral decomposition of L2(n∗), namely

L2(n∗, dX) 

∫ ⊕

n∗/Ad∗(G)

L2(O, dµO) dν(O) .

Now W can be read as an operator between two direct integral spaces, (es-
sentially) based on the same measure space, and the following definition is
natural:

Definition 4.35. The Wigner transform W decomposes if there exists a
conull, Ad∗(N)-invariant Borel set C ⊂ n∗, and a field of operators

Wσ : B2(Hσ) → L2(O∗
σ, µO∗

σ
)

for all σ ∈ N̂ with O∗
σ ⊂ C, such that the following relation on B⊕

2 holds:

W((Aσ)σ∈N̂ ) = (Wσ(Aσ))σ∈N̂ . (4.25)

If the operators Wσ exist, they are called local Wigner transforms.

Note that by definition the set of σ ∈ Ĝ for which Wσ is not defined has
measure zero, hence (4.25) is meaningful for B⊕

2 .

Remark 4.36. (1) In the next subsection we will see that the concrete Wigner
transform given above is a local Wigner operator in the sense of the definition.
(2) The motivation for local Wigner operators is to obtain a correspondence
between single operators and functions, instead of families of operators and
(families of) functions. The desire to have Wigner functions supported by
single coadjoint orbits is motivated by the applications of Wigner functions
in mathematical physics. The Wigner transform is intended as a quantization
procedure, assigning each operator on a given Hilbert space its symbol, i.e.,
a function on phase space. Now the symplectic structure on coadjoint orbits
provides a natural interpretation of these orbits as phase spaces of physical
systems, whereas n∗, as a disjoint union of such phase spaces, does not readily
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lend itself to such an interpretation. For more details on quantization and
coadjoint orbits, we refer the reader to [62, 72].
(3) The construction can be extended to exponential groups. The extra cost
consists mainly in having to deal with densities when passing from N to n,
i.e, Haar measure of N need not coincide with Lebesgue measure. Also the
group can be nonunimodular. Confer [2, 3] for examples.
(4) The question whether W decomposes has the following representation-
theoretic background: The proof of the covariance property in Theorem 4.34
is based on the fact that Pn◦EXP∗ decomposes the conjugation representation

x �→ λG(x)�G(x)

with the unitary action on L2(n∗) induced by Ad∗, whereas P intertwines it
with the direct integral representation

∫ ⊕

n∗/Ad∗(N)

πOdν(O) , (4.26)

where πO is a representation acting on B2(Hκ(O)) via

πO(x)A = κ(O)(x) ⊗ κ(O)(x) .

Since both L2(n∗) and
∫ ⊕

n∗/Ad∗(N) B2(Hκ(O))dν(O) can be viewed as direct in-
tegral spaces based on the same measure space, the decomposition statement
is natural. It is nontrivial, however: The point is that the decomposition (4.26)
is not easily related to the decomposition of the conjugation representation
into irreducibles. In particular, πO may contain representations which cor-
respond to coadjoint orbits other than O. Hence additional assumptions are
necessary, as witnessed by the next theorem showing that the local Wigner
operators exist only in very restrictive settings.

Theorem 4.37. Let N be a simply connected, connected nilpotent Lie group.
The Wigner transform on N decomposes iff there exists a conull Ad∗(N)-
invariant Borel subset C ⊂ n∗ such that every coadjoint orbit in C is an
affine subspace.

Proof. We first prove that W decomposes iff there exists a conull Ad∗(N)-
invariant Borel subset C ⊂ n∗ such that for all f ∈ L1(N) ∩ L2(N), and all
σ ∈ N̂ with O∗

σ ⊂ C,

‖σ(f)‖22 =
∫
O∗

σ

|Pn(f)(ω)|2 dµO∗
σ
(ω) . (4.27)

Indeed, supposing that W decomposes, the right hand side is precisely
‖Wσ(σ(f))‖2L2(O∗

σ), and unitarity of W entails νN -almost everywhere that Wσ

is unitary. This proves the “only-if” part.
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For the “if-part” we construct W−1
σ as follows: Fix a coadjoint orbit O∗

σ,
for σ ∈ C. By [30, 3.1.4], O∗

σ is a closed submanifold of n∗. Pick a function
g ∈ C∞

c (n∗), then P−1
n (g) ∈ L1(N) ∩ L2(N). Moreover, the restriction of g to

O∗
σ is in C∞

c (O∗
σ). We define the operator Gσ ∈ B2(Hσ)

Gσ = σ
(
P−1

n (g)
)

We claim that Gσ only depends on the restriction g|O∗
σ
: Indeed, if h ∈ C∞

c (n∗)
fulfills h|O∗

σ
= g|O∗

σ
, then (4.27)yields

‖σ(P−1
n (f − h))‖22 = 0 .

Hence the operator Vσ : g|O∗
σ
�→ Gσ is well-defined. Moreover, the assumption

yields ‖g|O∗
σ
‖2 = ‖Gσ‖2. Since O∗

σ is a closed submanifold, the set of restric-
tions of C∞

c -functions is precisely C∞
c (O∗

σ), which is dense in L2(O∗
σ). Hence

Vσ has a unique isometric extension L2(O∗
σ) → B2(Hσ). By construction,

W−1 thus coincides with the direct integral of the field (Vσ)σ∈C , at least on
C∞
c (n∗). But this space is dense, hence we conclude that the Vσ are unitary,

and W decomposes into the Wσ = V−1
σ .

Hence the equivalence is established, and we can finish by appealing to
[85, Theorem 1] which states that (4.27) holds iff O∗

σ is an affine subspace.

Remark 4.38. There appears to be a way of defining local Wigner transforms
outside the flat orbit case. It consists in replacing the operator Pn by a different
integral operatorPad

n , the so-called adapted Fourier transform [10, 12, 13].
The transform is designed to ensure

‖σ(f)‖22 =
∫
O∗

σ

|Pad
n (f)(ω)|2 dµO∗

σ
(ω) , (4.28)

and as in the proof of the theorem, this entails that the adapted Wigner
transform

Wad = Pad
n ◦ EXP∗ ◦ P−1

decomposes. However, we have not been able to check whether the adapted
transform has the covariance property.

The Original Wigner Function Revisited

Let us now compute the global Wigner transform for the Heisenberg group,
and show how to recover the original Wigner transform from it. The formal
calculations below can be made rigourous, either by restricting to suitable
functions for which the integrals exist pointwise, or by weak arguments, i.e.,
taking scalar products with L2-functions and using Plancherel’s theorem in-
stead of Fourier inversion. We have refrained from doing either.

The Heisenberg Lie algebra of the group is h = R
3, with Lie bracket
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[(p, q, t), (p′, q′, t′)] = (0, 0, pq′ − p′q) .

The associated Lie group H can be thought of as h, endowed with the
Campbell-Baker-Hausdorff formula, which yields the group structure

(p, q, t)(p′, q′, t′) = (p+ p′, q + q′, t+ t′ + (pq′ − p′q)/2) .

Note that taking for H the Lie algebra h with Campbell-Baker Hausdorff
formula amounts to taking the identity operator as exponential map. The
adjoint representation of H on h is computed as

Ad(p, q, t)(p′, q′, t′) = (p′, q′, t′ + pq′ − p′q) ,

and if (p∗, q∗, t∗) are the coordinates with respect to the dual basis,

Ad∗(p, q, t)(p∗, q∗, t∗) = (p∗ + t∗p, q∗ + t∗q, t∗) .

It follows that the set of coadjoint orbits consists of the singletons {(p∗, q∗, 0)},
with (p∗, q∗) ∈ R

2, and the hyperplanes O∗
t∗ = R

2 × {t∗}. The representation
corresponding to O∗

t∗ under the Kirillov map is the Schrödinger represen-
tation �−t∗ (observe the sign change). Here �t∗ acts on L2(R) via

[�t∗(p, q, t)f ] (x) = e2πi(qx+t∗t+t∗pq/2)f(x+ t∗p) .

Now the Plancherel measure is seen to be supported by the Schrödinger rep-
resentations, where it is given by dνH(σt∗) = |t∗|dt∗ [45, Section 7.6], with dt∗

denoting Lebesgue measure on the real line.
We have now collected all necessary ingredients for the computation of

W. Note that we know already by Theorem 4.37 that W decomposes, so we
will also be interested in the components. Pick a measurable field of rank-one
operators R = (gt∗ ⊗ ft∗)t∗∈R′ ∈ B⊕

2 ∩ B⊕
1 . Then the Plancherel inversion

formula yields for r = P−1(R) that

r(p, q, t) =
∫

R′
〈gt∗ , �−t∗(p, q, t)ft∗〉|t∗|dt∗

=
∫

R′

∫
R

gt∗(x)ft∗(x− t∗p)e−2πi(qx−t∗t−t∗pq/2)|t∗|dt∗

Plugging this into the Euclidean Plancherel transform yields formally

W(R)(p∗, q∗, s∗)

=
∫

R5
gt∗(x)ft∗(x − t∗p)e−2πi(qx−t∗t−t∗pq/2+q∗q+p∗p+s∗t)|t∗|dt∗dxdpdqdt

Now the integration against dxdq can be simplified by Fourier inversion to the
substitution x �→ −q∗ + t∗p/2, thus the integral becomes



138 4 Plancherel Inversion and Wavelet Transforms

∫
R3
gt∗(−q∗ + t∗p/2)ft∗(−q∗ − t∗p/2)e−2πi(−t∗t+p∗p+s∗t)|t∗|dt∗dpdt

=
∫

R

gs∗(−q∗ + s∗p/2)fs∗(−q∗ − s∗p/2)e−2πip∗p|s∗|dp .

Here another Fourier inversion allowed to discard the integral dtdt∗, resulting
in the substitution t∗ �→ s∗. Now a closer look at the remaining term reveals
that indeed the values of W(R) on the coadjoint orbit R

2×{s∗} only depend
on gs∗ ⊗ fs∗ , and that the local Wigner operators are given by

[Ws∗(g ⊗ f)](p∗, q∗, s∗) = |s|∗
∫

R

g

(
−q∗ +

s∗p
2

)
f

(
−q∗ − s∗p

2

)
e−2πip∗pdp .

Now a comparison with (4.24) yields that the original Wigner transform dis-
cussed above is just the local Wigner transform W1.



5

Admissible Vectors for Group Extensions

In this chapter we discuss a class of examples which has received considerable
attention in recent years. The aim consists in making the abstract admissibility
conditions developed in Chapter 4 explicit, in particular the criteria from
Remark 4.30. Recall that this requires computing the Plancherel measure as
well as the direct integral decomposition of the representation at hand into
irreducibles. We consider certain group extensions

1 → N → G→ H → 1 ,

using the techniques of Kleppner and Lipsman from Section 3.6 for the com-
putation of νG. Of particular interest will be the case where G = N � H ,
and π is the quasi-regular representation π = IndGH1. The case N = R

k and
H < GL(k,R) has been studied by a number of authors, see the list below,
and we start by discussing this setting by more or less basic arguments. In
fact, Examples 2.28, 2.30 and 2.36 are all special cases of this setting. It turns
out that the arguments dealing with these examples extend to the general case
G = R

k
�H , yielding elementary admissibility conditions which avoid explicit

reference to the Plancherel transform of G (Theorem 5.8). Having done that,
we show in Theorem 5.23 how the concrete admissibility conditions relate to
the scheme described in Remark 4.30. As a result we obtain a very concrete
description of the various objects that enter the Plancherel formula for the
group under consideration. The argument is based on a general result about
the containment of a quasi-regular representation in the regular representation
(Theorem 5.22), which allows to conclude the existence of admissible vectors
for a wide range of settings.

The result can also be applied to cases where N is nonabelian; in particular
when N is a homogeneous Lie group and H a one-parameter group of dilations
acting on N (Corollary 5.28). Finally, we show how the Zak transform criteria
for Weyl-Heisenberg frames with integer oversampling can be regarded as
admissibility conditions with respect to a certain discrete group.

Thus the results of this chapter generalize and/or complement the findings
of various authors:

H. Führ: LNM 1863, pp. 139–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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• Murenzi’s [93] 2D continuous wavelet transform discussed in 2.30.
• The dyadic wavelet transform of Mallat and Zhong [92] considered in 2.36
• Bohnke [25] introduced H = R

+ ·SO0(1, 1) and H = R
+ ·SO0(2, 1). Again

the representations were irreducible.
• General characterizations of dilation groupsH giving rise to discrete series

subrepresentations of the quasiregular representation were given in [22, 50].
• Klauder, Isham and Streater [67, 74] considered H = SO(k) and H =

SO(k−1, 1). As a matter of fact, the representations they consider are not
explicitly defined as subrepresentations of π, but they are direct integrals
which are immediately recognised as subrepresentations of the representa-
tion π̂ obtained by conjugating π with the Fourier transform on R

k.
• Cyclic and one-parameter subgroups of GL(k,R) were considered by

Gröchenig, Kaniuth and Taylor [59]. A general discussion of discrete dila-
tion groups can be found in [51].

• The characterization of dilation groups allowing the existence of admissible
vectors was addressed in full generality in [77, 113], as well as in [52], and
the discussion in the first two sections follows the latter paper closely.

• Lemarié [78] established the existence of wavelet orthonormal bases on
L2(N), where N is a stratified Lie group. These bases arise from the action
of a lattice in N and a discrete group of dilations, in an entirely analogous
fashion to the multiresolution wavelets on R. Our results provide a con-
tinuous analogue of these systems, for the larger class of homogeneous Lie
groups.

• Liu and Peng [83] considered a semidirect product H�R, where R denotes
a one-parameter group of dilations, and an associated quasi-regular repre-
sentation π on L2(H). They then showed that π splits into discrete series
representations, and gave admissibility conditions for each. Our results
yield admissible vectors for π itself.

• Daubechies [33] (among other authors) characterized tight Gabor frames
for the case of rational oversampling, making use of the Zak transform. The
discussion in Section 5.5 exhibits this criterion as yet another instance of
the scheme from Remark 4.30.

The standing assumptions of this chapter are: G is a type I group, N �G
is regularly embedded and type I. Whenever G is nonunimodular, we assume
that the Ker(∆G) has the same properties as N . The assumptions are chosen
to allow to apply the results from the previous chapters. As the discussion
of the concrete admissibility conditions shows, the conditions are somewhat
more restrictive than seems necessary. However, for all concrete examples that
have so far been considered in the literature, the standing assumptions can in
fact be verified.
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5.1 Quasiregular Representations and the Dual Orbit
Space

For this and the next section let H < GL(k,R) be a closed subgroup, and
G = R

k
� H . Elements of G are denoted by (x, h) with x ∈ R

k and h ∈ H ;
the group law is then given by (x0, h0)(x1, h1) = (x0 + h0x1, h0h1). Left Haar
measure of G is given by dµG(x, h) = | det(h)|−1dxdµH(h), and the modular
function is computed as ∆G(x, h) = ∆H(h)| det(h)|−1. For simplicity we will
sometimes write ∆G(h) instead of ∆G(0, h). The quasiregular representation
π of G acts on L2(Rk) by

(π(x, h)f)(y) = | det(h)|−1/2f(h−1(y − x)).

The closedness of H in GL(k,R) may seem a somewhat arbitrary condition
(Lie subgroups might also work), but it is in fact not a real restriction, because
of the following fact. It was observed in [49, Proposition 5] for the discrete
series case, but the proof does not use irreducibility. We reproduce it for the
sake of completeness.

