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Preface

Quantum computing is a vast and fascinating interdisciplinary project of the
21st century. Research and development in this monumental enterprise involve
just about every field of science and engineering. In this volume, we focus on
two important disciplines–mathematics and physics. The choice is made with
good reasons:

(1) Mathematics and mathematicians have played major roles in the devel-
opment of quantum computation. In the middle 1990’s Peter Shor’s
quantum factoring algorithm generated tremendous enthusiasm for the
push to build the quantum computer. Shor’s algorithm was the first ex-
ample showing that, in principle, quantum computers could out-perform
classical digital computers on problems of significance. This opened
wide the field for discovery of new quantum algorithms. This search
has gone on in tandem with the search for new principles and techniques
that will make the new computers practical and actual. Mathematics
participates in this process at all levels.

(2) Physicists and engineers are the principal players in the design and evo-
lution of the quantum computer. The technological aspect of building a
scalable quantum computer within a reasonable time horizon is crucial
for the field to remain viable. Recent advances in hardware developmen-
t are extremely encouraging. Such quantum technology is the material
cornerstone of quantum computing. The impact of this research goes
well beyond quantum computing, reaching nanotechnology, chemical
physics, condensed matter physics and the fundamental nature of matter
at the quantum mechanical level.

Items (1) and (2), mathematics and physics, are inextricably linked. In this
field of research we see mathematicians and physicists not only working to-
gether, but building common language and techniques that move back and
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forth across the disciplines. It has been remarkable to watch, over the last
few years, the extraordinary clarity of articulation of basic quantum physical
principles that is now available both for physicists and mathematicians. This
is far beyond a matter of simple exposition. New points of view on quantum
theory are emerging from these studies, and aspects of quantum theory (such
as non-locality and teleportation), previously thought to be matters of philoso-
phy, are now understood to be at the very basis of quantum information theory
and the practice of quantum computation.

Based on the firm understanding that mathematics and physics are equal
partners in the continuing discovery of quantum computing, the three editors
of this book organized an NSF conference entitled “Mathematics of Quantum
Computation and Quantum Technology”, held at Texas A&M University in
November 2005. During the 3-day conference, many central topics were re-
ported and examined, and vivid discussions ensued. The funding organizations
were NSF, IMA (Institute of Mathematics and Its Applications, Minneapolis,
U.S.A.) and the Texas A&M University. We are especially grateful to Dr. Hen-
ry Warchall of NSF for providing the largest share of participant support via
NSF Grant DMS 0531131.

The present volume contains materials much broader and deeper than what
were presented at the conference, due to the generous time frame for the au-
thors to prepare their manuscripts. This is evidenced in the large number of
chapters, sixteen of them in all, as well as over six hundred of pages of papers.
More specifically, this volume consists of four parts:

Part I: Quantum Computing—quantum algorithms and hidden subgroups,
quantum search, algorithmic complexity and quantum simulation;

Part II: Quantum Technology—math tools, quantum wave functions, SQUID-
s, optical quantum computing;

Part III: Quantum Information—quantum error correction, quantum cryp-
tography, quantum entanglement and communication; and

Part IV: Quantum Topology, Categorical Algebra and Logic—knot theory,
category, algebra and logic.

A Panel Report to NSF containing recommendations for federal funding on
the mathematical research on quantum computing is also attached at the very
end as an Appendix.

This book was written collectively by the authors of its many and diverse
chapters. We are indebted to them for their invaluable contributions. We also
wish to thank the reviewers (several of them are not coauthors of any book
chapters) for their helpful reports and comments.

Ms. Robin Campbell has done the high quality editorial work in processing
and compiling the book chapters. Mr. Bob Stern of the Taylor and Francis
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Group has expedited the book publication in every way. Working together
with them on this book project was indeed a great pleasure.

Goong Chen
Louis Kauffman
Samuel J. Lomonaco
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Chapter 1

Quantum Hidden Subgroup
Algorithms:
An Algorithmic Toolkit

Samuel J. Lomonaco and Louis H. Kauffman

Abstract One of the most promising and versatile approaches to creat-
ing new quantum algorithms is based on the quantum hidden subgroup (QHS)
paradigm, originally suggested by Alexei Kitaev. This class of quantum al-
gorithms encompasses the Deutsch–Jozsa, Simon, Shor algorithms, and many
more.

In this paper, our strategy for finding new quantum algorithms is to decom-
pose Shor’s quantum factoring algorithm into its basic primitives, then to gen-
eralize these primitives, and finally to show how to reassemble them into new
QHS algorithms. Taking an alphabetic building blocks approach, we use these
primitives to form an algorithmic toolkit for the creation of new quantum al-
gorithms, such as wandering Shor algorithms, continuous Shor algorithms, the
quantum circle algorithm, the dual Shor algorithm, a QHS algorithm for Feyn-
man integrals, free QHS algorithms, and more.

Toward the end of this paper, we show how Grover’s algorithm is most sur-
prisingly almost a QHS algorithm, and how this result suggests the possibility
of an even more complete “algorithmic toolkit” beyond QHS algorithms.

3
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1.1 Introduction

One major obstacle to the fulfillment of the promise of quantum computing
is the current scarcity of quantum algorithms. Quantum computing researchers
simply have not yet found enough quantum algorithms to determine whether
or not future quantum computers will be general purpose or special purpose
computing devices. As a result, much more research is crucially needed to
determine the algorithmic limits of quantum computing.

One of the most promising and versatile approaches to creating new quan-
tum algorithms is based on the quantum hidden subgroup (QHS) paradigm,
originally suggested by Alexei Kitaev [20]. This class of quantum algorithms
encompasses the Deutsch–Jozsa, Simon, Shor algorithms, and many more.

In this paper, our strategy for finding new quantum algorithms is to decom-
pose Shor’s quantum factoring algorithm into its basic primitives, then to gen-
eralize these primitives, and finally to show how to reassemble them into new
QHS algorithms. Taking an alphabetic building blocks approach, we will use
these primitives to form an algorithmic toolkit for the creation of new quantum
algorithms, such as wandering Shor algorithms, continuous Shor algorithms,
the quantum circle algorithm, the dual Shor algorithm, a QHS algorithm for
Feynman integrals, free QHS algorithms, and more.

Toward the end of this paper, we show how Grover’s algorithm is most sur-
prisingly almost a QHS algorithm, and how this suggests the possibility of an
even more complete algorithmic toolkit beyond QHS algorithms.

1.2 An example of Shor’s quantum factoring
algorithm

Before discussing how Shor’s algorithm can be decomposed into its prim-
itive components, let’s take a quick look at an example of the execution of
Shor’s factoring algorithm. As we discuss this example, we suggest that the
reader, as an exercise, try to find the basic QHS primitives that make up this
algorithm. Can you see them?

Shor’s quantum factoring algorithm reduces the task of factoring a positive
integer N to first finding a random integer a relatively prime to N, and then
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next to determining the period P of the following function

Z
ϕ−→ Z mod N

x �−→ ax mod N ,

where Z denotes the additive group of integers, and where Z mod N denotes
the integers modN under multiplication.1

Since Z is an infinite group, Shor chooses to work instead with the finite
additive cyclic group ZQ of order Q = 2m, where N2 ≤ Q < 2N2, and with the
“approximating” map

ZQ
ϕ̃−→ Z mod N

x �−→ ax mod N , 0≤ x < Q.

We begin by constructing a quantum system with two quantum registers

|LEFT REGISTER〉 |RIGHT REGISTER〉 ,

the left intended for holding the arguments x of ϕ̃ , the right for holding the
corresponding values of ϕ̃ . This quantum system has been constructed with a
unitary transformation

Uϕ̃ : |x〉 |1〉 �−→ |x〉 |ϕ̃ (x)〉

implementing the “approximating” map ϕ̃ .
As an example, let us use Shor’s algorithm to factor the integer N = 21,

assuming that a = 2 has been randomly chosen. Thus, Q = 29 = 512.
Unknown to us, the period is P = 6, and hence, Q = 6 ·85 + 2.
We proceed by executing the following steps:

Shor Algorithm Example

STEP 0 Initialize ∣∣ψ0

〉
= |0〉 |1〉

1A random integer a with gcd (a,N) = 1 is found by selecting a random integer, and then applying
the Euclidean algorithm to determine whether or not it is relatively prime to N. If not, then the
gcd is a non-trivial factor of N, and there is no need to proceed further. However, this possibility
is highly unlikely if N is large.
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STEP 1 Apply the inverse Fourier transform2

F−1 : |u〉 �−→ 1√
512

511

∑
x=0

ω−ux |x〉

to the left register, where ω = exp(2π i/512) is a primitive
512-th root of unity, to obtain

∣∣ψ1

〉
=

1√
512

511

∑
x=0
|x〉 |1〉 .

STEP 2 Apply the unitary transformation

Uϕ̃ : |x〉 |1〉 �−→ |x〉 |2x mod 21〉

to obtain ∣∣ψ2

〉
=

1√
512

511

∑
x=0
|x〉 |2x mod 21〉 .

STEP 3 Apply the Fourier transform

F : |x〉 �−→ 1√
512

511

∑
y=0

ωxy |y〉

to the left register to obtain

∣∣ψ3

〉
=

1
512

511

∑
x=0

511

∑
y=0

ωxy |y〉 |2x mod 21〉

=
1

512

511

∑
y=0

|y〉
(

511

∑
x=0

ωxy |2x mod 21〉
)

=
1

512

511

∑
y=0

|y〉 |ϒ(y)〉

where

|ϒ(y)〉=
511

∑
x=0

ωxy |2x mod 21〉 .

2Actually, for this step, the original Shor algorithm uses instead the Hadamard transform, which
for step 1, has the same effect as the 512-point Fourier transform.
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STEP 4 Measure the left register. Then with Probability

Probϕ̃ (y) =
〈 ϒ(y) | ϒ(y) 〉

(512)2

the state will “collapse” to |y〉 with the value measured being
the integer y, where 0≤ y < Q.

A plot of Probϕ̃ (y) is shown in Fig. 1.1. (See [21] and [25] for details.)

FIGURE 1.1: A plot of Probϕ̃ (y).

The peaks in the above plot of Probϕ̃ (y) occur at the integers

y = 0, 85, 171, 256, 341, 427.

The probability that at least one of these six integers will occur is quite high.
It is actually 0.78+. Indeed, the probability distribution has been intentional-
ly engineered to make the probability of these particular integers as high as
possible. And there is a good reason for doing so.
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The above six integers are those for which the corresponding rational y/Q
is “closest” to a rational of the form d/P. By “closest” we mean that∣∣∣∣ y

Q
− d

P

∣∣∣∣< 1
2Q

<
1

2P2 .

In particular,
0

512
,

85
512

,
171
512

,
256
512

,
341
512

,
427
512

are rationals respectively “closest” to the rationals

0
6
,

1
6
,

2
6
,

3
6
,

4
6
,

5
6

.

The six rational numbers 0/6, 1/6, . . . , 5/6 are “closest” in the sense that they
are convergents of the continued fraction expansions of 0/512, 85/512, . . . ,
427/512, respectively. Hence, each of the six rationals 0/6, 1/6, . . . , 5/6 can
be found using the standard continued fraction recursion formulas.

But, we are not searching for rationals of the form d/P. Instead, we seek
only the denominator P = 6.

Unfortunately, the denominator P = 6 can only be obtained from the con-
tinued fraction recursion when the numerator and denominator of d/P are rel-
atively prime. Given that the algorithm has selected one of the random inte-
gers 0, 85, . . . , 427, the probability that the corresponding rational d/P has
relatively prime numerator and denominator is φ (6)/6 = 1/3, where φ (−)
denotes the Euler phi (totient) function. So the probability of finding P = 6 is
actually not 0.78+, but is instead 0.23−.

As it turns out, if we repeat the algorithm O(lg lgN) times,3 we will obtain
the desired period P with probability bounded below by approximately 4/π2.
However, this is not the end of the story. Once we have in our possession
a candidate P′ for the actual period P = 6, the only way we can be sure we
have the correct period P is to test P′ by computing 2P′ mod 21. If the result
is 1, we are certain we have found the correct period P. This last part of the
computation is done by the repeated squaring algorithm.4

3We use lg to denote log2, i.e., the log to the base 2.
4By the repeated squaring algorithm, we mean the algorithm which computes aP′ mod N via the
expression

aP′ = ∏
j

(
a2 j
)P′j

,

where P′ = ∑ j P′j2 j is the radix 2 expansion of P′.
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1.3 Definition of quantum hidden subgroup (QHS)
algorithms

Now that we have taken a quick look at Shor’s algorithm, let’s see how it
can be decomposed into its primitive algorithmic components. We will first
need to answer the following question:

What is a quantum hidden subgroup algorithm?

But before we can answer this question, we need to provide an answer to an
even more fundamental question:

What is a hidden subgroup problem?

DEFINITION 1.1 A map ϕ : G−→ S from a group G into a set S
is said to have hidden subgroup structure if there exists a subgroup Kϕ
of G, called a hidden subgroup, and an injection ιϕ : G/Kϕ −→ S, called
a hidden injection, such that the diagram

G
ϕ−→ S

ν ↘ ↗ ιϕ

G/Kϕ

is commutative,5 where G/Kϕ denotes the collection of right cosets of
Kϕ in G, and where ν : G−→ G/Kϕ is the natural surjection of G onto
G/Kϕ . We refer to the group G as the ambient group and to the set
S as the target set. If Kϕ is a normal subgroup of G, then Hϕ = G/Kϕ
is a group, called the hidden quotient group, and ν : G −→ G/Kϕ is an
epimorphism, called the hidden epimorphism. We will call the above
diagram the hidden subgroup structure of the map ϕ : G −→ S. (See
[25],[20].)

REMARK 1.1 The underlying intuition motivating this formal
definition is as follows: Given a natural surjection (or epimorphism)

5By saying that this diagram is commutative, we mean ϕ = ιϕ ◦ν . The notion generalizes in an
obvious way to more complicated diagrams.
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ν : G−→G/Kϕ , an “archvillain with malice aforethought” hides the alge-
braic structure of ν by intentionally renaming all the elements of G/Kϕ ,
and “maliciously tossing in for good measure” some extra elements to
form a set S and a map ϕ : G−→ S.

The hidden subgroup problem can be stated as follows:
Hidden Subgroup Problem (HSP). Let ϕ : G −→ S be a map with hidden
subgroup structure. The problem of determining a hidden subgroup Kϕ of G is
called a hidden subgroup problem (HSP). An algorithm solving this problem
is called a hidden subgroup algorithm.

The corresponding quantum form of this HSP is stated as follows:
Hidden Subgroup Problem (Quantum Version). Let ϕ : G −→ S be a map
with hidden subgroup structure. Construct a quantum implementation of the
map ϕ as follows:
Let HG and HS be Hilbert spaces defined respectively by the orthonormal
bases {|g〉 : g ∈ G}and {|s〉 : s ∈ S} and let s0 = ϕ (1), where 1 denotes the
identity6 of the ambient group A. Finally, let Uϕ be a unitary transformation
such that

HG⊗HS −→ HG⊗HS

|g〉∣∣s0

〉 �→ |g〉 |ϕ(g)〉 .

Determine the hidden subgroup Kϕ with bounded probability of error by mak-
ing as few queries as possible to the blackbox Uϕ . A quantum algorithm solv-
ing this problem is called a quantum hidden subgroup (QHS) algorithm.

1.4 The generic QHS algorithm

We are now in a position to construct one of the fundamental algorithmic
primitives found in Shor’s algorithm.

Let ϕ : G −→ S be a map from a group G to a set S with hidden subgroup
structure. We assume that all representations of G are equivalent to unitary
representations.7 Let Ĝ denote a complete set of distinct irreducible unitary
representations of G. Using multiplicative notation for G, we let 1 denote the

6We are using multiplicative notation for the group G.
7This is true for all finite groups as well as for a large class of infinite groups.
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identity of G, and let s0 denote its image in S. Finally, let 1̂ denote the trivial
representation of G.

REMARK 1.2 If G is abelian, then Ĝ becomes the dual group of
characters.

The generic QHS algorithm is given below:

Generic Quantum Subroutine QRAND(ϕ)

Step 0 Initialization ∣∣ψ0

〉
=
∣∣∣1̂〉∣∣s0

〉 ∈H
Ĝ
⊗HS .

Step 1 Application of the inverse Fourier transform F−1
G of G to the

left register∣∣ψ1

〉
=

1√|G| ∑
g∈G

|g〉 ∣∣s0

〉 ∈HG⊗HS ,

where |G| denotes the cardinality of the group G.

Step 2 Application of the unitary transformation Uϕ∣∣ψ2

〉
=

1√|G| ∑
g∈G

|g〉 |ϕ(g)〉 ∈HG⊗HS .

Step 3 Application of the Fourier transform FG of G to the left reg-
ister∣∣ψ3

〉
=

1
|G| ∑

γ∈Ĝ

|γ|Trace

(
∑

g∈G
γ† (g) |γ〉

)
|ϕ(g)〉

=
1
|G| ∑

γ∈Ĝ

|γ|Trace
(|γ〉 ∣∣Φ(γ†)

〉) ∈H
Ĝ
⊗HS ,

where |γ| denotes the degree of the representation γ , where γ†

denotes the contragradient representation (i.e., γ† (g) =

γ
(
g−1
)T = γ (g)

T
), where Trace

(
γ† |γ〉)=

|γ|
∑

i=1

|γ|
∑
j=1

γ ji (g)
∣∣∣γi j

〉
,

and where
∣∣∣Φ(γ†

i j

)〉
= ∑

g∈G
γ ji (g) |ϕ (g)〉.
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Step 4 Measurement of the left quantum register with respect to the
orthonormal basis{∣∣∣γi j

〉
: γ ∈ Ĝ, 1≤ i, j ≤ |γ|

}
.

Thus, with probability

Probϕ

(
γi j

)
=
|γ|2

〈
Φ
(

γ†
i j

)
|Φ
(

γ†
i j

)〉
|G|2 ,

the resulting measured value is the entry γij, and the quantum
system “collapses” to the state

∣∣ψ4

〉
=

∣∣∣γi j

〉∣∣∣Φ(γ†
i j

)〉
√〈

Φ
(

γ†
i j

)
|Φ
(

γ†
i j

)〉 ∈H
Ĝ
⊗HS

Step 5 Step 5. Output γi j, and stop.

1.5 Pushing and lifting hidden subgroup problems
(HSPs)

But Shor’s algorithm consists of more than the primitive QRAND.
For many (but not all) hidden subgroup problems (HSPs) ϕ : G −→ S, the

corresponding generic QHS algorithm QRAND either is not physically imple-
mentable or is too expensive to implement physically. For example, the HSP ϕ
is usually not physically implementable if the ambient group is infinite (e.g., G
is the infinite cyclic group Z), and is too expensive to implement if the ambient
group is too large (e.g., G is the symmetric group S

10100). In this case, there
is a standard generic way of “tweaking” the HSP to get around this problem,
which we will call pushing.

DEFINITION 1.2 Let ϕ : G−→ S be a map from a group G to a set
S. A map ϕ̃ : G̃−→ S from a group G̃ to the set S is said to be a push
of ϕ, written

ϕ̃ = Push(ϕ) ,
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provided there exists an epimorphism ν : G −→ G̃ from G onto G̃, and
a transversal8 τ : G̃ −→ G of ν such that ϕ̃ = ϕ ◦ τ, i.e., such that the
following diagram is commutative

G
ϕ−→ S

↑ τ ↗ ϕ̃

G̃

If the epimorphism μ and the transversal τ are chosen in an appropriate way,
then execution of the generic QHS subroutine with input ϕ̃ = Push(ϕ) , i.e.,
execution of

QRAND (ϕ̃) ,

will with high probability produce an irreducible representation γ̃ of the group
G̃ which is sufficiently close to an irreducible representation γ of the group G.
If this is the case, then there is a polynomial time classical algorithm which
upon input γ̃ produces the representation γ .

Obviously, much more can be said about pushing. But unfortunately that
would take us far afield from the objectives of this paper. For more information
on pushing, we refer the reader to [27].

It would be remiss not to mention that the above algorithmic primitive of
pushing suggests the definition of a second primitive which we will call lifting.

DEFINITION 1.3 Let ϕ : G −→ S be a map from a group G to a
set S. A map ϕ : G−→ S from a group G to the set S is said to be a lift
of ϕ, written

ϕ = Li f t (ϕ) ,

provided there exists a morphism η : G −→ G from G to G such that

8Let ν : A−→ B be an epimorphism from a group A to a group B. Then a transversal τ of ν is a
map τ : B−→ A such that ν ◦ τ : B−→ A is the identity map b �−→ b. (It immediately follows that
τ is an injection.) In other words, a transversal τ of an epimorphism ν is a map which maps each
element b of B to an element of A contained in the coset b, i.e., to a coset representative of b.
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ϕ = ϕ ◦η, i.e., such that the following diagram is commutative

G

η ↓ ↘ϕ

G
ϕ−→ S

FIGURE 1.2: Pushing and Lifting HSPs.

1.6 Shor’s algorithm revisited

We are now in position to describe Shor’s algorithm in terms of its primitive
components. In particular, we can now see that Shor’s factoring algorithm is a
classic example of a QHS algorithm created from the push of an HSP.

Let N be the integer to be factored. Let Z denote the additive group of
integers, and Z×N denote the integers modN under multiplication.
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Shor’s algorithm is a QHS algorithm that solves the following HSP

ϕ : Z −→ Z×N
m �−→ am mod N

with unknown hidden subgroup structure given by the following commutative
diagram

Z
ϕ−→ Z×N

ν ↘ ↗ ι

Z/PZ

,

where a is an integer relatively prime to N, where P is the hidden integer period
of the map ϕ : Z −→ Z×N , where PZ is the additive subgroup of all integer
multiples of P (i.e., the hidden subgroup), where ν : Z−→Z/PZ is the natural
epimorphism of the integers onto the quotient group Z/PZ (i.e., the hidden
epimorphism), and where ι : Z/PZ−→ Z×N is the hidden monomorphism.

An obstacle to creating a physically implementable algorithm for this HSP
is that the domain Z of ϕ is infinite. As observed by Shor, a way to work
around this difficulty is to push the HSP.

In particular, as illustrated by the following commutative diagram

Z
ϕ−→ Z×N

μ ↘↖ τ ↗ ϕ = Push(ϕ) = ϕ ◦ τ

ZQ

,

a push ϕ̃ = Push(ϕ) is constructed by selecting the epimorphism μ : Z−→ ZQ
of Z onto the finite cyclic group ZQ of order Q, where the integer Q is the

unique power of 2 such that N2 ≤Q < 2N2, and then choosing the transversal9

τ : ZQ −→ Z

m mod Q �−→ m
,

where 0≤ m < Q. This push ϕ̃ = Push(ϕ) is called Shor’s oracle.

9A transversal for an epimorphism αϕ : Z−→ ZQ is an injection τϕ : Z
Q
−→ Z such that αϕ ◦τϕ

is the identity map on ZQ, i.e., a map that takes each element of ZQ onto a coset representative of
the element in Z.



16 1. QHS ALGORITHMS

Shor’s algorithm consists in first executing the quantum subroutine
QRAND(ϕ̃), thereby producing a random character

γy/Q : m mod Q �−→ my
Q

mod 1

of the finite cyclic group ZQ. The transversal τ used in pushing has been
engineered in such a way as to assure that the character γy/Q is sufficiently
close to a character

γd/P : k mod P �−→ kd
P

mod 1

of the hidden quotient group Z/PZ = ZP. In this case, sufficiently close means
that ∣∣∣∣ y

Q
− d

P

∣∣∣∣≤ 1
2P2 ,

which means that d/P is a continued fraction convergent of y/Q, and thus can
be found by the classical polynomial time continued fraction algorithm.10

1.7 Wandering Shor algorithms, a.k.a. vintage Shor
algorithms

Now let’s use the primitives described in Sections 1.3, 1.4, and 1.5 to create
other new QHS algorithms, called wandering Shor algorithms.

Wandering Shor algorithms are essentially QHS algorithms on free abelian
finite rank n groups A which, with each iteration, first select a random cyclic
direct summand Z of the group A, and then apply one iteration of the standard
Shor algorithm to produce a random character of the “approximating” finite
group Ã = ZQ, called a group probe.11 In this way, three different wandering
Shor algorithms are created in [25]. The first two wandering Shor algorithms
given in [25] are quantum algorithms which find the order P of a maximal
cyclic subgroup of the hidden quotient group Hϕ . The third computes the
entire hidden quotient group Hϕ .

10The characters γy/Q and γd/P can in the obvious way be identified with points of the unit circle in
the complex plane. With this identification, we can see that this inequality is equivalent to saying
the the chordal distance between these two rational points on the unit circle is less than or equal to
1/2P2. Hence, Shor’s algorithm is using the topology of the unit circle.
11By a group probe Ã, we mean an epimorphic image of the ambient group A.
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The first step in creating a wandering Shor algorithm is to find the right
generalization of one of the primitives found in Shor’s algorithm, namely, the
transversal ι : ZQ −→ Z of Shor’s factoring algorithm. In other words, we
need to construct the “correct” generalization of the transversal from ZQ to a
free abelian group A of rank n. For this reason, we have created the following
definition:

DEFINITION 1.4 Let A be the free abelian group of rank n, let
ν : A −→ ZQ be an epimorphism onto the cyclic group ZQ of order Q

with selected generator ã. A transversal12 ι : ZQ −→ A of ν is said to be
a Shor transversal provided that:

1) ι (nã) = nι (ã) for all 0≤ n < Q , and

2) For each (free abelian) basis a′1,a
′
2, . . . ,a

′
n of A, the co-

efficients λ ′1,λ ′2, . . . ,λ ′n of ι (ã) = ∑ j λ ′ja′j satisfy gcd(λ ′1,
λ ′2, . . . ,λ ′n) = 1.

REMARK 1.3 Later, when we construct a generalization of Shor
transversals to free groups of finite rank n, we will see that the first
condition simply states that a Shor transversal is nothing more than a 2-
sided Schreier transversal. The second condition of the above definition
simply says that ι maps the generator ã of ZQ onto a generator of a free
direct summand Z of A. (For more details, please refer to Section 1.12
of this paper.)

REMARK 1.4 In [25], we show how to use the extended Euclidean
algorithm to construct the epimorphism ν : A−→ZQ and the transversal

ι : ZQ −→ A.

Flow charts for the three wandering Shor algorithms created in [25] are giv-
en in Figs. 1.3 through 1.5. In [25], these were also called vintage Shor algo-
rithms.

The algorithmic complexities of the above wandering Shor algorithms are
given in [25]. For example, the first wandering Shor algorithm is of time com-

12For a definition of the transversal of an epimorphism, please refer to footnote 8.
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FIGURE 1.3: Flowchart for the first wandering Shor algorithm (a.k.a. a vintage
Shor algorithm). This algorithm finds the order P of a maximal cyclic subgroup
of the hidden quotient group Hϕ .
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FIGURE 1.4: Flowchart for the second wandering Shor algorithm (a.k.a. a v-
intage Shor algorithm). This algorithm finds the order P of a maximal cyclic
subgroup of the hidden quotient group Hϕ .
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FIGURE 1.5: Flowchart for the third wandering Shor algorithm, a.k.a. a v-
intage Shor algorithm. This algorithm finds the entire hidden quotient group
Hϕ .
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plexity13

O
(

n2 (lgN)3 (lg lgN)n+1
)

,

where n is the rank of the free abelian group A. This can be readily deduced
from the abbreviated flowchart given in Fig. 1.6.

FIGURE 1.6: Abbreviated flowchart for the first wandering Shor algorithm.

13We use lg to denote the log to the base 2, i.e., log2.
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1.8 Continuous (variable) Shor algorithms

In [27] and in [29], the algorithmic primitives found in above sections of
this paper were used to create a class of algorithms called continuous Shor
algorithms. By a continuous variable Shor algorithm, we mean a quantum
hidden subgroup algorithm that finds the hidden period P of an admissible
function ϕ : R−→ R from the reals R to itself.

REMARK 1.5 By an admissible function, we mean a function be-
longing to any sufficiently well behaved class of functions. For example,
the class of functions which are Lebesgue integrable on every closed in-
terval of R. There are many other classes of functions that work equally
as well.

Actually, the papers [27], [29] give in succession three such continuous Shor
algorithms, each successively more general than the previous.

For the first algorithm, we assume that the unknown hidden period P is
an integer. The algorithm is then constructed by using rigged Hilbert spaces
[4], [10], linear combinations of Dirac delta functions, and a subtle extension
of the Fourier transform found in the generic QHS subroutine QRAND(ϕ),
which has been described previously in Section 1.4 of this paper. In Step 5 of
QRAND(ϕ), the observable

A =
∞∫

−∞

dy
�Qy�

Q
|y〉 〈y|

is measured, where Q is an integer chosen so that Q ≥ 2P2. It then follows
that the output of this algorithm is a rational m/Q which is a convergent of the
continued fraction expansion of a rational of the form n/P.

The above quantum algorithm is then extended to a second quantum al-
gorithm that finds the hidden period P of functions ϕ : R −→ R, where the
unknown period P is a rational.

Finally, the second algorithm is extended to a third algorithm which finds the
hidden period P of functions ϕ : R−→R, when P is an arbitrary real number.
We point out that for the third and last algorithm to work, we must impose a
very restrictive condition on the map ϕ : R −→ R, i.e., the condition that the
map ϕ is continuous.
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1.9 The quantum circle and the dual Shor algorithm-
s

We have shown in previous sections how the mathematical primitives of
pushing and lifting can be used to create new quantum algorithms. In particu-
lar, we have described how pushing and lifting can be used to derive new HSPs
from an HSP ϕ : G−→ S on an arbitrary group G. We now see how group d-
uality can be exploited by these two primitives to create even more quantum
algorithms.

FIGURE 1.7: Using duality to create new QHS algorithms.

To this end, we assume that G is an abelian group. Hence, its dual group of
characters Ĝ exists.14 It now follows that pushing and lifting can also be used
to derive new HSPs Φ : Ĝ −→ S′ on the dual group Ĝ. In [27], this method
is used to create a number of new quantum algorithms derived from Shor-like
HSPs ϕ : Z−→ S.

A roadmap is shown in Fig. 1.8 of the developmental steps taken to find and
to create a new QHS algorithm on ZQ, which is (in the sense described below)

14If G is non-abelian, then its dual is not a group, but instead the representation algebra A over
the group ring CG. The methods described in this section can also be used to create new quantum
algorithms for HSPs Φ : A −→ S on the representation algebra A .
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dual to Shor’s original algorithm. We call the algorithm developed in the final
step of Fig. 1.8 the dual Shor algorithm.

FIGURE 1.8: Roadmap for creating the dual Shor algorithm.

As indicated in Fig. 1.5, our first step is to create an intermediate QHS algo-
rithm based on a Shor-like HSP ϕ : Z−→ S from the additive group of integers
Z to a target set S. The resulting algorithm “lives” in the infinite dimensional
space HZ defined by the orthonormal basis {〈n| : n ∈ Z}. This is a physically
unimplementable quantum algorithm created as a first stepping stone in our
algorithmic development sequence. Intuitively, this algorithm can be viewed
as a “distillation” or a “purification” of Shor’s original algorithm.

As a next step, duality is used to create the quantum circle algorithm. This
is accomplished by devising a QHS algorithm for an HSP Φ : R/Z −→ S on
the dual group R/Z of the additive group of integers Z. (By R/Z, we mean
the additive group of reals mod 1, which is isomorphic to the multiplicative
group

{
e2π iθ : 0≤ θ < 1

}
, i.e., the unit circle in the complex plane.) Once a-

gain, this is probably a physically unimplementable quantum algorithm.15 But
its utility lies in the fact that it leads to the physically implementable quantum
algorithm created in the last and final developmental step, as indicated in Fig.
1.8. For in the final step, a physically implementable QHS algorithm is created

15There is a possibility that the quantum circle algorithm may have a physical implementation in
terms of quantum optics.
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by lifting the HSP Φ : R/Z −→ S to an HSP Φ̃ : ZQ −→ S. For the obvious
reason, we call the resulting algorithm a dual Shor algorithm.

For detailed descriptions of each of these quantum algorithms, i.e., the “dis-
tilled” Shor, the quantum circle, and the dual Shor algorithms, the reader is
referred to [27] and [29].

We give below brief descriptions of the quantum circle and the dual Shor
algorithms.

For the quantum circle algorithm, we make use of the following spaces
(each of which is used in quantum optics):

• The rigged Hilbert space H
R/Z

with orthonormal basis {|x〉 : x

∈ R/Z}. By “orthonormal” we mean that 〈x|y〉 = δ (x− y), where “
δ” denotes the Dirac delta function. The elements of H

R/Z
are formal

integrals of the form
∮

dx f (x) |x〉. (The physicist Dirac in his classic
book [6] on quantum mechanics refers to these integrals as infinite sums.
See also [4] and [10].)

• The complex vector space HZ of formal sums{
∞

∑
n=−∞

an |n〉 : an ∈C ∀n ∈ Z

}
with orthonormal basis {|n〉 : n ∈ Z}. By “orthonormal” we mean that
〈n|m〉= δnm, where δnm denotes the Kronecker delta.

We can now design an algorithm which solves the following hidden sub-
group problem:
Hidden Subgroup Problem for the Circle. Let Φ : R/Z −→ C be an ad-
missible function from the circle group R/Z to the complex numbers C with
hidden rational period α ∈ Q/Z, where Q/Z denotes the rational circle, i.e.,
the rationals mod 1.

REMARK 1.6 By an admissible function, we mean a function be-
longing to any sufficiently well behaved class of functions. For example,
the class of functions which are Lebesgue integrable on R/Z. There, are
many other classes of functions that work equally as well.

PROPOSITION 1.1
If α = a1/a2 (with gcd

(
a1,a2

)
= 1) is a rational period of a function

Φ : R/Z −→ C, then 1/a2 is also a period of Φ. Hence, the minimal
rational period of Φ is always a reciprocal integer mod 1.
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The following quantum algorithm finds the reciprocal integer period of the
function Φ.

CIRCLE-ALGORITHM(Φ)

Step 0 Initialization ∣∣ψ0

〉
= |0〉 |0〉 ∈HZ⊗HC .

Step 1 Application of the inverse Fourier transform F−1⊗1

∣∣ψ1

〉
=
∫

dx e2π i·0 |x〉 |0〉=
∫

dx |x〉 |0〉 ∈H
R/Z

⊗HC .

Step 2 Step 2. Application of the unitary transformationUϕ : |x〉 |u〉 �→
|x〉 |u + Φ(x)〉∣∣ψ2

〉
=
∫

dx |x〉 |Φ(x)〉 ∈H
R/Z

⊕HC .

Step 3 Application of the Fourier transform F ⊗1 .

REMARK 1.7 Letting xm = x− m
a , we have

∫
dx e2π inx |Φ(x)〉 =

a−1

∑
m=0

(m+1)/a∫
m/a

dx e−2π inx |Φ(x)〉

=
a−1

∑
m=0

1/a∫
0

dxm e−2π in(xm+ m
a )
∣∣∣Φ(xm +

m
a

)〉

=

(
a−1

∑
m=0

e−2π inm/a

) 1/a∫
0

dx e−2π inx |Φ(x)〉 ,

where 1/a is the unknown reciprocal period. But

a−1

∑
m=0

e−2π inm/a = aδn=0 mod a =

⎧⎨⎩a if n = 0 mod a

0 otherwise
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Hence,∣∣ψ3

〉
= ∑

n∈Z

|n〉
∫

dx e−2π inx |Φ(x)〉

=

(
∑
n∈Z
|n〉δn=0 mod a

) 1/a∫
0

dx e−2π inx |Φ(x)〉

=

(
∑
�∈Z

|�a〉
)⎛⎝ 1/a∫

0

dx e−2π inx |Φ(x)〉
⎞⎠= ∑

�∈Z

|�a〉 |Ω(�a)〉 .

Step 4 Measurement of∣∣ψ3

〉
= ∑

�∈Z

|�a〉|Ω(�a)〉∈HZ⊗HC

with respect to the observable

∑
n∈Z

n |n〉〈n|

to produce a random eigenvalue �a.

REMARK 1.8 The above quantum circle algorithm can be extended
to a quantum algorithm which finds the hidden period α of a function Φ :
R/Z−→ C, when α is an arbitrary real number mod 1. But in creating
this extended quantum algorithm, a very restrictive condition must be
imposed on the map Φ : R/Z −→ C, namely, the condition that Φ be
continuous.

We now give a brief description of the dual Shor algorithm.
The dual Shor algorithm is a QHS algorithm created by making a discrete

approximation of the quantum circle algorithm. More specifically, it is created
by lifting the QHS circle algorithm for ϕ : R/Z−→C to the finite cyclic group
ZQ, as illustrated in the commutative diagram given below:

ZQ

μ ↓ ↘ ϕ̃ = Push(ϕ) = ϕ ◦ μ

R/Z −→ S
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Intuitively, just as in Shor’s algorithm, the circle group R/Z is approximated
with the finite cyclic group ZQ, where the group ZQ is identified with the
additive group {

0
Q

,
1
Q

, . . . .,
Q−1

Q

}
mod 1 ,

and where the hidden subgroup ZP is identified with the additive group{
0
P

,
1
P

, . . . .,
P−1

P

}
mod 1 ,

with P = a2.
This is a physically implementable quantum algorithm. In a certain sense, it

is actually faster than Shor’s algorithm because the last step of Shor’s algorith-
m uses the standard continued fraction algorithm to determine the unknown
period. On the other hand, the last step of the dual Shor algorithm uses the
much faster Euclidean algorithm to compute the greatest common divisor of
the integers �1a, �2a, �3a, . . ., thereby determining the desired reciprocal integer
period 1/a. For more details, please refer to [27] and [29].

1.10 A QHS algorithm for Feynman integrals

We now discuss a QHS algorithm based on Feynman path integrals. This
quantum algorithm was developed at the Mathematical Sciences Research In-
stitute (MSRI) in Berkeley, California when the first author of this paper was
challenged with an invitation to give a talk on the relation between Feynman
path integrals and quantum computing at an MSRI conference on Feynman
path integrals.

Until recently, both authors of this paper thought that the quantum algorithm
to be described below was a highly speculative quantum algorithm because
the existence of Feynman path integrals is very difficult (if not impossible)
to determine in a mathematically rigorous fashion. But surprisingly, Jeremy
Becnel in his doctoral dissertation [1] actually succeeded in creating a firm
mathematical foundation for this algorithm.

We should mention, however, that the physical implementability of this al-
gorithm is still to be determined.

DEFINITION 1.5 Let PATHS be the real vector space of all contin-
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uous paths x : [0,1]−→Rn which are L2 with respect to the inner product

x · y =
∫ 1

0
ds x(s)y(s)

with scalar multiplication and vector sum defined as

• (λ x)(s) = λ x(s)

• (x + y)(s) = x(s)+ y(s)

We wish to create a QHS algorithm for the following hidden subgroup prob-
lem:
Hidden Subgroup Problem for PATHS. Let ϕ : PATHS −→C be a functional
with a hidden subspace V of PATHS such that

ϕ (x + v) = ϕ (x) ∀v ∈V

Our objective is to create a QHS algorithm which solves the above problem,
i.e., which finds the hidden subspace V .

DEFINITION 1.6 Let HPATHS be the rigged Hilbert space with
orthonormal basis {|x〉 : x ∈ PATHS}, and with bracket product 〈x|y〉 =
δ (x− y).

We will use the following observation to create the QHS algorithm:
Observation. PATHS =

⋃
v∈V

(
v +V⊥

)
, where V⊥ denotes the orthogonal

complement of the hidden vector subspace V .
The QHS algorithm for Feynman path integral is given below:

FEYNMAN(ϕ)

Step 0 Initialize ∣∣ψ0

〉
= |0〉 |0〉 ∈HPATHS⊗HC .

Step 1 Apply F−1⊗1

∣∣ψ1

〉
=

∫
PATHS

Dx e2π ix·0 |x〉 |0〉=
∫

PATHS

Dx |x〉 |0〉 .
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Step 2 Apply Uϕ : |x〉 |u〉 �→ |x〉 |u + ϕ(x)〉∣∣ψ2

〉
=

∫
PATHS

Dx |x〉 |ϕ(x)〉 .

Step 3 Apply F ⊗1∣∣ψ3

〉
=

∫
PATHS

Dy
∫

PATHS

Dx e−2π ix·y |y〉 |ϕ (x)〉

=
∫

PATHS

Dy |y〉
∫

PATHS

Dx e−2π ix·y |ϕ (x)〉 .

But ∫
PATHS

Dx e−2π ix·y |ϕ (x)〉

=
∫
V

Dv
∫

v+V⊥

Dx e−2π ix·y |ϕ (x)〉

=
∫
V

Dv
∫

V⊥

Dx e−2π i(v+x)·y |ϕ (v + x)〉

=
∫
V

Dv e−2π iv·y
∫

V⊥

Dx e−2π ix·y |ϕ (x)〉 .

However, ∫
V

Dv e−2π iv·y =
∫

V⊥

Du δ (y−u) .

So,∣∣ψ3

〉
=

∫
PATHSn

Dy |y〉
∫
V

Dv e−2π iv·y
∫

V⊥

Dx e−2π ix·y |ϕ (x)〉

=
∫

PATHSn

Dy |y〉
∫

V⊥

Du δ (y−u)
∫

V⊥

Dx e−2π ix·y |ϕ (x)〉

=
∫

V⊥

Du |u〉
∫

V⊥

Dx e−2π ix·u |ϕ (x)〉

=
∫

V⊥

Du |u〉 |Ω(u)〉 .
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Step 4 Measure ∣∣ψ3

〉
=
∫

V⊥

Du |u〉 |Ω(u)〉

with respect to the observable

A =
∫

PATHS

Dw |w〉 〈w|

to produce a random element of V⊥.

The above algorithm suggests an intriguing question.
Question. Can the above QHS Feynman integral algorithm be modified in
such a way as to create a quantum algorithm for the Jones polynomial? In
other words, can it be modified by replacing Paths with the space of gauge
connections, and making suitable modifications?

This question is motivated by the fact that the integral over gauge transfor-
mations

ψ̂ (K) =
∫

DA ψ (A)WK (A)

looks very much like a Fourier transform, where

WK (A) = tr

(
Pexp

(∮
K

A

))
denotes the Wilson loop over the knot K.

1.11 QHS algorithms on free groups

In this and the following section of this paper, our objective is to show that
a free group is the most natural domain for QHS algorithms. In retrospect, this
is not so surprising if one takes a discerning look at Shor’s factoring algorithm,
for in Section 1.6, we have seen that Shor’s algorithm is essentially a QHS
algorithm on the free group Z which has been pushed onto the finite group ZQ.

In particular, let ϕ : G−→ S be a map with hidden subgroup structure from
a finitely generated (f.g.) group G to a set S. We assume that the hidden
subgroup K is a normal subgroup of G of finite index. Then the objectives of
this section are to demonstrate the following:
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• Every hidden subgroup problem (HSP) ϕ : G −→ S on an arbitrary f.g.
group G can be lifted to an HSP ϕ̃ : F −→ S on a free group F of finite
rank.

• Moreover, a solution for the lifted HSP ϕ̃ : F −→ S is for all practical
purposes the same as the solution for the original HSP ϕ : G−→ S.

Thus, one need only investigate QHS algorithms for free groups of finite
rank!

Before we can describe the above results, we need to review a number of
definitions. We begin with the definition of a free group:

DEFINITION 1.7 [Universal Definition] A group F is said to
be free of finite rank n if there exists a finite set of n generators X ={

x1,x2, . . . ,xn
}

such that, for every group G and for every map f : X −→
G of the set X into the group G, the map f extends to a morphism
f̃ : F −→G. We call the set X a free basis of the group F, and frequently
denote the group F by F

(
x1,x2, . . . ,xn

)
, .

REMARK 1.9 It follows from this definition that the morphism f̃
is unique.

The intuitive idea encapsulated by this definition is that a free group is an un-
constrained group (very much analogous to a physical system without bound-
ary conditions.) In other words, a group is free provided it has a set of genera-
tors such that the only relations among those generators are those required for
F to be a group. For example,

• xix
−1
i = 1 is an allowed relation.

• xix j = x jxi is not an allowed relation for i �= j.

• x3
i = 1 is not an allowed relation.

As an immediate consequence of the above definition, we have the following
proposition:

PROPOSITION 1.2
Let G be an arbitrary f.g. group with a finite set of n generators
{g1,g2, . . ., gn}, and let F = F

(
x1,x2, . . . ,xn

)
be the free group of rank

n with free basis
{

x1,x2, . . . ,xn
}
.
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Then by the above definition, the map x j �−→ g j ( j = 1,2, . . . ,n) induces
a unique epimorphism ν : F −→ G from F onto G. With this epimor-
phism, every HSP ϕ : G −→ S on the group G uniquely lifts to the HSP
ϕ̃ = ϕ ◦ν : F −→ S on the free group F.

Moreover, if K and K̃ are the hidden subgroups of the HSPs ϕ and ϕ̃,
respectively, the corresponding hidden quotient groups G/K and F/K̃ of
these two HSPs are isomorphic. Hence, every solution of the HSP ϕ̃ :
F −→ S immediately produces a solution of the original HSP ϕ : G−→ S.

We close this section with the definition of a group presentation, a concept
that will be needed in the next section for generalizing Shor’s algorithm to free
groups.

DEFINITION 1.8 Let G be a group. A group presentation(
x1,x2, . . . ,xn : r1,r2, . . . ,rm

)
for G is a set of free generators x1,x2, . . . ,xn of a free group F and a
set of words r1,r2, . . . ,rn in F

(
x1,x2, . . . ,xn

)
, called relators, such that

the group G is isomorphic to the quotient group F
(
x1,x2, . . . ,xn

)
/Cons(

r1,r2, . . . ,rn
)
, where Cons

(
r1,r2, . . . ,rn

)
, called the consequence of r1,r2,

. . . ,rn, is the smallest normal subgroup of F
(
x1,x2, . . . ,xn

)
containing the

relators r1,r2, . . . ,rn.

The intuition captured by the above definition is that x1,x2, . . . ,xn are the
generators of G, and r1 = 1,r2 = 1, . . . ,rn = 1 is a complete set of relations
among these generators, i.e., every relation among the generators of G is a
consequence of (i.e., derivable from) the relations r1 = 1,r2 = 1, . . . ,rn = 1.
For example,

• (x1,x2, . . . ,xn :
)

and
(
x1,x2, . . . ,xn : x1x−1

1 ,x5
2x−5

2 ,x3x4x−1
4 x−1

3

)
are both

presentations of the free group F
(
x1,x2, . . . ,xn

)
.

• (x : xQ
)

and
(
x : xa,xb

)
are both presentations of the cyclic group ZQ of

order Q, where a and b are integers such that gcd(a,b) = Q.

•
(

x1,x2 : x3
1,x

2
2,
(
x1x2

)2
)

is a presentation of the symmetric group S3 on

three symbols.
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1.12 Generalizing Shor’s algorithm to free groups

The objective of this section is to generalize Shor’s algorithm to free groups
of finite rank.16 The chief obstacle to accomplishing this goal is finding a
correct generalization of the Shor transversal

ZQ
τ−→ Z

n mod Q �−→ n ( 0≤ n < Q)

Unfortunately, there appear to be few mathematical clues indicating how to
go about making such a generalization. However, as we shall see, the gen-
eralization of the Shor transversal to the transversal found in the wandering
Shor algorithm does provide a crucial clue, suggesting that a generalized Shor
transversal must be a 2-sided Schreier transversal. (See Section 1.7.)

We begin by formulating a constructive approach to free groups:

DEFINITION 1.9 Let F
(
x1,x2, . . . ,xn

)
be a free group with free basis

x1,x2, . . . ,xn. Then a word is a finite string of the symbols x1,x
−1
1 ,x2,x

−1
2 ,

. . . ,xn,x−1
n . A reduced word is a word in which there is no substring

of the form x jx
−1
j or x−1

j x j. Two words are said to be equivalent if
one can be transformed into the other by applying a finite number of
substring insertions or deletions of the form x jx

−1
j or x−1

j x j. We denote
an arbitrary word w by w = a1a2 · · ·a� , where each a j = x±1

k j
. The length

|w| of a word w = a1a2 · · ·a� is number of symbols x±1
k j

that appear in w,

i.e., |w|= �.

For example, x2x−1
1 x1x−1

1 x−1
5 x−1

5 x−1
5 x5 is a word of length 8 which is equiv-

alent to the reduced word x2x−1
1 x−1

5 x−1
5 of length 4.

It easily follows that:

PROPOSITION 1.3
A free group F

(
x1,x2, . . . ,xn

)
is simply the set of reduced words together

16We remind the reader that, in Section 1.6, we showed that Shor’s algorithm is essentially a QHS
algorithm on the free group Z of rank 1 constructed by a push onto the cyclic group ZQ. In light of
this and of the results outlined in the previous section, it is a natural objective to generalize Shor’s
algorithm to free groups of finite rank.
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with the obvious definition of product, i.e., concatenation followed by full
reduction.

We can now use this constructive approach to create a special kind of transver-
sal τ : G −→ F of an epimorphism ν : F −→ G, called a 2-sided Schreier
transversal [14]:

DEFINITION 1.10 A set W of reduced words in a free group F =
F
(
x1,x2, . . . ,xn

)
is said to be a 2-sided Schreier system provided

• The empty word 1 lies in W .

• w = a1a2 · · ·a�−1a� ∈W ⇒ wLe f t = a1a2 · · ·a�−1 ∈W , and

• w = a1a2 · · ·a�−1a� ∈W ⇒ wRight = a2 · · ·a�−1a� ∈W .

Given an epimorphism ν : F −→ G of the free group F onto a group G,
a 2-sided Schreier transversal τ : G−→ F for ν is a transversal of ν for
which there exists a 2-sided Schreier system such that τ (G) = W . A
2-sided Schreier transversal is said to be minimal provided the length of
each word w is less than or equal to the length of each reduced word in
the coset wKer (ν) = Ker (ν)w, where Ker (ν) denotes the kernel of the
epimorphism ν.

The wandering Shor algorithm found in Section 1.7 suggests that a correct
generalization of the Shor transversal n mod N �−→ n (0≤ n < Q) must at least
have the property that it is a minimal 2-sided Schreier transversal. Whatever
other additional properties this generalization must have is simply not clear.

In [31], we construct and investigate a number of different QHS algorithms
on free groups that arise from the application of various additional conditions
imposed upon the minimal 2-sided Schreier transversal requirement. In this
section, we only give a descriptive sketch of the simplest of these algorithms,
i.e., a QHS algorithm on free groups with only the minimal 2-sided Schreier
transversal requirement imposed.

Let F = F
(
x1,x2, . . . ,xn

)
be the free group of finite rank n with free basis

X =
{

x1,x2, . . . ,xn
}

, and let ϕ : F −→ S be an HSP on the free group F . We
assume that the hidden subgroup K is normal and of finite index in F . (Please
note that K = Ker (ϕ) = ϕ−1ϕ (1) .)

• Choose a finite group probe G with presentation (x1,x2, . . . ,xn:
r1,r2, . . . ,rm)ν , where the subscript ν denotes the epimorphism ν : F −→
G induced by the map x j �−→ x jCons

(
r2, . . . ,rm

)
.
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• Choose a minimal 2-sided Schreier transversal τ : G −→ F of the epi-
morphism ν : F −→G.

• Finally, construct the push

ϕ̃ = Push(ϕ) = ϕ ◦ τ : G−→ S.

Our generalized Shor algorithm for the free group F consists of the follow-
ing steps:

Shor’s Algorithm Generalized to Free Groups

Step 1 Call QRAND(ϕ̃) to produce a word s′j in F close to a word s j

lying in ϕ−1ϕ (1).

Step 2 With input s′j , use a polytime classical algorithm to determine
s j . (See [31].)

Step 3 Repeat Steps 1 and 2 until enough relators s j’s are found to
produce a presentation(

x1,x2, . . . ,xn : s1,s2, . . . ,s�

)
of the hidden subgroup F/K, then output the presentation(
x1,x2, . . . ,xn : s1,s2, . . . ,s�

)
, and STOP.

Obviously, much more needs to be said. For example, we have not ex-
plained how one chooses the relators r j so that G = (x1,x2, . . . ,xn: r1,r2, . . . ,
rm) is a good group probe. Moreover, we have not explained what classical al-
gorithm is used to transform the words s′j into the relators s j. For more details,
we refer the reader to [31].

1.13 Is Grover’s algorithm a QHS algorithm?

In this section, our objective is to factor Grover’s algorithm into the QHS
primitives developed in the previous sections of this paper. As a result, we will
show that Grover’s algorithm is more closely related to Shor’s algorithm than
one might at first expect. In particular, we will show that Grover’s algorithm
is a QHS algorithm in the sense that it solves an HSP ϕ : SN −→ S, which we
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will refer to as the Grover HSP. However, we will then show that the standard
QHS algorithm for this HSP cannot possibly find a solution.

We begin with a question:

Does Grover’s algorithm have symmetries that we can exploit?

The problem solved by Grover’s algorithm [11], [12], [13], [24] is that of
finding an unknown integer label j0 in an unstructured database with items
labeled by the integers:

0,1,2, . . . , j0, . . . ,N−1 = 2n−1 ,

given the oracle

f ( j) =

⎧⎨⎩1 if j = j0 ,

0 otherwise .

Let H be the Hilbert space with orthonormal basis |0〉 , |1〉 , |2〉 , . . . ,
|N−1〉. Grover’s oracle is essentially given by the unitary transformation

I| j0〉 : H −→ H

| j〉 �−→ (−1) f ( j) | j〉 ,

where I| j0〉 = I− 2
∣∣ j0〉〈 j0

∣∣ is inversion in the hyperplane orthogonal to | j〉.
Let W denote the Hadamard transformation on the Hilbert space H. Then
Grover’s algorithm is as follows:

Grover’s Algorithm

Step 0 (Initialization)

|ψ〉 ←− W |0〉= 1√
N

N−1

∑
j=0

| j〉

k ←− 0 .

Step 1 Loop until k≈ π
√

N/4

|ψ〉 ←− Q |ψ〉=−WI|0〉W I| j0〉 |ψ〉
k ←− k + 1 .
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Step 2 Measure |ψ〉 with respect to the standard basis

|0〉 , |1〉 , |2〉 , . . . , |N−1〉
to obtain the unknown state

∣∣ j0〉 with

Prob≥ 1− 1
N

.

But where is the hidden symmetry in Grover’s algorithm?
Let SN be the symmetric group on the symbols 0,1,2, . . . ,N − 1. Then

Grover’s algorithm is invariant under the hidden subgroup Stab j0
= {g∈ SN :

g( j0) = j0} ⊂ SN , called the stabilizer subgroup for j0, i.e., Grover’s algo-
rithm is invariant under the group action

Stab j0
×H −→ H(

g,∑N−1
j=0 a j | j〉

)
�−→ ∑N−1

j=0 a j |g( j)〉

Moreover, if we know the hidden subgroup Stab j0
, then we know j0, and

vice versa. In other words, the problem of finding the unknown label j0 is
informationally the same as the problem of finding the hidden subgroup Stab j0

.

Let (i j) ∈ SN denote the permutation that interchanges integers i and j, and
leaves all other integers fixed. Thus, (i j) is a transposition if i �= j, and the
identity permutation 1 if i = j.

PROPOSITION 1.4
The set

{(
0 j0
)
,
(
1 j0
)
,
(
2 j0
)
, . . . ,

(
(N−1) j0

)}
is a complete set of dis-

tinct coset representatives for the hidden subgroup Stab j0
of SN, i.e., the

coset space SN/Stab j0
is given by the following complete set of distinct

cosets:

SN/Stab j0
=
{ (

0 j0
)

Stab j0
,
(
1 j0
)

Stab j0
,
(
2 j0
)

Stab j0
, . . . ,(

(N−1) j0
)

Stab j0

}
We can now see that Grover’s algorithm is a hidden subgroup algorithm in

the sense that it is a quantum algorithm which solves the following hidden
subgroup problem:
Grover’s Hidden Subgroup Problem. Let ϕ : SN −→ S be a map from the
symmetric group SN to a set S = {0,1,2, . . . ,N−1} with hidden subgroup
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structure given by the commutative diagram

SN −→ S

ν j0
↘ ↗ ι

SN/Stab j0

,

where ν j0
: SN −→ SN/Stab j0

is the natural surjection of SN on to the coset

space SN/Stab j0
, and where

ι : SN/Stab j0
−→ S(

j j0
)

Stab j0
�−→ j

is the unknown relabeling (bijection) of the coset space SN/Stab j0
onto the set

S. Find the hidden subgroup Stab j0
with bounded probability of error.

Now let us compare Shor’s algorithm with Grover’s.
From Section 1.6, we know that Shor’s algorithm [21], [25], [35], [36]

solves the hidden subgroup problem ϕ : Z−→ZN with hidden subgroup struc-
ture

Z −→ ZN

ν ↘ ↗ ι

Z/PZ

Moreover, as stated in Section 1.6, Shor has created his algorithm by pushing17

the above hidden subgroup problem ϕ : Z−→ZN to the hidden subgroup prob-
lem ϕ̃ : ZQ −→ZN (called Shor’s oracle), where the hidden subgroup structure
of ϕ̃ is given by the commutative diagram

Z −→ ZN

α ↘↖ τ ↗ ϕ̃ = ϕ ◦ τ

ZQ

,

where α is the natural epimorphism of Z onto ZQ, and where τ is Shor’s chosen
transversal for the epimorphism α .

Surprisingly, Grover’s algorithm, viewed as an algorithm that solves the
Grover hidden subgroup problem, is very similar to Shor’s algorithm.

17See Section 1.5 for a definition of pushing.



40 1. QHS ALGORITHMS

Like Shor’s algorithm, Grover’s algorithm solves a hidden subgroup prob-
lem, i.e., the Grover hidden subgroup problem ϕ : SN −→ S with hidden sub-
group structure

SN −→ S

ν ↘ ↗ ι

SN/Stab j0

,

where S = {0,1,2, . . . ,N−1} denotes the set resulting from an unknown rela-
beling (bijection) (

j j0
)

Stab j0
�−→ j

of the coset space

SN/Stab j0
=
{(

0 j0
)

Stab j0
,
(
1 j0
)

Stab j0
,
(
2 j0
)

Stab j0
, . . . ,(

(N−1) j0
)

Stab j0

}
.

Also, like Shor’s algorithm, we can think of Grover’s algorithm as one creat-
ed by pushing the Grover hidden subgroup problem ϕ : SN −→ S to the hidden
subgroup problem ϕ̃ : SN/Stab j0

−→ S, where the pushing is defined by the
following commutative diagram

SN −→ S = SN/Stab j0

α ↘↖ τ ↗ ϕ̃ = ϕ ◦ τ

SN/Stab0

,

where α : SN −→ SN/Stab0 denotes the natural surjection of SN onto the coset
space SN/Stab0, and where τ : SN/Stab0 −→ SNdenotes the transversal of α
given by

SN/Stab0 −→ SN

( j0)Stab0 �−→ ( j0)
.

Again, also like Shor’s algorithm, the map ϕ̃ given by

SN/Stab0 −→ SN/Stab j0
= S

( j0)Stab0 �→ (
j j0
)

Stab j0
= j
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is (if j0 �= 0) actually a disguised Grover’s oracle. For the map ϕ̃ can easily be
shown to simply to be

ϕ̃
(
( j0)Stab0

)
=

⎧⎨⎩ ( j0)Stab j0
if j = j0 ,

Stab j0
otherwise ,

which is informationally the same as Grover’s oracle

f ( j) =

⎧⎨⎩ j if j = j0 ,

1 otherwise .

Hence, we can conclude that Grover’s algorithm is a quantum algorithm
very much like Shor’s algorithm, in that it is a quantum algorithm that solves
the Grover hidden subgroup problem.

However, this appears to be where the similarity between Grover’s and
Shor’s algorithms ends. The standard non-abelian QHS algorithm for SN can-
not find the hidden subgroup Stab j0

for each of following two reasons:

• Since the subgroups Stab j are not normal subgroups of SN , it follows
from the work of Hallgren et al. [16], [17] that the standard non-abelian
hidden subgroup algorithm will find the largest normal subgroup of SN
lying in Stab j0

. But unfortunately, the largest normal subgroup of SN

lying in Stab j is the trivial subgroup of SN .

• The subgroups Stab0,Stab1, . . . ,StabN−1 are mutually conjugate sub-
groups of SN . Moreover, one can not hope to use this QHS approach
to Grover’s algorithm to find a faster quantum algorithm. For Zalka [40]
has shown that Grover’s algorithm is optimal.

As stated previously, the arguments given in this section suggest that Grover’s
and Shor’s algorithms are more closely related than one might at first expec-
t. Although we have shown that the standard non-abelian QHS algorithm on
SN can not solve the Grover hidden subgroup problem, there still remains an
intriguing question:

Question. Is there some modification (or extension) of the standard QHS al-
gorithm on the symmetric group SN that actually solves Grover’s hidden sub-
group problem?

For a more in-depth discussion of the results found in this section, we refer
the reader to [30].
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1.14 Beyond QHS algorithms: A suggestion of a
meta-scheme for creating new quantum algo-
rithms

In this paper, we have decomposed Shor’s quantum factoring algorithm in-
to primitives, generalized these primitives, and then reassembled them into a
wealth of new QHS algorithms. But as the results found in the previous section
suggest, this list of quantum algorithmic primitives is far from complete. This
is expressed by the following question:

Question. Where can we find more algorithmic primitives to create a more
well rounded toolkit for quantum algorithmic development?

The previous section suggests that indeed all quantum algorithms may well
be hidden subgroup algorithms in the sense that they all find hidden sym-
metries, i.e., hidden subgroups. This is suggestive of the following meta-
procedure for quantum algorithm development:

Meta-Procedure for Quantum Algorithm Development

Meta-Step 1 Explicitly state the problem to be solved.

Meta-Step 2 Rephrase the problem as a hidden symmetry
problem.

Meta-Step 3 Create a quantum algorithm to find the hidden
symmetry.

Question. Can this meta-procedure be made more explicit?
Perhaps some reader of this paper will be able to answer this question.
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Chapter 2

A Realization Scheme for
Quantum Multi-Object
Search

Zijian Diao, Goong Chen, and Peter Shiue

Abstract We study the quantum circuit design using 1-bit and 2-bit uni-
tary gates for the iterations of the multi-object quantum search algorithm. The
oracle block is designed in order to efficiently implement any sign-flipping op-
erations. A chief ingredient in the design is the permutation operator which
maps a set of search targets to another set on which the sign-flipping opera-
tion can be easily done. Such a proposed algorithmic approach implicates a
minimal symmetric group generation problem: how to generate elements of a
symmetric group using the smallest number of concatenations with a set of giv-
en generators. For the general case, this is an open problem. We indicate how
the complexity issues depend on the solution of this problem through simple
examples.

2.1 Introduction

The quantum search algorithm due to L.K. Grover [12] has the advantage
of a quadratic speedup over the classical serial search on an unsorted database.
Grover’s algorithm deals with single-object search. Its quantum circuit design
is given in [11]. When there is more than one search target, as is prevalent in

47
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most search problems, algorithms for multi-object search have been studied in
[2]–[8].

For multi-object search problems, the number of items satisfying the search
criterion (i..e, search targets) is not known a priori in general. This results in
a quantum counting problem for which eigenvalue estimates must be made in
order to determine the cardinality (see k in (2.1) below) of the search target
set; see [5, 6]. No quantum circuit design for the general multi-object search
algorithm is yet available, even though some block diagram has been suggested
in [6].

Let D = {wi | i = 1,2, . . . ,N}, where N = 2n, be an unsorted database which
is encoded as basis quantum states D̂ = {|wi〉 | i = 1,2, . . . ,N}. Without loss
of generality, we assume that the set of search targets is

W = {|w1〉, |w2〉, . . . , |wk〉}. (2.1)

Elements in W are identified through queries with the (block box) oracle func-
tion f :

f (wi) =

⎧⎨⎩ 1 if 1≤ i≤ k,

0 if k + 1≤ i≤ N.
(2.2)

Recall from [7] that the unitary operator corresponding to the generalized
Grover search engine is given by

U =−IsI f , (2.3)

where

Is = 1−2|s〉〈s|, |s〉 ≡ 1√
N

N

∑
i=1

|wi〉, (2.4)

is the “inversion about the average” operator, while

I f = 1−2
k

∑
i=1
|wi〉〈wi〉 (2.5)

is the “selective sign-flipping” operator, since

I f |wi〉=
⎧⎨⎩−|wi〉, if 1≤ i≤ k,

|wi〉, if k + 1≤ i≤ N.
(2.6)

The iterations
U j|s〉 (2.7)
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are performed and stopped at j ≈ π
4

√
N
k . A measurement on the quantum

system will yield a state in W with large probability.
Note that the oracle function f in (2.2) is in a black box and is not known

explicitly. Without a priori knowledge of the search targets, the realization
of (2.5) on the quantum computer is utterly non-trivial. For complexity theo-
rists, the use of an oracle function f is a standard practice where f is readily
available as a separate computing unit and the complexity involved for the
construction and operation of f is entirely ignored. However, in the context
of quantum computers, in order to have a complete design which does not de-
pend on any other stand-alone units, and to exploit the entanglement between
quantum subsystems, the quantum oracle has to be integrated with other com-
ponents of the system. In theory, the “standard” way to implement I f is by the
well-known Deutsch’s f-c-n “gate”

Uf : |w〉|y〉 −→ |w〉|y⊕ f (w)〉 (2.8)

where |w〉 ∈ D̂ and |y〉, the auxiliary register, is chosen to be |y〉 = 1√
2
(|0〉−

|1〉), leading to

Uf

(
|w〉⊗

[
1√
2
(|0〉− |1〉)

])
= (−1) f (w)|w〉⊗

[
1√
2
(|0〉− |1〉)

]
. (2.9)

However, Deutsch’s gate (2.8) is not an elementary gate. The action of Uf ,
a linear operator, is determined by the implicitly nonlinear oracle function f .
This approach still treats the quantum oracle as a separate module working
independently, instead of an integral part of the whole quantum system. Fur-
thermore, unless the computational structure of f is given explicitly, it is highly
puzzling to us whether and how it will indeed be possible in the future to re-
alize (2.8) quantum mechanically without the need of using elementary 1-bit
and 2-bit unitary gates. As a matter of fact, all current physical implementa-
tions of quantum algorithms construct the quantum oracles via “hard wiring”,
i.e., adapting the layout of the circuit according to the (known) distribution of
the function values of f . The main thrust of this paper is to propose a “hard
wiring” design to realize (2.8) with elementary gates.

In the quantum circuit design for (2.5) (or, equivalently, for (2.8)), it is total-
ly reasonable to expect that the complexity of the “hard wiring” circuit depends
on k in certain way. Therefore, for a single oracle call, there is a clear distinc-
tion between its complexity in theoretical discussion, where it is considered to
be carried out in one step, and that in the practical implementation, where the
hidden complexity associated with its construction via elementary gates must
be accounted for. At present, our approach proposed here is mostly a viability
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study. The optimal design and its corresponding complexity analysis merit a
separate paper, which we hope to present in the sequel.

Return to the multi-object search equations (2.3) and (2.7). In comparison
with the quantum circuit design for the single-object search and in view of
the commentary in the preceding two paragraphs, we understand that the main
difference is in the oracle block O (cf. [11, Theorem 8]). In the next few
sections, we ready ourselves in the redesign of this portion.

2.2 Circuit design for the multi-object sign-flipping
operator

The task of I f is to selectively flip the signs of the target states. For the single
object case, we can construct I f with polynomial complexity using basic 1-
qubit and 2-qubit quantum gates [11]. For multi-object case, we may directly
concatenate k selective sign-flipping operators of each of the k target states.
However, the complexity of this construction is proportional to the number of
search targets, which becomes very inefficient when k is large. A better design
is to divide the targets into groups and flip the signs of states in each group
together.

Example 2.1
Let n = 4 and assume the search targets be E = {|1100〉, |1101〉 |1110〉,
|1111〉}. We can flip the signs of all the states in E together, with-
out resorting to four sign-flipping operators tailored to the four targets
individually. See Fig. 2.1 for details.

We summarize the strategy of our design of I f first.

1. Partition the set W of search objects into subsets Wi with proper cardi-
nality.

2. Via permutation pi, map each Wi onto a set Ei of states whose signs are
easy to flip together, e.g., E in Example 2.1.

3. Flip the signs of states in Wi through the operations on Ei.

We start by partitioning the set W of target states into m + 1 sets of Wi’s,
according to the binary expansion of k, k = (kmkm−1 . . .k2k1k0)2, i.e., k =
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H H

FIGURE 2.1: Circuit design of I f for Example 2.1. H denotes the usual
Hadamard transform. The concatenation of the two Hadamard gates and the
CNOT gate on the first two qubits maps |11〉 to −|11〉, hence the signs of all
four states in E with leading qubits |11〉 are flipped together.

km2m + km−12m−1 + . . . + k121 + k020. Note that m < n, unless all states are
search targets. Each set Wi contains ki2

i states, for i = 0,1, . . . ,m. Wi might be
empty.

Example 2.2

(i) Let k = 7 and W = {|w1〉, |w2〉, . . . , |w7〉}. Then W can be partitioned
to the following:

W = W2∪̇W1∪̇W0

with W2 = {|w1〉, |w2〉, |w3〉, |w4〉}, W1 = {|w5〉, |w6〉}, and W0 = {|w7〉},
where ∪̇ denotes disjoint union.
(ii) If k = 10 and W = {|w1〉, |w2〉, . . . , |w10〉}. Then

W = W3∪̇W1,

where W3 = {|w1〉, |w3〉, |w4〉, |w5〉, |w7〉, |w8〉, |w9〉, |w10〉}, W1 = {|w2〉,
|w6〉}, and W2 = W0 = /0.

Note that the partition is non-unique. The only thing that matters
for now is the cardinality of each set Wi, i = 0,1, . . . ,m.

We flip the signs of basis states in W by flipping the signs of the states in
Wi for i = 0,1,2, . . . ,m. For each Wi, we construct a circuit block Bi. If Wi is
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empty, no action is needed. We now delineate the circuit design for a generic
block Bi in three steps.

Step 1. Let us denote the basis states in Wi as Wi = {|wi,1〉, |wi,2〉, . . .,
|w

i,2i〉}. Each wi, j is an n-bit string of 0 and 1’s. Define Ei to be the set consist-

ing of all the states whose first n− i bits are all 1’s. Clearly, |Ei|= 2i = |Wi|. We
construct the quantum circuit Pi which implements the permutation pi mapping
Wi onto Ei. One feasible, albeit inefficient, implementation is to pair up each
wi, j with a state in Ei and do 2i transpositions, as described in Table 2.1.

wi,1 ↔
(n−i) bits︷ ︸︸ ︷
11 · · ·1

i bits︷ ︸︸ ︷
00 · · ·00; (wi,1 11 · · ·100 · · ·00)

wi,2 ↔ 11 · · ·1 00 · · ·01; (wi,2 11 · · ·100 · · ·01)

wi,3 ↔ 11 · · ·1 00 · · ·10; (wi,3 11 · · ·100 · · ·10)
...

...

w
i,2i−1

↔ 11 · · ·1 11 · · ·10; (w
i,2i−1

11 · · ·111 · · ·10)

w
i,2i ↔ 11 · · ·1 11 · · ·11; (w

i,2i 11 · · ·111 · · ·11).

Table 2.1 The transpositions of the states in Wi with those in Ei.
The left column of the table signifies that the two sides of the double
arrow “↔” are mutually transposed. We use the 2-cycles on the right
column to denote the corresponding transpositions on the left column.

Example 2.3
Assume that n = 7 and i = 4. For j = 4, say we have

wi, j = w4,4 = 0001111.

We want to perform the permutation

0001111↔ 1110011. (2.10)

For ease of discussion, we make the following list:

s1: 0001111; s2: 0011111; s3: 0111111;

s4: 1111111; s5: 1110111; s6: 1110011.



2.2. MULTI-OBJECT SIGN-FLIPPING OPERATOR 53

Note that each successive pair of symbols si and si+1 differs by only one
bit.

Then the transposition (2.10) can be achieved through the following
sequence of transpositions (cf. the notation used in Table 2.1):

(s1 s2)(s2 s3)(s3 s4)(s4 s5)(s5 s6)(s4 s5)(s3 s4)(s2 s3)(s1 s2). (2.11)

Note that through the above permutations, s1 becomes s6 and s6 be-
comes s1, achieving (2.10), while s2,s3, . . . ,s5 remain unchanged. Several
permutations in (2.11) are duplicated. Thus we only need to construc-
t (s1 s2), (s2 s3), (s3 s4), (s4 s5) and (s5 s6) in order to achieve
(2.10).

The circuit design in Fig. 2.2 realizes the permutation (s1 s2)= (0001111
0011111). The circuit diagrams for any other (si si+1) in (2.11) are sim-
ilar.

1

7

6

5

3

4

2

FIGURE 2.2: Circuit diagram for the permutation (s1 s2) = (0001111
0011111). Note that the third bit is flipped when and only when the remaining
bits are, respectively, 0,0,1,1,1,1, in sequential order.

Step 2. Construct Oi, which flips the signs of any states whose first n− i
leading bits are all 1’s, i.e., states in Ei. The circuit block is given in Fig. 2.3.

Recall from [11] that Kn−i is the key transformation on (the first) n− i bits,
defined by

Kn−i = 1n−i−2|
n−i︷ ︸︸ ︷

11 · · ·1 〉〈11 · · ·1|,
where 1n−i is the identity operator on the first n− i bits. Its construction in
terms of elementary gates is given in [11, Fig. 9]. The Oi block in Fig. 2.3 thus
represents the unitary transformation

Kn−i⊗1i, where 1i is the identity operator on the last i bits.
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Kn−i

Oi

i

n− i

FIGURE 2.3: The Oi block, which flips the signs of any states whose first n− i
bits are all 1’s. Kn−i is the key transformation for the first n− i bits.

Step 3. Piece together Oi, Pi, and P−1
i (the circuit implementing p−1

i , the
inverse of pi), to obtain Bi, for i = 0,1, . . . ,m. See Fig. 2.4.

OiBi Pi P−1
i

FIGURE 2.4: The block Bi, i = 0,1, . . . ,m.

Further, concatenate all the Bi blocks for i = 0,1, . . . ,m to form the O (ora-
cle) block. See Fig. 2.5.

Example 2.4

Let n = 2 and assume the search targets be W = {|00〉, |01〉}. Then k = 2
and only one block B1 for W1 = {|00〉, |01〉} is needed. See Fig. 2.6 for
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O BmB1 B2

FIGURE 2.5: The oracle block O , formed by concatenating B0,B1, . . . ,Bm.

K1

O1 P−1
1P1

FIGURE 2.6: The circuit design of B1 for Example 2.4.

the circuit design of B1.

If, as in [11], what we have available are the following elementary
gates:

• 1-bit unitary gates

Uθ ,φ =

⎡⎣ cosθ −ie−iφ sin θ

−ie−iφ sinθ cosθ

⎤⎦ , 0≤ θ ,φ ≤ 2π . (2.12)
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• 2-bit quantum phase gates

Qη =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiη

⎤⎥⎥⎥⎥⎥⎥⎦ , 0≤ η ≤ 2π . (2.13)

The circuit design for B1 and, consequently, O, is given in Fig. 2.7.

Uπ
2 ,0

P−1
1O1

Uπ
2 ,π

Uπ
2 ,π

Uπ
2 ,π

Qπ
Uπ

2 ,0

Qπ
Uπ

2 ,0

P1

FIGURE 2.7: The circuit design of B1 and O for Example 2.4, using Uθ ,φ and
Qη as elementary gates.

Note that P1 here performs the permutations (00 11)(01 10).

THEOREM 2.1
Let UO denote the unitary operator corresponding to the operation per-
formed by O. Then

UO |wj〉=

⎧⎨⎩ (−1)|wj〉, if |wj〉 ∈W,

|wj〉, if |wj〉 /∈W.

PROOF If |wj〉 ∈ W , then |wj〉 ∈ Wi0
for some unique i0, i0 ∈

{0,1, . . . ,m}. Therefore

Bi|wj〉=

⎧⎨⎩−|wj〉, if i = i0,

|wj〉, if i �= i0.
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Thus UO |wj〉= BmBm−1 · · ·B1B0|wj〉=−|wj〉.
If |wj〉 /∈ W , then Bi|wj〉 = |wj〉 for all i ∈ {0,1, . . . ,m}. Therefore

UO |wj〉= BmBm−1 · · ·
B1B0|wj〉= |wj〉.

Hence UO indeed corresponds to the sign-flipping operator I f in (2.8).
Finally, the overall circuit blocks are given in Fig. 2.8.

I

H

H

H

|0〉
|0〉

|0〉

O

FIGURE 2.8: The block diagram for the multi-object search iteration (2.7).
The block I performs the inversion about average operation Is, whose circuit
design is the same as in [11].

2.3 Additional discussion

Any universal set of quantum gates [1] can be used to construct the compo-
nent circuitries required in Section 2.2. In particular, the 1-bit and 2-bit gates
Uθ ,φ and Qη in (2.12) and (2.13) are universal. Therefore, they can be used for
the purpose of this paper. See some relevant results in [11].

But there is a special case we need to address. That is, when n− i = 1.
We need to construct K1, which is simply the transformation |0〉 → |0〉 and
|1〉 → −|1〉. However, this is not directly constructible with the 1-bit gates
Uθ ,φ , as they are special unitary, i.e., all Uθ ,φ have determinant equal to 1.

Two solutions are possible:
1. Use an auxiliary qubit which is set to |1〉. Bind this auxiliary qubit with

the first work qubit with a phase shift gate Qπ . If the leading work qubit is |1〉,
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then Qπ maps |11〉 to−|11〉. Otherwise, Qπ leaves |10〉 unchanged. Ignore the
auxiliary qubit, the sign of the leading work qubit is flipped. In other words,
we have the equivalent network as shown in Fig. 2.9.

Qπ

|1〉

K1

|1〉

FIGURE 2.9: Construction of K1 using Qπ and an auxiliary qubit.

2. This one is slightly more complicated than the previous one, but no aux-
iliary qubit is needed. The idea is to use the first qubit to flip the sign of the
second qubit, no matter what it is, so that the sign of the overall state is flipped.
See the captions and circuits in Fig. 2.10.

The second solution, in particular, points out one possible realization of the
1-bit phase shift operator ⎡⎣ eiφ 0

0 eiφ

⎤⎦ , (2.14)

which was not possible using the Uθ ,φ gates alone. The circuit is given in
Fig. 2.11.

2.4 Complexity issues

Following the analysis of the quantum circuit design for the single-object
search ([11]), we know that we have linear circuit complexity to construct the
I block using elementary 1-bit and 2-bit gates. To be exact, using Uθ ,φ and
Qη gates, the total number of gates needed is 24n−74, where n is the number
of qubits involved. However, the construction of the O block for the multi-
object case is more complicated than that of the single-object case. Since we
have broken up the O block into m + 1 blocks B0, B1, . . ., Bm, where m can
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Uπ
2 ,π

σzσz
K1

(b)

(a)

QπQπ
Uπ

2 ,0

FIGURE 2.10: (a) Construction of K1 without auxiliary qubits, where σz is

the standard Pauli matrix

⎡⎣ 1 0

0 −1

⎤⎦ . If the first qubit is |0〉, then the NOT

gate will be applied on the second qubit twice. Hence nothing is changed. If
the first qubit is |1〉, then no matter what the second qubit is, its sign is going
to be flipped exactly once. So the function of this circuit is exactly what we
expected. (b) The components circuits in (a) are rewritten in terms of U and
Q gates.

be as large as n− 1, and each Bi utilizes a Kn−i block, which requires linear
complexity itself, we would not expect our design to have linear complexity as
in the single object case. Even so, it is still highly desirable if we can achieve
the design with as much simplicity as possible. As suggested by the summary
of our design in Section 2.2, there are several flexibilities that we can exploit
in order to achieve optimal complexity.

1. The partition of W into Wi’s is not unique. We only enforce the cardinal-
ity requirement.

2. The choice of permutation pi : Wi → Ei is not unique. In fact, there are
2i! of them.

3. The implementation of each permutation pi or p−1
i in terms of elemen-

tary 1-bit and 2-bit gates is not unique.

Taking all these factors into account, we can formulate the optimal design
of the block O as a minimization problem:
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|1〉

Uπ
2 ,πUπ

2 ,0

⎡⎣eiφ 0

0 eiφ

⎤⎦
|1〉

Qφ Qφ

FIGURE 2.11: The 1-bit phase gate in equation (2.14) can be realized using
the elementary gates Uθ ,φ and Qη . The first auxiliary qubit is always set to |1〉.
The net operation done on the second qubit is exactly (2.14) by ignoring the
auxiliary qubit.

min
P

∑
i

min
pi:Wi→Ei

{c(pi)+ c(p−1
i )}, (2.15)

where P denotes all possible partitions of W into Wi’s; c(pi) and c(p−1
i ) denote

the complexities of pi and p−1
i , respectively. We have omitted the complex-

ity of Oi, since it stays the same in our design. Because the complexity of
the permutations pi and p−1

i constitutes the basic elements of our complexity
analysis, we elaborate on this issue in the following.

The block Pi implements the permutation which maps the 2i states in Wi onto
those in Ei. A “brute-force” way of constructing Pi is to pair up the states in Wi
and Ei, implement 2i transpositions separately following the approach given
in Example 2.2, and then concatenate them together. In total, the number of
transposition blocks to construct for the overall search circuit will be linear in
k, the number of target states. When k is much smaller than N, the total num-
ber of items in the database, as in the cases when quantum search algorithm
is most powerful, the complexity of the circuit is still quite satisfactory, since
each transposition requires only O(log2 N) elementary gates ([11]). Neverthe-
less, unfortunately, when k is large, the complexity of this kind of construction
becomes unacceptable.

We should note that, in general, the “brute-force” approach is far from
being optimal and there is much room for improvement. For example, in
Example 2.4, we did not use this approach to implement the permutation
(00 11)(01 10). Instead, we use two NOT gates to realize the product of
those two transpositions in one step. The resultant circuit is much simpler than
the one by concatenation of the two transpositions constructed separately. Let
us look at another example.
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Example 2.5
Let n = 4 and assume the search targets be W = {|0000〉, |0001〉, |0010〉,
|0011〉, |0100〉, |0101〉, |0110〉, |0111〉}, i.e., all states with leading qubit
being 0. Clearly, W0 = W1 = W2 = /0 and W3 = W . If we had followed
the approach as given above, we would have to construct 8 transposi-
tions, namely, (0000 1000), (0001 1001), (0010 1010), 0011 1011),
(0100 1100), (0101 1101), (0110 1110), and (0111 1111). However,
there exists a much more elegant way to implement P3. All we need to
do here is to negate the first qubit and the correctness of this approach
is trivial to verify. This cuts down the circuit complexity to a constant
for this example.

We can rephrase our discussion of implementing permutation pi via elemen-
tary gates under the framework of group theory. Now this task is reduced to a
special case of the optimal generation of finite symmetric groups using a set of
generators, e.g., but not limited to, the set of transpositions:

Problem: Let S2n be the symmetric group on 2n elements, and let G =
{g1,g2, . . . ,gL} be a set of generators for S2n . Define c(p), the complexity of a
permutation p ∈ S2n , by

c(p) = min
p=gi1

gi2
...gil

l. (2.16)

Given p, what is c(p), the minimum number of gi’s (repetition counted) needed
to generate p, and what is the best (shortest) generation? �

With our problem in mind, we can encode the 2n elements by their binary
representation, and formulate the operations of the elementary gates by per-
mutations on these elements. We may take the generating set G to be the per-
mutations resulted from any sets of universal gates, in particular, the following
fundamental gates:

NOT-gate: it flips the value of one qubit from 0 to 1, and 1 to 0.

Controlled-NOT-gate: it flips the value of a designated qubit depending
on other control qubits.

It is well-known that these gates form a universal generating set of S2n . How-
ever, it is not clear what is the most efficient way to generate any given permu-
tation P ∈ S2n using the permutations induced by them.

Example 2.6
Let n = 2. Consider the minimum generation of S4 via the following 4
permutations
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NOT-gate on bit 1: N(1) = (00 01)(10 11),
NOT-gate on bit 2: N(2) = (00 10)(01 11),

Controlled-NOT-gate, bit 1 controlling bit2:
Λ1(2) = (01 11),
Controlled-NOT-gate, bit 2 controlling bit1:
Λ2(1) = (10 11).

We may generate all the 4! = 24 permutations with these four permu-
tations. Fig. 2.12 gives a minimum generation using breadth first search
[9, p. 469].

N(1)

(00 10 01)(00 01 10) (01 10)(00 11 01)(00 10 11)

(00 11 10 01)(00 10)

(10 01)

(00 11)(00 10 01 11) (00 01 10 11)(01 10 11)(00 11 01 10)(00 01) (01 11 10)

(00 11) (00 10 11 01) (00 01 11 10)

Λ2(1)

Λ1(2)

(00 11 10)

Λ2(1)Λ2(1)

Λ1(2) Λ1(2)Λ1(2) Λ2(1)Λ2(1)

(00 01 11)

I

(01 11)

Λ2(1)Λ1(2)N(1)N(1)N(2) Λ1(2)Λ1(2) Λ2(1) N(1)

(10 11)
(00 01) (01 11)(10 11)

Λ1(2)Λ2(1) N(2) N(1)

(00 10)

FIGURE 2.12: Generation tree of the symmetric group S4.

We can see that the depth of this tree is 4. That is, we need at most 4
permutations (elementary gates) to implement any permutation in S

22 .
And we can read out the optimal generation by following the branches
of the tree.

The analogous group generation problem has been studied in [15]. It
is well known that the set B = {(1 i) |2 ≤ i ≤ n} generates Sn. Given
α ∈ Sn, let lB(α) be the complexity of α using generators from B. Let
lB be the largest lB(α) of all elements in Sn. One can show that lB = 4
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in S4. See Table 2.2, where the left-hand-side is written in terms of the
list notation of a permutation, e.g., (3,1,4,2) stands for the permutation
1→ 3, 2→ 1, 3→ 4, and 4→ 2. [15] has shown that lB is 3m in S2m+1. It
seems that a formula of lB in S2m is an interesting open question.

Since any computable function can be embedded into a reversible function,
which can be viewed as a permutation, we can reformulate the computation
of functions by generating permutations. For the complexity issues, we also
consider the basic bit operations as in arithmetic complexity theory [13]. The
difference is, we have translated all the basic bit operations into permutations
in a certain symmetric group, and the complexity is considered in the context of
group generation. This kind of symmetric group framework has also been used
in the enumeration problems in combinatorics [10, 14]. The difficulty of our
problem lies in the fact that symmetric groups are non-abelian. More research
is needed in order to understand better ways to do multi-object quantum search.
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(2, 1, 3, 4) = (1 2)

(3, 2, 1, 4) = (1 3)

(4, 2, 3, 1) = (1 4)

(1, 2, 3, 4) = (1 2)(1 2)

(3, 1, 2, 4) = (1 3)(1 2)

(4, 1, 3, 2) = (1 4)(1 2)

(2, 3, 1, 4) = (1 2)(1 3)

(4, 2, 1, 3) = (1 4)(1 3)

(2, 4, 3, 1) = (1 2)(1 4)

(3, 2, 4, 1) = (1 3)(1 4)

(1, 3, 2, 4) = (1 2)(1 3)(1 2)

(4, 1, 2, 3) = (1 4)(1 3)(1 2)

(1, 4, 3, 2) = (1 2)(1 4)(1 2)

(3, 1, 4, 2) = (1 3)(1 4)(1 2)

(4, 3, 1, 2) = (1 4)(1 2)(1 3)

(2, 4, 1, 3) = (1 2)(1 4)(1 3)

(1, 2, 4, 3) = (1 3)(1 4)(1 3)

(3, 4, 2, 1) = (1 3)(1 2)(1 4)

(2, 3, 4, 1) = (1 2)(1 3)(1 4)

(4, 3, 2, 1) = (1 4)(1 2)(1 3)(1 2)

(1, 4, 2, 3) = (1 2)(1 4)(1 3)(1 2)

(2, 1, 4, 3) = (1 3)(1 4)(1 3)(1 2)

(3, 4, 1, 2) = (1 3)(1 2)(1 4)(1 2)

(1, 3, 4, 2) = (1 2)(1 3)(1 4)(1 2)

Table 2.2 Generation table of S4 with 2-cycles (1 2), (1 3), and
(1 4).
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Chapter 3

On Interpolating between
Quantum and Classical
Complexity Classes

J. Maurice Rojas

Abstract We reveal a natural algebraic problem whose complexity ap-
pears to interpolate between the well-known complexity classes BQP and NP:
� Decide whether a univariate polynomial with exactly m monomial terms has
a p-adic rational root. In particular, we show that while (�) is doable in quan-
tum randomized polynomial time when m= 2, (�) is nearly NP-complete for
general m. In particular, (�) is in NP for most inputs and, under a plausible
hypothesis involving primes in arithmetic progression (implied by the gener-
alized Riemann hypothesis for certain cyclotomic fields), a randomized poly-
nomial time algorithm for (�) would imply the widely disbelieved inclusion
NP⊆BPP. This type of quantum/classical interpolation phenomenon appears
to be new. As a consequence we can also address recent questions on the
complexity of polynomial factorization posed by Cox, and by Karpinski and
Shparlinski.

3.1 Introduction and main results

Thanks to quantum computation, we now have exponential speed-ups for
important practical problems such as integer factoring (IF) and discrete log-

67
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arithm (DL) [49]. However, a fundamental open question that remains is
whether there are any NP-complete problems admitting exponential speed-
ups via quantum computation. (We briefly review the complexity classes NP
and BQP, as well as a few more, in Section 3.2 below.) Succinctly, this is the

NP[.5]
?⊆BQP question [6], and a positive answer would imply that quantum

computation can also provide efficient algorithms for myriad problems (all at
least as hard IF or DL) that have occupied practitioners in optimization and
computer science for decades. The truth of the inclusion NP⊆BQP is current-
ly unknown as of early 2007. However, in light of important derandomization
results [22], there is reason to believe the opposite (and also unknown) inclu-
sion BQP⊆NP.

We propose an algebraic approach to these questions by illustrating a de-
cision problem, involving sparse polynomials over Qp (the p-adic rationals),
whose complexity appears to interpolate between the complexity classes BQP
and NP. Roughly speaking, “interpolation” here means that we have a decision
problem, with computational complexity an increasing function of a parameter
m, such that our problem...

(a) ...can be solved by a quantum computer in polynomial time, with error
probability < 1

3 , for small values of m,
(b) ...can be used to simulate any computation in BQP, for small values of

m,
(c) ...is NP-hard for large values of m, and
(d) ...can be solved in NP for large values of m.

Given a problem satisfying properties (a)–(d), one could then obtain the inclu-
sion BQP⊆NP. Furthermore, one could then in principle study the transition
from BQP to NP by analyzing the complexity of our interpolating problem
for “mid-range” values of m. Our p-adic problem stated in the main theo-
rem below satisfies Properties (a), (d) (for most inputs) and, under a plausible
number-theoretic assumption clarified below, Property (c) as well. We will
discuss the difficulty behind attaining all 4 properties shortly.

First, let us review some necessary terminology: For any ring R contain-
ing the integers Z, let FEASR—the R-feasibility problem—denote the prob-
lem of deciding whether a given system of polynomials f1, . . . , fk chosen from
Z[x1, . . . ,xn] has a root in Rn. Observe then that FEASR and FEASQ are re-
spectively the central problems of algorithmic real algebraic geometry and al-
gorithmic arithmetic geometry (see Section 3.1.1 below for further details).

To measure the “size” of an input polynomial in our complexity estimates,
we will essentially just count the number of bits needed to write down the co-
efficients and exponents in its monomial term expansion. This is the sparse
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input size, as opposed to the “dense” input size used frequently in computa-
tional algebra.

DEFINITION 3.1 Let f (x) := ∑m
i=1 cix

ai ∈Z[x1, . . . ,xn] where xai :=
xa1i

1
· · ·xani

n , ci �=0 for all i, and the ai are distinct. We call such an f an
n-variate m-nomial and define

size( f ) := ∑m
i=1

(
1 + !log2(2 + |ci|)"+ !log2(2 + |a1,i|)"

+ · · ·+ !log2(2 + |an,i|)"
)

,

and sizep( f ) := size( f ) + log(2 + p). (We also extend size, and thereby
sizep, additively to polynomial systems.) Finally, for any collection F
of polynomial systems with integer coefficients, let FEASR(F ) denote
the natural restriction of FEASR to inputs in F . #

Observe that size(a+bx99 +cxd)=O(logd) if we fix a,b,c. The degree of a
polynomial can thus sometimes be exponential in its sparse size. Since it is not
hard to show that FEASQp

(Z[x1])∈P when p is fixed (cf. Section 3.3 below),
it will be more natural to take the size of an input prime p into account as well,
and we do so as follows.

DEFINITION 3.2 Let FEASQprimes
(resp. FEASQprimes

(F )) denote

the union of problems
⋃

p prime
FEASQp

(resp.
⋃

p prime
FEASQp

(F )), so that

a prime p is also part of the input, and the underlying input size is
sizep. Also let Qn denote the product of the first n primes and define
Um :={ f ∈Z[x1] | f has ≤m monomial terms}. #

Observe that Z[x1] is thus the union
⋃

m≥0 Um. Our results will make use of
the following plausible number-theoretic hypothesis.

FLAT PRIMES HYPOTHESIS (FPH)
Following the notation above, there is an absolute constant C≥1 such that for

any n∈N, the set {1 + kQn | k∈{1, . . . ,2nC}} contains at least 2nC

n primes.

Assumptions at least as strong as FPH are routinely used, and widely be-
lieved, in the cryptology and algorithmic number theory communities (see,
e.g., [37, 36, 26, 45, 20]). In particular, we will see in Section 3.2.1 below how
FPH is implied by the generalized Riemann hypothesis (GRH) for the number
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fields {Q(ωQn
)}n∈N, where ωM denotes a primitive Mth root of unity,1 but can

still hold under certain failures of the latter hypotheses.

MAIN THEOREM
Following the notation above, FEASQprimes

(U2) ∈BQP. Also, FEASQprimes

(Z[x1])∈NP for “most” inputs in the following sense: For any f ∈Z[x1] and
ε > 0, a fraction of at least 1− ε of the primes p with O

(
log
(

1
ε
)
+ size( f )

)
digits are such that the solvability of f over Qp admits a succinct certificate.
Finally, assuming the truth of FPH, if FEASQprimes

(Z[x1])∈C for some com-

plexity class C , then NP⊆BPP∪C . In particular, assuming the truth of FPH,
FEASQprimes

(Z[x1])∈BQP =⇒ NP⊆BQP.

Our main result thus suggests that sparse polynomials can provide a tool to
shed light on the difference between BQP and NP. Indeed, one consequence
of our results is a new family of problems which admit (or are likely to ad-
mit) BQP algorithms: even the complexity of FEASQprimes

(U3) is currently

unknown, so the problems {FEASQprimes
(Um)}m≥3 provide a new context—

distinct from integer factoring or discrete logarithm—to study quantum speed-
up over classical methods.

REMARK 3.1 While it has been known since the late 1990’s that
FEASQprimes

∈EXPTIME [32, 33] (relative to our notion of input size), we

are unaware of any earlier algorithms yielding FEASQprimes
(F )∈BQP, for

any non-trivial family of polynomial systems F . Also, while it is not
hard to show that FEASQprimes

is NP-hard from scratch, there appear
to be no earlier results indicating the smallest n such that FEASQprimes

(Z[x1, . . . ,xn]) is NP-hard.

The author is unaware of any other natural algebraic problem that at least
partially interpolates between BQP and NP in the sense above. The only oth-
er problem known to interpolate between BQP and some classical complexi-
ty class arises from very recent results on the complexity of approximating a
certain braid invariant—the famous Jones polynomial, for certain classes of
braids, evaluated at an mth root of unity—and involves a complexity class ap-
parently higher than NP. In brief: (a’) [2] gives a BQP algorithm that computes
an additive approximation for arbitrary m, (b’) seminal work of Freedman,

1i.e., a complex number ωM with ωM
M =1; and ωd

M =1 =⇒M|d.
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Kitaev, Larsen, and Wang shows that such approximations can simulate any
BQP computation, already for m=5 [15, 16], and (c’) [53] shows that for ar-
bitrary m, computing the most significant bit of the absolute value of the Jones
polynomial is PP-hard. In particular, the very notion of BQP-completeness
is subtle: the Jones polynomial provides the only known non-trivial BQP-
complete problem [3] (as opposed to the hundreds of NP-complete problems
now known [17]), and the definition is technically rather different from that of
NP-completeness [27, 3].

Thus, while we do not know whether FEAS
Qprimes

(U2) is BQP-complete in

any rigourous sense, our results nevertheless provide a new potential source for
quantum/classical complexity interpolation. Note also that the BQP-complete-
ness of the integer factoring and discrete logarithm are open questions as well.

Recall that a univariate polynomial has a root in a field K iff it possess-
es a degree 1 factor with coefficients in K. Independent of its connection to
quantum computing, our main theorem also provides a new complexity lim-
it for polynomial factorization over Qp[x1]. In particular, the main theorem
shows that finding even just the low degree factors for sparse polynomials
(with log p a summand in the sparse input size) is likely not doable in ran-
domized polynomial time. This complements Chistov’s earlier deterministic
polynomial time algorithm for dense polynomials and fixed p [9]. Our main
theorem also provides an interesting contrast to earlier work of Lenstra [30],
who showed that—over the ring Q[x1] instead—one can find all low degree
factors of a sparse polynomial in polynomial time (thus improving the famous
Lenstra–Lenstra–Lovasz algorithm [31]).

One can also naturally ask if detecting a degenerate root in Qp for f (i.e.,
a degree 1 factor over Qp whose square also divides f ) is as hard as detecting
arbitary roots in Qp. Via our techniques, we can easily prove essentially the
same complexity lower-bound as above for the latter problem.

COROLLARY 3.1
Using sizep( f ) as our notion of input size, suppose we can decide for

any input prime p and f ∈Z[x1] whether f is divisible by the square of
a degree 1 polynomial in Qp[x1], within some complexity class C . Then,
assuming the truth of FPH, NP⊆C ∪BPP.

Let Fp denote the finite field with p elements. Corollary 3.1 then complements
an analogous earlier result of Karpinski and Shparlinski (independent of the
truth of FPH) for detecting degenerate roots in C and the algebraic closure of
Fp.

Note also that while the truth of GRH usually implies algorithmic speed-ups
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(in contexts such as primality testing [37], complex dimension computation
[26], detection of rational points [45], and class group computation [20]), the
main theorem and Corollary 3.1 instead reveal complexity speed-limits im-
plied by GRH.

3.1.1 Open questions and the relevance of ultrametric
complexity

Complexity results over one ring sometimes inspire and motivate analogous
results over other rings. An important early instance of such a transfer was the
work of Paul Cohen on quantifier elimination over R and Qp [10]. To close
this introduction, let us briefly review how results over Qp can be useful over
Q, and then raise some natural questions arising from our main results.

First, recall that the decidability of FEASQ is a major open problem: de-
cidability for the special case of cubic polynomials in two variables would
already be enough to yield significant new results in the direction of the Birch–
Swinnerton–Dyer conjecture (see, e.g., [50, Ch. 8]), and the latter conjecture
is central in modern number theory (see, e.g., [21]). The fact that FEAS

Z is
undecidable is the famous negative solution of Hilbert’s Tenth Problem, due
to Matiyasevitch and Davis, Putnam, and Robinson [34, 13], and is sometimes
taken as evidence that FEASQ may be undecidable as well (see also [42]).

From a more positive direction, much work has gone into using p-adic meth-
ods to find an algorithm for FEASQ(Z[x,y]) (i.e., deciding the existence of ra-

tional points on algebraic curves), via extensions of the Hasse Principle2 (see,
e.g., [11, 41, 43]). Algorithmic results over the p-adics are also central in many
other computational results: polynomial time factoring algorithms over Q[x1]
[31], computational complexity [46], and elliptic curve cryptography [29].

Our results thus provide another step toward understanding the complexity
of solving polynomial equations over Qp, and reveal yet another connection
between quantum complexity and number theory. Let us now consider some
possible extensions of our results. First, let FEASFprimes

denote the obvious

finite field analogue of FEASQprimes
.

Question 1 Is FEASFprimes
(Z[x1]) NP-hard?

2If F(x1, . . . ,xn) = 0 is any polynomial equation and ZK is its zero set in Kn , then the Hasse
Principle is the assumption that [Z

C
smooth, Z

R
�= /0, and Z

Qp
�= /0 for all primes p] =⇒ Z

Q
is non-

empty as well. The Hasse Principle is a theorem when Z
C

is a smooth quadratic hypersurface or
a smooth curve of genus zero, but fails in subtle ways already for curves of genus one (see, e.g.,
[40]).
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Question 2 Given a prime p and an f ∈ Fp[x1], is it NP-hard to decide
whether f is divisible by the square of a degree 1 polynomial in Fp[x1] (relative
to sizep( f ))?

David A. Cox asked the author whether FEASFprimes
(Z[x1])

?∈P around August

2004 [12], and Erich Kaltofen posed a variant of Question 1—FEASFprimes

(U3)
?∈P—a bit earlier in [23]. Karpinski and Shparlinski raised Question 2

toward the end of [24]. Since Hensel’s Lemma (cf. Section 3.2 below) allows
one to find roots in Qp via computations in the rings Z/p�Z, the main theorem
thus provides some evidence toward positive answers for Questions 1 and 2.
Note in particular that a positive answer to Question 1 would provide a defini-
tive complexity lower bound for polynomial factorization over Fp[x1], since
randomized polynomial time algorithms (relative to the dense encoding) are
already known (e.g., Berlekamp’s algorithm [4, Sec. 7.4]).

On a more speculative note, one may wonder if quantum computation can
produce new speed-ups by circumventing the dependence of certain algorithms
on GRH. This is motivated by Hallgren’s recent discovery of a BQP algorithm
for deciding whether the class number of a number field of constant degree is
equal to a given integer [20]: The best classical complexity upper bound for the
latter problem is NP∩ coNP, obtainable so far only under the assumption of
GRH [8, 35]. Unfortunately, the precise relation between BQP and NP∩coNP
is not clear. However, could it be that quantum computation can eliminate the
need for GRH in an even more direct way? For instance:

Question 3 Is there a quantum algorithm which generates, within a number
of qubit operations polynomial in n, a prime of the form kQn + 1 with proba-
bility > 2

3 ?

Our main results are proved in Section 3.3, after the development of some
necessary theory in Section 3.2 below. For the convenience of the reader, we
will recall the definitions of all relevant complexity classes and review certain
types of generalized Riemann hypotheses.

3.2 Background and ancillary results

Recall the containments of complexity classes P⊆ BPP⊆ BQP⊆ PP⊆
PSPACE and P⊆NP∩ coNP⊆NP∪ coNP⊆PP, and the fact that the proper-
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ness of every preceding containment is a major open problem [38, 6]. (In-
deed, as of early 2007, it is still not known whether even the containment
P⊆PSPACE is proper!) We briefly review the definitions of the aforemen-
tioned complexity classes below (see [38, 6] for a full and rigourous treatmen-
t):

P The family of decision problems which can be done within (classical)
polynomial-time.

BPP The family of decision problems admitting (classical) randomized poly-
nomial-time algorithms that terminate with an answer that is correct with prob-
ability at least3 2

3 .

BQP The family of decision problems admitting quantum randomized poly-
nomial-time algorithms that terminate with an answer that is correct with prob-
ability at least3 2

3 [6].

NP The family of decision problems where a ‘‘Yes’’ answer can be certi-
fied within (classical) polynomial-time.

coNP The family of decision problems where a ‘‘No’’ answer can be cer-
tified within (classical) polynomial-time.

PP The family of decision problems admitting (classical) randomized poly-
nomial-time algorithms that terminate with an answer that is correct with prob-
ability strictly greater than 1

2 .

PSPACE The family of decision problems solvable within polynomial-time,
provided a number of processors exponential in the input size is allowed.

Now recall that 3CNFSAT is the famous seminal NP-complete problem
[17] which consists of deciding whether a Boolean sentence of the form B(X)=
C1(X)∧·· ·∧Ck(X) has a satisfying assignment, where Ci is of one of the fol-
lowing forms:

Xi∨Xj ∨Xk, ¬Xi∨Xj ∨Xk, ¬Xi∨¬Xj ∨Xk, ¬Xi∨¬Xj ∨¬Xk,
i, j,k∈ [3n], and a satisfying assigment consists of an assigment of values from
{0,1} to the variables X1, . . . ,X3n which makes the equality B(X)= 1 true.4

Each Ci is called a clause.
We will need a clever reduction from feasibility testing for univariate poly-

nomial systems over certain fields to 3CNFSAT. First, note that the nonzero

3It is easily shown that we can replace 2
3 by any constant strictly greater than 1

2 and still obtain the
same family of problems [38].
4Throughout this paper, for Boolean expressions, we will always identify 0 with ‘‘False’’ and
1 with ‘‘True’’.
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polynomials in Z[x1] form a lattice [51] with respective to the operations of
least common multiple and greatest common divisor.

DEFINITION 3.3 Letting Qn denote the product of the first n
primes, let us inductively define a homomorphism Pn—the (nth) Plaisted
morphism—from certain Boolean polynomials in the variables X1, . . . ,Xn

to Z[x1], as follows: (1) Pn(0) :=1, (2) Pn(Xi) :=xQn/pi
1

−1, (3) Pn(¬B)

:=
xQn

1
−1

Pn(B) , for any Boolean polynomial B for which Pn(B) has already
been defined, (4) Pn(B1 ∨B2) := lcm(Pn(B1),Pn(B2)), for any Boolean
polynomials B1 and B2 for which Pn(B1) and Pn(B2) have already been
defined. #

LEMMA 3.1
For all n∈N and all clauses C(Xi,Xj,Xk) with i, j,k≤ n, we have that

Pn(C) can be computed within time polynomial in n, and size(Pn(C))=
O(n2). Furthermore, if K is any field possessing Qn distinct Qth

n roots
of unity, then a 3CNFSAT instance B(X) :=C1(X)∧ ·· · ∧Ck(X) has a
satisfying assignment iff the zero set in K of the polynomial system FB :=
(Pn(C1), . . . ,Pn(Ck)) has a root ζ satisfying ζ Qn −1.

David Alan Plaisted proved the special case K = C of the above lemma in
[39]. His proof extends with no difficulty whatsoever to the more general
family of fields detailed above. Other than an earlier independent observation
of Kaltofen and Koiran [25], we are unaware of any other variant of Plaisted’s
reduction involving a field other than C.

Let us now recall a version of Hensel’s Lemma sufficiently general for our
proof of our main theorem, along with a useful characterization of certain finite
rings. Recall that Zp denotes the p-adic integers, which can be identified with
base-p digit sequences extending infinitely to the left. For any ring R, we also
let R∗ denote the group of multiplicatively invertible elements of R.

HENSEL’S LEMMA 1
(See, e.g., [44, Pg. 48].) Suppose f ∈Zp[x1] and x∈Zp satisfies f (x)≡0 ( mod
p�) and ordp f ′(x) < �

2 . Then there is a root ζ ∈Zp of f with ζ ≡ x (mod

p�−ordp f ′(x)) and ordp f ′(ζ )=ordp f ′(x).

LEMMA 3.2
Given any cyclic group G, a∈G, and an integer d, the equation xd =
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a has a solution iff the order of a divides #G
gcd(d,#G) . In particular, F∗q

is cyclic for any prime power q, and (Z/p�Z)∗ is cyclic for any (p, �)
with p an odd prime or �≤2. Finally, for �≥3, (Z/2�Z)∗ ∼={−1,1}×
{1,5,52,53, . . . ,52�−2−1 mod 2�}.

The last lemma is standard (see, e.g., [4, Ch. 5]).
We will also need the following result on an efficient randomized reduction

of FEASK(Z[x1]
k) to FEASK(Z[x1]

2). Recall that Cp—the p-adic complex
numbers—is the metric closure of the algebraic closure of Qp, and that Cp is
algebraically closed.

LEMMA 3.3

Suppose f1, . . . , fk∈Z[x1]\{0} are polynomials of degree ≤d, with k≥3.
Also let ZK( f1, . . . , fk) denote the set of common zeroes of f1, . . . , fk in
some field K. Then, if a = (a1, . . . ,ak) and b = (b1, . . . ,bk) are chosen
uniformly randomly from {1, . . . ,18dk2}2k, we have

Prob
(
ZK

(
∑k

i=1 ai fi,∑
k
i=1 bi fi

)
=ZK

(
f1, . . . , fk

))
)≥ 8

9
for any K∈{C,Cp}.

While there are certainly earlier results that are more general than Lemma
3.3 (see, e.g., [19, Sec. 3.4.1] or [26, Thm. 5.6]), Lemma 3.3 is more direct and
self-contained for our purposes. For the convenience of the reader, we provide
its proof.

PROOF OF LEMMA 3.3
Assume fi(x) := ∑d

j=0 ci, jx
i for all i∈ {1, . . . ,k}. Let W :=

(⋃�
i=1 ZK( fi)

)
\

ZK( f1, . . . , fk) and ϕ(u,ζ ) := ∑k
i=1 ui fi(ζ ) for any ζ ∈W . Note that #W ≤ kd

and that for any fixed ζ ∈W , the polynomial ϕ(u,ζ ) is linear in u and not
identically zero. By Schwartz’s Lemma [48], for any fixed ζ ∈W , there are
at most kNk−1 points u∈{1, . . . ,N}k with ϕ(u,ζ )=0. So then, there at most
dk2Nk−1 points u∈{1, . . . ,N}k with ϕ(u,ζ )=0 for some ζ ∈W .

