TRENDS IN MATHEMATICS

Analysis and
Geometry

in Several
Complex
Variables

Gen Komatsu
Masatake Kuranishi
Birkhauser Editors




Analysis and Geometry
in Several
Complex Variables

Proceedings of the 40th Taniguchi Symposium

Gen Komatsu
Masatake Kuranishi
Editors

Birkhiuser
Boston ¢ Basel * Berlin



Gen Komatsu Masatake Kuranishi

Department of Mathematics Department of Mathematics
Osaka University Columbia University
Toyonaka, Osaka 560 New York, NY 10027
Japan US.A.

Library of Congress Cataloging-in-Publication Data
Analysis and geometry in several complex variables / Gen Komatsu,
Masatake Kuranishi, editors.

p- cm. -- (Trends in Mathematics)

Includes bibliographical references.

ISBN 0-8176-4067-3 (alk. paper)

ISBN 3-7643-4067-3 (alk. paper)

1. Mathematical analysis Congresses. 2. Geometry, Differential
Congresses. 3. Functions of several complex variables Congresses.
I. Komatsu, Gen, 1949 - II. Kuranishi, Masatake, 1924- III.
Taniguchi Symposium "Analysis and Geometry in Several Complex
Variables" (40th : 1997 : Katata, Japan) IV. Series.

QA299.6 .A54 1999 99-31211

515'.94--dc21 CIP

AMS Subject Classifications: 32-06, 35-06, 53-06

Printed on acid-free paper.
© 1999 Birkhiiuser Boston e o »
Birkhduser

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkhauser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-8176-4067-3  SPIN 19901758
ISBN 3-7643-4067-3

Reformatted from electronic files in LATEX by TgXniques, Cambridge, MA
Printed and bound by Hamilton Printing, Rensselaer, NY
Printed in the United States in America

987654321



Contents

The Bergman Kernel and a Theorem of Tian

DAV CREIA 55 s s s e S B B e e 1
Some Involutive Structures in Analysis and Geometry

Michael Eastwood . ... .. ... e 25
The Bergman Kernel in Quantum Mechanics

Charles L. Fefferman ........ ... 39
WKB and the Periodic Table

Charles L. PEERTia .« v s v msmms s s s oamie i s am s w i 59
Local Sobolev-Bergman Kernels of Strictly Pseudoconvex Domains

Kengo Hirachi and Gen Komatsu................. ..o, 63
Quantitative Estimates for Global Regularity

ol OB, s avians s5isi s dov it se s A5 s oo Eu e s e s st 97
Pdes Associated to the CR Embedding Theorem

Masatake Kuranishi ... 129

8 and 8, Problems on Nonsmooth Domains
Joachim Michel and Mei-Chi Shaw ..........coiiiiiiinnnn.. 159

A Note on the Closed Rangeness of Vector Bundle Valued
Tangential Cauchy-Riemann Operator
Ko NIVAGIINR « v et e v e s % S S S s 193

Discrete Groups of Complex Hyperbolic Isometries
and Pseudo-Hermitian Structures
Shin Nayatani.........ooieiiiiiioiii i iiaeerenns 209

Pseudoconvex Domains in P™;
A Question on the 1-Convex Boundary Points
Takeo ORSaWa. .. ovirie ittt e e 239



vi Contents

Existence and Applications of Analytic Zariski Decompositions
Hajirne s sanaiismss i i s i i St smms s S SR ATEET 253

Segre Polar Correspondence and Double Valued Reflection
for General Ellipsoids
S 1 N S SRPTIN 273

G9-Geometry of Overdetermined Systems of Second Order
Keizo Yamaguchiv o svsmaiissmnmisinnsiilve s sieiasvanss 289



Preface

This volume consists of a collection of articles for the proceedings of
the 40th Taniguchi Symposium Analysis and Geometry in Several Complex
Variables held in Katata, Japan, on June 23-28, 1997.

Since the inhomogeneous Cauchy-Riemann equation was introduced in
the study of Complex Analysis of Several Variables, there has been strong
interaction between Complex Analysis and Real Analysis, in particular,
the theory of Partial Differential Equations. Problems in Complex Anal-
ysis stimulate the development of the PDE theory which subsequently
can be applied to Complex Analysis. This interaction involves Differen-
tial Geometry, for instance, via the CR structure modeled on the induced
structure on the boundary of a complex manifold. Such structures are
naturally related to the PDE theory. Differential Geometric formalisms
are efficiently used in settling problems in Complex Analysis and the
results enrich the theory of Differential Geometry.

This volume focuses on the most recent developments in this inter-
action, including links with other fields such as Algebraic Geometry and
Theoretical Physics. Written by participants in the Symposium, this vol-
ume treats various aspects of CR geometry and the Bergman kernel/ pro-
jection, together with other major subjects in modern Complex Analysis.
We hope that this volume will serve as a resource for all who are interested
in the new trends in this area.

We would like to express our gratitude to the Taniguchi Foundation
for generous financial support and hospitality. We would also like to thank
Professor Kiyosi Ito who coordinated the organization of the symposium.
Finally, we greatly appreciate all the efforts of the referees.

Gen Komatsu
Masatake Kuranishi
Editors
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CHAPTER I

The Bergman Kernel and a Theorem of Tian

David Catlin

Introduction

Given a domain 2 in C", the Bergman kernel is the kernel of the
projection operator from L?(Q2) to the Hardy space .4%(2). When the
boundary of Q is strictly pseudoconvex and smooth, Fefferman [2] gave a
complete description of the asymptotic behavior of K(z, z) as z approaches
the boundary. This work was then extended by Boutet de Monvel and
Sjostrand [1] who showed that, for the same domains, a similar asymptotic
expansion for K(z,w) holds off the diagonal. Moreover, they showed that
the Bergman kernel is a Fourier integral operator with a complex phase
function. The first goal of this paper is to prove the following theorem:

Theorem 1. Suppose E is a holomorphic vector bundle defined over a
smoothly bounded strictly pseudoconvez manifold Q = {z; R(z) < 1}, and
suppose that the L?-norm is defined in terms of both a smooth Hermi-
tian metric on E and a smooth metric g on the base manifold Q. Then
the Bergman kernel K(z,w) of the projection onto A*(Q, E) is a Fourier
integral operator and can be represented by

F(z,w)

T B winn F ot UHogd =Rz, (0.1)

K(z,w) =

As in [1] and [2], the function R(z,w) is almost analytic along the
boundary diagonal. The coefficients F' and G are smooth sections of the
vector bundle whose fiber at (z,w) is Hom(FE,, E.).

Theorem 1 is hardly a surprising result. It seems certain that the proof
of Boutet de Monvel and Sjostrand would carry over to the situation of
Theorem 1 with few changes. The proof given here assumes the theorem
of Boutet de Monvel-Sjostrand and also makes use of a few simple facts
about Fourier integral operators.
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Secondly, we use the result of Theorem 1 to study the asymptotic
behavior of a family of finite-dimensional Bergman kernels on circular
domains. Let E and L be holomorphic vector bundles of rank p and 1,
respectively, over a complex manifold M, and let R be a smooth Hermitian
metric on L. We assume that R has been extended onto a smooth function
L x L that is almost-analytic along the diagonal, linear in the first entry
and anti-linear in the second.

We let Q= {¢ € L; REE) <1}, and then, using 7 : @ — M, we
define E = 7*E and also a metric G = 7*G on E. Thus we obtain an
L?-norm by setting ||®||? = 3| ®|?vol;, where g is a suitably chosen metric

Q

on T9Q.
Let A4(Q, E) denote the space of holomorphic section of E on € that
are homogeneous of order d on each fiber L,, and let Ky(&,6), having

values in Hom (Ej, E¢), denote the kernel of the projection

(Paf)(€) = Zme 0)f(6)voly() (02)

of L2(Q, E) onto A4(Q, E).

Theorem 2. Suppose that the curvature of R is negative on M. Then
for all € = 0,1,..., there erist smooth sections as(&,0) having values in
Hom(E,, Eg) and constant along fibers of L such that

Ky~ Ry dt, (0.3)
£=0

where (0.3) means that for any integers q, N > 0,

Moreover, at any point £ € bS), ag satisfies

N
Kd o Rdz d““"fag

£=0

< My d™tev, (0.4)
(L]

0(6,€) = = IM(2) - Ml I ©03)

where A\i(2),... ,Ax(2) are the eigenvalues of the curvature form of R at
2 = n(e).
We note that the negativity of the curvature of R means that  is

strictly pseudoconvex. The fact that €2 is invariant under the map £ — e'¢¢
means that A2(Q, E) is the orthogonal sum of the finite-dimensional spaces
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Aq(9Q, E ). Using the kernel formula from Theorem 1 for the projection
onto A%(Q, E’), we show that when K is written as a Taylor series in the
fiber variable ¢, the only terms that act on A4(Q, E) are the terms of order
¢¢. This leads to (0.3).

It is well-known that each section ¢ € L*(M, E® L*?) can be identified
with a section () € L3(9, E), which is defined to be the set of sections
in L2(Q, E ) that are homogeneous of order d on each fiber L,. Given G, R,
and g, there is a naturally defined L>-norm || | gpgr-s on L2(M, E® L*?).
If g € L9, E), we obtain a norm ||@||2 = || 17 (¢)|| ggr-« Which turns out
to be a slight perturbation of the usual E-norm. We let K ar.a denote the
kernel of the projection P4 of Lg(Q‘E) onto Ad(Q,E') with respect to
this new norm. Thus P4 is just the projection onto H°(M, E ® L*?),
transferred over to 2.

Theorem 3. Under the assumptions of Theorem 2, the kernel K4 of
Py q satisfies

27
~— . 6
Kma~ 5 5 Ka (0.6)
Hence K4 has an asymptotic expansion of the form
Kpa~ R Ad™, (0.7)
=0

where Ay is constant along fibers and where

AQ(Z, Z) = |/\1 (Z) e An(z)| Id (08)

Corollary. Let ;... ,pn be an orthonormal basis of H*(M, E @ L*?)
N

and define B(z) = Z lor(2)|bgr-a- Then
k=0

B(z) ~ i trAy(z)d" L. (0.9)

=0

In the case when E = L*, the above result and its corollary and also
Theorem 4 which follow were obtained independently by Zelditch [5] and
the author. The asymptotic description of K4 in [5] is based on the
study of the Szegd kernel of the disk bundle 2.
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For the final result of this paper, we use Theorem 3 to describe the
asymptotic behavior of a sequence of metrics g4 introduced by Tian
[4]. When the curvature of R is negative, then for large d, a basis
®y,..., Py, of H(M, E* ® L*%) leads to an embedding ¢4 of M into
the Grassmanian Gpn,. When ®,,... ,®y, is an orthonormal basis, the
map ¢4 should have nice regularity properties. In particular, the pullback
ga = %(b;gc, of the standard metric g, on G, n, can be computed. (The
factor of } is a normalization.)

Theorem 4. If the Ricci curvature Ric(R) is negative on M, then there
are smooth (1,1)-forms mg, £ =1,2,..., on M such that

oo
g9a=—p Ric(R)+ Y _d~'ms. (0.10)

=1

It follows that gq approaches —p Ric(R) in the C* topology.

When E = L, this result was obtained by Tian [4] in the C%-topology,
and as noted above by Zelditch in the C*=-topology. In [6], the Bergman
projection on L2(2, E) was used to prove an isometric embedding theorem
for holomorphic vector bundles.

I would like to express my gratitude to the Taniguchi Foundation for
having invited me to attend the conference in Japan last summer. I would
like to thank Larry Tong for some very helpful discussions and also Betty
Gick and Judy Snider for patiently typing several versions of this paper.

1. The Bergman projection

Let E be a holomorphic vector bundle over a complex manifold 2 and
let ( , ) bea Hermitian metric on E. Given a metric g on the tangent
bundle, we obtain a volume form voly, so we can define a norm on sections

of E on Q by
IF|? =f(F, F) vol,. (1.1)
Q

Ifd,, v=1,2,... is an orthonormal basis of .A?(£2, E), the set of holomor-
phic sections of E, then the Bergman projection P: L*(Q, E) — A*(Q, E)
can be written as (PF)(z) = > oo, (F, ®,)®,(2).

In order to describe the kernel of P, let €,... ,e, and ef,... , e be
frames for E in neighborhoods U and V/, respectively. We let Fy;, (PF)y,
etc., denote the column vector of coefficients of F' and PF with respect to
€),...,epand ef,... ey If we define a p x p matrix Ay(w) by [Ajx(w)] =
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(ex(w), ej(w)), and if F is supported in U, then we obtain
(PF)y(z) = / Z@,,_ (w) Ay (w) Fy (w) volg(w).

Thus the kernel K (z,w) defined by

szw w) voly

takes values in Hom (E,, E,), and the local representation of K in V x U
is
Ko (e0) = 3 8380 (0)Au(w),

Moreover, it follows lmmedlately that the usual property that K is holo-
morphic in z and anti-holomorphic in w becomes Kyy(z, w)Aj'(w) is
holomorphic in z and anti-holomorphic in w.

Closely related to the Bergman kernel is the quantity B(z) =

Z[@v(z)ﬁ, which, relative to the frame e;,...,e, in U, equals

Z ®; y(2)Av(2)®,v(2). By taking the trace, we see that

tr (®,0(2)®)y(2)Auv(2)) = ¥}y Av(2)®yu(2),
so that by summing over v, we obtain
tr K(z,2) = B(=2). (1.2)

Our goal is to show that K(z,w) can be written as a Fourier integral
operator, just as in the well known case when E is the trivial bundle and
( , ) and g are the standard metrics, as proved by Boutet de Monvel
and Sjostrand in [1].

We first consider the local problem and assume that D is a strictly
pseudoconvex domain in C" and suppose that smooth sections e,,... ,e,
of a vector bundle E are defined on D. We assume that ( , )isa
metric defined on E and we define a matrix A’ by A% (2) = (ex(2), €;(2)).
If in addition there is a volume element vol(z) = b(z) volg, where voly is
the Euclidean volume element in C", then a global norm on sections of
E is given by |F||? = [, F*AF voly, where A = A’b, and where in the
integral F' denotes the column vector given by the coefficients Fy,... , F),

of F = Z erk-
k=1
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We now show that P can be written in terms of a multiplication op-
erator and the usual Bergman projection operator F,, corresponding to
the case when the matrix A in the above norm equals I, (so that F; acts
component-wise on Fy,..., F}).

Let 8 be the usual adjoint of & corresponding to A = I. It is well
known that the adjoint _3:1 with respect to the norm in (1.1) satisfies
84 = A"19" A. Tt follows that

(P AT PA)(T,) = PBAT Ry AA™'8 A= P,A"'Pyd A=,

since P,@ = 0. Thus PyA~!PyA annihilates the orthogonal complement
of A*(D, E). On the other hand,

PoA" Py A= Py+T, (1.3)

where T = Py[A™!, PyJA. We now show that in the operator norm, T is
small if D is sufficiently small. If 4 is a p X p matrix of constants, then by
thinking of Ag as the linear map f — Aof, it follows that Pydg = AoFo.
For some fixed point z, € D, set Ay = A(2) and let B = A;'A. Then

T = P[)A_IP[)A - Pu = P(]A_IAup[)AElA - P{]
= PB 'RB—Py=Py(B'—I1)Py+ PB'Py(B-1I).

If the diameter of the domain equals o, then |B —I||+ ||B~! - I|| < Co.
It follows that if ¢ is small, then ||T|| < Cyo. Using this fact, it follows
that

P=(I-T+T*-...)(P+T). (1.4)

In fact, as noted above Py + T annihilates A%(D, E)*. If f € A%*(D, E),
then

I=T+T. . Y Po+T)f=(I-T+T+...+)I+T)f = f.

Thus the expression in (1.4) is the Bergman projection operator.

Suppose that r(z) is a smooth defining function for D = {z;7(z) < 0}.
As noted by Boutet de Monvel and Sjostrand, one can define an almost
analytic extension ¥ (z,w), which is a smooth function satisfying

() l(z2)=1r), zeCn
(i) o(z,w) = —y¥(w, z), z,w € C*, and

(iii) 8.%(z, w) and 8, ¥(z, w) both vanish to infinite order when z = w.
In addition, since D is strictly pseudoconvex, one can choose 1 so that
there is a positive constant ¢ so that
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(iv) Imy(z,w) > ¢(|r(2)| + |r(w)| + |z — w|?), z,w € D.
The result of Boutet de Monvel and Sjostrand is that there exists a
classical symbol b(z,w,t) € S*(D x D x R*) with expansion b(z, w,t) ~

Z t"*b(z, w) such that the Bergman kernel B(z,w) (of Pp) differs from

k=0
etz w, t)dt by a smooth function on D x D. By integrating

0
in t, it follows easily that there exist smooth almost analytic functions
F(z,w) and G(z,w) such that

B(z,w) = F(z,w)(—iY(z,w)) ™™ + G(z, w) log(—iv(z, w)).

We now show that the same results hold for the Bergman projection
P of L*(D, E) onto A?*(D, E).

Note that the operator S = [A~™!, Py] is a (matrix-valued) Fourier
integral operator, since its symbol is b(z,w,t)(A7}(z) — A~(w)). By
the method of stationary phase described in Theorem 2.3 of [3] (Melin-
Sjostrand) the above symbol which arises as a commutator is in fact
asymptotically equivalent to a symbol S(z;w,t) € S* (D x D x R*).
Thus the operator T in (1.3) is the composition of two Fourier integral
operators with the same phase function ¢(z, w) and with symbols b(z, w, t)
and S(z,w,t)A(w). In Proposition 4.8 of [1], it is shown that the com-
position of two operators with this same phase function ¥(z,w) is also a
Fourier integral operator with phase function ¥(z, w). According to p. 209
of [3], the symbol of the composition of operators with classical symbols of
orders m} and mj, will be of order m{ +mj — n. In particular, the symbol
q(z,w,t) of T is of order n — 1.

From (1.4), it follows that we can write

2= P(] + i(—l)k(TkPQ = Tk) = P(} + (i(—l)ka) (P{) = I) (15)

k=1 k=1

Following the same reasoning as above, it follows that modulo C* func-
tions on D x D, each operator Qx = T* is a Fourier integral operator with
phase function v and with a symbol gx(z,w,t) in S *(D x D x R*).

Since the degree of each symbol g; is n — k, which as a function of
k approaches —oo, we can choose a sequence dy, k = 1,2,..., growing
sufficiently rapidly so that if x € C*(R) with x(t) = 2 for ¢ > 1 and
x(t) =0 for t < 3, then the series

[= =]

g(z,w,t) = Z(_l)kxa/dk)qk(zt w, )

k=1
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converges to a symbol in S™.

There is the technical difficulty however that each operator T*
differs from the corresponding operator with symbol g(z,w,t) =
x(t/di)gr(z, w,t) by an operator Hy. We still need to show that the sum

Z Hj. converges to an operator H with a smooth kernel. If this can be
k=1
done, then P = Py+(Q+ H)(Po—I), where Q is the operator with symbol
G. This would show that P is a Fourier integral operator with symbol in
o

To estimate H, we first note that if s; and s, are nonnegative integers,
then there is an integer ko (dependent on s, and s;) so that ||T% f||,, <
Cs, 50|l flls,- Since the same result also holds for the adjoint T*, it follows
from duality that this inequality extends to the case of arbitrary integers

s; and ss.
Let m; and my be positive integers. By choosing k; to be the value of
ko that works for s; = —m; and sy = 0, and k; to be the value that works

for s; =0, 89 = ma, it follows that if k > k; + ko,

1T Fll-my = IT* (T )|y < CIT g
< Cg-hok|ph |, < G-t g,

where in the second inequality, we have used the fact that ||T'|| <

%. Let @k be the operator with symbol . The order of Qx ap-

proaches —oo, so if we choose dj to be sufficiently large, then for large
k, |Qcfll-my < C'27%||f|lm,- Hence Hp = (—=1)¥(T* — Q) satisfies
Hkf | =my < C"27%||flm,, where C” depends on m;, ms.

The above estimate clearly implies that ) Hj converges in the C'™-
topology to H. Thus we have proved that the Bergman projection operator
P associated with the vector bundle E on D with metric A is a Fourier
integral operator.

We conclude that there exist smooth matrix—valued functions F' and
G on D x D so that the kernel Kp(z,w) satisfies

F(z,w)

(=r(z,w))"+

Kp(z,w) = + G(z,w) log(—r(z,w)). (1.6)
We note that the coefficient of ¢" in the symbol of P is exactly the same
as the symbol for P, since the only operator of order n in (1.5) is just Py
acting componentwise. For the operator Fp, it is shown in (4.2) of [1] that

n!
2n+1ﬂ-n

F(z,2) = A(2)|dr(2)|?, z € bD,
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where A(z) is the determinant of the Levi form 99p, restricted to an or-
thonormal basis of S, = CT}° N CT(bD). Using the metric g, one can
show that A(z)|dr(z)|?voly = Ag(2)|dr(z)[2voly(2), where A, is now the
determinant of 99p restricted to a g-orthonormal basis of S,. Hence, if
we write the kernel K, of P using the volume form voly as in (1.1), and
use the fact that P and P, have the same top terms, then the coefficient
matrix F'(2,w) in (1.6) satisfies
|
F(2,2) = g Ag(2)ldr(2)2L,, = € bD. (1.7)

In order to extend (1.6) to the case of a bundle E over a strongly
pseudoconvex manifold Q = {z; R(z) < 1}, we first note that R can be
extended to be almost analytic along the boundary diagonal and so that
|R(z,w)| < 1 off the boundary diagonal.

Fefferman proved in Lemma 1 of [2] that if D is a subdomain of Q
such that the boundaries coincide inside an open subset W of D, then the
associated Bergman kernels satisfy

Kp(z,w) — Kq(2,w) = e(z,w), (2,w) € W x W,

where e(z,w) is smooth in W x W. If we choose a finite set of small strictly
pseudoconvex neighborhoods D; so that bD; and b2 coincide in W;, where
W;, i = 1,... ,N cover bS], then we can assume that in each set W; x
W;, R(z,w) equals r;(z,w), the defining function for D;. Consequently,
in each set W; x W;, we can write

Fi(z,w)

Kq(z,w) = = R(z.w) + Gi(z,w) log(1 — R(z,w)) + e;(z,w).

By using a partition of unity defined near b2, we conclude that there
are smooth sections F(z,w), G(z,w) and e(z,w) (having values in
Hom(E,, E,)) defined in a neighborhood diagonal of Q x € such that

F(z,w)

Hinug = (1 — R(z,w))™*

+ G(2z,w)log(1l — R(z,w)) +e(z,w). (1.8)

For (z, w) not lying on the boundary diagonal, Kerzman’s theorem implies
that K (2, w) is smooth, so that (1.8) holds on all of Q x .

Thus one immediately obtains Theorem 1 as stated in the introduc-
tion. We note also that if A(w) is defined in terms of a local frame
by Ajk(w) = (ex(w), ej(w)), then F(z,w)A(w)™! and G(z,w)A(w)™? are
almost-analytic along the boundary diagonal.
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2. Bergman projections onto finite-dimensional subspaces

We now consider a special case of the above results. Let E and L be
vector bundles of rank p and 1, respectively, over a compact manifold M,
with corresponding smooth Hermitian metrics G and R. If 7: L — M is
the projection map for L, then we let Q = {€ € L; R(£,€) < 1} and we
define E = 7*E. We can extend R to a smooth function on Q x 0 that
is almost-analytic on the diagonal, linear in the first entry and anti-linear
in the second, and also so that |R| < 1 off the boundary diagonal. In
order to define a smooth Hermitian metric on T%°Q, let x(t) be a smooth

1 _ 1
nonnegative function so that x(t) = 1if ¢t < i and x(t) =0if t > 5 Let
g1 be any smooth Hermitian metric on 7°Q and define the metric

§=n"g+0RADR+ x(R)g:. (2.1)

Letting G = m*G we obtain a metric on E and thus also an inner product
(F', F") = fn (F', F")volg for sections F', F" of E on Q.

leen a local frame e in W C M, we obtain the map (2,() —
Ce(z). Thus, 2 locally corresponds to R1(2)1Cl2 < 1, where Ry(2) =
R(e(z), e(2))-

If €1,... ,€p is a local frame for E, we define sections é,,... ,€, to be
the pullbacks of e;,...,e,. Since G = 7 G, the matrix A(w,w) defined
by

Aje(w,w) = G(&(w,w), €;(w,w)) = G(ex(w), e;(w))
is constant along the fiber, so we denote it by A(w).

We now introduce some nota.tion For (z,w) € Q x Q, define
m(z,w) = wand my(z,w) = 2. If (2,w) € M x M, define p,(z, w} = wand
po(z,w) = z. Now let Ey = pi{E, E; = p3E, E, = n1E, and E, = ?Tz
We let Aa(ﬁz, Hom) be the set of sections F in C*(Qx Q, Hom(E, Ez))
such that in the local frame, F((2,(), (w,w))A(w)™! is almost-analytic
along the boundary diagonal of Q x Q. Let .Ax(M?, Hom) denote the set
of sections F € C*(M x M, Hom(E}, E;)) such that F(z,w)A(w)™" is
almost analytic along the diagonal. Finally let A% (ﬁz, Hom) denote the
set of sections 7*F, where F' € Aa(M?, Hom) and where 7((z,(¢), (w,w))
= (z,w). Thus the elements of A%(M? Hom) are those sections of
.AA(ﬁQ, Hom) that are constant in the fiber variables ¢ and w.

We shall study the asymptotic description of a family of Bergman
kernels, i.e., projections onto a family of finite-dimensional subspaces. Let
Aa(82, E) be the set of sections F' € A(Q, E) (the holomorphic sections
of E on ) that are homogeneous of degree d, i.e., in local coordinates
of Q, F(z,t¢) = t?F(2,¢) for all t € C with |t| < 1. Since A(Q, E)
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can be identified with A(M, E @ L*9), it clearly is finite-dimensional. By
using the Taylor expansion in ¢ a.bout ¢ = 0, it is easy to see that if

F € A(Q, E), then we can write F = Z Fy, where Fy € Aq(Q, E). Note
d=0

also that since ¢7 and ¢* are orthogonal with respect to the standard inner

product on the disk (| < r in C, it follows that the subspaces A;(2, E)

and Ay(Q, E ) are orthogonal when j # k. From this one can easily show
—~ o
that if F € A%(Q, E), then the series Y F; converges to F in the L?-norm.

d=0
If®¢ v=1,...,Ng isan orthonormal basis of A4((, E‘), one sees that
the Bergman projection P and the projection Py onto 4,4(2, E) satisfy
oo Ng Na
PF = ZZ (F, ®0)®¢,  PuF =) (F, d%)32.
d=0 v=1 v=1

Letting K, denote the associated kernel, it follows easily that if (z,¢)
and (w,w) denote points in 2, then Ky(z,(,w,w) (For convenience, we
shall write Ky(2,(, w,w) instead of K4((2,(), (w,w)), and similarly, write
K(z,(,w,w), R(z,{,w,w) and F(z,{, w,w).) is homogeneous of degree d
in both ¢ and @. Thus, given K(z,{,w,w), in order to compute Ky, one
need only write down those terms that are homogeneous of degree d in ¢
and @.

Theorem 1 implies that there exist sections Fj and F3 in A (ﬁz, Hom)
such that K = Fy(1—R)™ %+ F;log(1 - R). Because {2 has the automor-
phisms (z, () — (z,€%¢), it follows that K(z, "¢, w, ew) = K(z,(,w,w).
Letting Sp(z,¢,w,w) = (z,€¥C,w,e®w), we define Ff = F; 0 Sp, R® =
ROS@, EkI‘lCif‘fﬁr KOSg

Lemma 1. For any point (29,() € b and for any 6, the formal power
series of F? and F; at (2, (o) are identical, i = 1,2.

Proof. Since R? = R, it follows that

m + F2 log( R) = (_}_)1-_5 + Fy log(l - R) (2.2)
Multiplying (2.2) by (1 — R)"*2, it follows that for any (2o, (o) € b2, the
Taylor expansions of F{ and Fj of order n + 1 at (zo, (o) are equal. After
cancelling out these terms, we instead divide by log(l — R). We then
conclude that Fy(zo,€%¢o) = Fy(20,(). Cancelling these terms in (2.2),
we now alternately apply this procedure to the terms of degree n+2+ ¢ in
F? and F; at (29, (o) and then the terms of degree £+1 in the expansions of
Fg and F5, for £ = 0,1,2,.... We conclude that the full Taylor expansions
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of F{ and F) at (29,() are equal and also that those of F{ and F; are
equal, which proves the lemma.
If we now define
2r
Fi(z,¢(,w,w) = 3 Fy(z, ¢, w,we)dd,
27 Jo

then F; 1 — F} vanishes to infinite order at (29, (5). Doing the same for F5, we
conclude that there is a smooth matrix E vanishing to infinite order along
the boundary diagonal so that K = F1(1 ~R)™ 24+ B log(1 — R) + E.
Note that since each term K, F 1 F2 is invariant under Sy, the same is
true for E. Setting E = E(1 — R)™*?, we conclude that if Fy + E is for
notational simplicity denoted by F; and Fy by F5, then we have proved
the following.

Proposition 2. There ezist smooth sections Fy and Fy of Aa(ﬁa, Hom)
sothat F = F,, i =1,2 for all Bﬁand so that the Bergman kernel K for
the projection L*(2, E) — A%(Q, E) satisfies

F

K= W + F log(l — (23)

We now show that the sections F; and F; can be expanded in a Taylor
series in powers of (1 — R) along the boundary diagonal.

Lemma 3. For each integer N = 1,2,..., there erist sections C} in
‘A(ﬁz, Hom), k=0,1,... ,N and E}; in .AA(§2, Hom), such that
N
F;=) Ci(l-R*+Ey(1 - R (2.4)

k=0

To prove Lemma 3, we use the following lemma:

Lemma 4. Suppose a smooth function f(z,y,() is defined on a bounded
convez open subset W about the origin in R™ x R™ x C and that for every
pair of integers j, k with j > 0, k > 1, f satisfies

j+k
— f(2,9,Q)| £ Ciallz| + ¢+ (2.5)
aciac" "
Let T = WnN{(0,y,2); y € R*, z € C}. Then for each integer N > 0,
there exist smooth functions Ex(z,y,¢) and E¥(z,y,() such that

N
f@u,0) =" Ci(z, )¢ + (N Exn(z,y,¢) + EX(z,,(),  (2.6)

=0
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and where E> vanishes to infinite order in  and { along the set T.

Proof. Tt follows from Taylor’s theorem that

ol IS4
f(z,9.0) = EN scar @V O

1 N =k
Y Lo S a-ota
0 jirk=N+1 3@8(

Note that if £ > 0, then ( 2 )j (E
a¢ ac

in z and ¢ along the set T. Hence the two terms above corresponding to

that pair j, k both yield functions of the form E*°. The terms with k =0

give rise to the sum Y C;(z,y)¢? and (N1 En(z,y, ().

k
) f(z,y, ) vanishes to infinite order

Proof of Lemma 3. We let (z,{) and (w,w) denote two points
in a common coordinate patch of Q. If we set r(w) = (Ry(w))~?,
then (w,r(w)) € b). Also set a(z,w) = (r(w)Ri(z,w))”", so that
R(z,a(z,w), w,r(w)) = 1. When z = w, then a(w,w) = r(w), so that
la(z,w) —r(w)| < C|z—w|. We let £ = z—w and then apply Lemma 4 to
the function f(z,w,() = F(z + w, a(z +w,w) + ¢, w,r(w)), where F =
either F1A(w)™! on FoA(w)™!. Since F is almost-analytic, we conclude
that f satisfies (2.5). Hence the lemma implies we can write

N
F(z,¢,w,7( ZC;, - a(z,w))k
(z ¢, w,r(w))(¢ — a(z,w))™!
e*(z,¢,w, r(w)).
Since 1 — R(z,(,w,r(w)) = —r(w)R;(2z,w)(¢ — a(z,w)), we can rewrite
this as 7
F=Y c(l- R +ex(1~ RN +e=, (2.7)
k=0

which holds at all points of the form (z,({,w,r(w)). Since R® = R, and
¢x depends only on (z,w) and not on ¢ or w, the sum in (2.7) is invariant
under the map Sy. If we extend ey and e to be invariant under S,
then the right-hand side is invariant under Sg. Since Fy = F', we conclude
that (2.7) holds at all points of the form (z, {, w,w) with |w| = r(w). We
now extend ey and e™ so that the formal power series in w of ey and >
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have no holomorphic terms at any point of the form (29, (o, wo,wo) with
|wo| = 7(wp). Since F and each term cx(1 — R)¥, k = 0,...,N, have
this property, this implies that (2.7) now holds modulo an error which
vanishes to infinite order on the set where |wp| = r(wp). But such an
error can be absorbed in the term €*, so we can actually assume that
(2.7) holds identically on © x Q. Finally, note that (1 — R)~V~! blows
up at only a finite rate as (z () — (w,w) € b2. Hence if we define
€° = (1= R)~"N~1e®, then é* is still smooth. Thus we can replace ey by
en + €<. This proves the local existence of Cj.

If we construct Cy and EN in a collection of neighborhoods that cover
Q, then we would like to argue that the functions Ck and E'N are unique.
But this is not true, since we can always perturb Cj and EN by a section
vanishing to infinite order on the boundary diagonal of Q. However, it is
true that the formal power series of Ci and Ey are determined all along
the boundary diagonal. This makes it easy to patch the various sections
together. This completes the proof of Proposition 4.

We are now ready to prove Theorem 2 as stated in the Introduction.

Proof of Theorem 2. If we apply Lemma 3 with N = n + 1 to the
section F; in (2.3) and also to F, with N an arbitrary positive integer,
then it follows that we can write

n+1

F = z ¢;(1 = R)! + ent1(1 — R)™*?
§=0

N
F,=)"C;(1 - Ry +en(1—- R)™.
=0
Thus we obtain from (2.4) that

n+1

N
K=Y ¢j(1-RY™2+) Cj(1-R)log(1—R) +e, (2.8)
j=0 j=0

where
e =ent +en(l — RN log(1 — R). (2.9)

If we use the identity (1—R)™*! =37, (d -’: k) R4, then the first sum

in (2.8) becomes

n+1 ) n+l oo d+n+1— oc n+l )

cj — = cj ag
Soa-mi=33e (3011w - 3 S et
Jj=

=0 d=0 d=0 =0
(2.10)
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for suitable sections a; in A} (ﬁz, Hom) that are obtained by expanding

i (d::i—i;‘? in powers of d.
In order to handle the second sum in (2.8), we need the following
Taylor expansion: there exist numbers b4, ford=1,... ,2N -1, so
2N-1
(1—t)ylog(l —t) = Zbﬁ‘ +Z i _1 ):“, (2.11)

d=2N
which holds for all complex numbers ¢ with [t| < 1, r # 1. This formula

follows by integrating the formula log(1 — t) = Z t?/d j times. Note that
d=1

if (2,¢) and (w,w) are in Q, |R(z,{,w,w)| < 1. Hence we can replace ¢

by R(z,{,w,w) in (2.11) and the second sum in (2.8) becomes

N
Z C;(1 — R) log(1 — R)

N 2N-1 (2.12)
= b; 4C; R + C;Re.
2 2 b 222;,&-1 @7 @

Since d > 2N and j < N in the second sum of (2.11), it follows that there
exist numbers Bji for j = 0,... ,N, k = 1,2,..., with |B;x| < My so
that

5 1 AR TR Y
dd—1)...(d—j) "t (1 d 'ds‘+1ZB~’"‘d‘

=1 k=0

Hence the second sum in (2.12) becomes

] N oo 00 oc
Y. 3 3 Bud IR ="y (Z agd-‘+"+1) R?, (2.13)

d=2N j=0 k=0 d=2N \é=n+2

where we have defined a¢ = 3, 4.5, , B;xCj, which is in A} (ﬁz, Hom).
Note that the sum defining a; really only involves N + 1 terms since
0 < j < N. Thus for any integer m > 0, there is a constant C, y so that

llacllco@xm) < Cony €=n+2,n+3,...,

which implies that
llaeR%|ce < C nde. (2.14)
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It follows from (2.8), (2.10), and (2.12)-(2.14) that K, satisfies

N o
IKa =Y d™*'aRca < || Y d™'~*arR% + Paelico
=0 €=N+1
" +9-N
< Cp,Ndn + "Pde”C‘h

where e = Z Pje and Pye is homogeneous of order d in ¢ and .

d=0
In order to estimate P,e, we shall work with slightly different coor-

dinates. In terms of local coordinates (z,(,w,w), define E(z,0,w,7) =
e(z,7(2)8, w,r(w)r). Note that locally Q now corresponds to |§| < 1 and
|7] < 1. We can represent E by

E(z,0,w,7) =) gk(z,w)6"7.

k=0

Let p(2,0,w,7) = R(2,7(2)0,w,r(w)7). If DIE is a mixed partial deriva-
tive of p with ¢ < N + 1, then the only possible singular term occurs if
no derivative is applied to log(1 — p). Hence DIFE is continuous if ¢ < N.
Moreover,

|ID¥*1E| < Cn(1 + |log |1 - pll). (2.15)

But R satisfies |1 — R(z,(,w,w)| > a(|z —w|?+|¢ — w|) for some constant
a > 0, so p satisfies |1 — p(z,0,w,7)| = c|p(2)0 — p(w)7|. Together with
(2.15) this shows that along the circle § = €'®,

2
/ |(DN+1E)(Z, ei"',w,l)|d¢’ S CN?
0

where Cy is independent of 2 and w. In particular, this implies that

/2#
0

2r
Since the inequality / |f™)(¢)|d¢ < C implies that the Fourier series

8 N+1—-gq )
(-65) (D? E)(z,€*, w,1))|d¢ < Ch.

0
S fae'% of f satisfies |fa| < C'|d|™%, d # 0, we conclude that the
Fourier series in ¢ of DI E satisfies ||[Egllce < Cld?N-1. If we de-
fine x(z,¢, w,w) = (z,7(2)¢,w,r(w)w), then E = eo x. Since x preserves
the space of sections that are homogeneous of order d, it follows that we
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can write e = Y Pye, where Pye = E40 x~!. Hence there is a constant T},
so that

|Paellce < Tl Ealles < T,Cxd* N1,
This completes the proof of (0.4).
Cg(Z, Z)
(n+ 1)1
the definition of g in (2.1) implies that |OR(€)| = 1 at any boundary

1 -

point, we obtain |[dR(€)| = /2. Moreover, if 7(£) = z, then ‘2;(66}2)]36 =

Since

To prove (0.5), note that (2.10) implies that ao(z,z) =

%r— 90log Ry(z), which is the curvature of R, so we obtain

(27)"" det(8BR;s,) = [M(2) . .- An(2)]-

Combining these facts with (1.7), we obtain (0.5), which completes the
proof of Theorem 2.

We now show how Theorem 2 can be used to compute an asymptotic
formula for the projection of L?(M,E ® L*?) onto H*(M,E ® L*¢). If
n is the section of L* that is dual to e in a neighborhood W, then we
can write a local section of E ® L*? as ¢ = ¢’ ® %%, where ¢’ is a local
section of E. Using the standard rules for metrics of dual spaces and
tensor products, we have that |p(2)[]? = |¢'(2)?[n(2)]* = |¢'(2)|*Ri(2) ¢,
where |¢'(2)|? = G(¢'(2), ¢'(z)). If ¢ is supported in W, then

lell* = / |p|? volg = / |’ [2R7¢ vol,.
w w

It is well known that each section ¢ of QQ(M, E ® L*?) can be uniquely
identified with a section I4(p) € L3(, E), consisting of the subspace
of elements of L?(Q, E) that are homogeneous of order d on each fiber

P
L.. For the section ¢ above, if ¢’ = Z(pk(z)ek, then I;(p)(e,e(z)) =

k=1
ﬁ:l Cd‘Pk(Z)ék(za Q) _

Now consider the metric go = #*g + dR A OR, which is degener-
ate when R = 0. If we let z = (z1,...,2,) and 2,43y = ¢, and
. 0 , :
if r; = -67(}?1(2)]3,,“[2), then the matrix of gp can be written as

7
go = p'91P, where g; is the Hessian matrix of Z 9ik2;Zk + |zns1|* and
dk=1

n+1
where p is the Jacobian matrix of P(z) = (zl, i B erzj). Hence
Jj=1
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det go = | det p|* det g; = |rn41]*det g. Since the volume form of the met-
n

ric Z hjkdz; ® dzj is 2™ det h volg, where voly is the Euclidean volume
jk=1
form, we conclude that

volg, = 2" Ry(2)?|¢|* det g volo = 2R;(z)?|¢|* volg A dz A dy.
It follows that if ® = I;(¢y), then

/ |®]? voly, = 2/ / 2)[2|Ra(2)*|¢|24*2 vol, A dz A dy
-1(w) [¢I2<Ri(z)~!
12 s 2
= 5 | wrRitvol, = 25 [ 1ol vl
By using a partition of unity, we see that if & = I;(¢), where ¢ €

L*(M,E ® L*?), then
d+ 2
/ 1B voly, = ||l (2.16)

In view of (2.16), we can study the Bergman projection Py 4 of L3(€, E)
onto Hy(Q, E) with respect to the norm given by the left-hand side of
(2.16). The kernel of Py 4 is described by Theorem 3 of the Introduction.

Proof of Theorem 3. From (2.1), we see that if R(€) > 3, then § = go.
Hence in the open set 7' (W) there is a function v(z, () such that v = 0

if Ry(2)[¢|* > } and such that vol; = volg, + v(z,()vol, A dz Ady. If

®,, ®, € Li(Q, E) are supported in 7~1(W), then this implies that

/(@1,'13'2)\«'01; = /('I)l,tI)g)volgD +‘/(§>1,¢2)v(z,C)dx/\dy/\ volg.
Q Q Q

Since ®;, ®, are homogeneous of degree d and v is supported in the set
Ri(2)[K]? < —1—, we conclude by applying the Cauchy-Schwarz inequality
to the final term that

/(@1,%)\;01; = f(@l,fbg)volgo + O(e7 @ ||| ®cl)- (2.17)
Q Q

By using a partition of unity, this holds for any pair &, ®; € L3(€, E).__In
particular, let ®,, = 1,2,... , Ng be an orthonormal basis of Hy(, E).
Then (2.17) implies

S = /(cbp, ®,)volg, + O(€™"), pv=00,... , A (2.18)
Q
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It is a consequence of the Hirzebruch-Riemann-Roch Theorem and the
Kodaira Vanishing Theorem that for large d, dim H°(M,E ® L*¢) = N,
is a polynomial in d of degree n. By using (2.18) and the Gram-Schmidt
process, we conclude that there is a matrix C? = [C l,], 1<u v< N
such that for u=1,... ,Ng, ¥, =P, + 3 C ,®, is an orthonormal basis

of A%(%, E) with respect to the inner product (®,9)g, = /(tl),w)volm,
and also such that max |C% | < And™™ for any integer m > 0.
[TR%

We now compute P4, which we define to be the projection onto

A4(, E) with respect to the norm [ |F[*vol,,. We let & denote any

Q
sequence of operators from L*(Q, E) to C*(Q, E) such that ||E4(f)||m
Cmd""* for all d holds for any Sobolev norm || ||, m > 0. If f
L3(Q, E), then

=<
€

Na
Poaf =) _(fs¥udao Z(f, )5®u + Ea(f),
pu=1

where we have used in the second equality that if ¥ € A4(Q, E), then
[¥]lm < Cmd™||¢0]]. By (0.2), we have
Na

D (fiBu)g = Puf + &af =/de vol; = /de volg, + E4f,

pu=1 2

where again in the last equality, since K4(&,6) is homogeneous in each

fiber in #, an argument similar to (2.17) shows that the error is of the

form £;f. Finally, note that if we use the left side of (2.16) for the L3-
1

27

3
d_-!-2) ¥,. This gives (0.6). To

norm, then we must replace v, by (

prove (0.7) and (0.8), note that we can write = Z (=2) ;

d+2 <= d¥!
Proof of the Corollary. We let (z,() denote a point in a frame neigh-
borhood of Q and we define B(z,¢) = Z |®,(2,¢)|%, where &,,v =

1,..., Ny is an orthonormal basis of .Ad(Q, E) with respect to the norm
%*;—2 [ |®|?vol,,. By combining (0.7) and (1.2), we see that

B(2,¢) ~ Ri(2)IC]** ) tr Ag(2)d™ . (2.19)
£=0
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It follows from (2.16) and (2.17) that if ® = I;(y), then

d+2
(e bors = = [ 2R(ICPI(z, OFdacy,

where D, = {¢;|¢|? < Ry(z)"'}. Hence

B(:) = L2 [ aRy()ICP Bz, ey (220)
m D,
The formula (0.9) now follows by combining (2.19) and (2.20) and inte-
grating.

3. Application to a theorem of Tian
We now give the proof of Theorem 4, as stated in the introduction.

Proof of Theorem 4. Given the metric G on E and R on L, we ob-
tain a metric on (E ® LY)*. Let ¢;,...,pN be an orthonormal basis of
H°(M,(E ® L%)*). It is well known that since L* is positive for large d
the map

P.(v®EY) = (p1(v® EPY),... ,on(v®EX) W EE,, €L,

gives rise to an embedding ¢ of M into the Grassmanian G,y which is
the set of p-dimensional planes S in CV. If U,y is the bundle over G, x
consisting of the set of pairs (S, w), where w € S, then we obtain a metric
Geuc 00 Up v by setting geuc((S,v), (S,w)) = v-wW. We can use this metric
to define a metric on G, x by

] 1l = ij
gor = — Ric(geuc) = 57;63 log det[gei,c],

where g, = geuc(si,s;) and where s;, i = 1,...,p is a local frame for
Upn. If we view ¢, as a map from E® L¢ = ¢*U, v to Uy, n, then we can
pull ge,. back to a metric on E ® L? defined by

N

(‘P*gcw:) (Ut w) = geuc((P:U; ‘P*w) = Z ‘Pk(v)‘pk (w): v,weEE® Ld-
h=1

We now define a metric g4 on M by ga = 3¢*gg,. By functoriality,

1, ; Loeorin
9a = 5#"(= Ric(geuc)) = =5 Ric(¢"geuc)-
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Ife;, ¢t =1,...,p and e are local frames for E and L respectively, then

e; ®e® i =1,...,p, is a local frame for E @ L%, so that if we set
N

M;;( Z‘P‘“ (e; ®€® )n,ak(e ® e®d), then gy = —66 log det[M;;].

We show how Theorem 3 can be used to compute M;;. Given the
metric G on E, we obtain a metric G’ on E* which can be pulled back
to Q to give a metric G’ on E* = n*E*. Since HO(M,(E ® L9)*) is
isometrically equal to H°(M, E* ® L*?), we conclude as in the proof of
Theorem 3 that if ®; is the element of A4(f2, E*) associated with ¢y, then
<I>1, ... ,®y is an orthonormal basis ofAd(Q 1@‘:) with respect to the norm

f|<I)|2v01 Let B(&,6) = Z ®1(€) ® Px(6). We now compute an

k=1

d +2
expression for the projection P; onto A4(f2, E‘). If f € L*(Q, E‘), then

N
[, BE@woln6) = [ 3o110), T @ 2u@)vola 0
k=1

N

:/Z(f(g}, 8(0)Bu(E)volg(0)  (31)

Qo
= (Paf)(6) = /ﬂ K4(€,0) F(8)volye (6).

Now let 7;,...,7m, be the local frame of E* in W that is dual
to ey,...,e, and let #,...,% denote the pullbacks. We write
P

B= )" B,.(£0)7(&)®@0), f= Zf.f )iie(8), and Gjx = (&;, &),

=1
so that G, = (i, 7). Let fw denote the column vector with entries

fe, € =1,...,p, and similarly define matrices By and Gﬁ}. A computa-
tion shows that

[9 (£(6), BE,9))volyo (6 f Buw(£,0)Gi}(0) fw (B)volye(8).  (32)

Since K4(£,0) € Hom ((E*)s, ( *)e), we can define a matrix Ky 4(€,6)
representing K4(§,0) with respect to the bases 7,(6),...,7,() and
(&), ... ,m,(€). We conclude from (3.1) and (3.2) that

Kwa(&,6) = Bw(§,0)Gy (). (3.3)

Note that the matrix Gy (0) is actually constant on the fibers of L since
the metrics G and G’ are pullbacks. If we set 8 = £ and apply Theorem 3,
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we conclude from (3.3) that there are p x p matrices M;(z), Ma(z),...,
where 2 = 7(£), so that

Bw(£,6) ~ "R () [Cw(2) + Y _d'M(2)|,  (34)
=1

and where \(2) = ﬁ [Ak(2)].

k=1
We claim that Bw(e,e) = [M;;]. To see this, note that ®x(e)
P

Z or(e: ® ). It follows that

i=1

N p

Bw(e,e) = Z Z (e ® e24)oi(e; ® €9) 7 ® 7
1 dgoml

I

which implies that By (e,e) = [M;;]. Setting £ = e(z) in (3.4) and R;
R(e, €), we obtain

[M;;] ~ d"R3A (G’W +3° d“Mg) .

£=1

1 —
Applying ord 90log, it follows that

P o 1(2 55 1 o5 o

94= 5 89dlog Ry + p] (27r ddlog A + o 00 log det Gw) +;d e
(3.5)

where m, are smooth (1,1)—forms in W. Hence (0.10) follows from the

fact that Ric(R) = —;}7? ddlog R;.

Remark. As noted by Zelditch [5], the coefficient m; in (0.10) can also

be easily computed. In fact (3.5) implies that m; = —p Ric(— RicR)—
Ric (G).
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CHAPTER II

Some Involutive Structures
in Analysis and Geometry

Michael Eastwood!

An involutive structure on a smooth manifold is a complex subbun-
dle T%! of the complexified tangent bundle, closed under Lie bracket:
[T%%, T%] C T%!. For the general theory see [6, 16, 25]. Here are some
examples.

Foliations: Here T%! is real: T%! = T0.I, Then 7°! is the complexifica-
tion of a real Frobenius integrable distribution.

Complex structures: Here 70! NTOI = 0 and together these bundles
span the complexified tangent bundle.

CR structures: Here 7% N 70! = 0, but 7% @ TO! may be a strict
subbundle of the complexified tangent bundle. It is of codimension one
when the CR structure is of hypersurface type.

Lewy: Let T%! be spanned by the complex vector field

L—~—"§}-+z'zE where L. i—I-i
" Yot 5z 2\0z ' oy

on R®. This may also be viewed as defining a CR structure. Lewy
showed [21] that there are smooth u for which the equation Lf = u has
no local solutions.

Mizohata: Let 7%! be spanned by

o . 9
M—-a—x+zza

on R2, Here, 7% N TP is not of constant rank. It is spanned by 8/8z

tARC Senior Research Fellow, University of Adelaide.
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along the y-axis and is otherwise 0. Defining R? — C by (z,y) — ( =
z? + 2iy, we find that M = 478/0( when = # 0. Hence, off the y-
axis, M is the Cauchy-Riemann operator in disguise. This geometric
interpretation was used by Garabedian [14] to give a very simple example
of an unsovable partial differential equation, as follows. Suppose M f =
ilry| in a neighbourhood of the origin. Then M annihilates f(z,y) —
f(—z,y) — yly| for z > 0. As a function of ¢, this is holomorphic to the
right of the imaginary axis with continuous real boundary values along this
axis. However, the Schwarz reflection principle implies that such boundary
values should be real-analytic.

Blowing-up: We shall now consider in detail, T7%' spanned by

% and % - 258; (1)
on R* = C x R? with coordinates (z,y, s,t) = (2, s,t). These vector fields
commute so the formal integrability condition [T%', 7%1] C T%! is clear.
Like the Mizohata example, T%!NT01 = 0 except on a hypersurface £. In
this case ¥ = {y = 0}. Along this hypersurface T%! N T%1 is spanned by
0/0t—x0/0s. There is a similar geometric interpretation of this structure.
Define  : C x R? — C? by (z,s,t) ¥ (2,w) = (2,8 + zt). Thisis a
diffeomorphism away from ¥ and

7] a0 a

a e ow
there. This involutive structure, therefore, is obtained by ‘pulling back’ the
usual complex structure on C2. Though 7 drops rank along £, the complex
structure extends smoothly across but only as an involutive structure.
A solution of an involutive structure is a function or distribution which
is annihilated by all smooth sections of T%1.

Theorem A local smooth solution of (1) near the origin has the form

h(z,s + zt), for h(z, w)holomorphic.

Sketch of proof: For details of the following argument, see [12]. The
first of the differential operators says that f(z, s,t) is holomorphic in z. It
may, therefore, be expanded as a power series

f(z,8,t) = Zak(s, t)z*
k=0
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for smooth functions ax(s,t) defined for s and ¢ sufficiently small. More-
over, there are Cauchy estimates for these coefficients, uniform in s and ¢.
The second differential operator implies

dag(s,t) Oax(s,t) Bag-1(s,t)
o L e ot s
It follows that ag(s,t) is a function, say by(s), of s alone. Then
Oay(s,t)  dag(s,t)
a s
for some smooth function by(s). More generally, ax(s,t) is a polynomial
in t:

for k > 1.

—bi(s) = ai(s,t) = by(s) + bols)t,

ax(s,t) = be(s) + bl_1(8)t + 1b/_o(8)t2 + - - - + L) (s)ek.

We have bounds (the Cauchy estimates) for these polynomials and La-
grange interpolation with k + 1 equally spaced points enables one to es-
tablish bounds on their coefficients, namely the functions bx(s) and their
derivatives. These bounds are sufficient to prove that f(z,s,t) is real-
analytic. It therefore extends as a holomorphic function of (z,s,t) as
complez variables. Now, the second differential operator of (1) may be
viewed as a holomorphic vector field on this space of complex variables.
The conclusion of the theorem is immediate from this interpretation. O
In fact, it is shown in [12] that f need only be a distribution solution of
(1) in order to draw the same conclusion.
The blow-up of C? along R? is given by

{((z,w), [a,b])) = ((z + iy, u + iv), [a,b]) € C? x RP, s.t. ay + bv = 0}

equipped with the obvious projection mapping to C2. (This is the blow-up
of C? as a real manifold along a real submanifold.) Locally, we can change
coordinates

(2,5,8) = (35 + 28), [£,1])
to identify this projection with 7. The ezceptional variety n~!(R?) is
with 71 N 701 tangent to the fibres. In any case, it is easy to see that
the image of a neighbourhood of (0, 0,0) under 7 is a double wedge:

A view of the imaginary
] plane for fixed (z,u)
y near the origin in R2.
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The classical edge-of-the-wedge theorem (see [27] for a review) says that a
holomorphic function h defined in the interior of such a double wedge and
continuous® across the real boundary (the edge), extends as a holomor-
phic function to a neighbourhood of this boundary in C2. Indeed, more
generally, one can take as edge any totally real submanifold of C" and the
real blow-up is already useful as giving a manifestly coordinate-free defi-
nition of a double wedge. If the edge is real-analytic then one can make
a local change of coordinates so that it becomes R" < C". However, the
edge-of-the-wedge theorem is still true along smooth or even C* edges [24].

In the real-analytic case, solving (1) quickly leads to a proof of the
edge-of-the-wedge theorem—it only remains to show that h o7 solves (1)
in the sense of distributions. The details are in [12] (given in arbitrary
dimensions). It is worth noting that, on the blown-up space, the given
function satisfies a system of partial differential equations outside a hy-
persurface ¥ and the conclusion is that the function continues to satisfy
these equations across the hypersurface. From this point of view, the
edge-of-the-wedge theorem more resembles its one-dimensional speciali-
sation (due to Painlevé) which says that a holomorphic function of one
complex variable, defined on either side of the real axis and having a
continuous extension across this axis, is actually holomorphic there.

The key point concerning (1) is that every distribution solution is a
holomorphic function of a basic set of solutions, in this case z and w.
In general, such an involutive structure is said to be hypocomplez. Thus,
hypocomplexity of the involutive structure on the blow-up of C" along R"
is essentially equivalent to the edge-of-the-wedge theorem. As remarked
by F. Treves, hypocomplexity of this particular involutive structure may,
alternatively, be deduced from microlocal criteria as given, for example,
in [4]. C.R. Graham [15] has checked these criteria for the case of a smooth
edge too.

Joint work with Graham [13] embarks on a similar programme for CR
manifolds. If M is a (2n + 1)-dimensional CR manifold of hypersurface
type and X C M is an (n + 1)-dimensional totally real submanifold, then
the CR structure on M\ X extends as an involutive structure to the blow-
up of M along X. Consider the standard indefinite hypersurface in C3

M = {(z1, 22, w) = (21 + 1Y1, T2 + iys, u + 1) s.t. v = Toy; — T1Y2}
and X = R3. In an affine coordinate chart

CS = (zls Z2, T.U) Lo § Izly 29, W, 1] € C]P3

It is sufficient to assume existence and agreement of distribution boundary values
from the two wedges.
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this is the indefinite hyperquadric
{[Zl, Z‘z, Z3, Z4] e ‘C]P;; s.t. Im(ZfZ}) = Im(23?4)} (2)

with RP; as totally real submanifold. Microlocal criteria [5] show that the
induced involutive structure is hypocomplex. The corresponding edge-of-
the-wedge theorem for CR functions follows:

Theorem Let M be the standard indefinite hypersurface in C3, as above,
and suppose W is a double wedge in M with edge in R3. Then every CR
function defined on W and continuous across the edge extends as a CR
function to a neighbourhood of the edge.

This theorem may also be proved by standard techniques of complex anal-
ysis:

Sketch of proof: Firstly, use Lewy extension [17, 21] to obtain an am-
bient holomorphic extension from W. It may be given by the Cauchy
integral formula on an analytic family of discs from which it is easy to
obtain an estimate of how far this extension goes. Specifically, if a small
ball of radius r, centred on w € W \ R?, intersects M within W\ R3, then
it is possible to extend to distance on the order of r? from w. Were we
able to extend to distance r, then we would obtain a double wedge in C?
and the result would follow from the classical edge-of-the-wedge theorem.
The rest of the proof is concerned with achieving this further extension.
All normal directions to R® in M are on an equal footing, so we may as
well suppose that W contains a small cone pointing in the y;-direction:

C={z€ Ms.t. |z|]| <eand |yo| < ey}
for some € > 0. For small a, 7 € R, consider the embedding

C2 - CS

w w

(CJ!C‘Z) = (01 «, 0) +C1(1,T,CE) +C2(01011)
I I
(&1 +im, & +imp) —> (&, + 76,06 + &) +i(m, T, am + 1e).

On the image II of this embedding,

v — Ty + T1y2 = amy + e — (a + 7E)m + S17 = 1,

so [T N M is given by np = 0. Thus, for fixed & and &, the n;-axis lies
in M and approaches the plane {y, = 0} as 7 — 0, while the 7-axis is
nearly perpendicular to M. Thus, by taking 7 sufficiently small, we can
force the n;-axis to start off well within the cone C. The r2-estimate for
Lewy extension gives a holomorphic function on the truncated tube over
a ‘parabolic spike’ within II:
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For (&, &) small.
Ui

Were this a full tube over this base, the Bochner tube theorem would give a
holomorphic extension to the tube over the convex hull of the base. In [17],
Hoérmander proved Bochner’s tube theorem by a geometrical arrangement
dubbed a ‘folding screen’ by Komatsu [19]. A careful inspection of this
proof reveals that for a truncated tube, such as we have, one can still
extend to a more severely truncated tube over a small cone:

72
‘ T

Furthermore, this extension is achieved by pushing analytic discs so con-
tinuity up to the edge is preserved. A similar extension for the opposing
spike gives a pair of opposing cones. Finally, by allowing a and 7 to vary
near 0, we sweep out an ambient double wedge and the classical edge-of-
the-wedge theorem finishes the proof. a

Such a straightforward generalisation to CR manifolds is not generally
valid even for embedded hypersurfaces of indefinite signature. Additional
restrictions must be placed on the double wedges including that they con-
tain a null vector for the Levi form. For example, if f is a holomor-
phic function depending only on the variable w, defined on the half-plane
{v > 0} and continuous up to the boundary but with no local holomorphic
extension through the origin, then restricting f to

M = {(z1, 29, w) = (21 + iy1, T2 + iyY2, ¥ + W) s.t. v =% — y22}

gives a CR function defined on a double wedge but with no CR extension
across the edge, R3. To obtain a positive result in this case, double wedges



II. Involutive Structures 31

at the origin should contain a null direction y; = +y,. Proofs may be
effected either by microlocal methods or by folding screen techniques. Here
is a typical example from [13]:

Theorem Suppose M is a locally embeddable CR manifold of hypersur-
face type whose Levi form everywhere has at least one positive and one
negative eigenvalue. Let X C M be a totally real submanifold of marimal
dimension and W a double wedge in M with edge X. We may identify
the normal bundle to X in M with the subspace J(TX N H) of H where
H C TM is the holomorphic distribution and J € End(H) is its complez
structure. Having done so, suppose that W contains a smooth family of
vectors emanating from X which are null for the Levi form. Then ev-
ery CR function defined on W and continuous across X eztends as a CR
function to a neighbourhood of X .

Compact examples

Compact manifolds with an involutive structure are especially inter-
esting (see [16]). A particular example arises geometrically as follows.
Let

F = {(L, P) € CP, x Gr(R**!) s.t. L c CP}

where CP denotes the two-dimensional complex linear subspace of C**!
generated by the two-dimensional real linear subspace P of R™"*!. There
are forgetful maps n and 7

7 X

CP, Gra(R™1)

and it is easy to verify that n : F' — CP, is the blow-up of CP, along RP,.
It acquires, therefore, an involutive structure extending the holomorphic
structure on CP, \ RP,.

An involutive structure is precisely what is needed to define a sequence
of d-operators in the usual way and, even though the first local cohomology
of the involutive structure on F' is infinite-dimensional [12, Theorem 2.6,
the global cohomology is quite tractable.

Theorem For any holomorphic vector bundle V' on CP,, there is a canon-
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ical exact sequence

0 — I'(CP,,O(V)) — I'(RP,,E(V)) — Hdl(F, 17) — Hl(C]Pn, O(V))—0
i I
holomorphic smooth
sections sections

where HEI(F, 17) is the first involutive cohomology of the pull-back of V to
F twisted by the divisor bundle of ¥ = n~}(RP,).

Sketch of Proof: The proof (developed jointly with T.N. Bailey and
Graham (see [1, 10})) is on the level of formal power series invoking Borel’s
theorem to realise the necessary smooth functions. For example, the con-
necting homomorphism I'(RP,,E(V)) — HI(F,V) is constructed as fol-
lows. The bundle V is just a passenger and may be safely ignored. Now,
for f a smooth function on RP, choose an ‘almost analytic extension’ f
to CP,.. This is a smooth function such that df vanishes to infinite order
along RP,. The existence of such an extension is a simple application of
Borel’s theorem as indicated. (If f were real-analytic, then we could take
f to be its holomorphic extension near RP, and 8f would vanish in an
entire neighbourhood.) The divisor bundle of ¥ comes equipped with a
canonical ‘Heaviside’ section H, smooth except along RP, where it enjoys
a jump discontinuity. Then Hn*8f is smooth on F and annihilated by d.
It represents the involutive cohomology class which is the image of f. O

For homogeneous V/, the spaces I'(CP,,O(V)) and H(CP,, O(V))
are explicitly computable. In any case, they are finite-dimensional, so the
involutive cohomology Hdl(F, V) is not much different from the smooth
sections of V' over RP,.

