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Preface

Fuzzy logic control has been studied and developed for decades. It is known
to be an effective control approach to some ill-defined and complex control
processes. Thanks to fuzzy logic, expert knowledge about the control pro-
cesses can be employed to heuristically design fuzzy controllers with some
linguistic IF-THEN rules. Practically, human knowledge can be represented
as linguistic statements and incorporated into the fuzzy logic controller. As
a result, the design of the control action can be understood easily, and the
fuzzy logic controller can operate with intelligence.

With years of investigation, the analysis and design of fuzzy logic control
systems have been developing into a broad paradigm of active research. In-
stead of following the conventional heuristic approach, the design of fuzzy
logic controllers can be realized by adopting a fuzzy-model-based (FMB)
approach with engineering concerns such as the system stability and per-
formance. The FMB control approach has received great attention of the
researchers in the fuzzy control community owing to the systematic math-
ematical platform it offers to carry out rigorous analysis on general non-
linear control systems. The Takagi-Sugeno/Takagi-Sugeno-Kang (TS/TSK)
fuzzy model is generally accepted as a powerful mathematical tool to rep-
resent/model/identify nonlinear plants in a systematic way to facilitate the
stability analysis and controller synthesis. Based on the Lyapunov stability
theory, the stability and performance of the FMB control systems can be
investigated. Stability and performance conditions in terms of linear matrix
inequalities (LMI) have been reached to aid the design of stable and well-
performed FMB control systems. Convex programming techniques can be
applied to find the solution of the LMI-based conditions numerically.

In this book, the state-of-the-art FMB based control approaches are cov-
ered. A comprehensive review about the stability analysis of type-1 and type-2
FMB control systems using the Lyapunov-based approach is given, present-
ing a clear picture to researchers who would like to work on this field. A wide
variety of continuous-time nonlinear control systems such as state-feedback,
switching, time-delay and sampled-data FMB control systems, are covered.
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In short, this book summarizes the recent contributions of the authors on the
stability analysis of the FMB control systems. It discusses advanced stability
analysis techniques for various FMB control systems, and founds a concrete
theoretical basis to support the investigation of FMB control systems at the
research level. The analysis results of this book offer various mathematical
approaches to designing stable and well-performed FMB control systems. Fur-
thermore, the results widen the applicability of the FMB control approach
and help put the fuzzy controller in practice. A wide range of advanced ana-
lytical and mathematical analysis techniques will be employed to investigate
the system stability and performance of FMB-based control systems in a rig-
orous manner. Detailed analysis and derivation steps are given to enhance the
readability, enabling the readers who are unfamiliar with the FMB control
systems to follow the materials easily. Simulation examples, with figures and
plots of system responses, are given to demonstrate the effectiveness of the
proposed FMB control approaches.

This book is organized in 10 chapters. Chapter 1 offers a review on the
state-of-the-art stability analysis techniques of FMB control systems. Various
techniques under the categories of adaptive, sampled-data, state-feedback,
switching, and time-delay fuzzy control schemes, are presented. The stability
of the FMB control systems under the different categories of fuzzy controllers
are discussed.

In in the first half of Chapter 2, the basic concept and mathematical back-
ground of the FMB control systems are given. The technical details of the TS
fuzzy model that represents the nonlinear plant and facilitates the stability
analysis and controller synthesis are given. A state-feedback fuzzy controller is
used to control the nonlinear plant represented by the TS fuzzy model, form-
ing an FMB control system. Some published membership-function-shape-
independent (MFSI) stability conditions and performance conditions in terms
of LMIs are given in the second half of the chapter.

In chapter 3, the membership-function-shape-dependent (MFSD)-based
stability of FMB control systems with perfectly/imperfectly matched mem-
bership functions is investigated based on quadratic Lyapunov function. The
first approach employs the membership function boundary (MFB) informa-
tion of both the TS fuzzy model and the fuzzy controller to facilitate the
stability analysis. The MFB information is carried by some slack matrices in
the stability analysis for relaxing the stability conditions. LMI-based stability
and performance conditions are derived to realize a stable and well-performed
FMB control system. The second approach employs the staircase member-
ship functions (SMF) to approximate the membership functions of the TS
fuzzy model and fuzzy controller for conducting the stability analysis. Using
this approach, the membership functions of the TS fuzzy model and fuzzy
controller are able to help reaching the stability conditions. Consequently, the
LMI-based stability conditions are dedicated to the FMB control system un-
der consideration, which makes the approach to be more suitable for dealing
with practical control problems.
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In Chapter 4, a state-feedback fuzzy controller with time-varying feedback
gains are proposed to strengthen the feedback compensation capability. Based
on a quadratic Lyapunov function, stability conditions in terms of bilinear
matrix inequalities (BMIs) are derived. The BMI conditions demonstrate a
potential to further relax the stability conditions thanks to their nonlinear
nature. However, efficient numerical methods are lacked to look for the so-
lution. In this chapter, in order to make the proposed fuzzy control scheme
feasible, a genetic-algorithm (GA)-based convex programming technique is
developed to search for the solution to the BMI stability conditions. The
proposed fuzzy control scheme offers a mathematical analysis platform that
extends the LMI-based analysis approach in Chapter 2 to BMI-based ones
for the further relaxation of stability conditions.

In Chapter 5, a parameter-dependent Lyapunov function (PDLF) is em-
ployed to investigate the system stability of the FMB control systems. Com-
pared with the quadratic Lyapunov function, which is a kind of parameter-
independent Lyapunov function (PILF), the PDLF is a nonlinear function
that facilitates the stability analysis in different operating regions governed
by the membership functions. The results show that the PDLF offers a nice
property for the relaxation of stability conditions in some cases.

In Chapter 6, a regional switching fuzzy controller is proposed. The fuzzy
controllers described in Chapter 2 to Chapter 5 are for nonlinear plants work-
ing in full operating region. As the nonlinear plant demonstrates stronger non-
linearity when it works at the full operating region than the sub-operating
region, the idea of regional switching control is motivated. The full operating
region is divided into a number of sub-operating regions. Corresponding to
each sub-operating region, a regional fuzzy controller is designed. As the non-
linearity of the sub-operating regions is relatively weak, it is more likely to
come up with stable regional fuzzy controllers than a fuzzy controller for the
full operating region. According to the working conditions, the correspond-
ing regional fuzzy controller is employed to control the nonlinear plant. On
investigating the system stability, the regional information of the operating
domain is employed for the relaxation of stability conditions.

In Chapter 7, a fuzzy combination control technique is employed to com-
bine the state-feedback fuzzy controller and switching controller under the
consideration of the system stability. A local and global fuzzy models are
proposed to represent the nonlinear plant operating in local and full operat-
ing domains, respectively. A local fuzzy controller and global switching fuzzy
controller are then proposed to stabilize the nonlinear plant based on the lo-
cal and global fuzzy models. The nice properties of both types of controllers
are integrated by fuzzy logic to offer an effective control scheme. It forms a
theoretical background to support further research on fuzzy combination of
various types of controllers.

In Chapter 8, the system stability of time-delay FMB control systems
with system states subject to time delay is considered. Time delay is one
of the causes for system instability that can be found in most domestic and
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industrial applications. Time-delay independent/dependent analysis
approaches are adopted to investigate the system stability. It offers a sys-
tematic approach to study the nonlinear systems with time delay under the
consideration of the system stability. LMI-based stability conditions for both
analysis approaches are given.

In Chapter 9, the model reference tracking control for sampled-data FMB
control systems is considered. A sampled-data fuzzy controller is proposed to
drive the system states of the nonlinear plant to following those of a stable
reference model. As the sampled-data fuzzy controller can be implemented
by a microprocessor or a digital computer that is available at low cost, the
implementation cost and time can be reduced. However, due to the zero-
order-hold unit, control signal is kept constant during the sampling period.
It causes discontinuity introduced by the sampling activity that complicates
the system dynamics and thus makes the analysis difficult. A Lyapunov-
based analysis approach is proposed to handle the discontinuity under the
consideration of system stability. The tracking performance is guaranteed by
applying the H∞ control theory.

From Chapter 2 to Chapter 9, the system stability analyses reported are
for type-1 FMB control systems only. In Chapter 10, we extend the sta-
bility analysis approach to interval type-2 FMB control systems. By using
the interval type-2 fuzzy logic, the parameter uncertainties of the nonlinear
plant can be captured and the system dynamics can be described with some
simple fuzzy rules. An interval type-2 TS fuzzy model is then proposed to de-
scribe the system dynamics of the nonlinear plant. An interval type-2 fuzzy
controller is proposed to close the feedback loop. Some MFSI and MFSD
matrices are introduced to facilitate the stability analysis and controller syn-
thesis. LMI-based stability conditions are derived to guarantee the stability
of the interval type-2 FMB control system.

Hak-Keung Lam
Frank Hung-Fat Leung
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Chapter 1

Introduction

1.1 Introduction

Inspired by the fuzzy set theory established by Zadeh in 1965, Mamdani
proposed fuzzy controllers to tackle nonlinear systems [86, 87]. Since then,
fuzzy control has become a promising research platform. Despite the lack of a
concrete theoretical basis, many successful applications of fuzzy control were
reported in various areas such as sludge wastewater treatment [115], control of
cement kiln [39], etc. These successes show that fuzzy controllers are capable
of handling ill-defined plants with significant parameter uncertainties. As
pointed out by Mamdani, stability of fuzzy systems is an important issue, and
the remarked disadvantage of fuzzy control is the lack of appropriate tools
for the analysis of controller performance [47]. In the absence of an in-depth
analysis, fuzzy control systems may come with no guarantees of stability,
good robustness and satisfactory performance; even some guidelines or rules-
of-thumb for designing fuzzy controllers may not be available. In view of
these limitations, a lot of research work had been done during the past two
decades.

Fuzzy-model-based (FMB) control [27] is a powerful approach for tack-
ling mathematically ill-defined nonlinear systems. To investigate the system
stability, the Takagi-Sugeno (TS) fuzzy model (which is also known as Takagi-
Sugeno-Kang (TSK) model) [101, 102] was proposed to provide a general and
systematic framework to represent the nonlinear plant as a weighted sum of
some linear sub-systems. Each linear sub-system effectively models the dy-
namics of the nonlinear plant in a local operating domain. As the linear and
nonlinear parts of the nonlinear plant are extracted, the TS fuzzy model ex-
hibits a semi-linear characteristic in favour of doing stability analysis and
controller synthesis. Based on the TS fuzzy model, a fuzzy controller can be
designed to close the feedback loop and form a FBM control system as shown
in Fig.1.1.

There are in general two approaches to obtain the TS fuzzy model. The
first approach is to construct the TS fuzzy model by using some system

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 1–11.
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Fig. 1.1 A block diagram of the FMB control system.

identification algorithms [101, 102] based on the input-output data. This
approach is suitable for nonlinear systems without mathematical models but
with input-output data available. The second approach assumes that the
mathematical model of the nonlinear system is available. The TS-fuzzy model
can be derived from the mathematical model using the concept of sector
nonlinearity or local approximation [110, 122].

This book mainly focuses on the stability analysis of continuous-time FMB
control systems. Various types of FMB control systems such as time-delay
and sampled-data FMB control systems are considered in the latter chap-
ters. Synthesis of various types of fuzzy controllers using LMI (linear matrix
inequality) or BMI (bilinear matrix inequality) approaches are covered. In
this chapter, a review of the previous work is given. Various approaches of
analyzing the stability of FMB control systems are described in the following
sections.

1.2 Review of FMB Control

In this section, some FMB control schemes are briefly reviewed. Figure 1.2
shows a general framework for various FMB control schemes.

Fig. 1.2 A diagram showing various fuzzy control approaches.

1.2.1 FMB Adaptive Control

FMB adaptive control is good at handling nonlinear systems subject to pa-
rameter uncertainties or disturbances which are assumed to be bounded. To



1.2 Review of FMB Control 3

facilitate the stability analysis and controller synthesis, the TS fuzzy model is
employed to represent the nonlinear plant in which the values of the member-
ship grades or system parameters are uncertain or unknown. In some cases,
external disturbances are included in the TS fuzzy model. Based on the TS
fuzzy model, stability analysis and design of an adaptive fuzzy controller
can be carried out. The parameters of the adaptive fuzzy controller are then
updated by some online update laws.

In general, there are two classes of adaptive control schemes, namely in-
direct and direct adaptive control schemes [41]. The block diagrams of these
two adaptive fuzzy control schemes are shown in Fig. 1.3 and Fig. 1.4, respec-
tively. Referring to Fig. 1.3, which shows the indirect adaptive fuzzy control
scheme [95], the adaptive fuzzy controller is characterized by the system pa-
rameters of the TS fuzzy model. As the values of the membership grades or
system parameters are uncertain or unknown, their values are online esti-
mated by a fuzzy estimator with some update laws. The estimated system
parameters are then employed by the fuzzy controller to generate the control
signal for the control process.

Figure 1.4 shows the direct adaptive fuzzy control scheme [50, 77, 132]. It
is assumed that there exists a stable and well-performed FMB control system
formed by the TS fuzzy plant model and an ideal fuzzy controller connected
in a closed loop. Under this assumption, the parameters of the TS fuzzy
model can be written in terms of the parameters of the fuzzy controller; e.g.
the feedback gains. The values of the controller parameters are then online

Fig. 1.3 Indirect adaptive fuzzy control.

Fig. 1.4 Direct adaptive fuzzy control.
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Fig. 1.5 Indirect/Direct fuzzy model reference adaptive control.

estimated with some update laws. The estimated controller parameters are
directly applied to the fuzzy controller to perform the control process.

The indirect/direct adaptive fuzzy control schemes were extended to indi-
rect/direct fuzzy model reference adaptive control (MRAC) schemes [5, 94],
which can be represented by the block diagram in Fig. 1.5. Under this con-
trol scheme, a stable reference model is included in the system. The adaptive
fuzzy controller is designed to drive the system/output states following those
of the reference model. The parameters of the fuzzy controller are online
updated according to the indirect or direct update laws.

1.2.2 State-Feedback FMB Control

On applying the state-feedback FMB control scheme, the fuzzy controller
generates the control signal based on the system states. Referring to Fig.
1.2, there are in general two categories of FMB control schemes that can
be found in the literature, namely fuzzy static/dynamic state-feedback fuzzy
control scheme [15, 17, 24, 40, 45, 48, 76, 81, 82, 97, 105, 112, 122, 125]
and fuzzy observer-based control scheme. The static/dynamic state-feedback
fuzzy control scheme can be further divided into full state-feedback and out-
put feedback fuzzy control schemes.

The FMB static/dynamic state-feedback control system can be depicted by
the block diagram in Fig. 1.1. The state-feedback fuzzy controller is governed
by some fuzzy rules with the consequents being some linear static/dynamic
state-feedback sub-controllers. The firing strength of each rule (grade of mem-
bership) is governed by some membership functions. The state-feedback fuzzy
controller is thus a weighted sum of some linear static/dynamic state-feedback
sub-controllers, where the weight corresponding to each sub-controller is the
grade of membership. In the full state-feedback control scheme, all the sys-
tem states will be used by the state-feedback fuzzy controller to produce the
control signal for the control process. When only the output states of the
system are employed for the control process, it is called the output feedback
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fuzzy control [17, 24, 40, 45, 76]. When a static state-feedback fuzzy control
scheme is considered, the values of the feedback gains are determined and
kept constant during the control process. When a dynamic state-feedback
fuzzy control scheme is considered, a dynamic compensator [76] inside the
fuzzy controller adds dynamics, which is governed by a set of first-order
differential equations, to its output. Unlike the static state-feedback fuzzy
controller, the dynamic state-feedback fuzzy controller makes use of the sys-
tem states and the extra states from the dynamic compensator to realize
the control process. This type of fuzzy controller is good at dealing with the
reference tracking control and disturbance rejection problems. In case the
system states of the nonlinear plant are not measurable, an observer-based
control scheme [3, 14, 16, 33, 85, 105, 112, 118, 119] can be applied. A fuzzy
observer is employed to estimate the system states which will be used by the
fuzzy controller to perform the control process.

1.2.2.1 Stability Analysis of State-Feedback FMB Control
Systems

Lyapunov-based approach is the most popular approach to investigate the
system stability of the FMB control systems. There are different stability
analysis approaches as shown in Fig. 1.6 that can be found in the literature
to investigate the stability of FMB control systems based on the Lyapunov
stability theory. In general, the stability analysis are based on two types of TS
fuzzy models, namely type-1 [101, 102] and type-2 [4, 70, 78] fuzzy models.
In the type-1 TS fuzzy model, the nonlinearity of the plant is described by
type-1 fuzzy sets. Type-2 fuzzy sets [18, 88, 89] are extended from the type-1
fuzzy sets, which are good at handling system uncertainties. Compared to
the type-1 TS fuzzy model, the type-2 TS fuzzy model is able to describe the
system dynamics of the nonlinear plant subject to parameter uncertainties
captured by the type-2 fuzzy sets. The type-2 TS fuzzy model can be regarded
as a model formed by an infinite number of type-1 TS fuzzy models. In this

Fig. 1.6 Stability analysis approaches for state-feedback FMB control systems.
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chapter, we will focus on the type-1 FMB control systems and the type-2
ones will be discussed in Chapter 10.

For type-1 FMB control systems, referring to Fig. 1.6, there are in general
two streams of analysis approaches, namely the membership-function-shape-
independent (MFSI) and membership-function-shape-dependent (MFSD)
analysis approaches based on the Lyapunov stability theory. Under the MFSI
analysis approach, the shapes of the membership functions are not taken into
account in the stability analysis. Once the FMB control system is guaranteed
to be stable by some stability conditions, the stability is not affected by the
shapes of the membership functions.

MFSI Stability Analysis

Under the MFSI analysis approach, parameter-independent and parameter-
dependent Lyapunov functions (PILF and PDLF) can be employed to in-
vestigate the stability of the FMB control system. A PILF is a Lyapunov
function which is independent of the system parameters and/or states. In
[15, 24, 48, 81, 82, 97, 105, 112, 122, 125], a quadratic Lyapunov function
was employed. It was shown in [15, 122] that the FMB control system is
guaranteed to be asymptotically stable if there exists a common solution
to a set of linear matrix inequalities (LMI) [44]-[45], which are regarded as
the stability conditions. It was shown in [122] that the stability conditions
can be relaxed by using the parallel distributed compensation (PDC) design
technique of which the fuzzy controller shares the same premise membership
functions as those of the TS fuzzy model. Under the PDC design, the sta-
bility conditions were further relaxed in [24, 48, 81, 82, 97, 105, 112, 125]
based on the Polya’s theorem. In [108, 111], a sum-of-squares (SOS) analysis
approach was proposed. The TS fuzzy model is modified to a polynomial TS
fuzzy model of which the system and input matrices (which are constant in
the traditional TS fuzzy model) are allowed to be polynomials in terms of the
system states. The polynomials are able to model the nonlinearity more ef-
fectively than some constants. Consequently, the polynomial TS fuzzy model
is able to alleviate some limitations of system modelling suffered from tra-
ditional TS fuzzy models. Unlike the quadratic Lyapunov function used in
[15, 24, 48, 81, 82, 97, 105, 112, 122, 125], which is a polynomial of degree
2 in terms of system states, the Lyapunov function in the SOS analysis ap-
proach depends on a sum of higher-degree monomials of the system states.
The stability of the polynomial FMB control system is guaranteed if there
exists a Lyapunov function which is an SOS.

Under the PDLF approach, a Lyapunov function that depends on the
system parameters is employed for conducting the stability analysis. Re-
ferring to Fig. 1.6, there are two types of Lyapunov functions, namely
fuzzy Lyapunov function (FLF) and piecewise/switching Lyapunov function
(PLF/SLF), found in the literature. A FLF is an average weighted sum of
some local quadratic Lyapunov functions [103], where the weights are the
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grades of membership. The membership functions define the working domain
of the local Lyapunov functions. Hence, the time derivative of the FLF is pos-
sible to be negative (which implies the system stability) even if not all time
derivatives of the local Lyapunov functions are negative. In contrast, the time
derivative of the quadratic Lyapunov function in the PILF approach is re-
quired to be negative for the full working domain. Consequently, the PDLF
analysis approach has the potential to relax the stability conditions. It has
been shown in [19, 36, 67, 96, 103, 107] by simulations that the stability con-
ditions derived based on the FLF are more relaxed than the PILF in some
cases. As the time derivatives of the membership functions are generated in
the stability analysis, in general, the PDLF approach are more complex than
the PILF approach to derive the stability conditions.

Apart from the FLF, PLF/SLF [25, 26, 28, 29, 43, 93] were also proposed to
realize the PDLF approach for the stability analysis of FMB control systems.
PLF/SLF consists of some local Lyapunov functions. On using FLF, the
local Lyapunov functions are smoothly stepped over among themselves. The
transition is governed by the membership functions. On using PLF/SLF,
however, the local Lyapunov functions are switched among themselves and
only one single local Lyapunov function is activated at a time. Owing to
this hard switch property, it is required that the local Lyapunov functions
at the boundaries are continuous to make sure that the PLF/SLF is a valid
Lyapunov function. Some design methodologies for some valid PLFs/SLFs,
which guarantees that the local Lyapunov functions are continuous at the
boundaries, were discussed in [43].

In the aforementioned stability analysis approaches, the stability condi-
tions are in terms of LMIs, which can be solved by some convex programming
techniques. In [28, 58, 61, 69], the stability conditions are cast into bilinear
matrix inequalities (BMIs). However, the solution to BMIs cannot be sim-
ply solved by the convex programming techniques. Considering that some
decision variables for each BMI term are kept constant, the BMI-based sta-
bility conditions become LMI-based ones. Taking advantage of this property,
a genetic-algorithm (GA) based convex programming technique was proposed
in [58, 61, 69] to find the solution to the BMIs.

A brief review for the MFSI stability analysis of FMB control systems is
given in Chapter 2.

MFSD Stability Analysis

The membership-function-shape-dependent (MFSD) analysis approach, un-
like the MFSI analysis approach, is able to bring the information of the
membership functions to the stability analysis. Consequently, as more in-
formation is considered and included in the stability analysis, more relaxed
stability conditions can be obtained as compared to the MFSI analysis ap-
proach. In general, the MFSD stability analysis can be conducted in two
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ways, namely the membership-function-boundary (MFB) and the staircase-
membership-function (SMF) analysis approaches. On applying the MFB
analysis approach, the boundary information of the membership functions
[2, 55, 67, 68, 91, 98, 99], such as the upper bounds of the membership func-
tions and/or their products, is utilized in the stability analysis. By proposing
membership-function inequalities and the S-procedure [6, 23], membership-
function-dependent and independent slack matrix variables can be introduced
to facilitate the stability analysis. In [98, 99], stability analysis under the PDC
design that the TS fuzzy model and fuzzy controller share the same premise
membership was conducted. In [2, 55, 67, 68], FMB control systems under
the non-PDC design were considered that the fuzzy controller does not share
the membership functions of the TS fuzzy model.

On performing the MFB analysis, only the boundary information of the
membership functions is considered. In order to bring more information into
the stability analysis, some sample points of the membership functions (which
are approximated by some staircase membership functions) are taken into ac-
count in the SMF analysis approach. In this approach, the membership func-
tions of both the fuzzy model and the fuzzy controller are able to be absorbed
into the stability conditions. When the step size tends to zero, the staircase
membership functions tends to the original ones. Under the MFB analysis
approach, if a FMB control system is guaranteed to be stable for some given
membership functions, it is also stable for any shapes of membership func-
tions providing the same boundary information. The SMF analysis approach,
when the step size of the staircase membership functions is sufficiently small,
approximately deals with the specified membership functions (characterized
by the staircase membership functions) considered in the stability analysis.
Consequently, it has a potential to further relax the stability conditions by
considering a specific FMB control system as compared with the MFSI and
MFB analysis approaches.

The MFSD stability analysis of FMB control systems is discussed in
Chapter 3. In the first part of Chapter 3, the MFB information is employed
to facilitate the analysis for the FMB control systems subject to imperfectly
matched membership functions. Then, in the second part of Chapter 3, the
SMF approach is employed to investigate the system stability. In Chapter 4,
a time-varying state-feedback fuzzy controller is proposed. BMI-based sta-
bility conditions are derived to guarantee the system stability. In Chapter 5,
the stability of the FMB control systems based on a PDLF is investigated.
In Chapter 10, the system stability of interval type-2 (IT2) FMB control
systems is investigated based on the MFSD stability analysis approach.

1.2.3 Switching Fuzzy Control

In switching FMB control systems, the fuzzy controller is designed based
on the TS fuzzy model, and it consists of some switching components. The
switching fuzzy controller is good at handling nonlinear plants with parameter
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uncertainties with known bounds. The boundary information of the parame-
ter uncertainties offers important information for the design of the switching
controller. By switching between the lower and upper bounds according to
some switching rules derived under the consideration of system stability, the
equivalent magnitudes of the parameter uncertainties can be obtained and
compensated. However, due to the existence of the switching components in
the systems, the control signals are high-frequency switching signals which
cause undesired chattering effect [100] in the system output. The chattering
effect can be alleviated by replacing the switching function with a saturation
function. However, it may cause some finite steady-state error in the system
output.

Referring to Fig. 1.2, in general, there are three types of switching FMB
control approaches found in the literature. The first type of switching fuzzy
controller is developed based on the sliding mode control theory [100] and
a TS fuzzy model with unknown membership functions subject to unknown
system parameters. A switching fuzzy controller with switching membership
functions was then developed [57, 63, 65]. The second type of switching fuzzy
controller is realized as a fuzzy combined switching fuzzy controller that
softly switched among some controllers. In [52–54], a fuzzy model consisting
of a local and a global TS fuzzy model was proposed. When the system is
operating globally, a switching/sliding-mode controller is employed to drive
the system states towards the origin. Once the system states are near the
local operating domain, a local state-feedback fuzzy controller gradually re-
place the switching/sliding-mode controller. In the local operating region,
the local state-feedback fuzzy controller determined by some fuzzy rules will
dominate the control process. Consequently, a good transient response can
be ensured by the switching/sliding-mode controller and the chattering ef-
fect can be eliminated by employing the local state-feedback fuzzy controller.
The third type of switching fuzzy controller is designed based on a switching
fuzzy model [21, 22, 106, 128]. The full operating domain is divided into some
operating sub-domains. A local TS fuzzy model is then constructed for each
operating sub-domain. Corresponding to each local TS fuzzy model, a local
fuzzy controller is designed. When the switching FMB control system is work-
ing in one operating sub-domain, the corresponding local fuzzy controller is
employed for the control process.

The switching FMB control approach is covered in Chapter 6 that the
regional information of membership functions is employed to facilitate the
stability analysis. The fuzzy combined fuzzy controller is discussed in
Chapter 7.

1.2.4 Time-Delay Fuzzy Control

A time-delay nonlinear system is a dynamic system that depends on both the
current and time-delayed system states. The time delay can be constant or
time varying. To investigate the system stability of time-delay FMB control
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systems, two approaches can be found in the literature, namely the delay-
independent and delay-dependent approaches. Delay-independent stability
conditions for time-delay fuzzy control systems were derived in [7, 8, 124]
based on the Lyapunov-Krasovskii or Lyapunov-Razumikhin approaches. In
the delay-independent approach, the stability conditions are not related to
the time-delay information. Once the time-delay fuzzy control system is
guaranteed to be stable, it is stable for any value of time delay. Hence,
the delay-independent stability conditions are particularly useful for non-
linear systems subject to unknown or inestimable value of time delay. In
[10–12, 34, 75, 79, 113, 126, 129], delay-dependent stability conditions were
derived based on the Lyapunov-Krasovskii approach. During the stability
analysis, the time-delay information is considered. To deal with the time-
delay information, various inequalities have been proposed. In [7], the Leibniz-
Newton formula was employed to approximate the time-delay system states
with the current system states. To relax the conservativeness of the stabil-
ity analysis, other forms of inequalities were proposed in [127, 133]. These
inequalities have been employed in [10–12, 34, 75, 79, 113, 126, 129] to in-
vestigate the stability of time-delay FMB control systems. It has been shown
in [12, 75, 79, 126, 129] that relaxed inequalities have led to relaxed stability
analysis results. Furthermore, by introducing some slack matrices, the stabil-
ity conditions can be further relaxed. Compared with the delay-independent
approach, the analysis procedure of the delay-dependent approach is more
complicated. However, as the time-delay information is one of the elements
to determine the system stability in the delay-dependent approach, less con-
servative stability conditions may be produced. The delay-dependent stabil-
ity conditions are good for time-delay fuzzy control systems with known or
estimable values of time delay. Consequently, both delay-independent and
delay-dependent stability analysis results have their own advantages for dif-
ferent kinds of the time-delay nonlinear systems.

The time-delay FMB control approach is discussed in Chapter 8. Based on
the time-delay independent/dependent stability analysis approaches, LMI-
based conditions are derived to guarantee the system stability and synthesize
the fuzzy controller.

1.2.5 Sampled-Data Fuzzy Control

A sampled-data FMB control system is shown in Fig. 1.7 It consists of a
continuous-time nonlinear plant and a sampled-data fuzzy controller con-
nected in a closed loop. To realize the control process, the system state vec-
tor x(t) is first sampled by the sampler at every hs seconds. The sampled
state vector is then fed to the discrete-time fuzzy controller to produce the
discrete-time control signal u(tγ). After going through the zero-order-hold
(ZOH) unit, the discrete-time control signal is held constant during the sam-
pling period.



1.2 Review of FMB Control 11

Fig. 1.7 A block diagram of sampled-data FMB control system.

Because of the ZOH and the sampling activity, discontinuities are intro-
duced to the closed-loop control systems. The Lyapunov function for the
continuous-time state-feedback FBM systems cannot be directly applied to
investigate the system stability. Furthermore, as the system states can be
obtained only at the sampling instant, the current system states cannot be
obtained for feedback compensation. In [60], the system stability of sampled-
data FMB control systems was investigated by casting the sampled-data
FMB control system as a time-varying delay FMB control system. By em-
ploying the Lyapunov-Krasovskii functional, LMI stability conditions were
provided to check for the system stability and facilitate the controller syn-
thesis. In [32, 92], a hybrid system approach, in which the fuzzy controller
contains both continuous-time and discrete-time components, was proposed.
In [44, 130, 131], an equivalent jump system was proposed to represent the
dynamics of the sampled-data FMB control systems at the sampling instant.
The system stability is guaranteed if both the sampled-data FMB control
system governing the system dynamics during the sampling period, and the
jump system governing the system dynamics at the sampling instant, are both
stable subject to a common time-varying Lyapunov function. In [9, 72, 73], an
intelligent digital redesign approach, which is to approximate the nonlinear
plant by a discrete-time fuzzy model, was proposed. Based on the discrete-
time fuzzy model, a discrete-time fuzzy controller is then proposed to close
the feedback loop. However, the discretization error may become a source to
causing system instability.

The stability of sampled-data FMB control systems is investigated in
Chapter 9. LMI-based conditions are derived to guarantee the system sta-
bility and synthesize the sampled-data controller.





Chapter 2

Stability and Performance Conditions for
MFSI State-Feedback FMB Control
Systems

2.1 Introduction

Fuzzy-model-based (FMB) control approach [27] offers a systematic and ef-
fective way to handle the nonlinear control problems. With the powerful TS
fuzzy model [101, 102], a nonlinear system can be generally represented as
a weighted sum of some local linear systems. The TS fuzzy model provides
a systematic and general framework that effectively separates the linear and
nonlinear dynamics of the nonlinear plant. This semi-linear property of the
TS fuzzy model allows some linear analysis and control approaches to be
applied to facilitate the stability analysis and controller synthesis.

Based on the TS fuzzy model, a fuzzy controller [109] was proposed to close
the feedback loop to form a FMB control system. The Lyapunov stability the-
ory provides one of the mathematical tools to investigate the stability of the
FMB control systems. It was shown in [15, 109] that the FMB control system
is guaranteed to be asymptotically stable if a set of linear matrix inequalities
(LMIs) [6] are satisfied. The solution to the LMIs can be found numerically by
using convex programming techniques. As the stability analysis in [15, 109]
did not consider the membership functions of both the TS fuzzy model and
the fuzzy controller, the stability conditions are very conservative. Neverthe-
less, there is not much restriction on the design of membership functions of
the fuzzy controller. As a result, the implementation cost of the fuzzy con-
troller can be reduced by using some simple membership functions. To relax
the stability conditions, a parallel compensation distribution (PDC) design
approach was proposed [122] in which the TS fuzzy model and the fuzzy con-
troller share the same membership functions. Although the conservativeness
of the stability analysis can be reduced, the structural complexity of the fuzzy
controller may be increased when the membership functions of the TS fuzzy
model are complicated. Further relaxed stability conditions were achieved in
[24, 48, 81, 82, 97, 105, 112, 125].
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In this book, the stability conditions in [24, 48, 81, 82, 97, 105, 112, 122,
125] are classified as membership-function-shape-independent (MFSI) ones
as the stability analysis does not depend on the shapes of the membership
functions. The MFSI stability conditions can be applied to FMB control sys-
tems with membership functions of any shape. However, it was revealed in
[2, 55, 67, 98, 99] that the shape information of the membership functions
play an import role for the relaxation of stability conditions. By bringing
the membership function information to the analysis, the stability condi-
tions applied only to the FMB control systems with some specified shapes of
membership functions. Yet, thanks to the additional information, the result-
ing membership-function-shape-dependent (MFSD) stability conditions are
more relaxed.

This chapter introduces the fundamental concepts and properties of the TS
fuzzy model and fuzzy controller. Some developed LMI-based stability and
performance conditions, which guarantee the system stability and perfor-
mance of the MFSI state-feedback FMB control systems, are then presented.

2.2 TS Fuzzy Model

The TS fuzzy model offers a fixed framework to represent nonlinear systems
with a number of linguistic rules. The system dynamics of a nonlinear system
can be expressed as a weighted average of linear sub-systems. The linear and
nonlinear characteristics of the nonlinear plant are extracted and expressed
as the linear sub-systems and nonlinear weights, respectively. Consequently,
the TS fuzzy model exhibits a favourable semi-linear property that enables
some linear analysis and design methods to be applied for carrying out system
analysis.

Let p be the number of fuzzy rules describing the nonlinear plant. The i-th
rule is of the following format:

Rule i: IF f1(x(t)) is M i
1 AND · · · AND fΨ(x(t)) is M i

Ψ

THEN ẋ(t) = Aix(t) + Biu(t) (2.1)

where M i
α is a fuzzy set of rule i corresponding to the function fα(x(t)),

α = 1, 2, · · · , Ψ ; i = 1, 2, · · · , p; Ψ is a positive integer; x(t) ∈ �n is the
system state vector; Ai ∈ �n×n and Bi ∈ �n×m are known system and input
matrices, respectively; u(t) ∈ �m is the input vector. The system dynamics
is described by the following equation:

ẋ(t) =
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (2.2)

where
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wi(x(t)) ≥ 0 ∀ i,

p∑

i=1

wi(x(t)) = 1, (2.3)

wi(x(t)) =

Ψ∏

l=1

μMi
l
(fl(x(t)))

p∑

k=1

Ψ∏

l=1

μMk
l
(fl(x(t)))

∀ i, (2.4)

wi(x(t)), i = 1, 2, · · · , p, are the normalized grades of membership function,
μMi

l
(fl(x(t))), l = 1, 2, · · · , Ψ , are the membership functions corresponding

to the fuzzy set M i
l .

In general, there are two methods to obtain the TS fuzzy model for a
nonlinear plant.

1. The TS fuzzy model can be obtained using the system identification
algorithms [49, 101, 102] based on given input-output data pairs.

2. The TS fuzzy model can be obtained by directly deriving from the mathe-
matical equations of the nonlinear plants based on the sector nonlinearity
technique [109, 122].

Remark 2.1. For the second method, the grades of the membership can be
uncertain if they are in terms of uncertain system parameters. As a result, a
nonlinear plant subject to parameter uncertainties can be represented by a
TS fuzzy model with uncertain grades of membership.

2.3 State-Feedback Fuzzy Controller

In the fuzzy control literature, the most popular fuzzy controller is the state-
feedback fuzzy controller, which is called the fuzzy controller hereafter. The
fuzzy controller, which shares a similar structure of the TS fuzzy model, is
a weighted sum of some linear state-feedback sub-controllers. The control
action is described by some linguistic rules.

Let c be the number of fuzzy rules describing the fuzzy controller, the j-th
rule is of the following format:

Rule j: IF g1(x(t)) is N j
1 AND · · · AND gΩ(x(t)) is N j

Ω

THEN u(t) = Gjx(t) (2.5)

where N j
β is a fuzzy set of rule j corresponding to the function gβ(x(t)), β =

1, 2, · · · , Ω ; j = 1, 2, · · · , c; Ω is a positive integer; Gj ∈ �m×n, j = 1, 2,
· · · , c, are the constant feedback gains to be determined. The fuzzy controller
is defined as follows,
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u(t) =
c∑

j=1

mj(x(t))Gjx(t) (2.6)

where

mj(x(t)) ≥ 0 ∀ j,

c∑

j=1

mj(x(t)) = 1, (2.7)

mj(x(t)) =

Ω∏

l=1

μNj
l
(gl(x(t)))

c∑

k=1

Ω∏

l=1

μNk
l
(gl(x(t)))

∀ j, (2.8)

mj(x(t)), j = 1, 2, · · · , c, are the normalized grades of membership,
μNj

l
(gl(x(t))), l = 1, 2, · · · , Ω , are the membership functions

corresponding to the fuzzy set N j
l .

2.4 FMB Control Systems

An FMB control system consists of nonlinear plant represented by the TS
fuzzy model (2.2) and the fuzzy controller (2.6) connected in a closed loop.
Throughout this book, from (2.3) and (2.7), the following property will be
used during the system analysis.

p∑

i=1

wi(x(t)) =
c∑

j=1

mj(x(t)) =
p∑

i=1

c∑

j=1

wi(x(t))mj(x(t)) = 1 (2.9)

From (2.2), (2.6) and (2.9), the FMB control system is obtained as follows.

ẋ(t) =
p∑

i=1

wi(x(t))
(
Aix(t) + Bi

c∑

j=1

mj(x(t))Gjx(t)
)

=
p∑

i=1

c∑

j=1

wi(x(t))mj(x(t))(Ai + BiGj)x(t) (2.10)

2.5 LMI-Based MFSI Stability Conditions

It was reported in [15, 122] that the FMB control system of (2.10) is asymp-
totically stable if the LMI-based MFSI stability conditions in the following
theorems are satisfied.

Theorem 2.1. [15, 122]: The FMB control system (2.10), formed by the
nonlinear plant represented by the fuzzy model (2.2) and the fuzzy controller
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(2.6) connected in a closed loop, is asymptotically stable if there exist matrices
Nj ∈ �m×n, j = 1, 2, · · · , c and X = XT ∈ �n×n such that the following
LMIs hold:

X > 0;

XAT
i + AiX + NT

j BT
i + BiNj < 0 ∀ i, j;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 2.2. Theorem 2.1 offers a great deal of design flexibility to the
fuzzy controller as the membership functions can be freely designed. This
favourable property leads to a simple controller structure which may lower
the computational demand and implementation cost. Furthermore, the fuzzy
controller designed based on Theorem 2.1 exhibits an inherent robustness
property. As the stability conditions are not related to the membership func-
tions of both the TS fuzzy model and the fuzzy controller, the fuzzy controller
can stabilize the nonlinear plant subject to parameter uncertainties which are
embedded in the membership functions of the TS fuzzy model. However, one
drawback of Theorem 2.1 is that it often leads to conservative stability result.
Hence, it is suggested to design the fuzzy controller using Theorem 2.1 as a
first trial to take advantage of the design flexibility and robustness property.
If the design fails, other relaxed stability conditions can then be applied.

In the following, the stability conditions based on the design criterion that
the TS fuzzy model and fuzzy controller share the same premise membership
functions, i.e., c = p and mi(x(t)) = wi(x(t)), i = 1, 2, · · · , p, are presented.
This design criterion, generally known as the PDC design, leads to relaxed
stability conditions as the membership functions are taken into account in the
stability analysis. However, the sharing of premise membership functions will
lead to a complicated controller structure when the membership functions of
the TS fuzzy model is complicated.

Remark 2.3. Throughout this book, the design criterion that the TS fuzzy
model and fuzzy controller share the same premises, i.e. c = p and mi(x(t)) =
wi(x(t)), i = 1, 2, · · · , p, is referred to as the PDC design. Otherwise, it is
referred to as the non-PDC design.

In [24, 48, 81, 82, 97, 105, 112, 122, 125], the stability analysis based on
the PDC design approach was proposed. Different levels of relaxed stability
conditions were derived based on Polya’s theorem. Some published stability
analysis results are given below.

Theorem 2.2. [105, 122]: The FMB control system (2.10), formed by the
nonlinear plant represented by the fuzzy model (2.2) and the fuzzy controller
(2.6) under the PDC design technique, i.e., with c = p and mi(x(t)) =
wi(x(t)) for all i, connected in a closed loop, is asymptotically stable if there
exist matrices Nj ∈ �m×n, j = 1, 2, · · · , p, and X = XT ∈ �n×n such that
the following LMIs hold:
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X > 0;

XAT
i + AiX + NT

i BT
i + BiNi < 0 ∀ i;

XAT
i +AiX+NT

j BT
i +BiNj +XAT

j +AjX+NT
i BT

j +BjNi ≤ 0 ∀ j, i < j;

and the feedback gains are designed as Gj = NjX−1 for all j.

Theorem 2.3. [82]: The FMB control system (2.10), formed by the nonlin-
ear plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6)
under the PDC design technique, i.e., with c = p and mi(x(t)) = wi(x(t)) for
all i connected in a closed loop, is asymptotically stable if there exist matrices
Nj ∈ �m×n, X = XT ∈ �n×n and Xij = XT

ji ∈ �n×n, i, j = 1, 2, · · · , p
such that the following LMIs hold:

X > 0;

XAT
i + AiX + NT

i BT
i + BiNi < Xii ∀ i;

XAT
i + AiX + NT

j BT
i + BiNj + XAT

j + AjX

+ NT
i BT

j + BjNi ≤ Xij + XT
ij ∀ j, i < j;

X̃ =

⎡

⎢⎢⎢⎣

X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

...
...

Xp1 Xp2 · · · Xpp

⎤

⎥⎥⎥⎦ < 0;

and the feedback gains are designed as Gj = NjX−1 for all j.

Theorem 2.4. [24]: The FMB control system (2.10), formed by the nonlin-
ear plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6)
under the PDC design technique, i.e., with c = p and mi(x(t)) = wi(x(t)) for
all i connected in a closed loop, is asymptotically stable if there exist matrices
Nj ∈ �m×n, j = 1, 2, · · · , p, X = XT ∈ �n×n, Yiii = YT

iii ∈ �n×n, i =
1, 2, · · · , p, Yiij = YT

jii ∈ �n×n, Yiji = YT
iji ∈ �n×n, i, j = 1, 2, · · · , p;

i �= j, Yijk = YT
kji ∈ �n×n, Yikj = YT

jki ∈ �n×n and Yjik = YT
kij ∈ �n×n,

i = 1, 2, · · · , p-2; j = i+1, i+2, · · · , p-1; k = j+1, j+2, · · · , p such that
the following LMIs hold:

X > 0;

XAT
i + AiX + NT

i BT
i + BiNi < Yiii ∀ i;

2XAT
i + XAT

j + 2AiX + AjX + (Ni + Nj)T BT
i + NT

i BT
j

+ Bi(Ni + Nj) + BjNi ≤ Yiij + Yiji + YT
iij ∀ i, j; j �= i;
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2X(Ai + Aj + Ak)T + (Nj + Nk)T BT
i + (Ni + Nk)T BT

j + (Ni + Nj)TBT
k

+ 2(Ai + Aj + Ak)X + Bi(Nj + Nk) + Bj(Ni + Nk) + Bk(Ni + Nj)

≤ Yijk + Yikj + Yjik + YT
ijk + YT

ikj + YT
jik , i = 1, 2, · · · , p − 2;

j = i + 1, 2, · · · , p − 1; i, k = j + 1, 2, · · · , p;

Ỹi =

⎡

⎢⎢⎢⎣

Y1i1 Y1i2 · · · Y1ip

Y2i1 Y2i2 · · · Y2ip

...
...

...
...

Ypi1 Ypi2 · · · Ypip

⎤

⎥⎥⎥⎦
< 0 ∀ i;

where the feedback gains are designed as Gj = NjX−1 for all j.

Remark 2.4. It was shown in [24] that the stability conditions in Theorem
2.2 and Theorem 2.3 are particular cases of those in Theorem 2.4. The anal-
ysis approach in [24] can be generalized by the Polya’s theorem [97]. It was
reported that the stability conditions in [97] covers all stability conditions in
[24, 48, 81, 82, 105, 112, 122, 125].

