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PREFACE

In 1975 I gave a course in partial differential equationR (PDE) at the Uni­
versity of Washington to an audience consisting of gra.duate students who
had taken the standard first-year analysis courses but who had little back­
ground in PDE. Accordingly, it focused on basic classical results in PDE
but aimed in the direction of the recent developments and made fairly free
use of the techniques of real and complex analysis. The roughly polished
notes for that course constituted the first edition of this book, which has
enjoyed some success for the past two decades as a "modern" introduction
to PDE. From time to time. however, my conscience has na,gged me to
make some revisions to clean some things up, add more and
include some material on pseudodifferential operators.

Meanwhile, in 1981 I gave another course in Fourier methods in PDE
for the Programme in Applications of Mathematics at the Tata Institute
for Fundamental Research in Bangalore, the notes for which were published
in the Tata Lectures series under the title Lectures on Partial Differential
Equations. They included applications of Fourier analysis to the study of
constant coefficient equations (especially the IJaplace, heat., and wave equa­
tions) and an introduction to pseudodifferential operators and Calderon­
Zygmund singular integral operators. These notes were found useful by a
number of people, but they went out of print after a few yea,rs.

Out of all this has emerged the present book. Its intended audience is
the same as that of the first edition: students who are conversant with real
analysis (the Lebesgue integral, LP spaces, rudiments of Banach and Hilbert
space theory), basic complex analysis (power series and cont,our integrals),
and the big theorems of advanced calculus (the divergence theorem, the
implicit function theorem, etc.). Its aim is also the same as that of the first
edition: to present some· basic classical results in a modern setting and
to develop some aspects of the newer theory to a point where the student
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will be equipped to read more advanced treatises. It. conRists essentially of
the union of the first edition and the Tata notes, with t.he omission of the
LP theory of singular integrals (for which the reader is referred to St.ein's
classic book [45}) and the addition of quite a few exercises.

Apart from the exercises, the main substantive ch:mges from the first
edition to this one are as follows.

• §IF has been expanded to include the full Malgrange-Ehrenpreis theo­
rem and the relation between smoothness of fundamental solutions and
hypoellipticitYI which simplifies the discussion at a few later points.

• Chapter 2 now begins with a brief new section on symmetry properties
of the Laplacian.

• The discussion of the equation Llu = I in §2C (formerly §2B) has been
expanded to include the full Holder regularity theorem (and, as a by­
product, the continuity of singular integrals on Holder spaces).

• The solution of the Dirichlet problem in a half-space (§2G) is now done
in a way more closely related to the preceding sections, and the Fourier­
analytic derivation has been moved to §4B.

• I have corrected a serious error in the treatment of the two-dimensional
case in §3E. I am indebted to Leon Greenberg for sending me an analysis
of the error and suggesting Proposition (3.36b) as a way to fix it.

o The discussion of functions of the Laplacian in t.he old §4A has been
expanded and given its own section, §4B.

• Chapter 5 contains a new section (§5D) on the Fourier analysis of the
wave equation.

• The first section of Chapter 6 has been split in t.wo and expanded to
include the interpolation theorem for operators on Sobolev spaces and
the local coordinate invariance of Sobolev spaces.

• A new section (§6D) has been added to present Hormander's charac­
terization of hypoelliptic operators with constant coefficients.

• Chapter 8, on pseudodifferential operators, is entirely new.

In addition to these items. I have done a fair amount of rewriting in
order to improve the exposition. I have also made a few changes in notation

most notably, the substitution of (I Ig) for (I, g) to denote the Hermitian
inner product Jfli, as distinguished from the bilinear pairing (I, g) .= J fg·
(I have sworn off using parentheses, perhaps the most overworked symbols
in mathematics, to denote inner products.) I call the reader's attention to
the existence of an index of symbols as well as a regular index at the back
of the book.



The bias toward elliptic equations in the first edition is equally evident
here. I feel a little guilty about not including more on hyperbolic equations,
but that is a subject for another book by another author.

The discussions of elliptic regularity in §6C and §7F and of Garding's
inequality in §7D may look a little old-fashioned now, as the machinery of
pseudodifferential operators has come to be accepted as the "right" way
to obtain these results. Indeed, I rederive (and generalize) Girding's in­
equality and the local regularity theorem by this method in §8F. However,
I think the "low-tech" arguments in the earlier sections are also worth re­
taining. They provide the quickest proofs when one starts from scratch,
and they show that the results are really of a fairly elementary nature.

I have revised and updated the bibliography, but it remains rather
short and quite unscholarly. Wherever possible, I have preferred to give
references to expository books and articles rather than to research papers,
of which only a few are cited.

In the preface to the first edition I expressed my gratitude to my teach­
ers J. J. Kohn and E. M. Stein, who influenced my point of view on much
of the material contained therein. The same sentiment applies equally to
the present work.

Gerald D. Folland
Seattle, March 1995
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Chapter 0

PRELIMINARIES

The purpose of this chapter. is to fix some terminology that will be used
throughout the book, and to present a few analytical tools which are not
included in the prerequisites. It is intended mainly as a reference rather
than as a systematic text.

A. Notations and Definitions

Points and sets in Euclidean space

1R will denote the real numbers, C the complex numbers. We will be
working in lRn , and n will always denote the dimension. Points in JR."' will
generally be denoted by x, Y,e, '1; the coordinates of x are (Xl, .. ,X",).
Occasionally XI, X2,'" will denote a sequence of points in m."' rather than
coordinates, but this will always be clear from the context. Once in a while
there will be some confusion as to whether (Xl j ••• , oX") denotes a point in
:Ill" or the n-tuple of coordinate functions on :Ill", However, it would be
too troublesome to adopt systematically a more precise notation; readers
should consider themselves warned that this ambiguity will arise when we
consider coordinate systems other than the standard one.

H U is a subset of lR n , U will denote its closure and au its boundary.
The word domain will be used to mean an open set nCRn, not necessarily
connected, such that an = o(R n \ 0). (That is, all the boundary points of
n are "accessible from the outside.")

If x and Y are points of lR" or en, we set

"
x.y='L::X;Yj,

I



(fIg) = f fu,

(x . x)1/2 if x is reaL)

(f,g) = flU,

We use the following notation for spheres and (open) balls: if x E lRn and
r> 0,

We will generally use the shorthand

2 Chapter 0

Multi-indices and derivatives

An n-tuple a = (all ... an) of nonnegative integers will be caned a
multi-index. We define

and for x E lR n ,

Sr{x) = {y E JR" : Ix - yl =r},
Br (x) = {y E JR" : Ix - yl < r}.

where U is the complex conjugate of g. The Hermitian pairing {/lg} will
be used only when we are working with the Hilbert space £2 or a variant
of it, whereas the bilinear pairing (f, g) will be used more generally.

so the Euclidean norm of x is given by

Measures and integrals

The integral of a function f over a subset n of JR" with respect to
Lebesgue measure will be denoted by In f(x) dx or simply by In f. If no
subscript occurs on the integral sign, the region of integration is understood
to be ]R". If S is a smoothhypersurface (see the next section), the natural
Euclidean surface measure on S will be denoted by d<T; thus the integral of
f OVer S is Is f(x)dlT(x), or Is I d<T, or just Is I. The meaning of dcr thus
depends on S, but this will cause no confusion.

If f and gare functions whose product is integrable on R n , we shall
sometimes write

I



Prc1hninaries 3

for derivatives on III n. Higher-order derivatives are then conveniently ex­
pressed by multi-indices:

Note in particular that if a 0, ea is the identity operator. With this
notation, it would be natural to denote by au the n-tuple of functions
(01 U, ••• ,enu) when u is a differentiable function; however, we shall use
instead· the more common· notation

For our purposes, a vector field on a set 0 E jRn is simply an lR n_

valued function on O. If F is a vector field on an open set 0, we define the
directional derivative OF by

OF=F·V',

that is, if u is a differentiable function on 0,

n

OFU(X) =F(x) . Vu(x) =L Fj(x)8j1J,(x).
1

Function spaces

If 0 is a subset oflR'\ C(O) will dente the space of continuous complex­
valued functions on 0 (with respect to the relative topology on 0). If 0 is
open and k is a positive integer, Ck(O) will denote the space of functions
possessing continuous derivatives up to order k on 0, and cA:(n) will denote
the space of all u E Ck(O) such that eau extends continuously to the
closure 0 for 0::; lal ::; k. Also, we set Coo(O) =n~ Ck(O) and 0 00 (0) =
n~ Ck(O).

We next define the Holder or Lipschitz spaces ca(n), where 0 is an
open set and 0 < a < 1. (Here Q is a real number 1 not a multi-index; the
use of the letter "a" in both these contexts is standard.). Ca(O) is the sp~e
of continuous functions on n that satisfy a 10calIl uni~9!-I!!li<i!~~!£2!l~iti2.n
~!~E~,~!_~~ti~_~.§q.~lg)jfand g;nly)[for any co~pact V C !l
there isa constant c> 0 such that for all y E lR.n sufficiently close to 0,-.

sup lu(x + y) - u(x)l::; clyla.
:rEV
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sup IxQ'8Jju(x)1 < 00.
X'Elln

Big 0 and little 0

We occasionally employ the big and little 0 notation for orders of mag­
nitude. Namely, when we are considering the behavior of functions in a
neighborhood of a point a (which may be 00), D(f(x)) denotes any func~

tion g(x) such that Ig(x)1 ~ CI/(x)1 for x near a, and o(f(x» denotes any
function hex) such that hex)! f(x) -4 0 as x -4 a.

B .. Results from Advanced Calculus

A subset S of]Rn is called a bypersurface of class C k (1 ::; k $ 00) if for
every Xo E S there is an open set V C ]Rn containing Xo and a real-valued
function <b E Ck (V) such that \7<b is nonvanishing on S n V and

SnV={xEV:rjJ(x) OJ.



Prclhninarins ::>

In this case, by the implicit function theorem we can solve the equation
¢(x) = 0 near Xo for some coordinate Xi - for convenience, say i= n ­
to obtain

Xn = t/J(Xl, . .. , xn-d

for some ek fundion ,po A neighborhood of Xo in 5 can then be mapped
to a piece of the hyperplane Xn =0 by the ak transformation

x ----+ (x', X n - ..p(x'»

This same neighborhood can also be represented in parametric form as
the image of an open set in :n:t,n-l (with coordinate x') under the map

X' -+ (X', t/J(x' )).

OvU v· V'u.

We will use the following proposition several times in the sequel:

on 8r (y).
x­

vex) =
r

vex)

(0.1)

We pause to compute the normal derivative on the sphere 8r (y). Since
lines through the center of a sphere are perpendicular to the sphere, we
have

X' may be thought of as giving local coordinates on 5 near xo.
Similar considerations apply if "Ch is replaced by "analytic."
With 8, V, ¢ as above, the vector \l¢(x) is perpendicular to 8 at x

for every x E 8 n V. We shall always suppose that S is oriented, that
is, that we have made a choice of unit vector vex) for each x E 5, varying
continuously with x I which is perpendicular to 8. at x. lIex) will be called
the normal to 8 at x; clearly on 8 n V we have

Thus v is a ak - 1 function on 8. If S is the boundary of a domain 0, we
always choose the orientation so that v points out of n.

If u is a differentiable function defined near 5, we can then define the
normal derivative of u on S by
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F(x,t)=x+tv(x)

is a C k - 1 diffeomorphism of 5 x (-f, f) onto V.

a"u(x + tv(x» =v(x)· Vu(x + tv(x».(0.3)

The neighborhood V in Proposition (0.2) is called a tubular neigh­
borhood of 5. It will be convenient to extend the definition of the normal
derivative to the whole tubular neighborhood. Namely, if u is a differen­
tiable function on V, for x E 5 and -f < t < f we set

If F = (F1 , •.. , Fn ) is a differentiable vector field on a subset of jRn, its
divergence is the function

Proof (sketch): F is clearly C k - 1• Moreover, for each x E 5 its
Jacobian matrix (with respect to local coordinates on 5 x jR) at (x,O) is
nonsingular since v is normal to 5. Hence by the inverse mapping theorem,
F can be inverted on a neighborhood Wr of each (x, 0) to yield a C k - 1

map

(0.4) The Divergence Theorem.
Let n c jRn be a bounded domain with C1 boundary 5 = an, and let F
be a C1 vector field on n. Then

With this terminology, we can state the form of the general Stokes formula
that we shall need.

n

V· F = 'L-ajFj.
1

l F(y) . v(y) d(J(Y) =l V . F(x) dx.

(0.2) Proposition.
Let S' be a compact oriented hypersurface of class C k , k ~ 2. There is a
neighborhood V of 5 in jRn and a number f >°such that the map

F;l: Wr --+ (5nWr ) x (-fr , f r )

for some f r > O. Since 5 is compact, we can choose {xj}f C 5 such that
the Wrj cover 5, and the maps F;/ patch together to yield a C k - 1 inverse
of F from a neighborhood V of 5 to 5 x (-f, f) where f =minj frr I

I
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The proof can be found, for example, in Treves [52, §1O).
Every x E JRn \ {OJ can be written uniquely as x:::: ry with r> 0 and

y E 51 (0) - namely, r:::: Ixl and y:::: x/lxl. The formula x:::: ry is called
the polar coordinate representation of x. Lebesgue measure is given in
polar coordinates by

dx :::: r n - 1 dr du(y),

where du is surface measure on 5 1 (0). (See Folland [14, Theorem (2.49»).)
For example, if 0 < a < b < 00 and oX E JR, we have

1 1 l b { b"+'-a"+'Ix I" dx :::: r n-!+" dr:::: W n n+"
a<lxl<b 8,(0) a W n log(b/a)

if oX::p -n,
if oX:::: -n,

where W n is the area of 51 (0) (which we shall compute shortly). As an
immediate consequence, we have:

(0.5) Proposition.
The function x -4 Ixl" is integrable on a neighborhood of 0 if and only
if oX > -n, and it is integrable outside a neighborhood of 0 if and only if
oX < -no

As another application of polar coordinates, we can compute what is
probably the most important definite integral in mathematics:

(0.6) Proposition.
Je- ..1xl ' dx :::: 1.

Proof: Let In :::: J
1II

" e- .. 1xl ' dx. Since e- ..!xl' :::: n~ e-.-x~, Fubini's
theorem shows that In :::: (It}n, or equivalently that In :::: (12 )n/2. But in
polar coordinates,

This trick works because we know that the measure of 51(0) in JR2 is
27r. But now we can turn it around to compute the area W n of 51 (0) in JRn
for any n. Recall that the gamma function f( s) is defined for Re s > 0
by

~

_l_._-~
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One easily verifies that

(0.7) Proposition.
The area of 51 (0) in JRn is

f(l) :::: 1,f(s + 1) :::: sf(s),

f(k) :::: (k - I)!,

Proof: We integrate e- ..1xl ' in polar coordinates and set s:::: l1T
2

;

(The first formula is obtained by integration by parts, and the last one
reduces to (0.6) by a change of variable.) Hence, if k is a positive integer,

Note that, despite appearances, W n is always a rational multiple of an

integer power of 1T.

(0.8) Corollary.
The volume of Bl (0) in JRn is

W n 21Tn {2

-;; :::: nf(n/2)·

I

(0.9) Corollary.
For any x E JRn and any r > 0, the area of 5 r (x) is rn

-
l wn and the volume

of Br(x) is rnwn/n.

I
I
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or, taking pth roots,

sup {IK(x,Y)ldp.(x)~C.
YExJX

sup { IK(x, y)1 dp.(y) ~ c,
"'EXJX

Raising both sides to the p-th power and integrating, we see by Fubini's
theorem that

LIT/(x)IP dp.(x) ~ cp
/

q L L IK(x, y)II/(y)IP dp.(y) d/l(X)

~ c(p/q)+1 L 1/(y)IP dp.(y),

IT/(x)1 ~ [L IK(x, y)1 d/l(y)] l/q [L IK(x, y)II/(y)IP dP.(Y)] l/p

~ C l
/

q [L IK(x, y)II/(y)IP dP.(Y)] l/p

These estimates imply, in particular, that the integral defining T/(x) con­
verges absolutely a.e., so the theorem is proved for the case 1 < p < 00.

The case p = 1 is similar but easier and requires only the hypothesis
JIK(x,y)ldp.(x) ~ C, and the case p = 00 is trivial and requires only
the hypothesis J IK(x, y)1 dp.(y) ~ C. I

Proof: Suppose 1 < P < 00, and let q be the conjugate exponent
(p-l + q-l =1). Then by Holder's inequality,

(0.10) Generalized Young's Inequality.
Let (X, p.) be a IT-finite measure space, and let 1 ~ p ~ 00 and C > O.
Suppose K is a measurable function on X x X such that

If / E LP(X), the function T / defined by

T/(x) =LK(x, y)/(y) dp.(y)

is well-defined almost everywhere and is in LP(X), and liT/lip ~ CII/llp·

c. Convolutions

We begin with a general theorem about integral operators on a measure
space (X, p.) which deserves to be more widely known than it is. In our
applications, X will be either m. n or a smooth hypersurface in m. n

.

----,
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In what follows, when we say LP we shall mean LP(lRn ) unless another
space is specified.

Let I and 9 be locally integrable functions on IR n . The convolution
I * 9 of I and 9 is defined by

1* g(x) =JI(x - V)g(V)dV =JI(v)g(x - V) dv =9 * I(x),

provided that the integrals in question exist. (The two integrals are equal
by the change of variable V -- x - V.) The basic theorem on the existence
of convolutions is the following:

(0.11) Young's Inequality.
IfIE L1 and 9 E £P (1 :S P:S 00), then I*g E LP and II/*gllp :S II/lhllgllp,

Proof: Apply (0.10) with X =JRn and [{(x,V) = I(x - V).

Remark: It is obvious from Holder's inequality that if I E Lq and
9 E LP where p-1 + q-l = 1 then! * 9 E Loo and III * glloo :S 1I!lIqllgllp,
From the Riesz-Thorin interpolation theorem (see Folland [14]) one can
then deduce the following generalization of Young's inequality: Suppose
1 :S p,q,r :S 00 and p-l + q-l = r- 1 + 1. If lEU and 9 E LP then

1* 9 E Lr and III * gllr :S 1I/llqllgllp·

The next theorem underlies one of the most important uses of convo­
lutions. Before coming to it, we need a technical lemma. If I is a function
on IRn and x E IRn , we define the function I", by

I",(y) =I(x + V).

(0.12) Lemma.
If 1 :S p < 00 and I E LP, then lim",_o III", - Ilip =o.

Proof: If 9 is continuous with compact support, then 9 is uniformly
continuous, so g", -+ 9 uniformly as x -+ O. Since g", and 9 are supported
in a common compact set for Ixl :S 1, it follows also that IIg", - gllp -+ o.
Now, given I E LP and { > 0, choose a continuous 9 with compact support

such that II! - gllp < {/3. Then also II!", - g",lIp < {/3, so

But for x sufficiently small, IIg", - gllp < {/3, so III", - flip < {.
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Remark: This result is false for p = 00. Indeed, the condition that
III", - 11100 --+ 0 as x --+ 0 means precisely that f agrees almost everywhere
with a uniformly continuous function.

(0.13) Theorelll.
Suppose 1> E L 1 and f 1>(x)dx = a. For each c> 0, define the function 1>.
by 1>,(x) =c- n 1>(c- 1x). If IE LP, 1 =:; p < 00, then 1* 1>, --+ al in the LP
norm as c --+ O. If I E Loo and f is uniformly continuous on a set V, then
1* 1>, --+ al uniformly on Vase -+ O.

Proof: By the change of variable x --+ ex we see that J1>,(x) dx = a
for all e > O. Hence,

I *1>,(x)-al(x) = J[/(x-y)- l(x)J1>,(Y) dy = J[t(x-ey)- l(x)J1>(y) dy.

If I E LP and p < 00, we apply the triangle inequality for integrals
(Minkowski's inequality; see Folland [14)) to obtain

IIf * 1>, - a/lip =:; J1I/-,y - IlIpl1>(y)1 dy.

But 1I/-,y - Illp is bounded by 211/11p and tends to zero as e --+ 0 for each y,
by Lemma (0.12). The desired result therefore follows from the dominated
convergence theorem.

On the other hand, suppose f E L OO and 1 is uniformly continuous on
V. Given li> 0, choose a compact set W so that fJII.ft'w 11>1 < li. Then

sup If * 1>,(x) - af(x)1 =:; sup I/(x - cy) - I(x)l f 11>1 + 211/11006.
",eV ",eV, yeW Jw

The first term on the right tends to zero as c -+ 0, and li is arbitrary, so
1 * 1>, tends uniformly to af on V. I

If 1> ELI and J1>(x)dx = I, the family of functions {1>,},>o defined
in Theorem (0.13) is called an approximation to the identity. What
makes these useful is that by choosing 1> appropriately we can get the
functions 1* 1>, to have nice properties. In particular:

(0.14) Theorem.
If 1 E LP (1 =:; p =:; 00) and 1> is in the Schwartz class S, then 1 * 1> is Coo
and a"(J * 1» =1 * a"1> for all multi-indices £r.
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Proof: Exercise.

Another useful construction is the following:

(yEJRn).sup laa<jJ(x - y)\ :S ea,v(1 + Iyl)-n-l
",EV

J(t) = {el/(l-t') (It I< 1),
o (It I~ 1).

Then f E ego (JR), so 1/>(x) = f(lx\2) is a nonnegative e oo function on JRn
whose support is Bl(O). In particular, f 1/> > 0, so ¢ =1/>/ f 1/> is a function
in ego(JRn) with f </J = 1. It now follows that there are lots of functions in
ego:

(0.16) Theorem.
ego is dense in LP for 1 :S p < 00.

Proof: If <jJ E S, for every bounded set V C JRn we have

(0.15) Lemma.
If f is supported in V and 9 is supported in W, then f * 9 is supported in
{x + y : x E V, YEW}.

Proof: Choose </J E ego with f </J = 1, and define ¢. as in Theorem
(0.13). If f E LP has compact support, it follows from (0.14) and (0.15)
that f *¢. E ego and from (0.13) that f *</J. -+ f in the LP norm. But LP
functions with compact support are dense in LP, so we are done. I

f * aa</J(x) =Jf(y)8a </J(x - y) dy

converges absolutely and uniformly on bounded subsets of JRn. Differen­
tiation can thus be interchanged with integration, and we conclude that
aau * ¢) =f * aa<jJ. I

We can get better results by taking </J E ego. In that case we need only
assume that f is locally integrable for f * <jJ to be well-defined, and the
same argument as above shows that f * ¢ E eoo

.

Since the existence of nonzero functions in ego is not completely trivial,
we pause for a moment to construct some. First, we define the function f
on JR by

The function (1 + Iyl)-n-l is in L9 for every q by (0.5), so the integral

I
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(0.17) Theorem.
Suppose V C JR." is compact, n c JR." is open, and V C n. Then there
exists f E C~(n) such that f = 1 on V and 0 ~ f ~ 1 everywhere.

Proof: Let 6 = inf{lx - yl : x E V, y rt. n}. (If n = JR.", let 6 = 1.)
By our assumptions on V and n, 6 > O. Let

u ={x: Ix-yl < ~6forsome yE V}.

Then V C U and U C n. Let X be the characteristic function of U, and
choose a nonnegative <P E C~(B612(O» Buch that J <P = 1. Then we can
take f =X * <p; the simple verification is left to the reader.

We can now prove the existence of "partitions of unity." We state the
following results only for compact sets, which is all we need, but they can
be generalized.

(0.18) Lemma.
Let J{ C JR." be compact and let V1 , ... , VN be open sets with J{ C U~ V;.
Then there exist open sets W 1 , ... , WN with W; C V; and J{ C U~ W;.

Proof: For each { > 0 let V;' be the set of points in V; whose distance
from JR." \ V; is greater than {. Clearly V;' is open and V;' C V;. We claim

that J{ C U~ V;' if { is sufficiently small. Otherwise, for each { > 0 there

exists x, E J( \ U~ V;'. Since J{ is compact, the x, have an accumulation

point x E J{ as { -+ O. But then x E J( \ U~ V;, which is absurd. I

(0.19) Theorem.
Let J{ C JR." be compact and let V1 , ... , VN be bounded open sets such
that J{ C U~ V;. Then there exist functions ~l, ... , (" with (; E C.;"'(V;)
such that L:l (; = 1 on J{.

Proof: Let W 1 , ... , WN be as in Lemma (0.18). By Theorem (0.17),
we can choose <P; E C~(V;) with 0 ~ <p; ~ 1 and <P; = 1 on Wi' Then
<J! = L:~ <P; 2: 1 on g, so we can take (; =<pj/<J!, with the understanding

that (; =0 wherever <p; =O. I

The collection of functions {(j H" is called a partition of unity on g
subordinate to the covering {V;}{'.
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D. The Fourier Transform

In this section we give a rapid introduction to the theory of the Fourier
transform. For a more extensive discussion, see, e.g., Strichartz [47] or
Folland [14], [17).

If f E £l(jRn), its Fourier transform 1 is a bounded function on jRn
defined by

1(0= Je- 21fix ·{f(x)dx.

There is no universal agreement as to where to put the factors of 211" in the
definition of 1, and we apologize if this definition is not the one the reader
is used to. It has the advantage of making the Fourier transform both an
isometry on £2 and an algebra homomorphism from £1 (with convolution)
to U" (with pointwise multiplication).

Clearly l(~) is well-defined for all ~ and 1111100 :S IIfl\1. Moreover:

(0.20) Theorem.
If f,g E £1 then (f * gf= lr;.

Proof: This is a simple application of Fubini's theorem:

(f *gf(O =JJe- 21fix
{ f(x - y)g(y) dy dx

= JJe- 21fi(x-YH f(x - y)e- 2..iy .{ g(y) dx dy

=l(~) Je-
21fiY '{g(y)dy =1(~)9(~).

The Fourier transform interacts in a simple way with composition by
translations and linear maps:

(0.21) Proposition.
Suppose f E £l(jRn).
a. If fo(x) = f(x + a) then (fon~) =e2..io .{ [(~).
b. If T is an invertible linear transformation of jRn. then (f 0 Tf(O =

IdetTI- 1[«T- 1 te).
c. If T is a rotation of jR n, then (f 0 T)- =loT.

Proof: (a) and (b) are easily proved by making the substitutions
y = x + a and y = Tx in the integrals defining (fof(O and (f 0 Tne),
respectively. (c) follows from (b) since T· =T- 1 and IdetTI = 1 when T
is a rotation. I
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The easiest way to develop the other basic properties of the Fourier
transform is to consider its restriction to the Schwartz class S. In what
follows, if a is a multi-index, x'"f denotes the function whose value at x is
x"'f(x).

(0.22) Proposition.
Suppose f E S.
a. 1E C= and {) f31= [( -21rix)f3 Jf.
b. ({)f3ff = (27riOf3?

Proof: To prove (a), just differentiate under the integral sign. To
prove (b), write out the integral for ({)f3 fr(O and integrate by parts; the
boundary terms vanish since f and its derivatives vanish at infinity. I

(0.23) Proposition.
If f E S then 1E S.

Proof: By Proposition (0.22),

{)f3 ~'"1=(_1)1f31 (21ri)If3H"'I[x f3 {)'"ff,

so {)f3 ~'"1 is bounded for all a, {3. It then follows by the product rule for
derivatives and induction on {3 that ~"'{)f31 is bounded for all a, {3, that is,
1E S. I

(0.24) The Riemann-Lebesgue Lemma.
If J E L1 then 1 is continuous and tends to zero at infinity.

Proof: This is true by Proposition (0.23) if J lies in the dense sub­
space S of L1. But if {lj} C Sand f; --> f in £1, then h --> 1uniformly
(because IIh - 111= S IIIi - fib), and the result follows immediately. I

(0.25) Theorem.
Let f(x) = e-".·I"'I' where a > O. Then

1({) =a-n/ 2e-".I{I'/a.

Proof: By making the change of variable x --> a- 1j2x we may assume
a = 1. Since the exponential function converts sums into products, by
Fubini's theorem we have

1(0 =Je- 2".;",·{-*I' dx =ITJe-2"'i:tj{j-"";~ dXj,
1
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and it suffices to show that the jth factor in the product is e-'-(i , i.e., to

prove the theorem for n = 1. Now when n = 1 we have

1e-Z><ixE-lrX' dx =e-><E'1e- ..(x+iO' dx.

But I(z) =e-"" is an entire holomorphic function of z E iC which dies out
rapidly as IRe zl -+ 00 when 11m zl reamins bounded. Hence by Cauchy's'
theorem we can shift the contour of integration from 1m z =0 to 1m z =-e,
which together with (0.6) yields

e-"E' 1e-,,(x+jO' dx =e-"E'1e-"X' dx = e-><e.

(0.26) Theorem.
If I, g E S then Jrfj =J fg.

Proof: By Fubini's theorem,

1rfj = 11 l(x)g(y)e- 2
"ix,

y dydx = 1fg.

For I E £1, define the function r by

rex) =1e2"ix'Ef(e)de = fe-x).

(0.27) The Fourier Inversion Theorem.

If I E S, (f)V = f·

Proof: Given ( > 0 and x E jRn, set 4>(e) =e2"jx·E- .. ,'IEI'. Then by

Theorem (0.25),

~( )_1-Z.. j(Y-xH -",'lEI' dJ: - -n -"Ix-YI'/,'",y_ e e .. -( e .

Thus,

¢(y) =(-n g((-I(x _ y» =g,(x - y) where g(x) =e-"lxl'.

By (0.26), then,

1e-..,'IEI' eZ"j""E fee) de =1f4> =1f¢ =1I(x)g,(x-y) dy = f*g,(x).

By (0.6) and (0.14), f * g, -+ f uniformly as ( -+ 0 since functions in S are

uniformly continuous. But clearly, for each x,

1e-,,·'IEI' eZ><j",·q(e) de -+ 1eZ"j""E fee) de = (ft(x). I
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(0.28) Corollary.
The Fourier transform is an isomorphism of S onto itself.

(0.29) The Plancherel Theorem.
The Fourier transform on S extends uniquely to a unitary isomorphism of
£2 onto itself.

Proof: Since S is dense in £2 (Theorem (0.16)). by Corollary (0.28)
it suffices to show that lIill~=11/112 for I E S. If IE S. set g(x) = I(-x).

One easily checks that 9=i. Hence by Theorems (0.20) and (0.27).

1I/11~ = Jl(x)/(x) dx = 1* g(O) = J(f *gn~) d~ = Ji(~)l(~) d~

::;: IlJiI~·

The results (0.20)-(0.29) are the fundamental properties of the Fourier
transform which we shall use repeatedly. We shall also sometimes need the
Fourier transform as an operator on tempered distributions. to be discussed
in the next section. and the following result.

(0.30) Proposition.
If I E £1 has compact support. then i extends to an entire holomorphic
function on iC". If I E C,:". then i(~) is rapidly decaying as IRe~1 ..... 00

when IIm~1 remains bounded.

Proof: The integral i(~) ::;: Je- 2.. i ",.€ I(x) dx converges for every
~ E iC". and e- 2.. i ",.( is an entire function of ~ E iC". Hence one can
take complex derivatives of i simply by differentiating under the integral.
Moreover, if I E C,:" and I is supported in {x : Ixl ~ J(}. for any multi­
index 0' we have

which yields the second assertion.

E. Distributions

We now outline the elements of the theory of distributions. The material
sketched here is covered in more detail in Folland [14] and Rudin [41], and a
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more extensive treatment at an elementary level can be found in Strichartz
(47). See also Treves (49) and Hormander [27, vol. I) for a deeper study of
distributions.

Let n be an open set in IR n. We begin by defining a notion of sequential
convergence in C~(n). Namely, we say that rPj -+ rP in C~(n) if the rP;'s
are all supported in a common compact subset of nand IrrPj -+ 8"'rP
uniformly for every multi-index a. (This notion of convergence comes from
a locally convex topology on C~(n), whose precise description we shall not
need. See Rudin (41) or Treves (49).)

If U is a linear functional on the space C~(n), we denote the number
obtained by applying u to rP E C~(n) by (u, rP) (or sometimes by (rP, u):
it is convenient to maintain this flexibility). A distribution on n is a
linear functional u on C~(O) that is continuous in the sense that if rPj -+ rP
in C~(O) then (u,rPj) -+ (u,rP). A bit offundional analysis (d. Folland
[14, Prop. (5.15))) shows that this notion of continuity is equivalent to the
following condition: for every compact set j{ C 0 there is a constant CK
and an integer NK such that for all cf> E C~ (I<),

l(lJ, rP)1 ::; CK L 118"'rPlioo'
l"'I:5NK

The space of distributions on 0 is denoted by 2)'(0), and we set 2)' =
'D'(IRn

). We put the weak topology on 'D'(O); that is, Uj -+ u in 'D'(O) if
and only if (Uj, 4» -+ (u, rP) for every rP E C~(O).

Every locally integrable function U on 0 can be regarded as a dis­
tribution by the formula (u, rP) = JurP, which accords with the notation
introduced earlier. (The continuity follows from the Lebesgue dominated
convergence theorem.) This correspondence is one-to-one if we regard two
functions as the same if they are equal almost everywhere. Thus distribu­
tions can be regarded as "generalized functions." Indeed, we shall often
pretend that distributions are functions and write (u, cf» as Ju(x)rP(x) dx;
this is a useful fiction that makes certain operations involving distributions
more transparent.

Every locally finite measure J-l on 0 defines a distribution by the formula
(J-l,4» =J rP dJ-l. In particular, if we take J-l to be the point mass at 0, we
obtain the graddaddy of all distributions, the Dirac 6-function 6 E 'D'
defined by (6, rP) = rP(O). Theorem (0.13) implies that if U E £1, JU =a,
and u.(x) =cnu(C1x), then u. -+ a6 in 'D' when {-+ O.

If u, v E 'D'(O), we say that u = von an open set V cOif (u, 4» = (v, rP)
for all rP E C~(V). The support of a distribution U is the complement of
the largest open set on which U =O. (To see that this is well-defined, one
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needs to know that if {V"}"EA is a collection of open sets and u = 0 on
each V"' then u =0 on U V". But if 4> E C~(U V,,), supp 4> is covered by
finitely many V" 'so By means of a partition of unity on supp 4> subordinate
to this covering, one can write 4> = I:~ 4>i where each 4>i is supported in
some V". It follows that (u,4» =I:(u,4>j) =0, as desired.)

The space of distributions on jR" whose support is a compact subset of
the open set 11 is denoted by £'(11), and we set £' = e'(jR").

Suppose u E £'. Let 11 be a bounded open set such that supp u C 11, and
choose 1/1 E C~(I1) with 1/1 = 1 on a neighborhood of supp u (by Theorem
(0.17». Then for any 4> E C~ we have

(u,4» = (u,1/14».

This has two consequences. First, u is of "finite order": indeed, by (0.31)

with [( = IT,
l(u,4»I:::; Cn L: 118"(1/14»1100'

lalSNr;

Expanding 8" (1/14» by the product rule, we see that

(0.32)

where N = NIT and C depends only on CIT and the constants 118P1/11100,
1.81:::; N. Second, (u,1/14» makes sense for all 4> E Coo, compactly supported
or not, so if we define (u,4» to be (u,1/1¢J) for all ¢J E Coo, we have an
extension of u to a linear functional on Coo. This extension is clearly
independent of the choice of 1/1, and it is unique subject to the condition
that (u, 4» = 0 whenever supp 4> and supp u are disjoint. Thus distributions
with compact support can be regarded as linear functionals on Coo that
satisfy estimates of the form (0.32). Conversely, the restriction to C~

of any linear functional on Coo satisfying (0.32) is clearly a distribution
supported in IT.

The general philosophy for extending operations from functions to dis­
tributions is the following. Let T be a linear operator on C~(n) that is
continuous in the sense that if 4>j -+ 4> in C~(n) then T¢Ji -+ T4> in C~(I1).

Suppose there is another such operator T' such that f(T4»1/1 = f ¢J(T'1/1)
for all 4>,1/1 E C~(n). (We call T' the dual or transpose of T.) We can
then extend T to act on distributions by the formula

(Tu,4» = (u,T'4».
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The linear functional Tu on C~(O) defined in this way is continuous on
C~(O) since T' is assumed continuous. The most important examples are
the following; in all of them the verification of continuity is left as a simple
exercise.

1. Let T be multiplication by the function f E Coo(O). Then T' ;::: T,
so we can multiply any distribution u by f E Coo(O) by the formula
Uu,4>} ;::: (u, !<P).

2. Let T ;::: aa. By integration by parts, T' ;::: (_I) la1 ao. Hence we
can differentiate any distribution as often as we please to obtain other
distributions by the formula (a O u,4>};::: (-I)l o l(u,a°4».

3. We can combine (1) and (2). Let T ;::: Llol9 aoao be a differential
operator of order k with Coo coefficients ao . Integration by parts shows
that the dual operator T' is given by T'4> ;::: Llol9(-1)lolao(ao4». For
any distribution u, then, we define Tu by (Tu, 4» ;::: (u, T'4>).

Clearly, if U E Ck(O), the distribution derivatives of u of order::; k are
just the pointwise derivatives. The converse is also true:

(0.33) Proposition.
If u E C(O) and the distribution derivatives aou are in C(O) for lal ::; k
then u E Ck(O).

Proof: By induction it suffices to assume that k ;::: 1. Since the
conclusion is of a local nature, moreover, it suffices to assume that 0 is a
cube, say 0;::: {x: maxlXj - Yj\ :s r} for some Y E jRn. For x E 0, set

It is easily checked that v and u agree as distributions on 0, hence v ;::: u
as functions on O. But a1 u is clearly a pointwise derivative of v. Likewise
for a2u, ... , anu; thus u E C 1(0).

We now continue our list of operations on distributions. In all of the
following, we take 0 ;::: jRn.

4. Given x E jRn, let T4> ;::: 4>"" where 4>",(Y) ;::: 4>(x + y). Then T' 4> ;::: 4>-",.
Thus for any distribution u, we define its translate u'" by (u",,4» ;:::
(u,4>_",).

5. Let T4> ;::: -;, where -;(x) ;::: 4>(-x). Then T' ;::: T, so for any distribution
u we define its reflection in the origin u by (iI,4» ;::: (u, -;).
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6. Given1/; E C,;" define Tr/J = r/J * 1/;, whicE is in Cr by (0.14) and
(0.15). It is easy to check that T'r/J =r/J * 1/;, where1/; is defined as in
(5). Thus, if u is a distribution, we can define the distribution u '" 1/;
by (u * 1/;, r/J) = (u, r/J * ;;;). On the other hand, notice that r/J * 1/;(x) =
(r/J, (1/;",)l, so we can also define u*l{! pointwise as a continuous function
by u * l{!(x) = (u, (1/;",)l.
In fact, these two definitions agree. To see this, let r/J E C,;" let J( be
a compact set containing supp(1/;",rfor all x E suppr/J, and let NK be
as in (0.31). From the relation r/J * ;;;(Y) = f r/J(x)(l{!",nY) dx it is is not
hard to see that there is a sequence of Riemann sums l: r/J(xj )( l{!", j r ~xj

that converge uniformly to r/J *;;; together with their derivatives of order
~ NK· But then (0.31) implies that if u * 1/; is defined as a continuous
function, we have

(u * l{!, r/J) =limL u * l{!(Xj )r/J(Xj) ~Xj

=lim L(u, (1/;",;)lr/J(xj) ~Xj = (u, ¢ *;;;),

which is the action of the distribution u * l{! on r/J.
Moreover, by (2) and integration by parts, we see that the distribution
8a (u * 1/;) is given by

so 8a (u *1/;) =u *8a1/; is a continuous function. Hence u * l{! is actually
a Coo function.

7. The same considerations apply when u E e' and .p E COO. That is, we
can define u'" l{! either as a distribution by (u",.p, r/J) = (u, ¢ '" ;;;), or as
a Coo function by u * .p(x) = (u, (1/;",)l.

8. If u E f.' and1/; E C;:" as in (0.15) we see that u * 1/; E C';'. Hence
we can consider the operator Tl{! =u * l{! on C;:" whose dual is clearly
T'1/; = u* l{!. It follows that if u E e' ahd v E 1)', u * v can be
defined as a distribution by the formula (u * v, l{!) = (v, u * 1/;). We
leave it as an exercise to verify that for any multi-index ex we have
8a(u '" v) = (8au) * v =u * (8av).

We shall also need to consider the class of "tempered distributions."
We endow the Schwartz class S with the Frechet space topology defined by
the family of norms /lr/J/I(a,iJ) = IIxa8iJr/J1l00' That is, r/Jj -+ r/J in S if and
only if

sup Ixa8iJ (¢j - ¢)(x)l-+ 0 for all ex, {3.
'"
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A tempered distribution is a continuous linear functional on S; the space
oftempered distributions is denoted by S'. Since C~ is a dense subspace of
S in the topology of S, and the topology on C~ is stronger than the topology
on S, the restriction of every tempered distribution to C~ is a distribution,
and this restriction map is one-to-one. Hence, every tempered distribution
"is" a distribution. On the other hand, Proposition (0.32) shows that
every distribution with compact support is tempered. Roughly speaking,
the tempered distributions are those which "grow at most polynomially at
infinity." For example, every polynomial is a tempered distribution, but
u(x) =el"'l is not. (Exercise: prove this.)

One can define operations on tempered distributions as above, simply
by replacing C~ by S. For example, if u E S', then:

1. acxu is a tempered distribution for all multi-indices a;

2. lu is a tempered distribution for all I E Coo such that acx I grows at
most polynomially at infinity for all a;

3. u * </J is a tempered distribution, and also a Coo function, for any </J E S.

The importance of tempered distributions lies in the fact that they
have Fourier transforms. Indeed, since the Fourier transform maps S con­
tinuously onto itself and is self-dual by Proposition (0.26), for any u E S'
we can define u E S' by (u, </J) = (u,~) (</J E S), which is consistent with
the definition for functions. It is easy to see that Propositions (0.21) and
(0.22) are still valid when I E S', as is the Fourier inversion theorem (0.27),
provided IV is defined by ([Y, </J) = (I, </JV). Also, if u E S' and </J E S, we
have (u * </Jr = J;u; the proof is left as an easy exercise.

For example, the Fourier transform of the Dirac 6-function is given by
(g, </J) = (6, J;) =J;(O) =J</J(x) dx =(1, </J)' so "6 is the constant function 1.
It then follows from the inversion theorem that "1 = 6, and from Proposition
(0.22) that (aCXar= (21ri) lcx1ecx and that (xcxr= (i/21r)lcx1 acx 6.

F. Compact Operators

Let X be a Banach space and let T be a bounded linear operator on X. We
denote the nullspace and range of T by :N(T) and :R(T). T is called com­
pact if whenever {x;} is a bounded sequence in X, the sequence {Tx;} has
a convergent subsequence. Equivalently, T is compact if it maps bounded
sets into sets with compact closure. T is said to be of finite rank if
:R(T) is finite-dimensional. Clearly every bounded operator of finite rank
is compact.
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(0.34) Theorem.
The set of compact operators on X is a closed two-sided ideal in the algebra
of bounded operators on X with the norm topology.

Proof: Suppose Tl and T2 are compact, and {Xi} C X is bounded.
We can choose a subsequence {Yi} of {xi} such that {T1Yj} converges, and
then choose a subsequence {Zj} of {Yj} such that {T2Zi} converges. It
follows that alTl + a2T2 is compact for all ai, a2 E C. Also, it is clear that
ifT is compact and S is bounded, then TS and ST are compact. Thus the
set of compact operators is a two-sided ideal.

Suppose {Tm } is a sequence of compact operators converging to a limit
T in the norm topology. Given a seqence {Xi} C X with IIxill ~ C for all
j, choose a subsequence {Xlj} such that {T1Xli} converges. Proceeding
inductively, for m = 2,3,4, ..., choose a subsequence {xmi} of {X(m-l)i}
such that {Tmxmi} converges. Setting Yi = Xjj, one easily sees that {TmYi}
converges for all m. But then

II T Yi - TYkll ~ II(T - Tm)Yill + IITm(Yi - Yk)1I + II(Tm - T)Ykll

~ 2CIIT - Tmll + IITmYi - TmYkll·
Given £ > 0, we can choose m so large that liT - Tmll ~ £/4C, and then
with this choice of m we have IITmYj - TmYkll < £/2 when j and k are
sufficiently large. Thus {TYi} is convergent, so T is compact.

(0.35) Corollary.
1fT is a bounded operator on X and there is a sequence {Tm} of operators
of finite rank such that IITm - Til -> 0, then T is compact.

In case X is a Hilbert space, this corollary has a converse.

(0.36) Theorem.
1fT is a compact operator on a Hilbert space X, then T is the norm limit
of operators of finite rank.

Proof: Suppose £ > 0, and let B be the unit ball in X. Since T(B)
has compact closure, it is totally bounded: there is a finite set Yl,· .. , Yn
of elements of T(B) such that every Y E T(B) satisfies lIy - Yi II < £ for
some j. Let p. be the orthogonal projection onto the space spanned by
Yl, ... , Yn, and set T. =P.T. Then T. is of finite rank. Also, since T.x is
the element closest to Tx in ~(P.), for X E B we have

IITx - T.xlI ~ l~i~n IITx - Yill < f.
-]-

In other words, liT - T.II < £, so T. -> T as £ -> O.



24 Chapter 0

(0.31) Theorem.
The operator T on the Banach space X ill compact if and only if the dual
operator T* on the dual space X* is compact.

(0.38) Fredholm's Theorem.
Let T be a compact operator on a Hilbert space X with inner product (., -).
For each AE 1(:, let

W>.={XEX:T*x=AX}.v>. = {x EX: Tx =AX},

We now present the main structure theorem for compact operators.
This theorem was first proved by I. Fredholm (by different methods) for
certain integral operators on £2 spaces. In the abstract Hilbert space set­
ting it is due to F. Riesz, and it was later extended to arbitrary Banach
spaces by J. Schauder. For this reason it is sometimes called the Riesz­
Schauder theory. We shall restrict attention to the Hilbert space case,
which is all we shall need, and for which the proof is easier; see Rudin [41]
for the general case.

Then:
a. The set of AE I(: for which V>. i- {OJ is tinite or countable, and in the

latter case its only accumulation point is O. Moreover, dim(V>.l < 00

for all A-# o.
b. If Ai- 0, dim{V>.) = dim(W>;).
c. If A -# 0, :R(Al - T) is closed.

Proof: Let Band B* be the unit balls in X and X*. Suppose T is
compact, and let {lj} be a bounded sequence in X*. Multiplying the I; 's
by a small constant, we may assume {lj} C B*. The functions Ii : X .... I(:

are equicontinuous and uniformly bounded on bounded sets, so by the
Arzela-Ascoli theorem there is a subsequence (still denoted by {lj}) which
converges uniformly on the compact set T{B). Thus T* Ji(x) = Ji(Tx)
converges uniformly for x E B, so {T* f;} is Cauchy in the norm topology
of X*. Hence T* is compact.

Likewise, if T* is compact then T** is compact on X**. But X is
isometrically embedded in X**, and T is the restriction of T** to X, so T
is compact. I

Remark: For many years it was an open question whether Theorem
(0.36) were true for general Banach spaces. The answer is negative even
for some separable, reflexive Banach spaces; see Enflo [12].

I
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Proof: (a) is equivalent to the following statement: For any ( > 0,
the linear span of the spaces VA with IAI 2:: ( is finite-dimensional. Suppose
to the contrary that there exist (> 0 and an infinite sequence {Xj} C X of
linearly independent elements such that TXj =A; x; with IA;I 2:: (for all j.

Since IA; I ~ IITII, by passing to a subsequence we can assume that P;} is
a Cauchy sequence. Let Xm be the linear span of XI, ... , X m . For each m,
choose Ym E Xm with IIYmll = 1 and Ym .1. Xm_l . Then Ym = I:;' CmjX;
for some scalars Cmj, so

m-I m-I

A;;':TYm =CmmXm + L: CmjA;A;;,tXj = Ym + L: Cm;(A;A;;:.1 - l)xj
I I

=Ym (mod Xm_.).

If n < m, then,

Therefore, since Ym .1. Xm - l , the Pythagorean theorem yields

But then

or

As m, n -> 00 the second term on the right tends to zero since IITYnll ~ IITII
and AmA;;-1 - 1, and the first term is bounded below by E. Thus {TYm}
has no convergent subsequence, contradicting compactness.

Now consider (b). Given A :f; 0, by Theorem (0.36) we can write
T = To + TI where To has finite rank and IITtlI < IAI. The operator
AI - TI = A(1 - A-IT.} is invertible (the inverse being given by the con­
vergent geometric series I:;;" A-k-ITf), and we have

Set T2 = (AI - T.)-ITo. Then clearly X E VA if and only if X - T2 x =O.
On the other hand, taking the adjoint of both sides of (0.39), we have

(XI - T*)(XI - Tn-I = I - T;,
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Set {3jk = (Uj IVk). and given x E X, set O:j = (x IVj). If x - T2 x =O. then
x =r:7 O:j Uj, and we see by taking the scalar prodict with Vk that

Conversely, if 0:1, ...• an satisfy (0.40). then x =r: O:jUj satisfies x-T2 x =
O. On the other hand. one easily verifies that T;x =r:(x IUj)Vj, so by the
same reasoning. x - T';x =0 if and only if x =r:f O:jVj, where

(j -+ 00).

(x EX).

k=l .... ,N.

k = 1, ...• N.

N

T2 x =2:)x IVj)Uj
1

O:k - '2: {3jkO:j = 0,
j

O:k - '2:'.BkjO:j = O.
j

Yj
AWj =TWj + IIVjll -+ z,

Thus z ..L V>. and IIzll = IAI, but also

(>.! - T)z =lim(>.! - T)Awj =lim '~~l' =0,

(0.41)

(0.40)

But the matrices (OJ k - (3j k) and (OJ k - '.Bkj) are adjoints of each other and
so have the same rank. Thus (0.40) and (0.41) have the same number of
independent solutions.

Finally, we prove (c). Suppose we have a sequence {Yj} C =R(>.! - T)
which converges to an element Y E X. We can write Yj = (AI - T)xj
for some Xj E X; if we set Xj = Uj + Vj where Uj E V>. and Vj ..L V>.,
we have Yj = (>.! - T)vj. We claim that {Vj} is a bounded sequence.
Otherwise. by passing to a subsequence we may assume Ilvj II -+ 00. Set
Wj =vj/IIVjll; then by passing to another subsequence we may assume that
{Twj} converges to a limit z. Since the Yj'S are bounded and IIvj II -+ 00,

so Y = (XI - Tn -1 x is in '\\7:\ if and only if x - T2• X = O. We must therefore
show that the equations X-T2X = 0 and x-T;x = 0 have the same number
of independent solutions.

Since To has finite rank, so does T2 . Let Ul, • .. , UN be an orthonormal
basis for =R(T2 ). Then for any x E X we have T2 x = r:f Ii (x)Uj where
r:f IIi(xW = IIT2x1l 2. It follows that x -+ f;(x) is a bounded linear
fu nctional on X, so there exist Vl ••..• V N such that

I
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so z E VA' This is a contradiction since we assume A f; O.
Now, since {Vj} is a bounded sequence, by passing to a subsequence we

may assume that {Tvj} converges to a limit x. But then

Vj =A-1(Yj + TVj) -+ r1(y + x),

so

so AXj -+ O. By passing to a subsequence we may assume that {Txj}
converges to a limit y, which satisfies

Proof: Clearly we may assume T f; O. Let c = IITII (so c > 0), and
consider the operator A =c2 I - T2. For all x E X we have

Ay =limATxj =limTAxj =O.lIyll = limllTxjll =c > 0,

(0.42) Corollary.
Suppose A f; O. Then:

i. The equation (AI - T)x = y has a solution if and only if y 1.. W);.
ii. AI - T is surjective if and only if it is injective.

y =lim(M - T)vj =(M - T)A-1(y + x).

Thus y E 1?(AI - T), and the proof is complete.

In general it may happen that the spaces VA are all trivial. (It is easy
to construct an example from a weighted shift operator on {2.) However, if
T is self-adjoint, there are lots of eigenvectors.

Choose a sequence {Xj} C X with IIXjll = 1 and IITXjll -+ c. Then
(Axj IXj) -+ 0, so applying the Schwarz inequality to the nonnegative
Hermitian form (u, v) -+ (Au Iv), we see that

IIAxjl12 = (Axj IAxj)::; (Axj IXj)1/2(A2xj IAxj)1/2

::; (Axj I xj)1/2I1A2xjW/2I1AxjW/2 ::; IIAII3 / 2(Axj I Xj)1/2 -+ 0,

(0.43) Lemma.
If T is a compact self-adjoint operator on a Hilbert space X, then either
IITII or -IITII is an eigenvalue for T.

Proof: (i) follows from part (c) of the theorem and the fact that
1?(S) =N(S*)J. for any bounded operator S. (ii) then follows from (i) and
part (b) of the theorem. I
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In other words,

y l' 0 and Ay = (cI + T)(cI - T)y =O.

Thus either Ty =cy or cy - Ty = z l' 0 and Tz =-cz.

(0.44) The Spectral Theorem.
1fT is a compact self-adjoint operator on a Hilbert space X, then X has an
orthonormal basis consisting of eigenvectors for T.

Proof: It is a simple consequence of the self-adjointness of T that (i)
eigenvectors for different eigenvalues are orthogonal to each other, and (ii)
if 11 is a subspace of X such that T(lI) C 11, then also T(lI1.) C 111.. In
particular, let 11 be the closed linear span of all the eigenvectors of T. If we
pick an orthonormal basis for each eigenspace of T and take their union,
by (i) we obtain an orthonormal basis for 11. By (ii), TllI1. is a compact
operator on 111., and it has no eigenvectors since all the eigenvectors of T
belong to 11. But this is impossible by Lemma (0.43) unless 111. = to}, so
11 =X. I

We conclude by constructing a useful class of compact operators on
£2 (/-I), where /-I is a l1-finite measure on a space S. To simplify the argument
a bit, we shall make the (inessential) assumption that £2(1£) is separable.
If I< is a measurable function on S x S, we formally define the operator
TK on functions on S by

TK f(x) =JI«x, y)f(y) d/-l(Y)·

If [{ E £2(/-1 x /-I), I< is called a Hilbert-Schmidt kernel.

(0.45) Theorem.
Let 1< be a Hilbert-Schmidt kernel. Then TK is a compact operator on
£2(/-1), and IITKII ~ III<lb.

Proof: First we show that TK is well"defined on £2(1£) and bounded
by 111<112. By the Schwarz inequality,

[ ]

1/2

ITK f(x)1 ~ JIK(x, y)lIf(y)1 d/-l(Y) ~ JIK(x, yW dJL(Y) IIf1l2.



Prp.lirninRrip.B 29

This shows that TK f is finite almost everywhere, and moreover

IITKfll~ =1ITKf(xW dJl(x)::; IIfll~ 11 IK(x,Y)12 dJl(Y) dJl(x)

= IIKII~lIfll~,

so IITKII ::; 1II<1I2.
Now let {<pjlf be an orthonormal basis for L 2(Jl). It is an easy conse­

quence of Fubini's theorem that if 1/Jij(X,y) = tPi(X)<Pj(Y), then {1/Jijl:'J=l
is an orthonormal basis for L 2 (Jl x Jl). Hence we can write I< = 'L,aij1/Jij.
For N = 1,2, ..., let

KN(X,y) = I: aijtPij(X,y) = I: aij <Pi(X)<Pj (y).
i+j~N i+j~N

Then J?(TKN) lies in the span of <P1, ... ,<PN, so TKN has finite rank. On
the other hand,

III< - KNII~ = L: laijl2 -+ 0 as N -+ =,
i+j>N

so by the previous remarks,

By Corollary (0.35), then, TK is compact.



Chapter 1
LOCAL EXISTENCE THEORY

In this chapter we set up the ideas and terminology with which we shall be
working throughout the book, and we prove some basic results about local
existence of solutions to partial differential equations.

A. Basic Concepts

Roughly speaking, a partial differential equation of order k is an
equation of the form

F(x, U, 8 1u, ... , 8"u, 8~u, ... , 8~u) =0

relating a function u of the variable x E jR" and its derivatives of order
~ k. In order to keep the notation manageable, we introduce the following
terminology. Let us order the set of multi-indices by saying that a comes
before fJ if lal < \fJl or if \al = IfJl and ai < fJi where i is the largest number
with ai f. fJi· Given complex numbers aa (Ial ~ k), we denote by (aa)lal$k
the element of l(;N(k) given by ordering the a's in this fashion, where N(k)
is the cardinality of {a : \aj ~ k}. Similarly, if S C {a: lal ~ k}, we can
consider the ordered (card S)-tuple (aa )aES.

Now let n be an open set in jRn, and let F be a function of the variables
x En and (ua)lal$k E l(;N(k). Then we can form the partial differential
equation

(1.1)

A (complex-valued) function u =u(x) on n is a classical solution of this
equation if the derivatives 8a u occurring in F exist on n, and

F(x, (8 a u(x»l a l:5k) =0 for all x E n.
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Uniqueness. In general (1.1) will have many solutions. What kinds
of boundary conditions on u will guarantee uniqueness?

Existence. Can we find a solution u of (1.1), perhaps satisfying some
preassigned conditions, in some neighborhood of a given point, or in some
given domain? How can we construct solutions?

More general than the linear equations are the quasi-linear equa­
tions, namely, those equations (1.1) where F is an affine-linear function of
(u a )1",I=k. Such equations can be written as

(¢ E C~(n)).L (_1) lal(u,8a(ua¢)) = (f,¢)
lal:5 k

Bellavior of solutions. What are the qualitative properties of solu­
tions - in particular, differentiability properties? Do the solutions depend
smoothly on the boundary conditions? In the linear case (1.2), does u
depend smoothly on f?

(1.2)

(1.3) L ua(x, (8f3u)If31:5k_1)8au = b(x, (8f3 u)If319_1).
lal=k

The general questions with which we shall be concerned are the follow­
ing:

L u",(x)8au = f(x).
lal9

In this case we speak of the differential operator L =2:lal9 ua 8a and
write (1.2) simply as Lu = f. If the coefficients U a are Coo on n we
can apply the operator L to any distribution u on n, and u is called a
distribution solution or weak solution of (1.2) if (1.2) holds in the
sense of distributions, namely,

We are really being too vague. The general formula (1.1) includes ab­
surd equations such as exp(81 u) = 0 which have no solutions for trivial
reasons, as well as equations like (81 u)2 - 4 = 0, which is really the dis­
junction of the two equations 81 u = 2 and 81 u = -2. It also allows us to
think of a kth order equation as a (k +m)th order equation for any m > o.
However, we shall not formulate precise restrictions on F until we consider
more specific problems.

The equation (1.1) is called linear if F is an affine-linear function of
the vector variable (u"')I"'I:5 b that is, if (1.1) can be rewritten as
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char,,(L) = {e;/; 0: xL(x,e) =O}.

(e E lit").XL(X,O = L a,,(x)e'"
l"'l,;k

In the linear case. a simple measure of the "strength" of a differential
operator in a certain direction is provided by the notion of characteristics.
If L =LI"19 a,,8'" is a linear differential operator of order k on 0 C lit".
its characteristic form at X E 0 is the homogeneous polynomial of degree
k on lit" defined by

111. Any solution of the Cauchy-Riemann equation 81 U + i82u = 0 is a
holomorphic function of the complex variable z = XI + iX2, and in
particular is Coo. This equation imposes very strong restrictions on all
the derivatives of the solution u.

To see more clearly the meaning of the characteristic variety we must
consider the effect of a change of coordinates. Let F be a smooth one-to­
one mapping of 0 onto some open set 0', and set y = F(x). Assume that
the Jacobian matrix J" = [(8y;/8xj)(x») is nonsingular for x E O. so that
Yl, ... ,y" is a coordinate system on O. We have

A nonzero vector eis called characteristic for L at X if XL(X,e) =0, and
the set of all such eis called the characteristic variety of L at x and is
denoted by char,,(L):

The answers to these questions will depend on the nature of the con­
straints imposed on the solution u by the equation (1.1), and these in turn
depend very strongly on the nature of the equation under consideration.
Let us look at some simple examples in 1It2:

I. The general solution of the equation 81 U = 0 is clearly U(XI. X2) =
!(X2) where f is arbitrary. Thus the equation 81u =0 gives complete
information about the behavior of U as a function of Xl (it must be
constant). but none at all about its dependence on X2'

11. The general solution of 81 82 u = 0 is easily seen to be U(XI. X2) =
f( XI) +g( X2) where! and g are arbitrary. Thus the equation 8182u =0
gives no information about the dependence of U on either XI or X2

when the other is held fixed, but merely says that the dependences are
"uncoupled" in a certain sense.

I

I

I
I

I
I
I
I
I
I
I
I
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which we can write symbolically as ax = J;ay, where J; is the transpose
of Jx. The operator L is then transformed into the operator

L' = L aa(F-l(y))(J~_I(y)ay)""
lal9

on 0'. When this is expanded out, the expression will involve derivatives
of JJ;.-l(y)i but these derivatives are only formed by "using up" some of
the ay's on JJ;.-l(y)' so they do not enter into the highest order terms. One
then sees that

xu(y,e) = L aa(F-l(Y))(J~_l(y)e)"".
lal=k

Since F-l(y) = x, on comparing with the expression

XL(X,e) = L aa(x)ea

lal=k

we see that charx(L) is just the image of chary (L') under the linear map
J;.

Another way of looking at this is the following. If we associate to
e E JRn the differential form de = 2:~ ej dYj and use the chain rule dYj =
2:(aYj/ax;)dx., we have

de =~ [~e.;:~] dXj.

Thus in the x-coordinates, de corresponds to the vector J;,e. In the termi­
nology of differential geometry, charx(L) is intrinsically defined as a subset
of the cotangent space at x.

Now, note that if e :f; °is a vector in the xj-direction (i.e., e. =°for
i :f; j), then e E charx (L) if and only if the coefficient of aj in L vanishes at
x. Moreover, given anye :f; 0, by a rotation of coordinates we can arrange
for ~ to lie in a coordinate direction. Thus the condition ~ E charx(L)
means that, in some sense, L fails to be "genuinely kth order" in the e
direction at x.

L is said to be elliptic at x if charx(L) = 121 and elliptic on n if it is
elliptic at every x E n. At least on the formal level, an elliptic operator of
order k exerts control on all derivatives of order k. We shall see in Chapter
6 that this formal statement is also valid analytically.

Here are some examples. The first three are the ones discussed above,
and the second three are the basic operators of mathematical physics which
will be studied in detail in Chapters 2-5.
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\. L =81 : char,,(L) = {e f= 0: 6 =O}.

n. L =8182: char,,(L) = {e f= 0 : 6 = 0 or e2 =O}.

iii. L = ~(81 + i82 ) (the Cauchy-Riemann operator* on JR2): L is elliptic
on JR 2.

iv. L =L:~ 8J (the Laplace operator): L is elliptic on JRn.

v. L =81 - L:~ 8J (the heat operator): char,,(L) = {e f= 0: ej =0 for j ?:
2}.

VI. L =8l- L:~ 8] (the wave operator): char,,(L) ={e f= 0: el = L:~ en·
One last definition. A hypersurface 5 is called characteristic for L at

x E 5 if the normal vector vex) to 5 at x is in char,,(L), and 5 is called
non-characteristic ifit is not characteristic at any point. We remark that
v(x) can be defined in a coordinate-free way as a cotangent vector at x,
i.e., it transforms under coordinate changes by the same rule as char,,(L).
(In fact, vex) is one of the two unit cotangent vectors at x that annihilate
the tangent space to 5 at x; the choice of orientation is immaterial since
xL( x, -0 =(_I)k xL( x, en Hence the condition "5 is non-characteristic"
is independent of the choice of coordinates.

The notion of characteristics can be extended to the nonlinear theory,
but there the situation is more complicated, as we shall see.

B. Real First Order Equations

Recall that the basic boundary value problem for first order ordinary dif­
ferential equations is the initial value problem: given a function F on JR3
and (to, uo) E JR 2, find a function u(t) defined in a neighborhood of to such
that F(t, u, U/) = 0 and u(to) = uo. In this section we shall consider the
corresponding initial value problem for real first order partial differential
equations. Namely, given an equation F(x, (8°u)loI9) =0 (where F and
u are assumed to be real-valued), a hypersurface 5, and a (real-valued)
function q, on 5, find a solution u defined on a neighborhood of 5 such that
u = q, on 5. This theory has a pleasantly geometric flavor.

* Question: Why the factor of !? Answer: The operators 8z = !(8" - i8y ) and

fJz = ! (8" + i8y ) are the result of formally applying the chain rule to the change of

variables z = x + iV, Z = x - iy. When applied to holomorphic functions, 8z is just

the complex derivative.
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Let us first consider the linear equation

(1.4) Lu =I.: ajoju + bu = I,

Along one of those curves a solution u of (1.4) must satisfy

char,,(L) = {e t= 0: A(x)· e=oJ,

dx'd: =Uj(x) (j = 1, .. . ,n).i.e.,
dx
di =A(x),(1.5)

where aj, b, and I are assumed to be Cl functions of x. If we denote by A
the vector field (al,' .. , an), we have

(1.6)

By the fundamental existence and uniqueness theorem for ordinary differen­
tial equations (see, e.g., Coddington and Levinson [9]), through each point
Xo of S there passes a unique integral curve x(t) of A, namely the solution
of (1.5) with x(O) = xo. Along this curve the solution u of (1.4) must be
the solution of the ordinary differential equation (1.6) with u(O) = ¢(xo).
Moreover, since A is non-characteristic, x(t) ~ S for t t= 0, at least for
It I small, and the curves x(t) fill out a neighborhood of S. Thus the ini­
tial value problem for (1.4) is reduced to the initial value problem for the
ordinary differential equations (1.5) and (1.6), and we have:

that is, char,,(L) U {o} is the hyperplane orthogonal to A(x). From this it
is clear that a hypersurface S is characteristic at x if and only if A(x) is
tangent to S at x.

Suppose we wish to find a solution u of (1.4) with given initial values
u = q, on the hypersurface S. If S is characteristic at Xo, the quantity
2: aj (xo )OJ u( xo) is completely determined as a certain directional deriva­
tive of ¢ along S at xo, and it may he impossible to make it equal to
I(xo) - b(xo)u(xo). (For example, if the equation is Ol u = 0 and S is
the hyperplane X n = 0, we cannot have u = ¢ on Sunless Ol¢ = 0.) To
make the initial value problem well-behaved, then, we must asume that S
is non-characteristic, and we do so henceforth.

It is natural to look at the integral curves of the vector field A (some­
times called the characteristic curves of the equation (1.4», that is, the
parametrized curves x(t) that satisfy the system of ordinary differential
equations
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Xj(O) =(xo)j

dy
dt = b(x, y).

I>j(X, u)Bju = b(x, u).

dx'-t =aj(x, y),

dx'df =aj(x, u(x)),

(1.8)

It is clear that any graph y = u(x) in lRn+l which is the union of an
(n - I)-parameter family of these integral curves will define a solution of
(1.8). Conversely, suppose u is a solution of (1.8). If we solve the equations

is tangent to the graph y = u(x) at any point. This suggests that we look
at the integral curves of the vector field A in !Rn+l given by solving the
ordinary differential equations

A(x, y) = (al(x, y), ... , an(x, y), b(x, y»)

(1.7) Theorem.
Assume that S is a hypersurface of class Cl which is non-characteristic
for (1.4), and that the functions aj, b, I, and cP are C l and real-valued.
Then for any sufficiently small neighborhood n of S in !Rn there is a unique
solution u E Cl of (1.4) on n that satisfies u = cP on S.

This is a system of two equations for the two real unknowns u l and u2 • If
the aj's and b are real, this system is uncoupled: the first equation involves
only u l and the second only u2 , so we can solve them separately and obtain
the solution u =u l + iu2 of (1.4). However, if the aj's and b are complex,
this system may possess no solutions, as we shall see in §1E.

Now let us generalize to the quasi-linear equation

If u is a function of x, the normal to the graph of u in !Rn+l is proportional
to (Blu, .. . ,onu,-1), so (1.8) just says that the vector field

This theorem is a special case of the corresponding result for quasi­
linear equations, which we shall prove in detail below.

What happens if we allow the quantities in (1.4) to be complex-valued?
If we set aj =a} + ia;, and similarly for b, I, and u, the real and imaginary
parts of (1.4) are

I
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to obtain a curve x(t) passing through xo, and then set y(t) = u(x(t», we
have

dy " dXj "dt = L./)judi: = LJ aj(x,u)8ju = b(x,u).

Thus if the graph y = u(x) intersects an integral curve of A in one point
(xo, u(xo», it contains the whole curve.

Suppose we are given initial data u = ¢ on a hypersurface S. If we
form the submanifold

S· = {(x,¢(x»: xES}

(al(x, ¢(x», ... , an(x, ¢(x»)

al(g(s), ¢(g(S))))

: f O.

an(g(s),¢(g(s»)

(1.9)

is not tangent to S at any xES. Then for any sufficiently small neigh­
borllOod 0 of S in R n there is a unique solution u E al of (l.8) on 0 tllat

satisfies u =¢ on S.

(1.10) Theorem.
Suppose S is a hypersurface of class al in R n and aj, b, and ¢ are a l

real-valued functions. Suppose also that tbe vector

Proof: The uniqueness follows from the preceding discussion: the
graph of u must be the union of the integral curves of A in 0 passing
through S·. (0 must be taken small enough so that these curves are all
distinct. That is, it can happen that an integral curve of A intersects S·

should not be tangent to S at x. (Note that this condition involves ¢ as

well as S.) If S is represented parametrically by a mapping 9 : R n - l
-> R n

and we take coordinates SI,' .. , Sn-l on R n
-\ this condition is just

of Rn+l, the graph of the solution should be the hypersurface generated
by the integral curves of A passing through S·. Again, we need to assume
that S is non-characteristic in some sense. This is more complicated than
in the linear case because the coefficients aj depend on u as well as x, but
the geometric interpretation is exactly the same: for xES, the vector
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ay
m(s, t) = b(x, y),

y(s,O) = <I>(g(s».

ax'af(s,t) =aj(x,y),

Xj(s, 0) =gj(s),

Let us see a couple of examples; others will be found in the exercises.

since Sk and t are functionally independent. This completes the proof.

u(x) = y(s(x), t(x».

Clearly u = '" on S, and we claim that u satisfies (1.8). Indeed, by the
chain rule,

Here s is just a parameter, so we have a system of ordinary differential
equations in t. By the fundamental theorem of ordinary differential equa­
tions (Coddington and Levinson [9)), there is a unique solution (x,y) de­
fined for small t, and (x, y) is a Cl function of sand t jointly. By the
non-characteristic condition (1.9) and the inverse mapping theorem, the
mapping (s, t) -+ xes, t) is invertible on a neighborhood n of S, yielding s

and t as C 1 functions of x on n such that t(x) =°and g(s(x» =x when
xES. Now set
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in more than one point, but in between these points of intersection it must
leave n.) Now, any hypersurface S can be covered by open sets on which
it admits a parametric representation x = g(s). If we solve the problem
on each such set, by uniqueness the local solutions agree on their common
domains and hence patch together to give a solution for all of S. It therefore
suffices to assume that S is represented parametrically by x =g(s).

For each s E lRn -l, consider the initial value problem

I
I
I
I
I
I

L
I
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Example 1.

In R3, solve x 18l u + 2x282u + 83 u = 3u with u = ¢I(xl, X2) on the plane
X3 = O.

X3 = t,

We solve the first three equations for Sl, S2, and t, obtaining

Solution: We solve the ordinary differential equations

dXl dX2 dX3 du- = Xl, - = 2X2, - = 1, - =3u
dt dt dt dt

with initial conditions

The solution is then

obtaining

Example 2.

In R 2
, solve u8l u + 82u ::= 1 with u = !s on the segment Xl = X2 = s,

O<s<1.

obtaining

u = t + ~s, X2 = t + S, Xl = ~t2 + ~st + s.

Since X2 - Xl = ~t(2 - t - s) = !t(2 - X2), we can easily eliminate sand t
from these equations to obtain

4X2 - 2X1 - x~
u=

2(2 - X2)

du =1
dt

dX2 =1
dt '

Solution: First, (1.9) is satisfied, for

d t (
8xd8s al(s,s,!s») -d t(1 !s) -1-1 -J.Of 0 1

e 8 /8 ( 1) - ell - 2 8 r or < s < .X2 S a2 s, s, '28

We solve the equations

dXl
-;It = U,

with initial conditions
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is satisfied identically in x, that is, u is a solution of

dZj aF 8F-----z·-dt - aXj } 8y'

F(Xl,"" Xn,y, Zl, .. ·, zn) == 0

(1.15)

Along these curves the quantity y must satisfy

dy == '"'~ dXj == '"' z. 8F .
dt L.J 8xj dt L.J} 8zj

(1.14)

In the quasi-linear case (1.8), 8F/8zj == Uj and L.. zj(8F/8zj ) == bare
independent of the zj's, so (1.13) and (1.14) form a determined system
in the variables Xl,.'" X n , Y - in fact, the system in used in the proof
of Theorem (1.10). For the general case we also need equations for the
variables Zj, which can be obtained as follows. From (1.13), we have

dZj L aZj dXk L a2u 8F L 8Zk aF
dt == aXk dt == aXjaXk aZk == 8xj 8Zk .