It is also possible to investigate the involutive cohomology on F' via
the mapping 7. Notice that this mapping is simply a fibration with CP,
fibres. Moreover, the involutive structure on F' induces the usual complex
structure on each fibre. In particular, the Dolbeault cohomology spaces
along these fibres are finite-dimensional. Thus, we may take w € HI(F,V)
and consider w|,-1(z) as a smooth section of an appropriate vector bundle
on Grp(R™*!). In this way, the spaces H3(F, V) act as intermediaries be-
tween spaces of smooth sections of vector bundles over RPP, and Gry(R™*1),
respectively. With H3(F, V') removed, there results a Radon-like integral
transform with Gry(R™*') regarded as the space of geodesics in RP,. The
advantage of passing through Hﬁl(F , V), however, is that it may be in-
terpreted precisely down on Gra(R"*!). (The machinery for doing this is
known as the Penrose transform.) This allows the kernels and ranges of
these integral transforms to be explicitly identified.
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For example, if n = 2 and we take V = O(—2), then we may deduce
that the Funk transform from smooth functions on RP; to smooth func-
tions on RIP; is an isomorphism (see [2]). The case n =3 and V = O(-2)
is explained in [10]. The conclusion is that the range of the X-ray trans-
form is smooth solutions of the ultrahyperbolic wave equation, a result
essentially due to John [18]. By taking V to be the holomorphic cotan-
gent bundle on CP,, it follows that a smooth 1-form on RPP,, whose integral
over every geodesic vanishes is exact. This result is due to Michel [23]. It
is generalised considerably in [1]. In order to explain this generalisation it
is necessary to discuss the invariant linear differential operators on RP,.
Following [7], let (a|b,¢,...,d, e) denote the vector bundle on RP, whose
fibre over the line L is

el T e (R

-y —
-—

for integers a, b, c,...,d,e withb < ¢ < --- <d < e. (If bis negative, then
the Young diagram aquires virtual boxes. Equivalently, a suitable power
of det(R"*!/L) is included.) The deRham sequence on RP,

O—R= A Ey A K Sy v Ly A% 50
Il I I Il
(0lo,---,0) (1] -1,0,---,0) (2[~1,-1,0,---,0) (n|=1,---,=1)

consists of invariant differential operators. This means that they inter-
twine the action of GL(n+ 1, R) on RP, and these bundles. One can take
any finite-dimensional representation of GL(n + 1,R) and tensor the deR-
ham sequence with the corresponding trivial bundle over RP,. The result
is a resolution of this representation by invariant differential operators.
For example,

(-1,0,...,0) % (1] = 1,0,...,0) ® (~1,0,...,0)
(2| -1,-1,0,...,0)® (-1,0,...,0)

are the first three terms in such a resolution. The bundle (—1,0,...,0) is
decomposable—there is an exact sequence

0—-1»(0,—1,0,...,0)—1'(—1,0,...,'0)-4(-1’0,...,0)—40.
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This induces exact sequences

(1} - 2,0,0,---,0)
0— @ - (1] -1,0,...,0)® (-1,0,...,0)
(] =1, 541, Gose JO)
— (0] -1,0,---,0) =0

and

(2| -2,-1,0,0,---,0)
0— ® =@/ -1,-1,0,...,0)®(-1,0,...,0)
2| -1,-1,-1,0,---,0)
*(1'-1,-1,0,,0)—'0

It turns out that the induced mappings
(0] -1,0...,0) — (0| — 1,0,...,0)
and (3)
(1 -1,-1,0,...,0) = (1} -1,-1,0,...,0)

are simply the identity and an elementary diagram chase gives

(-100,...,0) L (1] = 2,0,...,0) % (2] = 2,-1,0,...,0)  (4)

as the first three terms of a replacement resolution. This is more familiar
in its dual form, the Bernstein—Gelfand-Gelfand resolution. That (3) are
identities is automatic in the dual formulation by looking at central char-
acter. A further discussion may be found in [9]. The sequence (4) may
be written out explicitly in terms of the flat connection V in any affine
coordinate patch:

h+—V,Vih  and  9a — Vathpe — Vitoe.
A further iteration of this construction gives
(=1] = 1,0,...,0) - (0] = 2,0,...,0) 2 (2| — 2,-2,0,...,0)
or, explicitly,
G = Vay+Vida and g — VaVeboa— ViV boa+ ViV 40, — VoV 36,

This particular resolution was also constructed by Calabi [5]. Just as the
deRham sequence implies that a smooth one-form on RP,, is closed if and
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only if it is exact, so these two Bernstein—Gelfand—Gelfand resolutions
imply that

Vabe = Vithoe = Yap = Vo Vih, for some h

and
VGVQGM + vadgac — V,,Vcﬂad + VanBk i
Oap = Vadp + Ve, for some ¢,

where ¥4 and 6, are symmetric forms on RP,. In [1], these conditions
are shown to be further equivalent to 3, or f,, having zero energy:

§ XX )] =0
or uey
X(u) X" (u)bap(u) =0

uey

for all geodesics 7, where u € R™"*! is the unit vector representing a point
on v and X°%(u) is the unit tangent vector at u along 7. The second of
these is well-known as the condition that an infinitesimal deformation of
RP, have closed geodesics all of the same length and the conclusion that
8., may be written as V,¢, + V¢, is the infinitesimal Blaschke rigidity
of RP, first proved by Michel [22]. The corresponding statement for CP,
(first proved by Tsukamoto [26]) is deduced in [11] by using the Penrose
transform.

In fact, the Penrose transform fits very well into the global theory of
involutive structures. Joint work with Bailey and M.A. Singer [3] develops
the Penrose transform from this point of view. The classical Penrose
transform (see, for example, [8]) concerns the mapping

7:CP; — S* = HP,

sending a complex line in C* = H? to its quaterionic span. Restricting this
to the standard indefinite hyperquadric (2) gives 7 : Q@ — S®. Explicitly,

( Z1Z3+2321+Z422+Z2Z5 )
Z\Z\+Z2Z2+Z323+Z424
1Z1Z3—iZ32Z1~iZ4Z2+i2224
Z\Z1+Z2Z2+2Z3Z3+242Z4
2122+ Z2Z1—Z423—2Z324
ZV\Z1+ 222242323+ Z424
Z\Z\+24Z4—Z2Z2—2323
. Z IZ‘J.'FZQZE'FZS?S'FZ::Z_{ J

[le Z2v Z31 Z4] =
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The Penrose transform may be applied to this fibration. Even though
the local 9y-cohomology on Q is quite awkward, the global cohomology is
tractable. The machinery of [3] gives, for example,

H3, (Q) = {smooth two-forms on 89}

Again, the point is that the fibres of 7 are CP,’s with complex structure
obtained by restricting the CR structure on Q.
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CHAPTER III

The Bergman Kernel in Quantum Mechanics

Charles L. Fefferman

In this article we describe a problem in quantum mechanics, and ex-
plain how the elementary properties of the Bergman kernel played a role
in its history. We begin by describing the problem and stating the main
results. Then we discuss the relevance of the Bergman kernel. (In the
sharpest results known at present, the Bergman kernel is out of the pic-
ture; but I think the idea is pretty, and I hope it will return.)

The problem in quantum mechanics that I'd like to describe concerns
nonrelativistic quantum electrodynamics. This theory concerns nuclei at
fixed positions in space, nonrelativistic quantized electrons, and photons.
It is a reasonable description of a significant part of the physical world,
namely the interaction of light, matter and electricity under ordinary con-
ditions. It accounts in principle for what goes on in a light bulb, but not
in a nuclear magnetic resonance machine or a particle accelerator. To con-
struct the theory, let me begin with photons, and bring in the electrons
and nuclei later.

Photons arise by quantizing the electromagnetic field. Before quantiz-
ing anything, let’s discuss classical magnetic fields. In elementary (classi-
cal) physics, the magnetic field is given as the curl of a vector potential
A = (Au(z)) =123 (z € R?), where the A, are smooth, real-valued func-
tions on R®. In a suitable gauge (the Coulomb gauge), we may take A
to be divergence-free. It is convenient to Fourier analyze A. The Fourier
representation of a real, divergence-free vector field on R? is as follows:

Au(z) = Z /eh‘n(k)ﬂ}.(k)efk':d_k
; dk
+ exu(k)a}(k)e ** ——.
> R[ (a3 B~

Here, for each nonzero k € R3, e;(k), e;(k) denote an orthonormal basis for
the orthogonal complement of k in R3; e, ,(k) denotes the uth component
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of ex(k), for A =1,2 and u = 1,2,3, \/m is just a convenient normaliz-
ing factor; and ay (k) is the Fourier coefficient. Equation (1) contains no
physics at all, but simply a convenient representation of divergence-free
real vector fields.

Next, we allow the A,(z) to evolve in time according to Maxwell’s
equations in empty space, without charges or currents. This amounts to
an infinite-dimensional Hamiltonian system, which becomes very easy to
understand in terms of the Fourier representation (1). In fact, the Poisson
brackets and Hamiltonian for the mechanical system are given by

{ax(k), an(K)} =0, {a3(k), a3 (K)} =0, (@)
{ax(k), a3 ( k’)} =i o(k — k'), (3)
Z / Iklad (k)ax (k) dk. (4)

A=1 B3

(Here, 0y is the Kronecker delta, and §(k — k') is the Dirac delta.) From
(2), (3), (4), we see that distinct (A, k) act independently of one another,
and that each (A, k) corresponds to a simple harmonic oscillator. Thus,
a classical magnetic field in empty space amounts to an infinite family of
uncoupled harmonic oscillators.

Now we can quantize the magnetic field. We simply regard each ay(k)
as an operator, and replace (2), (3) by the commutator relations

[ax(k), ax (K)] =0, [a}(k), a3 (K')] =0, (5)

lax(k), aX (K')] = daw 0(k — k). (6)

The Hamiltonian is still given by (4). Of course, in (4), (5), (6),
a}, (k') denotes the adjoint of ay(k’). Note that (6) shows that ay(k)
cannot be well-defined for an individual (), k), Rather, each a) must be
regarded as an operator-valued distribution. That is, the smeared operator
[ 6(k)ax(k)dk makes sense for suitable test functions 6(k), even though a
particular a) (k) makes no sense.

We would like to relate (4), (5), (6) for ax(k) back to equation (1),
which describes the components A,(x) as operators. As it stands, (1) ex-
hibits A,(z) as another operator-valued distribution, so that A,(z) makes
no sense for an individual point z. This will be a very serious difficulty
once we put electrons and nuclei into the picture, because we will want
to evaluate A,(x) at the positions of the electrons. We will deal with this
difficulty in a trivial way, by simply truncating the integral (1). Let 6(k)
be a real, smooth function of compact support on R3, satisfying 6(k) = 1
for |k| < 1.
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For a large parameter A (with the dimensions of momentum |k|), we
crudely replace (1) by

AM(z) = 2 /e,\p Jax( k)ﬁ( ) jl%
1,2
+ Z /e,\# )ay (k)6 ( ) _““"’"%.

A=1,2 R3

(7)

Thanks to the cutoff 8, the vector potential ALM (z) makes sense at an
individual point z. In fact, Aﬁ‘}(;c) is a self-adjoint operator.

The ground-state of the Hamiltonian (4) is the vacuum state §2, which
satisfies

ax(k)Q2 =0, (8)

as in the case of a single harmonic oscillator. Physically, a}(k) creates,
and ay (k) annihilates, a photon of momentum k and polarization A. Since
there are no photons present in the vacuum state (2, we obtain the zero
vector when we apply an annihilation operator to €2, which accounts for
(8). To produce nontrivial states, we let smeared creation operators act
on the vacuum, obtaining

% / (ki Mi. . K, AN)al, (K1) -l (k) dky - - dky®  (9)
A AN

for suitable test functions g. We assume that linear combinations of states
of the form (9) are dense in the basic Hilbert space on which ay(k), Hyag,
ALM (z) act.

This completes the description of the quantization of magnetic fields
without electrons or nuclei. The formal rules (4)-(8) make it easy to
compute any operator of interest on states of the form (9), as well as to
compute inner products of any two states of the form (9). It is then a
trivial exercise to prove rigorously that there exist a Hilbert space HP",
a state ) € HP", and operator-valued-distributions a, (k) on HPP, unique
up to isomorphism, so that equations (4)—(8) hold, and Hpg, A(A){x)
are self-adjoint operators. To make ALA)(:C) well-defined at an individual
point z, we have paid the price of introducing the cutoff #(k/A) into
(7). This removes the effect of photons having energy |k| >> A on the
quantized magnetic field. At short distances << A~1, our theory disagrees
with physical reality. However, if we take A large compared to the binding
energy of an electron in an atom, then photons with |k| > A make only
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small contributions to quantities of physical interest in the everyday world.
For more details, the reader may consult any relevant physics textbook.
Next, let us put photons aside, and discuss electrons and nuclei. Since
the nuclei are much heavier than the electrons, we may assume that
they do not move. Thus, we take the nuclei to lie at fixed positions

Y1, Y2, --. ,ynm € R, and to have atomic numbers Z;, Z,... ,Zy > 1. We
assume all the Z; are bounded above by Z > 1. (In nature, we can take
Z ~ 100.) If N electrons are located at z;,zs,...,zy € R3 then the
potential energy is
N M
Voouomb = Y &=zl +) 0 ZiZelys—wel™ = D Zelz; —wl ™
1< <k<N 1<k <M j=1 k=1

(10)
However, the electrons are not fixed in space. Rather, they are quan-
tized. We suppose that they move in a background magnetic field with
a given vector potential A,(z). To see how to quantize the electrons,
let us begin with just one electron. A single electron has wave function
Y(x) € L*(R3, C?). The probability density for the position of the electron
is [(z)|?, so we assume that |[¢]] = 1. To give the kinetic energy of the
electron, we need the Dirac operator on L?(R3, C?). To define the Dirac
operator, we introduce the Pauli matrices

L (01 o [0 4 s (10
"‘(10""—i0’“‘0—1

acting on C2. The Dirac operator is

o (iV-A)= > o (z‘%~A#(w)),

u=123

acting on L?(R3 C?). (Here, (z,),-123 are the rectangular coordinates
of z € R®) Then the (Pauli) kinetic energy of the electron is given by
([o - (iV — A)]?9, ). If the background vector potential A is set equal to
zero, then [o - (iV — A)]? = —A by the algebra of the o matrices, so the
kinetic energy reduces to the familiar (—A, ). The dependence of the
Pauli kinetic energy on the magnetic field reflects the fact that electrons
have spin 1/2.

Let us now pass from one to NV quantized electrons. The state of the
system is a wave function ¥(z, - - - zy) € L*(R3N (C")®N). Thus,

(@1 zw) = Paa-an(@20)
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We require that ¢ have norm 1, and satisfy the antisymmetry condition

wq.,l Qo (:‘901 U :BO'N) = (Sgno}d)m"‘qw (171 ket IN] (11)

for permutations 0. (Equation (11) means that electrons are fermions.)
Regarding L?(R3V, (C?)®") as the N-fold tensor power of L?(R3,C?), we
may define the Dirac operator o; - (iV,, — A(z;)) as the tensor product
I® - Q@I®[c-1V—-A)]RI®---®I, where I = identity, and where
o - (iV — A) occurs in the jth position. Then the operator [o; - (iV,, —
A(z;)))? represents the kinetic energy of the jth electron, and the total
energy of the N electrons and M nuclei is given by (He, ¥), where

N
Hy =Y [0} (iVz, — A()))* + Voouomp(1 -+ - Zn, 91+ - yn)  (12)

Jj=1

and Veoulomb is given by (10). The electron Hamiltonian H, acts on the
Hilbert space Hq = {¥ € L?(R®",(C?)®V)|(11) holds}. This completes
our description of electrons and nuclei in a fixed, background vector po-
tential (A,(z)).

We can now combine our separate discussions of electrons and pho-
tons, to define the Hamiltonian for the complete system. Again, we fix
nuclei with atomic numbers Zi,...,Zas at positions yi1,...,yn € RS,
and assume 1 < Z; < Z for all k. Our basic Hilbert space is
Hqep = Ha ® HP". We may think of ¥y € Hqep as consisting of
The total Hamiltonian on Hqgp is obtained by simply adding the two
Hamiltonians (4) and (12) for the photons and electrons, using Aﬁf\) from
(7) as the vector potential in (12). Thus, the vector potential in which
the electrons live is now the operator-valued vector potential produced by
the photons. More precisely, we set

HQED =I. Hmag + He]

r N
=2 > /|k|a$(k)a,\(k) dk+ 3 [oj - (iVa, = AM () (13)

A=1,2 B2 =1

+ VCou]cmb(xl TN, Y1t yM)

where T is a positive constant, and A® (z) = (A (z)),—, 23 is given by
(7). Non-relativistic quantum electrodynamics (QED) is the study of the
Hamiltonian (13). In principle, it describes a significant part of the physics
of the everyday world.
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The role of the constant I' in (13) is worth some attention. In our
discussion of Hyag and He), we have not written such constants as the mass
of the electron, or Planck’s constant. Those constants are not essential,
because we may simply pick convenient units in which they are equal to 1.
However, when we combine the two Hamiltonians Hp,,, and H, into the
total Hamiltonian Hqgp, then we find that a single dimensionless constant
I' remains, which we cannot affect by our choice of units. Therefore, '
appears explicitly in (13). The constant I' is equivalent by a trivial formula
to the fine structure constant a. In nature, one has a =~ 1:13—7, hence I' in
(13) is approximately 746. The question of whether the properties of
the Hamiltonian (13) are significantly dependent on the value of I' is an
important issue in nonrelativistic QED.

The problem we study for nonrelativistic QED is called “H-stability.”
H-stability is the lower bound

(Hoep¥,¥) > =C - (N + M) (14)

for ¢ € Hqep of norm 1. Recall that N and M are the number of electrons
and nuclei respectively. The constant C in (14) is allowed to depend only
on T in (13), A in (7), and on Z, the upper bound for the atomic numbers
21,2y, ... yZpr- In particular, C' must be independent of the numbers
N, M and the positions y;,ya,... ,yas. H-stability is a very natural and
important requirement for a physical system. It arises for two reasons.
First and most dramatically, suppose (14) were false. That is, suppose
the ground-state energy goes to —oo faster than linearly in the number
of particles. Then the ground state energy of ~ 2N particles would be
far lower than that of two isolated systems of ~ NN particles. Hence, by
bringing together any two macroscopic objects, we would liberate a huge
amount of energy. As F. Dyson put it, without (14), any two ordinary
objects brought into contact would function as an atomic bomb. A second
reason for the basic importance of H-stability is its role in thermodynam-
ics. To explain this, we start by fixing a large cube Q C R?. In the same
spirit as our discussion of electrons, nuclei and photons on R3, we can
form a Hamiltonian Hf ,, for N quantized electrons, M quantized nuclei,
and a photon field, confined inside the box .

If we fix two positive parameters p, T (the density and temperature),
then the basic quantity in thermodynamics is the free energy, defined as

F(p,T)= lim In Trace e~ (W/THR (15)

vol @ — 0o VOlQ2

N M
Vol volnt p

Here, for simplicity, we are taking all the atomic numbers Zx to be 1.
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Other thermodynamic quantities such as pressure and entropy are given
by trivial formulas from F(p,T) and its derivatives. Therefore, one wants
to know that the limit (15) exists, and then to understand its dependence
onp,T.

The connection of H-stability to thermodynamics is that if (14) fails
then, for large enough (, already the ground state eigenvalue Ef ), of
HY ) should lie below —C’(N + M) for any a-priori constant C’. That
wou]d imply Trace e~ (V/DHNn > e~(/MERM > e+HO/TIN+M) g6 that
In Trace e~ VD HEn > c Nt Hence,

vo] Q vol 2°
- . 2 C’
lim inf In Trace e”W/DHvn > — . 9p
volQ—o0 VO T
N_ _M

vol 27 vol Q P

Since C’ was an arbitrary constant, this shows that the limit in (15) is
infinite. Thus, without H-stability, the fundamental quantity in thermo-
dynamics becomes infinite. Conversely, H-stability is expected to play a
part in proving the existence of the limit (15). (See Lieb [6] for an in-depth
discussion of H-stability questions.)

After some important papers [5,7,9] on closely related problems, it
was shown [2] that H-stability (14) holds, provided the constant I is large
enough. More precisely, we have the following result.

Theorem 1. IfI' > CZ for a universal constant C, then (Hqept, ¥)
> —-C'(Z,T,A)- M for+y € Hqep of norm 1.

Here, of course, C'(Z,I',A) denotes a constant depending only on
Z,T,A. The proof of Theorem 1 is built on a crucial idea of J. Frohlich.

Theorem 1 leaves open what happens in the physically relevant regime
I' ~ 746, 1 < Z < 100. The Bergman kernel came in through an attempt
to reach that regime. I got as far as the following result.

Theorem 2. If Z = 1 and T = 975, then (Hoepw,¥) > —~C'(A) - M
for ¥ € Hqep of norm 1.

Thus, a system made of electrons, protons and photons would be
known to the H—btable if the fine structure constant were ~ T5 instead of
its actual value ~ .

About the same time, Lieb-Loss-Solovej [8] obtained (by other meth-
ods) a closely related inequality with very good constants. Adapting the
method of [8], Bugaglaro-Fréhlich-Graf [1] proved the following result.

Theorem 3. IfT" > 746 and Z < 6, then (Hqep¥,¥) = —C'(A)M
for every ¥ € Hqep of norm 1.
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So the Bergman kernel was out of the picture.

Finally, returning to the method of Theorem 1, but giving a new twist
to Frohlich’s initial idea, Frohlich, Graf and I proved [3,4] the following
theorem, which settles completely the problem of H-stability of nonrela-
tivistic QED.

Theorem 4. For any I', Z one has (Hqep¥,¥) 2 —C(T', Z)AM for
every ¥ € Hqep of norm 1.

Our purpose here is not to explain the proofs of Theorems 1-4, but
rather to point out why the Bergman kernel comes into the game. I am
fond of this idea, even though it has no part in Theorems 3 and 4. I hope
it will prove useful in the future.

The Bergman kernel enters in an attempt to show that the total kinetic
energy in a ball or cube Q controls the total number of particles in Q. If
we can control the total number of particles in a given cube, then we
can prevent the particles from coming too close together, which in turn
prevents the Coulomb potential from becoming highly negative. This is
a crucial issue in proving a lower bound for the total energy. We give
no further explanation here of how to use our estimates in the proof of
Theorem 2, but simply concentrate on how the kinetic energy in @Q controls
the number of particles in @. We work with a fixed, background vector
potential A = (A,())u=1,23. So far, we know that the total kinetic energy
for a wave function ¢ € L?(R%V, (C?)®V) is given by

T= <g[a,- - iV, — Alz;))¥, w>,

but we have not yet defined the kinetic energy in Q. A trivial integration
N
by parts gives T =Y. [ |o;- (Vs — A(z;))¥|? dzy - - - dz, so a natural

Jj=1 R3N
definition of the kinetic energy in @Q is

N
7@ =Y [ loj: (iVs, - AWl xe(e)) dos oy, (16)

7=1 pan

where xo denotes the characteristic function of Q. If the electrons are at
locations z1, s, ... ,zy € R®, then the number of electrons in Q is simply

N
N(Il L IN) = JZ:I XQ(Ij)-

For a quantum state ¢ € L?*(R®N,(C?)®V), the expected number of
electrons in Q is (Mg, ¥), so our problem is to control (Ng, ¥) in terms
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of T(Q). In a moment, we will restrict attention to the case where @ is
the unit ball or unit cube, and the magnetic field is weak, i.e.

f]curl A(z)|?> dz < n for a small universal constant 7. (17)
Q

(Recall that curl A(z) is the magnetic field; the integral in (17) is just
the magnetic field energy in Q.) We can get away with assuming (17),
because if we rescale (17) from the unit cube to a small cube @, we obtain
the condition

2 <N
/lcurl A(z)|* dzr < 0 (18)
Q

As @ shrinks to a point, the left side of (18) shrinks to zero, while the right
side blows up to co. Hence, (18) holds automatically on a small enough
cube @, the size of @ depending on the strength of the magnetic field.

Therefore, for the application to Theorem 2, it is enough to deal with
the case @ = unit cube or unit ball, with A satisfying (17). In that case,
we want to control (Ng#, %) in terms of T(Q).

A discouraging elementary fact is that we can have T(Q) = 0 but
(N, ) arbitrarily large, even when the vector potential is zero. This
is easy to see from the fact that the 1l-electron Dirac operator ¢ - V on
L?(Q, C?) has an infinite-dimensional nullspace. If ¢;, ¢», . .. is an infinite
list of orthonormal elements of nullspace (¢ - V) in L?(Q, C?), then for
N arbitrary, we just take ¥(z;---zy) to be an antisymmetrized tensor
product of ¢;(z1), ¢2(22), ... ,on(zn). (If z; & Q, we set p;(z;) = 0.)
So, we cannot hope to control (Ng¥, %) in terms of T(Q), because we can
put arbitrarily many electrons in @ with zero kinetic energy.

What saves the day is that among the arbitrarily many zero-energy
electrons we can place in @, all but a few stay very close to the boundary
0Q. Hence, even though the kinetic energy in @ does not control the
number of electrons in @, it does control the number of electrons in the
middle half of Q. Moreover, this is made possible by the elementary
properties of the Bergman kernel.

To see the role of the Bergman kernel, let us look at a simple 2-
dimensional model problem, with the 3-dimensional Dirac operator re-
placed by 0 on the unit disc D in one complex variable. We can study
antisymmetric wave functions ¥ € L?*(D"), with kinetic energy

T(y) = |—:(z - 2x)
gp] So (oo

2
darea(z;)---darea(z2y)
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in place of (16). Like the Dirac operator, 0 on the unit disc has an infinite-
dimensional nullspace, so again we can have T(¥) = 0 with N arbitrarily
large. In fact, an orthonormal basis for the nullspace of & on D is of
course {Cyz*}x>o for suitable normalizing constants Cy. (We note that
Ciz* is strongly concentrated near D for k large.) The worst case is
therefore the antisymmetrized tensor product ¥(zg:--2x) = 7(-;1——1)7 ?

(sgn 0)@ay(20) = = on (2n) for N > 1, with @i(2) = Ckz*. The density of
“electrons” in D is given in this case by

N
2) =) lee(2)]® (19)

k=0

(In general, if ¥(z; - - - zx) is a many-electron wave function, the electron
density is defined as

N
p(z) = Z [(zy + Tkt Thgr -+~ IN)|2d1'1 v dTp_1dTryr - - dTN.)

k=1 paN-3
(20)

However, the Bergman kernel on the diagonal is K(z,z) = E lek(z

Comparing this with (19), we see that p(z) < K(z, z). That is, fo'r any N-
electron wave function with zero kinetic energy, the electron density is less
than the Bergman kernel on the diagonal. In particular, the expected num-
ber of electrons in the middle half of D is at most [ K(z, z)darea(z),

|z]<

which is a universal constant. ’
The same idea works for the Dirac operator in place of its & model.
There is a 2 >< 2 matrix valued Bergman kernel K4(z,w), so that the
operator Py(z f Ka(z, w)yY(w)dw is the orthogonal projection from

L*(Q, C?) onto the nulispace of o+(iV—A). The electron density p (defined
by (20)) for any N-electron wave function with zero kinetic energy satisfies

p(x) < trace K(z,z) forallz € Q. (21)

Since A is any vector potential satisfying (17), we cannot hope to com-
pute K4(z,z) exactly. Instead, we can use the extremal property of the
Bergman kernel to estimate K 4(z,z). We will prove the following simple
estimate.

Lemma 1. Ifo - (iV — A)Y =0 on Q = unit ball, with A satisfying
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(17), then we have

[v(z))? < *l_%lﬁ)ﬁj./ 1Y(y)|*dy  for a universal constant Cy.  (22)
B

(

Estimate (22) and the extremal property of the Bergman kernel give
[Ka(z,z)| < ﬁgﬁg, where |K 4| denotes the norm of the 2 x 2 matrix

K4(z,z). Hence, (21) yields

2Cy

p(z) < trace K4(z,7) < 2|Ka(z, z)| < a—|z)?

(23)

for zero kinetic energy N-electron wave functions. In particular, if
N

Ng(zy---zn) = Y xe(zk) is the number of electrons in a subset £ C Q,
k=1

then -
(Ngtfl, 1#) < / ﬁ dr when T(Q) =], (24)

reE
The proof of Lemma 1 is so simple that it can be included here. Ap-
plying o - (iV — A) to the equation o - (:V — A)y = 0, we find that

(tV — A)*(tV — A)yp = +(o - curl A)y, (25)

thanks to the algebra of the o-matrices. Here, (iV — A)*(iV — A) is a

slight variant of the Laplacian. Since curl A is small by (17), equation

(25) is not so far from saying that v is harmonic. We will correct 1 to lie

in the nullspace of (iV — A)*(:V — A). To do so, we solve the Dirichlet
problem

(iV—-A*(V—-AU ==%x(o-curlA)yYy on Q (26)

U=0 on 8Q. (27)

Then ® = ¢ — U lies in the nullspace of (iV — A)*(iV — A). It follows
that |®|? is subharmonic, A|®|? > 0. Hence, for any z € Q, we have

1
vol B(z,1 — |z|)

|B(2)] < |2()* dy

B(x-l—lzl] (28)

c 2
< m’g Qf |D(y)|* dy,

where B(z,7) denotes the ball with center z and radius r.
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On the other hand, the solution of the Dirichlet problem (26), (27) is
given by

U) =+ [ Gala, (o - curl AWW) d (29)
Q
where the Green’s function G 4 satisfies
|Ga(z,y)| < G(z,9), (30)
G(z,y) = Green’s function for the ordinary Laplacian on Q. In-

equality (30) is an immediate consequence of the elementary fact that
(iV — A)*(iV — A)u = 0 implies Afu| > 0. From (29) and (30) we get

U(z)| < f Gz, y)lcurl A(y) [I%(y)ldy. (31)
Q

This lets us estimate the L?-norm of U using (17). In fact,

V@ < suplGC Dz [ leurl A@) ()] dy
yeQ Q

€0 / |curl A||+| dy (32)
Q

< Cn' 2|19l 2(q)-

Then since ® = ¢ — U, it follows that ||®||z2q) < (1 + Cn*)|I¥]lL2(q)-
Hence, (28) implies

B(2)* < (zj—n [Q () dy. (33)

So we have a pointwise estimate for ®. It remains to use (31) to derive
a pointwise estimate for U. Since we only know so far that curl A and ¥
belong to L?, and G(z,y) is not L, the most straightforward approach
fails. We proceed as follows.

Define a norm |||¢]|] = sup,eq(l — |z])%/2 |¢(z)|. Also, write G(z,y)
as the sum of two nonnegative functions G = Glo + Ghi, to be picked later.

Then (31) gives

U()| < [Q Giole, v)lcurl A(W)| ()| dy

(34)

" f GCri(z, y)|curl A(y)||¥(y)| dy.
Q
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We can estimate the first term on the right in (34) by
/ Guole, v)lcurl A@)|[¢(y)] dy
Q
< [Sup Gio(z, y)] 1All2@) 1¥] 2(q) (35)
veR
< [SUP Glo(xs y)] nljzllwlle(Q):
veQ

thanks to (17). To handle the second term on the right in (34), we use
the norm ||| - ||| as follows.

f Gri(, y)lcurl Ay)|[(y)] dy
Q

< /Ghi(zv y)lcurl A(y)”w(y)[ ® (1 - |y|)"3/2“iw”| dy (36)
Q

1/2
< (fcii(x,y)(l- Iy!)"”dy) 721l
Q

by Cauchy-Schwartz and another application of (17). Combining (34),
(35), (36), we see that

U1} = sup(1 — |z[)*?|U ()|
zEQ

<[ s (1= 160 Gule ) |l @) -

+ [iggcl ~ Jal)? Q/ G2z, y)(1 lyi)‘3dy] 21wl

This lets us guess the correct decomposition of G(z, y) into Gy, + Gy;. For
instance, if we take Gjo(z,y) = min {G‘(r, y), (1—C|zj) } for a large constant

Ci, then the first quantity in brackets in (37) is bounded by C;. One
checks easily that the second quantity in brackets is also bounded, so that
(37) implies

U1 < Con'2 (19 L2y + Can™?||10]], (38)

for universal constants Cy, C2. On the other hand, (33) means that

2l < Cll¥liz2o)- (39)
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Since ¢ = @ + U, estimates (38) and (39) imply
Il < Clivllzz) + Can*2|l14]lI- (40)

If 7 is small enough, then Cyn'/? < 1 and we can absorb the last term in
(40) into the left-hand side, we obtain |||¢||| < C|[¥||L2(g), which is the
conclusion of Lemma 1. Here, we assumed that ||[¢||| is finite, in order
to absorb a term into the left-hand side of (40). However, we may easily
repeat our proof with @ replaced by a ball @, of radius (1 — €), and let
€ — 0. Since 1 satisfies an elliptic equation on @, it must be bounded on
Q. for any € > 0, so the triple norm on @, is clearly finite. This completes
the proof of Lemma 1.

Now that Lemma 1 is proved, we have good control of zero-kinetic
energy wave functions, thanks to (24). It remains to pass to wave functions
of nonzero kinetic energy. The main tool is following watered-down version
of a standard 9-agreement.

Lemma 2. Let ¢ € L*(Q,C?), and suppose ¥ is orthogonal to the
nullspace of o-(iV — A) with A satisfying (17). Then [|o—(iV—A)1b|]ig(Q) >
cl[¥|lf2(q), with ¢ a universal constant.

Again, the proof is so simple that we can give it here. The main idea
is to solve the equation

o-(iV—Auy=f (41)
with
¥ L C*®(Q,C? N Nullspace o - (iV — A). (42)

To achieve (42), we take ¢ = o - (iV — A)¢ with gf:[aq =0. Forg €
C>=(Q,C?) N Nullspace o - (iV — A) we have

/Qw-gdxzfq[o-(iv—m(p]-gda::/qqs-ma'dx:o,

by integration by parts. (The boundary term vanishes, since qb{ i = 0.)
Thus, (42) holds atuomatically when % is given in terms of ¢ as above. It
remains to satisfy (41). Thus, we must pick ¢ to satisfy [o-(iV —A4)]*¢ = f
on Q, with ¢"|5Q = 0. That is,

(iV—-A(iV - A)p ==%(c-curld)¢+f on Q (43)

with
¢=0 on 9Q. (44)
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Suppose we can solve (43), (44). Then, by taking inner products with ¢
and integrating by parts, we find that

|GV = A)¢||? = £((o - curl A)g, ¢) + (f, ¢)

< f jourl Allgfdz + ll? + 112 )
Q €

for a small constant € to be picked later. Since |V|g|| < |(iV — A)¢| and
¢| o0 =0 the Sobolev inequality on @ implies

lolZs@ < ClIVIII® < CIGEY — A)g]l*. (46)

(All norms are in L? unless otherwise indicated.) From (17) and (46), we
get

fQ jcurl Allp dz < [leur] Al[[$|34 @y < CTIGY ~ A)b|2.
Putting this into (45), we find that
1
1GY = A6l < C21GY — Al + ellgl + <A1

If n is small enough, then we can absorb the first term on the right into
the left-hand side. Thus,

2
1GV = A)gll* < 2€fll* + <1 F1I* (47)
This and (46) imply
C
1¢1l* < Cell¢l|* + ?1|f||2-

Taking € small enough, we can absorb the term Cé¢||¢||? into the left-hand
side. Hence, we obtain the estimate

el < ClfI1%, (48)

where we no longer bother to keep track of the constant €. In particular,
(48) shows that f = 0 forces ¢ = 0. That is, the boundary value problem
(43), (44) has a trivial nullspace. On the other hand, (43), (44) is a self-
adjoint elliptic problem. It follows that (43), (44) has a trivial cokernel,
and thus may be solved for any f € L2. Moreover, our solution ¢ may be
estimated by (47) and (48); we obtain

16V = A)y|* < ClIfII? (49)
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where again we ignore the dependence on the constant €. Since ¥ =
o-(iV — A)¢, (49) implies

ll” < ClFI, (50)

and we know that
o-(iV - A = f, (51)

since that is the content of equation (43).

We have learned that for every f € L?(Q,C?), there is a solution of
(51) that satisfies (50). The solution ¢ that we constructed satisfies (42),
but we don’t know that ¢ L Nullspace [0 - (¢V — A)] without proving that
C*=(Q,C?)N Nullspace [0 - (iV — A)] is dense in Nullspace [o - (iV — A)).
We can finesse this technical point as follows. We let ¥/# be the projection
of ¢ onto the orthogonal complement of Nullspace [0 - (iV — A)]. Then
¢ — ¢* € Nullspace [0 - (iV — A)], so 0 - (iV — A)p* = 0 - (iV — A)¢ = f,
and ||[¢#|| < |[¥|| < C||f|l- So now we have learned the following: For
every f € L*(Q,C?), there is a solution ¥# € L?*(Q,C?) of the equation
o (iV — A)W* = f with v#* L Nullspace [0 - (iV — A)]. Moreover,
we have ||¢#| < C|f||. To complete the proof of Lemma 2, suppose
Y € L*(Q,C?). Let f = 0-(iV—A). If f ¢ L?, then ||o-(iV—A)y||*> = oo,
so the conclusion of Lemma 2 holds trivially. If f € L?, then we construct
¢* as above. Since o - (iV — A)¢Y* = f = o - (iV — A), we know that
¥ —# € Nullspace [0 - (1V — A)]. On the other hand, ¥# and v are both
orthogonal to Nullspace [0 - (iV — A)]. Hence, 3 — ¥# =0, i.e., ¥# = 9.
Since |[v*|| < CJ|f]l, we obtain ||¢|| < C|lo - (iV — A)d)]l, Whlch is the
conclusion of Lemma 2.

The reader will surely agree that Lemmas 1 and 2 are trivial. Once one
has the idea to relate these quantum mechanical problems to the Bergman
kernel, one meets little resistance.

We are ready to use Lemma 2 to pass from zero-energy to arbitrary
wave functions. The argument is based on separation of variables. For
simplicity, we pretend that our wave functions are scalar-valued. To cor-
rect this oversimplification, we need only introduce a lot of additional
indices.

On L?(R?), we introduce three orthogonal projections:

T, projects onto ¢ supported in @ and belonging to the nullspace of
o-(iV—A) on Q.

I1; projects onto ¢ supported in Q and orthogonal to the nullspace
of 0 - (iV — A) on Q.

I, projects onto ¢ supported in R3 \ Q.
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For one-electron wave functions, we have the following simple properties.

lell* = ITopll® + Tl + [Tl (52)

o-(iV—-A)p(z)=0-(iV - A)lljp(z) for z€Q (53)

P(@)? < 2Mop(a) + 2Mp(z)?  for z€Q.  (54)

Next, we pass to N-electron wave functions ¥(z;---zy). For i = 1,2,3

and k = 1,2,...,N, let II¥ denote the projection II; acting on the kth

electron. That is, for fixed (z;---Tf—1 Tk+1---TN), We regard ¥ as a
function of z alone, and apply II;. The result is what we mean by II¥.

Let E C Q be given. For 4y,...,ix € {0,1,2}, let ¥[i;---iny] = IT,
TN 3. Then simple manipulations using (52), (53), (54) show that

<é)c£(fk)1f% ¢’> <2 Z < Z xe(ze)¥[is - - - in], ¥[i ---g'N]>

i1+-in k with i,=0

#2535 (xaCaulin i vl

iy k with ip=1

<2 Z < Z xe(zi)¥iy - - in], #)[il'"iN])

iy k with =0

+23 > Il

i1--iny k with ip=1
(55)
For a moment, we fix (i; - - - in), and then fix all the z; for which 7, # 0.
Then 9 [z; - - - in] becomes a zero-kinetic-energy wave function in the z; for
which ¢ = 0. (However, it needn’t have norm 1.) Applying estimate (24)
to that wave function, and then integrating the result over all (zy);, %0, We
find that

< > XE(Ik)%f’[fl"'iNLtb[il'“iN]>

kwlth'xk:(}
dr )
<C [ 5T Wl il
E
Summing over all 4, - - - i, we obtain
Z < Y. XE(Ik)ti’[il"'iN],ﬂl)[il"‘iN]> C/ B (56)
i1y k with ix=0 I |

On the other hand, suppose we again fix #; - - - iy, but this time we also fix
k with i, = 1, then fix &1 - - - T¥_1Zg4y - - - zny. Then Y[z, - - - ix] becomes a
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function of zy alone. Moreover, that function is orthogonal to the nullspace
of - (iV — A) on Q. Applying Lemma 2 to this function, and integrating
over all z; -+ Tx_1 Tpy1--- TN, we learn that i, = 1 implies

llli - -+ in]|I®
< Cllok - (iVa, — A(zi))¥lia -+ - in]|I?

= Cllok - (iVa, — Azi))IT], - IE2 TR - TIN5 (57)

=c/ |H§1---H’-“1H’-‘+1---Hf‘;,ak-(ivx,,—A(zk))ﬂ?

Th—1""tk41
RN

xo(zk) dzy - - - dzp,

thanks to (53). Fixing k, and summing (57) over all 4; - - - iy with 4 = 1,
we find that

> xa=ll$li - in]l?

ipein

<C f o+ (Vs — AP xa(es) dy -+~ .
R3N

Summing over k, we obtain

S > Il

ip--iy k with i=1

N

<C Z/ |ok - (iVa, — A(2))¥I*xq(2x) d2s - - dony
k=1

=CT(Q)

(see (16)).
Finally, putting (56) and (58) into (55), we obtain the desired control
on the number of particles in F, namely

N
dz
<;XE(:B&)¢', 1.!’1> < C}_:[ e EIE + CT(Q). (59)

Estimate (59) holds for all E C Q and all ¥ € H, of norm 1, provided
only that A satisfies (17).

In order to get a reasonable constant in Theorem 2, it was necessary
to introduce many minor changes in the proof of (59). The changes affect
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no ideas, but they do affect the constants. A typical example is that
hypothesis (17) should be replaced by the assumption

f |curl A(z)? - (1 - [2 |2) dz <. (60)

|lz|<1

Since § < (1 + J-‘-"%E)_z < 1 for |z| < 1, estimates (17) and (60) are
essentially equivalent, but the optimal value of n changes. We spare the
reader the details.

Finally, let me express my gratitude to the organizers of the conferences
on several complex variables, held at Lake Biwa and at RIMS in the
summer of 1997, as well as to the Taniguchi Foundation for supporting
these meetings. I am grateful also to Ms. Eileen Olszewski for TEXing this

paper.
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CHAPTER IV

WKB and the Periodic Table

Charles L. Fefferman

In this article, I'd like to motivate some work that Luis Seco and I have
done on the ground-state energy of an atom of atomic number Z > 1.
If one ignores relativistic effects, then the mathematical problem is as
follows. Fix a nucleus of charge +Z at the origin. If N electrons are

located at z1,7,,...,zy € R®, then their potential energy is given by
Y Z 1
Vioaomb(T1, - -, TN) = — =i —_— (1)
T ’ ; |z 15§g~ |z — x|

We regard the electrons as quantized, so that the state of the system is
given by a wave function

B(z1, ..., zx) € LAR).

For simplicity, we neglect spin here. (If we had taken spin into account,
then 1 would take values in the N-fold tensor power of C2. This changes
no ideas, but introduces factors of 2 into some key formulas).

Not every ¢ € L*(R3V) is allowed as the wave function for N electrons.
The requirements on 1 are as follows:

e 9 must have norm 1 in L?(R%V)
® Y(z1,...,Zn) must be antisymmetric, i.e.,

U(Toy, Tay, -1 Toy) = (sgn o) Y(zy, ..., zx) for permutations o. (2)
The subspace of L?(R3") consisting of all functions satisfying (2) will be
called L2,;0mm (R?V).

The (expected) energy of N electrons in the state ¥ is given by
(Hnzy,v), where the inner product is taken in L?, and Hyz is the Hamil-
tonian, given by

N
Hyz = - Z (_Aﬂ:) %+ Vchéf!omb' (3)
k=1
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The ground-state energy E(N,Z) of N electrons and a nucleus of
charge Z is defined as the lowest eigenvalue (or, more precisely, the infi-
mum of the spectrum) of Hyz acting on L2 i mm(R®Y).

We may then consider either a neutral atom by taking E(Z, Z), or we

may allow nature a chance to force N ~ Z by forming
E(Z)= iﬁf E(N, Z). (4)

The results known so far are too crude to distinguish these; let us first
restrict attention to (4). The mathematical problem we study is that of
understanding the asymptotic behavior of E(Z) for large Z. We want to
understand the asymptotics of E(Z) so precisely that we can see small
irregularities in its behavior. Let me try to explain why one might care
about the small irregularities.

We can get a crude idea of how atoms behave by simply dropping the
repulsion term 3, |z; —zx|™* from (1), to obtain an easier Hamiltonian

Hyz. Without repulsion, (3) simplifies enormously. In fact, we have

N

= Z : 2 3N
Hyz = & (_Axk = m) acting on Lantisymm(R )s

which reduces by separation of variables to the hydrogen atom

A & on L*(R®). (5)

||
Of course, the eigenvalues and eigenfunctions of (5) are computed explic-
itly in any quantum mechanics textbook.
If £, < E; < E3 < --. are the eigenfunctions of (5), counted according
to multiplicity, then the lowest eigenvalue of Hyz is easily seen to be

E(N,Z)=Ei+ E;+---+ Ejy. (6)

In fact, the eigenvalues of (5) are ;—f;—, with multiplicity n? (n =

1,2,3,...). If we had taken spin into account, then we would have found

that the multiplicity of ;—f; is 2n?, and for the next few paragraphs we
work with E, Es, Es, ... given by

B, — 5{1% for N(n) <k < N(n+1), (7)

where N(0) =0, N(n + 1) — N(n) = 2n?
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With Ej and E (N, Z) given by (6), (7), one computes easily the energy
asymptotics of a neutral atom:

E(Z,Z) ~ ~(const) Z'* for large Z. (8)

Note that E(Z, Z) has srgall irregularities as a function of Z. In fact,
one checks easily that Z2E(Z,Z) is a piecewise linear function of Z,

whose slope changes at the atomic numbers Z = N(n). Thus, the atomic
numbers at which E(Z, Z)/Z? exhibits a kink are

Z=210,28,.... (9)

Now Z = 2 and Z = 10 are the atomic numbers of helium and neon, the
first two noble gases. It is natural to believe that detailed properties of
E(Z,Z) affect chemical reactions, since chemical binding arises from the
small difference in ground-state energy between, say, a diatomic molecule
and two isolated atoms. Note that Z = 28 is the wrong prediction for the
next noble gas (argon; Z = 18). However, we have done amazingly well,
considering that we dropped the electron repulsion in (1).

The realization that an oversimplified atom, without electron repul-
sion, leads to something like the periodic table goes back to Niels Bohr.

Since the 1920s, physicists and mathematicians have worked to un-
derstand the asymptotics of E(Z, Z) and of E(N,Z) with the electron
repulsion taken into account. See [FS3] for a brief historical discussion.

The main points that we understand so far are as follows. For large
Z, both E(Z) and E(Z, Z) are given by

E(Z) = —co 273 + ¢, Z% — ¢ 5% + O(Z%/%) (10)

for explicit, positive constants co, ¢, ¢5. To derive this, one relates (3) to
an effective one-electron Hamiltonian

H=-A,+Z"*Vip(Z"?z]) on L*(R®), (11)

where Vrp(y) is a universal function on (0, c0), defined as the solution of
an explicit ordinary differential equation with boundary conditions. The
most painful part of the proof of (10) is to derive a precise asymptotic
formula for the sum of the negative eigenvalues of (11) by refined WKB
theory.

Seco and I have understood (11) well enough to conjecture an asymp-
totic formula for the irregular variations in the sum of the negative eigen-
values of (11), as a function of Z. We believe our formula can be proven
with enough hard work, using the ideas in our papers [FS1-8]. We believe
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further that this can be used to understand the irregularities in E(Z) for
very large Z. It is, however, far from clear that our asymptotic analysis
applies to Z as low as 100, and thus has anything to do with chemistry.
The prediction of chemical binding energies from quantum mechanics by
rigorous mathematics remains a very hard problem.

I've tried to motivate some mathematics here, but have not even tried
to explain the statements of the results. The interested reader may get a
good idea of what is involved by reading the old survey paper [L] and the
introductions to our papers [FS2-8]. See also [IS] for an important result
on the ground-state energy of a molecule.
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CHAPTER V

Local Sobolev—Bergman Kernels
of Strictly Pseudoconvex Domains

Kengo Hirachi and Gen Komatsu

Introduction

This article grew out of an attempt to understand analytic aspects of
Fefferman’s invariant theory [F3] of the Bergman kernel on the diagonal of
Q x 2 for strictly pseudoconvex domains 2 in C* with smooth (C* or real
analytic) boundary. The framework of his invariant theory applies equally
to the Szego kernel if the surface element on 02 is appropriately chosen,
while the Szeg6 kernel is regarded as the reproducing kernel of a Hilbert
space of holomorphic functions in £ which belong to the L? Sobolev space
of order 1/2. This fact is our starting point. For each s € R, we first
globally define the Sobolev-Bergman kernel K* of order s/2 to be the
reproducing kernel of the Hilbert space H*/?(Q2) of holomorphic functions
which belong to the L? Sobolev space of order s/2, where the inner product
is specified arbitrarily.

In order to put the Sobolev-Bergman kernel K* in the invariant theory,
it is necessary to assume that K*® has two crucial properties which are
satisfied by the Bergman kernel KB = K& and the (invariantly defined)
Szego kernel K® = K§. The first one is the transformation law of weight
w € Z under biholomorphic mappings ®: Q; —

Ko, = (Kq, o ®) | det &'|22/(+D (0.1)

for a kernel (or a domain functional) K = Kq, where det &' denotes the
holomorphic Jacobian of ®. If we write w = wIt(K) for w in (0.1), then
wIL(KB) = n 4+ 1 and wT'(KS) = n. We require the inner product of
H*?(Q) to satisfy

wik(K®*) =w(s) with w(s)=n+1-s¢€Z,

and say that such K* is weakly invariant. However, we don’t know how
to define such an inner product for s > 0, except for the Szego kernel case
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s = 1. So far, we could have defined weakly invariant Sobolev-Bergman
kernels K* = K§ only for s = 1 and s < 0 real (see Section 1). This is
a motivation to abandon the global definition via the inner product and
consider the local kernels regarded as singularities (i.e. kernels modulo
smooth error) near a boundary point of reference.

The second crucial property satisfied by the Bergman kernel and the
Szego kernel is that the singularity is simple holonomie, that is,

K:%wlogr (w>0), K=¢r*logr (w<0)  (02)

with w € Z, where r is a (smooth) defining function of 62 such that
r > 0in Q, and ¢, ¥ are smooth functions on Q (near dQ) such that ¢
does not vanish on 9. We have w = wT“(K) for w in (0.2) if K = KB,
KS. Furthermore, the singularities of K® and KS are localizable to a
neighborhood of a reference boundary point. In fact, these are obtained
by patching locally defined singularities along the boundary 92. We thus
require w = w(s) in defining local Sobolev—Bergman kernels K* = K}
with simple holonomic singularity. If in addition K* is weakly invariant, we
say that K* is strongly invariant. This property is necessary in discussing
the invariant theory of K°.

In order to define local Sobolev—Bergman kernels, we first assume for
simplicity that the (local) defining function r of 92 is real analytic, so
that we may write r = r(z,Z). We then use Kashiwara’s characteriza-
tion of the local Bergman kernel K® = KP (z,%). Kashiwara [Kas] wrote
down a system of microdifferential equations characterizing KB up to a
constant multiple by using another system satisfied by logr. According to
Boutet de Monvel [BM1]-[BM3], one can in fact define a transformation
logr +— KB, where the singularity logr represents the domain Q locally.
In other words, K® is a local domain functional via logr. On the other
hand, Sato’s hyperfunction theory asserts that any simple holonomic sin-
gularity K, with respect to r which is fixed, is written as K = Alogr,
where A = A[K] is a specific linear transformation (a microdifferential
operator of finite order) which is holomorphic in 2. Then K = A*~'KB
is again a simple holonomic singularity, where A* denotes the formal ad-
joint of A defined formally by integration by parts without taking the
complex conjugate. The mapping K ~— K is consistent with Kashiwara's
transformation logr — K®, and the Szegd kernel K = K is obtained by
choosing K to be a constant multiple of 1/r with an appropriate choice of
7 which defines 902 locally. Taking account of this fact, we first define in
Subsection 2.1 the local Sobolev-Bergman kernels K* = K}, with respect
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to any (local) defining function r by taking
Ks=r— (s>0), Ks=r"*logr (s<0)

for s € Z, where normalization constants are ignored. We then define in
Subsection 2.3 the (invariant) local Sobolev-Bergman kernel K = K§
for each s € Z as a local domain functional by requiring that the defining
functions 7 = rq are so chosen that Kj}_ is strongly invariant. Here, the
word “strongly” can be omitted, because the strong invariance of K _ is
reduced to the weak one, the (local) transformation law. In case 91 is not
real analytic but C*, the local Sobolev-Bergman kernels are regarded as
formal singularities (see Section 3).

As we prove in Subsection 2.2, the invariance of K* = K is equiv-
alent to that of }'?3, which obviously comes from the transformation law
for the defining function » = rq as a local domain functional. However,
the situation is somewhat complicated because the transformation law for
r holds only approximately. In [F2], Fefferman constructed r such that
wTL(r) = —1 modulo O(r"*2?). This error estimate is optimal (Theorem
2). Consequently, the local Sobolev—-Bergman kernel K which by defini-
tion is invariant exists if and only if 0 < s < n+1 (Theorem 1). These two
theorems are the main results of this paper stated in Subsection 2.3. The-
orem 1 suggests that, for 0 > s € Z, weakly invariant Sobolev-Bergman
kernels K*® which are globally defined do not have simple holonomic sin-
gularities, though we don’t know anything about the singularities in this
case.

We emphasize that the invariance of K},  for 0 < s < n + 1 holds
without error, though that of the best possible r is approximate with
error of O(r"*2). More precisely, the invariance of K} follows from that
of r modulo O(r**!) for 0 < s <n+1.

For the local Sobolev-Bergman kernel K* with 0 < s < n + 1, we
can apply Fefferman’s invariant theory to get an approximately invariant
asymptotic expansion similar to those for K® and K. Though there are
some technical difficulties to be examined such as the polynomial depen-
dence on Moser’s normal form coefficients A = (Ai 3), we can verify these
by inspecting the construction (see Section 4). In fact, the polynomial
dependence on A = (4 5) iIs taken into account in the definition of K.
All abstract results as in Fefferman [F3] and Bailey-Eastwood-Graham
[BEG] for K® are evidently valid as well for K*, whereas explicit results
for K* such as the determination of universal constants in Graham [G1]
and [HKN1], [HKN2] for KB and KS are obtained by computer-aided
calculation. These results are stated in Sections 4 with the method of
computation explained in Appendix B.



66 K. Hirachi and G. Komatsu

The first author has recently obtained in [Hi] an invariant asymptotic
expansion of the Bergman kernel without error via a special family of
defining functions r of 99, where the family is parametrized formally by
C>(99) and the transformation law is made to hold within the family.
The method applies in getting similar expansions of the Szego kernel and
the local Sobolev—Bergman kernels in the present paper as well. Though
the present paper discusses Fefferman'’s approach so that the best possible
defining functions 7 has the ambiguity O(r"*+?), the proof of the optimality
of this error estimate (i.e. Theorem 2) is done here by using the theory in
[Hi] (see Section 5).

1. Globally defined Sobolev-Bergman kernels

Let Q be a bounded strictly pseudoconvex domain in C" with smooth
boundary. For s € R, we denote by Hfolf (£2) the topological vector space
consisting of holomorphic functions in 2 which are contained in the L?
Sobolev space of order s/2. When an inner product (-, - )2 is specified,
we write H’/2 () as H*/2(). Then H*?(Q) is a Hilbert space which
admits the reproducing kernel K*(z,w) for z,w € Q defined by

E) = z hj(z) W!

where {h;}; is an arbitrary complete orthonormal system of H*/2(Q2). We
set K*(z) = K*(2,%).

Definition 1.1. The reproducing kernel K*(z,wW), or rather K*(z), is called
the Sobolev-Bergman kernel associated with H*/?().

The simplest case is s = 0. If (-, - )o is the standard L? inner product

(hl,hg)[.:/nhl(z)v(z)dvu), v = \ LLE

then K° = KB, where K® denotes the Bergman kernel. When we wish to
empbhasize the dependence on the domain 2, we write KB = K8. In fact,
the Bergman kernel is a domain functional, and it is elementary that if
d: Q; — €, is biholomorphic, then

K§,(2) = K2,(9(2)) | det ¥'(2)P?,

where &' = 0®/8z and thus det ¥’ is the holomorphic Jacobian of ®. More
generally, we follow Fefferman and make the following:
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Definition 1.2. If a domain functional K = K satisfies

Kq,(2) = Ka,(®(2)) | det &'(z)[/*+1) (1.1)
whenever ®: Q; — (2, is biholomorphic, then we say that K satisfies the
transformation law of weight w, and write w™*(K) = w.

Another well-known example is the Szego kernel K'. Here, we may
choose an inner product on H/2() to be given by

(R1yha)1y2 = /an hl(z)mo(z)a

where o is a surface element on 8. Thus H'/?(Q2) depends on o. It is
possible to choose ¢ in such a way that K satisfies the transformation
law, as follows.

Let us take a smooth positive defining function p € C=(f), and thus

Q={zeC" p(z) >0}, dp(z) #0 for z € 990.

Let J[:] denote the Levi determinant or the (complex) Monge-Ampére
operator defined by

s n 310/6_k . =
Jlp) = (—1)" det (apfazj p/82;0%: (4, k=1,...,m). (1.2)
We then have wTl(K!) = n, provided the surface element o is subject to
the normalization

o Adp = J[p]/™DdV on 8Q.

In this case, we write K! as K5 and call it the invariant Szegé kernel or
just the Szegé kernel. Thus

(KB =n+1, w(KS)=n.

These numbers coincide with the magnitude of the singularities. In fact,
according to a celebrated theorem of Fefferman [F1] (see also Boutet de
Monvel and Sjéstrand [BS]), there exist functions ¢ = ©B[p] and ¢® =
¥B[p] in C=(Q) such that

n B
iy %)
P pt YPlogp, (¢°—J[p])|yq = 0. (1.3)

Similarly, there exist ¢° = ¢%[p] and ¥S = ¥3[p] in C*(Q) such that

ﬁ.l'l

S
e K= ;‘:—ﬂ +¥%logp, (¢°—JMV)| =0 (14)

an
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(Note that J[p] > 0 on 99 by the strict pseudoconvexity.)
We are interested in the Sobolev-Bergman kernel K* satisfying

wil(K®) = w(s), where w(s)=n+1-s€Z. (1.5)

It will be also natural to require the existence of ¢*,¢* € C*(Q) such
that
AR e e s G
@' p logp for w(s) <0,

where ¢;5 # 0 are normalization constants so chosen that
s _J w(s)/(n+1) ‘ =0.
(¢ = Jlel s

Definition 1.3. A Sobolev—Bergman kernel K* is said to be weakly invari-
ant if the condition (1.5) holds. If in addition the condition (1.6) holds,
then K* is said to be invariant.

If the conditions (1.5) and (1.6) are not taken into account, it is easy to
give examples of Sobolev-Bergman kernels K* for any s € R, by specifying
an inner product (-, - ),/2. For instance, if s/2 > 0 is an integer, then we
may take, with the usual (commutative) multi-index notation,

(mhp= [ 3 (28m)(a£0fRa)av, ()

Q |aj+(8]<s/2

though the condition (1.5) breaks down.

Remark 1. In case Q is a ball in C" and H*/?(2) is specified by the inner
product (1.7) with s/2 € Ny, Boas [Bo|] showed that the reproducing kernel
K* takes the form (1.6), where the logarithmic terms appear even for
0 < s < n. It is easy to define an inner product of H*(f2), for each domain
Q which is biholomorphic to a ball, in such a way that the transformation
law (1.1) with w = w(s) holds for the reproducing kernels K = K?* of
such domains. However, such reproducing kernels are not defined for
domains which are not biholomorphic to a ball. In other words, a domain
functional K* = K§ is not determined as a weakly invariant Sobolev—
Bergman kernel.

In case s < 0 is a real number, we can define a weakly invariant
Sobolev-Bergman kernel as follows. An inner product on Hf‘;f(ﬂ) is given
by

(R, ha) oy = f ha(2) Ba(2) pl2)* dV (2)
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for any smooth defining function p > 0 of Q2. Moreover, we may replace p
by any continuous function u > 0 of the same magnitude as p to have

(h1, h2)s/2 =/ hi(2) ha(2) u(z)~* dV (2). (1.8)
Q
We have:
Proposition 1.1. Let 0 > s € R. If u = uq satisfies
wrl(u) = —1, 0<infu/p < supu/p < +oo, (1.9)

then the Sobolev-Bergman kernel K* defined by (1.8) is weakly invariant.

Proof. If ®: ; — s is biholomorphic, then
uy = (ug 0 ®) |det &'~ )|y, =ug, (£=1,2).
It then follows that an isometry ®*: H*/2(Q;) — H*/?(Q;) is given by
®°h = (h o ®)(det &)/ (n+1),

If {;} is a complete orthonormal system of H*/2(,), then a complete
orthonormal system {h;} of H*/2(),) is defined by h; = ®*h;. Thus, the
transformation law (1.1) for K* = K follows from

S Ihlt =3 [y o @ |det &N,
J )

Examples of u = ugq, satisfying (1.9) are given by
—1/(n+1) —1/n
uB = (c,silj1 KB) or u®= (c,sfl,n KS) .

Another important example is given by the solution u = uM4 of the bound-
ary value problem
Jul=1 and >0 in O u=0 on 90 (1.10)

The unique existence of a solution of (1.10) in C*°(2) N C™+3/2-¢(}) was
proved by Cheng and Yau [CY]. Thus the first relation in (1.9) follows
from the fact (see [F2]) that if ®: Q; — Q5 is biholomorphic, then

Ju] = Jlug) o ®, where wu; = (uzo0®)-|detd’|~/+D),
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The second relation in (1.9) follows from the asymptotic expansion due to
Lee and Melrose [LM]:

uMA > e (0" log p)k, e € C(Q)
k=0

where 79/an > 0. Thus u = uMA satisfies (1.9).
If Q2 is the unit ball Quay, then

ugb."(z) = Kgball(z) = “ﬁi.:u oF |z12.

In contrast to Boas’ result in Remark 1, we have:

Proposition 1.2. Let K* = K be a weakly invariant Sobolev-Bergman
kernel of order s/2, 0 > s € R, defined by the inner product (1.8) with
either one of u = uB, u® or uMA. Then

D(w(s)) 1
7T —9) (1 )"

Ko, (2) =

Proof. For n = 1, the result follows by using the fact that monomials
form a complete orthogonal system of H*/%(Qpay). For n > 2, we consider

o

K:ux(z) = Z Ih’a(z)P, hg(z}: -

- ETvS

where || - ||s/2 is the norm corresponding to the inner product (-, - ). It
suffices to show that
T(w(s)) 1

Kauw(z) = (1 —s) (1= |z[2)we)’

Kaux(2) = Ka,,, (2)-

The first equality is obtained by direct computation using the result for
n = 1. The second one is equivalent to the completeness of the orthonor-
mal system {h,}, and the proof of this fact is done by noting that

Kfy(2) = sup {|B()P/IAlZ0; 0 # k€ H(Quu)},

just as in the proof for s = 0 given by Hérmander [Hg). O
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2. Definition of local Sobolev-Bergman kernels

In this section, we consider the local Sobolev-Bergman kernel of order
s/2 for s € Z and the invariance in the sense of (1.5). We begin with the
motivation because the definition is somewhat technical.

An important fact is that the singularities of the Bergman kernel KB(z)
and the (invariant) Szego kernel K3(2) as in (1.3) and (1.4) can be localized
to any boundary point, say p € Q. That is, if Q; NU = Q, NU for a
neighborhood U C C" of p, then Kq, — Kq, for K = KB or K5 is smooth
near p € 99, where smooth means C* or C* (real analytic) in accordance
with the regularity of 92 near p. Furthermore, one can define local kernels
Ko = K2, and K3 _ by requiring the following three conditions:

loc loc
(i) Kioc(2,@) is holomorphic in 2 a._I}d anti-holomorphic in w for z,w €
QnNU. Two local kernels Kj,. and K),. are identified when the difference
is smooth in C" near p. Thus U can be shrunk arbitrarily.

(ii) Ke = KB, and K. have singularities of the form (1.3) and (1.4),

loe loc

respectively, where ¢ = ©B, ¢ and ¥ = B, ¢S are smooth in QN U.
(iii) Reproducing properties modulo smooth errors hold, that is,

Koo (2,@) fi(w) dV (w) = fi(2) ~ 0,

Qnu

f K2 (2,18) fo(w) o) = fol2) ~ 0,
annly

for holomorphic functions f; and f> in Uy, where Uy C C" is an open set
satisfying p € U € Uy, and each f; is regarded as the boundary value. In
case 90 is C*™ near p, fi(z) and f»(z) are required to be of polynomial
growth in 1/dist (z,0Q). (If 92 is C¥ near p, then no restriction on f;
and f, is necessary, provided the pairings are interpreted in the sense of
hyperfunctions, cf. Kaneko [Kan].)

The local kernels K2, and K are uniquely determined by the require-
ments (i)—(iii). We wish to define the local Sobolev-Bergman kernel K
for s € N in a similar way. Qur main concern is the invariance in the sense
of (1.5) under local biholomorphic mappings. However, the condition (iii)
uses the inner products, and we don’t know how to define (-, - ), fors € N
such that the Sobolev—Bergman kernel K® is invariant. We thus abandon
(iii) and instead adopt Kashiwara's characterization of the local Bergman
kernel K2_, a method which applies equally to the local Szeg6 kernel K3

In this section, we assume that 95 is C* near p. We are only concerned
with local kernels Kjoc(z, W) defined near (z,w) = (p,p), and thus the

subscript loc will be omitted.
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2.1. Kashiwara’s transformation. We fix a local defining function r
of  near p € 0N and assume for a moment that r is real analytic. Then
r has a holomorphic extension to a neighborhood of M x M in C* x C*,
where M C 99 is a neighborhood of p (or more precisely, a germ of
at p). Denoting it again by r, we set, for m € Z,

-1— r™logr for m >0,
m!

f?m[f] - ; m+1 1
(1) (=m = 1)) =—— for m <0,

and consider singularities of the form

<,0K_w [r] + ¥ Ro[r] if w> 0,
(pK_w['r] if w S 0,

where ¢ an 9 are holomorphic in (z, Z) near M x M for some M. We denote
by C the totality of K such that ¢ # 0 near M x M. By [SKK],if K € Cx
then, for any holomorphic microdifferential operator P = P(z,d,), there
exists an antiholomorphic microdifferential operator Q = Q(Z, 8;) such
that PK = QI?‘ Furthermore, if P; = Pj(2,8,) for j = 1,...,2n are
chosen independently then K is determined up to a multiplicative constant
by

Pi(2,8.)K(2,2) = Q;(z,8:)K(2,7) for j=1,...,2n. (2.1)

(A more rigorous description of [SKK] will be given in Appendix A.) Let
us consider another system of microdifferential equations for K € C

P}(2,0.)K(2,%) = Q}(%,8)K(2,7) for j=1,...,2n,  (22)

where P}, Q; are formal adjoints of P;, @;, respectively. The independence
of P; implies that of P;, so that the solution of (2.2), if it exists, is unique
up to a multiplicative constant.

Kashiwara’s theorem ([Kas]). If K = Ro['r] = logr in (2.1) then (2.2)
is satisfied by the local Bergman kernel K = K®.

By [SKK],if K € C) then there exists & unique invertible holomorphic
microdifferential operator A[K] such that

R(2,%7) = A(z,8.)Ro(2,7) with A=A[R], Ry=Rolr. (2.3
Thus, Kashiwara's theorem yields
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Lemma 2.1. If (2.1) and (2.3) hold for K € CJ, then (2.2) is satisfied by
K(2,Z) = A*(2,8,)'KB(z,2).