Clearly then, the probability that a uniformly randomly chosen pair (a,b)∈
{1, . . . ,N}2k satisfies ϕ(a,ζ )=ϕ(b,ζ )=0 for some ζ ∈W is bounded above

by 2dk2

N . So taking N =18dk2 we are done.
Let us also recall the p-adic Newton polygon, which allows us to easily read

off the norms of p-adic roots of polynomials. In particular, recall that the con-
vex hull of any subset S⊆R2 is the smallest convex set containing S. Also, for
any prime p and x∈Zp, recall that the p-adic valuation, ordpx, is the greatest k
such that pk|x. We then extend ordp(·) to Qp by ordp

(
a
b

)
:=ordp(a)−ordp(b)
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for any a,b∈Zp, and let |x|p := p−ordpx denote the p-adic norm. The nor-
m | · |p defines a natural metric satisfying the ultrametric inequality and, along
with ordp(·), extends naturally to the p-adic complex numbers Cp (the metric
completion of the algebraic closure of Qp).

LEMMA 3.4

(See, e.g., [44].) Given any polynomial f (x1) := ∑m
i=1 cix

ai ∈Z[x1], we
define its p-adic Newton polygon, Newtp( f ), as the convex hull of the
points {(ai,ordpci) | i∈{1, . . . ,m}}. Then the number of roots of f in Cp

with p-adic valuation v is exactly the horizontal length of the face of
Newtp( f ) with normal (v,1).

Example 3.1

For the polynomial f (x1):=243x6−3646x5+18240x4−35310x3+29305x2−
8868x + 36, the polygon Newt3( f ) can easily be verified to resemble the
following illustration:

Note in particular that there are exactly 3 “lower” edges, and their re-
spective horizontal lengths and inner normals are 2, 3, 1, and (1,1),
(0,1), and (−5,1). Lemma 3.4 then tells us that f has exactly 6 roots in
C3: 2 with 3-adic valuation 1, 3 with 3-adic valuation 0, and 1 with 3-
adic valuation −5. Indeed, one can check that the roots of f are exactly
6, 1, and 1

243 , with respective multiplicities 2, 3, and 1. #

We now move on to some final background from analytic number theory
that we will need.

3.2.1 Review of Riemann hypotheses

Primordial versions of the connection between analysis and number theory
are not hard to derive from scratch and have been known at least since the
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19th century. For example, letting ζ (s) :=∑∞
n=1

1
ns denote the usual Riemann

zeta function (for any real number s>1), one can easily derive with a bit of
calculus (see, e.g., [52, pp. 30–32]) that

ζ (s)= ∏
p prime

1

1− 1
ps

, and thus − ζ ′(s)
ζ (s)

=
∞

∑
n=1

Λ(n)
ns ,

where Λ is the classical Mangoldt function which sends n to log p or 0, accord-
ing as n = pm for some prime p (and some positive integer m) or not. For a
deeper connection, recall that π(x) denotes the number of primes (in N)≤x and
that the prime number theorem (PNT) is the asymptotic formula π(x)∼ x

logx
for x−→ ∞. Remarkably then, the first proofs of PNT, by Hadamard and de
la Vallée–Poussin (independently, in 1896), were based essentially on the fact
that ζ (β + iγ) has no zeroes on the vertical line β =1.5

More precisely, writing ρ =β + iγ for real β and γ , recall that ζ admits an
analytic continuation to the complex plane sans the point 1 [52, Sec. 2].6 In
particular, the only zeroes of ζ outside the critical strip {ρ =β + iγ | 0<β <1}
are the so-called trivial zeroes {−2,−4,−6, . . . ,}. Furthermore the zeroes
of ζ in the critical strip are symmetric about the critical line β = 1

2 and the
real axis. The Riemann hypothesis (RH), from 1859, is then the following
assertion:

(RH) All zeroes ρ =β + iγ of ζ with β >0 lie on the critical line
β = 1

2 .

Among myriad hitherto unprovably sharp statements in algorithmic number

theory, it is known that RH is true ⇐⇒
∣∣∣π(x)− ∫ x

2
dt

log t

∣∣∣=O(
√

x logx) [52]. In

particular, RH is widely agreed to be the most important problem in modern
mathematics. Since May 24, 2000, RH even enjoys a bounty of one million
US dollars thanks to the Clay Mathematics Foundation.

Let us now consider the extension of RH to primes in arithmetic progression-
s: For any primitive Mth root of unity ωM, define the (cyclotomic) Dedekind
zeta function via the formula ζQ(ωM)(s) :=∑a

1
(N a)s , where a ranges over all

nonzero ideals of Z[ωM] (the ring of algebraic integers in Q(ωM)), N denotes
the norm function, and s > 1 [4]. Then, like ζ , the function ζ

Q(ωM) also ad-

mits an analytic continuation to C\{1} (which we’ll also call ζ
Q(ωM)), ζ

Q(ωM)
has trivial zeroes {−2,−4,−6, . . . ,}, and all other zeroes of ζ

Q(ωM) lie in the

5Shikau Ikehara later showed in 1931 that PNT is in fact equivalent to the fact that ζ has no zeroes
on the vertical line β =1 (the proof is reproduced in [14]).
6We’ll abuse notation henceforth by letting ζ denote the analytic continuation of ζ to C\{1}.
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critical strip (0,1)×R [28]. (The zeroes of ζ
Q(ωM) in the critical strip are also

symmetric about the critical line 1
2 ×R and the real axis.) We then define the

following statement:

(GRH
Q(ωM))

7 For any primitive Mth root of unity ωM , all the ze-

roes ρ =β + iγ of ζ
Q(ωM) with β >0 lie on the critical line β = 1

2 .

In particular, letting π(x,M) denote the number of primes p congruent to 1
mod M satisfying p≤x, it is known that GRH

Q(ωM) is true

⇐⇒
∣∣∣∣π(x,M)− 1

ϕ(M)

∫ x

2

dt
log t

∣∣∣∣=O
(√

x(logx + logM)
)
,

where ϕ(M) is the number of k∈{1, . . . ,M− 1} relatively prime to M. (This
follows routinely from the conditional effective Chebotarev theorem of [28,
Thm. 1.1], taking K =Q and L=Q(ωM) in the notation there. One also needs
to recall that the discriminant of Q(ωM) is bounded from above by Mϕ(M) [4,
Ch. 8, pg. 260].)

From the very last estimate, an elementary calculation shows that FPH is im-
plied by the truth of the hypotheses {GRH

Q(ωQn
)}n∈N. However, we point out

that FPH can still hold even in the presence of infinitely many non-trivial zeta
zeroes off the critical line. For instance, if we instead make the weaker assump-
tion that there is an ε >0 such that all the non-trivial zeroes of {ζ

Q(ωQn
)}n∈N

have real part ≤ 1
2 + ε , then one can still prove the weaker inequality∣∣∣∣π(x,M)− 1

ϕ(M)

∫ x

2

dt
logt

∣∣∣∣=O
(

x
1
2 +ε(logx + logM)

)
(see, e.g., [5]). Another elementary calculation then shows that this looser
deviation bound still suffices to yield FPH. In fact, one can even have non-
trivial zeroes of ζ

Q(ωQn
) approach the line {β =1} arbitrarily closely, provided

they do not approach too quickly as a function of n. (See [47] for further
details.)

7There is definitely conflicting notation in the literature as to what the “extended” Riemann hy-
pothesis or “generalized” Riemann hypothesis are. We thus hope to dissipate any possible confu-
sion via subscripts clearly declaring the field we are working with.
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3.3 The proofs of our main results

3.3.1 The univariate threshold over Qp: proving the main
theorem

The first assertion—that FEASQprimes
(U2)∈BQP—rests upon a quantum

algorithm for finding the multiplicative order of an element of (Z/p�Z)∗ (see
[49, 7]), once we make a suitable reduction from FEASQprimes

. The second

assertion—that the larger problem FEASQprimes
(Z[x1]) lies in NP—follows from

an application of the Newton polygon. The final assertion—that FEASQprimes

(Z[x1]) is NP-hard under randomized reductions—relies on properties of primes
in specially chosen arithmetic progressions, via our generalization (cf. Section
3.2) of an earlier trick of Plaisted [39].

Before proceeding, we will need a final (elementary) quantitative bound on
p-adic roots and Newton polygons, and the computation of sizes/logarithms.

PROPOSITION 3.1
For any f ∈ Z[x1] and ζ ∈Qp, |ordpζ | ≤ size( f ) and size(psize( f ))≤

size( f ) log p
log 2 . Also, within time quadratic in size( f ) (resp. sizep( f )), we

can compute an integer in the interval [size( f ),2size( f )] (resp. [sizep( f ),
2sizep( f )]). Finally, the number of primes for which ordp f ′(ζ )> 0 for
some root ζ ∈Cp of f is O(v f + deg f logdeg f ) where v f is maximum of
the base 2 logarithms of the coefficients of f .

In particular, the only non-trivial portion is the final assertion, which follows
easily once one applies the classical Hadamard estimates to the product for-
mula for the discriminant of f [18, Ch. 12].

Proof that FEASQprimes
(U2)∈BQP: First note that it clearly suffices to show

that we can decide (with error probability < 1
3 , say) whether the polynomial

f (x):=xd−α has a root in Qp, using a number of qubit operations polynomial
in size(α)+ logd. (This is because we can divide by a suitable constant, and
arithmetic over Q is doable in polynomial time.) The case α =0 always results
in the root 0, so let us assume α �=0. Clearly then, any p-adic root ζ of xd−α
satisfies dordpζ = ordpα . Since we can compute ordpα and reductions of
integers mod d in P [4, Ch. 5], we can then clearly assume that d|ordpα (for
otherwise, there can be no root over Qp). Moreover, by rescaling x by an
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appropriate power of p (thanks to Proposition 3.1) we can assume further that
ordpα =0.

Now note that f ′(ζ )=dζ d−1 and thus ordp f ′(ζ )=ordp(d). So by Hensel’s
Lemma, it suffices to decide whether the mod p� reduction of f has a root in
Z/p�Z, for �=1+2ordpd. (Note in particular that size(p�)=O(log(p) log(d))
which is polynomial in our notion of input size.) By Lemma 3.2, we can
easily decide the latter feasibility problem, given the multiplicative order of α
in (Z/p�Z)∗; and we can do the latter in BQP by Shor’s seminal algorithm
for computing order in a cyclic group [49, pp. 1498–1501], provided p� �∈
{8,16,32, . . .}. So the first assertion is proved for p� �∈{8,16,32, . . .}.

To dispose of the remaining cases p� ∈{8,16,32, . . .}, write α = (−1)a5b

and observe that such an expression is unique, by the last part of Lemma 3.2.
The first part of Lemma 3.2 then easily yields that xd−α has a root iff

(a odd =⇒ d is odd)∧(the order of 5b divides 2�−2

gcd(d,2�−2) ).

In particular, we see that xd −α always has a root when d is odd, so we can
assume henceforth that d is even.

Letting � be the order of 5b, it is then easy to check that the order of α
is either � or 2�, according to whether a is even or odd. Moreover, since d
is even, we see that xd −α can have no roots in (Z/2�Z)∗ when a is odd.
So we can now reduce the feasibility of xd −α to two order computations as
follows: Compute, now via Boneh and Lipton’s quantum algorithm for order
computation in Abelian groups [7, Thm. 2], the order of α and −α . Observe
then that a is odd iff the order of α is larger (and then xd −α has no roots
in (Z/2�Z)∗), so we can assume henceforth that α has the smaller order. To
conclude, we then declare that xd−α has a root in Q2 iff the order of α divides
2�−2

d . This last step is correct, thanks to the first part of Lemma 3.2, so we at
last obtain FEASQprimes

(U2)∈BQP.

Proof that FEASQprimes
(Z[x1])∈NP for “most” inputs: First note that de-

tecting the existence of 0 as a root of f is easily done in linear time, simply by
checking whether all exponents are positive. Furthermore, by Proposition 3.1,
we can rescale x1 (inducing at worst quadratic growth in sizep( f )) so that all
the roots of f in Qp lie in Zp.

So let us assume without loss of generality that x1 � | f and that all the roots
of Qp lie in Zp, and proceed to define the following succinct certificate for
FEASQprimes

(Z[x1]): any pair of the form (v,ζ )∈Z× (Z/pkZ) with k a fixed

positive integer, ζ a root of f over Z/pkZ and (v,1) an inner edge normal of
Newtp( f ). Since verifying the desired properties for (v,ζ ) is clearly doable
within time polynomial in sizep( f ), thanks to our earlier algorithmic observa-
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tions on FEASQprimes
(U2), we now need only show that f has a root in Qp iff

such a certificate exists.
If f indeed has a root ζ ∈Qp then ordpζ is a positive integer and f has

a root ζ̄ ∈Z/pkZ with ζ ≡ ζ̄ (mod pk) for all k≥ 1. So our stated certificate
exists when f has a root in Qp.

To see the converse, assume momentarily that ordp f ′(ζ )≤ (k−1)/2 for all
roots ζ ∈Cp of f . Then, given a certificate as stated above, Hensel’s Lemma
immediately implies that f has a root in Qp. The case where ordp f ′(ζ ) is large
for all roots of Qp thus presents a difficulty, but Proposition 3.1 immediately
implies that if simply consider primes with logO(v f +deg f log(deg f )) digits,
we can in fact assume that ordp f ′(ζ )=0 for all but a vanishingly small fraction
of p. Since log(v f + deg f )=O(size( f )), we immediately obtain our desired
assertion.

Proof that FEASQprimes
(Z[x1]) is NP-hard under Randomized

Reductions:
First note that size(Qn)=O(n logn), via the prime number theorem. Observe
then that the truth of FPH implies that we can efficiently find a prime p of the
form kQn + 1, with k∈{1, . . . ,2nC}, via random sampling, as follows: Pick
a uniformly randomly integer from {1, . . . ,2nC} and using, say, the famous
polynomial-time AKS primality testing algorithm [1], verify whether kQn + 1
is prime. We repeat this until we either find a prime, or fail 9n consecutive
times.

Via the elementary estimate (1− 1
B )Bt < 1

t , valid for all B,t > 1, we then
easily obtain that our method results in a prime with probability at least 8

9 .

Since size(1 + 2nC
Qn)= O(log(2nC

Qn))= O(nC + n logn), it is clear that our
simple algorithm requires a number of bit operations just polynomial in n.
Moreover, the number of random bits needed is clearly O(nC).

Having now probabilistically generated a prime p = 1 + kQn, Lemma 3.1
then immediately yields the implication “FEASQprimes

(U S )∈C =⇒ NP∈
C ∪ BPP,” where U S := {( f1, . . . , fk) | fi ∈ Z[x1] , k ∈ N}: Indeed, if
FEASQprimes

(U S )∈C for some complexity class C , then we could com-

bine our hypothetical C algorithm for FEASQprimes
(U S ) with our randomized

prime generation routine (and the Plaisted morphism for K =Qp) to obtain an
algorithm with complexity in C ∪BPP for any 3CNFSAT instance.

So now we need only show that this hardness persists if we reduce U S to
systems consisting of just one univariate sparse polynomial. Clearly, we can
at least reduce to pairs of polynomials via Lemma 3.3, so now we need only
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reduce from pairs to singletons.
Toward this end, suppose a∈Z is a non-square mod p and p is odd. Clear-

ly then, the only root in Fp of (the mod p reduction of) the quadratic form
q(x,y):=x2−ay2 is (0,0). Furthermore, by considering the valuations of x and
y, it is also easily checked that the only root of q in Qp is (0,0). Thus, given
any ( f ,g)∈Z[x1]

2, we can form q( f ,g) (which has size O(size( f )+ size(g)+
size(p))) to obtain a polynomial time reduction of FEASQprimes

(Z[x1]
2) to

FEASQprimes
(Z[x1]), assuming we can find a quadratic non-residue efficiently.

(If p=2 then we can simply use q(x,y):=x2 +xy+y2 and then there is no need
at all for a quadratic non-residue.) However, this can easily be done by picking
two random a∈Fp: With probability at least 3

4 , at least one of these numbers
will be a quadratic non-residue (and this can be checked in P by computing
a(p−1)/2 via recursive squaring). So we are done.

3.3.2 Detecting square-freeness: proving corollary 3.1

Given any f ∈Z[x1], observe that f has a root in Qp iff f 2 is divisible by
the square of a degree 1 polynomial in Qp[x1]. Moreover, since size( f 2) =
O(size( f )2), we thus obtain a polynomial-time reduction of the problem con-
sidered by Corollary 3.1 to FEASQprimes

(Z[x1]). So we are done.

In recent joint work with Sean Hallgren and Bjorn Poonen, the author has
extended the main theorem to finite fields with a prime number of elements.
Also, it appears that the assumption of FPH can be removed over p-adic fields,
but not yet over finite fields. #
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Chapter 4

Quantum Algorithms for
Hamiltonian Simulation

Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry
C. Sanders

Abstract Arguably one of the most important applications of quantum
computers is the simulation of quantum systems. In the case where the Hamil-
tonian consists of a sum of interaction terms between small subsystems, the
simulation is thought to be exponentially more efficient than classical simula-
tion. More generally, evolution under suitably specified sparse Hamiltonians
may be efficiently simulated. In recent work we have shown that the complex-
ity of simulating evolution under a Hamiltonian is very close to linear in the
evolution time. In addition, we have shown that in the general case of a sparse
Hamiltonian the complexity grows slowly with respect to the number of qubits.
In this chapter we review these results.

4.1 Introduction

An intriguing feature of quantum systems is that, in general, they are in-
efficient to simulate on classical computers. This prompted Feynman’s 1982
conjecture that quantum systems could be used to efficiently simulate other
quantum systems [1]. Later work showed that a quantum computer, if built,
could efficiently simulate general quantum systems [2, 3, 4, 5].

There are a range of other algorithms which have been developed for quan-
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tum computers. Shor’s algorithm [6] allows efficient factorization of numbers,
and could be used for breaking the most commonly used encryption. More
recently, algorithms have been found for other mathematical problems, some
of which could be used for codebreaking [7]. A more general algorithm is
Grover’s search algorithm [8]. This algorithm is designed to search for inputs
to a function that produce a desired output. The speedup is only quadratic, so
this algorithm does not give the dramatic speedup of more specialized algo-
rithms.

Of the known quantum algorithms that give exponential speedup,1 simu-
lation of physical systems has the widest applicability. It could be used, for
example, in chemistry for predicting the properties of molecules. In Refs.
[2, 3, 4, 5] the problem considered is the evolution of a system under a Hamil-
tonian. (It should be noted that our notion of simulation is distinct from the
problem of finding the ground state of Hamiltonians. In the latter case, it does
not appear to be possible to achieve an exponential speedup. The ground state
of a Hamiltonian can be used to encode a search problem [9], and Ref. [10]
shows that, in the black-box setting, it is not possible to achieve an exponential
speedup for search problems.)

In the work of Lloyd [3] it is required that the quantum system is composed
of small subsystems, and the Hamiltonian consists of a sum of interactions
which only involve a small number of subsystems. A more general situation
was considered by Aharonov and Ta-Shma (ATS) [4]. They do not require a
tensor product structure to the Hamiltonian, but require that it is sparse and
there is an efficient method of calculating the nonzero entries in a given col-
umn of the Hamiltonian. The Hamiltonians considered by Lloyd are sparse,
and are therefore included in this generalization. There are also a range of oth-
er problems which produce such Hamiltonians. These Hamiltonians can also
arise as encodings of computational problems, such as simulations of quantum
walks [11, 12, 13, 14, 15].

In our recent work [5] we improved upon the efficiency of the schemes of
ATS and Lloyd by applying the higher order integrators of Suzuki [16, 17].
Our work contains a number of results:

1. In order to simulate evolution over time t, our scheme requires a number
of steps which scales as t1+1/2k, where k is the order of the integrator
and may be chosen to be an arbitrarily large integer.

2. We found upper bounds on the error, which enable us to estimate the
optimal order k for a given evolution time t.

1Exponential speedup over the best known classical algorithms.
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3. We showed that general sublinear scaling in t is not possible. This means
that the simulation scheme using the integrators of Suzuki is close to
optimal in the evolution time.

4. We provided a superior method for decomposing the Hamiltonian into a
sum for the problem considered by ATS. This dramatically reduces the
scaling from polynomial in the number of qubits to close to constant.

In Sections 4.2 and 4.3 we review the results of Refs. [3, 4], and we review
our results from Ref. [5] in Sections 4.4 to 4.6.

4.2 Simulation method of Lloyd

The problem considered by Lloyd [3] is as follows. The quantum system is
composed of N “variables”, or subsystems, and the total Hamiltonian consists
of a sum of interaction terms

H =
m

∑
j=1

Hj. (4.1)

Each interaction term Hj acts on at most kL of the subsystems, with maximum
dimension of d j. Lloyd also allows the Hamiltonian to depend on time. The
vast majority of quantum systems have Hamiltonians of this type, because in-
teractions only occur between a small number of subsystems, not jointly over
all subsystems.

Because each Hj acts on a Hilbert space of dimension d j, the number of

operations required to simulate evolution under Hj scales as d2
j . In order to

approximate evolution under the Hamiltonian H, it is therefore desired to sim-
ulate evolution under a sequence of the individual Hamiltonians Hj. Lloyd
uses the approximation

eiHt ≈ (eiH1t/r . . .eiHmt/r)r. (4.2)

Because the number of steps required for simulation of each Hamiltonian Hj

scales as d2
j , the total number of steps scales as r ∑m

j=1 d2
j ≤ rmd2, where d =

max{d j}.
Lloyd gives the bound on the error using this approximation as

‖r(eiHt/r−1− iHt/r)‖sup. (4.3)
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Here the norm gives the maximum expectation value of the operator. Lloyd
also gives the alternative expression

eiHt = (eiH1t/r . . .eiHmt/r)r + ∑
i> j

[Hi,Hj]t
2/2r + ∑

l≥3

E(l), (4.4)

where the E(l) are bounded by ‖E(l)‖sup ≤ r‖Ht/r‖l
sup/l!. This implies that,

in order to obtain accuracy ε for simulation over time t, the number of time-
slices r needs to scale as t2m2/ε . This implies that the total number of steps
required scales as t2m3d2/ε .

Overall, the simulation is tractable provided the number of steps is a poly-
nomial function of the number of subsystems N. If the interactions do not
involve more than kL subsystems, then the number of interactions m is bound-
ed by NkL . If kL and d do not increase with N, then the number of steps is of
order N3kL , which is polynomial in N.

4.3 Simulation method of ATS

A more general form of simulation was considered by Aharonov and Ta-
Shma [4]. They consider simulation of an arbitrary row-sparse Hamiltonian.
That is, the Hamiltonian may be represented by a matrix with only a moderate
number of nonzero elements in each row. It is always possible to represent the
Hamiltonian by a matrix which is diagonal simply by choosing the appropriate
basis. However, in practice the Hamiltonian is provided in a certain basis and
it is not efficient to determine the diagonal representation. In the following we
will regard the Hamiltonian as a matrix, without specifying that the matrix is
just a representation of the Hamiltonian.

It is easily seen that the Hamiltonians considered by Lloyd are row-sparse.
As each interaction Hamiltonian Hj only acts on a subsystem of dimension d j,
it has no more than d j elements in each row. The overall Hamiltonian then has
no more than md elements in each row. As this scales polynomially with the
number of subsystems, the overall Hamiltonian is row-sparse.

The main difference between the problem considered by Lloyd and that con-
sidered by ATS is that for Lloyd’s problem the decomposition of the Hamilto-
nian is given, whereas all ATS assume is that there is some method of calcu-
lating the nonzero terms in the columns of the Hamiltonian.

In the case where the Hamiltonian H has at most D nonzero elements in
each row and acts upon a system of dimension no larger than 2n (so it may be
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represented on n qubits), ATS show a method for decomposing H into a sum
of no more than (D+ 1)2n6 terms

H =
(D+1)2n6

∑
j=1

Hj. (4.5)

Each Hj is 1-sparse; that is, there is no more than one nonzero element in each
row/column. This also implies that it is 2×2 combinatorially block diagonal (it
is equivalent to a 2×2 block diagonal matrix under an appropriate permutation
of the basis states).

The decomposition is essentially equivalent to the coloring problem for an
undirected graph. The nodes of the graph correspond to the basis states, and
the edges correspond to the nonzero elements of the Hamiltonian. The problem
is to color the graph such that no two edges with the same color connect the
same vertex. Each color then corresponds to a different Hamiltonian Hj.

The method ATS use for the coloring is to use the color

�j = (ν,x mod ν,y mod ν, rindH(x,y),cindH(x,y)) (4.6)

(where rindH and cindH are defined below). Here the convention is taken that
x≤ y. We are taking the color to be a vector of integers, and will use subscripts
for the different components. If x = y, ν is set as 1, otherwise it is set as the
first integer in the range [2 . . .n2] such that x �= y mod ν .

For convenience we define the function f which gives the nonzero elements
in each column. If the nonzero elements in column x are y1, . . . ,yD′ , where
D′ ≤ D, then f (x, i) = (yi,Hx,yi

) for i≤ D′, and f (x, i) = (x,0) for i > D′. We
use subscript y for the first component of f , and subscript H for the second
component of f .

We may give the definitions of cindH and rindH succinctly using this func-
tion. If Hx,y �= 0, then

fy(y,cindH(x,y)) = x, fy(x, rindH(x,y)) = y. (4.7)

That is, cindH gives the column index of x and rindH gives the row index of y.
If Hx,y = 0, then rindH(x,y) and cindH(x,y) are both taken to be zero.

Given this coloring, one wishes to determine a function which outputs the
nonzero element row number and value for each H�j

. We may give this function

as g(x,�j) = (y,(H�j
)x,y), where x is the column number, �j is the color, y is

the row number and (H�j
)x,y is the required elements. This function can be

determined in the following way. There are three cases where a nonzero result
is given:
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1. The color corresponds to the diagonal elements. We require j1 = 1 (cor-
responding to ν = 1). In addition, for consistency we require j2 = j3 = 0,
j4 = j5 and fy(x, j4) = x. Then we output y = x and (Hj)x,y = Hx,x.

2. The color corresponds to off-diagonal elements and the nonzero element
is in the lower triangle (so x < y). We require j1 > 1 (corresponding to
ν > 1) to give the off-diagonal elements. If x < y then we also require
x mod j1 = j2. For consistency, we also require fy(x, j4) mod j1 = j3,
fy( fy(x, j4), j5) = x, x < fy(x, j4) and j1 to be the first integer such that
x �= fy(x, j4) mod j1. Then y = fy(x, j4) and (H�j

)x,y = Hx,y.

3. The color corresponds to off-diagonal elements and the nonzero element
is in the upper triangle (so y < x). We require j1 > 1 (corresponding to
ν > 1) to give the off-diagonal elements. If y < x then we also require
x mod j1 = j3, and for consistency with the coloring scheme we require
fy(x, j5) mod j1 = j2, fy( fy(x, j5), j4)= x, fy(x, j5) < x and j1 is the first
integer such that x �= fy(x, j5) mod j1. Then y = fy(x, j5) and (H�j

)x,y =
Hy,x.

In all other cases the output is simply (H�j
)x,y = 0 and y = x. ATS do not

explicitly give this function, though it is implicit from their coloring method.
It is easily seen that the coloring gives at most one nonzero element in each
column. It is not possible for both cases 2 and 3 to hold, because some of the
conditions for these cases would imply that x mod j1 = j2 = j3, but j2 = j3
violates the conditions that fy(x, j4) mod j1 = j3 and j1 is the first integer such
that x �= fy(x, j4) mod j1.

After giving this coloring scheme, ATS show that it is possible to efficiently
simulate the individual H�j

. Here we summarize their method, with some minor

differences. Let the row number be y for the nonzero element in column x; then
the nonzero element in column y is in row x. We let Ũx be the approximation
of the unitary on those basis states, and mx = min{x,y} and Mx = max{x,y}.

Given that the black-box function f may be represented by a unitary Uf , it

is possible to obtain a unitary Ug for the black-box function g(x,�j) such that

Ug
∣∣x,�j,0〉=

∣∣x,�j,y,(H�j
)x,y
〉∣∣φ

x,�j

〉
, (4.8)

where
∣∣φ

x,�j

〉
represents additional ancilla states produced by the calculation.

From this it is possible to derive a unitary T�j
such that

T�j

∣∣x,0〉=
∣∣x,mx,Mx,Ũx

〉
(4.9)
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In order to remove the additional ancilla states, it is necessary to apply Ug,
copy the output, and apply U†

g . Another unitary T is then defined such that

T
∣∣v〉∣∣mx,Mx,Ũx

〉
= (Ũx

∣∣v〉)∣∣mx,Mx,Ũx
〉
. (4.10)

To simulate the unitary, one first applies T�j
to produce a state with the approx-

imation of the unitary, applies T to implement the unitary, then applies T †
�j

to

remove the extra ancilla states. Overall, Ug is applied twice and U†
g is applied

twice.
To see the action of this on basis state

∣∣x〉, let us take the action of Ũx on
∣∣x〉

to give the state α̃
∣∣mx
〉
+ β̃

∣∣Mx
〉
. Then the sequence of transformations gives

T †
�j

T T�j

∣∣x,0〉 = T †
�j

T
∣∣x,mx,Mx,Ũx

〉
= T †

�j

(
α̃
∣∣mx,mx,Mx,Ũx

〉
+ β̃

∣∣Mx,mx,Mx,Ũx
〉)

= α̃
∣∣mx,0

〉
+ β̃

∣∣Mx,0
〉
. (4.11)

From the definition, mmx = mMx
= mx and Mmx = MMx

= Mx; hence performing
T †
�j

correctly removes the additional states. It is essential that T�j
does not add

additional states which depend on x, because then it would not be possible to
perform this step.

4.4 Higher order integrators

In our work [5] we improve upon the work of Lloyd and ATS in two main
ways. We apply higher order integrators to improve the scaling of the complex-
ity with time, and we apply an improved coloring method. The higher-order
integrators of Suzuki are defined in the following way [16, 17]. The first order
integrator is

S2(λ ) =
m

∏
j=1

eHj λ/2
1

∏
j′=m

e
H

j′λ/2
, (4.12)

which is the basic Lie–Trotter product formula. The higher order integrators
are obtained via the recursion relation

S2k(λ ) = [S2k−2(pkλ )]2S2k−2((1−4pk)λ )[S2k−2(pkλ )]2 (4.13)
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with pk = (4−41/(2k−1))−1 for k > 1. Suzuki proves that [16]∥∥∥∥∥exp

(
m

∑
j=1

Hjλ

)
−S2k(λ )

∥∥∥∥∥ ∈ O(|λ |2k+1) (4.14)

for |λ | → 0. The parameter λ corresponds to −it for Hamiltonian evolution.
We can deduce from Eq. (4.14) another bound that is more quantitatively

precise. Our result is

LEMMA 4.1
Using integrators of order k ≥ 2 and dividing the time into r intervals,

we have the bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥≤ μk(2m5k−1qkτ)2k+1

(2k + 1)!r2k , (4.15)

where τ = t×max‖Hj‖, qk = ∏k
k′=2 |1−4pk′ |, κk = (2qk5k−1)−(2k+1),

μk = (1 + κk)e
δ1 [(eδ2 −1)/δ2], (4.16)

and we have the restrictions

2m5k−1qkτ/r ≤ δ1,

(1 + κk)e
δ1(2m5k−1qkτ)2k+1/[(2k + 1)!r2k] ≤ δ2. (4.17)

Before proceeding to the proof, we note that κ2 ≈ 8.2×10−5, and κk rapid-
ly approaches zero for large k. The δ1 and δ2 may be made small to obtain
tighter bounds, though this requires more stringent requirements in Eqs. (4.17).
For large k and small δ1,2, μk ≈ 1, and the upper bound is approximately

(2m5k−1qkτ)2k+1/[(2k + 1)!r2k]. We now proceed to the proof.

PROOF If we take a Taylor expansion of both terms in the left-
hand side (LHS) of Eq. (4.14), then the terms containing λ to powers
less than 2k + 1 must cancel because the expression is of order |λ |2k+1.
Terms in the Taylor expansion with λ l for l ≥ 2k + 1 contain a product
of l of the Hj terms, so

exp

(
m

∑
j=1

Hjλ

)
= S2k(λ )+

∞

∑
l=2k+1

λ l
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×
⎡⎣ Ll

∑
p=1

Cl
p

l

∏
q=1

Hjpq
+

L̄l

∑
p=1

C̄l
p

l

∏
q=1

Hjpq

⎤⎦ . (4.18)

Here Ll is the number of terms in the Taylor expansion of the exponential
at order l, and Cl

p are the constants in that expansion. The quantities
L̄l and C̄l

p are the corresponding quantities for the Taylor expansion of
the integrator S2k(λ ).

To determine a bound on the correction term, we first determine
bounds on the quantities Ll and Cl

p. Expanding (H1 + · · ·+Hm)l yields ml

terms, so Ll = ml. In addition, we have Cl
p = 1/l! from the multiplying

factor in the Taylor expansion of the exponential.
It is somewhat more complicated for the integrator. The integrator

S2(λ ) consists of a product of 2m−1 exponentials. The minus 1 comes
about because eHmλ/2× eHmλ/2 may be simplified to eHmλ . Each of the
powers in the exponentials contains multiplying factors of 1/2, except
for this central exponential where the multiplying factor is 1.

Then in using the recursion relation (4.13), the number of exponen-
tials changes according to the map x �→ 5x−4. The minus 4 is because
the exponentials at the ends are combined. This gives the total number
of exponentials as 2(m−1)5k−1 + 1. In keeping track of the multiplying
factors in the exponentials, it is convenient to keep track of the expo-
nentials at the ends and the exponentials in the center separately.

Using x and y for the maximum magnitudes of the multiplying factors
for the inner elements and outer elements, respectively, the recursion
relation gives the map x �→max{pkx, |1−4pk|x,2pky, |1−3pk|y} and y �→
pky. It turns out that the element which gives the maximum in the map
for x is always |1−4pk|x, and x always exceeds y. We therefore have the
maximum multiplying factor in the exponentials as qk = ∏k

k′=2 |1−4pk′ |.
We take k ≥ 2, because we are not concerned with the error for the low
order integrators.

The Taylor expansion for S2k(t) may be determined by expanding each
of the exponentials individually and performing the multiplication. To
place a bound on the contribution to the error from terms containing
λ l, we can replace each of the terms in this expansion with the upper
bounds on their norms. Thus the bounds may be obtained from the
expansion of

(1 + |qkΛλ |+ |qkΛλ |2/2! + . . .)2(m−1)5k−1+1, (4.19)

where Λ ≡ max‖Hj‖. This is just the expansion of exp{|qkΛλ |[2(m−
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1)5k−1 + 1]}, so the terms containing λ l may be bounded by

{|qkΛλ |[2(m−1)5k−1 + 1]}l

l!
. (4.20)

Combining this with the earlier results and using standard inequalities
gives ∥∥∥∥∥∥

∞

∑
l=2k+1

λ l

⎡⎣ Ll

∑
p=1

Cl
p

l

∏
q=1

Hjpq
+

L̄l

∑
p=1

C̄l
p

l

∏
q=1

Hjpq

⎤⎦∥∥∥∥∥∥
≤

∞

∑
l=2k+1

|λ Λ|l
l!

[
ml + ql

k[2(m−1)5k−1 + 1]l
]

≤ {|λ Λqk|[2(m−1)5k−1 + 1]}2k+1

(2k + 1)!
exp{|λ Λqk|[2(m−1)5k−1 + 1]}

+
|λ Λm|2k+1

(2k + 1)!
exp |λ Λm|. (4.21)

From this point onward the derivation differs from that in Ref. [5], which
gives a slightly weaker bound. Here we make fewer simplifications than
in [5], giving a more complicated but tighter bound.

Simplifying Eq. (4.21) gives the inequality∥∥∥∥∥exp

(
λ

m

∑
j=1

Hj

)
−S2k(λ )

∥∥∥∥∥≤ (1 + κk)e
δ1 |2m5k−1qkΛλ |2k+1

(2k + 1)!
, (4.22)

where κk = (2qk5k−1)−(2k+1), and we have the restriction |2m5k−1qkΛλ | ≤
δ1. Substituting λ = −it/r where r is an integer, and taking the power
of r, gives the error bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥
≤
[

1 +
(1 + κk)e

δ1(2m5k−1qkτ/r)2k+1

(2k + 1)!

]r

−1

≤ exp

[
(1 + κk)e

δ1(2m5k−1qkτ)2k+1

(2k + 1)!r2k

]
−1

≤ eδ2 −1
δ2

(1 + κk)e
δ1(2m5k−1qkτ)2k+1

(2k + 1)!r2k , (4.23)
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for 2m5k−1qkτ/r ≤ δ1, and in the last line we have used the restriction
(1 + κk)e

δ1(2m5k−1qkτ)2k+1/[(2k + 1)!r2k] ≤ δ2. We therefore obtain the
bound given in Eq. (4.15).

We can also give a bound without requiring the extra conditions. Directly
using Eq. (4.21) gives the bound∥∥∥∥∥exp

(
−it

m

∑
j=1

Hj

)
− [S2k(−it/r)]r

∥∥∥∥∥≤
(

1 +
(τm/r)2k+1

(2k + 1)!
exp(τm/r)

+
{(τqk/r)[2(m−1)5k−1 + 1]}2k+1

(2k + 1)!
exp{(τqk/r)[2(m−1)5k−1 + 1]}

)r

− 1. (4.24)

The scaling is somewhat less obvious for this expression than for Lemma 4.1.
However, this expression provides a slightly tighter bound, and does not re-
quire additional conditions.

To obtain an understanding of how tight the bounds are, consider the exam-
ple of the Hamiltonian consisting of the spin operator Jx for a spin 50 system.
In the basis of Jz eigenstates this operator is tridiagonal. It is straightforward
to decompose this Hamiltonian into a sum of two Hamiltonians which are 1-
sparse, so m = 2.

We take the example of evolution over the time period t = π/4, k = 2 and a
range of values of r. For each value of r, the actual error using the integrator
was determined, as well as the limit given by Eq. (4.24). In Ref. [5], the
alternative bound of 2(2mτ5k−1)2k+1/r2k was given. The bound using this
expression was also determined for each value of r.

The three values are plotted in Fig. 4.1. Both upper bounds are above the
actual error (as would be expected). The upper bound given by Eq. (4.24) is
only about three orders of magnitude above the actual error. In contrast, the
upper bound from Ref. [5] is many orders of magnitude larger. Thus we find
that the upper bound given here is a far tighter bound.

Next we consider the number of exponentials, Nexp, required to achieve a
certain level of accuracy. The result is as given in the following theorem:

THEOREM 4.1
When the permissible error, as measured by the trace distance between

states, is bounded by ε, Nexp is bounded by

Nexp ≤
m52k(mqkτ)1+1/2k

[(2k + 1)!ε]1/2k
, (4.25)
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FIGURE 4.1: The error in approximating the evolution under the Hamiltonian
H = Jx for spin 50 using different numbers of subdivisions r. The actual error
is shown as the solid line, the bound of Eq. (4.24) is shown as the dashed line
and the bound from Ref. [5] is shown as the dotted line.

where τ = t×max‖Hj‖, k ≥ 2 is an integer, and we have the restriction
(2k + 1)!ε ≤ 1≤ 2m5k−1qkτ.

PROOF First note that placing limits on the norm of the difference
of the unitaries is equivalent to placing a limit on the trace distance
between the output states. This is because

‖U1−U2‖ ≥ ‖U1

∣∣ψ〉−U2

∣∣ψ〉‖
≥ 1

2
Tr
∣∣U1

∣∣ψ〉〈ψ |U†
1 −U2

∣∣ψ〉〈ψ |U†
2

∣∣
= D

(
U1

∣∣ψ〉〈ψ |U†
1 ,U2

∣∣ψ〉〈ψ |U†
2

)
, (4.26)

where the function D is the trace distance.
Now let us take

r =

⌈
(2m5k−1qkτ)1+1/2k

[
μk

(2k + 1)!ε

]1/2k
⌉

, (4.27)

and take δ1 = δ2 = 1. With this choice of r, the restrictions (2k +1)!ε ≤
1≤ 2m5k−1qkτ imply that Eqs. (4.17) hold. In addition, these restrictions
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mean that the magnitude of the expression in the ceiling function in Eq.
(4.27) is at least 1, so the error in approximating r by this expression is
no more than a factor of 2. In addition, the right-hand side of Eq. (4.15)
does not exceed ε, so the error is no more than ε.

Because the number of exponentials in S2k(λ ) does not exceed 2m5k−1,
we have Nexp ≤ 2m5k−1r. Taking r as in Eq. (4.27), we obtain the upper
bound on Nexp given in Eq. (4.25).

By taking k to be sufficiently large, it is possible to obtain scaling that is
arbitrarily close to linear in τ . However, for a given value of τ , taking k to
be too large will increase Nexp. We can obtain an estimate of the optimum
value of k in the following way. First replace qk with 1 in Eq. (4.25) and omit
[(2k + 1)!]1/2k from the denominator. These simplifications only increase the
bound. Now re-express Eq. (4.25) as

Nexp ≤ m2τ e2k ln5+ln(mτ/ε)/2k. (4.28)

The value of k that minimizes this expression is

k = round

[
1
2

√
log5(mτ/ε)+ 1

]
. (4.29)

Adding 1 and rounding takes account of the fact that k must take integer values.
Adopting this value of k provides the upper bound

Nexp ≤ 2m2τ e2
√

ln5 ln(mτ/ε). (4.30)

It can be shown that this result holds with the conditions ε ≤ 1≤ mτ/25.
If we include qk we obtain a slightly different estimate for k. Numerically it

is found that qk scales approximately as 3−k. Therefore, including qk gives the
approximate optimal value for k as

k≈ 1
2

√
log

5/
√

3
(mτ/ε). (4.31)

This result is not qualitatively different.

4.5 Linear limit on simulation time

Our results show that the simulation of any Hamiltonian may be performed
arbitrarily close to linearly in the scaled time τ . This is essentially optimal,
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because it is not possible to perform the simulation sublinear in τ . The result
is

THEOREM 4.2

For all positive integers N there exists a 2-sparse Hamiltonian H such
that simulating the evolution of H for scaled time τ = t‖H‖= πN/2 within
precision 1/4 requires at least τ/2π black-box queries to H.

Here the situation is similar to that for the problem of ATS. There is a black-
box function which gives the nonzero elements in each column of the Hamilto-
nian, and we quantify the difficulty of the calculation by the number of black-
box queries. Note that we have not specified any limit on the dimension of H.
In fact, we will require that the number of qubits can grow at least logarith-
mically with respect to τ . It can be seen that this is essential, because if the
dimension was limited it would be possible to classically simulate the evolu-
tion by diagonalizing the Hamiltonian, and the complexity of the calculation
would not increase indefinitely with τ .

PROOF The proof is based upon simulating a Hamiltonian which
determines the parity of N bits. It has been shown that the parity of N
bits requires N/2 queries to compute within error 1/4 [18]; therefore it
is not possible to simulate a Hamiltonian which determines the parity
any more efficiently.

The Hamiltonian which we consider is based upon the Jx operator
with Jz basis states. For spin J = N/2, the matrix elements of Jx are

〈 j + 1|Jx
∣∣ j〉= 〈 j|Jx

∣∣ j + 1
〉

=
√

(N− j)( j + 1)/2, (4.32)

where state
∣∣ j〉 is an eigenstate of Jz with eigenvalue j−N/2. From

standard properties of rotation operators, e−iπJx
∣∣0〉 =

∣∣N〉 and ‖Jx‖ =
J = N/2.

In order to produce a Hamiltonian which calculates the parity of the
bits X1, . . . ,XN , we add a qubit to the basis states and define the Hamil-
tonian such that

〈l′, j + 1|H∣∣l, j
〉

= 〈l, j|H∣∣l′, j + 1
〉

=
√

(N− j)( j + 1)/2 (4.33)

for values of l and l′ such that l⊕ l′ = Xj+1 (where ⊕ is XOR). This
Hamiltonian corresponds to a graph with two disjoint lines which “cross
over” at the positions where bits Xj are 1.
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FIGURE 4.2: Graph representing an example of the Hamiltonian in the proof
of Theorem 4.2. States are represented by ellipses, and nonzero elements of the
Hamiltonian are indicated by lines. The sequence of states

∣∣l j, j
〉

with l0 = 0
is indicated by the solid line.

The graph corresponding to a Hamiltonian of this type is shown in
Fig. 4.2. The system separates into two distinct sets of states which
are not connected. If the system starts in one of the states on the path
indicated by the solid line, it cannot evolve under the Hamiltonian to a
state on the dotted line.

We may determine a sequence of bits l0, . . . , lN such that l j ⊕ l j+1 =
Xj+1. The Hamiltonian acting on the set of states

∣∣l j, j
〉

will then
be identical to Jx acting on the states

∣∣ j〉. It is therefore clear that
e−iπH

∣∣l0,0〉=
∣∣lN ,N

〉
. If l0 = 0, then l j is the parity of bits X1 to Xj, and

lN gives the parity of all N bits. Thus, starting with the state
∣∣0,0

〉
and

simulating the evolution e−iπH , we obtain the state
∣∣lN ,N

〉
. Measuring

the state of the ancilla qubit then gives the parity, lN . If the error in the
simulation is less than 1/4, then the probability of error in determining
the parity will be less than 1/4.

To determine the nonzero elements in a column of H we make two
queries to Xj. In particular, for the column corresponding to basis state∣∣l, j
〉
, we make a query to Xj and Xj+1. It is then straightforward to

determine the nonzero elements in the column from Eq. (4.33). If we
make fewer than N/4 queries to H, then there are fewer than N/2 queries
to the Xj. This means that the probability for error in determining the
parity must be at least 1/4, and therefore the simulation cannot be
achieved with error less than 1/4.

Since ‖H‖= N/2 and the time of the simulation is π , the scaled time
for this theorem is τ = ‖H‖t = πN/2. Thus the simulation of H requires
at least N/4 = τ/2π queries to obtain error less than 1/4.

We used this result to show a general result for the number of exponentials
required in integrators. This result holds for general integrators which apply to
all Hamiltonians.
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COROLLARY 4.1
There is no general integrator for Hamiltonians of the form H = H1 +H2
such that (trace distance) error < 1/4 may be achieved with the number
of exponentials Nexp < t‖H‖/2π.

PROOF We take H as in the preceding proof. This Hamiltonian
may be expressed in the form H = H1 +H2 by taking H1 to be the Hamil-
tonian with 〈l′, j + 1|H1

∣∣l, j
〉

nonzero only for even j, and H2 to be the
Hamiltonian with 〈l′, j + 1|H2

∣∣l, j
〉

nonzero only for odd j. To determine
the nonzero elements in a column of H1 or H2 we require only one query
to the Xj. For example, for H1, if j is odd, then we perform a query to
Xj; otherwise we perform a query to Xj+1.

Both H1 and H2 are 1-sparse, and may be efficiently simulated with
only two queries to Xj. This result may be shown in the following way.
Via one call to Xj, one may calculate mx, Mx and Ũx [where the column
index x represents (l, j)]. Therefore, by standard methods one may derive
a unitary T̃p such that

T̃p
∣∣x,0〉=

∣∣x,mx,Mx,Ũx
〉∣∣φx

〉
, (4.34)

where p = 1 or 2 for H1 or H2, respectively. This is the equivalent of T�j

in Eq. (4.9), except that it produces the additional ancilla
∣∣φx
〉
.

For the theorem we assume that the parity Xj is given by a unitary
that does not produce additional ancilla states

X
∣∣ j,0〉=

∣∣ j,Xj

〉
. (4.35)

Whether we perform a query to Xj or Xj+1 will depend on whether j
is odd or even and whether p = 1 or 2. For convenience we denote the
result by Xx. The unitary T̃p may be expressed as the product of an
initial unitary, X , and a final unitary

T̃p = T̃p,2XT̃p,1. (4.36)

The unitary T̃p,2 applies to the output subsystem which contains Xx,
whereas T̃p,1 does not act on this subsystem. Let us represent by Tp the
sequence of operations T̃p,2XT̃p,1, followed by copying the outputs mx, Mx

and Ũx, and applying T̃ †
p,1T̃ †

p,2. As T̃p,1 does not act on the subsystem
which contains Xx, this sequence of operations gives the map

Tp
∣∣x,0〉=

∣∣x,mx,Mx,Ũx,Xx
〉
. (4.37)
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The definition of Xx implies that it depends on mx and Mx, but the same
value is obtained for x = mx or x = Mx. It is therefore possible to apply
the sequence T †

p T Tp to correctly apply Ũx, as in Eq. (4.10). Overall X is
applied once and X† is applied once.

Hence the simulation may be performed with the number of calls to Xj
no more than twice the number of exponentials Nexp. If Nexp < t‖H‖/2π ,
then the total number of queries to the Xj is less than t‖H‖/π . Taking
t = π and ‖H‖= N/2, the number of queries is less than N/2. However,
from the proof of Theorem 4.2 this Hamiltonian cannot be simulated over
time t = π with error less than 1/4 if the number of queries is less than
N/2. Hence error rate < 1/4 cannot be achieved with Nexp < t‖H‖/2π .

4.6 Efficient decomposition of Hamiltonian

In Section 4.3 we explained the ATS method for decomposing the Hamil-
tonian. Their method employs an efficient decomposition of a general sparse
Hamiltonian into a sum of m = (D + 1)2n6 1-sparse Hamiltonians Hj: H =
∑m

j=1 Hj. Using the standard Lie–Trotter formula the number of time-slices

r scales as m1.5. The total number of exponentials therefore scales as mr ∝
m2.5 ∝ n15 for the ATS method. This is also the scaling of the number of
black-box calls for the method of ATS. Here we show that the decomposition
can be performed much better—with a reduction to m = 6D2, so the number
of exponentials is independent of n—and at log∗ n cost as quantified by the
number of black-box calls.

The function log∗ n≡ min{r| log(r)
2

n < 2} is the iterated logarithm function
and may be regarded as being “nearly constant”. It is convenient to think
of the log∗ of a number as being the smallest height of a tower of powers

of 2 that exceeds the number. For example 65536 = 2222

so log∗ 65536 = 4,
which is the height of the tower of powers of 2, and a tower of height 5 yields
(approximately) 2× 1019728, so we can see that log∗ n is very small for all
reasonable values of n.

In Ref. [5] we showed that

LEMMA 4.2

There exists a decomposition H = ∑m
j=1 Hj, where each Hj is 1-sparse,
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such that m = 6D2 and each query to any Hj can be simulated by making
O(log∗ n) queries to H.

Here we summarize the proof; the complete proof is given in Ref. [5]. In
order to perform this decomposition, we use a more efficient graph coloring
than that used by ATS. We use the vector for the color j given by

�j = (ν, rindH(x,y),cindH(x,y)), (4.38)

for pairs where Hx,y = 0 and x ≤ y. Here rindH and cindH are defined as for
ATS, except we do not require the additional value of zero (which ATS require
for cases where Hx,y = 0). This is because we do not need colors for pairs
where there is no edge.

Just using the pair (rindH(x,y),cindH(x,y)) would not be sufficient for a
coloring. This is because it would be possible to have three row numbers w, x,
and y, such that w < x < y, y and x are the number rindH(x,y) neighbors of x
and w, respectively, and x and w are the number cindH(x,y) neighbors of y and
x, respectively. Therefore it is necessary to add the additional parameter ν . We
only require 6 alternative values for ν , so the total number of alternative values
of �j is only 6D2. In comparison ATS require a total of (D+ 1)2n6 values of �j.

The values of ν are assigned in a way which uses ideas from deterministic
coin tossing [19, 20]. First one determines a sequence of values x0

l such that
x0

0 = x, x0
1 = y, and the following pairs x0

l , x0
l+1 satisfy

(rindH(x,y),cindH(x,y)) = (rindH(x0
l ,x

0
l+1),cindH(x0

l ,x
0
l+1)). (4.39)

This sequence usually terminates very quickly. If it does not, these indices are
only determined up to x(0)

zn+1
, where zn is the number of times we must iterate

l �→ 2!log2 l" (starting at 2n) to obtain 6 or less. It can be shown that zn is
approximately log∗ n.

Next, values of x(1)
l

are determined in the following way. The first bit where

x(0)
l

differs from x(0)
l+1

is determined, and the value (for x(0)
l

) and position of

this bit are recorded as x(1)
l

. At the end of the chain, x(1)
l

is the first bit of

x(0)
l

followed by zeros. This procedure is repeated up to x(zn)
l

, and we take

ν = x(zn)
0

. It can be shown that there are only 6 possible values for x(zn)
0

, and
the value obtained for the pair (w,x) differs from that for (x,y).

To illustrate this procedure, let us consider the Hamiltonian for which a
portion of the graph is shown in Fig. 4.3. The calculation for ν for the edge
between x and y is illustrated in Table 4.1, and the corresponding calculation
for the edge between w and x is illustrated in Table 4.2. In the tables n = 18,
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FIGURE 4.3: A portion of the graph for the example given in Tables 4.1 and
4.2. The bold labels indicate the ordering of the edges around each vertex.
Each edge is labeled by the labels at each end of the edge, and the additional
parameter ν . The values of ν for the edges (w,x) and (x,y) determined in
Tables 4.1 and 4.2 are shown. In the sequence of solid edges, each edge has
the same labels, so it is necessary for the ν to differ to ensure that adjoining
edges have distinct labels. The numbers in the first columns of Tables 4.1 and
4.2 are the binary representations of the vertex numbers given here.

so the numbers of different possible values in columns 1 to 5 are 218, 36, 12,
8, and 6. In this case zn is equal to 4, and we have therefore determined the
sequence of x(0)

l
up to x(0)

5
.

As an example of the calculation of x(1)
l

, the second bit of x(0)
0

differs from

the corresponding bit of x(0)
1

. The second bit of x(0)
0

is 0, so this is the first bit

of x(1)
0

. We subtract 1 from the bit position to obtain 1, and take the remaining

bits of x(1)
0

to be the binary representation of 1. For the case of x(0)
5

, this is the

end of the chain, so we simply take x(1)
5

to be the first bit of x(0)
5

, which is 1,
followed by zeros.
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l\p 0 1 2 3 4

0 001011100110011010 000001 0100 000 000

1 010110101010011011 000010 1100 100 100

2 011011101110101101 000000 0001 000 000

3 101011101011110100 010001 1001 100 100

4 101011101011110101 000001 0000 000 000

5 111000010110011010 100000 1000 100 100

Table 4.1 Example values of x(p)
l

under our scheme for calculating ν.
The value of ν obtained is in the upper right, and is shown in bold. For
this example n = 18 and zn = 4. The values in italics are those that may
differ from w(p)

l+1
(there are no corresponding values for the bottom row).

l\p 0 1 2 3 4

0 000010010110111001 000010 1100 100 100

1 001011100110011010 000001 0100 000 000

2 010110101010011011 000010 1100 100 001

3 011011101110101101 000000 0001 111 100

4 101011101011110100 010001 0000 000 000

5 101011101011110101 100000 1000 100 100

Table 4.2 Example values of w(p)
l

under our scheme for calculating
ν. The value of ν obtained is in the upper right, and is shown in bold.
For this example n = 18 and zn = 4. The values in italics are those which
may differ from x(p)

l−1
.
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We use the notation w(p)
l

for the values given in Table 4.2. This example

illustrates the case where the sequence of w(0)
l

(with w(0)
l

= x(0)
l−1

) ends before

the sequence of x(0)
l

. This means that w(1)
5
�= x(1)

4
, and the differences propagate

so that w(4)
2
�= x(4)

1
. However, w(4)

1
is still equal to x(4)

0
.

Now w(4)
0

gives the value of ν for the edge between w and x. Because w(4)
1

=
x(4)

0
, w(4)

1
is equal to the value of ν for the edge between x and y. The method

for calculation ensures that w(4)
1

differs from w(4)
0

, so we obtain different values
of ν for these two edges, as required.

Using this lemma, we have shown the following general theorem on the
number of black-box calls required for Hamiltonian simulation.

THEOREM 4.3
The Hamiltonian H may be simulated within error ε for time t with the
number of black-box calls

Nbb ∈ O
(
(log∗ n)d252k(d2qkτ)1+1/2k/[(2k + 1)!ε]1/2k

)
(4.40)

with τ = t‖H‖ and k an integer ≥ 2.

PROOF Overall the number of Hamiltonians H�j
in the decomposi-

tion is m = 6D2. To calculate g(x,�j), it is necessary to call the black-box
2(zn + 2) times.

Given a unitary Uf representing the black-box function f , one may
obtain a unitary operator Ug satisfying

Ug
∣∣x,�j,0〉=

∣∣x,�j,y,(H�j
)x,y
〉∣∣φ

x,�j

〉
, (4.41)

where the additional ancilla states
∣∣φ

x,�j

〉
are produced by the calculation.

As discussed in Section 4.3, the Hamiltonian H�j
may be simulated via

two applications of Ug and two applications of U†
g . As zn is of order

log∗ n, the number of black-box calls to f for the simulation of each H�j
is O(log∗ n). Using these values, along with Eq. (4.25), we obtain the
number of black-box queries as in Eq. (4.40).

In this theorem we have quantified the complexity of the calculation simply
by the number of black-box calls. It is also necessary to apply a number of
auxiliary operations in addition to each black-box call. In determining g from
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f , we must make a calculation for ν . It is necessary to perform bit comparisons
between a maximum of zn + 2 numbers in the first step, and each has n bits.
This requires O(n log∗ n) operations. In the next steps the number of bits is
O(log2 n) bits or less, which is negligible. Hence the number of auxiliary
operations is

O
(

n(log∗ n)d252k(d2qkτ)1+1/2k/[(2k + 1)!ε]1/2k
)

. (4.42)

In comparison the implicit scaling in Ref. [4] was n16.

4.7 Conclusions

It is possible to efficiently simulate physical systems provided the Hamilto-
nian for the system is sparse. Lloyd showed this in the case where the system
is composed of many small subsystems, and the Hamiltonian is a sum of in-
teraction terms between these subsystems [3]. In this case the Hamiltonian is
sparse. Aharonov and Ta-Shma [4] showed this for the case of general sparse
Hamiltonians where the Hamiltonian is not given as a sum of simple terms.
They show how to decompose the Hamiltonian into a sum of 1-sparse Hamil-
tonians.

The schemes given by Lloyd and ATS are still somewhat inefficient; the
complexity scales as t2 (for Lloyd’s method) or t1.5 (for the method of ATS).
In addition, the number of black-box calls in the method of ATS scales as the
15th power of n (the number of qubits), and uses (D + 1)2n6 Hamiltonians in
the sum. This was improved somewhat by Childs [21], who found scaling of
n2 for the number of black-box calls.

In our work we improved significantly upon these results. We applied the
higher-order integrators of Suzuki [16, 17] to reduce the scaling to t1+1/2k

for arbitrary integer k. We placed an upper limit on the error, and used this to
estimate the optimum value of k to use. In addition, we showed that this scaling
is close to optimal, because it is not possible to achieve sublinear scaling.

We also provided a superior method for decomposing the Hamiltonian into
a sum. The scaling of the number of black-box calls is effectively independent
of the number of qubits, and the total number in the sum is just 6D2, rather
than (D + 1)2n6 as for the method of ATS. The problem is analogous to de-
terministic coin tossing [19, 20], and the scaling is the same. In the case of
deterministic coin tossing this scaling was proven to be optimal. This suggests
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that the scaling is optimal, though the proof can not be directly applied to this
case.
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Chapter 5

New Mathematical Tools for
Quantum Technology

C. Bracher, M. Kleber, and T. Kramer

Abstract Progress in manufacturing technology has allowed us to probe
the behavior of devices on a smaller and faster scale than ever before. With
increasing miniaturization, quantum effects come to dominate the transport
properties of these devices; between collisions, carriers undergo ballistic mo-
tion under the influence of local electric and magnetic fields. The often sur-
prising properties of quantum ballistic transport are currently elucidated in
“clean” atomic physics experiments. From a theoretical viewpoint, the electron
dynamics is governed by ballistic propagators and Green functions, intrigu-
ing quantities at the crossroads of classical and quantum mechanics. Here,
we briefly describe the propagator method, some ballistic Green functions,
and their application in a diverse range of problems in atomic and solid s-
tate physics, such as photodetachment, atom lasers, scanning tunneling mi-
croscopy, and the quantum Hall effect.

5.1 Physics in small dimensions

The laws of quantum mechanics provide a means for a successful interpre-
tation of measurements and experiments on a microscopically small scale. It
goes without saying that we can never “observe” directly what’s going on in
an atom or molecule. To understand what nature is telling us we must learn its
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FIGURE 5.1: Timescales in semiconductors.

language. Its grammar follows the mathematical rules of quantum mechanics.
Without mathematical tools we would not be able to describe intriguing pro-
cesses such as, for example the mapping of quantum states of light to intrinsic
atomic states. Fortunately, the necessary formalism is often powerful, elegant
and quite easy to comprehend. In our contribution we will demonstrate the
revival of an established mathematical tool in the important field of quantum
technology. This tool is known under the name of Green function or Green’s
function in honor of George Green.1

Many problems in electrodynamics, hydrodynamics, heat conduction, a-
coustics, etc., require the solutions of inhomogeneous linear differential equa-
tions. It is there where Green functions come to full power. The corresponding
mathematical approach is the same in all branches of physics—as long as we
are dealing with linear, ordinary or partial differential equations. In quantum
mechanics, Green functions enjoy the advantage of having a physical mean-
ing: The single-particle Green function G(r,r ′;E) is the relative probability
amplitude for a particle to move with energy E from an arbitrary point r ′ to
another point r. Probability amplitudes are known to be essential in all kinds
of quantum problems. In his book on ‘The Character of Physical Law’ Feyn-
man [1] notes that “. . . everything that can be deduced from the ideas of the
existence of quantum mechanical probability amplitudes, strange though they
are, will work, . . . one hundred percent.. . . ”

In this tutorial we present some basic features of electron and atom motion
in external fields. External electric, magnetic and even gravitational fields are
well suited to control the motion of particles in quantum devices. It is not
our purpose to dive into the technical depths of ultrasmall electronics research
and technology. We only want to illustrate how useful single-particle Green

1Green was an almost entirely self-taught English mathematician and physicist who in 1828 pub-
lished an essay entitled: “On the Applications of Mathematical Analysis to the Theories of Elec-
tricity and Magnetism.” In this essay he obtained integral representations for the solutions of
problems connected with the Laplace operator.
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functions and propagators can be for basic problems in quantum technology
whenever a microscopic description of quantum transport is necessary. A s-
ingle particle description is appropriate for devices with low particle densities
where interaction processes can be neglected. But they are also useful in more
general cases. Indeed, microscopically small particles travel freely on length
scales of the order of the free mean path �, which is the distance that an elec-
tron travels before its initial phase is destroyed for whatever reasons [2, 3].
The mean free paths depend strongly on the material under consideration and
they are much affected by temperature. Particles that travel freely are called
ballistic particles.

In Fig. 5.1 we show timescales for the motion of electrons in a typical
semiconductor. We invoke the uncertainty principle ΔpΔx ∼ h̄ to get a feel-
ing for the time domain of ballistic motion. Motion with well defined mo-
mentum requires Δp * p. For a quasi-classical description, the electron-
s are required to be well localized compared to the mean free path, i. e.,
Δx * � = pτ/m with τ being the time for ballistic motion (see Fig. 5.1). It
follows that ΔpΔx* p� = p2τ/m. Suppose we have thermal electrons; then
we can use the equipartition law of classical statistics, p2τ/m∼ kBT τ with kB
being the Boltzmann constant and T the temperature. Comparing with the un-
certainty principle we obtain τ + h̄/(kBT ) which for room temperature is of
the order 10−13 to 10−14 seconds. For thermal electrons this last inequality is
frequently met. However, for electrons moving with high energies of the order
eV the inequality is no longer fulfilled. In this case one has to treat ballistic
transport fully quantum mechanically. In the following we present examples
where quantum transport is essential. First, however, we review some useful
mathematical tools in a nut shell.

Clearly, we cannot cite all relevant literature in this field. This would be
an impossibly difficult and lengthy job. But the interested reader will find a
wealth of literature in the research articles cited in this tutorial.

5.2 Propagators and Green functions

A time-dependent treatment of the flow of charge carriers is based on the
time-dependent Schrödinger equation. In this context it is useful to summarize
a few aspects of the initial-value problem for a wave function known at t = t0,

ψ(r, t = t0) = ψ0(r) =
〈
r|ψ(t = t0)

〉
. (5.1)
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The corresponding ket vector |ψ(t)〉 evolves according to the basic law of
quantum mechanics,

(ih̄∂t −H)|ψ(t)〉= 0. (5.2)

The formal solution of (5.2) is conveniently written in terms of the time evolu-
tion operator U(t,t0):

|ψ(t)〉 = U(t,t0)|ψ(t0)〉. (5.3)

In coordinate space (5.3) reads

〈r|ψ(t)〉 =
∫

d3r′ 〈r|U(t,t0)|r ′〉〈r ′|ψ(t0)〉. (5.4)

The integral kernel of (5.4) is called propagator K:

K(r,t|r ′,t0) ≡ 〈r|U(t,t0)|r ′〉. (5.5)

Obviously, K(r,t|r ′,t0) is the time evolution matrix U(t,t0) in coordinate s-
pace representation. From the last two equations, we have

lim
t→t0

K(r,t|r ′,t0) = δ 3(r− r ′) . (5.6)

The (time-) retarded Green function must vanish for t < t0. It is usually defined
by

G(r,t;r ′,t0) =
1
ih̄

Θ(t− t0)K(r,t|r ′,t0) . (5.7)

From this definition, and the fact that the propagator is a solution of the time-
dependent Schrödinger equation, the retarded Green function is seen to satisfy
the differential equation

(ih̄∂t −H)G(r,t;r ′,t0) = δ 3(r− r ′)δ (t− t0). (5.8)

The delta function δ (t− t0) on the right hand side of (5.6) originates from the
step function Θ(t− t0) in the definition of G.

For time-dependent Hamiltonians, the propagator will depend separately on
t and t0. For time-independent Hamiltonians, the propagator depends only
on the time difference t − t0. In the latter case the Laplace transform of the
propagator

G(r,r ′;E) =
1
ih̄

∫ ∞

0
dt exp(iEt/h̄)K(r,t|r ′,0) (5.9)

generates the energy (-dependent) Green function,

G(r,r′;E) = lim
η→0+

〈
r

∣∣∣∣ 1
E−H + iη

∣∣∣∣r′〉 . (5.10)
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G(r,r ′;E) is the amplitude for travel of a particle from r to r ′ out of a point
source and, as a function of energy. This feature will emerge if we evaluate
(5.10) explicitly. We should also mention that the appearance of the infinites-
imally small, positive imaginary term iη in (5.10) has a simple reason: To
enforce convergence of the integral in (5.9) one has to replace E by E + iη .
The physical meaning of such a small shift into the complex energy plane be-
comes evident if one evaluates (5.10) for a free particle. The result [4],

Gfree(r,r
′;E) =− m

2π h̄2

exp(ik|r− r ′|)
|r− r ′| , (5.11)

is well known from scattering theory: For r ′ fixed and r variable, Gfree de-
scribes an outgoing spherical wave that originates from a point source at r = r ′.
Had we Fourier transformed the time-advanced Green function instead of the
time-retarded Green function, we would, of course, have ended up with an
incoming spherical wave instead of an outgoing wave.

Propagators contain all necessary information about the motion of a parti-
cle. Unfortunately it is not always possible to find a closed-form solution for
K or G. For potentials which are at most quadratic in the coordinates, the
propagator assumes the canonical form [5]

K(r,t|r ′,0) = A(t) exp
[
iScl(r,r

′;t)/h̄
]
, (5.12)

where Scl is the corresponding classical action, and where A(t) is a time-
dependent factor independent of the particle’s position. However, nonquadratic
potentials such as the Coulomb potential generally do not have the canonical
form (5.12). Explicit expressions for propagators can be found, for example,
in [5, 6, 7, 8, 9, 10, 11].

5.2.0.0.1 The Moshinsky shutter: This example illustrates how the free
propagator

Kfree(r,t|r ′,t0) =
[

m
2π ih̄(t− t0)

]1/2

exp

[
im(r− r ′)2

2h̄(t− t0)

]
, (5.13)

is used to solve an initial value problem that describes the flow of quantum
particles. It is of interest in the context of the quantum mechanical propagation
of a signal. Moshinsky [12] has analyzed the spreading of such a signal. He
considered a monochromatic beam of noninteracting particles of mass m and
energy Ek. The particles are supposed to move parallel to the x–axis from left
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FIGURE 5.2: The Moshinsky shutter: The shutter is removed at t0 = 0. The
quantum particles start propagating towards the screen. When will the particles
arrive at the screen? The distribution of the traveling particles is shown on the
right hand side where the full line corresponds to the quantum result (17) and,
where the classical propagation is represented by dotted lines.

to right. The beam is stopped (and absorbed) by a shutter at x = 0 (see Fig. 5.2).
The signal is given at t = t0 = 0 when the shutter is opened.

The sudden removal of the shutter marks the beginning of a “quantum race”
where the particles run along the positive x–axis. In order to elucidate the
spreading of the signal all one has to do is to calculate ψ(x,t) starting with

ψ0(x) = ψ(x,t = 0) = Θ(−x)eikx. (5.14)

Using (5.4) one finds

〈x|ψ(t ≥ 0)〉 = M (x;k; h̄t/m) , (5.15)

where the Moshinsky function M is defined in terms of the complementary
error function [13],

M(x;k;τ) =
1
2

exp
(
ikx− ik2τ/2

)
er f c

[
x− kτ

(2iτ)1/2

]
(5.16)

with i1/2 = exp(iπ/4).
An interesting property of (5.15) is revealed when we evaluate the particle

number probability. Introducing u = (h̄kt/m− x)/(πh̄t/m)1/2, we obtain

∣∣〈x|ψ(t)〉∣∣2 =
1
2

{[
1
2

+ C(u)
]2

+
[

1
2

+ S(u)
]2
}

. (5.17)
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The functions C(u) and S(u) are the well-known Fresnel integrals [13]. The
corresponding probability pattern is called diffraction in time because it arises
when the shutter is opened for a finite time t. Although transient effects are
important by themselves [14] we won’t discuss them in more detail here. In
what follows, we will discuss stationary quantum transport.

5.3 Quantum sources

In real-space representation, propagators and Green functions describe the
motion of quantum particles from some initial point r ′ to a final point r. But
where do the particles come from? One may think of two different situations:
i) the particles have been around all the time like electrons in an atom, or, ii)
the particles are generated by a source, a situation which is quite familiar from
scattering theory where a beam of particles is generated by an accelerator in a
region far away from the target. In mesoscopic physics and nanotechnology,
however, there is usually no such large spatial separation. Let us motivate
the introduction of coherent quantum sources of particles and illustrate their
properties by means of an example.

5.3.1 Photoelectrons emitted from a quantum source

We may consider the photoeffect as a two-step process as illustrated in
Fig. 5.3. The time evolution of the emitted electron is of course governed
by the rules of quantum mechanics. In the absence of any interaction between
photon and electron, the electron under consideration is attached to the atom
and is described by the bound-state wave function ψatom(r). Let us consider
a dilute gas of independent atoms where the interaction of the photoelectron
with neighboring atoms can be neglected. In the presence of a photon field this
wave function will obtain a small scattering component ψsc(r) that allows the
electron to leave the atom. For a dipole-allowed transition, the dipole operator
D̂(r) ∝ ε̂ · r is responsible for transferring the electron from its initial bound
state |ψatom〉 to a continuum state |ψsc〉 . Under steady-state conditions with
many atoms (each having the Hamiltonian Ĥatom) and weak monochromatic
light we must solve the problem:

[
E− Ĥatom− Ĥrad− D̂ · (â+ â†)

](
|ψatom〉 |1〉+ |ψsc〉 |0〉

)
= 0 (5.18)
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FIGURE 5.3: Two steps to create a photoelectron: Step 1 (left panel): The
photon transfers its energy to the initially bound electron. Step 2 (right panel):
The photoelectron escapes from the absorption region.

where E = Eatom + hν is the energy sum of electron and photon. The unper-
turbed Hamilton operator of the radiation field with field operators â and â†

is denoted by Ĥrad, with the zero-point energy being subtracted. As usual, |1〉
characterizes the presence of the photon and |0〉 its absence after absorption.
Projection onto the zero-photon state 〈0| yields the desired equation for the
scattering solution,[

E− Ĥatom(r)
]
ψsc(r) = D̂(r)ψatom(r)≡ σ(r). (5.19)

We can interpret D̂|ψ〉 as a source function |σ〉 for the photoelectrons: The
dipole operator prepares the electron in a continuum state but can be neglected
once the electron has left the atom.

5.3.2 Currents generated by quantum sources

The last two equations can be generalized to a situation where the scattered
particle experiences some final-state interaction. For example, the presence of
a final-state Coulomb interaction or of an external field can be readily taken
into account in Eq. (5.19) by writing[

E−H0−W(r)
]
ψsc(r) = σ(r) , (5.20)

where H0 is the Hamiltonian of a free particle and where W (r) represents the
interaction of the emitted particle (for example the photoelectron) with its en-
vironment. Here and in the following we omit the hat symbol for the operator
(H0≡ Ĥ0). In analogy to other inhomogeneous field equations, e.g., Maxwell’s
equations, the right-hand term σ(r) in (5.20) is again identified as a source for
the scattered wave ψsc(r).
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We now turn to the mathematical aspects of (5.20). Introducing the energy
Green function G(r,r′;E) for the Hamiltonian H defined via [15]:[

E−H0−W(r)
]

G(r,r′;E) = δ 3(r− r′) , (5.21)

a solution to (5.20) in terms of a convolution integral reads:

ψsc(r) =
∫

d3r′G(r,r′;E)σ(r′) . (5.22)

In general, this result is not unique. However, any two solutions ψ1
sc(r) and

ψ2
sc(r) differ only by an eigenfunction ψhom(r) of the homogeneous Schrödin-

ger equation, with H = H0 +W and Hψhom(r) = Eψhom(r). The ambiguity in
ψsc(r) is resolved by the demand that G(r,r′;E) presents a retarded solution
characterized by outgoing-wave behavior as r→∞. Formally, this enforces the
same choice as in Eq. (5.10). It is then easy to decompose the Green function
(5.10) into real and imaginary parts

G(r,r′;E) =
〈

r

∣∣∣∣PP

(
1

E−H

)
− iπδ (E−H)

∣∣∣∣r′〉 , (5.23)

where PP(. . .) denotes the Cauchy principal value of the energy integration.
Defining the current density in the scattered wave in the usual fashion by

j(r) = h̄ℑ[ψsc(r)∗∇ψsc(r)]/M (where for simplicity we omitted the vector po-
tential A(r), see [16]), the inhomogeneous Schrödinger equation (5.20) gives
rise to a modified equation of continuity [17, 18]:

∇ · j(r) =−2
h̄

ℑ [σ(r)∗ψsc(r)] , (5.24)

where ℑ [x] stands for the imaginary part of x. Thus, the inhomogeneity σ(r)
acts as a source for the particle current j(r). By integration over the source vol-
ume, and inserting (5.22), we obtain a bilinear expression for the total particle
current J(E), i. e., the total scattering rate:

J(E) =−2
h̄

ℑ
[∫

d3r
∫

d3r′σ(r)∗G(r,r′;E)σ(r′)
]

. (5.25)

Some important identities concerning the total current J(E) are most easily
recognized in a formal Dirac bra-ket representation. In view of (5.23), we may
express J(E) by

J(E) =−2
h̄

ℑ [〈σ |G|σ〉] = 2π
h̄
〈σ |δ (E−H)|σ〉 , (5.26)
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from which the sum rule immediately follows [18]:∫ ∞

−∞
dE J(E) =

2π
h̄
〈σ |σ〉=

2π
h̄

∫
d3r|σ(r)|2 , (5.27)

(provided this integral exists).

5.3.3 Recovering Fermi’s golden rule

In order to connect Eq. (5.25) to the findings of conventional scattering theo-
ry, we display J(E) in an entirely different, yet wholly equivalent fashion. Em-
ploying a complete orthonormal set of eigenfunctions |ψfi〉 of the Hamiltonian
H, δ (E−H)|ψfi〉 = δ (E−Efi)|ψfi〉 follows, and replacing |σ〉= D(r)|ψatom〉
(5.23), we may formally decompose (5.26) into a sum over eigenfunctions:

J(E) =
2π
h̄ ∑

fi

δ (E−Efi)
∣∣〈ψfi|D(r)|ψatom

〉∣∣2 . (5.28)

Thus, Fermi’s golden rule is recovered. Another noteworthy consequence of
(5.25) and (5.26) emerges in the limit of pointlike sources, σ(r)∼Cδ (r−R).
We then find [17]

J(E) =−2
h̄
|C|2ℑ[G(R,R;E)] =

2π
h̄
|C|2n(R;E) , (5.29)

where n(R;E) = ∑fi δ (E − Efi)|ψfi(R)|2 is the local density of states of H
at the source position R. Equation (5.29) forms the theoretical basis of the
Tersoff–Hamann description of scanning tunneling microscopy [17, 19]. The
advantage of the formulation in terms of quantum sources over the traditional
Fermi’s golden rule approach (which involves an integral over the final states)
is that it emphasizes the dynamical aspects of the propagation in real space
and opens the possibility to a semiclassical calculation of photocurrents with
closed-orbit theories [20, 21].

5.3.4 Photodetachment and Wigner’s threshold laws

To find out how we can use the formalism for real physics we continue our
discussion of the photoeffect. Applying the photoelectric effect to negative
ions means that the emitted electron only weakly interacts with the remain-
ing neutral atom. Just as in Young’s double-slit experiment, the fringe pattern
in the current profile can be interpreted as interference between the two clas-
sical trajectories, here of a particle in a constant force field [24, 25]. From
the interference pattern one can determine the kinetic energy of the electrons
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FIGURE 5.4: Near-threshold detachment of oxygen ions: O− → O + e− in
the presence of a homogeneous electric force field F = eE . The two possible
classical trajectories for a photoelectron leading from the source (marked by
S) to any destination will give rise to interference on a distant detector screen.
The fringe pattern in the current distribution depends sensitively on the energy.
By counting the number of fringes the binding energy E0 of the outer electron
can be determined from Einstein’s law [22, 23, 24].

and plot it against the photon energy to check Einstein’s law (right panel of
Fig. 5.4). Near threshold, the photoelectron has very little kinetic energy and,
hence, a large de Broglie wavelength. In the absence of a final-state Coulomb
interaction the relevant Green function is that of a particle falling freely in a
constant field [24, 26]. Experimental results are reported in Ref. [23], Fig. 5.4.
They show a highly accurate verification of Einstein’s law which can be used
to obtain the binding energy of O− with unprecedented accuracy.

As noted above, we can interpret D(r)|ψatom〉 as a source |σ〉 for the pho-
toelectrons. Expanding the source in terms of multipoles σlm(r) and, taking
into account that for O− the photoelectron leaves the atom near threshold in an
s–wave continuum state, we retain only the l = 0 component of the source by
writing σ(r) = σ00(r)/

√
4π. In the absence of external fields, the free Green

function (5.11), an outgoing spherical wave, yields after multipole expansion

J(E) ∝ k

[∫ ∞

0

r dr
k

sin(kr)σ00(r)
]2

. (5.30)

For E = h̄2k2/(2m)→ 0 it follows that J(E) ∝ k. This result is independent of
the form of the atomic source and it reflects Wigner’s threshold law [24, 27].
It provides an alternative way to determine the electron affinity of a negative
ion.
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A similar analysis applies to the more complicated Green function in an
electric force field F = eE , one of the few quantum problems in more than one
dimension that have exact solutions:

G(r,o;E) =
m

2h̄2r

[
Ci(α+)Ai′(α−)−Ci′(α+)Ai(α−)

]
. (5.31)

Here, β 3 = m/(2h̄F)2, α±=−β [2E +F(z±r)], and Ai(u) and Ci(u)= Bi(u)+
iAi(u) denote Airy functions [13]. It leads to a modified Wigner law for the
s–wave absorption cross section near threshold [18]:

J(E) ∝ Ai′(−2β E)2 + 2β E Ai(−2β E)2. (5.32)

A static electric field opens up a sub-threshold (E < 0) tunneling regime that
has been confirmed by experiment [28].

Emission of particles from pointlike sources has been considered in the lit-
erature [29] long before the advent of mesoscopic physics. It was Schwinger
[30] who introduced sources as a means of describing quantum dynamics in
the context of emission and absorption of light.

5.4 Spatially extended sources: the atom laser

Atomic electron sources are usually sufficiently small to be considered point-
like. A different situation arises when particles are coherently emitted from an
extended region in space. An example for such a “fuzzy” source is the con-
tinuous atom laser, a beam of ultracold atoms fed by a Bose–Einstein conden-
sate (BEC) [31]. In the experiment, only atoms in a specific Zeeman substate
(m =−1) are magnetically trapped and form a BEC. Application of a suitably
tuned radiofrequency (RF) field will cause transitions into another magnet-
ic substate of the atoms (m = 0) that is not subject to the trapping potential.
Under the influence of gravity, these “outcoupled” atoms fall freely from the
trap region and form a coherent, continuous atom laser “beam.” In our lan-
guage, the macroscopic BEC wave function ψ0(r) serves as the source σ(r)
and corresponds to the atomic bound state ψatom(r) in Eq. (5.18), whereas the
outcoupled beam ψ(r) of accelerating atoms takes over the role of the scat-
tered wave ψsc(r), akin to photodetachment in an electric field (Sec. 5.3.4).
From a theoretical viewpoint, the only essential difference is the macroscopic
size of the source.

For ideal, non-interacting atoms, the ultracold cloud populates the ground
state of the nearly parabolic trapping potential, leading to a Gaussian density



5.4. SPATIALLY EXTENDED SOURCES 127

FIGURE 5.5: Left panel: A Gaussian source of freely falling particles can be
replaced by a virtual point source of particles with the same energy, located
upstream from the actual extended source. Right panels: Size dependence of
the beam profile for Gaussian BEC sources with different widths a.

profile in the BEC. For simplicity, we assume an isotropic distribution:

σ(r) = h̄Ωψ0(r) = h̄ΩN0 exp(−r2/(2a2)). (5.33)

Here, h̄Ω denotes the strength of the transition-inducing oscillating RF field.
The parameter a describes the width of the source (which is related to the field
gradient in the trap), and N0 = a−3/2π−3/4 denotes the proper normalization
from the condition ∫

d3r |ψ0(r)|2 = 1. (5.34)

To obtain expressions for the currents generated by a Gaussian source, we
work in the time-dependent propagator representation (see Eq. (5.9)). The
beam wave function ψ(r) then may be written

ψ(r) =−iΩN0

∫ ∞

0
dt eiEt/h̄

∫
d3r′Kfield(r,t|r′,0)e−r′2/(2a2). (5.35)

It is possible to carry out the integration over the source volume. With negligi-
ble corrections, outside the source the integral (5.35) assumes the form

ψ(r) = h̄Ω(2
√

πa)3/2
e−ma2E/h̄2+m2F2a6/(3h̄4) G(r,−mF

2h̄2 a4;E), (5.36)
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FIGURE 5.6: Left panels: Atom-laser beam profile from a Rb BEC of size
a = 0.8 μm at different detuning energies Δν = E/h (5.36). The first series
shows the beam profile for non-interacting particles, whereas the next series
includes interactions due to 500 atoms, which lead to a transverse substructure
[33]. Right panel: Anisotropic trapping frequencies cause a strong modulation
of the total particle current J(E).

where G(r,r′;E) denotes the energy Green function for uniformly accelerated
particles (5.31). This expression displays a remarkable feature of the beam
wave function ψ(r) originating from a Gaussian source: The extended source
can be formally replaced by a virtual point source of the same energy, albeit
at a location shifted by r′ = −mFa4/(2h̄2) from the center of the Gaussian
distribution (see Fig. 5.5). Expressions for the beam profile and currents are
then conveniently found from the analogous expressions for a point source by
performing the indicated shifts.

As an immediate, and somewhat surprising, consequence of the concept of
a virtual source, the beam profile shows a sharp fringe pattern that results from
the interference between the two virtual paths in Fig. 5.5. The number of
fringes depends sensitively on the size a of the source, as displayed in Fig. 5.5.
In the limit of extended Gaussian sources with E < mF2a4/(2h̄2), the virtu-
al source turns into a tunneling source (as discussed in greater detail in the
following section), and the beam profile itself becomes Gaussian [26]. The
spectrum of the total particle current J(E) as a function of the detuning of the
RF field E = hΔν then may be written in the suggestive form

J(E)≈ 2π
h̄

∫
d3r |σ(r)|2 δ (E + Fz), (5.37)

an expression that has a simple geometrical interpretation. For extended sources,
the energy dependence of J(E) reflects the source structure: By the resonance
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FIGURE 5.7: Beam profile for simultaneous output coupling with two dif-
ferent radio frequencies. The outcoupling frequencies Δν1,2 = E/h are (a)
±0.5 kHz, (b) ±1.0 kHz, and (c) ±2.0 kHz. The number of longitudinal in-
terference fringes is proportional to the difference in the detuning frequencies.
Parameter: a = 0.8 μm, F = mRb g, with g = 9.81 m/s2, and mRb = 87 u.

condition E +Fz = 0, the total current probes the density |ψ0(r)|2 of the BEC
on different slices across the source. Finally, we note that the approximation
(5.37) obeys the sum rule (5.27) for the total current J(E).

In an actual atomic BEC, the repulsive interactions between atoms lead to
a broadening of the condensate. For most cases, the inclusion of the interac-
tions via a mean-field approach is sufficient. The repulsive forces of the much
denser BEC act on the outcoupled atom beam and lead to a further splitting of
the beam profile, as shown in Fig. 5.6. Also the total current is modified by
the interactions [33]. Both effects have been observed experimentally. Non-
isotropic trapping frequencies and currents from higher trapping modes allow
to control the shape and rate of the atom laser [33].

Fig. 5.7 shows the “dripping quantum faucet”, which is produced by super-
position of two laser beams with slightly different energy that are outcoupled
from the same BEC [32]. It is not surprising to see that rotating BECs which
sustain vortices are described in terms of rotating Gaussian sources with nodal
structures [24].
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FIGURE 5.8: Electric field emission out of (or into) the sharp apex of a con-
ducting wire. The bright spot symbolizes the Gaussian density profile along
the central tunneling path between tip and surface of the sample.

5.5 Ballistic tunneling: STM

The quantum theory of scattering is not limited to asymptotic problem-
s where particles are generated (and observed) far away from the scattering
region. A prominent candidate for scattering at finite distances is the scanning
tunneling microscope (STM). There, an electric current flows down a macro-
scopic wire that ends in a sharp tip. Its apex can be viewed as a source of
electrons which leave the tip by tunneling due to the applied electric field be-
tween tip and sample surface. In some cases, the apex of the tip is ultra-sharp,
consisting of a single atom. In an experiment the tip is slowly moved across
the surface. In the constant current mode the tip is raised and lowered so as
to keep the current constant. The raising and lowering process produces a
computer-generated contour map of the surface [37, 38]. The method is ca-
pable of resolving individual atoms and works best with conducting materials.
Electrons drawn from the apex of the tip (see Fig. 5.8) exhibit dynamically for-
bidden motion because the electron transfer between tip and surface occurs via
field-driven tunneling, confining the current to a narrow filament with Gaussian
profile that samples the surface.

It is straightforward to model the apex of an STM tip as a source (or sink)
of electrons. To be specific, we consider here a conducting sample surface that
harbors a two-dimensional electron gas; in practice, the band of surface states
on the densely packed, smooth Cu(111) surface has been exploited for this
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FIGURE 5.9: Sketch of the bouncing ball problem. An electron exits the three-
dimensional tunnel at z = 0 with energy E = 0. It then undergoes multiple
reflections between the exit of the tunnel and the surface barrier at z = zw

before traveling into the solid (z > zw). Adatoms (not drawn in the figure)
are necessary to observe the resonance-induced ripples (see Fig. 5.11) with
energy E⊥.

purpose [35, 36]. The STM tip will emit a spreading surface electron wave that
is scattered at adsorbed surface atoms (adatoms). Since the electrons are slow,
s–wave scattering prevails that can be modelled by a short-range potential.
In this case, one has an analytic solution for the scattering problem which
forms the basis for the calculation of the corrugation (surface roughness). As
a result of the analytic approach we will show that scattering resonances play
an essential role for resolving atoms and detecting electron surface states.

The current flowing through the STM tip is proportional to the local density
of surface states, and therefore the imaginary part of the Green function at the
tip position, ℑ[G(R,R;E)] (5.29). A route that leads conveniently to the Green
function in this problem consists of the following three steps:

5.5.0.0.2 Step 1. One-dimensional problem: We first calculate the one-
dimensional Green function Gα

1 (z,z′;E) that corresponds to the model poten-
tial of Fig. 5.9. In this one-dimensional problem, the electron is allowed to
tunnel in direction of the electric field (z–direction). The energy E0 corre-
sponds to the bound (and unoccupied) surface state of Cu(111). The energy E
of the tunneling electron is taken to lie in a band gap of the substrate (solid).
As a result the electron faces a potential barrier at z = zw and bounces back and
forth between tunnel exit (z = 0) and barrier. However, the electron can move
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FIGURE 5.10: Schematic plot of tip (at z = z′), adsorbed atoms (at z = 0), and
a strongly reflecting, clean surface (at z = zw).

freely with energy E⊥ = E−E0 in the surface plane orthogonal to z = zw. Be-
cause of inelastic scattering with phonons the electron will finally disappear in
the solid. By assuming a point source at z = z′ the Green function that belongs
to the problem of Fig. 5.9 can be solved analytically in terms of Airy functions
[34].

5.5.0.0.3 Step 2. Three-dimensional background Green function: Since
the STM is a three-dimensional device we must calculate the Green function
in three dimensions. The uncertainty principle for momentum and position
applied in the lateral (x− y) direction results in a tunneling spot (see Fig. 5.8)
of finite width, and approximately Gaussian profile. The three-dimensional
Green function Gsym(r,r′,z) for a particle moving in the potential Ũ(r) = Ũ(z)
of Fig. 5.9 is obtained from its one-dimensional counterpart by integrating
Gα

1 over all momenta h̄k⊥ vertical to the field direction (i. e., parallel to the
surface),

Gsym(r,r′,E) = Gsym(z,z′, Δρ ,E)

=
1

2π

∫ ∞

0
dk k⊥ J0(k⊥Δρ)Gα

1

(
z,z′,E− h̄2k2

⊥
2M

)
, (5.38)

with J0(· · ·) being the usual cylindrical Bessel function of degree zero. The
lateral distance between r and r′ is given by Δρ2 = |ρ−ρ ′|2 = (x−x′)2 +(y−
y′)2. Obviously Gsym(r′,r′,E) is independent of the lateral position (x′,y′) of
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FIGURE 5.11: Interference of waves scattered by corral atoms: Model cal-
culation [34] of a corrugation plot at constant electric current. The structure
of the circular ripples both inside and outside the corral can be related to the
quantum bounce problem illustrated in Fig. 5.9 and discussed in the text. For
comparison with experimental results obtained by Eigler’s group [35, 36] we
show a similar setup with a quantum corral consisting of 48 iron atoms on
a circle with radius 71.3 Å adsorbed on a Cu(111) surface (left panel). The
corrugation of the adatoms is approximately 0.5 Å and corresponds to a con-
ductivity of σ0 = 2.7 · 10−8 A/V. Note that there is no adsorbed atom in the
center of the corral.

the tip. Hence, for z′ = const, Gsym represents a constant background corruga-
tion. The full solution for the Green function with the adatoms present, is then
obtained from

5.5.0.0.4 Step 3. Dyson equation for G(r,r′,E): We must now take in-
to account the adsorbed atoms (see Fig. 5.10). Using the appropriate Dyson
equation, we obtain an algebraic equation for the full Green function,

G(r,r′,E) = Gsym(r,r′,E)+
n

∑
j,k=1

Gsym(r,r j,E)(T(E)) jkGsym(rk,r
′,E),

(5.39)
where the sum runs over all adatoms, and the T matrix describing the effects
of the multiple scattering events between the adsorbed atoms can be expressed
using the background Green function Gsym(r j,rk,E). Details of the calcula-
tion of the Green function and the experimentally observable tunneling current
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FIGURE 5.12: Schematic view of a Hall bar. A current Jx is flowing through
a two-dimensional electron gas (2DEG) in the x-y–plane, which is orientated
perpendicular to an external magnetic field B. The deflected electrons at the
sample edges produce a Hall voltage Uy over the sample width W , which is
measured along with the longitudinal voltage drop Ux.

J(R;E) (5.29) can be found in Ref. [34]. A zero-temperature plot obtained
from such a calculation (which typically takes a few minutes on a personal
computer) is shown in Fig. 5.11. We should point out that since Gsym gives rise
only to a uniform background current, the observed roughness of the surface
is entirely contained in the T matrix.

5.6 Electrons in electric and magnetic fields:
the quantum Hall effect

In this section we explore the strange and fascinating ways of electrons in
electric and magnetic fields. Of particular importance here is the Hall con-
figuration, where the electrons are confined to an effectively two-dimensional
conductor in the presence of orthogonal electric and magnetic fields. The Hall
geometry is displayed in Fig. 5.12. Fig. 5.13 shows some of the classical paths
followed by the electrons in the conducting plane. Notwithstanding the com-
plicated pattern of motion, all trajectories share the same distinctive behavior,
uniform drift motion perpendicular to both fields with a characteristic velocity
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vD = E /B.

FIGURE 5.13: Drift motion in crossed fields: Trajectories drift with velocity
vD = E /B perpendicular to the fields. The motion of the electrons in two
dimensions is a superposition of cyclotron motion with drift motion, resulting
in trochoidal (cycloidal) trajectories.

Because of the universal drift motion, the current density in the Hall bar is
simply proportional to the local density of states (LDOS) n(E) in the materi-
al, which in turn is related to the Green function in the corresponding exter-
nal potentials (see Sec. 5.3.4). Hence, from a mathematical point of view we
are interested in finding the energy-dependent density of states for the mov-
ing electrons. For a purely magnetic field, the two-dimensional LDOS has a
spike-like structure [41, 42], formally written as a superposition of discrete
δ–distributions positioned at the Landau levels at E = (2k + 1)h̄ωL, where
ωL = eB/(2m) denotes the Larmor frequency.

n(2D)
B

(E) =
eB
2π h̄

∞

∑
k=0

δ (E− h̄ωL[2k + 1]) . (5.40)

The addition of an electric field leads to important changes in the density
of states for a purely magnetic field. As we know from Eq. (5.29), the local
density of states n(E) is always linked to the imaginary part of the energy-
dependent retarded Green function G(r = o,r′ = o;E),

n(E) =− 1
π

ℑ [G(o,o;E)] , (5.41)

which in turn can be expressed as the Laplace transform of the quantum prop-
agator K(o,t|o,0) (5.9):

G(o,o;E) =
1
ih̄

∫ ∞

0
dt eiEt/h̄K(o,t|o,0). (5.42)
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For r = 0, the two-dimensional quantum propagator for the Hamiltonian of a
(spinless) electron in crossed fields,

H(2D)
E×B

=
p2

x + p2
y

2m
+

1
2

mω2
L

(
x2 + y2)− r⊥ ·F⊥−pyxωL + pxyωL, (5.43)

where F⊥ =−eE⊥ denotes the electric force in the x-y–plane reads [11],

K(2D)
E×B

(o,t|o,0) =− imωL

2πh̄sin(ωLt)
exp

{
iF2
⊥t

8mh̄ω2
L

[ωLt cot(ωLt)−1]
}

. (5.44)

To account for the effects of the electron spin, we note that its interaction
with the magnetic field merely adds a spatially constant term to the Hamilto-
nian, and thus shifts the effective energy of the two spin populations by a fixed
amount± 1

2 gμBB = ± 1
2 gh̄ωL [41]. The spin-dependent densities of states be-

come

n↑,↓(E) = n

(
E± 1

2
gh̄ωL

)
(5.45)

and the total LDOS including spin can be mapped back to the LDOS without
spin: n↑↓(E) = n↑(E)+ n↓(E). Thus, it suffices to evaluate n(E). For the dis-
cussion of the density of states in the Hall configuration it is useful to replace
the trigonometric functions in the propagator (5.44) by a sum. This can be
done using the identity

exp[−α coth(z)]
sinh(z)

= 2e−α
∞

∑
k=0

L(0)
k

(2α)e−2z(k+1/2), (5.46)

which follows directly from the generating function of the Laguerre polyno-
mials L(0)

k
(z) [13]. The Laplace transform (5.42) then can be performed ana-

lytically, and we finally find for the density of states

nE×B(E) =
1

2π3/2l2Γ

∞

∑
k=0

1
2kk!

e−E2
k /Γ2[

Hk

(
Ek/Γ

)]2
, (5.47)

where the level width parameter

Γ = F⊥l (5.48)

is related to the magnetic length l =
√

h̄/(eB). Hk(z) denotes the kth Hermite
polynomial [13] and Ek is the effective energy shift for the kth Landau level

Ek = E−Γ2/(4h̄ωL)− (2k + 1)h̄ωL. (5.49)
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Interestingly, the density of states can again be interpreted as a sum over Lan-
dau levels. However, they now appear spread in energy, with a distribution that
is isomorphic to the probability density of the corresponding eigenstate of a
one-dimensional harmonic oscillator

∣∣uk(ξ )
∣∣2 =

1
2kk!

√
π

e−ξ 2[
Hk (ξ )

]2
. (5.50)

The total contribution of the kth Landau level integrated over energy-space is
readily available from the normalization of the oscillator eigenstates:

∫ ∞

−∞
dE nk,E×B(E) =

eB
2π h̄

∫ ∞

−∞
dξ
∣∣uk(ξ )

∣∣2 =
eB
2π h̄

. (5.51)

This result reflects the quantization of each Landau level in a purely magnetic
field (5.40).

At low temperatures, only the occupied states with energies smaller than the
Fermi energy EF of the system will contribute to the Hall current. Thus, we
expect that the current density will be proportional to the integrated density of
states N(EF) with energies E < EF ,

N(EF) =
∫ EF

−∞
dE n(E). (5.52)

Within the Fermi gas model for a dilute gas of electrons in two dimensions it is
straightforward to obtain resistivity plots which bear remarkable resemblance
to actual quantum Hall data [40]. An example is shown in Fig. 5.14.

We finally mention the implications of our Green function model of the
integer quantum Hall effect for the observed breakdown of the quantized con-
ductivity at higher electric fields [43]. Kawaji [44, 45, 46] studied the width
of the quantized resistivity “plateaus” as a function of the electric current and
thus the Hall field in the sample. He finds a characteristic power law for the
shrinking of the plateaus, which can be expressed in terms of a critical electric
field:

Ecrit ∝ B3/2. (5.53)

The non-perturbative inclusion of the electric field via the Green function for-
malism as presented here leads automatically to this power law (see [40, 47,
48, 49])
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FIGURE 5.14: The quantum Hall effect. Left panel: Schematic sketch of the
experimental results adapted from [39] for ρxy in GaAs/AlGaAs heterojunc-
tions at T = 50 mK. The theoretical simulations [40] (right panel) are based on
the density of states (5.47). The dotted straight line is the classical prediction.

5.7 The semiclassical method

It is usually rewarding to analyze quantum problems with the tools of clas-
sical physics. First, the semiclassical solution facilitates in many cases the
understanding of the quantum solution properties. Second, semiclassics lead-
s to approximate solutions (“WKB solutions”) that are usually numerically
much less expensive than ab initio quantum mechanical calculations. In con-
text of the propagator methods discussed here, the semiclassical method can
be described by the following steps:

1. Find number of paths N joining source r′ and destination r. This is an
effective method for finding the caustics (turning surfaces).

2. Find all trajectories rk(t) leading from r′ to r.

3. Establish classical weight ρk(r), i.e., the local density of trajectories, for
each path.

4. Determine its semiclassical phase Φk(r) from the reduced action along
the path.

5. Create semiclassical approximation to the Green function Gsc(r,r′;E).

6. Use uniform approximations to correct the divergence of the WKB so-
lution near the caustics.
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Therefore, the semiclassical method requires knowledge of the classical tra-
jectories rk(t), their local density ρk(r), and the corresponding action fields
Wk(r,r

′;E). A semiclassical treatment of the photodetachment problem (Sec.
5.3.4) can be found e.g., in Ref. [26]. Recently, the technique has been applied
to the more complicated dynamics of electrons in parallel electric and magnet-
ic fields [50, 51]. Here, we concentrate on the related problem of semiclassical
motion in the Hall configuration (Sec. 5.6).

5.7.0.0.5 Classical orbits for the Hall effect: The propagation of electrons
in crossed electric and magnetic fields has received much attention in classical
physics. Indeed, the corresponding trajectory field of electrons emitted by a
point source located at the origin (for convenience), plotted in Fig. 5.15, looks
interesting by itself. Again assuming the Hall geometry displayed in Fig. 5.12,
the motion of the charges is governed by the Hamiltonian (5.43), and we find
the family of orbits:

r(t) =

⎛⎝ vDt

0

⎞⎠+
1

2ωL

⎛⎝ −v0y v0x− vD

v0x− vD v0y

⎞⎠ ·
⎛⎝ cos(2ωLt)

sin(2ωLt)

⎞⎠
+

1
2ωL

⎛⎝ v0y

vD− v0x

⎞⎠ . (5.54)

Here, the initial velocity vector depends on the emission angle θ and is given
by

ṙ(t = 0) = v0 =

⎛⎝ v0x

v0y

⎞⎠=

⎛⎝ v0 cosθ

v0 sinθ

⎞⎠ . (5.55)

It must fulfill E = 1
2 mv2

0. Eq. (5.54) is conveniently interpreted as a sum of
three terms: On average, only the first term contributes to the transport of the
electron. The corresponding drift velocity (averaged over one cyclotron period
T = π/ωL) reads

vD =
1
T

∫ t+T

t
dt ′ ṙ(t ′) = (E ×B)/B2. (5.56)

In a “drift” reference frame that is moving with this velocity the otherwise tro-
choidal orbit becomes a circle with angle-dependent radius R(θ ) whose center
is shifted from the origin by a constant displacement rc

R(θ )2 =
v2

0−2v0vD cosθ + v2
D

4ω2
L

, rc =
1

2ωL

⎛⎝ v0 sinθ

vD− v0 cosθ

⎞⎠ . (5.57)
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FIGURE 5.15: Caustics and the trajectory field (cf. Fig. 5.13): The trajectory
field traces out the caustics. Electrons pass through focal points. The number
of paths connecting the source with a given point increases with the magnetic
field.

Some sample orbits are plotted in Fig. 5.13. Variation of the angle θ yields the
trajectory field displayed in Fig. 5.15.

5.7.0.0.6 The Hall conductivity tensor: Noting that the velocity in turn is
related to the classical current density j

j = NevD, (5.58)

where N denotes the electron density, one can extract the resistivity tensor ρ (or
its inverse, the conductivity tensor σ ) from Ohm’s law in the two-dimensional
(x,y)–plane:

j = ρ−1 ·E ⇒ σ = ρ−1 =
Ne
B

⎛⎝0 −1

1 0

⎞⎠ . (5.59)

This remarkable equation predicts a finite conductivity even in the absence
of scattering, which is usually invoked in theories of conduction in order to
guarantee a finite carrier velocity. We note that the drift velocity is independent
of the kinetic energy of the electrons.

5.7.0.0.7 Closed orbits in the classical picture: Eq. (5.58) shows that the
current in the Hall conductor is determined by the density of states N. Accord-
ing to Sec. 5.3, the local density of states (LDOS) n(E) within a narrow energy
interval is related to the Green function G(o,o;E) (5.41), which, from a semi-
classical perspective, is governed by those trajectories that return to the source
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FIGURE 5.16: Density of states in crossed electric and magnetic fields. The
curves show the quantum (solid) and semiclassical result (dashed line). The
staircase structure denotes the count of closed orbits. Crossed electric field
E = 4000 V/m and magnetic field B = 5 T.

(r = r′ = o). This is the basic motivation of the closed orbit theory [52, 53] for
source processes.

These trajectories, which lead from the origin back to the origin, are best
found by using the classical action. Here, it is convenient to start with the time-
dependent action functional Scl(r,t|r′,0). In crossed electric and magnetic
fields, this classical action is uniquely given by

Scl(o,t|o,0) =−m
2

v2
Dt +

mωL

2
cot(ωLt)v2

Dt2. (5.60)

This expression describes the single closed orbit returning to the source in a
predetermined time of flight t. However, we are rather interested in the energy
E of the electron,

E(t) =−∂Scl(o,t|o,0)
∂ t

. (5.61)

For fixed emission energy E , this is an implicit equation for the time of flight
t, and generally several solutions tk, pertaining to distinct classical trajectories
rk(t), exist. (To find their initial velocities v0, it is sufficient to set r = o and
t = tk in the equation of motion (5.54), and solve the ensuing linear equation
system for v0x and v0y.) The reduced action for each contributing path then
follows from the Legendre transform:

Wk(o,o;E) = Scl(o,tk|o,0)+ Etk. (5.62)

As shown in Fig. 5.16, the number of closed orbits increases with the magnetic
field strength.
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FIGURE 5.17: Principal structure of the classical action in the complex time
plane for N = 3 saddle points (closed orbits). The dashed line denotes the
integration path. Singularities are denoted by × and saddle points by )(. Note
that the singularity at the origin arises from the prefactor in the propagator and
not from the classical action at t = 0.

5.7.0.0.8 Density of states and propagator: The classical action (5.60) is
an important ingredient of the quantum-mechanical time-evolution operator.
Using Eqs. (5.41) and (5.42), it is possible to relate the local density of states
with the propagator via [40, 52, 54]

n(2D)
E×B

(E) =
1

2π h̄

∫ ∞

−∞
dT eiET/h̄ K(o,T |o,0), (5.63)

where the time-dependent propagator (5.44) is given by

K(o,t|o,0) =
mωL

2π i h̄sin(ωLt)
exp

{
i
h̄

Scl(o,t|o,0)
}

. (5.64)

As we have shown before, this expression can be evaluated analytically in
terms of harmonic oscillator eigenstates in energy space (5.47).

5.7.0.0.9 Quantum result versus semiclassical approach: An asymptotic
evaluation of the integral (5.63) provides the link between closed orbits and the
density of states. The original path of integration follows the real time-axis.
Analytic continuation of the propagator makes it possible to deform this path
of integration to the one sketched in Fig. 5.17. This path passes through saddle
points of the exponent (denoted by )( in the figure) using the paths of steepest
descent. The singularities in the integrand at times T = kπ/ωL (denoted by×)
are avoided. The only contribution of a singularity comes from t = 0, which
may be evaluated by the residue theorem:

Iorigin =
1

2π h̄

∮
dt eiEt/h̄ K(o,t|o,0) =

m

2π h̄2 . (5.65)
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Comparison of Eqs. (5.63) and (5.64) with (5.61) shows that the saddle points
of the integrand coincide with the classical times of flight for the various closed
orbits. Adding their contributions yields the semiclassical result:

n(2D)
sc,E×B

= Iorigin + 2Re

⎡⎣ mωL

4π2i h̄2

N

∑
k=1

eiWk(o,o;E)/h̄+iπ sgn[S̈cl(o,tk|o,0)]/4

sin(ωLtk)
√
|S̈cl(o,tk|o,0)|/(2π h̄)

⎤⎦
(5.66)

Fig. 5.16 compares the semiclassical and quantum results. Despite their very
different origins (sum over Landau levels vs. interfering classical trajectories),
they are in striking agreement. In the “plateau regions” of the conductivity,
destructive interference between the properly weighted classical trajectories
strongly suppresses the LDOS, leading to a quantization into separated levels
with a substructure. Note that the number of trajectories does not change in
each Landau level. It is the relative phase that modulates the LDOS.
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Chapter 6

The Probabilistic Nature of
Quantum Mechanics

Leon Cohen1

Abstract We show that within classical probability theory there are math-
ematical quantities which are similar to quantum mechanical wave functions
and operators. This is shown by generalizing a theorem of Khinchin on the
necessary and sufficient conditions for a function to be a characteristic func-
tion. We show that for the one dimensional case the methods of quantum
mechanics for obtaining expectation values and distributions of observables
follow simply. Particular difficulties arise for two non-commuting operators
but nonetheless improper “quasi-distributions” can be defined and used with
profit. Quasi-distributions can be thought of as two dimensional mappings of
a one dimensional function. In the mathematical sense the distribution con-
tains the same information as the wave function, since it is constructed from
it and the wave function can be obtained from it uniquely. Nonetheless, an
immense simplification occurs when one studies the wave function in a quasi-
representation: the physical nature of the wave function becomes much clearer.
A number of explicit examples are given.

1Work supported by the Air Force Office of Scientific Research and the NSA HBCU/MI program.
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6.1 Introduction

Quantum mechanics is a probability theory but it is unlike any other proba-
bility theory. While the end results of quantum mechanics are standard prob-
abilistic quantities, such as expectation values and probability distributions,
quantum mechanics calculates these quantities in very unusual ways compared
to standard probability theory. Clearly, whoever constructed quantum mechan-
ics did not wish to use standard probability theory as exemplified by the classic
books of, for example, Feller or Doob, and also did not bother with the axioms
of probability as formulated by Kolmogorov and others. Quantum mechanical
ideas and methods are seemingly foreign to standard probability theory, as it
deals with operators, wave functions, transformation theory, and yet, as just
mentioned, at the end it gives standard probabilistic results. Why should this
be so? Why isn’t standard probability theory good enough? Conversely, is it
possible that in standard probability theory there are things like wave functions
and operators but that we have not noticed them? That is not to ask whether
quantum mechanics can be derived from classical probability theory but to ask
why the mathematical methods of standard probability theory are not good
enough. It is our aim to consider the fundamental probabilistic structure of
quantum mechanics and classical probability theory and study the relationship
between the two. We will see that some of the strange ideas of quantum me-
chanics do exist in classical probability theory. In particular we will show that
operators and quantum mechanical-like wave functions can be defined in clas-
sical probability theory and used to calculate averages in the quantum mechan-
ical manner. But as just mentioned one can derive other quantum mechanical
properties such as the Schrodinger’s equation or the fact that wave functions
obey the superposition principle.