Denote Iq = {i = (i1, i2, · · · , iq) ∈ N q|1 ≤ ij ≤ p ∀ j = 1, 2, · · · , q}, I+
q =

{i ∈ Iq |ik ≤ ik+1, k = 1, 2, · · · , q − 1} as a subset of Iq,
∑

i∈Iq
wi(x(t)) =∑p

i1=1

∑p
i2=1 · · ·

∑p
iq=1 wi1(x(t))wi2 (x(t)) · · ·wiq (x(t)), and the set of permu-

tations as P (i) ⊂ Iq where i ∈ Iq. The stability conditions for the FMB con-
trol system (2.10) with two-dimensional fuzzy summations based on Polya’s
theorem are given in the theorem below.

Theorem 2.5. [97]: The FMB control system (2.10), formed by the nonlin-
ear plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6)
under the PDC design technique, i.e., with c = p and mi(x(t)) = wi(x(t))
for all i connected in a closed loop, is asymptotically stable if the following
LMIs given in the following h steps are satisfied, where h = 0, 1, 2, · · · ,
hmax = floor

(
d−1
2

)
and d ≥ 2. The dimension of the multi-indices in the

iteration step h is denoted by dh = d − 2h.

1. (Initialization) Choose the degree of the fuzzy summation as d ≥ 2 and set
Qi

[0] = Qi1i2···id
for i ∈ Id and h = 0. Define matrices Qj

[0] = Qj
[0]T ∈

�n×n for j ∈ P (i), i ∈ I+
do

.
2. (Recursive procedure) In the iterative step h, when h < hmax, the following

inequality is included as the LMI condition:

∑

j∈P (i)

Qj
[h] <

1
2

∑

j∈P (i)

(Xj
[h] + Xj

[h]T ) ∀ i ∈ I+
dh

,

and set
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Qk
[h+1] =

⎡

⎢⎢⎢⎢⎢⎣

X[h]
(k,1,1) X[h]

(k,1,2) · · · X[h]
(k,1,p)

X[h]
(k,2,1)

X[h]
(k,2,2)

· · · X[h]
(k,2,p)

...
...

...
...

X[h]
(k,p,1) X[h]

(k,p,2) · · · X[h]
(k,p,p)

⎤

⎥⎥⎥⎥⎥⎦
∀ k ∈ I+

dh−2

where X[h]
(k,id−1,id) = X[h]

(k,id,id−1)

T ∈ �n×n when id−1 = id ∀ k ∈ I+
dh−2,

id−1 = 1, 2, · · · , p. It should be noted that dh+1 = dh − 2.
3. Set h = h + 1. If h < hmax, go to step 2, otherwise, go to next step.
4. (Termination) When dhmax = 1, the stability conditions in Theorem 2.2

are included as the LMI conditions in this theorem. When dhmax = 2, the
stability conditions in Theorem 2.3 are included as the LMI conditions in
this theorem.

Remark 2.5. The stability conditions in Theorem 2.3 and Theorem 2.4 are
special cases of Theorem 2.5 with d = 2 and d = 3, respectively.

Example 2.1. In this simulation example, a 3-rule fuzzy model in the form
of (2.2) is considered and a 3-rule fuzzy controller in the form of (2.6) is
employed to close the feedback loop. The membership functions of the TS
fuzzy model and the fuzzy controller are assumed to be the same and can take
any shapes satisfying the membership function properties (2.3) and (2.7).

The 3-rule TS fuzzy model is chosen as the one in [24] with

A1 =
[

1.59 −7.29
0.01 0

]
, A2 =

[
0.02 −4.64
0.35 0.21

]
, A3 =

[−a −4.33
0 −0.05

]
, B1 =

[
1
0

]
,

B2 =
[

8
0

]
, B3 =

[−b + 6
−1

]
where a and b are constant parameters.

The stability conditions in Theorem 2.1 to Theorem 2.5 (d = 4 for
Theorem 2.5) are employed to check for the stability region characterized
by the system parameters 2 ≤ a ≤ 12 and 2 ≤ b ≤ 12 at the interval of
1. With the help of the MATLAB LMI toolbox, the stability regions given
by different theorems are shown in Fig. 2.1 indicated by different symbols.
An empty point means that no feasible solution is found. It should be noted
that there is no feasible solution found based on the stability conditions in
Theorem 2.1 and Theorem 2.2. It can also be seen from Fig. 2.1 that the
stability conditions in [97] offer the most relaxed result demonstrated by the
largest size of the stability region.

It is shown in this example that the more slack matrices introduced to the
stability conditions, the more relaxed result indicated by a larger stability
region can be obtained. However, the introduction of more slack matrices to
the stability conditions will increase the computational demand on searching
for the solution to the stability conditions.
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Fig. 2.1 Stability regions given by Theorem 2.3 (‘�’), Theorem 2.4 (‘�’ and ‘◦’)
and Theorem 2.5 (‘�’, ‘◦’ and ‘•’).

2.6 LMI-Based Performance Conditions

On tackling control problems, apart from the system stability, the system
performance is an essential issue to be considered. The stability conditions
introduced in Theorem 2.1 to Theorem 2.4 govern the system stability only
but tell nothing about the system performance such as the transient responses
and control requirements. In this section, some LMI-based performance con-
ditions are introduced, which have to be applied simultaneously with the
stability conditions to realize the final design of the fuzzy controller.

Two LMI-based conditions are introduced in the following to constrain the
system states, x(t) and control input, u(t). The system state constraint is to
suppress the energy of the system states such that it satisfies x(t)X−1x(t) ≤
μ2

x where μx is a non-zero scalar. By satisfying this constraint, the energy the
system states will never be beyond the level of μx. Similarly, the constraint
of u(t)T u(t) ≤ μ2

u, where μu is a non-zero scalar, is considered to limit the
control energy. By satisfaction of this constraint, the energy of the control
input will never be beyond the level of μu. Imposing these constraints on the
stability conditions will limit the feasible domain of the solution such that the
feasible solution will satisfy both the stability and performance conditions.
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2.6.1 System State Constraint

Theorem 2.6. [110]: The system state constraint x(t)X−1x(t) ≤ μ2
x, where

μx is a pre-defined non-zero positive scalar, is achieved at all time t ≥ 0 if
there exists a matrix X = XT ∈ �n×n, such that the following LMIs are
satisfied:

X > 0;
[

μ2
x 0T

0 X

]
≥ 0;

2.6.2 Control Input Constraint

Theorem 2.7. [110]: The control input constraint u(t)T u(t) ≤ μ2
u, where μu

is a predefined non-zero positive scalar, is achieved at all time t ≥ 0 if there
exists matrices X = XT ∈ �n×n and Nj ∈ �m×n, j = 1, 2, ..., c, such that
the following LMIs are satisfied:

X > 0;
[
I 0T

0 X

]
≥ 0;

[
X NT

j

Nj μ2
uI

]
≥ 0;

Remark 2.6. The LMI-based system state and control input constraints can
be applied simultaneously.

2.7 Conclusion

The fundamental concepts and properties of the TS fuzzy models and fuzzy
controllers have been presented. An FMB control system which is formed by
a nonlinear plant represented by the TS fuzzy model and a fuzzy controller
connected in a closed loop has been introduced. Some published LMI-based
stability and performance conditions have been introduced that help design
a stable and well-performed MFSI state-feedback FMB control system.



Chapter 3

Stability Analysis of FMB Control
Systems under MFSD Approach

3.1 Introduction

Stability analysis on FMB control systems has been investigated extensively
in the past decades. Flourish stability analysis results have been obtained to
facilitate the design of stable FMB control systems. Some published LMI-
based MFSI stability conditions are presented in Chapter 2 under the PDC
design technique.

The PDC design technique leads to an FMB control system with perfectly
matched premise membership functions of which both the TS fuzzy model
and the fuzzy controller share the same premise membership functions. The
perfectly matched premise membership functions are able to produce less
conservative stability analysis result by grouping the cross terms of the mem-
bership functions. However, in general, there are two main drawbacks com-
ing with the PDC design technique. First, as the fuzzy controller shares the
premise membership functions of the fuzzy model, the design flexibility of
the controller membership functions vanishes. Furthermore, if the member-
ship functions of the TS fuzzy model are complex, the implementation cost of
the fuzzy controller will increase. Second, the membership functions of the TS
fuzzy model must be uncertainty free. Thus, the inherent robustness property
of the fuzzy controller vanishes. This drawback makes the non-PDC design
technique (of which the TS fuzzy model and fuzzy controller do not share the
same premise membership functions) attractive. The non-PDC design tech-
nique can enhance the design flexibility and robustness property of the fuzzy
controller. However, under the non-PDC design technique, the imperfectly
matched membership functions lead to conservative stability analysis results.
Yet, it is possible to widen the applicability of the FMB control approach by
integrating the advantages of the PDC and non-PDC design techniques.

In this chapter, the membership-function-shape-dependent (MFSD) anal-
ysis approach is employed to facilitate the stability analysis and controller
synthesis. The shape information of the membership functions is taken into

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 23–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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consideration in the stability analysis for relaxing the stability conditions.
Under the MFSD analysis, two approaches, namely membership-function-
boundary (MFB) and staircase-membership-function (SMF) approaches, are
considered. The MFB approach considers the lower and upper bounds of the
membership functions in the stability analysis. Through the S-procedure [6],
some slack matrices are introduced to the stability conditions. In order to
bring more information to the stability analysis, the SMF approach approx-
imates the membership functions with the staircase membership functions.
Under this approach, the SMFs are considered in the stability anslysis and
brought to the stability conditions. Consequently, as the SMFs carries much
more information of the nonlinearities of the plant as compared with the MFB
approach, the SMF-based stability conditions are more dedicated to the non-
linear plant, which considers the specified SMFs rather than any shapes. The
MFSD relaxed stability conditions offer an effective tool to achieve a stable
FMB control systems with imperfectly matched membership functions.

3.2 Membership-Function-Boundary Approach

Consider the FMB control system of (2.10), which is formed by a nonlinear
plant represented by a TS fuzzy model (2.2) and a fuzzy controller of (2.6). In
this section, the system stability of the FMB control systems subject to im-
perfectly matched membership functions is investigated using the Lyapunov
stability theory. MFB information is considered for the relaxation of stabil-
ity conditions in terms of LMIs. LMI-based performance conditions are also
derived to govern the system performance.

3.2.1 Stability Analysis

Consider the following quadratic Lyapunov function for investigating the
system stability of the FMB control system of (2.10).

V (t) = x(t)T Px(t) (3.1)

where 0 < P = PT ∈ �n×n.
In the following, for brevity, wi(x(t)) and mj(x(t)) are denoted as wi and

mj , respectively. The property of the membership functions (2.9) is utilized
in the following stability analysis. From (2.10) and (3.1), denoting X = P−1

and z(t) = X−1x(t) and defining the feedback gains of the fuzzy controller
as Gj = NjX−1, where Nj ∈ �m×n, j = 1, 2, · · · , c, we have,
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V̇ (t) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

=
p∑

i=1

c∑

j=1

wimjx(t)T
(
(Ai + BiGj)T P + P(Ai + BiGj)

)
x(t)

=
p∑

i=1

c∑

j=1

wimjz(t)T
(
X(Ai + BiGj)T + (Ai + BiGj)X

)
z(t)

=
p∑

i=1

c∑

j=1

wimjz(t)T Qijz(t) (3.2)

where Qij = AiX + XAT
i + BiNj + NT

j BT
i .

Remark 3.1. Based on the Lyapunov stability theory [100], it can be con-
cluded that the FMB control system (2.10) is asymptotically stable if V (t) >
0 and V̇ (t) < 0 (excluding x(t) = 0) can be achieved. Throughout the stabil-
ity analysis in this book, the primary objective is to obtain some conditions
(stability conditions) such that V (t) > 0 and V̇ (t) < 0 are achieved.

Remark 3.2. Under the MFSI stability analysis approach, it was reported in
[15, 122] that the FMB control system (2.10) is guaranteed to be asymptoti-
cally stable if the stability conditions in Theorem 2.1 are satisfied. Referring
to Theorem 2.1, on satisfying the stability conditions, V (t) > 0 and V̇ (t) < 0
are achieved. As it is only required in Theorem 2.1 that Qij < 0, the mem-
bership functions are not considered in the stability analysis and/or stability
conditions. It is anticipated that the stability conditions in Theorem 2.1 are
very conservative, motivating the investigation of the MFSD stability analysis
approach considered in this chapter.

Under the proposed MFB approach in this section, it is required the fuzzy
model and fuzzy controller share the same number of fuzzy rules, i.e. c = p. To
relax the stability conditions, some slack matrix variables are introduced by
considering the following equations given by the property of the membership
functions.

p∑

i=1

p∑

j=1

wi(wj − mj)Λi =
p∑

i=1

wi(
p∑

j=1

wj −
p∑

j=1

mj)Λi

=
p∑

i=1

wi(1 − 1)Λi

= 0, (3.3)

p∑

i=1

p∑

j=1

wiρjwj(Vij − Vij) = 0 (3.4)
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where 0 < Λi = ΛT
i ∈ �n×n, Vij = VT

ij ∈ �n×n, i, j = 1, 2, · · · , p, are
arbitrary matrices. From (3.2), (3.3) and (3.4), we have,

V̇ (t) =
p∑

i=1

p∑

j=1

wimjz(t)T Qijz(t) +
p∑

i=1

p∑

j=1

wi(wj − mj)z(t)T Λiz(t)

=
p∑

i=1

p∑

j=1

wimjz(t)T Qijz(t)

+
p∑

i=1

p∑

j=1

wi(wj − mj + ρjwj − ρjwj)z(t)T Λiz(t)

=
p∑

i=1

p∑

j=1

wimjz(t)T Qijz(t) +
p∑

i=1

p∑

j=1

wi(wj − ρjwj)z(t)T Λiz(t)

−
p∑

i=1

p∑

j=1

wi(mj − ρjwj)z(t)T Λiz(t)

+
p∑

i=1

c∑

j=1

wiρjwjz(t)T (Vij − Vij)z(t) (3.5)

where the scalars ρj > 0 and δj, j = 1, 2, · · · , p, are designed such that
mj − ρjwj + δj ≥ 0 for all j and x(t) (wj and mj are function of x(t)) [67].
These additional matrices and conditions are introduced to further reduce
the conservativeness of the stability analysis.

From (3.5), we have,
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V̇ (t) =
p∑

i=1

p∑

j=1

z(t)T wi(mj + ρjwj − ρjwj)z(t)Qijz(t)

+
p∑

i=1

p∑

j=1

wi(wj − ρjwj)z(t)T Λiz(t)

−
p∑

i=1

p∑

j=1

wi(mj − ρjwj)z(t)T Λiz(t)

+
p∑

i=1

p∑

j=1

wiρjwjz(t)T Vijz(t) −
p∑

i=1

p∑

j=1

wiρjwjz(t)T Vijz(t)

=
p∑

i=1

p∑

j=1

wiwjz(t)T ρj(Qij − Λi − Vij)z(t)

+
p∑

i=1

p∑

j=1

wi(mj − ρjwj)z(t)T (Qij − Λi)z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T (Λi + ρjVij)z(t)

+
p∑

i=1

p∑

j=1

wi(δj − δj)z(t)T (Qij − Λi)z(t)

=
p∑

i=1

p∑

j=1

wiwjz(t)T
(
ρj(Qij − Λi − Vij) −

p∑

k=1

δk(Qik − Λi)
)
z(t)

+
p∑

i=1

p∑

j=1

wi(mj − ρjwj + δj)z(t)T (Qij − Λi)z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T (Λi + ρjVij)z(t). (3.6)

Consider the following LMIs and mj − ρjwj + δj ≥ 0 for all j and x(t),

Qij − Λi < 0 ∀ i, j (3.7)

From (3.6) and (3.7), we have,
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V̇ (t) ≤
p∑

i=1

p∑

j=1

wiwjz(t)T
(
ρj(Qij − Λi − Vij) −

p∑

k=1

δk(Qik − Λi)
)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T (Λi + ρjVij)z(t)

=
p∑

i=1

w2
i z(t)

T
(
ρi(Qii − Λi − Vii) −

p∑

k=1

δk(Qik − Λi)
)
z(t)

+
p∑

j=1

∑

i<j

wiwjz(t)T
(
ρj(Qij − Λi − Vij) −

p∑

k=1

δk(Qik − Λi)

+ ρi(Qji − Λj − Vji) −
p∑

k=1

δk(Qjk − Λj)
)
z(t)

+
p∑

i=1

w2
i z(t)

T (Λi + ρiVii)z(t)

+
p∑

j=1

∑

i<j

wiwjz(t)T (Λi + ρjVij + Λj + ρiVji)z(t). (3.8)

Introducing matrices Rij = RT
ji ∈ �n×n and Sij = ST

ji ∈ �n×n, i, j = 1, 2,
· · · , p, we consider

Rii > ρi(Qii − Λi − Vii) −
p∑

k=1

δk(Qik − Λi) ∀ i; (3.9)

Rij + RT
ij ≥ ρj(Qij − Λi − Vij) −

p∑

k=1

δk(Qik − Λi)

+ ρi(Qji − Λj − Vji) −
p∑

k=1

δk(Qjk − Λj) ∀ j; i < j; (3.10)

Sii > Λi + ρiVii ∀ i; (3.11)

Sij + ST
ij ≥ Λi + ρjVij + Λj + ρiVji ∀ j; i < j. (3.12)

From (3.8) to (3.12), (3.8) can be written in the folowing compact form.

V̇ (t) ≤ Z(t)T (R + S)Z(t) (3.13)
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whereZ(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦, R =

⎡

⎢⎢⎢⎣

R11 R12 · · · R1p

R21 R22 · · · R2p

...
...

...
...

Rp1 Rp2 · · · Rpp

⎤

⎥⎥⎥⎦ and S =

⎡

⎢⎢⎢⎣

S11 S12 · · · S1p

S21 S22 · · · S2p

...
...

...
...

Sp1 Sp2 · · · Spp

⎤

⎥⎥⎥⎦.

From (3.1) and (3.13), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) imply the asymptotic stability of the
FMB control system (2.10), i.e., x(t) → 0 when time t → ∞, can be achieved
if the stability conditions summarized in the following theorem are satisfied.

Theorem 3.1. The FMB control system (2.10), formed by the nonlinear
plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6) con-
nected in a closed loop, is asymptotically stable if there exist predefined con-
stant scalars ρj and δj, j = 1, 2, · · · , p, satisfying mj(x(t))−ρjwj(x(t))+δj ≥
0 for all j and x(t) and there exist matrices Nj ∈ �m×n, Rij = RT

ji ∈ �n×n,
Sij = ST

ji ∈ �n×n, Vij = VT
ij ∈ �n×n, X = XT ∈ �n×n and Λj = ΛT

j ∈
�n×n such that the following LMIs are satisfied.

X > 0;

LMIs in (3.7); (3.9); (3.10); (3.11); (3.12);

R < 0;

S < 0;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 3.3. Consider the inequalities mj(x(t))−ρjwj(x(t))+δj ≥ 0 for all j
and x(t). It can be seen that the parameters ρj and δj carry the information
of the membership functions. The parameter δj is the upper bound of the
difference of the scaled membership functions by ρj of the TS fuzzy model and
the membership functions of the fuzzy controller. Through the parameters ρj

and δj , the boundary information of the membership functions is brought to
the stability conditions. As a result, the stability conditions in Theorem 3.1
are applicable to FMB control systems with membership functions satisfying
the boundary conditions but not any requirement for the shapes. Various
MFB information can be employed to further relax the stability conditions
[55, 91, 98, 99].

3.2.2 LMI-Based Performance Conditions

Other than the system stability, system performance is an important issue
to be considered in the FMB control systems. To measure the system per-
formance quantitatively, a commonly used scalar performance index [1] J
defined as follows can be employed.
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J =
∫ ∞

0

[
x(t)
u(t)

]T [
J1 0
0 J2

] [
x(t)
u(t)

]
dt (3.14)

where J1 ≥ 0 and J2 ≥ 0 are predefined weighting matrices governing the
contribution of the system states and control signal to the performance index.
Based on the fuzzy controller (2.6) and the performance index (3.14), we have,

J =
∫ ∞

0

[
x(t)
x(t)

]T [ I 0
0
∑p

j=1 mjGj

]T [
J1 0
0 J2

] [
I 0
0
∑p

k=1 mkGk

] [
x(t)
x(t)

]
dt.

(3.15)

Let the performance index J satisfy the following condition.

J < η

∫ ∞

0

[
x(t)
x(t)

]T [
X−1 0
0 X−1

] [
x(t)
x(t)

]
dt (3.16)

where η is a non-zero positive scalar to attenuate the scalar performance
index J to a prescribed level.

In the following, the LMI-based performance conditions are derived such
that the inequality (3.16) is satisfied. It can be seen that the term on the
right hand side can be regarded as the upper bound of the cost function J .
By satisfying the inequality (3.16) with a smaller value of η, it implies that
a better performance can be achieved as a lower value of J can be achieved.

Combining (3.15) and (3.16), recalling the feedback gains of the fuzzy
controller as Gj = NjX−1, we have,

∫ ∞

0

[
x(t)
x(t)

]T [X−1 0
0 X−1

]
W
[
X−1 0
0 X−1

] [
x(t)
x(t)

]
< 0 (3.17)

where

W =
[
X 0
0
∑p

j=1 mjNj

]T [
J1 0
0 J2

] [
X 0
0
∑p

k=1 mjNk

]
− η

[
X 0
0 X

]
. (3.18)

To make sure that the inequality (3.17) is satisfied, it is required that W < 0.
It should be noted that the inequality W < 0 cannot be formulated as an
LMI problem. By Schur complement [120], W < 0 is equivalent to the follow
inequality.

W =
p∑

j=1

mjWj < 0 (3.19)
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where Wj =

⎡

⎢⎢⎣

−ηX 0 X 0
0 −ηX 0 NT

j

X 0 −J−1
1 0

0 Nj 0 −J−1
2

⎤

⎥⎥⎦, j = 1, 2, · · · , p. The LMIs of Wj <

0 for all j (guaranteeing W < 0) are regarded as the LMI-based performance
conditions which have to be applied with the stability conditions in Theorem
3.1 to realize the system performance with pre-defined weighting matrices J1

and J2.

Theorem 3.2. The system performance of a stable FMB control system
(2.10), formed by the nonlinear plant represented by the fuzzy model (2.2)
and the fuzzy controller (2.6) connected in a closed loop, satisfies the per-
formance index J defined in (3.16) characterized by pre-defined weighting
matrices J1 ≥ 0 and J2 ≥ 0 that is attenuated to the level η > 0 if any
stability conditions reported in this book and the LMIs Wj < 0 for all j are
satisfied.

Remark 3.4. It can be seen from (3.19) that the information of the mem-
bership functions is not considered to achieve the performance conditions in
Theorem 3.2. By following the MFSD analysis approach, the performance
conditions can be relaxed by considering the information of the membership
functions.

Remark 3.5. There are different approaches reported in some published work
to considering the system performance. For example, a decay-rate design
was given in [105] that the decaying rate of the Lyapunov function can be
controlled. A faster decaying rate will offer a better performed FMB control
system in terms of faster transient response. Some LMI-based constraints
[105] introduced in Section 2.6 can be imposed on the feasible set of the
solutions to the stability conditions to restrain the system state energy and/or
control power. A guaranteed-cost approach [108] can also be applied that,
similar to the decay-rate design, the Lyapunov function is bounded by a cost
function related to the system states and control signal. These approaches
can also be applied to achieve the system performance.

Example 3.1. Consider the same FMB control system in Example 2.1. Under
the MFSD approach, we have to know the membership functions to obtain
the parameters ρj and δj . The membership functions for the TS fuzzy model
and fuzzy controller, which are shown graphically in Fig. 3.1, are defined as
follows

w1(x1(t)) = μM1
1
(x1(t)) =

⎧
⎪⎨

⎪⎩

1 for x1(t) < −10
−x1(t)+2

12 for − 10 ≤ x1(t) ≤ 2
0 for x1(t) > 2

,

w2(x1(t)) = μM2
1
(x1(t)) = 1 − w1(x1(t)) − w3(x1(t)),
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Fig. 3.1 Membership functions of the fuzzy model: w1(x1(t)) (left triangle in solid
line), w2(x1(t)) (trapezoid in dotted line) and w3(x1(t)) (right triangle in dash line).
Membership functions of the fuzzy controller: m1(x1(t)) (left z shape in solid line),
m2(x1(t)) (bell shape in dotted line) and m3(x1(t)) (right s shape in dash line).

w3(x1(t)) = μM3
1
(x1(t)) =

⎧
⎪⎨

⎪⎩

0 for x1(t) < −2
x1(t)+2

12 for − 2 ≤ x1(t) ≤ 10
1 for x1(t) > 10

,

m1(x1(t)) = μN1
1
(x1(t)) = 1 − 1

1+e−(x1(t)+4) , m2(x1(t)) = μN2
1
(x1(t)) = 1 −

m1(x1(t)) − m3(x1(t)), m3(x1(t)) = μN3
1
(x1(t)) = 1

1+e−(x1(t)−4) .

Based on the chosen membership functions, it can be seen that the inequal-
ities of mj(x1(t)) − ρjwj(x1(t)) + δj ≥ 0 for all j and x1(t) are satisfied
for ρ1 = ρ2 = ρ3 = 1, δ1 = 6.9182 × 10−2, δ2 = 7.4195 × 10−2 and
δ3 = 6.9182×10−2. By using the MATLAB LMI toolbox, the stability region
for the system parameters of the TS fuzzy model in the ranges 2 ≤ a ≤ 9
and −8 ≤ b ≤ −4.5 is shown in Fig. 3.2, indicated by ‘◦’.

It should be noted that the stability conditions in Theorem 2.2 to Theorem
2.5 under the PDC design technique, which require that both the TS fuzzy
model and the fuzzy controller share the same premise membership functions,
cannot be applied in this example.
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Fig. 3.2 Stability region indicated by ‘◦’ given by the stability conditions in The-
orem 3.1.

Example 3.2. An inverted pendulum on a cart [84] is employed to illustrate
the design flexibility of the proposed fuzzy controller. In this example, mem-
bership functions of the fuzzy controller are designed different from those
of the TS fuzzy model. Simple membership functions with lower structural
complexity are employed to lower the implementation cost. Under this design,
the published stability conditions in Theorem 2.2 to Theorem 2.5 for perfect
premise matching cannot be applied to guarantee the system stability. The
proposed LMI-based stability conditions in Theorem 3.1 and the performance
conditions in Theorem 3.2 show an effective approach to help design a stable
and well-performed FMB control system under imperfect premise matching
in this simulation example.

Step I) The dynamic equations of the inverted pendulum on a cart [84] is
given by,

ẋ1(t) = x2(t) (3.20)

ẋ2(t) =
h1(x(t))

(Mc + mp)(J0 + mpl2) − m2
pl

2 cos2(x1(t))
(3.21)

ẋ3(t) = x4(t) (3.22)

ẋ4(t) =
h2(x(t))

(Mc + mp)(J0 + mpl2) − m2
pl

2 cos2(x1(t))
(3.23)
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where x1(t) and x2(t) denote the angular displacement (rad) and the angu-
lar velocity (rad/s) of the pendulum from vertical, respectively, x3(t) and
x4(t) denote the displacement (m) and the velocity (m/s) of the cart, re-
spectively, h1(x(t)) = −F1(Mc +mp)x2(t)−m2

pl
2x2

2(t) sin(x1(t)) cos(x1(t))+
F0mplx4(t) cos(x1(t))+(Mc+mp)mpgl sin(x1(t))−mpl cos(x1(t))u(t), h2(x(t))
= F1mplx2(t) cos(x1(t))+(J0+mpl

2)mplx2(t)2 sin(x1(t))−F0(J0+mpl
2)x4(t)

−m2
pgl2 sin(x1(t)) cos(x1(t)) + (J0 + mpl

2)u(t), g = 9.8 m/s2 is the accelera-
tion due to gravity, mp = 0.22 kg is the mass of the pendulum, Mc = 1.3282kg
is the mass of the cart, l = 0.304m is the length from the center of mass of
the pendulum to the shaft axis, J0 = mpl

2/3 kgm2 is the moment of in-
ertia of the pendulum around the center of mass, F0 = 22.915N/m/s and
F1 = 0.007056 N/rad/s are the friction factors of the cart and the pendulum
respectively, and u(t) is the force (N) applied to the cart. The nonlinear plant
can be represented by a fuzzy model with two fuzzy rules [84]. The i-th rule
is given by,

Rule i: IF f1(x1(t)) is M i
1

THEN ẋ(t) = Aix(t) + Biu(t), i = 1, 2. (3.24)

The system dynamics is described by,

ẋ(t) =
2∑

i=1

wi(Aix(t) + Biu(t)). (3.25)

where
x(t) =

[
x1(t) x2(t) x3(t) x4(t)

]T ;

a1 = (Mc + mp)(J0 + mpl
2) − m2

pl
2;

a2 = (Mc + mp)(J0 + mpl
2) − m2

pl
2 cos2(

π

3
);

A1 =

⎡

⎢⎢⎣

0 1 0 0
(Mc + mp)mpgl/a1 −F1(Mc + mp)/a1 0 F0mpl/a1

0 0 0 1
−m2

pgl2/a1 F1mpl/a1 0 −F0(J0 + mpl
2)/a1

⎤

⎥⎥⎦ ;

A2 =

⎡

⎢⎢⎣

0 1 0 0
3
√

3
2π

(Mc + mp)mpgl/a2 −F1(Mc + mp)/a2 0 F0mpl cos(π
3
)/a2

0 0 0 1
− 3

√
3

2π
m2

pgl2 cos(π
3
)/a1 F1mpl cos(π

3
)/a2 0 −F0(J0 + mpl

2)/a1

⎤

⎥⎥⎦ ;

B1 =

⎡

⎢⎢⎣

0
−mpl/a1

0
(J0 + mpl

2)/a1

⎤

⎥⎥⎦ ;
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B2 =

⎡

⎢⎢⎣

0
−mpl cos(π

3 )/a2

0
(J0 + mpl

2)/a2

⎤

⎥⎥⎦ .

The membership functions are defined as w1(x1(t)) = μM1
1
(x1(t)) =

(
1 −

1
1+e−7(x1(t)−π/6)

)
1

1+e−7(x1(t)+π/6) and w2(x1(t)) = μM2
1
(x1(t)) = 1 − w1(x1(t))

that are shown graphically in Fig. 3.3.

Step II) A 2-rule fuzzy controller is employed to close the feedback loop
to achieve the control objective, i.e. x(t) → 0 as t → ∞. The j-th rule of the
fuzzy controller is given by,

Rule j: IF g1(x1(t)) is N j
1

THEN u(t) = Gjx(t), j = 1, 2. (3.26)

The fuzzy controller is defined by,

u(t) =
2∑

j=1

miGjx(t). (3.27)

The membership functions are designed as m1(x1(t)) = μN1
1
(x1(t)) =

0.925e
− x1(t)

2×1.52 and m2(x1(t)) = μN2
1
(x1(t)) = 1−m1(x1(t)), which are shown

graphically in Fig. 3.3.
Step III) The inequalities of mj(x1(t)) − ρjwj(x1(t)) + δj ≥ 0 for all j

and x1(t) are satisfied for ρ1 = ρ2 = 0.82; δ1 = 6.6581 × 10−2 and δ2 =
4.0061 × 10−2. By solving the stability conditions in Theorem 3.1 and the
LMI-based performance conditions in Theorem 3.2, i.e., Wj < 0 for all j using
the MATLAB LMI toolbox, the feedback gains of three fuzzy controllers,
referred to as fuzzy controllers 1 to 3, are obtained and listed in Table 3.1.

The fuzzy controllers 1 to 3 are employed to stabilize the inverted pen-
dulum described in (3.20) to (3.23). The system state responses and control
signals under the initial system state condition

[
5π
12

0 0 0
]

are shown in Fig.
3.4 and Fig. 3.5, respectively. It can be seen from this figure that fuzzy con-
trollers 1 to 3 are able to stabilize the inverted pendulum. The fuzzy controller
1 offers the fastest transient response at the cost of a large control signal. With
the LMI-based performance conditions, J2 is employed to constrain the con-
trol signals of fuzzy controllers 2 and 3 during the design. Referring to Fig.
3.5, the magnitudes of the control signals offered by the fuzzy controllers 2
and 3 are smaller than that of the fuzzy controller 1. Furthermore, comparing

fuzzy controllers 2 and 3, J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤

⎥⎥⎦ of fuzzy controller 3 has a heavier
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Fig. 3.3 Membership functions of the TS fuzzy model and fuzzy controller in
Example 3.2
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Table 3.1 Feedback gains for fuzzy controllers 1 to 3 in Example 3.2.

Feedback Gains η, J1 and J2

FC† 1 G1 =
[
1495.8418 102.2374 11.3099 87.3309

]
NA††

G2 =
[
1993.1825 134.8019 14.9267 107.8680

]

FC† 2 G1 =
[
330.4341 31.4571 0.1883 36.0413

]
η = 0.1

G2 =
[
615.4812 46.3514 0.1960 36.6065

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

FC† 3 G1 =
[
426.3628 39.1925 0.7414 43.2931

]
η = 0.1

G2 =
[
781.1192 59.2399 0.8995 47.7560

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤

⎥⎥⎦

† FC stands for Fuzzy Controller.
†† LMI performance conditions are not considered.

weight on x3(t) in the performance index to suppress its magnitude. Conse-
quently, the system state response of x3(t) with the fuzzy controller 3 offers
better system performance than that with the fuzzy controller 2 in terms of
transient response and settling time.

For comparison purposes, the fuzzy controller (3.27) is designed based on
the decay-rate design approach [105] such that the performance condition
of V̇ (t) ≤ −2αV (t), where α > 0, is achieved. This performance condition
is incorporated into Theorem 3.1 and replaces the proposed LMI-based per-
formance conditions in Theorem 3.2. Choosing the value of α arbitrarily as
0.01, 0.1 and 0.5, and with the MATLAB LMI toolbox, we obtain 3 decay-
rate fuzzy controllers 1 to 3, respectively with the feedback gains shown in
Table 3.2.

The system responses of the control signals offered by the decay-rate fuzzy
controllers 1 to 3 are shown in Fig. 3.6 and Fig. 3.7, respectively. All decay-
rate fuzzy controllers are able to stabilize the inverted pendulum. A larger
value of α leads to better system performance with larger values of feedback
gains. Comparing to the simulation results in Fig. 3.4 and Fig. 3.5, the decay-
rate fuzzy controllers 1 to 3 can only improve the system responses in terms
of a faster rising time and settling time at the cost of a large magnitude of
control signal. However, unlike the proposed LMI-based performance condi-
tions, the decay-rate performance condition is for tackling the overall system
performance without specifically considering the system states or control sig-
nals. With the LMI-based performance conditions in Theorem 3.2, a more
flexible way for realizing the system performance by specifying the weighting
to each system state and control signal using J1 and J2 can be offered.
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Fig. 3.4 System state responses and control signals of the inverted pendulum with
fuzzy controllers 1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 3.4 (continued)
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Fig. 3.4 (continued)
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Fig. 3.4 (continued)
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Fig. 3.5 Control signals of the inverted pendulum with fuzzy controllers 1 (solid
lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 3.6 System state responses and control signals of the inverted pendulum with
decay-rate fuzzy controllers 1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 3.6 (continued)
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Fig. 3.6 (continued)
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Fig. 3.6 (continued)
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Fig. 3.7 Control signals of the inverted pendulum with decay-rate fuzzy controllers
1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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Table 3.2 Feedback gains for decay-rate fuzzy controllers 1 to 3 in Example 3.2.

Feedback Gains α

DRFC† 1 G1 =
[
1985.1149 121.5018 38.6393 91.9798

]
α = 0.01

G2 =
[
2007.1015 122.7442 39.0031 92.6289

]

DRFC† 2 G1 =
[
2828.6308 179.1381 102.4027 138.0461

]
α = 0.1

G2 =
[
2863.6978 181.2361 103.5343 139.3103

]

DRFC† 3 G1 =
[
3494.2023 224.6229 220.5881 179.6569

]
α = 0.5

G2 =
[
3537.8243 227.3355 223.1618 181.4586

]

† DRFC stands for Decay-Rate Fuzzy Controller.

3.3 Staircase-Membership-Function Approach

The Lyapunov stability theory is one of the mathematical tools to investigate
the system stability of FMB control systems. It was shown in [15, 122] that the
FMB control system is guaranteed to be asymptotically stable if the solution
to a set of LMIs can be found numerically by using some convex programming
techniques. Considering the quadratic Lyapunov function candidate (3.1) and
its time derivative (3.2), the system stability of the FMB control system is
guaranteed by the satisfaction of

∑p
i=1

∑p
j=1 wimjQij < 0. It was reported

in [15, 122] that the sufficient stability conditions are Qij < 0 for all i and j.
When the PDC design technique is applied, the membership functions

are designed such that mi = wi for all i. The stability conditions become∑p
i=1

∑p
j=1 wiwjQij = 1

2

∑p
i=1

∑p
j=1 wiwj(Qij + Qji) < 0 by grouping the

common cross terms of wiwj . The sufficient stability conditions become
Qij + Qji < 0. Comparatively, these sufficient stability conditions are more
relaxed than the previous ones as the property of the membership functions
is considered. However, it can be seen that if either set of sufficient stability
conditions, i.e., Qij < 0 or Qij + Qji < 0 for all i and j, is satisfied, it is
satisfied for all grades of membership wi and wj . In this regard, it can be seen
that the published stability conditions in Theorem 2.1 to Theorem 2.5 do not
include the membership functions in the stability conditions (i.e. only Qij ap-
pear in the stability conditions). However, when the membership functions
are brought into the stability conditions, we have the sufficient and necessary
condition of

∑p
i=1

∑p
j=1 wimjQij < 0 for V̇ (t) < 0 excluding x(t) = 0 (un-

der the quadratic Lyapunov function candidate (3.1)) that is required to be
satisfied for every single value of wi and mj . As both wi and mj are governed
by continuous membership functions, consequently, the number of stability
conditions to ensure

∑p
i=1

∑p
j=1 wimjQij < 0 is infinity. It is thus impossible

to investigate
∑p

i=1

∑p
j=1 wimjQij < 0 directly, and researchers thus turn to

the MFSI stability analysis approaches presented in Chapter 2 to circumvent
the difficulty.

It was revealed in [2, 55, 67, 68, 91, 98, 99] that the information of member-
ship functions play an import role for the relaxation of stability conditions.
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However, bringing the membership function into the stability conditions is
difficult mainly because of the continuity of the membership functions. In
this section, in order to consider the membership functions in the stability
analysis for the relaxation of stability conditions, SMFs [68] are proposed to
approximate the continuous membership functions of the TS fuzzy model and
fuzzy controller. It is worth mentioning that the SMFs are for the stability
analysis only and not necessarily implemented physically. As the SMFs have
finite numbers of levels, they effectively circumvent the difficulty by approx-
imating the infinite number of LMIs into a finite one. To make the stability
analysis possible using the SMFs, some slack matrix variables are introduced
using the property of the membership functions. Stability conditions in terms
of LMIs are derived to achieve a stable FMB control system based on the
Lyapunov stability theory. The SMF-based FMB control approach offers the
following advantages over some published work based the MFSI and MFSD
stability analysis.

1. The SMFs approximating the original ones of the TS fuzzy model and
fuzzy controller that carry the information of the system nonlinearities are
allowed to be brought to the stability conditions. Consequently, the sta-
bility conditions are applied to a dedicated nonlinear plant (characterized
by the SMFs) but not a family of FMB control systems with any shapes
of membership functions as considered in the work of MFSI analysis.

2. It does not require that the TS fuzzy model and fuzzy controller share the
same membership functions. Consequently, it offers larger design flexibility
for choosing the membership functions of the fuzzy controller. By employ-
ing some simple membership functions and/or less number of fuzzy control
rules, the implementation cost of the fuzzy controller can be reduced.

3. Unlike the MFSI analysis, the SMF-based approach does not require the
membership functions of the TS fuzzy controller to be exactly known. Con-
sequently, by embedding the parameter uncertainties (with know bounds)
to the membership functions of the TS fuzzy model, the SMF-based con-
troller is robust to parameter uncertainties to a certain extent.

3.3.1 Stability Analysis Using Staircase Membership
Functions

In the previous section, we consider the MFB stability analysis that requires
the fuzzy model and fuzzy controller share the same number of fuzzy rules,
i.e. c = p. Under the SMF approach, this limitation can be eliminated. Define
the staircase membership function wi(x(t)) and mj(x(t)) approximating the
original membership functions wi and mj , respectively. For brevity, wi(x(t))
and mj(x(t)) are denoted by wi and mj , respectively. Examples of the con-
tinuous and staircase membership functions are shown in Fig. 3.8. It can be
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seen that the continuous membership function is approximated by a staircase
membership function with finite number of levels. The approximation error
will become smaller when the step size of the SMFs is reduced.

Remark 3.6. The SMFs are designed to satisfy the properties of the member-
ship functions in (2.3) and (2.7), respectively, i.e.,

p∑

i=1

wi =
c∑

j=1

mj =
p∑

i=1

c∑

j=1

wimj = 1. (3.28)

Fig. 3.8 Continuous (dotted line) and staircase (solid line) membership functions.

To investigate the system stability of the FMB control systems (2.10), we
consider the quadratic Lyapunov function (3.1). From (2.10) and (3.1), we
have V̇ (t) in (3.2) and it follows that

V̇ (t) =
p∑

i=1

c∑

j=1

wimjz(t)T Qijz(t)

=
p∑

i=1

c∑

j=1

wimjz(t)T Qijz(t) +
p∑

i=1

c∑

j=1

(wimj − wimj)z(t)T Qijz(t).

(3.29)
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Referring to (3.29), there are two terms on the right hand side. A possible
way to achieve V (t) > 0, V̇ (t) < 0 (excluding z(t) = 0) implying the asymp-
totically stability of the FMB control system (2.10) is to ensure that these
two terms are negative definite. The first term

∑p
i=1

∑c
j=1 wimjQij can be

determined if it is negative definite by checking all the combinations of wimj

using the nice property of the SMFs wi and mj that have finite numbers of
levels. However, the second term containing the original membership func-
tions will make it impossible to determine if

∑p
i=1

∑c
j=1(wimj − wimj)Qij

is negative definite for every signal value of wimj .
In order to proceed further, some slack matrices and inequalities are intro-

duced in the following. Based on the property of the membership functions
in (2.9) and (3.28), introducing the slack matrix variables M = M ∈ �n×n

to facilitate the stability analysis, we have

p∑

i=1

c∑

j=1

(wimj − wimj)M = 0. (3.30)

Furthermore, considering the slack matrices 0 ≤ Wij = WT
ij ∈ �n×n, it is

obvious that the following inequality holds.

p∑

i=1

c∑

j=1

wimjWij ≥ 0 (3.31)

We further consider the following inequalities.

wimj − wimj − γij ≥ 0 ∀ i, j, x(t) (3.32)

where γij are constant scalars to be determined.
From (3.29) to (3.32), we have
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V̇ (t) ≤
p∑

i=1

c∑

j=1

wimjz(t)T Qijz(t) +
p∑

i=1

c∑

j=1

(wimj − wimj)z(t)T Qijz(t)

+
p∑

i=1

c∑

j=1

(wimj − wimj)z(t)T Mz(t) +
p∑

i=1

c∑

j=1

wimjz(t)T Wijz(t)

=
p∑

i=1

c∑

j=1

wimjz(t)T Qijz(t)

+
p∑

i=1

c∑

j=1

(wimj − wimj)z(t)T (Qij + M)z(t)

+
p∑

i=1

c∑

j=1

(wimj − wimj + wimj)z(t)T Wijz(t)

=
p∑

i=1

c∑

j=1

wimjz(t)T (Qij + Wij)z(t)

+
p∑

i=1

c∑

j=1

(wimj − wimj)z(t)T (Qij + Wij + M)z(t)

+
p∑

i=1

c∑

j=1

(γij − γij)z(t)T (Qij + Wij + M)z(t)

=
p∑

i=1

c∑

j=1

z(t)T
(
(wimj + γij)(Qij + Wij) + γijM

)
z(t)

+
p∑

i=1

c∑

j=1

(wimj − wimj − γij)z(t)T (Qij + Wij + M)z(t). (3.33)

From (3.1) and (3.33), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of the
FMB control system (2.10), i.e., x(t) → 0 when time t → ∞ can be achieved
if the stability conditions summarized in the following theorem are satisfied.

