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Foreword 

The two papers contained in this volume provide results on 
which a series of subsequent papers will be based, starting with 
[JoE 92b], [JoE 92d] and [JoE 93]. Each of the two papers contains 
an introduction dealing at greater length with the mathematics 
involved. 

The two papers were first submitted in 1992 for publication in 
d. reine angew. Math. A referee emitted the opinion: "While such 
generalized products are of interest, they are not of such central 
interest as to justify a series of long papers in expensive journals." 
The referee was cautious, stating that  this "view is subjective", and 
adding that  he "will leave to the judgement of the editors whether 
to pass on this recommendation to the authors". The recommen- 
dation, in addition not to publish "in expensive journals", urged 
us to publish a monograph instead. In any case, the editors took 
full responsibility for the opinion about the publication of our se- 
ries "in expensive journals". We disagree very strongly with this 
opinion. In fact, one of the applications of the complex analytic 
properties of regularized products contained in our first paper is 
to a generalization of Cram6r's theorem, which we prove in great 
generality, and which appears in Math. Annalen Idol 92b]. The 
referee for Math. Ann. characterized this result as "important and 
basic in the field". 

Our papers were written in a self-contained way, to provide a 
suitable background for an open-ended series. Thus we always con- 
sidered the possible alternative to put them in a Springer Lecture 
Note, and we are very grateful to the SLN editors and Springer for 
publishing them. 

A c k n o w l e d g e m e n t :  During the preparation of these papers, 
the first author received support from the NSF Postdoctoral Fel- 
lowship DMS-89-05661 and from NSF grant DMS-93-07023. The 
second author benefited from his visits at the Max Planck Institut 
in Bonn. 
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Part  I 

Some Complex Analytic Propert ies  

of Regularized Products  and Series 





Introduct ion 

We shall describe how parts of analytic number theory and parts 
of the spectral theory of certain operators (differential, pseudo- 
differential, elliptic, etc.) are being merged under a more general 
analytic theory of regularized products of certain sequences satis- 
fying a few basic axioms. The most basic examples consist of the 
sequence of natural  numbers, the sequence of zeros with positive 
imaginary part of the Riemann zeta function, and the sequence 
of eigenvalues, say of a positive Laplacian on a compact manifold. 
The resulting theory applies to the zeta and L-functions of number 
theory, or representation theory and modular forms, to Selberg-like 
zeta functions in spectral theory, and to the theory of regularized 
determinants familiar in physics and other parts of mathematics. 

Let {Ak} be a sequence of distinct complex numbers, tending to 
infinity in a sector contained in the right half plane. We always 
put A0 = 0 and Ak 7 ~ 0 for k k 1. We are also given asequence 
{ak}  of complex numbers. We assume the routine conditions that  
the Dirichlet series 

o o  oN) 

ak and ~ 1 

k = l  k = l  

converge absolutely for some a > O. If ak E Z>0 for all k, we view 
ak as a multiplicity of Ak, and we call this t h e  s p e c t r a l  case. We 
may form other functions, namely: 

O 0  

The t h e t a  ser ies  O(t) = ~_, ake - xk t  
k=0  

f o r t  > 0 ;  

The ze ta  funct ion 
OO 

~(S) = ~ ak~kS; 
k----1 

The H u r w i t z  ze ta  f u n c t i o n  ~(s,z) = ~ ak(z  -t- ),k)-s; 
k=0  

The xi f u n c t i o n  ~(s,z) = r (s)r  which can be written as 



the L a p l a c e - M e l l i n  t r a n s f o r m  of the theta function, that  is 

e(s,z)= f o(t)e-z*ts  : LM0(s,  z). 

For the sequence {~k} with ak = 1 for all k, consider the deriv- 
ative 

- log Ak 

Put t ing s = 0 formally, as Euler would do (of. [Ha 49]), we find 

0 O  

r = E - l o g  .Xk. 
k : l  

Therefore if the zeta function has an analytic continuation at s = O, 
then 

O ~  

exp(-( ' (O))  = H Ik 
k = l  

may be viewed as giving a value for the meaningless infinite product 
on the right. Similarly, using the sequence {Ik +z} instead of {~k}, 
we would obtain a value for the meaningless infinite product 

O 0  

D(z) = e x p ( - ~ ' ( O , z ) ) =  I I ( I k  + z), 

k = l  

where the derivative here is the partial derivative with respect to 
the variable s. To make sense of this procedure in the spectral 
case, under certain conditions one shows that  the sequence {Ik} 
also determines: 

The r e g u l a r i z e d  product 

D(z) =eP(z)E(z), 

where P is a normalizing polynomial, and E(z) is a standard 
Weierstrass product having zeros at the numbers --Ik with mul- 
tiplicity ak. The degree of P and the order of the Weierstrass 



product will be characterized explicitly below in terms of the 
sequence { Ak } and appropriate conditions. 

We keep in mind the following four basic examples of the spectral 
case. 

Example  1. The  g a m m a  function.  Let Ak = k range over 
the natural  numbers. Then the zeta function is the Riemann zeta 
function CQ, and the Hurwitz zeta function is the classical one 

(whence the name we have given in the general case). The theta 
function is simply 

0(t) = Z 
k = 0  

1 - -  e - t "  

The corresponding Weierstrass product is that  of the gamma func- 
tion. 

Example  2. The  Dedek ind  zeta function.  Let F be an 
algebraic number field. The Dedekind  zeta funct ion is defined 
for Re(s) > 1 by the series 

CF(s) = 

where a ranges over the (non-zero) ideals of the ring of algebraic 
integers of F,  and N a  is the absolute norm, in other words, the 
index N a  = (0 : a). Then 

OO 

O(t) = E a k e - k '  
k = O  

where ak is the number of ideals a such that  Na  = k. This theta  
function is different from the one which occurs in Hecke's classical 
proof of the functional equation of the Dedekind zeta functions (cf. 
[La 70], Chapter  XIII). Of course, this example extends in a nat- 
ural way to Dirichlet, Hecke, Artin, and other L-series classically 
associated to number fields. In these extensions, ak is usually not 
an integer. 

Zeta functions arising from representation theory and the theory 
of automorphic functions constitute an extension of the present 
example, but we omit here further mention of them to avoid having 
to elaborate on their more complicated definitions. 



E x a m p l e  3. Regular ized  de terminant  of  an operator .  In 
this case, we let {)~k } be the sequence of eigenvalues of an operator. 
In the most classical case, the operator is the positive Laplacian on 
a compact Riemannian manifold, but other much more complicated 
examples also arise naturally, involving possibly non-compact man- 
ifolds or pseudo differential operators. Suitably normalized, the 
function D ( z )  is viewed as a regularized determinant (generalizing 
the characteristic polynomial in finite dimensions). 

E x a m p l e  4. Zeros of  the  zeta funct ion.  Let {Pk} range over 
the zeros of the Riemann zeta function with positive imaginary 
part. Let ak be the multiplicity of Pk, conjecturally equal to 1. 
Put  ~ = pk / i .  The sequence { ~ }  is thus obtained by rotating 
the vertical strip to the right, so that  it becomes a horizontal strip. 
A theorem of Cram6r [Cr 19] gives a meromorphic continuation 
(with a logarithmic singularity at the origin) for the function 

} "  ' 
27riV(z) = ake ~ = ake -)'~t 

which amounts to a theta function in this case (after the change of 
variables z = it). 

This fourth example generalizes as follows. Suppose given a se- 
quence {~k } such that  the corresponding zeta function has an Euler 
product and functional equation whose fudge factors are of regular- 
ized product type. (These notions will be defined quite generally 
in [JoL 92b].) We are then led to consider the sequence { ~ }  de- 
fined as above. From w one sees that  a regularized product exists 
for the sequence {,~k}. We will show in [JoL 92b] that  a regular- 
ized product also exists for the sequence { ~ } .  Passing from {~k} 

to {1~} will be called cl imbing the  ladder in the hierarchy of 
regularized products. 

Bas ic  F o r m u l a s .  The example of the gamma function provides 
a basic table of properties which can be formulated and proved 
under some additional basic conditions which we shall list in a 
moment. The table includes: 

The multiplication formula 
The Lerch formula 
The (other) Gauss formula 
The Stirling formula 
The Hankel formula 
The Mellin inversion formula 
The Parseval formula. 



The multiplication formula may be viewed as a special case of 
the Artin formalism treated in [JoL 92d]. The Parseval formula, 
which determines the Fourier transform of F ' /F  as a distribution 
on a vertical line will be addressed in the context of a general re- 
sult in Fourier analysis in [JoL 92c]. Here we show that  the other 
formulas can be expressed and proved in a general context, under 
certain axioms (covering all four examples and many more com- 
plicated analogues). We shall find systematically how the simple 

expression 1/(1 - e - t )  is replaced by theta functions throughout 
the formalism developed in this part. More generally, whenever the 
above expression occurs in mathematics, one should be on the look- 
out for a similar more general structure involving a theta  function 
associated to a sequence having a regularized product. 

T h e  A s y m p t o t i c  E x p a n s i o n  A x i o m .  The main axiom is a 
certain asymptotic expansion of the theta  function at the origin, 
given as AS 2 in w namely, we assume that  there exists a se- 
quence of complex numbers {p} whose real parts tend to infinity, 
and polynomials Bp such that  

e(t)  ~ Bp( log t ) t  p. 

P 

The presence of log terms is essential for some applications. 

In Example 1, the asymptotic expansion of the theta function is 
immediate, since 8(t) = 1/(1 - e - t ) .  In Example 2, this expansion 
follows from the consideration of w of the present part. In both 
Examples 1 and 2, Bp is constant for all p, so we say that  there are 
no log terms. 

In the spectral theory of Example 3, Minakshisundaram-Pleijel 
[MP 49] introduced the zeta function formed with the sequence of 
eigenvalues Ak, and Ray-Singer introduced the so-called analytic 
torsion [RS 73], namely ~'(0). Voros [Vo 87] and Cartier-Voros 
[CaV 90] gave further examples and results, dealing with a se- 
quence of numbers whose real part tends to infinity. We have found 
their axiomatization concerning the corresponding theta function 
useful. However, both articles [Vo 87] and [CaV 90] leave some 
basic questions open in laying down the foundations of regularized 
products. Voros himself states: "In the present work, we shall 
not be concerned with rigorous proofs, which certainly imply addi- 
tional regularity properties for the sequence {~k}." Furthermore, 
Cartier-Voros have only certain specific and special applications in 



mind (the Poisson summation formula and the Selberg trace for- 
mula in the case of compact Riemann surfaces). Because of our 
more general asymptotic expansion for the theta  function, the the- 
ory becomes applicable to arbitrary compact manifolds with arbi- 
trary Riemannian metrics and elliptic pseudo-differential operators 
where the log terms appear starting with [DuG 75], and continu- 
ing with [BrS 85], [Gr 86] and [Ku 88] for the spectral theory. In 
this case, the theta  function is the trace of the heat kernel, and its 
asymptotic expansion is proved as a consequence of an asymptotic 
expansion for the heat kernel itself. 

In Example 4 for the Riemann zeta function, the asymptotic 
expansion follows as a corollary of Cram6r's theorem. A log term 
appears in the expansion. The generalization in [JoL 92b] involves 
some extra work. Some of the arguments used to prove the asymp- 
totic expansion AS 2 are given in w of the present part (especially 
Theorem 5.11), because they are directly related to those used to 
prove Stirling's formula. Indeed, the Stirling formula gives an as- 
ymptotic expansion for the log of a regularized product at infinity; 
in [JoL 92b] we require in addition an asymptotic expansion for 
the Laplace transform of the log of the regularized product in a 
neighborhood of zero. 

N o r m a l i z a t i o n  of  the  W e i e r s t r a s s  P r o d u c t  by  the  Lerch 
F o r m u l a .  We may now return to describe more accurately our 
normalization of the Weierstrass product. When the Hurwitz zeta 
function ~(s, z) is holomorphic at s = 0, and all numbers ak are 
positive integers, there is a unique entire functions D(z) whose 
zeros are the numbers --,~k with multiplicities ak, with a normalized 
Weierstrass product such that  the Lerch  f o r m u l a  is valid, namely 

log D(z) = - ( ( 0 ,  z), 

where the derivative on the right is with respect to the variable s. 

As to the Weierstrass order of D, let P0 be a leading exponent 
in the asymptotic expansion for 8(t),  i.e. Re(p0) <_ Re(p) for all p 
such that  Bp 7~ 0. Let M be the largest integer < -Re(p0).  Then 
M + 1 is the order of D. 

In the general case with the log terms present in the asymptotic 
expansion, the Hurwitz zeta function r z) may be meromorphic 
at s = 0 instead of being holomorphic, and we show in w how to 
make the appropriate definitions so that  a similar formula is valid. 

In Example 1, this formula is the classical Lerch formula. In 
Example 2, and various generalizations to L-functions of various 



types, the formula is new as far as we know. In Example 3, the for- 
mula occurs in many special cases of the theory of analytic torsion 
of Ray-Singer and in Voros [Vo 87], formula (4.1). In Example 4, 
the formula specializes to a formula discovered by Deninger for the 
Riemann zeta function ~q (see [De 92], Theorem 3.3). 

Applications. Aside from developing a formalism which we 
find interesting for its own sake, we also give systematically funda- 
mental analytic results which are used in the subsequent series of 
parts, including not only the generalization of Cram~r's theorem 
mentioned above, but for instance our formulation of general ex- 
plicit formulas analogous to those of analytic number theory (see 
[JoL 93]). These particular applications deal with cases when the 
zeta function has an Euler product and functional equation. Such 
cases may arise from a regularized product by a change of variables 
z = s(s - 1). The Selberg zeta function itself falls in this category. 
However, so far the Euler product does not play a role. A prema- 
ture change of variables z = s ( s  - 1) obscures the basic properties 
of the regularized product and Dirichlet series which do not depend 
on the Euler product. 

Although, as we have pointed out, some special cases of our 
formulas are known, many others are new. Our results and formulas 
concerning regularized products are proved in sufficient generality 
to apply in several areas of mathematics where zeta functions occur, 
e.g. analytic number theory, representation theory, spectral theory, 
ergodic theory and dynamical systems, etc. For example, our Lerch 
formula is seen to apply to Selberg type zeta functions not only for 
Riemann surfaces but for certain higher dimensional manifolds as 
well. 

Furthermore, our general principle of climbing the ladder of reg- 
ularized products applies to the scattering determinant associated 
to a non-compact hyperbolic Riemann surface of finite volume. In 
[JoL 92b] we shall use results of Selberg to show that  the scattering 
determinant satisfies our axioms, and hence is of regularized prod- 
uct type. As a second application of our Cram6r's theorem, we then 
conclude that  the Selberg zeta function in the non-compact case 
is also of regularized product type. These facts were not known 
previously. 

Our theory also applies to Ruelle type zeta functions arising in 
ergodic theory and dynamical systems (for example, see [Fr 86] and 
references given in that  part). 

Therefore, we feel that  it is timely to deal systematically with 



the theory of regularized products, which we find central in math- 
ematics. 

For the convenience of the reader, a table of notation is included 
at the end of this part. 



w Laplace-Mellin Transforms 

We first recall some standard results concerning Laplace-Mellin 
transforms. The Mel l in  t r a n s f o r m  of a measurable function f on 
(0, (x~) is defined by 

O O  

M f ( s )  = / f ( t ) t  ~ 
dt 

t J 

0 

The Lap lace  t r a n s f o r m  is defined to be 

~ 0  

0 

The L a p l a c e - M e l l i n  t r a n s f o r m  combines both, with the defini- 
tion 

L M f ( s , z )  = f ( t )e -~ t t  ~dt . 
t 

We now worry about the convergence conditions. The next lemma 
is s tandard and elementary. 

L e m m a  1.1. Let I be an interval of real numbers, possibly 
imqnite. Let U be an open set of complex numbers, and let 
f = f ( t ,  z) be a continuous function on I x U. Assume: 

(a) For each compact subset K of U the integral 

/ f (~ ,  z) at 

is uniformly convergent for z C K. 

(b) For each t the function z ~ f( t ,  z) is holomorphic. 

Let 
P 

F(z)  = ./, f ( t ,  ~) d~. 

Then the second partial 02f  satis~qes the same two conditions as 
f ,  the function F is holomorphic on It, and 

F'(z) = f O2.f(t, ~.) dr. 

For a proof, see [La 85], Chapter XII, w We then have immedi- 
ately: 



10 

L e m m a  1.2. Special  Case.  L e t  z be such that Re(z) > 0 

and let bp 6 C. Then for Re(s) > 0 we have 

the integral being absolutely convergent, uniformly for 

Re(z) > (~1 > 0 and Re(s) _> 52 > 0. 

G e n e r a l  Case .  For any polynomial B, let B(O~) be the asso- 
ciated constant coett~cient differential operator. For Re(z) > 0, 
p c C  a n d R e ( s + p ) > 0  we have 

oo [ r ( s + p ) ] .  /0 e-ZtB(l~ = B(0.)[ ~.T.- j 

The proof of Lemma 1.2 follows directly from an interchange of 
differentiation and integration, which is valid for z and s in the 
above stated region. 

At this point let us record several very useful formulas. For any 
z with Re(z) > 0 and any s with Re(s) > 0, 

o o  o o  1 

t z" u z" ~ 

1 1/z 0 

where  the pa th  of integration in the second integral is such that 
u /z  is real. B y  expand ing  e -zt in a p o w e r  series about  the origin, 
we have 

1 

t k! s + k '  
0 k=O 

which shows that  the given integral can be meromorphically con- 
tinued to all s C C and all z C C. The integration by parts formula 

1 1 

s / c-Ztts dt = c-z  / e-Ztts+l dt 
T + z  - - ,  

t 
o o 
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also provides a meromorphic continuation of the given integral. 

The next lemma shows how an asymptotic expression for a func- 
tion f ( t )  near t = 0 gives a meromorphic continuation and an as- 
ymptotic expansion at infinity for the Laplace-Mellin transform of 
f ( t ) .  We first consider a special case. 

L e m m a  1.3.  Spec ia l  Case .  Let f be piecewise continuous on 
(0, oo). Assume: 

(a) f ( t )  is bounded for t ~ oo. 

(b) f ( t )  = bpt p + O(t Re(q)) for some bp C C, p ,q E C such that  

Re(p) < Re(q), and t ---+ O. 

Then for Re(s) = a > -Re(p)  and Re(z) > 0 the Laplaee-Mellin 
integral 

~0 ~176 
L M f ( s , z )  = f ( t ) e _ : t  ts dt 

T 

converges absolutely, and for Re(s) > -Re(q)  the function L M f  
has a meromorphic  continuation such that 

L M f ( s , z )  = bp F(s + p )  �9 z~+p + g ( s , z )  

where for ~xed z, s ~ g( ~, z) is holomorphic for Re( s ) > - R e ( q )  

The only possible poles in s os L M f  when Re(z) > 0 and when 
R e ( s + q )  > 0 are at s = p n with n E Z_>0. All poles are 
simple, and the residue at s = - p  is bp. 

Proof. We decompose the integral into a sum: 

/0 /0 L M f ( s , z )  = ( f ( t )  - bptP)e -z t  t~ -tdt + e_Ztbpt~+p -~dt 

= r i I ( f ( t )  _ bptP) e - z t  
dt 

t s 
7 d0 

+ fl ~176  _ bptP)e_Zt ts dt P(s + p) 
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The second integral, from 1 to oc, is entire in s, and converges 
uniformly for all z such that  Re(z) _> 5 > 0, and for all s such that  
Re(s) is in a finite interval of R. Also, we have 

since 

r(s + p) bp 
bp z~+p - s + p bp(7 + log z) + O(s + p), 

1 
r ( s ) -  7 + O(s). 

S 

So there remains to analyze the first integral, from 0 to 1. More 
generally, let q C C, and let g be piecewise continuous on (0, 1] 
satisfying 

g(t) = O(t a"(q)) for t ---+ O. 

Then the integral 

1 

[ l ( S ,  Z) : / g(t)e-~tt ~ dt 
t 

0 

is obviously holomorphic in z C C and Re(s) > -Re(q) ,  by Lemma 
1.1. This concludes the proof of Lemma 1.3. [] 

We are now going to show the effect of introducing logarithmic 
terms. For p C C, we let Bp denote a polynomial with complex 
coefficients and we put 

bp(t) = Bp( logt ) .  

We then let B(08) be the corresponding constant coefficient partial 
differential operator. 

L e m m a  1.3. G e n e r a l  Case .  Let f be piecewise continuous 
on (0, ec). Assume: 

(a) f ( t )  is bounded for t ~ oc. 