6.2 Are there wave functions in standard probability
theory?

Seemingly, nothing like wave functions or operators exist in standard prob-
ability theory, however, we will argue that at least for one dimensional proba-
bility distributions, operators and wave functions do appear in standard prob-
ability. This may seem absurd at first thought since wave functions are com-
plex and standard probability theory generally deals with real quantities. Are



6.2. FUNCTIONS IN STANDARD PROBABILITY THEORY? 151

there functions in standard probability theory that are complex? Without ques-
tion the most important complex quantity is the characteristic function, M(θ ),
which is the Fourier transform of the probability density, P(x),

M(θ ) =
∫

eiθxP(x)dx. (6.1)

The probability distribution can be calculated from it,

P(x) =
1

2π

∫
M(θ )e−iθxdθ . (6.2)

The characteristic function has many uses and advantages and very often it is
easier to use to get statistical quantities than the probability distribution itself.
For example, it can be used to calculate the moments

〈xn〉=
1
in

dn

dθ n M(θ )
∣∣
θ=0. (6.3)

Also, if the moments are known they can be used to construct the distribution,
since from the moments we can calculate the characteristic function

M(θ ) =
〈

eiθx
〉

=
∞

∑
n=0

(iθ )n

n!
〈xn〉 (6.4)

and hence the distribution by way of Eq. (6.2).
The characteristic function is generally a complex function. What is im-

portant for our considerations is the fact that not every complex function is a
characteristic function. Because a probability distribution is manifestly posi-
tive and because it has certain properties, e.g., the integral over all space has to
be one, these properties get reflected on the characteristic function. It is easy to
come up with many necessary conditions for a function to be a characteristic
function but of importance is to determine necessary and sufficient conditions.
Historically, the answer was given by Khinchin [14, 18], however, we believe
a better answer can be given: M(θ ) is a characteristic function if and only if it
can be expressed in the following form [7]

M(θ ) =
∫

g∗(x)eiθAg(x)dx, (6.5)

for some function g(x) and for some Hermitian operator A. Also, g(x) is nor-
malized to one, ∫

|g(x)|2dx = 1. (6.6)
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We emphasize though that while the characteristic function is unique the pair
(g,A) is not and quite the contrary there is an infinite number of such pairs that
will give the same characteristic function. As we will see shortly the Khinchin
result is one such pair.

Expectation values: Let us now calculate the expectation value using the
standard method, namely Eq. (6.3),

〈x〉 =
1
i

∂
∂θ

M(θ )
∣∣
θ=0 =

1
i

∂
∂θ

∫
g∗(x)eiθAg(x)dx

∣∣
θ=0

=
∫

g∗(x)Ag(x)dx.

This is precisely the quantum mechanical procedure for getting expectation
values. Therefore we argue that the g(x)′s are analogous to the quantum me-
chanical wave functions.

Obtaining probability distributions. First, we review how one gets prob-
abilities in quantum mechanics. One solves the eigenvalue problem for the
Hermitian operator representing the physical quantity. The spectrum can be
discrete or continuous depending on the operator. We first assume that it is
discrete

Aun(x) = anun(x), (6.7)

where an,un(x) are the eigenvalues and eigenfunctions respectively and A is
the operator. According to quantum mechanics the only random variables are
the eigenvalues an and the probability for getting these values is calculated in
the following way. Expand the wave function as

g(x) = ∑
n

cnun(x), (6.8)

then, the probability of measuring an is

P(an) = |cn|2 quantum mechanical probability (discrete case). (6.9)

For the continuous case we write

Au(a,x) = au(a,x), (6.10)

where u(a,x) are the eigenfunctions. One now expands as

g(x) =
∫

ϕ(a)u(a,x)dx, (6.11)

where
ϕ(a) =

∫
g(x)u∗(a,x)da. (6.12)
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Then, the probability of measuring a is

P(a) = |ϕ(a)|2 quantum mechanical probability (continuous case). (6.13)

Now we ask whether one can derive these standard quantum results using our
form of the characteristic function, that is by combining Eq. (6.5) with Eq.
(6.2). We consider first the continuous case. Substituting Eq. (6.5) into Eq.
(6.2) we have

P(a) =
1

2π

∫
M(θ )e−iθxdθ (6.14)

=
1

2π

∫
ϕ∗(a′)u∗(a′,x)eiθAϕ(a′′)u(a′′,x)g(x)

e−iθadxdθda′da′′ (6.15)

=
1

2π

∫
ϕ∗(a′)u∗(a′,x)

eiθaϕ(a′′)u(a′′,x)g(x)e−iθadxdθda′da′′ (6.16)

= |ϕ(a)|2 (6.17)

which is Eq. (6.13), the quantum mechanical result. Thus we see that, again,
the g’s defined by Eq. (6.5) act as “wave” functions.

One of the remarkable properties of quantum mechanics is discreteness of
certain observables and that the only values that a random variable can take are
the eigenvalues. To see how that comes in consider the probability when we
have the discrete case. Substituting Eq. (6.8) into Eq. (6.2) we have

P(a) =
∫

∑
n,m

c∗mu∗m(x)eiθAcnun(x)e−iθadxdθ (6.18)

=
∫

∑
n,m

c∗mu∗m(x)eiθancnun(x)e−iθadxdθ (6.19)

or
P(a) = ∑

n
|cn|2δ (a−an) (6.20)

which shows that the only values which the random variable can take with
nonzero probability are the eigenvalues.

6.2.1 The Khinchin theorem

As mentioned above Khinchin derived necessary and sufficient conditions
that a function be a characteristic function. His result is that a complex func-
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tion, M(θ ), is a characteristic function if and only if there exists the represen-
tation

M(θ ) =
∫

g∗(x)g(x + θ )dx. (6.21)

We now show that this is a special case of our result, Eq. (6.5). Take

A =
1
i

d
dx

, (6.22)

and substitute into Eq. (6.5) to obtain

M(θ ) =
∫

g∗(x)eiθAg(x)dx (6.23)

=
∫

g∗(x)eθ d
dx g(x)dx (6.24)

=
∫

g∗(x)g(x + θ )dx, (6.25)

which is precisely the Khinchin theorem. In going from Eq. (6.24) to Eq.
(6.25) we have used the fact that for any function [26]

eθ d
dx g(x) = g(x + θ ). (6.26)

Thus the Khinchin theorem is a special case, it is one pair, (g, 1
i

d
dx ), out of an

infinite number. We note that A as defined by Eq. (6.22) in this example is
essentially the momentum operator and is the generator of translations as per
Eq. (6.26).

6.3 Two variables

We now consider the case of two variables and see if and how the above can
be generalized. For two random variables, a and b the characteristic function,
M(θ ,τ), and distribution, P(a,b), are related by

M(θ ,τ) =
∫ ∫

eiθa+iτbP(a,b)dadb, (6.27)

P(a,b) =
1

4π2

∫ ∫
M(θ ,τ)e−iθa−iτbdθdτ. (6.28)

Now just like in the one dimensional case the characteristic function is an
expectation value, in this case it is the expectation value of eiθa+iτb,

M(θ ,τ) = 〈eiθa+iτb〉, (6.29)
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Let us recall that in the last section we showed that the characteristic function
is given by

M(θ ) =
∫

g∗(x)eiθAg(x)dx (6.30)

where A is the operator associated with the variable.
If we have two variables we would hope that we can calculate the char-

acteristic function in a similar way. Suppose a and b are represented by the
operators A and B then we expect to obtain the characteristic function by way
of [4, 24]

M(θ ,τ) =
∫

ψ∗(q)eiθA+iτB ψ(q) dq. (6.31)

However, it is a remarkable fact that the above procedure does not work! It
does not work because the characteristic function thus defined is improper, that
is, it is not the Fourier transform of a positive density. Why it does not work
is a long standing issue in quantum mechanics although most authors dismiss
the issue by saying that it is because of the uncertainty principle or because the
operators do not commute. Of central importance is that since the operators
in general do not commute, one can take for the characteristic function many
choices such as

M(θ ,τ) =
∫

ψ∗(q)eiθA+iτB ψ(q) dq (6.32)

or
∫

ψ∗(q)eiθA eiτB ψ(q) dq (6.33)

or
∫

ψ∗(q)eiτB eiθA ψ(q) dq (6.34)

or
∫

ψ∗(q)eiθA/2eiτBeiθA/2 ψ(q) dq (6.35)

or all possible arrangements (6.36)

and clearly there is an infinite number of ways to rearrange the operators. A
way to characterize all of these is the kernel method, which we will describe
shortly. Even though one gets improper densities it is rather remarkable that
these densities are nonetheless very useful and indeed quantum mechanics can
be formulated in terms of these improper densities. These improper densi-
ties are called quasi-probability distributions and the formulation of quantum
mechanics in terms of them is called the phase space formulation of quantum
mechanics. Instead of considering operators in general we describe here the
case when the operators are position and momentum. What we want is to
define a “probability distribution,” C(q, p), so that we can calculate averages
in the standard probabilistic way. For a quantum operator, G(q,p), we want
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to associate a classical function, g(q, p), so that its average calculated in the
classical way agrees with the quantum way, that is∫ ∫

g(q, p)P(q, p)dqd p =
∫

ψ∗(q)G(q,p)ψ(q)dq. (6.37)

Of course we also want the distribution to satisfy the marginal conditions,∫
C(q, p)d p = |ψ(q)|2 , (6.38)∫
C(q, p)dq = |ϕ(p)|2 , (6.39)

where |ϕ(p)|2 is the probability distribution of momentum and where ϕ(p) is
the momentum wave function,

ϕ(p) =
1√
2π

∫
e−ipq ψ(q)dq. (6.40)

Wigner was the first to give such a distribution [27]. It is possible to generate
all distributions that satisfy Eqs. (6.38)–(6.39),

C(q, p) =
1

4π2

∫ ∫ ∫
ψ∗(u− 1

2 τ)ψ(u + 1
2 τ)Φ(θ ,τ)e−iθq−iτ p+iθu dudτ dθ ,

(6.41)

where Φ(θ ,τ) is a two-dimensional function called the kernel that character-
izes the distribution [4, 15, 3, 13, 17, 28]. In Eq. (6.41) and subsequently we
take h̄ = 1. In the Table 6.1 we list some distributions and their corresponding
kernels.

Eq. (6.41) can be written as

C(q, p) =
1

4π2

∫ ∫
M(θ ,τ)e−iθq−iτ p dθ dτ, (6.42)

where

M(θ ,τ) =Φ(θ ,τ)
∫

ψ∗(u− 1
2 τ)ψ(u + 1

2 τ)eiθu du (6.43)

is called the quasi-characteristic function.

6.3.1 Generalized characteristic function

A central idea in understanding and deriving Eq. (6.41) is the notion of the
characteristic function operator, an idea first introduced by Moyal [21] for the
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Name Kernel: φ(θ ,τ) Distribution: C(q, p)

General class (Cohen) φ(θ ,τ)
1

4π2

∫ ∫ ∫
e−iθq−iτ p+iθu φ(θ ,τ)

ψ∗(u− 1
2 τ)ψ(u + 1

2 τ)dudτ dθ

Wigner 1
1

2π

∫
e−iτ pψ∗(q− 1

2 τ)ψ(q + 1
2 τ)dτ

Margenau–Hill cos 1
2 θτ Re

1√
2π

ψ(q)ϕ∗(p)e−it p

Kirkwood eiθτ/2 1√
2π

ψ(q)ϕ∗(p)e−iqp

Born–Jordan–Cohen
sin 1

2 θτ
1
2 θτ

1
2π

∫
1
|τ| e

−iτ p
∫ q+|τ|/2

q−|τ|/2

ψ∗(u− 1
2 τ)ψ(u + 1

2 τ)dudτ

Choi–Williams e−θ 2τ2/σ 1

4π3/2

∫ ∫
1√

τ2/σ
e−σ(u−q)2/τ2−iτ p

ψ∗(u− 1
2 τ)ψ(u + 1

2 τ)dudτ

Spectrogram
∫

h∗(u− 1
2 τ)e−iθu

∣∣∣∣ 1√
2π

∫
e−ipτ ψ(τ)h(τ −q)dτ

∣∣∣∣2
h(u + 1

2 τ)du

Zhao–Atlas–Marks g(τ) |τ| sinaθτ
aθτ

1
4πa

∫
g(τ)e−iτ p

∫ q+|τ|a

q−|τ|a
ψ∗(u− 1

2 τ)ψ(u + 1
2 τ)dudτ

Table 6.1 Some distributions and their kernels.
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Wigner distribution. One defines a characteristic function operator, M(θ ,τ),
so that the characteristic function is its expectation value,

M(θ ,τ) =
∫

ψ∗(q)Mψ(q)dq. (6.44)

As mentioned, the reason we have an infinite number of distributions is that we
have an infinite number of characteristic function operators that correspond to
a classical characteristic function as discussed above. What the kernel method
does is characterize in a simple way all these possibilities [4, 5, 6]. The general
characteristic function operator is given by

M(θ ,τ) = Φ(θ ,τ)eiθq+iτp. (6.45)

Putting this into Eq. (6.44) gives

〈M(θ ,τ)〉 =
∫

ψ∗(q)Φ(θ ,τ)eiθq+iτpψ(q)dq (6.46)

= Φ(θ ,τ)
∫

ψ∗(u− 1
2 τ)ψ(u + 1

2 τ)eiθu du. (6.47)

Using Eq. (6.47) and Eq. (6.27) one obtains Eq. (6.41). We now give the
correspondence between a quantum operator G(q,p) and the classical function
g(q, p) so that

〈g(q, p)〉 =
∫ ∫

g(q, p)C(q, p)dqd p (6.48)

=
∫

ψ∗(q) G(q,p)ψ(q)dq. (6.49)

The relationship is given by [4]

G(q,p) =
∫ ∫

γ(θ ,τ)Φ(θ ,τ)eiθq+iτp dθ dτ, (6.50)

where

γ(θ ,τ) =
1

4π2

∫ ∫
g(q, p)e−iθq−iτ p dqd p. (6.51)

Equivalently,

G(q,p) =
1

4π2

∫ ∫ ∫ ∫
g(q, p)Φ(θ ,τ)eiθ(q−q)+ iτ(p−p) dθ dτ dqd p. (6.52)

Conversely, if we start with a quantum operator we can construct the classi-
cal function in the following way. Starting with the quantum operator G(q,p)
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rearrange it, using the commutation relation between q and p, so that all the q
operators are to the left of the p operators. Afterwards replace the operators by
classical variables p and q and call the resulting function GQ(q, p). Then, the
classical function corresponding to G(q,p) is given by

G(q,p)→ g(q, p) =
exp(i h̄

2
∂

∂q
∂

∂ p )

Φ(−i ∂
∂q ,−i ∂

∂ p )
GQ(q, p). (6.53)

Constraints on the kernel. The advantage of the kernel method is that one
can readily obtain conditions on the kernel corresponding to properties of
the distribution function [4, 5, 6, 15, 17, 8, 19] . For the satisfaction of the
marginals ∫

C(q, p)d p = |ψ(q)|2 , (6.54)∫
C(q, p)dq = |ϕ(p)|2 , (6.55)

one must have that
Φ(θ ,0) = Φ(0,τ) = 1. (6.56)

Particularly interesting is the first conditional moment. We define the condi-
tional value of momentum, p, for a fixed value of position by way of

〈 p〉q =
∫

pC(q, p)d p. (6.57)

Substituting Eq. (6.41) into Eq. (6.57) one obtains that

〈 p〉q =
∫

pC(q, p)d p = j(q), (6.58)

where j(q) is the quantum mechanical current (per unit mass)

j(q) =
1
2i

(
ψ∗

dψ
dq
−ψ

dψ∗

dq

)
. (6.59)

This is the case if the kernel satisfies

∂
∂τ

Φ(θ ,τ)|τ=0 = 0, (6.60)

in addition to the marginal conditions.
A more revealing way to write the current is to write the wave function in

terms of amplitude and phase

ψ(q) = R(q)eiS(q), (6.61)
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in which case the quantum mechanical current is given by the derivative of the
phase

j(q) = R2(q)S′(q), (6.62)

where the prime denotes differentiation. In obtaining the above we have used
the fact that

d
dq

R(q)eiS(q)/h = eiS(q)/h
(

R′+
i
h

RS′
)

(6.63)

= R(q)eiS(q)/h
(

R′

R
+

i
h

S′
)

. (6.64)

For future use we note that

d2

dq2 R(q)eiS(q)/h

= eiS(q)/h̄
(

R′′ − 1

h̄2 RS′2 +
i
h̄

[
2R′S′+ RS′′

])
(6.65)

= R(q)eiS(q)/h̄
(

R′′

R
− 1

h̄2 S′2 +
i
h̄

[
2R′S′

R
+ S′′

])
(6.66)

= R(q)eiS(q)/h̄

(
1

R2

d
dq

RR′ −
(

R′

R

)2

− 1

h̄2 S′2

+
i
h̄

[
2R′S′

R
+ S′′

])
− h̄2

2m
ψ∗

d2

dq2 ψ (6.67)

=
h̄2

2m

((
R′

R

)2

+
1

h̄2 S′2− 1
R2

d
dq

RR′

+
i
h̄

[
2R′S′

R
+ S′′

])
R2. (6.68)

6.4 Visualization of quantum wave functions

One can think of a quantum quasi-distribution as a two dimensional map-
ping of a one dimensional function. In the mathematical sense the distribution
contains the same information as the wave function since it is constructed from
it and the wave function can be obtained from it uniquely. However a dramatic
thing happens when one plots or studies the distribution instead of the wave
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function: the physical nature of the wave function is much clearer. We show
this by taking a few examples. Each figure we show has three parts. In the top
part we plot the real part of the wave function, the left figure is the absolute
square of the momentum wave function and in the center is plotted the two
dimension distribution. In all cases we plot the Wigner distribution.

Example 6.1
Consider the wave function (unnormalized)

ψ(q) = e−αq2/2+iβ q2/2+ip0q. (6.69)

In Fig. 6.1 we plot the distribution. Notice that it is concentrated a-

Position

M
om

en
tu

m

−10 −8 −6 −4 −2 0 2 4 6 8
−40

−30

−20

−10

0

10

20

30

40

7.4627

x 10
4

−30

−20

−10

0

10

20

30

−10 −8 −6 −4 −2 0 2 4 6 8

−0.5

0

0.5

FIGURE 6.1: The Wigner distribution of ψ(q) = e−αq2/2+iβ q2/2+ip0q is shown
in the central part. The top figure is the real part of the wave function and the
left figure is the absolute square of the momentum wave function. The Wigner
distribution is concentrated along the quantum mechanical current, j(q) = p =
p0 + β q.

long a trajectory and indeed the trajectory is the quantum current (the
derivative of the phase)
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j(q) = p = p0 + β q. (6.70)

Example 6.2
Now consider

ψ(q) = e−αq2/2 cos
(
β q2/2 + ip0q

)
(6.71)

and the distribution is shown in Fig. 6.2. We see that in some sense this
real wave function was made into two complex functions

ψ(q) = e−αq2/2(eiβ q2/2+ip0q + e−iβ q2/2−ip0q) (6.72)

and gets concentrated along the currents of each complex part along the
lines

p = p0 + β q ; p = −p0−β q. (6.73)
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FIGURE 6.2: The Wigner distribution of Eq. (6.71).
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Example 6.3
Now consider

ψ(q) = e−α1q2/2+ip1q + e−α2q2/2+iβ q2/2+ip2q = ReiS, (6.74)

where we have explicitly emphasized that the sum can be written as
per the right hand side. We do so to emphasize that when this wave
function is plotted it does not get concentrated along the derivative of
the phase, S′, but in phase space it seems to “know” that it consists of
two parts. The distribution is plotted in Fig. 6.3. It is concentrated
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FIGURE 6.3: The Wigner distribution of Eq. (6.74).

along the phases of each part

p = p0 + β q ; p = p0. (6.75)

We call such wave functions multipart.

Example 6.4
Consider

ψ(q) = e−α1q2/2+iβ1q2/2+ip1q + e−αq2/2+iγq3/3+iβ q2/2+ip0q, (6.76)
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FIGURE 6.4: The Wigner distribution of Eq. (6.76).

this is illustrated in Fig. 6.4.

Example 6.5

As a last example consider

ψ(q) = (α/π)1/4 e−αq2/2+iηq4/4+iγq3/3+iβ q2/2+ip0q, (6.77)

whose distribution is illustrated in Fig. 6.5. Again the concentration is
along the current

p = ηq3 + γq2 + β q + p0. (6.78)
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FIGURE 6.5: The Wigner distribution of Eq. (6.77).

6.5 Local kinetic energy

An interesting related issue is the question of local kinetic energy and the
local virial theorem [1, 2, 9, 11, 12, 20, 22, 25, 23]. We use the notation K(q)
for local kinetic energy and we require that the integral of K(q) give the global
kinetic energy

∫
K(q)d q =− h̄2

2m

∫
ψ∗

d2

dq2 ψ d q =
〈

p2

2m

〉
. (6.79)

The global kinetic energy can be written as

KE = − h̄2

2m

∫
ψ∗

d2

dq2 ψ d q

=
h̄2

2m

∫ ∣∣∣∣ d
dq

ψ
∣∣∣∣2 dq,
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and we note that

− h̄2

2m
ψ∗

d2

dq2 ψ =
h̄2

2m

(
S′2 +

(
R′

R

)2

− 1
R2

d
dq

RR′

+i

[
2R′S′

R
+ S′′

])
R2dq, (6.80)

h̄2

2m

∣∣∣∣ d
dq

ψ
∣∣∣∣2 =

h̄2

2m

[
S′2 +

(
R′

R

)2
]

R2. (6.81)

We emphasize that only h̄2

2m

[
S′2 +

(
R′
R

)2
]

R2 contributes to the total kinetic

energy. All possible expressions of local kinetic energy must contain these
terms and any other terms must integrate to zero,

K(q) =
h̄2

2m

[
S′2 +

(
R′

R

)2
]

R2 + terms that integrate to zero. (6.82)

Some of the expressions that have been studied in the literature are:

KA = − h̄2

2m
ψ∗

d2

dq2 ψ

=
h̄2

2m

[(
R′

R

)2

+ S′2− 1
R2

d
dq

RR′+ i

[
2R′S′

R
+ S′′

]]
, (6.83)

KB =
h̄2

2m
| d
dq

ψ |2 =
h̄2

2m

[
S′2 +

(
R′

R

)2
]

R2, (6.84)

KC = − h̄2

4m
(ψ

d2

dq2 ψ + ψ
d2

dq2 ψ∗)

=
h̄2

2m

[
S′2 +

(
R′

R

)2

− 1
R2

d
dq

RR′
]

R2, (6.85)

KD =
h̄2

2m
| d
dq

∇ψ |2− h̄2

8m
d2

dq2 |ψ2|

=
h̄2

2m

[
S′2 +

(
R′

R

)2

− 1
4R2

d2

dq2 R2

]
R2. (6.86)

All of these can be obtained by considering

K(q) =
h̄2

2m

∫
p2 C(q, p)d p, (6.87)
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and taking different kernels. Evaluating Eq. (6.87) for an arbitrary kernel one
obtains

K(q) = KD−
1

2π

∫
eiθ(u−q)

[
1

2m
|ψ(u)|2h2(θ )+ ih1(θ ) j(u)

]
dudθ , (6.88)

where j(q) is the quantum mechanical current as defined by Eq. (6.59) and h1
and h2 are

h1(θ ) =
∂

∂τ
Φ(θ ,τ)|τ=0 = 0, (6.89)

h2(θ ) =
∂ 2

∂τ2 Φ(θ ,τ)|τ=0 = 0. (6.90)

For product kernels,
Φ(θ ,τ) = Φ(θτ). (6.91)

Eq. (6.88) reduces to a much simpler form

K(q) = KD +
Φ′′(0)

2m
d2

dq2 R2 + Φ′(0)
d

dq
j(q), (6.92)

where the primes denote differentiation with respect to the argument of Φ. Any
number of forms can be obtained by choosing kernels with different values for
h1 and h2. If we want to satisfy a local virial theorem

2K(q) = q
∂

∂q
V (q), (6.93)

it can be verified that one can take any h2(θ ) given by

h2(θ ) =−2m

∫ [
q ∂V

∂q |ψ(q)|2− h̄2

8m

(
| d

dq ψ |2− d2

dq2 |ψ2|
)

eiθq
]

dq∫ |ψ(q)|2eiθqdq
. (6.94)

6.6 Conclusion

We have shown that the unusual method of calculating expectation values in
quantum mechanics exists within classical probability theory. This was done
by generalizing a theorem of Khinchin on the necessary and sufficient condi-
tions for a function to be a characteristic function. Also, we have discussed
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the issue of writing joint distributions for two non-commuting variables and
have shown that the currently known distributions, while not having all the
properties of true joint distributions, nonetheless are a powerful method for
understanding and visualizing wave functions. In addition, we showed that
these joint distributions may be used to define local quantities such as curren-
t and local kinetic energy and have shown that these local quantities do not
behave as expected because they are not consistent with obtaining these quan-
tities from a proper two dimensional distribution. We give an example. It is
possible to construct wave functions that have a momentum distribution which
is zero outside a band of momentum values, but nonetheless the current or
local kinetic energy has nonzero values outside the band. The reason is that
these types of conditional quantities are ”obtained” with a distribution that is
not manifestly positive. The consequences of these peculiar behaviors have
not been fully explored or interpreted.
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Chapter 7

Superconducting Quantum
Computing Devices

Zhigang Zhang and Goong Chen

Abstract Superconductivity manifests macroscopic quantum phenomena.
A superconducting circuit composed of Josephson junctions, Cooper pair box-
es, and rf-/dc-SQUID, properly miniaturized, becomes quantized and demon-
strates Rabi oscillations and entanglement. In this paper, we offer an overview
of this approach. We begin with an introduction of the history and elementary
theory of superconductivity. Then we describe the building blocks of supercon-
ducting classical circuits and derive their canonical quantizations. The set-up
of qubits and superconducting quantum logic gates are then examined. Finally,
ways to make measurements are discussed.

7.1 Introduction

Even though quantum effects are mostly observed in microscopic scales,
they also manifest macroscopically. A particular case of such is supercon-
ductivity. Superconducting devices composed of Josephson junctions (JJ),
Cooper-pair boxes and SQUID (superconducting quantum interference devices)
have been developed since the 1980s as magnetometers, gradiometers, gyro-
scopes, sensors, transistors, voltmeters, etc., to perform measurements on s-
mall magnetic fields, and to demonstrate the quantum effects of tunneling,
resonance and coherence [8, 13, 23, 36, 39, 44]. Many industrial and medical

171
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applications have also resulted: maglev trains, superconducting power gener-
ator, cables and transformers, MRI and NMR for medical scans, to mention
a few. With the advances in solid-state lithography and thin-film technology,
superconducting devices have the great advantage of being easily scalable and
engineering-designable. For a bulk superconductor, if its size is reduced s-
maller and smaller, then the quasi-continuous electron conduction band there-
in turns into discrete energy levels. In principle, such energy levels can be
used to constitute a qubit. The first demonstration of quantum-coherent os-
cillations of a Josephson “charge qubit” in a superposition of eigenstates was
made by Nakamura et al. [27] in 1999. Ever since, theoretically and experi-
mentally there has been steady progress. New proposals for qubits based on
charges, flux, phase and charge-flux have been made, with observations of
microwave-induced Rabi oscillations of two-level populations in those qubit
systems [10, 11, 12, 46, 47].

In this paper, we will first introduce superconductivity in Subsection 7.2, the
Josephson junction in Section 7.3, and the elementary superconducting circuits
in Section 7.4. Superconducting quantum circuits and gates are studied in
Sections 7.5 and 7.6, and conclude with measurements in Subsection 7.6.6.

An earlier version of this chapter has been adopted in the book by Chen
et al. [7]. The present version of this article is more comprehensive than [7,
Chap. 9]. We are grateful to Chapman & Hall/CRC for permission to reprint
the overlapping material in order to make this chapter self-contained.

7.2 Superconductivity

Superconductivity was discovered in 1911 by the Dutch physicist Heike
Kamerlingh Onnes (1853–1926), who dedicated his career to the exploration
of extremely cold refrigeration. In 1908, he successfully liquefied helium by
cooling it to −452◦ F (4 K). In 1911, he began the investigation of the electri-
cal properties of metals in extremely cold temperatures, using liquid helium.
He noticed that for solid mercury at cryogenic temperature of 4.2 K, its electric
resistivity abruptly disappeared (as if there were a jump discontinuity). This
is the discovery of superconductivity, and Onnes was awarded the Nobel Prize
for physics in 1913.

Subsequently, superconductivity was found in other materials. For example,
lead was found to superconduct at 7 K, and (in 1941) niobium nitride was
found to superconduct at 16 K.
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Important understanding of superconductivity was made by Meissner and
Ochsenfeld in 1933 who discovered that superconductors expelled applied
magnetic fields, a phenomenon which has come to be known as the Meiss-
ner effect. In 1935, F. and H. London showed that the Meissner effect was
a consequence of the minimization of the electromagnetic free energy carried
by superconducting current. This causes the complete absence of electrical
resistance and the exclusion of the interior magnetic field below some critical
temperature Tc. As a consequence, the electric current density inside a super-
conductor must be zero. Shielding currents, which are confined on the surface
of the superconducting body, are not damped and can circulate indefinitely.

In 1950, Russian scientists Ginzburg and Landau [14] developed a phe-
nomenological theory of superconductivity which can successfully explain ma-
croscopic properties of superconductors. From that theory, Abrikosov showed
that the theory can predict the classification of superconductors into two type-
s (see Type I and II superconductors below). Abrikosov and Ginzburg were
awarded the Nobel Prize for their contributions to superconductivity in 2003.

The theory of superconductivity was further advanced in 1957 by three
American physicists (then at the University of Illinois), J. Bardeen, L. Cooper,
and J. Schrieffer, and called the BCS Theory [3]. The BCS theory explain-
s superconductivity at temperatures close to absolute zero. Cooper theorized
that atomic lattice vibrations were directly responsible for unifying and mod-
erating the entire current. Such vibrations force the electrons to pair up into
partners that enable them to pass all of the obstacles which cause resistance in
the conductor. These partners of electrons are known as Cooper pairs. This
electron coupling is viewed as an exchange of phonons, with phonons being
the quanta of lattice vibration energy. The electron Cooper pairs are coupled
over a range of hundreds of nanometers, three orders of magnitude larger than
the lattice spacing. The effective net attraction between the normally repulsive
electrons produces a pair binding energy on the order of milli-electron volts,
enough to keep them paired at extremely low temperatures. Experimental cor-
roboration of an interaction with the lattice was provided by the isotope effect
on the superconducting transition temperature Tc. More on Cooper pairs in the
next section.

Superconductivity phenomena have been found in metals, alloys, heavily
doped semiconductor and ceramic materials at low temperatures. There are
two types of superconductors, Type I and II. Twenty-nine metals together with
their critical temperatures, are called Type I (or soft) superconductors. See
Table 7.1. Superconductors made from alloys and ceramics of the high tem-
perature kind are called Type II superconductors.
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Mat. Tc(K)

Be 0

Rh 0

W 0.015

Ir 0.1

Lu 0.1

Hf 0.1

U 0.2

Ti 0.39

Ru 0.5

Cd 0.56

Zr 0.61

Os 0.7

Mo 0.92

Zn 0.85

Ga 1.083

Mat. Tc(K)

Al 1.2

Pa 1.4

Th 1.4

Re 1.4

Tl 2.39

In 3.408

Sn 3.722

Hg 4.153

Ta 4.47

V 5.38

La 6.00

Pb 7.193

Tc 7.77

Nb 9.46

Table 7.1 The twenty-nine Type I superconductors and their critical
temperatures, excerpted and adapted from [17]. Some other reference
sources [15, 16] also include Gd, Am or others as Type I superconductors,
for which some additional physical treatment may be necessary.
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Mat. Tc(K)

NbTi 10

PbMoS 14.4

V3Ga 14.8

NbN 15.7

V3Si 16.9

Nb3Sn 18.0

Nb3Al 18.7

Nb3(AlGe) 20.7

Nb3Ge 23.2

MgB2 39

Mat. Tc(K)

YBaCuO 93

BiSrCaCuO 110

TlBaCaCuO 125

HgBaCaCuO 135

Table 7.2 Some Type II superconductors and their critical tempera-
tures. (Data taken partly from [17].)

Among Type II, cuprate perovskite superconductors are certain ceramic
compounds containing planes of copper and oxygen CuO2 atoms. They can
have much higher critical temperatures: YBa2Cu3O7 (YBCO), one of the first
cuprate superconductors to be discovered (by P.C.W. Chu and M.K. Wu in
1987), has a critical temperature of 93 K, and mercury-based cuprates have
been found with critical temperatures in excess of 130 K. These are high tem-
perature superconductors and so far, there is no explanation for their high criti-
cal temperatures. (The BCS theory explains superconductivity in conventional
superconductors, but it does not explain superconductivity in the newer class
of superconductors with high Tc.) Reports on materials with high Tc are con-
stantly undergoing updating and verification. The highest figure of Tc known
today is 134 K of some mercury compound which under high pressure is 164
K.

Interested readers may find more information in superconductivity textbook-
s [19, 34, 35, 42], for example.
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7.3 More on Cooper pairs and Josephson junctions

In the preceding section, we briefly introduced Cooper pairs. For electrons
in a metal at low temperature, despite the fact that the electron Coulomb forces
repel each other, the lattice of positive ions in the metal can have phonon vi-
bration energy that mediates the coupling or pairing of electrons to overcome
the repelling force. It works as follows [32]: When one of the electrons that
make up a Cooper pair passes close to an ion in the crystal lattice, the attrac-
tion between the negative electron and the positive ion causes a vibration (i.e.,
phonon) to pass from ion to ion until the other electron of the pair absorb-
s the vibration. The net effect is that the electron has emitted a phonon and
the other electron has absorbed the phonon. It is this exchange that keeps the
Cooper pairs together. It is important to understand, however, that the pairs are
constantly breaking and re-forming. Because electrons are indistinguishable
particles, it is easier to think of them as permanently paired. The composite
entity, the Cooper pair, thus behaves as a single particle. These coupled elec-
trons can take the character of a boson with charge twice that of an electron
and zero spin. The first excited state of Cooper pairs has a minimum ener-
gy of 2 Δ, where Δ is what we had referred to earlier as the superconducting
gap. See also Δ in (7.1) and (7.2) below. Cooper pairs carry the current in a
superconductor.

Now, consider two superconductors. If they are kept apart and totally iso-
lated from each other, then the phases of their wave functions will be indepen-
dent. Bring them close together but separate by a thin non-conducting oxide
barrier of tens of angströms thickness. Then Cooper pairs begin to tunnel
stronger across the barrier as the separation decreases. This current is called
the Josephson current. The “sandwich-like” arrangement is called the Joseph-
son junction, see Fig. 7.1. Both were named after the British physicist B.D.
Josephson (Nobel laureate in physics 1973).

The basic equations governing the dynamics of the Josephson tunneling are

V (t) =
h̄
2e

∂φ(t)
∂ t

, I(t) = Ic sin(φ(t)), (7.1)

where V (t) and I(t) are, respectively, the voltage and current across the JJ, φ(t)
is the phase difference of the superconductors across the JJ, and Ic, a constant,
is the critical current. In the microscopic theory of superconductivity [42], it
is known that

Ic =
πΔ

2eRN
tanh

Δ
2T

, (7.2)
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where Δ is the superconducting order parameter energy gap, T is the tempera-
ture, and RN is a constant.

It follows from the equations in (7.1) that there are three major effects:
(1) The DC Josephson effect: This is the phenomenon of a direct current

crossing the insulator in the absence of any external electromagnetic field due
to tunneling. The second Eq. in (7.1) applies and the DC Josephson current is
proportional to the sine of the phase difference across the insulator, and may
take values between – Ic and Ic.

(2) The AC Josephson effect: If the voltage UDC is fixed across the junctions,
the phase will vary linearly with time and the current will be an AC current
with amplitude Ic and frequency 2e

h UDC. Thus, a Josephson junction can act as
a perfect voltage-to-frequency converter.

(3) The inverse AC Josephson effect: This works in a reverse way as (2)
above, where for distinct DC voltages, the junction may carry a DC current
and acts like a perfect frequency-to-voltage converter.

For example, one can apply (3) above to make the JJ a superfast voltage-
switching device. JJ can perform voltage-switching functions approximately
ten times faster than ordinary semiconducting circuits. This is a distinct and
ideal advantage for building superfast electronic computers.

There are two general types of JJ: overdamped and underdamped, and they
behave differently when I(t) > Ic and T * Tc. The two types of junctions
are distinguished by their Stewart–McCumber parameters which are defined

as βc = 2πIcR2C
Φ0

, where C is the junction capacitance and Φ0 is the magnetic

flux quantum. When βC > 1, the junction is underdamped, and it is called
overdamped when βC < 1. When βC approaches zero, the time average voltage
across the junction is defined uniquely by the through current with identity [26]

V = R(I2− I2
c )1/2.

The function changes smoothly from V = 0 when I < Ic to V = RI when I+ Ic.
In contrast, for an underdamped junction, the barrier is an insulator. The

junction’s internal resistance (R in (7.21) below) will be maximum and the
current-voltage curve is hysteretic near Ic.

A superconducting quantum interference device (SQUID) consists of one or
more Josephson junctions included in a superconducting loop. SQUIDs are
usually made of either a lead alloy (with 10% gold or indium) and/or niobium,
often consisting of the tunnel barrier sandwiched between a base electrode of
niobium and the top electrode of lead alloy.

There are two types of SQUID:

(1) dc-SQUID: It was invented by R. Jaklevic, J. Lambe, A. Silver, and J.
Mercereau of Ford Research Labs in 1964. It consists of two JJ placed
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in parallel such that electrons tunneling through the junctions manifest
quantum interference, depending upon the strength of the magnetic field
within a loop.

(2) rf-(or ac-) SQUID: It was invented by J. E. Zimmerman and A. Silver at
Ford in 1965. It is made up of one Josephson junction, which is mounted
on a superconducting ring. An oscillating current is applied to an exter-
nal circuit, whose voltage changes as an effect of the interaction between
it and the ring. The magnetic flux can then be measured.

The dc type is more difficult and expensive to fabricate, but they are much
more sensitive. A SQUID can detect a change of energy as much as 100 bil-
lion times weaker than the electromagnetic energy that moves a compass nee-
dle. We will study dc and rf SQUID in more technical detail in the following
sections.

top: Superconductor

base: Superconductor

Tunnel barrier (about 10 ~ 20 Angstroms)
..

FIGURE 7.1: Schematic of a simple Josephson junction. It has a “sandwich”
structure. The base is an electrode made of a very thin niobium layer, formed
by deposition. The midlayer, the tunnel barrier, is oxidized onto the niobium
surface. The top layer, also an electrode, made of lead alloy (with about 10%
gold or indium) is then deposited on top of the other two.

7.4 Superconducting circuits: classical

There are about a half dozen major proposals for superconducting qubits.
We will introduce some of them in this section. First, classical superconduct-
ing circuits characterized by their Lagrangians will be presented. Then we
advance to their quantum versions through the canonical quantization proce-
dure. For different ways of the setup of qubits, the number of electrons on the
circuit needs not be small. (But if the qubit is a charge qubit, to be explained
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later in Subsection 7.6.2, the number of electrons involved is small.) Our dis-
cussions mainly follow the excellent tutorial paper by Wendin and Shumeiko
[48].

In superconducting quantum computing applications, four basic types of
circuits with JJ are commonly used as building blocks:

(1) single current-biased JJ;

(2) single Cooper-pair box (SCB);

(3) rf-SQUID;

(4) dc-SQUID.

We address each of them separately in the following subsection.

7.4.1 Current-biased JJ

This is the simplest superconducting circuit, consisting of a tunnel Joseph-
son junction with superconducting electrodes connected to a current source. A
schematic is given in Fig. 7.2.

tunnel JJ
E  , φJ

current
source

(a) (b)

C

R

E  , φJ

I

superconducting

leads

FIGURE 7.2: (a) A current biased Josephson junctions. (b) An equivalent
lumped circuit, where × signifies the barrier of the JJ. (Adapted from [48]).

Let φ(t) be the phase difference between the wave functions in the two
superconductors across the junction. Let V (t) denote the voltage difference
across the junction. Then by the first equation in (7.1),

φ(t) =
2e
h̄

∫ t

t0

V (τ)dτ + φ0. (7.3)

(The superconducting phase φ(t) is also related to a magnetic flux Φ(t) as

φ(t) =
2e
h̄

Φ(t) = 2π
Φ(t)
Φ0

, (7.4)
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where Φ0 = h/(2e) is the magnetic flux quantum.) As noted in the second
equation of (7.1) in Section 7.3, the JJ current is proportional to the sine of
φ(t) across the insulator:

IJ = Ic sinφ , Ic ≡ the critical Josephson current, (cf. (7.1)). (7.5)

Differentiating (7.3), we have

φ̇(t) =
2e
h̄

V (t). (7.6)

Refer to Fig. 7.2 (b). The current-voltage relations for the junction capacitance
C and resistance R are given by the standard formulas

IC = C
dV
dt

, IR = V/R. (7.7)

From (7.6) and (7.7), by the Kirchhoff law of the circuit (see Fig. 7.2 (b)), we
now have

h̄
2e

Cφ̈ +
h̄

2eR
φ̇ + Ic sin φ = Ie, (7.8)

where Ie is the bias current. Eq. (7.8) takes the form of a damped forced
pendulum.

The damping term h̄
2eR φ̇ in (7.8) determines the lifetime of the (future su-

perconducting quantum circuit) qubit. Thus, the dissipation must be extremely
small. Ideally, we assume that it is zero. So we consider an undamped Eq.
(7.8):

h̄
2e

Cφ̈ + Ic sinφ = Ie. (7.9)

REMARK 7.1 It is necessary to emphasize that dropping the damp-
ing term h̄φ̇/(2eR) in (7.8) constitutes a reasonable approximation only
under the following conditions of superconductivity:

(i) low temperature, i.e., T is small;

(ii) |φ̇ | is very small;

(iii) T, h̄ω * Δ, where Δ is the energy gap in (7.2).
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For the undamped Eq. (7.9), Lagrangian and Hamiltonian variational forms
can now be obtained by kinetic and potential energies:

kinetic energy K = K(φ̇ ) =
(

h̄
2e

)2 C
2

φ̇2, (7.10)

potential energy U = U(φ) =
h̄
2e

∫
[Ic sin φ − Ie]dφ

=
h̄
2e

Ic(1− cosφ)− h̄
2e

Ieφ , (7.11)

where the kinetic energy is proportional to the electrostatic energy of the junc-
tion capacitor (corresponding to the first term in (7.9)), while the potential en-
ergy consists of the energy of the Josephson current and the magnetic energy
of the bias current (corresponding to the last two terms in (7.9)).

For future quantum superconducting circuit applications, we introduce sev-
eral useful constants. The first is the charging energy of the junction capacitor
charged with a single Cooper pair (of electrons)

EC ≡
(2e)2

2C
. (7.12)

The second,

EJ ≡
h̄
2e

Ic (7.13)

is called the Josephson energy. The third constant,

ωJ ≡
√

2eIc

h̄C
, (7.14)

is called the plasma frequency of the JJ. This is the frequency of the small-
amplitude oscillation of the unforced pendulum (i.e., Eq. (7.9) with Ie = 0).
With (7.12) and (7.13), we can write (7.10) and (7.11) as

K =
h̄2φ̇2

4EC
, U = EJ(1− cosφ)− h̄

2e
Ieφ .

Thus, we obtain the Lagrangian

L(φ , φ̇ ) = K−U =
h̄2φ̇2

4EC
−EJ(1− cosφ)+

h̄
2e

Ieφ ,

whose Lagrangian variational equation

d
dt

∂L

∂ φ̇
− ∂L

∂φ
= 0
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is exactly (7.9).
The Hamiltonian H is related to the Lagrangian L through

H(p,φ) = pφ̇ −L, where p =
∂L

∂ φ̇
=

h̄2

2EC
φ̇ , (7.15)

with p being the canonical momentum operator conjugate to φ . Then

H(p,φ) =
EC

h̄2 p2 + EJ(1− cosφ)− h̄
2e

Ieφ , (7.16)

and the Hamiltonian equations of motion

φ̇ =
∂H
∂ p

, ṗ =−∂H
∂φ

(7.17)

are again equivalent to (7.9).

7.4.2 Single Cooper-pair box (SCB)

An SCB is driven by an applied voltage Vg through capacitance Cg to in-
duce an offset charge. The circuit consists of a small superconducting “island”
connected via a Josephson tunnel junction to a large superconducting reservoir.
See a schematic in Fig. 7.3.

Vg

Cg

island (b)(a)

C
E J

Cg

box

Vg

FIGURE 7.3: (a) A single Cooper-pair box. (b) An equivalent lumped circuit,
where × signifies the barrier of JJ. (Adapted from [48] and [52].)

The electrostatic energy of the SCB is the sum

K =
CV 2

2
+

Cg(Vg−V)2

2
,

which, after using (7.6) and completing the square, gives

K =
(C +Cg)

2

(
h̄
2e

φ̇ − Cg
C +Cg

Vg

)2

+
1
2

(
Cg− Cg2

C +Cg

)
Vg2. (7.18)
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Dropping the (last) constant term in (7.18) and denoting CΣ ≡C+Cg, we have

K = K(φ̇ ) =
CΣ
2

(
h̄
2e

φ̇ − Cg
CΣ

Vg

)2

.

The potential energy U from (7.11) (by dropping the bias current Ie as it is no
longer present) is

U = U(φ) = EJ(1− cosφ).

Therefore, we obtain the Lagrangian

L(φ , φ̇ ) =
CΣ
2

(
h̄
2e

φ̇ − Cg
CΣ

Vg

)2

−EJ(1− cosφ). (7.19)

The Hamiltonian, according to (7.15), is

H(φ , p) =
1

2CΣ

(
2e
h̄

)2

p2 + EJ(1− cosφ). (7.20)

7.4.3 rf- or ac-SQUID

The rf-SQUID, also called an ac-SQUID or a magnetic-flux box, is depicted
in Fig. 7.4. It is the magnetic analogue of the (electrostatic) SCB discussed in
Subsection 7.4.2. It consists of a tunnel JJ inserted in a superconducting loop.

magnetic flux

tunnel JJ

superconducting
loop

 R

C

φ

E
J

(b)(a)
Φe

FIGURE 7.4: (a) An rf-SQUID. (b) An equivalent lumped circuit. (Adapted
from [48, Fig. 8].)

Let IL denote the current associated with the inductance L of the supercon-
ducting leads. Then by (7.4),

IL =
h̄

2eL
(φ −φe), φe =

2e
h̄

Φe,
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where Φe is the external magnetic flux piercing the rf-SQUID loop. Using the
same arguments as in Subsection 7.4.1, by the Kirchhoff circuit law we arrive
at

h̄
2e

Cφ̈ +
h̄

2eR
φ̇ + Ic sin φ +

h̄
2eL

(φ −φe) = 0, (7.21)

where in (7.8) the bias current Ie is replaced by −IL.
If the damping is very small, then the term containing φ̇ can again be dropped

and the Lagrangian of the rf-SQUID is

L(φ , φ̇ ) =
h̄2φ̇2

4EC
−EJ(1− cosφ)−EL

(φ −φe)2

2
,

(
EL ≡

h̄2

(2e)2L

)
. (7.22)

The Hamiltonian is then obtained as

H(φ , p) =
EC

h̄2 p2 + EJ(1− cosφ)+ EL
(φ −φe)2

2
. (7.23)

7.4.4 dc-SQUID

A dc-SQUID consists of two JJ in parallel coupling to a current source. It
has some similarity to the current-biased single junction (Fig. 7.2), except that
there is an additional magnetic flux piercing the SQUID loop, which serves as
a control on the effective Josephson energy of the double JJ. See Fig. 7.5 for a
schematic of a dc-SQUID.

   IΦφ φ
21(a) (b)

Φ
I

e

Φ  : magnetic fluxe

e

I: current source

FIGURE 7.5: (a) Schematic of a dc-SQUID. (b) An equivalent (nominal)
lumped circuit.

Let φ1 and φ2 be superconducting phase differences across the JJ 1 and 2,
respectively. Assume that the inductance of the SQUID loop is small so that
the magnetic energy of the circulating currents can be neglected. Then the total
voltage drop over the two JJ is zero:

V1 +V2 = 0.
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From (7.6),
φ̇1 + φ̇2 = 0,

and, thus φ1 + φ2 is a constant, and

φ1 + φ2 = φe, (7.24)

where φe is the biasing superconducting phase related to the biasing magnetic
flux. Define

φ± =
φ1±φ2

2
.

Then

φ+ =
φ1 + φ2

2
=

1
2

φe, φ− =
φ1−φ2

2
,

which leads to

φ1 = φ−+
φe

2
, φ2 =

φe

2
−φ−. (7.25)

For the symmetric case, the two JJ have the same EJ , C and Ic. Assume that
there is no dissipation, thus we can neglect the φ̇ term. The equation (7.24)
can be rewritten using φ+ as

2φ+−φe = 0.

The Kirchhoff circuit law requires

h̄
2e

Cφ̈1 + Ic sinφ1−
h̄
2e

Cφ̈2− Ic sinφ2− Ie = 0,

or
h̄
e

Cφ̈−+ 2Ic cosφ+ sinφ−− Ie = 0,

by using trigonometric identities. Thus the dynamic equation for the system of
φ+ and φ− can be obtained as⎧⎪⎨⎪⎩

h̄
eCφ̈−+ 2Ic cosφ+ sinφ−− Ie = 0

h̄
eL (2φ+−φe) = 0.

(7.26)

The system has in fact only one degree of freedom since 2φ+ = φe. By substi-
tuting φ+ by φe/2 and comparing (7.26) with

d
dt

∂L

∂ φ̇−
− ∂L

∂φ−
= 0, (7.27)
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we can obtain the Lagrangian of the dc-SQUID as

L =
(

h̄
2e

)2

Cφ̇2
−+

h̄
2e

2Ic cosφ+ cosφ−+
h̄
2e

Ieφ−.

Its Hamiltonian, in turn, is

H =
(

h̄
2e

)2

Cφ̇2
−−

h̄
2e

2Ic cosφ+ cosφ−−
h̄
2e

Ieφ−.

The kinetic energy of the dc-SQUID can be obtained from the Lagrangian
as

K(φ−) =
(

h̄
2e

)2

2C
φ̇2−
2

. (7.28)

It has a simple interpretation as the charging energy of the two junction capac-
itances (cf. Fig. 7.5 (b)) by looking at identity:

2C h̄
2e φ̇− = C h̄

2e (φ̇1− φ̇2)

= C(V1−V2)

= q.

By setting EC≡ (2e)2

2·2C and define EJ and EL as before, we can rewrite the Hamil-
tonian as

H =
h̄2

4EC
φ̇2
−−2EJ cos

φe

2
cosφ−−

h̄
2e

Ieφ−,

and in terms of p = h̄2

2EC
φ̇−,

H =
EC

h̄2 p2−2EJ cos
φe

2
cosφ−−

h̄
2e

Ieφ−. (7.29)

7.5 Superconducting circuits: quantum

We know that the quantization of the electromagnetic field gives a simple
harmonic oscillator. A classical superconducting circuit may be viewed as
an antenna. It can thus radiate electromagnetic waves. From this analogue, we
see that superconducting circuits can be quantized as well when the JJ becomes
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microscopically small, and the continuous electric current becomes discretely
charged.

We now formalize the above argument by following the standard approach
of canonical quantization. From the classical Lagrangian L, and then p =
∂L/∂ φ̇ we have the Hamiltonian H just as in (7.15). Now consider the simplest
case of a single junction (Subsection 7.4.1, in particular Fig. 7.2). From (7.15),

p =
∂L

∂ φ̇
=

h̄2

2EC
φ̇ , (cf. (7.12) for EC). (7.30)

From the first equation in (7.1),

V =
1
2e

h
2π

φ̇ =
h̄
2e

φ̇ . (7.31)

Thus,

p =
h̄2

2EC
φ̇ =

(
h̄
2e

)2

Cφ̇

=
(

h̄
2e

)2

C

(
2e
h̄

)
V =

h̄
2e

CV

=
h̄
2e

q (q = CV on the junction capacitor)

= h̄
q
2e

= h̄n, (7.32)

where q/(2e) is n, the number of Cooper pairs. Therefore, the momentum
p has a simple interpretation that it is proportional to the number of Cooper
pairs n on the junction capacitor. Substituting (7.32) into (7.16), we obtain the
(quantum) Hamiltonian for the current-biased JJ:

H = ECn2−EJ cosφ − h̄
2e

Ieφ , (7.33)

where the constant EJ in (7.16) has been dropped.
For the SCB, from (7.19) we have the conjugated momentum

p =
∂L

∂ φ̇
=

h̄CΣ
2e

(
h̄
2e

φ̇ − Cg

CΣ
Vg

)
, (7.34)

and by using (7.32) and (7.34) in (7.20), we have

H = Ec(n−ng)2−EJ cosφ , (7.35)
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where
Ec ≡ (2e)2/(2CΣ), ng = CgVg/(2e), (7.36)

and ng is the number of Cooper pairs on the gate capacitor. This ng is tunable
through different designs of Cg and Vg.

For the dc-SQUID, according to the derivations of (7.29), we obtain the
Hamiltonian

H = ECn2
−−2EJ cos

φe

2
cosφ−−

h̄
2e

Ieφ−, (7.37)

where EC = (2e)2

4C and n− = 2C h̄
(2e)2 φ̇−.

In quantization, the classical momentum p in (7.30) becomes the differential
operator

p̂ =−ih̄
∂

∂φ
, (7.38)

where using φ we mean φ− for the dc-SQUID. From (7.32), we thus also have
the operator of the pair number

n̂ =−i
∂

∂φ
, (7.39)

and the commutator relation
[φ , n̂] = i. (7.40)

The time evolution of the wave function ψ = ψ(φ ,t) satisfies the Schrödinger
equation

ih̄
∂
∂ t

ψ(φ ,t) = Hψ(φ ,t) = H

(
φ ,

h̄
i

∂
∂φ

)
ψ(φ ,t), (7.41)

where H = H(φ , p) = H(φ , h̄n̂) is the Hamiltonian derived in (7.33) through
(7.37).

7.6 Quantum gates

We begin the discussion by using CPB as a major reference model for this
section. Recall from (7.36), that the Hamiltonian for a CPB is given by

H = EC(n̂−ng)2−EJ cosφ . (7.42)

Here we assume that
EC + EJ. (7.43)
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The pair-number operator n̂ is defined by

n̂|n〉= n|n〉, n = an integer, (7.44)

where |n〉 is called the number state. From (7.39), we see that the wave function
ψ = ψ(φ) of |n〉 satisfies the differential equation

−i
∂

∂φ
ψ = nψ . (7.45)

To allow only integer n in (7.45) for consideration in solving ψ , a periodic
constraint must be imposed:

ψ(φ + 2π) = ψ(φ). (7.46)

(Without such a constraint, the number of electrons on the island may be odd,
or n could be a real value number. But here the electrode is miniaturized small
enough that such cases would not happen as only a finite number of Cooper
pairs can exist on the island.) Therefore, from (7.45) and (7.46), we obtain

ψ(φ) =
1√
2π

einφ , for n = 0,±1,±2, · · · , (7.47)

where 1/
√

2π is the normalization factor with respect to the L2(0,2π)-norm.
From (7.42), we see that for the lowest energy eigenstate |0〉 and |1〉 of n̂, when
(7.43) holds, the states |0〉 and |1〉 are nearly degenerate when ng = 0.5:

H|0〉= [EC(0−0.5)2−EJ cosφ ]|0〉 ≈ 1
4 EC|0〉,

H|1〉= [EC(1−0.5)2−EJ cosφ ]|1〉 ≈ 1
4 EC|1〉.

(7.48)

This is a favorable situation. (Normally, if two states |0〉 and |1〉 differ much in
energy levels, then even though they discriminate better, the higher lying state
|1〉 is less stable, and the system tends to decohere and lie more often in |0〉
than in |1〉, an unbalanced situation in quantum computing to be avoided.)

Similarly, if ng = n + 1/2, then the two states |n〉 and |n + 1〉 are nearly
degenerate for any integer n. For simplicity, let us just consider ng ≈ 0.5.

THEOREM 7.1
Assume that (7.43) holds, and that ng ≈ 0.5. Let

V = span{|0〉, |1〉}. (7.49)
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Then the projection of the Hamiltonian H in (7.42) with respect to the
ordered basis in (7.49) satisfies

PH =

⎡⎣EC[ 1
4 +(ng−0.5)] − 1

2 EJ

− 1
2 EJ EC[ 1

4 − (ng−0.5)]

⎤⎦+O(|ng−0.5|2). (7.50)

PROOF The projection matrix PH of H on V is easily evaluated as

PH =

⎡⎣a0 b

c a1

⎤⎦ , (7.51)

where
a j = 〈 j|H| j〉 for j = 0,1, (7.52)

and
b = 〈0|H|1〉,c = 〈1|H|0〉. (7.53)

Using (7.47) for |0〉 and |1〉, we compute, e.g.,

a1 = 〈1|H|1〉
=
∫ 2π

0

(
1√
2π

e−iφ
)(

EC(−i
∂

∂φ
−ng)2−EJ cosφ

)(
1√
2π

eiφ
)

dφ

=
1

2π

∫ 2π

0
{EC(1−ng)2−EJ cosφ}dφ

=
EC

2π
·2π [(1−0.5)+ (0.5−ng)]

2

= EC

[
0.52 + 2(0.5)(0.5−ng)+ (0.5−ng)2]

= EC

[
1
4
− (ng−0.5)

]
+O(|ng−0.5|2). (7.54)

Similarly, the entries a0, b and c can be computed. We obtain (7.50).

As

PH =
1
4

EC

⎡⎣ 1 0

0 1

⎤⎦+

⎡⎣EC(ng−0.5) − 1
2 EJ

− 1
2 EJ −EC(ng−0.5)

⎤⎦
+O(|ng−0.5|2), (7.55)
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FIGURE 7.6: Schematic of a charge qubit constructed with a Cooper pair box.
The box is denoted by a black dot and the two Josephson junctions are denoted
by two crosses. The pulse gate voltage Vg can change the offset charge of the
junction. The other junction is connected to a voltage Vb used for measurement,
and the gate is called the probe gate.

we can just use the effective Hamiltonian

P̄H =

⎡⎣EC(ng−0.5) − 1
2 EJ

− 1
2 EJ −EC(ng−0.5)

⎤⎦
= EC(ng−0.5)σz− 1

2
EJσx, (7.56)

as an approximate Hamiltonian in the subsequent discussion. The state |0〉 and
|1〉 constitute a charge-qubit system. In addition, a probe gate may be coupled
to the box through a junction to perform measurement, shown in Fig. 7.6.

7.6.1 Some basic facts about SU(2) and SO(3)

We need to recall some basic facts about rotation matrices R ∈ SO(3) and
U ∈ SU(2) (see [30], e.g.), where

SO(3) = the special orthogonal group on R3,

SU(2) = the special unitray group on C2.
(7.57)

Every R ∈ SO(3) is a rotation with axis n and angle θ , where n is a unit vector
in R3 and θ ∈ [0,2π). So we denote

R = R(θ ,n). (7.58)

We have the following [30]:
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• Let ρ ∈ SO(3) be any rotation. Then

ρR(θ ,n)ρ−1 = R(θ ,ρn). (7.59)

• For every U ∈ SU(2), there exists an angle θ ∈ [0,2π) and a unit vector
n = (n1,n2,n3) ∈ R3 such that

U(θ ,n) = e−i θ
2 n·σ

=

⎡⎣ cos θ
2 − in3 sin θ

2 −sin θ
2 (n2 + in1)

sin θ
2 (n2− in1) cos θ

2 + in3 sin θ
2

⎤⎦
= cos θ

2 I2− isin θ
2 n ·σ ,

(7.60)

where σ = [σx,σy,σz], and I2 is the 2×2 identity matrix.

• The map

R : SU(2)→ SO(3)

R(U(θ ,n)≡ R(θ ,n)
(7.61)

is a 2-to-1 homomorphism, where

R(U(θ1,n1)U(θ2,n2)) = R(U(θ1,n1))R(U(θ2,n2)),

R(I2) = R(−I2) = I3.
(7.62)

Specifically, for U ∈ SU(2) and R ∈ SO(3) and

U = (ui j)2×2, R = (ri j)3×3, R = R(U), (7.63)

then

ri j = Tr(
1
2

σiUσ jU
†); i, j = 1,2,3, (7.64)

where σ1, σ2 and σ3 are, respectively, the Pauli matrices σx, σy and σz.

7.6.2 One qubit operations (I): charge-qubit

There are various methods to manipulate the information encoded in the CP-
B system, and the essence is to know how to control the time-varying Hamil-
tonian. In the constrained linear subspace V (cf. (7.49)) spanned by number
states |0〉 and |1〉, the system Hamiltonian has been obtained in Eq. (7.56). We
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assume that ng is nearly equal to 0.5 and EC is far smaller than the supercon-
ducting gap Δ. The evolution matrix of this system in time duration τ can be
easily computed using results from NMR:

e−iP̄H τ/h̄ = e−i(EC(ng−0.5)σz− 1
2 EJσx)τ/h̄, (7.65)

which is a rotation around the following axis:

1√
E2

J /4 + E2
C(ng−0.5)2

(
−1

2
EJex + EC(ng−0.5)ez

)

with angle τ
√

E2
J /4 + E2

C(ng−0.5)2/h̄.

In this section, our main objective is to show that we can derive the Rabi
(1-qubit) rotation gate

Uθ ,α =

⎡⎣ cos(θ ) −isin(θ )e−iα

−isin(θ )eiα cos(θ )

⎤⎦ , (7.66)

by using the evolution matrix (7.65) with different choices of the parameter ng

and time duration τ . Note that the only tunable parameter is ng. So we signify
the dependence of P̄H on ng from (7.56) as

P̄H = P̄H(ng). (7.67)

LEMMA 7.1
We have the x-rotation matrix

Rx,ψ = e−iP̄H(n̄g)τ/h̄ =

⎡⎣ cos(ψ/2) −isin(ψ/2)

−isin(ψ/2) cos(ψ/2)

⎤⎦ (7.68)

where n̄g = 0.5 and ψ =−EJτ/h̄. In particular,

Rx,π =

⎡⎣ 0 −i

−i 0

⎤⎦=−iσx. (7.69)

PROOF When n̄g = 0.5, we have from (7.56)

P̄H(n̄g) =

⎡⎣ 0 − 1
2 EJ

− 1
2 EJ 0

⎤⎦ . (7.70)
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The rest follow immediately from taking the exponential matrix
e−iP̄H(n̄g)τ/h̄.

REMARK 7.2 The operation in Lemma 7.1 is achieved through
several steps. First, the offset charge ng = CgVg/(2e) as controlled by Vg

is abruptly switched to the degeneration point ng = 0.5, kept for duration
τ, and then abruptly switched back. Time duration τ is in the order of
10−10s, and the switching must be fast enough to avoid any adiabatic
transition.

LEMMA 7.2
Define

R+,θ = e−iP̄H(n̄1
g)τ/h̄, R−,φ = e−iP̄H(n̄2

g)τ/h̄, (7.71)

where n̄1
g and n̄2

g satisfy, respectively,

EC(n̄1
g−0.5) =−1

2
EJ ≡−δ , EC(n̄2

g−0.5) =
1
2

EJ = δ , (7.72)

and
θ = φ = 2

√
2τδ/h̄. (7.73)

Then we obtain the y-rotation and z-rotation matrices as

Ry,θ =

⎡⎣ cos θ
2 −sin θ

2

sin θ
2 cos θ

2

⎤⎦=−R−,3π/2R+,θ R−,π/2, (7.74)

Rz,φ =

⎡⎣ e−iφ/2 0

0 eiφ/2

⎤⎦=−Rx,π/2Ry,φ Rx,3π/2. (7.75)

PROOF With the choice of n̄1
g, n̄2

g, δ and τ given in (7.72) and
(7.73), we have

R+,θ = ei θ
2
√

2
(σx+σz), R−,φ = ei φ

2
√

2
(σx−σz). (7.76)

Note that R+,θ and R−,θ are rotations with respect to axes − 1√
2
(ex +ez),

− 1√
2
(−ex + ez), respectively. According to the properties (7.6.1)–(7.62),
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we have
R−,π/2R+,−θ R−,3π/2 = −Ry,θ

= −
⎡⎣ cos θ

2 −sin θ
2

sin θ
2 cos θ

2

⎤⎦ ,

Rx,π/2Ry,φ Rx,3π/2 = −Rz,φ

= −
⎡⎣ e−iφ/2 0

0 eiφ/2

⎤⎦ .

(7.77)

The negative sign comes from the fact that Rn,2π = −I2 for any unit

vector n.

COROLLARY 7.1
We have the Rabi rotation gate

Uθ/2,α = e−i θ
2 (cosασx+sinασy)

=−Rx,π/2Ry,−α Rx,θ Ry,α Rx,3π/2,
(7.78)

through the cascading of quantum operations e−iP̄H(ng)τ/h̄ by tuning the
parameter ng and time duration τ.

Next, we construct the Rabi rotation gate Uθ ,φ in an alternative approach
which is perhaps easier to implement. From (7.56), if we let the voltage Vg be
oscillating (called a phase gate [27]) such that

EC(ng−0.5) = ε cos(ωt + α), (7.79)

where ε is the amplitude, then (7.56) gives (an approximate Hamiltonian)

H = ε cos(ωt + α)σz− 1
2

EJσx. (7.80)

The above Hamiltonian is with reference to the ordered basis {|0〉, |1〉}. Now
define a new basis

| ↑〉 ≡ 1√
2
(|0〉+ |1〉), | ↓〉 ≡ 1√

2
(|0〉− |1〉). (7.81)

Then, with respect to the above ordered basis, the Hamiltonian (7.6.2) becomes

H̃ = ε cos(ωt + α)σx +
1
2

EJσz, (7.82)
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where we rename EJ to −EJ just for simplicity.
We now utilize a standard procedure in NMR by transforming the system in-

to a rotating frame, namely, for the original wave function |χ(t)〉 with Hamil-
tonian (7.82), let

|ψ(t)〉= eiωtσz/2|χ(t)〉. (7.83)

The |ψ(t)〉 satisfies the Schrödinger equation:

ih̄
d
dt
|ψ(t)〉= (− h̄ω

2
σz + eiωtσz/2H̃e−iωtσz/2)|ψ(t)〉, (7.84)

which, by using

eiωtσz/2σze−iωtσz/2 = σz,

eiωtσz/2σxe−iωtσz/2 = σx cos(ωt)−σy sin(ωt),
(7.85)

gives

ih̄ d
dt |ψ(t)〉 = (ε(σx cos(ωt)−σy sin(ωt))cos(ωt + α)

+( 1
2 EJ− 1

2 h̄ω)σz)|ψ(t)〉.
(7.86)

We choose h̄ω = EJ , the resonance case, and obtain

ih̄
d
dt
|ψ(t)〉 = (σxε cos(ωt)cos(ωt + α)−σyε sin(ωt)cos(ωt + α))|ψ(t)〉

= (σx(
ε
2
(cos(2ωt + α)+ cosα))

−σy(
ε
2
(sin(2ωt + α)− sinα)))|ψ(t)〉. (7.87)

We now invoke the rotating-wave approximation by dropping the high fre-
quency terms cos(2ωt +α) and sin(2ωt +α). (These represent high frequency
oscillations which either can not be observed in laboratory conditions or con-
tribute little to the measurement data.) Then the Schrödinger equation (7.87)
is further simplified to

ih̄
d

dt
|ψ(t)〉= ε

2
(cosασx + sinασy)|ψ(t)〉, (7.88)

whose revolution matrix is

Uθ/2,α = e−i εt
2h̄ (cosασx+sinασy)

=

⎡⎣ cos( θ
2 ) −isin( θ

2 )e−iα

−isin( θ
2 )eiα cos( θ

2 )

⎤⎦ , (7.89)
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where θ = εt/h̄. This is a Rabi rotation with respect to the ordered basis
{| ↑〉, | ↓〉}. A Rabi rotation with respect to the ordered basis {|0〉, |1〉} can be
obtained by using a similarity transformation using the Walsh–Hadamard gate.

The density matrix of the system, according to the Boltzmann distribution,
is given by

e
−H
kBT ,

where kB = 1.381×10−23J/K is the Boltzmann constant and T is the absolute
temperature. When kBT * EC, and ng �= 0.5, the Coulomb energy dominates
the Hamiltonian and the system is initialized to its ground state, and this ini-
tializes the system.

7.6.3 One qubit operations (II): flux-qubit

In an rf-SQUID, the magnetic flux Φ through the loop is quantized and must
satisfy

(Φ0/2π)φ + Φext + Φind = mΦ0, (7.90)

where Φ0 = 2.07× 10−15Wb, and as before, m is an integer, Φext is the ex-
ternal magnetic field and Φind is induced by a current through the loop as
in Fig. 7.7. That surface current through the loop is induced to compensate
Φext and its direction can be either clockwise or counterclockwise. If we de-
note the two surface current states as | ↑〉 and | ↓〉, then they form a basis and
the qubit is called a flux qubit. The main references for this qubit setup are
[37, 45, 53]. When Φext is near one half of Φ0, the current can be either clock-
wise or counterclockwise and the system behaves like a Cooper pair box when
ng is near 0.5. Recall the Hamiltonian of an rf-SQUID in (7.23). When the
self-inductance L is large enough such that β0 = EJ4π2L/Φ2

0 = EJ/EL > 1 and
Φext is near Φ0/2 (this means φext = 2πΦext/Φ0 is near π), the Hamiltonian
has a shape of a double-well near Φ = Φ0/2 (φ = 2πΦ/Φ0 = π), see Fig. 7.8.
The two lowest states at the bottom of each well are well separated from other
excited levels in low temperature and suitable for quantum computation. When
Φext = Φ0/2, the two states are degenerate and the two eigenstates of the sys-
tem are maximally superposed states of | ↑〉 and | ↓〉 [53]. When Φext is away
from Φ0/2, they approach | ↑〉 and | ↓〉, respectively. The Hamiltonian of this
two level system has a simplified form as

H =−1
2

Bzσz− 1
2

Bxσx,

where Bz can be tuned by Φext and Bx is a function of EJ which is also tunable
if the junction is replaced by a dc-SQUID. Thus, any 1-qubit operation can
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FIGURE 7.7: Schematic of a flux qubit constructed with a Josephson junction
in a loop.

be realized through combinations of different choices of Φext and EJ . When
Φext = Φ0/2, Bz = 0.

−0.5 0 0.5 1 1.5 2 2.5
φ/π

FIGURE 7.8: The double-well shape potential of a flux qubit with Hamiltonian
(7.23). We take Φext = Φ0/2 and plot the potential curve near φ = π .

A shortcoming of the simple rf-SQUID design is that its size is large in order
to obtain high self-inductance and that makes it very susceptible to external
noise. A better design uses more junctions in the loop and makes the size
smaller [25, 31]. A three junction flux-qubit is shown in Fig. 7.9. Two of the
junctions are designed to be the same, E1

J = E2
J = EJ and C1 = C2 = C, while

the third junction has different parameters, E3
J = αEJ and C3 = αCJ . The set

up has been experimentally examined [18, 21].
To obtain the Hamiltonian of the system, we first find its Josephson ener-

gy and electronic charge energy terms. The quantum constraint (7.90) still
applies, implying that

φ1−φ2 + φ3 =−φext =−2πΦext/Φ0 =−2π f , (7.91)
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mnEJ,φ1

mnΦext

FIGURE 7.9: A three junction superconducting loop serving as a flux qubit.
Compared with the simple design of rf-SQUID in Fig. 7.7, it has a smaller size
and better coherence performance.

where we let m = 0 in (7.90) and define f = Φext/Φ0. When f is fixed, φ3 is a
function of φ1 and φ2. The total Josephson energy of the device, which is the
sum of the Josephson energy of the three junctions, is [31, 53]

U
EJ

= 1− cosφ1 + 1− cosφ2 + α(1− cosφ3)

= 2 + α− cosφ1− cosφ2−α cos(2π f + φ1−φ2).
(7.92)

It is a function of both φ1 and φ2. When α > 0.5, it has two stable minima
at (φ∗,−φ∗) and (−φ∗,φ∗), respectively. When f = 0.5, φ∗ satisfies equation
cosφ∗ = 1

2α . Thus it shows a double-well pattern in a 2π × 2π cell, and this
pattern repeats itself with period 2π , as shown in Fig. 7.10.

Similarly, as in previous discussion, the electronic charge term is a function
of φ̇1 and φ̇2:

T = 1
2CV 2

1 + 1
2CV 2

2 + 1
α CV 2

3

= C
2 ( h̄

2e )
2(φ̇1

2 + φ̇2
2 + αφ̇3

2)

= C
2 ( h̄

2e )
2(φ̇1

2 + φ̇2
2 + α(φ̇1− φ̇2)

2)

= C
2 ( h̄

2e )
2((1 + α)φ̇1

2 +(1 + α)φ̇2
2−2αφ̇2φ̇1).

(7.93)

Combining (7.92) and (7.93), we obtain the classical Lagrangian L of the
device:

L = T −U. (7.94)
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FIGURE 7.10: A repeating double-well pattern of the Josephson energy of a 3
junction flux qubit on the φ1 and φ2 plane. The potential function is given by
(7.92) where α = 0.8 and f = 0.5. A double well pattern is shown in a framed
cell. The lowest levels in the two wells form two basic states of the flux qubit.

The classical Hamiltonian, H, is then derived as

H = ∑2
i=1

∂L
∂φi
· φ̇i−L

= C
2 ( h̄

2e )
2[(1 + α)φ̇1

2 +(1 + α)φ̇2
2−2αφ̇1φ̇2]+U.

(7.95)

To eliminate the off-diagonal term −αφ̇1φ̇2, we rotate the system by defining

φp = φ1+φ2
2 and φm = φ1−φ2

2 . Then the Hamiltonian H becomes

H = C( h̄
2e )

2(φ̇p
2 +(1 + 2α)φ̇m

2)

+EJ(2 + α−2cosφp cosφm−α cos(2π f + 2φm)),
(7.96)

while the corresponding Lagrangian is now

L = C(
h̄
2e

)2(φ̇p
2 +(1 + α)φ̇m

2)−U.

The canonical momenta are defined by

Pp = ∂L
∂φp

= 2C( h̄
2e)

2φ̇p,

Pm = ∂L
∂φm

= 2C( h̄
2e)

2(1 + 2α)φ̇m,
(7.97)
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FIGURE 7.11: A repeating double-well pattern of the Josephson energy of a
three junction flux qubit on the φp and φm plane.

and H can be rewritten in terms of Pp and Pm:

H =
(2e)2

4Ch̄2 P2
p +

(2e)2

4Ch̄2(1 + 2α)
P2

m +U, (7.98)

while the potential energy is

U = EJ(2 + α−2cosφp cosφm−α cos(2π f + 2φm)). (7.99)

After this rotation, the same double-well pattern still appears for the poten-
tial energy on the two dimensional φp and φm plane, as shown in Fig. 7.11.
The quantization of the device can be realized by replacing Pp and Pm with
operators−ih̄ ∂

∂Pp
and −ih̄ ∂

∂Pm
, respectively.

Computation shows that the probability for the system leaking from one sta-
ble state to a neighboring cell can be sufficiently suppressed by appropriately
choosing f and α , which changes the barrier between the two stable states in
one cell and the barrier between two stable states in neighboring cells. Thus
only the two lowest levels at the bottom of the two wells in one cell are consid-
ered, and denoted as | ↑〉 and | ↓〉, respectively. After ignoring the constant ter-
m, the Hamiltonian of the device with respect to the ordered basis {| ↑〉, | ↓〉},
H, can be put in a matrix form:

H =

⎛⎝ F −t

−t −F

⎞⎠ , (7.100)
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where matrix entries F and −t are defined as follows. Let

ε↑ = 〈↑ |H| ↑〉,
ε↓ = 〈↓ |H| ↓〉.

(7.101)

The matrix element F can be computed as F =
ε↑−ε↓

2 , which is the energy
change of the lowest level in each well with respect to the energy level at the
degeneracy point ( f = 0.5). The other parameter, t, which can be computed as
t =−〈↑ |H| ↓〉, is the tunneling matrix element for the system to tunnel through
the barrier between two wells. When f = 0.5, F = 0, and the eigenvectors of
the system are 1√

2
(1,1)T and 1√

2
(−1,1)T with respect to the ordered basis

{| ↑〉, | ↓〉}. When f is slightly away from 0.5, F quickly dominates t since
EJ is much large than EC for the flux qubit design. Thus H becomes almost
diagonal and the eigenvectors are approximated by | ↑〉 and | ↓〉. In either case,
H can be diagonalized to

H =−
√

F2 + t2σz (7.102)

by rotating the coordinate system.
By changing Φext , the magnetic field piecing through the junction loop, we

can manipulate the Hamiltonian of the device and control the evolution of the
system. To achieve this purpose, f is moved slightly below the degeneracy
point and an additional resonant field is applied. Let f0 be the new work point
where the system Hamiltonian before diagonalization, cf. (7.100), is

H = F0σz− t0σx. (7.103)

The additional resonant field results in a small change on f0, f = f0 + δ (s),
where s is time. Since δ is so small, F and t can be approximated well by their
first order approximations:

F ≈ F0 + rFδ (s),

t ≈ t0 + rtδ (s).
(7.104)

Thus, the time varying system Hamiltonian at time s can be approximated by

H = (F0 + rF δ (s))σz− (t0 + rtδ (s))σx. (7.105)

LEMMA 7.3
Within the rotating wave approximation, a small oscillating signal δ (s)
at certain frequency yields a Rabi rotation of the system described by
Hamiltonian (7.103).
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PROOF We first rotate the coordinate system using the same ro-
tation to diagonalize (7.103). The rotation matrix D is defined as

D =

⎛⎝ cos θ
2 −sin θ

2

sin θ
2 cos θ

2

⎞⎠ , (7.106)

where θ = tan−1(t0/F0). We also assume that F0 < 0, which happens
when f0 is below 0.5. This results in a Hamiltonian without constant
terms in its off-diagonal elements:

HD = DHDT

= −
√

F2
0 + t2

0 σz

+(rFδ cosθ + rtδ sinθ )σz +(rFδ sinθ − rtδ cosθ )σx.

(7.107)

As desired, δ is an oscillating signal with frequency ω . After collecting
all the constants, we can rewrite HD as

HD = (B1 + ε1 cos(ωt + α))σz + ε2 cos(ωt + α)σx, (7.108)

where B1, ε1, ε2, and α are some constants. Different from the NMR
case and charge qubit case, the coefficient of σz is also time varying.
Fortunately, since the Rabi frequency, which is proportional to ε2 is
much smaller than the resonant frequency (Larmor frequency), this time
varying term causes no problem.

As in Subsection 7.6.2, we transform the system into a rotating frame
by defining

|ψ(t)〉= eiωtσz/2|ξ (t)〉, (7.109)

where |ξ (t)〉 is the wave function of the system. Thus (7.108) leads to

ih̄ d
dt |ψ(t)〉= (− h̄ω

2 σz +(B1 + ε1 cos(ωt + α))σz

+ε2(σx cos(ωt)−σy sin(ωt))cos(ωt + α))|ψ(t)〉.
(7.110)

We assume that B1 = h̄
2 ω , the resonant case, and the Schrödinger equa-

tion (7.110) changes to

ih̄ d
dt |ψ(t)〉= (ε1 cos(ωt + α)σz + 1

2 ε2σx(cos(2ωt + α)+ cosα)

− 1
2 σy(sin(2ωt + α)− sin(α)))|ψ(t)〉.

(7.111)
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FIGURE 7.12: Schematic of a four junction superconducting flux qubit. Junc-
tions 1 and 2 are symmetric with junction energy EJ and capacitance CJ . The
top loop with junctions 3 and 4 forms a DC-SQUID, and these two junction-
s are also symmetric but different from the first two, E3

J = E4
J = β EJ and

C3
J = C4

J = βCJ .

The high frequency terms cos(2ωt + α), sin(2ωt + α), and cos(ωt + α),
can be dropped. Thus, (7.111) is further simplified to

ih̄
d
dt
|ψ(t)〉=

1
2

ε2(σx cosα + σy sin(α))|ψ(t)〉. (7.112)

This is the same equation as (7.88), and the evolution of the system in
time duration τ constitutes a Rabi rotation.

If the third junction is replaced by a DC-SQUID as in Fig. 7.12, it is called
a four-junction flux qubit. This design has two loops, and both loops have a
magnetic field piercing through them. This gives us an extra degree of freedom
for control purposes. The total Josephson energy of this four-junction design
is now [31]

U/EJ = 2 + 2β −2cosφp cosφm−2β cos(π fa)cos(2π fb + 2φm), (7.113)

where φm and φp are defined as before, while fa = f2 = Φ2
ext/Φ0 and fb =

f1 + f2/2. It is still a function of φ1 and φ2 when f1 and f2 are both fixed. We
note that 2β cos(π fa) takes the place of α in (7.92). By regulating fa and thus
the flux piercing through the top loop, we change the shape of the double well
pattern and the evolution of the quantum state.
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7.6.4 Charge-flux qubit and phase qubit

In this subsection, we briefly describe two other ways of setting up qubits in
a superconducting circuit.

For a flux qubit, EJ is much larger than EC. When EJ is almost equal to
EC, both the Coulomb and JJ terms are important, and the qubit is called the
charge-flux qubit [9, 43]. Neither φ nor n is a good quantum number and
the lowest energy states are superpositions of several charge states. A typical
design is shown in Fig. 7.13, which is developed from that of a Cooper pair box
with a dc-SQUID. A larger junction is inserted in the loop for measurement,
which is shunted by capacitors to reduce phase fluctuations. An external flux
Φext is also imposed as in the dc-SQUID case. Normally, the qubit works near
ng = 1/2, and the two lowest eigenstates are superpositions of number states
|0〉 and |1〉. Denoted by |+〉 and |−〉, the two states have an energy difference
EJ and the system Hamiltonian can be written as H = 1

2 EJσz when ng = 0.5
exactly. Control signal with resonant frequency can be applied on the gate
to manipulate the system. After putting the system in a “rotating frame” as
before, the system Hamiltonian changes to

H = ν(σx cosα + σy sinα),

when the control signal is Δng cos(ωt + α), while ν = 2ECΔng〈+|n̂|−〉. The
system behaves like an NMR spin and all technologies, such as composite
pulses can be used to increase the accuracy and robustness of the operation [9].
Charge-flux qubit shows better decoherence than charge- or flux-qubit in ex-
periments.

Readout of the charge-flux qubit is realized through the current in the loop
instead of the charge on the island. When a biased current Ib slightly below the
critical current Ic of the large junction is applied, the large junction is switched
into a finite voltage state depending on the qubit state. In theory, the measure-
ment efficiency p+− p− = 0.95 holds, where pi is the probability to obtain a
voltage in the readout when the qubit is in state |i〉.

Lastly, we address the phase-qubit setup, which is a current-biased Joseph-
son junction. Its special feature is that the junction energy EJ is much larger
than the Coulomb energy EC. See Fig. 7.2. Here, our references are [24, 40,
55]. For such, the Coulomb term is neglected, so its Hamiltonian can be ob-
tained from (7.33) as

H =−EJ cosφ − h̄
2e

Ieφ ,

and the potential is a periodic function of φ offset by Ieφ , with shape appearing
like a “washboard”, see Fig. 7.14. Normally, the JJ is undamped and we choose
Ie not too large so that there are a series of wells on the potential curve. In every
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FIGURE 7.13: Circuit of a charge-flux qubit, with two small junctions and one
large junction in a loop. An external flux Φext penetrates the loop and a voltage
Vg is applied through capacitor Cg to control the bias charge ng. A bias current
Ib is used for measurement.

well formed by cosφ , it is well-known that the energy is quantized and has
different levels. Besides the lowest two states serving as qubit states |0〉 and
|1〉, sometimes there are one or more other states in the well. The extra level
or levels may be used for measurement. Transitions between |0〉 and |1〉, in
the form of Rabi rotation, are realized by applying a resonant electromagnetic
field with ω = E10/h̄, where E10 is the energy difference between |0〉 and |1〉.
Measurement is accomplished by inspecting the tunneling probability of states
through the well. There are two methods. One is to use a microwave field
resonant with E21 (i.e. the energy difference between |1〉 and |2〉) to pump |1〉
to the second excited state |2〉, which has a higher tunneling probability. The
other is to tilt the washboard by increasing Ie so that |1〉 can tunnel through the
barrier with high probability.

7.6.5 Two qubit operations: charge and flux qubits

Various proposals have been suggested to couple two qubits for different
kinds of superconducting qubits.

7.6.5.1 Charge qubit case

Capacitors, for example, can be used to couple two charge qubits. Experi-
ments have shown two-qubit oscillations using this scheme [33], and a condi-
tional gate operation has also been demonstrated using the same device [49].
One disadvantage of the capacitor coupling is that it is not switchable, which
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FIGURE 7.14: A “washboard” shape potential energy curve of a phase qubit.
It is obtained by tilting the cosine function of φ by − h̄

2e Ieφ . When Ie > 2e
h̄ EJ ,

there will be no well on the curve.
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FIGURE 7.15: A simple design to couple charge qubits with inductance. The
inductance and the effective capacitance of the charge qubits configured in
parallel form a weak coupling among the qubits.

makes the pulse design inflexible. It is also difficult to couple two qubits far
away from each other because only the neighboring qubit coupling is conve-
nient.

Inductance, instead, seems more promising. The simplest design is to con-
struct a weak coupling between the qubits through the CL (capacitance-induc-
tance) oscillation, see Fig 7.15 [41]. But the coupling is still not switchable and
thus lacks engineering flexibility. An improved design embeds a dc-SQUID
into the qubit circuit with the advantage that the Josephson energy can be
controlled [22]. The junction in Fig. 7.15 is replaced by a dc-SQUID. See
Fig. 7.16. An external magnetic field Φi

e penetrates the SQUID and changes
the term of the Josephson Hamiltonian to −2E0

J cos(πΦe/Φ0)cosφ , where the
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FIGURE 7.16: A design for coupling charge qubits with inductance where
the junctions in the charge qubits are replaced by a dc-SQUID. All qubits
are coupled through an inductor L, and an external field Φi

e penetrates every
dc-SQUID. This changes the effective Josephson term in the Hamiltonian to
−2E0

J cos(πΦe/Φ0)cosφ and makes EJ tunable by Φi
e.

effective phase difference φ equals half of the difference of the two phase drop-
s at the two junctions and 2πΦe

Φ0
= φe, cf. Section 7.4.4. This means that we

replace EJ in equation (7.42) by a tunable EJ(Φe):

EJ(Φe) = 2E0
J cos(πΦe/Φ0).

In this configuration, the additional effective interaction Hamiltonian induced
by the oscillation in the LC-circuit can be given in the form of Pauli matrices
as

Hint =−∑
i< j

EJ(Φi
e)EJ(Φ j

e)
EL

σ i
yσ j

y ,

where EL = [Φ2
0/(π2L)](CJ/Cqb)

2, while Cqb is the capacitor of the qubit de-

fined by C−1
qb = C−1

J +C−1.
Assume that we can still constrain every qubit in the projected subspace

spanned by |0〉 and |1〉, see V in (7.49), and note that the whole Hamiltonian
of the n-qubit system can be written as

H =
n

∑
i=1

(ε(V i
g)σ i

z−
1
2

EJ(Φ
i
e)σ i

x)−∑
i< j

EJ(Φi
e)EJ(Φ j

e)
EL

σ i
yσ j

y , (7.114)

where we collect all parameters before σz in ε(V i
g) for simplicity. If we let all

Φ j
e = Φ0/2 and n j

g = 0.5 when j �= i, the whole system Hamiltonian changes
to

H = ε(V i
g)σ i

z−
1
2

EJ(Φ
i
e)σ i

x,
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FIGURE 7.17: An improved design to couple charge qubits with inductance.
The top and bottom magnetic fluxes piercing through each of the two SQUIDs
are designed to have the same amplitude but different directions. Similar to the
design in Fig.7.16, the JJ term is tunable through the magnetic fluxes, and the
interaction term now has the form of σ i

xσ j
x , which is more preferable.

and all the other terms are turned off. We can perform any single qubit opera-
tion through the approximation offered by (7.56).

Similarly, a two qubit operation between qubits i and j can be performed by
turning off all Ek

J (Φk
e) and nk

g except qubits i and j. By doing this, now the
Hamiltonian becomes

H = ε(V i
g)σ

i
z + ε(V j

g )σ j
z −

1
2

EJ(Φ
i
e)σ

i
x−

1
2

EJ(Φ
j
e)σ

j
x + Πi jσ

i
yσ j

y .

If we also move the two qubits to their degenerate state, i.e., ni
g = n j

g = 0.5, the
Hamiltonian is simplified to

H =−1
2

EJ(Φ
i
e)σ

i
x−

1
2

EJ(Φ
j
e)σ

j
x + Πi jσ

i
yσ j

y .

Because σx does not commute with σy, the computation of the evolution matrix
is tedious and the design of the CNOT gate and conditional phase change gate
is complicated. Although it provides a mechanism to realize any qubit gates in
combination with one qubit gates, more simplification is helpful.

You et al. [50] improved this design further and obtained a simpler pulse
sequence for two-qubit operations. In fact, the conditional phase gate can be
achieved with just one two-qubit pulse combined with several one-qubit oper-
ations, leading to a much more efficient scheme. The improved design has two
dc-SQUIDs instead of one, see Fig. 7.17. Similar to the previous design, the
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JJ term is tunable through the magnetic field:

Hi
J =−Ei

J(Φ
i
e)(cos(φ i

A)+ cos(φ i
B)),

where φ i
A and φ i

B are the effective phase drops of the top and bottom SQUIDs,
respectively, in Fig. 7.17. The new effective junction energy is given by

Ei
J(Φ

i
e) = 2E0

J cos(πΦi
e/Φ0)

as previously. The inductance couples all qubits and the whole system Hamil-
tonian of n qubits now is

H =
n

∑
k=1

Hk +
1
2

LI2,

where Hk = Ek
C(n̂k− ngk)

2−Ek
J (Φk

e)(cos(φ i
A)+ cos(φ i

B)), Ek
C is the Coulomb

energy of qubit k, and I is the persistent current through the superconducting
inductance. Written in Pauli matrices form, the new overall Hamiltonian is

H = ∑
k=i, j

[εk(V
k
g )σ k

z − Ēk
J (Φ

k
e,ΦL,L)σ k

x ]+ Πi jσ
i
xσ j

x . (7.115)

The σ i
xσ j

x forms the interaction term which brings the advantage that it com-
mutes with the Josephson term, and we will show later that it make the two-
qubit gate design much more straightforward and simple. Also, note that the
effective junction energy Ēk

J in (7.115) is not the same as the EJ in (7.114)
and also depends on the inductance L and its magnetic flux ΦL, although it
is still tunable through Φk

e. Similarly, the interaction coefficients Πi j are also

functions of ΦL, Φi
e and Φ j

e. Thus all terms are switchable.
By setting Φk

e = 1
2 Φ0 and nk

g = 0.5 for all qubits, we can let all terms vanish
and obtain H = 0. The system state will not change. If we need to perform an
operation on qubit i, we change the corresponding Φi

e from 1
2 Φ0 and ni

g from
0.5, and then the Hamiltonian becomes

H = εi(V
i
g)σ

i
z− Ēi

J(Φ
i
e,ΦL,L)σ i

x.

Because both ni
g and Φi

e can be tuned separately, the 1-qubit operators eiασ i
z

and eiβ σ i
x can be obtained easily by choosing Ēi

J = 0 or εi(V
i
g) = 0, with an

appropriate time duration. Any other one-qubit operations can be constructed
by combining these two operators.

Two-qubit operations can now be performed by tuning Φi
e and Φ j

e away from
Φ0/2. Then the Hamiltonian becomes

H =−Ēi
Jσ i

x− Ē j
J σ j

x + Πi jσ
i
xσ j

x . (7.116)
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THEOREM 7.2

For the Hamiltonian (7.116) with tunable coefficients Ēi
J, Ē j

J
and Πi j,

we can construct the two-bit quantum phase gate Qπ and the CNOT
gate UCNOT in conjunction with one-bit Rabi gate Uθ ,φ (cf. (7.66), as
warranted by Corollary 7.1), where

Qπ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ , UCNOT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.117)

PROOF We choose the control parameters such that Ēi
J = Ē j

J
= Πi j =

δ . Then the evolution matrix for the Hamiltonian (7.116) becomes

U = e−iHτ/h̄ = e−(iδτ/h̄)(−σ i
x−σ j

x +σ i
xσ j

x ). (7.118)

It is easy to check that the eigenvalue equations for H now are:

H|++〉=−δ |++〉, H|+−〉=−δ |+−〉,
H|−+〉=−δ |−+〉, H|−−〉= 3δ |−−〉,
(|±〉= 1√

2
(|0〉± |1〉)).

(7.119)

By choosing δτ/h̄ = π/4 in (7.118), we see that (7.118) gives the evolu-
tion matrix

Ũ = eiπ/4

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

−1

⎤⎥⎥⎥⎥⎥⎥⎦ (7.120)

with respect to the ordered basis {|++〉, |+−〉, |−+〉, |−−〉}. We can
convert the matrix representation (7.120) to a representation with re-
spect to the standard ordered basis {|00〉, |01〉, |10〉, |11〉} by

Qπ = H†
i H†

j ŨHiHj,
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where Hi and Hj are, respectively, the Walsh–Hadamard gate for the i-th
and j-th qubit. Since the Walsh–Hadamard gate satisfies

Hi = Hj =
1√
2

⎡⎣ 1 1

1 −1

⎤⎦= e−iπ/2Ry,π/2Rz,π , (7.121)

we have obtained Qπ as promised.
From Qπ , we have

UCNOT = U2
π/4,π/2ŨU2

π/4,−π/2, (7.122)

we also have the CNOT-gate.

Corollary 6.5 Superconducting one-bit gates Uθ ,φ obtained in Corollary 7.1
together with two-bit gates Qπ or UCNOT obtained in Theorem 7.2 are univer-
sal.

PROOF This is a consequence of a result of J. Brylinski and R.
Brylinski [6].

7.6.5.2 Flux qubit case

Two flux qubits can be coupled with a direct inductance coupling or LC
circuit [22, 25, 54]. In Fig. 7.18, a closed superconducting loop couples two
flux qubits through the mutual inductance M. The coupled Hamiltonian of this
two qubit system is then

H = HA( f̃ A
1 )+ HB( f̃ B

1 )+ MIA
1 IB

1 , (7.123)

where IA
1 and IB

1 are the persistent currents circulating in the bottom loops of
qubit A and qubit B, respectively, and HA

1 and HB
1 are the single qubit Hamil-

tonian of qubit A and qubit B, respectively, in the form of (7.113), while f A
1 is

replaced by f̃ A
1 = f A

1 +MIB/Φ0 and f B
1 is replaced by f̃ B

1 = f B
1 +MIA/Φ0. The

coupling is very weak, and the induced magnetic field from the current of the
other qubit is much smaller than the external magnetic field applied through
the qubit itself. Put in Pauli matrices, the interaction Hamiltonian has the form
of

Hint = k1σA
z σB

z + k2σA
x σB

z + k3σA
z σB

x , (7.124)

where k1, k2, and k3 are some constants. The coupling can be turned off by
inserting another DC-SQUID in the coupling loop.
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FIGURE 7.18: Schematics of two flux qubits coupled with mutual inductance.

The coupling between the two qubits results in different energy split for
qubit B when qubit A is different. Let E00, E01, E10, and E11 be the energy
levels of state |00〉, |01〉, |10〉, and |11〉, respectively, and let δEB

0 = E01−E00
and δEB

1 = E11−E10. Then δEB
0 �= δEB

1 when the coupling is turned on. A
laser field resonant to δEB

1 applied on qubit B causes a Rabi rotation only when
qubit A is in state |1〉. A controlled-NOT gate is then achieved when the time
duration of the pulse is properly controlled such that the state of qubit B is
flipped.

Two flux qubits can also be coupled by an LC circuit as in Fig. 7.19. The
interaction Hamiltonian is given by

Hint = εABσA
y σB

y , (7.125)

where εAB represents the coupling strength. This is called a σyσy coupling.
The coupling strength is a function of the mutual inductance and the tunneling
amplitude, among other parameters, and the coupling can be turned off by
adjusting these parameters.

To check the evolution of the system with this coupling, we investigate a
general Hamiltonian with σyσy coupling:

H = HA + HB− εσA
y σB

y

= E
2 σA

Z + E
2 σB

z − εABσA
y σB

y .
(7.126)

We assume that the two qubits are symmetric, and

HA = E
2 σA

HB = E
2 σB.
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FIGURE 7.19: Schematics of two flux qubits coupled with a LC oscillator.

LEMMA 7.4

The evolution matrix of the system with the above Hamiltonian within
time duration τ, which is a unitary gate on the two qubit system, is
imprimitive [6] when τ is properly chosen.

PROOF As before, we transform the Hamiltonian into the interac-
tion picture by defining a new wave function |ψ(t)〉= eiω(σ A

z +σ B
z )t/2|ξ (t)〉,

where |ξ (t)〉 is the original wave function of the two qubit system. Thus,
the Schrödinger equation can be derived as

ih̄ ∂
∂ t |ψ(t)〉= ((E

2 − h̄ω
2 )(σA

z + σB
z )

−εAB(σA
x sin(ωt)+ σA

y cos(ωt))

(σB
x sin(ωt)+ σB

y cos(ωt)))|ψ(t)〉.
(7.127)

We choose h̄ω = E, and the above Schrödinger equation can be simplified
to

ih̄ ∂
∂ t |ψ(t)〉= −εAB( 1−cos2ωt

2 σA
x σB

x + 1+cos2ωt
2 σA

y σB
y

+ sin2ωt
2 (σA

x σB
y + σA

y σB
x ))|ψ(t)〉.

(7.128)

Normally, the interaction is very weak, and εAB is much smaller than E.
Thus we can drop the high frequency terms and further simplify (7.128)
into

h̄i
∂
∂ t
|ψ(t)〉=−εAB

1
2
(σA

x σB
x + σA

y σB
y )|ψ(t)〉. (7.129)
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Put in matrix form, the associated Hamiltonian is

H =−εAB

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.130)

The evolution matrix after time duration τ can be obtained by straight-
forward computation:

e−iH τ/h̄ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 cos(εABτ/h̄) isin(εABτ/h̄) 0

0 isin(εABτ/h̄) cos(εABτ/h̄ 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.131)

When εABτ/h̄ = π/2, we obtain a gate similar to the SWAP gate:

U1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.132)

When εABτ/h̄ = π/4, its square root is obtained as

U1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0
√

2
2 i

√
2

2 0

0 i
√

2
2

√
2

2 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (7.133)

This unitary gate is imprimitive. It maps a factorizable state |01〉 to√
2

2 (|01〉+ i|10〉), which is nonfactorizable.

7.6.6 Measurement of charge qubit

The energy level of the first excited state |1〉 changes with the offset charge;
when it is higher than the superconducting gap, the Cooper pair is broken apart
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into two quasi-particles. In Fig. 7.6, a read pulse applied on the probe gate will
break the pair and let them tunnel through the junction. Repeating the exper-
iment and measurement at frequency ν and assuming that the probability of
observing the qubit at state |1〉 is P1, we can obtain a classical current through
the probe gate which is proportional to P1:

I = 2eP1ν.

This measurement is destructive. Although state |0〉 is kept unchanged, state
|1〉 is destroyed after measurement. Nakamura has used this method to ob-
serve the coherence in a SCB and quantum oscillation in two coupled charge
qubits [28, 29, 33].

mnVg mnVp

FIGURE 7.20: Schematic of a circuit for measuring a charge qubit using low
frequency SET. The charge qubit is coupled capacitively to an SET through a
charge trap which is connected to the Cooper pair box with a tunnel junction.
To reduce dissipation, the junction has high resistance. The SET is in Coulomb
blockade state and there is no current through the junctions when there is no
charge in the trap. When a read pulse moves extra charges from the charge
qubit to the trap, the SET is biased and a current is observed through the SET.

The above method is easy to apply, but it requires many repeated experi-
ments and measurements. A single shot measurement requires only one mea-
surement and would save much time. One example was realized by a group in
Japan [2] using single electron transistor (SET), a sensitive electrometer, and
similar setups were also investigated by other groups. See Fig. 7.20. When
an appropriate pulse Vp is applied to the probe gate, such as mentioned in
the preceding paragraph, the extra Cooper pair in the box is broken into two
quasi-particles and tunnels into the trap. If the box is originally in state |0〉,
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mnAmplifiermnCoupler

FIGURE 7.21: Schematic of circuit for measuring a charge qubit using rf-SET.
Different from the low frequency SET where it is the current from the source to
the drain to be measured, the rf-SET measures the conductance and this makes
it faster and more sensitive. A radio frequency (rf) signal resonant to the SET,
referred to as a “carrier” but not shown in this figure, is launched toward the
SET though the coupler. Then a conductance change of the SET due to the
extra charge in the charge qubit results in the change of the damping of the
SET circuit, and it is reflected in the output of the amplifier.

no electron will tunnel through the junction. Then the extra charge in the trap
may be detected by the SET. This completes the measurement. During normal
operations, the trap junction is kept unbiased and the charge qubit is isolated
from the trap and SET.

The qubit may be coupled to the SET directly through a capacitor without
the trap and junction, but this may induce more decoherence to the qubit. The
above low frequency SET can be replaced by an rf-SET [1, 38], a more sensi-
tive and fast electrometer, see Fig. 7.21. Different from the low frequency SET
where it is the current from the source to the drain to be measured, the rf-SET
measures the conductance.

There is a worrisome aspect of measurement due to the effects of noise in
hight Tc superconductors as Kish and Svedlindh [20] and others have reported
excessively strong magnetic and conductance noise on such superconductors.
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Chapter 8

Nondeterministic Logic Gates in
Optical Quantum Computing

Federico M. Spedalieri, Jonathan P. Dowling, and Hwang Lee

Abstract We present a detailed description of nondeterministic quantum
logic gates: the crucial component of linear optical quantum computing. We
use the qubits that are encoded in the polarization degrees of freedom, as op-
posed to the original dual-rail encoding. Employing the polarization-encoding
scheme, we can avoid the undetected errors due to the inefficiency of the pho-
todetectors and, therefore, achieve high gate fidelity, independent of the quan-
tum efficiency of the detectors. Furthermore, we show that such a high-fidelity
gate operation can be performed with no need of number-resolving detectors.

8.1 Introduction

Suppose we have a calculator that gives correct answers from time to time,
but not always. Generally, it can hardly be considered as a useful device. How-
ever, it will be a fine machine if it says “yes” and stops whenever the output
is correct—when not correct, it should say “no” and repeat the calculation. Of
course, it would be perfect if it computes fast and its saying yes happens more
frequently than not. Nondeterministic logic gates are supposed to do a similar
job at the individual gate-operation level. In optical quantum computing, due to
the lack of efficiency in the photon-photon interaction, the required two-qubit
logic gates rely on the effective nonlinearity based on photodetection [1, 2]. In
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doing so, the gate operation is not always successful—there must always be a
nonvanishing probability of an unwanted outcome of photodetection. If there
were no such unwanted outcome, we would not have the detection! The good
news is that we would know if it is successful whenever the outcome is the
desired one—if not, abort and repeat.

When the gate operation is probabilistic as described above, however, the
number of gates must increase to counter the errors, resulting in an exponen-
tial slowdown as the size of computation increases. Therefore, the probability
of success of the individual gate operation must be boosted, up to the point
where the failure gets below the error threshold required by the fault-tolerant
computation. In essence for the linear optical quantum computing proposed
by Knill, Laflamme, and Miburn (KLM) [1], the boost of the success proba-
bility is made by adding more ancilla qubits. For example, the probability of
success of the two-qubit CNOT gate is given by n2/(n + 1)2, where n is the
number of ancilla qubits. Thereby these are called “near-deterministic” gates.
What is the price to pay? It is that the ancilla qubits are to be entangled in a
certain form [3]. The KLM scheme utilizes the gate-teleportation technique,
first suggested by Gottesman and Chuang [4], in order that the ancilla states
are prepared outside the main stream of the gate operations—by the so-called
off-line production.

On the other hand, the high probability of success of the nondeterminis-
tic gates basically assumes perfect photodetection with unit efficiency and the
number-resolving capability. The KLM scheme, in its basic form, is extremely
fragile against errors in photodetection. This is not manifested in a way that
the machine says “yes” less frequently. Rather, the machine would say “yes,
go ahead,” but it was a wrong answer and we would never know it was wrong.
Thereby there are errors that are not detected. So the output of the computation
quickly becomes unreliable as the quality of the photodetectors is far off being
“ideal”. The tolerable efficiency of the detector required for reliable LOQC is
above 99%, which is far beyond what is currently available.

In a recent article, we have proposed a polarization encoding for the KLM
scheme [5], as opposed to its original dual-rail encoding. The aim of the po-
larization encoding is to prevent the undetected errors associated with the im-
perfect photodetection. As a result, it requires twice more ancilla photons and
naturally twice more photodetectors than the dual-rail encoding. Using the po-
larization encoding, whereas the fidelity of the implemented gate is increased
(by avoiding the undetected errors), the probability of having successful gate
operations decreases when non-ideal detectors are employed (by the increase
of the number of detectors).

Sacrificing the success probability of gate operation is bad news. Howev-
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er, as opposed to the usual quantum circuit model, there is an alternative way
of doing quantum computation, proposed by Raussendorf and Briegel [6], the
so-called cluster-state approach. In the cluster-state model, the computation is
carried out by a series of single-qubit measurements on a set of highly entan-
gled qubits, the cluster states. The construction of optical cluster states using
the nondeterministic two-qubit gates was proposed by Nielsen [7]. In essence,
lower probability of success can be tolerated while still being able to construct
the desired cluster states. Hence, with its high-fidelity gate operation the polar-
ization encoding scheme can be used to construct high-fidelity optical cluster
states.

Here we describe the basic ideas of LOQC using the polarization encoding
scheme and its advantages in optical cluster-state quantum computing. Sec-
tions to follow consist of Section 8.2 the representation of the qubit in the
optical quantum computing, Section 8.3 non-deterministic quantum teleporta-
tion, Sections 8.4 and 8.5 non-deterministic two-qubit gate operation and con-
struction of the ancilla states, and Section 8.6 the application to optical cluster
states, the issue of gate fidelity, and the optimal ancilla state. Section 8.7 con-
tains the conclusions and Appendices A and B are devoted to the descriptions
of basic single-quit gates and the nonlinear sign gate.

8.2 Photon as a qubit

Typically, in the optical approach to quantum computation, the states of po-
larization of a single photon are used to define the qubit. In this polarization
encoding the logical qubit |0〉 is represented, for example, by a single photon
with the horizontal polarization |H〉 and |1〉 by one with the vertical polariza-
tion |V 〉.

|0〉 ≡ |H〉, |1〉 ≡ |V 〉. (8.1)

Another convenient choice of the logical qubit can be the utilization of two
physical paths containing a single photon:

|0〉 ≡ |1〉1 |0〉2
|1〉 ≡ |0〉1 |1〉2, (8.2)

where the subscripts 1,2 represent the relevant two modes. The interchange
between the polarization qubit to this so-called dual-rail qubit can be simply
made by polarizing beam splitters followed by a polarization rotation. The
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polarizing beam splitters (oriented in a certain direction, i.e., H-V basis) al-
ways transmit horizontally polarized light (H-photons) and reflect vertically
polarized light (V-photons), and therefore allow the following transformation:

|H〉 → |0〉1 |1〉2,
|V 〉 → |1〉1 |0〉2, (8.3)

with the additional polarization rotation (H↔V) in one of the two paths.
In order to do universal quantum computation, it is required to have the

ability to perform all one-qubit gates and the two-qubit CNOT gate, based on
the universality theorem that all unitary operations on arbitrarily many qubits
can be made out of a combination of these gates [8]. Any one-qubit logic
operation can be achieved by the manipulation of the polarization of a single
photon using simple linear optical devices such as beam splitters and phase
shifters.

Normally a beam splitter is described as follows: Taking â and b̂ as the input
modes, the output modes is given by⎛⎝ â′

b̂′

⎞⎠=

⎛⎝ r t

t r

⎞⎠⎛⎝ â

b̂

⎞⎠ (8.4)

where for lossless beam splitters the reflection coefficient r and the transmis-
sion coefficient t need to satisfy |r|2 + |t|2 = 1, and rt∗+ tr∗ = 0. We may
define the beam splitter as⎛⎝ â′

b̂′

⎞⎠=

⎛⎝ cos θ
2 isin θ

2

isin θ
2 cos θ

2

⎞⎠⎛⎝ â

b̂

⎞⎠ . (8.5)

Polarizing beam splitters, however, allow complete transmission for one polar-
ization and total reflection for the other orthogonal polarization. The effect of
the phase shifters on the mode operators is described as â′ = e−iâ†âφ â. Physical
implementations of the various one-qubit gates necessary for optical quantum
computing are described in Appendix A.