Also, differentiating (1.11) with respect to Xj,

o== aF + 8F ay +L 8F aZk = 8F + Zj aF +L aZk 8F .
aXj 8y 8xj 8Zk aXj aXj 8y aXj aZk

(1.11)

In what follows we stipulate that the function F and its derivatives are to
be evaluated at y == u(x), Zj == 8j u(x).

First, consider the integral curves of the vector field "V.F, Le., the
solution curves of the equations

Combining these equations, we have

(1.13)

(1.12)

The initial value problem for a general real first order equation can also
be reduced to the initial value problem for a system of ordinary differential
equations. We shall derive these equations by assuming that a solution
exists and working backwards.

Suppose, then, that we are given a real-valued function F of the 2n + 1
variables Xl, ... , Xn, y, Zll "', Zn. (The appropriate smoothness assump­
tion here is F E C2 .) Suppose that we have a function u of X such that
when we set y == u(x) and Zj == 8j u(x), the equation

I
I
I
I
I
I
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Dropping now the assumption that a solution u is given, we see that (1.13),
(1.14), and (1.15) form a system of 2n + 1 ordinary differential equations
for the 2n + 1 unknowns Xj, y, and Zj.

As for the initial conditions, we assume given a Cl hypersurface S
represented parametrically as x = g(s) and a C 1 function .p on S. Then
the initial conditions for (1.13) and (1.14) are

(1.16) X(s, 0) = g(s), y(s, 0) = .p(g(s».

Moreover, on S we must have

(1.17)

_oy __ o.p(g(s» __ E~ Ogk = E Zk o9k
~ (1::;j::;n-l),

OSj OSj OXk OSj OSj

F(g(s), .p(g(s», Zj(g(s») =o.

F(Xl"'" Xn, u(x), Zl(S(X), t(x», ... , zn(s(x), t(x») =0,

Zj(s(x),t(x» =Oju(x).

There is much more to be said about fully nonlinear first order equa­
tions. More complete discussions, including geometric interpretations and
some applications, can be found in Courant and Hilbert [10, vol. II] and
John [30].

These provide n equations in the n unknowns Zl, ... , Zn on S. In the quasi­
linear case these equations are linear, and the non-characteristic condition
(1.9) ensures the existence of a unique solution. In general we have neither
existence nor uniqueness (for example, a square root may appear). We
must therefore assume given Cl solutions Zl, ... , Zn of (1.17) on S which
satisfy the non-characteristic condition

g;; (g(s),.p(g(s», Zj (g(s») )

: # o.
g::. (g(s), .p(g(s», Zj (g(s»)(

~
det :

'!b.
a' l

We can then proceed as before. We solve the system (1.13-15) with initial
conditions (1.16-17) to obtain Xj, y, Zj as functions of sand t. The non­
characteristic condition· ensures that the mapping (s, t) -+ x(s, t) can be
inverted to yield sand t as C 1 functions of x. We then claim that u(x) =
y(s(x),t(x» satisfies (1.12): it clearly satisfies u = <P on S because of
(1.16). To prove the claim, one uses the uniqueness theorem for ordinary
differential equations and the chain rule to verify that
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EXERCISES

The following problems deal with differential equations on R2. We write
x, y and ax, 8y rather than Xl, x2 and ax" ax,.

1. Solve 8:r:'U + OyU = u with tt = cosx when y = O. (Answer: u =
eY cos(x - y).)

2. Solve x 2ax u + y28yu = u2 with u = 1 when y = 2x. (Answer: u =
xy/(xy - y + 2x).)

3. Show by geometric considerations that the general solution of x8x u ­
yayu =0 is u = !(xy). Find the solution whose graph contains the line
u = X = y. (Answer: u = JXY.) What happens to the initial value
problem when S is the curve y = x-l?

4. Solve uaxu + ayu = 1 with u = 0 when y = x. (Answer: u = 1 ­
(1 + 2x - 2y)l/2.) Something nasty happens if we replace the initial
condition u =0 by u = 1. What?

c. The General Cauchy Problem

We now return to the general kth order equation

(1.18)

where F will always be assumed to be (at least) C l . The most natural
generalization of the initial value problem for first order equations, which
corresponds to the initial value problem for higher order ordinary differen­
tial equations, is the Cauchy problem.

Let S be a hypersurface of class Ck. If u is a C k - l function defined
near S, the quantities u, 8v u, .. . ,ai-lu on S are called the Cauchy data
of u on S. (Recall that 8v is the normal derivative on [a neighborhood of]
S: see (0.3).) The Cauchy problem is to solve (1.18) when the Cauchy
data of u on S are preassigned.

In this section all our considerations will be restricted to a neighbor­
hood of a given point on S. We may therefore assume that a change of
coordinates has been made so that S contains the origin and, near the ori­
gin, coincides with the hyperplane X n = O. With this in mind, it will be
convenient to make a slight change of notation. We shall consider R n as
R n- l x R and denote the coordinates by (x,t) where x = (xl, ... ,xn-d.
Derivatives with respect to the x variables will be denoted by 8Xi or ar;,
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We observe to begin with that if u is a function of class C r with r 2: k,
then the Cauchy data {I/Jj} determine all derivatives 0:;a! u on 5 with j < k
and 10'1 + j :5 r; in fact,

where 0' = (0'1, ... , O'n-1), and derivatives with respect to t will be denoted
by a!. We can then restate the Cauchy problem as follows: Given functions
I/Jo, ... , I/Jk-1 of x, solve

F(x, t, (o~a! u)lexl+j:::;k) =0,

a!u(x,O) = I/Jj(x) (0:5 j < k).
(1.19)

Hence the only quantity in the differential equation in (1.19) which is un­
known on 5 is otu. In order for the Cauchy problem to be well-behaved,
we must assume that the equation F = 0 can be solved for otu.

In the linear case,

F(x, t, (o~a! u)lexl+j:::;k) = L: aexj(x, t)o~oJu - f(x, t),
lexl+j:::;k

this assumption just means that 5 is non-characteristic. Indeed, "5 is non­
characteristic" means that aOk(x, 0) i= 0, hence by continuity aOk(x, t) i= 0
for small t, and we can solve for otu:

o;u = (aok)-l [ L: aQjo~a! u - f].
lexlj$k, i<k

Here are some examples of the bad behavior that can occur when this
condition is not satisfied:

I. The line t =0 is characteristic for the equation O",OtU =0 in ~2. If U is
a solution of this equation with u(x,O) = I/Jo(x) and Otu(x,O) =1/J1(X),
we must have O",I/Jl =0, i.e., I/Jl is constant. Thus the Cauchy problem
is not solvable in general. On the other hand, if I/Jl is constant, then
there is no uniqueness: we can take u(x, t) = I/Jo(x) + f(t) where f is
any function with 1'(0) =I/Jl'

II. The line t = 0 is characteristic for the equation o;u - OtU = 0 in ~ 2.

Here if we are given that u is a solution with u(x,O) = I/Jo(x), then
Otu(x,O) is already completely determined: Otu(x,O) =I/J~(x).
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I
j

II

In the quasi-linear case,

F(x,t, (a~a{U)la\+i$k)= I: aaj(X,t, (a~a:U)If3I+i$k_l)a~a{U
la\+i=k

- b(x,t, (a~a:U)If3\+i$k-l)'

we say that the Cauchy problem (1.19) is non-characteristic if

for all Xj again, this allows us to solve for the derivative af u.
In the general case, the equation

k ( a' )al U =C x, t, (ax a: u)\a\+i$k, i<k .

ak+l _ ac ~ ac aaa1+1
1 U - at + L.....J au x 1 U.

lal+i$k, i<k aj

will usually not determine UOk uniquely as a function of x on 5. Therefore,
we phrase the non-characteristic condition as follows: The quantity Uok can
be determined as a C 1 function of x on 5 so that

All the quantities on the right are known on S, so a~+lu is also; hence we
know all derivatives of U of order 5 k + 1 on S. Applying al more times,
we obtain higher derivatives. In particular, we have:

(1.21) Proposition.
Suppose that C, ,po, ... ,<Pk-l are analytic functions. Then there is at most
one analytic function U satisfying (1.20) such that a{ u(x, 0) = ¢j(x) for
Os j < k.

(1.20)

The Cauchy data {¢;} together with (1.20) determine all derivatives
of U of order 5 k on S. If C is sufficiently smooth, we can also determine
higher derivatives of u. Namely, differentiating (1.20) with respect to t,

for all x. In this case, we can solve the equation F = 0 for UOk as a
C 1 function C of the remaining variables near 5, by the implicit function
theorem, and write the differential equation in the normal form:

I
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Proof: By Taylor's formula, an analytic function is completely deter-
mined by the values of its derivatives at one point. I

Actually, the smoothness of G is unnecessary for the unique determi­
nation of the derivatives of u on S.

(1.22) Proposition.
Suppose G is continuous and there is a constant C > 0 such that for all
x,t E Rn and all vectors (uaj), (vaj) (O:S 1001+j:S k, j < k),

!G(x,t,(Uaj») - G(x,t,(vaj»)I:s CLluaj - Vajl·
0.;

lfu and v are two solutions of (1.20) with the same Cauchy data on S, and
the derivatives 8~&!u and 8~&!v exist for 10'1 :s q and j :s r (q,r 2: k),
then these derivatives agree on S.

(t -+ 0).

(t -+ 0),

(t -+ 0),

Hence, by (1.23),

tm - k

(m _ k)!a;"w(x,o) =o(t
m

-
k

)

which forces af'w(x, 0) to be O.

la;w(x,t)! = !G(x,t,(a:&!u(x,t») - G(x,t,(a:&!v(x,t»)1

:s C L la:&! u(x, t) - a~a! vex, t)1

=cLla:&!w(x,t)1 =o(tm
-

k
) (t-+O).

(1.23)

. t m - j .
a:o; w(x, t) = (m _ j)! a:af'w(x, 0) + o(tm

- J ) =o(tm
-

k
)

(See Folland [16] for the form of Taylor's theorem used here, which is omit­
ted from most calculus books.) Therefore, by the assumption on G,

tm - k

a;w(x, t) = (m _ k)!af'w(x, 0) + o(tm
-

k
)

and for j < k and 10'1 +j:S k,

Proof: Let w = U - v. It suffices to show that 8f'w = 0 on S for
m ::s r, as then the x-derivatives of these functions also vanish on S. We
proceed by induction on m, the cases m < k being true by assumption.
Suppose then that m 2: k and 8iw = 0 on S for i < m. By Taylor's
theorem,



I

a:u = G(x, t, (i~:atU)I"'I+j$k, j<k),
at u(x, 0) =<Pj(x) (0::; j < k).

(1.24)
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Although the Cauchy problem is good from the point of view of de­
termining a unique solution, existence is another matter, especially if we
want a solution in a specified domain and not just in some neighborhood
of the initial hypersurface S. In fact, the Cauchy problem tends to be
overdetermined except in certain special situations. As we shall see, the
appropriate boundary conditions for a differential equation depend strongly
on the particular form of the equation.

(1.25) The Cauchy-Kowalevski* Theorem.
If G, ¢o, ... , ¢k-l are analytic near the origin, theI;e is a neighborhood
of the origin on which the Cauchy problem (1.24) has a unique analytic
solution.

Our main result is the following fundamental existence theorem.

D. The Cauchy-Kowalevski Theorem

In this section we consider i,he Cauchy problem

where the functions F, <Po, . .. ,<Pk-l and the hypersurface S are assumed to
be analytic, and we look for solutions defined in a neighborhood of some
point Xo E S. As in §lC, we can make an analytic change of coordinates
from ~n to ~n-l X ~ so that Xo is mapped to (0,0) and a neighborhood
of Xo in S is mapped into the hyperplane t =O. This transformation will
of course change the function F, but the result will still be analytic. We
assume the non-characteristic condition in its anl!lytic form, that is, that
the equation F = 0 can be solved for 8:u to yield 8:u as an analytic
function G of the remaining variables. The Cauchy problem then takes the
form

* The problem of how to spell this name is vexed not only by the usual lack of a

canonical scheme for transliterating from the Cyrillic alphabet to the Latin one but also

by the question of whether to use the feminine ending (-skaia instead of -ski). The

spelling used here is the one preferred by Kowalevski herself in her scientific works.

I
I
I
I
I
I
I
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We remark that G, <Pj, and u can be complex-valued here, or, for that
matter, vector-valued: the arguments in this section work equally well for
determined systems of equations. Before proceeding to the proof, we recall
some properties of power series in several variables. (The proofs are the
same as in the one-variable case.)

(1.26) If I is analytic near XO E m,n, there is a cube n = {x: IXj - x11 <
r for 1 :::; j :::; n} on which the Taylor series

converges to I(x). The convergence is absolute and uniform on compact
subsets of n, and the series can be differentiated termwise.

(1.27) Let I(x) = L:a,,(x-xO)" be convergent near x = XO E lR,n. More­
over, let x be an analytic function of ~ E lR,m: x = L: bp(~ - {O)P where
bp E lR,n and x(~O) = bo = xO. Then the composite function F(O = I(x(~»

is analytic at ~o, and its power series expansion about ~o is obtained by
substituting L:p;tO bp(~ - e)p for x - xO in the series L: a,,(x - xO)" and
multiplying out. Thus F(O = L:c')'(~ - ~0)'Y where c')' = P')'(a,,'s, bp's)
and P')' is a universal polynomial (independent of the particular series in­
volved) in those coefficients a" and bp for which OIj :::; 'Yj and {3j :::; 'Yj for
all j. Moreover, P')' has nonnegative coefficients since only addition and
multiplication are involved in expanding out the substitution.

(1.28) Given M, r > 0, the function

I(x) = Mr
r - (Xl + ... + x n )

is analytic in the rectangle {x : maxlxjl < r/n}. By the geometric series
formula and the multinomial theorem, its Taylor series is

which converges absolutely for maxlxjl < r/n.

(1.29) A power series L: u,,(x - xO)" with nonnegative coefficients is said
to majorize another series L: b,,(x -xO)" if Ua ~ Ib,,1 for all 01. In this case
it is clear that L: b,,(x - xO)" converges absolutely whenever L: aa(x - xO)"
does.
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(1.31) Theorem.
The Cauchy problem (1.24) is equivalent to the Cauchy problem for a
certain first order quasi-linear system,

in the sense that a solution to one problem can be read off from a solution
to the other. Here Y, B, and <I> are vector-valued functions, the A; 's are
matrix-valued functions, and A;, B, and <I> are explicitly determined by
the functions in (1.24).

8,Ya; =Ya(j+l) (lal + j < k),

8,Yaj =8x;YCa- 1 i)CH1) (lal + j =k, j < k),
8G 8G

8/YOk = &t + I:: a-:-Y"Cj+l)
l"l+i<k YO]

8G
+ L a-:-8x ,VCo-l,)CH1),

l"I+;=k, ; <k V,,]

n-1

8,Y =L A;(x, i, Y)8x;Y + B(x, i, Y),
1

Y(x,O) =<I>(x),

(a)

(b)

(c)(1.33)

(1.32)

(1.30) Suppose L:aox" is convergent in a rectangle {x: maxlx;1 < R}.
Then a geometric series as in (1.28) can be found that majorizes L:aox".
Indeed, let us fix r with °< r < R. Setting x = (r, r, ... , r), we see that
L: a"rla' converges, so there is a constant M such that laarlo,! ::; M for
all a. Hence

M Mia!!
laal ::; rIa' ::; alrla"

We now return to the Cauchy-Kowalevski theorem. We have proved
uniqueness of the solution in Proposition (1.21), and the discussion there
suggests how to prove existence: determine all the derivatives of u at the
origin by differentiating (1.24) and plug the results into Taylor's formula.
The problem is to show that the resulting power series converges. To this
end, it is technically convenient to replace our kth order equation by a first
order system.

Proof: The vector Y is to have components (Yo;), °::; lal + j ::; k.
In what follows it is understood that 8:&! u is to be replaced by Ya; as an
independent variable in G. Also, if a is a nonzero multi-index, i = i(a)
will denote the smallest number such that ai # 0, and Ii will denote the
multi-index with 1 in the ith place and °elsewhere. The first order system
to be solved is

I
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and the initial conditions are

(1.34)
(a) Yoj(x, 0) =8';(/>j(x) (j < k),

(b) YOk(X,O) =G(x,O, (8';'/>j(x»lol+jSk, j<k)'

(j+l~k),

(Ial + j = k, j < k).Yoj = 8""Y(o-1,)j

Next, by (1.33c), (1.35), and (1.36),

YOk(X,O) = G(x,O, (8';4Jj(x») = G(x,O, (Yoj(x,O»),

(1.37)

(1.35)

(1.36)

and (1.33b) then implies that for lal + j =k and j < k,

YOk(X, t) =G(x, t, (Yoj(x, t))) + COk(X)

for some function COk. But by (1.34),

Yoj (x, t) =8""Y(o-1,)j (x, t) + Coj(x)

for some function Coj' But by (1.34a),

so that

so again COk =0, and we have

so that

It is clear that if u is a solution of (1.24), then the functions Yoj = 8:a{ u
satisfy (1.33) and (1.34). Conversely, if the Yoj's satisfy (1.33) and (1.34),
we claim that u = Yoo satisfies (1.24). This is nontrivial and involves the
initial conditions in an essential way.

First, (1.33a) implies that

so that Coj =0, and we have
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Finally, we propose to show that

(1.38) Yaj =8x ;Y(a-I;)j (a 0:/ 0).

II

~
)i

The proof proceeds by induction on k - j -Ial, the initial step k = j + lal
being established in (1.36). By (1.33a), (1.35), and the inductive hypothe-
sis,

so that

Yaj(X, t) = 8x ;Y(a-I,)j(X, t) + Caj(x).

But by (1.34a),

Yaj(x, 0) =8;:</Jj(x) =8x JJ:;-I;</Jj (x) =8x ,Y(a_I;)j(X, 0).

We need one further minor simplification.

U(x,O)=o,

n-l

R(x, t, U) = B(x, t, U + <1» + L: Ai(x, t, U + <I»8x ;<I>.
I

Ai(x, t, U) =Ai(x, t, U + <1»,

n-I

8t U =L: Ai(x, t, U)8x P + R(x, t, U),
I

and then by (1.39), (1.37), and (1.34a), u =Yoo satisfies (1.24).

where

(1.39)

Proof: To eliminate <I> we simply set U(x,t) =Y(x,t) - <I>(x). Then
Y satisfies (1.32) if and only if U satisfies

Hence Caj =0, and (1.38) is established.
Now we are done. Applying (1.35) and (1.38) repeatedly, we find that

(1.40) Theorem.
The Cauchy problem (1.32) is equivalent to another problem of the same
form in which <I> =0 and AI, ... ,An-I, B do not depend on t.

Next, to eliminate t from Ai and Rwe merely add on extra component UO

to U satisfying 8/uo =1 and uO(x, 0) =O. Then uO =t, and we can replace
t by uO in Ai and R by adding the extra equation and initial condition. I
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has a unique analytic solution.

where p~i is a polynomial with nonnegative coefficients. On the left side,
we have

LU + l)c~(i+l)xO'ti.

O'i

n-I

at Y = L Ai(x, Y)a",¥ + B(x, Y),
I

Y(x,O) = 0

atYm =L a:n,(x, YI, ... , YN )(),,;Y' + bm(x, YI,· .. , YN).
i,l

(1.43)

LP~i((cfl)l:5i' coeff. of Ai and B)xO'ti ,
O'i

(1.42)

By (1.27), substit.uting the series for the Yk'S into a:n, yields a power series
in x and t whose coefficients are polynomials with nonnegative coefficients
in the c~i and the coefficients of the Taylor series of a:n,. Moreover, the
coefficients of the terms in which t occurs to the jth power only involve
the c~' with / ~ j. The same is true of the series obtained from bm and
that obtained from a",Yl, and multiplying a:n, by a",y, st.ill preserves these
properties.

In short, on the right side of (1.43) we obtain an expression of the form

(1.41) Theorem.
Suppose that B is an analytic RN-valued function and AI,' .. , An_1 are
analytic N x N real matrix-valued functions defined on a neighborhood of
the origin in Rn x R N. Then there is a neighborhood of the origin in Rn
on which the Cauchy problem

Proof: Let Y = (YI, ... ,YN), B = (bl, ... ,bN ), Ai = (a:nl)~.I=l' We
seek solutions Ym =L>~xO'ti (m =1, ... , N) of(1.42). The Cauchy data
tell us that c;;,o =0 for all ct, m. To determine c~ for j > 0, we substitute
these power series into the differential equations

In Theorems (1.31) and (1.40) there is no harm in assuming that all
functions in question are real-valued, as a eN -valued function can be re­
garded as an R 2N-valued function. Since the constructions in these theo­
rems clearly preserve analyticity, we have reduced the Cauchy-Kowalevski
theorem to the following:
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Hence,

I
I
I
I
I
I
I

c:;,(i+1) =(j + 1)-1 p;:'i (C~')/~d' coeff. of Ai and B),

so if we know that ~' with I :$ j we can determine the c~' with I = j + 1.
Proceeding inductively, we determine all the C~/, and more precisely we
find that

c~! =Q~ (coeff. of Ai and B),

where Q~f is again a polynomial with nonnegative coefficients.
Now suppose we have another Cauchy problem

n-1

aty =L Ai(x, Y)a""Y + H(x, Y),
1

Y(x,O) = 0

(Y again being JRN-valued) for which
(a) we know that an analytic solution exists near (0,0);
(b) the Taylor series of Ai and H majorize those of Ai and B.
Then the solution Y = Oil, ... ,YN) of this problem is given by Ym =
Z If';! x"ti , where

cr:.! = Q~! (coeff. of Ai and B),

Q~ being the same polynomial as before. Since Q~ has nonnegative
coefficients,

Ic~ I= IQ~ (coeff. of Ai and B)I :$ Q~ (coeff. of Ai and H) =~ .

Mr

Hence the series for Y majorizes the series for Y, and the latter therefore
converges in some neighborhood of (0,0).

It is easy to construct such a majorizing system. Indeed, if M > 0 is
sufficiently large and r > 0 is sufficiently small, by (1.30) the series for Ai
and B are all majorized by the series for

I

•III Thus we consider the following Cauchy problem: for m =1, ... , N, j
I (1.44) atYm = r _ Z ~r_ ZYi [2: 2;: a""Yi +1], ',ii.I ".(r,O) ~ O. • , .~

I i
~----- ....I
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A solution to this problem is readily found. In fact, if we solve the Cauchy
problem

(1.45)
Mr 18t u = N [N(n - 1)8,u + 1 ,

r-8- U

U(8,O)=0

for one (scalar) unknown in two (scalar) variables 8 and t, and then set

Yj(X, t) = U(XI + ... + Xn-l, t) (j = 1, .. . ,N),

then Y = (Yl, .. . ,YN) will satisfy (1.44).
But we have already seen how to solve (1.45) in §IB. Rewriting the

differential equation as

(r - 8 - Nu)8t u - MrN(n - 1)8,u = Mr,

we solve the ordinary differential equations

dt- =r- 8-Nu,
dr

d8- = -MrN(n - 1),
dr

du
-=Mr
dr

with initial conditions

(The minus sign on the square root is forced by the condition U(8,O) =0.)
Clearly this is analytic for 8 and t near 0, so the proof is complete. I

We conclude with a few additional remarks concerning the Cauchy­
Kowalevski theorem. First, the theorem asserts the existence of a unique
analytic solution in a neighborhood of one point. However, given analytic
Cauchy data on an analytic hypersurface S, there is a analytic solution
near any point on S, and by uniqueness any two of these solutions must
agree on their common domain. Hence we can patch them together and

r - 8 - J(r - 8)2 - 2MrNnt
U(8,t) = Mn .

U =Mrr.

U(O) = 0,

8 = -MrN(n-l)r+u,

8(0) =u,teO) =0,

Eliminating u and r yields

and find that

t = ~MrN(n-2)r2 +(r-u)r,
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obtain a solution on a neighborhood of S. In general, the neighborhood
will depend on the particular problem. (See Exercise 1.)

Second, there remains the question of whether the Cauchy problem
(1.24) might admit non-analytic solutions as well. In the linear case, the
answer is negative: this is the Holmgren uniqueness theorem. The proof
can be found in John [30], Hormander [26], [27, vol. I], or Treves [52).

A major drawback of the Cauchy-Kowalevski theorem is that it gives
little control over the dependence of the solution on the Cauchy data. Con­
sider the following example in ]R2, due to Hadamard:

I
I
I
I
I (1.46)

ail.l + ail.l =0,

l.l(Xl, 0) = 0, a 21.l(Xl. 0) = ke-v'k sin h 1 ,

I
I

I

where k is a positive integer. This problem is non-characteristic SInce
8i + 8~ is elliptic, and one easily checks that the solution is

As k -+ 00, the Cauchy data and their derivatives of all orders tend uni­
formly to zero since e-v'k decays faster than polynomially. But if X2 1= 0.
lim e-v'k sinh kX2 = 00, so as k -+ 00 the solution oscillates more and more
rapidly with greater and greater amplitude, and in the end it blows up
altogether. The solution for the limiting case k = 00 is of course 1.l == o.
This example shows that the solution of the Cauchy problem may not de­
pend continuously on the Cauchy data in most of the usual topologies on
functions.

The proof of the Cauchy-Kowalevski theorem obviously depends in an
essential way on the assumption of analyticity. In the linear case, there is
a more general version of the theorem that requires analyticity only in x,
not in t; see Treves [52J. However, the analyticity hypothesis cannot be
discarded completely, as we shall see in the next section.

EXERCISES

1. Let S be the unit circle in the complex plane. A function 11 on S is
analytic if and only if it is the restriction to S of a holomorphic function
on an annulus Aab = {z : a < Izi < b} where a < 1 < b; in this case,
if L~oo cm eim8 is the Fourier series of 11, L~oo cmzm is the Laurent
series of its holomorphic extension to A.
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a. Use this fact to find an explicit solution of the Cauchy problem for
the Laplacian on S:

.1.u = 0 on a neighborhood of S, u = <P and oru = 'f/; on S. (*)

a. Show that if u(z) =L:~ cmzm satisfies (**), then

1 m

cm +2 = (m + 2)(m + 1) ~[(j + I)Cj+lPm_i + ciqm-i] '

so that the coefficients Cm are uniquely determined by (**).
b. Suppose Pm 2 IPml and Qm 2 Iqml for all m 2 0, and let P(z) =

L:~ Pmzm, Q(z) = L:~ Qm zm . Show that if U(z) = L:~ Cmzm
satisfies U" = P(z)U' + Q(z)U, and Co 2 Icol and C1 2 lcd, then
Cm 2 Icm I for all m.

c. Suppose r < R. Show that the conditions of (b) are satisfied if we
take Pm =Kr-m and Qm =K(m+ l)r- m for K sufficiently large,
so that P(z) = (1- r-1z)-1 and Q(z) = (1- r-1z)-2. Show also
that the general solution of U" = P(z)U' + Q(z)U in this case is
a linear combination of (1 - r-1z)<> and (1 - r-1z)fi for suitable
exponents O! and (3.

d. Conclude that (**) has a unique holomorphic solution u in the disc
Izi < R.

u(O) =Co, u'(O) =Cl.u" =p(z)u' + q(z)u,

Here z =rei9 • so Or is the normal derivative on S, and <P and 'f/; are
analytic on S. (Hint: zm = rmeim9 and rm = r-m eim9 are both
harmonic functions that agree with eim9 on S.)

b. Show that if a < 1 < b, there exist <P and 'f/; for which the solution
to (*) exists on the annulus Aab but cannot be extended beyond
Aab. (Hint: for any disc D there are holomorphic functions on D
that cannot be extended holomorphically beyond D.)

2. Carry out explicitly the reduction of the Cauchy problem for Laplace's
equation .1.u = f to a first order system as in Theorem (1.31), taking
S to be the hyperplane X n =O.

3. To see how the ideas in the proof of the Cauchy-Kowalevski theorem
work in a simpler setting, prove the following theorem about ordi­
nary differential equations in the complex domain. Suppose p(z) =
L:~ Pm zm and q(z) = L:~ qmzm are holomorphic in the disc Izi < R,
and consider the initial value problem
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E. Local Solvability: The Lewy Example

(1.48) Theorem.
Let f be a continuous real-valued function depending only on t. If there is
a Cl function u of (x, y, t) satisfying Lu =f in some neighborhood of the
origin, then f is analytic at t = O.

av . r2
" [au .ou] ( 0 . 0 ) dOa;: = ~ J

o
ax + ~ ay r cos ,r sm ,t r

1 [au .ou] dz= <>+1-
8

(x,y,t)r-.
1.I=r uX Y z

Hence

It was long believed that any "reasonable" partial differential equation
(with no boundary conditions imposed) should have many solutions. In

particular, suppose we have a linear equation E'''I$k a"a"u = f where f
and the coefficients a" are Coo. Given Xo E JR'" can we find a solution u
(not necessarily COO) of this equation in some neighborhood of xo? If f
and the a,,'s are analytic and a,,(xo) =F 0 for some a with lOll = k, the
Cauchy-Kowalevski theorem shows that the answer is yes. Indeed, we can
choose a vector ~ which is non-characteristic for L: a"o" at Xo (and hence
at all x in a neighborhood of xo) and solve the Cauchy problem with zero
Cauchy data on the hyperplane through Xo orthogonal to e.

One might well expect that the assumption of analyticity can be omit­
ted. But in 1957 Hans Lewy [33] destroyed all hopes for such a theorem
with the following embarassingly simple counterexample. Consider the dif­
ferential operator L defined on IR3 with coordinates (x, y, t) by

( ) L a. a 2'( . ) a1.47 = - + ~- - ~ x + ~y -.
ax ay at

Proof: Suppose Lu = f in the set where x2 + y2 < R 2 and It I < R
(R> 0). Set z = x+iy; write z in polar coordinates as reiD and set s = r2 •

Consider the quantity V. a function of t and r (or equivalently of t and s)
defined for 0 < r < Rand ItI < R by the contour integral

V = 1 u(x,y,t)dz = ir r
2

" u(rcosO, rsinO, t)ei9 dO.
t.l=r Jo

By Green's theorem,

V=ij'r [~u+i~u](x,y,t)dXdY
1'.I$r uX y

r (" [au au]=i 10 Jo ax + i ay (pcosO, psinO, t)pdpdO.

I
I

I
I

I
I

I
I
I
I
I
I

r
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The equation Lu = f then implies

av _ ~ av -1 [au + i au ] (x y t) dz
as - 2r or - Izl=r ax ay "2z

=il aou(x,y,t)dz+1 f(t)dz =i a
a
v +1rif(t).

Izl=r t Izl=r 2z t

Thus if we set F(t) = J; f( r) dr, the quantity U(t, s) = V(t, s) + 1rF(t)
satisfies

au .au
7ft + lo; =O.

This is the Cauchy-Riemann equation, so U is a holomorphic function of
w = t + is in the region 0 < s < R2 , It I < R, and U is continuous up
to the line s = O. Moreover, V = 0 when s = 0, so U(O, t) = 1rF(t) is
real-valued. Therefore, by the Schwarz reflection principle, the formula
U(t, -s) =U(t, s) gives a holomorphic continuation of U to a full neigh­
borhood of the origin. In particular, U(t, 0) =1rF(t) is analytic in t, hence
soisf=F'. I

There is really nothing special about the origin in Theorem 1.48. In
fact, a change-of-variable argument that we outline in Exercise 1 shows
that for any (xo, Yo, to) E lR3, the equation

Lu(x, y, t) = f(t + 2yox - 2xoY)

has no C 1 solution in any neighborhood of (xo, Yo, to) unless fer) is analytic
at r = to.

Once this is known, it is not hard to show that there are Coo functions
9 on lRs such that the equation Lu = 9 has no solution u E C1+<> (a > 0) in
any neighborhood of any point. The idea is as follows. Pick a Coo periodic
function f on lR that is not analytic at any point, and pick a countable dense
set {(Xj, Yj, tj)}i in lRs. Then there is a sequence of positive constants {Cj}
tending to zero rapidly enough so that the series

00

90(X, Y, t) =L UjC;f(t + 2Yjx - 2xjY)
j=l

defines a Coo function on lRS for any bounded sequence U={Uj}. One can
then show that for "most" sequences u, in the sense of Baire category in
the space 100 of bounded sequences, the equation Lu = 90 has no C1+<>
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solution near any point. For the details of this argument, see Lewy [33] or
John [30].

This construction also leads immediately to an example of a homoge­
neous equation with no nontrivial solution. Namely, if I is a Coo function
on jR3 such that the equation Lu ::: I has no solution near any point, then
the equation Lv- Iv ::: 0 has no solution except v == O. Indeed, suppose v is
a solution that is nonzero on an open set O. By shrinking 0 we can assume
that a single-valued branch of the logarithm can be defined on v(O), and
then u ::: log v is a solution of Lu ::: f on O.

A couple of years after Lewy proved Theorem (1.48), Hormander em­
bedded it into a more general result that initiated the theory of local solv­
ability of differential operators. We make a formal definition: A linear
differential operator L with C"" coefficients is said to be locally solvable
at Xo if there is a neighborhood 0 of Xo such that for every f E C~(O)

there exists u E '1)'(0) with Lu ::: f. Hormander's theorem is then as
follows; see [26] for the proof.

(1.49) Theorem.
Let L be a linear differential operator with Coo coefficients on 0, let
P(x,O::: ;XL(X,~) be the characteristic form of L, and let

a. If Xo E 0 and there is a ~ E jRn such that P(xo,~) ::: 0 but Q(xo, e) =1= 0,
then L is not locally solvable at xo.

b. Iffor eaGh x E 0 there is ae E jRn such that P(x, e) ::: 0 but Q(x, e) =1= 0,
then there is an f E COO(O) such that the equation Lu ::: f has no
distribution solution on any open subset ofO.

It is easy to check that the Lewy operator (1.47) satisfies the hypothesis
of (b) on 0::: jRn. Thus we obtain a strengthening of Theorem (1.48): there
exist functions I E COO for which the Lewy equation has no solution in '1)1,

not merely in C 1 .

Theorem (1.49) was the starting point for a considerable body of re­
search into necessary and sufficient conditions for local solvability. For an
account of this work, we refer the reader to the expository articles of Treves
[50J, [51], and to Beals and Fefferman [6J. We mention also that Greiner,
Kohn, and Stein have found a necessary and sufficient condition on I for
the Lewy equation Lu ::: f to be locally solvable; see Stein [46, §XIII.4J.
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EXERCISES

1. Given (xo, Yo, to) E ~3, define the transformation T of ~3 by

T(x, y, t) =(x - Xo, Y - Yo, t - to - 2yox + 2xoY).

Show that if L is the Lewy operator (1.47), then L(u 0 T) = (Lu) 0 T
for any function u, and conclude that solving Lu = I(t + 2yox - 2xOY)
near (xo, Yo, to) is equivalent to solving L(u 0 T) = I(t - to) near the
origin.

2. (Addendum to Exercise 1.) Show that. the binary operation * on 1R3

defined by

(a, b, c) * (x, y, t) = (a + x, b + y, c + t + 2bx - 2ay)

makes 1R3 into a group. (This group is known as the 3-dimensional
Heisenberg group. Exercise 1 says that the Lewy operator is invariant
under left translations on this group, as the transformation T is left
translation by (-XO,-yo,-to).)

3. The Lewy operator (1.47) arises in complex analysis because the equa­
tion Lu =0 is, in a sense, the restriction of the Cauchy-Riemann equa­
tions on c:z to the hypersurface {(ZlJ Z2) : 1m Z2 = Izd2}. More pre­
cisely, define cJ> : ~3 -+ «::2 by

cJ>(x, y, t) = (x + iy, t + i(x2 + y2)).

Suppose 1 is a holomorphic function on C:Z, so that it satisfies the
Cauchy-Riemann equations (OUj + iovJI = 0 for j = 1,2, where Zj =
Uj + iVj. Show that L(f 0 cJ» =o.

4. Local non-solvability may occur for relatively trivial reasons when the
characteristic form of an operator vanishes at a point. Show, for exam­
ple, that the equation xoyu-yo",u = x 2+y2 has no continuous solutions
in any neighborhood of (0,0) in 1R 2• (Hint: show that xay - ya", =08
in polar coordinates.)

F. Constant-Coefficient Operators:
Fundamental Solutions

A couple of years before Lewy discovered his example, Malgrange and
Ehrenpreis independently proved that every linear differential operator
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(Lun~) =P(Ou(~),

P(~) =~~ + terms of lower order in ~n.

For each fixed e = (6, ... ,~n-l) E Rn-l, we consider P(~) =p(e,~n) as
a polynomial in the single complex variable ~n. Let Al(e), ... , Ak(~/) be

(1.50)

(1.51 )

The trouble with this is that usually the polynomial P will have zeros, so
that 1Ip is not a locally integrable function and the integral (1.51) is not
well-defined. However, since f E c'(', 1extends to an entire holomorphic
function on lC'" by Proposition (0.30). The idea will therefore be to make
sense of (1.51) by deforming the contour of integration so as to avoid the
zeros of P.

To this end, we make a simplification. By a rotation of coordinates we
can assume that the vector (0, ... ,0,1) is non-characteristic for L, which
means that the coefficient of ~~ in P(~) is nonzero. After dividing every­
thing through by it, we may - and shall - assume that this coefficient is
1, so that

where

L = L:: ccx{}CX

Icxl9

be a differential operator with constant coefficients. The natural tool for
studying such operators is the Fourier transform; if f is any tempered
distribution, we have

P(O = L:: ccx(271'iO cx .
Icxl9

P is called the symbol of L; this notation relating Land P will be main­
tained throughout this section.

We begin by considering the question of local solvability of L. In view
of (1.50), if f E Cr;>, it would seem that we should be able to solve Lu =f
by taking u=11P, that is,

with constant coefficients has a fundamental solution (a concept we shall
define below). An immediate corollary is that every constant-coefficient
operator is locally solvable, and one can deduce regularity properties of the
solutions by examination of the fundamental solution. In this section we
shall derive these results, following an argument of Nirenberg [38].

Let

I
II
i
11I
i,

I
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its zeros, counted according to multiplicity and arranged so that for i :S j,

1m Ai(e') :S ImAj(e') and ReAi(e') :S ReAj(e') ifImAi(e') =1m Aj(e'). By
Rouche's theorem, a small perturbation of e' produces a small perturbation
of the zeros of P(e', en), so the functions 1m Aj (e') are continuous functions
of e'. Before proceeding to the main results, we need two lemmas.

(O:Sm:Sk).
m-I

¢lex) = 2m - k for x E Vm \ U Vi
o

which is the desired result.

Moreover, gCk)(z) == k!, so by the Cauchy integral formula,

Proof: We have g(z) = (z - AI)· .. (z - Ak), so

v'" = {e : 1m Aj(O rt [2m - k - 1, 2m - k + 1) for j = 1, ... , k}.

(1.53) Lemma.
Let g(z) be a monic polynomial of degree k in the complex variable z such
that g(O) i= 0, and let AI, ... , Ak be its zeros. Then Ig(O)1 2:: (d/2)k where
d =minlAjl.

(1.52) Lemma.
There is a measurable function ¢l : R n - I -> [-k, k] such that for all e' E
Rn-I,

Then the sets Vm cover Rn-I, and they are Borel sets since 1m Aj is con­
tinuous, so we can take

ProoF: The idea is simple: There are at most k distinct points among
ImAj(e') (1 :S j :S k), so at least one of the k + 1 intervals [2m - k - 1,
2m - k + 1) (0 :S m :S k) must contain none of them, and we can take
¢l(e') to be the midpoint of that interval. That is, for 0 :S m:S k, let
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(1.54) Theorem.
If L is a differential operator with constant coefficients on JRn and f E
C~(JRn), there exists U E COO(JRn) such that Lu =f.

Proof: We employ the notation introduced above. Let.p be as in
Lemma (1.52), and set

u(x) = r 1 e2",;x'E 1(~) d~n de.
JRn-l 1m En=4>(€') P(~)

By Lemma (1.53) (applied to g(z) = pee, ~n + z)) together with Lemma
(1.52), we see that IP(~)I ~ 2- k when Im~n = .p(e). Moreover, by Propo­
sition (0.30), leo is rapidly decaying as IRe~l-> <Xl when IIm~1 remains
bounded. Hence the integrand in (1.55) is bounded and rapidly decaying
at infinity, so the integral is absolutely convergent. For the same reason,
we can differentiate under the integral as often as we please and conclude
that u is Coo and that

But now the integrand is an entire function which is rapidly decaying as
IRe~1 -> <Xl, so by Cauchy's theorem we can deform the contour of inte­
gration in ~n back to the real axis. By the Fourier inversion theorem, then,
Lu = f. I

The content of Theorem (1.54) can be usefully rephrased as follows.
A fundamental solution for the constant-coefficient operator L is a dis­
tribution I< on JRn such that LI{ = 0, where 0 is the point mass at the
origin. On the one hand, Theorem (1.54) is an immediate corollary of the
existence of a fundamental solution, for if f E C~ we can take u = I< * f:
then Lu = LI< * f =0 * f = f. On the other hand, the proof of Theorem
(1.54) easily yields a fundamental solution.

(1.56) The Malgrange-Ehrenpreis Theorem.
Every differential operator L with constant coefficients has a fundamental
solution.

I

by
Proof: With notation as above, define a linear functional I{ on ego
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As in the proof of Theorem (1.54), the integral is bounded by

Alternatively, one could observe that I<. * I is the function u defined by
(1.55), so that LI<. *1= Lu = I for all I and hence LI<. =6. I

(L](,/) = r 1 j(-e)de= r lcode=/(o) = (6,J).J.e.n-' 1m {.=o/>({') 116..

L(I{ * f) = I<. *LI = I,(1.57)

With a fundamental solution [{ in hand, we can solve the equation
Lu =/ not only when / E C';' but when / is any distribution with compact
support; of course, the solution u will then be a distribution. Indeed, if
IE £', we have

where C and C' depend only on the support of I, so I<. is a distribution.
Moreover, (LI<., f) = (I<., L' f) where L' is the operator with symbol P( -e),
so that (L'In-e) =P(oi<-e). Hence, as in the proof of Theorem (1.54),

since L(I{ * f) and l{ * LI are both equal to LI<. *1= 6 * I = I. These
relations can often be extended to !,s which are not compactly supported,
but the class of !,s for which they hold will depend on the nature of I<..
We shall see some specific examples in Chapters 2, 4, and 5.

Fundamental solutions are useful not only for producing solutions of
differential equations but also for studying their regularity properties. In
particular, we have the following important result.

A differential operator L with Coo coefficients is called hypoeIIiptic
if any distribution u on an open set n such that Lu is Coo on n must
itself be Coo on n, that is, if all solutions of the equation Lu = I must be
Coo wherever I is Coo. (The origin of this term is the fact that all elliptic
operators are hypoelliptic, a fact which we shall prove in Chapter 6.)

(1.58) Theorem.
If L is a differential operator with constant coefficients, the following are
equivalent:
a. Some fundamental solution for L is Coo on JRn \ {O}.
b. Every fundamental solution for L is Coo on JRn \ {O}.
c. L is hypoelliptic.
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Proof; If K is a fundamental solution for L, then LK =b is Coo on
JR" \ {O}, so (c) implies (b). (b) trivially implies (a), so it remains to show
that (a) implies (c). For this we need a lemma.

(1.59) Lemma.
Suppose f and 9 are distributions on JR", f is Coo on JR" \ {OJ, and 9 has
compact support. Then f * 9 is Coo on JR" \ (supp g).

Proof; Given x If; supp g, choose ( > 0 small enough so that B,(x)
and supp 9 are disjoint, and choose </J E Cg"(B'/2(0» such that q, = 1 on
B'/4(0). Then we can write

On the one hand, (1 - q,)f is a Coo function, so [(1 - q,)fl * 9 is Coo
everywhere. On the other hand,

supp[(</Jf) * g] C {x + Y: x E supp</J, y E suppg},

which is disjoint from B'/2(X). Hence, on B'/2(X), f *9 = [(1- q,)!J * 9 is
Coo. I

Returning to the proof of Theorem (1.58), let K be a fundamental
solution for L that is Coo on JR" \ {OJ. Suppose u is a distribution on an
open set °C JR" such that Lu is Coo on n. If x E 0, we pick ( > 0 so that
B,(x) C 0, and we shall show that u is Coo on B'/2(X).

Pick </J E Cg"(B,(x» with ¢ = 1 on B'/2(X). Then L(</Ju) = </JLu + tI

where tI =0 on B'/2(X) and outside B,(x). K * (¢Lu) is Coo since </JLu E
Cg", and K * v is Coo on B'/2(X) by Lemma (1.59). But by (1.57),

</Ju =[{ * L(</Ju) =K '" <jJLu + K * v,

so on B'/2(X), u =</Ju is Coo.

EXERCISES

1. Let L = L~ Cj (d/ dx)i be an ordinary differential operator with con­
stant coefficients. Let v be the solution of Lv = 0 satisfying v(O) =
... = v(k-2)(0) = 0, v(k-1)(O) = c;1. Define K(x) = 0 if x :s 0,
K(x) =vex) if x> O. Show that K is a fundamental solution for L.
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2. Show that the characteristic function of {(x, y) : x > 0, Y > O} is a
fundamental solution for axay in ~2.

3. Show that I«x, y) = [271'i(x + iy)]-l is a fundamental solution for the
Cauchy-Riemann operator L = ax + i8y on ~ 2. Hint: if </J E C~,

Use Green's theorem to show that this equals

4. Suppose L is a constant-coefficient differential operator. Modify the
proof of Theorem (1.58) to show that if there is a distribution I< that
is Coo away from the origin and satisfies LI< = Ii + f where f is Coo,
then L is hypoelliptic.
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Chapter 2

THE LAPLACE OPERATOR

For the next four chapters we depart from general theory to investigate
the great trinity of operators from mathematical physics: the Laplace,
heat, and wave operators. These operators are of fundamental importance
not only because of their applications but because they are archetypes of
more general phenomena; indeed, much of the theory of partial differential
equations as it now stands has its roots in the study of these operators.

We begin with what is perhaps the most important of all partial differ­
ential operators, the Laplace operator or Laplacian ~ on jR" defined
by

"
~ = 'Eoj = 'VI . 'VI.

1

It is useful to have a physical model in mind when thinking of ~, and per­
haps the simplest (among several) comes from the theory of electrostatics.
According to Maxwell's equations, an electrostatic field E in space (a vector
field representing the electrostatic force on a unit positive charge) is related
to the charge density in space, t, by the equation 'VI . E = t (provided the
units of measurement are properly chosen: one usually finds 411't in place
of f) and also satisfies curl E =O. (In n dimensions, curl E is the matrix
(Oi Ej - OJ Ei)') The second condition means that, at least locally, E is the
gradient of a function -u, determined up to an additive constant, called
the electrostatic potential. We therefore have ~u = -'VI. E = - f, so the
Laplacian relates the potential to the charge density. For more details, see,
e.g., Kellogg [31].

Throughout this chapter we assume implicitly that we are working in
jR" with n > 1. Much of the theory is valid also for n = 1 but becomes
more or less trivial there.
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A. Symmetry Properties of the Laplacian

The Laplacian is not only important in its own right but also forms the
spatial component of the heat operator Ot-t:J. and the wave operator o;-t:J..
Why is it so ubiquitous? The answer, which we shall now prove, is that
it commutes with translations and rotations and generates the ring of all
differential operators with this property. Hence, the Laplacian is likely to
turn up in the description of any physical process whose underlying physics
is homogeneous (independent of position) and isotropic (independent of
direction).

More precisely, to say that an operator L on functions on jR" commutes
with translations (rotations) means that L(JoT) = (Lf)oT for any trans­
lation (rotation) on jR". We also say that a function I on jR" is radial ifis
rotation-invariant (J 0 T = I for all rotations T). Thus I is radial precisely
when it is constant on every sphere about the origin, or equivalently when
I(x) depends only on IxI.

(2.1) Theorem.
Suppose L is a partial differential operator on jR". Then L commutes with
translations and rotations if and only if L is a polynomial in t:J. - that is,
L =L: aj t:J.j for some constants aj.

Proof: We leave it to the reader (Exercise I) to verify that L com­
mutes with translations if and only if L has constant coefficients, say
L = L:caoa . In this case, we have (LufW = p(e)!W where PCe) =
L: ca(21l' ie)a. Since the Fourier transform commutes with rotations (Propo­
sition (0.21», it follows easily that L commutes with rotations if and
only if P is radial. In particular, this is true when L = L: ajt:J. j , i.e.,
pee) = L: aj(21l'i leI)2j . On the other hand, since composition with linear
maps preserves homogeneity, P is radial if and only if each homogeneous
piece Pj(e) = L:1al=j ca(21l'ie)a is radial. But this means that each Pj
depends only on leli since it is homogeneous of degree j we must have
PjCe) = bj(21l'ilel)j for some constant bj , and since Pj is a polynomial we
must have bj = 0 when j is odd. In short, pee) = L: b2j (21l'i1W2j, so

=L:b2j t:J.
j

.

Since the Laplacian commutes with rotations, it preserves the class of
radial functions, on which it reduces to an ordinary differential operator
called the radial part of the Laplacian. For future reference, we compute
it explicitly.
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EXERCISES

G8 Chuptcr 2

B. Basic Properties of Harmonic Functions

I

" " [x2 2 ]b.f(x) ;:::: :L: 8; [Xj ¢I(r)] ;:::::L: -t¢II(r) + !<jJ/(r) _ x~ ¢'(r)
1 r 1 r r r

n 1
;:::: <p"(r) + -<p'(r) - -¢'(r).

r r

Proof: Since 8r/8xj ;:::: xj/r, we have

A C 2 function u on an open subset ofIR" is said to be harmonic if b.u ;:::: o.
(We shall soon see, in Corollary (2.20), that the hypothesis u E C 2 can be
relaxed without changing anything.) We proceed to derive some of the
basic properties of harmonic functions. In what follows, we will need to
integrate over various hypersurfaces S that are boundaries of domains 0
in lR"; dO' will denote the surface measure on S and II will denote the unit
normal vector field on S pointing out of o.

Proof: b./;:::: 0 means that q,"(r)j¢'(r) = (l-n)/r. Integration gives
logq,'(r) ;:::: (I - n)logr + loge, or <p'(r) ;:::: cr1-". One more integration
yields the desired result. I

1. Show that a differential operator L on IR" commutes with translations
if and only if L has constant coefficients. (Hint: consider the action of
L on the monomials xC< .)

2. Show that the wave operator 8; - 8; on IR 2 commutes with the Lorentz

transformations (hyperbolic rotations) T9 ;:::: (~f:~: ~:::~:) (() E lR).

(2.3) Corollary.
If I(x) = ,per) is a radial function on lR", then I satisnes b.f;:::: 0 on lR"\ {O}
if and only if ,per) ;:::: a + br2-" (n =F 2) or ,per) ;:::: a + blog r (n;:::: 2), where
a and b are constants.

(2.2) Proposition.
If f(x);:::: <p(r) where x E IR" and r;:::: lxi, then

b.f(x) ;:::: ¢/(r) + n - 1<p'(r).
r

I

I

I
I
I

I

I
I
I
I
I
I
I
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(2.4) Green's Identities.
Ifn is a bounded domain with smooth boundary 5 and u, v are C 1 functions
on TI, then

(2.5) hv{)vUdU= k(Vl!J.u+VV.VU)dX,

(2.6) h(v{)vu-U{)vV)dU= k(vl!J.U-Ul!J.V)dX.

Proof: (2.5) is just the divergence theorem (0.4) applied to the vector
field vVu. (2.6) follows from (2.5) by interchanging U and v and then
subtracting. I

(2.7) Corollary.
If U is harmonic on n then Is 8v u du = O.

Proof: Take v = 1.

The following theorem states that the value of a harmonic function at
a point is equal to its mean value on any sphere about that point. Here
and in what follows, W n denotes the area of the unit sphere in IRn (see
Proposition (0.7»:

27rn / 2

W
n = f(n/2)'

(2.8) The Mean Value Theorem.
Suppose u is harmonic on an open set n. If x E nand r > 0 is small
enough so that Br (x) en, then

u(x) =~ f u(y) du(y) = 2- f u(x + ry) du(y).
r wn } Sr("') W n }s,(O)

Proof: We first remark that the second equality follows from the
change of variable y ...... x + ry, and that by composing with a transla­
tion we may assume that x = O. To prove the first equality, then, we
use Green's identity (2.6), where we take u to be our harmonic function,
v(y) = lyl2-n if n i= 2 or v(y) = log Iyl if n = 2, and n = Br(O) \ B«O)
where 0 < f < r. By Corollary (2.3), v is harmonic in n, and by (0.1),
{)vv is the constant (2 - n)r1- n on 5 r (0) and the constant -(2 - n)fl-n

on 5«0). (The minus sign is there because the orientation of 5«0) is the



I
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opposite of the usual one, and the factor (2 - n) should be omitted when

n = 2.) Thus, by (2.6),

0= [ (v8u u - u8u v) dcr- [ (v8u u - u8u v) dcr
} s.(O) } S,(O)

=r2-n [ 8u u dcr + €2- n [ 8u u dcr
} s.(O) } S,(O)

_ (2 _ n)r1- n [ Udcr + (2 - n)€l-n [ u dcr,
) s.(O) } S,(O)

with suitable modifications when n = 2. By Corollary (2.7), the first two

terms in the last sum vanish. so

1 1 1 1___ u dcr =--- u dcr.
rn-1Wn S.(O) fn-1Wn S,(O)

But u is continuous, so the right hand side, being the mean value of u on

S,(O). converges to u(O) as € -> O. I

(2.9) Corollary.
If u, 0, and r are as above,

u(x) = -;- [ u(y) dy =.2:. [ u(x + ry) dy.
r Wn } B.(",) Wn } B,(O)

Proof: Multiply both sides of the equation

u(x) =2.. [ u(x+pry)dcr(y)
Wn }s,(O)

by pn-l dp and integrate from 0 to 1.

(2.10) The Converse of the Mean Value Theorem.
Suppose that u is continuous on an open set 0 and that whenever x E 0

and Br(x) C 0 we have

u(x) = 2.. [ u(x + ry) dcr(y).
W n }s,(O)

Then u E C""(O) and u is harmonic on O.
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Proof: Choose ¢ E e~(BI(O» such that I¢ = 1 and ¢(x) = tP(/xl)
for some tP E e~(IR). Given (> 0, set ¢,(x) = cn¢>(c1x) and 0, = {x:
B,(x) CO}. Then if x EO" the function y -> ¢>,(x - y) is supported in
0, and we have

j u(y)¢>,(x - y) dy = j u(x - y)¢>,(y) dy = r .u(x _ y)¢>«(-ly)(-n dy
JB.(O)

= r u(x - (y)¢(y) dy = r1 r u(x _ ny)tP(r)rn- 1du(y) dr
JB.(O) Jo Js.(O)

=wnu(x) f1tP(r)rn-1dr=u(x) t f ¢>(ry)rn-1du(y)dr
Jo Jo Js.(O)

= u(x) j ¢(y) dy = u(x).

In the first member of this string of equalities we can clearly differentiate
under the integral as often as we please, since ¢>, E ego. Conclusion:
u E eOO(O,), and since ( is arbitrary, u E COO(O). Finally, if x E 0.,
the mean value of u on Sr (x) is independent of r for r < (, so by the
substitution z = ry and Green's identity (2.5) (with v = 1),

O=dd r u(x+ry)du(y) = r y.Vu(x+ry)du(y)
r Js.(O) Js.(O)

= r (r-1z).Vu(x+z)r1-ndu(z)
Js.(O)

= r 1
-

n r {)~u du = r 1 - n f Au.
Js.(O) JB.(o)

Thus the integral of Au over any ball in 0 vanishes, so Au =0 in O.

(2.11) Corollary.
If u is harmonic on 0 then u E COO(O).

Proof: Apply Theorems (2.8) and (2.10) in succession.

(2.12) Corollary.

If {Uk} is a sequence ofharmonic functions on 0 which converges uniformly
on compact subsets of 0 to a limit u, then u is harmonic in O.

Proof: Since each Uk satisfies the hypotheses of (2.10), so does u.
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(2.13) The Maximum Principle.
Suppose 0 is a connected open set. If U is harmonic and real-valued on 0
and sUP",eo u(x) = A < 00, then either u{x) < A for all x E 0 or u(x) = A
for all x EO.

Proof: Clearly {x EO: u(x) = A} is relatively closed in O. But by
the mean value theorem, if u(x) = A then u(y) = A for all y in a ball about
x (otherwise the mean value on spheres about x would be less than A), so
this set is also open. Hence it is either 0 or 0. I

(2.14) Corollary.
Suppose 0 is compact. Ifu is harmonic and real-valued on 0 and continuous
on 0, then the maximum value of u on 0 is achieved on ao.

Proof: The maximum is achieved somewhere; if at an interior point,
u is constant on the connected component containing that point, so the
maximum is also achieved on the boundary. I

(2.15) The Uniqueness Theorem.
Suppose 0 is compact. If Ul and U2 are harmonic functions on 0 which
are continuous on 0 and Ul =U2 on ao, then Ul =U2 on O.

Proof: The real and imaginary parts of Ul - U2 and U2 - Ul are
harmonic on O. hence must achieve their maxima on ao; these maxima
are therefore zero, so Ul =U2.

The mean value theorem pertains only to harmonic functions, but the
maximum principle and its corollaries are valid for solutions of much more
general partial differential equations. See Protter and Weinberger [40],
Miranda [37], and Exercises 3 and 4.

(2.16) Liouville's Theorem.
If U is bounded and harmonic on jRn, then u is constant.

Proof: For any x E jRn and R> lxi, by Corollary (2.9) we have

lu(x)-u(O)1 =--;-1 r u(y) dy - r u(y) dyl ~ --;-lIulloo j dy,
R W n JBR("') } BR(O) R W n D
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where D is the symmetric difference of the balls BR(x) and BR(O). D is
contained in the set where R - Ixl < Iyl < R + lxi, so

n 1 n l R
+''''lu(x) - u(O)1 :::; ~Rn lu/l oo dy =--;;-/Iull oo rn- 1 dr

W n R-I"I<IYI<R+I"I R R-I"I

= /Iull oo (R + Ix1t;.(R - Ixl)n ,

which vanishes as R -> 00. Hence u(x) =u(O).

EXERCISES

1. Prove the maximum modulus principle for complex harmonic functions:
If u is harmonic on n and continuous on IT, the maximum value of lui
on IT is achieved on an. (Hint: If lui achieves its maximum M at Xo
then u(xo) =ei8 M; consider v =Re(e- i8 u).)

2. Suppose u E C 2(n) and x E n. Show that

ilu(x) = lim 2~ [2- f u(x + ry) dO'(y) - U(x)].
r-O r Wn lS1(0)

This gives another proof of the converse of the mean value theorem for
C2 functions. (Hint: Consider the second-order Taylor polynomial of u

about x. By symmetry considerations, f5
1
(0) Xj = f5

1
(0) XjXk = 0 for

j f. k and fS1(0)X~ = n-
1

fs 1(0) l:~ xJ = n- 1 f5
1
(0) 1.)

3. Here is another proof of Corollary (2.14) that works for more general
operators. Let 0 be a bounded domain in jRn, and let

where ajk and bj are continuous functions on IT and the matrix (ajk)
is positive definite on IT.
a. Show that if v E C 2(0) is real-valued and Lv > 0 in 0, then v

cannot have a local maximum in O. (Hint: Given Xo E n, by a
rotation of coordinates one can assume that the matrix (ajk(xO» is
diagonal [ef. the discussion of coordinate changes in §1A).)

b. Show that if Xo ¢: IT and M > 0 is sufficiently large, then w(x) =
exp[-M/x - xol2] satisfies Lw > 0 in O.

c. Suppose u E C 2(0) n C(IT) is real-valued and Lu = 0 in O. Show
that maxITu = maxan u. (Hint: Show that this conclusion holds
for v =u + (w where w is as in (b) and (> 0.)



I
I
I
I
I
I
I

I
I
I
I
I
I
.'~

I

74 Chapter 2

4. Let L be as in Exercise 3, and let M u = Lu+c(x)u where c is continuous
and nonpositive on O.
a. Assume u E C2(0) n C(O). By modifying the argument of Exercise

3, show that if u 2: 0 and Mu = 0 in 0 then ma.x:nu = maxan u.
b. Show that the uniqueness theorem (2.15) holds for M: if Ul and U2

are solutions of M u =0 on 0 and Ul = U2 on 00 then Ul = U2 in
O. (Hint: Consider 0' = {x EO: Ul - U2 > O}.)

c. Show that this conclusion may fail if c > O. (Make life simple: take
L =(d/dx)2 on JR.)

5. The only distributions whose support is {OJ are the linear combinations
of the point mass at 0 and its derivatives (Folland [14], Rudin [41]).
Use this fact to prove a generalization of Liouville's theorem: If u is
harmonic on JRn and lu(x)1 ::; C(1 + Ixl)N for some C, N > 0, then u
is a polynomial. (Hint: The estimate on u implies that u is tempered
and so has a Fourier transform.)

6. Suppose u is a harmonic function on a disc DC JR2. Show that there
is a harmonic function v on D, uniquely determined up to an additive
COllstant, such that O"tl = -OyIL and OyV :;:: OxIL. Show also that w =
u + iv is holomorphic on D, i.e, satisfies the Cauchy-Riemann equation
(ax + iay)w = o. (Hint: One way to define v is via line integrals of the
differential form (a"u) dy - (ayu) dx.)

C. The Fundamental Solution

In this section we compute a fundamental solution for the Laplacian and
give some applications.

One way to find a fundamental solution is by Fourier analysis. Since
(~t1nO = -41T21~12u(O, on a formal level the inverse Fourier transform of
[_41T21~12]-1should be a fundamental solution. When n > 2, this is exactly
correct: 1~1-2 is integrable near the origin by (0.5), so it defines a tempered
distribution whose inverse Fourier transform is a fundamental solution. A
similar result holds for n = 1 and n = 2 provided one "renormalizes" 1~1-2

so as to make it a tempered distribution. We shall show how this works,
and more generally how to compute the Fourier transforms of distributions
of the form I~I-a, in §4B.

However, a more elementary way to obtain a fundamental solution is
as follows. Since the Laplacian commutes with rotations, it should have
a radial fundamental solution, which must be a function of Ixl that is
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harmonic on jRn \ {OJ. By Corollary (2.3), such a function must be of
the form a+ blxl 2- n if n i= 2 or a+ blog Ixl if n = 2. (Note that these
functions are locally integrable by (0.5), so they define distributions.) Since
the constant function a is harmonic even at 0, it contributes nothing and
can be omitted. It remains to show that the constant b can be chosen so
as to obtain a fundamental solution, and here is the result.

(2.17) Theorem.
Let

(2.18) N(x) = Ix l
2

-

n

(n > 2);
(2 - n)wn

Tilen N is a fundamental solution for A.

1
N(x) =-log Ixl (n =2).

211'

Proof: The standard way to prove this result is via Green's identities,
and we invite the reader to perform this calculation (Exercise 1). Here we
shall adopt a different method whose computations will be used again later.
Namely, for f > 0 we consider a smoothed-out version N' of N,

where
vJ(x) = AN1(x) =nw;l(lxl2+ 1)-(n+2)/2.

Also, AN'(-x) = AN'(x). Hence, by Theorem (0.13),

(AN',</» =JAN'(-x)</>(x)dx=</>*AN'(O)-+a</>(O),

where a = J1/;(x) dx. But by integration in polar coordinates and the
substitution s = r2/(r 2+ 1), ds =2rdr/(r2+ 1)2,

j vJ(x) dx = n100

(r 2+ 1)-(n+2)/2r n-1 dr = ~11
s(n-2)/2 ds = 1,

and the proof is complete.

(n> 2);

(n = 2).

(2.19)

(lxl2 + (2)(2-n)/2
N' (x) =""'-:"""""_""--­

(2 - n)wn

N'(x) = log(lxl
2 + (2)

11'

N' -+ N pointwise as f -+ 0, and N' and N are dominated by a fixed locally
integrable function for f ~ 1 (namely, INI when n > 2, or Ilog Ixll + 1 when
n = 2), so by the dominated convergence theorem, N' -+ N in the topology
of distributions when f -+ O. Hence we need to show that AN' -+ 6 as
f -+ 0, i.e., that (AN', </» -+ </>(0) for any </J E C~.

A simple calculation using (2.2) shows that

AN'(x) =nw;1 f 2(1xl2+ (2)-(n+2)/2 =f-nvJ(f-1 x),
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~[J *N] =lim~[(Xrf) *N] =limxrI = f.

(2.21) Theorem.
Suppose that f E Ll(JR."), and that f If(y)llog Iyl dy < 00 in case n =2.
Then f *N is well-defined as a locally integrable [unction, and ~(J*N)= f.

I

N(x, y) = N(x - y).

Proof: Apply Theorem (1.58).

(2.22)

Proof: We assume n > 2 and leave the case n = 2 to the reader. Let
Xr be the characteristic function of Br(O). Then by (0.5), X1N E L1 and
(1 - X1)N E LOO (in fact, X1N E LP for p < n/(n - 2) and (1- Xl)N E LP
for p > n/(n - 2», so f * (XlN) E L1 and f * [(1- Xl)N] E Loo. Moreover,
Xrf -+ f in L1 as r -- 00, so (Xr/) * (X1N) -- f * (X1N) in L1 and
(Xd)*[(l-xdN]-- f*[(1-X1)N] in Loo . In particular, Xrfand (Xd)*N
converge respectively to / and f *N in the topology of distributions. Thus,
since Xrf has compact support,

Another interesting application of the fundamental solution N is the
following representation of a harmonic function on a domain n in terms of
its Cauchy data on an. For this purpose it is convenient to regard N as a
function of two variables x, y E JR." by the formula

(2.20) Corollary.
~ is hypoelliptic: that is, if u is a distribution such that ~u E COO (0),
then u E COO(O). In particular, every distribution solution of~u =0 is a
harmonic function.

When we differentiate N(x, y), we shall indicate whether the differentiation
is with respect to x or y by affixing the subscript x or y to the derivative;
e.g., a; N(x, y).

Our name N for the fundamental solution is in honor of Newton, since
for n = 3 N is the Newtonian potential, i.e., the gravitational potential
generated by a unit mass at the origin. In terms of electrostatics, N is
the Coulomb potential, i.e., the electrostatic potential generated by a unit
negative charge at the origin.

We can now solve the inhomogeneous Laplace equation ~u = f for
any distribution f of compact support - namely, U =f *N. In fact, this
formula also works for functions f without compact support provided they
satisfy conditions to ensure convergence of the appropriate integrals. Here
is a representative ·result along these lines:

I

I

I

I
I

I

I
I
I
I
I
I
I
I
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(2.23) Theorem.
Let n be a bounded domain with Cl boundary S. lEu E Cl(n) is harmonic
in n, then

(2.24) u(x) = is [u(y)ov.N(x, y) - ovu(y)N(x, y)] du(y) (x En).

Proof: Let N«x, y) = N«x - y), the N< on the right being defined
by (2.19). Since Au =0 in n, by Grecn's idcntity (2.6) we have

Lu(y)AvN'(x, y) dy = is [u(y)ov.N'(x, y) - ovu(y)N'(x, y)] du(y).

The formula (2.24) suggests that we might try to solve the Cauchy
problem

(2.27) Theorem.
1£ f is analytic on an open set n c jR" and u is a distribution on n such
that Au = I, then u is analytic on n.

As i -+ 0, the right side of this equation tends to the right side of (2.24)
for each x E n. (Since x '# y for x E nand yES, the singularities of N
do not appear here.) On the other hand, the left side is just u * (AN<)(x)
if we set u = 0 outside n, so the proof of Theorem (2.17), together with
Theorem (0.13), shows that u * (AN<)(x) -+ u(x) as i -+ 0 for x En. I

u = f and ovu =9 on S,Au =0 on n,

u(x) = is [f(y)ov.N(x, y) - g(y)N(x, y)] du(y).(2.26)

by the formula

(2.25)

This won't work in general, for we know by the uniqueness theorem (2.15)
that the solution of (2.25) (if it exists) is completely determined by I alone.
The function u defined by (2.26) will be harmonic in n, since N(x, y) and
ov.N(x, y) are harmonic functions of x E n for YES, but it will not
have the right boundary values unless I and 9 are related by a certain
pseudodifferential equation on S. (See §4B, where a special case is worked
out.)

As a consequence of Theorem (2.23), we obtain the analytic version of
Corollary (2.20).
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(2.28) Theorem.
Suppose k 2: 0, 0 < a < 1, and 11 is an open set in R n

• If f E CH"'(11)
and u is a distribution solution of ~u = f on 11, then u E C k+H"'(11).

(x E B).v(x) =l [v(y)ov. N(x, y) - ovv(y)N(x, y)J du(y)

After Corollary (2.20) and Theorem (2.27), it is natural to ask what
one can say about the smoothness of solutions of ~u =f when f has only
a finite amount of differentiability. The simplest guess would be that if f E
C k (11) then u E C k+2(11), but this turns out to be false (except in the one­
dimensional case, where it is trivially true). However, analogous results are
valid if one replaces Ck (11) by slightly more sophisticated function spaces.
One option is to replace continuous derivatives by £2 derivatives, and we
shall explore this in §6B. Another is to consider the Holder spaces CH"'(11).
We have the following result, due to Holder himself:

Proof: It suffices to establish the case k =0, since ~(afJu) =afJ f. It
then suffices to prove that if f E C"'(11) then u E CH"'(11/) for any open 0/
with compact closure in 11. Given such an 11', pick t/J E C~(11) such that
t/J = 1 on 11', and let 9 = ,pf. Then ~(g *N) = ,pf = f on 11', so u - (g *N)
is harmonic and hence Coo on 11'. It is therefore enough to prove that if 9

is a COl function with compact support, then 9 * N E CH"'. This we now
do.

To this end, we consider the regularized kernel Nt defined by (2.19)

But for yES the functions N(x, y) and ov. N(x, y) extend to holomorphic
functions of the complex variable x in the region where IRe x - XoI < r /4
and IImxl < r/4. (In the definition (2.18) of N, simply interpret Ixl
as [L: xJ]1!2.) It follows that v(x) extends holomorphically to the same
region, since one can pass complex derivatives under the integral sign. In
particular, v is analytic on Br!4(XO), and hence so is u =v + u'. I

Proof: We already know that u E COO(11), and it suffices to show
that for each Xo E 11, u is analytic in a neighborhood of Xo. By the
Cauchy-Kowalevski theorem we can find an analytic function u' defined on
some ball Br(xo) C 11 and satisfying ~u' = f there. Let B = B r!2(XO),
S = Sr!2(XO), and v = u - u/. Then v E COOCH) and ~v = 0 on B, so by
Theorem (2.23),

I
I

I

I
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I
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and its derivatives

(i 1= j),
(i = j).

9 * N' E Coo since N' E Coo, and we have &j (g * N') = g * NJ and
&j&j(g *N') =9 *N j}. We also need the pointwise limits of Nf and N j} as
f -+ 0:

Nj(x) = w;;-lxjlxl-n,

{
-nw;;lxjx'lxl-n-2 (i 1= j),

Njj(x) = w;;-1(lxI2 _)nx])lxl-n-2 (i = j).

Let Xl be the characteristic function of B l (0) as in the proofof Theorem
(2.21). Then X1N' -+ X1N in Ll and (1- Xl)N' -+ (1- XdN uniformly
(uniformly on compact sets in case n = 2). Since 9 is bounded with compact
support, it follows easily that 9 * N' -+ 9 * N uniformly (on compact sets),
so 9 * N is continuous. Likewise, XlNJ -> X1Nj in Ll and (1 - xdNJ -+

(1 - Xl )Nj uniformly, so 9 * NJ -+ 9 * Nj uniformly. This also shows
that Nf -+ Nj in the topology of distributions, so the locally integrable
function Nj is the distribution derivative &j N, and hence &j (g *N) =9*Nj
is continuous.

This simple argument does not work for the second derivatives, because
the functions Njj are not locally integrable at the origin; this follows from
(0.5) since they are all homogeneous of degree -no We must take more
care to see what happens to 9 * N i} as f -+ O.