(b) f ( t )  = bp(t)t p + o(tRe(q)l logtlm ) for some function 

bp(t) = Bp( logt)  e C[logt], 

such that Re(p) < Re(q), m E Z>0, and t --. O. 
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Then for R e ( s ) =  a > - R e ( p ) a n d  Re(z) > 0 the Laplace-Mellin 
integral 

/o L M f ( s , z )  = f ( t )e_zt  ts dt 
t 

converges absolutely, and for Re(s) > -Re(q)  the function L M  f 
has a meromorphic continuation such that 

L M f ( s , z )  -- Bv(0~) r/r(s 
+ P) 

z~+p + g(s, z) 
[ 

where  for t~xed z, s ~-+ g(s, z) is holomorphic for Re(s) > - Re(q). 
The only possible singularity of L M f  when Re(z) > 0 and 
Re(s +q)  > 0 are poles of order at most  degBp + 1 at s - - p -  n 
with n C Z>o. 

The proof is the same as in the special case invoking Lemma 1.1. 

In brief, the presence of the logarithmic term bp(t) introduces 
a pole at s = - p  of order degBp + 1, and Lemma 1.3 explicitly 
describes the polar part  of the expansion of the Laplace-Mellin 
integral near s = -p .  

The preceding lemmas give us information for 

g ( t ) -  o(tRe(q) llogtlm ). 

We end our sequence of lemmas by describing more precisely the 
behavior due to the term bv(t)t p. 

L e m m a  1.4. Let f be piecewise continuous on (0, oo). Assume: 

(a) There is some c C R such that f ( t )  = O(e ct) for t ~ oo. 

(b)  f ( t )  = bp(t)t p + o(tRe(q) llogtlm ) with bp(t) = Bp(logt),  

Re(p) < Re(q),  m C Z>0 and t ~ 0. 

Then L M f ( s ,  z) is meromorphic in each variable for 

Re(z) > c and Re(s) > -,Re(q) 

except possibly for poles at s = - ( p  + n) with n E Z___0 of order 
at most  deg Bv + 1. 
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Pro@ We split the integral: 

cx) 

i f(t)e_ztt~ dt 
t 

0 

I i ( S , p , Z  ) + /2(8,p,  Z) -4- h ( S , Z )  

where 

1 

0 

1 

i Bp(log t)e-ztt ~+p dt (2) 5 ( ~ , p , z )  = ~, 

0 

(3) h(~, ~)= f .f(~) _,,~ d~. 
1 

The specified poles in s are going to come only from I2. That  is: 

Ii(s,p,z) is holomorphic for z E C and Re(s) > -Re(q) .  

I2(s,p, z) has a meromorphic continuation given by expanding 

e -zt in its Taylor series and integrating term by term to get 

zn E ' ]  

I3(s, z) is holomorphic for Re(z) > c and all s C C. The theorem 
follows. [] 

We now consider an infinite sequence L = {Ak} of distinct com- 
plex numbers satisfying: 

D I R  1. For every positive real number c, there is only a finite 
number of k such that  Re(Ak) _< c. 

We use the convention that  A0 = 0 and Ak # 0 for k > 1. 
Under condition D I R  1 we delete from the complex plane C-the  
horizontal half lines going from -cx~ to -Ak for each k, together, 
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when necessary, the horizontal half line going from - c o  to 0. We 
define the open set: 

UL = the complement of the above half lines in C. 

If all )~k are real and positive, then we note that  UL is simply C 
minus the negative real axis R<0. 

We also suppose given a sequence A = {ak} of distinct complex 
numbers. With  L and A, we form the a s y m p t o t i c  e x p o n e n t i a l  
p o l y n o m i a l s  for integers N _> 1: 

N - 1  

QN(t) = ao + E ake-'~kt 
k : l  

Throughout we shall also write 

ak = a( ~k ). 

Similarly, we are given a sequence of complex numbers 

{p} = { p o , . . . , p i , . . .  } 

with 

Re(p0) _< Re(p1)  < - - .  < Re(pj)  < . . .  

increasing to infinity. To every p in this sequence, we associate a 
polynomial Bp and, as before, we set 

bp(t) = Bp(log t). 

We then define the a s y m p t o t i c  p o l y n o m i a l s  a t  0 to be 

P q ( t )  = 

Re(p) <Re(q) 

In many ,  perhaps  most,  applications the exponents  p are real. Be- 
cause there are significant cases w h e n  the exponents  are not nec- 
essarily real, w e  lay the foundat ions in appropr iate generality. W e  
define 

re(q) = max deg Bp for Re(p) = Re(q). 
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Let C(T) be the algebra of polynomials in T p with arbitrary 
complex powers p E C. Then, with this notation, 

Pq(t) e C[logt](t). 

We let f be a piecewise continuous function on (0, oc) satisfying 
the following a s y m p t o t i c  c o n d i t i o n s  at infinity and zero. 

AS 1. Given a positive number C and to > 0, there exists N 
and K > 0 such that 

If(t) - QN(t)[ <_ Ke  - c t  for t _> to. 

AS 2. For every q, we have 

f ( t )  - Pq(t) = Oq(tRe(q) llogtl re(q)) for t ~ 0, 

where, as indicated, the implied constant depends on q. 

Often we will write AS 2 as 

f(t) ,,~ E bp(t)tP" 
p 

Also, we will write Pq(t) = Pqf( t )  to denote the dependence on f .  
The crucial condition is AS 2 and, in practice, is the most difficult 
to verify. 

Let p0 be an exponent of the asymptotic expansion AS 2 with 
smallest (negative) value of Re(p0). Let M be the largest integer 
< -Re(p0).  We call M the r e d u c e d  o r d e r  of the sequence {Ak}. 
For instance, the sequence Z>0 has reduced order O. 

The case when all ak are non-negative integers will be called the 
s p e c t r a l  case. In such a situation one can view the coefficients 
ak as determining a multiplicity in which the element Ak appears 
in the sequence L. 

The case when all the polynomials Bp are either 0 or constants, 
denoted by bp, will be called the spec ia l  case. In such a situation 
Pq is a polynomial with complex exponents and without the log 
terms. 
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Define n(q) to be 

n(q) = max deg Bp. 
Re(p) <Re(q) 

Throughout we will use p' to denote an element in the sequence {p} 
with next largest real part for which Bp, is not zero. In particular, 
this means that 

n(q') = max deg Bp. 
Re(p) _<Re(q) 

T h e o r e m  1.5. Let f satisfy AS 1 and AS 2. Then L M f  
has a meromorphic continuation for s C C and z C UL. For 
each z, the function s ~ L M f ( s ,  z) has poles only at the points 
- (p  + n) with bp # 0 in the asymptotic expansion of f at O. A 
po/e at - ( p  + n) has order at most n(p) + 1. In the special case 
when the asymptotic expansion at 0 has no log terms, the poles 
are simple. 

Pro@ We first do the analytic continuation in z, for Re(s) large. 

We subtract an exponential polynomial QN from f(t),  using the 
asymptotic axiom AS 1, to write 

0 

o o  o o  

o o 

0 
oo N-1 oo 

+go / C-ztts dtV -~- E ak / e-~'t~-ztts d~V 

0 k = l  0 

o o  

~t  ~ dt 
f [f(t) - QN(t)]e- t - f  

o 
N-1 

+ a o - -  + ak (z  + Xk)S+P " 
k = l  
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It is immediate that  the terms involving the gamma function have 
the above stated meromorphy properties. In particular, note that  
the appearance of the term 

N-1  r ( S  -']- p)  

k=l  

requires us to restrict z to UL. So, at this time, it remains to study 
the integral involving f - QN. Since f satisfies AS 2, then so does 
f - Q N ,  and the integral 

oK) 

J[f( t) - QN( t ) ]e -~ t t  ~ 

is absolutely convergent for Re(s) > -Re(p0)  and Re(z) > - C  if 

f ( t )  - Q g ( t )  = O(e - c t )  for t ~ c~. 

By taking N sufficiently large, one can make C arbitrarily large, 
so this process shows how to meromorphically continue L M f ( s ,  z) 
as a function of z. Next we show how to continue meromorphically 
in  s. 

For this we can apply Lemma 1.4 to f - QN,  which shows that  
for Re(z) > - C  the function 

s ~ L M f ( s , z )  

is meromorphic in C. In addition, Lemma 1.4 shows that  the only 
possible poles are as described in the statement of the theorem. 
Note that  the set of these poles is discrete, because the values p + n 
tend to infinity. This completes the proof of the theorem. [] 

We shall use a systematic notation for the coefficients of the Lau- 
rent expansion of L M f ( s , z )  near s = so. Namely we let Rj(so;Z)  

be the coefficient of (s - s0) j, so that  

L M f ( s ,  z) = E Rj(so;Z)(S  - so) j. 

We shall be particularly interested when so = 0 or so = 1. Also, 
when necessary, we will express the dependence of the coefficients 
on the function f by writing 

Rj,i(s0; z) = Ri(s0; z). 
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T h e o r e m  1.6.  Let f satisfy A S  1 and A S  2. Then for every 

z C UL and  s nea r  0, the funct ion L M f ( s ,  z) has  a pole at s = 0 
of order  at most n(O') + 1, and the  function L M f ( s ,  z) has  the 
Laurent expansion 

L M f ( s , z )  = 
R_n(0,)_l  (0; z) 

,sn(O')+l 
+ . . .  + R0(0; z) + R,(0; + . . .  

where,  for each j < 0, Rj(0;  z) C C is a polynomial of degree 

< - R e ( p 0 ) .  

Proof. For a n y C  > 0 ,  choose N as in A S  1 so tha t  f - Q N i s  
bounded  as t ---+ co. Since 

LM f ( s , z )  = L M [ f -  QN](S,z) + LMQN(s , z )  

= L M [ f -  QN](S,z) + ao 
r ( S )  N - I  F(S _ll_ p ) 

- -  -~- E a k ( Z q- /~ k ) S -t- P ' 
zS k=l  

it suffices to prove the theo rem for f -  QN, or, equivalently, assume 
tha t  f ( t )  is b o u n d e d  as t ~ ec. 

Let 

P 0 , ( t ) =  E bp(t)tP' 

Re(p)<_O 

so we include Re(p) = 0 in the sum. We decompose  the integral  
into a sum: 

O 0  

0 

0 

1 0 

The  first two integrals  are ho lomorphic  at s = 0 and  Re(z)  > O. 
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By Lemma 1.2, the th i rd  integral  is s imply 

1 

Re(p)_~0 0 

1 

Re(p)_<0 k=0 

(--Z)kBP(O') [ 1 ] k '  (4) -- ~ + ho(z) + O(s), 
Re(p)+k=0 

where ho(z) is entire in z. This  proves the theorem, and (4) gives us 
an explicit de te rmina t ion  of the po lynomia ls /~ j (0 ;  z) for j < 0. [] 

The  constant  term R0(s0; z) is so impor tan t  tha t  we give it a 
special notat ion;  namely,  for a meromorphic  funct ion G(s) we let 

CT~=,0G(s ) = constant  term in the Laurent  expansion 

of G(s) at s = so. 

Tha t  is, 
CT~=oLMf(s,z) = R0(0; z). 

C o r o l l a r y  1.7. Define 
1 

( f ( s , z ) -  r ( s ) L M f ( s , z )  and ~f ( s , z )  = L M f ( s , z ) .  

Then, in the special case, Q(s, z) is holomorphic at s = 0 for 

z C UL and 

r = CTs=o(f(s; z) -t- "f/~-l ,f(0;  z). 

Proof. in the special case n(0')  = 0, so LMf(s,z) has a pole at 
s = 0 of order at most  1. Since 

1 
-- S AT- "IS 2 -~ 0 ( 8  3 ), 

r(s) 
we h a v e  

1 
~f ( s , z )  - r ( s ) ~ f ( s ' z )  

----- /l~--l,f(0; Z) -~ ( C T s = o ~ f ( s , z )  A[_ " ~ R _ l , f ( 0 ;  z))8 --[- O(82 ) ,  

from which the corollary follows. [] 
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T h e o r e m  1.8. The function L M f  satisfies the equation 

O z L M f ( s , z )  = - L M f ( s  + 1,z), for s E C and z C UL. 

Pro@ This is immediate by differentiating under the integral 
sign for Re(s) and Re(z) sufficiently large, and follows otherwise 
by analytic continuation. [] 

C o r o l l a r y  1.9. For any integer j ,  we have 

OzR (so; ) =-Rj( o + 1,z). 

In particular, for the constant terms, we have 

OzRo(O;z) = -Ro(1 ,z ) .  

C o r o l l a r y  1.10. The Mellin transform 

r = Mf( s ) ,  

has a meromorphic continuation to s C C whose only possible 
poles are at s = --p such that bp ~ O. 

Proof. Write f = f0 + fl  with f0 = Q N and f l  = f -  Q N with 
N sufficiently large so that  we can apply AS 1 to f l  with C > O. 
Then Mfo is entire in s. As for f l ,  we have, for any q, 

(5) 

1 

M f l ( s )  = / [ f l ( t ) -  Pq(t)]tsdtt 

0 
o o  [1]/ 

q- Z Bp(Os) ~ -4- f l ( t ) t - -~ - .  

Re(p) <Re(q) 1 

The first integral in (5) is holomorphic for Re(s) > -Re(q) ,  by 
Lemma 1.4. By the construction of f l ,  the second integral in (5) 
is entire in s. The sum in (6) is meromorphic for all s C C with 
possible poles at s = -p .  With all this, the proof is complete. [] 
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Given the sequences A and L as defined in AS 1, one can con- 
sider: 

a D i r i c h l e t  s e r i e s  

a t h e t a  s e r i e s  

OO 

k = l  

OO 

0L,A(~) = 0(~) = a0 + ~ ak~ - ~ t ,  

k = l  

a r e d u c e d  t h e t a  s e r i e s  

OO 

0(1)A(~) __-- 0 (1 ) (~ )  ----~ ~ a k e  -)~kt, 

k = l  

and, more generally, for each positive integer N, 

a t r u n c a t e d  t h e t a  s e r i e s  

o o  

O(N) L,A(t)  = o(N)(~) = } ~ ,  ~k~ - ~ '  
k=N 

We shall assume throughout that the theta series converges abso- 
lutely for t > 0. From D I R  1 it follows that the convergence of the 
theta series is uniform for t _ > (~ > 0 for every (~. We shall apply the 
above results to f = 0 with the associated sequence of exponential 
polynomials QNO being the natural ones, namely 

N - 1  

QNO(t) = ao + ~ ake -x~t 

k=l 

Note that the above notation leads to the formula 

O(t) - QNO(t) = o(N)(t) 

The absolute convergence of the theta series O(t) describes a type of 

convergence of 0 (N) near infinity that is uniform for all N. The fol- 
lowing condition describes a type of uniformity of the asymptotics 

of O(t) near t = 0. 
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A S  3. Given 5 > 0, there  exists an a > 0 and a constant  C > 0 
such tha t  for all N and  0 < t < 5 we have 

o ( N ) ( t )  = IO( t )  - QN(t)I <_ C/t". 

We shall see tha t  the three  condi t ions A S  1, A S  2 and  A S  3 
on the the ta  series correspond to condi t ions  on the  zeta funct ion 
descr ibing the g rowth  of the sequence {,kk} and  also the sequence 

{ak}. The  condi t ion D I R  1 simply states tha t  the  sequence {)~k} 
converges to infinity, in some weak sense. The  following condi t ion 
gives a slightly s t ronger  convergence requi rement .  

D I R  2. 

(a)  The  Dirichlet  series 

Z ak 

-2i. k k 

converges absolutely for some real or. Equivalently,  we can 
say tha t  there  exists some ~r0 6 R>0 such tha t  

lakl = O(IAkl ~~ for k --, oo. 

(b )  The  Dirichlet  series 

1 

k k 

converges absolutely  for some real a. Specifically, let el  be 
a real n u m b e r  for which 

. 1 
} ,  < 

k 

T h e o r e m  1 .11 .  Assume that the the ta  series 

0 ( t )  = 

k = l  
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satisfies A S  1, A S  2 and A S  3, and assume that  Re(Ak) > 0 
for all k > O. Then for Re(s)  > a,  

O 0  
ak  

~(s) = MS(s)  = F ( s ) E  A--~k 
k = l  

in the sense that the series on the r ight  converges absolutely, to 
M0(s) .  In particular, the convergence condition D I R  2(a )  is 
satisfied for the Dirichlet series 

O(3 

ak  

k = l  

Proof. For cr = Re(s) > a,  we have 

N - 1  1 

I ( ( s ) - F ( s )  ~ A~ - [O(t)-QNO(t)ltS~ + [O(t)-QnO(t)ltsdtt 

k = l  0 1 

From A S  1 we have 

O O  O O  

1/E " I 
e(t) - QNe(t)]t" T < K _c,t.  dt _ - -~- ,  

1 

which goes to zero as C --~ c~. Similarly, by A S  3 we have tha t  

1 1 

o 

which is uniformly bounded  if cr > a.  Therefore,  we have tha t  for 
~r _> a + e > a,  the  difference 

N - 1  
ak  

~(s) - n . )  ~ hE 
k=l  
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is uniformly bounded for all N. By letting N approach (x~, we can 
interchange limit and integral, by dominated convergence, to show 
that  f o r a > a + e > a ,  

[ ] lim ~ ( s ) -  r ( s )  ak = 0 ,  
N---*oo A k 

k = l  

which completes the proof of the theorem. [] 

R e m a r k  1. If -Re(p0)  is an integer, then M + 2 is the smallest 
integer m for which the Dirichlet series 

]aki__ L 
tAkf m < oc 

1 

converges. If -Re(p0)  is not an integer, then M + 1 is the smallest 
such m. In any event, we let m0 be the smallest such m. The 
exponent Re(p0), which comes from AS 2, is not independent of 
the integer m0, which comes from D I R  2. In fact 

(6) m0 - 1 _< -Re(p0)  < m0. 

Indeed 

o o  

~(s) = r ( s )  }-~ ak),-[ ~ 
k = l  

1 

Re(p) <Re(q) 0 1 

The second integral on the right is holomorphic for 

Re(s) > -Re(q) .  

The first integral on the right has its first pole at s + p0 = 0, so 
at -p0,  whence m0 > -Re(p0).  The first inequality in (6) follows 
from the minimali ty of m0 since Re(p0) < 0. 

The following condition on the sequence L requires that,  beyond 
what is stated in the convergence condition D I R  1, the sequence 
Ik approaches infinity in a sector. 
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D I R  3. There  is a fixed e > 0 such that  for all k sufficiently 
large, we have 

71" 7r 

- 2  + e  < arg(Ak) < 
- -  - -  2 

Equivalently, there  exists positive constants  C1 and Ce such tha t  
for all k sufficiently large, 

C,[.Xkl _< Re(Ak) _< C~lAkl. 

T h e o r e m  1.12.  Let (L, A) be sequences for which the associ- 
ated Dirichlet series 

k=l at 

satisfies the three convergence conditions D I R  1, D I R  2 and 
D I R  3. Then the theta series 

o O  

o(t) = ~ ak~ -~'~' 
k = l  

satisfies AS 1 and AS 3. 

Proof. Let us first show how A S  3 follows. Directly from D I R  2 
and D I R  3 we have, for some constants  Cl and c2, the inequalit ies 

s I O(t) -- ONO(t) < k=Nake -)~kt 

<- Z la'~f ~-I~~ 
k = N  

OO 

_< c, ~ lakl~~ -~'~''. 
k = N  

Note tha t  for any x _> 0, there is a constant  c = c(~r0 + (7 1 ) such 
that  

X a~ - x  ~ C. 
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Let us apply this inequali ty to x = c2[Ak[t and then  sum for k > N 
to obtain,  for any t > 0, 

(7) 

O(t) -QNO(t) 
oo 

<-- C1 E ]'~k]a~ 

k=N 
oo 

C l "  C(c2t)--a~ " Z  [/~kl-trl" 

k=N 

Now if we let 

and 

then  (7) becomes 

O~ = 0r0 AV (71 

oo 

c = c , 4 c ~ ) - ~  Z I:,,,I -~ ,  , 

k = l  

O(t) - QNO(t) <_ C/t ~, 

which establishes the asymptot ic  condi t ion AS  3. 