Theorem 3.3. The FMB control system (2.10), formed by the nonlinear
plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6) con-
nected in a closed loop, is asymptotically stable if there exist predefined con-
stant scalars γij satisfying wi(x(t))mj (x(t))−wi(x(t))mj(x(t))− γij ≥ 0 for
all i, j and x(t) and there exist matrices M = MT ∈ �n×n, Nj ∈ �m×n,
Wij = WT

ij ∈ �n×n and X = XT ∈ �n×n such that the following LMIs are
satisfied.

X > 0;

Wij ≥ 0 ∀ i, j;
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p∑

i=1

c∑

j=1

(
(wimj + γij)(Qij + Wij) + γijM

)
< 0 ∀ i, j and valid values of wimj ;

Qij + Wij + M < 0 ∀ i, j;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 3.7. The LMIs
∑p

i=1

∑c
j=1

(
(wimj +γij)(Qij +Wij)+γijM

)
< 0 in

Theorem 3.3 include the SMFs of wi and mj (which are the approximations of
original membership functions wi and mj , respectively). Through the SMFs,
the information of the membership functions of both the fuzzy model and
fuzzy controller can be taken into the stability analysis for the relaxation of
the stability conditions. With the slack variable matrices M and Wij , the
information of the membership functions can be transferred to the last LMIs
in Theorem 3.3, i.e., Qij +Wij +M < 0, to make the stability conditions to
be satisfied more easily.

Remark 3.8. It can be shown that the solution X and Nj in Theorem 2.1
[15, 122] is also the solution of the stability conditions in Theorem 3.3. It was
reported in [15, 122] that the FMB control system is asymptotically stable if
there exist X and Nj such that X > 0 and Qij = XAT

i + AiX + NT
j BT

i +
BiNj < 0 for all i and j (Theorem 2.1) under the case that the fuzzy model
and fuzzy controller do not share the same premise membership functions.
From Theorem 3.3, choosing Wij = 0 for all i and j and M = −εI < 0 where
ε > 0 is a scalar, the LMIs in Theorem 3.3 become

∑p
i=1

∑c
j=1 wimjQij +∑p

i=1

∑c
j=1 γij(Qij − εI) < 0 and Qij − εI < 0 for all i and j. As Qij < 0

for all i and j, the second LMI is satisfied and there must exist a sufficiently
small value of γij such that the first LMI is satisfied. As the SMFs wi and mj

can be chosen arbitrarily, they can be chosen such that wimj − wimj ≥ γij

are satisfied for sufficiently small values of γij . Hence, it can be seen that
the solutions of the stability conditions in [15, 122] are particular cases of
Theorem 3.3.

Remark 3.9. Consider the MFB stability conditions in [2, 55, 67] and The-
orem 3.1, which require that c = p. It can be shown that the solu-
tions in [2, 55, 67] and Theorem 3.1 are also covered by the solution
of Theorem 3.3. If there exists a solution to the stability conditions in
[2, 55, 67] and Theorem 3.1, it implies that

∑p
i=1

∑c
j=1 wimjQij < 0. In

this case, considering the stability conditions in Theorem 3.3, it is obvious
that

∑p
i=1

∑c
j=1 wimjQij < 0 as wi and mj can be regarded as the sam-

pled points of wi and mj , respectively. Choosing Wij = 0 for all i and j,
and M = −εI < 0 where ε > 0 is a scalar, the LMI in Theorem 1 becomes∑p

i=1

∑c
j=1 wimjQij +

∑p
i=1

∑c
j=1 γij(Qij − εI) < 0, which is satisfied for

sufficiently small values of γij subject to
∑p

i=1

∑c
j=1 wimjQij < 0. As the

SMFs wi and mj can be chosen arbitrarily, they can be chosen such that
wimj −wimj ≥ γij are satisfied for sufficiently small values of γij . Similarly,
the LMIs Qij + Wij + M < 0 in Theorem 3.3 becomes Qij − εI < 0 for
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all i and j, which is satisfied by choosing a sufficiently large positive value
of ε. Hence, it can be seen that the solutions of the stability conditions in
[2, 55, 67] and Theorem 3.1 are particular cases of Theorem 3.3.

In the following, we consider the PDC design [122], i.e., c = p and mi = wi

for all i, for the SMF-based stability analysis. To investigate the system
stability of the FMB control system (2.10) under the PDC design approach,
we proceed from (3.33) with 0 < Wij = WT

ji and γij = γji for all i and j.
Rewrite (3.33) as follows.

V̇ (t) ≤
p∑

i=1

p∑

j=1

z(t)T
(
(wiwj + γij)(Qij + Wij) + γijM

)
z(t)

+
p∑

i=1

p∑

j=1

(wiwj − wiwj − γij)z(t)T (Qij + Wij + M)z(t)

=
p∑

i=1

p∑

j=1

z(t)T
(
(wiwj + γij)(Qij + Wij) + γijM

)
z(t)

+
1
2

p∑

i=1

p∑

j=1

(wiwj − wiwj − γij)z(t)T (Qij + Qji

+ Wij + Wji + 2M)z(t)
(3.34)

It is required that the inequality
∑p

i=1

∑p
j=1 wiwjWij ≥ 0 holds that can

be written as

⎡

⎢⎢⎢⎣

w1I
w2I
...

wpI

⎤

⎥⎥⎥⎦

T

W

⎡

⎢⎢⎢⎣

w1I
w2I
...

wpI

⎤

⎥⎥⎥⎦
≥ 0 where W =

⎡

⎢⎢⎢⎣

W11 W12 · · · W1p

W21 W22 · · · W2p

...
...

...
...

Wp1 Wp2 · · · Wpp

⎤

⎥⎥⎥⎦
.

It can be seen that W ≥ 0 implies
∑p

i=1

∑p
j=1 wiwjWij ≥ 0. Consequently,

the stability conditions under the PDC design can be summarized in the
following theorem.

Theorem 3.4. The FMB control system (2.10), formed by the nonlinear
plant represented by the fuzzy model (2.2) and the fuzzy controller (2.6) under
the PDC design technique (i.e., c = p, mi(x(t)) = wi(x(t)) for all i) con-
nected in a closed loop, is asymptotically stable if there exist predefined con-
stant scalars γij = γji satisfying wi(x(t))wj (x(t))−wi(x(t))wj(x(t))−γij ≥ 0
for all i, j and x(t), and there exist matrices M = MT ∈ �n×n, Nj ∈ �m×n,
Wij = WT

ji ∈ �n×n and X = XT ∈ �n×n such that the following LMIs are
satisfied.

X > 0;
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W =

⎡

⎢⎢⎢⎣

W11 W12 · · · W1p

W21 W22 · · · W2p

...
...

...
...

Wp1 Wp2 · · · Wpp

⎤

⎥⎥⎥⎦
≥ 0;

p∑

i=1

c∑

j=1

(
(wiwj + γij)(Qij + Wij) + γijM

)
< 0 ∀ i, j and valid values of wiwj ;

Qij + Qji + Wij + Wji + 2M < 0 ∀ i, j;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 3.10. It can be shown that the solution of some published sta-
bility conditions under PDC design with MFSI analysis (Theorem 2.2 to
Theorem 2.5) and MFSD analysis [24, 48, 81, 82, 91, 97–99, 105, 112, 122, 125]
are also covered by Theorem 3.4. If there exists a solution for the stability
conditions in [24, 48, 81, 82, 91, 97–99, 105, 112, 122, 125], it implies that∑p

i=1

∑c
j=1 wiwjQij < 0. As wi can be regarded as the sampled points of wi,

it is obvious that
∑p

i=1

∑c
j=1 wiwjQij < 0. We choose Wij = 0 for all i and j,

and M = −εI < 0 where ε > 0 is a scalar, and wi such that wiwj−wiwj ≥ γij

with a sufficiently small value of γij . It can be seen that the LMIs in
Theorem 3.4 become

∑p
i=1

∑c
j=1 wiwjQij +

∑p
i=1

∑c
j=1 γij(Qij − εI) < 0

and Qij + Qji − 2εI < 0 which are satisfied for sufficiently small values
of γij and sufficiently large value of ε subject to

∑p
i=1

∑c
j=1 wiwjQij <

0. Hence, it can be seen that the solutions of the stability conditions
with MFSI analysis (Theorem 2.2 to Theorem 2.5) and MFSD analysis
[24, 48, 81, 82, 91, 97–99, 105, 112, 122, 125] are particular cases of
Theorem 3.4.

Remark 3.11. The LMI-based performance conditions given in Theorem 3.2
can be applied with the stability conditions in Theorem 3.3 and Theorem 3.4
to realize the performance design.

Example 3.3. Consider the example FMB control system in Example 2.1 with
the system parameters 2 ≤ a ≤ 9 and 2 ≤ b ≤ 22. The membership functions
in Example 3.1 as shown in Fig. 3.1 are used in this example. The SMFs
are chosen as wi(x1(t)) = wi(hδ) and mj(x1(t)) = mj(hδ) for (h − 0.5)δ <
x1(t) ≤ (h+0.5)δ where i, j = 1, 2, 3 and h = −∞, · · · ,−10,−9, ...10, · · · ,∞.
As the grades of membership keep constant for x1(t) > 10 or x1(t) < −10,
we have w1(x1(t)) = w1(10) for x1(t) > 10 and w1(x1(t)) = w1(−10) for
x1(t) < −10, and we only need to consider h = −10,−9, · · · , 10.

The system stability of the FMB control system is examined by using
the stability conditions in Theorem 3.3 with the MATLAB LMI toolbox.
For demonstration purposes, we choose δ = 0.1 and δ = 0.05 to demon-
strate the effect of the value of δ to the stability conditions. Table 3.3
lists the values of γij which satisfies the inequalities of wi(x1(t))mj(x1(t)) −
wi(x1(t))mj(x1(t)) − γij ≥ 0 for all i and j.
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Table 3.3 Values of δ and γij for Example 3.3.

δ = 0.1 γ11 = −0.006327, γ12 = −0.003277, γ13 = −0.001006,
γ21 = −0.003955, γ22 = −0.005526, γ23 = −0.003955,
γ31 = −0.001060, γ32 = −0.003279, γ33 = −0.006326.

δ = 0.05 γ11 = −0.003164, γ12 = −0.001642, γ13 = −0.000545,
γ21 = −0.001981, γ22 = −0.002763, γ23 = −0.001966,
γ31 = −0.000545, γ32 = −0.001642, γ33 = −0.003164.

The stability regions are shown in Fig. 3.9 indicated by ‘×’ and ‘◦’, respec-
tively. It can be seen from Fig. 3.9 that a smaller value of δ is able to produce
a larger stability region as the SMFs are able to better approximate their cor-
responding original membership functions with smaller approximation error.
For comparison purposes, the non-PDC stability conditions in Theorem 2.1
are also applied to the FMB control systems. However, there is no stability
region found.

Fig. 3.9 Stability regions given by the stability conditions in Theorem 3.3 with δ
= 0.1 (‘×’) and δ = 0.05 (‘◦’) for Example 3.3.

Example 3.4. We continue from Example 3.3 and consider the situation that
c = p and mi = wi for the TS fuzzy model and the fuzzy controller (both of
them share the same premise membership functions). The SMFs are chosen
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Table 3.4 Values of δ and γij for Example 3.4.

δ = 0.1 γ11 = −0.008177, γ12 = γ21 = −0.004115,
γ13 = γ31 = −0.001337, γ22 = −0.005538,
γ23 = γ32 = −0.004115, γ33 = −0.008247.

δ = 0.05 γ11 = −0.004145, γ12 = γ21 = −0.002070,
γ13 = γ31 = −0.000681, γ22 = −0.002773,
γ23 = γ32 = −0.002018, γ33 = −0.004162.

as wi(x1(t)) = wi(hδ) for (h − 0.5)δ < x1(t) ≤ (h + 0.5)δ where i = 1, 2, 3
and h = −∞, · · · ,−10,−9, ...10, · · · ,∞.

Similarly, choosing δ = 0.1 and δ = 0.05, we have the values of γij

listed in Table 3.4 which satisfies the inequalities of wi(x1(t))wj(x1(t)) −
wi(x1(t))wj(x1(t)) − γij ≥ 0 for all i and j.

The stability regions given by the stability conditions in Theorem 3.4 are
shown in Fig. 3.10, indicated by ‘×’ and ‘◦’, respectively. For comparison
purposes, the stability conditions in Theorem 2.2 to Theorem 2.5, where
Theorem 2.5 is applied with the dimension of fuzzy summation d = 4, are
employed and the corresponding stability regions are shown in Fig. 2.1. It can
be seen from these figures that the proposed stability conditions in Theorem
3.4 are able to produce a larger stability region.

Fig. 3.10 Stability regions given by the stability conditions in Theorem 3.4 with
δ = 0.1 (‘×’) and δ = 0.05 (‘◦’) for Example 3.4.
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3.4 Conclusion

The stability analysis of FMB control systems with imperfectly matched
premise membership functions have been investigated under the MFSD ap-
proaches. Two approaches, namely the MFB and the SMF approaches, have
been proposed. In the MFB approach, the boundary information of the mem-
bership functions has been utilized to conduct stability analysis. Based on
the Lyapunov stability theory, LMI stability and performance conditions have
been derived to guarantee the system stability and performance. In the SMF
approach, staircase membership functions have been employed to approxi-
mate the continuous membership functions of the TS fuzzy model and fuzzy
controller. Through SMFs, the nonlinearity of membership functions can be
brought into the stability conditions. Consequently, the stability conditions
are more dedicated to the FMB control systems as compared with the MFSI-
based ones. Unlike the MFSI analysis approach, the shape information of the
membership functions is able to be brought into the stability conditions in
the MFSD analysis approach for relaxing the stability conditions. The SMF
approach has also been extended to the PDC design (with perfectly matched
premise membership functions). The SMF approach has also been extended
to the PDC design (with perfectly matched premise membership functions.)
Simulation and comparison examples have been presented to illustrate the
effectiveness of the proposed MFSD-based stability conditions.



Chapter 4

BMI Stability Conditions for FMB
Control Systems

4.1 Introduction

In general, two classes of FMB control systems, namely with imperfectly and
perfectly matched premise membership functions, have been investigated in
the past decades. The first class of FMB control systems with imperfectly
matched premise membership functions has the TS fuzzy model and the fuzzy
controller not sharing the same premise membership functions. This class
of FMB control systems has been extensively investigated recently. Based
on the Lyapunov stability theory, LMI-based stability conditions were de-
rived to guarantee the system stability and facilitate the synthesis of the
fuzzy controller. With the imperfectly matched premise membership func-
tions [2, 55, 67, 122], the fuzzy controller exhibits two favourable features.
One, the premise membership functions of the fuzzy controller can be freely
chosen to enhance the design flexibility. Some simple and commonly-used
membership functions can be employed to lower the structural complex-
ity, computational demand and implementation cost of the fuzzy controller.
Two, the fuzzy controller displays an inherent robustness property to han-
dle parameter uncertainties of the nonlinear plant. As the stability anal-
ysis and the fuzzy controller do not involve the membership functions of
the TS fuzzy plant model, the fuzzy controller designed with imperfectly
matched premise membership functions is able to stabilize nonlinear plant
with its fuzzy model subject to uncertain grades of membership owing to the
presence of plant parameter uncertainties. However, it will lead to conser-
vative stability conditions as the membership functions of the fuzzy model
are not considered in the stability analysis. This problem is partially al-
leviated by the second class of FMB control systems design. This class of
FMB control systems is designed with perfectly matched premise member-
ship functions in which the fuzzy controller shares the same premise mem-
bership functions as those of the TS fuzzy model for relaxing the stability
conditions [24, 48, 81, 82, 97, 105, 112, 122, 125]. However, as the grades of

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 59–84.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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membership function are required to be known, the TS fuzzy model in the
form of (2.2) must be uncertainty free. Hence, with the perfectly matched
premise membership functions, the stability conditions are relaxed by sacri-
ficing the inherent robustness property of the fuzzy controller. Both fuzzy
controllers, designed with the imperfectly and perfectly matched premise
membership functions, have their own advantages to various applications.

In this chapter, the stability of FMB control systems with imperfectly
matched premise membership functions is investigated. To facilitate the sta-
bility analysis, the information of the membership functions of both the TS
fuzzy model and fuzzy controller are employed. In order to further relax
the stability conditions, a fuzzy controller with time-varying state-feedback
gains [19, 35, 36] is proposed. Based on the Lyapunov-based approach and
the knowledge on the membership functions of the fuzzy model, stability
conditions in bilinear matrix inequalities (BMI) with imperfectly matched
premise membership functions are derived to guarantee the system stability.
As the stability conditions are in terms of BMIs, convex programming tech-
niques cannot be applied directly to find the solution. Taking advantage of
the powerful global searching ability of the genetic algorithm (GA) [90], a
GA-based convex programming technique is proposed to search for the so-
lution of the BMI-based stability conditions. Some simulation examples are
given to illustrate the effectiveness of the proposed BMI-based fuzzy control
scheme.

4.2 Fuzzy Controller with Time-Varying Feedback
Gains

A p-rule fuzzy controller with time-varying feedback gains is employed to
control the nonlinear plant represented by the TS fuzzy model (2.2). The
j-th rule of the fuzzy controller is of the following format:

Rule j: IF g1(x(t)) is N j
1 AND · · · AND gΩ(x(t)) is N j

Ω

THEN u(t) = Fj(x(t))x(t) (4.1)

where Fj(x(t)) ∈ �m×n, j = 1, 2, · · · , c, are time-varying feedback gains to
be determined and the rest variables are defined in Section 2.3.

The fuzzy controller with time-varying feedback gains is defined as follows,

u(t) =
p∑

j=1

mj(x(t))Fj(x(t))x(t) (4.2)

where the membership functions exhibit the property in (2.7).
The feedback gains are defined as Fj(x(t)) = Gj∑p

k=1 mk(x(t))ak
for all j,

where Gj ∈ �m×n are some constant feedback gains to be determined. The
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time-varying feedback gains Fj(x(t)) are used to enhance the nonlinearity
compensation of the nonlinear feedback plant dynamics. From (4.2), we have,

u(t) =

∑p
j=1 mj(x(t))Gjx(t)
∑p

k=1 mk(x(t))ak
(4.3)

where ak, k = 1, 2, · · · , p, are scalars to be designed that satisfy the inequality
of
∑p

k=1 mk(x(t))ak > 0.

Remark 4.1. The proposed fuzzy controller of (4.3) is equivalent to that in
[36] when mi(x(t)) = wi(x(t)) for all i. It is reduced to the traditional fuzzy
controller (2.6) [122] when the constant scalars ak = 1 for all k.

4.3 BMI-Based Stability Analysis

Consider the nonlinear plant represented by the TS fuzzy model (2.2) and the
fuzzy controller (4.3) connected in a closed loop. The FMB control system is
obtained as follows.

ẋ(t) =
p∑

i=1

wi(x(t))

(
Aix(t) + Bi

∑p
j=1 mj(x(t))Gjx(t)
∑p

k=1 mk(x(t))ak

)

=
1∑p

k=1 mk(x(t))ak

p∑

i=1

c∑

j=1

wi(x(t))mj(x(t))(akAi + BiGj)x(t) (4.4)

In the following, for brevity, wi(x(t)) and mj(x(t)) are denoted as wi and
mj . To investigate the stability of the FMB control system (4.4), with the
membership function property (2.9), we consider the quadratic Lyapunov
function (3.1). From (3.1) and (4.4), we have

V̇ (t) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

=

(
1∑p

k=1 mkak

p∑

i=1

p∑

j=1

wimj(ajAi + BiGj)x(t)

)T

Px(t)

+ x(t)T P

(
1∑p

k=1 mkak

p∑

i=1

p∑

j=1

wimj(ajAi + BiGj)x(t)

)

=
1∑p

k=1 mkak

p∑

i=1

p∑

j=1

wimjz(t)T Qijz(t) (4.5)

where Qij = ajAiX + ajXAT
i + BiNj + NT

j BT
i .

Remark 4.2. Compared with V̇ (t) in (3.2), Qij defined in this chapter has the
variables aj that effectively increases the dimension of the feasible solution
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and thus possibly leads to more relaxed stability analysis result. However,
the terms ajAiX and ajXAT

i are not in the form of LMIs but BMIs. Convex
programming techniques cannot be applied to obtain numerically the solution
to the BMIs. In the following, a GA-based convex programming technique is
proposed to search for the solution to the BMIs.

In order to proceed with the stability analysis, a number of slack matrix
variables are introduced to (4.5) based on the S-procedure [6]. Introducing
slack matrices Λi = ΛT

i ∈ �n×n, Vi = VT
i ∈ �n×n, 0 ≤ Jij = JT

ij ∈ �n×n,
0 ≤ Kij = KT

ij ∈ �n×n, 0 ≤ Mij = MT
ij ∈ �n×n and 0 ≤ Wij = WT

ij ∈
�n×n; i, j = 1, 2, · · · , p, we consider the following equations and inequalities.

p∑

i=1

p∑

j=1

wi(wj − mj)Λi = 0 (4.6)

p∑

i=1

p∑

j=1

mi(wj − mj)Vi = 0 (4.7)

p∑

i=1

p∑

j=1

wi(wj − mj + σj)Jij ≥ 0 (4.8)

p∑

i=1

p∑

j=1

mi(γj − wj + mj)Kij ≥ 0 (4.9)

p∑

i=1

p∑

j=1

(wiwj − wimj − miwj + mimj + δij)Mij ≥ 0 (4.10)

p∑

i=1

p∑

j=1

(ρij − wiwj + wimj + miwj − mimj)Wij ≥ 0 (4.11)

where σj , γj , δij and ρij are scalars to be determined such that the following
inequalities hold for all i, j and x(t).

wj − mj + σj ≥ 0 ∀ j (4.12)

γj − wj + mj ≥ 0 ∀ j (4.13)
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wiwj − wimj − miwj + mimj + δij ≥ 0 ∀ i, j (4.14)

ρij − wiwj + wimj + miwj − mimj ≥ 0 ∀ i, j (4.15)

Remark 4.3. Λi and Vi in (4.6) and (4.7), respectively, are referred to as
MFSI slack matrices as they do not depend on the membership functions.
As a result, (4.6) and (4.7) are satisfied for any shapes of membership func-
tion. These two equations serve an important purpose that they introduce
free matrix variables transferring and compensating some unstable compo-
nents between LMI terms to make the stability conditions to be satisfied
more easily. In order words, the free matrix variables increase the dimension
of the feasible solution. Conversely, Jij , Kij , Mij and Mij in the inequalities
(4.8) to (4.11), respectively, are refereed to as MFSD slack matrices as they
depend on the shapes of the membership functions. It is required that the
membership functions satisfy the inequalities (4.12) to (4.15). The scalars
of σj , γj , δij and ρij provide the boundary information of the membership
functions and their multiplications. The slack matrix variables and the mem-
bership function boundary information offer useful information to facilitate
the stability analysis for relaxing the stability conditions.

Remark 4.4. It was reported that further relaxed stability conditions can
be achieved by considering some polynomial inequality [99] of membership
functions. The higher the degree of the polynomial inequality, the more the
number of slack matrices can be introduced. More slack variables can be in-
troduced to the stability analysis based on the Polya’s theorem [91] that the
boundary information of the higher order of multiplications of membership
functions is considered. However, it should be noted that a larger number of
slack matrices will lead to higher computational demand on searching for the
solution of the stability conditions.

From (4.5) to (4.11), recalling that
∑p

k=1 mkak > 0 and defining X = P−1,
z(t) = X−1x(t) and Gj = NjX−1 where Nj , j = 1, 2, · · · , p; it follows that
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V̇ (t) ≤ 1∑p
k=1 mkak

z(t)T
( p∑

i=1

p∑

j=1

wimjQij +
p∑

j=1

wi(wj − mj)Λi

+
p∑

j=1

mi(wj − mj)Vi +
p∑

j=1

wi(wj − mj + σj)Jij

+
p∑

i=1

p∑

j=1

mi(γj − wj + mj)Kij

+
p∑

i=1

p∑

j=1

(wiwj − wimj − miwj + mimj + δij)Mij

+
p∑

i=1

p∑

j=1

(ρij − wiwj + wimj + miwj − mimj)Wij

)
z(t) (4.16)

Rearranging the terms in (4.16), it can be written as follows.

V̇ (t) ≤=
1∑p

k=1 mkak
z(t)T

( p∑

i=1

p∑

j=1

wimj

(
Qij−Λi+Vj−Jij − Kji − Mij

− Mji + Wij + Wji

)
+

p∑

i=1

p∑

j=1

wiwj

(
Mij − Wij + Λi + Jij

+
p∑

k=1

σkJik +
p∑

k=1

p∑

l=1

δklMkl +
p∑

k=1

p∑

l=1

ρklWkl

)

+
p∑

i=1

p∑

j=1

mimj

(
Mij − Wij − Vi + Kij +

p∑

k=1

γkKik

))
z(t). (4.17)

Introducing matrices Rij = RT
ji ∈ �n×n, Sij = ST

ji ∈ �n×n and Tij = TT
ji ∈

�n×n, i, j = 1, 2, · · · , p; we consider

Rii > Mii − Wii − Vi + Kii +
p∑

k=1

γkKik ∀ i; (4.18)

Rij + RT
ij ≥ Mij −Wij − Vi + Kij +

p∑

k=1

γkKik

+ Mji − Wji − Vj + Kji +
p∑

k=1

γkKjk ∀ j; i < j; (4.19)
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Sij + ST
ij ≥ Qij − Λi + Vj − Jij − Kji − Mij

− Mji + Wij + Wji ∀ i, j; (4.20)

Tii > Mii −Wii + Λi + Jii

+
p∑

k=1

σkJik +
p∑

k=1

p∑

l=1

δklMkl +
p∑

k=1

p∑

l=1

ρklWkl ∀ i; (4.21)

Tij + TT
ij ≥ Mij −Wij + Λi + Jij + Mji − Wji + Λj + Jji +

p∑

k=1

σkJik

+
p∑

k=1

σkJjk + 2
p∑

k=1

p∑

l=1

δklMkl + 2
p∑

k=1

p∑

l=1

ρklWkl ∀ j; i < j.

(4.22)

From (4.17) to (4.22), we have

V̇ (t) ≤ 1∑p
k=1 mkak

z(t)T
( p∑

i=1

p∑

j=1

wimj

(
Sij + ST

ij

)

+
p∑

i=1

w2
i Tii +

p∑

j=1

∑

i<j

wiwj

(
Tij + TT

ij

)

+
p∑

i=1

m2
i R

T
ii +

p∑

j=1

∑

i<j

mimj

(
Rij + RT

ij

))
z(t)

=
1∑p

k=1 mkak

[
r(t)
s(t)

]T [R ST

S T

] [
r(t)
s(t)

]
. (4.23)

where r(t) =

⎡

⎢⎢⎢⎣

m1z(t)
m2z(t)

...
mpz(t)

⎤

⎥⎥⎥⎦
, s(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦
, R =

⎡

⎢⎢⎢⎣

R11 R12 · · · R1p

R21 R22 · · · R2p

...
...

...
...

Rp1 Rp2 · · · Rpp

⎤

⎥⎥⎥⎦
, S =

⎡

⎢⎢⎢⎣

S11 S12 · · · S1p

S21 S22 · · · S2p

...
...

...
...

Sp1 Sp2 · · · Spp

⎤

⎥⎥⎥⎦ and T =

⎡

⎢⎢⎢⎣

T11 T12 · · · T1p

T21 T22 · · · T2p

...
...

...
...

Tp1 Tp2 · · · Tpp

⎤

⎥⎥⎥⎦.

From (3.1) and (3.13), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of the
FMB control system (4.4), i.e., x(t) → 0 when time t → ∞, can be achieved
if the stability conditions summarized in the following theorem are satisfied.
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Theorem 4.1. The FMB control system (4.4), formed by the nonlinear plant
represented by the fuzzy model (2.2) and the fuzzy controller (4.2) connected
in a closed loop, is asymptotically stable if there exist predefined constant
scalars σj, γj, δij and ρij, i, j = 1, 2, · · · , p, satisfying the inequalities (4.8)
to (4.11) for all i, j and x(t), and there exist matrices Jij = JT

ij ∈ �n×n,
Kij = KT

ij ∈ �n×n, Mij = MT
ij ∈ �n×n, Nj ∈ �m×n, Rij = RT

ji ∈ �n×n,
Sij = ST

ji ∈ �n×n, Tij = TT
ji ∈ �n×n, Vi = VT

i ∈ �n×n, Wij = WT
ij ∈

�n×n, X = XT ∈ �n×n and Λi = ΛT
i ∈ �n×n such that the following BMIs

and LMIs are satisfied.
X > 0;

Jij ≥ 0 ∀ i j;

Kij ≥ 0 ∀ i, j;

Mij ≥ 0 ∀ i, j;

Wij ≥ 0 ∀ i, j;

BMIs/LMIs in (4.18) to (4.22);

[
R ST

S T

]
< 0;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 4.5. The BMI-based stability conditions in Theorem 4.1 apply to
the FMB control system with imperfectly matched membership functions. It
can be shown that the solution of the stability conditions in Theorem 2.1 is
a particular case of the proposed BMI-based stability conditions. Consider-
ing there exists a solution X to the stability conditions in Theorem 2.1, we
have Qij = AiX + XAT

i + BiNj + NT
j BT

i < 0 for all i and j. Choosing
the same X as the solution and aj = 1 for all j for the stability condi-
tions in Theorem 4.1, we have Qij = Qij < 0 for all i and j. Then, we
choose the slack matrices Jij = Kij = Mij = Wij = 0 for all i and j.
As a result, (4.18) and (4.19) become Rii > −Vi, i = 1, 2, · · · , p, and
Rij + RT

ij ≥ −Vi − Vj , j = 1, 2, · · · , p, i < j. By choosing Rii = −τI and
Vi = ςI for all i where ς > τ > 0, the inequalities Rii > −Vi for all i become
−τI > −ςI and are satisfied. Choosing Rij = 0 for all i �= j, the inequalities
of Rij+RT

ij ≥ −Vi−Vj are satisfied for j = 1, 2, · · · , p, i < j. Hence, we have

R =

⎡

⎢⎢⎢⎣

−τI 0 · · · 0
0 −τI · · · 0
...

...
...

...
0 0 · · · −τI

⎤

⎥⎥⎥⎦ < 0. Similarly, (4.21) and (4.22) become Tii > Λi,

i = 1, 2, · · · , p, and Tij +TT
ij ≥ Λi +Λj, j = 1, 2, · · · , p, i < j, respectively.

Choosing Tii = −τI and Λi = −ςI for all i, and Tij = 0 for all i �= j, the
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inequalities Tii > Λi becoming −τI > −ςI and Tij+TT
ij ≥ Λi+Λj becoming

0 ≥ −2I are both satisfied. Hence, we have T =

⎡

⎢⎢⎢⎣

−τI 0 · · · 0
0 −τI · · · 0
...

...
...

...
0 0 · · · −τI

⎤

⎥⎥⎥⎦ < 0. As

Qij = Qij < 0 for all i and j, it can be seen from (4.20) that the inequalities
become Sij +ST

ij ≥ Qij −Λi +Vj = Qij + 2ςI for all i and j. Recalling that
Qij < 0 and choosing Sij = 0 for all i and j, there must exist a sufficiently
small value of ς such that 0 ≥ Qij + 2ςI are satisfied. Consequently, we have[
R ST

S T

]
=
[
R 0
0 T

]
< 0 , which implies the asymptotic stability of the FMB

control system (2.10) and shows that the solution of the stability conditions
in Theorem 2.1 is a particular of Theorem 4.1.

4.3.1 GA-Based Convex Programming Technique

The stability conditions in Theorem 4.1 are in terms of BMIs or LMIs. As
a result, convex programming techniques cannot be employed to find the
solution of the stability conditions. A BMI becomes an LMI if one of the
variables of the BMI is fixed. This nice property enables the solution of the
BMIs to be found numerically by combining the genetic algorithm (GA)
and the convex programming techniques. Denote the BMI-based stability
conditions as L(Pm,Ps)+ zI > 0, where Ps = [a1 a2 · · · ap] and Pm =
[ X M11 M12 · · · Mpp N1 N2 · · · Np J11 J12 · · · Jpp

K11 K12 · · · Kpp R11 R12 · · · Rpp S11 S12 · · · Spp T11

T12 · · · Tpp W11 W12 · · · Wpp V1 V2 · · · Vp Λ1 Λ2

· · · Λp ]. If there exist Ps and Pm that satisfy L(Pm,Ps) + zI > 0 with a
negative value of z, Ps and Pm are the solution of the BMI.

A GA-based convex programming technique as shown in Fig. 4.1 is
proposed to solve the solution of the BMIs and is summarized as follows.

1. GA generates the potential solution of Ps. It should be noted that when the
value of Ps is kept constant, the BMI-based stability conditions become
LMIs which can be solved using the convex programming technique. In
general, the initial value of Ps is randomly generated.

2. The LMI solver searches for the solution Pm to the LMI condition of
L(Pm,Ps) + zI > 0 (which becomes an LMI when Ps generated by GA
in Step 1 is kept constant). The initial value of Pm is randomly generated
or determined by the LMI solver.

3. If there exists a negative z such that L(Pm,Ps) + zI > 0, it implies that
both Pm and Ps are the solutions of the BMI stability conditions.

4. If the stopping criterion is not met, return to Step 1.
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Fig. 4.1 Procedure of the GA-based convex programming technique.

Remark 4.6. For the GA-based convex programming process, z is taken as a
fitness function to indicate the degree of satisfaction of both Pm and Ps to
the BMI problem. A more negative value of z indicates a better solution Pm

and Ps. Consequently, the finding of solution is realized as a minimization
problem (minimizing the fitness value of z). A stopping criterion should be
set to stop the process, e.g. a pre-defined number of iterations or a feasible
solution has been reached.

Example 4.1. Consider the same FMB control system in Example 2.1. The
membership functions in Example 3.1 shown in Fig. 3.1 are used in this
example. Based on the membership functions, it can be found that the values

Table 4.1 Vaues of σj , γj, δij and ρij for Example 4.1.

σ1 = 0.069182, σ2 = 0.094927, σ3 = 0.069182.
γ1 = 0.069182, γ2 = 0.074195, γ3 = 0.069182.
δ11 = 0.000000, δ12 = δ21 = 0.005459, δ13 = δ31 = 0.003054,
δ22 = 0.000000, δ23 = δ32 = 0.005459, δ33 = 0.000000.
ρ11 = 0.004786, ρ12 = ρ21 = 0.001137, ρ13 = δ31 = 0.002253,
ρ22 = 0.009011, ρ23 = ρ32 = 0.001137, ρ33 = 0.004786.
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of σj , γj , δij and ρij , i, j = 1, 2, 3, listed in Table 4.1 satisfy the inequalities
of (4.12) to (4.15).

The stability conditions in Theorem 4.1 are employed to check for the
system stability for the TS fuzzy model parameters of 2 ≤ a ≤ 9 and 0 ≤ b ≤
8. The real-coded GA with arithmetic crossover and non-uniform mutation
[90] working with the MATLAB LMI toolbox is employed to search for the
solution of the BMI stability conditions in Theorem 4.1. The lower and upper
bounds of aj, are chosen to be 10−3 and 5, respectively. With the chosen lower
and upper bounds, the inequality of

∑p
k=1 mk(x1(t))ak > 0 is satisfied. The

parameters aj, j = 1, 2, 3, form the chromosomes of the GA process and
their initial values are randomly generated. The control parameters of the
real-coded GA are tabulated in Table 4.2.

Table 4.2 Control parameters of the real-coded GA with arithmetic crossover and
non-uniform mutation for Example 4.1.

Population size: 40
Number of iterations: 500
Probability of crossover: 0.8
Probability mutation: 0.5
Shape parameter: 1

The stability region is shown in Fig. 4.2 denoted by ‘◦’. To show the
effectiveness of the parameter aj, we choose aj = 1 for j = 1, 2, 3 which
make the stability conditions in Theorem 4.1 become LMIs. In this case, the
proposed fuzzy controller is reduced to a traditional fuzzy controller (2.6)
[122] with constant feedback gains. The stability region under aj = 1 is
shown in Fig. 4.2 denoted by ‘×’. It can be seen from Fig. 4.2 that the
stability region given by the BMI-based stability conditions is larger. For
comparison purposes, the stability conditions in Theorem 2.1 [122] applying
to the FMB control systems with imperfectly matched membership functions
are employed to check for the stability region for this example. However, no
feasible solution is found. It is worth nothing that the stability conditions in
Theorem 2.2 to Theorem 2.5 for FMB control systems with perfectly matched
membership functions cannot be applied in this example.

Comparing with the traditional fuzzy controller (2.6), the proposed one
(4.2) will increase the implementation cost owing to the time-varying non-
linear feedback gains that complicate the structure of the fuzzy controller.
As a result, it is suggested to employ the LMI-based stability conditions in
Theorem 4.1 with aj = 1 for all j (that is reduced to Theorem 2.1) as the
initial design. If a stable design cannot be achieved, the BMI-based stability
conditions can then be employed.
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Fig. 4.2 Stability regions given by stability conditions in Theorem 4.1 with aj

determined by the GA-based convex programming technique (‘◦’) and with aj = 1
(‘×’) for all j for Example 4.1.

4.4 BMI-Based Performance Conditions

Performance conditions in terms of BMIs are derived to guarantee the system
performance under the consideration of system stability in this section. We
consider the scalar performance index (3.14). From the performance index
(3.14) and the fuzzy controller (4.3), and with the property of the membership
functions (2.9), we have,

J =
∫ ∞

0

[
x(t)
x(t)

]T
[

I 0
0
∑p

i=1 miGi∑p
j=1 mkak

]T [
J1 0
0 J2

][ I 0

0
∑p

j=1 mjGj∑p
l=1 mlal

][
x(t)
x(t)

]
dt

=

∑p
i=1

∑p
j=1 mimj∑p

k=1

∑p
l=1 mkmlakal

∫ ∞

0

[
x(t)
x(t)

]T [
aiI 0
0 Gi

]T [J1 0
0 J2

]

×
[

ajI 0
0 Gj

] [
x(t)
x(t)

]
dt. (4.24)

Let the performance index J satisfy the following condition.

J <
η∑p

k=1

∑p
l=1 mkmlakal

∫ ∞

0

[
x(t)
x(t)

]T [X−1 0
0 X−1

] [
x(t)
x(t)

]
dt (4.25)
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where η is a non-zero positive scalar to be chosen. It can be seen that if the
inequality (4.25) is satisfied, the scalar performance index J is attenuated
to a prescribed level governed by the value of η. From (4.24) and (4.25),
recalling that z(t) = X−1x(t) and the feedback gains of the fuzzy controller
as Gj = NjX−1, j = 1, 2, · · · , p, we have,

1∑p
k=1

∑p
l=1 mkmlakal

∫ ∞

0

[
z(t)
z(t)

]T

W
[
z(t)
z(t)

]
dt < 0 (4.26)

where

W =
p∑

i=1

p∑

j=1

mimj

([
aiX 0
0 Ni

]T [J1 0
0 J2

] [
ajX 0
0 Nj

]
− η

[
X 0
0 X

])
.

(4.27)

To make sure that the inequality (4.26) is satisfied, the condition W < 0 is
required. It should be noted that the inequality W < 0 cannot be formulated
as an LMI problem with constant aj . By Schur complement [120], W < 0 is
equivalent to the follow inequality.

W =
p∑

j=1

mjWj < 0 (4.28)

where Wj =

⎡

⎢⎢⎣

−ηX 0 ajX 0
0 −ηX 0 NT

j

ajX 0 −J−1
1 0

0 Nj 0 −J−1
2

⎤

⎥⎥⎦, j = 1, 2, · · · , p. The inequalities

Wj < 0 for all j (guaranteeing W < 0) are regarded as the BMI-based
performance conditions which have to be applied with the stability conditions
in Theorem 4.1 to realize the system performance with pre-defined weighting
matrices J1 and J2.

Theorem 4.2. The system performance of a stable FMB control system
(4.4), formed by the nonlinear plant represented by the fuzzy model (2.2)
and the fuzzy controller (4.2) connected in a closed loop, satisfies the perfor-
mance index J defined in (4.24) characterized by the pre-defined weighting
matrices J1 ≥ 0 and J2 ≥ 0 that is attenuated to the level η > 0, if any
stability conditions reported in this book and the LMIs Wj < 0 for all j are
satisfied.

Remark 4.7. The BMI-based stability and performance analysis can be fur-
ther relaxed by adopting the SMF technique in Section 3.3 that incorporates
the SMFs to the stability and performance conditions.

Remark 4.8. The BMI-based performance conditions in Theorem 4.2 are re-
duced to those in Theorem 3.2 with aj = 1 for all j.
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Example 4.2. The inverted pendulum on a cart shown in Example 3.2 is
considered as the nonlinear plant. In this example, the stability condition
in Theorem 4.1 and the performance conditions Wj < 0 for all j in Theorem
4.2 are employed to achieve a stable and well-performed FMB control system.
The real-coded GA with arithmetic crossover and non-uniform mutation [90]
working with the MATLAB LMI toolbox is employed to search for the so-
lution of the BMI stability conditions in Theorem 4.1. The lower and upper
bounds of aj , are chosen to be 10−3 and 1, respectively. The parameters aj ,
j = 1, 2, 3, form the chromosomes of the GA process and their initial val-
ues are randomly generated. The control parameters of the real-coded GA
are the same as those in Table 4.2 except that the number of iterations is
chosen to be 200. Based on these conditions, we obtain the feedback gains
for the proposed fuzzy controllers (4.3) with different values of the weighting
matrices J1 and J2, which are given in Table 4.3.

Table 4.3 Feedback gains for fuzzy controllers 1 to 3 in Example 4.2.

Feedback Gains η, aj , J1 and J2

FC† 1 G1 =
[
2064.8162 150.9920 28.5666 134.2425

]
NA††

G2 =
[
2655.0591 191.2585 36.2692 164.1681

]

a1 = 1
a2 = 1

FC† 2 G1 =
[
188.8736 20.5537 0.2143 27.3657

]
η = 0.1

G2 =
[
453.2808 34.6134 0.4298 28.8520

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

a1 = 0.7900
a2 = 0.4400

FC† 3 G1 =
[
201.3708 21.6676 0.5061 28.5817

]
η = 0.1

G2 =
[
473.1369 36.2498 0.9967 30.4797

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤

⎥⎥⎦

a1 = 0.8100
a2 = 0.4500

† FC stands for Fuzzy Controller.
†† LMI performance conditions are not considered.

The system responses and control signals of the inverted pendulum with
fuzzy controllers 1 to 3 are shown in Fig. 4.3 and Fig. 4.4, respectively. It can
be seen that fuzzy controller 1 designed without the performance conditions
offers the best system performance in terms of rise and settling times at
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the cost of a large magnitude of control signal. By employing the weighting
matrices of J1 and J2, the system responses and the control signals change
accordingly. By employing J2 = 1, the control signal can be suppressed as
shown in Fig. 4.4. The responses of the system states can be changed by
specifying different values of weighting matrix J1. Referring to Fig. 4.3, the
weighting matrix J1 with a higher weighting for x3(t) improves the system
responses of x3(t) in terms of rise and settling times.

For comparison purposes, the traditional fuzzy controllers (with aj = 1)
are employed to control the inverted pendulum. By setting aj = 1 for all j, the
stability conditions in Theorem 4.1 and performance conditions in Theorem
4.2 become LMIs. With the MATLAB LMI toolbox, the feedback gains of
the traditional fuzzy controllers subject to different values of the weighting
matrices J1 and J2 are found and given in Table 4.2. It should be noted that
no solution can be found for η = 0.1; hence, we choose η =0.2 to design the
traditional fuzzy controllers in this example. It can be seen that the BMI-
based stability and performance conditions are able to offer solution subject
to some tightened design conditions. The system responses and control signals
given by the traditional fuzzy controllers are shown in Fig. 4.5 and Fig. 4.6,
respectively. It can be seen that J1 and J2 influence the system responses in
a similar way. However, the proposed BMI-based fuzzy controllers are able to
perform better in terms of rise and settling times because the feedback gains
are achieved with a smaller value of η.

Table 4.4 Feedback gains for traditional fuzzy controllers 1 to 3 (with aj = 1 for
all j) in Example 4.2.