Proposition 5.1. Let H be a subgroup of GL(k,R), endowed with some lo-
cally compact group topology. Assume that the semidirect product R

k
� H is

a topological semidirect product, and that the quasiregular representation has
a nontrivial subrepresentation with an admissible vector. Then H is a closed
subgroup of GL(k,R), and the topology on H is the relative topology.

Proof. Since all wavelet coefficients vanish at infinity by 2.19, there exists
a nontrivial C0 matrix coefficient Vfg for π. We may assume Vfg(e) = 1.
Let Wfg denote the matrix coefficient of the quasiregular representation of
R
k

� GL(k,R) corresponding to the same pair of functions f, g. Then Vfg
is the restriction of Wfg to R

k
�H . Since Wfg is continuous, there exists a

compact neighborhood U of 1 in GL(k,R) with |Wfg| > 1/2 on U . U ∩ H
is T -closed in H , since U is closed and T is finer than the relative topology.
Since H is closed in R

k
�H , the restriction of Vfg to H vanishes at infinity.

By choice of U , this implies that U ∩ H is contained in a T -compact set,
hence is T -compact itself. But then the inclusion map from U ∩ H to H is
a homeomorphism onto its image, being a continuous map from a compact
space to a Hausdorff space. Hence T coincides on U ∩ H with the relative
topology. Since U ∩H is a neighborhood of 1 for both topologies, it follows
that the neighborhood filters of both topologies at unity coincide. Since a
group topology is uniquely determined by the neighborhoods at unity, the
topologies themselves coincide. In particular the relative topology is locally
compact, which means H is closed.

Mackey’s theory directs our attention towards the dual action. As it turns
out, the decomposition of the quasiregular representation is also closely related
to the dual orbit space. Let us quickly recall the notions of Mackey’s theory
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for this particular setup. The dual group R̂k is the character group of R
k,

identified with R
k itself. Denoting the usual scalar product on R

k by (ω, x) �→
ω · x, the duality between R̂k and R

k is given by

〈ω, x〉 = e−2πiω·x .

In this identification, the dual operation is given by

h.ω = (ht)−1ω , (5.1)

where the right-hand side denotes the product of a matrix with a column
vector. R̂k/H is the dual orbit space. For γ ∈ R̂k, Hγ denotes the stabilizer
of γ in H ; it is a closed subgroup of H .

For the discussion of subrepresentations of π, it is useful to introduce the
representation π̂ obtained by conjugating π with the Fourier transform on R

k.
It is readily seen to operate on L2(R̂k) via

(π̂(x, h)f̂)(ω) = | det(h)|1/2e−2πiω·xf(h−1.ω) . (5.2)

The action of π̂ allows to identify subrepresentations in a simple way: Every
invariant closed subspace H ⊂ L2(Rk) is of the form

H = HU = {g ∈ L2(Rk) : ĝ vanishes outside of U } ,

where U ⊂ R̂k is a measurable, H-invariant subset (see [48] for a detailed
argument). We let πU denote the subrepresentation acting on HU .

Remark 5.2. The structure of the dual orbit space As the structure of
the dual orbit space is important for the decomposition of the quasi-regular
representation and for the construction of admissible vectors on the one hand,
but also for the computation of Plancherel measure on the other, let us take a
closer look at its measure-theoretic structure. For our discussion, the following
two sets will be central

Ωc={ω ∈ R̂k : Hω is compact } , Ωrc={ω ∈ Ωc : O(ω) | is locally closed } .

The set Ωrc ⊂ Ωc consists of the “regular” orbits in Ωc; i.e., it is the “well-
behaved” part of Ωc. Loosely speaking, Ωc is the set we have to deal with,
and Ωrc is the set we can deal with. Put more precisely: While Theorem
5.8 below shows that subrepresentations with admissible vectors necessarily
correspond to invariant subsets U of Ωc, the existence result in Theorem 5.12
only considers subsets of the smaller set Ωrc. However, this distinction is not
due to a shortcoming of our approach: Remark 5.13 gives an example of a
subset of Ωc that does not allow admissible vectors for the corresponding
subrepresentation.

The measure-theoretic properties of the two sets are summarized as fol-
lows: Ωc can be shown to be measurable, see Corollary 5.6. But usually Ωc is
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not open, even when it is conull, as is illustrated by the example of SL(2,Z):
It is easy to see that Ωc consists of all the vectors (ω1, ω2) such that ω1/ω2 is
irrational. This is a conull set with dense complement in R̂2.

By contrast, Ωrc is always open, by Proposition 5.7. A pleasant conse-
quence of this is that Glimm’s Theorem [56] applies (since Ωrc is locally com-
pact), which entails a number of useful properties of the orbit space Ωrc/H :
It is a standard Borel space having a measurable cross section Ωrc/H → Ωrc,
and there exists a measurable transversal, i.e., a Borel subset A ⊂ Ωrc meeting
each orbit in precisely one point.

Unfortunately, the example of SL(2,Z) shows that Ωrc can be empty even
when Ωc is conull: Ωc contains no nonempty open set, since its complement
is dense.

The rest of the section is devoted to proving the measurability of Ωc and
the openness of Ωrc. The proof for the first result uses the subgroup space of
H , as introduced by Fell [44].

Definition 5.3. Let G be a locally compact group. The subgroup space of
G is the set K(G) := {H < G : H is closed }, endowed with the topology
generated by the sets

U(V1, . . . , Vn;C) := {H ∈ K(G) : H ∩ Vi �= ∅, ∀1 ≤ i ≤ n,H ∩ C = ∅},

where V1, . . . , Vn denotes any finite family of open subsets of G and C ⊂ G is
compact.
With this topology K(G) is a compact Hausdorff space.

The motivation for introducing the K(G) to our discussion is the following:

Proposition 5.4. Let X be a countably separated Borel space, and G a locally
compact group acting measurably on X. Consider the stabilizer map s : X →
K(G) defined by s(x) = {g ∈ G : g.x = x}. Then s is Borel.

Proof. That s indeed maps into K(G) is due to [17, Chapter I, Proposition
3.7], the measurability is [17, Chapter II, Proposition 2.3].

Proposition 5.5. Let G be a σ-compact, locally compact group. Then
Kc(G) = {H ∈ K(G) : H is compact } is a Borel subset of K(G).

Proof. We first construct a sequence of compact set (Cn)n∈N such that A ⊂
G is relatively compact iff A ⊂ Cn for some n ∈ N. For this purpose let
G =

⋃
n∈N

Kn with compact Kn. Pick a compact neighborhood V of the unit
elements, and define Cn = V ·

⋃n
i=1 Ci. Then the open kernels of the Cn cover

G. Hence, if A ⊂ G is compact, the fact that the Cn increase implies that
A ⊂ Cn for some n. It follows that

Kc(G) =
⋃
n∈N

{H ∈ K(G) : H ∩ (G \ Cn) = ∅}

=
⋃
n∈N

K(G) \ U(G \ Cn, ∅)
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is an Fσ-set.

Combining 5.4 and 5.5, we obtain the desired measurability.

Corollary 5.6. Ωc is a Borel subset of R̂k.

The proof of the following proposition uses ideas from [77].

Proposition 5.7. Ωrc is open.

Proof. Define the ε-stabilizer

Hε
ω = {h ∈ H : |h.ω − ω| ≤ ε} ,

where | · | denotes the euclidean norm on R̂k. If Hε
ω is compact for some ε > 0,

then Bε(ω) ∩ O(ω) = Hε
ω.ω is compact. Here Bε(x) denotes the closed ε-ball

around x. Hence the orbit O(ω) is locally closed.
Conversely, assume that Bε(ω) ∩ O(ω) is compact for some ε > 0 and

that Hω is compact. There exists a measurable cross-section τ : O(ω) → H
which maps compact sets in O(ω) to relatively compact sets in H . Hence
Hε
ω ⊂ Hωτ(Bε(ω)) is relatively compact and closed, hence compact.

In short, we have shown

ω ∈ Ωrc ⇐⇒ ∃ε > 0 : Hε
ω is compact ,

and we are going to use this characterization to prove the openness of Ωrc.
If the origin is in Ωrc, then H is compact, and Ωrc = R̂k. In the other case,

pick ω in Ωrc and ε > 0 with Hε
ω compact. Since GL(k,R) acts transitively on

R̂k\{0}, we may (possibly after passing to a smaller ε) assume that there exists
a continuous cross-section α : Bε(ω) → GL(k,R) with relatively compact
image, i.e., α(γ).ω = γ, for all γ ∈ Bε(ω), and α(Bε(ω)) ⊂ U , where U is a
compact neighborhood of the identity in GL(k,R). We are going to show that
Bε(ω) ⊂ Ωrc. For this purpose let γ ∈ Bε(ω). Clearly it is enough to prove
that

C := {h ∈ H : h.γ ∈ Bε(ω)} = {h ∈ GL(k,R) : h.γ ∈ Bε(ω)} ∩H

is relatively compact. By assumption,

Hε
ω = {h ∈ GL(k,R) : h.ω ∈ Bε(ω)} ∩H

is compact. Hence

C = {h ∈ GL(k,R) : ωα(γ).h ∈ Bε(ω)} ∩H
= α(γ)−1{h ∈ GL(k,R) : h.ω ∈ Bε(ω)} ∩H
⊂ U−1({h ∈ GL(k,R) : h.ω ∈ Bε(ω)} ∩H)

i.e., C is contained in the product of two compact sets, and thus relatively
compact. Note that we used here that H is a closed subgroup of GL(k,R),
hence compactness in H is the same as compactness in GL(k,R).
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5.2 Concrete Admissibility Conditions

We will now derive the admissibility condition for the quasiregular represen-
tation and its subrepresentations. The proof of the admissibility condition is
fairly straightforward. It is only when we address the existence of functions
fulfilling the condition that we are forced to use more involved arguments. The
theorem was derived for certain concrete groupsH in [92, 67, 74], and the argu-
ments presented in this section are generalizations of those in [92, 67, 74]. The
general version given here appears also in [77, 52]. Note that the admissibility
condition also figures as a part of the definition of the notion of “projection
generating function” in [59, Definition 2.1]. Thus the following theorem also
answers a question raised in [59, Remark 2.6(b)]: There the authors observe
that taking a projection generating function as wavelet gives rise to orthogo-
nality relations among the wavelet coefficients which closely resemble those for
irreducible square-integrable representations, even though the representation
at hand is not irreducible. The explanation for this phenomenon is that the
orthogonality relations in the discrete series case are particular instances of
the orthogonality relations arising in connection with the Plancherel formula.

A comparison of the following theorem with Theorem 4.20 gives a first
hint towards the connection between abstract and concrete admissibility con-
ditions.

Theorem 5.8. Let (πU ,HU ) be a subrepresentation of π corresponding to
some invariant measurable subset U . Then

g ∈ HU is bounded ⇔
∫
H

|ĝ(h−1.ω)|2dµH(h) ≤ constant (5.3)

g ∈ HU is cyclic ⇔
∫
H

|ĝ(h−1.ω)|2dµH(h) �= 0 (5.4)

g ∈ HU is admissible ⇔
∫
H

|ĝ(h−1.ω)|2dµH(h) = 1 (5.5)

Here all right-hand sides are understood to hold almost everywhere. In partic-
ular, if πU has a bounded cyclic vector, then U ⊂ Ωc (up to a null set).

Proof. We start by explicitly calculating the L2-norm of Vgf , for f, g ∈ HU .
The following computations are generalizations of the argument used for the
1D continuous wavelet transform in Example 2.28, see also [22, 48, 113].
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‖Vgf‖2L2(G) =
∫
G

|〈f, π(x, h)g〉|2 dµG(x, h)

=
∫
G

∣∣∣〈f̂ , (π(x, h)g)∧〉
∣∣∣2 dµG(x, h)

=
∫
G

∣∣∣∣
∫

R̂k

f̂(ω)| det(h)|1/2e2πiγxĝ(h−1.ω)dω
∣∣∣∣
2

dµG(x, h)

=
∫
H

∫
Rk

∣∣∣∣
∫

R̂k

f̂(ω)e2πiωxĝ(h−1.ω)dω
∣∣∣∣
2

dλ(x)dµH (h)

=
∫
H

∫
Rk

|F(φh)(−x)|2 dλ(x)dµH (h).

Here φh(ω) = f̂(ω)ĝ(h−1.ω), and F denotes the Fourier transform on L1(R̂k).
An application of Plancherel’s formula – or more precisely, the extension of
2.22 to R

k – to the last expression yields∫
H

∫
R̂k

|φh(ω)|2 dωdµH(h) =
∫
H

∫
R̂k

∣∣∣f̂(ω)
∣∣∣2 ∣∣ĝ(h−1.ω)

∣∣2 dωdµH(h)

=
∫

R̂k

∣∣∣f̂(ω)
∣∣∣2
(∫

H

∣∣ĝ(h−1.ω)
∣∣2 dµH(h)

)
dω .

Now (5.3) through (5.5) are obvious. Moreover, it is easily seen that whenever
the stabilizer Hω is noncompact, we have∫

H

|ĝ(h−1.ω)|2dµH(h) ∈ {0,∞},

(cf. also the proof of [48, Theorem 10]), hence Vgf ∈ L2(G) entails that the
pointwise product f̂ ĝ vanishes a.e. outside of Ωc. In particular, a bounded
cyclic vector vanishes almost everywhere outside of Ωc, hence we obtain in
such a case that U ⊂ Ωc (up to a null set).

For the construction of admissible vectors we first decompose Lebesgue
measure λ on Ωrc into measures on the orbits and a measure on Ωrc/H . Then
we address the relationship of the measures on the orbits to the Haar measure
of H .

Lemma 5.9. (a) There exists a measure λ on Ωrc/H and on each orbit O(γ)
a measure βO(γ) such that for every measurable A ⊂ Ωrc the mapping

O(γ) �→
∫
O(γ)

111A(ω)dβO(γ)(ω)

is λ-measurable, and in addition

λ(A) =
∫

R̂k/H

∫
O(γ)

111A(ω)dβO(γ)(ω)dλ(O(γ)).
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(b) Let (λ, (βO(γ))O(γ)∈Ωrc/H) be as in (a). For γ ∈ Ωrc define µO(γ) as the
image measure of µH under the projection map pγ : h �→ h−1.γ. µO(γ) is a
σ-finite measure, and its definition is independent of the choice of represen-
tative γ. Then, for almost all γ ∈ Ωrc, the µO(γ) and βO(γ) are equivalent,
with globally Lebesgue-measurable Radon-Nikodym-derivatives: There ex-
ists an (essentially unique) Lebesgue-measurable function κ : Ωrc → R

+

such that for ω ∈ O(γ),

dβO(γ)

dµO(γ)
(ω) = κ(ω) .

(c) The function κ fulfills the semi-invariance relation

κ(h−1.ω) = κ(ω)∆G(h)−1 . (5.6)

In particular, κ is H-invariant iff G is unimodular. In that case, we can
in fact assume that κ = 1 almost everywhere. This choice determines the
measure λ uniquely.

Proof. Statement (a) is a special instance of Proposition 3.28.
In order to prove part (b), well-definedness and σ-finiteness of µO(γ) follow

from compactness of Hγ . The independence of the representative γ of the orbit
follows from the fact that µH is leftinvariant. To compute the Radon-Nikodym
derivative κ, we first introduce an auxiliary function � : Ωrc → R

+
0 : Fix a

Borel-measurable transversal A ⊂ Ωrc of the H-orbits. Then the mapping
τ : A × H → Ωrc, τ(ω, h) = h−1.ω is bijective and continuous, hence, since
A × H is a standard Borel space, τ−1 : Ωrc → A × H is Borel as well,
by [15, Theorem 3.3.2]. If we let τ−1(γ)H denote the H-valued coordinate
of τ−1(γ), then �(γ) := ∆G(τ−1(γ)H) is a Borel-measurable mapping. Since
∆G is constant on every compact subgroup (in particular on all the little fixed
groups of elements in Ωrc), a straightforward calculation shows that � satisfies
the semi-invariance relation �(h−1.ω) = �(ω)∆G(h)−1.