In order to establish AS  1, we need some prel iminary calcula- 
tions. First,  note  that  by choosing c3 < c2, we can write 

o ( t )  * oo 
-QNO(t) < ~-~ake -;~k <_Cll E 

k=N k=N 

e-c31~lt 

Now let 

and 

CN = min{c3l~k[} for k_> N,  

loglAklal  } 
(8) t~ N) = max for k > N. 

r 5CN1 

By D I N  1 and D I N  3 we have 

lira CN = oe, 
g-- -*oo 
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and since 

we can write 

1 ~Cg ~ -~c31Akl for k > N, 

1 1 1 

Therefore, 

(9) logl~kl~l < log[Akl 2al for k > N. 

c31~kl- ~ C N 1  - [ ~ k l  c3  - 

By combining (8) and (9) we conclude that 

loglAkl } 2Crl for k > N, 
t~ N) _< max I~kl " c3 

so, in particular, 

l im t~o = O. 
g--,oo 

Therefore, there exists to < oo such that 

t~ N) <_ to for all N .  

Note that  for t > to and any k > N we have 

1 1 
(c3lAkl-  ~CN)t > (c3[Akl- ~CN)to 

1 
-> ( c ~ t ~ l -  ~ c N ) t ~  ~) 

c3]Akl- 1 gCN 
> log IAk lal 
- c~l ,~kl-  1 7CN 

> log IAklal, 

Therefore, for t > to, 

e-(C31~'~l-�89 S I~k[ - ~ ,  



29 

which gives the bound 

O(t)-QNO(t) 

<:X) 

, --~=CNt --}CN)t <_ Cle ~ ~ e -(~l~kl 

k = N  

O 0  

k = N  

which shows that AS 1 holds, and completes the proof of the the- 
orem. [] 

R e m a r k  2. The convergence condition D I R  1 is assumed as 
part of the asymptotic condition AS 1. Theorem 1.11 asserts that 
if the theta series 

O 0  

e(,) =  .ke 
k = l  

satisfies the asymptotic conditions AS 1, AS 2 and AS 3, then 

(:X) 

((s) = MO(s) = r(,). 

Further, the sequences (L, A) satisfies the convergence condition 
D I R  2(a) and, by Corollary 1.10, ~(s) has a meromorphic contin- 
uation to all s E (3. Theorem 1.12 states that if the two sequences 
(L, A) satisfy the three convergence conditions D I R  1, D I R  2 and 
D I R  3, then the corresponding theta series satisfies the asymptotic 
conditions AS 1 and AS 3. As previously stated, the condition 
AS 2 is quite delicate and, in practice, is the most difficult to ver- 
ify. In w we will show, under additional meromorphy and growth 
condition hypothesis on ~, AS 2 follows from the three convergence 
conditions D I R  1, D I R  2 and D I R  3. 
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w L a u r e n t  e x p a n s i o n  at  s = 0, W e i e r s t r a s s  p r o d u c t ,  
a n d  t h e  Le rch  f o r m u l a  

In this section, we consider the case when ak is a non-negative 
integer for all k, which we define to be t h e  s p e c t r a l  case. The 
corresponding Dirichlet series is then also called spectral, or t h e  
s p e c t r a l  z e t a  func t ion .  We develop some ideas of Voros [Vo 87], 

especially about his formula (4.1) which we formulate in a gen- 
eral context below as Theorem 2.1. Our arguments are somewhat 
different from those of Voros, who makes "no pretence of rigour". 
Basically, we want to make sense out of an infinite product of a 
sequence of complex numbers L = {Ak}, counted with multiplic- 
ities A = {ak}, which satisfies certain conditions. The results in 
w and the above definitions establish a line of investigation via a 
zeta function. In this section we indicate the line along Weierstrass 
products, and we show how the two approaches connect. 

We recall the construction of a Weierstrass product. Let A be a 
non-zero complex number, let m be an integer _> rn0, and let 

( 7 )  ( ~  1 ( ~ )  2 1 
Em(z,A) = 1 -  z exp + 2  + ' " + - - r n - 1  

( ~ ) m - - 1 )  , 

o r  a l so  

- -  . 

n 

We shall work under the assumptions D I R  2 and D I R  3, and, for 
m > rn0, we define the W e i e r s t r a s s  p r o d u c t  

Dm,L(Z) = z a~ 

oo 

I I  Era(z,--Ak) a~ �9 
k=l 

By the elementary theory of Weierstrass products, Dm,L(Z) is an 
entire function of strict order < m, that  is 

loglDm,L(z)l =O(Izl m) for Izl ~ o<~. 

We use the adjective "strict" to avoid putt ing an c in the exponent 
on the right hand side. 
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Let D(z) be an entire function of strict order < m with the 

same zeros as Dm,L(Z), counting multiplicities. Then there exists 

a polynomial PD(Z) of degree _< m such that  

D(z) =ePD(z)Dm,L(Z). 

We shall describe conditions that  determine the polynomial PD 
uniquely. 

Suppose the three convergence conditions DI lL 1, DI lL 2 and 
DIlL 3 are satisfied, so we have the spectral zeta function and the 
numbers 

oo 

~ ( ~ ) = ~  ak for ~ > m .  
k=l "~ 

We then have the power series of D(z) at the origin coming from 
the expansion 

(1) 
oc) z n  

log D ( z ) =  a01ogz + PD(z)+ E ( - -1)n- l~(n)  -n- 
n = m  

Z n 

= a0 logz + Co + E ( - 1 ) ' ~ - l c n  - 
n - - 1  

where the coefficients c .  satisfy 

c. = r for ~ > m + l .  

If D(0) :fi 0, meaning a0 = 0, then D(0) = e c~ , and we have 

(2) -log[D(z)/D(O)] = E ( - 1 ) " c n  z--~-~ . 
n 

n = l  

From this we see that  the coefficients of PD(Z) can be determined 
from the expansion (2) and the numbers 

~(m0), . . . ,  r 

Since Dmo,L(Z) is an entire function, the logarithmic derivative 

d 
logDmo,L(Z) = D~mo,L/Dmo,L(Z) Tz 
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is meromorphic ,  and fur ther  derivatives (d/dz)  r logDm0,L(Z) are 
also meromorphic ,  immedia te ly  expressible as sums t h a t  are of 
Mittag-Leffier type as follows. For an integer r > 1 let us define 

Tr, L(z) = Tr(z) (--1)r--1 ( d ) r 
F - ~  -~z logDmo,g(z). 

We have trivially 
d 

-gzT,( z ) = - r T , +  , ( z ). 

Since the logari thmic derivative t ransforms products  to sums, as 
part  of the s tandard  e lementary  theory of Weierstrass products  we 
obtain for each r > 1 the expansion: 

(3) 

ao ak 

T,(z)  = k=l 
O f  3 

ao ~ ak 
7 + 2_, (z+Ak)" 

k = l  

(  )a zn] 
z~ k 

; r < m o  

r>_mo 

where N = m0 - r - 1. In (3) we have the  usual binomial  coefficient 

-r) II.(~) 
n n! 

where 
I I . ( r )  = ( - 1 ) n r ( r  + 1 ) . . .  (r + n - 1). 

Note tha t  for n > 1 we have 

IIn(r) = - r I I n - l ( r  + 1). 

Let us define IIn(r)  for negative n th rough  this recursive relation. 

Because of the  absolute convergence of the the ta  series O(t), we 

have, by Theorem 1.8, for all z such tha t  Re(z + Ak) > 0 for all k, 
and any r >_ m0, 

O 0  

ao ak 
T,(z) = -2;  + ~ (z + ~), 

k----1 

(:X) 

r(,,) t 
0 
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If we let 

O~(t) = e-ZtO(t) = aoe -~t + E ake-(z+Ak) t, 

k----1 

we can write Tr(z) as a Mellin transform: 

1 /O~( t ) t~d t  

o 

The convergence of the integral and sum is uniform for Re(z) suf- 
ficiently large. 

We shall apply Theorem 1.8 with f = 0 and L M f  = ( to obtain 
the following theorem, which we call the Le rch  fo rmula .  

T h e o r e m  2.1. In the spectral case, assume that the theta func- 
tion 0 satisfies the asymptotic conditions AS 1, AS 2 and AS 3 
with the natural sequence of exponential polynomials (4). Then 
there exists a unique polynomial PL(Z) of degree <_mo - 1 such 
that i f  we define 

DL(z)=ePL(~)Dmo,L(Z), 

then for all z E C with Re(z) sut~ciently large, we have 

DL(Z) = exp(-CTs=o((S,  z)). 

Hence exp(-CT~=o~(S,z))  has an analytic continuation to all 
z C C to the entire function DL(Z). In particular, 

D~L/DL(z) = -OzCTs:o~(S,z)  = CWs:l~(S,z)  - - - -  R0(1;z). 

Proof. If we count A0 = 0 with multiplicity a0, we find for Re(s) 
large and r > m0, 

O 0  

ak 
),+, 

k=O + Ak 
(X )  

k•O 
ak 

= r ( s ) n r ( s )  (z + 
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where,  as before, 

= + 1 ) . . .  + - 1) .  

We now look at the constant  t e rm in a Lauren t  expansion at s = 0. 
If r > rn0, then  the series 

ak 

k = 0  

converges. At s = 0 the  g a m m a  funct ion has a first order  pole wi th  
residue 1. Note tha t  the IIr(0)  = 0. So, Theo rem 1.6 gives us a 
bound  rn0 - 1 for the degrees of the polynomials  in z occur ing  as 
coefficients in the negat ive powers in s of the Lauren t  expansion 
of ~(s,z). From this, we conclude tha t  ( 0 z ) r ( ( s , z )  is ho lomorphic  
near  s = 0. Wi th  all this, we can set s = 0 and obta in  the equal i ty  

OO 

ak 
(Oz)"CT+=o~(+,z) = ( - 1 ) r r ( r )  ~ (z + ,~k) r '  

k = 0  

f rom which  we obtain ,  using (3), 

(Oz)" [log Dmo(Z) + CTs=o((S,z)] = O. 

Hence, there  is a polynomia l  PL(z) of degree _< r - 1 such tha t  

logDmo,L(Z) + PL(Z) = -CTs=o((S,z) 

for Re(z)  sufficiently large, which completes  the proof  of the  theo- 
rem upon  set t ing r = m0. [] 

We call D(z) = DL(Z) the  r e g u l a r i z e d  p r o d u c t  associated to 

the sequence L + z. In par t icular ,  D(0)  is the regular ized p roduc t  
of the  sequence L. 

R e m a r k  1. Assume L can be wr i t t en  as the  disjoint union  of the  
sequences L ~ and  L" where  L ~ satisfies the  convergence condi t ions  
D I R  1, D I R  2 and  D I R  3, and  Oc,(t) satisfies the  asympto t ic  
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condit ions A S  1, A S  2 and A S  3. Then  L" and OL,,(t) necessari ly 
satisfy these condi t ions  and 

0(~) = 0L,(~) + 0L,,(~). 

From this, we immedia te ly  have 

~(~, z) = ~L,(~, z) + ~L,,(~, ~) 

and  
DL(z)=DL, (Z)DL, , ( z ) .  

A par t icu la r  example  of such a decomposi t ion  is the case when  L'  
is a finite subset  of L, in which case DL,(Z) = 1--[[(z + Ak)e'~]; see 
R e m a r k  2 below. 

It now becomes of interest  to de te rmine  in some fashion the coef- 
ficients of the polynomia l  PL(Z), and for this it suffices to de te rmine  

PL(r)(0). We define the  r e d u c e d  s e q u e n c e  L0 to be the sequence 

which is the same as L except tha t  we delete A0 = 0. Then  

OLo(t) = O(t) -- ao 

and,  as discussed in R e m a r k  1, we have 

Dmo,Lo(Z) = z-~~ 

T h e o r e m  2.2 .  The polynomials PL and PLo, as defined in The- 
orem 2.1, are equal. If  we let 02 be the partial derivative with 
respect to the second variable, then 

P~(:)(o) = - o ~ C % = o ~ ( ~ ,  o) 

f o r  0 < r < m o  -- 1. T h a t  is  

rno --1 zk  

PLo(Z) = -  ~ okC%=o((s ,O)~.  �9 

k=0 

Proof. From T heo rem 2.1 let us wri te  

PLo(Z) = -- log Dmo,Lo(Z) -- CW~=0((s, 0). 
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The canonical product of Dmo,Lo(Z) is such that  the Taylor series 

of log Dmo,Lo(Z) at the origin begins with powers of z which are at 
least z m~ Hence, 

0 logDmo,Lo(Z ) = 0 for 0 <_ r _< m0 - 1. 

z~0 

This proves the theorem. [] 

R e m a r k  2. The normalization DL(Z) that  we have given is 
the most convenient one for the formalism we are developing. One 
may also define the c h a r a c t e r i s t i c  d e t e r m i n a n t  DL(Z) by the 
condition 

n l , ( ( 0 ; z )  : CTs=0 [s - l ( ( S , z ) ]  -= CTs=0 [~($ 'z )  / ] log DL(Z) 
L +r(+) j ' 

so RI,r z) is the coefficient of s in the Laurent expansion of ~(s, z) 
at s = 0. In the special case we have that  

R,,+(0; z) = r z). 

Note that  log DL(Z) and log DL(Z) differ by an obvious polynomial 
in z coming from the Laurent expansion of F(s) at s = 0. For 

example, if L is a finite sequence, then DL(Z) = 1-I(z + ~k). Also, 
let us record the formula 

~'(0, Z) : /~0,~(0; Z)-~- ~n_l ,+(0;  z) 

= CTs=0~(s ,  z) + 7R_l ,+(0;  z),  

which, again, holds only in the special case. 

E x a m p l e  1. Theorems 2.1 and 2.2 provide a general setting for 
the some classical formulas. Voros [Vo 87] gives examples, including 
the simplest case which concerns the sequence Ak = k and the 
gamma function (see his Example c). Theorems 2.1 and 2.2 contain 
as a special case the classical Lerch formula, which states that  

logD(z)  = -+~(0 ,  z) if D(z) = v / ~ / F ( z )  

and 
oo I 

,%(s,z)  = rcs ) ~ (z + n) ,  
r~O 

- r(+)+Q(+,  z). 
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Indeed, we have the immediate relation 

log D ( z ) =  log D(z) + (7 + 1)z - 7 / 2  

coming from the definitions and the expansion 

1 
r ( s ) -  7 + O(s) 

8 

at s = 0 .  

E x a m p l e  2. Let (q  be the Riemann zeta function, and let {Pk} 
be the sequence of zeros in the critical strip with Im(pk) > 0. Let 
A' k = pk / i .  It is a corollary of a theorem of Cramdr [Cr 19] that 
the theta function 

0 ( t )  = 

satisfies AS 2. The Lerch formula for the sequence {)~, } (with mul- 

tiplicities ak) then specializes to a formula discovered by Deninger 
[De 92], Theorem 3.3. In [JoL 92b] we extend Cram(ir's theorem 
to a wide class of functions having an Euler product and func- 
tional equation, including the L-series of a number field (Hecke and 
Artin), L-functions arising in representation theory and modular 
forms, Selberg-type zeta funtions and L-functions for Riemann sur- 
faces and certain higher dimensional manifolds, etc. The present 
section therefore applies to these functions as well, and thus the 
Lerch formula is valid for them. Note that Deninger's method did 
not give him the analytic continuation for the expressions in his 
formula, but such continuation occurs naturally in our approach. 
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w E x p r e s s i o n s  at  s = 1. 

In this section we return to general Dirichlet series, as in w 
meaning we are given sequences (L, A) whose Dirichlet series that  
satisfy the convergence conditions D I R  1, D I R  2 and D I R  3, with 
associated theta  series OL, A ---- 0 that  satisfies the three asymptotic 
conditions AS 1, AS 2, and AS 3. With  this, we will study the 
xi-function 

0 

near s = 1. Referring to AS 2, let us define the p r i n c i p a l  p a r t  
of  t h e  t h e t a  f u n c t i o n  PoO(t) by 

(1) PoO(t)= E bp(t)F. 
R e ( p ) < 0  

Recall that ,  by definition, re(O) = max deg Bp for Re(p) = 0 so 

(2) 
f O(1) in the special case 

O(t) PoO( t ) 
O(I logtl m(~ in the general case, 

as t approaches zero. 

T h e o r e m  3.1. Let C and N be related as in AS 1. Then the 
function 

N - 1  1 

ak / PoO(t)e_Z,t, dt X ((s,z) F(s) 

k=0  0 

has a holomorphic continuation to the region 

{Re(s) > 0} • {Re(z) > - C } .  



39 

Proof. Let us write 

N - 1  

ak {(,, z ) -  r(~) ~ (~k + 
k----0 

oo 

z), 
dt 

f p~ T 
0 

1 

(3) 

= / [ 0 ( t ) - Q N O ( t ) ] e - ~ t t  "dr dt 
t - f P~176 

0 0 

1 

= f [0(0- PoO(O]~-='e dt T 
0 

oo 

(4) + / [O(t) - QNO(t)] e-~tt" dAt 

1 

1 

(5) 
dt 

-- f QNO(t)e-Ztts T 
0 

Using AS  2, we have that  the integral in (3) is holomorphic for all 
z C C and Re(s) > 0, as is the integral in (5), and the integral in 
(4) is holomorphic for all s C C and Re(z) > - C .  Combining this, 
the stated claim has been proved. [] 

C o r o l l a r y  3.2.  The function 
1 

{(s,z) - f P~ 

0 

is meromorphic at s = 1 for ali z with singularities that are 
simple poles at z = --Ak. Also, the residue at z = -Ak is equal 
to ak. 

Proof. Immediate from the proof of Theorem 3.1 by taking C, con- 
sequently N, sufficiently large. [] 

We now study the s i n g u l a r  t e r m  

1 1 

0 R e ( p ) < O  0 
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that appears in Corollary 3.2. To do so, we expand e -~t in a power 
series and apply the following lemma. 

L e m m a  3.3. Given p, there is an entire function hp(z) such 
that as s approaches 1, such that: 

(a) Special Case: 

f zt ~' dt ~ ( - z )  k 
b p e -  t *P T = -~. bp . 

0 k=0  
s + p + k  

- z ) - p - 1  bp �9 1 

= ( - p -  1 ) !  ~ - 1 

hp(z) + O(~ - 1), 

- -  + h,,(z) + o(~ - 1), p C Z<0 

p ~  Z<0. 

(b)  General Case: 

bp(t)e_Ztts+pdt_ __ = ( 1 

0 k=O 

{/z plo /08 [ 1 ] = ( - p - l ) !  ~ - 1  + h p ( z ) + O ( s - 1 ) '  p e Z < o  

hp(z)+O(~- 1), p~t Z<o 

From Lemma 3.3, we can assert the existence of an entire func- 
tion h(z) such that the singular term can be written as 

1 

T = ~ k! ~ _ ~  + h ( z ) + O ( ~ - l ) .  
0 p + k = - I  

The following theorem, which is the main result of this section, 
then follows directly from Theorem 3.1 and Lemma 3.3. 
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T h e o r e m  3.4. Near s = 1, the Hurwitz xi function ((s, z) has 
the expansion 

z )  = 

where: 

R-n(1)-l(1;z) R_1(1; z) 
+ . . . +  

( 8 -  1) n(1)+l ( S -  1) 
+R0(1;  z ) +  O ( s -  1), 

(a) Forj  < 0, Rj(1; z) is a polynomial of degree < -Re(p0);  in 

fact, the polar part of ~(s, z) near s = 1 is expressed by 

R_,~(1)_1(1;z) R - l ( 1 ; z )  (--Z)kBp(Os)[ 1 ] 

( s - - l )  ~(')+1 + ' ' "  + ( s - - l )  -- E k ~  ~ ; 
p + k = - I  

(b) R0(1; z) = CTs=l~(s,  z) is a meromorphic function in z for 
a11 z C C whose singularities are simple poles at z = -Ak 
with residue equal to ak. Furthermore, 

CTs=l~(8, z) = -0~CTs=0((s ,  z). 

In the special case, the expansion of ~( s, z) near s = 1 simplit~es 
to 

with 

- 

R_,(1;z) 

s - 1  

R-1(1; z) = 

+ R0(1; z)  + O ( s  - 1), 

( - z )  k 
bp k! 

p+k=--I 

Let (L,A) be sequences of complex numbers that  satisfy the 
three convergence conditions D I R  1, D I R  2 and D I R  3 and such 
that the associated theta  function 

(3O 

OL,A(t) = O(t) = E ake-Xkt 
k = l  

satisfies the three asymptotic conditions AS 1, AS 2 and AS 3. 
We define the r e g u l a r i z e d  h a r m o n i c  ser ies  R(z) associated to 

(L, A) to be 

RL,A(Z) = R(z) = CTs=l[(S,  z) = -O=CTs=o[(S, z). 
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R e m a r k  1. Theorem 3.4 states that  the regularized harmonic 
series associated to (L, A) is a meromorphic function in z whose sin- 
gularities are simple poles at z = --Ak and corresponding residues 
equal to ak. Further, by D I R  2 and D I R  3, Theorem 1.8 and 
Theorem 1.12, we have, for any integer n > rn0, the expression 

O O  

a k  
O2R(z) = + = (z + 

k = l  

If all numbers ak are integers, then one can assert the existence of 
a meromorphic function D(z), unique up to constant factor, which 
satisfies the relation 

(6) D'/D(z)  = R(z). 