Feedback Gains η, J1 and J2

FC† 1 G1 =
[
2064.8162 150.9920 28.5666 134.2425

]
NA††

G2 =
[
2655.0591 191.2585 36.2692 164.1681

]

FC† 2 G1 =
[
363.6643 34.5143 0.2650 39.5054

]
η = 0.2

G2 =
[
766.9431 57.6057 0.3615 45.5768

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

FC† 3 G1 =
[
365.2711 34.6056 0.5969 39.5254

]
η = 0.2

G2 =
[
769.7314 57.7860 0.8160 45.6857

]
J2 = 1

J1 =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 1

⎤

⎥⎥⎦

† FC stands for Fuzzy Controller.
†† LMI performance conditions are not considered.
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Fig. 4.3 System state responses and control signals of the inverted pendulum with
fuzzy controllers 1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 4.3 (continued)
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Fig. 4.4 Control signals of the inverted pendulum with fuzzy controllers 1 (solid
lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 4.5 System state responses and control signals of the inverted pendulum with
traditional fuzzy controllers 1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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Fig. 4.5 (continued)
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Fig. 4.6 Control signals of the inverted pendulum with traditional fuzzy controllers
1 (solid lines), 2 (dotted lines) and 3 (dash lines).
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4.5 Conclusion

The system stability of FMB control systems subject to imperfectly matched
premise membership functions has been investigated. A fuzzy controller with
nonlinear state feedback gains has been proposed to deal with the nonlinear
plants. Comparing to the traditional fuzzy controller, the proposed one, with
enhanced nonlinearity, exhibits stronger stabilizability for nonlinear control
processes. Based on the Lyapunov stability theory, stability conditions in
terms of BMIs have been derived to guarantee the system stability. Further-
more, based on a scalar performance index function, performance conditions
in terms of BMIs have been derived. A GA-based convex programming tech-
nique has been proposed to search for the numerical solution of the BMI-based
stability and performance conditions. Simulation examples have been given
to show that the proposed BMI-based stability conditions are able to offer
larger stability regions and the proposed BMI-based performance conditions
can be applied to realize a well-performed FMB control system.



Chapter 5

Stability Analysis of FMB Control
Systems Using PDLF

5.1 Introduction

The FMB control approach offers a systematic way to control nonlinear sys-
tems. Based on the TS fuzzy model, a nonlinear plant can be represented
as a weighted sum of linear systems. This particular form offers a general
and systematic framework to represent the nonlinear plant and provides an
effective platform to facilitate stability analysis and controller synthesis. In
the past two decades, FMB control systems have been extensively investi-
gated, and flourish analysis results, particularly on the stability issue, have
been obtained. Some relaxed LMI-based stability conditions were derived and
introduced in Chapter 2.

The most popular tool for investigating the stability of FMB control sys-
tems is based on the Lyapunov stability theory. In general, FMB control
systems are mainly investigated with parameter-independent and parameter-
dependent Lyapunov functions. In Chapter 2, the analysis was conducted
with a quadratic Lyapunov function candidate. As the matrix of the quadratic
Lyapunov function does not depend on the system parameters/system states,
it is referred to as parameter-independent Lyapunov function (PILF) in this
book.

In [103], a fuzzy Lyapunov function (FLF), which is a kind of parameter-
dependent Lyapunov function (PDLF), was proposed. As further information
about the membership functions is considered and nonlinearity is introduced
in the Lyapunov function, the FLF demonstrated a great potential to fur-
ther relax the stability conditions as compared to PILF. However, for the
continuous-time case, the FLF will produce the time derivatives of member-
ship functions that complicate the stability analysis. (It was shown that the
time derivatives of membership functions will disappear under a particular
type of fuzzy models [96].) Furthermore, when the PDC fuzzy controller is
considered [96, 103], the stability conditions cannot be formulated in terms
of LMIs. As a result, the solution of the stability conditions cannot be found
numerically by some convex programming techniques such as the MATLAB

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 85–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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LMI toolbox. To hurdle the difficulty, a completing square technique was
proposed in [103] to formulate the stability conditions in terms of LMIs.
However, as redundant matrix terms are introduced in the stability analysis,
conservative stability conditions are obtained.

In [59, 107], to further utilize the advantages of the FLF, a non-PDC
fuzzy controller was proposed. Comparing to the PDC fuzzy controller, the
non-PDC fuzzy controller [59, 107] offers greater design flexibility and shows
greater potential to relax the stability conditions. Moreover, with the non-
PDC fuzzy controller, the stability conditions can be formulated in terms
of LMIs. The FLF was also employed to investigate the system stability of
discrete-time FMB control systems [19, 36].

In general, the PDLF approach is good for general applications while the
PILF approach is particularly good for some applications of which the bounds
of the time derivatives of membership functions are known. As more infor-
mation is included in the non-PDC fuzzy controller with PDLF, it has been
reported in [59, 107] that the PDLF analysis approach is superior to the PILF
approach in relaxing the stability conditions. As graphically illustrated in
Fig. 5.1, the PDC fuzzy controller with PILF and non-PDC fuzzy controller
with PDLF approaches are suitable for different classes of applications. It
can be seen that the PDC fuzzy controller with PILF is a subset of the
non-PDC fuzzy controller with PDLF. The latter approach is able to handle
applications with time derivatives of membership functions available.

In this chapter, we further extend our fundamental PDLF work in [59] to
investigate the FMB control systems subject to perfectly matched member-
ship functions. By taking advantage of the PDLF, relaxed stability condi-
tions are achieved by considering the characteristic of the fuzzy model. An
improved non-PDC fuzzy controller is proposed to close the feedback loop.
As the information about the time derivatives of membership functions is
considered by the non-PDC fuzzy controller, it allows the introduction of
slack matrices to facilitate the stability analysis. Based on the PDLF, stabil-
ity conditions in terms of LMIs are derived to guarantee the system stability
of the FMB control systems. It will be shown by simulation examples that
when the time derivatives of membership functions are considered, the non-
PDC stability conditions are more relaxed than the PDC ones. The proposed

Fig. 5.1 A diagram illustrating the coexistence of PDC+PILF and Non-
PDC+PDLF approaches.
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non-PDC fuzzy controller provides an alternative solution to applications of
which time derivatives of membership functions are available.

5.2 Non-PDC Fuzzy Controller

Consider the nonlinear plant represented by the TS fuzzy model (2.2). A non-
PDC fuzzy controller [59, 107] with p rules is proposed to close the feedback
loop and is described by the fuzzy rules of the following format:

Rule j: IF f1(x(t)) is M j
1 AND · · · AND fΨ(x(t)) is M j

Ψ

THEN u(t) =
(
Fj + G(x(t))

)
P(x(t))−1x(t), j = 1, 2, · · · , p (5.1)

where G(x(t)) =
∑p

j=1 ẇj(x(t))Gj , Fj ∈ �m×n, Gj ∈ �m×n, j = 1, 2,
· · · , p, are constant feedback gains to be determined; ẇj(x(t)) = d

dt
wj(x(t));

0 < P(x(t)) = P(x(t))T ∈ �n×n to be determined. The rest variables are
defined in Sections 2.2 and 2.3.

The inferred non-PDC fuzzy controller is defined as follows.

u(t) =
p∑

j=1

wj(x(t))
(
Fj + G(x(t))

)
P(x(t))−1x(t)

=
p∑

j=1

wj(x(t))FjP(x(t))−1x(t) +
p∑

j=1

ẇj(x(t))GjP(x(t))−1x(t) (5.2)

It should be noted that the non-PDC fuzzy controller (5.2) is only applica-
ble for a class of applications of which the time derivatives of membership
functions are available [59, 107]. Comparing to the traditional PDC-fuzzy
controller (2.6), the non-PDC fuzzy controller (5.2) contains additional in-
formation (time derivatives of the membership functions) to facilitate the
stability analysis.

Remark 5.1. It should be noted that the non-PDC fuzzy controller proposed
in this chapter shares the same premises with the fuzzy model.

Remark 5.2. The non-PDC fuzzy controller (5.2) is reduced to the traditional
one (2.6) when we choose P(x(t)) as a constant matrix and Gj = 0 for all j.

5.3 Stability Analysis Based on PDLF

The system stability of the FMB control system with perfectly matched
premise membership functions is investigated using a PDLF. Two non-PDC
fuzzy controllers are proposed to handle the nonlinear plants in the form
of (2.2). For brevity, wi(x(t)) and ẇi(x(t)) are denoted as wi and ẇi, re-
spectively. The property of the membership functions (2.9) is utilized in the
system analysis.
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In the following, the MFSD analysis technique in Chapter 3 is employed
to investigate the system stability. The relationship between the membership
functions of the fuzzy model and fuzzy controllers is used to introduce some
slack matrix variables in stability analysis through the S-procedure [6]. The
boundary information of the membership functions is brought to the stability
conditions and thus offers some relaxed stability conditions.

5.3.1 Non-PDC Fuzzy Controller

To facilitate the stability analysis, we consider the scalars ρ and σj that satisfy
the inequalities of wj = wj +ρẇj +σj ≥ 0 for all j and the operating domain
of x(t). The scalars ρ and σj can be found numerically when the form of wj

and ẇj are known; otherwise, the proposed non-PDC fuzzy control approach
cannot be applied. Based on the proposed inequalities, the non-PDC fuzzy
controller (5.2) is rewritten as the following form.

u(t) =
p∑

j=1

wjFjP(x(t))−1x(t) +
p∑

j=1

wjGjP(x(t))−1x(t) (5.3)

where Fj ∈ �m×n and Gj ∈ �m×n are constant feedback gains to be de-
termined. Reshuffling the terms of the non-PDC fuzzy controller (5.3), it
becomes

u(t) =
p∑

j=1

wjFjP(x(t))−1x(t) +
p∑

j=1

(wj + ρẇj + σj)GjP(x(t))−1x(t)

=
p∑

j=1

wj

(
Fj + Gj +

p∑

k=1

σkGk

)
P(x(t))−1x(t)

+
p∑

j=1

ẇjρGjP(x(t))−1x(t). (5.4)

Comparing (5.2) and (5.4) term by term, the non-PDC fuzzy controllers in
the form of (5.2), (5.3) and (5.4) are equivalent by choosing Fj = Fj +Gj +∑p

k=1 σkGk and Gj = ρGj for all j.

Remark 5.3. Comparing to the traditional PDC-fuzzy controller (2.6), the
non-PDC fuzzy controller (5.3) has an enhanced nonlinear feedback com-
pensation ability because of P(x(t))−1, which makes the non-PDC fuzzy
controller be more capable of compensating the nonlinearity of the plant.
Furthermore, the inequalities of wj >= 0 for all j relate the membership
functions and their time derivatives by the scalars ρ and σj that offer further
information of the nonlinear plant to facilitate the stability analysis.
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5.3.1.1 Stability Analysis of FMB Control Systems with
Non-PDC Fuzzy Controller

Considering the fuzzy model (2.2) and the non-PDC fuzzy controller (5.3)
connected in a closed loop, the FMB control system is obtained as follows.

ẋ(t) =
p∑

i=1

wi

(
Aix(t) + Bi

( p∑

j=1

wjFjP(x(t))−1x(t)

+
p∑

j=1

wjGjP(x(t))−1x(t)
))

=
p∑

i=1

p∑

j=1

wiwj(Ai + BiFjP(x(t))−1)x(t)

+
p∑

i=1

p∑

j=1

wiwjBiGjP(x(t))−1x(t) (5.5)

To investigate the system stability of the FMB control system (5.5), we
consider the following PDLF candidate.

V (t) = x(t)T P(x(t))−1x(t) (5.6)

where P(x(t)) = P(x(t))T =
∑p

k=1

∑p
l=1 wkwlPk,l > 0 and Pk,l = PT

l,k ∈
�n×n, k, l = 1, 2, · · · , p.

Remark 5.4. It is required that P(x(t)) > 0 which implies non-singularity.
Based on the matrix property, P(x(t)) > 0 implies that the inverse of P(x(t))
exists and P(x(t))−1 > 0.

Remark 5.5. The proposed PDLF is reduced to P(x(t)) = P(x(t))T =∑p
k=1 wkPk > 0 used in [107] when Pk = Pk,l are considered for all l.

Before proceeding further, the following lemma is introduced to facilitate the
stability analysis.

Lemma 5.1. For any invertible matrix P(x(t)), the time derivative of
P(x(t)) is given by,

Ṗ(x(t)) = −P(x(t))Ṗ(x(t))−1P(x(t))

Proof. Considering P(x(t))P(x(t))−1 = I, we have d
dt

P(x(t))P(x(t))−1 =
Ṗ(x(t))P(x(t))−1 + P(x(t))Ṗ(x(t))−1 = 0 Reshuffling the terms in the last
equation, Lemma 5.1 is achieved.

Denote z(t) = P(x(t))−1x(t). From (5.5), (5.6) and Lemma 5.1, we have
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V̇ (t) = ẋ(t)T P(x(t))−1x(t) + x(t)T P(x(t))−1ẋ(t) + x(t)T d

dt
P(x(t))−1x(t)

= x(t)T
( p∑

i=1

p∑

j=1

wiwj(Ai + BiFjP(x(t))−1)

+
p∑

i=1

p∑

j=1

wiwjBiGjP(x(t))−1
)T

P(x(t))−1x(t)

+ x(t)T P(x(t))−1
( p∑

i=1

p∑

j=1

wiwj(Ai + BiFjP(x(t))−1)

+
p∑

i=1

p∑

j=1

wiwjBiGjP(x(t))−1
)
x(t)

− x(t)T P(x(t))−1Ṗ(x(t))P(x(t))−1x(t)

=
p∑

i=1

p∑

j=1

wiwjz(t)T
(
P(x(t))AT

i + AiP(x(t)) + FT
j BT

i + BiFj

)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T
(
GT

j BT
i + BiGj

)
z(t)

− z(t)T

p∑

i=1

p∑

j=1

(
ẇiwjPi,j + wiẇjPi,j

)
z(t). (5.7)

Using the fact that wiwj = wjwi for all i and j, we have
∑p

i=1

∑p
j=1 wiwj

Pj,i =
∑p

i=1

∑p
j=1 wjwiPj,i =

∑p
i=1

∑p
j=1 wiwjPi,j , which will be used in

the following analysis. Expanding P(x(t)), (5.7) becomes
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V̇ (t) =
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
Pj,kAT

i + AiPj,k + FT
j BT

i + BiFj

)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T
(
GT

j BT
i + BiGj

)
z(t)

−
p∑

i=1

p∑

j=1

wi(ρẇj + wj − wj + σj − σj)z(t)T 1
ρ

(
Pi,j + Pj,i

)
z(t)

=
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
Pj,kAT

i + AiPj,k + FT
j BT

i + BiFj

)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T
(
GT

j BT
i + BiGj

)
z(t)

−
p∑

i=1

p∑

j=1

wiwjz(t)T 1
ρ

(
Pi,j + Pj,i

)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T 1
ρ

(
Pi,j + Pj,i

)
z(t)

+
p∑

i=1

wiz(t)T

p∑

r=1

σr

ρ

(
Pi,r + Pr,i

)
z(t)

=
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
Pj,k

(
Ai +

1
ρ
I
)T +

(
Ai +

1
ρ
I
)
Pj,k

+ FT
j BT

i + BiFj +
p∑

r=1

σr

ρ

(
Pi,r + Pr,i

))
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T
(
GT

j BT
i + BiGj − 1

ρ

(
Pi,j + Pj,i

))
z(t) (5.8)

Considering arbitrary matrices of Λi = ΛT
i ∈ �n×n, i = 1, 2, · · · , p, and based

on the property of the membership functions of (2.3), we have
∑p

i=1 wi = 1
and

∑p
i=1 ẇi = 0 which lead to

∑p
i=1

∑p
j=1 wiẇjΛi = 0. It can be written

as
∑p

i=1

∑p
j=1 wi(ρẇj + wj −wj + σj − σj) 1

ρΛi =
∑p

i=1

∑p
j=1 wi(wj −wj −

σj) 1
ρ
Λi =

∑p
i=1

∑p
j=1 wiwj

1
ρ
Λi −

∑p
i=1

∑p
j=1 wi(wj +σj) 1

ρ
Λi =

∑p
i=1

∑p
j=1

wiwj
1
ρΛi −

∑p
i=1

∑p
j=1 wiwj( 1

ρ +
∑p

k=1
σk

ρ )Λi = 0. Adding the last equation
to (5.8), we have,
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V̇ (t) =
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
Pj,k

(
Ai +

1
ρ
I
)T +

(
Ai +

1
ρ
I
)
Pj,k

+ FT
j BT

i + BiFj +
p∑

r=1

σr

ρ

(
Pi,r + Pr,i

)− (1
ρ

+
p∑

r=1

σr

ρ

)
Λi

)
z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T
(
GT

j BT
i + BiGj − 1

ρ

(
Pi,j + Pj,i

)
+

1
ρ
Λi

)
z(t)

(5.9)

Denote Ξ =
∑p

i=1

∑p
j=1

∑p
k=1 wiwjwkΞijk where

Ξijk = Pj,k

(
Ai +

1
ρ
I
)T +

(
Ai +

1
ρ
I
)
Pj,k + FT

j BT
i + BiFj

+
p∑

r=1

σr

ρ

(
Pi,r + Pr,i

)− (1
ρ

+
p∑

r=1

σr

ρ

)
Λi ∀ i, j, k. (5.10)

By following the analysis procedure in [24], we have,

Ξ =
p∑

i=1

w3
i Ξiii +

p∑

i=1

p∑

j=1,j �=i

w2
i wj(Ξiij + Ξiji + Ξjii)

+
p−2∑

i=1

p−1∑

j=i+1

p∑

k=j+1

wiwjwk(Ξijk + Ξikj + Ξjik + Ξkij + Ξjki + Ξkji).

(5.11)

Define Yiii = YT
iii ∈ �n×n, i = 1, 2, · · · , p, Yiij = YT

jii ∈ �n×n, Yiji =
YT

iji ∈ �n×n, i, j = 1, 2, · · · , p; i �= j, Yijk = YT
kji ∈ �n×n, Yikj = YT

jki ∈
�n×n and Yjik = YT

kij ∈ �n×n, i = 1, 2, · · · , p-2; j = i+1, i+2, · · · , p-1; k
= j+1, j+2, · · · , p

Let

Yiii ≥ Ξiii ∀ i (5.12)

Yiij + Yiji + Yjii ≥ Ξiij + Ξiji + Ξjii ∀ i, j ; i �= j (5.13)

Yijk + Yikj + Yjik + Ykij + Yjki + Ykji ≥ Ξijk + Ξikj + Ξjik + Ξkij

+ Ξjki + Ξkji, i = 1, 2, · · · , p − 2; j = i + 1, i + 2, · · · , p − 1; k = j + 1, j + 2, · · · , p
(5.14)

From (5.12) to (5.14), we have
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Ξ ≤
p∑

i=1

w3
i Yiii +

p∑

i=1

p∑

j=1,j �=i

w2
i wj(Yiij + Yiji + Yjii)

+
p−2∑

i=1

p−1∑

j=i+1

p∑

k=j+1

wiwjwk(Yijk + Yikj + Yjik + Ykij + Yjki + Ykji).

(5.15)

From (5.9) to (5.15), considering GT
j BT

i + BiGj − 1
ρ

(
Pi,j + Pj,i

)
+ 1

ρ
Λi < 0

for all i and j, we have

V̇ (t) ≤
p∑

i=1

w3
i z(t)T Yiiiz(t) +

p∑

i=1

p∑

j=1,j �=i

w2
i wjz(t)T (Yiij + Yiji + Yjii)z(t)

+
p−2∑

i=1

p−1∑

j=i+1

p∑

k=j+1

wiwjwkz(t)T (Yijk + Yikj + Yjik + Ykij

+ Yjki + Ykji)z(t)

=
p∑

k=1

wkr(t)T Ykr(t) (5.16)

where r(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦, Yk =

⎡

⎢⎢⎢⎣

Y1k1 Y1k2 · · · Y1kp

Y2k1 Y2k2 · · · Y2kp

...
...

...
...

Ypk1 Ypk2 · · · Ypkp

⎤

⎥⎥⎥⎦.

Remark 5.6. Referring to the PDLF (5.6), it is required that P(x(t)) =∑p
k=1

∑p
l=1 Pk,l > 0 , which can be written as

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎣

P1,1 P1,2 · · · P1,p

P2,1 P2,2 · · · P2,p

...
...

...
...

Pp,1 Pp,2 · · · Pp,p

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦ > 0.

Thus, P(x(t)) > 0 is achieved by

⎡

⎢⎢⎢⎣

P1,1 P1,2 · · · P1,p

P2,1 P2,2 · · · P2,p

...
...

...
...

Pp,1 Pp,2 · · · Pp,p

⎤

⎥⎥⎥⎦
> 0.

From (5.6) and (5.16), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of the
FMB control system (4.4), i.e., x(t) → 0 when time t → ∞, can be achieved
if the stability conditions summarized in the following theorem are satisfied.
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Theorem 5.1. The FMB control system (5.5), formed by the nonlinear plant
represented by the fuzzy model (2.2) and the fuzzy controller (5.3) connected
in a closed loop, is asymptotically stable if there exist pre-defined scalars ρ
and and σi, i = 1, 2, · · · , p, satisfying wi(x(t))+ρẇi(x(t))+σi ≥ 0 and there
exist matrices Fj ∈ �m×n, Gj ∈ �m×n, j = 1, 2, · · · , p, Pk,l = PT

l,k ∈ �n×n,
k, l = 1, 2, · · · , p, Yiii = YT

iii ∈ �n×n, i = 1, 2, · · · , p, Yiij = YT
jii ∈ �n×n,

Yiji = YT
iji ∈ �n×n, i, j = 1, 2, · · · , p; i �= j, Yijk = YT

kji ∈ �n×n,
Yikj = YT

jki ∈ �n×n, Yjik = YT
kij ∈ �n×n, i = 1, 2, · · · , p-2; j = i+1, i+2,

· · · , p-1; k = j+1, j+2, · · · , p and Λi = Λi ∈ �n×n, i = 1, 2, · · · , p, such
that the following LMIs are satisfied.

LMIs of (5.12) to (5.14);

⎡

⎢⎢⎢⎣

P1,1 P1,2 · · · P1,p

P2,1 P2,2 · · · P2,p

...
...

...
...

Pp,1 Pp,2 · · · Pp,p

⎤

⎥⎥⎥⎦ > 0;

GT
j BT

i + BiGj − 1
ρ

(
Pi,j + Pj,i

)
+

1
ρ
Λi < 0 ∀ i, j.

5.3.2 An Improved Non-PDC Fuzzy Controller

It is found that the stability analysis can be improved by including the mem-
bership function wk in the second term of the non-PDC fuzzy controller of
(5.3). Hence, we propose an improved non-PDC fuzzy controller in the fol-
lowing form:

u(t) =
p∑

j=1

wjFjP(x(t))−1x(t) +
p∑

j=1

p∑

k=1

wjwkHjkP(x(t))−1x(t) (5.17)

where Hjk ∈ �m×n, j, k = 1, 2, · · · , p, are feedback gains to be determined.

Remark 5.7. Comparing to the non-PDC fuzzy controller (5.3), the extra
membership functions wk in the second term of (5.17) is able to further
enhance the nonlinearity for feedback compensation. However, it complicates
the controller structure that may increases the implementation cost. It is thus
suggested that the non-PDC fuzzy controller (5.3) is employed for initial de-
sign. If no feasible design is achieved, the one in (5.17) can be employed.

In the following, we consider the FMB control system formed by connecting
the fuzzy model (2.2) and the improved non-PDC fuzzy controller (5.17) in
a closed loop that is shown as follows.
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ẋ(t) =
p∑

i=1

wi

(
Aix(t) + Bi

( p∑

j=1

wjFjP(x(t))−1x(t)

+
p∑

j=1

p∑

k=1

wjwkHjkP(x(t))−1x(t)
))

=
p∑

i=1

p∑

j=1

wiwj(Ai + BiFjP(x(t))−1)x(t)

+
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkBiHjkP(x(t))−1x(t) (5.18)

We consider the PDLF candidate (5.6) to investigate the system stability
of (5.18). By introducing the slack matrices Λik = Λki ∈ �n×n, we have∑p

i=1

∑p
k=1 wiwkΛik

∑p
j=1 ẇj =

∑p
i=1

∑p
j=1

∑p
k=1 wiẇjwkΛik = 0. From

the (5.6) and (5.18), recalling that z(t) = P(x(t))−1x(t) and following the
same line of derivation procedure as in the previous section, we have

V̇ (t) =
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
Pj,k

(
Ai +

1
ρ
I
)T +

(
Ai +

1
ρ
I
)
Pj,k

+ FT
j BT

i + BiFj +
p∑

r=1

σr

ρ

(
Pi,r + Pr,i

) − (1
ρ

+
p∑

r=1

σr

ρ

)
Λik

)
z(t)

+
p∑

i=1

p∑

j=1

p∑

k=1

wiwjwkz(t)T
(
HT

jkB
T
i + BiHjk − 1

ρ

(
Pi,j + Pj,i

)

+
1
ρ
Λik

)
z(t). (5.19)

Denote

Ξijk = Pj,k

(
Ai +

1
ρ
I
)T +

(
Ai +

1
ρ
I
)
Pj,k + FT

j BT
i + BiFj

+
p∑

r=1

σr

ρ

(
Pi,r + Pr,i

)− (1
ρ

+
p∑

r=1

σr

ρ

)
Λik ∀ i, j, k (5.20)

which satisfy (5.12) to (5.14). Introducing matrices Sijk = Skji ∈ �n×n, we
consider the following inequalities.

Siji > HT
jiB

T
i + BiHji − 1

ρ

(
Pi,j + Pj,i

)
+

1
ρ
Λii ∀ i, j (5.21)
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Sijk + ST
ijk ≥ HT

jkB
T
i + BiHjk − 1

ρ

(
Pi,j + Pj,i

)
+

1
ρ
Λik

+ HT
jiB

T
k + BkHji − 1

ρ

(
Pk,j + Pj,k

)
+

1
ρ
Λki ∀ j, k; i < k

(5.22)

From (5.12) to (5.14), (5.21) to (5.22), (5.19) becomes

V̇ (t) ≤
p∑

k=1

wkr(t)T Ykr(t) +
p∑

i=1

p∑

j=1

wjw
2
i z(t)

T Sijiz(t)

+
p∑

j=1

∑

i<k

wjwiwkz(t)T (Sijk + ST
ijk)z(t)

=
p∑

i=1

wkr(t)T Ykr(t) +
p∑

k=1

wkr(t)T Skr(t) (5.23)

where Sk =

⎡

⎢⎢⎢⎣

S1k1 S1k2 · · · S1kp

S2k1 S2k2 · · · S2kp

...
...

...
...

Spk1 Spk2 · · · Spkp

⎤

⎥⎥⎥⎦.

From (5.6) and (5.23), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of the
FMB control system (5.5), i.e., x(t) → 0 when time t → ∞, can be achieved
if the stability conditions summarized in the following theorem are satisfied.

Theorem 5.2. The FMB control system (5.5), formed by the nonlinear plant
represented by the fuzzy model (2.2) and the fuzzy controller (5.17) connected
in a closed loop, is asymptotically stable if there exist pre-defined scalars ρ and
and σi, i = 1, 2, · · · , p, satisfying wi(x(t))+ρẇi(x(t))+σi ≥ 0 and there exist
matrices Fj ∈ �m×n, Hjk ∈ �m×n, j, k = 1, 2, · · · , p, Pk,l = PT

l,k ∈ �n×n,
k, l = 1, 2, · · · , p, Yiii = YT

iii ∈ �n×n, i = 1, 2, · · · , p, Yiij = YT
jii ∈ �n×n,

Yiji = YT
iji ∈ �n×n, i, j = 1, 2, · · · , p; i �= j, Yijk = YT

kji ∈ �n×n,
Yikj = YT

jki ∈ �n×n, Yjik = YT
kij ∈ �n×n, i = 1, 2, · · · , p-2; j = i+1, i+2,

· · · , p-1; k = j+1, j+2, · · · , p and Λik = Λki ∈ �n×n, i, k = 1, 2, · · · , p,
such that the following LMIs are satisfied.

LMIs of (5.12) to (5.14), (5.21), (5.22);

Yi < 0;

Si < 0 ∀ i;
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⎡

⎢⎢⎢⎣

P1,1 P1,2 · · · P1,p

P2,1 P2,2 · · · P2,p

...
...

...
...

Pp,1 Pp,2 · · · Pp,p

⎤

⎥⎥⎥⎦
> 0.

Remark 5.8. The proposed PDLF-based non-PDC fuzzy control approach can
be applied subject to the following conditions.

1. The FMB control systems are subject to perfectly matched premised mem-
bership functions. It means the fuzzy controller has to share the same
membership functions as those of the TS fuzzy model.

2. The forms of the membership functions and their time derivatives have to
be known and do not depend on the control input, u(t), in order to find
the scalars ρ and σj that provide information of the membership functions
to facilitate the stability analysis.

Remark 5.9. In this chapter, the stability analysis requires the inequalities of
wi(x(t)) + ρẇi(x(t)) + σi ≥ 0, i = 1, 2, · · · , p, to be satisfied. The scalars
of ρ and σi bring the MFB information to the stability analysis. Hence, the
stability analysis is considered as an MFSD analysis approach.

The solution of the stability conditions in Theorem 2.4 is a particular case of
the solution of the proposed stability conditions in Theorem 5.1 and Theorem
5.2. It can be shown that if we choose Pj,j = P for all j (where P is a constant
symmetric positive definite matrix), Pj,k = 0 for all j �= k, Gj = 0 for all j,
and Λi = 0 for all i (for Theorem 5.1) or Λij = 0 for all i and j (for Theorem
5.2); the stability conditions in Theorem 5.1 and Theorem 5.2 are reduced to
the stability conditions in Theorem 2.4. It was reported that Theorem 2.1 to
Theorem 2.3 are particular cases of Theorem 2.4. Hence, it can be concluded
that the solutions of the particular cases of Theorem 2.1 to Theorem 2.3 are
also the solutions of the proposed stability conditions in Theorem 5.1 and
Theorem 5.2. Further relaxed stability conditions can be achieved by using
the analysis procedure with the Polya’s Theorem [97].

Example 5.1. Consider the TS fuzzy plant model in the form of (2.2) with

x(t) =
[
x1(t) x2(t) x3(t)

]T , A1 =

⎡

⎣
1.59 −7.29 0
0.01 0 0
0 −0.17 0

⎤

⎦, A2 =

⎡

⎣
0.02 −4.64 0
0.35 0.21 0
0 −0.78 0

⎤

⎦,

A3 =

⎡

⎣
−a −4.33 0
0 −0.05 0
0 0 −0.21

⎤

⎦, B1 =

⎡

⎣
1
0
0

⎤

⎦, B2 =

⎡

⎣
8
0
0

⎤

⎦, B3 =

⎡

⎣
−b + 6
−1
0

⎤

⎦, where

2 ≤ a ≤ 12 and 2 ≤ b ≤ 24 are constant parameters.
The membership functions are defined as w1(x3(t)) = μM1

1
(x3(t)) =

1 − 1

1+e
− x3(t)+1

0.8
, w2(x3(t)) = μM2

1
(x3(t)) = 1 − w1(x3(t)) − w3(x3(t)),

w3(x3(t)) = μM3
1
(x3(t)) = 1

1+e
− x3(t)−1

0.8
. Based on the membership functions
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and the operating region of the TS fuzzy model, the time derivatives of

the membership functions are obtained as ẇ1(x3(t)) = − 1.25e− x3(t)+1
0.8 ẋ3(t)(

1+e− x3(t)+1
0.8

)2 ,

ẇ2(x3(t)) = −ẇ1(x3(t))− ẇ3(x3(t)) and ẇ3(x3(t)) = 1.25e− x3(t)−1
0.8 ẋ3(t)(

1+e− x3(t)−1
0.8

)2 where

ẋ3(t) =
( − 0.17w1(x3(t)) − 0.78w2(x3(t))

)
x2(t) − 0.21w3(x3(t))x3(t) as

given by the TS fuzzy model. It can be seen that the time derivatives of
the membership functions are independent of the control signal u(t) as re-
quired by the conditions stated in Remark 5.8. Based on the membership
functions and their derivatives, it can be found numerically that ρ = 1,
σ1 = −0.012993, σ2 = −0.093097 and σ3 = −0.001244 satisfy the inequali-
ties of wi(x3(t)) + ρẇi(x3(t)) + σi ≥ 0 , i = 1, 2, 3.

In this example, the proposed non-PDC fuzzy controllers (5.3) and (5.17)
are employed to close the feedback loop of the TS fuzzy model. The stability
conditions in Theorem 5.1 and Theorem 5.2 are employed respectively to
check for the stability regions. The stability regions corresponding to the
non-PDC fuzzy controllers (5.3) and (5.17) are shown in Fig. 5.2 denoted
by ‘×’ and ‘◦’, respectively. It can be seen that the stability conditions in
Theorem 5.2 offer a larger stability region. However, the non-PDC fuzzy
controller (5.17) has a more complex structure than the one of (5.3). Hence,
in the overlapping stability region in Fig. 5.2, it is suggested to employ the
non-PDC fuzzy controller (5.3) for the control process to lower the structural
complexity of the controller.

For comparison purposes, the stability conditions in [59, 107] are employed
to check for the stability regions, which are shown in Fig. 5.3 denoted by
‘×’ and ‘◦’ respectively. Furthermore, the published stability conditions in
Theorem 2.4 and Theorem 2.5 (the degree of fuzzy summation [97] is chosen
as d = 4) are also employed to check for the stability regions which are shown
in Fig. 5.4. As the stability conditions in Theorem 2.1 to Theorem 2.3 are
particular cases of those in Theorem 2.4, hence, the stability regions offered
by them are not shown. It can be seen that the proposed stability conditions
in this chapter offer larger stability regions than the published ones.

Remark 5.10. It has been shown in Fig. 5.2 to Fig. 5.4 that the proposed
stability conditions in Theorem 5.1 and Theorem 5.2 are more relaxed than
the published ones. However, the proposed non-PDC controllers have com-
paratively more complicated structures. Hence, it is recommended that the
published stability conditions under the PDC design and PILF analysis
approach should be employed first to design the fuzzy controller for sim-
pler structure and lower implementation cost. If a feasible design cannot be
realized, the proposed stability conditions can then be employed.
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Fig. 5.2 Stability regions given by Theorem 5.1 (‘×’) and Theorem 5.2 (‘◦’).
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Fig. 5.3 Stability regions given by stability conditions in [107] (‘×’) and [59] (‘◦’).
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Fig. 5.4 Stability regions given by Theorem 2.4 (‘×’) and Theorem 2.5 (‘◦’).

5.4 Conclusion

The system stability of FMB control systems subject to perfectly matched
premised membership functions has been investigated under the PDLF ap-
proach. Two types of non-PDC fuzzy controllers have been proposed to con-
trol the nonlinear plants. The proposed controllers employ both the mem-
bership functions and their derivatives for the feedback compensation of the
plant nonlinearity. Furthermore, the information of the membership function
boundary has been utilized to facilitate the stability analysis. LMI-based sta-
bility conditions have been obtained to achieve stable FMB control systems.
It has been shown that the solution of the stability conditions under the
PDC design and MFSI analysis approach discussed in Chapter 2 is a partic-
ular case of the proposed ones in this chapter. Through simulation examples,
it has been demonstrated that the proposed stability conditions under the
non-PDC design and PDLF analysis approach are more relaxed than some
published ones.



Chapter 6

Regional Switching FMB Control Systems

6.1 Introduction

In the previous chapters, the stability analysis of FMB control systems sub-
ject to perfectly and imperfectly matched premise membership functions was
investigated. Various techniques, such as the MFSI and MFSD approaches
with PILF/PDLF, were introduced for relaxing the stability conditions. Un-
der these approaches, a single fuzzy controller is employed for the control
process.

However, if the nonlinearity of the plant is strong enough, it is possible that
a single fuzzy controller is not able to compensate the nonlinearity and sta-
bilize the plant. In this chapter, a regional switching fuzzy control technique
was proposed [64, 106] to handle nonlinear plants with strong nonlinearity.
The basic idea is illustrated in Fig. 6.1. The operating region of the nonlinear
plant is divided into a number of operating sub-regions. Referring to Fig. 6.1,
it is assumed that the system has 2 system states, namely x1(t) and x2(t).
The operating region is denoted by the dash square, which contains 4 sub-
regions denoted as R1 to R4. Corresponding to each sub-region, a local TS
fuzzy model is employed to describe the system dynamics of the plant. Based
on each local TS fuzzy model, a local fuzzy controller is designed accordingly.
As the nonlinearity for each operating sub-region is weaker than that for the
full operating region, it is more likely to come up with a stable design in each
sub-region. When the FMB control system is working in Ri, i = 1, 2, 3, 4,
the i-th local fuzzy controller is employed to control the system. The result-
ing switching FMB control approach offers a potential to further relax the
stability conditions. The switching FMB control approach was investigated
in [21, 22, 128]. By using the fuzzy combination technique [62], the abrupt
change of the control signal due to the switching activity is smoothed out.
Some other switching fuzzy control techniques can be found in [57, 63, 65].

In [21, 22, 62, 64, 106, 128], the stability analysis is subject to the follow-
ing limitations: 1) it is required that a switching TS fuzzy model is needed
for the stability analysis and controller synthesis. In some situations, it is

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 101–122.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 6.1 A diagram illustrating the concept of regional switching FMB control
approach.

inconvenient or difficult to obtain the switching TS fuzzy model. For exam-
ple, when input-output data are needed for constructing the TS fuzzy model,
it may be difficult to obtain the data for the nonlinear plant that works in
a particular region, especially when a large number of small operating sub-
regions are considered. 2) The stability analysis is conducted under perfectly
matched premise membership functions. Hence, the regional switching FMB
control approach [21, 22, 62, 64, 106, 128] cannot be applied for nonlinear
plants subject to parameter uncertainties appearing in the premise member-
ship functions of the fuzzy model. In this chapter, another regional switching
FMB control approach is proposed to deal with nonlinear plants with strong
nonlinearity. The proposed approach is able to circumvent the aforementioned
limitations by using the regional information together with the consideration
of membership functions.

6.2 Regional Switching Fuzzy Controller

Considering that the operating domain is divided to c operating sub-regions,
a fuzzy controller for the operating sub-region j is proposed to control the
nonlinear plant represented by the fuzzy model (2.2). The k-th rule for the
j-th regional fuzzy controller is of the following form:

Rule k: IF gj1(x(t)) is N jk
1 AND · · · AND gjΩ (x(t)) is N jk

Ω

THEN uj(t) = Gjkx(t), j = 1, 2, . . . , c; k = 1, 2, . . . , p (6.1)

where N jk
β is the fuzzy set of rule k corresponding to the function gjβ(x(t)),

β = 1, 2, · · · , Ω ; Gjk ∈ �m×n, is the constant feedback gain of rule k for
the j-th regional fuzzy controller; uj(t) ∈ �m×n is the input vector for the
j-th sub-operating domain. The rest variables are defined in Section 2.3. The
inferred j-th regional switching (RS) fuzzy controller is defined as follows.
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uj(t) =
p∑

k=1

mjk(x(t))Gjkx(t) (6.2)

where

mjk(x(t)) ≥ 0 ∀ j, k,

p∑

k=1

mjk(x(t)) = 1 ∀ j, (6.3)

mjk(x(t)) =

Ω∏

l=1

μ
Njk

l
(gjl(x(t)))

p∑

k=1

Ω∏

l=1

μ
N

jk
l

(gjl(x(t)))

∀ j, (6.4)

mjk(x(t)), j = 1, 2, · · · , c, k = 1, 2, · · · , p, are the normalized grades of
membership function, μNjk

β
(gβ(x(t))), β = 1, 2, · · · , Ω , k = 1, 2, · · · , p, are

the membership functions corresponding to the fuzzy set N jk
β .

The j-th regional fuzzy controller defined in (6.2) is applied when the non-
linear plant is working in the j-th operating sub-region, which is characterized
by the constraints hς ≤ hς(x(t)) ≤ hς , where ς = 1, 2, · · · , Φ; Φ is an integer
denoting the number of constraints in each operating sub-region; hς and hς

being scalar constants are the boundaries of the j-th operating sub-region.
For example, referring to Fig. 6.1, we choose h1(x(t)) as x1(t) and h2(x(t))
as x2(t). The 2 constraints of x11 ≤ x1(t) ≤ x12 and x21 ≤ x2(t) ≤ x22

characterize the sub-region R1, where x11, x12, x21 and x22 are defined in
Fig. 6.1.

Define a scalar function vj(x(t)) which takes the value of 1 if hς(x(t))
indicates that the system states are inside the j-th operating sub-region;
otherwise, vj(x(t)) = 0. As there is no overlapping between operating sub-
regions, it exhibits the property of

∑c
j=1 vj(x(t)) = 1. With this concept,

from (6.2), the overall regional switching fuzzy controller is defined as follows.

u(t) =
c∑

j=1

vj(x(t))uj(t)

=
c∑

j=1

p∑

k=1

vj(x(t))mjk(x(t))Gjkx(t) (6.5)

Remark 6.1. With the function vj(x(t)), when the system is working in the
j-th operating sub-region, the corresponding j-th regional fuzzy controller
will be activated to perform the control process.

Remark 6.2. The regional switching fuzzy controller is reduced to the tra-
ditional fuzzy controller (2.6) when we choose c = 1 (i.e. the full operat-
ing region is considered). Consequently, comparing (2.6) with (6.5), we have
mk(x(t)) = mjk(x(t)) and Gk = Gjk for all j.



104 6 Regional Switching FMB Control Systems

Fig. 6.2 A diagram illustrating the concept of regional switching FMB control
approach.

A block diagram illustrating the regional switching fuzzy control scheme
is shown in Fig. 6.2.

6.3 Stability Analysis of Regional Switching FMB
Control Systems

Considering the fuzzy model (2.2) and the RS fuzzy controller (6.5) connected
in a closed loop, the RS FMB control system is obtained as follows.

ẋ(t) =
p∑

i=1

wi(x(t))
(
Aix(t) + Bi

c∑

j=1

p∑

k=1

vj(x(t))mjk(x(t))Gjkx(t)
)

=
p∑

i=1

c∑

j=1

p∑

k=1

wi(x(t))vj(x(t))mjk(x(t))(Ai + BiGjk)x(t) (6.6)

For brevity, wi(x(t)), vj(x(t)) and mjk(x(t)) are denoted as wi, vj and mjk,
respectively. In the following analysis, as given by the property of these vari-
ables, the equality

∑p
i=1 wi(x(t)) =

∑c
j=1 vj(x(t)) =

∑p
k=1 mjk(x(t)) =∑p

i=1

∑c
j=1

∑p
k=1 wi(x(t))vj(x(t))mjk(x(t)) = 1 will be utilized. To inves-

tigate the system stability of the regional switching FMB control system
(6.6), we consider the quadratic Lyapunov function candidate (3.1). Define
X = P−1, z(t) = X−1x(t) and the feedback gains of the fuzzy controller as
Gjk = NjkX−1, j = 1, 2, · · · , c, k = 1, 2, · · · , p, where Njk ∈ �m×n.

From (3.1) and (6.6), we have
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V̇ (t) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

=
p∑

i=1

c∑

j=1

p∑

k=1

wivjmjkx(t)T
(
(Ai + BiGjk)T P + P(Ai + BiGjk)

)
x(t)

=
p∑

i=1

c∑

j=1

p∑

k=1

wivjmjkz(t)T Qijkz(t) (6.7)

where Qijk = AiX + XAT
i + BiNjk + NT

jkB
T
i for all i, j and k.

Remark 6.3. When c = 1, the RS FMB control system is reduced to (2.10).
Then, two cases have been investigated. Case 1 (Imperfectly matched premise
membership functions): when the number of rules of the fuzzy model and the
fuzzy controller are different, the system stability of the RS FMB control
system (6.6) is guaranteed by the stability conditions in Theorem 2.1. Case
2 (Perfectly matched premise membership functions): when the fuzzy model
and the fuzzy controller share the same set of premise rules and member-
ship functions, the stability conditions in Theorem 2.2 to Theorem 2.5 were
derived to examine the system stability and facilitate the controller synthesis.

In the following, we will investigate the stability of the RS FMB control sys-
tems (6.6) based on the Lyapunov stability theory for the cases of imperfectly
and perfectly matched premise membership functions.

6.3.1 Imperfectly Matched Premise Membership
Functions Based Inequalities

It should be noted that we cannot produce relaxed stability conditions by
directly following the stability analysis approach for Theorem 2.2 to Theo-
rem 2.5 as the regional information is not considered. To bring the regional
information into the stability analysis, we propose some MFSI and MFSD
inequalities to introduce some slack matrices.