The two-qubit gate, on the other hand, requires certain interactions between
the photons, which can be envisioned through nonlinear optical processes as
the Kerr effect [9]. However, the fact that the efficiency of these nonlinear
interactions is very small at the single-photon level poses the main difficulty
in optical quantum computing. The idea of linear-optical quantum computing
is to replace the requirement of nonlinear interaction with corrections to the
output of gate operations (made of linear-optical devices) based on the results
of single-photon detectors.
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A typical two-qubit gate, controlled-NOT (CNOT) is represented as fol-
lows:

|H〉|H〉 → |H〉|H〉
|H〉|V 〉 → |H〉|V 〉
|V 〉|H〉 → |V 〉|V 〉
|V 〉|V 〉 → |V 〉|H〉, (8.6)

where the second qubit (target) flips when the first qubit (control) is in the state
|V 〉 (the logical value 1), yielding the controlled σx operation. The CNOT gate
plays an important role in that any n-qubit gates can be decomposed into the
CNOT gates and one-qubit gates and thus form a universal set of gates.

Another frequently used two-qubit gate is the conditional sign-flip gate (C-
SIGN). The CSIGN gate is equivalent to CNOT gate in that they can be trans-
formed to each other by using one-qubit gates only. The transformation by the
CSIGN gate is written as

|H〉|H〉 → |H〉|H〉
|H〉|V 〉 → |H〉|V 〉
|V 〉|H〉 → |V 〉|H〉
|V 〉|V 〉 → −|V〉|V 〉. (8.7)

Note that the CSIGN gate is the controlled σz operation so that the CNOT
gate is then simply constructed by using CSIGN and two one-qubit gates (e.g.,
Hadamard on the target, followed by the CSIGN and another Hadamard gate
on the target).

The CSIGN gate is perhaps more familiar to the optics community as it can
be viewed as a third-order nonlinear optical process. The interaction caused
by the Kerr nonlinearity can be described by a Hamiltonian [10]

HKerr = h̄κ â†âb̂†b̂, (8.8)

where κ is a coupling constant depending on the third-order nonlinear suscep-
tibility, and â†, b̂† and â, b̂ are the creation and annihilation operators for two
optical modes.

We assign modes 1, 2 for the control qubit, and 3, 4 for the target qubit and
suppose now only the modes 2, 4 are coupled under the interaction given by
Eq. (8.8). For a given interaction time τ , the transformation (after we put the
dual rail back to the polarization encoding) can be written as

|H〉|H〉 → |H〉|H〉
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|H〉|V 〉 → |H〉|V 〉
|V 〉|H〉 → |V 〉|H〉
|V 〉|V 〉 → eiϕ |V 〉|V 〉. (8.9)

where ϕ ≡ κnanbτ and na = 〈â†â〉,nb = 〈b̂†b̂〉. This operation yields a condi-
tional phase shift. When ϕ = π , we have the CSIGN gate. In order to have ϕ of
the order of π at the single-photon level, however, a huge third-order nonlinear
coupling is required [11]. In the next section we discuss how to avoid such
difficulties by using the quantum teleportation technique on the one hand, and
effective nonlinearities produced by projective measurements on the other.

8.3 Linear optical quantum computing

The application of quantum gates with linear optical elements is based on
an approach developed by Gottesman and Chuang [4] that relies on quantum
teleportation. Quantum teleportation transmits information encoded in a qubit
to another location without sending the qubit itself. As depicted in Fig. 8.1,
this is done by

i) transmitting (via a quantum channel) one of the EPR pair,

ii) Bell-state measurement (BM) of the qubit and the other one of the EPR
pair,

iii) transmission (via a classical channel) of the result of the BM, and

iv) making a correction (σ j, j = 0,1,2,3, corresponding to the identity op-
eration I, and the three Pauli operations σx, iσy = σzσx,σz) to the one
transmitted in the process (i).

The EPR pair can be any one of the four Bell states (φ±,ψ±), where

φ (+) = (|HH〉+ |VV 〉)/
√

2,

φ (−) = (|HH〉− |VV 〉)/
√

2,

ψ(+) = (|HV 〉+ |VH〉)/√2,

ψ(−) = (|HV 〉− |VH〉)/√2. (8.10)

Gate teleportation, as shown in Fig. 8.2, is carried out simply by i) applying
the desired gate (say U1) before the transmission of one of the EPR pair and
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Z
EPR

Ψ

Ψ

BM

X

FIGURE 8.1: Quantum teleportation: Ψ is the quantum state of the qubit. EPR
stands for the EPR pair, which can be any one of the Bell states (φ±,ψ±). One
of the EPR pair is transmitted to another location and Bell-state measurement
(BM) is carried out for the qubit and the other one of the EPR pair. The one
of the four possible results of the BM is then transmitted through the classical
channel. Finally, the receiver needs to make a correcting operation (X = σx,
Z = σz).

ii) making the correction as Uσ jU
−1. The usual quantum teleportation can be

thought as a special case in which the unitary applied is the identity operation.
Obviously, the gate teleportation is trivial and of no use for a one-qubit gate.

Q1U
U−1σ j

BM

BS

U U

Q1

FIGURE 8.2: One-qubit gate teleportation: The desired gate operation (say
U1) is done on one part of the Bell state (BS: the EPR pair) before the trans-
mission to the receiver. The correction operation is then given by Uσ jU

−1.

Generalization to n-qubit gates is straightforward. For two-qubit operations
(say U2), there are two EPR pairs, and the two-qubit gate is applied between the
ones from each pair, and two separate BMs are needed. Then, the correcting
operation after the two separate BMs becomes U2(σ j⊗σk)U

−1
2 (see Fig. 8.3).

In particular when U2 = CNOT, the operation CNOT (σ j ⊗ σk) CNOT can
be written as direct product of Pauli matrices and the identity matrix (such as
±σl⊗σm). Consequently, we do not have to perform the two-qubit operation
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at the correcting stage—only one-qubit operations are needed. This property
alone does not help much since we would have to apply the two-qubit gate to
the ones from each of the EPR pairs.

BM

Q2

Q1U Q2BS

BS

U U−1U σ j σ

Q

k

1

BM

FIGURE 8.3: Two-qubit gate teleportation: There are now two EPR pairs (Bell
states, BS), and the two-qubit gate is applied between the ones from each pair,
and two separate BMs are needed. Now the correcting operation after the two
Bell measurements is given by U2(σ j⊗σk)U

−1
2 .

The big advantage of the gate teleportation appears when the two-qubit gate
is not deterministic. When the attempted gate operation is not always success-
ful, it is hardly useful unless its probability of success is high enough within
the fault tolerant range. Using the gate teleportation, one can move the desired
two-qubit gate to the stage of preparing the auxiliary qubit (namely the EPR
pairs here) and avoid applying the probabilistic gates directly on to the main
qubits.

The idea of gate teleportation is to replace the usual Bell pair used to teleport
the state of a qubit by a different entangled state. However, the teleportation
procedure requires that we are able to perform the Bell measurement (a pro-
jective measurement on the basis composed by the four Bell states). Rough-
ly speaking, the two-qubit Bell measurement consists of a CNOT gate and
Hadamard gate (on one of the two qubits) followed by the measurement in the



8.3. LINEAR OPTICAL QUANTUM COMPUTING 231

computational basis. This is again a problem for a linear-optical implementa-
tion, since in this case a complete Bell measurement is not possible without the
capability of CNOT operation. To circumvent this problem we need to relax
the requirement of a complete Bell measurement.

It is well known that linear-optical elements can be used to implement an
incomplete Bell measurement. If we use the teleportation scheme of Gottes-
man and Chuang to apply our quantum gates, these gates will only work half
of the time. There is, however, a way to improve the probability of success of
the teleportation step. This is accomplished by using a more complex version
of the Bell state than employing in the usual qubit teleportation. As we shall
see, this allows us to increase the probability of success arbitrarily close to 1.

We will use the notation |V 〉 j to represent a state of j modes, each one
occupied by a vertically polarized photon. For the most part we will omit the
explicit numbering of the modes unless it is needed to avoid confusion. For
example, |V 〉2|H〉 represents the state |VV 〉12|H〉3. Now consider the state

|tn〉=
1√

n + 1

n

∑
j=0
|V 〉 j|H〉n− j|H〉 j|V 〉n− j. (8.11)

This is a state of 2n modes that contains 2n photons, exactly one photon per
mode (see Fig. 8.4).

To simplify the calculations it is useful to write the state of the modes in
terms of creation operators acting on the vacuum state. We will call a†

k
the

creation operator of a vertically polarized photon in mode k, and b†
k

the creation
operator of a horizontally polarized photon in mode k. Then we have

a†
k |vac〉 = |V 〉k

b†
k |vac〉 = |H〉k, (8.12)

where |vac〉 represents the vacuum state. We will write |vac〉1...n to represent
the vacuum state of modes 1 to n.

We would like to teleport the state of a qubit that is encoded in a mode of
the field that we will call mode 0. This state can be written as

|ψ〉= α|H〉0 + β |V〉0 = (αb†
0 + β a†

0)|vac〉0. (8.13)

The first step consists in applying a Fourier transform to the set of n+1 modes
formed by mode 0 and the first n modes of the state (8.11). This Fourier trans-
form has a very simple mathematical expression when given in terms of its
action on the creation operators,

F̂n(a†
k) =

1√
n + 1

n

∑
lk=0

ωklk a†
lk
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F̂n(b†
k) =

1√
n + 1

n

∑
lk=0

ωklk b†
lk
, (8.14)

where ω = exp[2π i/(n+1)]. One very important fact is that this Fourier trans-
form can be implemented with linear optical elements such as mirrors, beam
splitters, and phase shifters [13]. Another important point is that this operation
does not mix the polarizations of the photon, which can be seen from the E-
qs. in (8.14) through the fact that the creation operators for each polarization
transform among themselves.

t n

Q1

Q1PS

F
# of V−photons = k

n+k

FIGURE 8.4: Nondeterministic quantum teleportation: Improvement of the
success probability of the incomplete Bell measurement is achieved by using
a more complex version of the Bell state employed in the usual qubit telepor-
tation. This can increase the probability of success arbitrarily close to 1.

We can now rewrite the teleporting state |tn〉 using the creation operators for
horizontally and vertically polarized photons, and get

|tn〉= 1√
n + 1

n

∑
j=0

a†
1 . . .a†

jb
†
j+1 . . .b†

nb†
n+1 . . .b†

n+ ja
†
n+ j+1 . . .a†

2n|vac〉1...2n.

(8.15)
Before applying the Fourier transform, consider the joint state formed by our
qubit in state (8.13) together with the state |tn〉. Expanding this, we have

|ψ〉|tn〉 =
1√

n + 1

n

∑
j=0

{
αb†

0

(
j

∏
k=1

a†
k

)(
n

∏
k=1

b†
j+k

)(
n− j

∏
k=1

a†
n+ j+k

)
+

+β a†
0

(
j

∏
k=1

a†
k

)(
n

∏
k=1

b†
j+k

)(
n− j

∏
k=1

a†
n+ j+k

)}
|vac〉0...2n. (8.16)

This is a state of 2n + 1 modes. Note that the difference between the two
terms inside the curly brackets is, besides the values of α and β , that the first
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term has a creation operator for a horizontally polarized photon in mode 0,
while the second has a creation operator for a vertically polarized photon in
that mode. The next step is to apply the Fourier transform to the first n + 1
modes (i.e., modes 0 to n). So what we have to do is replace the first n + 1
creation operators appearing in the two terms in (8.16) by the corresponding
sum of operators that can be read from (8.14). Note that, since the two terms
have different numbers of creation operators of each type (H or V), and since
the Fourier transform does not mix polarizations, the same will hold after the
transformation is applied.

The state after the Fourier transform is

∑n
j=0

⎧⎨⎩ ∑
0≤l0,...,ln≤n

ω∑n
k=0 klk

(
αb†

l0
a†

l1
. . .a†

l j
b†

l j+1
. . .b†

ln
+

+β a†
l0

a†
l1

. . .a†
l j

b†
l j+1

. . .b†
ln

)
|vac〉0...n

}
|H〉 j|V 〉n− j︸ ︷︷ ︸

modes(n+1,...,2n)

, (8.17)

where we have written the state of the last n modes as |H〉 j|V 〉n− j to simplify

the expression, and have omitted the normalization factor (n + 1)−
n+2

2 . Note
that the α terms have j V-photons and (n− j + 1) H-photons, while the β
terms have ( j + 1) V-photons and (n− j) H-photons. This difference will be
responsible for transferring the superposition that was present in mode 0 to one
of the last n modes.

The next step consists in measuring the first n + 1 modes. The idea of this
measurement is to collapse the state (8.17) in such a way that the state of our
qubit (originally encoded in mode 0) is transferred to one the last n modes.
What we need to do then is to measure how many photons of each polarization
are present in each of the first n + 1 modes. To do this we first need to send
each of these modes through a polarization beamsplitter, that sends vertically
and horizontally polarized photons through different paths, and then measure
the number of photons present using a number-resolving photodetector.

Assume that we have performed this measurement, and we have obtained
that in mode j; there are r j of the V-photons and h j of the H-photons. Note
that since there was one photon per mode in the first n + 1 modes of (8.16)
and the Fourier transform cannot create or destroy photons, the total number
of photons measured at the output must remain n + 1. First, consider the two
simplest cases. If ∑n

j=0 r j = n + 1, then all the photons detected are V-photons
(i.e., h j = 0, ∀ j). Looking at (8.17), we see that the only term that has n +
1 of the V-photons in the first n + 1 modes corresponds to the β term with
j = n. Any other term in (8.17) has at least one H-photon. Then the state
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corresponding to that measurement result is:

|V 〉n+1|H〉n. (8.18)

It is clear that in this case the original superposition present in mode 0 has
been lost, and after the measurement all modes are left in known states with
either a V-photon or an H-photon. In this case the teleportation has failed.
This particular outcome occurs with probability |β |2/(n + 1). Similarly, if we
measure that ∑n

j=0 r j = 0, that means ∑n
j=0 h j = n + 1, and we can repeat the

reasoning above by replacing V-photons with H-photons. So again, the result
is a projective measurement that destroys the superposition. The probability
of this event occurring is |α|2/(n + 1), and so the total probability of failure
of the teleportation is 1/(n + 1) independent of the input state. Franson and
coworkers suggested that the probability of failure can be reduced to the order
of 1/n2 by tailoring the probability amplitudes of the ancilla state [12].

Let us study the more interesting case in which the measurement result
is such that ∑n

j=0 r j �= n + 1,0, and write ∑n
j=0 r j = k. Then we also have

∑n
j=0 h j = n−k+1, since the total number of photons detected is always n+1.

The state corresponding to that measurement result is{
∑
S

ω∑n
p=0 p lpαb†

l0
a†

l1
. . .a†

lk
b†

lk+1
. . .b†

ln
|vac〉0...n|H〉k|V 〉n−k+

+∑
S ′

ω∑n
p=0 p lpβ a†

l0
a†

l1
. . .a†

lk−1
b†

lk
. . .b†

ln
|vac〉0...n|H〉k−1|V 〉n−k+1

}
,

(8.19)

with

S =
{
(l0, . . . , ln)/ {l1, . . . , lk}contains the value j,r j times, and

{l0, lk+1, . . . , ln}contains the value j,h j times, j ∈ {0, . . . ,n}
}

S ′ =
{
(l0, . . . , ln)/ {l0, . . . , lk−1}contains the value j,r j times, and

{lk, . . . , ln}contains the value j,h j times, j ∈ {0, . . . ,n}
}

. (8.20)

By looking at the two sums in (8.19) we can see that these two terms have
the same state for the first n + 1 modes since they have the same number of
V-photons and H-photons in each of the first n + 1 modes (fixed by the result
of the measurement). The only difference is given by the state of the last n
modes and by the factors introduced by the two sums

∑
S

ω∑n
p=0 p lp and ∑

S ′
ω∑n

p=0 p lp . (8.21)
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Since the sums are over two different sets of (n + 1)-tuples, it is not clear if
this will change the relative weights in the superposition given by α and β .
We will now show that actually the two factors in (8.21) differ only by a phase.

To see this, first let us note that the sets S and S ′ are isomorphic. Let�l′ be
an element of S ′. Then�l′ is related to a unique element�l of S by a function
f : S ′ →S defined by

�l = f [�l′] = f [(l′0, . . . , l
′
n)] = (l′n, l

′
0, . . . , l

′
n−1), (8.22)

so we have

l0 = l′n
l1 = l′0

...

ln = l′n−1. (8.23)

It follows that

∑
S ′

ω∑n
p=0 p l′p = ∑

S

ω∑n−1
p=0 p lp+1 ωn l0

= ∑
S

ω∑n
p=1(p−1) lp ωn l0

= ∑
S

ω∑n
p=1 p lp ω−∑n

p=1 lp ωn l0

= ∑
S

ω∑n
p=0 p lp ω−∑n

p=0 lp ω(n+1) l0 . (8.24)

In the last equality we have replaced ∑n
p=1 plp by ∑n

p=0 plp in the first expo-
nent, since extending the lower limit doesn’t change the sum (the term with
p = 0 is zero). Now recall that ω = exp[2π i/(n+1)], so we have ω(n+1) l0 = 1.
As a consequence,

∑
S ′

ω∑n
p=0 p l′p = ∑

S

ω∑n
p=0 p lp ω−∑n

p=0 lp . (8.25)

Let us look at the factor ω−∑n
p=0 lp in more detail. In particular, look at the

exponent. It is the sum of the values of all the components of an (n + 1)-
tuple belonging to S . But all (n + 1)-tuples of S have exactly the same
components, up to a permutation of components 1 to k among themselves, and
a permutation of components 0,k + 1, . . . ,n among themselves. Thus the sum

n

∑
p=0

lp, (8.26)
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is a constant over S , and so this phase factor can be extracted from the sum
over S , and we get

∑
S ′

ω∑n
p=0 p l′p = ω−∑n

p=0 lp ∑
S

ω∑n
p=0 p lp , (8.27)

where the values of lp used in the prefactor are the values of any element of S .
Furthermore, we can compute that value in terms of the measurement results,
by writing

n

∑
p=0

lp =
k

∑
p=1

lp +
n

∑
p=k+1

lp + l0. (8.28)

Remember that the set of indices l1, . . . , lk tells us where the V-photons were
measured. For example, if 4 of these indices take the value “3”, this means that
there were 4 V-photons measured in mode 3. Now it is not difficult to see that

k

∑
p=1

lp =
n

∑
j=0

jr j, (8.29)

where we are summing over all the modes, counting how many V-photons
were measured on that mode, and multiplying that by the number of the mode.
Then, it is clear also that

n

∑
p=k+1

lp + l0 =
n

∑
j=0

jh j, (8.30)

and finally we have
n

∑
p=0

lp =
n

∑
j=0

j(r j + h j), (8.31)

where (r j +h j) is actually the total number of photons measured in mode j. In
summary, we have

∑
S ′

ω∑n
p=0 p l′p = ω−∑n

j=0 j(r j+h j) ∑
S

ω∑n
p=0 p lp . (8.32)

Taking all of these into account we can rewrite the state after the measure-
ment (8.19) as

|Φ〉0...n|H〉k−1
(

α|H〉+ β ω−∑n
j=0 j(r j+h j)|V 〉

)
|V 〉n−k+1, (8.33)

where |Φ〉0...n is a state of the first n + 1 modes fixed by the result of the mea-
surement. We can see that the superposition that was originally encoded in
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mode 0 was teleported to the mode n + k, up to a known relative phase. But
since we know exactly the value of this phase, we can correct it by using lin-
ear optical elements such as polarization beamsplitters and phase-shifters. The
final state is then

|Φ〉0...n|H〉k−1 (α|H〉+ β |V〉) |V 〉n−k+1. (8.34)

The last n modes, with the exception of mode n + k of course, are left in a
known state and can be reused later. The teleportation succeeds with proba-
bility n/(n + 1). By increasing the value of n (i.e., increasing the size of the
teleporting state |tn〉) we can make this probability arbitrarily close to 1.

8.4 Nondeterministic two-qubit gate

The near-deterministic teleportation step we have described is the basis of
the application of a linear optical C-SIGN gate. The idea is to use the Gottes-
man and Chuang approach for applying unitary gates through teleportation. To
this end we will need a particular entangled state given by

|t ′n〉=
n

∑
i, j=0

(−1)(n− j)(n−i)|V 〉 j|H〉n− j|H〉 j|V 〉n− j×|V〉i|H〉n−i|H〉i|V 〉n−i.

(8.35)
This is a state of 4n modes with 4n photons. It is nothing but two copies of the
state |tn〉 with CSIGN gates applied between each one of the last n modes of
one copy and each of the last n modes of the other copy (see Fig. 8.5).

The application of the CSIGN between two optical modes that encode the
control and target qubits will proceed by teleporting the control qubit using
the first 2n modes of (8.35) as we discussed before, and then by teleporting
the target qubit using the last 2n modes. The two output modes into which the
qubits are teleported will be in a state that corresponds to applying the CSIGN
gate.

Before we start teleporting the first qubit, the state of the system is given by

|Ψ〉 = α|H〉|t ′n〉+ β |V〉|t ′n〉
=

n

∑
i=0

n

∑
j=0

(−1)(n− j)(n−i)(α|H〉|V 〉 j|H〉n− j|H〉 j|V 〉n− j

+β |V〉|V 〉 j|H〉n− j|H〉 j|V 〉n− j)×|V〉i|H〉n−i|H〉i|V 〉n−i, (8.36)
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Q2
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Q1
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n+k
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3n+k’
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# of V−photons = k

# of V−photons = k’

FIGURE 8.5: Nondeterministic two-qubit CSIGN gate: The ancilla state con-
sists of 4n modes with 4n photons. Simply, it is two copies of the state |tn〉
(for the teleportation) with CSIGN gates applied between the two halves of the
two copies. The CSIGN operation between two optical modes that encode the
control and target qubits is achieved by teleporting the control qubit using the
first 2n modes, and then teleporting the target qubit using the last 2n modes.

where we have left out the state of the second qubit to make the notation less
cumbersome. Now we need to apply the Fourier transform to the first n + 1
modes (those modes labeled from 0 to n) to perform the teleportation of the
first qubit

(F̂n⊗1)|Ψ〉 =
n

∑
i=0

n

∑
j=0

(
α F̂n

[|H〉|V 〉 j|H〉n− j]+ β F̂n
[|V 〉|V 〉 j|H〉n− j])

×|H〉 j|V 〉n− j×|V 〉i|H〉n−i|H〉i|V 〉n−i (−1)(n− j)(n−i).

(8.37)

Note that for each value of i we have basically the same state we had when
we described the near-deterministic teleportation, except for the phase factor
(−1)(n− j)(n−i). Keeping that in mind, we can proceed as before. We measure
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the n + 1 output modes of the Fourier transform, distinguishing the number
of V-photons and H-photons in each mode. If the total number of V-photons
is k, then the α term in (8.37) collapses to the value j = k while the β term
collapses to j = k− 1. Everything is the same as before except for the extra
phase factor, that depends on k. The state after the measurement is

n

∑
i=0
|H〉k−1

(
α(−1)(n−k)(n−i)|H〉+ β (−1)(n−k+1)(n−i)ω−∑n

j=0 j(r j+h j)|V 〉
)

×|V 〉n−k×|V〉i|H〉n−i|H〉i|V 〉n−i, (8.38)

where we have omitted the final state of the first n + 1 modes after the mea-
surement. Just as before, the mode into which the state was teleported is mode
n + k. From now on we will designate that mode as mode A to avoid confu-
sion with the remaining modes. Again, since the phase factor ω−∑n

j=0 j(r j+h j)

is known, we can correct it using a phase shifter. We can rewrite the state of
the system after the measurement and the phase correction as

|H〉n+1,...,n+k−1|V 〉n+k+1,...,2n ∑n
i=0

(
α(−1)(n−k)(n−i)|H〉A+

β (−1)(n−k+1)(n−i)|V 〉A
)
|V 〉i|H〉n−i|H〉i|V 〉n−i, (8.39)

where we have written in a slightly different way the state of the first 2n modes.
Except for mode A, which we have singled out in the notation, these modes
are of no use anymore for the application of the CSIGN gate (although they
can be physically reused), and so we will drop them from the notation.

Now we need to teleport the target qubit of our CSIGN gate using the re-
maining 2n modes of the state (8.35). Note that these modes are now entan-
gled with the survived mode A from the first teleportation. We will rename the
modes such that this target qubit is labeled mode 0 and the remaining ones are
labeled from 1 to 2n. In this way, this second teleportation will have the same
mathematical form as the first one, with the addition of mode A. If we write
the state of the target qubit as γ|H〉0 + δ |V 〉0, then we have

|Ψ′〉 =
n

∑
i=0

(
α(−1)(n−k)(n−i)|H〉A + β (−1)(n−k+1)(n−i)|V 〉A

)
×(γ|H〉0 + δ |V〉0

) |V 〉i|H〉n−i|H〉i|V 〉n−i. (8.40)

Now we apply the Fourier transform to the first n + 1 modes as usual and get

(F̂n⊗1)|Ψ′〉 =
n

∑
i=0

(
α(−1)(n−k)(n−i)|H〉A + β (−1)(n−k+1)(n−i)|V 〉A

)
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×(γF̂n
[|H〉0|V 〉i|H〉n−i]+ δ F̂n

[|V 〉0|V 〉i|H〉n−i]) |H〉i|V 〉n−i.

(8.41)

This state has exactly the same form we encountered before when we first
discussed the near-deterministic teleportation, except that the state of mode A
is acting as an extra factor in the coefficients γ and δ , but does not affect the
procedure. Now we measure the number of photons in each of the first n + 1
modes as before, and if the total number of V-photons is k′, then the γ terms
in (8.41) collapse to the value i = k′ while the δ terms collapse to the value
i = k′ − 1. Note that this will have an effect on the phases multiplying the
coefficients α and β . The state after the measurement is

|Φ′〉0...n|H〉n+1,...,n+k′−1|V 〉n+k′+1,...,2n

×
{(

α(−1)(n−k)(n−k′)|H〉A + β (−1)(n−k′)(n−k+1)|V 〉A
)

γ|H〉k′
+
(

α(−1)(n−k′+1)(n−k)|H〉A + β (−1)(n−k′+1)(n−k+1)|V 〉A
)

δ |V 〉k′
}

.

(8.42)

Finally, the state of the teleported qubits which we will refer to as modes A
and B is given by

|ψ〉AB = αγ(−1)(n−k)(n−k′)|HH〉AB + β γ(−1)(n−k′)(n−k+1)|VH〉AB +

+αδ (−1)(n−k′+1)(n−k)|HV 〉AB + β δ (−1)(n−k′+1)(n−k+1)|VV 〉AB.

(8.43)

By noting that

(n− k)(n− k′) = n2−nk′ −nk + kk′,
(n− k + 1)(n− k′) = n2−nk−nk′+ n− k′+ kk′,
(n− k)(n− k′+ 1) = n2−nk′ −nk + n− k + kk′,

(n− k + 1)(n− k′+ 1) = n2−nk−nk′+ kk′+ 2n− k− k′+ 1, (8.44)

we can extract an overall phase factor and get

|ψ〉AB = (−1)n2−n(k+k′)+kk′
(

αγ|HH〉AB + β γ(−1)(n−k′)|VH〉AB

+ αδ (−1)(n−k)|HV 〉AB + β δ (−1)2n−(k+k′)+1|VV 〉AB

)
.

(8.45)
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Now we can use beam splitters, mirrors and phase shifters to apply a phase shift
(−1)n−k′ to V-photons in mode A, and a phase shift (−1)n−k to V-photons in
mode B. The resulting state is

|ψ〉AB =
(
αγ|HH〉AB + β γ|VH〉AB + αδ |HV 〉AB+

+ β δ (−1)(n−k)+(n−k′)(−1)2n−(k+k′)+1︸ ︷︷ ︸
(−1)

|VV 〉AB

⎞⎟⎠
= αγ|HH〉AB + β γ|VH〉AB + αδ |HV 〉AB−β δ |VV 〉AB, (8.46)

which is just the result of a C-SIGN gate applied to the two-qubit state(
α|H〉A + β |V〉A

)
(γ|H〉B + δ |V〉B)

= αγ|HH〉AB + β γ|VH〉AB + αδ |HV 〉AB + β δ |VV 〉AB. (8.47)

Since each teleportation step succeeds independently with probability n/(n+
1), the total success probability of this non-deterministic CSIGN gate is [n/(n+
1)]2. Again, by increasing the value of n this probability can be made arbitrar-
ily close to 1. Once again, the CSIGN gate can be simply converted to the
CNOT gate with additional one-qubit Hadamard gate on the target, followed
by the CSIGN and another Hadamard on the target.

8.5 Ancilla-state preparation

We have seen that linear optical elements and photodetection are sufficient
to perform an entangling operation (CSIGN or CNOT) between two qubits
encoded in two optical modes. But this is only possible provided that we have
access to a certain entangled ancilla state. We have not yet discussed how
this entangled state is created and it is natural to ask whether it can also be
built using only linear optical elements and photodetection. One of the main
results of the seminal work by Knill, Laflamme and Milburn is that this is in
fact possible [1]. And the essential building block for this construction is the
nonlinear phase shift gate.

Let us first look at the so-called nonlinear sign (NS) gate while deferring the
reason why we need this gate. The NS gate performs the following transfor-
mation on the state of an optical mode:

α0|0〉+ α1|1〉+ α2|2〉 → α0|0〉+ α1|1〉−α2|2〉, (8.48)
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where |0〉, |1〉 and |2〉 represent states of the optical mode with 0, 1 and 2 pho-
tons respectively. This transformation cannot be implemented with only linear
optical elements since it is clear that its effect does not scale linearly with the
number of photons. However, complementing linear optics with photodetec-
tion and postselection allow us to implement this transformation. The price we
have to pay (as before) is that the transformation will become nondeterministic.

ψ ψNS

1

0 0

1NS

FIGURE 8.6: Nonlinear sign gate: For a given input (ψ〉 = α0|0〉+ α1|1〉+
α2|2〉) the output state is given by NS|ψ〉= α0|0〉+ α1|1〉−α2|2〉. The num-
bers one the left side of the NS box represent the number of photons input in
each mode (one in mode 2 and zero in mode 3). The numbers to the right
represent the measurement outcome corresponding to the success of the gate.

The schematic for the NS gate is shown in Fig. 8.6. The box NS implements a
transformation among the three optical modes that acts on the creation opera-
tors of each mode according to

a†
k →

3

∑
i=1

ui ja
†
j . (8.49)

The ui j are the elements of a unitary matrix U given by

U =

⎛⎜⎜⎜⎝
1−21/2 2−1/4 (3/21/2−2)1/2

2−1/4 1/2 1/2−1/21/2

(3/21/2−2)1/2 1/2−1/21/2 21/2−1/2

⎞⎟⎟⎟⎠ . (8.50)

This unitary transformation among modes can be implemented with linear op-
tical elements [13]. The nonlinear phase shift gate succeeds with probability
1/4. A simple setup for the NS gate with three beam splitters is given in Ap-
pendix B.

Now we discuss the reason why this NS gate is an essential element for per-
forming the CSIGN gate and preparing the entangled state of ancilla photons.
To make the CSIGN gate, from Eq. (8.7) all we need is to change the sign of
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4

BSBS

1

2

3

NS

NS

FIGURE 8.7: Setup for an entangling four mode gate using two nonlinear sign
gates. The modes 1 and 2 represent the control qubit, and 3 and 4 are for the
target qubit. The NS gate makes the sign changes (α2 to −α2) only for the
case when the input contains two photons. With the 50:50 beam splitter there
is a sign change only when there is one photon in mode 1 and one photon in
mode 3 (|1〉1|1〉3 → |2,0〉1,3 + |0,2〉1,3 →−(|2,0〉1,3 + |0,2〉1,3)→ |1〉1|1〉3).
All other cases of inputs in the modes 1 and 3 remain intact.

the input when the input is corresponding to |V 〉|V 〉, i.e., when the qubits have
logical value of one (|1〉L|1〉L state). Given the two input qubits (suppose these
are the smallest ancilla states for the teleportation)

|Q1〉 =
1√
2

(|0〉L + |1〉L) =
1√
2

(|0〉1|1〉2 + |1〉1|0〉2
)
,

|Q2〉 =
1√
2

(|0〉L + |1〉L) =
1√
2

(|0〉3|1〉4 + |1〉3|0〉4
)
, (8.51)

the transformation by applying the CSIGN gate can be written as (by ignoring
the normalization factor)

|Q1〉|Q2〉 ⇒ |0〉L|0〉L + |0〉L|1〉L + |1〉L|0〉L−|1〉L|1〉L
= |0,1,0,1〉+ |0,1,1,0〉+ |1,0,0,1〉− |1,0,1,0〉, (8.52)

where the modes 1, 2 are designated for the control qubit, and 3, 4 are for the
target qubit, and the number state representation was given in this order (see
Fig. 8.7). We can immediately see that there is a sign change only when there
is one photon in mode 1 and one photon in mode 3.

At this point let us take a look at the first beam splitter in Fig. 8.7. When
there is one photon in mode 1 and one photon in mode 3 impinging upon
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(a) (b) (c) (d)

FIGURE 8.8: Four possibilities obtained by sending a |1,1〉 state through a
50:50 beam splitter. The diagrams (c) and (d) lead to the same final state,
and interfere destructively. (c) Transmission-transmission (i)(i) = −1. (d)
Refection-reflection: (−1)(−1) = 1, where we have used the reflected mode
acquiring a phase−1 while the transmitted mode acquires a phase of i, respec-
tively.

a 50:50 beam splitter, the output should be either two photons in one mod-
e or two photons in the other. Formally the 50:50 beam splitter transform-
s the input |1,1〉 into the output |2,0〉+ |0,2〉 in that the probability ampli-
tude for having |1,1〉 at the output of the beam splitter vanishes [14]. Com-
bining this well-known Hong–Ou–Mandel effect and the NS gate allows us
to entangle states of two or more photons nondeterministically. From the s-
tate 1

2(|10〉12 + |01〉12)(|10〉34 + |01〉34) we can generate the state 1
2 (|1010〉+

|1001〉+ |0101〉− |0101〉) with the setup of Fig. 8.8.

Using polarization beam splitters and regular beam splitters we can transfor-
m this state into a polarization Bell pair 1√

2
(|HH〉+ |VV 〉). With two of these

Bell pairs we can use the setup of Fig. 8.9 to nondeterministically generate the
state |t ′1〉.
We can construct the more complex state |t ′n〉 using the state |t ′1〉 to apply C-
SIGN gates nondeterministically and entangle more and more photons togeth-
er. The resources required to construct these more complex states scale in
principle exponentially with n. However, there are clever ways of carrying
out this construction that manage to reuse the states leftover from failures due
to the nondeterministic nature of the process. In this case, the scaling can be
lowered to subexponential [1].

Two important points are: this construction can be made offline, and that a
nonzero probability of failure can be tolerated in the application of a CSIGN
gate during a quantum computation. This means that we do not need to con-
struct states with arbitrarily high values of n. However, the resources required
are still too high for this approach to be practical in the usual quantum circuit
model of quantum computing.
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FIGURE 8.9: Setup to nondeterministically generate |t ′1〉 from two polariza-
tion Bell pairs.

8.6 Cluster-state approach and gate fidelity

Even though the KLM scheme allows us to implement a CSIGN gate with
an arbitrarily high success probability, and hence to perform an arbitrarily long
quantum computation, in practice this approach turns out to be not very use-
ful. The main reason is that the resources required to implement a CSIGN gate
with high enough probability of success are completely unrealistic for present
day technology. On the one hand, number-resolving photodetectors with an ef-
ficiency above 99% are required to prevent photon-loss errors, and on the other
hand an order of 104 optical modes is required to implement a single CSIGN
gate [1]. The best detector currently available with the required photon count-
ing characteristics has an efficiency of around 80% [15], and dealing with such
an enormous number of modes is well beyond the realm of present quantum
optics technology.

Fortunately, this is not a dead end for LOQC. The way around this road
block is to abandon the implementation of the KLM techniques within the
quantum circuit model of quantum computation, and instead work with a dif-
ferent approach known as the cluster state model. The cluster state model was
introduced in the seminal work of Raussendorf and Briegel [6], and belongs to
the class of measurement-based quantum computing models. The basic idea is
to carry the computation by performing single-qubit measurements on a cer-
tain entangled state. The entangled states that allow a quantum computation to
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be performed through measurements are known as cluster states.
The application of the KLM techniques to the cluster state model was first

suggested by Nielsen [7], who realized that this union could lead to a drastic
reduction of the number of optical modes required for each quantum gate. This
is due to the fact that a cluster state can be constructed by applying an entan-
gling gate between pairs of qubits. The gate does not have to be successful
all the time, as long as the success probability of the gate and the sequence
of entangling attempts is such that the size of the cluster grows on average. It
turns out that the probability of success required for this entangling gate can
be in principle any number greater than zero, and can still allow an efficient
construction of the cluster state [16, 17]. Thus an optical CSIGN gate imple-
mented using the techniques of the KLM scheme that requires only a small
number of optical modes can be used in this approach. However, there are still
some important issues associated with the fidelity of the gate that need to be
taken into account.

The original KLM scheme relied on dual-rail encoding, in which the state
of a qubit is represented by the state of a pair of optical modes. This essen-
tially encodes the information in the number of photons present in the modes.
Since very high efficiency detectors are not available, and the implementation
of the CSIGN gate depends crucially on measuring the exact number of pho-
tons present in a subset of the modes, this approach can introduce undetected
errors in the gate. If a detector fails to register a photon, the total number of
photons measured will not be the same as the total number of photons present,
and thus, for instance, the wrong mode will be post-selected and an error will
be introduced by the gate. The worst part is that this error is not detected by
this procedure.

An imperfect detector is characterized by its quantum efficiency η , repre-
senting the probability of the detector registering a photon when one is actually
present, and its dark-count rate λ . Ignoring the dark counts and assuming that
the quantum efficiency η does not depend on the intensity of light, the prob-
ability of the detector registering k photons when l were actually present is
given by

P(k|l) =
(

l
k

)
ηk(1−η)l−k. (8.53)

So far we have assumed that even though our gate was nondeterministic,
whenever it was signaled as “successful”, the gate was also perfect. However,
when we consider the errors introduced by imperfect detectors we realize that
this assumption is not justified. Furthermore, if we consider imperfect detec-
tors with the highest efficiency available today, the probability of undetected
errors introduced by our gate can be as high as 30% [5]. This is unacceptable
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even for the cluster state approach, since due to this low fidelity of the gate,
the cluster state we build will also have a low fidelity and so the result of any
computation performed with it cannot be trusted.

By using polarization encoding we are able to have a high-fidelity gate with-
out requiring high-efficiency detectors. This is due to the fact that with polar-
ization encoding the crucial quantity that needs to be measured is the number
of vertically polarized photons present in a set of optical modes, while the to-
tal number of photons remains fixed. The information is not encoded in total
photon number, which is more susceptible to detection errors. This provides
us with an independent way of checking for detector failure—if the total num-
ber of photons detected is different from the number expected, some of the
detectors have malfunctioned and the result of the gate cannot be trusted. Note
that if the information was encoded in total photon number these errors would
not be detected, since different values of total photon number are also valid
outcomes.

Even with polarization encoding it is possible for certain errors to occur and
go undetected. The dark count rate λ quantifies the rate of false positives, i.e.,
the rate at which the detector registers the presence of a photon when none
is actually present. These dark counts are usually assumed to have a Poisson
distribution and so the probability of having d of them during the measurement
interval τ is

D(d) = e−λ τ (λ τ)d

d!
. (8.54)

It follows that the probability of the detector registering k photons when l were
actually present is given by [18]

PD(k|l) =
k

∑
d=0

D(k−d)
(

l
d

)
ηd(1−η)l−d. (8.55)

This requires us to carefully analyze any protocol that depends crucially on a
perfect measurement of the photon number to prevent unwanted and undetect-
ed errors. For example, if a detector fails to register a photon while another
detector registers a dark count at the same time, the total number of photons
registered does not change but its distribution among vertically and horizon-
tally polarized photons may be different. However, since typically the dark
count rates of currently available detectors are extremely low [19], these events
have very low probability (of the order of 10−7 per gate). And since it is this
probability of undetected errors that affects the fidelity of the gate, very high
fidelities can be achieved.

Given that the gate fidelity decreases as the undetected error and the proba-
bility of having this undetected error increase and as the number of detectors
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increases, the highest fidelity of the gate is to be the scheme of employing the
smallest number of detectors. This, in turn, implies the optimal ancilla state
should have the smallest number of photons. From Eq. (8.35) the smallest
such ancilla state is given by

|t ′1〉 =
1
2

1

∑
i, j=0

(−1)(1− j)(1−i)|V 〉 j|H〉1− j|H〉 j|V 〉1− j×|V〉i|H〉1−i|H〉i|V 〉1−i.

=
1
2

(−|HVHV〉+ |HVVH〉+ |VHHV〉+ |VHVH〉) . (8.56)

Besides the fact that this smallest ancilla state yields the highest gate fidelity,
it also has several other merits:

(1) The whole setup for the discrete Fourier transform (shown in Fig. 8.5) is
now just one beam splitter.

(2) The number of possible output modes is just one for each teleportation
(the control and target qubit) so that we do not need to post-select the
output mode. Only the necessary phase shift needs to be applied.

(3) The successful teleportation is signaled by the detection of one H-photon
and one V-photon, so that two out of four detectors should fire and we
do not know how many photons are detected at each detector.

Of course, items (1) and (2) mean great simplification of the implementation.
And most importantly, item (3) says that we do not necessarily need detectors
that have the number-resolving capability. Therefore, employing the smallest
ancilla state of (8.56), we achieve the highest fidelity of the two-qubit CSIGN
gate (limited only by the dark-count rate) and remove the requirement of num-
ber resolution for the detectors.

The main purpose of the chapter is to provide a comprehensive description
of the quantum gate teleportation and nondeterministic two-qubit gates, the
crucial elements in linear optical quantum computing. Here the desired non-
linearities come from projective measurements and post-selection. Simply, the
measurements over some part of the total quantum system and the selection of
only the correct outcomes project the rest of the system into a desired quantum
state.

The qubits in our description are encoded in the polarization degrees of
freedom as opposed to the original dual-rail encoding of the KLM scheme.
In doing so, we needed twice more photons for the ancilla state as well as
twice more detectors for a given probability of success of the gate. However,
when it comes to the issue of gate fidelity, the polarization encoding avoids
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the undetected errors due to the finite quantum efficiency of the detectors and
consequently yields extremely high fidelity. The reduction of undetected er-
rors by employing the polarization encoding is independent of the efficiency
of the detectors and requires only the small dark-count rate of the detectors.
This property of the polarization-encoding scheme is particularly useful in the
optical cluster-state quantum computing where the building the cluster states
does not require near-unity success probability of the entangling operations.

In such a circumstance where the highest gate fidelity is desired, the optimal
ancilla state is found to be the smallest in the number of photons. This leads
to a huge reduction of the number of optical elements in the interferometer
design for the gate operation and there is no need for the mode selection for the
output—only the feed forward for the phase correction. At the same time the
entangling gate using the smallest ancilla states does not require the number-
resolving capability of the detectors.

We wish to close by pointing out that, although the use of the number-
resolving detectors can be avoided in the entangling-gate operation, they still
need to be used in the preparation of the ancilla state (even the smallest one).
The requirement of the number-resolving detectors in the state preparation
comes from the utilization of the NS gate as in Sec. 8.5. It turns out that
we may be able to eliminate the use of NS gate in the ancilla-state preparation,
too. The smallest ancilla of the form Eq. (8.56) can be generated without rely-
ing on the number-resolving detectors if we have high-fidelity Bell states [5].
The requirement for the photodetectors to be number resolving, which is con-
sidered to be the biggest obstacle so far in the realization of optical quantum
computing, can then be completely eliminated.
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8.7 Appendices

Appendix A: One-qubit gates

An arbitrary one-qubit operation can be made if we have an arbitrary phase
gate and any two of x-rotation, y-rotation, and z-rotation. The phase gate is
given by

P(θ ) =

⎛⎝ eiθ 0

0 e−iθ

⎞⎠ , (8.57)

which, acting upon a qubit in a state α|0〉+ β |1〉, leads to a change of relative
phase as α|0〉+ β e−i2θ |1〉.

Now using σ j as the usual notation of the Pauli operators, the x-rotation,
Rx(θ ) is formally written as

Rx(θ ) = eiσx
θ
2 = cos

θ
2

+ iσx sin
θ
2

=

⎛⎝ cos θ
2 isin θ

2

isin θ
2 cos θ

2

⎞⎠ . (8.58)

Similarly, y-rotation and z-rotation are given by

Ry(θ ) = eiσy
θ
2 = cos

θ
2

+ iσx sin
θ
2

=

⎛⎝ cos θ
2 sin θ

2

−sin θ
2 cos θ

2

⎞⎠ ,

Rz(θ ) = eiσz
θ
2 = cos

θ
2

+ iσz sin
θ
2

=

⎛⎝ e
iθ
2 0

0 e−
iθ
2

⎞⎠ . (8.59)

Here we examine the linear optical devices to construct these one-qubit gates.

A1. Phase Gate

Using the polarization encoding of Eq. (8.1), the phase gate, then, can be real-
ized by a waveplate and a phase shifter. The wave plate is a doubly refracting
(birefringent) transparent crystal where the index of refraction is larger for the
slow axis than the one for the fast axis. We assume that the slow axis is the ver-
tical direction and the fast is the horizontal direction. After propagating by a
distance d, the vertically polarized light acquires a phase shift of exp[in1

2π
λ d].

Similarly, the horizontally polarized light acquires exp[in2
2π
λ d] (n1 > n2). The
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relative phase shift acquired by the vertically polarized light can be described
as

|V 〉 ⇒ ei(n1−n2)
λ
2 d |V 〉 ≡ eiφ |V 〉. (8.60)

Now choosing the thickness of the crystal d = λ/4(n1−n2), the relative phase
shift φ = π/2 is acquired. This corresponds to the quarter wave plate as we
have

|H〉+ |V〉 ⇒ |H〉+ eiπ/2|V 〉. (8.61)

Using the convention for right and left circularly polarized light, ê± = 1√
2
(ê1±

iê2), one can see that the linearly polarized light (|H〉+ |V 〉) becomes a left
circularly polarized light.

In general, an arbitrary phase angle φ can be obtained by choosing the thick-
ness d as

d =
λ

n1−n2

φ
2π

. (8.62)

The overall phase factor then depends on the value of φ as it is given by

ein2
2π
λ d = e

in2
2π
λ

λ
2π

φ
n1−n2 = e

i
n2

n1−n2
φ
. (8.63)

A2. z-Rotation

For the z-rotation, for Eq. (8.59) we have

Rz(θ )
[|0〉+ |1〉]= ei θ

2 |0〉+ e−i θ
2 |1〉= ei θ

2
[|0〉+ e−iθ |1〉]. (8.64)

One can have this operation with a wave plate by taking φ = −θ . Then, the
overall phase of Eq. (8.63) becomes

n2

n1−n2
φ =− n2

n1−n2
θ ≡−rθ (8.65)

where we defined r = n2
n1−n2

. In order to match the overall phase factor ei θ
2 of

the z-rotation we need to have a phase shifter such that φ ′ − rθ = θ/2, which
yields

φ ′ =
θ
2

(1 + 2r) =
θ
2

n1 + n2

n1−n2
≡ sθ . (8.66)

Therefore, the z-rotation is made by a wave plate of −θ and a phase shifter of
sθ , where s = [(n1 +n2)/2(n1−n2)]. Symbolically, we may write this relation
as

Rz(θ ) :=: PS(sθ )WP(−θ ). (8.67)
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A3. x-Rotation

Suppose the wave plate we described above is now rotated around the propa-
gation axis by an amount of α . Then the operation by the wave plate can be
given as

WP(φ ,α = 0) = eirφ

⎛⎝1 0

0 eiφ

⎞⎠ ,

WP(φ ,α) = eirφ

⎛⎝ cosα −sinα

sinα cosα

⎞⎠⎛⎝1 0

0 eiφ

⎞⎠⎛⎝ cosα sinα

−sinα cosα

⎞⎠ ,

= eirφ

⎛⎝ cos2 α + eiφ sin2 α cosα sinα(1− eiφ )

cosα sinα(1− eiφ) sin2 α + eiφ cos2 α

⎞⎠ .

(8.68)

If we set the rotation angle α equal to π/4, we obtain

WP(φ ,α = π/4) =
eirφ

2

⎛⎝1 + eiφ 1− eiφ

1− eiφ 1 + eiφ

⎞⎠ . (8.69)

We can see that the x-rotation Rx(θ ) given in Eq. (8.58), can be achieved by
setting φ =−θ as

WP(φ =−θ ,α = π/4) = e−irθ e−i θ
2

⎛⎝ cos θ
2 isin θ

2

isin θ
2 cos θ

2

⎞⎠ . (8.70)

As we did for the case of Rz(θ ), we compensate the overall phase factor by a
phase shifter of eisθ and then the x-rotation is given by

Rx(θ ) :=: PS(sθ )WP(−θ ,α = π/4). (8.71)

When combined together, the basic gate operations given above, the phase
gate, z-rotation, and x-rotation are sufficient to build any arbitrary one qubit
gate. For example, one can then construct the y-rotation by using x-rotation
and z-rotation

Ry(θ ) = Rz(−π
2

)Rx(θ )Rz(
π
2

). (8.72)
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As another example, the Hadamard gate, one of the most frequently used one-
qubit gates in the literature, can be built as follows:

H =
1√
2

⎛⎝1 1

1 −1

⎞⎠= P(−π
2

)Rz(π)Ry(
π
2

)

= P(−π
2

)Rz(
π
2

)Rx(
π
2

)Rz(
π
2

). (8.73)

Appendix B: Nonlinear sign gate

Together with quantum teleportation the nonlinear sign (NS) gate serves the
basic element in the architecture of linear optics quantum computation. The
NS gate applies to photon number state consists of zero, one and two photons
as is defined by

α0|0〉+ α1|1〉+ α2|2〉 → α0|0〉+ α1|1〉−α2|2〉. (8.74)

The NS gate can be implemented non-deterministically by three beam splitters,
two photo-detectors, and one ancilla photon as depicted in Fig.8.10.

in Ψout

D1

BS

Ψ

2

1 3

BS

BS

1

0 D2

FIGURE 8.10: Nonlinear sign gate: The input state of |Ψin〉= α0|0〉+α1|1〉+
α2|2〉 transforms to |Ψout〉= α0|0〉+α1|1〉−α2|2〉 upon detection of one pho-
ton at D1 and non-detection at D2.

We then fix the reflection coefficients of the three beam splitters for the desired
operation with a certain detection event. Following Ref. [20], a set of beam
splitters that can perform the nonlinear sign gate is given by

BS1 = BS3 :=:

⎛⎝ √
η

√
1−η

√
1−η −√η

⎞⎠ , η =
1

(4−2
√

2
≈ 0.854,
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BS2 :=:

⎛⎝ −√η2

√
1−η2√

1−η2
√

eta2

⎞⎠ , η2 = (
√

2−1)2 ≈ 0.172. (8.75)

These beam splitters are phase asymmetric, which can be achieved by ordinary
beam splitters with additional phase shifters so we have

BS1 = BS3 :=:

⎛⎝1 0

0 i

⎞⎠⎛⎝ √
η −i

√
1−η

−i
√

1−η √η

⎞⎠⎛⎝1 0

0 i

⎞⎠ . (8.76)

This corresponds to two phase shifters of eiπ/2 in the lower path before and
after the ordinary beam splitters. Similarly, for BS2 we have

BS2 :=:

⎛⎝ i 0

0 1

⎞⎠⎛⎝ √η2 −i
√

1−η2

−i
√

1−η2
√η2

⎞⎠⎛⎝ i 0

0 1

⎞⎠ , (8.77)

which corresponds to two phase shifters of eiπ/2 in the upper path before and
after the ordinary beam splitters with the reflection coefficient η2. Condi-
tioned upon a specific detector outcome (detection of one photon at D1 and
non-detection at D2), we can have the desired output state with probability of
1/4. The gate operation succeeds only once in four times on average. But, the
merit is that we know it was successful whenever it was successful.
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Chapter 9

Exploiting Entanglement in
Quantum Cryptographic
Probes

Howard E. Brandt

Abstract The mathematical physical bases are given for quantum cryp-
tographic probes which exploit entanglement to eavesdrop on quantum key
distribution. The quantum circuits and designs are presented for two different
optimized entangling probes for attacking the BB84 Protocol of quantum key
distribution (QKD) and yielding maximum information to the probes. Probe
photon polarization states become optimally entangled with the signal states
on their way between the legitimate transmitter and receiver. The designs are
based on different optimum unitary transformations, each yielding the same
maximum information on the pre-privacy amplified key. In each of the design-
s, the main quantum circuit consists of a single CNOT gate which produces
the optimum entanglement between the BB84 signal states and the correlat-
ed states of the probe. For each design a different well-defined single-photon
polarization state serves as the initial state of the probe, and in each case the
probe is projectively measured. Symmetric projective measurements of the
probe yield maximum information on the pre-privacy amplified key once basis
information becomes available during basis reconciliation.

259
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9.1 Introduction

In cryptography, the key is a random binary sequence used for encryption.
An encrypted message can be produced by adding the key to the message (also
written in binary), and decrypted by subtracting the key from the encryption.
The key must be secure. In the BB84 protocol [1] of quantum key distribution
[2] , the ones and zeros of a potential key can be encoded in four different
single-photon linear polarization states. Those four states |u〉, |ū〉, |v〉, and |v̄〉
all lie in a real two-dimensional Hilbert space such that 〈u|ū〉 = 0, 〈v|v̄〉 = 0,
and 〈u|v〉= 2−1/2. The states |u〉 and |v〉 can be chosen to encode binary num-
ber 1, and the states |ū〉 and |v̄〉 encode the number 0. The states {|u〉 , |ū〉}
form one basis, the states {|v〉 , |v̄〉} form the other basis, and the states |u〉 and
|v〉 are nonorthogonal with angle π/4 between them. For analytical purposes
it is convenient to choose two orthonormal basis states

∣∣e0

〉
and

∣∣e1

〉
oriented

symmetrically with respect to the four signal states, the state
∣∣e0

〉
making an

angle of magnitude π/8 with the states |u〉 and |v̄〉, and the state
∣∣e1

〉
making

an angle of magnitude π/8 with the states |ū〉 and |v〉 [3]. In the BB84 proto-
col, the transmitter (also known as Alice) randomly chooses a basis {|u〉 , |ū〉}
or {|v〉 , |v̄〉} and then randomly picks one of the two states in the chosen basis
and then sends it to the receiver (also known as Bob). The receiver random-
ly chooses one of the two measurement bases {|u〉 , |ū〉} or {|v〉 , |v̄〉}, and
during reconciliation publicly announces which measurement basis is chosen.
This procedure is repeated for each photon in a train of single photons trans-
mitted from the transmitter to the receiver. In those cases in which the basis
choices by the transmitter and the receiver are the same, that bit is kept and
contributes to the potential key. Bits resulting from differing basis selection-
s by the transmitter and receiver, as well as any erroneous bits identified by
block checksums and bisective search, are discarded and do not contribute to
the key. Also during reconciliation the relative order of selected and discarded
bits along with the respective basis choices are in principle publicly available
to an eavesdropper.

Numerous analyses of various eavesdropping procedures have appeared in
the literature [2], allowing quantitative comparisons of various protocols. These
analyses are far too numerous to cite individually. A recent review with exten-
sive references is given in Ref. [2]. Analyses of the protocol addressed here
are given in [3], [4], [5].

The present work is limited to an individual attack in which each transmitted
photon is measured by an independent probe. In particular, the eavesdropping
attack addressed here is accomplished using a so-called ’quantum cryptograph-
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ic entangling probe’ (see Fig. 9.1). The probe becomes optimally entangled
with the signal photon on its way from the transmitter to the receiver, extract-
ing maximum possible Renyi information on the key. [See Appendices A and
B for reviews of Renyi information gain and the optimization procedure.] The
incident signal photon enters the control port of a quantum controlled-NOT
gate (CNOT gate) and becomes optimally entangled with a probe photon in a
specific polarization state determined by the desired error rate to be induced by
the probe. The signal photon leaves the exit port of the CNOT gate and goes on
to the legitimate key receiver. The gated probe photon leaves the exit port of
the CNOT gate, and its state (optimally correlated with the state of the signal
photon) is projectively measured using a polarization beamsplitter (Wollaston
prism), aligned to separate two appropriate polarization basis states, together
with two photodetectors. The details and justification are given in Sections
9.2–9.4.

FIGURE 9.1: Quantum cryptographic entangling probe: Signal photon enter-
s control port of CNOT gate. Probe photon in state

∣∣A2

〉
enters target port.

CNOT gate might be implemented using cavity QED, solid state, etc. Gated
signal photon goes on to legitimate receiver. Gated probe photon, optimally
entangled with the signal, is measured using a Wollaston prism (polarization
beamsplitter) and two photodetectors aligned to separate polarization states∣∣w0

〉
and

∣∣w3

〉
.

In addition to the individual attack, other approaches include: coherent col-
lective attacks in which the eavesdropper entangles a separate probe with each
transmitted photon and measures all probes together as one system; and also
coherent joint attacks in which a single probe is entangled with the entire set
of carrier photons. However, these approaches require maintenance of coher-
ent superpositions of large numbers of states, and this is not currently feasible.



262 9. QUANTUM CRYPTOGRAPHIC PROBES

State storage and decoherence present major issues.
For the case of an individual attack, eavesdropping probe optimizations have

been performed [3], [4], [6], [7], which on average yield the most information
to the eavesdropper for a given error rate caused by the probe. The most gen-
eral possible probes consistent with unitarity were considered [3], [4], [5], [6],
[7], [8] in which each individual transmitted bit is made to interact with the
probe so that the carrier and the probe are left in an optimum entangled state,
and measurement of the probe then yields information about the carrier state.
The probe optimizations are based on maximizing the order-two Renyi infor-
mation gain by the probe on corrected data for a set error rate induced by the
probe in the legitimate receiver. It is well to recall that a security proof was
given in Ref. [3] for such an individual attack. However, the attack addressed
here has been shown to be very taxing in terms of the amount of key that must
be sacrificed during privacy amplification to make the key secure [5].

In the following sections, recent designs are summarized for some optimum
quantum cryptographic entangling probes to be used in attacking the BB84
protocol [9], [10], [11], [12]. They are based on alternative optimal unitary
transformations, U (1), U (2), and U (3), each yielding the same maximum Renyi
information IR

opt on the pre-privacy-amplified key, namely (see Appendix B),

IR
opt = log2

[
2−

(
1−3E
1−E

)2
]

, (9.1)

where E is the error rate induced by the probe in the legitimate receiver. E-
quation (1) displays the tradeoff between information gained and the error rate
induced by the probe in the legitimate receiver. The unitary transformation
U (1) represents an entangling probe having a two-dimensional Hilbert space of
states, while the transformationsU (2) and U (3) represent probes having, in gen-
eral, four-dimensional Hilbert spaces of states [9]. In Sections 9.2, 9.3, and 9.4,
probe designs are described, faithfully representing the transformations U (1),
U (2), and U (3) respectively. In each of the designs, the main quantum circuit
consists of a single CNOT gate which produces the optimum entanglement be-
tween the BB84 signal states and the correlated probe states. The BB84 signal
states enter the control port of the CNOT gate, and for each design a different
particular initial single-photon polarization state enters the target port of the
probe. In each case the probe is projectively measured.
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9.2 Probe designs based on U (1)

The effect of the optimum unitary transformation U (1) is to produce the
following entanglements between the BB84 signal states |u〉, |ū〉, |v〉, and |v̄〉
and probe states

∣∣α+
〉
,
∣∣α−〉, and |α〉 [9], [10]:

|u〉⊗ |w〉 −→ 1
4

(|u〉⊗ ∣∣α+
〉
+ |ū〉⊗ |α〉) , (9.2)

|ū〉⊗ |w〉 −→ 1
4

(|u〉⊗ |α〉+ |ū〉⊗ ∣∣α−〉) , (9.3)

|v〉⊗ |w〉 −→ 1
4

(|v〉⊗ ∣∣α−〉−|v̄〉⊗ |α〉) , (9.4)

|v̄〉⊗ |w〉 −→ 1
4

(−|v〉⊗ |α〉+ |v̄〉⊗ ∣∣α+
〉)

, (9.5)

where |w〉 is the initial state of the probe, and the probe states
∣∣α+

〉
,
∣∣α−〉, and

|α〉 are given by∣∣α+
〉

=
[(

21/2 + 1
)

(1±η)1/2 +
(

21/2−1
)

(1∓η)1/2
]∣∣w0

〉
+
[(

21/2 + 1
)

(1∓η)1/2 +
(

21/2−1
)

(1±η)1/2
]∣∣w3

〉
, (9.6)∣∣α−〉 =

[(
21/2−1

)
(1±η)1/2 +

(
21/2 + 1

)
(1∓η)1/2

]∣∣w0

〉
+
[(

21/2−1
)

(1∓η)1/2 +
(

21/2 + 1
)

(1±η)1/2
]∣∣w3

〉
, (9.7)

|α〉=
[
−(1±η)1/2 +(1∓η)1/2

]∣∣w0

〉
+
[
−(1∓η)1/2 +(1±η)1/2

]∣∣w3

〉
,

(9.8)
expressed in terms of orthonormal basis states

∣∣w0

〉
and

∣∣w3

〉
, and also the set

error rate E induced by the probe in the legitimate receiver, where

η ≡ [8E(1−2E)]1/2 . (9.9)

For this optimization the error rate is restricted to 0 ≤ E ≤ 1/4. According to
Eq. (9.9), η is monotonically increasing only for 0 ≤ E ≤ 1/4. Note in Eqs.
(9.6)–(9.8) that the Hilbert space of the probe is two-dimensional, depending
on the two probe basis states,

∣∣w0

〉
and

∣∣w3

〉
.

According to Eq. (9.2), the projected probe state |ψuu〉 correlated with the
correct received signal state (in the notation of [3], [7]), in which the state |u〉
is sent by the transmitter, and is also received by the legitimate receiver, is
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∣∣α+
〉
. Analogously, from Eq. (9.3), it follows that the correlated probe state

|ψūū〉 is
∣∣α−〉. The two states

∣∣α+
〉

and
∣∣α−〉 are to be distinguished by the

measurement of the probe. Also, according to Eqs. (9.4) and (9.5), the same
two probe states

∣∣α+
〉

and
∣∣α−〉 are the appropriate correlated states |ψv̄v̄〉 and

|ψvv〉, respectively. This is consistent with the assumption in Section II of [3]
that only two probe states must be distinguished by the probe.

In the following, this two-dimensional optimized unitary transformation is
used to show that a simple quantum circuit representing the optimal entangling
probe consists of a single quantum controlled-NOT gate (CNOT gate) in which
the control qubit consists of two polarization basis states of the signal, the
target qubit consists of two probe basis states, and the initial state of the probe
is set in a specific way by the error rate. A method is given for measuring the
appropriate correlated states of the probe. Finally, a design for the entangling
probe is described.

One proceeds by exploiting the quantum circuit model of quantum com-
putation [13] to determine the quantum circuit corresponding to the optimum
unitary transformation, Eqs. (9.2)–(9.5). It was shown in [9] that the ten-
sor products of the initial state |w〉 of the probe with the orthonormal basis
states

∣∣e0

〉
and

∣∣e1

〉
of the signal transform as follows under the optimal uni-

tary transformation: ∣∣e0⊗w
〉−→ ∣∣e0

〉⊗ ∣∣A1

〉
(9.10)

and ∣∣e1⊗w
〉−→ ∣∣e1

〉⊗ ∣∣A2

〉
, (9.11)

expressed in terms of probe states
∣∣A1

〉
and

∣∣A2

〉
, where∣∣A1

〉
= a1

∣∣w0

〉
+ a2

∣∣w3

〉
, (9.12)∣∣A2

〉
= a2

∣∣w0

〉
+ a1

∣∣w3

〉
, (9.13)

in which
a1 = 2−1/2(1±η)1/2, (9.14)

a2 = 2−1/2(1∓η)1/2, (9.15)

and η is given by Eq. (9.9).
Next, consider a quantum controlled-NOT gate (CNOT gate), in which the

control qubit consists of the two signal basis states {∣∣e0

〉
,
∣∣e1

〉}, and the tar-
get qubit consists of the probe basis states {∣∣w0

〉
,
∣∣w3

〉}, and such that when∣∣e0

〉
enters the control port then {∣∣w0

〉
,
∣∣w3

〉} becomes {∣∣w3

〉
,
∣∣w0

〉} at the
target output port, or when

∣∣e1

〉
enters the control port then {∣∣w0

〉
,
∣∣w3

〉} re-
mains unchanged. It then follows that a simple quantum circuit affecting the
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transformations (9.10) and (9.11), and thereby faithfully representing the en-
tangling probe, consists of this CNOT gate with the state

∣∣A2

〉
always entering

the target port, and {∣∣e0

〉
,
∣∣e1

〉} entering the control port. When
∣∣e0

〉
enters

the control port, then
∣∣A2

〉
becomes

∣∣A1

〉
, or when

∣∣e1

〉
enters the control

port then
∣∣A2

〉
remains unchanged, in agreement with Eqs. (9.10) and (9.11)

with |w〉=
∣∣A2

〉
. According to the quantum circuit model of quantum compu-

tation, it is known that at most three CNOT gates, together with single-qubit
gates, are in general necessary and sufficient in order to implement an arbitrary
number of unitary transformations of two qubits [14]. Evidently in the present
case, a single CNOT gate suffices to faithfully represent the optimized unitary
transformation.

Next expanding the signal state |u〉 in terms of the signal basis states, using
[3, Eq. (1)], one has

|u〉 = cos
π
8

∣∣e0

〉
+ sin

π
8

∣∣e1

〉
, (9.16)

|ū〉 = −sin
π
8

∣∣e0

〉
+ cos

π
8

∣∣e1

〉
, (9.17)

|v〉 = sin
π
8

∣∣e0

〉
+ cos

π
8

∣∣e1

〉
, (9.18)

|v̄〉 = cos
π
8

∣∣e0

〉− sin
π
8

∣∣e1

〉
. (9.19)

It then follows from Eqs. (9.10), (9.11), and (9.16) that the CNOT gate affects
the following transformation when the signal state |u〉 enters the control port:

|u〉⊗ ∣∣A2

〉−→ cos
π
8

∣∣e0

〉⊗ ∣∣A1

〉
+ sin

π
8

∣∣e1

〉⊗ ∣∣A2

〉
. (9.20)

Using Eqs. (9.16) and (9.17), one also has∣∣e0

〉
= cos

π
8
|u〉− sin

π
8
|ū〉 , (9.21)∣∣e1

〉
= sin

π
8
|u〉+ cos

π
8
|ū〉 . (9.22)

Next substituting Eqs. (9.21) and (9.22) in Eq. (9.20), one has

|u〉 ⊗ ∣∣A2

〉−→ cos
π
8

(
cos

π
8
|u〉− sin

π
8
|ū〉
)
⊗ ∣∣A1

〉
+sin

π
8

(
sin

π
8
|u〉+ cos

π
8
|ū〉
)
⊗ ∣∣A2

〉
, (9.23)

and using

sin
π
8

=
1
2
(2−21/2)1/2, (9.24)
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cos
π
8

=
1
2
(2 + 21/2)1/2, (9.25)

then Eq. (9.23) becomes

|u〉⊗ ∣∣A2

〉 −→ 1
4
[(2 + 21/2) |u〉⊗ ∣∣A1

〉
+(2−21/2) |u〉⊗ ∣∣A2

〉
−21/2 |ū〉⊗ ∣∣A1

〉
+ 21/2 |ū〉⊗ ∣∣A2

〉
]. (9.26)

Then substituting Eqs. (9.12)–(9.15) in Eq. (9.26), and using Eqs. (9.6) and
(9.8), one obtains Eq. (9.2). Analogously, one also obtains Eqs. (9.3)–(9.5).

Thus the quantum circuit consisting of the CNOT gate does in fact faithfully
represent the action of the optimum unitary transformation in entangling the
signal states |u〉, |ū〉, |v〉, and |v̄〉 with the probe states

∣∣α+
〉
,
∣∣α−〉, and |α〉. It

is to be emphasized that the initial state of the probe must be
∣∣A2

〉
, given by

Eqs. (9.13)–(9.15). (A sign choice in Eqs. (9.14) and (9.15) is made below
following Eqs. (9.35) and (9.36), consistent with the measurement procedure
defined there.)

Thus, according to Eqs. (9.2)–(9.5) and the above analysis, the probe pro-
duces the following entanglements for initial probe state |w〉 =

∣∣A2

〉
and in-

coming BB84 signal states |u〉, |ū〉, |v〉, or |v̄〉, respectively:

|u〉⊗ ∣∣A2

〉−→ 1
4

(|u〉⊗ ∣∣α+
〉
+ |ū〉⊗ |α〉) , (9.27)

|ū〉⊗ ∣∣A2

〉−→ 1
4

(|u〉⊗ |α〉+ |ū〉⊗ ∣∣α−〉) , (9.28)

|v〉⊗ ∣∣A2

〉−→ 1
4

(|v〉⊗ ∣∣α−〉−|v̄〉⊗ |α〉) , (9.29)

|v̄〉⊗ ∣∣A2

〉−→ 1
4

(−|v〉⊗ |α〉+ |v̄〉⊗ ∣∣α+
〉)

. (9.30)

Then, according to Eqs. (9.27) and (9.28), if, following the public reconcil-
iation phase of the BB84 protocol, the signal basis mutually selected by the
legitimate transmitter and receiver is publicly revealed to be {|u〉 , |ū〉}, then
the probe measurement must distinguish the projected probe state

∣∣α+
〉
, when

the signal state |u〉 is both sent and received, from the projected probe state∣∣α−〉 , when the signal state |ū〉 is both sent and received. In this case one has
the correlations:

|u〉 ⇐⇒ ∣∣α+
〉
, (9.31)

|ū〉 ⇐⇒ ∣∣α−〉 . (9.32)

The same two states
∣∣α+

〉
and

∣∣α−〉must be distinguished, no matter which ba-
sis is chosen during reconciliation. Thus, according to Eqs. (9.29) and (9.30),
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if, following the public reconciliation phase of the BB84 protocol, the signal
basis mutually selected by the legitimate transmitter and receiver is publicly
revealed to be {|v〉 , |v̄〉}, then the probe measurement must distinguish the pro-
jected probe state

∣∣α−〉 , when the signal state |v〉 is both sent and received,
from the projected probe state

∣∣α+
〉
, when the signal state |v̄〉 is both sent and

received. In this case one has the correlations:

|v〉 ⇐⇒ ∣∣α−〉 , (9.33)

|v̄〉 ⇐⇒ ∣∣α+
〉
. (9.34)

Next, one notes that the correlations of the projected probe states
∣∣α+

〉
and∣∣α−〉 with the probe’s two orthogonal basis states

∣∣w0

〉
and

∣∣w3

〉
are indicated,

according to Eqs. (9.6) and (9.7), by the following probabilities:∣∣〈w0|α+
〉∣∣2∣∣α+
∣∣2 =

∣∣〈w3|α−
〉∣∣2∣∣α−∣∣2 =

1
2
± [E(1−2E)]1/2

(1−E)
, (9.35)

∣∣〈w0|α−
〉∣∣2∣∣α−∣∣2 =

∣∣〈w3|α+
〉∣∣2∣∣α+

∣∣2 =
1
2
∓ [E(1−2E)]1/2

(1−E)
. (9.36)

At this point one can make a choice of the positive sign in Eq. (9.35), and
correspondingly the negative sign in Eq. (9.36). This choice serves to define
the Hilbert space orientation of the probe basis states, in order that the probe
basis state

∣∣w0

〉
be dominantly correlated with the signal states |u〉 and |v̄〉 , and

that the probe basis state
∣∣w3

〉
be dominantly correlated with the signal states

|ū〉 and |v〉. With this sign choice, then Eqs. (9.35) and (9.36) become∣∣〈w0|α+
〉∣∣2∣∣α+
∣∣2 =

∣∣〈w3|α−
〉∣∣2∣∣α−∣∣2 =

1
2

+
[E(1−2E)]1/2

(1−E)
, (9.37)

∣∣〈w0|α−
〉∣∣2∣∣α−∣∣2 =

∣∣〈w3|α+
〉∣∣2∣∣α+
∣∣2 =

1
2
− [E(1−2E)]1/2

(1−E)
, (9.38)

and one then has the following state correlations:∣∣α+
〉 ⇐⇒ ∣∣w0

〉
, (9.39)∣∣α−〉 ⇐⇒ ∣∣w3

〉
. (9.40)

Next combining the correlations (31)-(34), (39), and (40), one then establishes
the following correlations:

{|u〉 , |v̄〉} ⇐⇒ ∣∣α+
〉 ⇐⇒ ∣∣w0

〉
, (9.41)
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{|ū〉 , |v〉} ⇐⇒ ∣∣α−〉 ⇐⇒ ∣∣w3

〉
, (9.42)

to be implemented by the probe measurement method. This can be simply ac-
complished by a von Neumann-type projective measurement of the orthogonal
probe basis states

∣∣w0

〉
and

∣∣w3

〉
, implementing the probe projective measure-

ment operators {|w0 >< w0|, |w3 >< w3|} (see Appendix A). The chosen
geometry in the two-dimensional Hilbert space of the probe is such that the
orthogonal basis states

∣∣w0

〉
and

∣∣w3

〉
make equal angles with the states

∣∣α+
〉

and
∣∣α−〉, respectively, and the sign choice is enforced in Eqs. (9.6) and (9.7),

namely,∣∣α+
〉

=
[(

21/2 + 1
)

(1 + η)1/2 +
(

21/2−1
)

(1−η)1/2
]∣∣w0

〉
(9.43)

+
[(

21/2 + 1
)

(1−η)1/2 +
(

21/2−1
)

(1 + η)1/2
]∣∣w3

〉
,∣∣α−〉 =

[(
21/2−1

)
(1 + η)1/2 +

(
21/2 + 1

)
(1−η)1/2

]∣∣w0

〉
(9.44)

+
[(

21/2−1
)

(1−η)1/2 +
(

21/2 + 1
)

(1 + η)1/2
]∣∣w3

〉
,

where
η = [8E(1−2E)]1/2, (9.45)

as in Eq. (9.9). Such a symmetric von Neumann test is known to be optimal
[15], [16], and is an essential part of the optimization [3].

Next, based on the above results, one arrives at a simple entangling probe
design [9], [10], [17] (see Fig. 9.1). An incident photon coming from the
legitimate transmitter is received by the probe in one of the four signal-photon
linear-polarization states |u〉, |ū〉, |v〉, or |v̄〉 in the BB84 protocol. The signal
photon enters the control port of the CNOT gate. The initial state of the probe
is a photon in linear-polarization state

∣∣A2

〉
and entering the target port of the

CNOT gate. The probe photon is produced by a single-photon source and is
appropriately timed with reception of the signal photon by first sampling a few
successive signal pulses to determine the repetition rate of the transmitter. The
linear-polarization state

∣∣A2

〉
, according to Eqs. (9.13)–(9.15) and (9.9), with

the sign choice made above, is given by

∣∣A2

〉
=
[

1
2
{1− [8E(1−2E)]1/2}

]1/2 ∣∣w0

〉
+
[

1
2
{1 +[8E(1−2E)]1/2}

]1/2 ∣∣w3

〉
, (9.46)

and can be simply set for an error rate E ≤ 1/4 by means of a polarizer. In
this way the device can be tuned to the chosen error rate to be induced by the
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probe. The outgoing gated signal photon is relayed on to the legitimate receiv-
er, and the gated probe photon enters a Wollaston prism, oriented to separate
photon orthogonal-linear-polarization states

∣∣w0

〉
and

∣∣w3

〉
, and the photon is

then detected by one of two photodetectors. If the basis, revealed during the
public basis-reconciliation phase of the BB84 protocol, is {|u〉, |ū〉}, then the
photodetector located to receive the polarization state

∣∣w0

〉
or
∣∣w3

〉
, respec-

tively, will indicate, in accord with the correlations (41) and (42), that a state
|u〉 or |ū〉, respectively, was most likely measured by the legitimate receiver.
Alternatively, if the announced basis is {|v〉, |v̄〉}, then the photodetector locat-
ed to receive the polarization state

∣∣w3

〉
or
∣∣w0

〉
, respectively, will indicate, in

accord with the correlations (41) and (42), that a state |v〉 or |v̄〉, respectively,
was most likely measured by the legitimate receiver. By comparing the record
of probe photodetector triggering with the sequence of bases revealed during
reconciliation, then the likely sequence of ones and zeroes constituting the key,
prior to privacy amplification, can be assigned. In any case the net effect is to
yield, for a set error rate E , the maximum information gain to the probe, which
is given by Eq. (9.1).

The geometry of the initial and shifted probe polarization states
∣∣A2

〉
and∣∣A1

〉
, respectively, and the orthogonal probe basis states,

∣∣w0

〉
and

∣∣w3

〉
, in the

two-dimensional Hilbert space of the probe, is such that the angle δ0 between
the probe state

∣∣A1

〉
and the probe basis state

∣∣w0

〉
is given by

δ0 = cos−1

(〈
w0|A1

〉
|A1|

)
, (9.47)

or, substituting
∣∣A1

〉
, given by Eqs. (9.12), (9.14), and (9.15) with the above

sign choice, namely,

∣∣A1

〉
=
[

1
2
{1 +[8E(1−2E)]1/2}

]1/2 ∣∣w0

〉
+
[

1
2
{1− [8E(1−2E)]1/2}

]1/2 ∣∣w3

〉
, (9.48)

in Eq. (9.47), one obtains

δ0 = cos−1
(

1
2

{
1 +[8E(1−2E)]1/2

})1/2

. (9.49)

This is also the angle between the initial linear-polarization state
∣∣A2

〉
of the

probe and the probe basis state
∣∣w3

〉
. Also, the shift δ in polarization between
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the initial probe states
∣∣A2

〉
and the state

∣∣A1

〉
(the angle between

∣∣A1

〉
and∣∣A2

〉
) is given by

δ = cos−1

(〈
A1|A2

〉
|A1||A2|

)
, (9.50)

or, substituting Eqs. (9.48) and (9.46), one obtains

δ = cos−1(1−4E). (9.51)

Possible implementations of the CNOT gate are under consideration, including
ones based on cavity-QED, solid state, and/or linear optics [18]. However, a
sufficiently robust high-fidelity CNOT gate, for control and target qubits based
on single-photon orthogonal polarization states, is not yet available.

Recently a generalization [11] was given to include the full range of error
rates, 0 ≤ E ≤ 1/3. In this case, the CNOT target state

∣∣A2

〉
and the probe

states
∣∣α+

〉
,
∣∣α−〉, and |α〉 in Eqs. (9.2)–(9.5) become:

∣∣A2

〉
= sgn(1−4E)

[
1
2
(1−η)

]1/2 ∣∣w0

〉
+
[

1
2
(1 + η)

]1/2 ∣∣w3

〉
, (9.52)∣∣α+

〉
=
[(

21/2 + 1
)

(1 + η)1/2 + sgn(1−4E)
(

21/2−1
)

(1−η)1/2
]∣∣w0

〉
+
[
sgn(1−4E)

(
21/2 + 1

)
(1−η)1/2

+
(

21/2−1
)

(1 + η)1/2
]∣∣w3

〉
, (9.53)∣∣α−〉 =

[(
21/2−1

)
(1 + η)1/2 + sgn(1−4E)

(
21/2 + 1

)
(1−η)1/2

]∣∣w0

〉
+
[
sgn(1−4E)

(
21/2−1

)
(1−η)1/2

+
(

21/2 + 1
)

(1 + η)1/2
]∣∣w3

〉
, (9.54)

|α〉 =
[
sgn(1−4E)(1−η)1/2− (1 + η)1/2

]∣∣w0

〉
+
[
(1 + η)1/2− sgn(1−4E)(1−η)1/2

]∣∣w3

〉
, (9.55)

respectively, where

sgn(x)≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, x > 0

0, x = 0

−1, x < 0

. (9.56)
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Note that Eqs. (9.52)–(9.56) are consistent with Eqs. (9.46) and (9.6)–(9.9)
(with the upper sign choice) for 0 ≤ E ≤ 1/4, as must be the case. It then
follows that Eqs. (9.2)–(9.5), along with Eqs. (9.53)–(9.56) above, now apply
for 0 ≤ E ≤ 1/3. (Note that according to Eq. (9.1), E = 1/3 corresponds to
complete information gain by the quantum cryptographic entangling probe.)
Also the probe and measurement method remain the same as in the above with
the initial state of the probe now given by Eq. (9.52).

In obtaining the maximum Renyi information gain IR
opt by the probe, one

first uses Eq. (9.130) of Appendix A, namely,

IR
opt = log2(2−Q2). (9.57)

Next, to obtain the minimum overlap Q of correlated probe states (which
yields the maximum IR

opt), one substitutes Eqs. (9.53) and (9.54), with |ψuu〉
=
∣∣α+

〉
and |ψūū〉=

∣∣α−〉, in Eq. (9.147) of Appendix A to obtain:

Q =

〈
α+|α−

〉
|α+||α−|

=
1 + 3sgn(1−4E)(1−η2)1/2

3 + sgn(1−4E)(1−η2)1/2
. (9.58)

Then substituting Eq. (9.45) in Eq. (9.58), one obtains

Q =
1 + 3sgn(1−4E)((1−4E)2)1/2

3 + sgn(1−4E)((1−4E)2)1/2
, (9.59)

in which the positive square root is meant, namely,

((1−4E)2)1/2 = |1−4E|. (9.60)

On noting that
sgn(1−4E)|1−4E|= 1−4E, (9.61)

and substituting Eqs. (9.60) and (9.61) in Eq. (9.59), one obtains

Q =
1−3E
1−E

. (9.62)

Finally, substituting Eq. (9.62) in Eq. (9.57), one obtains Eq. (9.1) for the full
range of error rates, 0≤ E ≤ 1/3, as required.

9.3 Probe designs based on U (2)

The effect of the unitary transformation U (2) is to produce the following
entanglements between the signal states |u〉, |ū〉, |v〉, and |v̄〉 and the probe
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states
∣∣β+

〉
,
∣∣β−〉, and |β 〉 [9]:

|u〉⊗ |w〉 −→ 1
4

(|u〉⊗ ∣∣β+
〉
+ |ū〉⊗ |β 〉) , (9.63)

|ū〉⊗ |w〉 −→ 1
4

(|u〉⊗ |β 〉+ |ū〉⊗ ∣∣β−〉) , (9.64)

|v〉⊗ |w〉 −→ 1
4

(|v〉⊗ ∣∣β−〉−|v̄〉⊗ |β 〉) , (9.65)

|v̄〉⊗ |w〉 −→ 1
4

(−|v〉⊗ |β 〉+ |v̄〉⊗ ∣∣β+
〉)

, (9.66)

in which∣∣β±〉 =
(
1− r2)1/2

[(
2∓21/2

)
sin μ +

(
2±21/2

)
cos μ

]∣∣w0

〉
+
(
1− r2)1/2

[(
2±21/2

)
sin μ +

(
2∓21/2

)
cosμ

]∣∣w3

〉
+ eλ eθ r

[(
2∓21/2

)
sinφ +

(
2±21/2

)
cosφ

]∣∣w1

〉
+ eλ eθ r

[(
2±21/2

)
sinφ +

(
2∓21/2

)
cosφ

]∣∣w2

〉
, (9.67)

|β 〉 = 21/2 (1− r2)1/2
(sin μ− cosμ)

(∣∣w0

〉− ∣∣w3

〉)
+21/2eλ eθ r (sinφ − cosφ)

(∣∣w1

〉− ∣∣w2

〉)
, (9.68)

where
∣∣w0

〉
,
∣∣w1

〉
,
∣∣w2

〉
, and

∣∣w3

〉
are orthonormal basis states of the probe,

and r is defined by

r ≡
(

sin2μ−1 + 4E
sin2μ− sin2φ

)1/2

. (9.69)

Also, φ and μ are probe parameters constrained by

sin2φ < sin2μ ≥ 1−4E ∪ sin2φ > sin2μ ≤ 1−4E, (9.70)

but otherwise free, and eλ and eθ are sign parameters defined by

eλ ≡±1, eθ ≡±1. (9.71)

Generally, because Eqs. (9.67) and (9.68) depend on four probe basis states∣∣w0

〉
,
∣∣w1

〉
,
∣∣w2

〉
, and

∣∣w3

〉
, the Hilbert space of this probe is four-dimensional.

However if one makes the following free choices for the parameters μ , φ ,
eλ , and eθ [19]:

sin2μ = 0, (9.72)

sin2φ = 1−4E , (9.73)
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eλ eθ ≡ 1, (9.74)

then Eqs. (9.67) and (9.68), for 0≤E ≤ 1/4 and with appropriate sign choices,
become∣∣β+

〉
=
[(

21/2 + 1
)

(1 + η)1/2 +
(

21/2−1
)

(1−η)1/2
]∣∣w1

〉
(9.75)

+
[(

21/2 + 1
)

(1−η)1/2 +
(

21/2−1
)

(1 + η)1/2
]∣∣w2

〉
,∣∣β−〉 =

[(
21/2−1

)
(1 + η)1/2 +

(
21/2 + 1

)
(1−η)1/2

]∣∣w1

〉
(9.76)

+
[(

21/2−1
)

(1−η)1/2 +
(

21/2 + 1
)

(1 + η)1/2
]∣∣w2

〉
,

|β 〉=
[
−(1 + η)1/2 +(1−η)1/2

]∣∣w1

〉
+
[
−(1−η)1/2 +(1 + η)1/2

]∣∣w2

〉
.

(9.77)
In this case, the probe Hilbert space reduces from four to two dimensions.
Evidently, Eqs. (9.75)–(9.77) have the same form as Eqs. (9.6)–(9.8), can also
be generalized to allow 0 ≤ E ≤ 1/3, and will again lead to the probe design
of Section 9.2.

9.4 Probe designs based on U (3)

In this section, an implementation is presented for the optimum unitary
transformation U (3) represented by [9, Eqs. (158)–(164)], however with re-
stricted parameters such that the corresponding Hilbert space of the probe re-
duces from four to two dimensions. In particular, the free parameters μ and θ
are here restricted to

sin μ = cos μ = 2−1/2, cosθ = 1. (9.78)

In this case, the entangling probe states
∣∣σ+

〉
,
∣∣σ−〉, |σ〉, ∣∣δ+

〉
,
∣∣δ−〉, |δ 〉, given

by [9, Eqs. (159)–(164)], become [12]∣∣σ+
〉

=
∣∣δ−〉= 4[(1−2E)1/2 |wa〉−E1/2

∣∣wb

〉
], (9.79)∣∣σ−〉=

∣∣δ+
〉

= 4[(1−2E)1/2 |wa〉+ E1/2
∣∣wb

〉
], (9.80)

|σ〉=−|δ 〉= 4E1/2
∣∣wb

〉
, (9.81)
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in which the upper sign choices are chosen in [9, Eqs. (159)–(164)], E is the
error rate induced by the probe, and the orthonormal probe basis vectors |wa〉
and

∣∣wb

〉
are defined by

|wa〉= 2−1/2 (∣∣w0

〉
+
∣∣w3

〉)
, (9.82)∣∣wb

〉
= 2−1/2 (∣∣w1

〉− ∣∣w2

〉)
, (9.83)

expressed in terms of the orthonormal basis vectors
∣∣w0

〉
,
∣∣w3

〉
,
∣∣w1

〉
, and

∣∣w2

〉
of [9]. Thus, the optimum unitary transformation, [9, Eq. (158)], produces in
this case the following entanglements for initial probe state |w〉 and incoming
BB84 signal photon-polarization states |u〉, |ū〉, |v〉, or |v̄〉, respectively:

|u〉⊗ |w〉 −→ 1
4

(|u〉⊗ ∣∣σ+
〉
+ |ū〉⊗ |σ〉) , (9.84)

|ū〉⊗ |w〉 −→ 1
4

(|u〉⊗ |σ〉+ |ū〉⊗ ∣∣σ−〉) , (9.85)

|v〉⊗ |w〉 −→ 1
4

(|v〉⊗ ∣∣σ−〉−|v̄〉⊗ |σ〉) , (9.86)

|v̄〉⊗ |w〉 −→ 1
4

(−|v〉⊗ |σ〉+ |v̄〉⊗ ∣∣σ+
〉)

. (9.87)

Here, the probe states
∣∣σ+

〉
,
∣∣σ−〉, |σ〉 are given by Eqs. (9.79)–(9.81). In the

present case, the maximum information gain by the probe is again given by
Eq. (9.1).

Using the same methods presented in Section 9.2, it can be shown that a
quantum circuit consisting again of a single CNOT gate suffices to produce
the optimum entanglement, Eqs. (9.84)–(9.87). Here, the control qubit en-
tering the control port of the CNOT gate consists of the two signal basis
states {∣∣e0

〉
,
∣∣e1

〉}. The target qubit entering the target port of the CNOT
gate consists of the two orthonormal linearly-polarized photon polarization
computational-basis states 2−1/2(|wa〉±

∣∣wb

〉
). This choice of computation-

al basis states is determined by the requirement that the probe measurement
be a symmetric von-Neumann test [see argument preceding Eqs. (9.92) and
(9.93)]. It follows that when

∣∣e0

〉
enters the control port, {|wa〉 ,

∣∣wb

〉} be-
comes {|wa〉 ,−

∣∣wb

〉}, and when
∣∣e1

〉
enters the control port, {|wa〉 ,

∣∣wb

〉} re-
mains the same. The initial target state of the probe can, in this case, be shown
to be given by: ∣∣A2

〉
= (1−2E)1/2 |wa〉+(2E)1/2

∣∣wb

〉
, (9.88)

and the transition state is given by∣∣A1

〉
= (1−2E)1/2 |wa〉− (2E)1/2

∣∣wb

〉
. (9.89)
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Next, by arguments directly paralleling those of Section 9.2, using Eqs. (9.84)–
(9.87), one has the following correlations between the signal states and the
projected probe states,

∣∣σ+
〉

and
∣∣σ−〉:

|u〉 ⇐⇒ ∣∣σ+
〉
, |ū〉 ⇐⇒ ∣∣σ−〉 , (9.90)

and
|v〉 ⇐⇒ ∣∣σ−〉 , |v̄〉 ⇐⇒ ∣∣σ+

〉
. (9.91)

The measurement basis for the symmetric von Neumann projective mea-
surement of the probe must be orthogonal and symmetric about the correlated
probe states,

∣∣σ+
〉

and
∣∣σ−〉, in the two-dimensional Hilbert space of the probe

[3]. Thus, consistent with Eqs. (9.79) and (9.80), one defines the following or-
thonormal measurement basis states:∣∣w+

〉
= 2−1/2(|wa〉+

∣∣wb

〉
), (9.92)∣∣w−〉= 2−1/2(|wa〉−

∣∣wb

〉
). (9.93)

Next, one notes that the correlations of the projected probe states
∣∣σ+

〉
and∣∣σ−〉 with the measurement basis states

∣∣w+
〉

and
∣∣w−〉 are indicated, accord-

ing to Eqs. (9.79), (9.80), (9.92), and (9.93), by the following probabilities:∣∣〈w+|σ+
〉∣∣2∣∣σ+

∣∣2 =

∣∣〈w−|σ−〉∣∣2∣∣σ−∣∣2 =
1
2
− E1/2(1−2E)1/2

(1−E)
, (9.94)

∣∣〈w+|σ−
〉∣∣2∣∣σ−∣∣2 =

∣∣〈w−|σ+
〉∣∣2∣∣σ+

∣∣2 =
1
2

+
E1/2(1−2E)1/2

(1−E)
, (9.95)

consistent with Eqs. (9.37) and (9.38), and implying the following dominant
state correlations: ∣∣σ+

〉 ⇐⇒ ∣∣w−〉 , ∣∣σ−〉 ⇐⇒ ∣∣w+
〉
. (9.96)

Next combining the correlations (9.90), (9.91), and (9.96), one thus establishes
the following correlations:

{|u〉 , |v̄〉} ⇐⇒ ∣∣σ+
〉 ⇐⇒ ∣∣w−〉 , (9.97)

{|ū〉 , |v〉} ⇐⇒ ∣∣σ−〉 ⇐⇒ ∣∣w+
〉
, (9.98)

to be implemented by the projective measurement of the probe, much as in
Section 9.2.
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One therefore arrives at the following alternative entangling probe design.
An incident photon coming from the legitimate transmitter is received by the
probe in one of the four signal-photon linear-polarization states |u〉, |ū〉, |v〉, or
|v̄〉 in the BB84 protocol. The signal photon enters the control port of a CNOT
gate. The initial state of the probe is a photon in linear-polarization state

∣∣A2

〉
entering the target port of the CNOT gate. The photon linear-polarization state∣∣A2

〉
, according to Eq. (9.88), is given by∣∣A2

〉
= (1−2E)1/2 |wa〉+(2E)1/2

∣∣wb

〉
, (9.99)

and can be simply set for an error rate E by means of a polarizer. Note that
this initial probe state has a simpler algebraic dependence on error rate than
that in Eq. (9.46) of Section 9.2. In accord with Eq. (9.99), the entan-
gling probe can be tuned to the chosen error rate to be induced by the probe.
The outgoing gated signal photon is relayed on to the legitimate receiver, and
the gated probe photon enters a Wollaston prism, oriented to separate photon
orthogonal-linear-polarization states

∣∣w+
〉

and
∣∣w−〉, and the photon is then

detected by one of two photodetectors. This is an ordinary symmetric von
Neumann projective measurement. If the basis, revealed during the public
basis-reconciliation phase of the BB84 protocol, is {|u〉, |ū〉}, then the pho-
todetector located to receive the polarization state

∣∣w−〉 or
∣∣w+

〉
, respectively,

will indicate, in accord with the correlations (9.97) and (9.98), that a state |u〉
or |ū〉, respectively, was most likely measured by the legitimate receiver. Alter-
natively, if the announced basis is {|v〉, |v̄〉}, then the photodetector located to
receive the polarization state

∣∣w+
〉

or
∣∣w−〉, respectively, will indicate, in ac-

cord with the correlations (9.97) and (9.98), that a state |v〉 or |v̄〉, respectively,
was most likely measured by the legitimate receiver. By comparing the record
of probe photodetector triggering with the sequence of bases revealed during
reconciliation, then the likely sequence of ones and zeroes constituting the key,
prior to privacy amplification, can be assigned. In any case the net effect is to
yield, for a set induced error rate E , the maximum Renyi information gain to
the probe, which is given by Eq. (9.1).

9.5 Conclusion

Exploiting the quantum circuit model of quantum computation, the quantum
circuits needed to implement optimum unitary transformations, Eqs. (9.2)–
(9.5), or Eqs. (9.84)–(9.87), representing entangling probes attacking the B-



APPENDIX A. RENYI INFORMATION GAIN 277

B84 protocol, were obtained and shown to yield the correct entangled states.
The quantum circuits, faithfully representing the optimum entangling probes,
consist of a single CNOT gate in which the control qubit consists of two
photon-polarization basis states of the signal, the target qubit consists of the
two probe-photon polarization basis states, and the probe photon is prepared
in the initial linear-polarization state, Eqs. (9.46), (9.52), or (9.99), set by the
induced error rate. The initial polarization state of the probe photon can be
produced by a single-photon source together with a linear polarizer. The gated
probe photon, optimally entangled with the signal, enters a Wollaston prism
which separates the appropriate correlated states of the probe photon to trigger
one or the other of two photodetectors. Basis selection, revealed on the public
channel during basis reconciliation in the BB84 protocol, is exploited to cor-
relate photodetector clicks with the signal transmitting the key, and to assign
the most likely binary numbers, 1 or 0, such that the information gain by the
probe of the key, prior to privacy amplification, is maximal. Explicit design
parameters for the entangling probe are analytically specified, including: (1)
the explicit initial polarization state of the probe photon; (2) the transition state
of the probe photon; (3) the probabilities that one or the other photodetector
triggers corresponding to a 0 or 1 of the key; (4) the relative angles between the
various linear-polarization states in the Hilbert space of the probe; and (5) the
information gain by the probe. The probes are simple special-purpose quan-
tum information processors that will improve the odds for an eavesdropper in
gaining access to the pre-privacy-amplified key, as well as impose a poten-
tially severe sacrifice of key bits during privacy amplification [5]. The suc-
cessful implementation of the probe awaits the development of a single robust
high-fidelity CNOT gate, a practical single-photon source, and high-efficiency
single-photon photodetectors.

Appendix A Renyi information gain

The expectation value of the Renyi information gain by the probe for each
single-photon transmission is given by the expected value of the decrease in
Renyi entropy of the probe, namely [3],

IR = ∑
μ

Pμ
(
R0−Rμ

)
, (9.100)

where Pμ is the a priori probability of measurement outcome μ , R0 is the initial
Renyi entropy, and Rμ is the a posteriori Renyi entropy concerning the probe
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state for outcome μ . The initial Renyi entropy R0 is given by [20], [21]

R0 =− log2 ∑
i

p2
i , (9.101)

where pi is the a priori probability that the probe is in state i, and the a poste-
riori entropy Rμ is given by

Rμ =− log2 ∑
i

q2
iμ , (9.102)

where qiμ is the a posteriori probability that the probe is in state i for a mea-
surement outcome μ (Here i = 1 or 2, and μ = 1 or 2, corresponding to two
probe states). The a priori probability Pμ of measurement outcome μ is given
by

Pμ = Tr

(
Eμ∑

i
piρ

(i)

)
, (9.103)

in which ρ (i) is the density operator for the projected state
∣∣ψi

〉
of the probe,

correlated with the correct measurement outcome of the legitimate receiver,
namely,

ρ (i) =
∣∣ψi

〉〈
ψi

∣∣ , (9.104)

and Eμ is the probe measurement operator,

Eμ =
∣∣w̄μ

〉〈
w̄μ
∣∣ , (9.105)

where
∣∣w̄μ

〉
are the orthonormal measurement basis vectors. The a posteriori

probability qiμ that the probe is in state i for measurement outcome μ is given
by

qiμ =
1

Pμ
Tr
(

Eμρ (i)
)

pi. (9.106)

From Eqs. (9.106) and (9.103), it follows that

∑
i

qiμ = 1. (9.107)

For the case in which only two probe states must be distinguished (which is
the case in the present work), it follows from the symmetry of the protocol that
one has equal a priori probabilities for the probe to be in state 1 or 2, namely,

p1 = p2 =
1
2
. (9.108)
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For the case of two probe states,
∣∣ψ1

〉
and

∣∣ψ2

〉
, correlated with the correct

measurements made by the legitimate receiver, it is known that the information
gain is maximized when a simple two-dimensional von Neumann projective
measurement is made in which the orthonormal measurement vectors

∣∣w̄1

〉
and∣∣w̄2

〉
are located symmetrically with respect to the two correlated state vectors∣∣ψ1

〉
and

∣∣ψ2

〉
of the probe in the real two-dimensional Hilbert space of the

probe [3], [15], [16]. From this geometry, it then follows, for example, that
the angle between

∣∣ψ1

〉
and

∣∣w̄1

〉
is half the complement of the angle between∣∣ψ1

〉
and

∣∣ψ2

〉
. Thus one has

〈
ψ1|w̄1

〉
=
〈
ψ2|w̄2

〉≡ cosξ = cos

(
1
2

[π
2
− cos−1 Q

])
, (9.109)

and 〈
ψ1|w̄2

〉
=
〈
ψ2|w̄1

〉≡ sin ξ = sin

(
1
2

[π
2
− cos−1 Q

])
, (9.110)

in which one defines the overlap of the states
∣∣ψ1

〉
and

∣∣ψ2

〉
, correlated with

the measurements of the signal, by [3]

Q≡
〈
ψ1|ψ2

〉
|ψ1||ψ2|

. (9.111)

Next substituting Eqs. (9.105), (9.104), and (9.108) in Eq. (9.103), one has

Pμ = ∑
i

Tr
1
2

(∣∣w̄μ
〉〈

w̄μ |ψi

〉〈
ψi

∣∣) , (9.112)

or equivalently,

Pμ =
1
2

[∣∣〈ψ1|w̄μ
〉∣∣2 +

∣∣〈ψ2|w̄μ
〉∣∣2] . (9.113)

Substituting Eqs. (9.109) and (9.110) in Eq. (9.113), one obtains

P1 =
1
2

[
cos2 ξ + sin2 ξ

]
=

1
2
, (9.114)

P2 =
1
2

[
sin2 ξ + cos2 ξ

]
=

1
2
. (9.115)

Next substituting Eqs. (9.114), (9.105), (9.104), and (9.108) in Eq. (9.106),
one has

q11 = 2Tr

(
1
2

∣∣w̄1

〉〈
w̄1|ψ1

〉〈
ψ1

∣∣)=
∣∣〈ψ1|w̄1

〉∣∣2 , (9.116)
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and substituting Eq. (9.109) in Eq. (9.116), one has

q11 = cos2
(

1
2

[π
2
− cos−1 Q

])
, (9.117)

or equivalently, using a trigonometric identity, one has

q11 =
1
2

+
1
2

cos
(π

2
− cos−1 Q

)
=

1
2

(
1 + sincos−1 Q

)
, (9.118)

or

q11 =
1
2

[
1 +

(
1−Q2)1/2

]
. (9.119)

Analogously, one obtains

q12 =
1
2

[
1− (1−Q2)1/2

]
, (9.120)

q21 =
1
2

[
1− (1−Q2)1/2

]
, (9.121)

q22 =
1
2

[
1 +

(
1−Q2)1/2

]
. (9.122)

Next substituting Eq. (9.108) in Eq. (9.101), one has

R0 =− log2

[(
1
2

)2

+
(

1
2

)2
]

= 1. (9.123)

Also, according to Eq. (9.102), one has

R1 =− log2

[
q2

11 + q2
21

]
, (9.124)

and substituting Eqs. (9.119) and (9.121) in Eq. (9.124), one obtains

R1 =− log2

(
1− 1

2
Q2
)

. (9.125)

Analogously,
R2 =− log2

[
q2

12 + q2
22

]
, (9.126)

or

R2 =− log2

(
1− 1

2
Q2
)

. (9.127)

Next substituting Eqs. (9.114), (9.115), (9.123), (9.125), and (9.127) in Eq.
(9.100), one obtains

IR =
1
2

[
1 + log2

(
1− 1

2
Q2
)]

+
1
2

[
1 + log2

(
1− 1

2
Q2
)]

, (9.128)
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or

IR = 1 + log2

(
1− 1

2
Q2
)

= log2

[
2

(
1− 1

2
Q2
)]

, (9.129)

or equivalently [3],
IR = log2

(
2−Q2) . (9.130)

It is evident from Eq. (9.130) that to maximize the Renyi information gain IR,
one can equivalently minimize Q, the overlap of correlated probe states. It is
well to mention here that the maximum Renyi information gain by an eaves-
dropper is not only useful for probe optimization, but it is also important for
determining how many bits of key must be sacrificed during privacy amplifi-
cation, in order to insure that the key is secure [22], [5].

Appendix B Maximum Renyi information gain

Because the signal states |u〉, |ū〉, |v〉, and |v̄〉 in the two-dimensional real
Hilbert space of the signal can be expanded in terms of the signal basis states
[as in Eqs. (9.16)–(9.19)], then by the linearity of quantum mechanics, the
action of the probe on the signal states is fully described by the general unitary
transformation U , representing the probe, acting on the signal basis states

∣∣e0

〉
and

∣∣e1

〉
, which is given by [3], [8]

|em⊗w〉 →U |em⊗w〉= ∣∣e0

〉∣∣Φ0m

〉
+
∣∣e1

〉∣∣Φ1m

〉
, (9.131)

where |w〉 is the initial state of the probe, and the |Φnm〉 are the transformed
states of the probe (unnormalized and not orthogonal) and are functions of
probe parameters {λ ,μ ,θ ,φ},

|Φnm〉= |Φnm(λ ,μ ,θ ,φ)〉 . (9.132)

(In general, 0≤ (λ ,μ ,θ ,φ)≤ 2π .) Specifically, unitarity and symmetry argu-
ments determine the probe states |Φnm〉 to be given by [3]∣∣Φ00

〉
= X0

∣∣w0

〉
+ X1

∣∣w1

〉
+ X2

∣∣w2

〉
+ X3

∣∣w3

〉
, (9.133)∣∣Φ01

〉
= X5

∣∣w1

〉
+ X6

∣∣w2

〉
, (9.134)∣∣Φ10

〉
= X6

∣∣w1

〉
+ X5

∣∣w2

〉
, (9.135)∣∣Φ11

〉
= X3

∣∣w0

〉
+ X2

∣∣w1

〉
+ X1

∣∣w2

〉
+ X0

∣∣w3

〉
, (9.136)
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where

X0 = sinλ cos μ , (9.137)
X1 = cosλ cosθ cosφ , (9.138)
X2 = cosλ cosθ sinφ , (9.139)
X3 = sinλ sin μ , (9.140)
X5 = cosλ sinθ cosφ , (9.141)
X6 = −cosλ sinθ sinφ . (9.142)

The two states
∣∣ψ1

〉
and

∣∣ψ2

〉
which must be distinguished by the probe, for

the basis {|u〉 , |ū〉}, are ∣∣ψ1

〉
= |ψuu〉 , (9.143)∣∣ψ2

〉
= |ψūū〉 , (9.144)

where |ψuu〉 is the projected state of the probe when state |u〉 is transmitted by
the transmitter and also received by the legitimate receiver, namely,

|ψuu〉= 〈u|U |u⊗w〉, (9.145)

and analogously,
|ψūū〉= 〈ū|U |ū⊗w〉 . (9.146)

Substituting Eqs. (9.143) and (9.146) in Eq. (9.111), then

Q =
〈ψuu|ψūū〉
|ψuu||ψūū|

. (9.147)

By the symmetry of the BB84 protocol, the value of Q given by Eq. (9.147)
also holds in the {|v〉 , |v̄〉} basis. Expanding the signal states in terms of the
signal basis states, and using Eqs. (9.145)–(9.147), (9.131)–(9.142), it can be
shown that [3], [4]

Q =
1
2(d + a)+ b{[

1 + 1
2 (d + a)

]2− 1
2 c2
}1/2

, (9.148)

where

a = sin2 λ sin 2μ + cos2 λ cos2θ sin2φ , (9.149)
b = sin2 λ sin 2μ + cos2 λ sin2φ , (9.150)
c = cos2 λ sin2θ cos2φ , (9.151)
d = sin2 λ + cos2 λ cos2θ . (9.152)
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What is needed is the maximum Renyi information (or minimum Q in Eq.
(9.130)) for any fixed error rate E chosen by the eavesdropper and induced in
the legitimate receiver. Evidently the induced error rate is [3]

E =
Puū + Pūu

Puū + Pūu + Puu + Pūū
, (9.153)

where Pi j is the probability that if a photon in polarization state |i〉 is transmit-
ted by the transmitter in the presence of the disturbing probe, the polarization
state | j〉 is detected by the legitimate receiver. One has

Pi j =
∣∣∣ψi j

∣∣∣2 , (9.154)

where
∣∣∣ψi j

〉
is the projected state of the probe when polarization state |i〉 is

transmitted, and polarization state | j〉 is detected by the legitimate receiver in
the presence of the probe. The states |ψuu〉 and |ψūū〉 are given by Eqs. (9.145)
and (9.146). Analogously one has

|ψuū〉= 〈ū|U |u⊗w〉 , (9.155)

and
|ψūu〉= 〈u|U |ū⊗w〉 . (9.156)

Using Eqs. (9.154), (9.145), (9.146), (9.155), (9.156), (9.149), (9.152) in Eq.
(9.153), it can be shown that the induced error rate is given by [3]

E =
1
2

[
1− 1

2
(d + a)

]
. (9.157)

Next substituting Eq. (9.157) in Eq. (9.148), one obtains

Q =
1−2E + b[

(2−2E)2− 1
2 c2
]1/2

. (9.158)

The optimization then becomes that of finding the probe parameters {λ ,μ ,θ ,φ}
such that Q in Eq. (9.158) is minimum for fixed E . The complete optimization
was performed in [4], [6], [7]. To accomplish this, the critical points of Q were
found by analytically determining the values of λ ,μ ,θ , and φ such that for
fixed E ,

∂Q
∂λ |E

=
∂Q
∂ μ |E

=
∂Q
∂θ |E

=
∂Q
∂φ |E

= 0, (9.159)
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and then distinguishing minima from saddle points and maxima by numeri-
cally calculating Q in the neighborhood of the critical points. Three sets of
optimum probe parameters were found, each yielding the identical minimum
Q and maximum Renyi information gain for set error rate E . The three sets of
optimum probe parameters are [4], [6], [7]

S(1) ≡ {λ ,μ ,θ ,φ ;cosλ = 0, sin2μ = 1−4E}, (9.160)

S(2) ≡ {λ ,μ ,θ ,φ ; sin 2μ sin2 λ
= 1−4E− cos2 λ sin2φ , cos2θ = 1}, (9.161)

S(3) ≡ {λ ,μ ,θ ,φ ; sin 2φ =−1, sin2μ sin2 λ
= 1−4E + cos2 λ}. (9.162)

The minimum Q for all three sets, Eqs. (9.160)–(9.162), is [3], [4]

Qmin =
1−3E
1−E

, (9.163)

and finally substituting Eq. (9.163) in Eq. (9.130), the maximum Renyi infor-
mation gain is

IR
opt = log2

[
2−

(
1−3E
1−E

)2
]

, (9.164)

as in Eq. (9.1). Corresponding to each set of optimum probe parameters, S(1),
S(2), and S(3) is an optimum unitary transformation U (1), U (2), and U (3), re-
spectively, obtained by evaluating the transformations, Eqs. (9.131)–(9.142),
for the optimum values of the probe parameters, Eqs. (9.160)–(9.162), respec-
tively, yielding Eqs. (9.2)–(9.5), (9.63)–(9.66), and (9.84)–(9.87), respectively
[9].
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Chapter 10

Nonbinary Stabilizer Codes

Pradeep Kiran Sarvepalli, Salah A. Aly, and
Andreas Klappenecker

Abstract Recently, the field of quantum error-correcting codes has rapid-
ly emerged as an important discipline. As quantum information is extremely
sensitive to noise, it seems unlikely that any large scale quantum computation
is feasible without quantum error-correction. In this paper we give a brief ex-
position of the theory of quantum stabilizer codes. We review the stabilizer
formalism of quantum codes, establish the connection between classical codes
and stabilizer codes and the main methods for constructing quantum codes
from classical codes. In addition to the expository part, we include new results
that cannot be found elsewhere. Specifically, after reviewing some important
bounds for quantum codes, we prove the nonexistence of pure perfect quantum
stabilizer codes with minimum distance greater than 3. Finally, we illustrate
the general methods of constructing quantum codes from classical codes by
explicitly constructing two new families of quantum codes and conclude by
showing how to construct new quantum codes by shortening.