Proof. Since A is a holomorphlc operator and thus QJA AQ,, it

follows that PAKU = QJAKQ AQJKU, that is, A7'P; AKO QJKQ,
so that Kashiwara’s theorem yields QK B — A* P‘A"‘IK B = = A'P}K.
Using A*~'Q; = QjA* !, we get PrK = A*~'Q;} KB = QK. a

Since A[K®B]* = A[K®], it follows that
C3Kr— KeC; (2.4)
given by Lemma 2.1 is an involution. We refer to it as Kashiwara’s trans-

formation.

Definition 2.1. Let r be a real analytic local defining function of {2 near
p € 0Q. For s € Z, we define K*[r] = K by K = K_,[r] in (2.4) and call
K*[r] the local Sobolev-Bergman kernel of order s/2 with respect to r.

By the definition via Kashiwara’s theorem, we have K°[r]
(const.) KB independently of the choice of . We also have K![r] =
(const.) K3 if J[r] = 1 on 8Q.

2.2. Biholomorphic transformation law. We wish to define a local
Sobolev-Bergman kernel of Sobolev order s/2 for s € Z as a local domain
functional K* = (K§), near the reference points pq € 9, say pq =0 €
C", where we continue to assume that 95 is real analytic near 0. In the
definition, we require three conditions of which the first two are:

Condition SB1. Each K§ is of the form K§ = K?*[rq], where rq is a
local defining function of 2 near 0 € C". That is, K§ is the local Sobolev—
Bergman kernel with respect to rq.

Condition SB2. The family r = rq is so chosen that K* = K§, satisfies
the transformation law of weight w(s)

K§ = (K3 0 ®)|det &'/ with w(s)=n+1-s (2.5)
under local biholomorphic mappings ®: Q —  defined near the origin

such that &(0) = 0.

The third condition is somewhat complicated, and the precise state-
ment is postponed to the next subsection. That condition is motivated by
the result of this subsection.
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Assume Condition SB1. Then the validity of Condition SB2 depends
on the approximate transformation law of weight —1 for the family r =
(ro)a:

rq = (ry 0 ®)|det ®'|~%+)  mod O(rg), (2.6)

where O(rd) stands for terms which are smoothly divisible by rY. In fact,
we have:

Proposition 2.1. Assume there ezists Ny € N such that r = rq satisfies
the transformation law (2.6) for N = Ny but not for N = Ny + 1. Then
the transformation law (2.5) is valid if and only if 0 < s < Ny — 1.

This is consistent with the independence of KB and the dependence of
K® onr = (rq).

In the proof of Proposition 2.1, we need the following property of
Kashiwara'’s transformation.

Lemma 2.2. Assume Condition SB1. Then Kq = K§ satisfies (2.5) if
and only if Kq satisfies

Rq = (Kq o ®)| det &2/, (2.7)

Proof. We shall show that (2.7) implies (2.5). The proof of the converse
is similar. What we have to show is that

I?n = [fl?S(I)*}?n lmplles Kg — |f]?w(sj(b;}{n,

where f = (det ®)/("*1) and ®* stands for the pull-back by ®. Let us
abbreviate by writing Aq = A[Kg], and similarly for Q in place of Q.
Then the assumption (2.7) is further written as

Aqlogrg = |f|*®"Agy(971)"@* logrg,.

The right side is simplified by setting A = P*An(®1)*, using ®* logry, =
log rq, and choosing a holomorphic microdifferential operator P = P(z,8,)
such that Plogrq = T logrq. Since Ais a holomorphic operator, it
follows that

Aglogrq = f°APlogrg, sothat Aq= f*AP

(see Appendix A). Using CD*A;!(‘I"")’ = f"‘_lﬁ‘f"“, we get

(A)™ = FOB(AR) @) F (P,
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where f~""! acts as a multiplication operator. We apply both sides to
KB. Noting that P*KB = F° KB, we have

*y— T n+1Fw( *
(P*)'KB =T KB = " 7"o KB,
Since Tw(s) commutes with a holomorphic operator, it follows that
Ko = |f[*99" (A3) " KE = |f**98" Ky,
which is the desired conclusion (2.5). O

Proof of Proposition 2.1. Let us abbreviate by writing 7 = r o ® and
f = (det &)+ In case s < 0, (2.7) is written as

o’ logrg = 7| f|*/("+D log 7.

For s = 0, this is always the case. For s < 0, this is valid if and only if
(2.6) holds for any positive integer m. In case s > 0, (2.7) is written as

,r:—la - T":'—3|f|2s/(n+1)‘

This is valid if and only if (2.6) holds for N > s+ 1. Thus the desired
result follows from Lemma 2.2. O

2.3. Definition of local Sobolev—Bergman kernel. We are in a
position to state a condition on the family r = (rq)q, to be called Con-
dition SB3. This consists of the approximate transformation law (2.6)
for m = s + 1 and the polynomial dependence on Moser’s normal form
coefficients.

Recall that Moser’s normal form is a real hypersurface of the form

N(A): pA=2u—|z'i2—Z Z Aiﬁz;%J:D,

£=0 [a],|8122

with normal coordinates z = (2/,2,) € C* ! x C, u = Re zp, v = Im 2,
such that A = (A% 5) is subject to the following conditions:

(N1) Each Aj; = (A’3)al=p,81=q is & bisymmetric tensor of type (p,q)
on C*~1. That is, &, 3 are ordered multi-indices such as & = ...y,
l1<a; <n-1, and Ai 3 is unchanged under permutation of & and that
of 8.

(N2) Aiﬁ is Hermitian symmetric, that is A’ 3= Al
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(N3) trAl; =0, (tr)2A% =0, (tr):"AgE_: 0, where tr stands for the usual
tensorial trace taken with respect to §7*.

Some notation is in order. By AV, we denote the totality of A = {Ai B)
satisfying the conditions (N1)-(N3). We define N to be the set of A € N
such that N(A) is real analytic. (In general, N(A) is a formal surface.)
The strictly pseudoconvex side p4 > 0 of N(A) is denoted by Q(A), which
makes sense near the origin. We use the coordinates (z',2',pa,v) for
functions on Q U N(A).

We have assumed that each 00 is real analytic near the origin, so
that we can place it locally in Moser’s normal form N(A) with A € N¥.
More precisely, there exists a local biholomorphic mapping ®4 such that
®4(Q) = Q(A) and D ,4(9R) = N(A) locally. For rq, we set

ra = (rgo ®3')| det &/, |¥/+D),

and consider the Taylor expansion about the origin

N-1
ra= Y a(Z,7,v) ol +O0(oh). (2.8)
k=1

More precisely, we require that the family (74),ea~ is well-defined in the
sense of (2.8). Now we pose:

Condition SB3. In case s > 0, the family r = (rq)q satisfies (2.6) for
N = s + 1. Furthermore, in (2.8) for N = s + 1, any coefficient of the
Taylor expansion of cx(2’, 2’,v) about the origin is a universal polynomial
in A € N¥. In case s < 0, the requirements above hold for any N € N.
In case s = 0, no requirement is imposed.

Definition 2.2. By a local Sobolev-Bergman kernel of order s/2, s € Z, we
mean a local domain functional K* = (K§) satisfying Conditions SB1-3.

By virtue of Proposition 2.1, the existence of a local Sobolev—Bergman
kernel is reduced to that of a family of defining functions r = (rq)q satis-
fying Condition SB3. Our main result of this paper is:

Theorem 1. A local Sobolev-Bergman kernel of order s/2 (s € Z) erists
if and only if 0 < s <n+1.

The nonexistence part of Theorem 1 is a consequence of:

Theorem 2. There does not ezist a family of C* local defining functions
r = (rq) satisfying the requirements in Condition SB3 with N = n + 3.

The proof of Theorem 2 is given in Section 5. Let us observe that
Theorem 1 follows from Theorem 2. It suffices to show the existence of
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r = (rq) satisfying Condition SB3 with N =n + 2 in place of N = s + 1.
But this has been done by Fefferman [F2]. He constructed rq satisfying
Jlra] = 1+ O(r3*) and (2.6) for N = n + 2. Specifically, one starts
from an arbitrary smooth local defining function p of 2, and defines p, for
s=1,...,n+ 1 successively by

po gy 12Tl o ni2—s) (29)

_ —~1/(n+1)
p1=J[p] b 5 .

Then J[ps] = 1+ O(p*), and p, satisfies the approximate transformation
law (2.6) for N = s + 1. Thus, we may set rq = pny;1. It is clear that
rq is real analytic whenever the initial p is. The polynomial dependence
on A € N as in Condition SB3 is examined if we locally place 9Q in
normal form N(A) and start from p = p,4. In fact, the universality of the
polynomials in Condition SB3 follows from the transformation law (2.6)
for N=n+2.

3. Local Sobolev—Bergman kernels (the C* case)

3.1. Polynomial dependence in the real analytic case. In order
to define local Sobolev—Bergman kernels in the C* category, we rewrite
Condition SB3 under Conditions SB1 and SB2. That is, we need to state
the polynomial dependence on Moser’s normal form coefficients A = (Ai 3)
more explicitly.

Let us first recall the notion of biweight on Ai i for A = (Ai 3) eEN
defined by

wa(Alz) = (la + £~ 1,18] + £~ 1).

This comes from the transformation law under dilations
a2, 2n) = (A2, |A[P2,) for A eC".

The notion for polynomials in A to be of (homogeneous) biweight is defined
by

wa(P1(A) P(A)) = wa(Pi(A)) + wa(Pa(A))
for monomials P;(A) and Py(A). If P(A) is a polynomial of biweight
(w', w"), we write

wo(P(A)) = (W', w"), W (P(4)) = (v +w"),

B =

and call wdi!(P(A)) the weight of P(A) with respect to dilations. Then,
a polynomial in A is of weight w with respect to dilations if and only if
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it is a linear combination of polynomials of biweight (w’,w"”) such that
w’ + w"” = 2w. We have no essential change if we replace N’ by N'“.

Let K° = (K§) be the local Sobolev-Bergman kernel of order s/2 in
Definition 2.2, so that each 9 is real analytic near the reference point
assumed to be the origin 0 € C". As in the previous section, we locally
place 99 in normal form N(A), and write K* = (K%)aenw, where each
K corresponds to Q(A). In fact, (K3) is a subfamily of (K§), but there
is no loss of information via the transformation law

K = (K§ o $3")| det &/y|~2)/(n+1) (3.1)

for ®4 in Subsection 2.3. Note that (3.1) is consistent with (2.5). As in
(2.8), we have

o0

K; = Z Z Pi%‘(A) z;%vf Rm—w(a) [pA], (32)

m=0 a,5,¢

where P:%"(A) are universal polynomials in A € N determined by K* =
(K%). Furthermore,

WI(PR(4)) = 2 (la] +18]) + £+ m (3.9)

As before, we refer to the universality of the polynomials Pig(A) in (3.2)
as the polynomial dependence of K* = (Kg) on A. This follows from
Condition SB3 and the construction in Subsection 2.1. Here, a crucial
fact is the polynomial dependence of the local Bergman kernel K° = KB
on A, a fact which has been examined in [HKN1J.

Let us restrict ourselves to the half line z = 4, for ¢ > 0 small defined
by 4¢ = (0,¢/2) € C*~! x C. Then (3.2) implies

Ki() =Y Pn(A) Rn-uiolt], (3.4)
where P,(A) = P¥"(A). Thus (3.3) yields
wil(P,.(A)) = m. (3.5)

Since wd“(AiE) > 0, it follows from (3.5) that:

Lemma 3.1. Each polynomial P,,(A) in (3.4) depends only on Afﬁ such
that wH(A’5) < m.

A crucial fact is the following.
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Proposition 3.1. The ezpansion (3.4) determines K*° = (K§).

Proof. We first take a small neighborhood M C 99 of the origin. For
any ¢ € M fixed, we then place M about ¢ in normal form N(A) with
some A € N¥. By [CM], we may take the local biholomorphic mappings
o4 M — N(A) with &, 4(q) = 0 to depend on g € M real analytically.
Setting

K; 4= (Ko ®, )| det & 4|2/ (1)

we have, as in (3.4),

o0

K;A(’Tt) = Z Pm(A) Rm—w(s] [t] (36)

m=0

The point is that P,,(A) in (3.6) are independent of ¢ € M. This fact
follows from the universality of Pi%‘(A) in (3.2). The expansion (3.2)

about the origin is recovered from (3.6) by varying ¢ € M. Thus (3.4)
determines (3.2). O

3.2. Definition of local Sobolev—Bergman kernels in the C* cat-
egory. Let us define local Sobolev-Bergman kernels K* = (Kg) near
0 € 09 in case each 0f2 is merely C*°. We regard each K§, as a formal
singularity. In other words, we ignore the difference by flat functions. As
before, it suffices to specify K* = (K%)aen given by the transformation
law (3.1). This is done by real analytic approximation. More precisely, we
first truncate A = (A4 3) € N by neglecting A* 5 such that wiil(AL 5 >N
for N € N large, and denote the results by Ay. Then N(Ay) are alge-
braic real hypersurfaces, for which we can consider an expansion of the
form (3.2). By Proposition 3.1, this expansion is determined by an ex-
pansion of the form (3.4). In this new expansion, the coefficients P,,(A)
for m < N are determined by Ay, a fact which follows from Lemma 3.1.
In other words, these Py,(A) are unchanged if Ay are replaced by An;.
Consequently, we have the expansions (3.4) and (3.2) for any A € A even
when A ¢ N¥. Therefore, K* = (K§) for 92 € C> near 0 € C" is
well-defined.

Remark 2. Let s € Z and s € [0,n+1]. Then by Theorem 2, there does
not exist a local Sobolev-Bergman kernel of order s/2. Nevertheless, we
can define a similar local domain functional K* = (K§) with ambiguity.
We require K* = (K§) to satisfy Conditions SB1-3, but the exact trans-
formation law (2.5) in Condition SB2 is replaced by an approximate one.
The existence of K* = (K§) in the real analytic category is proved as in
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the exact kernels case s € [0, 7 + 1], though we have to be more careful in
inspecting the construction in Subsection 2.1. The ambiguity of K comes
from that of K via that of A(z,d,). The definition of K* = (K§) in the
C® category is also similar to that in the exact kernels case s € [0,n + 1]
in the previous subsection. We have (3.1) if each K§ is regarded as an
equivalence class with respect to the ambiguity. For the approximate ker-
nels as above, one can develop Fefferman’s invariant theory as in the next
section.

4. Invariant expansions of local Sobolev—Bergman kernels

4.1. Ambient metric construction. Let K* = (K§) be the local
Sobolev-Bergman kernel of order s/2 in the C* category, so that s € Z
satisfies 0 < s < n+ 1. As before, we set w(s) =n+1—s. Let r = (rq)
be a family of C* local defining functions satisfying Condition SB3 with
N =n+2in place of N = s+1. It has been known for s = 0, 1 (that is, for
the Bergman kernel and the Szegd kernel) that K* admits an expansion
of the form

Kﬁ = Z W:I[TQ]R _w(s)[f‘g] mod O(RS[TQD, (41)

m=0

where W3, = W2 [rq| are Weyl functionals of weight m given by the ambi-
ent metric construction (cf. [F3], [BEG], [HKN1], [Hi]). Terminology will
be reviewed below in this subsection (Definitions 4.1 and 4.2). If n = 2
and s = 0,1, then (4.1) is refined as follows (cf. [G2], [HKN1], [HKN2]):

Ké = Z W:‘[TQ] I?m_w(,)[i"g] mod O(I?s+3['f'n]), (42)

m=0

where W3, = W} [rq] (m # 3) are Weyl-Fefferman functionals of weight
m. Here, the case m = 3 is exceptional and we explain it at the end of
this subsection. The proof of these facts yields the following:

Proposition 4.1. An ezpansion of the form (4.1) holds in general for
0<s<n+1.

Proposition 4.2. An expansion of the form (4.2) for n = 2 holds in
general for 0 < s < 3.
In fact, we have defined the local Sobolev—Bergman kernel in such a

way that Propositions 4.1 and 4.2 are obvious. In order to explain it,
we begin by recalling the ambient metric construction. For simplicity of
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notation, we drop the subscript Q in rq and write K*[r| for K§. Though
our description below looks global near 652, it is obvious as before how to
localize or formalize to a neighborhood of a boundary point of reference.

The ambient metric g = g[r] is defined by the potential ry(zo,2) =
|z0/?r(z) on C* x Q, where zyp € C* = C \ {0} is an extra variable. That
is, g is a Lorentz-Kéhler metric in a neighborhood of C* x 912, inside Q.
Specifically,

n n
82?“#
g= g-; dzjd,‘z'k = i dZ‘dEk.
:’.ZZJO ! j.kz=n 0207’

Denoting by R = R[r] the curvature tensor of g, we consider successive co-
variant derivatives R?%) = V9-2V?~2R, Regarding components of R
as independent variables, we manufacture complete contractions, with re-
spect to g, of the form

Wy = contr (R{”‘ M. Q R(p"‘"""‘)), (4.3)

where 3" p, = 3 g¢ = 2(m + w), the definition of w called the weight of
Wx. By a Weyl polynomial Wy of weight w, we mean a linear combination
of complete contractions of the form (4.3) of weight w. Here, Wy is
regarded as a polynomial in components of R®? for all p,q > 2.

Given a Weyl polynomial Wy of weight w, we now regard it as a
functional of ~ and write Wy = Wy[r]. Setting W(r] = Wg[r]|.o=1, we
have

Wilrl(20, 2) = |2 WIr](2).

Using the terminology in [HKN2], we pose:
Definition 4.1. W = W]r] is called a Weyl functional of weight w.

If W = WJr] is a Weyl functional of weight w, then the following
transformation law holds under biholomorphic mappings ® : ; —

Wry) = (Wiry] o ®)| det @'|22/(n+1), (4.4)

provided r; are defining functions of §;, subject to the restriction at the
beginning of this section, such that r; = (rp o ®)|det ®'|~%/("+1)_ Fyr-
thermore, (4.4) holds modulo O(r"*!~*)  without assuming the relation
between r; and ;. Consequently, it follows from the construction that if
w < n then the boundary value of W(r| is a CR invariant of weight w.
This is a consequence of the polynomial dependence of W[r] on A € N in
the sense as before.
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Definition 4.2 (cf. [HKN2]). Let n = 2. We say that a Weyl] functional
W = W[r| of weight w is a Weyl-Fefferman functional if W[r| modulo
O(r®~"*) is independent of the choice of r.

If n =2 and W = W/r] is a Weyl-Fefferman functional of weight w,
then (4.4) holds modulo O(r®*). Hence, if w < 5 then the boundary
value of W{r] is a CR invariant of weight w.

By a CR invariant of weight w, we mean a polynomial P(A) in A e N
satisfying the transformation law

P(A) = P(A)| det & (0)]?/"+1)
under any local biholomorphic mapping ®: N(4A) — N (:ff) such that
$(0) = 0. We denote the totality of these P(A) by ISR. Any CR in-
variant can be regarded as a smooth function on 9. Propositions 4.1
and 4.2 are consequences of the following fact, except for W3 [rq] in (4.2).

Proposition 4.3. Ifn > 3 and w < n, then any CR invariant of weight
w s realized by the boundary value of a Weyl functional of weight w. If
n=2 w<5 and w # 3, then any CR invariant of weight w is realized
by the boundary value of a Weyl-Fefferman functional of weight w.

For the proof, see [BEG] and [HKN2].

Remark 3. Let us say that a Weyl functional is linear (resp. nonlinear)
if the corresponding Weyl polynomial is linear (resp. nonlinear).

(1°) Let n = 2 and w < 5. Then, any nonlinear Weyl functional of
weight w is a Weyl-Fefferman functional and any linear Weyl-Fefferman
functional of weight w is trivial. Now let W # 0 be a linear Weyl functional
of weight w. If w < 2 then the boundary value of W is zero, whereas if w =
3 then the boundary value of W is nonzero and gives rise to a CR invariant.
The vector space of CR invariants of weight 3 is one dimensional, and thus
a base is realized by the boundary value of a linear Weyl functional, though
the ambiguity estimate is too rough. (Cf. [HKNZ2] for the detail.)

(2°) Let n > 3 and w < n+1. It is plausible that any Weyl functional of
weight w has the ambiguity modulo O(r"*?~*) and that any CR invariant
of weight w is realized by the boundary value of a Weyl functional of
weight w. If w < n then any linear Weyl functional of weight w is trivial
(cf. [F3)). It is desirable to define the notion of Weyl-Fefferman functionals
as in the case of n = 2 by the optimal ambiguity estimate for nonlinear
Weyl functionals.

(3°) According to the theory developed in [Hi] and roughly explained
in the next section, the Weyl functionals W,, = W,,[r] of arbitrary weight
w make sense as functionals of a special family of defining functions r,
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where the ambiguity of r is measured by a parameter and its effect on
W, = Wy[r] is taken into account. In this sense, Propositions 4.1 and 4.2
can be refined in such a way that (4.1) and (4.2) are infinite asymptotic
series. Here, we don’t need a refinement of Proposition 4.3, which is stated
in Subsection 5.3.

We conclude this subsection by explaining what is W§[r] in (4.3), where
the subscript 2 in rq is dropped. For each s, this is a constant multiple of
n¢ = n¢[r] which appears in Graham’s asymptotic solution of J[u] = 1:

W= 30 (" logr)t, € O=(D)

in the general case of dimension n > 2. This is a formal series, and the
difference of flat functions along 89 is ignored in determining n¢. We

have
s =1+ ar™! + O(r"*?) with a € C*(80),

and uC is uniquely constructed by specifying a. We have approximate
transformation laws

e, = (Na, © ®)|det @'[*  mod O(r™*')

under (local) biholomorphic mappings ®: 2; — 5. In particular, each
ng modulo O(r"*!) is independent of @ and r, as far as r is subject to
the condition at the beginning of this subsection. By construction, the
polynomial dependence on A € N is valid as before. Thus, ¥ for n = 2
behaves like a Weyl-Fefferman functional of weight 3.

4.2. Explicit result in dimension > 3. Let n > 3. It is proved in [G2]
that ISR = C, IR = {0} and that IS® is generated by

1ABIP = > 14%*

le|=|8|=2
Consequently, we have for W2, = W3 [rq] in the expansion (4.1),
Wy=1, Wi=0, Wilral, = c'(n)]A%I", (45)

where ¢°(n) are universal constants. By [HKN1],

2 ks 2
&P(n) = =D’ c'(n) = ———3(?1_2)(“__ -

By a similar proof, we have:
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Proposition 4.4. The constants c*(n) in (4.5) are given by

2
3n—s—1)(n—s)

and c*"(n) = -2/3, c*(n) = 2/3.

for s#n-—1,n,

c’(n) =

4.3. Explicit results in dimension two. Let n = 2. We first note by
[G2] that I§® = C and that IR and ISR are trivial. Consequently, we
have for W3, = WS [rq] in the expansion (4.2),

It remains to determine ¢* = W3 + Wjr + Wir?, where we abbreviated
by writing r and W7 in place of rq and W} [rg], respectively. By [G2] and
[HKN2], we have

dm P =dimI{R =1, dmIP=

_|?, respectively;

More precisely, I§® and I{® are generated by AJ; and |AZ;
ISR is spanned by F R(1 0) and FFR(0,1), where

F;JR(a_, b) = F(a,b,—2a + (10/9)b, —a + b/3)

with F(a,b,c,d) = a| A} |2+6[A 5|2 +Re{(cAY —idA};) A%;}. By Graham
[G2], the boundary value of n¢ is 4A%;. Tt is proved in [HKN2] that if
p+¢q—2=4,5then |[RP?|? is a Weyl —Fefferman functional of weight
w = p + q — 2, where ||R®9||? stands for the squared norm of the tensor
R®9) with respect to the ambient metric g restricted to zp = 1. (The
squared norm need not be nonnegative because g is a Lorentz metric.)
Furthermore, the boundary values of ||R®?|2 and |R*?||? are linearly
independent as CR invariants. Consequently, we may set

¥ = g + IR + (IRED|? + URI|?)r? + 0(2), (4.6)

where cj for j =0,...,3 are universal constants.

Proposition 4.5. The constants c; in (4.6) are given by

& =-3, =3/1120, cd = 61/141120, c3 = 3/7840,
cd=-2, cl=1/3360, c}=1/23520, i =1/13230,

2 =-1, ¢ =-1/10080, c} =—1/70560, c3 = —1/169344,
=1 ¢ =1/4480, 3 =1/33075, ¢} = 1/31360.
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The proof of Proposition 4.5 is done by locally placing 92 in normal
form N(A) and restricting both sides of (4.6) to the half line v, = (0,¢/2),
t > 0. By [HKN2], we have

|R4)|12(y,) = 28 g1(7,0) + 28 g2(117, 435,936, 0, 50,0) t + O(t?),

[RE2||2(v,) = 4 - (51)%g5(5/2,9,18,0,1,0) + O(2), (4.7)
1RO () = 4 (5!)*2(37/30,5,57/5,0,4/3,0) + O(8),

where
q1(d1, dp) = di| A% |* + d2 AL,
g2(dy, d2, d3, da, d5, d) = Re (QdIiA;EAgi + 2dy Az Ads + d3| A% [?
+ dy A%y + ds| A%|? + do A%g).

Though [HKN2] does not give the expansion of n{(7,) for general N(A), an
algorithm of computation is provided. Computer-aided calculation yields:

Lemma 4.1.

18 () = 4 A% + :(368/5,—20) ¢
+ g2(226/15, —312, —1956/5, 2, —680/3, 60) £2 -+ O(t?).

A method of computation of %°(;) is given in Appendix B. Again,
computer-aided calculation yields:

Lemma 4.2. With ¢, and g, as in Lemma 4.1,

Y1) = —124%; + q:(—216,60) ¢t

+ g2(—36,900, 1116, —6, 660, —180) t2 + O(t%),
P (1) = —8A% + ¢1(—440/3,40) ¢

+ g2(—248/9, 1840/3, 760, —4, 4040/9, —120) £* + O(¢t%),
V(1) = —4AY + ¢:(—664/9,20) ¢

+ g2(—131/9, 310, 386, —2, 680/3, —60) t2 + O(t°),
V() = 4A% + 01(74,—20) ¢

+ ¢2(15, —312, —390, 2, —228, 60) 2 4 O(t%).

Proposition 4.5 is proved by using Lemmas 4.1 and 4.2, together with
(4.7) and the result for s =0 or s = 1 given in [HKN2).



86 K. Hirachi and G. Komatsu

4.4. A construction of CR invariants of weight five in dimension
two. As an implication of Lemmas 4.1 and 4.2, we now give a linear
relation satisfied by ¥ and local Sobolev—Bergman kernels of order s/2
for s =0,1,2,3. Let us first normalize by setting

G 0 1 2 3
A S O L PR, G N i
m"_41 1«)1—4: 1!)1_' 4! llbl_' 81 w‘['— 12

so that the evaluation at z = 0 gives rise to m = ¥f = A}; for s =0,1,2,3.
To get a CR invariant of weight four, we next set

9y gbl

5m— -4
1’iFII=§ P I: %bu—? m ]ﬁ 749111=Z 7 ' ¢f1=3 =

Then m = ¢f; = |A%|* at 2 =0 for s = 0,1,2. We thus set

L BYh—Yh 1’)11

— Yf Y — ¥
i1 - Iyl = =8

mia = st wm =6 —-

Then
Mitl.=o0 = ¢2(7/12,-5/2,—6,0,-5/6,0),

14’1);:l‘l[1|1:=l) = whl]::ﬂ = 92(11 _6) __]'Sr 0! _47 0)'

The right sides are CR invariants of weight five which are linearly inde-
pendent. In particular, we see that dim IS® > 2. This observation was

indeed used as a motivation of getting results in [HKN2] about ISR,

5. Proof of Theorem 2

5.1. Nonexistence of exactly invariant defining functions. We
prove Theorem 2 stated in Subsection 2.3. This is done by using the
nonexistence of a local defining function r = rq satisfying exact transfor-
mation law of weight —1. To state it more precisely, we introduce spaces
Fiis of local defining functions for m > 3 (m € Z) as follows. Recall first
that C55(Q) is the totality of functions 7 € C°°(f) such that r > 0 in Q
and dr # 0 on 8. Localizing it, we have a sheaf of (smooth) local defin-
ing functions ngf,an(ﬁ) = (C‘é‘:f?p(ﬁ))peag. If 9Q = N(A) with A € N, we
write C5% 4 = C$%0(Q), where we disregard the difference by flat func-
tions at the origin. Then, C$% = (Cgera)aen is a space of local domain
functionals which represent local defining functions. We denote by

Foee = (Faeta)aen for m23 (me2),
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the totality of r = (ra)sen € C55 such that r satisfies the transformation
law of weight —1 modulo O(r™) and that if

m—1

ra(n) = )_ P(A) +O(t™)
=1
in Moser’s normal coordinates, then P;(A) € IT®. Then we have the
following:

Proposition 5.1. Fit® = 0.

Postponing the proof for a moment, we first observe that Theorem 2
follows from this.

Proof of Theorem 2. We may assume w < -1 by consider-
ing Kashiwara’'s transformation. Assume there exists a local Sobolev—
Bergman kernel of weight w, K = ¢r~"logr, where r € C§5; and ¢ € C>
with ¢(0) # 0. Setting p = ¢~ /¥r, we have K = p~%logp and p € C;.
Furthermore, p € NFJ, but this contradicts Proposition 5.1. a

The proof of Proposition 5.1 requires some results in [Hi]. In [Hi], a
subclass F of F+? is defined so that

F = (Fa)aen € Fis’s (5.1)

and that the ambient metric construction gives rise to Weyl functionals
W = W]r] of arbitrary weight w € Ny on the class F. We have the
following two lemmas.

Lemma 5.1. If p € Fj3; with m > 3, then
-2
p=cr+ Z W;lrlr?tt + O(r™) for re€ F,
j=1

where ¢ > 0 is a universal constant and W; = W;[r] are Weyl functionals
of weight j on F.

Lemma 5.2. If W = W{r| is a Weyl functional of weight w € Ny on F,
then r*W(r] modulo O(r"*?) is independent of r € F.
In the proof of Proposition 5.1, only these lemmas and (5.1) are used.
Even the definition of F is not necessary.
Proof of Proposition 5.1. Assuming Fot® # 0, we pick p € Fiit. It
then follows from Lemma 5.1 that
n+1

p=cr+ Y Wit + O(r™3) for re F. (5.2)

j=1
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We set ¢[r] = 5 W;[r]r?. It then follows from Lemma 5.2 that ¢[r] modulo
O(r"*?) is independent of 7 € F. This also holds for 7¢[r], because
F C F3t* and ¢[r] = O(r). Thus, (5.2) with p € Fot® implies r € F5i3,
but this contradicts (5.1). O

5.2. Definition of the class F and a review of [Hi]. Before proving
Lemmas 5.1 and 5.2 with (5.1), let us give the definition of F. It suffices

to fix 2 and define a subclass Faq of C35(12) so that the localization of
Faq gives rise to F. We begin by considering the boundary value problem

J,[U]=|°P" and U>0 in C* xQ, U=0 on C' x8Q (53)
for functions U = U(2°, z), where

J# [Ul = (_1)“ det(UjE)GSj.kSm UjE = 8‘2[}‘/333‘32;5-

This is a lift of the Monge-Ampere operator in the sense that if U(2%, 2) =
|2°|2u(2) then J4[U] = |2°|**J[u]. But we are concerned with asymptotic
solutions of (5.3) of the form

oc
U=rg+ry Y me- (" ogry)™™ with meC(Q),  (54)
k=1

where 74(2°% 2) = |2°|*"r(z) with r € C(Q). Note that r is not pre-
scribed but determined together with U. We call r the smooth part of U
and denote the totality of these r by Faq. The fact Fpq # 0 is proved
by solving a formal initial value problem for (5.3) near 9 with an extra
initial condition
X"t2rl0 = a € C®(89),

where X is a real vector field which is transversal to 8Q. The unique exis-
tence of the asymptotic solution U for each data a € C*(9Q) is valid and
the operation of taking the smooth part U + r is injective, provided we
ignore the difference by flat functions along 9Q2. Thus a — r is essentially
a bijection C*®(9Q) — Fsq. The construction is local near a boundary
point, or even formal, as we explain at the end of this subsection.

An important fact is that one can formulate an exact transformation

law
r = (Fo ®)| det &'|~%/"+1) (5.5)

under biholomorphic mappings ®: Q@ — Q. Specifically, if ¥ € Fjp, and
if  is defined by (5.5) then 7 € Fan. In this sense, Weyl functionals,
W = W][r] for r € Faq, of weight w satisfies the exact transformation law

W(r] = (W[F] o ®)| det &'|2w/(n+1), (5.6)
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A main result of [Hi] states that if B is regarded as a functional of r €
Foq, then

m-—1
YB[r] = Z Wisnsalr]r* +0O(™) for any m € N,
k=0

where W; = W;[r] are Weyl functionals of weight j. The proof of this
fact applies without change to Lemma 5.1. We thus regard Lemma 5.1 as
proved, where the localization is taken into account as follows.

In the definition of the local space F = (F4) sen, we may set X = 9/8p
for Moser’s normal coordinates. Then each F4 is parametrized by a space
of formal power series as follows:

(8™ 2r [8p™*?) |p=0: Z Ciﬁ zhzgvt for re Fu.
af,¢

We thus have a bijection C 3 C — r =r4 ¢ € F4 for each A € N, where
C denotes the totality of C = (Ciﬁ)’ This bijection is the localization of
the composition operator C*(92) — Fpn given by a — U and U + r.
Consequently, we have a bijection

NxC> (A, C) = Tac € Fa, (57)

where C parametrizes the ambiguity of 74 ¢. Setting rc = (rac)acn, We
denote by F the totality of rc for C € C. Then F C Cg. It is easy
to see that F C Fit? (see [Hi]), and (5.1) is clear from the definition.
Abusing notation, we write r in place of r¢, so that selecting r € F is
equivalent to specifying C € C. The point of introducing the class F is
the exact transformation laws (5.5) and (5.6), where C € C must vary.
It is therefore necessary to regard the space F itself as a family of local
domain functionals parametrized by C € C.

5.3. Reduction to the boundary. We have justified (5.1) and Lemma
5.1. To prove Lemma 5.2, we need to consider the boundary value of
each Weyl functional on F, say W = W][r], where r = (rac)aen With
r4,c in (5.7). More precisely, we take the restriction of W|r] to the origin
0 € N(A). Denoting it by Pw = Pw(A,C), we see by inspecting the
construction that Py is a polynomial in (4,C) € N x C. Let I¥ (N x C)
denote the totality of such polynomials which come from Weyl functionals
of weight w on F. We define a subspace IV (N) of IV(N x C) to be the
totality of Py (A, C') which are independent of C € C. Then, another main
result of [Hi] states that

IE(N) = ISR for welNg (5.8)
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and that if n > 3 (resp. n = 2) then
INN xC) =IV(N) for w<n+2 (resp.w<5), (5.9)

where the weight restriction in (5.9) is optimal. In the following, Lemma
5.2 is proved by using (5.8), while (5.9) shows that the error estimate in
Lemma 5.2 is optimal.

Proof of Lemma 5.2. This is a refinement of Fefferman’s Ambiguity
Lemma in [F3]. Asin [F3], the problem is reduced to the case 92 = N(A)
with A € N, via the transformation law for » and W = W{r]. In Moser’s
normal coordinates, we investigate the behavior of 7“W/r] along the half
line 4, = (0,t) € C*~! x C, t > 0. We have

n+2
(W) (ve) = Y _ Pi(A,C)F +O(t™*),

j=m

where P;j(A, C) are polynomials in (A, C) € N'xC. Furthermore, P;(A, C)
is of weight j. It suffices to show that P;(A, C) are independent of C € C.
Assume that P;(A, C) depends on C. Since

w(Alz) 22, w(Cip) 2n+1

for A= (A’3) € N and C = (C’;) € C, it follows that P;(A,C) is linear
homogeneous. Consequently, the Weyl polynomial Wy must be linear, so
that we may assume Wy = tr(VPPR). By the linearity of P;(A, C), the
assumption implies that P;(0,C) # 0, so that we are reduced to the case
A =0 € N. In this case, N(A) is the boundary of a Siegel domain, and
any asymptotic solution of (5.3) of the form (5.4) is (formally) smooth.
Consequently, any ambient metric is Ricci-flat, so that W, must vanish.
We thus have P;(0,C) = 0, a contradiction. O

Appendix

Appendix A. Holomorphic microfunctions. Proofs of the facts
stated below are found for instance in a textbook by Schapira [S].

Let X be a complex manifold and Y a complex hypersurface. Then Y is
locally given by the zeros of a holomorphic function f(z) such that df # 0.
A germ of a holomorphic microfunction at p € Y is, by definition, an
equivalence class modulo Oxp of a germ of a (multi-valued) holomorphic
function in X \ Y of the form

ef ™ +plogf with me€Z, ¢,¢ € Ox,.
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Let Cy|xp denote the vector space of those equivalence classes. Then a
sheaf of holomorphic microfunctions is defined by Cx|y = (Cy|xp)pey. For
L € Cy\xp, the singular support of L is contained in

N=T3X\0={(p,6) €T"X; p€Y, £ = cdflsmp, c€C'},

the conormal bundle of Y C X. (In [SKK], Cy|x is defined to be a sheaf
on the projective conormal bundle N/C*, which can be identified with Y.)
The sheaf £x of microdifferential operators is defined in such a way that
a germ P(z,0;) € Exp acts on Cy|x,, Where p = (p,€) € N. Specifically,
Ex 5 is a ring generated by

1
21y Zny 84":11"'$a$n and 8;,,!

where z = (23,...,2,) is a local coordinate system of X such that 2, = f.
The action of ;! on L € Cy|x, is given by a curvilinear integral

GIL(z) = [ L(z)dzm,

P

where p’ € X \ Y is chosen so close to p that the right side (modulo Ox )
is independent of the choice of p'.

We say that L € Cy|x, is nondegenerate if L is represented by a
function of the form

ofM+Ylogf for m>0, or or "logf for m <0, (A.1)

where ¢ is nonvanishing. If L € Cy|x, is of the form L = Plog f with
P = P(z,8,) € Ex;, then L is nondegenerate if and only if P is elliptic
(i.e. invertible).

In what follows, we consider the case X = C™ x C", the complexifica-
tion of the diagonal {(z,w) € X; w =7} = C* & R?". Let  be a domain
in C" such that the boundary is locally given by a real-analytic defining
function p(z, Z) near a boundary point of reference. Then the complexifica-
tion of the boundary 89 is locally given by Y = {(z,w) € X; p(z,w) = 0}.

Lemma A.1. IfQ is strictly pseudoconvez locally, then every holomorphic
microfunction L € Cy|x (z0,up) 5 Written as

L(z,w) = P(2,0;)log p(z,w) = Q(w, 8,) log p(z, w), (A.2)

where P € Ecn (z0,d.p) 974 Q € &gz (0 4, ) are microdifferential operators
determined uniquely by L.
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In this lemma, we may replace log p by any nondegenerate holomorphic
microfunction K with support Y. It then follows that for any P(z,8,) €
ECr (20,d:p) there exists a unique Q(w, 8y) € &gz (yy g, SUch that

P(2,0,)K = Q(w,0y)K.

Let Q* denote the formal adjoint of . Then the correspondence P — Q*
gives rise to an isomorphism of rings Eon,(20,d.p) = ETF (wp,~dup)» WHICh is
called the quantized contact transformation with kernel K. The following
is clear from Lemma A.1.

Lemma A.2. If two kernels K, K € Cy|X,(z0.u0) give the same quantized
contact transformation, then K = ¢ K with some constant ¢ € C*,

If K — K is Kashiwara’s transformation, then
P(z,8,)K = Q(w,8,)K if and only if P*(z,8,)K = Q*(w,8,)K.

In particular, the quantized contact transformation P(z,8,) — Q*(w, 8y)
with kernel K is given by the inverse of the quantized contact transfor-
mation Q(w,8,) — P*(z,8,) with kernel K.

The proof of Lemma A.1 (e.g., in Shapira [S]) simply yields the follow-
ing lemma, which was used in the proof of Lemma 3.2.

Lemma A.3. If L in (A.2) is of the form (A.1) with p in place of f and
with ¢ nonvanishing, then P and Q are operators of order < m.

Appendix B. Method of computing the asymptotic expansion.
We here explain the method of computing the expansion of K*.

Let us first recall the procedure for computing the Bergman kernel K°
due to Boutet de Monvel. We take a C-valued defining function of the
complexification of 9Q of the form U(z,2) = z, + Zp — 2’ - 2/ — H(2,7'),
where

H(z,2)) = Z Biﬁz;gzﬁ.
lal,|81>2,620
Then each Bi,'s’ is a polynomial in A = (A 3) € N. Let Ag = Ay(z,0,)
be a microdifferential operator of infinite order given by the total symbol
Ao(z, C) = exp (_H(z! "C'/Cn)cn) .
We define weight by

w(z;) =-w(8;)=-1/2 (j<n), W(z)=-w(3,)=—1
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(For more about the notion of weight, see Section 3 of [HKN2].) Then
Ay can be regarded as an asymptotic series as weight tends to —oco. We
can verify logU = Aq(z,8;)logpo by using 8,,8;'logpo = —%;log po.
Therefore the Bergman kernel K°[r] for Q (up to a constant multiple
(—m)") is given by

K°lr] = A§7!(2,8.) K_n1[po]. (B.1)

Here the inverse of A} is defined by A§™' = "5 ,(1 — A})*, which is an
asymptotic series as weight tends to —oo because each term of 1 — Aj has
negative weight.

We generalize (B.1) to K* for s > 0. First, write

R,fr] =) a2, 7) Ki[U]

=1
and define a microdifferential operator of infinite order by the total symbol
Ay(2,0) = Ao(2,0) Y ae(z,—C'/Ga)CE
=1

Then we get I?,{r] = A,(2,8;)log po by using Ao(z,9.)d logpy = I?g[U].
Thus we have
K*[r] = A{7'(2,0;) K°[po)-

Here A}~! is defined by the series

(1- A",

NE

A;_l — a—a

Zn
k

II
=}

in which each term in 1 — A}9;* has negative weight.

Method of proving Lemma 4.2. We only need to know the first five

terms in
o0

s —k
As l(z: C)|31=C1=0 = Z Ck C2 ’
k=—s
that is, the terms of weight > —s — 5 in the right-hand side. Such terms
can be computed from the the terms of A, that have weight > s — 5.
Details of this computation are discussed in [HKN2]. O

Proof of Proposition 4.4. We only need to compute K*(v,) for a surface
in normal form for which ||[R??(2(0) = | A% # 0. We here take the
surface p = po — F' = 0, where F' = 2732 + 2232, for which ||A%||? = 2.
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Starting from this p, we set p;, ps and p; as in Subsection 2.3. Then we
have 7 = p3 + O(p®). Since each term in p* has weight less than —3, we
see that r = r3 + (terms of weight < —3). Thus we have

= B 16|2122°00 _ 8(|21|* + |221*)03 1603
d n+l1 (n+1)n 3(n+n(n—1)) (B.2)
+ (terms of weight < —3).

In particular, we get
8
3(n+ Dn(n—1)

() =t+2J 3+ O(t*) with ¢ = (B.3)

Next we write R’,[r‘] = A,(2,0,)log po. Then from (B.2) we get

~ F? 16
Az0) = G- e = (-5 + 5 anbG

8s(s — 1) 16s(s — 1) 3—2)
—(——_;—17—(2&1+22C2)+ 3(n+ 1))

+ (terms of weight < s — 3),

where F = 22¢2 + 22¢2. Thus we have
A7z, C)I,,=C, = (7 4+ &¢;*"% + (terms of weight < —s — 3),

where
F— 44 16s  16s(s —1) 16s(s —1)(s —2)
©= n+l ' (n+Dn @ 3n+Dnn-1)

Therefore we get, for s =0,1,...,n — 2,

2
n—s)(n—-s-1)

K*(y) = t* (1 + + O(t3)) . (B4)

and
K™ Y (y) =t"2+ (=" + O(t)) logt,
K"(v) =t + (¢t + O(t?)) log t, (B.5)
K" (y,) = (1+8142/2 + O(¢%)) log t.

Using (B.3) and (B.4), we have ¢ () = 1+2((n —s+ 1) +&)t2 + O(t?)
form=0,1,...,n — 2. Thus we get

T 2
co=(Mm—s+1)c+¢ B TSI

The constants c, for s > n — 1 are determined by using (B.5) in the same
manner. O
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CHAPTER VI

Quantitative Estimates for Global Regularity

J. J. Kohn

Introduction

Let 2 € C™ be a bounded pseudoconvex domain with a smooth bound-
ary. We denote by L,(f2) the space of square-integrable functions on §2
and by H(f2) the space of square-integrable holomorphic functions on .
Let B: Ly(2) — H(R) denote the Bergman projection operator, which
is the orthogonal projection of Ly(f2) onto H(2). Here we will be con-
cerned with the global regularity of B in terms of Sobolev norms, that
is, the question of when B(H*(Q)) C H*(2) where H*(2?) denotes the
Sobolev space of order s. Of course, if B preserves H*(f2) locally (i.e., if
B(H () C Hi (), then B also preserves H*(Q2) globally. Aspects
of the local question are very well understood, in particular when € is of
finite D’Angelo type (see [Cal] and [D’A]). Local regularity can still occur
when the D’Angelo type is infinite, as in the examples given in [Chr2]
and [K2]. Local regularity fails whenever there is a complex curve V' in
the boundary of 2. In that case, if P € V, then for given s there exists
an f € Ly(Q) such that (f € H*(Q2) for every smooth function ¢ with
support in a fixed small neighborhood of P and such that (B(f) ¢ H*(Q)
whenever ¢ = 1 in some neighborhood of P. In contrast, global regularity
always holds for small s. That is, if © is pseudoconvex, then there exists
n > 0 such that B(H*(Q2)) C H*(Q) for s < n. Furthermore, there is
a series of results showing global regularity under a variety of conditions
(see [Ca2], [BC], [Ch], [BS1], and [BS2)).

The interest in global regularity came in the early 1970’s (see [K1])
and by the end of the 1980’s there was a general impression that global
regularity was always valid on pseudoconvex domains. In 1984 Barrett
(see [Ba2]) found a domain Q with a smooth boundary but not pseudo-
convex, such that there is an f € C§°(Q2) for which Bf is not bounded. It
came as a great surprise when Kiselman (see [Ki]) and Barrett (see [Bal])
found that global regularity does not always hold in the pseudoconvex
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case. Kiselman showed that on a modified Diederich-Fornaess worm do-
main W (see [DF1]), there exists a function f € C®(W) such that Bf is
not Holder continuous for any positive Holder exponent. Kiselman used
a worm domain W which does not have a smooth boundary. Then Bar-
rett showed that for smooth worm domains €, there exist s such that
B(H®*(Q2)) ¢ H*(2). Christ in [Chrl] proved the remarkable result that
for any worm domain €2, there exists an s such that B(C*®(Q)) ¢ H*(Q).
Recently, Siu (see [S]) constructed a special worm domain © with smooth
boundary for which there exists f € C®(Q) such that Bf is not Holder
continuous for any positive Holder exponent.

This paper is devoted to a quantitative analysis of a result of Boas and
Straube (see [BS1]). Their result states that if Q has a smooth plurisubhar-
monic defining function, then B(H*(2)) C H*(Q2) for all s. Our starting
point is a theorem of Diederich and Fornaess (see [DF2]) which asserts
that every pseudoconvex domain €2 has a smooth defining function p such
that there exists § > 0 so that —(—p)? is plurisubharmonic. Our main
result is the following.

Theorem. Let ) C C" be a bounded pseudoconver domain with a smooth
boundary. Then there erists positive constants n and A with the following
property. Let p be a smooth defining function of Q such that —(—p)® is
plurisubharmonic and let g be defined by p = gr, where r is a smooth
defining function with Y |r,|> = 1 on bQ), the boundary of Q. Then
B(H*(Q)) C H*(Q) whenever: either s < n, or s >n and

lgz-l 3
(1 — 19%1Y° -
A%(1 5)max(1+ = ) £1:

We call the readers’ attention to the extensions of this result given in
section 5. The proof of the above theorem is based on the following two
methods which, I believe, will also prove useful in other contexts.

(1) Construction of the pseudodifferential operators 7(*) which measure
smoothness microlocalized in the “bad” direction.

(2) The use of the weights |r|? to get precise Sobolev estimates.

1. A-priori estimates for the -Neumann problem

Let Q@ C C™ be a bounded domain with smooth boundary. Let Li(Q)
denote the space of (0, g)-forms on Q with square-integrable coefficients.

Let ngg(g) C L}() consist of all ¢ € Li(£2) such that ¢ € LI} (Q),
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where Oy is meant in the sense of distributions. Let & denote the L-

adjoint of & with domain denoted by ng(g'). We set D? = ng(E) n
9 ==

Dom(0 ) and let Q(¢p, %) be defined by

Q(p, %) = (B, 0¢) + (87,0 ) (1.1)

for v, € DI. B
The basic theorem that solves the d-Neumann problem in L, on
pseudoconvex domains is the following. (For an exposition of this ma-

terial, see [FK].)

1.2 Theorem. If Q C C" is a pseudoconver, bounded domain with a
smooth boundary, then given o € Lg“(Q), there ezists a unique ¢ € DIt
such that

Qe ) = (@,¥) (13)

for all b € DI+, Further, if 8a = 0, then dp = 0 and @ 8 ¢ = a.
Thus u = B ¢ is the unique solution of the equation Ou = a with the
property that u is orthogonal to the space of square-integrable -closed
(0, q)-forms. When q = 0, then u is orthogonal to the space of square-
integrable holomorphic functions.

We denote by Ny.; the operator defined by Ny,1a = ¢. Thus the so-
lution u above can be written as 5‘Nq+1a. We are really interested in the
case ¢ = 0 (which corresponds to the Bergman projection) but we need
general g because of an induction argument. We define the Bergman pro-
jection B: Ly(Q2) — H(R2). H(Q2) denotes the space of square-integrable
holomorphic functions and B is the orthogonal projection onto H(f2). By
linear algebra, it follows from Theorem 1.2 that

Bf = f -3 N,0f . (1.4)

Similarly, if B,: L3(2) — H?($2) denotes the orthogonal projection, where
H?(R2) denotes the space of square-integrable d-closed (0, g)-forms, we have

B,f = f =8 Ngu.10f .

1.5 Definition. A defining function for Q is a function p € C=(U),
where U is a neighborhood of Q) such that p < 0in UNQ, p = 0 on b2
and dp # 0 on bQ). We will denote by r a fixed defining function with the
further property that 3~ |r.,|?> = 1 on b2.

Let D = DINC*®(Q). Then a form ¢ = > wjdz; isin D! if, and only
if p; € C*°(Q2) and satisfies

S rye;=0 on Q. (1.6)
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The following is a basic a priori estimate for the &-Neumann problem.
We will deal first with (0, 1)-forms and show how to generalize to (0, g)-
forms.

1.7 Theorem. Let Q2 C C" be a bounded, pseudoconver domain with a

smooth boundary. Let A € C*®(N2) be a function such that A > 0 and —\
1s plurisubharmonic in a neighborhood U of b). Then there exists C > 0
such that

YA + 3 [ Mrzopds+ X e
119

<C (}p&&a]lz +[IA78" |2 + |(Z ,\zj%g*(p) D

for all p € D* with supp(p) C UNQ. The same holds when X € C>(1)
s only Holder continuous on .

(1.8)

Near b(2 we will define the operators A® by means of a partition of unity.
We cover a neighborhood of b) by a finite set of coordinate neighborhoods
U, with coordinates {t{,t%,...,t5,_,,7}. For u € C§°(U,) we define the
partial Fourier transform

Falgr) = [ (e, nae, (1.9)
U,

where t¥ = (#,... ,t5,_1),€ = (&,... ,62n-1), and dt¥ = dt}..-dt}, ;.
Define Aju by
Fohy(&,r) = (L + €)Y F u(€,r) . (1.10)

Let 0 < ¢, € C§°(UY) be such that 3" ¢, = 1 in a neighborhood of bQ and
let 0 < ¢/, € C§°(U”) be such that ¢/, = 1 in a neighborhood of supp((,).
Now we define A°u by

Au= A (Gn) . (1.11)
For forms we define A%y by

(‘ﬁstp)i = ASLP!' + TE; Z[AB) rzk]‘)oks (1-12)
k

and since Y _7,,r5, = 1 on b2, we have
S r(Rop)i = A2 (D rapi) on b (1.13)

Hence if 3" r.,¢; = 0 on bQ2, we have 37, (A*p); = 0 on b
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Now setting A = 1 and substituting A*p for ¢ in (1.8) we get
> I(A%0)s, |1 < C QA0 A%y) . (1.14)

1.15 Definition. Let Lpom; Lporm denote the normal z-derivative and
the normal z-derivative, defined as follows:

F) - o
Lnorm = Z?"E.—gz’; and Lnorm - Z rzigz-: d (116)

The operator T is defined by T = %(me — Luorm). We define the opera-
tors L;, L; by
7] o —
Li = E . rz.-Lnorm and L,; = —8' e T‘z‘.Lnofm . (117)

Note that, since Y |r,|* = 1 on bQ, the operators L;, L;, and T are
tangential, that is, L;(r) = L;(r) = T(r) = 0 on .

In conjunction with (1.14) it is useful to note that any first order partial
differential operator can be written as a combination of the L;, L;, T, and
the F‘;I' Hence

|DA* 1|<C(Zu Ay, | + |rA°u|:). (1.18)

In studying global regularity, it is useful to consider the d-Neumann
problem with weights (see [K1]). This is based on the weighted inner
product (u,v)¢) = (weu, v), where w; = exp(—t|z|?) for t > 0. We denote
by 3 the adjoint of & with respect to this inner product. We then have
Dom( ") = Dom(8") and

5; = w-:g‘Wg . (1-19)

Let
Qq,t(ﬁos ﬂ’)) (999, 5‘4})(;3 + : ‘loa 8 1»‘f))(\ﬁ)
for ¢,y € DI.
The principal result (see [K1]) is the following.

1.20 Theorem. If 2 C C" is bounded, pseudoconvex and has a smooth
boundary, then for each t and q, there ezists a unique self adjoint operator
Nig: LY(Q2) — D with the following properties:

(i) Qqe(Nega,¥) = (%)) for all + € DI.
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(i) There erists a constant c such that if t > cs then Ny ,(H*), N, ,0(H*),
8, N, o(H®), and B, N, ,0(H®) are dll contained in H®.

Here H® denotes the subspace of L3(S) with coefficient in the Sobolev s-

space.

Boas and Straube (see [BS1] and [BS2]) proved the following identity
which we will need in the induction procedure.

N, = BN, Blw_(I — B,_1)] . (1.21)

Next we will show how the calculations done for (0, 1)-forms generalize

to (0, g)-forms. Let I = (41,...75) be a g-tuple 1 <4 < iy < :-- <ig < n.
We denote by dz; the form

de':dEil /\"'/\df;‘

q

If o = 3 p1dz; then 8p = 3 32LdZ; A dzZ1.
The condition ¢ € D9 is characterized by

Z Zrz‘%K =0 on bQ, (1.22)

K i=1

where K sums over all ordered (¢ — 1)-tuples and

{0 ifi € K
Yik = iK se s
sgn((iK)) ifi ¢ K.

Here (iK) denotes the ordered g-tuple whose elements are the elements of
K and i. Then sgn( (‘ K)) denotes the sign of the permutation which takes

iK to (iK). Then 8@ ¢ is expressed by
3‘:"11{
c.o-—~§:§j iz (1.23)

If —A is plurisubharmonic, then for pseudoconvex €2 the generalization
of (1.8) to (0, g)-forms is:

ZZ z.z,‘P:Kr ‘pJK +ZZ[AT‘2 z,‘PtK%f(dS"‘ZZ I/\E‘sz, ”2
iJ poy
(Ezkz,-@jffdfx,g“P)D .
K j

c(v|A%5sox|2 £ A | +
(1.24)
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Finally, A*p = 3" (A®*p);dZ; is defined by
T

(o)1 = Nor+73, Y Y [A% )ik, (1.25)

Kcl j

where K runs over all order (¢ — 1)-tuples that are subsets of I.

2. Estimates involving |r|”

Throughout this section @ C C" will denote a bounded domain with
smooth boundary, r the usual defining function, and U a product neigh-
borhood of b2 covered by boundary coordinate neighborhoods.

(% ) (2.2)

2.1 Lemma. There exists C > 0 such that

el A%*u]| < c(||A=u|| +3 [l
i

for all 0 € [0,1] and u € CP(U N Q).

Proof. First we prove the estimate for ¢ = 1. We have
[rAsH || = ||ArA®u]| < CZ | DirA%y| ,

wheretheD—Re( )forzzl nandD—Im( )fore=

n+1,...,2n. Integratlng by parts we have
L] it 6 ] 8 & au a 8
| Dir Au|| = IIEiTA u (||A ul| + ||rA° =— o7, + r[azi,ﬁ ]u ) .

Then since 5%— is a combination of % and tangential derviatives, we obtain

& ul s
[ﬁsA]_Pts 5‘1—}3:3&

where P7~! and Py are tangential pseudodifferential operators of order s—1

and s, respectively. Since Z is a combination of the % and tangential

derivatives, we obtain (2.2) in the case o = 1.

Next we prove (2.2) for o = & with 0 < m < 2* by induction on k.
The above takes care of the case k 0. Assume that the inequality holds
for k — 1 (with C independent of m and k). Then if m is even, we set
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m = 2j and J = 5,;&; hence the inequality holds by induction. If m is
odd, then m = 2j + 1 and we have

= (|r{a‘i*-‘rn’+=‘ki-‘7u, |r1#-rA’+sﬂ"-—ru)

< cﬂ(umun + Z )

Thus (2.2) holds for ¢ = % and hence, since {%} is dense in [0,1], it
holds for all o € [0, 1].
With a slight modification of this argument, it follows that for any first
order differential operator D, we have
) (2.3)

rA® git

rae 2

|Ir|” DA*+o || < C(”A"u]j 4 Z,: 5,

for 0 < 0 <1and ue CLUNQ).
Now we have

s Ou 2 _ s—1 *u s+1,, Ou 2,25 O
I == (2 gy rae*he) + (g P4 5]

Since % is a combination of 2 5- and tangential differential operators, the
’]

second term on the right side in the above is bounded by

2
A — i

2
C||A*u||* 4 small const. Z 5

Thus we obtain

Ou
rlZ A u)| + ||Irl” DA* || < c( Atul| + A—-——ID
firenesul + e ool < o (e + S 2e])
< C(||A%u]] + [[rA*tAu))
for0< o<1, ue C(UNQ). Here A denotes the Laplacian

A*—EZ-—?L 2.5)
- 4 szaij' (

2.6 Lemma. There ezists C > 0 such that if -3 <o < 1

" A u]] < r—A’

(w3
1+2 ( (2.7)

< e (A%l + frartau)
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forue CPUNQ).

Proof. This has already been proved for 0 < ¢ < 1. If -3 < 0 <0,
we write |r[* = —(-r)¥ = - =2 ((- r)1+2") and hence we have
1 8
o A S+ _ 1420 A s+20 s
|Ir1°A || = 0'(61"( ) i b 7% u)

|1+2cr As+2uu

( & |[A"u|]2) .

Since 1 + 20 > 0 we apply (2.4) to the above and obtain (2.7).
Next we consider u = 0 on bQ2 and we obtain the following.

2.8 Lemma. There exists C' > 0 such that

|“r|aAs+au|| z

A"'

I (2.9)

whenever —1 < 0 <0, u=0 on bQ and u € CL(UNQ).
Further

|“T,|0Aa+au” <

ﬁ(ZH—AH +HTAA’_1u”) (2.10)

whenever —3 <o < —1, u=0 on bQ and u € CCUNQ).

Proof. First consider o = 0. We have A*u = 0 on b2 and hence

Iau]] < € 3o [IDsAul < €30

Next, if 0 = —1, we have

Al = (A, fv—lu) =~ () awa)

A’"

<Oflirl7r A Y ’lgm-lu
7

which settles the case ¢ = 1. Now we proceed by induction on k with

0=—2 withm=0,... ,2¥. Assume (2.9) holds for k — 1. Then if m

if\”lu .

0z;

< 2|||r|‘1A5 lu”
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is even, we have m = 2j so — % = —53_—1- and (2.9) holds. If m is odd,
m=2j+ 1 and

R \era

(T| TN Ty, || TET AT )

so (2.9) follows for ¢ = —% with C independent of m and k and hence
for all o € [-1,0].
Now in case —3 < ¢ < —1 we have

lelaAs-i-a'qu — (|r|2crAs+au: As-ﬂru)

— 1 6 20+1 A s+0 s+a
=~ 20’(6r(_r) A*T%u, A%

1 o+1£ s+0 a s+
172 (|7‘| 31*A u, Iri”A '

Then

” |rlaAs+au”u < ” |ria+1%Aa+au”

C a g 9
--<.._ e — s—1 __As—hl
3+20( BrA uj| + E T o u|)
C o a 8
€ — — As-1 By ¥ L | .
\/3+3_or( i D (= = “‘)

Let v = A*'u. Then v = 0 on b2 and we have

S IrDDwl? < ¢ 1D D) n? +3 nDkvu?)
(Z ||6‘ (rDyv) + Z
C( > |(A(rDyv),rDyv)
(

<C

)

#1)

< C(|(A(rv), Y Di(rDyv))|

+zk:|([Aof‘.Dk] ; % 2)
C("rAv” (Z lrDiDxvll + ) | % )

v

+ 3 IrDiDi] -
7

)

Sl
z;
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Hence
ov
3

2
> IrDiDy|? < c(nmvn? +3° o )

Combining this with the above completes the proof of (2.10).

2.11 Lemma. There exists C > 0 such that

e O L e B [ P ) eSS

foro € [0,1] andu e CTUNQ).

Proof. We have
A% = (—6—(?")Asu Ay) = —2Re(7‘£Asu A*u)

or ’ or 7

(lr!o’ 0 As-}—a 1 I,rll—o'As—ai—l,a)

<o Sl + lirra=eul)
x (HA%H +3 ||?‘£j1\su“) .

<2

Then (2.12) follows.

3. Microlocalization in the “bad” direction

In this section we will construct a tangential pseudodifferential oper-
ator I'* defined on Cg¢(U N Q), where U is a neighborhood of 52, which
has the property that o(T) < 0 on supp(c(I't)). Here o(-) denotes the
principal symbol. Furthermore I'* has the following properties. There
exists § € C3°(Q) and C > 0 such that

Ju

s—1
A@"

A+ neuns) (3.1)

1A*(1 ~ Ty < c( )

for all u € CF(U NQY), where || - ||, denotes the Sobolev norm of order s.
Also for any first order differential operator D, there exists C > 0 such
that

1 6u

A~
8‘

+ A + nouus) )

jaip, -l < ¢( 3
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To construct 't we cover b2 with a finite number of special coordi-
nate neighborhoods V¥ and set U = UVY. The V¥ are constructed as

follows. For P € b2 we define holomorphic coordinates 2f, ..., zF which
are obtained by performing a translation and unitary transformation on
the coordinates zy,..., 2, such that z(P) =0, fori=1,...,n and

or 0 ifi<n

TPy 3.3

6zf’( ) {1 ifi =n. &)

Let V be a neighborhood of P on which 2%, fori=1,... ,n—1 and

let 3%',; — 1 be very small (the size will be determined later). Let V* be
a finite covering of bQ with such coordinate neighborhoods with origin
P’ € V¥ N BO. We will set z¥ = 2F”, and on each V¥, we have the

coordinates {tY,... ,t4,_,,r} defined by
th_ 1 =Re(z}) fori=1,... ,n-1
tyy =Im() fori=1,...,n-1 (3.4)

t3n—1 = Im(z7).

Then we have

1( 0 _\f“_li)m;;g; fork=1,...,n—1

9 — § at;k-!. at;k (3 5)
32;: l .g____:_l.i +hyi fork-—n .
2\or 2 S, "Or o

Here the h¥ € C*(V*) with h¥(P") = 0.

On R?™1  we denote the coordinates by {£y,... ,€n-1}. Let S22 =
{¢ € R™Iig] = 1}, C* = {¢ € %6y > 3}, O = {¢ €
572,y < -1}, and C° = {€ € §™ | - % < Lu1 < 3}, Let
v+, 77,7° € C*(5**~?) be non-negative functions with supp(y*) c C*,

supp(y~) € C~, supp(y°) C C° and such that v+ +~4~ ++° = 1. Now
define (€) for |€] > 1 by ~v(§) =7 (1-%), thus extending v*,~v~,4° to the
region {& € R*""!||¢| > 1}. Finally we extend each of these functions to
the region {§ € R?"!||¢| < 1} in any way so that y*,77,7° € C®(R*"1).
For v € C&(V* NQ), we have

Fro(g,r) = / e~ Sy (e, r)dt” . (3.6)

R2n-1
Denote by G” the inverse of F“ so that for a function g on R?", we have
G o(t",r) = const. [ e Co(e,ride. (3.7)

R2n-1
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As is customary we will ignore the constant. Now let 0 < ¢¥,n” € C§°(U*N
Q) be such that 3~ ¢” = 1 in a neighborhood of b2 and such that n* =1
in a neighborhood of supp(¢¥). If u € C*(U NQ), we define I'u by

Tt = Zn"g"'y.?:"cyu ; (3.8)

Here I't,I'~, and I'° are defined by substituting I'*,I'", and I'? for I" and
v+, 7", and 7° for 4.