T h e  S p e c t r a l  Case .  In this case, with ak E Z>0 for all k, 

Theorem 3.4 asserts the existence of an entire function D(z), unique 
up to constant factor, such that  

(7) D'/D(z)  = CT~:I~(s ,  z). 

Further, we have, by the Lerch formula (Theorem 2.1), 

The Basic Identity: 

R(z) = CTs=I~L(S,z) = -OzCT~=o~L(s,z) = D'L/DL(z). 

We shall normalize the constant factor in (7) so that  

D(z) = DL(Z). 

Next we shall give another type of expression for the singular 
term, which also gives an expression for CTs=j~L(S, z) leading into 
the Gauss formula of the next section. 

Consider the function 
O O  

I .  

dt 
(8) Fq(s,z) = / [0(t) - PqO(t)] e-ZttS 

T 
0 

and set F = F0, which is especially important  among the Laplace- 
Mellin transforms of the functions 0 - PqO. Following the results 
and techniques in w we shall study an analytic continuation of 
Fq(s,z) and then compare Fq(S,z) with ~(s,z). 
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T h e o r e m  3.5. The function Fq(s, z) has a meromorphic con- 
tinuation to the region 

{Re(s) > - R e ( q ) }  • U L .  

Proof. Note that we can write (8) as 

(9) 

(lO) 

Fq(s,z) = 
1 

f [o(t) - PqO(t)] e-z't dA 
t 

0 

O 0  

+ f [O(t) -QNO(t)] e-~tt~ dtt 
1 

o O  

region of meromorphy 

Re(s) > - Re(q), all z 

all s, Re(z) > -C.  

o o  I 

(12) / e-X~t e-ztt~dtt -- (z + Ak) / e_Xkte_Ztt~d_~, 

1 0 

so that 

/ QgO(t)e_ztt~dt P(s) e_x~te_ztt, dt 
t = z  (z+ kr t 

1 k = l  0 

For the special case, when bp is constant, we have 

(13) = bp F(s + p) ~ (-z) k 1 
z~+P k-----~, bp " k' s + p +  

k = 0  

oo  1 

f bpe-ztts+pd---~ b 1-'(s + p )  = p z8-4-; b, f e-ztt'+P~ 
1 0 

First we have 

i 

For (9), the assertion of meromorphy on the right follows from 
condition AS 2 and Lemma 1.3; for (10) the assertion follows by 
Lemma 1.4, picking N and C as in AS .1. As for (11), the integral 
is a sum of integrals of elementary functions which we now recall. 

(II) + /[QNS(t)- PqS(t)]e-~tt~dt--t a11 s, z C UL. 
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and for the general case we have the expansion replacing bp by 
Bp( O~ ), namely: 

9c 1 
/bp(t)e-ztts+Pd~tt = Bp(c3s) [['(~ +--P) - /bp(t)e-zt ts+pd~t t 

1 0 

[F(s + p ) ]  ~ (-Z)kBp(O~) [ 1 
(14) = Bp(c3,) [ 7,T- p ] - k-----~, s + p +  k 

k=0 

From this, the conclusion stated above follows since the integral in 
(11) is simply a sum of terms of the form given in (12), (13) and 

(14 7. [] 

T h e o r e m  3.6. For any q and for all (s, z) in the region o/" 
meromorphy, we have: 

a) In the special case, 

{(,, z) = Vq( , ,  z )  + 
X-" r ( s  + p). 

bp Z.., zs+p ' 
Re(p) <Re(q) 

b) in the genera/case, 

= F,(,,z)+ Z Bp(O,) 
Re(p) <Re(q) [ zs+P ] " 

Pro@ For Re(s) large, one can interchange the sum and integral 
in the definition of Fq(s, z) and use that 

PqOc (t)e-Ztt ~ dt 

0 Re(p)<Re(q) t j 

The rest follows from the definition of ~(s, z) and analytic contin- 
uation. [] 

By taking q = 0 in Theorem 3.6 and writing F0(s, z) = F(s, z), 
we obtain the following corollary. 
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Corol la ry  3.7. 
by 

The constant term of ~(s,z) at s = 1 is given 

CTs=l~(S,z) = F ( l , z )  -4- 

where 

CTs=IBp(O~) 

Re(p)<O 

+ p) 

zs+p 

F(1, z) = / [ 8 ( t ) -  P08(t)] 

0 

e- Zt dt. 

The constant term on the right is obtained simply by multiply- 
ing the Laurent expansions of F(s +p) and z -~-p and is a universal 
expression, meaning an expression that depends solely only on Bp 
for Re(p) < 0. A direct calculation shows that there exist~ a poly- 

nomial Bp of degree at most deg Bp -4- 1 such that 

CT~=IBp(Os) [P(Sz ~+ p)]j = z_p_l/~p(log z)" 

The possible pole of F(s +p) at s = 1 accounts for the possibility of 

deg Bp exceeding deg Bp. For convenience of the reader, we present 
these calculations explicitly in the special case. 

Let p 6 C and write 

ck(p + 1) 
+ p) = Z _ 1)k 

k=--I 

and 

z--P--S = z--P--le(s--1)(--l~ = z--P--1E (- 1~ - 1)'.  
l! 

l=0 

Then 

r ( s  +p)zs~ - z - l - P  n = - I  ~ [+~l=k n Ck(p-4-1)(--l~ (8 -- 1)n'  

from which we obtain the equation 

[r(~ +p)] 
CTs=I L = [c0(p+ 1 ) - - C - l ( p +  1)logz]z -1-p. 

Note that if p ~ Z<0, then C-l(p-4- 1) = 0 and co(p+ 1) = r(p+ 1). 
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C o r o l l a r y  3.8. In the special case, R0(1; z) has the integral 
expression 

CTs=l~(S,  z) 

= F ( 1 , z ) +  E 

Re(p)<O 

bp[co(p+ 1) - c_,(p + 1)logz] z -1-p  

w h  er  e 
O o  

F(1, z) = f [O(t) - PoO(t)] e-Ztdt. 

o 

E x a m p l e  1. Suppose we are in the spectral case and also that 
O(t) is such that the principal part  PoO(t) is simply b-1/t. Then 
the equations in Theorem 3.6 become 

b_ 1 -- 
s - - 1  

+ CTs=l~(s,z) + O(s - 1) 

where 

o 

b-1 log z. 

Using that 

we can write 

(X)  

f 
[ c _ z , _  _,] dt 

i 
- l o g  z ,  

O 0  

o 

b_ae - t  
dr. 

In this case, the integral expression for R0(1;z) reminds one of 
the Gauss formula for the logarithmic derivative of the gamma 
function, which will be studied in the next section. 

E x a m p l e  2. The regularized harmonic series is simply related 
to the classical Selberg zeta function Zx(s)  associated to a compact 
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hyperbolic Riemann surface X. For convenience, let us briefly recall 
the definition of the Selberg zeta function. 

Let Ox(t) be the trace of the heat kernel corresponding to the 
hyperbolic Laplacian that  acts on C ~ functions on X; hence, Ox (t) 
is the theta function associated to the sequence L of eigenvalues of 
the Laplacian. The sequence A counts multiplicities of the eigen- 
values. It is well known that 

b_l 
Po6(t)- t '  

where b-1 is a constant that  depends solely on the genus g of X,  
namely 

b-1 = 2~r(2g - 2). 

The logarithmic derivative of the Selberg zeta function is defined 
by the equation 

O 0  

Z~x/Zx(s) = (2s - 1) f [ O x ( t ) -  b_lk(t)] 

0 

e-s(s-1)tdt 

where k(t) is a universal function, independent of X (see [Sa 87]). 
From Theorem 3.6, the definition of the Selberg zeta function, and 
the example above, we have the relation 

( 2 s -  1)D~L/DL(s(s- 1 ) ) -  Z~x/Zx(s) 

This relation was used in [JoL 92d] to prove that  the Selberg zeta 
function satisifies Artin's formalism ([La 70]). 
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w Gauss  Formula 

Next we show that  a classical formula of Gauss for F ' /F  can 
be formulated and proved more generally for the regularized har- 
monic series. As before, we let PoP denote the principal part of an 
asymptotic expansion at 0. Define 

If 8(t) satisfies the three asymptotic conditions, then it is immediate 

that  e-zt8(t) also satisfies the three asymptotic conditions. As 
before, if the principal part of the theta function is 

PoO(t)= E bp(t)tP' 
Re(p) <0 

then 

(--Z) k 
(1) PoOz(t)= E k! bp(t)tP+k" 

Re(p)+k<O 

Note that  for any complex w, we have 

 L+z,A(S, W) =  z(S, W) = + 

Recall f r om T h e o r e m  1.8 that 

0 
cgz~(S,z + w) = ~(s + l,z + w), 

so, in particular, w e  have 

R(z + w) = -OzCTs=o~(s,z + w)  = CTs=1~(s ,  z + w). 

In the spectral case, w e  have, by  the Lerch formula, 

R(z + w)= D'L/DL(z + w). 

Finally, recall that  C(T) is the algebra of polynomials in T p with 
arbitrary complex powers p C C. 

With all this, we can follow the development leading to Corollary 
3.8 and state the following theorem, which we call the g e n e r a l  
Gauss formula. 
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T h e o r e m  4.1. There is a polynomial Sw(z) of degree in z 

deg~ S~ < -Re(po)  

with coefficients in C[logw](w) such that /'or any w E C with 
Re(w) > 0 and Re(w) > max{-Re(Ak + z)}, 

k 

(3O 

R(z + w) = / [ O z ( t ) -  PoOz(t)] e-Wtdt + S~,(z) 

0 

In the special case, Sw(z) ~ C<w>[z] + c<w) log w[z]. 

Proof. From Theorem 1.8, we have for sufl:iciently large Re(s) 
and Re(z), while viewing w as fixed, the equalities 

-a:~(s,z + w) = {(s + 1,z + w) 

= {z(s + 1,w) 

= / [8~(t) - PoS~(t)] e-Wtt s+l dtt 

0 

O0 

+ / PoO~(t)e_Wtts+a dt.t 

0 

To compute the constant term in the expansion at s = 0, we can 
substitute s = 0 in the Laplace-Mellin integral of O~ - PoOz, thus 
getting the desired integral on the right hand side of the formula in 
the theorem. As for the integral of P00z we can use the expression 
(1) for the principal part  of 8z to get 

O0 

PoOz(t)e-WttSdt = Z 
Re(p)+k<0 

( - z )  k FF(s+p+k+ 
k-----V- Bp(&) L ~ -~ ;yz -+T  ~) ] �9 

In fact, we obtain an explicit formula for Sw(z), namely 

SwIz) = Z 
Re(p)+k<O 

(-z)kcT~=oBp(Os) [F(s  + p +  k + 1)] 
k---F- L ~ - ; ; ~ ; + w  �9 
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This expression shows that Sw(z) is a polynomial in z, of degree 
< -Re(p0), with coefficients in C(w)[logw]. Recall that in the 
special case, all Bp are constants, and, for any p, the expression 

[ r ( s  + p +  k + 
CT 8=0Bp(08 ) [ -w ---;~--p-T~--45- 1 ) ] 

lies in C(w) + C(w) log w. With this, the proof of the theorem is 
complete. [] 

Remark .  A direct calculation shows that there exists a poly- 
nomial B~ of degree at most deg Bp + 1 such that 

[l-'(s + p)] z_pB;(logz)" CTs=0B, (08) [ z%+-- p- j = 

The possible pole of F(s + p) at s = 0 accounts for the possibility 
of deg B~ exceeding deg Bp. Using the relation 

+p+ k+l)  (s) . . .  (s + k)r(s +p)  
ws+p+k+l wk+l  . ws+P 

one can hope to express S~(z)  in terms of the polynomials Bp. 
However, even in the special case, such an expression is quite in- 
volved. 

Corol lary 4.2. For fixed w 6 C with Re(w) > 0 and 

Re(w) > max{--Re(Ak)}, 
k 

and for z 6 C with Re(z) sufflciently large, the integral 

O 0  

 w(z) = f [0z(t) - P00z(t)] 

0 

as a function of z, is holomorphic in z and has a meromorphic 
continuation to all z 6 C with poles at the points Ak + w in 
L -b w and corresponding residues equal to ak .  

Proof. Immediate from Theorem 3.4(b) and Theorem 4.1. [] 
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In the case when ak C Z for all k, this allows us to write the 
integral I,,(z) from Corollary 4.2 as 

I W  = ! Hw/H~ 

where H~, is a meromorphic function on C, uniquely defined up to 

a constant factor. Following Theorem 2.1, we define S#(z) to be 

the integral of S~,(z) with zero constant term, so Sw(z) = OzS#(z). 
Define Hw(z) by the relation 

D(z + w) = eS$(Z)H~(z). 

Then H~(z) is the unique meromorphic function of z such that 

! 
H,,/Hw(z) = Iw(z) 

and 

Furthermore, we have 

Hw(O) = D(w). 

D~L/DL(z + w) = H~(z)/Hw(z) + Sw(z) = I~(z) + Sw(z). 

In the spectral case, meaning ak E Z>0 for all k, Hw(z) is entire. 

The function Iw(z) will be studied in w of [JoL 92c], from a Fourier 
theoretic point of view. 

E x a m p l e  1. We show here how the classical Gauss formula is 
a special case of Theorem 4.1. Let 

L = {n C Z>0} 

and 
a ( n ) = l  for a l ln .  

The theta function can be written as 

OO 

Oz(t ) ~ ~ e -(z+n)t  ~ 

n=O 

e - - z t  

I - e  - t" 

The principal part is simply 

1 
P00z(0 = 7 '  
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so P0 = - 1  and Pl = 0. This allows us to compute the polynomial 
S w ( z )  and obtain the equation 

[ w~ j - 7 - l o g w .  

Therefore, by combining the Example from w and Theorem 4.1, 
w e  have 

D~L/DL(z + w)= - r ' / r ( z  + w ) -  

[ e-zt ]. 
= 1- -e - t  t 

e - W t  d t  - "y - log w. 

Now set w = 1 to get 

o o  

-r'/r(z+l) = L t dr,  

0 

which is the classical Gauss formula. 

E x a m p l e  2. Let (L, A) be the sequences of eigenvalues and 
multiplicities associated to the Laplacian that  acts on smooth sec- 
tions of a power of the canonical sheaf over a compact hyperbolic 
Riemann surface. Then one can combine Example 2 from w The- 
orem 4.1 and the Lerch formula to establish the main theorem of 
[DP 86] and [Sa 87], without using the Selberg trace formula. In 
brief, this theorem states that  the Selberg zeta function Z x ( s )  is 
expressible, up to universal gamma-like functions, in terms of the 
regularized product DL (s(s - 1)). 
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w Stirling Formula 

As in previous sections, we work with sequences (L, A) that  sat- 
isfy the three convergence conditions D I R  1, D I R  2 and D I R  3, 
and such that  the associated theta series satisfies the three asymp- 
totic conditions AS 1, AS 2 and AS 3. With this, we consider 
the asymptotic behavior of certain functions when Re(z) ~ oo, by 
which we mean that  we allow Re(z) ~ ~ in some sector in the right 
half plane. The point of such a restriction is that  in such a sector, 
Re(z) and Izl have the same order of magnitude, asymptotically. 
Specifically, we shall determine the asymptotics of 

-CT~=0~(~,z) as x : Re(z) --+ ~ .  

These asymptotics apply in the spectral case to 

--logDL(z) = CT~=0~(s,z), 

and, therefore, can be viewed as a generalization of the classical 
Stirling formula. 

To begin, we will study the asymptotics of 

o o  

~(s,z) = --] O(t)e-~tt ~dt- for Re(z) -~ ec. 
J t 
0 

Fix Re(q) > 0 and, as before, let PqO be as in AS 2. Let us write 

~(s,z) : Jl(s,z) + J2(~,z) + J3(s,z) 
where 

1 

(1) Jl(s,z) = f (O( t ) -  
0 

(2) J2(s,z) = ff  O(t)e-Ztt ~dt 
t '  

1 

1 

(3) J3(s,z) = / P'O(t)e-Ztt~ dtt 

0 

Recall that  

PqO(t)) -z, t dt 
t '  

m(q)=maxdegBp for R e ( p ) = R e ( q ) .  

The terms in (1) and (2) are handled in the two following lemmas. 
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L e m m a  5.1 .  Let x = Re(z)  and  fix q with Re(q) > 0. Then 

Jl(O,z) = O(x-Re(q)(logx)m(q)) for x ~ oc. 

Proof. Recall  tha t  

O(t) - PqO(t) = O(tRe(q) llogtl m(q)) for t ~ 0. 

Since Re(q) > 0, Jl(s, z) is ho lomorphic  at s = 0 and 

1 

J l (0 ,  z ) =  f (o(t)- PqO(t))e-~tdtt 

0 

For any complex n u m b e r  so, we have the power series expansion 

xs - ~ k ( , 0 l ( s - s 0 )  k �9 x -~~ 
k=--I 1=0 

(4) = x - S ~  E ck(s~176 (s - so) n, 

n=--I  k n 

f rom which we have, by A S  2, 

1 

IJl(o, z)l << / e-xttRe(q) ll~ 
0 

<_ C T s = R e ( q ) [ ( a s )  m(q) r(s)xs 

OO 

1 

ck(q)(-t!log x /  ~!] + o ( _ x / x )  

kTl=m(q) 

~___ x-Re(q)  

as x ~ oo. This completes  the proof  of the  lemma.  [] 
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L e m m a  5 .2 .  We have 

J2(0, z) = O(e-X/x) /'or x ~ oc. 

Pro@ From A S  1, J2(s, z) is ho lomorphic  at s = 0 and  

0(3 

J2(0, z) =/O(t)e -~t dt 
- ~ ' 

1 

f rom which the  l e m m a  follows, since O(t) = O(e ct ) for some c > 0 
and  so, for x sufficiently large, 

o o  

]Ju(O,z)[ < K/e-(*-~)tdt K _(~_~) 
X - - C  

1 

yielding the s ta ted  est imate .  [] 

As for J3(s, z), recall tha t  

J ~ ( ~ ,  z )  = 

Re(p) <Re(q) 

[I  1 

L e m m a  5.3 .  We have 

~-'~ CT~:oBp( O~ ) [ ~ Ja(0, z) 

Re(p)<Re(q)  

+ O(e-x/x) f o r  x ~ o c .  

Proof. Simply wri te  

1 

0 

and as in L e m m a  5.2, note  that ,  for any s, 

f e_,tbp(t)t~+ v dt  = O(e_ . / , r )  
t 

1 

[] 

(3O 

1 

f o r  X ~ C4~. 

Combin ing  the above three  lemmas,  we have establ ished the 
following theorem,  which we refer to as the g e n e r a l i z e d  S t i r l i n g ' s  
f o r m u l a .  
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T h e o r e m  5.4. Suppose q is such that Re(q) > 0. Let 

Bq(z) = E 
Re(p) <Re(q) 

Then for x ---* ~z, 

CT :oB,(O ) [r(s+p)] C(z)[logz] 
L 

CT~:o((S,z) = Bq(z) + O(x-Re(q)(log x)m(q)). 

It is important to note that Theorem 5.4 shows that the asymp- 
totics of CT~=o~(S,z) as Re(z) ~ oc are governed by the asymp- 

totics of O(t) as t ---+ 0. Also, in the spectral case, the Lerch formula 

(Theorem 2.1) applies to give 

--logDL(z) = CT~:o~n(s,z), 

and, hence, Theorem 5.4 determines the asymptotics of the reg- 
ularized product log DL(z) as Re(z) ~ oc and, consequently, the 
asymptotics of the the characteristic determinant 

logDL(z)  as Re(z) ~ oc. 

R e m a r k  1. In Remark 1 of w we defined the polynomials B~ 

by the formula 

+p) 
CTs:0Bp(08) z +p = z-PBp(logz). 