Let us consider first the case i 1= j. The functions N j} and their limit
Njj are odd functions of Xj (and Xj), and it follows that their integrals over
any annulus a < Ixi < b vanish. For f > 0 we can even take a = 0, and we
have, for any b > 0,

9 * Njj(x) =Jg(x - y)Njj(y)dy - g(X)l Njj(y)dy
Iyl<b

= r [g(x- y)-g(x)]Njj(y)dy +l g(x-y)Njj(y)dy.
J1yl<b Iyl>b

Now we can let f -+ 0 to obtain

limg*Njj(x) = r [g(x- y)-9(X)]Njj (y)dy +1. g(x-y)Njj(y)dy.,_0 J1yl<b Iyl>b

This works because

Hg(x - y) - g(x)]N;j(y)1 ::; Hg(x - y) - g(x)]Njj(y)1 ::; Clyla-n,
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which is integrable on IYI < b, so the dominated convergence theorem can
be applied and the limiting integrals are absolutely convergent. In fact, the
convergence is uniform in x since these estimates are, so that 8,8j (g *N)
is continuous. Moreover, since b is arbitrary, we can let b -+ 00 to obtain

8,8j(g * N)(x) = lim 1. [g(x - y) - g(x)]N'j(y)dy.
b-oo Iyl<b

A similar result holds for i = i. We have

N~.(x) = _1_1/J(f- 1X) + N~.(x)
1J nfn 1J '

where 1/J is as in the proof of Theorem (2.17) and

Now, the integral Ij of Nh(Y) over an annulus a < Iyl < b, like that
of N/j with i i= i, vanishes. The reason is that Ij is independent of i
by symmetry in the coordinates, so nIj is the integral of E~ Nl;; but

E~ Nh ::;; O. Hence, the preceding argument, together with the proof of
Theorem (2.17), shows that 8J(g *N) is continuous and that

8J(g * N)(x) =~g(x) + lim r [g(x - y) - g(x)]Njj(Y) dy.
n b-oo J1Y1<b

At this point we have shown that 9 * N E C 2 , and the proof will be
completed by establishing the folIowing general result and applying it to
the kernels K =Nij.

(2.29) Theorem.
Let I< be a C 1 function on IRn \ {O} that is homogeneous of degree -n
(I«rx) = r-n I«x) for r > 0) and satisfies Ja<lyl<b K(y) dy = 0 for all
a, b > O. If9 is a COt function with compact support (0 < a < 1), then the
function

hex) = lim 1 [g(x - z) - g(x)]I«z) dz
b-oo Izl<b

belongs to COt.

Proof: h is welI-defined by the argument given above for the case
I< = N'j. Given y E IRn, we wish to estimate hex + y) - hex). Let us write
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We have

for all x, and hence

h2(x + V) - h2(x)

= lim r [g(x - z) - g(x)][I«z + V) - I«z)] dz
b--+oo J3IY1 <lzl<b

+ lim E1(b) + E 2 ,b--+oo

so

(2.30)

hI (x) = f [g(X-Z)-g(x)]I«z)dz,
J1Z 1<31YI

h2(x) = lim f [g(x - z) - g(x)]I«z) dz.
b_oo J3IYI<lzl<b

On the other hand,

h2(x + V) = lim f [g(x + V - z) - g(x)]I«z) dz
b--+oo J3IYI<lzl<b

= lim f [g(x - z) - g(x)]I«z + V) dz,
b--+oo J3IY1 <lz+YI<b

where E1(b) and E 2 are errors coming from the disparity in the regions
of integration. E1(b) is the error coming from the symmetric difference
between the regions Izi < band /z + vi < b, which is contained in the
annulus b --+ lv/ < Izi < b + Ivl· Assuming b~ Iv/' in this annulus we have
Izi ~ Iz + vi ~ b, so 1I«z)1 :S Cb-n and 1I«z + v)1 :S Cb- n . Hence E1(b)
is dominated by

1 IIglioob-n dz = CslIglioob-n[(b + IvDn --+ (b -lvDn],
b-IYI<lzl<b+IYI

which vanishes as b -+ 00. E 2 is the error coming from the symmetric
difference of the regions Izi > 31yl and Iz + yl > 31y/' which is contained in
the annulus 21yl < /zl < 41yl· In this annulus we have Izl ~ Iz +vi ~ Iyl, so

IE2 1 :S C4 r IYI-n+" dz =Cs/yl".
J2IYI<lzl<4IYI
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Finally, to estimate the main term in (2.30), we observe that for Izi > 31vl,

1I«z + V) - I«z)l =ItV' V' K(x + tV) dtl ~ Ivl sup IV'K(x + ty)j.Jo O$l~l

Since K is homogeneous of degree -n, \1K is homogeneous of degree -n-l,
so

1I«z+y)-K(z)l ~ CslYI sup Iz+tyl-n-l ~ C7lyllzrn
-

1

0$19

Hence the main term in (2.30) is bounded by

C81 Izl"'lyllzrn
-

1 dz =Cglyl roo r",-2 dr =ClDlyl"'.
lzl>3lYI J31YI

(Note that the condition IX < 1 is needed here.) Combining all these
estimates, we have Ih(x + y) - h(x)1 ~ Clyl'" as desired. I

Theorem (2.28) remains valid if A is replaced by an arbitrary elliptic
operator L with smooth coefficients. (If L is of order m, the theorem is that
if Lu E ck+a then u E cHm+",.) The proof may be found in Stein [46,
§VI.5] or Taylor [48, §XI.2]. However, the essential ideas for this general
result are all contained in the arguments above.

EXERCISES

1. Theorem (2.17) is equivalent to the assertion that (N,A¢) = ¢(O) for
any 4> E C,:". Prove this by applying Green's identity (2.6) with u =N,
v =4>, and n = Br(O) \ B.(O), where r is large enough so that supp ¢ C
Br (0).

2. Show that the formula (2.18) for N in the case n > 2 also yields a
fundamental solution for A =(d/dx)2 in the case n = 1. (The proof of
Theorem (2.17) works for n =1, but a simpler argument is available.)

3. Work out the proof of Theorem (2.21) for the case n = 2.

4. Generalize Theorem (2.21) for n > 2 to include f in other LP spaces.

5. Show that the following function is a fundamental solution for A 2 on
IR":

Ixl4-
n

( ) (n;i: 2,4);2(4 - n) 2 - n W n

-loglxl Ixl2 10glxl
(n=4); (n=2).

4W4 8~
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Can you generalize to find fundamental solutions for higher powers of
.6.?

6. Show that (41l'Ixl)-le- c1xl is a fundamental solution for -.6.+c2 (c E C)
on 1l~.3.

7. Show that Theorem (2.23) remains valid if the hypothesis that u is
harmonic is replaced by the hypothesis that u E C 2 (IT) and the term
In N(x, y).6.u(y) dy is added to the right side of (2.24). Show also that
this result remains valid if N is replaced by N - c, for any constant c.

8. Suppose u is a C 2 function on an open set n. Apply the result of
Exercise 7, with n replaced by Br(x) and with c =r 2

-
n /(2 - n)wn , to

show that if Br(x) C n,

1 [Ix yl2-n r 2
-

nj 1 1
u(x) = -(2 )- .6.u(y) dy + --;::r u(y) du(y).

Br(x) - n Wn wnr Sr(X)

(Here we assume n > 2; a similar formula holds for n = 2.) Combining
this with Exercise 1 in §2B, conclude that if u E C 2 (n) is real-valued,
then u has the "sub-mean-value property"

1 1 -u(x):S --;::r u(y)du(y) whenever Br(x) C n
wnr Sr(X)

if and only if.6.u 2: 0 in n. Functions with this sub-mean-value property
are called subharmonic.

D. The Dirichlet and Neumann Problems

In this section we begin a study of boundary value problems for the Lapla­
cian. The two most important problems, to which we shall devote most of
our attention, are the so-called Dirichlet and Neumann problems. Through­
out this discussion, n will be a domain in IR n with smooth boundary S.

The Dirichlet Problem: Given functions f on nand 9 on S, find a
function u on IT satisfying

TIle Neumann Problem: Given functions f on nand 9 on S, find
a function u on IT satisfying

(2.31)

(2.32)

.6.u =f on n,

.6.u = f on n,

u =9 on S .

Ovu =9 on S.



I
84 Chapter 2

r 1= r Ati = r ov tl = r g,In' JOI Jao' Jao l

which imposes a restriction on I and g.

The Dirichlet problem is easily reduced to the cases where either 1= 0
or g =O. Indeed, if we can find functions v and w satisfying

v = 0 on 5,

w =v' on 5,

v =0 on 5,

w =g on 5,

Av = I on n.
Atu =0 on n.

Aw = 0 on n.

Av = A'g on n,

(2.33)

(2.34)

and take v = v' - w. Henceforth when we consider the Dirichlet problem
we shall usually assume either that f = 0 or that g = O.

Similar remarks apply to the Neumann problem: it splits into the cases
f = 0 and g = 0, and these are roughly equivalent. To derive the analogue

and take tI =g - v. On the other hand, suppose we can solve (2.34) and
wish to solve (2.33). Extend I to be zero outside n and set v' =1* N, so
that AV' =I. We then solve

then tI = v+w will satisfy (2.31). Moreover, the problems (2.33) and (2.34)
are more or less equivalent. Indeed, suppose we can solve (2.33) and wish
to solve (2.34). Assume that g has an extension g to TI which is C2 ; then
we can find v satisfying

Of course, we should be more precise about the smoothness assumptions
on I, g, and tI, and if n is unbounded we shall want to impose conditions on
their behavior at infinity. However, for the time being we shall work only
on the formal level and assume that n is bounded. We shall not, however,
assume that n is connected. (This added generality is only rarely useful,
but it makes the theory in Chapter 3 turn out more neatly.)

The uniqueness theorem (2.15) shows that the solution to the Dirichlet
problem (ifit exists) will be unique, at least if we require tI E C(TI). For the
Neumann problem uniqueness does not hold: we can add to tI any function
that is constant on each connected component of n. Moreover, there is an
obvious necessary condition for solvability of the Neumann problem: if tI

satisfies (2.31) and n' is a connected component of n, by Green's identity
(2.5) (with v = 1) we have

I
I

I
I

I
I
I
I
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of (2.34) from that of (2.33), we assume that there exists 9 E C2(IT) such
that ovg = g on S and solve

l!t.v = l!t.g on n, Ovv =0 on S.

To go the other way, we set Vi = f * N and solve

l!t.w =0 on n, OvW =ovv' on S.

There are many approaches to the Dirichlet and Neumann problems,
and we shall investigate several of them. This is instructive because the
various methods yield somewhat different results, and also because the
techniques involved are applicable to other problems. In fact, we shall
solve the Dirichlet problem by Dirichlet's principle (§2F), layer potentials
(Chapter 3), and L2 estimates (Chapter 7), and the last two methods will
also solve the Neumann problem. In addition, we shall obtain explicit
solutions on a half-space (§2G) and a ball (§2II). At this point, we sketch
yet another approach - still on the formal level - using the notion of
Green's function.

E. The Green's Function

The Green's function* for the bounded domain n with smooth boundary
S is the function G(z, y) on n x IT determined by the following properties:

i. G(z,') - N(z,') is harmonic on n and continuous on IT, where N is
defined by (2.22) and (2.18), and

ii. G(z,y) =0 for each zEn and yES.
Clearly G is unique: for each zEn, G(z,') - N(z, -) is the unique solution
of the Dirichlet problem (2.34) with g(y) =-N(z, y). Thus if we can solve
the Dirichlet problem, obtaining a continuous solution from continuous
boundary data, we can find the Green's function.

(Green himself gave a simple physical "proof" of the existence of G.
Let S be a perfectly conducting shell enclosing a vacuum in n, and let S
be grounded so the potential on S is zero. Let a unit negative charge be
placed at zEn. This will induce a distribution of positive charge on S to
keep the potential zero, and G(z, y) is the potential at y induced by the

* The ubiquitous use of uGreents function" rather than the more grammatical UGreen

function" is an example of what Fowler [19] called lleast..iron idiom."
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charges at x and on S. Unfortunately, to impart mathematical substance
to this argument is a decidedly nontrivial task.)

On the other hand, if we can find the Green's function, we obtain simple
formulas for the solution of the Dirichlet problem. To see how this works,
we shall have to make some assertions which we are not yet able to prove.

(2.35) Claim.
Let n be a bounded domain with Coo boundary S. The Green's function
G for n exists, and for each x E n, G is Coo on IT\ {x}.

Granting this claim, we have:

(2.36) Lemma.
G(x,y) =G(y,x) for all x,y E n.

Proof: Given x and y, set u(z) =G(x, z) and v(z) =G(y, z). Then
t.u(z) =6(x - z) and t.v(z) =6(y - z) where 6 is the Dirac distribution,
so a formal application of Green's identity (2.6) yields

G(x, y) - G(y, x) = l [G(x, z)6(y - z) - G(y, z)6(x - z») dz

=1[G(x, Z)Ov,G(y, z) - G(y, Z)Ov,G(x, z») dO'(z) =0,

since G(x, z) =G(y, z) =0 for z E S. This argument may be made rigorolls
by replacing G by G - N +N' and letting ( -+ 0 as in the proof of Theorem
(2.23), or alternatively by excising small balls about x and y from nand
letting their radii shrink to zero as in the proof of the mean value theorem.
Details are left to the reader. I

Because of this symmetry, G may be extended naturally to IT x IT by
setting G(x, y) =0 for xES. Also, G(·, y) - N(·, y) is a harmonicfunction
on n for each y.

Now, to solve the inhomogeneous equation with homogeneous boundary
conditions (2.33), we set f = 0 outside n and define

v(x) =in G(x, y)f(y) dy = f * N(x) + L[G(X, y) - N(x, y)Jf(y) dy.

The Laplacian of the first term on the right is f, and the second term is
harmonic in x. Also, v(x) =0 for xES since the same is true of G(x,-).
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Next, consider the homogeneous equation with inhomogeneous bound­
ary conditions (2.34). We assume that 9 is continuous on S, and we wish
to find a solution w which is continuous on IT. We can reason as follows:
suppose the solution w is known, and suppose that wE Cl(IT). Applying
Green's identity (2.6) (together with some limiting process as in the proof
of Lemma (2.36», we obtain

w(x) = Lw(y)t5(x, y) dy = L[w(y)AyG(x, y) - Aw(y)G(x, y)] dy

=1w(y)aVyG(x,y)dcr(y)

for x E fl, since G(x, y) = 0 for yES. This formula represents won fl in
terms of its boundary values on S.

Therefore, the obvious candidate for the solution of (2.34) is

(2.37)

Since aVyG(x, y) is harmonic in x and continuous in y for x Efland yES,
it is clear that w is harmonic in fl.

(2.38) Claim.
If 9 E C(S) and w is defined by (2.37) on fl, then w extends continuously
to IT and w = 9 on S.

The function aVy G(x, y) on fl x S is calleed the Poisson kernel for fl,
and (2.37) is called the Poisson integral formula for the solution of the
Dirichlet problem.

As mentioned above, we shall force the Dirichlet problem into submis­
sion by other met.hods, and aft.erwards, in §7H, we shall return to this
discussion and prove Claims (2.35) and (2.38). (We shall also verify them
directly for the unit ball in §2Il.)

EXERCISES

1. Complete the proof of Lemma (2.36).

2. Show that the Green's function for (d/dx)2 on (0,1) is G(x,y) =
x(y - 1) for x < y, G(x, y) =y(x - 1) for x > y.
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F. Dirichlet's Principle

Given a bounded domain fl with smooth boundary S, we define the Her­
mitian form D on Cl(n) by

D(u, v) =k V'u· V'v.

D(u, u) = In lV'ul2 is the so-called Dirichlet integral of u; physically it
represents the potential energy in fl of the electrostatic field -V'u.

We note that u -> D(u, u)1/2 is a seminorm on Cl(n), and D(u, u) =0
if and only if u is constant on each connected component of fl. Let H1(fl)
be the completion of C1(n) with respect to the norm

[ ]

1/2
lIull(l) = D(u, u) +k1ul2

Hl(fl) can be regarded as a subspace of L 2(fl), consisting of functions
u E L2 (fl) whose distribution derivatives OjU are also in L2 (fl), and it is
a Hilbert space with inner product (u Iv)(l) = D(u, v) + In uV. We shall
study it in more detail in §6E.

(2.39) Proposition.
There is a constant C> 0 such that Is lul2 ::; ClIulltl) (or all u E Cl(n).

Proof: Extend the normal vector field v on S in some smooth fashion
to be a vector field on n. (For example, extend it to a neighborhood of
S by making it constant on each normal line to S, then multiply it by a
smooth cutoff function.) By the divergence theorem (0.4),

[ lul 2 = [(luI2v). V = t 1OJ (Iul2Vj)Js is 1 n

$ t f [lu(o/fI)Vj + I(Oju)uVjl + lu/210jVjll·
1 in
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Thus, letting C' =SUPn L::7(\Vj 1+ IOjvj I),

r jul2~ c't1(lu8jul+ lu8jul + lul2)1s 1 n

~ C' (2~ [k 1uI2]1/2 [kI8juI2] 1/2 + n k1U12)

~ C' (2n k1ul2 +~ k18jU12)

=2nC'L lul 2 + C'D(u, u),

where we have used the Schwarz inequality and the fact that 2ab ~ a 2 +b2

for all positive numbers a, b. Thus we can take C =2nC'. I

(2.40) Corollary.
The restriction map u -+ ulS from C 1(n) to C 1(S) extends continuously
to a map from H 1(O) to L2 (S).

It follows that elements of H 1(O) have boundary values on S which
are well-defined as elements of L2(S); we denote the boundary values of
u E H 1(O) by uiS. However, not every L 2 function on S - indeed, not
every continuous function on S - is the restriction to S of an element
of H1(O). Roughly speaking, the restriction of a function in H1(O) must
possess "£2 derivatives of order !" on S. See Exercise 3 and Theorem
(6.47).)

Let Hr(O) be the closure of C~(O) in H1(O). Clearly, if I E HP«l)
then liS = O. (The converse is also true. We shall not prove this, but see
Proposition (6.50) and the remarks preceding it.)

We propose to solve the following version of the Dirichlet problem
(2.34). We assume that the boundary function 9 is the restriction to S
of some IE H1(O), and we take the statement "w =9 on S" to mean that
w - f E Hr(O). Thus, given f E H1(O), the problem is to find a harmonic
function wE H1(O) such that w - f E HP«l).

(2.41) Theorem.
Suppose wE H 1(O). Then w is harmonic in n if and only ifw is orthogonal
to Hr(O) with respect to D, that is, D(w, v) =0 for all v E Hr(O).

Proof: By Green's identity, if w E C1(0) and v E C~(O) then
In wLlv = -D(w, v), there being no boundary term since v vanishes near
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the boundary. Passing to limits, we see that this identity remains true for
any 111 E RI(O). Hence, 111 is harmonic in 0 ~ 111 satisfies D.11I = 0 in
o in the sense of distributions (Corollary (2.20» ~ JwD.v = 0 for all
v EC.;"'(O) ~ D(w,v)=OforallvEC.;"'(O) ~ D(w,v) =Ofor all
v E RP(O). I

Since the functions u E RI(O) with D(u,u) = 0 are locally constant,
hence harmonic, and no such function except 0 belongs to RP(O), it follows
from elementary Hilbert space theory that each f E RI(O) can be written
uniquely as f = w + v where w is harmonic and v E RP(O). (The Hilbert
space in question is RI(O) modulo locally constant functions, with inner
product D.) Thus 111, the orthogonal projection of / onto the harmonic
space, is the solution of the Dirichlet problem posed above.

From the norm-minimizing properties of orthogonal projections in a
Hilbert space, it also follows that solving this Dirichlet problem is equiva­
lent to minimizing the Dirichlet integral in a certain class of functions. This
approach to solving the Dirichlet problem via the calculus of variations is
the classical Dirichlet principle:

Dirichlet's Principle.
If / and ware in RI(O), the following three conditions are equivalent:

a. w is harmonic in 0 and 111 - f E RPCO).
b. D(w,w) ~ D(u,u) for all u E RI(O) such that u - / E Rr(O).
c. D(w-I, w-f) ~ D(u,u) forallu E R1(O) such that u-/ is harmonic

in O.

The reader who is acquainted with the checkered history of Dirichlet's
principle - it Was stated by Dirichlet, used by Riemann, discredited by
Weierstrass, and rehabilitated much later by Hilbert - may be surprised
at the simplicity of the above arguments. Several points should be kept
in mind. In the first place, 19th-century mathematicians did not have
Hilbert spaces, or the theory of Lebesgue integration with which to con­
struct Hilbert spaces of functions, at their disposal. In an incomplete inner
product space like c1(n) there is no guarantee that orthogonal projec­
tions will exist. Neither did they have the notion of distribution, much
less a proof that distribution solutions of D.u = 0 are genuinely harmonic,
a fact which was essential for the proof of Theorem (2.41). On the other
hand, we have solved the Dirichlet problem in a weaker sense than the old
mathematicians would have wished: we had to assume that the boundary
function is the restriction of a function in RI(O), and we only showed that
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the solution assumes its boundary values in the sense of Corollary (2.37).
The first. restriction is unavoidable in the context of Dirichlet's principle,
but we would like to know, for example, that if the boundary data are
continuous on S then the solution is continuous on IT. This can be proved
in the setting of Dirichlet's principle (see John [30]), but we shall derive it
by different methods in Chapter 3.

EXERCISES

In the following exercises, 0 is the unit disc in R 2 and S is the unit circle.
For m ~ 0 we set em(x, y) = (x + iy)m, and for m < 0 we set em(x, y) =
(x - iy)lml.

1. Show that {em}~00 is an orthogonal set with respect to the inner prod­
uct on L2 (0) and also with respect to the Dirichlet form Don 0, and
hence with respect to the inner product (·I·hl) on HI(O). Compute
lIemll<l) for all m, and conclude that a series Ecmem converges in
HI(O) if and only if E Imllcml 2 < 00. (Hint: polar coordinates.)

2. Show that {em}~oo is an orthogonal basis for the space of harmonic
functions in HI(O). (It is trivial to verify that each em is harmonic.
To see that they span all harmonic functions, you can use Exercise 6 in
§2B together with the fact that every holomorphic function in HI(O)
has an expansion E;;" cmem [a Taylor series!]).

3. If 1= Ecmem E HI(O), t.he restriction liS is the function in L 2(S)
whose Fourier series is E cmeim9 . Conclude that a function E cmeim9

is the restriction of a function in HI (0) (in fact, of a harmonic function
in HI(O» if and only if E Imllcml2 < 00. Find a sequence {cm} such
that E leml < 00 but E Imlleml2 = 00, and hence exhibit a continuous
function on S that is not the restriction of a function in H1(0).

G. The Dirichlet Problem in a Half-Space

In this section we shall solve the Dirichlet problem in the half-space {x E
R n : X n > O} by computing the Green's function and the Poisson kernel
explicitly. Actually, we shall change notation slightly: we replace n by n+ 1
and denote Xn+I by t. The domain in question is then

R~+I = {(x, t) E Rn x R : t > O},
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u(x,O)=O,

u(x,O) =g(x),(2.42)

u(x,t)= f'''' { G«(x,t), (y,s»f(y,s)dyds.
Jo Jan

a a
- as G«x, t), (y, s» 1.=0;:= - Os [N(x - y, t - s) - N(x - y, -t - s)],=o

2t

we compute the Poisson kernel. Since the outward normal derivative on
a~+.+l is -a/at, the Poisson kernel is

namely,

{ 2t
u(x, t) =Jan Wn+l (Ix _ vF + t2 )(n+l)/2 g(y) dy.

G«x, t), (y, s» =N(x - y, t - s) - N(x - y, -t - s),

=Wn+l(lx - vl2 + t 2)(n+l)/2'

According to (2.37), the candidate for a solution to (2.42) is then

More precisely, if f is, say, bounded with compact support in JR+.+l (these

conditions can be relaxed), u will be continuous on W;.+l with u(x, 0) =0,
and u will satisfy (Ll .. + anu = f (in the sense of distributions) on JR+.+1.

To solve the dual Dirichlet problem,

where N is the fundamental solution given by (2.18) with n replaced by
n + 1. This clearly enjoys the defining properties for a Green's function: it
satisfies Ll(y,.)G«x, t), (y, s» =6(x - y, t - s) for t, s > 0, and it vanishes
when t ;:= 0 or s =0.

From this we immediately have the solution of the Dirichlet problem

Finding the Green's function for ~+.+l is just a matter of making the
following simple observation, In physical terms, if a charge is placed at
(x, t) and an equal but opposite charge is placed at (x, -t), the induced
potential at the points equidistant from these two charges - namely, the
points (x, 0) - will always be zero. Thus, the Green's function for ~+.+l is

and the Laplacian on it is

I

I
I

I

I

I
I
I
I
I
I
I
I
t
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In other words, if we set

(2.43) p (x) _ 2t
t - Wn+1 (IXl2 + t 2)(n+l)/2

which is what is usually called the Poisson kernel for JR~+I, the proposed
solution is

u(x, t) =9 * Pt(x) (convolution on JRn).

We now verify that this works. The key observations are that

and that

J 2w 100
r
n

-
1

dr
P1(x) dx = W n:l 0 (r2 + 1)(n+1)/2

2r(1(n + 1» 100 rn- 1dr
= 7r 1;2r(!n) 0 (r2 + 1)(n+l)/2'

which by the substitution 8 = r2/(r 2 + 1) (so r 2 =8/(1- 8» equals

r(!(n+l))1
1

(n/2)-I(I_ )-1/2d -1
r(!n)r(~) 0 8 8 8 - ,

by the well-known formula for the beta integral. (See Folland [17, Appx. 3J
or Hochstadt [25, §3.4J.)

(2.44) Theorem.
Suppose 9 E V(JRn), where 1 ::; p::; 00. Then u(x,t) = 9 * Pt(x) is well­
defined on JR++1 and is harmonic there. If 9 is bounded and continuous,

then u is continuous on JR++ 1 and u(x, 0) =g(x). If 9 E LP where p < 00,

then u(', t) -- 9 in the V norm as t -- o.

Proof: We note that Pt E L 1 n L oo , so Pt E Lq for all q E [1,ooJ;
hence the integral 9 * Pt(x) is absolutely convergent for all x and t, and
the same is true if Pt is replaced by its derivatives !i.",Pt or a~ Pt. Since
G(x, t), (y,8» is harmonic as a function of (x, t) for (x, t) =I (y, s), Pt(x)
is harmonic on JR~+1, and hence so is u:

The remaining assertions follow from the calculations preceding the theo­
rem together with Theorem (0.13). I
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The solution to the problem (2.42) is not unique; for example, if u(x, t)
is a solution then so is u(x, t) + ct for any c E C. However, if 9 is bounded
and continuous on IR n, then u(x, t) = 9 * Pt (x) is the unique bounded
solution; see Exercise 1 in §2I. Here we shall prove the analogous result
with boundedness replaced by vanishing at infinity.

(2.45) Theorelll.
If 9 is continuous and vanishes at infinity on IRn, then u(x, t) =9 * g(x)
vanishes at infinity on IR++1, and it is the unique solution of (2.42) with
this property.

Proof: Assume for the moment that 9 has compact support, say
g(x) =0 for Ixl > a. Then 9 E L 1

, and IIg * Pt\loo s Ilglhllgl\oo S Ct-n,
so u(x, t) ..... 0 as t ..... 00 uniformly in x. On the other hand, if 0 S t S R,

lu(x, t)1 s Ilgl\l sup IPt(x - y)1 s CRlxrn~l
Iyl<a

for Ixl > 2a, so u(x, t) ..... 0 as x ..... 00 uniformly for t E [0, R]. This proves
that u vanishes at infinity when 9 has compact support. For general g,
choose a sequence {gn} of compactly supported functions that converge
uniformly to g, and let un(x, t) =gn * Pt(x). Then Un vanishes at infinity,
and Un ..... u uniformly on IR++ 1 since

Hence u vanishes at infinity.
Now suppose v is another solution, and let w = v - u. Then w vanishes

at infinity and also on the hyperplane t = O. Thus, given ( > 0, if R is
sufficiently large we have Iwl < £ on the boundary of the region Ixl < R,
o < t < R. By the maximum principle (cf. Exercise 1 in §2B) it follows
that Iwl < £ on this region. Letting £ ..... 0 and R ..... 00, we conclude that
w:: O. I

If t,s > 0, the function u(x,t) = P,+t(x) vanishes at infinity on IR++1

and satisfies (2.42) with g(x) = P,(x), so it follows from Theorem (2.45)
that

That is, the functions Pj form a semigroup under convolution, and the
corresponding operators 9 ..... 9 * Pt form a semigroup under composition,
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called the Poisson semigroup. This is a contraction semigroup on LP for
1 :5 P :5 00, since

Ilg * Ptllp:5 IlgllpllPtl1t = IIgllp,
and it is strongly continuous on LP for p < 00 by Theorem (2.44).

Some of the results of this section can also be obtained by using the
Fourier transform on an. When n = 1 this works out rather simply; see
Exercise 1. We shall consider the case n > 1 in §4B.

EXERCISES

1. Assume that n = 1. Show that Pt(~) = e- 2.-t1€1, either directly or via
the Fourier inversion theorem. Use this result to give simple proofs that
u(x, t) = g * Pt(x) satisfies (2.42) if g, Ii ELl, and that p. * Pt = p.+t .

2. The formula (2.43) for Pt makes sense for all tEa, not just t > O.
Show that if f E L1(a n

) and u(x, t) = f * Pt(x) for all (x, t) E a n +1,

then D..ru + 8;u = 2f(x)6'(t).

H. The Dirichlet Problem in a Ball

We now solve the Dirichlet problem for the unit ball in an, first by com­
puting the Green's function and Poisson kernel explicitly, and then by
expansion in spherical harmonics. We remark that these results are eas­
ily extended to arbitrary balls by translating and dilating the coordinates.
Throughout this section, we employ the notation

The Green's function for B may be found by an idea similar to the one
we used for the half-space in §2G. Namely, the potential generated by a
unit charge at x E B can be cancelled on S by placing a charge of opposite
sign at the point x/lxl2 obtained by "reflecting" x in S. As it turns out,
the magnitude of the second charge should be not 1 but IxI2- n , and a slight
modification must be made when n = 2. (We shall obtain more insight into
this when we consider the Kelvin transform in §2I.) To see that this works,
we use the following lemma.

(2.46) Lemma.
If x, YEan, x 1= 0, and Iyl =1, then

Ix - yl = Ilxl- 1x- Ixly I·
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Proof: We have

Ix - yl2 = Ixl2 _ 2x . y + 1 = Ilxly 1
2- 2(lxl- Ix) . (Ixly) + Ilxl-lx 1

2

=Ilxl- lx-Ixly\2.

Now, assuming n > 2, let us define

G(x, y) =N(x - y) - Ixl2- n N(lxl-2x - y)

= (2 _In)wn [Ix - yl2-n -llxl-ix -Ixly 1
2-n] .

From the first equation it is clear that G(x,y) - N(x,y) is harmonic in
y for y f= Ixl- 2x, and in particular for y E B when x E B. The second
equation, together with Lemma (2.46), shows that G(x, y) =0 for yES.
It also makes clear how to define G at x =0:

G(O, y) = (2 1) [Iyl2-n - 1].
-n W n

When n =2, the analogous formula is

1
G(x, y) = 21r [log Ix - Yl-logllxl-Ix - Ixly I] (x f= 0),

1
G(O, y) = 21r log IYI·

Again it is clear that G enjoys the defining properties of a Green's function.
Clearly G satisfies Claim (2.35). The symmetry property G(x, y) =

G(y, x) is not obvious from the formula for G, but it is not hard to verify
directly by a calculation like the proof of Lemma (2.46).

Now that we know the Green's function, we can compute the Poisson
kernel

P(x, y) =ov.G(x, y) (x E B, YES).

Indeed, by (0.1) we have ov. =y . \lyon S, so for all n 2: 2,

( )
_ -1 [y, (x - y) _ IxlY' (lxi-Ix -IX lY)]

P x, y - W n Ix _ yin Ilxl-lx -Ixly In .

Since Iyl = 1, Lemma (2.46) then implies that

l-lxl2

(2.47) P(x, y) = I I'wnx-yn

It is a fairly simple matter to prove Claim (2.38) for n = B; in fact,
we shall obtain the analogue of Theorem (2.44). A bit of notation: if u is
a continuous function on Band 0 < r < 1, we define the function U r on S
by

Ur(y) =u(ry).
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lim f P(ryo, y) dl7(Y) =O.
r_1 JS\V

Then u is harmonic on B. If 1 is continuous, u extends continuously to B
and u =1 on 5. If 1 E LP(5) (1 :::; p < 00), then Ur -+ 1 in the LP norm
asr-+1.

(x E B).U(x) =1P(x, y)/(y) dl7(Y)

(2.48) Theorem.
If 1 E L1(5) and P is given by (2.47), set

Proof: For each x E B, P(x,y) is a bounded function of y E 5, so
u(x) is well-defined for x E B. It is harmonic since P is harmonic in x
(since G(x, y) is, or by a direct calculation).

Next, we claim that
I. Is P(x, y) dl7(Y) =1 for all x E B.

11. For any Yo E 5 and any neighborhood V of Yo in 5,

I/(x) - u(rx)1 =11[/(X) - l(y)JP(rx, y)dl7(y)1

:::; f f P(rx, y) dl7(Y) + 211/1100 f P(rx, y) dl7(Y).
Jv" JS\V"

(ii) is obvious, since Iryo - yl-n is bounded uniformly for 0 < r < 1 and
y E 5\ V, and l-lrYol2 =1- r 2 -+ 0 as r -+ 1. To prove (i), we note that
since P is harmonic in x, for 0 < r < 1 and y E 5 the mean value theorem
implies that

By (i), the first term on the right is less than f, and by (ii), the second
term is also less than f if 1 - r is small enough. Hence U r -+ 1 uniformly
as r -+ 1, and it follows that u extends continuously to B with u = Ion 5.

1 =W n -1 P (0, y) =1P(ry', y) dl7(Y').

But another application of Lemma (2.44) shows that P(ry', y) = P(ry, y'),
so with x =ry, we have 1 = Is P(x, 1/) dl7(Y').

Now, suppose 1 is continuous, and hence uniformly continuous since 5
is compact. Given f > 0, choose 6 > 0 so small that I/(x) - l(y)1 < f

whenever Ix - yl < 6, and set V" = {y E 5 : Ix - yl < o}. Then, for any
x E 5 and r < 1, by (i) we have
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Finally, suppose I E LP, 1 s: ]J < 00. Given € > 0, choose 9 E C(S)
with I1g - Ill p < €/3. Setting v(x) = Is P(x, y)g(y) duty), we have

III - urllp s: III - gllp + IIg - vrllp + IIvr - urllp ·

The first term on the right is < f/3, and if 1- r is small enough the second
term is < f/3 since uniform convergence implies LP convergence on S. We
claim that the linear mapping I .-. U r is bounded on LP(S) with norm s: 1
for all r, so the third term is also < f/3. This assertion follows from the
generalized Young's inequality (0.10), since IPI =P and

JP(rx, y) duty) =1 =wnP(O, y) =JP(rx, y) du(x)

by (i) and the mean value theorem.

We now turn to the theory of spherical harmonics.
Let Pk be the space of homogeneous polynomials of degree k on Rn,

and let
:J{k = {P E Pk : AP =O},

Hk = {PIS: P E :J{k}.

That is, :J{k is the space of homogeneous harmonic polynomials of degree k
and H k is the space of their restrictions to the unit sphere. The elements
of Hk are called spherical harmonics of degree k. The restriction map
from :J{k to H k is an isomorphism; its inverse is the map Y -- P where
P(x) = IxlkY(lxl-1x).

We denote by r 2 the function x-- L:~ xl on Rn, an element of P2 •

(2.49) Proposition.
Pk =:J{k $ r2Pk_2, where r2Pk_2 = {r2P : P E Pk-2}.

Proof: For P, Q E Pk, let {P, QJ =P(8)Q; that is, if P(x) =L: aaxa
then {P, Q} =L: aa8a(J. The form {P, Q} is linear in P and conjugate­
linear in Q, and it is scalar-valued: applying a derivative of degree k to a
polynomial of degree k yields a number. Moreover, one readily checks that
{xa , x il } =a! if t3 =a and {x a, x il } =0 otherwise. Hence, in general,

{l:,>a xa , :~.::)ilxil} =L a!aaba,

so the form {-, .} is a scalar product on Pk .

Now, notice that for any P E Pk-2 and Q E Pk,

{r 2 P,Q} = P(8)r2 (8)(J =P(8)AQ ={P,AQ}.

This immediately implies that :J{k is the orthogonal complement of r 2Pk ....,2

with respect to {', '}, which completes the proof. I
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(2.50) Corollary.
:Pk = :J{k $ r2:J{k_2 $ r4:J{k_4 $ .. '.

Proof: Induction on k,

(2.51) Corollary.
The restriction to the unit sphere of any element of:Pk is a sum ofspherical
harmonics of degree at most k.

Proof: r 2 = 1 on 5.

(2.52) Euler's Lemma.
lfQ E:Pk then I>j8jQ(x) = kQ(x).

Proof: Exercise.

(2.53) Theorem.
£2(5) = EB~ Hk, the expression on the right being an orthogonal direct
sum with respect to the scalar product on £2(5).

Proof: By Corollary (2.50) and the Weierstrass approximation theo­
rem (which, by the way, we shall prove in §4A), the linear span of the Hk'S
is dense in £2(5). We must show that Hj .1 Hk if j =1= k. Given Y; E Hj
and Yk E H k, let Pj and Pk be their harmonic extensions in:J{j and:J{k.
By Green's identity (2.6), Euler's lemma (2.52), and (0.1),

o= L(Pj t!>.Pk - Pkt!>.Pj) = is (Pj 8v P k - Pk8v Pj ) = (k - j)LPj Pk

=(k - j)(Yj IYk).

Remark: Since t!>. commutes with rotations (Theorem (2.1)), the
spaces Hk are invariant under rotations, and one can show that they have
no nontrivial invariant subspacesj see Exercise 8. Theorem (2.53) thus
provides the decomposition of £2(5) into irreducible subspaces under the
action of the rotation group.

Let

dk =dimHk =dim:J{k·

For future purposes we shall need to compute dk •
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(2.54) Proposition.
. (k+n-1)!

dlm3'k = k l ( _ )1 .. n 1.

Proof: Since the monomials x'" with lacl = k are a basis for 3'k, dim 3'k

is the number of ways we can choose an ordered n-tuple (al," ., an) of non­
negative integers whose sum is k. Think of it this way: we line up k black
balls in a row and wish to divide them into n groups of consecutive balls
with cardinalities al," ., an. To mark the division between two adjacent
groups we interpose a white ball between two black balls; for this purpose
we need n -1 white balls. The number of ways we can do this is the number
of ways we can take k + n - 1 black balls and choose n - 1 of them to be
painted white, which is (k + n - l)!/k!(n - I)!. I

(2.55) Corollary.
(k+n-3)!

dk =(2k + n - 2) k!(n _ 2)! .

Proof: By Proposition (2.49), dk =dim 3'k - dim Pk-2'

(2.56) Corollary.
dk =O(kn

-
2

) as k - 00.

Proof: dk is a polynomial of degree n - 2 in k.

Some remarks on the low-dimensional cases are in order. If n = 1,
S consists of two points, and there are only two independent harmonic
polynomials, 1 and x. 1 spans 9<0 and x spans 9<1, and 9<k = {O} for
k > 1. If n = 2, 9<0 is spanned by 1 and, for k > 0, 9<k is spanned by
(XI + iX2)k and (Xl - iX2)k. (These polynomials clearly belong to 9<k, and
dim9<k = 2.) Thus if we ser XI + iX2 = rei8 and take () as coordinate
on the unit circle S, we see that H k is spanned by eik8 and e-ik8 • The
decomposition of L 2(S) into spherical harmonics is therefore just the usual
Fourier series expansion.

Back to the general case: For each xES. consider the linear functional
Y - Y(x) on Hk • Since Hk C L2 (S) is a finite-dimensional Hilbert space,
there is a unique Z{ E H k such that

Y(X) = (Y IZ~)

Z{ is called the zonal harmonic of degree k with pole at x. We list
some of the amusing proerties of Zf in the following theorem.



(2.57) Theorem.
Suppose x, yES.

a. For any orthonormal basis Y1 , ... , Yd , of Hk , Zk(y) =L:' Yj(x)Yj(y).
b. Zf is real-valued, and Zf(y) =ZZ(x).
c. Z'["(Ty) =Zf(y) for any rotation T.
d. Zf(x) =dk/wn .

e. IIZk'II~ = dk/wn .

f. IIZk'lIoo = dk/wn .

Proof: (a) holds since

Zk'(y) = 2)Zk' IYj)Yj(y) = L (Yj IZf}Y;(y) = L Yj(x)Yj(y).

Moreover, we can take the basis {Yj} to consist of real-valued functions,
so (b) follows from (a). Next, ifY E Hk, since dO' is rotation-invariant we
have

(Y Iz[r 0 T) =1Y(y)z[r(Ty) dO'(y) =1Y(r-1y)z[r(y) dO'(y)

=Yo T- 1(Tx) =Y(x).

But Zk' is uniquely determined by the property (Y IZf) = Y(x), so (c)
follows.

By taking x = y in (c) and noting that rotations act transitively on S,
we see that Zk(x) is independent of x. But by (a), Zk(x) =L IYj(xW, so

which proves (d). (e) follows from (a), (d), and the Parseval equation:

Finally, (f) follows from (d), (e) and the Schwarz inequality: for all yES,

(2.58) Theorem.

Zk'(y) = Fk(X . y), where Fk is an explicitly computable polynomial of
degree k in one variable.
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Proof: Let e = (1,0, ... ,0) E S, and let P E ~k be the harmonic
extension of ZZ; thus P(rx) = rkZk(x) for xES and r > O. From Theorem
(2.55c) we see that P(Ty) =P(y) (y E IRn

) for any rotation T that leaves
e fixed. Thus, if we set 1/ = (Y2, ... , Yn) and write P(y) =l:~ y~-j Pj (y'),
the polynomials Pj are homogeneous of degree j and rotation-invariant
on IR n - l . But the only functions which are homogeneous and rotation­
invariant are constants times powers of 11/ Land these are polynomials only
if the power is a nonnegative even integer. Thus Pj(1/) = Cj Iy'lj where
Cj =0 if j is odd, so

Now, P is harmonic, so by Proposition (2.2) and the identity 6.(fg) =
(6.l)g + 2\7/· \7g + /(6.g),

0= 6.P(y)
[k/2l

=L:C2j [2j(2j+n-'-3)lyI12j-2y~-2j + (k_2j)(k_2j_l)lyI12jy~-2j-2]
o

[k/2]-1

= L: [C2j (k-2j)(k-2j-l) + C2;+2(2j+2)(2j+n-l)] ly'12jy~-2;-2.
o

Thus
(k - 2j)(k -2j - 1)

C2;+2 =- (2j + 2)(2j + n _ 1) C2j ,

so the C2;'S are determined by recursion once we know Co, and Co =
pee) = Zk(e) = dk/Wn by Theorem (2.55d).

If we restrict y to the unit sphere we have ly'I2 = 1 - y~, so

[k/2l k k

Zk(y) = L:C2;(I-yW;y~-2j =L:bjl;( =Lbj(e.y);,
000

where the bj's can be computed from the C2; 's and the binomial theorem.
Finally, given xES, let T be a rotation such that Te = x. By Theorem
(2.55c),

Z:(y) =Zk(T-1y) =2:);(e .T-1y); =I);(Te . y); =L: b;(x . y)i,

which completes the proof.
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The polynomials Fk(t) = 2::: bjtj are well known special functions.
When n = 2, Fk is a constant times the Chebyshev polynomial of
degree k; see Exercise 4. When n;:: 3, Fk is a constant times the Gegen­
bauer (or ultraspherical) polynomial Crn

-
2)/2 of degree k associated

to the parameter (n - 2)/2; see Exercise 6. For n =3, ci/2 is known as the
Legendre polynomial of degree k. For more about these polynomials,
see the Bateman Manuscript Project [4] or Hochstadt [25].

Let 'Irk denote the orthogonal projection of £2 (8) onto Hk. The theory
of zonal harmonics furnishes us with a simple formula for 'Irk:

(2.59) Proposition.
If f E £2(8),

'lrk/(x) = is Fk(X' y)f(y) du(y).

Proof: We have f = 'lrkf + g where g 1.. Hk. Since Z: E Hk'

00

It is clear how to solve the Dirichlet problem

u = f on 8~u =0 on B,

(2.60) Theorem.

a. If f E £2(8), the harmonic function u on B with u =f on 8 is given
by

by spherical harmonics. If f is itself a spherical harmonic, u is just its
extension as a harmonic polynomial. But every f is a sum of spherical
harmonics, so we can extend by linearity.

(x E 8, O:s r :s 1).u(rx) = I>k'lrkf(x)
o

The series converges in £2(8) for each fixed r :s I, and absolutely and
uniformly in y =rx for x E 8 and r :s ro for any ro < 1.

b. The Poisson kernel (2.47) has the expansion

00

P(rx, y) =L r k Fk(X . y)
o

(x, y E 8, O:s r < 1).

The series converges uniformly for x, y E 8 and r :s ro for any ro < 1.
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u =0 on S.Au=fonB,

by (2.57e) and (2.56), for r :5 ro < 1 we have

Llrk 7l'd(x)l:5 Lr~I(fIZnl :5l1flbLr~IIZklb

:5 Cllflb L r~(l + k)(n-2)!2 < 00,

(2.61)

But this follows by interchanging the summation and integration and using
(2.58) and part (a). I

Spherical harmonics also lead to a solution of the dual Dirichlet problem

where we have used (2.59) and the Schwarz inequality. Thus the series
converges absolutely and uniformly. Since 7l'kf E Hk' we have r k 7l'kf E ~k,

so I: rk 7l'kf is harmonic by Corollary (2.12).
(b) If r :5 ro, by (2.57f) and (2.52) we have

L Irk Fk(x. y)i :5 L rkIZk(y)1 :5 L r~ dk :5 CL r~(l + k)"-2 < 00,
Wn

Proof: (a) Clearly the series I: rk 7l'kf converges in the L2(S) norm
for r :5 1 and tends to f in this norm as r - 1. Moreover, since

(2.62) Lemma.
IEY E Hk then AY = -k(k + n - 2)r- 2y.

The idea here is to find an orthonormal basis for L2(B) consisting of eigen­
functions for A that vanish on S.

We adopt the following convention: if Y E Hk, we regard Y as a
function on jRn \ {OJ by extending it to be homogeneous of degree 0:

so the series I: rkFk(X· y) converges absolutely and uniformly to a contin­
uous function of yES for each xES and r < 1. Thus to complete the
proof it suffices to show that for each xES, r < 1, and f E C(S),

I
I
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Proof: Since P(x) == IxlkY(lxl-1x) == rky(x) is harmonic, by (2.2)
we have

0== Ll(rky) == (Llrk)y + 2'V(rk) . 'VY + rkLlY

== [k(k - 1)r
k
- 2 + n; 1krk- 1

] Y + 2krk- 2 2:::>jOj Y + rkLlY

== k(k + n - 2)rk- 2y + rkLlY,

since L>jOjY == roY/or == 0 by (0.1).

(2.63) Lemma.

flY E Hk and F(x) == f(lxl) == f(r), then

Ll(FY)(x) == [!"(r) + n ~ 1 _ k(k +r~ - 2) f(r)] Y(x).

Proof: As in the proof of Lemma (2.62), we have

f'(r) oY
'VF . 'VY == -- L:>jOj Y(x) == f'(r)-;;- == 0,

r vr

so by (2.2) and (2.62),

Ll(FY) == (LlF)Y + 2'V F . 'VY + FLlY

== [!"(r) + n ~ 1 _ k(k +r~ - 2) f(r)] Y(x).

We propose to solve the eigenvalue problem

u == 0 on S.

(We call the eigenvalue _,\2 because it will turn out to be negative, but
for the moment, ,\ is just a complex number.) If we assume that u has the
form u(x) == f(lxI)Y(x) where Y E Hk' by Lemma (2.63) we are led to the
ordinary differential equation

(2.64)

For boundary conditions, we have f(l) == 0, and we shall also require that
u(x) == [r- kf(r)][rky(x)] be smooth at x == 0, i.e., that r- k f(r) be smooth
at r == O. (The justification for this is that Ll + ,\2 is hypoeIIiptic, as we
shall show in §6B.)
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h"(p) + ~hl(p) + [1- [k + (np~ 2)/2F] h(p) = O.

f~(r) = C~r(2-n)/2JH(n_2)/2(A~r).

Then UD~l is an orthonormal basis for L2 (0, 1), r
n

-
1

dr). Moreover,
let Y/, ... ,y

k
d• be an orthonormal basis for Hk (as a subspace of L

2
(S»,

and set

{CiJH(n-2)/2(A~r) : 1= 1,2,3, ...}

is an orthonormal basis for L2(0, 1), rdr).

Now, let

Then

00 • (2 j

_ (2-n)/2 _ Ik,,", (_I)J Ar)
fer) - Cr JH (n_2)/2(Ar) - C r "0' j!f«n/2) + k + j) 2"

Thus r- k fer) is analytic at r = 0, as desired, and f(l) = 0 if and only

JH(n-2)/2(A) = O.
Moreover, the zeros of Jk+(n-2)/2 are all real, and since replacement

A by -A leaves fer) unchanged, it suffices to consider the positive
Let Al, AL ... be the positive zeros of Jk+(n-2)/2, in increasing order. and

let

This is Bessel's equation of order k + (n - 2)/2. We shall assume the
lowing facts about solutions of this equation; see Folland [17] or Hochstadt

[25] for more details.
In the first place, the only solutions that are bounded at p = 0 are

multiples of Jk+(n-2)/2(P), where

00 (-ly (t)a+~
Ja(t) =~ j!f(O' + I + j) "2

is the Bessel function of the first kind of order a. Undoing our changes of

variables, we see that

(2.65)

n - 1 [k(k + n - 2)]g"(p) + _p_gl(p) + 1 - p2 g(p) = O.

Now set h(p) = p(n-2)/2g(p). Substituting p(2-n)/2 h(p) for g(p) and sim­

plifying, we obtain

(2.64) is essentially a Bessel equation. Indeed, if we set p = Ar and
g(r) = fer/A), so that g(p) = fer) and g'(p) = A- 1 f'(r), then (2.64)

becomes

106 Chapter 2
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8,,1.1 =0 on SAu =f on B,

We can now solve the Dirichlet problem (2.61) for f E L2(B). Namely:

for almost every xES. But then for each such x we have g(rx) = 0 for
almost every r. Thus 9 =0 a.e., and the proof is complete. I

(2.66) Theorem.

{Fl
m

: k ~ 0, I ?: 1, 1 ~ m ~ dd is an orthonormal basis for L 2(B).
Moreover, AFlm = -(..\U 2Flm and Flm(x) =0 for xES.

The L"p)ace Operator 107

Integrating first over S, by completeness of spherical harmonics we obtain

The integral over S equals {jmm' {ju', and in particular is zero unless k = k',
in which case the integral in r equals {jll'.

To show completeness, suppose 9 E L2( B) is orthogonal to all Fim:

ProoF: The second assertion is obvious from the construction of Fim .

As for orthonormality, by integrating in polar coordinates we have

Since ..\(2-n)/2Jk+(n_2)/2("\) is an entire analytic function, its zeros ..\i are
bounded away from 0, so the series for 1.1 converges in L2(B), and it follows
easily that Au = f in the sense of distributions. It will follow from our
work in Chapter 7 that the series for 1.1 actually converges in the norm of
H1(B) as defined in §2F (indeed, in an even stronger norm), so that 1.1 = 0
on S in the sense of Corollary (2.40). Moreover, we will show in Chapter
7 that if f E Ck(B) where k > tn, then 1.1 E C2(B) , so 1.1 is a classical
solution of the Dirichlet problem (2.61). (Actually, it would suffice to have
f E ca(B) for some a > 0; see the remarks in §7G.)

We conclude by remarking that the same method leads to a solution of
the Neumann problem

(2.67)
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by expansion in spherical harmonics and Bessel functions. We simply re­
place the boundary condition /(1) =0 for (2.64) by /'(1) =0; the corre­
sponding boundary condit.ion for the Bessel equation (2.65) is

If 1l1,11~, .. ' are the positive numbers satisfying this equation, and

then {APk+(n-2)/2(Il~r)}GI is an orthonormal basis for L2 «0, 1), rdr)
when k > O. If k = 0, we must also include the function n 1/ 2r(2-n)/2

corresponding to the eigenvalue A = O. (See Folland [17).) The rest of
the discussion goes through as before: we obtain an orthonormal basis for
L 2(B) consisting of eigenfunctions of t:. satisfying the Neumann condition
Bvu = O. By expanding f E L2(B) in terms of this basis, we obtain a
solution of (2.67) provided that the component of / corresponding to the
eigenvalue A= 0 vanishes, that is, provided IB / = O. (As we remarked in
§2C, this condition is necessary for the solvability of (2.67) in any case.)

EXERCISES

1. Show that the Poisson kernel for the ball BR(XO) is

R 2 -Ix - xol2

P(X,J/) = RI InW n x-y

2. Suppose n is an open set in jRn. Show that for any compact sets
[(. [(' c n with [( contained in the interior of [(' and any multi-index
a there is a constant CK .", such that

sup ID"'u(x)1 S CK.", sup lu(x)1
reI< reK'

for every harmonic function u on n. (Hint: First do the case [( =
Br(xo), [(' = BR(XO), where r < R, by applying the analogue of Theo­
rem (2.48) for the ball BR(XO); see Exercise 1.) Conclude that if {Uj} is
a sequence of harmonic functions on n that converges to U uniformly on
compact subsets of n. then B"'uj -- B"'u uniformly on compact subsets
of n for every a.
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zf' (e ' ?) = lr-
I cos k(</> - 0) for k > o.

1- (r/R) 1+ (r/R)
(1 + (r/R»)n-I u(xo) ~ u(x) ~ [1- (r/R»)n-I u(xo).

By applying the operator 1+ A-Ir(d/dr) to both sides of this equation
and using Theorem (2.60b), show that if F", is as in Theorem (2.58)
and n ~ 3,

3. (Harnack's inequality) Suppose u is continuous on BR(xo), harmonic
on BR(xo), and u ~ O. Show that for Ix - xol = r < R,

00

L Ct(t)r'" = (1 - 2rt + r2 )->..
o

(Hint: Estimate the Poisson kernel in Exercise 1 by a constant.)

4. Show that if we identify ]R 2 with C, the 2-dimensional zonal harmonics
are given by

Verify Theorem (2.57) from these formulas, and show that the poly­
nomial F", of Theorem (2.58) is 7r- 1T", for k > 0, where T", is the
Chebyshev polynomial defined by T", (cos 0) =cos kO.

5. If we identify ]R2 with C, (2.47) and Theorem (2.60b) together with
Exercise 4 show that for n =2,

Verify this directly by summing the series. (Hint: cos k() =Re e'9.)

6. The Gegenbauer polynomials ct associated to the parameter A> 0 are
defined by the generating relation

7. Solve the Neumann problem

..:lu =0 on B, 8"u =9 on S

by expanding 9 in spherical harmonics. How is the necessary condition
f5 9 =0 used?
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1. More about Harmonic Functions

v =u on 8B,~v =0 on B,

with v E C(8), by Theorem (2.48). By the explicit formula given there
for v, the fact that u(x, -t) = -u(x, t) implies that vex, -t) = -vex, t).
In particular, v(x,O) =O. Thus v agrees with u on the boundaries of the
upper and lower halves of B. By the uniqueness theorem (2.15), v =u on
each half, so v =u on B. In particular, u is harmonic on B. I

{cos ~j1rX : j = 1,3,5, ...} U {sin ~j1rX : j = 2,4,6, ...}.

Note that if we make the change of variable t = Hx + 1), this basis
turns into the familiar Fourier sine basis {sinj1rt : j = 1,2,3, ...} for
£2(0,1).

8. Suppose V is a nonzero vector subspace of H k that is invariant under
rotations. Show that V = Ih. (Hint: Consider the "zonal harmonic"
Zf, i.e., the unique element of V such that Y(x) = (Y IZv) for all
Y E V. Zy has properties analogous to Theorem (2.57), and the proof
of Theorem (2.58) shows that a function with these properties must be
a constant multiple of Z:.)

9. Show that L 1/ 2(t) = y'2/1rt cost and J1/ 2(t) = y'2/1rt sint, and then
show that the orthonormal basis for £2(-1,1) given by Theorem (2.66)
in the case n =1 is

Proof: It is clear that this extension of u is continuous on 0 and
harmonic on 0 \ 0 0 . Given (xo, 0) E 00, we shall show that u is harmonic
near xo. Let B be a ball centered at Xo whose closure is contained in O.
By translating and dilating the coordinates (which preserves harmonicity),
we may assume that Xo = 0 and B is the unit ball. Since u is continuous
on 8, we can solve the Dirichlet problem

(2.68) The Reflection Principle.
Let 0 be an open set in jRn+l (with coordinates x E lRn , t E lR) with the
property that (x, -t) EO if (x, t) E O. Let 0+ = {(x, t) EO: t > O} and
0 0 = {(x, t) EO: t = OJ. If u is continuous on 0+ U 0 0 , harmonic on n+,
and zero on 0 0 , then u can be extended to be harmonic on 0 by setting
u(x, -t) = -u(x, t).

Now that we have solved the Dirichlet problem for the ball, we can derive
some more interesting facts about harmonic functions.

I
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as x -+ Xo, then u has a removable singularity at xo.

(2.69) Theorem.
Suppose u is harmonic on 0 \ {xc}. If

(n > 2),

(n =2)

(n = 2)

(n > 2)

v=uon8B1 .Llv=00nB1 ,

lu(x)1 =o(Iog Ix - xol- 1
)

u(x) - v(x) - !(lx/ 2
-

n - 1)

u(x) - v(x) + dog/xl

or

Suppose 0 is a neighborhood of Xo E IR n . If u is a harmonic function
on 0 \ {xc}, u is said to have a removable singularity at Xo if u can be
defined at Xo so as to be harmonic on O. The following theorem says that
any singularity which is weaker than that of the fundamental solution is
removable.

Our final results concern the behavior of harmonic functions at infin­
ity. To obtain these, we first need a formula for Ll in general curvilinear
coordinates, which is of interest in its own right.

Let T be a Coo bijection from an open set 0 C IRn to an open set
0' C IRn with Coo inverse. Let y = T(x), and let h = (8Yi/8xj) and

Proof: By translating and dilating the coordinates, we may assume
that Xo =0 and that 0 contains the closed unit ball B1 . (We shall write
Br for Br(O).) We may also assume that u is real. Since u is continuous
on 8B1 , by Theorem (2.48) there exists v E C(Bd satisfying

We claim that u = v on B1 \ {OJ, so we can remove the singularity by
setting u(O) =v(O). Given! > 0 and 6 E (0,1), consider the function

on B1 \B6. This function is real and harmonic on B 1 \ B6 (Corollary (2.3»,
continuous on the closure, zero on 8B1 , and - by the assumption on u­

negative on 8B6 for all sufficiently small 6. By the maximum principle, it
is negative on B1 \ {OJ. Letting! -+ 0, we see that u - v =5 0 on B1 \ {OJ.
By the same argument, v - u =5 0 on B 1 \ {OJ, so that u = v on B 1 \ {OJ. I
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Moreover, let us set

1 1 ~ a (.. au)
D.u 0 T- =-- L.-J - g" v'9 - .v'9 . '-1 oYj OYi

I,J-
(2.71)

Remark: Rather than regarding Y =T(x) as a transformation from
o to 0'. we can regard Yl •... ,Yn as corvilinear coordinates on 0, and the
expression on the right of (2.71) gives the formula for the Laplacian of
a function U in these coordinates. More generally, this is the expression
for the Laplace-Beltrami operator on a Riemannian manifold with metric

tensor (gij) in the local coordinates YI, ... , Yn .

This being true for all w, the result follows.

(2.70) Theorem.
If u is a C2 function on 0 and U =u 0 T-

1
, then

9 =det(gij) =(det JT -. )2.

Then the volume elements on 0 and 0' are related by dx =Idet JT-.l dy =
v'9 dy.

The inverse matrix (gi j ) of (gij) is then

(gi j (y» =(J JI)(r-I(y) = (2: OYi oYj \ ) .
k OXk OXk T-'(Y)

J
T

-. = (oxi/oYj) be the Jacobian matrices of T and T-
1

. Define the

matrix (gij) on 0' by

I

I
I

I

I

I

I
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I
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If n c JR.n \ {OJ, we set

0= {lxr2x:xEn},
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on Rn \ {OJ obtained by inversion in the unit sphere. Since x = lyl- 2y, we
see that

so gi; = lyl4 oi; and g =lyl-4n. Thus, if u is a C2 function on JR.n \ {OJ and
U(y) =u(IYI-2 y),

~u(lyl-2y) = lyl2n '"~ [lyI4-2n IJU]
L..J lJy; lJy;

[
a2u IJU]=lyl2n L lyI4-2n_ + (4 _ 2n)lyI2-2ny._
IJ~ JaW

=lyln+2 '" [IYI2-n a
2
u +2alyl2-n au] .

L..J ay] ay; 8y;

We can add the term U(a2IyI2-nj8yj) to the last expression in square
brackets without changing anything, since L: 1J21y12-n jlJy] =0 for y i= O.
We therefore have

We are particularly interested in the transformation

(2.72)

and if u is a function on n, we define its Kelvin transform U, a function
on 0, by

U(x) = IxI2-nu(lxr2x).

(We have already encountered this in the construction of the Green's func­
tion for the ball in §2H.) With the notation of (2.72), we have U(y) =
lyln-2u(y), so if we replace u by U in (2.72) we obtain

In particular, we have proved:



But then

(r> 0, lyl =1).
d

oru(ry) = dru(ry) =2:Yjoju(ry)

For future reference we give one more result concerning the behavior of
harmonic functions at infinity. We denote by Or the radial derivative, that
is, the normal derivative on spheres about the origin:

(2.74) Proposition.
Ifu is harmonic on the complement ofa bounded set in JR n , the following
are equivalent:
a. u is harmonic at infinity.
b. u(x) -+ 0 as x -+ 00 ifn > 2, or lu(x)1 == o(log Ix\) as x -+ 00 ifn == 2.
c. IU(T)\ = 0(lxI2-n) as x -+ 00.

Proof: By dilating the coordinates, we may assume that u is har­
monic outside BR(O) for some R < 1. The Kelvin transform u is then
harmonic on the unit ball B1 (0) (once we have removed the singularity at
0) and continuous on its closure. We can therefore expand u in spherical
harmonics according to Theorem (2.60):

00

u(x) =2: r2
-

n - k y k (y),
o

00

u(x) = IxI 2
-

n u(lxl- 2 x) =2: IxI2
-

n
-
kYk(lxl- 1x).

o

Thus if we set x =ry with r > 0 and IYI =1,

00

u(x) =2: IxlkYk(lxl-1x)
o

(2.75) Proposition.
Suppose u is harmonic at infinity. Tben IOru(x)\ = O(lxI1- n) as x -+ 00;

moreover, in case n =2, jOrU(x)\ =O(lxl-2) as x -+ 00.

(2.73) Theorem.
If u is harmonic on n c JR n \ {O}, its Kelvin transform u is harmonic on n.

Now suppose u is harmonic outside some bounded set; then its Kelvin
transform u is harmonic in a punctured neighborhood of the origin. We
say that u is harmonic at infinity if Ii has a removable singularity at O.
As an immediate corollary of Theorem (2.69), we have:

114 Chapter 2
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so that

00 00

(2.76) 8r u(x) =L)2-n-k)r1
-

n
-

kYk(Y) =r 1- n ~)2-n-k)r-kYk(Y).
o 0

If r > 3, say, then cert.ainly

which is bounded independent of rand Y since the series L: 2-kYk(Y) =
u(!y) is absolutely and uniformly convergent in y. Thus IOru(ry)l =
O(r

1
-

n
). Moreover, if n = 2, the term with k = 0 in the series (2.76)

vanishes, so the same argument yields IOru(ry)1 = O(r- 2 ). I

EXERCISES

1. Suppose u and v are bounded and harmonic on the half-space JR++ 1

and continuous on its closure, and that u(x,O) = v(x,O) for x E JRn.
Show that u = v. (Hint: Consider w =u - v.)

2. Use Theorem (2.70) to calculate the Laplacian in polar coordinates on
JR 2 and in spherical coordinates on JR3.

3. Let F be a one-to-one holomorphic function on an open set n c C.
Regarding T = F-l as a map from F(n) C JR2 to n C JR2 as in
Theorem (2.70), show that the associated matrix (gij) is given by
gij(Z) = IF'(z)12cij, and conclude that if u is a C 2 function on F(n),
<l(u 0 F) = IF'1 2 (<lu) 0 F.
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Chapter 3
LAYER POTENTIALS

This chapter is devoted to the solution of the Dirichlet and Neumann prob­
lems for the Laplacian by the method of layer potentials. This method
reduces the problems to solving certain integral equations, for which one
can use the theory of compact operators.

A. The Setup

In this chapter 0 will be a fixed bounded domain in IRA with C 2 bound­
ary S, and we set 0' = IRA \ IT. 0 and il' will both be allowed to be
disconnected; however, since S is differentiable there can only be finitely
many components. (In practice one usually wants to consider connected
domains, but it is of interest to allow them to have holes, i.e., to allow their
complements t.o be disconnected; and as we shall see, the t.heory is quite
symmet.ric with respect. t.o 0 and 0'.) We denote the connected compo­
nents of 0 by 0 1 , ... ,Om and those of 0' by Oti, 0 1... ,0:"" where Oti is
the unbounded component.

To deal with the Neumann problem we need to be careful about the
meaning of the normal derivative, since we don't want to clutter up the
theory with extraneous smoothness assumptions. Recall that we have de­
fined the normal derivative 8v on a neighborhood of S by formula (0.3).
We define Cv(O) to be the space of functions u E C 1(0) n C(IT) such that
the limit

8v _u(x) = lim v(x)· V'u(x + tv(x))
t<O, t_O

exists for each xES, the convergence being uniform on S. (Thus 8v _ u is
a continuous fundion on S.) Similarly, we define Cv(O') to be the space



of functions u E CI(O') n C(O') such that the limit

Ov+u(x) = lim v(x)· V'u(x + tv(x»
1>0,1_0

exists for each xES, the convergence being uniform on S. The operators
ov_ and ov+ are called the interior and exterior normal derivatives
on S.

We can now state precisely the problems we propose to solve:

TIle Interior Diriclllet Problem: Given f E C(S), find u E C(Q)
such that u is harmonic on 0 and u = f on S.

The Exterior Dirichlet Problem: Given f E C(S), find u E C(O')
such that u is harmonic on 0' U {oo} and u = f on S.

The Interior Neumann Problem: Given f E C(S), find u E Cv(O)
such that u is harmonic on 0 and ov- u = f on S.

TIle Exterior Neumann Problem: Given f E C(S), find u E

Cv(O') such that u is harmonic on 0' U {oo} and ov+ u =f on S.

Note that for the exterior problems we require the solution to be har­
monic at infinity as discussed in §2Ij the reason for this is to obtain unique­
ness results. Note also that the derivative ov+ for the exterior Neumann
problem is taken along the inward-pointing normal to 0'; this amounts to
replacing f by - f if we want the outward normal.

These four problems are intimately connected with each other, and we
shall obtain the solutions to all of them simultaneously. To begin with, we
prove the uniqueness theorems for all four problems.

(3.1) Proposition.
If u solves the interior Dirichlet problem with f:= 0, then u =o.

Proof: This is just the uniqueness theorem (2.15).

(3.2) Proposition.
If u solves the exterior Dirichlet problem with f =0, then u =o.

Proof: We may assume that 0 f/: IT. By Theorem (2.73), the Kelvin
transform u of u solves the interior Dirichlet problem with f = 0 for the
bounded domain 0' = {x : Ixl-2x EO'}. Hence u=0, so u = O. I
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(3.3) Proposition.
If u solves the interior Neumann problem with f = 0, then u is constant
on each component ofO.

Proof: By Green's identity (2.5),

[ lY'ul 2 =- [ u(~u) + [ uOv_u =O.In In Js
Thus Y'1l = 0 on 0, so u is locally constant on O.

Remark: In this proof, as well as the following ones, the use of Green's
identity is not quite obvious since u is not assumed to be in C 1(O'). How­
ever, it is easily justified by replacing 0 by the domain Ot whose boundary
is

5t = {x + tv(x) : x E 5}
and passing to the limit as t -+ 0 from below or above, as appropriate. The
definitions of Ov_ and ov+ are designed precisely to make this argument
work.

(3.4) Proposition.
Ifu solves the exterior Neumann problem with f =0, then u is constant on
each component of 0', and u = 0 on the unbounded component 06 when
n > 2.

Proof: Let r > 0 be large enough so that 0' C Br = Br(O). By
Green's identity (2.5),

[ lY'ul2 = - [ u(~u) - [ uov+u + [ uoru
JBr\n JBr\n Js JaBr

=1 uaru,
aB r

where ar denotes the radial derivative. Since lu(x)1 = 0(lxI2 - n
) and

laru(x)1 =O(lxjl-n) by Propositions (2.74) and (2.75), we have

I[ uarul S; Cr2- nr 1- n [ 1 S; C'r2- n.
JaB r JaB r

When n > 2, by letting r -+ 00 we obtain In' lY'ul 2 =O. Thus 'Vu =0 on
0', so u is locally constant on 0', and u =0 on 06 since lu(x)1 =O(lx12- n).
If n =2, Proposition (2.75) gives laru(x)1 =0(r- 2 ), so the same argument
shows that IJaBr uarul = 0(r-1) and hence that u is locally constant on
0'. I
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We shall see that the interior and exterior Dirichlet problems are always
solvable. For the Neumann problems, however, there are some necessary
conditions.

(3.5) Proposition.
If the interior Neumann problem has a solution, then fao _I = 0 for j =,
1, ... ,m.

Proof: This follows immediately from Corollary (2.7).

(3.6) Proposition.
If the exterior Neumann problem has a solution, then fao'_ I = 0 for j =,
1, ... , m ' , and also for j = 0 in case n = 2.

Proof: That fao' I = 0 for j ~ 1 follows from Corollary (2.7). If,
n =2, let r be large enough so that IT C Br =Br(O). Then Corollary (2.7)
gives

But 18r u(x)1 = O(lxl- 2) by Proposition (2.75), so the first term on the
right vanishes as r -+ 00; since 8v+u =I, we are done.

We now turn to the problem of finding solutions. To begin with, con­
sider the interior Dirichlet problem. Our inspiration comes from the for­
mulas (2.24) and (2.37) that represent a harmonic function in terms of its
boundary values. Suppose we neglect the second term in (2.24) or the dif­
ference between G and N in (2.37) and try to solve the interior Dirichlet
problem by setting

u(x) =L8v .N(x, y)/(y) duty),

where N is the fundamental solution for .:l defined by (2.18) and (2.22).
u will be harmonic in n, but of course it will not have the right boundary
values in general. However, in a sense it is not far wrong: we shall see that
ulS = ~I + TI where T is a compact operator on L 2(S). Thus what we
really want is to take

(3.7) u(x) =L8v .N(x,y)¢(y)du(y)
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B. Integral Operators

where A is a bounded function on S x S. We shall call K a kernel of
order zero if

K(x, y) = A(x, y)lx _ Yl-a

[«x, y) =A(x, y) log Ix - yl + B(x, y)

(3.8)

(3.9)

u(x) =1N(x, y),p(y) du(y).

This is the single layer potential with moment 4>. It is simply the
potential induced by a charge distribution on S with density -4>(y).

Before studying double and single layer potentials, we need to collect some
facts about certain kinds of integral operators on the boundary S of our
domain n C R.n. (These results also hold if S is the closure of a bounded
domain in R.n-l.)

Let K be a measurable function on S x S, and suppose 0 < (J( < n - l.
We shall call K a kernel of order (J( if

where ~4> + T4> = f, and we can use the theory of compact operators to
handle the latter equation.

The function u defined by (3.7) is called the double layer potential
with moment 4>, and its physical interpretation is as follows. If we think
of the normal derivative 8v .N(x, y) as a limit of difference quotients, we
see that (3.7) is the limit as t -+ 0 of the potential induced by a charge
distribution with density r l 4>(y) on S together with a charge distribution
with density -t- l 4>(y) on the parallel surface Sf ={y + tv(y) : YES}. In
other words, (3.7) is the potential induced by a distribution of dipoles on S
with density 4>(y), the axes of the dipoles being normal to S. (See Exercise
2 of §2G for the analogous result for a half-space. There, the Poisson kernel
is 2lJv .N(x, y) and the operator T is zero.)

Similarly, we shall try to find a solution to the Neumann problem in
the form

where A and B are bounded functions on S x S. We note that it is im­
material whether we measure Ix - vi in the ambient space or in local co­
ordinates on S, since the two quantities have the same order of magnitude
as x - y -+ O. Finally, we shall call J{ a continuous kernel of order

I

I
I
I

I
I
I
I
I

I
I
I
I
I
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a (0 :::; a < n - 1) if K is a kernel of order a and K is continuous on
{(x, y) E 8 x 8 : x :/; y}.

If J< is a kernel of order a, 0 :::; a < n - 1, we define the operator TK
formally by

TKf(x) = is J«x,Y)f(y)dO'(y).

(3.10) Proposition.

If J< is a kernel of order a, 0 ~ a < n - 1, then TK is bounded on £P(8)
for 1 ~ p :::; 00. Moreover, there is a constant G > 0 depending only on a
such that if J< is supported in {(x, y) : Ix - yl < {}, then

IITKflip :::; c{n-I-aIiAlioollflip (a> 0),

IITKflip:::; G{n-l (IIAII",, (1 + Ilog{!) + I/BI/"")lIfll",,

where A and B are as in (3.8) and (3.9).