3.9 Proposition. Let 8 € C§°(Q) be such that (¥ +6 = 1. Then there
exists C > 0 such that for any s

JATu] + AT~ u] < c( ¥ ||As-*%_n A + ||eu||s) (3.10)

for allu € CE(UNQ).
Proof. On V* define the Laplacian A” by

o\ &
AY = ; (553) g (3.11)
If v € CE(V¥ N Q), we define vy by
Wt r) = f e"€lei € Fry (¢, 0)dE . (3.12)
R2n-1

Then v}(t¥,0) = v(t¥,0) and A¥vf = 0. We set v = v — v}, so that v§ =0
on b2 and A¥vg = A”v. Now we have
¢"u = (C"u)i + (C"u)g
and
G F (G w =1 f e Hle™" E(€) (F*¢ u) (€, 0)dé
R2n-1

In terms of the {t“,r} coordinates we have

vypy 9 _9 _ =9
[Loorm] p. = 7%, (P )62,‘: ~or v-1 Bn-1
So we have
Lo (16" F* (¢ u)})
=Luorm(n*)G"7F* (¢*u)?
& f (161 + &) 1(€)e™le™ ¢ (F¥ ¢ u) (€, 0)de
R?n-i

+n"HDG"YF* (Y u)y
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where H(P¥) =0 and D is a first order differential operator.
Since &,,_,7(§) = —|&n_, |7 (§) we have

2n-2

L&

- 1
(€] + &)™) < NEE

Setting & = (&1,... ,&,,_,, 0), we have
(€] + &an-1)7"(€) < I€] - (3.13)

In the {z“} coordinates we have, as in (1.17)

L} = _3_ = rz Lnarm

'Bz
A

= e ’-‘"E:’Lnorm .

9z

(3.14)

Then we have

1
— — —_— fori=1,... -1
» 3 (311&- V- 3t2,) ori=1, T

=0.

52

1

and

Pv
Hence for v € C*(V* N Q) we have
0

(1 + €)1/ 2| F* (v) (€, 7)|*dedr

2

—oo R2n-1
LiA*t L;A*v|| + small const.||A3v[|2)

< C( + ML
(3.15)

Here the size of the small constant depends on the diameter of V* N Q.
Furthermore, we have

LA %||? < ||T;A%2||° + (DA* v, A*1v)
7 J

. i , (3.16)
< ||Z;A* ||* + C||A*1v||” + small const. [|Av]]*.

Here D denotes a tangential first order dlﬁerentlal operator.
Next observe that in the support of 4° we have |£,._,| < 2|¢| and
hence

(€] + &,.-,)7°(€) < 4l¢'| - (3.17)
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Combining (3.13), (3.15), (3.16), (3.17) with (3.11) we obtain, after
some routine calculations,
A*D Gy Fr (¢t

+|[AT DG F ()

s—1 Ou —1 (318)
<O(la gl + A ul + flow],) -

To conclude the proof of the proposition, we must show that the in-
equality (3.18) holds with (¢*u)} replaced by (¢"u)j. To simplify notation,
let v = (¥u and let vo = (¢¥u)§. We then have AYvy = A¥v and vy = 0

when r = 0.
Now we have
o |I? Ao I
Aol € c( AP 1Bl ‘A’*‘—U )

< C(|(A a0, A" 100)| + A o)

Then we have

a\* @&

A=Y= 4=

Z (Bt;’) + or?
=1y, 5507 et 2 szt Z“"J‘at,-atj

0 0
+ Z C‘-‘E + c_a_r- )
where a(P") = a;(P") = a;j(P¥) = 0. Then

I (As—lAuUQ,AS_IUQ) l

== |(As—1Avv’ As——lvu)|
2

v
< s-1 3.20
<CY A 5, (3.20)
2
+ small const. (”A’vg||2 + a8 ) :
ar
Combining this with (3.19) we obtain
v
A® ‘-<-.. C s-1
[A%v]| < C S [[A 5 (3.21)

The same type of calculation that proves (3.18) holds with (¢“u), replaced
by (¢Yu)§. This establishes (3.10), and concludes the proof of Proposition
3.9.
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3.22 Proposition. If D is a first order differential operator, there exists
C > 0 such that

aeip. -l < (3

for allu € CPUNN).

=1 ="
A 0z,

@ “ + ||A’_1u||) (3.23)

Proof. Evaluating (3.8) at a point P € U N Q where coordinates are
(t*,7), we obtain

=> (P f IV et ()¢¥ (5%, r)u(s”, r)ds"drds

VenQxR"

(3.24)
Hence
[D,T*]u
—ZDn f =V (€)¢ (¥, r)u(s”, 7)ds"drde
VenaxRI"?
+2.m f ey (€) DY (s, r)u(s", r)ds" drdg
V"r‘\ﬁxkzn'l
+Zn” / '(‘v""]EZak 7, ") C (s¥,r)u(s”,r)ds"drd§ .
Y vergixpIn
(3.25)
Then the first term of (3.25) is an operator of order —oo, since
supp(Dn¥)N supp(¢¥) = ¢. To estimate the second term, we pro-

ceed as follows. Let I* = {v|supp(n*) N supp(n’) # ¢@}. Let

o+ € Cg°(V* N Q) such that 6* = 1 on a neighborhood supp(¢*) and

such that supp(8*) C {P € V¥ NQ| T ¢*(P) = 1}. Since 3 ¢* = 1,
vely,

the second term can be written as
I1= ZZ f CHelt Ve F (£)0H(sV) DCY (8¥, m)u(C”, T)ds"drdE + R(u) ,
B velr

where R is an operator of order —oo. Changing coordinates and denoting
the Jacobian by 22, we get

Il = Z Z /Cnex(tn—sn)ﬁ +(g )9# SF)Dcu(sp r)u(sﬂ r)ds*drd¢
B vels

+ R,
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where R™! is an operator of order —1. Since the support of the 6* is
very small, the Jacobian 2% is close to the identity, & = =(0,...,0,1) is
close to (0, ...,0,1), and hence 7*(3—::}5) =1 in a conical nelghborhood
of (0, 0,1). Hence when £ is in that neighborhood, the integrand has

the factor E D¢” = 0. Thus there is a function 7; which va.mshes in a
~yelr
conical neighborhood of (0,...,0,1) such that

Il = ZZ/CF i(th—gh)-g +(38 ),h £)6#(s*) (D¢ )uds*drdé+R™
u velH

Then
7€) < C(IE'] +77(8)

i <o X | g | + i)

Finally we have to estimate the thlrd terms in (3.25). Here we have
ot 1€'1+77(6)
og* 1€l

from which we conclude that ||[A*I]I|| is also bounded by the right hand
side of (3.23), which concludes the proof of Proposition 3.22.

and hence
j\s 1

<C

3.26 Definition. For each s € R we denote by T*) an operator whose
principal symbol is given by

o(T®) = o(T)*a(T*) . (3.27)
« Note that, when properly interpreted, this can also be written as o(T®)) =
o(T)v*+
The preceding discussion then implies

Lemma. There ezists C > 0 such that

umuu<C(ur<’)uu+2”m- Fluder) @29

for allu € CP(UNNQ).

Let p be a smooth defining function for €.
We denote by T, the differential operator given by

1 5 P
T = S Toul (;p‘f&} - s gj) ; (3.29)
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Then we have the operators

o= Zl | Zfr’azs

5 (3.30)
LY = i Pz Loorm -
Hence we have 5
B = p.,Tp+ L% + p2; Loorm - (3.31)
We define T by o(T") = o(T,)*c(T+). Then if p = gr, we have
) <culroal +o( T g |+ loln) 0
i

where Cy > 0 is independent of g.
3.33 Lemma.

0
[%Ian] = Zl zkIZ sz.? szT +ZG'JL +Zb e " (334)

Proof Diﬁ'erentiating and using (3.31) we get
S 2 Ll
0z; lezkl sz 0z," 0z,

Z P35 pEJ Z Pzz: Pzx _ Pz; szkpfkfi
251

a (zlpzklz)z (zwz)z

2] 7}
P | _—
mod (L yoos ,Lna 3211'-' safn)

- 1 p p 3 9

pzTo

3.35 Lemma.
a
L (s E (23) E ' p!s 17p
[62—'. 1 Tp ] Z: lka i2 pz{?| pz} + L

+y QF ngr P,

(3.36)
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where the };}23-1, Q?"_I and P?*~1 are tangential pseudodifferential opera-
tors of order 25 — 1.

Proof. First, by the calculus of pseudodifferential operators, we have

a 0 0
(28| = nol (25-1) T+ (2s)
o Rt it
modulo operators of order 2s —1. The lemma then follows applying (3.23)
and (3.34).

4. A priori estimates

According to a result of Diederich and Fornaess (see [DF2]), given a
pseudoconvex domain €2, with smooth boundary, there exist a defining
function p € C*(Q) and a constant § > 0 such that —(—p)® is plurisub-
harmonic. In [R], Range showed that there exists a K > 0 such that if
p=re~KIz then —(—p)? is plurisubharmonic if & is small enough.

If —(—p)? is plurisubharmonic, we have

82

% d-1 §-2
C‘J 62,6_ ( ( p) ) 5'!0[ Pz iZj +5 Ip!

PPz (4.1)

is semidefinite.

4.2 Lemma. Let U be a product neighborhood of b2. That is, U is
diffeomorphic to bQ x (—a,a) so that there is a map 7: U — bQ and the
diffeomorphism is given by P — (w(P),r(P)). Then if h € C>(%Q) there
exists C > 0 such that

lIhull < max |Af[jul| + Cllrull

for allu € CLUNQ).

Proof. Let h* € C*(Q) be a function such that for P EUN Q, we
have h#(P) = h(m(P)). Then there is a function h; € C*(Q) such that
h(P) = h#(P) + hy(P)r(P). Hence

Ihull < [IR#u]l + Cllrul| < max [R|[lu]l + Cllrul|,
as required.

4.3 Lemma. Let U be a neighborhood of b which is covered by tangential
coordinate systems. There exists a constant Cy such that whenever p is a
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defining function and —(—p)° is plurisubharmonic with p = gr, then there
exists a constant C' such that

(.s+ } (s+ )
5 (e@ ), (7 00),)
< Co {
gs
2
+s? max (1 + Ez‘—l) H%A”ap
L g g

+C (13| + A9

+ Al + a2 + )

2 1 2
+||=A%T
7

2

T as—1
+ lEA Ago

)

| (4)
for all p € DI with supp(p) C UNQ. Cy is independent of 9,4, and s.
Here TS®) is defined by

(T‘gs) ) = TWp; + s ]QZ . p.,] o5 - (4.5)

Proof. We give the proof for the case of ¢ = 1. This proof can easily
be modified (by writing down the appropriate multi-indices as at the end
of Section 1) to establish the result for ¢ > 1. Setting A = (—p)° and

i~ &
applying Theorem 1.7, with  replaced by Té”"‘)np, we have
- T(H"z) T(8+§]'
Z cii (Tp ) Z
Co {“lplg?ﬁ’ﬁ”f’w“ + ” Ipigg‘ﬂ”")wu (4.6)

~(s ] — R ]
+5l(ipl"“lzpz,- (Tﬁ +’)so) : 3'T§s+’]w)[} -
i

1015375+ 2| < 1618T5 D] + (161 TS P) - T

lolf 5 T"*‘f’

Now

S | s 8V—
Then aT(H )ga T(s+’}6cp (P’+%+P’+§'1 2 )¢, where P’+2 and P"+§ !
are tangential pseudodifferential operators of orders s + 3 $ and s +
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From (2.2) we then obtain

+C|irjz A+ 1o ||

§pots gz 1. % 3
ittt < sme (1) [ St

: |_§'z,—| 1 s r s5=1
<Gosmax (14 21) {| Zavl + | 200
+C (A + [0
and

0
[“Pﬁpﬁg_lg;‘;o”

192\ || 1, (8 as48-19
< 14 25 )| —|r]2 A5tz
smgx (14 221) | 2y o

< Cosmax (1+ 221 ){u ool + A ol

Now we have

1,,,0
P
1 8 ~ F)
< —A°® —_Als—1) 5—2 7
<6, g,*‘\ go“-l—C(Z %A ol + [|A 3?‘4)

< Coll =A% + C([|A*"0y|| + [|A*"D ol +llell) -

Note that in tangential coordinates we have

02 i 62 0 7]
= 053 +Za,‘@; +Zaijéf,-th +b~§; +Zb"§‘

hence
R 3‘1—6150
gs 87.2
scu( Tptapl| + | LAty + ’in*’*‘sa)
] gs 67«
<an(| el + S (5| + |4
g
+C|race|
T —— T —_ 1
< Gl |[—=A*Ap|| + ”+||—A*’3‘ +”—As )
0( 9° g° i g° £

+C([|a70e| + 487 || + [|A* ]| + [|e]) -
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Thus we conclude that the first term on the right of (4.6) is estimated by
the right hand side of (4.4). The same argument applies to estimate the
second term. To estimate the third term, we note that

Z P, (T(s+ 5) ) T(8+ ) ( z ps, %)

vanishes on b8, and thus we apply (2.10) to obtain

“lplg"'ﬂf”%) (sz,w) }
<Gy Nl ” +c( A2l + > ”—A“"

)

9° 0z;
e B )

s=1 s=1
+(fae] + [

Combining all these we have proved (4.4), concluding the proof of
Lemma 4.3.

If U is a neighborhood of bQ2 as above, let a > 0 be such that {P €
§|r(P) > —a} C U. Let ( € C&(UNN) be such that ¢(P) = 1 if
T(P) 2 —% and ((P) = 0 if r(P) < —%. Let {; € C5°(R?) be such that
Co(P)=1if r(P) < —% and (o(P) =0if r(P) > —%.

4.7 Lemma. There ezists a constant Cy such that whenever —(—p)®
plurisubharmonic with p = gr, we have

2
B
P ¢B,f
SCu(w+(s+w)\,‘1;5)smﬁx(l+l%—l)
1 2 1 ¥ ) :
x{ EA”(,O + (B, f d C__ q }

)

+ Co (JAC| + lrastcas|f+ 3 ” a2 L
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[s]
+O(Jf + 1717+ 3 JDeasi-wl?
|e|=0
[s] [s]
+ 3 [DoatoFieBy g+ 3 oeaiigr]t (49

laj=0 |a|=0

T IPASCHI? + A% B AP + ||m8so||2)

for all f € DY with Ngyy 3f € D? and w € (0,3). Here ¢ = (N,410f.

Here the constant a > 0 will be taken very small so that the terms
after C' containing r can be absorbed in the various estimates that fol-
low. Taking a small implies that the derivatives of ¢ will be large. How-
ever, these derivatives are supported in the interior of 2 so that the
terms in which they appear can be estimated (using interior ellipticity) by
C(||¢ofII? + |1 £11?). From now on we will denote the terms appearing after
C by “error”, these terms are permissible errors which will be estimated
by absorption or induction.

Proof. We will prove the estimate for the case ¢ = 0. The proof
for general ¢ is then easily recovered by using multi-indices. We will
write %B f even though these terms vanish, because for ¢ > 0 the terms
%Bq f are not necessarily zero. They will be treated later in an induction
argument.

From Lemma 2.11, substituting w for o, we obtain

<Gy

'%A’CB f ;—3{7']“%""“‘(3 fH + C(error) .

Since

-]

]pl“’Té’*“’)CBf“ + C(error)

it will suffice to estimate the first term on the right. Setting ¢ = CN,Of
we have

Il]pleés+w}€Bf”2 — (lp|wT£3+w)Cf, ip|wT‘()a+u]ch)
— (|pI“T 8 ¢, |p|“TS+)¢Bf)  (49)
+ O(error) .

The first term on the right can be bounded using (2.2), with o = 2w, as
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follows

(ol T 6 £, ol T )¢ BS)
=|(T¥)¢ S, 1ol T )¢ Bf)| + Oferror)

1 2
< large const EA’C f

n

2+Z

Jj=1

'rA,aB 2
asC&gdn

+ small const( ;1;1\’6 Bf

+ O(error) .

The second term on the right in (4.9) is now expressed as follows
|(1p*3" ¢, T***)¢BS)|
a5 (b S )

+ ‘ Z (lPPw‘Pn [%,Tf’"‘g“)] CBf) l + O(error)
= I + I, + O(error) .

(4.10)

Since Y p.,¢i = 0 on b2 we use (2.10) with 0 = 2w — 1 and s replaced
by s+ 1 to estimate I, the first term on the right of (4.10) and we obtain

1 0
;W9 o
2}

~...<,_C(]W{

+ C(error) .

v

) + O(error)

2 2 2
+ +s? -

‘—l,-ASCBf
g

1 8
i

T oo
\E”6¢

T e
EA“’BSO

Since ONOf =0 and & NOf = f — Bf, we have

2
+

2 1 1 2
+ “:{;A“’CB)‘ ]EA’CJ'H ) + C(error) .

I £ Cyw (32

L
gs
Next we estimate the second term I on the right of (4.10). We have

I, =2(s +w)l > (iplz"’ips, Priz; —-————ZT;’ E Tf’”""”(Bf) | + O(error) .
i 2k
(4.11)
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We have

cij = 81pI* " paz, +8(1 = 0) ol 2pups,
) "

Pzz; = ‘6‘|P|1hdcij —(1=8)lp™ puipz; -
Substituting in (4.11) we obtain

1 ~(std 2w+l-4 ; s+2w—3
I, <2(s +w)cu{5 > (c,:,-('r,i +5J{P)i, '_{"_Zm_i{j% i+ g)ch)’
Ik

TS ——

+ C/(error)
<2(s + w)Co(I2y + Iz2) + C(error) .
Since (cij) = 0 we estimate I5;, by using the Schwarz inequality on the

integrand and obtain
1

1 ~(s+3 (o4l 2
In<3 (Z%‘ (T 0), (T +g)w):‘) )

/MZQWP{
§ (Zleal?)” =7

By Lemma 4.3 the first factor above is estimated by

C 24 1 8 5 (s+E)gme

% (mge 1+ By Laeol + 7593 ) + Ofeeon)
To bound the second factor we write c;; in terms of p. This factor is then
bounded by

. 2
T£3+2u—§)CBf( dV} + O(error) .

1

|plte+1-s 2

1 s+2w—3
62( Wszﬁjp;‘.pzj|Té+ 2)CBflng)
24
Q

1
2

_é
+/6(1 = 6) (/ rm“-‘[r}’*"““’ f)ngF) =L +Js.
i

Then
5 < Ol ET D By

<C (“As—%chH +> "T'A"_éC£Bf” 4 O(ermr)) _
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This then is a lower order term and can be incorporated in the O(error).
J, is bounded, using (2.7) with o = 2w — §, by

J2 < Con/BT= )| e+~ dc|

\/(5 1-4 1 r 8
< Cﬂ*‘;:(*\/(;i“:ﬁ (II:A’CBf I+> IIB;A’CEJ_BH[) + Clerror) .

Next we estimate ||I,o]2

”!P'"’Tp

(‘H' '3 (,o“ and we have

(|H.0|2T(s+ )Cf“ ¥ |||p|s+§g3f||) + C(error)

< co(ng,;mcfn +olEatcar] + | 2ncas]
1,,.0

+ SZ ”E‘;A C‘é_-é:;Bf”) i

Finally to conclude the proof we estimate I;;. We apply the Schwarz

inequality and use (2.9) with 0 = —1 on the first factor and (2.2) with
o = 2w on the second factor and obtain
I < (1- a)coz o T“) ¢l || A’CBf“ + O(error)

< {i= a)co(”—mcs AP+ IS0l + 54| ) 4+ Oferror).
Combining all these concludes the proof of Lemma 4.7.

4.12 Proposition. Under the same hypotheses as above there exist con-
stants 1, A, and C with n and A independent of p,d, and s such that if
either s < 7, or s > n and

ax(l ]g;'l) A(1-6)<1

IBflls < Cliflls (4.13)
for f € C=(Q) such that NOf € C=(Q0).

then

Proof. When s satisfies the above condition, we will first prove that
there exists Cy independent of p, d, and s such that

1 1. g
| ACBy | <Co (“E"‘ A+ 5aeas

(4.14)
1 o
+Z ”_;;_’-A’_IC_&%”) + C(error) .
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Setting ¢ = n — k, the proof will be by induction on k. For k = 0 the
operator B, is the identity so (4.14) holds. Now in (4.9), (4.10) and (4.11)

set w = 0 and we have
| =a%cB]
<aova(ll gzl + I :a¢Busl + T 1 200 qf!i)
+Co (H—A“’CfH +laiear] + = =1 ‘c flr)

+ C/(error) .
(4.15)
From (1.21) we have
1 s
”—As ” — ||EASCBq+1(tht‘q+1a[w_:(I = Bq)f])” . (4.16)
Assuming that (4.14) holds when g is replaced by ¢ + 1, we get
1 ] 1 8 T As-1
1554l < Co (|50 ]| + || 54" ¢ AV |
g
3 (4.17)
-+-”gaA" d tbqﬂll) + C(error(¢g41)) ,
where _
"l’)q+1 = szz'qHa[w—:U = Bq}f]

o w:Ni,q+16C£ gL~ Bq)f]
+ weNyg110(1 — ¢) [w_o(I — By)f] .

Since for t > consts the operator Nt‘q...;g preserves s-norms and the
weighted (t)-norm, we have by error (¢4+1) = error (f)

1 1 1
{|-g;A-’c¢q+1H <C; (||§-3A*"Cf|| - ||EA‘§qu||) + C(error) .
Now we have AN, . = I plus first order operator, hence

|2 ¢ < Co(lv-"f;As-chfll + |5 ACBS]
Bt + o]

+C (error)
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Note that the same estimate holds for the third term on the right of (4.17).
So we get

loeA*ell < Co( I acrl + IoescBusll + | 5o car
(4.18)

+ Z “-g—;f\g_lcb-__;;qu”) + C(error) .
We also have

T As 9 r s 1 §
28 Bof | < Golll GA™CAS + [| 5ACBuS|]) + Cerror)
(4.19)
Substituting (4.18) and (4.19) in (4.15) we obtain

1 1 1
|5A%¢Busl| <CovA(I S A%6Bus || + [l A% + (|5 A% AT )

¢ co(n»mcfn +I5acar] + AL

+ C(error) .
(4.20)
Hence if we choose 7 such that C§/s < 3 when s < 7, then we obtain
(4.14).
If s > n, we substitute (4.17), (4.18), and (4.19) in (4.8), and we get
the same inequality as (4.20) with C§./s replaced by

(1+2)s
R " — s
9 (w+ l~-—§-).'rr1m:(l-|—l-g—’l).
n w b0 g

Setting w = (1 — &)3 the above becomes

-C,ﬁ” *(1-5) max (1 # Iﬁ—l) . (4.21)

g

Since s > 7 there exists A independent of s such that

2o 1
n 2

il

A

Hence when s > n and

3
A® max (1+@) <1
b2 g
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the coefficient given by (4.21) is less than or equal to 3, and hence (4.14)
holds.

To prove (4.13) we use the operator P,: Lo(Q2) — Harm(2), where
P, denotes the orthogonal projection on the space of complex valued har-
monic functions denoted by Harm(2). Since H(Q) C Harm(f2) we have
BP, = B. We also have (see [Be]) P,(H*(R2)) € H*(Q) and

1Bt 1], < Cllfll,- (422)

Hence substituting P, f for f in (4.14) (with ¢ = 0), we obtain (4.13),
concluding the proof of Proposition 4.12.

5. Conclusion

Main Theorem. Given Q C C" pseudoconvez, bounded with a smooth
boundary, let p = gr be a C*® defining function for Q such that —(—p)°
is plurisubharmonic. Then there exist constants n and A independent of
p and é such that whenever either s <7, or s > n and

3
A"‘[l—é)max(1+@) €1
b g
then B(H*(Q)) C H*(2) and there ezists C such that | Bf||s < C| f||s for
all f € H*(Q2).

Proof. Let p'® = p+¢, and let Q. = {P € Q|p.(P) < 0} when ¢ is small
enough so that the gradient of p(*) is non-zero. Then £, is pseudoconvex
and, furthermore, if 5) = —(—p)% + £ then, when £ > 0, 5) is a smooth
plurisubharmonic defining function for Q.. Let B®: Ly(Q.) — H(k)
denote the Bergman projection operator on €).. We have

- Z((_p(E) )6)2:'3;' Cizj Z{ )z.z; C!CJ =

so —(—p®))? is plurisubharmonic. Then by a theorem of Boas and Straube
see [BS1]) we have B(ej(C""(ﬁm)) & Cm(ﬁ(s}). Furthermore, if p(®) =
997© where ) is a normalized defining function for ., then lin% g9 =

g and hmg( ) = g, so that max (1+ E?—) is equivalent to max (1 s lg—;"-[).
Hence p(‘) satisfies the hypotheses of Proposition 4.12, and thus there
“exists C independent of € and A and 7 independent of s, p¢), 8, and € so
that if either s < m, or s > n and

|gz:] \3

mng(1+ |) A*(1-4) <1
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then

||B(€)f”s,ﬂz g C”f"s‘ﬂ; ’
Hence we conclude that Bf € H*(Q) and satisfies || Bf||; < C|| f||s when-
ever f € C*(Q). Finally, since C*(Q) is dense in H*(2), we have
B(H*(Q2)) € H*(Q2) and the theorem is proved.

5.1 Remark. The hypothesis —(—p)? is plurisubharmonic can be re-
placed by the hypothesis

(=(=p)")aiz; > =0Clp|°5; , (5.2)
with C independent of §. When (5.2) is satisfied we set
Cij = (“(_p)é)ziij +(Clp|*5;5

and the proofs of Lemmas 4.3 and 4.7 go through with minor modifications
and hence the main theorem follows in this case.

We observe that if p is a defining function which is plurisubharmonic
on b2, then (5.2) is satisfied for every é € (0, 1]. To see this, let 7: U — bf2
be a smooth mapping of a neighborhood U of b2 onto b2 with n(P) = P
for P € b§2. Then for P € U, we have

pziz;(P) = paz, (m(P)) + O(|p(P)]),
hence in U NQ

- Z(("P)J)Z.-E,- Csfj = lelahl Z Pzz; thj

i,j ij
2
+8(1- 8l

ZPMC!'
= 6o {3 puz, © 76T, + 0ol ) }

2
Z Pz.-Ci

+68(1-8)|p|"?

> —8C|pl°I¢I* -

5.8 Remark. Let YW C b be the set defined as follows. For each
P € W, there exists a neighborhood U of P with the following property.
If ¢, ¢’ € C°(U N Q) with ¢’ = 1 on a neighborhood of the support of ¢,
then for every s there exists C, such that

1SNe18¥]], + (160" NowsBell, < Co(liCwll, + wl) — (5.9)
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for all (0,q)-forms in D9. Let Z = b2 — W. Now suppose that there
exists a defining function p which satisfies (5.2) in V N, where V is a
neighborhood of Z. Then by a straightforward modification of the proofs,
the main theorem holds with max replaced by max.

The estimate (5.4) holds whenever P is of finite D’Angelo type (see
[Cal] and [D’A]) and also under a variety of weaker hypoellipticity condi-
tions (see [Chr2] and [K2]).
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CHAPTER VII

Pdes Associated to the
CR Embedding Theorem

Masatake Kuranishi

The purpose of the present article is to explain a construction of a
complex tubular neighborhood of a strongly pseudoconvex CR manifold,
say M, using the CR geometry of M. The outline of the results obtained
prior to 1996 are published in [11]-[14]. For the sake of the convenience
of the readers, we will give the description from the beginning. The con-
struction may be used to give a new proof of the CR embedding theorem.
We also discuss and compare this attempt with the known proof of the
CR embedding theorems (cf. [1], [3], [10], [17], [23]).

The CR embedding theorem was first proved using the 8;-operator of
M. Then Catlin gave a new proof by constructing a suitable complex
structure on a differentiable tubular neighborhood of M. He is thus led to
use pdes closely related to the J-operator. Since d-operators have better a
priori estimates than O,-operators, he was able to improve the embedding
theorem. When we use our method, we end up with a pde defined on
M x C", dimM = 2n — 1, which has the feature of dy-operators of M
as well as of the J-operators of C". This situation hopefully helps us to
improve the embedding theorem further.

Since the construction directly connects the ambient complex structure
to the CR geometry of M, it is expected to have other applications. When -
the construction of the asymptote of the singularity of the Bergman kernel
is rewritten in this language, it will give the expression of the asymptote
in terms of the CR curvature. Since the construction of the CR geometry
can also be carried out for the deformations of Shilov boundary of the
bounded symmetric domains, it seems to suggest a way to construct the
theory of CR manifold of higher codimension (under some conditions).

tWork partially supported by the National Science Foundation under grant DMS-
9203974
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1. CR structure and embedding theorem

Let M be a hypersurface in C" of codimension 1. The set of type (0, 1)
complex tangent vectors of C™ located at points in M and tangential to M
forms a subbundle L of the complex valued tangent vector bundle CT M.
Such L satisfies the following conditions:

1) The fiber dimension is n — 1,
2) LNL = {0},
3) the set of smooth sections of L is closed under bracket.

Let M be a manifold of dimension 2n — 1. A subbundle L of CTM
satisfying the above three conditions is called a CR structure. When a
CR structure L is associated with M, we call M a CR manifold. Let M
be a CR manifold and p € M a reference point. We say that (M,p) (or
(L,p)) is embeddable when, for an open neighborhood U of p in M, we
can find a smooth embedding U — C" such that the image of L|U is
induced as above by the type (0, 1) tangent vectors of C*. An embedding
as above will be called a CR embedding. In this paper we always discuss
such local properties. Hence we usually shrink M if necessary and also
omit mentioning reference points, unless it is necessary.

We discuss the local embeddability of a CR manifold under suitable
assumptions. We use the Levi-form to state such assumptions. By con-
ditions 1) and 2), we see that we can pick F € TM such that we have a
direct sum decomposition: CTM = CF+ L+L. Denote by p (resp. p) the
projection to the factor L (resp. L). For smooth sections X,Y of CTM
set

[X,Y] =i L(X,Y)F + p[X,Y] + X, Y. (1)

By taking the bar of the above formula we find that £(X,Y) defines on
each fiber of M a Hermitian form, which is called the Levi form of L. £
depends on the choice of F. But its conformal class of £ is uniquely deter-
mined by L. Therefore we may say that L is called strongly pseudoconvex
(or nondegenerate) when L is definite (or nondegenerate).

When dim M > 7 and L is strongly pseudoconvex, L is locally em-
beddable. Strong pseudoconvexity in the above can be replaced by the
property: L has at least 3 positive eigen-values or n — 1 negative eigen-
values. (cf. [3]). When dim M = 3, there are examples of nonembeddable
strongly pseudoconvex CR structures. (cf. [7], [20]). The question of
embeddability in case of dim A = 5 is an open problem.

We answer the embedding question by solving a system of partial dif-
ferential equations. Consider a differential equation ¥ on an unknown
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complex valued function f given by

Xf=0 forall X e€lL. (2)
Assume that we can find solutions fi. ..., f. of & such that
M 3 p— (fi(p).-... fa(p)) € C" (3)

is an embedding. This is a CR embedding for L. We solve ¥ in the above
sense by considering the 5b-complex. Namely, by a k-form of type L we
mean a smooth assignment of a skew-symmetric multilinear function in k
variables in each fiber of L. Denote by A¥(L) the vector space of k-forms
of type L. By imitating the construction of the de Rham complex, we
define a complex of differential operators

Op: A¥(L) — AFY(L), where

(zjbu)(XD: vus 1Xk) =Z[Xj!u(X01 .. -er! vt !Xk)]

iy . ; (4)
+ 3 (-1 (X, Xj), Xo, -, Xy, Xy, Xa)
i<j
for u € A"(L), where the terms with hats are omitted. This is the 0,-
complex.
Before proceeding further, note the following well-known proposition.

(5) Proposition. Any CR structure L is formally embeddable.

Proof. There is clearly a chart (z,z), 2/ = (...,2%,...) € C*! and
z € R, with center a reference point py , so that L at po has a base
(8/82F),,. 1t follows that L has generators L* of the form:

9 9 9
k _ l k
L _azk+A*af+Ba (6.1)

We then find by the integrability condition that
[L*, LY = 0. (6.2)
Set 2™ = z. By our choice of the chart
L* = AL=0(1), L[*"=B"=0(1). (6.3)

We now consider a general chart (z,z) with center py and a system of
generators L* which has the expression (6.1). We prove the following
statement (*), for any natural number v by induction on v: We can find



132 M. Kuranishi

a chart (2/, z) as above so that, when we set 2" = z + H with a suitable
H =0(2),
LF2t=0() for t=1,...,n. (%),

Our original chart with H = 0 is the case » = 1. Assume that (x), holds.
We now construct a new chart (w, z) and new H' of the form:

wt=2F+h*, H' =H+h", where i =0(v+1) (6.4)

such that (x),.; holds under the new chart with the old L*. We then
see that (*),.; holds also with a new LF of the form (6.1) with respect
to the chart (w,z). Clearly we can carry out this inductive construction,
provided we have the following lemma: Let f be a complex valued function
such that L*¥f = O(v). Then we can find that

h = O(v + 1) so that L*(f—f—h) =O0(v+1). (6.5)
To see the above set

Lbf =) fi(,2:7) + O +1), (6.6)
P

where f;‘ is a homogeneous polynomial of degree v and homogeneous of
degree p in 2’. We find by (6.1)-(6.3) that

0 w_ 0 4
ﬁfp == —ﬁfp' (67)
Then i
h=Y" szf; (6.8)
o
works, g.e.d.

Using the smooth functions of which Taylor series are formal solutions,
we can embed M in C" so that the given CR structure L is very close to
the CR structure induced by the ambient complex structure.

A pde that solves a certain problem may not be unique. For example
Newton's equation can be also solved by considering Hamilton’s equation.
This equation has various advantages. The proof of the embedding the-
orem of Riemann geometry was simplified considerably by setting up a
clever pde. In the case of the CR embedding theorem, there has been no
such success so far. But a number of new pdes, which have some advan-
tages compared to the above, were tried. In this paper we discuss two
of these pdes besides the equation (2). These are the methods of Catlin,
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which will be referred to as II, and the one now being developed by the
present author, which will be referred to as III. The method using the
equation (2) will be referred as I.

2. The complex structure on the tubular neighborhood

In method II we construct a complex structure on a differential tubu-
lar neighborhood M of M such that the CR structure it induces on the
boundary M is the given L. Therefore in this approach the unknown is a
complex structure, say 7”, on M. To write down the pde for T, note that
as mentioned above, we have a complex structure, say T” on M which
induces a CR structure on M very close to L. Hence we may regard our
unknown complex structure 7” as a small deformation of T”. Therefore
we can use standard deformation theory machinery. Namely, denote by
31-,, the @ exterior derivative with respect to the complex structure 7”.

Let T’ be the bar of 7". We write
T ={Z +w(Z) : ZeT, (7)

where w is an unknown 7”-valued 1-form of type (0, 1) with respect to the
complex structure T”. Then our equation is given by

Opww + %[w,w] =0 (8)

with the boundary condition: The CR structure on M induced by the
complex structure determined by w is the given L.

_ We may simplify the boundary condition by considering, instead of
T”, an almost complex structure, say L*, which induces L on M. Clearly
we can write down the integrability condition of deformations of almost
complex structure L* imitating the case of complex structure. Namely,
we define k-form of type L* as a smooth assignment of a skew-symmetric
multilinear form in k variables on each fiber of L*. Denote by A¥(L*) the
vector space of k forms of type L*. Let p be the projection to L* with
respect to the decomposition CTM = L* + L¥. We define the L* exterior
derivative

Oy : AX(LY) — AR (LY (9)

using the formula (4) where X; are in L* and the “[” is replaced by “p[
Then almost complex deformations of L* are parameterized by an L? val-
ued 1-form of type L, say w, by

T, ={X+w(X): X eL. (10)
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Denote by A¥(L!, L¥) the vector space of Lf valued k-forms of type LF.
Then we still have the exterior derivative

Bys: AR(LY, IV) — AMY(I}, L) (11)

as in (4) by inserting suitable projections where needed. We see clearly
that T/ is integrable if and only if

w(plX +w(X),Y +w(Y)]) = — p)[X +w(X),Y +w(Y)].
This condition can be rewritten as
EL:W + R(w) =0, (12)

where

Rw)(X,Y) =(I = p)([w(X),w(Y)] + [X,Y])
— w(p([X,w(Y)] = [Y,w(X)] = [w(X),w(Y)]))

Therefore the pde for the CR embedding theorem by method II is given
by _
Opw+ R(w) =

3
with the boundary condition w(X) = 0 for all X € L. e

In the above we simplified the boundary condition in (7) but we ended up
with a more complicated pde. Note also that d;: o0 d;: may not be zero.
However, from the standpoint of the general elliptic pde there is not much
difference between the two. Catlin used equation (13), which we also use.

3. The CR geometry

In method IIT we use the CR frame bundle of the CR structure L.
Since all the local geometric information on L is stored in the CR frame
bundle and the associated Cartan connection, the aim of this method is to
make more explicit the role played by the geometry of the CR structure, in
particular its curvature. The method is based on the following idea of E.
Cartan: When we consider a type of mathematical structure, we first pick
a mode] case, which is a homogeneous structure. We study the model case
in detail and the general case is discussed as a deformation of the model
case. More specifically, we write the model case N = G/H for a Lie group
G and its closed subgroup H. We regard G as a principal bundle:

G — N, with the structure group H. (14)
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Denote by g. h the Lie algebra of G, H. We have the Maurer-Cartan

forms
wg: TG —g, wy:TH—h. (15)

The 1-form wg is a special case of Cartan connection forms. Namely, for
any principal bundle (P, N, H) with the structure group H over a manifold
N we define a Cartan connection form as a 1-form:

w:TP g (16)

with the conditions:

1)° At each f € P, w restricted to the tangent vector space Ty P at f is
an isomorphism.

2)° (Rp)*w = Ad(h™!)w for any h € H, where R}, is the action of h on
the fibers of P.

3)° Under any injection of H compatible with the principal bundle struc-
ture, w is pulled back to the Maurer-Cartan form wy of H.

For the model case N = G/H, its frame bundle is by definition the
principal bundle (14). The associated Cartan connection is, by definition,
we in (15). This pair constitutes the geometry of V.

We try to find a construction by which we associate, for each defor-
mation of the model N, a principal bundle and a Cartan connection w
imitating the case of the model case. When we succeed, the curvature of
the structure is given by

k= do+ lo,u) (17)

In the model case the curvature is zero. In the non-model case, it seems,
there is no unique way of such construction. There could be many geom-
etries associated to deformations of N. We simply choose one which seems
most natural. The chosen one is usually called normal. Even in the Rie-
mannian metric case, we may consider a geometry different from Levi-
Civita geometry by imposing conditions on the torsion. In the strongly
pseudoconvex CR case, the geometries in [4] and [22] are isomorphic (cf.
Yang Liu [18]). In [12] a geometry depending on a parameter is con-
structed, and the previous cases correspond to the special points in the
Parameter space.

In our case of the strongly pseudoconvex CR structure, the model is the
boundary CR structure on the boundary sphere S of the unit ball B in C™.
Denote by G the connected component of the holomorphic automorphism
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group of B. Pick reference points ps,pp of S, B, respectively. Since the
connected component of the CR automorphism group of S is equal to the
restriction to S of G, we may set

S=G/Hs, B=G/Hp, (18)

where Hg, Hp are the isotropy groups at pgs, pp, respectively. We thus
have the principal bundles (G, B, Hg) and (Ps, S, Hs), Ps = G. As men-
tioned above the CR frame bundle of S is (Ps, S, Hs). The Maurer-Cartan
form wg of G regarded as a 1-form on Ps is the Cartan connection form
associated to the CR structure S, which we denote by ws. We exam-
ine (Ps,S, Hs,ws) closely in order to construct the Cartan geometry of
strongly pseudoconvex CR structures.
The CR structure subbundle Lg C CT'S of S is defined by equations
of the form:
P | S R (19.1)

where w*, (k = 1,...,n— 1), are complex valued 1-forms and w" is a real
valued 1-form. By the strong pseudoconvexity we find that we may choose
the above so that o

dw™ = wkF AWk (mod. w™). (19.2)

The totality of such choices of ...,w?,..., considered pointwise, forms a
bundle Pg over S. Denote by Q% the tautology form on Pg associated to

the choices of w®. Introduce a C"! x R-valued form Q% = (Q1,...,Q").
We thus have a bundle over S with a 1-form
(Ps, S, ). (20)

Note that this construction can be carried out for any strongly pseudo-
convex CR structure.

We next observe that the principal bundle Ps — S is a prolongation of
P; — S. To see this, we have to write down more explicitly the action of
G. For calculations it is more convenient to use, instead of B, its Cayley
transform. This is a domain Q% in C™ given by

Qr : Q> %lz'lz, 2 = (.02 (21)

Therefore instead of S we use the boundary CR structure @ on the bound-
ary of Q" defined by

Q: S = %Iz’]:',. (22)

Q7 is biholomorphic to B and @ is CR isomorphic to S minus a point.
As a reference point we use po+ = (0,%) and pg = 0. Let Hg+, Hg be the
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isotropy group of po+, pg, respectively. Denote by PC" the projective
space with homogeneous coordinate [€°,...,£"]. We embed

RT3z [1,2] € PC". (23)
Introduce a quadratic form:

B, 6) =i’ — ¢, €=(,....€M, & =(€,....€"), (29
and denote by Sg (resp. Sg) the real hypersurface (resp. the domain) in
CP" defined by the equation:

=0, (resp. ®>0). (25)

Then by the embedding (23) we may regard Q* and @ as open submani-
folds

Qrc 8, QcSs (26)
We can now represent G as the connected component of the group of
projective transformations induced by the group G of special linear trans-
formations of C**! which leave ® invariant. Therefore we now represent
g € G by an (n+ 1) x (n + 1) matrix mod. the center of G, which is
the finite group of scalar matrices of determinant 1. We are thus able to
calculate explicitly the elements of G.

For a column vector ¢ = ({’,("*) € C™ set

1 0 0
T() = ( ¢ I 0 ) ; (27)
¢oad) 1

The set of T(¢) forms a matrix group N which acts holomorphically and
simply transitively on C". Its operation is given by
T)z=(2'+, 2"+ " +i(2', (). (28)
Set
N={T(z): ze Q}, N*={T(): CeQ"}. (29)
N C G is the Heisenberg group which acts simply transitively on Q.
Therefore
N NHg={I}, and NHg is an open subset of G. (30)

N is closed under the composition and its operation preserves Q*. We
find by explicit calculation that
Hg = {h(a,u, B,b) :a,b€ C,u*u=1I, (a/a)detu =1,

(b/a) + (1/2)|8]? = 0}, (31)
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where

a v b
ha,u,3,b) = 0 u 3 , v=iauB.
0 0 1/a

We set

He = {hc(r,B,b): r>0,8€ C*be C,b=—(r2/2)|32}, (32)

where
1/r —iB* (1/r)b
hc(r, B,b) = 0 I 3 ;
0 0 T
and
Huw= {hau(6,u): 0 €R, w'u=1I,*’detu=1},  (33)
where

e? 0 0
heu(6,u) = 0 u 0 |.
0 0 €

Then we find by calculation that the above are subgroups of Hg and
HQ = HcHgy, HeN Hgy = {I} (34)

Moreover the underlying manifold of Hg is diffeomorphic to the manifold
Q" by the mapping

ir? ir?

Hc 3 he(r,8,b) = ¢ € QF, where (' = x> S i

(35)
We thus find that the isotropy group of @ is carrying a copy of the interior
domain.

The Lie algebra of A is represented by the matrix Lie algebra

n={n(¢,z): 2 € C"',z € R}, (36)

0 0 0
n,&y= % 0o o0 ].
& i) 0

The Lie algebra of Hg, is represented by the matrix Lie algebra

where

hg = {h(a,4,8,b): a€C, u€su(n~1), FeC** beC}, (37)
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where

a -5 b
hawpBb)=0 @ 8
( 0 0 -a
Denote by pn (resp. by ph,) the projection of g to n (resp. to hg). Then
we have a complex valued invariant 1-form QE and a real-valued invariant
1-form Q7 so that
Pawq = (). (38.1)
Similarly, we have complex valued invariant 1-form ®f, and real-valued
invariant 1-forms ITj,, U5, such that with a suitable 4

Phowq = h(Ily, i, Pg, Vo). (38.2)

We now go back to the study of the CR Cartan connection form on Q.
Since N acts simply transitively on Q, we see by (30) that the CR frame
bundle of @ (which is the open subbundle over @ of Ps — G/Hg) is

Po=NHg—N=Q. (39)

We can now calculate explicitly the bundle P}, which we obtain for @ as
we obtained Py for S in (20). Note first that in view of the decomposition
(30) we have by (36) an isomorphism

g/h=n—-C"!xR. (40)

Then the adjoint action Ad(h™!) on g/h with h € Hy is transplanted to
the action of Hg on C™! x R which is given in terms of the representation
(31) by

Ad(R7Y)(2,2) = (au*z — |af?u’ B, |a|%E). (41)
Denote by H' the quotient group of Hg which makes the above action
effective. Then we find by calculation that P is a principal bundle over
Q with structure group H’. Moreover the isomorphism (40) allows us to
regard Q% in (20) as valued in g/h. Therefore we have a principal bundle
with g/h-valued 1-form (2,

(P, Q. H', Q). (42)

Further we find that Qj, satisfies a condition similar to 2)° in the definition
of Cartan connection, where Ry, should be replaced by the action of H' on
Py. Therefore we conclude that

(Pg, Q, Hq, ) may be regarded as a prolongation

of (Ph,Q, H',%). (43)
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The above observation opens the way to construct CR geometry of an
arbitrary strongly pseudoconvex CR manifold M. Namely, as we noted
earlier the construction of Q% through (19)—(20) can be applied to M.
We thus have (Py,;, M, H',Q),). Following Cartan’s program we consider
an unknown principal bundle with a Cartan connection (Ppy, M, H', w)s)
which is a prolongation of (Py,, M, H',Q);). We see that this is the
exact analogy of the construction of Levi-Civita connection (using the
orthonormal frame bundle) in the case of Riemann geometry. In that
case Py, = Py and an extension is uniquely determined by imposing
the torsion-free condition. In our case we find that, when we impose a
suitable torsion-free condition, the principal bundle Py is uniquely de-
termined and ;; is also determined uniquely up to a family of Cartan
connections depending on one arbitrary function. We make the choice
unique by imposing a suitable trace zero condition. We call the Cartan
connection thus obtained the CR Cartan connection. We now complete
the construction of the CR geometry (cf. [4], [12], [22]).

4. The CR geometry and the embedding theorem

We now discuss method III of the construction of CR embeddings.
Following Cartan’s plan, we first examine the case of S. In this case the
problem is to construct B using only the CR geometry of S. We interpret
this to mean that we construct the projection pg: G — B = G/Hp and
the complex structure on B using the projection Ps = G — S = G/Hs
and the Maurer-Cartan form of G. However it is more convenient to use
Q*. We thus try to construct the projection

PQ+ - .PQ =NHQ = Q+ = G/HQh (44)

using only the projection pg: NHo — @ = N and its CR Cartan con-
nection wg = wg. Denote by I the identity element.

We first make the following observation: The complex structure of @™
is induced by the complex structure of C" (cf. (21)) and invariant under
the operation of G. Therefore, the pull back of the bundle of type (1,0)
tangent vectors of @ by po+ is determined by (Z'); = ((pg+)*dz")s, t =
1,...,n, where (z!,...,2") is the standard chart of C" and pg+ is the
projection in (44). Note that there is a Maurer-Cartan form, say Zf, on
G which agrees with the above form at I. Denote by ¥ the subbundle
of CT*G generated by =1,...,Z". By the observation made above we see
that X has the following two properties:

1)!  The projection pg+ is determined by the subbundle £q + T, i.e.,
the fibers are the maximal integral submanifolds of Pfaff’s equation
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To=3g=0.

2)* A function defined on an open subset of @ is holomorphic if and
only if d(h o pg+) is a section Zgq.

Therefore our problem in the model case is solved when we have Xq. Since
we know explicitly how the elements in G act, we can easily write down Xg
explicitly. Even though we used the projection pg+ to define =* initially,
we are now able to write down X using only Fg and wg. In fact,

=k =k +idh, =" =Qp — 2T, + U, (45)

We may rewrite the above more conveniently as follows: There is a linear
map 7: g — C" such that

Lg is generated by components of Twg. (46)

The properties 1)*, 2)! and (45) show how we should proceed for
the general case. This is based on the generalized Newlander-Nirenberg
Theorem (cf. [6], [21]):

(47) Theorem. Let N be a manifold and X a subbundle of CT*N of
rank n satisfying the following conditions:

) £nE = {0},

i) X is integrable, i.e., the exterior derivatives of the sections of ¥ are
in the ideal generated by the sections of L.

Then there is (locally) a projection, say ps, of N to a complez manifold,
say N’, such that ¥ is generated by differentials of the pull back of holo-
morphic functions of N'.

Proof. By the classical Frobenius Theorem applied to £ + X, we find
the projection py to a manifold N’. Therefore we may identify N with
N' x W for a manifold W so that py is the projection to the first factor.
Pick a point wy € W and consider the injection j: N’ 3 z v+ (z,wp) €
N’ x W. By applying the Newlander-Nirenberg Theorem to j*L, we find
a complex chart (2!,...,2") of N’. By the definition of pg we see that £
is generated by dz!, dz!, where we wrote 2! instead of 2! o py, for simplicity.
Therefore there is a generator of £ of the form: dzt + a®*dz®. By the
integrability condition of ¥ we find immediately that a®* is a constant.
Since it is zero at N’ X wp, we conclude that dz' generate L. q.e.d.

The above complex manifold N’ will be referred to as the complex
manifold obtained by the integrals of £. When the rank of T is n, we call
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¥ satisfying the above conditions a complex structure on N of rank n.
Also we may say almost complex structure of rank n when the condition
i) is satisfied but the integrability condition may not be satisfied.

By the above discussion we may now conclude that the CR embedding
theorem is reduced to the following problem:

(48) Problem. Find a complex structure ¥ on Py of rank n satisfying
the following condition: We can attach M as the boundary to a complex
structure M obtained by the integrals of ¥ so that the CR structure it
induces is the given one.

Using the CR Cartan connection form wyy, we may try £; = T ow)y
(cf. (46)), which is generated by

._:..f\_f = ?ﬂfth. (49)

However, ¥, is not integrable. The curvature of M is the obstruction to
the integrability. Thus we have to deform X, to a complex structure. It
turns out this is rather difficult to handle. The space P, is too big. We
first reduce the problem to a problem on a quotient bundle of Pys. To carry
out this reduction we have to examine the projection pg+: NHg — Q
more closely.

In terms of the decomposition (34), we have the projection

p1: NHg - NHe. (50.1)
In view of (29) and (35) we may use a chart
() e@xQ" (50.2)

of NHc. For convenience denote by 2! the general element in Q* C C".
We then have a map

P NHc — Q% given by (2,¢) — 2! = T(z)¢. (51)
(cf. (28)). By explicit calculation we find that
po+ = p o p1, (52)
and that =5 in (45) is the pull back of a 1-form on Py = N'Hc, i.e.
g can be reduced to a subbundle £, ¢ CT* Py. (53)
In view of the decomposition (34) we may identify

Py =NHc = (NHg)/Hsu = Po/Hau. (54)
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The formula suggests we consider
Pyt = Py/Heu. (55.1)
We then find by explicit calculation (cf. (49)) that
¥, can be reduced to a subbundle &; ¢ CT*Py,. (55.2)

Therefore we try to deform 5, to an integrable subbundle of CT™* Py, We
now forget Pj; and work on Py For simplicity we use the same symbol
=%, to denote the 1-form in (49) reduced to Pj;. Therefore our problem
is to find 1-forms, say A%, on P satisfying the following two conditions:

56.1) The subbundle & a generated by =4, — A? is integrable.
g M ar

(56.2) We can attach M to the complex manifold obtained by integrals of
the above subbundle in such a way that it induces the CR structure

of M.

To write down the pde for an n-vector valued 1-form A = (..., A% ...)
to satisfy (56.1), note that any CR structure M can be considered as
a small deformation of the induced CR structure of a hypersurface, say
M;. In the case of a strongly pseudoconvex CR structure, by a change
of variables we can make the equation of the hypersurface M; very close
to the equation of @ as was done in the early stage of the construction
of Chern-Moser normal form (cf. [4]). Therefore by a diffeomorphism we
may identify the manifold M as an open submanifold of @) so that the
given CR structure Ly; C CT'Q is very close to the CR structure Lg of
Q. Then we may identify ﬁQ with Py by a diffeomorphism. Thus we are
in a situation: _ _

M:Q's PM'ZPQ=QXQ+1 (57)
where @ is, as mentioned in the beginning, now replaced by a small open
substructure of the old Q. What distinguishes between the CR structures
Q and M is the Cartan connections wg and wys on @ x Q. We use its
standard chart (z,¢) or (2, x,(), 2" = z +i|Z/|*/2.

We say that a form 6 on Q x QT is basic when # can be written
using only dz*, dz*, dz with functions of (z, z, () as coefficients. Set = =
(...,=%,...). By explicit calculation we find that

=y =d( +Zp, where =g is basic and holomorphic in (. (58.1)

Moreover = is actually defined on @ x C™ and we have the following

property:
Zo=wpy (mod. ¢*) (58.2)
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where wpy = (... ,wjy,...) is as in (19.1)-(19.2) (where w is replaced by
wyy), defining the CR structure of M. (58.1) implies that we may only
consider A of the form

A = Ay + Amd(®, where Ay, is basic, and (59)

d=y =UANZpN+ B, Bis basic (60)

for a 1-form U and a 2-form B which depend on M. Denote by djs the
exterior derivative with respect to the variable (2', z) of the standard chart
(/,z,¢) of Py;. Then we find easily that A satisfies (56.1) if and only if

0A — OJA
dyA-UNA- EE—A‘)A8—G+dC‘/\¥?—B=O. (61)
Therefore in the approach III the unknown is an n-vector valued 1-form
A on Q x Q* of the form (59) and the associated pde is (61).

As for the condition (56.2), we note that the equation (61) is defined
on @ x C". Hence we will try to find a small solution A on a small open
neighborhood of 0 x 0. Now in the case where the CR structure M is
equal to @, A = 0 is a solution, and the induced projection is p* in (51).
We then see by (28) that p* induces the identity map of Q@ x 0 = (the
submanifold ¢ = 0 of @ x Q%) to the boundary Q of Q*. Since M is
very close to @ and A is small, the projection induced by the subbundle
T will also induce a diffeomorphism of @ x 0 = M x 0 to a submanifold
of the complex manifold defined by ¥3;. We regard this as the attaching
map of M. We then see by (58.2) that condition (56.2) is satisfied when
the following condition is satisfied:

A = 0 on the submanifold ( =0 of Q@ x Q7. (62)

We thus find that for method III we impose the above condition instead
of a boundary condition.

5. Construction of the solution

We now discuss how to solve the equations for methods I, II, III. (cf.
(2)-(3), (13), (61)—(62)). Let us denote the unknown by u. Then our
equations are of the form

Du + R(u) =0, (63)

where D is a linear differential operator. u is a some type of differential
form of degree p, where p = 0 in case I and p = 1 in case II, III. So far all



VII. Pdes Associated to the CR Embedding Theorem 145

the methods follow a similar line: We first find a solution. Then denoting
by u = ug the approximate solution of which the Taylor series is equal to
the formal solution, the error

Dug + R(UO) = by (64.1)

is very small. We then try to find u; so that its error is smaller than bg.
We use the Newton’s method. Namely, we consider the differential of the
map u +— Du + R(u) at ug, obtaining a linear operator D,,,. We then try
to solve the correction equation

Dy,v = by. (64.2)

It turns out that we can not solve the equation. We find that we can
solve it with an error with magnitude something like the square of the
magnitude of byp. Let v = vp be such an approximate solution. Then
u; = up — vp Is the next approximation to a solution of (63). We repeat
the process, hoping that the sequence u, converges to a solution. Actually
this does not work. Following the Nash-Moser procedure (cf. [18]) we use
not vp but the smoothed version of vg. This approach works for cases I
and II. Case III is now being tried but not yet finished.

The existence of a formal solution of I is already done in (6). We
can similarly find formal solutions for II and III. For equation III it is
quite involved (cf. [14]) and we already see that the curvature of the CR
geometry comes in the construction.

We are thus forced to consider the differentials of Du + R(u) at, say
ug. These differentials in our cases can be made parts of sequences of
differential operators of the following form: We are given

i) linearly independent complex valued 1-forms £* on a smooth manifold
N, where A runs in a set of indices, say II,

ii) a first order (matrix coefficients) partial differential operators X, for
A € II such that its principal parts are diagonal operators, and

iii) a set of matrix-valued functions c‘;;::;: (where the indices are consid-
ered as skew-symmetric) for each p.

Denote by X the system of such chosen £, X,,c’s. Let AP(X) be the
vector space of differential p-forms u of the form

1
u= ] ZHM---,\PE'\‘ Ao AEM (65)
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where wuy,..», is skew-symmetric in Ay,..., ;. Define
Dx: AP(X) — AP*1(X)

by
1
D,‘yu = ;}T Z (X,\u;“_..; EA A E‘\]‘ FACERWAY SAP

o A
+c}.l pudl c,& - /\&p).

Since there are no commutativity relations among X, Dy o Dy may not
be zero.

In Case I we consider the case N = M. {X,} is an arbitrary base of
the CR structure L. &* is the dual base extended to the 1-form taking
value zero on the supplementary bundle L + F. The sequence Dy is
independent of the choice of 1 and equal to the 8,-complex. In the case
of Il at ug = A, for example, N = @ x Q" and the set of indices II
consists of

(66)

t=1,....,n k, k=1,...,n—1; [{), t=1,...,n. (67.1)
Thus IT consists of 3n — 1 elements.
£ =wl,, asin (58.2), & =¢, ¢l =dc (67.2)

In terms of the standard chart (2',z,{) of N = Q x Q*

o izd O 8 0
- k—___ s s T
- —'s--izkﬁ—"‘-—+R— X z +R o7
o 27 o Cag TR Am=gmt

where R, is a small term depending on the CR structure of M and A.
The curvature appears in the expression of Ry. In this case we have

de* = %cﬁgg” AE°, (68.1)
and we choose ¢’s so that
CaatEXO A NE® = d(E7 A -+ AE), (68.2)

Going back to our problem of solving the correction equation, it so
happens that in each of our cases I to III, there is associated a chosen
X and our unknown u can be regarded as being in AP(X). Moreover,
the differential of the map u — Du + R(u) at an approximating solution
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up is equal to Dy. Therefore we now want to solve approximately the
correction equation in an unknown u:

Dyu=b (69)

for the error b = Dug + R(ug), which is in AY(X’), where ¢ = p+ 1. We
may use the a priori estimate method or explicit construction in terms of
an integral kernel to solve (69). We discuss here the method of the a priori
estimate.

Fix a Ly-norm on vector valued functions. We introduce an Ls-norm

in A7(X) by
1
llwl|* = 7 D lwneall?, (70)

and consider the Laplacian
Ax = Dx(Dx)" + (Dx)"Dx. (71)
We need an a priori estimate: For a suitable norm |||w|||
Q(w) = [|Dxwl* + [[(Dx) wl|* > [lwl|?, (72)

for w € AY(X), for which Q(w) is well defined and which satisfies a suitable
boundary condition. We then show that there is a unique solution w = wy
of the equation

Axw =b (73)

with the above boundary condition. It turns out that vy = (Dx)*wy is the
approximate solution of the correction equation.

The standard method originating in J.J. Kohn’s work [8] on O-
operators can be carried out in our general setting. We assume that ¢ > 1
and define a (¢ — 1)-form w, by

__1 : .
Wy = @_—fﬁzw“r"*qalﬁ PA AN -

Let x be a smooth function with compact support inside N. Then we find
the following (cf. [13]).

(75)Proposition. Let w be a section of AP(X) which is smooth on the
support of x. Then

IxDxw|? + Ix(Dx)*wl* = P¥ + PX + PX + PX + PX + F¥,
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where

PY== 3 IxXaws.slP,

AL

1 a0,
A= Gy, 2 I el

.....

1 R} R
+ = Z Y orer oo I
p'p‘\l -

,,,,, Xicq

+ E ZER(X Wiy gpys [X,\, c:)‘l Kz—l}wh--v)\p),

2 Z
— 2 aydp o1 Tp-1
{— "p:" Q(X XAw,\l‘\P. CI\AI."‘praI”IUP + C‘\l ‘\P wlﬂl"'ﬁ:-i)!

PYe Z%ﬁ[xmx,:]wa,wa),

Py = Zsﬁqx X, X2} o),

PX= -2§R(D" (D", xFw).

We expect that [|wl]| > C||lw||, where C may be as large as we want
by choosing sufficiently small N. Hence Py is a junk term. PY may be
regarded as a junk term, in view of PX. When we impose the Spencer
boundary condition, P converges to zero when x converges to the char-
acteristic functions of N. Therefore we have the following

(76) Proposition. Under the Spencer boundary condition,

IxDxwl||? + ||x(Dx)*w||* = PX + P} + PX + junk terms.

Let us consider case I on a strongly pseudoconvex M. In this case
N = M. Fix a smooth real-valued function R(z,z) such that its Taylor
series at the origin starts with a positive definite quadratic term in (z, z).
Assume that M is defined by

r=r19— R(z,z2) > 0. (77)
Then we find that

li)rcn PX > ¢(||w]*)? + junk terms, (78.1)
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where ||w||® is the Lo-norm of the restriction to the boundary. It is very
good so far. However, the trouble is the term P{. Namely, in view of (1)
P} = — R(ix*L(X,, X») Fw), w,)
+ ?R([‘p[X,,X:] Xg]w—\rwt!)
— §R(3‘.’2(}9["}(::1': 7{)_\] i = (ﬁ[Xa,-Xr:])‘)w,\, wc)
+ junk term.

(78.2)

Since we do not have any information on Fw, all we may hope for is to
eliminate the term containing Fw using nonnegative P} and PX. The way
to do this is to introduce the CR Hessian of a function f by

for X,Y € L. We then check easily that H/(X,Y) is a quadratic form on
L. We then find by (78.2) that
Py + P¥ = — R((iX*L(X, Xa)F + H¥ (X,, X»))ws, wo)

. (80)
+ junk terms,

We now apply integration by parts to P}. We consider the tangential part
of X,. Namely, we set

1
n=Xar, =X P Quw=8&- R (81.1)
1
Y= mﬁxm Wy = Qs Xs. (81.2)

Then we have
Xa=1nY +W,, TW,=0, Wyr=0. (81.3)
We then find after some calculation that
D IXWASI? = Y IXWRfI? + A(f) + B(f) + junk terms, ~ (82.1)
where
A(f) = R((XHL(Wa, Wa)F + HX (Wx, Wa))f, f),
B(f) = =ROA((Xx, [Xa, Q3] + 8(Xr, Xo)Q,%) f, f)-

We try to eliminate P}’ + P as expressed in (80) by using Y A(ua,..x,)-
However, two quadratic forms, £ and H, are too many to handle. Hence
we assume that R in (77) is so chosen so that

hL = H™ (82.2)
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for a scalar valued function h. We choose our x as a function of r in (77).
Then because of the Spencer boundary value problem

(H¥ (X, Xa)ws, we) =((x2) H" (Xq, Xa)w, w,)

82.3
+ junk terms. (823)

Since the generator X, of sections of L can be chosen arbitrarily, we may
consider the case where they form an orthonormal base with respect to L.
Then we find by (80) and (82) that modulo junk terms

PX + PX = =R((x*F + (x*)'h)wx, w) (83.1)

and
A(f) = (n = 2JR((CF + (P S, f). (83.2)

Since they are of the opposite sign when n > 2, we can manipulate the
formulae to cancel out P} + PX. We end up with the estimate

Q(w) 2 cln —2-q) (3 I1Xawl® + X IWawll? + v wl?) . (84)

The term || |y|'w||? comes from B(f) in (82.1). The factor n —2 — g
comes up because of the presence of 1/q! in (65) and w,, is of degree g — 1.
Therefore to make our idea work, we need condition (82.2). Unfortunately.
we could not find M satisfying the condition unless we assumed that our
CR manifold is embeddable. However, if we assume the embeddability,
there are a lot of them. For example, M C C™ and

R = R(a holomorphic function). (85)

Note that, since we had to eliminate PX + P}, we no longer have (78.1).

Since we do not have the necessary estimate to solve the correction
equation (69) for general M, we consider a submanifold M, C M with
an associated CR structure given by the approximating embedded CR
manifold associated to ug and satisfying condition (85). We now use 9y,
instead of 9y, in the correction equation so that we can find its approxi-
mating solution with estimate. We can now repeat this process. Since, in
our case, we obtain better approximating embedding at each stage, we use
the latest approximation in the correction equation. We thus construct
an approximating embedding u, defined on M, C M,_,. We have to take
care so that NM,, contains an open subset. In this way we find an embed-
ding. In our case ¢ = 1. Since we need n —2 — ¢ > 0 in (84), we need
n > 4.

In method II, Dy is a small deformation of 8. Hence we should obtain
a better estimate. In fact, P is not a problem in this case, because
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the principal parts of X, X, generate the whole tangent vector bundle
and we have the boundary estimate (78.1) where the constant c can be
chosen independent of o in (77). In handling P we have to introduce a
boundary integral, but its effect can be made arbitrarily small by choosing
a sufficiently small ry. However, the difficulty in method II comes from the
fact that the boundary of the smooth tubular neighborhood M x I, I =
[—1,0] has singularities. Also it is not clear what boundary condition
should be put on the boundary outside of M. Assume that M is an open
subset of a manifold M* defined by an inequality r > 0 for a function r
defined on M* with the condition dr # 0. Catlin considers the domain

M={(z,t) e M xI: —ea’r(z)* <t <0}, (86)

where €, o are positive parameters we choose later to be very small. Thus
M is a lens-like space with a very sharp edge. The regular part of the
boundary has two components: M’ = {t = 0} and M" = {t < 0}. It
turns out that the boundary condition which works is the standard Spencer
boundary condition on M’ and the dual Spencer boundary condition: (the
symbol of 8;:)v = 0 on M”. He also has to use weight in L2-norm to
control the disturbance coming from the edge in the boundary.