Using these polynomials, one can write 

> ~ -PB~ Bq(z) = , z (log z), 

Re(p) <Re(q) 

so Theorem 5.4 becomes the statement that 

CTs:o~(s,z)  = E z-PB;( log  z) "~- O(x-Re(q)(log X) rn(q) ) 
Re(p) <Re(q) 

as x = Re(z) ---* oo. This restatement emphasizes the point that 

the asymptotics of 0(t) as t ~ 0 determine the asymptotics of 

CTs=0~(s,z) as Re(z) ---, ec. 

To further develop the asymptotics given in Theorem 5.4, one 
can use the following lemma. 
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L e m m a  5.5. For any p C C, we have 

c%=0 [ z~;-; 

= { r(p)z-p 

[-c_a (n) log 

where 

p ~  Z<0 

Z + co(n)]z -p p = - n E  Z_<o, 

(-1)- ( - i )  - 
C-l(rt) - Tt! add CO(n ) -- rt-----~(--"(). 

One can prove Lemma 5.5 by using the power series expansion 
(4) and the formula 

r ( s  + 1) = sr (s)  and r'(1) = - ~ ,  

which comes from the expansion 

1 
V(s) = - - ~ +  O(s). 

8 

Bq(z)= Z b-"(-1)~ 
nEZ>_o 

P r o p o s i t i o n  5.6. In the special case, we have, for Re(q) > 0, 

( - 7 -  log z)z" + ~ bpr(p)z-'; 
n! 

p~Z<o 
Re(p)<~e(q) 

and so 

CT~=o~(S, z) = 
b_~(-1)  ~ 

y ~  ~! ( -7-1ogz)z"+ 
nEZ>o 

E b,F(p)z -p A- O(x-Re(q)(log X) re(q) ) 

p~Z<o 
Re(p) <R.e(q) 

/'or Re(z) --+ ~ .  

E x a m p l e  1. Assume L is such that  

b_ 1 
o(t)  _ + bo + o ( t )  for t ~ 0. 

t 
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By taking q = 1, Propos i t ion  5.6 then states  tha t  

C T s : o ( ( S , z )  = b_, z(log z + 3') - b0(log z + 3') + O(z -1 ) 

= (b_ ,z  - b0) log z + 3"(b-lz - bo) + O ( z - ' )  

as Re(z) ~ ec. A par t icular  example of this is when L = Z>_0. 

Recall tha t  the  Lerch formula (Theorem 2.1) s tates  

1 1 
log r(z) : [ log2~ + CT~=0[(s,  z) - 7 ( z  - [ )  - z. 

By direct computa t ion  one sees tha t  

o(0 = Z 
"n=O 

e--nt 1 1 
= [ + ~ + O(0 ,  

so b-1 = 1 and b0 = 1/2. Therefore,  

1 1 
CT~=o((s , z )  = ( z -  ~ ) log  z + 3'(z - - ~ ) + O ( I z l - ' )  

as Re(z)  ~ ec. From this we conclude tha t  

1 1 _,)  
logr (z )  = ~log2~ + ( z -  ~) logz  - z + O(Izl 

as Re(z)  ~ ~ .  This  is the classical St ir l ing formula.  

The  reader  is referred to [Vo 87] for in teres t ing examples  of the 
Stir l ing formula  arising from sequences of eigenvalues associated to 
differential operators ,  and to [Sa 87] for the  example  of the  Barnes  
double g a m m a  function,  which appears  a factor in the funct ional  
equat ion of the Selberg zeta funct ion associated to a finite volume 
hyperbol ic  R i e ma nn  surface. 

As an appl icat ion of the same me thod  used to derive Stir l ing 's  
formula  (Theorem 5.4), we derive an asympto t ic  development  of 
the  integral  t rans form 

(5) 

OO 

r = f e-~"CT~=o[(s ,u )du ,  

a 
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for x real, positive, and x --* 0. We fix a > 0 and 

a > --Re()~k) for all k. 

This function will appear in our work [JoL 92b], but, for now, let us 
simply view (5) as a special value of an incomplete Laplace-Mellin 
transform. 

We use the decomposition of {(s, u) as a sum 

~(s,u) = J l ( s ,u )  + J2(s,u) + Ja(s,u) 

as at the beginning of this section, and deal with the integral trans- 
form of each termseparately,  so 

r = r + r + r 

where 
O 0  

= / e-x"CTs=0J~(s, u)du. 
P 

r 
a 

The next lemmas lead to Theorem 5.11, which states the asymp- 
totic behavior of r as the real variable x approaches zero from 
the right. We start  with the transform of J1- 

L e m m a  5.7. Let h(t) be a bounded measurable s on 
[0,1] an~ a s s u m e  tha t  ~or s o m e  q w i th  Re(q) > 2, 

h( t )  = o ( t  R~ as t --, o. 

Let 

F(x) = / h(t) dt 
x + t  t ' 

o 

and let [q] = [Re(q)]. Then F is C [q]-2 on [0, 1] and has the 
Taylor development 

F ( z )  = ~o + " "  + ~[~]-~x [~]-~ + O (x  [~]-~) a~ x ~ O. 

Proof. The lemma follows directly from Taylor's theorem by dif- 
ferentiating under the integral sign, which is justified by the stated 
assumptions. [] 
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R e m a r k  2. 
form 

1 

/ 
0 

Lemma 5.7 will be applied to an integral of the 

1 

x + th(t) e-(X+O--=edtt -~ / h(t)e-tx + t dtt ' 

0 

which is a product of e -~ and an integral of exactly the type con- 
sidered in Lemma 5.7. 

L e m m a  5.8. Let [q] = [Re(q)]. Then the function (}1 is Of class 
C [q]-2 and has the Taylor expansion 

e l ( X )  : / e-X'~Jl(O'u) du 

a 

--- g q ( X )  -~- O ( X  [q]-3) aS X 7"-4 0 

with the Taylor polynomial gq of degree < Re(q) - 3. 

Proof. 
tion, 

From (1) we have, by interchanging the order of integra- 

e-  XU Jl ( O' u )du = x ~--t T 

a 0 

We now apply Lemma 5.7 to the function 

h ( t )  : O ( t ) -  P~ ( "1 _ ~O,t/e_a(x_~_t ) 

t 

noting that,  by AS 2, 

h(t) = O(t R~ 

as t ~ 0. With this, the proof of the lemma is complete. [] 

L e m m a  5.9. The function 

r =/ -zuJ2(O,u)du 
a 
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which is defined for Re(z) > 0, has a holomorphic extension to 
include a neighborhood of z = 0. 

Proof. We have 

o o  o o  o o  

e - "  J (O, u)du e -a('+t) dt = e - ' z  
2 = t z + t  t 

a 1 1 

from which the stated result immediately follows. [] 

Hav ing  studied the transforms of J] and J2, we now deal with 
the transform of J3. 

L e m m a  5.10. Given p and Bp, there is a function h'p, mero- 
morphic  in s and entire in z, to be given explicitly below, such 
that for Re(z) > O, we have 

o o  

f e-~UB.(O')[ ~.+W j 
a 

du 

7 r z s + p _ 1  

= Bp(O~)Lsin[--~(s Tp)]] + hp(~, z), 

and, in particular, 

o o  [r(.+.)] 
a 

du 

[  z.+yl_ ] 
= CT.=oB.(Os) [sin[~(s + p)] + h.(z), 

where 
hv(z) = CT,=ohp(s ,z ) .  

Proof. It suffices to assume that  - R e ( s  + p) is a large, non- 
integral, real number, from which the result follows by analytic 
continuation in s. For this, note that  

o o  o o  

i .;, r ] ..,.< =..+....)it.-:.. r ] L u,'+p J [ ~'~+P J 
a a 

du. 
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From this we have 

/ ,~-- zu itl--s--p dtl __ 

It 
a 

7r zsA-p--1 

 ,zl 
(_z)k al-~-p+k -~--~ 

k=0 k! 1 - s - p + k  

The lemma follows by putt ing 

(6) hp(s,z) = - ~ _ .  k! 
k=0 

- -  BP( O~ ) [ F( ~ + s T p T-s 

and 

k~ 
k=O 

__CTs_o [Bp(Os) [F('s -t- p)al-s-p+k ]] 
- 1 - s - - - p T k -  J J '  

[] 

R e m a r k  3. A direct calculation shows that there exists a poly- 
nomial Bp # of degree at most deg Bp + 1 such that  

(r) 'T ~zS+p-1 ] = zp-l B#p (log z). 
C ~=oBp(O~) sin[Tr(s +p)] 

The possible zero of sin[rr(s+p)] at s = 0 accounts for the possibility 

of deg Bp # exceeding deg Bp. Further, by combining Remark 1 and 

Lemma 5.10, we arrive at the formula 

OG 

/ E--zu it 

a 

-PB;(log It)& = zp-lB,e(log z )+  h~(z). 

As is clear from (6), the function hp does depend on the choice of 

a. We note that the power series hp(z) and the polynomials Bp # 
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are given by universal formulas, depending linearly on Bp, hence 

on Bp. 

where 

As is shown in the proof of Lemma 5.3, we can write 

J3(s ,z)  = 
T ~  j 

Re(p)<Re(q)  

CX~ 

Ip(s, z) = / e-Ztbp(t)ts+pdtt 

1 

By interchanging order of integration, we can write 

CK) 

/ e -a(z+t) dt 
e-~ZIp(s'u)du= z ~ 7  bp(t)ts+P~ 

a 1 

Therefore, Lemma 5.9 applies to imply the existence of a function 
fp, holomorphic in a neighborhood of O, such that  

O 0  

fp(z) = / e-UZI,(s,u)du, 
a 

so we can write 

r = [zP-lB#p (l~ + hp(z) + fp(Z)] �9 
Re(p) <Re(q) 

With all this, we can combine Lemmas 5.8, 5.9, and 5.10 and obtain 
the following theorem. 

T h e o r e m  5.11.  Let {gq}, r {B~}, { h }  and {hp} be the 
above sequences of polynomials and entire functions for those p 
for which Bp # O. Then for each q with Re(q) > 3 

OC) 

f e-tUCTs=o~(S, u)du = 
a 

Z [t'-lB~(l~ + h,(t) + f,(t)] 
Re(p)<Re(q) 

-4- gq(t) q- r q- O(t tq]-3) 
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as the  real variable t approaches  zero from the  right. 

E x a m p l e  2. In the case L = Z>0 we have that 

oo c o  

(s) o(t) = Z 1 - 1 - e  - t  - E b~tn 
n : O  n------1 

as t approaches zero. In particular, the sequence {p} is simply 
Z_>-I and all polynomials Bp have degree zero. Since 

7rt s + n - 1  t 

CT~=o [sin[~(s + n)] = ( - t ) n l ~  ' 

we have, by using the Lerch formula (Theorem 2.1), the equation 

(9) y e - t ~ l o g r ( u ) d u  - b n ( - t )  n + h(t) .  

1 t n------1 

Let q ---. ec in Theorem 5.11. Using the absolute convergence of 
(8), we get (9). In order to deduce (9) from Theorem 5.11, we have 
used that, upon letting q approach infinity, the power series (8) 
converges in a neighborhood of the origin. In general, questions 
concerning the convergence of the above stated power series, which 
are necessarily questions concerning the growth of the coefficients 
bn, must be addressed. For now, let us complete this example by 
combining the above results to conclude that 

/ e  - t"  log F(u )du  - log t 1 
t 1 - e t 

1 

+ h(t). 

This formula verifies calculations that appear in [Cr 19] (see also 
[JoL 92b]). 

R e m a r k  4. The formal power series arising from the asymp- 
totic expansion in Theorems 5.4 and 5.11 (letting Re(q) --* oc) are 

interesting beyond their truncations mod O ( t M - 3 ) .  In important 
applications, and notably to positive elliptic operators, these power 
series are convergent, and define entire functions. This is part of the 
theory of Volterra operators, c.f. [Di 78], Chapter XXIII, (23.6.5.3). 
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w Hankel Formula 

The gamma function and the classical zeta function are well 
known to satisfy a Hankel formula, that  is they are representable 
as an integral over a Hankel contour. The existence of such a for- 
mula depends on the integrand having at least an analytic contin- 
uation over the Hankel contour, and expecially having an analytic 
continuation around 0. Indeed, the integrands in these classical 
Hankel transforms are essentially theta  functions. Unfortunately, 
theta functions cannot always be analytically continued around 0. 

For instance, ~ e -n2t cannot, although ~ e - n t  c a n .  Thus the ana- 
logues of the classical Hankel transform representations are missing 
in general. 

However, we shall give here one possible Hankel type formula ex- 
pressing the Hurwitz xi function associated to the sequences (L, A) 
as a complex integral of the regularized harmonic series. Observe 
that  the Hankel formula which we prove here is different from the 
classical Hankel representation of the gamma function or the zeta 
function. We note that  such a formula was used by Deninger for 
the Riemann zeta function (see w of [De 92]). 

As in previous sections, let (L, A) be sequences whose Dirichlet 
series satisfy the three convergence conditions D I R  1, D I R  2 and 
D I R  3, and whose associated theta function satisfies the asymp- 
totic conditions AS 1, AS 2 and AS 3. We suppose that  the 
sequence L = {Ak} is such that  

Re(~k) > 0 for all k. 

Since we deal with arbitrary Dirichlet series ~(s) = ~ akAk ~, it is 
not the case in general that  there is a regularized product whose 
logarithmic deriviative gives the constant term CTs=l~(S,z);  in- 
deed, this exists only in the case when ak E Z for all k. However, 
important  applications will be made to the spectral case, meaning 
when ak C Z>0 for all k, in which case such a regularized product 
DL exists. Thus, for this case, we record here once more the 

Basic Identity: 

R(z) = CT~=,~(s,z)  = D'L/DL(z ). 

All the formulas of this section involving 

R(z) = CTs=l~(S,z) 
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may then  be used with R(z)  replaced by D~L/DL(z) in the appli- 
ca t ions  to the spectral  case. 

Recall from D I R  2, D I R  3 and Theorem 1.8 tha t  for any integer 
n > a0 we have the formula 

CK) 

ak 
onn(z)  = ( - l ) n C T s = l ~ ( S  + n,z)  = ( - 1 ) " r ( ~ )  y] (z + ,~k)"" 

k=l 

To begin, let us establish the following general lemma.  

L e m m a  6.1.  With assumptions as above, for every sufficiently 
large positive integer m, there exists a real number Tm with 
m <_ Tm <_ m + 1 and a real number a2 such that 

In(z)l  = O(Izl ~ )  :or Izl = Tin, and as Tm --* ~ .  

Proof. For every sufficiently large positive integer m, let us write 

(1) 

ak 
02R(z) =(-1Fr(~) ~ (z +~k)" 

IAkl<2m 

ak 
+ (-1)-r(~) Z (z + ~ ) -  

[Ak [>2rn 

If we restrict  z to the  annulus m < ]z I < m +  1, we have the  
es t imate  

ak 

(z +~k)- -< 
lAkl>2m 

lak[ < 2 E [akl 

IAkl>2m IA~I>2,,~ 

which is bounded  independen t  of m provided n > a0. 

By the  convergence condi t ion D I R  2 (b ) ,  we have tha t  

# { ~ : m  < I~ I  < m + 1} = O(m~1), 

so there  are O(rn a1+1) terms in the  first sum. Also, we conclude 

the existence a sequence {Tin} of real numbers ,  tending  to infinity 

and with m < T m  < m +  1, such tha t  if Izl = Tin, then  the distance 
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from z to any --Ak is at least crn - ~  with a suitable small constant  
c. From D I R  2 (a )  we have that  

[ak] = O( I .Xk l "~  

so, if I~Xkl < 2m, we have for those k for which IAI < 2m, the bound  

[akl = C m  r176 for a suitable large constant  C. Wi th  all this, the 
first sum can be bounded  by 

O(m ~~ - m  ' ' + '  �9 m " " ' ) .  

If Izl = T ~ ,  we can write this bound  as s ta t ing 

ak 
(2) ~ (z + ~,~), 

p, kl_<2m 

_ O ( i z l ~ + , ~ o + ( - + ~ ) , ~ , ) .  

This establishes tha t  O2R(z) has polynomial  growth on the (in- 
creasing) circles centered at the origin with radius Tm. From the 
expression 

OO 

dt 
02R(z) = (-1)" / O(t)e-Ztt" 

t '  
o 

one has that  O2R(z) is bounded  for z C R>0 with z sufficiently 

large. Upon integrat ing the function O2R(z) n t imes along a pa th  

consisting of R>0 and the circle Iz] = Tin, we conclude tha t  R(z) 
itself has polynomial  growth on the circles Izl = Tin. Indeed,  from 

(2) and the fact tha t  0"0 > -Re(p0) ,  we have 

IR(z)l  = O(Iz] ~~ for Izl = Tin, and as Tm --* oo. 

This completes the proof of the lemma.  [] 

It should noted  tha t  the proof of L e m m a  6.1 explicitly constructs  
the value of 0.2. Indeed,  since one can take n < 0.o + 1, 0"2 can be 
wri t ten  in terms of 0"0 and 0"a. 

Having establ ished this pre l iminary 1emma, we can now proceed 
with our Hankel formula for the  regularized harmonic  series R. Let 

be a fixed posit ive number  and assume 

< IAkl for all Ak E L. 
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Let C6 

If G(z) 

denote the contour consisting of: 

the lower edge of the cut from - e c  to - 5  in the cut plane 
UL; 

the circle $6, given by w = 5e ie for r ranging from -Tr to 
7r; 
and the upper edge of the cut from - 6  to - e c  in the cut 
plane UL. 

is a meromorphic function in Uc ,  then 

--6 - - ~  

--oc $6 -6 

Symbolically, let us set 

/ + / : / - /  
- o o  - 6  C6 $6 

When taking the sum of the two integrals on the negative real axis, 
it is of course understood that for the second integral, we deal with 
the analytic continuation of G(w) over the circle $6. 

We call the result of the following theorem the H a n k e l  fo rmula .  

T h e o r e m  6.2. Let s E C be such that Re(s) > a 2 + 1 .  Then 
for any z with Re(z) sut~ciently large, we have 

- 

f R(z - 
C6 

Pro@ Let T E R>0 be such that [Akl -r T for all k, and let C6,T 

denote the contour consisting of: 

- the lower edge of the cut from - T  to - 5  in UL; 

- the circle S~, given by w = 5e  io for r ranging from -7r to 
7r; 

- the upper edge of the cut from - 6  to - T  in UL; 

- and the circle ST, given by w = Te ir for 4) ranging from 7r 
to -~r. 
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Combining the residue theorem with Theorem 3.4(b), we get 

ak 
1 R ( z  - w)w- dw = (z  s 

27ri 
C6,T O<[z+Akl<T 

Now let T --* oo along the sequence {Tin} that  was constructed 
in Lemma 6.1. With  this, the integral over ST will go to zero as 
T approaches infinity if s is such that  Re(s) > a2 + 1. For these 
values of s, the limit of the sum above is the Hurwitz zeta function, 
and the theorem is proved. [] 

For the remainder of this section we will study the analytic con- 
t inuation of the integral given in Theorem 6.2. The proof of Theo- 
rem 6.2 shows that  the problem in extending the region for which 
the integral converges arises because of the asymptotic behavior of 
R(z  - t) for - R e ( t )  large. In any case, the following lemma takes 
care of the integral over the circle $6. 

L e m m a  6.3. For any fixed (5 sufBciently small, and any z such 
that Re(z) is sumcient ly  large, the integral 

1 
f R(z - w)w-Sdw 

27ri 
$6 

is holomorphic for all s E C. 

Proof. Since Re(z) is sufficiently large, the integrand is abso- 
lutely bounded on 5'6. [] 

Lemma 6.3 implies that  the analytic continuation of the Hankel 
formula to any s for which Re(s) < a2 + 1 must take account the 
asymptotic behavior of R(z  - w) for fixed z and as -Re (w)  ---, ec. 
We can use the generalized Stirling's formula, Theorem 5.4, to 
extend the Hankel formula in much the same way AS 2 is used to 
extend the Hurwitz xi function (see, in particular, Lemma 1.3 and 

Theorem 1.5). 

L e m m a  6.4. For fixed 6 > 0, for any z with Re(z) sufficiently 

large and for any q and p for which Re(q) > Re(p), the integral 

2rci + 
[R(z - t) - Bq(z  - t)] t -~dt  
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is holomorphic for Re(s) = a > - R e ( q )  + 1. 

