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C’est une chose étrange à la fin que le monde
Un jour je m’en irais sans en avoir tout dit
Ces moments de bonheur ces midis d’incendie
La nuit immense et noire aux déchirures blondes

Rien n’est si précieux peut-être qu’on ne le croit
D’autres viennent Ils ont le cœur que j’ai moi-même
Ils savent toucher l’herbe et dire je vous aime
Et rêver dans le soir où s’éteignent des voix...

Il y aura toujours un couple frémissant
Pour qui ce matin-là sera l’aube première
Il y aura toujours l’eau le vent la lumière
Rien ne passe après tout si ce n’est le passant

C’est une chose au fond que je ne puis comprendre
Cette peur de mourir que les gens ont en eux
Comme si ce n’était pas assez merveilleux
Que le ciel un moment nous ait paru si tendre...

Malgré tout je vous dis que cette vie fut telle
Qu’à qui voudra m’entendre à qui je parle ici
N’ayant plus sur la lèvre un seul mot que merci
Je dirai malgré tout que cette vie fut belle

Louis Aragon (1897–1982), Les Yeux et la Mémoire (1954)
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PART 1

Theory





Chapter One

Introduction

The aim of this book is to describe and explain the beautiful mathematical relation-
ships between matrices, moments, orthogonal polynomials, quadrature rules and
the Lanczos and conjugate gradient algorithms. Even though we recall the math-
ematical basis of the algorithms, this book is computationally oriented. The main
goal is to obtain efficient numerical methods to estimate or in some cases to bound
quantities like I[f ] = uT f(A)v where u and v are given vectors, A is a symmet-
ric nonsingular matrix and f is a smooth function. The main idea developed in
this book is to write I[f ] as a Riemann–Stieltjes integral and then to apply Gauss
quadrature rules to compute estimates or bounds of the integral. The nodes and
weights of these quadrature rules are given by the eigenvalues and eigenvectors
of tridiagonal matrices whose nonzero coefficients describe the three-term recur-
rences satisfied by the orthogonal polynomials associated with the measure of the
Riemann–Stieltjes integral. Beautifully, these orthogonal polynomials can be gen-
erated by the Lanczos algorithm when u = v or by its variants otherwise. All these
topics have a long and rich history starting in the nineteenth century. Our aim is to
bring together results and algorithms from different areas. Results about orthogonal
polynomials and quadrature rules may not be so well known in the matrix compu-
tation community, and conversely the applications in matrix computations that can
be done with orthogonal polynomials and quadrature rules may be not too familiar
to the community of researchers working on these topics. We will see that it can be
very fruitful to mix techniques coming from different areas.

There are many instances in which one would like to compute bilinear forms like
uT f(A)v. A first obvious application is the computation of some elements of the
matrix f(A) when it is not desired or feasible to compute all of f(A). Computation
of quadratic forms rTA−ir for i = 1, 2 is interesting to obtain estimates of error
norms when one has an approximate solution x̃ of a linear system Ax = b and r
is the residual vector b − Ax̃. Bilinear or quadratic forms also arise naturally for
the computation of parameters in some numerical methods for solving least squares
or total least squares problems and also in Tikhonov regularization for solving ill-
posed problems.

The first part of the book provides the necessary mathematical background and
explains the theory while the second part describes applications of these results,
gives implementation details and studies improvements of some of the algorithms
reviewed in the first part. Let us briefly describe the contents of the next chapters.

The second chapter is devoted to orthogonal polynomials, whose history started
in the nineteenth century from the study of continued fractions. There are many
excellent books on this topic, so we just recall the properties that will be useful in
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the other chapters. The important point for our purposes is that orthogonal poly-
nomials satisfy three-term recurrences. We are also interested in some properties
of the zeros of these polynomials. We give some examples of classical orthogo-
nal polynomials like the Legendre, Chebyshev and Laguerre polynomials. Some of
them will be used later in several algorithms and in numerical experiments. We also
introduce a less classical topic, matrix orthogonal polynomials, that is, polynomials
whose coefficients are square matrices. These polynomials satisfy block three-term
recurrences and lead to consideration of block tridiagonal matrices. They will be
useful for computing estimates of off-diagonal elements of functions of matrices.

Since tridiagonal matrices will play a prominent role in the algorithms described
in this book, chapter 3 recalls properties of these matrices. We consider Cholesky-
like factorizations of symmetric tridiagonal matrices and properties of the eigenval-
ues and eigenvectors. We will see that some elements of the inverse of tridiagonal
matrices (particularly the (1, 1) element) come into play for estimating bilinear
forms involving the inverse of A. Hence, we give expressions of elements of the
inverse obtained from Cholesky factorizations and algorithms to cheaply compute
elements of the inverse. Finally, we describe the QD algorithm which was intro-
duced by H. Rutishauser to compute eigenvalues of tridiagonal matrices and some
of its variants. This algorithm will be used to solve inverse problems, namely re-
construction of symmetric tridiagonal matrices from their spectral properties.

Chapter 4 briefly describes the well-known Lanczos and conjugate gradient (CG)
algorithms. The Lanczos algorithm will be used to generate the recurrence coef-
ficients of orthogonal polynomials related to our problem. The conjugate gradient
algorithm is closely linked to Gauss quadrature and we will see that quadrature
rules can be used to obtain bounds or estimates of norms of the error during CG it-
erations when solving symmetric positive definite linear systems. We also describe
the nonsymmetric Lanczos and the block Lanczos algorithms which will be useful
to compute estimates of bilinear forms uT f(A)v when u �= v. Another topic of
interest in this chapter is the Golub–Kahan bidiagonalization algorithms that are
useful when solving least squares problems.

Chapter 5 deals with the computation of the tridiagonal matrices containing
the coefficients of the three-term recurrences satisfied by orthogonal polynomials.
These matrices are called Jacobi matrices. There are many circumstances in which
we have to compute the Jacobi matrices either from knowledge of the measure of
a Riemann–Stieltjes integral or from the moments related to the measure. It is also
important to be able to solve the inverse problem of reconstructing the Jacobi ma-
trices from the nodes and weights of a quadrature formula which defines a discrete
measure. We first describe the Stieltjes procedure, which dates back to the nine-
teenth century. It computes the coefficients from the measure which, in most cases,
has to be approximated by a discrete measure. This algorithm can be considered as
a predecessor of the Lanczos algorithm although it was not constructed to compute
eigenvalues. Unfortunately there are cases for which the Stieltjes algorithm gives
poor results due to a sensitivity to roundoff errors. Then we show how the nonzero
entries of the Jacobi matrices are related to determinants of Hankel matrices con-
structed from the moments. These formulas are of little computational interest even
though they have been used in some algorithms. More interesting is the modified
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Chebyshev algorithm, which uses so-called modified moments to compute the Ja-
cobi matrix. These modified moments are obtained from some known auxiliary
orthogonal polynomials. The next section consider several algorithms for solving
the problem of constructing the Jacobi matrix from the nodes and weights of a dis-
crete measure. They are the eigenvalues and squares of the first elements of the
eigenvectors. Hence, this is in fact an inverse eigenvalue problem of reconstructing
a tridiagonal matrix from spectral information. Finally, we describe modification
algorithms which compute the Jacobi matrices for measures that are given by a
measure for which we know the coefficients of the three-term recurrence multi-
plied or divided by a polynomial.

The subject of chapter 6 is Gauss quadrature rules to obtain approximations or
bounds for Riemann–Stieltjes integrals. The nodes and weights of these rules are
related to the orthogonal polynomials associated with the measure and they can be
computed using the eigenvalues and eigenvectors of the Jacobi matrix describing
the three-term recurrence. With N nodes, the Gauss rule is exact for polynomi-
als of order 2N − 1. The Jacobi matrix has to be modified if one wants to fix a
node at one end or at both ends of the integration interval. This gives respectively
the Gauss–Radau and Gauss–Lobatto quadrature rules. We also consider the anti-
Gauss quadrature rule devised by D. P. Laurie to obtain a rule whose error is the
opposite of the error of the Gauss rule. This is useful to estimate the error of the
Gauss quadrature rule. The Gauss–Kronrod quadrature rule uses 2N + 1 nodes of
which N are the Gauss rule nodes to obtain a rule that is exact for polynomials of
degree 3N + 1. It can also be used to estimate errors in Gauss rules. Then we turn
to topics that may be less familiar to the reader. The first one is the nonsymmetric
Gauss quadrature rule which uses two sets of orthogonal polynomials. The second
one is block Gauss quadrature rules to handle the case where the measure is a sym-
metric matrix. This involves the matrix orthogonal polynomials that were studied
in chapter 2.

Chapter 7 is, in a sense, a summary of the previous chapters. It shows how the
theoretical results and the techniques presented before allow one to obtain bounds
and estimates of bilinear forms uT f(A)v when A is a symmetric matrix and f a
smooth function. First, we consider the case of a quadratic form with u = v. To
solve this problem we use the Lanczos algorithm which provides a Jacobi matrix.
Using the eigenvalues and eigenvectors of this matrix (eventually suitably modi-
fied) we can compute the nodes and weights of Gauss quadrature rules. This gives
estimates or bounds (if the signs of the derivatives of f are constant over the interval
of integration) of the quadratic form. When u �= v we use either the nonsymmet-
ric Lanczos algorithm or the block Lanczos algorithm. With the former we can in
some cases obtain bounds for the bilinear form whereas with the latter we obtain
only estimates. However, the block Lanczos algorithm has the advantage of deliver-
ing estimates of several elements of f(A) instead of just one for the nonsymmetric
Lanczos algorithm.

Chapter 8 briefly describes extensions of the techniques summarized in chapter 7
to the case of a nonsymmetric matrix A. The biconjugate gradient and the Arnoldi
algorithms have been used to compute estimates of uT f(A)v or uHf(A)v in the
complex case. Some justifications of this can be obtained through the use of Gauss
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quadrature in the complex plane [293] or, more interestingly, the Vorobyev moment
problem [316].

The first part of the book is ended by chapter 9 which is devoted to solving
secular equations. We give some examples of problems for which it is useful to
solve such equations. One example is computing the eigenvalues of a matrix A
perturbed by a rank-one matrix ccT where c is a given vector. To compute the
eigenvalues µ we have to solve the equation 1 + cT (A − µI)−1c = 0. Note that
this equation involves a quadratic form. Using the spectral decomposition of A,
this problem can be reduced to solving a secular equation. We review different
numerical techniques to solve such equations. Most of them are based on use of
rational interpolants.

The second part of the book describes applications and gives numerical examples
of the algorithms and techniques developed in the first nine chapters.

Even though this is not the main topic of the book, chapter 10 gives examples
of computation of Gauss quadrature rules. It amounts to computing eigenvalues
and the first components of the eigenvectors. We compare the Golub and Welsch
algorithm with other implementations of the QR or the QL algorithms. We also
show some examples of computation of integrals and describe experiments with
modification algorithms where one computes the Jacobi matrix associated with a
known measure multiplied or divided by a polynomial.

Chapter 11 is concerned with the computation of bounds for elements of f(A).
The functions f we are interested in as examples are A−1, exp(A) and

√
A. We

start by giving analytical lower and upper bounds for elements of the inverse. This
is obtained by doing “by hand” one or two iterations of the Lanczos algorithm.
These results are then extended to any function f . We also show how to compute
estimates of the trace of the inverse and of the determinant of A, a problem which
does not exactly fit in the same framework. These algorithms are important for
some applications in physics. Several numerical examples are provided to show the
efficiency of our techniques for computing bounds and to analyze their accuracy.

Chapter 12 studies the close relationships of the conjugate gradient algorithm
with Gauss quadrature. In fact, the square of the A-norm of the error at iteration
k is the remainder of a k-point Gauss quadrature rule for computing (r0)TA−1r0

where r0 is the initial residual. Bounds of the A-norm of the error can be computed
during CG iterations by exploiting this relationship. If one is interested in the l2
norm of the error, it can also be estimated during the CG iterations. This leads to
the definition of reliable stopping criteria for the CG algorithm. These estimates
have been used when solving finite element problems. One can define a stopping
criterion such that the norm of the error with the solution of the continuous prob-
lem is at the level one can expect for a given mesh size. Numerous examples of
computation of bounds of error norms are provided.

In chapter 13 we consider the least squares fit of some given data by polynomials.
The solution to this problem can be expressed using the orthogonal polynomials re-
lated to the discrete inner product defined by the data. We are particularly interested
in the updating and downdating operations where one adds or deletes data from the
sample. This amounts to computing new Jacobi matrices from known ones. We re-
view algorithms using orthogonal transformations to solve these problems, which
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are also linked to inverse eigenvalue problems. We also consider the problem of
computing the backward error of a least squares solution. Use of the exact expres-
sion of the backward error is difficult because it amounts to computing the smallest
eigenvalue of a rank-one modification of a singular matrix. However one can com-
pute an approximation of the backward error with Gauss quadrature.

Given a matrix A and a right-hand side c, the method of Total Least Squares
(TLS) looks for the solution of (A+ E)x = c+ r where E and r are the smallest
perturbations in the Frobenius norm such that c + r is in the range of A + E. To
compute the solution we need the smallest singular value of the matrix (A c ). It
is given as the solution of a secular equation. In chapter 14, approximations of this
solution are obtained by using the Golub–Kahan bidiagonalization algorithm and
Gauss quadrature.

Finally, chapter 15 considers the determination of the Tikhonov regularization
parameter for discrete ill-posed problems. There are many criteria which have been
devised to define good parameters. We mainly study generalized cross-validation
(GCV) and the L-curve criteria. The computations of the “optimal” parameters for
these methods involve the computation of quadratic forms which can be approx-
imated using Gauss quadrature rules. We describe improvements of algorithms
which have been proposed in the literature and we provide numerical experiments
to compare the different criteria and the algorithms implementing them.

This book should be useful to researchers in numerical linear algebra and more
generally to people interested in matrix computations. It can be of interest too to
scientists and engineers solving problems in which computation of bilinear forms
arises naturally.



Chapter Two

Orthogonal Polynomials

In this chapter, we briefly recall the properties of orthogonal polynomials which
will be needed in the next chapters. We are mainly interested in polynomials of a
real variable defined in an interval of the real line. For more details, see the book
by Szegö [323] or the book by Chihara [64], and also the paper [65] for theoretical
results on classical orthogonal polynomials and the nice book by Gautschi [131]
for the computational aspects.

2.1 Definition of Orthogonal Polynomials

We will define orthogonal polynomials in either a finite or an infinite interval [a, b]
of the real line. We first have to define orthogonality. For our purposes this is done
through the definition of an inner product for functions of a real variable by using
Riemann–Stieltjes integrals.

DEFINITION 2.1 A Riemann–Stieltjes integral of a real valued continuous func-
tion f of a real variable with respect to a real function α is denoted by∫ b

a

f(λ) dα(λ), (2.1)

and is defined to be the limit (if it exists), as the mesh size of the partition π of the
interval [a, b] goes to zero, of the sums∑

{λi}∈π
f(ci)(α(λi+1)− α(λi)),

where ci ∈ [λi, λi+1].

Note that we obtain a Riemann integral if dα(λ) = dλ. If α is continuously
differentiable, the integral (2.1) is equal to∫ b

a

f(λ)α′(λ) dλ.

See for instance Riesz and Nagy [283]. But this is not always the case since α may
have jumps or may have a zero derivative almost everywhere. Then the Riemann–
Stieltjes integral (2.1) cannot be reduced to a Riemann integral. However, in many
cases Riemann–Stieltjes integrals are directly written as∫ b

a

f(λ)w(λ)dλ,
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where w is called the weight function.
The simplest existence theorem for the type of integral (2.1) says that if f is con-

tinuous and α is of bounded variation on [a, b] then the integral exists. The function
α is of bounded variation if it is the difference of two nondecreasing functions. In
particular, the integral exists if f is continuous and α is nondecreasing.

Let α be a nondecreasing function on the interval (a, b) having finite limits at
±∞ if a = −∞ and/or b = +∞ and infinitely many points of increase.

DEFINITION 2.2 The numbers

µi =
∫ b

a

λi dα(λ), i = 0, 1, . . . (2.2)

are called the moments related to the measure α.

This name was chosen by Stieltjes because of analogy with some definitions in
mechanical problems. To be able to use the Riemann–Stieltjes integral for poly-
nomials we assume that all the moments are finite. Let us define an inner product
given by a Riemann–Stieltjes integral (2.1).

DEFINITION 2.3 Let P be the space of real polynomials. We define an inner prod-
uct (related to the measure α) of two polynomials p and q ∈ P as

〈p, q〉 =
∫ b

a

p(λ)q(λ) dα(λ). (2.3)

The norm of p is defined as

‖p‖α =
(∫ b

a

p(λ)2 dα(λ)

) 1
2

. (2.4)

Note that with our hypothesis for the moments the integral (2.3) exists. When
it is necessary to refer to the measure α, we will also denote the inner product as
〈·, ·〉α. We will consider also discrete inner products as

〈p, q〉 =
m∑
j=1

p(tj)q(tj)w2
j . (2.5)

The values tj are referred to as points or nodes and the values w2
j are the weights.

Several times in this book we will use the fact that the sum in equation (2.5) can
be seen as an approximation of the integral (2.3). Conversely, it can be written as
a Riemann–Stieltjes integral for a measure α which is piecewise constant and has
jumps at the nodes tj (that we assume to be distinct for simplicity):

α(λ) =



0, if λ < t1,∑i
j=1[wj ]

2, if ti ≤ λ < ti+1, i = 1, . . . ,m− 1,∑m
j=1[wj ]

2, if tm ≤ λ;

see Atkinson [13], Dahlquist, Eisenstat and Golub [75] and Dahlquist, Golub and
Nash [76]. There are different ways to normalize polynomials. A polynomial p
of exact degree k is said to be monic if the coefficient of the monomial of highest
degree is 1, that is, it is defined as p(λ) = λk + ck−1λ

k−1 + . . . .
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DEFINITION 2.4 The polynomials p and q are said to be orthogonal (with respect
to inner products (2.3) or (2.5)) if 〈p, q〉 = 0. The polynomials p in a set of polyno-
mials are orthonormal if they are mutually orthogonal and if 〈p, p〉 = 1. Polyno-
mials in a set are said to be monic orthogonal polynomials if they are orthogonal,
monic and their norms are strictly positive.

Sometimes, polynomials are also normalized by fixing their value at 0, for exam-
ple p(0) = 1. It is not so obvious to know when there exist orthogonal polynomials
for a given measure and the corresponding inner product. The inner product 〈·, ·〉α
is said to be positive definite if ‖p‖α > 0 for all nonzero p in P . A necessary and
sufficient condition for having a positive definite inner product is that the determi-
nants of the Hankel moment matrices are positive,

det




µ0 µ1 · · · µk−1

µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2


 > 0, k = 1, 2, . . . ,

where µi are the moments of definition (2.2). This leads to a sufficient condition
for the existence of the orthogonal polynomials.

THEOREM 2.5 If the inner product 〈·, ·〉α is positive definite on P , there exists a
unique infinite sequence of monic orthogonal polynomials related to the measure
α.

Proof. See Gautschi [131]. ✷

Orthogonal polynomials have interesting minimization properties for the l2 norm.

THEOREM 2.6 If qk is a monic polynomial of degree k, then

min
qk

∫ b

a

q2k(λ) dα(λ),

is attained if and only if qk is a constant times the orthogonal polynomial pk related
to α.

Proof. See Szegö [323]. ✷

We have defined orthogonality relative to an inner product given by a Riemann–
Stieltjes integral but, more generally, orthogonal polynomials can be defined rela-
tive to a linear functional L such that L(λk) = µk. Two polynomials p and q are
said to be orthogonal if L(pq) = 0. One obtains the same kind of existence result
as in theorem 2.5; see the book by Brezinski [36].

2.2 Three-Term Recurrences

For our purposes in this book, the most important property of orthogonal polyno-
mials is that they satisfy a three-term recurrence relation. The main ingredient to
obtain this result is to have the following property for the inner product:

〈λp, q〉 = 〈p, λq〉.
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This is obviously satisfied for the inner product defined in equation (2.3) using the
Riemann–Stieltjes integral. Let us first consider monic orthogonal polynomials pk
of degree k.

THEOREM 2.7 For monic orthogonal polynomials, there exist sequences of coef-
ficients αk, k = 1, 2, . . . and γk, k = 1, 2, . . . such that

pk+1(λ) = (λ− αk+1)pk(λ)− γkpk−1(λ), k = 0, 1, . . . (2.6)

p−1(λ) ≡ 0, p0(λ) ≡ 1.

where

αk+1 =
〈λpk, pk〉
〈pk, pk〉 , k = 0, 1, . . . ,

γk =
〈pk, pk〉

〈pk−1, pk−1〉 , k = 1, 2, . . . .

Proof. Notice that γ0 does not need to be defined since p−1 ≡ 0. We follow
the proof in Gautschi [131]. It is easy to prove that a set of monic orthogonal
polynomials pj is linearly independent and any polynomial p of degree k can be
written as

p =
k∑
j=0

ωjpj ,

for some real numbers ωj . Since we consider monic polynomials, the polynomial
pk+1 − λpk is of degree ≤ k and can be written as a linear combination of the
orthogonal polynomials pj , j = 0, . . . , k. Let us write this as

pk+1 − λpk = −αk+1pk − γkpk−1 +
k−2∑
j=0

δjpj , (2.7)

where the coefficients δj are real numbers. We would like to prove that δj =
0, j = 0, . . . , k − 2. Taking the inner product of equation (2.7) with pk and using
orthogonality, we obtain

〈λpk, pk〉 = αk+1〈pk, pk〉.
Since 〈pk, pk〉 > 0, this gives the value of αk+1. Multiplying equation (2.7) by
pk−1, we have

〈λpk, pk−1〉 = γk〈pk−1, pk−1〉.
But, using equation (2.7) for the degree k − 1,

〈λpk, pk−1〉 = 〈pk, λpk−1〉 = 〈pk, pk〉.
This gives the expression of γk. For the other terms, we multiply equation (2.7)
with pj , j < k − 1 obtaining

〈λpk, pj〉 = δj〈pj , pj〉.
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The left-hand side of the last equation vanishes. For this, the property 〈λpk, pj〉 =
〈pk, λpj〉 is crucial. Since λpj is of degree< k, the left-hand side is 0 and it implies
δj = 0, j = 0, . . . , k − 2. ✷

We remark that the coefficients γk are strictly positive. There is a converse to
theorem 2.7. It is is attributed to J. Favard [104] whose paper was published in
1935, although this result had also been obtained by J. Shohat [298] at about the
same time and it was known earlier to Stieltjes [313]; see [230]. Without all the
technical details, the result of Favard is the following.

THEOREM 2.8 If a sequence of monic orthogonal polynomials pk, k = 0, 1, . . .,
satisfies a three-term recurrence relation such as equation (2.6) with real coeffi-
cients and γk > 0, then there exists a positive measure α such that the sequence
pk is orthogonal with respect to an inner product defined by a Riemann–Stieltjes
integral for the measure α.

Proof. For a proof in a more general setting, see Marcellán and Alvarez–Nodarse
[230]. ✷

Moreover, there are additional conditions on the coefficients of recurrence (2.6)
which implies that the support of the measure is in [0,∞) or in a bounded interval.

Considering the recurrences for orthonormal polynomials, we have the following
result.

THEOREM 2.9 For orthonormal polynomials, there exist sequences of coefficients
αk, k = 1, 2, . . . and βk, k = 1, 2, . . . such that√

βk+1pk+1(λ) = (λ− αk+1)pk(λ)−
√
βkpk−1(λ), k = 0, 1, . . . , (2.8)

p−1(λ) ≡ 0, p0(λ) ≡ 1/
√
β0, β0 =

∫ b

a

dα,

where

αk+1 = 〈λpk, pk〉, k = 0, 1, . . .

and βk is computed such that ‖pk‖α = 1.

Proof. The proof is basically the same as for theorem 2.7. ✷

Generally to avoid the square roots we will directly use ηk =
√
βk in the three-

term recurrence. The square roots naturally arise from the relation between monic
and orthonormal polynomials. If we assume that we have a system of monic poly-
nomials pk satisfying a three-term recurrence (2.6), then we can obtain orthonormal
polynomials p̂k by normalization

p̂k(λ) =
pk(λ)

〈pk, pk〉1/2 .

Using equation (2.6) we have

‖pk+1‖αp̂k+1 =
(
λ‖pk‖α − 〈λpk, pk〉

‖pk‖α

)
p̂k − ‖pk‖2

α

‖pk−1‖α p̂k−1.
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After some manipulations we obtain
‖pk+1‖α
‖pk‖α p̂k+1 = (λ− 〈λp̂k, p̂k〉)p̂k − ‖pk‖α

‖pk−1‖α p̂k−1.

We note that

〈λp̂k, p̂k〉 = 〈λpk, pk〉
‖pk‖2

α

,

and √
βk+1 =

‖pk+1‖α
‖pk‖α .

Therefore the coefficients αk are the same and βk = γk. If we have the coefficients
of monic orthogonal polynomials we just have to take the square root of γk to obtain
the coefficients of the corresponding orthonormal polynomials.

If the orthonormal polynomials in theorem 2.9 exist for all k, there is an infinite
symmetric tridiagonal matrix J∞ associated with them,

J∞ =




α1

√
β1√

β1 α2

√
β2√

β2 α3

√
β3

. . . . . . . . .


 .

Since it has positive subdiagonal elements, the matrix J∞ is called an infinite Jacobi
matrix. Its leading principal submatrix of order k is denoted as Jk.

THEOREM 2.10 The Jacobi matrix Jk of dimension k related to α is uniquely
determined by the first 2k moments of α.

Proof. See Elhay, Golub and Kautsky [101]. Their proof relies on the fact (as we
will see when studying quadrature rules) that the first 2k moments uniquely define
a k-point Gauss quadrature. Since the polynomials of degree less than or equal to
2k − 1 orthogonal with respect to the measure α are also orthogonal with respect
to the discrete measure given by this quadrature rule, we obtain the result. ✷

Note that a given Jacobi matrix of finite size k corresponds to an infinite set
of normalized weight functions (with µ0 = 1) which all have the same first 2k
moments. On this topic see also Kautsky [199].

Using the three-term recurrence relation satisfied by orthogonal polynomials one
can also prove the following interesting and useful result. This is known as a
Christoffel–Darboux formula.

THEOREM 2.11 Let pk, k = 0, 1, . . . be orthonormal polynomials, then
k∑
i=0

pi(λ)pi(µ) =
√
βk+1

pk+1(λ)pk(µ)− pk(λ)pk+1(µ)
λ− µ

, if λ �= µ, (2.9)

and
k∑
i=0

p2
i (λ) =

√
βk+1[p′k+1(λ)pk(λ)− p′k(λ)pk+1(λ)].
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Proof. Multiply the relation (2.8) by pk(µ) and subtract this relation from a similar
one with λ and µ interchanged. The other relation is obtained by letting λ→ µ. ✷

COROLLARY 2.12 For monic orthogonal polynomials we have

k∑
i=0

γkγk−1 · · · γi+1pi(λ)pi(µ) =
pk+1(λ)pk(µ)− pk(λ)pk+1(µ)

λ− µ
, if λ �= µ.

On the Christoffel–Darboux formula, see also Brezinski [35].

2.3 Properties of Zeros

Let us put the values at λ of the first k orthonormal polynomials in a vector and
denote

Pk(λ) = ( p0(λ) p1(λ) . . . pk−1(λ) )
T
.

Then, in matrix form, the three-term recurrence is written as

λPk = JkPk + ηkpk(λ)ek, (2.10)

where Jk is the Jacobi matrix of order k with subdiagonal elements ηi and ek is
the last column of the identity matrix of order k. This leads to the fundamental
following result.

THEOREM 2.13 The zeros θ(k)
j of the orthonormal polynomial pk are the eigen-

values of the Jacobi matrix Jk.

Proof. If θ is a zero of pk, from equation (2.10) we have

θPk(θ) = JkPk(θ).

This shows that θ is an eigenvalue of Jk and Pk(θ) is a corresponding (unnormal-
ized) eigenvector. ✷

The matrix Jk being a symmetric tridiagonal matrix, its eigenvalues (the zeros
of the orthogonal polynomial pk) are real and distinct as we will see in chapter 3.
Moreover, we have the following result about location of the zeros; see Szegö [323].

THEOREM 2.14 The zeros of the orthogonal polynomials pk associated with the
measure α on [a, b] are real, distinct and located in the interior of [a, b].

Proof. The first two assertions are proved as a consequence of theorem 2.13. The
statement concerning the location follows from the minimization property in theo-
rem 2.6. If there is a zero outside the interval [a, b], then the value of the Riemann–
Stieltjes integral can be decreased by moving this zero. But this is not possible
since pk, properly normalized, gives the minimum of the integral. ✷
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2.4 Historical Remarks

In 1894-1895, Stieltjes published a seminal paper: “Recherches sur les fractions
continues” [313]. He proposed and solved the following problem.

Find a bounded nondecreasing function α in the interval [0,∞) such that its
moments have a prescribed set of values µn,∫ ∞

0

λn dα(λ) = µn, n = 0, 1, 2, . . . .

The name “problem of moments” was chosen by Stieltjes in analogy with mechani-
cal problems. In fact dα(λ) can be considered as a mass distributed over [λ, λ+dλ].
Then the integral ∫ x

0

dα(λ)

represents the mass over the segment [0, x]. This is why α is often called a distri-
bution function. The integrals∫ ∞

0

λ dα(λ),
∫ ∞

0

λ2 dα(λ)

represent the first statical moment and the moment of inertia (with respect to 0) of
the total mass distributed over [0,∞).

Stieltjes showed that a necessary and sufficient condition to have a solution is
the positiveness of certain Hankel determinants given by the moments µn. The
solution may be unique or there can be infinitely many solutions.

Prior to Stieltjes, Chebyshev in a series of papers started in 1855 studied related
problems. He was interested in how far a sequence of given moments such that∫ ∞

−∞
λn f(λ) dλ = µn, n = 0, 1, 2, . . . ,

determine the function f . A. Markov, a student of Chebyshev, continued his work.
Heine (1861, 1878, 1881) also worked on related problems before Stieltjes. H. Ham-
burger considered the moment problem on the whole real axis (1920, 1921). He
gave a sufficient and necessary condition for the existence of a solution. This is
again given by Hankel determinants. Hausdorff (1923) gave a criterion for the
moment problem to have a solution in a finite interval.

Many of these early papers used the theory of continued fractions to solve mo-
ment problems. The study of the polynomials which are the denominators of con-
vergents (that is truncated sums) of continued fractions was at the beginning of the
modern theory of orthogonal polynomials. More recent papers studied the moment
problem using the tools of functional analysis. For details on the moment problem,
see the books by Shohat and Tamarkin [299] and Akhiezer [4].

2.5 Examples of Orthogonal Polynomials

There are many cases for which the coefficients of the three-term recurrence are
explicitly known. Let us consider some classical examples where the measure is
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defined through a weight function w by dα(λ) = w(λ) dλ. Let

a = −1, b = 1, w(λ) = (1− λ)δ(1 + λ)β , δ, β > −1.
The corresponding orthogonal polynomials are known as Jacobi polynomials. Some
special cases of interest for different choices of the exponents δ and β are described
in the next subsections.

2.5.1 Chebyshev Polynomials of the First Kind
These polynomials, denoted as Ck (or sometimes Tk depending on the spelling
used, Chebyshev or Tchebicheff; see Davis [77]), are obtained by choosing δ =
β = −1/2. They are defined for |λ| ≤ 1 as

Ck(λ) = cos(k arccosλ).

It is not immediately obvious that this defines polynomials, but using trigonometric
identities one can see that the functions Ck satisfy a three-term recurrence,

C0(λ) ≡ 1, C1(λ) ≡ λ, Ck+1(λ) = 2λCk(λ)− Ck−1(λ).

Hence, they are indeed polynomials. The corresponding Jacobi matrix Jk is the
tridiagonal matrix ( 1/2 0 1/2 ) of order k with constant diagonals except for
the first row which has 0 and 1 in positions (1, 1) and (1, 2). Its eigenvalues (and
consequently the zeros of Ck) are

λj+1 = cos
(
2j + 1
k

π

2

)
, j = 0, 1, . . . k − 1.

The polynomial Ck has k + 1 extremas in [−1, 1],

λ′j = cos
(
jπ

k

)
, j = 0, 1, . . . , k

and Ck(λ′j) = (−1)j . The polynomials Ck, k = 1, . . . , 7 are displayed in fig-
ure 2.1. We see that their absolute values grow very fast outside [−1, 1]. On [−1, 1]
the polynomials oscillate between −1 and 1.

For k ≥ 1, Ck has a leading coefficient 2k−1. The inner product related to the
measure α(λ) = (1− λ2)−1/2 is such that

〈Ci, Cj〉α =
{ 0, i �= j,
π
2 , i = j �= 0,
π, i = j = 0.

So these polynomials are neither monic nor orthonormal. But, of course, they
can be normalized, and one of the most interesting properties of the Chebyshev
polynomials is the following (see for instance Dahlquist and Björck [73] or the
recent book [74]).

THEOREM 2.15 For all monic polynomials of degree k, Ck/2k−1 has the smallest
maximum norm, equal to 1/2k−1.
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Figure 2.1 Chebyshev polynomials (first kind) Ck, k = 1, . . . , 7 on [−1.1, 1.1]

Let π1
n = { polynomials of degree n in λ whose value is 1 for λ = 0 }. Cheby-

shev polynomials provide the solution of the minimization problem

min
qn∈π1

n

max
λ∈[a,b]

|qn(λ)|.

The solution is written as

min
qn∈π1

n

max
λ∈[a,b]

|qn(λ)| = max
λ∈[a,b]

∣∣∣∣∣∣
Cn

(
2λ−(a+b)
b−a

)
Cn

(
a+b
b−a

)
∣∣∣∣∣∣ =

∣∣∣∣∣∣
1

Cn

(
a+b
b−a

)
∣∣∣∣∣∣ .

2.5.2 Chebyshev Polynomials of the Second Kind
In this case we have δ = β = 1/2 and the polynomials Uk are defined as

Uk(λ) =
sin(k + 1)θ

sin θ
, λ = cos θ.

They satisfy the same three-term recurrence as the Chebyshev polynomials of the
first kind but with initial conditions U0 ≡ 1, U1 ≡ 2λ. Of all monic polynomials
qk, 2−kUk gives the smallest L1 norm,

‖qk‖1 =
∫ 1

−1

|qk(λ)| dλ.

The first polynomials Uk are displayed in figure 2.2.
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Figure 2.2 Chebyshev polynomials (second kind) Uk, k = 1, . . . , 7 on [−1.1, 1.1]

2.5.3 Legendre Polynomials
The choice δ = β = 0 (that is, a weight function equal to 1) gives the Legendre
polynomials Pk. The three-term recurrence is

(k + 1)Pk+1(λ) = (2k + 1)λPk(λ)− kPk−1(λ), P0(λ) ≡ 1, P1(λ) ≡ λ.

The Legendre polynomial Pk is bounded by 1 on [−1, 1]. The first polynomials Pk
are displayed in figure 2.3.

2.5.4 Laguerre and Hermite Polynomials
Other classical examples on different intervals are the Laguerre and Hermite poly-
nomials. For Laguerre polynomials Lk, the interval is [0,∞) and the weight func-
tion is e−λ. The recurrence relation is

(k + 1)Lk+1 = (2k + 1− λ)Lk − kLk−1, L0 ≡ 1, L1 ≡ 1− λ.

The first polynomials Lk are displayed in figure 2.4. We will also consider as
examples generalized Laguerre polynomials for which the interval is the same and
the weight function is e−λλω.

For Hermite polynomials Hk, the interval is (−∞,∞) and the weight function
is e−λ

2
. The recurrence relation is

Hk+1 = 2λHk − 2kHk−1, H0 ≡ 1, H1 ≡ 2λ.

The first polynomials Hk are displayed in figure 2.5.
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Figure 2.3 Legendre polynomials Pk, k = 1, . . . , 7 on [−1.1, 1.1]
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Figure 2.4 Laguerre polynomials Lk, k = 1, . . . , 7 on [−2, 20]
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Figure 2.5 Hermite polynomialsHk, k = 1, . . . , 7 on [−10, 10]

Other interesting polynomials are the Gegenbauer and Meixner–Pollaczek poly-
nomials; see Szegö [323] or Gautschi [131]. Less classical examples, in particular
polynomials of a discrete variable, are described in Gautschi [131].

2.6 Variable-Signed Weight Functions

So far we have assumed that the measure is positive. What happens if the measure
is defined by a weight function which changes sign in the interval [a, b]? This prob-
lem was considered by G. W. Struble [321]. Regarding existence of the orthogonal
polynomials related to such a measure, the result is the following.