As for the weight we use the system developed by Hérmander (cf. [5]),
which fits very well with the estimate we need. Namely, when we have
a sequence of first order differential operators D: C*(EP) — C>=(EP*!)
for a sequence of vector bundles EP, p = 0.1,..., we pick real-valued
functions 1, ¢ and use the weight

e?*P¥  on C*(EP). (87.1)
For a weight e? we set .
llls = llez®v]l. (87.2)

Going back to case II, Catlin had to use the case:
eqb - E-—(n+2)r—4[n+2}' ‘d) =0 (88)

to make the estimate work. He uses a more sophisticated micro-local
analysis which allows him to consider the case of a more general Levi-
form. Still he needs at least 3 positive eigenvalues in the Levi-form, which
we would expect from the condition n > 4.

For case III we fix a positive definite quadratic form R(z,z,¢) and
consider the domain

M: r=ry— R(z,z,{) > 0. (89.1)
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Therefore we work on the manifold N = M x Q*. In view of (67.3) we
see that our case sort of includes @ as well as 8,. We should get a better
estimate than in cases I and II. However, the main difficulty in this case
comes from the requirement (62). To accommodate this we use the weight

as in (87) where
e _1-)1"-‘10 v l my
@) =@ (%2

for a suitable choice of m,, my. The intention is to prove, with the help of
the weight,
the continuity of [(|™®v for an @ > 0 (90)

for the solution v of (69) so that v = 0 when ¢ = 0.

Since our weight has singularity at { = 0, we always consider measur-
able w smooth where ¢ # 0. We call such w admissible. If w is admissible
and X is an admissible differential operator, Xw is defined as an admissi-
ble function which coincides with the standard one on the subspace ¢ # 0.
Let w be admissible and

lwlisgs IDxwliggsrs 1(Dx) wlle,-, < 00, (91.1)
where (Dy)* denotes the (naive) adjoint of Dy: A"} (X) — A?(X) with
the weighted metrics on A(X). We then set

Q(w) = |Dawll3,,, + (Dx) wlj,_,- (91.2)
We look for an estimate
Q(w) 2 cljwllg, (91.3)
for w satisfying the Spencer boundary condition. We consider a smooth
real-valued function x with support inside N N {¢ # 0}. We estimate

Qx(v) = lIxDavlig,,, + lIx(Dx) v}, (91.4)

and let x converge to the characteristic function of N. We can handle the
proof of our estimate as in case I. However, because of the presence of the
weight, we have to make some modifications in (75): For P} to PY we
have to replace “)” by “)g,,,”. P¢ is now

P} = = 2R(e™¥D*u, x*[D", ¥fu + (D", |t g
— ®([D*, Yy, [D*, X*Jt) o -
We also have a new term
}3%( = — RO Xo, [Xus Gas ]ty Uo)gos,s

+ (Ix[D*, #aullg,s1)* — (IX[D*, bas1)ttllonss)? (91.6)
+ 2R(2[D*, dalu, [D*, Y]u)g,,, -

(91.5)
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In view of (69) we consider the case a = q. Since * is now with respect to
the weighted L?-norm, we find

PX + PX > (Jlw],...)? = (m; + 1)(non negative) + junk term. (91.7)

Pa+1

We are thus forced to assume m; + 1 < 0. Actually we consider the case
m; = —1, (91.8)

which seems to fit in well in our set up. We find also that

PX > eim(D _ lwell?, + ) llw3,) + junk term,

(91.9)
m=mo+ (¢g+ 1)m,.

Unfortunately we do not have the estimate of [|wg||3 in the above. Hence
we have to go through the calculation for (82.1) with weight and use
B(f). Since we need |¢| ! instead of |y|~!, we also have to modify (81) to
accommodate the requirement. When we carry out the calculation along
the lines indicated above, we end up with

Q(w) 2e( D IXawll3,, + D IWawlly,, + D _(llwle,,,)? (92.1)

~ -1
+ (n = = 8¢ wllogsn)-

We thus have our estimate and the solution of the correction equation

under the assumption m > 0, n —m > 0, i.e.

n+(g+1)>mo=>q+1. (92.2)

To realize (90) we use mg as positive as we are allowed.

6. Construction of the embeddings

We now have to see that when we use the Moser-Nash procedure the
approximating solutions converge to a solution. For this we need a good
regularity theorem. We discuss here the method of using the a priori
estimate. We first recall how the solution of (73) is constructed. Denote
by H the completion with respect to the norm defined by Q(w) in (91.2)
of the space of admissible w satisfying (91.1) and the Spencer boundary
condition. Clearly Dyw, (Dx)*w are defined for w in H. For simplicity of

notation we set
Pw = (wa, B-f‘b(D;()'w) (931)

80 that for v,w € H

Q(v, w) = (D,‘/'U, wa)d'q-i—l + ((Dx)’v! (Dx)‘w)¢q—l

— (Pv, PW)gps- (93.2)
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For given b in (73) with finite ||b||s, the solution w = v of the equation
(73) is the unique v € H such that

Q(v,w) = (b,w)y, forallwe H (94.1)

(cf. [9]). Then the existence and uniqueness of the solution of the equation
(73) follows when we have the following estimate: For a constant ¢ > 0

Q(w) > cflwll3, (94.2)
for all w € H. And for the solution v we have the estimate
lolle, < c7Hiblle,- (94.3)

Now to obtain the regularity of the solution v we apply the following
equality: Let w € H be smooth on {¢ # 0}. Then for a tangential
admissible differential operator V of order 1 (with V* =V + Ry)

R(Pw,PV*Vw)g, .,
=|PVwl,, = I[P, V*]wll},,, +S(w),
S(w) =R(Pw, [P, V*], V]w)g,.,
+ R(PRyw, [P, V*|w)g,,,
— R(PVw, [P, Ry|w)g,.,
+ R([V, ¢g41)|Pw, PVw — [P, V']w)¢q+l,

(95.1)

provided the terms in the above are well-defined. This we check by calcu-
lation. In order that the terms in the above are in a form we can handle,
we have to use V' which is 0 mod. [{|. Apply the above when w = u is the
solution of the problem (94.1). It then follows that, when V*Vu is in H,

R(Pu, PV*Vu)y, ., = (Vb, Vu)y, + ([V, dalb, Vu)g,. (95.2)

Therefore

C&[I(V+[V) ¢a])b”ga (95 3)
>PVulZ,,, - SIVulZ, ~ [P.V*]ulls + Sl

When Vu € H, we can use our a priori estimate to ||PVul|Z . We see
(c — 8)||Vulls, on the right hand side. Taking § < c, we get the estimate
of |Vuls,, provided S(u) and |[[P, V*]u||3,,, do not cause trouble. |S(u)|
is no problem. Therefore this approach works only when [P, V*] is very
small mod. vector fields for which we already have the estimate.



VII. Pdes Associated to the CR Embedding Theorem 155

Note that we have the inside estimate of |([Xu by integration by
parts. Note also that we have the estimate of || X\vl|s,,, and |[Wiv|s,.,
(cf. (92.1)). Therefore, for V' with compact support in N, [P, V]u may
be regarded as very small in the above sense. Therefore our problem is to
find V as above such that the principal parts of [(|~1V, X, W, generate
the complex tangent vector bundle.

We first write down vector fields which are generated by the principal
part of Xy, Wy . Note that they, together with the principal part of Y,
generate the tangent bundle (cf. (81.2)). We find by calculation and (67.3)
that (cf. (81.1)) the following holds.

(96) Proposition. k,Y is a linear combination of X5, Wy modulo 0-th
order terms and very small terms, (a =k,n,k; k=1,...,n—1), where

Kk = Tk T+ EE‘Y[ﬁ}: Kn =" —Ym) K= T — TR (961)

This is a phenomena which is not present in methods I and II. This
means in effect that we may restrict our attention to a small neighborhood
of the subset {k, = 0} for the regularity.

We now find that it is enough to find a vector field V (with V = V)
outside of the span of the principal parts of [¢ | Xz, [¢|W> so that [P, V] is
very small (mod &, X, W,). After a long calculation we succeed when
our domain is such that R(2’,z,() in (89.1) is very special. Namely, we
assume now that

R(Z,2,¢) = az® + |2/ + bx(¢" + ¢*) + BIC" P + '], a>b>0 (97)

with a very large. In this case the vector field V we need is

1 i
V =(¢"]2 +2/¢'[2 + gaka) — (T - L

(I€"? +2I¢'1 + 9a )h«l( ) (98)
+ AW — pAW.

with suitable g, and p;.

In order to apply the above V in the way mentioned in (95), we have to
apply a mollifier to make it smooth up to the boundary. We also have to
modify it by changing the O-th order term to satisfy the Spencer boundary
condition. In this way we obtain the estimate of the first order derivatives
of u.

The estimate of the higher order derivatives can be obtained by the
similar method and induction. Note that we started with V' of homogene-
ity > 1 in ¢. When we differentiate it we lose one degree of homogeneity.
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This suggests we consider

N w)?* =Y |lI¢fYn - Yo, - (99.1)

k<l
We then prove that for the solution v of (94.1)
N(l,v) < eN(,b). (99.2)

It is remarkable that in all of our approach we have to use special
domains which are capable of providing the necessary estimates.
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CHAPTER VIII

0 and 8, Problems on Nonsmooth Domains

Joachim Michel and Mei-Chi Shaw*

Introduction

In this survey article we want to describe our method for constructing
barriers on weakly pseudoconvex domains with smooth boundaries and
give some applications to nonsmooth pseudoconvex domains. We also
consider annuli of a very general type which are difference sets of a large
piecewise smooth pseudoconvex domain with a union of piecewise smooth
pseudoconvex domains in the interior. We do not impose any further
conditions on the Levi form. For more details on the proofs, see the
papers [24], [27], [28], [29].

In the following we shall use some notions concerning the integral for-
mula method and in particular the Koppelman formula calculus. By a
generating form or a barrier we understand a differential form of bidegree
(1,0) which will be plugged into integral kernels in order to obtain integral
representation formulae. These barriers are very often obtained from the
decomposition of a given function ®(z, () of the kind

®(z2,¢) = Z Pi(z,()(z = G)

by

= P,(2,()
w(z,() = d¢;.
; ®(z,¢)

This makes sense for a given domain Q if one has (for example in the
pseudoconvex case) that ®(z,¢) # 0 if ¢ € bQ) and z € Q. The function &
and its generalizations will be called support functions and the set

{2 € U[@Q)I®(z,¢) = 0}

*Partially supported by NSF grant DMS 98-01091.
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a supporting hypersurface in the boundary point (. Here U denotes a
neighborhood of the domain. In the present article we need to strongly
generalize these notions.

There have always been attempts to generalize the Cauchy integral
formula in one complex variable to higher dimensions. The generating
form of the Cauchy integral formula is

¢
=%
Here ¢ and z vary in C with ¢ # 2. w depends holomorphically on both
variables. Martinelli and Bochner have given independently a generaliza-
tion for functions in C", where the generating form is

_3)d¢
(0= uc P

This is the first example of a barrier in C". Later this was generalized to
integral formula representations for (0, ¢) differential forms in C". Obvi-
ously wyg has lost its holomorphic properties when n > 2. Nevertheless the
corresponding integral formula has some applications to the 8-problem, es-
pecially when one wants to solve the d-equation for compactly supported
differential forms.

In the case of a strictly pseudoconvex domain, a breakthrough was
given by Henkin and Ramirez when they constructed new barriers to which
the Koppelman formulae were applied. The corresponding integral rep-
resentations were studied independently by Henkin and Lieb in order to
prove uniform and Holder estimates for the d-equation.

Let @ CC C” be a strictly pseudoconvex domain, U = U(bS2) a neigh-
borhood of the boundary and r € C*(U) a real-valued function such that
QNU = {z € Ulr(z) < 0} and dr # 0 if z € bQ2. In the following we shall
mainly consider the regularity class C*°. Henkin and Ramirez have con-
structed a function ®(z, ¢) of class C*, where ( varies in a neighborhood
U' c U of b2 and z in U’ U Q with the following properties.

w =

(i) ®(-,¢) is holomorphic with respect to z;
(ii) there exists a positive constant ¢ such that
19(2,0)] = [Im®(z, ()] + €|¢ — 2[;

(iii) there exist C*°-smooth functions P, P, ..., P,, which are holomor-
phic with respect to the z-variable, such that

(2,¢) = ZP 2,0)(G — z);

i=1
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(iv) locally near each boundary point z, r(¢) and Im®(z, {) can serve as
a part of a coordinate system. The same is true if the role of z and
¢ is interchanged.

In particular these properties show that for (p € b2
{z € QUU’'|Re®(z2, () = 0}

is a hypersurface with pluriharmonic defining function, which touches the
boundary in ( of second order from the exterior (here U’ denotes a suffi-
ciently small neighborbood of ().

Because of the good estimates from below and (iv), one can show
that ® gives rise to a continuous linear integral operator 7, solving the
f-equation which maps the space of bounded (0, ¢) forms into the space
of 3-Holder continuous (0,¢ — 1) forms.

The essential barrier to be inserted into the integral kernels of T}, is

P(z,¢)d¢
®(z,¢)
One can find more details of these classical constructions in [31]. One

can easily find a support function for convex domains. Let r be a convex
defining function. Set

w(z,) =

Z, or
() = g 72 (G = 2)-

Then {z € UU Q|Re®(z,{o) = 0} NQ = 0 if {; € bQ. It is easy to
construct analogous solution operators T,. But in general T, will not allow
good estimates and the solutions will not be regular up to the boundary.
It is still open if on such domains there exist solution operators with
uniform estimates. For convex domains of finite type, there is a method
to overcome the problems recently found by Cumenge [5].

The above given barrier for convex domains, with w; = %(C )/®, al-
lows the estimate

lw(z, Q)| < C8(¢)7,

where 6 is the boundary distance function. The constant C is indepen-
dent of z € Q and ¢ € U\ . Similar estimates with higher powers of
6~ hold for the derivatives of w. The next generalization would be the
construction of support functions on weakly pseudoconvex domains. But
in [18] it was shown that there exist weakly pseudoconvex domains with
real-analytic boundary, which do not admit supporting complex hyper-
surfaces. A method to overcome this problem was hidden in papers of
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Lieb/Range [19] and Aizenberg/Dautov (1] on strictly pseudoconvex do-
mains. The above authors gave modified solution operators T}, where the
terms containing the Henkin and Ramirez barrier w are of the form

ngf(C) Awy Aw A (5;1,00}‘ A (Bew)! A (O wp)? L.
s

Here S = Q \ Q, with a larger domain Q@ C Q. E denotes a linear
extension operator which respects C*-norms, with suppE f C Qo.

_ With these integral operators it was possible to show Ck-estimates for
T;. Later on this was generalized in [23] and [25] to piecewise strictly
pseudoconvex domains. In all these cases the main advantage of T, is
given by the presence of the term Ef. Let f be a C*-smooth d-closed
(0,q) form on Q. Then JEf vanishes of order k — 1 on Q and fulfills the
inequality

BEf| < C5(Q)*".

So if we could construct similar barriers in more general situations and if &
were very large, then w and its derivatives could be allowed to be bounded
by high powers of §(¢)~1. This would give rise to solution operators with
C*-estimates but with a considerable loss of regularity. Chaumat/Chollet
[3], [4] have used these ideas in order to obtain regularity results for so-
called H-s-convex domains. Here the loss of regularity is still connected
with geometrical properties of the domains.

Now let Q) be a weakly pseudoconvex domain with smooth boundary.
The first author has constructed a barrier [24]

?L‘(Z, C) = Z wi(zt C}dCh
=]

which is holomorphic in the z-variable with 1 = "7 wi(2, ¢)({; — 2:). The
coefficients w; are obtained by solving the decomposition problem for 1,
which is indicated by the last formula. For any fixed ¢ € C\ Q, wy(-,¢) is
smooth up to the boundary with respect to z € Q. The blowing-up, when
¢ approaches the boundary, is controlled by powers of §(¢)~.

Therefore this barrier gives rise to solution operators which map
Coa) (©2) N ker(d) into (‘g’lq_l)(ﬁ). Once the barriers are constructed in
the smooth case one can easily give integral formula representations and
solution operators on real transversal intersections of such domains. This
problem is hardly accessible by using the weighted Neumann problem as in
[15]. However, we have to stress here that the construction of the barrier
was done by merging the ideas of Skoda [40] and Kohn [15] and by intro-
ducing the so-called £-complex. The L-complex generalizes the Dolbeault
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complex to vector valued forms. Here we replace the complex Laplacian
by a self-adjoint operator

A= Lol + LIL;.
The definition of the £-complex
L,: W — Wt

for 0 < g < n, is given in sections 1 and 2. Here £, denotes a vector
valued first order differential operator where the principal part is 8. W9
are Hilbert spaces. Because of £, o £, = 0 we can use the analogy with
the Dolbeault complex. By treating ' = A~! in an analogous way to the
0-Neumann operator we can look for “canonical” solutions LN a of the

equation
'COPG = q,

if £L;a = 0. The space W is constructed in such a way that the n+1-tuple
a = (0,...,0,1) is an element. Then 3 = L3N a = (B,...,0,) gives a
solution of the decomposition problem

1= Z;@i(za C)(Cr. - Zi)
i=1

where the coefficients are holomorphic with respect to z. In this approach
much advantage has been taken from the analogy between the complex
Laplacian and A. Also in the £-complex there are built-in weight functions
coming from the papers of Kohn and Skoda.

Now let ) be a strictly pseudoconcave domain. That means that

Q:QI\GQ!

where Q; CC Q; are strictly pseudoconvex domains. In this situation Q,
has to be treated as the exterior of the annulus . For b§; we can take
the support function ®, of Henkin and Ramirez. But for bQ2; we have to
exchange the roles played by z and ¢, and ®*(z,¢) = ®((, 2) is now an
appropriate function for a barrier.

This is no longer the case if ), is merely a weakly pseudoconvex do-
main. Let w, be the barrier of Q; as it was constructed in [24]. The
corresponding barrier w} with z and ¢ interchanged is C*-smooth with
respect to ( € (. On the other hand it will blow up if z € Q approaches
bQ,. In the corresponding solution operator the barrier w} and its deriva-
tives are multiplied by OE f(¢) and the domain of integration with respect
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to ¢ is Q. So regularity will meet regularity and there is no need for
compensation. On the other hand, the resulting solutions will blow up at
b,.

Therefore one has to solve a completely different division problem in
the weakly pseudoconcave case. From the above considerations it follows
that one needs a barrier w(z, {), which is, before interchanging 2z and (,
holomorphic with respect to z € (,, smooth for { € Q; \ Q, and which
blows up in a controlled way if z approaches b{);. The latter assertion
means that w and its derivatives should be bounded from above by powers
of d2(2)~1. We shall denote this latter barrier, after having interchanged
¢ and 2, by w_.

Thus for a weakly pseudoconvex smooth boundary we should deal
with two kinds of barriers: w, and w_. w_ is holomorphic with respect
to ¢, which is varying in the pseudoconvex domain. It is regular up to
the boundary with respect to z, which is varying in the exterior of the
pseudoconvex domain, and blows up if ¢ approaches the boundary.

The construction of w_ is explained in more detail in section 2 and
completely in [27]. It is again based on the £-complex, where an additional
plurisubharmonic weight function is added. This function comes from a
special bounded plurisubharmonic exhaustion function and was given by
Diederich-Fornaess in [7].

Once the two barriers of a weakly pseudoconvex domain are at our
disposal, we can solve numerous problems by applying the integral formula
method. In particular we can give smooth solutions for the d-equation on
annuli

Q=Q1\ﬁz,

with Q, CC 4, where Q is the intersection of finitely many pseudoconvex
domains and ), is a finite union of intersections of pseudoconvex domains.
Details are given in [29].

Rosay [33] was the first to construct smooth solutions for the Oj-
equation on the boundary of a weakly pseudoconvex domain. Henkin
considered the local problem on strictly pseudoconvex boundaries in [12].
Let Q be a strictly pseudoconvex domain and h a holomorphic func-
tion on an open set UU, which intersects the boundary of 2. Set M =
{z € bQ2|Reh(z) > 0}. If M is a smooth and compact manifold, then one
can solve

gbu = f

for a 9y-closed (0, q) form fon M, if 1 < g <n—3. For g = n— 2, Henkin
needs an additional condition on polynomial convexity, which is always
satisfied if M is sufficiently small.
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We know already how to solve the 0-equation on a weakly pseudocon-
cave annulus. The global problem for 8, on M = b2 could be looked at as
a limit case for 8, when the two boundary pieces of the annulus converge
to M. This indicates why in the 8, problem for strictly pseudoconvex
boundaries the support function of Henkin and Ramirez ®(z,() appears
together with ®((, z), as in the annulus case. Analytically the above de-
scribed shrinking process is represented by the Bochner-Martinelli jump
formula.

In [28] we generalize this to the case where bQ) is a smooth weakly
pseudoconvex boundary and M is given as above by the real part of a
holomorphic function. By extending the 8y-closed (0, ¢) form f, 1 < ¢ <
n — 2, in an appropriate way to the ambient space, we can show the
solvability of the dy-equation with a solution which is C*-smooth up to
the boundary.

We mention here that we could get rid of the condition on polynomial
convexity for ¢ = n—2. This is new even in the strictly pseudoconvex case.
The proof relies on the construction of an Oka map and on the existence
of solution operators on intersections of pseudoconvex domains.

The solution operators on M are given by the barriers w, and w_.
The integration of critical kernels containing w, and w_ takes place on
certain 2n-dimensional wedges. The compensation of the blowing-up of
the kernels is due to the presence of the factor OF f, which vanishes of
high order. Here Ef denotes an extension of f to the ambient space.

One even can show homotopy formulae for nonclosed (0, ¢) forms f,
g<n-3,

[ =0To(f) + Tg+1(8ef).

More details are given in section 3. Rosay has shown that there are no
such formulas possible for ¢ = n — 2. By using homotopy formulae, Web-
ster has given in [44], [45] a considerable simplification and improvement
of the proof of the Kuranishi embedding theorem for abstract strictly
pseudoconvex Cauchy-Riemann structures. See also [20] and [21] in this
context where his results have been improved. One of our motivation
for studying more general situations is the hope of obtaining embedding
results for weakly pseudoconvex structures in the future.

Up to now a direct solution operator for 9, does not exist if one replaces
the hypersurface {Reh = 0} by a general Levi-flat one. We have treated
this problem in [29] in all details and in section 4 with some indications by
solving several O-equations on auxiliary pseudoconvex-concave domains.
Here we show the solvability of the J-equation in the C* class up to the
boundary of an open submanifold M of a weakly pseudoconvex boundary.
But now the boundary of M is given by k Levi flat hypersurfaces and f
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isa (0,q) form, with 1 <g<n-k—2.

A counterexample shows that in general one cannot solve for ¢ >
n—1—k. So even for k = 1 the situation, where M is given by {Reh = 0}
with a holomorphic function A, is much more special than the general
Levi-flat case.

1. The first barrier

The content of this section has been published in [24]. We describe it
here for the convenience of the reader. Let 2 be a bounded pseudoconvex
domain in C" with C*°-smooth boundary and ¢ a plurisubharmonic func-
tion on Q2. We denote by Lf,,q(Q, ) the weighted L?-space in the sense of

Hérmander.
Let ¢ € Q be a fixed point and ¢ > 0 be a fixed real parameter. Set

for 2z € Q)
{pl(zsgrt) = (1 + t)(n F l)log ”( - 2“21

992(2‘ 4: t) = ‘Pl(z: C;t) + log “C = 2"2'

Let
9: L3 o(Q, 1) = Lj 441 (2, 91),

for i = 1,2, be the densely defined 9-operator and
81 Ly 011 (R i) = L3 ()

its adjoint. The domains of definition do not depend on (, z,t.
We set
Hf = Lg,q(n! ‘Pl)n!

Hj = Lg,q(‘Q? ‘102)!
W =H?x H .

. {Hi‘ — Hj
| (e1s- - ran) = VIFEX (G — z)ai,
Wa — Wa+l
e {(a, b) — (Ba, Ta — Bb),

where a = (ay,...,a,) € HY, b€ H{ ' and 8a = (day,...,0a,). L, is a
densely defined closed operator. These operators define what we shall call
the L-complex. We have

.Cq+1 o Eq =0.
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The Hilbert space adjoint of £, is given by

. | Wt 5 We
) (a,b) — (@'a+T*b,8'D).

The domains of definition are again independent of the parameters.
Therefore the £L-complex has similar properties to the weighted d-complex
of Kohn [15]. Finally we set

A= Loly+ LIL,,
with
domA = {¥ € dom(£L;) Ndom(Lg)|L,¥ € dom(L]), LoV € dom(Lyg)}.

The weight functions are chosen in order to give basic estimates for
A. In particular it follows from them that A is bijective from its domain
of definition onto W!. We denote the inverse operator by N¢¢ = N in
analogy to the Neumann operator. NV will be bounded and self-adjoint.

The main idea of the above construction is the following. Let
a = (0,0,...,0,y/1+¢t) € W' Obviously L& = 0. Then LN 0 =
(wy,wy, . .., w,, 0) = B € WP solves

50,3 = (x.

This means that 8, (wy,ws,...,w,) = 0 and

Y wilG—z) =1
i=1

Proceeding like in [15] we can give Sobolev estimates with respect to z.
The problem is to control the dependence on (, because in the integral
formulas at least first derivatives with respect to ¢ occur.

Now we shall roughly describe how this has to be done. Firstly, by
combining the estimates of Skoda [40] and Kohn [15] one obtains the basic
estimate

Q(2,®) > |||,
for & € dom £, Ndom £§. Here Q denotes the quadratic form
Q(®, V) = (L3®, L3¥) + (£19,£,17),

for &, U € dom £, Ndom L§. If we denote s-Sobolev norms with respect
to z by || . ||« we obtain, by imitating Kohn’s proof, the following theorem.
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Here U denotes a fixed neighborhood of Q and § the boundary distance
function.

Theorem 1. There ezists an increasing sequence 0 < Ko < Ky < ++- of
real numbers, such that for every smooth mapping a: U\ Q — W' and
every nonnegative integer s we have the estimates

IWeaal,Oll < Sbla )l

For LN ,a similar estimates hold.

In order to control the dependence on ¢ one has to make use of the fact
that our solution of the decomposition problem is given by the canonical
solution of a Neumann-like problem. Thus by varying ¢ one can eventually
control the necessary derivatives with respect to (. We do not give the

details here.
From these considerations one obtains the following.

Theorem 2. For each positive integer r there erists an increasing se-
quence 0 < tp < t; < --- of real numbers and a C*-smooth map
w: QO x (U\ Q) — C*, such that

n
3zw(z| () = 01 Z 'w"(Z, Ct)(CI = 2;) =1
i=1
For any differentiation D¢ of order a < r with respect to ¢ and for all s
there exists a constant c(s,r) with

c(s,r)

8(¢)

| DZw(-, Q) <

To give an idea how the integral formula method works we will shortly
describe the construction of the homotopy formula for a smooth weakly
pseudoconvex domain. Let

lI¢ — =|?
wp = ———
T
be the Martinelli-Bochner barrier and let E: C%(Q) — C%(0) be a Seeley
extension operator (cf. [19], [35]). Let Ag; be the standard simplex in R?

and Ag, A, its corners. Set R = U \ 2. We define a form depending on
parameters (Ag, A1) € Ag; by

n = Aowp + Mw.
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Here we identified w with the form Y w;d(;. For ¢ =0,1,...,n set, with
a certain constant cp g,

Dng(2,6,2) = cagn A (B¢ + da)n)" 47 A (9:m)".
Let f € ng(ﬁ). We set

Ry(f) = fR | (EBf —BEf) ADpgls.G, ),

L) = [ (BBf=BEN)ADaarsls:6 N~ [ EfADagus(a6,)
Rx Ao Ux&Ap
The last term is the Martinelli-Bochner integral. EOf — OF vanishes
of infinitely high order on 2, so that all integrals are well defined. The
holomorphy of w in 2z implies the vanishing of R, if ¢ > 0.
An easy calculation by using the well-known Koppelman formula

(5‘: o2 di)Dﬂ.Q = (-l)q‘ézpn,q‘—l

gives the following.

Theorem 3. Let Q) be a pseudoconvex domain with smooth boundary.
Then there exist for ¢ = 0,1,...,n linear integral operators Ry, Ty, with
R,=0ifg >0, Rp: C®(Q) - C=(Q) N O(Q), T,: C&(Q) — C_, (D),
such that for f € Cgt‘;(ﬁ) the following homotopy formula holds:

f = Ry(f) + 0To(f) + T2 (31).

An analogous formula can be shown for the transversal intersection of
finitely many such domains. If f is d-closed, then T,(f) yields a smooth
solution of the -equation. If f depends smoothly on some parameters,
then T},(f) does the same.

2. The second barrier

The detailed proofs of this section are described in [27]. Let & C C"
be a bounded pseudoconvex domain with defining function p of class CX,
2 < K < oo. Let ¥ > 1 be a real number such that p = —(—p)¥¥
is a strictly plurisubharmonic exhaustion function on Q (cf. [7]). For a

bounded open set 2° D ©, we obtain for S = 01"\ Q the following theorem.
Theorem 4. Let k be a nonnegative integer and t, = [2vmax(4 +
3k, 221)+1). Then there ezists a C*¥ map w* = (wk,...,wk): QxS — Cn
with the following properties:
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() wh(-€) is holomorphic for all ¢ € § and for (2,¢) € 2 x § one has
Sum?=1wf(2: NG —z)=1;

(ii)  there ezists a constant C(k) such that for all I, with |I| < k, and
for all( € S and every z € )

|D{w*(z,¢)| < C(k)6(z)~GEA3+ 1) /v+2m]

([a] denotes the largest integer 7 < a and Dé a derivative with respect to
¢ of order |I.)

Remark. Almost in every step of the proof of Theorem 4 one could slightly
improve the regularity of the barrier. But it seems to us that in our
approach in order to have a C*-smooth barrier function w*, one always
has to compensate with a growth of w(, ) of asymptotic order k*v. But
compare the preprint of Thilliez [42] where a different method is given. In
[27] we applied w* to the & problem on a weakly pseudoconcave annulus.
More applications will be given in section 4.

In order to prove Theorem 4 we use the L-complex defined in [24]
for a C*°-smooth boundary, but now the weight functions have to be
modified. In [24] we constructed a barrier function w(z, () where w(-, ()
is holomorphic and smooth up to the boundary for ¢ ¢ Q and where C*
norms of w(-, ¢) on  blow up to some order if ¢ approaches the boundary.
For solving interesting d-problems on annuli or for 8, one needs a barrier
function which is smooth up to the boundary in the (-variable and where
one has to compensate for this with a certain growth with respect to the
variable z € Q. The proof in [24] was modeled in some aspects after
Kohn's original proof in [15]. In the present section, however, we were
forced to apply a completely different method. One step in the proof was
inspired by a paper of Berndtsson [2].

Let us sketch some details of the proof of T}georem 4. Let a =

P
K
tion ¢ we denote by Lev(y) its complex Hessian, i.e., its Levi form. We
set 1 := — log(—p). Since

(ay,...,a,) € C*. Then we set (Ip,a) = > ., o;. For a func-

[(9p, @) |
P2
® is strictly plurisubharmonic on Q. Let t > 0, 7 > 0 and { € C*\ 2 be
parameters. We define for z € 2
e1(2, 6,6, 7) = (1 +t)(n — 1)log |¢ — 22 + t|z|? + (5t% + T)v(2),
p2(2,6,t,7) := p1(2, (., 7) + log |C — 2|2,

Lev(¥)le] = _ip Lev(p)la] +
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In order to simplify the notations, we shall often drop z,  and t. However,
if we drop T we always mean the corresponding term for 7 = 0. For e > 0
we set Q = {z € Q| p(z) < —€}. So for € sufficiently small, Q is a strictly
pseudoconvex domain of class C¥.

For i = 1,2 and € > 0 let L%(Q, ;) denote the Hilbert space of
functions on Q, which are square integrable with respect to the measure
e ¥'dV (dV denotes the Lebesque measure on C"). We denote the spaces
of differential forms of bidegree (p,q) by Lﬁrq(Qe,fp,-), p,q € Ng. The
respective scalar products are denoted by (f, g)ict.r-

Now we insert these weight functions into the £-complex. For the first
barrier we supposed that ¢ ¢ Q. This is no longer possible for the second
barrier. Here we have to study the function spaces over 2, for € positive.

HIE = (B3o(Quon)]", HES=I3,(Qups), Wi = HES x H™,

with H;, = {0},¢>0,(€C"\Q,¢t>0,7>0,€¢>0.

Let 9: L3 (e, i) — L} 411(Q, ¢:) be the maximal weak extension of
the 0 operator. Note that dom(9), the domain of definition of 8, does not
depend on %, (,t and 7. Moreover we set

T qu( _— Hq!‘
. al! :an) =y 1+t Z;— G’u

e W;},c — W1(_;+1,e
' (a,b) — (Oa,Ta — 0b),

with 8a = (Bay,...,da,), a € H{ N [dom(d)]", b € H{,"* N dom(d).
Denote by 8. the adjoint of @ in Loq e i) and by L% the adjoint
of £ ,. For 7 = 0 we shall drop 7.

[ W$+ le Wq £
(a,b) — (B.a + T*b,—B. D).

Let ® = (a,b), ¥ = (a/, ) be elements of W3¢. Then we denote by

n

(@, V)etr = 3 (i, a1t + (6,8 )2etr

the scalar product and by ||®||¢:- the norm of . For &, ¥ € dom(£5 )N
dom(Ly%) we set

Q:(®,¥) = (Lo ®, £55 W) et + (L5, D, L1, ¥)c s
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and for @ € {¥ € dom(£f,) N dom(L57)| £1,¥ € dom(£37), L5o¥ €
dom(L§,)}
ASD = L, L350 + L1545, @,

At is a closed positive self-adjoint operator.
For ® = (a,b) let

0z, \0z,'0z)’ 0z \0% ),y T —p

,,,,

By the same method as in section 2 one obtains the following basic esti-
mates.

Proposition 1. Let ® € dom(£f,) Ndom(Ly;). Then P® € W2 and
6%

= € W,rl",f =1,2,...,n. More precisely we have
¢

€ 2 2 2 0% ,
(2, 9) 2 t®llc,, + (58" + PRI, + I 5o lleer

Corollary 1. AS: dom(AS) — W€ is bijective and

(A9, D)etr 2 tID|Z, -

Therefore we can define a bounded self-adjoint operator
NE: = (AS)™!: Whe - dom(AL) € Whe

Analogously to the Neumann operator N for 0, we get for a € W}<, with
L5 ,a = 0, that a solution of U := L Nfa is

L5 U = a.

When choosing a = (0,0,...,0,v/1 + t), this solves a decomposition prob-
lem. The additional term ||P®||? in Proposition 1 makes it possible to
compare Q¢(®, ®) for 7 = 0 with the same term for some positive 7. This
is necessary for the following reasons. We intend to construct solutions of
the decomposition problem which are holomorphic with respect to the z
variable. They are allowed to blow up when 2 approaches the boundary.
If we keep the other parameters fixed, then the rate of growth is controlled
by 7. A larger 7 results in a larger growth. If we consider a solution for
say 7 = 0 and differentiate it with respect to ¢, then it will fall out of
the defined function space or at least we will lose uniform control with
respect to { and e. Moreover, if we want to control higher derivatives
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we are obliged to apply N, defined with respect to the same parameters,
again and again to the derivatives. But these derivatives are no longer ele-
ments of the original space. This is somewhat illuminated by the following
formulae. We have

AN =1id.

This implies that if D;A denotes a first order differentiation applied to the
coefficients of A, then we have

Dl;N — —N(DCA]N+ND(

D¢A is essentially given by -%, with coefficients which increase the growth.
For @ = (0,0,...,y/1+t) we are interested in controlling L3N a. The
main problem here is to control the derivatives of Na. But then we
obtain

D¢(Na) = —N(D;A)(Na).

So in order to control N applied to (D;A)(Na), by estimates which are
uniform in ¢ and €, we need the operator N” = N, ¢, to be also continuous
on the space where (D¢A)(Na) is living.

We learned about this kind of continuity on a second space of an op-
erator, which has been defined elsewhere, from a paper of Berndtsson [2].
The above described considerations, however, are hidden behind technical
lemmas in our original paper on this subject.

Our next goal is to compare Q¢(= Qf), A€, N¢ with Q¢ AS and N}
for 7 > 0. Occurring constants should be 1ndependent of ¢ and €. Clearly
one has L5, = L. Let a € L3 ,(Q, 1) N dom(d,) and let ¥ denote the

formal adjoint of d. Since p;(z,(,t,7) = v1(2,¢,t,0) + 79 (z) one gets
B = ePlestn (e nilateny) = Fg 4 73022
—p

Therefore we have, for ¢ = (a,b) € dom(Lg?),
Lyd = L5+ TPD.

Starting with Proposition 1, one finally arrives at the following lemma
by a delicate and long induction procedure in which commutators of the
L-operators with differentiations arise.

Lemma 1. Letk>0,t>4,t> 7 > 6vk. Let ® € W< such that for all
J, with |J| < k, DIL{LG P € W', DILS® € W2, Then for all J, with

|| < k, D{® € dom(£L§)Ndom(Ly*), L5 DI € dom(Ls), D ?;f € Wi,
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PD]® € W<. Moreover for I with |I| =k

— )| DI&|2, , + (52 + 7 — 47%)||[PD{S|Z, - + | D¢ a_Hm

< Z Z [||DL‘C€‘C5 645“‘ t,7—2v(p+3r)

r=0 p+|L|<k-r
p=0

#+ I1D€£§¢”it,r—‘2u(p+3ﬂ .

The coefficients of the L-operators are explicitly known. More twists
give
Lemma 2. Let k>0, t >4, t > 7 > 2v(1+3k). Let & € W< such that
for all J, with |J| < k, DILLy‘® € W<, D{Li® € W2¢. Then for all
I, with |I| =k, Dfﬁ;‘,‘sbe WO¢ and

DLy oI S D [HDé‘cfca‘éne.t.f_zvmarj
pHiL|<k-r
p20

L
+ HDg Ci@|lg,t.r—2v(l+3r) .

This result implies easily

Lemma 3. Let k>0, t > 4, t > 2v(1 + 3k). Let a = (0,v/1+1) and
(we,0) = LyN¢a. Then there ezists a constant C(t,, k), not depending
one and(, such that for allI and, with|I| =K' <k, t 27 2 2u(1+3k"),

HDéw‘]]c‘t‘., = C(t, T k' )Ha“ﬁ,t,‘r-‘hr[l—l-3k’}1

and D{w*(z,() is continuous for (2, C) € x (U\Q).

Since £§(w*,0) = (0,v1+1 (ws,--- ,w) is holomorphic with
respect to the z varxable and sat;sﬁes

Zw 2,0G-z)=1

i=1

forze Q¢and ( € U\ Q.
If the L2-estimates are transformed into pointwise estimates by apply-
ing Cauchy inequalities one obtains Theorem 4.
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3. The 0,-problem on submanifolds of pseudoconvex boundaries

The results of this section appeared in [28]. As a first application of
the two barriers, we shall construct a homotopy formula for the tangential
Cauchy-Riemann operator 3, on an open domain of the boundary of a
weakly pseudoconvex domain. The homotopy operators will be given by
explicit integral formulae. Here integration takes place on some wedge-
like subsets of the ambient space. In order to do this we are obliged to
extend classes [f] of forms on the submanifold to differential forms E[f]
of C". We have to assume high regularity of f in order to make sure
that E[0f] — OE[f] vanishes of very high order on the submanifold. In
particular, if the class [f] is Op-closed, then OE[f] will vanish there. The
integral kernels will contain terms coming from our barriers and which
blow up in the edges of the wedges. The geometry of the wedges and the
vanishing of E[8f] — OE[f], however, will guarantee the existence of the
integral operators. But the loss of regularity is considerable and there
is no explicit control on it. So our results work most naturally in the
C>-category.

After the description of the extension problem we give the definitions of
the integral operators and the geometric situation. Finally we mention the
case of (0, n —2) forms, which is somewhat special because of a disturbing
term in the homotopy formula. That this term actually vanishes can
be shown by solving a d-equation on piecewise smooth weakly pseudo-
convex domains as described in [28]. Then this solvability gives rise to
a holomorphic approximation result by using an Oka map. Finally the
holomorphic approximation replaces the polynomial convexity which was
needed in the strictly pseudoconvex case by Henkin (see below).

The first results will be mainly formulated in the C*-class with finite
k. Now a standard regularization gives the solvability of the J,-equation
with solutions, which are C*°-smooth up to the boundary.

Solutions for the dj-equation in the strictly pseudoconvex case have
been given by Henkin [12] and Webster [44]. Ma and Michel [12, 20] have
given the optimal C*-estimates for strictly pseudoconvex submanifolds of
the above type. LP-estimates were shown by Shaw [37].

For M = bQ), where Q is weakly pseudoconvex, the existence of C*
solutions has been shown by Rosay [33]. Local solvability for 9, on weakly
pseudoconvex boundaries of finite type has been studied by Shaw [38,39).
C*-estimates for open submanifolds of the boundary of complex pseudo-
ellipsoids were given by K. Schaal [34].

We want to apply the integral formula approach to give homotopy for-
mulae for certain open submanifolds of 2. In order to do this we need two
barrier maps wy = (W4+,1,.-., W4 ) and w_ = (w_y,...,w_,), depending

L]
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on z,{ € C™ and having values in C", such that 3. Wei(2,0)(G—2z) = 1.
Onehasz€ Q, ( ¢ Qforw,, 2 ¢ Q, ¢ € Qforw_, and G, w, = 0,Fw_ =

0. If ¢ approaches b2, ws blows up of some finite order in terms of the
boundary distance §(¢). Weak information about the derivatives of wy
will be enough to show our results. We use an integral formulae method,
which was developed for 8 and later for 0 by Lieb and Range [19], Peters
[30], Chaumat and Chollet (3,4], Michel [22,23] Michel and Perotti [25]
and Ma and Michel [20], and which we generalize here.

The domain of integration will always contain some simplices, which
are parametrized by the variable A\. The starting point is the well-known
Bochner-Martinelli-Koppelman integral representation formula for differ-
ential forms. Here the range of ) is a single point. By passing over to
more complicated Stokes chains with higher dimensional ranges for A using
Stokes formula, we obtain an integral representation formula which can
be used to solve the J3-equation on M. In our case there are no barriers
with good regularity properties up to the boundary in both variables as
in the strictly pseudoconvex case. Therefore in order to make the calcula-
tions work we have to multiply the kernels Dy, 4(z, ¢, A), which explode if
¢ approaches the boundary of 2, by the damping factor dE[f] — E(Ds[f]).
This will lead to linear operators [T,([f])] and [T,+1(0s[f])] satisfying the
following homotopy formula

(] = BelT, (D] + [Tys2 (Bl 1]
Therefore if [f] is O5-closed we obtain solutions for the 8;-equation.

1. Extension of tangential forms

Let Q € C", n > 2, be a bounded pseudoconvex domain given by a
C> defining function p: U — R, where U D Q is an open neighborhood
of Q, such that dp|sn # 0 and

Q= {zelU|p(z) <0}.

Let h be a holomorphic function on an open set #; C U such that for
H := {z € U;|Reh(z) = 0} we have the following properties:

i) on U, there exists a Hefer decomposition
- h(z) = Zh 2,0)(G - =),
i=1

with h; holomorphic on U; x Uj.
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ii) dReh # 0 on H, dReh Adp # 0 on HNbQ; H is a relatively closed
real hypersurface of U which decomposes U into 2 connected parts
U+r={z € Ullﬁeh ) > 0} and U~ = U\ {z € Uy|Reh(z) > 0}.
Moreover M = {z € bQQ|Reh(z) > 0} is a connected hypersurface
with boundary.

By shrinking the neighborhoods a little bit, obviously one can assume
that M, := {z € U; \ Q|p(z) + Reh(z) = 0} is a smooth relatively closed
hypersurface of U \ 2, which intersects b2 and H transversally, and that
M_ := {z € QNU|yp(z) ~ Reh(z) = 0}, for a given fixed small v > 0, is
a smooth closed hypersurface in Q. Then we have

i)y M_nbQ=HNbQ,M_NH =N H and these intersections are
transversal,

ii) Q is decomposed by M_ into two parts R_ and Q\ R_, where R_ is
the one containing H N Q.

We set finally R, := {z € U; \ Q|p(z) + Reh(2) > 0} and K :
U\ (R UR_)NU,.

If [f] denotes the equivalence class of f, we set Ck (M) = {[f]|f €
C* (C™")}. Because of the expected loss of regularlty we suppose that
k>>1

We set 8y[f] := [0f). If |g|ku+ denotes the C*-norm on U+ we set

\[f1lk.ar := inf{|glxz+| 9 ~ f},

where g ~ f indicates that f and g are in the same class.
An elementary extension now gives the two following lemmas.

Lemma 4. Let [f] € C§ (M) be 8y-closed. Then for every 0 < r <
(k — 2)/2 there exist forms E.[f] € Co,¥(U), g € Ci7237'(U), c; €
Co M (U), X, € CE*~2(U), such that

i) E.[f] has compact support in Uy, [E,[f]] = [f], ¢ =0 on U and

OE.[f] = p'gr + cr;

i) Eralf]l - Elf]= 71X

iii) there ezist constants K, not depending on [f], with

|Er[f]]k-2fﬂ + |g"!k—2"—1ru + |Cr|k—2r—1,u < Kr”f]lk,M



178 J. Michel and M.-C. Shaw

Lemma 5. Let [f] € C§ (M) with 8,[f] € C§,.i(M). Let for 0 <
r < (k —2)/2 E.0y|f] be the extension of Oy[f] which was constructed in
Lemma 4. Then there ezist forms E,[f] € C§.%"(U), G, € C5.277 (U),
C, € ng}j‘; YU), Y, € CE=2-21), with

E.[f] has compact support in Uy, [E.[f]] = [f], C; =0 onU" and
OE,[f] — E,By[f] = p"G, + Cy;

i) Erlf] = Elf]l = oY

iii) there exist constants K, not depending on [f], with

|E- [ k=202t + |Grli—2r—10 + |Crlk—gr—12¢ < Ke(|[fNirs + [0 f]lka1)-

I1. Homotopy formulae for 3,

Now let wy = (wyg,...,wen): Q@ x (U\ Q) — C", be a C? barrier
mapping, as constructed in section 1, which solves

d,w,(z,¢) =0, Zw+JzC (¢ —2z) =

and which fulfills the following C3-estimates for all integers S > 0, with
constants Cs not depending on (:

[wi(+,¢)lsa + lgradcwi (-, ()]s < 5((;)ts

Denote the second barrier by w_, with ( € Q and 2 € & \ 2. Then much
more precise estimates have been obtained. But in the solution operators
for 8, which we want to study in this paper, w, and w_ are mixed. So we
cannot use the better information on w_. Therefore we shall not give here
all the shown properties of w_ and we prefer instead to treat both barriers
in a more streamlined way. w_ is holomorphic with respect to the variable
¢, acting here as a parameter, but it is only of class C° with respect to
z (8 is finite but can be chosen arbitrarily). So when it is necessary we
shall write w_ s instead of w_.

So, more precisely, for any S > 0 there exists a C¥ map w_ = w_s =
(we gy e ywopn): (U ) x Q — C" which solves

dew_s(2,¢) =0, I w_;(z,0)(¢ - 2) =1

J=1
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and which fulfills the following estimates, with constants Cs not depending

on { and z: c
|D£w—,s(2: Ol < mﬁq—s—],

for all multi-indices I with |I| < S. (Here D! denotes a differentiation
with respect to z of order |I| and A(S) is a positive integer).

For 2n-dimensional sets we carry over the orientation of C". We give the
induced orientation to their boundaries. We orient M, M, and M_ in
such a way that

bR, =-M—-M,, bBR_.=M-M_, bK=M,+ M._.
Set
Aor+- = {(P0; A1, As, AZ) ERAA, > 0,00+ A1 + A + A =1}
For an ordered subset @ # A C {0,1, +, —} we set
Ag={r € Dgi+-|A, =0 for v ¢ A}.
We orient A4, with A = {a;,...,a,},v > 2, in such a way that
bAL = Dy, a5 — g 40 0 (1) ™ By gy

For a = 0,1, +, — we define the following barrier forms:

TNa = Z wu,i(z! C)dg‘h

i=1

s Ci —Z hi(z! C)
with wo,(2, () = E_—zP,wl,s(AC) = W0 = h(z)
For )\ € A4 we set

n= Z AaTla
aEA
and for ¢ =0,1,2,...,n and a certain constant ¢, g

Dng(2,6,A) = eng A (B¢ + da)n)" 47" A (B.m) .

Here d, denotes the total differential on Ay. With D, _; = Dppiy = 0
one has the Koppelman formula for Cauchy-Fantappié forms

gzpn,q'-l = (—l)q(.gC + d)\)Dn.,q-
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Moreover we set

> =Ry x Dop + R x Do_ + K x Aoy + My X Dopy + M_ X Doy

Now let [f] € C§,(M), with 8,[f] € C§,.,(M). We choose extensions

E,[f] and E,0,[f] according to Lemmas 4 and 5. Then for k sufficiently
large and r < (k — 2)/2 appropriately chosen with respect to S, we obtain
the decomposition

5E;f' [f} - E,-Eb[f] == pf"'f5+IG + (R'eh)J'Hrs+S-I~i."lr:r1
OE,B,[f] = pMs*'g + (Reh)Ms+5+2p,

with C! forms g, h, G, H, such that h and H vanish on U*. This will imply
the existence of the following operators:

T,(f]) = / (BE, (] ~ EBo|f]) A Dugor + ] E,{f] A Dag,
X

Uxﬁo

Ty (@ilf) = / BEBHf| A Dag+ [ EBilf) ADny

uxﬁu

If 3y(f] = 0 we choose E,9,[f] = 0. Hence T,:1(8s[f]) = 0 in this
case. Note that on U x Ag, D, 4 is the well-known Bochner-Martinelli-
Koppelman kernel. Now the Koppelman formula and Stokes theorem lead
to the following theorem.

Theorem 5. For every integer S > 0 there exist integers A(S) > 0 with
the following properties:

For every [f] € C&éS}(M) with Oy[f] € C'fféf_)l(M), q > 1, the forms

T,(f) = [ (BE,(f] ~ EBy[f]) A Dugor + / E.{f] A Dpgor.
b1

UxAo

+1(0 OE,0y[f] A Dng + E.0[f] A Dng

Tous Bolf) ] Af1APrgt l EA
are C% on M.
If1<qg<n-—23 one has

B(Ty (D] + [Tg+1 @l f]] = [f].
If g=n—2, 3[f] =0, E.0[f] =0 one has
B[ Ta2([f])] = [£]-
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In all these cases there exist constants Cs, which are independent of [f],
with

[T ((Ds.ar + [ Tgs1@olfNIs.ar < Cs(|1f] acs).ar + [86[f] ags).an)-

In the proof one starts with the Martinelli-Bochner-Koppelman for-
mula. Then one arrives at the following result.

BT,(If]) + Tors (Bulf]) = Erlf] + f (@BE.[f] - EBf]) AD

M_xAi_

If ¢ < n— 3, the integral on the right-hand side vanishes. Let g = n — 2
and 8;[f] = 0. Then the integral in question also vanishes but this is not
obvious. It is a consequence of the following lemma. For a compact set L,
let A*(L) denote the space of C* functions on L which are holomorphic
in the interior of L.

Lemma 6. Every function holomorphic in a neighborhood of H N can
be uniformly approrimated on H NG by functions of A<({z € Q|Reh(z) >
0}).

Remark. The vanishing result is new even in the strictly pseudoconvex
case. In the proof one uses an Oka map argument. It is based on the

solvability of the d-equation on the intersection of weakly pseudoconvex
domains. We cannot give the details here.

An analogous calculation as for Theorem 5 shows, if the starting point
is T{([f]) (T} will be defined in Theorem 6 and ¥’ = R, XAy =M, x Ay, ),
the following theorem:

Theorem 6. Let n > 2. For every integer S > 0 there exist integers
A(S) > 0 with the following properties:

For every function [f] € CAS) (M) with 3y(f] € CAS)(M) the forms

() = / BE.{f] - EBu|f)) A Do,
J

TGl = /aEab[f]/\an / E.3y[f] A Duo

UxAp

are C° on M. T4([f]) is holomorphic on U N Q and C¥ on Ut NQ. If
Bb[f] = 0 we can assume that T{(8[f]) = 0.

If n > 3 we have _
(To([fD] + [T{Bu[£1)] = [£]-
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If n =2 and 8(f] = 0 we have
[N = 1]

In all these cases there erists a constant Cs, which is independent of [f],
with

T (D) suremr + T @l NIsar < Cs(|[fllaesyar + 186[£) acsy.ar)-

If [f] € C=(M), with s[f] = 0, there exists an extension E[f] €
C*=(U) with compact support in U, such that 9E,[f] vanishes of infinite
order on M. w, is C* on Q with respect to z. Therefore we obtain the
following result.

Corollary 2. Under the same conditions as in Theorem 6 there erists for
every CR function f € C<(M) an extension

To([f]) = | OEx[f] ADng
/

of f, which is C* on Ut NQ and holomorphic on U* N Q.

When we consider solutions which are more and more regular, we
obtain by a standard method

Theorem 7. Let [f] € C55 (M) with 8y[f] =0, 1 < ¢ < n—2. Then there
ezists [u] € C§3_,(M) with

Bylu] = [f].

4. The J-problem on annuli

Let Q be a bounded domain in C" such that  has a piecewise smooth
boundary. In this section we study the solvability of the Cauchy—Riemann
equation

u=a in Q,

where a is a smooth d-closed (p, ) form with coefficients C*° up to the
boundary of 2, 0 < p < n and 1 < ¢ < n. In particular, we describe its
solvability with u smooth up to the boundary (for appropriate degree q)
if ) satisfies one of the following conditions:

i) Q=Q;\02 Q CC Ny, where Q; is the union of bounded smooth
pseudoconvex domains and €2; is a pseudoconvex convex domain
with a piecewise smooth boundary.
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i) Q=0 \D 2 cc O, where Q, is the intersection of bounded
smooth pseudoconvex domains and ; is a pseudoconvex convex
domain with a piecewise smooth boundary.

If Q2 is the transversal intersection of bounded smooth pseudoconvex do-
mains, then related results are given in [24].

When 2 is an annulus between two bounded pseudoconvex domains
with C* boundaries, regularity results have been obtained in Shaw [36].

The O problem on piecewise smooth domains is not only interesting
in itself, it also arises from the local solvability of tangential Cauchy—
Riemann equations. Let A be an open subset of the boundary of a
bounded smooth pseudoconvex domain in C*. We consider the equation

Ou=a in M,

where a is a smooth 9y-closed (p,q) form on M, 1 < ¢ < n—3. We
show that when the boundary bM lies in the transversal intersection of
b with k Levi-flat hypersurfaces, then one can find a smooth solution u,
for 1 < q¢<n-— k-2, provided these k hypersurfaces satisfy some global
conditions. Previous results (cf. Henkin [12], Shaw [37,38], Ma and Michel
[20], Michel-Shaw [28]) all require that the boundary is smooth and bM
lies in some Levi-flat hypersurface.

The plan of this section is as follows: In I we construct a homotopy
formula on an annulus such that §2, is the union of finitely many smooth
pseudoconvex domains. The proof depends on the barrier functions con-
structed earlier. We then use induction to construct a solution for the
0-equation when €, is the transversal intersection of finitely many smooth
pseudoconvex domains. In II we prove the solvability of the d,-equation,
with regularity up to the boundary, on open submanifolds M of the bound-
ary of a weakly pseudoconvex domain.

L. Boundary regularity for & on piecewise smooth annuli.

Let Q be a bounded piecewise smooth pseudoconvex domain in C".
Let D,ccq, i= 1,...,k, such that each D); is a bounded pseudoconvex
domain with C? boundary bD; defined by {pi = 0}. We assume that
fipx'l A--«ANdp;, #00n p;; = :-- = p;, = 0 for every I = (43,...,%), 1 <
<o <y <k. Let
' D = Q\ (UL, D;).

Then D is the annulus between a pseudoconvex domain § and the union
of finitely many bounded pseudoconvex domains with C2? boundary. We
consider @ on D with solutions smooth up to the boundary and shall

construct a homotopy formula for 8 on D,
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Let w be the second barrier for D; as constructed in section 2. Then
w = (w(_"?l,...,wffﬂ): U; x D; — C" is holomorphic in ¢ € D; for each
fixed z € U;.

We set wo ,(z,¢) = (Ep —%,)/ | (—z|?for p=1,...,n and we define

w_ (2,6, A) = Mowpu(2,C) +Z,\ w9 (2,0),

i=1

(2,¢,2) = Z'\ w-u(z, C)dly,

wherever it is defined with A; > 0 and Ag+A;+---+Ax = 1. In particular,
ifAy, +---+X. =1 2€ D, ( €n,_,D;,, then n_ is well defined and
holomorphic in ¢ if Ap = 0. For 0 < ¢ < n — 1, we set, with some constant

Cn.g, _ _
Q0 o = Cngn= A ((Fc +dx)n-))" 179 A (8:1-)7,

which is of degree g in z and of degree 2n — ¢ — 1 in (¢, A). Set QO =
Qg 1-—0&ndU£‘=iD,-=R°.
For each increasing index I = (iy,...,4), 1 < € < k, we define for small
€ >0,
={zeniD; | —€ < pin(z) =-=p,u(2) <0,
p;i(z) = pi,(2) for j ¢ I and z € D;}.

We require that the orientation on RY be skew symmetric in the com-

ponents of I and we define
= {z € bU,’;l D; | p,-(z) =0,7 € I},
S ={z€bUL, D;| pi(2) = —€o, i € I}

and for each Sy and S{° the natural induced orientation is given. Then we
have

bR =

(T (-0Rg x An!))

I

R?’+S!“S;°r

J

M»

1

o,
]

ROxAr—R x Do + 2(—1)'”3; x Dot

*~[\’J

=Y (-1)VISP x Ag,
I

where the summation is over all ordered increasing subsets of {1,...,k}.
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Define

S;m>a=c,,{ / (0Ea — Eda) A QS ,_; — /Ea/\an_ }

i (=)UIRYx Aos Crxho

forl<g<n-k-1.
Again, the Stokes theorem and the Koppelman formula give for 2 € D,

a=5"8a, a€CgyD)
and
a= 5.5';’“}& +Séf%5a, o€ C(‘Rq)(ﬁ) and1<g¢g<n-k-1.

Here we supposed that o vanishes on C"\ Q2. For the general case we need
to modify the above construction. One has to also plug in the finitely
many barriers coming from b{2. The construction does not pose any fur-
ther problems. Let A=(D) = C>(D) N O(D), where O(D) is the set of
holomorphic functions in D. Then we can show the following theorem.

Theorem 8. Let 2 be a bounded pseudoconver domain in C™ with piece-
wise C=-smooth boundary. Let D; CC Q,i = 1,...,k be pseudoconvez
domains with C? boundary and D = Q\ (UL, D;). We assume that the
{D;}r_, intersect transversally. For 1 < ¢ < n—k and every nonnegative

integer m. there ezist linear operators S{™: C @, q)(D) Cio—1)(D), such
that for every a € C(‘"dq)(ﬁ), 2z € D, we have

a=035Ma+ Séfiaa, where1<g<n-—k-—1.

When q = 0, k < n, there ezists an operator S'((]m): C>=(D) — A™(D) such
that for every a € C*=(D) we have on D,

a=5Ma+5™da.

Corollary 3. Let D be the same as in Theorem 8. If a € C . )(E) and
B = 0 where 1 < ¢ < n—k — 1, then there ezists a u € C(O,q—l)(D—)
satisfying du=ainD.
Corollary 3 follows from Theorem 8 by a standard regularizing method.
Next we want to describe the boundary regularity for & on an annulus

between a pseudoconvex domain and an intersection of smooth pseudo-
convex domains. For every increasing multi-index I = (iy,...,4,),1 <
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iy < -+ < i, <k, we define D; = NjerD;. We set for fixed 1 < v < k,
1<7 S k,

Qy = U;F___lﬂfj, and A=0Q \ Qo,
where I = (i1,...,%,), v+ p < k, and 5, ¢ I. We set Dy = C"
and we assume {2, and A are connected. We also assume that each
Q\{UII™*(Din---N Dz) N Dyyy} is connected for 0 < i < p. In

vr=1

a first step one shows the regularity for 9 on A.
Theorem 9. For every f € Ci q)(A), where 1 < ¢ < n—1— v such that
Of =0 in A, there ezists a g € Coq- 1;(A) satisfying 8g = [ in A.

By choosing v = 1, u = k — 1, one obtains

Corollary 4. Let ) be a bounded pseudoconver domain in C™ with piece-
wise smooth C*° boundary. Let D; CC Q, i = L...,k be pseudoconvez
domains with C? boundary and G = Q\ (Nk_,D;). For every 9-closed
fe C{'&QJ(G) 1 < g < n-—2, there ezists a u € Cf 1)(H@-) such that

Ou=finG.

Let D° =Nk, D;. Corollary 4 implies the following:
Corollary 5. For every a € Cf, (C") such that da = 0 in C" and
suppa C E-D, where 1 < g < n — 1, there ezists a u € Cﬁiq_l)(‘ﬁ“)

0,g—

satisfying Ou = a in C" and suppu C D
To prove Theorem 9, one needs the following lemma.

Lemma 7. Let] = (iy,...,1,) and0 <y <n—1, p+y <n-1, p,y< k.
Ifl1<g<n-1-7, fEC(cg’q)(A} such that f =0 in A and f =0 in
Q\ Dy, there ezists a g € Cioqm 1)(A) such that g = f in A and g =0 in
Q\ D;.

Then the proof of Theorem 9 is an induction on u for all 0 < v <
n—1—pu. For g =0, this is proved in Theorem 8 (since 1 < ¢<n-1-—7
and Dy = C").

II. Applications to the local solvability of 3.

Let 2 be a bounded smooth pseudoconvex domain in C*. Let M be
a connected open subset of bQ2 with piecewise smooth boundary bM. By
this we mean that there exist bounded domains D;, : = 1,...,k, with
smooth boundary bD; such that

M =b0n (N5, D),

where bD; and M intersect transversally wherever they intersect,.
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Definition. M is called a domain with admissible boundary bM if the
following conditions hold:

i) Qr=Qn(Nk,D;) is a bounded piecewise smooth pseudoconvezr do-
main.

ii) Foreachl <i < k, the set QS = QN(C"*\D;) is equal to Q) intersected
with a bounded smooth pseudoconver domain.

We note that i) and ii) imply that bM consists of smooth pieces which
lie in Levi-flat hypersurfaces. Examples of admissible boundaries are those
defined by real hyperplanes in C".

Theorem 10. Let M C bQ be a domain with admissible boundary. For
every Oy-closed form a € CF (M), 1 < ¢ < n—k — 2, there ezists a

u € CE, 1 (M) such that ~
oyt = &
in M.
The proof uses the solvability of 9 on the auxiliary domains of I.

Remark. We note that the condition on the degree ¢ and k cannot be
relaxed. Let S = {z| |z;]* + - -+ + |24]? = 1} be the unit sphere in C",
n> 3. Let

M=5n (n:f:;; {] |af < 2(n‘_2)}).
Then M is a domain with admissible boundary with k = n — 2. We shall
show that the d-equation is not solvable for ¢ =1 in M. Let
_ Zidzy — Zdz,
T (mP+ PP
Then a € C5(M) and Sy = 0 in M. Let So = SN {z =
Vzﬁ""’z" = —=t=—}. If @ = Gyu for some u € C*(M), then

2(n-2)
we would have

/ adz; Adzs =/ BuAdz Adz, = 0.
So So
On the other hand, we have that

1
/ adzy Ndzg = _f {zldfg — ngfl}dzl Adzy
So

|22 [2+]z[2 =1
1

2 2 +izalr<d

#0.

dZ; A dfz A d21 A d22
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Thus the condition on the number of intersections k& cannot be removed.
On the other hand, if we take

. 1
— i=n 12
M=8n (ml=4 {2 |af* < 2(n_2)}),
where n > 4, then using Theorem 10 we can find a u € C* (M) satisfying
Jyu = a in M.
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CHAPTER IX

A Note on the Closed Rangeness
of Vector Bundle Valued
Tangential Cauchy—Riemann Operator

Kimio Miyajimat

Abstract

We prove the vector bundle value version of J. J. Kohn’s closed
range theorem over three dimensional strongly pseudoconvex CR
manifolds. That closed range theorem is a crucial step toward CR
construction of the semi-universal family of normal isolated surface
singularities (cf. [11]).

Introduction

Let M be a compact real C*-manifold of dimgM =2n—1> 3. A CR
structure on M is a subbundle TA9M C CTM of rankcTHOM =n —1
such that

TEOM NTODM = {0} where TOVM = T M, (0.1)

T M is closed under the bracket operation. (0.2)

Since CTM/(TMOM & TV M) is a C-line bundle compatible with
the complex conjugate operation of CT' M, there exists a global real vector
field £ such that & is nowhere vanishing in CTM/(T®9M & TOVM). If

F denotes the subbundle of CT M generated by £, then we have a splitting
as differentiable vector bundles

CTM =FaTWO A 7O (0.3)
An Hermitian form £, on Tﬁi'mM (p € M) defined by
v _lﬂp{Z! W)'E(p) = [2, W] (p) mgd T;I'O)M ® TéD,I)M

tPartially supported by Grant-in-Aid for Scientific Research (No. 09640123), the
Ministry of Education and Culture of Japan
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is called the Levi-form associated with the CR structure 79 A (and the
vector field £), where Z and W are local sections of T M such that
Z(p) = Z and W(p) = W. A CR structure is called strongly pseudoconvez
if the Levi-form has a definite sign at each point. (Note that this property
is independent of the choice of £.) Throughout this paper, we consider
only strongly pseudoconvex CR structures.