Pro@ For any T > 1, the integral  over the segments  from - T  
to - 5 ,  bo th  the lower cut and the upper  cut, is finite for all s since 
the in tegrand is absolutely bounded.  By Theorem 5.4, we have 

+ [ R ( z - t ) - B q ( z - t ) ] t - ~ d t  

O Q  

- T  

<< / Itl -~-Re(q)dt, 

- - O O  

which converges if - a  - Re(q) < - 1 ,  as asserted. [] 

P r o p o s i t i o n  6.5.  Let q be such that Re(q) > 1, and let 5 be 
a sufIiciently small positive n u m b e r  such that I,xkl > 5 for all k. 
Then for any z with Re(z) sufticiently large, 

CT~=0~(s,z) = 

2~ri + [R(z - t) - Bq(z - t)] ( - 7 -  logt )  dt 

+CT~-~ ( - ~ + - _ ~ ~  B q ( z - t ) t - ~ d t -  27ri 

1 /  
+ ~ i  R ( w  - t ) ( - ~  - logw) d~. 

$6 

Proof. Write the integral  over C~ as the sum of integrals over 
Se and the line segments  between - o o  and -5 .  Since 

([!- 
(3) = --7 - log w, 

7 + O(s2)] [1 - s l o g w  + o(~)]) 
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we have, by Lemma 6.3, 

C T s = ~  2rril / R(z-w)(-7-1~ dw" 
S~ S~ 

Lemma 6.4 yields a similar result for the integral of _R - B q .  [ ]  

Next, we let 5 approach zero and show that  the integral over Se 
will go to zero. 

L e m m a  6.6. For any q and p for which Re(q) > Re(p), and for 
any z such that Re(z) is sufticiently large, we have 

and 

lim / R( z - w) log w dw = 0 
5---+0 

$6 

lim 
5---*0 

[ R ( z  - t )  - B q ( z  - t)] log t  dt] 

[ R ( z  - t )  - n q ( z  - t)] l og t  dt. 

Pro@ If Re(z) is sufficiently large, the functions 

m z  - t)  a n d  R(z  - t ) -  Bq(Z - t) 

are bounded as t approaches zero. The second term is bounded 

by t -Re(q) as t --, 0. Therefore, the first integral is bounded by a 
multiple of 

s6j/log t dt << 5 log 5, 

which approaches zero as E approaches zero. The same estimate 
proves the second assertion. [] 

Combining Lemma 6.4, Proposition 6.5 and Lemma 6.6, we have 
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T h e o r e m  6.7.  With notation as above, 

CT~=o~(s,z) = 

2~---i + [R(z - t) - Bq(z - t)] ( - 7  - log t )  dt 

+~imCTs-~  ( ~ ~ + - _ ~ ~  B q ( z - t ) t - ~ d t ' -  2~ri 

One can view the  content  of Theorem 6.7 as a type of regularized 
form of the  Fundamen ta l  Theorem of Calculus. One should note 
the presence of the  te rm - 7  - logt  in Theorem 6.7, which is a 
funct ion that  also appeared in our general Stifl ing formula; see 
Proposi t ion 5.6 of the previous section. 

To conclude, let us note  tha t  if ins tead of considering the Hur- 
witz xi funct ion we would have s tudied the Hurwitz zeta funct ion 
we would have obta ined  the  following result. 

T h e o r e m  6.8.  With notation as above, 

! 

CT~=o~ (s ,z )  = 

27r----~ + [ R ( z - t ) - B q ( z - t ) ] ( - l o g t )  dt 

The  proof of Theorem 6.8 follows tha t  of Theorem 6.7 with the 
only change being the use of the  formula 

CT~=oO~w -~ = - log w 

in place of (3). 
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w Mell in Inversion Formula  

So far we have considered sequences (L, A) that  satisfy the three 
convergence conditions D I N  1, D I N  2 and D I R  3 and whose 
associated theta  function 0 satisfies the three asymptotic conditions 
AS 1, AS 2 and AS 3. From these assumptions we then derived 
properties concerning various transforms. We now want to perform 
other operations, so we reconsider these axioms ab ovo. Especially, 
we shall consider the inverse Mellin transform which gives 0 in 
terms of ~. Throughout this section we shall assume 

Re(Ak) > 0 for all k. 

Recall that  Theorem 1.12 proved that  the convergence condi- 
tions D I R  1, D I R  2 and D I R  3 imply the asymptotic conditions 
AS 1 and AS 3. With  this, Theorem 1.11 applies to show that  for 
Re(s) sufficiently large we have 

E ak __1  MO(s). 

k = l  k 

As previously stated, the asymptotic condition AS 2 is quite del- 
icate. In this section, we will show how, by imposing additional 
assumptions of meromorphy and certain growth conditions on (, 
the asymptotic condition AS 2 follows. To begin, we need the fol- 
lowing lemma which addresses the question of convergence of the 
partial series 

N - 1  
ak 

, ~ s '  
k = l  k 

to ((s)  as we let N ~ or 

L e m m a  7.1. Assume that the sequences ( L, A) satisfy the con- 
vergence conditions D I R  1, D I R  2 and D I R  3, and let ao be 
as in D I R  2(a) .  For each N > 1 let 

~bN =sup[arg(Ak)]  for a l l k > _ N ,  

so ~ N  < 2 for all N su~c ien t l y  large. 

(a) I f s  = cr + it is such that 

Re(s) = ~r > ~r0, 
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then for N sumciently large 

- a k ~ [  ~ 

k=l 

( b )  For all s in any fixed compact subset of the half plane 

Re(s)  = a > ao, 

the convergence 

is uniform. 

_< ~ltI,N. Z la*tta~l - ~  
k=N 

l i m  ~(s)  - ) _ ,  akA~ -~ = 0, 
N--*oo k=l 

Pro@ If we wri te  logAk = loglAk[ + iarg(Ak),  we have the 

b o u n d  

N-1 )kk s 

k=l k=N 
O o  

= Y~ lakl" I~-~1~ 
k=N 

O 0  

E lakl" e - ~  l~ IAk l-t-It[ON 

k=N 

If we define the a b s o l u t e  z e t a  to be 

OO 

~abs(O') ~--~ E lakll/~kl-rr 
k=l 

and 

(N) 
r (~) 

N-1 

= Cabs(~) - ~ lakll~kl -~, 
k=l 
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then we have shown that  

~(s) ~lakAk < elr (N) _ - s  " ~ u s  (a), 
k = l  

which establishes part  (a). Note that  if a > a0, then, by the 
convergence condition D I R  2(a),  

j L  m = o, 

which shows that  the upper bound in (a) approaches zero as N 
approaches o~, for fixed s with Re(s) sufficiently large. As for (b), 
since CN is bounded, if s lies in a compact subset K of the half 
plane Re(s) > a0, then [t[r is bounded independent of N for all 
s C K. This completes the proof of the lemma. [] 

Let ~ be a suitable function, which will be appropriately char- 
acterized below. For any a C R,  let t :(a) be the vertical line 
Re(s) = a in C. Under suitable conditions on c 2 which guarantee 
the absolute convergence of the following integral, we define the 
ve r t i ca l  t r a n s f o r m  V~c~ of ~ to be 

1 / ~(s)r(s) t_Sds.  
v ~ , ( ~ )  - 2 ~ - i  

From Stirling's formula (see Theorem 5.4 and, specifically, Example 
1 of w one sees that  on vertical lines s  the gamma function 
has the decaying behavior 

P(s) =Oc(e  -cl81) for every c with 0 < c < 7 r / 2 ,  

(2) and Isl-* oo, 

where, as indicated, the implied constant depends on c. Previously 
we studied the Mellin transform and, from Theorem 1.10, we have 

OO 1 ~ ak 
((s) - r(-s) M0(s) = A-~k' 
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where 
OO 

O(t) = E ake-~kt" 
k:=l 

We shall now study the i nve r s ion  f o r m u l a  

(3) 
1/ 

O(t) = V ~ r  2-~i r 

s 

which is valid if 
a > -Re(~k)  for all k. 

The inversion formula (3) is essentially a standard elementary in- 
version obtained for each individual term from the relation 

1 f r(s)t_ ds. (4) e - U -  2rri 

s  

The classical proof of (4) comes from an elementary contour in- 
tegration along a large rectangle going to the left, using the fact 
that  

(-1)" 
res_nl"(s) -- n! 

The relation (4) is then applied by putt ing u = Akt and summing 
over k. More precisely: 

P r o p o s i t i o n  7.2. Assume that ~ satist~es D I R  1, D I R  2 and 
D I R  3, and let ao be as defined in D I R  2(a).  Then t'or ev- 
ery 5 > 0, the associated theta series converges absolutely and 
uniformly for t >_ (5 > 0 and 

O = V ~  for a > ao. 

Proof. Let g = V,,~ be the vertical transform of ~ with a > a0. 
By (4) we have 

(5) g ( t ) -  E ake-~kt= 1 / 
k = l  27ri ~ ( s ) -  akAk s F(s)t-Sds. 

s  k = l  
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For N sufficiently large, take CN as in Lemma 7.1, and let us write 
s = or + iu. With this we have the bound 

g(t,) N-1 

-- Z ake-)~kt 
k----1 

(N) 
_( ~abS27r (or) / elul~'N]r(a + iu ) ] t - r  

l:(r 

(g) 

= r (or) t - . l le . . t~Nr(or + iu)lll,r ' 
21r 

where 

II lUl N r(or + iu)ll],. 

is the La-norm of el"l~NF(or + iu) on the vertical line s By the 
convergence condition D I R  3 and (2), we conclude there exists a 
constant C, independent of N,  such that  

(6) 
~ 1  (N) --o" 

g ( t ) -  ake -~kt <_ C(abs (or)t . 
k=l 

If t > b > 0, (6) can be written as 

9(t)  N - i  ,.~.(N)~ ~8-a 
-- Z ake-Akt ~ ~r [,or) " 

k= l  

(N) 
If a > a 0 ,  ~abs (Or) tends to zero when N ~ 00. This shows that  
the theta series 

OL,A(t) = O(t) = Z ake-~*t 
k~-I 

converges absolutely and uniformly for t > ~ > 0, as asserted in 
the statement of the proposition. [] 

R e m a r k  1. Proposition 7.2, in particular the inequality (6), 
shows that  the three convergence conditions D I R  1, D I R  2 and 
D I R  3 implies the asymptotic condition A S  3. This provides 
another proof of the first part  of Theorem 1.12. 
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Since AS 2 was used to show that M0(s) has a meromorphic 
continuation, it is natural to expect some type of meromorphy con- 
dition on ~ in order to prove that the vertical transform V , r  sat- 
isfies the asymptotic condition AS 2. Independently of any (7, we 
define the d o m a i n  of  V, and denote it by Dom(V),  to be the 
space of functions r satisfying the following conditions: 

V 1. c 7 is meromorphic and has only a finite number of poles 
in every right half plane. 

V 2. ~F is Ll-integrable on every vertical line where cTF has 
no pole. 

V 3. Let o'1 < ~r2 be real numbers. There exists a sequence 

{Tin}, with rn 6 Z and 

Tm--~oc if m---~oo and T,~---~-ocifrn---*-oc, 

such that uniformly for (7 C [(71, (72], we have 

+ iTm) 0 as Iml 00. 

Very often one has the simpler condition: 

V 3'. ~ (s ) r ( s )  --4 0 for Isl ~ oc and s lying within any 
vertical strip of finite width. 

Even though the condition V 3' is satisfied in many cases, it is 
necessary to have V 3 as stated. The reason for condition V 3 is 
that we shall let a rectangle of integration tend to infinity, and we 
need that the integral of pF on the top and bot tom of the rectangle 
tends to 0. Throughout, it is understood that when we take the 
vertical transform, we select cr such that ~F has no pole o n / ; ( a ) .  
The vertical transform V,,~ of c 7 depends on the choice of a, of 
course, and we shall determine this dependence in a moment.  

R e m a r k  2. In the more standard cases, such as zeta functions 
of number fields or modular forms, or easier kinds of Selberg zeta 
functions, there is no difficulty in verifying the three conditions 
V 1, V 2, V 3, or, usually, V 3'. In fact, functions W of this 
kind have usually at most polynomial growth in vertical strips, 
so their product with the gamma function decreases exponentially 
in vertical strips. In certain other interesting cases, it may be 
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more difficult to prove this polynomial growth, and there are cases 
where it remains to be determined exactly what is the order of 
growth in vertical strips. The proof of polynomial growth depends 
on functional equations and Euler products in the classical cases. 

We shall determine conditions under which we get AS 2 for 
V,~2. Immediately from the restricted growth of ~F on vertical 
lines V 1, the asymptotic behavior of ~2F on horizontal lines V 3, 
and Cauchy's formula, we have: 

L e m m a  7.3. Let c 2 r Dom(V), and let ~r' < a be such that ~F 
has no pole on s  and s Let 7r be the strip (the 

imqnite rectangle) de/~ned by the inequalities 

o' < Re(s) < a, 

and let {-p} be the sequence of poles ofc2F. Then 

V e t ( t )  = + 
-p6~(a',a) 

To continue, let us analyze the sum 

res-p[ (s)r(s) t-s] 

--p6Tr a',a) 

which was obtained in Lemma 7.3. For this, let us write 

(7) t -~ = t p . t -(~+p) = t p . ~ ( -  l~  +p)" .  
n! 

n ~ 0  

Let dp = -ord_p[~2F] and consider the Laurent expansion at 
S ~- --p: 

(8) ~(s)F(s) = E Ck(S +p)k ,  

k=-dp 

SO 
( -  log t) n 

k+n=-I 

�9 t p .  
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Then from (7) and (8) we see immediately that  there exists a poly- 
nomial Bp of degree dp such that  

(9) res_p[ (s)r(s)t = Bp(logt)t p. 

As in w given a sequence {p} of complex numbers, ordered by 
increasing real parts that tend to infinity, and given a sequence of 
polynomials {Bp} for every p in the sequence, we define 

Pq(t )  = E Bp(l~ 

Re(p) <Re(q) 

As before, we put 

re(q) = max deg Bp for Re(p) = Re(q). 

With this, we can combine Lemma 7.3 and (9) to obtain: 

T h e o r e m  7.4. Let ~2 E Dom(V), and let { - p }  be the sequence 
of poles of ~2F. Let a be a positive, sumciently large, real number 
such that neither ~2 nor F have poles for Re(s) >_ a. Then the 
vertical transform Va~2 of ~ satisfies the asymptotic condition 
AS 2, or, briefly stated, 

V~2(t) "~ E Bp(log t ) t  p as t ~ O. 

P 

Proof. If we let s = a ~ + it with a ~ a large negative number, then 
we have the estimate 

IV., (t)l <  (s)r(s)t dt <_ 

L:(a') 

where II~FIII,~, is the Ll-norm of ~F on the line s  By V 2, 
this integral is finite. Now simply combine Lemma 7.3 and (9), and 
let t ~ 0 to conclude the proof. [] 

With all this, we can now summarize the connection between 
the convergence conditions that  apply to sequences (L, A) and the 
asymptotic conditions that  apply to the associated theta  series. 
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T h e o r e m  7.5. Let (L, A) be sequences that satisfy the three 
convergence conditions D I R  1, D I R  2 and D I R  3, and assume 
that the associated zeta function 

r = r = ak ; 

k = l  

is in Dora(V). Then the associated theta series 

oo 

OL,A(t) = = Z 
k = l  

satisfies the asymptotic conditions AS 1, AS 2 and AS 3. The 
asymptotic expansion of AS 2 is given by (9) and Theorem 7.4 
with ~2 = (. 

Proof. Theorem 1.12 shows that  if (L, A) satisifies the three con- 
vergence conditions, then the associated theta series satisfies the 
asymptotic conditions AS 1 and AS 3. Theorem 7.4 shows that  
the meromorphy assumption on (, namely that  ( is in Dora(V), 
implies AS 2. [] 

To conclude this section, we will use Theorem 7.4 to show how, 
given sequences whose theta  series satisfies the asymptotic condi- 
tions, one can construct a new sequence with the same property. 
The following theorem follows immediately from the definitions and 
the holomorphy of the exponential function. 

T h e o r e m  7.6. Let z 6 C be fixed and assume that (L,A) is 
such that the associated theta series satisifies the three asymp- 
totic conditions AS 1, AS 2 and AS 3. Then the sequence 
(L + z, A) satisfies the three asymptotic conditions AS 1, AS 2 
and AS 3. 

Proof. The theta function associated to (L + z ,A)  is simply 

e-ztSL,A(t), hence the proof follows. 

T h e o r e m  7.7. Let r > 0 and assume that (L, A) is such that 
the associated theta series satisifies the three asymptotic condi- 
tions A S  1, A S  2 and A S  3. Then the theta series associated 
to 

({Alk/r},A) = (L1/" ,A)  
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satist~es satist~es the three asymptotic conditions AS 1, AS 2 
and AS 3. If the exponents {p} in the asymptotic expansion 
of OL,A near t = 0 are real, then so are the exponents in the 
asymptotic expansion of OL1/,,A near t = 0. 

Proof. Since ((s)  is meromorphic as a function of s, so is ((rs) ,  
and we can apply Theorem 7.4. The reality statement is immediate 
from the proof of Lemma 7.3. 

Let us consider two zeta functions ~1 and (2 corresponding to 
the sequences (L1,Ai)  and (L2,A2), respectively. Let (53,A3) be 
the t e n s o r  p r o d u c t ,  which we define so that L3 is the family of 
all products 

L3 = {Akin} with Ak C L1 and ~ C L2; 

while A3 is the family of all products {aka}}, so then the zeta 

function (3 is simply the product 

(3 ~-~ ( 1 ( 2 .  

When written in full, the zeta function (3 is 

oc aka}  

k,j 

and the associated theta series 03 reads 

03(t ) = [01 @ 02](~:)= E(aka})e-('kkA~)t. 
k,j 

To study G and 03, we shall apply Lemma 7.1. For this, we define 
the t r u n c a t e d  ze ta  f u n c t i o n  to be 

oo N - 1  

ak ; s = Z ak ;" 

k=N k = l  
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T h e o r e m  7.8. Let (L1,A1) and (L2,A2) be sequences such 
that the associated theta series satisify the three asymptotic 
conditions AS 1, AS 2 and AS 3. Assume there exists an 
e > 0 such that t'or a11 j and k, we have 

71" 7r 
- ~ + e < a r g ( A k ) + a r g ( A } ) _ <  2 - -  - -  E ,  

or, in other words, the tensor product series satisfies D I R  3. 
Further, assume there exists some N such that the truncated 
zeta functions 

d 4 N) and the product ",1 ',2 

are in Dom(V). Then the theta series associated to the tensor 

product (L3,A3) satisfies satisfies the three asymptotic condi- 
tions AS 1, AS 2 and AS 3. I f  the exponents in the asymptotic 
expansion AS 2 are real for 01 and 02, then they are also reM 
for 03 = O1 | 02. 

Pro@ Since 01 and 02 satisify AS 1, it is immediate that  03 sat- 
isfies AS 1. Also, it is immediate that  the tensor product (L3, A3) 
satisifes the convergence conditions D I R  1 and D I R  2 since the 
product of two absolutely convergent Dirichlet series is absolutely 
convergent. Therefore, by Corollary 1.10, we know that  the zeta 
functions r and 42 are meromorphic in C. By assuming that  the 
tensor product series satisifies D I R  3, Proposition 7.2 applies to 
show that  03 = 01 | satisifes AS 3. Finally, by assuming that  the 
truncated zeta functions are in Dom(V), we may apply Theorem 
7.4 to conclude that  03 satisfies AS 2. 

In the case of real exponents for the asymptotic expansions of 01 
and 02, we know, again by Corollary 1.10, that  the poles of 41 and 
42 are of the form - ( p  + n) with real p and n C Z. Hence, by the 
proof of Lemma 7.3, the exponents of the asymptotic expansion for 
03, which are the poles of 43, are also real, thus concluding proof 
of the theorem. [] 

E x a m p l e  1. Let L be the sequence of eigenvalues associated 
to a Laplacian that  acts on C ~ functions on a compact hyperbolic 
Riemann surface X. The parametrix construction of the heat ker- 
nel shows that  L satisfies the three asymptotic conditions AS 1, 
AS 2 and AS 3. From Theorem 7.6 we have that  L - 1/4 satisfies 
the three asymptotic conditions, and Theorem 7.7 implies that  the 
sequence 

v/L-  1/4= I/4} = 
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also satisfies the three asymptotic conditions. The sequence 

1/2 + v/-L-I, v / L - 1 / 4 =  {1~2+irk} 

is precisely the set of zeros {p} with Im(p) > 0 for the Selberg 
zeta function associated to X. Note that  the general Cram~r the- 

orem proved in [JoL 92b] also proves that  the sequence v/L - 1/4 
satisfies the three asymptotic conditions AS 1, AS 2 and AS 3. 