Based on the property of the membership functions that
∑p

k=1 wk =∑p
k=1 mjk = 1, we have

∑p
k=1(wk − mjk) = 0 for all j. Introducing slack

matrices Λij = ΛT
ij ∈ �n×n and Vjk = VT

jk ∈ �n×n, we have the following
MFSI inequalities.

p∑

i=1

p∑

k=1

wi(wk − mjk)Λij = 0 (6.8)

p∑

i=1

p∑

k=1

(wi − mji)mjkVjk = 0 (6.9)

As shown in Chapter 3, the boundary information of the membership func-
tions plays an important role for the stability analysis. Introducing slack
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matrices 0 ≤ Mijk = MT
kji ∈ �n×n and 0 ≤ Wijk = WT

kji ∈ �n×n, i, k =
1, 2, · · · , p; j = 1, 2, · · · , c, we consider the following MFSD inequalities for
the j-th operating sub-region.

p∑

i=1

p∑

k=1

(wiwk − wimjk − mjiwk + mjimjk − ρijk)Mijk ≥ 0 ∀ j (6.10)

p∑

i=1

p∑

k=1

(σijk − (wiwk − wimjk − mjiwk + mjimjk))Wijk ≥ 0 ∀ j (6.11)

where ρijk and σijk are constant scalars to be determined and satisfy the
inequalities wiwk −wimjk −mjiwk + mjimjk − ρijk ≥ 0 and σijk − (wiwk −
wimjk − mjiwk + mjimjk)) ≥ 0, respectively, for all i, j and k.

Furthermore, for the j-th operating sub-region, it is assumed that the
membership functions satisfy the following inequalities.

δji ≤ wi(x(t)) ≤ εji ∀ i, j (6.12)

ηjk ≤ mjk(x(t)) ≤ γjk ∀ j, k (6.13)

where the scalar constants of δji, εji, ηjk and γjk are the lower or upper
membership-function boundaries. Consequently, introducing slack matrices
0 < Hijk = HT

ijk ∈ �n×n, 0 < Jijk = JT
ijk ∈ �n×n, 0 < Kijk = KT

ijk ∈ �n×n

and 0 < Lijk = LT
ijk ∈ �n×n for all i, j and k, we can construct the following

regional MFSD inequalities for the j-th operating sub-region.

p∑

i=1

p∑

k=1

(wi − δji)(wk − δjk)Hijk ≥ 0 ∀ j (6.14)

p∑

i=1

p∑

k=1

(εji − wi)(εjk − wk)Jijk ≥ 0 ∀ j (6.15)

p∑

i=1

p∑

k=1

(mji − ηji)(mjk − ηjk)Kijk ≥ 0 ∀ j (6.16)

p∑

i=1

p∑

k=1

(γji − mji)(γjk − mjk)Lijk ≥ 0 ∀ j (6.17)
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Remark 6.4. The matrix and scalar variables in (6.10) to (6.17) contain the
regional and boundary information of the FMB control system to facilitate
the stability analysis. It should be noted that there must exist the lower and
upper bounds (ρijk, σijk, δji, εji, ηji and γji) such that the inequalities of
(6.10) to (6.17) are satisfied. As the form of the membership functions of
wi(x(t)) and mjk(x(t)) is known, the lower and upper bounds can be found
analytically or numerically.

6.3.2 Stability Analysis with Imperfectly Matched
Premise Membership Functions

Adding the inequalities of (6.10) and (6.11) to (6.11), we have the follows.

V̇ (t) ≤
p∑

i=1

c∑

j=1

p∑

k=1

wivjmjkz(t)T Qijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

vj(wiwk − wimjk − mjiwk + mjimjk − ρijk)z(t)TMijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

vj(σijk − (wiwk − wimjk − mjiwk + mjimjk))z(t)T Wijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

wivj(wk − mjk)z(t)T Λijz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

(wi − mji)vjmjkz(t)T Vjkz(t)

=
p∑

i=1

c∑

j=1

p∑

k=1

wivjmjkz(t)T (Qijk − Mijk − Mkji + Wijk + Wkji

− Λij + Vjk)z(t) +
p∑

i=1

c∑

j=1

p∑

k=1

wivjwkz(t)T (Mijk − Wijk

+ Λij +
p∑

r=1

p∑

s=1

(σrjsWrjs − ρrjsMrjs)
)
z(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

mjivjmjkz(t)T (Mijk − Wijk − Vjk)z(t) (6.18)

Furthermore, reshuffling the terms in (6.18) and considering the inequalities
of (6.14) to (6.17), (6.18) becomes the following.
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V̇ (t) ≤
p∑

i=1

c∑

j=1

p∑

k=1

wivjmjkz(t)T (Qijk − Mijk − Mkji + Wijk + Wkji

− Λij + Vjk)z(t) +
p∑

i=1

c∑

j=1

p∑

k=1

wivjwkz(t)T
(
Mijk − Wijk

+ Λij + Hijk + Jijk +
p∑

r=1

p∑

s=1

(σrjsWrjs − ρrjsMrjs + δjrδjsHrjs

+ εjrεjsJrjs + ηjrηjsKrjs + γjrγjsLrjs) −
p∑

r=1

(
δjr(Hijr + Hrji)

+ εjr(Jijr + Jrji)
))

z(t) +
p∑

i=1

c∑

j=1

p∑

k=1

mjivjmjkz(t)T
(
Mijk − Wijk

− Vjk + Kijk + Lijk−
p∑

r=1

(
ηjr(Kijr + Krji)+γjr(Lijr + Lrji)

))
z(t)

(6.19)

Introducing matrices Rijk = RT
kji ∈ �n×n, Sijk ∈ �n×n and Tijk = TT

kji ∈
�n×n for all i, j and k, we consider the following inequalities.

Riji > Miji − Wiji − Vji + Kiji + Liji

−
p∑

r=1

(
ηjr(Kijr + Krji) + γjr(Lijr + Lrji)

) ∀ i, j (6.20)

Rijk + RT
ijk ≥ Mijk − Wijk − Vjk + Kijk + Lijk

−
p∑

r=1

(
ηjr(Kijr + Krji) + γjr(Lijr + Lrji)

)

+ Mkji − Wkji − Vji + Kkji + Lkji

−
p∑

r=1

(
ηjr(Kkjr + Krjk) + γjr(Lkjr + Lrjk)

) ∀ j, k; i < k

(6.21)

Sijk + ST
ijk ≥ Qijk − Mijk − Mkji + Wijk + Wkji − Λij + Vjk ∀ i, j, k

(6.22)
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Tiji > Miji − Wiji + Λij + Hiji + Jiji +
p∑

r=1

p∑

s=1

(σrjsWrjs

− ρrjsMrjs + δjrδjsHrjs + εjrεjsJrjs + ηjrηjsKrjs + γjrγjsLrjs)

−
p∑

r=1

(
δjr(Hijr + Hrji) + εjr(Jijr + Jrji)

) ∀ i, j (6.23)

Tijk + TT
ijk ≥ Mijk − Wijk + Λij + Hijk + Jijk + 2

p∑

r=1

p∑

s=1

(σrjsWrjs

− ρrjsMrjs + δjrδjsHrjs + εjrεjsJrjs + ηjrηjsKrjs

+ γjrγjsLrjs) −
p∑

r=1

(
δjr(Hijr + Hrji) + εjr(Jijr + Jrji)

)

+ Mkji − Wkji + Λkj + Hkji + Jkji

−
p∑

r=1

(
δjr(Hkjr + Hrjk) + εjr(Jkjr + Jrjk)

) ∀ j, k; i < k

(6.24)

From (6.19) to (6.24), it follows that,

V̇ (t) ≤
p∑

i=1

c∑

j=1

m2
jivjz(t)T Rijiz(t) +

p∑

k=1

c∑

j=1

∑

i<k

mjivjmjkz(t)T (Rijk + RT
ijk)z(t)

+
p∑

k=1

c∑

j=1

p∑

k=1

wivjmjkz(t)T (Sijk + ST
ijk)z(t)

+
p∑

i=1

c∑

j=1

w2
i vjz(t)T Tijiz(t) +

p∑

k=1

c∑

j=1

∑

i<k

wivjwkz(t)T (Tijk + TT
ijk)z(t)

=
c∑

j=1

vj

[
rj(t)
s(t)

]T [
Rj ST

j

Sj Tj

] [
rj(t)
s(t)

]
. (6.25)

where rj(t) =

⎡

⎢⎢⎢⎣

mj1z(t)
mj2z(t)

...
mjpz(t)

⎤

⎥⎥⎥⎦, s(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦, Rj =

⎡

⎢⎢⎢⎣

R1j1 R1j2 · · · R1jp

R2j1 R2j2 · · · R2jp

...
...

...
...

Rpj1 Rpj2 · · · Rpjp

⎤

⎥⎥⎥⎦,

Sj =

⎡

⎢⎢⎢⎣

S1j1 S1j2 · · · S1jp

S2j1 S2j2 · · · S2p

...
...

...
...

Sp1 Spj2 · · · Spjp

⎤

⎥⎥⎥⎦ and Tj =

⎡

⎢⎢⎢⎣

T1j1 T1j2 · · · T1jp

T2j1 T2j2 · · · T2jp

...
...

...
...

Tpj1 Tpj2 · · · Tpjp

⎤

⎥⎥⎥⎦.
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From (3.1) and (6.25), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of the
FMB control system (6.6) with imperfectly matched membership functions,
i.e., x(t) → 0 when time t → ∞, can be achieved if the stability conditions
summarized in the following theorem are satisfied.

Theorem 6.1. The RS FMB control system (6.6) with imperfectly matched
premise membership functions, formed by the nonlinear plant represented by
the fuzzy model (2.2) and the RS fuzzy controller (6.5) connected in a closed
loop, is asymptotically stable if there exist predefined constant scalars ρijk,
σijk, δji, εji, ηji and γji, i, k = 1, 2, · · · , p, j = 1, 2, · · · , c, satisfying
the inequalities wi(x(t))wk(x(t)) − wi(x(t))mjk(x(t)) − mji(x(t))wk(x(t)) +
mji(x(t))mjk(x(t))−ρijk ≥ 0, σijk−(wi(x(t))wk(x(t))−wi(x(t))mjk(x(t))−
mji(x(t))wk(x(t)) + mji(x(t))mjk(x(t)))) ≥ 0, δji ≤ wi(x(t)) ≤ εji and
ηjk ≤ mjk(x(t)) ≤ γjk for all i, j, k and x(t), and there exist matrices
Hijk = HT

ijk ∈ �n×n, Jijk = JT
ijk ∈ �n×n, Kijk = KT

ijk ∈ �n×n, Lijk =
LT

ijk ∈ �n×n, Mijk = MT
kji ∈ �n×n, Njk = NT

jk ∈ �m×n, Rijk = RT
kji ∈

�n×n, Sijk ∈ �n×n, Tijk = TT
kji ∈ �n×n, Vjk = VT

jk ∈ �n×n, Wijk =
WT

kji ∈ �n×n, X = XT ∈ �n×n and Λij = ΛT
ij ∈ �n×n such that the

following LMIs are satisfied.
X > 0;

Hijk ≥ 0 ∀ i, j, k;

Jijk ≥ 0 ∀ i, j, k;

Kijk ≥ 0 ∀ i, j, k;

Lijk ≥ 0 ∀ i, j, k;

Mijk ≥ 0 ∀ i, j, k;

Wijk ≥ 0 ∀ i, j, k;

LMIs of (6.20) to (6.24);

[
Rj ST

j

Sj Tj

]
< 0 ∀ j;

and the feedback gains are designed as Gjk = NjkX−1 for all j and k.

Remark 6.5. When only one operating region is considered, the RS FMB
control system (6.6) is reduced to ẋ(t) =

∑p
i=1

∑p
j=1 wimj(Ai + BiGj)x(t).

The time derivative of the quadratic Lyapunov function (6.7) becomes V̇ (t) =∑p
i=1

∑p
k=1 wimkz(t)T Qikz(t) where Qik = AiX + XAT

i + BiNk + NT
k BT

i .
From the stability conditions in Theorem 2.1, the FMB control system with
imperfectly matched premise membership functions is asymptotically stable
if Qik < 0 for all i and k. It can be shown that the solution of the stability
conditions in Theorem 2.1 (i.e., Qik < 0 for all i and k) is also the solution



6.3 Stability Analysis of Regional Switching FMB Control Systems 111

of the proposed stability conditions in Theorem 6.1. Considering only one
operating region, the subscript j is omitted in the following. Choosing Hik =
Jik = Kik = Lik = Mik = Wik = 0 and Vi = −Λi = τI where τ is a
non-zero positive scalar, (6.20) to (6.24) are reduced to Rii > −τI; Rik +
RT

ik ≥ −2τI, i, k = 1, 2, · · · , p; i < k; Sik + ST
ik > Qik + 2τI, i, k = 1,

2, · · · , p; Tii > −τI, i = 1, 2, Tik + TT
ik > −2τI, k = 1, 2, · · · , p; i < k,

respectively. As Qik < 0 for all i and k, by choosing Sik + ST
ik = 0 and a

sufficiently small value of τ , we have 0 > Qik + 2τI. Furthermore, we choose
Sik +ST

ik = 0 ≥ −2τI and Tik +TT
ik = 0 ≥ −2τI. As a result, (6.25) becomes

V̇ (t) ≤
[
r(t)
s(t)

]T [
R ST

S T

] [
r(t)
s(t)

]
=
[
r(t)
s(t)

]T [
R 0
0 T

] [
r(t)
s(t)

]
= r(t)T Rr(t) +

s(t)T Ts(t) where R =

⎡

⎢⎢⎢⎣

R11 0 · · · 0
0 R22 · · · 0
...

...
...

...
0 0 · · · Rpp

⎤

⎥⎥⎥⎦ and T =

⎡

⎢⎢⎢⎣

T11 0 · · · 0
0 T22 · · · 0
...

...
...

...
0 0 · · · Tpp

⎤

⎥⎥⎥⎦. It

can be seen that R = T < 0 can be achieved by properly choosing Rii > −τI
and Tii > −τI for all i, which leads to V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) that
further implies the asymptotic stability of the FMB control system. Hence,
the stability conditions in Theorem 2.1 are covered by the proposed stability
conditions in Theorem 6.1.

Example 6.1. Consider the same TS fuzzy model in Example 2.1. The mem-
bership functions of the TS fuzzy model are defined in Example 3.1 which
are shown graphically in Fig. 6.3.

To design the RS fuzzy controller, the operating region is divided into 3
sub-regions as shown in Fig. 6.3. Corresponding to the j-th sub-region, a
sub-region j fuzzy controller is proposed with the following three rules.

Rule k: IF x1(t) is N jk
1

THEN u(t) = Gjkx(t), j, k = 1, 2, 3 (6.26)

where N jk
1 is a fuzzy set of rule k corresponding to the system state x1(t) in

the j-th sub-region; Gjk ∈ �m×n, j, k = 1, 2, 3, are constant feedback gains
to be determined.

The membership functions of the fuzzy controller in the sub-region j are
defined in Example 3.1 which are shown graphically in Fig. 6.3. In this ex-
ample, for simplicity, the membership functions for all sub-regional fuzzy
controllers are the same. In general, different membership functions can be
applied in practice. Based on the chosen membership functions, it can be
found that the values of ρijk, σijk , δji, εji, ηji and γji listed in Table 6.1
satisfy the inequalities of (6.10) to (6.13). Based on the parameters in Table
6.1, the stability conditions in Theorem 6.1 are employed to check for the
stability region of the RS FMB fuzzy control system by using the MATLAB
LMI toolbox. The stability region is shown in Fig. 6.4 indicated by ‘◦’ for
the system parameters of the TS fuzzy model in the range of 2 ≤ a ≤ 9,
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Fig. 6.3 Membership functions of the fuzzy model: w1(x1(t)) (left triangle in solid
line), w2(x1(t)) (trapezoid in dotted line) and w3(x1(t)) (right triangle in dash line).
Membership functions of the fuzzy controller: mj1(x1(t)) (left z shape in solid line),
mj2(x1(t)) (bell shape in dotted line) and mj3(x1(t)) (right s shape in dash line),
j = 1, 2, 3.

2 ≤ b ≤ 62. For comparison purposes, the stability conditions in Theorem
2.1 and Theorem 3.3, [2, 55] are employed to check for the stability region.
However, no stability region can be found. It should be noted that the stabil-
ity conditions in Theorem 2.2 to Theorem 2.5 for perfectly matched premise
membership functions cannot be applied in this example.

Furthermore, we consider the case that all regional fuzzy controllers shar-
ing the same feedback gains and membership functions in Example 3.1 as a
result of the design in this example. From Remark 6.2, the regional switch-
ing fuzzy controller is reduced to the traditional fuzzy controller. Under this
case, the stability region is shown in Fig. 6.4 indicated by ‘×’. It can be seen
that the proposed stability conditions are able to produce a stable design
for the FMB system in a large domain. In the overlapping stability region
(indicated by both ‘◦’ and ‘×’ simultaneously at each point) in Fig. 6.4, it
is recommended to apply the traditional fuzzy controller in order to lower
the implementation cost. For the stability region indicated by ‘◦’ only, the
regional switching fuzzy controller can be employed to realize a stable FMB
control system.
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Table 6.1 Information of operating sub-regions for Example 6.1.

Operating sub-region ρijk, σijk, δji, εji, ηji and γji

Region 1: x1(t) < −4 ρ111 = 0.0000; ρ112 = ρ211 = −0.0051;
ρ212 = 0.0000; ρ113 = ρ311 = 0.0000;
ρ312 = ρ213 = −0.0006; ρ313 = 0.0000;
σ111 = 0.0048; σ112 = σ211 = 0.0000;
σ212 = 0.0055; σ113 = σ311 = 0.0005;
σ312 = σ213 = 0.0000; σ313 = 0.0003;
δ11 = 0.5000; ε11 = 1.0000; δ12 = 0.0000;
ε12 = 0.5000; δ13 = 0.0000; ε13 = 0.0000;
η11 = 0.5000; γ11 = 0.9536; η12 = 0.0465;
γ12 = 0.04820; η13 = 0.0009; γ13 = 0.0180;

Region 2: −4 ≤ x1(t) < 4 ρ121 = 0.0000; ρ122 = ρ221 = −0.0055;
ρ222 = 0.0000; ρ123 = ρ321 = −0.0031;
ρ322 = ρ223 = −0.0055; ρ323 = 0.0000;
σ121 = 0.0048; σ122 = σ221 = 0.0011;
σ222 = 0.0090; σ123 = σ321 = 0.0023;
σ322 = σ223 = 0.0011; σ323 = 0.0048;
δ21 = 0.0000; ε21 = 0.5000; δ22 = 0.5000;
ε22 = 0.6667; δ23 = 0.0000; ε23 = 0.5000;
η21 = 0.0180; γ21 = 0.5000; η22 = 0.4820;
γ22 = 0.7616; η23 = 0.0180; γ23 = 0.5000;

Region 3: x1(t) > 4 ρ131 = 0.0000; ρ132 = ρ231 = −0.0006;
ρ232 = 0.0000; ρ133 = ρ331 = 0.0000;
ρ332 = ρ233 = −0.0051; ρ333 = 0.0000;
σ131 = 0.0003; σ132 = σ231 = 0.0000;
σ232 = 0.0055; σ133 = σ331 = 0.0005;
σ332 = σ233 = 0.0000; σ333 = 0.0048;
δ31 = 0.0000; ε31 = 0.0000; δ32 = 0.0000;
ε32 = 0.5000; δ33 = 0.5000; ε33 = 1.0000;
η31 = 0.0009; γ31 = 0.0180; η32 = 0.0465;
γ32 = 0.4820; η33 = 0.5000; γ33 = 0.9526;

6.3.3 Perfectly Matched Premise Membership
Functions Based Inequalities

In this section, we consider the RS FMB control system with perfectly
matched premise membership functions of which wi = mji for all i and j.
Similar to the analysis approach for the RS FMB control system with imper-
fectly matched premise membership functions, some MFSD inequalities are
introduced. Removing all terms with mji and/or mjk in (6.10) and (6.11),
we have the following MFSD inequalities.
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Fig. 6.4 Stability region indicated by ‘◦’ given by the stability conditions in The-
orem 6.1 for Example 6.1.

p∑

i=1

p∑

k=1

(wiwk − ρijk)Mijk ≥ 0 ∀ j (6.27)

p∑

i=1

p∑

k=1

(σijk − wiwk)Wijk ≥ 0 ∀ j (6.28)

where ρijk and σijk are constant scalars to be determined and satisfy wiwk −
ρijk ≥ 0 and σijk − wiwk ≥ 0, respectively, for all i, j and k.

6.3.4 Stability Analysis with Perfectly Matched
Premise Membership Functions

From (6.14), (6.15), (6.27) and (6.28), with mjk = wi for all j and k, it follows
from (6.7) that



6.3 Stability Analysis of Regional Switching FMB Control Systems 115

V̇ (t) ≤
p∑

i=1

c∑

j=1

p∑

k=1

wivjwkz(t)T Qijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

vj(wiwk − ρijk)z(t)T Mijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

vj(σijk − wiwk)z(t)T Wijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

(wiwk − wiδjk − δjiwk + δjiδjk)z(t)T Hijkz(t)

+
p∑

i=1

c∑

j=1

p∑

k=1

(wiwk − wiεjk − εjiwk + εjiεjk)z(t)T Jijkz(t)

=
p∑

i=1

c∑

j=1

p∑

k=1

wivjwkz(t)T
(
Qijk + Mijk − Wijk + Hijk + Jijk

+
p∑

r=1

p∑

s=1

(−ρrjsMrjs + σrjsWrjs + δjrδjsHrjs + εjrεjsJrjs)

−
p∑

r=1

(
δjr(Hijr + Hrji) + εjr(Jijr + Jrji)

))
z(t) (6.29)

Introducing matrices Rijk = RT
kji ∈ �n×n for all i, j and k, we consider the

following inequalities.

Riji > Qiji + Miji − Wiji + Hiji + Jiji

+
p∑

r=1

p∑

s=1

(−ρrjsMrjs + σrjsWrjs + δjrδjsHrjs + εjrεjsJrjs)

−
p∑

r=1

(
δjr(Hijr + Hrji) + εjr(Jijr + Jrji)

) ∀ i, j (6.30)

Rijk + RT
ijk ≥ Qijk + Mijk − Wijk + Hijk + Jijk

+ Qkji + Mkji − Wkji + Hkji + Jkji

+ 2
p∑

r=1

p∑

s=1

(−ρrjsMrjs + σrjsWrjs + δjrδjsHrjs + εjrεjsJrjs)

−
p∑

r=1

(
δjr(Hijr + Hrjk + Hkjr + Hrji)

+ εjr(Jijr + Jrjk + Jkjr + Jrji)
) ∀ j, k; i < k (6.31)
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From (6.30) and (6.31), it follows that,

V̇ (t) ≤
p∑

i=1

c∑

j=1

w2
jivjz(t)T Rijiz(t)

+
p∑

k=1

c∑

j=1

∑

i<k

wjivjwjkz(t)T (Rijk + RT
ijk)z(t)

=
c∑

j=1

vjs(t)T Rjs(t). (6.32)

From (3.1) and (6.32), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implies the asymptotic stability of the
FMB control system (6.6) with perfectly matched membership functions, i.e.,
x(t) → 0 when time t → ∞, if the stability conditions summarized in the
following theorem are satisfied.

Theorem 6.2. The RS FMB control system (6.6) with perfectly matched
premise membership functions (i.e., mji = wi for all i), formed by the non-
linear plant represented by the fuzzy model (2.2) and the RS fuzzy controller
(6.5) connected in a closed loop, is asymptotically stable if there exist prede-
fined constant scalars ρijk, σijk, δji and εji, i, k = 1, 2, · · · , p, satisfying
the inequalities wi(x(t))wk(x(t)) − ρijk ≥ 0, σijk − wi(x(t))wk(x(t)) ≥ 0
and δji ≤ wi(x(t)) ≤ εji for all i, j, k and x(t), and there exist matri-
ces Hijk = HT

ijk ∈ �n×n, Jijk = JT
ijk ∈ �n×n, Mijk = MT

kji ∈ �n×n,
Njk = NT

jk ∈ �m×n, Rijk = RT
kji ∈ �n×n, Wijk = WT

kji ∈ �n×n and
X = XT ∈ �n×n such that the following LMIs are satisfied.

X > 0;

Hijk ≥ 0 ∀ i, j, k;

Jijk ≥ 0 ∀ i, j, k;

Mijk ≥ 0 ∀ i, j, k;

Wijk ≥ 0 ∀ i, j, k;

LMIs of (6.30) and (6.31);

Rj < 0 ∀ j;

and the feedback gains are designed as Gjk = NjkX−1 for all j and k.

Remark 6.6. The stability conditions in Theorem 2.3 is a particular case of
Theorem 6.2. It can be shown easily that by choosing Gj = Gjk for all j and
k, Hijk = Jijk = Mijk = Wijk = 0, the stability conditions in Theorem 6.2
is reduced to those in Theorem 2.3. The stability conditions in Theorem 6.2
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can be further relaxed by considering the analysis approach using the Polya’s
Theorem briefly discussed in Chapter 2.

Remark 6.7. When the traditional fuzzy controller in Remark 6.2 is consid-
ered, it can be deduced from Remark 6.5 that the stability conditions in
Theorem 6.2 potentially are more relaxed than the published stability condi-
tions in Theorem 2.3, as the regional information of the membership functions
is considered.

Remark 6.8. Different membership functions constraints will produce differ-
ent stability analysis results by bringing different level of membership func-
tion information to the stability analysis. Some polynomial constraints were
investigated in [99] which can also be employed in the stability analysis for
relaxing the stability conditions in this chapter.

Example 6.2. Consider the same RS FMB control system in Example 6.1. In
this example, the RS fuzzy controller shares the same membership functions
of the TS fuzzy model. The membership functions of the TS fuzzy model
are defined in 3.1 and divided into 3 regions which are shown graphically in
Fig. 6.3. Based on the membership functions, it can be found that the values
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Fig. 6.5 Stability region indicated by ‘◦’ given by the stability conditions in
Theorem 6.2 for Example 6.2.
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Table 6.2 Information of operating sub-regions for Example 6.2.

Operating sub-region ρijk, σijk, δji and εji

Region 1: x1(t) < −4 ρ111 = 0.2500; ρ112 = ρ211 = 0.0000;
ρ212 = 0.0000; ρ113 = ρ311 = 0.0000;
ρ312 = ρ213 = 0.0000; ρ313 = 0.0000;
σ111 = 1.0000; σ112 = σ211 = 0.2500;
σ212 = 0.2500; σ113 = σ311 = 0.0000;
σ312 = σ213 = 0.0000; σ313 = 0.0000;
δ11 = 0.5000; ε11 = 1.0000; δ12 = 0.0000;
ε12 = 0.5000; δ13 = 0.0000; ε13 = 0.0000;

Region 2: −4 ≤ x1(t) < 4 ρ121 = 0.0000; ρ122 = ρ221 = 0.0000;
ρ222 = 0.2500; ρ123 = ρ321 = 0.0000;
ρ322 = ρ223 = 0.0000; ρ323 = 0.0000;
σ121 = 0.2500; σ122 = σ221 = 0.2500;
σ222 = 0.4444; σ123 = σ321 = 0.0278;
σ322 = σ223 = 0.2500; σ323 = 0.2500;
δ21 = 0.0000; ε21 = 0.5000; δ22 = 0.5000;
ε22 = 0.6667; δ23 = 0.0000; ε23 = 0.5000;

Region 3: x1(t) > 4 ρ131 = 0.0000; ρ132 = ρ231 = 0.0000;
ρ232 = 0.0000; ρ133 = ρ331 = 0.0025;
ρ332 = ρ233 = 0.000; ρ333 = 0.2500;
σ131 = 0.0000; σ132 = σ231 = 0.0000;
σ232 = 0.2500; σ133 = σ331 = 0.0000;
σ332 = σ233 = 0.2500; σ333 = 1.0000;
δ31 = 0.0000; ε31 = 0.0000; δ32 = 0.0000;
ε32 = 0.5000; δ33 = 0.5000; ε33 = 1.0000;

of ρijk, σijk, δji and εji listed in Table 6.2 satisfy the inequalities of (6.27)
to (6.28).

The system stability of the FMB control system is checked with the sta-
bility conditions in Theorem 6.2. The stability region is shown in Fig. 6.5
indicated by ‘◦’ for the system parameters of 2 ≤ a ≤ 9, 2 ≤ b ≤ 62. Com-
paring Fig. 6.4 with Fig. 6.5, it can be seen that the RS FMB control system
with perfectly matched premise membership functions has a larger stabil-
ity region. However, the RS FMB control systems with imperfectly matched
premise membership functions allow greater design flexibility on the mem-
bership functions of the fuzzy controller, which can be different from those
of the fuzzy model.
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Table 6.3 Feedback gains of the regional switching and traditional fuzzy controllers
for Example 6.2 with a = 9 and b = 58.

RS Fuzzy Controller Traditional Fuzzy Controller

G11 = [−2.315270 5.099520]; G11 = G21 = G31 = [−3.293223 3.700048];
G12 = [−0.905459 − 12.241911]; G12 = G22 = G32 = [−4.653888 − 10.749927];
G13 = [−0.930921 − 3.264101]; G13 = G23 = G33 = [36.253629 61.707869]
G21 = [−0.718189 0.859555];
G22 = [−0.135919 − 0.087910];
G23 = [−0.137327 0.398319];
G31 = [−0.004901 0.156980];
G32 = [−0.020936 0.437946];
G33 = [0.240529 0.766671]

Table 6.4 Minimum and maximum amplitudes of control signal u(t) for RS and
traditional fuzzy controllers for Example 6.2 with a = 9 and b = 58.

Initial Condition Min/Max u(t) Min/Max u(t)
for RS Fuzzy controller for Traditional Fuzzy controller

x(0) =
[
10 −10

]T -5.2614/0.3051 -254.5424/0.1578
x(0) =

[
5 −5

]T -2.4906/0.3055 -61.5415/0.1578
x(0) =

[
−5 5

]T -1.9911/13.1114 -0.5542/9.4089
x(0) =

[
−10 10

]T -0.1608/110.0355 -0.5438/102.2530
x(0) =

[
10 0

]T -0.5472/2.4053 -0.0000/362.5363
x(0) =

[
5 2.5

]T -2.3552/5.7293 -5.6704/174.8370
x(0) =

[
−5 −2.5

]T -1.1366/15.3709 -16.5867/25.1028
x(0) =

[
−10 0

]T -0.2869/23.1527 -0.8929/32.9322

For comparison purposes, we apply the traditional fuzzy controller (2.6)
to the same system. It is stated in Remark 6.2 that the proposed RS fuzzy
controller becomes the traditional one when all fuzzy controllers in different
regions share the same sets of feedback gains and membership functions. The
stability conditions in Theorem 6.2 are employed to check for the system
stability. In this example, the traditional fuzzy controller produces exactly
the same stability region as shown in Fig. 6.5. However, it can be shown in the
following that the feedback gains given by the RS fuzzy controller are smaller
in values than those of the traditional fuzzy controller. It is mainly because
the regional fuzzy controller only deals with the nonlinear plant operating
in a small operating region; the effect of the nonlinearity is less significant
than that under the full operating region. Hence, by employing the regional
switching fuzzy controller, potentially less energy is required to perform the
control process.
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(a) Phase plot of x1(t) and x2(t) with RS fuzzy controller.
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(b) Phase plot of x1(t) and x2(t) with traditional fuzzy controller.

Fig. 6.6 Phase portraits of the FMB control system with a = 9 and b = 58 for
Example 6.2.
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Fig. 6.7 Stability region indicated by ‘◦’ given by stability conditions in [98] for
Example 6.2.

Considering the system parameters of a = 9 and b = 58, the feedback
gains of the regional switching and traditional fuzzy controllers are ob-
tained with the MATLAB LMI toolbox based on Theorem 6.2, and listed in
Table 6.3. It can be seen that the feedback gains of the traditional fuzzy con-
troller are larger in values as compared with those of the regional switching
fuzzy controller. The phase portraits of the FMB control system subject to
different initial conditions are shown in Fig. 6.6. It can be seen that both the
regional switching and traditional fuzzy controllers are able to stabilize the
nonlinear plant successfully. The minimum and maximum amplitudes of the
control signal u(t) subject to different initial conditions are listed in Table
6.4. It can be seen that, in general, the minimum/maximum amplitudes of
control signal u(t) provided by the RS fuzzy controller are much lower than
those of the traditional fuzzy controller.

We also consider the stability conditions in [98], which include the infor-
mation of the membership function boundaries for the relaxation of stability
conditions of FMB control systems subject to perfectly matched premise
membership functions. The stability region given by the stability conditions
in [98] for our example is shown in Fig. 6.7. It can be seen that the regional
switching fuzzy controller outperforms the published one as it offers a larger
stability region. Furthermore, comparing with the stability regions shown in
Fig. 2.1 given by some published stability conditions, it can be seen that the
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stability region given by the proposed stability conditions in Theorem 6.2
is also larger. The effectiveness of the proposed stability conditions and the
importance of the regional information are well demonstrated.

As mentioned early, the RS FMB control system with perfectly matched
membership functions is able to produce a larger stability region. However, as
the membership functions of the TS fuzzy model are required for the realiza-
tion of the fuzzy controller, the plant parameter uncertainties cannot be han-
dled simply by embedding them in the membership functions. Furthermore,
a complex nonlinear plant may lead to complex membership functions, which
will increase the implementation cost of the fuzzy controller. Hence, it is sug-
gested to employ the fuzzy controller with imperfectly matched membership
functions for the control process. When a feasible design cannot be achieved,
the RS fuzzy control approach with perfectly matched premise membership
functions can be employed to implement the fuzzy controller.

6.4 Conclusion

The stability of FMB control systems with imperfectly/perfectly matched
premise membership functions and the RS fuzzy control technique has been
investigated. A RS fuzzy controller, which consists of a number of regional
fuzzy controllers, has been proposed to control the nonlinear plant. During
the control process, one of the regional fuzzy controllers is employed at a
time according to the current operating sub-region. Based on the regional
information, the stability analysis and controller synthesis can be facilitated.
LMI-based stability conditions have been derived to check for the system
stability. Some simulation examples have been presented and the results
show that the proposed stability conditions are able to produce more relaxed
stability results.



Chapter 7

Fuzzy Combined Controller for Nonlinear
Systems

7.1 Introduction

Lyapunov approach is the most common approach to investigate the system
stability of fuzzy control systems based on the TS fuzzy model. The stabil-
ity of the FMB control systems with imperfectly/perfectly matched premise
membership functions are reviewed in Chapter 2. In general, the stability con-
ditions for the FMB based control systems with perfectly matched premise
membership functions are more relaxed. However, it is required that the TS
fuzzy model in the form of (2.2) is uncertainty free. As discussed in Chapter
2, the fuzzy controller (2.6) demonstrates an inherent robustness property on
dealing with nonlinear plant subject to a certain level of parameter uncertain-
ties by presenting the parameter uncertainties to the membership functions
of the fuzzy model. To deal with the parameter uncertainties, in this chapter,
a TS fuzzy model subject to parameter uncertainties is proposed for doing
the stability analysis. Stability conditions for this class of nonlinear systems
were investigated in [74, 104].

In [62, 63, 65, 106], a switching fuzzy model was employed to describe
the nonlinear plant with/without parameter uncertainties and to support the
design of a switching fuzzy controller. The switching elements of the switching
controller are able to approximate effectively the uncertain parameters to
facilitate the control process. Hence, the switching control scheme is very
robust to the parameter uncertainties and able to offer a consistent system
performance. However, an undesirable chattering effect [100] occurs in the
control signal caused by the high-frequency switching activities during the
control process. Although the chattering effect can be alleviated by replacing
the switching function with a saturation function[100], a steady-state error
may be introduced in the system states.

In some published work, fuzzy logic was employed to combine various
traditional controllers to merge their advantages together. In [83], a fuzzy
sliding-mode controller used the sliding-surface function as the input of the

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 123–150.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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fuzzy system, the number of fuzzy rules can be greatly reduced. In [37, 114], a
fuzzy system was employed to estimate the values of the gains of the sliding-
mode controller. Adaptive laws were derived to update the rules of the fuzzy
systems. As the switching function of the sliding-mode controller is approx-
imated by a continuous function, the chattering effect can be alleviated. In
[37], an adaptive fuzzy controller was proposed to generate the control signals
by estimating the values of the unknown parameters of the system. Based on
these estimated parameter values, tracking control can be achieved by using
the sliding-mode control approach. However, in these approaches, the way to
determine the fuzzy rules is still an open question. Furthermore, the approx-
imation error of the fuzzy systems will introduce steady-state errors to the
system states or even cause the system to become unstable. In [123], switch-
ing elements were used in the controller for compensating the approximation
error of the fuzzy system.

In this chapter, a fuzzy combined control scheme [52, 53, 122] is pro-
posed to handle nonlinear plants subject to parameter uncertainties. The
block diagram of the proposed fuzzy combined control scheme is shown in
Fig. 7.1. A fuzzy combined model, which consists of the global and local fuzzy
models, is proposed to represent a nonlinear system subject to parameter un-
certainties. The global fuzzy model is employed to model the dynamics of the
nonlinear plant in the full operating domain while the local fuzzy model is
employed to model the dynamics in a small operating domain near the origin
of the state space. Two fuzzy rules are proposed to combine the local and
global fuzzy models to form the fuzzy combined model. Denote the grades of
membership given by the two rules as m1(q(x(t))) ≥ 0 and m2(q(x(t))) ≥ 0
(, which will be explained in detail later on). The values of m1(q(x(t))) and
m2(q(x(t))) indicates the contribution of the global and local fuzzy models
respectively for the system modelling. Based on the fuzzy combined model, a
fuzzy combined controller that integrates the advantages of a global switch-
ing controller and a local fuzzy controller (both of them are state-feedback
controllers) is proposed. Stability conditions and switching laws are derived
based on the Lyapunov stability theory [46, 100, 121].

The switching fuzzy controller is responsible for driving the system state
towards the origin using its outstanding robustness property. When the sys-
tem states are approaching the origin, the local fuzzy controller will gradually
dominate the control process. The contribution of the switching fuzzy con-
troller and local fuzzy controller to the control process is determined by the
values of m1(q(x(t))) and m2(q(x(t))). By properly designing the member-
ship functions of the fuzzy combined model and fuzzy combined controller,
the chattering effect can be removed when the system operates near the
origin. To alleviate the chattering effect in the transient period, a satura-
tion function can be employed to replace the switching function of the global
switching state-feedback controller. A simulation example will be presented to
demonstrate the effectiveness of the proposed fuzzy combined control scheme.
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Fig. 7.1 Block diagram of the FMB Control system.

7.2 Fuzzy Combined Model

Consider a nonlinear plant operating in a domain characterized by the system
states of xγ(t) ∈ [xγmin , xγmax

]
, γ = 1, 2, · · · , n, where xγmin and xγmax

are scalars that representing the lower and upper bounds of the system state
xγ(t). By using the TS fuzzy model, the nonlinear plant can be represented in
the form of (2.2), which is named as the global TS fuzzy model in this chap-
ter as it describes the dynamics of the nonlinear plant in the full operating
domain.

We further consider a small operating domain of the nonlinear plant around
the origin characterized by xγ(t) ∈ [ x̃γmin , x̃γmax

]
where x̃γmin and x̃γmax

are scalars representing the lower and upper bounds of the xγ(t) satisfying
xγmin ≤ x̃γmin ≤ x̃γmax ≤ xγmax , γ = 1, 2, · · · , n. A local TS fuzzy model
can be constructed for the small operating domain. Similar to the TS fuzzy
model in Chapter 2, the rules of the local TS fuzzy model is described by p
fuzzy rules of following format.

Rule i: IF f̃1(x(t)) is M̃ i
1 AND · · · AND f̃Ψ(x(t)) is M̃ i

Ψ

THEN ẋ(t) = Ãix(t) + B̃iu(t) (7.1)

where M̃ i
α is a fuzzy set of rule i corresponding to the function f̃α(x(t)),

α = 1, 2, · · · , Ψ ; i = 1, 2, · · · , p; Ψ is a positive integer; x(t) ∈ �n is the
system state vector; Ãi ∈ �n×n and B̃i ∈ �n×m are known system and input
matrices, respectively; u(t) ∈ �m is the input vector. The system dynamics
is described by,

ẋ(t) =
p∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t)) (7.2)

where

w̃i(x(t)) ≥ 0 ∀ i,

p∑

i=1

w̃i(x(t)) = 1, (7.3)
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w̃i(x(t)) =

Ψ∏

l=1

μM̃i
l
(f̃l(x(t)))

p∑

k=1

Ψ∏

l=1

μM̃k
l
(f̃l(x(t)))

∀ i, (7.4)

w̃i(x(t)), i = 1, 2, · · · , p, are the normalized grades of membership, μM̃i
l

(f̃l(x(t))), l = 1, 2, · · · , Ψ , are the membership functions corresponding to
the fuzzy set M̃ i

l .
The proposed fuzzy combined model, which is a fuzzy combination of the

global and local TS fuzzy models, has two rules in the following format.

Rule 1: IF q(x(t)) is ZE

THEN ẋ(t) =
p∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t)) (7.5)

Rule 2: IF q(x(t)) is NZ

THEN ẋ(t) =
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (7.6)

where rule 1 is for the local TS fuzzy model and rule 2 is for the global TS
fuzzy model in the form of (2.2); ZE (zero) and NZ (non-zero) are fuzzy
sets.

Remark 7.1. It should be noted that the global and local fuzzy models are of
the same form with the same number of rules in this chapter. By considering
the same operating domain, i.e., xγmin = x̃γmin and x̃γmax = xγmax for all γ,
the two models will become one. However, in general, the global and local
fuzzy models are not limited by these constraints and can be constructed
using sector nonlinearity technique [122].

The function q(x(t)), which determines if the system is operating inside the
small operating region, is defined as,

q(x(t)) = max
(∣∣∣

x1(t) − x̃1

x1(t)

∣∣∣,
∣∣∣
x2(t) − x̃2

x2(t)

∣∣∣, · · · ,
∣∣∣
xn(t) − x̃n

xn(t)

∣∣∣
)
≥ 0 (7.7)

where x̃i = x̃imax+x̃imin

2
, xi = x̃imax−x̃imin

2
, i = 1, 2, · · · , n; | · | and max(·) de-

note absolute-value and maximum operators, respectively. q(x(t)) ≤ 1 implies
that the system is working inside the small operating domain characterized
by xγmin ≤ x̃γmin ≤ xγ(t) ≤ x̃γmax ≤ xγmax for all γ; otherwise, it is outside
the small operating domain. The inferred fuzzy combined model is defined
as,
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ẋ(t) = m1(x(t))
p∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t))

+ m2(x(t))
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (7.8)

where

mk(x(t)) ≥ 0 ∀ i,
2∑

k=1

mk(x(t)) = 1, (7.9)

m1(x(t)) = μZE(q(x(t)))
μZE(q(x(t)))+μNZ(q(x(t))) and m2(x(t)) = μNZ(q(x(t)))

μZE(q(x(t)))+μNZ(q(x(t))) ;
μZE(q(x(t))) and μNZ(q(x(t))) are the membership functions corresponding
to the fuzzy terms of ZE and NZ, respectively. The membership function
μZE(q(x(t))) is designed to cover the operating region of 0 ≤ q(x(t)) ≤ 1,
while the membership function μNZ(q(x(t))) covers the operating region of
q(x(t)) > 1.

It should be noted that the fuzzy combined model (7.8) is equivalent to
the TS fuzzy model (2.2) for any values of m1(x(t)) and m2(x(t)). The fuzzy
combined model has the property that the local TS fuzzy model is equivalent
to the global TS fuzzy model for both m1(x(t)) �= 0 and m2(x(t)) �= 0, i.e.,

ẋ(t) =
p∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t))

=
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) if m1(x(t)) �= 0 and m2(x(t)) �= 0.

(7.10)

The proof of (7.10) is given in the following.

Proof. The proof is simple and straightforward. It is assumed that the global
and local fuzzy models are the exact models for the nonlinear plant. For
example, based on the sector nonlinearity technique [122], an exact fuzzy
model can be constructed and it is equivalent to the mathematical model.
The local model is valid for the local operating domain while the global fuzzy
model is for the full operating domain. Considering the local operating do-
main, both global and local fuzzy models are valid and equivalent to the
mathematical model, i.e., (7.10) is true. It is obvious that the global and
local fuzzy models are equivalent in the local operating domain character-
ized by 0 ≤ m1(x(t)) ≤ 1 for all m2(x(t)). Consequently, we can draw the
same conclusion that (7.10) is true for a tighter condition m1(x(t)) �= 0 and
m2(x(t)) �= 0. This completes the proof.
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7.3 Local, Global and Fuzzy Combined Controllers

A fuzzy combined controller, formed by a local fuzzy controller and a global
switching controller, is proposed to control the nonlinear plant. The local
fuzzy controller is a state-feedback fuzzy controller and the global one is a
switching fuzzy controller. Their contribution to the control process depends
on the membership functions of μZE(q(x(t))) and μNZ(q(x(t))). The global
switching controller has a stronger robustness property to handle parameter
uncertainties by using the switching control technique. However, the switch-
ing activity will produce an undesired chattering effect, which can be removed
thanks to the local state-feedback fuzzy controller. Based on the property of
the local and global controllers, the membership functions μZE(q(x(t))) and
μNZ(q(x(t))) are designed in a way that when the system is working in the
defined small operating region, the local fuzzy controller is employed; other-
wise, the global switching controller is employed to drive the system states
towards the small operating region. As a result, the local and global con-
trollers are combined by the membership functions to form a fuzzy combined
controller that integrates their advantages for the control process.