THEOREM 2.16 Assume that all the moments exist and are finite. For any k > 0,
there exists a polynomial pk of degree at most k such that pk is orthogonal to all
polynomials of degree ≤ k − 1 with respect to w.

The important words in this result are “of degree at most k”. In some cases the
polynomial pk can be of degree less than k. If C(k) denotes the set of polynomials
of degree ≤ k orthogonal to all polynomials of degree ≤ k − 1, C(k) is called
degenerate if it contains polynomials of degree less than k. If C(k) is nondegener-
ate it contains one unique polynomial (up to a multiplicative constant). If C(k) is
nondegenerate, we may consider the next nondegenerate set C(k+n), n > 0. The
following result from [321] characterizes the sets in between.
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THEOREM 2.17 LetC(k) be nondegenerate with a polynomial pk. AssumeC(k+
n), n > 0 is the next nondegenerate set. Then pk is the unique (up to a multiplica-
tive constant) polynomial of lowest degree in C(k +m), m = 1, . . . , n− 1.

Each polynomial in C(k+m), m = 1, . . . , n− 1 is divisible by pk. If C(k+1)
is degenerate, pk is orthogonal to itself. Notice that this is not possible when the
weight function is positive.

If one considers the set of polynomials pk of degree dk belonging to the setsC(k)
which are nondegenerate, they satisfy a three-term recurrence but with different
coefficients as in the positive case. We have for k = 2, 3, . . . ,

pk(λ) =


αkλdk−dk−1 +

dk−dk−1−1∑
i=0

βk,iλ
i


 pk−1(λ)− γk−1pk−2(λ) (2.11)

and

p0(λ) ≡ 1, p1(λ) =

(
α1λ

d1 +
d1−1∑
i=0

β1,iλ
i

)
p0(λ).

The coefficient of pk−1 contains powers of λ depending on the difference of the
degrees of the polynomials in the nondegenerate cases. The coefficients αk and
γk−1 have to be nonzero. Reciprocally, given the sequence of degrees and the co-
efficients such that αk and γk−1 are different from zero, Struble [321] constructed
a weight function w for which the orthogonal polynomials satisfy equation (2.11).
On degenerate orthogonal polynomials and the longer recurrence relation they sat-
isfy, see also Draux [90].

2.7 Matrix Orthogonal Polynomials

In the previous sections, the coefficients of the polynomials were real numbers. We
would like to generalize this to have matrices as coefficients. There are several
ways to define orthogonal polynomials whose coefficients are square matrices. Or-
thogonal matrix polynomials on the real line were considered by M. G. Krein [208]
a long time ago. Here, we follow the development of [149] published in 1994; see
also [7], [135], [305], [306], [304], [231], [80], [81] and [82]. The coefficients to
be considered are 2×2matrices since this is sufficient for the applications we have
in mind. But these results can be easily generalized to square matrices of any order.

DEFINITION 2.18 For λ real, a matrix polynomial pi(λ) which is, in our case, a
2× 2 matrix is defined as

pi(λ) =
i∑
j=0

λjC
(i)
j ,

where the coefficients C(i)
j are given 2× 2 real matrices. If the leading coefficient

is the identity matrix, the matrix polynomial is said to be monic.
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The measure α(λ) is now a matrix of order 2 that we suppose to be symmetric
and positive semidefinite. Moreover, we assume that if λ1 < λ2, then α(λ2) −
α(λ1) is positive semidefinite. The integral

∫ b
a
f(λ)dα(λ) is a 2 × 2 symmetric

matrix. We also assume that the (matrix) moments

Mk =
∫ b

a

λk dα(λ) (2.12)

exist for all k.
The “inner product” of two matrix polynomials p and q is defined as

〈p, q〉 =
∫ b

a

p(λ) dα(λ)q(λ)T . (2.13)

Note that this defines a matrix and we have to be careful about the order for the ma-
trix multiplications under the integral sign. Two matrix polynomials in a sequence
pk, k = 0, 1, . . . are said to be orthonormal if

〈pi, pj〉 = δi,jI2, (2.14)

where δi,j is the Kronecker symbol and I2 the identity matrix of order 2.

THEOREM 2.19 Sequences of matrix orthogonal polynomials satisfy a block three-
term recurrence,

pj(λ)Γj = λpj−1(λ)− pj−1(λ)Ωj − pj−2(λ)ΓTj−1, (2.15)

p0(λ) ≡ I2, p−1(λ) ≡ 0,

where Γj , Ωj are 2× 2 matrices and the matrices Ωj are symmetric.

Proof. The proof is essentially the same as in the scalar case. ✷

The block three-term recurrence can be written in matrix form as

λ[p0(λ), . . . , pk−1(λ)] = [p0(λ), . . . , pk−1(λ)]Jk + [0, . . . , 0, pk(λ)Γk], (2.16)

where

Jk =



Ω1 ΓT1
Γ1 Ω2 ΓT2

. . . . . . . . .
Γk−2 Ωk−1 ΓTk−1

Γk−1 Ωk




is a block tridiagonal matrix of order 2k with 2×2 blocks. Let us put the k first ma-
trix polynomials at λ in P (λ) = [p0(λ), . . . , pk−1(λ)]T . Because of the symmetry
of Jk, by transposing equation (2.16) we have

JkP (λ) = λP (λ)− [0, . . . , 0, pk(λ)Γk]T .

We note that if θr is an eigenvalue of Jk and if we choose u = ur to be a vector
of length 2 whose components are the first two components of the corresponding
eigenvector, then P (θr)u is this eigenvector (because of the relations that are satis-
fied) and if Γk is nonsingular, pTk (θr)u = 0.
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There is also a matrix analog of the Favard theorem. If a sequence of matrix
polynomials satisfies a three-term block recurrence then there exists a matrix mea-
sure for which they are orthonormal; see Aptekarev and Nikishin [7]. For more
details, see Dette and Studden [80]. Some of the following results on the properties
of the matrix polynomials were derived in [149].

THEOREM 2.20 The eigenvalues of Jk are the zeros of det[pk(λ)].

Proof. Let θ be a zero of det[pk(λ)]. This implies that the rows of pk(θ) are linearly
dependent and there exists a vector v with two components such that

vT pk(θ) = 0. (2.17)

Using the matrix three-term recurrence we have

θ[vT p0(θ), . . . , vT pk−1(θ)] = [vT p0(θ), . . . , vT pk−1(θ)]Jk.

Therefore θ is an eigenvalue of Jk. The determinant of pk(λ) is a polynomial of
degree 2k in λ. Hence, there exists 2k zeros of the determinant and therefore all
eigenvalues are zeros of det[pk(λ)]. ✷

THEOREM 2.21 For λ and µ real, we have the matrix analog of the Christoffel–
Darboux identity,

(λ− µ)
k−1∑
j=0

pj(µ)pTj (λ) = pk−1(µ)ΓTk p
T
k (λ)− pk(µ)ΓkpTk−1(λ). (2.18)

Proof. Using the three-term recurrence (2.15), we have

ΓTj+1p
T
j+1(λ) = λpTj (λ)− Ωj+1p

T
j (λ)− ΓjpTj−1(λ) (2.19)

and

pj+1(µ)Γj+1 = µpj(µ)− pj(µ)Ωj+1 − pj−1(µ)ΓTj . (2.20)

Multiplying equation (2.19) on the left by pj(µ) and equation (2.20) on the right
by pTj (λ) gives

pj(µ)ΓTj+1p
T
j+1(λ)− pj+1(µ)Γj+1p

T
j (λ) =

(λ− µ)pj(µ)pTj (λ)− pj(µ)ΓjpTj−1(λ) + pj−1(µ)ΓTj p
T
j (λ).

Summing these equalities over j, some terms cancel and we obtain the desired
result. ✷



Chapter Three

Properties of Tridiagonal Matrices

We have seen that the tridiagonal Jacobi matrices are closely linked to orthogonal
polynomials since they describe the three-term recurrence satisfied by these poly-
nomials. We will see in chapter 4 that they are also key ingredients in the Lanczos
and conjugate gradient algorithms. In this chapter we summarize some properties
of tridiagonal matrices that will be useful in the next chapters.

3.1 Similarity

Let us consider a nonsymmetric tridiagonal matrix of order k, with real coefficients

Tk =



α1 ω1

β1 α2 ω2

. . . . . . . . .
βk−2 αk−1 ωk−1

βk−1 αk


 ,

and βi �= ωi, i = 1, . . . , k − 1. Then we have the following result.

PROPOSITION 3.1 Assume that the coefficients ωj , j = 1, . . . , k− 1 are different
from zero and the products βj ωj are positive. Then, the matrix Tk is similar to a
symmetric tridiagonal matrix. Therefore, its eigenvalues are real.

Proof. Let γj , j = 1, . . . , k be the diagonal elements of a diagonal matrix Dk.
Then, we consider D−1

k TkDk which is similar to Tk. The diagonal coefficients of
this matrix are αj . If we want to have the (2, 1) element equal to the (1, 2) element,
we need to have

γ1

γ2
β1 =

γ2

γ1
ω1.

If we take, for instance, γ1 = 1, we have

γ2
2 =

β1

ω1
.

To have the symmetry of all the nondiagonal coefficients, we find by induction

γ2
j =

βj−1 · · ·β1

ωj−1 · · ·ω1
, j = 2, . . . k.

With the hypothesis, we see that we can compute real values γj . ✷

Using this result, we consider only symmetric tridiagonal matrices in this chap-
ter.
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3.2 Cholesky Factorizations of a Tridiagonal Matrix

Let us consider a symmetric tridiagonal matrix of order k,

Jk =



α1 β1

β1 α2 β2

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk


 ,

where the values βj , j = 1, . . . , k − 1 are assumed to be nonzero. We remark that
the determinant of Jk verifies a three-term recurrence.

LEMMA 3.2

det(Jk+1) = αk+1 det(Jk)− β2
k det(Jk−1)

with initial conditions

det(J1) = α1, det(J2) = α1α2 − β2
1 .

Proof. This is obtained by expanding the determinant of Jk+1 along the last row
or column of Jk+1. ✷

The eigenvalues of Jk are the zeros of det(Jk − λI). From lemma 3.2, we see
that the zeros do not depend on the signs of the coefficients βj , j = 1, . . . , k − 1.
Hence, we can choose the sign of these coefficients to our convenience. Let us
assume they are positive and thus that Jk is a Jacobi matrix.

We would like to find a factorization of this matrix. We consider a Cholesky-like
factorization of Jk. Let ∆k be a diagonal matrix with diagonal elements δj , j =
1, . . . , k and let Lk be a lower triangular (bidiagonal) matrix to be determined,

Lk =



1
l1 1

. . . . . .
lk−2 1

lk−1 1


 .

Let the factorization of Jk be Jk = Lk∆kLTk . By identification it is easy to see
that we have

δ1 = α1, l1 = β1/δ1,

δj = αj −
β2
j−1

δj−1
, j = 2, . . . , k, lj = βj/δj , j = 2, . . . , k − 1

The factorization can be completed if no δj is zero for j = 1, . . . , k − 1. This does
not happen if the matrix Jk is positive definite. In such a case, all the elements
δj are positive and the genuine Cholesky factorization (see for instance Golub and
Van Loan [154]) can be obtained from ∆k and Lk by writing ∆k = ∆1/2

k ∆1/2
k .
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Using this transformation we have Jk = LCk (L
C
k )
T with LCk = Lk∆

1/2
k , which is

LCk =




√
δ1
β1√
δ1

√
δ2

. . . . . .
βk−2√
δk−2

√
δk−1

βk−1√
δk−1

√
δk



.

The factorization can also be written as Jk = LDk ∆
−1
k (LDk )

T with

LDk =



δ1
β1 δ2

. . . . . .
βk−2 δk−1

βk−1 δk


 .

Clearly, we see that the only elements we have to compute and store are the diag-
onal elements δj , j = 1, . . . , k. The last factorization is more interesting compu-
tationally since we do not need to compute square roots or the elements li. If we
want to solve a linear system Jkx = c, we successively solve

LDk y = c, (LDk )
Tx = ∆ky.

Looking at the components, we have

y1 =
c1
δ1
, yj =

cj − βj−1yj−1

δj
, j = 2, . . . , k,

xk = yk, xj = yj − βj
δj
xj+1, j = k − 1, . . . , 1.

Note that it is better to store ∆−1
k instead of ∆k if we have several linear systems

to solve with the same matrix and different right-hand sides.
The matrices Jj , j < k are leading matrices of Jk. We introduce also the trailing

matrices of Jk,

Jj,k =



αj βj
βj αj+1 βj+1

. . . . . . . . .
βk−2 αk−1 βk−1

βk−1 αk


 .

The determinants of these matrices satisfy a three-term recurrence,

det(Jj,k) = αj det(Jj+1,k)− β2
j det(Jj+2,k).

The previous Cholesky-like factorizations proceed from top to bottom giving a
lower triangular matrix Lk. One can also proceed from bottom to top, obtaining an



PROPERTIES OF TRIDIAGONAL MATRICES 27

upper triangular matrix. The UL factorization from the bottom to the top is written
as Jk = L̄TkD

−1
k L̄k, with L̄k a lower bidiagonal matrix

L̄k =




d
(k)
1

β1 d
(k)
2

. . . . . .
βk−2 d

(k)
k−1

βk−1 d
(k)
k



,

and Dk a diagonal matrix whose diagonal elements are d(k)
j . Assuming the decom-

position exists, it is easy to see that

d
(k)
k = αk, d

(k)
j = αj −

β2
j

d
(k)
j+1

, j = k − 1, . . . , 1.

The diagonal elements of the UL factorization are denoted with an upper index (k)
because when we augment the matrix from Jk to Jk+1 all the diagonal elements
change, contrary to the LU factorization for which it is enough to compute δk+1

from the previous elements δj obtained from the factorization of Jk.
From the LU and UL factorizations we can obtain all the so-called “twisted”

factorizations of Jk. A twisted factorization starts both at the top and at the bottom
of the matrix. The forward and backward steps meet at some given index l, 1 ≤ l ≤
k. Then, Jk = MkΩkMT

k , Mk being lower bidiagonal at the top for rows whose
index is smaller than l and upper bidiagonal at the bottom for rows whose index is
larger than l. The elements ωj of the diagonal matrix Ωk are given by

ω1 = α1, ωj = αj −
β2
j−1

ωj−1
, j = 2, . . . , l − 1,

ωk = αk, ωj = αj −
β2
j

ωj+1
, j = k − 1, . . . , l + 1,

ωl = αl −
β2
l−1

ωl−1
− β2

l

ωl+1
.

The twisted factorizations are useful to establish some theoretical results on the
inverse of a tridiagonal matrix but also computationally to solve tridiagonal linear
systems. The importance of Cholesky-like factorizations for tridiagonal matrices
have been emphasized in Parlett [267].

3.3 Eigenvalues and Eigenvectors

The eigenvalues of Jk are the zeros of det(Jk − λI). We can consider the LU and
UL factorizations of Jk − λI when they exist, that is, when λ is different from
the eigenvalues of Jk. From the previous section we obtain functions δj(λ) and
d
(k)
j (λ) and

det(Jk − λI) = δ1(λ) · · · δk(λ) = d
(k)
1 (λ) · · · d(k)

k (λ).
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This shows that

δk(λ) =
det(Jk − λI)
det(Jk−1 − λI)

, d
(k)
1 (λ) =

det(Jk − λI)
det(J2,k − λI)

.

Hence, both δk(λ) and d(k)
1 (λ) are rational functions of λ. The poles of δk(λ) are

the eigenvalues of Jk−1 and the poles of d(k)
1 (λ) are the eigenvalues of J2,k. Let

us denote by θ(k)
j the eigenvalues of Jk that are real numbers. The previous results

lead to a proof of the famous Cauchy interlacing property.

THEOREM 3.3 Let us denote by θ(k)
j the eigenvalues of Jk that are real numbers.

The eigenvalues of Jk+1 strictly interlace the eigenvalues of Jk,

θ
(k+1)
1 < θ

(k)
1 < θ

(k+1)
2 < θ

(k)
2 < · · · < θ

(k)
k < θ

(k+1)
k+1 .

The proof of this result can also be obtained by writing the eigenvector x corre-
sponding to an eigenvalue θ of Jk+1 as x = (y ζ)T where y is a vector of length k,
ζ is a real number and writing the equations satisfied by the components of x,

Jky + βkζe
k = θy,

βkyk + αk+1ζ = θζ.

Eliminating y from these relations, we obtain

(αk+1 − β2
k((e

k)T (Jk − θI)−1ek))ζ = θζ.

The real number ζ is different from zero. Otherwise, θ would be an eigenvalue of
Jk. Therefore, we have the following equation for θ,

αk+1 − β2
k

k∑
j=1

ξ2j

θ
(k)
j − θ

= θ,

where ξj is the last component of the jth eigenvector of Jk. An equation like
this one is called a “secular” equation. The function is monotone in each interval
defined by the poles θ(k)

j . There is only one root in each interval and this proves
the result. We will study secular equations in more details in chapter 9. Note that
the quadratic form (ek)T (Jk − θI)−1ek is an essential part of this equation. For
bounds on the eigenvalues of tridiagonal matrices, see Golub [138].

Later in this book we will need some components of the eigenvectors of Jk,
particularly the first and the last ones. We recall the following results whose proof
can be found, for instance, in [239].

PROPOSITION 3.4 Let χj,k(λ) be the determinant of Jj,k − λI . The first compo-
nents of the eigenvectors zi of Jk are

(zi1)
2 =

∣∣∣∣∣χ2,k(θ
(k)
i )

χ′
1,k(θ

(k)
i )

∣∣∣∣∣ ,
that is

(zi1)
2 =

θ
(k)
i − θ

(2,k)
1

θ
(k)
i − θ

(k)
1

· · · θ
(k)
i − θ

(2,k)
i−1

θ
(k)
i − θ

(k)
i−1

θ
(2,k)
i − θ

(k)
i

θ
(k)
i+1 − θ

(k)
i

· · · θ
(2,k)
k−1 − θ

(k)
i

θ
(k)
k − θ

(k)
i

.
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The last components of the eigenvectors zi of Jk satisfy

(zik)
2 =

∣∣∣∣∣χ1,k−1(θ
(k)
i )

χ′
1,k(θ

(k)
i )

∣∣∣∣∣ ,
that is,

(zik)
2 =

θ
(k)
i − θ

(k−1)
1

θ
(k)
i − θ

(k)
1

· · · θ
(k)
i − θ

(k−1)
i−1

θ
(k)
i − θ

(k)
i−1

θ
(k−1)
i − θ

(k)
i

θ
(k)
i+1 − θ

(k)
i

· · · θ
(k−1)
k−1 − θ

(k)
i

θ
(k)
k − θ

(k)
i

.

The components of the eigenvectors are also related to (the derivatives of) the
functions δj(λ) and d(k)

j (λ).

PROPOSITION 3.5 The first components of the eigenvectors of Jk are given by

(zi1)
2 =

∣∣∣∣∣ 1

[d(k)
1 ]′(θ(k)

i )

∣∣∣∣∣ .
For the last components we have

(zik)
2 =

∣∣∣∣∣ 1

δ′k(θ
(k)
i )

∣∣∣∣∣ .

3.4 Elements of the Inverse

We will see in the next chapters that we are also interested in some elements of
the inverse of Jk, particularly the (1, 1) element. Therefore, we now recall some
results about the inverse of a tridiagonal matrix.

From Baranger and Duc-Jacquet [20], Meurant [234] and the references therein,
it is known that there exist two sequences of numbers {ui}, {vi}, i = 1, . . . , k such
that

J−1
k =



u1v1 u1v2 u1v3 . . . u1vk
u1v2 u2v2 u2v3 . . . u2vk
u1v3 u2v3 u3v3 . . . u3vk

...
...

...
. . .

...
u1vk u2vk u3vk . . . ukvk


 .

Moreover, u1 can be chosen arbitrarily, for instance u1 = 1. From this, we see that
to have all the elements of the inverse it is enough to compute the first column of
the inverse (that is, J−1

k e1) to obtain the sequence {vj} and then the last column of
the inverse (that is, J−1

k ek) to obtain the sequence {uj}.
To solve Jkv = e1, it is natural to use the UL factorization of Jk. In the first

phase we have to solve L̄Tk y = e1. All the components of the vector y are zero,
except the first one, y1 = 1/d(k)

1 . Going forward (and down) we obtain

v1 =
1

d
(k)
1

, vj = (−1)j−1 β1 · · ·βj−1

d
(k)
1 · · · d(k)

j

, j = 2, . . . , k.
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To solve vkJku = ek, we use the LU factorization of Jk. In the first (forward)
phase we solve LDk y = ek. All the components of y are zero except the last one,
yk = 1/(δkvk). Going backward (and up) we obtain

uk =
1

δkvk
, uk−j = (−1)j βk−j · · ·βk−1

δk−j · · · δkvk , j = 1, . . . , k − 1.

This leads to the following result.

THEOREM 3.6 The inverse of the symmetric tridiagonal matrix Jk is character-
ized as

(J−1
k )i,j = (−1)j−iβi · · ·βj−1

d
(k)
j+1 · · · d(k)

k

δi · · · δk , ∀i, ∀j > i,

(J−1
k )i,i =

d
(k)
i+1 · · · d(k)

k

δi · · · δk , ∀i,

where δj and d
(k)
j , j = 1, . . . , k are the diagonal elements of the LU and UL

factorizations of Jk.

Proof. From the previous results, we have

ui = (−1)−(i+1) 1
β1 · · ·βi−1

d
(k)
1 · · · d(k)

k

δi · · · δk .

Since, for j ≥ i, we have (J−1
k )i,j = uivj , we obtain the result. ✷

The diagonal elements of the inverse of Jk can also be obtained using twisted
factorizations.

THEOREM 3.7 Let l be a fixed index and ωj the diagonal elements of the corre-
sponding twisted factorization of Jk. Then,

(J−1
k )l,l =

1
ωl
.

Proof. This is obtained by solving Jky = el and looking at the lth element of the
solution. Since all the components of el are zero except the lth one, starting from
the top and the bottom, all the components of the solution of the first phase are zero
except for the lth one which is 1/ωl. The second phase fills all the components but
this is not a concern. ✷

As we said before, we are particularly interested in the (1, 1) element of the
inverse. During the course of the previous proofs we have seen that

(J−1
k )1,1 =

1

d
(k)
1

.

So, if we want to know what (J−1
k+1)1,1 is in relation with (J−1

k )1,1, we have to find

the relation between d(k)
1 and d(k+1)

1 . This has been done in Meurant [239] in the
proof of theorem 2.14. The result is the following.
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PROPOSITION 3.8

d
(k)
1 − d

(k+1)
1 =

(β1 · · ·βk)2d(k)
1 d

(k+1)
1

det(Jk) det(Jk+1)
.

This gives

1

d
(k+1)
1

− 1

d
(k)
1

=
(β1 · · ·βk)2

det(Jk) det(Jk+1)
.

The relation between (J−1
k+1)1,1 and (J−1

k )1,1 can also be obtained by writing the
matrix Jk+1 in block form as

Jk+1 =
(

Jk βke
k

βk(ek)T αk+1

)
.

The upper left block of J−1
k+1 (which contains the (1, 1) element) is the inverse of

the Schur complement, that is,(
Jk − β2

k

αk+1
ek(ek)T

)−1

.

The matrix within parenthesis is a rank-one modification of Jk. The only term of
Jk which is modified is the element (k, k). We use the Sherman–Morrison formula
(see for instance Golub and Van Loan [154]) to obtain(

Jk − β2
k

αk+1
ek(ek)T

)−1

= J−1
k +

(J−1
k ek)((ek)TJ−1

k )
αk+1

β2
k

− (ek)TJ−1
k ek

.

Let lk = J−1
k ek be the last column of the inverse of Jk. From the last relation, we

have

(J−1
k+1)1,1 = (J−1

k )1,1 +
β2
k(l

k
1)

2

αk+1 − β2
kl
k
k

. (3.1)

It remains to compute lk1 and lkk . This is done by using the LU factorization of Jk.
We obtain

lk1 = (−1)k−1 β1 · · ·βk−1

δ1 · · · δk , lkk =
1
δk
.

To simplify the formulas, we note that

αk+1 − β2
kl
k
k = αk+1 − β2

k

δk
= δk+1.

Therefore, using either proposition 3.8 or the previous derivation, we have the fol-
lowing result.

THEOREM 3.9

(J−1
k+1)1,1 = (J−1

k )1,1 +
(β1 · · ·βk)2

(δ1 · · · δk)2δk+1
.
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Proof. This is given by relation (3.1) and also by proposition 3.8 since it gives

1

d
(k+1)
1

− 1

d
(k)
1

=
(β1 · · ·βk)2

det(Jk) det(Jk+1)
,

and det(Jk) = δ1 · · · δk. ✷

Hence, by computing the diagonal elements δk of the Cholesky-like factoriza-
tion, we can compute incrementally the (1, 1) element of the inverse of the Jacobi
matrix. We start with (J−1

1 )1,1 = 1/α1 and c1 = 1. From the previous steps, we
compute δk+1 and ck+1 by

δk+1 = αk+1 − β2
k

δk
, ck+1 = ck

β2
k

δk

1
δk
.

Then,

(J−1
k+1)1,1 = (J−1

k )1,1 +
ck+1

δk+1
.

In these formulas we see that, in fact, we can compute and store πk = 1/δk. Then,

t = β2
k πk, δk+1 = αk+1 − t, πk+1 =

1
δk+1

, ck+1 = ck t πk.

This gives

(J−1
k+1)1,1 = (J−1

k )1,1 + ck+1πk+1,

and we can store ck+1πk+1 for the next step. Therefore, updating the (1, 1) el-
ement of the inverse of a symmetric tridiagonal matrix is particularly cheap. It
costs only seven floating point operations (four multiplications, two additions and
one division) and moreover we obtain the Cholesky-like factorization of the Jacobi
matrices.

3.5 The QD Algorithm

In this section we review the QD algorithm since it can be used to solve some in-
verse problems in which we will be interested later. The QD algorithm is a method
introduced by Heinz Rutishauser [286] to compute the eigenvalues of a tridiag-
onal matrix. For details on the QD algorithms, see Stiefel [311], Henrici [186]
[185], Fernando and Parlett [106], Parlett [265] and Laurie [220]. The QD algo-
rithm is also related to Padé-type approximation; see Brezinski [34]. It involves the
Cholesky factorizations that we have reviewed in the previous sections.

An orthogonal QD algorithm has been developed by U. von Matt [337]. For a
matrix QD algorithm and applications, see Dette and Studden [81].

3.5.1 The Basic QD Algorithm
If starting from the Cholesky factorization Jk = LkL

T
k of the tridiagonal positive

definite matrix Jk we compute Ĵk = LTk Lk we have Ĵk = L−1
k JkLk. This shows
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that the matrix Ĵk is similar to the matrix Jk and therefore has the same eigenvalues.
Now, we can compute the Cholesky factorization of Ĵk and iterate the process,
obtaining a series of matrices J (i)

k with J (0)
k = Jk, J

(1)
k = Ĵk, . . . . This is the basis

of the LR algorithm of H. Rutishauser [287]. The off-diagonal elements tend to
zero and one obtains in the limit the eigenvalues of Jk on the diagonal.

To use this algorithm we are faced with the problem of computing the Cholesky
factorization L̂kL̂

T
k of Ĵk = LTk Lk. Let us see if we can achieve this without

explicitly computing Ĵk. We have

Ĵk =




δ1 +
β2
1
δ1

β1

√
δ2
δ1

β1

√
δ2
δ1

δ2 +
β2
2
δ2

β2

√
δ3
δ2

. . . . . . . . .
βk−2

√
δk−1
δk−2

δk−1 +
β2

k−1
δk−1

βk−1

√
δk

δk−1

βk−1

√
δk

δk−1
δk



.

Let us denote the subdiagonal entries of Lk = LCk by √
εj . Therefore, εj = β2

j /δj .
The diagonal elements of the Cholesky-like factorization of Ĵk are given by

δ̂1 = δ1 +
β2

1

δ1
= δ1 + ε1,

δ̂j = δj +
β2
j

δj
− β2

j−1δj/δj−1

δ̂j−1

= δj + εj − εj−1δj

δ̂j−1

, j = 2, . . . , k − 1,

δ̂k = δk −
β2
k−1δk/δk−1

δ̂k−1

= δk − εk−1δk

δ̂k−1

.

Let ε̂j = β2
j δj+1/(δj δ̂j). The diagonal entries of L̂k are

√
δ̂j , the subdiagonal

entries are
√
ε̂j and we have

ε̂j = εj
δj+1

δ̂j
.

The expression for δ̂j can be written as

δ̂j = δj + εj − ε̂j−1.

Therefore, in pseudocode the QD algorithm is the following; given δj and εj :

ε̂0 = 0
for j=1:k-1
δ̂j = (δj − ε̂j−1) + εj
ε̂j = εjδj+1/δ̂j

end
δ̂k = δk − ε̂k−1

Then, in the LR algorithm, we do δj = δ̂j , εj = ε̂j and we iterate until the off-
diagonal elements are small enough. The QD algorithm is particularly simple and
elegant.
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3.5.2 The Differential QD Algorithm
The QD algorithm can be modified (or improved) to remove subtractions since this
is supposed to improve the stability. We remark that

δ̂j =
δj

δ̂j−1

(δ̂j−1 − εj−1) + εj .

Let us introduce a new variable t̂j = δ̂j − εj . The previous equation shows that

t̂j = t̂j−1
δj

δ̂j−1

,

and obviously, we have δ̂j = t̂j + εj . The differential QD algorithm (dqd) is

t = δ1
for j=1:k-1
δ̂j = t+ εj
f = δj+1/δ̂j
ε̂j = fεj
t = ft
end
δ̂k = t

3.5.3 The QD Algorithms with Shift
When using the QD algorithms to compute eigenvalues it is important to introduce
shifts (and also deflation) to speed up convergence. This is relatively easy to do.
The QD algorithm with a shift µ (qds(µ)) is

ε̂0 = 0
for j=1:k-1
δ̂j = (δj − ε̂j−1) + εj − µ

ε̂j = εjδj+1/δ̂j
end
δ̂k = δk − ε̂k−1 − µ

The differential QD algorithm with shift (dqds(µ)) is:

t = δ1 − µ
for j=1:k-1
δ̂j = t+ εj
f = δj+1/δ̂j
ε̂j = fεj
t = ft− µ
end
δ̂k = t

Of course, shifting introduces subtractions even in the differential QD algorithm.
For an implementation, see Parlett and Marques [269].
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3.5.4 Cholesky Factorization of a Shifted Tridiagonal Matrix
To start the QD algorithm from a tridiagonal matrix Jk, it is necessary to compute
the Cholesky factorization of the shifted matrix. The same problem arises when
using one of the QD algorithms to compute eigenvalues. Therefore, let us consider
the L̂D̂L̂T factorization of the shifted matrix Jk − µI when we know the factor-
ization of Jk = LDLT . Using the elements of Jk (which we may eventually not
want to compute explicitly) we have

δ̂1 = α1 − µ, δ̂j = αj − µ− β2
j−1

δ̂j−1

, j = 2, . . . , k, l̂j =
βj

δ̂j
, j = 1, . . . , k − 1.

But we have that α1 = δ1, αj = δj + δj−1lj−1, j = 2, . . . , k, βj = δj lj , j =
1, . . . , k − 1. We can eliminate αj and βj from the formulas giving δ̂j and l̂j ,

δ̂1 = δ1 − µ, δ̂j = δj − µ+ δj−1l
2
j−1 −

δ2j−1l
2
j−1

δ̂j−1

, j = 2, . . . , k

and

l̂j =
δj lj

δ̂j
, j = 1, . . . , k − 1.

Finally,

δ̂j = δj − µ+ δj−1l
2
j−1 − δj−1lj−1 l̂j−1, j = 2, . . . , k.

This algorithm, which computes the new factorization of the shifted matrix from
the factorization of Jk, has been named stqds by Dhillon and Parlett [84], even
though we have seen that it is nothing other than the Cholesky factorization. The
last formula can be rearranged to remove one subtraction. Let us introduce a new
variable sj = δ̂j − δj ; then

sj = lj−1 l̂j−1

(
lj−1δj−1

l̂j−1

− δj−1

)
− µ

= lj−1 l̂j−1(δ̂j−1 − δj−1)− µ

= lj−1 l̂j−1sj−1 − µ.

This algorithm is said to be the differential form of stqds and denoted by dstqds. It
starts from the factorization of Jk and gives the factorization of Jk − µI:

s = −µ
for j=1:k-1
δ̂j = s+ δj
l̂j = (δj lj)/δ̂j
s = l̂j ljs− µ

end
δ̂k = s+ δk

One can also develop algorithms using the UL instead of the LU factorization;
see Dhillon [83].
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3.5.5 Relation to Finding the Poles of a Function from its Taylor
Series
The following application comes from the exposition of Parlett [264]; see also
Henrici [186]. We describe it because of its own interest and also because it is
linked to moments, has an interesting relationship to the QD algorithm and has
some connection with our main topic, which is estimation of bilinear forms.

Rutishauser’s QD algorithm is linked to a classical problem of finding the sin-
gularities (poles) of a meromorphic function from the coefficients of its series at
a regular point. In complex analysis, a meromorphic function on an open subset
Ω of the complex plane is a function that is holomorphic on all Ω except for a set
of isolated points, which are poles for the function. Every meromorphic function
on Ω can be expressed as the ratio between two holomorphic functions, the poles
being the zeros of the denominator. Holomorphic functions are functions defined
on an open subset of the complex plane with complex values that are complex-
differentiable at every point.

For two given vectors x and y, one considers the following rational function of
the complex variable z:

f(z) = y∗(I − zA)−1x,

where the star denotes the conjugate transpose. We are mainly interested in real
symmetric matrices for which we can consider having x = y and real vectors.
The poles of f are the inverses of the eigenvalues of A (which are real if A is
symmetric). If we are in the real symmetric case, we have the spectral decompo-
sition A = QΛQT where Q is orthogonal and Λ diagonal. Assuming we choose
x = y = e1, e1 being the first column of the identity matrix, we have

f(z) = (e1)TQ(I − zΛ)−1QT e1 =
n∑
j=1

(qj1)
2

1− zλj
,

where qj1 are the first components of the eigenvectors of A. The function f is de-
termined by its Taylor expansion at the origin which converges for |z| ≤ |λmax|−1.
Let

f(z) =
∞∑
j=0

µjz
j .

The coefficients µj are µj = y∗Ajx which are the moments if y = x. A problem
that has been considered at least since the nineteenth century is to find the poles of
f from the coefficients of the Taylor series (moments). This problem was solved
theoretically by J. Hadamard in 1892 [168]. The solution is given using Hankel
determinants. Let Hj

0 = 1 and

Hj
k = det




µj µj+1 · · · µj+k−1

µj+1 µj+2 · · · µj+k
...

...
...

µj+k−1 µj+k · · · µj+2k−2


 , j = 0, 1, . . . , k = 1, 2, . . . .
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The results are that, for j large enough,Hj
k �= 0 and as j → ∞ the ratioHj+1

k /Hj
k →

λ1 · · ·λk where the λi are the poles in decreasing modulus order. Therefore, the
solution of the problem is

λk = lim
j→∞

(
Hj+1
k Hj

k−1

Hj
kH

j+1
k−1

)
.

Of course, this cannot be used in practice for the computation of the poles. A step
towards the solution was obtained by A. C. Aitken in the 1920s when he was work-
ing on methods for finding all the zeros of a polynomial. The Hankel determinants
can be arranged in a two-dimensional table:

1
1 H0

1

1 H1
1 H0

2

1 H2
1 H1

2 H0
3

1 H3
1 H2

2 H1
3 H0

4

1 H4
1 H3

2 H2
3 H1

4 H0
5

. . . . . . .

If the function f has only a finite number N of poles, the H-table has only N+1
columns since all the other coefficients can be shown to be zero. Aitken proves the
following relation between Hankel determinants:

(Hj
k)

2 −Hj−1
k Hj+1

k +Hj−1
k+1H

j+1
k−1 = 0.

Note that this is nothing other than Sylvester’s identity for determinants; see Gant-
macher [122]. As noted by Parlett, for a point P in the table, this is P 2 =
NS −WE where N,S,W and E refer to the north, south, west, and east neigh-
bors of P . To compute the determinants using this formula it is better to proceed
by diagonals rather than by columns.

However, the Hankel determinants are not the most interesting variables in this
problem. It was noted by H. Rutishauser that the proper variables are

qjk =
Hj+1
k Hj

k−1

Hj
kH

j+1
k−1

.

As we have seen, we have qjk → λk as j → ∞. If one introduces the auxiliary
quantity

ejk =
Hj+1
k−1H

j
k+1

Hj
kH

j+1
k

,

then the relation between Hankel determinants shows that

qjk + ejk = qj+1
k + ej+1

k−1.