Essentially the same argument, applied in reverse, holds for gen- 
eral zeta functions, such as those associated to the theta function 
as in Cram~r's theorem ([JoL 92b]). 

E x a m p l e  2. The Dedekind zeta function of a number field 

OO 

~(s) = E N a - ' =  E akk-~ 
r k = l  

satisfies all three conditions D I R  1, D I R  2, and D I R  3, and 
lies in Dora(V). Here ak is the number of ideals a with Na  = k. 
Therefore, by Theorem 7.5, the associated theta function 

(2,0 

0(t) = Z 
k = l  

satisfies the three asymptotic conditions, especially AS 2. Note 
that  this theta  function is different from the theta  function used 
in the classical (Hecke) proof of the functional equation. A similar 
remark of course holds for the L-series. 
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T A B L E  OF  N O T A T I O N  

Because of an accumulation of conditions and notation, and their 
use in the current series of papers, we tabulate here the main ob- 
jects and conditions that we shall consider. 

We let L = {Ak } and A = {ak } be sequences of complex num- 
bers. To these sequences we associate various objects. 

A Dir i ch le t  ser ies  or ze ta  func t ion :  
(x) 

~A,L(,S) = ~(8) = ~ ak)~k s, 

k = l  

and, more generally, for each positive integer N, the t r u n c a t e d  
Dir i ch le t  ser ies  

((N) - s  
A,L(,S) = f f ( N ) ( s )  = ~ ak/~k . 

k=N 

The sequences L and A (or Dirichlet series) may be subject to the 
following conditions: 

D I R  1. For every positive real number c, there is only a finite 
number of k such that Re(Ak) _< c. 

DIR 2. 
(a) 

(b) 

The Dirichlet series 

ak 

k 

converges absolutely for some real ~r. Equivalently, we 
can say that there exists some a0 C R>0 such that 

lakl-- O(l~kl ~~ for k ~ oe. 

The Dirichlet series 

1 

k k 

converges absolutely for some real a. Specifically, let 
~rl be a real number for which 

1 

k 
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We define rno to be the  smal les t  integer >_ 1 such t ha t  

1 

D I R  3. The re  is a fixed e > 0 such t ha t  for all k sufficiently 
large, we have 

71" 71" 

- ~  + e _< arg(s _< 2 

Equivalently, there exists positive constants C1 and C2 
such that for all k, 

Clls < Re(s < C21Akl. 

A t h e t a  s e r i e s  or t h e t a  f u n c t i o n :  

O n , L ( t )  = O(t)  = ao + 

a reduced theta series 

OO 

Z ak e-Akt 

k = l  

O 0  

(1) = 0(1)  OL,A(t) (~) = ~ ak~ - ~ ' ,  
k = l  

and, more generally, for each positive integer N, the t r u n c a t e d  

t h e t a  s e r i e s  

O 0  

0 (N) L,A(t) = CN)( t )  = ~_, ak ~ - ~ '  
k=N 

The asymptot ic  exponential  polynomials  for integers N > 1: 

N-1 

Q N ( t )  = a0 + ~ ake -~'kt. 

k----1 
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We are also given a sequence of complex numbers  

{p} = } 

with 

Re(p0) < Re(p1) < . . .  _< Re(p j)  < . . .  

increasing to infinity. To every p in this sequence, we associate a 
polynomial  Bp and we set 

bp(t) = Bp(log t). 

We then  define: 

The  asymptotic polynomials a t  O: 

pq(t) = S p ( t ) t p .  

Re(p)<Re(q) 

We define 

and 

re(q) = max deg Bp 

n(q) = max deg Bp 

for Re(p) = Re(q) 

for Re(p) < Re(q). 

Let C(T)  be the algebra of polynomials  in T p with arbi t rary com- 

plex powers p C C. Then,  with this notat ion,  Pq(t) C C[log t] (t}. 

A funct ion f on (0, oo) = R>0 may be subject  to a s y m p t o t i c  
conditions: 

A S  1. Given a positive number  C and to > 0, there exists N 
and K > 0 such that  

i f ( t )  - QN( t ) [  __ K c  - c t  for  t >_ to. 

A S  2. For every q, we have 

f ( t )  -- Pq(t) = O(tRe(q)llogt[m(q)) for t --* O. 
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We will write AS 2 as 

f ( t )  ~ E bp(t)tP" 
p 

AS 3. Given 6 > 0, there exists an a > 0 and a constant C > 0 
such that  for all N and 0 < t < 6 we have 

IO(t) - QN(t)] <_ C/ t  ~. 

Given a polynomial Bp a direct calculation shows that  there 

exist polynomials B~,, Bp and Bp # of degree _< deg Bp + 1 such 

that:  

[r(s +p) 
CTs=oBp(O ) [ 

+ p) 
CTs=IBp(Os) [ zS w 

7 r z s + p _ 1  

CTs:oB (0,) 

= z-PB~(log z) 

= Z - p - 1  Bp(log z) 

= zp-lBp#(log z) 

The possible pole of F(s + p) at s = 0 or s = 1 and the possible 
zero of sin[~r(s + p)] at s = 0 accounts for the possibility of deg B~, 

deg/?p, or deg Bp # exceeding deg Bp. 



Par t  II 

A Parseval  Formula for Functions with a 

Singular Asymptot ic  Expansion at the Origin 
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Introduction 

We shall determine the Fourier transform of a fairly general type 
of function r which away from the origin has derivatives that  are 
of bounded variation on R and are in LI(R) ,  but at the origin the 
function has a principal part which is a generalized polynomial in 
the variable x and log x, namely 

r = E BT'(l~ + O(ll~ 
p 

where {p} ranges over a finite number of complex numbers with 
Re(p) < 0, for all p, Bp is a polynomial, and m is some positive 
integer. Thus the Fourier transform is determined as a distribution, 
and more generally as a functional on a large space of test functions 
also to be described explicitly. Alternatively, we may say that  we 
are proving the Parseval formula for such a function ~ and its 
Fourier transform. 

Aside from the Parseval formula having intrinsic interest in pure 
Fourier analysis, it arises in a natural  way in analytic number the- 
ory, in the theory of differential and pseudo differential operators, 
and more generally in the theory of regularized products as devel- 
oped in [JoL 92a]. 

In the so-called "explicit formulas" of number theory, one proves 
essentially that  the sum of a suitable function taken over the primes 
is equal to the sum of the Fourier-Mellin transform taken over the 
zeros of the zeta function. Classically, only very special cases were 
given (see Ingham [In 32]), and Weil was the first to observe that  
the formula was valid on a rather large space of test functions, and 
could be expressed as an equality of functionals. The sum over 
the primes includes a term at infinity, which amounts to an inte- 
gral of the test function against the logarithmic derivative of the 
gamma function, taken over a vertical line Re(s) = a [We 52]. Weil 
proved what amounted to a Parseval formula, by determining what 
amounted to the Fourier transform of the logarithmic derivative of 
the gamma function on a vertical line in an .explicit form. Well's 
functional was reproduced with some additional details (making 
use of some general results concerning general Schwarz distribu- 
tions) in [La 70]. However, the form in which Well (and [La 70]) 
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left the functional at infinity still required what appeared as too 
complicated arguments to identify it with the classical forms in 
the classical special cases. Barner reformulated the Weil functional 
in a more practical form [Ba 81], [Ba 90] and also extended the 
domain of validity of the formula. Our Parseval formula includes 
as a special case the formulas of Weil and Barner for the gamma 
function. 

In spectral theory or in the theory of regularized series and prod- 
ucts, there arises a regularized harmonic series R and a regularized 
product (or regularized determinant) D. As a corollary of the Par- 
seval formula, we determine the Fourier transform of R, and of the 
logarithmic derivative D~/D(a + it) on vertical lines of the form 
a + it, where D is the regularized product from w of [JoL 92a]. 
This determination is applied in our general version of explicit for- 
mulas [JoL 93]. Several other applications will also be given in 
subsequent papers, including for instance functional equations for 
general theta  functions. 

As to the proof, we shall first give a special case which covers the 
classical case of number theory and Barner's formulation. In this 
special case, the Parseval formula involves only the Dirac functional 
applied to the test function, whereas the general case concerning 
arbitrary regularized determinants involves higher derivatives of 
the test function. These higher derivatives come from the polar 
part in the asymptotic expansion of the theta function at 0. The 
special case occurs when this polar part consists only of 1/x. 

Our proof in the special case is more direct than Barner's or 
Weil's, and our formulation of the result already exhibits some 
general principles which were not immediately apparent in previ- 
ous proofs. In particular, we avoid what now appear as detours by 
formulating lemmas in pure Fourier analysis showing how the sin- 
gularity behaves under Fourier transform. These lemmas are used 
in the special and general case. We are indebted to Peter Jones for 
a proof of one of these lemmas, which has independent interest in 
general Fourier analysis. 
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w A T h e o r e m  on Fourier Integrals  

This section is preliminary, and proves some lemmas on Fourier 
integrals which will be used in the next section. 

We recall the Fourier t rans form 

f^(t) - 
O 0  

1 / f(x) e-it~dx" 
- - 0 0  

We shall be concerned with Fourier inversion. For f C L 1 (R) and 
A > 0 we define 

<DO 

fA(x) = _1 / f(y)sinA(x- 
7r x - -  y 

- -  ( X )  

A 

1 / fA(t)eit'.dt. Y )  - 

- A  

The middle expression with the sine comes from the last expression 
and the definition of f ^ ,  after an application of Fubini's theorem 
and the evaluation of a simple integral of elementary calculus. Let 

We are interested in seeing how fA converges to f ,  that  is we want 
the inversion formula f a ^  = f -  in the form 

f ( x ) =  lim fA(x). 
A---*cr 

We shall give conditions under which the inversion formula is true. 

We let the S c h w a r t z  space  Sch(R) be the vector space of func- 
tions which are infinitely differentiable, and such that  the function 
and all its derivatives tend rapidly to 0 at infinity. That  f t ends  
rapidly to 0 a t  i n f in i ty  means that  for all polynomials P the 
function Pf is bounded. Then the Schwartz space is self dual, that  
is 

Sch(R)  ̂  = Sch(R). 

An elementary result of analysis asserts that  the formula f ^ ^  = f -  
is true for f in the Schwartz space. We shall assume such an 
elementary result, and extend it to functions which are less smooth, 
namely we shall deal with functions of bounded variation. All the 
background material  needed is contained in [La 93]. We let BV(R)  
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denote the space of complex valued functions of bounded variation 
on R, i.e. the space of functions of bounded variation on each 
finite interval [a, b], and such that  the total variations are uniformly 

bounded for all [a, b], in other words there exists B > 0 such that  

V(f ,a,b)  <_ B for all [a,b]. 

We let 
VR(f) = sup v(Z, a, b). 

[~,b] 

R e m a r k .  If f C BV(R) Y) LI (R)  then f (x)  --+ 0 as x --+ 4-00. 

Indeed, if If(x)l > c > 0 for infinitely many x tending to infinity, 

since f C LI (R)  there are infinitely many y such that  If(Y)l < c/2 
(say), and so the function could not be of bounded variation. 

W'e let d#f be the Riemann-Stieltjes measure associated with f ,  

and sometimes abbreviate dpf by df. 
The function fA exhibits different behavior near 0 and at infinity. 

Its behavior will be described in part in the lemmas below. We shall 
need the function 

x 

S(x) = / sint t dt, 

o 

so S is continuous and bounded on R. In fact, S is bounded by the 
area under the first arch of (sin t)/ t  (between 0 and rr), as follows 
at once by the alternating nature of the integrand. 

L e m m a  1.1. Let f E BV(R) N L I ( R ) .  Then for A > 0 the 
function f A is bounded, and in fact there is a uniform bound, 
independent of A: 

1 
[IfA[l~ <~ - [ I S I [ ~ V R ( f ) ,  

71" 
i 

 here II II the . up norm.  

Proof. Integrating by parts yields 
c'X) 

( X )  

= -  / S(At)df(t- .). 
- - 0 0  
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The desired bound follows by the standard absolute estimates. 
We have used here that  over a finite interval [a, hi, the two terms 

f (b)S(Ab)  and f ( a )S (Aa)  tend to 0 as a ---* - eo ,  b ---+ co because 
S is bounded, and f tends to 0. This concludes the proof. [] 

We recall a classical theorem from Fourier analysis giving nat- 
ural conditions under which Fourier inversion holds, especially at 
a discontinuity. For this purpose, we shall say that  a function f is 
n o r m a l i z e d  at  a p o i n t  x if 

1 
f ( x )  = ~ [ f ( x+ )  + f ( x - ) ] .  

Thus the right and left limits of f exist at x, and the value of f at 
x is the midpoint. We say that  f is n o r m a l i z e d  if f is normalized 
at every x C R. 

T h e o r e m  1.2. Let f E BV(R) M L](R) ,  and suppose f is 
normalized. Then f A is bounded independently of A and 

lim fA(x)  = f ( x )  for all x C R.  
A ---* o o  

For a proof, see Ti tchmarsh [Ti 48]. 

The remainder of this section is devoted to examining the uni- 
formity of the convergence in Theorem 1.2. To begin, we mention 
a very special case. 

L e m m a  1.3. There exists a function a E Sch(R) such that a n 
has compact support, and a(O) ~ O. For such a function, we 
h ave 

O~ A = OZ 

for all A su~cient ly  large. 

Proof. Let f C Cc~(R) be an even function _> 0 with f (0)  > 0. 
Let a = flA. Then ~ = c~ ̂  has compact support, and the direct 
evaluation of the Fourier integral together with the definition of ~A 

shows that  the other conditions are satisfied. [] 

The following quantitative formulation of the Riemann-Lebesgue 
lemma is proved by Barner in [Ba 90], Satz 82 in w to which the 
reader is referred for a proof. 
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L e m m a  1.4. Assume: 

(a) g 6 BV(R). 

(b) g ( x )  = O(Ix{ ~) for s o m e  ~ > 0 as x - ~  0 

Then the improper integral that follows exists for A > 0 and 
satisfies the bound 

o o  

g(y)ciAy d___yy = Og( A-~--~ ). 

Y 
0 

Also, we need the following elementary lemma. 

L e m m a  1.5. F o r a 1 1 0 < a < b a n d A > O  we have 

b dt sinAt < 3 

t - Aa 
a 

Proof. This follows from the change of variables u = At, the 
alternating nature of the integrand, and an elementary area esti- 
mate. [] 

The main result of this section is the following uniform version 
of Theorem 1.2. 

T h e o r e m  1.6. Let g E BV(R) N LI(R)  and assume 

g(~) = O ( I x l  r for  Ixl ~ 0. 

1 Let 5 = min(g,  ~ ) .  Then for all A > 1, 

gA(~) - gA(O) = o~(1~1 ~) for  Ixl ~ O, 

the estimate on the right being independent of A. 

Theorem 1.6 will be proved using a series of lemmas. Before 
continuing, let us state the following corollary of Theorem 1.6 that  
further refines the uniformity of the pointwise convergence result 
stated in Theorem 1.2. 
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Corol la ry  1.7. Assume g has M derivatives and all the func- 

tions g,g(1) . . .  ,g(M) are in BV(R) 0 LI(R). Assume that 

g(x) = O(Ixl M+~) for Ixl --* 0. 

Then: 

(a) The function gA has M derivatives (gA)(1),..., (gA) (M) and 

(~./(~)=(.(~)) fo. k : x . . .  
A 

so, without ambiguity, we can write the derivatives of gA 
as g~) ,g(M) 

7 " ' '  

(b) We have 

M xk 

~A(~) - ~ ~(~k)(o)~ = O(Ixl "§ for Ixl -~ 0, 
k----0 

the estimate on the right being independent of A. 

Proof. Let h be a differentiable function on R, with derivative 
h', such that h,h'  e B V ( R ) 0  LI(R). Since d / d u ( ( s i n A u ) / u ) i s  
bounded, one can interchange derivative and integral (see page 357 
of [La 83]). These calculations yield that 

d " A ( y -  x) ~,-,.,<:x~ :,.,~(x): ~ J ,,.,i~,)s'L_ x:> <',,' 
- - 0 0  

O 0  

: i "(~'~ r.,o,o,-x) / (y-Y) ],t~ 
- - O O  

OO 

- - 0 0  

0,0 

e [ si~_ a ~  z x) 
= i G h(y) [ (~ - x) dy 

- - O O  

A 

dy 
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The integration by parts step is valid since (sin Au) /u  is bounded 
and h(x) approaches zero as x approaches infinity. This proves (a) 

by induction, letting h = g(k). As to (b), if we apply Theorem 1.6 

to the function g(AM)(x) we get 

g(~M)(x) - r = og(Ixl~). 

By repeatedly integrating this equation from 0 to x and applying 
(a), we get (b), thus proving the corollary. [] 

The remainder of this section is devoted to the proof of Theorem 
1.6. To do so, we will write 

= [ y )  " - 
gA(x) J l  x-~ dy+ + g(y)smA(Xx_y Y)dy, 

and investigate the finite and infinite intervals separately. For no- 
tational simplicity, we will consider the integrals over the intervals 
[0, 1] and [1, oc), with the analysis over the intervals ( - e c , - 1 ]  and 
[-1,  0] being identical to that  over the corresponding positive in- 
tervals. We begin with the analysis over the finite intervals. 

P r o p o s i t i o n  1.8. Let g C BV(R)ALI(R) .  Assumein  addition 
that there exists ~ > 0 such that 

g(x) = o ( I x r )  for x --, 0 

Then there is 5 > 0 such that for all A > 1 we have 

1 

0 

the estimate on the right being independent of A. 

Pro@ We owe the proof of this proposition to Peter Jones, who 

showed that  one can take 5 = min(~, ~ ) ,  as stated in Theorem 

1.6. We need to split the integral over various intervals, depending 
on A and x. We first settle the easiest case. 



99 

C a s e  I. Suppose Ixl < A -4 and, say, x > O. Then 

1 dy / g(y) [S i y Ay  s i nA(x  - Y) _ y << llgll x /2" 

0 

Proof. Since 

~yy << A 2, 

we use the Mean Value Theorem and the hypothesis x < A -4 to 
get the bound 

sin Ay sin A(x  - y) 
<< A2x <_ x 1/2, 

y x - y  

and then we estimate the desired integral in the coarsest way with 
the sup norm to conclude the proof of the present case. [] 

C a s e  I I .  Suppose [x[ > A -4, so A -1 <_ Ix[ 1/4. 

In this case, we will bound each separate integral without using 
the difference of sines. Lemma 1.4 takes care of the term with 
(sin A y ) / y ,  giving a bound of x ~/s. The next lemma takes care of 

the term with (sin A(x - y ) ) / ( x  - y). 

L e m m a  1.9. With  the implied constant in << depending on 

I lgl l l ,  Ilgll~, a 'd  VR(g), we have s x >_ A-4 :  

1 

g ( y ) s i n d ( x  - y) dy << x 1/s + x ~/16, 
x - y  

0 

the est imate on the right independent  os A. 

Proof. We split the integral 

1 

g(y)  sin_A(x - y) 
x - y dy 

0 

= / +  / §  
[ x - y l ( A  -1 A - l ~ l x - y l ~ A - l x - t / 8  A - t x - t l S ~ l x - y  I 

- - I 1 + I 2 + I 3 .  
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For the  first in tegral  I1, we change  variable  p u t t i n g  u = x - y. 

T h e n  the  l imits  of i n t eg ra t ion  for u are lul _< A -1,  and  we get a 

b o u n d  

(3) 121[ ~ 119111 A A - 1  < (x + A - l )  e < X el4. 

For the  second in tegra l  I : ,  again  wi th  u = x - y, we f ind t ha t  

Ihl ~ Ilgll~ 

A-lx-1 /s  

71 
A-1 

- -  << 11911oolog 1 / s  

where  the  interval  over which  we take the  sup  n o r m  of g is 

A -1 <_ I s - y [  < A - i s - l ~  s 

Using the  g rowth  e s t ima te  g(x) = O([x[ ~) for x near  zero and  the  

a s s u m p t i o n  A -1 _< x 1/4, we get 

Ih[  << (x -t- A-l  x-1/S)~ log(1/x) 

(4) << (x + xl/8)~log(1/x) << x ~/~6. 

For the  t h i rd  in tegral  /3, since the  set of d i scont inu i t ies  of a 
func t ion  of b o u n d e d  var ia t ion  is countab le ,  we can select x0 such 
t ha t  g is con t inuous  at x0 and  

x + A - i x  -1 /s  <_ xo <_ x + 2 A - i x  -1/8.  