7.3.1 Local Fuzzy Controller

The local fuzzy controller has the same form of (2.6) and is described by c
fuzzy rules of the following format:

Rule j: IF g1(x(t)) is N j
1 AND · · · AND gΩ(x(t)) is N j

Ω

THEN u(t) = G̃jx(t) (7.11)

where G̃j ∈ �m×n, j = 1, 2, · · · , c, are constant feedback gains to be deter-
mined. The rest variables are defined in Section 2.3. The fuzzy controller is
defined as follows,

u(t) =
c∑

j=1

vj(x(t))G̃jx(t) (7.12)

where

vj(x(t)) ≥ 0 ∀ j,
c∑

j=1

vj(x(t)) = 1, (7.13)

vj(x(t)) =

Ω∏

l=1

μNj
l
(gl(x(t)))

c∑

k=1

Ω∏

l=1

μNk
l
(gl(x(t)))

∀ j, (7.14)
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vj(x(t)), j = 1, 2, · · · , c, are the normalized grades of membership, μNj
l
(gl

(x(t))), l = 1, 2, · · · , Ω , are the membership functions corresponding to the
fuzzy set N j

l .

Remark 7.2. The local fuzzy controller is a state-feedback fuzzy controller.
Various LMIs based stability conditions have been given in Chapter 2 for
FMB control systems with this class of fuzzy controller. It has the advantage
that the structure of the fuzzy controller is simple, particularly when it has
some simple form of membership functions. However, it is not effective as
compared with other fuzzy control techniques, such as fuzzy sliding-mode
control [83] and adaptive fuzzy control [5, 95, 123, 132], to deal with nonlinear
plants with parameter uncertainties.

7.3.2 Global Switching Controller

The global switching state-feedback controller is defined as follows.

u(t) =
p∑

j=1

nj(x(t))Gjx(t) (7.15)

where Gj ∈ �m×n, j = 1, 2, · · · , p, are constant feedback gains to be de-
termined; nj(x(t)) takes the value of either − K

αmin
or K

αmin
according to a

switching scheme to be derived later; αmin > 0 and K ≥ 1 are scalars.

Remark 7.3. The global fuzzy controller is a switching controller that the
switching components offer a strong robustness property to handle the pa-
rameter uncertainties. However, due to the switching activity, an undesirable
chattering effect is introduced to the output of the system. Moreover, com-
paring with the local fuzzy controller, it is more complicated to implement
the global fuzzy controller owing to the switching components.

7.3.3 Fuzzy Combined Controller

As discussed above, the global and local fuzzy controllers have their own ad-
vantages and disadvantages. In this section, we apply the fuzzy combination
technique to combine these two types of fuzzy controllers such that the overall
fuzzy controller, named fuzzy combined controller, integrates the advantages
of the two types of fuzzy controllers but with their weaknesses removed. The
proposed fuzzy combined controller is shown in Fig. 7.1 and has the following
two rules to combine the global and local fuzzy controllers.

Rule 1: IF q(x(t)) is ZE

THEN u(t) =
c∑

j=1

vj(x(t))G̃jx(t) (7.16)
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Rule 2: IF q(x(t)) is NZ

THEN u(t) =
p∑

j=1

nj(x(t))Gjx(t) (7.17)

where rule 1 is for the local fuzzy controller and rule 2 is for the global
switching state-feedback controller. The inferred fuzzy combined controller is
given by,

ẋ(t) = m1(x(t))
c∑

j=1

vj(x(t))G̃jx(t) + m2(x(t))
p∑

j=1

nj(x(t))Gjx(t). (7.18)

The fuzzy combined controller (7.18) is employed to control the nonlinear
plant.

Remark 7.4. It can be seen from (7.18) that the contribution of each con-
troller is determined by the normalized membership functions m1(x(t)) and
m2(x(t)). The global switching controller (7.15) dominates the control pro-
cess when m2(x(t)) � m1(x(t)) to drive the system states towards the ori-
gin. The local fuzzy controller (7.12) becomes dominant when the values of
m1(x(t)) � m2(x(t)), which implies that the system is working in the oper-
ating domain near the origin. In this small operating domain, the chattering
effect introduced by the global switching controller is reduced and then van-
ishes when m2(x(t)) = 0. When m2(x(t)) = 0, only the local fuzzy controller
is responsible for the control process.

7.4 Stability Analysis

The stability of the FMB control system formed by the nonlinear plant rep-
resented in the form of (7.8) and the fuzzy combined controller (7.18) is
investigated. The block diagram of the FMB control system is shown in
Fig. 7.1. For brevity, wi(x(t)), w̃i(x(t)), vj(x(t)), nj(x(t)) and mk(x(t)) are
denoted as wi, w̃i, vj , nj and mk, respectively. It follows from (7.8) and
(7.18), with the equality of

∑p
i=1 wi =

∑p
i=1 w̃i =

∑c
j=1 vj =

∑2
k=1 ml =

∑p
i=1

∑p
j=1

∑c
k=1

∑2
l=1 wiw̃jvkml = 1 given by the property of the member-

ship functions, the FMB control system can be obtained as follows.
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ẋ(t) = m1

p∑

i=1

w̃i

(
Ãi + B̃i(m1

c∑

j=1

vjG̃j + m2

p∑

j=1

njGj)
)
x(t)

+ m2

p∑

i=1

wi

(
Ai + Bi(m1

c∑

j=1

vjG̃j + m2

p∑

j=1

njGj)
)
x(t)

= m1m1

p∑

i=1

w̃i(Ãi + B̃i

c∑

j=1

vjG̃j)x(t)

+ m1m2

p∑

i=1

w̃i(Ãi + B̃i

p∑

j=1

njGj)x(t)

+ m2m1

p∑

i=1

wi(Ai + Bi

c∑

j=1

vjG̃j)x(t)

+ m2m2

p∑

i=1

wi(Ai + Bi

p∑

j=1

njGj)x(t) (7.19)

It can be seen from (7.19) that the second and the third terms vanish for
either m1 = 0 or m2 = 0. Under the case of m1 �= 0 or m2 �= 0, from the
property of (7.10) which states that the local and global fuzzy model are
equivalent in the overlapping region of m1 and m2, we have,

p∑

i=1

w̃i(Ãi + B̃i

p∑

j=1

njGj)x(t) =
p∑

i=1

wi(Ai + Bi

p∑

j=1

njGj)x(t) (7.20)

p∑

i=1

wi(Ai + Bi

c∑

j=1

vjG̃j)x(t) =
p∑

i=1

w̃i(Ãi + B̃i

c∑

j=1

vjG̃j)x(t) (7.21)

It follows from (7.19) to (7.21) that the FMB control system (7.17) can be
written as follows.
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ẋ(t) = m1m1

p∑

i=1

w̃i(Ãi + B̃i

c∑

j=1

vjG̃j)x(t)

+ m1m2

p∑

i=1

wi(Ai + Bi

p∑

j=1

njGj)x(t)

+ m2m1

p∑

i=1

w̃i(Ãi + B̃i

c∑

j=1

vjG̃j)x(t)

+ m2m2

p∑

i=1

wi(Ai + Bi

p∑

j=1

njGj)x(t)

= m1

p∑

i=1

w̃i(Ãi + B̃i

c∑

j=1

vjG̃j)x(t)

+ m2

p∑

i=1

wi(Ai + Bi

p∑

j=1

njGj)x(t) (7.22)

Remark 7.5. By using the property of (7.10), the cross terms in (7.19) can be
removed to facilitate the stability analysis. It can be seen from (7.22) that
the system consists of only the global and local FMB control systems with
the contribution determined by m1 and m2.

Assumed that the input matrix exhibits the following property:

B(x(t)) =
p∑

i=1

wi(x(t))Bi = α(x(t))Bm (7.23)

where Bm ∈ �n×m is a constant matrix.

Remark 7.6. It is assumed that α(x(t)) is a scalar nonlinear function that is
bounded, unknown (because wi(x(t)) is unknown), non-zero and single-signed
but with a known form. As the form of α(x(t)) is assumed to be known and
it is in terms of the system states and parameters, the sign of α(x(t)) can
be determined. Its bounds (|α(x(t))| ∈ [αmin, αmax

]
where αmin ≤ αmax)

can be estimated analytically or numerically. Furthermore, it should be noted
that α(x(t)) �= 0 is required (otherwise it leads to an uncontrollable system
with B(x(t)) = 0) for the stability analysis below.

From (7.22) and (7.23), we have,
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ẋ(t) = m1

p∑

i=1

c∑

j=1

w̃ivj(Ãi + B̃iG̃j)x(t)

+ m2

( p∑

i=1

wi(Ai + BmGi) +
p∑

j=1

(α(x(t))nj − wj)BmGj

)
x(t)

= m1

p∑

i=1

c∑

j=1

w̃ivjH̃ijx(t)

+ m2

( p∑

i=1

wiHi +
p∑

j=1

(α(x(t))nj − wj)BmGj

)
x(t). (7.24)

where

H̃ij = Ãi + B̃iG̃j ∀ i, j, (7.25)

Hi = Ai + BmGi ∀ i. (7.26)

Consider the quadratic Lyapunov function (3.1) to investigate the stability
of the FMB control system (7.24). From (3.1) and (7.24), we have

V̇ (t) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

= m1

p∑

i=1

c∑

j=1

w̃ivjx(t)T (H̃T
ijP + PH̃ij)x(t)

+ m2

p∑

i=1

wix(t)T (HT
i P + PHi)x(t)

+ 2m2

p∑

j=1

(α(x(t))nj − wj)x(t)T PBmGjx(t). (7.27)

We choose the switching law as

ηj(x(t)) = −Ksgn(α(x(t)))sgn(x(t)T PBmGjx(t))
αmin

∀ j. (7.28)

where K ≥ 1.
From (7.27) to (7.28), we have
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V̇ (t) ≤ m1

p∑

i=1

c∑

j=1

w̃ivjx(t)T (H̃T
ijP + PH̃ij)x(t)

+ m2

p∑

i=1

wix(t)T (HT
i P + PHi)x(t)

+ 2m2

p∑

j=1

(
− K|α(x(t))|

αmin
+ wj

)
|x(t)T PBmGjx(t)|. (7.29)

Considering the last term in (7.29), as K ≥ 1 and thus K|α(x(t))|
αmin

≥ 1, it is

obvious that −K|α(x(t))|
αmin

≤ −1. Based on the property of the membership

functions, i.e., wj ∈ [0, 1
]

for all j, we have −K|α(x(t))|
αmin

+ wj ≤ 0. Conse-
quently, it follows from (7.29) that we have,

V̇ (t) ≤ m1

p∑

i=1

c∑

j=1

w̃ivjx(t)T (H̃T
ijP + PH̃ij)x(t)

+ m2

p∑

i=1

wix(t)T (HT
i P + PHi)x(t). (7.30)

From (3.1) and (7.30), with the support of Remark 7.6, based on the the
Lyapunov stability theory, V (t) > 0 and V̇ (t) < 0 for x(t) �= 0 implying the
asymptotic stability of the FMB control system (7.19), i.e., x(t) → 0 when
time t → ∞, can be achieved if the stability conditions summarized in the
following theorem are satisfied.

Theorem 7.1. The FMB control system (7.19), formed by the nonlinear
plant represented by the fuzzy combined model (7.8) and the fuzzy combined
controller (7.18) connected in a closed loop, is asymptotically stable if there
exist matrix P = PT ∈ �n×n such that the following LMIs are satisfied.

P > 0;

H̃T
ijP + PH̃ij < 0 ∀ i, j;

HT
i P + PHi < 0 ∀ i;

and the feedback gains G̃j and Gj for all i and j are predefined; and the
switching law of the global switching controller is chosen as ηj(x(t)) =

−Ksgn(α(x(t)))sgn(x(t)T PBmGjx(t))
αmin

for all j; |α(x(t))| ∈ [αmin, αmax

]
where

αmin ≤ αmax. The membership function of the fuzzy combined controller cor-
responding to ZE is designed to cover the region of 0 ≤ q(x(t)) ≤ 1, while
that corresponding to NZ is required to cover the region q(x(t)) > 0, with
q(x(t)) defined in (7.7).
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Remark 7.7. It can be seen from (7.30) that V̇ (t) < 0 for x(t) �= 0, which
implies the the asymptotic stability of the FMB control system (7.19) if the
inequalities H̃T

ijP + PH̃ij < 0 and HT
i P + PHi < 0 are satisfied simultane-

ously. Considering P as the decision variables, these two inequalities are not
linear in the feedback gains G̃j and Gj . Thus, convex programming tech-
niques cannot be applied to find numerically the solution. By following the
approach in the previous chapters, by changing of matrix variables, both
inequalities can be transformed to LMIs. Denote X = P−1 and design the
feedback gains as G̃j = ÑjX−1 and Gj = NjX−1 where Ñj ∈ �m×n and
Nj ∈ �m×n for all j. Pre- and post-multiplying X to H̃T

ijP + PH̃ij < 0, we
have X(H̃T

ijP+PH̃ij)X = X(H̃T
ijX

−1+X−1H̃ij)X = XÃT
i +ÃiX+ÑT

j B̃T
i +

B̃iÑj < 0. Similarly, from HT
i P + PHi < 0, we have X(HT

i P + PHi)X =
X(HT

i X−1 +X−1Hi)X = XAT
i +AX+NT

i BT
m +BmNi < 0. Consequently,

these inequalities becomes LMI conditions and that can be summarized in
the following theory.

Theorem 7.2. The FMB control system (7.19), formed by the nonlinear
plant represented by the fuzzy combined model (7.8) and the fuzzy combined
controller (7.18) connected in a closed loop, is asymptotically stable if there
exist matrices Ñj ∈ �m×n, j = 1, 2, · · · , c, Ni ∈ �m×n, i = 1, 2, · · · , p and
X = XT ∈ �n×n such that the following LMIs are satisfied.

X > 0;

XÃT
i + ÃiX + ÑT

j B̃T
i + B̃iÑj < 0 ∀ i, j;

XAT
i + AX + NT

i B̃T
m + B̃mNi < 0 ∀ i;

and the feedback gains are chosen as G̃j = ÑjX−1 and Gj = NjX−1 for
all i and j; and the switching law of the global switching controller is cho-
sen as ηj(x(t)) = −Ksgn(α(x(t)))sgn(x(t)T PBmGjx(t))

αmin
for all j; |α(x(t))| ∈[

αmin, αmax

]
where αmin ≤ αmax. The membership function of the fuzzy

combined controller corresponding to ZE is designed to cover the region of
0 ≤ q(x(t)) ≤ 1, while corresponding to NZ is required to cover the region
q(x(t)) > 0, with q(x(t)) defined in (7.7).

Remark 7.8. It can be seen from the switching law (7.28) that the switching
element will cause undesired chattering effect. In order to alleviate the chat-
tering effect, the switching function can be replaced by a saturation function
[100]. Then, (7.28) is replaced by

ηj(x(t)) = −Ksgn(α(x(t)))sat(x(t)T PBmGjx(t))
αmin

∀ i. (7.31)

where
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sat(z) =

⎧
⎪⎨

⎪⎩

1 for z
T
≥ 1

−1 for z
T
≤ −1

z
T otherwise

(7.32)

and T is a non-zero positive scalar to be designed.

Remark 7.9. It should be noted that α(x(t)) is a single-signed scalar function;
hence, sgn(α(x(t))) is not a switching signal. Consequently, it is not necessary
to replace it by a saturation function.

Remark 7.10. The saturation function employed to replace the switching
function for the alleviation of chattering effect may introduce steady-state
error. The magnitude of the steady-state error is related to the value of T .
A higher value of T will lead to a larger steady-state error. Hence, when the
saturation function is employed, it is possible that the steady-state error is
so large that the system states cannot be driven to the pre-defined operat-
ing domain. Consequently, the local fuzzy controller will never be activated
to drive the system states to the origin. Hence, the value of T should be
designed such that the system states can be driven into the valid operating
domain of the local fuzzy model. Once the system states are inside the valid
operating domain of the local fuzzy model, the local fuzzy controller will
gradually replace the global switching controller. As a result, the chattering
effect and the steady-state error will be eliminated eventually when the local
fuzzy controller completely dominates the control process.

Remark 7.11. To achieve the stability conditions in Theorem 7.1, we employ
the MFSI stability analysis approach. The stability conditions can be relaxed
by considering the MFSD analysis approach. For example, the boundary
and/or regional information of the membership functions can be considered
in the stability analysis.

Example 7.1. A cart-pole typed inverted pendulum [65] subject to parameter
uncertainties is considered in this example. The dynamic equation for the
inverted pendulum is given by,

θ̈(t) =
g sin(θ(t)) − amplθ̇(t)2 sin(2θ(t))/2 − a cos(θ(t))u(t)

4l/3− ampl cos2(θ(t))
(7.33)

where θ(t) is the angular displacement of the pendulum, g = 9.8m/s2 is the
acceleration due to gravity, mp ∈ [mpmin mpmax ] = [2 5]kg is the mass
of the pendulum, Mc ∈ [Mmin Mmax] = [8 10]kg is the mass of the cart,
a = 1/(mp+Mc), 2l = 1m is the length of the pendulum, and u(t) is the force
(N) applied to the cart. The proposed fuzzy combined controller is employed
to balance the pole, i.e., θ(t) → 0 as time t → ∞.

First, the fuzzy combined model is constructed to facilitate the design of
the fuzzy combined controller. The inverted pendulum can be represented by
the global fuzzy model [56] with the following four fuzzy rules:
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Rule i: IF f1(x(t)) is M i
1 AND f2(x(t)) is M i

2

THEN ẋ(t) = Aix(t) + Biu(t), i = 1, 2, 3, 4 (7.34)

The global fuzzy model is defined as follows.

ẋ(t) =
4∑

i=1

wi(x(t))(Aix(t) + Biu(t))

=
4∑

i=1

wi(x(t))(Aix(t) + α(x1(t))Bmu(t)) (7.35)

where x(t) =
[
x1(t) x2(t)

]T =
[
θ(t) θ̇(t)

]T
; f1(x(t)) = g−amplx2(t)

2 cos(x1(t))
4l/3−ampl cos2(x1(t))

× sin(x1(t))
x1(t)

and f2(x1(t)) = α(x1(t)) = − a cos(x1(t))
4l/3−ampl cos2(x1(t))

sin(x1(t))
x1(t)

; A1 =

A2 =
[

0 1
f1min 0

]
and A3 = A4 =

[
0 1

f1max 0

]
; B1 = B3 =

[
0

f2min

]
, B2 =

B4 =
[

0
f2max

]
and Bm =

[
0
1

]
. The inverted pendulum is considered working

in the operating domain characterized by x1(t) = θ(t) ∈ [− 22π
45

, 22π
45

]
and

x2(t) = θ̇(t) ∈ [−5, 5
]
. Consequently, we have f1min = 9.4047 and f1max =

20.6595, f2min = −0.1765 and f2max = −0.0034. The normalized membership

functions are defined as wi(x(t)) =
μ

Mi
1
(f1(x(t)))×μ

Mi
2
(f2(x1(t)))

∑ 4
l=1(μMl

1
(f1(x(t)))×μ

Ml
2
(f2(x1(t))))

for all i

with μMβ
1
(f1(x(t))) = −f1(x(t))+f1max

f1max−f1min
for β = 1, 2; μMδ

1
(f1(x(t))) = 1 −

μM1
1
(f1(x(t))) for δ = 3, 4; μMκ

2
(f2(x1(t))) = −f2(x1(t))+f2max

f2max−f2min
, κ = 1, 3;

μ
Mφ

2
(f2(x1(t))) = 1 − μM1

2
(f2(x1(t))) for φ = 2, 4.

Consider a small operating domain near the origin that is characterized
by x1(t) ∈ [

x̃1min , x̃1max

]
=
[−0.5, 0.5

]
and x2(t) ∈ [

x̃2min , x̃2max

]
=[−2.5, 2.5

]
. The dynamical behaviour of the inverted pendulum in this small

operating domain can be described by a local fuzzy model with the following
four rules:

Rule i: IF f̃1(x(t)) is M̃ i
1 AND f̃2(x1(t)) is M̃ i

2

THEN ẋ(t) = Ãix(t) + B̃iu(t), i = 1, 2, 3, 4 (7.36)

The local fuzzy model is given as follows.

ẋ(t) =
4∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t)) (7.37)
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where f̃1(x(t)) = f1(x(t)) and f̃2(x1(t)) = f2(x1(t)); Ã1 = Ã2 =
[

0 1
f̃1min 0

]

and Ã3 = Ã4 =
[

0 1
f̃1max 0

]
; B̃1 = B̃3 =

[
0

f̃2min

]
and B̃2 = B̃4 =

[
0

f̃2max

]
; f̃1min = 14.8691 and f̃1max = 20.6595, f̃2min = −0.1765 and

f̃2max = −0.1086. The normalized membership functions are defined as

w̃i(x(t)) =
μ

M̃i
1
(f̃1(x(t)))×μ

M̃i
2
(f̃2(x1(t)))

∑ 4
l=1(μM̃l

1
(f̃1(x(t)))×μ

M̃l
2
(f̃2(x1(t))))

for all i with μM̃β
1
(f̃1(x(t))) =

−f̃1(x(t))+f̃1max

f̃1max−f̃1min

for β = 1, 2; μM̃δ
1
(f̃1(x(t))) = 1 − μM̃1

1
(f̃1(x(t))) for δ

= 3, 4; μM̃κ
2
(f̃2(x1(t))) = −f̃2(x(t))+f̃2max

f̃2max−f̃2min

, κ = 1, 3; μ
M̃

φ
2
(f̃2(x1(t))) =

1 − μM̃1
2
(f̃2(x1(t))) for φ = 2, 4.

Based on the global and local fuzzy models, the fuzzy combined model
with the following two rules is employed to represent the inverted pendulum
(7.33).

Rule 1: IF q(x(t)) is ZE

THEN ẋ(t) =
4∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t)) (7.38)

Rule 2: IF q(x(t)) is NZ

THEN ẋ(t) =
4∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (7.39)

The nonlinear function q(x(t)) is defined as,

q(x(t)) = max
(∣∣∣

x1(t) − x̃1

x1(t)

∣∣∣,
∣∣∣
x2(t) − x̃2

x2(t)

∣∣∣
)
≥ 0 (7.40)

where x̃i = x̃imax+x̃imin

2 , xi = x̃imax−x̃imin

2 , i = 1, 2.
The fuzzy combined model is given by,

ẋ(t) = m1(x(t))
4∑

i=1

w̃i(x(t))(Ãix(t) + B̃iu(t))

+ m2(x(t))
4∑

i=1

wi(x(t))(Aix(t) + Biu(t)). (7.41)

The membership functions corresponding to the fuzzy terms ZE and NZ are
defined as follows and shown in Fig. 7.2.
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μZE(q(x(t))) =

{
q(x(t)) for 0 ≤ q(x(t)) ≤ 1
0 for q(x(t)) > 1

(7.42)

μNZ(q(x(t))) =

⎧
⎪⎨

⎪⎩

0 for q(x(t)) < 0.5
q(x(t)) − 0.5 for 0.5 ≤ q(x(t)) ≤ 1.5
1 for q(x(t)) > 1.5

(7.43)

Fig. 7.2 Membership functions of μZE(q(x(t))) and μNZ(q(x(t))).

A fuzzy combined controller is designed to balance the inverted pendulum.
Based on the local fuzzy model (7.37), a local fuzzy controller is designed with
four rules of the following format.

Rule j: IF x1(t) is N j
1 AND x2(t) is N j

2

THEN u(t) = G̃jx(t), j = 1, 2, 3, 4 (7.44)

The local fuzzy controller is given as follows.

u(t) =
4∑

j=1

vj(x(t))G̃jx(t) (7.45)
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(a) x1(t).

(b) x2(t).

Fig. 7.3 System responses with the fuzzy combined controller (7.49) for mp = 2kg
and Mc = 8kg.
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Fig. 7.4 Control signal of the fuzzy combined controller (7.49) with x(0) =[
22π
45

0
]T for mp = 2kg and Mc = 8kg.

where μNβ
1
(x1(t)) = −|x1(t)|+x̃1max

x̃1max−x̃1min
for β = 1, 2; μNδ

1
(x1(t)) = 1−μN1

1
(x1(t))

for δ = 3, 4; μNκ
2
(x2(t)) = −|x2(t)|+x̃2max

x̃2max−x̃2min
, κ = 1, 3; μNφ

2
(x2(t)) = 1 −

μN1
2
(x2(t)) for φ = 2, 4; The normalized membership functions are defined

as vj(x(t)) =
μ

N
j
1
(x1(t))×μ

N
j
2
(x2(t))

∑ 4
l=1(μNl

1
(x1(2))×μ

Nl
2
(x2(t)))

for all j. The feedback gains are

chosen as G̃1 =
[
265.5473 67.9887

]
, G̃2 =

[
431.5755 110.4972

]
, G̃3 =[

298.3541 67.9887
]
and G̃4 =

[
484.8941 110.4972

]
such that the eigenvalues

of H̃ii, i = 1, 2, 3 and 4 are −4 and −8.
Based on the global fuzzy model of (7.41), the global switching controller

is designed as follows.

u(t) =
4∑

j=1

nj(x(t))Gjx(t) (7.46)

where the switching function nj(x(t)) is given in (7.28) and K = 1.5,
αmin = |f2max | = 0.0034. The feedback gains are chosen as G1 = G2 =[−18.8691 −4.0000

]
and G3 = G4 =

[−24.6595 −4.0000
]

such that the
eigenvalues of Hi, i = 1, 2, 3 and 4 are all −2.
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(a) x1(t).

(b) x2(t).

Fig. 7.5 System responses with the fuzzy combined controller (7.49) for mp = 5kg
and Mc = 10kg.
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Fig. 7.6 Control signal of the fuzzy combined controller (7.49) with x(0) =[
22π
45

0
]T for mp = 5kg and Mc = 10kg.

Based on the fuzzy combined model (7.41), the fuzzy combined controller
is designed with the following two rules:

Rule 1: IF q(x(t)) is ZE

THEN u(t) =
4∑

j=1

vj(x(t))G̃jx(t) (7.47)

Rule 2: IF q(x(t)) is NZ

THEN u(t) =
4∑

j=1

nj(x(t))Gjx(t) (7.48)

The fuzzy combined controller is given as follows.

ẋ(t) = m1(x(t))
4∑

j=1

vj(x(t))G̃jx(t) + m2(x(t))
4∑

j=1

nj(x(t))Gjx(t) (7.49)
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(a) x1(t).

(b) x2(t).

Fig. 7.7 System responses and control signals with the fuzzy combined controller
using the saturation function for mp = 2kg and Mc = 8kg.
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(c) u(t).

Fig. 7.7 (continued)

To check for the system stability, the stability conditions in Theorem 7.1
are employed. With the MATLAB LMI toolbox, it is found that P =[

5.1158 0.4197
0.4197 0.3082

]
satisfies all LMIs in Theorem 7.1. Hence, the FMB control

system is guaranteed to be asymptotically stable.
The fuzzy combined controller (7.49) is employed to control the inverted

pendulum (7.33) subject to parameter uncertainties. The system responses of
the FMB control system with the initial state conditions of x(0) =

[
22π
45

0
]T ,

x(0) =
[

11π
45

0
]T , x(0) =

[− 11π
45

0
]T and x(0) =

[− 22π
45

0
]T for mp = 2kg

and Mc = 8kg are shown in Fig. 7.3. The control signal for x(0) =
[

22π
45

0
]T

is shown in Fig. 7.4.
We change the system parameters to mp = 5kg and Mc = 10kg to test

the robustness property of the fuzzy combined controller. The same fuzzy
combined controller (7.49) is employed to control the inverted pendulum with
the same initial state conditions. The system responses of the FMB control
system are shown in Fig. 7.5. The control signal for the fuzzy combined
controller (7.49) with x(0) =

[
22π
45

0
]T is shown in Fig. 7.6. It can be seen

that the proposed fuzzy combined controller is able to stabilize successfully
the inverted pendulum subject to parameter uncertainties. From the figures,
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(a) x1(t).

(b) x2(t).

Fig. 7.8 System responses and control signals with the fuzzy combined controller
using the saturation function for mp = 5kg and Mc = 10kg.
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(c) u(t).

Fig. 7.8 (continued)

it can be seen that the chattering effect happens during the transient state
when the global switching controller dominates the control process. When the
system states are near the origin, the chattering effect reduces and eventually
vanishes as the local fuzzy controller dominates the control process.

As discussed in Remark 7.8, the saturated function can be employed to
replace the switching function (7.31) to alleviate the chattering effect. By
choosing T = 1, the fuzzy combined controller with the switching law (7.31)
using the saturation function is employed to stabilize the inverted pendulum.
Under this setup, the system responses and control signal of the FMB control
system for mp = 2kg and Mc = 8kg, and mp = 5kg and Mc = 10kg, under
various initial state conditions are shown in Fig. 7.7 and Fig.7.8, respectively.
It can be seen from these figures that the fuzzy combined controller with
the saturation function can also stabilize the inverted pendulum successfully.
Moreover, the chattering effect is significantly reduced and no steady-state
error is found.

For comparison purposes, the traditional fuzzy controller (2.6) rewritten
as follows is employed to control the inverted pendulum.
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(a) x1(t).

(b) x2(t).

Fig. 7.9 System responses with the traditional fuzzy controller (7.50) for mp = 2kg
and Mc = 8kg.
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u(t) =
4∑

j=1

mj(x(t))Gjx(t) (7.50)

where the normalized membership functions are defined as mi(x(t)) =
μ

V i
1
(x1(t))×μ

V i
2
(x2(t))

∑ 4
l=1(μV l

1
(x1(2))×μ

V l
2
(x2(t)))

for all i with μ
V β

1
(x1(t)) = −|x1(t)|+x̃1max

x̃1max−x̃1min
for β

= 1, 2; μV δ
1
(x1(t)) = 1−μV 1

1
(x1(t)) for δ = 3, 4; μV κ

2
(x2(t)) = −|x2(t)|+x̃2max

x̃2max−x̃2min
,

κ = 1, 3; μ
V φ

2
(x2(t)) = 1−μV 1

2
(x2(t)) for φ = 2, 4; x1(t) ∈

[
x1min , x1max

]
=

[− 22π
45

, 22π
45

]
and x2(t) ∈

[
x2min , x2max

]
=
[−5, 5

]
.

By applying the PDC design technique, and designing the feedback gains
Gj under the same design criterion as that of the global switching state-
feedback controller, i.e. the eigenvalues of Hii are both assigned to be −2
for all i, we have G1 =

[
75.9474 22.6629

]
, G2 =

[
3942.5647 1176.4735

]
,

G3 =
[
139.7140 22.6629

]
and G4 =

[
7252.8000 1176.4735

]
. From the

stability conditions in [122], the FMB control system is guaranteed to be
asymptotically stable if there exists a solution P > 0 to the LMIs of
H

T

ijP + P Hij < 0, i = 1, 2, 3, 4, where Hij = Ai + BiGj for all i and
j. By using the MATLAB LMI toolbox, it can be shown that no feasible
solution of P can be found. The system responses and control signal given
by the traditional fuzzy controller (7.50) for mp = 2kg and Mc = 8kg under
various initial state conditions are shown in Fig. 7.9. Referring to this fig-
ure, it can be seen that the inverted pendulum cannot be stabilized by the
traditional fuzzy controller (7.50).

It should be noted that in this example, the feedback gains are determined
by the pole placement technique before applying the stability conditions in
Theorem 7.1. By using the stability conditions in Theorem 7.2, the feedback
gains can be obtained numerically with convex programming techniques. It
can be shown that the fuzzy controller (2.6) with the feedback gains obtained
by the stability conditions in Theorem 2.1 is able to stabilize the inverted
pendulum.

7.5 Conclusion

A fuzzy combined model, which consists of the global and local fuzzy models,
has been proposed to represent nonlinear plants subject to parameter uncer-
tainties. A fuzzy combined controller, which consists of a global switching
controller and a local fuzzy controller, has been designed based on the fuzzy
combined model. The global switching controller is responsible for driving the
system states towards the origin. When the FMB control system is operating
near the origin, the local fuzzy controller takes over gradually to control the
process. The contribution of both controllers to the control process is deter-
mined by the fuzzy combination rules. As the nonlinearity of the local fuzzy
model is not so strong as compared with that of the global fuzzy model, the
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local fuzzy controller is easier to be obtained. Stability conditions in terms
of LMIs have been derived based on the Lyapunov stability theory. Owing
to the properties of the proposed fuzzy combined model and fuzzy combined
controller, the cross terms of the FMB control system vanish such that the
stability conditions contain only the system matrices of the local and global
FMB systems individually. Furthermore, the chattering effect (because of
the switching function) and the steady-state error introduced by the global
switching controller (because of the saturation function) will gradually van-
ish when the system states are inside the valid operating domain of the local
fuzzy model. A simulation example has been given to illustrate the design
procedure and the merits of the proposed fuzzy combined control scheme.



Chapter 8

Time-Delay FMB Control Systems

8.1 Introduction

Time-delay nonlinear systems can be found in many real-life engineering pro-
cesses. As the time delay is one of the sources to cause system instability, it
is important to extend the FMB control techniques to this class of nonlinear
systems to put the fuzzy controllers into practice.

To deal with the time-delay nonlinear systems using fuzzy control tech-
niques, in general, two stability analysis approaches can be found in the
literature, namely delay-independent and delay-dependent stability analysis
approaches. Delay-independent stability conditions for time-delay FMB con-
trol systems were derived in [7, 8, 124] based on Lyapunov-Krasovskii or
Lyapunov-Razumikhin based approaches.

In the delay-independent stability analysis approach, the time delay is not
considered in the stability analysis and thus the stability conditions are not
related to the time-delay information. As a result, once the time-delay FMB
control system is guaranteed to be stable, it is stable for any value of time
delay. Hence, delay-independent stability conditions are particularly useful
for nonlinear systems subject to unknown or inestimable value of time delay.

In [10–12, 34, 75, 79, 113, 126, 129], delay-dependent stability conditions
were derived based on the Lyapunov-Krasovskii based approach with the
time-delay information is considered in the stability analysis. To facilitate
the stability analysis, some inequalities have been proposed to approximate
the upper bound of some terms related to the time delay. Other forms of
inequalities were proposed in [31, 133] to serve the same purpose to reduce
the conservativeness of the stability analysis. These inequalities have been
employed in [10–12, 34, 75, 79, 113, 126, 129] to investigate the stability
of time-delay FMB control systems. It was shown in [12, 75, 79, 126, 129]
that some inequalities are able to achieve relaxed stability analysis results.
Furthermore, by introducing some slack matrices, the stability conditions
can be further relaxed. In the delay-dependent stability conditions, the time-
delay information is one of the elements to determine the system stability. As

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 151–171.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



152 8 Time-Delay FMB Control Systems

a result, less conservative stability conditions can be achieved with time-delay
information being considered. The delay-dependent stability conditions are
good for time-delay FMB control systems with known or estimable values of
time delays.

In general, both the delay-independent and delay-dependent stability anal-
ysis results have their own advantages for different classes of time-delay non-
linear systems.

8.2 Time-Delay Fuzzy Model and Fuzzy Controller

Let p be the number of fuzzy rules describing the time-delay nonlinear plant.
The i-th rule is of the following format.

Rule i: IF f1(x(t)) is M i
1 AND · · · AND fΨ(x(t)) is M i

Ψ

THEN ẋ(t) = Aix(t) + Adix(t − τd) + Biu(t) (8.1)

where x(t − τd) ∈ �n is the delayed system state vector; Adi ∈ �n×n are
constant system matrices for all i and τd ≥ 0 denotes a constant time delay.
The rest variables are defined in Section 2.2.

The system dynamics of the time-delay nonlinear plant is described as
follows.

ẋ(t) =
p∑

i=1

wi(x(t))(Aix(t) + Adix(t − τd) + Biu(t))

=
p∑

i=1

wi(x(t))
[
Ai Adi Bi

]
⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ (8.2)

It is assumed that x(t) = ϕ(t) for t ∈ [−τd 0
]

where ϕ(t) denotes the initial
condition of x(t).

Based on the time-delay fuzzy model (8.2), the fuzzy controller in the
form of (2.6) sharing the same premise membership functions of the time-
delay fuzzy model is employed to perform the control process, i.e. drive the
system states x(t) to the origin as time t tends to infinity.

8.2.1 Stability Analysis and Performance Design

In this section, the system stability of the time-delay FMB control systems
formed by (8.2) and (2.6) connected in a closed loop is investigated. Two
stability analysis approaches, namely delay-independent and delay-dependent
approaches, are employed for the investigation of system stability. Based on
the Lyapunov stability theory [46, 100, 121], LMI-based stability conditions
are derived to guarantee the system stability.
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For brevity, the normalized membership functions of wi(x(t)) is denoted
as wi in the following analysis. Furthermore, the property of

∑p
i=1 wi =∑p

i=1

∑p
j=1 wiwj = 1 given by the membership functions is used.

8.2.2 Delay-Independent Approach

The system stability of the time-delay FMB system based on the time-delay
independent approach is investigated. As its name tells, the stability analysis
is carried out without considering the time delay. Hence, once the time-delay
FMB control system is guaranteed to be stable, it is stable for any value of
time delay. To investigate the system stability of the time-delay FMB control
system, the following Lyapunov functional candidate is considered.

V1(t) = x(t)T P1x(t) +
∫ t

t−τd

x(ϕ)T Sx(ϕ)dϕ (8.3)

where 0 < P1 = PT
1 ∈ �n×n and 0 < S = ST ∈ �n×n. It can be seen that

V1(t) > 0 for all x(t).
In the following, it will be shown that V̇1(t) < 0 (for both x(t) �= 0 and

x(t− τd) �= 0) which implies the asymptotic stability of the time-delay FMB
control system.

It follows from (8.2) and (8.3) that we have

V̇ (t) = x(t)T P1ẋ(t) + ẋ(t)T P1x(t) + x(t)T Sx(t) − x(t − τd)T Sx(t − τd)

=
p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T (

PT

⎡

⎣
Ai Adi Bi

0 0 0
0 0 0

⎤

⎦

+

⎡

⎣
Ai Adi Bi

0 0 0
0 0 0

⎤

⎦
T

P +

⎡

⎣
S 0 0
0 −S 0
0 0 0

⎤

⎦
)⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ (8.4)

where P =

⎡

⎣
P1 0 0
P2 P3 0
P4 P5 P6

⎤

⎦ ∈ �(2n+m)×(2n+m), P2 ∈ �n×n, P3 ∈ �n×n, P4 ∈

�m×n, P5 ∈ �m×n and P6 ∈ �m×m.
From the fuzzy controller (2.6), it is obvious that we have

∑p
i=1 wiGjx(t)−

u(t) = 0. Thus, we have
∑p

i=1 wi

⎡

⎣
0 0 0
0 0 0
Gi 0 −I

⎤

⎦

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ which

leads to the following property to facilitate the stability analysis.
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p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T (

PT

⎡

⎣
0 0 0
0 0 0
Gi 0 −I

⎤

⎦

+

⎡

⎣
0 0 0
0 0 0
Gi 0 −I

⎤

⎦
T

P

)⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ (8.5)

Adding (8.5) to (8.4), we have

V̇ (t) =
p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T (

PT

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦

+

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦
T

P +

⎡

⎣
S 0 0
0 −S 0
0 0 0

⎤

⎦
)⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ . (8.6)

We choose a particular form of P−1 for mathematical development of the
LMI-based stability conditions in the following analysis. Denote X = P−1 =⎡

⎣
X1 0 0
X1 X1 0
X2 X3 X4

⎤

⎦, X1 = XT
1 = P−1

1 ∈ �n×n, X2 ∈ �m×n, X3 ∈ �m×n and

X4 ∈ �m×m.
Denote the feedback gains as Gi = NiX−1

1 where Ni ∈ �m×n for all i,

Y = X1SX1 and z(t) = X−1

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦. From (8.6), we have

V̇ (t) =
p∑

i=1

wiz(t)T XT

(
PT

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦

+

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦
T

P +

⎡

⎣
S 0 0
0 −S 0
0 0 0

⎤

⎦
)

Xz(t)

=
p∑

i=1

wiz(t)T Qiz(t) (8.7)

where Qi =

⎡

⎣
Q(11)

1 ∗ ∗
X1AT

di + XT
3 BT

i − Y −Y ∗
Ni − X2 + XT

4 BT
i −X3 −X4 − XT

4

⎤

⎦, Q(11)
1 = (Ai +

Adi)X1 + X1(Ai + Adi)T + BiX2 + XT
2 BT

i , the symbol “∗” denotes the
transposed element in the corresponding position of the matrix.

From (8.3) and (8.7), based on the the Lyapunov stability theory, V (t) > 0
and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0 and x(t − τd) �= 0) implying the
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asymptotic stability of the time-delay FMB control system, i.e., x(t) → 0 and
x(t − τd) → 0 when time t → ∞, can be achieved if the stability conditions
summarized in the following theorem are satisfied.

Theorem 8.1. (Delay-Independent Approach): The time-delay FMB control
system, formed by the nonlinear plant represented by the time-delay fuzzy
model (8.2) and the fuzzy controller (2.6) with mj(x(t)) = wj(x(t)) and
c = p connected in a closed loop is asymptotically stable if there exist matrices
Ni ∈ �m×n, i = 1, 2, · · · , p, X1 = XT

1 ∈ �n×n, X2 ∈ �m×n, X3 ∈ �m×n,
X4 ∈ �m×m, Y = YT ∈ �n×n such that the following LMIs are satisfied.

X1 > 0;

Y > 0;

Qi < 0 ∀ i;

and the feedback gains are designed as Gi = NiX−1
1 for all i.

Remark 8.1. The number of LMI stability conditions are reduced to p + 2
compared with that of the stability conditions in [7, 8, 10–12, 34, 75, 79, 113,
124, 126, 129]. Consequently, the computational demand on searching for
the solution to the stability conditions can be alleviated. The computational
advantage is obvious when the time-delay FMB control system has a large
number of rules.

Remark 8.2. The stability conditions can be relaxed by considering the fol-
lowing modifications.

1. Choose X =

⎡

⎣
X1 0 0

ε1X1 ε2X1 0
X2 X3 X4

⎤

⎦ where ε1 is a scalar and ε2 is a nonzero

positive scalar. The scalars of ε1 and ε2 offer higher degrees of freedom on
searching for the solution. However, the stability conditions become BMIs
which cannot be solved directly using convex programming techniques.
The GA-convex programming technique introduced in Chapter 4 can be
employed in this case to find the solution numerically.

2. Choose Xk =
∑p

i=1 wiXki, k = 2, 3, 4. Consequently, more slack matrices
are introduced to the stability conditions, which increase the degrees of
freedom on searching for the solution of the stability conditions. However,
the number of stability conditions will be increased.

Remark 8.3. The system performance of the time-delay FMB control systems
can be realized by considering the performance index in (3.14), Section 3.2.2.
As the fuzzy controller considered in this chapter is the same as the one
in Chapter 3. The LMI-based performance conditions Wj < 0 for all j in
Theorem 3.2 given in Section 3.2.2 can be used together with the stability
conditions in Theorem 8.1 for the realization of a stable and well-performed
time-delay FMB control system subject to the weighting matrices J1 and J2.
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Remark 8.4. The stability analysis is based on the assumption that P is in-
vertible. If there exists a solution to the stability conditions in Theorem 8.1,
it implies that X1 > 0 and −X4 − XT

4 < 0. As X1 and X4 are both non-
singular matrices and they are the diagonal elements in X, these are the
sufficient conditions to ensure that X is a non-singular matrix. Hence, the
existence of X = P−1 is ensured.

Example 8.1. Consider a time-delay TS fuzzy model with the following rules.