Next fix an orbit O(γ) and let us compare the measures βO(γ) and �µO(γ):
Since

dµO(γ)(h−1.ω)=∆H(h)dµO(γ)(ω) and dβO(γ)(h−1.ω)= | det(h)|dβO(γ)(ω) ,

the definition of � ensures that �µO(γ) and βO(γ) behave identically under
the action of H . Moreover, they are σ-finite and quasi-invariant, hence equiv-
alent. Since they have the same behaviour under the operation of H , the
Radon-Nikodym derivative turns out to be a positive constant on the orbit.
Summarizing, we find for ω ∈ O(γ) that

dβO(γ)

dµO(γ)
(ω) = �(ω)cO(γ) ,

with �, cO(γ) > 0, and it remains to show that cO(γ) depends measurably on
the orbit.
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For this purpose pick a relatively compact open neighborhood B ⊂ H of
the identity. Then AB = τ(A×B) ⊂ Ωrc is Borel-measurable, as a continuous
image of a standard space, hence 111AB, the indicator function of AB, is a Borel-
measurable function. Both

φ1 : O(γ) �→
∫
O(γ)

111AB(ω)dβO(γ)(ω)

and
φ2 : O(γ) �→

∫
O(γ)

111AB(ω)�(ω)dµO(γ)(ω)

are measurable functions: The first one is by choice of the βO(γ), see part (a).
The second one is measurable by Fubini’s theorem, applied to the mapping
(ω, h) �→ 111AB(h−1.ω)�(h−1.ω) on R̂k ×H (recall the definition of µO(γ)).

In addition, both functions are finite and positive on Ωrc. We have

φ2(O(γ)) =
∫
O(γ)

111AB(ω)�(ω)dµO(γ)(ω) =
∫
p−1

γ (AB)

∆G(h)dµH(h) ,

and p−1
γ (AB) is relatively compact and open, hence it has finite and positive

Haar measure. Since in addition ∆G is positive and bounded on p−1
γ (AB), we

find 0 < φ2(O(γ)) <∞. Hence

φ1(O(γ)) = cO(γ)φ2(O(γ))

can be solved for cO(γ), which thus turns out to depend measurably upon
O(γ). Hence

κ(ω) =
dβO(γ)

dµO(γ)
= �(ω)cO(γ)

is a Lebesgue-measurable function.
The remaining part (c) is simple to prove: The semi-invariance relation of �

entails the relation for κ. The normalization is easily obtained: If κ is constant
on the orbits, it defines a measurable mapping κ on Ωrc/H . If we replace each
βO(γ) by µO(γ), we can make up for it by taking κ(O(γ))dλ(O(γ)) as the new
measure on the orbit space. The new choice has the desired properties. The
uniqueness of λ follows from the usual Radon-Nikodym arguments.

Remark 5.10. Let us for the next two sections fix a choice of λ. Note that this
also uniquely determines the function κ. In the unimodular case we take κ to
be 1, which in turn determines λ uniquely.

As we shall see in Theorem 5.23, the choice of a pair (λ, κ) corresponds
exactly to a choice of Plancherel measure and the associated family of Duflo-
Moore operators, at least on a subset of Ĝ.

Before we turn to the construction of admissible vectors, we introduce some
notation to help clarify the construction: To a function ĝ on U we associate
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two auxiliary H-invariant functions TH(ĝ) and SH(ĝ) such that admissibility
of g translates to a condition on TH(ĝ) and square-integrability to a condition
on SH(ĝ).

Definition 5.11. For a measurable function ĝ on Ωrc, let TH(ĝ) denote the
function

TH(ĝ)(ω) :=

(∫
O(ω)

|ĝ(γ)|2dµO(ω)(γ)

)1/2

=

(∫
O(ω)

|κ(γ)−1/2ĝ(γ)|2dβO(ω)(γ)

)1/2

.

TH(ĝ) is a measurable, H-invariant mapping Ωrc → R
+
0 ∪ {∞}. The admis-

sibility condition can then be reformulated:

g ∈ L2(U) is admissible ⇔ TH(ĝ) ≡ 1 ( a.e. on U) . (5.7)

Similarly, weak admissibility is equivalent to the requirement that TH(ĝ) ∈
L∞(U) and TH(ĝ) > 0 almost everywhere. We can also define

SH(ĝ)(ω) :=

(∫
O(ω)

|ĝ(γ)|2dβO(ω)(γ)

)1/2

.

By our choice of measures, SH and TH coincide iff G is unimodular. Both
TH(ĝ) and SH(ĝ) may (and will) be regarded as functions on the quotient
space U/H. By the choice of the βO(ω),∫

U

|ĝ(ω)|2dω =
∫
U/H

|SH(ĝ)(O(ω))|2dλ(O(ω)) , (5.8)

so that ĝ is square-integrable iff SH(ĝ) is a square-integrable function on U/H.

Now we can address the existence of admissible vectors. The following
theorem is essentially the same as [77, Theorem 1.8]. Again, a comparison of
this theorem with the abstract version in Theorem 4.22 is instructive. The
connection will be made explicit in Theorem 5.23 below.

Theorem 5.12. Let U ⊂ Ωrc be measurable and H-invariant. Then πU has
a bounded cyclic vector. It has an admissible vector iff either

(i) G is unimodular and λ(U/H) <∞.
(ii)G is nonunimodular.

Note that the strategy for the construction of admissible vectors in the
following proof is similar to the arguments in [77], but also to the construc-
tion in Theorem 4.23. It amounts to treating the admissibility condition –
involving TH – first, and then adjusting the construction to fulfill the square-
integrability condition – involving SH – as well.
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Proof. Recall that by the last remark we have for each admissible vector g that
TH(ĝ) is constant almost everywhere. At the same time, in the unimodular
case it is square-integrable as a function on U/H , because of SH = TH . This
shows the necessity of (i) in the unimodular case.

To prove the existence of admissible vectors, we first construct a func-
tion ĝ on U fulfilling the admissibility condition (5.7), and then modify the
construction to provide for square-integrability.

For this purpose we recycle the sets A ⊂ Ωrc and B ⊂ H from the proof of
Lemma 5.9. We already observed there that f̂ = 111AB is Lebesgue-measurable,
and that TH(f̂) is positive and finite almost everywhere on U . Hence we
may define ĝ = f̂ /TH(f̂), which fulfills the admissibility criterion. In the
unimodular case, equation (5.8) together with SH = TH shows that ĝ ∈ L2(U).

In the nonunimodular case, we modify g as follows: For every γ ∈ U , the
compactness of p−1

γ (AB) entails that ∆G is bounded on that set. Thus SH(ĝ)
is positive and finite almost everywhere. Since λ is σ-finite, we can write
U/H =

⋃
n∈N

Vn, with disjoint Vn of finite measure, such that in addition
SH(ĝ) is bounded on each Vn (here we regard SH(ĝ) as a function on the
quotient). In particular, SH(ĝ) · 111Vn is square-integrable on U/H . Now let
Un ⊂ U be the inverse image of Vn under the quotient map, and for h0 ∈ H
and n, kn ∈ N, denote by

ĝn(ω) := ∆H(h0)kn/2f̂2(h−1.ωkn
0 ) · 111Un(ω) .

Then the normalization ensures that ĝn has the following properties:

TH(ĝn) = 111Un (5.9)

and

SH(ĝn) = ∆H(h0)kn/2| det(h0)|−kn/2SH(ĝ) · 111Un

= ∆G(h0)kn/2SH(ĝ) · 111Un . (5.10)

Hence the following construction gives an admissible vector: Choose h0 ∈ H
such that ∆G(h0) < 1/2, pick kn ∈ N satisfying

2−kn‖SH(ĝ) · 111Un‖22 < 2−n (5.11)

and let ̂̃g(ω) := ∆H(h0)kn/2f̂2(h−1.ωkn
0 ), for ω ∈ Un. Then (5.9) implies that

TH(̂̃g) = 1 a.e., whereas (5.10) and (5.11) ensure that SH(̂̃g) ∈ L2(U/H, λ).
A bounded cyclic vector for πU –which is missing in the unimodular case–

can be obtained by similar (somewhat simpler) methods.

Remark 5.13. In Theorem 5.12 we cannot replace Ωrc by the bigger set Ωc.
To give a nonunimodular example, let H = {2kh : k ∈ Z, h ∈ SL(2,Z)}, which
is a discrete subgroup of GL(2,R). Whenever (γ1, γ2) ∈ R̂2 is such that γ1/γ2

is irrational, the stabilizer of (γ1, γ2) in H is finite. Hence the set Ωc is a
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conull subset in R̂2, whereas (as we already noted) Ωrc is empty. H operates
ergodically on R̂2 (already SL(2,Z) does, [118, 2.2.9]), and we can use this
fact to show that π has no admissible vectors: For every g ∈ L2(R2), the map

R
2 � γ �→

∑
h∈H

|ĝ(γh)|2

is measurable and H-invariant, hence, by ergodicity, it is constant almost ev-
erywhere. By the same calculation as in the proof of the admissibility condition
(5.5) we see that g is admissible iff the constant is finite.

Let g �= 0. Pick ε > 0 and a Borel set A on which |ĝ|2 > ε holds. Then
∑
h∈H

|ĝ(γh)|2 ≥ ε
∑
h∈H

|111A(γh)| .

Choose a sequence (An)n∈N of pairwise disjoint subsets of A satisfying
λ(An) > 0. Then, for any fixed n, the set Bn := {γ ∈ U : γH ∩ An �= ∅}
is H-invariant and contains An, hence, by ergodicity, it is a conull set. Hence
the intersection B of all Bn is a conull set, and for every γ ∈ B the set γH∩A
is infinite, the An being disjoint. But this implies

∑
h∈H

|111A(γh)| = ∞

on B, and thus a forteriori
∑
h∈H

|ĝ(γh)|2 = ∞ ,

hence g is not admissible.

Let us now give a short summary of the steps which have to be carried out
for the construction of wavelet transforms from semidirect products:

1. Compute the H-orbits in R̂k, possibly by giving a parametrization of
R̂k/H .

2. Determine the set Ωrc. If λ(Ωrc) = 0, stop.
3. Parametrize each orbit in Ωrc and determine the image µO(γ) of Haar

measure under the projection map h �→ h−1.γ.
4. Compute the measure decomposition dλ(γ) = dβO(ω)(γ)dλ(O(ω)).
5. Compute the Radon-Nikodym derivative κ.
6. The admissibility condition can then be formulated for subsets of Ωrc

just as in Theorem 5.8. Theorem 5.12 ensures the existence of admissible
vectors.
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In Remark 5.17 below we carry out the steps for the Poincaré group, which was
already considered in [74]. Since the final step – the actual construction of ad-
missible vectors – is missing, the description is somewhat incomplete. Clearly
the construction given in the proof of Theorem 5.12 is not very practical, but
it seems doubtful to us that a more explicit method is available which works
in full generality. However, in many concrete cases where parameterizations
of orbits and orbit spaces are possible, they can be given differentiably. Then
computing the various measures and Radon-Nikodym derivatives reduces to
computing the Jacobian determinants of those parameterizations. We expect
that in such a setting the construction of admissible vectors should also be
facilitated.

Further simplification can be obtained by the action of a matrix group in
the normalizer of H , as we will see next. For the remainder of this section
we focus on the case that G is unimodular. The main motivation for the
following proposition is to show that certain subrepresentations of π do not
have admissible vectors. In the light of Theorem 5.12, this amounts to proving
that λ(U/H) is infinite, for the H-invariant set U ⊂ Ωrc under consideration.

The argument proving the following proposition employs the action of the
scalars on the orbit space Ωrc/H . The group of scalars could be replaced by
any group A ⊂ GL(k,R) which normalizes H . Symmetry arguments of this
type could also simplify some of the steps 1. through 6. sketched above.

The multiplicative group (R′, ·) operates on R̂k/H by multiplication: If
a ∈ R

+ then a · (O(γ)) = O(aγ) is well-defined. Obviously Ωrc is invariant,
so that we obtain an operation on Ωrc/H . The next proposition gives the
behaviour of λ under this action. Obviously the fixed groups are constant
along R

′-orbits, i.e., Haγ = Hγ .

Proposition 5.14. Assume that G is unimodular. Let the measures λ and
µO(γ) be as in Lemma 5.9. Assume that a constant choice of Haar measure
on Haγ = Hγ was used to compute the µO.(aγ) (a ∈ R

′). For a ∈ R
′ and

γ ∈ R̂k let a∗(µO(γ)) denote the image measure of µO(γ) on O(aγ), i.e., for
measurable B ⊂ O(aγ) let a∗(µO(γ))(B) := µO(γ)(a−1B). Moreover let the

measure λa be given by λa(B) := λ(aB) (B ⊂ R̂k/H measurable). Then on
Ωrc/H the following relations hold:

µO(aγ) = a∗(µO(γ)),

λa = |a|nλ.

Proof. The first equality is immediate from the definitions of µO(γ) and µO(aγ).
For the second equation let us introduce the following notation: If f : Ωrc → R

is a positive, measurable function, let q(f) denote the function on Ωrc/H
defined by

q(f)(O(γ)) :=
∫
O(γ)

f(ω)dµO(γ)(ω).
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Moreover let fa(ω) := f(a−1ω), for all ω ∈ Ωrc and a ∈ R
′. From the first

equation we obtain

q(fa)(O(γ)) =
∫
O(γ)

f(a−1ω)dµO(γ)(ω)

=
∫
O(γ)a−1

f(ω)dµO(a−1γ)(ω)

= q(f)(O(a−1γ)).

Using this equation, we compute
∫
Ωrc/H

q(f)(O(γ))dλ(O(γ)) = a−n
∫
Ωrc

fa(ω)dλ(ω)

= a−n
∫
Ωrc/H

q(fa)(O(γ))dλ(O(γ))

= a−n
∫
Ωrc/H

q(f)(O(a−1γ))dλ(O(γ))

= a−n
∫
Ωrc/H

q(f)(O(γ))dλa(O(γ))

Using arguments similar to the one in the proof of Theorem 5.12, it is readily
seen that for each measurable A ⊂ Ωrc/H there exists a positive measurable
f on Ωrc with q(f) = 111A. Hence we have shown the second equation.

As a first consequence we obtain that admissible vectors exist only for
proper subsets of Ωrc. This was already noted (in the special case where Ωrc
is conull in R̂k) in [77, Theorem 1.8].

Corollary 5.15. Assume that G is unimodular, and that U := Ωrc is not a
nullset. Then the subrepresentation πU does not have an admissible vector.

Proof. By assumption we have λ(Ωrc/H) > 0, and we need to show that
λ(Ωrc/H) = ∞. But for all a ∈ R

′, aΩrc = Ωrc, and Proposition 5.14 yields
λ(Ωrc/H) = λ(a ·Ωrc/H) = |a|−kλ(Ωrc/H).

Recall from Theorem 2.25 (c) that, given a square integrable represen-
tation σ of a locally compact group G, every vector in Hσ is admissible iff
σ is irreducible and G is unimodular. Hence discrete series representations
of unimodular groups are particularly useful, having no restrictions at all on
admissible vectors. But the following corollary excludes irreducible represen-
tations from our setting. The statement was proved first in [50] by a technique
employing the Fell topology of the group.