Moreover, we have

qj+1
k ej+1

k = qjk+1e
j
k.

We recognize that, even though the notations are different, these are the relations we
have in the QD algorithm. They had been called the Rhombus rules by E. Stiefel.
Putting the values of qjk and ejk in a so-called QD table,
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0 = e00
q01

0 = e10 e01
q11 q02

0 = e20 e11 e02
q21 q12 q03

0 = e30 e21 e12 e03
q31 q22 q13 q04

. . . . . . . .

we can compute the elements either columnwise moving to the right or diagonal-
wise moving down. We can use the algorithms qd or dqd provided that we know the
first diagonal q01 , e

0
1, q

0
2 , e

0
2, . . . . It turns out that, in exact arithmetic, the first diag-

onal can be obtained by the nonsymmetric Lanczos algorithm (which we will study
in chapter 4) with initial vectors x and y. If x = y this reduces to the (symmet-
ric) Lanczos algorithm. In fact, the elements of the first diagonal are given by the
Cholesky factorization of the Jacobi matrix given by the Lanczos algorithm. This
is almost obvious when we remember the way we have derived the QD algorithm
from the Cholesky factorization of a Jacobi matrix.



Chapter Four

The Lanczos and Conjugate Gradient
Algorithms

In this chapter we introduce the Lanczos algorithm for symmetric matrices as well
as its block version and also the nonsymmetric Lanczos algorithm. These algo-
rithms, which were devised to compute eigenvalues or to solve linear systems, are
closely related to the moment problem and they will be used to compute quadrature
formulas and to estimate bilinear forms. The Lanczos algorithm provides exam-
ples of orthonormal polynomials related to a discrete (usually unknown) measure.
Moreover, we describe the Golub–Kahan bidiagonalization algorithms which are
special versions of the Lanczos algorithm for matrices AAT or ATA. This is use-
ful when solving least squares problems. We also consider the conjugate gradient
(CG) algorithm since it can be derived from the Lanczos algorithm and it is the
most used algorithm for solving positive definite symmetric linear systems. As we
will see, CG is closely linked to the remainder of Gauss quadrature. Conversely,
Gauss quadrature rules can be used to estimate norms of the error between the CG
approximate solutions and the exact solution during the iterations. This also gives
a reliable and cheap way to compute stopping criteria for the CG iterations.

4.1 The Lanczos Algorithm

Let A be a real symmetric matrix of order n. We introduce the Lanczos algorithm
as a means of computing an orthogonal basis of a Krylov subspace. Let v be a
given vector and

Kk = ( v, Av, · · · , Ak−1v ) (4.1)

be the Krylov matrix of dimension n × k. The subspace that is spanned by the
columns of the matrix Kk is called a Krylov subspace and denoted by Kk(A, v) or
K(A, v) when no confusion is possible. There is a maximal dimension k = m ≤ n
for which the rank of Kk is k. For any v this maximal dimension is always less
than the degree of the minimal polynomial of A.

The algorithm that is now called the Lanczos algorithm was introduced by C. Lanc-
zos in 1950 [216] to construct a basis of the Krylov subspace (see also [217] for the
solution of linear systems). It can be considered as a particular form of the Stieltjes
algorithm that we will study in chapter 5. The natural basis of the Krylov sub-
space K(A, v) given by the columns of the Krylov matrix Kk is badly conditioned
when k is large. In fact, when k increases, the vectors Akv tend to align with the
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eigenvector corresponding to the eigenvalue of A of largest modulus. Numerically,
the Krylov vectors may lose their independence before the maximal dimension is
reached. Note that the elements of the matrix KT

k AKk are of the form vTAi+jv.
They are moments corresponding to an unknown measure which depends on the
eigenvalues of A.

The Lanczos algorithm constructs an orthonormal basis of the Krylov subspace
K(A, v). We start the derivation of the algorithm by applying a variant of the
Gram–Schmidt orthogonalization process (see for instance Golub and Van Loan
[154]) to the Krylov basis (the columns of Kk) without the assumption that the
matrix A is symmetric. Consider the set of vectors v(j+1) = Av(j) with v(1) =
v; then K(A, v) is spanned by the vectors v(j), j = 1, . . . , k. For constructing
orthogonal basis vectors vj , instead of orthogonalizing Ajv against the previous
vectors, we can orthogonalizeAvj . Starting from v1 = v (normalized if necessary),
the algorithm for computing the (j + 1)st vector of the basis using the previous
vectors is

hi,j = (Avj , vi), i = 1, . . . , j,

v̄j = Avj −
j∑
i=1

hi,jv
i,

hj+1,j = ‖v̄j‖, if hj+1,j = 0 then stop,

vj+1 =
v̄j

hj+1,j
.

The second step is the subtraction of the components of Avj on the previous basis
vectors from Avj . Then the resulting vector is normalized if this is possible. It
is easy to verify that the vectors vj span the Krylov subspace and that they are
orthonormal. This orthogonalization process is known as the Arnoldi algorithm
[11]. If we collect the vectors vj , j = 1, . . . , k in a matrix Vk, the relations defining
the vector vk+1 can be written in matrix form as

AVk = VkHk + hk+1,kv
k+1(ek)T , (4.2)

where Hk is an upper Hessenberg matrix with elements hi,j ; note that hi,j =
0, j = 1, . . . , i − 2, i > 2. As before, the vector ek is the kth column of the
identity matrix of order k. If we suppose that the matrix A is symmetric, then
the matrix Hk is also symmetric since, by multiplying equation (4.2) by V Tk and
using orthogonality, we have Hk = V Tk AVk. Clearly, a symmetric Hessenberg
matrix is tridiagonal. Therefore, we denote Hk by Jk (since this is a Jacobi matrix,
the elements in the sub- and superdiagonals being strictly positive) and we have
hi,j = 0, j = i + 2, . . . , k. This implies that v̄k and hence the new vector vk+1

can be computed by using only the two previous vectors vk and vk−1. This de-
scribes the Lanczos algorithm. In fact, Vk is the orthonormal matrix (that is, such
that V Tk Vk = I) involved in a QR factorization of the Krylov matrix Kk, and the
matrix KT

k AKk is similar to Jk = V Tk AVk.
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The relation for the matrix Vk whose columns are the orthogonal basis vectors
can be written as

AVk = VkJk + ηkv
k+1(ek)T , (4.3)

where ηi denotes the nonzero off-diagonal entries of Jk. We also have AVn =
VnJn, if no vj is zero before step n, since vn+1 = 0 because vn+1 is a vector or-
thogonal to a set of n orthogonal vectors in a space of dimension n. Otherwise there
exists an m < n for which AVm = VmJm and the algorithm has found an invari-
ant subspace of A, the eigenvalues of Jm being eigenvalues of A. Equation (4.3)
describes in matrix form the elegant Lanczos algorithm, which is written, starting
from a nonzero vector v1 = v/‖v‖, α1 = (Av1, v1), ṽ2 = Av1 − α1v

1 and then,
for k = 2, 3, . . .,

ηk−1 = ‖ṽk‖,

vk =
ṽk

ηk−1
,

αk = (vk, Avk) = (vk)TAvk,

ṽk+1 = Avk − αkv
k − ηk−1v

k−1.

The real numbers αj and ηj are the nonzero coefficients of the tridiagonal matrix
Jk.

A variant of the Lanczos algorithm has been proposed by Paige [255] to improve
the local orthogonality (with the previous vector) in finite precision computations.
It replaces the third and fourth steps by

αk = (vk)T (Avk − ηk−1v
k−1),

ṽk+1 = (Avk − ηk−1v
k−1)− αkv

k.

Note that this variant can be implemented by using only two vectors of storage
instead of three for the basic formulation. It corresponds to using the modified
Gram–Schmidt orthogonalization process; see Golub and Van Loan [154]. In exact
arithmetic both versions are mathematically equivalent but the modified variant
better preserves the local orthogonality in finite precision arithmetic.

Since we can suppose that ηi �= 0, the tridiagonal Jacobi matrix Jk has real and
simple eigenvalues which we denote by θ(k)

j . They are known as the Ritz values
and are the approximations of the eigenvalues ofA given by the Lanczos algorithm.
For our purposes, the most important property of the Lanczos algorithm is that the
Lanczos vectors vk are given as a polynomial in A applied to the initial vector v1

as stated in the following theorem.

THEOREM 4.1 Let χk(λ) be the determinant of Jk − λI (which is a monic poly-
nomial); then

vk = pk(A)v1, pk(λ) = (−1)k−1 χk−1(λ)
η1 · · · ηk−1

, k > 1, p1 ≡ 1.

The polynomials pk of degree k−1 are called the normalized Lanczos polynomials.
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Proof. As we have seen in chapter 3, the determinant of the tridiagonal matrix Jk
satisfies a three-term recurrence relation,

det(Jk+1) = αk+1 det(Jk)− η2
k det(Jk−1),

with initial conditions

det(J1) = α1, det(J2) = α1α2 − η2
1 .

Comparison of the three-term recurrence for vk and for the determinant χk(λ) of
Jk − λI gives the result. ✷

Obviously, the polynomials pk satisfy a scalar three-term recurrence,

ηkpk+1(λ) = (λ− αk)pk(λ)− ηk−1pk−1(λ), k = 1, 2, . . .

with initial conditions p0 ≡ 0, p1 ≡ 1. Therefore, by the Favard theorem we have
that there exists a measure for which these polynomials are orthogonal. It turns
out that we are able to explicitly write down the measure, unfortunately in terms of
unknown quantities.

THEOREM 4.2 Consider the Lanczos vectors vk. There exists a measure α (de-
fined in the proof) such that

(vk, vl) = 〈pk, pl〉 =
∫ b

a

pk(λ)pl(λ)dα(λ),

where a ≤ λ1 = λmin and b ≥ λn = λmax, λmin and λmax being the smallest
and largest eigenvalues of A, and pi are the Lanczos polynomials associated with
A and v1.

Proof. The matrix A being symmetric, let A = QΛQT be the spectral decomposi-
tion of A, with Q orthonormal and Λ being the diagonal matrix of the eigenvalues
λi such that

λ1 ≤ λ2 ≤ · · · ≤ λn.

Since the vectors vj are orthonormal and pk(A) = Qpk(Λ)QT , we have

(vk, vl)= (v1)T pk(A)T pl(A)v1

=(v1)TQpk(Λ)QTQpl(Λ)QT v1

=(v1)TQpk(Λ)pl(Λ)QT v1

=
n∑
j=1

pk(λj)pl(λj)[v̂j ]2,

where v̂ = QT v1. This describes a discrete inner product for the polynomials
pk and pl. The last sum can be written as an integral for a measure α which is
piecewise constant (here we suppose for the sake of simplicity that the eigenvalues
of A are distinct):

α(λ) =



0, if λ < λ1,∑i
j=1[v̂j ]

2, if λi ≤ λ < λi+1,∑n
j=1[v̂j ]

2, if λn ≤ λ.
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The measure α has a finite number of points of increase at the (unknown) eigenval-
ues of A. ✷

The Lanczos algorithm provides an example of orthonormal polynomials for an
unknown measure. The polynomials are described by their recurrence coefficients
(which depend also on the starting vector v1) in the Jacobi matrix Jk. Note that the
inner product of two polynomials pk and pl can be computed by the inner product
of the two Lanczos vectors vk and vl.

We note that the Lanczos algorithm can be used also to solve linear systems
Ax = c when A is symmetric and c is a given vector; see Lanczos [217]. Let x0 be
a given starting vector and r0 = c− Ax0 be the corresponding residual. Then one
defines the first Lanczos vector as v = v1 = r0/‖r0‖. The approximate solution
xk at iteration k is given by

xk = x0 + Vky
k,

where the vector yk of dimension k is obtained by requesting the residual rk =
c − Axk to be orthogonal to the Krylov subspace of dimension k. This gives the
condition V Tk r

k = 0. By using the definition of the residual vector, we have

V Tk r
k = V Tk c− V Tk Ax

0 − V Tk AVky
k = V Tk r

0 − Jky
k.

But r0 = ‖r0‖v1 and, because of the orthogonality of the Lanczos vectors vj , we
have V Tk r

0 = ‖r0‖e1. Therefore, the vector yk is obtained by solving a tridiagonal
linear system

Jky
k = ‖r0‖e1,

at every iteration. In theory, the Lanczos algorithm constructs an orthogonal basis
of the Krylov subspace. However, when using this algorithm on a computer we
often lose the orthogonality of the computed Lanczos vectors. This problem arises
because of rounding errors. Moreover, even though the eigenvalues of the Jacobi
matrices must be simple, eigenvalues which are very close to already computed
ones appear again and again during the computation. The study of these problems
was started by Chris Paige in his Ph.D. thesis [255] in 1971. For a summary of
his results and also more recent insights into the convergence of the Ritz values to
the eigenvalues of A, see Meurant [239] and Meurant and Strakoš [242]. In fact,
the rounding errors begin to increase when a Ritz value starts converging to an
eigenvalue. The appearance of multiple copies delays the convergence toward the
other eigenvalues which are not yet approximated. A remedy for these problems
is to reorthogonalize the Lanczos vectors. A complete reorthogonalization can be
done at every iteration but this is very costly. Better and cheaper strategies have
been developed by Parlett [270] and Simon [303].

4.2 The Nonsymmetric Lanczos Algorithm

When the matrix A is not symmetric we cannot generally construct a vector vk+1

orthogonal to all the previous basis vectors by using only the two previous vectors
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vk and vk−1. In other words, we lose the nice property of having a short recur-
rence. To work around this problem, an algorithm for nonsymmetric matrices was
introduced by C. Lanczos in 1950 [216]. Its goal is to construct two biorthogo-
nal sequences of vectors for a nonsymmetric matrix A. Fortunately, this can be
done using short recurrences. The drawback is that the algorithm may break down.
The standard development of the Lanczos algorithm for nonsymmetric matrices
depends upon using the matrix A and its transpose AT .

We choose two starting vectors v1 and ṽ1 with (v1, ṽ1) �= 0 normalized such
that (v1, ṽ1) = 1. We set v0 = ṽ0 = 0. Then for k = 1, 2, . . .

zk =Avk − ωkv
k − ηk−1v

k−1,

wk =AT ṽk − ωkṽ
k − η̃k−1ṽ

k−1,

the coefficient ωk being computed as

ωk = (ṽk, Avk).

The other coefficients ηk and η̃k are chosen (provided (zk, wk) �= 0) such that

ηkη̃k = (zk, wk),

and the new vectors at step k + 1 are given by

vk+1 =
zk

η̃k
, ṽk+1 =

wk

ηk
.

These relations can be written in matrix form. Let

Jk =



ω1 η1

η̃1 ω2 η2

. . . . . . . . .
η̃k−2 ωk−1 ηk−1

η̃k−1 ωk




and

Vk = [v1 · · · vk], Ṽk = [ṽ1 · · · ṽk].
Then

AVk =VkJk + η̃kv
k+1(ek)T ,

AT Ṽk = ṼkJTk + ηkṽ
k+1(ek)T .

THEOREM 4.3 If the nonsymmetric Lanczos algorithm does not break down with
ηkη̃k being zero, the algorithm yields biorthogonal vectors such that

(ṽi, vj) = 0, i �= j, i, j = 1, 2, . . . .

The vectors v1, . . . , vk span Kk(A, v1) and ṽ1, . . . , ṽk span Kk(AT , ṽ1). The two
sequences of vectors can be written as

vk = pk(A)v1, ṽk = p̃k(AT )ṽ1,

where pk and p̃k are polynomials of degree k − 1.
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Proof. These properties follow straightforwardly from the definition of the vectors
vk and ṽk. ✷

The polynomials pk and p̃k satisfy three-term recurrences

η̃kpk+1 = (λ− ωk)pk − ηk−1pk−1,

ηkp̃k+1 = (λ− ωk)p̃k − η̃k−1p̃k−1.

The algorithm breaks down if at some step we have (zk, wk) = 0. There are two
different cases.

a) zk = 0 and /or wk = 0. In both cases we have found an invariant subspace.
If zk = 0 we can compute the eigenvalues or the solution of the linear system
Ax = c. If zk �= 0 and wk = 0, the only way to deal with this situation is to
restart the algorithm with another vector ṽ1. Usually use of a random initial vector
is enough to avoid this kind of breakdown.

b) The more dramatic situation (which is called a “serious breakdown”) is when
(zk, wk) = 0 with zk and wk �= 0. Then, a way to solve this problem is to use a
look-ahead strategy. The solution is to construct the vectors vk+1 and ṽk+1 at step
k maintaining biorthogonality only in a blockwise sense. If this is not possible, one
tries to construct also vectors vk+2 and ṽk+2 and so on. The worst case is when we
reach the order of the matrix A without having been able to return to the normal
situation. This is known as an incurable breakdown.

In finite precision arithmetic, it is unlikely that we get (zk, wk) = 0 with zk

and wk �= 0. However, it may happen that (zk, wk) is small. This is known as a
near breakdown and it is really this problem that look-ahead strategies must deal
with; see Freund, Gutknecht and Nachtigal [115] and Brezinski, Redivo-Zaglia and
Sadok [38].

In the next chapters, for computational purposes, we will use the nonsymmet-
ric Lanczos algorithm even for a symmetric matrix A = AT . In this particular
application it is possible to choose ηk and η̃k such that

ηk = ±η̃k = ±
√
|(zk, wk)|,

with, for instance, ηk ≥ 0 and η̃k = sgn[(zk, wk)] ηk. Then

p̃k = ±pk.
Note that if the off-diagonal elements are different from zero, the matrix Jk is
diagonally similar to a symmetric matrix.

4.3 The Golub–Kahan Bidiagonalization Algorithms

When we wish to solve a linear system of the form ATAx = AT c, where A is
an m × n matrix, we can apply the Lanczos algorithm with the symmetric matrix
K = ATA. However, we can use to our advantage the fact that the matrix K is
such a product. This was done in a paper by Golub and Kahan [144] for the purpose
of computing the singular values of A.
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Two different algorithms were defined. The first one, which is denoted as “Lanc-
zos bidiagonalization I” in Golub and von Matt [159], reduces A to an upper bidi-
agonal form and is the following.

Let q0 = c/‖c‖, r0 = Aq0, δ1 = ‖r0‖, p0 = r0/δ1; then for k = 1, 2, . . .

uk = AT pk−1 − δkq
k−1,

γk = ‖uk‖,
qk = uk/γk,

rk = Aqk − γkp
k−1,

δk+1 = ‖rk‖,
pk = rk/δk+1.

In this algorithm there is one multiplication with A and one with AT . If we denote

Pk = ( p0 · · · pk−1 ) , Qk = ( q0 · · · qk−1 ) ,

and

Bk =



δ1 γ1

. . . . . .
δk−1 γk−1

δk


 ,

then Pk and Qk, which is an orthogonal matrix, satisfy the equations

AQk =PkBk,
ATPk =QkBTk + γkq

k(ek)T .

Of course, by eliminating Pk in these equations we obtain

ATAQk = QkB
T
k Bk + γkδkq

k(ek)T .

This shows that BTk Bk = Jk is the Lanczos Jacobi matrix corresponding to ATA.
Hence, we have directly computed the Cholesky factorization of Jk.

The previous algorithm was devised to compute the singular values of A (which
are the square roots of the eigenvalues ofATA). For this purpose the starting vector
is not really important. For solving linear systems or least squares problems, this
algorithm (using a different starting vector q0 = AT c/‖AT c‖ as it is necessary to
solve ATAx = AT c) was considered also in a paper by Paige and Saunders [256],
[257] under the name “Bidiag 2”.

The second algorithm (named “Lanczos bidiagonalization II” in [159] and “Bidiag
1” in [256]) reduces A to lower bidiagonal form. The steps are the following, the
coefficients δk and γk being different from the ones in the previous algorithm.

Let p0 = c/‖c‖, u0 = AT p0, γ1 = ‖u0‖, q0 = u0/γ1, r1 = Aq0 − γ1p
0,

δ1 = ‖r1‖, p1 = r1/δ1; then for k = 2, 3, . . .

uk−1 = AT pk−1 − δk−1q
k−2,
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γk = ‖uk−1‖,

qk−1 = uk−1/γk,

rk = Aqk−1 − γkp
k−1,

δk = ‖rk‖,

pk = rk/δk.

If we denote

Pk+1 = ( p0 · · · pk ) , Qk = ( q0 · · · qk−1 ) ,

and

Ck =




γ1

δ1
. . .
. . . . . .

. . . γk
δk



,

a (k + 1) × k matrix, then Pk and Qk, which is an orthogonal matrix, satisfy the
equations

AQk =Pk+1Ck,

ATPk+1=QkCTk + γk+1q
k(ek+1)T .

Of course, by eliminating Pk+1 in these equations we obtain

ATAQk = QkC
T
k Ck + γk+1δkq

k(ek)T .

Therefore, we have

CTk Ck = BTk Bk = Jk,

and Bk is also the Cholesky factor of the product CTk Ck. This last algorithm is the
basis for the algorithm LSQR of Paige and Saunders [256], who used an incremen-
tal reduction of the matrix Ck to upper triangular form by using Givens rotations.

4.4 The Block Lanczos Algorithm

In this section we consider the block Lanczos algorithm that was proposed by
Golub and Underwood; see [152]. A block conjugate gradient has also been de-
veloped by O’Leary [249]. We restrict ourselves to the case of 2 × 2 blocks. Let
X0 be an n× 2 given matrix, such that XT0 X0 = I2 where I2 is the 2× 2 identity
matrix. Let X−1 = 0 be an n× 2 matrix. Then, for k = 1, 2, . . .

Ωk = XTk−1AXk−1,

Rk = AXk−1 −Xk−1Ωk −Xk−2ΓTk−1, (4.4)
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XkΓk = Rk.

The last step of the algorithm is the QR factorization of Rk (see Golub and Van
Loan [154]) such that Xk is n× 2 with XTk Xk = I2. The matrix Γk is 2× 2 upper
triangular. The other symmetric coefficient matrix Ωk is 2× 2. The matrix Rk can
eventually be rank deficient and in that case Γk is singular. The solution of this
problem is given in [152]. One of the columns of Xk can be chosen arbitrarily. To
complete the algorithm, we choose this column to be orthogonal with the previous
block vectors Xj . We can, for instance, choose (randomly) another vector and
orthogonalize it against the previous ones. The block tridiagonal matrix that is
produced by the algorithm has the same structure as in equation (2.16). Note that it
can be considered also as a band matrix.

The block Lanczos algorithm generates a sequence of matrices such that

XTj Xi = δijI2,

where δij is the Kronecker symbol. We can relate the iterates Xi to a matrix poly-
nomial pk, see chapter 2.

PROPOSITION 4.4

Xi =
i∑
k=0

AkX0C
(i)
k ,

where C(i)
k are 2× 2 matrices.

Proof. The proof is easily obtained by induction. ✷

As in the scalar case, the matrix Lanczos polynomials satisfy a three-term block
recurrence.

THEOREM 4.5 The matrix valued polynomials pk satisfy

pk(λ)Γk = λpk−1(λ)− pk−1(λ)Ωk − pk−2(λ)ΓTk−1,

p−1(λ) ≡ 0, p0(λ) ≡ I2,

where λ is a scalar and pk(λ) =
∑k
j=0 λ

jX0C
(k)
j .

Proof. From the previous definition of the algorithm, we show by induction that pk
can be generated by the given (matrix) recursion. ✷

This block three-term recurrence can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN + [0, . . . , 0, pN (λ)ΓN ],

and as P (λ) = [p0(λ), . . . , pN−1(λ)]T ,

JNP (λ) = λP (λ)− [0, . . . , 0, pN (λ)ΓN ]T ,

with JN defined by equation (2.16).
As in the scalar case, the inner product of the matrices Xi can be related to an

integral.
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THEOREM 4.6 Considering the matrices Xk, there exists a matrix measure α (de-
fined in the proof) such that

XTi Xj =
∫ b

a

pi(λ)T dα(λ)pj(λ) = δijI2,

where a ≤ λ1 = λmin and b ≥ λn = λmax.

Proof. Using the orthogonality of the Xi’s and the spectral decomposition of A,
we can write

δijI2 = XTi Xj =

(
i∑
k=0

(C(i)
k )TXT0 A

k

)(
j∑
l=0

AlX0C
(j)
l

)

=
∑
k,l

(C(i)
k )TXT0 QΛ

k+lQTX0C
(j)
l

=
∑
k,l

(C(i)
k )T X̂Λk+lX̂TC(j)

l

=
∑
k,l

(C(i)
k )T

(
n∑

m=1

λk+lm X̂mX̂
T
m

)
C

(j)
l

=
n∑

m=1

(∑
k

λkm(C
(i)
k )T

)
X̂mX̂

T
m

(∑
l

λlmC
(j)
l

)
,

where X̂m are the columns of X̂ = XT0 Q, which is a 2× n matrix. Therefore,

XTi Xj =
n∑

m=1

pi(λm)T X̂mX̂Tm pj(λm).

The sum in the right-hand side can be written as an integral for a 2 × 2 matrix
measure,

α(λ) =



0, if λ < λ1,∑i
j=1 X̂jX̂

T
j , if λi ≤ λ < λi+1,∑n

j=1 X̂jX̂
T
j , if λn ≤ λ.

Then,

XTi Xj =
∫ b

a

pi(λ)T dα(λ) pj(λ).

✷

The pTj ’s are matrix orthogonal polynomials for the matrix measure α.

4.5 The Conjugate Gradient Algorithm

The conjugate gradient (CG) algorithm is an iterative method to solve linear sys-
tems Ax = c where the matrix A is symmetric positive definite. It was introduced
at the beginning of the 1950s by Magnus Hestenes and Eduard Stiefel [187]. It can



50 CHAPTER 4

be derived from the Lanczos algorithm, which can also be used for indefinite ma-
trices; see, for instance, Householder [193] and Meurant [239]. However, we have
seen that to solve a linear system with the Lanczos algorithm we have to store (or
recompute) all the Lanczos vectors. In contrast, the storage for the CG algorithm
will be only a few vectors. A way to derive the CG algorithm is to consider an
LU factorization of the Jacobi matrix Jk obtained in the Lanczos algorithm. Even
though this is not the most frequently used form of the algorithm, we will define
the three-term recurrence variant of CG since one can see more clearly the relations
with the Lanczos algorithm and also with the Chebyshev semi-iterative method; see
Golub and Varga [155], [156]. This particular form of the CG algorithm was pop-
ularized by Concus, Golub and O’Leary [68]. Therefore, we consider iterates xk

defined by

xk+1 = νk+1(µkrk + xk − xk−1) + xk−1, (4.5)

where νk+1 and µk are parameters to be determined by orthogonality constraints.
Equation (4.5) gives us a relation for the residual vectors rk = c−Axk,

rk+1 = rk−1 − νk+1(µkArk − rk + rk−1). (4.6)

The parameters νk+1 and µk are computed by requiring that the residual vector
rk+1 is orthogonal to rk and rk−1.

PROPOSITION 4.7 If the parameter µk is chosen as

µk =
(rk, rk)
(rk, Ark)

, (4.7)

then (rk, rk+1) = 0. If the parameter νk+1 is chosen as

νk+1 =
1

1 + µk
(rk−1, Ark)
(rk−1, rk−1)

, (4.8)

then (rk−1, rk+1) = 0.

Proof. See Concus, Golub and O’Leary [68] or Meurant [237]. ✷

As we will see, this choice of parameters guarantees that (rl, rk) = 0, l ≤ k,
that is, the residual vectors are mutually orthogonal. Fortunately (see for instance
[237]) there is an alternate expression for νk+1,

νk+1 =
1

1− µk(rk, rk)
νkµk−1(rk−1, rk−1)

.

This last formula is computationally more efficient than the formula (4.8) in propo-
sition 4.7 since for computing both coefficients µk and νk+1 we only have to com-
pute two inner products instead of three with the previous formula. The iterations
are started by taking ν1 = 1. Then

x1 = µ0r
0 + x0,
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and we need only to define x0 and then r0 = c−Ax0. Now, the key point is to show
that we have global orthogonality as we said before, that is, the new vector rk+1

is orthogonal not only to the last two vectors rk and rk−1, but to all the previous
vectors: (rk+1, rj) = 0, 0 ≤ j < k − 1. This is similar to what happens in the
Lanczos algorithm and is proved by induction supposing the property is true up to
step k. Multiplying equation (4.6) by rj , 0 ≤ j < k − 1, we have

(rj , rk+1) = (rj , rk−1)− νk+1[µk(rj , Ark)− (rj , rk) + (rj , rk−1)].

But, since j < k − 1, some terms are zero and

(rj , rk+1) = νk+1µk(rj , Ark).

Writing the definition of rj+1 we obtain

rj+1 = rj−1 − νj+1(µjArj − rj + rj−1).

Multiplying this equation by rk and taking into account that j + 1 < k, we have

νj+1µj(rk, Arj) = 0.

Because of the symmetry of A we obtain (Ark, rj) = 0. This shows that we have
(rj , rk+1) = 0 for all j such that j < k−1. Therefore, as in the Lanczos algorithm
and because A is symmetric, the local orthogonality with rk and rk−1 implies
the global orthogonality with all rj , j = k − 2, . . . , 0. Since A is assumed to be
positive definite, the algorithm cannot break down. If ‖rk‖ = 0 or (rk, Ark) = 0,
the algorithm has found the solution.

The standard two-term form of CG is obtained by using an LU factorization of
the Jacobi matrix of the Lanczos algorithm. It uses two-term recurrences and is the
following, starting from a given x0 and r0 = c−Ax0:
for k = 0, 1, . . . until convergence,

βk =
(rk, rk)

(rk−1, rk−1)
, β0 = 0,

pk = rk + βkp
k−1,

γk =
(rk, rk)
(Apk, pk)

,

xk+1 = xk + γkp
k,

rk+1 = rk − γkAp
k.

Of course, there are some relations between the coefficients of the two-term and
three-term CG recurrences. They are obtained by eliminating pk in the two-term
recurrence equations,

νk+1 = 1 +
γkβk
γk−1

,

µk =
γk

1 + γkβk
γk−1

.
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The relations between the Lanczos algorithm coefficients αk and ηk and those of
the two-term form of CG are

αk =
1

γk−1
+
βk−1

γk−2
, β0 = 0, γ−1 = 1, (4.9)

ηk =
√
βk

γk−1
. (4.10)

There are also relations between the three-term recurrence CG coefficients and
those of the Lanczos algorithm. We write the three-term recurrence for the residuals
as

rk+1 = −νk+1µkAr
k + νk+1r

k + (1− νk+1)rk−1.

There is a relation between the residuals and the Lanczos basis vectors vk+1 =
(−1)krk/‖rk‖; see Meurant [239]. This leads to

µk =
1

αk+1
, νk+1 = 1 +

ηk
ηk+1

‖rk+1‖
‖rk−1‖ .

One of the most interesting features of the CG algorithm is that it has several opti-
mality properties. The first step in proving this is to show that CG is a polynomial
method as the Lanczos algorithm. Using the relation of the residuals and basis
vectors, we have

rk = (−1)k ‖r
k‖

‖r0‖pk+1(A)r0.

From the three-term CG recurrence we can show the following.

PROPOSITION 4.8 The residual vector rk+1 is a polynomial in A,

rk+1 = [I −Ask(A)]r0,

where sk is a kth degree polynomial satisfying a three-term recurrence

sk(λ) = µkνk+1 + νk+1(1− µkλ)sk−1(λ)− (νk+1 − 1)sk−2(λ),

s0(λ) = µ0, s1(λ) = ν2(µ0 + µ1 − µ0µ1λ).

Proof. The proof is obtained by induction on k. ✷

This gives a relation between the Lanczos and the CG polynomials

1− λsk−1(λ) = (−1)k 1
|pk+1(0)|pk+1(λ).

Remember that the Lanczos polynomial pk+1 is of exact degree k.

PROPOSITION 4.9 Let sk be the polynomial defined in proposition 4.8. The CG
iterates are given by

xk+1 = x0 + sk(A)r0.
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Proof. We have
xk+1 = xk−1 + νk+1(µkzk + xk − xk−1).

By induction and with the help of proposition 4.8 this is written as
xk+1 = x0+sk−2(A)r0+νk+1(µk[I−Ask−1(A)]r0+sk−1(A)r0−sk−2(A)r0).
Hence

xk+1 = x0 + sk(A)r0,
because of the recurrence relation satisfied by sk. ✷

For CG, the most interesting measure of the error εk = x− xk is the A-norm.

DEFINITION 4.10 Let A be a symmetric positive definite matrix. The A-norm of
a vector εk is defined as

‖εk‖A = (Aεk, εk)1/2.

The CG optimality property involving the A-norm is the following.

THEOREM 4.11 Consider all the iterative methods that can be written as
xk+1 = x0 + qk(A)r0, x0 = x0, r0 = c−Ax0,

where qk is a polynomial of degree k. Of all these methods, CG is the one which
minimizes ‖εk‖A at each iteration.

Proof. See Meurant [237] for a proof. ✷

This optimality result allows us to obtain bounds on the A-norm of the error.

THEOREM 4.12
‖εk‖2

A ≤ max
1≤i≤n

(tk(λi))2‖ε0‖2
A,

for all polynomials tk of degree k such that tk(0) = 1.

Proof. From theorem 4.11, we know that the CG polynomial minimizes ‖εk‖A.
Thus, if we replace the CG polynomial sk−1 by any other polynomial of degree
k − 1, we obtain an upper bound for the A-norm of the error. This can be written
as

‖εk‖2
A ≤

n∑
i=1

(tk(λi))2(ε̄0i )
2,

where ε̄j = Λ1/2QT εj , Q being the orthonormal matrix whose columns are the
eigenvectors of A and Λ being the diagonal matrix of the eigenvalues. This result
holds for all polynomials tk of degree k, such that tk(0) = 1, equality holding only
if tk(λ) = 1− λsk−1(λ). Therefore,

‖εk‖2
A ≤ max

1≤i≤n
(tk(λi))2

n∑
i=1

(ε̄0i )
2.

But, (ε̄0, ε̄0) = ‖ε0‖2
A, which proves the result. ✷

In theorem 4.12 we are free to choose the polynomial in the right-hand side. The
only constraint is that it must have a value of 1 at 0. This leads to the most well
known a priori bound for the CG A-norm of the error.
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THEOREM 4.13

‖εk‖A ≤ 2
(√

κ− 1√
κ+ 1

)k
‖ε0‖A,

where κ = λn
λ1

is the condition number of A.

Proof. The right-hand side in theorem 4.12 max1≤i≤n(tk(λi))2 is bounded by
maxλ1≤λ≤λn

(tk(λ))2. For tk we choose the polynomial of degree k such that
tk(0) = 1, which minimizes the maximum. The solution to this problem is given
by the shifted Chebyshev polynomials (see chapter 2),

tk(λ) =
Ck

(
λ1 + λn − 2λ
λn − λ1

)
Ck

(
λ1 + λn
λn − λ1

) .

By the properties of the Chebyshev polynomials,

max
λ1≤λ≤λn

|tk(λ)| ≤ 2
(√

κ− 1√
κ+ 1

)k
.

This proves the theorem. ✷

There are many cases for which this bound is overly pessimistic. We will see in
chapter 12 that CG convergence depends not only on the condition number but on
the distribution of all the eigenvalues of A, and that good estimates of the A-norm
of the error can be obtained during the iterations using the relations of CG with
Gauss quadrature.



Chapter Five

Computation of the Jacobi Matrices

We have seen in chapter 2 that we know the coefficients of the three-term recurrence
for the classical orthogonal polynomials. In other cases, we have to compute these
coefficients from some other information sources. There are many circumstances
in which one wants to determine the coefficients of the three-term recurrence (that
is, the Jacobi matrix Jk) of a family of orthogonal polynomials given either the
measure α, the moments µk defined in equation (2.2) or the nodes and weights of a
quadrature formula. We will see some examples of applications later in this book.