Rule i: IF x1(t) is M i
1

THEN ẋ(t) = Aix(t) + Adix(t − τd) + Biu(t), i = 1, 2 (8.8)

where A1 =
[−2.1 0.1
−0.2 −0.9

]
, A2 =

[−1.9 0
−0.2 −1.1

]
; Ad1 =

[−1.1 0.1
−0.8 −0.9

]
, Ad2 =

[−0.9 0
−1.1 −1.2

]
; B1 =

[
1
1

]
, B2 =

[−1
2

]
. The membership functions are chosen

as w1(x1(t)) = μM1
1
(x1(t)) = 1

1+e−2x1(t) and w2(x1(t)) = μN2
1
(x1(t)) = 1 −

w1(x1(t)).
Considering the open-loop fuzzy system (i.e., setting Bi = 0), the delay-

independent stability conditions in Theorem 8.1 is employed to check for the
system stability. It can be found that a feasible solution can be obtained with
the MATLAB LMI toolbox. However, no feasible solution can be found for
the stability conditions in [7, 133].

To illustrate the effectiveness of the LMI-based performance conditions in
Theorem 3.2 presented in Section 3.2.2, we consider the stability conditions
in Theorem 8.1 with the performance conditions Wj < 0 for all j given in
Section 3.2.2. Considering η = 10−10 and J2 = 1, the feedback gains with
different weighting matrices, J1, for the performance conditions are given in
Table 8.1. It can be seen that different J1 put different weights on the system

states. Take J1 =
[

100 0
0 1

]
as an example and refer to the performance index

(3.14), the weight of 100 is put on x1(t). The physical meaning is to suppress
the integral of energy contributed by the system state x1(t) 100 times more
than those contributed by the rest, i.e., x2(t).

The system state responses with τd = 1s and the control signals of the time-
delay FMB control system under the initial state condition of x(t) =

[
1 0
]T

are shown in Fig. 8.1. The initial system state function is defined as ϕ(t) =[
1 0
]

for t ∈ [−τd, 0
]
. Referring to this figure, it can be seen that the fuzzy

controllers with different sets of feedback gains are able to stabilize the time-

delay nonlinear system. The fuzzy controller with J1 =
[

100 0
0 1

]
offers better

system response on x1(t) in terms of rising time and overshoot/undershoot
magnitude as the heaviest weight is put on x1(t) in J1. For the feedback gains

corresponding to J1 =
[

1 0
0 100

]
, as the heaviest weight is put on x2(t) in J1,
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Table 8.1 Feedback gains under delay-dependent stability approach with different
J1 for Example 8.1.

J1 Feedback Gains

J1 =
[

1 0
0 1

]
G1 =

[
1.0349 −10.0025

]
, G2 =

[
0.9584 −8.9833

]

J1 =
[

100 0
0 1

]
G1 =

[
2.4915 −38.8894

]
, G2 =

[
9.2812 −52.5048

]

J1 =
[

1 0
0 100

]
G1 =

[
0.4619 −19.9519

]
, G2 =

[
0.3537 −18.7751

]

this fuzzy controller offers better system response on x2(t) in terms of rising
time and overshoot/undershoot magnitude.

To test the delay-independent stability conditions in Theorem 8.1, we
choose a larger time delay, i.e., τd = 5s for the simulation example. The
system state responses with τd = 5s and the control signals of the time-delay
FMB control system under the same initial conditions are shown in Fig. 8.2.
It can be seen from the figures that the time-delay FMB control system is
stable. Based on the delay-independent stability conditions in Theorem 8.1,
the time-delay FMB control system is asymptotically stable for any values of
time delay.

8.3 Delay-Dependent Approach

In this section, the system stability of the time-delay FMB control systems
based on the delay-dependent approach is investigated that the time de-
lay is taken into consideration in stability analysis. As a result, the system
stability is related to the value of the time delay, which is brought to the
stability conditions. Compared to the delay-independent analysis approach
in the previous section, the time delay provides additional information for
the stability analysis. Consequently, a more relaxed stability analysis result
can be achieved.

The following Lyapunov functional candidate [75] is considered to investi-
gate the system stability.

V (t) = V1(t) + V2(t) (8.9)

where V1(t) is defined in (8.3) and

V2(t) =
∫ 0

−hd

∫ t

t+σ

ẋ(ϕ)T Rẋ(ϕ)dϕdσ (8.10)

Denote the upper bound of τd as hd, i.e., τd ≤ hd. From (8.2), (8.10), and using
the property that R > 0 and (ai−aj)TR(ai−aj) ≥ 0 =⇒ aT

i Rai+aT
j Raj ≥
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Fig. 8.1 System state responses and control signals of Example 8.1 with τd = 1s

under the fuzzy controller with J1 =
[

1 0
0 1

]
(solid lines), J1 =

[
100 0
0 1

]
(dotted

lines) and J1 =
[

1 0
0 100

]
(dash-dot lines).
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Fig. 8.1 (continued)



160 8 Time-Delay FMB Control Systems

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

u(
t)

(e) u(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

u(
t)

(f) u(t) for 0s ≤ t ≤ 2s.
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Fig. 8.2 System state responses and control signals of Example 8.1 with τd = 5s

under the fuzzy controller with J1 =
[

1 0
0 1

]
(solid lines), J1 =

[
100 0
0 1

]
(dotted

lines) and J1 =
[

1 0
0 100

]
(dash-dot lines).
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Fig. 8.2 (continued)
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aT
i Raj + aT

j Rai where ai ∈ �n, i, j = 1, 2, · · · , p, are arbitrary vectors, the
time derivative of V2(t) is obtained as follows.

V̇2(t) = hdẋ(t)T Rẋ(t) −
∫ t

t−hd

ẋ(ϕ)T Rẋ(ϕ)dϕ

= hd

p∑

i=1

p∑

j=1

wiwj

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T ⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦R

⎡

⎣
AT

j

AT
dj

BT
j

⎤

⎦
T ⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦

−
∫ t

t−hd

ẋ(ϕ)T Rẋ(ϕ)dϕ

≤ hd

p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T ⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦R

⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦
T ⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦

−
∫ t

t−hd

ẋ(ϕ)T Rẋ(ϕ)dϕ (8.11)

Before proceeding further, the following Lemma is introduced to facilitate
the stability analysis.

Lemma 8.1. [133] The following integral inequality holds for any arbitrary
matrices T1 ∈ �n×n, T2 ∈ �n×n, 0 < R = RT ∈ �n×n and a scalar hd ≥ 0.

−
∫ t

t−hd

ẋ(ϕ)T Rẋ(ϕ)dϕ ≤
[

x(t)
x(t − hd)

]T [
T1 + TT

1 −TT
1 + T2

−T1 + TT
2 −T2 − TT

2

] [
x(t)

x(t − hd)

]

+ hd

[
x(t)

x(t − hd)

]T [
TT

1

TT
2

]
R−1

[
TT

1

TT
2

]T [
x(t)

x(t − hd)

]

where x(t) ∈ �n with continuous first derivative.

From (8.11) and Lemma 8.1, we have

V̇2(t) ≤
p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T (

hd

⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦R

⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦
T

+ hd

⎡

⎣
TT

1i

TT
2i

0

⎤

⎦R−1

⎡

⎣
TT

1i

TT
2i

0

⎤

⎦
T

+

⎡

⎣
T1i + TT

1i −TT
1i + T2i 0

−T1i + TT
2i −T2i − TT

2i 0
0 0 0

⎤

⎦
)⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦ (8.12)

where T1i ∈ �n×n and T2i ∈ �n×n for all i.

From (8.6) and (8.12), recalling that z(t) = X−1

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦, (8.9) can

be written as the following compact form.
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V̇ (t) ≤
p∑

i=1

wi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦
T

Qi

⎡

⎣
x(t)

x(t − τd)
u(t)

⎤

⎦

=
p∑

i=1

wiz(t)T XT QiXz(t) (8.13)

where

Qi = PT

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦+

⎡

⎣
Ai Adi Bi

0 0 0
Gi 0 −I

⎤

⎦
T

P +

⎡

⎣
S 0 0
0 −S 0
0 0 0

⎤

⎦

+ hd

⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦R

⎡

⎣
AT

i

AT
di

BT
i

⎤

⎦
T

+ hd

⎡

⎣
TT

1i

TT
2i

0

⎤

⎦R−1

⎡

⎣
TT

1i

TT
2i

0

⎤

⎦
T

+

⎡

⎣
T1i + TT

1i −TT
1i + T2i 0

−T1i + TT
2i −T2i − TT

2i 0
0 0 0

⎤

⎦ . (8.14)

It can be seen that V̇ (t) < 0 when the stability conditions XTQiX
T < 0

for all i, which imply the asymptotic stability of the time-delay FMB control
system. In order to turn the stability conditions into LMIs, we consider M =
R−1 ∈ �n×n, Gi = NiX−1

1 , Ni ∈ �m×n, U1i = XT
1 T1iX1 ∈ �n×n, U2i =

XT
1 T2iX1 ∈ �n×n and Y = X1SX1. Furthermore, with the property R =

RT > 0, we consider the inequality (X1−ζR−1)TR(X1−ζR−1) = XT
1 RX1−

ζXT
1 − ζX1 + ζ2R−1 ≥ 0 that leads to

XT
1 RX1 ≥ ζXT

1 + ζX1 − ζ2R−1 = 2ζX1 − ζ2R−1 (8.15)

where ζ is an arbitrary scalar.
By Schur complement and with (8.15), XTQiX < 0 for all i are implied

by the following inequalities.

Θi =

⎡

⎢⎢⎢⎢⎢⎣

Θ(11)
i ∗ ∗ ∗ ∗

Θ(21)
i −Y −U2i − UT

2i ∗ ∗ ∗
Θ(31)

i −X3 −X4 − XT
4 ∗ ∗

Θ(41)
i hd(AdiX1 + BiX3) hdBiX4 −hdM ∗

hd(U1i + U2i) hdU2i 0 0 Θ(55)
i

⎤

⎥⎥⎥⎥⎥⎦
< 0

(8.16)

where Θ(11)
i = (Ai + Adi)X1 + X1(Ai + Adi)T + BiX2 + XT

2 BT
i , Θ(21)

i =
X1AT

di + XT
3 Bi − Y − U1i − U2i, Θ(31)

i = Ni − X2 + XT
4 BT

i , Θ(41)
i =

hd((Ai + Adi)X1 + BiX2), Θ(55)
i = −hd(2ζX1 − ζ2M).
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Table 8.2 Upper bounds of time delay given by various stability conditions for
Example 8.2.

Stability Conditions Maximum time delay hd (Sec.)

Theorem 8.2 2.3767
[10] 1.2246
[34] 1.0124
[11] 0.7171
[12] 0.0343

From (8.9) and (8.13), based on the the Lyapunov stability theory, V (t) >
0 and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0 and x(t − τd) �= 0) implying the
asymptotic stability of the time-delay FMB control system, i.e., x(t) → 0 and
x(t − τd) → 0 when time t → ∞, can be achieved if the stability conditions
summarized in the following theorem are satisfied.

Theorem 8.2. (Delay-Dependent Approach): The time-delay FMB control
system, formed by the nonlinear plant represented by the time-delay fuzzy
model (8.2) and the fuzzy controller (2.6) with mj(x(t)) = wj(x(t)) and c = p
connected in a closed loop is asymptotically stable if there exist pre-defined
scalars hd > 0 and ζ and there exist matrices M = MT ∈ �n×n, Ni ∈ �m×n,
U1i ∈ �n×n, U2i ∈ �n×n, i = 1, 2, · · · , p, X1 = XT

1 ∈ �n×n, X2 ∈ �m×n,
X3 ∈ �m×n, X4 ∈ �m×m, Y = YT ∈ �n×n such that the following LMIs
are satisfied.

X1 > 0;

M > 0;

Y > 0;

Θi < 0 ∀ i;

and the feedback gains are designed as Gi = NjX−1
1 for all i.

Table 8.3 Feedback gains under delay-dependent stability approach with different
J1 for Example 8.2.

J1 Feedback Gains

J1 =
[

1 0
0 1

]
G1 =

[
−0.0728 −0.9403

]
, G2 =

[
−0.0779 −0.8023

]

J1 =
[

100 0
0 1

]
G1 =

[
−0.4058 −0.9449

]
, G2 =

[
−0.4883 −0.8045

]

J1 =
[

1 0
0 100

]
G1 =

[
−0.0392 −9.9649

]
, G2 =

[
−0.0286 −6.9614

]
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Fig. 8.3 System state responses and control signals of Example 8.2 with τd = 2s

under the fuzzy controller with J1 =
[

1 0
0 1

]
(solid lines), J1 =

[
100 0
0 1

]
(dotted

lines) and J1 =
[

1 0
0 100

]
(dash-dot lines).
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Fig. 8.3 (continued)
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Remark 8.5. The MFSD stability analysis approach introduced in Chapter
3 to Chapter 5 can be employed to both delay-dependent/independent sta-
bility analysis approaches to relax the stability analysis results by using the
information of membership functions.

Example 8.2. Consider a fuzzy model with the following rules [113].

Rule i: IF x1(t) is M i
1

THEN ẋ(t) = Aix(t) + Adix(t − τd) + Biu(t), i = 1, 2 (8.17)

where A1 =
[−2 0

0 −0.9

]
, A2 =

[−1 0.5
0 −1

]
; Ad1 =

[−1 0
−1 −1

]
, Ad2 =

[ −1 0
−0.1 −1

]
; B1 =

[
0
1

]
, B2 =

[
0
10

]
. The membership functions are cho-

sen as the ones in Example 8.1.
Considering an opening-loop system by setting Bi = 0, the upper bounds

of time delay given by some existing approaches and Theorem 8.2 are listed
in Table 8.2. It can be seen that Theorem 8.2 offers the largest upper bound
of time delay, i.e., 2.3767s with ζ = 0.5.

LMI-based stability conditions in Theorem 8.2 and performance conditions
Wj < 0 for all j in Theorem 3.2 given in Section 3.2.2 are employed to
obtain the feedback gains of the fuzzy controller for the time-delay fuzzy
system (8.17). With the MATLAB LMI toolbox, choosing τd = 2s, ζ = 0.5,
η = 10−10, and J2 = 1 and corresponding to various weighting matrices
J1, the feedback gains are tabulated in Table 8.3. Fig. 8.3 shows the system
state responses with τd = 2s and the control signals of the time-delay FMB
control systems under the initial state condition of x(t) =

[
1 0
]T . The initial

system state function is defined as ϕ(t) =
[
1 0
]

for t ∈ [−τd, 0
]
. Referring

to this figure, it can be seen that the fuzzy controllers with different sets of
feedback gains can stabilize the time-delay fuzzy system. Furthermore, the

fuzzy controller with J1 =
[

100 0
0 1

]
offers better system response on x1(t) in

terms of rising time and overshoot/undershoot magnitude as more weight is

put on x1(t) in J1. For the fuzzy controller with J1 =
[

1 0
0 100

]
, it can be

seen that the overshoot/undershoot of x2(t) is suppressed effectively.

8.4 Conclusion

The stability of the time-delay FMB control systems has been investigated un-
der the delay-independent and delay-independent stability approaches. The
time-delay FMB control system is represented as a descriptor system to facil-
itate the stability analysis and controller synthesis. Based on the Lyapunov
stability theory, delay-independent and delay-dependent LMI-based stability
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conditions have been derived to guarantee the system stability. As the delay-
dependent stability conditions do not require the information of the time
delay, it is more suitable to nonlinear plants with unknown or inestimable
time delay. However, if the time delay is known or estimable, the delay-
dependent stability conditions are more favourable as it usually offers less
conservative result. Simulation examples have been given to show the merits
of the proposed approach. Furthermore, LMI-based performance conditions
given in Chapter 3 have been employed to realize the system performance.





Chapter 9

Sampled-Data FMB Model Reference
Control Systems

9.1 Introduction

Fuzzy-model-based control approach is a promising approach dealing with
nonlinear systems. By taking advantage of the TS fuzzy model, which repre-
sents the dynamics of the nonlinear plant in a favourable form, the system
analysis and controller synthesis can be facilitated. Flouring stability analy-
sis results and LMI-based controller synthesis techniques for continuous-time
FMB control systems have been achieved and briefly discussed in Chapter 2.
In the previous chapters, the stabilization control problem that the system
states are driven to the origin is considered. The tracking control problem
is another one that has drawn a great deal of research interest in the con-
trol community. The objective of the tracking control problem is to drive
the system states of the nonlinear plant to follow some pre-defined trajecto-
ries. Compared with the stabilization control problem, the tracking control
problem is relatively difficult to be handled.

Tracking control problem for continuous-time and discrete-time FMB sys-
tems was investigated in [13, 116, 117, 119]. However, the study on the
sampled-data FMB control system is seldom found. The sampled-data FMB
control systems are mixed continuous-time and discrete-time systems. The
nonlinear plant to be handled is a continuous-time system while the sampled-
data controller is a discrete-time one. The control signals of the sampled-data
controller will be held constant during the sampling period. As a result, due
to the sampling activity, discontinuity is introduced to the closed-loop system
that complicates the system dynamics and makes the stability analysis dif-
ficult. Although the sampling activity exhibits undesirable characteristics to
the system analysis, the sampled-data controllers can be implemented by mi-
crocontrollers or digital computers to enhance the design flexibility and lower
the implementation cost. Hence, it is worthwhile investigating the sampled-
data FMB control systems to put the sampled-data FMB control approach
into practice.

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 173–190.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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As discontinuity is introduced by the sampling activity, the Lyapunov func-
tion candidates proposed for pure continuous-time or discrete-time FMB con-
trol systems cannot be applied. A descriptor transformation technique was
proposed in [30] to investigate the stability of the linear sampled-data con-
trol systems. In [32, 56, 66], the linear analysis approach was employed and
extended to analyze the stability of nonlinear sampled-data control system
using the descriptor representation. The descriptor approach was adopted to
investigate the system stability of the time-delay and/or sampled-data fuzzy
control systems [60]. Furthermore, the tracking control problem handled by
a sampled-data FMB controller can also be found in [71]. In [51], the effect
of the analogue-to-digital and digital-to-analogue converters to the system
stability were considered.

In this chapter, a sampled-data FMB model reference tracking control
systems is considered. A sampled-data fuzzy controller is proposed to drive
the system states of the continuous-time nonlinear system to follow those of a
stable reference model. A Lyapunov function is employed to study the system
stability. LMI-based stability conditions are derived to design the sampled-
data fuzzy controllers, of which the tracking performance is governed by an
H∞ tracking performance function.

9.2 Reference Model and Sampled-Data Fuzzy
Controller

A sampled-data FMB control system is formed by a continuous-time nonlin-
ear plant represented by a TS fuzzy model (2.2) and a sampled-data fuzzy
controller connected in a closed loop. The tracking control problem is con-
sidered in this chapter. A sampled-data fuzzy controller is employed to drive
the system states to follow those of a stable linear reference model.

9.2.1 Reference Model

The stable linear reference model is defined as follows.

˙̂x(t) = Ax̂(t) + Br(t) (9.1)

where x̂(t) ∈ �n is the system state vector of the reference model; A ∈ �n×n

and B ∈ �n×m are the constant system and input matrices, r(t) ∈ �m is the
external input vector.

Remark 9.1. The reference model can also be a stable nonlinear system.
In this case, the system and input matrices become A(x(t)) ∈ �n×n and
B(x(t)) ∈ �n×m, respectively.
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9.2.2 Sampled-Data Fuzzy Controller

A sampled-data fuzzy controller with p fuzzy rules is proposed based on the
TS fuzzy model (2.2) representing the nonlinear plant. The j-th rule of the
sampled-data fuzzy controller is of the following format.

Rule j: IF g1(x(tγ)) is N j
1 AND · · · AND gΩ(x(tγ)) is N j

Ω

THEN u(t) = Gje(tγ), tγ ≤ t < tγ+1 (9.2)

where N j
β is a fuzzy set of rule j corresponding to the function gβ(x(tγ)), β

= 1, 2, · · · , Ω ; j = 1, 2, · · · , p; Ω is a positive integer; Gj ∈ �m×n, j =
1, 2, · · · , p, are constant feedback gains to be determined; x(t) ∈ �n is the
system states of the nonlinear plant represented by the TS fuzzy model (2.2);
e(tγ) = x(tγ) − x̂(tγ); tγ = γhs, γ = 0, 1, 2, · · · , ∞, denotes a sampling
instant; hs = tγ+1 − tγ denotes the constant sampling period. The inferred
sampled-data fuzzy controller is defined as follows.

u(t) =
p∑

j=1

mj(x(tγ))Gje(tγ)

=
p∑

j=1

mj(x(tγ))Gje(t − τs(t)), tγ ≤ t < tγ+1 (9.3)

where τs(t) = t − tγ < hs for tγ ≤ t < tγ+1,

mj(x(tγ)) ≥ 0 ∀ j,

p∑

j=1

mj(x(tγ)) = 1, (9.4)

mj(x(tγ)) =

Ω∏

l=1

μNj
l
(gl(x(tγ)))

p∑

k=1

Ω∏

l=1

μNk
l
(gl(x(tγ)))

∀ j, (9.5)

mj(x(tγ)), j = 1, 2, · · · , p, are the normalized grades of membership,
μNj

β
(gβ(x(tγ))), β = 1, 2, · · · , Ω , are the membership functions correspond-

ing to the fuzzy set N j
β. It can be seen from (9.3) that u(t) = u(tγ), which

holds constant value for tγ ≤ t < tγ+1.

9.3 Stability Analysis of Sampled-Data FMB Model
Reference Control Systems

In this section, the stability of the sampled-data FMB model reference track-
ing control system formed by the nonlinear plant represented by the TS fuzzy
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model (2.2), the reference model (9.1) and the sampled-data fuzzy controller
of (9.3) is investigated. The block diagram of the model reference control
system is shown in Fig. 9.1.

Fig. 9.1 Block diagram of the sampled-data FMB model reference tracking control
system.

Referring to Fig. 9.1, the reference model and the continuous nonlinear
plant offer the system state vector x̂(t) and x(t), respectively. The sampled-
data fuzzy controller will take x̂(t) and x(t) at every hs seconds (sampling
period) as the input. Based on the sampled system state vectors, a control
signal u(t) will be generated and kept constant by the zero order hold (ZOH)
for every sampling period. The sampled-data fuzzy controller will be designed
such that the the system state x(t) approaches x̂(t) when time t tends to
infinity.

9.3.1 Sampled-Data FMB Model Reference Control
Systems

Consider the TS fuzzy model (2.2) and the reference model (9.1). With the
inequality of

∑p
i=1 wi(x(t)) = 1, we have the error system defined as follows.

ė(t) = ẋ(t) − ˙̂x(t)

=
p∑

i=1

wi(x(t))(Aie(t) + Biu(t)) + me(t) (9.6)

where me(t) =
∑p

i=1 wi(x(t))(Ai − A)x̂(t) − Br(t).

Remark 9.2. It should be noted that me(t) is bounded due to the properties
of the membership functions and the stable reference model, i.e., wi(x(t)),
x̂(t) and r(t) are bounded.
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Consider the sampled-data fuzzy controller (9.3) and the error system
(9.6), with the property of the membership functions, i.e.,

∑p
i=1 wi(x(t)) =∑p

j=1 mj(x(tγ)) =
∑p

i=1

∑p
j=1 wi(x(t))mj (x(tγ)) = 1, the error system can

be rewritten as follows.

ė(t) =
p∑

i=1

wi(x(t))(Aie(t) + Bi

p∑

j=1

mj(x(tγ))Gje(t − τs(t))) + me(t)

=
p∑

i=1

p∑

j=1

wi(x(t))mj(x(tγ))(Aie(t) + BiGje(t − τs(t))) + me(t) (9.7)

9.3.2 Stability Analysis

The stability of the error system (9.7) is investigated in this system. In the
following analysis, for brevity, wi(x(t)) and mj(x(tγ)) are denoted as wi and
mj , respectively. Consider the following Lyapunov functional candidate.

V (t) = e(t)TP1e(t) +
∫ 0

−hs

∫ t

t+σ

ė(ϕ)T Rė(ϕ)dϕdσ (9.8)

where 0 < P1 = PT
1 ∈ �n×n and 0 < R = RT ∈ �n×n. From (9.7) and (9.8),

we have,

V̇ (t) = ė(t)T P1e(t) + e(t)T P1ė(t)

+ hsė(t)T Rė(t) −
∫ t

t−hs

ė(ϕ)T Rė(ϕ)dϕ

=
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T
(

PT

[
Ai BiGj

0 0

]

+
[
Ai BiGj

0 0

]T

P

)[
e(t)

e(t − τs(t))

]
+ hsė(t)T Rė(t)

−
∫ t

t−hs

ė(ϕ)T Rė(ϕ)dϕ + e(t)T P1me(t) + me(t)TP1e(t) (9.9)

where P =
[
P1 0
P2 P3

]
∈ �2n×2n, P2 ∈ �n×n and P3 ∈ �n×n.

Considering the fact that τs(t) = t − tγ < hs, we have
− ∫ t

t−hs
ė(ϕ)T Rė(ϕ)dϕ ≤ − ∫ t

t−τs(t) ė(ϕ)T Rė(ϕ)dϕ. Hence, it follows from
(9.9) that we have
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V̇ (t) ≤
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T
(

PT

[
Ai BiGj

0 0

]

+
[
Ai BiGj

0 0

]T

P

)[
e(t)

e(t − τs(t))

]
+ hs

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

wimjwkml

×
⎡

⎣
e(t)

e(t − τs(t))
me(t)

⎤

⎦
T ⎡

⎣
AT

i

GT
j BT

i

I

⎤

⎦R

⎡

⎣
AT

k

GT
l BT

k

I

⎤

⎦
T ⎡

⎣
e(t)

e(t − τs(t))
me(t)

⎤

⎦

−
∫ t

t−τs(t)

ė(ϕ)T Rė(ϕ)dϕ + e(t)T P1me(t) + me(t)T P1e(t) (9.10)

In order to deal with the integral terms in (9.10), we consider the Newton-
Leibniz rule that we have

∫ t

t−τs(t)
ė(ϕ)dϕ = e(t) − e(t − τs(t)). As a result,

the following equality is achieved to facilitate the stability analysis.

2
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T [Tij

Vij

]

×
(
−
∫ t

t−τs(t)

ė(ϕ)dϕ + e(t) − e(t − τs(t))
)

= 0 (9.11)

where Tij ∈ �n×n and Vij ∈ �n×n for all i and j.

Denote Υij =
∑p

i=1

∑p
j=1 wimj

[
Tij

Vij

]T [ e(t)
e(t − τs(t))

]
. Considering the

integral terms in (9.10), we have

Λ � −
∫ t

t−τs(t)

ė(ϕ)T Rė(ϕ)dϕ

= −
∫ t

t−τs(t)

ė(ϕ)T Rė(ϕ)dϕ + 2
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T [Tij

Vij

]

×
(
−
∫ t

t−τs(t)

ė(ϕ)dϕ + e(t) − e(t − τs(t))
)

= 2
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T [
Tij

Vij

] (
e(t) − e(t − τs(t))

)

+ τs(t)ΥT
ijR

−1Υkl −
∫ t

t−τs(t)

(
Υij + Rė(ϕ)

)T
R−1

(
Υkl + Rė(ϕ)

)
dϕ.

(9.12)

It is obvious that the last term of (9.12) is negative definite. Based on fact
that τs(t) = t − tγ < hs, we have
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Λ ≤
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T [Tij

Vij

]([
Tij

Vij

] [
I −I

]

+
[

I
−I

] [
TT

ij VT
ij

]
) [

e(t)
e(t − τs(t))

]
+ hsΥT

ijR
−1Υkl. (9.13)

From (9.10) and (9.13), we have

V̇ (t) ≤
p∑

i=1

p∑

j=1

wimj

[
e(t)

e(t − τs(t))

]T

Qij

[
e(t)

e(t − τs(t))

]

+ hs

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

wimjwkml

⎡

⎣
e(t)

e(t − τs(t))
me(t)

⎤

⎦
T ⎡

⎣
AT

i

GT
j BT

i

I

⎤

⎦R

×
⎡

⎣
AT

k

GT
l BT

k

I

⎤

⎦
T ⎡

⎣
e(t)

e(t − τs(t))
me(t)

⎤

⎦

+ e(t)TP1me(t) + me(t)T P1e(t) + hsΥT
ijR

−1Υkl. (9.14)

where Qij = PT

[
Ai BiGj

0 0

]
+
[
Ai BiGj

0 0

]T

P +
[
Tij

Vij

] [
I −I

]
+

[
I
−I

] [
TT

ij VT
ij

]
.

Denote X = P−1 =
[
X1 0
X2 X3

]
∈ �2n×2n, X2 = ε2X1 ∈ �n×n, X3 =

ε3X1 ∈ �n×n, z(t) =
[
z1(t)
z2(t)

]
= X−1

[
e(t)

e(t − τs(t))

]
and s(t) =

[
z(t)

me(t)

]

where ε2 and ε3 > 0 are scalars.
Furthermore, consider the terms of

∑p
i=1

∑p
j=1 wimje(t)T P1(Rij −

Rij)P1e(t) = 0 and σ2
1

∑p
i=1

∑p
j=1 wimjme(t)T (Rij − Rij)me(t) = 0 where

σ1 �= 0 is a scalar to be determined and Rij = RT
ij ∈ �n×n. Adding these

two terms to (9.14), we have,
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V̇ (t) ≤
p∑

i=1

p∑

j=1

wimjz(t)T XT QijXz(t) + hs

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

wimjwkml

×
(

s(t)T

[
X 0
0 I

]T
⎡

⎣
AT

i

GT
j BT

i

I

⎤

⎦R

⎡

⎣
AT

k

GT
l BT

k

I

⎤

⎦
T [

X 0
0 I

]
s(t)

+ z(t)T XT

[
Tij

Vij

]
X1X−1

1 R−1X−1
1 X1

[
Tkl

Vkl

]T

Xz(t)

)

−
p∑

i=1

p∑

j=1

wimjz1(t)T Rijz1(t) + σ2
1

p∑

i=1

p∑

j=1

wimjme(t)T Rijme(t)

+
p∑

i=1

p∑

j=1

wimjs(t)T

⎡

⎣
Rij 0 I
0 0 0
I 0 −σ2

1Rij

⎤

⎦ s(t). (9.15)

Denote Uij = X1TijX1 ∈ �n×n and Wij = X1VijX1 ∈ �n×n for all i and
j. Design the feedback gains as Gj = NjX−1

1 where Nj ∈ �m×n for all j.
It follows from (9.15) that we have

V̇ (t) ≤
p∑

i=1

p∑

j=1

wimjs(t)T Ξijs(t) + hs

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

wimjwkml

× s(t)T (ΘT
ijRΘkl + ΦT

ijX
T
1 R−1XT

1 Φkl)s(t)

+
p∑

i=1

p∑

j=1

wimj(−z1(t)T Rijz1(t) + σ2
1me(t)TRijme(t)) (9.16)

where Ξij =

⎡

⎢⎣
Ξ(11)

ij + Ξ(11)T

ij + Rij ∗ ∗
Ξ(21)

ij −ε2
3(Wij + WT

ij) ∗
I 0 −σ2

1Rij

⎤

⎥⎦, Ξ(11)
ij =

AiX1 + ε2BiNj + (1− ε2)Uij + ε2(1− ε2)Wij , Ξ(21)
ij = ε3NT

j BT
i − ε3UT

ij +
ε3Wij − ε2ε3(Wij + WT

ij), Θij =
[
AiX1 + ε2BiNj ε3BiNj I

]
and Φij =[

UT
ij + ε2WT

ij ε3WT
ij 0

]
.

Consider that the following inequality holds:

p∑

i=1

p∑

j=1

wimjΞij + hs

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

wimjwkml

×(ΘT
ijRΘkl + ΦT

ijX
T
1 R−1XT

1 Φkl) < 0 (9.17)

It follows from (9.16) and (9.17), we have,
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V̇ (t) ≤
p∑

i=1

p∑

j=1

wimj(−z1(t)T Rijz1(t) + σ2
1me(t)T Rijme(t)). (9.18)

Considering the termination time of control tf [117], we take integration on
both sides of (9.18) to achieve the following H∞ performance.

∫ tf

0

V̇ (t)dt ≤
∫ tf

0

p∑

i=1

p∑

j=1

wimj(−z1(t)T Rijz1(t) + σ2
1me(t)T Rijme(t))

σ2
1 ≥ V (tf ) − V (0) +

∫ tf

0

∑p
i=1

∑p
j=1 wimjz1(t)T Rijz1(t)

∫ tf

0

∑p
i=1

∑p
j=1 wimjme(t)T Rijme(t)

(9.19)

If the inequality of (9.17) is satisfied, the sampled-data FMB model reference
control system (9.1) is guaranteed to be asymptotically stable subject to the
H∞ performance (9.19). It can be seen that a good performance is ensured
by a lower value of σ1.

By Schur complement, the inequality (9.17) is equivalent to the one in the
following.

Q =
p∑

i=1

p∑

j=1

wimjQij < 0 (9.20)

where Qij =

⎡

⎣
Ξij ∗ ∗

hsΘij −hsM ∗
hsΦij 0 −hsX1M−1X1

⎤

⎦ and M = R−1. It can be seen

that Qij < 0 for all i and j, the inequality of (9.20) is satisfied. As there
exists the term of X1M−1X1 in Qij , the condition of Qij < 0 is not an LMI
of which the solution cannot be solved by convex programming techniques.
To circumvent this difficulty, we consider the inequality (8.15). Consequently,
the holding of the following inequality implies the holding of Q < 0.

Q =
p∑

i=1

p∑

j=1

wimjQij ≤
p∑

i=1

p∑

j=1

wimjQ̂ij < 0 (9.21)

where Q̂ij =

⎡

⎣
Ξij ∗ ∗

hsΘij −hsM ∗
hsΦij 0 −hs(2ζX1 − ζ2M)

⎤

⎦ and ζ is a scalar.

It can be seen that Q̂ij < 0 implies the holding of the inequality (9.20)
and guarantees the stability of the error system (9.7). However, it offers a
conservative result if we do not consider the information of membership func-
tions. To alleviate the conservativeness of the stability analysis, we consider
the membership function satisfying mi −wi + δi ≥ 0 for all i, x(t) and x(tγ)
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where δi are scalars. With these inequalities, some free matrices are intro-
duced to relax the stability conditions. Rewrite (9.21) as follows.

Q ≤
p∑

i=1

p∑

j=1

wi(mj − wj + δj + wj − δj)Q̂ij

=
p∑

i=1

p∑

j=1

wi(wj − δj)Q̂ij +
p∑

j=1

wi(mj − wj + δj)Q̂ij

=
p∑

i=1

p∑

j=1

wiwj(Q̂ij −
p∑

k=1

δkQ̂ik) +
p∑

i=1

p∑

j=1

wi(mj − wj + δj)Q̂ij . (9.22)

Furthermore, considering the property of the membership functions, we have∑p
i=1

∑p
j=1 wi(mj − wj)Λi = 0 where Λi = ΛT

i ∈ �n×n for all i. It can be
written as

∑p
i=1

∑p
j=1 wi(mj − wj + δj − δj)Λi = −∑p

i=1

∑p
j=1 wiδjΛi +∑p

i=1

∑p
j=1 wi(mj − wj + δj)Λi = 0. Adding these inequalities to (9.22), we

have

Q ≤
p∑

i=1

p∑

j=1

wiwj

(
Q̂ij −

p∑

k=1

δk(Q̂ik + Λi)
)

+
p∑

i=1

p∑

j=1

wi(mj − wj + δj)(Q̂ij + Λi). (9.23)

Introducing matrices Sij = ST
ji ∈ �n×n, i, j = 1, 2, · · · , p, we consider the

following inequalities.

Rii > Q̂ii −
p∑

k=1

δk(Q̂ik + Λi) ∀ i (9.24)

Rij + RT
ij ≥ Q̂ij −

p∑

k=1

δk(Q̂ik + Λi) + Q̂ji −
p∑

k=1

δk(Q̂jk + Λj) ∀ j; i < j

(9.25)

From (9.23) to (9.25), we have
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Q ≤
p∑

i=1

w2
i Sii +

p∑

j=1

∑

i<j

wiwj(Sij + ST
ij)

+
p∑

i=1

p∑

j=1

wi(mj − wj + δj)(Q̂ij + Λi)

= r(t)T Sr(t) +
p∑

i=1

p∑

j=1

wi(mj − wj + δj)(Q̂ij + Λi). (9.26)

where r(t) =

⎡

⎢⎢⎢⎣

w1I
w2I
...

wpI

⎤

⎥⎥⎥⎦, S =

⎡

⎢⎢⎢⎣

S11 S12 · · · S1p

S21 S22 · · · S2p

...
...

...
...

Sp1 Sp2 · · · Spp

⎤

⎥⎥⎥⎦.

It can be seen from (9.26) that if the LMIs of S < 0 and Q̂ij + Λi < 0 for
all i and j are satisfied, Q < 0 is achieved. As a result, the error system (9.6)
is guaranteed to be asymptotically stable subject to the H∞ performance
(9.19). The analysis result is summarized in the following theorem.

Theorem 9.1. The erorr system (9.6), formed by the nonlinear plant rep-
resented by the fuzzy model (2.2), the stable reference model (9.1) and the
sampled-data fuzzy controller (9.3), is asymptotically stable subject to the
H∞ performance (9.19) if there exist predefined constant scalars hs > 0, ζ,
σ1, ε2, ε3 > 0 and δi that satisfy mi(x(tγ)) − wi(x(t)) + δi ≥ 0 for all i,
x(tγ) and x(t), and there exist matrices M = MT ∈ �n×n, Ni ∈ �m×n,
Rij = RT

ij ∈ �n×n, Sij = ST
ji ∈ �n×n, Uij ∈ �n×n, Wij ∈ �n×n, i = 1, 2,

· · · , p, X1 = XT
1 ∈ �n×n, Y = YT ∈ �n×n such that the following LMIs are

satisfied.
X1 > 0;

M > 0;

S > 0;

Q̂ij + Λi < 0 ∀ i, j;

and the feedback gains are designed as Gj = NjX−1 for all j.

Remark 9.3. It should be noted that the stability analysis is valid if X =

P−1 =
[

X1 0
ε2X1 ε2X1

]
is invertible. Referring to Theorem 9.1, ε3 is a non-

zero positive scalar and if there exists solution to the stability conditions,
we have X1 = XT

1 > 0 which is the sufficient condition to ensure that X is
invertible.

Example 9.1. Consider the inverted pendulum on a cart in Example 3.2 as
the nonlinear plant. It is assumed that the inverted pendulum is working
in the operating domain of x1(t) ∈ [−π

3 , π
3

]
(rad) and x1(t) ∈ [−15, 15

]
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(rad/s). There are no limitations on x3(t) and x4(t). The proposed sampled-
data fuzzy controller (9.3) is employed to control the inverted pendulum to
track the system states of a stable linear reference model defined as follows.

˙̂x(t) =

⎡

⎢⎢⎣

0 1 0 0
−600 −60 −2 −20

0 0 0 1
380 30 0 10

⎤

⎥⎥⎦ x̂(t) +

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ r(t) (9.27)

where r(t) = sin(t/5).
A sampled-data fuzzy controller with two rules of the following format is

employed for the control process.

Rule j: IF x1(tγ) is N j
1

THEN u(t) = Gje(tγ), tγ ≤ t < tγ+1 (9.28)

The inferred sampled-data fuzzy controller is defined as follows.

u(t) =
2∑

j=1

mj(x1(tγ))Gje(tγ) (9.29)

The membership functions of the sampled-data fuzzy controller are chosen to

be m1(x1(tγ)) = μN1
1
(x1(tγ)) = e

−x1(tγ )2

2×2.22 and m2(x1(tγ)) = μN2
1
(x1(tγ)) =

1 − w1(x1(tγ)).
Based on Theorem 9.1, choosing the sample period hs = 0.015s

(sampling frequency ≈ 66.6667Hz), σ1 = 0.01 and ζ = 2,
we obtain G1 =

[
692.2467 54.9574 5.2048 52.1226

]
and G2 =[

726.9190 57.1806 5.4344 53.5087
]

with the MATLAB LMI toolbox. The
sampled-data fuzzy controller (9.29) is employed to control the inverted
pendulum.

In this example, the nonlinear plant is operating in the domain character-
ized by ẋ1(t) = x2(t) ∈ [−15, 15

]
. With this information and considering

tγ ≤ t ≤ tγ + hs, we have x1(t) = x1(tγ) +
∫ t

tγ
x2(t)dt which offers the lower

and upper bounds as x1(tγ) − 15
∫ tγ+hs

tγ
dt = x1(tγ) − 15hs = x1(tγ) − 0.225

and x1(tγ) + 15
∫ tγ+hs

tγ
dt = x1(tγ) + 15hs = x1(tγ) + 0.225, respectively.

Consequently, for any sampling instant tγ , the value of x1(t) on or before
the next sampling instant is in the range of x1(tγ) − 0.225 ≤ x1(t) ≤
x1(tγ) + 0.225 for tγ ≤ t ≤ tγ + hs. With the defined membership func-
tions, it is found that δ1 = 0.3420 and δ2 = 0.3380 satisfy the inequalities of
mi(x1(tγ)) − wi(x1(t)) + δi > 0 for all i.

The fuzzy controller (9.29) is employed to control the inverted pendu-
lum. The system state responses and control signal of the sampled-data
FMB model reference tracking control system under the initial system state
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Fig. 9.2 System state responses of the inverted pendulum with sampled-data fuzzy
controller (Solid lines). Systems state responses of the linear reference model (Dot-
ted lines).
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(d) x2(t) for 50s ≤ t ≤ 250s.

Fig. 9.2 (continued)
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(f) x3(t) for 50s ≤ t ≤ 250s.

Fig. 9.2 (continued)
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Fig. 9.2 (continued)
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Fig. 9.3 Control signal of the sampled-data fuzzy controller.
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conditions of x(0) =
[

π
3 0 0 0

]T
and x̂(0) =

[
0 0 0 0

]T
for t ∈ x(0) =[−hs 0

]
are shown in Fig. 9.2 and Fig. 9.3, respectively. It can be seen that

the system states of the inverted pendulum are driven to following those of
the reference model of (9.27). It can be seen from Fig. 9.3 that control signal
is a stepwise signal with its value being held constant during the sampling
period.

9.4 Conclusion

The stability of the sampled-data FMB model reference tracking control sys-
tems has been investigated. A sampled-data fuzzy controller has been pro-
posed to drive the system states of the nonlinear plant to follow those of a
stable reference model. The sampled-data fuzzy controller can be realized by
a microcontroller or digital computer to lower the implementation complex-
ity and time. The information of the membership functions of both the TS
fuzzy model and sampled-data controller has been employed to facilitate the
stability analysis based on the Lyapunov stability theory. LMI-based stabil-
ity conditions have been derived to design of the sampled-data FMB model
reference tracking control systems. A simulation example has been given to
illustrate the effectiveness of the proposed approach.



Chapter 10

IT2 FMB Control Systems

10.1 Introduction

Type-1 FMB control systems have drawn the attention of fuzzy control re-
searchers for many years. The type-1 TS fuzzy model (2.2) offers a general
framework for system analysis and controller synthesis. However, as the mem-
bership functions for the type-1 fuzzy sets have limited capability of capturing
uncertainty information, the control problem cannot be handled directly if
the nonlinear plant is subject to parameter uncertainties. In [18, 88, 89], a
type-2 fuzzy logic system (FLS) was proposed to deal with uncertain grades
of membership with type-2 fuzzy sets. The type-2 FLS can be regarded as a
collection of theoretically infinite number of type-1 FLSs. As a result, addi-
tional information, including system parameter uncertainty, can be captured
by the type-2 FLS [18, 88, 89]. Defuzzication and type reduction for gen-
eral type-2 FLS are computational expensive. Instead, interval type-2 fuzzy
(IT2) sets are employed to lower the computational demand that the grades
of membership for the secondary membership functions are all one. Some
theories of IT2 fuzzy sets [18, 88, 89] were developed to theoretically support
the design and implementation of type-2 FLSs. The superiority of IT2 fuzzy
sets over type-1 fuzzy sets on dealing with uncertain grades of membership
for various applications have been shown in [20, 38, 42, 78, 80]. The applica-
tions include adaptive filtering [78], autonomous mobile robots [38], DC-DC
power converter [80], intelligent fuzzy agent [20] and video streaming [42] etc.