Corollary 5.16. Let G be unimodular. Then the quasiregular representation
π does not contain any irreducible square-integrable subrepresentations.
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Proof. Assume the contrary and let πU be an irreducible square integrable
subrepresentation. Here U denotes the corresponding H-invariant subset of
R̂k. Then, by [6, Theorem 1.1], U is (up to a null set) an orbit of positive
measure, hence open by Sard’s Theorem. In particular U ⊂ Ωrc, and λ({U}) >
0.

From the fact that HU has admissible vectors we conclude that λ({U}) <
∞. On the other hand, an easy connectedness argument shows that for each
γ ∈ U , the ray R

+γ is contained in the open orbit U . Hence the same argument
which proved the previous corollary shows that λ({U}) = ∞, which yields the
desired contradiction.

For illustration we now carry out the various steps for the Poincaré group,
already considered in [74].

Remark 5.17. Admissibility conditions for the Poincaré groups. For k ≥ 3 let
Lk denote the Lorentz bilinear form on R

k, i.e., Lk(x, y) = −x1y1 + x2y2 +
x3y3 + . . . + xkyk and let H = SO0(k − 1, 1) denote the connected compo-
nent of the linear group leaving Lk invariant. We exclude the case k = 2 for
simplicity. The Plancherel measure was explicitly calculated in [75]. We want
to determine the admissibility condition for the quasiregular representation
associated with this group. For this purpose we need to compute the measure
decomposition of Lebesgue-measure on R̂k, and we employ the symmetry ar-
guments from 5.14 for this purpose.

1. The SO0(k− 1, 1)-orbits in R̂k can be parameterized as follows (see, e.g.,
[75, I, Example 2, Section 10])

{0}, {γ ∈ R̂k : Lk(γ, γ) = 0, γ1 > 0}, {γ ∈ R̂k : Lk(γ, γ) = 0, γ1 < 0},
O+
r = {γ ∈ R̂k : Lk(γ, γ) = −r, γ1 < 0} (r > 0),

O−
r = {γ ∈ R̂k : Lk(γ, γ) = −r, γ1 > 0} (r > 0),

Ur = {γ ∈ R̂k : Lk(γ, γ) = r, γ1 > 0} (r > 0).

Clearly the first three orbits may be neglected, leaving us with three fam-
ilies of orbits, each parameterized by a ray. Hence, under the action of
R

+ on R̂k used in 5.14, we have essentially two A-orbits in R̂k/H , i.e.,
the O±

r -families yield one orbit, and the remaining A-orbit is obtained
from the Ur-family. Hence, λ is more or less completely determined by the
action of A, and the µO(γ) have to be computed for at most two H-orbits,
which are represented by γ1 := (1, 0, . . . , 0) and γ2 := (0, . . . , 0, 1).

2. Now let us determine Ωrc. It is easily seen that the fixed group Hγ1 is
canonically isomorphic to SO(k−1), whereas Hγ2 is isomorphic to SO(k−
2, 1). In particular the former is compact and the latter is not. Clearly Ωrc
is not a null set, hence we may continue.

3. The orbit O(γ)1 can be parametrized by
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Ψ : R× Sk−2 � (u,y) �→ (sinhu, y1 coshu, . . . , yk−1 coshu).

The measure dµO(γ)1 = dudy, where du is the usual measure on R and dy
is the rotation-invariant surface measure on the sphere, is easily verified
to be invariant under the action of H . Hence it is the image of µH under
the quotient map, since H is unimodular. (Note that here we have in fact
fixed a normalization of µH .) The parametrization of O(aγ1) is a ·Ψ , and
µO(aγ1) = a∗(µO(γ1).

4. As we have seen, Ωrc/H may be identified with R \ {0}, and the measure
λ has to fulfill the relation λa = |a|kλ, whence we immediately obtain
dλ(r) = |r|k−1dr.

5. G is unimodular, and we have chosen the µO(γ) so as to ensure κ ≡ 1.
6. We obtain the following admissibility condition: An invariant subspace
HU ⊂ L2(Rk) has an admissible vector iff the corresponding H-invariant
subset U ⊂ R̂k is contained in Ωrc and its projection U := {r ∈ R :
(r, 0, . . . , 0) ∈ U} satisfies

∫
U

|r|k−1dr <∞. (5.12)

A vector f ∈ HU is admissible for HU iff
∫

R

∫
Sk−2

|f̂(r sinhu, ry1 coshu, . . . , ryk−1 coshu)|2dydu = 1 for a.e. r ∈ U.

This normalization refers to the fixed choice of Haar measure µH made in
step 3.

7. It is now simple to produce admissible vectors g for arbitrary H-invariant
sets U ⊂ R̂k satisfying (5.12): Fix a function g0 on R× Sk−2 with

∫
R

∫
Sk−2

|g0(u,y)|2dydu = 1

and let

ĝ(r sinhu, ry1 coshu, . . . , ryk−1 coshu) = g0(u,y) .

5.3 Concrete and Abstract Admissibility Conditions

We will now work out the connection between the admissibility criteria of
the previous section and the Plancherel transform of G. We consider a more
general setting, i.e., G = N �H , where N is a unimodular group. Note that
since G/N carries an invariant measure, ∆N is the restriction of ∆G to N .
Hence N ⊂ Ker(∆G), so that ∆G can be lifted to a function on H .

We denote by h �→ αh the associated homomorphism H → Aut(N). If we
identify H with a subgroup of G, then αh(n) = hnh−1. Elements of G are
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pairs (x, h) ∈ N ×H , with the group law (x, h)(x′, h′) = (xαh(x′), hh′). The
quasiregular representation π = IndGH1 acts on L2(N) by

(π(x, h)f)(y) = ∆G(h)−1/2f(α−1
h (x−1y)) .

We want to establish when π ≤ λG, by decomposing π into irreducibles and
checking for absolute continuity with respect to Plancherel measure.

Next we compute the decomposition of π. Since the restriction of π to N is
λN , it is no surprise that the Plancherel transform of N is a useful tool for the
decomposition of π into irreducible representations. Thus far the discussion
runs completely parallel to the one in the previous two sections.

Proposition 5.18. Let

PN : L2(N) →
∫ ⊕

N̂

B2(Hσ)dνN (σ)

be the Plancherel transform of N . Define a representation π̂ of G acting on
the right hand side by π̂(x, h) = PN ◦ π(x, h) ◦ P−1

N . Then

(π̂(x, h)F )(σ) = ∆G(h)1/2σ(x) ◦ F (h−1.σ) (5.13)

Proof. For F = f̂ with f ∈ L1(G) ∩ L2(G), and ϕ, η ∈ Hσ, we compute

〈(π̂(x, t)F )(σ)ϕ, η〉 =
∫
N

∆
−1/2
G (h)f(α−1

h (x−1y))〈σ(y)ϕ, η〉dy

=
∫
N

∆
−1/2
G (h)f(α−1

h (y))〈σ(x)σ(y)ϕ, η〉dy

= ∆
1/2
G (h)

∫
N

f(y)〈σ(x)σ(αh(y))ϕ, η〉dy

= ∆
1/2
G (h)σ(x)f̂ (h−1.σ) .

Proposition 5.19. Assume that for a νN -conull subset the Mackey obstruc-
tions are particularly trivial in the sense of 3.38. For almost every orbit
O(σ) ⊂ N̂ , let µO(σ) denote the measure arising from the measure decom-
position

dνN = dµO(σ)dνN . (5.14)

By standardness of νN/H, these measures exist and are unique νN -almost ev-
erywhere. We define the representations �σ acting on L2(O(σ), µO(σ);B2(Hσ))
via

(�σ(x, h)F )(ω) = ∆G(h)1/2ω(x) ◦ F (h−1.ω) . (5.15)

Then the following statements hold:

(a) �σ 
 dim(Hσ) · IndGGσ
σ × 1.
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(b) The Plancherel transform of N effects a decomposition

π 

∫ ⊕

Σ/H

dim(Hσ) ·
(

IndGGσ
σ × 1

)
dνN (σ) . (5.16)

This is a decomposition into irreducibles.

Proof. We first show that �σ is induced from the left action via σ on B2(Hσ),
by comparing (5.15) with (3.29). First observe that by relation (5.14) and

dνN (x,h)−1

dνN
(ω) = ∆G(h) ,

we obtain that
dµO(σ)(x,h)−1

dµO(σ)
(ω) = ∆G(h) .

In other words, the Radon-Nikodym derivative used in the definition of �σ
coincides with the one employed in (3.29).

Next pick a cross-section α0 : O(σ) → H , and let α : G.σ → G be defined
by α(ω) = (eN , α0(ω)), where eN denotes the neutral element in N . Then we
find for (x, h) ∈ G that

α(ω)−1(x, h)α((n, h)−1ω)) = (eN , α0(ω)−1)(x, h)(eN , α0((x, h)−1ω))
= (α0(ω)−1(x), α0(ω)−1hα0(h−1.ω)) ,

with α0(ω)−1hα0(h−1.ω) ∈ Hσ. By assumption, σ extends trivially to a rep-
resentation of the big fixed group Gσ = N �Hσ. Hence

(σ × 1)
(
α(ω)−1(x, h)α((x, h)−1ω)

)
= (α0(ω).σ)(x) = ω(x)

Hence the second term, ω(x), in the definition of �σ also coincides with the
second term of the right hand side of (3.29). Since the same is obviously true
for the third terms, we are finished.

The left action via σ on B2(Hσ) is clearly a dim(Hσ)-fold multiple of σ,
and induction commutes with taking direct sums [45, 6.9], hence (a) follows.
In view of this and Proposition 3.29, part (b) follows from a comparison of
the definition of the �σ with (5.13). It is a decomposition into irreducibles by
Mackey’s theorem.

Next we show the desired containment result. As in the above discussion
the set Ωc = {σ ∈ N̂ : Hσ is compact } plays a crucial role. We have again,
with the same arguments as before:

Lemma 5.20. Ωc is a Borel set.

Lemma 5.21. The mapping Φ : O(γ) �→ IndGGγ
γ × 1 is a Borel isomorphism

onto a Borel subset Σ of Ĝ.



158 5 Admissible Vectors for Group Extensions

Proof. This follows from the decomposition in 5.19 and the uniqueness theo-
rem 3.25.

Theorem 5.22. Let G = N�H, and suppose that G and N are as in Theorem
3.40. Letting

π1 

∫ ⊕

Ωc

dim(Hσ) · (IndGGσ
σ × 1)dν(O(γ)) (5.17)

and π2 the orthogonal complement in π, then π1 < λG, and π2 is disjoint from
λG.

Proof. Denote the part corresponding to Ωc by Σc. The image measure of νN
under this map is a standard measure ν̃ on Ĝ. The key observation is now
that, with respect to the measure decomposition (3.32), Σ meets each fibre in
exactly one point, namely in σ × 1. In computing νN (B), for subsets B of Σ,
the inner integral is simply νHγ ({1}), which is positive iff Hγ is compact. In
short, ν̃ is νG-absolutely continuous on Σc, and disjoint with νG on Σ \ Σc.
The containment statement π1 < λG is obtained by checking the conditions in
3.26: The absolute continuity requirement has already been verified. For the
comparison of multiplicities note that the representation space of IndGGγ

σ×1 is
a nontrivial Hσ-valued L2-space, thus its dimension is necessarily ≥ dim(Hσ).
The former is the multiplicity of IndGGγ

σ × 1 in λG, the latter (smaller) is the
multiplicity of the same representation in π. Thus follows the containment
statement.

The disjointness part is due to Corollary 3.18.

The disjointness statement means that π1 is the maximal subrepresentation
of π which is contained in λG.

Let us now take a second look at the case N = R
k. The following theorem

explains how the different admissibility conditions are related:

Theorem 5.23. Let G = R
k

�H, and assume that G and N = R
k fulfill all

requirements of Theorem 3.40. For O(γ) ⊂ Ωc let KO(γ) denote the operator
on L2(O(γ), dβO(γ)) given by pointwise multiplication with κ|O(γ). The map
Φ from Lemma 5.21 gives rise to the following correspondences between the
objects in Section 5.2 and those appearing in the Plancherel decomposition:

Ωc/H ←→ Σ ,

O(γ) ←→ σ ,

L2(O(γ), dβO(γ)) ←→ Hσ ,

f̂ |O(γ) ←→ ησ ,

SH(f̂)(O(γ)) ←→ ‖ησ‖ ,

λ←→ νG ,

KO(γ) ←→ C−2
σ ,

TH(f̂)(O(γ)) ←→ ‖Cσησ‖ .
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In particular, the admissibility criterion from Theorem 5.8 is a special case of
(4.15).

Proof. It remains to check that the C−2
σ corresponds to KO(γ), and that the

Plancherel measure νG belonging to this particular choice of Duflo-Moore
operators corresponds to λ. Straightforward calculation, using relation (5.6)
from Lemma 5.9, shows that KO(γ) satisfies the semi-invariance relation

(
IndGGγ

(γ × 1)(x, h)
)
KO(γ)

(
IndGGγ

(γ × 1)(x, h)
)∗

= ∆G(x, h)−1KO(γ) .

It follows thatK−1/2
O(γ) obeys the semi-invariance relation (3.51), hence Theorem

3.48(e) entails the desired correspondence.
It remains to prove that, given this particular choice of Duflo-Moore oper-

ators, the measure λ is the corresponding Plancherel measure. But in view of
the identifications we already established, (4.15) yields for every H-invariant
measurable U ⊂ R̂k that

g ∈ HU is admissible ⇐⇒
(
dλ

dνG
(O(γ))

)1/2

‖K−1/2
O(γ) (ĝ|O(γ))‖2 = 1 , (a.e.) .

On the other hand, (5.5) provides

g ∈ HU is admissible ⇐⇒ ‖K−1/2
O(γ) (ĝ|O(γ))‖2 = 1 , (a.e.) .

Hence the Radon-Nikodym derivative is trivial.

As mentioned before, the majority of authors dealing with wavelets from
semidirect products of the form R

k
�H concentrated on discrete series repre-

sentations occurring as subrepresentations of the quasiregular representation.
In this context, a well-known result relates the existence of such represen-
tations to open dual orbits with associated compact fixed groups, see e.g.
[22, 48]. This condition can now be retrieved, by restricting the discrete series
criterion in Corollary 3.41 to representations of the form IndGGσ

σ × 1, as they
appear in the decomposition of the quasiregular representation. Note that a
group is compact iff the Haar measure of the group is finite, iff the trivial
representation is square-integrable.

Corollary 5.24. The quasiregular representation π contains a discrete series
representation iff there exists a dual orbit O(γ) ⊂ N̂ of positive Plancherel
measure, such that in addition Hγ is compact.

Note that if N is a vector group and H a closed matrix group, then Sard’s
theorem implies that all orbits of positive measure are indeed open. See [49]
for a proof.
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5.4 Wavelets on Homogeneous Groups∗∗

In this section we use Theorem 4.22 to prove that there exists a continuous
wavelet transform on homogeneous Lie groups. Starting from a homogeneous
Lie group N with a one-parameter group H of dilations, we show that the
quasiregular representation of G = N � H on L2(N) has admissible vectors.
Since G is nonunimodular, containment in λG will be sufficient for that.

The resolution of the identity provided by the wavelet transform can also
be read as a continuous Calderon reproducing formula. Discrete versions of
the Calderon reproducing formula have been employed for the analysis of
pseudodifferential operators on these groups [47], and it is conceivable that
the wavelet transform we present below could be useful for these purposes
also. Note however that we only provide the existence of admissible vectors.
Unless N is a vector group, the arising representation has infinite multiplicity,
and an explicit characterization of admissible vectors will be a tough problem.