5.1 The Stieltjes Procedure

A way to compute the coefficients of the three-term recurrence given the measure
α is to approximate it by a discrete measure and to compute the coefficients of the
recurrence corresponding to the discrete measure. If the discretizations are done
properly, the process will converge; see Gautschi [131]. The problem (which arises
also directly if the given measure is discrete) is now to compute the coefficients
of the recurrence. Probably the simplest way to do this is to use the Stieltjes pro-
cedure [312] (or algorithm) which dates back to the nineteenth century. With a
discrete inner product, sums like

〈p, q〉 =
m∑
j=1

p(tj)q(tj)w2
j

are trivial to compute given the nodes tj and the weights w2
j . The coefficients of

the three-term recurrence are given by

αk+1 =
〈λpk, pk〉
〈pk, pk〉 , γk =

〈pk, pk〉
〈pk−1, pk−1〉

for a monic polynomial pk having a recurrence relation (2.6) or

αk+1 = 〈λpk, pk〉, βk+1 = 〈λpk, λpk〉 − α2
k+1 − βk

for an orthonormal polynomial with a recurrence (2.8). This is obtained by taking
the inner product of the recurrence relation with either pk or pk−1 or by expressing
pk+1 in terms of pk and pk−1 using the three-term recurrence. For instance to
compute γk we need to compute 〈pk, pk〉 assuming 〈pk−1, pk−1〉 is already known.
The values pi(tj) of the polynomials at the nodes needed in the inner products
can be computed by recurrences (2.6) or (2.8) and from this, the coefficients are
computed provided that the nodes are not the roots of the orthogonal polynomials.
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So we can intertwine the computation of the coefficients and of the values of the
polynomials at the nodes. The algorithm starts by computing α1 from p0 which is
identically 1. Then one can compute the values of p1 at the nodes tj and then γ1

and α2. This, in turn, allows to compute the values of p2 at the nodes, and so on.
This seems a very simple and elegant algorithm. However, in finite precision

arithmetic, the Stieltjes procedure can be sensitive to roundoff errors. In fact, the
Stieltjes procedure can be seen as a predecessor of the Lanczos algorithm with a
different inner product (see chapter 4). Unfortunately, in many circumstances, the
Lanczos algorithm may have a large growth of rounding errors (see [239], [242])
and it is the same for the Stieltjes algorithm. Therefore, the Jacobi matrix computed
by the Stieltjes algorithm in finite precision arithmetic may sometimes be far from
the exact one. We will review some other algorithms for computing the Jacobi
matrix from the nodes and weights of a discrete inner product in the next sections.

5.2 Computing the Coefficients from the Moments

Assume that we do not know the measure α but that we know the moments related
to it. There are expressions directly relating the moments to the polynomial coef-
ficients. Let us quote two results which use Hankel matrices; see Szegö [323] or
Gautschi [131]. Let

∆0 = 1, ∆k = det(Hk), Hk =




µ0 µ1 · · · µk−1

µ1 µ2 · · · µk
...

...
...

µk−1 µk · · · µ2k−2


 , k = 1, 2, . . .

and

∆′
0 = 0, ∆′

1 = µ1, ∆′
k = det




µ0 µ1 · · · µk−2 µk
µ1 µ2 · · · µk−1 µk+1

...
...

...
...

µk−1 µk · · · µ2k−3 µ2k−1


 , k = 2, 3, . . . .

THEOREM 5.1 The monic orthogonal polynomial πk of degree k associated with
the moments µj , j = 0, . . . , 2k − 1 is

πk(λ) =
1
∆k

det




µ0 µ1 · · · µk
µ1 µ2 · · · µk+1

...
...

...
µk−1 µk · · · µ2k−1

1 λ · · · λk


 , k = 1, 2, . . . .

THEOREM 5.2 The recursion coefficients of the three-term recurrence for the poly-
nomial πk of theorem 5.1,

πk+1(λ) = (λ− αk+1)πk(λ)− γkπk−1(λ), π−1(λ) ≡ 0, π0(λ) ≡ 1,
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are given by

αk+1 =
∆′
k+1

∆k+1
− ∆′

k

∆k
, k = 0, 1, . . . , (5.1)

γk =
∆k+1∆k−1

∆2
k

, k = 1, 2, . . . . (5.2)

These results are mainly of theoretical interest since the map giving the coeffi-
cients as a function of the moments is badly conditioned. The condition number of
this map has been studied by Gautschi (see [131]). In [328] Tyrtyshnikov proved
that the condition number of any real positive Hankel matrix of order n is larger
than 3 · 2n−6. Fasino [103] proved that the condition number of any Hankel matrix
generated by moments of positive functions is essentially the same as the condition
number of the Hilbert matrix of the same size. Hilbert matrices are notoriously
badly conditioned. On these topics, see also Beckermann [24].

The coefficients of the orthogonal polynomial can also be found from the mo-
ments by an algorithm proposed by Gautschi which was described in Golub and
Welsch [160]. The main tool is the factorization of the Hankel matrix Hk. This is
more convenient than working with determinants.

PROPOSITION 5.3 Assume the measure α is defined by a positive weight function
w; then the Hankel matrix Hk is positive definite.

Proof. The inner product defined by the measure α is positive definite. This implies
that all the principal minors of the Hankel matrix are positive. ✷

Therefore, we can consider the Cholesky factorization Hk = RTkRk, Rk being
an upper triangular matrix. Let si,j , j ≥ i be the nonzero entries of R−1

k . Let q(λ)
be a vector defined with components

qj(λ) = s1,j + s2,jλ+ · · ·+ sj,jλ
j−1, j = 1, . . . , k.

Then,

q(λ) = R−T
k




1
λ
...

λk−1


 = R−T

k φk(λ).

PROPOSITION 5.4 Let 〈q(λ), qT (λ)〉 be the matrix whose entries are

〈qi(λ), qj(λ)〉 =
∫ b

a

qi(λ)qj(λ) dα.

We have

〈q(λ), qT (λ)〉 = I.

Proof. From the definition of q(λ), we have

〈q(λ), qT (λ)〉 = R−T
k 〈φk(λ), φk(λ)T 〉R−1

k = R−T
k HkR

−1
k = I.
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This proves the result. ✷

The last proposition shows that pj−1(λ) = qj(λ) is the orthonormal polynomial
related to the measure α. This polynomial satisfies a three-term recurrence

ηk+1pk+1(λ) = (λ− αk+1)pk(λ)− ηkpk−1(λ). (5.3)
By comparing the coefficients of λj and λj−1, we have the relations

sj,j = ηjsj+1j+1, sj−1,j = αjsj,j + ηjsj,j+1.

From these relations, we obtain the values of the coefficients αj , ηj from the entries
of R−1

k . Now, we can write the entries si,j of R−1
k we need as functions of the

entries ri,j of Rk,

sj,j =
1
rj,j

, sj,j+1 = − rj,j+1

rj,jrj+1,j+1
.

This leads to the following result.

THEOREM 5.5 Let Hk = RTkRk be the Cholesky factorization of the moment
matrix. The coefficients of the orthonormal polynomial satisfying the three-term
recurrence (5.3) are given by

ηj =
rj+1,j+1

rj,j
, j = 1, . . . , k−1 α1 = r1,2, αj =

rj,j+1

rj,j
− rj−1,j

rj−1,j−1
, j = 2, . . . , k.

Proof. See Golub and Welsch [160]. ✷

It is interesting to remark that these formulas are similar to what is obtained
when doing a QR factorization of the Krylov matrix defined in equation (4.1) in
the Lanczos algorithm described in chapter 4, see Meurant [239], section 1.1. Let
Kk = VkRk be a QR factorization of the Krylov matrix where Vk is n × k and
orthonormal (V Tk Vk = I , the identity matrix) and Rk is k × k nonsingular and
upper triangular (say with positive elements on the diagonal). It is easy to see that
Vk is the matrix whose columns are the Lanczos vectors vj . The matrix Rk is also
the Cholesky factor of the moment matrix KT

k Kk. That is,

RTkRk =




1 (v,Av) · · · (v,Ak−1v)
(v,Av) (v,A2v) · · · (v,Akv)

...
...

...
(v,Ak−1v) · · · (v,A2k−2v)


 ,

where v is the first Lanczos vector. The elements ri,j of Rk are related to those of
the tridiagonal Lanczos matrix Jk by formulas similar to those of theorem 5.5.

5.3 The Modified Chebyshev Algorithm

Since using the moments µk to compute the recurrence coefficients may not be
numerically safe (see Gautschi [131]), it is often wiser to use so-called modified
moments defined by using another family of orthogonal polynomials pk for which
we know the recurrence coefficients. Then, instead of integrating the monomials
λi, we consider the integration of the polynomials pk. This is a sort of change of
basis functions.
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DEFINITION 5.6 The modified moments (using known orthogonal polynomials
pk) are

mk =
∫ b

a

pk(λ) dα. (5.4)

The modified Chebyshev algorithm was developed by J. Wheeler in 1974 [348]
(see Gautschi [127]) from an algorithm due to P. Chebyshev in 1859 [63]. It applies
the Chebyshev algorithm to modified moments instead of ordinary moments; see
also Sack and Donovan [289]. For the exposition, we follow Gautschi [126], [131].
An interesting paper on modified moments is Beckermann and Bourreau [25]. For
transforming one polynomial expansion into another, see Salzer [290].

Let us consider monic orthogonal polynomials satisfying

pk+1(λ) = (λ− ak+1)pk(λ)− ckpk−1(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1, (5.5)

whose coefficients ak+1 and ck are supposed to be known. The Chebyshev algo-
rithm is obtained by using pk(λ) = λk,∀k. We also assume that we know the
modified moments mk, k = 0, . . . , 2m − 1 defined by equation (5.4). We would
like to determine the coefficients αk+1 and ηk of the three-term recurrence

πk+1(λ) = (λ− αk+1)πk(λ)− ηkπk−1(λ), π−1(λ) ≡ 0, π0(λ) ≡ 1, (5.6)

where πk are the unknown monic orthogonal polynomials associated with the mea-
sure α. To do this, we introduce mixed moments.

DEFINITION 5.7 The mixed moments related to pl and α are

σk,l =
∫ b

a

πk(λ)pl(λ) dα(λ).

We will derive relations allowing us to compute these mixed moments. By orthogo-
nality, we have σk,l = 0, k > l. Moreover, since λpk−1(λ) (which is a polynomial
of degree k) can be written as the sum of πk and a polynomial of degree strictly
less than k, we can write

σk,k =
∫ b

a

πk(λ)λpk−1(λ) dα(λ) =
∫ b

a

π2
k(λ) dα(λ).

Multiplying equation (5.6) by pk−1 and integrating gives the relation

σk,k − ηkσk−1,k−1 = 0,

and therefore

ηk =
σk,k

σk−1,k−1
.

Multiplying equation (5.6) by pk and integrating gives

αk+1σk,k + ηkσk−1,k =
∫ b

a

πk(λ)λpk(λ) dα(λ).

We now use equation (5.5) to express λpk(λ) in the previous equation. This gives
the relation

σk,k+1 + (ak+1 − αk+1)σk,k − ηkσk−1,k = 0.
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Using again equations (5.5) and (5.6) with different indices, one obtains

σk,l = σk−1,l+1 − (αk − al+1)σk−1,l − ηk−1σk−2,l + clσk−1,l−1.

With these relations we compute the first 2m−1 unknown recursion coefficients
αk, ηk from the first 2m modified moments ml, since it is obvious that σ0,k = mk.
The modified Chebyshev algorithm for monic polynomials is the following:

σ−1,l = 0, l = 1, . . . , 2m− 2, σ0,l = ml, l = 0, 1, . . . , 2m− 1

α1 = a1 +
m1

m0
,

and for k = 1, . . . ,m− 1,

σk,l = σk−1,l+1+(al+1−αk)σk−1,l+clσk−1,l−1−ηk−1σk−2,l, l = k, . . . , 2m−k−1,

αk+1 = ak+1 +
σk,k+1

σk,k
− σk−1,k

σk−1,k−1
,

ηk =
σk,k

σk−1,k−1
.

Note the similarity of these formulas with the ones given in theorem 5.5. The initial
condition of the algorithm for k = 0 and l = 0, . . . , 2m−1 is given by the modified
moments ml. Then in the plane l, k we proceed by going up in k. For each k we
compute a new element σk,l by using four previous values for k− 1 and k− 2. In a
five-point discretization stencil (k, l) is the north point and it is computed from the
central point and the west, south and east points. Note that when we increase k by 1
the number of mixed moments to compute decreases by 2. Even though we have to
compute all the σk,l for a given k, only the first two ones σk,k and σk,k+1 are used
to compute the coefficients. Of course, the modified Chebyshev algorithm depends
on the knowledge of the modified moments; see Gautschi [131]. If the modified
moments cannot be computed accurately, then the modified Chebyshev algorithm
is not really useful.

A similar procedure can be used for orthonormal polynomials πk. More gener-
ally, if the recurrence relation for the unknown polynomials is

γk+1πk+1(λ) = (λ− αk+1)πk(λ)− ηkπk−1(λ), π−1(λ) ≡ 0, π0(λ) ≡ π0,
(5.7)

and the known polynomials satisfy

bk+1pk+1(λ) = (λ−ak+1)pk(λ)−ckpk−1(λ), p−1(λ) ≡ 0, p0(λ) ≡ p0, (5.8)

then the modified moments are

ml =
σ0,l

π0
=

∫ b

a

pl(λ) dα.

The value π0 can be chosen arbitrarily. Then the modified Chebyshev algorithm is
the following:

σ−1,l = 0, l = 1, . . . , 2m− 2, σ0,l = mlπ0, l = 0, 1, . . . , 2m− 1,
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α1 = a1 + b1
m1

m0
,

and for k = 1, . . . ,m− 1,
we choose the normalization parameter γk > 0 and
for l = k, . . . , 2m− k − 1,

σk,l =
1
γk
[bl+1σk−1,l+1 + (al+1 − αk)σk−1,l + clσk−1,l−1 − ηk−1σk−2,l],

then

αk+1 = ak+1 + bk+1
σk,k+1

σk,k
− bk

σk−1,k

σk−1,k−1
,

ηk = bk
σk,k

σk−1,k−1
.

For orthonormal polynomials the coefficients γk are chosen to have a norm equal
to 1.

5.4 The Modified Chebyshev Algorithm for Indefinite
Weight Functions

In [143] Golub and Gutknecht extended the modified Chebyshev algorithm to the
case of indefinite weight functions. Then one has to use formal orthogonal polyno-
mials. They gave also a matrix interpretation of the modified Chebyshev algorithm.
Let J be the (infinite) tridiagonal matrix of the coefficients we are looking for with
1’s on the lower subdiagonal and H be the upper Hessenberg matrix (with 1’s on
the first subdiagonal) of the coefficients of the auxiliary polynomials pk which are
not supposed to satisfy a three-term recurrence. Moreover, let S be the lower trian-
gular matrix of the mixed moments σk,l and D be a diagonal matrix with the same
diagonal as S. Using these infinite matrices, the recurrence relations for the two
sets of polynomials can be written as

λΠ(λ) = Π(λ)J, λP (λ) = P (λ)H,

where Π = [π0, π1, . . .] and P = [p0, p1, . . .]. If we denote by ϕ(λi) the integral
of λi with the measure α, ϕ is a linear functional on the set of polynomials and we
have

ϕ(ΠTΠ) = D, ϕ(PTΠ) = S.

Using the linearity of ϕ, we obtain the matrix relation

SJ = HTS.

The matrices on the left and on the right-hand sides are lower Hessenberg. There-
fore, if no σl,l is zero,

JS−1 = S−1HT ,

which again is an equality between Hessenberg matrices. Let q ≡ q(λ) be the
vector of the monomials; then the moment (Hankel) matrix is M = ϕ(qT q) and
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the Gramian matrix of the polynomials pk is G = ϕ(PTP ). There exist unit upper
triangular matrices Z and R such that

q(λ) = Π(λ)Z, P (λ) = Π(λ)R.

This gives M = ZTDZ and S = RTD. It leads to G = RTDR = SR. The
matrix S is lower triangular and R is upper triangular. Therefore, we have an LU
factorization of the Gramian matrix. The matrices ZTDZ andRTDR are the LDU
factorizations of M and G. Finally, we have JR = RH .

In the modified Chebyshev algorithm, the elements of J are computed from those
of S and H using J = S−1HTS and S can be generated from the modified mo-
ments. Golub and Gutknecht proposed also an inverse Chebyshev algorithm to
compute S from J . From the coefficients of J , one can compute the diagonal and
first diagonal of S from which the whole matrix S can be built. The knowledge of
S allows one to compute the modified moments. As we have seen before, S can
also be generated from the diagonal and subdiagonal of G, and from this, one can
compute J using two diagonals of S−1 as done by Golub and Welsch [160].

Golub and Gutknecht generalized the previous relations to the general case where
ϕ may be an arbitrary complex linear functional. Then the formal orthogonal poly-
nomials may or may not exist for all degrees. The matrix J is now a block tridi-
agonal matrix and the matrix S is block lower triangular. Block equivalents of the
previous algorithms can then be derived. As far as we know the stability properties
of these algorithms have not been investigated yet.

5.5 Relations between the Lanczos and Chebyshev Semi-
Iterative Algorithms

We consider this topic in this chapter because it is related to the computation of
modified moments. Several iterative methods for solving linear systems Ax = c
with a symmetric positive definite matrix A can be written as

xk+1 = xk−1 + ωk+1(δkzk + xk − xk−1), (5.9)

with parameters ωk+1 and δk depending on the given method and the vector zk

given by solving

Mzk = rk,

where rk is the residual vector. The symmetric positive definite matrix M is the
preconditioner whose role is to speed up convergence. Depending on the choice
of parameters, equation (5.9) describes the Chebyshev semi-iterative (CSI) method
(see Golub and Varga [155], [156]), the Richardson second-order method and the
conjugate gradient (CG) method (see chapter 4).

The first two methods depend on having estimates of the extreme eigenvalues of
M−1A and this can be seen as a disadvantage. However, they have the advantage
over the conjugate gradient algorithm of not requiring any inner products. This can
be important on parallel computers for which computing inner products is often
a bottleneck. Of course, it is also necessary that the rate of convergence is not
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much slower than for CG. This is why we will concentrate on the Chebyshev semi-
iterative method since the Richardson method is not very attractive in this respect.

As we said, the computation of the parameters δk and ωk needs estimates, a and
b, of the smallest and largest eigenvalues of M−1A. Let µ = (b− a)/(b+ a); the
parameters of the CSI method are given (see [155], [156], [237]) by

δk = δ =
2

b+ a
, ωk+1 =

1

1− µ2

4 ωk
with ω1 = 1, ω2 =

1

1− µ2

2

.

The generalized residual vectors zk are given by polynomials. This is summarized
in the following result.

PROPOSITION 5.8 The vectors zk of the CSI method defined by equation (5.9)
with δk ≡ δ are given by

zk = pk(B)z0, B = I − δM−1A,

where pk is a polynomial of degree k satisfying a three-term recurrence

pk+1(λ) = ωk+1λpk(λ) + (1− ωk+1)pk−1(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1.

Proof. Multiplying equation (5.9) by A, one obtains an equation for the residual
vectors rk,

rk+1 = rk−1 − ωk+1(δAzk − rk + rk−1).

But Mzk = rk and multiplying by M−1 we have a relation for the generalized
residual vectors,

zk+1 = zk−1 − ωk+1(δM−1Azk − zk + zk−1),

which can be written as

zk+1 = (1− ωk+1)zk−1 + ωk+1(I − δM−1A)zk.

Iterating this relation and using the spectral decomposition of the matrix B (which
is similar to a symmetric matrix), it is obvious that zk = pk(B)z0, where the
polynomial pk satisfies the three-term recurrence of the proposition. ✷

It is well known how to obtain estimates of the extreme eigenvalues during CG
iterations. This uses the relation between the CG and Lanczos algorithms. The
paper [146] by Golub and Kent shows how to obtain estimates of the needed eigen-
values during the CSI iterations using modified moments. This is yet another ap-
plication of the use of modified moments in a linear algebra problem.

Consider the matrix C =M−1A. Then B = I − δC. The matrix C is similar to
a symmetric matrix since

C =M−1/2(M−1/2AM−1/2)M1/2.

Let A = QΛQT be the spectral factorization of the symmetric matrix A with Q
orthogonal and Λ diagonal and let S = QTM1/2. Then

B = I − δC = I − δS−1ΛS = S−1(I − δΛ)S = S−1Λ̃S.
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The columns of the matrix S−1 are the unnormalized eigenvectors of B. Since
S−TMS−1 = I , they are M -orthonormal. Then pk(B) = S−1pk(Λ̃)S. If we
denote by si the columns of the eigenvector matrix S−1, we can decompose the
initial generalized residual z0 on the eigenvectors of B,

z0 =
n∑
i=1

ᾱis
i.

Then

zk =
n∑
i=1

ᾱipk(λ̃i)si,

where the elements λ̃i = 1 − δλi are the eigenvalues of B. The inner product of
two vectors is given by

〈zk, zl〉 = (zk,Mzl) =
n∑
i=1

ᾱ2
i pk(λi)pl(λi).

As we know this sum can be written as a Riemann–Stieltjes integral with a measure
α,

〈zk, zl〉 =
∫ b

a

pk(λ)pl(λ) dα(λ).

Associated with the measure α there is a set of orthogonal polynomials ψk, k =
1, . . . , n. The modified moments mk are defined as the integral of the polynomials
pk

mk = 〈zk, z0〉 =
∫ b

a

pk(λ) dα(λ).

The coefficients of the three-term recurrence for ψk can be computed by a slight
variation of the modified Chebyshev algorithm. Let us write the three-term recur-
rences for both polynomials pk and ψk as

λpk(λ) = bk+1pk+1(λ) + ak+1pk(λ) + ckpk−1(λ),

with bk+1 = 1/ωk+1, ak+1 = 0, ck = (ωk+1 − 1)/ωk+1 and

λψk(λ) = βk+1ψk+1(λ) + αk+1ψk(λ) + γkψk−1(λ).

Given an integer m, as we have already seen, the coefficients are computed through

σ−1,l = 0, σ0,l = ml, l = 0, 1, . . . ,

α1 = a1 + b1
σ0,1

σ0,0
, γ0 = 0,

and for k = 1, . . . ,m− 1

σk,l =
1
βk
[bl+1σk−1,l+1 + (al+1 − αk)σk−1,l + clσk−1,l−1 − γk−1σk−2,l]

for l = k, . . . , 2m− k − 1,

αk+1 = ak+1 + bk+1
σk,k+1

σk,k
− bk

σk−1,k

σk−1,k−1
,
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γk = bk
σk,k

σk−1,k−1
.

The coefficients βk can be chosen to scale the polynomials ψk. The choice made
in [146] is βk = bk. The smallest and largest eigenvalues of the tridiagonal matrix

Jm =



α1 β1

γ1 α2 β2

. . . . . . . . .
γm−2 αm−1 βm−1

γm−1 αm




are the estimates we are looking for. Even though the computation of the modified
moments also require inner products, only one inner product per iteration is needed.
Moreover, it is not necessary to compute 〈zk, z0〉 at iteration k. We only need these
inner products when we want to compute estimates of the extreme eigenvalues.
Therefore, on parallel computers some inner products can be computed in parallel.

In the previous algorithm Jm is known only after 2m CSI iterations because we
need 2m moments. However (see [146]), one can take advantage of the properties
of the Chebyshev polynomials to obtain the modified moments required for the
computation of Jm only after m iterations. The polynomial of the CSI method is
given by

pk(λ) =
Ck(λ/µ)
Ck(1/µ)

,

where Ck is the Chebyshev polynomial of the first kind of degree k. Golub and
Kent used the relation

Ck+l = 2CkCl − C|k−l|,
which arises from the trigonometric identity

cos(k + l)θ = 2 cos kθ cos lθ − cos(k − l)θ.
This gives the two relations

C2k = 2C2
k − C0, C2k+1 = 2CkCk+1 − C1.

Using these relations one obtains

p2k(λ) = p2
k(λ) +

1
C2k(1/µ)

[p2
k(λ)− 1],

and something similar for p2k+1. Integrating this relation gives two modified mo-
ments

ν2k = 〈zk, zk〉+ 1
C2k(1/µ)

(〈zk, zk〉 − ν0),

ν2k+1 = 〈zk, zk+1〉+ 1
µC2k(1/µ)

(〈zk, zk+1〉 − ν1).

One may wonder why one would use this variant of the algorithm instead of CG
to solve a symmetric positive linear system, since to obtain the eigenvalue estimates
one has also to compute two inner products per iteration. However, we do not need
to compute the estimates at every iteration, and the inner products need not be
computed as soon as the vectors are computed as in the CG algorithm. Therefore,
the CSI algorithm with computation of the eigenvalues offers more flexibility than
CG on parallel computers. On the other hand, CG takes into account the distribution
of all eigenvalues.
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5.6 Inverse Eigenvalue Problems

When we have a discrete measure and therefore a discrete inner product, we may
want to compute the recurrence coefficients from the nodes tj and weights wj . As
we will see the nodes and weights are related to the eigenpairs of the Jacobi matrix.
Hence, we have an inverse eigenvalue problem in which one wants to reconstruct
a symmetric tridiagonal matrix from its eigenvalues and the first components of its
eigenvectors.

We have seen that this can be done with the Stieltjes procedure but this algorithm
may suffer from rounding errors. This inverse problem has been considered in the
paper by de Boor and Golub [79] using the Lanczos algorithm. But the Lanczos
algorithm also suffers from rounding errors. Gragg and Harrod [164] gave a more
stable algorithm based on a paper by Rutishauser [288]. Their algorithm uses or-
thogonal transformations, namely Givens rotations. This kind of algorithm has also
been used by Reichel [278], [279]. Laurie [220] proposed to use variants of the QD
algorithm; see chapter 3. On inverse eigenvalue problems see also Boutry [32]. Let
us now review these algorithms.

5.6.1 Solution Using the Lanczos Algorithm
In exact arithmetic the problem defined above of reconstructing the Jacobi matrix
from the nodes and weights can be solved by the Lanczos algorithm, see chapter 4.
The Lanczos vectors vj of the orthonormal basis of the Krylov subspace are con-
structed by three-term recurrences because of the symmetry of A. We have seen
that the basis vectors satisfy

vk = pk(A)v1, v1 = v,

where pk is a polynomial of degree k − 1. In our case we choose A = Λ = Λm a
diagonal matrix of ordermwhose diagonal elements are t1, . . . , tm the given nodes
(or eigenvalues). Therefore, we have

(vi, vj) = (pj(Λm)v, pi(Λm)v) =
m∑
l=1

pj(tl)pi(tl)v2
l = δi,j .

Hence, if the initial vector v is chosen as the vector of the square roots of the
weights w2, the Lanczos polynomials are orthogonal for the given discrete inner
product and the Jacobi matrix that is sought is the tridiagonal matrix generated by
the Lanczos algorithm. Even though it might seem strange to start from a diagonal
matrix to end up with a tridiagonal matrix, this should solve the inverse problem
defined above. Since the matrix Λm has distinct eigenvalues we should do exactly
m Lanczos iterations.

Moreover, things can also be seen in a different way. Let Km be the Krylov
matrix Km = ( v Λv · · · Λm−1v ) and Km = VmRm be a QR factorization
where Vm is an orthonormal matrix of order m and Rm an upper triangular matrix
of order m with positive elements on the diagonal. It turns out that Vm is the matrix
whose columns are the Lanczos vectors vj . Moreover, Rm is the Cholesky factor
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of the moment matrix KT
mKm. That is,

RTmRm =




1 (v,Λv) · · · (v,Λm−1v)
(v,Λv) (v,Λ2v) · · · (v,Λmv)

...
...

...
(v,Λm−1v) · · · (v,Λ2m−2v)


 .

The inner products involved in this matrix are equal to

(v,Λjv) =
m∑
l=1

tjlw
2
l ,

that is, they are the moments computed with the monomials tj . In fact, the Lanczos
algorithm progressively constructs matrices Vk which are m× k, k ≤ m such that
Kk = VkRk where Rk is upper triangular of order k. Matrices Rk are extended at
each step by one row and one column. The elements ri,j of the successive matrices
Rk can also be related to those of the Jacobi matrix Jk. If we denote the matrix Jk
by

Jk =



α1 η1

η1 α2 η2

. . . . . . . . .
ηk−2 αk−2 ηk−1

ηk−1 αk


 ,

we have r1,1 = 1 and

ηi−1 =
ri,i

ri−1,i−1
.

This shows that

η1 · · · ηk−1 = rk,k.

We also know that

α1 = r1,2, αi =
ri,i+1

ri,i
− ri−1,i

ri−1,i−1
, i = 2, · · · , k − 1, αk = wkk −

rk−1,k

rk−1,k−1
,

wkk = (vk,Λkmv)/rk,k and rk,k+1 = (vk,Λkmv). So, in principle, we can compute
the Jacobi matrix from the moment matrix. The Lanczos algorithm does this for us
in a simple and convenient way without having to use the Cholesky factorization of
the moment matrix.

However, as we have seen in chapter 4, the Lanczos algorithm can suffer badly
from rounding errors. When the rounding errors start to grow, the Lanczos vec-
tors vj lose their orthogonality. Moreover, multiple copies of some eigenvalues tj
appear among the Ritz values and this delays the convergence to the other eigen-
values. Hence, without reorthogonalization, it is not always feasible to solve the
inverse eigenvalue problem using the Lanczos algorithm.
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5.6.2 Solution Using the Stieltjes Algorithm
As we have seen before the Stieltjes algorithm can be used to solve the inverse
eigenvalue problem. Remember that if we consider monic orthogonal polynomials
pk the coefficients of the tridiagonal matrix are

αk+1 =
(tpk, pk)
(pk, pk)

, ηk =
(pk, pk)

(pk−1, pk−1)
,

αk (resp. ηk) being the diagonal (resp. off-diagonal) elements. The inner products
can be easily computed using the nodes and weights. If we want to obtain the
Jacobi matrix corresponding to orthonormal polynomials, we just have to take the
square roots of the off-diagonal elements.

It is clear that the above procedure is nothing other than the Lanczos algorithm
with a different normalization. Therefore, in floating point arithmetic it must suf-
fer also from rounding error problems. Moreover, there is a potential danger of
overflow.

5.6.3 Solution Using Rotations
In [164] Gragg and Harrod considered the reconstruction of Jacobi matrices from
the spectral data. This terse but nice paper summarizes the relation between Ja-
cobi matrices, orthogonal polynomials, continued fractions, Padé approximation
and Gauss quadrature. The main theme of this paper is to consider that in finite
precision arithmetic the Lanczos algorithm is sensitive to rounding errors and can-
not reliably solve the problem of the computation of the Jacobi matrix. However,
the authors suggested the use of a rational variant of the Lanczos algorithm de-
signed for a diagonal matrix.

Let d be the vector whose elements are β0 times the given first components.
Then, the algorithm is the following,
p−1 = 0, p0 = d, ρ2

−1 = 1,
for k = 0, 1, . . . , n− 1
wk = pk. ∗ pk, ρ2

k = eTwk

β2
k = ρ2

k/ρ
2
k−1, αk+1 = lTwk/ρ2

k

pk+1 = (l − αk+1e). ∗ pk − pk−1β2
k

end
where .∗ denotes the element-by-element multiplication, e is the vector of all 1’s,
l = Λme and βk are the off-diagonal elements.

The recommended algorithm in [164] uses orthogonal transformations to com-
pute the Jacobi matrix. Let us describe it and denote Λ = Λm for simplicity.
Assume that(

1
QT

)(
α0 dT

d Λ

)(
1

Q

)
=

(
α0 β0(e1)T

β0e
1 Jn

)
,

with Q an orthogonal matrix. This construction is done incrementally. Let us add
(δ, λ) to the data (d, Λ). We have
 1

QT

1





α0 dT δ

d Λ 0
δ 0 λ





 1

Q
1


 =


 α0 β0(e1)T δ
β0e

1 Jn 0
δ 0 λ


 .
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To tridiagonalize the matrix in the right-hand side, we use rotations to chase the
element δ in the last row and column toward the diagonal, without changing α0,
which is not needed in the algorithm. At some intermediate stage, we obtain


ᾱk−1 β′

k−1 0 δk−1

β′
k−1 αk βk(e1)T δ̄k−1

0 βke
1 Jk+1,n 0

δk−1 δ̄k−1 0 λk−1


 ,

with λk−1 = λ+ τk−1. We denote(
β′
k−1 δ̄k−1

δk−1 τk−1

)
=

(
βk−1

πk−1

)
( γk−1 σk−1 ) ,

where πk is not to be confused with the polynomial πn and γ2
k−1 + σ2

k−1 = 1. We
choose γk and σk to annihilate δk−1 with a rotation between the second and last
rows. This gives γ2

k + σ2
k = 1 and(
γk −σk
σk γk

)(
β′
k−1

δk−1

)
=

(
β̄k−1

0

)
,

which is (
γk −σk
σk γk

)(
βk−1

τk−1

)
γk−1 =

(
β̄k−1

0

)
.

Let ρk = (β2
k−1 + π2

k−1)
1/2; then

γk =
βk−1

ρk
, σk = −πk−1

ρk
, if ρk > 0,

and γk = 1, σk = 0 if ρk = 0. Hence,

β̄k−1 = γk−1ρk, σkβk−1 + γkπk−1 = 0.

Let (
β′
k

δ̄k

)
=

(
γk −σk
σk γk

)(
βk
0

)
.

The result is 

ᾱk−1 β′

k−1 0 0
β̄k−1 ᾱk β′

k(e
1)T δk−1

0 β′
ke

1 Jk+1,n δ̄ke
1

0 δk δ̄k(e1)T λk


 ,

with λk = λ+ τk and

( δk τk ) = πk ( γk σk ) , πk = σk(αk − λ) + γkσk−1βk−1,

τk = σ2
k(αk − λ)− γ2

kτk−1.

Moreover ᾱk = αk−(τk−τk−1). The Kahan–Pal–Walker version of this algorithm
squares some equations to update the squares of most of the involved quantities; see
[164]. The implementation given in Gragg and Harrod (algorithm RKPW) is the
following to add the data (λ, δ):
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γ2
0 = 1, β2

n = σ2
0 = τ0 = 0, αn+1 = λ, π2

0 = δ2

for k = 1, . . . , n+ 1
ρ2
k = β2

k−1 + π2
k−1, β̄

2
k−1 = γ2

k−1ρ
2
k

if ρ2
k = 0 then γ2

k = 1, σ2
k = 0

else γ2
k = β2

k−1/ρ
2
k, σ

2
k = π2

k−1/ρ
2
k

τk = σ2
k(αk − λ)− γ2

kτk−1

ᾱk = αk − (τk − τk−1)
if σ2

k = 0 then π2
k = σ2

k−1β
2
k−1

else π2
k = τ2

k/σ
2
k

end

Note that if ξ1 = α1 − λ and

ξk = αk − λ− β2
k

ξk−1

(which are the diagonal elements of the Cholesky-like factorization) then τk =
σ2
kξk and π2

k = τkξk. The solution is then obtained incrementally by adding one
node and one weight after the other. Note that the order in which we introduce the
new elements may have an efect on the results.

In [278], [279] Reichel considered a method very similar to the Gragg and Har-
rod method, although the implementation was slightly different.

5.6.4 Solution Using the QD Algorithm
First, for the direct problem of computing the nodes and weights from the Jacobi
matrix, Laurie [220] proposed to use variants of the QL algorithm instead of the QR
algorithm to compute the nodes and weights from the Jacobi matrix and the first
moment. The main interest of this approach is that this algorithm can be “reversed”
to give an algorithm named convqr to compute the Jacobi matrix from the nodes
and weights. It turns out that this algorithm is very close to the Gragg and Harrod
algorithm. But the Jacobi matrix is computed from bottom to top by adding a first
row and a first column at each step. This corresponds to adding one node at a time
going from the last one tm to the first one t1. However, these algorithms using
orthogonal transformations are not too sensitive to the order in which the nodes are
added.

In [220] Laurie proposed to use variants of the QD algorithm to recover the
Jacobi matrix from nodes and (positive) weights. He used the stationary QD and
the shifted progressive QD algorithms. The development of the algorithm pftoqd
is formulated using partial fraction expansion and Stieltjes and Jacobi continued
fractions but the basis is really the factorization of tridiagonal matrices. Laurie
considered

r(λ) =
n∑
j=1

wj
λ− tj

,

where tj = θ
(n)
j . He used a Stieltjes continued fraction (or S-fraction) which is

r(λ) =
e0 |
|λ− 1

− q1 |
|λ− 1

− . . .− en−1 |
|λ− qn

,
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where the coefficients are alternatively e’s and q’s. The coefficients of the S-fraction
are coefficients for a two-term recursion of orthogonal polynomials

uk+1(λ) = λpk(λ)− ekuk(λ),

pk+1(λ) = uk+1(λ)− qk+1pk(λ),

with initial conditions u0(λ) ≡ 0, p0(λ) ≡ 1. The coefficients qk and ek are
elements of the LU factorization of Jn. They can be computed by QD algorithms.
The stationary QD algorithm (dstqd) computes the S-fraction of Eσr of r for a
shifted argument

Eσ(λ)r = r(λ+ σ).

Let Zr be defined as

(Zr)(λ) = λr(λ)− lim
λ→∞

λr(λ).