The outstanding feature of the type-2 FLS on handling uncertainty offers
a potential vehicle for carrying out stability analysis of FMB control systems
subject to parameter uncertainties. In this chapter, we generalize and ex-
tend our preliminary analysis result in [55] to IT2 FMB control systems [78].
An IT2 fuzzy model is proposed to represent the nonlinear plant subject to
parameter uncertainties captured by the lower and upper membership func-
tions of the interval type-2 fuzzy sets. With the IT2 fuzzy sets, the IT2 TS
fuzzy model can be regarded as a collection of a number of type-1 TS fuzzy
models. This explains why the IT2 TS fuzzy model is superior to the type-1

H.-K. Lam and F.H.F. Leung: FMB Control Systems, STUDFUZZ 264, pp. 191–215.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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one. Although the IT2 TS fuzzy model demonstrates a stronger capability of
capturing parameter uncertainties in the footprint of uncertainty (FOU), it
eliminates the favourable property of the type-1 FMB analysis approach for
stability analysis and thus leads to conservative stability analysis results. To
facilitate the stability analysis, the lower and upper membership functions
are employed to implement the proposed IT2 fuzzy controller [70] and their
boundary information are considered. With such information, slack matri-
ces are introduced to alleviate the conservativeness of the stability analysis
results. Based on the Lyapunov stability theory [46, 100, 121], stability con-
ditions in terms of LMIs are derived to achieve a stable IT2 FMB control
system.

10.2 IT2 TS Fuzzy Model and Fuzzy Controller

An IT2 TS fuzzy model is employed to represent a nonlinear plant subject
to parameter uncertainties to facilitate the stability analysis and controller
synthesis. Based on the IT2 TS fuzzy model, an IT2 fuzzy controller is then
proposed to close the feedback loop to form an IT2 FMB control system.

10.2.1 IT2 TS Fuzzy Model

Consider an IT2 TS fuzzy model [78] with p rules of the following format of
which each rule the antecedent contains IT2 fuzzy sets and the consequent is
a linear dynamical system.

Rule i: IF f1(x(t)) is M̃ i
1 AND · · · AND fΨ(x(t)) is M̃ i

Ψ

THEN ẋ(t) = Aix(t) + Biu(t) (10.1)

where M̃ i
α is an IT2 fuzzy set of rule i corresponding to the function fα(x(t)),

α = 1, 2, · · · , Ψ ; i = 1, 2, · · · , p; Ψ is a positive integer; x(t) ∈ �n is the
system state vector; Ai ∈ �n×n and Bi ∈ �n×m are the known system
and input matrices, respectively; u(t) ∈ �m is the input vector. The firing
strength of the i-th rule is the following interval sets.

w̃i(x(t)) =
[
wL

i (x(t)), wU
i (x(t))

]
, i = 1, 2, · · · , p (10.2)

where

wL
i (x(t)) =

Ψ∏

α=1

μ
M̃i

α

(fα(x(t))) ≥ 0, (10.3)

wU
i (x(t)) =

Ψ∏

α=1

μM̃i
α
(fα(x(t))) ≥ 0, (10.4)
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in which wL
i (x(t)) and wU

i (x(t)) denote the lower and upper grades of mem-
bership, respectively; μ

M̃i
α

(fα(x(t))) ≥ 0 and μM̃i
α
(fα(x(t))) ≥ 0 denote the

lower and upper membership functions, respectively. It exhibits the property
that μM̃i

α
(fα(x(t))) ≥ μ

M̃i
α

(fα(x(t))) which leads to wU
i (x(t)) ≥ wL

i (x(t)) for
all i. The inferred IT2 TS fuzzy model is defined as follows.

ẋ(t) =
p∑

i=1

wL
i (x(t))vi(x(t))(Aix(t) + Biu(t))

+
p∑

i=1

wU
i (x(t))vi(x(t))(Aix(t) + Biu(t))

=
p∑

i=1

wi(x(t))(Aix(t) + Biu(t)) (10.5)

where

wi(x(t)) = wL
i (x(t))vi(x(t)) + wU

i (x(t))vi(x(t)) ≥ 0 ∀ i,

p∑

i=1

wi(x(t)) = 1,

(10.6)
in which vi(x(t)) ≥ 0 and vi(x(t)) ≥ 0 are nonlinear functions and exhibit the
property of vi(x(t)) + vi(x(t)) = 1 for all i. In [78], the functions of vi(x(t))
and vi(x(t)) are both defined as 0.5.

Remark 10.1. As the nonlinear plant is subject to parameter uncertainties,
vi(x(t)) and vi(x(t)) may be dependent on the parameter uncertainties. How-
ever, they are not necessarily known in this investigation.

Remark 10.2. It should be noted that the IT2 TS fuzzy model serves as a
mathematical tool to facilitate the design of the IT2 fuzzy controller, and is
not necessarily implemented.

Remark 10.3. Referring to the IT2 TS fuzzy model (10.5), the unknown
functions of vi(x(t)) and vi(x(t)) will lead to uncertain wi(x(t)). Conse-
quently, the stability analysis for FMB control system subject to perfectly
matched premise membership functions presented in Chapter 3, which re-
quires wi(x(t)) to be known for all i, cannot be applied to investigate the
system stability.

Example 10.1. A simple example is given below to illustrate the construc-
tion of IT2 TS fuzzy model for a nonlinear plant subject to parameter un-
certainty. Considering the following simple scalar dynamical system subject
to unknown/uncertain parameter of a(x(t)) with known lower and upper
bounds,

ẋ(t) = sin
(
a(x(t))x(t)

)
x(t) (10.7)
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where x(t) ∈ [−2, 2
]

is the system state. For demonstration purposes, it is

assumed that a(x(t)) = b(t)x(t)2+1
10

and b(t) ∈ [ 0, 1
]

is an unknown function.
Hence, it can be seen that a ≤ a(x(t)) ≤ a where a = 0.1 and a = 0.5 are the
constant lower and upper bounds of a(x(t)), respectively.

We set the lower and upper bounds of sin
(
a(x(t))x(t)

)
to be 1 and −1,

respectively, for constructing the type-1 TS fuzzy model using the sector
nonlinearity technique [122]. Referring to the variables in Section 2.2 and
denoting the membership functions as

μM1
1

(
x(t), a(x(t))

)
=

1 − sin
(
a(x(t))x(t)

)

2

and

μM2
1

(
x(t), a(x(t))

)
= 1 − μM1

1

(
x(t), a(x(t))

)
=

1 + sin
(
a(x(t))x(t)

)

2
,

the system (10.7) can be written as

ẋ(t) =
(
μM1

1

(
x(t), a(x(t))

)
(−1) + μM2

1

(
x(t), a(x(t))

)
(1)
)
x(t).

When a(x(t)) is considered as a constant, the following type-1 fuzzy rule is
employed to describe the nonlinear system of (10.7).

Rule i: IF x(t) is M i
1

THEN ẋ(t) = Aix(t), i = 1, 2 (10.8)

where M1
1 and M2

1 are type-1 fuzzy sets; A1 = −1 and A2 = 1. The type-1
TS fuzzy model is defined as follows.

ẋ(t) =
2∑

i=1

ŵi(x(t))Aix(t) (10.9)

where the normalized grades of membership are defined as ŵi(x(t)) =
μ

Mi
1
(x(t))

μ
M1

1
(x(t))+μ

M2
1
(x(t))

, i = 1, 2. It should be noted that a(x(t)) is assumed to be

a constant; hence, it is not a variable parameter of the type-1 membership

functions. The type-1 membership functions of μM1
1

(
x(t)

)
=

1−sin
(
a(x(t))x(t)

)

2
with a(x(t)) taking various constant values are shown in Fig. 10.1(a).

Now, a(x(t)) is considered as an uncertain function with a value in the
range of a to a. Consequently, μM1

1
(x(t)) is no longer a crisp membership

function but characterized by the lower and upper memberships of μ
M̃1

1
(x(t))

and μM̃2
1
(x(t)), respectively. With the information of the type-1 membership

functions, the lower and upper membership functions satisfying μ
M̃1

1
(x(t)) ≤

μM1
1

(
x(t)

) ≤ μM̃1
1
(x(t)) are obtained as follows.
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μ
M̃1

1
(x(t)) =

{
1−sin(0.1x(t))

2
for x(t) < 0

1−sin(0.5x(t))
2

for x(t) ≥ 0
(10.10)

μM̃1
1
(x(t)) =

{
1−sin(0.5x(t))

2 for x(t) < 0
1−sin(0.1x(t))

2 for x(t) ≥ 0
(10.11)

Similarly, we have μ
M̃2

1

(
x(t)

) ≤ μM2
1
(x(t)) ≤ μM̃2

1
(x(t)) where

μ
M̃2

1
(x(t)) =

{
1+sin(0.5x(t))

2 for x(t) < 0
1+sin(0.1x(t))

2 for x(t) ≥ 0
(10.12)

μM̃2
1
(x(t)) =

{
1+sin(0.1x(t))

2
for x(t) < 0

1+sin(0.5x(t))
2

for x(t) ≥ 0
(10.13)

The following rules for the IT2 TS fuzzy model are employed to describe the
nonlinear system (10.7).

Rule i: IF x(t) is M̃ i
1

THEN ẋ(t) = Aix(t), i = 1, 2 (10.14)

From (10.5), the IT2 TS fuzzy model for the nonlinear plant (10.7) is defined
as follows.

ẋ(t) =
2∑

i=1

(
wL

i (x(t))vi(x(t)) + wU
i (x(t))vi(x(t))

)
Aix(t) (10.15)

where wL
i (x(t)) = μ

M̃i
1
(x(t)) and wU

i (x(t)) = μM̃i
1
(x(t)) for all i.

In this example, with the type-1 membership function μM1
1
(x(t)) for

a(x(t)) taking a constant value of 0.35, the lower and upper membership
functions (μ

M̃i
1
(x(t)) and μM̃i

1
(x(t)), i = 1, 2) are shown in Fig. 10.1(b). The

area in between the lower and upper membership functions is defined as the
FOU.

Based on the lower and upper membership functions, any type-1 mem-
bership functions in between can be reconstructed with the unknown non-
linear functions of vi(x(t)) and vi(x(t)). Referring to Fig. 10.1(b), taking
x(t) = −1.5 for example, the grades of membership at points A, B and C are
0.8408, 0.7506 and 0.5747, respectively. The grade of membership at point B
(0.7506) can be reconstructed by using the grades of lower and upper member-
ship functions, i.e., 0.7506 = 0.5747(0.3390) + 0.8408(0.6610). By the same
line of logic, every point of the membership function with a(t) = 0.35 can be
determined based on the lower and upper membership functions. In general,



10.2 IT2 TS Fuzzy Model and Fuzzy Controller 197

the in-between membership functions can be reconstructed and represented
in the form of a linear combination of the lower and upper membership func-
tions, i.e., wL

i (x(t))vi(x(t)) + wU
i (x(t))vi(x(t)) where vi(x(t)) + vi(x(t)) = 1

for any 0.1 ≤ a(x(t)) ≤ 0.5. In the above example, it can be seen that vi(x(t))
= 0.3390 and vi(x(t)) = 0.6610 at a(t) = 0.35.

With the IT2 fuzzy sets, the parameter uncertainties can be captured by
the lower and upper membership functions. Consequently, an IT2 TS fuzzy
model of (10.15) can be used to describe the nonlinear system (10.7) subject
to the uncertain parameter of a(x(t)). The IT2 TS fuzzy model (10.15) can
be regarded as a collection of type-1 TS fuzzy models with a(x(t)) taking
various constant values.

Remark 10.4. It should be noted that the exact values of vi(x(t)) and vi(x(t))
are unknown as they depend on parameter uncertainty a(x(t)). However, it
can be seen that the functions of vi(x(t)) and vi(x(t)) exist and not neces-
sarily known in the stability analysis.

Remark 10.5. The lower and upper membership functions for an IT2 TS fuzzy
model is not unique. Referring to Fig. 10.1(b), the footprint of uncertainty
can be obtained by the area bounded by the lower and upper membership
functions of μ

M̃1
1
(x(t)) and μM̃1

1
(x(t)), respectively. With the nonlinear func-

tions of vi(x(t)) and vi(x(t)), any in-between membership functions can be
reproduced. Based on this concept, by considering any arbitrary lower and
upper membership functions denoted by η

M̃1
1
(x(t)) and ηM̃1

1
(x(t)) satisfying

the conditions of η
M̃1

1
(x(t)) ≤ μ

M̃1
1
(x(t)) and ηM̃1

1
(x(t)) ≥ μM̃1

1
(x(t)), re-

spectively, the actual membership functions can be reconstructed with the
nonlinear functions of vi(x(t)) and vi(x(t)) in other forms. There is still little
understanding on choosing appropriate lower and upper membership func-
tions and more effort should be put on this topic to make the IT2 fuzzy
control a powerful fuzzy control approach on handling nonlinear plants sub-
ject to parameter uncertainties.

10.2.2 IT2 Fuzzy Controller

An IT2 fuzzy controller with the following fuzzy rules is proposed to stabilize
the nonlinear plant represented by the IT2 TS fuzzy model (10.5).

Rule j: IF f1(x(t)) is M̃ j
1 AND · · · AND fΨ(x(t)) is M̃ j

Ψ

THEN u(t) = Gjx(t) (10.16)

where Gj ∈ �m×n, j = 1, 2, · · · , p, are the feedback gains to be determined.
The inferred IT2 fuzzy controller is defined as,

u(t) =
p∑

j=1

(wj(x(t)) + wj(x(t)))Gjx(t) (10.17)



198 10 IT2 FMB Control Systems

where

wj(x(t)) =
wL

j (x(t))
p∑

k=1

(wL
k (x(t)) + wU

k (x(t)))

≥ 0

and

wj(x(t)) =
wU

j (x(t))
p∑

k=1

(wL
k (x(t)) + wU

k (x(t)))

≥ 0

which exhibits the property that
∑p

k=1(wj(x(t)) + wj(x(t))) = 1. It can
be seen from (10.17) that the type reduction for the proposed IT2 fuzzy
controller is characterized by the average normalized membership grades of
the lower and upper membership functions.

10.2.3 Stability Analysis of IT2 FMB Control
Systems

The stability of the IT2 FMB control systems is investigated based on Lya-
punov stability theory [46, 100, 121] in this section. The IT2 FMB control
system formed by the nonlinear plant represented by the IT2 TS fuzzy model
(10.5) and the type-2 fuzzy controller of (10.17) connected in a closed loop
is defined as follows.

ẋ(t) =
p∑

i=1

wi(x(t))
(
Aix(t) + Bi

p∑

j=1

(wj(x(t)) + wj(x(t)))Gjx(t)
)

=
p∑

i=1

p∑

j=1

wi(x(t))(wj(x(t)) + wj(x(t)))(Ai + BiGj)x(t)) (10.18)

In the following analysis, for brevity, wi(x(t)), wj(x(t)) and wj(x(t)) are
denoted as wi, wj and wj , respectively. Given by the property of the
membership functions, the equality of

∑p
i=1 wi =

∑p
j=1(wj + wj) =∑p

i=1

∑p
j=1 wi(wj + wj) = 1 is employed to facilitate the stability analy-

sis. To investigate the system stability of IT2 FMB control system (10.18),
we consider the quadratic Lyapunov function candidate (3.1).

From (3.1) and (10.18), we have,

V̇ (t) = ẋ(t)T Px(t) + x(t)T Pẋ(t)

=
p∑

i=1

p∑

j=1

wi(wj + wj)x(t)T
(
(Ai + BiGj)T P + P(Ai + BiGj)

)
x(t).

(10.19)
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Denote X = P−1 and z(t) = X−1x(t). Design the feedback gains as Gj =
NjX−1 where Nj ∈ �m×n for all j. From (10.19), we have,

V̇ (t) =
p∑

i=1

p∑

j=1

wi(wj + wj)z(t)T Qijz(t)

= z(t)T Θz(t) (10.20)

where

Θ =
p∑

i=1

p∑

j=1

wi(wj + wj)Qij (10.21)

and Qij = AiX + XAT
i + BiNj + NT

j BT
i .

In the following, we derive the stability conditions that V̇ (t) < 0 for z(t) �=
0 (x(t) �= 0), which implies the asymptotic stability of the IT2 FMB control
system of (10.18). It can be seen from (10.20) that V̇ (t) < 0 is satisfied for
Θ < 0 that can be simply achieved by Qij < 0 for all i and j. It is expected
that such set of stability conditions is very conservative as the membership
functions are not considered in stability analysis. For relaxing the stability
analysis result, we consider the equality

∑p
i=1(wi −wi−wi) = 0 given by the

property of the membership functions that
∑p

i=1 wi =
∑p

i=1(wi + wi) = 1.
By considering MFSI slack matrices, Mj = MT

j ∈ �n×n, Vj = VT
j ∈ �n×n

and Λj = ΛT
j ∈ �n×n for all j, we have the following MFSI equality.

Ξ =
p∑

i=1

p∑

j=1

(wi − wi − wi)(wjMj + wjVj + wjΛj) = 0 (10.22)

Remark 10.6. The slack matrices Mj , Vj , and Λj in (10.22) are MFSI as they
are independent of the membership functions of the IT2 TS fuzzy model or
fuzzy controller.

Expanding the terms in the right hand side of (10.22), we have,

Ξ =
p∑

i=1

p∑

j=1

(
wiwjMj + wiwj(Vj −Mi) + wiwj(Λj − Mi)

− wiwjVj − wiwj(Λj + Vi) − wiwjΛj

)
(10.23)

Similar to the MFSD analysis approach in Chapter 3, we further introduce
some MFSD slack matrices in the stability analysis. Consider the scalars ρi1,
σi1, γi1, ρi2, σi2, γi2 such that the membership functions satisfy the following
inequalities for all i and x(t).

−wi + ρi1wi + σi1wi + γi1 ≥ 0 (10.24)



200 10 IT2 FMB Control Systems

wi − ρi2wi − σi2wi + γi2 ≥ 0 (10.25)

Introduce the MFSD slack matrices Rij = RT
ij ∈ �n×n satisfying Rij ≥ 0;

from (10.24) and (10.25), we have,

Φ =
p∑

i=1

p∑

j=1

(−wi + ρi1wi + σi1wi + γi1)(wj − ρj2wj − σj2wj + γj2)Rij ≥ 0

(10.26)

Remark 10.7. The slack matrices Rij in (10.26) are MFSD as they depend
on both the membership functions of the IT2 TS fuzzy model and the fuzzy
controller.

Expanding the terms in the right hand side of (10.26), we have,

Φ =
p∑

i=1

p∑

j=1

(−wiwj + ρj2wiwj + σj2wiwj − wiγj2

+ ρi1wiwj − ρi1ρj2wiwj − ρi1σj2wiwj + ρi1wiγj2

+ σi1wiwj − σi1ρj2wiwj − σi2σj2wiwj + σi1wiγj2

+ γi1wj − γi1ρj2wj − γi1σj2wj + γi1γj2)Rij

= −
p∑

i=1

p∑

j=1

wiwj

(
Rij +

p∑

k=1

(γk2Rik − γk1Rkj) −
p∑

k=1

p∑

l=1

γk1γl2Rkl

)

−
p∑

i=1

p∑

j=1

wiwjρi1ρj2Rij −
p∑

i=1

p∑

j=1

wiwjσi1σj2Rij

+
p∑

i=1

p∑

j=1

wiwj

(
ρj2Rij + ρj1Rji −

p∑

k=1

(ρj2γk1Rkj − ρj1γk2Rjk)
)

+
p∑

i=1

p∑

j=1

wiwj

(
σj2Rij + σj1Rji −

p∑

k=1

(σj2γk1Rkj − σj1γk2Rjk)
)

−
p∑

i=1

p∑

j=1

wiwj

(
ρi1σj2Rij + σj1ρi2Rji

)
. (10.27)

From (10.21), (10.23) and (10.27), we have
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Θ ≤ Θ + Ξ + Φ

= −
p∑

i=1

p∑

j=1

wiwj

(
Rij +

p∑

k=1

(γk2Rik − γk1Rkj) −
p∑

k=1

p∑

l=1

γk1γl2Rkl −Mj

)

−
p∑

i=1

p∑

j=1

wiwj

(
ρi1ρj2Rij + Vj

)
−

p∑

i=1

p∑

j=1

wiwj

(
σi1σj2Rij + Λj

)

+
p∑

i=1

p∑

j=1

wiwj

(
ρj2Rij + ρj1Rji −

p∑

k=1

(ρj2γk1Rkj − ρj1γk2Rjk)

+ Qij + Vj − Mi

)
+

p∑

i=1

p∑

j=1

wiwj

(
σj2Rij + σj1Rji

−
p∑

k=1

(σj2γk1Rkj − σj1γk2Rjk) + Qij + Λj −Mi

)

−
p∑

i=1

p∑

j=1

wiwj

(
ρi1σj2Rij + σj1ρi2Rji + Λj + Vi

)
. (10.28)

Introduce the slack matrices Sij = ST
ji ∈ �n×n, Tij ∈ �n×n, Uij ∈ �n×n,

Wij ∈ �n×n, Yij = YT
ji ∈ �n×n and Zij = ZT

ji ∈ �n×n for all i and j. We
consider the following LMIs:

Sii < Rii +
p∑

k=1

(γk2Rik − γk1Rki) −
p∑

k=1

p∑

l=1

γk1γl2Rkl −Mi ∀ i; (10.29)

Sij + ST
ij ≤ Rij +

p∑

k=1

(γk2Rik − γk1Rkj) − 2
p∑

k=1

p∑

l=1

γk1γl2Rkl −Mj

+ Rji +
p∑

k=1

(γk2Rjk − γk1Rki) −Mi ∀ j; i < j; (10.30)

Tij + TT
ij ≥ ρj2Rij + ρj1Rji −

p∑

k=1

(ρj2γk1Rkj − ρj1γk2Rjk)

+ Qij + Vj − Mi ∀ i, j; (10.31)

Uij + UT
ij ≥ σj2Rij + σj1Rji −

p∑

k=1

(σj2γk1Rkj

− σj1γk2Rjk) + Qij + Λj −Mi ∀ i, j; (10.32)
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Wij + WT
ij ≤ ρi1σj2Rij + σj1ρi2Rji + Λj + Vi ∀ i, j; (10.33)

Yii < ρi1ρj2Rii + Vi ∀ i; (10.34)

Yij + YT
ij ≤ ρi1ρj2Rij + Vj + ρj1ρi2Rji + Vi ∀ j; i < j; (10.35)

Zii < σi1σi2Rii + Λi ∀ i; (10.36)

Zij + ZT
ij ≤ σi1σj2Rij + Λj + σj1σi2Rji + Λi ∀ j; i < j; (10.37)

From (10.29) to (10.37), we have

V̇ (t) ≤ −
p∑

i=1

w2
i z(t)T Siiz(t) −

p∑

j=1

∑

i<j

wiwjz(t)T (Sij + ST
ij)z(t)

−
p∑

i=1

w2
i z(t)T Yiiz(t) −

p∑

j=1

∑

i<j

wiwjz(t)T (Yij + YT
ij)z(t)

−
p∑

i=1

w2
i z(t)T Ziiz(t) −

p∑

j=1

∑

i<j

wiwjz(t)T (Zij + ZT
ij)z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)
T (Tij + TT

ij)z(t)

+
p∑

i=1

p∑

j=1

wiwjz(t)T (Uij + UT
ij)z(t)

−
p∑

i=1

p∑

j=1

wiwjz(t)T (Wij + WT
ij)z(t)

=

⎡

⎣
r(t)
s(t)
t(t)

⎤

⎦
T ⎡

⎣
−S T U
TT −Y −W
UT −WT −Z

⎤

⎦

⎡

⎣
r(t)
s(t)
t(t)

⎤

⎦ . (10.38)
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where r(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦
, s(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦
, t(t) =

⎡

⎢⎢⎢⎣

w1z(t)
w2z(t)

...
wpz(t)

⎤

⎥⎥⎥⎦
,

S=

⎡

⎢⎢⎢⎣

S11 S12 · · · S1p

S21 S22 · · · S2p

...
...

...
...

Sp1 Sp2 · · · Spp

⎤

⎥⎥⎥⎦, T=

⎡

⎢⎢⎢⎣

T11 T12 · · · T1p

T21 T22 · · · T2p

...
...

...
...

Tp1 Tp2 · · · Tpp

⎤

⎥⎥⎥⎦, U=

⎡

⎢⎢⎢⎣

U11 U12 · · · U1p

U21 U22 · · · U2p

...
...

...
...

Up1 Up2 · · · Upp

⎤

⎥⎥⎥⎦,

W =

⎡

⎢⎢⎢⎣

W11 W12 · · · W1p

W21 W22 · · · W2p

...
...

...
...

Wp1 Wp2 · · · Wpp

⎤

⎥⎥⎥⎦, Y =

⎡

⎢⎢⎢⎣

Y11 Y12 · · · Y1p

Y21 Y22 · · · Y2p

...
...

...
...

Yp1 Yp2 · · · Ypp

⎤

⎥⎥⎥⎦ and

Z =

⎡

⎢⎢⎢⎣

Z11 Z12 · · · Z1p

Z21 Z22 · · · Z2p

...
...

...
...

Zp1 Zp2 · · · Zpp

⎤

⎥⎥⎥⎦.

From (3.1) and (10.38), based on the the Lyapunov stability theory, V (t) >
0 and V̇ (t) < 0 for z(t) �= 0 (x(t) �= 0) implying the asymptotic stability of
the FMB control system (10.18), i.e., x(t) → 0 when time t → ∞, can be
achieved if the stability conditions summarized in the following theorem are
satisfied.

Theorem 10.1. The IT2 FMB control system (10.18), formed by the non-
linear plant represented by the IT2 fuzzy model (10.5) and the IT2 TS fuzzy
controller (10.17) connected in a closed loop, is asymptotically stable if there
exist predefined constant scalars ρi1, σi1, γi1, ρi2, σi2, γi2 i, j = 1, 2, · · · ,
p, satisfying the inequalities (10.24) to (10.25) for all i, j and x(t), and
there exist matrices Mj = MT

j ∈ �n×n, Nj ∈ �m×n, Rij = RT
ij ∈ �n×n,

Sij = ST
ji ∈ �n×n, Tij ∈ �n×n, Uij ∈ �n×n, Vi = VT

i ∈ �n×n,
Wij ∈ �n×n, X = XT ∈ �n×n, Yij = YT

ji ∈ �n×n, Zij = ZT
ji ∈ �n×n

and Λi = ΛT
i ∈ �n×n such that the following LMIs are satisfied.

X > 0;

Rij ≥ 0 ∀ i, j;

(10.29) to (10.37);

⎡

⎣
−S T U
TT −Y −W
UT −WT −Z

⎤

⎦ < 0;

and the feedback gains are designed as Gj = NjX−1 for all j.
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Example 10.2. Consider an IT2 TS fuzzy model with 3 fuzzy rules in the
following format.

Rule i: IF x1(t) is M̃ i
1

THEN ẋ(t) = Aix(t) + Biu(t), i = 1, 2, 3 (10.39)

where x(t) =
[
x1(t) x2(t)

]T
A1 =

[
2.78 −5.63
0.01 0.33

]
, A2 =

[
0.2 −3.22
0.35 0.12

]
, A3 =

[ −a −6.63
0.45 0.15

]
, B1 =

[
2
−1

]
, B2 =

[
8
0

]
, B3 =

[−b + 6
−1

]
where 22 ≤ a ≤ 30

and 20 ≤ b ≤ 25 are constant parameters.
It is assumed that the IT2 TS fuzzy model is working in the operating

domain x1(t) ∈ [−10, 10
]
. The lower and upper membership functions are

given in Table 10.1. The actual membership functions subject to parameter
uncertainties are inside the region (footprint of uncertainty) bounded by the
lower and upper membership functions.

Table 10.1 Lower and upper membership functions for Example 10.2.

Lower Membership Functions Upper Membership Functions

wL
1 (x1(t)) = 0.95 − 0.925

1+e
− x1(t)+3.5

8

wU
1 (x1(t)) = 0.95 − 0.925

1+e
− x1(t)+4.5

8

wL
2 (x1(t)) = 1 − wL

1 (x1(t)) − wL
3 (x1(t)) wU

2 (x1(t)) = 1 − wU
1 (x1(t)) − wU

3 (x1(t))
wL

3 (x1(t)) = 0.025 + 0.925

1+e
− x1(t)−3.5

8

wU
3 (x1(t)) = 0.025 + 0.925

1+e
− x1(t)−4.5

8

For demonstration purposes, with the IT2 fuzzy controller defined in
(10.17), it is assumed that ρi1 = σi1 = 2, ρi2 = σi2 = 0.01, γi1 = −0.025
and γi2 = −0.024 satisfy the inequalities of (10.24) to (10.25). The stability
conditions in Theorem 10.1 are employed to check for the stability region us-
ing the MATLAB LMI toolbox. The stability region is shown in Fig. 10.2(a)
indicated by ‘◦’. To investigate the influence of the slack matrices, Mi, Vi

and Λi, to the stability conditions, we remove them from Theorem 10.1. The
stability region without these slack matrices is shown in Fig. 10.2(a) indicated
by ‘×’. Referring to Fig. 10.2(a), it can be seen that the stability conditions
can be relaxed with these slack matrices as evidenced by a larger stability
region.

To investigate the influence of the bounding coefficients of the inequalities
of (10.24) to (10.25) to the stability region, we choose γi1 as −0.048 and
−0.012 with other coefficients unchanged. The stability region is shown in Fig.
10.2(b). It can be seen that different bounding coefficients (due to different
lower and upper membership functions) will lead to different sizes of stability
regions.
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(a) Stability regions with (‘◦’) and without (‘×’) Mi, Vi and Λi.
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(b) Stability region with different bounding coefficients of γi1 = −0.048
(‘◦’) and γi1 = −0.012 (‘×’).

Fig. 10.2 Stability regions for the stability conditions in Theorem 10.1.
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Example 10.3. Consider the inverted pendulum in Example 7.1 subject to
parameter uncertainty as the nonlinear plant in this example. We consider
the mass of the pole mp and the mass of the cart Mc are uncertain. An IT2 TS
fuzzy model is first constructed to represent the inverted pendulum. Different
sets of lower and upper membership functions are considered to capture the
parameter uncertainties. The proposed IT2 fuzzy controller is then employed
to stabilize the inverted pendulum.

The dynamics of the inverted pendulum is described by the dynami-
cal equations (7.33). It is considered that the mass of the inverted pen-
dulum mp ∈ [

mpmin , mpmax

]
=
[
2, 3

]
and the mass of the cart Mc ∈[

Mcmin , Mcmax

]
=
[
8, 16

]
are uncertain. It was reported in [56] that the

uncertainty-free inverted pendulum, of which mp and Mc take constant val-
ues, can be exactly represented by the type-1 TS fuzzy model (7.35). The
fuzzy model is restated as follows.

ẋ(t) =
4∑

i=1

ŵi(x(t))(Aix(t) + Biu(t)) (10.40)

The inverted pendulum is considered working in the operating domain
x1(t) = θ(t) ∈ [− 5π

12
, 5π

12

]
and x2(t) = θ̇(t) ∈ [−5, 5

]
. Consequently, we have

f1min = 10.0078 and f1max = 18.4800, f2min = −0.1765 and f2max = −0.0261.
The rest variables are defined in Example 7.1.

It can be seen from the type-1 TS fuzzy model (10.40) that the grades
of membership become uncertain in value when mp and Mc are uncertain.
Consequently, the stability conditions subject to perfectly matched premise
membership functions in Chapter 2 cannot be applied to design a stable fuzzy
controller. An IT2 TS fuzzy model with 4 rules of the following format is em-
ployed to describe the inverted pendulum subject to parameter uncertainties.

Rule i: IF x1(t) is M̃ i
1 AND x1(t) is M̃ i

2

THEN ẋ(t) = Aix(t) + Biu(t), i = 1, 2, 3, 4 (10.41)

The IT2 TS fuzzy model is defined as follows.

ẋ(t) =
4∑

i=1

(
wL

i (x1(t))vi(x(t)) + wU
i (x1(t))vi(x(t))

)(
Aix(t) + Bi u(t)

)

=
4∑

i=1

w̃i(x(t))
(
Aix(t) + Biu(t)

)
(10.42)

where w̃i(x(t)) = wL
i (x1(t))vi(x(t)) + wU

i (x1(t))vi(x(t)).
The lower and upper membership functions are required to satisfy the

following inequalities.
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μ
M̃i

1
(x1(t)) ≤ μMi

1
(f1(x(t)) ≤ μM̃i

1
(x1(t)), i = 1, 2, 3, 4 (10.43)

μ
M̃i

2
(x1(t)) ≤ μMi

2
(f2(x1(t)) ≤ μM̃i

2
(x1(t)), i = 1, 2, 3, 4 (10.44)

It can be seen from (10.43) and (10.44) that the lower and upper membership
functions form the FOU that captures the parameter uncertainties mp and
Mc. Any type-1 membership functions in between can be reconstructed based
on the lower and upper membership functions. As a result, the IT2 TS fuzzy
model is equivalent to have infinite number of type-1 fuzzy models in the
form of (10.40) where each one of them takes different constant values of mp

and Mc within the predefined lower and upper bounds.
By taking x2(t), mp and Mc as constant values in their operating ranges

of f1(x(t)) and f2(x1(t)) and considering all combinations of them, we can
determine the lower and upper bounds of μMi

1
(f1(x(t)) and μMi

2
(f2(x1(t))

that they are taken as the lower and upper membership functions of the IT2
TS fuzzy model. The lower and upper membership functions are defined in
Table 10.2 and Table 10.3, respectively. It should be noted that μ

M̃i
1
(x1(t))

for all i depend on x1(t) only due to x2(t) is taken as a constant value. The
lower and upper normalized grades of membership for each rule are defined as
wL

i (x1(t)) = μ
M̃i

1
(x1(t))μM̃i

2
(x1(t)) and wU

i (x1(t)) = μM̃i
1
(x1(t))μM̃i

2
(x1(t)),

respectively, for all i. It can be shown that wL
i (x1(t)) ≤ w̃i(x(t)) ≤ wU

i (x1(t)).
The plots of the lower and upper normalized membership functions of the IT2
TS fuzzy model are shown in Fig. 10.3.

Table 10.2 Lower membership functions for Example 10.3.

μ
M̃1

1
(x1(t)) = −f1(x(t))+f1max

f1max−f1min
with x2(t) = 0, mp = mpmax , Mc = Mcmin

μ
M̃2

1
(x1(t)) = −f1(x(t))+f1max

f1max−f1min
with x2(t) = 0, mp = mpmax , Mc = Mcmin

μ
M̃3

1
(x1(t)) =

f1(x(t))−f1min
f1max−f1min

with x2(t) = x2max , mp = mpmax , Mc = Mcmin

μ
M̃4

1
(x1(t)) =

f1(x(t))−f1min
f1max−f1min

with x2(t) = x2max , mp = mpmax , Mc = Mcmin

μ
M̃1

2
(x1(t)) = −f2(x1(t))+f2max

f2max−f2min
with mp = mpmax , Mc = Mcmax

μ
M̃2

2
(x1(t)) =

f2(x1(t))−f2min
f2max−f2min

with mp = mpmin , Mc = Mcmin

μ
M̃3

2
(x1(t)) = −f2(x1(t))+f2max

f2max−f2min
with mp = mpmax , Mc = Mcmax

μ
M̃4

2
(x1(t)) =

f2(x1(t))−f2min
f2max−f2min

with mp = mpmin , Mc = Mcmin

Based on the IT2 TS fuzzy model, an IT2 fuzzy controller with four rules
of the following format is employed to stabilize the inverted pendulum (7.33),
i.e., x(t) → 0 as time t → ∞.



208 10 IT2 FMB Control Systems

Table 10.3 Upper membership functions for Example 10.3.

μM̃1
1
(x1(t)) = −f1(x(t))+f1max

f1max−f1min
with x2(t) = x2max , mp = mpmax , Mc = Mcmin

μM̃2
1
(x1(t)) = −f1(x(t))+f1max

f1max−f1min
with x2(t) = x2max , mp = mpmax , Mc = Mcmin

μM̃3
1
(x1(t)) =

f1(x(t))−f1min
f1max−f1min

with x2(t) = 0, mp = mpmax , Mc = Mcmin

μM̃4
1
(x1(t)) =

f1(x(t))−f1min
f1max−f1min

with x2(t) = 0, mp = mpmax , Mc = Mcmin

μM̃1
2
(x1(t)) = −f2(x1(t))+f2max

f2max−f2min
with mp = mpmin , Mc = Mcmin

μM̃2
2
(x1(t)) =

f2(x1(t))−f2min
f2max−f2min

with mp = mpmax , Mc = Mcmax

μM̃3
2
(x1(t)) = −f2(x1(t))+f2max

f2max−f2min
with mp = mpmin , Mc = Mcmin

μM̃4
2
(x1(t)) =

f2(x1(t))−f2min
f2max−f2min

with mp = mpmax , Mc = Mcmax
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Fig. 10.3 Lower membership functions wL
i (x1(t)) (dotted lines) and upper mem-

bership functions wU
i (x1(t)) (solid lines), i = 1, 2, 3, 4 for Example 10.3.

Rule j: IF x1(t) is M̃ j
1 AND x1(t) is M̃ j

Ψ

THEN u(t) = Gjx(t), j = 1, 2, 3, 4 (10.45)

Referring to (10.17), the inferred IT2 fuzzy controller is defined as,

u(t) =

∑p
j=1(w

L
j (x1(t)) + wU

j (x1(t)))Gjx(t)
∑p

k=1(w
L
k (x1(t)) + wU

k (x1(t))
(10.46)
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Considering the chosen lower and upper membership functions, it can be
shown numerically that ρik = 1, σik = 0.001, γ11 = 0.441, γ21 = 0.191, γ31 =
0.525, γ41 = 0.2, γi2 = 0.001, i = 1, 2, 3, 4; k = 1, 2, satisfy the inequalities
(10.24) and (10.25). Based on the stability conditions in Theorem 10.1, with
the MATLAB LMI toolbox, the feedback gains are found numerically and
shown in Table 10.4.

Table 10.4 Feedback gains Gj for Example 10.3.

G1 =
[
934.7822 238.7590

]

G2 =
[
1027.3843 260.9691

]

G3 =
[
1000.4873 254.0293

]

G4 =
[
1138.3668 289.6253

]

The IT2 fuzzy controller (10.46) with the feedback gains in Table 10.4
is employed to control the inverted pendulum (7.33). Considering the initial
system states x(0) =

[
5π
12

0
]T , x(0) =

[− 5π
12

0
]T , x(0) =

[
π
6

0
]T and x(0) =

[−π
6

0
]T , the system state responses and control signals of the IT2 FMB

control system with mp = mpmin and Mc = Mcmin are shown in Fig. 10.4. To
check for the robustness of the IT2 fuzzy controller, we choose mp = mpmax

and Mc = Mcmax. It can be seen from Fig. 10.4 that the IT2 fuzzy controller is
able to stabilize the inverted pendulum with the chosen values of mp and Mc.

As discussed in Remark 10.5, any functions in the range of 0 to 1 satisfy-
ing the inequalities (10.43) and (10.44) can be taken as the lower and upper
membership functions. As a result, the IT2 TS fuzzy model for a nonlinear
system is not unique and it offers a design flexibility to the IT2 fuzzy con-
troller. However, different sets of lower and upper membership functions will
lead to different values of ρi1, σi1, γi1, ρi2, σi2, γi2. As shown in Example
10.1, it will lead to different stability result.

For demonstration purposes, another set of lower and upper membership
functions for the IT2 TS fuzzy model with the rules in (10.41) are chosen and
shown in Table 10.5. The plots of the lower and upper membership functions
are shown in Fig. 10.5. It can be shown that the normalized membership
functions satisfy the inequality of wL

i (x1(t)) ≤ w̃i(x(t)) ≤ wU
i (x1(t)) for all i.

With other membership functions in simple forms being employed for the
construction of the IT2 TS fuzzy model, it is able to lower the structural
complexity of the IT2 fuzzy controller (10.46) and reduce the implementa-
tion cost. Considering the lower and upper membership functions in Table
10.5, it can be shown numerically that ρik = 1, σik = 0.001, γ11 = 0.456,
γ21 = 0.27, γ31 = 0.565, γ41 = 0.195, γi2 = 0.001, i = 1, 2, 3, 4; k = 1, 2,
satisfy the inequalities (10.24) and (10.25). It should be noted that different
coefficients for the inequalities (10.24) and (10.25) will give different feed-
back gains for the IT2 fuzzy controller (10.46). Hence, different IT2 fuzzy
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(a) x1(t).

(b) x2(t).

Fig. 10.4 System state responses and control signals for the inverted pendulum
in Example 10.3. Solid lines: mp = mpmin and Mc = Mcmin . Dotted lines: mp =
mpmax and Mc = Mcmax .
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Fig. 10.4 (continued)

Table 10.5 Another set of lower and upper membership functions for the IT2 TS
fuzzy model for Example 10.3.

Lower membership functions Upper membership functions

μ
M̃1

1
(x1(t)) = 1 − e−

x1(t)2

1.2 μM̃1
1
(x1(t)) = 1 − 0.23e−

x1(t)2

0.25

μ
M̃2

1
(x1(t)) = 1 − e−

x1(t)2

1.2 μM̃2
1
(x1(t)) = 1 − 0.23e−

x1(t)2

0.25

μ
M̃3

1
(x1(t)) = 0.23e−

x1(t)2

0.25 μM̃3
1
(x1(t)) = e−

x1(t)2

1.2

μ
M̃4

1
(x1(t)) = 0.23e−

x1(t)2

0.25 μM̃4
1
(x1(t)) = e−

x1(t)2

1.2

μ
M̃1

2
(x1(t)) = 0.5e−

x1(t)2

0.25 μM̃1
2
(x1(t)) = e−

x1(t)2

1.5

μ
M̃2

2
(x1(t)) = 1 − e−

x1(t)2

1.5 μM̃2
2
(x1(t)) = 1 − 0.5e−

x1(t)2

0.25

μ
M̃3

2
(x1(t)) = 0.5e−

x1(t)2

0.25 μM̃3
2
(x1(t)) = e−

x1(t)2

1.5

μ
M̃4

2
(x1(t)) = 1 − e−

x1(t)2

1.5 μM̃4
2
(x1(t)) = 1 − 0.5e−

x1(t)2

0.25
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Fig. 10.5 Another set of lower membership functions wL
i (x1(t)) (dotted lines) and

upper membership functions wU
i (x1(t)) (solid lines), i = 1, 2, 3, 4 for Example 10.3.

controllers designed based on different IT2 TS fuzzy models will offer differ-
ent system performance. The performance analysis given in Chapter 3 can
be considered to realize the system performance.

Based on the stability conditions in Theorem 10.1, with the MATLAB
LMI toolbox, we have the feedback gains listed in Table 10.6.

Table 10.6 Another set of feedback gains Gj for Example 10.3.

G1 =
[
885.2658 227.9417

]

G2 =
[
951.8250 243.5480

]

G3 =
[
942.8617 241.3597

]

G4 =
[
1072.0733 275.0160

]

The IT2 fuzzy controller with the lower and upper membership functions
in Table 10.5, and the feedback gains in Table 10.6 is employed to control the
inverted pendulum. Considering the same initial system states as above, the
system state responses and control signals for the IT2 FMB control system
with mp = mpmin and Mc = Mcmin , and mp = mpmax and Mc = Mcmax are
shown in Fig. 10.6. Referring to Fig. 10.6, it can be seen that the inverted
pendulum subject to different parameter values can be stabilized by the IT2
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(a) x1(t).

(b) x2(t).

Fig. 10.6 System state responses and control signals for the inverted pendulum
in Example 10.3 with another set of feedback gains. Solid lines: mp = mpmin and
Mc = Mcmin . Dotted lines: mp = mpmax and Mc = Mcmax .
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(c) u(t).

Fig. 10.6 (continued)

fuzzy controller of (10.46). Comparing with the IT2 fuzzy controllers taking
different sets of membership functions and feedback gains, it can be seen from
Fig. 10.5 and Fig. 10.6 that both IT2 fuzzy controller are able to stabilize
the inverted pendulum subject to different values of system parameters.

10.3 Conclusion

An IT2 TS fuzzy model has been proposed to represent the nonlinear plant
subject to parameter uncertainties. The parameter uncertainties of the non-
linear plant are captured by the IT2 fuzzy sets characterized by the lower and
upper membership functions to facilitate the stability analysis and controller
synthesis. An IT2 fuzzy controller has been proposed to close the feedback
loop to form an IT2 FMB control system. As the actual grades of the mem-
bership are uncertain in value due to the parameter uncertainties, the MFSI
stability analysis approach in Chapter 3 will lead to very conservative stabil-
ity conditions. To circumvent the difficulty, the nice property of the lower and
upper membership functions offering the boundary information of uncertain
parameters is utilized to introduce some MFSI and MFSD slack matrices to
the stability analysis. By considering the MFSI and MFSD slack matrices,
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the stability of the IT2 FMB control systems has been investigated using the
Lyapunov stability theory. LMI-based stability conditions have been derived
to guarantee the system stability and design the IT2 fuzzy controller. Some
simulation examples have been given to illustrate the effectiveness of the
proposed IT2 FMB control approach.
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