Now for the definition of homogeneous Lie groups.

Definition 5.25. A connected simply connected Lie group N with Lie algebra
n is called homogeneous, if there exists a one-parameter group H = {δr :
r ≥ 0} of Lie algebra automorphisms of the form δr = eA log r, such that in
addition A is diagonalizable with strictly positive eigenvalues. The elements
of H are called dilations.

We define G = N�H , and π as the quasiregular representation π = IndGH1
of G. The homogenous structure of the group allows a rather nice geometric
interpretation of G and π: It can be shown that N carries a “homogeneous
norm” | · | : N → R

+
0 , on which the dilations act in the expected way, i.e.,

|δr(x)| = r|x|. See [47, Chapter 1] for details. Hence the group G consists of
shifts on N and “zooms” with respect to the norm, and the interpretation of
the continuous wavelet transform as a “mathematical microscope” carries over
from R to N . However, the “mathematical microscope” view requires some
sort of decay behaviour of the admissible vectors (ideally, compact support),
and whether admissible vectors exist with these properties is unclear.

Lemma 5.26. Let N be homogeneous with dilation group H and the associ-
ated infinitesimal generator A. For a ∈ R, let Ea = Ker(A − aId). Then we
have:

(i) If X ∈ Ea and Y ∈ Eb, then [X,Y ] ∈ Ea+b.
(ii) N is nilpotent. H acts as a group of automorphisms of N .
(iii) The Haar measure on N is Lebesgue measure. We have µN (δr(E)) =

rQµN (E), where Q := trace(A) > 0. Hence G is nonunimodular, with
N = Ker(∆G).

(iv) Let 0 < a1 ≤ a2 ≤ . . . ≤ an be the eigenvalues of A, each occurring with
its geometric multiplicity. Let X1, . . . , Xn be a basis of n with AXi = aiXi.
Given Y ∈ n arbitrary, Ad(Y ) is properly upper triangular with respect to
this basis.
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(v) For almost all σ ∈ N̂ the little fixed group Hσ is trivial.

Proof. See [47] for (i), (ii) and the formula µN (δr(E)) = rQµN (E). But this
formula entails that ∆G(x, r) = rQ, and since Q > 0, we find N = Ker(∆G).
(iv) is immediate from (i). (v) follows from (iii) and Proposition 3.50(ii).

We need one more auxiliary result to show that the quasiregular represen-
tation on L2(N) is contained in λG, namely the fact that G is type I.

Proposition 5.27. G is an exponential Lie group. In particular, G is type I.

Proof. Let g denote the Lie algebra of G. In order to prove that G is exponen-
tial, we need to show that there does not exist a Z ∈ g for which ad(Z) has
a purely imaginary eigenvalue [34]. Let a1, . . . , an and the associated eigen-
basis X1, . . . , Xn of n be as in Lemma 5.26. Then a basis of g is given by
X1, . . . , Xn, Y , with [Y,Xi] = aiXi. It is therefore straightforward to com-
pute that, for an arbitrary Z = tY +

∑n
i=1 siXi = tY + X , the matrix of

ad(Z) with respect to our basis is
(
tA+M v

0 0

)
, (5.18)

where M is the matrix of ad(X) (acting on n), in particular (properly) upper
triangular by Lemma 5.26 (iv), and v is some column vector. But this matrix
clearly has the eigenvalues ta1, . . . , tan and 0. Hence G is exponential, and
[23, Chap. VI, 2.11] implies that G is type I.

Now Remark 5.26 (v) and Theorem 5.22 allow to conclude that π is con-
tained in the regular representation. Hence 4.22 provides the desired existence
result:

Corollary 5.28. The quasi-regular representation π = IndGH1 is contained in
λG. Hence there exists a continuous wavelet transform on N arising from the
action of N by left translations and the action of the dilations.

The bad news is that, unless N is abelian (in which case we are back to the
first sections of this chapter) the problem of computing concrete admissible
vectors is essentially equivalent to that of computing admissible vectors for
λG:

Proposition 5.29. We have π ≈ λG. Moreover, π 
 λG iff N is nonabelian.

Proof. For the first statement we observe that νG is precisely the quotient
measure on N̂/H , which also underlies the decomposition of π, by (5.16).
Hence νG ≈ π.

If N is abelian, then π is multiplicity-free; already the restriction π|N is.
But G is nonabelian, and therefore λG is not multiplicity-free.
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Conversely, assume N to be nonabelian. It is enough to prove that π 

∞ · π, which in view of (5.16) amounts to proving dim(Hσ) = ∞, for νN -
almost every σ. Since N is not abelian, there exist coadjoint orbits of positive
dimensions, and the coadjoint orbits of maximal dimension are a conull subset
of n∗. Hence νN -almost every σ corresponds to a coadjoint orbit of positive
– and necessarily even – dimension, say of dimension 2k. By construction of
the Kirillov map, σ is therefore induced from a character of a subgroup M of
codimension k, hence Hσ = L2(N/M) is infinite-dimensional. Since the action
of H on N̂ is free νN -almost everywhere, each dual orbit in N̂ contributes
precisely one representation, which also occurs in (5.16).

5.5 Zak Transform Conditions for Weyl-Heisenberg
Frames

This section deals with another class of examples. The results presented here
are taken from [54]. We consider a characterization of tight Weyl-Heisenberg
frames via the Zak transform. It turns out that it can be seen as a special
instance of the Plancherel transform criterion, where the underlying group is
discrete and type I. This makes the example somewhat remarkable. As in the
semidirect product case, the admissibility conditions which arise are already
known and obtainable by less involved machinery also.

Admissibility Conditions and Weyl-Heisenberg Frames

Weyl-Heisenberg systems are discretizations of the windowed Fourier trans-
form introduced in Example 2.27. To make things precise, define the transla-
tion operators Tx and modulation operators Mω on L2(R) by

(Txf)(y) = f(y − x) , (Mωf)(y) = e2πiωyf(y) .

Now a Weyl-Heisenberg system G(α, β, g) of L2(R) is a family

gk,m = MαkTβmg (m, k ∈ Z),

arising from a fixed vector g ∈ L2(R) and α, β �= 0. A (normalized, tight)
Weyl-Heisenberg frame is a Weyl-Heisenberg system that is a (normalized,
tight) frame of L2(R). There exist several alternative definitions, with varying
indexing and ordering of operators. However, up to phase factors which clearly
do not affect any of the frame properties, the resulting systems are identical.

Here we focus on normalized tight Weyl-Heisenberg frames with integer
oversampling LLL (L ∈ N), which corresponds to choosing α = 1 and β = 1/L.
Given L, the problem is to decide for a given g whether it induces a normalized
tight Weyl-Heisenberg frame or not. As we will see in the next subsection, the
Zak transform allows a precise answer to this question. Our next aim is to show
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that the condition is in fact an admissibility condition for ψ. Note that for
L = 1, this is obvious: The set {TnMm : n,m ∈ Z} is an abelian subgroup of
the unitary group of L2(R), and the normalized tight frame condition precisely
means admissibility in this case. For L > 1 however, {TnMm/L : n,m ∈ Z} is
not a subgroup, and we have to deal with the nonabelian groupG generated by
this set. Hence, for the duration of this section, we fix an integer oversampling
rate L ≥ 1, and define the underlying group G as

G = Z× Z× (Z/LZ) ,

with the group law

(n, k, �)(n′, k′, �′) = (n+ n′, k + k′, �+ �′ + k′n) (5.19)

and inverse given by (n, k, �)−1 = (−n,−k,−�+ kn). Here we used the nota-
tion n = n+ LZ. The representation π of G acts on L2(R) by

π(n, k, �) = e2πi(�−nk)/LMn/LTk = e2πi�/LTkMn/L .

It is straightforward to check how normalized tight frames with oversampling
L relate to admissibility for π:

Lemma 5.30. Let ψ ∈ L2(R). Then (Mn/LTkψ)n,k∈Z is a normalized tight
frame iff 1√

L
ψ is admissible for π.

Proof. The relation

Mn/LTkψ = e−2πi(�−nk)/Lπ(k, n, �)ψ

implies for all g ∈ L2(R) that
∑
n,k,�

∣∣〈g, π(k, n, �)f〉
∣∣2 = L

∑
n,k

∣∣〈g,Mn/LTkf〉
∣∣2 ,

which shows the claim.

The following lemma establishes that G is a finite extension of an abelian
normal subgroup N . It is central for our purposes: It ensures that G is type
I, and it allows to compute νG via Theorem 3.40.

Lemma 5.31. Let

N = {(nL, k, �) : k, n, � ∈ Z} .

Then N is an abelian normal subgroup of G with G/N ∼= Z/LZ. In particular,
G is type I.

Proof. The statements concerning N are obvious from (5.19); for the descrip-
tion of G/N use the representatives (0, 0, 0), (1, 0, 0), . . . , (L − 1, 0, 0) of the
N -cosets. The type I property of G follows by Theorem 3.39 (c), observing
that the orbit space of a standard Borel space by a measurable finite group
action is standard.
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Zak Transform Criteria for Tight Weyl-Heisenberg Frames

In this subsection we introduce the Zak transform and formulate the crite-
rion for normalized tight Weyl-Heisenberg frames. Our main reference for the
following will be [58].

Definition 5.32. For f ∈ Cc(R), define the Zak transform of f as the func-
tion Zf : R

2 → C given by

Zf(x, ω) =
∑
m∈Z

f(x−m)e2πimω .

The definition of the Zak transform immediately implies a quasi-periodicity
condition for F = Zf :

∀m,n ∈ Z : F (x+m,ω + n) = e2πimωF (x, ω) . (5.20)

In particular, the Zak transform of a function f is uniquely determined by
its restriction to the unit square [0, 1]2. We next extend the Zak transform
to a unitary operator Z : L2(R) → H, where H is a suitably defined Hilbert
space. For the proof of the following see [58, Theorem 8.2.3]. In the proposi-
tion L2

loc(R
2) denotes the space of all measurable functions which are square-

integrable on compact sets.

Proposition 5.33. Let the Hilbert space H be defined by

H = {F ∈ L2
loc(R

2) : F satisfies (5.20) almost everywhere on R
2} ,

with norm
‖F‖H = ‖F‖L2([0,1]2) .

The Zak transform extends uniquely to a unitary operator Z : L2(R) → H.

The next lemma describes how the representation π operates on the Zak
transform side. It is easily verified on Z(Cc(R)), and extends to H by density.

Proposition 5.34. Let π̂ be the representation acting on H, obtained by con-
jugating π with Z, i.e., π̂(n, k, �) = Z ◦ π(n, k, �) ◦ Z∗. Then

π̂(n, k, �)F (x, ω) = e2πi(�−nk)/Le2πinx/LF (x − k, ω − n/L) . (5.21)

Now we can cite the Zak transform criterion for normalized tight Weyl-
Heisenberg frames with integer oversampling. For a sketch of the proof confer
[58], more details are contained in [33]. Our discussion provides an alternative
proof, see Corollary 5.41.

Theorem 5.35. Let f ∈ L2(R). Then (Mn/LTkf)n,k∈Z is a normalized tight
frame of L2(R) iff

L−1∑
i=0

|Zf(x, ω + i/L)|2 = 1 almost everywhere. (5.22)
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There exist more general versions of this criterion, which allow more compli-
cated sets of time-frequency translations for the construction of the Gabor
frames. While we have restricted our attention to the simple time-frequency
lattice Z×(1/L)Z mostly for reasons of notational simplicity, the more general
statements can be obtained by use of suitable symplectic automorphisms of
the time-frequency plane.

Computing the Plancherel Measure

G is a unimodular group extension, thus νG is obtainable from Theorem 3.40
by computing Ĝ with the aid of the Mackey machine, and keeping track of
the various measures on duals and quotient spaces.

Note that since G/N is finite, N is regularly embedded inG. N is the direct
product of three cyclic groups, hence the character group N̂ is conveniently
parametrized by [0, 1[×[0, 1[×{0, 1, . . . , L− 1}, by letting

χω1,ω2,j(nL, k, �) = e2πi(ω1n+ω2k+j�/L) .

Since
(n, k, �)(n′L, k′, �′)(n, k, �)−1 = (n′L, k′, �′ + k′n) ,

we compute the dual action as

(ω1, ω2, j).(n, k, �) = (ω1, ω2 + jn/L− &ω2 + jn/L', j) .

Here &x' denotes the largest integer ≤ x. Hence, defining

Ωj = [0, 1[×[0, gcd(j, L)/L[×{j} ,

a measurable transversal of the orbits under the dual action is given by Ω =⋃L−1
j=0 Ωj . Here gcd(j, L) is the greatest common divisor of j and L. The

fact that the subgroup of Z/LZ generated by j coincides with the subgroup
generated by gcd(j, L) accounts for this choice of transversal. With the respect
to the dual action, (ω1, ω2, j) ∈ Ωj hasNj = {(nL/gcd(j, L), k, �) : k, n, � ∈ Z}
as fixed group. The associated little fixed group is Nj/N ∼= Z/gcd(j, L)Z. For
a convenient parametrization of Ĝ in terms of Ω and the duals of the Nj we
need to establish that every (ω1, ω2, j) ∈ N̂ has trivial Mackey obstruction.

Lemma 5.36. Let (ω1, ω2, j) ∈ Ωj and m ∈ {0, 1, . . . , gcd(j, L)− 1}. Then

�m,ω1,ω2,j(nL/gcd(j, L), k, �) = e2πi((ω1+m)n/gcd(j,L)+ω2k+j�/L)

defines a character of Nj with �m,ω1,ω2,j |N = χω1,ω2,j. Moreover, every irre-
ducible representation of Nj whose restriction to N is a multiple of χω1,ω2,j

is equivalent to some �m,ω1,ω2,j.

Proof. The character property is verified by straightforward computation. The
last statement is [45, Proposition 6.40].
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Note that the additional parameter m indexes the characters of the little
fixed group Nj/N . Now Theorem 3.39 implies that Ĝ is obtained by inducing
the �m,ωωω,j.

Proposition 5.37. Define, for (ω1, ω2, j) ∈ Ω and m ∈ {0, . . . , gcd(j, L)−1}
the representation

σm,ω1,ω2,j = IndGNj
�m,ω1,ω2,j .

If we let

Σj = {σm,ω1,ω2,j : (ω1, ω2, j) ∈ Ωj ,m ∈ {0, 1, . . . , gcd(j, L)− 1} ,

then the dual of G is the disjoint union

Ĝ =
L−1⋃
j=0

Σj

We normalize all Haar measures on discrete groups occurring in the fol-
lowing by |{e}| = 1. This choice fixes the Plancherel measures uniquely, and
implies in particular for all abelian groups H arising in the following that
νH(Ĥ) = 1. Moreover, Weil’s integral formulae are automatically ensured by
these choices, whence we will obtain the correct normalizations.

Recall that we have the identification

Ĝ =
L−1⋃
j=0

Σj =
L−1⋃
j=0

(Nj/N)∧ ×Ωj .