The progressive QD algorithm (dqds) computes the S-fraction of EσZr from that
of r. Laurie’s algorithm pftoqd derivation starts by showing how to compute the
S-fraction of r(0) + w/λ given the S-fraction of r(0). Let

(e0, q1, e1, q2, . . . , en−1, qn)

be an augmented QD row andQ(k) be the augmented QD row of r(k) with elements
e
(k)
j and q(k)j . Rutishauser’s algorithm is the following.

1) Prepend the pair (1, w) to Q(0) to form Q(1); the corresponding rational func-
tion is

r(1)(λ) =
1

λ− w
1− r(0)(λ)

.

2) Apply the progressive QD algorithm with a zero shift to Q(1) to form Q(2);
the corresponding rational function is

r(2)(λ) = Zr(1)(λ) = λr(1)(λ)− 1.

3) Discard the first element of Q(2) and append a zero to form Q(3); the corre-
sponding rational function is

r(3)(λ) = 1− w

λr(2)(λ)
.

Therefore,

r(3)(λ) =
w

λ
+ r(0)(λ).

Laurie assumed that the nodes are sorted as t1 < t2 < · · · < tm and denoted the
differences as σj = tj − tj−1. The following algorithm computes the sum

r1(λ) =
m∑
j=1

wj
λ− tj

.
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rm(λ) =
wm

λ− σm
for j = m− 1, . . . , 1
r̃j(λ) = rj+1(λ) +

wj
λ

rj(λ) = r̃j(λ− σj)
end

The same algorithm can be expressed using QD rows. This is Laurie’s pftoqd
algorithm:

Q = (w1 w2 · · · wm 0 · · · 0 )
k = m+ 1
Q(k) = σm
for j = m− 1, . . . , 1

apply dqd to Q(j : k)
apply dstqd(−σj) to Q(j + 1 : k + 1)
k = k + 1

end

The number of floating point operations of this algorithm is (9/2)n2, to be com-
pared to (11/2)n2 operations for convqr. When the QD row has been computed,
the Jacobi matrix can be recovered from

αk+1 = qk+1 + ek, βk = qkek.

The previous algorithms for computing the solution of the inverse problem will
be compared on several examples in the second part of this book. For computations
using also the QD algorithm see Cuyt [72].

5.7 Modifications of Weight Functions

In this section we consider measures α defined through a weight function w by
dα(λ) = w(λ) dλ. A problem that has been considered in many papers during the
last 40 years is how to obtain the coefficients of the three-term recurrences of or-
thogonal polynomials related to a weight function r(λ)w(λ) when the coefficients
of the orthogonal polynomials related to w are known and r is a polynomial or
a rational function. This problem was first studied by Christofell in 1858 when
r(λ) = λ − β. The general solution was given by V. B. Uvarov [331], [332].
However, the solution is given using determinants and this is difficult to use for
computation, although it has been used by Gautschi [131]. Another related prob-
lem is consideration of a weight function given as the sum of two weight functions
with known orthogonal polynomials.

The general problem when r is the ratio of two polynomials can be broken into
easier problems by writing

∫ b

a

r(λ)w(λ) dλ) =
∫ b

a


q(λ) +∑

i

ai
λ− ti

+
∑
j

bjλ+ cj
(λ− xj)2 + y2

j


w(λ) dλ,
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where q is a real polynomial, ti, i = 1, 2, . . . and zj = xj ± ıyj , ı =
√−1, j =

1, 2, . . . are the real and complex roots of the denominator of r. Hence, it is enough
to consider multiplication by polynomials and division by linear and quadratic fac-
tors if we know the roots of the denominator of the rational function. We have also
to use an algorithm for sums of weight functions.

Let us consider some of the algorithms that have been proposed for solving these
problems; see [202], [110], [142], [101], [99], [131], [307].

5.7.1 Sum of Weights
The problem considered in Fischer and Golub [110] is the following. Let [lj , uj ], j =
1, . . . , N with l1 ≤ l2 ≤ · · · ≤ lN be N intervals that can be disjoint or not and
let wj be a nonnegative weight function defined on [lj , uj ]. There are orthogonal
polynomials p(j)

k associated with every wj satisfying three-term recurrences,

λp
(j)
k (λ) = β

(j)
k+1p

(j)
k+1(λ) + α

(j)
k+1p

(j)
k (λ) + γ

(j)
k p

(j)
k−1(λ), (5.10)

p
(j)
−1(λ) ≡ 0, p

(j)
0 (λ) ≡ 1.

Let l = l1 and u = maxj uj and

w(λ) =
N∑
j=1

εjχ[lj ,uj ]wj(λ),

where |εj | ≤ 1 and χ[lj ,uj ] is the characteristic function of the interval [lj , uj ]
with values 0 outside and 1 inside the interval. The problem is to generate the
coefficients βk, αk, γk of the orthogonal polynomial associated with w given the
coefficients β(j)

k , α
(j)
k , γ

(j)
k and the zero-order moments,

µ
(j)
0 =

∫ uj

lj

wj(λ) dλ.

The inner product associated with w is

〈f, g〉 =
N∑
j=1

εj

∫ uj

lj

f(λ)g(λ)wj(λ) dλ.

All the algorithms considered in [110] need to compute 〈p, 1〉 where p is a polyno-
mial of degree less than or equal to 2n for a given n. This can be done by using
Gauss quadrature with n nodes for every wj .

The tridiagonal matrix T (j)
n defined by equation (5.10) and associated with the

function wj is not symmetric. However, as we have seen, it can be symmetrized
using a diagonal matrix D(j)

n . Then, J (j)
n = (D(j)

n )−1T
(j)
n D

(j)
n is the Jacobi matrix

associated with wj . We will see in chapter 6 that the nodes of the Gauss quadrature
are the eigenvalues of J (j)

n and the weights are the squares of the first elements of
the eigenvectors. Then 〈p, 1〉 can be computed as

〈p, 1〉 =
N∑
j=1

εjµ
(j)
0 (e1)T p(J (j)

n )e1.
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The algorithm that worked the best for the examples considered in [110] is simply
the Stieltjes procedure. For the sake of simplicity, let us take the number of intervals
N = 2. Let ψk be the monic polynomial (βk = 1) associated with w and let ψ̂k be
the corresponding orthonormal polynomial which satisfies

λψ̂k(λ) = γ̂k+1ψ̂k+1(λ) + α̂k+1ψ̂k(λ) + γ̂kψ̂k−1(λ),

ψ̂−1(λ) ≡ 0, ψ̂0(λ) ≡ (ε1µ
(1)
0 + ε2µ

(2)
0 )−1/2.

Therefore ψ̂k(λ) = 〈ψk, ψk〉−1/2ψk(λ). The coefficients are given by

α̂k+1 = αk+1 =
〈λψk, ψk〉
〈ψk, ψk〉 ,

γ̂k =
√
γk =

( 〈ψk, ψk〉
〈ψk−1, ψk−1〉

)1/2

.

These coefficients can be computed in the following way. Let n be given and for
k < n, z(j)

k = ψk(J
(j)
n )e1, j = 1, 2, then we have the three-term recurrence

z
(j)
k+1 = (J (j)

n − αkI)z
(j)
k − γkz

(j)
k−1.

The starting vectors are z(j)
0 = e1 and

z
(j)
1 =

(
J (j)
n − ε1µ

(1)
0 (J (1)

n )1,1 + ε2µ
(2)
0 (J (2)

n )1,1
ε1µ

(1)
0 + ε2µ

(2)
0

)
z
(j)
0 .

Therefore, by using Gauss quadrature,

〈ψk, ψk〉 = ε1µ
(1)
0 (z(1)

k )T z(1)
k + ε2µ

(2)
0 (z(2)

k )T z(2)
k ,

and

αk+1 =
ε1µ

(1)
0 (z(1)

k )TJ (1)
n z

(1)
k + ε2µ

(2)
0 (z(2)

k )TJ (2)
n z

(2)
k

ε1µ
(1)
0 (z(1)

k )T z(1)
k + ε2µ

(2)
0 (z(2)

k )T z(2)
k

,

γk =
ε1µ

(1)
0 (z(1)

k )T z(1)
k + ε2µ

(2)
0 (z(2)

k )T z(2)
k

ε1µ
(1)
0 (z(1)

k−1)T z
(1)
k−1 + ε2µ

(2)
0 (z(2)

k−1)T z
(2)
k−1

.

Two other algorithms proposed in [110] used modified moments

µk = 〈qk, 1〉 =
∫ u

l

qk(λ)w(λ) dλ,

where qk, k = 1, 2, . . . is a given suitable set of auxiliary polynomials and the
modified Chebyshev algorithm. However, since the numerical results given in [110]
are not better than with the Stieltjes method we do not report on them here.

In [101] Elhay, Golub and Kautsky considered the problem from another per-
spective. With two weight functions w1 and w2 they set up the following problem:
Given the Jacobi matrices J1 and J2 of dimensions n1 and n2 corresponding to w1

and w2, find a Jacobi matrix J for the weight function w = w1 ± w2. If it exists
what will be its dimension?

Let W(J, n) denote the set of normalized weight functions corresponding to J
of dimension n and thus to the first 2n moments.
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THEOREM 5.9 Given the Jacobi matrices J1 and J2 of dimensions n1 and n2 and
ε1 + ε2 = 1, ε1, ε2 ≥ 0, let n = min{n1, n2}. Then there exists J of dimension n
such that w = ε1w1 + ε2w2 belongs to W(J, n) for any w1 ∈ W(J1, n1) and any
w2 ∈ W(J2, n2).

Proof. See [101]. Clearly, the moments of a sum of weight functions are the sums
of the corresponding moments. This gives the solution of the problem. ✷

Three different algorithms are proposed in [101] to compute J from J1 and J2.
Let us consider the one that seems the most robust. It is denoted as JJR and uses
orthogonal matrices. Let

J3 =
(
J1 0
0 J2

)
,

and some J4 of which the leading n× n submatrix will be the required J . How to
obtain J4 is characterized in the following theorem.

THEOREM 5.10 Given J1 and J2, the orthogonal matrixQ such that J4 = QJ3Q
T

must satisfy

QT e1 =
(√

ε1e
1

√
ε2e

1

)
. (5.11)

Proof. Let Ji = QiΛiQTi , i = 1, 2, 4 be the respective spectral decompositions
with Qi orthogonal and Λi orthogonal. The weights of the corresponding Gauss
quadratures are the squares of the first components of the eigenvectors wi = QTi e

1;
see chapter 6. To merge the Gauss quadratures of J1 and J2, the requirement is

Λ4 =
(
Λ1 0
0 Λ2

)
, w4 =

(√
ε1w

1

√
ε2w

2

)
.

Then,

J4 = Q4

(
QT1 J1Q1 0

0 QT2 J2Q2

)
QT4 = QJ3Q

T ,

where

Q = Q4

(
QT1 0
0 QT2

)
.

Hence, we have

QT e1 =
(
Q1 0
0 Q2

)
w4 =

(√
ε1Q1w

1

√
ε2Q2w

2

)
=

(√
ε1e

1

√
ε2e

1

)
,

as required. ✷

Therefore, Q must be constructed to satisfy equation (5.11) and such that J4 is
tridiagonal. The matrix Q can be built as the product of orthogonal matrices. The
algorithm proposed in [101] to minimize the complexity is the following. First,
a permutation similarity P is applied to J3 and QT e1. P selects the rows in the
order 1, n + 1, 2, n + 2, . . . , n, 2n. The resulting permuted matrix PJ3P

T is a
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five-diagonal matrix (which can also be considered as a block tridiagonal matrix or
a banded matrix) with a checkerboard-like structure

x 0 x 0
0 x 0 x 0
x 0 x 0 x 0
0 x 0 x 0 x

. . . . . . . . .

LetR be a rotation matrix combining the first and second rows such thatR(
√
ε1e

1+√
ε2e

2) = e1. The matrix Ĵ = RPJ3P
TRT has the following structure

x x x x
x x x x 0
x x x 0 x 0
x x 0 x 0 x

. . . . . . . . .

Now, we can apply a series of rotations (not involving the first row) whose product
is R̂ such that R̂ĴR̂T is tridiagonal. The matrix Q in theorem 5.10 is Q = R̂RP .
This is not expensive since Ĵ can first be turned into a five-diagonal matrix J̃ (zero-
ing the outer diagonals) in O(n) operations. Then this last matrix can be reduced to
tridiagonal structure inO(n2) operations. We need only the leading n×n submatrix
of the result, which is J . The complexity is about 14n2+O(n). The corresponding
code is provided in [101].

5.7.2 Multiplication by a Polynomial
Let r be a real polynomial of degree m strictly positive on [a, b]. We are interested
in computing the Jacobi matrix corresponding to r(λ)w(λ). The solution proposed
by Fischer and Golub [142] is to use the modified Chebyshev algorithm since the
modified moments can be easily computed.

Another algorithm is given in Gautschi [131] for multiplication by a linear factor
which relies on Uvarov’s results [332]. For a polynomial of degree larger than 1 this
can be applied repeatedly if we know the roots of the polynomial. Generalizations
of these problems to general linear functionals are studied in Bueno and Marcellán
[43].

Other algorithms were proposed earlier by Kautsky and Golub [202] for general
polynomials of which the roots are not necessarily known. However, we assume
that the roots of r are outside of [a, b] and that r(λ) is positive on [a, b]. These
algorithms are based on transformations of (not necessarily orthogonal) polynomial
bases. Let J be a lower Hessenberg matrix of order k with nonzero superdiagonal
elements β1, . . . , βk−1 and βk �= 0, p0 �= 0; there exist polynomials pj of exact
degree j such that if P = ( p0 p1 . . . pk−1 )

T we have the relation

λP (λ) = JP (λ) + βkpk(λ)ek. (5.12)

Now, we are interested in the relations between two Hessenberg matrices. This is
given in the following lemma.
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LEMMA 5.11 Let J and J̃ be two lower Hessenberg matrices of order k (with
nonzero superdiagonal elements). There exists a unique (up to a scalar factor)
nonsingular lower triangular matrix L and a vector c such that

LJ̃ = JL+ ekcT . (5.13)

Moreover, if P, pk and P̃ , p̃k are the polynomial bases corresponding to J and J̃ ,
then

P = LP̃ ,

βkpk − β̃kp̃k(ek)TLek = cT P̃ .

Proof. Since P and P̃ are polynomial bases of exact degree, it is obvious that there
exists a triangular matrix L such that P = LP̃ . Substituting this relation into
equation (5.12) and subtracting the same identity with tildes, we have

(JL− LJ̃)P̃ + (βkpk − β̃kp̃k(ek)TLek)ek = 0.

The scalar in the parenthesis in the left-hand side has to be a polynomial of degree
less than k that can be written as cT P̃ for some vector c. Since this is true for all
P̃ , it gives equation (5.13). ✷

Conversely, given J and a vector c but not knowing L, the matrix J̃ is determined
by equation (5.13). When J and J̃ are symmetric (and therefore tridiagonal) this
relation is similar to that of the Lanczos algorithm of chapter 4 if we know the first
column u = Le1 except that the matrix L is triangular and not orthogonal. Then
Kautsky and Golub [202] were interested in the dependence of the result upon the
vector c. This needs the introduction of a new definition. The mth perdiagonal
of a matrix A is the set of elements ai,j such that i + j = m + 1 (so to speak,
perdiagonals are “orthogonal” to the usual diagonals).

THEOREM 5.12 Let J be a lower Hessenberg matrix (with nonzero superdiagonal
elements) and c and u be given vectors. Then there exist a symmetric tridiagonal
matrix J̃ and a lower triangular matrix L satisfying equation (5.13) and such that
Le1 = u. Moreover, if J is tridiagonal, then for i ≥ 0 the first k+i perdiagonals of
L and the first k+ i− 1 perdiagonals of J̃ are independent of cj , j = i+1, . . . , k.

Proof. See [202]. ✷

If the polynomial basis is orthonormal on an interval [a, b] for a weight function
w, the matrix J is tridiagonal and we have the following properties.

LEMMA 5.13 ∫ b

a

pkPw dλ = 0,
∫ b

a

p2
kw dλ = 1,

∫ b

a

PPTw dλ = I,

∫ b

a

λPPTw dλ = J.
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Proof. See Golub and Kautsky [145]. The results are obtained using the orthonor-
mality of the polynomials. ✷

If the basis defined by P̃ , p̃k is also orthonormal on [a, b] but for a weight func-
tion w̃, the following result gives an expression for J̃ .

THEOREM 5.14 Let

M =
∫ b

a

PPT w̃ dλ, M1 =
∫ b

a

λPPT w̃ dλ.

Then
M = LLT ,

with P = LP̃ , L being lower triangular. The Jacobi matrix J̃ related to w̃ is
J̃ = L−1M1L

−T .

Proof. This is obtained by substituting P = LP̃ in the relations of lemma 5.13. ✷

In the simple case of a polynomial of degree 1, r(λ) = λ − β, we have the
relations ∫ b

a

P̃ P̃T (λ− β) dλ = I,

∫ b

a

λP̃ P̃T dλ = L−1JL−T .

Since P̃ = L−1P , this gives L−1(J − βI)L−T = I . Therefore,
J − βI = LLT .

The lower triangular matrix L is the Cholesky factor of J − βI (which is positive
or negative definite) and J1 = LTL + βI is, but for the last row and column, the
Jacobi matrix for rw. Such a modification is called a Christoffel transformation, see
Galant [118], [119]. However, in numerical computations, depending on the value
of the shift β, the factorization of J −βI may not always be fully accurate. Simple
modifications of the LU factorization algorithm have been suggested in Bueno and
Dopico [42] to overcome this problem.

Note that, since the polynomials pk are orthonormal relative to w, the matrices
M and M1 contain modified moments. Now, let us come back to the situation
where w̃ = rw, r being a polynomial of degree m and we assume that we do not
know the roots of r.

THEOREM 5.15 Let k > m; then the first k −m elements of c defined in equa-
tion (5.13) vanish.

Proof. We have

cT =
∫ b

a

(βkpk − β̃kp̃k(ek)TLek)P̃T w̃ dλ = βk

∫ b

a

pkP
T rwL−T dλ.

The result follows because of the orthogonality of pk and the fact that L−T is upper
triangular. ✷

Let Zk,m (or Zm when the value of k is not specifically needed) be the set of
matrices of order k whose first 2k−1−m perdiagonals vanish. The characterization
of the dependence on c is given in the following results. The next lemma gives
properties of matrices with vanishing perdiagonals; see [202].
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LEMMA 5.16 If J is lower Hessenberg, L lower triangular and Z ∈ Zm then
ZT , LZ,ZLT ∈ Zm and JZ ∈ Zm+1. Moreover, if L̃ is a triangular matrix such
that LLT − L̃L̃T ∈ Zm, then L− L̃ ∈ Zm.

The next theorem is a generalization of an identity of lemma 5.13.

THEOREM 5.17 Let r be a polynomial of degree m. Then∫ b

a

rPPTw dλ− r(J) ∈ Zm−1, j ≤ m.

Proof. Since r is a polynomial, it is sufficient to show that∫ b

a

λjPPTw dλ− Jj ∈ Zm−1.

This is done by induction on j. ✷

The main result of Kautsky and Golub [202] is the following theorem.

THEOREM 5.18 Let r be a polynomial of degree m < k such that the Cholesky
factorization r(J) = L1L

T
1 exists where L1 is lower triangular. Let J1 = L−1

1 JL1

and B = J [r(J)]−1. Then

1) B is symmetric and B = [r(J)]−1J ,

2) J1 = LT1 BL1,

3) J1 is a symmetric tridiagonal matrix,

4) J̃ − J1 ∈ Zm where J̃ is the Jacobi matrix corresponding to w̃ = rw.

Proof. See [202]. The proof is obtained by using the spectral factorization of J . ✷

Given a shift β and a scalar σ �= 0, consider a decomposition σ(J − βI) = XR
with X nonsingular and R upper triangular. The matrix

Ĵ =
1
σ
RX + βI

is similar to J . Since J is also similar to J1 = LT1 JL
−T
1 , we are interested in the

conditions on X to have Ĵ = J1.

PROPOSITION 5.19 If

XXT = σ2(J − βI)[r(J)]−1(J − βI),

then Ĵ = J1.

Proof. We have

XXT = XR[r(J)]−1RTXT ,

and R = LT1 follows from the uniqueness of the Cholesky factorization of r(J). ✷

If r is a polynomial of degree 1 written as r = σ(λ − β), the relation in propo-
sition 5.19 is XXT = σ(J − βI) and (as we have already seen) we can choose
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X = RT = L1. For general polynomials, one can proceed in the following way.
Let J = ZΘZT be the spectral decomposition of J with Z orthogonal and Θ
diagonal and D2 = r(Θ), Θβ = Θ− βI . Then we must have

ZTXXTZ = σ2ΘβD−2Θβ .

This implies that the matrix U = (1/σ)DΘ−1
β ZTX must be orthogonal. Since

ZTXR = σΘβZT , we have

UR = DZT . (5.14)

Hence U and R can be obtained by the QR factorization of DZT . Since X =
σZΘβD−1U ,

J1 = Ĵ = X−1JX = UTΘU.

This gives us the theoretical solution of the problem. Using the spectral decompo-
sition of J we have to compute the QR factorization ofDZT in equation (5.14) and
then J1 = UTΘU . From J1 we can obtain J̃ of order k− [m/2]−1 corresponding
to the weight w̃ = rw. These theoretical results can be turned into several practical
numerical methods to compute J̃ ; see Kautsky and Golub [202].

Choosing c = 0, one can use the relation L1J1 = JL1 to compute J1 as long
as u = L1e

1 is known. But, if d = r(J)e1, then u =
√
d1d and d is obtained by

d = Zr(Θ)ZT e1. Only them+1 first rows of Z are needed. This is a Lanczos-like
algorithm.

The second algorithm is the polynomial shift implicit QR (PSI QR). It performs
an implicit QR factorization of the matrix DZT . The matrix U is sought in the
form U = H1 · · ·Hk−1 where Hj is a symmetric Householder transformation with
the requirement that the matrix

Hk−1 · · ·H1ΘH1 · · ·Hk−1

should be tridiagonal. See [202] for details.

5.7.3 Weight Functions Not of One Sign
Kautsky and Elhay [201] generalized Jacobi matrices to arbitrary weight functions
w. Let pk, k = 1, 2, . . . be a set of monic polynomials and

P = (p0(λ), p1(λ), . . . , pk−1(λ))T ;

then there exists a lower Hessenberg matrix K with 1’s on the superdiagonal such
that

λP (λ) = KP (λ) + pk(λ)ek.

From this relation we have that any zero of pk is an eigenvalue of K. Let w be a
weight function on [a, b]. We denote by M the symmetric Gramian matrix

M =
∫ b

a

PPT w dλ.

Then

KM =
∫ b

a

λPPT w dλ− ekcT ,
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where

c =
∫ b

a

pkP w dλ.

The matrix KM is a symmetric matrix plus a rank-one correction to its last row.
The k − 1 first elements of c are determined by K and M since

c− (cT ek)ek = (KM −MKT )ek.

The polynomial pk is orthogonal to the previous polynomials pj , j = 0, . . . , k −
1 if and only if c = 0. When the polynomials of degrees from 0 to k are all
mutually orthogonal, then M is diagonal and K is tridiagonal. If the polynomials
are normalized M is the identity matrix. In the case of a sign changing weight
function M may no longer be diagonal.

A particular polynomial pj−1 is orthogonal to all polynomial of smaller degrees
if and only if the last row and column of the j × j principal submatrix of M can
have a nonzero element only on the diagonal. Such a matrixM is called j-diagonal.
The eigenvalues of the (j − 1)× (j − 1) principal submatrix are the zeros of pj−1.

Elhay and Kautsky derived an algorithm which, givenK andM forw, computes
K̂ and M̂ for ŵ(λ) = (λ− β)w(λ). Let

(K − βI)M =




Yj yj
...

(yj)T aj · · ·
· · · ...

. . .


 ,

L =




Lj 0
...

(lj)T 1 · · ·
· · · ...

. . .


 , M̂ =




M̂j m̂j
...

(m̂j)T d̂j · · ·
· · · ...

. . .


 .

With these notations we obtain

Yj = LjM̂jL
T
j ,

Lj(M̂j l
j + m̂j) = yj ,

aj + δj,kc
T ek = (lj)T (M̂lj + 2m̂j) + d̂j .

The matrices L and M̂ can be built one row and column at a time. The aim of Elhay
and Kautsky was to construct an M̂ which is i-diagonal for as many i = 1, 2, . . . , k
as possible. We can set m̂j = 0 if M̂j is nonsingular and then lj is the solution of

M̂j l
j = zj = L−1

j yj .

For a singular M̂j we can choose either lj = 0, m̂j = zj or a least squares solu-
tion of M̂j l

j � L−1
j yj and set m̂j = zj − M̂j l

j . On this topic and for general
polynomials, see also [98].
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5.7.4 Division by a Polynomial
We are interested in cases for which (a) r(λ) = 1/(λ − β) or (b) r(λ) = 1/((λ −
β)2 + γ2) and we assume that β is not in the interval [a, b]. This problem has
been considered by Golub and Fischer [142] who used the modified Chebyshev
algorithm and an algorithm due to Gautschi to compute the modified moments.
The problem was also solved by Gautschi [131] using Uvarov’s results. See also
Paszkowski [271]. In the following we will describe the solution given by Elhay
and Kautsky [99].

Many methods for a linear divisor as λ− β are based on a so-called “inversion”
of methods for multiplication by a linear factor. If w̃ = w/r, then∫ b

a

f(λ)w(λ) dλ =
∫ b

a

f(λ)r(λ)w̃(λ) dλ.

Therefore, if we know how to compute J from J̃ by a multiplication algorithm, we
might expect to compute J̃ from J by “inverting” this algorithm.

The work of Elhay and Kautsky is based on the following result; see [99].

THEOREM 5.20 Let P (λ) = [p0(λ), p1(λ), . . . , pk−1(λ)]T and let βi be the ele-
ments on the subdiagonal of J . If r is any analytic function, we have

(J − λI)P (λ)r(λ) = (J − λI)r(J)P (λ) + βkpk(λ)(r(J)− r(λ)I)ek.

If λ is not an eigenvalue of J ,

P (λ)r(λ) = r(J)P (λ) + βkpk(λ)(J − λI)−1(r(J)− r(λ)I)ek. (5.15)

If the shift β is a root of pk, then r(β) is an eigenvalue of r(J) and P (λ) is an
eigenvector.

Proof. See [99]. The proof is based on the fact that, if r is analytic, then J and
r(J) commute. ✷

Then, if P (λ) = LP̃ (λ) with L lower triangular, multiplying equation (5.15) on
the right by P (λ)T /r(λ) and integrating, we obtain

I = r(J)LLT

+βk
∫ b

a

(cT P̃ (λ) + γkp̃k(λ))(J − λI)−1(r(J)− r(λ)I)ekP̃ (λ)T dα̃LT ,

where c is the vector of coefficients of P̃ in the development of pk in terms of the
p̃j’s, pk(λ) = cT P̃ +γkp̃k(λ). If we consider case (a) with r(λ) = λ−β, we have
a much simpler relation since some terms cancel by orthogonality,

I = (J − βI)LLT + βke
kcTLT .

Note that if we compute a UL Cholesky-like factorization LJTLJ of J − βI and
take L = L−1

J , then the previous relation is satisfied up to the last row. The solution
chosen by Elhay and Kautsky is to compute the elements li,j and di of a solution
of the equation

I = J̃LLT + ekdT ,
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for a given l1,1 �= 0. Let αj and ηj be the coefficients of the tridiagonal matrix
J̃ = J − βI of order k. Let li,j be the elements of L and LT be the transpose of
L. The first element of the first column of L is known. By identification we have
l2,1 = (1/l1,1 − α1l1,1)/η1. The other elements of the first column are given by

li+1,1 = −(ηi−1li−1,1 + αili,1)/ηi, i = 2, . . . , k − 1.

Then, for j = 2, . . . , k we compute the diagonal elements using the equation

ηj−1l
2
j,j =−ηj−2Lj−2,1:j−2L

T
1:j−2,j − αj−1Lj−1,1:j−1L

T
1:j−1,j

−ηj−1Lj,1:j−1L
T
1:j−1,j .

For j = 2 the first term in the right-hand side does not exist. We have used a
Matlab-like notation for the rows and columns of L and LT . The other elements of
the column j are computed by

ηili+1,j lj,j = δi,j − ηi−1Li−1,1:min(i−1,j)L
T
1:min(i−1,j),j

−αiLi,1:min(i,j)L
T
1:min(i,j),j

−ηiLi+1,1:j−1L
T
1:j−1,j , i = j, . . . , k − 1.

If one wants to compute also the vector d, the first element is d1 = −(ηk−1lk−1,1+
αklk,1)l1,1. The other elements can be computed at the end of the loop on j by

dj = −(ηk−1Lk−1,1:min(k−1,j)L
T
1:min(k−1,j),j + αkLk,1:jL

T
1:j,j).

Note that since L−TL−1− J̃ = ekdTL−TL−1 and the matrix on the left-hand side
is symmetric the row vector dTL−TL−1 must have all its components equal to zero
except for the last one. This can be considered as a check of the accuracy of the
computation. This algorithm is known as the inverse Cholesky algorithm.

For the initial value we have l1,1 =
√
µ̃0/µ0 with

µ̃0 =
∫ b

a

1
λ− β

dα.

This Cauchy integral is known for classical measures or can be computed by an
algorithm due to Gautschi [131]. For instance, for the Legendre measure, we have

µ̃0 = log
(
β − 1
β + 1

)
,

and for the Chebyshev case (first kind) we have µ̃0 = π/
√
β2 − 1.

For case (b) one has to consider an equation of the type

I = J̃2LLT + ekdT + ek−1fT ,

where d and f are vectors. An algorithm for its solution is given in [99]. It requires
the principal 2× 2 matrix of L as input.



Chapter Six

Gauss Quadrature

6.1 Quadrature Rules

Given a measure α on the interval [a, b] and a function f (such that its Riemann–
Stieltjes integral and all the moments exist), a quadrature rule is a relation∫ b

a

f(λ) dα =
N∑
j=1

wjf(tj) +R[f ]. (6.1)

The sum in the right-hand side is the approximation of the integral on the left-
hand side and R[f ] is the remainder, which is usually not known exactly. The real
numbers tj are the nodes and wj the weights of the quadrature rule. The rule is
said to be of exact degree d if R[p] = 0 for all polynomials p of degree d and there
are some polynomials q of degree d+ 1 for which R[q] �= 0.

Quadrature rules of degree N − 1 can be obtained by interpolation. The func-
tion f is approximated by an interpolation polynomial. For instance, we may use
Lagrange interpolation which, given the nodes tj , is written as

f(λ) ≈
N∑
i=1

f(ti)li(λ),

where li(λ) is a Lagrange polynomial

li(λ) =
N∏

j=1
j �=i

λ− tj
ti − tj

.

The corresponding quadrature formula is obtained by integrating the interpolation
formula. The nodes are the given interpolation points tj and the weights are

wi =
∫ b

a

li(λ) dα(λ).

Such quadrature rules are called interpolatory. Newton–Cotes formulas are defined
by taking the nodes to be equally spaced. When this is not the case, a popular choice
for the nodes is the zeros of the Chebyshev polynomial of degree N . This is called
the Fejér quadrature rule; see Gautschi [131] and Weideman and Trefethen [347].
Another interesting choice is the set of extrema of the Chebyshev polynomial of
degree N − 1. This gives the Clenshaw–Curtis quadrature rule; see Clenshaw
and Curtis [67], Trefethen [327] and the references therein. In both cases, the
weights can be computed analytically. For relations of interpolatory quadrature
with matrices, see Kautsky [198] and Kautsky and Elhay [200].
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A way to obtain quadrature rules of higher degrees is to consider the nodes tj
to be unknowns. These quadrature rules are linked to moments and orthogonal
polynomials; see Gautschi [129], [130]. To introduce the relation of quadrature
with orthogonal polynomials we quote the following result from Gautschi [131].

THEOREM 6.1 Let k be an integer, 0 ≤ k ≤ N . The quadrature rule (6.1) has
degree d = N − 1 + k if and only if it is interpolatory and

∫ b

a

N∏
j=1

(λ− tj)p(x) dα = 0, ∀p polynomial of degree ≤ k − 1. (6.2)

If the measure is positive k = N is maximal for interpolatory quadrature since
if k = N + 1 the condition in the last theorem would give that the polynomial

N∏
j=1

(λ− tj)

is orthogonal to itself, which is impossible when the measure is positive. The opti-
mal quadrature rule of degree 2N − 1 is called a Gauss quadrature rule [124] since
it was introduced by C. F. Gauss at the beginning of the nineteenth century. Of
course, it remains to explain how to compute the nodes and the weights.

In this chapter we consider the approximation of a Riemann–Stieltjes integral by
Gauss quadrature. The general formula we will use is

I[f ] =
∫ b

a

f(λ) dα(λ) =
N∑
j=1

wjf(tj) +
M∑
k=1

vkf(zk) +R[f ], (6.3)

where the weights [wj ]Nj=1, [vk]
M
k=1 and the nodes [tj ]Nj=1 are unknowns and the

nodes [zk]Mk=1 are prescribed; see Davis and Rabinowitz [78], Gautschi [125], [128]
and Golub and Welsch [160]. If M = 0, this leads to the Gauss rule with no
prescribed nodes [124]. If M = 1 and z1 = a or z1 = b we have the Gauss–
Radau rule [276]. If M = 2 and z1 = a, z2 = b, this is the Gauss–Lobatto rule
[228]. Note that equation (6.3) implies that the Gauss rule will integrate exactly a
polynomial of degree 2N − 1 by evaluating the polynomial at N points.

The term R[f ] is the remainder which generally cannot be explicitly computed.
If the measure α is a positive nondecreasing function and if f is smooth enough, it
is known (see for instance Stoer and Bulirsch [314]) that

R[f ] =
f (2N+M)(η)
(2N +M)!

∫ b

a

M∏
k=1

(λ− zk)


 N∏
j=1

(λ− tj)




2

dα(λ), a < η < b.

(6.4)
Note that for the Gauss rule, the remainder R[f ] has the sign of f (2N)(η). On
the remainder of quadrature rules for analytic functions, see Gautschi and Varga
[134]. For the sensitivity of Gauss quadrature to perturbations of the measure, see
O’Leary, Strakoš and Tichý [252].
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6.2 The Gauss Quadrature Rules

6.2.1 The Gauss Rule
One way to compute the nodes and weights is to use monomials λi, i = 1, . . . , 2N−
1 as functions and to solve by brute force (for instance, the Newton method) the
nonlinear equations expressing the fact that the quadrature rule is exact. In this
section we recall how the nodes and weights of the Gauss rule can be more easily
obtained and show the connection of Gauss quadrature with orthogonal polyno-
mials. From the theorems of chapter 2 for the measure α, there is a sequence of
polynomials p0(λ), p1(λ), . . . which are orthonormal with respect to α:∫ b

a

pi(λ)pj(λ) dα(λ) =
{
1, if i = j,
0, otherwise,

and the polynomial pk is of exact degree k. Moreover, the roots of pk are distinct,
real and lie in the interval [a, b]. This set of orthonormal polynomials satisfies a
three term recurrence relationship:

γjpj(λ) = (λ− ωj)pj−1(λ)− γj−1pj−2(λ), j = 1, 2, . . . , N (6.5)

p−1(λ) ≡ 0, p0(λ) ≡ 1,

assuming that
∫
dα = 1. Let us assume that we know the coefficients ωj and γj .

As we have seen in previous chapters, the three-term recurrence can be written in
matrix form as

λP (λ) = JNP (λ) + γNpN (λ)eN ,

where

P (λ) = [p0(λ) p1(λ) · · · pN−1(λ)]T , (6.6)

eN = (0 0 · · · 0 1)T ,
and

JN =



ω1 γ1

γ1 ω2 γ2

. . . . . . . . .
γN−2 ωN−1 γN−1

γN−1 ωN


 (6.7)

is a Jacobi matrix. We note that all the eigenvalues of JN are real and simple since
γi �= 0, i = 1, . . . , N − 1.

THEOREM 6.2 The eigenvalues of JN (the so-called Ritz values θ(N)
j which are

also the zeros of pN ) are the nodes tj of the Gauss quadrature rule (i.e., M = 0).
The weights wj are the squares of the first elements of the normalized eigenvectors
of JN .
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Proof. This is shown in Wilf [349] and Golub and Welsch [160]. By theorem 6.1,
the monic polynomial

N∏
j=1

(λ− tj)

is orthogonal to all polynomials of degree less than or equal to N − 1. Therefore,
(up to a multiplicative constant) it is the orthogonal polynomial associated to α and
the nodes of the quadrature rule are the zeros of the orthogonal polynomial, that is,
the eigenvalues of JN .