For M with CR structure 7? M, the tangential Cauchy-Riemann
complex is induced:

U'—»AU EN Acl 3y AOQ 3y
b
where we denote
AN =T (M, A (TOVM)"),
Baé = d¢|T(°-1)Mx---xT‘:‘:'-lJM-

If M is a real hypersurface of a complex manifold X, a natural CR
structure °T" is induced from the complex structure on X by °T" =
T*°X |y N CTM. In this case, there exists an analytic restriction map

p: A% — A given by u(¢) = BT o xoT"

where we denote °T" = T%1X im NCTM. Then we have a commutative
diagram of Cauchy-Riemann complexes;

O emes AL =Tyl O G028, o
I
0 Ag % - Agl % — AEQ B o

A CR structure induced from an embedding as a real hypersurface is called
an embeddable CR structure.
J. J. Kohn's closed range theorem is the following:

Theorem. ([8], Theorem 5.2.) If a strongly pseudoconvez CR structure
is embeddable, then the Cauchy—Riemann operator Oy has closed range in
L(zn »(M) (1 £ g <n—1) where we denote by L(o (M) the space of L?-
sections of AY(TOVM)" and by the same symbol 3y the L2-closure of .

(In [8], Theorem 5.2, the closed range theorem is proved under some
weaker condition than strongly pseudoconvexity. Since our interest is in
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the links of isolated singularities, we only consider the case of smooth
boundaries of strongly pseudoconvex domains.)

By [2], it is shown that the L2-closed rangeness implies the embeddabil-
ity of strongly pseudoconvex CR structures. A major difference between
three dimensional CR structures and higher dimensional ones is that there
exist nonembeddable strongly pseudoconvex three dimensional CR struc-
tures while all strongly pseudoconvex CR structures of dimg > 5 are
embeddable ({3]).

The subject of this paper is to generalize the above J. J. Kohn’s closed
range theorem to the vector bundle-valued Cauchy-Riemann complex.
The motivation of that generalization is in the deformation theory of CR
structures. Construction of the semi-universal family of normal isolated
singularities by means of deformations of strongly pseudoconvex CR struc-
tures on its link is a natural idea originated with M. Kuranishi ([10]). Since
the deformation theory of CR structures is in analogy to the one of com-
plex structures due to K. Kodaira, D. C. Spencer and M. Kuranishi (e.g.
[7]), we need the harmonic analysis for vector bundle-valued tangential
Cauchy-Riemann complexes. If dimgM > 5, it is established for gen-
eral holomorphic vector bundles by directly showing the basic estimate
([5]). However, it has not been discussed yet in the three dimensional
case. Hence, we will concentrate on the vector bundle-valued tangential
Cauchy-Riemann complexes on three dimensional strongly pseudoconvex
CR manifolds. (See §12 of [11], for the application of the result of this
paper.)

Let E be a holomorphic vector bundle over a strongly pseudoconvex
three dimensional CR manifold (M, 7% M); that is, there exists a differ-
ential operator

dg: AY°(E) — AY(E)

such that

hold for u € AY(E), f € C*(M) and Z, W e T(M, TOYM) (cf. [12)),
where we denote

AYY(E) :=T(M,E ® AY(TOVM)*).

If TU9 M is induced from an embedding of M into a complex surface
and E = E), for a holomorphic vectorl)undle E over the ambient complex
surface, a natural O is induced from 8, as above. For this 8g, we have a
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commutative diagram induced from the analytic restriction p as above;

0 — AY(E) 5 AY(E) 2 ARR(E) — 0

L |
0 — AYE) = AYE) — 0

The main result of this paper is as follows. Throughout this paper,
we assume that M is a three dimensional real manifold with a strongly
pseudoconvex CR structure 7% M and denote by E a holomorphic vector
bundle on M.

Theorem 3.1. Suppose that M is a smooth boundary of a strongly pseu-
doconver domain of a complex surface X and that E = Ej; for a holo-

morphic vector bundle E on X. Then Im {51.3: L?o,o)(E) — L?n,l)(E)} 18
closed where LY, (E) denotes the space of L-sections of E@ AY(T VM)
and we denote the L?-closure of Og by the same symbol Og.

The closed rangeness of dg implies the closed rangeness of 5;, Dg 0 =
3;355; and Dg ) - 535;:, and then we have the orthogonal projections

Pr: Lioo)(E) — Ker O, ph: Lo, (E) — Ker Og"
and the partial inverses of Dg"“) and L-_lg ) respectively
0,0 0,
N3: L% o) (E) —» Dom O9®,  Ni: L% 1) (E) — Dom OF™.

The next task is to obtain the estimates for these operators. We denote
by || ll(xy and | |(a) the Folland-Stein norm of order k and the nonisotropic
Lipschitz norm of order « respectively. (See [6] for these norms.)

Proposition 4.1. Let k > 0 and o > 0.

llegullr) < Cllullg, IPEU)(a) < Cluj(a) (1)
lpgullx < Cllullk), lpEl(e) < Clul (2)
| Ngullk+2) < Cllullry,s IN2u|(a+2) < Clul(q). (3)

The arrangement of this paper is as follows. Though the vector bundle
value version seems to be a trivial corollary of the J. J. Kohn's closed range
theorem, it fails in general even if the base CR manifold is embeddable.
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In §1, we present a simple counter example which is given by L. Lempert.
In §2, we obtain a vector bundle version of the J. J. Kohn's microlocal
estimate which played a crucial roles in his proof. We will prove Theorem
3.1 in §3. The proof is a vector bundle-valued analogue of [8]. Since our
purpose of this work is to establish a harmonic analysis from the viewpoint
of deformation theory, we need the estimates in Proposition 4.1. In §4, we
obtain them as a consequence of the Heisenberg calculus in [1] and [6].

The author would like to thank Professors J. Bland, C. Epstein,
L. Lempert and the participants of the Taniguchi Symposium for helpful
discussions in this work, especially to Professor L. Lempert for showing
him the counterexample presented in §1.

1. Counterexample

The closed rangeness for Jg fails in general even if the CR structure
T M is embeddable. We present an example given by L. Lempert.

We consider the situation that M is a strongly pseudoconvex embed-
dable CR manifold and M’ an unramified double cover of M such that
the CR structure on M’ induced via 7 is unembeddable. The following
is a simple example of this situation: Let V be a subvariety of C3 de-
fined by 7175 — 22 = 0. Then V has only normal singularity at the origin
0. We denote by U its regular part. Then the map C? — C3 given
by (z,w) — (z1,T2,z3) = (22, w?, 2w) induces a unramified double cover
m: G2\ {(0,0)} — U. We take a smoothing V' of the singularity (V,0).
Then the complex structure of V' induces a new complex structure on U
and then on C?\ {(0,0)}. If we take a strongly pseudoconvex real hyper-
surface M in U and set M' = n~!(M), then by Proposition 1.3 of [4], M’
is not embeddable.

Next, let L be a line bundle over M given by

L=M xC/Z,
where the operation Z, is generated by

g: (psg) = (Q(P), _C)

for the generator g of the covering transformation group.
We remark that
g O = Opg*u
holds for u € Ag'q(ﬁ! "). The following lemma is obvious.

Lemma 1.1
Af’“"ﬂ[ﬂ'ﬂ L)~ {u € Agu’q)(M') |g*u = -ﬂ} (g=0,1)
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and 8y, is given by B, with respect to the above isomorphism.

We define an inner product in A,EO"’)(M , L) using the inner product in
Ai(,o"*)(M ') via the isomorphism in Lemma 1.1. We remark that it defines
a topology in A§,°“”(M ,L) which is equivalent to the one defined in the
standard manner (using the fibre metric of L).

Proposition 1.2 Im {EL: L?o_.o) (M,L) — L?O,l)(M, L)} is not closed.

Proof. Since Im {5,,' L}y (M') — Lfo_l)(M’)} is not closed, there ex-

E,t a € L(G 1)(M ) and u; € L(n 0)( ') such that G,u; — a and a ¢ Imd,.
et

+ + _
ul

(u; + g'u;), a (a+g*a),

Uy (wi — g"wi) a” =-(a—-ga).

t\)II—‘t\JH—-
mq-—ale

Then, we have
‘U.‘+ € L?U,O}(M)‘ C}‘ c L[U 1)(1‘!{), gbu;t — 0:+.I.
uj € Lho(M,L), o €L3,,(M,L), By —a".
Since M is embeddable, a* = Gyu* holds for u* € LY, (M). If, further,
o~ = Byu~ holds for u~ € L% (M, L), we have
a=0,(ut+u7), ut+u € L'fo‘o)(M').

This contradicts a ¢ Im3,. O

2. E-valued version of J. J. Kohn’s microlocal estimate

The key estimate of the proof of the J. J. Kohn’s closed range theorem
is the microlocal estimate [8], Theorem 3.3. In this section, we obtain the
vector bundle-valued version of that estimate.

Let E be a holomorphic vector bundle on a complex manifold X. Then
we have the E-valued Cauchy—Riemann complex;

0 — AY(E) %5 A%N(E) 5B AP(E) % - .
If we fix an inner product h along the fibres of E, an inner product

(i) = [X (b, %)V
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is defined for ¢, ¥ € AYY(E) with compact supports where (¢,%)dV =
> a5 hagd® Ax0P for =3 ¢%, and ¥ = 3";_, ¥7es with denoting
by * the Hodge *-operator, {ey,...,e,} a local frame of E and h,3 =
h(eq,ep). Then the formal adjoint operator

9p: AYU(E) —» AY(E)
is induced by
(¢,0¢) = (Vpé, ) for all ¥ € AY¥'(E) with compact supports.

Now, let Q is a strongly pseudoconvex bounded domain of X defined
by r < 0 with » € C*(X) such that dr # 0 on the boundary M = 9.
We consider the Cauchy-Riemann complex
a 3 8
0 — AG(E) =8 Ag'(E) =8 AG'(E) =5 ---
We denote by the same symbol g the L?-closure of 9 and its Hilbert
space adjoint by _3*5. Then

Dom(dy) N AZY(E) = {¢ € AY(E)|o(9E, dr)¢ = o} :

We denote by D%%(Q) the right-hand side. Og-harmonic theory on a
strongly pseudoconvex domain {2 relies on the basic estimate (cf. [5]);

loloy =
UG+ [ 168+ 16IP < CQx(6,6) for 6 € DY(@) (> 1),

a,J k
(2.1)

where we denote
Qr(¢,¢) = (0p¢,0pd) + (95, VEd) + (¢, 0)

and ||¢|| (resp. |/ [;,1¢]?) the L?-norm of ¢ (resp. ¢jus).

The proof of J. J. Kohn's closed range theorem relies on a microlo-
cal estimate for zero-th order tangential pseudodifferential operators ({8,
Theorem 3.3) as well as the basic estimate for the d-Neumann problem
with weight on a (not necessarily strong) pseudoconvex domain. (In the
case of strongly pseudoconvex domains, it is enough to use the above basic
estimate (2.1) neglecting the weight.) In this section, we shall obtain the
following dg-version of Theorem 3.3 of [8] for a complex surface X.

Let po € M and U be a neighbourhood of pg in X such that °T|’UnM is

trivialized. We denote by L and T' the local frames of °T};,, and Fiyra
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respectively such that T = —T. We choose a local coordinate (z;, s, T3)
of U N M such that
1,0 7]
L(po) = 5(8_3:1 & V—la—%)»
(7]

— =v=1gT, g€ C*(UN M), g>0.
6.1“3

Denote by (&1, &2, €3) the dual coordinate of (z1, z2, 3). Then the symbols
of L, T are given by

3
o(L) = ~5(VTI6 + &) + 3 ah(z, )
k=1

3
1
o(T) = ——&+ b (z, 7)€
(T) = o ?; (2, 7)éx
where a*(z,7), b*(z,r) € C®(UNQ) such that a*(0,0) = b*(z,0) = 0(1 <
k < 3).

A tangential pseudodifferential operator of order zero is an operator
P: CE(UNQ) — C=2(UNQ) given by

Pu(z,r) = [ e/ 1=¢p(z,r,€)u(€, r)dE
R3

for some p(z,r,§) € C <(R® x R x R?) such that there exists a compact
subset K C U NN such that p(z,r,£) = 0 for (z,7) € K and there exists
a constant C = C(a, 7, 8) > 0 such that

|D2D:iDlp(z,7,€)] < C(1+|¢)) ™

holds, where we denote by u(£,r) the tangential Fourier transform of
u(z, ).

Let P be the set of all tangential pseudodifferential operators of order
zero and let

PO = {P e P|p(z,0,6) = 0if & > 2(6? +£3) and €| > 1},
Pt = {PE'PIp(x,O,f):Oif&S £+ £2 and [€] >1},

P~ = {PE P|p(z,0,€) =0if & > —1 /€2 + € and [¢] > 1}-

We note that, after fixing a trivialization of E on U, P € P naturally
induces an operator P: C(UNQLEQ A (THX)") - C*(UNQLE®
A9 (T X)").
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Theorem 2.1 Let 2 C X and U be as above and s € R and m € Zxg
be given. Let A® be the tangential pseudodifferential operator with symbol
(14 |£]*)2. Suppose P € PPUP~ and (,( € CF(U NQ) are given

——

such that ¢ =1 in a neighbourhood of Supp (. Then, if ¢ € D%-‘I(E) and
a € Hy,)(Q, E) satisfy
Qe(¢, %) = (a,¥) for all ¥ € DE'(E),

the following estimate holds:

0\m s
I(5;)" A= mP(Coll <
c(lascall + llalls-) o m<2
C(Tr (@Y A ¢ all + llally-1) if m>2,
where || || (resp. || ||s) denotes the L?*-norm (resp. the Sobolev norm
of order s), Hfg‘l)(Q,E) the closure of A%‘l(E) with respect to || ||s and
D%l (F) the closure ofD%l (E) with respect to Qg(¢, ¢). Furthermore, we
have
a\m stl-m S a\m T A——
I(5) A" P@co)l + Il (52) AP ¢4l <
C(IACal + falsmr) #m<1
o(Tr 1@V A-3¢all + alr) ifm 1.
Theorem 2.1 implies the following.

Corollary 2.2 Under the same assumption of Theorem 2.1, for s > 0,
we have

(1) 1PEH)s < C (¢ alls-2 + llrlls-s) ,

(2) I1P@¢o)ls + [I1P@CP)lls < C (IS alls-1 + lllls-2).-
For the case of E = 1x, Theorem 2.1 is proved in Theorem 3.3 of
[8] for a more general pseudoconvex domain 2. The proof relies on the
basic estimate for the scalar-valued 8-Neumann problem with weight on a
Pseudoconvex domain and the following strong inequality for P € PPUP;

1Pl sc(z ||‘3—;';;‘n+upun) forue CEUND  (22)
k
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where || || (resp. || ||1) denotes the L?-norm (resp. the Sobolev 1-norm).

Theorem 2.1 is proved by an argument parallel to [8], using the basic
estimate (2.1) and the same inequality (2.2). (Note that (2.2) still works in
the E-valued case since ['(UNQ, E) is naturally identified with @ C*=(UN
Q).

3. E-valued version of the closed range theorem

Let Q be a strongly pseudoconvex bounded domain of a complex sur-
face X defined by r < 0 with a C'™* function r such that dr # 0 on the
boundary M = 9Q) and E is a holomorphic vector bundle on X.

Theorem 3.1 Let M and E be as above and E = E5;. Then
1s closed.

The proof of Theorem 3.1 is parallel to [8]. It is enough to prove the
following assertion:

(3.1) There exists a constant C > 0 such that given u € C*(M,E)
there exists v € C'(M, E) such that gv = Jgu and ||v| 2 <
C||9gul|r2(ar), Where we denote by C'(Af,E) the space of all C*-
sections of E and by || ||z2(ary the L*-norm on M.

v in (3.1) is obtained by the following three steps. Let a = dgu.

(i) We construct an extension operator

A: (Ker 9g) N ADY(E) — (Ker 9g) N AZ(E).

Since we need a modification only in this step, we repeat the argument
parallel to [8]: Let {U;} be a coordinate neighbourhood covering of €2 such
that Ejy, is trivialized as holomorphic vector bundles. Choose a partition
of unity {¢;} subordinate to the covering {U;} and ¢{; € Cg°(U;) such
that ¢; = 1 in a neighbourhood of Supp ¢;. First we can extend (;a to
a; € EB”A?}ilmﬁ(E) such that

leglzrs@) < CliGiall oy iy,

using the local Fourier transform (cf. [8]) where || [|ge(ary (resp. || [|ae@)
denotes the Sobolev norm of order ¢t on M (resp. on ). Then we have an
extension of a, o' = ¥, Go; € A%I(E) such that

lle Nl < Cllall oy -
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We proceed with the argument in p.540 of [8] using the following two
properties (cf. [5], Ch. V and [9] for these properties):

(3.2) Let ¢ € AZY(E). Then p(¢) = 0if and only if 0(0,dr)p = OrA¢ =0
on M.

(3.3) Let #: ARI(E) — A% P?"9(E*) be an anti-linear isomorphism given
by
0 A ¢ =h(6,#8)dV, ¢ € A5I(E), 6 € AAP*(E")

where h is an Hermitian inner product induced from the fixed fibre
metric of E*. Then

Vp-# = (—1)P #0p,
#CHH(E) = D%_p'z_q(E*)

where C29(E) = {¢ € AP(E) | p(a) = 0}.

Then the argument is parallel to [8], p.540. Since Jgu = a, by ex-
tending u to v € A%U(E) we have Or A (& —0gu’) = 0 on M. Let
6 € AZ’(E*). Then, since ¢*(9r+3r) = 0, we have t* (§ A (o' — Jpu')) =0
where ¢: M — X denotes the natural inclusion map. Hence

fﬂ/\gga' = f Lt (9/\0’) “/55-9/\0’
1] M 11
= —/ (5 (5;_:;-9/\ u’) - ] Op- N
M 11
This implies
(6,#9pa’) =0 for all § € AZ°(E*) with 8g-0 =0, (3.4)

Hence, if
v = Ng-Op-#0pa € A%I(E')a

then we have
# 1y € Gy (B),
Op# 'y = —# '0p-y = —# '0p. Np-Op-#0pa’ = —dpa
by (3.3) and (3.4). We set
Aa=a +#71y. (3.5)
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(ii) By the Hodge decomposition theorem for L%D,l) (Q,E) (cf. [5]), we
have a decomposition

Aa = ppAa + 905 Ne Aa, (3.6)

where pp (resp. Ng) denotes the orthogonal projection onto the
harmonic space (resp. the Neumann operator). Let v' = 9z NgAa.

(iii) We restrict the decomposition (3.6) onto M. Since a is dg-exact,
there exists vo € Ay°(E) such that u(pgAa) = 9gvo. Then, if we
set

v=vo+uv) € A°(E),

we have Ogv = a.
The main analytical work is to estimate |[v||zz(as) by ||al|z2(ar). Since

the harmonic space is finite dimensional, it is reduced to estimate
[jv “H’i(ﬂ) by |l |JH§(Q)' It is done by decomposing

¢v' = P(Cv') + P*(¢v) + P(¢v) + R(¢v)
where ( = (;, P° € P°, Pt € P*, P~ € P~ and R is of order —1.
|1PO(¢v" )+ P~ ()| is estimated by ||Aa—ppAal| and then
by [l4all,-3 ¢
is finite dimensional. By (3.5), ”Aa”H-’B(n; is estimated by ”a!”Hﬁ(ﬂ)'
Instead of estimating || P*(Cv') ”H,} @ Ve estimate || PT(¢#19)||
This is also done by Theorem 2.1 and Proposition 2.17 of [8].

HE (@) (@)
» using Theorem 2.1 and the fact that the harmonic space

HY (@)

Lemma 3.2 If P € P* then there exists P' € P~ such that
#Pa = P'#a holds for a € ALY (E) with Supp a C U.

Proof. We may assume that Ejy and E}j; are trivialized as holomorphic
vector bundles. Then # is represented by a composition of the complex
conjugation and a C*°(U)-linear map. Then Lemma 3.2 follows from the
following assertion which is obvious from the definitions of P%: For P €
P+ then there exists P’ € P~ such that Pu = P'@ holds for u € C§¢(U).
a

By Lemma 3.2 using Theorem 2.1 again, ||P*(¢#7'7)ll,4 @ 1S &
timated by ||#0pa ”H'i(n) and then by |« 1|H’5(ﬂ)'
”P+(CU’)1|H§(Q) follows from this estimate of ||P*(¢#17)||

Thus we proved (3.1) and hence Theorem 3.1.
Theorem 3.1 implies the following.

An estimate of

HYQ)
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Corollary 3.3 (Cf. [8], Corollary 4.14) Under the same assumption as
Theorem 8.1,

(1) 1m {Bp: L) (M, E) = Liyo)(M, E) } is closed,
(2) Im {0 = BB Ly o)(M, E) — Lo (M, E)} is closed,
(3) Im {mg"” =Bgdg: L%, (M, E) — L% (M, E)} is closed.

The proof is same as Corollary 4.14 of [8].
By Corollary 3.3, we have the strong decomposition;

L} (E) =Ker 059 @ Im 059 (g=0,1).
We denote
H%9(E) = Ker D(U )

and by p§, and N§ the orthogonal projection onto H®9(E) and the partial

inverse of 019 respectively.

Proposition 3.4 (1) 9gp® = pLdg = 0, dgpk = pR0g = 0,
(2) 9gOeNg = 1 — pg, NgBgde = 1 — pg on Dom B,
(3) OeNgdg = 1 — pf on Dom T,
(4) OgdgNL = 1 — pk, NLOedg = 1 — pk on Dom Og.
Proof. (1), (2) and (4) are clear from the definitions of pf and Ng.
Proof of (3): For v € Dom d, 9, (1 — BeNEDy ) v = Opv — OpNgpv =

0. If gv = 0, then (1-”5,;1\?&3})1; = v. Therefore we have
1 -3gN28g = pL. on Dom By, O

4. Estimates of operators

Let p§: LY, ) (E) = HOO(E) and N§: L}, ) (E) — Dom (Dm"ﬂ) be
operators defined in §3. Let || [|x) and | |(a) be the Folland-Stein norm of
order k and the nonisotropic Lipschitz norm of order a respectively (cf.
[6] for these norms).
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Proposition 4.1 Let k > 0 and a > 0.

lezull < Cllullg, |PEul@) < Clu|(a). (1)
logullw < Cllullg, lpEul(@) < Clul@). (2)
INgulk+2) < Cllully, |Ngu|(a+2) < Clulay- (3)

We fix the Levi metric on M, then by Theorems 15.19 and 15.20 of
[6], (1) and (3) of Proposition 4.1 follow from the following assertion (4.1)
((2) follows from (3)):

(4.1) N2 and p, are operators of order —2 and 0 respectively in the Heisen-
berg calculus on M relative to the contact plane field underlying the
CR structure.

Assertion (4.1) is a consequence of the Heisenberg calculus in §25 of
[1] where (4.1) is proved for E = 1,;. We follow the argument of [1].

(i) Let y € M. For the local Heisenberg model operator Of of DE-,-E 2

there exist a partial inverse Q% of 0% and the projection Si onto
the complement of the image of 0§ such that

OLQYL + S = 1. (4.2)

Theorem 23.9 of [1] proves the assertion (i) for E = 1,,. It also provides
that Q% and S since 0% = &0, (4.2) implies

O%9QY + S% — I is of order — 1. (4.3)

(ii) There exists a local Heisenberg operator (a V-operator, in the ter-
minology of [1]) Sg of order 0 such that

i Seve ~ 0, (4.4)

Sg — (SE)* is of order — 1.

Assertion (ii) is proved by Theorem 25.59 of [1] for E = 1, by con-

structing the kernel of S* asymptotically using an asymptotic expansion

of ¥. The same calculation is still valid for Jg since the asymptotic ex-

pansion of Yg has the same leading term as &"J;. If Sg is the adjoint of
Sz, then

D(E?'D)S'E ~ 0,

5 _ (4.5)
Sg — Sg is of order — 1.
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Then using Proposition 25.4 of [1], we can adjust Q% and Sg to local
Heisenberg operators Qg and Sg having the same order and the properties

DQ'G)QE +Sg~1,
Sg ~ Sp ~ SE, OV Sg ~ Sg0%Y ~ 0,
SeQe ~ QeSg ~ 0,
Qe ~ Qg 05”Qs ~ QeO0g”.
By patching the local operators as above using the partition of unity, we

can globalize them to global Heisenberg operators having the same order
and satisfying (4.6). Finally, (4.1) follows from Theorem 25.20 of [1].

(4.6)
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CHAPTER X

Discrete Groups of Complex Hyperbolic
Isometries and Pseudo-Hermitian Structures

Shin Nayatanit

Abstract

For a discrete isometry group of complex hyperbolic space, we
construct a distinguished contact form on the quotient of the do-
main of discontinuity (contained in the sphere at infinity) by the
group, compatible with its strongly pseudoconvex CR structure.
We compute the pseudo-Hermitian curvature and torsion of the
contact form, and indicate an application.

Introduction

Complex hyperbolic space HE“ is a complete, simply-connected
Kahler manifold of complex dimension n + 1 whose holomorphic sectional
curvature is identically —4. Each automorphism (= holomorphic isome-
try) of Hg*! extends to its boundary at infinity 0, Hg'' = S?"+!  and
preserves the standard strongly pseudoconvex CR structure on it. The
automorphism group of Hg'! is thus identified with the CR automor-
phism group of $?**!  and we may use the common notation Gg(n + 1)
to denote both these groups.

Let ' be a torsion-free, discrete subgroup of Gg(n + 1). Then I acts
on HE&*! properly discontinuously and freely, and the quotient manifold
HZ* /T inherits the local Kahler geometry of Hgt!. Turning our sight to
the boundary $%"*!, the domain of discontinuity (T') is the largest open
subset of $?"*1 on which I' acts properly discontinuously and freely, and
the quotient manifold X = Q(T') /T’ comes equipped with a natural CR
structure, locally equivalent to the standard one of S?**!. Since this CR
structure on X is again strongly pseudoconvex, the underlying corank one

TPartly supported by the Grant-in-Aid for Scientific Research, The Ministry of
Education, Science, Sports and Culture, Japan.
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subbundle gives a contact structure, and a choice of compatible contact
form gives rise to a pseudo-Hermitian geometry on X.

In this paper, we propose a distinguished contact form # on X com-
patible with the CR structure. The standard contact form 6, on S**+!
is not invariant but rather transforms “conformally” under the action of
Ge(n + 1), and our idea is to multiply #, by a positive function A on Q(T')
so that the resulting contact form # = Afy be I'-invariant. In fact, fol-
lowing the construction [12] in the conformal category, we display such
a A explicitly in terms of the Green function for the CR Yamabe oper-
ator of (S?**! fy) and the Patterson-Sullivan measure on the limit set
A(F) = g%\ G,

Upon computing the pseudo-Hermitian curvature and torsion of 8, it
turns out that they are closely related to the critical exponent §(I") of T,
which coincides with the Hausdorff dimension of A(I") with respect to the
Carnot distance of S*"*! for convex cocompact I' [5]. For example, it is
roughly true that if 6(I') < (resp. =, >) n, the pseudo-Hermitian scalar
curvature of # is positive (resp. zero, negative) everywhere (see Theorem
2.4 for the precise statement).

We then discuss a possible application; a differential-geometric proof
of M. Bourdon and C.-B. Yue’s recent result on the Hausdorff dimension
of the limit set of a “complex quasi-Fuchsian group” [2, 18]. In fact, we
reduce this result to a conjecture on vanishing of the cohomology of X
which we believe could be proved by applying (possibly an appropriate
improvement of) M. Rumin’s general pseudo-Hermitian vanishing theo-
rem [14] to our contact form 6. While this conjecture is left unproved, we
prove a related vanishing result for H*(X;R) (Theorem 3.5).

This paper is organized as follows. In §1 we review basic concepts,
formulas and examples in CR and pseudo-Hermitian geometry. In §2,
for a discrete complex-hyperbolic group, we construct a contact form on
the quotient of the domain of discontinuity by the group, and compute its
pseudo-Hermitian curvature and torsion. In §3 we indicate an application
of our contact form, and prove a vanishing result.

We have learned that C. B. Yue [19] constructed the same contact form
as ours, and computed its pseudo-Hermitian scalar curvature.

1. Preliminaries

Let M be an orientable manifold of real dimension 2n + 1. A CR
structure on M is given by a corank one subbundle Q of T M, the tangent
bundle of M, together with a complex structure J : Q — Q. We shall
assume throughout that the CR structure is integrable; that is, it satisfies
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the formal Frobenius condition [@1°, Q1] c @', where
QW ={ZeQ®eC|JZ=V-1Z}.

Note that Q' is a complex rank n subbundle of TM ® C satisfying
QYNQ™ = {0}, and recovers @ and J by Q = Re(Q'° ®Q0) and
JHZ+2Z)=+=1(Z-2Z) for Z € Q"°, respectively.

Let 8 be a one-form on M whose kernel is the bundle of hyperplanes
@. Such a 8 exists globally, since we assume M is orientable, and Q is
oriented by its complex structure. Associated with 6 is the real Hermitian
(i.e., J-invariant, symmetric) form Ly on Q:

Le(X,Y)=d0(X,JY), X,Y €Q,

called the Levi form of 8. If @ is replaced by ¢ = A, A > 0, then
Lg changes conformally by Lg = ALg. Two such forms 6 and &' are
called pseudoconformal to each other. We shall assume that M is strongly
pseudoconvez, that is, that Ly is positive definite for a suitable choice of
6. In this case, @ gives a contact structure on M, and we call 8 a contact
form.

The most important example of an integrable CR structure is that
induced by an embedding of M in a complex manifold © of complex di-
mension n + 1, in which case Q' = T1°Q N (TM ® C). If p is a defining

7 o -
function for M, then one choice for the contact form is § = ——2——(3 —0)p.

A pseudo-Hermitian structure on M is a CR structure together with
a choice of contact form §. Corresponding to such a choice, there is a
unique vector field (Reeb field) 7' = Tp on M transverse to @, defined by

do(T,.) =0, 6(T)=1.

This defines T uniquely because dd is nondegenerate on @ and thus has
precisely one null direction transverse to Q. Also, M carries a natural
volume form 6 A (d8)". The Levi form Ly will be denoted by g when it is
regarded as a Hermitian metric on Q. For p, ¢ € M, the Carnot distance
d(p, q) between p and ¢ is defined as the infimum of g-length of curves
from p to ¢ whose tangent vectors lie in the contact subbundle Q. By
Mitchell’s calculation [11], the Hausdorff dimension of M with respect to
the distance d is 2n + 2.

On a pseudo-Hermitian manifold (M, @) there is a natural affine con-
nection D = D, known as the Tanaka- Webster connection [16, 17]. The
connection D is characterized by the following conditions:

(i) the contact subbundle Q is D-parallel;
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(ii) the tensor fields ¢ = Lg, T and J are all D-parallel;
(iii) the torsion tensor Tor of D satisfies
Tor(X,Y) =d8(X,Y)T,
Tor(T, JX) = —J(Tor(T, X))
forall X, Y € Q.

It follows from the conditions (i), (ii) that # and d@ are also D-parallel.
Explicitly, for sections X, Y of Q1°, the covariant derivatives DY,
DxY and DrY are the sections of Q' given by

DxY = the Q"%-component of [X,Y], (1.1)
9(DxY,Z) =X -g(Y,Z) — g(Y,DxZ) for all sections Z of Q'°, (1.2)

DrY = the Q'%-component of [T,Y], (1.3)

respectively. Moreover, DxY = DxY, Dy
DT = 0. It follows that

= DxY, D;Y = D;Y, and

Tor(T,Y) = —(the Q1-component of [T, ¥1): (1.4)
The symmetric bilinear form 7 on @ defined by
7(X,Y) = g(Tox(T, X),JY), X, Y €Q,

is equivalent to Webster’s torsion one-forms of (M, 6) [17]. By the condi-
tion (iii) above, 7 is J-anti-invariant:

7(JX,JY) = -1(X,Y).

Henceforth, we shall refer to 7 as the pseudo-Hermitian torsion of (M, 6).
The pseudo-Hermitian curvature tensor R is part of the curvature ten-
sor of D which is characterized by

g(R(IX,JY)Z,W)
9(R(X,Y)Z, W)

Il

9(R(X,Y)Z, W),
9(R(Z,W)X,Y)

forall XY, Z, W € Q.
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The pseudo-Hermitian Ricci tensor is the real Hermitian form Ric on
(@ defined by

Ric(X,Y) =) g(R(X,e)er,Y), X,Y €Q,

where {ey,...,e,} is a g-orthonormal basis for Q. The pseudo-Hermitian
2n

1
scalar curvature is S = §trgRic, where we set try4 = ZA(e‘-, e;) for a

i=1
bilinear form A on Q. For a function u, dyu denotes the differential of u
restricted to @, and the Hessian of u with respect to D is given by

(Dydpu)(X)
= YXu—-(DyX)u, X,Y€Q.

Ddyu(X,Y)

Note that Ddyu is not symmetric since the connection D has torsion. We
denote by DdyuS¥™ the symmetrization of Ddyu:

Ddpu>™(X,Y) = %(Dd;,u(X, Y) + Ddpu(Y, X)).
The sublaplacian A,, which is subelliptic, is defined on u by Ayu =
-—t.rng;,u.
We now recall the transformation law for the pseudo-Hermitian curva-
ture and torsion under a change of contact form [9, 10]. Let §' = ¢*/0 be a
new choice of contact form for the CR manifold M. The pseudo-Hermitian

Ricci tensor, scalar curvature and torsion associated with @' are
1

Ric’ = Ric — 2(n + 2) (Ddpf™) Y + (Apf — 2(n + 1)|dof?) g, (1.5)
S =e Y (S+2(n+1)Asf —2n(n+1)|dpf?), (1.6)

7 =7 —2(Ddpf — 2dpf ® dpf)?, (1.7)

respectively, where A (resp. A®) is the J-invariant (resp. J-anti-
Invariant) part of a bilinear form A on Q; that is,

AV(X,Y) = (A(X,Y) + A(JX, JY)),

AP(X,Y) = 5(AX,Y) - A(JX, JY))
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. 1 3
for X,Y € Q. Letting f = Elogu so that €2/ = u*", we may rewrite

(1.6) as
§'=y "t (2(—73—5—-}1135,11, - Su) ;

2(n+1)

The operator £ = Ay + S is called the CR Yamabe operator [8].

Ezample. Let S"*! ¢ C™*! be the unit sphere:

S+l — {z=(zl,...,zn...1) eC* | |22 =2-2= 1},
n+1
where v - w = Zv,vwi for v=(v1,...,Un41), w = (Wy,...,Wny1) € C**L,

i=1
As a real hypersurface in C**!, $2"*! is equipped with an integrable CR
structure. Explicitly, the subbundle @ and the complex structure J are
given by

Q. ={XeC*|X-2=0}, zeS™,

and
JX=v-1X, XeQ,

respectively. With p(z) = |z|> — 1, a defining function for S?"*!, let

Y L6-0

— n+l
= "'—2_1 Z (Z{dig — E;dzi) »

% =

i=1

It is easy to verify that the Levi form Ly, is twice the standard Rieman-
nian metric of S?**! restricted to Q. Hence the CR structure of S?**! is
strongly pseudoconvex. We shall refer to 8y as the standard contact form
of S2n+l‘

Ezample. The Heisenberg group H***! is the Lie group whose underlying
manifold is C* x R with coordinates ({,t) = ((1,...,(s,t) and whose
(nonabelian) group law is given by

¢, t)+ () =+ t+t'+2Im(¢- ().

The Heisenberg norm of =z = ((,t) € H?>"*! is

1/4

llzll = (I¢I* +¢2) "7,



X. Discrete Groups of Complex Hyperbolic Isometries 215

and the Heisenberg dilations are the mappings
T—ar = (aC,aQt) , a>0.
We have the identities
a(z +y) =az +ay, |laz|| = allz|

for a > 0 and z, y € H>"+1,
The complex vector fields

3 -0
Ly =—+vV=-1(— =1,...
(=3 acu + CO at: « 1:! ] n)
are left-invariant, and then Q° = spanc{Z,, ..., Z,} gives a left-invariant

CR structure on H?"*!. It is also strongly pseudoconvex, and the left-
invariant one-form

0=} (@ vTY i - ) )
a=1

is the standard choice of contact form. Indeed, the Levi form of 8, is given
by Lo, (Za:Zs) = Oags, that is, {Z1,...,Z,} is an orthonormal basis for

d
Q" with respect to Lg,. T = 25 is the Reeb field associated with ;.

Since [Za, Zs] = V=164T and [T, Z,] = 0, it follows from (1.1)-(1.4)
that {Za, Za, T} is a parallel frame for the Tanaka-Webster connection,
the pseudo-Hermitian torsion 7 vanishes identically, and so does the cur-
vature. Also, the Hessian and sub-Laplacian associated with 6, is given
by
Ddyu (Za, Zg) = ZgZou, Ddyu(Za,Z) = ZsZau,
Au == (ZaZou+ ZoZau),
a=1

respectively.

The sphere S?"*1, with one point removed, is CR equivalent to H?"*!.
Indeed, the mapping

E (agvesys Znt1) € §2n+l \{(0,...,0, -1)}
- (1 21 Zn vV—=1(Z51 — Zn41) ) € HH

+2Znt1 1+ 2Zng1’ (T4 204a) (1 + Zog1)
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gives a CR equivalence. Hence F*#, is a contact form for the CR structure
of $?"*1 and thus has the form Mgy, A > 0. Explicitly, we have

1 4
Fo=—— 8, bo=F(——__9,).
Bl Ty L ((1+|cy2)2+c2 1)

From now on, we identify S?"*1\{(0,...,0,—1)} with H?"*! through F,
and omit F' from the formulas.

Since 6 is locally pseudoconformally equivalent to 6;, which is flat,
Chern’s pseudoconformal curvature associated with #, vanishes, and thus
the pseudo-Hermitian curvature of 6y is completely determined by the
pseudo-Hermitian Ricci tensor [17]. Computation based on the formulas
(1.5)-(1.7) gives

R.ii’.‘g;o = (n + l)gg, Sga = n(n + l), To, = 0.

We now determine the Green function for the CR Yamabe operator
Lg,. Rather than working with the definition of Green function, we exploit
the fact that the contact form G(-,wg)* ™8y, where wy = (0,...,0,—1),
coincides with 8; (up to a constant multiple). Since 8; = |1 + 251|260,
it follows that G(z,wp) = |1 + zn41|™™. By the invariance of G under the
action of the unitary group U(n + 1), we obtain

Glzyw)=|1-z-a|™

(up to a constant multiple).

We denote the group of CR automorphisms of $?"*! by Autcg(S**+1).
For v € Autcg(S?™*!), we define a positive function j, on S?"*! by v*, =
J~260. We have

Lemma 1.1
G(yz,7w) = jy(2) "y (w) "G(2,w), 7 € Autcp(S*H), z,w € ST,

Proof. It is known and easy to verify that the CR Yamabe operator
satisfies the transformation law

Lod=u"% Lo(ud),
where ¢ = u2/"6.

Clearly, (z,w) — G(vyz,7w) is a Green function for £..q,. We shall
show that G'(z,w) = j,(2) "j,(w) "G(z,w) is also a Green function for
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L.-g,- The lemma will then follow from the uniqueness of Green function.
For any function ¢, we compute

[ G ) (Erad) ()78 Ad (60" (2)

N fs (32(2) "y () "G (2, w)) (3(2)" ") L, (74"0) (2))
X j4(2)*" 260 A dbo™(2)
= jv(w)_n [ G{z,w)ﬁgo (j1n¢) (z) 6o A df?on(z)
Sin+1
= Jy(w)™" (3,"¢) (w) = p(w).

We have used the above transformation law in the first equality, with
¢ = 6y and u = j,". This shows that G’ is a Green function for L,.4,,
completing the proof of Lemma 1.1. O

2. Canonical contact form

As a model of complex hyperbolic space Hg™, we take the ball
Bgt! = {z €C™! | |z| < 1}

endowed with the Bergman metric

1 n+1 1 n+1 n—+1
1_—|z|2 {; dz; - dz; + 1——|Z|2 (Z Z,'ng) . (Z Zdej) } >

i=1 j=1

normalized to have holomorphic sectional curvature —4. Each holomor-
phic isometry of Bg™ extends to S?"*! = 9 Bg*!, and gives a CR auto-
morphism of S?**!. The automorphism group of Bg™" is thus identified
with Autcp(S?*1), and we use the common notation Gg(n + 1) to de-
note both these groups. We refer the reader to Goldman’s monograph
[6] for extensive information on the complex hyperbolic and spherical CR
geometries.

Let I be a discrete subgroup of Gg(n + 1). Its limit set A(T') is defined

as the set of accumulation points in Bg™ of the I-orbit of any point in

Bg*!. Since T acts properly discontinuously on Bg*!, A(T) is a (closed)
subset of S?"*!. The complement Q(I') = §2"+1\ A(T) is called the do-
main of discontinuity of I'. It is the largest open subset of $?"*1 on which
T acts properly discontinuously. If I' acts on Q(T') freely, which is the
case if I' is torsion-free, then the quotient manifold X = Q(T") /T’ comes
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equipped with a natural CR structure, locally equivalent to the standard
one of $?"*1. The critical exponent 6(T) is defined by

o(T") = inf {s >0 [ Ze"‘“z"") < oo},

~el

where z, w € BE*! and d is the complex-hyperbolic distance function on
BE*!. Note that 6(T') is independent of the particular choice of the points
z, w. It is known that 0 < §(T") < 2n + 2.

Following S. J. Patterson [13] and D. Sullivan [15], K. Corlette [5]
constructed a distinguished family of measures on A(T"), which we now
recall.

Proposition 2.1 There ezists a family of Borel measures u,, z € B¢,
which has the following properties:

(i) mo(A(T)) =1;

(ii) p. = e %= )y, where § = §(T) and b is the Busemann function of
complez hyperbolic space;

(iil) v pe = py-1z, Y €T
It follows from (ii) and (iii) of the proposition that pq satisfies

800,y eT. (2.1)

Yo =e
We call measures y,, z € B&'!, as in the proposition Patterson-Sullivan
measures.

We shall now construct a distinguished contact form on Q(I") which is
compatible with the CR structure and hence has the form u?/"6,, where
u > 0 and @ is the standard contact form of S*"*!. Let pu = po be a
Patterson-Sullivan measure with base point at the origin 0. We consider
the positive function u on Q(I") of the form

w2 = ([ ctwriw), zeam) (22)
A(T)

where G is the Green function for Lg,, and determine the exponents p
and g so that the contact form 6 = u?/"8, be I'-invariant. Recall that the
one-form 6, the function G and the measure p respectively satisfy the
transformation laws

760 = jx?00,
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G(yz,yw) = j,(2) "4y (w) "G (2, w),
Yp= j’vJ#
for v € T and 2, w € S**!. The last one follows from (2.1) and the
identity j, = e ®(""'%"). We compute:

ulyz) = ( / RS w)*’du(w))q

if we choose p = §/n, and hence

70 = (won)rby
= (%" j,%60
= 0

if § >0 and ¢ =n/d (= 1/p). We thus obtain, assuming d = 6(I") > 0,

2/6
g = ( G(z,w)‘”“dp(w)) Go
A(r)

([Mr) w(zrw)“sd#(W))m 6o, (2.3)

where ¢(2,w) = |1 — z-@|. Since @ is I'-invariant, if I" acts on Q(I") freely,
@ projects to a contact form on the quotient manifold X = Q(T") /T which
is compatible with the CR structure. We denote this contact form on X
by the same symbol 8, and call it the canonical contact form of X.

Remark. If we take p = g = 1 in (2.2), then the contact form u%"8, has
vanishing scalar curvature. Indeed, the pseudo-Hermitian scalar curva-
ture is computed by

S = u'LFﬁgou
= uR | L4G(-w)du(w)
A(D)
=0 on Q).
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The above construction of the canonical contact form is a modification
of this one, achieving the I'-invariance of contact form rather than the
vanishing of pseudo-Hermitian scalar curvature.

For the computation of the pseudo-Hermitian curvature and torsion
of 6, it is more convenient to write 6 in the form v% "8, where v > 0 and
6; is the standard contact form of H***! = §?"+1\{(0,...,0,—1)}. The
identification mapping F~! : H?"*1 — §27*1 is given by

,l(x) - ( 2C1 2Cﬂ 1- ]C|2 + V/-t)

1+ [CP = V=1t 14+ = V=1t 1+ [C2— V=1t

where z = (¢, t) € H*"*!. By direct computation, we have

¢ (F7(z), F7'(y)) = M2)Aw)#r(z, v),

where

_ /2
() =5 [IC= 1+ (=1 +2m¢- )], y=(¢e),

4 1/2
Me) = [(1 +ICR)% + t?] '

Let py = A~% (F~1)" i, and compute
f o (FY(z), )™ du(w)
A(D)
= [ e (F@ P ) (P )
F(A(I))

= Nz)™? e1(z, y) P dm (y).
F(AT))

M[‘—'

Since (F~1)" fy = \?6,, we finally obtain

2/6
(F1)6= (/F(Mm sol(-,y)“’dul(y)) o1,

or, omitting F,
2/8
o= ([ et ame) o
A(T)

We now give a few illustrative examples, where the canonical contact
forms turn out to coincide with the standard ones.
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Ezample. Suppose A(T") is a single point, say wo = (0,...,0,—1). For any
such I', 6(I") > 0 and p has to be the Dirac measure at wy. Therefore,

6 = go(-,wo)_zgo
1
—_—
T+ znal®

= |91:

the standard contact form of H2"*1 = §27+1\ {ay}.

Ezample. Suppose A(I") consists of two points, say wy = (0,...,0,%1).
For example, a Heisenberg dilation, transplanted on S?"*1, generates such
al. Then §(I") = 0, and the formula (2.3) does not make sense. A natural
choice of contact form is

9 o= ‘P('sw+)_1@(')w—)_190
1
= ——
I]-_zn+12| 2
1
— .
IS

Indeed, this @ is invariant by all the CR automorphisms of $?**! which
preserve {w.}. By direct computation, using the formulas (1.5)-(1.7), we

obtain
- +DKE o nnt DI
(ICl4 + )2~ (I¢|4 + )%
—(aCs
10(Zos Zg) = ———222
PRI el = V1)

Ezample. For 0 < k < n — 1, let BE™ be a complex geodesic subspace of
complex dimension k+ 1 in B"+1 and let SFH! = 9 BE!. We call such a
SE+1 4 C-sphere, while it is ca.lied a chain when k = 0. For example, we
may choose

B?:H = {(le---azn+l) € BEH |21 ="+ =20 :0}‘
Then, under the identification $?"+1 = H2"+1 U{co},
SE? = {(Gy- o nt) €M G =+ = Gy = 0} U {oo}.

Let I" be a discrete subgroup of G¢(n + 1) such that A(T') = SZ+! and
§(T) = 2k+2. (It is very likely that the latter condition would follow from
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the former.) Then, as a Patterson-Sullivan measure p, we may take the
measure associated with the volume form 6 A (d6)* of Sf:"“, normalized
so as to have unit total mass. Let H denote the group of all the CR
automorphisms of $?**! which preserve SF*!. It is known that H acts
on §2+1\ SZ+1 transitively [4]. Since y*u = j,**%u for every v € H,
the contact form @ is H-invariant. On the other hand, with the choice of
5‘%"‘“ as above, it is easy to verify that the contact form
0 = n*—lk = 0o = n-—i =
Z,‘=1 2i%i Zcx=1 Cala
is also H-invariant, and that 6 and ¢’ agree at (1,0,...,0) € $?"+1\ G2+1
(& (1,0,...,0) € H2**1). It follows that 6 = 8 on S?*+1\ S#*!, Again,
direct computation gives

61

Ricy = —(k +2) gln + (n — k) gln2,

where IT = spanc {Z;‘;f $oZpy Znktly- -+ s Z,.} and IT* is the orthogonal
complement of IT in @,

Sp = (n+1)(n — 2k — 2),

Tg = 0.
Let $2"*1 C C**! be the hyperboloid:

S = {205 240) €ECVE | =28 420 -2 =<1},

where 2/ = (z2,...,2n41). With the CR structure as a real hypersur-
face in C**1, $2"*1 is strongly pseudoconvex, as it is CR equivalent to
S§2n+1\ §Z=1 by the mapping

G: (211 z!) € ﬁ2n+l By (1/21&21/21) € Szﬂ+1 \S%n_l'

By direct computation, we obtain

G (L_ )
12y

i /_1 ~ n+1 . )
5 ["(zldfl ~ #1dz) + Z(zidzi — %dz;)

G0

i=2

The right-hand side is nothing but the standard contact form of $?"*?,
which is the pseudo-Hermitian counterpart of the hyperbolic metric in
Riemannian geometry.
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Ezample. For 0 < k < n, let B§™ be a totally-real geodesic subspace of
real dimension k+ 1 in Bg*, and let Sf = 8 B§™'. Such a Sf is called an
R-sphere, and an R- czrcie when k = 1. One possible choice of Bg'! is

k+1 n+1 '—"“'_Z""‘:O'
B = {(z;, coosZnt1) € BeT | Imz,1 k41 = =Imz41 =0 } ’
and then

k= {(C1,--- Goit) € R Ian k+1 Cn—k— ;mcf?; 0 }U{OO}“
The k = 0 case is nothing but the second example above. In what follows,
we assume k > 1.

Let ' be a discrete subgroup of Gg(n + 1) such that A(T') = S§ and
o(I') = k. (This latter condition would also be superficial.) Again, the
normalized (Riemannian) volume form of S§ gives a Patterson-Sullivan
measure, and the contact form 6 is invariant by the stabilizer H of S§.
Its action on S?"*!\ SE is transitive if and only if k = n, when we can
obtain an explicit form of # as in the last example. We use the fact that
S§2n+1\ St is H-equivariantly diffeomorphic to the unit tangent sphere bun-
dle S(Hg™) of the real hyperbolic n + 1-space, where H acts on S(Hg')
by the tangent maps of isometries of Hg'' [4]. We pull back the Liouville
form of S(HE'") to obtain an H-invariant contact form

. 1
& =. m 90
on §?"*1\ Sk and we must have § = #' (up to a constant multiple). In
view of this and the second example, it is natural to expect

1

n 80
I]- - Zi.—j-rf—k+l ziz|
1

2
IC C \/—t_ a=n—-k+1 C“‘2| '

for general k. Assuming this, we compute

9 —3

(n+1)Tet oG
=T

P R 3 V) D e,
2!
|C C ‘/__t- p= n—k+1CP{

Ricy 59,
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-1
B
T( 'B} C ': \/_t - Zp_n——k+1 <P
(Ca eaCct)(Cﬁ — eﬁCﬁ)
x (Ea aB""’ C C \/_t Z e Cpg) )
where

. = 0, 1<a<n-—k,
711, n—k+1<a<n.

Observe that Ricy is positive semidefinite, and vanishes precisely on .S'?Ck'”

\ S, where .5'2’“‘1 is the minimal C-sphere containing Sg. In particular, if
k =n, Ricg vamshes identically, and so does the whole pseudo-Hermitian
curvature of 8.

We shall now compute the pseudo-Hermitian curvature and torsion
of the contact form 6. Since 8 is pseudoconformally equivalent to the flat
contact form 6, its pseudo-Hermitian curvature is completely determined
by the Ricci tensor. Let

f =log (/A(f) e1(-, y)“‘dm(y))m

so that § = e2/8;. By (1.5), (1.7), we have

Ricy = —2(n +2) (Ddp f¥™)V + (Af = 2(n + 1)|dpf2) g1,  (24)

79 = —2(Dds f — 2d,f ® ds ), (2.5)
where g; = Lg,, and Ddyf, Ayf and |d,f|? are computed with respect to

;.
Recall that

1 _ . 011/2
er(e,y) = [lc = ¢+ (= +2mme - )]

where z = ((,t), y = (¢',t'). Letting ¢,(z) = p1(z,y), we first compute
the derivatives of ¢, along Q:

&
Zasob‘ W ( R Ca) 1

(¢ = &) (S8 — Ch) + Pbags

Z_ﬁzﬂ(py = 2|¢I ]
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d - _. . _
ZsZaty = 37 (G—-C)(G—E),

where )
d=|(-¢P+vV-1(t—-t'+2Im(- ().
It follows that

n
[db‘PyIQ = Qlea‘Py|2
a=1

1
= '§|C = Clzr (26)

- 1 —
Ddb(’oys)"m(za, Zﬁ) = 5 (?;Zatpy -+ ZQZ,B(Py)

= o7 |(Gur) @ao) + Glas0es] 2)

Dppy = “QZDdb‘Pysym(ZmZ_a)

a=1

= —(n+1)p, " |dspy [, (2.8)

Ddb‘\oy(zmzﬁ) = ZpZapy

"999_1(209%)(259%)- (2.9)
Note that (2.7), (2.9) mean
. i}
(Ddyip, ™)V =, [(dasoy ® dupy)™ + §|d650y|291] , (2.10)
(Ddb‘ipv)m = —py " (dopy ® dbﬁ"y)m ) (2.11)

Trespectively.

We now fix an arbitrary point z € Q(T') and compute the right-hand
sides of (2.4), (2.5) at . We introduce a measure v; of unit total mass on
A(T) by

v = ©1 [Ia ')héou'l
ller(z, -)~epall’
where || - || denotes the total mass. By direct computation, we have

dpf = _f ‘Py—ldb‘say dvl(y)a
A(T)
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paf = =5 [ o ldpdn)@ [ et dn
A(T) A(T)
+(6+1) / npy'2dbqsy ® dypy dy (y)
A(T)
~ [ oD dny)
A(T)
Using these together with (2.8), (2.10) we obtain
Ricg = —2(n+2)é [/ w0y 2dppy ® drpy dvi(y)
A(T)
) (1)
_f ﬁoy_ldb‘xoy dvi(y) ®/ Py dypy dvl(y)}
A(T) A)

+(2n+1) - 6) [ / e )

2} g1 (2.12)

f @y " Ldipy din(y)
A(T)

It follows that

Sg = %tl’gRng
2(n+1)(n — 8)e (2.13)

2
X [[ ‘Py_zldb‘Pylgdul(y) - |/ ‘Py_ldb‘qoy dyl(y) ] )
A(T) AT)

1l

where g = Lg. We now use (2.11) to obtain
g = —2(6+2) [ f oy 2dppy ® dypy dr(y)
A(D)
(2)
-‘j @y dypy dn(y) ® f ©y doipy dV1(y)] - (2.14)
AT) A(T)
We now introduce a symmetric bilinear form A on Q:, defined by

A = f @y~ 2dpipy ® dopy dva(y)
A(T)

- / Soy_ldbtpy d(y) ® [ (Py_ldb‘Py dui(y),
A(T) A(T)
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which is positive semidefinite, since the right-hand side may be rewritten
as
@2
f (soy‘ldwy 3 / @y dbpy dvl(y)) din(y).
A(T) A(T)

trg, A = / soy‘zlda%lzdvl(y)—’ / 0y " Ldpipy din (y)
A(T) A(T)

Then
2

and (2.12)-(2.14) are simplified as in the following

Proposition 2.2 The pseudo-Hermitian Ricci tensor, scalar curvature
and torsion of the canonical contact form 0 are given by

Ricg = —2(n + 2)6AM + (2n + 2 — §) (tr,A) g, (2.15)
Sp = 2(n+ 1)(n = 0)tryA, (2.16)
79 = —2(8 + 2)A?, (2.17)

respectively, where A" (resp. A@) is the J-invariant (resp. J-anti-
invariant) part of A.

For later use, we compute here the pull-back of A by the CR equivalence
F: 8>\ {(0,...,0,—1)} — H>+,

Noting that
p(z, w)
1+ 2n41][1 + wnia’
£ ‘P(‘?" ')—Eju'
Fryy = ————— (=:v),
”9?(21 }—6#”

e1(F(2), F(w)) =

we obtain

F*A

/ Pu 2dppuw ® dypw dv(w)
A(T)

- / Sow—ldb‘f:’w dl’(w) ®/ ipw_ldb(Pw dv(w),
A(T) A(T)

where ¢, = (-, w).

It follows from Proposition 2.2 that if § < (resp. =, >) n then Sp >
(resp. =, <) 0. To make this assertion more strict, we need the following
lemma. Note that if A!) vanishes on a subspace II of Q., z € Q(T), then
it (or equivalently A) vanishes on the minimal J-invariant subspace of Q,
containing II.
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Lemma 2.3 Let z € Q(T'), and suppose that A vanishes on a J-invariant
2k-plane Il in Q.. Then A(T) lies properly in a C-sphere C of codimension
2k such that z € C and T,CNQ, is orthogonal to I1. The converse is also
true. In particular, A vanishes on Q, if and only if A(T") lies properly in
a chain through z.

Proof. We have only to prove the first assertion and its converse when
k = 1. The general case follows from repeated use of the k = 1 case.
With X € II\ {0} fixed, the assumption is equivalent to the identity
A(X,X) = A(JX,JX) = 0. This in turn implies that ¢, dyp,(X) = 1
and ¢, " ldypw(JX) = cp for p-a.e. w, where ¢; and c; are real constants.
Since

w-Y

(pw_ldb(pw(]/) == _Re]. Ye st

—Z-w 1
these equations are equivalent to the single equation

w-X

1—-z-w

where ¢ = ¢; ++v/—1¢o. Then A(T') liesin C = {w € $?"+! | (X —cz)-w =
—c}, which is a C-sphere of codimension two, bounding a complex geodesic
hyperplane {w € Bg'' | (X —¢2z)-w = —c}. Since X € Q. = {Y €
C+'|Y. - 2=0},( X —cz)-z2=X-2—c= —c, thatis, z € C. On
the other hand, T,C = {Y € T, S*! | (X —¢2) - Y = 0}, and hence
T.CNQ, ={Y € Q.| X-Y = 0}. This is nothing but the orthogonal
complement of IT in Q.. Thus the first assertion is proved. The converse
may be proved by tracing the above argument backwards, which is left to
the reader. This completes the proof of Lemma 2.3. O

=¢ or (X-—cz) w=-—c,

If A(T') is a single point, then A, and hence the pseudo-Hermitian
curvature and torsion of @, vanish identically. It is known that the van-
ishing of pseudo-Hermitian curvature and torsion implies that 8 is locally
equivalent to the standard contact form 6; of H?*"+1.

Theorem 2.4 Let " be a discrete subgroup of Ge(n + 1) such that A(T)
is not a single point, and 8 the canonical contact form associated with T'.
(i) If 6(T') = n, then the pseudo-Hermitian scalar curvature of € van-
ishes identically.

(ii) If (') < (resp. >) n, then the pseudo-Hermitian scalar curvature
of 8 is positive (resp. negative) everywhere unless A(T") lies properly in
a chain of S™*1; if A(T) lies properly in a chain C, then the pseudo-

Hermitian scalar curvature of @ is nonnegative (resp. nonpositive) and
vanishes precisely on C'\ A(T).
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Proof. The assertion (i) is obvious from the formula (2.16). Suppose
that §(I') # n, and that Sy vanishes somewhere. Then by the formula
(2.16) and Lemma 2.3, A(T') lies properly in a chain C, and Sy vanishes
on C\ A(T'). If Sy vanishes at some z € Q(I')\C, then A(T') lies in
another chain through z. But two different chains have at most one point
in common, and therefore A(I") has to be a single point, contradicting the
assumption. This proves (ii) and completes the proof of Theorem 2.4. O

3. Cohomology vanishing and rigidity

Let Hg*' be real hyperbolic space of dimension n+1, and let Gg(n + 1)
denote the group of orientation-preserving isometries of Hg™'. We take,
as a model of Hg*!, the ball Bg*! = {z € R™*! | |z| < 1} endowed with
the Klein metric

n+1 n+1 2
i e i (8 m)

Then for k < n, HE'! is naturally embedded in HE'™' as a geodesic sub-
space, and in H¢ ey as a totally-real geodesic subspace. Correspondingly,
there is an embeddmg of Gr(k + 1) into Gx(n+1) for K =R, C.

Let T be a discrete subgroup of Gg(n + 1). Throughout this section,
we assume that ' is torsion-free. Let C(I') denote the hyperbolic (resp.
complex-hyperbolic) convex hull of A(T') in BEt! when K = R (resp. C).
The set C(T') is invariant under I, and we say that I" is convez-cocompact if
the quotient C(I') /T is compact. It is known that this condition of convex-
cocompactness is equivalent to the condition that Y = (B uQ(T))/T is
compact, and also that if I is convex-cocompact, then its critical exponent
&(T) coincides with the Hausdorff dimension of A(I") (with respect to the
Carnot distance of $?**! when K = C) [5, 15].

Let Iy be a discrete subgroup of Gr(k + 1) such that Bg™ /Ty is
compact. Through the above embedding, I'y may be regarded as a dis-
crete subgroup of Gg(n + 1), giving a convex-cocompact group such that
A(To) = S§ (= 0 BE™) and §(Ig) = k. H. Izeki (when K = R) [7], C.-
B. Yue [18] and M. Bourdon [2] have proved the following generalization
of a theorem of R. Bowen 3]:

Theorem 3.1 Let I'o be as above, and let p: Ty — Gg(n+1) (K =R,
C) be an injective homomorphism such that its image I' = p(Ty) is discrete
and conver-cocompact. Then the critical exponent of I' satisfies §(T) > k
(= 6(T)), and the equality holds if and only if I’ stabilizes a geodesic



230 S. Nayatani

subspace (resp. a totally-real geodesic subspace) B of dimension k + 1 in
Bg*™! (resp. B¢™) and B/T is compact.

It should be mentioned that the results of Bourdon and Yue are more
general than the statement here.

Izeki's proof of the K = R case of the theorem is based on two results
on the cohomology of the manifold X = Q(I") /T’; the vanishing theorem
which has been proved in [12], and a non-vanishing lemma. This latter
result can easily be generalized to the K = C case, and we obtain

Lemma 3.2 Suppose that k <n —1, and let Ty and I" be as in Theorem
3.1 with K = C. If the critical exponent of I satisfies §(T') < k, then the
(k + 1)-th real cohomology group of X = Q(T") /T is nontrivial.

Proof.  Since T is convex-cocompact, §(I') coincides with the Hausdorff
dimension of A(T') with respect to the Carnot distance of S?**!, which is
not less than the ordinary Hausdorff dimension of A(I'). Therefore, the
ordinary Hausdorff dimension of A(T") is not greater than k. This implies
mi(QT)) =0 for i < (2n+ 1) — k — 2. To conclude the proof, it remains
to repeat Izeki’s argument in [7, the proof of Theorem 5.1], which we shall
include here for the sake of completeness. It follows from the homotopy
exact sequence, the relative Hurewicz theorem and the universal coefficient
theorem that HY(Y,X;R) = 0 for i < (2n+ 1) —k — 1, where Y =
(B¢ uQ(I))/T. In particular, we have H*+*(Y, X;R) = O since k+ 1 <
(2n+1) — k — 1. Then by the cohomology exact sequence, H***(Y;R) —
H*+1{X;R) is injective. Now Y is homotopy equivalent to B¢*! /T since
both are K (g, 1)-manifolds. The latter manifold has a structure of disk
bundle, and hence is homotopy equivalent to its base manifold Bg™ /T.
The (k+1)-th cohomology group of Bg* /T is nontrivial as it is compact,
orientable and has no boundary. This completes the proof of Lemma 3.2.

a

Conjecture. Let ' be a discrete subgroup of Gg¢(n + 1) such that X =
Q(I') /T is compact, and let § = §(T").

(i) If k is an integer such that § < k < 2n — 1 -4, then H**(X;R) = 0.
(ii) If 6 is an integer, 6 < n — 1 and H**!(X;R) # 0, then A(T) is an
R-sphere of dimension 4.

We observe that the K = C case of Theorem 3.1 follows from this
conjecture combined with Lemma 3.2. Let I" be as in Theorem 3.1. Note
that there is a natural embedding of G¢(n + 1) into Gg(n + 2). By re-
garding I" as a discrete subgroup of G¢(n +2) if necessary, we may assume
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k < n—1. Suppose §(I') < k. Then by Lemma 3.2 and the conjecture, we
must have §(I') = k and A(T') is an R-sphere of dimension k. Then C(T')
is a totally-real geodesic subspace B of dimension k + 1 in Bg¢*!, and B/T
is compact since I' is assumed to be convex-cocompact.

Though we have not been able to settle the above conjecture, we can
prove a related vanishing result for H?(X;R), characterizing a chain in-
stead of an R-circle. This follows from the general pseudo-Hermitian van-
ishing theorem due to M. Rumin [14], which we now review. We believe
that the above conjecture would also follow by applying (possibly an ap-
propriate improvement of) Rumin’s result to our contact form.