On each of the Σj, Plancherel measure is a product measure: The (Nj/N)∧

carry the Plancherel measure of the finite quotient group, which is simply
counting measure weighted with 1/|Nj/N | = 1/gcd(j, L). For the missing
parts, we decompose Plancherel measure of N on N̂ along orbits of the dual
action. This results in a measure on Ω 
 N̂/G, and the restrictions to the
Ωj provide the second factors. In order to explicitly compute these we note
that the Plancherel measure on N̂ ∼= [0, 1[×[0, 1[×{0, 1, . . . , L − 1} is 1/L
times the product measure of Lebesgue measure on the first two factors and
counting measure on the third. Since each orbit carries counting measure,
the measure on the quotient is simply Lebesgue measure on the transversal
[0, 1[×[0, gcd(j, L)/L[, for each j. Thus we arrive at:

Proposition 5.38. The Plancherel measure of G is given by

dνG(σm,ω1,ω2,j) =
1

Lgcd(j, L)
dmdω1dω2dj . (5.23)

Here dω1 and dω2 are Lebesgue measure on the intervals [0, 1[ and [0, gcd(j, L)/L[,
and dm, dj are counting measure on {0, . . . , gcd(j, L)− 1} and {0, . . . , L− 1},
respectively.
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As we will see in the next subsection, only the set Σ1 will be of interest for
the Weyl-Heisenberg frame setting. Here the indexing somewhat simplifies:
N1 = N , and m can only take the value 0. So we can identify Σ1 with
{0} × [0, 1[×[0, 1/L[×{1} ∼= [0, 1[×[0, 1/L[.

Zak Transform and Plancherel Transform

The aim in this subsection is to exhibit the representation π̂ obtained by
conjugating π with the Zak transform as a direct integral of irreducibles.
This is done by taking a second look at (5.21), which is a twisted action by
translations along Z × (1/L)Z. Hence a decomposition of Lebesgue measure
along cosets of Z× (1/L)Z gives rise to a decomposition into representations
acting on the cosets, and the twisted action of the latter representations reveals
them as induced representations.

To make this more precise, we let for ωωω ∈ [0, 1[×[0, 1/L[ denote Oωωω =
ωωω+ Z× (1/L)Z. The following lemma exhibits the direct integral structure of
π̂; it is a direct consequence of Proposition 3.29.

Lemma 5.39. Define for ωωω ∈ [0, 1[×[0, 1/L[ the Hilbert space

Hωωω = {F : Oωωω → C : F fulfills (5.20)} ,

with the norm defined by

‖F‖2Hωωω
=

L−1∑
i=0

|F (ωωω + (0, i/L))|2. (5.24)

Let π̂ωωω be the representation acting on Hωωω by

π̂ωωω(k, n, �)F (γγγ) = e2πi(�+nk)/Le2πinx/LF (γγγ − (k, n/L)) .

Then

π̂ 

∫ ⊕

[0,1[×[0,1/L[

π̂ωωω dωωω , (5.25)

via the map
F �→ (F |Oωωω )ωωω∈[0,1[×[0,1/L[ (5.26)

As a first glimpse of the connection between conditions (5.22) and (4.15)
note that the right-hand side of (5.22) can now be reformulated as

‖(Zf) |Oωωω‖Hωωω
= 1, for almost every ωωω ∈ [0, 1[×[0, 1/L[ .

Hence the final step is to note that (5.25) is in fact a decomposition into
irreducibles:

Lemma 5.40. If ωωω ∈ [0, 1[×[0, 1/L[, then π̂ωωω 
 σ0,ωωω,1 ∈ Σ1.
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Proof. We will use the imprimitivity theorem to show that π̂ωωω is induced from
a character of N . For this purpose consider the set S = {ωωω + (0, i/L) : i =
0, . . . , L− 1}, with an action of G on S given by

γγγ.(n, k, �) = (γ1, γ2 − n/L− &γ2 − n/L') .

The action is transitive with N as associated stabilizer. To any subset A ⊂ S
we associate a projection operator PA on Hωωω defined by pointwise multiplica-
tion with the characteristic function of A+ Z× Z. It is then straightforward
to check that A �→ PA is a projection-valued measure on S satisfying

π̂ωωω(n, k, �)PAπ̂ωωω(n, k, �)∗ = PA.(n,k,�) .

In other words,A �→ PA defines a transitive system of imprimitivity. Hence the
imprimitivity theorem [45, Theorem 6.31] applies to show that π̂ωωω 
 IndGN�
for a suitable representation � of N . Since the system of imprimitivity is based
on a discrete set, we can follow the procedure outlined in [45] immediately
after Theorem 6.31, which identifies � as the representation of N acting on
P{ωωω}(Hω). For this purpose consider the function F ∈ Hωωω defined by

F (ωωω + (0,m/L)) = δm,0 for m = 0, . . . , L− 1 .

Now the fact that

π̂ωωω(nL, k, �)F = e2πi�/Le2πiω1ne2πiω2kF = χω1,ω2,1(nL, k, �)F

shows that
π̂ωωω 
 IndGNχω1,ω2,1 = σ0,ω1,ω2,1, .

By the last lemma and Mackey’s theory, no two representations appearing
in (5.25) are equivalent. Since G is type I, (5.25) is central, and 3.20 implies
that π is multiplicity-free.

Summarizing our findings in the language of Remark 4.30, we have verified
the following:

Corollary 5.41. (a) Z implements a unitary equivalence π 

∫ ⊕
Σ1
σdνG(σ).

The multiplicity function is computed as mπ(σ) = 111Σ1(σ).
(b) The necessary conditions for the existence of admissible vectors, in terms

of absolute continuity of the underlying measure, the multiplicity function
and the finite Plancherel measure condition are trivially fulfilled.

(c) The Zak transform criterion (5.22) is a special instance of (4.17).

In view of Theorem 4.32, it is in fact enough to establish the direct integral
decomposition of π. However, the calculations in this section also serve as an
illustration of the use of Theorem 3.40 for the explicit computation of νG.
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Sampling Theorems for the Heisenberg Group

In this chapter we characterize the sampling spaces of the Heisenberg group
by use of the Plancherel transform. We are aware of two previous authors,
Dooley and Pesenson, dealing with sampling theorems on nonabelian groups,
for two rather different settings [37, 98, 99, 100]. What these two approaches
have in common with each other (and with the one developed here) is the
fact that they deal with the problem of reconstructing elements of a fixed
leftinvariant subspace of L2(G) from sampled values.

The difference between the approaches of Dooley and Pesenson initiate
from different notions of bandlimitation. Dooley [37] considers groups of the
form G = R

k
� H , with H compact. His concept of bandlimitedness is

representation-theoretic, that is, defined as a condition on the support of the
subspace on the Plancherel transform side. The condition was inspired by the
Mackey picture. Recall that by Mackey’s theory the dual has the form

Ĝ =
⋃

O(γ)∈Rk/H

{O(γ)} × Ĥγ .

Now, given a leftinvariant subspace H ⊂ L2(G) with associated projection
field (PO(γ),σ)O(γ),σ, the space H is declared bandlimited if there exists a

bounded set B ⊂ R̂k such that PO(γ),σ = 0 for almost all γ �∈ B.
By contrast, Pesenson [98, 99, 100] studies stratified Lie groups G, and

his notion of bandlimitedness is of a geometric rather than a representation-
theoretic nature. It involves a (leftinvariant) sub-Laplacian L on G, which is
a particular selfadjoint differential operator on G. This time, a leftinvariant
space H ⊂ L2(G) is called bandlimited if the projection onto H was given by
a spectral projection of L corresponding to a bounded interval in R.

In both cases, the sampling theorems state that the elements of the spaces
under consideration are uniquely determined by their sampled values. Put
differently, the restriction maps were shown to be injective, but no other
functional-analytic property of the restriction map was studied. Accordingly,

H. Führ: LNM 1863, pp. 169–184, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 6 Sampling Theorems for the Heisenberg Group

the reconstruction procedures, if they were at all given, were not shown to be
stable with respect to the L2-norm.

The approach presented here is rather different in this respect: We start
from our notion of sampling space, which is tied to the existence of a sam-
pling expansion with convergence in the norm, and our goal is to characterize
the subspaces that admit this type of expansions; i.e., to solve T5. We only
consider one particular group, the Heisenberg group, but we will be able to
give a complete characterization of sampling spaces in terms of conditions
on the associated projection fields. These conditions, in turn, can be read as
bandlimitation requirements.

It is instructive to compare Dooley’s notion of bandlimited subspaces with
our notion of sampling spaces. It is easy to check by Theorem 3.39(c) that
the semidirect product group G = R

k
�H is type I if H is compact. Picking

any bounded measurable set B ⊂ R̂k, we can consider the twosided invariant
subspace H ⊂ L2(G), supported by

B̃ = {IndGGγ
(γ × σ) : γ ∈ B, σ ∈ Ĥγ} ⊂ Ĝ ,

which is bandlimited in the sense of [37]. We will show that if H is a sampling
space in the sense of 2.51, then H is finite.

By Theorem 2.56, H is generated by an L2-convolution idempotent. The-
orem 4.22 then implies that

∫
B̃

dim(Hπ)dνG(π) <∞ .

Before we continue the computation, observe that the representation space
of IndGGγ

(γ × σ) has Hilbert space dimension min(∞, [G : Gγ ]) · dim(Hσ).
Theorem 3.40 by Kleppner and Lipsman allows to compute

∞ >

∫
B̃

dim(Hπ)dνG(π)

=
∫
B

∫
Ĥγ

min(∞, [G : Gγ ]) · dim(Hσ)dνHγ (σ)dλ(γ) (6.1)

≥
∫
B

∫
Ĥγ

dim(Hσ)dνHγ (σ)dλ(γ) (6.2)

The finiteness of (6.1) entails that almost allGγ have finite index, which means
that almost all orbits are finite. In addition, the finiteness of (6.2) requires
that for almost all γ the inner integral is finite. Then Corollary 4.25 yields for
these γ that Hγ is discrete (and compact of course), hence finite. But now the
orbits and the fixed groups are finite for almost all γ, i.e., H is finite. Hence
we see that Dooley’s concept and ours are identical only for finite extensions
of R

k.
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6.1 The Heisenberg Group and Its Lattices

Let us quickly recall the main properties of the Heisenberg group, outlined in
Section 4.5. As a set H = R

3, with group law

(p, q, t) ∗ (p′, q′, t′) = (p+ p′, q + q′, t+ t′ + (pq′ − qp′)/2) .

It is a unimodular group, with the usual Lebesgue measure on as Haar mea-
sure.

The center of H is given by Z(H) = {(0, 0, t) : t ∈ R}. We denote the
group of topological automorphisms of H by Aut(H). Recall the definition of
the Schrödinger representations, acting via

[�h(p, q, t)f ] (x) = e2πihte2πiqxeπihpqf(x+ hp) .

The Schrödinger representations do not exhaust the dual of H, which in ad-
dition contains the characters of the abelian factor group H/Z(H). However,
for the decomposition of the regular representation of H, we may concentrate
on the Schrödinger representations. More precisely, the set (�h)h∈R′ is a νH-
conull subset of Ĥ, and Plancherel measure is given by |h|dh, where dh denotes
Lebesgue measure [45, Section 7.6].

To close our survey of the Heisenberg group, we cite a result classifying the
lattices of H. We associate to such a lattice Γ two numbers d(Γ ) ∈ N

′, r(Γ ) ∈
R

+ which contain sufficient information for our purposes. The two parameters
provide a measure of the density of Γ in H. We first single out a particular
family of lattices, which turns out to be exhaustive (up to automorphisms of
H).

Definition 6.1. For any positive integer d let Γd be the subgroup generated
by (1, 0, 0), (0, d, 0), (0, 0, 1). Γd is a lattice, with

Γd =
{

(m, dk, �+
1
2
dmk) : m, k, � ∈ Z

}
.

It is convenient to introduce the reduced lattice Γ rd which is the subset

Γ rd = {(m, dk, dmk/2) : m, k ∈ Z} .

Note that Γ rd is not a lattice, not even a subgroup.

Let us next give a classification of lattices. It has been attributed (in more
generality) to Maltsev. Since we were not able to locate the original source,
we sketch a short proof for the sake of completeness.

Theorem 6.2. Let Γ be a lattice of H. Then there exists a strictly positive in-
teger d and α ∈ Aut(H) with α(Γd) = Γ . The integer d is uniquely determined
by these properties.
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Proof. By [30, Theorem 5.1.6], there exist a basis P̃ , Q̃, Z̃ of h with Z̃ ∈ Z(H),
and Γ = ZZ̃ ∗ZP̃ ∗ZQ̃. Now [P̃ , Q̃] = P̃ Q̃P̃−1Q̃−1 ∈ Γ ∩Z(H) = ZZ̃ implies
[P̃ , Q̃] = dZ̃ for some d ∈ Z, w.l.o.g. d ≥ 0 (otherwise exchange Q̃, P̃ ). In
fact, d > 0 since h is not abelian. It is immediately checked that the linear
isomorphism defined by

(1, 0, 0) �→ P̃ , (0, d, 0) �→ Q̃ , (0, 0, 1) �→ Z̃

is in Aut(H). That d is unique is due to the fact that each automorphism α
mapping Γd to Γd′ maps Z onto ±Z: Indeed, from Proposition 6.17 (a) below
follows that α leaves the Haar measure of H invariant, and this implies that
covol(Γd) = covol(Γd′). On the other hand, covol(Γd) = d, hence d = d′.

We denote by d(Γ ) the unique integer d from the theorem. For the defini-
tion of r(Γ ) we take the unique positive real satisfying Γ ∩ Z(H) = r(Γ )ZZ.

6.2 Main Results

Now we can state the main results of this chapter. In this section, H always
denotes a closed, leftinvariant subspace of L2(H), and Γ < H a lattice. Recall
from Theorem 2.56 that we may assumeH = L2(G)∗S, where S is a selfadjoint
convolution idempotent, and that H is a sampling space iff λH(Γ )S is a tight
frame of H.

Definition 6.3. We associate to a leftinvariant subspace H ⊂ L2(H) with
associated projection field (P̂h)h∈R′ the multiplicity function mH : R

′ → N0 ∪
{∞} of the associated subrepresentation. This function is given by mH(h) =
rank(P̂h). The support of mH is denoted by Σ(H). H is called bandlimited
is Σ(H) is bounded in R.

Similarly, if a representation π is equivalent to a subrepresentation of λH,
say to the restriction of λH to H, we let mπ = mH and Σ(π) = Σ(H). This
is obviously well-defined.

The main theorem characterizes the subspaces admitting tight frames.

Theorem 6.4. (i) There exists a tight frame of the form λH(Γ )Φ with suit-
able Φ ∈ H iff the multiplicity function m associated to H satisfies almost
everywhere

m(h) · |h|+m

(
h− 1

r(Γ )

)
·
∣∣∣∣h− 1

r(Γ )

∣∣∣∣ ≤ 1
d(Γ )r(Γ )

. (6.3)

In particular, Σ(H) ⊂
[
− 1
d(Γ )r(Γ ) ,

1
d(Γ )r(Γ )

]
(up to a set of measure zero).

(ii) There does not exist an orthonormal basis of the form λH(Γ )Φ for H.
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Remark 6.5. Note that if d(Γ ) > 1 and m(h) > 0 and m
(
h− 1

r(Γ )

)
> 0,

inequality (6.3) entails the inequality

|h|+
∣∣∣∣h− 1

r(Γ )

∣∣∣∣ ≤ 1
2r(Γ )

which is impossible to satisfy. Hence in the case d(Γ ) > 1 relation (6.3) sim-
plifies to

m(h) · |h| ≤ 1
d(Γ )r(Γ )

. (6.4)

Corollary 6.6. Assume that mH is essentially bounded. There exists a tight
frame of the form λH(Γ )Φ, (with a suitable lattice Γ and suitable Φ ∈ H) iff
H is bandlimited.

The following is a rephrasing for discretization of continuous wavelet trans-
forms.