(a =0),

Proof: It suffices to prove the second statement, since we can always
take { to be the diameter of 8. Using polar coordinates on 8 centered at
x E 8, we see that for a > 0,

JIK(x, y)1 dO'(y) :::; I/AI/oo f Ix - yl-a dy
A"-III«

~ GIl/Ali""l' rn- 2
-

a dr =G2 I1AI/",,{n-I-a.

Similarly, J I[((x, y)1 dO'(x) ~ G2 I1Alloo{n-l-a. The same calculation shows
that for a = 0, J1J«x, y)1 dO'(y) and J IK(x, y)1 dO'(x) are dominated by
{n-I(llAII",,{l + Ilog{\) + IIBII",,). The proposition therefore follows from
the generalized Young's inequality (0.10). I

(3.11) Proposition.

If J( is a kernel of order a, 0 ~ a < n - 1, then TK is compact on £2(8).

Proof: Given { > 0, set K,(x, y) = [{(x, y) if Ix - yl > { and
K,(x, y) = 0 otherwise, and set K~ = K - K,. Then K, is bounded
on 8 x 8. hence is a Hilbert-Schmidt kernel, so TK. is bounded on £2(8)
by Theorem (0.45). On the other hand, by Proposition (3.11) the operator
norm of TK - TK• = TK~ tends to zero as { ~ 0, so TK is compact by
Theorem (0.34). I
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(3.12) Proposition.
If 1< is a continuous kernel of order 01,0501 < n - I, then TK transforms
bounded functions into continuous functions.

Proof: We may assume 01 > 0, since a continuous kernel of order zero
is also a continuous kernel of order 01 for any 01 > O. Thus we may write
1< as in (3.8). Given x E 5 and 6 > 0, set B6 = {y E 5 : Ix - yl < 6}. If
y E B6, we have

ITK f(x) - TKf(y)\ =11 [I{(x, z) - K(y, z)]J(z) du(z)I
5 r [IK(x, z)1 + IK(y, z)l1l/(z)1 du(z)1B,.

+ r IK(x, z) - K(y, z)lI/(z)1 du(z).
}S\B,.

The integral over B26 is bounded by

IIAlloo 11/1100 r [Ix - zl-a + Iy - z\-a) du(z),
1B >6

and an integration in polar coordinates shows that this is O(6n - 1- a ). Given
f > 0, then, we can make this term less than ~f by choosing 6 sufficiently
small. On the other hand for y E B6 and z E S \ B 26 we have Ix - zl ~
26 and Iy - zl ~ 6, so the continuity of K off the diagonal implies that
K(x, z) - K(y, z) converges to 0 uniformly in z E 5 \ B26 as y -l- x. Hence
the integral over 5 \ B26 will be < ~f if y is sufficiently close to x. I

It is convenient to consider TK as an operator on £2(5) because £2(5) is
a Hilbert space. However, we really want to deal with continuous functions.
The following proposition assures us that when we solve the Fredholm
equation U + TKU = I. continuous data give us continuous solutions.

(3.13) Proposition.
Suppose I< is a continuous kernel of order 01,0501 < n - 1. lfu E £2(S)
and U +TKu E C(S), then u E C(S).

Proof: Given f > 0, choose </J E C(S x S) such that 0 5 </J 5 1,
</J(x, y) =1 for Ix - yl < ~f, and </J(x, y) = 0 for Ix - yl > f. Set K o = </JK
and K 1 =(1 - </J)K. Then by the Schwarz inequality,
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To begin with, we note that for x E R n
\ Sand yES,

c. Double Layer Potentials

Let ¢ be a continuous function on S. In the section we study the properties
of the double layer potential with moment ¢,

(x E R n
\ S).u(x) =18v .N(x, y)¢(y) du(y)

EXERCISES

1. Suppose [( E C(S x S). Show that TK maps U(S) into C(S) for
1 ~ p ~ 00. Show also that if {lj} is a bounded sequence in LP(S)
then {TK Ij} has a uniformly convergent subsequence; in particular, TK
is a compact operator on U(S). (Use the Arzela-Ascoli theorem.)

2. Show that if K is a continuous kernel of order a on S, 0 ~ a < n - 1,
then TK is a compact operator on U(S) for 1 ~ p ~ 00. (Use Exercise
1.)

3. Extend Proposition (3.12) to show that if J( is a continuous kernel of
order a then TK maps U(S) into C(S) for p > (n - 1)/(n - 1 - a).

8 N( ) __ (x - y) . lI(y)
v. x,y - wnlx-Yln

Since [{l is continuous, the integral on the right tends to zero as y -> x;

thus TK. u is continuous.
Now if we set 9 = (u + TKU) - TK. U, we see that 9 is continuous

and that u + TKo U = g. By Proposition (3.11), if 10 is sufficiently small
the operator norm of TKo on both L2 and Loo will be less than 1. Then
I + TKo is invertible, and u is expressed in terms of 9 by the geometric
series u = L:~(-TKo)jg. By Proposition (3.12), each term in the series is
continuous, and the series converges in the norm of Loo , i.e., uniformly, so
u is continuous. I

(3.14)

is continuous in y and harmonic in x (since x-derivatives commute with
y-derivatives), and it is O(lxI 1- n

) as x -> 00. Therefore, u is harmonic
on Rn \ Sand lu(x)1 = O(lxI 1- n) as x -> 00, so that u is also harmonic
at infinity. More interesting and more subtle is the behavior of u near S.
Before investigating this, we state a technical lemma.
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(3.17) Proposition.
K is a continuous kernel of order n - 2 on S.

(x E S, YES, x # y).K(x, y) =8vy N(x, y)(3.16)

Proof: We have
A(x,y) (x ~ y). v(y)

K(x,y) = I I -2' where A(x,y) = - I 12'
X - Y n Wn X - Y

K(x, y) is clearly continuous for x # y, so the result follows from Lemma
(3.15). I

We shall give a special name to the kernel 8vy N(x, y) when x and yare
both on S; namely, we set

The reason for this bit of not.ation is twofold. First, the kernel I< is going
to play a special role in our theory. Second, it is a little dangerous to
regard K as really t.he normal derivative of N for xES; there are some
delta-functions lurking in the shadows, as we shall see at the end of t.his
section.

It is therefore reasonable to extend the potential u to S by setting

(3.18) u(x) =1I«x,y)4>(y)d/T(Y) =TK4>(X) (x E S).

By Proposition (3.12), the restriction of u to S is continuous on S. However,
u is not continuous on JRn; t.here is a jump when we approach points on
S by points in JRn \ S. This phenomenon shows up most. clearly in the
simplest case, where 4> == 1.

(3.15) Lemma.
There is a constant c> 0 such that for all x, yES,

I(x - y). v(y)1 ~ clx _ y12.

Proof: Since I(x - y) . v(y)1 ~ Ix - yl for all x, y, it suffices to assume
that Ix - yl ~ 1. Given yES, by a translation and rotation of coordinates
we may assume that y =0 and v(y) =(0, ... ,0,1). Hence (x - y) . v(y) =
xn, and near y, S is the graph of an equation X n = I(xl, ... , xn-d where
1 E C2

, 1(0) =0, and \11(0) =O. By Taylor's theorem, then,

I(x - y) . v(y)1 = If(XI,"" xn-dl ~ CI(XI, ... , xn_dl2 ~ clxl 2 = cIx _ yl2

for Ixl ~ 1, where c depends only on a bound for the second partial deriva­
tives of f. Since S is compact and of class C 2 , there is such a bound that
holds for all yES, and we are done. I

I
I

I
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I
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(3.19) Proposition.

r {I if x EO,ls 0v• N (x,y)du(y)= 0 if x EO/;

1[{(x, y) du(y) = ~ if xES.

Proof: The result for x E 0' follows immediately from Corollary
(2.7), since N(x,y) is Coo on n and harmonic on 0 as a function of y
when x E 0/. On the other hand, if x E OJ let e> 0 be small enough so
that If, = B,(x) CO. We can then apply Corollary (2.7) to N(x,') on the
domain 0 \ If, as in the proof of the mean value theorem:

0= rov.N(x, y) du(y) _ e
1
-" r du(y)

ls w" laB,

=1Ov.N(x, y) du(y) - 1.

Now suppose xES, and again let B, = B,(x). Set

S, =S\ (Sn B,), oB~ =BB, no, BB;' = {y E oB,: v(x)· y < o}.
(Thus oB:' is the hemisphere of BB, lying on the same side of the tangent
plane to S at x as 0.) On the one hand, clearly

r J(x,y)du(y) =lim r K(x,y)du(y).ls ,-o~,

On the other hand, since N(x,') is harmonic on 0 \ If, and smooth up to
the boundary S, U BB:, by Corollary (2.7) we have

0= r K(x,y)du(y)+ r ov.N(x, y) du(y).
Js~ JaB:

Thus, taking into account the proper orientation on oB;,

1 1 el-" 1
K(x, y) du(y) =- lim ov.N(x, y) du(y) = lim - du(yj.

s (-0 aB~ €_o W n 8B~

But since S is C2 , the symmetric difference between eB: and eB;' is con­
tained in an "equatorial strip"

{y E eB, : Iy' v(x)1 ~ c(e)},

whose area is O(e"). Hence

r du(y) == r du(y) + O(e") =~e"-lw" + O(e"),
J8B~ JaB~'

and the result follows.
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To extend this result to general densities <P, we need two preliminary

lemmas.

(3.20) Lemma.
There is a constant C < 00 such that for all x E lR" \ 5,

12(x _ xo). (xo _ y)\ =2\x - xollv(xo)· (xo - y)1 ::; 2clx - xollxo - y12.

w 10 N(x )1 = I(x - y) . v(y)1 < I(x - xo) . v(y)\ + I(xo - y) . v(y)1
"v. ' y Ix _ yl" - Ix - yl"

Ix - xo\ + clxo - y\2
<'-----'---'--:...-~
_ Ix - yl" I

and by Lemma (3.15) again,

Hence 10v.N(x, y)\ ::; CI01-" I so the integral over 5 \ B6 is bounded by C2

as above. To estimate the integral over B6 I we note that

Ix _ y\2 = Ix _ xol2 + \xo - yl2 + 2(x - xo) . (xo - y),

Case II: dist(x , 5) < ~6. Let Xo be the unique point of 5 such that

x = Xo + tv(xo) with \tl < ~Ol and let B6 = {y E 5 : Ixo - y\ < o}.
We estimate the integral of 18v.K\ over 5 \ B6 and over B6 separately. If

y E 5 \ B6. then

110v.N(x, y)\ dIr(y) ::; C.

by Lemma (3.15). Moreover,

Proof: Let dist(x, 5) denote the distance from x to the nearest point
of 5. Fix 0 > 0 with the following two properties: (i) 6 < 1/(2c) where cis
the constant in Lemma (3.15); (ii) the set ofx such that dist(x ,

5) < ~o is a
tubular neighborhood of 5 as in Proposition (0.2). Thus, if dist(x

,
5) < ~O,

there is a unique Xo E 5 and t E (-~o, ~o) such that x = Xo + tv(xo); Xo
is the closest point in 5 to x by the Lagrange multiplier principle .

Case 1: dist(x, 5) ~ ~o. Then 10v.N(x, y)1 ::; C10
1
-" for all y E 5, so

I
I
I
I

,•
I

•



Layer Potentials 127

In particular, since Ixo - yl < 6 < 1/(2c), this last quantity is less than
Ix - xollxo - yl, whence

Ix - yl2 2: ~(Ix - xol2+ Ixo _ YI2).

Therefore,

Ix - xol + clxo _ yl2
lov.N(x, y)I ~ 03 (Ix _ xol2 + Ixo _ yI2)n/2

031x - xol 03C

~ (Ix - xoP + /xo - yI2)n/2 + Ixo _ yln-2 '

so if we set r = Ixo - yl and a = Ix - xol, integrate in polar coordinates,
and make the substitution r =as, we obtain

r lav.N(x, y)1 ~ 04 r
6

[( 2 a 2) /2 + ~2] r
n

-
2 drlB. 10 a + r n r n

~ 0 4 L>O (1 ;n:';n/2 ds + 0 4 6,

This last integral converges since the integrand is 0(S-2) as s -+ 00, so we
~~M. I

(3.21) Lemma.
Suppose </J E 0(5) and </J(xo) =0 for some Xo E 5. If u is defined by (3.14)
and (3.18), then u is continuous at xo.

Proof: Given £ > 0, we wish to produce 6> 0 so that lu(x)-u(xo)/ <
£ when Ix - xol < 6. Let 0 be the constant in Lemma (3.20), and let
0' = Is I[{(x, y)1 dO'(y) (which is finite since K is a kernel of order n- 2:
cf. the proof of (3.10).) Choose 1] > 0 so that 14>(y)1 < £/3(0 + G') when
y E BTl = {z E 5: Iz - xol < 1]}. Then

lu(x) - u(xo)1 ~ r (Iavy N(x, y)\ + lav.N(xo, y)I)I4>(y)1 dO'(y)lB.
+ r lav.N(x, y) - avyN(xo, y)II<jJ(y)1 dO'(y).ls\B.

(Of course avo N = K when both of its arguments are on 5.) The first
integral on the right is less than 2£/3. Moreover, if Ix - xol < h the
integrand of the third term is bounded and continuous on S \ BTl and tends
uniformly to zero as x -+ Xo. We can therefore choose 6 < ~1] small enough
so that the third term is less than £/3 when Ix - xol < 6. and we are done.
(For future reference we note that 6 depends only on 1] and the uniform
normof<jJ.) I
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We are now ready for the main theorem of this section. If u is defined
by (3.14), we define the functions UI on S for small t ::ft 0 by

UI(X) =u(x + tv(x)).

Thus UI is, in effect, the restriction of u to a surface parallel to S at a
distance t from S.

(3.22) Theorem.
Suppose </I E C(S) and U is defined by (3.14). The restriction ofu to 0 has
a continuous extension to IT, and the restriction ofu to 0' has a continuous
extension to 0'. More precisely, the functions Ut converge uniformly on S
to continuous limits u_ and u+ as t approaches zero from below and above,
respectively. u_ and U+ are given by

U_(x) = ~</J(x)+ is [{(x,y)</J(y)du(y),

u+(x) = -~</I(:I:) +1[{(x, y)</J(y) du(y),

that is,

Proof: If:l: E Sand t < 0 is sufficiently small, then :I: + tv(x) E 0, so
by Proposition (3.19),

UI(X) = </J(:I:)18v .N(x + tV(:I:), y) du(y)

+18v .N(:I: + tv(x), Y)[</I(Y) - </I(:I:)J du(y)

=</1(:1:) +18v .N(:I: + tV(:I:), y)[¢(y) - </I(:I:)} du(y).

By Lemma (3.21), the second integral is continuous in t as t -. 0, so by
Proposition (3.19) again,

lim Ut(:I:) =</1(:1:) + r/(:1:, Y)</I(Y) du(y) - </1(:1:) rK(:I:, y) du(y)
1-0 is is

= H(:I:) + is [{(:I:, y)</I(y) du(y).

If t > 0, the argument is the same except that

</J(:I:) is 8v .N(x + tV(:I:) , y) du(y) = O.
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The uniformity of the convergence follows from the proof of Lemma (3.21):
we have only to observe that since 5 is compact, for any ( > 0 we can
choose 1] > 0 so that I¢(x) - ¢(y)1 < (/3(G + G' ) for all x, y E 5 such that

Ix - yl < 1]. I

(3.23) Corollary.
¢ =u_ - u+.

Theorem (3.22) may be interpreted as follows. If for small t f= 0 we
define the function /{t on 5 x 5 by

then for each x E 5,

lim Kt(x,') = !ex + [(x, '),
t<O, t ....o

where ex is the point mass at x and both sides are interpreted as distribu­
tions (or measures) on 5.

D. Single Layer Potentials

We now consider the single layer potential

(3.24) u(x) =1N(x, y)¢(y) du(y)

with moment ¢, where ¢ E G(5). As with the double layer potentials, it is
clear that u is harmonic on IR n

\ 5 and that lu(x)1 =0(lxI 2
-

n
) as x ...... 00

when n > 2, so that u is harmonic at infinity for n > 2. (If n =2, in general
we only have lu(x)1 = O(log Ixl) as x ...... 00; we shall say more about this
later.) Moreover, the restriction of N to 5 x 5 is clearly a continuous kernel
of order n - 2, so u is also well defined on 5.

(3.25) Proposition.
If ¢ E G(5) and u is defined by (3.24), then u is continuous on IRn

.

Proof: We need only show continuity on 5, and the proof is very
similar to that of Lemma (3.21). Given Xo E 5 and e > 0, let us set

---
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the right hand side of (3.26) makes sense for x E 8 if we interpret it as

B6 = {y E 8: Ixo - yl < 6}. Then

OyU(x) =10y.N(x,y)¢>(y)du(y).

1[{"(x, y)¢>(y) du(y) =TK·¢(X).(3.27)

(3.26)

Now let us consider the normal derivative of u. Let V be the tubular
neighborhood of 8 given by Proposition (0.2). Recall that we have defined
the normal derivative Oy on V by formula (0.3); thus for x E V \ 8 we have

[{"(x,y) = I«y,x),

lu(x) - u(xo)l:::; r IN(x, y)¢>(y)1 der(y) + r IN(xo, y)¢>(y)1 der(y)lB. lB.
+ r IN(x, y) - N(xo, y)II¢>(y)1 der(y).lS\B.

Since I< is a continuous kernel of order n - 2, so is Ie; thus (3.27) defines a
continuous function on 8 by Proposition (3.12). Moreover, since I< is real­
valued, it is easily checked that TK' is the adjoint of TK as an operator on
L 2(8); hence (3.27) is just Tk¢(x).

As might be expected, there is a jump discontinuity between the quan­
tities defined by (3.26) on V \ 8 and by (3.27) on 8. Indeed, we have the
following theorem.

Since ¢> is bounded and N(x,y) = O(lx - YF-n) (or o(log Ix - YI-l) if
n =2), an integration in polar coordinates shows that the first two terms
on the right are 0(6) (or 0(61og6- l ) if n = 2). Given £ > 0, then, we
can make these terms each less than £/3 by choosing 6 small enough. If we
now require that Ix - xol < ~6, the integrand in the third term is bounded
on 8 \ B6 and tends uniformly to zero as x ..... Xo, so by choosing Ix - xol
small enough we can make the third term less than £/3 also. I

This looks just like a double layer potential except that Oy is applied to N
with respect to x instead of y. In fact, since N(x, y) =N(y, x), oy.N(x,y)
is just oy.N evaluated at (y, x). In particular, if we set

I
I
I
I
I
I
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(3.28) Theorem.

Suppose ¢ E C(S) and u is defined on IR n by (3.24). Then the restriction
of u to IT (resp. 0') is in C~(n) (resp. C~(n'»), and for xES we have

8~_u(x) = -~¢(x) +LK(y, x)¢(y) du(y),

8~+u(x) = t¢(x) +1f{(y, x)¢(y) du(y),

that is,

Proof: We already know that u is everywhere continuous. Consider
the double layer potential

v(x) =L8~.N(x,y)¢(y)du(y)

on IRn
\ S, and define the function / on the tubular neighborhood V of S

by

/(x) _ {v(X) + 8~u(x) (x E V \ S),
- TK¢(x) +Tk¢(x) (x E S).

We claim that / is continuous on V. The restrictions of / to V \ Sand
S are continuous, so it suffices to show that if Xo E S and x =Xo + tll(Xo)
then /(x) - /(xo) -> °as t -> 0, the convergence being uniform in Xo. But

/(x) - /(xo)

=1[8~z N(x, y) + 8~.N(x, y) - 8~z N(xo, y) - 8~.N(xo, y)] ¢>(y) du(y).

We proceed as in the proof of Lemma (3.21): write this expression as an
integral over B6 = {y E S : Ixo - yl < 6} plus an integral over S \ B6. As
before, the integral over S \ B6 tends uniformly to zero as x -> xo. On the
other hand, the integral over B6 is bounded by

plus the same expression with x replaced by Xo. Thus it suffices to show
that for all x on the normal line through Xo,



I

-(x - y) . v(y)
ov.N(x,y) = I In'

W n x- y

o N( ) + 0 N( ) _ (x - y) . [v(xo) - v(y)]
V z x,y v. x,y - wnlx-y\n

(x - y) . v(xo)
OVzN(x,y) = \ I 'W n X _ Y n

and also

(3.29) Corollary.
4>=o.+u-o._u.

We conclude the discussion of single layer potentials with three lemmas
that will be needed in the next section.

Ov- u(x) =-t4>(x) +Tk4>(x);

so that

ov+u(x) = !4>(x) + Tk4>(x).

The convergence of ovu(x + tv(x» to ov±u(x) is uniform in x since the
same is true of v and v + o.u. I

Thus f = v + ovu extends continuously across S. Therefore, by Theo­
rem (3.22), for all xES we have

so that

and the integral is dominated by

But Iv(xo) - v(y)1 = O(lxo - yl) since v is C1, and Ix - yl 2: Clxo - yl since
x is on the normal through xo. Hence

so

can be made arbitrarily small by taking 6 sufficiently small, independent
of x and xo. Now

132 Chapter 3

I
I
I
I
I
I

I



LlIycr Potcntiliis 133

(3.30) Lemma.

Ift/J E C(S) and tt/J + Ti<t/J = I, then Ist/J = Is I·

Proof: By Proposition (3.19) and Fubini's theorem,

11(x)d(J"(x) = ~1t/J(x)d(J"(x) +11 /{(y,X)t/J(y) d(J"(y) d(J"(x)

= ~1q,(X)d(J"(x) + ~1q,(y)d(J"(Y) = 1q,(x)d(J"(x). •

(3.31) Lemma.

Suppose n = 2. If q, E C(S), the single layer potential u with moment q,
is harmonic at infinity if and only if Is q, = 0, in which case u vanishes at
infinity.

Proof: We have

1 1 10glXliu(x) = - (log Ix - yl- log Ixl)q,(y) d(J"(Y) +-- q,(y) d(J"(Y).
271" s 271" s

Since log IX-Yl-log Ix I -+ 0 uniformly for yES as x -+ 00, the first integral
vanishes as x - 00. In view of Proposition (2.74), the result follows. •

(3.32) Lemma.

Suppose n = 2. If t/J E C(S), Is t/J = 0, and the single layer potential u
with moment t/J is constant on IT, then t/J = 0 (and hence u =0).

Proof: By Lemma (3.31), u is harmonic at infinity, so if u =c on IT,
u solves the exterior Dirichlet problem with I =c. But the solution to this
problem (unique, by Proposition (3.2» is u = c. Thus u = c everywhere,
so t/J =0 by Corollary (3.29) (or because 0 =Au =t/Jd(J"). I

EXERCISES

1. Let n = BR(O), S = SR(O). Show that the single layer potential u(x)
with moment t/J == 1 is given by

[max(lxl. R)j2-n (n> 2), log[max(lxl, R)] (n =2).
2- n

That is, the potential generated by a uniform distribution of charge
on a spherical shell is constant inside the shell, and outside the shell it
behaves as if the charge were all concentrated at the origin. (Hint: Show
that u is radial and that the asserted formula for u is asymptotically
correct as x -+ 00, and apply Corollary (2.3).)
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E. Solution of the Problems

We can now apply the Fredholm theory to solve the Dirichlet and Neumann
problems. For I E C(5), consider the integral equations

V_ = {tP: TKtP =-!I/I},
'W_ = {tP: Tj(tP =-!tP}.

-~tP + TKtP = I,
-~tP +TktP =I,

~tP + TK</> = I,
~tP + TktP =I,

v+ = {tP :TK</> =~tP},

'W+ = {tP: TktP = ~I/I},

u(x)=N(x)l I(y)dy +l I(y)dy.
IYI<I"I IYI>I"I

2. Use the result of Exercise 1 to show that if I E L1(R") is radial and
u =1* N is the associated potential, then

Here 1/1 is allowed to range over either L2(5) or C(S); the result is the same,
by Proposition (3.13).

where [{ is defined by (3.16). By Proposition (3.13) (with [{ and I replaced
by ±2K and ±2f), the solutions r/J will be continuous on S, if they exist.
Therefore, by Theorems (3.22) and (3.28), the double layer potential u
with moment tP will solve the interior (resp. exterior) Dirichlet problem if 1/1

satisfies ~tP+TKtP = I (resp. -!I/I+TKtP =J), and the single layer potential
11 with moment tP will solve the interior (resp. exterior) Neumann problem if
tP satisfes -H+TktP = I (resp. ~tP+Tkl/l = f). There is one exception: if
n =2, in general the single layer potential will grow like log Ixl at infinity
and so will not be harmonic at infinity. However, for n = 2 there is an
extra necessary condition for the solution of the exterior Neumann problem
given by Proposition (3.6), and this condition is equivalent to harmonicity
at infinity by Lemmas (3.30) and (3.31). Thus if the integral equations
are solvable and the necessary conditions are satisfied, the boundary value
problems are solvable. (We shall soon see that the Dirichlet problems are
solvable in any case.)

We proceed to study the solvability of the equations (3.33). By Corol­
lary (0.42), this means identifying the eigenspaces

(3.33)

I
I
I
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Recall that 0 has components 0 1 , ..• , Om, and that 0' has components
O~, ,0;"" where O~ is unbounded. We define functions ai, ... , O'm and
ai, ,a;", on S by

aj(x)={~

O'j(x) = {~

if x E aoj ,

otherwise,

if x E aOj,
otherwise.

(3.34) Proposition.
O'j E V+ for j = 1, ... , m, and O'j E V_for j = 1, ... , m'.

Proof: Since

TKO'j = f [{(x, y) dcr(y) ,
J80j

TKO'j = f [{(x, y) dcr(y) ,
J80'

1

the result follows by applying Proposition (3.19) with 0 replaced by OJ or
OJ. The sign is reversed for O'j because the normal II points into OJ. I

Clearly 0'1, ... ,am are linearly independent, so dim V+ ~ m, and by
Theorem (O.38b), dim W+ = dim V+. On the other hand, suppose /3 E W+,
and let w be the single layer potential with moment {3. Since av _ w =0 by
Theorem (3.28), w is constant on each OJ by Proposition (3.3), so we can
define a linear map from 'W+ to iC'" by

(3.35)

If n > 2, this map is injective. Indeed, if wlO = 0, then w solves the
exterior Dirichlet problem with f =0, so win' =0 by Proposition (3.2).
Hence w = °everywhere, so {3 = 0 by Corollary (3.29). It follows that
dimW+ :5 m, so dimW+ =m and the map (3.35) is an isomorphism.

If n = 2, the preceding argument breaks down because w need not
be harmonic at infinity. (A counterexample to the injectivity of (3.35) is
provided by Exercise 1 of §3D, with R = 1. In that situation, V+ =W+
because K(x, y) = K(y, x) by explicit calculation; the function </1 = 1 on
S belongs to V+ = W+; and the associated potential u vanishes on 0.)
However, if we set
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in view of Lemma (3.31) the preceding argument shows that the restriction
of the map (3.35) to W~ is injective, and by Lemma (3.32) its range does
not contain the vector (1, 1, ... ,1). Hence dimW~ ~ m-I. But dimW~ ~

dim W+ -1 since \\)~ is defined by the vanishing of one linear functional, so
again it follows that dimW+ = m. In short, we have proved the following
result.

(3.36) Proposition.
The spaces V+ and W+ have dimension m. Moreover:
a. If n > 2, for each (a1'" ., om) E C" there is a unique f3. E W+ such

that the single layer potential w with moment f3 satisfies wlOj =aj for
j= 1, ... ,m.

b. Ifn =2, there is an (m -I)-dimensional subspace X ofC" such that:
i. C" =XEl7C(I,I, ... ,I);

JI. for each (01, ... , am) E X there is a unique f3 E W~ such that
the single layer potential w with moment f3 satisfies wlOj =aj for
j = 1, ... ,m.

A similar argument applies to V_and W _. Indeed, we have dim V_ =
dimW_ ~ m' by Theorem (O.38b) and Proposition (3.34). If f3 E W_ and
w is the associated single layer potential, then w is constant on each OJ.
and w = 0 on O~ since w vanishes at infinity. (This is true even when
n= 2. Indeed, every {3 E W_ satisfies Is {3 = 0 by Lemma (3.30), so its
single layer potential vanishes at infinity by Lemma (3.31}.) If w =0 on
0' then w =0 on 0 by the uniqueness for the interior Dirichlet problem,
so {3 =0 by Corollary (3.29). Thus the map

from W_ to C'" is injective and hence an isomorphism. Therefore:

(3.37) Proposition.
The spaces V_and W_ have dimension m'. For each (a1,"" am') E C'"
there is a unique {3 E W _ such that the single layer potential w with
moment {3 satisfies wlOj = aj for j = 1, ... , m' and wlOri = o.

We need one more technical result.

(3.38) Proposition.
L2(S} = Vi El7 W+ = V~ EB W_. (The direct sums are not necessarily
orthogonal.)
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Proof: By Proposition (3.35), Vi is a closed subspace of codimension
m and dim W+ = m, so for the first equality it is enough to show that
Vi nw+ ={OJ. Suppose ¢ E Vi nw+; then Tic¢ = ~¢, and by Corollary
(0.42), ¢ = -~1/> + Tic1/> for some 1/> E L2(S). By Proposition (3.13), ¢ and
1/> are continuous. Let u and v be the single layer potentials with moments
¢ and 1/>. Then by Theorem (3.28),

8,,_u = 0, 8,,_v = ¢ = ~¢ + Tic¢ = 8,,+u.

Multiplying the first equation by v and the second by u, subtracting, and
integrating over S, we obtain

1(u8,,_v - v8,,_u) =1u8,,+u.

By Green's identities, the left hand side equals

L(u~v - v~u) =0,

while the right hand side equals

_ f (u.lu + l\7uI 2
) =_ f l\7uI2.

inl in'
(The application of Green's identity on 0' needs some justification, which
we shall give below.) Therefore u is locally constant on 0', so ¢ = 8,,+ u = O.

The proof that L 2(S) =V: EB W _ is much the same: again it suffices
to show that if ¢ E V: n W_ then ¢ = O. But for such a ¢ we have
Tic¢ = -~¢ and ¢ = ~1/> + Tic1/> for some 1/J, so if we let u and v be the
single layer potentials with moments ¢ and 1/J, it follows that 8,,+u =0 and
8,,+ v = ¢ = 8,,_ u. Hence

1(u8,,+v- v8,,+u) = 1u8,,_u.

By Green's idenities,

0=- f (u.lv - v.lu) = f l\7ul2
,

In' 1n
so u is locally constant on 0 and thus ¢ =8,,_ u =O.

To justify these uses of Green's identities on the unbounded region 0'
we replace 0' by 0' n Br(O) and let r ..... 00 as in the proof of Proposition
(3.4). To make this work it is enough to know that u is harmonic at infinity,
so that u and its radial derivative satisfy the estimates of Propositions
(2.74) and (2.75). Harmonicity at infinity is automatic when n > 2, and
for n = 2 it is equivalent to the condition Is ¢ = 0 by Lemma (3.31).
The latter condition is valid when ¢ E Vi by Proposition (3.34) since
Is ¢ =I:;" (¢ locj), and it is valid when ¢ E W_ by Lemma (3.30). I
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(3.39) Corollary.

£2(5) =Hange(-!l + TK) EI:1 V+ =Range(!l + TK) EI:1 V_.

Proof: Since Range(-! I + TK) = Wi and Range(F + TK) = W:
by Corollary (0.42), as in the proof of Proposition (3.38) it suffices to show
that Wi nv+ =W: nv_ = {O}. Suppose 4> E Wi nv+. By Proposition
(3.38) we can write 4> = 4>1 + 4>2 where 4>1 E W+ and 4>2 E Vi. But
(4) 14>1) =0 since 4> E Wi and (4) 14>2) =0 since 4> E V+; hence (4) 14>) =0,
so 4> = O. Likewise W: nv_ = {O}. I

Finally, we come to the theorem for which this whole chapter has been
preparing.

(3.40) Theorem.
With the notation and terminology of§3A, we have:
a. The interior Diric1Jlet problem has a unique solution for every / E 0(5).
b. The exterior Dirichlet problem has a unique solution for every / E

C(5).
c. The interior Neumann problem for / E 0(5) has a solution if and only

if Jan. / =0 for j =1, ... , m. The solution is unique modulo functions,
which are constant on each OJ.

d. The exterior Neumann problem for / E 0(5) has a solution if and only
if Jao' / = 0 for j = 1, ... , m' and also for j = 0 in case n = 2. The

J

solution is unique modulo functions which are constant on O~, ... , 0;",
and also on O~ in case n =2.

Proof: We have already proved the uniqueness and the necessity of
the conditions on / in Propositions (3.1-6), so all that remains is existence.

For (c) we simply observe that Jao. / = (f IOJ), so these integrals

vanish if and only if / E Vi. By Corollary (0.42), this is necessary and
sufficient to solve the integral equation -!4> + Ti<4> = f. If 4> is a solution,
then 4> is continuous by Proposition (3.13), so by Theorem (3.28) the single
layer potential with moment 4> solves the interior Neumann problem.

Similarly, for (d) we have Jao'! = (floj) for j = 1, ... ,m', so these

integrals vanish if and only if / JE V:, in which case we can solve the

equation !4> + Ti<4> = f and then solve the Neumann problem with the
single layer potential with moment 4>. In case n = 2, by Lemmas (3.30)
and (3.31) this potential is harmonic at infinity if and only if Jao' f = 0,

since Jao' f is already assumed to vanish for j 2: 1. 0

J
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Now consider (a). By Corollary (3.39) and Propositions (3.34) and
(3.37) we can write

m'

f = !</> + TK</> + I:>jfrj
1

where </> is continuous since f - L::ajfrj is (Proposition (3.13)). By Theo­
rem (3.22), the double layer potential v with moment </> solves the interior
Dirichlet problem with f replaced by!</> + TK</>. Moroever, by Propo­
sition (3.37) there exists fJ E W_ such that the single layer potential w
with moment fJ satisfies wlnj = aj for j ~ 1 and wlnb = O. But then

wlS = L::7" ajfrj since w is continuous on S (Proposition (3.25)), so the
solution of the original Dirichlet problem is u = v + w.

When n > 2, the proof of (b) is exactly the same, with the roles of n
and n' interchanged and Proposition (3.36) replacing Proposition (3.37).
For the case n = 2, the argument needs to be modified as follows. As
above, we can write

m

f =-!</> + TK </> + L: ajfrj
1

(</> E C(S), aj E iC).

The double layer potential v with moment </> solves the exterior Dirichlet
problem with f replaced by -!</> + TK</>. Moreover, since L:: fr; = 1 on S,
with notation as in Proposition (3.36) we can write

F. Further Remarks

The classic treatise on potential theory, which has retained its value after
more than a half-century in print, is Kellogg (31). The reader may consult
this work for more information on the behavior of single and double layer

and there exists fJ E W~ such that the single layer potential with moment
fJ satisfies win; =b;. w is also harmonic at infinity by Lemma (3.31), so w
solves the exterior Dirichlet problem with f replaced by L::bjfrj. Finally,
the constant function c solves the exterior Dirichlet problem with f replaced
by c, so the solution to the original Dirichlet problem is v + w + c. I

--

((b l , ... , bm ) E X, C E iC),
m m

L: ajfrj =L: bjfrj + C

1 1
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[{'(x, y) =[{(x, y) + b(x)N(x, y).

all u + bu = f on S.

av_u+ bu =f on S,

Au =°on n,

Au = °on n,

Even if b is not posit.ive, t.his equation can be solved provided f satisfies a
finite number of compatibility conditions. See Kellogg (31, §XI.12).

More generally, one can consider the oblique derivative problem

which arises in the theory of stationary heat flow. Provided b > °on S, a
unique solution to this problem exists in the form of a single layer potential
with moment ¢, where ¢ satisfies

potentials, as well as various other aspects of the subject not discussed
here. Our treatment also owes much to the lucid exposition in Mikhlin
(36).

The results of this chapter extend, with no essential change, to the
somewhat more general case where S is assumed only to be of class C 1+Ot

for some a > 0; see Mikhlin (36). Some of the arguments involving tubular
neighborhoods need some technical elaboration, but the main difference is
that [{ is a kernel of order n-l-a rather than of order n-2. (The reason is
that the conclusion of Lemma(3.15) becomes l(x-y)·v(y)l::; clx_yll+Ot.)
In the limiting case a =0, where S is assumed to be only C 1 or Lipschitz,
the kernel [{ is of a sufficiently singular nature that the theory of §2B no
longer applies. Indeed, only recently has the method of layer potentials
been extended to these cases - by Fabes, Jodeit, and Riviere (13) when
S is C 1 , and by Verchota (54) when S is Lipschitz. These authors obtain
sharp theorems for the Dirichlet and Neumann problems with boundary
data in LP; their work relies on some deep results of Calderon, Coifman,
Macintosh, and Meyer on singular integrals. See also Jerison and Kenig
(28).

There are other methods for solving the Dirichlet problem with contin­
uous boundary data that yield results under minimal regularity hypotheses
on S, of which the most popular is Perron's method of subharmonic func­
tions. An exposition of t.his t.heory can be found in John (30), Treves (52),
and Jerison and Kenig (28]; see also Kellogg (31] for some related material.

The techniques of integral equat.ions can also be applied to solve other
boundary value problems for the Laplacian. (Here and in what follows we
shall assume that S is at. least of class C2 .) For example, if bE COt(S) and
f E COt(S) for some a > 0, consider the problem

I
I
I
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Here al'u = \7u . J1. where J1. is a smooth vector field on a neighborhood
of S with J1. • v > 0 on S, and b, f E GO'(S) for some a > O. Again, one
attempts to find u in the form of a single layer potential, but the kernel
al'. N(x, y) which ariseg ig no longer of order n - 2. Rather, it satisfies only
IOI'.N(x, y)1 $ Glx - yjl-n, so it is not integrable as a function of either x
or yon S. However, it has certain cancellation properties which guarantee
that the integral Lol'.N(x, y)¢J(y) du(y)

is well defined for ¢J E GO'(S) (a > 0) if it is interpreted in a suit­
able principal-value sense. (The idea is much the game as in Theorem
(2.29).) The "singular integral operator" defined in this way is not com­
pact. Nonetheless, one can show that there is another singular integral
operator which inverts it modulo a compact operator, so the problem ig
again reduced to Fredholm theory.

These results were obtained by G. Giraud in a long series of papers
in the 1930's. in which he dealt with the Dirichlet, Neumann, and oblique
derivative problems for general second-order elliptic operators with vari­
able coefficients. For a description of Giraud's work and references to
the literature, see Miranda [37]. (This remarkable book contains an enor­
mous amount of information about elliptic equations, often with sketchy
or nonexistent proofs, and it concludeg with a seventy-page bibliography.)

More recently, the singular integral operators used by Giraud were stud­
ied systematically by Calderon and Zygmund and then incorporated into
the theory of pseudodifferential operators. The theory of layer potentials
has found a new incarnation in a powerful method, due to Calderon and
others, for reducing boundary value problems for quite general differential
operators on smoothly bounded domains to the study of pseudodifferential
equations on the boundary. (The constructions in this chapter and in the
work of Giraud are special cases of this method, although they also yield
detailed information that is not available in in the general setting.) See
Hormander [27, vol. III] and Taylor [48].

One may expect that if we impose additional smoothness conditions
on the boundary data, the solution will have corresponding smoothness
properties near the boundary. This is indeed the case, and it can be proved
by the techniques of this chapter. In Chapter 7 we shall obtain some
results along these lines, by different methods, for the Dirichlet, Neumann,
and oblique derivative problems for a general class of second-order elliptic
operators.
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Chapter 4

THE HEAT OPERATOR

We now turn our attention to the heat operator

"at - t. =at - L aJ
1

on jR" x jR with coordinates (x, t). It has the following physical interpre­
tation: the temperature u(x, t) at position x and time t in a homogeneous
isotropic medium with unit coefficient of thermal diffusivity satisfies the
heat equation atu - t.u =O. (See Folland [17, Appx. 1) for a brief deriva­
tion.) The same equation also governs other diffusion processes, such as
the mixing of two fluids by Brownian motion.

A few caveats about the use of the heat equation in physics: First, the
heat equation says nothing about the microscopic physical processes that
actually produce heat flow. It describes a limiting situation in which the
size of atoms can be considered as infinitesimal, or - statistically speaking
- in which it is legitimate to pass to the limit in the central limit theorem.
It does not recognize the existence of absolute zero, since if u is a solution
then so is u + c for any constant c. And, of course, it takes no account of
convection effects in fluids. Nonetheless, the heat equation is very useful
in many physical situations, and it is of great mathematical importance.

The heat operator is the prototype of the class of parabolic opera­
tors. These are the operators of the form at + L\al9m aa(x, t)a~ where
the sum satisfies the strong ellipticity condition discussed in §7A, namely,
(-1)mReL\al=2maa(x,t)ea :? clel2m for some c > O. For information
about general parabolic operators, we refer the reader to Friedman [20),
[21], Treves [52], and Protter and Weinberger [40).
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A. The Gaussian Kernel

We begin by considering the initial value problem

(4.1) BtU - Au =0 on m." x (0,00), u(x, 0) = l(x).

Physically, this is a reasonable problem: given the temperature at time
t = 0, find the temperature at subsequent times. It is also reasonable
mathematically, since the heat equation is first order in t. (The Cauchy
problem for the hyperplane t = 0 is certainly overdetermined, since this
hyperplane is everywhere characteristic.)

We can quickly obtain a solution by taking the Fourier transform of
(4.1) with respect to the x variables. Indeed, assuming for the moment
that f is in the Schwartz class S, and denoting the Fourier transform of
u(x, t) with respect to x by u(~, t), we have

This is an initial value problem for a simple ordinary differential equation
in t, and the solution is

(t > 0).

Thus u(x,t) = f * [{t(x), where Rt(e) = e- 4lf 'I{I't. By Theorem (0.25),
this means that

The function [{ defined on m." x (0,00) by (4.2) is called the Gaussian
kernel (or Gauss-Weierstrass kernel or heat kernel). We note that

Thus by Theorem (0.13), {l<tlt>o is an approximation to the identity.
(Make the substitution ( = t 1/ 2 to obtain the usual formulation.) We
therefore have:

(t > 0).

J[(t(x) dx =Rt(O) =1.

(4.2)

(4.3) Theorem.

Suppose 1 E £P(m."), 1 ~ p ~ 00. Then u(x, t) = 1 * [{t(x) satisfies
Btu - Au = 0 on m." x (0,00). If 1 is bounded and continuous, then u is
continuous on m." x [0,00) and u(x,O) = I(x). Iff E LP wllere p < 00,
then u(', t) converges to f in the LP norm as t -+ O.



1\7",u(x, t)1 :::; Ce,I",I',

where

(0 < a < b < to),n = {(x,t): Ixl < r, a < t < b}

then u is identically zero.

n

g(8tf - ~f) +/(8,g + ~g) = 2:.aj(f8jg - g8i1) + 8,(fg) = \7"",. F,
I

( 4.4) Theorem.
Suppose u is continuous on JRn x [0,(0) and C 2 on JRn x (0,00), and that
u satisfies a,u - ~u =0 (t > 0) and u(x, 0) =O. If for every { > 0 there
exists C > 0 SUell that

Proof: We first note that if I and 9 are C2 functions on a domain in
JRn x JR,

Given Xo E JRn and to > 0, let us take I(x, t) = u(x, t) and g(x, t) =
K(x - xo, to -t). Then at! - ~I =0 for t > 0 and a,g+~g=0 fort <to.
We apply the divergence theorem on the region

F =(f81g - gatl,··., lang - gan/, Ig)·
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Actually, since I<, (x) decays very rapidly as x - 00, 1* I<, makes sense
for t < T provided only that I/(x)l:::; Cel"'I'/4T. Under this condition, one
easily verifies that / * 1<, satisfies the heat equation (by differentiating
under the integral) and that it approaches / uniformly on bounded sets as
t - 0 provided / is continuous.

Moreover, since all derivatives of I«x, t) decrease rapidly as x - 00,

we can differentiate under the integral as often as we please and conclude
that u is Coo. Thus the heat equation takes arbitrary initial data and
immediately smooths them out. In particular, we cannot expect to obtain
a solution for t < 0 unless the initial data are already very smooth: for
the heat equation, time is irreversible. (This is related to the second law
of thermodynamics.)

How about uniqueness for (4.1)? As for the Dirichlet problem for Ll in
a half-space (§2G), we must impose some conditions at infinity, but here
the conditions are much weaker.

I
I
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obtaining (by virtue of (D.l»

0= r F.//
Jan

= r u(x, b)I«x - Xo, to - b) dx - r u(x, a)I«x - Xo, to - a) dx
JI"'I~r JI"'I~r

+t rb r [u(x,t)lljI«x,t)-I«x,t)8j u(x,t)]xj dlT(x)dt.
1 Ja Jt"'l:r r

Now let r -+ 00. The last sum vanishes by our assumptions on u, and since
I< is even in x we obtain

As b -+ to, the first term on the right approaches u(xo, to), and as a -+ 0,
the second term approaches u(', D) * I<to(xo) = D. Hence u(xo, to) = Dfor
all Xo ERn and to > D. I

That uniqueness does not hold for the initial value problem (4.1) with­
out some conditions at infinity can be seen as follows. For simplicity we
take n = 1. If g(t) is any Coo function on R, then formally (disregarding
questions of convergence) the series

00 g(k)(t)x2k

u(x, t) =~ (2k)!

satisfies the heat equation. To produce a nonzero solution of (4.1) with
f = 0, then, it suffices to produce a nonzero 9 satisfying g(k)(O) = 0 for
all k such that this series converges nicely on R n x [0, (0). The function
g(t) = exp(_t- 2 ), for example, will do the job; see John [30] for more
details.

There is another theorem due to Widder, however, to the effect that if
f 2: 0, then u(x,t) = f*/{t(x) is the only nonnegative solution of (4.1); see
John [30]. This gives a satisfying uniqueness theorem for physical problems
since temperatures on the Kelvin scale are always nonnegative.

The Gaussian kernel can also be used to solve the inhomogeneous heat
equation OtU - Au = f. Let us extend I< to jRn x R by setting

(4.5) (t > D),
(t ~ 0).

We note that I< is locally integrable on Rn x R - in fact, integrable
on any region whose projection on the t-axis is bounded above, since
J1I«x, t)1 dx = 1 for t > O.
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(4.6) Theorem.
The kernel J( defined by (4.5) is a fundamental solution for the heat oper­
ator.

Proof: Given f > 0, set K,(x,t) =K(x,t) ift > f and K.(x,t) =0
otherwise. Clearly]{, -+ K in the topology of distributions as f -+ 0 (by the
dominated convergence theorem), 50 we must show that alK, - AK, -+ 6,
that is, for any .p E C';',

(I<.. -Of.p - A.p) -+ .p(O, 0) as f -+ O.

An elementary integration by parts shows that

(K" - al.p - A.p) = r f K(x, t)[(-01 - A).p(x, t)] dx dtJf JRR
= JOO f [(at - A)K(x,t)].p(x,t)dxdt+ f K(X,f).p(X, f)dx( JRn JaR
=0+ r K(-X,f).p(X,f)dx,Jan

since K is even in x. But this is just the convolution

[K, * .p(., f)](O) =[K, * .p(., 0)](0) + [K, * [.pC f) - .p(., 0)]](0).

The first term on the right tends to .p(O, 0) as f -+ 0 by Theorem (4.3), and
the second is bounded by

sup Ic/J(x, f) - c/J(x, O)IIlK,lh =sup Ic/J(x, f) - c/J(x, 0)1.
% %

which tends to zero as f -+ O.

(4.7) Corollary.
The heat operator is hypoelliptic.

Proof: K is Coo except at (0,0), since K(x, t) vanishes to infinite
order as t decreases to zero when x 1= O. Hence Theorem (1.58) applies. I

Remark: The analytic version of this theorem is false, and the fun­
damental solution K, which satisfies alI{ - !i.K =0 away from the origin
but is not analytic on the hyperplane t =0, is a counterexample.
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We can now solve the inhomogeneous heat equation Blu - ~u = f for
any compactly supported distribution f by taking U = f * I< (convolution
on lR" x lR). The hypothesis of compact support can be relaxed; here is a
representative result.

(4.8) Theorem.
If f E Ll(lR" x lR), then U = f * I< is well defined almost everywhere and
is a distribution solution of Btu - ~u = f.

Proof: We have

u(x, t) =loo lJ(y, s)I«x - y, t - s) dyds =11

00 f(·, s) * I<1_.(X) ds,

the convolution here being on lR". Since f(-, s) E L1(lR") for almost every
sand IIKl-.11t =1, by Young's inequality we have

It follows that the integral defining u(x, t) converges absolutely for almost
every (x, t) and that U is locally integrable. The proof that BtU - ~u =f
now proceeds just like the proof of Theorem (2.21); details are left to the
reader. I

Remark: An argument similar to the proof of Theorem (2.28) shows
that if f E C k +a for some k 2: 0 and 0 < a < 1, then U is C k +2+a in x and
ck+l+a in t and is a classical solution of BtU - ~u =f.

One of the most amusing applications of the Gaussian kernel is Weier­
strass's original proof of his celebrated approximation theorem. To obtain
the full strength of this theorem, we shall assume the following technical
result: If 5 is a compact set in lR" and f is a continuous function on 5,
then f can be extended to be continuous with compact support on lR". In
general, this follows from the Tietze extension theorem, but if 5 is reason­
ably nice one can usually construct a solution explicitly. (For example, if
5 is a C 2 hypersurface, extend f to the tubular neighborhood V of 5 given
by (0.2) by setting f(x +tll(X» = tP(t)f(x) where tP E C(lR.), tP(O) = 1, and
tP(t) =0 for ItI> tf, and then set f =0 outside V. A similar construction
works if 5 is the closure of a domain with C 2 boundary.)
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(4.9) The Weierstrass Approximation Theorem.
If S is a compact subset ofJR n, the restrictions of polynomials to S are
dense in O(S) in the uniform norm.

Proof: Given I E O(S), extend I to be continuous with compact
support on JRn. Given ( > 0, by Theorem (4.3) we can find t > 0 so that

sup II * Kl(x) - l(x)1 < ~(.
;:EJitn

But

1* Kt(x) =(41Tt)-n/21 l(y)e- 1r- y1 '/4t dy.
suppf

Since the power series for eZ converges uniformly on compact sets, we
can replace e-1r- yl '/4t by a suitable partial sum with an error less than
(41Tt)n/2(/2\1/lh for xES and y E supp I. Thus,

Slip II * Kt(x) - g(x)1 < ~(,
xes

where

But 9 is clearly a polynomial of degree 2K.

EXERCISES

1. Complete the proof of Theorem (4.8).

2. Suppose Ul (y, t), . .. ,un(y, t) are solutions of the one-dimensional heat
equation OtU = oJu. Show that v(x, t) = n~ Uj(Xj, t) satisfies the n­
dimensional heat equation. (What is special about the heat equation
that makes this work? E.g., there is no analogous result for solutions
of Laplace's equation.)

3. A formal use of the Fourier transform on JRn X JR suggests that one
should obtain a fundamental solution for at - ~ by taking the inverse
Fourier transform of G(~, r) = (21Tir + 41T21~12)-1. Prove that this
works, as follows.
a. Show that G is locally integrable on JRn X JR.
b. Show that G = k where J( is defined by (4.5). (Hint: Take the

Fourier transform of K first in x, then in t. Why is this legitimate?)
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4. Solve the one-dimensional heat equation BtU = B;,u on the region x> 0,
t > °subject to the initial condition u(x,O) =I(x) (x> 0) and either
the boundary condition (a) u(O, t) = 0 or (b) Bru(O, t) = 0. (Hint:
consider the odd or even extension of I to JR.)

B. Functions of the Laplacian

The Gaussian kernel has many other interesting applications in analysis
and probability. We shall limit ourselves to one of them, namely, the com­
putation of convolution kernels for functions of the Laplacian.

We begin by observing that (-t:!./fCO =411'21(/2[CO for I E S(JRn). It
follows that if P is a polynomial in one variable,

and this suggests the following general const,ruction of functions of -t:!..
Suppose t/J is a function on (0,00) such that ( __ t/J(411'21~12) is a tempered
distribution on JRn. Then we can define an operator t/J(-t:!.) : S __ S' by

t/J( -t:!.) can also be expressed as a convolution operat.or: t/J( -t:!.)1 =
I *Ii", where Ii", is the inverse Fourier transform of the tempered distribution
~ -- t/J(411'21(12). For example, if t/J(s) = e- ll with t > 0, then Ii", is just
the Gaussian kernel f{t by Theorem (0,25); thus

1* !(t =et
.6. I,

which is just what one would expect by formally solving the heat equat.ion
BtU = t:!.u with initial data u(.,O) = I as an ordinary differential equation
in t. (This is essentially what we did in deriving Theorem (4.3).)

Wit.h this information in hand, we have a met.hod for computing t.he
convolution kernel Ii", whenever t/J can be expressed nicely in terms of ex­
ponential functions. More specifically, suppose

(4.10)

for some functions r/J and w on (0,00) with w > 0. Then, formally,



I

(O<Rea<n),

so that

(4.11)

1 t'" 13-1r.'( )dr(1) Jo r l\. x,r r.

It is not hard to see that this function is indeed the inverse Fourier trans­
form of (471'2 IeI2)-/3; see Exercise 1. (It is not quite trivial either, since
neither of these functions is globally integrable, so one must interpret the
Fourier transform in the sense of distributions.)

It is customary to set ,6 =!a and to define

k,p(x) =LX> tf.>(r)K(x,w(r)) dr.

We can compute this int.egral by making t.he substitution u= Ixl 2 j4r:

so the convolution kernel of (_~)-/3 should be

So far this is just a heuristic procedure which needs some justification.
The interested reader may wish to formulate a theorem along these lines
that encompasses a general class of <b's and w's, but here we shall content
ourselves with working out some important specific examples.

Our first example is the negative fractional powers of -~, tjJ(s) = s-/3

where 0 < Re,6 < ~n. (The restriction Re,6 < !n is necessary to make
tjJ(471'2 1';1 2 ) integrable near the origin.) We have

so the kernel k,p should be given by

150 Chapter 4
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...._---------------_ ..

(Re.B>O),

(4.13)

Again we set .B = tlX and define

(4.12)

which is the fundamental solution for -A given by (2.18).
We have thus rederived the fundamental solution for A by Fourier anal­

ysis, at least when 11 > 2. When 11 = 2 this procedure breaks down: as
IX -+ 2, the coefficient r(!(2 - IX» in ROt(x) becomes infinite, and the
function (41r21€12)-Ot/2 ceases to be integrable at the origin. However, one
can proceed as follows. When 0 < IX < 2, the Riesz potential ROt satisfies
(-A)Ot/2ROt = 6. But so does ROt - COt for any constant COt, and we can
choose COt so as to obtain a finite limit as IX ..... 2. Namely, let

1 100

,6-1 -T}"/( ) dr(.B) 0 T e \. x, T T.

ROt is called the Riesz potential of order IX. In particular, when IX = 2
(and n> 2) we see that

Q2(X) = lim QOt(x) =-~ log lxi,
Ot-2 21r

which is the fundamental solution for -A. R.oughly speaking, Q2 is ob­
tained from R2 by subtracting off an infinite constant. Correspondingly,
its Fourier transform is obtained from (41r21€F)-1 by subtracting off an
infinite multiple of 6; see Exercise 2.

Our next example is a modification of the preceding one. It is sometimes
convenient to consider powers of I - A rather than -A so as to avoid
confronting the singularity of lel-Ot at e=O. Accordingly, we observe that

Since r(1 - tIX) = 2r(2 - tIX)j(2 - IX), an application of I'Hopital's rule
shows that

so that the convolution kernel of (I - A)-,6 should be
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(Rea> 0).

u(x, 0) = f(x).

(I - A)-a/2f =f * B o

{}~U + Axu =0 for t > 0,

Because of this, it is easy to use Fubini's theorem to show that the Fourier
transform of B o is indeed (1 + 471'2IeI2)-0/2 (Exercise 3), so

liB II < _1__1001r Re(0/2)-le- TI«x r) dx dr
o 1 - If(1 )1 '20' 0 Ill"___1_100

Re(0/2)-1 -T d _ f(! Rea)
- Ire r- 1 .

W(20')1 0 If(2"O')\

u(e, t) =e- 2>1'\{lt l(e), or u(x, t) =e- t ..;=7>f(x).

We therefore have u(x, t) = f * Pt(x) where Pt is the inverse Fourier trans­
form of e-hl€lt. The magic formula that enables us to compute this is as
follows.

(4.14) Lemma.
If {j ~ 0,

As in §4A, we apply the Fourier transform in x to obtain an ordinary
differential equation in t:

The general solution of this differential equation is a linear combination of
e2>1'1€lt and e-2>1'1€lt. We reject e2>1'1€lt since it is not tempered for t > 0, and
the initial condition then yields

We shall meet this operator again in Chapter 6.
For our final example, we rederive the solution of the Dirichlet problem

for the Laplacian in a half-space (see §2G) by Fourier analysis. We recall
that the problem is to solve

for Re 0' > o. (The integral converges for all xi- 0.) Bo is called the Bessel
potential of order 0'. (The name comes from the fact that Bo is a Bessel
function; in fact, Bo(x) is a constant multiple of Ixl(0-n)/2I«n_o)/2(\xl),

where I<p is the modified Bessel function of the second kind of order J-l.)
Bo is in £l(lRn ), forI

I
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Proof: A standard application of the residue theorem yields

1100
e

i
{3.e-{3 =- -1--

2
ds,

1T -00 + s

and obviously

1 100

•__ = e-(l+· )T dr.
1+ s2 0

Hence, by Fubini's theorem and Theorem (0.25),

100 1 •= __e-{3 /4Te- T dr.
o ..,fiT

I

Now if we set (3 = ty'S in Lemma (4.14), we obtain a formula of the
form (4.10),

1
00 -T

e-t.,j'i = _e__e- t"/4T dr,
o ..,fiT

so the inverse Fourier transform Pt of e- 21r1eJt should be given by

To verify this and evaluate the integral, simply take {3 = 21Tlelt in Lemma
(4.14) and use Fubini's theorem and Theorem (0.25):

= 1T(n+1)/2 (t2 + IxI2)(n+1)/2'

Since r«n + 1)/2)/1T(n+1)/2 = 2/wn+t. we have recovered the formula
(2.43) for the Poisson kernel, and we have proved:
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[(1- ~a) 1 d~
f(~a)2"1l' - 1€1<1 (21l'lm"

approaches a finite limit c as a approaches 2 from below, and conclude
that the Fourier transform of Q2(X) = (-21l')-1Iog Ixl is the distribution
given by

Show that

For 0 < Re a < n, mult.iply both sides by r(n-a)/2-1 dr and integrate
from 0 to 00 to obtain

EXERCISES

1. By Theorems (0.25) and (0.26), for any 4> E S(l~n) and r> 0 we have

Je-lrT1rl'¢;(x)dx = r-n/ 2Je-lrl€I'/T4>(~)d~.

Conclude that if Ra is given by (4.11), then Ra(~) = (21l'lm- a, the
Fourier transform being interpreted in the distibutional sense.

2. From Exercise 1 and the final paragraph of §OE, if Qa (0 < a < 2) is
given on ]R2 by (4.12) we have

This result gives an easy new proof of the semigroup property PI+6 =
P, * P., for it is obvious that PI+6 = P,P•. It also makes clear how the
Dirichlet and Neumann data of the harmonic function u(x, t) =1* Pl(x)
determine each other. Indeed, we have u(., 0) =I, and

(4.15) Theorem.
If PI is the Poisson kernel defined by (2.43), then Pl(~) =e-2lrtl€l.

That is, if 9 = -8t u(·,0) then 9 = (-!:l..,)l/2/; in other words, I =
(-!:l.r)-1/2 g =9 * R1 where R1 is the Riesz potential given by (4.11).
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(The first integral is absolutely convergent because the numerator is
O(leI2) by Taylor's theorem. The term e . \74>(O)/(211"IeI)2 is really a
phantom, since it is an odd function and so its integral over the unit ball
vanishes formally. Thus, intuitively we have Q2(e) = (211"IW- 2- C6(e)
where C is the infinite constant ~{1<1(211"IW-2de + c.)

3. Show that if Rea> °and BOt is given by (4.13), then BOt(e) =
(1 + 411"2 IeI2)-Ot/2.

c. The Heat Equation in Bounded Domains

If one wishes to study heat flow in a bounded region of space n c IR n

over a time interval °:::; t :::; T :::; 00, it is appropriate not only to specify
the initial temperature u(x,O) (x E n) but also to prescribe a boundary
condition on 8n x [0,7']. For example:

I. u = g (the temperature on the boundary is specified);

ii. 8v u =°(the boundary is insulated; there is no heat flow into or out of

n);
lll. 8v u+c(u-uo) =°(Newton's law of cooling: outside n the temperature

is maintained at uo, and the rat.e of heat. flow across the boundary is

proportional to u - uo).

The first basic result. concerning such problems is t.he following maximum
principle:

(4.16) Theorem.
Let n be a bounded domain in IR n and 0 < T < 00. Suppose u is a real­
valued continuous function on n x [0, T) that satisfies 8t u - Llu = °on
n x (0, T) (and hence is Coo there). Then u assumes its maximum either
on n x {OJ or on an x [0,7'].

Proof: Given f > 0, set. v(x,t) = u(x,t)+flxI 2
. Then 8 tv-Av =

-2m < O. Suppose °< T' < T. If t.he maximum value of v on n x [0, T1
occurs at an interior point, the first derivat.ives of v vanish there and the
pure second derivatives 8Jv are nonpositive. In particular, 8t v =°and
Av :::; 0, which contradicts 8tv - Llv < O. Likewise, if t.he maximum occurs
on n x {T'}, the t-derivative must be nonnegative and the pure second

x-derivatives must be nonpositive, so atv 2:: °and Llv :::; 0, which again

ilOi.oo .__ ._-__ -----~--.--
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Letting! -+ 0 and T' -+ T, we obtain the desired result.

contradicts atv - Av < O. Therefore,

atu - Au == 0 on n x (0,00),

u(x,O) == I(x) (x En), u(x,t) == 0 (x Ean, t E (0,00».

(4.17) Corollary.
There is at most one continuous function u on '0 x [0, T) which agrees with
a given continuous function on n X {OJ and on an x [0, T) and satisfies
atu - Au == 0 on n x (0, T).

Provided that the Aj'S are nonpositive, this series will converge in £2(n)
for each t ~ 0 and will satisfy u(x, t) == 0 for x E an as best it can.
(For example, if f E H?(n) as defined in §2F, then u will vanish on an x
(0,00) in the sense of Corollary (2.40).) Also, one easily verifies that u is

max u < max v == max v
fix[O,T'] - fix[O,T'] (Ox{o})u(aox[O,T'J)

< max u + !maxlxI2
•

- (Ox{o})u(aOx[o,T'J) fi

(4.19)

(4.18)

(In particular, note that the "Dirichlet problem" is overdetermined: the
boundary values on n x {T} cannot be specified in advance.)

Let us look more closely at the problem obtained by holding the bound­
ary at a constant temperature, which we may assume to be zero by adjust­
ing our temperature scale:

This problem can be solved by the method of separation of variables. That
is, we begin by looking for solutions of the differential equation of the form
u(x, t) == F(x )G(t). For such a function we have atu - Au == FG' - (AF)G,
so the heat equation implies that G'IG == (AF)I F. But G'IG is a function
of t alone, and (AF)I F is a function of x alone, so both these quantities
must be some constant A. Thus G' == AG, so G(t) == Ce At

, and AF == AF.
Suppose we can find an orthonormal basis {Fj } for £2(n) such that

AFj == AjFj and Fj(x) == 0 for x E an. We can then solve (4.18) by
expanding I in terms of the Fj's, say I == 2: OJ Fj , and taking

Replacing u by -u, we see that. t.he minimum is also achieved on either
n x {OJ or an x (0, TJ. Therefore:

I
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00 00 1

u(x, t) = 2: !(k)e2..ih-4,,·k·t = 2:1 f(y)e 2..ik(x- y )-4,,·k·t dy
-00 -00 0

00

1?(x, t) =2: e2 ..ih-4..·k·t
-00

alU - a;u = 0 for t > 0,

u(x, 0) = f(x), u(x + 1, t) = u(x, t),

=[J*1?(.,t)](x),

where

(4.20)

where f( x + 1) = f( x). The natural tool here is Fourier series, i.e .• expan­
sions with respect to the orthonormal basis {e2..ih}~00 for £2(0,1). (One
would be led to this in any event by separation of variables.) Indeed, if we
look for a solution of (4.20) in the form u(x,t) = L:~ooCk(t)e2 ..iko:, the
heat equation implies that q(t) = -41T2k2Ck(t), and the initial condition
means that Ck(O) must be the kth Fourier coefficient !(k) of f. Therefore

Ck(t) =!(k)e-4"' k't, and

alU - ~U =0 on 0 x (0,00),

u(x,O) = f(x) (x EO), a"u(x,t) = 0 (x E 00, t E (0,00)).

This problem boils down to finding an orthonormal basis {Hj} for £2(0)
such that ~Hj = Pj Hj (Pj ::::: 0) and a"Hj = 0 on 00. Again, we have
seen how to do this when 0 is a ball, and we will prove the existence of

such an eigenbasis for a general 0 in §7E.
Finally, we solve the initial value problem for the heat equation on

the circle (physically: an insulated loop made of homogeneous material of
negligible diameter). We think of the circle as the set of complex numbers
of modulus one and identify it with the unit interval by the correspondence
x .... e2.. j ",. We then wish to solve the problem

a distribution solution of the heat equation (Exercise 1), hence a classical
solution by Corollary (4.7).

The problem (4.18) is therefore reduced to finding an eigenbasis for the
Dirichlet problem for the Laplacian. We have done this in §3H when 0 is
a ball. We will show in §7E that such an eigenbasis exists for a general
bounded domain 0 with smooth boundary and that the eigenvalues are all

negative.
Similar considerations apply to the insulated-boundary problem
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and * means convolution on the circle group ~/71.. (The sums are rapidly
convergent for t > 0 because of the factors e- 4"'k'I, so the formal manipu­
lations are justified. In particular, t'J and u are Coo functions for t > 0 and
satisfy the heat equation.)

The function t'J therefore plays the same role for the heat equation on
the circle as the Gaussian kernel K does on ~n. Like K, t'J has a signif­
icance which reaches far beyond the study of heat flow: it is essentially
one of the Jacobi theta functions, which have deep connections with ellip­
tic functions and number theory. (More precisely, in the notation of the
Bateman Manuscript Project [4], t'J(x, t) = 03(xI41Tit).)

EXERCISES

1. Suppose {F;} is an orthonormal basis for £2(0), A; ~ 0, and L la; 12 <
00.
a. Show that the series (4.19) converges in the topology of distributions

on 0 x (0,00).
b. Show that if AF; = A;F;, the series (4.19) satisfies the heat equa­

tion on 0 x (0,00) in the sense of distributions. (This is almost
immediate from part (a).)

2. Suppose {F;} is an orthonormal basis for £2(0) such that !i.Fj =Aj Fj
(A; ~ 0) and F; = 0 on 80. Solve the inhomogeneous heat equation

8t u - Au =g(x,t) on 0 x (0,00),

u(x,O) =0 (x EO), u(x, t) =0 (x E 80, t E (0, (0»
in terms of the basis {F;}. (The solution will look like (4.19), but with
e>';l replaced by the solution of an inhomogeneous ordinary differential
equation.)

3. Suppose 0 is a bounded domain with C 1 boundary, and suppose u is
a Cl function on IT X (0, T) that satisfies 8t u - Au = 0 on 0 x (0, T)
and either of the boundary conditions u =0 or 8vu = 0 on 80 x (0, T).
Show that In lu(x, tW dx is a decreasing function oft. (Hint: Observe
that u(8t u - AU) = ~8t(luI2) - 'il . (u'ilu) + l'ilul2 and integrate over
0.)



Chapter 5
THE WAVE OPERATOR

The last of the three great second-order operators is the wave operator
or d'Alembertian

"0; - ~ =0; - L oj
I

on JR" x JR. As the name suggests, the wave equation

a;u - ~u =0

is satisfied by waves with unit speed of propagation in homogeneous iso­
tropic media. (Actually, in most cases such as water waves or vibrating
strings or membranes, the wave equation gives only an approximation to
the correct physics that is valid for vibrations of small amplitude. However,
it is an easy consequence of Maxwell's equations that the wave equation is
satisfied exactly by the components of the classical electromagnetic field in
a vacuum.) The characteristic variety of the wave operator,

plays an important role in the theory. It is called the light cone, and the
two nappes He, r) E E : r > O} and He, r) E E : r < O} are called the
forward and backward light cones.

The wave operator is the prototype of the class hyperbolic operators.
(There are several related definitions of hyperbolicity for general differen­
tial operators, of which perhaps the most widely useful is the following. An
operator L =L:lal+j~k aaj(x, t)a;a: on JR" x lR is called strictly hyper­
bolic if, for every (x, t) E lR" x lR and every nonzero t; E lR", the polynomial
per) = L:lal+j=kaa(X,t)t;arj has k distinct real roots.) There is an ex­
tensive literature on hyperbolic equations, of which we mention only a few
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basic references: John (30] for a brief introduction; Courant and Hilbert
(10], llormander (26], (27, vol. II], John [29], and Bers, John, and Schechter
(7] for accounts of various aspects of the classical theory; and Garding [22],
Treves (53, vol.II], Hormander [27, vols. III and IV], and Taylor [48J for
more recent developments using the machinery of pseudodifferential oper­
ators and Fourier integral operators.

A. The Cauchy Problem

The basic boundary value problem for the wave equation is the Cauchy
problem. We know from our analysis in §lC that the initial hypersurface S
should be non-characteristic in order to produce reasonable results. How­
ever, for n ~ 2 this condition is not sufficient. Indeed, recall the Hadamard
example

I,
p

I
·:,"
;'
i.'

which shows that the Cauchy problem for D. in lR2 on the line X2 = 0 is
badly behaved. (See (1.46).) If we think of u as a function on lRnxlR (n ~ 2)
that is independent of X3,' .. , X n and t, then u satisfies o;u - D.u =0 and
the initial conditions

U(Xl, 0, X3, ..• , X n , t) = 0,

on the non-characteristic hyperplane X2 =O. As k -+ 00, the Cauchy data
tend uniformly to zero along with all their derivatives, but U blows up for
X2 i= O.

We can generalize t.his example. Let S be the hyperplane 1/' • X +vot =0
through the origin with normal vector

v = (v', vol = (VI, ... , vn , vo).

Suppose there is a vector (!J 1, ... , !In, !Jo) =(!J',!Jo) such that

satisfies o'f1- D.j = O. Since 0; - D. is real, the imaginary part

sin(l· x + Ilot) sinh(v' . x + vot)

I(x, t) =exp[i(l/ . x + /lot) + v' . x + vot](5.1)

also satisfies the wave equation. Moreover, since the wave operat.or is in­
variant. under the transformation (x, t) -+ (-x, -t), the even part

sin(/l' . x + !Jot) exp(v' . x + vot)



In case Vo = 0 (so in particular Ivol :::; Iv'l), we can choose J.lo = 0 and
J.l' any n-veetor of length Iv'l perpendicular to v'. If Vo f:. 0, we have

-1 I IJ.lo =Vo J.l . v , so

I

POvo - It' .v' =O.

arccos Iv'I(1 + Iv'I2- vJ)l/2'

(This works since the argument of arccos lies in [-1,1].)

u(x, t) = 0,

u(x, t) = e-v'k sin k(p' . x + Pot) sinh k(v' . x + vot)
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n

(vo + iJ.lo)2 - L(Vj + iJ.lj)2 =O.
1

Proof: (5.1) satisfies the wave equation precisely when

va

This forces vJ - Iv'I2 :::; 0, i.e., Ivol :::; Iv'l. On the other hand, if this
condition is satisfied, we can take po = 1 and It' any vector of length
(1 + Iv'I2- VJ)1/2 making an angle with v' equal to

vJ - Iv'I2 = J.l~ - 1//12 = v;;2(J.l' . V')2 - 1J.l'1 2

:::; v;;21J.l'12Iv'12- 1J.l'12= v;;211t'12(lv'12- vJ).

If n = 1, this just means that Vo + iJ.lo =±(Vl + iJ.ld, Le., that Vo = ±Vl
and J.lo = ±Pl' If n ~ 2, we take real and imaginary parts:

(5.2) Proposition.
There exists (p', po) f:. (0,0) E lRn x lR such that (5.1) satisfies the wave

equation if and only if
i. Vo =±Vl (i.e., the line vot + VIX =0 is characteristic), ifn =1;

11. Ivol :::; Iv'l, if n ~ 2.

on S. As k ...... (Xl we obtain the same pathology as before. So when can

this happen?

will satisfy the wave equation with Cauchy data

still satisfies the wave equation. Finally, for any k > 0,
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This leads to the following definition. The hypersurface S in JRn x JR

is called space-like if its normal vector v = (v', vo) satisfies Ivol > Iv'l
at every point of S, that is, if v lies inside the light cone. The preceding
argument suggests that for n ~ 2, the Cauchy problem on S will be well
behaved if and only if S is space-like, and this turns out to be so. We shall
restrict our attention to the most important special case, where S is the
hyperplane t = 0, and make some remarks about more general S at the
end of the section.