Let (M, 8) be a pseudo-Hermitian manifold, and let Q*Q denote the
set of k-forms on the contact subbundle Q. By abuse of notation, we
denote the corresponding vector bundle by the same symbol. The metric
g = Lg on Q canonically extends to a fiber metric {, ) on Q*Q, while
the complex structure J on @ induces a decomposition of forms on Q
according to their bidegree, which we write

FQec= > Q.

pto=k

Let R : Q*Q — QFQ be the endomorphism defined on w € Q?9Q by

Rw = Y [e(6,)i(es)R(55, )w + e(8,)i(85) Rleq, T )]

po=1

n
P—q —
+ — Re,, ,
Y Z (€, Ep)w
=1

where {e1, ..., e,} is a g-orthonormal basis for @', {6, ...,6,} is the dual
basis, and i(-) (resp. e(-)) denotes the interior (resp. exterior) product.
R is self-adjoint, and preserves the bidegree: R(Q2P9Q) C Q79Q. The
pseudo-Hermitian torsion 7 operates on forms on @ in a natural way,
giving rise to 7 : Q*Q — Q*Q. This is also self-adjoint, but violates the
bidegree in general, satisfying 7 (Q2P9Q) C QP1971Q + QP-14+1Q,
Let
J* = {we Q| Aw = 0},

where A : Q¥Q — Q*2Q is the adjoint of L = (df|g)A : Q¥2Q — QFQ.
Again, J* represents a vector bundle as well as the set of its sections. R
and 7 preserve J*, and may be regarded as quadratic forms on J* by
using the fiber metric. We are now ready to state [14].
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Theorem 3.3 Suppose M is compact and k <n — 1.

(i) IfR+(n—k+2)T is positive semidefinite on J*, and positive definite
at some point, then H¥(M;R) = 0.

(i) IfR+(n—k+2)T is positive semidefinite on J* and H*(M;R) # 0,
then there exists a global nonzero k-form w € J* which is D-parallel along
Q and satisfies (R+ (n—k+2)T)w =0.

We now assume that 6 is locally pseudoconformally equivalent to a
flat contact form, so that its pseudo-Hermitian curvature is completely
determined by the Ricci tensor. Precisely, we have [17]

n n
R(ep,%)ea = hyoa + has€p+8ps D hages+0ac D hyzes,  (3.1)
B=1 A=1

where

1 S
h= — o T
n+2 (R“’ 2(n + 1)-")
is the pseudo-Hermitian analogue of the Schouten-Ricci tensor in Rie-

mannian geometry, {e;,...,e,} is a g-orthonormal basis for Q'° and
hog = h(ea,€3). If we choose {eq} so that
hag = padap, M1 S o0 < pimy
then (3.1) is rewritten as
R(e,,€7)ea = (ko + Hp)(Spo€a + bacep)-

If {6,} is the dual basis, then

R(ep, €5)ba = —(Ha + Ho)(8pofa + apbo). (3.2)

We now assume n > 3 and compute R on

J2®C=0Q & N%Q & (Q"'Q NkerA).

{6a A 0s}1<acpsn (resp. {a ABs}icacpsn; {0a AOs}icas<n) is a basis for
Q%°Q (resp. 29%Q, Q11Q). 6. A3 € Q1'Q NkerA for a # 3, and the
orthogonal projection of 8, A 8, to Q11Q N kerA is given by

— 1 e _
Wa = O Ay — ;Zepmp.
p=1
n
The linear combination Z ZoWa, 20 € C,iszeroif and only if 2, = -.- =

a=1
Zn-
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Direct computation using (3.2) gives

R0, 785) = (1- 2) [(n +2)(ta+pip) +23° np] 0N, (33)
p=1

R@aAls) = R(aAG5)

= (1 = %) [(n +2)(ka + pg) + 22%] 0 A B5,(3.4)

p=1
R(6a A Og) = [n(:ua + ug) + QZ#P] 8o NBs, a# B, (35)
=1
Ry =2 [n,ua + pr:} Wo — QZ,ugwg. (3.6)
p=1 B8=1

n
Let w = Z ZaWe. Since (wq,wg) = dag — 1/n, we obtain

a=1

(m: w) =2 Z ‘:(n#o + Zﬁp) 5-::13 - (pe + :u,G)j| Za 3.

a,8=1

Here and in the following, we denote the Hermitian extension of (,) by
the same symbol.

n

Lemma 3.4 Let w = Zzawo, zo € C,

a=1
(1) If py + p2 > 0, then (Rw,w) > 0.
(i) If p1+ p2 > 0 and (Rw,w) = 0, then w = 0.

Proof. Let cap = (n#a *+ Z;:l ﬂp) 0ap—(Ka+13), and suppose py +pg >
0. Then for a < 8, cag = —(tta + 1£5) < 0. Hence

1
5(7?4», w) = Zcm|zn|2 + anﬁ(zﬁfg + Za2g)

a<f

> Y caalzal? + Y cas (|2al® + |25]2)
o

a<ff

= > (Caa +3° ca,&) |2a]*

a Ba
= 0.
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Thus (Rw,w) > 0, and the equality holds if and only if cag|2a — 25 =0
for a < 3. If py + po > 0 so that ¢35 < 0 for @ < 3, then the last equation
is equivalent to 2y = -+ = z,, or w = 0. This completes the proof of
Lemma 3.4. O

We shall now prove

Theorem 3.5 Suppose n > 3, and let T be a discrete subgroup of
Ge(n + 1) such that X = Q(I") /T is compact. Assume that the pseudo-
Hermitian torsion 1y of the canonical contact form 8 vanishes identically.
(i) Ifé(T) <2, then H*(X;R) = 0.

(ii) If6(T) =2 and H*(X;R) # 0, then A(T) is a chain.

Proof. Let )y,...,\, denote the eigenvalues of AV (viewed as a Hermi-
tian form on Q'°), numbered so that A\; > --- > A,(= 0). Then by (2.15),

(2.16), we have
Pa =2 (_6’\0 4+ ZAp) 3
p=1

and therefore

hi+ iz =2 [(2 —8)(M+X) +2fjxp] : (3.7)

p=3

n

D up=2n-8)> A, (3.8)

p=1

If § < 2, these are both nonnegative, and by the formulas (3.3)-(3.5) and
Lemma 3.4 (i), R is positive semidefinite on J2.

We remark that if § < 2, A(I") consists of more than one point. Indeed,
if A(T") is a single point, then I' contains a finite-index subgroup which is
conjugate to a cocompact Heisenberg lattice IV [1]. But then § = §(I") =
n+1 > 2, a contradiction. Now, by the argument in the proof of Theorem
2.4, A vanishes at most on a chain. Hence if § < 2, we have u; +
f2 > 0 almost everywhere. By the formulas (3.3)-(3.5) and Lemma 3.4
(ii), R is positive definite on J? almost everywhere. By Theorem 3.3 (i),
H?*(X;R) = 0, proving (i).

We now prove (ii). By the assumption and Theorem 3.3 (ii), there
exists a global non-zero 2-form w € J? which is D-parallel along Q and
satisfies Rw = 0. Since w is D-parallel along @, w has constant length,
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and in particular, it is nowhere vanishing. We still have Z 1, > 0 almost
p=1
everywhere. By the formulas (3.3)-(3.5), R is positive definite on

2*°Q © Q°*Q @ spanc{fa A s }azs
almost everywhere. Hence w is a linear combination of w, at each point.

n
Since w is real, w = Z v/=1z,w,, where z, are real. Now, by the proof
a=1
of Lemma 3.4, we must have c,5(z4 —25)? = 0 for a < 3. Sincew # 0, z,
are not all equal, and hence at least one of c,5 must be zero. This implies
w1 + p2 = 0, and therefore A3 = -+- = A, = 0 by (3.7). Suppose A\, > 0.
Then cag # 0 unless (a, 3) = (1,2), which implies that z, are all equal,
a contradiction. Hence A\; = A3 = --- = A, = 0. This holds everywhere,
since w is nowhere vanishing. Since A; > 0 almost everywhere, we must
have 9 = -+ = z,(=: y). By replacing z, by z, — y and multiplying by
a constant, we may assume that zo = --- = 2, = 0 and z; = 1, that is,

SO =
w=v~1 (91A91—E§9p/\9,,),

or
1 —
w + ;d&iq =+/—16; A 6.

It follows that the two-plane field I1; spanned by the real and imaginary
parts of e; is globally well-defined.
On the other hand, by Lemma 2.3, A(T") lies in a C-sphere of dimension
3 through any given point of (T'), and hence lies in a chain C, since
two different C-spheres of dimension 3 intersect at most along a chain.
It remains to show that A(T) fills C. Assume the contrary, and take
z € C\ A(l') and a J-invariant two-plane II, in Q. such that II, # (Ilp),.
Then there is a unique C-sphere S of dimension 3 such that C C S and
T.SNnQ, =1,. LetIl, =T,SNQ, for w € S\ C. By Lemma 2.3,
A vanishes precisely on ITI%, the orthogonal complement of II,, in Q.
This means that II,, = (Ilp),. By continuity, we obtain II, = (Ily)., a
contradiction. Thus A(I') = C. This completes the proof of Theorem 3.5.
O
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CHAPTER XI

Pseudoconvex Domains in P":
A Question on the
1-Convex Boundary Points

Takeo Ohsawa

Introduction

Let P" be n-dimensional complex projective space, let @ C P” be a
pseudoconvex domain, and let §(z) be the distance from z € Q to the
boundary of 2 with respect to the Fubini-Study metric. According to a
fundamental theorem of A. Takeuchi [T}, the function —logé is plurisub-
harmonic and enjoys an estimate

V=168(~ logd) > 3wrs,

where wps denotes the Kahler form of the Fubini-Study metric, and the
left hand side of the inequality is defined as a current. From Takeuchi’s
theorem it follows that (2 admits a strictly plurisubharmonic exhaustion
function, so that € is a Stein manifold. This means in particular that the
boundary of €2 is connected if n > 2 (cf. [G-R]).

Such an observation was applied by Lins Neto [LN] to prove certain
nonseparation properties of complex analytic foliations with singularities
in P". He showed in particular that if n > 3, then there exist no real-
analytic compact Levi-flat hypersurfaces in P*. Here a real hypersurface
of a complex manifold is said to be Levi-flat if it is the union of (not nec-
essarily closed) complex submanifolds of codimension one. This partially
answers a question raised by Cerveau [C] which asks whether or not there
eXist compact Levi-flat hypersurfaces in P* for n > 2.

The purpose of the present article is to introduce an attempt to solve
the following.

Conjecture. Let @ & P" be a pseudoconvezr domain with C*=-smooth
boundary. Then the set of 1-convex boundary points of Q is nonempty.
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Here we say that a boundary point of 2, say z, is 1-convex if = be-
comes a strictly convex boundary point of  after a local biholomorphic
coordinate change around z.

The corresponding assertion for the bounded domains of C" is triv-
ially true, because the farthest boundary point from the origin is strictly
convex. On the other hand, the result obviously fails for the products of
compact complex manifolds of positive dimensions. Moreover, there are in
fact various kinds of pseudoconvex domains with Levi-flat boundaries (cf.
[D-0}). For instance, the product of an annulus and the punctured plane
is biholomorphically equivalent to a domain in P! x {C/(Z++/—1Z)} with
Levi-flat boundary (cf. [O-1]). Therefore, to approach the conjecture we
need to deduce from Takeuchi’s theorem more than the Steinness of the
pseudoconvex domains. We shall only consider the case n > 3. We shall
show that there exist nontrivial 8, cohomology classes of type (0,n — 2)
with coefficients in sufficiently positive line bundles on Q. Provided that
the representatives of these are of class C>, we can show that these repre-
sentatives extend to O-closed forms on Q. Since  is Stein, this will yield
a contradiction.

The organization of the paper is as follows. In section one, we shall give
an elementary proof of Takeuchi’s inequality based on Royden’s theorem
on the embedded discs. In section two, we shall prove a variant of the
Bocher-Hartogs extension theorem.

1. A variational inequality

We shall present an elementary proof of Takeuchi’s inequality based on
the existence of a special coordinate around geodesic intervals on Hermi-
tian manifolds. A variational inequality for the distance function will be
first derived with respect to this special coordinate. It will then be noted
that the inequality thus obtained can be written in a coordinate free way
when the metric is Kahlerian. Takeuchi’s inequality will be deduced as a
corollary of the latter.

Let (M, g) be Hermitian manifold with real-analytic metric g, and let
I' C M be a geodesic interval, i.e., T is the image of a C'-imbedding

v: [0,1] - M
such that « is the critical point of the energy functional
1
e = [ (o) @s)™

Since the Euler-Lagrange equation of e, is elliptic of second order and
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with real-analytic coefficients, v is real-analytic. It is easy to verify that
the arc-length from 4(0) to v(s) is proportional to s (cf. [J]).

Let 3 be a holomorphic map into M defined on a neighbourhood of
[0,1] in the complex plane such that 8|[0,1] = 4, and let U D [0,1] be
a neighbourhood such that 8 maps U biholomorphically into M. We
may assume by Riemann’s mapping theorem that U is biholomorphically
equivalent to the unit disc A = {z € C | |2] < 1}. It is known from
the basic theory of several complex variables that, for any compact subset
K C B(U), one can find a neighbourhood W O K in M and a biholomor-
phic map p: A" — W satisfying p({0,...,0)} x A) = Wn 3(U). This
is known as Royden’s theorem whose proof relies essentially on the triv-
iality of holomorphic vector bundles over A and the existence of a Stein
neighbourhood basis of 3(U) (cf. [R], [D-G] and [S})).

Therefore we may choose a neighbourhood of I in M, say V, a neigh-
bourhood D D [0,1] and a biholomorphic map

t:V—-A"1'xD
such that
t(p) = (0,...,0,77'(p))
forany peT.
We put t = (¢,...,t,) and t' = (¢;,... ,tn—1), and express the metric
as

g= z gg(f)dfidfj.

ij=1

n-1 1
- Ognm
t,,::tn—i-g t,-/ ~2(0, s)ds
= Ju O o

Let

and
u= (ulf LR ,Un) = (t’rfn)'

Then if we express g in u as

n
9= §;(u)dudy;
ij=1
gnn(u’,Reu,) contains no linear terms with respect to u’. Once and for
all we shall fix such a coordinate u around I'. Moreover, multiplying a
constant by wu,, if necessary, we may assume that

n—1 n—1
(%) Gmn(u) =1— Y AjwBi—4Re Y Aintts(Im 1) — 2 nn (Tm )2+ 1(u).

i,5=1 i=1
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Here A\ij(= Aij(v/, @, Reu,)) and the u are real-analytic and u is of order
at least 3 in (u/,@).

Let 6(u) be the distance between u and the set {u | t, = 1} with
respect to the metric g. Then our first variational formula follows directly
from (x).

Proposition 1.

Z ﬁul (log u )) &,{1 = Gn]ﬂ? for any £ € C™.

Here

k= Iinf (Z r\ij(u)gigj) /1€1%.

uel’ ij=1
£#0

To get a more coordinate free expression of Proposition 1, let S be any
complex submanifold of M which intersects with I" orthogonally at ~(1).
Then the order of contact between S and {u | u, = 1} is at least two at
v(1). Hence Proposition 1 implies the following.

Corollary 2. Under the above situation,

1 e 1 2 n
Z_ 5553, (log m) &&; = gﬂlﬂ for £ € C".

Here 6g(u) denotes the distance from u to S with respect to g.

In case g is a Kéahler metric, x can also be replaced by a coordinate
free geometric quantity. Namely, in this case we are allowed to assume in
advance that

Vﬁ;j =0
for all 7 and j along T', replacing u; (1 <i<n-—1) by

n—1
wit Y Gige(tn)uun
Fk=1

for some holomorphic functions g;x in u,. (Clearly such a coordinate
change does not influence the second derivatives of §,, along I".) Therefore
the curvature form

ij=1

= (Z Gzydu, A du; )
1<ppr<n
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of g satisfies
O, = Aij

ijn

along I'. In particular if we put
ky = inf Z Ol L E 7T,
M E NTRN.
[€l=Inl=1

the inequality

K 2 Kum
holds whenever g is a Kahler metric. Thus we have reached as a conclusion
the following generalization of Takeuchi’s inequality.

Theorem 3. (cf. [E], [Su]) Let (M,g) be a connected Kihler manifold
whose holomorphic bisectional curvature is bounded from below by a con-
stant c. Then, for any pseudoconvex domain Q@ G M,

v/—188 log Jl > —w,
0

holds. Here w, denotes the fundamental form of g.

Takeuchi’s inequality follows from Theorem 3 because the holomorphic
bisectional curvature of 99log(1 + |z|?) ranges between 1 and 2. Here and
in what follows we often identity 0f with the complex Hessian of f.

2. Extension from the boundary

We shall establish an extension theorem for the 8,-closed forms on the
boundary of a pseudoconvex domain.

Let M be a connected complex manifold of dimension n > 2, and let
2 C M be any domain with C*-smooth boundary. Let C?%(QQ) be the
set of C* (p, q)-forms on the closure Q of 2, and let

CrI(@) = {u € CPA(Q) | uloq = 0}.

Here the restriction u|sq is to be understood as a differential form on 9.
We put
CP9(69Q) = CP(Q)/CF*(Q)
and denote by
Pe: CP9(Q) — CPI(0Q)
oPl: @, C*HQY) — CPI(0Q)

the natural projections. For simplicity we put

P9 (u) = ulsn.
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Let us define the 9y-operator

8y: CPI(8Q) — CPI1(0N)

by

Op = 0P od o (nP9)7 1.
Differentiable functions f on 99 satisfying 9, f = 0 are called CR functions
on 99. It is clear that f is CR if there exists a differentiable function fon
Q1 satisfying floq = f and 0 f=0. Let Ebea holomorphic vector bundle
over M, and let C?4(%, E) be the set of E-valued C* (p, ¢)-forms on Q.
Then the space CP9(9Q, E) and the operator

3y: CP9(Q, E) — CPI+1(9Q), E)

are defined similarly as above. _ _ _
Let us denote the kernel and the image of 9, by Ker?99, and Im?9*19,,
respectively, and put

HE4(09, E) = Ker" 1, /Im” D),

Lemma 4. For any a € CP4(0Q, E) N Kerd,, there erists an & €
CPA(Q, E) such that &|sq = a and that & vanishes to the infinite order
on 0.

Proof. An exercise for the undergraduates.

By virtue of a theory of Kodaira-Andreotti-Vesentini (cf. [K], [A-V-1]),
a sufficient condition for the C*-extendability can be stated as follows.

Theorem 5. Let (M, g) be a connected Kahler manifold of dimension n,
let Q C M be a relatively compact pseudoconvexr domain with C*-smooth
boundary, and let E be a holomorphic vector bundle over M. Suppose that
Q admits a C*™ defining function r such that

(*) 89(—log(—r)) > c (9log(—r)Blog(~r) + g)

holds on Q for some positive constant c. Then, for any a € CP(6Q, E)N
Kerd, with ¢ < n — 1, and for any nonnegative integer k, there ezists a
9-closed E-valued (p, q)-form &y of class C* on Q satisfying Gxlon = a.

Proof. Let & be as in Lemma 4. It suffices to show that for each positive

integer k, one can find a solution 8 to the equation 88 = da in such a
way that 3 is of class C* on §2, and vanishes on 9.
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As usual we shall regard dé as a (0, g+1)-form in the following manner.
Let Tj}o be the holomorphic tangent bundle of M. Then we have a natural
identification between CP4( -, E) and C%4( -, AP(T3°)* ® E) for any p and
q. We may regard 8@ as an element of C*9*1(Q, AP(T3°)* ® E). To show
the existence of the above 3, we take advantage of the fact that da is
square integrable on © with respect to the Kahler metric 99(— log(—r))
and for any fiber metric of (A?(T3)°)* ® E)|q of the form (—r)~Nh for
N > 0. Here h denotes any C* fiber metric of AP(T3°)* ® E.

From the assumption it follows that there exists a positive integer
Ny > 0 such that

(1) Nold ® 90log(—r) + 65 < 0

on €, where Id stands for the identity homomorphism of AP(T}f)* ® E,
O, for the curvature form of h, and the inequality is in the sense of Nakano
(cf.[N] or [O]). Since (*) implies that 89(— log(—r)) is a complete Kihler
metric, it follows from (1) that the L? & priori estimate for the d-operator
holds with respect to the metrics (99(— log(—r)), (=7)~Vh) at the degree
(0,g+1),if N> Nyand g <n—1 (cf. [A-V-2] or [O-2]).

Therefore, for any N > Ny one can find a C* E-valued (p, ¢)-form Gy
on Q such that 88y = 84 and By is square integrable and orthogonal to
the kernel of & with respect to 89(—log(—r)) and (~r)"Nh. One can see
that the trivial extension of Sy to M is of class C* if N > k. In fact, this
is a consequence of the ellipticity of d as in the standard case up to the
following small modification.

Let EIN) and 5; denote respectively the L? adjoints of § with respect

to (09(—log(—r)),(—r)"Nh) and (g,h). Then, as differential operators
on (,

%

—k 57’ *
O(N) = 8h + Ne (—T-)

where e(dr/r) denotes exterior multiplication by dr/r from the left hand
side, and e(0r/r)* denotes the adjoint of e(dr/r).

Using the assumption on the metric 99(— log(—r)) again, it is easy to
see that all the covariant derivatives of Or/r with respect to 99(— log(—r))
are bounded by const - (—r)™. Here the constants and m depend on the
order of differentiation.

Therefore one can deduce from the equations

{ _5_5N = 04
OmPn =0
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that, for any N; > 0, there exists N such that the trivial extension of 3y
belongs to the Sobolev space of order N; for the E-valued (p, g)-forms on
M. Hence, by the Sobolev embedding theorem, for any k one can find
N > k so that the trivial extension of By is of class C* on M.

3. Nontrivial cohomology classes

Let O G P" be a pseudoconvex domain with C*°-smooth boundary.
Let us assume that there exist no 1-convex boundary points of Q.

Let H C P" be a hyperplane such that ' := H N has a C*-smooth
boundary in H. Let z be any point of ¥’ and let U be any neighbourhood
of z in H. For the hyperplane section bundle [H] over P" and an integer
m, we denote by CP9(XY'\ {z},[H]®™) the set of [H]®™-valued C* (p, q)-
forms on '\ {z}. Let z = (z1,... , 2,—1) be a local coordinate around z,
and fix a C* function ¥ on H \ {z} such that 3 — log|z| is bounded on
a neighbourhood of z.

Then, for any positive integer k, let Cf;$™(U) be the subset of CP4(0'\
{z}, [H]®™|n) consisting of those elements u such that e*¥|u|? is integrable
on U with respect to the Fubini-Study metric.

Then we put

Hp$™(U)

:= CH3™(U) NKerd/{v € CI™(U) | 3u € CRI™™(U) s.t. Bu = v}.

Since the d-equation is always solvable at the top degrees on noncompact
domains, it is easy to see that the natural restriction map

£: HIS™2m (@) — lim HEy ™ (0)
Usz

is surjective. Here U runs through the neighbourhoods of z. Clearly
H(Fj;“_zm(U) # 0 if k > 1 (actually k > 2n — 3 suffices.) Hence one can
fix k so that, for any m there exists a

ug € C?,;?_Q'm(ﬁ) N Kerd

such that the cohomology class represented by u; is mapped by & to a
nonzero element. Since we assumed that there exist no 1-convex boundary
points of €2, one may expect that

Hy"" (99, [H)*™) = 0

holds for sufficiently large m. (This holds in the L? sense, but the regu-
larity question is essential here.)
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Given such a vanishing theorem exists, one will have a
i € CO"2 (09, [H]®™) NKerd, (m > 1)

such that dx|aq = uk|sqr. It was proved in [O-S] that Takeuchi’s inequality
guarantees the hypothesis of Theorem 5 for M = P". Therefore, for any
positive integer [, one can find a

Uy € S (Q, [H]gm) N Kerd

such that i, can be extended to Q in the C! sense and satisfies i |a0 =
i1;. This means that @ /g — u is of class C! on O\ {z} and vanishes on
o,

If n > 3, by choosing the above m sufficiently large in advance, one can
find a w € CO"=3 (V' \ {z}, [H]®™) such that e*¥|w|? is integrable around
z and

611) == ﬂk.!]ﬁT — Ug.

However this contradicts the choice of wuj.

4. On the vanishing of the 9,-cohomology

Let M be a connected complex manifold of dimension n, and let S be
a connected and orientable real hypersurface of class C* in M. Let r be
a C*® defining function of S. The Levi form of r at a point = € S is by
definition the Hermitian form 80r restricted to the holomorphic tangent
space
TS := THM N TES.

Here T'CS denotes the complexification of T3.S.

We shall say that S is partially Levi flat if the Levi form of r is every-
where degenerate on S. Since S is the boundary of some domain in a
neighbourhood of S, we may use the notations as C?4(S, E), for holo-
morphic vector bundles £ over M. For each point x € S we denote by
N, C T}OS the kernel of the linear map

v — (90r,v) € (TX19)".
Since (0r,v) = 0 for any v € TS,

for any T91S valued vector field £ of class C!. Hence, for any open subset
U c S on which dim N, is constant, the distribution z — N, + N, is
involutive, so that there is a foliation on U whose leaves are complex
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submanifolds of dimension ! having N, as tangent spaces. Note that one
may take U =S ifl=n— 1.

Let L be a holomorphic line bundle over M and let a be a C* fiber
metric of L. We consider the restriction of the curvature form ©, of a to
the spaces N, and its eigenvalues y; < 72 < --- < 4 (I’ = dim N,) with
respect to some C* Hermitian metric g on M. We shall say that L is
g-positive along S if L admits a fiber metric a such that vy, > 0.

Lemma 6. If (L,a) is g-positive along S, then there erists a C>< Her-
mitian metric go on M such that 3], v > 0 everywhere on S.

Proof. An exercise how to use the partition of unity.

Proposition 7. Let S be a compact and partially Levi flat real hyper-
surface of a complex manifold M, and let | = inf,csdimgc N,. Let E and
L be holomorphic vector bundles over M such that L s of rank one and
g-positive along S. Then, for any C>= fiber metric h of E there exists a
C*> Hermitian metric go on M and a C* fiber metric a of L such that,
for some kg € N and ¢ > 0,

keollul[* < 1|@pul|* + 18, ulf?

holds for any u € C%%(S, E ® L*) with k > ko and q > q'. Here the L?
norm || || is defined with respect to gy and ha*, and 0, denotes the L?
adjoint of By.

Proof. We fix fiber metrics of E and L so that the conclusion of Lemma
6 is valid. To exhibit the basic computation, we consider first the case
where S is a real-analytic hypersurface. In this case, the union of N, for
all z € S forms a real-analytic fiber space over S, say W — S. Hence one
can find a real-analytic subset A C S with codimrA > 2, such that W
contains a complex vector bundle of rank I over S\ A, say X — S\ A. _

Thf:n, from the well known graded commutation relations between 9
and @ , applied to the leaves of foliation tangent to N, we obtain an
inequality

() (ke — d)lull® < |[Bsul® + 118,ull*

for any u € C%'(S\ A, E ® L¥) with supp u € S\ A4 if ¢ > g. Here
c:=infg Y ! v, and d is a positive number depending on go and S, but
not on k. Since A is of real codimension at least 2, (¢) still holds for any
u € C%9 (S, E ® L¥) with ¢’ > ¢g. Thus the required estimate is true if S
is real-analytic.
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In the general case, let {S,}52, be a sequence of compact real-analytic
hypersurfaces, not necessary partially Levi flat, which approximates S
in the C* topology. Then, for each u, we can find a (not necessarily
involutive) real-analytic distribution of l-dimensional subspaces of T}°S,
outside a real-analytic subset of codimension 2, say A, in such a way that,
as 4 — oo the sequence of these subspaces of TS, has a subsequence
which converges to a subspace of N; if z g UR | A,.

Then, applying the same method of computation as above, we obtain
for any u € C%7(S,, E ® L¥) with ¢’ > ¢ that

(g'cy = dp)llull? < [1Gpull? + 110, ul® + e lullF.

Here || |[; denotes the Sobolev 1-norm, and ¢, — ¢, d, — d and ¢, — 0
as u — co. Hence, by taking the limit we obtain the desired estimate. O

It will follow from the assumption of Proposition 7 that
0.’ ky —
5 (SSE®L )=0

for ¢ > ¢ and for sufficiently large k, if we can show that the Sobolev
norm estimates

6) [ul2, < Crll0,Byull, meN

hold for v € C%9'(S,E ® L), ¢ > q and k > 1. Here C,, is allowed to
depend on m, but not on k. However the author does not know how to
prove it, although it is very likely to be true.
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Addendum

After submitting this article, the author noticed that the conjectural
statement in the last paragraph is false, by finding the following coun-
terexample.

Counterexample. Let R be a compact Riemann surface of genus at

least 2, and let T" be a discrete subgroup of the automorphism group of
the unit disc A such that A/T' = R. Let

t1: A - AxA

and

to: ' —=T'xT

be the diagonal embeddings, and let
R@ := Ax A/ 15(T)
Ry == 11(A)/e2(T)
Since the action of I' naturally extends to P!, ¢5(I") acts properly discon-
tinuously on P*x A. We put M =P'x A/ 4(I)
Clearly M is a compact complex surface and R® is a pseudoconvex
domain in M with a C*-smooth Levi flat boundary.
We put S = GR®. Suppose that the Jj-equations were smoothly
solvable for sufficiently positive line bundles. Then, in particular we would
be able to produce C* CR sections of K3/'|S for 4 > 1 in such a way

that
dim Hz (S, K3f'|S) =

On the other hand, we put
2
) ; z,w € A,

Then ¢ is invariant under the action of ¢(T'), so that ¢ = ¢ o 7 for some
Y: R@ — [0, 00), where m: AXA — R(® denotes the canonical projection.
% is plurisubharmonic on R®. Indeed, we have

o(os(-[224)

= 90 (—log (|[wz — 1 — |w — 2|?) + log [wz — 1|?)

= 80 (—log (|wl?|2]* — |w|* — |2|* + 1) + log [Tz — 1]?)

= (1—|2) " dzdz + (1 — |w]?) " dwdw — (wZ — 1)2dwdz
—(Wz —1)*dzdw

w—z

wz —1

p(z,w) = —log (1 -

w—2z

wz -1
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and

1=z~ (1 - [wP)~* - [@z - 1|

=(1-122) 7 (1 = wl?) 2 @z — 1|74z — wl*

Thus v is a plurisubharmonic exhaustion function which is of logarithmic
growth near dR® and

0y > c(OYOY + g)

holds for some positive constant ¢, outside a neighbourhood of Ry. Here
g denotes a Hermitian metric on M.

Moreover, since the normal bundle of Ry in M is negative, ¥ can be
modified near Ry to a plurisubharmonic function

$: RO\ Ry — [ 00, 00)
such that L
909 >cg on RP\R,

for some ¢’ > 0 and v = ¥ near OR?.
Hence, by the same extension technique as in the proof of Theorem 5,
we have extensions of the elements of H; o 0(.S' K$F|S) to holomorphic sec-

tions of K5f*®[Ro]®* which are continuous on R®. Here [Ry] denotes the
line bundle associated to the divisor Ry, and k is an integer independent
of p.

It follows in particular that the restriction map

H(M, K3t ®[Rol®*) — Hz"(S, K}f'|S)

is surjective.
This contradicts that

dim H*°(M, K} ®[Ro)®*) < oo

and
dimH” S, K$#|S) =
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CHAPTER XII

Existence and Applications
of Analytic Zariski Decompositions

Hajime Tsuji

Abstract

We construct a kind of Zariski decomposition as a singular Her-
mitian metric on a big line bundle on a smooth projective variety
defined over C and give applications.

1. Introduction

Let X be a smooth projective variety and let L be a line bundle on X.
L is said to be big if

limsup m™ 4™ X dim H%(X, Ox(mL)) > 0

m—od

holds. L is said to be nef? if
L-C>0

holds for every irreducible curve C on X.

L (resp. divisor D) is said to be pseudoeffective if ¢;(L) (resp. ¢i1(D))
is a limit of the classes of effective Q-divisors on X.

To study a large line bundle we introduce the notion of analytic Zariski
decompositions. By using analytic Zariski decompositions, we can handle
a big line bundle as if it were nef and big.

Definition 1.1 Let L be a line bundle on a complez manifold M. A
singular Hermitian metric h is given by

h=e* - ho,

where hy is a C*°- Hermitian metric on L and p € L}, .(M) is an arbitrary
function on M.

2Roughly speaking nef means a semipositivity in the algebra-geometric sense.
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The curvature current Oy of the singular Hermitian line bundle (L, k) is
defined by

O = Oy, + V —18599,

where 99 is taken in the sense of a current. The L2-sheaf £2(L,h) of the
singular Hermitian line bundle (L, k) is defined by

L*(L,h) = {o € T(U,0n(L))| h(o,0) € L.(U)},

where U runs over open subsets of M. In this case there exists an ideal
sheaf Z(h) such that

L*(L,h) = Op(L) ® Z(h)

holds. We call Z(h) the multiplier ideal sheaf of (L, h) ([16]). If we write
h as

h=e¥:hg,

where hg is a C* Hermitian metric on L and ¢ € L}, (M) is the weight
function, we see that

() EQOMEW)

holds. It is known that if ©y, is positive, Z(h) is a coherent sheaf of O);-
ideals ([16]).
Now we define the notion of analytic Zariski decompositions.

Definition 1.2 Let M be a compact complex manifold and let L be a line
bundle on M. A singular Hermitian metric h on L is said to be an analytic
Zariski decomposition (AZD), if the following hold.

1. the curvature © is a closed positive current,
2. for every m > 0, the natural inclusion
HO(M,Op(mL) @ Z(R™)) — H(M,Op(mL))

is an isomorphim, where T(h™) denotes the multiplier ideal sheaf of
KT,

If a line bundle L admits an AZD h, to study
HU (Mv OM(mL))
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it is sufficient to study
HO(M, OM{TRL) ®I(hm))

Hence we can consider L as if it were a singular Hermitian line bundle
(L, h) whose curvature current ©, is a closed positive current. This is very
convenient for applying various vanishing theorems (for example Nadel's
vanishing theorem [16, p.561]).

The above definition of an AZD is inspired by the Zariski decomposi-
tion defined by O. Zariski. The following definition of a Zariski decompo-
sition is the refined one by Y. Kawamata.

Definition 1.3 ([13]) Let X be a smooth projective variety and let D be
a pseudoeffective divisor on X. The ezpression

D=P+N(P,N € Div(X)®R)

is said to be a Zariski decomposition of D, if the following conditions are
satisfied.

1. P is nef,
2. N is effective,

3. H9(X,Ox([mP))) ~ H%X,Ox(mD)) holds for every integer m >
0

where the integral part [mP] of mP is given by
[mP] = [m Z a; Pj) = Z[ma;]P,-
(Ima;] denotes the Gauss symbol of ma;).
The existence of a Zariski decomposition was first proved for effective

divisors on a smooth projective surfaces by O. Zariski([26]). If a Zariski
decomposition exists it is very useful to study the ring

R(X,D) = &mzoH(X, Ox(mD)).

For example see [13]. But unfortunately this is the only general existence
result.

One of the advantage of an AZD is that we have the following general
existence theorem.
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Theorem 1.1 ([21]) Let L be a big line bundle on a smooth projective
variety M. Then L has an AZD.

In Section 3, we apply Theorem 1.1 to study pluricanonical systems
of varieties of general type. In this paper, most of the proofs are only
outlined. The full proofs will be published elsewhere.

2. Analytic Zariski decomposition

2.1. Existence of an AZD.

Here we shall give a sketch of the proof of Theorem 1.1 by using the L2
estimates for 9-operators. Let g be a C* Kahler metric on M. Let hy be
a C* Hermitian metric on L. For every m > 1, we choose an orthonormal

basis {p{™, ... ,cpf,:f('zn}} of H°(M, Op(mL)) with respect to the L?-inner
product with respect to h7* and g. We define a section of mL @ mL by
N(m)
Kn(z,w) = ) ()8 (w).
=0

It is easy to see that K, is independent of the choice of the orthonormal
basis. We call K,,(z,w) the Bergman kernel of (mL, hT') with respect to
g or m-th Bergman kernel of (L, hy). For simplicity we denote K,,(z, z)
by K,(z). We consider K,,(z) as a Hermitian metric on Op;(—mL).

Let v be a sufficiently large positive integer such that

P(H°(M,On(vL)))
H°(M,0n(vL)) — {0}/C*

29

Il

gives a birational rational map. Let p, : M, — M be a resolution of the
base locus

Bs|vL| = Noejur(0)

of |vL|, where (o) is the divisor of ¢ and N means the scheme theoretic
intersection. Let

plvLl =P |+ F,

be the decomposition into the free part |P,| and the fixed part F,, i.e., for
a section o € H°(X,Ox(vL))

p,(0) = (') + F,
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where
o e HO(M,,, OM.,(PU))-
By the construction Bs|P,| is empty and the divisor F, is given by

F, = nUE|ULf(p;J)‘

By Kodaira’s lemma (cf. [14, Appendix]), there exists an effective Q-
divisor E, on M, such that P, — E, is an ample Q-divisor. Let a be a pos-
itive integer such that eFE), is a divisor with integer coefficients. Then by
Kodaira’s embedding theorem, there is a C*°-Hermitian metric on aP, —
aFE,, say h, with strictly positive curvature. Let hp, be a C*°-Hermitian
metric on Oy, (P,) which is defined by the pullback of the Fubini-Study
metric on the hyperplane bundle on the projective space |P,|. Then

haEy = h?-‘",/h)t
is a metric on the line bundle aE,. Therefore the Hermitian metric
hy® = hp,/(has, )

on P, — E, is of strictly positive curvature. Let o,z be a holomorphic
section of Oy, (aE,) with divisor aE,,. Therefore we see that by the above
fact, the singular Hermitian metric

hy := hp, [hoE, (92, , a8, )/
has strictly positive curvature. Then we see that for every 0 < £ < 1,
hv = hP.,/ha.E, (aaE.,a JqE, )s/n

is a singular Hermitian metric on Oyy, (P,). with strictly positive curvature
(in the sense of current) by the equality

O, = (1 — €)Ohy, + €6y,

We shall fix € for a moment. /h, defines a metric on L on M — Bs|vL|
and has a pole singularity on Bs|vL|. Therefore we may consider V/h,
a singular Hermitian metric on L. Multiplying by a suitable positive
constant if necessary, we may assume that

h < /b,

holds on M.
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Let us define the Bergman kernel K, ,(z, w) by taking an orthonormal
basis for

H®(M, Op(mL) @ Z(hy/))
with repect to g and hyY. We note that
Kn(z) = sup{|o[*|o € H*(M,On(mL)), || o ||= 1}
holds, where || ¢ || denotes the L?-norm of ¢ with respect to hJ* and g.
Similary
Kmy(2) = sup{lo|*|o € H(M, Op(mL) ® Z(h}/")), || 0 [lum= 1}

holds, where || 0 ||, denotes the L2-norm of o with respect to hy”” and
g. Then since {/h, is larger than hy, we have that

Kmu(z) < Km(2) (2 € M)

holds.
Now we quote the following lemma.

Lemma 2.1 (cf. [9, Section 3] and [20])

1 . 1
ﬁ(z) = rll_fg‘: Kmy(z)™
holds.

Remark 2.1 In Lemma 2.1, the essential fact used here is that h, has
strictly positive curvature. In fact this lemma is local and can be stated
more generally as an approximation theorem for plurisubharmonic func-
tions (see [9, Section 3]). Also this lemma follows easily from the L*
extention theorem of Ohsawa-Takegoshi ([17], cf. also [9]). This lemma
also follows the earlier work of Tian ([20]), where he used the theory of
peak functions which is one of the main tools to study Bergman kernels.
In the paper G. Tian considered the convergence of the curvature.

Hence this implies the following corollary.

Corollary 2.1 ([9])

llmsipK 71-‘ \ﬂz_(z) (ze M)

holds.
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We shall show that limsup,, .. K,(z)= is finite.

Let 2 be a subdomain of M. Then we define the m-th Bergman kernel
Koz, w) of (L|g, hila) with respect to the volume form associated with
gla- Then clearly we have that

Kin(2) € Kuo(2)(= Kma(z, 2))

holds for every z € Q. Let us take an arbitrary point z € X and let U
be a coordinate neighbourhood of z which is biholomorphic to a polydisk
A", Let hy be a C*™ Hermitian metric of strictly positive curvature on
the closure of U such that

hU < h'L’U

holds on U. Let K} ;; be the m-th Bergman kernel of (L|y,hy) with
respect to g|y and hy. Since hy is smaller than hy |y,

Km(y) S Km.U(y) S K:::,U(y)

hold for every y € U. We note that applying Lemma 2.1 for K7, ; (see
also Remark 2.1) we obtain that

lim K ,(u)" = hg' ()
holds (actually Demailly proved this fact in [9, Section 3]). Hence in
particular fﬂu(g,,')'mL is uniformly bounded on every compact subset of U.
Shirinking U, we obtain the following lemma.

Lemma 2.2

limsup Ko (2)Y™ < k7!

m—oo

holds for every 2 € M. Also sup,,>, Km(z)™ is bounded from above on
M.

Now we quote the following theorem.

Theorem 2.1 ([15, p.26, Theorem 5]) Let {; }ier be a family of plurisub-
harmonic functions on a domain Q which is uniformly bounded from above
on every compact subset of Q2. Then ¢ = sup;cr ¢: has a minimum up-
persemicontinuous majorant ¥* which is plurisubharmonic.

Remark 2.2 In the above theorem the equality ¥ = %* holds outside of
a set of measure 0 (cf.[15, p.29]).
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Combining Lemma 2.1 and Lemma 2.2 with Theorem 2.1, we see that
h = ({limsup K7 }*)~
m—oo

is a singular Hermitian metric, where { }* denotes the minimum up-
persemicoutinuous majorant as above.
The reason why we take the majorant is to assure that h has positive

curvature, in other word log{lim sup,,_, K,;’:E }* is plurisubharmonic. This
operation * is called superior regularization.

Now we shall show that h is an AZD of L. By taking € > 0 sufficiently
small in the construction of h,, we see that the natural inclusion

HO(M, Op(vL) @ I(h,)) — H(M,Op(vL))
is an isomorphism. Then by Corollary 2.1, we see that
HYM, Op(vL) @ I(R")) — H°(M, Op(vL))
is an isomorphism. Since we can take v arbitrary large, we see that
H°(M, O (mL) ® Z(h™)) — H°(M, Op(mL))
is an isomorphism for every sufficiently large m. But since
R(M, L) := ®m>oH (M, Op(mL))

is a ring, by the definition of multiplier ideal sheaves and the Holder
inequality, we see that the above homomorphism is an isomorphism for
every m > 0. This completes the proof of Theorem 1.1.

2.2. A property of AZD.

Definition 2.1 Let T be a closed positive (1, 1)-current on the unit open
polydisk A™ with center O. Then by 00-Poincaré lemma there exists a
plurisubharmonic function ¢ on A™ such that

/T

T= Hﬂaé(p.
m™
We define the Lelong number v(T,O) at O by

— 1 ing P02
v(T,0) = hﬂ.‘é‘f og |z

where |z| = (3 |zi|?)Y/2. It is easy to see that v(T,O) is independent of
the choice of ¢ and local coordinate around O. Let V be a subvariety of
A", Then we define the Lelong number v(T, V') by

UT,V) = inf (T, ).
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Remark 2.3 More generally the Lelong number is defined for a closed
positive (k, k)-current on a complex manifold.

The following theorem is an easy consequence of Kodaira’s lemma ([14,
Appendix]) and L*-estimate for d-operator.

Theorem 2.2 Let L be a big line bundle on a smooth projective variety
X and let h be an AZD of L. Then for every x € X, there ezists a positive
constant C(z) such that

mult, BsimL| — mv(©4, z) < C(z)
holds for every m > 0.

This theorem implies that the Lelong number (0, =) controls the asymp-
totic behavior of the base locus Bs|mL]|.

3. Pluricanonical systems of varieties of general type
Now let us discuss applications of AZD.

3.1. Effective birationality of pluricanonical maps.

Let X be a smooth projective variety and let K'x be the canonical bundle
of X. X is said to be of general type, if Kx is big, i.e.,

limsupm™4™X dim H%(X, Ox(mKx)) > 0
m—od
holds. The following problem is fundamental to study projective varieties
of general type.

Problem 1 Let X be a smooth projective variety of general type. Find a
positive integer mg such that for every m > mo, ImKx| gives a birational
rational map from X into a projective space.

If dim X = 1, it is well known that |3K x| gives a projective embedding. In
the case of smooth projective surfaces of general type, E. Bombieri showed
that |5K x| gives a birational rational map from X into a projective space
([5]). But for the case of dim X > 3, very little is known about Problem
1. One of the main application of AZD is the following theorem.

Theorem 3.1 There ezists a positive integer v, which depends only on n
such that for every smooth projective n-fold X of general type defined over
C, |mKx| gives a birational rational map from X into a projective space
for every m > vy.
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For smooth projective varieties with ample canonical bundle, Theorem
3.1 has already been known ([8, 1]). Obviously the main difficulty is the
fact that Kx is not ample in general. In the case of projective surfaces of
general type, we can overcome this difficulty by taking the minimal models
of the surfaces. In higher dimesion, there is also the notion of minimal
model, i.e., for a projective variety X, a minimal model X,,;, is a projective
variety birationally equivalent to X with only terminal singularities and
nef canonical divisor. But at present there is no minimal model theory in
dimension > 4. Moreover in this case the canonical divisor of X,,i, is not
a Cartier divisor in general.

To overcome this difficulty we use an AZD on Kx. By using the AZD
we can handle Kx as if K x were nef and big. And we can work on smooth
varieties. Hence we can handle X as if it were minimal. At this stage the
main difference from the case that Ky is ample is that Kx may have very
small positivity on some subvarieties, i.e., there may exist a subvariety Y
in X such that deg @,k |(Y) grows very slowly as m tends to infinity,
where @),k denotes the rational map from X into a projective space
associated with the linear system |mKx|. We prove Theorem 3.1 using
the fact that such subvarieties are birationally bounded.

3.2. Volume of subvarieties.

Let L be a big line bundle on a smooth projective variety X and let h be
an AZD of L. To measure the total positivity of L on a subvariety of X.
We define the following notion.

Definition 3.1 ([24]) Let L be a big line bundle on a smooth projective
variety X. Let Y be a subvariety of X of dimension r. We define the
volume pu(Y, L) of Y with respect to L by

(Y, L) := r!limsupm™" dim H°(Y, Oy(mL) ® Z(h™)).

m—oc

Remark 3.1 If we define u(Y, L) by
u(Y, L) := r!limsupm~"dim H°(Y, Oy (mL))
m—oc

then it is totally different unless ¥ = X.

3.3. Stratification of varieties of gneneral type.

Let X be a smooth projective n-fold of general type. Let h be an AZD of
Kx. By using h, we can obtain a lower bound of m such that |/mKx| gives
a birational rational embbeding of X in terms of the volume of subvarieties
which appear in some canonical stratification of X.
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Let us denote u(X, Kx) by ug.

Let Up be a Zariski open subset of X such that ® x| is an embedding
on U for some m. Let z,y € Uy be distinct points and let € be a sufficiently
small positive number. As in [22] we construct the following inductively:

1. singular Hermitian metrics

hO:h’la--- 1hr
on Kx defined by
1
hi — |a_t12xm"

where m; is a sufficiently large positive integer and
o; € H(X,Ox(m;Kx))
such that

J; [Xi(:c,y) (= Ho(Xi (I: 3})3 OX.—(r.y) (miKX) ® M[Is“!j/m(lqe)mi] )r

2. invariants
ao(z, ), a1(z,y), - - - , ar(2,9),
defined by
ai(z,y) := inf{a > 0|z, y € Spec(Ox/I(h§°~ --- '~ . h§))},
where &g, ... ,€;—; are sufficiently small positive numbers,
3. a strictly decreasing sequence of subvarieties

X = Xo(z,y) D Xa(z,y) D -
-+ D X (z,9) D Xpya(z,y) = {z} or {z, 9},

where X;(z,y) is a branch of

IHIUI Spec(OX/I(hao—eo —_ hiﬁ:—ll—ﬁi—l . h;‘l.+6)) Sy

containing z3 (we note that Z(h~% ... b7 %=1 . h2*9) is increas-
ing as 6 goes to 0 and stable for every sufficiently small §),

3If necessary, we exchange z for y. But if z,y € Uy is very general, we do not need
to exchange.
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4.
po, #1(2.Y), - - - 1r(Z,Y)
defined by
i = p(Xi(z,y), Kx),
5.
n=mng>n; > >Ny,
defined by

n; = dim X;(z, y).

Let z,y be two distinct points on Up. Then for every
m >y ai(z,y)] +1,
i=0

®|mKk | separates z and y. For simplicity let us denote a;(z,y) by c;. Let
us define the singular Hermitian metric h, 4 of (m — 1)Kx defined by

r=1
b= ([ o) RS- E el
i=0

where ¢, is a sufficiently small positive number. Then we see that T(hey)
defines a subscheme of X with isolated support around z or y by the
definition of the invariants {a;}’s. Then by Nadel’s vanishing theorem
([16, p. 561]) we see that

Hl(Xs Ox(me) ®I(h:,y)) = 0.

This implies that @,k | separates  and y.
We note that for a fixed z, 3.._, ai(z,y) depends on y. We set

alr) = su o
(z) = sup Z:;
and let

X=XoDX1DX2D s Xy D Koy = {a}or {z,9}
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be the stratification which attains a(z). In this case we call it the maximal
stratification at z. We see that there exists a nonempty open subset U
in countable Zariski topology of X such that on U the function a(z)
is constant and there exists an irreducible family of stratification which
attains a(z) for every z € U.

In fact this can be verified as follows. We note that the cardinarity of

{Xi(z,y)|z,ye X,z #£y(i =0,1,...)}

is uncountably many, while the cardinarity of the irreducible components
of Hilbert scheme of X is countably many. We see that for a fixed i and
very general z, {X;(z,y)} should form a family on X. Similary we see
that for very general x, we may assume that the maximal stratification
{Xi(z)} forms a family. This implies the existence of U.

We may also assume that the corresponding invariants {ay,... , o},
{to,--. ,ur}, {n = no...,n,} are constant on U. Hereafter we denote
these invariants by the same notations for simplicity. The following lemma
can be proved as in (22, p.12, Lemma 5].

Lemma 3.1

n,-"\:/_?-

o; < + O Ei—
i (€i-1)

holds for 1 <i<r.

By the above lemma we obtain the following estimate.

Proposition 3.1 For every
m> ['Z ol +1
i=0
|mKx| gives a birational rational map from X into a projective space.

3.4. Fibration theorem.

Using the stratifiacation in the last subsection, we obtain the following
theorems. Roughly speaking we can single out the obstruction to prove
Theorem 1.1 as subvarieties of bounded degree.

Theorem 3.2 For every smooth projective n-fold X of general type, one
of the following holds.
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1. for every m > n® +n + 2, [mKx| gives a birational rational map
from X into a projective space,

2. X is dominated by a family of positive dimensional subvarieties
which are birational to subvarieties of degree less than or equal to
2°n?(n + 1)* in a projective space.

Here we shall show the outline of the proof of Theorem 3.2. As in the
last subsection we construct a strictly decreasing sequence of subvarieties
(maximal stratification):

X=Xe2X,2:--2X, D> X,11={z}or{z,y}.

Let ap,...,a, > 0 be positive numbers as in the last section. If every
u; > 1 for 0 < i <r, we see that |[mK x| gives a birational morphism for
every m > n? +n + 2. Hence we may assume that

min p; < 1.
2

Let 0 < & < r be the number such that

% max —2
" 2n i 2n;
Then we see that |mKx| gives a birational rational map for every
m > 2[na;] + 2.

We note that by Lemma 3.1,

/2
Itk {/;C_‘{"O(E"k_l).

ag <

n,

Suppose that |(n? + n + 2)K x| does not give a birational rational map
from X into a projective space. Then by Proposition 3.1, we see that

a.
max —>1
Z N 2??,1

holds. By Lemma 3.1 we see that
e < 1
holds. Now we see that

deg ®ranza, +2(Xk) < ([2n k] + 2)™ i



XII. Analytic Zariski decompositions 267

ng + 1

&/ Ik

S 2nk (n2

)7 ik

S ann2nk<nk + l)nk

S 2nn2n(n 3 l)n

hold. This completes the proof of Theorem 3.2.

The following theorem is a refinement of Theorem 3.2

Theorem 3.3 For every smooth projective n-fold X of general type, one
of the following holds.

1. for every m > n? + n + 2, |mKx| gives a birational rational map
from X into a projective space,

2. X 1is birational to an algebraic fiber space whose fibers are birational
to (positive dimensional) subvarieties of degree less than or equal to
2"n2"(n + 1) in a projective space.

3.5. A nonvanishing theorem.

To study the stable base locus of Kx we use the following theorem.

Theorem 3.4 Let X be a smooth projective variety and let (L, hy) be a
singular Hermitian line bundle on X such that the curvature current O
is positive*. Let (A, ha) be a singular Hermitian line bundle on X with
strictly positive curvature current ©,4. Then one of the followings holds.

1. HY(X,Ox(Kx+A+mLYQZ(hshT)) # 0 holds for every sufficiently

large m,

2. there exists a rational fibration f: X —--- = Y such that dimY <
dim X and on the general fiber F the restriction Orlp has 0 abso-
lutely continuous part.

The proof of Theorem 3.4 is a combination of the stratification method as
above and the following lemma.

4Here positive means only semipositive or pseudoeffective in the context of alge-
braic geometry. This teminology may be confusing for algebraic geometers. But this
terminology is traditional.



268 H. Tsuji

Lemma 3.2 Suppose that ©f has nonzero absolutely continuous part.
Then

lim u(X,A+vL) =00
V—20
holds, where u(X, A + vL) is defined by

(X, A+vL) =
(dim X)! limsupm~ %™ X dim HY(X, Ox(A + vL) ® T((hah%)™)).

m—oc

3.6. Structure of pluricanonical systems of varieties of general

type.
Let X be a smooth projective variety of general type and let h be an AZD
of Kx. Let ©;, be the curvature current of h. We set

S 1= {z € X|v(©s,z) > 0}.

Then since S is a union of subvarieties contained in the stable base locus
of Kx, S is a countable union of subvarieties in X.
By Nadel’s vanishing theorem we obtain the following theorem.

Theorem 3.5 Let V' be an irreducible divisorial component of S. Then
(V. Kx) =0
holds®.

This theorem means the V' is asymptotically contracted by R(X, Kx).
By applying Theorem 3.4 to a divisorial component of S, we obtain
the following theorem which singles out the direction of the contraction.

Theorem 3.6 Let V' be an irreducible component of S. Assume that V
is a divisor in X. Then there ezists a rational fibration ¢ : V — ... - W
such that

1. dimW < dimV,

2. let E be a general fiber of f, then there exists a positive constant C
such that

deg Qi |(E) < C

holds for every positive integer m.

5For the definition of u(V, Kx) see Section 3. Please do not confuse u(V, Kx) with
2V, Kx|v).
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This theorem is fundamental to study R(X, Kx) ([24]).
3.7. Outline of the proof of Theorem 3.1.

Let X be a smooth projective n-fold of general type. Suppose that |(n? +
n+ 2)K x| does not give a birational rational map. Then by Theorem 3.3,
we see that there exists a rational fibration

2D (A

such that dim Y < dim X and a general fiber F' is birational to a subvariety
of a projective space of degree < 2"n?*(n + 1)". To prove Theorem 3.1 we
may assume that f is a morphism.

Suppose that there exists a positive constant ¢, depending only on n
such that

u(F, Kx) > cap(F, Kr).

Then the proof of Theorem 3.1 follows easily from the birational bound-
edness of F. Hence we may assume that
P"(F ) K X )

u(F, Kr)

is very small. In this case we see that there exists an irreducible fixed
component V' such that V' is horizontal with respect to f, ie. f(V) =Y.
Then by Theorem 3.6, we see that there exists a rational fibration

o:V—ii =W

such that dimW < dimV and for every m > 1 a general fiber E satisfies
that

deg @ik (E) < C.

By the refinement of of Theorem 3.6, we may assume that C depends
only on n. Let y be a general point on Y. Let B(y) be set of points on Y
which can be connected with y by a chain of ¢(E)’s. Then f~1(B(y)) is
birationally bounded by the boundedness of a general fiber of f and the
boundedness of E. If B(y) is equal to Y, then X is birationally bounded,
hence Theorem 3.1 holds. If B(y) is a proper subvariety of Y, we have a
new fibration

g:X—-—Z
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such that a general fiber is f~!(B(y)). We can apply the same argument
as before by replacing f by g. Continuing this process we obtain either
the birational boundedness of X or the existence of ¢,. This completes
the proof of Theorem 3.1.
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CHAPTER XIII

Segre Polar Correspondence and Double
Valued Reflection for General Ellipsoids

S. M. Webstert

Introduction

A number of problems concerning an analytic real hypersurface in
complex space have been treated by means of its complexification. This
manifests itself as a family of complex hypersurfaces, one attached to each
point of space. This association of a complex variety to a point is the Segre
polar correspondence. Originally B. Segre and E. Cartan used it to attach
differential invariants to a nondegenerate real hypersurface. More recently,
it has been used in establishing boundary regularity, holomorphic contin-
uation, as well as algebraicity of holomorphic mappings. It also plays a
key role in several biholomorphic classification problems. In this paper we
shall give a more complete version of the Segre polar correspondence for
algebraic real hypersurfaces, in order to treat the phenomenon of double
valued reflection.

Stationary curves were first introduced by Lempert [1] in his work on
the Kobayashi extremal discs of a smooth, bounded strictly convex do-
main in C". In 7] we established a qualitative procedure to describe the
stationary curves and extremal discs for such domains with real algebraic
boundary M admitting double valued reflection. We review this here in
section one. On the complexification M of such an M are defined two
meromorphic involutions 71, 75 and their composition ¢ = 7175, which is a
reversible map [2]. The main problem [7] is to understand the dynamics
of o, and, in particular, to find invariant curves which will project to sta-
tionary curves. Ellipsoids are the primary examples of real hypersurfaces
admitting double valued reflection [8].

As in [3] the defining function for a general ellipsoid M can be put into
the form
(0.1) r(2,2)=2-Z+Az- 2+ AZ-Z2-1,

tPartially supported by NSF
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where, for some [, 1 <1 < n,
(0.2) Az-z:ZAjz_?, 12>A,>2- - 2A>Aa=-=A,=0.
i=1

The Segre polar varieties Q. (see (1.3) below) form a (nonlinear, rational)
family of complex quadrics. We study this family and the polar mapping
¢ + Q¢ in detail in sections two and three. We also consider the map
which assigns to a point z the set of polar varieties containing it.

In [8] we treated the case | = n, in which all A; are nonzero. Then the
Segre polar varieties ), are complex spheres, after a coordinate change.
The polar correspondence takes ¢ into a generalized “null cone billiard
map” relative to two nondegenerate complex n-dimensional quadrics in
the (n+1)-dimensional Moebius space of spheres. A generalized confocal
theory was then developed and applied in [8] to determine more qualita-
tively the dynamics of o, when all the coefficients A; are distinct.

However, if | < n, then the construction in [8] breaks down, and a
more general framework is needed. We develop this here in sections three
and four. In particular, it leads to a pair of singular complex quadrics in
dual projective spaces. We define a natural pair of “billiard” involutions,
Ty, Ty, relative to these quadrics and construct invariant subvarities for
them, using results from [8]. These involutions are then identified with
those on M associated to double valued reflection. This yields our main
result.

Theorem 0.1 Suppose that | < n, and that Ay, ..., A, are distinct,
Jor the ellipsoidal real hypersurface M. Then, off a proper subvariety,
its complezification M is foliated by an l-parameter family of subvarities
of codimension l, which are invariant by the involutions of double valued
reflection.

This differs somewhat from the case | = n, where we have an (n — 1)-
parameter family of n-dimensional invariant varieties [8]. Also, it remains
to study the dynamics in more detail on the invariant sets. This will be
carried out in a future work. We only point out here that for [ < n we
have, in addition, the unitary symmetry in the last n — [ variables to
exploit.

We thank the referee for comments which improved the accuracy and
clarity of our presentation.
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1. Double valued reflection

We consider an algebraic real hypersurface M, that is, one defined by
a real polynomial equation, which we arrange in powers of z and z,

(1.1) M={2eC"|r(z,%2) =0}.

Its complexification is the complex algebraic variety with anti-holomorphic
involution p, which fixes a copy My of M,

(12) M {(Z!C) € C‘Zn |T(Z!C) == O}: P(ZvC) = (Es‘z_)! TOp=T,
M = My=FP(p)=Mn{¢=3).

The Segre polar variety associated to the point { € C" is
(1.3) Q= {z€C"|r(:,0) =0}, (=.
By the reality condition on r, we have

(1.4) 2€EQeweRsy ze M & z€ Q5.

This says that the association z — Q3 is an anti-holomorphic, involutive
correspondence, with fixed-point set M. It is the Segre polar correspon-
dence.

For n = 1, Q= is generically a finite set of m points, m = deg, r. For
z near a nonsingular point of M, the analytic implicit function theorem
gives a unique point w € Q5 near 2. The locally defined map z — w is the
classical Schwarz-Caratheodory reflection about M. It is globally defined
and single valued on P; D C, if m = 1, i. e. for a circle or line. In the
next simplest case, m = 2, this reflection is globally defined and double
valued. This occurs for the ellipse [6] and leads to the explicit formula of
H. A. Schwarz for the Riemann map of the interior to the disc.

For n > 1, an analytic real hypersurface M C C" has the wrong
dimension and structure to be the fixed-point set of an anti-holomorphic
involution. Therefore, one considers [5] the set of its holomorphic tangent
spaces,

(1.5) M= {(2,H.)|ze M} CC"x P;_,,

contained in the (2n-1)-dimensional complex manifold of holomorphic con-
tact elements. It is totally real precisely when the Levi form of M is
nondegenerate [5]. Then we have local single valued reflection about M,
which will, in the general algebraic case, be multiple valued in the large.
It may be described [5] as the correspondence

(1.6) (2, T.Qw) +— (w, TwQz),
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where we note that HLM = T,Qsz, for z € M. This is globally single
valued on the manifold of all contact elements of P,, D C7, in the case of
the unit sphere, M = S?"~1. It is globally defined and double valued in
the case of ellipsoids (0.1) [8].

Complexification of the map z — (2, H,M), from M to M, gives rise
to the two rational maps m; : M = C" x P, _,;,i=1,2,

(1‘7) 7(1(2, C) = (z, TZQCJ! Tr?(z! C) = (C: TCQ:): T O p =T

The reflection is double valued when these are rational maps of degree
two, thus 2-to-1 on a dense open set. We then have the two meromorphic
covering involutions 7;, 1 = 1, 2,

(18) ;0T = Ty, 1':2 = I, T = pT1P.

We further define

(1.9) p1r = Tip71, My = FP(p1) =11 My,
so that )

(1.10) a7IM = My U M.

The map

(1.11) 0 =TTy = p1pP

is said to be reversible [2], since it is conjugate to its inverse by an involu-
tion: =1 = 7075} = pop~!. Explicit formulae for these maps are given
in [8] for the general ellipsoid.

After Lempert [1] we call a stationary curve for M, or for the do-
main it bounds, any compact irreducible 1-dimensional analytic set with
boundary, L C C" x P},_,, when the boundary curves lie on M. The pre-
image A = 77 '(L) C M is a 1-dimensional analytic set with boundary on
My U M;. The extension of L by double valued reflection in M [7] is given
by the extension of A by double reflection in Mj and M,, i. e. by repeated
application of the anti-holomorphic involutions p and p;. In case A is also
irreducible, this leads to a global immersed Riemann surface A C M,
which is invariant by 71, p, and hence the other maps. To find and de-
scribe such curves A requires a detailed understanding of the dynamics of
the map o. In particular, we want to construct o-invariant subvarieties
of M, amenable to explicit geometric description. For generic ellipsoids
(all A; distinet and nonzero) this was shown in (8] using the Segre polar
correspondence. We consider a more appropriate version of this in the
next section.
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2. The Segre polar mappings

Next we consider the Segre polar correspondence from a more global
point of view for a general algebraic real hypersurface. For this we intro-
duce homogeneous coordinates z,y € C**!,

(2.1) z=12'/x0, ¢=9/v0,

and write

R(z,y) = (zoyo)"r(2'/x0,y /30), m = deg,,
(2.2) R(z,y) = R(y,T), orRop=R, p(z,y) = (¥,7),
M = {(z,y)|R(z,y) = 0},
Qy = {z|R(z,y) =0}.

For generic y, @, is a complex algebraic hypersurface in P, of degree m.
We denote by Py 2 {Q,} the smallest linear family of such hypersur-
faces containg all Segre polar varieties. Let

(2.3) Ya(z) = R(Z,¥a), 0<a <N,

for suitable y, € P,, be a basis of homogeneous polynomials for this linear
space. We write

N
(2.4) R(z,y) = 3_ va()ga(y)

a=0
for certain homogeneous polynomials g,(y) of degree m. Note that
9a(ys) = 0ap. Let n € CY*! be homogeneous coordinates for Py rel-
ative to the basis (2.3). We then write

(2.5) Q(n) = {z € Px| Y_mata(z) = 0}.
The correspondence y — @, defines a rational mapping, G : P, — Py,
(2.6) G: Na=0ay), 0<a <N, Q=CG(P,) ={Qy},

Q being (the closure of) the image of G.

If we apply the reality condition (2.2) on R to the equation (2.4), and
set ¥y = yg, we get
(27) d’a y) Z haﬁgﬁ
where (h,3) is a nondegenerate Hermitian matrix. Thus, on Py we have
the nondegenerate Hermitian form and real hyperquadric

(2.8) h(&,m) = hogaTiss H = {n € Py |h(n,n) = 0},
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and the relations
(2.9) R(z,7) = H(G(z),G(y)), G(M) Cc @nH.

Thus far, we have adapted the scheme of [4].

The requirement that ¢ € Q(n) places a linear condition on 7, and
so defines a hyperplane V, C Py. This gives us a second rational map,
F:z—V,. Let £ € CN*! denote homogeneous coordinates for the dual
space, relative to the same basis (2.3). Then the map F : P, — P} is
given by

{210) F éa =vYa(z), 0La <N, S = F(Pﬂ) = {Vz}

We denote the dual pairing by

~ N -
(2.11) (€ mn) = Z{)'E&Wm
and ) R o
(2.12) & ={nl{En) =0}, n*={£|{n) =0}
Then we also have
(2.13) R(z,y) = (F(z),G(y))-

By combining F' and G we get the representation
(2.14) (FxG)M)=(SxQo={(n) €S xQ)|(n) =0}.