For simplici ty,  we jus t  look at y > x0. T h e  o the r  piece for /3 is 
done  in the  same  way. We then  d e c o m p o s e  the  in tegra l  over y > x0 
into a sum:  

/ g(y)sinA(x - y) / s i n A ( s  - Y)dy 
x - - ~  dy = 9(s0) s -  y 

y>z0 y>z0 

+ / (g(y) - g(s0)) 

y>xo 

= J1 + J2, 

sin A(x - y) dy 
x - y  
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and we estimate J1, J2 successively. For the integral J1, using 
Lemma 1.5, we find: 

1 
IJll << Ig(xo)l A(xo - x) 

<< (x + 2 A - l x - 1 / S ) ~ A - 1 A x  1/8 

(5) << x 1/8 

For the integral J2, let Xy be the characteristic function of [0, y), 
that is put 

1 i f t < y  
X(y,t)  = x~(t) = 0 if t_>y.  

If g is continuous at y, then 

1 

g ( y ) -  g(xo) = / X(y,t)dpg(t).  

~o 

This is a convenient expression to plug into an application of Fu- 
bini's theorem which gives 

1 1 

J2 = f f X(y, t)sin A(Xx_y- y) d#9(t)dy 

XO XO 1L! ] 
sin A(y - x) 

= X(y,t)  y - x  dy d#9(t ) 

Xo 

1[i ] sin A(y - x) 
= -~- �9 dy d~(t)  

Xo 

= f  si U du d#9(t ). 

T, o I.~--X 

Hence by Lemma 1.5, we find 

1 

tJ2l <_ A(t_  x) ld#g(t)l << A-l(xo -x ) - l rR(g )  

Xo 

(6) << A - l A x  1/s = x 1/s, 
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which concludes the estimate of the second integral J2, and there- 
fore of the integral h .  Thus (3), (4), (5), and (6) conclude the 
proof of Lemma 1.9. [] 

Having taken care of all cases, we have completed the proof of 
Proposition 1.8. 

To finish the proof of Theorem 1.6, we need the following propo- 
sition. 

P r o p o s i t i o n  1.10. Let g C BV(R)AL I(R) .  Then for a11A >_ 1 
we have 

OO 

1 

the estimate on the right being independent of A. 

The proof of Proposition 1.10, which is much easier than that of 
Proposition 1.8, will be given through the following lemmas. 

L e m r n a  1.11. Assume g E BV(R)  N LI(R) .  Then 

Jl " Ay 3 g(y) s m  dy < 

Y 

Proof. Extend g to [0, ~ )  by defining g(t) = 0 if 0 _< t < 1. For 
fixed t C (0, 1) and b > 1, consider the integral 

b 

g(y) sin Ay dy. 

Y 
t 

Let 
( x )  

SA(X) = -- f sin Ay dt 

Y 
X 

Using integration by parts we have 

g(y)m Y dy = - SA(y)dg(y). 

t t 
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The point evaluations of g(y)SA(y) will be zero as b approaches 
infinity, since g(t) = 0, g(b) approaches zero, and SA(y) is bounded. 
Also, by Lemma 1.5 

i SA(~)dg(y) 3 
< sup ISAI VR(g) < )-~VR(g). 

It,b] 

Therefore, we have shown, after letting t approach 1 and b approach 
ec that  

g(y)sinAY dy <_ ~VR(g),  
y 

as asserted. [] 

We now consider the integral in Proposition 1.10 in two separate 
cases, when x <_ 1/A 4 and when x > 1/A 4. 

Case  I. Assume x <_ 1/A 4. Then there is a universal constant 
C such that 

f g(y) 

1 

s i n A y  sin A(x - y) 

y x - - y  
dy ~ (CIIglll)X'/2, 

the estimate on the right independent of A. 

Proof. By the Mean Value Theorem we have 

sin _A(__y - x) sin Ay <_ CA2x" 
y x y 

So, we can bound the integral in question by 

CA2xllglll ~ (CIIgH1)x ~/2. 
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Case  II .  Assume x > 1/A 4 and, without loss of generality, we 
can also assume that x < 1/2. Then 

sinA(Xx_y- y) I dy <_ Cgx 1/4, 

where the constant Cg is independent of A, and depends only 
on g. 

Proof. Let us estimate the integrals separately. In fact, write 
the integrals as 

o o  oQ 

/ g (y ) s inA(y -X)dy_ /g (y ) s inAYdy  
- x  y 

1 1 

= / g(u + x) sinAudu - /g (y ) s inAYdy  
u y 

1 - - x  1 

1 o c  

= / g(u+x)sinAuu d u + / g ( u + x )  sinAuu du 

1 - - x  1 

_/g(y) sin Ay dy 
y 

The first integral is bounded by tlgll~x since (sin Au)/u is bounded 
on [1/2, 1]. Lemma 1.11 applies to bound the second integral, in- 
dependent of x, as well as the third integral. The bound achieved 
1S 

6 
Ilgll~x + ~VR(g). 

Since 1/A < x 1/4, Case II is proved. 

Combining the two cases above, we have completed our proof 
of Proposition 1.10. With all this, the proof of Theorem 1.6 is 
completed by combining Proposition 1.8 and Proposition 1.10. 
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w A Parseval  formula 

We recall the definition of the hermitian product 

(f,g) = / f(x)y(x)dx. 
- -  0 0  

For f ,  g in the Schwartz space, we assume the elementary Parseval  
Formula  

(f, g) = (f^ ,  g^). 

The point of this section is to prove this formula under less restric- 
tive conditions. We shall extend conditions of Barner [B.a 90], for 
which the formula is true. The basic facts from real analysis (func- 
tions of bounded variation and Stieltjes integral, Fourier transforms 
under smooth conditions) used here are contained in [La 83]. 

We call the following conditions from [Ba 90] the basic condi-  
t ions on a function f: 

Condi t ion  1. f E B V ( R )  N LI(R). 

Condi t ion  2. There exists c > 0 such that  

= f ( o )  + o ( I x l  for x --, o. 

Condi t ion  3. f is normalized, .as defined in w 

In addition to functions satisfying the basic conditions, we shall 
deal with a special pair of functions, arising as follows. We suppose 
given: 

A Borel measure # on R + such that  d#(x) = r where 
r is some bounded, (Borel) measurable function. 

A measurable function ~ on R + such that:  
(a) The function ~0(x) = ~ ( x ) -  1/x is bounded as x 

approaches zero. 
(b) Both functions 1/x and ~2(x) are in LI(]#I) outside a 

neighborhood of zero. 

Thus we impose two asymptotic conditions on W, one condition 
near zero and one condition at infinity. We call (#, ~) a special  
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pai r .  We define the functional  

OO 

o 

Its "Fourier t ransform" as a dis t r ibut ion is the funct ion W ^ such 

that  

OO 

w2, (t) - 1 

o 

1 
-- v/-~W~,,p(~t) where Xt(x) = e itx. 

The following theorem generalizes the Barner-Weil  formula [Ba 90]. 

T h e o r e m  2.1. Let f satisfy the three basic conditions, and let 
(#, ~2) be a special pair. Then 

A 

l im S ^ ^ A---*oo f (t)W~,~(t)dt = Wu,~( f -  ) 

- A  

O 0  

Proof. At a certain point in the proof, we shall need to distin- 
guish two cases, but  we proceed as far as we can go wi thout  such 
dist inction,  according to a ra ther  s tandard  pa t te rn  of proof. We 
have: 

A 

i fn(t)W~,~(t)dt  

- A  

A oo oo 

- A -oo 0 

A 

-A R• 

] e x ty dy d#(x). 
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By the assumptions on (p, ~) and f ,  we can interchange the inte- 
grals which are absolutely convergent. We then perform the inner 
integration with respect to t, and the expression becomes 

RxR+ 

R +  R 

R +  

sin Ay]  dyd#(x)  
xy  j 

e e.(x) 
xy j 

At this point, we are finished with the proof in the case f = a is 
a function satisfying the conditions of Lemma 1.3, namely aA = a 
for sufficiently large A. For the general case, we write the above 
integral as a sum 

= + f 
R +  R +  

Note that  T ( x ) -  1 /x  is in LI(lp[) by our assumptions on (#, c2). 

Our final step is to prove that  we can take the limit as A ~ (x) 
under the integral sign in both terms for an arbitrary f satisfying 
the basic conditions. In the first integral, one can apply the domi- 
nated convergence theorem by the boundedness of fA (see Theorem 
1.2) and the assumptions on ~(x) - 1/x.  As to the second integral, 
we split the integral 

1 c~ 

/--/+/ 
R +  o 1 

Again, we apply the dominated convergence theory to the inte- 
gral over [1, oc), by Theorem 1.2, the boundedness of fA ,  and the 

assumption that  1 /x  is in LI(#).  The more difficult part is the 
integral over the inteval [0, 1]. 

Let a be as in Lemma 1.3 and such that  a(0) = f(0),  which can 
be achieved after multiplying a by a constant. Let g = f - a. The 



108 

formula of Theorem 2.1 is linear in f ,  and it is immediately verified 
that a and hence g satisfies the basic conditions and 

g(z) = O ( i x l  ~) fo r  x -~  0. 

Having proved the formula for a, we are reduced to proving it for g. 
Recall that Theorem 1.6 states that for a positive b, which depends 
o n  ~, 

g A ( X )  --  g A ( O )  = O ( I X l  5)  f o r  X -"-+ 0 

uniformly in A. Therefore, the dominated convergence theorem 

again applies since x - l+e  is integrable over [0, 1], and we get, since 

g(O) = O, 

1 1 /i /1 
lim x ( g A ( - - x )  -- gA(O))d#(x)  = g ( - x ) d # ( x ) .  

A ----, oo 
0 0 

After taking the limit as A ~ r under the integrals we see that 
the final expression above becomes 

1 ) f ( _ x ) a ~ ( x )  (~(x)  - -; 

R +  

which proves the theorem. [] 

+ / l(,(xls(oll  (xl 
R +  
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w The  General  Parseval  Formula 

Following the ideas in [JoL 92a], we now prove a general Parseval 
formula associated to measurable functions with arbitrary principal 
part,  thus generalizing the results of w in which the function c2(x ) 
was required to have principal part equal to 1/x. 

Suppose we are given: 

A Borel measure # on R + such that  dp(x) = r where 

r is some bounded (Borel) measurable function. 

A measurable function ~ on R + having the following prop- 
erties. There is a function Po(x) E C[logx](x), which we 
shall write as 

Po(x) = Z bp(x)xP with bp(x)= Bp(logx) e C[logx] 

R e ( p ) < 0  

such that:  

(a) There is some integer m > 0 such that  

~ ( x ) - P o ( x ) = O ( [ l o g x l  m) for x ~ 0 .  

(b) Let M be the largest integer < -Re(p0),  so that  

- 1  _< M + Re(po) < O. 

Then both functions x MPo(x) and c2(x ) are in LI(I#I) 
outside a neighborhood of zero. 

From condition (a) and the power series expansion of e its: one ob- 

tains the existence of functions uk(x) such that  

M 

- Z 
k=O 

= O(llogxl m) aS X --~ 0.  

The functions Uk(X) come from the expression 

Z 
k-t-Re(p) <0 

b,,(x)x,'+k 
k! 

M 

(it)k = Z uk(x)(it)k" 
k=0 
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As before, the above requirements impose two asymptotic condi- 
tions on c2, one condition near zero and one condition at infinity, 
and we call such a pair (#, c2) a spec i a l  pai r .  We define the func- 
tional 

w.,.(~) = f ~(x)~(x)- ~k(x)~(k)(O) @(~). 
0 k=O 

Its "Fourier transform" as a distribution is the function W~,~(t) 
such that  

w 2 , , ( t )  - c2(x)e - ' t * -  uk(x) ( - i t )  k d#(x) 

0 k=O 

v ~ W ~ , . ( 2 t )  where gt(x) = e itx. 

The following theorem generalizes Theorem 2.1. 

T h e o r e m  3.1. Assume f and its first M derivatives satisfy the 
three basic conditions, and let (#, c2) be a special pair. Then 

A 

lim / f^(t)W~,~,(t)dt = W~,,~(f-) 
A ----* o c  

- A  

= ~ ( x ) f ( - x ) -  uk(x)(--1)kZ(k)(O) d#(z). 

0 k = 0  

Proof. The proof is essentially identical to the proof of Theorem 
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2.1. For completeness, let us present the details. We have: 

A 

f fa(t)W~,~,(t)dt 
-A 

A dt oo oc[ 
f f(y)~-"y~y f ~,(x)~ -"x 

- -A  --oo 0 

E uk(x)(- i t )  k d#(x) 
k=O 

f f  f(Y) ~9(X)e -i'x) = _ uk(x)(- i t )  k 
- R x R +  

e-itydyd#(x ). 

As in the proof of Theorem 2.1, the assumptions on (#, c2) and f al- 
low us to interchange the integrals which are absolutely convergent. 
By integrating with respect to t, this expression becomes 

f f  f(Y) 
7 r  

R x R +  

~ 9 ( x ) S i n  A(x+y) E Uk(X) dyd#(x). 
k = 0  

Continuing, we have: 

f f  :-(.)~ [:(x) 
R x R +  

sin A(x-y) 
x-y 

M , ] 
dgdp(x) 

k = 0  

= f ,~(X)IA(--x)- ~(x)(--l?f!4~)(0) 
R +  k = 0  

~(x). 

In the above steps we have used the differentiation formula 

A 1/ 
-~ (- i t )ke-i tydt  = 

-A 

and the integration by parts formula 

/ d 
f(-~) dy = (-l?f!~)(o), 

71" 
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which is valid by Lemma 1.1 and the arguments given in the proof 
of Corollary 1.7. 

At this point, we are finished with the proof in the case f = a is 
a function satisfying the conditions of Lemma 1.3, namely aA = a 
for sufficiently large A. For the general case, we write the integral 
as the sum 

/ fA(--x)(~(x)- Po(x))d#(x) 

R +  

M )] 
+ /  fA(-X)Po(x) -- E Uk(X)(--1)k f(Ak)(o dp(x) 

1 k = 0  

1[ ] 
+ / fA(--x)Po(x)- Uk(X)(--1)kf(k)(O) d#(x). 

0 k=O 

The proof of Theorem 3.1 now finishes as did the proof of The- 
orem 2.1. By an appropriate extension of Lemma 1.3, choose 
an a for which O~ A = Ot for sufficiently large A and the num- 

bers a (0 ) , . . .  ,a(M)(o) have been chosen to agree with the first 
M derivatives of f at zero, and set g = f - a. The above integrals 
are linear in the function f,  so proving the theorem for g will ira- 
ply the theorem for f ,  so we work with g. By Theorem 1.2, the 
boundedness of gA (as stated in Lemma 1.1), and assumption (b) 
above, one can apply the dominated convergence theorem to the 
first two integrals above. Using Corollary 1.7 and the definition of 
the function Uk(X), we can write the third integral as 

/ 9A(-x)P0(x)- uk(x)(-1)k~(Ak)(0) d~(x) 
0 k = 0  

1 

/ [ = P0(x) ~A(--x)-- k! (_~)k d~(x). 
0 k = 0  

By Corollary 1.7, the integrand is bounded by Cx M+Re(p~ and 

M + Re(p0) + 5 _> - 1  + 5, 
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SO Cx M+Re(p~ is integrable. The dominated convergence theo- 
rem applies, and the theorem is proved. [] 
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w T h e  P a r s e v a l  F o r m u l a  for Iw(a  + it)  

To conclude our investigation of the regularized harmonic series, 
let us show how Theorem 3.1 applies to prove a Parseval formula 
associated to the regularized harmonic series encountered in w of 
[JoL 92a]. We will assume the notation defined in w 

Recall as in w of [JoL 92a] that the classical Gauss formula 
states that for Re(z) > 0, 

~O 

- F ' / F ( z  + 1) = 1 - e - x  x 

0 

If we let z = a + it  with a > -1 ,  then we get 

(1) 

O0 

0 

where 
~ w a ~  

c2a(x) - 1 - e -~ and d p ( x )  = e - ~ d x .  

One can view (1) as a type of regularized Fourier transform repre- 
sentation of the gamma function. Finally, by the change of vari- 
ables t to t / b  then x to bx for b > 0, (1) becomes 

.t 
- r ' / r ( a  + 1 + 

OO 

[ [ 
J [ 1 - -  e - b x  

1 e_bXdx" 
x 

Next we will present a generalization of (1) making use of results 

in w of [JoL 92a]. That is, associated to any Dirichlet series ( 

satisfying D I R  1 and D I R  2, as defined in w of [JoL 92a], and 

whose associated theta function O(t) satisfies AS 1, AS 2 and 

AS 3, we will realize the regularized harmonic series I w ( z ) ,  whose 
definition will be recalled below, as a regularized Fourier transform. 
Theorem 2.1 applies to the classical Parseval formula involving the 
gamma function, which is used in the Barner-Weil explicit formula. 
In this section we will use our regularized Fourier transform to 
present a general Parseval formula. 
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Recall that the principal part of the theta function is 

P0e(x)= ~ b~(.)x,, 
Re(p) <0 

s o  

O(x) -- Poe(X) = O( l logx l  m) a s  x ---+ 0.  

As in [JoL 92a], let Oz(x) = e-~*O(x). By expanding e -~* in a 
power series, we see that the principal part of Oz(x) is 

(2) Poet(x) = Po [~-=~e(x)] = k! (-z)k" 
R e ( p ) + k < 0  

From w of [JoL 92a] we recall the following result. 

T h e o r e m  4.1. For any fixed complex w with 

Re(w) > max{--Re(Ak)} and 
k 

Re(w) > O, 

the integral 

O 0  

iw(z) = / [e~(~) - Poe~(.)] ~-~*dx 

o 

is convergent rot Re(z) > O. Further, Iw(z) h~s a meromo~phic 
continuation to all z 6 C with simple poles at --Ak + w with 
residue ak. 

R e m a r k .  In the spectral case, when ((s) 
ak E Z>_0, Theorem 4.1 of [JoL 92a] states that 

= ~ a k , ~ k  ~ with 

D'L/DL(z + w ) =  Iw(z) + Sw(z) 

where Sw(z) is a polynomial in z of degree < -Re(p0), with coef- 
ficients whose dependence on L is through bp for Re(p) < 0, and 
whose dependence on w is through dements in C[log w](w). Also, 
in w of [JoL 92a] it is shown that Theorem 4.1 yields the classical 
Gauss formula in the case L = Z>0. 
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To continue, let us work with the principal part of the theta 
function. If we restrict the variable z in (2) to a vertical line by 

letting z = a + it we get 

bp(x)xP+k (--a -- it) k 
PoOz(x) = ~ k! 

Re(p)+k<O 

(3) = } ;  ck(~ ,x) ( - i t )  k, 

k<-Re(po) 

where the coefficients 

c k ( a , z )  = c k ( a , x , ~ )  

depend on the variables a, x and on r through the coefficients of 
With this, the integral in Theorem tP for Re(p) < 0 (see AS 2). 

4.1 can be written as 
(4) 

f ~ ~[ I w ( Z )  = - -  O(x)e -x(a+it) 

o 

ck(a ,z ) ( - - i t )  k e-W*dx. 

k<-Re(po) 

Thus, we obtain: 

C o r o l l a r y  4.2. For any w C C with Re(w) > maxk{--Re()~k)} 

and Re(w) > 0, and any a E R + de/~ne 

duw(x) = ~-wxd~ and Oo(x) = O(x)~ -o~. 

Then 

OO 

Iw(a + it) = / 

o 

Oa(x)e-itx - E ck(a 'x)( - - i t )k  

k<-Re(p0) 

d~w(x). 

This is our desired generalization of (1) and will be referred to as the 
r e g u l a r i z e d  Fou r i e r  t r a n s f o r m  representation of a regularized 
harmonic series. Then Theorem 3.1 yields: 
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T h e o r e m  4.3. Assume f and its t~rst M derivatives satisfy the 
three basic conditions. For any w E C with 

Re(w) > max{-Re(Ak)} and Re(w) > O, 
k 

and any a C R +, define 

d~tw(X ) -~- e-WXdx and Oa(X ) = O(X)e -ax .  

Then 

A 

lim 1 / f^( t)Iw(a 
A--*~ ~/~-~ 

--A 

= / O a ( x ) f ( - x ) -  

o 

+ it)dr 

E ck(a'x)f(k)(O) 
k<-Re(po) 

a w(x). 

In the spectral case when L = Z>0 Theorem 4.3 is the classical 

Barner-Weil formula. 
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