10.1 Introduction

Quantum error-correcting codes were introduced by Shor [54] in the wake of
serious doubts cast over the practical implementation of quantum algorithm-
s. Since then the field has made rapid progress and the pioneering works of

287
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Gottesman [22] and Calderbank et al., [10] revealed a rich structure underlying
the theory of quantum stabilizer codes. Their work spurred many researchers
to study binary quantum codes, see [5, 6, 7, 11, 9, 15, 14, 16, 17, 21, 26, 24,
27, 23, 32, 29, 30, 28, 37, 38, 40, 45, 47, 50, 54, 58, 57, 59, 56]. The theory
was later extended to the nonbinary case [1, 2, 3, 8, 12, 13, 18, 19, 25, 33,
31, 36, 39, 48, 49, 51, 53, 52]. This paper surveys the theory of nonbinary
stabilizer codes – arguably, the most important class of quantum codes. There
exists sufficient machinery to describe them compactly and make useful con-
nections with classical coding theory. Moreover, they are very amenable to
fault-tolerant implementation which makes them very attractive from a practi-
cal point of view.

We aim to provide an accessible introduction to the theory of nonbinary
quantum codes. Section 10.2 gives a brief overview of the main ideas of stabi-
lizer codes while Section 10.3 reviews the relation between quantum stabilizer
codes and classical codes. This connection makes it possible to reduce the s-
tudy of quantum stabilizer codes to the study of self-orthogonal classical codes,
though the definition of self-orthogonality is a little broader than the classical
one. Further, it allows us to use all the tools of classical codes to derive bound-
s on the parameters of good quantum codes. Section 10.4 gives an overview
of the important bounds for quantum codes. Finally, Section 10.5 illustrates
the general ideas behind quantum code construction by constructing the quan-
tum Hamming codes, some cyclic quantum codes and codes from projective
geometry.

While this paper is primarily an exposition of the theory of nonbinary stabi-
lizer codes, we also included new results. For instance, we prove the nonexis-
tence of pure perfect quantum codes with distance greater than 3. Furthermore,
we derive two new families of quantum codes, the quantum projective Reed–
Muller codes and the quantum m-adic residue codes. Finally, we illustrate the
key ideas of shortening quantum codes by taking the newly introduced quan-
tum projective Reed–Muller codes as an example.

We tried to keep the prerequisites to a minimum, though we assume that
the reader has a minimal background in quantum computing. Some familiarity
with classical coding theory will help; we recommend [34] and [46] as refer-
ences. In general, we omitted long proofs of basic material – readers interested
in more details should consult [36]. However, we made an effort to keep the
overlap with [36] to a minimum, although some material is repeated here to
make this chapter reasonably self-contained.

Notations. The finite field with q elements is denoted by Fq, where q = pm

and p is assumed to be a prime. The trace function from F
ql to Fq is defined

as tr
ql/q

(x) = ∑l−1
k=0 xqk

, and we may omit the subscripts if Fq is the prime field.
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The center of a group G is denoted by Z(G) and the centralizer of a subgroup
S in G by CG(S). We denote by H ≤ G the fact that H is a subgroup of G. The
trace Tr(M) of a square matrix M is the sum of the diagonal elements of M.

10.2 Stabilizer codes

In this chapter, we use q-ary quantum digits, shortly called qudits, as the ba-
sic unit of quantum information. The state of a qudit is a nonzero vector in the
complex vector space Cq. This vector space is equipped with an orthonormal
basis whose elements are denoted by |x〉, where x is an element of the finite
field Fq. The state of a system of n qudits is then a nonzero vector in Cqn

. In
general, quantum codes are just nonzero subspaces1 of Cqn

. A quantum code
that encodes k qudits of information into n qudits is denoted by [[n,k]]q, where
the subscript q indicates that the code is q-ary. More generally, an ((n,K))q

quantum code is a K-dimensional subspace encoding logq K qudits into n qu-
dits.

As the codes are subspaces, it seems natural to describe them by giving a
basis for the subspace. However, in case of quantum codes this turns out to be
an inconvenient description.2 An alternative description of the quantum error-
correcting codes that are discussed in this chapter relies on error operators that
act on Cqn

. If we make the assumption that the errors are independent on
each qudit, then each error operator E can be decomposed as E = E1⊗ ·· ·⊗
En. Furthermore, linearity of quantum mechanics allows us to consider only
a discrete set of errors. The quantum error-correcting codes that we consider
here can be described as the joint eigenspace of an abelian subgroup of error
operators. The subgroup of error operators is called the stabilizer of the code
(because it leaves each state in the code unaffected) and the code is called a

1The more recent concept of an operator quantum error-correcting code generalizes this notion,
where additional structure is imposed on the subspaces.
2For instance, a basis for the [[7,1]]2 code is

|0L〉 = |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+|0001111〉+ |0111100〉+ |1011010〉+ |1101001〉,

|1L〉 = |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+|0001111〉+ |0111100〉+ |1011010〉+ |1101001〉.
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stabilizer code.

10.2.1 Error bases

In general, we can regard any error as being composed of an amplitude error
and a phase error. Let a and b be elements in Fq. We can define unitary
operators X(a) and Z(b) on Cq that generalize the Pauli X and Z operators to
the q-ary case; they are defined as

X(a)|x〉= |x + a〉, Z(b)|x〉= ω tr(bx)|x〉,
where tr denotes the trace operation from Fq to Fp, and ω = exp(2π i/p) is a
primitive pth root of unity.

Let E = {X(a)Z(b) |a,b ∈ Fq} be the set of error operators. The error op-
erators in E form a basis of the set of complex q× q matrices as the trace
Tr(A†B) = 0 for distinct elements A,B of E . Further, we observe that

X(a)Z(b)X(a′)Z(b′) = ω tr(ba′)X(a + a′)Z(b + b′). (10.1)

The error basis for n q-ary quantum systems can be obtained by tensoring
the error basis for each system. Let a = (a1, . . . ,an) ∈ Fn

q. Let us denote by
X(a) = X(a1)⊗ ·· · ⊗X(an) and Z(a) = Z(a1)⊗ ·· · ⊗ Z(an) for the tensor
products of n error operators. Then we have the following result whose proof
follows from the definitions of X(a) and Z(b).

LEMMA 10.1
The set En = {X(a)Z(b) |a,b ∈ Fn

q} is an error basis on the complex
vector space Cqn

.

10.2.2 Stabilizer codes

Consider the error group Gn defined as

Gn = {ωcX(a)Z(b) |a,b ∈ Fn
q,c ∈ Fp}.

Gn is simply a finite group of order pq2n generated by the matrices in the error
basis En.

Let S be an abelian subgroup of Gn, then a stabilizer code Q is a non-zero
subspace of Cqn

defined as

Q =
⋂

E∈S

{v ∈ Cqn | Ev = v}. (10.2)



10.2. STABILIZER CODES 291

Alternatively, Q is the joint +1 eigenspace of S. A stabilizer code contains
all joint eigenvectors of S with eigenvalue 1, as equation (10.2) indicates. If
the code is smaller and does not contain all the joint eigenvectors of S with
eigenvalue 1, then it is not a stabilizer code for S.

10.2.3 Stabilizer and error correction

Now that we have a handle on the quantum code through its stabilizer, we
next need to be able to describe the performance of the code, that is, we should
be able to tell how many errors it can detect (or correct) and how the error
correction is done.

The central idea of error detection is that a detectable error acting on Q
should either act as a scalar multiplication on the code space (in which case
the error did not affect the encoded information) or it should map the encoded
state to the orthogonal complement of Q (so that one can set up a measurement
to detect the error). Specifically, we say that Q is able to detect an error E
in the unitary group U(qn) if and only if the condition 〈c1|E|c2〉 = λE〈c1|c2〉
holds for all c1,c2 ∈ Q, see [43].

We can show that a stabilizer code Q with stabilizer S can detect all errors
in Gn that are scalar multiples of elements in S or that do not commute with
some element of S, see Lemma 10.2. In particular, an undetectable error in Gn

has to commute with all elements of the stabilizer.
Let S≤ Gn and CGn

(S) denote the centralizer of S in Gn,

CGn
(S) = {E ∈ Gn |EF = FE for all F ∈ S}.

Let SZ(Gn) denote the group generated by S and the center Z(Gn). We need
the following characterization of detectable errors.

LEMMA 10.2
Suppose that S ≤ Gn is the stabilizer group of a stabilizer code Q of

dimension dimQ > 1. An error E in Gn is detectable by the quantum
code Q if and only if either E is an element of SZ(Gn) or E does not
belong to the centralizer CGn

(S).

PROOF See [36]. See also [3]; the interested reader can find a more
general approach in [42, 41].

Since detectability of errors is closely associated to commutativity of error
operators, we will derive the following condition on commuting elements in
Gn:
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LEMMA 10.3

Two elements E = ωcX(a)Z(b) and E ′= ωc′X(a′)Z(b′) of the error group
Gn satisfy the relation

EE ′ = ω tr(b·a′−b′·a)E ′E.

In particular, the elements E and E ′ commute if and only if the trace
symplectic form tr(b ·a′ −b′ ·a) vanishes.

PROOF We can easily verify that EE ′ = ω tr(b·a′)X(a + a′)Z(b+ b′)
and E ′E = ω tr(b′·a)X(a + a′)Z(b+ b′) using equation (10.1). Therefore,
ω tr(b·a′−b′·a)E ′E yields EE ′, as claimed.

10.2.4 Minimum distance

The symplectic weight swt of a vector (a|b) in F2n
q is defined as

swt((a|b)) = |{k |(ak,bk) �= (0,0)}|.

The weight w(E) of an element E = ωcE1⊗ ·· · ⊗En = ωcX(a)Z(b) in the
error group Gn is defined to be the number of nonidentity tensor components
i.e., w(E) = |{Ei �= I}|= swt((a|b)).

A quantum code Q is said to have minimum distance d if and only if it
can detect all errors in Gn of weight less than d, but cannot detect some error
of weight d. We say that Q is an ((n,K,d))q code if and only if Q is a K-
dimensional subspace of Cqn

that has minimum distance d. An ((n,qk,d))q

code is also called an [[n,k,d]]q code.
Due to the linearity of quantum mechanics, a quantum error-correcting code

that can detect a set D of errors, can also detect all errors in the linear span
of D . A code of minimum distance d can correct all errors of weight t =
�(d−1)/2� or less.

10.2.5 Pure and impure codes

We say that a quantum code Q is pure to t if and only if its stabilizer group
S does not contain non-scalar error operators of weight less than t. A quantum
code is called pure if and only if it is pure to its minimum distance. We will
follow the same convention as in [10], that an [[n,0,d]]q code is pure. Impure
codes are also referred to as degenerate codes. Degenerate codes are of interest
because they have the potential for passive error correction.
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10.2.6 Encoding quantum codes

Stabilizer also provides a means for encoding quantum codes. The essential
idea is to encode the information into the code space through a projector. For
an ((n,K,d))q quantum code with stabilizer S, the projector P is defined as

P =
1
|S| ∑

E∈S

E.

It can be checked that P is an orthogonal projector onto a vector space Q.
Further, we have

K = dimQ = TrP = qn/|S|.
The stabilizer allows us to derive encoded operators, so that we can operate

directly on the encoded data instead of decoding and then operating on them.
These operators are in CGn

(S). See [24] and [33] for more details.

10.3 Quantum codes and classical codes

In this section we show how stabilizer codes are related to classical codes
(additive codes over Fq or over F

q2). The central idea behind this relation is the
fact insofar as the detectability of an error is concerned the phase information
is irrelevant. This means we can factor out the phase defining a map from Gn

onto F2n
q and study the images of S and CGn

(S). We will denote a classical
code C ≤ Fn

q with K codewords and distance d by (n,K,d)q. If it is linear then
we will also denote it by [n,k,d]q where k = logq K. We define the Euclidean

inner product of x,y ∈ Fn
q as x · y = ∑n

i=1 xiyi. The dual code C⊥ is the set of
vectors in Fn

q orthogonal to C i.e., C⊥ = {x ∈ Fn
q | x · c = 0 for all c ∈C}. For

more details on classical codes see [34] or [46].

10.3.1 Codes over Fq

If we associate with an element ωcX(a)Z(b) of Gn an element (a|b) of F2n
q ,

then the group SZ(Gn) is mapped to the additive code

C = {(a|b) |ωcX(a)Z(b) ∈ SZ(Gn)}= SZ(Gn)/Z(Gn).

To relate the images of the stabilizer and its centralizer, we need the notion of
a trace-symplectic form of two vectors (a|b) and (a′|b′) in F2n

q ,

〈(a|b) |(a′|b′)〉s = trq/p(b ·a′ −b′ ·a).
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Let C⊥s be the trace-symplectic dual of C defined as

C⊥s = {x ∈ F2n
q | 〈x|c〉s = 0 for all c ∈C}.

The centralizer CGn
(S) contains all elements of Gn that commute with each el-

ement of S; thus, by Lemma 10.3, CGn
(S) is mapped onto the trace-symplectic

dual code C⊥s of the code C,

C⊥s = {(a|b) |ωcX(a)Z(b) ∈CGn
(S)}.

The next theorem crystallizes this connection between classical codes and
stabilizer codes and generalizes the well-known connection to symplectic codes
[10, 22] of the binary case.

THEOREM 10.1
An ((n,K,d))q stabilizer code exists if and only if there exists an additive
code C ≤ F2n

q of size |C| = qn/K such that C ≤C⊥s and swt(C⊥s \C) = d
if K > 1 (and swt(C⊥s) = d if K = 1).

PROOF See [3] or [36] for the proof.

In 1996, Calderbank and Shor [11] and Steane [58] introduced the following
method to construct quantum codes. It is perhaps the simplest method to build
quantum codes via classical codes over Fq.

LEMMA 10.4
[CSS Code Construction] Let C1 and C2 denote two classical linear codes
with parameters [n,k1,d1]q and [n,k2,d2]q such that C⊥2 ≤C1. Then there
exists a [[n,k1 + k2− n,d]]q stabilizer code with minimum distance d =
min{wt(c) | c ∈ (C1 \C⊥2 )∪ (C2 \C⊥1 )} that is pure to min{d1,d2}.

PROOF Let C = C⊥1 ×C⊥2 ≤ F2n
q . Clearly C≤C2×C1. If (c1 | c2) ∈C

and (c′1 | c′2) ∈C2×C1, then we observe that

tr(c2 · c′1− c′2 · c1) = tr(0−0) = 0.

Therefore, C ≤ C2×C1 ≤ C⊥s . Since |C| = q2n−k1−k2 , |C⊥s | = q2n/|C| =
qk1+k2 = |C2×C1|. Therefore, C⊥s = C2×C1. By Theorem 10.1 there
exists an ((n,K,d))q quantum code with K = qn/|C| = qk1+k2−n. The
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claim about the minimum distance and purity of the code is obvious
from the construction.

COROLLARY 10.1
If C is a classical linear [n,k,d]q code containing its dual, C⊥ ≤C, then
there exists an [[n,2k−n,≥ d]]q stabilizer code that is pure to d.

10.3.2 Codes over F
q2

Sometimes it is more convenient to extend the connection of the quantum
codes to codes over F

q2 , especially as it allows us the use of codes over quadrat-
ic extension fields. The binary case was done in [10] and partial generalizations
were done in [48, 39] and [49]. We provide a slightly alternative generalization
using a trace-alternating form. Let (β ,β q) denote a normal basis of F

q2 over
Fq. We define a trace-alternating form of two vectors v and w in Fn

q2 by

〈v|w〉a = trq/p

(
v ·wq− vq ·w

β 2q−β 2

)
. (10.3)

The argument of the trace is an element of Fq as it is invariant under the Galois
automorphism x �→ xq.

Let φ : F2n
q → Fn

q2 take (a|b) �→ β a + β qb. The map φ is isometric in the

sense that the symplectic weight of (a|b) is equal to the Hamming weight of
φ((a|b)). This map allows us to transform the trace-symplectic duality into
trace-alternating duality. In particular it can be easily verified that if c,d ∈ F2n

q ,
then 〈c |d〉s = 〈φ(c) |φ(d)〉a . If D ≤ Fn

q2 , then we denote its trace-alternating

dual by D⊥a = {v ∈ Fn
q2 | 〈v|w〉a = 0 for all w ∈ D}. Now Theorem 10.1 can

be reformulated as:

THEOREM 10.2
An ((n,K,d))q stabilizer code exists if and only if there exists an addi-

tive subcode D of Fn
q2 of cardinality |D| = qn/K such that D ≤ D⊥a and

wt(D⊥a \D) = d if K > 1 (and wt(D⊥a) = d if K = 1).

PROOF From Theorem 10.1 we know that an ((n,K,d))q stabilizer
code exists if and only if there exists a code C≤ F2n

q such that |C|= qn/K,
C ≤C⊥s , and swt(C⊥s \C) = d if K > 1 (and swt(C⊥s) = d if K = 1). The
theorem follows simply by applying the isometry φ .
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If we restrict our attention to linear codes over F
q2 , then the hermitian form

is more useful. The hermitian inner product of two vectors x and y in Fn
q2

is given by xq · y. From the definition of the trace-alternating form it is clear
that if two vectors are orthogonal with respect to the hermitian form they are
also orthogonal with respect to the trace-alternating form. Consequently, if
D≤ Fn

q2 , then D⊥h ≤D⊥a , where D⊥h = {v ∈ Fn
q2 | vq ·w = 0 for all w ∈ D}.

Therefore, any self-orthogonal code with respect to the hermitian inner prod-
uct is self-orthogonal with respect to the trace-alternating form. In general, the
two dual spaces D⊥h and D⊥a are not the same. However, if D happens to be
F

q2 -linear, then the two dual spaces coincide.

COROLLARY 10.2

If there exists an F
q2-linear [n,k,d]

q2 code D such that D⊥h ≤ D, then
there exists an [[n,2k−n,≥ d]]q quantum code that is pure to d.

PROOF Let q = pm, p prime. If D is a k-dimensional subspace
of Fn

q2 , then D⊥h is a (n− k)-dimensional subspace of Fn
q2 . We can also

view D as a 2mk-dimensional subspace of F2mn
p , and D⊥a as a 2m(n− k)-

dimensional subspace of F2mn
p . Since D⊥h ⊆ D⊥a and the cardinalities of

D⊥a and D⊥h are the same, we can conclude that D⊥a = D⊥h . The claim
follows from Theorem 10.2.

So it is sufficient to consider the hermitian form in case of F
q2-linear codes.

For additive codes (that are not linear) over F
q2 we have to use the rather in-

convenient trace-alternating form.

10.4 Bounds on quantum codes

We need some bounds on the achievable minimum distance of a quantum
stabilizer code. Perhaps the simplest one is the Knill–Laflamme bound, also
called the quantum Singleton bound. The binary version of the quantum Sin-
gleton bound was first proved by Knill and Laflamme in [43], see also [4, 6],
and later generalized by Rains using weight enumerators in [49].
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THEOREM 10.3 Quantum Singleton Bound
An ((n,K,d))q stabilizer code with K > 1 satisfies

K ≤ qn−2d+2.

Codes which meet the quantum Singleton bound are called quantum MD-
S codes. In [36] we showed that these codes cannot be indefinitely long and
showed that the maximal length of a q-ary quantum MDS code is upper bound-
ed by 2q2− 2. This could probably be tightened to q2 + 2. It would be inter-
esting to find quantum MDS code of length greater than q2 + 2 since it would
disprove the MDS conjecture for classical codes [34]. A related open question
is regarding the construction of codes with lengths between q and q2− 1. At
the moment there are no analytical methods for constructing a quantum MDS
code of arbitrary length in this range (see [31] for some numerical results).

Another important bound for quantum codes is the quantum Hamming bound.
The quantum Hamming bound states (see [22, 20]) that:

THEOREM 10.4 Quantum Hamming Bound
Any pure ((n,K,d))q stabilizer code satisfies

�(d−1)/2�
∑
i=0

(n
i

)
(q2−1)i ≤ qn/K.

While the quantum Singleton bound holds for all quantum codes, it is not
known whether the quantum Hamming bound is of equal applicability. So far
no degenerate quantum code has been found that beats this bound. Gottesman
showed that impure single and double error-correcting binary quantum codes
cannot beat the quantum Hamming bound [24].

Perfect Quantum Codes. A quantum code that meets the quantum Ham-
ming bound with equality is known as a perfect quantum code. In fact the
famous [[5,1,3]]2 code [44] is one such. We will show that there do not exist
any pure perfect quantum codes other than the ones mentioned in the following
theorem. It is actually a very easy result and follows from known results on
classical perfect codes, but we had not seen this result earlier in the literature.

THEOREM 10.5

There do not exist any pure perfect quantum codes with distance greater
than 3.
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PROOF Assume that Q is a pure perfect quantum code with the
parameters ((n,K,d))q. Since it meets the quantum Hamming bound we
have

K
�(d−1)/2�

∑
j=0

(
n
j

)
(q2−1) j = qn.

By Theorem 10.2 the associated classical code C is such that C⊥a ≤
C ≤ Fn

q2 and has parameters (n,qnK,d)
q2 . Its distance is d because the

quantum code is pure. Now C obeys the classical Hamming bound (see
[34, Theorem 1.12.1] or any textbook on classical codes). Hence

|C|= qnK ≤ q2n

∑�(d−1)/2�
j=0

(
n
j

)
(q2−1) j

.

Substituting the value of K we see that this implies that C is a perfect
classical code. But the only perfect classical codes with distance greater
than 3 are the Golay codes and the repetition codes [34]. The perfect
Golay codes are over F2 and F3 not over a quadratic extension field as
C is required to be. The repetition codes are of dimension 1 and cannot
contain their duals as C is required to contain. Hence C cannot be any
one of them. Therefore, there are no pure quantum codes of distance
greater than 3 that meet the quantum Hamming bound.

Since it is not known whether the quantum Hamming bound holds for de-
generate quantum codes, it would be interesting to find degenerate quantum
codes that either meet or beat the quantum Hamming bound.

10.5 Families of quantum codes

We shall now restrict our attention to linear quantum codes and derive sev-
eral families of quantum codes from classical linear codes. We make use of
the CSS construction given in Lemma 10.4. Hence, we need to look for classi-
cal codes that are self-orthogonal with respect to the Euclidean product or for
families of nested codes.
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10.5.1 Quantum m-adic residue codes

In this section we will construct a family of quantum codes based on the
m-adic residue codes. These codes are a generalization of the well-known
quadratic residue codes and share many of their structural properties. Quantum
quadratic residue codes were first constructed by Rains [49] for prime alphabet.

Let Q0 = {αm|α ∈ Z×p } be the m-adic residues of Z×p , where p is a prime.
And let Qi = biQ0, where b is a generator of Z×p and i ∈ {0,1, . . . ,m−1}. Let
α be a primitive root of pth root of unity. Then we can define the following
four families of m-adic residue codes.

Let Ci be the cyclic code with the generator polynomial

gi(x) = (xp−1)/ ∏
z∈Qi

(x−αz).

These codes Ci form the even-like codes of class I. Every code Ci has the
parameters [p,(p− 1)/m]q. The complement of Ci is denoted by Ĉi and its
generator polynomial is given by ĝi(x) = ∏z∈Qi

(x−αz). These codes consti-
tute the family of odd-like codes of class I. These codes have the parameters
[p, p− (p−1)/m]q.

The code with generator polynomial hi(x) = (x− 1)ĝi(x) is denoted by Di.
It has parameters [p, p− (p− 1)/m− 1]q. These codes form the even-like
codes of class II. The complement of Di is denoted by D̂i and its generator
polynomial ĥi(x) = gi(x)/(x− 1) . The codes D̂i make up the odd-like codes
of class II. Their parameters are [p,(p−1)/m+ 1]q.

These definitions imply that Ci ⊂ D̂i and Di ⊂ Ĉi. Further it can be shown
that C⊥i = Ĉi and D⊥i = D̂i [35, Theorem 2,3] if −1 is a m-adic residue. If −1
is not a residue, then Ci ⊆C⊥i = Ĉj and D⊥i = D̂ j, where i �= j. We thus have
families of nested codes and the CSS construction is applicable.

THEOREM 10.6

Let q be an m-adic residue modulo of a prime p such that gcd(p,q) = 1.
Then there exists a quantum code with the parameters [[p,1,d]]q, where
dm ≥ p. If −1 is a m-adic reside modulo p, then (d2−d + 1)m/2 ≥ p.

PROOF By the CSS construction there exists a quantum code with
the parameters [[p,(p−1)/m+1−(p−1)/m,d]]q, where d = wt{(D̂i\Ci)∪
(C⊥i \ D̂⊥i )}.

If −1 is a m-adic residue modulo p, then we know from [35, Theo-
rem 2,3] that C⊥i = Ĉi and D⊥i = D̂i. Since C⊥i = Ĉi and D̂⊥i = Di, this
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means d = wt{(D̂i \Ci)∪ (Ĉi \Di)}. But this is the set of odd-like vectors
in Ĉi and D̂i which is lower bounded as dm ≥ p [35, Theorem 5].

If −1 is not a m-adic residue modulo p, then again from [35, The-
orem 2,3] we know that Ci ⊆ C⊥i = Ĉj and D̂⊥i = D j with i �= j. Then

(d2−d + 1)m/2 ≥ p by [35, Theorem 5].

10.5.2 Quantum projective Reed–Muller codes

We study projective Reed–Muller (PRM) codes and construct the corre-
sponding quantum PRM codes. Let us denote by Fq[X0,X1, ...,Xm] the polyno-
mial ring in X0,X1, ...,Xm with coefficients in Fq. Furthermore, let Fq[X0,X1, ...,
Xm]νh ∪{0} be the vector space of homogeneous polynomials in X0,X1, ...,Xm

with coefficients in Fq with degree ν (cf. [55]). Let Pm(Fq) be the m-dimen-
sional projective space over Fq.

Projective Reed–Muller Codes. The PRM code over Fq of integer order ν
and length n = (qm+1−1)/(q−1) is denoted by Pq(ν,m) and defined as

Pq(ν,m) = {( f (P1), ..., f (Pn
) | f (X0, ...,Xm) ∈ Fq[X0, ...,Xm]νh ∪{0}},

and Pi ∈ Pm(Fq) for 1≤ i≤ n. (10.4)

LEMMA 10.5

The projective Reed–Muller code Pq(ν,m), 1 ≤ ν ≤ m(q− 1), is an
[n,k,d]q code with length n = (qm+1−1)/(q−1), dimension

k(ν) = ∑(
t=ν mod (q−1)

t≤ν

)
m+1

∑
j=0

(−1) j
(

m+ 1
j

)(
t− jq + m

t− jq

)
(10.5)

and minimum distance d(ν) = (q− s)qm−r−1 where ν = r(q− 1)+ s + 1,
0≤ s < q−1.

PROOF See [55, Theorem 1].

The duals of PRM codes are also known and under some conditions they are
also PRM codes. The following result gives more precise details.
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LEMMA 10.6

Let ν⊥ = m(q−1)−ν, then the dual of Pq(ν,m) is given by

Pq(ν,m)⊥ =

⎧⎨⎩Pq(ν⊥,m) ν �≡ 0 mod (q−1)

SpanFq
{1,Pq(ν⊥,m)} ν ≡ 0 mod (q−1)

(10.6)

PROOF See [55, Theorem 2 ].

As mentioned earlier our main methods of constructing quantum codes are
the CSS construction and the Hermitian construction. This requires us to iden-
tify nested families of codes and/or self-orthogonal codes. First we identify
when the PRM codes are nested i.e., we find out when a PRM code contains
other PRM codes as subcodes.

LEMMA 10.7

If ν2 = ν1 + k(q− 1), where k > 0, then Pq(ν1,m) ⊆ Pq(ν2,m) and
wt(Pq(ν2,m)\Pq(ν1,m)) = wt(Pq(ν2,m)).

PROOF In Fq, we can replace any variable xi by xq
i
, hence every

function in Fq[x0,x1, . . . ,xm]hν is present in Fq[x0,x1, . . . ,xm]hν+k(q−1). Hence
Pq(ν1,m)⊆Pq(ν2,m). Let ν1 = r(q−1)+s+1, then ν2 = (k+r)(q−1)+
s+ 1. By Lemma 10.5, d(ν1) = (q− s)qm−r−1 > (q− s)qm−r−k−1 = d(ν2).
This implies that there exists a vector of weight d(ν2) in Pq(ν2,m) and
wt(Pq(ν2,m)\Pq(ν1,m)) = wt(Pq(ν2,m)).

Quantum Projective Reed–Muller Codes. We now construct stabilizer
codes using the CSS construction.

THEOREM 10.7

Let n = (qm+1− 1)/(q− 1) and 1 ≤ ν1 < ν2 ≤ m(q− 1) such that ν2 =
ν1 + l(q− 1) with ν1 �≡ 0 mod (q− 1). Then there exists an [[n,k(ν2)−
k(ν1),min{d(ν2),d(ν⊥1 )}]]q stabilizer code, where the parameters k(ν) and
d(ν) are given in Theorem 10.5.

PROOF A direct application of the CSS construction in conjunction
with Lemma 10.7.
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We do not need to use a pair of codes as in the previous two cases; we could
use a single self-orthogonal code for constructing a quantum code. We will
illustrate this idea by finding self-orthogonal PRM codes.

COROLLARY 10.3
Let 0≤ ν ≤�m(q−1)/2� and 2ν ≡ 0 mod q−1, then Pq(ν,m)⊆Pq(ν,m)⊥.
If ν �≡ 0 mod q− 1 there exists an [[n,n− 2k(ν),d(ν⊥)]]q quantum code
where n = (qm+1−1)/(q−1).

PROOF We know that ν⊥= m(q−1)−ν and if Pq(ν,m)⊆Pq(ν,m)⊥,
then ν ≤ ν⊥ and by Lemma 10.7 ν⊥ = ν +k(q−1) for some k≥ 0. It fol-
lows that 2ν ≤�m(q−1)/2� and 2ν =(m−k)(q−1), i.e., 2ν ≡ 0 mod q−1.
The quantum code then follows from Theorem 10.7.

10.5.3 Puncturing quantum codes

Finally we will briefly touch upon another important aspect of quantum code
construction, which is the topic of shortening quantum codes. In the literature
on quantum codes, there is not much distinction made between puncturing and
shortening of quantum codes and often the two terms are used interchangeably.
Obtaining a new quantum code from an existing one is more difficult task than
in the classical case, the main reason being that the code must be so modified
such that the resulting code is still self-orthogonal. Fortunately, however there
exists a method due to Rains [49] that can solve this problem.

From Lemma 10.4 we know that with every quantum code constructed using
the CSS construction, we can associate two classical codes, C1 and C2. Define
C to be the direct product of C⊥1 and C⊥2 viz. C = C⊥1 ×C⊥2 . Then we can
associate a puncture code P(C) [33, Theorem 12] which is defined as

P(C) = {(aibi)
n
i=1 | a ∈C⊥1 ,b ∈C⊥2 }⊥. (10.7)

Surprisingly, P(C) provides information about the lengths to which we can
puncture the quantum codes. If there exists a vector of nonzero weight r in
P(C), then the corresponding quantum code can be punctured to a length r and
minimum distance greater than or equal to distance of the parent code.

THEOREM 10.8
Let 0≤ ν1 < ν2 ≤ m(q−1)−1 where ν2 ≡ ν1 mod q−1. Also let 0≤ μ ≤
ν2−ν1 and μ ≡ 0 mod q−1. If Pq(μ ,m) has codeword of weight r, then
there exists an [[r,≥ (k(ν2)− k(ν1)− n + r),≥ d]]q quantum code, where
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n = (qm−1)/(q−1), d = min{d(ν2),d(ν⊥1 )}. In particular, there exists a
[[d(μ),≥ (k(ν2)− k(ν1)−n + d(μ)),≥ d]]q quantum code.

PROOF Let Ci = Pq(νi,m) with νi as stated. Then by Theo-
rem 10.7, an [[n,k(ν2)− k(ν1),d]]q quantum code Q exists where d =
min{d(ν2),d(ν⊥1 )}. From equation (10.7) we find that P(C)⊥ = Pq(ν1 +
ν⊥2 ,m), so

P(C) = Pq(m(q−1)−ν1−ν⊥2 ,m),
= Pq(ν2−ν1,m). (10.8)

By [33, Theorem 11], if there exists a vector of weight r in P(C), then
there exists an [[r,k′,d′]]q quantum code, where k′ ≥ (k(ν2)−k(ν1)−n+r)
and distance d′ ≥ d. obtained by puncturing Q. Since P(C) = Pq(ν2−
ν1,m) ⊇Pq(μ ,m) for all 0 ≤ μ ≤ ν2−ν1 and μ ≡ ν2−ν1 ≡ 0 mod q−1,
the weight distributions of Pq(μ ,m) give all the lengths to which Q
can be punctured. Moreover P(C) will certainly contain vectors whose
weight r = d(μ), that is the minimum weight of PC(μ ,m). Thus there
exist punctured quantum codes with the parameters [[d(μ),≥ (k(ν2)−
k(ν1)−n + d(μ)),≥ d]]q.

10.6 Conclusion

We have given a brief introduction to the theory of nonbinary stabilizer
codes. Our goal was to emphasize the key ideas so we have omitted long
and cumbersome proofs. Most of these details can be found in our compan-
ion papers on stabilizer codes. After introducing the stabilizer formalism for
quantum codes, we showed how these were related to classical codes. Essen-
tially we mapped the stabilizer and its centralizer to a classical code and its
dual. And from then on all properties of the quantum codes could be stud-
ied by studying the classical codes. The construction of stabilizer codes can
be reduced to identifying classical codes that are self-orthogonal. Then, we
discussed the question of optimal codes and some well known bounds. We
showed the nonexistence of a class of perfect codes of distance greater than 3.
Finally we illustrated these ideas by constructing two new families of quantum
codes.
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Chapter 11

Accessible information about
quantum states:
An open optimization problem

Jun Suzuki, Syed M. Assad, and Berthold-Georg Englert

Abstract We give a brief summary of the current status of the problem
of extracting the accessible information when a quantum system is received
in one of a finite number of pre-known quantum states. We review analyti-
cal methods as well as a numerical strategy. In particular, the group-covariant
positive-operator-valued measures are discussed, and several explicit exam-
ples are worked out in detail. These examples include some that occur in the
security analysis of schemes for quantum cryptography.

11.1 Introduction

A sender, traditionally called Alice, sends quantum states, one by one, to
a receiver, Bob. Bob then wishes to perform measurements on the quantum
states he receives to find out, the best he can, what Alice has sent. Generally
speaking, owing to the nature of quantum mechanics, it is impossible for Bob
to obtain full knowledge about the states which he is receiving. Instead, he has
to choose his measurements judiciously from all measurements permitted by

309
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quantum mechanics. A natural question one might ask is then:

What is the best strategy for Bob to maximize his knowledge
about the states he is receiving from Alice? (11.1)

The answer to this question is not only of importance for our understanding
of the implications of quantum mechanics, it also has great practical signif-
icance for most areas in quantum information, in particular for the capacity
of quantum channels and the security analysis of schemes for quantum cryp-
tography under powerful eavesdropping attacks. Indeed, our own interest in
the matter originates in its relevance to the security of “tomographic quantum
cryptography,” a class of protocols for quantum key distribution developed in
Singapore [1, 2, 3, 4].

The main objective of this chapter is to provide a concise introduction to this
problem with a summary of ongoing research in this field. For this purpose
we will not give a rigorous mathematical exposition, and we will be content
with stating most of theorems without proof. We suggest that readers who are
interested in the technical mathematical details consult the pertinent literature
referred to in the text.

Here is a brief preview of coming attractions. In Section 11.2 we remind
the reader of a few basic concepts and, at the same time, establish the termi-
nology and the notational conventions we are using. Then, in Section 11.3,
we state question (11.1) as an optimization problem, for which the mutual in-
formation between Alice and Bob is the figure of merit. Section 11.4 reports
essential properties of this mutual information and important theorems about
known properties of the solution. A numerical procedure for searching the op-
timum by a steepest-ascent method is described in Section 11.5. Examples are
presented in Section 11.6, where we limit the choice to cases with a structure
as one meets it in the security analysis of quantum cryptography schemes. We
close with a summary and outlook.

11.2 Preliminaries

11.2.1 States and measurements

We set the stage by first providing a brief mathematical description of the
physical situation that (11.1) refers to, that is: Alice sends certain physical
states to Bob who measures them to find out which states she sent. For sim-
plicity and for concreteness, we consider only finite-dimensional systems.
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The quantum states prepared by Alice are denoted by ρ1, ρ2, . . . , ρJ whereby
J ≥ 1 is finite, and the set E = {ρ j| j = 1,2, . . . ,J} is the ensemble of quantum
states sent by Alice. Each of the ρ js is a density matrix: a semi-definite posi-

tive, and therefore hermitian, matrix with finite trace.1 One calls the jth state
a pure state when the density matrix ρ j is essentially a projector, otherwise it
is a mixed state,

state ρ j is

⎧⎪⎨⎪⎩
pure

mixed

⎫⎪⎬⎪⎭ if

⎧⎪⎨⎪⎩
Tr(ρ2

j ) = (Trρ j)
2 ,

Tr(ρ2
j ) < (Trρ j)

2 .
(11.2)

By convention we normalize the ρ js such that their traces are the probabili-
ties a j with which Alice is sending them. Thus, Bob knows that the probability
of receiving ρ j as the next state is a j = Trρ j. Since the next state is surely one
of the ρ js, these probabilities have unit sum,

1 =
J

∑
j=1

a j =
J

∑
j=1

Trρ j . (11.3)

It follows that the total density matrix ρ = ∑J
j=1 ρ j has unit trace, Trρ = 1.

The rank of ρ is the dimension d of the space under consideration, which is to
say that we represent all ρ js, and all other linear operators, by d×d matrices.2

It is often convenient to represent a pure-state matrix ρ j as a product of a

d-component column
∣∣ j〉 and its adjoint d-component row

〈
j
∣∣ = ∣∣ j〉†, that is

ρ j =
∣∣ j〉〈 j

∣∣. In the standard terminology of quantum physics, one speaks of

kets and bras when referring to the columns
∣∣ j〉 and the rows

〈
j
∣∣, respectively.

The numerical row-times-column product of
〈

j1
∣∣ with ket

∣∣ j2〉 is denoted by〈
j1
∣∣ j2〉 and is called their bracket; it is equal to the trace of their column-times-

row product
∣∣ j2〉〈 j1

∣∣,
Tr
(∣∣ j2〉〈 j1

∣∣)=
〈

j1
∣∣ j2〉 . (11.4)

Bob’s measurement is specified by a decomposition of the d × d identity
matrix 1d into a set of semi-definite positive, hermitian matrices,

1d =
K

∑
k=1

Πk with K ≥ 1 and Πk ≥ 0 , (11.5)

1More generally, a quantum state is specified by a semi-definite positive linear operator with finite
trace and each of its equivalent matrix representations is a corresponding density matrix. By
choosing one particular orthonormal basis in the Hilbert space, we specify one set of density
matrices for the set of states under consideration.
2More generally, d is the dimension of the relevant subspace of a possibly much larger Hilbert
space.



312 11. INFORMATION ABOUT QUANTUM STATES

which is the general3 form of a so-called positive operator valued measure
(POVM) [5], here with K outcomes Πk. Bob’s a priori probability of getting
the kth outcome is

bk = Tr(ρΠk) , (11.6)

which is properly normalized to unit sum as a consequence of the unit trace of
ρ . Two special cases are worth mentioning: the von Neumann measurements,
and the tomographically complete measurements.

We have a von Neumann measurement when the outcomes of the POVM
are pairwise orthogonal projectors, ΠkΠl = Πkδkl . When all Πks are rank-1
projectors, one speaks of a maximal von Neumann measurement, for which
K = d, of course.

The POVM is tomographically complete if ρ can be inferred from the knowl-
edge of all of Bob’s probabilities bk, which is to say that the map ρ �→ {bk|k =
1, . . . ,K} is injective. A tomographically complete POVM, has at least d2

outcomes; in the case of K = d2, one speaks of a minimal tomographically
complete POVM.

Every outcome of a POVM can be written as a square, Πk = A†
k
A

k
, but this

factorization is not unique.4 Typically, there is one such factorization for each
physical implementation of the POVM. Then, given an ideal—that is, noise-
free and nondestructive—implementation, the final state of the physical system
after the measurement is

ρ (k) =
A

k
ρA†

k

Tr(ρΠk)
(11.7)

if ρ is the state before the measurement and the kth outcome is obtained.
Therefore, in general, the possible final states are mixed states when POVMs
are performed on mixed states.

When Bob performs the POVM (11.5) on the states ρ1, ρ2, . . . , ρJ sent by
Alice, the joint probability that Alice sends the jth state and Bob gets the kth
outcome is

p jk = Tr(ρ jΠk) . (11.8)

The respective marginal probabilities

a j =
K

∑
k=1

p jk = Trρ j , bk =
J

∑
j=1

p jk = Tr(ρΠk) (11.9)

3Somewhat more generally, the label k could be continuous and the summation replaced by an
integration. We do not need to consider such general cases.
4More generally, Πk could be a sum of squares, Πk = ∑l A†

kl
A

kl
, even in the case of a von Neumann

measurement, as is illustrated by A
kl

=V
kl

Π1/2
k

with ∑l V †
kl

V
kl

= 1d for all k. The case of A
k
= Π1/2

k
is sometimes referred to as an ideal POVM.
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are the probabilities that Alice sends the jth state and the a priori probabilities
that Bob gets the kth outcome.

The conditional probabilities p(k| j) = p jk/a j and p( j|k) = p jk/bk have the
following significance, respectively: If Alice sends the jth state, she can pre-
dict that Bob will get the kth outcome with probability p(k| j); if Bob receives
the kth outcome, he can infer that Alice sent the jth state with probability
p( j|k).

It is worth noting that there is a reciprocal situation with exactly the same
joint probabilities. It is specified by Alice measuring the POVM

1d =
J

∑
j=1

Π̃ j with Π̃ j = ρ−1/2ρ jρ
−1/2 (11.10)

and Bob sending her the states ρ̃k = ρ1/2Πkρ1/2.

11.2.2 Entropy and information

Next, we define several quantities that will be used for the quantification
of information in the sequel [6, 7]: the von Neumann entropy, the Shannon
entropy, the Kullback–Leibler relative entropy, the mutual information, and
the accessible information.

von Neumann entropy: The von Neumann entropy S(ρ) of a density ma-
trix ρ is5

S(ρ) =−Tr

(
ρ

Trρ
log

ρ
Trρ

)
=−Tr(ρ logρ)

Trρ
+ logTrρ , (11.11)

which has the more familiar appearance

S(ρ) =−Tr(ρ logρ) if Trρ = 1 . (11.12)

By construction, we have S(xρ) = S(ρ) for all x > 0. Further we note that the
mapping ρ �→ Tr(ρ)S(ρ) is concave:

Tr(ρ1 + ρ2)S(ρ1 + ρ2)≥ Tr(ρ1)S(ρ1)+ Tr(ρ2)S(ρ2) (11.13)

for any two density matrices ρ1 and ρ2.

5Historically, the von Neumann entropy involves the natural logarithm and also the Boltzmann
constant to establish contact with the thermodynamical entropy, whereas the Shannon entropy
uses the logarithm to base 2 and the value is usually stated in units of bits. We use the logarithm
to base 2 throughout.
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With the convention λ logλ = 0 for λ = 0, the von Neumann entropy (11.12)
is expressed in terms of the eigenvalues λi (i = 1,2, . . . ,d) of ρ as

S(ρ) =−
d

∑
i=1

λi logλi if
d

∑
i=1

λi = 1 . (11.14)

We remark that the von Neumann entropy is zero for pure states and only for
pure states, for which a single eigenvalue is positive and all others are zero.

Shannon entropy: Given Alice’s ensemble E = {ρ j| j = 1,2, . . . ,J}, we
have the set P = {a j = Trρ j| j = 1,2, . . . ,J} that is composed of the proba-
bilities of occurrence, which have unit sum, ∑ j a j = 1. The Shannon entropy

H(P) of such a normalized set of probabilities P is defined by5

H(P) =−
J

∑
j=1

a j loga j . (11.15)

For any two sets of normalized probabilities P(1) = {a(1)
j
| j = 1,2, . . . ,J} and

P(2) = {a(2)
j
| j = 1,2, . . . ,J}, we can consider their convex sums xP(1) + (1−

x)P(2) = {xa(1)
j

+ (1− x)a(2)
j
| j = 1,2, . . . ,J} with 0 ≤ x ≤ 1, for which the

concavity

H(xP(1) + (1− x)P(2))≥ xH(P(1))+ (1− x)H(P(2)) (11.16)

holds.
As a consequence of the concavity of the von Neumann entropy in (11.13),

we have the inequalities (see, e.g., Subsection 11.3.6 in [7])

H(P)+
J

∑
j=1

a jS(ρ j)≥ S(ρ)≥
J

∑
j=1

a jS(ρ j) , (11.17)

where ρ = ∑J
j=1 ρ j is the total density matrix. On the left, the equal sign

applies if and only if all ρ js are pairwise orthogonal pure states. On the right,
the equal sign applies if the ρ js are essentially equal to each other in the sense
that a jρk = ρ jak for all j and k.

Kullback–Leibler relative entropy: For any two sets of normalized prob-
abilities P = {p j| j = 1,2, . . . ,J} and P̃ = { p̃ j| j = 1,2, . . . ,J}, the Kullback–

Leibler relative entropy D(P||P̃) is defined by

D(P||P̃) =
J

∑
j=1

p j log
p j

p̃ j
≥ 0 , (11.18)
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whereby the equal sign applies only if p j = p̃ j for all j. The Kullback–Leibler
relative entropy may serve as a rough measure of difference between two prob-
ability distributions P and P̃. But, since it is not symmetric, D(P||P̃) �= D(P̃||P)
as a rule, and does not satisfy the triangle inequality, it is not a distance or met-
ric in the mathematical sense.

Mutual information: For any normalized set of joint probabilities A&B =
{p jk| j = 1,2, . . . ,J; k = 1,2, . . . ,K} with ∑ jk p jk = 1, and its two sets of mar-

ginals A = {a j = ∑K
k=1 p jk| j = 1,2, . . . ,J} and B = {bk = ∑J

j=1 p jk|k = 1,2, . . . ,

K}, the mutual information I(A;B) is the relative entropy between the joint
probabilities A&B and the set AB = {a jbk| j = 1,2, . . . ,J; k = 1,2, . . . ,K} of
product probabilities,

I(A;B) = D(A&B||AB) =
J

∑
j=1

K

∑
k=1

p jk log
p jk

a jbk

= H(A)+ H(B)−H(A&B) , (11.19)

where the last version expresses the mutual information in terms of the various
Shannon entropies.

The mutual information is a measure of the strength of the statistical cor-
relations in joint probabilities. If there are no correlations at all, that is, if
p jk = a jbk for all j and all k, the mutual information vanishes; otherwise it is
positive.

In the physical situation to which the question (11.1) refers, we have the
joint probabilities of (11.8) and the marginals of (11.9). Therefore, the mutual
information I(E ;Π) between E , the ensemble of Alice’s states, and Π, Bob’s
POVM, quantifies his knowledge about the quantum states she is sending. This
brings us, finally, to the accessible information for Bob about Alice’s quantum
states.

Accessible information: The accessible information Iacc is the maximum
of the mutual informations for all possible POVMs that Bob can perform, that
is

Iacc(E ) = max
all Π

I(E ;Π) . (11.20)

This poses the challenge of determining the value of Iacc(E ) for the given set
E of quantum states.

In addition to the accessible information, there are other numerical mea-
sures [8] that can be used for the quantification of Bob’s knowledge about
Alice’s states, such as the Bayes cost (see, e.g., [9, 5]), which is essentially
the probability for guessing wrong, or the probability that Bob can unambigu-
ously identify the state he just received (see, e.g., chapter 11 in [10]). In the
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context of studying the security of quantum cryptography schemes, however,
the figure of merit is the accessible information. Also, the history of the sub-
ject seems to indicate that it is substantially more difficult to determine the
accessible information than the Bayes cost or the probability of unambiguous
discrimination.

11.3 The optimization problem

We now state the main problem (11.1) in technical terms as a double ques-
tion:

Given an ensemble of quantum states E = {ρ j| j = 1,2, . . . ,J},
(a) what is the value of the accessible information Iacc(E ), and
(b) what is the optimal POVM Π = {Πk|k = 1,2, . . . ,K} for which
the mutual information is the accessible information, I(E ;Π) =
Iacc(E )? (11.21)

Part of the answer to query (b) is to establish the number K of outcomes in the
optimal POVM.

This problem was first formulated by Holevo in 1973 [9]. After more than
three decades, it remains unsolved. The major difficulty is a lack of sufficien-
t conditions that ensure the optimality of POVMs in general. Sufficiency is
known only when the ensemble of quantum states possesses certain symmetry
properties; see Subsection 11.4.4 below. The obvious nonlinearity that origi-
nates in the logarithms is another hurdle.

The current situation is still rather unsatisfactory even for seemingly simple
ensembles E . For instance, we do not have analytical expressions for the opti-
mal POVMs in the case where E consists of only two full-rank mixed quantum
states for d = 2;6 see Subsection 11.6.1 below for details.

There are, of course, very special cases for which the answer is immediate.
One extreme situation is

(i) all states commute with each other, ρ jρ j′ = ρ j′ρ j; then the optimal
POVM is a von Neumann measurement composed of the projectors to
the joint eigenstates. A special case thereof is

6Two mixed single-qubit states in the jargon of quantum information.
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(ii) all states are pairwise orthogonal, ρ jρ j′ = δ j j′ρ
2
j , so that they can be

distinguished without effort and we have essentially the situation of Bob
receiving a classical signal.

A related, yet different problem is the determination of the so-called quan-
tum channel capacity [7, 11]. A quantum channel turns any input quantum
states into an output quantum state, always preserving the positivity and usu-
ally also the trace of the input. The ensemble E received by Bob, for which he
has to find the optimal POVM, then comes about by processing Alice’s input
ensemble Ein through the quantum channel. There is then a two-fold optimiza-
tion problem: one needs to find both Alice’s optimal input ensemble as well as
Bob’s optimal POVM. The quantum channel capacity problem is also an open
problem. It is clear that any progress with the accessible-information problem
(11.21) means corresponding progress with the channel-capacity problem.

11.4 Theorems

Before going to the actual computation of the accessible information, we
give a brief summary of established properties of the mutual information and
the accessible information [6, 7].

11.4.1 Concavity and convexity

Let us regard the joint probabilities p jk = a j p(k| j) as the product of Alice’s
probabilities a j and the conditional probabilities p(k| j). Then, the mutual in-
formation I(E ;Π) is a concave function of the a js for given p(k| j)s, and a
convex function of the p(k| j)s for given a js. In other words, the mutual infor-
mation is a convex functional on the set of all possible POVMs. Therefore, all
optimal POVMs are located on the boundary of the POVM space.

Since this convexity of the mutual information is of some importance in
our discussion, we give more details. Suppose we have two POVMs Π(i) =
{Π(i)

k
|k = 1,2, . . . ,K}(i = 1,2), then the combined new POVM Π(λ ) = {λ Π(1)

k

+(1−λ )Π(2)
k
|k = 1,2, . . . ,K} with 0 < λ < 1 obeys the following inequality

for the mutual information:

I(E ;Π(λ ))≤ λ I(E ;Π(1))+ (1−λ )I(E ;Π(2)) . (11.22)
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The equality is satisfied if and only if

p(1)
jk

/b(1)
k

= p(2)
jk

/b(2)
k

or p(1)( j|k) = p(2)( j|k) (11.23)

holds for all j and k, wherein we meet the joint probabilities, p(i)
jk

= Tr(ρ jΠ
(i)
k

)

and the marginals b(i)
k

= ∑J
j=1 p(i)

jk
, as well as the resulting conditional proba-

bilities p(i)( j|k).
A particular situation in which the equal sign applies in (11.22) is as follows.

Let Π(1) and Π(2) be two K-outcome POVMs with null outcomes such that
Π(1)

k
= 0 for k̄ < k ≤ K and Π(2)

k
= 0 for 1 ≤ k ≤ k̄ with 1 ≤ k̄ < K. Then the

outcomes of Π(λ ) are given by Πk(λ ) = λ Π(1)
k

for 1 ≤ k ≤ k̄ and Πk(λ ) =
(1−λ )Π(2)

k
for k̄ < k≤ K, and it is clear that

I(E ;Π(λ )) = λ I(E ;Π(1))+ (1−λ )I(E ;Π(2)) (11.24)

holds in this situation.

11.4.2 Necessary condition

For a POVM Π to be optimal, it is necessary that the accessible information
I(E ;Π) is stationary with respect to infinitesimal variations of Π. These vari-
ations are, however, constrained by both the positive nature of each outcome
Πk and the unit sum of all outcomes.

The first constraint is accounted for by writing Πk = A†
k
Ak, whereby the

factor Ak is rather arbitrary and may differ from the physical Ak in (11.7) by
a unitary matrix multiplying Ak on the left. The second constraint, that is
∑K

k=1 δΠk = 0, then requires the infinitesimal variations of the Aks to be of the
form

δAk = i
K

∑
k′=1

εkk′Ak′ with εkk′
† = εk′k , (11.25)

where the εkk′s are otherwise arbitrary infinitesimal matrices.
We note that the mutual information is expressed as

I(E ;Π) =
K

∑
k=1

Tr(RkΠk) (11.26)

with the hermitian matrices Rk given by

Rk =
J

∑
j=1

ρ j log
p jk

a jbk
. (11.27)
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It turns out that there is no contribution from the variation of the Rks to

δ I(E ;Π) =−i
K

∑
k,k′=1

Tr
(
εkk′Ak′(Rk′ −Rk)A

†
k

)
. (11.28)

Therefore, a necessary condition for Π to be an optimal POVM is

Ak′(Rk′ −Rk)A
†
k = 0 for all k,k′ , (11.29)

or
Πk′(Rk′ −Rk)Πk = 0 for all k,k′ . (11.30)

Upon summing over k or k′ we arrive at an equivalent set of equations,

RkΠk = ΛΠk and ΠkΛ = ΠkRk for all k , (11.31)

which are adjoint statements of each other because

Λ =
K

∑
k=1

RkΠk =
K

∑
k=1

ΠkRk (11.32)

is hermitian. Mathematically speaking, Λ is the Lagrange multiplier of the
unit-sum constraint in (11.5), and its significance is revealed by noting that
Iacc(E ) = TrΛ for an optimal POVM.

Equations (11.30)–(11.32) have been investigated by Holevo [9]. These e-
quations are nonlinear and there does not seem to be any efficient method for
finding their solutions. Indeed, the 1

2 K(K−1) equations (11.30) are not solved
directly in the numerical approach described in Section 11.5. Rather, we ex-
ploit the observation that (11.28) identifies the gradient in the POVM space.

We remark that a POVM obeying (11.30) is not guaranteed to be an optimal
POVM. Strictly speaking, I(E ;Π) is only ensured to be extremal, but it could
be a local maximum rather than a global maximum, or a local minimum, or
even a saddle point. Whereas local minima and saddle points tend to be unsta-
ble extrema for the numerical procedure of Section 11.5, local maxima are just
as stable as global maxima.

11.4.3 Some basic theorems

We state four basic theorems about I(E ;Π) and Iacc(E ) without proof. The
reader is invited to consult the respective references for proofs and further
details.
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Theorem 11.1: Number of outcomes
The accessible information is always achievable by an optimal POVM
whose outcomes are rank-1 operators, so that Π2

k = Πk Tr(Πk) for 1≤ k ≤
K. The number of outcomes needed in such an optimal POVM is bounded
by the rank d of the total density matrix ρ , which is also the dimension of
the relevant Hilbert space,7 in accordance with [12]

d ≤ K ≤ d2 . (11.33)

When all quantum states ρ j can be represented as matrices with real num-
bers, then the upper bound is reduced to K ≤ d(d + 1)/2 [13].

(Davies [12]; Sasaki et al. [13])

For the following theorems we introduce two quantities that are defined by

χ(E ) = S(ρ)−
J

∑
j=1

a jS(ρ j)≥ 0 (11.34)

and

χ(E ;Π) =
K

∑
k=1

(
bkS
(
ρ (k))− J

∑
j=1

p jkS
(
ρ (k)

j

))≥ 0 , (11.35)

where ρ (k) is the final total state conditioned on Bob’s kth outcome, as in
(11.7), and ρ (k)

j
is the corresponding conditional final state when ρ j is the

initial state. That is

ρ (k) = AkρA†
k and ρ (k)

j
= Akρ jA

†
k , (11.36)

where the normalizing denominators of (11.7)—respectively Tr
(
ρ (k))= bk and

Tr
(
ρ (k)

j

)
= p jk—are irrelevant here because these conditional density matrices

appear only as arguments of the von Neumann entropy function of (11.11).

Theorem 11.2: Upper bound on I(E ;Π)
The mutual information is bounded by the difference of χ(E ) and χ(E ;Π),

I(E ;Π)≤ χ(E )− χ(E ;Π) . (11.37)

(Schumacher, Westmoreland, and Wootters [14])

7If ρ is embedded in a larger Hilbert space, there is one more outcome in the POVM, namely, the
projector on the orthogonal complement of the range of ρ .
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Since the term χ(E ;Π) that is subtracted on the right-hand side of (11.37) is
nonnegative and vanishes if and only if all outcomes Πk are of rank 1, we have
I(E ;Π) ≤ χ(E ) for all POVMs, in particular for all optimal POVMs. This
implies the following theorem.

Theorem 11.3: Upper bound on the accessible information
An upper bound on the accessible information is given by

Iacc(E )≤ χ(E ) , (11.38)

the so-called Holevo bound. (Holevo [15])

We remark that the equal sign holds in (11.38) if and only if all quantum
states ρ j commute with each other, and hence the Holevo bound is not tight in
general.

Theorem 11.4: Lower bound on the accessible information
A lower bound of the accessible information is given by

Iacc(E )≥Q(ρ)−
J

∑
j=1

a jQ(ρ j/a j) , (11.39)

wherein the so-called subentropy Q(ρ) of a unit-trace density matrix ρ
with eigenvalues λi (i = 1,2, . . . ,d) is defined by

Q(ρ) =−
d

∑
i=1

(
∏

i′( �=i)

λi

λi−λi′

)
λi logλi . (11.40)

If there are degenerate eigenvalues, one treats them as the limit of nonde-
generate ones. (Jozsa, Robb, and Wootters [16])

We should also mention that one can establish substantially tighter upper and
lower bounds for the accessible information by taking more specific properties
of the ρ js into account than the rather global entropies and subentropies that
enter the right-hand sides of (11.38) and (11.39); see, in particular, the work of
Fuchs and Caves [17, 8].

11.4.4 Group-covariant case

Following Holevo [9], an ensemble E = {ρ j| j = 1,2, . . . ,J} of quantum
states ρ j is said to be covariant with respect to a group G if there exists a
faithful projective unitary representation {Ug|g ∈ G} of G such that

Ugρ jU
†
g ∈ E for all ρ j ∈ E and all g ∈ G . (11.41)
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A projective unitary representation of a group G means that for any pair g1,g2

of group elements Ug1
Ug2

= Ug1g2
eiφ(g1,g2) holds with a real phase function

φ(g1,g2). Several remarks are in order.

1. If an ensemble E is covariant with respect to a group G, then E is also
covariant with respect to any subgroup of G.

2. When a group G acts transitively on an ensemble E , then E constitutes
a single orbit of G. In this case the order of the group G is equal to
the number of elements of the ensemble, i.e., G = J, and the group
parameterizes the input states ρ j. Furthermore, Alice’s probabilities of
occurrence are all equal, i.e., a j = 1/J.

3. It is always possible to construct a nonprojective unitary representation
of the group by a central extension of the original group. In other words,
a projective unitary representation is not essential in our discussion.

In this chapter we will only consider nonprojective unitary representations.
In general, a group has a direct sum of irreducible unitary representations of

the form

Ug =
L⊕

�=1

1m�
⊗u�

g , (11.42)

where m� is the multiplicity of inequivalent unitary irreducible representation
of u�

g in d� dimensions, and L is the number of inequivalent irreducible rep-
resentations. By construction one has ∑L

�=1 m�d� = d. The following theorem
[18] is crucial for the discussion below.

Theorem 11.5: Optimal POVM for group-covariant ensemble
Let the ensemble of quantum states E be covariant with respect to the
group G, which has a representation (11.42). Then there exists rank-1
projectors Sm (m = 1,2, . . . ,M), the so-called seeds, whose orbits

Cm =
{

d
G

UgSmUg
†

∣∣∣∣ g ∈ G

}
(11.43)

constitute an optimal POVM with K = M G outcomes. The count M of
the seeds is bounded by

M ≤
L

∑
�=1

m2
� , (11.44)

and the POVM is given by the weighted union of the orbits,

Π =
M⋃

m=1

λmCm =
{

λmd
G

UgSmUg
†

∣∣∣∣ 1≤ m≤M , g ∈ G

}
, (11.45)
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where the values of the nonnegative weights λm are determined by the i-
dentity decomposition requirement of (11.5). (Davies [12], Decker [18])

We remark the following:

1. The labels k of the outcomes Πk are here identified with the pairs (m,g)
with m = 1,2, . . . ,M and g ∈ G.

2. The construction implies
M

∑
m=1

λm = 1, which is the reason for the normal-

izing factor d
/

G in (11.43).
3. When the group G is irreducible, we have m1 = d and L = 1, and theorem

11.5 reduces to the case studied by Davies and Sasaki et al. [12, 13].
4. Although the group-covariant POVM is an optimal POVM, it may not be

the only one which maximizes the mutual information. In other words,
also for group-covariant ensembles E , the optimal POVM is not unique
as a rule; there can be other POVMs that are as good as the optimal
group-covariant POVM. This situation occurs typically for |G|> d. We
will illustrate this point in several examples in Section 11.6.

5. Since Cm is an orbit, UgSmUg
† and Sm are equivalent seeds. Whereas the

orbits of the optimal group-covariant POVM may be unique, the seeds
are not.

6. When one orbit is enough to attain the accessible information, Schur’s
lemma provides the following restriction on the structure of the seed:

Sm =
L⊕

�=1

d�

d
1m�
⊗ s� , (11.46)

where the s�s are rank-1 projectors in the d�-dimensional subspaces i-
dentified by the decomposition (11.42).

7. If the group G acts transitively on the ensemble E , we have J = |G| and
UgρUg

† = ρ for all g ∈ G, and the marginals are

a j =
K

∑
k=1

p jk =
1
G

, bk =
J

∑
j=1

p jk =
λmd
G

Tr(ρSm) . (11.47)

Bob’s a priori probabilities bk, with k ≡ (m,g), are the same for all
outcomes within one orbit Cm; their unit sum gives

M

∑
m=1

λm Tr(ρSm) =
1
d

. (11.48)
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11.5 Numerical search

Any numerical procedure that is capable of finding maxima of a function
could be used in the numerical search for the optimal POVM. In particular,
the method of simulated annealing performed well in practice [19]. Such gen-
eral procedures, however, are unspecific; they do not take full advantage of
the structural properties of the mapping Π→ I(E ;Π) and are, therefore, not
tailored to the problem at hand.

One algorithm that exploits the structure of I(E ;Π) is the iterative procedure
of Ref. [20]. It implements a steepest-ascent approach to the extremal points
in the POVM space, locally proceeding into the direction of the gradient of
I(E ;Π) with respect to Π.

The gradient in steepest ascent is essentially composed of the operators that
multiply the infinitesimal increments εkk′ in (11.28). Accordingly, if we choose
the εkk′s proportional to the respective components of the gradient, the altered
POVM will yield a larger value for I(E ;Π) than the original POVM.

More specifically, we put

εkk′ = iα
[
Ak′(Rk′ −Rk)A

†
k

]†
, (11.49)

where the value chosen for the “small” parameter α determines the step size.
For α > 0, the right-hand side of (11.28) is assuredly nonnegative,

ΔI(E ;Π) = α
K

∑
k,k′=1

Tr
([

Ak′(Rk′ −Rk)A
†
k

]†[
Ak′(Rk′ −Rk)A

†
k

])
= α

K

∑
k,k′=1

Tr
(
(Rk′ −Rk)Πk′(Rk′ −Rk)Πk

)≥ 0 , (11.50)

whereby the equal sign applies only if the POVM obeys the necessary condi-
tion (11.30) of an extremal point.

The increment (11.49), which is first-order in α for Ak, gives rise to a term
∝ α2 in Πk, so that we must ensure proper normalization of the improved
POVM. This is the purpose of the T † · · ·T sandwich in

Πk →Π(new)
k

= T †(1d + αG†
k

)
Πk

(
1d + αGk

)
T (11.51)

with Gk = Rk−
K

∑
k′=1

Rk′Πk′ (11.52)

and TT † =
(

1d + α2
K

∑
k=1

G†
kΠkGk

)−1
. (11.53)
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So, given the ensemble E of Alice’s quantum states with its marginals a j,
the numerical procedure of one round of iteration is as follows. For the present
nonoptimal POVM Π, we evaluate the joint probabilities p jk of (11.8), the
marginals bk, and the Rks of (11.27). Then we choose the step size α > 0,
compute the Gks of (11.52) as well as T of (11.53), and finally determine
the outcomes Π(new)

k
of the improved POVM in accordance with (11.51). In

view of the first-order increase of (11.50), we will have I(E ;Π(new)) > I(E ;Π)
unless α is too large.

The procedure (11.51)–(11.53) is repeated until no further improvement can
be achieved, which happens when the POVM obeys (11.30). Since local mini-
ma and saddle points are numerically unstable, the iteration terminates when a
local maximum is reached.

Several remarks are in order.

1. If the POVM obeys (11.30), the right-hand side of (11.53) is 1d , and then
we have to choose T = 1d to ensure that the iteration halts. Otherwise,
as long as the POVM does not obey (11.30), we have 0 < TT † < 1d

and T =
(

1d + α2 ∑K
k=1 G†

k
Π

k
G

k

)−1/2
U with U unitary and such that

U → 1d when T T † → 1d .

2. Here is an iteration that yields T in a few rounds without the need of
calculating the reciprocal square root of a possibly large matrix: Start-
ing with T0 = 1d compute T1, T2, . . . successively with the aid of the
recurrence relation

Tn+1 = Tn− eiπ/3Tn
[
T †

n

(
TT †)−1

Tn−1d

]
, (11.54)

wherein
(
T T †

)−1 is the given inverse of the right-hand side in (11.53).

As long as the step size α is so small that all eigenvalues of
(
T T †

)−1

are less than 2, which is typically the case in practice without particular
precautions, we have Tn → T with a cubic convergence because

T †
n+1

(
TT †)−1

Tn+1 = 1d +
[
T †

n

(
T T †)−1

Tn−1d

]3
,

implying T †
n

(
T T †)−1

Tn = 1d +
(

α2
K

∑
k=1

G†
kΠkGk

)3n

. (11.55)

3. A quadratically convergent iteration is obtained by the replacement eiπ/3

→ 1
2 in (11.54); this may be preferable if

(
T T †

)−1
is a real matrix and

one wishes to have a real matrix for T as well.
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4. As mentioned earlier, the POVM resulting from the iteration procedure
(11.51)–(11.53) could be a local maximum rather than a global one. S-
ince there are no known sufficiency conditions for a global maximum,
one cannot prevent convergence toward a local maximum. All numeri-
cal schemes face this generic problem. As a remedy, we run the iteration
many times with different initial POVMs, and so reduce the risk of mis-
taking a local maximum for a global one.

5. Theorem 11.1 states that we can restrict the numerical search to POVMs
with rank-1 outcomes that are no more than K = d2 (or K = 1

2 d(d + 1)
if all ρ js are real) in number. To determine the actual value of K, we
begin with optimizing for K = d, then for K = d +1, then for K = d +2,
until an increase of K no longer gives an increase of the maximal mu-
tual information.—Alternatively, we start with optimizing for K = d2 or
K = 1

2 d(d + 1), and then reduce the number of outcomes by identify-
ing equivalent ones. Outcomes Πk and Πk′ are equivalent if p jk p j′k′ =
p j′k p jk′ for all j and j′, for then Rk = Rk′ , and the pair of outcomes(
Πk + Πk′ ,0

)
is as good as the pair

(
Πk,Πk′

)
. Incidentally, numerical

experience seems to indicate [21] that by choosing the initial K value
substantially larger than d2, so that there will surely be superfluous out-
comes in the POVM, one reduces substantially the risk of ending up in
a local maximum.

6. The choice (11.49) is the basic steepest-ascent strategy where one pro-
ceeds in the direction of the gradient. As usual, convergence is im-
proved markedly when one employs conjugated gradients instead; see
Section 10.6 in [22] or Shewchuk’s tutorial [23] and the references there-
in.

11.6 Examples

11.6.1 Two quantum states in two dimensions

We first consider the simplest example: the situation of two states, E =
{ρ1,ρ2}, in two dimensions, d = rank(ρ1 +ρ2) = 2. Since any 2×2 matrix is
a linear combination of the identity matrix 12 and the three familiar matrices
of Pauli’s matrix vector �σ , we write

ρ j =
a j

2
(12 +�r j ·�σ) , j = 1,2 , (11.56)
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for the two quantum states. The Pauli vector�r j is of unit length if ρ j is a pure
state, and shorter if ρ j is a mixed state. The probabilities of occurrence are
both nonzero, 0 < a1 = 1−a2 < 1.

Numerical studies by ourselves and others, such as work by Fuchs and Peres
as reported by Shor [24], strongly suggest the conjecture that there is always
a von Neumann measurement among the optimal POVMs if E is a two-state
ensemble. This observation is very important in practice but, unfortunately, no
proofs seem to exist in the published literature.

Bearing in mind this conjecture, we restrict the search to POVMs of the form

Π1 =
1
2
(12 +�n·�σ ) , Π2 =

1
2
(12−�n·�σ) , (11.57)

where the unit vector�n specifies the POVM. Therefore the optimization of the
POVM amounts to determining the direction of �n, which is an optimization
over two angle parameters.

Then, the joint probabilities p jk = Tr(ρ jΠk) and their marginals are

p11 =
a1

2
(1 + x1) , p12 =

a1

2
(1− x1) ,

p21 =
a2

2
(1 + x2) , p22 =

a2

2
(1− x2) ,

b1 = p11 + p21 =
1
2
(1 + X) , b2 = p12 + p22 =

1
2
(1−X) , (11.58)

wherein
x1 =�n·�r1 , x2 =�n·�r2 , X = a1x1 + a2x2 . (11.59)

They give
I(E ;Π) = a1Φ(x1)+ a2Φ(x2)−Φ(X) (11.60)

with

Φ(x) =
1
2

[
(1 + x) log2(1 + x)+ (1− x) log2(1− x)

]
(11.61)

for the information accessed by the POVM (11.57).
When the two quantum states commute with each other, the two Pauli vec-

tors are parallel, �r1 ‖�r2, and then the optimal POVM is given by �n ‖�r1 ‖�r2.
This covers as well the case that one, or both, of the Pauli vectors vanish-
es. Therefore, in the following we take for granted that r1 = �r1 > 0 and
r2 = �r2 > 0, and denote by θ the angle between the two Pauli vectors,�r1·�r2 =
r1r2 cosθ with 0 < θ < π .

An infinitesimal variation of the unit vector �n is an infinitesimal rotation,
δ�n =�ε××�n, where�ε is an arbitrary infinitesimal vector. The resulting variation
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of I(E ;Π) is of the form δ I =�ε ·[�n×× (· · ·)], so that �n ‖ (· · ·) if the POVM
(11.57) is optimal.

Since the vector (· · ·) is a linear combination of�r1 and�r2, the POVM vector
�n is such a linear combination as well. In fact, then, the optimization of �n
is reduced to finding its orientation in the plane spanned by�r1 and�r2, which
constitutes a one-parameter problem. Expressed in terms of the angles ϑ1 and
ϑ2 between�n and the Pauli vectors,

x1 =�n ·�r1 = r1 cosϑ1 , x2 =�n ·�r2 = r2 cosϑ2 (11.62)

with 0≤ ϑ1,ϑ2 ≤ π , we have

(sinθ )2�n = (cosϑ1− cosϑ2 cosθ )
�r1

r1
+(cosϑ2− cosϑ1 cosθ )

�r2

r2
. (11.63)

The unit length of�n implies[
cos(ϑ1 + ϑ2)− cosθ

][
cos(ϑ1−ϑ2)− cosθ

]
= 0 . (11.64)

It turns out that the second, not the first, factor vanishes when I(E ;Π) is maxi-
mal, so that the actual constraint is cos(ϑ1−ϑ2) = cosθ , and since the POVM
to −�n is equivalent to the one to �n, we can insist on ϑ2−ϑ1 = θ . The opti-
mization of�n thus amounts to determining ϑ1, say.

With θ = ϑ2−ϑ1 in (11.63), we have

�n =
sinϑ2

sinθ
�r1

r1
− sinϑ1

sinθ
�r2

r2
(11.65)

and the requirement�n ‖ (· · ·) reads

a1r1 sinϑ1 log
(1 + x1)(1−X)
(1− x1)(1 + X)

+ a2r2 sinϑ2 log
(1 + x2)(1−X)
(1− x2)(1 + X)

= 0 ,

(11.66)
which we regard as the equation for ϑ1 as the basic unknown, with ϑ2 = ϑ1 +
θ and x1,x2,X as given in (11.62) and (11.59). The variables a1,a2,r1,r2,θ
specify Alice’s states, and once the value of ϑ1 is determined, Bob’s optimal
POVM is known.

For arbitrary values of a1,a2,r1,r2,θ , there is no known analytical solution
of (11.66). But, as noted by Levitin [25] as well as Fuchs and Caves [17, 8],
there is a notable special situation, for which the solution is known and simple:
the case of detρ1 = detρ2 or

a2
1(1− r2

1) = a2
2(1− r2

2) . (11.67)
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When this equation is obeyed, the optimal POVM coincides with the measure-
ment for error minimization [5], that is,

�n =
a1�r1−a2�r2

a1�r1−a2�r2

, (11.68)

so that

x1 =

(
a1r1−a2r2 cosθ

)
r1

a1�r1−a2�r2

,

x2 =

(
a1r1 cosθ −a2r2

)
r2

a1�r1−a2�r2

,

and X =

(
a1r1

)2− (a2r2

)2

a1�r1−a2�r2

. (11.69)

To justify these remarks, we first note that, if�n is of the form (11.68), (11.65)
implies

a1r1 sinϑ1 = a2r2 sinϑ2 , (11.70)

and then (11.66) requires

(1 + x1)(1−X)
(1− x1)(1 + X)

−1 =
(1− x2)(1 + X)
(1 + x2)(1−X)

−1 . (11.71)

The subtraction of 1 serves the purpose of making both sides vanish for x1 =
x2 = X , which solution results in I(E ;Π) = 0 and is, therefore, of no further
interest. Upon dividing by x1− x2, (11.71) turns into

a1(1− x1X) = a2(1− x2X) or a2
1(1− x2

1) = a2
2(1− x2

2) . (11.72)

The identity (a1x1)
2−(a2x2)

2 = (a1r1)
2−(a2r2)

2, which follows from (11.70),
now establishes (11.67) as the condition that, indeed, must be met by Alice’s
states if Bob’s optimal POVM is given by the unit vector in (11.68).

Two details of (11.67) are worth pointing out: It does not involve the angle
θ between the two Pauli vectors; and, irrespective of the probabilities of occur-
rence a1 and a2, (11.67) is always obeyed if both states are pure (r1 = r2 = 1).

11.6.2 Trine: Z3 symmetry in two dimensions

We next discuss the celebrated example of the “trine,” where no von Neu-
mann measurement can achieve the accessible information. This example was
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proposed and solved partially by Holevo in 1973 [26]. The complete solu-
tion was obtained by Sasaki et al. in their discussion of ZN symmetry in the
two-dimensional Hilbert space [13].

Three pure states ρ j =
∣∣ j〉〈 j

∣∣ ( j = 1,2,3) with equal probabilities of occur-

rence, a1 = a2 = a3 = 1
3 , are given in d = 2 dimensions by their kets

∣∣1〉=
1

2
√

3

⎛⎝−1
√

3

⎞⎠ ,
∣∣2〉=

1

2
√

3

⎛⎝ −1

−√3

⎞⎠ ,
∣∣3〉=

1√
3

⎛⎝1

0

⎞⎠ , (11.73)

or equivalently by their Pauli vectors,

�r1 =
1
2
(−√3,0,−1) , �r2 =

1
2
(
√

3,0,−1) , �r3 = (0,0,1) . (11.74)

These three vectors are coplanar and point to the corners of an equilateral tri-
angle in the xz-plane: they form a trine.

The cyclic symmetry of the trine is made explicit by noting that

∣∣ j〉=
1√
3

⎛⎝ cos( jθ0)

sin( jθ0)

⎞⎠ for j = 1,2,3 with θ0 =
2π
3

(11.75)

and

U
∣∣1〉=

∣∣2〉 , U
∣∣2〉=

∣∣3〉 , U
∣∣3〉=

∣∣1〉 with U =

⎛⎝ cosθ0 −sinθ0

sinθ0 cosθ0

⎞⎠ .

(11.76)
Since U3 = 12, the 2× 2 matrices 12, U , U2 are an irreducible unitary repre-
sentation of Z3 on a real field, the cyclic group of period 3, and the group acts
transitively on the ensemble E = {ρ1,ρ2,ρ3}.

According to Subsection 11.4.4, the outcomes Πk of the optimal POVM can
be generated by these unitary matrices from a seed S:

Πk =
2
3

UkSU−k for k = 1,2,3 with S =
∣∣v〉〈v∣∣ . (11.77)

The seed ket
∣∣v〉 has to be normalized to unit length,

〈
v
∣∣v〉= 1, so we write

∣∣v〉=

⎛⎝ cosθ

sinθ

⎞⎠ , (11.78)
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where the angle parameter θ specifies the POVM.

Therefore, the problem is to maximize the mutual information I[θ ] = I(E ;Πθ )
as a function of θ , with

I[θ ] =
1
3

3

∑
j=1

(
1 + cos(2θ + jθ0)

)
log
(
1 + cos(2θ + jθ0)

)
. (11.79)

This function is 1
2 θ0-periodic in θ , I[θ + 1

2 θ0] = I[θ ], because the POVM with
the outcomes of (11.77) and (11.78) does not change as a whole when θ is
replaced by θ + 1

2 θ0. It is, therefore, sufficient to consider the range 0≤ θ <
1
2 θ0, and one verifies easily that the global maximum of I[θ ] is obtained for
θ = 1

6 π = 1
4 θ0. Accordingly, the accessible information is

Iacc(E ;Π) = log
3
2

(11.80)

in the case of the trine.

The optimal POVM of (11.77) with θ = 1
6 π consists of three rank-1 oper-

ators, Πk = 1
3

(
1−�rk ·�σ

)
, with the vectors �rk of (11.74). Thus, whereas the

state ensemble E makes up the trine of�r1,�r2, and�r3, the POVM makes up the
“anti-trine” composed of −�r1, −�r2, and −�r3. Since ρ = 1

2 12 here, the roles of
the trine and the anti-trine are simply interchanged in the reciprocal situation
of (11.10).

When we regard the three two-dimensional kets of (11.73) as spanning a
plane in a three-dimensional space, we can lift them jointly out of this plane
by giving each the same third component. The cyclic symmetry is maintained
thereby. Such a lifted trine actually consists of the edges of an obtuse pyramid.
As Shor established [24], one needs two seeds for the optimal six-outcome
POVM of the lifted trine.

If one lifts the trine by so much that the edges of the pyramid are perpendic-
ular to each other, then clearly a three-outcome POVM of von Neumann type
is optimal. In fact, there is a large range of angles between the edges, around
the perpendicular-edges geometry, for which the optimal POVM has three out-
comes. But for acute pyramids with a rather small angle between the edges,
one needs a four-outcome POVM [3, 27].

Instead of lifting the trine, one can distort it in the original two-dimensional
space, so that the cyclic symmetry is lost. The optimal POVMs for distorted
trines have been found quite recently [28].
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11.6.3 Six-states protocol: symmetric group S3

As a practical example, we now turn to an application that occurs in the secu-
rity analysis in quantum cryptography. In the raw-data attack on the six-states
version [29] of the BB84 protocol [30], eavesdropper Eve gains knowledge by
discriminating six rank-2 states in d = 4 dimensions [20].

11.6.3.1 States received by Eve

We denote these states by ρ js whereby j = 1,2,3 is a ternary index and
s = ± is a binary index, so that we are dealing with three pairs of states. It is
expedient to use the following 4×4 matrices for the six states:

ρ1± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z 0 0

±z 1 0 0

0 0 1 ±i

0 0 ∓i 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ2± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 0 ±z 0

0 1 0 ∓i

±z 0 1 0

0 ±i 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ3± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 0 0 ±z

0 1 ±i 0

0 ∓i 1 0

±z 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.81)

where the parameter ε measures the level of noise between the communicat-
ing parties that results from the eavesdropping, and z =

√
4/ε−3 is a conve-

nient abbreviation. The physically reasonable range of the noise parameter is
0 ≤ ε ≤ 1 but only communications with ε < 2

3 are potentially useful for the
purpose of quantum cryptography. Indeed, we will see below that the optimal
POVMs are structurally different for ε < 2

3 and ε ≥ 2
3 .

The two nonzero eigenvalues of each ρ js are (2−ε)/12 and ε/12, so that all

six probabilities are 1
6 and the six matrices of (11.81) are unitarily equivalent,

ρ js = Ujs ρ1+Ujs
† . (11.82)
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Here,

ρ1+ =
∣∣1〉〈1∣∣+ ∣∣2〉〈2∣∣ with

〈
1
∣∣=√ ε

24

(
z,1,0,0

)
and

〈
2
∣∣=√ ε

24

(
0,0,1, i

)
(11.83)

state the spectral decomposition of ρ1+ and so makes its rank-2 nature explicit,
and the unitary matrices Ujs are given by

U1+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= 14 , U1− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 0 −1

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U2+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U2− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U3+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U3− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 −1

0 0 −1 0

0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.84)

They form a multiplicative group of order 6 with this group table:

U1+ U1− U2+ U2− U3+ U3−

U1+ U1+ U1− U2+ U2− U3+ U3−

U1− U1− U1+ U3− U3+ U2− U2+

U2+ U2+ U2− U3+ U3− U1+ U1−

U2− U2− U2+ U1− U1+ U3− U3+

U3+ U3+ U3− U1+ U1− U2+ U2−

U3− U3− U3+ U2− U2+ U1− U1+

(11.85)
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which shows that it is a nonabelian group that is isomorphic to the symmetric
group S3. It is well known that the representation (11.84) is not irreducible. To
get an irreducible representation, we need to carry out the similarity transfor-
mation

Ujs → Ũ js = T−1UjsT (11.86)

with the transformation matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1/
√

3 −2/
√

6 0

0 1/
√

3 1/
√

6 −1/
√

2

0 1/
√

3 1/
√

6 1
√

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.87)

The transformed unitary matrices give us a direct sum of irreducible represen-
tations for the group,

Ũ1± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ũ2± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ∓1/2 −√3/2

0 0 ±√3/2 −1/2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ũ3± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ∓1/2
√

3/2

0 0 ∓√3/2 −1/2

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.88)

They combine a φ0 = 2π/3 rotation and a reflection,

Ũ js = U( j−1)φ0
Σs for j = 1,2,3 and s =± , (11.89)
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where

Uϑ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cosϑ −sinϑ

0 0 sinϑ cosϑ

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.90)

with ϑ taking on the values 0, φ0, 2φ0 for j = 1,2, and 3, respectively, and

Σ+ = 14 = Ũ1+ , Σ− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= Ũ1− . (11.91)

Eve’s states ρ js are transformed correspondingly, resulting in

ρ̃1± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ∓z

√
2/3 0

±z/
√

3 1 0 ±i
√

2/3

∓z
√

2/3 0 1 ±i/
√

3

0 ∓i
√

2/3 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ̃2± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ±z/

√
6 ∓z/

√
2

±z/
√

3 1 ∓i/
√

2 ∓i/
√

6

±z/
√

6 ±i/
√

2 1 ±i/
√

3

∓z/
√

2 ±i/
√

6 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ̃3± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ±z/

√
6 ±z/

√
2

±z/
√

3 1 ±i/
√

2 ∓i/
√

6

±z/
√

6 ∓i/
√

2 1 ±i/
√

3

±z/
√

2 ±i/
√

6 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.92)

In summary then, the inputs are generated by the group Ũ js ( j = 1,2,3; s =±)
as

ρ̃ js = Ũ js ρ̃1+Ũ js
†
, (11.93)
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where

ρ̃1+ =
∣∣1̃〉〈1̃∣∣+ ∣∣2̃〉〈2̃∣∣ with

〈
1̃
∣∣=√ ε

24

(
z,

√
1
3
,−
√

2
3
,0
)

and
〈
2̃
∣∣=√ ε

24

(
0,

√
2
3
,

√
1
3
, i
)

.

(11.94)

11.6.3.2 Eve’s POVM

We find the optimal POVM for Eve by an application of Theorem 11.5. The
group structure for the six-states protocol is given by

Ũg =
3⊕

�=1

(1m�
⊗u�

g) , (11.95)

with unit multiplicity for all � values,

m� = 1 for � = 1,2,3 , (11.96)

and the inequivalent irreducible representations are

� = 1 or � = 2: u1
g± = 1 , u2

g± =±1 for all g ;

� = 3: u3
1± =

⎛⎝±1 0

0 1

⎞⎠ ,

u3
2± =

1
2

⎛⎝ ∓1 −√3

±√3 −1

⎞⎠ ,

u3
3± =

1
2

⎛⎝ ∓1
√

3

∓√3 −1

⎞⎠ . (11.97)

These representations exhaust all inequivalent irreducible representations, s-
ince the sum of the squares of the dimensions of the irreducible representations
is equal to the order of the group. Indeed, 12 + 12 + 22 = 6 holds here.

According to Theorem 11.5, an optimal POVM can be generated by the
same group by means of

Π̃g =
4
6

ŨgS̃Ũg
†
, (11.98)
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with the seed S̃ of the form

S̃ =
3⊕

�=1

d�

4

∣∣ṽ�

〉〈
ṽ�

∣∣ , (11.99)

where d� is the dimension of the respective irreducible representation, and
〈ṽ�|ṽ�〉 = 1 is required for each �. In general, we may need more than one
rank-1 state S̃, and the upper bound is ∑� m2

� = 3. A single seed is, howev-
er, enough to reach the accessible information for the specific example under
consideration.

Hence we write S̃ = |ṽ〉〈ṽ| where

|ṽ〉=

⎛⎜⎜⎜⎜⎜⎜⎝
eiφ1/2

eiφ2/2

eiφ3 cosθ/
√

2

eiφ4 sinθ/
√

2

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.100)

with real angle parameters φ1, . . . ,φ4,θ . Since the global phase is irrelevant,
the value of one of the φ js can be chosen by a convenient convention, and we
set φ1 = 0 from now on.

Upon defining fi by

〈ṽ|ρ̃i±|ṽ〉=
1

24
(1± fi), (11.101)

we find

fi = ηgi−
ε√
3

hi,

gi =
1
2

cosφ2− cosφ3 cosϕi cosθ − cosφ4 sinϕi sinθ ,

hi = sinφ23 sinϕi cosθ − sinφ24 cosϕi sinθ − sinφ34 cosθ sinθ .

(11.102)

Here η = zε/
√

3 =
√

4ε/3− ε2, ϕi = 2π(i−1)/3, and φi j denotes φi j = φi−
φ j. The mutual information I(ρ ,Π) is then given by

I(E ;Π) =
1
3

3

∑
i=1

Φ( fi) , (11.103)

where Φ( ) is the function introduced in (11.61).
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The accessible information is now obtained by maximizing this mutual in-
formation I(E ;Π) over the four parameters φ2,φ3,φ4,θ . With the help of nu-
merical analysis, we observe that increasing the number of seeds does not pro-
vide a larger mutual information than what we get for a single seed.

As we noted above, the cases ε < 2
3 and ε ≥ 2

3 are physically different. This
is reflected in the structural difference between the optimal POVMs in these
two parameter ranges.

Case 0≤ ε < 2
3 : The optimal POVM is given by

φ2 = φ3 = φ4 = 0 and θ = π . (11.104)

In the original representation of (11.81), this is expressed as

|v〉= T |ṽ〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1
√

3

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.105)

The accessible information is

Iacc(E ) =
1
3

Φ(3η/2) (11.106)

with Φ( ) of (11.61) and η as in (11.102). We remark that this optimal POVM
is independent of the noise parameter ε , and all its outcomes are real. These
findings agree with those obtained in [20], which were obtained with the aid
of a numerical search by the method of Section 11.5. This demonstrates the
optimality of this POVM.

Case 2
3 ≤ ε ≤ 1: The optimal POVM has a more complicated structure here,

namely it is specified by

φ2 = − tan−1

√
2(3ε−2)

4−3ε
,

φ3 = tan−1

√
3ε−2

2(4−3ε)
,

φ4 = 0,

θ = π + tan−1

√
3ε−2
2− ε

, (11.107)
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where − 1
2 π < φ2,φ3,θ − π < 1

2 π . This POVM amounts to f1 = 1 and f2 =
f3 = 0 in (11.103), so that the accessible information is

Iacc(E ) =
1
3

Φ(1) =
1
3

. (11.108)

We note in passing that there are other POVMs that also give Iacc = 1
3 for the

whole range 2
3 ≤ ε ≤ 1.

11.6.4 Four-group in four dimensions

As a simplest nontrivial group, we study the four-group—r Klein group, or
vierergruppe—which is the noncyclic group of order four. One meets this
group structure in the eavesdropping analysis for the BB84 protocol [31].
Here we give a discussion based on a toy model for the four-group in a 4-
dimensional Hilbert space.

Each of the four quantum states ρ1, . . . ,ρ4 is a rank-2 state, and the total state
ρ = ρ1 + · · ·+ ρ4 has rank 4, and we have equal probabilities of occurrence:

ρ j =
∣∣ψ j

〉〈
ψ j

∣∣+ ∣∣φ j

〉〈
φ j

∣∣ with Trρ j =
1
4

(11.109)

and

∣∣ψ1

〉
∣∣ψ2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣ψ3

〉
∣∣ψ4

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

0

±b

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ1

〉
∣∣φ2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

±c

d

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ3

〉
∣∣φ4

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c

0

−d

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.110)

Here a,b,c,d are real constants satisfying a2 + b2 + c2 + d2 = 1. We express
these states using unitary matrices Uj as ρ j = Ujρ1Uj

†, whereby

U1

U2

⎫⎪⎬⎪⎭=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
U3

U4

⎫⎪⎬⎪⎭=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 ±1 0

0 ±1 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.111)
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They constitute the four-group with the familiar group table

U1 U2 U3 U4

U1 U1 U2 U3 U4

U2 U2 U1 U4 U3

U3 U3 U4 U1 U2

U4 U4 U3 U2 U1

(11.112)

where we note that the four-group is abelian and has order-2 subgroups con-
sisting of U1 = 14 and either U2 or U3 or U4.

The representation (11.111) is not irreducible. In order to obtain a direct
sum of inequivalent irreducible representations Ũ j, we introduce the following
transformation T :

T =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.113)

As is fitting for an abelian group, the transformed unitary matrices Ũj = T−1UjT
have diagonal components only:

Ũ1

Ũ2

⎫⎪⎬⎪⎭= diag(1,±1,±1,1) ,
Ũ3

Ũ4

⎫⎪⎬⎪⎭= diag(1,±1,∓1,−1). (11.114)

They are indeed the direct sum of irreducible four-dimensional representations
of the four-group. These representations consist of a direct sum of four d-
ifferent inequivalent representations. Each of inequivalent representations is
one-dimensional. We also note the unit multiplicity for all four representation-
s.

According to Theorem 11.5, we could need as many as 4 seeds. It is im-
portant to know that if we restrict ourself to the single-orbital case, then the
optimal POVM generated by this group cannot have real outcomes. This is
so because the seed has to have a unit length for each component by Schur’s
lemma. Therefore, we encounter the perhaps unexpected situation where we
need a complex seed even though all input states and group representations are
expressed as real quantities. As we will see later, there also exist real seeds
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which provide the accessible information, but then we need more than a single
orbit.

We parameterize the seed ket
∣∣ṽ1

〉
by three angle parameters θ1, θ2 and θ3,

|ṽ1〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1

eiθ1

eiθ2

eiθ3

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.115)

The group generated outcomes of the POVM are then given by

Π̃k = Ũk

∣∣ṽ1

〉〈
ṽ1

∣∣Ũ†
k =

∣∣ṽk

〉〈
ṽk

∣∣ , (11.116)

and the optimization requires the determination of the three θks.
Corresponding to the transformation on the unitary matrices, the quantum

states ρ j are transformed into ρ̃ j = T−1ρ jT , or |ψ̃ j〉 = T−1|ψ j〉 and |φ̃ j〉 =
T−1|φ j〉. Explicitly we have

∣∣ψ̃1

〉
∣∣ψ̃2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b/
√

2

∓b/
√

2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣ψ̃3

〉
∣∣ψ̃4

〉
⎫⎪⎬⎪⎭=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b/
√

2

±b/
√

2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ̃1

〉
∣∣φ̃2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c/
√

2

±c/
√

2

d

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ̃3

〉
∣∣φ̃4

〉
⎫⎪⎬⎪⎭=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c/
√

2

∓c/
√

2

−d

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.117)

For ρ̄ j defined by

ρ̄ j = 〈ṽ1|ρ̃ j|ṽ1〉= |〈ṽ1|ψ̃ j〉|2 + |〈ṽ1|φ̃ j〉|2, (11.118)

we find

ρ̄1,2 =
1

16

[
1− (b2− c2)cos(2θ−)∓2

√
2absinθ+ sinθ−

±2
√

2cd cos(θ+−θ3)cosθ−
]
,

ρ̄3,4 =
1

16

[
1 +(b2− c2)cos(2θ−)±2

√
2abcosθ+ cosθ−

±2
√

2cd sin(θ+−θ3)sin θ−
]
, (11.119)



342 11. INFORMATION ABOUT QUANTUM STATES

where θ± = (θ1±θ2)/2. Finally, the mutual information is expressed as

I(E ;Π)[θk] =
1
4

4

∑
j=1

(16ρ̄ j) log(16ρ̄ j) , (11.120)

which is to be regarded as a function of the three θks.
The general solution to this optimization problem is not known as yet. But

if the parameters b and c are equal, we have the analytical solution at hand.
Upon setting b = c, the ensemble of states is characterized by two indepen-

dent parameters because a, b, and d must obey a2 + d2 + 2b2 = 1. We define
A and θ0 by

A = 2b
√

2(a2 + d2) = 2b
√

2(1−2b2) ,

θ0 = tan−1 d
a

. (11.121)

The expression for the mutual information then simplifies to

I(E ;Π)[θk] =
1
2

2

∑
j=1

Φ( f j), (11.122)

where f1 and f2 are

f1 = A
[
cosθ0 sin θ+ sinθ−− sinθ0 cos(θ+−θ3)cosθ−

]
,

f2 = A
[
cosθ0 cosθ+ cosθ−+ sinθ0 sin(θ+−θ3)sinθ−

]
. (11.123)

The partial derivatives with respect to the θks are

∂
∂θ1

I[θk] =
A
8

[
cosθ0 sin θ1 log

R1

R2
+ sinθ0 sin(θ1−θ3) log(R1R2)

]
,

∂
∂θ2

I[θk] =
A
8

[
−cosθ0 sinθ2 log(R1R2)+ sinθ0 sin(θ2−θ3) log

R1

R2

]
,

∂
∂θ3

I[θk] = − sinθ0A

8

[
sin(θ1−θ3) log(R1R2)+ sin(θ2−θ3) log

R1

R2

]
,

with R j =
1 + f j

1− f j
. (11.124)

The right-hand sides are of the form Xi logR1 +Yi logR2, and the necessary
conditions for stationary points, that is: ∂

∂θi
I[θk] = 0 for i = 1,2,3, are then

equivalent to

(XiYj−XjYi) logRl = 0 for l = 1,2 and i, j = 1,2,3 . (11.125)
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Since logR1 = logR2 = 0 gives zero mutual information, the coefficients must
be zero, i.e.,

XiYj−XjYi = 0 for (i, j) = (1,2),(2,3),(3,1) . (11.126)

Explicitly, they are

cos2 θ0 sinθ1 sinθ2 + sin2 θ0 sin(θ1−θ3)sin(θ2−θ3) = 0 ,[
cosθ0 sinθ2 + sinθ0 sin(θ1−θ3)

]
sin(θ2−θ3) = 0 ,[

cosθ0 sinθ1− sinθ0 sin(θ2−θ3)
]

sin(θ1−θ3) = 0 , (11.127)

two of which imply the third. One verifies immediately that

θ1 = θ0 , θ2 =−θ0 , θ3 =−π
2

(11.128)

solve these equations, and this solution gives the accessible information.
The optimal POVM thus found consists of a single orbit with the seed ket

given by

|v1〉= T |ṽ1〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1

√
2isin θ0√
2cosθ0

−i

⎞⎟⎟⎟⎟⎟⎟⎠ (11.129)

in the original representation of (11.109). This corresponds to f1 = A and
f2 = 0 in (11.123). The resulting accessible information is

Iacc(E ) =
1
2

Φ(A) =
1
2

Φ
(

2b
√

2(1−2b2)
)

. (11.130)

Rather intriguingly, the accessible information depends only on one of the pa-
rameters.

We next show how to construct a real optimal POVM out of this complex
solution. Split the optimal seed |ṽ1〉 into real and imaginary parts,

|ṽ1〉= |ṽ1r〉+ i|ṽ1i〉 , (11.131)

and consider another set of outcomes generated by the complex conjugate seed

|ṽ∗1〉= |ṽ1r〉− i|ṽ1i〉 . (11.132)
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These two POVMs give the same joint probabilities and, therefore, the same
amount of mutual information. It then follows from the convexity of the mutual
information (11.22) that a real rank-2 seed

S̃real =
1
2

(|ṽ1〉〈ṽ1|+ |ṽ∗1〉〈ṽ∗1|
)

= |ṽ1r〉〈ṽ1r|+ |ṽ1i〉〈ṽ1i| (11.133)

gives the accessible information as well.
As we mentioned before, the optimal POVM is not unique as a rule. Here we

have already a choice between a POVM with four complex rank-1 outcomes,
its complex conjugate POVM, or a POVM with four real rank-2 outcomes.
These three POVMs can be regarded as equivalent in the sense that they give
rise to the same joint probabilities.

In addition, there is a one-parameter family of inequivalent POVMs, each
having four real rank-2 outcomes. In the original representation of (11.109)
the outcomes are of the form

Πk = |uk〉〈uk|+ |vk〉〈vk| for k = 1, . . . ,4 (11.134)

with the kets |uk〉 and |vk〉 depending on the real parameter r in the following
way:

∣∣u1

〉
∣∣u2

〉
⎫⎪⎬⎪⎭ =

√
cos2 θ0 + r

2

⎛⎜⎜⎜⎜⎜⎜⎝
1/cosθ0

±√2

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣u3

〉
∣∣u4

〉
⎫⎪⎬⎪⎭ =

√
cos2 θ0− r

2

⎛⎜⎜⎜⎜⎜⎜⎝
1/cosθ0

0

±√2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣v1

〉
∣∣v2

〉
⎫⎪⎬⎪⎭ =

√
sin2 θ0 + r

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

±√2

1/sinθ0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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∣∣v3

〉
∣∣v4

〉
⎫⎪⎬⎪⎭ =

√
sin2 θ0− r

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

∓√2

0

1/sinθ0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.135)

The parameter r is restricted to the range

r ≤min
(
cos2 θ0,sin2 θ0

)
=

min(a2,d2)
a2 + d2 (11.136)

but is otherwise arbitrary. We note that, when r is maximal, the corresponding
optimal POVM has two rank-2 outcomes and two rank-1 outcomes, rather than
four rank-2 outcomes. We note further that the POVM is not group-covariant
when r �= 0.

11.7 Summary and outlook

We have given a brief introduction to, and summary of, the problem of de-
termining the accessible information about a given set of quantum states. At
present, the problem (11.21) remains open because there is no generally ap-
plicable method by which we can determine the optimal POVM and the ac-
cessible information. We note in particular the lack of sufficient conditions by
which one could judge whether a candidate POVM is optimal. Until such con-
ditions are established, the strategy of choice is a combination of a numerical
search—possibly by the method described in Section 11.5—with an analytical
check of the necessary conditions (11.30).

We recall further that the seemingly simple conjecture mentioned after (11.56)
has not been proven as yet. A proof would surely constitute a major step for-
ward because in practice one often encounters the situation of the conjecture,
namely the task of distinguishing optimally between two quantum states.

We also emphasize that obtaining analytical expressions for the optimal
POVM usually requires solving a set of nonlinear equations, and we would
not expect that they can be solved routinely, with closed-form solutions. This
point is well illustrated by the example in Subsection 11.6.1, arguably the sim-
plest nontrivial situation.

In practice, however, we are rarely looking for the accessible information
about random quantum states. Rather, the quantum states of interest tend
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to possess certain symmetries among them. We can then apply the group-
covariant POVM method of Subsection 11.4.4 for solving the problem as demon-
strated by the examples of Subsections 11.6.2–11.6.4. Nevertheless, the nu-
merical strategy explained in detail in Section 11.5 lends us significant help
in the search for optimal POVMs. A major problem thereby is, of course,
to discriminate between local and global maxima. Further studies are clearly
necessary.

We remark that in general the optimal POVM is not unique for a given set of
quantum states. We have demonstrated this nonuniqueness by the example of
Subsection 11.6.4, where we report an optimal group-covariant von Neumann
measurement, an optimal group-covariant POVM that is not of von Neumann
type, and a family of inequivalent optimal POVMs that are not group-covariant.
From the purely theoretical point of view, these POVMs are equally good in
the sense of providing the accessible information. On the other hand, how-
ever, there are great differences between them when a physical implementa-
tion of the POVM is required. Generally speaking, von Neumann projection
measurements and nonprojection measurements belong to different classes of
measurement schemes.

This suggests that one should examine thoroughly under which conditions
a von Neumann measurement can extract the accessible information about the
given quantum states. The conjecture mentioned above is particularly relevant
in this context.
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[21] J. Řeháček, private communication (2005).

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing (2nd edition, Cambridge
University Press 1992).

[23] J. R. Shewchuk, An Introduction to the Conjugate Gradien-
t Method Without the Agonizing Pain (Edition 1 1

4 ), available at
www.cs.cmu.edu/∼quake-papers/painless-conjugate-gra-
dient.pdf.

[24] P. W. Shor, On the Number of Elements in a POVM Attaining the Accessible
Information, eprint arXiv:quant-ph/0009077 (2000).

[25] L. B. Levitin, Optimal quantum measurements for two pure and mixed states,
in: Quantum Communications and Measurement, edited by V. P. Belavkin, O.
Hirota, and R. L. Hudson, (Plenum Press, New York 1995) 439–448.

[26] A. S. Holevo, Probl. Peredachi Inf. 9 (1973) 31–42; English translation: Probl.
Inf. Transm. (USSR) 9 (1973) 110–118.

[27] D. Kaszlikowski, A. Gopinathan, Y. C. Liang, L. C. Kwek, and B.-G. Englert,
How well can you know the edge of a quantum pyramid? eprint arXiv:quant-
ph/0307086 (2003).

[28] M. R. Frey, Phys. Rev. A 73 (2006) art. 032309 (7 pages).

[29] D. Bruß, Phys. Rev. Lett. 81 (1998) 3018–3021.

[30] C. H. Bennett and G. Brassard, in: Proceedings of the IEEE Conference on
Computers, Systems, and Signal Processing Bangalore, India, December 1984
(IEEE, New York 1984) 175–179.

[31] S. M. Assad, J. Suzuki, and B.-G. Englert, Int. J. Quant. Inf. 4 (2006) 1003–1012.



Chapter 12

Quantum Entanglement:
Concepts and Criteria

Fu-li Li and M. Suhail Zubairy

Abstract Entanglement is one of the key properties of the quantum me-
chanical systems that is fundamentally different from a classical system. Quan-
tum entanglement plays an important role in the debate concerning the founda-
tions of physics but also is an important resource in various quantum informa-
tion processes. In this article, we introduce basic concepts on EPR correlations
and quantum entanglement, and review established entanglement criteria, and
show how to use these criteria in the generation of entanglement by consid-
ering coherence-induced entanglement and correlated spontaneous emission
laser.

12.1 Introduction

The concept of locality lies at the foundation of classical physics. The lo-
cality implies that measurement performed on one of two systems which are
spatially separated and without interaction cannot disturb one another. Based
on the locality concept, Einstein, Podolsky and Rosen [1] (EPR) proposed a
gedanken experiment that showed that both position and momentum variables
could be simultaneously assigned to a single localized particle with certainty
if two particles are initially prepared in the ideal position and momentum cor-
related state. This obviously violates the principle of quantum mechanics that

349
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two physical quantities represented by noncommutable operators can not have
simultaneous reality. Therefore, assuming that the locality concept is one of
the universal physical principles, EPR argued that quantum mechanics is in-
complete. In order to verify the EPR argument, Bell [2] derived inequalities
of measurable physical quantities for all theories based on reality and locality.
Standard quantum mechanics violates these inequalities. Over the past forty
years, a variety of experimental and theoretical efforts have been devoted to
investigating the violation of Bell inequalities in quantum mechanics.

In the original gedanken experiment proposed by EPR [1], continuous spec-
tra of physical quantities were involved. Bohm [3] established a version of the
EPR argument in discrete variables. Following Bohm’s suggestion, Bell-like
inequalities have been tested in optical experiments, trapped ions experiments,
and single-neutron interferometry [4, 5, 6, 7, 8, 9, 10, 11, 12].

Besides Bell inequalities, the EPR argument implies that the Heisenberg
uncertainty relation could be violated, which is termed the EPR paradox. A
direct demonstration of the EPR paradox can also prove the violation of local-
ity by standard quantum mechanics. Two quadrature-phase amplitudes of an
optical field satisfy the same commutator as the position and the momentum
of a massive particle do, and are the conjugate “position” and “momentum”-
like operators. These quadrature-phase amplitudes of the electromagnetic field
are measurable by use of homodyne detection schemes. In [13], a scheme
was proposed that used two correlated quadrature-phase amplitudes of an op-
tical field to demonstrate a violation of an inferred Heisenberg uncertainty re-
lation, i.e., the continuous variable EPR paradox. Following this proposal,
a subthreshold nondegenerate optical parametric oscillator was employed to
generate correlated amplitudes for signal and idler beams of light, and then
inferred the amplitudes of the signal beam (Xs,Ys) from measurements of the
spatially separated amplitudes (Xi,Yi) of the idler beam [14]. The errors of
these inferences are quantified by the variances Δ2

in f X and Δ2
in fY , with the EPR

paradox requiring that Δ2
in f XΔ2

in fY < 1. In the experiment, it was shown that

Δ2
in f XΔ2

in fY = 0.7± 0.01, thus demonstrating the paradox. Using the Kerr
nonlinearity of an optical fiber, Silberhorn et al. [15] generated the EPR cor-
relations with the product of the inferred uncertainties 0.64±0.08 well below
the EPR limit of unity. Bowen et al. [16] generated a pair of entangled beams
from the interference of two amplitude squeezed beams and demonstrated the
EPR paradox with the inferred uncertainty product 0.58± 0.02. In the recent
experiment, Howell et al. [17] investigated correlations of transverse posi-
tion and momentum of photons produced from parametric down conversion
and achieved a measured two-photon momentum-position variance product of
0.01h̄−1, which dramatically violates the bounds for the EPR correlations. Up
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to now, nearly all the experiments on the EPR correlations show that quantum
mechanics is not a local-realistic theory.

In contrast to classical theories, quantum mechanics promises the existence
of nonlocal correlations between two systems spatially separated and without
any direct interactions, which Schrödinger termed as entanglement [18]. It has
been shown that entanglement is a key ingredient in various quantum infor-
mation processes such as quantum teleportation [19], quantum dense coding
[20], quantum cryptography [21] and quantum computing [22]. Because of
the crucial role of entanglement in quantum information processes, the study
of entanglement has attracted a lot of interest in recent years. Among vari-
ous studies on entanglement, the first question which may be asked is how to
know that a quantum state is entangled. For a pure bipartite state, the Schmidt
decomposition [23] can be used to judge whether the state is entangled and
the degree of entanglement can be quantified by the partial von Neumann en-
tropy [24]. Thus, in principle, the problem of entanglement for pure states of a
bipartite system has been completely solved.