The vector P (tj) is an unnormalized eigenvector of JN corresponding to the
eigenvalue tj . If q is an eigenvector with norm 1, we have P (tj) = ωq with a scalar
ω. As a consequence of the Christoffel–Darboux relation (see theorem 2.11), we
have

wjP (tj)TP (tj) = 1, j = 1, . . . , N.

Then,

wjP (tj)TP (tj) = wjω
2‖q‖2 = wjω

2 = 1.

Hence, wj = 1/ω2. To find ω we can pick any component of the eigenvector q, for
instance, the first one that is different from zero. This gives ω = p0(tj)/q1 = 1/q1.
Then the weight is given by

wj = q21 .

If the integral of the measure is not 1, we obtain

wj = q21µ0 = q21

∫ b

a

dα(λ).

✷

Therefore, the knowledge of the Jacobi matrix (and eventually of the first mo-
ment) allows us to compute the nodes and weights of the Gauss quadrature rule.
It is shown in Golub and Welsch [160] how the squares of the first components of
the eigenvectors can be computed without having to compute the other components
with a QR-like method. On the QR algorithm applied to tridiagonal matrices, see
also Gates and Gragg [123]. Expressions for the first element of an eigenvector
are also given in chapter 3, but we will see that in many cases we do not have to
compute the nodes and weights to be able to use the quadrature rule.

For the Gauss quadrature rule (renaming the weights and nodes wGj and tGj ), we
have

I[f ] =
∫ b

a

f(λ) dα(λ) =
N∑
j=1

wGj f(t
G
j ) +RG[f ],

with

RG[f ] =
f (2N)(η)
(2N)!

∫ b

a


 N∏
j=1

(λ− tGj )




2

dα(λ).
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The monic polynomial
N∏
j=1

(tGj − λ),

which is the determinant χN of JN − λI , can be written as γ1 · · · γN−1pN (λ).
This is seen by comparing the three-term recurrence for the polynomials and the
recurrence for the determinant of JN , see chapter 3. But pN is an orthonormal
polynomial related to the measure α. Then

∫ b

a


 N∏
j=1

(λ− tGj )




2

dα(λ) = (γ1 · · · γN−1)2,

and the next theorem follows.

THEOREM 6.3 Suppose f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a < ξ < b, and let

LG[f ] =
N∑
j=1

wGj f(t
G
j ).

The Gauss rule is exact for polynomials of degree less than or equal to 2N − 1 and
we have

LG[f ] ≤ I[f ].

Moreover ∀N , ∃η ∈ [a, b] such that

I[f ]− LG[f ] = (γ1 · · · γN−1)2
f (2N)(η)
(2N)!

.

Proof. The main idea of the proof is to use a Hermite interpolatory polynomial of
degree 2N − 1 on the N nodes, which allows us to express the remainder as an
integral of the difference between the function and its interpolatory polynomial and
to apply the mean value theorem (since the measure is positive and increasing). As
we know the sign of the remainder, we easily obtain bounds. ✷

We remark that if we know bounds of f (2N), we can bound the absolute value
of the error of the Gauss quadrature rule. For examples, see Calvetti, Golub and
Reichel [52].

An inverse problem of reconstruction of a weight function given the Gauss quadra-
ture nodes was considered by Kautsky [199].

To summarize, we have seen that, if we know the coefficients of the three-term
recurrence for the orthonormal polynomials associated with the measure α and the
first moment, then we can compute the nodes and weights of the Gauss quadrature
rule.

6.2.2 The Gauss–Radau Rule
To obtain the Gauss–Radau quadrature rule (M = 1 in equations (6.3) and (6.4)),
we have to extend the matrix JN in equation (6.7) in such a way that it has one
prescribed eigenvalue; see Golub [139].
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If we assume that the prescribed node is the left end of the integration interval
z1 = a, we wish to construct pN+1 such that pN+1(a) = 0. From the recurrence
relation (6.5), we have

0 = γN+1pN+1(a) = (a− ωN+1)pN (a)− γNpN−1(a).

This gives

ωN+1 = a− γN
pN−1(a)
pN (a)

.

Therefore we have to compute the ratio pN−1(a)/pN (a) without using the three-
term recurrence. We note that we have

(JN − aI)P (a) = −γNpN (a)eN .
Let us denote δ(a) = [δ1(a), . . . , δN (a)]T with

δl(a) = −γN pl−1(a)
pN (a)

, l = 1, . . . , N.

This gives ωN+1 = a+ δN (a) and δ(a) satisfies

(JN − aI)δ(a) = γ2
Ne

N . (6.8)

From these relations we have the solution of the problem by performing the follow-
ing steps:

1) we generate γN ;

2) we solve the tridiagonal system (6.8) for δ(a); this gives δN (a);

3) we compute ωN+1 = a+ δN (a).

Then the tridiagonal matrix ĴN+1 defined as

ĴN+1 =
(

JN γNe
N

γN (eN )T ωN+1

)
(6.9)

has the prescribed node a as an eigenvalue and gives the nodes and the weights of
the corresponding quadrature rule we were looking for. As for the Gauss rule, the
nodes are the eigenvalues and the weights are the squares of the first components
of the eigenvectors. Something similar is done if z1 = b. Therefore, the algorithm
is to compute as for the Gauss quadrature rule and to modify the last element to
obtain the prescribed node.

For the Gauss–Radau rule (see Stoer and Bulirsch [314]) the remainder RGR is

RGR[f ] =
f (2N+1)(η)
(2N + 1)!

∫ b

a

(λ− z1)


 N∏
j=1

(λ− tj)




2

dα(λ). (6.10)

This is proved by constructing an interpolatory polynomial for the function and its
derivative on the tj’s and for the function on z1. Therefore, if we know the sign of
the derivatives of f , we can bound the remainder. This is stated in the following
theorem.
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THEOREM 6.4 Suppose f is such that f (2n+1)(ξ) < 0, ∀n, ∀ξ, a < ξ < b. Let
UGR be defined as

UGR[f ] =
N∑
j=1

waj f(t
a
j ) + va1f(a),

waj , v
a
1 , t

a
j being the weights and nodes computed with z1 = a, and let LGR be

defined as

LGR[f ] =
N∑
j=1

wbjf(t
b
j) + vb1f(b),

wbj , v
b
1, t

b
j being the weights and nodes computed with z1 = b. The Gauss–Radau

rule is exact for polynomials of degree less than or equal to 2N and we have

LGR[f ] ≤ I[f ] ≤ UGR[f ].

Moreover ∀N ∃ ηU , ηL ∈ [a, b] such that

I[f ]− UGR[f ] =
f (2N+1)(ηU )
(2N + 1)!

∫ b

a

(λ− a)


 N∏
j=1

(λ− taj )




2

dα(λ),

I[f ]− LGR[f ] =
f (2N+1)(ηL)
(2N + 1)!

∫ b

a

(λ− b)


 N∏
j=1

(λ− tbj)




2

dα(λ).

Proof. With our hypothesis the sign of the remainder is easily obtained. It is nega-
tive if we choose z1 = a, positive if we choose z1 = b. ✷

Remarks:

1) if the sign of the derivatives of f is positive, the bounds are reversed;

2) it is enough to suppose that there exists an n0 such that f (2n0+1)(η) < 0 but
then N = n0 is fixed.

6.2.3 The Gauss–Lobatto Rule
In this section we consider the Gauss–Lobatto quadrature rule (M = 2 in equations
(6.3) and (6.4)), with the ends of the integration interval z1 = a and z2 = b as
prescribed nodes. As in the Gauss–Radau rule, we should modify the matrix of the
Gauss quadrature rule; see Golub [139]. Here, we would like to have

pN+1(a) = pN+1(b) = 0.

Using the recurrence relation (6.5) for the polynomials, this leads to a linear system
of order 2 for the unknowns ωN+1 and γN :(

pN (a) pN−1(a)
pN (b) pN−1(b)

)(
ωN+1

γN

)
=

(
a pN (a)
b pN (b)

)
. (6.11)
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Let δ and µ be defined as vectors with components

δl = − pl−1(a)
γNpN (a)

, µl = − pl−1(b)
γNpN (b)

, l = 1, . . . , N ;

then

(JN − aI)δ = eN , (JN − bI)µ = eN ,

and the linear system (6.11) can be written as(
1 −δN
1 −µN

)(
ωN+1

γ2
N

)
=

(
a
b

)
,

whose solution gives the unknowns we need. The tridiagonal matrix ĴN+1 is then
defined as in the Gauss–Radau rule in equation (6.9).

Having computed the nodes and weights (eigenvalues and squares of the first
components of the eigenvectors), we have∫ b

a

f(λ)dα(λ) =
N∑
j=1

wGLj f(tGLj ) + vGL1 f(a) + vGL2 f(b) +RGL[f ].

This gives the following result.

THEOREM 6.5 Suppose f is such that f (2n)(ξ) > 0, ∀n, ∀ξ, a < ξ < b and let

UGL[f ] =
N∑
j=1

wGLj f(tGLj ) + vGL1 f(a) + vGL2 f(b),

tGLj , wGLj , vGL1 and vGL2 being the nodes and weights computed with a and b as
prescribed nodes. The Gauss–Lobatto quadrature rule is exact for polynomials of
degree less than or equal to 2N + 1 and we have

I[f ] ≤ UGL[f ].

Moreover ∀N ∃ η ∈ [a, b] such that

I[f ]− UGL[f ] =
f (2N+2)(η)
(2N + 2)!

∫ b

a

(λ− a)(λ− b)


 N∏
j=1

(λ− tGLj )




2

dα(λ).

In [145] Golub and Kautsky studied quadrature rules of the form
N∑
j=1

ni∑
i=1

wi,jf
(i−1)(tj) +

M∑
j=1

mi∑
i=1

vi,jf
(i−1)(zj),

where f (i)(x) denotes the value of the ith derivative of f at x. There are N free
nodes tj of multiplicities ni and M fixed nodes zj of multiplicities mi. It is proved
in [145] that the approach we used to obtain the Gauss–Radau and Gauss–Lobatto
rules by modifying one or two elements in the last row of the Jacobi matrix cannot
be extended to a double prescribed node or to the case where the two prescribed
nodes are on the same side of the integration interval. However, it works when the
two nodes are on opposite sides of the interval and not only when they are the end
points.
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6.2.4 Computation of the Gauss Rules
The nodes and weights can be computed by the Golub and Welsch QR algorithm
[160]. However, we do not always need to compute the eigenvalues and eigenvec-
tors of the tridiagonal matrix JN . Let ZN be the orthogonal matrix of the eigenvec-
tors of JN (or ĴN ) whose columns we denote by zi and ΘN be the diagonal matrix
of the eigenvalues ti = θ

(N)
i which gives the nodes of the Gauss quadrature rule.

We have seen that the weights wi are given by the squares of the first components
of the eigenvectors

wi = (zi1)
2 = ((e1)T zi)2.

Then we can express the quadrature rule as a function of the Jacobi matrix JN .

THEOREM 6.6
N∑
l=1

wlf(tl) = (e1)T f(JN )e1.

Proof. Since the weights are the squares of the first components of the eigenvectors,
we have

N∑
l=1

wlf(tl)=
N∑
l=1

(e1)T zlf(tl)(zl)T e1

=(e1)T
(
N∑
l=1

zlf(tl)(zl)T
)
e1

=(e1)TZNf(ΘN )ZTNe
1

=(e1)T f(JN )e1.

This concludes the proof. ✷

The same statement is true for the Gauss–Radau and Gauss–Lobatto rules re-
placing JN by the appropriate modified Jacobi matrix. Therefore, in some cases
when the (1, 1) element of the matrix f(JN ) (or its modified version) is easily com-
putable (for instance, if f(λ) = 1/λ; see chapter 3), we do not need to compute the
eigenvalues and the first components of the eigenvectors of JN .

On the computation of Gauss quadrature rules see also Beckermann [23].

6.3 The Anti-Gauss Quadrature Rule

Anti-Gauss quadrature rules were introduced by Laurie in [218]; see also [222].
The idea is to construct a quadrature rule whose error is equal but of opposite sign
to the error of the Gauss rule. This was motivated by the need to estimate the error
term of the Gauss rule. Even though we have an analytic expression for RG[f ], it
is not easy to find an accurate estimate of this term since it involves an unknown
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point η in the interval of integration. Let

LNG [f ] =
N∑
j=1

wGj f(t
G
j )

be the Gauss rule approximation with N nodes. It is exact for polynomials of
degree up to 2N − 1, that is,

LNG [p] = I[p] for all polynomials of degree 2N − 1.

The usual way of obtaining an estimate of I[f ]−LNG [f ] is to use another quadrature
rule Q[f ] of degree greater than 2N − 1 and to estimate the error as Q[f ]−LNG [f ].
There are several possible ways to do this. One can for instance use LN+1

G [f ],
but this may not be very precise and requires the recalculation of a new Gauss
quadrature. We will see in the next section that for certain measures it is possible
to find a (2N + 1)-point rule containing the original N nodes of the Gauss rule.
This is known as a Kronrod rule. However, Gauss–Kronrod rules do not always
exist. The idea of Laurie is to construct a quadrature rule with N + 1 nodes called
an anti-Gauss rule,

HN+1[f ] =
N+1∑
j=1

Ojf(ϑj),

such that

I[p]−HN+1[p] = −(I[p]− LNG [p]), (6.12)

for all polynomials of degree 2N + 1. Then, the error of the Gauss rule can be
estimated as

1
2
(HN+1[f ]− LNG [f ]).

Using this anti-Gauss rule, the integral I[f ] can also be approximated by

1
2
(HN+1[f ] + LNG [f ]).

From equation (6.12) we have

HN+1[p] = 2I[p]− LNG [p],

for all polynomials p of degree 2N + 1. Hence, HN+1 is a Gauss rule with N + 1
nodes for the functional I(·) = 2I[·] − LNG [·]. Associated with this functional is
a sequence of orthonormal polynomials p̃j , 0, . . . , N + 1 and a tridiagonal matrix
J̃N+1. We have

I[pq] = I(pq)
for p a polynomial of degree N − 1 and q a polynomial of degree N . Using the
Stieltjes procedure of chapter 5 to obtain an expression of the three-term recurrence
coefficients we see (Laurie [218] or Calvetti, Reichel and Sgallari [54]) that p̃j =
pj , j = 0, . . . , N and the first coefficients of the tridiagonal matrices JN for the
Gauss rule and J̃N+1 for the anti-Gauss rule are the same, ω̃j = ωj , j = 1, . . . , N
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and γ̃j = γj , j = 1, . . . , N − 1. We also have LNG [p̃
2
N ] = LNG [p

2
N ] = 0 because

the nodes are the zeros of pN . This implies that

I(p̃2
N ) = 2I(p̃2

N ),

and therefore γ̃2
N = 2γ2

N . Moreover, ω̃N+1 = ωN+1. The tridiagonal matrix J̃N+1

is

J̃N+1 =




ω1 γ1

γ1 ω2 γ2

. . . . . . . . .
γN−2 ωN−1 γN−1

γN−1 ωN
√
2γN√

2γN ωN+1



. (6.13)

TheN+1 nodes of the anti-Gauss rule are the eigenvalues of J̃N+1 and the weights
are the squares of the first components of the eigenvectors. Note that J̃N+1 is a
low-rank modification of JN+1. As for the Gauss rule we have

HN+1[f ] = (e1)T f(J̃N+1)e1.

We have that the weights are strictly positive and the anti-Gauss nodes interlace the
Gauss nodes because of the Cauchy interlace theorem. This implies that the anti-
Gauss nodes ϑj , j = 2, . . . , N are inside the integration interval, see Laurie [218].
However, the first and the last nodes can eventually be outside of the integration
interval. Actually, in some cases, the matrix J̃N+1 can be indefinite even if JN is
positive definite.

There is nothing magical in asking for an error that is the opposite of the Gauss
rule error. Therefore, the work of Laurie has been generalized (see Patterson [273],
[274], Calvetti and Reichel [49], Ehrich [96], Spalević [309]) to a quadrature rule
SN+1[f ] such that

I[p]− SN+1[p] = −γ(I[p]− LNG [p])

for all polynomials of degree 2N + 1. The parameter γ is positive and less than or
equal to 1; for γ = 1 we recover Laurie’s method. Then the error of the Gauss rule
can be estimated as

1
1 + γ

(SN+1[f ]− LNG [f ]).

The integral I[f ] can also be approximated by
1

1 + γ
(HN+1[f ] + γLNG [f ]).

The N +1 nodes of the anti-Gauss rule are the eigenvalues and the weights are the
squares of the first components of the eigenvectors of the matrix

J̃N+1 =




ω1 γ1

γ1 ω2 γ2

. . . . . . . . .
γN−2 ωN−1 γN−1

γN−1 ωN γN
√
1 + γ

γN
√
1 + γ ωN+1



. (6.14)
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Eventually, γ can be chosen such that J̃N+1 is positive definite. This can be seen
by computing the diagonal elements of the Cholesky-like factorization of J̃N+1,

δ̃i = δi, i = 1, . . . , N, δ̃N+1 = ωN+1 − (1 + γ)
γ2
N

δN
.

If δ̃N+1 ≤ 0, then we have to decrease the value of γ.

6.4 The Gauss–Kronrod Quadrature Rule

As noted in the previous section, a Gauss–Kronrod rule is a formula

K2N+1[f ] =
2N+1∑
j=1

wKj f(t
K
j ), (6.15)

such that N of the nodes tKj coincide with the nodes tGj of the N -point Gauss rule
and the ruleK2N+1 is exact for polynomials of degree less than or equal to 3N+1.
This was introduced by A. S. Kronrod [209], [210] for the purpose of estimating
the error in the Gauss formula. The advantage is to be able to reuse the N function
values already computed for the Gauss rule. In a short note [133] Gautschi pointed
out that this idea was already proposed in 1894 by R. Skutsch [308].

Here, we describe the properties of the Jacobi matrices given by Laurie in [219]
and the algorithm proposed by Calvetti, Golub, Gragg and Reichel [59]. For the
computation of the Gauss–Kronrod rule, see also Xu [353], Boutry [33] and Am-
mar, Calvetti and Reichel [6] and also the review paper by Monegato [243]. We
are interested in rules where the nodes and weights are real and the weights are
positive. From a result in Gautschi [127] the Jacobi–Kronrod matrix exists and is
real if and only if the Kronrod rule exists and is real and positive.

Let ω̂j and γ̂j be the nonzero coefficients of the symmetric Jacobi–Kronrod ma-
trix Ĵ2N+1. The fact that K2N+1 is exact for polynomials of degree less than
or equal to 3N + 1 implies that the first 3N + 1 coefficients in the sequence
ω̂1, γ̂1, ω̂2, γ̂2, . . . equal the corresponding coefficients in the sequence for JN .
Therefore, if N is odd

ω̂j = ωj , γ̂j = γj , j = 1, . . . ,
3N + 1
2

,

and if N is even

ω̂j = ωj , j = 1, . . . ,
3N
2
+ 1, γ̂j = γj , j = 1, . . . ,

3N
2
.

Hence, the number of matrix elements we have to determine depends on the par-
ity of N . Then the important result which leads to an algorithm to compute the
Kronrod rule is the following lemma due to Laurie [219].

LEMMA 6.7 The characteristic polynomial of the trailing principal N × N sub-
matrix of Ĵ2N+1 is the same as that of its leading principal N ×N matrix. In other
words, these matrices have the same eigenvalues.
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Proof. See Laurie [219]. The proof considers φk and ψk which are respectively the
characteristic polynomials of the leading and trailing matrices of order k. φ2N+1

is obtained by expanding the determinant along the (N + 1)st row of the matrix.
This expansion shows that any common zero of φk and ψk is a zero of φ2N+1.
Conversely, if φN is a factor of φ2N+1, then φN−1ψN must be divisible by φN . The
polynomials φN−1 and φN being mutually prime, ψN is divisible by φN . These
polynomials have the same leading coefficient and are therefore identical. ✷

The algorithm given by Laurie in [219] relies on mixed moments and computes
the entries of Ĵ2N+1 by a modified Chebyshev algorithm, see chapter 5. It is also
described in Gautschi’s book [131]. Here we describe the approach proposed in
[59]. Let

Ĵ2N+1 =


 JN γNe

N 0
γN (eN )T ωN+1 γN+1(e1)T

0 γN+1e
1 J̆N


 .

Lemma 6.7 says that J̆N has the same eigenvalues as JN . Moreover, some elements
of the matrix J̆N are known. When N is odd, J̆N can be written as

J̆N =

(
JN+2: 3N+1

2
γ 3N+1

2
e

N−1
2

γ 3N+1
2
(e

N−1
2 )T Ĵ∗

N

)
,

where JN+2: 3N+1
2

is a principal block of JN going from row N + 2 to row 3N+1
2

and Ĵ∗
N is an unknown tridiagonal matrix of order (N + 1)/2. Similarly, when N

is even we have

J̆N =

(
JN+2: 3N

2 +1 γ̂ 3N
2 +1e

N
2

γ̂ 3N
2 +1(e

N
2 )T Ĵ∗

N

)
,

where Ĵ∗
N is an unknown tridiagonal matrix of order N/2. Moreover, the entry

γ̂ 3N
2 +1 is unknown. There is a Kronrod rule with real nodes and positive weights if

there exists a real matrix J̆N which has the same eigenvalues as JN .
The algorithm in [59] first determines the eigenvalues as well as the first and last

components of the eigenvectors of JN . Of course, this gives the Gauss rule LNG .
Expressions for the first and last components of a tridiagonal matrix are given in
chapter 3, proposition 3.4, or can be computed with the QR algorithm.

The second step of the algorithm is to compute the first components of the nor-
malized eigenvectors of J̆N for reasons we will see soon. Remember that we do
not know all the coefficients of this matrix. To be able to obtain this result, we use
a method due to Boley and Golub [31] when N is even. With the matrix J̆N we
can associate an unknown measure ᾰ and a Gauss rule whose nodes θ(N)

j we know
because of lemma 6.7 (they are the same as those of JN ) and weights w̆j which are
unknown since they are the squares of the first components of the eigenvectors we
seek. For the first N moments µ̆k associated with ᾰ we have

µ̆k =
N∑
j=1

(θ(N)
j )kw̆j , k = 0, . . . , N − 1.
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The largest principal leading submatrix of J̆N for which all coefficients are known
is J̆N/2 = JN+2: 3N

2 +1 of order N/2. We can compute its eigenvalues θ∗j and the
squares of the first components of the eigenvectors w∗

j , j = 1, . . . , N/2. There is
also a Gauss rule associated with this matrix. It is exact for polynomials of degree
less than or equal to 2(N/2) − 1 = N − 1, in particular for the N monomials
λj , j = 0, . . . , N − 1. Both quadrature rules can be regarded as discretizations of
ᾰ and therefore

µ̆k =
N/2∑
j=1

(θ∗j )
kw∗

j =
N∑
j=1

(θ(N)
j )kw̆j , k = 0, . . . , N − 1.

This gives a linear system of N equations in N unknowns which can be solved
for the w̆j . However, the matrix of this linear system is a Vandermonde matrix
and therefore often badly conditioned. It was proposed in [59] to use a Lagrange
interpolation polynomial

lk(θ) =
N∏

m=1
m �=k

θ − θ
(N)
m

θ
(N)
k − θ

(N)
m

.

Then the solution is written as

w̆k =
N/2∑
j=1

lk(θ∗j )w
∗
j , k = 1, . . . , N.

The Kronrod quadrature rule fails to exist if one of the components of the solution
is negative. The same method cannot be used when N is odd because the largest
principal leading submatrix whose coefficients are known is JN+2: 3N+1

2
of order

(N − 1)/2. The associated Gauss rule is exact only for polynomials of degree
less than or equal to N − 2. This is not sufficient to match the N moments. Before
proceeding as before, the unknown coefficient ω(3N+3)/2 must be determined. This
can be done but it is rather technical and we refer to [59] for details.

When the eigenvalues and the last components of eigenvectors of JN and the first
components of eigenvectors of J̆N are computed, one must compute the eigenval-
ues and first components of eigenvectors of Ĵ2N+1. This is similar to what is done
in the divide and conquer algorithm for computing eigenvalues of tridiagonal ma-
trices; see Cuppen [71] and Dongarra and Sorensen [89]. We can use the spectral
decomposition of JN and J̆N ,

JN = ZNΘNZTN , J̆N = Z̆NΘN Z̆TN ,

where ZN and Z̆N are the matrices whose columns are the normalized eigenvec-
tors. The matrix Z̆N is unknown but it turns out that we just need the first elements
of its columns which we know. Then Ĵ2N+1 is similar to

 ΘN γNZ
T
Ne

N 0
γN (eN )TZN ωN+1 γN+1(e1)T Z̆N

0 γN+1Z̆
T
Ne

1 ΘN


 . (6.16)
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Remark that (eN )TZN (resp. (e1)T Z̆N ) are the last (resp. first) components of
the eigenvectors of JN (resp. J̆N ). By applying a symmetric permutation the ma-
trix (6.16) is similar to an arrowhead matrix

 ΘN γNZ
T
Ne

N

ΘN γN+1Z̆
T
Ne

1

γN (eN )TZN γN+1(e1)T Z̆N ωN+1


 .

Then, to isolate the eigenvalues of ΘN which are eigenvalues of Ĵ2N+1 we apply
rotations to annihilate the N first terms in row 2N +1 and column 2N +1. Let the
matrix G represents the product of these N rotations, then the matrix is similar to

ΘN
ΘN c
cT ωN+1


 ,

where c = (ξ1, . . . , ξN )T and the ξj are the last N components of

[GT (γN (eN )TZN , γN+1(e1)T Z̆N )]T .

Therefore, we now look for the eigenvalues of the arrowhead matrix

ΥN =
(
ΘN c
cT ωN+1

)
.

By looking at the Schur complement of ωN+1 the eigenvalues of ΥN are seen to
be solutions of the secular equation

g(θ) = θ − ωN+1 −
N∑
j=1

ξ2j

θ
(N)
j − θ

= 0.

The N + 1 new eigenvalues interlace the nodes of the Gauss rule θ(N)
j , which are

the poles of g(θ). For algorithms to compute solutions of secular equations, see
chapter 9. The first components of the eigenvectors of Ĵ2N+1 are computed using
an approach suggested by Gu and Eisenstat [167], see also Boutry [33].

Patterson [272] has extended the Kronrod rules by constructing quadrature rules
which have the Kronrod nodes prescribed. Elhay and Kautsky [98] have investi-
gated generalized Kronrod–Patterson embedded quadrature rules. More precisely,
they look for sequences Qi[f ], i = 1, . . . , n of quadrature rules such that Q1[f ]
has nodes {v(1)

j }k1j=1 of order 2k1, Q2[f ] has nodes {v(1)
j }k1j=1 ∪ {v(2)

j }k2j=1 with

order 2k2 + k1 and more generally Qn[f ] has nodes ∪ni=1{v(i)
j }ki

j=1 and order
kn +

∑n
i=1 ki. Certain of these rules may fail to exist because no orthogonal poly-

nomial of the appropriate degree exists, since the measures are not positive, the
orthogonal polynomial may have complex roots, the real roots may be outside of
the interval of integration or some weights may be negative.
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6.5 The Nonsymmetric Gauss Quadrature Rules

6.5.1 The Gauss Rule
In this section we consider the case where the measure α can be written as

α(λ) =
l∑
k=1

αkδk, λl ≤ λ < λl+1, l = 1, . . . , N − 1,

where αk �= δk and αkδk ≥ 0with jumps at the values λl, l = 1, . . . , N−1. In this
case α is still a positive increasing function. For variable-signed weight functions;
see Struble [321] and chapter 2.

We assume that there exist two sequences of mutually orthogonal (sometimes
called bi-orthogonal) polynomials p and q such that

γjpj(λ)= (λ− ωj)pj−1(λ)− βj−1pj−2(λ), p−1(λ) ≡ 0, p0(λ) ≡ 1,
βjqj(λ)= (λ− ωj)qj−1(λ)− γj−1qj−2(λ), q−1(λ) ≡ 0, q0(λ) ≡ 1,

with 〈pi, qj〉 = 0, i �= j. Let

P (λ)T = [p0(λ) p1(λ) · · · pN−1(λ)],

Q(λ)T = [q0(λ) q1(λ) · · · qN−1(λ)],

and

JN =



ω1 γ1

β1 ω2 γ2

. . . . . . . . .
βN−2 ωN−1 γN−1

βN−1 ωN


 .

Then, in matrix form, we can write

λP (λ)= JNP (λ) + γNpN (λ)eN ,
λQ(λ)= JTNQ(λ) + βNqN (λ)eN .

The two sets of polynomials differ only by multiplicative functions.

PROPOSITION 6.8

pj(λ) =
βj · · ·β1

γj · · · γ1
qj(λ).

Proof. The result is proved by induction. We have

γ1p1(λ) = λ− ω1, β1q1(λ) = λ− ω1.

Therefore

p1(λ) =
β1

γ1
q1(λ).

Now, assume that

pj−1(λ) =
βj−1 · · ·β1

γj−1 · · · γ1
qj−1(λ).
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We have

γjpj(λ)= (λ− ωj)pj−1(λ)− βj−1pj−2(λ)

= (λ− ωj)
βj−1 · · ·β1

γj−1 · · · γ1
qj−1(λ)− βj−1

βj−2 · · ·β1

γj−2 · · · γ1
qj−2(λ).

Multiplying by (γj−1 · · · γ1)/(βj−1 · · ·β1) we obtain the result. Hence, qN is a
multiple of pN and the polynomials have the same roots which are also the common
real eigenvalues of JN and JTN . ✷

In the applications we have in mind, it is possible to choose γj and βj such that

γj = ±βj ,
with, for instance, γj ≥ 0. Then, we have

pj(λ) = ±qj(λ).
We define the nonsymmetric quadrature rule as∫ b

a

f(λ) dα(λ) =
N∑
j=1

f(θj)sjtj +R[f ], (6.17)

where θj is an eigenvalue of JN , sj is the first component of the eigenvector uj of
JN corresponding to θj and tj is the first component of the eigenvector vj of JTN
corresponding to the same eigenvalue, normalized such that vTj uj = 1.

We have the following results from [149].

PROPOSITION 6.9 Assume that γjβj �= 0; then the nonsymmetric Gauss quadra-
ture rule (6.17) is exact for polynomials of degree less than or equal to N − 1.

Proof. Assuming f is a polynomial of degree N − 1, it can be written as

f(λ) =
N−1∑
k=0

ckpk(λ),

and because of the orthonormality properties

〈pj , 1〉 =
∫ b

a

pj dα = 0, ∀j �= 1,

then ∫ b

a

f(λ) dα(λ) = c0.

For the quadrature rule, we have
N∑
j=1

f(θj)sjtjql(θj)=
N∑
j=1

(
N−1∑
k=0

ckpk(θj)

)
sjtjql(θj)

=
N−1∑
k=0

ck

N∑
j=1

pk(θj)sjtjql(θj).
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But pk(θj)sj and ql(θj)tj are, respectively, the components of the eigenvectors of
JN and JTN corresponding to θj . Therefore they are orthonormal with the normal-
ization that we chose. Hence,

N∑
j=1

f(θj)sjtjql(θj) = cl, l = 0, . . . , N − 1,

and consequently
N∑
j=1

f(θj)sjtj = c0,

which proves the result. ✷

Now, we extend the exactness result to polynomials of higher degree.

THEOREM 6.10 Assume that γjβj �= 0; then the nonsymmetric Gauss quadrature
rule (6.17) is exact for polynomials of degree less than or equal to 2N − 1.

Proof. Suppose f is a polynomial of degree 2N − 1. Then f can be written as

f(λ) = pN (λ)s(λ) + r(λ),

where s and r are polynomials of degree less than or equal to N − 1. Then,∫ b

a

f(λ) dα(λ) =
∫ b

a

pN (λ)s(λ) dα(λ) +
∫ b

a

r(λ) dα(λ) =
∫ b

a

r(λ) dα(λ),

since pN is orthogonal to any polynomial of degree less than or equal to N − 1
because of the orthogonality property of the p’s and q’s. For the quadrature rule
applied to the function f , we obtain

N∑
j=1

pN (θj)s(θj)sjtj +
N∑
j=1

r(θj)sjtj .

Since θj is an eigenvalue of JN , it is a root of pN and the first sum in the quadrature
rule vanishes,

N∑
j=1

pN (θj)s(θj)sjtj = 0.

On the other hand the polynomial r is of degree less than N − 1 and the quadrature
rule has been proven to be exact for polynomials of degree less thanN−1; therefore∫ b

a

r(λ) dα(λ) =
N∑
j=1

r(θj)sjtj ,

which proves the result. ✷

Regarding expressions for the remainder, we can do exactly the same as for the
Gauss rule. We can write

R[f ] =
f (2N)(η)
(2N)!

∫ b

a

pN (λ)2 dα(λ).
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6.5.2 The Gauss–Radau and Gauss–Lobatto Rules
Now, we extend the Gauss–Radau and Gauss–Lobatto rules to the nonsymmetric
case. This is almost identical to the symmetric case. For the Gauss–Radau rule,
assume that the prescribed node is a, the left end of the interval. Then, we would
like to have pN+1(a) = qN+1(a) = 0. This gives

(a− ωN+1)pN (a)− βNpN−1(a) = 0.

If we denote δ(a) = [δ1(a), . . . , δN (a)]T , with

δl(a) = −βN pl−1(a)
pN (a)

,

we have

ωN+1 = a+ δN (a),

where

(JN − aI)δ(a) = γNβNe
N .

Therefore, the algorithm is essentially the same as previously discussed for the
Gauss rule.

For the Gauss–Lobatto rule, the algorithm is also almost the same as for the
symmetric case. We would like to compute pN+1 and qN+1 such that

pN+1(a) = pN+1(b) = 0, qN+1(a) = qN+1(b) = 0.

This leads to solve the linear system(
pN (a) pN−1(a)
pN (b) pN−1(b)

)(
ωN+1

βN

)
=

(
apN (a)
bpN (b)

)
.

The linear system for the q’s whose solution is (ωN+1, γN )T can be shown to
have the same solution for ωN+1 and γN = ±βN depending on the sign relations
between the p’s and the q’s.

Let δ(a) and µ(b) be the solutions of

(JN − aI)δ(a) = eN , (JN − bI)µ(b) = eN .

Then we have (
1 −δ(a)N
1 −µ(b)N

)(
ωN+1

β2
N

)
=

(
a
b

)
.

When we have the solution of this system, we choose γN = ±βN and γN ≥ 0.
As in the symmetric case, we do not always need to compute the eigenvalues and

eigenvectors of JN (or its modifications) but only the (1, 1) element of f(JN ).

6.6 The Block Gauss Quadrature Rules

6.6.1 The Block Gauss Rule
In this section we consider the block case using matrix polynomials and quadrature
rules for matrix measures. We use the results of Golub and Meurant [149]. For
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other related approaches see Sinap and Van Assche [305], Sinap [304] and Dette
and Studden [82]. The problem is to find a quadrature rule for a symmetric matrix
measure. The integral

∫ b
a
f(λ)dα(λ) is now a 2 × 2 symmetric matrix. The most

general quadrature formula is of the form∫ b

a

f(λ)dα(λ) =
N∑
j=1

Wjf(Tj)Wj +R[f ],

where Wj and Tj are symmetric 2 × 2 matrices. They are the equivalent of the
weights and the nodes in the scalar case. In this rule, we have 6N unknowns. It
can be simplified using the spectral decomposition of Tj , Tj = QjΛjQTj , where
Qj is the orthonormal matrix of the eigenvectors, and Λj the diagonal matrix of the
eigenvalues of Tj . This gives

N∑
j=1

WjQjf(Λj)QTj Wj .

But WjQjf(Λj)QTj Wj can be written as f(λ1)z1(z1)T + f(λ2)z2(z2)T , where
the vector zi has two components. Therefore, changing notations, we can write the
quadrature rule as

2N∑
j=1

f(tj)wj(wj)T ,

where tj is a scalar and wj is a vector with two components. In this quadrature
rule, there are also 6N unknowns, the nodes tj and the two components of wj , j =
1, . . . , 2N . We have seen that there exist orthogonal matrix polynomials related to
α such that

λpj−1(λ) = pj(λ)Γj + pj−1(λ)Ωj + pj−2(λ)ΓTj−1, (6.18)

p0(λ) ≡ I2, p−1(λ) ≡ 0.

This can be written as

λ[p0(λ), . . . , pN−1(λ)] = [p0(λ), . . . , pN−1(λ)]JN + [0, . . . , 0, pN (λ)ΓN ],

where

JN =



Ω1 ΓT1
Γ1 Ω2 ΓT2

. . . . . . . . .
ΓN−2 ΩN−1 ΓTN−1

ΓN−1 ΩN


 (6.19)

is a block tridiagonal matrix of order 2N and a banded matrix with at most five
nonzero elements in a row.