Corollary 6.7. Let (π,Hπ) be a representation of H with admissible vector.
There exists a tight frame of the form π(Γ )η, (with suitable lattice Γ and
suitable η ∈ Hπ) if Σ(π) and mπ are bounded.

That bounded multiplicity cannot be dispensed with in the previous corol-
lary is shown by the next result:

Corollary 6.8. There exists a bandlimited leftinvariant subspace H = L2(G)∗
S, with a selfadjoint convolution idempotent S ∈ L2(H), admitting no tight
frame of the form λH(Γ )Φ.

With regard to the existence of sampling subspaces, we have:

Corollary 6.9. Not every space admitting a tight frame of the form λH(Γ )S
is a sampling subspace for Γ . However, for such a space H there exists Φ ∈ H
such that f �→ f ∗Φ∗ is an isometry on H, mapping H onto a sampling space.
There does not exist a sampling space H with the interpolation property.

The proofs for these results will be given in Section 6.5 below. The following
remarks discuss similarities and differences to the case of the reals.

Remark 6.10. 1. The main similarity lies in the notion of bandwidth, and
the fact that it can be interpreted as inversely proportional to the density
of the lattice. Note that over H the bandwidth restriction is much more
rigid: The set Σ(H) is contained in a fixed interval, whereas the analog of
that set in the real case can be shifted arbitrarily and still give a sampling
subspace; compare Theorem 2.71.

2. Corollaries 6.8 and 6.9 provide an interesting contrast between the sam-
pling theories of H and R. None of the counterexamples given in the
corollaries has an analog in the real setting. In particular, in the Heisen-
berg group case the question whether a given space is a sampling space
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is much more subtle than deciding whether it has a frame. For the first
problem, a close inspection of the projection operator field (P̂h)h∈R′ is
necessary (using the criteria in Proposition 6.11 below), for the second,
only the ranks of these operators are needed. By contrast, 2.71 (a) ⇔ (a’)
shows that for the reals the two properties are equivalent. This is not so
surprising after all: Projection fields on

∫ ⊕
R̂

Cdω are obviously uniquely
determined by their supports.

3. While Theorem 6.4 shows that the Plancherel transform can be used to
characterize sampling spaces and frames, it is not clear how it can be
generalized to a larger class of locally compact groups. Indeed, as far as
we are aware, among the entities entering the central relation (6.3), only
the multiplicity function m has an abstract interpretation. Also, the tech-
niques proving Theorem 6.4 are rather specific to the Heisenberg group,
combining known results concerning Weyl-Heisenberg with the Plancherel
transform of H (see the arguments in the next section), which is a further
illustration how the

4. We use lattices as sampling sets simply because they are easily accessible.
In particular, we do not exploit the representation theory of the lattices at
all. Recall that the tight frame condition is nothing but an admissibility
condition for the restriction of λH. However, the lattices in H are not type
I, hence a better understanding of the non-type I setting will be needed.

6.3 Reduction to Weyl-Heisenberg Systems∗

In this section we start the discussion of normalized tight frames for left-
invariant subspaces. On the Plancherel transform side, the space H under
consideration decomposes into a direct integral. In this section, we reduce the
complexity of the problem in two ways: We get rid of the direct integral on
the one hand, and the central variable of the lattice on the other, and are
faced with the problem of constructing certain normalized tight frames in the
fibres, arising from the action of the reduced lattice. The latter problem is
equivalent to the construction of Weyl-Heisenberg (super-)frames.

Proposition 6.11. Let Γ = Γd. Let Φ ∈ H be such that λG(Γ )Φ is a normal-
ized tight frame of H. Then, for almost every h ∈ Σ(H), the reduced lattice
satisfies the following condition:
(
|h|1/2�h(γ)Φ̂(h)

)
γ∈Γ r

d

is a normalized tight frame of B2(L2(R))◦P̂h . (6.5)

Conversely, if both (6.5) (for almost every h) and the support condition

∀m ∈ Z \ {0} : Σ(H) ∩m+Σ(H) has measure zero (6.6)

hold, then λG(Γ )Φ is a normalized tight frame of H.
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Proof. Assume first that |Σ(f) ∩m+Σ(f)| = 0. We calculate

∑
γ∈Γ

|〈f, λH(γ)Φ〉|2 =
∑
γ∈Γ

∣∣∣∣∣
∫
Σ(f)

〈f̂(h), �h(γ)Φ̂(h)〉|h|dh
∣∣∣∣∣
2

=
∑
γ∈Γ r

d

∑
�∈Z

∣∣∣∣∣
∫
Σ(f)

e−2πih�〈f̂(h), �h(γ)Φ̂(h)〉|h|dh
∣∣∣∣∣
2

=
∑
γ∈Γ r

d

∫
Σ(f)

∣∣∣〈f̂(h), �h(γ)Φ̂(h)〉
∣∣∣2 |h|2dh

=
∫
Σ(f)

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 |h|dh .

Here we used the assumption on Σ(f) to apply the Plancherel Theorem for
Fourier series on Σ(f) and thereby discard the summation over �. On the
other hand, the tight frame condition together with the Plancherel formula
for H implies that

∑
γ∈Γ

|〈f, λ(γ)s〉|2 =
∫
Σ(f)

‖f̂(h)‖2|h|dh ,

and thus∫
Σ(f)

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 |h|dh =

∫
Σ(f)

‖f̂(h)‖2|h|dh . (6.7)

Replacing f by g with ĝ(h) = 111B(h)f̂(h), we see that we may replace Σ(f)
in (6.7) by any Borel subset B. Hence the integrands must be equal almost
everywhere: ∑

γ∈Γ r
d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 = ‖f̂(h)‖2 . (6.8)

By covering Σ(H) with sets of the form Σ(f) fulfilling the initial support
condition we see that (6.8) holds for every f ∈ H and almost every h ∈ R

′.
However, it remains to show that the relation holds for all h in a common
conull subset, independent of f . For this purpose we pick a countable dense
Q-subspace A ⊂ L2(H). Then there exists a conull subset C ⊂ R

′ such that,
for all h ∈ C, {f̂(h) : f ∈ A} is dense in B2(L2(R)) ◦ P̂h, and in addition (6.8)
holds for all f ∈ A and h ∈ C. Now, for every h ∈ C, the coefficient map

ĝ(h) �→
(
〈ĝ(h), �h(γ)|h|1/2Φ̂(h)〉

)
γ∈Γ r

d

is a closed linear operator, by Proposition 2.53 (d), coinciding with an isometry
on a dense subset, hence it is an isometry.

Finally, we note that the argument can be reversed to prove the sufficiency
of condition (6.5) under the additional assumption (6.6).
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6.4 Weyl-Heisenberg Frames∗

For any g ∈ L2(R), the operation of the reduced lattice Γ rd on g via �h gives
the system

(�h(m, dk, dmk/2)g)(x) = eπihmdke2πikxg(x+ hm) ,

hence �h(Γ rd )g and the Weyl-Heisenberg system G(d, h, g), as defined in Sec-
tion 5.5, only differ up to phase factors. Clearly these phase factors do not
influence any normalized tight frame or ONB properties of the system, hence
we may and will switch freely between the Weyl-Heisenberg system and the
orbit of the reduced lattice.

We cite the following existence result:

Theorem 6.12. A normalized tight Weyl-Heisenberg frame G(d, h, g) of L2(R)
exists iff |h|d ≤ 1. For any such frame we have ‖g‖22 = |h|d.

Proof. The “only-if”-part is [58, Corollary 7.5.1]. The “if”-part follows from
[58, Theorem 6.4.1], applied to a suitably chosen characteristic function. The
norm equality is due to [58, Corollary 7.3.2].

In dealing with subspaces of Hilbert-Schmidt spaces, we have to consider
a more general setting: We will be interested in normalized tight frames of(
L2(R)

)r consisting of vectors of the type

gk,m = (e2πidkxgj(x+ hjm))j=1,...,r = (gjk,m)j=1,...,r (6.9)

where g = (gj)j=1,...,r ∈
(
L2(R)

)r is suitably chosen, and h = (hj)j ∈ R
r is a

vector of nonzero real numbers. This problem has already been considered by
other authors, see [21] and the references therein. The following two lemmata
extend the results on L2(R) to the more general situation. The first one is
quite obvious and does not reflect the special structure of Weyl-Heisenberg
frames. We already used a similar argument for the proof of 2.23. A similar
result for arbitrary frames is given in [21].

Lemma 6.13. Let h = (h1, . . . , hr) ∈ R
r and g = (gj)j=1,...,r ∈

(
L2(R)

)r.
Then (gk,m)k,m∈Z, defined as in equation (6.9), is a normalized tight frame of(
L2(R)

)r iff

(i) for j = 1, . . . , r, G(hj , d, gj) is a normalized tight frame of L2(R); and
(ii) for i �= j, and for all f1, f2 ∈ L2(R),

〈(
〈f1, gjm,n〉

)
m,n

,
(
〈f2, gim,n〉

)
m,n

〉
�2(Z×Z)

= 0 . (6.10)

i.e., the coefficient operators belonging to G(hj , d, gj) and G(hi, d, gi) have
orthogonal ranges in �2(Z× Z).
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Proof. Consider the subspace Hj ⊂
(
L2(R)

)r whose elements are nonzero at
most on the jth component. The necessity of property (i) follows immediately
from Proposition 2.53(a), applied to theHj . Property (ii) is necessary because
the (pairwise orthogonal) Hj need to have orthogonal images in �2(Z × Z).
The converse is clear.

Necessary and sufficient conditions for the existence of such frames are
given in the next proposition.

Proposition 6.14. Let (hj)j=1,...,r, d ∈ N
′ be given.

(a) There exists a normalized tight frame of
(
L2(R)

)r of the form (6.9) iff
d
∑r

j=1 |hj | ≤ 1.
(b) Assume that hj = h, for all j = 1, . . . , r, and g = (gj)j=1,...,r is such that

(6.9) is a normalized tight frame. Then gi⊥gj, for i �= j.

Proof. For the necessity in part (a), observe that Lemma 6.13 together with
Theorem 6.12 yields that ‖gj‖2 = |hj |d, and thus ‖g‖2 = d

∑r
j=1 |hj |. Now

Proposition 2.53 (c) entails the desired inequality.
The proof for sufficiency is a slight modification of a construction given

by Balan [21, Example 13]. Define ci =
∑i
j=1 |hj |, and let gi =

√
d111[ci−1,ci].

Given f = (f i) ∈
(
L2(R)

)r, we compute

〈f, gk,m〉 =
r∑
i=1

〈f i, gik,m〉

=
r∑
i=1

√
d

∫ ci

ci−1

e−2πimdxf i(x+ hik)dx

=
√
d

∫ 1/d

0

e−2πimdxHk(x)dx ,

where

Hk(x) =
{
f i(x− hik) x ∈ [ci−1, ci]
0 elsewhere .

Fixing k, we compute

∑
m∈Z

|〈f, gk,m〉|2 =
∑
m∈Z

d

∣∣∣∣∣
∫ 1/d

0

e−2πimdxHk(x)dx

∣∣∣∣∣
2

=
∫ 1/d

0

|Hk(x)|2dx

=
∑

i=1,...,r

∫ ci

ci−1

|f i(x− hik)|2dx .

Since the hiZ-translates of [ci−1, ci] tile R, summing over k yields the desired
normequality. This closes the proof of (a).
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For the proof of (b), pick f1, f2 ∈ L∞(R) with supports in [0, |h|]. Then
we calculate

∑
m,k∈Z

〈f1, gjm,k〉〈f2, gim,k∈Z
〉 =

=
∑
m∈Z

∫
R

(∑
k∈Z

〈f1gjm,0, e2πidk·〉e2πidkx

)
f2(x)gi(x+ hm)dx

=
∑
m∈Z

d−1

∫ |h|

0

f1(x)f2(x)gj(x+ hm)gi(x+ hm)dx

= d−1

∫ |h|

0

(∑
m∈Z

gj(x+ hm)gi(x+ hm)

)
f1(x)f2(x)dx

Here the Fourier series
∑
k∈Z

〈f1gjm,0, e2πidk·〉e2πdkx = d−1f1(x)gj(x+ hm)

is valid on [0, |h|], at least in the L2-sense, because of |h| ≤ d−1, the latter
being a consequence of Theorem 6.12. Now, for arbitrary f1, f2, the scalar
product we started with has to be zero, whence we obtain for almost every
x ∈ [0, |h|], ∑

m∈Z

gi(x+ hm)gj(x+ hm) = 0 .

Integrating over [0, |h|] and applying Fubini’s theorem yields 〈gi, gj〉 = 0.

Remark 6.15. Note that the vectors (gi)i=1,...,r constructed in the proof of
part (a) depend measurably on h, i.e., if we let (gih) be the vector of functions
constructed from h, then (x,h) �→ (gih(x))i=1,...,r is a measurable mapping.

6.5 Proofs of the Main Results∗

The general proof strategy consists in explicit calculation for the Γd and then
transferring the results to arbitrary lattices by the action of Aut(H). For this
purpose we need a more detailed description of Aut(H) and its action on
the Plancherel transform side. Most of the results are standard, and we only
sketch the proofs.

Proposition 6.16. (a) For r > 0 let αr(p, q, t) := (
√
rp,
√
rq, rt). Then αr ∈

Aut(H). In addition, αinv : (p, q, t) �→ (q, p,−t) defines an involutory
automorphism of H.

(b) Each α ∈ Aut(H) can be written uniquely as α = αrα
i
invα

′, where r ∈ R
′,

i ∈ {0, 1} and α′ leaves the center of H pointwise fixed.
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(c) Suppose that α(Γd) = Γ for some d, α, and let α = αsα
i
invα

′ be the
decomposition from part (b). Then r(Γ ) = s.

Proof. For parts (a), (b) see [46, Theorem 1.22]. Part (c) follows directly from
the definition of r(Γ ) and the fact that α′ and αinv map every discrete sub-
group of Z(H) onto itself.

Next let us consider the action on the Fourier transform side.

Proposition 6.17. (a) Define ∆ : Aut(H) → R
+ by

∆(α) =
µH(α(B))
µH(B)

,

where B is a measurable set of positive Haar measure. ∆ does not depend
on the choice of B, and it is a continuous group homomorphism. For
α = αrα

i
invα

′ as in 6.16(b), ∆(α) = r2.
(b) For α ∈ Aut(H), let Dα : L2(H) → L2(H) be defined as (Dαf)(x) :=

∆(α)1/2f(α(x)). This defines a unitary operator.
(c) Let H ⊂ L2(G) be a closed, leftinvariant subspace with multiplicity func-

tion m. Then H̃ = Dα(H) is closed and leftinvariant as well. Let m̃ denote
the multiplicity function related to H̃. If α = αrα

i
invα

′ then m̃ satisfies

m̃(h) = m((−1)ir−1h) (almost everywhere) . (6.11)

(d) Let Γ be a lattice, α ∈ Aut(H) such that α(Γd) = Γ . Let H ⊂ L2(H) be
a closed, leftinvariant subspace. Then λH(Γ )Φ is a normalized tight frame
(an ONB) for H iff λH(Γd)(DαΦ) is a normalized tight frame (an ONB)
for Dα(H).

Proof. Parts (a) and (b) are standard results concerning the action of auto-
morphisms on locally compact groups, see [64]. The explicit formula for ∆(α)
follows from the fact that every automorphism leaving the center invariant fac-
tors into an inner and a symplectic automorphism [46, Theorem 1.22]; both
do not affect the Haar measure.