In the real world, quantum systems inevitably undergo decoherence pro-
cesses and quantum systems are mostly in mixed states. For density matrix of
a quantum system consisting of two subsystems, several criteria on entangle-
ment have been established [25]–[33]. Peres [25] found that a sufficient condi-
tion for the density matrix of a bipartite system being inseparable or entangled
is that a matrix, obtained by partial transpose of the density matrix, becomes
negative. Horodecki [26] showed that this condition is necessary and suffi-
cient for entanglement only in the case of 2× 2 and 2× 3 systems. Based on
the partial transposition criterion, Simon [30] found a necessary and sufficient
condition for entanglement of two-mode Gaussian states. Using the Heisen-
berg uncertainty relation and the Cauchy–Schwarz inequality, Duan et al. [31]
derived the same necessary and sufficient condition. Giedke et al. [32] found
a necessary and sufficient condition for entanglement of Gaussian states of bi-
partite systems of arbitrarily many modes. Hillery and Zubairy [33] derived a
class of inequalities for various moments of bosonic creation and annihilation
operators, whose violation shows the presence of entanglement in two-mode
systems. Shchukin and Vogel [34] found necessary and sufficient conditions
for the partial transposition of bipartite harmonic quantum states to be nonneg-
ative. The conditions are expressed as an infinite series of inequalities for the
moments of creation and annihilation operators of bosons. The violation of
any one of the inequalities provides a sufficient condition for entanglement.

The generation of entangled states has been investigated in various systems
from atoms or ions, photons and quadrature-phase amplitudes of the electro-
magnetic field. In 1997, Hagley et al. [35] produced the atomic entangled state
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in which two atoms are in two different circular Rydberg states and separated
by a distance of the order of 1 cm. Turchette et al. [36] showed that the inter-
nal states of two trapped ions can be prepared in both the Bell-like singlet and
triplet entangled states in a deterministic fashion. For applications, the more
particles are entangled, the more useful the states can be. Along the lines of
the proposal suggested by Molmer and Sorensen [37], Sackett et al. [38] re-
alized experimentally entangled states of four trapped ions. Based on Duan
et al.’s proposal [39], Julsgaard et al. [40] demonstrated experimentally at the
level of macroscopy the entanglement between two separate samples of atoms
each of which contains 1012 atoms. As for the generation of entangled states
of photons, a great progress has been made in recent years. Using a single
circular Rydberg atom, Rauschenbeutel et al. [41] prepared two modes of a su-
perconducting cavity in a maximally entangled state in which the two modes
share a single photon. In most EPR optical experiments, pairs of polarization
photons flying apart can be created in an entangled state by either spontaneous
emission in a cascade atomic system [42, 43, 44], or down-conversion in a
nonlinear medium [45, 46]. Entangled states of three [47], four [48] and five
photons [49] have been realized. For the purpose of application, an entangled
state containing more photons is an interesting problem. Tsujino et al. [50]
showed the experimental generation of two-photon-polarization states by para-
metric down-conversion. Eisenberg et al. [51] created a bipartite multiphoton
entangled state through stimulated parametric down-conversion of strong laser
pulses in a nonlinear crystal. Quantum information processes based on the en-
tangled quadrature-phase amplitudes of the electromagnetic field show some
advantages and the generation of the entangled quadrature-phase amplitudes
of an optical field has also attracted much attention [52]. In usual experiments,
the entangled quadrature-phase optical beams are generated by two vacuum
squeezed states via a beam splitter and are in a two-mode quadrature squeezed
vacuum. In a recent experiment, Zhang et al. [53] showed that the bright en-
tangled signal and idler beams can be generated by a nondegenerate optical
parametric amplifier.

It is evident that the experimental and theoretical studies of bipartite sys-
tems have made a great progress in recent years. In this article, we introduce
basic concepts on EPR correlations and entanglement, and review established
entanglement criteria. We also discuss coherence-induced entanglement and
correlated spontaneous emission laser as examples for explaining how to use
these criteria in the generation of entanglement. The paper is organized as
follows. In Section 12.2, basic concepts on EPR correlations and quantum en-
tanglement are introduced. In Section 12.3, entanglement criterion for pure
states is discussed on the basis of Schmidt decomposition theory. In Section
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12.4, various established entanglement criteria for mixed states are reviewed.
In Sections 12.5 and 12.5, we discuss two examples as applications of entan-
glement criteria by considering the interaction of a V-type three-level atom
with two modes of the cavity field and correlated spontaneous emission laser,
respectively. In Section 12.6, several remarks on entanglement criterion and
measurement are given.

12.2 EPR correlations and quantum entanglement

In 1935, Einstein, Podolsky, and Rosen (EPR) [1] published one of the most
controversial papers of the 20th century which argued the completeness of
quantum theory. The paper involved three important concepts: completeness,
reality and locality. About completeness of a physical theory, they stated: “Ev-
ery element of the physical reality must have a counterpart in the physical the-
ory”. Regarding reality, they suggested the criterion: “If, without in any way
disturbing a system, we can predict with certainty (i.e., with probability equal
to unity) the value of a physical quantity, then there exists an element of phys-
ical reality corresponding to this physical quantity”. The statement “without
in any way disturbing a system” implied a measurement only on one system
that can not disturb another one in any way if the two systems are spatially
separated and do not interact. This implied locality. With these concepts in
mind, we go into the details of EPR’s argument.

Consider two particles that are spatially separated and without interaction
but have been prepared in a state described by wave function |Ψ(1,2)〉 after the
foregoing interaction between them ended. Let Â and B̂ be two operators which
represent two physical quantities of the first particle. The operators Â and
B̂ have eigenvalues (a1,a2,a3, · · ·) and (b1,b2,b3, · · ·), and the corresponding
eigenfunctions (|a1〉, |a2〉, |a3〉, · · ·) and (|b1〉, |b2〉, |b3〉, · · ·), respectively. At
first, we consider a measurement of the eigenvalues of the operator Â on the
first particle. For describing the measurement, we expand the wave function in
terms of the eigenfunctions of the operator Â as

|Ψ(1,2)〉= ∑
n
|ϕn(2)〉|an(1)〉, (12.1)

where |ϕn(2)〉 are state vectors resulting from the expansion and depend only
on coordinates of the second particle. According to the quantum theory, when
the result an is obtained in the measurement, the whole system simultaneous-
ly collapses into the state |ϕn(2)〉|an(1)〉. Suppose that |ϕn(2)〉 is one of the
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eigenfunctions of operator P̂ of the second particle with eigenvalue pn. We
can then assign the eigenfunction |ϕn(2)〉 to the second particle and predict the
result pn for a measurement of eigenvalues of the operator P̂ on the second
particle with certainty even if the real measurement was not carried out on the
second particle.

Instead of measuring the eigenvalue of the operator Â, we can also perform
a measurement of the eigenvalue of the operator B̂ on the first particle. We now
expand the wave function in terms of the eigenfunctions of the operator B̂

|Ψ(1,2)〉= ∑
n
|φn(2)〉|bn(1)〉, (12.2)

where |φn(2)〉 are the state vectors in the expansion and depend only on the
coordinates of the second system. As noted above, once the result bn is ob-
tained as a result of measurement, the whole system collapses into the state
|φn(2)〉|bn(1)〉. Suppose that |φn(2)〉 is one of the eigenfunctions of operator
Q̂ of the second particle with eigenvalue qn. We can then assign the eigenfunc-
tion |φn(2)〉 to the second particle and predict with certainty the result qn for a
measurement of eigenvalues of the operator Q̂ although the measurement is in
fact not performed on the second particle.

Now the following argument was raised by EPR. According to the locali-
ty condition, either of the above two measurements which were performed on
the first particle could not disturb the second particle in any way. The state of
the second particle after the measurements must be the same as the state be-
fore the measurements. However, based on the measurements, we can assign
with certainty the eigenstate |ϕn(2)〉 of the operator P̂ as well as the eigen-
state |φn(2)〉 of the operator Q̂ to the same reality! Moreover, if P̂ and Q̂ are
non-commutable, the above gedanken experiment means that the same reality
could simultaneously have the eigenvalues pn and qn which are eigenvalues of
the two non-commutable operators. This is in contradiction with the standard
quantum mechanics. This is often referred to as the EPR paradox.

In order to make the problem more clear, we consider two spin 1/2 particles.
Suppose that the two particles are initially prepared in the state [3]

|Ψ(1,2)〉= 1√
2
(| ↓2〉| ↑1〉− | ↑2〉| ↓1〉), (12.3)

where | ↑〉 and | ↓〉 are eigenfunctions of the spin operator σ̂z with eigenvalues
+1 and −1, respectively. The state vector (12.3) has the expansion form in
terms of eigenstates of the spin operator σ̂z of the first particle. The expansion
state vectors are the eigenfunction of the spin operator σ̂z of the second particle.
The state vector (12.3) can also be expanded in terms of eigenfunction of the
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spin operator σ̂x of the first particle. In this way, one has [54]

|Ψ(1,2)〉= 1√
2
(|−2〉|+1〉− |+2〉|−1〉), (12.4)

where |+〉 and |−〉 are eigenfunctions of the spin operator σ̂x with eigenvalues
+1 and −1, respectively. Therefore, according to the above EPR argument,
one could assign eigenfunctions of the spin operators σ̂z and σ̂x to the second
particle with certainty. In other words, the second particle may simultaneously
have eigenvalues of σ̂z and σ̂x.

Now we face the following problem. If the EPR argument is correct, the
standard quantum mechanics is an incomplete theory. If the EPR argument
was incorrect, we may have to give up the either the notion of reality or locality
(12.3).

For a long time, the debate on the EPR argument had rested on theoretical or
philosophical aspects until 1964 when Bell established inequalities to measure
physical quantities so that a direct testing of the consequences of the EPR
premises becomes possible [2]. Many experiments of testing Bell inequalities
have been performed [4, 8, 12]. The results obtained from these experiments
are all favorable to quantum mechanics. These experimental results show that
the locality concept on correlations between two particles, which is ingrained
in classical theories, may not be a universal concept and nonlocal correlations
between particles separated spatially and without interaction may exist.

To have a concrete idea on quantum nonlocal correlations, we reconsider the
state (12.3). Let n be a unit vector pointing at direction (θ ,ϕ). The state (12.3)
can be written in term of eigenvectors |+1〉 and |−1〉 of σ̂ ·n with eigenvalues
+1 and −1, respectively, as

|Ψ(1,2)〉= eiϕ
√

2
(|−1〉2|+ 1〉1−|+ 1〉2|−1〉1). (12.5)

From this state, we see that the spin states of the two particles along any di-
rection are maximally correlated. If spin state of one of the particles along an
arbitrary direction (θ ,ϕ) is measured up or down, we immediately know spin
state of another particle along the direction (θ ,ϕ).

We should emphasize that nonclassical correlations revealed by the EPR
paradox are not related to any interactions and result from the description of
the wave function for states of physical systems and the superposition principle
of states. Schrödinger termed this correlation as entanglement [18].
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12.3 Entanglement of pure states

A pure state of a bipartite system is called separable if and only if it can
be written as a product of two states of the subsystems. A state of a bipartite
system is entangled if it is not separable. The separability of pure two-party
states can be recognized by the Schmidt decomposition [23].

Suppose that the quantum system under consideration consists of two sub-
systems A and B whose states are defined in the Hilbert space HA with the
dimension NA and HB with the dimension NB. Without any loss of generality,
we assume NB ≤ NA in the following discussion. In general, an arbitrary pure
state of the bipartite system can be expressed as

|ΨAB〉= ∑
i, j

ai j|ui〉⊗ |v j〉, (12.6)

where {|ui〉 ∈HA, i = 1,2, . . .NA} and {|v j〉 ∈HB , j = 1,2, . . .NB} are two
complete sets of orthonormal basis vectors in their respective Hilbert spaces.

The density matrix ρ̂AB for the whole system is given by |ΨAB〉〈ΨAB|. Trac-
ing out the variables of the subsystem A in ρ̂AB, we obtain the reduced density
matrix for the subsystem B

ρ̂B = trA(ρ̂AB) = ∑
j, j′

(∑
i

ai ja
∗
i j′)|v j〉〈v j′ |. (12.7)

Next we consider the eigenvalue problem

ρ̂B|bν〉= pν |bν〉, (12.8)

where ν = 1,2, . . . ,NB. From Eq. (12.7), the eigenvalues pν (≥ 0) can be
expressed as

pν = ∑
j, j′

(∑
i

ai ja
∗
i j′)〈bν |v j〉〈v j′ |bν〉. (12.9)

The eigenstates {|bν〉} compose a new complete set of orthonormal basis vec-
tors in the Hilbert space HB . From Eq. (12.9), we have ∑ν pν = 1.

The basis states {|v j〉} can be expanded in terms of the eigenstates {|bν〉}
as

|v j〉= ∑
ν
〈bν |v j〉|bν〉. (12.10)

It follows, on substituting from Eq. (12.10) into Eq. (12.6), that

|ΨAB〉= ∑
ν

∑
i, j

ai j〈bν |v j〉|ui〉⊗ |bν〉. (12.11)
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Next we define a new set of basis vectors for the subsystem A

|aν〉= ∑
i, j

ai j〈bν |v j〉|ui〉= 〈bν |ΨAB〉. (12.12)

It is easily shown that 〈aν ′ |aν〉= pνδν,ν ′ . Therefore, for pν = 0, we must have
|aν〉= 0. On redefining the basis vectors

|aν〉=
1√
pν
〈bν |ΨAB〉, (12.13)

we can rewrite the state (12.11) as

|ΨAB〉=
rB

∑
ν

√
pν |aν〉⊗ |bν〉, (12.14)

where rB ≤ NB. The expansion (12.14) is called the Schmidt decomposion
of the quantum states of a bipartite quantum system. The state (12.14) has
the form of the EPR state (12.3) if the Schmidt rank rB is larger than one.
Therefore, a pure two-party state is the EPR state or entangled state if and only
if number of nonzero Schmidt coefficients

√
pn is larger than one. We note

that the state (12.3) has been written as the Schmidt decomposition form with
the Schmidt number 2.

For any bipartite pure state, we can transform it to the Schmidt decompo-
sition form via unitary transformations. According to different forms of the
Schmidt decomposition, we may classify the states. For entangled states of a
bipartite system whose Hilbert space is 2× 2, there are four basic maximally
entangled states, i.e. the four Bell states,

|Φ±〉 =
1√
2
(|00〉± |11〉), (12.15)

|Ψ±〉 =
1√
2
(|01〉± |10〉), (12.16)

where |0〉 and |1〉 are two independent basis vectors of the Hilbert space for
either of the subsystems. For tripartite systems which are defined in the Hilbert
space 2× 2× 2, there are two basic Schmidt decomposition entangled states,
namely the Greenberger–Horne–Zeilinger (GHZ) state [55] and the W state
[56],

|GHZ〉 =
1√
2
(|000〉+ |111〉), (12.17)

|W 〉 =
1√
3
(|100〉+ |010〉+ |001〉). (12.18)
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It has been shown that, for the case of three qubits, any pure and fully entangled
state can be transformed to either the GHZ state or the W state via stochastic
local operations and classical communication [55]. Some efforts have been al-
so been devoted to the Schmidt decomposition for tripartite states in the higher
dimensional Hilbert space [56, 57] and multi-party states [58].

12.4 Criteria on entanglement of mixed states

12.4.1 Peres–Horodecki criterion

Because of the inevitable interaction with the environment, a quantum sys-
tem in the real world is always in a mixed state. An important problem there-
fore relates to verifying whether a given mixed state is entangled. As the mixed
states may simultaneously possess both classical and quantum correlations,
the problem becomes more complicated than in the case of pure states as dis-
cussed in Section 12.3. Among various criteria on entanglement of mixed
states, the partial transposition criterion which was established by Peres [25]
and Horodecki [26] is more basic since several useful criteria that can be de-
rived are based on it.

Consider a bipartite system whose states are defined in the Hilbert space
H = H1⊗H2. In general, a mixed state of the system can be described by
the density matrix

ρ̂ = ∑
i

pi|ψi〉〈ψi|, (12.19)

where the state vectors |ψi〉 ∈H , pi is the probability of finding the system in
the pure state |ψi〉, pi ≥ 0 and ∑i pi = 1. Let us suppose that |φλ 〉 are eigen-
states of ρ̂ with eigenvalues ρλ . It can be shown that

ρλ = ∑
i

pi|〈ψi|φλ 〉|2. (12.20)

Therefore, all the eigenvalues ρλ are always positive. In this sense, the density
matrix is called a positive operator. Any density matrices for describing a phys-
ical system must be positive. State (12.20) also shows that ρλ is the probability
for finding the system in the eigenstate |φλ 〉. So, we have ∑λ ρλ = 1.

As for pure states, we can divide mixed states also into two kinds: separable
and inseparable or entangled. A separable state can always be written as a
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statistically mixed form of products of states of each subsystem [59]

ρ̂ = ∑
j

p jρ̂
(1)
j
⊗ ρ̂ (2)

j
, (12.21)

where ρ̂ (i)
j
∈ Hi, p j ≥ 0 and ∑ j p j = 1. A state ρ̂ is called inseparable or

entangled if it is not separable. State (12.21) shows that the two subsystems
are still correlated with each other even if they are in a separable state. This
correlation is called the classical correlation, for example, which may result
from simultaneously preparing the system 1 in the state ρ̂ (1)

j
and the system 2

in the state ρ̂ (2)
j

with the probability p j.

Let Â and B̂ represent operators acting on states in the Hilbert spaces H1 and
H2, respectively. For any states ρ̂ (1) ∈H1, Â(ρ̂ (1)) = Âρ̂ (1)Â†. If Âρ̂ (1)Â† are
positive, i.e, all of eigenvalues of Âρ̂ (1)Â† are positive, the operator Â is called
a positive operator. There is the same definition for the operator B̂. Acting the
direct product of Â and B̂ on the state (12.21), we have

Â⊗ B̂(ρ̂) = ∑
j

p j(Âρ̂ (1)
j

Â†)⊗ (B̂ρ̂ (2)
j

B̂†). (12.22)

Therefore, the resulting density matrix must be separable if the original density
matrix is separable. This means that any local operations such as Â and B̂ can
not transfer a separable state to an inseparable one. In other words, any local
operations can not create entanglement.

For a separable state, state (12.22) also shows that the resulting state is still
positive if the operators Â and B̂ are positive. In an entangled state, two sub-
systems are quantum mechanically correlated. When we perform an operation
on one subsystem, we inevitably disturb another even if we did not really per-
form any operations on it. Therefore, intuitively, the above conclusion may
not be true for entangled states. In order to detect entanglement sensibly and
efficiently, the key problem is how to choose the local positive operators Â and
B̂.

Peres [25] and Horodecki [26] considered two special operations: Â = Î1 and
B̂ = T̂2, where Î1 is the unity operator for subsystem 1 and T̂2 is the transpose
operator for subsystem 2. Obviously, both Î1 and T̂2 are positive. The direct
product operator Î1⊗ T̂2 is called a partial transpose operator. In the represen-
tation spanned by a set of orthonormal basis states |ϕn〉 · |φν 〉 where |ϕn〉 ∈H1
and |φν 〉 ∈H2, a density matrix ρ̂ is represented by the matrix with matrix
elements ρnν,mμ = 〈ϕn|〈φν |ρ̂|φμ〉|ϕm〉. After performing the partial transpose
operation on the density matrix, we obtain the resulting matrix σ . If the origi-
nal density matrix ρ is separable, state (12.22) shows that the partial transposed
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matrix σ must be positive. However, if the original density matrix ρ is insep-
arable, the partial transposed matrix σ may become negative. If it is true, the
partial transposed matrix σ does not still represent a physical state. Therefore,
the product of the local operators may change an entangled physical state to
an unphysical state. The positivity of the partial transposed matrix provides a
sufficiency condition for inseparability of a two-party state. This condition is
named as the Peres–Horodecki criterion for entanglement. This is a very use-
ful and powerful criterion in judging whether a bipartite state is entangled or
not. Horodecki finally showed that this condition is a necessary and sufficient
condition of entanglement only for 2×2 and 2×3 systems [26, 60]. Based on
the positivity of density operator with various choices of the local operators,
Horodecki also established some other criteria for entanglement of bipartite
states [26, 60].

Now let us see how to use the Peres–Horodecki criterion through an exam-
ple. Consider a pair of particles each of which may be in either the state |0〉 or
the state |1〉. Here, the state |0〉(|1〉) may represent either the spin- 1

2 down(up)
state or zero(one) photon-number state. The state |n1,n2〉 is a state in which
the first particle is in |n1〉 and the second one in |n2〉 with ni = 0,1. Suppose
that the two particle are prepared in a Werner state [59]

ρ̂ = x|Φ1〉〈Φ1|+
1
4
(1− x)

4

∑
i=1
|Φi〉〈Φi|, (12.23)

where

|Φ1〉 =
1√
2
[|1,0〉− |0,1〉], (12.24)

|Φ2〉 =
1√
2
[|1,0〉+ |0,1〉], (12.25)

|Φ3〉 = |1,1〉〈1,1|, (12.26)
|Φ4〉 = |0,0〉〈0,0|. (12.27)

On performing the partial transpose operation Î1⊗ T̂2 on the state (12.23), we
have the resulting matrix

σ̂ =
x
2
[|1,0〉〈1,0|+ |0,1〉〈0,1|− |0,0〉〈1,1|− |1,1〉〈0,0|]

+
1
4
(1− x)[|1,0〉〈1,0|+ |0,1〉〈0,1|+ |0,0〉〈0,0|

+ |1,1〉〈1,1|]. (12.28)
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In the representation spanned by the orthonormal basis states {|n1,n2〉,ni =
0,1}, we have the matrix representation for σ̂

σ =
1
4

⎛⎜⎜⎜⎜⎜⎜⎝
1− x 0 0 −2x

0 1 + x 0 0

0 0 1 + x 0

−2x 0 0 1− x

⎞⎟⎟⎟⎟⎟⎟⎠ . (12.29)

A straightforward calculation shows that the matrix σ has the tri-degenerate
eigenvalue (1 + x)/4 and one single eigenvalue (1− 3x)/4. It is seen that the
eigenvalue (1−3x)/4 becomes negative if the parameter x > 1/3. According
to the Peres–Horodecki criterion, therefore, the state (12.23) must be entan-
gled when x > 1/3. By use of Bell’s inequality and the α−entropic inequality
to detect entanglement of the state (12.23), one finds that the state (12.23) be-
comes entangled only when x < 1/

√
2 and x < 1/

√
3 [61]. Compared to these

criteria, the Peres–Horodecki criterion is stronger for detecting entanglement.
The Peres–Horodecki criterion would intuitively be considered to be just a

mathematical condition. In the very recent experiment for generating and de-
tecting entanglement in a bipartite multiphoton entangled state [67], however,
Eisenberg et al. directly detected the positivity of the partial-transposed density
matrix. So, the Peres–Horodecki criterion is also one of entanglement criteria
which can be tested in experiments.

12.4.2 Simon criterion

Using the Peres–Horodecki criterion, Simon found that the separability con-
dition of bipartite continuous-variable states can be expressed in term of vari-
ances of the phase space variables [30].

Consider a bipartite system of two modes which are described by annihila-
tion operators â1 = (q̂1 + ip̂1)/

√
2 and â2 = (q̂2 + ip̂2)/

√
2. One can arrange

the phase space variables and the phase-quadrature Hermitian operators into
four-dimensional column vectors

ξ = (q1, p1,q2, p2), ξ̂ = (q̂1, p̂1, q̂2, p̂2). (12.30)

The commutation relations between the phase-quadrature operators take the
compact form [63]

[ξ̂α , ξ̂β ] = iΩαβ , (12.31)
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where α,β = 1,2,3,4, and

Ω =

⎛⎝ J 0

0 J

⎞⎠ , J =

⎛⎝ 0 1

−1 0

⎞⎠ . (12.32)

Given a bipartite density operator ρ̂ , let us define Δξ̂α = ξ̂α− < ξ̂α >,
where < ξ̂α >= tr(ξ̂α ρ̂), and introduce the Hermitian operators {Δξ̂α ,Δξ̂β}=

(Δξ̂α Δξ̂β +Δξ̂β Δξ̂α)/2. The expectations < {Δξ̂α ,Δξ̂β}>= tr({Δξ̂α,Δξ̂β}ρ̂)
can be arranged into a 4× 4 real variance matrix V, defined through Vαβ =<

{Δξ̂α ,Δξ̂β}>. Using the variance matrix V, we can write the uncertainty rela-
tions for the phase-quadrature operators in the following compact form

V +
i
2

Ω≥ 0. (12.33)

Simon showed that under the Peres–Horodecki partial transpose the variance
matrix is changed to V −→ Ṽ = ΛVΛ, where Λ = diag(1,1,1,−1). The par-
tial transposed density matrix still describes a physical state if the state under
consideration is separable. Therefore, we have

Ṽ +
i
2

Ω≥ 0 (12.34)

as a necessary condition for separability. The variance matrix V can be written
in the block form

V =

⎛⎝ A C

CT B

⎞⎠ , (12.35)

where A,B,C are 2×2 real matrices and CT is the transpose of C. The physical
condition (12.33) implies A ≥ 1/4,B≥ 1/4. Simon found that the condition
(12.34) can be simplified in terms of the submatrices as the form

detAdetB +(
1
4
−|detC|)2− tr(AJCJBJCT J)≥ 1

4
(detA + detB). (12.36)

This condition should necessarily be satisfied by every separable state of any
bipartite systems. A violation of the inequality (12.36) represents a sufficient
condition for entangled states. Simon also showed that the condition (12.36)
becomes necessary and sufficient for separability of all bipartite Gaussian s-
tates.
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12.4.3 Duan–Giedke–Cirac–Zoller criterion

In quantum mechanics, physical observables of a system are represented by
a set of Hermitian operators {Âi}. According to the Heisenberg uncertainty
principle, it is never possible to simultaneously predict measurement results in
arbitrary precision for all observables. The uncertainty of a Hermitian operator
in a given quantum state is described by the variance 〈(ΔÂi)

2〉= 〈Â2
i 〉− 〈Âi〉2.

Only when the quantum state is one of eigenstates of Âi, the variance 〈(ΔÂi)
2〉

can be zero. For any two operators Âi and Â j which satisfy the commutator

[Âi, Â j] = iĈi j, the Heisenberg uncertainty principle sets an inequality to the

variances of Âi and Â j

〈(ΔÂi)
2〉〈(ΔÂ j)

2〉 ≥ 1
4
|〈Ĉi j〉|2. (12.37)

It follows that
〈(ΔÂi)

2〉+ 〈(ΔÂ j)
2〉 ≥ |〈Ĉi j〉|. (12.38)

As an example, for the coordinate and momentum operators X̂ and P̂, we have

〈(ΔX̂)2〉+ 〈(ΔP̂)2〉 ≥ 1. (12.39)

The result can be generalized to the case of multi operators. Suppose that {Âi}
are a set of Hermitian operators some of which are not commutable. Therefore,
they have no common eigenstates. According to the Heisenberg uncertainty
principle, there must be a nontrivial constant limit UA > 0 for the sum of the
uncertainties [64]

∑
i
〈(ΔÂi)

2〉 ≥UA. (12.40)

It should be pointed out that the limit UA is to be determined and is defined
as the global minimum of the uncertainty sum for all quantum states of the
Hilbert space under consideration.

Let us consider two subsystems A and B which are characterized by two sets
of operators {Âi} and {B̂i}, respectively. According to Eq. (12.40), we may
have the sum of uncertainty relations

∑
i

〈(ΔÂi)
2〉 ≥UA, (12.41)

∑
i

〈(ΔB̂i)
2〉 ≥UB. (12.42)

Consider the sum operators {Âi + B̂i}. For a direct product state ρ̂ (AB) = ρ̂ (A)⊗
ρ̂ (B), it is obvious that 〈[Δ(Âi + B̂i)]

2〉 = 〈(ΔÂi)
2〉+ 〈(ΔB̂i)

2〉. Therefore, the
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sum of the variances of the operators {Âi + B̂i} is given by

∑
i

〈[Δ(Âi + B̂i)]
2〉 ≥UA +UB. (12.43)

For any separable state with the form (12.21), one has

∑
i
〈[Δ(Âi + B̂i)]

2〉 = ∑
j

p j ∑
i

tr{ρ̂ (A)
j
⊗ ρ̂ (B)

j
[Δ(Âi + B̂i)]

2}

= ∑
j

p j ∑
i
[〈(ΔÂi)

2〉 j + 〈(ΔB̂i)
2〉 j]

≥ ∑
j

p j(UA +UB) = UA +UB. (12.44)

In any separable states of a bipartite system, the sum of the variances of the
operators {Âi + B̂i} must satisfy inequality (12.44). Any violation of this un-
certainty relation shows that the quantum state must be an entangled state.
The variances involved in inequality (12.44) can be determined by local mea-
surements of the operators Âi and B̂i. The local uncertainty relation (12.44)
provides a sufficient condition for the existence of entanglement [64].

As an example of applications of inequality (12.44), we consider a two-
mode electromagnetic field. We define the phase-quadrature operators as

x̂ j =
1√
2
(â j + â†

j), p̂ j =
1√
2i

(â j− â†
j), (12.45)

where â j and â†
j are the annihilation and creation operators of the j-th mode

(j=1,2). The phase-quadrature operators satisfy the commutators [x̂ j, p̂ j′ ] =
iδ j j′ . According to (12.39), the sum of the variances of the operators |a|x̂1 and
|b|p̂1 for any quantum state obeys the inequality

〈(Δ|a|x̂1)
2〉+ 〈(Δ|b|p̂1)

2〉 ≥ |ab|. (12.46)

In the same way, for the operators x̂2/c and p̂2/d, we have

〈(Δ1
c

x̂2)
2〉+ 〈(Δ 1

d
p̂2)

2〉 ≥ 1
|cd| . (12.47)

In Eqs. (12.46) and (12.47), a,b,c,d are arbitrary (nonzero) real numbers. We
note that Eqs. (12.46) and (12.47) have the same forms as Eqs. (12.41) and
(12.42). We now consider the sum operators

û = |a|x̂1−
1
c

x̂2, (12.48)

v̂ = |b|p̂1−
1
d

p̂2. (12.49)



12.4. CRITERIA ON ENTANGLEMENT OF MIXED STATES 365

From Eq. (12.44), we obtain the following sufficient condition for entangle-
ment

〈(Δû)2〉+ 〈(Δv̂)2〉< |ab|+ 1
|cd| . (12.50)

Duan et al. [39] derived the criterion (12.50) by using the commutators of
the operators x̂ j and p̂ j and the Cauchy–Schwarz inequality. Compared to
their method, the present derivation is much simpler. The inequality (12.50)
contains four arbitrary real numbers. With arbitrary choices of these numbers,
the inequality (12.50) is a sufficient condition for entanglement of the two-
mode continuous-variable quantum systems. Duan et al. [39] showed that
the criterion (12.50) becomes necessary and sufficient for two-mode Gaussian
states if the numbers are specifically chosen.

The Wigner characteristic function of a two-mode Gaussian state takes the
form [65]

χ (w)(λ1,λ2) = exp

[
−1

2
(λ I

1 ,λ
R
1 ,λ I

2 ,λ
R
2 )M(λ I

1 ,λ
R
1 ,λ I

2 ,λ
R
2 )T

]
, (12.51)

where λ R
j and λ I

j are real variables and M is the 4× 4 real symmetric cor-
relation matrix. Duan et al. [39] showed that by use of local linear unitary
Bogoliubov operators (LLUBO) the correlation matrix M can be transformed
into the standard form

Ms =

⎛⎜⎜⎜⎜⎜⎜⎝
n1 c1

n2 c2

c1 m1

c2 m2

⎞⎟⎟⎟⎟⎟⎟⎠ , (12.52)

where the ni,mi, and ci satisfy

n1−1
m1−1

=
n2−1
m2−1

, (12.53)

|c1|− |c2| =
√

(n1−1)(m1−1)−√(n2−1)(m2−1). (12.54)

They further showed that the inequality (12.50) becomes necessary and suffi-
cient for entanglement of a two-mode Gaussian state with the standard form
(12.52) of the correlation matrix M if the four numbers in (12.50) are chosen as
a = b = a0, c = c1/|c1|a0 and d = c2/|c2|a0, where a2

0 =
√

(m1−1)/(n1−1)=√
(m2−1)/(n2−1).
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12.4.4 Hillery–Zubairy criterion

Consider a two-mode continuous-variable quantum system. Let a and a†

be the annihilation and creation operators of the first mode, and b and b† are
the annihilation and creation operators of the second. The set of the quadratic
forms: ab†,a†b,a†a,b†b constitutes a u(2) Lie algebra. The set of the lin-
ear combinations of these quadratic operators: L1 = ab† + a†b,L2 = i(ab†−
a†b),L3 = a†a + b†b , forms a su(2) Lie algebra. Based on the Schwarz in-
equality, Hillery and Zubairy [33] showed that the inequality

〈(ΔL1)
2〉+ 〈(ΔL2)

2〉< 2〈L3〉 (12.55)

holds for entangled states of the system. This criterion can be used to witness
entanglement of the mixed state

ρ = s|ψ01〉〈ψ01|+
1− s

4
P01, (12.56)

where |ψ01〉 = (|0〉a|1〉b + |1〉a|0〉b)/
√

2, 0 ≤ s ≤ 1, and P01 is the projection
operator onto the space spanned by the vectors {|0〉a|0〉b, |0〉a|1〉b, |1〉a|0〉b,
|1〉a|1〉b}. Direct calculation finds that in the state (12.56) 〈(ΔL1)

2〉+〈(ΔL2)
2〉=

3−s−s2 and 〈L3〉= 1. The inequality (12.55) shows that the state is entangled
if 1≥ s > (

√
5−1)/2.

For any state of the system, we can show that

〈(ΔL1)
2〉+ 〈(ΔL2)

2〉= 2(〈(Na + 1)Nb〉+ 〈(Nb + 1)Na〉−2|〈ab†|2), (12.57)

where Na = a†a and Nb = b†b. On replacing the right-hand-side of (12.55)
by the right-hand-side of (12.57), it can be seen that the inequality (12.55) is
equivalent to

|〈ab†|2 > 〈NaNb〉. (12.58)

This condition motivates a family of inequalities similar to (12.58) for detect-
ing entanglement by considering the higher-order operators am(b†)n without
the restriction n = m = 1. In fact, Hillery and Zubairy [33] showed that a state
is entangled if

|〈am(b†)n〉|2 > 〈(a†)mam(b†)nbn〉, (12.59)

where n,m are any positive integer numbers.
Instead of considering the quadratic forms : ab†,a†b,a†a,b†b, we may con-

sider another kind of the quadratic forms: ab,b†a†,a†a,b†b, which constitutes
a u(1,1) Lie algebra. Similar to the inequality (12.59), Hillery and Zubairy
[33] found that for any positive integers m and n, a state is entangled if

|〈ambn〉|> [〈(a†)mam〉〈(b†)nbn〉]1/2. (12.60)
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As an example of applications of the inequality (12.60), we consider the two-
mode squeezed vacuum state

|ψ〉= (1− x2)1/2
∞

∑
n=0

xn|n〉a|n〉b, (12.61)

where 0≤ x≤ 1. For this state, it is easily shown that [〈NaNb〉]1/2 = x2/(1−x2)
and |〈ab〉|= x/(1− x2). It is clear that the inequality (12.60) with n = m = 1
holds, and hence this state is entangled as long as x �= 0.

12.4.5 Shchukin–Vogel criterion

As mentioned earlier, the Simon criterion involves only second-order mo-
ments of position and momentum operators. Shchukin and Vogel [34] found
necessary and sufficient conditions for the partial transpose of bipartite har-
monic quantum states to be nonnegative. The conditions can be formulated
as an infinite series of inequalities for the various order moments of annihila-
tion and creation operators. The violation of any inequality of this series is a
sufficient condition for entanglement.

Let Â be a Hermitian and nonnegative operator. For all states |ψ〉, we have
the inequality

〈ψ |Â|ψ〉= tr(Â|ψ〉〈ψ |)≥ 0. (12.62)

Any pure bipartite state |ψ〉 can be expressed as

|ψ〉= ĝ†|00〉, (12.63)

with an appropriate operator function ĝ = ĝ(â, b̂), where â and b̂ are the annihi-
lation operators of the first and the second mode. In this way, the nonnegative
operator |ψ〉〈ψ | can be represented in the form f̂ † f̂ , where

f̂ = |00〉〈00|ĝ. (12.64)

Since

〈n| : e−â†â : |n〉=
⎧⎨⎩0, if n �= 0

1, if n = 0,
(12.65)

with : · · · : denoting the normal ordering of the annihilation and creation opera-
tors, the two-mode vacuum density operator may be expressed in the normally
ordered form

|00〉〈00| ≡: exp(−â†â− b̂†b̂) : . (12.66)
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Upon substituting from Eq. (12.66) into Eq. (12.64), we see that the nor-
mal ordered form of the operator f̂ always exists. Hence, we conclude that
a Hermitian operator is nonnegative if and only if, for any operator f̂ whose
normally ordered form exists, the inequality

tr(Â f̂ † f̂ )≥ 0 (12.67)

is satisfied.
For any separable state ρ̂ , the Peres–Horodecki condition states that the par-

tial transpose ρ̂PT of ρ̂ must be positive. According to (12.67), this statement
can be formulated as the inequality

tr(ρ̂PT f̂ † f̂ )≥ 0 (12.68)

for any operator f̂ whose normally ordered form exists. If the operator f̂ is
expanded as

f̂ =
+∞

∑
n,m,k,l=0

cnmkl â
†nâmb̂†kb̂l, (12.69)

the condition (12.68) becomes

+∞

∑
n,m,k,l,p,q,r,s=0

c∗pqrscnmklMpqrs,nmkl ≥ 0, (12.70)

where

Mpqrs,nmkl = tr(ρ̂PT â†qâpâ†nâmb̂†sb̂rb̂†kb̂l) = tr(ρ̂ â†qâpâ†nâmb̂†l b̂kb̂†rb̂s).
(12.71)

The left-hand side of the inequality (12.70) is a quadratic form with respect to
the coefficients cnmkl of the expansion (12.69). The inequality (12.70) holds for
all cnmkl if and only if all the main minors of the form (12.70) are nonnegative,
i.e., for all

DN =

∣∣∣∣∣∣∣∣∣∣∣∣

M11 M12 · · · M1N

M21 M22 · · · M2N

· · · · · · · · · · · ·
MN1 MN2 · · · MNN

∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0. (12.72)

In order to explicitly write out the condition (12.72), we have to relate multi-
indices (n,m,k, l) and (p,q,r,s) of the moments defined in (12.71) to row index
i and column index j of the determinant in (12.72). In general, one can at
will prescribe the relation between multi-indices (n,m,k, l) and single row or
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column index. Once the relation is defined well, we have an infinite series of
the inequalities (12.72) with N = 1,2,3, · · ·. According to the Peres–Horodecki
criterion, we obtain a sufficient condition for inseparability or entanglement: A
bipartite quantum state is entangled if there exits a negative determinant such
that there exists an N, for which

DN < 0. (12.73)

Let us illustrate the condition (12.73) for the example of an entangled quan-
tum composed of two coherent states

|ψ−〉= N−(α,β )(|α,β 〉− |−α,−β 〉), (12.74)

where the normalization is

N−(α,β ) = [2(1− e−2(|α |2+|β |2))]−1/2. (12.75)

It is easily shown that the Simon criterion (12.36) fails to demonstrate the
entanglement of this state. Properly relating row index and column index of
DN to multi-indices (n,m,k, l) of the moments (12.71), from (12.72), one can
establish the sub-determinant

D3 =

∣∣∣∣∣∣∣∣∣
1 〈b̂†〉 〈âb̂†〉
〈b̂〉 〈b̂†b̂〉 〈âb̂†b̂〉
〈â†b̂〉 〈âb̂†b̂〉 〈â†âb̂†b̂〉

∣∣∣∣∣∣∣∣∣
. (12.76)

Explicitly, it reads as

D3 =−|α|2|β |4 coth(|α|2 + |β |2)
sinh(|α|2 + |β |2) , (12.77)

which is clearly negative for all nonzero coherent amplitudes. Hence, accord-
ing to the criterion (12.73), the state (12.74) is always entangled if both coher-
ent amplitudes are nonzero.

12.5 Coherence-induced entanglement

As mentioned in Subsection 12.4.1, in order to successfully detect entangle-
ment of a state ρ̂ according to the positivity of the resulting state Â⊗ B̂(ρ̂), one
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has to properly choose the local positive operations Â⊗ B̂. If choosing Â = Î1
and B̂ = T̂2, one has to diagonalize the resulting partial transposed matrix for
checking the positivity of eigenvalues. If dimension of the Hilbert space under
consideration is high, this method becomes difficult. In this section, we first
discuss a modification version of the Peres–Horodecki criterion and then apply
the modified criterion to atomic coherence induced entanglement between two
thermal fields [66].

Let P̂ and Q̂ represent projection operators onto subspaces of the Hilbert
spaces H1 and H2, respectively. Instead of taking Â = Î1 and B̂ = T̂2 as Peres
and Horodecki did, we choose the local positive operators Â = P̂ and B̂ =
T̂2Q̂. From (12.22), we see that the resulting matrix through the projection
and partial transposition operations must still be positive if the original state
is separable. Therefore, we can definitely claim that the original state must be
entangled as long as the projected and partial transposed matrix is negative.
Here, by use of the Peres–Horodecki criterion, we detect entanglement of the
original state in the subspace which is projected by operators P̂⊗ Q̂ out of the
whole Hilbert space. The projection operation may make the criterion weaker.
However, this method becomes useful when we have to deal with entanglement
of states in the high dimensional Hilbert space. Bose et al. [67] used this
method in studying subsystem-purity-induced atom-field entanglement in the
Jaynes–Cummings model. Here, we detect entanglement between two thermal
fields which interact with a single three-level atom of V-configuration. We are
originally involved in an infinite dimensional Hilbert space.

The model under consideration is shown in Fig. 12.1. The transitions be-

abω

1ν 2ν|a>
|b>

|c>

FIGURE 12.1: Atomic level scheme, atomic coherence preparation via a clas-
sical field, and doubly resonant cavity.

tween the upper levels |a〉 and |b〉 to the ground state |c〉 are dipole allowed and
these transitions are coupled resonantly with two modes of the electromagnetic
field inside a cavity at temperature T . The transition between the upper lev-
els |a〉 and |b〉 is dipole forbidden. The interaction picture Hamiltonian of the
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system is given by

Ĥ = h̄g1(|a〉〈c|â1 + |c〉〈a|â†
1)+ h̄g2(|b〉〈c|â2 + |c〉〈b|â†

2), (12.78)

where â1(â
†
1) and â2(â

†
2) are the annihilation (creation) operators for the two

cavity modes and g1,2 are coupling constants of the atom with the fields.
We consider the initial states of the cavity fields to be diagonal in the Fock-

state representation and the atom to be prepared in a coherent superposition of
the upper levels by a classical field of frequency ωab as shown in Fig. 12.1.
The initial state of the atom-field system is written as

ρ̂a f (0) =
∞

∑
n1=0

Pn1
|n1〉〈n1|⊗

∞

∑
n2=0

Pn2
|n2〉〈n2| (12.79)

⊗(ρaa|a〉〈a|+ ρbb|b〉〈b|+ ρcc|c〉〈c|+ ρab|a〉〈b|+ ρba|b〉〈a|),
where Pn1,2

are the probabilities for having photon number states |n1,2〉. An
example of fields with vanishing off-diagonal matrix elements in the Fock-
state representation is a thermal state, which has

Pn1,2
=

〈n1,2〉n1,2

(1 + 〈n1,2〉)n1,2+1 . (12.80)

In (12.80), 〈n1,2〉 = (eh̄ν1,2β − 1)−1 are the mean photon number of the fields

at temperature T with ν1,2 being the field frequencies, and β−1 = kBT with kB
being the Boltzmann constant.

The density matrix operator at time t is given by ρ̂a f (t) = Û(t)ρ̂a f (0)Û†(t)
where Û(t) = exp(−iĤt/h̄) is the time evolution operator. It follows, on taking
a trace over the atomic variables, that the reduced density matrix operator for
the fields is given by

ρ̂ f (t) =
∞

∑
n1=0

∞

∑
n2=0

ρn1,n2;n1,n2
|n1,n2〉〈n1,n2|

+ ρab

∞

∑
n1=0

∞

∑
n2=0

ρn1+1,n2;n1,n2+1|n1 + 1,n2〉〈n1,n2 + 1|

+ ρba

∞

∑
n1=0

∞

∑
n2=0

ρn1,n2+1;n1+1,n2
|n1,n2 + 1〉〈n1 + 1,n2|, (12.81)

where the matrix elements are given by

ρn1,n2;n1,n2
= Pn1

Pn2
{ρaa[1−g2

1(n1 + 1)An1+1,n2
(1−Cn1+1,n2

)]2
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+ ρbb[1−g2
2(n2 + 1)An1,n2+1(1−Cn1,n2+1)]

2}
+ g2

1g2
2{ρaaPn1−1Pn2+1n1(n2 + 1)A2

n1,n2+1(1−Cn1,n2+1)
2

+ ρbbPn1+1Pn2−1n2(n1 + 1)A2
n1+1,n2

(1−Cn1+1,n2
)2}

+ {ρaaPn1−1Pn2
g2

1n1 + ρbbPn1
Pn2−1g2

2n2}An1,n2
S2

n1,n2

+ ρcc{Pn1
Pn2

C2
n1,n2

+ Pn1+1Pn2
g2

1(n1 + 1)An1+1,n2
S2

n1+1,n2

+ Pn1
Pn2+1g2

2(n2 + 1)An1,n2+2S2
n1,n2+1}, (12.82)

ρn1+1,n2;n1,n2+1 = −g1g2

√
(n1 + 1)(n2 + 1){An1+1,n2+1(1−Cn1+1,n2+1)

× (Pn1+1Pn2
[1−g2

1(n1 + 2)An1+2,n2
(1−Cn1+2,n2

)]

+ Pn1
Pn2+1[1−g2

2(n2 + 2)An1,n2+2(1−Cn1,n2+2)])

− Pn1
Pn2

√
An1+1,n2

An1,n2+1Sn1+1,n2
Sn1,n2+1}, (12.83)

ρn1,n2+1;n1+1,n2
= (ρn1+1,n2;n1,n2+1)

∗, (12.84)

with An1,n2
= (g2

1n1 + g2
2n2)

−1,Sn1,n2
= sin(

√
g2

1n1 + g2
2n2t) and Cn1,n2

=

cos(
√

g2
1n1 + g2

2n2t).
The density matrix (12.81) is defined in an infinite dimensional Hilbert s-

pace. To estimate entanglement of (12.81), we consider the local operators
Ân1

= |n1〉〈n1|+ |n1 + 1〉〈n1 + 1| and B̂n2
= T̂2(|n2〉〈n2|+ |n2 + 1〉〈n2 + 1|)

with n1,2 = 0,2,4, · · ·. The projection of (12.81) on the subspace spanned
by basis vectors (|n1〉, |n1 + 1〉)⊗ (|n2〉, |n2 + 1〉) with fixed photon numbers
n1,2(= 0,2,4, ...) leads to the state

[σ̂ f (t)]n1,n2
= Ân1

B̂n2
ρ̂ f (t)B̂

†
n2

Â†
n1

. (12.85)

In the subspace under consideration, the projected and partial transposed den-
sity matrix (12.85) becomes a 4×4 Hermitian matrix. Then, the Peres–Horo-
decki sufficient condition can be directly applied for the inseparability of ma-
trix (12.85). It is easily found that the matrix (12.85) has a negative eigenvalue
if the condition

|ρab|2 > Rn1,n2
=

ρn1,n2;n1,n2
ρn1+1,n2+1;n1+1,n2+1

|ρn1+1,n2;n1,n2+1|2
(12.86)

is satisfied. According to the Peres–Horodecki condition, one can claim that
the state (12.81) is an entangled state if the condition (12.86) is satisfied.
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In order to conveniently control the populations and atomic coherence at the
same time, we consider the atom whose level populations initially are ρii(0)
(i = a,b,c) and off diagonal matrix elements ρi j = 0 for i �= j. A coherence
between the excited states a and b is created when the atom interacts resonantly
with a classical field of frequency ωab for a time τ . After the interaction with
the classical field, the populations and the atomic coherence are given by [68]

ρaa = ρaa(0)cos2(Ωτ)+ ρbb(0)sin2(Ωτ), (12.87)

ρbb = ρaa(0)sin2(Ωτ)+ ρbb(0)cos2(Ωτ), (12.88)

ρab = (ρba)
∗ = ieiθ (ρaa(0)−ρbb(0))sin(Ωτ)cos(Ωτ), (12.89)

where Ω is the Rabi frequency and θ is the phase of the driving field. All the
other density matrix elements remain unchanged. In this way, we can unitarily
and continuously control the level populations and atomic coherence by use of
the single parameter Ωτ . After passing through the classical field, the atom
acquires a coherence. When this atom passes through the cavity with two ther-
mal fields, the state of the fields is described by the density matrix (12.81). The
entanglement of the resulting states of the field is determined by the condition
(12.86).

In Fig. 12.2, the right side of (12.86) with n1 = n2 = 0 and the squared
modulus of the atomic coherence (12.89) are shown as a function of Ωτ when
the atom and the fields are initially in thermal equilibrium. In the calculation,

FIGURE 12.2: The solid lines are for the case with 〈n1〉= 0.1 and 〈n2〉= 5.0.
The dashed lines are for the case with 〈n1〉 = 0.1 and 〈n2〉 = 1.0. In the two
cases, gt = 11.0.

we take g1 = g2 = g. We also find that, as a function of n1 and n2, the right side
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of the inequality (12.86) takes the minimal value with n1 = n2 = 0. From Fig.
12.2, it can be noticed that the entanglement condition (12.86) can be satisfied
if the difference between the mean thermal photon numbers of the two fields
is sufficiently large. This situation may not be easily realizable because it
requires a large frequency difference between the two upper levels.

Equation (12.89) shows that the atomic coherence is proportional to the pop-
ulation inversion of the upper levels. On the other hand, the numerator of the
right side of the condition (12.86) decreases if the level populations ρaa,ρbb or
ρcc are small. Therefore, the best initial condition of the atom for satisfying
the condition (12.86) is that the atom is in one of the upper levels. For this
case, Fig. 12.3 shows that the entanglement condition (12.86) can be satisfied
even if the temperature becomes arbitrarily high.

FIGURE 12.3: The solid lines are for the case with 〈n1〉 = 〈n2〉 = 1.0. The
dashed lines are for the case with T → ∞. In the two cases, gt = 5.0 and
ρaa = 1.0.

As discussed earlier, the Hilbert space for the complete system is infinite di-
mensional, i.e., the dimension of the density matrix (12.81) is infinite. We can
therefore obtain an infinite number of the projected 4× 4 Hermitian matrices
(12.85) with different photon numbers n1 and n2 through the projection and
partial transpose operations. We then use the quantity [69]

〈E 〉=−2
∞

∑
n1,n2=0,2,4,···

pn1,n2
λn1,n2

(12.90)

to measure the entanglement of (12.81), where λn1,n2
is the negative eigen-

value of the density matrix (12.85) and pn1,n2
= ρn1,n2;n1,n2

+ ρn1+1,n2;n1,n2
+
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FIGURE 12.4: The time evolution of the entanglement measurement with
〈n1〉= 0.1 and 〈n2〉= 5.0, and Ωτ = π/4.

FIGURE 12.5: The time evolution of the entanglement measurement with
〈n1〉= 〈n2〉= 1.0. Ωτ = π/4, and ρaa = 1.0.
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ρn1,n2+1;n1,n2
+ρn1+1,n2+1;n1+1,n2+1 is the probability of taking the 4×4 matrix

(12.85) out of the matrix (12.81). If 〈E 〉 = 0, it does not mean nonentangle-
ment. If 〈E 〉 �= 0, however, we can ensure that the infinite dimensional density
matrix (12.81) must be an entangled state. In Fig. 12.4, the time evolution of
the entanglement (12.90) is shown when the atom and the fields are initially
in thermal equilibrium. It is seen that for this case the weak entanglement is
detected at several time points. As pointed out earlier, the atomic coherence
will become stronger when the atom is initially in one of the upper levels.
Therefore, we may expect that in this case the stronger entanglement will be
detected. Fig. 12.5 shows the time evolution of the entanglement (12.90) when
the atom is initially in the level |a〉.

From this example, we see that the Peres and Horodecki criterion can also
apply to the case of a high dimensional Hilbert space provided proper projec-
tions are performed prior to the partial transpose operation.

12.6 Correlated spontaneous emission laser as an
entanglement amplifier

In the present section, as an example of applications of the criterion (12.50),
we consider an entanglement amplifier based on the correlated spontaneous
emission [70].

A system under consideration is composed of three-level atoms in a cascade
configuration which interact with two modes of the field inside a doubly res-
onant cavity as shown in Fig. 12.6. The dipole allowed transitions |a〉− |b〉

1ν

2ν
Ω

1ν

2ν

a

b

c

FIGURE 12.6: Atomic level scheme and doubly resonant cavity.

and |b〉−|c〉 are resonantly coupled with the two non-degenerate modes ν1 and
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ν2 of the cavity, while the dipole forbidden transition |a〉− |c〉 is driven by a
semiclassical field. The interaction Hamiltonian of this system in the rotating-
wave-approximation is

HI = h̄g1(a1|a〉〈b|+ a†
1|b〉〈a|)+ h̄g2(a2|b〉〈c|+ a†

2|c〉〈b|)
−1

2
h̄Ω(e−iφ |a〉〈c|+ eiφ |c〉〈a|), (12.91)

where a1(a
†
1) and a2(a

†
2) are the annihilation (creation) operators of the two

nondegenerate modes of the cavities, g1 and g2 are the associated vacuum Rabi
frequencies and Ω is the Rabi frequency of the classical driving field.

With the assumption that the atoms are injected in the cavity in the lower
level |c〉 at a rate ra, the equation of motion for the reduced density matrix of
the cavity field modes is [72, 71].

ρ̇ = −[β ∗11a1a†
1ρ + β11ρa1a†

1− (β11 + β ∗11)a
†
1ρa1 + β ∗22a†

2a2ρ + β22ρa†
2a2

−(β22 + β ∗22)a2ρa†
2]

− [β ∗12a1a2ρ + β21ρa1a2− (β ∗12 + β21)a2ρa1]e
iφ

− [β ∗21a†
1a†

2ρ + β12ρa†
1a†

2− (β12 + β ∗21)a
†
1ρa†

2]e
−iφ

− κ1(a
†
1a1ρ−2a1ρa†

1 + ρa†
1a1)−κ2(a

†
2a2ρ−2a2ρa†

2 + ρa†
2a2), (12.92)

where the cavity damping terms are included in the usual way and κ1 and κ2 are
decay rates of mode 1 and mode 2, respectively. The coefficients β11,β22,β12
and β21 are given by

β11 =
g2

1ra

4
3Ω2

(γ2 + Ω2)(γ2 + Ω2

4 )
, (12.93)

β22 = g2
2ra

1
γ2 + Ω2 , (12.94)

β12 = g1g2ra
iΩ

γ(γ2 + Ω2)
, (12.95)

β21 =
g1g2ra

4
iΩ(Ω2−2γ2)

γ(γ2 + Ω2)(γ2 + Ω2

4 )
, (12.96)

where γ is the atomic decay rate for all the three atomic levels.
In the limit when Ω+ γ , from (12.93)–(12.96), we have that

β11 ∼ 0,β22 ∼ 0,β12 ≈ β21 ∼ ig1g2ra
1

γΩ
. (12.97)
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Under these conditions, Eq. (12.92) is simplified considerably as

ρ̇ = −iα(ρa1a2−a2ρa1)e
iφ − iα(ρa†

1a†
2−a†

1ρa†
2)e

−iφ

+iα(a1a2ρ−a2ρa1)e
iφ + iα(a†

1a†
2ρ−a†

1ρa†
2)e

−iφ

−κ1(a
†
1a1ρ−2a1ρa†

1 + ρa†
1a1)

−κ2(a
†
2a2ρ−2a2ρa†

2 + ρa†
2a2), (12.98)

with iα = β12 = β21. This equation describes a parametric oscillator in the
parametric approximation. Based on (12.97), we can calculate the time evolu-
tion of the quantum fluctuations of the operators (12.48) and (12.49) with the
choice a = b = 1 and d =−c = 1. The resulting expressions are

[
(Δû)2 +(Δv̂)2](t) = {[(Δû)2 +(Δv̂)2](0)− 2κ

α + κ
}e−2(α+κ)t +

2κ
α + κ

.

(12.99)
When deriving out (12.99), we have taken the phase of the driven field to be
φ = −π/2, since only under this special phase, the positive exponential terms
in (Δû)2 + (Δv̂)2 can be canceled out and ensure that this quantity does not
grow with time.

It is clear that, for any initial state of the field, the quantity (Δû)2 + (Δv̂)2

decreases as time evolves. When (α + κ)t >> 1, we have (Δû)2 + (Δv̂)2 =
2 κ

α+κ < 2, i.e., the entanglement criterion (12.50) is satisfied. Thus the system
evolves into an entangled state.

For the general case, we have to numerically calculate the field moments
required in the inequality (12.50) according to (12.92). In Figs. 12.7 and 12.8
we show the time development of (Δû)2 + (Δv̂)2 for different Ω/γ and fixed
κ/g. In Fig. 12.8, we plot these quantities for an initial coherent state with
104 photons in each mode. The choice of the phase for the coherent amplitude
is such that the condition α1α2 = −|α1α2| is satisfied. The parameter values
are such that they correspond to the micromaser experiments in Garching [73].
We find that the two states remain entangled for a long time. The parametric
results are valid only for gt < 10. In Fig. 12.8, we plot (Δû)2 +(Δv̂)2 for initial
vacuum states for the two modes. The time scale for the two modes to remain
entangled increases as the Rabi frequency of the driving field is increased.
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FIGURE 12.7: Time evolution of (Δû)2 + (Δv̂)2 for initial coherent states
|100,−100〉 in terms of the normalized time gt. Various parameters are
ra = 22kHz, g = g1 = g2 = 43kHz, κ = κ1 = κ2 = 3.85kHz, γ = 20kHz,
Ω = 400kHz. The curves labeled by 1 and 2 represent the results for the para-
metric case and the general case, respectively.
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FIGURE 12.8: Time evolution of (Δû)2 +(Δv̂)2 for initial vacuum state of the
two modes with Ω/γ = 20,23,25;ra = g = γ and κ/g = 0.001.
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12.6 Remarks

Since entanglement is one of the key properties of quantum systems that
is fundamentally different from classical mechanics and it plays a key role in
quantum information processing, a lot of experimental and theoretical effort
has been devoted to investigating entanglement of subsystems in recent years.
Some entanglement criteria and measures have been established. However,
several important questions still remain open.

The existing entanglement criteria may be divided into three different class-
es. The first one is based on the locality concept of correlations between sub-
systems. Various Bell inequalities and inferred uncertainty relations resulting
from the EPR correlations belong to this class. These criteria are often used
in various optical experiments for testing the EPR correlations and creating
entanglement between photons such as in frequency down-conversion. The
second one is based on variances of variables and the definition of separable
states which are statistically mixed products of subsystem states. Variances
of all physical variables for any quantum states must obey the Heisenberg un-
certainty relation. As a specific class of quantum states, however, separable
states set a loose relation between either a product or a sum of variances of
physical variables. Since these criteria are expressed in terms of variances of
measurable quantities, they may be easy to use in experimental tests even if
not all matrix elements of a density matrix under study are known. If testing
operators are properly chosen, entanglement criteria for very weakly entangled
states such as bound entangled states can also be established in this way. But
the problem is how to choose the testing operators. Until now, we have had no
general rule for this choice. Moreover, in this case, a necessary and sufficient
condition for entanglement of Gaussian states has been established. Closely
related to these criteria, one can also establish some criteria which may be
more useful and stronger for states in the vicinity of extreme entangled states.
The third one is based on the general properties of a density matrix such as
the positivity of density matrix operators. The Peres–Horodecki criterion of
the negativity of partial transpose matrices belongs to this kind. In many cas-
es, this criterion is more powerful than others. This criterion also provides a
necessary and sufficient condition for 2× 2 and 2× 3 systems. Compared to
the other criteria, this criterion has a drawback that one has to know all the
matrix elements of a density matrix when using it. On the other hand, imple-
menting the criterion becomes difficult when dimension of states involved in
investigation is high. We may use a projection method to reduce the dimen-
sion of matrices which are dealt with, but in this way the resulting criterion
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may become weak. Although the above criteria of entanglement have been es-
tablished, more powerful and generic criteria of entanglement are still needed.
The reason is that the above criteria work for certain states but fail for others.
On the other hand, most of the entanglement criteria provide only a sufficient
condition and a necessary condition for entanglement of generic mixed states
is still lacking. For entanglement of multi-subsystems, effective criteria have
not been established yet.

Another important point relates to the quantification of entanglement. Ac-
cording to general physical considerations, several entanglement measures such
as entanglement of formation, the relative entropy and the negativity of partial
transpose matrices have been established. For generic states of two qubits, or
some specific states such as Werner states, some explicit expressions for en-
tanglement measure have been found. Since all the entanglement measures
involve the minimum problem over a whole set of either entangled or sepa-
rable states, this makes it extremely difficult to work out these entanglement
measures for given mixed states. The quantification of entanglement is still an
open question.
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Chapter 13

Parametrizations of Positive
Matrices With
Applications

M. Tseng, H. Zhou, and V. Ramakrishna

Abstract The purpose of this work is twofold. The first is to survey some
parametrizations of positive matrices which have found applications in quan-
tum information theory. The second is to provide some more applications of
a parametrization of quantum states and channels introduced by T. Constanti-
nescu and the last author, and thereby to provide further evidence of the utility
of this parametrization. This work is dedicated to the memory of our colleague
and teacher, the late Professor T. Constantinescu.

13.1 Introduction

Positive matrices play a vital role in quantum mechanics and its applications
(in particular, quantum information processing). Indeed the two basic ingredi-
ents in the theory of quantum information, viz., quantum states and quantum
channels involve positive matrices. See, for instance, [17, 21]. Thus, a study
of parametrizations of positive matrices seems very much warranted. In par-
ticular, the very useful Bloch sphere picture, [17, 21], for the quantum state of
a qubit has prompted several attempts at the extension of this picture to high-
er dimensions. In the process, several groups of researchers have looked into

387
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the question of finding tractable characterizations of positive matrices, which
could lead to useful parametrizations of positive matrices, [3, 5, 15, 23, 27].

This paper is organized as follows. In the next section we set up basic nota-
tion and also point out some sources for positive matrices in quantum mechan-
ics and its applications. The third section introduces six (perhaps well-known)
characterizations of positive matrices, and reviews some putative parametriza-
tions of states of qudits. In the next section, we review a parametrization
proposed in [5], reiterating its utility. The final section offers two more ap-
plications of the parametrization in [5]. The first concerns Toeplitz states, i.e.,
density matrices which are also Toeplitz. The second investigates constraints
imposed on relaxation rates of an open quantum system by the requirement of
complete positivity.

13.2 Sources of positive matrices in quantum theory

Let us recall that a matrix is positive semidefinite (positive, for short) if
z∗Pz≥ 0 for all z∈Cn. One can easily extend this definition to infinite positive
matrices. In effect such a matrix is what is called a positive kernel, [6], viz.,
a map K : N0×N0 →C, where N0 is the set of non-negative integers, with the
property that for each n > 0, and each choice p1, . . . , pn in N0 and each choice
z1, . . . ,zn of elements of C we have

n

∑
i, j=1

K(pi, p j)z̄iz j ≥ 0.

Positive matrices intervene in at least two of the basic ingredients of quan-
tum mechanics and quantum information theory, viz., quantum states and quan-
tum channels. There are, of course, more sources for positive matrices, but, for
reasons of brevity, we will confine ourselves to discussing states and channels.

The state of a d-dimensional quantum system is described by a d×d positive
density matrix of trace 1, that is, a positive element of trace 1 in the algebra
Md of complex d×d matrices. States described by rank-one density matrices
are called pure states.

A quantum channel is a completely positive map Φ : A → L (H ) from
a C∗-algebra A into the set L (H ) of all bounded linear operators on the
Hilbert space H (in the situations most frequently met in quantum informa-
tion processing, A = Md and L (H ) = M

d′
). By the Stinespring theorem,

(Theorem 4.1 of [19]), such a map is the compression of a ∗-homomorphism.
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For A = Md , there is a somewhat more explicit representation, given in [4]
(see also [13]). Thus, Φ : Md →L (H ) is completely positive if and only if
the matrix

S = SΦ =
[
Φ(Ek, j)

]d

k, j=1
(13.1)

is positive, where Ek, j, k, j = 1, . . . ,d, are the standard matrix units of Md .
Each Ek, j is a d× d matrix consisting of 1 in the (k, j)− th entry and zeros
elsewhere.

REMARK 13.1 Usually one requires a quantum channel to satisfy
two additional requirements: i) Φ be trace preserving, and/or ii) Φ be
unital (see below).

A Kraus operator representation of a completely positive map is a (non-
unique) choice of operators Vi such that one can express the effect of Φ via

Φ(ρ) =
r

∑
i=1

ViρV ∗i .

Usually only the non-zero Vi are taken into account in the above equation
(though sometimes it is convenient to ignore this convention).

Then Φ is trace-preserving iff ∑r
i=1 V ∗i Vi = Id, while Φ is unital iff ∑r

i=1 ViV
∗
i =

Id. These properties can also be verified (without any reference to Kraus rep-
resentations) by computing the partial traces of SΦ viewed as an unnormalized
state (see [26]).

All choices of Kraus operator representations for Φ come from square roots
of SΦ, i.e., matrices T such that SΦ = TT ∗. One then obtains the Vi from the
ith column of T by reversing the vec operation, [10, 26]. Recall that the vec
operator associates to a d× e matrix, V , a vector in Cde obtained by stacking
the columns of V . It is precisely because of lack of uniqueness in the square
roots of SΦ that the Kraus operator representation of Φ is non-unique.

We should point out that some of the definitions for quantum channel no-
tions used in [5], though equivalent to the standard ones (i.e., the ones used
here), are different.
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13.3 Characterizations of positive matrices

All positive matrices are Hermitian (unlike the real case, the definition of
a positive matrix automatically forces Hermiticity). There are several charac-
terizations of positive matrices as a subclass of Hermitian matrices. Some of
these yield useful parametrizations of positive matrices.

The following theorem, which for the most part is standard textbook materi-
al (see, for instance, the classic [11]), reviews some of these characterizations.

THEOREM 13.1
Let P be a Hermitian matrix. Then the following are equivalent:

• P1 P is positive.

• P2 All the eigenvalues of P are non-negative.

• P3 There is an upper-triangular matrix T such that P = T ∗T (Cho-
lesky decomposition)

• P4 All principal minors of P are non-negative.

• P5 Let p(t) = tn + ∑n−1
i=0 (−1)ibit

n−i be the characteristic polynomial
of P. Then bi ≥ 0, for all i.

• P6 There is a Hermitian matrix H such that P = H2.♦

REMARK 13.2

• P3 is normally mentioned only for positive definite matrices in the
bulk of the literature. However, a limiting argument shows that it
is valid for positive semidefinite matrices as well.

• That P5 is equivalent to P2 is just a consequence of Descartes’ rule
of signs.

• P4 should be folklore. Quite surprisingly, we were unable to find
any source where P4 is stated explicitly (even in a venerable text
such as [11]). Since a similar statement for positive definite matri-
ces (viz., positive definiteness is equivalent to the positivity of the
leading principal minors) is well documented and we have seen this
statement occasionally incorrectly applied to positive semidefinite
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matrices, we will include a brief proof here. Clearly if P is positive,
all principal submatrices of P are positive, and hence all principal
minors are non-negative. Conversely suppose all principal minors
of P are non-negative. Since the coefficients bi of the characteristic
polynomial of any matrix are just the sum of all the i× i principal
minors of P, it follows that bi ≥ 0. Hence P is positive. ♦

Whilst the above conditions are equivalent to positivity, they typically do not
lead to useful parametrizations of positive matrices. For instance, parametriz-
ing P by its eigenvalues only describes the U(n) orbit to which P belongs. For
the same reason one cannot parametrize P by the coefficients bi of the charac-
teristic polynomial p(t).

However, one can turn these characterizations into potential parametriza-
tions. To illustrate this consider the problem of parametrizing quantum states
in dimension d, i.e., d×d positive matrices with unit trace. The standard start-
ing point is to represent a state ρ via

ρ =
1
d

(Id +
d2−1

∑
i=1

βiλi). (13.2)

Here βi ∈ R and the λi form an orthogonal basis for the space of traceless
Hermitian matrices, specifically Tr(λiλ j) = 2δi j. One typical choice is the so-
called generalized Gell–Mann matrices, [15, 27]. This basis is obtained from
the matrices Ek j,k, j = 1, . . . ,d (Ek j = eke∗j) via the following construction:

f d
k, j = Ek, j + E j,k, k < j,

f d
k, j =

1
i

(
E j,k−Ek, j

)
, k > j,

hd
1 = Id , hd

k = hd−1
k ⊕0, 1 < k < d,

hd
d =

√
2

d(d−1)

(
hd−1

1 ⊕ (1−d)
)

.

These matrices, f d
k, j ,h

d
1 ,h

d
k ,h

d
d together form one choice of the {λi, Id} basis

for the space of d× d Hermitian matrices. When d = 2 this is precisely the
Pauli matrix basis. When d = 3 one gets the usual Gell–Mann matrices.

With Equation (13.2) as the starting point one can restrict the vector β =
(β1, . . . ,βd2−1

) ∈ Rd2−1 to satisfy any of the characterizations P1–P6. In prin-

ciple, this provides a bijection from a subset of Rd2−1, say Dβ , to the space of
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d× d density matrices. This is precisely what is proposed simultaneously in
[3, 15] for the characterization P5. However, now by conservation of difficul-
ty, the burden of the analysis of quantum states in dimension d > 2 is shifted
to obtaining a concrete analysis of the subset Dβ . In particular, these do not
lead to easily computed parametrization of quantum states (cf. the conclusions
section of [15]). Interestingly enough each of these characterizations leads pre-
cisely to the Bloch sphere picture when d = 2, as we encourage the reader to
verify. However, this approach has some utility in higher dimensions as well.
For instance, depending on which characterization one uses, it is at least pos-
sible to be more precise about the set of pure states (i.e., rank-one states). We
shall explain this via the characterization P6 because pure states are precisely
those states, ρ for which ρ2 = ρ , and this fits in nicely with P6.

In order to state a precise result, let us introduce the tensor dkli obtained from
considering the Jordan structure of the λi. Specifically, if {λk,λl} denotes the
Jordan commutator (i.e., the anti-commutator) of λk,λl , then

{λk,λl}= λkλl + λlλk =
4
d

Idδkl +
d2−1

∑
i=1

dkliλi.

We use the dkli to introduce an operation amongst vectors x,y ∈ Rd2−1, via

x∪ y = (
d2−1

∑
j,k=1

d1 jkx jyk,
d2−1

∑
j,k=1

d2 jkx jyk, . . . ,
n2−1

∑
j,k=1

di jkx jyk, . . .).

x∪ y is thus a vector in Rd2−1. We can now state the following.

PROPOSITION 13.1
Every density matrix can be represented in the form in Eqn. (13.2) with

β = 2κ
d β0 + β0∪β0

d , where β0 is any vector in Rd2−1 with || β0 ||2≤ d2

2 and

κ = +
√

d2−2||β0||2
d . Conversely any Hermitian matrix admitting such a

representation is necessarily a density matrix. A state ρ is pure precisely
if it can be represented in the form in Eqn. 13.2) with < β ,β >= d2−d

2
and (d−2)β = β ∪β .

The proof is straightforward. Since ρ = H2 and H itself can be expanded as
a linear combination of Id and the λi (albeit with the coefficient of Id different
from 1

d ), the first part of the result follows from the linear independence of
{Id,λi}. For the second part, we represent ρ as in Eqn. (13.2) and equate it to
its square.
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Once again, the difficulty is in the analysis of states which are not pure. It
is worth mentioning that the pure state condition in the above proposition is
essentially the same as that obtained from the characterization P5 (for a pure
state the characteristic polynomial is p(t) = td +(−1)dtd−1, i.e., b1 = 1,bi =
0, i≥ 2).

It should be pointed out that even an analysis of the pure state conditions is
far from trivial. The condition (d−2)β = β ∪β is vacuously true when d = 2
(since the Pauli matrices anti-commute). For d ≥ 3, this condition imposes
genuine restrictions. It is an interesting problem to find an orthogonal basis
for the space of Hermitian matrices (the generalized Gell–Mann matrices form
just one amongst many) which is close to “abelian”, i.e., one for which many
of the dkli vanish, to facilitate the analysis of the condition (d−2)β = β ∪β .

In contrast, the parametrization discussed in the next section yields a very
simple characterization of pure states.

13.4 A different parametrization of positive
matrices

In this section we recall informally the main result of [5] on the parametriza-
tion of positive matrices. In order to do that a few preliminary definitions and
notions are needed.
To any contraction T , one defines its defect operator via

DT = (I−T ∗T )1/2.

Here M∗ is the adjoint of an operator (when M is a scalar, this is merely com-
plex conjugation).

To such a contraction one can also associate a certain unitary operator, called
the Julia operator of T via

U(T ) =

⎡⎣ T DT ∗

DT −T ∗

⎤⎦ . (13.3)

Thus, U(T ) is a unitary dilation of T .
If we are given a family of contractions Γk j, j ≥ k with Γkk = 0 for all k,

then we associate it to a family of unitary operations via the Julia operator
construction as follows. We first let Uk,k = Id, while for j > k we set

Uk, j = Uj−k(Γk,k+1)Uj−k(Γk,k+2) . . .Uj−k(Γk, j)(Uk+1, j⊕ IDΓ∗k, j

),
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where
Uj−k(Γk,k+l) = I⊕U(Γk,k+l)⊕ I.

To a family of contractions, Γk, j one can associate a row contraction via

Rk, j =
[

Γk,k+1, DΓ∗k,k+1
Γk,k+2, . . . , DΓ∗k,k+1

. . .DΓ∗k, j−1
Γk, j

]
,

and a column contraction via

Ck, j =
[

Γ j−1, j, Γ j−2, jDΓ j−1, j
, . . . , Γk, jDΓk+1, j

. . .DΓ j−1, j

]t
,

where “t” stands for matrix transpose. For more details on the ranges and
domains of these operators see [5].

Then the main theorem regarding positive matrices can be stated informal-
ly as follows (for a precise statement, especially concerning the ranges and
domains of all operators involved, see [5]).

THEOREM 13.2

The matrix S =
[
Sk, j

]d

k, j=1
as above, satisfying S∗jk = Sk j, is positive if

and only if i) Skk ≥ 0,k = 1, . . . ,d and ii) there exists a family {Γk, j |
k, j = 1, . . . ,d,k ≤ j} of contractions such that Γk,k = 0 for k = 1, . . . ,d
valid, and

Sk, j = L∗k,k(Rk, j−1Uk+1, j−1Ck+1, j + DΓ∗k,k+1
. . .DΓ∗k, j−1

Γk, jDΓk+1, j

. . .DΓ j−1, j
)Lj, j (13.4)

where Lk,k is any square root of Skk ♦.

DEFINITION 13.1 The contractions Γk, j, with j > k, will be called
the Schur–Constantinescu parameters of S.

These parameters were first discovered for Toeplitz matrices by Schur, [24],
albeit in the guise of a problem about power series which are bounded in the
unit circle. In our humble opinion, it was our late colleague and teacher, T.
Constantinescu, who championed the study of these parameters to cover all
positive matrices (more generally to matrices with displacement structure, [8])
and most adroitly brought to fore many of their interesting features. Therefore,
we have chosen to call these parameters, the Schur–Constantinescu parameter-
s, in his honor.
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We will illustrate Theorem (13.2) via the case of 3×3 positive matrices.

Thus, let S =

⎡⎢⎢⎢⎣
S11 S12 S13

S∗12 S22 S23

S∗13 S∗23 S33

⎤⎥⎥⎥⎦ be a positive matrix. Then Sii > 0 and let us

pick Lii as the positive square roots of Sii. In this case L∗ii = Lii. Then per
Theorem 13.2, there are complex numbers Γ12,Γ13,Γ23 in the unit disc such
that:

S12 = L∗11Γ12L22,

S23 = L∗22Γ23L33,

S13 = L∗11

(
Γ12Γ23 + DΓ∗12

Γ13DΓ23

)
L33.

Note that there is a recursive procedure to determine the Γk j. The first and
the second equations yield Γ12,Γ23 from quantities already known, while the
last equation yields Γ13 from quantities already determined from the first two
equations.

Whilst the Schur–Constantinescu parameters are defined directly in terms
of the entries of S, one could also seek expressions for them in terms of the
vector β of Equation (13.2) (i.e., when S is a density matrix). See [5, 7] for
such expressions. In particular, for d = 2 the analog of the Bloch sphere is now
a cylinder.

It is appropriate to make several comments about these parameters at this
point:

• C1 As can be expected from the form of Eqn. (13.4), Theorem 13.2
is valid for operator matrices, i.e., matrices whose entries are matrices
or even operators in infinite-dimensional spaces, i.e., for elements of
Md⊗L (H ), with H allowed to be infinite-dimensional. In fact, one
can easily extend the result to infinite matrices with (possibly infinite-
dimensional) operator entries.

• C2 Though we only called the Γk j as the Schur–Constantinescu pa-

rameters, a full parametrization is provided by the d(d−1)
2 contractions

Γk j,k < j and the Lii, i = 1, . . . ,d. In the case of scalar valued matrices,

i.e., when H = C, we thus get the right count of d2 real parameters.
Note the Γkk = 0 are just some fake parameters, included in the state-
ment of the theorem to avoid an artificial separation of the j = k+1 case
from that for other values of j.
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• C3 Since the Lii are allowed to be any choice of square root of Sii (i.e.,
Sii = LiiL

∗
ii), the parametrization will be different for different choices of

the Lii. A most natural choice would be the Cholesky factorization of
Sii. In fact, as described in [5], there is an algorithmic proof of Theorem
(13.2) which automatically yields the Cholesky factorization of S. In the
infinite-dimensional case, some of the algorithmic flavor of the proof is
lost.

• C4 While Eqn. (13.4) in Theorem 13.2 is nonlinear and looks quite com-
plicated, there is an iterative feature to it (as mentioned in the 3×3 ex-
ample given before), inasmuch as in each equation there is just one of
the Γk j being solved for. It is precisely because of this that the Schur–
Constantinescu parameters have an inheritance property, namely that the
parameters of any leading principal submatrix (recall that these will be
positive themselves) are the same as that obtained from the original ma-
trix.

• C5 Since the proof of Theorem 13.2 supplies the Cholesky factoriza-
tion of S, we get an algorithmic recipe for finding one Kraus operator
representation of a quantum channel Φ. Since the Cholesky factor, V
is lower triangular, the Kraus operators, Vi, thereby obtained from V (as
described in Section 13.2), tend to be sparse. This can be useful in deter-
mining sufficient conditions for a channel to be entanglement breaking,
or for computing quantities associated to channels such as the entangle-
ment fidelity, for instance. The utility of using the Cholesky factoriza-
tion lies not just in the avoidance of spectral calculations (as would be
the case if T was found from the spectral factorization of S), but that
most of the Kraus operators Vi are then sparse.

• C6 Returning to a positive matrix, S, whose entries are scalar, it is known
that if Sii = 0 for some i, then the entire row and column to which Sii
belongs has to be zero. Therefore, a reasonable convention to assume
is that Γk j = 0, whenever S j jSkk = 0. With this convention, the Γk j ,Lii
provide a one-one parametrization of positive matrices.

• C7 In the previous section we saw that even the problem of character-
izing pure states via the proposed parametrizations of that section was
not fully resolved. However, the Schur–Constantinescu parametriza-
tion provides a very simple and effective characterization of rank one
states, viz., S is rank one iff all Γk j = 0, except for those cases in which
S j jSkk �= 0, in which case Γk j should be on the unit circle.
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• C8 Let S be a positive matrix. Then there is a very simple formula for
its determinant in terms of the Γk j, viz.,

det(S) =

(
d

∏
k=1

Sk,k

)
∏
k< j

(1−|Γk j|2).

This is useful since some entropic quantities can often be expressed in
terms of determinants [18].

• C9 While Eqn. (13.4) is intricate, there is a useful diagram (called a
transmission line diagram) which keeps track of all the matrix products
in it ♦.

13.5 Two further applications

In this section, two additional applications of the parametrization of the pre-
vious section are provided. The first is to show that block Toeplitz states have
positive partial transpose. The second is to examine the restrictions on the
relaxation rates for an open quantum N-level system imposed by the require-
ments of complete positivity (cf. [22]).

13.5.1 Toeplitz states

The positive partial trace condition of [12, 20] has been found to be a very
useful operational condition for entanglement. While for general states, it is
known to be necessary and sufficient only for 2×2 and 2×3 states, there have
been several arguments in favor of the notion that states which satisfy this pos-
itive partial trace condition (PPT states) are “close” to being unentangled, at
least inasmuch as they are not useful for tasks such as dense coding. Similarly,
there have been several attempts at studying the PPT property for positive ma-
trices which satisfy additional conditions, see [2]. In this section we provide a
contribution along the same vein. We show that positive Toeplitz matrices are
PPT states.

The proof of this result was first found by considering the Schur–Constantine-
scu parameters for 3× 3 block Toeplitz positive matrices. This proof can be
extended in a simple but tedious manner for di×d2 states. But there is, in fact,
a second proof which works for all dimensions. We provide this first and then
discuss the parameter-based proof.
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PROPOSITION 13.2

A Toeplitz mixed state is PPT. ♦

Sketch of the proof: Let A ∈CN×N be a Toeplitz matrix given by

⎡⎢⎢⎢⎢⎢⎢⎣
a0 a−1 · · · a−n

a1 a0 · · · a−n+1
...

...
. . .

...

an an−1 · · · a0

⎤⎥⎥⎥⎥⎥⎥⎦ .

We will first, for illustration purposes, show that AT is also positive. This
is, of course, true for arbitrary positive matrices, but it will serve to illustrate
the proof in the partial transpose case. Then the i j-th entry of A is given by
Ai j = ai− j. The transpose of A, denoted by AT , is

⎡⎢⎢⎢⎢⎢⎢⎣
a0 a1 · · · an

a−1 a0 · · · an−1
...

...
. . .

...

a−n a−n+1 · · · a0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with AT
i j = a j−i. Next, in the cycle notation, let σ0 be the element of the sym-

metric group SN on N letters, {1,2, · · · ,N}, defined by

σ0 = ∏
1≤k≤N

(k (N− k)).

The cycle σ0 induces two simple operations on N×N matrices. If M ∈CN×N

takes the form M =

⎡⎢⎢⎢⎢⎢⎢⎣
w1

w2
...

wn

⎤⎥⎥⎥⎥⎥⎥⎦, where wk’s are rows of M, we define the operation
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Rσ0
by

M
Rσ0−→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

wσ0(1)

wσ0(2)
...

wσ0(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

i.e., Rσ0
simply permutes the rows of M as specified by σ0. Another operation

on columns, Cσ0
, is defined in the same way. Now, we notice that if A is

Toeplitz as given above, then[
Rσ0

(Cσ0
(A))

]
i, j

= AN−i,N− j = a j−i = AT
i, j.

Since Rσ0
and Cσ0

preserve the characteristic polynomial, we have shown that
if a Hermitian Toeplitz matrix is positive then so is its transpose.

The above fact can be extended to the partial transpose of an NM×NM
Toeplitz matrix A in the following way: Let σm be the same permutation as
σ0 on the letters {mn,mn + 1, · · · ,(m + 1)n− 1}. If σ ∈ S

N2 is defined to be
the disjoint product σ0σ1 · · ·σM−1, and Rσ and Cσ are the induced operators,
then by the same argument as above, we have Rσ (Cσ (A)) = APT , where APT

denotes the partial transpose of A. Once again these operations preserve the
characteristic polynomial for Toeplitz matrices and hence if A is positive, in
addition, we find that so is APT . Thus a positive Toeplitz matrix is PPT.

The Schur parametrization of positive matrices gives another proof of propo-
sition 1 that is immediate. If B is a Toeplitz matrix, then B is also block
Toeplitz. So let B be, for instance, a 3× 3 block Toeplitz matrix. Using the
Schur–Constantinescu parameters and the block Toeplitz property of B, we can
write B explicitly as⎡⎢⎢⎢⎣

A A
1
2 Γ1A

1
2 A

1
2 (Γ2

1 + DΓ∗1
Γ2DΓ1

)A
1
2

A
1
2 Γ∗1A

1
2 A A

1
2 Γ1A

1
2

A
1
2 ((Γ∗1)2 + DΓ1

Γ∗2DΓ∗1
)A

1
2 A

1
2 Γ∗1A

1
2 A

⎤⎥⎥⎥⎦ ,

where each entry is an N ×N matrix. Note that due to the block-Toeplitz
nature of B its Schur–Constantinescu parameters Γi j can be indexed by only
one subscript. Transpose block-wise gives us APT . By the spectral theorem,
DΓT

1
= (D∗Γ1

)T . So, simply by inspection, we see that APT has Schur parameters

{(A 1
2 )T ,ΓT

1 ,ΓT
2 }. Therefore APT ≥ 0. This is in fact true in general, according

to the following:
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PROPOSITION 13.3
If A ∈CMN×MN is block Toeplitz, then A is PPT.

The basic idea is to show that If A is parametrized by {Γi}, then APT is
parametrized by {ΓT

i }. Note that the block-Toeplitz property means that Schur–
Constantinescu parameters of A depend only on one index (cf. the 3×3 block
case). We will omit the proof, which is straightforward but tedious. Vi-
a the combinatorial structure of the Schur parameters, one can see how the
parametrization of A gives rise to that of APT . The so-called lattice structure
of the Schur parameters for the 4× 4 case is shown in Fig. 13.1 below. Each
transfer box in Fig. 13.1 describes the action of the Julia operator U(Γi).
Let UT (Γ) denote the transpose of the Julia operator of Γ, i.e.

UT (Γ) =

⎡⎣ ΓT (DΓ)T

(DΓ∗)
T −(Γ∗)T

⎤⎦=

⎡⎣ ΓT DΓT∗

(DΓT ) −(ΓT )∗

⎤⎦= U(ΓT ).

Each entry of the positive semidefinite kernel {Ai j} corresponds to those paths
in the diagram that start from Lj j and end at Lii

∗. For example, each path from
L33 to L11

∗ describes a summand in the expression for A13. So we can see that
the transmission line diagram of APT is then obtained by replacing each U(Γi)
transfer box by that of UT (Γi).
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FIGURE 13.1: Lattice structure for 4×4 positive matrices.

13.5.2 Constraints on relaxation rates

In this subsection we revisit the very interesting work of [22] on the con-
straints imposed on the relaxation rates of an open N-level quantum system



13.5. TWO FURTHER APPLICATIONS 401

by the requirement that its evolution be completely positive. In order to keep
the notation the same as in [22], we will, in this subsection only denote the
Schur–Constantinescu parameters by gi j (but not Γi j).

Let us first briefly review the contents of [22]. Let ρ(t) be the state of an
open N-level quantum system and let ρ̃ be the vector in CN2

which represents
vec(ρ). Then its evolution can be expressed via

˙̃ρ = (− i
h̄

LH + LD)ρ̃ . (13.5)

where LH and LD are N2×N2 matrices representing the Hamiltonian and dis-
sipative parts, respectively, in the evolution of ρ̃ . Let the index (m,n) denote
the number m+(n−1)N. Then the non-zero entries of LD are given by

(LD)(m,n)(m,n) = −Γmn,m �= n,

(LD)(m,m)(l,l) = γml ,m �= l,

(LD)(m,m)(m,m) = −
N

∑
k=1,k �=m

γkm.

Here γkn is the population relaxation rate from level | n > to | k >. The γkn are
real and non-negative. Γkn (for k �= n) is the dephasing rate for the transition
from | k > to | n >. Since Γkn = Γnk, it is easily seen that (LD)(m,n)(m,n) =
(LD)(n,m)(n,m). A key step in the work of [22] is to express Γkn as a sum of
two summands, in recognition of the fact that dephasing is also enhanced by
population relaxation, to wit,

Γkn = Γp
kn

+ Γd
kn,

with Γp
kn

, the decoherence rate due to population relaxation and Γd
kn the deco-

herence rate due to pure phase relaxation. The requirement that the open quan-
tum system’s evolution be completely positive, [1, 9], imposes restrictions on
γkn and Γkn. These restrictions can be expressed as the requirement that a cer-
tain (N2− 1)× (N2− 1) matrix concocted out of the γkn and Γkn be positive
[22]. However, per [22], this requirement can be reduced to verifying that a re-
lated (N−1)× (N−1) matrix be positive. The form of this (N−1)× (N−1)
matrix will depend on a choice of an orthogonal basis for the space of traceless,
Hermitian (N2−1)× (N2−1) matrices. However, positivity of this matrix it-
self is independent of the choice of basis. The excellent analysis in [22] is
unfortunately marred for the N = 4 case by an incorrect criterion for positivity.
Indeed, Eqn. (28) of [22] is only necessary for positivity, while Eqns. (31)–(32)
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are (as correctly claimed in [22]) also just necessary (though they come closer
to sufficiency than Eqn. (28) of [22]).

In the sequel, we will use the Schur–Constantinescu parameters to analyse
the N = 4 case of [22]. As in [22] the evolution Equation (13.5) is completely
positive iff the 3×3 real symmetric matrix B = (bi j) is positive. To specify the

entries of the bi j, we denote by Γd
tot the quantity 1

2 ∑4
n=2 ∑n−1

m=1 Γd
mn. Then the

entries of B are given by

b11 = Γd
tot − (Γd

13 + Γd
24,

b22 = Γd
tot − (Γd

13 + Γd
24,

b33 = Γd
tot − (Γd

12 + Γd
34,

b12 =
(Γd

12−Γd
34)

2
,

b13 =
(Γd

14−Γd
23)

2
,

b23 =
(Γd

13−Γd
24)

2
.

Now B is positive iff bii ≥ 0, i = 1, . . . ,3 and the Schur–Constantinescu param-
eters g12,g13,g23 are in the closed unit disc. Since B is real this is equivalent
to demanding that the gi j belong to the interval [−1,1].

The conditions bii ≥ 0 become

Γd
12 + Γd

14 + Γd
23 + Γd

34 ≥ Γd
13 + Γd

24,

Γd
12 + Γd

13 + Γd
24 + Γd

34 ≥ Γd
14 + Γd

23,

Γd
13 + Γd

14 + Γd
23 + Γd

24 ≥ Γd
12 + Γd

34.

Next b12 =
√

b11g12

√
b22. So g12 ∈ [−1,1] becomes

4Γd
12Γd

34− (Γd
13−Γd

14)
2− (Γd

13−Γd
23)

2 +(Γd
13−Γd

24)
2 +(Γd

14−Γd
23)

2

−(Γd
14−Γd

24)
2− (Γd

23−Γd
24)

2 ≥ 0.

Likewise, the condition g23 ∈ [−1,1] becomes

4Γd
13Γd

24− (Γd
12−Γd

14)
2− (Γd

12−Γd
23)

2 +(Γd
12−Γd

34)
2 +(Γd

14−Γd
23)

2

−(Γd
14−Γd

34)
2− (Γd

23−Γd
34)

2 ≥ 0.

Finally, g13 ∈ [−1,1] becomes

b11b22b33 + 2b12b13b23 ≥ b11b2
23 + b22b2

13 + b33b2
12.
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Note that the condition | g13 |≤ 1 is not similar to the condition for the other gi j
to be in [−1,1]. This is to be expected since the formula for g jk for k > j + 1
is more intricate than those for the case g jk,k = j + 1. Furthermore, this last
condition is precisely one of those obtained in [22]. However, the conditions
obtained here are necessary and sufficient.

13.6 Conclusions

Since positive matrices play a vital role in many applications, it is of im-
portance to obtain computable parametrizations of them. In this paper we dis-
cussed several such potential parametrizations. Which one of them is most
useful is, of course, a matter dictated by the application. We argued, hopefully
persuasively, in favor of the versatility of the parametrization proposed in [5].
There are several other applications besides the ones discussed here, to which
one could apply this parametrization. This will be the subject of future work.
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Chapter 14

Quantum Computing and
Quantum Topology

Louis H. Kauffman and Samuel J. Lomonaco

Abstract This paper is an introduction to relationships between quantum
topology and quantum computing. We discuss unitary solutions to the Yang–
Baxter equation that are universal quantum gates, quantum entanglement and
topological entanglement, and we give an exposition of knot-theoretic recou-
pling theory, its relationship with topological quantum field theory and apply
these methods to produce unitary representations of the braid groups that are
dense in the unitary groups. Our methods are rooted in the bracket state sum
model for the Jones polynomial. We give our results for a large class of rep-
resentations based on values for the bracket polynomial that are roots of u-
nity. We make a separate and self-contained study of the quantum universal
Fibonacci model in this framework. We apply our results to give quantum al-
gorithms for the computation of the colored Jones polynomials for knots and
links, and the Witten–Reshetikhin–Turaev invariant of three manifolds.

14.1 Introduction

This paper describes relationships between quantum topology and quan-
tum computing. Quantum topology is, roughly speaking, that part of low-
dimensional topology that interacts with statistical and quantum physics. Many
invariants of knots, links and three-dimensional manifolds have been born of

409
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this interaction, and the form of the invariants is closely related to the form
of the computation of amplitudes in quantum mechanics. Consequently, it is
fruitful to move back and forth between quantum topological methods and the
techniques of quantum information theory.

This paper is an expanded version of [57] that includes more expository
and background material. We hope that enough background material has been
included here to make the paper useful to both topologists and quantum infor-
mation specialists.

We sketch the background topology, discuss analogies (such as topological
entanglement and quantum entanglement), show direct correspondences be-
tween certain topological operators (solutions to the Yang–Baxter equation)
and universal quantum gates. We then describe the background for topological
quantum computing in terms of Temperley–Lieb (we will sometimes abbrevi-
ate this to T L) recoupling theory. This is a recoupling theory that generalizes
standard angular momentum recoupling theory, generalizes the Penrose theo-
ry of spin networks and is inherently topological. Temperley–Lieb recoupling
theory is based on the bracket polynomial model [36, 43] for the Jones poly-
nomial. It is built in terms of diagrammatic combinatorial topology. The same
structure can be explained in terms of the SU(2)q quantum group, and has
relationships with functional integration and Witten’s approach to topological
quantum field theory. Nevertheless, the approach given here will be unrelent-
ingly elementary. Elementary, does not necessarily mean simple. In this case
an architecture is built from simple beginnings and this architecture and it-
s recoupling language can be applied to many things including, e.g., colored
Jones polynomials, Witten–Reshetikhin–Turaev invariants of three manifolds,
topological quantum field theory and quantum computing.

In quantum computing, the application of topology is most interesting be-
cause the simplest non-trivial example of the Temperley–Lieb recoupling theo-
ry gives the so-called Fibonacci model. The recoupling theory yields represen-
tations of the Artin braid group into unitary groups U(n) where n is a Fibonacci
number. These representations are dense in the unitary group, and can be used
to model quantum computation universally in terms of representations of the
braid group. Hence the term: topological quantum computation.

In this paper, we outline the basics of the Temperely–Lieb recoupling theory,
and show explicitly how the Fibonacci model arises from it. The diagrammatic
computations in the Sections 14.11 and 14.12 are completely self-contained
and can be used by a reader who has just learned the bracket polynomial, and
wants to see how these dense unitary braid group representations arise from it.
The subjects covered in this paper are listed below.

Knots and braids
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Quantum mechanics and quantum computation

Braiding operators and universal quantum gates

A remark about EPR, entanglement, and Bell’s inequality

The Aravind hypothesis

SU(2) representations of Artin braid group

Bracket polynomial and Jones polynomial

Quantum topology, cobordism categories, Temperley–Lieb algebra and
topological quantum field theory

Braiding and topological quantum field theory

Spin networks and Temperley–Lieb recoupling theory

Fibonacci particles

Fibonacci recoupling model

Quantum computation of colored Jones polynomials and Witten–Reshe-
tikhin–Turaev invariant

We should point out that while this paper attempts to be self-contained, and
hence has some expository material, most of the results are either new, or are
new points of view on known results. The material on SU(2) representations
of the Artin braid group is new, and the relationship of this material to the re-
coupling theory is new. The treatment of elementary cobordism categories is
well-known, but new in the context of quantum information theory. The refor-
mulation of Temperley–Lieb recoupling theory for the purpose of producing
unitary braid group representations is new for quantum information theory,
and directly related to much of the recent work of Freedman and his collabora-
tors. The treatment of the Fibonacci model in terms of two-strand recoupling
theory is new and at the same time, the most elementary non-trivial example of
the recoupling theory. The models for quantum computation of colored Jones
polynomials and for quantum computation of the Witten–Reshetikhin–Turaev
invariant are new in this form of the recoupling theory. They take a particularly
simple aspect in this context.

Here is a very condensed presentation of how unitary representations of the
braid group are constructed via topological quantum field theoretic methods.
One has a mathematical particle with label P that can interact with itself to
produce either itself labeled P or itself with the null label ∗. We shall denote the
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interaction of two particles P and Q by the expression PQ, but it is understood
that the “value” of PQ is the result of the interaction, and this may partake of
a number of possibilities. Thus for our particle P, we have that PP may be
equal to P or to ∗ in a given situation. When ∗ interacts with P the result is
always P. When ∗ interacts with ∗ the result is always ∗. One considers process
spaces where a row of particles labeled P can successively interact, subject to
the restriction that the end result is P. For example the space V [(ab)c] denotes
the space of interactions of three particles labeled P. The particles are placed
in the positions a,b,c. Thus we begin with (PP)P. In a typical sequence of
interactions, the first two P’s interact to produce a ∗, and the ∗ interacts with P
to produce P.

(PP)P−→ (∗)P−→ P.

In another possibility, the first two P’s interact to produce a P, and the P inter-
acts with P to produce P.

(PP)P−→ (P)P−→ P.

It follows from this analysis that the space of linear combinations of processes
V [(ab)c] is two-dimensional. The two processes we have just described can
be taken to be the qubit basis for this space. One obtains a representation of
the three strand Artin braid group on V [(ab)c] by assigning appropriate phase
changes to each of the generating processes. One can think of these phases
as corresponding to the interchange of the particles labeled a and b in the
association (ab)c. The other operator for this representation corresponds to the
interchange of b and c. This interchange is accomplished by a unitary change
of basis mapping

F : V [(ab)c]−→V [a(bc)].

If
A : V [(ab)c]−→V [(ba)c]

is the first braiding operator (corresponding to an interchange of the first two
particles in the association) then the second operator

B : V [(ab)c]−→V [(ac)b]

is accomplished via the formula B = F−1RF where the R in this formula acts
in the second vector space V [a(bc)] to apply the phases for the interchange of
b and c. These issues are illustrated in Fig. 14.1, where the parenthesization of
the particles is indicated by circles and by also by trees. The trees can be taken
to indicate patterns of particle interaction, where two particles interact at the
branch of a binary tree to produce the particle product at the root. See also Fig.
14.28 for an illustration of the braiding B = F−1RF .
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FIGURE 14.1: Braiding anyons.
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In this scheme, vector spaces corresponding to associated strings of parti-
cle interactions are interrelated by recoupling transformations that generalize
the mapping F indicated above. A full representation of the Artin braid group
on each space is defined in terms of the local interchange phase gates and
the recoupling transformations. These gates and transformations have to sat-
isfy a number of identities in order to produce a well-defined representation
of the braid group. These identities were discovered originally in relation to
topological quantum field theory. In our approach the structure of phase gates
and recoupling transformations arise naturally from the structure of the brack-
et model for the Jones polynomial. Thus we obtain a knot-theoretic basis for
topological quantum computing.

In modeling the quantum Hall effect [15, 16, 25, 84], the braiding of quasi-
particles (collective excitations) leads to non-trivial representations of the Artin
braid group. Such particles are called Anyons. The braiding in these models
is related to topological quantum field theory. It is hoped that the mathematics
we explain here will form a bridge between theoretical models of anyons and
their applications to quantum computing.

14.2 Knots and braids

The purpose of this section is to give a quick introduction to the diagram-
matic theory of knots, links and braids. A knot is an embedding of a circle
in three-dimensional space, taken up to ambient isotopy. The problem of de-
ciding whether two knots are isotopic is an example of a placement problem,
a problem of studying the topological forms that can be made by placing one
space inside another. In the case of knot theory we consider the placements
of a circle inside three-dimensional space. There are many applications of the
theory of knots. Topology is a background for the physical structure of real
knots made from rope of cable. As a result, the field of practical knot tying
is a field of applied topology that existed well before the mathematical disci-
pline of topology arose. Then again long molecules such as rubber molecules
and DNA molecules can be knotted and linked. There have been a number of
intense applications of knot theory to the study of DNA [79] and to polymer
physics [59]. Knot theory is closely related to theoretical physics as well with
applications in quantum gravity [52, 76, 83] and many applications of ideas in
physics to the topological structure of knots themselves [43].
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Quantum topology is the study and invention of topological invariants via
the use of analogies and techniques from mathematical physics. Many invari-
ants such as the Jones polynomial are constructed via partition functions and
generalized quantum amplitudes. As a result, one expects to see relationships
between knot theory and physics. In this paper we will study how knot the-
ory can be used to produce unitary representations of the braid group. Such
representations can play a fundamental role in quantum computing.

FIGURE 14.2: A knot diagram.

That is, two knots are regarded as equivalent if one embedding can be obtained
from the other through a continuous family of embeddings of circles in three-
space. A link is an embedding of a disjoint collection of circles, taken up to
ambient isotopy. Fig. 14.2 illustrates a diagram for a knot. The diagram is
regarded both as a schematic picture of the knot, and as a plane graph with
extra structure at the nodes (indicating how the curve of the knot passes over
or under itself by standard pictorial conventions).

Ambient isotopy is mathematically the same as the equivalence relation gen-
erated on diagrams by the Reidemeister moves. These moves are illustrated in
Fig. 14.3. Each move is performed on a local part of the diagram that is topo-
logically identical to the part of the diagram illustrated in this figure (these
figures are representative examples of the types of Reidemeister moves) with-
out changing the rest of the diagram. The Reidemeister moves are useful in
doing combinatorial topology with knots and links, notably in working out the
behaviour of knot invariants. A knot invariant is a function defined from knots
and links to some other mathematical object (such as groups or polynomials or
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I

II

III

FIGURE 14.3: The Reidemeister moves.

numbers) such that equivalent diagrams are mapped to equivalent objects (iso-
morphic groups, identical polynomials, identical numbers). The Reidemeister
moves are of great use for analyzing the structure of knot invariants and they
are closely related to the Artin braid group, which we discuss below.

A braid is an embedding of a collection of strands that have their ends in
two rows of points that are set one above the other with respect to a choice
of vertical. The strands are not individually knotted and they are disjoint from
one another. See Figs. 14.4, 14.5 and 14.6 for illustrations of braids and moves
on braids. Braids can be multiplied by attaching the bottom row of one braid
to the top row of the other braid. Taken up to ambient isotopy, fixing the
endpoints, the braids form a group under this notion of multiplication. In Fig.
14.4 we illustrate the form of the basic generators of the braid group, and the
form of the relations among these generators. Fig. 14.5 illustrates how to close
a braid by attaching the top strands to the bottom strands by a collection of
parallel arcs. A key theorem of Alexander states that every knot or link can
be represented as a closed braid. Thus the theory of braids is critical to the
theory of knots and links. Fig. 14.6 illustrates the famous Borromean rings (a
link of three unknotted loops such that any two of the loops are unlinked) as
the closure of a braid.

Let Bn denote the Artin braid group on n strands. We recall here that Bn is
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FIGURE 14.4: Braid generators.

generated by elementary braids {s1, · · · ,sn−1} with relations

1. sis j = s jsi for |i− j|> 1,

2. sisi+1si = si+1sisi+1 for i = 1, · · ·n−2.

See Fig. 14.4 for an illustration of the elementary braids and their relations.
Note that the braid group has a diagrammatic topological interpretation, where
a braid is an intertwining of strands that lead from one set of n points to another
set of n points. The braid generators si are represented by diagrams where the
i-th and (i+ 1)-th strands wind around one another by a single half-twist (the
sense of this turn is shown in Fig. 14.4) and all other strands drop straight to
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Hopf Link

Figure Eight Knot

Trefoil Knot

FIGURE 14.5: Closing braids to form knots and links.

the bottom. Braids are diagrammed vertically as in Fig. 14.4, and the products
are taken in order from top to bottom. The product of two braid diagrams is
accomplished by adjoining the top strands of one braid to the bottom strands
of the other braid.

In Fig. 14.4 we have restricted the illustration to the four-stranded braid
group B4. In that figure the three braid generators of B4 are shown, and then
the inverse of the first generator is drawn. Following this, one sees the identities
s1s−1

1 = 1 (where the identity element in B4 consists in four vertical strands),
s1s2s1 = s2s1s2, and finally s1s3 = s3s1.

Braids are a key structure in mathematics. It is not just that they are a col-
lection of groups with a vivid topological interpretation. From the algebraic
point of view the braid groups Bn are important extensions of the symmetric
groups Sn. Recall that the symmetric group Sn of all permutations of n distinct
objects has presentation as shown below.

1. s2
i = 1 for i = 1, · · ·n−1,

2. sis j = s jsi for |i− j|> 1,
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b CL(b)

FIGURE 14.6: Borromean rings as a braid closure.

3. sisi+1si = si+1sisi+1 for i = 1, · · ·n−2.

Thus Sn is obtained from Bn by setting the square of each braiding generator
equal to one. We have an exact sequence of groups

1−→ Bn −→ Sn −→ 1

exhibiting the Artin braid group as an extension of the symmetric group.
In the next sections we shall show how representations of the Artin braid

group are rich enough to provide a dense set of transformations in the uni-
tary groups. Thus the braid groups are in principle fundamental to quantum
computation and quantum information theory.

14.3 Quantum mechanics and quantum computation

We shall quickly indicate the basic principles of quantum mechanics. The
quantum information context encapsulates a concise model of quantum theory:
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The initial state of a quantum process is a vector |v〉 in a complex vector
space H. Measurement returns basis elements β of H with probability

|〈β |v〉|2/〈v |v〉

where 〈v |w〉 = v†w with v† the conjugate transpose of v. A physical process
occurs in steps |v〉 −→U |v〉 = |Uv〉 where U is a unitary linear transforma-
tion.

Note that since 〈Uv |Uw〉 = 〈v |U†U |w〉 = 〈v |w〉 = when U is unitary, it
follows that probability is preserved in the course of a quantum process.

One of the details required for any specific quantum problem is the nature
of the unitary evolution. This is specified by knowing appropriate information
about the classical physics that supports the phenomena. This information is
used to choose an appropriate Hamiltonian through which the unitary operator
is constructed via a correspondence principle that replaces classical variables
with appropriate quantum operators. (In the path integral approach one needs
a Langrangian to construct the action on which the path integral is based.)
One needs to know certain aspects of classical physics to solve any specific
quantum problem.

A key concept in the quantum information viewpoint is the notion of the
superposition of states. If a quantum system has two distinct states |v〉 and
|w〉, then it has infinitely many states of the form a|v〉+ b|w〉 where a and b
are complex numbers taken up to a common multiple. States are “really” in
the projective space associated with H. There is only one superposition of a
single state |v〉 with itself. On the other hand, it is most convenient to regard
the states |v〉 and |w〉 as vectors in a vector space. We than take it as part of the
procedure of dealing with states to normalize them to unit length. Once again,
the superposition of a state with itself is again itself.

Dirac [22] introduced the “bra -(c)-ket” notation 〈A |B〉= A†B for the inner
product of complex vectors A,B∈H. He also separated the parts of the bracket
into the bra 〈A | and the ket |B〉. Thus

〈A |B〉= 〈A | |B〉

In this interpretation, the ket |B〉 is identified with the vector B ∈ H, while the
bra 〈A | is regarded as the element dual to A in the dual space H∗. The dual
element to A corresponds to the conjugate transpose A† of the vector A, and the
inner product is expressed in conventional language by the matrix product A†B
(which is a scalar since B is a column vector). Having separated the bra and
the ket, Dirac can write the “ket-bra” |A〉〈B | = AB†. In conventional notation,
the ket-bra is a matrix, not a scalar, and we have the following formula for the
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square of P = |A〉〈B | :

P2 = |A〉〈B ||A〉〈B |= A(B†A)B† = (B†A)AB† = 〈B |A〉P.

The standard example is a ket-bra P = |A〉〈A| where 〈A |A〉= 1 so that P2 = P.
Then P is a projection matrix, projecting to the subspace of H that is spanned
by the vector |A〉. In fact, for any vector |B〉 we have

P|B〉= |A〉〈A | |B〉= |A〉〈A |B〉= 〈A |B〉|A〉.

If {|C1〉, |C2〉, · · · |Cn〉} is an orthonormal basis for H, and

Pi = |Ci 〉〈Ci|,

then for any vector |A〉 we have

|A〉= 〈C1 |A〉|C1〉+ · · ·+ 〈Cn |A〉|Cn〉.

Hence
〈B |A〉= 〈B |C1〉〈C1 |A〉+ · · ·+ 〈B |Cn〉〈Cn |A〉.

One wants the probability of starting in state |A〉 and ending in state |B〉.
The probability for this event is equal to |〈B |A〉|2. This can be refined if we
have more knowledge. If the intermediate states |Ci〉 are a complete set of or-
thonormal alternatives then we can assume that 〈Ci |Ci〉= 1 for each i and that
Σi|Ci〉〈Ci|= 1. This identity now corresponds to the fact that 1 is the sum of the
probabilities of an arbitrary state being projected into one of these intermediate
states.

If there are intermediate states between the intermediate states this formula-
tion can be continued until one is summing over all possible paths from A to
B. This becomes the path integral expression for the amplitude 〈B|A〉.