Let us denote P (λ) = [p0(λ), . . . , pN−1(λ)]T . Since JN is symmetric, we have
in matrix form

JNP (λ) = λP (λ)− [0, . . . , 0, pN (λ)ΓN ]T .
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We note that, if λ is an eigenvalue, say θr, of JN and if we choose u = ur to
be a two-element vector whose components are the first two components of an
eigenvector corresponding to θr, then P (θr)u is this eigenvector (because of the
relations that are satisfied) and if ΓN is nonsingular, pTN (θr)u = 0. The main
difference with the scalar case is that, although the eigenvalues of JN are real, it
might be that they are of multiplicity greater than 1.

The nodes of the quadrature rule are the zeros of the determinant of the matrix
orthogonal polynomials that is the eigenvalues of JN . Finally, we define the block
quadrature rule as ∫ b

a

f(λ) dα(λ) =
2N∑
i=1

f(θi)uiuTi +R[f ], (6.20)

where 2N is the order of JN , the eigenvalues θi are those of JN and ui is the
vector consisting of the two first components of the corresponding eigenvector,
normalized as before. In fact, if there are multiple eigenvalues, the quadrature rule
should be written as follows. Let θi, i = 1, . . . , l be the set of distinct eigenvalues
and ni their multiplicities. The quadrature rule is then

l∑
i=1


 ni∑
j=1

(wji )(w
j
i )
T


 f(θi). (6.21)

Unfortunately, to prove that the block quadrature rule is exact for polynomials of
degree up to 2N − 1, we cannot use the same method as for the scalar case using
a factorization of the given polynomial because of commutativity problems with
matrix polynomials. Therefore, we use another (more involved) approach that has
been proposed in a different setting by Basu and Bose [22].

We consider all the monomials λk, k = 0, 1, . . . . LetMk be the moment matrix,
defined as

Mk =
∫ b

a

λk dα(λ).

We write the (matrix) orthonormal polynomials pj associated with the measure α
as

pj(λ) =
j∑
k=0

p
(j)
k λk,

p
(j)
k being a matrix of order 2. Then we have

∫ b

a

pTj (λ) dα(λ) =
j∑
k=0

(p(j)
k )T

∫ b

a

λk dα(λ) =
j∑
k=0

(p(j)
k )TMk,

and more generally ∫ b

a

pTj (λ)λ
q dα(λ) =

j∑
k=0

(p(j)
k )TMk+q. (6.22)
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Let us write this equation for j = N−1. From the orthogonality of the polynomials,
we have ∫ b

a

pTN−1(λ)λ
q dα(λ) = 0, q = 0, . . . , N − 2. (6.23)

Let HN be the block Hankel matrix of order 2N , defined as

HN =




M0 · · · MN−1

...
...

MN−1 · · · M2N−2


 . (6.24)

Then using equations (6.22) and (6.23) we have

HN



p
(N−1)
0

...
p
(N−1)
N−2

p
(N−1)
N−1


 =




0
...
0∫ b

a
pTN−1(λ)λ

N−1 dα(λ)


 . (6.25)

Let us introduce some additional notations. Let LN be a block upper triangular
matrix of order 2N ,

LN =



p
(0)
0 p

(1)
0 · · · p

(N−1)
0

p
(1)
1 · · · p

(N−1)
1

. . .
...

p
(N−1)
N−1


 . (6.26)

Let VN be a 4N × 2N matrix defined in block form as

VN =



B1

B2
...
Bl


 , (6.27)

where Bj is a 2nj × 2N matrix defined as

Bj =



I2 θjI2 · · · θN−1

j I2
...

...
...

...
I2 θjI2 · · · θN−1

j I2


 , (6.28)

where the values θj are the l distinct eigenvalues of JN and nj their multiplicities.

PROPOSITION 6.11 LetLN be defined by equation (6.26) and VN by equations (6.27)
and (6.28). Then

VNLN =



C1

C2
...
Cl


 ,

where Cj is a 2nj × 2N matrix,

Cj =



p0(θj) p1(θj) · · · pN−1(θj)

...
...

...
...

p0(θj) p1(θj) · · · pN−1(θj)


 .
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Proof. This is straightforward by the definition of the polynomials pj(λ). ✷

PROPOSITION 6.12 LetLN be defined by equation (6.26) andHN by equation (6.24).
We have

LTNHNLN = I,

where I is the identity matrix.

Proof. The generic term of HNLN is

(HNLN )ij =
j∑
s=1

Ms+i−2 p
(j−1)
s−1 ,

and therefore the generic block term of LTNHNLN is

(LTNHNLN )ij =
i∑
r=1

j∑
s=1

∫ b

a

(p(i−1)
r−1 )Tλs+r−2 dα(λ)p(j−1)

s−1 .

Splitting the power of λ in two parts and using
j∑
s=1

λs−1p
(j−1)
s−1 = pj−1(λ),

we can see that we have

(LTNHNLN )ij =
∫ b

a

pTi−1(λ) dα(λ) pj−1(λ).

From the orthonormality properties, we obtain

(LTNHNLN )ij =
{
I2, if i = j,
0, otherwise,

which proves the result. ✷

The last result implies that the inverse of HN is H−1
N = LNL

T
N . Let Km be

defined as

Km(µ, λ) =
m∑
j=0

pj(µ)pTj (λ),

and let Kj
i be a 2ni × 2nj matrix

Kj
i =



KN−1(θi, θj) · · · KN−1(θi, θj)

...
...

...
KN−1(θi, θj) · · · KN−1(θi, θj)


 ,

and finally let

K =



K1

1 K2
1 . . . Kl

1

K1
2 . . . . . . Kl

2
...

...
K1
l . . . . . . Kl

l


 . (6.29)

Then, we have the following factorization of the matrix K.
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PROPOSITION 6.13 LetLN be defined by equation (6.26), VN by equations (6.27)
and (6.28) and K by equation (6.29). Then

VNLN (VNLN )T = K.

Proof. This is proved using the definition of Kj
i . ✷

Now, we define a 2N × 4N matrix WT
N whose only nonzero components in row

i are in position (i, 2i − 1) and (i, 2i) and are successively the two components of
(w1

1)
T , . . . , (wn1

1 )T , (w1
2)
T , . . . , (wn2

2 )T , . . . (w1
l )
T , . . . , (wnl

l )
T . We choose the

weights wij such that they are normalized as

(wki )
TKN−1(θi, θj)wlj = δk,l.

PROPOSITION 6.14 Let K be defined by equation (6.29). With the previous defi-
nition of WN we have

WT
NKWN = I.

Proof. This is obvious from the way the wji ’s are constructed. ✷

This leads to the following result.

PROPOSITION 6.15 Let VN be defined by equations (6.27) and WN be defined as
above. Then WT

NVN is a nonsingular 2N × 2N matrix.

Proof.

WT
NVNH

−1
N V TNWN =WT

NVNLNL
T
NV

T
NWN =WT

NKWN = I.

This shows that WT
NVN is nonsingular. ✷

We now give the main result concerning the exactness of the block quadrature
rule.

THEOREM 6.16 The quadrature rule (6.20) or (6.21) is exact for polynomials of
order less than or equal to 2N − 1.

Proof. From the proof of proposition 6.15, we have

H−1
N = (WT

NVN )
−1(V TNWN )−1.

Therefore,

HN = (V TNWN )(WT
NVN ).

By identification of the block entries in the two matrices we have,

Mk =
l∑
i=1


 ni∑
j=1

(wji )(w
j
i )
T


 θki , k = 0, . . . , 2N − 2,

which proves that the quadrature rule is exact up to degree 2N − 2. It remains to
prove that it is exact for k = 2N − 1. Writing equation (6.25) for N + 1, we have

HN+1



p
(N)
0
...

p
(N)
N−1

p
(N)
N


 =




0
...
0∫ b

a
pTN (λ)λ

N dα(λ)


 .
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Writing the (N − 1)st block row of this equality, we obtain

M2N−1 p
(N)
N = −

N−1∑
r=0

MN+r−1 p
(N)
r . (6.30)

We have seen before that

MN+r−1 =
l∑
i=1


 ni∑
j=1

wji (w
j
i )
T


 θN+r−1

i .

By substitution into equation (6.30), we have

M2N−1 p
(N)
N = −

N−1∑
r=0

l∑
i=1

ni∑
j=1

wji (w
j
i )
T θN+r−1
i p(N)

r .

We put the sum over r on the last two terms and use the fact that

(wji )
T
N−1∑
r=0

θri p
(N)
r = (wji )

T pN (θi)− (wji )
T θNi p

(N)
N ,

because of
N−1∑
r=0

θri p
(N)
r =

N∑
r=0

θri p
(N)
r − θNi p

(N)
N ,

and

(wji )
T pN (θi) = 0,

because since wji is proportional to the two first components of an eigenvector we
have pN (θi)Tw

j
i = 0. This shows that

M2N−1p
(N)
N =

l∑
i=1

ni∑
j=1

(wji )(w
j
i )
T θ2N−1
i p

(N)
N .

Since p(N)
N is nonsingular, this proves the desired result. ✷

To obtain expressions for the remainder, we would like to use a similar approach
as for the scalar case. However, there are some differences, since in the block case
the quadrature rule is exact for polynomials of order 2N − 1 and since we have
2N nodes, we cannot interpolate with a Hermite polynomial and we have to use a
Lagrange polynomial. By theorems 2.1.1.1 and 2.1.4.1 of Stoer and Bulirsch [314],
there exists a polynomial q of degree 2N − 1 such that

q(θj) = f(θj), j = 1, . . . , 2N

and

f(x)− q(x) =
s(x)f (2N)(ξ(x))

(2N)!
,

where

s(x) = (x− θ1) · · · (x− θ2N ).
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Applying the mean value theorem, the remainder R[f ], which is a 2×2matrix, can
be written as

R[f ] =
f (2N)(η)
(2N)!

∫ b

a

s(λ) dα(λ).

Unfortunately, the elements of s do not have a constant sign over the interval [a, b].
Therefore this representation formula for the remainder is of little practical use,
except eventually to obtain bounds of the norm of the remainder.

6.6.2 The Block Gauss–Radau Rule
We now extend the process described for scalar polynomials to the block analog of
the Gauss–Radau quadrature rule. We would like a to be a double eigenvalue of
JN+1. We have

JN+1P (a) = aP (a)− [0, . . . , 0, pN+1(a)ΓN+1]T .

Then, we require pN+1(a) ≡ 0. From the block three-term recurrence this trans-
lates into

apN (a)− pN (a)ΩN+1 − pN−1(a)ΓTN = 0.

Therefore, if pN (a) is nonsingular, we have

ΩN+1 = aI2 − pN (a)−1pN−1(a)ΓTN .

We must compute the right-hand side. This can be done by remarking that

JN




p0(a)T
...

pN−1(a)T


 = a




p0(a)T
...

pN−1(a)T


−


 0

...
ΓTNpN (a)

T


 .

Multiplying on the right by pN (a)−T , we obtain the matrix equation

(JN − aI)




−p0(a)T pN (a)−T
...

−pN−1(a)T pN (a)−T


 =


 0

...
ΓTN


 .

Thus, we first solve

(JN − aI)




δ0(a)
...

δN−1(a)


 =


 0

...
ΓTN


 .

This is a block tridiagonal linear system. Then we have,

ΩN+1 = aI2 + δN−1(a)TΓTN , (6.31)

which gives JN+1 with a double prescribed eigenvalue. The block Gauss–Radau
rule is exact for polynomials of degree 2N .
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6.6.3 The Block Gauss–Lobatto Rule
The generalization of the Gauss–Lobatto construction to the block case is a little
more difficult. We would like to have a and b as double eigenvalues of the matrix
JN+1. This leads to satisfying the two following matrix equations

apN (a)− pN (a)ΩN+1 − pN−1(a)ΓTN = 0,

bpN (b)− pN (b)ΩN+1 − pN−1(b)ΓTN = 0.

This can be written as a linear system(
I2 p−1

N (a)pN−1(a)
I2 p−1

N (b)pN−1(b)

)(
ΩN+1

ΓTN

)
=

(
aI2
bI2

)
. (6.32)

We now consider the problem of computing p−1
N (λ)pN−1(λ). Let δ(λ) be the

solution of

(JN − λI)δ(λ) = (0 . . . 0 I2)T .

Then, as before,

δN−1(λ) = −pN−1(λ)T pN (λ)−TΓ−T
N .

We can show that δN−1(λ) is symmetric. We consider solving a 2× 2 block linear
system of the form (

I X
I Y

)(
U
V

)
=

(
aI
bI

)
.

We use a block factorization(
I X
I Y

)
=

(
I 0
I W

)(
I X
0 Z

)
=

(
I X
I X +WZ

)
;

thus WZ = Y −X .
The solution of the system for the forward step(

I 0
I W

)(
U1

V1

)
=

(
aI
bI

)
gives

U1 = aI, WV1 = (b− a)I.

The backward step is (
I X
0 Z

)(
U
V

)
=

(
U1

V1

)
,

and we obtain

ZV = V1 =W−1(b− a)I,

or

(WZ)V = (b− a)I.
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Therefore
V = (b− a)(Y −X)−1.

Using this result for the linear system in equation (6.32), we have
Y −X = p−1

N (b)pN−1(b)− p−1
N (a)pN−1(a) = ΓN (δN−1(a)− δN−1(b)).

This means that
ΓTN = (b− a)(δN−1(a)− δN−1(b))−1Γ−1

N ,

or
ΓTNΓN = (b− a)(δN−1(a)− δN−1(b))−1.

Thus, ΓN is given as a Cholesky factorization of the right-hand side matrix. This
matrix is positive definite because δN−1(a) is a diagonal block of the inverse of
(JN − aI)−1, which is positive definite because the eigenvalues of JN are larger
than a, and −δN−1(b) is the negative of a diagonal block of (JN − bI)−1, which is
negative definite because the eigenvalues of JN are smaller than b.

From ΓN , we can compute ΩN+1:
ΩN+1 = aI2 + ΓNδN−1(a)ΓTN .

The block Gauss–Lobatto rule is exact for polynomials of degree 2N + 1.

6.6.4 Computation of the Block Gauss Rules
As for the scalar case, it is not always necessary to compute the nodes and the
weights for the block quadrature rules.

THEOREM 6.17 We have
2N∑
i=1

f(θi)uiuTi = eT f(JN )e, (6.33)

where eT = (I2 0 . . . 0).

Proof. The quadrature rule is
2N∑
i=1

uif(θi)uTi .

If zi are the eigenvectors of JN then ui = eT zi and
2N∑
i=1

uif(θi)uTi =
2N∑
i=1

eT zif(θi)(zi)T e

= eT
(

2N∑
i=1

zif(θi)(zi)T
)
e

= eTZNf(ΘN )ZTNe
= eT f(JN )e,

where ZN is the matrix of the eigenvectors and ΘN the diagonal matrix of the
eigenvalues of JN . However, since JN is a block tridiagonal matrix, it may not be
easy to compute elements of f(JN ). Nevertheless, we will see that it can be done
if f(λ) = 1/λ. ✷



Chapter Seven

Bounds for Bilinear Forms uTf(A)v

7.1 Introduction

As we said in chapter 1, we are interested in computing bounds or approximations
for bilinear forms

uT f(A)v, (7.1)

where A is a symmetric square matrix of order n, u and v are given vectors and
f is a smooth (possibly C∞) function on a given interval of the real line. For the
relation of this problem to matrix moments, see Golub [140], [141]. There are
many different areas of scientific computing where such estimates are required, for
instance, solid state physics, physics problems leading to ill-posed linear systems,
computing error bounds for iterative methods and so on.

We will also consider a generalization of the form (7.1),

WT f(A)W,

where W is an n×m matrix. For specificity, we will consider m = 2.
In this short chapter we summarize how the results and techniques developed in

chapters 2 to 6 can be used to approximate the bilinear form (7.1). Assuming that
the matrix A is symmetric, we can use the spectral decomposition of A written as

A = QΛQT ,

where Q is the orthonormal matrix whose columns are the normalized eigenvectors
of A and Λ is a diagonal matrix whose diagonal elements are the eigenvalues λi of
A, which we order as

λ1 ≤ λ2 ≤ · · · ≤ λn.

The definition of a function of a symmetric matrix is

f(A) = Qf(Λ)QT ;

see, for instance, [189]. Therefore,

uT f(A)v=uTQf(Λ)QT v,
= γT f(Λ)β,

=
n∑
i=1

f(λi)γiβi.

This last sum can be considered as a Riemann–Stieltjes integral (see chapter 2),

I[f ] = uT f(A)v =
∫ b

a

f(λ) dα(λ), (7.2)



BOUNDS FOR BILINEAR FORMS 113

where the measure α is piecewise constant and defined by

α(λ) =



0, if λ < a = λ1,∑i
j=1 γjβj , if λi ≤ λ < λi+1,∑n
j=1 γjβj , if b = λn ≤ λ.

When u = v, we remark that α is an increasing positive function as well as when
γjβj > 0.

The block generalization is obtained in the following way. Let W be an n × 2
matrix, W = (w1 w2), then

WT f(A)W =WTQf(Λ)QTW = ωf(Λ)ωT ,

where, of course, ω is a 2× n matrix such that

ω = (ω1 . . . ωn),

and ωi is a vector with two components. With these notations, we have

WT f(A)W =
n∑
i=1

f(λi)ωiωTi .

This can be written as a matrix Riemann–Stieltjes integral (see chapter 2),

IB [f ] =WT f(A)W =
∫ b

a

f(λ) dα(λ). (7.3)

IB [f ] is a 2 × 2 matrix where the entries of the (matrix) measure α are piecewise
constant and defined by

α(λ) =
i∑
k=1

ωkω
T
k , λi ≤ λ < λi+1.

As we have seen in chapter 6, a way to obtain bounds for the Riemann– Stieltjes
integrals (7.2) or (7.3) is to use Gauss, Gauss–Radau and Gauss–Lobatto quadrature
rules or their block equivalents. When u = v, the measure is a positive increasing
function. If the given function f is such that its derivatives have a constant sign
on the interval of integration, then we can obtain bounds for the quadratic form
uT f(A)u. If the signs are not constant, the quadrature rules give only approxi-
mations of the quadratic form. From chapter 2 we know that when the measure is
positive, it is possible to define a sequence of polynomials p0(λ), p1(λ), . . . that are
orthonormal with respect to the measure α. The nodes and weights of the quadra-
ture rules are obtained from the Jacobi matrix (or some modifications of it) whose
nonzero entries are the coefficients of the polynomials three-term recurrence; see
chapter 6.

7.2 The Case u = v

How do we generate the Jacobi matrix corresponding to a measure α that is un-
known, since we do not know the eigenvalues of A? When A is symmetric and
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u = v, an elegant solution is to use the Lanczos algorithm with the first Lanczos
vector chosen as v1 = u/‖u‖. We have seen in theorem 4.2 that the measure α for
which the Lanczos polynomials are orthonormal is defined by the eigenvalues of
A and the components of the vector QT v1. This is precisely what we need for the
quadrature rules. Hence, the nodes and weights are given by the eigenvalues and
first components of the eigenvectors of the tridiagonal Lanczos matrix which is a
Jacobi matrix.

The algorithm is the following:
1) Normalize u if necessary to obtain v1.
2) Run k iterations of the Lanczos algorithm with A starting from v1 and com-

pute the Jacobi matrix Jk.
3) If we use the Gauss–Radau or Gauss–Lobatto rules, modify Jk to J̃k accord-

ingly. For the Gauss rule J̃k = Jk.
4) If this is feasible, compute (e1)T f(J̃k)e1. Otherwise, compute the eigen-

values and the first components of the eigenvectors using the Golub and Welsch
algorithm to obtain the approximations from the Gauss, Gauss–Radau and Gauss–
Lobatto quadrature rules.

Let n be the order of the matrix A and Vk be the n × k matrix whose columns
are the Lanczos vectors. Assume for the sake of simplicity that A has distinct
eigenvalues. Then after n Lanczos iterations we have AVn = VnJn. If Q (resp. Z)
is the matrix of the eigenvectors of A (resp. Jn), we have the relation VnZ = Q.
Assuming u is of norm 1, we have u = Vne

1; therefore

uT f(A)u = (e1)TV Tn Qf(Λ)Q
TVne

1 = (e1)TZT f(Λ)Ze1.

But Jn has the same eigenvalues as A. Hence uT f(A)u = (e1)T f(Jn)e1. The
remainder of the Gauss quadrature rule can thus be written as

R[f ] = (e1)T f(Jn)e1 − (e1)T f(Jk)e1.

From this expression of the remainder we see that the convergence of the Gauss
quadrature approximation to the integral depends on the convergence of the Ritz
values (which are the eigenvalues of Jk and the nodes of the quadrature rule) to the
eigenvalues of A.

7.3 The Case u �= v

A first possibility is to use the identity

uT f(A)v = [(u+ v)T f(A)(u+ v)− (u− v)T f(A)(u− v)]/4.

If the signs of the derivatives of the function f are constant we can obtain lower
and upper bounds of the two terms on the right-hand side and combine them to
obtain bounds of uT f(A)v. However, this has the disadvantage that we have to run
the Lanczos algorithm twice, one time with u + v and one time with u − v as the
starting vector.

Another possibility is to apply the nonsymmetric Lanczos algorithm to the sym-
metric matrix A. The main difference with the symmetric Lanczos algorithm is
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that the algorithm may break down. As we have seen in chapter 4, we can monitor
the signs of the computed vectors during the algorithm to know wether we have a
lower or an upper bound. Otherwise the framework of the algorithm is the same as
for the case u = v. Note that as in the first possibility we have two matrix-vector
multiplications per iteration.

A way to get around the breakdown problem is to introduce a parameter δ and
use v1 = u/δ and ṽ1 = δu + v. This will give an estimate of uT f(A)v/δ +
uT f(A)u. Using the bounds we can compute for uT f(A)u, we can obtain bounds
for uT f(A)v. Of course, the problem is to determine a good value of δ.

7.4 The Block Case

The general framework is the same as for the Lanczos algorithm. We have to deal
with a block tridiagonal matrix and we have to compute eT f(Jk)e where e =
(I2 0 . . . 0)T . The difficulty of such a computation depends on the function f .

For the generation of the matrix orthogonal polynomials we use the block Lanc-
zos algorithm. However, we have seen that we have to start the algorithm from an
n × 2 matrix X0 such that XT0 X0 = I2. Considering the bilinear form uT f(A)v
we would like to use X0 = [u v] but this does not fulfill the condition on the start-
ing matrix. Therefore, we have to orthogonalize the pair [u v] before starting the
algorithm. Let u and v be independent vectors and nu = ‖u‖; then we compute

ũ =
u

nu
, v̄ = v − uT v

n2
u

u, nv = ‖v̄‖, ṽ =
v̄

nv
,

and we set X0 = [ũ ṽ]. Of course, this does not directly compute uT f(A)v. Let J1

be the leading 2×2 submatrix of the matrix f(Jk)where Jk is the block tridiagonal
matrix constructed by the block Lanczos algorithm. Then, an approximation of
uT f(A)v is given by

uT f(A)v ≈ (uT v)J1
1,1 + nunvJ

1
1,2.

Note that when u and v are orthogonal v̄ = v, we just have to normalize both
vectors and the approximation is nunvJ1

1,2. At the same time we have estimates of
uT f(A)u and vT f(A)v given by

uT f(A)u ≈ n2
uJ

1
1,1, vT f(A)v ≈ n2

vJ
1
2,2 + 2(u

T v)
nu
nv
J1

1,2 +
(uT v)2

n2
u

J1
1,1.

Therefore, in only one run with the block Lanczos algorithm we can obtain three
estimates.

7.5 Other Algorithms for u �= v

A possibility is to approximate f(A)v by ‖v‖Vkf(Jk)e1 (see Druskin and Knizhn-
erman [91], [92], [93], [95]) and then to compute the bilinear form as uT ‖v‖Vkf(Jk)e1.
Note that we can compute uTVk during the Lanczos iterations without storing the
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Lanczos vectors. For computing f(A)v see also Eiermann and Ernst [97], Afanas-
jew, Eiermann, Ernst and Güttel [2], [3], Frommer and Simoncini [117], Hochbruck
and Lubich [192] and chapter 13 of Higham [189].

A variant of the ideas described above has been proposed by Sidje, Burrage and
Philippe [300]. This paper uses an augmented Lanczos algorithm to handle the
case u �= v. Assume the Lanczos algorithm is started from v1 = v/‖v‖. After
k iterations we obtain a matrix Vk whose columns are the Lanczos vectors and a
tridiagonal matrix Jk. The matrix Vk is augmented to

V̂k+1 = (Vk v̂k+1 ) ,

the vector v̂k+1 being defined using the vector u as

v̂k+1 =
(I − Pk)u
‖(I − Pk)u‖ ,

where Pk = VkV
T
k is the orthogonal projector on the Krylov subspace spanned by

the columns of Vk. The approximation of uT f(A)v is taken as

uT ‖v‖V̂k+1f(V̂ Tk+1AV̂k+1)e1.

It remains to see what is the structure of V̂ Tk+1AV̂k+1. Clearly, we have

Ĵk+1 = V̂ Tk+1AV̂k+1 =
(

Jk V Tk Av̂
k+1

(v̂k+1)TAVk (v̂k+1)TAv̂k+1

)
.

Using the results from the k first Lanczos steps and orthogonality, the off-diagonal
part of the last row is

(v̂k+1)TAVk = (v̂k+1)T (VkJk + ηkv
k+1(ek)T ) = ηk(v̂k+1)T vk+1(ek)T .

Hence, the matrix Ĵk+1 is tridiagonal, and denoting η̂k = ηk(v̂k+1)T vk+1 and
α̂k+1 = (v̂k+1)TAv̂k+1, we write it as

Ĵk+1 =
(

Jk η̂ke
k

η̂k(ek)T α̂k+1

)
.

How can we compute η̂k and α̂k+1? First we need v̂k+1. We remark that

(I − Pk)u = (I − vk(vk)T ) · · · (I − v1(v1)T )u.

Therefore, the vector (I − Pk)u can be computed incrementally as a new Lanczos
vector becomes available. The norm is equal to

‖(I − Pk)u‖2 = ‖(I − Pk−1)u‖2 + [(vk)Tu]2.

When we have the vector v̂k+1 we can compute η̂k. The value α̂k+1 can be com-
puted directly but this needs an extra matrix-vector multiplication. Sidje, Burrage
and Philippe developed a recurrence for calculating α̂k+1,

α̂k+1‖(I −Pk)u‖2 = α̂k‖(I −Pk−1)u‖2 − 2ηk(vk+1)Tu(vk)Tu−αk[(vk)Tu]2.

The stability of this recurrence has not been investigated so far. The advantage
of the Sidje, Burrage and Philippe algorithm is that only one matrix-vector mul-
tiplication is needed per iteration and it is not necessary to store all the Lanczos
vectors.



Chapter Eight

Extensions to Nonsymmetric Matrices

When the matrix A is nonsymmetric (and not diagonalizable), there are several
equivalent ways to define f(A); see Higham [189] and also Frommer and Si-
moncini [117]. Some particular functions can be defined from their power series.
A general way of defining f(A) is through the Jordan canonical form of A even
though this is not a practical means of computing the matrix function. Another
definition uses a Hermite interpolation polynomial with interpolation conditions on
the derivatives of f at the eigenvalues of A. Finally, when the function f is ana-
lytic on and inside a closed contour Γ that encloses the spectrum of A, the matrix
function can be defined as a Cauchy integral

f(A) =
1
2πi

∫
Γ

f(z)(zI −A)−1 dz.

For nonsymmetric matrices A most of the research has focused on computing ap-
proximations of f(A)v where v is a given vector, see Eiermann and Ernst [97],
Knizhnerman [205], Hochbruck and Hochstenbach [191], Druskin and Knizhner-
man [93], [94] and many others. However, there are a few papers in the literature
dealing with estimating uTA−1v or its equivalent for complex matrices and vec-
tors. They used the nonsymmetric Lanczos algorithm or the Arnoldi algorithm.
Let us mention Freund and Hochbruck [114], Saylor and Smolarski [293], [294]
and Calvetti, Kim and Reichel [58]. More recently this problem has also been
considered by Golub, Stoll and Wathen [163] using generalizations of the LSQR
algorithm of Paige and Saunders [256]. This generalization of the LSQR algorithm
was introduced in the past by Saunders, Simon and Yip [292] for the sake of solving
nonsymmetric linear systems. Generalizations of the Vorobyev moment problem
[338] to the nonsymmetric case were studied by Strakoš [316] and Strakoš and
Tichý [319]. These last papers justify the recourse to the nonsymmetric Lanczos
and Arnoldi algorithms to compute estimates of the bilinear form without using
complex quadrature rules. Strakoš proved that k iterations of the nonsymmetric
Lanczos algorithm matches the first 2k moments of A, that is,

uHAjv = (e1)TJjke
1, j = 0, 1, . . . , 2k − 1,

where Jk is the nonsymmetric tridiagonal matrix of the nonsymmetric Lanczos
algorithm. The Hessenberg matrix computed by the Arnoldi algorithm matches
only k moments after k iterations.

In this chapter we briefly review some of these approaches for computing esti-
mates of bilinear forms.
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8.1 Rules Based on the Nonsymmetric Lanczos Algo-
rithm

In the paper [293] Saylor and Smolarski described Gauss quadrature rules in the
complex plane. Their motivation was to compute estimates of uTA−1v. In elec-
tromagnetics, one problem is to consider waves impinging on an obstacle and to
analyze the scattered wave received by an antenna. The solution of a linear system
Ax = v gives the field x from the signal v and the signal received by the antenna is
represented by uTx. It is known as the scattering amplitude. The scattering cross
section of the obstacle is |uTA−1v|2. The same problem arises also in other areas
of physics. For complex vectors u and v the usual Euclidean inner product is

〈u, v〉 =
n∑
i=1

uiv̄i.

Saylor and Smolarski considered bilinear forms

(u, v)w =
n∑
i=1

uiviwi,

where the values wi are weights. The vectors u and v are said to be formally
orthogonal if (u, v)w = 0.

In the complex plane, a weighted inner product can be naturally defined as a
contour integral

((f, g))w =
∫
γ

f(ζ)g(ζ)w(ζ) dζ,

where γ is an arc. The main problem with this definition is that, in general,
((ζg, g))w �= ((f, ζg))w. This means that a sequence of orthogonal polynomials
does not satisfy a three-term recurrence. Saylor and Smolarski used a line integral

〈f, g〉w =
∫
γ

f(ζ)g(ζ)w(ζ) |dζ|,

where |dζ| is the arc length. The corresponding normalized formally (or formal)
orthogonal polynomials satisfy a three-term recurrence but they may fail to exist at
some stages. A Gauss quadrature formula is then∫

γ

f(ζ)w(ζ) |dζ| =
k∑
i=1

ωif(ζi) +Rk.

Besides the fact that the formally orthogonal polynomials φi may fail to exist, the
derivation is then more or less the same as in the real case. If we assume that
the polynomials exist, the nodes are the eigenvalues of the tridiagonal matrix and
the weights are the squares of the first components of the eigenvectors divided by
φ2
i (ζj). The nodes and weights may be complex numbers.
So far, this does not solve the problem of computing the scattering amplitude.

Saylor and Smolarski used the biconjugate gradient method (denoted as BCG or
BiCG) which can be derived from the nonsymmetric Lanczos algorithm, see Fletcher
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[112]. In BiCG there are two sets of residual vectors rk which belong to K(A, r0)
and r̃k which belong to K(AH , r̃0). The vectors rk = pk(A)r0 and r̃k = p̃k(A)r̃0

satisfy three-term recurrences. Moreover, pk(ζ) = p̃k(ζ).
The inner product of rk and r̃k can be written as a line integral (where γ is an arc

connecting the eigenvalues of A) and the polynomials pk are formally orthogonal
relative to this bilinear form. The tridiagonal matrix can be obtained from the
BiCG coefficients in the same spirit that the Lanczos coefficients can be derived
from those of CG (and reciprocally) in the symmetric (or Hermitian) case. Details
are given in [294]. When the nodes and weights are computed we have that the
approximation of the scattering amplitude is

uTA−1v ≈
k∑
i=1

ωi
ζi
.

On this topic, see also the addendum [294] and the reports of Warnick [344], [345],
[346].

Interesting numerical experiments comparing different methods are given in Strakoš
and Tichý [319].

8.2 Rules Based on the Arnoldi Algorithm

The paper [58] by Calvetti, Kim and Reichel considers complex nonsymmetric
matrices and apply the Arnoldi algorithm we have described at the beginning of
chapter 4, which in matrix form is written as

AVk = VkHk + hk+1,kv
k+1(ek)H ,

where the upper index H denotes the conjugate transpose since we are dealing with
complex matrices. The matrix Hk is upper Hessenberg with elements hi,j . Let

〈f, g〉 = vHf(A)Hg(A)v, (8.1)
be a quadratic form where the functions f and g are assumed to be analytic in a
neighborhood of the eigenvalues of A. The quadratic form is represented as an
integral

〈f, g〉 = 1
4π2

∫
γ

∫
γ

f(z)g(w)vH(z̄I −AH)−1(wI −A)−1v dz dw,

where the contour γ contains the spectrum of A. Then, the quadratic form (8.1) is
approximated by

〈f, g〉k = ‖v‖2(e1)Hf(Hk)Hg(Hk)e1,
where the functions f and g must be also analytic in a neighborhood of the spectrum
of Hk which gives approximations to the spectrum of A.

The Arnoldi vectors vj are given by a polynomial p̂j of degree j applied to the
first vector v, vj = p̂j−1(A)v. These polynomials are orthonormal with respect to
the quadratic form (8.1). The monic orthogonal polynomials pj associated with the
polynomials p̂j satisfy a recurrence relation

pj(λ) = (λ− cj,j)pj−1(λ)−
j−1∑
k=1

ck,jpk−1(λ),
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with p0(λ) ≡ 1 and

ck,j =
〈pk−1, λpk−1〉
〈pk−1, pk−1〉 .

The nonzero entries of Hk are given in terms of the monic polynomials as

hj+1,j =
〈pj , pj〉1/2

〈pj−1, pj−1〉1/2
, hk,j =

〈pk−1, λpj−1〉
〈pk−1, pk−1〉1/2〈pj−1, pj−1〉1/2 , j < k.

Note that the coefficients hj+1,j are positive. Hence, the polynomials are well
defined up to k = n(A), the grade of A with respect to v.

Let Wk = (Pk ⊕ Pk+1)∪ (Pk+1 ⊕ Pk) and Pk denote the set of polynomials of
degree at most k. Then,

〈f, g〉k = 〈f, g〉, ∀f, g ∈Wk−1.

This result is due to Freund and Hochbruck [114] and a proof is also given in [58].
Calvetti, Kim and Reichel introduced the bilinear forms

〈f, g〉(r,s) = ‖v‖2(vr)Hf(A)Hg(A)vs, (8.2)

where vr and vs are Arnoldi vectors, and an approximation

〈f, g〉(r,s)k = ‖v‖2(er)Hf(Hk)Hg(Hk)es.

Then,

〈f, g〉(r,s) = 〈f, g〉(r,s)k ,

for all integers r and s smaller than k and all polynomials f and g such that f ∈
Pk−r+1 and g ∈ Pk−s or f ∈ Pk−r and g ∈ Pk−s+1.

Calvetti, Kim and Reichel [58] introduced also an anti-Arnoldi quadrature rule
denoted by [f, g]k+1 for which

〈f, g〉 − 〈f, g〉k = −(〈f, g〉 − [f, g]k+1), ∀f, g ∈Wk.

The derivation is similar to what has been done by Laurie [218] for the symmetric
case. The Hessenberg matrix H̃k+1 for the anti-Arnoldi rule is obtained fromHk+1

by multiplying the elements of the last row and the last column by
√
2 except for

the diagonal element hk+1,k+1.
If the functions f and g are such that we have expansions

f(A)v =
mf∑
i=0

ηip̂i(A)v, g(A)v =
mg∑
i=0

ξip̂i(A)v,

then, if the coefficients ηi and ξi are sufficiently small for i ≥ k + 1, Re(〈f, g〉k)
and Re([f, g]k+1) (resp. Im(〈f, g〉k) and Im([f, g]k+1)) can be shown to give lower
or upper bounds of Re(〈f, g〉) (resp. Im(〈f, g〉)). The conditions given in [56] are
difficult to check but this result shows that there exist cases for which the Arnoldi
and anti-Arnoldi quadrature rules do give bounds.