The Hermitian form A induces the usual anti-linear isomorphism H :

Py — Py, X

(2.15) H: & =Y hgs

It follows from (2.7) that

(2.16) F(y) = H(G(y)), $=H(Q).

The map p (2.2) on P, x P, is readily seen to correspond under F' x G
to the restriction to & x Q of the following map (also denoted p),

(2.17) p(€,m) = (H(n), H™*(£)).

3. The general ellipsoid

Now we specialize to the defining functions (0.1) and carry out the
theory of the last section. There are many important additional special
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features in this case. In particular, S and Q are themselves quadrics, and
we shall find their duals.

a) The linear family of quadrics. Introducing the homogeneous coor-
dinates (2.1) into (0.1) gives

(3.1) R(z,y) = yg Az’ - 2’ + yoy' - 2'z0 + (AY - ¥ — 43)z}.
Since the coefficients are real, we have the additional symmetry,
(3.2) Rok=R, p==~, k(z,y) = (y,z).
For the basis (2.3) we shall take
(3.3)  ¥o(z) = A7’ -2/, ¥(z) =z0zj, 1 <j<n, Yu(z)=1};
and the corresponding homogeneous coordinates,
(34) n=(mo,n',m), ' = (m, ..., 7).
Thus N = n + 1, and we identify n € P, with the quadric
(3.5) Q(n) = {z € P, | Az’ - =’ + 1 - 'zo + n.22 = 0}.
We further define

Hoo = {IEPH!IU_—_U},
{IEHmle";IJ-_—O}‘
{zeP,lzo=21=- =5 =0}

>
=)
o
i 8
Lo

Note that N, C Q is the vertex, i. e. singular set, of Q.., and is empty if
! = n. Q(n) consists of H,, and another hyperplane if 7 = 0, and 2 copies
of Hy if 7o = 0 and ' = /. Otherwise Q(n) meets H, in the points
of @, being tangent to H, along N.. In fact, we may characterize
P,.1 = {Q(n)} as the family of quadrics in P,, passing through Q.

We further denote

L = {n€Ppp1|ms1=++-=n,=0},

1
(3.7) S = {nel| —dnon+), A;lq_? = 0},

i=1
Poc = (0‘ 01: 1) € L)
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and observe that dimL = [+ 1 and dimS = . We readily see, as in (3],
that

rk(n)=1,  for 1= pe,
(38) ?"k("}‘) =2, for o = 0, n# Pocs

rk(n) =1, for ne€ S, ny #0,

rk(n) =1+1, for n¢ S, n #0,

where rk(n) = rank Q(n) is the rank of the quadratic form (3.5) in z.
b) The polar images. For the polynomials g, in (2.4) we have
(39)  9o(¥) =9 9i(¥) =vous, 1< <m, guy) =AY ¥ — w5

so that the map G : P, — P, is given by

(3.10) G:mo=y5 0 =yoy, m =AY -y -y

If we write the coordinates on P}, dual to  as

(3.11) €=(,8.8) €=(,....6),

then F : P, — P, is given by

(3.12) F: §=Ax -2, § =zo7, £ = z2.

The maps F' and G are related by the linear map K : Pny; — P},

10
(3.13) F=KG, é=Kn, K=|01
10

o B = T

where I is the n x n identity matrix. The map G is one-to-one, except
that H,, — Q« is collapsed to the point p.., and each point of Q). is blown
up; and similarly for F. We readily find that  in (3.2) corresponds to

(3.14) K(€,n) = (Kn, K~§).

Clearly, (3.9) gives
(3.15)  go(z) = ¥u(2), gi(z) = ¥i(2), 94(2) = Yo(2) — Y (),
so that the Hermitian form (2.8) is

(3.16) h(n,n) = no7l, + 7' -7 + (70 + 7).
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As noted in [4], h has signature (n + 1,1), so that H = S?**! is strongly
pseudoconvex.

To get the image of G, we eliminate y from (3.10). This gives the
quadric

(3.17) Q = {n€Pnulqglnn) =0},
a(§,m) = —&omo — (1/2)(om + &umo) + AL - 71,
which has rank ! + 2. Its singular locus, or vertex, is the (n — [ — 1)-plane
(3.18) N={n€Pupu|lm=n=m=...=n=0}
which is complementary to the plane L (3.7). Thus, Q is the cone
(3.19) Q=NxQ® Q9 =9nL.
Notice that retracting @ — N onto Q©) simply amounts to translating the
¢ of Q¢ until {41 = ... = ¢, = 0. We also remark that {ny =0} =7, Q

is the space of rank-two quadrics Q(n) (3.5).
Similarly, elimination of z from (3.12) shows that the image of F is
the quadric

(3.20) S = {£ePral866 =0}
8(&,1m) = —(1/2)(6o + Euilo) + AE -7,
which also has rank [ + 2. Its singular locus is the (n — I — 1)-plane
(3.21) N={ieP, lb=E=b=...=6=0},
which has the complement
(3.22) L={ePlén=...=6&=0}
Again we have a cone
(3.23) S=Nx+x80, O =8nL.
Furthermore, X
(3:29) (K& Kn) =q(&m), S=KQ

¢) The dual quadrics. The quadratic form g associates to each point
& € P41 the set g(-, €) = 0, which is a hyperplane containing NV, whenever
€ ¢ N. Thus, we have a well defined map into P;,_,,

(3.25) A:Ppy—-N- Nt = {[(§N)=0}=1L,
Er— ér Q(af) = (E! ')1
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or more explicitly,

S =1 0 ~=f2
(3.26) §=Ac, A=| 0o A o |.
~1/2 0 0

The dual quadric @ of Q, the set of hyperplanes tangent to Q, is the image
of @ — N under this map. Eliminating £ from (3.26) and ¢(&, &) = 0 gives

(3.27) Q = {el|q(é) =0}

G€.7) = —2(éof + Euiio) + 4EA. + ZA €.

j=1

Notice that Q is an l-dimensional, nondegenerate quadric in the (I +1)-
dimensional space L. X
Proceeding similarly with S, we get the map into P,1,

(3.28) B:Pi,—-N-N+ = {5|(N,g)=0} =1L,
Em& 848 =(.8),

or more explicitly,

o 0 0 -1/2
(3.29) E=B¢ B=| 0 A 0 |.
~1/2 0 0

Eliminating £ from (3.29) and 5( é é) = 0 gives the dual quadric, which
happens to agree with (3.7),

(3.30) § = {£eL|s(§€) =0},
1
S(ér 7?) = _2(607?- + Exno) o Z A;lgjnj
j=1

It is I-dimensional and nondegenerate in the space L.
For later use we observe that

(3.31) A= KBK.

Finally, we remark that (3.28) gives an intrinsic definition of the subspace
L.
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4, Billiards

In this section we define a natural pair of rational involutions 7y, 75
relative to the two quadrics &, Q of the last section. We refer to them
as “billiard” involutions because of the close analogy of o = 775 to the
billiard map associated to an ellipsoid in real Euclidean space. We show
that they correspond, under the mapping F x G (2.14), to the involutions
on M arising from double valued reflection. Finally, we construct invariant
subvarieties for these involutions, which leads to the proof of Theorem 0.1.

a) Billiard involutions. Let (£, 1) € (S x Q)o, i. e. £ eSandne QnéL.
By duality ££ N L is tangent to S C L at £ = BE. Consider the (complex
projective) line [n€] C Ppyy. In general, it will meet the quadric Q in a
second point ™. We define Tl(é ) = (é , ™), or more explicitly,

(4.1) nn) = (En+be), §=BE,
bi(€,m) = —2q(§,7)/9(E,€).

Alternatively, we may consider € Q and 5 € Snnpt. By duality
mnLis tangent to Q c L at § = An. The line [E?;.'] 52 P“+1 meets S in

a second point £~, in general. We define 7,(€,7) = (€~,7), or

(42) n€n) = (+bain), 4= An,
bz(fa??) o _2'§(ﬁ'€)/'§(ﬁ$ﬁ)

We claim that these two involutions are related by
(4.3) Te = KT1K,
where & is given by (3.14). To see this note that
kmik(€,n) = (K(K~'§ + b BKn), K~ Kn) = (£ + by An, )

by (3.31), where
bl = bl(K"L ) b?(gs )

This proves (4.3).

b) Correspondence of involutions. We shall prove the following result.

Proposition 4.1 Let M be a general ellipsoid with involutions 71, o on
its complezification M resulting from the double valued reflection. Then
71, T2 correspond to the above billiard involutions under the map F' x G.
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For the proof, we note that we have already shown the correspondence
of the two maps k, (3.2) and (3.14). Since both pairs satisfy (4.3) (see
formula (3.9) of [8]), it suffices to show that the two ;s correspond. By
formula (3.7) of [8], we have on M,

(4.4) 1(2,0) = (2,0), (=C+ai(¢+242),
_ (2424Q)- (C+242)
a0 = —aCT24s)- (C+242)°

We must show that the line (7m~] C P41 determined by the two points

also contains the point £ = BE, where £ = F (2). But n~ +tn € L happens
if and only if t = —1 — a4, so the point in question is

(4.6) (—ay,2a1Az,¢), c=AC-C—1— (14+a)(AC-¢C—1).
Substuting from (4.4) and simplifying gives

(4.7) c=ay(—-2-(—24z-2—A(-(+1)=—a1Az - 2,
where we have used r(z,{) = 0. On the other hand,

(4.8) ¢ = BF(z) = (1/2)(—1,24z,—Az - 2)*.

Hence, the two points agree, and the proof is complete.

c) Invariant subvarietijas. In studying the maps 71, 72 and their compo-
sition o on the variety (S x Q)o (2.14), it is natural to look for invariant
subvarieties. The classical way to specify such subvarieties of (S x Q) is to
require that the line [p€] remain tangent to a fixed hypersurface in Pp;.
Such a condition is clearly invariant under 7;, which does not change the
line. Thus, one has only to consider 5.

The two quadrics S and Q'©) are [-dimensional and nondegenerate in
the (Il + 1)-dimensional space L. Hence, we may form their confocal family
of quadrics Q) c L, A € C, as in [8] (see also below). Over them we
form the family of cones from N,

(4.9) Qs =N Q,

which are quadratic hypersurfaces in P,.;. The main result is that tan-
gency to these hypersurfaces is invariant.
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Proposition 4.2 Let 5(€,7n) = (€~,7) and £ = BE, £~ = BE~. Then for
any A # 0, the line [n€] is tangent to Q, if and only if [n€™] is tangent to
Qi

The proof occupies the rest of this subsection.
Let 7 denote projection from N onto L,

(4.10) T:Puyi—N—oL; 79 =n(n)

is gotten by setting m4+; = -+- = m, = 0. Then [pf] is tangent to Q,
if and only if 7[n€] = [n@¢] is tangent to Q. We shall show that the
projected point-line pair (7'?, [7{®)€]) undergoes a billiard transformation

which preserves tangency of the line to the confocal quadric QE\G), for each
fixed A # 0. Since

(4.11) An=An®, & =€+ b,BAN®, ¢ € €S,

we must show that the point BAn(© is the pole relative to S of the tangent
space T,}to)Qw}.
For the rest of the proof we work in the space L, setting n = n®, and

suppressing the components 741, ..., 7,. We have
L 1
(4.12) s(&,m) = —2(Eome + &mo) + D_ A7 &y,
=1
and

[
(4.13) q(&,m) = =€omo — (1/2)(6ome + &aro) + Y _ As&;mj.
j=1
As in [8] we express ¢ via an s-symmetric operator B,

4 0 O
0 A2 0 |.

-8 0 4

(4.14) q(&,n) =s(B7'&,n) =s(§,B™'n), B=

The confocal quadrics are given by

(4.15) QY = {neLlnmm) =0}
a&mn) = s(A=B)7'¢n).
Let n € Q© and v € L be the pole of T,,Q® relative to S. This means

that v+ =9, or
(4.16) v= By



286 S. M. Webster

But we readily check that L
(4.17) BA =B,

which is what was needed above. Thus, under the action of 7, the pro-
jected points n € Q) and & € S undergo the involution

(4.18) T&n) = (), & =E{+ay,
a(.f, "'}‘) = _23(57 U)/S(U: U)'

Now we have the situation of section 5 of [8], except that the line [n¢]
need not be tangent to S at &. We must show that the arguments of (8]

carry over to our more general situation. Tangency of [né] to QE\OJ is given
by the condition

(4.19) A& ) = ax(€,E)axn(n,n) — ax(€,m)* = 0.

Therefore, the following lemma implies that tangency of the projected line
to the confocal quadric is preserved by 7, and hence, that the proposition
holds.

Lemma 4.3 Ay(£~.7) = Ax(& 1), if A #0.

To prove this, we substute (4.18) into (4.19) getting

+2a{gx(&,v)qr(n,m) — ax (&, maa(v, m)}
+a*{gx(v,v)ar(n, 1) — ar(v, m)*}.

By definition

n(év) = s(B7'(A-B)7,n),
(4.21) a(v,m) = s(B™Y(A—B) 'n,n),
o(v,v) = s(B™YA—=B) !n,B7'y).
We use the formula
(4.22) B'A=B) = XY B'+(A-B)™,

which is valid for A # 0. Applying it once in the first two and twice in the
third equation, and using s(B~'n,n) = q(n,n) = 0 gives

a(Ev) = A& n) + (& n)),
(423) q)\(vr 7?) /\_I‘h(?}': n)s
a(v,v) = A2q(n,7) + A ts(v, v).

I
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Substuting these into (4.20) and simplifying with (4.18) gives the lemma,
and hence the proposition.

d) Proof of Theorem 0.1. We fix a generic line v C L. By the results of
[8] «y is tangent to precisely ! of the confocal quadrics, Qf\ul), ey Q&[:)._ A €
C. Furthermore, the A; are locally single valued, independent functions of
the line, and the set of all lines in L tangent to [ generic confocal quadrics
forms an [-dimensional variety.

We note parenthetically for the case [ = n treated in [8], that L =
P,+1, and there is no projection (4.10). Moreover, we must restrict to
lines v which are tangent to & = Q... Hence A\; = oo, and we have an
(n — 1)-parameter family of n-dimensional invariant subvarieties in the
result in [8] corresponding to Theorem 0.1.

We now assume [ < n. Given < as above, we choose points

(4.24) " eynQ® ceyns.

The set of points 7 € P41 such that n(n) = n? is the (n —I)-dimensional
linear space N * {n®} C Q. The set of all £ e P; ., such that £ = BE.
that is, the set of all hyperplanes in P,; containing the /-dimensional
tangent plane T¢S, is an (n — [)-dimensional linear space contained in S.
Since (S x Q) is defined by the single further condition (£,7) = 0, we get
a 2(n—1)—1 dimensional subset over v. Since ¥ moves in an [-dimensional
variety, we get a 2n — 1 — [ dimensional invariant subvariety corresponding
to fixed generic values of A;,...,A;. The images in M of these varieties
by the birational map (F x G)~! give the invariant foliation of Theorem
0.1, the proof of which is now complete.
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CHAPTER XIV

G,-Geometry of Overdetermined Systems
of Second Order

Keizo Yamaguchi

Introduction

The main theme of this paper is “Contact Geometry of Second Order”.
This topic has its origin in the following paper of E. Cartan.

[C1] Les systémes de Pfaff a cing variables et les équations auz derivées
partielles du second ordre, Ann. Ec. Normale, 27 (1910), 109-192.

In this paper, following the tradition of geometric theory of partial
differential equations of the 19th century, E. Cartan dealt with the equiv-
alence problem of two classes of second order partial differential equations
in two independent variables under “contact transformations”. One class
consists of overdetermined systems, which are involutive, and the other
class consists of single equations of Goursat type, i.e., single equations
of parabolic type whose Monge characteristic systems are completely in-
tegrable. Especially in the course of the investigation, he found out the
following: the symmetry algebras (i.e., the Lie algebra of infinitesimal con-
tact transformations) of the following overdetermined system (involutive
system) (A) and the single Goursat type equation (B) are both isomorphic
to the 14-dimensional exceptional simple Lie algebra Gs.

Pr_1 (2 Px _1(0%Y -
0x2 ~ 3\9y?) ' 8xdy 2\8y2) °
9r? + 126*(rt — s%) + 32s® — 36rst = 0, (B)
where
8%z &%z 9%z

r= pl—— = — t = ——
Oz 8zdy’ Oy?
are the classical terminology.
Our aim here is to clarify the contents of “Contact Geometry of Second
Order” in the course of showing how to recognize the above facts.
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1. Second Order Contact Manifolds

We will here recall the basic facts about the geometry of second order
Jet spaces ([Y1], [Y3]).

1.1. Space of Contact Elements (Grassmannian Bundles). The
notion of contact manifolds originates from the following space J(M,n) of
contact elements: Let M be a C*- manifold of dimension m +n. We put

JMn)=|J Jey  Je=Gr(To(M),n),
zeM

where Gr(T.(M),n) denotes the Grassmann manifold consisting of n-
dimensional subspaces in 7,(M) (i.e., n-dimensional contact elements
to M at z). J(M,n) is endowed with the canonical subbundle C of
T(J(M,n)) as follows: Let m be the projection of J(M,n) onto M. Each
element u € J(M,n) is a linear subspace of T,.(M) of codimension m,
where z = m(u). Hence we have a subspace C(u) of codimension m in
T.(J(M,n)) by putting

C(u) = 77} (u) € Tu(J(M,n)).

C is called the canonical system on J(M,n). We have an inhomoge-
neous Grassmann coordinate system of J(M,n) as follows: Let us fix

u, € J(M,n) and take a coordinate system U’ : (zy,... ,Tp, 2%,...,2™)
of M around z, = m(u,) such that dz; A -+ Adz, |,,# 0. Then we have
the coordinate system (zy,:-+,Z,, 2%, ,2™,p},--+,p™) on the neigh-

borhood U = {u € 7 1(U’) | n(u) =z € U’ and dz; A---Adz, |7 0}
of u, by

dz* |,= Zp, ) dz; | (a=1,...,m).
i=1

Clearly the canonical system C is given in this coordinate system by
C:—_{ml—:---:wm:(]},

where w® =dz* - Y pfdz; (a=1,--- ,m).

(J(M,n),C) is the (geometric) 1-jet space and especially, in case m =
1, is the so-called contact manifold. Let M, M be manifolds (of dimension
m+n) and ¢ : M — M be a diffeomorphism between them. Then
¢ induces the isomorphism ¢. : (J(M,n),C) — J(M,n), C), ie., the
differential map ¢, : J(M,n) — J(M,n) is a dlffeomorphlsm sending C
onto C. The reason that the case m = 1 is special is explained by the
following theorem of Backlund (cf. Theorem 1.4 [Y3]).
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Theorem 1.1 (Bécklund) Let M and M be manifolds of dimension
m + n. Assume m 2 2. Then, for an isomorphism & : (J(M,n),C) —
(J(M,n),C), there exists a diffeomorphism ¢ : M — M such that ® = ¢,.

In case m = 1, it is a well known fact that the group of isomorphisms
of (J(M,n),C), i.e., the group of contact transformations, is really larger
than the group of diffeomorphisms of M. Therefore, when we consider
the geometric 2-jet spaces, the situation differs according to whether the
number m of unknown functions is 1 or greater. In case m = 1, we
should start from a contact manifold (J,C) of dimension 2n + 1, which
can be regarded locally as a space of 1-jets for one unknown function by
Darboux’s theorem. Then we can construct the geometric second order jet
space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle
L(J) over J consisting of all n-dimensional integral elements of (J, C);

L(J) = Lu.

ueJ

where L, is the Grassmann manifolds of all Lagrangian (or Legendrian)
subspaces of the symplectic vector space (C(u),dw). Here w is a local
contact form on J. Let m be the projection of L(J) onto J. Then the
canonical system E on L(J) is defined by

E(v) =) C To(L(J))  at ve L(J).

Starting from a canonical coordinate system (zi,...,Zn,2,P1,--- 1Pn)
of the contact manifold (J,C), we can introduce a coordinate system
(zi,z,pi, pi5) (1 £ i £ j = n) of L(J) such that p;; = p;; and E is
defined by

FE={w=w = =w, =0},

where @ = dz — Y1, pidzi, @i = dpi — 3, pijdz; (i = 1,-+- ,n). Let
(J,0), (j', C’) be contact manifolds of dimension 2n + 1 and ¢ : (J,C) —
(J,C) be a contact diffeomorphism between them. Then ¢ induces an iso-
morphism ¢, : (L(J), E) — (L(J), E). Conversely we have the following
(cf. Theorem 3.2 [Y1]).

Theorem 1.2 Let (J,C) and (J,C) be contact manifolds of dimension
2n + 1. Then, for an isomorphism & : (L(J), E) — (L(J), E), there exists
a contact diffeomorphism ¢ : (J,C) — (J,C) such that & = ¢,.

Our first aim is to formulate the submanifold theory for (L(J), E),
which will be given in §4.
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1.2. Realization Lemma. We here recall the following Realization
Lemma for the Grassmannian construction, which plays the basic role in
the discussions of §4 and §5.

Lemma 1.3 (Realization Lemma) Let R and M be manifolds. As-
sume that the quadruple (R, D, p, M) satisfies the following conditions :

(1) p is a map of R into M of constant rank.

(2) D is a differential system on R such that F = Ker p, ts a subbundle
of D of codimension r.

Then there exists a unique map ¥ of R into J(M,r) satisfyingp=m -9
and D = ¢;}(C), where C is the canonical differential system on J(M,r)
and w : J(M,r) — M is the projection. Furthermore, let v be any point
of R. Then v is in fact defined by

Y(v) = p.(D(v)) as a point of Gr (Tpw)(M)),

and satisfies

Ker (¥.)y = F(v) N Ch(D)(v).
where Ch(D) is the Cauchy characteristic system of D (see §2.1 below).

For the proof, see Lemma 1.5 [Y1].

2. Geometry of Linear Differential Systems (Tanaka Theory)
We will recall here the Tanaka theory for linear differential systems
following [T1] and [T2].

2.1. Derived Systems and Characteristic Systems. By a differential
system (M, D), we mean a subbundle D of the tangent bundle T'(M) of a

manifold M of dimension d. Locally D is defined by 1-forms w, ..., wg—r
such that wy A -+ - Awg_, 3 0 at each point, where r is the rank of D;
D={uw=--=wy =0}

For two differential systems (M, D) and (M,D), a diffeomorphism ¢
of M onto M is called an isomorphism of (M,D) onto (M,D) if the

differential map ¢. of ¢ sends D onto D.
By the Frobenius theorem, we know that D is completely integrable if

and only if

dw; =0 (mod wy,... ,ws) fort=1,..:; 8
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or equivalently, if and only if
[D,D] C D,

where s = d — r and D = I'(D) denotes the space of sections of D.
Thus, for a nonintegrable differential system D, we are led to consider
the derived system 8D of D, which is defined, in terms of sections, by

8D =D+ [D,D].

Furthermore the Cauchy characteristic system Ch(D) of (M, D) is
defined at each point x € M by

Ch(D)(z) = {X € D(z) |
X|dw; =0 (mod wy,...,w,) fori=1,...,5},

When Ch (D) is a differential system (i.e., has constant rank), it is always
completely integrable (cf. [Y1]). Moreover higher derived systems 6*D
are usually defined successively (cf. [BCGj)) by

8D = 8(6*~' D),

where we put 8°D = D for convention.

On the other hand we define the k-th weak derived system 8*)D of D
inductively by

OMD = g%*-1Ip 4 [D, a1,

where 8@ D = D and %D denotes the space of sections of 3%)D. This
notion is one of the key points in the Tanaka theory ([T1]).

A differential system (M, D) is called regular if D~*+1) = 9®)D are
subbundles of T (M) for every integer k = 1. For a regular differential
system (M, D), we have ( [T2], Proposition 1.1)

(S1) There exists a unique integer u > 0 such that, for all k 2 p,
R . —p+1 -2 -1 _
D*=.=D#2DW 2. 2DF 207 =D,

(S2) [DP, D9 C DP**  forall p,g<0

where D? denotes the space of sections of DP. (S2) can be checked easily by
induction on ¢. Thus D~* is the smallest completely integrable differential
system which contains D = D1,

2.2. Symbol Algebras. Let (M, D) be a regular differential system such
that T(M) = D~#. As a first invariant for nonintegrable differential sys-
tems, we now define the graded algebra m(z) associated with a differential
system (M, D) at z € M, which was introduced by N. Tanaka [T2].
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We put g-1(z) = D~!(z), gp(z) = DP(z)/D"*!(z) (p < ~1) and

m(z) = P g(a)-

p=-1

Let =, be the projection of DP(z) onto g,(z). Then, for X € g,(z) and
Y € g,(z), the bracket product [X,Y] € gpi4(z) is defined by

(X,Y]= wp+q([xa)—/]r)a

where X and ¥ are any element of DP and D? respectively such that
@y(X:) = X and w,(Y;) =Y.

Endowed with this bracket operation, by (52) above, m(z) becomes a
nilpotent graded Lie algebra such that dimm(z) = dim M and satisfies

8p(z) = [gps1(), 9-1(2)] for p < —1.

We call m(z) the symbol algebra of (M, D) at x € M for short.
Furthermore, let m be a FGLA (fundamental graded Lie algebra) of

p-th kind, that is,
—4
m=D s

p==1
is a nilpotent graded Lie algebra such that

8p = [Bp+1,8-1) for p < —1.

Then (M, D) is called of type m if the symbol algebra m(zx) is isomorphic
with m at each z € M.

Conversely, given a FGLA m = @;‘_1 gp. We can construct a model
differential system of type m as follows: Let Af(m) be the simply con-
nected Lie group with Lie algebra m. Identifying m with the Lie algebra
of left invariant vector fields on M(m), g_; defines a left invariant sub-
bundle Dy, of T(M(m)). By definition of symbol algebras, it is easy to see
that (M (m), Dy,) is a regular differential system of type m. (M(m), Dy,)
is called the standard differential system of type m. The Lie algebra g(m)
of all infinitesimal automorphisms of (M(m), D) can be calculated alge-
braically as the prolongation of m ([T1], cf. [Y5]). We will discuss in §3
the question of when g(m) becomes finite dimensional and simple.

As an example to calculate symbol algebras, let us show that (L(J), E)
is a regular differential system of type ¢?(n):

C2(ﬂ.) =(¢3PCc 26 €1,
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where ¢c_3 =R, c_o = V* and ¢_; = V& S?(V*). Here V is a vector space
of dimension n and the bracket product of ¢?(n) is defined accordingly
through the pairing between V and V* such that V and S?(V*) are both
abelian subspaces of ¢_;. This fact can be checked as follows: Let us take a
canonical coordinate system U; (2, 2, pi, pi;) (1 £ < j S n) of (L(J), E).
Then we have a coframe {w, w;,dz;,dp;;} (1 £ ¢ £ j £ n) at each point
in U, where w =dz — 3. pidri, i =dpi — Y pidz; (i = 1,... ,n).
Now take the dual frame {Z, a%! dir‘_, 55:}, of this coframe, where

d_0, 0. 3 0

d:!,‘{ 633'{ Iaz =1 W 8pj
is the classical notation. Notice that {d%, 3‘%} (t=1,...,n) forms a free
basis of I'(E). Then an easy calculation shows the above fact. Moreover
we see that the derived system OF of E satisfies the following :

OE = {w =0} = =]'C, Ch (0F) = Ker,.

These are the key facts to Theorem 1.2 (cf. Theorem 3.2 [Y1]).
Similarly we see that (J(M,n),C) is a regular differential system of
type ¢ (n, m):
rl(nrm) =c_2@Bc_q,

where c.o = Wand ¢y = V@ W ® V* for vector spaces V and W of
dimension n and m respectively, and the bracket product of ¢!(n,m) is
defined accordingly through the pairing between V' and V* such that V
and W ® V* are both abelian subspaces of c_;.

2.3. Classification of Symbol Algebras of Lower Dimensions.
In this section, following a short passage from Cartan’s paper [C1], let us
classify FGLAs m = @;:_1 gp such that dimm < 5, which gives us the
first invariants towards the classification of regular differential systems
(M, D) such that dim M < 5.

In the case dimm = 1 or 2, m = g_, should be abelian. To discuss
the case dimm 2 3, we further assume that g_; is nondegenerate, i.e.,
[X.g-1] = 0 implies X = 0 for X € g_,. This condition is equivalent to
saying that Ch (D) = {0} for a regular differential system (M, D) of type
m. When g_, is degenerate, Ch (D) is nontrivial, hence at least locally,
(M, D) induces a regular differential system (X, D*) on the lower dimen-
sional space X, where X = M/Ch (D) is the leaf space of the foliation on
M defined by Ch (D) and D* is the differential system on X such that
D =p;1(D*). Here p: M — X = M/Ch(D) is the projection. Moreover,



296 K. Yamaguchi

for the following discussion, we first observe that the dimension of g_,
does not exceed (7), where m = dimg_;.

In the case dimm = 3, we have u £ 2. When p =2 m=g_,® g_,
is the contact gradation, i.e., dimg_, = 1 and g_, is nondegenerate. In
the case dimm = 4, we see that g_; is degenerate when p < 2. When
p = 3, we have dimg_3 = dimg_, = 1 and dimg_; = 2. Moreover it
follows that m is isomorphic to ¢?(1) in this case. In the case dimm = 5,
we have dimg_; = 4, 3 or 2. When dimg_; =4, m = g_,® g_, is the
contact gradation. When dimg_, = 3, g_; is degenerate if dimg_, = 1,
which implies that 4 = 2 and dimg._, = 2 in this case. Moreover, when
u = 2, it follows that m is isomorphic to ¢!(1,2). When dimg_; = 2, we
have dimg_ = 1 and gz = 3 or 4. Moreover, when p = 4, it follows that m
is isomorphic to ¢*(1), where ¢3(1) is the symbol algebra of the canonical
system on the third order jet spaces for 1 unknown function (cf. §3 [Y1]).

Summarizing the above discussion, we obtain the following classifi-
cation of the FGLAs m = @, _, g, such that dimm < 5 and g, is
nondegenerate.

(1) dimm=3 = p=2

m=g_,®g-1 =c!(l) : contact gradation
(2) dmm=4 = p=3

m=g 3Dg g1 (1)
(3) dimm =5, then p < 4

(@) p=4 m=g , 093082091 (1)
(b) p=3 m=g_3Dg8209-
such that dim g_3 =dim g_; =2 and dimg_, =1
(c)p=2 m=g_®g-1 =c(1,2)
(d) u=2 m=g_®g- =c!(2): contact gradation

A notable and rather misleading fact is that, once the dimensions of
gp are fixed, the Lie algebra structure of m = €9, X_, g, is unique in the
above classification list. Moreover, except for the cases (b) and (c), every
regular differential system (M, D) of type m in the above list is isomorphic
with the standard differential system (M (m), D) of type m by Darboux’s
theorem (cf. Corollary 6.6 [Y1]). The first nontrivial situation that cannot
be analyzed on the basis of Darboux’s theorem occurs in the cases (b) and
(c) (see [C1], [St]). Regular differential systems of type (b) and (c) are
closely related to each other (cf. §6.3 and [C1]). We shall encounter the
type (b) fundamental graded Lie algebra in §6.2 in connection with the
root space decomposition of the exceptional simple Lie algebra Gs.
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3. Differential systems associated with SGLAs

We will classify here the standard differential systems (M (m), Dy,) for

which the prolongation g(m) becomes finite dimensional and simple ([Y5]).
In this section we will solely consider Lie algebras over C for the sake of
simplicity.
3.1. Classification of Gradation of Simple Lie Algebras by Root
Systems. Let g be a finite dimensional simple Lie algebra over C. Let
us fix a Cartan subalgebra h of g and choose a simple root system A =
{a,...,a} of the root system & of g relative to h. Then every a € $isan
(all nonnegative or all nonpositive) integer coefficient linear combination
of elements of A and we have the root space decomposition of g;

i=Po.ohe P s

acdt agdt

where g, = {X € g | [h, X] = a(R)X for h € b} is a (1-dimensional)
root space (corresponding to o € ®) and ®* denotes the set of positive
roots.

Now let us take a nonempty subset A; of A. Then A; defines the
partition of ®* as in the following and induces the gradation of g =

@D,z 8y as follows:

£
‘I)'i" = P;ﬂ‘b;—? @;— Z{GZZR.;G‘." | Z ni=p},
i=1

o €4y

0= o 00=P©t®Poa 8= o

acdy acd? acd} aedf

(95584 € 8ot for p,q€Z.
Moreover the negative part m = Gap <o 8p satisfies the following generating
condition :

8 = [Bp+1,8-1] for p< -1
We denote the SGLA (simple graded Lie algebra) g = D}__, g, obtained
from A; in this manner by (X, A;), when g is a simple Lie algebra of
type X;. Here X, stands for the Dynkin diagram of g representing A and
A; is a subset of vertices of X;. Moreover we have

p= Y nlb),

€Ay

where 6 = f=1 n;(8) a; is the highest root of .
Conversely we have (Theorem 3.12 [Y5])
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Theorem 3.1 Let g = @,c78, be a simple graded Lie algebra over C
satisfying the generating condition. Let X, be the Dynkin diagram of g.
Then g = €D,cz8p is isomorphic with a graded Lie algebra (X, Ay) for
some &y C A. Moreover (X¢, A1) and (X, A)) are isomorphic if and only
if there exists a diagram automorphism ¢ of X, such that ¢(A;) = A].

In the real case, we can utilize the Satake diagram of g to describe
gradations of g (Theorem 3.12 [Y5]).

3.2. Differential systems associated with SGLAs. By Theorem
3.1, the classification of gradations g = @pezgp of simple Lie algebras g
satisfying the generating condition coincides with that of parabolic sub-
algebras g’ = @pzo gp of g. Accordingly, to each SGLA (X,, A;), there
corresponds a unique R-space Mg = G/G' (compact simply connected
homogeneous complex manifold). Furthermore, when p 2 2, there ex-
ists the G-invariant differential system Dy on Mg, which is induced from
g-1, and (M(m), Dy,) (standard differential system of type m) becomes
an open submanifold of (Mg, Dg). For the Lie algebras of all infinitesimal
automorphisms of (Mg, Dg), hence of (M(m), Dy,), we have the following
theorem (Theorem 5.2 [Y5]).

Theorem 3.2 Let g = P, 78, be a simple graded Lie algebra over C
satisfying the generating condition. Then g = @pEZ gp is the prolongation
of m = @pcﬂ g, except for the following three cases.

(1) g=98-1Sg0® g1 is of depth 1 (i.e., p=1).
(2) g= €B§=—2 gp is a (complex) contact gradation.

(3) 8 = D,cz8y is isomorphic with (A, {ay,ei}) (1 < i < £) or
(Ce, {1, ae}).

Here R-spaces corresponding to the above exceptions (1), (2) and (3)
are as follows: (1) corresponds to compact irreducible Hermitian symmet-
ric spaces. (2) corresponds to contact manifolds of Boothby type (standard
contact manifolds), which exist uniquely for each simple Lie algebra other
than sl(2,C) (see §5.1 below). In case of (3), (J(P%,4),C) corresponds to
(A¢, {a1,a:}) and (L(P*71), E) corresponds to (Cy, {oy,a¢}) (1 << ¥),
where P¢ denotes the f-dimensional complex projective space and P?~!
is the standard contact manifold of type C;. Here we note that R-spaces
corresponding to (2) and (3) are all Jet spaces of the first or second order.

For the real version of this theorem, we refer the reader to Theorem
5.3 [Y5).
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4. Geometry of PD-manifolds

We will here formulate the submanifold theory for (L(J), E) as the
geometry of PD-manifolds ([Y1]).

4.1. PD-manifolds. Let R be a submanifold of L(J) satisfying the
following condition:
(R0O) p:R— J;submersion,

where p = 7 |g and 7 : L(J) — J is the projection. There are two
differential systems C! = F and C? = E on L(J). We denote by D!
and D? those differential systems on R obtained by restricting these dif-
ferential systems to R. Moreover we denote by the same symbols those
1-forms obtained by restricting the defining 1-forms {w,w),... ,@,} of
the canonical system E to R. Then it follows from (R.0) that these 1-forms
are independent at each point on R and that

D! = {w =0}, DP={w=w = =w, =0}
In fact (R; D!, D?) further satisfies the following conditions:

(R.1) D! and D? are differential systems of codimension 1 and n+ 1
respectively.

(R2) @D+

(R.3) Ch(D") is a subbundle of D?* of codimension n.

(R4) Ch(DY)(v)NCh(D?)(v) ={0} ateachveER.

Conversely these four conditions characterize submanifolds in L(J)
satisfying (R.0). In fact we call the triplet (R; D, D?) of a manifold and
two differential systems on it a PD-manifold if these satisfy the above
four conditions (R.1) to (R.4). We have the (local) Realization Theorem
for PD-manifolds as follows: From conditions (R.1) and (R.3), it follows
that the codimension of the foliation defined by the completely integrable
system Ch(D') is 2n + 1. Assume that R is regular with respect to
Ch (D?%), i.e., the space J = R/Ch(D!) of leaves of this foliation is a
manifold of dimension 2n + 1. Then D' drops down to J. Namely there
exists a differential system C on J of codimension 1 such that D! =
p-1(C), where p : R — J = R/Ch(D") is the projection. Obviously
(J,C) becomes a contact manifold of dimension 2n + 1. Conditions (R.1)
and (R.2) guarantee that the image of the following map ¢ is a Legendrian
subspace of (J,C):

uv) =p.(D*(v)) € Cu),  u=p(v).

Finally the condition (R.4) shows that ¢ : R — L(J) is an immersion by
the Realization Lemma for (R, D? p, J) (see §1.2). Furthermore we have
(Corollary 5.4 [Y1]) the following.
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Theorem 4.1 Let (R; D', D?) and (R; D', D?) be PD-manifolds. As-
sume that R and R are regular with respect to Ch(D') and Ch(D") re-
spectively. Let (J,C) and (J, C) be the associated contact manifolds. Then
an isomorphism & : (R; D', D?) — (R; D', D?) induces a contact diffeo-
morphism ¢ : (J,C) — (J,C) such that the following commutes:

R —— L(J)

TR
R —— L(J).

By this theorem, the submanifold theory for (L(J), E) is reformulated
as the geometry of PD-manifolds.

When D! = 9D? holds for a PD-manifold (R; D!, D?), the geometry
of (R; D', D?) reduces to that of (R, D?) and the Tanaka theory is directly
applicable to this case. Concerning this situation, the following theorem
is known under the compatibility condition (C) below:

() pM:RM = R is onto
where R is the first prolongation of (R; D', D?) (cf. Proposition 5.11
[v1)).

Theorem 4.2 Let (R; D', D?) be a PD-manifold satisfying the condition
(C) above. Then the following equality holds at each point v of R:

dim D*(v) — dim 8D?(v) = dim Ch(D?)(v).

In particular D' = 8D? holds if and only if Ch(D?) = {0}.

4.2. First Reduction Theorem. When a PD-manifold (R; D', D?)
admits nontrivial Cauchy characteristics, i.e., when rank Ch(D?) > 0,
the geometry of (R; D', D?) is further reducible to the geometry of single
differential systems. Here we will be concerned with the local equivalence
of (R; D', D?), hence we may assume that R is regular with respect to
Ch (D?), i.e., the leaf space X = R/Ch (D?) is a manifold such that the
projection p : R — X is a submersion and there exists a differential
system D on X satisfying D? = p;}(D). Then the local equivalence of
(R; D*, D?) is further reducible to that of (X, D) as in the following : We
assume that (R; D!, D?) satisfies the condition (C) above and Ch (D?)
is a subbundle of rank 7 (0 < r < n). Then, by Theorem 4.2, 8D? is
a subbundle of D! of codimension r. From (X, D), at least locally, we
can construct a PD-manifold (R(X); Dk, D%) as follows. R(X) is the
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collection of hyperplanes v in each tangent space T,(X) at z € X which
contains the fibre 8D(z) of the derived system @D of D.

= |JR. cJ(X,m-1),
zeX

R, = {v € Gi(T(X),m — 1) | v D D(z)},

where m = dim X. Moreover D is the canonical system obtained by the
Grassmaniann construction and D% is the lift of D. Precisely, D% and
D% are given by

Dx(v) = v;}(v) D Dk (v) = v} (D(2)),

for each v € R(X) and z = v(v), where v : R(X) — X is the projection.
Then we have a map « of R into R(X) given by

K(v) = pa(D(v)) C Tx(X),

for each v € R and = = p(v). By the Realization Lemma for (R, D!, p, X),
& is a map of constant rank such that

Ker k, = Ch(D')NnKerp, = Ch(D')N Ch(D?) = {0}.

Thus « is an immersion and, by a dimension count, in fact, a local diffeo-
morphism of R into R(X) such that

k(DY) =D% and  k.(D?) = D%.

Namely « : (R,D',D?) — (R(X),D%,D%) is a local isomorphism of
PD-manifolds. (Precisely, in general, (R(X), D}, D%) becomes a PD-
manifold on an open subset.)

Summarizing the above consideration, we obtain the following Reduc-
tion Theorem for PD-manifolds admitting nontrivial Cauchy characteris-
tics.

Theorem 4.3 Let (R, D, D?) and (R; D*, D?) be PD-manifolds satisfy-
ing the condition (C) such that Ch(D?) and Ch(D?) are subbundles of
rank v (0 < r < n). Assume that R and R are regular with respect
to Ch(D?) and Ch(D?) respectively. Let (X,D) and (X,D) be the leaf
spaces, where X = R/Ch(D?) and X = R/Ch(D?). Let us fix points
v € R and %, € R and put z, = p(vo) and &, = p(v,). Then a local
isomorphism 1 : (R; D*, D?*) — (R; D, Dz) such that Y(v,) = 9, induces
a local isomorphism ¢ : (X,D) — (X,D) such that o(z,) = %, and
wu(K(z,)) = K(Z,), and vice versa.
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The involutive system (A) in the introduction is the example of this
situation and we have dim X = 5 and rank D = 2.

5. Contact Geometry of Single Equations of Goursat Type

In order to discuss the generalization of the equation (B) in the intro-
duction, we will define single equations of Goursat type and formulate the
Reduction Theorems for the contact equivalence of this type of equations.

5.1. Single Equations of Goursat Type. By a single equation (of
second order), we mean a hypersurface R of L(J) satisfying the condition
(R.0) in §4. Then, by the Cauchy-Kowalevsky theorem, we see that R
also satisfies the compatibility condition (C) and the symbol algebra s(v)
of (R, D?) at v € R is a subalgebra of ¢?(n) such that

5(v) = 5-3(v) & 5-2(v) ® 51 (v)

where s_3(v) =R, s_2(v) = V*, s_1(v) = V @ f(v) and f(v) is a subspace
of $2(V*) of codimension 1. Let (f(v))* be the annihilator of f(v) in S?(V)
under the pairing between S?(V) and S?(V*). Then dim (f(v))* = 1.

We say that R is of (weak) parabolic type at v if (f(v))* is generated
by a symmetric two form of rank 1. When R is defined in a canonical
coordinate (z;,2,p;,pi;) (1 Si <7< n) by

F(:Eif zrpiﬁpfj) = D’

then the above condition is equivalent to say that the symmetric matrix
(5‘1—“:;(0)) has rank 1 (cf. §3.3 [Y1]).

When R is of (weak) parabolic type at each point, (R, D?) is a regular
differential system of type s :

§=6_3@S5 2B 851,

where s_3 = R, 5o = V*, 5.y = V& fand f C S%V*) is given by
(f)* = (e?) c S*(V) for a nonzero vector e € V.

Let A(s) be the group of graded Lie algebra automorphisms of s and
E be the 1-dimensional subspace of V spanned by e. Then the annihilator
subspace E* of E is an A(s)-invariant subspace of V* = s_,. Starting
from the 1-dimensional subspace E = (e) of V, we can construct the first
order covariant system N(E) and the Monge characteristic system M(E)
as in the following (For details, see §7.3 [Y1]): Let v be any point of
R and let s(v) be the symbol algebra at v. Take a graded Lie algebra
isomorphism ¢ of s(v) onto s. Let n(E)(v) denote the linear subspace of
s_o(v) defined by

n(E)(v) = 67 (E™).
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Then, since E* is A(s)-invariant, it follows that n(E)(v) is well-defined.
Let k_5 be the projection of D'(v) onto s_5(v) = D'(v)/D?(v). We define
the linear subspace N(E)(v) of D(v) by setting

N(E)(v) = (k-2) 7" (n(E)(v)).

Then it follows that the assignment v — N(E)(v) defines a subbundle
N(E) of D'

Let m(E) denote the linear subspace of s_, spanned by linear subspaces
o(E), ¢ € A(s), i.e.,

m(E) = ({¢(E) Cs-1| ¢ € Als)}).

m(E) is an A(s)-invariant subspace of s_; by construction. Taking a
graded Lie algebra isomorphism ¢ of s(v) onto s, let M (E)(v) denote the
linear subspace of s_,(v) = D?(v) defined by

M(E)(v) = ¢} (m(E)).

It follows that the assignment v — M(E)(v) defines a subbundle M(FE)
of D?. M(E)(v) is the linear subspace of D?(v) spanned by the Monge
characteristic elements corresponding to E.

We say that R is a (single) equation of Goursat type when R is of
(weak) parabolic type and its Monge characteristic system M(FE) is com-
pletely integrable.

Now let us describe the covariant systems N = N(E) and M = M(E)
of (R,D?) in terms of adapted coframes (cf. [Y4]). Let R be a single
equation of (weak) parabolic type, i.e., let (R, D?) be a regular differential
system of type 5. Let v be any point of R. A coframe, i.e., a base of 1-forms
{0, @Wa, Way @10, @ag} (1 Sa £ n,2 < a < 3 < n) on aneighborhood U
of vin R is called an adapted coframe if it satisfies the following conditions
(5.1) and (5.2) :

Dzz{ﬁ?:’ﬂlz"':wn‘__o}i (5.1)
dw =wi ANy +-oerens + w, Aw, (mod =),
doo; = Wy Awia+  +wy Ny, (mod w, @y, -+ ,@,), (5.2)
doa =Wy Agy +voveee +wp ANWan (mod w, @y, -+, @n),

where we understand that @w,s = @Ws, and @y, = @Wa for 2 £ a, 58 < n.
The equalities (5.2) are the structure equations of (R, D?) in the sense of
E. Cartan ([C1], [C2]) and describe the structure of the symbol algebra
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s§=5_3@5_9@s_; of (R, D?). In terms of an adapted coframe, covariant
systems N and M are given by (cf. §3 [Y4])

N = {w = o, =0},
M={w=m=-=thh=wa=w1.=0 (2L asn)}

Then, for the structure of N, we obtain the following by Cartan’s
method (cf. §2, §3 [Y4], [Ts]).

Proposition 5.1 Let R be a single equation of Goursat type and let v be
any point of R. Then there erists an adapted coframe on a neighborhood
of v such that the following equality holds :

dw) = wa AW+ -+ wy ANy,  (mod @, wy).

Especially, Ch(N) = M on R.

5.2. Reduction Theorems. We now describe the two step reduction
procedure for the (contact) equivalence problem of single equations of
Goursat type, which explains the link between the exceptional simple Lie
algebra G, and the equation (B) of Goursat type mentioned in the intro-
duction.

Let R C L(J) be a single equation of Goursat type. We consider the
(involutive) Grassmann bundle I(J,1) of codimension 1 over the contact

manifold (J,C) :

IJ1)=|JL, I.=Gr(C(u)2n-1),

ueJ

where C(u) C T,,(J) is the fibre of the contact distribution. Here we note
that each hyperplane in C(u) is an involutive subspace of the symplectic
vector space (C(u),dw). In this sense, I, is the collection of involutive
subspaces of codimension 1 in (C(u),dw).

On I(J,1), we have two differential systems C* and N*, where N~ is
the canonical system obtained by the Grassmaniann construction and C*
is the lift of C. More precisely, C* and N* are given by

C*(w) = 7;Y(C(w)) D N*(w) =n"(w),

for each w € I(J,1) and u = w(w) € J, where 7w : I(J,1) — J is the
bundle projection.
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The first order covariant system N of (R, D?) induces a map ¢ of R
into I(J,1) by
p(v) = p.(N(v)) C C(u),

for each v € R and u = p(v), where p : R — J is the projection. By the
Realization Lemma for (R, N, p, J), ¢ is a map of constant rank such that

Ker ¢, = Ch(N)NKer p, = Ch(N)NnCh(D").

By Proposition 5.1, we have
rank Ker ¢, = %n(n —1) =dim S?(E4).

In the rest of this section, we will be concerned with the local equiv-
alence problem for single equations (R, D?) of Goursat type. Hence we
may assume that the image W = Im ¢ is a submanifold of I(J,1). Thus ¢
is a submersion of R onto W such that p = q- ¢, where q is the restriction
of the projection 7 : I(J,1) — J to W. Here we note that dim W = 3n.
Moreover we have two differential systems Cy and Ny on W, which are
the restrictions to W of C* and N* on I(J,1). Then we have

o (Nw) =N, and @' (Cw)=D"

We call (W; Cw, Nw) the associated involutive bundle of the single equa-
tion R of Goursat type.

Now the local equivalence of (R, D?) is first reducible to that of the
involutive bundle (W; Cw, Nw) as in the following: Locally W is the leaf
space of the foliation on R defined by Ch(N) N Ch(D?!). Conversely,
from (W; Cw, Nw), we can construct a PD-manifold (R(W); D}, D%,) as
follows. First, by Grassmannian construction, we define

RW) = | Ru,

weWw

R, = {v € Gr(Nw(w),2n — 1) |
v DO Ch(Cw)(w) and gq.(v) € Ly,u=q(w)},
where L, is the fibre of L(J) at v € J. D%, is the canonical system

obtained by the Grassmannian construction and D}, is the lift of Cy.
Precisely, D}, and D?, are given by

Dy (v) = (pw): ' (Cw(w)) D Dy (v) = (ew) ' (v),
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for each v € R(W) and w = pw(v), where pw : R(W) — W is the
projection. By definition, we have a map ¢ of R(W) into L(J) given by

J-'-lai/(u) = Q*(U) € Ly,

for each v € R(W) and u = g(v) € J. Then we note that the image
R*(W) = Im «w has the following description :

RW)=|J R, R.,={velL.vcwcC), u=qw)}.
weW

Namely R*(W) is the collection of Legendrian subspaces of (J,C) con-
tained in involutive subspaces of codimension 1 belonging to W C I(J, 1).

Now we have a map «; of R into R(W) given by
k1(v) = @ (D?(v)) C Nw(w),

for each v € R and w = ¢(v). By the Realization Lemma for
(R,D? ¢,W), k; is a map of constant rank such that

Ker #; = Ch (D2 NKer ¢, = Ch(N)NCh (D) N Ch(D? = {0}.

Thus k; is an immersion and. by a dimension count, in fact, a local dif-
feomorphism of R into R(W) such that

(DY =D8  ad  (sLDY=DY

Namely «; : (R, D', D?) — (R(W), D}, D%) is a local isomorphism of
PD-manifolds. (Precisely (R(W), D}y, D%;) becomes a PD-manifold on
an open subset.)

Summarizing, we obtain the following first Reduction Theorem for
contact equivalence of single equations of Goursat type.

Theorem 5.2 Let R and R be single equations of Goursat type. Let
(W;Cw, Nw) and (W;Cy,, Ny,) be the associated involutive bundles of
R and R respectively. Let k1 and &y be defined as above. Let us fir points
v, € R and ¥, € R and put w, = q(v,) and w, = ¢(0,). Then a local
isomorphism ¥ : (R, D*) — (R, D?) such that ¥(v,) = ¥, induces a local
isomorphism ¢ : (W;Cw, Nw) — (W;Cy,, Ny,) such that o(w,) = b,
and @.(k1(w,)) = K1(,), and vice versa.

By Proposition 5.1, it follows that rank Ch(Ny) = 1. Then, as in
§4.2, the geometry of (W; Cw, Nw) is further reducible to the geometry
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of regular differential system of type ¢!(n — 1,2) as follows. We may as-
sume that W is regular with respect to Ch(Ny) so that the leaf space
Y = W/Ch(Nw) is a manifold such that the projection 3 : W — Y is
a submersion and there exists a differential system Dy on Y satisfying
Nw = 3;'(Dy). Moreover, by Proposition 5.1, (Y, Dy) is a regular dif-
ferential system of type ¢!(n—1,2) (cf. Theorem 1.6 [Y3]). From (Y, Dy),
we can construct (W(Y); Cy, Ny) as follows. W(Y) is the collection of

hyperplanes w in each tangent space T,(Y') at y € Y which contains the
fibre Dy (y) of Dy:

W)= J W, cJ,3n-2),
yeY
W, ={w € Gr(Ty(Y),3n — 2) | w D Dy(y)}.

Cy is the canonical system obtained by the Grassmannian construction
and Ny is the lift of Dy. Precisely Cy and Ny are defined by

Cy(w) = p(w) D Ny(w) = u7'(Dn(y)),

for each w € W(Y') and y = p(w), where u: W(Y') — Y is the projection.
Then we have a map o of W into W(Y') given by

ra(w) = 3.(Cw(w)) C T (Y),

for each w € W and y = 3(w). By the Realization Lemma for
(W,Cw, 3,Y), ko is a map of constant rank such that

Ker ky = Ch(Cw) N Ker 3. = Ch(Cw)N Ch(Nw) = {0}.

Thus ks is an immersion and, by a dimension count, in fact, a local dif-
feomorphism of W into W(Y") such that

(k2)«(Cw) = Cy and (k2)u(Nw) = Ny.
Namely «; : (W; Cw, Nw) — (W(Y); Cy, Ny) is a local isomorphism.

Summarizing, we obtain the second Reduction Theorem for contact
equivalence of single equations of Goursat type.

Theorem 5.3 Let R and R be single equations of Goursat type. Let
(W;Cw, Nw) and {ﬁ/;CW,N@.) be the associated involutive bundles of
R and R respectively. Assume that W and W are regular with respect to
Ch(Nw) and Ch(Ny,) respectively. Let (Y,Dy) and (Y, Dy) be the leaf
spaces, where Y = W/Ch(Nw) and Y = W/Ch(Ny,). Let us fiz points
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w, € W and 0, € W and put y, = B(w,) and g, = 3{2&0) Then a local
isomorphism ¢ : (W;Cw, Nw) — (W;Cy,, Ny,) such that P(w,) = i,
induces a local isomorphism ¢ : (Y,Dy) — (Y, Dy) such that o(y,) =
and .(k2(yo)) = Ka(Jo), and vice versa.

Thus, finally, the local contact equivalence problem of single equations
R of Goursat type reduces to the equivalence of (Y, Dy). which are regular
differential systems of type ¢'(n — 1,2) (cf. [Ts], §3 [Y4]).

6. Gp-geometry

In view of discussions in §3, §4 and §5, we will here consider the gen-

eralization of (A) and (B) to other simple Lie algebras.
6.1. Standard Contact Manifolds. Each simple Lie algebra g over
C has highest root . Let Ay denote the subset of A consisting of all
vertices which are connected to —€ in the Extended Dynkin diagram of
Xe (¢ 2 2). This subset Ag of A, by the construction in §4, defines a
gradation (or a partition of ®*), which distinguishes the highest root 6.
Then, this gradation (X, Ag) turns out to be a contact gradation, which
is unique up to conjugacy.

Moreover we have the adjoint (or equivalently coadjoint) representa-
tion, which has € as the highest weight. The R-space Jg corresponding to
(X, Ag) can be obtained as the projectivization of the (co-)adjoint orbit
of G passing through the root vector of §. By this construction, Jg has
the natural contact structure Cy induced from the symplectic structure as
the coadjoint orbit, which corresponds to the contact gradation (X, Ag)
(cf. [Y5, §4]). Standard contact manifolds (Jg, Cy) were first found by
Boothby ([Bo]) as compact simply connected homogeneous complex con-
tact manifolds.

6.2. Gradation of G;. The Dynkin diagram of G, is given as follows:
OR—HON 6 = 3a; + 2as.

(s3] (s3]

In this case, from A = {a;, a2}, we have three choices for A;:

(G1) Ay = {a;}. In this case, we have y = 3, dimg_3 = dimg_; =
2 and dimg_, = 1. Moreover (Mg, Dg) coincides with (X, D) in case of
(A).

(G2) A; = {a2}. In this case, we have the standard contact grada-
tion.

(G3) A, = {a;,az}. In this case, we have u = 5, dimg_; = 2 and
dim g, = 1 for others.
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Let (Jg, Cg) be the standard contact manifold of type G,.If we lift the
action of the exceptional group G to L(Jg), then we have the following
orbit decomposition:

L(Jg) =OUR;UR,,

where O is the open orbit and R; is the orbit of codimension i. Here
Ry and R, can be considered as the global model of (B) and (A) re-
spectively. Moreover R is compact and is a R-space corresponding to
(G2,{a1,a2}). From this fact, it becomes possible to describe the PD-
manifold (R; D', D?) corresponding to (A) in terms of the R-space corre-
sponding to (G, {a;,as}).

Extended Dynkin Diagrams with the coefficient of Highest Root (cf. [Bu))

-8 -0
2 2 2
L 1 1 W il —0=0
....... (23] Qp_) Oy
oy ag Qg O ay
A (£>1) B, (£>2)
—8 1
2 ||||||| 2 a‘_-l
1 1
az ag_3
ay oy
D, (f > 3)
2 3 4 2
O0—0O0—0—30—0
-8 oy a3 a3 a4
Fy
2 3 4 3 2 1 3 2
OmmnO——0
-8 a1 a3 |ag as as o7 o) az —@
@ R Gy

6.3. Gy-geometry. In the Extended Dynkin diagram, except for A, type,
Ay consists of one simple root ay. The coefficient of ay in the highest
root § = 3 t_, ni(8) a; is of course 2. Furthermore, for the exceptional
simple Lie algebras, there exists, without exception, a unique simple root
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ag next to ay such that the coefficient of ag in the highest root is 3.
For X; = Eg, E;, Es, G, Fy, the gradation (X¢, {ac}) has the following
property,

p=3, dimg_3=2 and dimg_;=2dimg_,.

Moreover, ignoring the bracket product in g_;, the bracket product of
other part can be expressed in terms of pairing by

ga=W, g,o,=V and g, =WeV"

Namely the derived system (Mg, Dg) is a regular differential system of
type c¢!(r,2) for suitable r, where (Mg, Dy) is the standard differential sys-
tem of type (X, {ac}). This fact assures us to construct the single equa-
tion of Goursat type from the differential system (Y, Dy) = (Mg, dDy),
which is the generalization of (B).

Obviously the R-space Rg corresponding to (X, {as, ag}) is a fi-
bre space over the standard contact manifold (Jg, Cyg) corresponding to
(Xe,{ag}). In fact this Rg can be realized as a compact orbit in L(Jg).
which gives the generalization of (A). Moreover, in this case, we have rank
Ch(D?) = 1 as a PD-manifold and (X, D) coincides with the R-space cor-
responding to (X¢, {ac}).

Remark 6.1 (Classical cases) In the classical simple Lie algebras,
there is no simple root whose coefficient in the highest root is 3. How-
ever, in By (£ 2 3) and Dy (£ 2 5) types, there is a set {a;, a3} of simple
roots next to ag = ap whose sum of coefficients in the highest root is 3. In
fact, (Be, {aq,a3}) and (Dy, {ay,a3}) have the above property;

p=3, dimg ;=2 and dimg_,=2dimg_,,

and the set {a;, a3} plays the role of {ac}. Hence we have the general-
1zations of (A) and (B) for simple Lie algebras of type B, and type D,.

6.4. Nonvanishing second Spencer cohomology. So far in this sec-
tion, we have just discussed the model R-spaces. In view of the Tanaka
theory [T4] of the normal Cartan connections for the geometric structures
associated with the SGLAs (simple graded Lie algebras), each R-space
represents the model space of the associated geometry. Moreover the fun-
damental system of invariants (essential part of the curvature) of the nor-
mal connection of this geometry takes its values in the second Spencer
cohomology associated with the SGLA. Thus it is quite important to have
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knowledge of this cohomology for each geometry associated with the SGLA
(§2.5 [T4], cf. §5.3 [Y5]).

In our previous paper: Differential Systems Associated with Simple
Graded Lie Algebras, Adv. Studies in Pure Math. 22 (1993), 413-494,
the list of the Nonvanishing second Spencer cohomology (Proposition 5.5)
contains some misprints and omissions. Here we would like to take this
opportunity to correct the following points:

(I)  Ae-type.

°(11) is missing, and (2) and (4) lack information for the case ¢ = 3.
(IT) Bi-type.

7) contains a misprint (u = 3 shuld be replaced by pu = 4).

(ITT) Cy-type.

(
)
(3) contains a misprint (p; = 2 (¢ = 2) should be deleted).
)
(3

(IV)  Dg-type.

), (5) and (7) lack information for the case £ = 4.

Thus the corrected version of Proposition 5.5 [Y5] should be stated as
follows:

Proposition 6.2 Let (X¢, A,) be a simple graded Lie algebra over C de-
scribed in §3.1 (§3.4[Y'5]). Then the following are the list of (X¢ Aq)
and p;; such that p;; 2 0 holds for the irreducible component H° C
CPi2(m, g) of the harmonic space H? = H?(m,g) corresponding to oy; €
W°(2) in Kostant’s theorem (see [Ko]).

(I)  Ae-type (€2 2).

(1) {eu} p2=2 (£=2),
pz=1 (£23).
2) {o2} pr=pa=1 ({=23),
pn=1 pu=0 (£24)
(3) {ai} Piici1=piin =0 (2<iZ [f—;—l])
4) {a1. a2} pr2=pa=3 ({=2),
p2=1 pan=2 ps=0 (£=3)
p2=1, pn=2 (£24).
(5) {0:1,0‘,} Piz = P =0 (2(2(8—1)
(6) {1,041} P12 =Pre—1 =pe—1e=0 (€2 4).
(7) {o1, e} Pr2=pee-1=0, pe=1 (£23).
(8) {az, a3} P =pa=pp=pu=0 (£=4),
P =p3=pa=0 (£25).

(9) {0.’2‘0.“,'} P21 =10 (34i <€—1)
(10) {o2, cp—1} Pt = Pe-1e =0 (€2 5).
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11) {ai. ais1} Pini=pir1i =0 (2<iZ[§).
°(11) {a1, a2, 03} P2=0, pn=1 (2<i<¥).
(12) {a1, 02, ¢} P3a=p2=pxe=0, pa=ps=1 ({=23),
Pe=p12=0, pn=1 (£24).
(13) ‘[(.1'1, oy, G‘g} Pie = 0 (2 < g EHTID
(14) {o1, 02,045,053} pn=0 (2<i<j=¥).
(15) {1, a2, -1, ¢} Po1 = pe—1¢ = 0.
(II)  Bg-type (£ 2 3).
(1) {ar} p=1 pp=1
(2) {a2} p=2 po =py3=0.
(3) {as} p=2 pp=2 ({=3),
p2=0 (£24).
(4) {ae} p=2 pr1=0 (£24).
(5) {a1, a2} p=3 pn=0, pp=1
(6) {a1,as} p=3 p=1 (£=23).
(7) {az a3} p=4 pp=2 (£=23),
p=0 (£2 2 4)
(8) {01502,0’3} p=5 p=1 (£=23).
(III) Cy-type (£ 2 2).
(1) {ae} p=1 pn=2 (£=2), Pee-1 = (€2 3).
(2) {ou} p=2 pp=2 ({=2), p2=1 (£23).
(3) {a2} p=2 pa=1 pu=0 (£=3),
pa=1 (£24).
(4) {ae-1} B=2 pe1e=0 (£24).
5) {enae) w=3 p=2 pu=3 (£=2),
Pe=p2=0 (£23).
(6) {oo ac} p=3 pan=pu3=0 (¢£=3),
pn=0 (£24)
(1) {ee-1, e} p=3 pe1e=0 (£24).
(8} {01, Ctg} H= 4 P12 = U, P = 2 (f g 3)
(9) {on,00,0¢} p=5 py=1.
(10) {oy,02,05} p=6 py=0 (2<i<i).
(IV)  Dy-type (€ 2 4).
(1) {e1} p=1 pp=L
(2) {as} p=1 puo=0 (£25).
(3) {a2} p=2 pn=pn=pu=0 (£=4),
P =pu=0 (£25).
(4) A{as} p=2 pp=0 (£25).
(5) {a1, ¢} p=2 po=pp=0 ({=4),

pi2=0 (£25).
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(6) {a, a2} p=3 pa=1 py=0.
(7) {a,00,00} p=4 pa=pp=0 ({=4),
pi2=0 (£25).
(8) {a2, a3} u=4 pp=0 (£25).
(V) Exzceptional types.
(1) (Es,{aa}), (Er,{a7}) n=1 pi; =0, where {a;} = A
and (a;, a;) # 0.
(2) (Ee {a2}). (Er.{oau}), (Es,{as}), (Fi,{a1}) and (Ga, {as}).
Contact gradations: k=2 p;; =0, where{a;} =24
and (a;, ;) # 0.
(3) (G2, {en}) p=3 pn=3.
(4) (02' {alra2}) pL=3 pip=3.

We would like to thank Professor Hajime Sato at Nagoya University
for pointing out these omissions and also for providing us the .exe files for
computing nonvanishing second Spencer cohomology.

In our G,-Geometry, we notice from the above list that, except for
(G2, {e1}) and (Bs, {a1,@3}), Darboux type theorems hold for the regular
differential systems of type (X¢, {ag}) (cf. §5 [Y5]).
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