14.3.1 What is a quantum computer?

A quantum computer is, abstractly, a composition U of unitary transforma-
tions, together with an initial state and a choice of measurement basis. One
runs the computer by repeatedly initializing it, and then measuring the result
of applying the unitary transformationU to the initial state. The results of these
measurements are then analyzed for the desired information that the computer
was set to determine. The key to using the computer is the design of the initial
state and the design of the composition of unitary transformations. The reader
should consult [69] for more specific examples of quantum algorithms.
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Let H be a given finite dimensional vector space over the complex numbers
C. Let {W0,W1, ...,Wn} be an orthonormal basis for H so that with |i〉 := |Wi〉
denoting Wi and 〈i| denoting the conjugate transpose of |i〉, we have

〈i| j〉 = δi j

where δi j denotes the Kronecker delta (equal to one when its indices are equal

to one another, and equal to zero otherwise). Given a vector v in H let |v|2 :=
〈v|v〉. Note that 〈i|v is the i-th coordinate of v.

A measurement of v returns one of the coordinates |i〉 of v with probability
|〈i|v|2. This model of measurement is a simple instance of the situation with a
quantum mechanical system that is in a mixed state until it is observed. The
result of observation is to put the system into one of the basis states.

When the dimension of the space H is two (n = 1), a vector in the space
is called a qubit. A qubit represents one quantum of binary information. On
measurement, one obtains either the ket |0〉 or the ket |1〉. This constitutes the
binary distinction that is inherent in a qubit. Note however that the information
obtained is probabilistic. If the qubit is

|ψ〉= α|0〉+ β |1〉,

then the ket |0〉 is observed with probability |α|2, and the ket |1〉 is observed
with probability |β |2. In speaking of an idealized quantum computer, we do not
specify the nature of measurement process beyond these probability postulates.

In the case of general dimension n of the space H, we will call the vectors in
H qunits. It is quite common to use spaces H that are tensor products of two-
dimensional spaces (so that all computations are expressed in terms of qubits)
but this is not necessary in principle. One can start with a given space, and
later work out factorizations into qubit transformations.

A quantum computation consists in the application of a unitary transforma-
tion U to an initial qunit ψ = a0|0〉+ ... + an|n〉 with |ψ |2 = 1, plus a mea-
surement of Uψ . A measurement of Uψ returns the ket |i〉 with probability
|〈i|Uψ |2. In particular, if we start the computer in the state |i〉, then the proba-
bility that it will return the state | j〉 is |〈 j|U |i〉|2.

It is the necessity for writing a given computation in terms of unitary trans-
formations, and the probabilistic nature of the result that characterize quantum
computation. Such computation could be carried out by an idealized quantum
mechanical system. It is hoped that such systems can be physically realized.
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14.4 Braiding operators and universal quantum gates

A class of invariants of knots and links called quantum invariants can be
constructed by using representations of the Artin braid group, and more specif-
ically by using solutions to the Yang–Baxter equation [10], first discovered in
relation to 1+1 dimensional quantum field theory, and two-dimensional statis-
tical mechanics. Braiding operators feature in constructing representations of
the Artin braid group, and in the construction of invariants of knots and links.

A key concept in the construction of quantum link invariants is the associa-
tion of a Yang–Baxter operator R to each elementary crossing in a link diagram.
The operator R is a linear mapping

R: V ⊗V −→V ⊗V

defined on the two-fold tensor product of a vector space V, generalizing the per-
mutation of the factors (i.e., generalizing a swap gate when V represents one
qubit). Such transformations are not necessarily unitary in topological appli-
cations. It is useful to understand when they can be replaced by unitary trans-
formations for the purpose of quantum computing. Such unitary R-matrices
can be used to make unitary representations of the Artin braid group.

A solution to the Yang–Baxter equation, as described in the last paragraph
is a matrix R, regarded as a mapping of a two-fold tensor product of a vector
space V ⊗V to itself that satisfies the equation

(R⊗ I)(I⊗R)(R⊗ I) = (I⊗R)(R⊗ I)(I⊗R).

From the point of view of topology, the matrix R is regarded as representing an
elementary bit of braiding represented by one string crossing over another. In
Fig. 14.7 we have illustrated the braiding identity that corresponds to the Yang–
Baxter equation. Each braiding picture with its three input lines (below) and
output lines (above) corresponds to a mapping of the three-fold tensor product
of the vector space V to itself, as required by the algebraic equation quoted
above. The pattern of placement of the crossings in the diagram corresponds
to the factors R⊗ I and I⊗R. This crucial topological move has an algebraic
expression in terms of such a matrix R. Our approach in this section to relate
topology, quantum computing, and quantum entanglement is through the use
of the Yang–Baxter equation. In order to accomplish this aim, we need to study
solutions of the Yang–Baxter equation that are unitary. Then the R matrix can
be seen either as a braiding matrix or as a quantum gate in a quantum computer.

The problem of finding solutions to the Yang–Baxter equation that are u-
nitary turns out to be surprisingly difficult. Dye [24] has classified all such
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FIGURE 14.7: The Yang–Baxter equation—(R⊗ I)(I ⊗ R)(R ⊗ I) = (I ⊗
R)(R⊗ I)(I⊗R).

matrices of size 4× 4. A rough summary of her classification is that all 4× 4
unitary solutions to the Yang–Baxter equation are similar to one of the follow-
ing types of matrix:

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2

⎞⎟⎟⎟⎟⎟⎟⎠

R′ =

⎛⎜⎜⎜⎜⎜⎜⎝
a 0 0 0

0 0 b 0

0 c 0 0

0 0 0 d

⎞⎟⎟⎟⎟⎟⎟⎠

R′′ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 a

0 b 0 0

0 0 c 0

d 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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where a,b,c,d are unit complex numbers.
For the purpose of quantum computing, one should regard each matrix as

acting on the standard basis {|00〉, |01〉, |10〉, |11〉} of H = V ⊗V, where V is a
two-dimensional complex vector space. Then, for example we have

R|00〉 = (1/
√

2)|00〉− (1/
√

2)|11〉,
R|01〉 = (1/

√
2)|01〉+(1/

√
2)|10〉,

R|10〉 = −(1/
√

2)|01〉+(1/
√

2)|10〉,
R|11〉 = (1/

√
2)|00〉+(1/

√
2)|11〉.

The reader should note that R is the familiar change-of-basis matrix from the
standard basis to the Bell basis of entangled states.
In the case of R′, we have

R′|00〉 = a|00〉,R′|01〉= c|10〉,
R′|10〉 = b|01〉,R′|11〉= d|11〉.

Note that R′ can be regarded as a diagonal phase gate P, composed with a swap
gate S.

P =

⎛⎜⎜⎜⎜⎜⎜⎝
a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

⎞⎟⎟⎟⎟⎟⎟⎠

S =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Compositions of solutions of the (braiding) Yang–Baxter equation with the
swap gate S are called solutions to the algebraic Yang–Baxter equation. Thus
the diagonal matrix P is a solution to the algebraic Yang–Baxter equation.

REMARK 14.1 Another avenue related to unitary solutions to the
Yang–Baxter equation as quantum gates comes from using extra physical
parameters in this equation (the rapidity parameter) that are related to
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statistical physics. In [88] we discovered that solutions to the Yang–
Baxter equation with the rapidity parameter allow many new unitary
solutions. The significance of these gates for quantum computing is still
under investigation.

14.4.1 Universal gates

A two-qubit gate G is a unitary linear mapping G : V ⊗V −→V where V is
a two complex dimensional vector space. We say that the gate G is universal
for quantum computation (or just universal) if G together with local unitary
transformations (unitary transformations from V to V ) generates all unitary
transformations of the complex vector space of dimension 2n to itself. It is
well-known [69] that CNOT is a universal gate. (On the standard basis, CNOT
is the identity when the first qubit is 0, and it flips the second qubit, leaving the
first alone, when the first qubit is 1.)
A gate G, as above, is said to be entangling if there is a vector

|αβ 〉= |α〉⊗ |β 〉 ∈V ⊗V

such that G|αβ 〉 is not decomposable as a tensor product of two qubits. Under
these circumstances, one says that G|αβ 〉 is entangled.
In [17], the Brylinskis give a general criterion of G to be universal. They prove
that a two-qubit gate G is universal if and only if it is entangling.

REMARK 14.2 A two-qubit pure state

|φ〉= a|00〉+ b|01〉+ c|10〉+d|11〉

is entangled exactly when (ad− bc) �= 0. It is easy to use this fact to
check when a specific matrix is, or is not, entangling.

REMARK 14.3 There are many gates other than CNOT that can
be used as universal gates in the presence of local unitary transforma-
tions. Some of these are themselves topological (unitary solutions to
the Yang–Baxter equation, see [55]) and themselves generate represen-
tations of the Artin braid group. Replacing CNOT by a solution to the
Yang–Baxter equation does not place the local unitary transformations
as part of the corresponding representation of the braid group. Thus
such substitutions give only a partial solution to creating topological
quantum computation. In this paper we are concerned with braid group
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representations that include all aspects of the unitary group. Accord-
ingly, in the next section we shall first examine how the braid group on
three strands can be represented as local unitary transformations.

THEOREM 14.1

Let D denote the phase gate shown below. D is a solution to the algebraic
Yang–Baxter equation (see the earlier discussion in this section). Then
D is a universal gate.

D =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

PROOF It follows at once from the Brylinski theorem that D is
universal. For a more specific proof, note that CNOT = QDQ−1, where
Q = H⊗ I, H is the 2×2 Hadamard matrix. The conclusion then follows
at once from this identity and the discussion above. We illustrate the
matrices involved in this proof below:

H = (1/
√

2)

⎛⎝1 1

1 −1

⎞⎠

Q = (1/
√

2)

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠

D =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
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QDQ−1 = QDQ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠= CNOT.

This completes the proof of the theorem.

REMARK 14.4 We thank Martin Roetteles [75] for pointing out
the specific factorization of CNOT used in this proof.

THEOREM 14.2

The matrix solutions R′ and R′′ to the Yang–Baxter equation, described
above, are universal gates exactly when ad − bc �= 0 for their internal
parameters a,b,c,d. In particular, let R0 denote the solution R′ (above)
to the Yang–Baxter equation with a = b = c = 1,d =−1.

R′ =

⎛⎜⎜⎜⎜⎜⎜⎝
a 0 0 0

0 0 b 0

0 c 0 0

0 0 0 d

⎞⎟⎟⎟⎟⎟⎟⎠

R0 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then R0 is a universal gate.

PROOF The first part follows at once from the Brylinski theorem.
In fact, letting H be the Hadamard matrix as before, and

σ =

⎛⎝1/
√

2 i/
√

2

i/
√

2 1/
√

2

⎞⎠ , λ =

⎛⎝1/
√

2 1/
√

2

i/
√

2 −i/
√

2

⎞⎠
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μ =

⎛⎝ (1− i)/2 (1 + i)/2

(1− i)/2 (−1− i)/2

⎞⎠ .

Then
CNOT = (λ ⊗ μ)(R0(I⊗σ)R0)(H⊗H).

This gives an explicit expression for CNOT in terms of R0 and local
unitary transformations (for which we thank Ben Reichardt).

REMARK 14.5 Let SWAP denote the Yang–Baxter Solution R′ with
a = b = c = d = 1.

SWAP =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

SWAP is the standard swap gate. Note that SWAP is not a universal
gate. This also follows from the Brylinski theorem, since SWAP is not
entangling. Note also that R0 is the composition of the phase gate D

with this swap gate.

THEOREM 14.3

Let

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1/
√

2 0 0 1/
√

2

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

−1/
√

2 0 0 1/
√

2

⎞⎟⎟⎟⎟⎟⎟⎠
be the unitary solution to the Yang–Baxter equation discussed above.
Then R is a universal gate. The proof below gives a specific expression
for CNOT in terms of R.

PROOF This result follows at once from the Brylinski theorem,
since R is highly entangling. For a direct computational proof, it suf-
fices to show that CNOT can be generated from R and local unitary
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transformations. Let

α =

⎛⎝1/
√

2 1/
√

2

1/
√

2 −1/
√

2

⎞⎠
β =

⎛⎝−1/
√

2 1/
√

2

i/
√

2 i/
√

2

⎞⎠
γ =

⎛⎝1/
√

2 i/
√

2

1/
√

2 −i/
√

2

⎞⎠
δ =

⎛⎝−1 0

0 −i

⎞⎠ .

Let M = α⊗β and N = γ⊗ δ . Then it is straightforward to verify that

CNOT = MRN.

This completes the proof.

REMARK 14.6 See [55] for more information about these calcula-
tions.

14.5 A remark about EPR, entanglement and Bell’s
inequality

A state |ψ〉 ∈ H⊗n, where H is the qubit space, is said to be entangled if it
cannot be written as a tensor product of vectors from non-trivial factors of H⊗n.
Such states turn out to be related to subtle nonlocality in quantum physics. It
helps to place this algebraic structure in the context of a gedanken experiment
to see where the physics comes in. Thought experiments of the sort we are
about to describe were first devised by Einstein, Podolosky and Rosen, referred
henceforth as EPR.
Consider the entangled state

S = (|0〉|1〉+ |1〉|0〉)/√2.
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In an EPR thought experiment, we think of two “parts” of this state that are
separated in space. We want a notation for these parts and suggest the follow-
ing:

L = ({|0〉}|1〉+{|1〉}|0〉)/√2,

R = (|0〉{|1〉}+ |1〉{|0〉})/√2.

In the left state L, an observer can only observe the left hand factor. In the right
state R, an observer can only observe the right hand factor. These “states” L
and R together comprise the EPR state S, but they are accessible individually
just as are the two photons in the usual thought experiment. One can transport
L and R individually and we shall write

S = L∗R

to denote that they are the “parts” (but not tensor factors) of S.
The curious thing about this formalism is that it includes a little bit of macro-

scopic physics implicitly, and so it makes it a bit more apparent what EPR were
concerned about. After all, lots of things that we can do to L or R do not affect
S. For example, transporting L from one place to another, as in the original
experiment where the photons separate. On the other hand, if Alice has L and
Bob has R and Alice performs a local unitary transformation on “her” tensor
factor, this applies to both L and R since the transformation is actually being
applied to the state S. This is also a “spooky action at a distance” whose con-
sequence does not appear until a measurement is made.

To go a bit deeper it is worthwhile seeing what entanglement, in the sense
of tensor indecomposability, has to do with the structure of the EPR thought
experiment. To this end, we look at the structure of the Bell inequalities using
the Clauser, Horne, Shimony, Holt formalism (CHSH) as explained in the book
by Nielsen and Chuang [69]. For this we use the following observables with
eigenvalues±1.

Q =

⎛⎝ 1 0

0 −1

⎞⎠
1

,

R =

⎛⎝ 0 1

1 0

⎞⎠
1

,

S =

⎛⎝−1 −1

−1 1

⎞⎠
2

/
√

2,



432 14. QUANTUM COMPUTING AND QUANTUM TOPOLOGY

T =

⎛⎝ 1 −1

−1 −1

⎞⎠
2

/
√

2.

The subscripts 1 and 2 on these matrices indicate that they are to operate on
the first and second tensor factors, repsectively, of a quantum state of the form

φ = a|00〉+ b|01〉+ c|10〉+d|11〉.

To simplify the results of this calculation we shall here assume that the coeffi-
cients a,b,c,d are real numbers. We calculate the quantity

Δ = 〈φ |QS|φ〉+ 〈φ |RS|φ〉+ 〈φ |RT |φ〉− 〈φ |QT |φ〉,

finding that
Δ = (2−4(a + d)2 + 4(ad−bc))/

√
2.

Classical probability calculation with random variables of value ±1 gives the
value of QS + RS + RT−QT =±2 (with each of Q, R, S and T equal to ±1).
Hence the classical expectation satisfies the Bell inequality

E(QS)+ E(RS)+ E(RT)−E(QT)≤ 2.

That quantum expectation is not classical is embodied in the fact that Δ can be
greater than 2. The classic case is that of the Bell state

φ = (|01〉− |10〉)/√2.

Here
Δ = 6/

√
2 > 2.

In general we see that the following inequality is needed in order to violate the
Bell inequality

(2−4(a + d)2 + 4(ad−bc))/
√

2 > 2.

This is equivalent to

(
√

2−1)/2 < (ad−bc)− (a + d)2.

Since we know that φ is entangled exactly when ad−bc is non-zero, this shows
that an unentangled state cannot violate the Bell inequality. This formula also
shows that it is possible for a state to be entangled and yet not violate the Bell
inequality. For example, if

φ = (|00〉− |01〉+ |10〉+ |11〉)/2,
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then Δ(φ) satisfies Bell’s inequality, but φ is an entangled state. We see from
this calculation that entanglement in the sense of tensor indecomposability,
and entanglement in the sense of Bell inequality violation for a given choice
of Bell operators are not equivalent concepts. On the other hand, Benjamin
Schumacher has pointed out [77] that any entangled two-qubit state will vio-
late Bell inequalities for an appropriate choice of operators. This deepens the
context for our question of the relationship between topological entanglement
and quantum entanglement. The Bell inequality violation is an indication of
quantum mechanical entanglement. One’s intuition suggests that it is this sort
of entanglement that should have a topological context.

14.6 The Aravind hypothesis

Link diagrams can be used as graphical devices and holders of information.
In this vein Aravind [5] proposed that the entanglement of a link should corre-
spond to the entanglement of a state. Measurement of a link would be modeled
by deleting one component of the link. A key example is the Borromean rings.
See Fig. 14.8.

FIGURE 14.8: Borromean rings.

Deleting any component of the Boromean rings yields a remaining pair of un-
linked rings. The Borromean rings are entangled, but any two of them are
unentangled. In this sense the Borromean rings are analogous to the GHZ s-
tate |GHZ〉= (1/

√
2)(|000〉+ |111〉). Measurement in any factor of the GHZ
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yields an unentangled state. Aravind points out that this property is basis de-
pendent. We point out that there are states whose entanglement after a mea-
surement is a matter of probability (via quantum amplitudes). Consider for
example the state

|ψ〉= (1/2)(|000〉+ |001〉+ |101〉+ |110〉).

Measurement in any coordinate yields an entangled or an unentangled state
with equal probability. For example

|ψ〉= (1/2)(|0〉(|00〉+ |01〉)+ |1〉(|01〉+ |10〉))

so that projecting to |0〉 in the first coordinate yields an unentangled state,
while projecting to |1〉 yields an entangled state, each with equal probability.

New ways to use link diagrams must be invented to map the properties of
such states. See [54].

14.7 SU(2) representations of the Artin braid group

The purpose of this section is to determine all the representations of the
three-strand Artin braid group B3 to the special unitary group SU(2) and con-
comitantly to the unitary group U(2). One regards the groups SU(2) and U(2)
as acting on a single qubit, and so U(2) is usually regarded as the group of lo-
cal unitary transformations in a quantum information setting. If one is looking
for a coherent way to represent all unitary transformations by way of braids,
then U(2) is the place to start. Here we will show that there are many repre-
sentations of the three-strand braid group that generate a dense subset of U(2).
Thus it is a fact that local unitary transformations can be “generated by braids”
in many ways.

We begin with the structure of SU(2). A matrix in SU(2) has the form

M =

⎛⎝ z w

−w̄ z̄

⎞⎠ ,

where z and w are complex numbers, and z̄ denotes the complex conjugate of
z. To be in SU(2) it is required that Det(M) = 1 and that M† = M−1 where Det
denotes determinant, and M† is the conjugate transpose of M. Thus if z = a+bi
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and w = c + di where a,b,c,d are real numbers, and i2 =−1, then

M =

⎛⎝ a + bi c + di

−c + di a−bi

⎞⎠
with a2 + b2 + c2 + d2 = 1. It is convenient to write

M = a

⎛⎝1 0

0 1

⎞⎠+ b

⎛⎝ i 0

0 −i

⎞⎠+ c

⎛⎝ 0 1

−1 0

⎞⎠+ d

⎛⎝0 i

i 0

⎞⎠ ,

and to abbreviate this decomposition as

M = a + bi+ c j + dk

where

1≡
⎛⎝1 0

0 1

⎞⎠ , i≡
⎛⎝ i 0

0 −i

⎞⎠ , j ≡,

⎛⎝ 0 1

−1 0

⎞⎠ ,k ≡
⎛⎝0 i

i 0

⎞⎠
so that

i2 = j2 = k2 = i jk =−1

and

i j = k, jk = i,ki = j

ji = −k,k j =−i, ik =− j.

The algebra of 1, i, j,k is called the quaternions after William Rowan Hamilton
who discovered this algebra prior to the discovery of matrix algebra. Thus the
unit quaternions are identified with SU(2) in this way. We shall use this identi-
fication, and some facts about the quaternions to find the SU(2) representations
of braiding. First we recall some facts about the quaternions.

1. Note that if q = a + bi + c j+ dk (as above), then q† = a− bi− c j− dk
so that qq† = a2 + b2 + c2 + d2 = 1.

2. A general quaternion has the form q = a + bi+ c j+ dk where the value
of qq† = a2 + b2 + c2 + d2, is not fixed to unity. The length of q is by
definition

√
qq†.

3. A quaternion of the form ri+s j+ tk for real numbers r,s,t is said to be a
pure quaternion. We identify the set of pure quaternions with the vector
space of triples (r,s,t) of real numbers R3.
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4. Thus a general quaternion has the form q = a + bu where u is a pure
quaternion of unit length and a and b are arbitrary real numbers. A unit
quaternion (element of SU(2)) has the addition property that a2 +b2 = 1.

5. If u is a pure unit length quaternion, then u2 = −1. Note that the set of
pure unit quaternions forms the two-dimensional sphere S2 = {(r,s,t)|r2

+ s2 + t2 = 1} in R3.

6. If u,v are pure quaternions, then

uv =−u · v + u× v

where u ·v is the dot product of the vectors u and v, and u×v is the vector
cross product of u and v. In fact, one can take the definition of quaternion
multiplication as

(a + bu)(c + dv) = ac + bc(u)+ ad(v)+ bd(−u · v+u× v),

and all the above properties are consequences of this definition. Note
that quaternion multiplication is associative.

7. Let g = a + bu be a unit length quaternion so that u2 = −1 and a =
cos(θ/2),b = sin(θ/2) for a chosen angle θ . Define φg : R3 −→ R3 by
the equation φg(P) = gPg†, for P any point in R3, regarded as a pure
quaternion. Then φg is an orientation preserving rotation of R3 (hence
an element of the rotation group SO(3)). Specifically, φg is a rotation
about the axis u by the angle θ . The mapping

φ : SU(2)−→ SO(3)

is a two-to-one surjective map from the special unitary group to the ro-
tation group. In quaternionic form, this result was proved by Hamilton
and by Rodrigues in the middle of the nineteeth century. The specific
formula for φg(P) is shown below:

φg(P) = gPg−1 = (a2−b2)P + 2ab(P×u)+ 2(P ·u)b2u.

We want a representation of the three-strand braid group in SU(2). This
means that we want a homomorphism ρ : B3 −→ SU(2), and hence we want
elements g = ρ(s1) and h = ρ(s2) in SU(2) representing the braid group gen-
erators s1 and s2. Since s1s2s1 = s2s1s2 is the generating relation for B3, the
only requirement on g and h is that ghg = hgh. We rewrite this relation as
h−1gh = ghg−1, and analyze its meaning in the unit quaternions.
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Suppose that g = a + bu and h = c + dv where u and v are unit pure quater-
nions so that a2 +b2 = 1 and c2 +d2 = 1. then ghg−1 = c+dφg(v) and h−1gh =
a+bφ

h−1(u). Thus it follows from the braiding relation that a = c, b =±d, and
that φg(v) = ±φ

h−1(u). However, in the case where there is a minus sign we
have g = a + bu and h = a− bv = a + b(−v). Thus we can now prove the
following theorem.

THEOREM 14.4
If g = a+bu and h = c+dv are pure unit quaternions,then, without loss
of generality, the braid relation ghg = hgh is true if and only if h = a+bv,
and φg(v) = φ

h−1(u). Furthermore, given that g = a + bu and h = a + bv,

the condition φg(v) = φ
h−1(u) is satisfied if and only if u ·v = a2−b2

2b2 when
u �= v. If u = v then then g = h and the braid relation is trivially satisfied.

PROOF We have proved the first sentence of the theorem in the
discussion prior to its statement. Therefore assume that g = a + bu,h =
a+bv, and φg(v) = φ

h−1(u). We have already stated the formula for φg(v)
in the discussion about quaternions:

φg(v) = gvg−1 = (a2−b2)v + 2ab(v×u)+ 2(v ·u)b2u.

By the same token, we have

φ
h−1(u) = h−1uh = (a2−b2)u + 2ab(u×−v)+2(u · (−v))b2(−v)

= (a2−b2)u + 2ab(v×u)+ 2(v ·u)b2(v).

Hence we require that

(a2−b2)v + 2(v ·u)b2u = (a2−b2)u + 2(v ·u)b2(v).

This equation is equivalent to

2(u · v)b2(u− v) = (a2−b2)(u− v).

If u �= v, then this implies that

u · v =
a2−b2

2b2 .

This completes the proof of the theorem.
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An Example. Let
g = eiθ = a + bi

where a = cos(θ ) and b = sin(θ ). Let

h = a + b[(c2− s2)i+ 2csk]

where c2 + s2 = 1 and c2− s2 = a2−b2

2b2 . Then we can rewrite g and h in matrix
form as the matrices G and H. Instead of writing the explicit form of H, we
write H = FGF† where F is an element of SU(2) as shown below.

G =

⎛⎝ eiθ 0

0 e−iθ

⎞⎠
F =

⎛⎝ ic is

is −ic

⎞⎠ .

This representation of braiding where one generator G is a simple matrix of
phases, while the other generator H = FGF† is derived from G by conjugation
by a unitary matrix, has the possibility for generalization to representations of
braid groups (on greater than three strands) to SU(n) or U(n) for n greater than
2. In fact we shall see just such representations constructed later in this paper,
by using a version of topological quantum field theory. The simplest example
is given by

g = e7π i/10

f = iτ + k
√

τ
h = f r f−1

where τ2 +τ = 1. Then g and h satisfy ghg = hgh and generate a representation
of the three-strand braid group that is dense in SU(2). We shall call this the
Fibonacci representation of B3 to SU(2).

Density. Consider representations of B3 into SU(2) produced by the method
of this section. That is consider the subgroup SU [G,H] of SU(2) generated by
a pair of elements {g,h} such that ghg = hgh. We wish to understand when
such a representation will be dense in SU(2). We need the following lemma.

LEMMA 14.1
eaieb jeci = cos(b)ei(a+c) + sin(b)ei(a−c) j. Hence any element of SU(2) can
be written in the form eaieb jeci for appropriate choices of angles a,b,c.
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In fact, if u and v are linearly independent unit vectors in R3, then any
element of SU(2) can be written in the form

eauebvecu

for appropriate choices of the real numbers a,b,c.

PROOF It is easy to check that

eaieb jeci = cos(b)ei(a+c) + sin(b)ei(a−c) j.

This completes the verification of the identity in the statement of the
lemma.
Let v be any unit direction in R3 and λ an arbitrary angle. We have

evλ = cos(λ )+ sin(λ )v,

and
v = r + si+(p + qi) j

where r2 + s2 + p2 + q2 = 1. So

evλ = cos(λ )+ sin(λ )[r + si]+ sin(λ )[p + qi] j

= [(cos(λ )+ sin(λ )r)+ sin(λ )si]+ [sin(λ )p + sin(λ )qi] j.

By the identity just proved, we can choose angles a,b,c so that

evλ = eiae jbeic.

Hence
cos(b)ei(a+c) = (cos(λ )+ sin(λ )r)+ sin(λ )si

and
sin(b)ei(a−c) = sin(λ )p + sin(λ )qi.

Suppose we keep v fixed and vary λ . Then the last equations show that
this will result in a full variation of b.
Now consider

eia′evλ eic′ = eia′eiae jbeiceib′ = ei(a′+a)e jbei(c+c′).

By the basic identity, this shows that any element of SU(2) can be writ-
ten in the form

eia′evλ eic′ .
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Then, by applying a rotation, we finally conclude that if u and v are
linearly independent unit vectors in R3, then any element of SU(2) can
be written in the form

eauebvecu

for appropriate choices of the real numbers a,b,c.

This lemma can be used to verify the density of a representation, by finding
two elements A and B in the representation such that the powers of A are dense
in the rotations about its axis, and the powers of B are dense in the rotations
about its axis, and such that the axes of A and B are linearly independent in
R3. Then by the lemma the set of elements Aa+cBbAa−c is dense in SU(2).
It follows, for example, that the Fibonacci representation described above is
dense in SU(2), and indeed the generic representation of B3 into SU(2) will
be dense in SU(2). Our next task is to describe representations of the higher
braid groups that will extend some of these unitary repressentations of the
three-strand braid group. For this we need more topology.

14.8 The bracket polynomial and the Jones
polynomial

We now discuss the Jones polynomial. We shall construct the Jones poly-
nomial by using the bracket state summation model [36]. The bracket polyno-
mial, invariant under Reidmeister moves II and III, can be normalized to give
an invariant of all three Reidemeister moves. This normalized invariant, with
a change of variable, is the Jones polynomial [34, 35]. The Jones polynomial
was originally discovered by a different method than the one given here.

The bracket polynomial, 〈K〉 = 〈K〉(A), assigns to each unoriented link di-
agram K a Laurent polynomial in the variable A, such that

1. If K and K′ are regularly isotopic diagrams, then 〈K〉 = 〈K′〉.
2. If K /O denotes the disjoint union of K with an extra unknotted and

unlinked component O (also called ‘loop’ or ‘simple closed curve’ or
‘Jordan curve’), then

〈K/O〉 = δ 〈K〉,
where

δ =−A2−A−2.
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3. 〈K〉 satisfies the following formulas

〈χ〉 = A〈0〉+ A−1〈)(〉

〈χ〉 = A−1〈0〉+ A〈)(〉,

where the small diagrams represent parts of larger diagrams that are identical
except at the site indicated in the bracket. We take the convention that the letter
chi, χ , denotes a crossing where the curved line is crossing over the straight
segment. The barred letter denotes the switch of this crossing, where the curved
line is undercrossing the straight segment. See Fig. 14.9 for a graphic illustra-
tion of this relation, and an indication of the convention for choosing the labels
A and A−1 at a given crossing.

AA
-1A

-1A

A
-1

A

< > = A < > + < >-1A

< > = A< > + < >-1A

FIGURE 14.9: Bracket smoothings.

It is easy to see that Properties 2 and 3 define the calculation of the bracket on
arbitrary link diagrams. The choices of coefficients (A and A−1) and the value
of δ make the bracket invariant under the Reidemeister moves II and III. Thus
Property 1 is a consequence of the other two properties.
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In computing the bracket, one finds the following behavior under Reide-
meister move I:

〈γ〉 = −A3〈�〉
and

〈γ〉 = −A−3〈�〉
where γ denotes a curl of positive type as indicated in Fig. 14.10, and γ indi-
cates a curl of negative type, as also seen in this figure. The type of a curl is
the sign of the crossing when we orient it locally. Our convention of signs is
also given in Fig. 14.10. Note that the type of a curl does not depend on the
orientation we choose. The small arcs on the right hand side of these formulas
indicate the removal of the curl from the corresponding diagram.
The bracket is invariant under regular isotopy and can be normalized to an
invariant of ambient isotopy by the definition

fK(A) = (−A3)−w(K)〈K〉(A),

where we chose an orientation for K, and where w(K) is the sum of the crossing
signs of the oriented link K. w(K) is called the writhe of K. The convention
for crossing signs is shown in Fig. 14.10.

or

or

+ -

+ +

- -

+

-

FIGURE 14.10: Crossing signs and curls.

One useful consequence of these formulas is the following switching formula

A〈χ〉−A−1〈χ〉= (A2−A−2)〈0〉.
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Note that in these conventions the A-smoothing of χ is0, while the A-smooth-
ing of χ is )(. Properly interpreted, the switching formula above says that you
can switch a crossing and smooth it either way and obtain a three diagram re-
lation. This is useful since some computations will simplify quite quickly with
the proper choices of switching and smoothing. Remember that it is necessary
to keep track of the diagrams up to regular isotopy (the equivalence relation
generated by the second and third Reidemeister moves). Here is an example.

K U U'

FIGURE 14.11: Trefoil and two relatives.

Fig. 14.11 shows a trefoil diagram K, an unknot diagram U and another unknot
diagram U ′. Applying the switching formula, we have

A−1〈K〉−A〈U〉= (A−2−A2)〈U ′〉
and 〈U〉=−A3 and 〈U ′〉= (−A−3)2 = A−6. Thus

A−1〈K〉−A(−A3) = (A−2−A2)A−6.

Hence
A−1〈K〉=−A4 + A−8−A−4.

Thus
〈K〉=−A5−A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K.
Since the trefoil diagram K has writhe w(K) = 3, we have the normalized
polynomial

fK(A) = (−A3)−3〈K〉=−A−9(−A5−A−3 + A−7) = A−4 + A−12−A−16.
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The bracket model for the Jones polynomial is quite useful both theoretically
and in terms of practical computations. One of the neatest applications is to
simply compute, as we have done, fK(A) for the trefoil knot K and determine
that fK(A) is not equal to fK(A−1) = f−K(A). This shows that the trefoil is not
ambient isotopic to its mirror image, a fact that is much harder to prove by
classical methods.

The State Summation. In order to obtain a closed formula for the bracket, we
now describe it as a state summation. Let K be any unoriented link diagram.
Define a state, S, of K to be a choice of smoothing for each crossing of K.
There are two choices for smoothing a given crossing, and thus there are 2N

states of a diagram with N crossings. In a state we label each smoothing with A
or A−1 according to the left-right convention discussed in Property 3 (see Fig.
14.9). The label is called a vertex weight of the state. There are two evaluations
related to a state. The first one is the product of the vertex weights, denoted

〈K|S〉.
The second evaluation is the number of loops in the state S, denoted

||S||.
Define the state summation, 〈K〉, by the formula

〈K〉 = ∑
S

〈K|S〉δ ||S||−1.

It follows from this definition that 〈K〉 satisfies the equations

〈χ〉 = A〈0〉+ A−1〈)(〉,
〈K/O〉 = δ 〈K〉,

〈O〉 = 1.

The first equation expresses the fact that the entire set of states of a given
diagram is the union, with respect to a given crossing, of those states with
an A-type smoothing and those with an A−1-type smoothing at that crossing.
The second and the third equation are clear from the formula defining the state
summation. Hence this state summation produces the bracket polynomial as
we have described it at the beginning of the section.

REMARK 14.7 By a change of variables one obtains the original
Jones polynomial, VK(t), for oriented knots and links from the normalized
bracket:

VK(t) = fK(t−
1
4 ).
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REMARK 14.8 The bracket polynomial provides a connection be-
tween knot theory and physics, in that the state summation expression
for it exhibits it as a generalized partition function defined on the knot
diagram. Partition functions are ubiquitous in statistical mechanics,
where they express the summation over all states of the physical sys-
tem of probability weighting functions for the individual states. Such
physical partition functions contain large amounts of information about
the corresponding physical system. Some of this information is directly
present in the properties of the function, such as the location of critical
points and phase transition. Some of the information can be obtained by
differentiating the partition function, or performing other mathematical
operations on it.

There is much more in this connection with statistical mechanics in
that the local weights in a partition function are often expressed in terms
of solutions to a matrix equation called the Yang–Baxter equation, that
turns out to fit perfectly invariance under the third Reidemeister move.
As a result, there are many ways to define partition functions of knot
diagrams that give rise to invariants of knots and links. The subject is
intertwined with the algebraic structure of Hopf algebras and quantum
groups, useful for producing systematic solutions to the Yang–Baxter
equation. In fact Hopf algebras are deeply connected with the problem
of constructing invariants of three-dimensional manifolds in relation to
invariants of knots. We have chosen, in this survey paper, to not dis-
cuss the details of these approaches, but rather to proceed to Vassiliev
invariants and the relationships with Witten’s functional integral. The
reader is referred to [3, 34, 35, 36, 37, 39, 42, 43, 44, 73, 74, 81, 82]
for more information about relationships of knot theory with statistical
mechanics, Hopf algebras and quantum groups. For topology, the key
point is that Lie algebras can be used to construct invariants of knots
and links.

14.8.1 Quantum computation of the Jones polynomial

Can the invariants of knots and links such as the Jones polynomial be config-
ured as quantum computers? This is an important question because the algo-
rithms to compute the Jones polynomial are known to be NP-hard, and so cor-
responding quantum algorithms may shed light on the relationship of this level
of computational complexity with quantum computing (See [28]). Such mod-
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els can be formulated in terms of the Yang–Baxter equation [36, 37, 43, 48].
The next paragraph explains how this comes about.

In Fig. 14.12, we indicate how topological braiding plus maxima (caps) and
minima (cups) can be used to configure the diagram of a knot or link. This al-
so can be translated into algebra by the association of a Yang–Baxter matrix R
(not necessarily the R of the previous sections) to each crossing and other ma-
trices to the maxima and minima. There are models of very effective invariants
of knots and links such as the Jones polynomial that can be put into this form
[48]. In this way of looking at things, the knot diagram can be viewed as a pic-
ture, with time as the vertical dimension, of particles arising from the vacuum,
interacting (in a two-dimensional space) and finally annihilating one another.
The invariant takes the form of an amplitude for this process that is computed
through the association of the Yang–Baxter solution R as the scattering ma-
trix at the crossings and the minima and maxima as creation and annihilation
operators. Thus we can write the amplitude in the form

ZK = 〈CUP|M|CAP〉

where 〈CUP| denotes the composition of cups, M is the composition of el-
ementary braiding matrices, and |CAP〉 is the composition of caps. We re-
gard 〈CUP| as the preparation of this state, and |CAP〉 as the measurement
of this state. In order to view ZK as a quantum computation, M must be a
unitary operator. This is the case when the R-matrices (the solutions to the
Yang–Baxter equation used in the model) are unitary. Each R-matrix is viewed
as a a quantum gate (or possibly a composition of quantum gates), and the
vacuum-vacuum diagram for the knot is interpreted as a quantum computer.
This quantum computer will probabilistically (via quantum amplitudes) com-
pute the values of the states in the state sum for ZK .

We should remark, however, that it is not necessary that the invariant be
modeled via solutions to the Yang–Baxter equation. One can use unitary rep-
resentations of the braid group that are constructed in other ways. In fact, the
presently successful quantum algorithms for computing knot invariants indeed
use such representations of the braid group, and we shall see this below. Nev-
ertheless, it is useful to point out this analogy between the structure of the knot
invariants and quantum computation.

Quantum algorithms for computing the Jones polynomial have been dis-
cussed elsewhere. See [48, 55, 1, 58, 2, 86]. Here, as an example, we give a
local unitary representation that can be used to compute the Jones polynomi-
al for closures of 3-braids. We analyze this representation by making explicit
how the bracket polynomial is computed from it, and showing how the quan-
tum computation devolves to finding the trace of a unitary transformation.



14.8. THE BRACKET POLYNOMIAL 447

ZK = 〈CAP|M|CUP〉

M

Unitary Braiding

Quantum Computation

〈CAP|(Measurement)

|CUP〉(Preparation)
�

�

FIGURE 14.12: A knot quantum computer.

The idea behind the construction of this representation depends upon the
algebra generated by two single qubit density matrices (ket-bras). Let |v〉 and
|w〉 be two qubits in V, a complex vector space of dimension two over the
complex numbers. Let P = |v〉〈v| and Q = |w〉〈w| be the corresponding ket-
bras. Note that

P2 = |v|2P,

Q2 = |w|2Q,

PQP = |〈v|w〉|2P,

QPQ = |〈v|w〉|2Q.

P and Q generate a representation of the Temperley–Lieb algebra (See Section
14.5 of the present paper). One can adjust parameters to make a representation
of the three-strand braid group in the form

s1 �−→ rP + sI,

s2 �−→ tQ + uI,

where I is the identity mapping on V and r,s,t,u are suitably chosen scalars.
In the following we use this method to adjust such a representation so that it
is unitary. Note also that this is a local unitary representation of B3 to U(2).
We leave it as an exercise for the reader to verify that it fits into our general
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classification of such representations as given in Section 14.3 of the present
paper.

The representation depends on two symmetric but non-unitary matrices U1
and U2 with

U1 =

⎡⎣ d 0

0 0

⎤⎦= d|w〉〈w|

and

U2 =

⎡⎣ d−1
√

1−d−2

√
1−d−2 d−d−1

⎤⎦= d|v〉〈v|

where w = (1,0), and v = (d−1,
√

1−d−2), assuming the entries of v are real.
Note that U2

1 = dU1 and U2
2 = dU1. Moreover,U1U2U1 =U1 and U2U1U2 =U1.

This is an example of a specific representation of the Temperley–Lieb algebra
[36, 48]. The desired representation of the Artin braid group is given on the
two braid generators for the three-strand braid group by the equations:

Φ(s1) = AI + A−1U1,

Φ(s2) = AI + A−1U2.

Here I denotes the 2×2 identity matrix.
For any A with d = −A2−A−2 these formulas define a representation of the
braid group. With A = eiθ , we have d = −2cos(2θ ). We find a specific range
of angles θ in the following disjoint union of angular intervals

θ ∈ [0,π/6]/ [π/3,2π/3]/ [5π/6,7π/6]/ [4π/3,5π/3]/ [11π/6,2π]

that give unitary representations of the three-strand braid group. Thus a spe-
cialization of a more general represention of the braid group gives rise to a
continuous family of unitary representations of the braid group.

LEMMA 14.2
Note that the traces of these matrices are given by the formulas tr(U1) =

tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I(b) denote
the sum of the exponents in the braid word that expresses b. For b a
three-strand braid, it follows that

Φ(b) = AI(b)I + Π(b)

where I is the 2×2 identity matrix and Π(b) is a sum of products in the
Temperley–Lieb algebra involving U1 and U2.
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We omit the proof of this lemma. It is a calculation. To see it, consider an
example. Suppose that b = s1s−1

2 s1. Then

Φ(b) = Φ(s1s−1
2 s1) = Φ(s1)Φ(s−1

2 )Φ(s1)

= (AI + A−1U1)(A
−1I + AU2)(AI + A−1U1).

The sum of products over the generators U1 and U2 of the Temperley–Lieb
algebra comes from expanding this expression.

Since the Temperley–Lieb algebra in this dimension is generated by I,U1,
U2, U1U2 and U2U1, it follows that the value of the bracket polynomial of the
closure of the braid b, denoted 〈b〉, can be calculated directly from the trace of
this representation, except for the part involving the identity matrix. The result
is the equation

〈b〉= AI(b)d2 + tr(Π(b))

where b denotes the standard braid closure of b, and the sharp brackets denote
the bracket polynomial. From this we see at once that

〈b〉= tr(Φ(b))+ AI(b)(d2−2).

It follows from this calculation that the question of computing the bracket
polynomial for the closure of the three-strand braid b is mathematically equiv-
alent to the problem of computing the trace of the unitary matrix Φ(b).

The Hadamard Test
In order to (quantum) compute the trace of a unitary matrix U , one can use

the Hadamard test to obtain the diagonal matrix elements 〈ψ |U |ψ〉 of U. The
trace is then the sum of these matrix elements as |ψ〉 runs over an orthonormal
basis for the vector space. We first obtain

1
2

+
1
2

Re〈ψ |U |ψ〉

as an expectation by applying the Hadamard gate H

H|0〉 =
1√
2
(|0〉+ |1〉)

H|1〉 =
1√
2
(|0〉− |1〉)

to the first qubit of

CU ◦ (H⊗1)|0〉|ψ〉= 1√
2
(|0〉⊗ |ψ〉+ |1〉⊗U |ψ〉.
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Here CU denotes controlled U, acting as U when the control bit is |1〉 and the
identity mapping when the control bit is |0〉. We measure the expectation for
the first qubit |0〉 of the resulting state

1
2
(H|0〉⊗ |ψ〉+ H|1〉⊗U |ψ〉) =

1
2
((|0〉+ |1〉)⊗|ψ〉+(|0〉− |1〉)⊗U |ψ〉)

=
1
2
(|0〉⊗ (|ψ〉+U |ψ〉)+ |1〉⊗ (|ψ〉−U |ψ〉)).

This expectation is

1
2
(〈ψ |+ 〈ψ |U†)(|ψ〉+U |ψ〉) =

1
2

+
1
2

Re〈ψ |U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉⊗ |ψ〉− i|1〉⊗U |ψ〉.

This is the method used in [1], and the reader may wish to contemplate its
efficiency in the context of this simple model. Note that the Hadamard test
enables this quantum computation to estimate the trace of any unitary matrix
U by repeated trials that estimate individual matrix entries 〈ψ |U |ψ〉.

14.9 Quantum topology, cobordism categories,
Temperley–Lieb algebra, and topological
quantum field theory

The purpose of this section is to discuss the general idea behind topological
quantum field theory, and to illustrate its application to basic quantum me-
chanics and quantum mechanical formalism. It is useful in this regard to have
available the concept of category, and we shall begin the section by discussing
this far-reaching mathematical concept.

DEFINITION 14.1 A category Cat consists in two related collection-
s:

1. Ob j(Cat), the objects of Cat, and

2. Morph(Cat), the morphisms of Cat.
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satisfying the following axioms:

1. Each morphism f is associated to two objects of Cat, the domain of
f and the codomain of f. Letting A denote the domain of f and B
denote the codomain of f , it is customary to denote the morphism
f by the arrow notation f : A−→ B.

2. Given f : A−→ B and g : B−→C where A, B and C are objects of
Cat, then there exists an associated morphism g◦ f : A−→C called
the composition of f and g.

3. To each object A of Cat there is a unique identity morphism 1A :
A−→ A such that 1A ◦ f = f for any morphism f with codomain A,
and g ◦ 1A = g for any morphism g with domain A.

4. Given three morphisms f : A −→ B, g : B −→ C and h : C −→ D,
then composition is associative. That is

(h◦g)◦ f = h◦ (g◦ f ).

If Cat1 and Cat2 are two categories, then a functor F : Cat1 −→Cat2 con-
sists in functions FO : Ob j(Cat1)−→Ob j(Cat2) and FM : Morph(Cat1)−→
Morph(Cat2) such that identity morphisms and composition of morphism-
s are preserved under these mappings. That is (writing just F for FO and
FM),

1. F(1A) = 1F(A),

2. F( f : A−→ B) = F( f ) : F(A)−→ F(B),

3. F(g ◦ f ) = F(g)◦F( f ).

A functor F : Cat1 −→ Cat2 is a structure preserving mapping from
one category to another. It is often convenient to think of the image
of the functor F as an interpretation of the first category in terms of
the second. We shall use this terminology below and sometimes refer
to an interpretation without specifying all the details of the functor that
describes it.

The notion of category is a broad mathematical concept, encompassing many
fields of mathematics. Thus one has the category of sets where the objects are
sets (collections) and the morphisms are mappings between sets. One has the
category of topological spaces where the objects are spaces and the morphisms
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are continuous mappings of topological spaces. One has the category of groups
where the objects are groups and the morphisms are homomorphisms of group-
s. Functors are structure preserving mappings from one category to another.
For example, the fundamental group is a functor from the category of topo-
logical spaces with base point to the category of groups. In all the examples
mentioned so far, the morphisms in the category are restrictions of mappings
in the category of sets, but this is not necessarily the case. For example, any
group G can be regarded as a category, Cat(G), with one object ∗. The mor-
phisms from ∗ to itself are the elements of the group and composition is group
multiplication. In this example, the object has no internal structure and all the
complexity of the category is in the morphisms.

The Artin braid group Bn can be regarded as a category whose single ob-
ject is an ordered row of points [n] = {1,2,3, ...,n}. The morphisms are the
braids themselves and composition is the multiplication of the braids. A given
ordered row of points is interpreted as the starting or ending row of points at
the bottom or the top of the braid. In the case of the braid category, the mor-
phisms have both external and internal structure. Each morphism produces a
permutation of the ordered row of points (corresponding to the beginning and
ending points of the individual braid strands), and weaving of the braid is extra
structure beyond the object that is its domain and codomain. Finally, for this
example, we can take all the braid groups Bn (n a positive integer) under the
wing of a single category, Cat(B), whose objects are all ordered rows of points
[n], and whose morphisms are of the form b : [n]−→ [n] where b is a braid in
Bn. The reader may wish to have morphisms between objects with different n.
We will have this shortly in the Temperley–Lieb category and in the category
of tangles.

The n-cobordism category, Cob[n], has as its objects smooth manifolds of
dimension n, and as its morphisms, smooth manifolds Mn+1 of dimension n+1
with a partition of the boundary, ∂Mn+1, into two collections of n-manifolds
that we denote by L(Mn+1) and R(Mn+1). We regard Mn+1 as a morphism from
L(Mn+1) to R(Mn+1)

Mn+1 : L(Mn+1)−→ R(Mn+1).

As we shall see, these cobordism categories are highly significant for quan-
tum mechanics, and the simplest one, Cob[0] is directly related to the Dirac
notation of bras and kets and to the Temperley–Lieb algebra. We shall concen-
trate in this section on these cobordism categories, and their relationships with
quantum mechanics.
One can choose to consider either oriented or non-oriented manifolds, and
within unoriented manifolds there are those that are orientable and those that
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are not orientable. In this section we will implicitly discuss only orientable
manifolds, but we shall not specify an orientation. In the next section, with the
standard definition of topological quantum field theory, the manifolds will be
oriented. The definitions of the cobordism categories for oriented manifolds
go over mutatis mutandis.

Lets begin with Cob[0]. Zero dimensional manifolds are just collections
of points. The simplest zero dimensional manifold is a single point p. We
take p to be an object of this category and also ∗, where ∗ denotes the empty
manifold (i.e. the empty set in the category of manifolds). The object ∗ occurs
in Cob[n] for every n, since it is possible that either the left set or the right set
of a morphism is empty. A line segment S with boundary points p and q is a
morphism from p to q.

S : p−→ q.

See Fig. 14.13. In this figure we have illustrated the morphism from p to p.
The simplest convention for this category is to take this morphism to be the
identity. Thus if we look at the subcategory of Cob[0] whose only object is
p, then the only morphism is the identity morphism. Two points occur as the
boundary of an interval. The reader will note that Cob[0] and the usual arrow
notation for morphisms are very closely related. This is a place where notation
and mathematical structure share common elements. In general the objects of
Cob[0] consist in the empty object ∗ and non-empty rows of points, symbolized
by

p⊗ p⊗·· ·⊗ p⊗ p.

Fig. 14.13 also contains a morphism

p⊗ p−→ ∗
and the morphism

∗ −→ p⊗ p.

The first represents a cobordism of two points to the empty set (via the bound-
ing curved interval). The second represents a cobordism from the empty set to
two points.

In Fig. 14.14, we have indicated more morphisms in Cob[0], and we have
named the morphisms just discussed as

|Ω〉 : p⊗ p−→ ∗,
〈Θ| : ∗ −→ p⊗ p.

The point to notice is that the usual conventions for handling Dirac bra-kets
are essentially the same as the compostion rules in this topological category.



454 14. QUANTUM COMPUTING AND QUANTUM TOPOLOGY
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f: p                 p
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pp*

FIGURE 14.13: Elementary cobordisms.

Thus in Fig. 14.14

〈Θ| ◦ |Ω〉= 〈Θ|Ω〉 : ∗ −→ ∗
represents a cobordism from the empty manifold to itself. This cobordism is
topologically a circle and, in the Dirac formalism is interpreted as a scalar. In
order to interpret the notion of scalar we would have to map the cobordism cat-
egory to the category of vector spaces and linear mappings. We shall discuss
this after describing the similarities with quantum mechanical formalism. N-
evertheless, the reader should note that if V is a vector space over the complex
numbers C , then a linear mapping from C to C is determined by the image of
1, and hence is characterized by the scalar that is the image of 1. In this sense a
mapping C −→ C can be regarded as a possible image in vector spaces of the
abstract structure 〈Θ|Ω〉 : ∗ −→ ∗. It is therefore assumed that in Cob[0] the
composition with the morphism 〈Θ|Ω〉 commutes with any other morphism.
In that way 〈Θ|Ω〉 behaves like a scalar in the cobordism category. In general,
an n + 1 manifold without boundary behaves as a scalar in Cob[n], and if a
manifold Mn+1 can be written as a union of two submanifolds Ln+1 and Rn+1

so that that an n-manifold W n is their common boundary:

Mn+1 = Ln+1∪Rn+1

with

Ln+1∩Rn+1 = W n
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then, we can write

〈Mn+1〉= 〈Ln+1∪Rn+1〉= 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other mor-
phisms) in the category Cob[n].

Identity 

|     >

<     |

<     | >
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 =
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Θ
Ω
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Θ
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U U  = |    >Ω <    |ΘΩΘ<    |    >

 = |    >Ω <    |ΘΩΘ<    |    >

 = ΩΘ<    |    >

U

FIGURE 14.14: Bras, kets and projectors.

Getting back to the contents of Fig. 14.14, note how the zero dimensional
cobordism category has structural parallels to the Dirac ket–bra formalism

U = |Ω〉〈Θ|
UU = |Ω〉〈Θ|Ω〉〈Θ|= 〈Θ|Ω〉|Ω〉〈Θ|= 〈Θ|Ω〉U.

In the cobordism category, the bra–ket and ket–bra formalism is seen as pat-
terns of connection of the one-manifolds that realize the cobordisms.

Now view Fig. 14.15. This figure illustrates a morphism S in Cob[0] that
requires two crossed line segments for its planar representation. Thus S can be
regarded as a non-trivial permutation, and S2 = I where I denotes the identity
morphisms for a two-point row. From this example, it is clear that Cob[0]
contains the structure of all the symmetric groups and more. In fact, if we
take the subcategory of Cob[0] consisting of all morphisms from [n] to [n] for
a fixed positive integer n, then this gives the well-known Brauer algebra (see
[13]) extending the symmetric group by allowing any connections among the
points in the two rows. In this sense, one could call Cob[0] the Brauer category.
We shall return to this point of view later.
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S    =  I2

SU = US = U

FIGURE 14.15: Permutations.
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FIGURE 14.16: Projectors in tensor lines and elementary topology.
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In this section, we shall be concentrating on the part of Cob[0] that does not
involve permutations. This part can be characterized by those morphisms that
can be represented by planar diagrams without crossings between any of the
line segments (the one-manifolds). We shall call this crossingless subcategory
of Cob[0] the Temperley–Lieb Category and denote it by CatTL. In CatTL we
have the subcategory T L[n] whose only objects are the row of n points and the
empty object ∗, and whose morphisms can all be represented by configurations
that embed in the plane as in the morphisms P and Q in Fig. 14.16. Note that
with the empty object ∗, the morphism whose diagram is a single loop appears
in T L[n] and is taken to commute with all other morphisms.

The Temperley–Lieb Algebra, AlgTL[n] is generated by the morphisms in
T L[n] that go from [n] to itself. Up to multiplication by the loop, the product
(composition) of two such morphisms is another flat morphism from [n] to
itself. For algebraic purposes the loop ∗ −→ ∗ is taken to be a scalar algebraic
variable δ that commutes with all elements in the algebra. Thus the equation

UU = 〈Θ|Ω〉U
becomes

UU = δU

in the algebra. In the algebra we are allowed to add morphisms formally and
this addition is taken to be commutative. Initially the algebra is taken with
coefficients in the integers, but a different commutative ring of coefficients can
be chosen and the value of the loop may be taken in this ring. For example, for
quantum mechanical applications it is natural to work over the complex num-
bers. The multiplicative structure of AlgTL[n] can be described by generators
and relations as follows: Let In denote the identity morphism from [n] to [n].
Let Ui denote the morphism from [n] to [n] that connects k with k for k < i and
k > i+ 1 from one row to the other, and connects i to i+ 1 in each row. Then
the algebra AlgT L[n] is generated by {In,U1,U2, · · · ,Un−1} with relations

U2
i = δUi

UiUi+1Ui = Ui

UiUj = UjUi : |i− j|> 1.

These relations are illustrated for three strands in Fig. 14.16. We leave the
commuting relation for the reader to draw in the case where n is four or greater.
For a proof that these are indeed all the relations, see [51].

Figs. 14.16 and 14.17 indicate how the zero dimensional cobordism cate-
gory contains structure that goes well beyond the usual Dirac formalism. By
tensoring the ket–bra on one side or another by identity morphisms, we obtain
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the beginnings of the Temperley–Lieb algebra and the Temperley–Lieb cat-
egory. Thus Fig. 14.17 illustrates the morphisms P and Q obtained by such
tensoring, and the relation PQP = P which is the same as U1U2U1 = U1

Note the composition at the bottom of the Fig. 14.17. Here we see a compo-
sition of the identity tensored with a ket, followed by a bra tensored with the
identity. The diagrammatic for this association involves “straightening” the
curved structure of the morphism to a straight line. In Fig. 14.18 we have elab-
orated this situation even further, pointing out that in this category each of the
morphisms 〈Θ| and |Ω〉 can be seen, by straightening, as mappings from the
generating object to itself. We have denoted these corresponding morphisms
by Θ and Ω respectively. In this way there is a correspondence between mor-
phisms p⊗ p−→ ∗ and morphisms p−→ p.

In Fig. 14.18 we have illustrated the generalization of the straightening pro-
cedure of Fig. 14.17. In Fig. 14.17 the straightening occurs because the con-
nection structure in the morphism of Cob[0] does not depend on the wander-
ing of curves in diagrams for the morphisms in that category. Nevertheless,
one can envisage a more complex interpretation of the morphisms where each
one-manifold (line segment) has a label, and a multiplicity of morphisms can
correspond to a single line segment. This is exactly what we expect in in-
terpretations. For example, we can interpret the line segment [1] −→ [1] as a
mapping from a vector space V to itself. Then [1]−→ [1] is the diagrammatic
abstraction for V −→V, and there are many instances of linear mappings from
V to V .

At the vector space level there is a duality between mappings V ⊗V −→ C
and linear maps V −→V. Specifically, let

{|0〉, · · · , |m〉}
be a basis for V. Then Θ : V −→V is determined by

Θ|i〉= Θi j | j〉
(where we have used the Einstein summation convention on the repeated index
j) corresponds to the bra

〈Θ| : V ⊗V −→ C

defined by
〈Θ|i j〉= Θi j.

Given 〈Θ| : V ⊗V −→ C , we associate Θ : V −→V in this way.
Comparing with the diagrammatic for the category Cob[0], we say that Θ :

V −→V is obtained by straightening the mapping

〈Θ| : V ⊗V −→ C .
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Note that in this interpretation, the bras and kets are defined relative to the
tensor product of V with itself and [2] is interpreted as V ⊗V. If we interpret
[2] as a single vector space W, then the usual formalisms of bras and kets still
pass over from the cobordism category.
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<    ||    >1
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 =
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Q
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Θ

Θ

Ω

Ω

Θ Ω
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PQP      P =

 = R

R 1 =

FIGURE 14.17: The basic Temperley–Lieb relation.

Fig. 14.18 illustrates the straightening of |Θ〉 and 〈Ω|, and the straightening
of a composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand part
of the bottom of Fig. 14.18 we illustrate the preparation of the tensor product
|Θ〉 ⊗ |ψ〉 followed by a successful measurement by 〈Ω| in the second two
tensor factors. The resulting single qubit state, as seen by straightening, is
|φ〉= Θ◦Ω|ψ〉.

From this, we see that it is possible to reversibly, indeed unitarily, transform
a state |ψ〉 via a combination of preparation and measurement just so long as
the straightenings of the preparation and measurement (Θ and Ω) are each in-
vertible (unitary). This is the key to teleportation [50, 19, 20]. In the standard
teleportation procedure one chooses the preparation Θ to be (up to normal-
ization) the two-dimensional identity matrix so that |θ 〉 = |00〉+ |11〉. If the
successful measurement Ω is also the identity, then the transmitted state |φ〉
will be equal to |ψ〉. In general we will have |φ〉= Ω|ψ〉. One can then choose
a basis of measurements |Ω〉, each corresponding to a unitary transformation
Ω so that the recipient of the transmission can rotate the result by the inverse of
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FIGURE 14.18: The key to teleportation.
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Ω to reconstitute |ψ〉 if he is given the requisite information. This is the basic
design of the teleportation procedure.

There is much more to say about the category Cob[0] and its relationship
with quantum mechanics. We will stop here, and invite the reader to explore
further. Later in this paper, we shall use these ideas in formulating our repre-
sentations of the braid group. For now, we point out how things look as we
move upward to Cob[n] for n > 0. In Fig. 14.19 we show typical cobordisms
(morphisms) in Cob[1] from two circles to one circle and from one circle to
two circles. These are often called “pairs of pants”. Their composition is a
surface of genus one seen as a morphism from two circles to two circles. The
bottom of the figure indicates a ket-bra in this dimension in the form of a map-
ping from one circle to one circle as a composition of a cobordism of a circle to
the empty set and a cobordism from the empty set to a circle (circles bounding
disks). As we go to higher dimensions the structure of cobordisms becomes
more interesting and more complicated. It is remarkable that there is so much
structure in the lowest dimensions of these categories.

14.10 Braiding and topological quantum field theory

The purpose of this section is to discuss in a very general way how braid-
ing is related to topological quantum field theory. In the section to follow,
we will use the Temperley–Lieb recoupling theory to produce specific unitary
representations of the Artin braid group.

The ideas in the subject of topological quantum field theory (TQFT) are well
expressed in the book [6] by Michael Atiyah and the paper [85] by Edward
Witten. Here is Atiyah’s definition:

DEFINITION 14.2 A TQFT in dimension d is a functor Z(Σ) from
the cobordism category Cob[d] to the category Vect of vector spaces and
linear mappings which assigns

1. a finite dimensional vector space Z(Σ) to each compact, oriented
d-dimensional manifold Σ.

2. a vector Z(Y )∈Z(Σ) for each compact, oriented (d+1)-dimensional
manifold Y with boundary Σ.

3. a linear mapping Z(Y ) : Z(Σ1)−→ Z(Σ2) when Y is a (d+1)-manifold
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FIGURE 14.19: Corbordisms of one-manifolds are surfaces.

that is a cobordism between Σ1 and Σ2 (whence the boundary of Y
is the union of Σ1 and −Σ2.

The functor satisfies the following axioms.

1. Z(Σ†) = Z(Σ)† where Σ† denotes the manifold Σ with the opposite
orientation and Z(Σ)† is the dual vector space.

2. Z(Σ1∪Σ2) = Z(Σ1)⊗Z(Σ2) where ∪ denotes disjoint union.

3. If Y1 is a cobordism from Σ1 to Σ2, Y2 is a cobordism from Σ2 to Σ3
and Y is the composite cobordism Y = Y1∪Σ2

Y2, then

Z(Y ) = Z(Y2)◦Z(Y1) : Z(Σ1)−→ Z(Σ2)

is the composite of the corresponding linear mappings.



14.10. QUANTUM FIELD THEORY 463

4. Z(φ) = C (C denotes the complex numbers) for the empty manifold
φ .

5. With Σ× I (where I denotes the unit interval) denoting the identity
cobordism from Σ to Σ, Z(Σ× I) is the identity mapping on Z(Σ).

Note that, in this view a TQFT is basically a functor from the cobordism
categories defined in the last section to vector spaces over the complex num-
bers. We have already seen that in the lowest dimensional case of cobordisms
of zero-dimensional manifolds, this gives rise to a rich structure related to qua-
tum mechanics and quantum information theory. The remarkable fact is that
the case of three-dimensions is also related to quantum theory, and to the lower-
dimensional versions of the TQFT. This gives a significant way to think about
three-manifold invariants in terms of lower dimensional patterns of interaction.
Here follows a brief description.

Regard the three-manifold as a union of two handlebodies with boundary an
orientable surface Sg of genus g. The surface is divided up into trinions as illus-
trated in Fig. 14.20. A trinion is a surface with boundary that is topologically
equivalent to a sphere with three punctures. The trinion constitutes in itself a
cobordism in Cob[1] from two circles to a single circle, or from a single circle
to two circles, or from three circles to the empty set. The pattern of a trinion is
a trivalent graphical vertex, as illustrated in Fig. 14.21. In that figure we show
the trivalent vertex graphical pattern drawn on the surface of the trinion, form-
ing a graphical pattern for this combordism. It should be clear from this figure
that any cobordism in Cob[1] can be diagrammed by a trivalent graph, so that
the category of trivalent graphs (as morphisms from ordered sets of points to
ordered sets of points) has an image in the category of cobordisms of compact
one-dimensional manifolds. Given a surface S (possibly with boundary) and a
decomposition of that surface into triions, we associate to it a trivalent graph
G(S,t) where t denotes the particular trinion decomposition.

In this correspondence, distinct graphs can correspond to topologically i-
dentical cobordisms of circles, as illustrated in Fig. 14.22. It turns out that the
graphical structure is important, and that it is extraordinarily useful to articulate
transformations between the graphs that correspond to the homeomorphisms
of the corresponding surfaces. The beginning of this structure is indicated in
the bottom part of Fig. 14.22.

In Fig. 14.23 we illustrate another feature of the relationship between sur-
faces and graphs. At the top of the figure we indicate a homeomorphism be-
tween a twisted trinion and a standard trinion. The homeomorphism leaves
the ends of the trinion (denoted A,B and C) fixed while undoing the internal
twist. This can be accomplished as an ambient isotopy of the embeddings in
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three-dimensional space that are indicated by this figure. Below this isotopy
we indicate the corresponding graphs. In the graph category there will have to
be a transformation between a braided and an unbraided trivalent vertex that
corresponds to this homeomorphism.

Trinion

FIGURE 14.20: Decomposition of a surface into trinions.

From the point of view that we shall take in this paper, the key to the math-
ematical structure of three-dimensional TQFT lies in the trivalent graphs, in-
cluding the braiding of graphical arcs. We can think of these braided graphs
as representing idealized Feynman diagrams, with the trivalent vertex as the
basic particle interaction vertex, and the braiding of lines representing an in-
teraction resulting from an exchange of particles. In this view one thinks of the
particles as moving in a two-dimensional medium, and the diagrams of braid-
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FIGURE 14.21: Trivalent vectors.
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FIGURE 14.22: Trinion associativity.
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FIGURE 14.23: Tube twist.

ing and trivalent vertex interactions as indications of the temporal events in the
system, with time indicated in the direction of the morphisms in the category.
Adding such graphs to the category of knots and links is an extension of the
tangle category where one has already extended braids to allow any embed-
ding of strands and circles that start in n ordered points and end in m ordered
points. The tangle category includes the braid category and the Temperley–
Lieb category. These are both included in the category of braided trivalent
graphs.

Thinking of the basic trivalent vertex as the form of a particle interaction
there will be a set of particle states that can label each arc incident to the ver-
tex. In Fig. 14.21 we illustrate the labeling of the trivalent graphs by such
particle states. In the next two sections we will see specific rules for labeling
such states. Here it suffices to note that there will be some restrictions on these
labels, so that a trivalent vertex has a set of possible labelings. Similarly, any



14.10. QUANTUM FIELD THEORY 467

trivalent graph will have a set of admissible labelings. These are the possible
particle processes that this graph can support. We take the set of admissible
labelings of a given graph G as a basis for a vector space V (G) over the com-
plex numbers. This vector space is the space of processes associated with the
graph G. Given a surface S and a decomposition t of the surface into trinions,
we have the associated graph G(S,t) and hence a vector space of processes
V (G(S,t)). It is desirable to have this vector space independent of the par-
ticular decomposition into trinions. If this can be accomplished, then the set
of vector spaces and linear mappings associated to the surfaces can consitute
a functor from the category of cobordisms of one-manifolds to vector spaces,
and hence gives rise to a one-dimensional topological quantum field theory.
To this end we need some properties of the particle interactions that will be
described below.

A spin network is, by definition a labelled trivalent graph in a category of
graphs that satisfy the properties outlined in the previous paragraph. We shall
detail the requirements below.

The simplest case of this idea is C. N. Yang’s original interpretation of the
Yang–Baxter equation [87]. Yang articulated a quantum field theory in one
dimension of space and one dimension of time in which the R-matrix giving the
scattering amplitudes for an interaction of two particles whose (let us say) spins
corresponded to the matrix indices so that Rcd

ab is the amplitude for particles of
spin a and spin b to interact and produce particles of spin c and d. Since these
interactions are between particles in a line, one takes the convention that the
particle with spin a is to the left of the particle with spin b, and the particle with
spin c is to the left of the particle with spin d. If one follows the concatenation
of such interactions, then there is an underlying permutation that is obtained
by following strands from the bottom to the top of the diagram (thinking of
time as moving up the page). Yang designed the Yang–Baxter equation for R
so that the amplitudes for a composite process depend only on the underlying
permutation corresponding to the process and not on the individual sequences
of interactions.

In taking over the Yang–Baxter equation for topological purposes, we can
use the same interpretation, but think of the diagrams with their under- and
over-crossings as modeling events in a spacetime with two dimensions of space
and one dimension of time. The extra spatial dimension is taken in displacing
the woven strands perpendicular to the page, and allows us to use braiding
operators R and R−1 as scattering matrices. Taking this picture to heart, one
can add other particle properties to the idealized theory. In particular one can
add fusion and creation vertices where in fusion two particles interact to be-
come a single particle and in creation one particle changes (decays) into two



468 14. QUANTUM COMPUTING AND QUANTUM TOPOLOGY

particles. These are the trivalent vertices discussed above. Matrix elements
corresponding to trivalent vertices can represent these interactions. See Fig.
14.24.

FIGURE 14.24: Creation and fusion.

Once one introduces trivalent vertices for fusion and creation, there is the
question how these interactions will behave in respect to the braiding opera-
tors. There will be a matrix expression for the compositions of braiding and
fusion or creation as indicated in Fig. 14.25. Here we will restrict ourselves
to showing the diagrammatics with the intent of giving the reader a flavor of
these structures. It is natural to assume that braiding intertwines with creation
as shown in Fig. 14.27 (similarly with fusion). This intertwining identity is
clearly the sort of thing that a topologist will love, since it indicates that the
diagrams can be interpreted as embeddings of graphs in three-dimensional s-
pace, and it fits with our interpretation of the vertices in terms of trinions. Fig.
14.25 illustrates the Yang–Baxter equation. The intertwining identity is an as-
sumption like the Yang–Baxter equation itself, that simplifies the mathematical
structure of the model.

It is to be expected that there will be an operator that expresses the recou-
pling of vertex interactions as shown in Fig. 14.28 and labeled by Q. This
corresponds to the associativity at the level of trinion combinations shown in
Fig. 14.22. The actual formalism of such an operator will parallel the math-
ematics of recoupling for angular momentum. See for example [38]. If one
just considers the abstract structure of recoupling then one sees that for trees
with four branches (each with a single root) there is a cycle of length five as
shown in Fig. 14.29. One can start with any pattern of three-vertex interactions
and go through a sequence of five recouplings that bring one back to the same
tree from which one started. It is a natural simplifying axiom to assume that
this composition is the identity mapping. This axiom is called the pentagon
identity.

Finally there is a hexagonal cycle of interactions between braiding, recou-
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FIGURE 14.25: Yang–Baxter equation.
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FIGURE 14.26: Braiding.
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FIGURE 14.27: Intertwining.
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F

FIGURE 14.28: Recoupling.

pling and the intertwining identity as shown in Fig. 14.30. One says that the
interactions satisfy the hexagon identity if this composition is the identity.

A graphical three-dimensional topological quantum field theory is an al-
gebra of interactions that satisfies the Yang–Baxter equation, the intertwining
identity, the pentagon identity and the hexagon identity. There is not room
in this summary to detail the way that these properties fit into the topology
of knots and three-dimensional manifolds, but a sketch is in order. For the
case of topological quantum field theory related to the group SU(2) there is a
construction based entirely on the combinatorial topology of the bracket poly-
nomial (See Sections 14.7, 14.9 and 14.10 of this article.). See [43, 38] for
more information on this approach.

Now return to Fig. 14.20 where we illustrate trinions, shown in relation to
a trivalent vertex, and a surface of genus three that is decomposed into four
trinions. It turns out that the vector space V (Sg) = V (G(Sg,t)) to a surface
with a trinion decomposition as t described above, and defined in terms of the
graphical topological quantum field theory, does not depend upon the choice
of trinion decomposition. This independence is guaranteed by the braiding,
hexagon and pentagon identities. One can then associate a well-defined vector
|M〉 in V (Sg) whenenver M is a three manifold whose boundary is Sg. Further-
more, if a closed three manifold M3 is decomposed along a surface Sg into the
union of M− and M+ where these parts are otherwise disjoint three manifolds
with boundary Sg, then the inner product I(M) = 〈M−|M+〉 is, up to normal-
ization, an invariant of the three manifold M3. With the definition of graphical
topological quantum field theory given above, knots and links can be incorpo-
rated as well, so that one obtains a source of invariants I(M3,K) of knots and
links in orientable three manifolds. Here we see the uses of the relationships
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FIGURE 14.29: Pentagon identity.

that occur in the higher dimensional cobordism categories, as described in the
previous section.
The invariant I(M3,K) can be formally compared with the Witten [85] integral

Z(M3,K) =
∫

DAe(ik/4π)S(M,A)WK(A).

It can be shown that up to limits of the heuristics, Z(M,K) and I(M3,K) are
essentially equivalent for appropriate choice of gauge group and corresponding
spin networks.

By these graphical reformulations, a three-dimensional T QFT is, at base,
a highly simplified theory of point particle interactions in 2 + 1 dimensional
spacetime. It can be used to articulate invariants of knots and links and in-
variants of three manifolds. The reader interested in the SU(2) case of this
structure and its implications for invariants of knots and three manifolds can
consult [18, 34, 43, 63, 68]. One expects that physical situations involving
2 + 1 spacetime will be approximated by such an idealized theory. There are
also applications to 3 + 1 quantum gravity [4, 7, 52]. Aspects of the quan-
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FIGURE 14.30: Hexagon identity.

tum Hall effect may be related to topological quantum field theory [84]. One
can study a physics in two-dimensional space where the braiding of particles
or collective excitations leads to non-trivial representations of the Artin braid
group. Such particles are called Anyons. Such T QFT models would describe
applicable physics. One can think about applications of anyons to quantum
computing along the lines of the topological models described here.

A key point in the application of T QFT to quantum information theory is
contained in the structure illustrated in Fig. 14.31. There we show a more
complex braiding operator, based on the composition of recoupling with the
elementary braiding at a vertex. (This structure is implicit in the Hexagon
identity of Fig. 14.30.) The new braiding operator is a source of unitary rep-
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FIGURE 14.31: A more complex braiding operator.

resentations of braid group in situations (which exist mathematically) where
the recoupling transformations are themselves unitary. This kind of pattern is
utilized in the work of Freedman and collaborators [26, 27, 28, 29, 30] and in
the case of classical angular momentum formalism has been dubbed a “spin-
network quantum simlator” by Rasetti and collaborators [65, 66]. In the next
section we show how certain natural deformations [38] of Penrose spin net-
works [32] can be used to produce these unitary representations of the Artin
braid group and the corresponding models for anyonic topological quantum
computation.

14.11 Spin networks and Temperley–Lieb recoupling
theory

In this section we discuss a combinatorial construction for spin networks that
generalizes the original construction of Roger Penrose. The result of this gen-
eralization is a structure that satisfies all the properties of a graphical T QFT
as described in the previous section, and specializes to classical angular mo-
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mentum recoupling theory in the limit of its basic variable. The construction
is based on the properties of the bracket polynomial (as already described in
Section 14.4). A complete description of this theory can be found in the book
“Temperley–Lieb Recoupling Theory and Invariants of Three-Manifolds” by
Kauffman and Lins [38].

The “q-deformed” spin networks that we construct here are based on the
bracket polynomial relation. View Fig. 14.32 and Fig. 14.33.

...

...

n strands

=
n

n
= (A    )-3 t(   )σ ~σ(1/{n}!) Σ

σ ε Sn

~
=

A A-1

= -A
2 -2- A

= +

{n}! = Σ
σ ε Sn

(A    )
t(   )σ-4

=
n

n

= 0

= d

FIGURE 14.32: Basic projectors.

In Fig. 14.32 we indicate how the basic projector
(symmetrizer, Jones–Wenzl projector)
is constructed on the basis of the bracket polynomial expansion. In this tech-
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FIGURE 14.33: Two-strand projector.

nology a symmetrizer is a sum of tangles on n strands (for a chosen integer n).
The tangles are made by summing over braid lifts of permutations in the sym-
metric group on n letters, as indicated in Fig. 14.32. Each elementary braid is
then expanded by the bracket polynomial relation as indicated in Fig. 14.32 so
that the resulting sum consists of flat tangles without any crossings (these can
be viewed as elements in the Temperley–Lieb algebra). The projectors have the
property that the concatenation of a projector with itself is just that projector,
and if you tie two lines on the top or the bottom of a projector together, then the
evaluation is zero. This general definition of projectors is very useful for this
theory. The two-strand projector is shown in Fig. 14.33. Here the formula for
that projector is particularly simple. It is the sum of two parallel arcs and two
turn-around arcs (with coefficient−1/d, with d =−A2−A−2 as the loop value
for the bracket polynomial). Fig. 14.33 also shows the recursion formula for
the general projector. This recursion formula is due to Jones and Wenzl and the
projector in this form, developed as a sum in the Temperley–Lieb algebra (see
Section 14.5 of this paper), is usually known as the Jones–Wenzl projector.

The projectors are combinatorial analogs of irreducible representations of a
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FIGURE 14.34: Vertex.

group (the original spin nets were based on SU(2) and these deformed nets are
based on the corresponding quantum group to SU(2)). As such the reader can
think of them as “particles”. The interactions of these particles are governed by
how they can be tied together into three vertices. See Fig. 14.34. In Fig. 14.34
we show how to tie three projectors, of a,b,c strands respectively, together to
form a three-vertex. In order to accomplish this interaction, we must share lines
between them as shown in that figure so that there are non-negative integers
i, j,k so that a = i + j,b = j + k,c = i + k. This is equivalent to the condition
that a + b + c is even and that the sum of any two of a,b,c is greater than or
equal to the third. For example a + b ≥ c. One can think of the vertex as a
possible particle interaction where [a] and [b] interact to produce [c]. That is,
any two of the legs of the vertex can be regarded as interacting to produce the
third leg.

There is a basic orthogonality of three vertices as shown in Fig. 14.35. Here
if we tie two of the three vertices together so that they form a “bubble” in
the middle, then the resulting network with labels a and b on its free ends is
a multiple of an a-line (meaning a line with an a-projector on it) or zero (if
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a is not equal to b). The multiple is compatible with the results of closing
the diagram in the equation of Fig. 14.35 so the two free ends are identified
with one another. On closure, as shown in the figure, the left hand side of the
equation becomes a theta graph and the right hand side becomes a multiple of a
delta where Δa denotes the bracket polynomial evaluation of the a-strand loop
with a projector on it. The Θ(a,b,c) denotes the bracket evaluation of a theta
graph made from three trivalent vertices and labeled with a,b,c on its edges.

There is a recoupling formula in this theory in the form shown in Fig. 14.36.
Here there are “6-j symbols”, recoupling coefficients that can be expressed,
as shown in Fig. 14.36, in terms of tetrahedral graph evaluations and theta
graph evaluations. The tetrahedral graph is shown in Fig. 14.37. One derives
the formulas for these coefficients directly from the orthogonality relations for
the trivalent vertices by closing the left hand side of the recoupling formula
and using orthogonality to evaluate the right hand side. This is illustrated in
Fig. 14.38. The reader should be advised that there are specific calculational
formulas for the theta and tetrahedral nets. These can be found in [38]. Here
we are indicating only the relationships and external logic of these objects.

Finally, there is the braiding relation, as illustrated in Fig. 14.36.
With the braiding relation in place, this q-deformed spin network theory

satisfies the pentagon, hexagon and braiding naturality identities needed for a
topological quantum field theory. All these identities follow naturally from the
basic underlying topological construction of the bracket polynomial. One can
apply the theory to many different situations.

14.11.1 Evaluations

In this section we discuss the structure of the evaluations for Δn and the
theta and tetrahedral networks. We refer to [38] for the details behind these
formulas. Recall that Δn is the bracket evaluation of the closure of the n-strand
projector, as illustrated in Fig. 14.35. For the bracket variable A, one finds that

Δn = (−1)n A2n+2−A−2n−2

A2−A−2 .

One sometimes writes the quantum integer

[n] = (−1)n−1Δn−1 =
A2n−A−2n

A2−A−2 .

If

A = eiπ/2r
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FIGURE 14.37: Tetrahedron network.

where r is a positive integer, then

Δn = (−1)n sin((n + 1)π/r)
sin(π/r)

.

Here the corresponding quantum integer is

[n] =
sin(nπ/r)
sin(π/r)

.

Note that [n + 1] is a positive real number for n = 0,1,2, ...r−2 and that [r−
1] = 0.

The evaluation of the theta net is expressed in terms of quantum integers by
the formula

Θ(a,b,c) = (−1)m+n+p [m+ n + p + 1]![n]![m]![p]!
[m+ n]![n + p]![p + m]!

where
a = m+ p,b = m+ n,c = n + p.
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FIGURE 14.38: Tetrahedron formula for recoupling coefficients.

Note that
(a + b + c)/2 = m+ n + p.

When A = eiπ/2r, the recoupling theory becomes finite with the restriction
that only three-vertices (labeled with a,b,c) are admissible when a + b + c≤
2r− 4. All the summations in the formulas for recoupling are restricted to
admissible triples of this form.

14.11.2 Symmetry and unitarity

The formula for the recoupling coefficients given in Fig. 14.38 has less sym-
metry than is actually inherent in the structure of the situation. By multiplying
all the vertices by an appropriate factor, we can reconfigure the formulas in this
theory so that the revised recoupling transformation is orthogonal, in the sense
that its transpose is equal to its inverse. This is a very useful fact. It means
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that when the resulting matrices are real, then the recoupling transformations
are unitary. We shall see particular applications of this viewpoint later in the
paper.

Fig. 14.40 illustrates this modification of the three-vertex. Let Vert[a,b,c]
denote the original three-vertex of the Temperley–Lieb recoupling theory. Let
ModVert[a,b,c] denote the modified vertex. Then we have the formula

ModVert[a,b,c] =

√√
ΔaΔbΔc√

Θ(a,b,c)
Vert[a,b,c].

LEMMA 14.3

For the bracket evaluation at the root of unity A = eiπ/2r the factor

f (a,b,c) =

√√
ΔaΔbΔc√

Θ(a,b,c)
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is real, and can be taken to be a positive real number for (a,b,c) admis-
sible (i.e. a + b + c≤ 2r−4).

PROOF By the results from the previous subsection,

Θ(a,b,c) = (−1)(a+b+c)/2Θ̂(a,b,c)

where Θ̂(a,b,c) is positive real, and

ΔaΔbΔc = (−1)(a+b+c)[a + 1][b + 1][c + 1]

where the quantum integers in this formula can be taken to be positive
real. It follows from this that

f (a,b,c) =

√√
[a + 1][b + 1][c + 1]

Θ̂(a,b,c)
,

showing that this factor can be taken to be positive real.

In Fig. 14.41 we show how this modification of the vertex affects the non-
zero term of the orthogonality of trivalent vertices (compare with Fig. 14.35).
We refer to this as the “modified bubble identity.” The coefficient in the modi-
fied bubble identity is√

ΔbΔc

Δa
= (−1)(b+c−a)/2

√
[b + 1][c + 1]

[a + 1]

where (a,b,c) form an admissible triple. In particular b + c− a is even and
hence this factor can be taken to be real.

We rewrite the recoupling formula in this new basis and emphasize that
the recoupling coefficients can be seen (for fixed external labels a,b,c,d) as
a matrix transforming the horizontal “double-Y” basis to a vertically disposed
double-Y basis. In Figs. 14.42, 14.43 and 14.44 we have shown the form of
this transformation,using the matrix notation

M[a,b,c,d]i j

for the modified recoupling coefficients. In Fig. 14.42 we derive an explicit
formula for these matrix elements. The proof of this formula follows directly
from trivalent vertex orthogonality (see Figs. 14.35 and 14.38), and is given
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in Fig. 14.42. The result shown in Fig. 14.42 and Fig. 14.43 is the following
formula for the recoupling matrix elements.

M[a,b,c,d]i j = ModTet

⎛⎝a b i

c d j

⎞⎠/
√

ΔaΔbΔcΔd

where
√

ΔaΔbΔcΔd is short-hand for the product√
ΔaΔb

Δ j

√
ΔcΔd

Δ j
Δ j

= (−1)(a+b− j)/2(−1)(c+d− j)/2(−1) j

√
[a + 1][b + 1]

[ j + 1]

√
[c + 1][d + 1]

[ j + 1]
[ j + 1]

= (−1)(a+b+c+d)/2
√

[a + 1][b + 1][c + 1][d+ 1].

In this form, since (a,b, j) and (c,d, j) are admissible triples, we see that this
coefficient can be taken to be real, and its value is independent of the choice of
i and j. The matrix M[a,b,c,d] is real-valued.
It follows from Fig. 14.36 (turn the diagrams by ninety degrees) that

M[a,b,c,d]−1 = M[b,d,a,c].

In Fig. 14.45 we illustrate the formula

M[a,b,c,d]T = M[b,d,a,c].

It follows from this formula that

M[a,b,c,d]T = M[a,b,c,d]−1.

Hence M[a,b,c,d] is an orthogonal, real-valued matrix.

THEOREM 14.5
In the Temperley–Lieb theory we obtain unitary (in fact real orthogo-

nal) recoupling transformations when the bracket variable A has the form
A = eiπ/2r for r a positive integer. Thus we obtain families of unitary rep-
resentations of the Artin braid group from the recoupling theory at these
roots of unity.

PROOF The proof is given the discussion above.

In Section 14.9 we shall show explictly how these methods work in the case
of the Fibonacci model where A = e3iπ/5.
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FIGURE 14.40: Modified three-vertex.

14.12 Fibonacci particles

In this section and the next we detail how the Fibonacci model for anyonic
quantum computing [60, 71] can be constructed by using a version of the two-
stranded bracket polynomial and a generalization of Penrose spin networks.
This is a fragment of the Temperly–Lieb recoupling theory [38]. We already
gave in the preceding sections a general discussion of the theory of spin net-
works and their relationship with quantum computing.

The Fibonacci model is a TQFT that is based on a single “particle” with two
states that we shall call the marked state and the unmarked state. The particle
in the marked state can interact with itself either to produce a single particle
in the marked state, or to produce a single particle in the unmarked state. The
particle in the unmarked state has no influence in interactions (an unmarked
state interacting with any state S yields that state S). One way to indicate these
two interactions symbolically is to use a box for the marked state and a blank
space for the unmarked state. Then one has two modes of interaction of a box
with itself:

1. Adjacency:

and

2. Nesting: .
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FIGURE 14.41: Modified bubble identity.

With this convention we take the adjacency interaction to yield a single box,
and the nesting interaction to produce nothing:

=
=

We take the notational opportunity to denote nothing by an asterisk (*). The
asterisk is a stand-in for no mark at all and it can be erased or placed wherever
it is convenient to do so. Thus

= ∗.

We shall make a recoupling theory based on this particle, but it is worth
noting some of its purely combinatorial properties first. The arithmetic of
combining boxes (standing for acts of distinction) according to these rules has
been studied and formalized in [80] and correlated with Boolean algebra and
classical logic. Here within and next to are ways to refer to the two sides de-
lineated by the given distinction. From this point of view, there are two modes
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FIGURE 14.44: Modified recoupling matrix.
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FIGURE 14.45: Modified matrix transpose.
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FIGURE 14.46: Fibonacci particle interaction.
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FIGURE 14.47: Fibonacci trees.

of relationship (adjacency and nesting) that arise at once in the presence of a
distinction.

From here on we shall denote the Fibonacci particle by the letter P. Thus the
two possible interactions of P with itself are as follows.

1. P,P−→ ∗
2. P,P−→ P.

In Fig. 14.47 we indicate in small tree diagrams the two possible interactions of
the particle P with itself. In the first interaction the particle vanishes, producing
the asterisk. In the second interaction a single copy of P is produced. These are
the two basic actions of a single distinction relative to itself, and they constitute
our formalism for this very elementary particle.

In Fig. 14.47, we have indicated the different results of particle processes
where we begin with a left-associated tree structure with three branches, all
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marked and then four branches all marked. In each case we demand that the
particles interact successively to produce an unmarked particle in the end, at
the root of the tree. More generally one can consider a left-associated tree with
n upward branches and one root. Let T (a1,a2, · · · ,an : b) denote such a tree
with particle labels a1, · · · ,an on the top and root label b at the bottom of the
tree. We consider all possible processes (sequences of particle interactions)
that start with the labels at the top of the tree, and end with the labels at the
bottom of the tree. Each such sequence is regarded as a basis vector in a
complex vector space

V a1,a2,···,an
b

associated with the tree. In the case where all the labels are marked at the top
and the bottom label is unmarked, we shall denote this tree by

V 111···11
0 = V (n)

0

where n denotes the number of upward branches in the tree. We see from Fig.
14.47 that the dimension of V (3)

0
is 1, and that

dim(V (4)
0

) = 2.

This means that V (4)
0

is a natural candidate in this context for the two-qubit
space.

Given the tree T (1,1,1, · · · ,1 : 0) (n marked states at the top, an unmarked
state at the bottom), a process basis vector in V (n)

0
is in direct correspondence

with a string of boxes and asterisks (1’s and 0’s) of length n−2 with no repeat-
ed asterisks and ending in a marked state. See Fig. 14.47 for an illustration of
the simplest cases. It follows from this that

dim(V (n)
0

) = fn−2

where fk denotes the k-th Fibonacci number:

f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, · · ·

where

fn+2 = fn+1 + fn.

The dimension formula for these spaces follows from the fact that there are fn

sequences of length n−1 of marked and unmarked states with no repetition of
an unmarked state. This fact is illustrated in Fig. 14.48.
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*
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Tree of squences with no occurence of * *
FIGURE 14.48: Fibonacci sequence.

14.13 The Fibonacci recoupling model

We now show how to make a model for recoupling the Fibonacci particle
by using the Temperley–Lieb recoupling theory and the bracket polynomial.
Everything we do in this section will be based on the 2-projector, its prop-
erties and evaluations based on the bracket polynomial model for the Jones
polynomial. While we have outlined the general recoupling theory based on
the bracket polynomial in earlier sections of this paper, the present section is
self-contained, using only basic information about the bracket polynomial, and
the essential properties of the 2-projector as shown in Fig. 14.49. In this figure
we state the definition of the 2-projector, list its two main properties (the oper-
ator is idempotent and a self-attached strand yields a zero evaluation) and give
diagrammatic proofs of these properties.

In Fig. 14.50, we show the essence of the Temperley–Lieb recoupling mod-
el for the Fibonacci particle. The Fibonacci particle is, in this mathematical
model, identified with the 2-projector itself. As the reader can see from Fig.
14.50, there are two basic interactions of the 2-projector with itself, one giving
a 2-projector, the other giving nothing. This is the pattern of self-interaction
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=

= = = 0

= 0

= =

=

− 1/δ

−(1/δ)δ− 1/δ

− 1/δ

FIGURE 14.49: The 2-projector.

of the Fibonacci particle. There is a third possibility, depicted in Fig. 14.50,
where two 2-projectors interact to produce a 4-projector. We could remark at
the outset, that the 4-projector will be zero if we choose the bracket polynomial
variable A = e3π/5. Rather than start there, we will assume that the 4-projector
is forbidden and deduce (below) that the theory has to be at this root of unity.
Note that in Fig. 14.50 we have adopted a single strand notation for the particle
interactions, with a solid strand corresponding to the marked particle, a dotted
strand (or nothing) corresponding to the unmarked particle. A dark vertex indi-
cates either an interaction point, or it may be used to indicate the single strand
is shorthand for two ordinary strands. Remember that these are all shorthand
expressions for underlying bracket polynomial calculations.

In Figs. 14.51, 14.52, 14.53, 14.54, 14.55 and 14.56 we have provided com-
plete diagrammatic calculations of all of the relevant small nets and evaluations
that are useful in the two-strand theory that is being used here. The reader may
wish to skip directly to Fig. 14.57 where we determine the form of the recou-
pling coefficients for this theory. We will discuss the resulting algebra below.

For the reader who does not want to skip the next collection of figures, here
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=

Forbidden
Process

FIGURE 14.50: Fibonacci particle as 2-projector.

is a guided tour. Fig. 14.51 illustrates three basic nets in the case of two strands.
These are the theta, delta and tetrahedron nets. In this figure we have shown
the decomposition on the theta and delta nets in terms of 2-projectors. The
tetrahedron net will be similarly decomposed in Figs. 14.55 and 14.56. The
theta net is denoted Θ, the delta by Δ, and the tetrahedron by T. In Fig. 14.52
we illustrate how a pendant loop has a zero evaluation. In Fig. 14.53 we use
the identity in Fig. 14.52 to show how an interior loop (formed by two trivalent
vertices) can be removed and replaced by a factor of Θ/Δ. Note how, in this
figure, line two proves that one network is a multiple of the other, while line
three determines the value of the multiple by closing both nets.

Fig. 14.54 illustrates the explicit calculation of the delta and theta nets. The
figure begins with a calculation of the result of closing a single strand of the
2-projector. The result is a single stand multiplied by (δ − 1/δ ) where δ =
−A2−A−2, and A is the bracket polynomial parameter. We then find that

Δ = δ 2−1
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and
Θ = (δ −1/δ )2δ −Δ/δ = (δ −1/δ )(δ 2−2).

Figs. 14.55 and 14.56 illustrate the calculation of the value of the tetrahedral
network T. The reader should note the first line of Fig. 14.55 where the tetra-
hedral net is translated into a pattern of 2-projectors, and simplified. The rest
of these two figures are diagrammatic calculations, using the expansion formu-
la for the 2-projector. At the end of Fig. 14.56 we obtain the formula for the
tetrahedron

T = (δ −1/δ )2(δ 2−2)−2Θ/δ .

= =Θ =

=

==Δ

Τ

FIGURE 14.51: Theta, delta and tetrahedron.

Fig. 14.57 is the key calculation for this model. In this figure we assume that
the recoupling formulas involve only 0 and 2 strands, with 0 corresponding to
the null particle and 2 corresponding to the 2-projector. (2+2 = 4 is forbidden
as in Fig. 14.50.) From this assumption we calculate that the recoupling matrix
is given by

F =

⎛⎝a b

c d

⎞⎠=

⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 TΔ/Θ2

⎞⎠ .
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= =

= = 0−1/δ

FIGURE 14.52: Loop evaluation (1).

Figs. 14.58 and 14.59 work out the exact formulas for the braiding at a three-
vertex in this theory. When the three-vertex has three marked lines, then the
braiding operator is multiplication by −A4, as in Fig. 14.58. When the three-
vertex has two marked lines, then the braiding operator is multiplied by A8, as
shown in Fig. 14.59.
Notice that it follows from the symmetry of the diagrammatic recoupling for-
mulas of Fig. 14.57 that the square of the recoupling matrix F is equal to the
identity. That is,⎛⎝1 0

0 1

⎞⎠ = F2 =

⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 T Δ/Θ2

⎞⎠⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 T Δ/Θ2

⎞⎠
=

⎛⎝ 1/Δ2 + 1/Δ 1/Θ + TΔ2/Θ3

Θ/Δ3 + T/(ΔΘ) 1/Δ + Δ2T 2/Θ4

⎞⎠ .

Thus we need the relation

1/Δ + 1/Δ2 = 1.
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FIGURE 14.53: Loop evaluation (2).
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= − 1/δ = (δ − 1/δ)

(δ − 1/δ) (δ − 1/δ) δ

=Δ δ    − 12

= − 1/δ

= (δ − 1/δ) δ2 − Δ/δΘ

FIGURE 14.54: Calculations of theta and delta.
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==Τ = = − 1/δ

= − Θ/δ = − 1/δ − Θ/δ

= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

FIGURE 14.55: Calculation of tetrahedron (1).

= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

= − 1/δ − Θ/δ− (δ − 1/δ)    2

Τ

= (δ − 1/δ)    δ3 − (1/δ)Θ − Θ/δ− (δ − 1/δ)    2

= (δ − 1/δ)    (δ    − 2)    −  2Θ/δ22

FIGURE 14.56: Calculation of tetrahedron (2).
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FIGURE 14.57: Recoupling for 2-projectors.
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FIGURE 14.58: Braiding at the three-vertex.
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FIGURE 14.59: Braiding at the null three-vertex.
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This is equivalent to saying that

Δ2 = 1 + Δ,

a quadratic equation whose solutions are

Δ = (1±√5)/2.

Furthermore, we know that
Δ = δ 2−1

from Fig. 14.54. Hence
Δ2 = Δ + 1 = δ 2.

We shall now specialize to the case where

Δ = δ = (1 +
√

5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3π i/5

so that
δ =−A2−A−2 =−2cos(6π/5) = (1 +

√
5)/2.

Note that δ −1/δ = 1. Thus

Θ = (δ −1/δ )2δ −Δ/δ = δ −1

and

T = (δ −1/δ )2(δ 2−2)−2Θ/δ = (δ 2−2)−2(δ−1)/δ
= (δ −1)(δ −2)/δ = 3δ −5.

Note that
T =−Θ2/Δ2,

from which it follows immediately that

F2 = I.

This proves that we can satisfy this model when Δ = δ = (1 +
√

5)/2.
For this specialization we see that the matrix F becomes

F =

⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 TΔ/Θ2

⎞⎠=

⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 (−Θ2/Δ2)Δ/Θ2

⎞⎠=

⎛⎝ 1/Δ Δ/Θ

Θ/Δ2 −1/Δ

⎞⎠ .
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This version of F has square equal to the identity independent of the value of
Θ, so long as Δ2 = Δ + 1.

The Final Adjustment. Our last version of F suffers from a lack of symme-
try. It is not a symmetric matrix, and hence not unitary. A final adjustment of
the model gives this desired symmetry. Consider the result of replacing each
trivalent vertex (with three 2-projector strands) by a multiple of a given quan-
tity α. Since the Θ has two vertices, it will be multiplied by α2. Similarly, the
tetrahedron T will be multiplied by α4. The Δ and the δ will be unchanged.
Other properties of the model will remain unchanged. The new recoupling
matrix, after such an adjustment is made, becomes⎛⎝ 1/Δ Δ/α2Θ

α2Θ/Δ2 −1/Δ

⎞⎠ .

For symmetry we require

Δ/(α2Θ) = α2Θ/Δ2.

We take
α2 =

√
Δ3/Θ.

With this choice of α we have

Δ/(α2Θ) = ΔΘ/(Θ
√

Δ3) = 1/
√

Δ.

Hence the new symmetric F is given by the equation

F =

⎛⎝ 1/Δ 1/
√

Δ

1/
√

Δ −1/Δ

⎞⎠=

⎛⎝ τ
√

τ
√

τ −τ

⎞⎠
where Δ is the golden ratio and τ = 1/Δ. This gives the Fibonacci model.
Using Figs. 14.58 and 14.59, we have that the local braiding matrix for the
model is given by the formula below with A = e3π i/5.

R =

⎛⎝A8 0

0 −A4

⎞⎠=

⎛⎝ e4π i/5 0

0 −e2π i/5

⎞⎠ .

The simplest example of a braid group representation arising from this theo-
ry is the representation of the three-strand braid group generated by S1 = R and
S2 = FRF . (Remember that F = FT = F−1.) The matrices S1 and S2 are both
unitary, and they generate a dense subset of the unitary group U(2), supplying
the first part of the transformations needed for quantum computing.
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14.14 Quantum computation of colored Jones poly-
nomials and the Witten–Reshetikhin–Turaev
invariant

In this section we make some brief comments on the quantum computation
of colored Jones polynomials. This material will be expanded in a subsequent
publication.

First, consider Fig. 14.60. In that figure we illustrate the calculation of the
evaluation of the (a)—colored bracket polynomial for the plat closure P(B) of a
braid B. The reader can infer the definition of the plat closure from Fig. 14.60.
One takes a braid of an even number of strands and closes the top strands with
each other in a row of maxima. Similarly, the bottom strands are closed with a
row of minima. It is not hard to see that any knot or link can be represented as
the plat closure of some braid. Note that in this figure we indicate the action of
the braid group on the process spaces corresponding to the small trees attached
below the braids.

The (a)—colored bracket polynomial of a link L, denoted 〈L〉a, is the eval-
uation of that link where each single strand has been replaced by a parallel
strands and the insertion of a Jones–Wenzl projector (as discussed in Section
14.7). We then see that we can use our discussion of the Temperley–Lieb re-
coupling theory as in Sections 14.7, 14.8 and 14.9 to compute the value of the
colored bracket polynomial for the plat closure PB. As shown in Fig. 14.60,
we regard the braid as acting on a process space V a,a,···,a

0
and take the case of

the action on the vector v whose process space coordinates are all zero. Then
the action of the braid takes the form

Bv(0, · · · ,0) = Σx1,···,xn B(x1, · · · ,xn)v(x1, · · · ,xn)

where B(x1, · · · ,xn) denotes the matrix entries for this recoupling transforma-
tion and v(x1, · · · ,xn) runs over a basis for the space V a,a,···,a

0
. Here n is even

and equal to the number of braid strands. In the figure we illustrate with n = 4.
Then, as the figure shows, when we close the top of the braid action to form
PB, we cut the sum down to the evaluation of just one term. In the general case
we will get

〈PB〉a = B(0, · · · ,0)Δn/2
a .

The calculation simplifies to this degree because of the vanishing of loops in
the recoupling graphs. The vanishing result is shown in Fig. 14.60, and it is
proved in the case a = 2 in Fig. 14.52.

The colored Jones polynomials are normalized versions of the colored brack-
et polynomials, differing just by a normalization factor.
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FIGURE 14.60: Evaluation of the plat closure of a braid.
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In order to consider quantum computation of the colored bracket or colored
Jones polynomials, we therefore can consider quantum computation of the ma-
trix entries B(0, · · · ,0). These matrix entries in the case of the roots of unity
A = eiπ/2r and for the a = 2 Fibonacci model with A = e3iπ/5 are parts of the
diagonal entries of the unitary transformation that represents the braid group
on the process space V a,a,···,a

0
. We can obtain these matrix entries by using the

Hadamard test as described in Section 14.4. As a result we get relatively ef-
ficient quantum algorithms for the colored Jones polynomials at these roots of
unity, in essentially the same framework as we described in Section 14.4, but
for braids of arbitrary size. The computational complexity of these models is
essentially the same as the models for the Jones polynomial discussed in [1].
We reserve discussion of these issues to a subsequent publication.

δA4 -4
= A + +

δA 4-4= A+ +

- = 4A A
-4-( ) -( )

- = 4A A
-4-( ) -( )

= A
8

FIGURE 14.61: Dubrovnik polynomial specialization at two strands.

It is worth remarking here that these algorithms give not only quantum al-
gorithms for computing the colored bracket and Jones polynomials, but also
for computing the Witten–Reshetikhin–Turaev (WRT ) invariants at the above
roots of unity. The reason for this is that the WRT invariant in unnormalized
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form is given as a finite sum of colored bracket polynomials:

W RT (L) = Σr−2
a=0Δa〈L〉a,

and so the same computation as shown in Fig. 14.60 applies to the WRT. This
means that we have, in principle, a quantum algorithm for the computation of
the Witten functional integral [85] via this knot-theoretic combinatorial topol-
ogy. It would be very interesting to understand a more direct approach to such
a computation via quantum field theory and functional integration.

Finally, we note that in the case of the Fibonacci model, the two-colored
bracket polynomial is a special case of the Dubrovnik version of the Kauffman
polynomial [40]. See Fig. 14.61 for diagammatics that resolve this fact. The
skein relation for the Dubrovnik polynomial is boxed in this figure. Above the
box, we show how the double strands with projectors reproduce this relation.
This observation means that in the Fibonacci model, the natural underlying
knot polynomial is a special evaluation of the Dubrovnik polynomial, and the
Fibonacci model can be used to perform quantum computation for the values
of this invariant.
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Chapter 15

Temperley–Lieb Algebra: From
Knot Theory to Logic and
Computation via Quantum
Mechanics

Samson Abramsky

Abstract We study the Temperley–Lieb algebra, central to the Jones poly-
nomial invariant of knots and ensuing developments, from a novel point of
view. We relate the Temperley–Lieb category to the categorical formulation of
quantum mechanics introduced by Abramsky and Coecke as the basis for the
development of high-level methods for quantum information and computation.
We develop some structural properties of the Temperley–Lieb category, giving
a simple diagrammatic description of epi-monic factorization, and hence of
splitting idempotents. We then relate the Temperley–Lieb category to some
topics in proof theory and computation. We give a direct, “fully abstract” de-
scription of the Temperley–Lieb category, in which arrows are just relations on
discrete finite sets, with planarity being characterized by simple order-theoretic
properties. The composition is described in terms of the “Geometry of Interac-
tion” construction, originally introduced to analyze cut elimination in Linear
Logic. Thus we obtain a planar version of Geometry of Interaction. Moreover,
we get an explicit description of the free pivotal category on one self-dual
object, which is easily generalized to an arbitrary generating category. More-
over, we show that the construction naturally lifts a dagger structure on the
underlying category, thus exhibiting a key feature of the Abramsky–Coecke
axiomatization. The dagger or “adjoint”, and the “complex conjugate”, ac-
quire natural diagrammatic readings in this context. Finally, we interpret a
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non-commutative lambda calculus (a variant of the Lambek calculus, widely
used in computational linguistics) in the Temperley–Lieb category, and thus
show how diagrammatic simplification can be viewed as functional computa-
tion.

15.1 Introduction

Our aim in this paper is to trace some of the surprising and beautiful connec-
tions which are beginning to emerge among a number of apparently disparate
topics.

15.1.1 Knot theory

Vaughan Jones’ discovery of his new polynomial invariant of knots in 1984
[26] triggered a spate of mathematical developments relating knot theory, topo-
logical quantum field theory, and statistical physics inter alia [44, 30]. A cen-
tral role, both in the initial work by Jones and in the subsequent developments,
was played by what has come to be known as the Temperley–Lieb algebra.1

15.1.2 Categorical quantum mechanics

Recently, motivated by the needs of quantum information and computation,
Abramsky and Coecke have recast the foundations of quantum mechanics it-
self, in the more abstract language of category theory. The key contribution is
the paper [4], which develops an axiomatic presentation of quantum mechanics
in the general setting of strongly compact closed categories, which is adequate
for the needs of quantum information and computation. Moreover, these cate-
gorical axiomatics can be presented in terms of a diagrammatic calculus which
is both intuitive and effective, and can replace low-level computation with ma-
trices by much more conceptual reasoning. This diagrammatic calculus can be
seen as a proof system for a logic [6], leading to a radically new perspective
on what the right logical formulation for quantum mechanics should be.

1The original work of Temperley and Lieb [43] was in discrete lattice models of statistical physics.
In finding exact solutions for a certain class of systems, they had identified the same relations
which Jones, quite independently, found later in his work.
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This line of work has a direct connection to the Temperley–Lieb algebra,
which can be put in a categorical framework, in which it can be described es-
sentially as the free pivotal dagger category on one self-dual generator [21].2

Here pivotal dagger category is a non-symmetric (“planar”) version of (strong-
ly or dagger) compact closed category—the key notion in the Abramsky–
Coecke axiomatics.

15.1.3 Logic and computation

The Temperley–Lieb algebra itself has some direct and striking connections
to basic ideas in logic and computation, which offer an intriguing and promis-
ing bridge between these prima facie very different areas. We shall focus in
particular on the following two topics:

• The Temperley–Lieb algebra has always hitherto been presented as a
quotient of some sort: either algebraically by generators and relations as
in Jones’ original presentation [26], or as a diagram algebra modulo pla-
nar isotopy as in Kauffman’s presentation [29]. We shall use tools from
Geometry of Interaction [23], a dynamical interpretation of proofs under
cut elimination developed as an off-shoot of Linear Logic [22], to give a
direct description of the Temperley–Lieb category—a fully abstract pre-
sentation, in computer science terminology [37]. This also brings some-
thing new to the Geometry of Interaction, since we are led to develop a
planar version of it, and to verify that the interpretation of cut elimina-
tion (the “execution formula” [23], or “composition by feedback” [8, 1])
preserves planarity.

• We shall also show how the Temperley–Lieb algebra provides a natural
setting in which computation can be performed diagrammatically as ge-
ometric simplification—“yanking lines straight”. We shall introduce a
“planar λ -calculus” for this purpose, and show how it can be interpreted
in the Temperley–Lieb category.

15.1.4 Outline of the paper

We briefly summarize the further contents of this paper. In Section 15.2 we
introduce the Temperley–Lieb algebras, emphasizing Kauffman’s diagrammat-
ic formulation. We also briefly outline how the Temperley–Lieb algebra fig-
ures in the construction of the Jones polynomial. In Section 15.3 we describe

2Strictly speaking, the full Temperley–Lieb category over a ring R is the free R-linear enrichment
of this free pivotal dagger category.
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the Temperley–Lieb category, which provides a more structured perspective
on the Temperley–Lieb algebras. In Section 15.4, we discuss some features
of this category, which have apparently not been considered previously, name-
ly a characterization of monics and epics, leading to results on image factor-
ization and splitting of idempotents. In Section 15.5, we briefly discuss the
connections with the Abramsky–Coecke categorical formulation of quantum
mechanics, and raise some issues and questions about the possible relation-
ship betwen planar, braided and symmetric settings for quantum information
and computation. In Section 15.6 we develop a planar version of Geometry of
Interaction, and the direct “fully abstract” presentation of the Temperley–Lieb
category. In Section 15.7 we discuss the planar λ -calculus and its interpreta-
tion in the Temperley–Lieb category. We conclude in Section 15.8 with some
further directions.

Note to the Reader Since this paper aims at indicating cross-currents be-
tween several fields, it has been written in a somewhat expansive style, and
an attempt has been made to explain the context of the various ideas we will
discuss. We hope it will be accessible to readers with a variety of backgrounds.