We remark to begin with that the wave operator (unlike the heat oper­
ator) is invariant under time reversal (x,t) -+ (x, -t). It therefore suffices
to consider solutions in the half-space t > 0, as similar results may be
obtained for t < 0 be replacing t by -to Our first result is a uniqueness
theorem.

(5.3) Theorem.
Suppose u(x, t) is C 2 in the strip 0 :S t :S T and that B; - Llu =O. Suppose
also tllat u =BtU =0 on the ball

B = {(x,O): Ix - xol:S to}

in the hyperplane t =0, wllere Xo E JRn and 0 < to :S T. Then u vanislles
in the region

n = {(x, t) : 0 :S t :S to and Ix - Xo I :S to - t}.

(Note that n is the [truncated] cone with base B and vertex (xo, to),
or in other words, the region in the strip 0 :S t :S to that is inside the
backward light cone with vertex at (xo, to). See Figure 5.1.)

Figure 5.1. The regions in Theorem (5.3).
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Proof: By considering real and imaginary parts, we may assume that
u is real. For 0 :S t :S to, let

Bt = {x : Ix - Xo I :S to - t}.

We consider the integral

which represents the energy of the wave in the region B t at time t. The
rate of change of E(t) is

dE 1 [au a2u "" au a2u] 1 fa 2-d = -a-a2 + LJ ~-a.a dx -:I 1'V"'.tul dO'.t B, t t ux, x, t 8B,

(The second term comes from the change in the region Bt ; see Exercise 1.)
Now we observe that

a [au ou] ou 02 u a2uau
~ ~8t = ax· ox·at + ax2 8t'

" " j

so by the divergence theorem,

where II is the normal to B t in rn:. n
. The first integrand on the right vanishes,

and for the second we have the estimate

by the Schwarz inequality and the fact that 2ab :S a 2 + b2 . Therefore,

~~ = lB' (2:~: :~ IIj - ~1'V"',tuI2) du:s O.

But clearly E ~ 0, and E(O) = 0 because the Cauchy data vanish. Hence
E(t) =0, so 'V",.tU = 0 on n = {(x, t) :x E Bd. But u(x,O) =0, so u =0
~n. I
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This is a very strong result. It shows that the value of a solution u
of the wave equation at a point (xo, to) depends only on the Cauchy data
of u on the ball {x : Ix - xol :S to} cut out of the initial hyperplane by
the backward light cone with vertex at (xo, to). (This expresses the fact
that waves propagate with unit speed.) Conversely, the Cauchy data on
a region R in the initial hyperplane influence only those points inside the
forward light cones issuing from points of R.

Similar results hold when the hyperplane t =0 is replaced by a space­
like hypersurface S = {(x, i) : t = ,p(x)}. (The condition that Sis space­
like means precisely that, 1\7.p1 < 1.) Indeed, the change of variable t' =
t - .p(x) transforms the Cauchy problem for the wave equation on S to the
Cauchy problem for another differential equation Lu =0 on the hyperplane
t' = O. The fact that S is space-like guarantees that L is still strictly
hyperbolic, and one can apply the theory of general hyperbolic operators;
cf. the references in the introduction to this chapter. See also Exercise 3
for the case where S is a hyperplane.

EXERCISES

1. Show that if f is a continuous function on JR" and x E JR",

d
d 1 fey) dy = r fey) du(y).
r R,(r) } S,(:r:)

2. Suppose u is a C 2 solution of the wave equation in JR" x JR. Show that if
u(·, io) has compact sllpport in JR" for some to then u(·, i) has compact
support in JR" for all t, and adapt the proof of Theorem (5.3) to show
that the energy integral E =fll.-l\7 r"uI 2 dx is independent of t.

3. Suppose v = (v', vo) is a unit vector in JR" x JR with Iv'l < Ivol, so that
the hyperplane S = {(x, t) : v' . x + vot =O} is space-like.
a. Show that there is a linear transformation of JR" x JR that maps S

onto the hyperplane t =0 and has the form T =T2Tl with

Tl(X, t) =(Rx, t), where R is a rotation of JR";

T2(x, t) =(x~, X2, ••. , xn , I'), where

x~ =Xl cosh 0 + tsinhO, t' =xlsinhO +tcoshO (0 E JR).

b. Use Theorem (2.1) and Exercise 2 of §2A to show that if T is as in
part (a) then (8;- ~)(u 0 T) =[(8;- ~)u] 0 T.

c. Conclude that the Cauchy problem for the hyperplane S can be
reduced to the Cauchy problem for the hyperplane t = 0 by com~

position with the transformation T.



B. Solution of the Cauchy Problem

In this section we shall construct the solution of the Cauchy problem

(5.4)
a;u - ~u == 0,

u(x,O) == I(x), Otu(x,O) == g(x).

We start with the one-dimensional case, which is very simple. First,
we observe that if ¢; is an arbitrary locally integrable function of one real
variable, the functions u±(x,t) == ¢;(x ± t) satisfy the wave equation, for
a;u± == o;u± == ¢;"(x ± t). (More precisely, if ¢; is C 2 then u± is a classical
solution of the wave equation, while if ¢; is merely locally integrable, u is
a distribution solution.) Conversely, it is easy to see - at least on the
formal level - that any solution of the one-dimensional wave equation is
of the form ¢;( x + t) + t/J(x - t) where ¢; and t/J are functions of one variable.
Indeed, if we make the change of variables e== x + t, 1/ == x - t, the chain
rule gives ax == ae+ o~ and Ot == ae- O~, so that 0; - a; == -4oea~, and
the wave equation becomes aea~u == O. To solve this, we integrate in 1/,
obtaining oeu == <1>(0, where <I> is an arbitrary function, and then integrate
in e, obtaining u == ¢;(O + t/J(1/) where ¢;' == <I> and t/J is again arbitrary.

With this in mind, it is easy to solve the Cauchy problem (5.4) when
n == 1. We look for a solution of the form u(x, t) == ¢;(x + t) + t/J(x - t).
Setting t =0, we must have ¢;+t/J == I and ¢;'-t/J' == g. Hence ¢;' == HI' +g)
and t/J' == !(f' - g), so

t/J(x) = !f(x) - !1x
g(s) ds + C2 ,

where C1 + C2 == °since ¢; + t/J == I. Therefore,

1
x +I

(5.5) u(x, t) == !fl(x + t) + f(x - t)] +! x-I g(s) ds.

It is a simple exercise to verify that this formula really works. To be precise,
if f is C 2 and 9 is CIon JR", then u is C 2 on lR" x lR and satisfies (5.4)
in the classical sense; if f and 9 are merely locally integrable, u satisfies
the wave equation in the sense of distributions and the initial conditions
pointwise. In fact, one can take f and g to be arbitrary distributions on
JR; J:~/ g(s) ds is then to be interpreted as the distribution g *Xt where X
is the characteristic function of [-t, t]. We leave the details to the reader
(Exercise 1) and summarize our results briefly:
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[
2 n-1 ]

~"M",(x,r) = Or +-r-Or M",(x,r).

(5.6) Theorem.
If n = 1, the solution of t,ile Cauchy problem (5.4) is given by (5.5).

(5.8)

where ~" and ~y denote the Laplacian acting in the variables x and y.
We now average these quantities over all rotations T. Since the average of
¢(x + Ty) over all rotations is M",(x, Iyi), we obtain

~,,[¢(x+ TV)] = [~¢J(x + Ty) =~y[¢(x + Ty)],

(5.7)

M",(x, r) =~1 ¢(z) dl7(z).
r W n Iz-xl=r

The situation in space dimensions n > 1 is a good deal more subtle.
We shall construct the solution when n is odd by using a clever device to
reduce the problem to the one-dimensional case, and then obtain the even­
dimensional solutions by modifying the odd-dimensional ones. As in the
one-dimensional case, we shall first proceed on the classical level, assuming
that all functions in question have lots of derivatives, and then observe that
the results also work in the setting of distributions.

If ¢ is a continuous function on JR n, x E JRn, and r > 0, we define the
spherical mean M",(x, r) to be the average value of ¢ on Sr(x):

Therefore, by Proposition (2.2),

M",(x, r) = -.!.. r ¢(x + ry) dl7(Y) ,
W n JjY1=1

which makes sense for all r E JR. Accordingly, we regard M", as the function
on JRn x JR defined by (5,7). As such, it is even in r, as one sees by making
the substitution V -. -v, and it is C k in both x and r if ¢ is C k , as one
sees by differentiating under the integral. Moreover, M",(-, 0) =¢.

M", satisfies an interesting differential equation which may be derived
as follows. IfT is any rotation ofJRn, by Theorem (2.1) we have

The substitution z = x + rv turns this onto

To make this argument complete we should explain carefully what it means
to average over all rot,ations; instead, we shall give an alternative derivation
that finesses this problem.

I
I

I

I:
Ii
I

I'
I

I

I
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[
2 n-l] 2ar + -r-ar M,,(x, r, t) =at M,,(x, r, t)

Proof: It suffices to consider r> 0, since both sides of (5.8) are even
functions of r. First, by (0.1) and the divergence theorem,

(5.9) Proposition.
I[ <p is a C 2 [unction on jRn, then M", satisfies (5.8) on jRn X JR.

The Wave Operator IG7

Proof: We have merely to apply Proposition (5.9) after observing

that b.."M" = MA " and 81M" = Me:". I

[or each x E jRn.

(5.11)

(5.10) Corollary.
Suppose u(x, t) is a C2 [unction on jRn X JR, and let M.,(x, r, t) denote
the spherical mean o[ the [unction x -- u(x, t). Then u satisfies the wave
equation i[ and only i[ M., satisfies

Multiplying by r n
-

1 and expressing the integral in polar coordinates, we
obtain

The desired result follows by working out the derivative on the left and
dividing by r n - 1 . I

so

When n is odd, the differential equation (5.11) can be reduced to the
one-dimensional wave equation by means of the following identity.
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k-l

Tk¢(r) = L cj ri+ 1 4,u)(r), where
o

cor = (r- 1ur )k-l r 2k-l =1·3·· .(2k - l)r.

(5.14)

The right side of (5.13) equals

(5.13) says that

At last we are in a position to solve the Cauchy problem (5.4) when
the space dimension n is odd and> 1. We shall start by assuming that a
solution exists and deriving a formula for it, and then we shall show that
the formula always gives a solution. Suppose, then, that u satisfies (5.4),
and suppose for the moment that u, I, and g are smooth ~ at least of

Thus, if n = 2k + 1, Tk intert.wines the operat.or occurring on t.he left of
(5.11) with 0;, so applying Tk to both sides of (5.11) converts (5.11) int.o
the one-dimensional wave equation.

For future reference we make one more observation about the operator
Tk. In Tk cP there are 2k - 1 powers of r in the numerator and k - 1 in
the denominator, and k - 1 derivatives. Expand TkcP by the product rule:
if j derivatives hit cP, then k - 1- j derivatives must hit the powers of r,
leaving a factor of r to the power (2k - 1) - (k - 1) - (k - 1- j) = j + 1.
Therefore,

(5.13)

Proof: It is easy to verify directly that (5.13) holds when cP(r) =r m

and hence when cP is any polynomial, and that both sides of (5.13) vanish at
ro when cP and its derivatives of order::; k + 1 vanish at ro. But by Taylor's
theorem, for any ro we can write cP = P + R where P is a polynomial and
R vanishes to order k + 1 at ro, so (5.13) follows in general. I

so if we define the differential operator Tk by

(5.12) Lemma.
If k ~ 1 and cP E Ck+1(lR), then

I
I
I

I
I
I
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I
I
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class c(n+3)/2. By Corollary (5.10), the spherical mean M u satisfies the
differential equation (5.11) with initial conditions

Mu(x, r, 0) = MJ(x, r),

Thus, if we set

where

the remarks following Lemma (5.12) show that

a;u(x, r, t) =a?u(x, r, t),

u(x, r, 0) =l(x, r), atu(x, r, 0) =g(x, r).

The solution to this problem is given by (5.5),

l
r +1

u(x, r, t) = !flex, r + t)+ icx, r - t)) +! g(x, s) ds,
r-I

so it remains to recover u from u. In principle, M u is obtained from u
by undoing the operator T, i.e., by successive integrations, and then u is
obtained from M u by setting r = O. However, one can take a shortcut by
using (5.14) with <p(r) = Mu(x, r, t) and k = !(n - 1):

() ( ) I
. u(x,r,t)

u x, t = M u x, 0, t = 1m ,
r_O cor

where Co =1·3·· . (n - 2). Moreover, since MJ and Mg are even functions
of r, 1and 9 are odd, and ar l is even; hence, by l'I16pital's rule,

1 [- - l r

+
1

]u(x, t) =lim -2- I(x, r + t) + I(x, r - t) + g(x, s) ds
r-O cor r-t

1 [ - - ]= 2co (arJ)(x, r)lr=t + (art)(x, r)jr=_1 + g(x, t) - g(x, -t)

= :0 [(ar!)(x,r)lr:1 +g(x,t)].

If we unravel the definitions of 1, g, and Co, we obtain the promised formula
for u in terms of I and g, which we state explicitly in the following theorem.



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(5.15) Theorem.
Suppose n is odd and n ~ 3. If / E c(n+3)/2(Rn) and 9 E c(n+l)/2(Rn),
the function
(5.16)

u(x, t) = 1 3 / 2) [Ot(r l od
n

-
3
)/2 (t

n
- 21 /(x + tV) dCT(Y)'

. . .. n - W n lyl=1 ')

+ (t-10t)(n-3)/2 (tn- 2 [ g(x + tV) dCT(Y)']
f1Y1=1 ')

solves the Cauchy problem (5.4).

Proof: Up to a constant factor, the second term on the right of (5.16)
is

vex, t) = (t-I Ot}(n-3)/2[tn- 2Mg(x. t)),

and by Corollary (5.10) and Lemma (5.12) we have

Axv(x, t) = (t-10t)(n-3)/2[tn-2 Ax Mg(x, t))

=(r 10t}(n-3)/2[tn- 20; Mg(x, t) + (n - l)tn-30t Mg(x, t))

=(t-Iodn-I)/2[tn-IOtMg(x,t))

= 0;(t-IOt )(n-3)/2[tn- 2Mg(x, t))

=o;v(x, t),

so this term satifies the wave equation. Likewise, the function

satisfies the wave equation, and hence so does Otw(x, t), which is the first
term on the right of (5.16). As for the initial conditions, by (5.14) we have

u(x, t) =Ot [tMJ(x, t) + :~ t2otM, (x, t) + 0(t3)] + tMg(x, t) + 0(t2)

Co + 2cI 2=M,(x, t) + ---tOtM,(x, t) + tMg(x, t) + OCt ).
Co

Hence
u(x,O) = M,(x,O) = /(x),

and
2(co + cd

Otu(x, 0) = otMJ(x, 0) + Mg(x, 0) = g(x),
Co

because M,(x, t) is even in t and so its derivative vanishes at t = 0. The
proof is complete. I



The Wnve Operator 171

The solution of the Cauchy problem (5.4) for even n is readily derived
from the solution for odd n by the "method of descent." This is just the
trivial observation that if u is a solution of the wave equation in JRn+l x lR
that does not depend on Xn +l, then u satisfies the wave equation in JRn x JR.
Thus to solve (5.4) in lRn x lR with n even, we think of f and 9 as functions
on lRn+! which are independent of X n +l, write down the solution (5.16)
of the Cauchy problem, and check that it does not depend on x n +l. The
result is as follows.

(5.17) Theorem.
Suppose n is even. Iff E c(nH)!2(lRn) and 9 E c(n+2)!2(lRn), the function
(5.18)

u(x, t) = 2 [8t (t-18d(n-2)!2 (tn-1 f f(x + ty) dy)
1·3·· ·(n-1)wn +! f'YI$l ;r=TYj2

+ (t-18t )(n-2)!2 (tn-1 f g(x + ty) dY)]
f lYI $1 VI=lYf2

solves the Cauchy problem (5.4).

Proof: Denote a point in lR n +1 by (x, xn+!) where x = (x}, . .. , xn).
1£ we think of f and 9 as functions on lRn +1 that depend only on x, the
solution to (5.4) in JRn+! x JR is given by (5.16) with n replaced by n + 1,
which involves the integral

and a similar integral with f replaced by g. We parametrize the upper and
lower hemispheres of the sphere lyl2 + y~+l = 1 by Yn+! = ±¢>(y) where
¢>(y) = ;r=TYj2, lyl < 1. By a standard formula of advanced calculus,
the element of surface area is given by

so we obtain (5.18). (The factor of 2 is there because we integrate over
both the upper and lower hemispheres.) I

The formulas (5.5), (5.16), and (5.18) give the solution to the Cauchy
problem (5.4) in arbitrary dimensions. We note that these formulas agree
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with the uniqueness theorem (5.3): for to > 0, the value of u at (xo, to)
depends only on the values of I and 9 on the ball Ix - xo\ ~ to cut out of
the initial hyperplane by the backward light cone with vertex at (xo, to).
Actually, when n is odd we can say more. If n = 1, u(xo, to) depends on
the values of 9 on Ix - xol ~ to, but on the values of I only at Xo =±to.
If n is odd and n ~ 3, u(xo, to) depends only on the values of I and 9 and
their first few derivatives on the sphere Ix - xol = to - or, so to speak,
on the values of I and 9 on an infinitesimal neighborhood of the sphere
Ix - xol = to. This fact is known as the Huygens principle, and we
shall refer to the fact that it holds only in odd dimensions as the Huygens
phenomenon.

Physically, the IIuygens phenomenon can be understood as follows.
Suppose you are in a dark room at position xo, and someone at the origin
sets off a flash bulb at time t = O. At time to = Ixol you see a flash of light,
then darkness again. In an even-dimensional world you would see a burst
of light at time to, but instead of disappearing promptly it would gradually
fade away. This effect can be observed in two-dimensional water waves by
dropping a pebble into a pond and watching the ripples.

We should say something about the role of the differentiability hy­
potheses in Theorems (5.15) and (5.17). The conditions on I and 9 in
these theorems are designed to ensure that II E C2 , so that u is a classical
solution of the wave equation. Additional smoothness of I and 9 clearly
implies additional smoothness of u: to be precise, if I E ck+(n-l)/2 and
9 E c k +(n-3)/2 (n odd) or I E ck+(n/2) and 9 E ck-l+(n/2) (n even)

then II E C k
• On the other hand, if we assume weaker conditions on I

and 9 and interpret the formulas (5.16) and (5.18) properly, we obtain
distribution solutions of (5.4).

In fact, for odd n ~ 3 let us observe that

~1 I(x + ty) du(y) =~1 I(x - ty) du(y) =1* EI(x),
W n Ivl=l W n Ivl=!

where Et is the distribution

.1 1(E I , t/J) = - t/J(ty) du(y).
W n Ivl=!

(That is, E I is surface measure on the sphere SIII(O), normalized so that
the measure of SIII(O) is 1 and considered as a distribution on ~n.) The
map t -+ E t is a Coo (in fact, analytic) function of t E ~ with values in the
space of compactly supported distributions on ~n, and hence so is

(5.20)
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(cI>t is smooth even at t =0, by (5.14).) (5.16) then says that

(5.21)

(5.22)

When rewritten this way, (5.16) makes sense when f and g are arbitrary
distibutions on JR" and defines u(-, t) as a Coo function of t with values in
the space of distributions on JR". (In particular, u may be regarded as a
distribution on JR" x JR.) A standard approximation argument (consider
f and g as limits of smooth functions) shows that u satisfies (5.4) in the
appropriate sense. Similarly, when n is even, (5.21) holds with

cI>t = 1 (Cla )("-2)/2[tn-lT ]
1.3 ... (n-1) t I,

(Tt ,'lji}=-1-1 'lji(ty) dy.
Wn+l Iyl=l J1=liiT2

In fact, the solution for n = 1 also has the form (5.21) where

(5.23) (cI>t,'lji) =! il'lji(S)dS.

Indeed, al f~1 'lji(s) ds = 'lji(t) + 'lji( -t), so atcI>t(s) = ![c5(s - t) + c5(s + t)]
when cI>1 is given by (5.23).

The loss of continuous differentiability in passing from the Cauchy data
to the solution in dimensions n ;::: 2 is unavoidable. Intuitively, it happens
because "weak" singularites in the initial data at different points will propa­
gate along light rays and collide at later times, possibly creating "stronger"
singularities. The remarkable thing, however, is that this can happen only
to a limited extent. That is, although for any c > 0 there can be a loss of
roughly !n continuous derivatives in passing from u(x,O) to u(x, c), once
these derivatives are lost there is no further loss in passing from u(x,c) to
u(x, t) for t > c! Moreover, if one considers "L2 derivatives" instead of
"continuous derivatives," there is no loss at all. We shall say more about
this in §5D.

Incidentally, one consequence of all this, which the reader may have
noticed already, is that the wave operator is not hypoelliptic: Solutions of
the homogeneous equation a;u - Au = 0 can be arbitrarily rough.

EXERCISES

1. Show that if f and g are locally integrable functions on JR, the function
u(x, t) defined by (5.5) is a distribution solution of the one-dimensional
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C. The Inhomogeneous Equation

We now consider the Cauchy problem for the inhomogeneous wave equa­
tion:

(r = Ix!),

u(x,O) = I(lx!), Otu(x, 0) = g(lxl),

OtU - Au = w(x,t),

u(x,O) = I(x), Otu(x,O) =g(x),

U(x, t) = r- 1 [4>(r + t) + tP(r - t)]

O;U - Au =0,

where 4> and tP are functions on R.
b. Solve the Cauchy problem with radial initial data (n = 3),

wave equation. In what. sense do we have limt_o u(', t) = I and
limt_ootu(',t) = g? More generally, if I and 9 are distributions on
R, show how to interpret (5.5) as a smooth 'D'(R)-valued function of t
that satisfies (5.4) in an appropriate sense.

2. The differential equation (5.11), i.e., [o;+(n-l)r-10r]w =o;w, is the
n-dimensional wave equation for ra.dial functions (Proposition (2.2».
As explained in the text, when n is odd this equation can be reduced
to the one-dimensional wave equation. In this problem we consider the
case n =3.
a. Show that the general radial solution of the 3-dimensional wave

equation is

in a form similar to (5.5). (Hint: Extend I and 9 to be even func­
tions on JR.)

c. Let u, I, 9 be as in part (b). Show that u(O, t) =I(t)+tf' (t)+tg(t),
so that u is generally no better than C(k) if f E C(k+I) and 9 E C(k).

(5.24)

which represents waves influenced by a driving force w(x, t). We know how
to find a solution UI of this problem when w is replaced by O. If we can
also find a solution U2 when I and 9 are replaced by 0, then u =UI + U2

will be a solution of (5.24). But the latter problem is easily reduced to the
former one by a version of the "variation of parameters" method known as
Duhamel's principle:

I
I
I

I
I

I
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(5.25) Theorem.
Suppose W E c[n/21+J(~n x ~). For each s E ~ let v(x, tj s) be the solution
of

o,v - Llv =0, v(x,Ojs) =0, o,v(x,Ojs) = w(x,s).

Then u(x, t) =J; v(x, t - Sj s) ds satisfies (5.24) with f =9 =O.

Proof: Clearly u(x, 0) =O. Also,

O,u(x, t) = v(x, OJ t) +l' o,v(x, t - Sj s) ds = l' o,v(x, t - Sj s) ds,

so o,u(x, 0) = O. Differentiating once more in t, we see that

O;u(x, t) = o,v(x, OJ t) +l' o;v(x, t - s; s) ds

=w(x, t) +l' Llv(x, t - Sj s) ds =w(x, t) + Llu(x, t),

so the proof is complete.

The problem (5.24) is really of physical interest only for t > O. (If one
considers t < 0, the Cauchy data f and 9 are "final conditions" rather than
"initial conditions.") If one wants to consider solutions of 0; - Llu = w
for arbitrary times, the following problem may be more natural. Suppose
the system is completely at rest in the distant past, and then at some
time to the driving force w(x, t) starts to operate. Thus, we assume that
w(x, t) = 0 for t ~ to, and we wish to solve o;u - Llu =w subject to the
condition that u(x, t) =0 for t ~ to. This problem reduces immediately to
Theorem (5.25) if we make the change of variable t -+ t - to, but we can
restate the solution in a way that does not mention the starting time to:

(5.26) Theorem.
Suppose w E c[n/21+J(~n x ~), and w(', t) =0 for t <: O. For each s E ~
let v(x, t; s) be the solution of

v(x, OJ s) =0, 8t v(x, 0; s) =w(x, s).

(Thus v(-"j s) =0 for s <: 0.) Then u(x, t) = J~oo v(x, t - s; s) ds satisfies

8;u - Llu = w, u(',t) =0 for t <: O.
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(convolution on IRn x 1R).u =w*~+

The solution of the inhomogeneous equation in Theorem (5.25) is not
given by a convolution integral, since the imposition of the conditions at
t =0 breaks the translation invariance in t. We shall investigate ~+ further
in the next section.

Proof: Simply repeat the proof of Theorem (5.25).

(5.28) Theorem.
Define the distribution ~t on IRn by (5.19) and (5.20) ifn is odd and n ~ 3,
by (5.22) if n is even, and by (5.23) if n = 1, and define the distribution
~+ on IRn x IR by (5.27). Then ~+ is a fundamental solution for the wave
operator.

~+(.,t)={O~tO ift~O,
ift < 0,

v(-, t; s) =w(', s) *., ~t,

we have

This holds in particular for any w E C.;"'(IRn x 1R), which means that ~+ is
a fundamental solution for the wave operator. In short, we have:

(5.27)

that is,

which is a convolution integral in t if we replace ~. by 0 for s < O. In other
words, if we define the distibution ~+ on IRn x IR by

where ~t is given by (5.19) and (5.20), (5.22), or (5.23) depending on n,
and *., denotes convolution with respect to the space variables. But then

We can rewrite the solution u in Theorem (5.26) as follows. By the
discussion at the end of §5B, the function v in Theorem (5.26) is given by

I
I

I
I
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EXERCISES

1. Let u be the solution of e;u - ~u = w given by Theorem (5.25). For
each (xo, to), determine the region of JR." x JR. in which the values of w
influence the value of u at (xo, to). Do the same for the solution u in
Theorem (5.26).

2. Let L be a constant-coefficient differential operator on JR.n. Suppose
{Ftll>o is a family of distributions depending smoothly on t such that

e;" F I =LFI (t > 0), I· !>iF {O (j < m - 1),
1m Uf I = £ (. _ 1)

1_0 (J J - m- ,

where 8 denotes the point mass at the origin.
a. Show that if 9 E C.;"'(JR."), u(x, t) = 9 * F,(x) solves the Cauchy

problem

e;"u = Lu (t > 0), . {O (j<m-1),
etu(x,O)= g(x) (j=m-l).

b. Define the distribution F+ on JR.n x JR. by

Show that F+ is a fundamental solution for e;" - L. (Note that
the fundamental solutions of the heat and wave equations given by
(4.5) and (5.27) are of this form.)

D. Fourier Analysis of the Wave Operator

We now re-examine the problems solved in the previous two sections by
using the Fourier transform. To begin with, we consider the Cauchy prob­
lem (5.4) for the homogeneous wave equation. Application of the Fourier
transform in the space variables converts this into

u(e,O) = !(e),

where u(-, t) denotes is the Fourier transform of u(-, t) for each t. The
general solution of this ordinary differential equation is a linear combination
of cos 21Tlelt and sin 21Tlelt; taking the initial conditions into account, we
see that

(5.29)



I

(! > 0).

u(-,t) =f* Wt +g * q)t,

- e- 21r«-it)I{1 _ e- 2..«+it)I{1 1 1<+it
q)'(&) - - _ -2... \{1 d
t" - 4 '1&1 - 2' . e 5,

11'1 .. 1 <-,t

so

Clearly ¥~ -+ it uniformly as ! -+ 0, so that q)t will be the limit in the
topology of tempered distributions of q)~, the inverse Fourier transform
of i~. Moreover, i~ E LI(l~n), so we can calculate its inverse Fourier
transform as an ordinary integral. In fact, we have

Direct evaluation of these inverse Fourier transforms is not easy, because
although ~t and ¥t are perfectly nice tempered distributions, they are not
LI functions. Of course, we already know the answer: if we compare (5.29)
with (5.21), we see that q)t is the distribution defined by (5.19) and (5.20)
when n is odd and ~ 3, by (5.22) when n is even, and by (5.23) when
n = 1; and Wt = at q)t. When n = 1, the direct calculation of ¥t from q)t is
a triviality:

where Wand q) are the inverse Fourier transforms of the functions

The corresponding calculation for n = 3, where q)t is a scalar multiple of
surface measure on 5111(0), is also quite easy; see Exercise 1. For n 1= 1,3,

however, going from q)t to it is rather arduous.
It is, however, possible to apply the Fourier inversion formula to it in a

way that readily displays some of the most important qualitative features of
q)t, although not the exact nature of its singularities on the sphere 5Itl(0).
Namely, we consider

178 Chnptcr 5

Therefore,I
I
I
I
I
I
I
I
I
I

I,
I

I
I



The Wave Operator 179

Now, the inner integral is the inverse Fourier transform of e- 2",1{1, which
we calculated in Theorem (4.15):

r e2..i{·"e-21ul{1 de _ r«n +1)/2) s
J.. - 7r(n+l)/2 (s2 + IxI2)(n+l)/2'

Actually, Theorem (4.15) pertains to the case s > 0, but this formula
remains valid for all complex s with Re s > 0 provided that (s2 + Ix1 2)1/2

is taken to be the square root of s2 + Ixl2 with positive real part. (One can
either repeat the proof of Theorem (4.15) with s complex, or argue that
both sides of the formula are analytic functions in the half-plane Re s > 0
that agree for s > 0 and hence everywhere.) Therefore, if n > 1,
(5.30)

< _ r«n + 1)/2) 1<+it s
'l>t(x) - 2i7r(n+l)/2 <-it (s2 + Ixj2)(n+l)/2 ds

rc(n + 1)/2) [1 1]
=2i(1 - n)7r(n+l)/2 (f+itF + IxI 2j(n-l)/2 - (f-itF + IxI 2j(n-l)/2 .

(The corresponding calculation for n = 1 is left to the reader; see Exercise
2.)

Now we let f -- O. Clearly 'l>i -- 0 uniformly on compact subsets of
{x: Ixl > Itl}, so we recover the fact that supp'l>t C {x: Ixl::; Itl}. This in
turn is equivalent to the facts about the localized dependence of the solution
of the Cauchy problem on the initial data that we originally derived from
Theorem (5.3). Moreover, if n is odd (and> 1), so that (n - 1)/2 is an
integer, 'l>i -- 0 uniformly on compact subsets of {x: Ixl < It I} also. Hence
supp'l>t C {x: Ixl =Itl}, which is a restatement of the Huygens principle.
However, for Ixl < It I the quantities (f ± it)2 + Ixl2 approach the negative
real axis (the branch cut for the square root) from opposite sides, so if n
is even the two terms on the right of (5.30) do not cancel out but add up,
with the result that 'l>t agrees on the region {x : Ixl < It I} wit,h the fundion

(_1)(n I 2)-lrc(n + 1)/2)sgnt 1
(n - 1)7r(n+l)/2 (t 2 -lxj2)(n-l)/2'

On the other hand, (5.22) implies that 'l>t agrees on this region with the
function

and it is an elementary exercise to see that these two functions are the
same.

-
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One of the main advantages of the Fourier representation (5.29) is that
it yields easy answers to questions about L2 norms. For example, it is
obvious from (5.29) and the Plancherel theorem that if I, 9 E L2(lRn ) then
u(-, t) E L2(lR n) and I\u(', t)lb is bounded independently of t, so that u E

L 2 (lR n x [to, ttl) whenever -00 < to < tl < 00. (See also Exercise 3.) This
result can be refined to take account of smoothness conditions. To do so,
we shall have to get ahead of our story a little and introduce an idea that
will be explained more fully in Chapter 6.

If k is a positive integer and 0 is an open set in lRn (or lRnxlR), we denote
by Hk(O) the space of all f E L2 (0) whose distribution derivatives a'" I
also belong to L2(0) for 10-1 :::: k. If 0 = jRn, by the formula (a'" rne) =
(21rie)'" 1(0 and the Plancherel theorem we see that I E Hk(lRn ) if and
only if e'"1 E L2 for lal :::: k, or equivalently, (1 + IW k1 E L2.

Now, from (5.29) we have

(o~ a{ uf(e, t) = (21riO"'(21rlel/l(0 trig 21rlelt

+ (hie)'" (21rIWi -lg(e) trig 27rIW,
where trig denotes one of the functions ± cos or ± sin. From this it is clear
that if f E Hk(lRn) and 9 E Hk_l(lR n) then &:a{u(.,t) belongs to L 2(lR n)
with L2 norm bounded independent of t for lal + j :::: k. An integration
over a finite t-interval then yields the following result, which shows that,
unlike the situation with continuous derivatives, solving the wave equation
preserves L 2 derivatives.

(5.31) Theorem.
Let u be the solution of the CaucJlY problem

o;u - Au =0, u(x, 0) = I(x), Otu(x, 0) =g(x).

If f E lh(lR n ) and 9 E Ih_l(lRn) then u E llk(lR n x [to, til) whenever
-00 < to < t 1 < 00.

There are also various boundedness theorems for solutions of the wave
equation in terms of LP norms with P i- 2, but these are mostly quite
recent and depend on some deep results of Fourier analysis. In particular,
Peral [39] has proved an LP analogue of Theorem (5.31) (but with a small
loss of smoothness, depending on p) for I~ - ~ I :::: n: l' See also Stein [46,
§VIII.5], and the references given there.

We now turn to the question of finding a fundamental solution for the
wave equation by Fourier analysis. Here we wish to solve the equation

&;u(x, t) - Au(x, t) =<5(x, t) =<5(x)<5(t).
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Application of the Fourier transform in x turns this into

The recipe for solving this ordinary differential equation is as follows. u
must be a solution of the homogeneous equation a;u + 411'21~12u = 0 for
t < 0 and for t > 0, so

~(~ t) _ { a(O cos 211'1~lt + b(~) sin 211'1~lt (t < 0),
u , - c(o cos 211'1~lt + d(~) sin 211'1~lt (t > 0).

To obtain the delta function at t =0 on applying a; to tt, we require that
u should be continuous at t =0 but that at u should have a jump of size 1
at t = 0:

This gives two equations for the four unknowns a, b, c, d; the remaining
degrees of freedom can be used to satisfy side conditions. If we think if
u(x, t) as the response of a system at rest to a sudden jolt at x = 0, t = 0,
it is reasonable to require u(x, t) = 0 for t < O. Hence, we take a = b = 0,
which yields c = 0 and d = (27l'1~1)-1. In short,

(5.32) u(~ t) = {(27l'IW-1sin27l'1~lt = ~t(O (t > 0),
, 0 (t < 0),

so that u is the fundamental solution ~+ given by Theorem (5.28).
It is of interest to compute the full Fourier transform of ~+ in both x

and t. We expect to get something like [47l'2(1~12 - T2)]-1, but the latter
function is not locally integrable near points of the light cone and so will
need to be interpreted suitably as a temepered distribution. In fact, we can
compute the Fourier transform in t of (5.32) by the same device that we
used to compute the inverse Fourier transform in x of ~t. Namely, consider

_ _ e 2..it (I€I+i,) _ e2 ..it( -1€I+i,)
~+(~,t) = e-2...t~+(~,t) = X[O,oo)(t) 47l'il~1 .

The t-Fourier transform of this is

J . ~ 100 e2l1'it(l€I-r+i') - e2l1'it( -I{I-r+i,)
e-2...rt~' (C t) dt = dt

+ 'o, ° 411'il~1

1 [1 1]
=87l'21~1 1~I-T+if+I~I+T-if

1
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Clearly <il~ -+ <il+ uniformly as l -+ 0, so the full Fourier transform of
<)+ is the limit in the topology of tempered distributions of the functions
[(4lT2)(1eI2 - (T - il)2)J-l.

The fundamental solution <)+ has the property that the solution of u =
W*<)+ of the inhomogeneous equation alu-f!..u =w at. timet = to depends
only on the values of w at times t ~ to, and it is uniquely determined by
this property. It is therefore the natural fundamental solution to use when
u is considered as the response of a system to an driving force w. However,
there are other fundamental solutions for the wave operator that are of
significance in physics. One is the time reversal of <)+,

<)_(x, t) =<)+(x, -t),

whose full Fourier transform is the distribution limit of the functions

(<)+ and <1>_ are often called the retarded and advanced Green's func­
tions in the physics literature.) Another is the causal Green's function
or Feynman propagator <l>c, the distribut.ion whose full Fourier t.rans­
form is the distribution limit of the funct.ions

as l -+ 0+. The reader may find an explanat.ion oft.he role of these Green's
funet.ions in quantum field theory in Bogoliubov and Shirkov [8J; here we
merely wish to point out that there are a number of natural but quite
different fundamental solutions of the wave equation. (In other words,
there are a number of natural but quite different. distributions that agree
with the function [4lT20e12 - T 2)J-l away from t.he light cone!)

We refer the reader to Treves [52J for further discussion of the properties
of <)+.

EXERCISES

1. When n = 3, the dist.ribution <1>1 defined by (4.19) and (4.20) is
(41l"lt\)-1(1111' where (1r is surface measure on 5r (0). Show by a di­

rect calculation that. <ill(~) = (2lTIW- 1sin 2lTl~lt. (Hint: Since <)1 is
radial, so is <ill; hence it suffices t.o consider ~ = (O,O,p) with p > 0.
Integrat.e in spherical coordinates.)
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2. Perform the calculation (5.30) when n = 1 to obtain the formula (5.22)
for ~l in the one-dimensional case.

3. Use the Fourier representation (5.29) to rederive the result of Exercise
2, §5A. That is, suppose u, I, and 9 are related by (5.29) and that
IE H1(JR") and 9 E £2(JR"). Show that for all t E JR,

E. The Wave Equation in Bounded Domains

When solving the wave equation in the region 0 x (0,00), where 0 is a
bounded domain in JR.", it is appropriate to specify not only the Cauchy
data on 0 x {O} but also some condition on ao x (0,00) to tell the wave
what to do when it hits the boundary. The most commonly used conditions
are those of Dirichlet and Neumann, i.e., u = 0 or allu = O. For either of
these the solution is unique, as may be proved by the same method as
Theorem (5.3); see Exercise 1.

If the boundary condition on aox (0,00) is independent oft, the method
of separation of variables can be used, just as for the heat equation (§4C).
That is, we can look for solutions u in the form u(x, t) = F(x)G(t) where I
satisfies the boundary condition on ao. The wave equation {flu - Au =0
is equivalent to the equation (AF)IF = GilIG, and since (AF)IF depends
only on x and GilIG depends only on t, these quantities must be equal to
some constant which we write as _A2 in the hope that it will be real and
negative. If we can solve the equation /1F + A2 F =0 on 0 for some A > 0
subject to the given boundary condition on ao, we obtain solutions of the
wave equation

u(x, t) = F(x)(a cos At + bsin At)

where a and b are constants that can be adjusted to satisfy initial condi­
tions. This represents a normal mode of vibration with frequency A, and
with luck we will be able to obtain the general solution as a superposition
of normal modes.

In particular, consider the Dirichlet boundary condition u(x, t) =0 for
x E ao, and assume that ao is smooth. We shall see in §7G that £2(0)
admits an orthonormal basis {Fj } consisting of eigenfunctions for /1 on 0
with negative eigenvalues {-An and satisfying Fj = 0 on ao. Hence we
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(5.34)

(5.33)

EXERCISES

1. Suppose n is a smoothly bounded domain in lR n
, and suppose u is a

0 2 function satisfying atu - ~u = 0 in n x (0,00) and either u = 0
or GIIU = 0 on an x (0,00). Adapt the proof of Theorem (5.3) to
show that E(t) =In IV'x,tUl2 dx is independent of t. Conclude that if
u(x, 0) =atu(x, 0) =0 then u == O.

that is,

a;u - ~u =0 on n x (0,00),

u(x,O) =I(x), atu(x,O) =g(x), u(x, t) =0 for x E Gn,

by taking

aj = (f IFj), bj =Ai 1 (g IFj}.

If n is a ball, we have already seen how to do this in §2H.
For n =1 and n = (0, i), the problem is

GtU - ~u =0 on (0, i) x (0,00),

u(x, 0) =I(x), Gtu(x, 0) =g(x), u(O, t) =u(i, t) =O.

can solve the problem

The normalized eigenfunctions are Fj(x) = .,fi11 sin(jnfl) and the asso­
ciated frequencies Aj are the integer multiples of the fundamental frequency
'Tr/I, and we obtain the familiar expansion in "harmonics" of the vibration
of a string fixed at both ends:

~ [ jll't . jll't] . jll'x
u(x, t) =L.J aj cos -i- + bj sm -i- sm -1-'

21' . jn 2 I' . jn
aj =T o/(x)sm-i-dx, bj = lI'j Jo g(x)sm-i-dx.

For n = 2 and n = BR(O), corresponding to a vibrating circular mem­
brane fixed at the boundary, the numbers Aj are zeros of Bessel functions.
These numbers are not rational multiples of each other and so do not "har­
monize" particularly well. For this reason a violin has better tone quality
than a drum.

For more about vibrations and eigenvalue problems, see, e.g., Courant
and Hilbert [10, vol. I] or Folland [17].
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2. Suppose f and g are continuous functions on [0, I] that vanish at both
endpoints. Let 1 and 9 be the functions on ~ obtained by extending
f and g to be odd functions on [-I, I] and then extending them to be
periodic functions on ~ with period 2/, and let u be the solution of

olu - Au =0, u(x,O) = l(x), Otu(X,O) =9(X)

on ~ x ~ given by (5.5). Show that the restriction of u to [0, I] x [0,00)
is the solution of (5.33). (This form of the solution tells you what you
see when you look at a vibrating string, but (5.34) tells you what you
hear when you listen to it.)

3. Solve the wave equation o;u - Au = 0 on (0, I) x (0,00) with initial
conditions u(x,O) = f(x), Otu(x, 0) = g(x), subject to the boundary
conditions u(O, t) = o",u(l, t) = O. In particular, show that the fre­
quencies are the odd integer multiples of the fundamental frequency
1r/2/. (This problem models vibrations of air in a cylindrical pipe that
is open at one end and closed at the other, like a clarinet; u represents
the change in air pressure relative to the ambient pressure. On the
other hand, (5.33) models vibrations of air in a cylindrical pipe that is
open at both ends, like a flute.)

4. Let n = {x E ~3 : Ixl < I}. Use separation of variables to solve the
wave equation for radial functions in n x (0, 00) with Dirichlet boundary
conditions. That is, by Proposition (2.2), the problem is to solve

olu(r, t) - D;u(r, t) - 2r- 1or u(r, t) =0 for 0 :5 r < I, t> 0,

u(r,O) = fer), Dtu(r, 0) =g(r), u(I, t) =o.

(Hint: The eigenvalue problem to be solved is F"(r) + 2r- 1 F'(r) +
..\2 F(r) = 0, with F(/) = 0 and F(O) finite. Reduce this to a more
familiar problem by setting F(r) =r-1G(r).) In particular, show that
the frequencies are the integer multiples of the fundamental frequency
1r/I. (The restriction of u to a narrow conical region, say {x : ¢(x) <
£} where 4>(x) is the angle from x to the north pole, is a model for
vibrations of air in a conical pipe like an oboe, bassoon, or saxophone;
cf. Exercise 3.)

F. The Radon Transform

To conclude this chapter we present an elegant method for solving the
Cauchy problem (5.4) based on the "Radon transform." We begin by
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observing that if the Cauchy data depend only on Xl and not on X2, ••. , X n ,

then the solution u will also be independent of X2,"" X n , and will be
expressed by the one-dimensional formula (5.5):

/x,+t
u(x, i) = ~!f(XI + i) + I(Xl - i)l + ~ }x,-t g(s) ds.

(This is clearly a solution; by uniqueness, it is the solution.) By performing
a rotation in jRn, we see more generally that if I and 9 are constant on
all hyperplanes with a fixed normal vector w, say I(x) = F(x . w) and
g(x) =G(x . w), then u will have the same property and will be given by

l
x .w+t

u(x, i) =~[F(x . w + i) + F(x. w - i)l + ~ x.w-t G(s) ds.

In this case u is called a plane wave in the direction w.

The idea is to decompose "arbitrary" functions I and 9 into sums (or
integrals) of functions depending only on x . w as w varies over the unit
sphere, and then to express u as the corresponding sum of plane waves. In
order for the integrals that arise to be classically convergent, it is necessary
to assume that I and 9 have some degree of smoothness and that they
decay reasonably fast at infinity. We shall avoid all technical complications
by assuming that I and 9 are in the Schwartz class S.

Let us denote by Sn the unit sphere in JRn:

Sn={xEJRn:lx\=l}.

If IE S(JRn), its Radon transform RI is the function on JR x Sn defined
by

RI(s,w) =Lw=. I(x)dx,

where dx denotes (n - 1)-dimensional Lebesgue measure on the hyperplane
x·w = s. Clearly RI E C""(JR x Sn) and RI(·,w) E S(JR) for each wE Sn.
Moreover, RI(s,w) =RI(-s, -w).

R is closely related to the Fourier transform. In what follows, we shall
denote by iii the Fourier transform of RI with respect to its first variable.

(5.35) Proposition.
If IE S, P E JR, and wE Sn, then iiiCp,w) = [Cpw).
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Proof: We have

l(pw) = { e-21ripw''''f(x)dx= {1 e- 21rip'f(x)dxds
1m. n iIi x·w= ..

=1e- 21rip, Rf(s,w) ds = Rf(p,w).

(5.36) Corollary.
If f E S,

Proof: Apply the Fourier inversion theorem to iii.

Proposition (5.35), together with the Fourier inversion theorem and the
formula for integration in polar coordinates, yields an inversion formula for
the Radon transform. Indeed,

f(x) = Je21ri"'.q(~) d~ = 1. LX> e21rip
r-w l(pw)pn-l dpdu(w)

= { roo e21rip",.w Rf(p,w)pn-l dpdu(w)
lSn 10

= { h(x· w, w)du(w),ls.
where

h(s,w) =100

e21rip, Rf(p,w)pn-l dp.

But since h(x. w, w) is integrated over the entire unit sphere, the result is
the same if we take only its even part in w:

(5.37) f(x) = ~ { [h(x. w, w) + h(-x· w, -w)] du(w).ls.
Now clearly Rf(p,w) =Rf(-p,-w) by Proposition (5.35), so

Hh( s, w) + h( -s, -w)]

= ~100

e21rip, Rf(p,w)pn-l dp + ~100

e- 21rip'iii(p, _w)pn-l dp

=tl°O e21rip'Rf(p,w)pn-ldp+ tjO e21rip'Rf(p,w)(_pt-ldp
o -00

= tI: e21rip'lpln-lRf(p, w) dp.
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or equivalently by

expressing I and g as superpositions of functions that depend only on
x . w for various values of w. Then the solution u is the corresponding
superposition of plane waves:

g(x) =1Rg(x.w,w)du(w),Sft

u(x,t) = ~ 1ft [RI(X'W + t, w) + RI(x,w - t, w)

['".w+t ]
+ J",.w-t Rg(s,w) ds du(w).

I(x) = f RI(x.w,w)du(w),JS ft

(5.38)

f(x) = f RI(x· w, w) du(w),JS ft

which is the inversion formula for the Radon transform.
Now we can solve the Cauchy problem (5.4) for I, g E S. Namely, we

write

Hc/J(s) = lim.!. f c/J(s-t)dt.
,-0 11' Jltl>' t

(For the equivalence of these two formulas. see Exercise 1.) In any event,
(5.37) becomes

_ (-1)(n-2)/2 joo . ~

Rf(s,w) = ()n-l e21r1P'(-isgnp)(211'ipt- 1RI(p,w)dp
2 211' -00

(-1)(n-2)/2
= 2(211')n-l Ha:-1RI(s,w),

where H is the Hilbert transform, defined for c/J E S(lR) by

(Hc/JfCp) = (-isgnp)~(p),

We call this function the modified Radon transform of I and denote it
by Rf(s,w).

We can express RI more directly in terms of RI. If n is odd, then
Ipln-l = pn-l, and we have

_ (_I)(n-l)/2 joo. ~

Rf(s,w) = 2(211')n-l -00 e21r'P'(21l'ip)n- 1Rf(p,w)dp

(_1)(n-l)/2
= 2(211')n-l a~-lRf(s,w).

On the other hand, if n is even,

I
I
I
I
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(See also Exercise 2.)
In this setup, the Huygens phenomenon arises from the difference in

the formulas for R when n is even or odd. It is related to the fact that 8.
is a local operator (that is, 8.¢J(so) depends only on the values of ¢J near
so), whereas the Hilbert transform H is not.

For more about the Radon transform and its applications to differential
equations, see John [29] and Ludwig [35]. See also Deans [11) for a discus­
sion of some of the many other applications of the Radon transform in
astronomy, medicine, and other areas, and Helgason [24) for a development
of the Radon transform in a more general geometric setting.

EXERCISES

1. Show that the inverse Fourier transform of the function h(p) = -i sgn p

on lR is the distribution hv defined by

Hint: First show that the inverse Fourier transform of e- 2",!p!h(p) is
s/7f(s2 + (2), then apply Theorem (0.13) with

s
¢J(s) =7f(s2 + 1)

X(-oo,-1)(s) + X(l,oo)(S)

7fS

2. Show that R(8;/)(s,w) = wj 8.Rf(s,w), and hence that R(t!>J) =
8; Rf. Application of the Radon transform therefore reduces the n­
dimensional wave equation to the one-dimensional wave equation; use
this fact to derive (5.38).

3. Show that R(f * g) = Rf *. Rg, where *. denotes the convolution of
two functions of (s,w) with respect to s.

4. Compute Rf where f(x) = e-"!x!'.



I

I

Chapter 6

THE L2 THEORY OF DERIVATIVES

One of the most elegant and useful ways of measuring differentiability prop­
erties of functions on R n is in terms of L 2 norms. The reason for this is
twofold: first, L2 is a Hilbert space; second, the Fourier transform, which
converts differentiation into multiplication by polynomials, is a unitary iso­
morphism on L2. The resulting function spaces are known as (L2) Sobolev
spaces.

In the first two sections of this chapter we develop the basic properties
of Sobolev spaces on R n. In the next two sections we use them to prove
the local regularity theorem for elliptic operators (a result which we shall
re-derive, in a refined form and with more sophisticated methods, in Chap­
ter 8) and Hormander's characterization of constant-coefficient hypoelliptic
operators. In the final section we study Sobolev spaces on bounded do­
mains, where the Fourier transform is not directly available but to which
the results on R n can be applied.

A. Sobolev Spaces on R n

To begin with, if k is a nonnegative integer, we define the Sobolev space
Hk = Hk(R n ) of order k to be the set of all f E L2(R n) whose (distribu­
tion) derivatives aa f belong to L2(Rn ) for lui:::; k:

This definition of H k makes its meaning clear, but there is an equivalent
characterization of H k in terms of the Fourier transform that is easier to
work with:
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which completes the proof.

H. =H.(R") ={I E S'(R") : j is a function and

11/11; == Jl1<eW(1 + lel 2
)' d< < 00}.

(6.2)

This suggests a generalization of Hk in which k is replaced by an ar­
bitrary real number s. Namely, if u(e) is a function on R" such that
(1 + leI2)./2u(e) E L2 , then uq, E L1 for any q, E S, so u is a tempered
distribution (whose action on q, E S is f uq,). Since the Fourier transform
maps tempered distributions into tempered distributions, we can define the
Soholev space of order s:

are equivalent.

(6.1) Theorem.
IE Hk if and only if(1 + 1<12)k/2j E L2, and the norms

Proof: Since (Ba If«) = (21ri<)"1«). the Plancherel theorem im­
plies that

L: IIBaIlIi, = L: J11«WI(271"<)aI2 de.
lalSk lalSk

so the theorem amounts to proving that the quantities LlalSk l<al2 and
(1 + lel2)k are comparable, i.e., that each is bounded by a constant multiple
of the other. But clearly I<al :::; 1 for lei:::; 1, and leal:::; lel lal :::; 1<lk for
lei ~ 1 and 10'1:::; k, so

L: leal2:::; C1 max(l, lel 2k) :::; (1 + leI 2)k.
lalSk

On the other hand, since 1<1 2k and L~ lejl2 are both homogeneous of degree
k, we have lel 2k :::; C2L~ l<jl2 where C2is the reciprocal of the minimum
value of L~ lej 12 on the unit sphere lei = 1. It follows that

(1 + 1<12)k :::; 2k max(1, Ie 1
2k) :::; 2k(1 + Ie 1

2k)

:::; 2kC2 [1 +t lew] :::; 2kC2 L: l<aI2.
1 lalSk
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The norm 11·11. on H. thus defined is called the Soholev norm of order
s. Theorem (6.1) shows that this definition agrees with the previous one
when s is a nonnegative integer. In particular, H 0 = L 2 , and the norm
on L 2 will henceforth be denoted by II ·110. (There will be no notational
confusion between the Sobolev norms II . II. and the LP norms, since we
shall rarely use the latter for p i= 2, and when we do, we shall henceforth
denote them by 1I·IILo.)

The argument that proves Theorem (6.1) also proves the following gen­
eralization if it; one has merely to introduce factors of (1 + leI2)' in appro­
priate places:

(6.3) Theorem.
Suppose k is a positive integer, s is a real number, and I is a tempered
distribution. Then IE H. if and only if 1:)0 IE H,_k for lal ::; k, and the
norms

11/11. and [L IW III~-k] 1{2

1019

are equivalent. In particular, 0° is a bounded operator from H. to H.-k
for all s when lal ::; k.

H, is a Hilbert space with inner product

and the Fourier transform is a unitary isomorphism from H. to L 2(Rn ,/L)
where d/L(~) = (1 + 1~j2)' d~. Standard approximation arguments show that
S (or even C;:O) is dense in the latter space, and since the Fourier transform
maps S onto itself, S is dense in H,.

If s ::; t, it is clear that H t C H. and that 11·11, ::; 11,111, so the inclusion
map from HI to H, is continuous. In particular, H. C Ho =L 2 for s ~ 0,
so the elements of H, for s ~ 0 are functions. For s < 0 they are, in
general, more singular objects.

Example 1-
With n = 1, let I(x) = (1rx)-l sin21rx. An elementary calculation shows
that I is the inverse Fourier transform of Xl-I,l], so I E H, for all s. It
is also easy to verify directly, by induction, that I<k) decays like x-I at as
x -+ 00 and hence that I<k) E L2 for all k. (This example shows, however,
that elements of Sobolev spaces need not decay very rapidly at infinity.)
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Example 2.
Let 6 be the point mass at the origin. Since '6 =1 we have

which is finite if and only if s < -tn since the integrand is roughly r2,+n-1

for large r. Hence 6 E H. if and only if s< -!n.

Since H, is a Hilbert space, it is naturally isomorphic to its own dual
space - or rather anti-isomorphic, since the identification is conjugate­
linear. However, there is an equally natural anti-isomorphism between
(H,)" and H_" given not by the inner product (,1,), but by the ordinary
£2 inner product on the Fourier transform side. Indeed, if f E H. and
g E H_" then

log =[(1 + 1~12)'/2Jl[(1 + 1~12)-'/2g] E £2 . £2 C £1,

so (11 g) = f log is absolutely convergent, and f ...... (11 g) defines a bounded
linear functional on H•. Indeed,

with equality if 1(~) = (1 + 1~12)-'g(O, and the self-duality of £2 implies
that every bounded linear functional on H, is of this form. In short, the
map taking g E H_, to the functional f -+ (11 g) defines an isometric anti­
isomorphism between H_. and (H.)". Moreover, if we restrict the latter
functional to S, we obtain a tempered distribution which is nothing but g:

(~Ig) = (~,'g) = (</J,'g) = (</J,g).

Thus, the duality between H, and H _, is, except for the necessary intro­
duction of a complex conjugate, compatible with the duality between Sand
S/.

We can express the norm on H. neatly in terms of the operator

(s E lR).

Here we are using the functional calculus for the Laplacian discussed in
§4B, that is,

(6.4)



I
194 Chapter 6

(fIg), =(A'/IA'g),lilli, = IW 1110 = IW IIiL',

(6.6)

(6.7) Corollary.
If f E H. for all s E JR, then f E Coo.

(6.8) Corollary.
Every distribution with compact support belongs to H, for some s E JR.

precisely when s> k + tn. (Cf. Example 2 above.)

The first integral on the right is 1I/11~, so the theorem boils down to the
fact that

(6.5) The Sobolev Lemma.
If s > k + tn, then H, C C k and there is a constant C =C.,k such that

and A' is a unitary isomorphism from H j to H j _. for all t E R.
Although Sobolev spaces make the manipulation of distribution deriva­

tives very easy, they would be of limited usefulness if we could not relate L 2

derivatives to classical pointwise derivatives. Fortunately, there is a simple
and beautiful connection between the two.

Proof: By the Fourier inversion theorem, if (8° Ir E L 1 then 8° I is
continuous and sup" 18°I(x)1 ::; 11(8°InIL'. Hence, to prove the theorem it
is enough to prove that U(8° InIL' ::; 11/11. when lal::; k. But (8°Irw =
(271'ie)0 i(e), and by the Schwarz inequality, for la] ~ k we have

Clearly, by the Plancherel theorem,I
I
I
I
I
I
I
I
I
I

I
I
I
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Proof: If I is a distribution with compact support, it follows from
(0.32) and the Sobolev lemma that for some positive integer N,

A few examples may help to elucidate the meaning of the Sobolev
lemma.

where s =N + ~n + 1. But this means that I extends to a bounded linear
functional on H. and hence belongs to H _.. I

Remark 2: The Sobolev lemma can be sharpened a bit: if s = k +
a + ~n where 0 < a < 1, then H. eCHO'. See Exercise 2.

(I/> E S),1(/, 4»1 ~ C L sup 18a 4>(x)1 ~ C'III/>II.
lal::;N r

Remark 1: The proof of the Sobolev lemma shows that H. C BCk

for s > k + ~n, where BCk is the space of C k functions I such that
80' I is bounded for lal ~ k. Conversely, if H. C BCk , the closed graph
theorem easily implies that the estimate (6.6) holds. But this means that
the functionals 1-+ 80' I(x) (10'1 ~ k, x E lRn) are a bounded set of bounded
linear functionals on H., or in other words, that the distributions 80'6(· -x)
are a bounded subset of H _•. A calculation like the one in Example 1 above
shows that this happens precisely when s > k + ~n. (See Exercise 1.)

Example 3.
Pick I/> E C'[' with I/> = 1 near the origin, and let J>.(x) = Ixl>'l/>(x) where oX

is positive and not an even integer. Since 80' J>. is homogeneous of degree
oX - lal near the origin, an integration in polar coordinates shows that
801 I E £2 for 10'1 < oX + ~n, but 8011 is continuous only for 10'1 < oX. (See
Exercise 3.)

Example 4.
Let I(x) =e- 2>rlrl. By Theorem (4.15) and the Fourier inversion theorem,
ice) is a constant times (1 + leI2)-(n+l)/2. It follows easily that I E H.
for s < ~n + 1 but I¢. H(n/2)+1' The Sobolev lemma says that I should
be continuous (which it is), but just barely fails to guarantee that IE C l

(which it is not).

Example 5.
Suppose I E Ck has compact support (so I E Hk also), and let u be the
solution of the Cauchy problem 8;u-D.u =0, u(x, 0) = I(x), 8I u(x, 0) =o.
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The argument leading to Theorem (5.31) shows that uc. t) E Hk for all t,
but (5.16) and (5.18) show that u(', t) may be no better than ck-[n/2),
where [n/2] is the greatest integer in n/2. This is essentially the maximum
discrepancy between £2 derivatives and continuous derivatives allowed by
the Sobolev lemma.

Elements of £2 are only defined almost everywhere, and in general it
does not make sense to evaluate them at a single point. The Sobolev lemma,
however, shows that if s > tn, the evaluation map f -+ f(x) (x E IRn

) has
a natural meaning for f E H.. More generally, it turns out that if k ~ n
and s > ~k, it makes sense to restrict functions in H. to submanifolds
of codimension k, even though these sets have measure zero. For the case
k = 1 in particular, this is useful for the study of boundary value problems.
We shall prove this for the special case of linear subspaces here; the general
case will then follow from some results of the next section.

To be precise, let us regard IR n as IRn - k x IRk with coordinates y E
IRn - k, z E IRk and dual coordinates TJ,(. We define the restriction map
R: S(IRn ) -+ S(IRn - k) by

Rf(y) = f(y,O).

(6.9) Theorem.
If s > ~k, the restriction map R extends to a bounded map from H.(IR n)
to H._(k/2)(IRn-k).

Proof: It suffices to show that IIRIII.-(k/2) is dominated by 11111. for
f E S. We have

Je2"i~.yR.t(TJ) dTJ =Rf(y) = f(y, 0) =JJe2"i~.y I(TJ, () dTJ d(

for all y, so R.t(TJ) = f I(TJ, () de· Therefore,

1R.t(TJW = [J I(TJ, ()(I + ITJI 2+ 1(12)'/2(1 + ITJI2+ 1(12)-'/2 d(] 2

~ [j II(TJ,(W(1 + ITJI 2 + 1(12)' de] [j(1 + ITJI 2+ 1(12)-. de] .

Setting 1+ ITJI 2 =a2 and 1(1 =r, the second factor on the right is
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The latter integral is finite when s> tk, so

or

Integrating both sides with respect to 7J, we conclude that IIRIII;_(k/2) ::;
C,IIIII; as desired. I

Before proceeding further, we present two simple lemmas that will be
used a number of times in the sequel.

(6.10) Lemma.
For all e, 7J E JRn and all s E JR,

Proof: Since lei::; Ie - 7J1 + 11]/, we have lel 2 ::; 2(1e - 7JF + I7JF), so

If s ~ 0, we have merely to raise both sides to the power s. If s < 0,
we apply the latter result with e and 7J interchanged and s replaced by
lsi = -so I

(6.11) Lemma.

Suppose r < s < t. For any £ > 0 there exists C > 0 such that for all
I E HI,

Proof: Given £ > 0, choose A > 0 large enough so that (1 + A2)' ::;
£(1 + A2)', and set C = (1 + A2)'-'. Then

I 12)' { C(1 + lel
2

y if lei < A} ( I 12)' ( I 12)'(1 + e ::; £(1 + lel2)t if lei ~ A :s £ 1 + e + C 1 + e .

It follows immediately that 11/11; :s £11111; + CII/II~ for any I E H,.
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We now show that multiplication by Schwartz functions preserves the
H, spaces. If 5 is a positive integer, this is clear from Theorem (6.1) and the
product formula for derivatives. For the general case, a different argument
is needed.

(6.12) Proposition.
If l/I E 8, the map f - l/If is bounded on H, for every s E JR.

Proof: The proposition amounts to the assertion that the map! ­
A'l/IA-'! is bounded on Ho = £2 for every 5, where A' is given by (6.4).
But since the Fourier transform converts pointwise multiplication into con­
volution,

where

By Lemma (6.10),

50 f I[{(e, 1/)1 de and f I[{(e, 1/)1 d1/ are bounded by

which is finite since ~ is rapidly decreasing at infinity. The proposition
then follows from the generalized Young's inequality (0.10).

Proposition (6.12) shows that the Sobolev spaces are preserved by mul­
tiplication by smooth cutoff functions, so they can be localized. To be
precise, if 5 E JR and 0 is an open set in JR n, we define the localized
Sobolev space H~OC(O) to be the set of all distributions f on 0 such that
for every bounded open 0 0 with 0 0 C 0, f agrees with an element of H,
on 0 0 , Alternatively, we have the following characterization of H~OC(O):

(6.13) Proposition.
f E mOC(O) if and only if l/I! E H, for every IjJ E C~(O). Moreover,
H, C H~OC(O) for every open 0 C JRn.
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Proof: Clearly the second statement follows from the first one, in
view of Proposition (6.12). If 1 E H;OC(O) and ¢J E C~(O), then 1 agrees
with an element of H. on the support of 1/>, whence 1/>1 E H. by Proposition
(6.12). Conversely, suppose 1/>1 E H. for all I/> E C~(O) and 0 0 is an open
set with compact closure in O. Choose t/> E C~(O) with I/> = 1 on 0 0

(Theorem (0.17»; then 1 agrees with ¢JI E H. on 0 0 . I

Roughly speaking, the condition 1 E mOC(O) means that f has the
requisite smoothness for being in H. on 0 but imposes no global square­
integrability conditions on I.

We conclude this section by remarking that there are LP analogues of
the Soholev spaces for 1 :s p < 00. On the simplest level, if k is a positive
integer one can consider the space L1 of LP functions 1 whose distribution
derivatives BOll are in LP for 10'1 :s k; this is a Banach space with norm
LIOlI:Sk IIBOI IIIL" If 1 < p < 00, it can be shown (although it requires a
fair amount of theory to do so) that 1 E L1 if and only if Ak 1 E LP, where
Ak is defined hy (6.4). One can then define L~ for any s E ~ to be the set
of tempered distributions 1 such that A'1 E LP, and much of the theory
for the L2 Soholev spaces can he extended. In particular, the analogue of
the Sobolev lemma is that L~ C C k if s > k + (n/p); one also has the
embedding theorem L~ C Lr when q > P and p-l - q-l =n-l(s - t). See
Stein [45], Adams [1], and Nirenberg [38].

EXERCISES

1. Fill in the details of Remark 1 following the Soholev lemma to show
that if Il. C BCk then s> k + !n.

2. Show that if s = !n+ a where 0 < a < 1 then 116" - 6y 11_. :s Clx _ YIOl
for all x, y E ~n, where 6" and 6y are the point masses at x and y. (Hint:
8,,(~) = e- 2"';"'( Write the integral defining 116" - 6y ll:. as the sum
of integrals over the regions I~I :s R and I~I > R where R = Ix _ YI-l,
and use the mean value theorem of calculus to estimate 8" - 8y over
the first region.) Conclude that H. C COl, and more generally that if
s =!n + k + a with 0 < a < 1 then H. C CHOI.

3. In Example 3 following the Sobolev lemma, we implicitly used the fact
that the distribution derivatives of J>.(x) = IxIA4J(x) coincide with its
pointwise derivatives when the latter are integrable functions - namely,
when the order of the derivative is less than A+ n. Prove this. (One
way is to approximate J>. by smooth functions.)
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4. Suppose s > tn. Prove that H. is an algebra, and more precisely
that Illgli. ::; C.II/II.llgli. for all I, 9 E H•. Do this via the following
lemmas:
a. Show that (1 + 1~12)./2(JgnO = JK(e, 1])u(e - 1])v(1]) d1] where

u, v E L2 and K(~, 1]) = (1 + leI2)A/2(1 + Ie _ fjI2)-./2(1 + IfjI2)-'/2.
b. Show that J{(~, fj) ::; c. (1+ IfjI2)-./2 if Ie - fjl ~ !Iel and J{(e, fj) ::;

C.(l + Ie - 7)12)-·/2 if Ie - fjl::; !Iel.
c. Show that if It, v E £2 and wee) = J(1 + IfjI2)-,/2u (e - fj)V(fj) dfj

then w E L2 and IIWIIL' ::; C,IIUIIL'lIvIIL2.

B. Further Results on Sobolev Spaces

In this section we present a potpourri of theorems about Sobolev spaces.
The most important ones are the Rellich compactness theorem, a character­
ization of H. in terms of difference quotients, an interpolation theorem, and
the local invariance of Sobolev spaces under smooth coordinate changes.

If 0 is an open set in JRn, we define

H~(O) = the closure of C~(O) in H•.

Thus H~(O) consists of elements of H. that are supported in TI, although
in general not every such element belongs to H~(O). If {Ik} is a sequence
in Cr(O) that converges in H., it also converges in HI when t < s; hence
H~(O) is a subset of H?(O) for s > t.

(6.14) Rellich's Theorem.
If 0 is bounded and s > t, the inclusion map H~(O) -+ H?(O) is compact.
In fact, every bounded sequence in H~(O) has a subsequence that converges
in HI for every t < s.

Proof: Suppose Ud is a sequence in H~(O) with IIlkliA ::; C < 00.

Choose </J E C~(JRn) with </J =Ion O. Then Ik =</J1k, so h =$*h. Also,
since $ E Sand h is a tempered function, $*h is a Coo function defined
pointwise by the usual convolution integral. Thus, by Lemma (6.10) and
the Schwarz inequality,

(1 + leI2)'/211k(OI

::; 21•1/ 2JI$(e - fj)l(l + Ie _1]1 2)1'1/2Ih(7)1(1 + 11]12)./2 dry

::; 21•1/ 2 11</Jlh.i\l/kll.·
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For the same reason, if j = 1, ... , n,

Since IIlk II. ::; c, the functions h and their first derivatives are uniformly
bounded on compact sets, so by the Arzela-Ascoli theorem there is a sub­
sequence {lkj} that converges uniformly on compact sets. We claim that
{Ik;} converges in lIt for l < s. Ind~ed, for any R> 0,

IIlk. - Ik;il; = r (1 + lel 2)t Ih. - h j 12 (e) de
J1M,R

+ r (1 + leI 2)'-'(1 + lel 2
)' Ih. - hj 1

2(e) de
Jlc'~R

::; [sup Ih. - Ikj 1
2(e)] 1. (1 + lel 2)t de

Icl~R 'cl~R

+ (1 + R2)H r (1 + lel2nh. - hj 12(0 de
J'cl>R

::; [sup Ih, - Ikj 12(e)] 1. (1 + lel 2)t de
'c'~R Ic'~R

+ (1 + R 2 )t-·lIlk. - Ik;il~.

Now, given ( > 0, since t - s < 0 and IIlk; - !kjll. ::; 2C, we can choose
R large enough so that the second term in this last expression is less than
t( for all i, j. But then for all sufficiently large i and j, the first term will
also be less than tL Thus {/k;} is Cauchy in H t . I

The hypothesis that n is bounded can be relaxed when s ;::: 0 (see
Adams [1] and Lair [32]), but some restriction is necessary: see Exercises
1 and 2.

While we are considering the spaces H~(n), here is another useful result.

(6.15) Proposition.

If n is bounded and k is a positive integer, the norms I -+ II/11k and
1-+ Llal=k lIaa 1110 are equivalent on H~(n).

Proof: By Theorem (6.1), it is enough to show that

lIa,61110 ::; C L lIaa 1110 for 1.81 < k.
lal=k
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Consider first the case k = 1. We shall prove a sharper result, namely that
if there are constants a and b such that a < X n < b whenever x E n, then

11/110 ~ (b - a)lIon/llo for all IE Hr(n).
It suffices to assume that I E c:,(n). Writing x = (x', xn) where

x' = (Xl. ... , xn-d, we have I(x) = f:ft on/(x', t) dt, so by the Schwarz
inequality,

I/(xW ~ l"ft IOn/(x',tWdt l"ft dt ~ (b-a) t IOn/(x',tWdt

for x E n. Integrating over n, we obtain

I\!II~ ~ (b - a) t lft-lt IOn/(x', tW dt dx' dXn

=(b - a)21Ion/ll~.

Now for the case k > 1, the above argument shows that 110/1 1110 <
(b - a)llonO/1 1110 for IPI < k, so the desired result follows by induction. I

Our next result is a more precise version of Proposition (6.12) that we
shall need later. We recall that if A and B are operators, their commutator
[A, B] is defined to be AB - BA. In particular, if B is multiplication by a
function ¢J, we shall abuse notation slightly and write [A, B] as [A, ¢J]:

[A, ¢J]I = A(¢J . f) - ¢J . AI·

(6.16) Lemma.
If s E lR and (T > !n there is a constant C =C.,,, such that for all ¢J E S

and I E H._ l ,

II[A', ¢JJlllo ~ CII¢JIIi.-ll+l+"II/II.-l.

Proof: Setting 1= Al-'g, what we need to show is that

for all 9 E H0 = L2 • Since the Fourier transform converts multiplication

into convolution, we have
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where

We claim that

(6.17)
[(1 + 1~12)./2 _ (1 + 1'71 2)./2]

~ Isll~ -'71[(1 + 1~12)(.-11/2 + (1 + 1'71 2)('-1)/2].

Granted this, by Lemma (6.10) we have

I[(e, '7)1 ~ Isll¢(e -'7)lle -1/1 [(1 + 1~12)('-1)/2(1 + 1'71 2)(1-.)/2 + 1]

~ IsI21'-11/21¢(~ - '7)II~ - '71 [(1 + Ie - '71 2)"-11/2 + 1]

~ C21¢(~ -'7)1(1 + Ie - 1/1 2)0.- 11+11/2.

Thus J I[{(~, '7)1 d(, and J I[{(~, '7)1 d'7 are bounded by

so the lemma follows from Theorem (0.10).
It remains to prove (6.17). Since

by the mean value theorem of calculus we have

1(1 + a2)./2 - (1 + b2)'/21 ~ la - bl sup Isl(1 + t2)'-1)/2
a99

~ Islla - bl [(1 + a2)(.-11/2 + (1 + b2 )('-1)/2]

for all a, b ~ O. Setting a = lei and b = 1'71 and using the inequality
Ilel-11/1l ~ Ie -'71. we obtain (6.17). I

(6.18) Proposition.