For part (c), we first note that by the Stone-von Neumann theorem [46,
Theorem 1.50], any automorphism α′ keeping the center pointwise fixed acts
trivially on the dual of H. Hence,

(Dα′f)∧ (h) = Uα′,h ◦ f̂(h) ◦ U∗
α′,h ,

where Uα′,h is a unitary operator on L2(R). Hence the action of α′ does
not affect the multiplicity function, and from now on, we only consider α =
αrα

i
inv. In this case, letting

(Drf)(x) = r1/2f(rx) ,

we obtain by straightforward computation that
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(Dαf)∧ (h) = r−1 ·Dr ◦ f̂((−1)ir−1h) ◦D∗
r . (6.12)

This immediately implies (6.11).
To prove (d), observe that the unitarity of Dα implies that Dα (λH(Γ )) is

a normalized tight frame of Dα(H), and check the equality

Dα(λH(x)S) = λH(α−1(x))(DαS) .

Proof of Theorem 6.4. We first prove the theorem for the case Γ = Γd.
Writing

Φ̂(h) =
∑
i∈Ih

ϕhi ⊗ ηhi ,

we find by Proposition 6.11, that for almost every h, (�h(γ) ◦ |h|1/2Φ̂(h))γ∈Γ
has to be a normalized tight frame of L2(R) ◦ P̂h, or equivalently, that the
vector (ϕhi )i=1,...,m(h) generates a frame of

(
L2(R)

)m(h), for h = (h, . . . , h).
Then 6.13 (a) implies that G(h, d, |h|1/2ϕhi ) is a normalized tight frame of
L2(R). In particular, Theorem 6.12 entails

‖ϕhi ‖2 = d , (6.13)

as well as Σ(H) ⊂
[
− 1
d ,

1
d

]
. If d > 1, the support condition (6.6) in Proposition

6.11 is fulfilled. Hence Proposition 6.14 (a), applied to h = (h, . . . , h), shows
that (6.4) is necessary and sufficient for the existence of a normalized tight
frame for H. (Note that by Remark 6.15, 6.14 (a) provides a measurable vector
field.)

The case d = 1 requires a somewhat more involved argument. Assume
that λH(Γ )Φ is a normalized tight frame, and let f ∈ H. Condition (6.5) from
Proposition 6.11 yields

‖f‖2 =
∫ 1

0

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)Φ̂(h)〉
∣∣∣2 |h|2

+
∣∣∣〈f̂(h− 1), �h−1(γ)Φ̂(h− 1)〉

∣∣∣2 |h− 1|2dh . (6.14)

On the other hand,

‖f‖2 =
∑
γ∈Γ r

d

∑
�∈Z

∣∣∣∣
∫ 1

0

e−2πih�
(
〈f̂(h), �h(γ)Φ̂(h)〉|h|+

+〈f̂(h− 1), �h−1(γ)Φ̂(h− 1)〉|h− 1|
)
dh

∣∣∣∣
2

=
∫ 1

0


∑
γ∈Γ r

d

|〈f̂(h), �h(γ)Φ̂(h)〉|h|

+ 〈f̂(h− 1), �h−1(γ)Φ̂(h− 1)〉|h− 1| |2

 dh . (6.15)
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As in the proof of Proposition 6.11, the fact that the two equations hold for
all f ∈ H allows to equate the integrands of (6.14) and (6.15). But this implies
the orthogonality of the coefficient families:
〈(
〈f̂(h), �h(γ)Φ̂(h)〉

)
γ∈Γ r

d

,
(
〈f̂(h− 1), �h−1(γ)Φ̂(h− 1)〉

)
γ∈Γ r

d

〉
�2(Γ r

d )

= 0 .

Plugging this fact, together with condition (6.5) from Proposition 6.11, into
Proposition 6.13, we finally obtain that the system
(
�h−1(γ)|h− 1|1/2ϕh−1

1 , . . . , �h−1(γ)|h− 1|1/2ϕh−1
m(h−1), �h(γ)|h|1/2ϕh1 ,

, . . . , �h(γ)|h|1/2ϕhm(h)

)
γ∈Γ r

d

has to be a normalized tight frame of
(
L2(R)

)m(h)+m(h−1). An application of
Proposition 6.14 (a) with h = (h − 1, . . . , h − 1, h, . . . , h) yields that such a
frame exists iff m(h)|h|+m(h−1)|h−1| ≤ 1. This shows the necessity of (6.3).
The sufficiency is obtained by running the proof backward; the measurability
of the constructed operator field is again ensured by Remark 6.15.

For the proof of (ii) we need to show, by 2.53(c), that ‖Φ‖ < 1, for every
Φ for which λH(Γ )Φ is a normalized tight frame. Recalling that

|h|‖Φ̂(h)‖2B2
= |h|m(h)d ,

and using the fact that the inequality m(h)|h|d+m(h−1)|h−1|d ≤ 1 is strict
almost everywhere (say, for h irrational) we can estimate

‖Φ‖2 =
∫ 1

−1

‖Φ̂(h)‖2B2
|h|dh

=
∫ 1

0

m(h)|h|d+m(h− 1)|h− 1|d dh

< 1 .

This closes the proof for Γ = Γd. For Γ = α(Γd), write α = αr(Γ )α
i
invα

′ as in
Proposition 6.16 (c). By 6.17 (d), we may consider Γd and H̃ = Dα(H) instead
of Γ and H. Part (ii) immediately follows from this observation. For part (i),
we find by Proposition 6.17(c) that the associated multiplicity function m̃

fulfills m̃(h) = m((−1)ir(Γ )−1h). Hence, (6.3) for Γd, H̃ becomes

m((−1)ir(Γ )−1h)|h|+m((−1)ir(Γ )−1(h−1))|h−1| ≤ 1
d

(almost everywhere)

which after dividing both sides by r(Γ ) and passing to the variable h̃ =
(−1)ir(Γ )−1h is the desired inequality (6.3). �
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Proof of Corollary 6.6. The assumptions imply that m(h)|h| ≤ c, for all
h ∈ R

′, and c a constant. Hence picking s ≥ 2c
d and defining Γ = αs(Γd)

ensures that (6.3) is fulfilled. �

Proof of Corollary 6.7. Pick an admissible vector η and transfer the corre-
sponding results from Theorem 6.4 and Corollary 6.6 to Hπ via V −1

η . �

Proof of Corollary 6.8. Pick any measurable function m : [−1, 1] → N
′

such that h �→ m(h)|h| is integrable but unbounded. Pick a closed, leftinvari-
ant space H with multiplicity function m. The space can be constructed by
realizing that each representation in the Plancherel decomposition of H enters
with infinite multiplicity, hence the projection field

Ph =
m(h)∑
n=1

en(h)⊗ en(h)

constructed from a measurable field (en)n∈N of ONB’s is well-defined and
measurable. H is of the desired form, but violates (6.3), for all lattices Γ . �

Proof of Corollary 6.9. To give an example proving the first statement, let
Γ = Γd; using the appropriate α ∈ Aut(H) the argument can be adapted to
suit any other lattice. For h ∈

[
0, 1

d

]
, define

ηh =
1√
h/2

111[0,h/2] .

and S ∈ L2(H) with Ŝ(h) = ηh⊗ηh. Then S is a selfadjoint convolution idem-
potent, and H = L2(H) ∗ S has a tight frame of the form λH(Γ )Φ. However,
for H to be a sampling space, λH(Γ )S must be a tight frame, and condition
(6.5) implies that G(h, d, ηh) is a tight frame of L2(R), for almost every h. But
111[h/2,h] has disjoint support with all elements of that system, hence G(h, d, ηh)
is not even total.

The second statement is obvious from Proposition 2.54. The last statement
follows from Theorem 6.4 (ii). �

6.6 A Concrete Example

In this section we explicitly compute a sinc-type function for Γ = Γ1. The
construction proceeds backwards, starting on the Plancherel transform side by
giving a field of rank-one projection operators fulfilling the additional require-
ments for the sampling space property. Fourier inversion yields the sinc-type
function S. As a consequence, the sampling space is given as L2(H) ∗ S. In
order to minimize tedium, we have shortened some of the more straightfor-
ward calculations. The three steps carry out the abstract program developed
above.
1. Construction on the Plancherel transform side.
For h ∈ [−0.5, 0.5] let ηh = |h|−1/2111[−|h|/2,|h|/2], and
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Ŝ(h) = ηh ⊗ ηh ,

and let Ŝ be zero outside of [−0.5, 0.5]. Ŝ is a measurable field of rank-one pro-
jection operators, with integrable trace, hence has an inverse image S ∈ L2(H)
which is a selfadjoint convolution idempotent. Moreover, it is straightforward
to check that �h(Γ r1 )|h|1/2ηh = �h(Γ r1 )111[−0.5,0.5] is a normalized tight frame
of L2(R), (compare the proof of Proposition 6.14 (a)). Hence, by Proposi-
tion 6.11, λH(Γ )S is a normalized tight frame of H = L2(H) ∗ S, and H is a
sampling space.
2. Plancherel inversion.
An application of the Plancherel inversion formula (4.5) yields

S(p, q, t)

=
∫ 0.5

−0.5

〈ηh, �h(p, q, t)ηh〉|h|dh

=
∫ 0.5

−0.5

e−2πih(t+pq/2)

∫ |h|
2

− |h|
2

e−2πiqx111[−|h|/2,|h|/2](x+ hp)dx dh . (6.16)

3. Computing integrals.
Let S̃(p, q, h) denote the inner integral. In the following, we assume that q �= 0
and p ≥ 0. The missing values will be obtained by taking limits (for q = 0)
and reflection (for p < 0). Observe further that S(p, q, t) = 0 for |p| > 1, hence
we will use |p| ≤ 1 wherever we may need it. Integration yields

S̃(p, q, h) =




e2πiq|h|/2 − e−2πiq(|h|/2−hp)
2πiq h ≥ 0

e2πiq(|h|/2+hp) − e−2πiq|h|/2
2πiq h < 0

,

After plugging this into (6.16) and integrating, straightforward simplifications
lead to

S(p, q, t) =
1

2πq

(
cos (π(t+ (p− 1)q/2))− 1

π(t+ (p− 1)q/2)
− cos (π(t− (p− 1)q/2))− 1

π(t− (p− 1)q/2)

)
.

In order to further simplify this expression, we use the relation

cos(πα) − 1
πα

= −πα
2

sinc2
(α

2

)

by which means we finally arrive at

S(p, q, t) =
1
4

[(
t

q
+

1− p
2

)
sinc2

(
t

2
+

1− p
4

q

)

−
(
t

q
− 1− p

2

)
sinc2

(
t

2
− 1− p

4
q

)]
. (6.17)
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For p < 0 we use that S(p, q, t) = S∗(p, q, t) = S(−p,−q,−t). It turns out that
replacing p by |p| in (6.17) is the only necessary adjustment for the formula
to hold in the general case. Finally, sending q to 0 allows to compute the
values S(p, 0, t), since S is continuous. The following theorem summarizes our
calculations:

Theorem 6.18. Define S ∈ L2(H) by

S(p, q, t) =




0 for |p| > 1
1
4

[(
t
q + 1−|p|

2

)
sinc2

(
t
2 + 1−|p|

4 q
)

−
(
t
q −

1−|p|
2

)
sinc2

(
t
2 −

1−|p|
4 q
)]

for |p| ≤ 1, q �= 0
1−|p|

4 (2sinc(t)− sinc2(t/2)) for |p| ≤ 1, q = 0

Let H ⊂ L2(H) be the leftinvariant closed subspace generated by S, H =
L2(H) ∗ S. Then H is a sampling space for the lattice Γ1, with cH = 1, and
S the associated sinc-type function. λH(Γ1)S is a normalized tight frame, but
not an orthonormal basis of H, because of ‖S‖2 = 1

2 .
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2003.

29. A.L. Carey, Group representations in reproducing kernel Hilberts spaces, Re-
ports in Math. Phys. 14 (1978), 247–259

30. L. Corwin and F.P. Greenleaf: Representations of Nilpotent Lie Groups and
Their Applications. Cambridge University Press, Cambridge, 1989.

31. M. Cowling, The Plancherel for a group not of type I, Boll. Unione Mat. Ital.,
V. Ser., A 15 (1978), 616-623.

32. B.N. Currey, An explicit Plancherel formula for completely solvable Lie groups,
Mich. Math. J. 38 (1991), 75-87.

33. I. Daubechies, The wavelet transform, time-frequency localization and signal
analysis, IEEE Trans. Inform. Theory 34 (1988), 961-1005.

34. J. Dixmier, L’application exponentielle dans les groupes de Lie résolubles, Bull.
Soc. Math. Fr. 85 (1957), 113-121.

35. J. Dixmier: C∗-Algebras. North Holland, Amsterdam, 1977.
36. J. Dixmier: Von Neumann-Algebras. North Holland, Amsterdam, 1981.
37. A.H. Dooley, A nonabelian version of the Shannon sampling theorem, SIAM J.

Math. Anal. 20 (1989), 624-633.
38. M. Duflo and C.C. Moore, On the regular representation of a nonunimodular

locally compact group, J. Funct. Anal. 21 (1976), 209-243.
39. M. Duflo and M. Räıs, Sur l’analyse harmonique sur les groupes de Lie

résolubles, Ann. Sci. Ecole Norm. Sup. 9 (1976), 107-144.



References 187

40. E.G. Effros, Global structure in von Neumann algebras, Trans. Am. Math. Soc.
121 (1966), 434-454.
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Am. Math. Soc. 63 (1948), 1-84.
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-for semidirect products R

k
� H , 145

admissibility condition
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-for direct sum representations, 26
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-for discrete series representations, 27
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-structure, 12

Borel structure
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bounded vector, 22

central decomposition, 74
closure of an operator, 6
coefficient operator, 19
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-L1-version, 81

-for arbitrary type I groups,
L2−version, 119
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-discrete series setting, 28
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induced representation, 86
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lattice, 50
-covolume, 50
-in H, 171

little fixed group, 85

Mackey
-correspondence, 87
-theorem, 87

Mackey obstruction
-particularly trivial, 86
-trivial, 86

measurable
-field of Hilbert spaces, 67
-field of operators, 69
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-mapping, 12
-structure, 67
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measure decomposition, 79
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qualitative uncertainty principle
-for the reals, 53
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quasi-dual, 72
quotient Borel structure, 66

regularly embedded, 85
representation, 7

-Schrödinger, 171
-contragredient, 8
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-direct sum, 7
-discrete series representation, 26
-factor, 71
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-quasiregular, 141
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-tensor product, 10

resolution of the identity, 21

sampling space, 46
-on H, necessary criterion, 172

sampling theorem
-on the reals, 47

Schrödinger representation
-of the reduced Heisenberg group, 29

Schur’s lemma, 7
semi-invariance relation

-in the discrete series case, 27
sinc-type function, 46
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stabilizer, 13
standard

-Borel space, 66
measure, 66

strong operator topology, 6
subgroup space, 143
subrepresentation, 7

tensor product
-of Hilbert spaces, 9
-of operators, 10
-of representations, 10

Theorem
spectral, 53
Stone, 53

trace class operators, 11
transform

-Fourier-Stieltjes, 54
-Zak, 164

transversal, 67
type I

-factor, 72
-representation, 76
group, 72

ultraweak operator topology, 6
unimodular, 16
unitary dual, 8

von Neumann algebra, 8
-commuting with a representation, 8
-commuting with the multiple of

irreducible representation, 11
-generated by a multiple of an
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-generated by a representation, 8
-group von Neumann algebras, 18

weak integral, 20
weak operator topology, 6
Wigner transform

-associated to nilpotent Lie groups,
global version, 132
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windowed Fourier transform, 29