15.2 The Temperley–Lieb algebra

Our starting point is the Temperley–Lieb algebra, which has played a central
role in the discovery by Vaughan Jones of his new polynomial invariant of
knots and links [26], and in the subsequent developments over the past two
decades relating knot theory, topological quantum field theory, and statistical
physics [30].

Jones’ approach was algebraic: in his work, the Temperley–Lieb algebra
was originally presented, rather forbiddingly, in terms of abstract generators
and relations. It was recast in beautifully elementary and conceptual terms by
Louis Kauffman as a planar diagram algebra [29]. We begin with the algebraic
presentation.

15.2.1 Temperley–Lieb algebra: generators and relation-
s

We fix a ring R; in applications to knot polynomials, this is taken to be a
ring of Laurent polynomials C[X ,X−1]. Given a choice of parameter τ ∈ R
and a dimension n∈N, we define the Temperley–Lieb algebra An(τ) to be the
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unital, associative R-linear algebra with generators

U1, . . . ,Un−1

and relations

UiUjUi = Ui |i− j|= 1

U2
i = τ ·Ui

UiUj = UjUi |i− j|> 1.

Note that the only relations used in defining the algebra are multiplicative
ones. This suggests that we can obtain the algebra An(τ) by presenting the
multiplicative monoid Mn, and then obtaining An(τ) as the monoid algebra
of formal R-linear combinations ∑i ri · ai over Mn, with the multiplication in
An(τ) defined as the bilinear extension of the monoid multiplication in Mn:

(∑
i

ri ·ai)(∑
j

s j ·b j) = ∑
i, j

(ris j) · (aib j).

We define Mn as the monoid with generators

δ ,U1, . . . ,Un−1

and relations

UiUjUi = Ui |i− j|= 1

U2
i = δUi

UiUj = UjUi |i− j|> 1

δUi = Uiδ .

We can then obtain An(τ) as the monoid algebra over Mn, subject to the iden-
tification

δ = τ ·1.

15.2.2 Diagram monoids

These formal algebraic ideas are brought to vivid geometric life by Kauff-
man’s interpretation of the monoids Mn as diagram monoids.

We start with two parallel rows of n dots (geometrically, the dots are points
in the plane). The general form of an element of the monoid is obtained by
“joining up the dots” pairwise in a smooth, planar fashion, where the arc con-
necting each pair of dots must lie within the rectangle framing the two parallel
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rows of dots. Such diagrams are identified up to planar isotopy, i.e., continuous
deformation within the portion of the plane bounded by the framing rectangle.

Thus the generators U1, . . . ,Un−1 can be drawn as follows:

· · ·

· · ·

1 2 3 n

1 2 3 n

U1

· · ·

· · ·

· · ·

1 n

1 n

Un−1

The generator δ corresponds to a loop ©—all such loops are identified up to
isotopy.

We refer to arcs connecting dots in the top row as cups, those connecting
dots in the bottom row as caps, and those connecting a dot in the top row to a
dot in the bottom row as through lines.

Multiplication xy is defined by identifying the bottom row of x with the top
row of y, and composing paths. In general loops may be formed—these are
“scalars”, which can float freely across these figures. The relations can be
illustrated as follows:

=

U1U2U1 = U1

=

U2
1 = δU1

=

U1U3 = U3U1

15.2.3 Expressiveness of the generators

The fact that all planar diagrams can be expressed as products of generators
is not entirely obvious. For proofs, see [20, 29]. As an illustrative example,
consider the planar diagrams in M3. Apart from the generators U1,U2, and
ignoring loops, there are three:
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The first is the identity for the monoid; we refer to the other two as the left wave
and right wave respectively. The left wave can be expressed as the product
U2U1:

=

The right wave has a similar expression.
Once we are in dimension four or higher, we can have nested cups and caps.

These can be built using waves, as illustrated by the following:

=

15.2.4 The trace

There is a natural trace function on the Temperley–Lieb algebra, which can
be defined diagrammatically on Mn by connecting each dot in the top row to
the corresponding dot in the bottom row, using auxiliary cups and cups. This
always yields a diagram isotopic to a number of loops—hence to a scalar, as
expected. This trace can then be extended linearly to An(τ).

We illustrate this firstly by taking the trace of a wave—which is equal to a
single loop:

=

The Ear is a Circle
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Our second example illustrates the important general point that the trace of the
identity in Mn is δ n:

=

15.2.5 The connection to knots

How does this connect to knots? Again, a key conceptual insight is due to
Kauffman, who saw how to recast the Jones polynomial in elementary combi-
natorial form in terms of his bracket polynomial. The basic idea of the bracket
polynomial is expressed by the following equation:

= +A B

Each over-crossing in a knot or link is evaluated to a weighted sum of the two
possible planar smoothings. With suitable choices for the coefficients A and
B (as Laurent polynomials), this is invariant under the second and third Rei-
demeister moves. With an ingenious choice of normalizing factor, it becomes
invariant under the first Reidemeister move—and yields the Jones polynomial!
What this means algebraically is that the braid group Bn has a representation
in the Temperley–Lieb algebra An(τ)—the above bracket evaluation shows
how the generators βi of the braid group are mapped into the Temperley–Lieb
algebra:

βi �→ A ·Ui + B ·1.

Every knot arises as the closure (i.e. the diagrammatic trace) of a braid; the
invariant arises by mapping the open braid into the Temperley–Lieb algebra,
and taking the trace there.

This is just the beginning of a huge swathe of further developments, includ-
ing: topological quantum field theories [44], quantum groups [28], quantum
statistical mechanics [30], diagram algebras and representation theory [25],
and more.
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15.3 The Temperley–Lieb category

We can expose more structure by gathering all the Temperley–Lieb algebras
into a single category. We begin with the category D which plays a similar
role with respect to the diagram monoids Mn.

The objects of D are the natural numbers. An arrow n→m is given by

• a number k ∈ N of loops.

• a diagram which joins the top row of n dots and the bottom row of m
dots up pairwise, in the same smooth planar fashion as we have already
specified for the diagram monoids. As before, diagrams are identified
up to planar isotopy.

Composition of arrows f : n→m and g : m→ p is defined by identifying the
bottom row of m dots for f with the top row of m dots for g, and composing
paths. The loops in the resulting arrow are those of f and of g, together with
any formed by the process of composing paths.

Clearly we recover each Mn as the endomorphism monoid D(n,n). More-
over, we can define the Temperley–Lieb category T over a ring R as the free
R-linear category generated by D , with a construction which generalizes that
of the monoid algebra: the objects of T are the same as those of D , and ar-
rows are R-linear combinations of arrows of D , with composition defined by
bilinear extension from that in D :

(∑
i

ri ·gi)◦ (∑
j

s j · f j) = ∑
i, j

(ris j) · (gi ◦ f j).

If we fix a parameter τ ∈R, then we obtain the category Tτ by the identification
of the loop © in D with the scalar τ in T .3 We then recover the Temperley–
Lieb algebras as

An(τ) = Tτ (n,n).

New possibilities also arise in D . In particular, we get the pure cap

3The full justification of this step requires the identification of D as a free pivotal category, as
discussed below.
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as (the unique) arrow 0 → 2, and similarly the pure cup as the unique arrow
2 → 0. More generally, for each n we have arrows ηn : 0 → n + n, and εn :
n+ n→ 0:

. . . . . .
1 2n

. . . . . .1 2n

We refer to the arrows ηn as units, and the arrows εn as counits.
The category D has a natural strict monoidal structure. On objects, we de-

fine n⊗m = n+m, with unit given by I = 0. The tensor product of morphisms

f : n→m g : p→ q
f ⊗g : n+ p→ p+ q

is given by juxtaposition of diagrams in the evident fashion, with (multiset)
union of loops. Thus we can write the units and counits as arrows

ηn : I → n⊗n, εn : n⊗n→ I.

These units and counits satisfy important identities, which we illustrate dia-
grammatically

= =

and write algebraically as

(εn⊗1n)◦ (1n⊗ηn) = 1n = (1n⊗ εn)◦ (ηn⊗1n). (15.1)

15.3.1 Pivotal categories

From these observations, we see that D is a strict pivotal category [21], in
which the duality on objects is trivial: A = A∗. We recall that a strict pivotal
category is a strict monoidal category (C ,⊗, I) with an assignment A �→ A∗ on
objects satisfying

A∗∗ = A, (A⊗B)∗ = B∗ ⊗A∗, I∗ = I,
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and for each object A, arrows

ηA : I → A∗ ⊗A, εA : A⊗A∗ → I

satisfying the triangular identities:

(εA⊗1A)◦ (1A⊗ηA) = 1A, (1A∗ ⊗ εA)◦ (ηA⊗1A∗) = 1A∗ . (15.2)

In addition, the following coherence equations are required to hold:

ηI = 1I, ηA⊗B = (1B∗ ⊗ηA⊗1B)◦ηB,

and, for f : A→ B:

A∗ ⊗A⊗B∗
1⊗ f ⊗1� A∗ ⊗B⊗B∗

B∗

η A

⊗1
�

A∗

1⊗ ε
A

�

B∗ ⊗A⊗A∗
1⊗ f ⊗1

�

1⊗η
A ∗ �

B∗ ⊗B⊗A∗
ε A
∗⊗

1
�

This last equation is illustrated diagrammatically by

f f=

We extend ()∗ to a contravariant involutive functor:

f : A→ B
f ∗ : B∗ → A∗

f ∗ = (1⊗ εA)◦ (1⊗ f ⊗1)◦ (ηA⊗1)

which indeed satisfies

1∗ = 1, (g◦ f )∗ = f ∗ ◦g∗, f ∗∗ = f ,

the last equation being illustrated diagrammatically by
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f

A

B

A

B

A∗

B∗

= f

A

B

These axioms have powerful consequences. In particular, C is monoidal
closed, with internal hom given by A∗ ⊗B, and the adjunction:

C (A⊗B,C)2 C (B,A∗ ⊗C) :: f �→ (1⊗ f )◦ (ηA⊗1).

This means that a restricted form of λ -calculus can interpreted in such catego-
ries—a point we shall return to in Section 15.7.

A trace function can be defined in pivotal categories, which takes an endo-
morphism f : A→ A to a scalar in C (I, I):

Tr( f ) = εA ◦ ( f ⊗1)◦ηA∗.

It satisfies:
Tr(g◦ f ) = Tr( f ◦g).

In D , this definition yields exactly the diagrammatic trace we discussed previ-
ously.

We have the following important characterization of the diagrammatic cate-
gory D :

PROPOSITION 15.1
D is the free pivotal category over one self-dual generator; that is, freely
generated over the one-object one-arrow category, with object A say, sub-
ject to the equation A = A∗.

This was mentioned (although not proved) in [21]; see also [20]. The meth-
ods in [3] can be adapted to prove this result, using the ideas we shall develop
in Section 15.6.

The idea of “identifying the loop with the scalar τ” in passing from D to the
full Temperley–Lieb category Tτ can be made precise using the construction
given in [3] of gluing a specified ring R of scalars onto a free compact closed
category, along a given map from the loops in the generating category to R. In
this case, there is a single loop in the generating category, and we send it to τ .
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15.3.2 Pivotal dagger categories

We now mention a strengthening of the axioms for pivotal categories, cor-
responding to the notion of strongly compact closed or dagger compact closed
category which has proved to be important in the categorical approach to quan-
tum mechanics [4, 5]. Again we give the strict version for simplicity. We
assume that the strict monoidal category (C ,⊗, I) comes equipped with an
identity-on-objects, contravariant involutive functor ()† such that εA = η†

A∗ .
The idea is that f † abstracts from the adjoint of a linear map, and allows the
extra structure arising from the use of complex Hilbert spaces in quantum me-
chanics to be expressed in the abstract setting.

Note that there is a clear diagrammatic distinction between the dual f ∗ and
the adjoint f †. The dual corresponds to 180◦ rotation in the plane:

f

· · ·A1 An

· · ·
B1 Bm

f ∗

· · ·B∗m B∗1

· · ·
A∗n A∗1

�

while the adjoint is reflection in the x-axis:

f

· · ·A1 An

· · ·
B1 Bm

f †

· · ·B1 Bn

· · ·
A1 An

�

For example in D , if we consider the left and right wave morphisms L and R:

then we have
L∗ = L, L† = R, R∗ = R, R† = L.

Using the adjoint, we can define a covariant functor

f :→ B
f∗ : A∗ → B∗

f �→ f ∗†.
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We have

( f ∗)∗ = f † = ( f∗)∗.

In terms of complex matrices, f ∗ is transpose, while f∗ is complex conjugation.
Diagrammatically, f∗ is “reflection in the y-axis”.

f f ∗ f † f∗

We have the following refinement of Proposition 15.1, by similar methods
to those used for free strongly compact closed categories in [3].

PROPOSITION 15.2

D is the free pivotal dagger category over one self-dual generator.

15.4 Factorization and idempotents

We now consider some structural properties of the category D which we
have not found elsewhere in the literature.4

We begin with a pleasingly simple diagrammatic characterization of monics
and epics in D .

PROPOSITION 15.3

An arrow in D is monic iff it has no cups; it is epic iff it has no caps.

PROOF Suppose that f : n→m has no cups. Thus all dots in n are
connected by through lines to dots in m. Now consider a composition
f ◦g. No loops can be formed by this composition; hence we can recover
g from f ◦ g by erasing the caps of f . Moreover, the number of loops in
f ◦ g will simply be the sum of the loops in f and g, so we can recover

4The idea of considering these properties arose from a discussion with Louis Kauffman, who
showed the author a direct diagrammatic characterization of idempotents in D , which has subse-
quently appeared in [32].
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the loops of g by subtracting the loops of f from the composition. It
follows that

f ◦ g = f ◦h =⇒ g = h,

i.e., that f is monic, as required.
For the converse, suppose that f has a cup, which we can assume to

be connecting dots i and i + 1 in the top row. (Note that if i < j are
connected by a cup, then by planarity, every k with i < k < j must also be
connected in a cup to some l with i < l < j.) Then f ◦δ ·1 = f ◦(1⊗Ui⊗1),
so f is not monic. Diagrammatically, this says that we can either form
a loop using the cup of f , or simply add a loop which is attached to an
identity morphism.

The characterization of epics is entirely similar.

This immediately yields an “image factorization” structure for D .

PROPOSITION 15.4
Every arrow in D has an epi-mono factorization.

PROOF Given an arrow f : n → m, suppose it has p cups and q
caps. Then we obtain arrows e : n→ (m−2q) by erasing the caps, and
m : (n−2p)→m by erasing the cups. By Proposition 15.3, e is epic and
m monic. Moreover, the number of dots in the top and bottom rows
connected by through lines must be the same. Hence

(m−2q) = k = (n−2p),

and we can compose e and m to recover f . Note that by planarity, once
we have assigned cups and caps, there is no choice about the correspon-
dence between top and bottom row dots by through lines.

This factorization is “essentially” unique. However, we are free to
split the l loops of f between e and m in any way we wish, so there is a
distinct factorization δ a ·m◦ δ b · e for all a,b ∈ N with a + b = l.

We illustrate the epi-mono factorization for the left wave:

=
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We recall that an idempotent in a category is an arrow i : A→ A such that
i2 = i. We say that an idempotent i splits if there are arrows r : A → B and
s : B→ A such that

i = s◦ r, r ◦ s = 1B.

PROPOSITION 15.5
All idempotents split in D .

PROOF Let i : n→ n be an idempotent in D . By Proposition 15.4,
i = m◦ e, where e : n→ k is epic and m : k→ n is monic. Now

m◦ e◦m◦ e = m◦ e.

Since m is monic, this implies that e ◦m ◦ e = e = 1 ◦ e. Since e is epic,
this implies that e◦m = 1.

15.5 Categorical quantum mechanics

We now relate our discussion to the Abramsky–Coecke programme of cate-
gorical quantum mechanics.

This approach is very different from previous work on the computer science
side of this interdisciplinary area, which has focused on quantum algorithms
and complexity. The focus has rather been on developing high-level methods
for quantum information and computation (QIC)—languages, logics, calculi,
type systems etc.—analogous to those which have proved so essential in clas-
sical computing [2]. This has led to nothing less than a recasting of the foun-
dations of quantum mechanics itself, in the more abstract language of category
theory. The key contribution is the paper with Coecke [4], in which we de-
velop an axiomatic presentation of quantum mechanics in the general setting
of strongly compact closed categories, which is adequate for all the needs of
QIC.

Specifically, we show that we can recover the key quantum mechanical no-
tions of inner product, unitarity, full and partial trace, Hilbert–Schmidt inner
product and map-state duality, projection, positivity, measurement, and Born
rule (which provides the quantum probabilities), axiomatically at this high
level of abstraction and generality. Moreover, we can derive the correctness
of protocols such as quantum teleportation, entanglement swapping and logic-
gate teleportation [10, 24, 45] in a transparent and very conceptual fashion.
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Also, while at this level of abstraction there is no underlying field of complex
numbers, there is still an intrinsic notion of ‘scalar’, and we can still make
sense of dual vs. adjoint [4, 5], and global phase and elimination thereof [15].
Peter Selinger recovered mixed state, complete positivity and Jamiolkowski
map-state duality [42]. Recently, in collaboration with Dusko Pavlovic and
Eric Paquette, decoherence, generalized measurements and Naimark’s theo-
rem have been recovered [17, 16].

Moreover, this formalism has two important additional features. Firstly, it
goes beyond the standard Hilbert space formalism, in that it is able to capture
classical as well as quantum information flows, and the interaction between
them, within the formalism. For example, we can capture the idea that the result
of a measurement is used to determine a further stage of quantum evolution,
as, e.g., in the teleportation protocol [10], where a unitary correction must
be performed after a measurement; or also in measurement-based quantum
computation [39, 40]. Secondly, this categorical axiomatics can be presented in
terms of a diagrammatic calculus which is extremely intuitive, and potentially
can replace low-level computation with matrices by much more conceptual—
and automatable—reasoning. Moreover, this diagrammatic calculus can be
seen as a proof system for a logic, leading to a radically new perspective on
what the right logical formulation for quantum mechanics should be. This
latter topic is initiated in [6], and developed further in the forthcoming thesis
of Ross Duncan.

15.5.1 Outline of the approach

We now give some further details of the approach. The general setting is
that of strongly (or dagger) compact closed categories, which are the symmet-
ric version of the pivotal dagger categories we encountered in Section 15.3.
Thus, in addition to the structure mentioned there, we have a symmetry natural
isomorphism

σA,B : A⊗B2 B⊗A.

See [5] for an extended discussion. An important feature of the Abramsky–
Coecke approach is the use of an intuitive graphical calculus, which is essen-
tially the diagrammatic formalism we have seen in the Temperley–Lieb setting,
extended with more general basic types and arrows. They key point is that this
formalism admits a very direct physical interpretation in quantum mechanics.

In the graphical calculus we depict physical processes by boxes, and we la-
bel the inputs and outputs of these boxes by types which indicate the kind of
system on which these boxes act, e.g., one qubit, several qubits, classical data,
etc. Sequential composition (in time) is depicted by connecting matching out-
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puts and inputs by wires, and parallel composition (tensor) by locating entities
side by side, e.g.,

1A : A→ A f : A→ B g◦ f 1A⊗1B f ⊗1C f ⊗g ( f ⊗g)◦h

for g : B→C and h : E → A⊗B are respectively depicted as:

f
B

A

g
C

f
B

B

g
f
B

A

C

A

f
B

A

E

h
A

C

A B f
B

B

g
C

A

(The convention in these diagrams is that the ‘upward’ vertical direction rep-
resents progress of time.) A special role is played by boxes with either no
input or no output, called states and costates, respectively (cf. Dirac’s kets and
bras [19]), which we depict by triangles. Finally, we also need to consider dia-
monds which arise by post-composing a state with a matching costate (cf. inner
product or Dirac’s bra-ket):

ψ
A

A

π
ψ

A
π

π ψo

=

that is, algebraically,

ψ : I→ A π : A→ I π ◦ψ : I→ I

where I is the tensor unit: A⊗ I2 A2 I⊗A. Extra structure is represented by
(i) assigning a direction to the wires, where reversal of this direction is denoted
by A �→ A∗, (ii) allowing reversal of boxes (cf. the adjoint for vector spaces),
and, (iii) assuming that for each type A there exists a special bipartite Bell state
and its adjoint Bell costate:

fA A* f
A

A

B

B
A

A

A*

A*

†

that is, algebraically,

A A∗ f : A→ B f † : B→ A ηA : I→ A∗ ⊗A η†
A : A∗ ⊗A→ I.

Hence, bras and kets are adjoint and the inner product has the form (−)† ◦ (−)
on states. Essentially the sole axiom we impose is:
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A AA* = A

that is, algebraically,

(η†
A∗ ⊗1A)◦ (1A⊗ηA) = 1A .

If we extend the graphical notation of Bell-(co)states to:

A

A

A*

A*

we obtain a clear graphical interpretation for the axiom:

=
(1)

which now tells us that we are allowed to yank the black line straight :

=

This equation and its diagrammatic counterpart should of course be compared
to equation (15.2), and equation (15.1) and its accompanying diagram, in Sec-
tion 15.3—they are one and the same, subject to minor differences in diagram-
matic conventions.

This intuitive graphical calculus is an important benefit of the categorical
axiomatics. Other advantages can be found in [4, 2].

15.5.2 Quantum non-logic vs. quantum hyper-logic

The term quantum logic is usually understood in connection with the 1936
Birkhoff–von Neumann proposal [11, 41] to consider the (closed) linear sub-
spaces of a Hilbert space ordered by inclusion as the formal expression of the
logical distinction between quantum and classical physics. While in classi-
cal logic we have deduction, the linear subspaces of a Hilbert space form a
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non-distributive lattice and hence there is no obvious notion of implication or
deduction. Quantum logic was therefore always seen as logically very weak,
or even as a non-logic. In addition, it has never given a satisfactory account of
compound systems and entanglement.

On the other hand, compact closed logic in a sense goes beyond ordinary
logic in the principles it admits. Indeed, while in ordinary categorical log-
ic “logical deduction” implies that morphisms internalize as elements (which
above we referred to above as states), i.e.,

B
f� C

2←→ I
� f�� B⇒C

(where I is the tensor unit), in compact closed logic they internalize both as
states and as costates, i.e.

A⊗B∗
� f�� I

2←→ A
f� B

2←→ I
� f�� A∗⊗B

where we introduce the following notation:

� f�= (1A∗ ⊗ f )◦ηA : I → A∗ ⊗B � f�= εB ◦ ( f ⊗1B∗) : A⊗B∗ → I.

It is exactly this dual internalization which allows the straightening axiom in
picture (1) to be expressed. In the graphical calculus this is witnessed by the
fact that we can define both a state and a costate

=: f =:

fff

(2)

for each operation f . Physically, costates form the (destructive parts of) pro-
jectors, i.e. branches of projective measurements.

15.5.2.1 Compositionality

The semantics is obviously compositional, both with respect to sequential
composition of operations and parallel composition of types and operations,
allowing the description of systems to be built up from smaller components.
But we also have something more specific in mind: a form of compositionality
with direct applications to the analysis of compound entangled systems. Since
we have:
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=f

g

= f

g

f

g

=

f

g

we obtain:

f

g

=

f

g

(3)

i.e., composition of operations can be internalized in the behavior of entangled
states and costates. Note in particular the interesting phenomenon of “appar-
ent reversal of the causal order” which is the source of many quite mystical
interpretations of quantum teleportation in terms of “traveling backward in
time”—cf. [35]. Indeed, while on the left, physically, we first prepare the state
labeled g and then apply the costate labeled f , the global effect is as if we first
applied f itself first, and only then g.

15.5.2.2 Derivation of quantum teleportation

This is the most basic application of compositionality in action. Immediately
from picture (1) we can read the quantum mechanical potential for teleporta-
tion:

Alice Bob

=
ψ ψ

Alice Bob Alice Bob

= ψ

This is not quite the whole story, because of the non-deterministic nature of
measurements. But it suffices to introduce a unitary correction. Using picture
(3) the full description of teleportation becomes:
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f

=

fi i

fi
-1

fi
-1 =

where the classical communication is now implicit in the fact that the index i
is both present in the costate (= measurement branch) and the correction, and
hence needs to be sent from Alice to Bob.

The classical communication can be made explicit as a fully fledged part of
the formalism, using additional types: biproducts in [4], and “classical objects”
in [17]. This allows entire protocols, including the interplay between quantum
and classical information which is often their most subtle ingredient, to be
captured and reasoned about rigorously in a single formal framework.

15.5.3 Remarks

We close this section with some remarks. We have seen that the categori-
cal and diagrammatic setting for quantum mechanics developed by Abramsky
and Coecke is strikingly close to that in which the Temperley–Lieb catego-
ry lives. The main difference is the free recourse to symmetry allowed in the
Abramsky–Coecke setting (and in the main intended models for that setting,
namely finite-dimensional Hilbert spaces with linear or completely positive
maps). However, it is interesting to note that in the various protocols and con-
structions in quantum information and computation which have been modelled
in that setting to date [4], the symmetry has not played an essential role. The
example of teleportation given above serves as an example.

This raises some natural questions:

How much of QM/QIC lives in the plane?

More precisely:

• Which protocols make essential use of symmetry?

• How much computational or information-processing power does the non-
symmetric calculus have?

• Does braiding have some computational significance? Remember that
between pivotal and symmetric we have braided strongly compact closed
categories [21].
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15.6 Planar geometry of interaction and the
Temperley–Lieb algebra

We now address the issue of giving what, so far as I know, is the first di-
rect—or “fully abstract”—description of the Temperley–Lieb category. Since
the category T is directly and simply described as the free R-linear category
generated by D , we focus on the direct description of D .

Previous descriptions:

• Algebraic, by generators and relations, whether “locally”, of the Temper-
ley–Lieb algebras An(τ), as in Jones’ presentation, or “globally”, by a
description of D as the free pivotal category, as in Proposition 15.1

• Kauffman’s topological description: diagrams “up to planar isotopy”

In fact, it is well known (see [33]) that the diagrams are completely charac-
terized by how the dots are joined up—i.e., by discrete relations on finite sets.
This leaves us with the problem of how to capture

1. Planarity

2. The multiplication of diagrams—i.e., composition in D

purely in terms of the data given by these relations.
The answers to these questions exhibit the connections that exist between

the Temperley–Lieb category and what is commonly known as the Geometry
of Interaction. This is a dynamical/geometrical interpretation of proofs and cut
elimination initiated by Girard [23] as an off-shoot of Linear Logic [22]. The
general setting for these notions is now known to be that of traced monoidal
and compact closed categories—in particular, in the free construction of com-
pact closed categories over traced monoidal categories [1, 7]. In fact, this gen-
eral construction was first clearly described in [27], where one of the leading
motivations was the knot-theoretic context.

Our results in this section establish a two-way connection. In one direction,
we shall use ideas from Geometry of Interaction to answer Question 2 above:
that is, to define path composition (including the formation of loops) purely
in terms of the discrete relations tabulating how the dots are joined up. In the
other direction, our answer to Question 1 will allow us to consider a natural
planar variant of the Geometry of Interaction.
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15.6.1 Some preliminary notions

15.6.1.1 Partial orders

We use the notation P = (|P|,≤P) for partial orders. Thus |P| is the under-
lying set, and ≤P is the order relation (reflexive, transitive and antisymmetric)
on this set. An order relation is linear if for all x,y ∈ |P|, x≤P y or y≤P x.

Given a natural number n, we define [n] := {1 < · · · < n}, the linear order
of length n. We define several constructions on partial orders. Given partial
orders P, Q, we define:

• The disjoint sum P⊕Q, where |P⊕Q|= |P|+ |Q|, the disjoint union of
|P| and |Q|, and

x≤P⊕Q y ⇐⇒ (x≤P y) ∨ (x≤Q y).

• The concatenation P�Q, where |P�Q|= |P|+ |Q|, with the following
order:

x≤P�Q y ⇐⇒ (x≤P y) ∨ (x≤Q y) ∨ (x ∈ P ∧ y ∈ Q).

• Pop = (|P|,≥P).

Given elements x, y of a partial order P, we define:

x ↑ y ⇔ (x≤P y) ∨ (y≤P x)

x # y ⇔ ¬(x ↑ y).

15.6.1.2 Relations

A relation on a set X is a subset of the cartesian product: R⊆ X×X . Since
relations are sets, they are closed under unions and intersections. We shall also
use the following operations of relation algebra:

Identity relation: 1X := {(x,x) | x ∈ X}
Relation composition: R;S := {(x,z) | ∃y.(x,y) ∈ R

∧ (y,z) ∈ S}
Relational converse: Rc := {(y,x) | (x,y) ∈ R}
Transitive closure: R+ :=

⋃
k≥1 Rk

Reflexive transitive closure: R∗ :=
⋃

k≥0 Rk
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Here Rk is defined inductively: R0 := 1X , R1 := R, Rk+1 := R;Rk. A relation R
is single-valued or a partial function if Rc;R⊆ 1X . It is total if R;Rc ⊇ 1X . A
function f : X → X is a single-valued, total relation.

These notions extend naturally to relations R⊆ X×Y .

15.6.1.3 Involutions

A fixed-point free involution on a set X is a function f : X → X such that

f 2 = 1X , f ∩ 1X = ∅.

Thus for such a function f (x) = y ⇔ x = f (y) and f (x) �= x. We write Inv(X)
for the set of fixed-point free involutions on a set X . Note that Inv(X) is not
closed under function composition; nor does it contain the identity function.
We must look elsewhere for suitable notions of composition and identity.

An involution is equivalently described as a partition of X into two-element
subsets:

X =
⋃

E, where E = {{x,y} | f (x) = y}. (15.3)

This defines an undirected graph Gf = (X ,E). Clearly G f is one-regular [18]:
each vertex has exactly one incident edge. Conversely, every graph G = (X ,E)
with this property determines a unique f ∈ Inv(X) with G f = G. Note that a
finite set can only carry such a structure if its cardinality is even.

15.6.2 Formalizing diagrams

From our previous discussion, it is fairly clear how we will proceed to for-
malize morphisms n→m in D . Given n,m∈N, we define N(n,m) = [n]⊕ [m].
We visualize this partial order as

· · ·

· · · · · ·

1 2 n

1′ 2′ m′

We use the notation i′ to distinguish the elements of [m] in this disjoint union
from those of [n], which are unprimed. Note that the order on N(n,m) has
an immediate spatial interpretation in the diagrammatic representation: i <
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j just in case i lies to the left of j on either the top or bottom line of dots,
corresponding to [n] and [m] respectively.

A diagram connecting up dots pairwise will be formalized as a map f ∈
Inv(|N(n,m)|). Such a map can be visualized by drawing undirected arcs be-
tween the pairs of nodes i, j such that f (i) = j.

15.6.2.1 Example

The map f ∈ Inv(|N(4,2)|) such that

f : 1↔ 2′, 2↔ 4, 3↔ 1′

is depicted thus:

1 2 3 4

1′ 2′

Our task is now is characterize those involutions which are planar. The key
idea is that this can be done using just the order relations we have introduced.

15.6.3 Characterizing planarity

A map f ∈ Inv(|N(n,m)|) will be called planar if it satisfies the following
two conditions, for all i, j ∈N(n,m):

(PL1) i < j < f (i) =⇒ i < f ( j) < f (i)

(PL2) f (i) # i < j # f ( j) =⇒ f (i) < f ( j).

It is instructive to see which possibilities are excluded by these conditions.

15.6.3.1 First condition

(PL1) i < j < f (i) =⇒ i < f ( j) < f (i)

(PL1) rules out
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· · ·

· · ·

i j f (i)

f ( j)

where f ( j) # f (i), and also

i j f (i) f ( j)

where f (i) < f ( j).

15.6.3.2 Second condition

(PL2) f (i) # i < j # f ( j) =⇒ f (i) < f ( j).

Similarly, (PL2) rules out

· · · · · ·

· · ·

i j

f ( j) f (i)

We write P(n,m) for the set of planar maps in Inv(|N(n,m)|).

PROPOSITION 15.6

1. Every planar diagram satisfies the two conditions.

2. Every involution satisfying the two conditions can be drawn as a
planar diagram.

Rather than proving this directly, it is simpler, and also instructive, to re-
duce it to a special case. We consider arrows in D of the special form I → n.
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Such arrows consist only of caps. They correspond to points, or states in the
terminology of Section 15.5.

Since the top row of dots is empty, in this case we have a linear order, and
the premise of condition (PL2) can never arise. Hence planarity for such ar-
rows is just the simple condition (PL1)—which can be seen to be equivalent
to saying that, if we write a left parenthesis for each left end of a cap, and a
right parenthesis for each right end, we get a well-formed string of parentheses.
Thus

corresponds to
()(()).

(Of course, exactly similar comments apply to arrows of the form n→ I, i.e.,
costates.) It is also clear5 that Proposition 15.6 holds for such arrows.

Now we recall that quite generally, in any pivotal category we have the hom-
tensor adjunction

A⊗B∗
� f�� I

2←→ A
f� B

2←→ I
� f�� A∗⊗B

� f�= (1A∗ ⊗ f )◦ηA : I → A∗ ⊗B � f�= εB ◦ ( f ⊗1B∗) : A⊗B∗ → I.

We call � f� the name of f , and � f� the coname. The inverse to the map
f �→ � f� is defined by

g : I → A∗ ⊗B �→ (εA⊗1B)◦ (1A⊗g) : A→ B.

For example, we compute the name of the left wave:

=

Applying the inverse transformation:

=

5With an implicit appeal to the Jordan curve theorem!
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Note also that the unit is the name of the identity: ηn = �1n�, and similarly
εn = �1n�.

Thus we see that diagrammatically the process of forming the name of an
arrow involves reversing the left-right order of the top row of dots by rotating
them concentrically, and sliding them down to lie parallel with, and to the left
of, the bottom row. In this process, cups are turned into caps, while through
lines are stretched out and turned to also form caps.

This transposition of the top row of dots can be described order theoretically,
as replacing the partial order [n]⊕ [m] by the linear order [n]op � [m]. Note
that the underlying sets of these two partial orders are the same: |[n]⊕ [m]| =
|[n]op � [m]|. Thus � f� is essentially the same function as f .

PROPOSITION 15.7

For f ∈ Inv(|N(n,m)|), the following are equivalent:

1. f satisfies (PL1) and (PL2) with respect to [n]⊕ [m].

2. f satisfies (PL1) with respect to [n]op � [m].

PROOF Firstly, assume (2), and suppose f (i) # i < j # f ( j). If
i < j in the bottom row, then f ( j) < i < j in [n]op � [m], so by (PL1),
f ( j) < f (i) < j, i.e. f (i) < f ( j) in [n]⊕ [m], as required. Now suppose
i < j in the top row. Then j < i < f ( j) in [n]op � [m], so by (PL1),
j < f (i) < f ( j), and in particular f (i) < f ( j).

Now assume (1), and suppose that i < j < f (i) in [n]op � [m]. The
interesting case is where i is in the top row and f (i) in the bottom row.
We need to do some case analysis. Suppose firstly that j is in the top row.
If f ( j) is in the bottom row, then f ( j) # j < i # f (i) in [n]⊕ [m], and we
can apply (PL2) to conclude that f ( j) < f (i), and hence i < f ( j) < f (i)
in [n]op � [m]. If f ( j) is in the top row, we must have f ( j) < i by (PL1)
for [n]⊕ [m], and hence i < f ( j) < f (i) in [n]op � [m].

Now suppose that j is in the bottom row. If f ( j) is in the bottom
row, we must have f ( j) < f (i) by (PL1). If f ( j) is in the top row, then
we have f ( j) # j < f (i) # i in [n]⊕ [m], so by (PL2) we have f ( j) < i, and
hence i < f ( j) < f (i) in [n]op � [m].

Since (PL1) characterizes planarity for � f�, it follows that (PL1) and (PL2)
characterize planarity for f .
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15.6.4 The Temperley–Lieb category

Our aim is now to define a category TL, which will yield the desired descrip-
tion of the diagrammatic category D . The objects of TL are the natural num-
bers. The homset TL(n,m) is defined to be the cartesian product N×P(n,m).
Thus a morphism n→ m in TL consists of a pair (k, f ), where k is a natural
number, and f ∈P(n,m) is a planar map in Inv(|N(n,m)|). The idea is that k
is a counter for the number of loops, so such an arrow can be written δ k · f in
the notation used previously.

It remains to define the composition and identities in this category. Clearly
(even leaving aside the natural number components of morphisms) composi-
tion cannot be defined as ordinary function composition. This does not even
make sense—the codomain of an involution f ∈P(n,m) does not match the
domain of an involution g∈P(m, p)—let alone yield a function with the nec-
essary properties to be a morphism in the category.

15.6.4.1 Composition: the “execution formula”

Consider a map f : [n]+ [m] −→ [n]+ [m]. Each input lies in either [n] or
[m] (exclusive or), and similarly for the corresponding output. This leads to a
decomposition of f into four disjoint partial maps:

fn,n : [n]−→ [n] fn,m : [n]−→ [m]

fm,n : [m]−→ [n] fm,m : [m]−→ [m]

so that f can be recovered as the disjoint union of these four maps. If f is an
involution, then these maps will be partial involutions.

Note that these components have a natural diagrammatic reading: fn,n de-
scribes the cups of f , fm,m the caps, and fn,m = f c

m,n the through lines.
Now suppose we have maps f : [n] + [m]→ [n] + [m] and g : [m] + [p]→

[m]+ [p]. We write the decompositions of f and g as above in matrix form:

f =

⎛⎝ fn,n fn,m

fm,n fm,m

⎞⎠ g =

⎛⎝ gm,m gm,p

gp,m gp,p

⎞⎠ .

We can view these maps as binary relations on [n]+ [m] and [m]+ [p] respec-
tively, and use relational algebra (union R∪S, relational composition R;S and
reflexive transitive closure R∗) to define a new relation θ on [n] + [p]. If we
write

θ =

⎛⎝ θn,n θn,p

θp,n θp,p

⎞⎠
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so that θ is the disjoint union of these four components, then we can define it
component-wise as follows:

θn,n = fn,n ∪ fn,m;gm,m;( fm,m;gm,m)∗; fm,n

θn,p = fn,m;(gm,m; fm,m)∗;gm,p

θp,n = gp,m;( fm,m;gm,m)∗; fm,n

θp,p = gp,p ∪ gp,m; fm,m;(gm,m; fm,m)∗;gm,p.

We can give clear intuitive readings for how these formulas express composi-
tion of paths in diagrams in terms of relational algebra:

• The component θn,n describes the cups of the diagram resulting from the
composition. These are the union of the cups of f ( fn,n), together with
paths that start from the top row with a through line of f , given by fn,m,
then go through an alternating odd-length sequence of cups of g (gm,m)
and caps of f ( fm,m), and finally return to the top row by a through line
of f ( fm,n).

· · ·

• Similarly, θp,p describes the caps of the composition.

• θn,p = θ c
p,n describes the through lines. Thus θn,p describes paths which

start with a through line of f from n to m, continue with an alternating
even length (and possibly empty) sequence of cups of g and caps of f ,
and finish with a through line of g from m to p.

· · ·

All through lines from n to p must have this form.
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This formula corresponds to the interpretation of cut elimination in the Geom-
etry of Interaction interpretation of proofs in Linear Logic (and by extension in
related logics and type theories) [23]. A more abstract and general perspective
on how this construction arises can be given in the setting of traced monoidal
categories [27, 1].

PROPOSITION 15.8

If f and g are planar, so is θ .

We write θ = g5 f ∈P(n, p).

15.6.4.2 Cycles

Given f ∈ P(n,m), g ∈ P(m, p), we define χ( f ,g) := fm,m;gm,m. Note
that χ( f ,g)c = (gm,m; fm,m), and

χ( f ,g); χ( f ,g)c ⊆ 1[m], χ( f ,g)c; χ( f ,g)⊆ 1[m].

Thus χ( f ,g) is a partial bijection. However, in general it is neither an involu-
tion nor fixpoint-free. The cyclic elements of χ( f ,g) are those elements of [m]
which lie in the intersection

χ( f ,g)+ ∩ 1[m].

· · ·

Thus if i is a cyclic element, there is a least k > 0 such that χ( f ,g)k(i) = i. The
corresponding cycle is

{i, χ( f ,g)(i), . . . , χ( f ,g)k−1(i)}.

Distinct cycles are disjoint. We write Z( f ,g) for the number of distinct cycles
of χ( f ,g).
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15.6.4.3 Composition and identities

Finally, we define the composition of morphisms in TL. Given (s, f ) : n→
m and (t,g) : m→ p:

(t,g)◦ (s, f ) = (s+ t + Z( f ,g),g5 f ).

The identity morphism idn : n→ n is defined to be the pair (0,τn,n), where
τn,n is the twist map on [n]+ [n]; i.e., the involution i↔ i′. Diagrammatically,
this is just

· · ·

· · ·

1 2 n

1′ 2′ n′

Note that this is not the identity map on [n] + [n]—indeed it is (necessarily)
fixpoint free!

PROPOSITION 15.9
TL with composition and identities as defined above is a category.

15.6.4.4 TL as a pivotal category

The monoidal structure of TL is straightforward. If (k, f ) : n→m and (l,g) :
p→ q, then (k + l, f + g) : n+ p→m+ q, where f + g ∈P(n + p,m+ q) is
the evident disjoint union of the involutions f and g.

The unit ηn : I → n+ n is given by

i↔ i′ (1≤ i≤ n),

and similarly for the counit. Note that identities, units and counits are all essen-
tially the same maps, but with distinct types, which partition their arguments
between inputs and outputs differently.

We describe the dual, adjoint and conjugate of an arrow (k, f ) : n → m.

Let τn,m : [n]+ [m]
∼=−→ [m]+ [n] be the symmetry isomorphism of the disjoint

union, and
ρn : [n]

∼=−→ [n] :: i �→ n− i+ 1

be the order-reversal isomorphism. Note that

τ−1
n,m = τm,n, ρ−1

n = ρn, τn,m ◦ (ρn + ρm) = (ρm + ρn)◦ τn,m.
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Then we have (k, f )• = (k, f •), where:

f † = τn.m ◦ f ◦ τ−1
n,m

f∗ = (ρn + ρm)◦ f ◦ (ρn + ρm)−1

f ∗ = ( f †)∗.

15.6.4.5 The main result

THEOREM 15.1

TL is isomorphic as a strict, pivotal dagger category to D .

As an immediate corollary of this result and Proposition 15.2, we have:

THEOREM 15.2

TL is the free strict, pivotal dagger category on one self-dual generator.

This is in the same spirit as the characterizations of free compact and dagger
compact categories in [34, 3].

These results can easily be extended to descriptions of the free pivotal dag-
ger category over an arbitrary generating category, leading to oriented Temper-
ley–Lieb algebras with primitive (physical) operations. We refer to [3] for a
more detailed presentation (in the symmetric case).

15.7 Planar λ-calculus

Our aim in this section is to show how a restricted form of λ -calculus can be
interpreted in the Temperley–Lieb category, and how β -reduction of λ -terms,
which is an important foundational paradigm for computation, is then reflect-
ed diagrammatically as geometric simplification, i.e., “yanking lines straight”.
We can give only a brief indication of what is in fact a rich topic in its own
right. See [6, 7, 31] for discussions of related matters.
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15.7.1 The λ-calculus

We begin with a (very) brief review of the λ -calculus [14, 9], which is an
important foundational paradigm in logic and computation, and in particular
forms the basis for all modern functional programming languages.

The syntax of the λ -calculus is beguilingly simple. Given a set of variables
x, y, z, . . . we define the set of terms as follows:

t := x | tu︸︷︷︸
application

| λ x.t︸︷︷︸
abstraction

Notational Convention: We write

t1t2 · · ·tk ≡ (· · · (t1t2) · · ·)tk.

Some examples of terms:

λ x.x identity function

λ f .λ x. f x application

λ f .λ x. f ( f x) double application

λ f .λ g.λ x.g( f (x)) composition g◦ f

The basic equation governing this calculus is β -conversion:

(λ x.t)u = t[u/x],

e.g. (assuming some arithmetic operations are given),

(λ f .λ x. f ( f x))(λ x.x + 1)0 = (0 + 1)+ 1 = 2.

By orienting this equation, we get a ‘dynamics’—β -reduction

(λ x.t)u→ t[u/x].

Despite its sparse syntax, λ -calculus is very expressive—it is in fact a universal
model of computation, equivalent to Turing machines.

15.7.2 Types

One important way of constraining the λ -calculus is to introduce types.

Types are there to stop you doing (bad) things
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Types are in fact one of the most fruitful positive ideas in computer science!
We shall introduce a (highly restrictive) type system, such that the typeable

terms can be interpreted in the Temperley–Lieb category (in fact, in any pivotal
category).

Firstly, assuming some set of basic types B, we define a syntax of general
types:

T := B | T → T.

Intuitively, T →U represents the type of functions which take inputs of type
T to outputs of type U .
Notational Convention: We write

T1 → T2 → ···Tk → Tk+1 ≡ T1 → (T2 → ··· (Tk → Tk+1) · · ·).

Examples:

A→ A→ A first-order function type

(A→ A)→ A second-order function type

We now introduce a formal system for deriving typing judgments, of the
form:

x1 : T1, . . .xk : Tk 6 t : T.

Such a judgment asserts that the term t has type T under the assumption (or
in the context) that the variable x1 has type T1, . . . , xk has type Tk. All the
variables xi appearing in the context must be distinct—and in our setting, the
order in which the variables appear in the list is significant.
There is one basic form of axiom for typing variables:

Variable

x : T 6 x : T

and two inference rules for typing abstractions and applications, respectively:
Function

Γ,x : U 6 t : T
Γ 6 λ x.t : U → T

Γ 6 t : U → T Δ 6 u : U
Γ,Δ 6 tu : T

.

Note that Γ,Δ represents the concatenation of the lists Γ, Δ. This implies that
the variables appearing in Γ and Δ are distinct—an important linearity con-
straint in the sense of Linear Logic [22].
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15.7.3 Interpretation in pivotal categories

We now show how terms typeable in our system can be interpreted in a piv-
otal category C . We assume firstly that the basic types B have been interpreted
as objects �B� of C . We then extend this to general types by:

�T →U� = �U�⊗ �T�∗.

Now we show how, for each typing judgment Γ 6 t : T , to assign an arrow

�Γ� −→ �T �,

where if Γ = x1 : T1, . . .xk : Tk,

�Γ� = �T1�⊗·· ·⊗ �Tk�.

This assignment is defined by induction on the derivation of the typing judg-
ment in the formal system.
Variable

x : T 6 x : T 1�T� : �T �−→ �T �
.

Abstraction
To interpret λ -abstraction, we use the adjunction

Λr : C (A⊗B,C)2 C (A,C⊗B∗)

Λr( f ) = A
1A⊗ηB∗� A⊗B⊗B∗

f ⊗1B∗� C⊗B∗.

We can then define:

Γ,x : U 6 t : T
Γ 6 λ x : U.t : U → T

�t� : �Γ�⊗ �U�−→ �T �

Λr(�t�) : �Γ�−→ �T �⊗ �U�∗
.

Application
We use the following operation of right application:

RApp : C (C,B⊗A∗)×C (D,A)−→ C (C⊗D,B)

RApp( f ,g) = C⊗D
f ⊗g� B⊗A∗⊗A

1B⊗ εB∗� B.

We can then define:

Γ 6 t : U → T Δ 6 u : U
Γ,Δ 6 tu : T

�t� : �Γ�−→ �T �⊗ �U�∗ �u� : �Δ�−→ �U�

RApp(�t�,�u�) : �Γ�⊗ �Δ�−→ �T �
.
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It can be proved that this interpretation is sound for β conversion, i.e.,

�(λ x.t)u� = �t[u/x]�

in any pivotal category.

15.7.4 An example

We now discuss an example to show how all this works diagrammatically in
TL. We shall consider the bracketing combinator

B≡ λ x.λ y.λ z.x(yz).

This is characterized by the equation

Babc = a(bc).

Firstly, we derive a typing judgment for this term:

x : B→C 6 x : B→C
y : A→ B 6 y : A→ B z : A 6 z : A

y : A→ B,z : A 6 yz : B

x : B→C,y : A→ B,z : A 6 x(yz) : C

x : B→C,y : A→ B 6 λ z.x(yz) : A→C

x : B→C 6 λ y.λ z.x(yz) : (A→ B)→ (A→C)
6 λ x.λ y.λ z.x(yz) : (B→C)→ (A→ B)→ (A→C)

Now we take A = B = C = 1 in TL. The interpretation of the open term

x : B→C,y : A→ B,z : A 6 x(yz) : C

is as follows:
x+ x− y+ y− z+

o

Here x+ is the output of x, and x− the input, and similarly for y. The output
of the whole expression is o. When we abstract the variables, we obtain the
following caps-only diagram:
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x+x−y+y−z+o

Now we consider an application Babc:

x+x−y+y−z+o

a b c a b c

o

=

15.7.5 Discussion

The typed λ -calculus we have used here is in fact a fragment of the Lambek
calculus [36], a basic non-commutative logic and λ -calculus, which has found
extensive applications in computational linguistics [13, 38]. The Lambek cal-
culus can be interpreted in any monoidal biclosed category, and has notions
of left abstraction and application, as well as the right-handed versions we
have described here. Pivotal categories have stronger properties than monoidal
biclosure; for example, duality and adjoints allow the left- and right-handed
versions of abstraction and application to be defined in terms of each other.
Moreover, the duality means that the corresponding logic has a classical for-
mat, with an involutive negation. Thus there is much more to this topic than
we have had the time to discuss here. We merely hope to have given an im-
pression of how the geometric ideas expressed in the Temperley–Lieb category
have natural connections to a central topic in logic and computation.

15.8 Further directions

We hope to have given an indication of the rich and suggestive connections
which exist between ideas stemming from knot theory, topology and mathe-
matical physics, on the one hand, and logic and computation on the other, with
the Temperley–Lieb category serving as an intuitive and compelling meeting
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point. We hope that further investigation will uncover deeper links and inter-
plays, leading to new insights in both directions.

We conclude with a few specific directions for future work:

• The symmetric case, where we drop the planarity constraint, is also in-
teresting. The algebraic object corresponding to the Temperley–Lieb
algebra in this case is the Brauer algebra [12], important in the repre-
sentation theory of the orthogonal group (Schur–Weyl duality). Indeed,
there are now a family of various kinds of diagram algebras: partition al-
gebras, rook algebras etc., arising in quantum statistical mechanics, and
studied in representation theory [25].

• The categorical perspective suggests oriented versions of the Temperley–
Lieb algebra and related structures, where we no longer have A = A∗.
This is also natural from the point of view of quantum mechanics, where
this non-trivial duality on objects distinguishes complex from real Hilbert
spaces.

• We can ask how expressive planar Geometry of Interaction is; and what
rôle may be played by braiding or other geometric information.

• Again, it would be interesting to understand the scope and limits of pla-
nar quantum mechanics and quantum information processing.
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Chapter 16

Quantum measurements without
sums

Bob Coecke and Dusko Pavlovic

Abstract Sums play a prominent role in the formalisms of quantum me-
chanics, whether for mixing and superposing states, or for composing state
spaces. Surprisingly, a conceptual analysis of quantum measurement seems to
suggest that quantum mechanics can be done without direct sums, expressed
entirely in terms of the tensor product. The corresponding axioms define clas-
sical spaces as objects that allow copying and deleting data. Indeed, the infor-
mation exchange between the quantum and the classical worlds is essentially
determined by their distinct capabilities to copy and delete data. The sums turn
out to be an implicit implementation of this capability. Realizing it through ex-
plicit axioms not only dispenses with the unnecessary structural baggage, but
also allows a simple and intuitive graphical calculus. In category-theoretic
terms, classical data types are †-compact Frobenius algebras, and quantum
spectra underlying quantum measurements are Eilenberg–Moore coalgebras
induced by these Frobenius algebras.

16.1 Introduction

Ever since John von Neumann denounced, back in 1935 [34], his own foun-
dation of quantum mechanics in terms of Hilbert spaces, there has been an
ongoing search for a high-level, fully abstract formalism of quantum mechan-
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ics. With the emergence of quantum information technology, this quest became
more important than ever. The low-level matrix manipulations in quantum in-
formatics are akin to machine programming with bit strings from the early days
of computing, which are of course inadequate.1

A recent research thread, initiated by Abramsky and the first author [2],
aims at recasting the quantum mechanical formalism in categorical terms.
The upshot of categorical semantics is that it displays concepts in a compo-
sitional and typed framework. In the case of quantum mechanics, it uncovers
the quantum information flows [7] which are hidden in the usual formalism.
Moreover, while the investigations of quantum structures have so far been pre-
dominantly academic, categorical semantics open an alley towards a practical,
low-overhead tool for the design and analysis of quantum informatic proto-
cols, versatile enough to capture both quantitative and qualitative aspects of
quantum information [2, 8, 11, 12, 15, 35]. In fact, some otherwise com-
plicated quantum informatic protocols become trivial exercises in this frame-
work [9]. On the other hand, compared with the order-theoretic framework
for quantum mechanics in terms of Birkhoff–von Neumann’s quantum logic
[33], this categorical setting comes with logical derivations, topologically em-
bodied into something as simple as “yanking a rope”.2 Moreover, in terms of
deductive mechanism, it turns out to be some kind of “hyper-logic” [15], as
compared to Birkhoff–von Neumann logic which as a consequence of being
non-distributive fails to admit a deduction mechanism.

The core of categorical semantics are †-compact categories, originally pro-
posed in [2, 3] under the name strongly compact closed categories, extending
the structure of compact closed categories, which have been familiar in vari-
ous communities since the 1970s [25]. A salient feature of categorical tensor
calculi of this kind is that they admit sound and complete graphical represen-
tations, in the sense that a well-typed equation in such a tensor calculus is
provable from its axioms if and only if the graphical interpretation of that e-
quation is valid in the graphical language. Various graphical calculi have been
an important vehicle of computation in physics [32, and subsequent work], and
a prominent research topic of category theory e.g. [24, 25, 21]. Soundness and
completeness of the graphical language of †-compact categories, which can be
viewed as a two-dimensional formalization and extension of Dirac’s bra-ket
notation [9], has been demonstrated by Selinger in [35]. Besides this refer-

1But while computing devices do manipulate strings of 0s and 1s, and high-level modern program-
ming is a matter of providing a convenient interface with that process, the language for quantum
information and computation we seek is not a convenient superstructure, but the meaningful in-
frastructure.
2A closely related knot-theoretical scheme has been put forward by Kauffman in [23].
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ence, the interested reader may wish to consult [1, 21, 35] for methods and
proofs, and [9, 10] and also Baez [4] for a more leisurely introduction into
†-categories.

An important aspect of the †-compact semantics of quantum protocols pro-
posed in [2, 8, 35] was the interplay of the multiplicative and additive struc-
tures of tensor products and direct sums, respectively. The direct sums (in
fact biproducts, since all compact categories are self-dual) seemed essential
for specifying classical data types, families of mutually orthogonal projectors,
and ultimately for defining measurements. The drawback of this was that the
additive types do not yield to a simple graphical calculus; in fact, they make it
unusable for many practical purposes.

The main contribution of the present paper is a description of quantum mea-
surement entirely in terms of tensor products, with no recourse to additive
structure. The conceptual substance of this description is expressed in the
framework of †-compact categories through a simple, operationally motivat-
ed definition of classical objects, introduced in our work in 2005, and first
presented in print here. A classical object, as a †-compact Frobenius alge-
bra, equipped with copying and deleting operations, also provides an abstract
counterpart to GHZ states [18]. We moreover expose an intriguing conceptual
and structural connection between the classical capabilities to copy and delete
data, as compared to quantum [30, 38], and the mechanism of quantum mea-
surement: the classical interactions emerge as comonoid homomorphisms, i.e.,
those morphisms that commute with copying and deleting. While each clas-
sical object canonically induces a non-degenerate quantum measurement, we
show that general quantum measurements arise as coalgebras for the comon-
ads induced by classical objects. Quite remarkably, this coalgebra structure
exactly captures von Neumann’s projection postulate in a resource-sensitive
fashion. Furthermore, the probabilistic content of quantum measurements is
then captured using the abstract version of completely positive maps, due to
Selinger [35]. Using these conceptual components, captured in a succinct cat-
egorical signature, we provide a purely graphical derivation of teleportation
and dense coding.

As a first application of the introduced classical structure, we spell out a
purely multiplicative form of projective quantum measurements. In subsequent
work [11], Paquette and the first author extend this treatment to POVMs, and
prove Naimark’s theorem entirely within our graphical calculus. Extended ab-
stract [12] surveys several important directions and results of further work.
The fact that quantum theory can be developed without the additive type con-
structors suggests a new angle on the question of parallelism vs. entanglement.
In the final sections of the present paper, we show that superposition too can
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be described entirely in terms of the monoidal structure, in contrast with the
usual Hilbert space view, where entanglement is described as a special case of
a superposition.

16.2 Categorical semantics

In this section, we present both the simple categorical algebra of †-compact
categories, and the corresponding graphical calculus. In a formal sense, they
capture exactly the same structure, and the reader is welcome to pick her fa-
vorite flavor (and sort of ignore the other one).

16.2.1 †-compact categories

In a symmetric monoidal category [29] the objects form a monoid with the
tensor ⊗ as multiplication and an object I as the multiplicative unit, up to the
coherent3 natural isomorphisms

λA : A2 I⊗A ρA : A2 A⊗ I αA,B,C : A⊗ (B⊗C)2 (A⊗B)⊗C .

The fact that a monoidal category is symmetric means that this monoid is com-
mutative, up to the natural transformation

σA,B : A⊗B2 B⊗A

coherent with the previous ones. We shall assume that α is strict, i.e., realized
by identity, but it will be convenient to carry λ and ρ as explicit structures.
Physically, we interpret the objects of a symmetric monoidal category as sys-
tem types, e.g. qubit, two qubits, classical data, qubit + classical data etc. A
morphism should be viewed as a physical operation, e.g., unitary, or a mea-
surement, classical communication etc. The tensor captures compoundness
i.e., conceiving two systems or two operations as one. Morphisms of type

3Coherence here means that all diagrams composed of these natural transformations commute. In
particular, there is at most one natural isomorphism between any two functors composed from ⊗
and I [28]. As a consequence, some functors can be transferred along these canonical isomor-
phisms, which then become identities. Without loss of generality, one can thus assume that α ,
λ and ρ are identities, and that the objects form an actual monoid with ⊗ as multiplication and
I as unit. Such monoidal categories are called strict. For every monoidal category, there is an
equivalent strict one.



16.2. CATEGORICAL SEMANTICS 563

I→ A represent states conceived through their respective preparations, where-
as morphisms of the type I → I capture scalars e.g., probabilistic weights—
cf. complex numbers c ∈ C are in bijective correspondence with linear maps
C→ C :: 1 �→ c. Details of this interpretation are in [10].

A symmetric monoidal category is compact [24, 25] if each of its objects
has a dual. An object B is dual to A when it is given with a pair of morphisms
η : I→ B⊗A and ε : A⊗B→ I often called unit and counit, satisfying

(ε⊗1A)◦ (1A⊗η) = 1A and (1B⊗ ε)◦ (η⊗1B) = 1B . (16.1)

It follows that any two duals of A must be isomorphic.4 A representative of the
isomorphism class of the duals of A is usually denoted by A∗. The correspond-
ing unit and counit are then denoted ηA and εA.

A symmetric monoidal †-category C comes with a contravariant functor
(−)† : Cop →C, which is identity on the objects, involutive on the morphisms,
and preserves the tensor structure [35]. The image f † of a morphism f is called
its (abstract) adjoint.

Finally, †-compact categories [2, 3] sum up all of the above structure, subject
to the additional coherence requirements that

• every natural isomorphism χ , derived from the symmetric monoidal
structure, must be unitary, i.e. satisfies χ† ◦ χ = 1 and χ ◦ χ† = 1, and

• ηA∗ = ε†
A

= σA∗A ◦ηA.

Since in a †-compact category εA = η†
A∗ some of the structure of the du-

als becomes redundant. In particular, it is sufficient to stipulate the unit-
s η : I → A∗ ⊗ A, which we call Bell states, in reference to their physical
meaning. In fact, one can skip the above stepwise introduction, and define
†-compact categories [3, 8] simply as a symmetric monoidal category with

• an involution A �→ A∗,

• a contravariant, identity-on-objects, monoidal involution f �→ f †,

• for each object A a distinguished morphism ηA : I→ A∗ ⊗A,

4If η ,ε make B dual to A, while η̃, ε̃ make B̃ dual to A, then (1
B̃
⊗ ε) ◦ (η̃ ⊗ 1B) : B → B̃ and

(1B⊗ ε̃)◦ (η⊗1
B̃
) : B̃→ B make B and B̃ isomorphic.
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which make the diagram

A � 2
I⊗A �

η†
A∗⊗1A

A⊗A∗⊗A

A

1A

�

2
� A⊗ I

1A⊗ηA

� A⊗A∗⊗A

1A⊗A∗⊗A

�

(16.2)

commute. In a sense, †-compact categories can thus be construed as an abstract
axiomatization of the Bell states, familiar in the Hilbert space formalism

ηH : C→H ∗ ⊗H :: 1 �→∑
i∈I
| i i〉 ,

where H ∗ is the conjugate space to H . This apparently simple axiomat-
ic turns out to generate an amazing amount of the Hilbert space machinery,
including the Hilbert–Schmidt inner product, completely positive map and
POVMs [3, 8, 11, 35], to mention just a few.

16.2.2 Graphical calculus

The algebraic structure of †-compact categories satisfies exactly those e-
quations that can be proven in its graphic language, which we shall now de-
scribe. In other words, the morphisms of the free †-compact category can
be presented as the well-formed diagrams of this graphic language. Prov-
ing such statements, and extracting sound and complete graphic languages
for particular categorical varieties, has a long tradition in categorical algebra
[28, 24, 25, 21, 22]. Using the deep results about coherent categories in par-
ticular [25], Selinger has elegantly derived a succinct coherence argument for
the graphic language of †-compact categories in [35, Thm. 3.9]. We briefly
summarize a version of this graphic language.

The objects of a †-compact category are represented by tuples of wires,
whereas the morphisms are the I/O-boxes. Sequential composition connects
the output wires of one box with the input wires of the other one. The tensor
product is the union of the wires, and it places the boxes next to each oth-
er. A physicist-friendly introduction to this graphical language for symmetric
monoidal categories is in [10]. The main power of the graphical language lies
in its representation of duality. The Bell state (unit) and its adjoint (counit)
correspond to a wire from A returning into A∗, with the directions reversed:
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AA** AA**AA AA

Graphically, the composition of ηA and εA = η†
A∗ as expressed in commutative

diagram (16.2) boils down to

=AA AA AAAA**

Note that in related papers such as [9] a more involved notation

=
appears. The triangles witness the fact that in physical terms

respectively stand for a preparations procedure, or state, or ket, and for the
corresponding bra, with an inner-product or bra-ket

then yielding a diamond shaped scalar (cf. [9]), while the wire itself is now a
loop. In this paper we will omit these special bipartite triangles.

Given a choice of the duals A �→ A∗, one can follow the same pattern to
define the arrow part f �→ f ∗ of the duality functor (−)∗ : Cop → C by the
commutativity of the following diagram:

A∗ � 2
A∗ ⊗ I �

1A∗ ⊗η†
B∗ A∗ ⊗B⊗B∗

B∗

f ∗
�

2
� I⊗B∗

ηA⊗1B∗
� A∗ ⊗A⊗B∗

1A∗⊗ f ⊗1B∗

�

Replacing f : A → B by f † : B → A, we can similarly define f∗ : A∗ → B∗,
and thus extend the duality assignment A �→ A∗ by the morphism assignment
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f �→ f∗ to the covariant functor (−)∗ : C → C. It can be shown [2] that the
adjoint decomposes in every †-compact category as

f † = ( f ∗)∗ = ( f∗)∗

with both (−)∗ and (−)∗ involutive. In finite-dimensional Hilbert spaces and
linear maps FdHilb, these two functors respectively correspond to transposi-
tion and complex conjugation. The functor (−)∗ : C→ C will thus be called
conjugation; the image f∗ is a conjugate of f . Graphically, the above diagram
defining f ∗, and the similar one for f∗, respectively become

=

ff *

=

ff
*

†

The direction of the arrows is, of course, just relative, and we have chosen to
direct the arrows down in order to indicate that both f ∗ and f∗ have the duals as
their domain and codomain types. We will use horizontal reflection to depict
(−)† and Selinger’s 180◦ rotation [35] to depict (−)∗, resulting in:

f

f
*

f

f *†

16.2.3 Scalars, trace, and partial transpose

One can prove that the monoid C(I, I) is always commutative [25] and in-
duces a scalar multiplication

s• f := λ−1
B ◦ (s⊗ f )◦λA : A→ B

which by naturality satisfies

(s• f )◦ (t • g) = (s◦ t)• ( f ◦g) (s• f )⊗ (t •g) = (s◦ t)• ( f ⊗g) . (16.3)

As already indicated above, we will depict these scalars by diamonds, and
such scalars can arise as loops. The equations (16.3) show that these diamonds
capturing probabilistic weights can be ‘freely moved in the pictures’.
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The compact structure of †-compact categories induces the familiar trace
operation [22],

trC
A,B : C(C⊗A,C⊗B)→ C(A,B)

which maps f : C⊗A→C⊗B to

B � 2
I⊗B �

η†
C⊗1B

C∗⊗C⊗B

A

trC
A,B( f )

�

2
� I⊗A

ηC⊗1A

� C∗⊗C⊗A

1C∗⊗ f

�

The graphic form of trCA,B( f ) is:

f

A less familiar operation is partial transpose

ptC,D
A,B : C(C⊗A,D⊗B)→ C(D∗ ⊗A,C∗ ⊗B)

which maps f : C⊗A→ D⊗B

C∗⊗B �2 C∗⊗ I⊗B �
1C∗⊗η†

D⊗1B
C∗⊗D∗ ⊗D⊗B

D∗⊗A

ptC,D
A,B

( f )

�

2
� D∗⊗ I⊗A

1D∗⊗ηC⊗1A

� D∗⊗C∗⊗C⊗A

σD∗,C∗⊗ f

�

In a picture, ptC,D
A,B

( f ) is:

f
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Partial transpose can in fact be viewed as an internalisation of the swap actions
σC,D ◦− and−◦σC,D, combined with a transposition of the dual space, so that
it does not swap two inputs, or two outputs, but an input and an output.

16.3 Sums and bases in Hilbert spaces

To motivate the algebraic and diagrammatic analysis of quantum measure-
ment in the next section, we first discuss some particular aspects of the Hilbert
space model of quantum mechanics.

16.3.1 Sums in quantum mechanics

Sums occur in the Hilbert space formalism both as a part of the linear struc-
ture of states, as well as a part of their projective (convex) structure, through
the fundamental theorem of projective geometry and Gleason’s theorem [33].
Viewed categorically, these structures lift, respectively, to a vector space en-
richment and a projective space enrichment of operators, typically yielding
a C∗-algebra. They appear to be necessary because of the specific nature of
quantum measurement, and the resulting quantum probabilistic structure. The
additive structure permeates not only states, but also state spaces; it is crucial
not only for adding vectors, but also for composing and decomposing spaces.
In fact, one verifies that operator sums arise from the direct sum:

C⊕n f + g � C⊕m

C⊕n⊕C⊕n

d

�

f ⊕g
� C⊕m⊕C⊕m

d†

�
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where d :: | i〉 �→ | i〉⊕ | i〉 is the additive diagonal. As a particular case we have
that the vector sums arise from

C
|ψ〉+ |φ〉 � C⊕n

C⊕C

d

�

|ψ〉⊕ |φ〉
� C⊕n⊕C⊕n

d†

�

where |ψ〉, |φ〉 : C → C⊕n, recalling that vectors |ψ〉 ∈ C⊕n are indeed, by
linearity, in bijective correspondence with the linear maps

C→ C⊕n :: 1 �→ |ψ〉 .

In addition to this, the direct sum canonically also defines bases (cf. the com-
putational base) in terms of the n canonical injections

C ↪→ C⊕n :: 1 �→ (0, . . . ,0,1,0, . . . ,0) .

16.3.2 No-cloning and existence of a natural diagonal

The classic No-Cloning Theorem [38] states that there exists no unitary op-
eration

Clone : H ⊗H →H ⊗H :: |ψ〉⊗ |0〉 �→ |ψ〉⊗ |ψ〉 . (16.4)

In categorical terms, this means that there is no natural diagonal for the Hilbert
space tensor product. Formally, a diagonal is a family of linear maps

ΔH : H →H ⊗H ,

one for each of Hilbert space H . Such a family is said to be natural if for
every linear map f : H →H ′ the diagram

H
f � H ′

H ⊗H

ΔH

�

f ⊗ f
� H ′ ⊗H ′

ΔH ′

�

(16.5)
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commutes. For instance, the family

δ : H →H ⊗H :: | i〉 �→ | ii〉

is a diagonal, but the No-Cloning Theorem implies that it cannot be natural.
Indeed, it is not hard to see that the above diagram fails to commute, say, for
H := C, H ′ := C⊕C and f : 1 �→ |0〉+ |1〉. In general, given a cloning
machine (16.4), one can define a natural diagonal

ΔH := Clone◦ (−⊗|0〉) : H →H ⊗H :: |ψ〉 �→ |ψ〉⊗ |ψ〉 .

To prove its naturality, note that (16.4) holds for every |ψ〉, including |ψ〉 =
| f (ϕ)〉, which gives

(ΔH ◦ f )(|ϕ〉)=ΔH (| f (ϕ)〉) = | f (ϕ)〉⊗ | f (ϕ)〉= ( f ⊗ f )(|ϕ〉⊗ |ϕ〉)
=( f ⊗ f )(ΔH (|ϕ〉)) = (( f ⊗ f )◦ΔH )(|ϕ〉)

which shows that diagram (16.5) commutes.
A diligent reader may have noticed that commutativity of (16.5) actually

implies that a diagonal Δ must be independent on the bases, because a change
of base can be viewed as just another linear map f (e.g., [10]). In fact, in-
variance under the base change was one of the original motivations behind the
categorical concept of naturality, viz. of natural transformations [29].

16.3.3 Measurement and bases

When diagonalized, self-adjoint operators, which represent measurements
in quantum mechanics boil down, modulo a change of base, to two fami-
lies of data: eigenvalues and eigenvectors. Viewed quantum informatically,
eigenvalues are merely token witnesses which discriminate outcomes. A non-
degenerate measurement thus essentially corresponds to a base, and a degen-
erate one can also be captured by a base, and an equivalence relation over it.

Taking another look at the map | i〉 δ�→ | ii〉,5 we see that it does copy the base
vectors, but not other states:

|ψ〉= ∑
i

ci| i〉 δ�→ ∑
i

ci| ii〉 �= |ψ〉⊗ |ψ〉 .

5This map, when assigning agents i.e. | i〉A
δ�→ | i〉A⊗| i〉B , has appeared in the literature under the

name coherent bit, as a ‘between classical and quantum’-channel [13, 20]. A more detailed study
of this connection can be found in [12].
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This map, in fact, exactly captures the base {| i〉}i, because

δ :: ∑
i∈I

ci| i〉 �→ ∑
i∈I

ci| ii〉 ,

yields a disentangled state if and only if the index set I is a singleton, i.e.,
if and only if the linear combination ∑i∈I ci| i〉 boils down to a base vector.
Going in the opposite direction, we can also recover the base as the image of
pure tensors under the map6

δ † ::

⎧⎨⎩ i �= j : | i j 〉 �→ �o

else : | ii〉 �→ | i〉
.

Since the linear diagonal δ thus captures the base, it is of course not inde-
pendent of the base, and cannot be a natural transformation, in the categori-
cal sense. We shall see that its importance essentially arises from this ”un-
naturality”. Restricted to the base vectors, δ is a ‘classical’ copying operation
par excellence; viewed as a linear operation on all of the Hilbert space, it dras-
tically fails naturality tests.

The upshot is that this operation allows us to characterize classical measure-
ment context as the domain where it faithfully copies data, with no recourse to
an explicit base. If needed, however, the base can be extracted from among the
quantum states as consisting of just those vectors that can be copied.

16.3.4 Vanishing of non-diagonal elements and deletion

The map δ also allows capturing the ‘formal decohering’ in quantum mea-
surement, i.e. the vanishing of the non-diagonal elements in the passage of the
initial state represented as a density matrix within the measurement base to the
density matrix describing the resulting ensemble of possible outcome states.7

Indeed, non-diagonal elements get erased setting

δ ◦ δ † ::

⎧⎨⎩ i �= j : | i j 〉 �→ �o �→ �o

else : | ii〉 �→ | i〉 �→ | ii〉
.

Note also that δ ’s adjoint δ † doesn’t delete classical data, but compares its
two inputs and only passes on data if they coincide. Deletion is

ε :: | i〉 �→ 1 that is 1⊗ ε :: | i j 〉 �→ | i〉 .

6This operation δ † : H ⊗H →H has appeared in the quantum informatics literature under the
name fusion, providing a means for constructing cluster states [5, 37].
7See [17] for a discussion why we call this ‘formal decohering’.
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What ε and δ † do have in common is the fact that

δ † ◦ δ = (1⊗ ε)◦ δ :: | i〉 �→ | ii〉 �→ | i〉 .
Also, since in Dirac notation we have δ = ∑i | ii〉〈i |, the (base-dependent)

isomorphism θ :: | i〉 �→ 〈i | applied to the bra turns δ into the generalized GHZ
state ∑i | iii〉 [19] exposing that δ is ‘up to θ ’ symmetric in all variables.

16.3.5 Canonical bases

While all Hilbert spaces of the same dimension are obviously isomorphic,
they are not all equivalent. Indeed, above we already mentioned that the di-
rect sum structure provides the Hilbert space C⊕n with a canonical base, from
which it also follows that it is canonically isomorphic to its conjugate space(
C⊕n

)∗ = (C∗)⊕n, namely for the isomorphism

C⊕n → (C∗)⊕n :: (c1, . . . ,cn) �→ (c̄1, . . . , c̄n) .

In fact, one should not think of C⊕n as just being a Hilbert space, but as the
pair consisting of a Hilbert space H and a base {| i〉}i=n

i=1, which by the above
discussion boils down to the pair consisting of a Hilbert space H and a linear
map δ : H →H ⊗H satisfying certain properties, in particular, its matrix
being self-transposed in the canonical base. Below, we will assume the corre-
spondence between C⊕n and its dual to be strict, something which can always
be established by standard methods. The special status of the objects C⊕n in
FdHilb, in category-theoretic terms, is due to the fact the direct sum is both a
product and a coproduct and C the tensor unit [2].

16.4 Classical objects

Consider a quantum measurement. It takes a quantum state as its input and
produces a measurement outcome together with a quantum state, which is typ-
ically different from the input state due to the collapse. Hence the type of a
quantum measurement should be

M : A→ X⊗A

where A is of the type quantum state while X is of the type classical data. But
how do we distinguish between classical and quantum data types?
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We will take a very operational view on this matter, and define classical data
types as objects which come together with a copying operation

δ(X) : X → X⊗X

and a deleting operation
ε(X) : X → I ,

counterfactually exploiting the fact that such operations do not exist for quan-
tum data. We will refer to these structured objects (X ,δ ,ε) as classical objects.
The axioms which we require the morphisms δ and ε to satisfy are motivated
by the operational interpretation of δ and ε as copying and deleting operations
of classical data. This leads us to introducing the notion of a special †-compact
Frobenius algebra, which refines the usual topological quantum field theoretic
notion of a normalized special Frobenius algebra [26]. The defining equality
is due to Carboni and Walters [6].8

16.4.1 Special †-compact Frobenius algebras

An internal monoid (X ,μ ,ν) in a monoidal category (C,⊗, I) is a pair of
morphisms

X⊗X
μ � X � ν

I ,

called the multiplication and the multiplicative unit, such that

X � μ
X⊗X X

X⊗X

μ

�

�
μ⊗1X

X⊗X⊗X

1X ⊗ μ

�

I⊗X
ν⊗1X

�

λ
−1

X

�

X⊗X

μ

�

�
1X ⊗ν

X⊗ I

�
ρ −1X

commute. Dually, an internal comonoid (X ,δ ,ε) is a pair of morphisms

X⊗X � δ
X

ε � I ,

8They introduced it as a characteristic categorical property of relations. The connection between
the work presented in this paper and Carboni and Walters’ categories of relations is in [12].
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the comultiplication and the comultiplicative unit, such that

X
δ � X⊗X X

X⊗X

δ

�

δ ⊗1X

� X⊗X⊗X

1X ⊗ δ

�
I⊗X �

ε⊗1X

�

λ X

X⊗X

δ

�

1X ⊗ ε
� X⊗ I

ρ
X

�

commute. Graphically these conditions are:

= = =

When (C,⊗, I) is symmetric, the monoid is commutative iff μ ◦σX ,X = μ , and
the comonoid is commutative iff σX ,X ◦ δ = δ , in a picture:

=

Note that the conditions defining an internal commutative comonoid are indeed
what we expect a copying and deleting operation to satisfy.

A symmetric Frobenius algebra is an internal commutative monoid (X ,μ ,ν)
together with an internal commutative comonoid (X ,δ ,ε) which satisfies

δ ◦ μ = (μ⊗1X)◦ (1X ⊗ δ ) , (16.6)

that is, in a picture:

=

It is moreover special iff μ ◦ δ = 1X , in a picture:
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=

In a symmetric monoidal †-category every internal commutative comonoid
(X ,δ ,ε) also defines an internal commutative monoid (X ,δ †,ε†), yielding a
notion of †-Frobenius algebra (X ,δ ,ε) in the obvious manner. In such a †-
Frobenius algebra we have:

== =

that is, δ ◦ ε† : I → X ⊗ X and ε ◦ δ † : X ⊗ X → I satisfy equations (16.1)
of Section 16.2 and hence canonically provide a unit η = δ ◦ ε† and counit
ε = ε ◦ δ † which realizes X∗ = X (cf. Section 16.2). In a picture this choice
stands for:

=

One easily verifies that the linear maps δ and ε as defined in the previous
section indeed yield an internal comonoid structure on the Hilbert space C⊕n

which satisfies the Frobenius identity (16.6), and that δ ◦ ε† is the Bell state.

DEFINITION 16.1 A classical object in a †-compact category is a spe-
cial †-compact Frobenius algebra (X ,δ ,ε), i.e., a special †-Frobenius algebra
for which we choose ηX = δX ◦ ε†

X in order to realize X∗ = X.

So typical examples of classical objects are the ones existing in FdHilb
which were implicitly discussed in Section 16.3, namely

(C⊕n,δ (n) : C⊕n → C⊕n⊗C⊕n :: |i〉 �→ |ii〉,ε(n) : C⊕n → C :: |i〉 �→ 1).

Since the Frobenius identity (16.6) allows us to set X∗ = X we can now
compare δ∗,δ : X → X⊗X , and also, ε∗,ε : X → I, them having the same type.
Recalling that in FdHilb the covariant functor (−)∗ stands for complex con-
jugation, the structure of a †-compact Frobenius algebra guarantees the highly
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significant and crucial property that the operations of copying and deleting
classical data carry no phase information:

THEOREM 16.1

For a classical object we have δ∗ = δ and ε∗ = ε.

Before we prove this fact we introduce some additional concepts.

16.4.2 Self-adjointness relative to a classical object

From now on we will denote classical objects as X whenever it is clear from
the context that we are considering the structured classical data type (X ,δ ,ε)
and not the unstructured quantum data type X . Given a classical object X we
call a morphism F : A→ X⊗A self-adjoint relative to X if the diagram

A
F � X⊗A

I⊗A

λA

�

ηX ⊗1A

� X⊗X⊗A

1X ⊗F †

�

(16.7)

commutes. In a picture, this is:

=

A morphism F : X ⊗ A → A is self-adjoint relative to X whenever F † is.
Note furthermore that in every monoidal category, the unit I carries a canonical
comonoid structure, with δ = λI = ρI : I→ I⊗ I and ε = 1I : I→ I. In every †-
compact category, this comonoid is in fact a degenerate classical object. Self-
adjointness in the usual sense of f † = f : A→A corresponds to self-adjointness
relative to I. For a general classical object X , a morphism F : A→ X⊗A can
be thought of as an X -indexed family of morphisms of type A → A. Self-
adjointness relative to X then means that each of the elements of this indexed
family are required to be self-adjoint in the ordinary sense. We abbreviate
‘self-adjoint relative to X ’ to ‘X -self-adjoint’. There are several analogous
generalizations of standard notions e.g. X -scalar, X -inverse, X -unitarity, X -
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idempotence, X -positivity etc. In Section 16.5.1 we discuss a systemic way of
defining these ‘relative to X ’-concepts.

PROPOSITION 16.1

Both the comultiplication δ and the unit ε of a classical object X are
always X-self-adjoint, that is, in a picture:

= =

PROOF

== = ==
Note that X -self-adjointness of ε is exactly ε∗ = ε , already providing part of
the proof of Theorem 16.1. In fact, given an internal commutative comonoid
(X ,δ ,ε) diagram (16.7) implicitly stipulates that, of course X∗ = X , but also
that this self-duality of X is realized through η = δ ◦ ε† since we have

= =

Hence it makes sense to speak of an X-self-adjoint internal comonoid in a †-
compact category. From X -self-adjointness we can straightforwardly derive
many other useful properties, including the Frobenius identity itself, hence
providing an alternative characterization of classical objects, and also δ∗ = δ ,
providing the remainder of the proof of Theorem 16.1.

LEMMA 16.1

The comultiplication of an X-self-adjoint commutative internal monoid
satisfies the Frobenius identity (16.6), is partial-transpose-invariant
ptX ,X

I,X
(δ ) = δ , and is self-dual δ∗ = δ (or δ ∗ = δ †). The latter two de-

pict as :
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= =

PROOF For the Frobenius identity, apply X -self-adjointness to
the left hand side, use associativity of the comultiplication, and ap-
ply X -self-adjointness again, for partial-transpose-invariance apply X -
self-adjointness twice, and for self-duality apply X -self-adjointness three
times.

THEOREM 16.2

A classical object can equivalently be defined as a special X-self-adjoint
internal commutative comonoid (X ,δ ,ε).

16.4.3 GHZ states as classical objects

Analogously to the Hilbert space case (cf. Section 16.3), each classical ob-
ject X induces an abstract counterpart to generalized GHZ states, namely

GHZX := (1X ⊗ δ )◦η : I→ X⊗X⊗X .

In a picture that is:

=:

The unit property of the comonoid structure, together with the particular choice
for the unit of compact closure ε = ε ◦ δ † becomes pleasingly symmetric:

= = =

The same is the case for commutativity of the comonoid structure, together
with partial-transpose-invariance:

= =
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16.4.4 Extracting the classical world

If C comes with a †-structure then any internal comonoid yields an internal
monoid. But there is a clear conceptual distinction between the two structures,
in the sense that the comultiplication and its unit admit interpretation in terms
of copying and deleting. We will be able to extract the classical world by defin-
ing morphisms of classical objects to be those which preserve the copying and
deleting operations of these classical objects, or, in other words, by restricting
to those morphisms with respect to which the copying and deleting operations
become natural (cf. Section 16.3).

Given a †-compact category C, we define a new category C× of which the
objects are the classical objects and with the morphisms restricted to those
which preserve both δ and ε . So there is a forgetful functor

C× → C .

In FdHilb, a linear map f : C⊕m → C⊕n preserves ε(n) if it is a ‘pseudo s-
tochastic operator’ i.e. ∑ j=n

j=1
fi j = 1 for all i (note that fi j can still be properly

complex), and it preserves δ (n) if fi j fi j = fi j and fi j fik = 0 for j �= k, hence,
there is a function ϕ : m→ n such that

f (| i〉) = |ϕ(i)〉 .

So FdHilb× = FSet, the latter being the category of finite sets and functions.
Hence morphisms in C× are to be conceived as deterministic manipulations of
classical data, i.e., while C represents the quantum world, C× represents the
classical world. The canonical status of C× is exposed by the following result
due to Fox [16].

THEOREM 16.3

Let C be a symmetric monoidal category. The category C× of its commu-
tative comonoids and corresponding morphisms, with the forgetful func-
tor C× → C, is final among all cartesian categories with a monoidal
functor to C, mapping the cartesian product × to the tensor ⊗.

In fact, there are many other categories of classical operations which can
be extracted from C using classical object structure, including Carboni and
Walters’ categories of relations, and categories of (doubly) stochastic maps
which, in turns, induce information ordering. For this we refer the reader to
[12] and other forthcoming papers.
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16.5 Quantum spectra

Given a classical object X , a morphism F : A→X⊗A is idempotent relative
to X , or shorter, X-idempotent, if

A
F � X⊗A

X⊗A

F

�

δ ⊗1A

� X⊗X⊗A

1X ⊗F

�

commutes. In a picture that is:

=

Continuing in the same vein, an X-projector is a morphism P : A → X ⊗A
which is both X -self-adjoint and X -idempotent. The following proposition
shows that an X -projector is not just an indexed family of projectors.

PROPOSITION 16.2
A C⊕k-projector in FdHilb of type H →C⊕k⊗H with H 2C⊕n exact-
ly corresponds to a family of k mutually orthogonal projectors {Pi}i=k

i=1,
hence we have ∑i=k

i=1 Pi ≤ 1H .

PROOF One verifies that from C⊕k-idempotence follows idempo-
tence P2

i = Pi and mutual orthogonality Pi ◦P j �=i = 0, and that from C⊕k-

self-adjointness follows orthogonality of projectors P†
i = Pi.

DEFINITION 16.2 A morphism P : A → X ⊗A is said to be X-
complete if

λ †
A ◦ (ε⊗1A)◦P = 1A .

In a picture that is:
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=

A morphism P : A → X ⊗A is a projector-valued spectrum if it is an X-
projector for some classical object X, and if it is moreover X-complete.

THEOREM 16.4
Projector-valued spectra in FdHilb exactly correspond to complete fami-
lies of mutually orthogonal projectors {Pi}i, i.e. ∑i=k

i=1 Pi = 1H .

Each classical object (X ,δ ,ε) canonically induces a projector-valued spec-
trum δ : X → X ⊗X since associativity of the comultiplication coincides with
X -idempotence and the defining property of the comultiplicative unit coin-
cides with completeness—the reader should not be confused by the fact that
the quantum data type X is now also the carrier of the classical data type
(X ,δ ,ε). Having in mind the characterization of classical objects of Theo-
rem 16.2, mathematically, projector-valued spectra consitute a generalization
of classical objects by admitting degeneracy.

16.5.1 Coalgebraic characterization of spectra

Recall from [31] that the internal commutative (co)monoid structures over
an object X in a monoidal category C are in one-to-one correspondence with
commutative (co)monad structures on the functor

X⊗− : C→ C .

Hence we can attribute a notion of (co)algebra to internal commutative (co)mo-
noids.

THEOREM 16.5
Let C be a †-compact category. Its projector-valued spectra are exactly
the X-self-adjoint Eilenberg–Moore coalgebras for the comonads X⊗− :
C→ C canonically induced by some classical object X .

PROOF The requirements for Eilenberg–Moore coalgebras with re-
spect to the comonad (X⊗−) are exactly X -idempotence and X -complete-
ness.
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We can now rephrase all the above as follows.

THEOREM 16.6

X-self-adjoint coalgebras in FdHilb exactly correspond to complete fam-
ilies of mutually orthogonal projectors {Pi}i.

PROOF We also rephrase the proof. From the Eilenberg–Moore
commuting square we obtain idempotence P2

i = Pi and mutual orthog-
onality Pi ◦P j �=i = 0, from the Eilenberg–Moore commuting triangle we
obtain completeness and from X -self-adjointness follows orthogonality of
projectors P†

i = Pi.

16.5.2 Characterization of X-concepts

All ‘relative to X ’-concepts can now be defined as the corresponding stan-
dard concept in the Kleisli category for the comonad (X⊗−). For example,
X -unitarity of a morphism U : X ⊗ A → A simply means that U is unitary
in the Kleisli category for the comonad (X ⊗−). This approach immediately
provides all coherence conditions which are required for these X -concepts to
be sound with respect to the categorical structure with which one works. Be-
low we also define X -unitarity in an ad hoc manner for those readers who are
not very familiar yet with categorical language.

16.6 Quantum measurements

Given projector-valued spectra we are very close to having an abstract no-
tion of quantum measurement. In fact, the type A→ X⊗A which we attributed
to the spectra is indeed the compositional type of a (non-demolition) mea-
surement. But what is even more compelling is the following. The fact that
a spectum is X -idempotent, or equivalently, that it satisfies the coalgebraic
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Eilenberg–Moore commuting square, i.e.

A
Measure � X⊗A

X⊗A

Measure

�

Copy⊗1A

� X⊗X⊗A

1X ⊗Measure

�

exactly captures von Neumann’s projection postulate, stating that repeating a
measurement is equivalent to copying the data obtained in its first execution.
Note here in particular the manifest resource sensitivity of this statement, ac-
counting for the fact that two measurements provide two sets of data, even if
this data turns out to be identical.

However, what we get in FdHilb is not (yet) a quantum measurement. For
A = X := C⊕n the canonical projector-valued spectrum δ (n) : A→ X ⊗A ex-
pressed in the computational base yields

|ψ〉= ∑
i
〈 i |ψ〉| i〉A � ∑

i
〈 i |ψ〉(| i〉X ⊗| i〉A)

where | i〉X ∈ X is the measurement outcome, | i〉A ∈ A is the resulting state
of the system for that outcome, and the coefficients 〈 i |ψ〉 in the sum capture
the respective probabilities for these outcomes i.e. |〈 i |ψ〉|2. This however does
not reflect the fact that we cannot retain the relative phase factors present in the
probability amplitudes 〈 i |ψ〉. In other words, the passage from physics to the
semantics is not fully abstract. It is moreover well-known that the operation
which erases these relative phases does not live in FdHilb, but is quadratic
in the state, hence lives in CPM(FdHilb), the category of Hilbert spaces and
completely positive maps.

Fortunately, for many practical purposes (such as those outlined in Sections
16.7 and 16.8 of this paper) this ‘approximate’ notion of measurement suf-
fices,9 and in all other cases it turns out that we can rely on Selinger’s ab-
stract counterpart for the passage from FdHilb to CPM(FdHilb), a construc-
tion which applies to any †-compact category [35], to turn those approximate
quantum measurements into true quantum measurements.

9This approximate notion of quantum measurement is also the one considered in [2].
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16.6.1 The CPM-construction

This construction takes a †-compact category C as its input and produces an
‘almost inclusion’ (it in fact kills redundant global phases) of C into a bigger
one CPM(C). While C is to be conceived as containing pure operations with
those of type I → A being the pure states, CPM(FdHilb) consists of mixed
operations with those of type I→ A being the mixed states. Explicitly we have
the †-compact functor

Pure : C→ CPM(C) :: f → f ⊗ f∗

where

CPM(C)(A,B) :=
{
(1B⊗η†

C∗ ⊗1B∗)◦ ( f ⊗ f∗)
∣∣∣ f : A→ B⊗C

}
and the †-compact structure on CPM(C) covariantly inherits its composition,
its tensor, its adjoints and its Bell states from C. In a picture the morphisms of
CPM(C) are:

**

AA

BB

AA

BB
CC **

**

(  )(  )

Note in particular that the two copies of each C-morphism in these CPM(C)-
morphisms is also present in Dirac’s notation when working with density ma-
trices. However, in Dirac notation one considers the pair of a ket-vector |ψ〉
and its adjoint 〈ψ | resulting in the action of an operation being

|ψ〉〈ψ | �→ f |ψ〉〈ψ | f †

for an ordinary operation, while it becomes

|ψ〉〈ψ | �→ f (1C⊗|ψ〉〈ψ |) f †

for a completely positive map. What we do here is quite similar but now we
consider pairs |ψ〉⊗ |ψ〉∗ allowing for more intuitive covariant composition

|ψ〉⊗ |ψ〉∗ �→ ( f ⊗ f∗)(|ψ〉⊗ |ψ〉∗)
for an ordinary operation, while it becomes

|ψ〉⊗ |ψ〉∗ �→ (1B⊗η†
C⊗1B∗)( f ⊗ f∗)(|ψ〉⊗ |ψ〉∗)

for a completely positive map. The most important benefit of this covariance
is two-dimensional display-ability i.e., it enables graphical calculus.
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16.6.2 Formal decoherence

Given a classical object X in a †-compact category C we define the following
morphism

ΓX := (1X ⊗η†⊗1X)◦ (δ ⊗ δ ) ∈ CPM(C)(X ,X) .

In a picture that is:

PROPOSITION 16.3

In †-compact category with X a classical object we have

ΓX = δ ◦ δ † : X⊗X → X⊗X

so in particular is ΓX idempotent.

PROOF Using the Frobenius identity we have

==

where the highlighted part expresses the use of X -self-adjointness.
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In particular in FdHilb we have

∑
i j

αiᾱ j|i〉⊗ | j〉∗

∑
i j

αiᾱ j|ii〉⊗ | j j〉∗

δ (k)⊗ δ (k)

� Γ
C ⊕

n

�

∑
i j

δi jαiᾱ j|i〉⊗ | j〉∗

1
C⊕n ⊗η†

C⊕n⊗1
C⊕n

�
=========== ∑

i
αiᾱi|i〉⊗ |i〉∗

i.e. we obtain the desired effect of elimination of the relative phases. Hence,
given a projector-valued spectrum now represented in CPM(C) through the
functor Pure, which depicts as

we obtain a genuine quantum measurement by adjoining ΓX as in

Meas := (1B⊗ΓX ⊗1B)◦ (M ⊗M∗) ,

which in a picture becomes:

16.6.3 Demolition measurements

As compared to the type A→ X⊗A of a non-demolition measurement, a de-
molition measurement has type A→ X . We claim that the demolition analogue
to a projector-valued spectrum M : A → X ⊗A is the adjoint to an isometry
m† : X → A, i.e. m◦m† = 1X —or equivalently put in our X -jargon, a normal-
ized X-bra. Indeed, setting

Mm := (1X ⊗m†)◦ δ ◦m : A→ X⊗A
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we exactly obtain a projector-valued spectrum since Mm is trivially X -self-
adjoint, and m◦m† = 1X yields X -idempotence. In a picture Mm is:

m

m†

The corresponding demolition measurement arises by adjoining ΓX i.e.

DeMeas := ΓX ◦ (m⊗m∗) ,

that is, in a picture:

Such a demolition measurement is non-degenerate iff m is unitary.

16.7 Quantum teleportation

The notion of measurements proposed in this paper abstracts over the struc-
ture of classical data, and we will show that we can describe and prove correct-
ness of the teleportation protocol without making the classical data structure
explicit, nor by relying on the cartesian structure of C×.

DEFINITION 16.3 Given a classical object X a morphism U :
X⊗A→ B, and at the same time U † and U ◦σX ,A, are unitary relative to
X or X -unitary iff

(1X ⊗U )◦ (δ ⊗1A) : X⊗A→ X⊗B

is unitary in the usual sense i.e., its adjoint is its inverse. In a picture:
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==

A trivial example of such a unitary morphism is ε⊗1A : X⊗A→ A.

PROPOSITION 16.4

In FdHilb morphisms that are (C⊕n,δ (n))-unitary are in bijective cor-
respondence with n-tuples unitary operators of the same type.

Let the size of a classical object be the scalar

sX := η†
X ◦ηX = εX ◦ ε†

X : I→ I

i.e., in a picture:

AA

=: = =

XX

using in the last two steps respectively δ † ◦ δ = 1X and η = δ ◦ ε†.

PROPOSITION 16.5
The positive scalars in the scalar monoid C(I, I), i.e. those scalars s : I→

I that can be written as s = ψ† ◦ψ for some ψ : I→ A, have self-adjoint
square-roots when embedded in CPM(C) via Pure.

PROOF The image of a positive scalar s under Pure is s⊗ s∗. For
t = η†

A∗ ◦ (ψ⊗ψ∗) ∈ CPM(C)(I, I) which we depict in a picture as:

ψ ψ
*

we have t ◦ t = s⊗ s∗ since



16.7. QUANTUM TELEPORTATION 589

=ψ

ψ
ψ

ψ
*

ψ
*

ψ
*

ψ*ψ†

follows from ( f ∗ ⊗ 1B) ◦ηB = (1A⊗ f ) ◦ηA [2]. Self-adjointness follows
from: =

ψ ψ
*

ψ*ψ†

Hence Pure(s) indeed has a scalar in CPM(C)(I, I) as a square root.

This implies that square root
√

sA : I → I of the dimension sA := η†
A
◦ηA of

an object A always exists whenever we are within CPM(C). It can be shown
that each †-compact category also admits a canonical embedding in another
†-compact category in which all scalars have inverses. For scalars

sA
√

sA
1
sA

1√
sA

,

respectively, we introduce the following graphical notations:

AAAAAAAA AAAAAAAA

—the reversed symbols representing inverses needn’t be confused with the
adjoint since these scalar dimensions are always self-adjoint.

DEFINITION 16.4 Let X be a classical object in a †-compact cat-
egory. A (non-degenerate) demolition Bell measurement is a unitary mor-
phism

DeMeasBell :=
1√
sA
•ρ†

A ◦ (1X ⊗η†
A)◦ (U †⊗1A) : A⊗A∗ → X

which is such that U : X⊗A→ A is X-unitary.

The corresponding projector-valued spectrum is

MBell := (DeMeas†
Bell⊗1X)◦ δ ◦DeMeasBell : A⊗A∗ → X⊗A⊗A∗ ,
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from which the corresponding non-demolition Bell measurement arises by ad-
joining ΓX . In a picture the demolition Bell measurement and corresponding
projector-valued spectrum are:

AAAAAAAA

and unitarity of DeMeasBell is:

= =AAAAAAAA

that is, in formulae, respectively,

1√
sA
• trA

X ,X (U † ◦U ) = DeMeasBell ◦DeMeas†
Bell = 1X (16.8)

and of course
DeMeas†

Bell ◦DeMeasBell = 1A⊗A∗ . (16.9)

Let us verify that MBell is indeed a projector-valued spectrum. Using Eqn.
(16.8) we obtain X -idempotence:

= = AAAAAAAA

AAAA

AAAA

and Eqn. (16.9) assures X -completeness:

=AAAAAAAA =
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Finally, unitarity of DeMeasBell yields X 2 A⊗A∗, so DeMeasBell can be con-
ceived as non-degenerate. We normalize the Bell states of type A, i.e.,

1√
sA
•ηA : I→ A∗ ⊗A .

Now we will describe the teleportation protocol and prove its correctness.
For simplicity we will not explicitly depict ΓX since it doesn’t play an essential
role in the topological manipulations of the picture.10 Here it is:

= = = =

Bell state

Measurement

Correction

AA

AAAA AA

AA

Alice Bob

AA

The red box in Measurement is a unitary morphism

σX ,A ◦U∗ : A∗ → A∗ ⊗X ,

which defines a demolition Bell-base measurement, the red box in Correction
is the unitary morphism

U : A→ X⊗A ,

and the bottom red box in the second picture obtained by ‘sliding’ U along
the red line is

U ∗ ◦σA,X : A∗ ⊗X → A∗ ,

the adjoint to σX ,A ◦U∗—note that the σ -isomorphisms are introduced to avoid

crossing of lines. Then we apply the decomposition η := δ ◦ε† which enables
us to use X -unitarity of U . The reason why the black and the red scalars cancel
out requires considering ΓX as part of the measurement—we refer the reader
to [12] for details. We could copy the measurement outcome before consuming
it:

10A case where ΓX does play a crucial role is the proof of Naimark’s theorem in [11].
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Copy = = = =

Bell state

Measurement

Correction

AA

AA

AA

AA

Alice Bob

AA

AA

Note that now we explicitly used X -self-adjointness. We can of course still
choose to delete this data at a later stage using ε , nicely illustrating resource
sensitivity. If we wish to use the resulting available classical data for other
purposes we possibly now might have to introduce ΓX explicitly.

Categorically we can fully specify this protocol as11

A
(1A⊗ηA)◦ρA � A⊗A∗ ⊗A

DeMeasBell ⊗1A� X⊗A

X⊗A

ε†⊗1A

�
�1X ⊗

(
(ηX ⊗1A)◦ (1X ⊗U †)

)
X⊗X ⊗A � δ ⊗1A X⊗A

JJJJJJJJJ
The morphism ε†⊗1A together with commutation of this diagram specifies the
intended behavior, i.e., teleporting a state of type A with the creation of classi-
cal data as a biproduct, while the other morphisms respectively are: (i) creation
of a Bell state ηA; (ii) a demolition Bell-base measurement DeMeasBell ; (iii)
copying of classical data using δ ; (iv) unitary correction using the X -adjoint
to U . The above depicted graphical proof can be converted into an explicit
category-theoretic one.

16.8 Dense coding

We can also give a similar description and proof of dense coding.

11The first specification of quantum teleportation as a commutative diagram, together with a purely
categorical correctness proof, is due to Abramsky and one of the authors [2]. However, their
work relied heavily on the ‘unphysical’ assumption of biproducts to establish this—see [8] for a
discussion of this issue.
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Alice Bob

= =

Bell state

Measurement

Encoding

AA

AAAAAA

=

The remarks made above concerning ΓX apply again here. Note in particular
that we rely on a very different property in this derivation than in the derivation
of teleportation: here we use (one-sided) unitarity of DeMeasBell while for
teleportation we use X -unitarity of U . Hence it follows that teleportation and
dense coding are not as closely related as one usually thinks: they are in fact
axiomatically independent.

For a more systematic and more elaborate presentation of classical objects as
the structure of classical data, together with several more quantum protocols,
we refer the reader to [12].
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[34] Rédei, M. (1997) Why John von Neumann did not like the Hilbert space
formalism of quantum mechanics (and what he liked instead). Studies in
History and Philosophy of Modern Physics 27, 493–510.

[35] Selinger, P. (2005) Dagger compact closed categories and completely
positive maps. Electronic Notes in Theoretical Computer Science, to ap-
pear.

[36] Street, R. (2004) Frobenius monads and pseudomonads. Journal of
Mathematical Physics 45, 3930–3948.

[37] Verstraete, F. and Cirac, J. I. (2004) Valence-bond states for quantum
computation. Physical Review A 70, 060302(R).

[38] Wootters, W. and Zurek, W. (1982) A single quantum cannot be cloned.
Nature 299, 802–803.



Appendix

Panel Report on the Forward Looking Discussion that took place during
the NSF Conference on the Mathematics of Quantum Computation and
Quantum Technology held at Texas A&M University, November 13–16,
2005, written by Samuel Lomonaco with cooperation of and input from
the panelists and the panel discussion participants.

On Tuesday, November 15, 2006 at the NSF Conference on the Mathematics
of Quantum Computation and Quantum Technology held at Texas A&M Uni-
versity, a two-hour panel discussion was held, chaired by Professor Samuel
Lomonaco of the Department of Computer Science and Electrical Engineer-
ing at the University of Maryland Baltimore County (UMBC). The three other
panelists were Professor Goong Chen of Texas A&M University (TAMU), Pro-
fessor Louis Kauffman of the University of Illinois at Chicago (UIC), and Dr.
Howard Brandt of Army Research Laboratory (ARL). Approximately thirty-
five conference participants attended and participated in the panel discussion.
The lively and enthusiastic discussion that transpired focused on the topic of
the future research directions and opportunities to be found in quantum com-
puting.

The panel discussion essentially centered on the four basic questions given
below. Accordingly, this report is organized as a summary of the participants’
responses to these questions.
Question 1. Why quantum Computing? Why bother?

Within the next 10 to 15 years, the US computer industry will be facing
one of its greatest challenges, the end of Moore’s law. Suddenly and abruptly,
as the size of the components of small scale integration approaches the quan-
tum level, the computer industry will find that the requirements of the laws of
physics will have dramatically changed to those of the microscopic quantum
world. No longer will the industry be able to double the computing power of
computing devices every 1.5 years at half the price. This is an inevitable and
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looming future economic downturn now facing the computer industry. It can
only be averted if there is enough foresight to substantially invest in the basic
research necessary to develop new science and technology for overcoming this
fundamental technological barrier.

This is one among many reasons for the fundamental and central impor-
tance of quantum computing. Quantum computing shows the great promise
of making it possible for the computer industry to leap far beyond the demise
of Moore’s law to a domain of exponentially faster computing. This potential
for quantum computing is emphatically confirmed by Simon’s quantum algo-
rithm, which Simon has rigorously proven to be exponentially faster than any
possible classical algorithms. This is reconfirmed by Shor’s quantum factor-
ing algorithm which is exponentially faster than any known classical factoring
algorithm.

One more reason for the central importance of quantum computing is that
this field is using the theory of information as a fundamental tool for probing
and exploring the boundaries of quantum mechanics. With quantum comput-
ing, researchers are seeking to find answers to fundamental and central ques-
tions about the microscopic quantum world.

Even if we assume, just for the sake of argument, that future research in
quantum computing will fail to deliver a practical scalable quantum computing
device, the inevitable scientific and technological spin-offs from this research
will no doubt lead to new technologies in computing and in areas other than
computing. For, by learning how to control systems at the quantum level, we
will most certainly produce fundamentally new useful and practical technolo-
gies for industry, such as for example, nano-technology.
Question 2. What are the obstacles to achieving the promise of quantum
computing? Can these obstacles be overcome so that this promise will be
fulfilled?

But will the potential of quantum computing actually be realized? Will fu-
ture quantum computers be general purpose or special purpose computing de-
vices?

Much research must be done before these questions can be answered. The
obstacles to scalable quantum computing are monumental, and a rewarding
challenge for the best scientific minds.

The major and fundamental obstacle to quantum computing is quantum de-
coherence. Quantum systems simply do not want to be isolated. But instead,
they seek to quickly become quantum entangled with their environment. The
more a quantum system entangles with its environment, the more it appears to
one observing ONLY the quantum system, that the quantum system becomes
noisy and classically random (i.e., loses quantum coherence), and hence, be-
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comes uncontrollable. By this process, the qubits appear to the observer to
be degenerating into random classical bits or decaying. This phenomenon is
called quantum decoherence.

Much research needs to be done to overcome the obstacle of decoherence.
Some of the possible approaches to overcoming decoherence are:

• Quantum error correcting codes, i.e., adding additional redundant qubits
for correcting the effects of decoherence.

• Decoherence free subspaces, i.e., creating for the system an environment
with symmetries that can be exploited to preserve quantum coherence,
such as for example those created in NMR systems.

• Topological quantum computing, i.e., creating quantum systems (e.g.,
fractional quantum Hall effect systems) with natural global barriers to
decoherence (called topological obstructions). The barrier to decoher-
ence in those systems is, for example, very much analogous to the topo-
logical obstruction in a doughnut which prevents one from shrinking a
longitudinal loop to a point without letting the loop leave the doughnut.
The doughnut hole (which is the topological obstruction) makes that im-
possible.

• Bang-bang control of quantum systems, i.e., zapping a quantum system
with a strong calculated laser pulse that reverses the decoherence dy-
namics.

• Distributed quantum computing, i.e., distributing the computational task
to small computing devices interconnected by EPR channels. This is
a divide-and-conquer approach that protects against the most probable
effects of decoherence.

• Quantum Zeno effect, i.e., preserving quantum states by making appro-
priate frequent measurements.

Another major obstacle to fulfilling the promise of quantum computing is
the current scarcity of quantum algorithms. We simply have not yet found
enough quantum algorithms to determine whether or not future quantum com-
puters will be general purpose or special purpose computing devices. More
research is crucially needed to determine the algorithmic limits of quantum
computing.
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Question 3. Why should mathematicians work on quantum computing?
Why are they needed? Isn’t this simply a research field for physicists and
engineers?

Quantum computing is a multidisciplinary research field requiring the team
efforts of the best minds in mathematics, as well as in computer science,
physics, electrical engineering, chemistry, and in many other fields. It is in-
deed shortsighted and unwise to call this a research field only for physicists
and engineers.

Mathematicians are critically needed to solve fundamental research prob-
lems arising in quantum computing in, e.g., the following mathematical fields:

• Group representation theory

• Lie theory

• Invariant theory

• Differential geometry

• Mathematical physics

• Mathematical modeling of quantum devices

• Control theory

• Partial differential equations

• Quantum topology

• Knot theory

• Algebraic topology

• Algebraic geometry

• Quantum information theory

Question 4. What kind of support is needed to help mathematicians to
continue working in this field? What kind of support is needed to encour-
age mathematicians to start working in this field?

More NSF financial support is needed for mathematicians to work in this
field. Currently, because of a lack of sufficient support in the United States,
many US researchers (especially young researchers doing more mathematical-
ly oriented work) seeking to continue their work in quantum computing are
forced to look for job opportunities outside the United States.

Given below is a list of suggestions and proposals made during the panel
discussion for the consideration of the National Science Foundation:
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• We suggest that NSF create a grant program to fund mathematicians to
team with physicists, electrical engineers, computer scientists, and other
scientists for the purpose of collectively and synergistically carrying out
research in quantum computing.

• We propose that NSF consider creating more funding for interdisci-
plinary NSF workshops focused on the mathematical problems arising
in quantum computing. Such workshops should consist of an appropri-
ate mix of tutorial and research talks, and of domestic and international
quantum researchers from many disciplines.

• To encourage interdisciplinary research, we propose that the NSF con-
sider creating an NSF postdoctoral program for young mathematicians
(who are just beginning their careers) to team and to work with senior
quantum computing researchers in other fields such as, e.g., physics,
computer science, electrical engineering.

• And vice versa, we propose that the NSF also consider creating a post-
doctoral program for young researchers in disciplines other than mathe-
matics to team with established senior mathematicians working in quan-
tum computing.

• We also propose that the NSF consider creating a program to fund mul-
tidisciplinary team-building workshops in quantum computing.

• We also suggest increased NSF funding for the creation of new instruc-
tional materials and courses in quantum computing for the training of
future mathematicians

• For the purpose of encouraging international cooperation, we propose
that the NSF consider increasing NSF funding for US and international
quantum computing researchers to work together.
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