If s E IR and u > !n tllere is a constant C = C.,u such that for aIlljJ E S
and f E H.,
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Proof: Since II ·110 is the L 2 norm, by Lemma (6.16) we have

114>/11. = 11A'4>/110 ~ I14>A'/llo + lilA', 4>]/110

~ [s~p 14>(x)l] 1IA'/lio + 0114>111.-11+1+..11/11,-1

~ [s~p 14>(x)l] 11/11. + 0114>111,-11+1+..11111,-1'

In our study of elliptic operators we shall sometimes wish to determine
when certain derivatives of a function I E H, are also in H,. For this
purpose we shall use Nirenberg's method of difference quotients, which is

based on the following simple result.
First, some notation. If 4> is a function on jR" and x E jR", we define the

translate 4>" of 4> by 4>" (y) =4>(y + x). If I is a distribution, we then define
the translate I" by the formula (1",4» = (1,4>-,,). Next, let e1,···,e" be
the standard basis for jR". If I is a distribution, h E jR \ {OJ, and 1 ~ j ~ n,

we define the difference quotient f).{1 by

We also introduce the following notation for products of difference quo­
tients. If a is a multi-index and h = {h jk : 1 ~ j ~ n, 1 ~ k ~ aj} is a
set of lal nonzero real numbers, we define

n (Xj

f).1: = IT IT f).C·
j=lk=l

We also define Ihl, the "norm" of h, to be

n aj

Ihl =I:I: Ihjkl·
j=lk=l

(6.19) Theorem.
Suppose u E H, for some s E jR and a is a multi-index. Then

IleaIII, =lim sup 1If).l:fll,
Ihl-o

(whether both sides are finite or infinite). In particular, oal E H, if and
only if f).1:1 remains bounded in H, as Ihl ...... o.
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Proof: For simplicity we shall present the proof for lal = 1, i.e.,
~h = ~{; the argument in general is exactly the same. In the first place,

2 ..ih€· 1 . he
(~{/ne)= e : - iw =2ie..ih€j SID ~ .. j iw.

Since Ih- 1 sin ?Thej I :$ ?Tlej I for all hand ej, clearly

IimsupIlA{tIl~:$ J(l + leI2)'12?Tieju(eWde = 1I0jull~·
h_O

Moreover, since h- 1 sin ?Thej -+ ?Tej as h -+ 0, it follows from the dominated
convergence theorem that equality holds provided 1I0j ull, is finite. (We can
even replace "lim sup" by "lim".) On the other hand, if 1I0j ull, =00, given
any N > 0 we can find R > 0 large enough so that

r (1 + leI 2
)' /2?Tie;!(eW de > 2N,

J1€I$R
which implies that for sufficiently small h,

IIAjIII~ ~ r (1 + le/ 2)'12h- 1 sin1ThejI2Ii(eW de> N.
J1€I$R

Thus II~{/II, -+ 00 as h -+ O.

We also need the following fact about difference quotients.

(6.20) Proposition.
If s E JR and t/J E S, the operator [~I:, t/Jl is bounded from H. to H'_lal+l
with bound independent ofh.

Proof: First suppose lal =1, so ~I: =~{. Clearly

[~{, t/J]I = (t/Jf)hej - t/JI ~ [t/J/hej - t/J/l =(~{t/J)/hej'

Since the translations I -+ Ihej are isometries on H. and A{t/J ,converges
smoothly to 8jt/J as h -+ 0, by Proposition (6.18) we have IHAt, t/JUII. :$
GII/II. with G independent of h.

If lal > 1, we can commute t/J through the factors of AI: one at a
time, yielding [Ah, t/J] as a sum of terms of the form AI::[~{, cPl~I::: where
a ' + ej + a" = a. But by Theorems (6.3) and (6.19) and the result for
la/ =1,

lI~h:[A{, cP]Ah::/II.-lal+I $ II[A{, cP]Ah;:/II.-lal+la11+I
$ GII~h;:f1l'-lal+la/l+l

$ G/lfll'-lal+la'I+lalll+I =GII/II.·

t__-----------------
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t«() =(1 - ()to +(t l .s«() =(1 - ()so + (51.

(6.23) Theorem.
Suppose So <: Sl and to <: tl, and (or ( E C let

which is the desired result.

(6.22) The Three Lines Lemma.
Suppose F«) is a bounded continuous (unction in the strip 0 ~ Re( ~
which is holomorphic (or 0 <: Re( <: 1. If W«()I ~ Co (or Re( = 0 and
IF«()j ~ C l (or Re( =1, then IF«()I ~ C~-"Cf (or Re( =(1,0 <: (1 <: 1.

Proof: Given <P, t/J E S, let

Suppose T is a bounded linear map from H,. to H t• whose restriction
H" is bounded (rom H" to Ht, . Then the restriction ofT to
bounded (rom H,(,,) to H t(,,) (or 0 <: (1 <: 1. More precisely. i(

Coli/II,. and liT/lit, ::; Cdl/II,,, then IIT /llt(,,) ~ c~-"Cfll/II,(,,)·

cg- l C1"IF«()1 =lim IG.«)I ~ 1 for Re( =(1,._0

Proof: For { > 0, the function G.«() = c5-1Ci""e'('>-OF«() sat­

isfies IG.«)I ~ 1 for Re( = 0 or Re( = 1, and also IG.«()I -+ 0 as
IIm(1 -+ 00 for 0 ~ Re( ~ 1. Applying the maximum modulus
rem on the rectangle 0 ~ Re ( ~ 1, 11m (I ~ R with R large. we see
IG.«()I ~ 1 for 0::; Re( ~ 1. Letting {-+ 0, we conclude that

Proof: Simply observe that Ab commutes with fJl3, so that [Ab•L]
I:[Ab,al3]fJ13 • and apply Theorem (6.3) and Proposition (6.20).

We now present an interpolation theorem for operators on
spaces. The proof. like the proof of the Riesz-Thorin interpolation
orem for operators on LP spaces which it closely resembles, is based
following lemma from complex analysis.

(6.21) Corollary.
If L = I:!PISk apfJP is a differential operator o( order k with cOI~ffi,cie,nts

in S, then (or any 5 E R the operator [Ab,L] is bounded (rom H,

H,-k-Ial+l with bound independent o(h.

I

I

I
I

I

I

I

I

I

I
I

I
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and likewise for Re ( = 1,

O::;u::;1.IF(u)1 ::; c~-<7crll4>lIolit/lllo,

IF«()I :5 IITA-s(04)lltoIlAt(0t/lll_to :5 CoilA-s(04)lIsoIlAt(0t/lll_to
=CoilA-s°4>II'oIIAt°t/lll_Io =Coll4>lIolit/lllo,

Here AZ is defined for z E C just as in (6.4); for z = x + iy we have

AZ = A"'AiY and 11A'4>lIs = IIA"'4>lIs = 114>lIs-", since 1(1 + leI 2)iY/21 == 1.
Also, since (1 + le1 2Y/2 is an entire holomorphic function of z, it follows
easily that F(() is an entire holomorphic function of (. The hypotheses of
the theorem imply that when Re ( =0,

JIf(YW dy =J1(10 e)(xW J(x) dx ~ C J1(1 0 e)(x)1 2 dx,

But F(u) = (At(<7)TA-s(<7)4> It/I), and S is dense in Ho. Hence this estimate
plus the self-duality of Ho implies that At(<7)TA-s(<7) is bounded on H o,
and this in turn means that T is bounded from H S(<7) to H I (<7):

IF(()I::; IITA-s(04)lltoIlAt(0t/lll_to ::; CoilA-s(01)lIsoIlAt(0t/lll_to

=Coll4>II<7(so-s.)IIt/lII<7(t.-to) :5 Coll4>lIolit/lllt.-to·

Moreover, for Re( =u, 0::; u :5 1,

IITlllt(<7) = IIAt(<7)TA -S(<7)AS (<7) 1110
::; C~-<7CfIlA*) 1110 = C~-<7Cfllflls(<7)'

(6.24) Theorem.
Suppose 0 and 0' are open sets in JR.n and e : 0 -+ 0' a COO map with
Coo inverse. For any open set O~ with compact closure in 0', the map
f-+ foe is bounded from H~(O~) to H~(e-1(0~» for all s E JR..

As an application of Theorem (6.23), we obtain an easy proof of the
local invariance of Sobolev spaces under smooth coordinate changes.

Thus, by the three lines lemma,

Proof: Let J : 0 -+ JR. and I : 0' -+ JR. be the Jacobian deter­
minants of e and e- 1 ; thus J and I are Coo and nonvanishing, and
I(y) = [J(e-1y)]-1. Since J is bounded away from zero on e-1(0~)

whenever O~ has compact closure in 0', for any f E Hg(O~) we have
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which proves the theorem in the case s =O. In view of Theorem (6.1) and
the chain rule, a similar calculation proves the theorem in the case where
s is a positive integer. The case s ~ 0 then follows from Theorem (6.23).

From this we obtain the case s < 0 by a duality argument. Let O~ be a
neighborhood of 0ti with compact closure in 0'; then for all I E C~(Oti),

But for such I and g, we have

J(J 0 e)(x )g(x) dx =JI(y)(g 0 e- 1 )(y)J(y) dy.

That is, the adjoint of the map I -+ I 0 e is 9 ..... J(g 0 e- 1
). The

map 9 -+ go e- 1 is bounded from Hf(e-1(Om to Hf(OD for t ~ 0 by
the preceding argument, and the map h -+ Jh is bounded on Hf(OD by
Proposition (6.12) since J agrees with a Schwartz function on O~. Hence
9 -+ J(g 0 e- 1) is bounded from Hf(e-1(Om to Hf(OD for t ~ O.
Therefore, for s < 0 and I E C~(Oti),

111 0 ell. :s sup{ 1I/11.IIJ(g 0 e-1)1I_. :9 Ec~(e-1(Om, IIgll-. :s 1}
:s C.II/I1.,

which implies that I -+ 10 e is bounded from H~(O") to H~(e-1(0")). I

(6.25) Corollary.
The map I -+ 10 e is a bijection from H~OC(O') to H~OC(O).

Proof: We use Proposition (6.13). Suppose I E H~OC(O'). If ¢> E
C~(O'), then ¢>I E H~(O") for any precompact neighborhood 0" of supp ¢>
in 0', so (¢> 0 e)(J 0 e) = (¢>f) 0 e E H•. But the map ¢> -+ ¢> 0 e is clearly
a bijection from C~(O') to C~(O), so this means that 10 e E mOC(O).
The same argument, with e replaced by e-1 , establishes the converse. I

As a consequence of Corollary (6.25), the space H~OC(M) can be in­
trinsically defined on ony Coo manifold M, and the space H.(M) can be
intrinsically defined whenever M is compact. Let us explain this in detail
for compact hypersurfaces in jRn, the only case we shall need. (For those
who know about manifolds, this should be a sufficient hint for the general
case.)
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Suppose S is a compact Coo hypersurface in Rn. Then S can be covered
by finitely many open sets Ut, ... , UM in Rn such that for m = 1, ... , M
there is a Coo map (with Coo inverse) em from Um to a neighborhood of the
origin in R n such that em(Sn Um) is the intersection of em(Um) with the
hyperplane Xn =0; we identify this hyperplane with Rn-l. Let (1) .. . ,(M
be a partition of unity on S subordinate to the covering {Um} (Theorem
(0.19)). Suppose I is a function on S, or more generally a distribution on
S (= a continuous linear functional on Coo (S». We say that I E H,(S) if
«mf) 0e;;:.1 E H,(R n - 1) for each m. We can define a norm on H,(S) that
makes H.(S) into a Hilbert space by

m

11/11; =2: 1I«mf) 0 e;;,t II;·
1

If we choose a different covering by coordinate patches or a different par­
tition of unity, the norm we obtain will be different from but equivalent to
this one, by Theorem (6.24) and Proposition (6.12); hence the space H,(S)
is well-defined, independent of these choices.

If we combine this construction with Theorem (6.9), we immediately
obtain:

(6.26) Corollary.
Let S be a compact Coo hypersurface in R n. If s > !, the restriction map
I -+ liS from S(Rn

) to COO(S) extends to a bounded linear map from
H,(Rn

) to H'_(1/2)(S),

EXERCISES

1. Suppose 0 1= ,p E C~(Rn) and {aj} is a sequence in R n with laj I -+ 00,

and let ,pj(x) = ,p(x - aj). Show that {,pj} is bounded in H, for every
s E R but has no convergent subsequence in H t for any t E R.

2. In Exercise I, replace rP by the point mass 6. Conclude that if s < -!n,
the inclusion map H~(O) -+ Hf(O) (t < s) is never compact unless 0
is bounded.

3. Fill in the details of the argument preceding Corollary (6.26) to show
that the space H,(S) (S a compact Coo hypersurface in R n) is well­
defined.

4. Deduce from the result of Exercise 4 in §6A that if s > !n and rP E H.,
the map 1-+ rPl is bounded on H t for ItI S; s.
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C. I~ocal Regularity of Elliptic Operators

As the first application of the Soholev machine, we shall derive the basic
L2 regularity properties of an elliptic operator L with Coo coefficients. The
method is first to prove estimates for the derivatives of a function u in terms
of derivatives of Lu, assuming that these derivatives exist; such estimates
are known as a priori estimates. One then uses these estimates to show
that smoothness of Lu implies smoothness of u.

Let
L = L ao(x)aO

1019

be a differential operator of order k with Coo coefficients ao (a qualification
that wi1l be assumed implicitly hereafter). We recall that L is elliptic at
Xo if L:lol=k ao(xo)~O f:. 0 for all nonzero ~ ERA. In this case we clearly
have

IL: ao(xo)~OI2: AI~lk
1019

for some A> 0, since both sides are nonzero and homogeneous of degree k.
(A can be taken to be the minimum value of the left side of (6.27) on the
unit sphere I~I = 1.) Moreover, since the ao's are smooth, if L is elliptic
on some compact set V, the constant A can be chosen to be independent
of Xo E V.

Our first major result. is the fonowing a priori estimate.

(6.28) Theorem.
Suppose n is a bounded open set in RA and L =L:!ol:$k aoao is elliptic on

a neighborhood of IT. Tilen for any s E R there is a constant C > 0 such
that for all u E H~(n),

(6.29)

Proof: The argument proceeds in three steps: first we do the case
where the ao's are constant and ao = 0 for lal < k, then we remove the
restriction that the ao's be constant for lal = k, and finally we do the
general case.

Step 1. Suppose ao = 0 for lal < k and ao is constant for lal = k.
Then for u E H, we can express Lu by the Fourier transform:

~(~) = (211"i)k L ao~Ou(O·
lol=k
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Therefore, by (6.27),

(1 + leI2)'lu(eW :::; 2k (1 + leI2)'-k(1 + lel2llu(eW
:::; 2k A- 1 (1 + leI2)'-kl~(eW + 2k (1 + leI2).-klu(eW·

Integrating both sides and using the inequality lIull.-k ~ Ilull.-b we obtain

which gives
lIuli. ~ CoCliLull.-k + lIull.-l)

with Co =2k / 2 max(A- 1/ 2 , 1).
Step 2. Assume again that ao = 0 for lal < k, but allow ao to be

variable for lal = k. For each Xo E n, let

L",o = E a o (xo)8°.
lol=k

Since n is compact, we can take the constant A in (6.27) to be independent
of Xo E n, so by the result of Step 1,

(6.30)

for all u E H., where Co is independent of xo. Our plan will be to estimate

for u supported in a small neighborhood of xo, and then to write an arbi­
trary u E H?(n) as a sum of functions supported in small sets.

There is no harm in assuming that ao E C~(lRn), as we can multiply
the ao's by a smooth cutoff function that equals 1 on n without affecting
Lu for u E H?(n). Thus there is a constant Cl > 0 such that

(Ial = k, x E IR n
, Xo En).

Set 6 = (4(211'n)kCoCd-1, and fix </J E C~(B26(0)) with 0 S; </J ~ 1 and
</J = 1 on B6(0).

Suppose u E H?(n) is supported in B6(XO) for some Xo E n. Then

[ao(x) - ao(xo)]8°u(x) = tP:co,o(x)8°u(x)
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where
1f>zo,"'(x) =q,(x - xo)(a",(x) - a",(xo)}.

We have sUPz l1f>zo,,,,(x)1 S C1(26) = (2(2'n-n)kCo)-I, so by Proposition
(6.18),

lI[a",O - a",(xo)]a"'ull._k S (2(21rn)kCo)-llla"'ull._k + c2I1a"'ull.-k_1

S (2nkCo)-llluli. + (21rlC2 I1ull.-1,

where C2 depends only on lI1f>zo,,,,(x)III.-k- l l+n+1 and so can be taken in­
dependent of xo. Thus, since there are fewer than nk multi-indices a with
lal S k, we have

IILu - Lzo ull._k S :L: II[auO - a",(xo)]a"'ull._k
l"'ISk

S (2Co)-llluli. + (21rn)kC2I1ull._I'

Combining this with (6.30),

Iluli. S Co (II Lull.-k + IILzo u - Lull._k + lIull.-tl

S CoIILull._k + ~lluli. + [(21rn)kC2 + I}Collull.-l,

so that

lI u ll. $ C3 (II Lull._k + lI ull.-I)

where C3 = 2[(27rn)kC2 + I}Co is independent of xo. Thus the estimate is
established for u supported in B6(XO) and is uniform in Xo.

Since n is bounded, we can cover IT by a finite collection of balls
B6(XI), ... ,B6(XN) with Xj E n. Let {(j}{'l be a partition of unity on
IT subordinate to this covering (Theorem (0.19)). Then for any u E H~(n),

(jU is in H~(n) and is supported in a ball of radius 6 for each j, so

N

$ C3 2:(IIL«ju)II.-k + II(jull.-I).
I

But L«ju) = (jLu + [L,(j}u, and [L,(j] is a differential operator of or­
der k - 1 with coefficients in C';' (check it!), so by Theorem (6.3) and
Proposition (6.12) we obtain the desired estimate:

N

lIuli. $ C32:(I1(j Lull._k + II[L, (j]ull.-k + lI(j ull.-I)
I

$ C4 (lILull.-k + lI ull.-I)'
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Step 3. Now consider a general L = LO + L 1 , where

LO = L aa8a ,

lal=k

By the result of Step 2, we know that for all 1.1. E H~(O),

On the other hand, as in Step 2 we may assume that the coefficients of L1
are in C,;" so by (6.3) and (6.12) again we have IILlull._k ::; Csllull._l.
Therefore,

111.1.11. ::; C4 (II Lu ll.-k + IILlull._k + 111.1.11._1)
::; CCliLull._k + 111.1.11._1)

where C = C4 (Cs + 1). The proof is complete.

(6.31) Corollary.

For any t ::; s - 1 there is a constant C t > 0 such that for all 1.1. E H~(O),

Proof: By Lemma (6.11), for some q > 0 we have

where C is the constant in (6.29). Substituting this into the (6.29) yields

111.1.11. ::; 2C(IILu ll._k + C:llullt). I

We now use the Theorem (6.28) to prove the local L2 regularity theorem
for elliptic operators.

(6.32) Lemma.

Suppose 0 is an open set in jRn and L is an elliptic operator of order k
with Coo coefficients on O. If 1.1. E H;OC(O) and Lu E H;~k+l (0), then
u E H~+l(O).

Proof: According to Proposition (6.13), we must show that tPu E
H.+ 1 for all tP E C';'(O). By hypothesis, tPu E H. and tPLu E H.- k+

1
.
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Also, [L, 1/>J [this notation was introduced before Lemma (6.16)J is a differen­
tial operator of order k -1 with coefficients in C~(O), so [L, 1/>Ju E H.-HI
by Theorem (6.3) and Proposition (6.12). Hence,

L(1/>u) =1/>Lu + [L, 1/>Ju E H._HI.

We shall apply the method of difference quotients. If 1 S j S nand h # 0
is sufficiently small, the distributions A{(1/>u) are supported in a common
compact subset 0' of 0, so we can apply Theorem (6.28) (on 0') to them.

Combining this with Corollary (6.21), we obtain

\IA{(1/>u)ll. S C(IILA{(1/>u)\I.-k + \IA{(1/>U)\I.-1)

S COIA{L(1/>u)\I.-k + I\[L, A{J(1/>U)\I.-k + \IA{(1/>U)\I.-1)

S C(lIA{L(1/>u)\I.-k + C'\I1/>u\I. + \IA{(1/>U)\I.-1)'

Now apply Theorems (6.3) and (6.19), first to deduce that the right side
remains bounded as h __ 0, and then to conclude that OJ(1/>u) E H. for all

j and hence that 1/>u E H.+1' I

(6.33) The Elliptic Regularity Theorem.
Suppose 0 is an open set in ~n and L is an elliptic operator of order k
with Coo coefficients on O. Let u and f be distributions on 0 satisfying

Lu =f. If f E H~OC(O) for some s E ~, then u E H:~\(O).

Proof; Given tjJ E C~(O), we wish to show that tjJu E H.+k. Choose
t/Jo E C~(O) such that t/Jo = Ion a neighborhood of supp 41. By Corollary
(6.8), 1/>ou E H t for some t E~. By decreasing t if necessary, we may
assume that N = s + k - t is a positive integer. Proceeding inductively,
choose Coo functions 1/>1, ... ,1/>N-l such that 1/>j is supported in the set
where 1/>j-l = 1 and 1/>j = 1 on a neighborhood of supp 41. Finally, set

1/>N=41·
We shall prove by induction that 1/>jU E Ht+j, and the Nth step will es-

tablish the theorem. The initial case j =0 is true by assumption. Suppolle

then that 1/>j U E Ht+j where 0 S j < N. Then 1/>;+1u = 1/>j +11/>j u E Ht+j
and L(t/Jju) = Lu = f on sUpp1/>;+I' Moreover,

L(1/>;+1 u) =L(1/>;+I1/>jU) =1/>j+1 L (1/>ju) + [L, 1/>j+1](1/>jIL)

= 1/>j+11 + [L, 1/>;+d(1/>ju)

E H. + Ht+j-k+l = HI+j-k+1'

By Lemma (6.32), 1/>j+1U is in mi-J+1(O), hence in Ht+;+1 since it is

compactly supported.



The L2 Theory of Derivatives 215

(6.34) Corollary.

Every elliptic operator witlJ Coo coeflicients is hypoelJiptic.

Proof: If Lu == f E Coo(O), then f E H~OC(O) for all s, so u E H~OC(O)

for all s. By Corollary (6.7), u E Coo(O). I

If L is elliptic and has analytic coefficients, then u is analytic on any
open set where Lu is analytic. This can be proved by using Theorem (6.28)
and keeping an excruciatingly careful count of the constants to show that
the Taylor series of u converges to Uj see Friedman [21]. A more illumi­
nating method is to show that elliptic operators with analytic coefficients
have analytic fundamental solutions - that is, if L is elliptic with analytic
coefficients on 0, there is a distribution K(x, y) on 0 x 0 that is an analytic
function away from {(x,y) : x == y} and satisfies L",K(x,y) == 6(x-y). One
can then argue as in the proof of Theorem (2.27). For the construction of
the fundamental solution, see John [29].

The analogues of Theorems (6.28) and (6.33) for the LP Sobolev spaces
are valid for 1 < p < 00, but the proofs are deeper and require the Calder6n­
Zygmund theory of singular integrals. The corresponding L 1 and L oo esti­
mates are generally falsej in particular, it is not true that if Lu E cm(o)
then u E cm+k(n). However, if 0 < Q' < 1 and Lu E Cm+",(O) then
u E cm+k+a(o). (We proved this for L == Ll in §2C, and the proof in gen­
eral is in the same spirit, relying on a generalized form of Theorem (2.29).)
These results follow from the construction of an approximate inverse for el­
liptic operators that we shall present in Chapter 8 together with estimates
for pseudodifferential operators that can be found in Stein [46, §VI.5] or
Taylor [48, §XI.2].

D. Constant-Coefficient Hypoelliptic Operators

The ideas in the preceding section can be extended to prove hypoeIlip­
ticity for operators other than elliptic ones. Indeed, in combination with
some other techniques from algebra and functional analysis, they enabled
Hormander to obtain a complete algebraic characterization of those op­
erators with constant coefficients that are hypoelliptic. In this section we
present Hormander's theorem, not only as an elegant result in its own right
but as a beautiful example of the interplay of different areas of mathemat­
ics and as an application of Sobolev spaces in which the use of spaces of
fractional order is crucial. (However, we omit the proof of one part of the
theorem that is purely algebraic.)



216 Chapter G

Here, then, is Hormander's theorem.

Z(P) = {( E en :peo =OJ.

P(D) = L: coDa,
\ol$k

dp(O =inf{l( -~I: (E Z(P)}.

P(~) = L: co~o,
\019

Z(P) is always unbounded when n > 1 (unless P is constant), because
for any (1, ... ,(n-1 E C, no matter how large, there exist values of (n for
which P«(ll"" (n) = O. For ~ E jRn, we define dp(~) to be the distance

from ~ to Z(P):

P(D)[fg) = L: ~[DO fJ[P(o)(D)g).
lol~o a.

(The proof is left to the reader; see Exercise 1.)
We shall need to consider complex zeros of polynomials. In what fol­

lows, ~ and lJ will denote elements of jRn and ( will denote an element of

en. For any polynomial P we define

(6.35)

and every constant-coefficient operator is of this form. If P is a polynomial

and a is a multi-index, we set

p(o) =00 P,

and we then have the following form of the product rule:

(6.36) Theorem.
If P is a polynomial of degree k > 0, the following are equivalent:

(HI) IIm(1 -> 00 as ( -> 00 in the set Z(P).
(H2) dp(~) -> 00 as ~ -> 00 in jRn.
(H3) There exist 6, C, R > 0 SUell that dp<e) ~ CI~16 when ~ E jRn, I~I > R.
(H4) There exist 6, C, R > 0 such that lP(o)(OI $ CI~I-61°'lp(~)1 for all a

when ~ E jRn, I~I > R.
(H5) There exists 6 > 0 such that if f E H~OC(n) for some open n c jRn,

every solution u of Lu =f is in H~+k6(n).

(H6) P(D) is hypoelliptic.

We begin with some notation. It will be convenient to dispose of certain

factors of 21l'i that arise in Fourier analysis by setting

D = -21 .0, i.e., Dj = -2
1

.OJ and DO =~(~)I 10°.
1l'1 1l'1 21l'1 °

Every polynomial P in n variables with complex coefficients then defines a

differential operator P(D):

I

I
I

I

I

I
I

I
I

I
I

I

I

I
I
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Proof: Before beginning the labor of the proof, we make a few re­
marks. First, our arguments will show that if P satisfies (H3) for a par­
ticular 6, it satisfies (H4) for the same 6; and if it satisfies (H4) for a
particular 6, it satisfies (H5) for the same 6. In fact, the optimal6's for all
these conditions are equal.

Second, some of the implications in the theorem are easy. A moment's
thought shows that (HI) and (H2) are equivalent, and clearly (H3) implies
(H2). Moreover, (H5) implies (H6) in view of Corollary (6.7).

We refer the reader to Hormander [26] or {27, vol. II] for the proof that
(H2) implies (H3), which is purely a matter of algebra. It requires some
results from semi-algebraic geometry (the theory of sets defined by real
polynomial equations and inequalities), specifically, the so-called Tarski­
Seidenberg theorem. (These names should suggest to the reader that math­
ematical logic is casting a shadow here. Indeed, Tarski and Seidenberg's
main concern was the construction of a decision procedure for solving poly­
nomial equations and inequalities.)

Taking the implication (H2) =} (H3) for granted, then, to prove the
theorem it will suffice to show that (H3) =} (H4), (H4) =} (H5), and
(H6) =} (Hl).

Proof that (H3) =} (H4): We first claim that IPce + ()I ~ 2klPCOI
if 1(1 ~ dpCe)· To show this, consider the one-variable polynomial gCT) =
pee + T(). If /(1 ~ dpCe), the zeros T1, ... , Tk of g satisfy ITj I 2': 1, so as in
the proof of Lemma (1.53),

IP(e + ()! =Igel)I=ITITj - 11 < 2k.
IPCOI g(O) 1 Tj -

Now, by applying the Cauchy integral formula to P in each variable, we
see that

P (a)cc) - ~j j pce+() d( ... d(.. - (2 ')n . . • n a+1 1 n
71"% I(,I=r !(A!=r n1 (j 1

for any r > O. If we take r =n-1/ 2dpCe) then 1(1 =dpCe) when I(j I =r
for all j, so that IP(e + 01 ~ 2klPCOI. and hence

(a) a! 2k IPCe)1
IP COl ~ [n- 1/ 2dpCe)]!a l '

Of course pea) == 0 for 10'1 > k, so this estimate together with (H3) gives
CH4).
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Proof that (H4) => (H5): This argument is similar to the proof of
Theorem (6.30), with an extra twist. Suppose f E H~OC(n) and Lu == f.
Given <P E c~(n), we wish to prove that tjJu E H.+k6' Choose,po E C~(n)
with ,po == 1 on a neighborhood of supp ¢. By Corollary (6.8), ,pou E H,
for some t E JR, and by decreasing t if necessary we may assume that
t == s + k - 1 - M 6 for some positive integer M. Choose Coo functions
,pI, .. . ,,pM inductively so that ,pm is supported in the set where ,pm-l == 1
and ,pm == 1 on a neighborhood of supp ¢, and let ,pM+l == ¢.

Since ,po == 1 on SUpp,pl, by (6.35) we have

P(D)[tP1U] == tP1P(D)u + E ~(Da,pdP(a)(D)[tPou]
a.a;to

E H. +E H,-k+\al == H,-HI'
a;tO

J(1 + 1~12)'-HlIP(~)( tPlun~W d~ < 00.

Thus by condition (H4),

J(1 + 1~12)I-Hl+6\a\IP(a)(O(tP1Un~Wd~ < 00,

which means that p(a)(D)[tPl u] E H
'
-Hl+6Ial' Next, since tPl == 1 on

SUpp,p2, by (6.35) we have

P(D)[t/J2U] == tP2P(D)u +E ~(DatP2)p(a)(D)[tP1U]
a.a;to

E H. +E H, _k+l+6Ia\ == H,-k+l+6,
a;to

so the argument above shows that p(a)(D)[tP2U] E H,-k+l+6(l+\an· Con­

tinuing inductively, we find that

so finally, for m == M + 1,

p(a)(D)[¢u] == p(a)(D)[tPM+1U) E H'-Hl+6(M+lan == H'+6lal'

Now, if P(~) == Llal$k ca~a, pick a such that \0'1 == k and Ca of; 0. Then
p(a)(~) == a!ca of; 0, so ¢u == (a!ca)-l p(a)(D)[¢u] E H,+k6, and we are

done.
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Proof that (H6) ==> (HI): Suppose P(D) is hypoelliptic. Let B =
Bl(O), and set

'N = {J E L 2(]Rn) : 1= 0 outside Band P(D)I =0 in B}.

By the closed graph theorem. it suffices to show that if 1m -+ I in 'N
and Di/m -+ 9 in L2(B') then 9 = D;fIB' . But this is obvious: the
hypotheses imply that Dj/m -+ D;f and Di/m -+ 9 in the weak topology
of distributions on B' , so 9 = Dj I on B' .

Now, given ( E Z(P), let I(x) = e2"'(·"XB(X). Then P(D)/(x) =
P«)e2...(." = 0 on B. so IE 'N. Moreover, Dj/(x) = (je 2..i('" for x E B.
so by (6.37),

(The elements of'N are Coo functions on the complement of BB. but they
are in general discontinuous on BB. For example. if 9 is any solution
of P(D)g = 0 on a neighborhood of 1J then gXB E 'N.) If {1m} C 'N and
1m -+ I in L 2

, then I =0 outside Band P(D)I is a distribution supported
on BB since the same is true of P(D)/m for all m; hence I E 'N. Thus 'N
is a closed subspace of L2.

Next, let B' =Bl/ 2 (O). The elements of'N are Coo on B'; in particular,
if I E'N then Dj/ E L2(B' ) for I ~ j ~ n. We claim that 1-+ Dj/IB' is
a bounded linear map from the Hilbert space 'N to L2(B'), so that

(6.37) t r IDj/(xW dx ~ C r I/(x)12dx
1 lB I In (f E 'N).

« E Z(P».

If IIm(1 ~ R, this gives

In other words, if ( varies in Z(P) but Im( remains bounded then ( remains
bounded, which is precisely condition (HI). I

It may easily be imagined that the methods of the preceding section can
be generalized to yield a hypoellipticity theorem for non-elliptic operators
with variable coefficients. and this is indeed the case. Indeed. suppose
L = L:a",(x)D'" is an operator with Coo coefficients on n c ]Rn. If the
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E. Sobolev Spaces on Bounded Domains

[ ]

1/2

IIflkn = L 1loa 112

lal9 n
(6.38)

By Theorem (6.1), H~(O) is the completion of C.;"'(O) with respect to the
same norm, so we have H~(O) C Hk(O) C H1°C (0).

(If 0 is a bounded domain with smooth boundary, it is possible to
develop a theory of Sobolev spaces H.(O) of arbitrary real order. One
defines H_k(O) to be the dual of HZ(O) when k is a positive integer, and

1. Prove (6.35). (Hint: It suffices to take P to be a monomial.)

2. Show that P(D) is elliptic if and only if P satisfies (H4) with fJ = 1,
and that no P of positive degree satisfies (H4) with fJ> 1.

3. Let P be a polynomial of degree k with real coefficients such that P(D)
is elliptic on ]Rn. Let Q(~, T) = 21riT - P(~), so that Q(D", Dt ) =
ot-P(D). Show that Q satisfies condition (H4) (on JRn+1) with fJ =k- 1

but not for any fJ > k- 1 • (Hint: Consider the regions 1~lk $ ITI and
1~lk ~ ITI separately.)

If 0 is a bounded open set in JRn, we define the Sobolev space Hk(O) for k
a nonnegative integer to be the completion of COO(O) with respect to the
norm

polynomials P"o(~) = I: aa(xo)~a (xo E 0) all satisfy the conditions of
Theorem (6.36), and if these polynomials are all of comparable size in a
certain precise sense, then L is hypoelliptic on O. See Hormander [27,
vol. II, §13.4]. However, this sufficient condition for hypoellipticity is far
from being necessary in the variable-coefficient case. For example, the
operator L = 0; + (Oy + xo.)2 is known to be hypoelliptic on ]R3, but the
operator Lo =0; + (Oy +ao.)2 obtained by freezing the coefficients of L at
a point (a, b, c) is not, because arbitrary functions of the form f(x, y, z) =
g(z - ay) satisfy Lof = O. The hypoellipticity of this L follows from a
beautiful theorem of Hormander concerning hypoellipticity of operators of
the form L =I:~(Aj . 'V)2 + (Ao . '\7) where the Ai's are real Coo vector
fields; see Hormander [27, vol. III, §22.2].

I
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then defines H.(O) for nonintegral s by an interpolation process; see Lions
and Magenes [34]. However, we shall have no need of this refinement.)

The following basic properties of Hk(O) are obvious from the defini­
tions:

i. If j ~ k, then 1I·lIj,n ~ 1I·lIk,n and Hk(O) is included in Hj(O) as a
dense subspace.

ii. If lal ~ k, aOt is a bounded map from Hk(O) to Hk_!OtI(O).

iii. If 4J E Coo (IT) , the map I ...... 4JI is bounded on Hk(O) for all k. (This
follows from the product rule for derivatives.)

iv. Hk(O) is invariant under Coo coordinate transformations on any neigh­
borhood of IT. (This follows from the chain rule.)

v. The restriction map I ...... 110 is bounded from Hk(lR n ) to Hk(O). (This
follows via Theorem (6.1) from the estimate In 1/1 2 ~ I

lIl
.1/12 .)

Our definition of Ih(O) is designed to trivialize the problem of ap­
proximation by smooth functions. However, it would also be reasonable to
consider the space of all functions on 0 whose distribution derivatives of
order ~ k are in £2(0), which we denote by Wk(O):

Wk(O) is a Hilbert space with the norm (6.38). In general, Hk(O) is a
proper subspace of Wk(O); see Exercise 1. However, if ao satisfies a mild
smoothness condition, the two spaces coincide.

Specifically, we shall say that a bounded open set 0 has the segment
property if there is an open covering Uo, ... , UN of IT with the following
properties:
a. Uo C 0;

b. Uj nao # 0 for j :2: 1;
c. for each j :2: 1 there is a vector yi E IRn such that x +5yi ¢: IT for all

x E Uj \ 0 and 0 < 5 ~ 1.
See Figure 6.1. In particular, if 0 is a domain with a C 1 boundary, then
o has the segment property; see Exercise 2.

(6.39) Theorem.
If 0 has the segment property, then Hk(O) = Wk(n).

Proof: We need only show that Wk(n) C Hk(n). Let Uo, . .. , UN be
an open covering of IT as in the definition of the segment property. Choose

iiio-. ._



-.

so it is enough to show that f6\0 E HkCO). Given 0> 0, choose t/J E ego
such that tP = Ion 0 and t/J =0 near 8 6 • Then t/Jf6 E Hkc~n), so t/Jf6 is the
limit in the Hk norm of functions in S(IRn

). It follows that f6\0 = t/Jf6\0
is the limit in the norm (6.38) of functions in Coo (IT) , i.e., f E Hk(O). I

Figure 6.1. The segment property. The dotted lines represent the
segments x + tyi, 0 < t ::; 1, for various x E 8 = ao, and 86 =
{x + oyi : x E 8}.

another open covering Vo, ... , VN of IT such that Vj c Uj for all i, and
let {(j}b' be a partition of unity subordinate to the covering {V;}b'. If
f E Wk(O), then clearly (jf E Wk(O), and it is enough to show that

(d E Hk(O) for all i·
For j = 0 this is easy. Choose t/J E ego(B1(0)) with f t/J = 1, and

set t/J.(x) =Cnt/J(t-1x). Then «of) * t/J. is Coo and supported in 0 for t
sufficiently small, and aa[«of) * t/J.J =aa«of) * t/J, -+ aa«of) in £2(0) as
e -+ 0 for \0'1 ::; k, by Theorem (0.13). Thus (of E Hr(O) C Hk(O).

Writing f instead of (d, then, it suffices to assume that f is supported
in some V;, i ? 1, where we extend f to be zero outside O. Set 8 =
ao n V;. Then f and its distribution derivatives of order ::; k agree with
£2 functions on IR n \ 8. For 0 < 0 ::; 1, define f6(x) = I(x - oyi) and
86 = {x + oyi : x E 8}, where yi is as in the definition of the segment
property. Then f6 and aa f6 (\0'1::; k) are in £2 on ~n\86, f6 is supported
in Uj for 0 sufficiently small, and ITn86 = 0. It follows easily from Lemma

(0.12) that
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(6.40) Corollary.
If 0 has the segment property. then f E Hk+j(O) if and only if /}'" f E

Hk(O) for lal :::; j.

Proof: The assertion is obvious if Hk+j and Hk are replaced by Wk+j
and Wk. I

Returning now to Sobolev spaces. we introduce a notation that will be
used repeatedly in the sequel:

(6.41) Lemma.

det V(alo .... am) = ITI<j<k<m(ak - aj). In particular. V(al ..... am) is
nonsingular if and only if the-aj 's are all distinct.

(m =0... .• k).

N(r) = {x ERn: lxl < rand X n < O}.(6.42)

(6.43) Lemma.
Let Br =Br(O), let C~(Br) be the space ofCk functions supported in Br•
and let C~ (N (r» be the space of Ck functions on N (r) that vanish near
Ixl =r. For each positive integer k there is a linear map E k : C~(N(r»)-+
C~(Br) such that EkfIN(r) = f and IIEdllj :::; Cjllfllj,N(r) for 0:::; j:::; k,
where Cj is independent of f and r.

Proof: By Lemma (6.41) the matrix V(-I, ... ,-k-l) is nonsingular.
so there exist numbers CI •... , Ck+l such that

k+l
L(-l)me, =1,
1=1

Proof: Clearly det V(al,"" am) =0 if any two aj's are equal. since
then two rows of V(ai, ...• am) are equal. So suppose alo ...• am-l are dis­
tinct. and regard det V(al •...• am) as a function of am. It is a polynomial
of degree m - 1 that vanishes when am =aj for some j < m, hence equals
CITi=-;.1 (am - aj). Here c is the coefficient of (am )m-l. which is nothing
but det V(alo' .. , am_I). The proof is therefore completed by induction. I

We now derive a useful construction for extending elements of Hk(O)
to a neighborhood of n when 0 is a domain with smooth boundary. The
starting point is the following gem of linear algebra. If alo ...• am are
complex numbers (or elements of an arbitrary field). the Vandermonde
matrix V(alo ...• am) is the m x m matrix whose jkth entry is (aj)k-l.
1:::; j.k:::; m.
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We define the map Ek on C~(N(r» by

N

Ed = (01 + l: [Ek«(mf) 0 1/>;;,1)] 0 tPm'
m=1

I

(X n > 0),

(X n ~ 0),
(X n > 0).{

I(x)
Ed(x) = HI2:'=1 Cd(XI, ...• Xn-1.-1Xn )

k+1
aCt Ek/(x) ='L)_1)Ctnc,(aCt f)(X1,' .. , Xn-I, -lxn)

1=1

where the Ek on the right is given by Lemma (6.43). Then Ekl is C
k

and
is supported in 0, hence is in H~(O). From Lemma (6.43) and the product
and chain rules it follows that IIEkfllj ~ Cjllfllj,n for j ~ k, so Ek extends

uniquely to a bounded map from Hj(n) to HJ(O). I

Proof: Let Vo, ...• VM be an open covering of 0 with the following
properties: (i) Vm C 0 for all m. (ii) Vo c n, (iii) for m ~ 1, Vm can
be mapped to a ball Br(O) by a Coo map tPm with Coo inverse such that
1/>m(Vm nfl) =N(r). Choose a partition of unity {(m}/Y on 0 subordinate

to this covering. and define Ekl for IE Ck(O) by

Remark: By refining the argument in Lemma (6.43) one can con-
struct an extension operator Eoo that works for all k simultaneously; see

Seeley [44].

(6.44) Theorem. -
Let n be a bounded domain on jRn with Coo boundary. and let n be a
bounded neighborhood ofO. For each positive integer Ie there is a bounded
linear map Ek : Hk(n) -+ H~(O) such that Ek/ln =f. Ek is also bounded

from Hj(n) to HJ(O) for 0 ~ j ~ Ie.

so the limits of aCt Ek I as X n approaches zero from above or below are equal.
Also, it is clear that Ekl is supported in B.. and hence Ed E C~(Br)'

Finally,

Then for X n > 0 and 10'1 ~ Ie we haveI
I

Ii

I
I

I
I

I

I
I

I

I
I
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(This is also an easy consequence of Corollary (2.40).)

Proo£: This is immediate from Corollary (6.26), Since Edlan ::
!Ian for IE Ck(IT).

If I E Hk(f'!) then Ed E fI2(D) C Ih(JR") C Cj(JR"), so

I

Proo£:
IE cj(IT).

(6.45) The Sobolev Lemma.

If Q is a bounded domain with Coo boundary and k > j + ~n , then
fIk(Q) C cj(IT).

(6.47) Theorem.

If f'! is a bounded domain with Coo boundary and k 2: I, the restriction
map I ...... liS from Ck(IT) to Ck(S) extends to a bounded map from Hk(n)
to Hk _(l/2)(an).

Proof: If {J,) is a bounded sequence in Hk(Q), {Eklt} is bounded
in fI2(D), so a subsequence {Edt.. } converges in fIJ(D), and then {Jt .. }
converges in Hj(n). I

(6.46) Rellich's Theorem.

IfQ is a bounded domain with Coo boundary and 0 :s j < k, the inclusion
map Hk(Q) ...... Hj(f'!) is compact.

With the aid if the extension map Ek we can easily obtain analogues
of some of the major results of §6A and §6B for the spaces Hk(Q).

(6.48) Corollary.

If I E Hk(n), then aot lion is well defined as an element of L2(on) {or
lal:S k - 1.

(6.49) Corollary.
If IE fI2(n) then oot Ilof'! :: 0 for lal :s k - 1.

Proof: This is true for I E C~(n), hence in general since C~(n) is
dense in H2(n). I

The converse of Corollary (6.49) - that if IE Hk(Q) and aot Ilan :: 0
for lal :s k - 1 then I E H2(n) - is also true. The full proof is a
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bit t.echnical; it can be found in Adams [1, Theorem 7.55] or Lions and
Magenes [34, Theorem 11.5]. We shall content ourselves with proving the
following slightly weaker result.

(6.50) Proposition.
Suppose n is a bounded domain with Coo boundary. If f E Ck(IT) and
aa f =0 on an for 0 :s la\ :s k - 1, then f E Hz(n).

Proof: We use the same construction as in the proof of Theorem
(6.39), noting that n has the segment property (Exercise 2). By using a
suitable partition of unity, it suffices to assume either that f is supported
in n or that f is supported in a set V for which there exists y E lR" such
that x + 6y rt IT for x E V \ nand 0 < 6 :s 1. The first case is obvious:
just convolve f with a suitable approximation to the identity to obtain it
as the limit of elements of C~(n). For the second, we extend f to be
zero outside n; then f E Ck-l(lR") and the k-th derivatives of I have only
jump discontinuities along an, so I E Hk(lR"). Define Ib(X) = I(x + 6y)
for 0 < 6 :s 1. Then I b is supported in n, so 16 E HZ(O) as above. But
clearly 16 -> I in the Hk norm as 6 -> 0, so I E HZ(O). I

Finally, we shall need the analogues of Theorem (6.19) and Proposition
(6.20) for Hk(N(r», where N(r) is defined by (6.42). We note that if I is
a function on N(r) that vanishes near Ixl = r, then the same is true of the
difference quotient Llhl for h sufficiently small, provided 0:" =0.

(6.51) Theorem.
Suppose I E Hk(N(r» and I vanishes near Ixl = r, and let 0: be a multi­
index with 0:" =0. Then the distribution derivative aau is in Hk(N(r» if
and only if

AU, 0:) = lim sup \ILlh/llk,N(r) < 00,
\hl_o

in which case \Iaal\lk,N(r) :s CkA(f, 0:) where Ck is independent of I and
r.

Proof: Let Ek be the extension map of Lemma (6.43). If aa I E
Hk(N(r», then Ekf;a f E Hk. But aa Ed =EkOaf and LlhEkf =EkLlfJ
when 0:" =0, so by Theorem (6.19),

AU, 0:) :S lim sup IILlhEdllk = \Iaa Ekfllk < 00.
Ihl-O
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Conversely, if A(f, a) < 00, then

limsupll~hEkflik=limsupIIEk~hfllk:5 CkA(f, a) < 00,
Ihl-O Ihl-O

where C k is the constant in Lemma (6.43). Hence aOt Ekf E Hk, so aOt f E
Hk(N(r» and

(6.52) Proposition.

Suppose </J E COO(N(r» and a is a multi-index with an = O. There is a

constant C such that for all f E Hk(N(r») which vanish near Ixl = rand
all sufficiently small h,

1I[~h' </Jltllk,N(r) :5 C E lIaPfllk,N(r)'
P<Ot

(Here "/3 < a" means that /3i :5 ai for all j with strict inequality for at
least one j.)

Proof: Same as the proof of Proposition (6.21).

EXERCISES

1. Let 0 = {re
i9 E C ~ ]R2 : -71" < e < 7I"} (the unit disc with a line

segment removed), and define the function f on 0 by f(re i9 ) =e E
(-71",71"). Show that f E W1(0) \ H 1(0).

2. Show that if 0 is a bounded domain with C1 boundary, then 0 has
the segment property. (Hint: Take the sets Ui for j ~ 1 to be small
balls centered at suitably chosen points xi E ao, and yi to be a small
positive multiple of the unit outward normal at xi.)
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Chapter 7

ELLIPTIC BOUNDARY VALUE PROBLEMS

Let L be an elliptic differential operator with Coo coefficients and let n be
a bounded domain in IRn with Coo boundary S. In this chapter we shall
study the equation Lu == f on n, where u is to satisfy certain boundary
conditions on S, the object being to prove existence, uniqueness, and regu­
larity theorems. Our approach will be to formulate the problems in terms
of sesquilinear forms that generalize the Dirichlet integral of §2F and then
to apply some Hilbert space theory. For many of these problems a version
of Dirichlet's principle holds - that is, solution of the problem is equiva­
lent to minimizing the generalized Dirichlet integral in a suitable class of
functions - and for this reason, boundary value problems set up in terms
of Dirichlet forms are often said to be in "variational form." However, the
calculus of variations will play no direct role in our work.

A. Strong Ellipticity

In Chapter 2 we saw that we obtain a "good" boundary value problem
for the equation 6.u == f by specifying either u or ovu on the boundary.
In general, for an elliptic operator of order k it turns out to be appropri­
ate to impose ~ k independent conditions on the Cauchy data of u on the
boundary.

This causes problems if k is odd. For example, consider the Cauchy­
Riemann operator

iJz == Hox + iOy)
on n c ]R2. Solutions of iJzu == 0 are holomorphic functions of z == x + iy
on n, so the Dirichlet data (u == f on S == on) are overdetermined: not
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every function f on S extends holomorphically to n. For example, if n is
the unit disc, a function f(e i9

) =L:~oo am eim9 on the unit circle extends
holomorphically if and only if am =0 for m < 0, in which case the extension
is u(z) = L:: amzm . Thus in some sense we can prescribe "half of the
Dirichlet data" of u - namely, the Fourier coefficients am with m 2: O.

Fortunately, elliptic operators of odd order are not common:

(7.1) Proposition.
Let L = L:1al$k aooo be elliptic at Xo E JRn. If n 2: 3, or jf n =2 and the
numbers ao(xo) are real [or 10'1 = k, tIlen k is even.

Proof: Ellipticity means that the function

O'(e) = L aa(xo)e O

lol=k

is nonvanishing on JRn \ {OJ. For each nonzero e' = (6, ... ,en-d E JRn-l
let us consider the polynomial of degree k

(z E iC).

Let N+(e') [resp. N_(e')] be the number of zeros of Pe with positive [resp.
negative] imaginary part. Since p{' (x) :f=. 0 for z real, N+(e) + N _ (e') = k
for all e'. Also, it follows from Rouche's theorem that N+ and N_ are
locally constant on JRn-l \ {OJ. For n 2: 3 this set is connected, so N+
and N_ are constant. But N+(-e') =N_(e') since O'(-e) =(-l)kO'(e), so
N+ =N_, and hence k = N+ + N_ = 2N+ is even.

On the other hand, suppose n 2: 2 and the numbers ao(xo) are real.
Since O'(e) is nonzero for e E JRn\ {OJ and the latter set is connected, 0' must
be everywhere positive or everywhere negative. Since 0'( -e) =(-l)kO'(e),
this forces k to be even. I

It is also possible for strange things to happen with operators of even
order. Consider the following example, due to A. Bitsadze: The operator

is elliptic on JR 2, and the general solution of Ofu =0 is

u(x, Y) = f(z) + zg(z) (z = x + iy)



where f and g are holomorphic functions. In particular, if we choose f
holomorphic on the unit disc B and continuous on 73, and set g(z) =
-zf(z), we see that u =(1 - IzI 2 )f(z) solves the Dirichlet problem

I
I
I aj.u = 0 on B, u =0 on aBo

(7.2)

I
I
I

I

I
I
I

0';

I'
--

Since there are many such f's, the solution of this Dirichlet problem is far
from unique, and we can say virtually nothing about the smoothness of the
solution along the boundary.

We therefore introduce a restricted class of elliptic operators which will
exclude such pathological cases. We say that the operator

L = E !laaa
lal$1:

(with Coo coefficients, as usual) is strongly elliptic on IT if there is a Coo
complex-valued function -y of absolute value 1 on n and a constant C> 0
such that

He[-y(x) 2: lla(X)~a] ~ C1~11:
lal=1:

It follows that any elliptic operator with real coefficients on n is strongly
elliptic on IT (take -y =±l), and that a. strongly elliptic operator has even
order k =2m (because (_~)a = (_I)lal~a). Since the equation Lu = f
is equivalent to the equation (-I)m-yLu = (-I)m-Yf, by replacing L by
(-l)m-yL we may assume that

(_I)m He E aa(x)~a ~ Clel2m

lal=2m

Henceforth, when we speak of a strongly elliptic operator we shall assume
that this normalization has been made. (In particular, this means replacing
the Laplacian 6. by -6.. The significance of the factor of(_l)m will appear
in the next section.)

EXERCISES

1. Show that the Bitsadze operator aj. is not strongly elliptic.

2. Let (x, y, WI, ••• , wn ) be coordinates on IRn+2, and let L be a second
order operator in the variables WI, .•. , W n .

a. Show that the operator aj. + L (z = x + iy) cannot be elliptic at
any point of IR n+2.

b. For which L is a; + a~ + L elliptic on IR n +2?
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B. On Integration by Parts

(L· v Iu) = (v ILu) for all u, v E C~(O).

D(v, u) = (v ILu) for all u, v E C~(O).

(aa/1 E Coo (IT»D(v,u)= :L:: (a'" v Iaa/1 a/1 u}
l"'I.'/1I~m

is called a Dirichlet form of order m. D is called a Dirichlet form for
the operator L if

(7.3)

(vILu) = :L:: (aavlaa/1aau).
'al.l/1l~m

We have already met in §2F the special case of this idea which historically
provided the inspiration for the general construet.ion, namely the Dirichlet

form

L'v = :L:: (-1)I""a"'(a",v).

''''19m

In general, a sesquilinear form (linear in the first variable, conjugate-linear
in the second) of the type

In particular, the 2m-th order part of L* is L:''''1=2m a",aa, so L* is strongly
elliptic whenever Lis.

Frequently it will be convenient to integrate by parts only m times to
obtain an expression

(This differs from the dual of L that we used in defining the action of L on
distributions in that we are using Hermitian inner products.) Working out
the integration by parts implicit in this formula, we see that

L = :L:: a",a'"
''''19m

will denote a strongly elliptic operator on IT satisfying (7.2). Also, (v Iu)
will denote the inner product of v and u in L 2(0), i.e., (v Iu) =In Vtl.

The formal adjoint of L is the differential operator L· on 0 deter­
mined by the formula

Henceforth 0 will denote a bounded domain in jRn with Coo boundary S,
and
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for -D..
Any operator L has many different Dirichlet forms. For example, in

dimension n =2, another Dirichlet form for -D. is

D'(v,u) = «a" +iay)vl(a" +i8y)u) =4(8zv 18zu}·

For another example, two Dirichlet forms for D.2 on ~2 are

D1(v,u) = (D.vlD.u),

D2(V, u) = «a; - a;)v I(0; - a;)u) + 4(a"oyv Ia"ayu}.

The choice of Dirichlet form will be partly determined by the boundary
conditions we wish to consider.

The Dirichlet form (7.3) is said to be strongly elliptic on n if for
some constant C > O.

Re E a"/i(x)f"+/i ~ CI~12m (~ E ~n, x En).
I"I=I/il=m

If D is a Dirichlet form for L =L: a"o", it is easy to see that

a-y =(_I)m E a"/i (hi =2m),
"+/i=-y

and it follows immediately that L is strongly elliptic and satisfies (7.2) if
and only if every Dirichlet form for L is strongly elliptic. (This is the reason
for the factor of (_I)m in (7.2).)

We now have to face the task of determining what happens to the
formula (v ILu) = D(v, u) when v and u fail to vanish near the boundary.
For this we need some terminology.

Let J be a finite set of nonnegative integers. A set {Mj }jEJ of differen­
tial operators defined near S =an will be called a normal J -systmn on
S if the order of Mj is j and S is non-characteristic for each Mj . (The most
obvious example is the system {at} j EJ of powers of the normal derivative
defined on a tubular neighborhood of S by (0.3).) If k and I are nonnegative
integers with I ~ k, we shall denote the set {k, k + 1, ... , I} by [k, I].

What we wish to prove is the following:

(7.4) Theorem.
Let D be a Dirichlet form of order m associated to the operator L on
n. Given a normal [0, m - I)-system {Mj} on S, there exist differential
operators N j of order j, m :::; j :::; 2m - 1, defined near S such that

m-l

D(v,u)-(vILu}= E f(Mjv)(N2m_l_ju)du.
o 1s
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Proof: Integration by parts shows that

XO={xEjRn:xn=O}.x- = {x E jRn : X n < O},

(7.5) Lemma.
Let D be a Dirichlet form for L on X-. There exist differential operators
Nj of order j, m ::; j ::; 2m - 1, defined near X O such that

m-1

D(v, u) -1- v(Lu) = L J0 (a!.v)(N2m - 1-jU)
X j=O X

N2m - 1-jU = L (-I)I"H-10<"",,·-j-1)[a"fJofJuj.
1"l.lfJl$m; ".$j+1

{ (Ojv)u + ( v(Oju) =0 for j < n,
lx- lx-
{ (Onv)ti+ ( v(On U) = { VU,

lx- lx- lxo

m-1

D(v,u) - ( v(Lu) = L ( (a!.v)(N2m - 1_ j U)

lx- ° lxo

where 0<' = (0<1"",O<n_1)' Now let D be given by (7.3). Replacing u by
a"pofJ u and summing over 0< and (3, we obtain

for all v, u E COO(X-) of which at least one vanishes for Ixllarge.

and repeated application of these formulas yields

The proof is straightforward but tedious, and we shall leave some of the
details of the calculations to the compulsive reader. It proceeds in three
steps, working up from the simplest special case to the general one. To
begin with, we set
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for all v, u E COO(X-) of which at least one vanishes for Ixllarge.

at. =bjMj + L bajaa

lalSj, a.<j

Proof: The assumption on the Mj means that we can write

where N;" = bmNm and Nim-1-i = A~21_i + N2m-1-i for i < m - 1.
Now repeat this argument with m replaced by m - 1 and Nj replaced

by N}, obtaining a formula

m-1

D(v,u) -1 v(Lu) =L 1 (Mjv)(N~m_HU)
x- 0 x·

m-2

D(v, u) -1 v(Lu) =1 (Mm_1V)(N~u) + L 1 (a~v)(Nim_1_iU),
x- x· i=O x·

m-2

E 1 (a~v)(Nim_1_iU)
i=O x·

m-3

= r (Mm - 2 v)(N;'+l u) + E
Jxo i=O

A~m_1_iU= E (_1)la'laa' (bCa',i)jN2m-1-jU]
\a'ISj-1

and again, ot' =(a1' ... ,an-d. Clearly A~m-1-i is a differential operator
of order 2m - 1 - i. Applying this formula with j =m - 1 to the result of
Lemma (7.5), we obtain

If {Nj} are the operators of Lemma (7.5), by integration by parts on X O

we find that

(7.6) Lemma.
let D, L, X-, X O be as above. If {Mj} is a normal [0, m - 1]-system on
X O, there exist differential operators NJ of order j, m ~ j ~ 2m - 1, such
that

I
I
I
I
I
I
I
I
I
I
I
I
I

I
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whence

D(v, u) - r v(Lu) = r (Mm_1v)(N;' u) + r (Mm- 2v)(N;'+lU)lx- lxo lxo
m-3

+ L 1 (8~v)(N?m_l_'U).
,=0 x o

Continuing this process inductively, after m steps we obtain the desired
result with N:"'+j = N!n't~. I

Proof of Tlleorem (7.4): Let Vo, .. . , VN be an open covering of IT
such that Vo C 0, V; n 51= I<') for i 2:: 1, and for each i 2:: 1,

for some I and some smooth function I,. Let (0, ... ,(N be a partition of
unity on IT subordinate to this covering. We write

N

D(v, u) - (v ILu) =L[D(v,(,u) - (v IL«,u»)].
o

Clearly D(v, (ou) = (v IL«ou»). For i 2:: 1, make the coordinate transfor­
mation

{

Xj for j < I,
Yj = XHl for I ~ j < n,

Xl - f;(xl, ...) for j = n,

which takes V; n 5 to a portion of the hyperplane X O and V; n 0 to a
portion of the half-space X-. The operator L assumes a new form L, in
these coordinates, and the system {Mj } becomes a normal system {,Mj}
on Xo. Moreover, Idet(8Yj/8xk)1 =1, so L2 inner products are preserved
and D is transformed to a Dirichlet form D, for L;. Applying Lemma
(5.6), we obtain for each i a system {,N}} (m ~ j ~ 2m - 1) of differential
operators defined near Yn = 0 such that

m-l

D,(v,(,u) - (v IL,«,u») = L r (,Mjv)(,N~m_l_j('U».
j=olxo

Transforming back to the original coordinates, ,NJ becomes an operator
,NJ' defined near V; n 5, and we have

m-l

D(v,(,u) - (v IL«,u») = L 1(Mjv)(,N2m_l_j«,u»du,
j=O S
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where ,Nj is ,N}' multiplied by the change-of-measure factor from Eu­
clidean measure on X O to surface measure on S. Therefore, if we set

NjU =L: ,Nj«(,u),
1

Nj is a differential operator of order j defined near S, and it fulfills the
conditions of the theorem. I

Remark: A close examination of the proof shows that if D is strongly
elliptic, {Nj} is a normal [m, 2m - l]-system on S.

We need one further result along these lines:

(7.7) Proposition.
Let {Mj } be a normal [0, k]-system on S. Given 10, .. . , Ik E COO(S), there
exists W E Cg"(lRn

) such that Mjw = Ii on S.

Proof: First suppose Mj = at. Let V be the tubular neighborhood
of S given by (0.2), and choose </J E Cg"(lR) with </J(t) =I for It I < ~( and
</J(t) =0 for It I > !L We can then define tv on V by

k t j

w(x + tv(x» = </J(t) L: "7j1i(x)
o J.

and set w =0 outside V.
In general, we have

j

Mj = L:a,j(x,a)a~
o

where a,j(x, a) is a differential operator of order j-i which acts tangentially
to Sand ajj(x,a) = ajj(x) never vanishes. Hence Mjw = Ii on S if and
only if

af,W(x) =~() [/j(X) - Ea,j(x, a)a~w(x)].
an x ,=0

But the quantity on the right is completely determined by the Ii's and
their derivatives on S, by induction on j. Namely, for j =0 it is lo/aoo;
for j = 1 it is

_1[11- aOl(X,a)W] =_1 [11- aOl(X,a) (A)],
all all aOO

and so forth. Thus the problem is reduced to the case Mj =at, which we
have solved. I
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c. Dirichlet Forms and Boundary Conditions

can be reduced to the homogeneous problem, provided the gj'S are rea­
sonably nice. Namely, since we expect the solution to be in l/2m(0) we

a{,u =gj on S for 0 ::; j < m,Lu = f on 0,

TIle Diriclllet Problem: Given f E Ho(O), find u E H~(O) such
that D(v, u) = (v I f) for all v E l/~(O).

By the local regularity theorem (6.33), we know that any solution u will
be in H~(O) n H1~(0). It actually turns out that u E l/~(O) n H2m(0)j
more generally, if f E Hk(O) then u E H~(O) n Hk+2m(0).

The inhomogenous problem

We now construct a general scheme for setting up boundary value prob­
lems in terms of Dirichlet forms. To fix the ideas, let us first consider the
Dirichlet problem (with homogeneous boundary conditions) for a strongly
elliptic operator L of order 2m on O. This is roughly the following: Given
a reasonable function f on 0, find a function u satisfying Lu = f on 0 and
atu = 0 on S = 00 for 0::; j < m. Our definition of "reasonable" will be
f E lIo(O) =L2 (0), and we shall accordingly allow u to be a distribution
solution of Lu = f. If f is sufficiently smooth, the Sobolev lemma and the
local regularity theorem (6.33) will guarantee u to be a classical solution.

To start out, we must search for u in a class of functions for which
the boundary conditions make sense, and in view of Corollary (6.48) the
natural candidate is Hm(O). Moreover, since the condition Btu =0 on S
for j < m implies that all derivatives of u of order < m vanish on S, by
(6.49) and (6.50) a reasonable interpretation of the Dirichlet conditions is
that u should be in H~(O). We therefore reformulate the Dirichlet problem
as follows: Given f E L2(0) =Ho(O), find u E H~(O) satisfying Lu = f
on O.

This is still somewhat awkward, since if u E H~(O) then Lu is a priori
only known to be in H _m(lRn). It would be better to formulate the problem
so that only derivatives of u up to order m occur, and this is where a
Dirichlet form comes in handy.

Let D be a Dirichlet form for L on 0 (it doesn't matter which one
at this point). We note that D(v, u) is well defined for v, U E Hm(O).
Moreover, ifu E Hm(O) and v E C~(O) we have D(v,u) = (L*vlu)j thus
u is a distribution solution of Lu = f if and only if D(v, u) = (v If) for all
v E C~(O). In this case we also have D(v, u) = (v If) for all v E H~(O)

by passing to limits. Thus the final version of our problem is the following:
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at w =0 on S for 0 ::; j < m,Lw = f - Lg on 0,

We make several comments on the meaning of this problem:

1. Since C.;"'(O) C X, a solution of this problem will satisfy (L·v Iu) =
(v If) for all v E C.;"'(O) and hence will be a distribution solution of
Lu = f.

II. However, we require that D(v, u) = (v I f) not just for v E C.;"'(O) but
for all VEX. This automatically imposes some additional boundary
conditions on u - namely, the ones that ensure that the boundary
terms coming from the integration by parts from D(v, u) to (v I f) van­
ish. These are the so-called free (or natural or unstable) boundary
conditions. As we shall see, the requirement that u and v both be­
long to the same space is just what is needed to make the existence
and uniqueness theory run smoothly, so this formulation automatically
provides the right number of boundary conditions.

The (D,X) Boundary Value Problem: Let D be a Dirichlet form
for L and let X be a closed subspace of Hm(O) containing H~(O). Given
f E Ho(O), find u E X such that D(v, u) =(v I f) for all vEX.

or in other words, to finding w E H~(O) such that D(v, w) = (v If - Lg)
for all v E H~(O).

Henceforth we shall consider only homogeneous boundary conditions,
with the understanding that inhomogeneous problems can be handled as
above. A much more detailed discussion of inhomogeneous problems can
be found in Lions and Magenes [34J.

We can set up other boundary value problems in a similar fashion. Let
X be a closed subspace of Hm(O) which includes H~(O). Any 'U E Hm(O)
agrees locally inside 0 with elements of X, since (u E H~(O) C X for any
( E C.;"'(O). Thus for u E Hm(O) the condition u E X is a condition on
the behavior of'U at the boundary. Therefore, we might consider boundary
value problems of the following form: Given f E Ho(O), find u E X such
that Lu = f on O. In general, such a problem is underdetermined, as
the condition u E X does not give enough boundary data. Here again,
the formulation in terms of a Dirichlet form for L comes to the rescue.
Consider:

require that there exist a function 9 E H2m (O) such that atg = gj on S
for 0 ~ j < m in the sense of Corollary (6.48). Then, setting w = 'U - g,

we are reduced to solving

I
I
I

I

I
I
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iii. If X :f. HJ:,(O), the choice of Dirichlet form matters, because it affects
how the integration by parts proceeds.

By choosing D and X properly, we can construct a wide variety of
boundary value problems in this fashion. Let us look at some examples.

(7.8) Example.
X = HJ:,(O). This is the Dirichlet problem.

(7.9) Example.
X = Hm(O). Here there are no a priori boundary conditions. To see
what the free boundary conditions are, suppose that u and f are smooth
functions on 0 satisfying D(v, u) = (v If) for all v E 0 00 (n). By Theorem
(7.4) there are operators Nj of order j, m ~ j < 2m, such that

m-l

0= D(v, u) - (v I f) = L 1(a{v)(N2m - 1- j U) du.
j=O S

But by Proposition (7.7) we can choose v so that &iv = N2m - 1 - j U for all
j, so it follows that

N 2m - 1-jU =0 on S for 0 ~ j < m.

Thus we obtain m boundary conditions. Note that these boundary condi­
tions are of orders m, ... , 2m - 1, so a priori they do not make sense for
U E Hm(O). However, under suitable hypotheses the solution will turn out
to be in H2m (O), so the boundary conditions are well defined in the sense
of Corollary (6.48).

(7.10) Example.
More generally, let {Mj} be a normal [0, m - I]-system on S, and let J be
a subset of [0, m - 1] and J' the complementary subset. We take

X = closure in llm(O) of {v E 0 00(0) : Mj v = 0 on S for j E J}.
As above, suppose u E X and f are smooth functions on 0 satisfying
D(v, u) = (v I f) for all v EX, and let {Nj } be the operators of Theorem
(7.4). Then if v E 0 00 (0) n X, we have

o=D(v, u) - (v I f) =L 1(Mjv)(N2m _ 1 _ j u) du.
JEJ' S

But by Proposition (7.7) we can find v E 0 00 (0) such that Mjv =0 for
j E J and Mjv = N2m - 1 _ j U for j E J'. It follows that the boundary
conditions on U are

Mju = 0 on S (j E J), N2m - 1- j U =0 on S (j E J').



If we set

2: bijVi&jU - 2: bjvju =0 on S.
ij j

Hence if we take X =H1(n), so that viS is arbitrary, we obtain the bound­
ary condition

D(v, u) - (v ILu) =1v [2: bijVi&jU - ~ bjVjU] du.
IJ J

we have

+ 2:(v I('L:i&ibij + Cj )&ju) + (v I(a - 'L:j&jbj )u),
j

D(v,u) =2:(&iV Ibij&ju) - 2:(&j v lbj u)
iJ j

(v I - bij&i&jU) =(&i(bijv) I&jU) -1 vbijVi&jU du

= (&i V Ibij&ju) + (v I(&ibij)&jU) -1 vbijVi&judu,

n n

L =- 2: Uij&i&j + 2: Uj&j + U
i,j=l j=l

(vlbj&ju) =-(&j(bjv)lu)+1vbjVjudu

= -(&jV Ibju) - (v I(&jbj )u) +1vbj VjU du.

Thus if we define the Dirichlet form D for L by

and

where bij , bj , and Cj are real, bij + bji = 2Uij, and bj + Cj = aj. By the
divergence theorem,

be a second order operator with real coefficients, where (Uij) is positive
definite (and in particular, symmetric). Let us rewrite L as

(7.11) Example.
Now let us be specific. Let
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this equation becomes

a/,U - (3u == 0 on S.

By choosing the quantities bij and bj properly, we can obtain such condi­
tions for more or less arbitrary IJ and /3, provided that IJ . 1/ > O. (This
condition is necessary since L,bij l/j1/j == L,aijl/il/j > 0.) In particular, if
we take bij == aij, IJ is called the conormal to S with respect to L and is
denoted by 1/•. (If aij == Cij as for the Laplacian, of course, then 1/ == 1/•. )

If we also take h ... == bn == 0, we obtain the Neumann boundary
condition

av.U == 0 on S.

On the other hand, if we take bij == a;j +C;j where Cji == -C;j, we have IJ ==
1/.+T where T == L,i Cij 1/;. Since (Cij) is skew-symmetric, T is perpendicular
to 1/, Le., T is tangent to S. Thus, given (3 E COO(S) and any smooth
tangential vector field T on S, to construct the boundary conditions

for the oblique derivative problem, we choose the skew-symmetric
matrix (c;j) == (bij - aij) so that L,j Cijl/i == Tj and the vector field
b == (bb ... , bn ) so that b . 1/ == (3.

EXERCISES

1. Consider the Dirichlet form D(v, u) == (oIlv lollu) for oIl 2 on JRn. What
are the free boundary conditions for the (D,X) problem if (a) X ==
H2 (O), (b) X == H 2 (O) n ll?(O)?

2. Let 0 be a bounded domain in JRn and C a positive constant. Find a
Dirichlet form D for -oil on 0 such that D(v, u) == D(u, v) and the
(D,H1 (O» problem is the problem

oIlu == f on 0, ovu + cu == 0 on ao.

(This problem arises in the study of heat flow where the boundary
condition is given by Newton's law of cooling; see §4C.)
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D. The Coercive Estimate

Our setup is still too general to produce nice results. For example, consider
the Dirichlet form

D(v, u) =4(&zv I&zu) = ((a" + iay)v I(a" + iay)u)

D'(v, u) =D(v, u) + >.(v Iu)

D is called strictly coercive over X if we can take>. = 0 in (7.12). (Notice
that if D is a Dirichlet form for L satisfying (7.12), then

is a strictly coercive Dirichlet form for L+>..) The example discussed above
is not coercive, as one sees by taking u =U a and letting a -+ 1.

If the space X is defined by a normal system of boundary conditions as
in (7.10), general conditions of an algebraic nature on D and the boundary

(u EX).Re D(u, u) ~ CllulI~,n - >'lIull~,n(7.12)

for -A on ]R2. Let 0 be the unit disc, and let X = H 1(0). Consider the
(D,X) problem with f =0, Le., find U E H1(0) such that D(v,u) =0 for
all v E H 1(0). Taking v =u, we see that U E H 1(0) solves this problem
precisely when Ozu = 0 on 0; that is, when U is a holomorphic function
of z =x + iy in O. Thus uniqueness and regularity at the boundary both
fail miserably: the solutions form an infinite-dimensional space, and most
of them are not smooth at the boundary even though f =0 is Coo there.
Moreover, even for those solutions that are smooth on IT we can obtain no
estimates on their derivatives. For example, let ua(z) = log(z + a) where
a-I is real and positive and log is defined by cutting the plane along
the negative real axis from -00 to -a. Then U a E COO(IT) and lIuallo,n =
In IUa 1

2 is a bounded function of a since the logarithmic singularity is
square-integrable. However, a:ua(z) =(_I)k-1(k -1)!(z +a)-k for k > 0,
and the L2 norm of this function on 0 blows up as a -+ 1. (On the other
hand, if we take X to be IJ?(O) instead of H 1(0), there is no problem: a
holomorphic function on 0 that vanishes on ao is zero.)

Another example of this phenomenon that works in higher dimensions
can be found in Exercise 1.

We therefore introduce the following definition, which is designed pre­
cisely to avoid such pathologies. A Dirichlet form D of order m on 0 is
said to be coercive over X, where H~(O) C X C Hm(O), if there exist
constants C > 0 and >. ~ 0 such that

I
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operators Mj and Nj are known which ensure that D is coercive over X; see
Agmon [2]. However, the study of these conditions is beyond the scope of
this book, and we shall content ourselves with a discussion of coerciveness
for the more specific problems (7.8) and (7.11).

Our first result is very simple, but it covers the second order Neumann
and oblique derivative problems discussed in (7.11).

(7.13) Theorem.
Let

D(v, u) =2)o;v Ib;jOju} + L:(OjV Ibju} + L:(v IbiOju} + (v IbU)
;J j j

be a strongly eJJjptic Dirichlet form of order 1 on 0, and suppose the
b;j's are real-valued. TlJen D is coercive over H1(O) (and hence over any

Xc H1(O)).

Proof: Set a;j = !(b;j +bj;). Since the b;/s are real, strong ellipticity
means that for some Co > 0,

L:a;je;ej =L:b;je;ej ~ Colel 2

for all eE jRn, Thus (aij) is positive definite, so ifeis any complex n-vector,

Re L:b;jelj = L:a;je;ej ~ Colel 2
.

Setting e= \lu, where u E H1(O), we obtain

Re L: b;j(o;u)(o/li) ~ Co L: IOju1
2

,

so an integration over 0 yields

Re L:(o;u Ib;jOju} ~ Co L: IIBjull&,n =Co (liulitn -lIull&,n)'
Also, for some C1 > °(independent of u) we clearly have

I(Bju Ibju}1 ::; lIulh.nllbj U llo,n ::; C1Ilulh.nllullo,n,
I(u 1biOj u}1 ::; lIulh,nllbiBj ullo,n ::; Cdlulh.nllullo,n,

I(u Ibu}1 ::; Cdlull~,n ::; Cdlulh.nllullo,n.
Therefore, setting C2 = (2n + 1)C1 , we have

Re D(u, u) ~ Co(lIulli,n -lIull~,n) - C2 l1ulknllu llo,n.
But since Ot/3 ::; !(Ot2 + /32) for all Ot, /3 > 0,

Co 2 C? I 12C2 l1ulknllullo,n ::; Tllulh,n + 2CoI u lo.n,

Co I 2 2C5 +C? I 11 2
Re D(u, u) ~ Tlulh,n - 2Co I u o,n'

so



I

D(u,u)= L (8aulaapoPu)+ L (8aulaap8Pu)
lal=IPI=m min(laI.IPl}<m

= Dm(u) + Do(u).

This theorem can be generalized:

(7.15) Garding's Inequality.
Every strongly elliptic Dirichlet form of order m on n is coercive over
H;;'(O).

Proof: The outline of the argument is much the same as the proof
of Theorem (6.28). Theorem (7.14) provides the first step, the case of
constant coefficients and no lower order terms.

Given u E H;;'(O), let us write

Remark: The inequality in question is of course (7.12). Garding's
inequality is a milestone in the theory of elliptic equations; it antedates,
and is the inspiration for, the general notion of coerciveness.

D(v,u)= L (oavlaaPoPu)
lal=IPI=m

where the aaP's are constants. If D is strongly elliptic, then D is strictly
coercive over H;;'(O).

Proof: If u E H;;'(O) C Hm(JRn), by the Plancherel theorem and the
definition of strong ellipticity we have

ReD(u,u) = Re L j(211')2maapea+Plfi(eWde
lal=IPI=m

~ C j (211')2mleI2mlfi(eW de

~ c' L j(211')2mleaI2Ifi(eW de
lal=m

=c' L lIoaull~·
lal=m

The result therefore follows from Proposition (6.15).

I
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I Another simple and lIseful result is the following.

(7.14) Theorem.
Suppose
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To begin with, since either 10:1 < m or 1,131 < m in each term of Do(u), for
some constant Co > 0 we have

(7.16) IDo(u)1 :::; Collullm,nllullm_l,n.

Next, we shall show that Re Dm(u) dominates lIull~,n when the support
of u is small. For any Xo E n we can write

Dm(u)= L (Baulaap(xo)BPu)+ L (Bau 1(aap-aap(xo»BP u).
lal=IPI=m lal=IPI=m

By Theorem (7.14) (and its proof),

Re L (Baul aaP(xo)BP u) ~ Cdlull~,n,
'al=IPI=m

where C1 is independent of xo. On the other hand, let us choose 6 > 0 so
small that if Ix - xol < 6 then

Then if u is supported in B6 (xo),

L {Baul (aap - aa/3(xo»BP u)
lal=IPI=m

< sup L laaP(x) - aa/3(xo)IIIBau/lo,nIlBPullo,n :::; ~l /Iullm,n.
Ix-xol<6Ial=IPI=m

Hence, for u supported in a ball of radius 6 we have

Now cover TI by finitely many balls of radius 6, say B6(Xt} ... , B6(XN),
with Xl, .. ·,XN En. Choose <Pj E C~(B6(Xj» such that <Pj ~ 0 and
l:~ <PI> 0 on TI, and set (j = <Pj[l:~ <p~]-1/2. Then (J is a partition of
unity on TI, so

N

Dm(u) = E E «(joaul (j aaPOJ3 U) = A1(u) + A2(u),
j=llal=IPI=m



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

246 Chapter 7

where

N

Al(U) =2: 2: (a"«(jU) I(laf3 af3 «(jU)) ,
j=llal=If3I=m

N
A2(U) =L: L: «[(j, a"]u I(j(laf3 af3U) + (aa«j u) 1[(j, af3 ]u))

j=llal=If3I=m

Since (jU is supported in B.(xj), we know that

N

Re Adu) ~ ~l 2: Il(j ul\~,n'
1

But

N N

2: l\(jull~,n ~ 2: 2: (aa«jU) Iaa«ju))
1 1 lal=m

N

= 2: 2: «jaaul(jaa u)
1 lal=m

N
+ 2: 2: «[aa, (j]U Iaa«jU)) + «j aa UI[aa, (j]U))'

1 lal=m

The first sum on the right is just

2: (aaulaa u) = 2: llaaul\~,n,
lal=m lal=m

which, for U E H~(n), dominates Ilull~ n by Proposition (6.15). On the
other hand, [aa, (j] is a differential oper~tor of order m - 1, so the second
sum is dominated in absolute value by llullm,nI\Ul\m-l.n. For the same rea­
son, A

2
(u) is dominated by llullm.nl\ul\m-l.n. In short, for some constants

C2 ,C3 ~ 0,

and combining this with (7.16) we obtain
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But, as in the proof of Theorem (7.13), we have

(Co + C3)lIullm,nllullm_l,n ~ ~2I1ulI~,n + C4I1ull~_1,n,

where C4 = (Co + C3 )2/2C2. Also, since II ·I/k,n is equivalent to II . Ilk on
H~(n) for k ~ m, by Lemma (6.11) there is a constant Cs 2': 0 such that

C4I1ull~_l,n ~ ~2I1ulI~,n+ C5I1ull~,n.

Finally, combining these estimates yields

and the proof is complete.

Giirding's inequality also has a converse:

(1.11) Theorem.

If the Dirichlet form D of order m is coercive over H~(n), then D is
strongly elliptic.

Proof: Given </J E C~(n), e i= 0 E IR n
, and r > 0, let u(x) =

</J(x)eiT
{'''. Then 80'u(x) = (ire)O'u(x) modulo terms of order less than lal

in r, so

D(u, u) = r 2m I: (eO'u IuO'pePu) + ...
1001=IPI=m

=r 2m I: eO'+P I'iiO'p(x)l</J(xWdx+ ''',
1001=IPI=m

where the dots indicate terms of lower order in r. Likewise,

lIull~,n = E 1180'ull~,n = r 2m L ell'J1</J(x)1 2 dx +"',
100ISm 1001=m

and lIullo,n = II</Jllo,n. Hence, if we apply the coercive estimate (7.12),
divide by r 2m , and let r __ 00, we obtain

(7.18)
Re E eO'+PJuO'p(x)I</J(xWdx 2': CLeO'J1</J(xWdx

1001=IPI=m 1001=m

2': C'lel 2m J1</J(xWdx.
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Now, given Xo E n, choose t/J E C'{" with J1t/J12 = 1 and take t/J(x) =
c n / 2t/J(c l (x - xo)) where {> 0 is small enough so that t/J is supported in
n. Then as f ..... 0, 1t/J/2 approaches the delta-function at Xo (cf. the proof
of Theorem (0.13», so in the limit, (7.18) becomes

Re L: €Q+Paorp(xo) ~ C'I€12m.
lorl=IPI=m

This inequality holds for all Xo E n, hence for all Xo E n by continuity;
that is, D is strongly elliptic on n. I

We note that if D is coercive over X ::> H~(n), then a fortiori D is
coercive over H~(n). Thus strong ellipticity is always a necessary condition
for coerciveness.

EXERCISES

1. Show that the Dirichlet form D(v, u) = (Llv ILlu) for Ll2 on R n is not
coercive over H2(n) for any n eRn. (The idea is similar to the example
in the text.)

2. Explain why the proof of Theorem (7.13) breaks down for forms of
higher order or for forms whose coefficients bij are not all real.

E. Existence, Uniqueness, and Eigenvalues

We now confront the questions of existence and uniqueness of solutions for
the (D, X) boundary value problem, where D is assumed to be coercive
over X. We have set up the problem in such a way that the answers to
these questions are obtained very easily. We need only one more tool.

(7.19) The Lax-Milgram Lemma.
Let 9{ be a Hilbert space with inner product (-I·) and norm II . II, and let
D : 9{ x 9{ -+ C be a sesquilinear form on 9{ (not necessarily Hermitian
symmetric). Suppose there are constants C1,C2 > 0 such that

ID(v, u)1 ~ Cdlvllllull,

for all u, v E 9{. Then there exist invertible bounded operators ~ and I)"

on 9{ such that for all v, wE 9{,

(v Iw) = D(v,~w) = D(l)"w,v).
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Proof: Given u E Je, the map v ...... D(v, u) is a bounded linear func­
tional on Je, so there is a unique Ru E Je such that (v IRu) = D( v, u) for
all v. We have IIRull ::; Ctllull. so R is a bounded linear operator on Je;
moreover,

so IIRull ~ C211ull. Therefore R is injective and the range of R is closed, for
the convergence of {Ruj} implies the convergence of {Uj}. On the other
hand, the range of R is dense, for if u E Je is orthogonal to it we have
D(u, u) = (u IRu) =0 and hence u = O. Hence R is invertible, so if we
set <I> = R- 1 we have (v Iw) = D(v, <l>w) for all v, w E Je, and lI<1>wll ::;
C;1I1wll. Similarly, if we define the operator B by (v IBu) = D(u, v), then
B is invertible and we can take W=B- 1 • I

Our first main result is the following:

(7.20) Theorem.
Let X be a closed subspace 6f Hm(n) that contains H~(n), and let D be
a Dirichlet form of order m that is strictly coercive over X. There is a
bounded injective operator A : Ho(n) ...... X that solves the (D, X) problem;
that is, D( v, At) = (v II) for all v E X and I E Ho(n).

Proof: X is a Hilbert space with norm II . IIm,n, and D satisfies the
hypotheses of the Lax-Milgram lemma on Xi hence there is a bounded
linear operator <I> on X such that (v Iw)m,n = D(v, <l>w) for all v, w E X.
On the other hand, if I E Ho(n), the map v ...... (v II) (L2 inner product)
is a bounded linear functional on X:

I(v I1)1::; 1I/110,nllvllo,n:S 1I/110,nllvllm,n.

Hence there is a unique RI E X such that (v IRf)m.n = (v II) for all v E X,
and IIR/llm,n :s 1I/110,n. R is thus a bounded linear map from Ho(n) to X,
and the desired solution operator is A = <I> 0 R. I

We can also consider the adjoint Dirichlet form

D·(v,u) = D(u,v) (u,v E Hm(n».

Clearly if D is a Dirichlet form for L then D· is a Dirichlet form for the
formal adjoint L·, and the (D· ,X) problem is a boundary value problem for
L· which is called the adjoint of the (D, X) problem. The (D,X) problem
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and on the other hand,

(u EX),ID(u, u)1 ~ Cllull~,n - Allull5.n

Proof: By assumption,

Then D' is strictly coercive over X, so there is a compact operator T on
Ho(O) whose range is in X such that D'(v, Ttl == (v If) for all v E X and
all f E Ho(O). Now,

D(v, u) == (v If) <==? D'(v, u) == (v I f) + A(V Iu) == (v I f + AU).

v == {u EX: D( v , u) == 0 for all v EX}.

W == {u EX: D(u, v) == 0 for all v EX}.

Then dimV == dimW < 00. Moreover, if f E Ho(O), there exists u EX
such that D( v, u) == (v If) for all v E X if and only if f is orthogonal to W
in Ho(O), in which case the solution u is unique modulo V. In particular,
if V == ""V == {O} the solution always exists and is unique.

(7.21) Theorem.
Let X be a closed subspace of Hm(O) that contains H~(O), and let D be
a Dirichlet form of order m that is coercive over X. Define

D'(v, u) == D(v, u) + A(V Iu}.

where we can assume A > 0 since the case A == 0 is covered by Theorem
(7.20). Let

D(Bg,Af) == D"(Af,Bg) == (Aflg) == (Tflg) == (glTf),

so that (Sg If) == (g IT/).
With this, we are ready to handle the general case.

D(Bg, At) == (Bg If) == (Sg In,

is called self-adjoint if D == D". This implies that L == L" and also that
the free boundary conditions for the two problems are the same.

In any event, if D is strictly coercive over X then so is D" , so Theorem
(7.20) yields linear maps A and B from Ho(O) to X that solve the (D, X)
and (D", X) problems. Let us denote by T and S the compositions of A
and B, respectively, with the inclusion map X -+ Ho(O). Thus T and S
are operators on Ho(O). There are two crucial observations to be made:
(i) T and S are compact. This follows from Rellich's theorem (6.46).

(ii) S == T". Indeed, for any f, 9 E Ho(O) we have
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For fixed f and 1.1, the latter equation holds for all v E ,X if and only if
T(f + .xu) = 1.1; thus,

D(v,u) = (v I f) for all v EX'¢:::::> .x- 1u- Tu = .x- 1T/.

In particular, taking f =0 we see that V = {u E Ho(O) : Tu =.x- 1u} (the
condition Tu = .x- 1u automatically implies 1.1 E X). Likewise, in view of
the remarks preceding the theorem, W = {u E Ho(O) : T'u = .x- 1u}. The
first assertion therefore follows from Theorem (0.38). Moreover, if wE W,
for any f we have (Tf Iw) = (t IT'w) =.x- 1(t Iw), so f .1, W if and only
if T f .1, W. The second assertion therefore follows from Corollary (0.42). I

In case D is self-adjoint, we can say more.

(7.22) Theorem.
Suppose D is coercive over X and D = D·. Tllere exists an orthonormal
basis {Uj} of Ho(O) consisting of eigenfunctions for the (D, X) problem;
that is, for each j we have Uj E X and there is a real constant Jlj such that
D(v, Uj) = Jlj (v IUj) for all vEX. Moreover, Jlj > -.x for all j where .x is
the constant in (7.12), limj_oo Jlj =+=, and Uj E COO(O) for all j.

Proof: Let T be the solution operator for D' as in the proof of The­
orem (7.21) (we no longer assume .x > 0). T is compact and self-adjoint;
it is also injective, being the composition of an invertible map from Ho(O)
to X with the inclusion map from X to Ho(O). Hence, by the spectral the­
orem (0.44) there is an orthonormal basis {Uj} for Ho(O) and a sequence
of nonzero real numbers {O'j} with limj_oo OIj = 0 such that TUj = O'jUj.
(In particular, Uj = O'j1Tuj E X for all j.) Since

we have O'j > 0 for all j. Thus, if we set Jlj = O'jl - .x, we have Jlj > -.x,
limj_ooJlj = +=, and D(v,uj) = Jlj(vluj} for all vEX. Finally, if
L is the elliptic operator associated to D, Uj is a distribution solution of
(L - Jlj)Uj =0 on 0, so Uj E COO(O) by Corollary (6.34). I

Now let us interpret this theorem in some specific instances. First, the
Dirichlet problem.
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Next, let

(j=I, ... ,n).

=- L: o,(a,joj) + a,
i;

Hence L == L' if and only if

aj == - L o,(u,j)

In this case we have

L == L' =- La,jo,oj - L(o,a,j)oj +a
ij ij

(7.26)

L == - LaijOiOj + Lajoj +a
,j j

be a second order elliptic operator with real coefficients, where (Uij) is
positive definite. A simple calculation shows that

L' == - L aijO,Oj -2 ~)o,U'j )OJ - L UjOj - L(o,OjU,j)- L(OjUj )+a.
,j ,j j ,j j

Proof: The Dirichlet form D(v, u) =I:~ (OJ v laj u) for - t:.. is strictly
coercive over Hr(O) by Theorem (7.14). I

(7.24) Corollary.
There is an orthonormal basis for Ho(O) consisting of eigenfunctions for
the Laplacian such that Uj E Coo(IT) and Uj == 0 on ao for all j. The
eigenvalues are all negative.

(7.23) Theorem.
Suppose that L is a strongly elliptic operator oforder 2m on IT that satisfies
L == L' and (7.2). There is an orthonormal basis {Uj} for Ho(O) consist­
ing of eigenfunctions for L which are Coo on IT and satisfy the Dirichlet
conditions at Uj == 0 on ao for 0 :S i < m. The eigenvalues are real and ac­
cumulate only at +00. If L has a self-adjoint Dirichlet form that is strictly
coercive over H~(O). the eigenvalues are all positive.

Proof: Let D be a Dirichlet form for L. Then D' is a Dirichlet form
for L' == L. Since for the Dirichlet problem the choice of Dirichlet form is at
our disposal, we can use the self-adjoint form !(D +D'), which is coercive
over H~(O) by Garding's inequality. All the assertions then follow from
Theorem (7.22) except the claim that Uj extends smoothly to the boundary.
We shall prove this in §7F for the case m == 1; for the general case, see the
references in §7G. II

I
I
I
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so L has the self-adjoint Dirichlet form

(7.27) D(v, u) =I:<OiV IaijOju) + (v Iau).
ij

According to the discussion in (7.11), if we take X = Hl(O), the (D,X)
problem for this choice of D is the Neumann problem for L. Hence:

(7.28) Theorem.
Let L be given by (7.26), where the coefficients are real and (aij) is sym­
metric positive definite. There is an orthonormal basis {Uj} for Ho(O)
consisting of eigenfunctions for L which are Coo on IT and satisfy the Neu­
mann condition ov.Uj = 0 on ao. The eigenvalues are real and bounded
below and accumulate only at +00. If a 2: 0 (resp. a > 0), the eigenvalues
are all nonnegative (resp. positive).

Proof: The Dirichlet form (7.27) is coercive over Ih(O) by Theorem
(7.13), so the existence of the eigenbasis and the first statement about the
eigenvalues follow from Theorem (7.22). To prove the last statement, we
re-examine the proof of Theorem (7.13). Since Eaijeiej 2: Clel 2 for all
eE iC" where C > 0, we have

n

D(u, u) 2: C I: lIaiull~,n+ (u Iau) 2: (u Iau).
1

Hence if Uj has eigenvalue f.Lj.

If a 2: 0 the last expression is nonnegative, and if a > 0 it is positive.

For the Laplacian, in particular, the eigenvalues are all nonpositive. In
fact, the only eigenfunctions with eigenvalue zero are the locally constant
functions, for D(u,u) =Ellajull5,n > 0 unless \7u vanishes identically.

F. Regularity at the Boundary:
the Second Order Case

Let L be a strongly elliptic operator of order 2m on IT. If IE Hk(O) and
u is a solution of Lu = I, the local regularity theorem (6.33) guarantees

-
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for some i, where 4> is a Coo function. Define new coordinates on V by

for j < i,
for i::; j < n,
for j =n.{

Xj

Yj = Xj+l
Xi - 4>(Xl, ...)

The space X[r] has the following two crucial properties (valid for either
X = HP(fl) or X = H 1(fl»:

as in (6.42).
Now let D be a Dirichlet form for the second order operator L on fl.

Since Idet(aYj / 8xk) I == 1, Lebesgue measure is preserved by the change of
coordinates, and hence so are L2 inner products. We assume that in the Y
coordinates D and L have the form

N(p) = {y : Iyl < p and Yn < O} =fl n Bp(O),

where a" = (a/8y)".
Also, let X be either HP(fl) or H 1(fl). We set

X[r] = {u EX: u=0 on fl \ N(p) for some p < r}.

Then V n fl is represented in t.he y coordinates by the condition Yn < O.
By a translation we may assume that Y =0 lies on V n S, and we fix r > 0
so small that the set where IYI < r lies in V. For any p ::; r, we then set

D(v,u)= L (8"ula"oa13 u),
1,,1.1131$1

that u E Ilt';;;+k (fl). If in addition u satisfies certain kinds of boundary
conditions, it will turn out that u is actually in H 2m+k(fl). In this section
we shall assume that m = 1 and prove this assertion for u a solution of the
(D, X) problem, where X is either HP(fl) or H 1(fl) and D is a Dirichlet form
for L that is coercive over X. This setup includes the Dirichlet problem
for second order strongly elliptic operators and the Neumann and oblique
derivative problems for second order elliptic operators with real coefficients.
We shall make some comments on the higher order case, with references to
the literature, in the nex:t section.

Most of the labor of the proof will be performed in small open sets near
the boundary S = afl which look like half-balls. Specifically, let V be an
open set intersecting S such that V n fl can be represented as

I
I

I
I
I
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1. If ( E C~{n) vanishes on n \ N(p) for some p < r, then (u E X[rJ for
any u E X.

ii. If u E X[rJ vanishes on n \ N(p), then for any h E lR with Ihl < r - p
and any j < n, the function

belongs to X and vanishes on n\N(p+h), hence belongs to X[rJ. There­
fore the difference quotients Ahu, as defined before Theorem (6.19),
belong to X[rJ provided Ihl < r - p and an = O.

In this setup, then, we have the following local regularity theorem at the
boundary.

(7.29) Theorem.
Suppose D is coercive over X, f E Hk(N(r» (or some k ~ 0, u E X, and
D(v, u) = (v I f) {or all v E X[rJ. Then (or any p < r, U E Hk+2(N(p» and
there is a constant C> 0, depending only on p and k, such that

lI u llk+2,N(p) S C(llfl\k,N(r) + l\ul\l,N(r»)'

Proof: The proof is accomplished in three steps, of which the first is
the most substantial.

Assertion 1. If p < r, j S k+l, and I is a multi-index with iiI =j and
"Yn = 0, then 8"1u E Hl(N(p» and there is a constant C > 0, depending
only on p and j, such that

Proof: By induction on j, the case j = 0 being trivial. Suppose the
assertion is true with j replaced by 0, ... ,j - 1. Set t = (2p + r )/3 and
5 = (p + 2r)/3, so p < t < 5 < r. Then by inductive hypothesis, with p
replaced by s, we have 86 u E H1(N(s» for 161 S j - 1 and 6n = 0, and

(7.30)

where C is the largest of the constants obtained in the proof for 0, ... , j - 1
with p replaced by s = (p + 2r)/3, so that C depends only on j and p.
Fix ( E C~(IT) with ( = 0 on n \ N(t) and ( = 1 on N(p). If I is a
multi-index with III = j and "Yn = 0, we wish to consider the difference
quotients Al.«(u) for Ihl < s - t, which belong to X[sJ. Choosing some
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index i < n with Ii =F 0, we factor one difference operator in the i direction
"Y • "'Y i ""'('out of ll.h and wnte ll.h =ll.hll.hl'

We claim that for any v E X[s]'

(7,31)

where C depends only on p and j (and (, which is fixed). (Here and in
what follows, differential and difference operators act on everything to the
right of them unless separated by parentheses; e.g., ll.~(u means ll.~«u).)

To prove (7.31), we shall commute various operators and move various
quantities from one side of the inner product to the other, obtaining

D(v, ll.i.(u) =L (i:J"v Ia"/l81l ll.i.(u)

=L(8"v 1ll.i.a"/l8fJ (u) + E1

=L(8'l'v 1ll.i.a"fJ(8fJu) + E 1 + E2

=(_I)i L«ll.~h8"'v1a"'fJ8fJu) + E 1 + E2

=(-I)i L(8"(ll.~hvIa"'fJofJu) + E1 + E2+ E3

=(-I)i D«ll.~bv,u) + E1 + E2 + E3

=(_I)i «ll.~hv If) + E1+ E2 + E3

=E1+ E2+ E3 + E4 ,

where

E1 =L(8"'v I [a"'fJ' ll.i.18fJ (u),

E2 = L (o"'v 1ll.i.a"'fJ(ofJ()u),
IfJl=l

E3 =(_1)i+ 1 L «O"'()ll.~hv Ia"fJ8fJu),
1"'1=1

E4 = -(ll.~hv Ill.i.:(f).

We have used the facts that ll.i. commutes with 8'" and 8fJ , that the adjoint
of ll.i. is (-I)hlll.~h' and - in the formulas for E2 and E3 - that lal ~ 1
and 1.81 ~ 1.

We claim that the terms E1, ... , E4 all satisfy the estimate (7.31), and
to prove this we make use of Theorem (6.51), Proposition (6,52), and the
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product rule for derivatives:

lEd ::s C'lIvIl1,N(6) E lIa6aP(llllo,N(6)
6<1', IPI$1

::s C'lIvlh.N(6) E lI a6(ulh.N(6)
6<1'

::s C"lIvI11,N(6) E lI a6ulh.N(6)'
16\9-1,6.=0

IE21::s C'lI v lh.N(6) L 1I&1'a",p(&P()ullo,N(6)
""P

::s C"lIvIl1,N(6) E lIa6ullo,N(6)
161$i, 6.=0

::s C"lIvlh.N(6) E lIa6u lh.N(6)'
161$i-1,6.=0

IEal;:= IE(~~hV I~i.:(&"'()a",papu)1
"',P

::s C'lIvIl1,N(6) L 11&1" (&"'()a",p&Pullo,N(6)
""P

::s C"lIvIl1,N(6) L lI a6u I11,N(6)'
161$i-1, 6.=0

The desired estimate for E I , E2 , and Ea then follows from (7.30). Finally,

IE4 1 ::s C'lIvlh.N(6)1I&1" (f1l1,N(.) ::s C"lIvlh.N(.)lI/l1k,N(r) ,

since s < rand h"1 =j - 1 ::s k. Thus (7,31) is established.
Now since ~i.(u E X[s] we can set v ;:= ~i.(u in (7.31) and apply the

coercive estimate:

1I~i.(ulli,N(6) ::s Co(ID(~i.(u, ~i.(u)1 + 1I~i.(ullo,N(6»

::s Ctll~i.(uI11,N(6) (II/lIk,N(r) + lI ulh.N(r) + 1I~i.(ullo,N(.».

But, writing ~i. = ~~~i.: and applying (7.30) and Theorem (6.51), we
have

Therefore,

1I~i.(uIl1,N(6) ::s C2 (lI/lkN(r) + Ilulh.N(r»,

where C2 depends only on p and j. Assertion 1 then follows from Theorem
(6.51) together with the observation that lIa1'ulh.N(p) ::s lIa1'(ulh.N(.) since
( = Ion N(p).

. I
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Assertion 2. If p < r, j :::: k +2, and 'Y is a multi-index with hi :::: k +2
and 'Yn =j, then a-y u E Ho( N (p)) and there is a constant C > 0, depending
only on j and p, such that

lIa-yullo,N(p) :::: C(lI/l1k,N(r) + lIulh.N(r»)'

Proof: By induction on j. Assertion 1 shows that Assertion 2 is true
for j =0,1. If j ~ 2, set

'Y' =("'(1,.'" 'Yn-l, 'Yn - 2),

so I'Y'I = j - 2 :::: k. Since L = L: aaaa is elliptic, the coefficient a =
a(O, ... ,O,2) of a~ is never zero, so the equation Lu =1 means that

Thus

{)"Yu =8-y18~u =a-y' [a- l (I - L aaaau)].
O'rl<2

On the right, after performing the differentiation a-yl we have a sum of
smooth functions times derivatives of 1 of order:::: k, plus a sum of smooth
functions times derivatives 8" u with \,8\ :::: k +2 and f3n :::: j - 1. Taking L2

norms on N(p), the first sum is dominated by 1I/IIk,N(r), and the second
sum is dominated by 1If1lk.N(r) + lIulh,N(r) by inductive hypothesis.

Now we can complete the proof of Theorem (7.29). Let C be the largest
of the constants in Assertion 2 as j ranges from °to k + 2. Then all
derivatives a-yu with hi:::: k + 2 are in Ho(N(p)) and satisfy the estimate

lIa-y ullo,N(p) :::: C(lIfllk,N(r) +Bulll,N(r»)'

Therefore U E Wk+2(N(p)) and

lIullk+2,N(p) :::: C'(Ilfllk,N(r) + lIulh.N(r»)'

Since N(p) clearly has the segment property, the theorem follows from
Theorem (6.39). I
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If we transform back to the original coordinates in which an need not be
flat, we see that we have established the following local regularity results
for solutions of the (D, X) problem. Suppose V is an open subset of nj
suppose '1.1 E X and IE Ho(n) satisfy D(v,u) = (vi/) for all v E X; and
suppose IE Hk(V)' Then:

i. If Wis an open set with We V, then u E Hk+2(W),

ii. If Xo E an has a neighborhood W such that W nne V I then there is
a neighborhood W' C W of Xo such that u E Hk+2(W' n 0.).

(i) follows from Theorem (6.33), and (ii) follows from Theorem (7.29).
We now combine these results to obtain the global regularity theorem for
solutions of the (D, X) problem with an optimal estimate.

(7.32) Theorem.
Suppose that X is either Hp(n) or H 1(n) and that D is a Dirichlet form
of order 1 for the operator L which is coercive over X. Suppose further
tllatu E X and I E Ho(n) satisfy D(v,u) = (viI) for all vEX. If
I E Hk(n) (k = 0, 1, 2, .. .J, then u E Hk+2(n) and there is a constant
C > 0, independent of u and I, SUell tlJat

lI u llk+2,0 :S C(lIflkn + 11'1.1110,0),

Proof: We begin by taking a covering of an by open sets VI, . .. , VM
such that each vmnn can be mapped to a half-ball N(r) as in the discussion
preceding Theorem (7.29). We can then find an open covering Wo, . .. , WM
ofn such that W o C 0. and Wj C Vi for j?: 1.

We know that '1.1 E Hk+2(WO) by Theorem (6.33). To obtain an estimate
for IIUIlk+2,wo' let Uo = 0. and Uk+l = Wo, and interpolate a sequence of
open sets U11 •• • , Uk such that Uj :::> Tfj +1 for 0 :S j :S k. For each such
i, choose (j E Cg<'(Uj) with (j = Ion Uj+l. By Corollary (6.31) (with
t =0),

lI u llj+2,ui+l :S lI(j u llj+2 :$ C1 (II L(j u llj + lI(j ullo)

:$ C 1 (lI(j LUllj + II[L, (j]ullj + Il(jullo)

:S C 2(IILullj,n + lI ullj+l,uj + Ilullo,o) I

since [L ,(j] is a first order operator with coefficients supported in Uj. Com­
bining these estimates for 0 :$ j :$ k with the equation Lu = I yields
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On the other hand, when "i nO is mapped to a half-baH N(r), Wj nO
will be mapped into a half-ball N(p) with p < r. Hence, by Theorem (7.29)
we have u E Hk+2(Wj nO) for j ?: 1, and

Since 0 =Wo UU~ (Wj nO), therefore, u E Hk+2(0) and

It remains to obtain the sharper estimate with lIulh.n replaced by

lIullo,n. This foHows from the coercive estimate:

lIull~,n::; C(lD(u, u)1 + lIull~,n) ::; c(I(u I1)1 + lIull~,n)
::; Cliullo,n(ll/llo,n + lIullo,n) ::; ClIulll,n(ll/llo,n + lIullo,n),

so that

Ilulh.n ::; C(II/lIo,n + lIullo,n) ::; C(II/I\k.n + lIullo,n).

The proof is complete.

(7.33) Corollary.
If f E COO (0) then u E Coo(O).

Proof: Use the Soholev lemma (6.45).

(7.34) Corollary.
If u E X is an eigenfunction for D, i.e., if for some constant A we have
D(v, u) = A(V Iu) for all v E X, then u E Coo(O).

Proof: Apply Corollary (7.33), with 1 = 0, to the Dirichlet form

D'(v,u) =D(v,u) - A(V lu) for L - A. I

EXERCISES

1. Show that the Dirichlet form D(v, u) = (~v I~u) is coercive over
H 2(0) n H?(O), for any O. (Cf. Exercise 1 in §7C and Exercise 1

in §7D.)
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2. Let L be a formally self-adjoint strongly elliptic operator of order 2 on
fl, let {Uj} be the eigenbasis for the Dirichlet problem as in Theorem
(7.23), and let {Ilj} be the corresponding eigenvalues.
a. Suppose 1= L, CjUj E Ho(fl) and Cj =0 whenever /Jj = O. Show

that the solution of the Dirichlet problem Lu = I, U E H?<fl), is
U= L,llj 1CjUj.

b. Suppose U E H 2 (fl) and I = Lu E Ho(fl) have the expansions U =
L,bjuj and f = ECjUj. Show that l.he following are equivalent:
(i) U E ll?(fl), (ii) Cj = /Jjbj, (iii) E IIl jbj l2 < 00.

c. Suppose U = Ebjuj E Ho(fl). Show that the series Ebjuj con­
verges in the norm of H2k(fl) (k ;::: 1) if and only if U E H2k(fl) and
Lju E H?(fl) for 0:5 j < k.

G. Further Results and Techniques

The regularity theorem (7.32) is true for much more general boundary
value problems for elliptic operators of any even order 2m if one replaces
the subscript k + 2 by k + 2m. For example, it is true for the Dirichlet
problem for an arbitrary strongly elliptic operator. Proofs of this fact, in
the same spirit as our proof of Theorem (7.32), can be found in Agmon
[3], Friedman [21], and Bers, John, and Schechter [7]. The first two of
these deal explicitly with the more general case where the coefficients of
the operator are not assumed to be Coo, in which case one only obtains
regularity up to the order of smoothness of the coefficients; however, this
extension is straightforward and involves no essentially new ideas. Agmon
[3] also contains some interesting material on the spectral theory of elliptic
operators.

More generally, suppose L =E a",l)<x is an elliptic operator (with Coo
coefficients) of order 2m on IT. Let J be a subset of[O, 2m -1] of cardinality
m, and let {B; }jEJ be a normal J-system on S = &fl. Consider the
boundary value problem

(7.35) Lu = I on fl, Bj U = 0 on S for j E J.

To describe the regularity theorem for (7.35) we need to introduce three
definitions:

I. L is properly elliptic if for every x E IT and every pair 6 ,6 of linearly
independent vectors in IR", the polynomiaIP(z) =XL(X, el+z6) has m
roots with positive imaginary part and m roots with negative imaginary
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part. (Recall that xdx,~) = 2:lal=2m aa(x)~a is the characteristic
form of L as defined in §1A.) Every strongly elliptic operator is properly
elliptic, and the proof of Proposition (7.1) shows that every elliptic
operator on IT C lRn is properly elliptic if n :::: 3.

II. Let L be properly elliptic. The operators Bj cover L (or satisfy the
complementing condition or the Lopatinski-Shapiro condition)
if the following condition holds. Let x be any point on S, v the normal
to S at x, and ~ any tangent vector to S at x. Let Zl(X, ~), •.• , Zm(x,~)

be the roots of the polynomial P(z) = XL(X, ~ + zv) with positive
imaginary part, let P+(z) = IT';'(z - Zj (x, ~)), and let I(P+) denote the
ideal in the polynomial ring C(zJ generated by P+. Then the polyno­
mials Qj(z) =XDj(X, ~ + zv) (j E J) are linearly independent modulo
I(P+).

iii. Let us call the problem (7.35) regular if there are finite dimensional
subspaces V and W of GOO(IT) and a sequence of positive constants
Go, G l , ... with the following properties. Let Vl. denote the orthogonal
complement of V in lIo(rl). Then for any f E Vl. n Hk(rl) there is a
solution U E Hk+2m(rl) of (7.35); u is unique modulo Wand satisfies

We then have the following theorem, due to Agmon, Douglis, and Niren­
berg:

(7.36) Theorem.
Suppose L is properly elliptic. The problem (7.35) is regular if and only if
the operators {Bj hE! cover L.

An exposition of this result along the lines of the original arguments, in­
cluding a detailed discussion of the generalization to inhomogeneous bound­
ary conditions, can be found in Lions and Magenes [34J. See also Mi­
randa [37] for a historical discussion. However, the best proofs of Theorem
(7.36) now available use the technology of pseudodifferential operators; see
Hormander [27, vol. III], Taylor [48], or Treves [53, vol. I].

It follows from results of Agmon [2J that if the problem (7.35) arises as
a (D,X) problem as in (7.10), the coerciveness of D over X implies that
the operators Bj cover L, so that Theorem (7.36) can be applied. Theorem
(7.36) is much more general, however. It should also be mentioned that
not all interesting (D, X) problems are coercive. The most important and
intensively studied non-coercive problem is the a-Neumann problem that
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arises in complex analysis in several variables; see Folland and Kohn (18]
for the basic theory and Greiner and Stein [23] for more refined results;
also Stein [46, §XIII.6].

Although L2 methods tend to be relatively simple and elegant, they are
not the alpha and omega of elliptic regularity theory. For example, they
do not yield the solution U E C(O) of the Dirichlet problem

~u =0 on n, U = f on S (J E C(S))

which we obtained in Chapter 3. For another example, suppose we wish to
solve ~U = f where f is (say) Ck with compact support. Theorem (6.33)
guarantees that every solution u is in Hk+2' and hence (by the Sobolev
lemma) in Ci for any j < k + 2 - !n. But Theorem (2.28) shows that u

is in Ck+J+1l for any (J < 1 and is in Ck+2+a (0 < a < 1) provided that
f E Ck+a. In general this is a considerable improvement over the result
obtained by L 2 methods.

To get the best possible results, one has to use a variety of function
spaces, the most important of which are the LP Sobolev spaces L~ that
were introduced at the end of §6A and the Holder or Lipschitz spaces
Ck+a, 0 < a < 1. (See Stein [45], Adams [I], and Nirenberg [38] for
discussions of these spaces and their relationships.) As we mentioned at
the end of §6C, an analogue of the local regularity theorem (6.33) holds
for these spaces, and the same is true of Theorem (7.36). That is, if the
problem (7.35) is regular, then u E L~+2m(O) whenever f E L~(O), and
u E ck+2m+a(o) whenever f E ck+a(o). These facts can be established
by using the solution of (7.35) via pseudodifferential operators together
with the LP and Holder estimates for these operators; see Taylor [48].

H. Epilogue: the Return of the Green's Function

At last we can tie up the loose ends in §2E. The result we need is the
following:

(7.37) Proposition.
Let n be a bounded domain with COO boundary S, and suppose f E COO(O).
Then the solution u of the Dirichlet problem

~u = 0 on 0, u = f on S

(which exists and is unique by Theorem (3.40)) is in COO(O).
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Then w extends continuously to IT and solves the Dirichlet problem

v =0 on S.

w = 9 on S.

Uj =gj on S.

U",(y) =N(x - y) for yES.

aw =0 on n,

av =al on n,

au", =0 on n,

Proof: Let v be the solution of

Proof: The solution to this Dirichlet problem exists and is unique
by Theorem (3.40); call it u. We need only show that U = w on n. By
the Weierstrass approximation theorem (4.9), we can find a sequence of
polynomials {gj} that converges uniformly to 9 on S. For each j let Uj be
the solution of the Dirichlet problem

w(x) = hg(y)Ov.G(x,y)dU(y).

(7.38) Proposition.
Let 9 be a continuous function on S, and define w on n by

G(x, y) =N(x - y) - u",(y).

G(x,') is thus COO on IT \ {x}, so Claim (2.35) is established.
We now restate and prove Claim (2.38):

u'" exists, is unique, and is COO on IT by Proposition (7.37), since N(x - .)
agrees on S with a function I", E COO (IT). (For example, take I",(y) =
[1 - 1/l",(y))N(x - y) where I/l", E cg"(n) and I/l", = 1 on a neighborhood of
x.) Then the Green's function is

Now we can construct the Green's function on n. Let N be the fun­
damental solution for a given by (2.18), and for each x E n let u'" be the
solution of the Dirichlet problem

v exists and is unique by Theorem (7.20), since the Dirichlet problem for
-a is strictly coercive by Theorem (7.14). Moreover, Corollary (7.33)
shows that v E Coo(IT). But au - v) = 0 on n and I - v = I on S, so by
the uniqueness theorem (2.15), U =I - v E Coo(IT). I
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By Proposition (7.37), Uj E COO(IT). The remarks in §2E preceding Claim
(2.38) then show that for all x E n,

Now let j -+ 00. On the one hand, it is clear that for each x En,

On the other hand, the maximum principle (2.13) implies that Uj -+ U

uniformly on IT. Thus U =W, and we are done.
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A. Basic Definitions and Properties

Throughout this chapter we shall adopt the notational convention for deri­
vatives introduced in §6D, namely

(a", E COO(O)),L = 2:= acx(x)D CX

Icxl$k

The convenience in this lies in the Fourier transform formula (Dcxu)(e) =
eCXu(e). Any linear differential operator with Coo coefficients on an open
set 0 C jRn can then be written in the form

D = 2~ja, i.e., Dj = 2~iaj and D
cx = (211'~)ICXI a

cx

The theory of pseudodifferential operators was initiated around 1964 by
Kohn and Nirenberg, although it has roots in earlier work in the theory
of singular integrals and Fourier analysis, and it was subsequently refined
and extended by a number of other authors, notably Hormander. It has
become one of the most essential tools in the modern theory of differen­
tial equations, as it offers a powerful and flexible way of applying Fourier
techniques to the study of variable-coefficient operators and singularities of
distributions. In this chapter we shall present the elements of this theory
together with a few applications. More comprehensive accounts, includ­
ing many more applications, can be found in Taylor [48], Treves [53], and
Hormander [27, vol. III]; see also Saint Raymond [42] for a detailed ele­
mentary treatment and Stein [46] for related recent developments.

Chapter 8
PSEUDODIFFERENTIAL OPERATORS
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and the function

UL(X,~) == L a,,(x)~"

l"l$k
is called the symbol of L. It can be used to represent the operator L as a
Fourier integral; namely, on applying the Fourier inversion theorem to the
formula (D"un~) == ~"u(~), for u E C~(o) we obtain

Lu(x) == :L a,,(x)Je 27f '>:'{{"u(1;) de == Je27f'>:'{UL(X, e)u(1;) de·

To rephrase this: Differential operators with Coo coefficients on 0 are the
operators of the form

(8.1) (u E C~(o»,

where p(x,~) is a polynomial in ewith coefficients that are Coo functions
of x EO.

The idea of pseudodifferential operators, then, is t.o consider operat.ors
of the form (8.1) where p is a more general sort offunction. Actually, if one
allows general functions or distributions p in (8.1), one obtains an enormous
family of operators that is much too diverse to support an interesting the­
ory. (For example, any continuous linear map from S(lIt") to S'(lIt") can be
represented in the form (8.1) where p is a tempered distribution on lit" x lit"
and the integral is interpreted in the sense of distributions. See Exercise 1
in §8B.) We shall restrict attention to functions p(x,~) that behave quali­
tatively like polynomials or homogeneous functions of ease -+ 00 - that
is, they grow or decay like powers of leI. and differentiation in elowers the
order of growth.

To be precise, suppose n is an open set in lit" and m is a real number.
(Note: In this chapter, in contrast to the preceding one, we do not assume
that 0 is bounded.) The set of symbols of order m on 0, denoted by
sm(o), is the space of functions p E Coo(O x lit") such that for all multi­
indices a and {3 and every compact set j{ C 0 there is a constant C",f3,K

such that

(8.2)

(8.3)

A pseudodifferential operator (or 'liDO for short) of order m on 0 is
a linear map from C~(O) to Coo(O) of the form (8.1) where p is a symbol
of order m on O. We shall generally denote the map in (8.1) by p(x, D),

p(x,D)u(x) == Je2Jr'>:'{p(x,~)u<e)d~,
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and we denote the set of pseudodifferential operators of order m on 0 by
wm(O):

Example 1-
If p(x,~) =2:10'19 aO'(x)~O', then p E Sk(O). In other words, every differ­
ential operator with Coo coefficients on 0 is a wDO on O.

S-OO(O) = n sm(o).
mER

SOO(O) = U sm(o),
mER

Example 2.
Let us say that a function p E COO(O x JR") is homogeneous of degree
m for large ~ (m E JR) if there exists c 2 0 such that p(x, t~) =tm p(x,~)
whenever t 2 1 and I~I 2 c, or in other words, if p agrees with a func­
tion that is positively homogeneous of degree m in eon the set I~I 2 c.
(The utility of this notion stems from the fact that homogeneous functions
are never Coo at the origin unless they are actually polynomials.) If p
is homogeneous of degree m for large ~, then D! D'{p is homogeneous of
degree m -jeri for large ~, and it follows that P E sm(o). More gener­
ally, if P =2:t Pi where Pi is homogeneous of degree mi for large {, then
p E sm(o) where m = max{mi}'

The preceding examples of symbols are functions that are homogeneous
in ~ or asymptotically homogeneous, in a suitable sense, as { - 00. The
symbol classes sm(o) also contain other sorts of functions, however; see
Exercises 2 and 3.

If p E sm. (0) and q E sm,(o), it is clear that P + q E smax(m.,m,)(o),
and a simple calculation with the product rule shows that pq E sm. +m,(o).
Moreover, ifml < m2, we clearly have sm. (0) C sm,(o), so it is natural
to set

Example 3.
The function (x,O - (1 + 1~12)612 belongs to S6(JR") (Exercise 1), and
hence the operator A' defined by (6.4), which plays an essential role in the
theory of Sobolev spaces, belongs to lJI 6 (JR").

wm(O) = {p(x, D) : p E sm(o)}.
Warning: Our placement of the factor of 211" in (8.3) flies in the face of

convention. It is much more common in the literature on pseudodifferential
operators to define the Fourier transform without the 211" in the exponent,
and accordingly to modify (8.3) by omitting the 211" from the exponent and
inserting a factor of (211")-" in front of the integral. In particular, this
entails defining D as (1/i)8 rather than (1/211"i)8.
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soo (n), the set of symbols of arbitrary order on n, is thus a filtered algebra.

Likewise, we set

\llOO(n) = U \11m (n),
mEIR

\II-OO(n) = n \11m (n).
mEl!.

\llOO(n), the set of pseudodifferential operators on n, is also a filtered al­
gebra, but the fact that if P E \11m, (n) and Q E \11m, (n) then PQ E
\11m, +m, (n) requires some proof that we shall not give until §8D.

Let us discuss the domain and range of pseudodifferential operators a
little more fully. If p E sm (n), the integral (8.3) converges for x E n
whenever u E S. However, it is more suitable to think of the domain of
p(x, D) as consisting of functions living on n, so to begin with we take the
domain to be C~(n). If u E c~(n), the differentiated integrals

converge absolutely and uniformly on compact subsets of n since u E S
and the derivatives of p(x,e) and e2"iz;·€ have polynomial growth in e·
It follows easily that p(x,D)u E COO(n), and moreover that p(x,D) is a
continuous linear map from C~(n) to COO(n). That is, if Ul, U2," . are
elements of c~(n) that are supported in a common compact subset of n
and D"uj D"u uniformly for all a, then D"[P(x, D)uj]--- D"[P(x, D)u]
uniformly on compact subsets of n for all a.

We would like to relax the requirements that u be smooth and com­
pactly supported. To deal fully with the issue of compact support requires
a restriction on the symbol p that we shall discuss in §8B, but the smooth­
ness condition can easily be dispensed with, as there is a natural way of
defining p(x, D)u as a distribution on n whenever u is a distribution with
compact support on n. Indeed, if u E C~(n), for any </J E C~(n) we have

where

(8.4)

(8.5) Lemma.
If p E Sm(n) and </J E c~(n), the function 94> defined by (8.4) decays at

infinity more rapidly than any power of e·
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TJO Je2..ir ·'1 p(x,e)¢(x) dx =JD:(e2..ir ·'1)p(X, e)¢(x) dx

=(_1)1 0 1Je2
..
ir .'1 D:[p(x, e)¢(x)] dx.

Proof: For any e, TJ EO IR n we have

(p(x,D)l,I, ¢) = (g""u),

It follows easily from this construction that if l,Ij -+ 1,1 weakly in {;'(O) then
p(x, D)l,Ij ..... p(x, D)l,I weakly in '1)'(0).

We conclude this section by remarking that the theory of pseudodiffer­
ential operators has been extended to include classes of symbols and op­
erators that are wider than Soo (0) and WOO (0). The operators in WOO (0)
have earned the name of classical pseudodifferential operators; they are
the operators that have come to be a standard tool for studying all sorts
of differential equations, and they are the only ones we shall consider in
this book. However, more general symbol classes have been found useful
for various problems. The ones the reader is most likely to encounter are

Now, if 1,1 EO £1(0), or more generally if 1,1 E H. for some s E IR (cr.
Corollary (6.8)), then u is a function that is square-integrable with respect
to (1 + leI 2)-. de for some s E IR; hence Lemma (8.5) shows that the
integral Jg",u is convergent. Moreover, the proof of Lemma (8.5) shows
that if ¢j -+ ¢ in C,;"'(O) then (1+ IWN g"'i(e) -+ (1+ IWN g",(e) uniformly
on IR n for all e, so that Jg",/ii -+ Jg",ll; that is, ¢ -+ Jg",ll is a continuous
linear functional on C,;'" (0). In short, we can define p(x, D)l,I E '1)' (0) for
any 1,1 E £1(0) by

270

for all N. Setting TJ =e, we obtain the desired result:

Since the derivatives of p(x, e) are all dominated by (1+IWm for x E supp ¢,

I
I
I
I
I

I
I

I
I
I
I
I
I
I



Pseudodifferelltial Operators 271

Hormander's classes S;:6(0) (m E JR, 0 ::; {) ::; p ::; I), which are defined
just like sm (0) except that condition (8.2) is replaced by

sup ID~D{p(x,e)l::;Ca ,p,K(1 + Iwm-plal+6IPI.
z:eK

(Thus, sm(o) = S~o(O).) Most of the theory that we shall develop for
sm(o) generalizes to S;:6(0) in a fairly straighforward way provided that
{) < p. The theory for p = {) < 1 is more subtle but also richer in interesting
applications. (The cases {) > p and {) = p = 1 are pathological.) The reader
may find an account of the theory of 111 DO wit.h symbols in S;:6(0) in Taylor
[48] or Treves [53, vol. I], and extensions of the theory to much more general
symbol classes in Beals [5] and Hormander [27, vol. III].

EXERCISES

1. Let p(x,e) =(1 + leI2)'/2 (s E JR). Show that p E S'(JR n).

2. Pick 4J E C~(JRn) with 4J = 1 on a neighborhood of the origin, and let
p(x, e) = [1 - 4J(e)] sin log In Show that p E SO(JR n).

3. Suppose p E SO(O) and t/J is a Coo function on a neighborhood of the
closure of the range of p (a subset of iC). Show that t/J 0 p E SO(O).

4. Show that if p E S-OO(O) then p(x, D) maps £'(0) into COO(O).

B. Kernels of Pseudodifferential Operators

Suppose T is an integral operator on some space of functions on 0 that
includes C~(O):

Tu(x) =L[{(x, y)u(y) dy

If v E C~(O), we have

(u E C~(O)).

(Tu, v) = ([{, v 18) u),

or in the language of distributions,

JTu(x)v(x) dx =JLxn [{(x, y)v(x)u(y) dy dx,r

~.
~\.

f

1_....__, ----..._~
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where v ® u E C;;"'(O x 0) is defined by

(v ® u)(x,y) =v(x)u(y).

(x,y EO),

(u, v E C:'(O»,

~n ={(x, y) E 0 x 0 : x =y},

K(x,y)=p~(x,x-y)

(Tu, v) = (K, v 0 u)

(8.7)

(8.6)

and its singularities along the diagonal can be killed by multiplying it by
suitable powers of x - y. More precisely:

where p~ denotes the inverse Fourier transform of p in its second variable.
Of course, (8.6) is to be interpreted in the sense of distributions. That is,
p(x,·) is a tempered distribution depending smoothly on x, so the same
is true of pnx, .). In particular, p~ defines a distribution on 0 x Rn;
composing it with the self-inverse linear transformation (x, y) -+ (x, x - y)
yields another such distibution. and K is the restriction of the latter to
Ox O.

The distribution [{ turns out to be nicer than one might initially expect:
It is a Coo function off the diagonal

then [( is called the distribution kernel of T. J{ is uniquely determined
by T because the linear span of the functions of the form v 0 u is dense
in C;;"'(O). For example, the distribution kernel of the identity operator is
the delta-function 6(x - y).

In fact, every continuous linear T : C:"{O) -+ TI'(O) has a distribution
kernel. This is one version of the Schwartz kernel theorem, for the proof
of which we refer to Treves [49] or Hormander (27, vol. I]. Another one
is that if T is a continuous linear map from S(lR.n) to S'(lR.n), there is a
]( E S'(lR.n xIRn

) such that (Tu, v) =(K,v0u) for all u,v E S(lR.n
). These

facts provide a helpful background for the discussion of distribution kernels,
but we shall have no specific need for them.

It is easy to compute the distribution kernel of a pseudodifferential
operator. Indeed, if p E sm(o),

(p(x, D)u, v) =11 e2"i:r:·{p(x, e)u(e)v(x) de dx

=111 e2"i(:r:-Y)'{p(x,e)v(x)u(y)dydedx,

from which it follows that the kernel [( of p(x, D) is

There is now an obvious generalization: Suppose T is a continuous linear
map from C:"(O) to TI'(O). If there is a distribution J{ on 0 X 0 such that

I
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(8.8) Theorem.
Suppose P E 8m (0) and K is the distribution on 0 x 0 defined by (8.6).
a. If lal > m + n + i, the function fa(x, z) = zapHx, z) is of class cj on

o x m- n. Moreover, fOi and its derivatives of order:::; i are bounded on
A x m-n for any compact A C O.

b. If lal > m + n + i, (x - y)a I«x, y) and its derivatives of order:::; i are
continuous functions on 0 x O. In particular, I< is a Coo function on
(0 x 0) \ An.

Proof: zapHx, z) is the inverse Fourier transform (in the second vari­
able) of (_I)lalD{'p(x, e). For x in any compact set A, the latter function is

dominated by (1 + lenm
- 10I1 ; in particular, if lal > m+ n, it is integrable as

a function of e, so the Fourier transform can be interpreted in the classical
sense:

(Ial > m+ n).

Thus fa is a bounded continuous function on A x m-n
. Moreover, if the

integrand is differentiated no more than i times with respect to x or z, it
is still dominated by (1 + leDIOII-m+i for x E A, so if lal > m + n + i one
can differentiate under the integral and conclude that the derivatives of fa
of order:::; i are bounded and continuous on A x m-n

. This proves (a), and
(b) then follows by virtue of (8.6). I

From this result we can deduce an important regularity property of
pseudodifferential operators. Some terminology: The singular support
of a distribution tI E 'D'(O) is the complement (in 0) of the largest open set
on which tI is a Coo function; it is denoted by sing supp tI. A linear map
T : £'(0) - 'D'(O) is called pseudolocal if sing supp Ttl C sing supp tI

for all u E £'(0). (The motivation for this name is as follows: A linear
operator T on functions is called local if Ttl 1 =TU2 on any open set where
til = U2; this is equivalent to the requirement that supp Tu C supp tI for
all tI. Pseudolocality is the analogue with support replaced by singular
support.) For example, all differential operators with Coo coefficients are
pseudolocal (and also local); hypoellipticity of a differential operator L
means precisely that the reverse inclusion sing supp u C sing supp Ttl also
holds.

(8.9) Theorem.
Every pseudodifferential operator is pseudolocal.
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Proof: Suppose P E wm(n) and u E £'(n). Given a neighborhood
V of sing supp u in n, choose ,p E C~(V) such that t/> = 1 on sing supp u,
and set U1 = ,pu and U2 = (1 - ,p)u. Then u = U1 + U2, supp U1 C V,
and U2 E C~(n). If K is the distribution kernel of P, by Theorem (8.8)
K(x, y) is a Coo function for x rf. V and y E V. Hence for x rf. V we can
write

PU1(X) = (K(x, '), U1} =1 K(x, Y)U1(Y) dy,
SUPpUl

from which it is clear that DeL PU1 (x) =(D~ I«x, .), U1} and hence that PU1
is Coo outside of V. On the other hand, PU2 E COO(n) since U2 E C~(n).

Thus Pu is Coo outside V, and since V is an arbitrary neighborhood of
sing supp u, Pu is Coo outside sing supp u. I

We shall call a linear map T : e(n) ...... 'D'(n) a smoothing operator
if the range of T is actually in COO(n), that is, if sing suppTu = '" for
all u E £I(n). As another easy consequence of Theorem (8.8), we have the
following.

(8.10) Proposition.
Every P E w-OO(n) is a smoothing operator.

Proof: By Theorem (8.8), the distribution kernel I< of P is Coo on
n x n, so as in the proof of Theorem (8.9) we see that Pu(x) = (I«x, .), u}
is a Coo function for every u E £'(n). I

I
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Not every smoothing operator is pseudodifferential, however. For exam­
ple, if p(x,~) = ,p(x)1/J(~) where,p E coo(IRo") and 1/J E £'(R") then the op­
erator p(x,D) defined by (8.3) is smoothing (in fact, p(x, D)u = ,p(u *1/JV),
which is Coo since .,pv is COO), but p does not belong to our symbol classes
unless 1/J is Coo.

We next address a point glossed over earlier, namely, the injectivity of
the symbol-operator correspondence. Suppose p E sm(n). If we regard
the domain of the operator P = p(x, D) as S(R") then p is completely
determined by P, for in the integrals

we can choose u so that u approximates the point mass at an arbitrary
point of R". However, if we restrict P to c~(n), as we have agreed to do,
P does not completely determine p unless n is very large. The situation is
explained in the following proposition.
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(8.11) Proposition.
Suppose p E sm(o) and p(x, D) = 0 as a map from c~(O) to coo(O).
a. If the set 0 - 0 = {x - y : x, YEO} is dense in R n then p is necessarily

zero, but otherwise p may be nonzero.
b. In any case, p E S-oo(O).

Proof: p is related to the distribution kernel I< of p(x, D) by (8.6):
[{(x,y) = pnx, x - y) for x,y E 0, so if p(x, D) = 0 then p¥(x,z) = 0
for x E 0 and z E 0 - O. Since 0 - 0 is an open set containing the
origin, Theorem (8.8a) shows that p¥(x,.) is a Schwartz class function
depending smoothly on x, so the same is true of p(x, .). This means that
p E S-oo (0), so (b) is proved. Moreover, if 0 - 0 is dense in R n , the
restriction of p¥ to 0 x (0 - 0) determines p¥, and hence p, completely.
On the other hand, if 0 - 0 is not dense, we can take p(x, e) = t/J( x )¢;(e),
where t/J E c~(O), <jJ E C~(Rn), and supp <jJ is disjoint from 0 - 0; then
K(x,y) = t/J(x)<jJ(x - y) == 0 on 0 x 0 and hence p(x,D) =O. I

One drawback to pseudodifferential operators is that their domains con­
sist of compactly supported functions or distributions while their ranges do
not, so in general they cannot be composed with one another. It is therefore
often convenient to impose an additional condition on them to overcome
this difficulty. The full solution to this problem will be achieved in §8D;
the discussion that follows is meant to lay the groundwork for it.

Suppose 0 is an open subset of Rn, and denote by 1Tr and 1Ty the
projection maps from 0 x 0 onto the first and second factors, respectively.
A subset W of 0 x 0 is called proper if 1T;l(A) n Wand 1Ty1(A) n Ware
compact whenever A is a compact subset of O. For example, the diagonal
.6.n (see (8.7» is proper; most of the proper sets we shall consider will be
neighborhoods of .6. n . (See Exercise 2.)

Next, suppose T is a linear map from C~(O) to coo(O) with distribu­
tion kernel [{. T will be called properly supported if supp [{ is a proper
subset of 0 x O.

(8.12) Proposition.
T: c~(O) ...... COO (0) is properly supported Hand only if the following two
conditions hold:

i. For every compact A C 0 there exists a compact B C 0 such that
supp Tu C B whenever supp u C A.

11. For every compact A C 0 there exists a compact CeO such that
Tu =0 on A whenever u =0 on C.
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Proof: If [( is the distribution kernel of T and supp [( is proper, (i)
and (ii) hold if we take

This follows easily from the formula Tu(x) =f [«x, y)u(y) dy; see
8.1. For the same reason, if (i) and (ii) hold and A C n is compact,
have 1r;l(A) n supp [( C B x A and 1r;l(A) n supp [( C A x C. We
the details to the reader as Exercise 3.

C

Figure 8.1. Schematic representation of Properties (i) and (ii)
Proposition (8.12). The square represents n x n and the shaded
represents supp [(.

Property (i) clearly implies that T maps C~(n) into itself, and Vr(lDertv
(ii) implies that T has a continuous extension to a linear map from
to itself. Indeed, if u E Coo(n), we define Tu on an arbitrary cOlnpact
subset A of n as follows. Let C be as in (ii), pick </J E C~(n) with </J =1
on C, and set Tu(x) = T[</Ju)(x) for x E A. This is independent of
choice of </>, for if </J' is another such function we have </Ju - </>'u = 0 on
C and hence T[¢u] - T[</>'u] = 0 on A. It follows that the definil~iollS

Tu on two different A's agree on their intersection (take a </> that equals
on both C's). This procedure defines Tu as a Coo function on n, and
continuity of Ton Goo(n) follows from its continuity on G~(n).

(8.13) Corollary.
lfT and S are properly supported, one can form tlleir composition ST
an operator on either G~(n) or Goo(n). Moreover, ST is also properly
supported.
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Proof: It is easily verified that properties (i) and (ii) of Proposition
(8.12) are preserved under composition. I

Every differential operator is properly supported. In fact, the distribu­
tion kernel of L: a",(x )D'" is L: a",(x)D"'6(x - y), whose support is a subset
of the diagonal An. In §8D we shall show that every pseudodifferential op­
erator can be modified in a rather harmless way so as to become properly
supported, and that the properly supported pseudodifferential operators
form an algebra under composition.

For the moment, we observe that if T is a properly supported iflDO,
then T maps £'(0) into itself and extends to a continuous map of '1)'(0)
into itself. The first assertion holds because any U E £'(0) is the limit
of a sequence of functions Un E Gg"(O) supported in a common compact
neighborhood of supp u (convolve u with a suitable approximate identity);
by Property (i), the TUn are supported in a common compact set Band
hence supp Tu C B. A similar approximation argument that we leave to
the reader (Exercise 4) shows that the procedure we used to define T on
GOO(O) can be extended to define Ton '1)'(0).

We conclude with a couple of technical results on cutoff functions re­
lated to proper sets which will be needed in later sections.

(8.14) Proposition.
If W is a proper subset of 0 x 0, there exists <P E GOO(O x 0) such that
supp <P is proper and <P = 1 on a neighborhood of W.

Proof: We begin with the following fact whose proof we leave to the
reader (Exercise 5): There exist sequences {Uj}i'° and {Vi}l" of open sets
such that U~ Uj =0, Uj C Vi, V j is compact, and each point in 0 has a
neighborhood that intersects only finitely many V j • Let

We claim that for each j there are only finitely many k such that U, k) E 1.
Ifnot, there exists a j and a point (Xk, yd E Wn(Uj x Uk) for all k in some
infinite set I<. Since 11';1 (Uj) n W is compact, the sequence {(Xk, Yk)hEK
must have a cluster point. But this is impossible, for every yEO has a
neighborhood that meets only finitely many Uk and hence contains at most
finitely many Yk.

Next, let

x= U Vj xVk .

(j,k)E'
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We claim that X is proper. It suffices to show that "If; 1(iJj)nx is compact
for all j, since every compact set in rl is contained in a finite union of Uj 'So
(The same argument will also work with "If" replaced by "lfy .) But

The union on the right is finite, for there are only finitely many Vj that
meet the compact set Ujo, and for each such j there are only finitely many
k with (j, k) E:1. Since the sets Vj x Vk are compact and "If;l(Ujo ) is
closed, we are done.

Finally we can construct the desired function C/>. For each j, pick a
nonnegative !/Jj E C~(rl) such that !/Jj = 1 on Uj and supp!/Jj c V j , and
let !/J(x, y) =LU,k)E,!/Jj(X)!/Jk(Y). Each (x, y) has a neighborhood on which
only finitely many terms of this sum are nonzero, so !/J E COO(rl x rl). Also,
supp,p is proper since it is contained in X, and!/J ?: 1 on UU,k)E,(Uj x Uk),
which is a neighborhood of W. Hence we may take c/> = ( 0 !/J where
( : R -+ [0, IJ is a Coo function such that «t) =0 for t :s 0 and «(t) = 1
for t ?: 1. I

(8.15) Proposition.
If N is a neighborhood of the diagonal ':\0, there exists c/> E COO(rl x rl)
such that:
a. supp c/> is proper and contained in N,
b. c/> =1 on a neighborhood of ':\0,

Proof: Let Uj and V; be as in the preceding proof. Each x E rl
has neighborhoods 0; and 0; such that 0; C 0; and 0; x 0; C N.
Each V j can be covered by finitely many 0; 's, say V j =U V j no;•. Let
Ujk =Uj no;. and V;k = V; no;.; then Uj,k Ujk x Ujk is a neighborhood
of .:\0 and U· kVjk X V jkeN. We therefore obtain c/> as in the preceding

],

proof by modifying ,p(x, y) = Lj,k !/Jjk (X)!/Jjk (y), where now ,pjk = 1 on

Ujk and supp !/Jjk C Vjk . I

EXERCISES

1. Use the Schwartz kernel theorem to show that every continuous linear
map T from S(Rn) to S'(Rn) can be represented in the form (8.3) where
p E S'(Rn x Rn) and the integral is interpreted in the distributional
sense. (Hint: Use (8.6) to define p.)
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2. Show that {(x, y) : x 2 S y S x 1
/ 2 } is a proper subset of (0, 1) x (0,1).

3. Complete the proof of Proposition (8.12).

4. Show that every properly supported wDO on 0 extends to a continuous
linear operator on 1)/(0).

5. Prove the topological lemma that begins the proof of Proposition (8.14).
(Hint: First construct a sequence {Si} of open subsets of 0 such that
5i is compact, 5i C Si+1, and 0 = U~ Si' Set Ui = Si \ 5i-1 and
V; =Si+1 \ 5i-2.)

c. Asymptotic Expansions of Symbols

Much of the calculus of pseudodifferential operators consists of performing
calculations with "highest order terms" and keeping careful track of lower
order "error terms." For this purpose, the following notion of asymptotic
expansion is extremely useful.

Suppose {mi}go is a strictly decreasing sequence of real numbers such
that lim mi = -00, and suppose Pi E smj (0) for each j. We say that
the formal series L;;C Pi is an asymptotic expansion of the symbol P E
smo(o) if

P- LPi E smk(O) for all k > 0,
i<k

in which case we write
00

P~ LPi'
o

We emphasize that the series E;;C Pi need not be convergent, and if it is,
its sum need not be p. The "sum" E;;C Pi is simply a convenient way of
keeping track of the sequence {Pi}go.

For most purposes in the theory of pseudodifferential operators, it is
only asymptotic behavior that really counts. If two symbols P and q have
the same asymptotic expansion L Pi, then

p-q= (p- LPi) - (q- LPi) ESmk(O)
i<k i<k

for all k, and hence P - q E S-OO(O); on the other hand, if P - q E S-OO(O)
then the series q+°+°+ ... is an asymptotic expansion of p. Accordingly,
symbols of order -00 are usually regarded as negligible. Likewise, on the
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level of operators, \liDO of order -00 - or more generally, smoothing
operators of any sort - are usually regarded as negligible. In this sense,
the symbol-operator correspondence P ...... p(x. D) is essentially a bijection
for any 0; see Proposition (8.11).

It is an important fact that asymptotic series can be used to build
symbols:

(8.16) Theorem.
Suppose Pi E 8"'; (0) for each j ~ 0, where mj strictly decreases to -00.

Then there exists P E smo(O) (unique modulo 8-00 (0)) such that P ­

E;;" Pj·

Proof: Let {OJ}f be an increasing sequence of open subsets of 0
with compact closure whose union is 0, and choose t/J E COO(lRn) such that

t/J(~) = 1 for I~I ~ 1 and t/J(~) = °for I~I ::; !.
Claim: There is a sequence {ti}O' of positive numbers converging to°such that for each j > 0,

ID~Dnt/J(tjOpj(x,~)J1::; 2-i (1 + IWm;-.-I<>1

for x E OJ and lexl + 1,81 ::; j.

Taking this for granted for the moment, we define

00

p(x.~) = I: t/J(tj~)Pj(x,~).
j=O

Since tj ...... 0, for ~ in any bounded set there are only finitely many nonzero
terms in this sum, and it follows that P E COO(O x IRn). To see that
P E 8mo (0), suppose B is a compact subset of 0; we wish t6~ estimate
De D:p(x, e) for x E B. Choose k large enough so that B C Ok and
lexl + 1,81 ::; k, and write

p(x,~) =I: t/J(ti~)Pi(x,~)+I: t/J(ti~)Pi(x,~).
j$k i>k

Since Pi E 8m
; and t/J(ti~) =1 for 1~llarge, we clearly have

II: D~Dlt/J(ti~)Pi(X,~)1 ::; I:Cj (l + IWm;-I<>1 ::; C(1 + IWmo-I<>I.
j$k i9

On the other hand, by (8.17) we have

II:D~Dlt/J(ti~)Pi(X,~)1 ::; I:2-i {1 + IWmj-.-I<>1 ::; (1 + IWmo-I<>I.
i>k i>k
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Thus P E smo(o). The same argument shows that I:~ t/J(tj{)pj(x,e) E
sm>(o) for all k; since t/J(tj{)Pj(x,{) =Pj(x,{) for { large, it follows that

P~ I:;;" Pj'
It remains to prove the claim. First, let us observe that Dl[t/J(te)] =

t lOY1 [Dl t/Jj(te) and that, for r i= 0, [Dl t/J](te) =0 except when I{I is compa­
rable to t-l. 1ft::; 1, this implies that 1 + lei is also comparable to t-l,
and it follows that

IDl[t/J(te)JI ::; Coy(1 + IW- Ioyl for all t ::; 1.

The product rule and the fact that Pj E sm; (0) now easily imply that for
some Cj > 0,

Of course the expression on the left is actually zero if I{I ::; (2t)-1. It
therefore suffices to pick tj small enough so that (a) tj -+ 0 and (b) if
lei 2': (2tj )-1 then Cj(1 + leDmj-m;-. ::; 2- j . I

In the next section we shall need a technical result which shows that a
series L:Pj is an asymptotic expansion of a symbol P if certain apparently
weaker conditions hold. Before stating and proving it, we need a lemma
from calculus:

(8.18) Lemma.
If I : lR. -+ lR. is twice differentiable and I, I' ,I" are bounded,

(sup 1/'(t)1)2 ::; 4(sup I/(t)l)(sup 1f"(t)l).
t t t

Proof: By considering get) = a-l/(v;;Tbt) where a = sUPI/(t)1
and b = sup 1f"(t)l, we are reduced to proving that if sup Ig(t)1 ::; 1 and
sup Ig"(t)1 ::; 1 then sup Ig'(t)1 ::; 2. Suppose instead that Ig'(to)1 > 2.
By the mean value theorem, Il(t) - g'(to)1 ::; 1 for It - tol ::; 1 and
hence Ig'(t)1 > 1 for It - tol ::; 1. By the mean value theorem again,
Ig(to + 1) - g(to - 1)1 > 2, which contradicts sup Ig(t)1 ::; 1. I

Remark: The optimal constant in Lemma (8.18) is 2, not 4; see
Schoenberg [43].
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Since Ilk -+ -00 and mk -+ -00,

sup I(p - q)(x,e)l::; CB,N(1 + IW-N

reB

for all N.

(8.21)

\p(x,e) - q(x,OI::; \p(X,O - ~pj(x,e)\ + \q(x,e) - 'L:Pi(x,e)\
J<k J<k

::; CB,k [(1 + len"· + (1 + lenm
.].

Proof: By Theorem (8.16), there exists q E smo (0) such that q ­

L~ Pi, and it will suffice to show that P - q E S-oo(O).
First, by condition (i), for any compact B cO and k > 0, if x E B we

have

sup\p(x,e) - 'L:Pi(x,e)\::; CB,k(l + len"··
reB i<k

ii. If a and 13 are multi-indices, there is a real number Il(a, {3) such that

for every compact B C 0,

(
SUP \8i/(x)I)2 ::; C (SUp I/(X)\) (t SUp \8; l(x)I).
rev rew k=Orew

(8.20) Theorem.
Suppose Pi E sm;(o) for j ~ 0, where mi decreases to -00, and P E
coo(OxlRn). Then p E smo(O) and P - L~ Pi provided that the following

conditions hold:
J. There exists a sequence of real numbers Pk with limpk = -00 such

that for every compact B C 0,

Proof: Pick ¢ E C~(W) such that ¢ = Ion a neighborhood of V.
The result follows by applying Lemma (8.18) to the real and imaginary
parts of <PI, considered as functions of xi alone (Exercise 1). I

(8.19) Lemma.
Let V be a compact subset ofRn and W a neighborhood ofV. There is a

constant C > °such that for all I E C
2
(W),

I

I
I

I

I
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We need to prove that estimates of this sort hold also for D~DfCp _ q).
For the case lal+IfJI =1, for each ewe apply Lemma (8.19) to the function
l(x,I]) =(p-q)(x, e+I]), taking V =B x {OJ and W =B' x {I]: II]I < I}
where B' is a compact neighborhood of B in O. By condition (ii) and the
fact that q E sm·(o), for some J.l E IR we have

sup ID~Dnp - q)(x, e+ 1])1:5 CB,(l + leDI'
rEB',I'II:51

Lemma (8.19) together with (8.21) therefore gives

(Ial + 1.61 :5 2).

(lal + 1.61 = 1)

for all N, as desired. The proof is now complet.ed by induction on lal + 1.61:
assuming that estimates of the type (8.21) for DeDt(p-q) with lal+1111 =
k-1, Lemma (8.19) together with condition (ii) yields estimates of the type
(8.21) for De Drcp - q) with lal + 1111 = k. I

EXERCISES

1. Complete the proof of Lemma (8.19).

2. Adapt the proof of Theorem (8.16) to show that every formal power
series L:1"'I~o c",x" (c" E iC) is the Taylor series of some Coo function.

D. Amplitudes, Adjoints, and Products

Our definition of pseudodifferential operators is based on the usual prac­
tice of writing partial differential operators as differentiations followed by
multiplication by coefficients:

However, in some situations such as computing adjoints, it is preferable to
reverse the order of these operations:
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Setting p(x,e) ='Laa(x)ea and writing out the Fourier transform explic­
itly, these become

Pu(x) =11 e27ri("-Y)'{p(x,e)u(y)dy de,

Qu(x) =1Je27ri("-YHp(y, e)u(y) dy de·

This suggests that we could also define pseudodifferential operators by
using more general symbols p in the last formula for Q.

Actually, for maximum flexibility it is preferable to allow coefficients on
both sides of the differentiations. We are therefore led to consider operators
of the form

(8.22)

where a belongs to the class

Am(O) = {a E COC(O x R n X 0) : for every compact B C 0,

sup ID~D;Dra(x,e,y)1 :::; Ca,I',I',B(1 +Iwm- 1a,}.
",yEB

The elements of the class Am(O) are called amplitudes of order m on O.
A few remarks on these definitions are in order:

i. The integral in (8.22) must always be interpreted as an iterated integral
in the indicated order; it is usually not absolutely convergent as a double
integral.

ii. The operator Po defined by (8.22) is to be interpreted, as in the case
of IItDO, as a linear map from Cg"(O) to COCCO).

lll. The class Am(o) includes sm(o) if we regard symbols as amplitudes
that are independent of the third variable, and hence the corresponding
class of operators {Po: a E Am(o)} includes IItm(o). We shall shortly
see that these two classes actually coincide modulo smoothing operators
and that the properly supported operators in the two classes are the
same.

IV. In contrast to the symbol-operator correspondence p -. p(x,D), the
amplitude-operator correspondence a -+ Po is highly non-injective, a
fact which is useful in some ways and awkward in others. For example,
if 411. 412 E COC(O) then the function a(x,e, y) = 411(X)412(y) belongs to
AO(O), and Pau = 411<P2U. In particular, if supp <PI nsUPP412 = 0 then
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Pa =0, and if t/J E Coo(O), there are at least as many amplitudes for
the operator u -- t/Ju as there are ways offaetoring t/J as <l>1<P2.

v. There is another way of defining pseudodifferential operators that deals
with differentiation and multiplication by coefficients in a more sym­
metric way, the so-called Weyl calculus; see Folland [15].

By an argument like the one in §8B, if a E Am(o) the distribution
kernel J( of Pa is given by

(J(,w) =fff e
27fi(Z-Y)'{a(x,e,y)w(x, y) dydedx (w E C~(O x 0)).

In other words, J( is given by the inverse Fourier transform of a in its
second variable:

(8.23) I«x,y) =a~(x, x - y, V),

interpreted in the appropriate distributional sense. From this it is clear
that

suppI< C Ea ,

where

(8.24) Ea = {(x, y) E 0 x 0 : (x, e, y) E supp a for some eE R n }.

(8.25) Proposition.

If a E Am(o), there exists b E Am(o) such that Pb is properly supported
and Pa - Pb is a smoothing operator.

Proo£: By Proposition (8.14) we can find a properly supported <P E
Coo(O) such that t/> = 1 on a neighborhood of the diagonal ~n. Let
b(x,e,y) = <I>(x,y)a(x,e,y). It is easily verified that b E Am(o). If J(
is the distribution kernel of Pa, it follows from (8.23) that the distribution
kernel of Pb is t/>I<, which is properly supported since t/> is. Moreover, the
same argument that proves Theorem (8.8) shows that I< is Coo away from
~n and hence that (1 - <1»I< , the distribution kernel of Pa - Pb, is Coo
everywhere. Hence Pa - Pb is a smoothing operator. I

(8.26) Proposition.

If a E Am(O) and Pa is properly supported, there exists b E Am(o) such
that:

a. b(x,e,y) =a(x,e,y) for all eERn and x,y in some neighborhood of
the diagonal ~n;

b. E b (defined by (8.24)) is a proper subset of 0 x 0;
c. Pb =Pa.
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Remark: The last statement means, more precisely, that

where Pi(x,e) = 2: ~!8fD;a(x,e,Y)ly=.,·
lal=i

p(x,O ~ L ~!arD;a(x,e, y)!y=.,.
lal~O

(8.29)

(8.27) Theorem.
Suppose a E Am(o) and Po is properly supported. Let

Proof: If u E C;"'(O), we write u(x) = Je2.. i .,·{tl(e) de. As the
reader may verify (Exercise 1), this Fourier integral is the limit of Rie­
mann sums L: e2"i"'{jU(ei )~ei that converge in the topology of COO(O)
(i.e., the sums and their derivatives converge uniformly on compact sets
to u and its derivatives). Since Po is linear and continuous on COO(O), we
have

Pi clearly belongs to sm-i (0). (Similar remarks will apply to the asymp­
totic expansions in Theorems (8.36) and (8.37) below.)

(8.28)

Then P E sm(o) and Po =p(x, D). Moreover,

so Po = p(x, D). We shall show that P E sm(o) and that (8.29) holds by
using Theorem (8.20).

Suppose that a E Am(o) and Po is properly supported. By Proposition
(8.12) and the discussion following it, Po extends to a continuous operator
on COO(O). In particular, we can apply Po to the function E(x) =e2"i.,.(

for any e E ]Rn. In what follows, by a slight abuse of notation we shall
denote the function Po(Ed(x) by Po(e 2..i .,.{).

Proof: Let K be the distribution kernel of Po. By Proposition (8.14)
we can find a properly supported 4> E COO(O x 0) such that 4> = 1 on a
neighborhood of(supp K) U ~n. Set b(x, e, y) = 4>(x, y)a(x, e, y). As in the
preceding proof, b E Am(o) and the distribution kernel of Pb is 4>K =[{,
so Pb =Po. Finally, Eb is proper since it is contained in supp 4>. I

I
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By Proposition (8.26), we can modify a so that E a is proper without
affecting Pa or the behavior of a along ~n (which is all that matters in
(8.29)), and we henceforth assume that this has been done. We then have

where the inner integral converges nicely since the function y -+ a(x,~,y)

belongs to C~ (n) for each x and ~. If we set

b(x,~, y) = a(x,~, x + y)

this becomes

p(x,1)) =JJe2JTi(X- Y )'{b(x, ~,y - x)e2JTi(y-x).q d1)d~

=JJe-2JTiz·({-q)b(x,~, z) dzd~

=Jba(x, ~, ~ - 1)) d~,

or

(8.30)

where ba denotes the Fourier transform of b in its third variable.
Since a E Am(n) and b(x, 1),') E C~ for each x and 1), for x in any

fixed compact subset of n we have

(8.31)

In particular,

The triangle inequality implies that

1 + Ie +1)1 ~ (1 + IW(1 + 11)1),

and raising both sides to the (positive!) power Iml + letl shows that
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Ja;b3(x, 17,oea de = [D; Je
2W;Y'€a;b3(x, 17,e) deL=o

=D;a;b(x, 1], y)ly=o
=D;a;a(x, 1], y)ly=~'

\p(X, 1]) - L:: ~!D;a~a(x, 1], Y)ly=~1 S; 2Ck(1 + 11]1)"',
laid

where J.lk = max(m + n, 0) - k. Condition (i) of Theorem (8.20) is thus

fulfilled, and we are done. I

so

But

If we apply this estimate to (8.30) with N = Iml + lal + n + 1, we see that

ID~D~p(x,1])1 S; Ca .p(l + 11]l)lml+la l,

which is condition (ii) in Theorem (8.20).
To establish condition (i), we apply Taylor's theorem to the function

(-+b3(x,17+(,e), set (= e, and apply (8.31):

\b3(x,e+1],e)- L a;b3(x,1],e)~~1
lal<k

k ~

S; Ck sup lei la;b3 (x, 17 + te, e)1
(al=k. 0:5 t :5 1

S; Ck.N sup lelk (l + 11] + tWm
-

k (l + IW- N
.

09:5 1

(These estimates, like the preceding ones, hold for x in a fixed compact

subset of n.) If lei < ~11]1. we take N =k and obtain

\b3(X, ~ + 17, e) - L a;b3(x, 17, e) ~~ IS; c~(1 + 117l)m-k.
lal<k

If lei ~ ~11]1. we take N = 2k + n + max(m - k, 0) and obtain

\b3(X, e+ 1], e) - L:: a~b3(X, 17, e) :~ IS; c~(l + lel)-n-k.
laid

Substituting these results into (8.30) and integrating in polar coordinates,

we see that

Ip(x,lJ)- L:: Ja;b3(X'17,e)~ d~1
lal:5 k

S; c~ [ (1 + 11]l)m-k de + C~ [ (1 + Iw-n- kde
J\€I<llll/2 JI€\~lllIl2

S; Ck [(1 + 11]l)m+n-k + (1 + IlJl)-kj.

I

I
I

I
I
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(8.32) Corollary.
If a E Am(o), there is a properly supported Q E wm(O) such that Pa - Q
is a smoothing operator. If a E sm(o) (so that Pa = a(x, D»), there is a
properly supported Q E IIIm(o) such that a(x, D) - Q E w-oo(O).

Proof: By Proposition (8.25) there exists b E Am(o) such that Pb
is properly supported and Pa - Pb is smoothing, and by Theorem (8.27),
Pb E IIIm(O); this proves the first assertion. Moreover, the b in Proposition
(8.25) is constructed so that the distribution kernel of Pa - Pb vanishes on
a neighborhood of the diagonal. Thus if a E sm(o) and q is the symbol of
Pb given by (8.28), by (8.6) (a - q)Hx, z) vanishes near z =0 for each x.
By Theorem (8.8a), (a - q)Hx,') is a Schwartz class function for each x,
with estimates depending uniformly on x for x in a compact set, and hence
the same is true of (a - q)(x, .). Thus a - q E w-oo(O); in other words,
Pa - Pb E 111- 00 (0). I

As we observed in §8B, whether P E IIIm(O) has a unique symbol or not
depends on the nature of 0. However, if P is properly supported, (8.28)
gives a canonical choice of symbol for P, and we shall denote it by Up:

(8.33)

We can now obtain a perfect correspondence between symbols and opera­
tors if we follow the philosophy introduced in §8C of regarding symbols and
operators of order -00 as negligible, i.e., of considering equivalence classes
of symbols and operators modulo symbols and operators of order -00.

(8.34) Corollary.
The map p --+ p(x, D) induces a bijection from Soo(O)/s~oo(O) to
11100 (0)/111- 00 (0), and tIle map P --+ up induces a bijection from
111 00 (0)/111-00 (0) to Soo(O)/S-oo(O). These bijections are mutually
inverse.

Proof: Each equivalence class in 111 00 (0)/111-00 (0) contains a properly
supported operator, by Corollary (8.32). The assertions therefore follow
from Proposition (8.11). I

We are now in a good position to compute transposes, adjoints and
products of pseudodifferential operators. The terminology we employ is
as follows: If T and S are linear maps from C~(O) to Coo(O), we say
that S is the transpose of T and write S = T' if (Tu, v) = (u, Sv) for
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all u, v E C.;"'(O); we say that S is the adjoint of T and write S =
yo if (Tu, v) = (u, SV) for all u, v E C.;"'(O). If T has the distribution
kernel K(x, y), then T' and T" have the distribution kernels [{'(x, y) =
I«y, x) and [{"(x, y) =K(y, x) respectively. It follows that ifT is properly
supported, then so are T' and T".

(8.35) Lemma.
Suppose p E sm(o). Then p(x,Dy =Pa where a(x,e,y) =p(y, -e), and
p(x, D)" = Ph where b(x, e, y) =p(y, e).

Proof: We consider only p(x, Dy; the argument for p(x, D)" is essen­
tially identical. Suppose u, v E C.;"'(O). Since

I (p(x,D)u, v) =fff e2"i(r-Y)'{p(x,e)u(x)v(y)dydedx,

to obtain

Therefore

I

p(x,D)'v(y) =y(y) =fl e2"i(r-Y)'{p(x,~)v(x)dxde

= If e2"i(y-r H p(x, -e)v(x) dx de,

so that p(x, D)' =Pa with a{x,~, y) = p(y, -~) as claimed.

(p(x,D)u, v) = (u,g) = (u,y).

the proof is just a matter of reversing the order of integration. This is not
a routine application o(Pubini's theorem, however, since the triple integral
is (usually) not absolutely convergent. Instead, we apply Fubini's theorem
to the absolutely convergent double integral

where

(p(x, D)u, v) = f g(e)U(e) de,

g is a rapidly decreasing function by Lemma (8.5), so we have

I
I
I
I
I
I
I
I
I
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(8.36) Theorem.
If P E wm(O) is properly supported, then pi, p. E wm(O), and

Proof: This is an immediate consequence of Theorem (8.27), Corol-
lary (8.34), and Lemma (8.35). I

(8.37) Theorem.
If p E wm(O) and Q E '11m' (0) are properly supported, then QP E
wm +m ' (0) and

Proof: Since P =(Pi)" by Lemma (8.35) we have

that is,

Therefore,

which means that

QP = Pa where a(x,e,y) =uQ(x,e)up'(y,-e).

Clearly a E Am+m' (0), and QP is properly supported by Corollary (8.13).
Hence, by Theorem (8.27), QP E wm +m ' (0) and

UQP(x,e) ~ I: ~!afn;[uQ(x,e)up,(y, -OJly=x·
1"12: 0
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Now, by the product rule,

SOO(O) is a *-algebra (i.e., algebra with involution) under pointwise
multiplication and the involution P -+ p. S-oo (0) is a *-ideal, so the
quotient SOO(O)/S-OO(O) inherits the structure of a *-algebra. On the
other hand, by Theorems (8.36) and (8.37) the set of properly supported
operators in \1100(0) is a *-algebra under operator composition and the
involution P -+ p.. Again, the operators of order -00 form a *-ideal,
so in view of Corollary (8.32), \1100(0)/\11-00(0) inherits the structure of
a *-algebra. The correspondence P -+ p(x, D) and its inverse P -+ Up
(as in Corollary (8.34» are not homomorphisms - after all, the symbol
algebra is commutative whereas the operator algebra is not - but they
become homomorphisms if we neglect all but the highest order terms in
the asymptotic expansions of Theorems (8.36) and (8.37). Indeed, a glance
at these expansions immediately yields the following result.

( t) "" (_1)1
6
1af3 ( t) a-r+6Df3+-r+6 ( t)uQP x, .. ~ L...J 13!"(!o! (uQ x, .. . ( " up x, ..

f3,-r,6-""l"" (_1)1
6
1] 1 f3 A f3+A- L...J L...J ~ 13!a( UQ(x,e)· a( D" up(x,e)·

f3,A H=A "(

But by the binomial theorem, if x =(1,1"",1) E jRn,

"" (_1)1 61 __ A_{l if,X=O,
L...J "(!o! - (x x) - 0 if ,X =1= O.

-r+6=A

and we are done.

Therefore,

UQp(x, e) ~ l: 13~"(!atuQ(x, e) .al D~+-r [up.(x, -e)],
f3,-r

with the understanding that, for each j ~ 0, all the terms with 1131 +1"(1 = j
(of which there are a finite number) are to be grouped together to form
a single term pj(x,e) E sm+m'-j in the asymptotic sum. With the same
understanding, Theorem (8.36) then implies that

soI
I
I,
I
I

I
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(8.38) Corollary.

The bijections of Corollary (8.34) are *-algebra homomorphisms modulo
lower order terms. More precisely:
a. If P E >I1 m (11) and Q E >11 m ' (11) are properly supported then then

UPq = UpUq (mod sm+m'-l(11»,

Up. =Up (mod sm-l(11».

b. If p E sm(11) and q E sm' (11) and p(x, D) and q(x, D) are properly
supported then

p(x, D)q(x, D) = (pq)(x,D) (mod >I1 m+m'-l(11»,

p(x, D)" =p(x, D) (mod >I1 m
-

1 (11».

There is yet another algebra structure that is preserved by the symbol­
operator correspondence up to lower order terms. Namely, for Coo func­
tions on 11 x jRn one has the Poisson bracket

~ ({}p {}q (}q (}p)
{p,q} =L., {}ej {}Xj - {}ej (}Xj ,

which makes Soo(11) and Soo(11)/S-oo(11) into Lie algebras. (More pre­
cisely, ifp E sm(11) and q E sm'(11) then {p,q} E sm+m'-l(11).) On the
other hand, by Theorem (8.37) and Corollary (8.32), >I1 OO (11)/IIf-oo(11) in­
herits a Lie algebra structure from the commutator of operators, (P, Ql =
PQ - QP. If we subtract the asymptotic expansion for the symbol of QP
from that of PQ, we see that the highest order terms cancel and that the
first remaining terms give the Poisson bracket, except for a factor of 211"i

becasue one has Dz instead of Oz. In other words:

(8.39) Corollary.
If P E >I1m (11) and Q E IIfm' (11) are properly supported then (P, Ql E
>I1 m+m'-l(11) and

U[P,qj = 2~i{uP,uq} (mod sm+m'-2(11».

If p E sm(11) and q E sm' (11) and p(x, D) and q(x, D) are properly sup­
ported then

(P(x, D), q(x, D)l = 211"i{p, q}(x, D) (mod >I1 m +m '-2(11».



EXERCISES

1
p(x, D)(vu) = L ,DOlv. (arp)(x, D)u + Rk U.

0'.
10l1$k

4. (A product rule for 'liDO) Suppose p E sm(n) and v E COO(n). Show
that for every positive integer k there exists Rk E 'lim-k-1(n) such
that

1. Show that if u E S, there is a sequence of finite sums of the form
SN(X) = L,f~~) cfe21fi

:d f UCef) such that aOl SN -+ aOlu uniformly on
compact sets for every 0'.

2. Our hypotheses about proper support are sometimes more stringent
than necessary. For example, the product of t.wo 'liDO is well-defined
if at least one of them is properly supported. Formulate and prove ver­
sions of Theorem (8.37) and Corollaries (8.38) and (8.39) (as corollaries
of these results themselves) that apply in this more general situation.

3. Since a=27riD, the asymptotic formula for upo in Theorem (8.36) can
be written formally as

Show that if P =p(x, D) where p E S(lR2n) (so P E 'li-oo(lRn )), then
upo = e27fiD.·Dt p (exact equality!). (Hint: Use (8.6).)

Another interpretation of e 27fiD.,Dt is available, as an operator on
S(lR2n) defined by the Fourier transform:

In certain cases one can obtain an exact formula for the product of two
'liDO, with no error term. The following exercises examine three such
cases; in all of them, one should work directly with the definition (8.3)
rather than trying to apply the results of this section.

294 Chnptcr 8

The symbol-operator correspondence is related to the problem of defin­
ing a correspondence between observables in classical mechanics and ob­
servables in quantum mechanics. For the latter purpose one should insert
factors of Ii (Planck's constant) in various places in our formulas, and the
asymptotic expansions of the theorems in this section then become expan­
sions in powers of Ii. The correspondence between Poisson brackets and
commutators is of particular importance in this setting. See Folland [15].
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5. Suppose P, q, r E SOO (0), p is independent of ~, and r is independent of
x. What are p(x , D) and rex, D) in these cases? Show that (pq)(x, D) =
p(x, D)q(x, D) and that (qr)(x, D) = q(x, D)r(x , D).

6. Show that the result of Exercise 4 holds with Rk =0 if v is a polynomial
of degree ~ k.

7. Show that if p E sm(o),

I
D"'fp(x, D)u) = L /3~'1 (D~p)(x, D)[D"Y u).

f'+"Y='" .'Y.

E. Sobolev Estimates

We now state and prove a continuity theorem for pseudodifferential opera­
tors with respect to Sobolev norms. Our argument is an elaboration of the
one we used to prove Proposition (6.12).

(8.40) Theorem.
Suppose P E wm(O).
a. P maps H~(O) continuously into H;'::'m(O) [or all s E JR.; that is, i[

t/J E C~(O) then IIt/JPull.- m ~ C.,</>lIuli. [or all u E H~(O).

b. If P is also properl.y supported, P maps H;OC(O) continuously into
H;'::'m(O) [or all s E JR.; that is, [or every t/J E C~(O) there is a t/J E
C~(n) such that /It/JPull.-m ~ C</>,./It/Jull •.

Proof: Let P =p(x, D). Then the map u -+ t/JPu is q(x, D) where
q(x,~) = t/J(x)p(x,e). To prove (a), it therefore suffices to show that if
q(x,~) E sm(O) and q(x,~) =0 for x outside some fixed compact set B,
then Q =q(x, D) is bounded from H~(O) to H._m.

Suppose then that u E H~(O). Qu is defined by the recipe for the
action of Q on distributions in §8A, and Qu has compact support - in
fact, supp Qu C B. It follows that

~(.,,) = (Qu, e- 2
..iCh ) = JJ e2"i:r:'({-~)q(x,~)'u(~) dx d~

=Jql('" - e, e)u(~) de,
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where iii denotes the Fourier transform of q in its first variable. lIence. if

v E S.

where

f(e) =(1 + leI2)./2u(e). g(1/) =(1 + 11/12)(m-.l/2v(1/).
K(1/.e) =qi(1/- e. e)(l + leI 2)-./2(1 + 11/1 2)(._ml/2.

Since q(x.e) has compact support in x. for any multi-index 0< we have

1("ql«(,e)1 = IflD.:;e-2..iz-{lq(x,e)dxl

=If e-2..iZ·(D:q(x,Odxl $ Ca (l + leI2)m/2,

so that for any positive integer N,

Hence, by Lemma (6.10).

IK(1/,e)1 $ ClV(l + leI2)(m-' l/2(1 + 1f71 2)(.-m l/2(1 + 11/- eI2)-N
$ C;"(1 + 17) - eI 2)-N+I.-ml/2.

If we choose N > ~n + Is - ml. we see that

Therefore, by (0.10) and the Schwarz inequality,

so the duality of H._ m and Hm _. implies that IIQUIl.-m $ C.llull.. as

desired. This proves (a).
Now suppose P is properly supported. u E maC(O), and ¢ E C~(O).

By Proposition (8.12) there is a compact B C 0 such that the values
of Pu on supp ¢ depend only on the values of u on B. Thus if we pick
t/J E C~(O) with t/J = 1 on B, we have ¢Pu = ¢P(t/Ju). By part (a), then,

II¢Pu ll.-m $ C.llt/Jull.. which proves (b). I
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EXERCISES

1. Assume 0 =JR.". Find sufficient conditions on p E sm(JR.") for p(x,D)
to be bounded from H. to H.-m (globally, with no cutoff functions).

2. The boundedness of the function p is not necessary for the boundedness
of p(x, D) on Ho =£2. Show, for example, that if p E £2(0 XJR.") then
p(x,D) (defined by (8.3), even though p may not belong to 5 00 (0» is
a compact operator on L2(0). (Hint: Theorem (0.45).)

F. Elliptic Operators

A symbol p E sm(o), or its corresponding operator p(x, D) E Wm(O), is
said to be elliptic of order m if for every compact A C 0 there are
positive constants CA, CA such that

This agrees with our previous definition when p(x, D) is a differential op­
erator; see the remarks at the beginning of §6C. As we did with differential
operators, when we say that P E Wm(O) is elliptic, we shall always mean

that it is elliptic of order m.
In this section we shall show that elliptic pseudodifferential operators

are invertible in the algebra Woo(O)/w-oo(O)j this will yield an easy proof
of the elliptic regularity theorem for pseudodifferential operators and a
proof that elliptic differential operators are locally solvable. We shall also
derive a version of Girding's inequality for pseudodifferential operators. To
begin with, we state the following technical lemma, whose proof we leave
to the reader (Exercise 1).

(8.41) Lemma.
If p E sm(O) is elliptic, there exists ( E Coo(O x JR.") with the following
property: For any compact A C 0 there are positive constants c, C such
that for x E A we have
a. (:r,e) = 1 when lei ~ C;
b. Ip(x,e)1 ~ clelm when (x,e) i= o.

If £ is a differential operator on 0, a left (resp. right) parametrix for
L is usually defined to be an operator T (not necessarily a WDO), defined
on some suitable space of functions or distributions on 0, such that T £ - I
(resp. LT - I) is a smoothing operator. In our context, we shall define
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a parametrix for a '1IDO P E '1100 (0) to be a properly supported '1IDO
Q E '1100 (0) such that PQ-I E '11- 00 (0) and QP-I E '11-00 (0). (Here and
in the following discussion, we may modify any '1IDO by adding an element
of '11- 00 (0) to make it properly supported, as the need arises. This has no
effect on our calculations, which are all performed modulo '11- 00 (0).)

I (8.42) Theorem.
If P E '1I m (O) is elliptic, P has a parametrix Q E'1I- m (O).

I
I
I
I

Proof: Let P = p(x, D), and let ( be as in Lemma (8.41). Let qo =
(/p, with the understanding that qo =0 wherever ( =O. Since qo(x,e) =
1/p(x,e) for large e and p is elliptic, it is easily verified (Exercise 2) that
qo E s-m(o); moreover, qop-1 has compact support in e and hence belongs
to S-OO(O). Let Qo = qo(x, D); then by Corollary (8.38),

O'QoP =qop (mod S-I(O»

= 1- rl where rl E S-I(O).

Let ql = (rdp = rlqo E s-m-l(O) and Ql = ql(X, D). By Corollary
(8.38) again,

O'Q,P =qlP (mod S-2(0»

= rl - r2 where r2 E S-2(0),

and hence

O'Q.P =qkP (mod S-k-l(O»

=rk - rHl where rk+l E S-k-l(!l),

and hence

We now construct qj inductively for j 2: 2. Having constructed qj E
s-m-j (0) for j < k so that (with Qj =qj(x, D»

I
I
I
I
I
I
I
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Now, by Theorem (8.16) and Corollary (8.32), there is a properly sup­
ported Q =q(x, D) such that q - 2:;;" qj, and for any k we have

tTQP - 1 = tT(Qo+"+Q.)P - 1 (mod S-k-l(O))
=0 (mod S-k-l(O)),

so QP - I E W-OO(O). In exactly the same way, we can construct Q' E
w-m(O) such that PQ' - I E w-OO(O). But then

PQ - I =(PQ' - 1) + P(QP - 1)Q' - PQ(PQ' - 1) E w-OO(O),

so Q is a parametrix for P.

As an immediate corollary, we obtain a generalization of the elliptic
regularity theorem (6.33) to pseudodifferential operators. We shall derive
a further refinement of this result in §8G.

(8.43) Theorem.

Suppose P E wm(O) is elliptic and properly supported, and u E 1)'(0).
If Pu E H~OC(O), then u E H~+m(O). In particular, if Pu E 0 00 (0) then
u E 0 00 (0).

Remark: The hypothesis of proper support can be dropped if one
assumes u E e'en).

Proof: Let Q E w-m(O) be a parametrix for P. We have QPu E
H~+m(O) by Theorem (8.40), and (I - QP)u E 0 00 (0) since 1- QP E
W-OO(O). Hence u =QPu + (I - QP)u E H~+m(O). The second assertion
follows from Corollary (6.7). I

We now derive the local solvability theorem for elliptic operators. First,
a technical lemma.

(8.44) Lemma.

Suppose X is an M-dimensional subspace ofOge'(R") (0 < M < 00), and
Xo E R". For I:: > 0, let W, =R" \ B,(xo).
a. There exists I:: > °such that the restriction map h -+ hlW, is injective.
b. Let I:: be as in (a). For any f E e'eR") tllere exists g E Oge'(W,) such

that (J - g, h) = 0 for all hEX.
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Proof: Let hl, ... , hM be a basis for X. If (a) is false, for each k 2:
1 there are constants bt, .. . ,b~ such that maXm Ib~ I = 1 and L: b~ hm
is supported in BI/k(XO). By passing to a subsequence we may assume
that limk_oo b~ = bm exists for each m. But then maxm Ibm I = 1 and
L: bmhm =0 (since supp(L: bnhm ) C {xo}), which is impossible since the
11m's are linearly independent.

To prove (b), let 14 = {hIW.: hEX} with (asin (a). Then 14 is a Hilbert
subspace of L 2(W.) since Xc C';' and dim ~ < =, and {hm IW'}~=l is a
basis for ~. The elements of the dual basis for ~ can be approximated in
L2 (W.) by functions in C,;,(W.); hence, there exist gl,"" gM E C';'(W.)
such that the matrix «g"hm }) is nonsingular. Given I E £', then, there
are unique constants Cl, ... , CM such that L:, Ct(gt, hm } = (I, hm ) for m =
1, ... , M, so we can take 9 = L:cmgm. I

(8.45) Theorem.
Suppose P is an elliptic differential operator with Coo coefficients on O.
Every Xo E 0 has a neighborhood U C 0 such that the equation Pu = I
has a solution on U for every I E '])'(0).

Proof: Let W be an open set such that Xo EWe W c 0 and W is
compact, and pick <P E C';'(O) with <P = 1 on W. We first observe that it
suffices to consider I E £'(0), for if IE '])'(0), a solution to Pu =<PIon
a neighborhood U of Xo with U C W also satisfies Pu =I on U.

Let Q be a parametrix for P, and let S = PQ - I. Since P and Q
are properly supported, so is S; hence, by Proposition (8.12) there is a
compact A C 0 such that the values of Su on W depend only on the
values of u on A. Pick 1/J E C.;"'(O) such that 1/J = 1 on A, and define
the operator T by Tv =<pS(t/Jv); then T E lJI-oo(JRn) (it is given by the
amplitude a(x, e, y) =cfJ(x)us(x, Ot/J(y» and Tv =Sv on W for any v. If
for any I E £'(JR n) we can find v E '])'(JRn) such that (T + I)v = I on a
neighborhood U C W of Xo, we are done. Indeed, let v= vlO; then on U
we have PQv =(S + I)v =(T + I)v =I, so u =Qil does the job.

Suppose then that I E £'(JRn). By Corollary (6.8), I E H, for some
s E JR. The range of T consists of Coo functions supported in supp <P, so by
Theorem (8.40) and Rellich's theorem (6.14), T is compact as an operator
on H,. By Corollary (0.42), the equation (T+I)v = I has a solution v E H,
provided that I is orthogonal in H, to the space N = {g : (T,' + I)g =O},
where T,· denotes the adjoint of T with respect to the inner product on
H,.
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Now, for 9 E 'N we have 9 = -T;g, so

-(llg), = (lIT,"g), = (Tflg), = (A'TfIA'g}o = (I,T"A2'g),

where A' is defined by (6.4) and T" is the adjoint of T as defined in §8D.
Thus f .L 'N if and only if (I, h) = 0 for all h in the space X = {T" A2,9 :
9 E 'N}. Note that X C C';{' since T"v =lfS"(~v) and S" is smoothing.

In short, there exists v E H, such that (T + I)v = f if and only if
(I, h) = 0 for all h in X, a finite-dimensional subspace of C';{'. This may
not be the case, but by Lemma (8.44), for some l > 0 there is always a
9 E C';{' with support disjoint from B.(xo) such that (I - g, h) =0 for all
hEX, and then there exists v E H, such that (T + I)v = f - g. But then
(T + I)v = f on B,(xo), so we can take U =B.(xo) n W. I

We now turn to Garding's inequality for pseudodifferential operators.
We shall say that a symbol p E sm(o), or it.s corresponding operator
p(x, D), is strongly elliptic if for every compact A C 0 there are positive
constants e, C such that

(8.46) Rep(x,e) ~ e(l + 1~12)m!2 for x E A and I~I ~ c.

(This definition differs slightly from the one in §7A when p(x, D) is a differ­
ential operator; the set we called IT there corresponds to the A here. The
possible inclusion of lower order terms in p and the replacement of 1~lm by
(1 + 1~12)m/2 are of no consequence since (8.46) is to hold only for large

I~I·)

(8.47) Theorem.
Suppose P E Wm(o) is strongly elliptic, and let Po = ~(P + PO). There
exists a properly supported Q E Wm!2(0) such that Po - Q"Q EW-OO(O).

Proof: The argument is very similar to the proof of Theorem (8.42).
Let P =p(x, D) where p satisfies (8.46), let (be as in Lemma (8.41) with
p replaced by Re p (possible since Re p is elliptic), and let

It is easy to verify (Exercise 4) that qo E sm!2(0) and qO E s-m!2(0),
and qOqO - 1 is in S-OO(O) since it has compact support in~. Moreover,

by Corollary (8.38),

crPo-Q~Qo =Rep - q~ (mod sm-l(o»

= rl E sm-l(o).
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Indeed, if we have found ql," .,qk-l, we observe that rk(z,D)" = rk(z,D)
and hence, by Corollary (8.38), rk - 1"k E Sm-k-l(1'2). Thus, if qk E

S(m/2)-k(1'2) is real and Qk =qk(X, D), Corollary (8.38) gives

u E C~(V).Re(p(z, D)u Iu) ~ (c - f)lIull~/2 - Cllull~,

I(Ru Iu) I :s IIt/JRull-.llull. :s Cllull~·

Also, (Q"Qu Iu) = (Qu IQu) ~ 0, so

Re(p(z,D)ulu) ~ -J(Rulu)I+(c-{)lIull~/2~ (c-f)lIull~/2-Cllull~·1

(8.48) Garding's Inequality.
Suppose p E Sm(1'2) satisfies (8.46) and W is an open set with compact
closure in 1'2; let c be the constant Cw in (8.46). For any f > 0, any
s < !m, and any open set V with V C W there is a constant C ~ 0 such

that

Proof: Replacing 1'2 by W, we may assume that Rep(x,e) ~ clelm for
all zEn and lei sufficiently large. Let p(x,e) =p(x,e)-(c-f)(1+leI2)m/2.
Then p E Sm(1'2) and p satisfies (8.46) with CA = l for all A, so we can
apply Theorem (8.47) to 15 = p(x, D) to obtain Q E \II m

/
2 (1'2) with R =

Po - Q"Q E \11- 00 (1'2). On the other hand, 15 =p(z, D) - (c - l)Am where
Am is defined by (6.4), so if u E C~(V),

Re(p(x, D)u, Iu) = Re(Pu Iu) + (c - f)(Amu Iu)

=(Pou Iu) + (c - f)(Am/2u IAm/2u)

=(Q"Qu Iu) + (Ru Iu) + (c - f)llull~/2'

But (Ru Iu) = (t/JRu Iu) whenever t/J E C~(n) and ¢ = 1 on V, so by

Theorem (8.40),

O'Po-(Q~+"+Q: )(Qo+..+Q.)

=rk - 2qk(qO + ... + qk-d - q~ (mod sm-k-l (1'2))

=Rerk - 2qoqk (mod Sm-k-l(1'2».

Hence we can take qk = ~qO(Rerk)'
Finally, by Theorem (8.16) and Corollary (8.32), there is a properly

supported Q =q(z, D) E \IIm/2(1'2) such that q ~ 2:;;" qj' Then Po-Q"Q E

\11-00(1'2), and we are done. I

Proceeding inductively, for j ~ 1 we can find real qj E s(m/2)- j (1'2) such

that if Qj = qj(z, D),

Po - (Qo + ... + Qk-d(Qo + ... + Qk-l) = rk(z, D), rk E sm-k(1'2).

I

I
'1

I

I
I

I
I

I
I

I
I
I

I
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The original Girding inequality (7.15) follows immediately by taking
the m and 0 in (7.15) to be 2m and V in (8.48), for the estimate in (8.48)
for u E C~(V) clearly extends to u E H~/2(V)'

Girding's inequality implies that if P =p(x, D) where p satisfies the
strong positivity condition p(x, e) ;::: clelm

, the symmetrized operator Po =
!(p + PO) is a positive operator modulo a lower order error term. One
may ask if a similar conclusion holds under the weaker hypothesis that
p(x,O;::: O. That is, is it true that

(8.49) p;::: 0 => Re(p(x, D)u Iu} ;::: -Cllull~ (u E C~)

for some s < ~m? If this were true, we could take f = 0 in (8.48) ­
just apply (8.49) to p(x,e) = Rep(x,e) - c(1 + leI2)m/2. For this reason,
an inequality of the type (8.49) with s < ~m is called a "sharp Girding
inequality" .

The arguments above are insufficient to yield such a result. (The proof
of Theorem (8.47) breaks down if we merely assume that p ;::: 0 because the
square root function is not differentiable at the origin.) Moreover, simple
examples (see Exercise 5) show that one should not hope for (8.49) to hold
for s < ~m - 1. In fact, (8.49) with s = ~m - ~ was proved by Hormander
and extended by Lax and Nirenberg to wDO acting on vector-valued func­
tions; this is what is usually called the sharp Garding inequality. For
four different proofs of this result and a number of important applications,
see Folland [15], Hormander [27, vol. III], Taylor [48], and Treves [53, vol. I].
Moreover, Fefferman and Phong have proved the much deeper result that in
the scalar case, (8.49) holds with s = ~m - 1; see Hormander [27, vol. III].

EXERCISES

1. Prove Lemma (8.41). (Hint: Use the ideas in Exercise 5, §8B.)

2. Show that if p E sm(o) is elliptic and ( is as in Lemma (8.41), then
(/p E s-m(o).

3. Show that if P E wm(O) has a parametrix Q E w-m(O), then P and
Q are elliptic.

4. Show that if p E sm(o) is real and strongly elliptic and ( is as in
Lemma (8.41), then (pl/2 E sm/2(o) and (p-l/2 E s-m/2(O).

5. Let p E S2(JR) be given by p(x,O = 47r2 X 2e, so that p(x, D)u(x) =
-X2u"(x).
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a. Show that for u E C~(lR),

Re(p(x, D)u Iu) =JIxu'(x) + ~u(xW dx - ~Jlu(x)12 dx.

b. Show that for any ( > 0 there exists u E C~(JR) such that

I
I
I
I
I
I
I
I
I
I
I
I

JIxu'(x) + !u(xW dx < (Jlu(xW dx.

Hint: Pick </J E C~(lR) with </J(x) = 1 for x E [4,2] and supp </J C
[!. 4], and take u(x) =x- 1/

2</J(x6
) where 6 is a small constant times

(. (The motivation is that I(x) =x- 1/ 2 satisfies xl' +!I =0, and
u is a truncated version of I.)

c. Conclude that the estimate Re(p(x, D)u Iu) ~ -~lIull~ is sharp.

G. Introduction to Microlocal Analysis

One of the principal applications of pseudodifferential operators is in mak­
ing a detailed analysis of singularities of functions and distributions, in
which one considers not only the places where a distribution is singular
but the directions in which it is singular. (For example, I(x,y) = Iyl is
perfectly smooth in the x direction but is not C 1 in the y direction along
the line y = 0.) This idea of examining things locally both in position
space and in direction space goes under the name of microlocal analy­
sis. In this section we give an introduction to some of the basic ideas and
techniques of microlocal analysis - in particular, the notion of the wave
front set of a distribution.

Roughly speaking, the wave front set of a distribution u is the set of all
(x,e) such that u fails to be smooth at x in the direction e. To make this
more precise, suppose for the moment that u has compact support, so uis a
smooth function. We take the statement "u is smooth in the direction eo,"
where eo :f. 0 E jR". to mean that u(te) is rapidly decreasing as t -+ +00
for all ein some neighborhood of eo. For a general distribution u, then, we
take the statement "u is smoot.h at Xo in t.he direction eo" t.o mean that
for some </J E C~ with </J = 1 near xo, </Ju is smooth in the direction eo.
That these not.ions are reasonable may be seen by considering some simple
examples; see Exercise 3.

For reasons of efficiency, we shall proceed somewhat differently. We be­
gin by introducing some terminology and lemmas concerning the microlocal
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behavior of pseudodifrercntial operators. We then define wave front sets in
terms of pseudodifferential operators and prove a number of results con­
cerning them, and and finally we derive the characterization sketched above
as a theorem. In this section, the hypothesis that a pseudodifferential op­
erator is properly supported will be assumed wherever it is convenient,
without explicit comment.

If n is an open subset of R n, we shall set

(In coordinate-invariant terms, ron is the cotangent bundle of n with
the zero section removed, and Tin is the co-unit sphere bundle. See the
discussion at the end of §8H.) A subset U of Rn \ {OJ is called conic if
te E U for all t > 0 whenever e E U, and a subset V of ron is called conic
if (x,te) E V for all t > 0 whenever (x,e) E V. Note that a conic set in
TOn is completely determined by its intersection with Tin.

A pseudodifferential operator P =p(x, D) E \IIm(n) is called elliptic
(of order m) at (xo,eo) E TOn if there are positive constants c, C and a
conic neighborhood V of (xo, eo) such that

Ip(x,OI? clelm for all (x,e) E V with lei? c.
The characteristic variety of P, denoted by char P, is the complement
of the set on which P is elliptic:

char P = {(x,e) E TOn: P is not elliptic at (x,e)}.

At the other end of the scale, P = p(x, D) is called smoothing at
(xo, eo) if p(x, e) is rapidly decreasing on a conic neighborhood of (xo, eo),
that is, if there is a conic neighborhood V of (xo,eo) such that

ID~D€p(x,e)1$ CM,a,p(1 + IW-M for all M > 0, (x,e) E V.

The microsnpport of P, denoted by J-lsupp p. is the complement of the
set on which P is smoothing:

J-lSUppP = {(x,e) E TOn: P is not smoothing at(x,O}.

char P and J-lSUpp P are both closed conic sets. Their union is always
TOn since P cannot be smoothing and elliptic at the same point, but in
general they have a large overlap. It is easy to see that this definition of
char P agrees with our previous one when P is a differential operator; on
the other hand, J-lSUPP P is of no interest when P is a differential operator.
See Exercise 1. Incidentally, we follow Treves [53] in using the term "mi­
crosupport." Jlsupp P is called the "essential support" of P in Taylor [48]
and the "wave front set" of Pin Hormander [27].
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(8.50) Proposition.
For any P, Q E woo(n),

JlSUpp(PQ) C (JlSUPP P) n (JlSUPP Q).

Proof: It follows easily from Theorem (8.37) that uPQ is rapidly de-
creasing on any conic set where either Up or uQ is. I

(8.51) Proposition.
JlSUPP P = 0 if and only if P E w- oo (S1).

Proof: Suppose JlSUpP P = 0. If A C n is compact, each (x,C;) E
A X S, (0) has a conic neighborhood on which the symbol of P satisfies
estimates of the form ID~D{up(x,c;)1 ::; C(1 + I';I)-M. A x S,(O) can
be covered by finitely many such neighborhoods, and it follows that up
satisfies such estimates globally on roA; thus P E W- oo (n). The converse
is obvious. I

(8.52) Proposition.
Suppose V is a conic neighborJlOod of (xo,';o) E TOn. There exists p E
SO(n) such that p ~ O. Suppp C V and p(x,';) =1 for all (x,';) in some
conic neighborhood of (xo,';o) with 1';\ ~ 1. In particular, p(x, D) is elliptic
at (xo,';o) and JlSUpP p(x, D) C V.

Proof: Since V is conic, we may as well assume that 1';01 =1. Let A
and B be compact neighborhoods of Xo in S1 and C;o in Sl(O) ={C; : 1';1 =I}
such that A x B C V n Tin. Pick ¢ ~ 0 in C~(n) with supp¢ C A
and ¢ = 1 on a neighborhood of xo, and pick 1/J ~ 0 in Coo(SI (0» with
Supp t/J c Band 1/J = 1 on a neighborhood of ';0. Further, pick ( ~ 0 in
Coo(JR) such that «t) =0 for t ::; ~ and «t) =1 for t ~ 1. Then set

P E .)O(n) because it is homogeneous of degree 0 for large'; (as defined in
§8A) and Coo for small .; (by virtue of the factor of (). I

We are now ready to define the wave front set of a distribution u E
1)'(n):

WF(u) =n{char P: P E wO(n) and Pu E COO}.

W F(u) is a closed conic subset of ron. The intuition behind it is a microlo­
cal version of the elliptic regularity theorem which we shall prove below: If
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P is elliptic at (xo, ~o) and Pu is smooth then u must be smooth at (xo, ~o)j
hence W F( u) consists of the points Xo and directions ~o where u fails to
be Coo.

Note. In the definition of W F(u), char P is the characteristic variety of
P as an operator of order zero; if P E 111m(0) for some m < 0 then char P =
TOO, so only operators of true order zero are significant. Moreover, the
condition P E 111°(0) in the definition of WF(u) is merely a convenient
normalization; we could equally well use I1IDO of other orders. Indeed,
if P E 111m(0), choose an elliptic Q E l1I-m(O) (for example, Q = A-m
as defined by (6.4) or a properly supported variant thereof); then QP E
'1i°(O), and P is elliptic at (xo, ~o) (as an operator of order m) if and only
if QP is elliptic at (xo,~o) (as an operator of order 0), by Theorem (8.37).

If our definition of W F(u) is to do the job it was designed for, the
projection of W F(u) onto 0 should be the set of points at which u is not
Coo, namely, the singular support of u. We now show that this is the case.

(8.53) Theorem.

Let 11" : TOO -> 0 be defined by 1I"(x, 0 =x. lfu E 1)'(0), then 1I"[WF(u)] =
sing supp u.

Proof: If Xo ~ sing supp u, there exists t/J E C~(O) such that t/J(xo) =
1 and t/Ju E Coo. The operator Pv = t/Jv is p(x,D) where p(x,~) = t/J(x)j
hence P E '1i°(0) and P is elliptic near Xu. In other words, Pu E Coo and
(xo,~) ~ charP for all ~ i= 0, so Xo ~ 1I"[WF(u)].

Conversely, suppose Xo ~ 1I"[WF(u)]. For each unit vector ~ there exists
P E '1i°(0) that is elliptic on a conic neighborhood of (xo,~) such that Pu E
Coo. By compactness of the unit sphere, we can find PI, . .. PM E '1i°(0)
such that (i) Pi u E Coo for all j and (ii) for each ~ i= 0 there is a j such
that Pi is elliptic on a conic neighborhood of (xo, 0. Let P =L~ P/ Pi'

Then P is elliptic on a neighborhood V of Xo in 0 because Up = L~ lup; 12
(mod S-I(O», and Pu E Coo. By Theorem (8.43) (with 0 replaced by
V), u E COO (V), so Xo ~ sing supp u. I

If P is a I1IDO, we showed in Theorem (8.9) that sing supp Pu C
sing supp u for any distribution u. We now derive the microlocal refine­
ment of this result:

(8.54) Theorem.
If P E 111 00 (0) and u E 1)'(0) then

WF(Pu)c WF(u) (')JJsupPP.
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Proof: If (xo,eo) fi psupp P, by Proposition (8.52) we can find Q E
WO(O) such that Q is elliptic at (xo,eo) and psupp pnpsuppQ =0. Then
QP E W-OO(O) by Propositions (8.50) and (8.51), so QPu E Coo. But this
means that (xo,eo) f/. WF(Pu).

On the other hand, suppoSe (xo, eo) f/. W F(u), so there exists Q
WO(O) such that Qu E Coo and Q is elliptic on a conic neighborhood
of eo. We may assume that Re 0'Q ~ C > 0 for large e in some
neighborhood of (xo,eo). (Replace Q by Q"Q if necessary; this works since
O'Q-Q = IO'QI 2 (mod S-1(0» by Corollary (8.38).)

Claim: There exist R, S E WO(O) such that (xo, eo) f/. char Rand RP­
SQ E W-OO(O).

Granting the claim, we see that SQu E Coo since Qu E Coo and (RP­
SQ)u E Coo since RP - SQ is smoothing, so RPu E Coo; hence (xo,eo) rt
WF(Pu).

To prove the claim, pick an elliptic operator Q E WO(O) such
O''Q = O'Q on a conic neighborhood U of (xo,eo). (The assumption that

ReO'Q ~ C near (xo,eo) makes this easy: take O''Q = O'Q + 1- p where
p is as in Proposition (8.52).) Then, by Proposition (8.52) again, pick
R E WO(O) with (:fo,eo) rf; charR and IlsuppR CU. Finally, let T be a
parametrix for Q and set S =RPT. Since psupp R n psupp(Q - Q) =0,

we have RPT(Q - Q) E \}I-OO(O) by Propositions (8.50) and (8.51), so

RP - SQ =RP{I - TQ) + RPT(Q - Q) E W-OO(O),

and the claim is proved.

As an immediate corollary, we obtain the microlocal refinement of the
Coo regularity theorem for elliptic operators. (For the extension of this
result to Sobolev spaces, see Exercise 2.)

(8.55) Corollary.
If P E Wm(O) is elliptic, tIlen W F(Pu) =W F(u) for any u E 1)'(0).

Proof: Let Q be a parametrix for P; then QPu - u E Coo,
WF(u) = WF(QPu). By Theorem (8.54), then, WF(Pu) C WF(u)
and W F(u) =W F(QPu) C W F(Pu). I

Finally, we derive the more intuitive characterization of wave front sets
alluded to at the beginning of this section.
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(8.56) Theorem.
Suppose u E 1)'(0). Then (xo, eo) 1: WF(u) if and only if there exist
rjJ E C.;"'(O) such that rjJ(xo) = 1 and a conic neighborhood V of eo in
IR n

\ {OJ such that

sup(1 + leI)Ml(rjJune)I < 00 for all M > O.
{EV

Proof: If such a rjJ and V exist, choose p E Coo (IRn) such that supp pC
V,p = Ion a conic neighborhood of eo, andp E sl(O) as afunctionof(x,e)
that is independent of x. (Cf. the proof of Proposition (8.52).) Then p(rjJur
is rapidly decaying at infinity, so its inverse Fourier transform p(D)[rjJuJ is
Coo. But the operator Pv =p(D)[rjJv] is a \liDO of order zero whose symbol
equals rjJ(x)p(e) (mod S-I(O», so (xo, eo) rt char P and Pu E Coo. Thus

(xo,eo) 1: WF(u).
Conversely, suppose (xo,eo) rt. WF(u). There is a neighborhood N of

Xo in 0 such that (x,eo) 1: WF(u) for all x E N. Pick rjJ E C.;"'(N) with
rjJ(xo) = 1, and let

E = {e: (x,e) E WF(rjJu) for some x}.

Since WF(rjJu) C W F(u) n supp rjJ (this is a simple special case of Theo­
rem (8.54», eo 1: E. Moreover, E is a closed conic set, for if ej E E for
j 2: 1 and ej --. e, there exist Xj, necessarily in the compact set supprjJ,
such that (Xj,ej) E WF(¢u); by passing to a subsequence we can assume
that Xj -+ x, so (x,O E WF(¢u) and hence e E E. Hence, as in the
preceding paragraph, we can find p(O E SO(O) such that p =1 on a conic
neighborhood of eo and p = 0 on a conic neighborhood of E. But then
Ilsuppp(D) n WF(¢u) = 0, so p(D)[¢u] E Coo by Theorems (8.51) and
(8.53).

Moreover, by Theorem (8.Sa), the inverse Fourier transform pV of p

agrees with a Schwartz class function outside a neighborhood of the origin,
and the estimate (0.32) then implies that p(D)[¢u] = (¢u) * pV agrees
with a Schwartz class function away from supp ¢. Combining this with the
fact that p(D)[¢u] E Coo, we see that p(D)[¢u] E S. But then p(¢ur =
(p(D)[¢u]r E S, so (¢ur is rapidly decreasing on the set where p = 1.
Since this is a conic neighborhood of eo, we are done. I

EXERCISES

1. Let P =p(x, D) be a differential operator on O.

....--------------------------
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a. Show that the definition of char P in this section agrees with the
onein§IA.

b. Show that JLsupp P =TOO unless there is a nonempty open U C 0
such that p(x,~) == °for x E U.

2. Suppose u E 1)'(0) and s E IR. If (xo,~o) E TOO, we say that
u E H,(xo, ~o) if there exist q, E Cge'(O) with q,(xo) = 1 and a conic
neighborhood V of ~o in IRn

\ {a} such that (1+ 1~12)'/2~(~) is square­
integrable on V.
a. Show that u E H.(xo, eo) if and only if u =v + w where v E H~(O)

and (xo,~o) f/:. WF(w).
b. Suppose P E wm(O) is elliptic of order m. Show that u E H.(xo, eo)

if and only if Pu E H._m(xo, ~o).

3. Let n = k + m, and regard IRn as IRk X IRm with coordinates (x, y) and
dual coordinates (~,1]). Let JLk be Lebesgue measure on IRk, regarded
as a distribution on IRn «JLk,q,) = f q,(x,O)dx).
a. Show that if 4> E Cge', (4)llkn~,1]) = ~(~).
b. Conclude from Theorem (8.56) that if I E COO ,

WF(JJLk) = {«x,O), (0,1]»: x E suppI, 1] # o}.
c. More generally, suppose u E 1)'(lRk ), and let £(u) be the injection

of u into IRn «i(u), q,) = (u, ¢llRk). Show that W F(£(u» is the set
of all «x,O), (e,1]» with x Esuppu, (x,~) E WF(u), and 1]# 0.

4. Define u E 1)'(IR) by u =7fi6 - P.V.(I/x), that is,

(u, ¢) = 7fi</J(O) - lim1 q,(x) dx.
<-0 1"1>< x

Show that WF(u) = {(O,O: ~ > O}. Hint: Use Exercise I, §5F.

H. Change of Coordinates

In this section we shaIl show how pseudodifferential operators behave under
smooth changes of coordinates. Here is the setup: We suppose that 0 and
0' are open sets in IRn and that F ; 0' -+ 0 is a diffeomorphism, that is, a
Coo bijection with a Coo inverse. We denote the Jacobian matrix of F by
JF (i.e., JF = (8Yj/8xk) where y = F(x» and its adjoint (transpose) by
J}. If P is a properly supported wDO on 0, we transfer P to an operator
on functions on 0' by setting

p F u = [P(u 0 r 1
)] 0 F,

and our aim is to show that p F is a wDO on 0'.
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where

[1 d
F(x) - F(y) =io dt F(tx + (1 - t)y» dt = /l(x, y)(x - y)

Proof: The set No of all (x, y) E !1' x !1' such that the line segment
from x to y is contained in !1' is a neighborhood of An'. If (x, y) E No, by

the chain rule we have

(x,y) E N.F(x) - F(y) = /l(x, y)(x - V),

Qu(x) =JJe2"il'(x,v)(x-vHp(F(x), Ou(y)\ det h(y)I.p(x, y) dy d~,

Ru(x) =JJe2..i(F(x)-F(vl)-{ p(F(x), Ou(y)\ del. h(y)l[l - q,(x, V)] dyd~.

(8.58) Theorem.
Suppose F : !1' -+ !1 is a diffeomorphism, P E wm (!1) is properly sup­
ported, and pF : C~(!1') -+ COO (!1') is defined by pFu =[P(uoF- 1)]oF.

Then pF E wm (!1'), and

O"pF(x,O = O"p(F(x), [JF(X)]-10 (mod sm-l(!1'».

Proof: First suppose that Tn < -no Let Nand /l be as in Lemma
(8.57). By Proposition (8.15), we can find q, E Coo(!1' x!1') such that q, = 1
on a neighborhood of An' and supp q, is proper and contained in N. We

then have

pFu(x) =11 e2"i(F(Xl-Zl~p(F(x),~)u(F-1(z»dzd~

=11 e2 ..i(F(X)-F(v)Hp(F(x),~)u(y)ldeth(y)ldyd~

=Qu(x) + Ru(x),

where

/l(x, y) = 11

JF(tx + (1 - t)y) dt.

Since h(tx + (1 - t)y) is close to h(x) when y is close to x, and JF(X)
is invertible for all x, there is a neighborhood N C No of An,on which

/l(x, y) is invertible, so we are done. I

(8.57) Lemma.
With notation as above, there exist a neighborhood N ofthe diagonal An'
and a Coo map /l from N to the set of invertible n x n matrices such that

/leX, x) =h(x) for all x and
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We first dispose of the error term R. With notation as in (8.6), its
distribution kernel is

K(x, y) =p~ (F(x), F(x) - F(y))1 det JF(y)I[l - 4>(x, y)].

Now, p~ (F(x), F(x) - F(y)) is smooth away from x = y by Theorem (8.8),
and it has compact support as a function of y for each x since P is properly
supported. Hence K E Coo and K(x, .) E C~ for each x, and it follows
that the function

r(x,O =Je- 2
...

iz -{K(x, x - z) dz

belongs to 5- 00 (0'). But R = rex, D) by (8.6), so R E w--OO(O').
Returning to the main term Q, let v(x,y) be the inverse transpose of

p.(x, y). Since we assumed m < -n, the double integral defining Qu(x)
is absolutely convergent, so we may reverse the order of integration, make
the substitution e= v(x, y)T/, and restore the original order to obtain

Qu(x)

.=JJe2 i
(r-

y)·qp(F(x), vex, y)T/)1 det h(y)11 det vex, y)I4>(x, y)u(y) dy dT/

=JJe2 i
(r- Y)·Qa(x, T/, y)u(y) dy dT/,

where

a(x, T/, y) =p(F(x), vex, Y)T/) Idet h(y)!1 det vex, Y)I4>(x, y).

A simple calculation involving the chain rule shows that a E Am(o'). (The
point to be noted is that applying, for example, DYi to p(F(x),v(x,Y)T/)
gives V'qp(F(x),v(x,Y)T/)' [Dyjv(x,Y)T/]; the first factor is dominated by
(1 + IT/I)m-l, and the T/ in the second factor brings it back to (1 + IT/I)m.)
Q us properly supported because of the factor of 4> (cf. (8.23) and (8.24)),
so it follows from Theorem (8.27) that Q E w-m(O') and that

O"Q(x, T/) =p(F(x), v(x, x)T/)1 det h(x)11 det vex, x)1 (mod sm- 1 (0')).

But v(x,x) = [JF(x)]-t, so the expression on the right reduces to
p(F(x), [J;'(x)]-l'l), and the proof is complete.

This argument is still valid if m > -n, but the manipulation of the
integral defining Q requires more justification then. Instead, we shall finesse
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the problem as follows. Pick an integer M > Hn+m) and let S E 'It- 2M (0)
be a parametrix for tJ.M (tJ. = Laplacian) on O. Then P = PStJ.M + T
where T E 'It-OO(O). We can apply the preceding argument to the operators
PS and T to see that (PS)F E 'ltm- 2M (0/) and T F E 'It-OO(O/) and that

U(PS)F(X,e) =p(F(x), [JF(X)]-I~)(-47l'2I[JF(X)]-1~12)-M

(mod sm-2M-I(O')).

But tJ.M is a differential operator, so the elementary calculations of §IA
show that (tJ.M)F is a differential operator on 0/ and that its symbol
is (_41T2I[JHx)]-1~12)M modulo lower order terms. Since (PStJ.M)F =
(PS)F(tJ.M)F, the desired result follows from Corollary (8.38).

Remark: This proof can obviously be pushed further to obtain a
complete asymptotic expansion for the symbol of pF, but putting this
expansion in a reasonably neat form requires more effort. The definitive
result can be found in Hormander [27, vol. III, Theorem 18.1.17].

Theorem (8.58) paves the way for defining pseudodifferential operators
on manifolds. Namely, if M is a Coo manifold, a linear map P : e'(M)-..
1)'(M) is called a pseudodifferential operator of order m iffor any coor­
dinate chart V C M and any 1jJ, 1/J E C,;"'(V), the operator P.p,,,,u =1/JP(ljJu)
is a 'liDO of order m with respect to some, and hence any, coordinate sys­
tem on V. (More precisely, this means that if G : V -..]Rn is a coordinate
map then the transferred operator pi.~'u = [P.p,,,,(u 0 G)] 0 G-I belongs to
'lim(G(V».) If M =0 is an open subset of]Rn, this class of operators is
larger than Ilfm(o) in that it includes all smoothing operators. (If P is a
smoothing operator and 1jJ, 1/J E C,;"'(O) then the distribution kernel of P.p,,,,
belongs to C,;"', so it follows easily from (8.6) that P E 'It-OO(O). See also
Exercise 3.)

On a manifold M, one can define the symbol class sm(M) to be the
set of functions on the cotangent bundle T* M that satisfy estimates of the
form (8.2) in any local coordinate system. The precise symbol-operator
correspondence only works in local coordinates, as the lower-order terms
transform in complicated ways under coordinate changes, but by Theorem
(8.58), the local symbols of a IlfDO on M determine a well-defined equiva­
lence class in sm(M)jsm-I(M). This is enough to show that the notion of
ellipticity at a point (x, e) E T* M is independent of the local coordinates.
One can therefore define the characteristic variety of a IlfDO and the wave
front set of a distribution on M, just as before, as closed conic subsets of
TO M (the cotangent bundle of M with the zero section removed).



314 Chapter 8

A slightly better global notion of symbol is available for operators with a
principal symbol. If 0 C JR" and P E 'lIm(o), P is said to have a principal
symbol if there is a pm E CCXl(TOO) such that pm(x, tel = tmpm(x, e) for
t> 0 and Up - pm agrees for large ewith an element of sm-l(O). (The
restriction to large eis necessary since pm is usually not CCXl at e= 0.) For
example, the principal symbol of a differential operator is, up to factors of
21ri, what we called the characteristic form in §1A. Also, if P is elliptic with
principal symbol pm, any parametrix for P has principal symbol 1/ pm. It is
an easy consequence of Theorem (8.58) that if P is a 'liDO on a manifold M
that has a principal symbol in any local coordinate system, these symbols
patch together globally to make a well-defined function on T· M.

A more comprehensive account of these matters can be found in Treves
[53, vol. I).

EXERCISES

1. Suppose M is a smooth k-dimensional submanifold of JR", (1 is surface
measure on M, and f E CCXl(JR"). Compute the wave front set of the
distribution u == f du (i.e, (u, <p) == J t/>! du). (Hint: Use Exercise 3 in
§8G and Theorem (8.58).)

The next exercise uses the following extension of Theorem (0.19), which
may be proved using the ideas in the proof of Proposition (8.14) (see also
Rudin [41, Theorem 6.20] and Folland [14, Exercise 4.56]): Suppose {O,,}
is a collection of open sets in JR" and 0 == U0". There exist sequences
{<Pi} and {'h} in C~(O) such that (i) ,pi == 1 on supp <Pi; (ii) each ,pi is
supported in some 0,,; each x E 0 has a neighborhood that intersects only
finitely many suPP,pi; (iv) L, <Pi == 1 on O.

2. Suppose {Oo-} is a collection of open sets in JR" and 0 == U0". Suppose
P : £'(0) .... D'(O) is a linear map with the following properties: (i)
For each n, the map Per : £'(0,,) .... D'(O,,) defined by Pau == PulOa
belongs to wm(Oa). (ii) sing supp Pu C supp u for all u E £'(0). Show
that P == Q +R where Q E 'lIm(o) and R is smoothing. (Hint: Let <Pi
and ,pi be as in the remarks above, and let Qu == L, ,pi P(<Pi u).)

3. Suppose 0 is an open set in JR" and P : £'(0) 1)'(0) is a linear
map such that for any <p,,p E C~(O), the map u ,pP(<pu) belongs
to '11m (0). Show that P satisfies the hypotheses of Exercise 2 when
{Oa} is the family of open subsets of 0 whose closure is compact and
contained in O.
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4. Show by example that condition (ii) in Exercise 2 cannot be omitted.
(Hint: Let Pu(x) =u(x + a) on 0 =]Rn, and take each Ocr to be a set
of diameter < 14)
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INDEX OF SYMBOLS

Geometric Objects:
B r (:!:) (open ball), 2
char (characteristic variety), 32, 305
dO" (surface measure), 2
N(r) (half-ball), 223
Sr(X) (sphere), 2
v (normal vector), 5
W n (area of unit sphere), 8

Spaces of Functions, Distributions, and Operators:
Am(o) (amplitude class), 284
C k , Coo, 3
Cgo,4
COl, Ck+Ol (Holder spaces), 3
'1)' (distribut.ions), 18
e' (compactly supported distributions), 19
H. (Sobolev space) 190, 191
H?(0),200
Hk(0),220
H~OC(O) (localized Sobolev space), 198
S (Schwartz class), 4
S' (tempered distributions), 22
sm(o) (symbol class), 267
Soo(O), S-oo(O), 268
Wk(O) (Sobolev space), 221
wm(o) (pseudodifferential operators), 268
'1100 (0), '11- 00 (0), 269
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Multi·indices and (Pseudo-) Differential Operators:
DOl, 216, 266
p(x, D) (operator defined by a symbol), 267
Pa (operator defined by an amplitude), 284
laJ, a!, x Oi (multi-index notation), 2
~ (Laplacian), 66
A', 193
OJ, 2
001 ,3
Ov (normal derivative), 5
ov_, (interior normal derivative), 116
ov+, (exterior normal derivative), 117
{}z (Cauchy-Riemann operator), 34
V, 3

Otlwr Operators and Functionals:
(I, g) (bilinear inner product), 2
(I Ig) (Hermitian inner product), 2
1* 9 (convolution), 10, 21, 22
1(Fourier transform), 14
r (inverse Fourier transform), 16
lilli, (Sobolev norm), 190
1l/lIk,n (Sobolev norm), 220

Miscellaneous:
N(x), N(x, y) (fundamental solution for ~), 75, 76
0,0 (orders of magnitude), 4
p ~ LPj (asymptotic expansion), 279
r (gamma function), 7
Up (symbol), 267, 289
XL (characteristic form), 32

Note: Symbols used only in a single section are generally not listed here.
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a priori estimates, 210
adjoint, 231, 249,289
advanced Green's function, 182
amplitude, 284
analytic function, 4
approximation to the identity, 11
asymptotic expansion, 279

backward light cone, 159
Bessel function, 106
Bessel potential. 152
Bessel's equation, 106
Ditsadze example, 229

Cauchy data, 42
Cauchy problem, 42, 160
Cauchy-Kowalevski theorem, 46
Cauchy-Riemann operator, 34,228
causal Green's function, 182
characteristic curve, 35
characteristic form, 32
characteristic hypersurface, 34
characteristic variety, 32, 305
characteristic vector, 32
Chebyshev polynomial, 103, 109
classical pseudodiff. operator, 270
classical solution, 30
compact operator, 22

coercive form, 242
complementing condition, 262
conic set, 305
conormal,241
continuous kernel of order n, 120
convolution, 10, 21, 22
cotangent space, 33, 305, 313
Coulomb potent.ial, 76
covering condition, 262

(D, X) problem, 238
d'Alembertian, 159
delta-function, 18
difference quotient, 204
differential operator, 31
Dirac o-function, 18
Dirichlet form, 231
Dirichlet integral, 88
Dirichlet problem, 84,117,237
Dirichlet's principle, 90
distribution, 18
distribution kernel, 272
distribution solution, 31
divergence, 6
divergence theorem, 6
double layer potential, 120
domain, 1
dual operator, 19
Duhamel's principle, 174



elliptic operator, 33, 210, 297, 305
elliptic regularity theorem, 214
elliptic symbol, 297
Euler's lemma, 99
exterior Dirichlet problem, 117
exterior Neumann problem, 117
exterior normal derivative, 117

Feynman propagator, 182
finite rank, 22
formal adjoint, 231, 289
forward light cone, 159
Fourier inversion theorem, 16
Fourier transform, 14
Fredholm's theorem, 24
free boundary conditions, 238
fundamental solution, 62

Garding's inequality, 244, 302
Gauss-Weierstrass kernel, 143
Gaussian kernel, 143
Gegenbauer polynomial, 103, 109
Green's function, 85, 182
Green's identities, 69

Hadamard example, 54, 160
harmonic function, 68
harmonic function at infinity, 114
heat equation, 142
heat kernel, 143
heat operator, 34, 142
Heisenberg group, 59
Hilbert transform, 188
Hilbert-Schmidt kernel, 28
Holmgren uniqueness theorem, 54
holomorphic function, 4
homogeneity for large~, 268
Huygens phenomenon, 167
Huygens principle, 167
hyperbolic operator, 159
hypersurface, 4
hypoelliptic operator, 63, 215
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interior Dirichlet problem, 117
interior Neumann problem, 117
interior normal derivative, 117

Kelvin transform, 113
kernel of order a, 120

Laplace operator, 34, 66
Laplace-Beltrami operator, 112
Laplacian, 66
Lax-Milgram lemma, 248
Legendre polynomial, 103
Lewy equation, 56
light cone, 159
linear differential equation, 31
Liouville's theorem, 72
local operator, 273
localized Sobolev space, 198
locally solvable operator, 58
Lopatinski-Shapiro condition, 262

Malgrange-Ehrenpreis theorem, 62
maximum principle, 72, 155
mean value theorem, 69
-, converse of, 70
method of descent, 166
microlocal analysis, 304
microsupport, 305
modified Radon transform, 188
multi-index, 2

Neumann problem, 84,117,241
Newtonian potential, 76
Newton's law of cooling, 155
non-characteristic hypersurface, 34
normal, 5
normal derivative, 5, 117
normal mode, 183
normal J-system, 232

oblique derivative problem, 140, 241
oriented hypersurface, 5
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parabolic operator, 142
parametric form, 5
parametrix, 297-8
partial differential equation, 30
partition of unity, 13
Plancherel theorem, 17
Poisson bracket, 293
Poisson integral formula, 87
Poisson kernel, 87,93,96
Poisson semigroup, 95
plane wave, 186
polar coordinates, 7
principal symbol, 314
proper set, 275
properly elliptic operator, 261
properly supported operator, 275
pseudodifferential operator, 267
- on a manifold, 313
pseudolocal operator, 273

quasi-linear equation, 31

radial function, 67
radial part of the Laplacian, 67
Radon transform, 186
reflection principle, 110
regular elliptic problem, 262
Rellich's theorem, 200, 225
removable singularity, 111
retarded Green's function, 182
Riemann-Lebesgue lemma, 15
Riesz potential, 151
Riesz-Schauder theory, 24

Schwartz class, 4
Schwartz kernel theorem, 272
segment property, 221
self-adjoint problem, 250
sharp Garding inequality, 302
single layer potential, 120
singular support, 273
smoothing operator, 274

Sobolev lemma, 194, 225
Sobolev norm, 191,220
Sobolev space, 191, 198,220
space-like hypersurface, 162
spectral theorem, 28
spherical harmonic, 98
spherical mean, 166
strictly coercive form, 242
strictly hyperbolic operator, 159
strongly elliptic form, 231
strongly elliptic operator, 230, 301
subharmonic function, 83
subordination to a covering, 13
support, 4, 18
symbol, 267,314
- of a differential operator, 60

tempered distribution, 22
theta function, 158
three lines lemma, 206
transpose, 1~, 289
tubular neighborhood, 6

ultraspherical polynomial, 103
uniqueness for Dirichlet problem, 72

Vandermonde matrix, 223
vector field, 3

wave front set, 306
wave operator, 34, 159
weak solution, 31
Weierstrass approx. theorem, 148

Young's inequality, 9~ 10

zonal harmonic, 100
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