If a vector u belongs to the Krylov subspace span by the Arnoldi vectors, we
have u =

∑l
r=1 βrv

r, then

uHg(A)v =
1

‖v‖
l∑
r=1

βr〈1, g〉(r,1).
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In [56], it is proposed to use

1
‖v‖

l∑
r=1

max{βr〈1, g〉(r,1)k , βr[1, g]
(r,1)
k+1 } and

1
‖v‖

l∑
r=1

min{βr〈1, g〉(r,1)k , βr[1, g]
(r,1)
k+1 },

as estimates of upper and lower bounds of uHg(A)v.



Chapter Nine

Solving Secular Equations

9.1 Examples of Secular Equations

What are secular equations? The term “secular” comes from the latin “saecularis”
which is related to “saeculum”, which means “century”. So secular refers to some-
thing that is done or happens every century. It is also used to refer to something
that is several centuries old. It appeared in mathematics to denote equations re-
lated to the motion of planets and celestial mechanics. For instance, it appears in
the title of a 1829 paper of A. L. Cauchy (1789–1857) “Sur l’équation à l’aide
de laquelle on détermine les inégalités séculaires des mouvements des planètes”
(Oeuvres Complètes (IIème Série), v 9 (1891), pp 174–195). There is also a pa-
per by J. J. Sylvester (1814–1897) whose title is “On the equation to the secular
inequalities in the planetary theory” (Phil. Mag., v 5 n 16 (1883), pp 267-269).

In modern applied mathematics, the term “secular” is used to refer to equations
that involve matrices like the inverse of A−λI or powers of the inverse where λ is
a real number. Let us now consider a few examples.

9.1.1 Eigenvalues of a Tridiagonal Matrix
Several methods reduce the problem of computing the eigenvalues of a symmetric
matrix A to the simpler problem of computing the eigenvalues of a (sequence of)
symmetric tridiagonal matrices Jk. A well-known example is the Lanczos algo-
rithm, which generates such a matrix at each iteration. In fact, a new row and a
new column are appended at each iteration to the previous matrix. We can consider
what happens when we go from the step k (with a matrix Jk whose eigenvalues we
assume we know) to step k + 1. We look for an eigenvalue λ and an eigenvector
x = ( y ζ )T of Jk+1 where y is a vector of dimension k and ζ is a real number.
This gives the two equations

Jky + ηkζe
k = λy,

ηkyk + αk+1ζ = λζ,

where yk is the last component of y, αj , j = 1, . . . , k + 1 are the diagonal entries
of Jk+1 and ηj , j = 1, . . . , k are the entries on the subdiagonal. By eliminating
the vector y from these two equations we have

(αk+1 − η2
k((e

k)T (Jk − λI)−1ek)ζ = λζ.

This equation shows why solving secular equations is related to the main topic
of this book, since (ek)T (Jk − λI)−1ek is a quadratic form. We can divide by
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ζ if it is nonzero. Otherwise, λ is an eigenvalue of Jk, but this is impossible if
Jk+1 is unreduced. By using the spectral decomposition of Jk we obtain that the
eigenvalues of Jk+1 are solutions of the following “secular equation” for λ:

αk+1 − η2
k

k∑
j=1

(ξj)2

θj − λ
= λ,

where ξj = zjk is the kth (i.e., last) component of the jth eigenvector of Jk and
the θj’s are the eigenvalues of Jk, which are called the Ritz values. Therefore, to
obtain the eigenvalues of Jk+1 from those of Jk we have to solve

f(λ) = λ− αk+1 + η2
k

k∑
j=1

ξ2j
θj − λ

= 0. (9.1)

The secular function f has poles at the eigenvalues (Ritz values) of Jk for λ =
θj = θ

(k)
j , j = 1 . . . , k. We easily see that f is a strictly increasing function

between two consecutive poles. There is only one zero of f in each interval between
poles. An example with four poles (k = 4) is displayed in figure 9.1. In this small
example, to obtain the eigenvalues of Jk+1 we have to compute the five zeros of f in
equation (9.1). The figure illustrates also the interlacing property of the eigenvalues
of Jk and Jk+1 which is known as the Cauchy interlacing theorem; see chapter 3.
The zeros that we wish to compute will be the poles of the secular function for the
next Lanczos iteration. This illustrates the convergence of the Ritz values toward
the eigenvalues of A; see [239].
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Figure 9.1 Example of secular function (9.1) with k = 4
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9.1.2 Modification by a Rank-One Matrix
Assume that we know the eigenvalues of a matrix A and we would like to compute
the eigenvalues of a rank-one modification of A. Therefore, we have

Ax = λx,

where we assume that we know the eigenvalues λ and we want to compute µ such
that

(A+ ccT )y = µy,

where c is a given vector (not orthogonal to an eigenvector of A). Clearly µ is not
an eigenvalue ofA. ThereforeA−µI is nonsingular and we can obtain an equation
for µ by writing

y = −(A− µI)−1ccT y.

Multiplying by cT to the left, we have

cT y = −cT (A− µI)−1ccT y.

The vector c is not orthogonal to the eigenvector y since otherwise µ is an eigen-
value of A and y is an eigenvector, but this is impossible with our hypothesis on c.
Thus we can divide by cT y �= 0 and we obtain the secular equation for µ,

1 + cT (A− µI)−1c = 0.

Using the spectral decomposition of A = QΛQT with Q orthogonal and Λ diago-
nal and z = QT c, we have

1 +
n∑
j=1

(zj)2

λj − µ
= 0, (9.2)

where λj are the eigenvalues of A. For eigenvalues after a rank-one modifica-
tion of the matrix, see Bunch, Nielsen and Sorensen [45]. This situation arises,
for instance, in the divide and conquer method for computing the eigenvalues of a
tridiagonal matrix. This method was introduced by Cuppen [71], and through the
work of Dongarra and Sorensen [89] found its way to being one of the tridiagonal
eigensolvers of LAPACK. The matrix is split into two pieces. Knowing the eigen-
values of the two parts, the eigenvalues of the full matrix are recovered by solving
a secular equation. This splitting is done recursively until the matrices have a size
small enough to use efficiently another method (QR for instance). This method is
especially useful on parallel computers. To obtain the solution at a given step, the
matrix whose eigenvalues µi are sought is D+ρccT , where D is a diagonal matrix
with diagonal elements dj and ρ is a real number. Then we have the following
interlacing property:

d1 ≤ µ1 ≤ d2 ≤ · · · ≤ dn ≤ µn if ρ > 0,

µ1 ≤ d1 ≤ µ2 ≤ · · · ≤ dn−1 ≤ µn ≤ dn if ρ < 0.

The secular equation to be solved is

f(µ) = 1 + ρ

n∑
j=1

(cj)2

dj − µ
= 0. (9.3)
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For ρ > 0, the function f is increasing between the poles. An example of a secular
function with ρ = 1, d = [2 3 4 5]T and c = [1 1 1 1]T is given in figure 9.2.
With the same data for d and c but with ρ = −1 we have figure 9.3. The function
f is then decreasing in each interval between poles. In this example, there are four
zeros to be computed.
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Figure 9.2 Example of secular function (9.3) with ρ > 0

When there is a rank-k change to A, we seek µ such that

(A+ CCT )y = µy,

where the matrix C is n× k. The secular equation for µ is

det(I + CT (A− µI)−1) = 0.

On this topic, see also Arbenz and Golub [8].

9.1.3 Constrained Eigenvalue Problem
We wish to find a vector x of norm one which is the solution of

max
x

xTAx,

satisfying the constraint cTx = 0 where c is a given vector. We introduce a func-
tional ϕ with two Lagrange multipliers λ and µ corresponding to the two con-
straints,

ϕ(x, λ, µ) = xTAx− λ(xTx− 1) + 2µxT c.
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Figure 9.3 Example of secular function (9.3) with ρ < 0

Computing the gradient of ϕ with respect to x, which must be zero at the solution,
we find the equation

Ax− λx+ µc = 0,

from which we have x = −µ(A− λI)−1c. If λ is not an eigenvalue of A (µ �= 0)
and using the constraint cTx = 0 we have the secular equation

cT (A− λI)−1c = 0. (9.4)

Using the spectral decomposition of A = QΛQT and d = QT c, the secular equa-
tion is

f(λ) =
n∑
j=1

d2
j

λj − λ
= 0. (9.5)

The function f for this type of problem is shown in figure 9.4. There are n − 1
solutions to the secular equation. When we have the values of λ that are solutions
of equation (9.5), we use the constraint xTx = 1 to remark that

xTx = µ2cT (A− λI)−2c = 1.

Therefore,

µ2 =
1

cT (A− λI)−2c

and

x = −µ(A− λI)−1c.
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Figure 9.4 Example of secular function (9.5)

This problem can be generalized by replacing the only constraint cTx = 0with a
set of m constraints NTx = t where N is a rectangular matrix of dimension n×m
with m < n and t is a given vector of dimension m. This has been considered by
Gander, Golub and von Matt [121]. The matrixN is assumed to be of full rank, that
is, m. The matrix N and the vector t must satisfied ‖(NT )†t‖ < 1 where (NT )†

is the pseudoinverse. Otherwise, the constraint of x being of norm one cannot be
satisfied. If ‖(NT )†t‖ = 1, the solution is x = (NT )†t.

Gander, Golub and von Matt simplified the problem by using a QR factorization
of the matrixN . Let P be an orthogonal matrix andR be an upper triangular matrix
of order m such that

PTN =
(
R
0

)
.

Then, if we denote

PTAP =
(
B ΓT

Γ C

)
, PTx =

(
y
z

)
,

we have

xTAx = yTBy + 2zTΓy + zTCz, RT y = t, yT y + zT z = 1.

This implies y = R−T t. Denoting α2 = 1 − yT y and b = −Γy, the problem
reduces to

min
z

zTCz − 2bT z,
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with the constraint zT z = α2. This leads to an eigenvalue problem with a quadratic
constraint (see next section).

Using the same technique for the simpler previous maximization problem with
the constraint cTx = 0 (c being a vector), one can find a Householder transforma-
tion H such that

HT c =



r
0
...
0


 .

Then, using the matrix

HTAH =
(
β gT

g C

)
,

and HTx = ( y z )T where y is a scalar, we have

cTx = ( r 0 · · · 0 )HTx = ry = 0.

Therefore, y = 0 and we have xTAx = zTCz and zT z = 1. The constraint
cTx = 0 has been eliminated and the problem reduced to

max
z

zTCz,

with zT z = 1. The solution is, of course, that z is the eigenvector of C (which is
symmetric) associated with the largest eigenvalue. The solution x is recovered by

x = H

(
0
z

)
.

Looking back at the secular equation (9.4), we see that it can be written as

cT (A− λI)−1c = cTH

[(
β gT

g C

)
− λI

]−1

HT c = 0.

This implies that the (1, 1) entry of(
β − λ gT

g C − λI

)−1

must be zero. Looking for the solution of(
β − λ gT

g C − λI

)(
w
z

)
= e1,

with the constraint that w = 0, we find that

(C − λI)z = 0, gT z = 1.

Therefore, (as we already know), λ is an eigenvalue of C.
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9.1.4 Eigenvalue Problem with a Quadratic Constraint
We consider the problem

min
x
xTAx− 2cTx,

with the constraint xTx = α2. Introducing a Lagrange multiplier and using the
stationary values of the Lagrange functional, we have

(A− λI)x = c, xTx = α2. (9.6)

Let A = QΛQT be the spectral decomposition of A. The Lagrange equations (9.6)
can be written as

ΛQTx− λQTx = QT c, xTQQTx = α2.

Introducing y = QTx and d = QT c, we have

Λy − λy = d, yT y = α2.

Assume for the sake of simplicity that all the eigenvalues λi of A are simple. If λ
is equal to one of the eigenvalues, say λj , we must have dj = 0. For all i �= j we
have

yi =
di

λi − λ
.

Then, there is a solution or not, whether we have∑
i
=j

(
di

λi − λj

)2

= α2,

or not. If λ is not an eigenvalue of A, the inverse of A − λI exists and we obtain
the secular equation

cT (A− λI)−2c = α2.

Using the spectral decomposition of A this is written as

f(λ) =
n∑
i=1

(
di

λi − λ

)2

− α2 = 0. (9.7)

An example of such a secular function is displayed in figure 9.5. We see that,
contrary to the previous cases and depending on the data, we may have two zeros
in an interval between poles. However, for the problem under consideration we are
only interested in the smallest zero of f . It is located left of the first pole (as in the
example) if d1 �= 0.

On problems with quadratic constraints, see Gander [120] and Golub and von
Matt [157].

9.2 Secular Equation Solvers

We have seen in the previous section that there exist several types of secular equa-
tions. In some situations we need to compute all the zeros of the secular function,
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Figure 9.5 Example of secular function (9.7)

whereas in other cases we are interested in only one zero, generally the smallest or
the largest.

The numerical solution of secular equations has been studied for a long time. A
good summary of the techniques used to solve secular equations is given in Mel-
man [233] where a numerical comparison of methods is provided; see also [232].
Melman considered solving the equation

1 + ρ

n∑
j=1

(cj)2

dj − λ
= 0, (9.8)

with ρ > 0, corresponding to figure 9.2. When we look for the solution in the
interval ]di, di+1[, we make a change of variable λ = di + ρt. Denoting δj =
(dj − di)/ρ, the secular equation becomes

f(t) = 1 +
i∑
j=1

c2j
δj − t

+
n∑

j=i+1

c2j
δj − t

= 1 + ψ(t) + φ(t) = 0. (9.9)

Note that

ψ(t) =
i−1∑
j=1

c2j
δj − t

− c2i
t
,

since δi = 0. The function ψ has poles δ1, . . . , δi−1, 0 with δj < 0, j = 1, . . . , i−
1. The solution is sought in the interval ]0, δi+1[ with δi+1 > 0. For the sake of
simplicity, let us denote δ = δi+1. In ]0, δ[ we have ψ(t) < 0 and φ(t) > 0.
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There are two cases depending on whether or not we know all the poles of the
secular function f . Let us assume that we are in the first case, so we are able to
compute values of ψ and φ and their derivatives. It is generally agreed that the
Newton method is not well suited to obtaining the solution of secular equations,
although this conclusion depends on the choice of the starting point and the choice
of the function to which we apply the algorithm; for instance see Reinsch [281],
[282], who used the Newton method on 1/f . Bunch, Nielsen and Sorensen [45]
interpolated ψ to first order by a rational function p/(q− t) and φ by r+ s/(δ− t).
This is called osculatory interpolation. The parameters p, q, r, s are determined by
matching the exact values of the function and the first derivative of ψ or φ at some
given point t̄ (to the right of the exact solution) where f has a negative value. These
parameters are given by

q = t̄+ ψ(t̄)/ψ′(t̄),

p = ψ(t̄)2/ψ′(t̄),

r = φ(t̄)− (δ − t̄)φ′(t̄),

s = (δ − t̄)2φ′(t̄).

For computing them we have

ψ′(t) =
i∑
j=1

c2j
(δj − t)2

and

φ′(t) =
n∑

j=i+1

c2j
(δj − t)2

.

Then the new iterate is obtained by solving the quadratic equation

1 +
p

q − t
+ r +

s

δ − t
= 0.

This equation has two roots, of which only one is of interest. This method is called
BNS1 in Melman [45] and “approaching from the left” in Li [226]. Provided the
initial guess is carefully chosen, it gives a monotonically increasing sequence which
converges quadratically to the solution.

Let us consider the example of figure 9.2. It was obtained with ρ = 1, d =
[2, 3, 4, 5] and c = [1, 1, 1, 1]. We would like to compute the zero in the second
interval ]2, 3[. Therefore, after the change of variable, the interval of interest is
]0, 1[. Figure 9.6 shows ψ (solid) and φ (dots) as a function of t. It is interesting to
compare these functions with their interpolants. In this case, the interpolation of ψ
is almost exact. Whatever is t̄ in ]0, δ[ we find q = 0 up to machine precision and
almost p = c21. When the interpolation point is varied in ]0, δ[ (over 60 equidistant
sample points) the minimum relative difference between the function ψ and its
interpolant ψ̄ (computed as ‖ψ − ψ̄‖/‖ψ̄‖) is 0 and the maximum is 1.11 10−11.
The results are less satisfactory for the function φ. When the interpolation point
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Figure 9.6 Functions ψ (solid) and φ (dots)

is varied, the minimum of the relative difference is 0.0296 and the maximum is
0.2237.

To obtain an efficient method it remains to find an initial guess and to solve
the quadratic equation giving the next iterate. For the starting point, we follow
Melman’s strategy of looking for a zero of an interpolant of the function tf(t).
When seeking the ith root, this function is written as

tf(t) = t

(
1− c2i

t
+

c2i+1

δ − t
+ h(t)

)
.

The function h is written in two parts h = h1 + h2,

h1(t) =
i−1∑
j=1

c2j
δj − t

, h2(t) =
n∑

j=i+2

c2j
δj − t

.

The functions h1 and h2 do not have poles in the interval of concern. They are
interpolated as in BNS1 by rational functions of the form p/(q − t). The parame-
ters are found by interpolating the function values at points 0 and δ. This gives a
function h̄ = h̄1 + h̄2. The starting point is obtained by computing the zero (in the
interval ]0, δ[) of the function

t

(
1− c2i

t
+

c2i+1

δ − t
+ h̄(t)

)
.

This can be done with a standard zero finder. In our example h̄1 ≡ 0. The com-
puted starting point ts (translated back to ]2, 3[) is 2.2958817871588815. Denoting
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the iterates by tν , it takes three iterations to reach |tν − tν−1|/|tν−1| ≤ 10−10.
The computed zero is 2.2960896453121185 and the value of the function f is
−4.4409 10−16, which is generally the best we can hope for since this is the round-
off level.

In fact, with such a good starting point the Newton iteration also converges in
three iterations, the computed solution being the same. However, if we take as a
starting point 2+0.1(ts−2), the Newton method takes nine iterations while BNS1
needs only four iterations. This shows that the general belief about the Newton
method depends very much on the starting point. However, the methods using os-
culatory interpolation are much less sensitive to the starting point than the Newton
method for the function f .

Interpolating ψ by r̄+ s̄/t and φ by p̄/(q̄− t), one obtains another method called
BNS2 or “approaching from the right”. Then,

r̄ = ψ(t̄)− (δ − t̄)ψ′(t̄),

s̄ = (δ − t̄)2ψ′(t̄),

q̄ = t̄+ φ(t̄)/φ′(t̄),

p̄ = φ(t̄)2/φ′(t̄).
For our small example, the interpolation of ψ is done relative to the pole 0. When
the interpolation point is varied in ]0, δ[ (over 60 equidistant sample points) the
minimum relative difference between the function ψ and its interpolant ψ̄ is 0 and
the maximum is 2.4614 10−19. For the function φ the results are worse; the mini-
mum of the relative difference is 0.08699 and the maximum is 0.51767.

It takes three iterations for BNS2 to reach the stopping criteria. The computed
zero is 2.2960896453121186 (the last decimal digit is different from the BNS1
solution) and the value of the function f is 1.3323 10−15. In fact, the starting point
is not really adapted to this method since it is smaller than the root. The first iterate
jumps to the other side of the root and then the iterates decrease monotonically.
This is also why the value of the function at the approximate root is positive. If
we take as a starting point 2 + 1.2(ts − 2) the Newton method takes five iterations
while BNS2 needs four iterations.

R. C. Li [226] proposed to use r + s/(δ − t) to interpolate both functions ψ and
φ. He called this method “the middle way” (MW). In fact, we interpolate ψ, which
has a pole at 0 by r̄+ s̄/t and φ, which has a pole at δ by r+s/(δ−t). This method
is not monotonic, but has quadratic convergence.

It takes three iterations for “the middle way” to reach the stopping criteria. The
computed zero is 2.2960896453121185 (the same as the BNS1 solution) and the
value of the function f is −4.4409 10−16.

The fixed weight method FW1 fixes the coefficient for the pole at 0. Hence, f is
interpolated to first order by

r − ξ21/t+ s/(δ − t)
at a point t̄; ξ1 is the coefficient corresponding to the pole 0, which is c2 in our
example. Therefore,

r = f(t̄)− (δ − t̄)f ′(t̄) +
ξ21δ

t̄2
,
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s = (δ − t̄)2
[
f ′(t̄)− ξ21

t̄2

]
.

The next iterate is found by computing the root of the interpolant located in ]0, δ[.
The convergence is quadratic. It takes three iterations for the FW1 method to reach
the stopping criteria. The computed zero is 2.2960896453121186 and the value of
the function f is 1.3323 10−15.

The method FW2 fixes the coefficient for the pole at δ. The interpolant of f is

r̄ + s̄/t+ ξ22/(δ − t),

where ξ2 is the coefficient corresponding to the pole δ which is c3 in our example.
The parameters are given by

r̄ = f + tf ′ − ξ22δ

(δ − t̄)2
,

s̄ = −t2
[
f ′ − ξ22

(δ − t̄)2

]
.

The convergence is quadratic. It takes three iterations for the FW2 method to reach
the stopping criteria. The computed zero is 2.2960896453121185 and the value of
the function f is (by chance) 0.

The Gragg method (GR) interpolates f at t̄ to second order with the function

a+ b/t+ c/(δ − t).

This gives

c =
(δ − t̄)3

δ
f ′ +

t̄(δ − t̄)3

2δ
f ′′,

b =
t̄3

2δ
[f ′′(δ − t̄)− 2f ′] ,

a = f − f ′′t̄
2
(δ − t̄) + (2t̄− δ)f ′.

Then we solve the quadratic equation

at2 − t(aδ − b+ c)− bδ = 0.

The convergence is cubic. It takes three iterations for the Gragg method to reach
the stopping criteria. The computed zero is 2.2960896453121186 and the value of
the function f is 1.7764 10−15.

9.3 Numerical Experiments

Let us do more numerical experiments. We consider an example inspired by one
used by Melman. The dimension is n = 4 and d = [1, 1 + β, 3, 4]. Defining
vT = [γ, ω, 1, 1], we have cT = vT /‖v‖. Let us choose β = 1, but a small
weight γ = 10−2 and ω = 1. Results for the methods we have reviewed before are
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Table 9.1 β = 1, γ = 10−2, ω = 1

Method No. it. Root−1 f (Root)
BNS1 2 2.068910657999406 10−5 −4.2294 10−12

BNS2 2 2.068910658015177 10−5 8.0522 10−12

MW 2 2.068910657999406 10−5 −4.2294 10−12

FW1 2 2.068910657989172 10−5 −1.2199 10−11

FW2 2 2.068910658007030 10−5 1.7082 10−12

GR 2 2.068910657999392 10−5 −4.2398 10−12

Table 9.2 β = 1, γ = 1, ω = 10−2

Method No. it. Root−1 f (Root)
BNS1 3 2.539918603315181 10−1 −3.3307 10−16

BNS2 2 2.539918603315182 10−1 −1.1102 10−16

MW 3 2.539918603315181 10−1 −3.3307 10−16

FW1 3 2.539918603315182 10−1 3.3307 10−16

FW2 3 2.539918603315181 10−1 −3.3307 10−16

GR 3 2.539918603315181 10−1 −3.3307 10−16

Table 9.3 β = 10−2, γ = 1, ω = 1

Method No. it. Root−1 f (Root)
BNS1 2 4.939569815595898 10−3 7.8160 10−14

BNS2 2 4.939569815595901 10−3 1.4921 10−13

MW 2 4.939569815595898 10−3 7.8160 10−14

FW1 2 4.939569815595903 10−3 1.8474 10−13

FW2 2 4.939569815595914 10−3 4.0501 10−13

GR 2 4.939569815595873 10−3 −4.0501 10−13
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given in table 9.1 for computing the root in ]1, 1+ β[. Note that the root is close to
1 and the values of the function at the solution are much larger than in the previous
example, even though they are still acceptable.

In the results of table 9.2 we use γ = 1 and a small weight ω = 10−2. The
values of the function at the approximate solution are smaller. Then, for the results
in table 9.3, we use a small interval with β = 10−2 and unit weights γ = 1, ω = 1.

For these examples, there is not much difference between the methods and the
numbers of iterations are quite small. This is mainly due to the good choice of the
starting point proposed by Melman.



PART 2

Applications





Chapter Ten

Examples of Gauss Quadrature Rules

Until the 1960s, quadrature rules were computed by hand or using desk calcula-
tors and published in the form of tables (see, for instance, the list given in [320])
giving the nodes and weights for a given degree of approximation. It was a great
improvement when some software appeared allowing the computation of nodes and
weights. This can be done by brute force solving systems of nonlinear equations;
see, for instance, the Fortran codes and the tables published in the book of Stroud
and Secrest [320]. However, the method of choice today is to compute the nodes
and weights using the Jacobi matrix corresponding to the orthogonal polynomi-
als associated with the given measure and interval of integration. In this chapter
we give some examples of computation of Gauss quadrature rules. We compare
numerically several methods to obtain the nodes and weights. We also give ex-
amples of computation of integrals as well as examples of the use of modification
algorithms for the given measure.

10.1 The Golub and Welsch Approach

The result saying that the nodes are given by the eigenvalues of the Jacobi matrix
and the weights are given by the squares of the first components of the normal-
ized eigenvectors was already known at the beginning of the 1960s; see Goertzel,
Waldinger and Agresta [137] or Wilf [349]. Golub and Welsch [160] used these re-
sults and devised an algorithm based on QR with a Wilkinson-like shift to compute
the nodes and weights. It is constructed in such a way that only the first compo-
nents of the eigenvectors are computed. Moreover, they published Algol proce-
dures implementing their algorithm. We translated these procedures to Matlab and
computed some n-point Gauss quadrature rules.

For classical orthogonal polynomials, the coefficients of the recurrences are ex-
plicitly known; see for instance Gautschi [131], Laurie [221] or chapter 2. Ta-
ble 10.1 gives the results for the Legendre weight function equal to 1 on [−1, 1]
using the computed values of the coefficients of the Jacobi matrix, which are known
explicitly; see chapter 2. Of course, today such a table has some interest only to
compare different numerical methods or to look at the properties of the nodes and
weights. It is more useful to have a good routine to compute the quadrature rule.
We see that, up to the precision of the computation, the nodes and weights are sym-
metric around 0. Table 10.2 shows the nodes and weights for a 10-point Gauss rule
using the Chebyshev weight function. Obviously, the (constant) weights are π/n
which is 3.141592653589793 10−1 when rounded to 16 decimal figures. The re-
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sults are correct up to the last three decimal digits. The nodes are symmetric around
0 up to the last two decimal digits.

Table 10.1 Legendre weight function, n = 10, Golub and Welsch

Nodes Weights
−9.739065285171721 10−1 6.667134430868844 10−2

−8.650633666889848 10−1 1.494513491505808 10−1

−6.794095682990242 10−1 2.190863625159823 10−1

−4.333953941292464 10−1 2.692667193099961 10−1

−1.488743389816314 10−1 2.955242247147535 10−1

1.488743389816312 10−1 2.955242247147525 10−1

4.333953941292474 10−1 2.692667193099962 10−1

6.794095682990244 10−1 2.190863625159821 10−1

8.650633666889842 10−1 1.494513491505805 10−1

9.739065285171717 10−1 6.667134430868807 10−2

Table 10.2 Chebyshev weight function of the first kind on [−1, 1], n = 10, Golub and
Welsch

Nodes Weights
−9.876883405951373 10−1 3.141592653589779 10−1

−8.910065241883682 10−1 3.141592653589815 10−1

−7.071067811865478 10−1 3.141592653589777 10−1

−4.539904997395468 10−1 3.141592653589801 10−1

−1.564344650402311 10−1 3.141592653589792 10−1

1.564344650402312 10−1 3.141592653589789 10−1

4.539904997395469 10−1 3.141592653589798 10−1

7.071067811865472 10−1 3.141592653589789 10−1

8.910065241883679 10−1 3.141592653589789 10−1

9.876883405951381 10−1 3.141592653589803 10−1

10.2 Comparisons with Tables

In the Golub and Welsch paper [160], comparisons were made with tabulated re-
sults in Concus et al. [69]. Let us do the same comparisons with our Matlab imple-
mentation. They are done for the generalized Laguerre weight function λαe−λ with
α = −0.75 on the interval [0,∞). Table 10.3 gives the results of the Golub and
Welsch algorithm and table 10.4 shows the relative differences with the tabulated
results as reported in [160]. We observe that the errors are slightly smaller than in
the Golub and Welsch paper. This is due to the use of IEEE arithmetic. We have
also implemented a variable-precision version of the Golub and Welsch algorithm.
The computations in extended precision show that the Concus et al. results are ac-
curate to the two last decimal digits; in fact, the nodes are more accurate than the
weights. The relative errors of the double-precision Golub and Welsch algorithm
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with the variable-precision results using 32 decimal digits are in table 10.5. The er-
ror on the seventh weight is smaller than with the Concus et al. results. Otherwise,
the errors are of the same magnitude.

Table 10.3 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
Golub and Welsch

Nodes Weights
2.766655867079714 10−2 2.566765557790772
4.547844226059476 10−1 7.733479703443403 10−1

1.382425761158596 2.331328349732204 10−1

2.833980012092694 4.643674708956692 10−2

4.850971448764913 5.549123502036255 10−3

7.500010942642828 3.656466626776365 10−4

1.088840802383440 101 1.186879857102432 10−5

1.519947804423760 101 1.584410942056775 10−7

2.078921462107011 101 6.193266726796800 10−10

2.857306016492211 101 3.037759926517505 10−13

Table 10.4 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
Golub and Welsch, comparison with Concus et al. [69]

Relative error on nodes Relative error on weights
2.257239358109354 10−15 1.730151039708872 10−16

3.051509048681502 10−15 8.613636297234880 10−16

1.927434610931477 10−15 6.190847943742033 10−15

1.253612821417562 10−15 1.793121440790894 10−15

1.830928978001428 10−16 9.378364756201140 10−16

4.736944660441535 10−16 4.151229031776791 10−15

3.262840326174143 10−16 1.541513368114529 10−14

4.674783789891258 10−16 3.174213198624942 10−15

0 6.511112251549391 10−15

1.243378783474516 10−16 1.661984460767555 10−15

Another possibility is to compute the moments which are known for the Laguerre
polynomials and then compute the recurrence coefficients by the Gautschi algo-
rithm described in chapter 5 based on the factorization of the Hankel matrix. The
results are given in table 10.6. We see that the errors using the moments are much
larger than when computing directly from the (known) recurrence coefficients.

10.3 Using the Full QR Algorithm

The Golub and Welsch paper [160] uses the QR algorithm to compute the eigen-
values of the Jacobi matrix. However, it computes only the first component of the
eigenvectors to save computational time. Of course, we can use the standard Mat-
lab eigenvalue solver, the price to pay being having to compute all the components
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Table 10.5 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
Golub and Welsch, comparison with variable precision (32 digits)

Relative error on nodes Relative error on weights
3.887467783410548 10−15 1.730151039708872 10−16

2.075026153103423 10−15 7.178030247695734 10−16

1.766815060020521 10−15 5.000300262253175 10−15

1.253612821417562 10−15 4.034523241779535 10−15

1.830928978001428 10−16 1.563060792700191 10−15

4.736944660441535 10−16 4.892519930308358 10−15

3.262840326174143 10−16 2.283723508317851 10−15

4.674783789891258 10−16 3.174213198624942 10−15

0 6.678063847742964 10−15

1.243378783474516 10−16 2.326778245074579 10−15

Table 10.6 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
computation from the moments, comparison with Concus et al. [69]

Relative error on nodes Relative error on weights
3.090815280665558 10−10 6.855827303908786 10−11

3.062097785080427 10−10 6.615014267187470 10−11

2.978726514140397 10−10 3.513227631926626 10−10

2.817927312559359 10−10 7.611583847316584 10−10

2.583118544459888 10−10 1.243582733322137 10−9

2.302667879234079 10−10 1.742482685575520 10−9

2.008898160422158 10−10 2.220646922285363 10−9

1.722976880568588 10−10 2.662697763114570 10−9

1.452306468713077 10−10 3.068116897502631 10−9

1.189059294560865 10−10 3.447605939952962 10−9
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of the eigenvectors even though we just need the first ones. This is what is done is
the OPQ package from Gautschi [132]. For the generalized Laguerre polynomials
the results are given in table 10.7. They are only slightly better than the ones using
the Golub and Welsch algorithm.

Table 10.7 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
Matlab 6 solver, comparison with Concus et al. [69]

Relative error on nodes Relative error on weights
0 1.730151039708872 10−16

9.764828955780807 10−16 0
1.606195509109565 10−16 1.547711985935508 10−15

3.134032053543904 10−16 2.988535734651490 10−16

1.830928978001428 10−16 2.344591189050285 10−15

4.736944660441535 10−16 3.409938133245221 10−15

0 2.854654385397276 10−15

0 0
1.708921545886483 10−16 3.672935116258631 10−15

3.730136350423549 10−16 1.329587568614044 10−15

10.4 Another Implementation of QR

In his paper [220], Laurie described another implementation of the QR algorithm to
compute the nodes and weights. According to a suggestion from Parlett [266], this
algorithm first computes the eigenvalues (nodes) and then computes the weights by
using one QR sweep with the eigenvalues as “exact” shifts. When coding these
suggestions, we obtain the results described in table 10.8. The relative errors are of
the same magnitude as with the Golub and Welsch algorithm.

Table 10.8 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
QRSWEEP from Laurie [220], comparison with Concus et al. [69]

Relative error on nodes Relative error on weights
9.028957432437417 10−15 2.076181247650646 10−15

1.952965791156162 10−15 4.163257543663525 10−15

1.606195509109565 10−16 2.738259667424361 10−15

4.701048080315856 10−16 5.379364322372682 10−15

3.661857956002857 10−16 4.220264140290514 10−15

2.368472330220767 10−16 5.189036289720990 10−15

3.262840326174143 10−16 1.341687561136720 10−14

2.337391894945629 10−16 3.508340903743356 10−15

0 7.011967040130113 10−15

1.243378783474516 10−16 4.985953382302666 10−16
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10.5 Using the QL Algorithm

Parlett [266] has advocated the use of the QL algorithm instead of QR. In this
algorithm L is a lower triangular matrix and the Wilkinson shift is computed from
the upper 2 × 2 block of the tridiagonal matrix which is deflated from the top.
This algorithm has also been recommended by Laurie [220], since it allows an
easy computation of the weights and moreover it can be “reversed” to compute the
Jacobi matrix from the nodes and weights in the inverse problem.

Implementing QL and computing the weights at the same time as the eigenval-
ues, we obtain the results in table 10.9. Some errors on the weights are larger than,
for instance, with the QR Matlab implementation.

Table 10.9 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
QLSWEEP from Laurie [220], comparison with Concus et al. [69]

Relative error on nodes Relative error on weights
6.019304954958278 10−15 1.730151039708872 10−16

1.220603619472601 10−15 5.742424198156587 10−16

3.212391018219129 10−16 2.857314435573246 10−15

4.701048080315856 10−16 4.482803601977235 10−15

3.661857956002857 10−16 5.001794536640609 10−15

8.289653155772686 10−16 5.633810828839931 10−15

8.157100815435358 10−16 1.570059911968502 10−14

1.168695947472815 10−16 3.341277051184149 10−15

5.126764637659450 10−16 4.922233910575146 10−12

3.730136350423549 10−16 8.476120749914532 10−15

As with QR, the weights can be computed at the end of the process by a QL
sweep using the eigenvalues (nodes) as perfect shifts. The interest of the QL algo-
rithm is that it turns out to be necessary only to have the value of the cosine of the
last rotation to compute the first element of the eigenvector. It is not necessary to
apply all the rotations to the vector of weights. The errors for the weights are in
table 10.10. We see that they are better than when computing the weights simulta-
neously with the nodes. However, the main conclusion, at least for this example, is
that there is not much difference between the different implementations.

10.6 Gauss–Radau Quadrature Rules

To obtain a Gauss–Radau rule with one prescribed node at either end of the inte-
gration interval we extend the Jacobi matrix Jk; see chapter 6. Let us compute
first Gauss–Radau rules for the measure dλ on [−1, 1] corresponding to the Leg-
endre polynomials. We compare the Golub and Welsch algorithm results [160]
(table 10.11) to those obtained with the Matlab package OPQ from Gautschi [132]
(table 10.12). We first fix a node at z = −1. The results are the same up to the
last two decimal digits. Note that since we know that the node −1 is prescribed we
could have replace the value computed by the Golub and Welsch algorithm by −1.
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Table 10.10 Generalized Laguerre weight function with α = −0.75 on [0,∞), n = 10,
QLSWEEP from Laurie [220] with perfect shifts, comparison with Concus et
al. [69]

Relative error on weights
2.768241663534195 10−15

1.320757565576015 10−14

1.642955800454616 10−14

3.287389308116639 10−15

5.001794536640609 10−15

8.154199883847268 10−15

6.993903244223327 10−15

9.021448038197202 10−15

8.681483002065855 10−15

3.323968921535110 10−15

However, this shows how accurate is the modification of the Jacobi matrix.

Table 10.11 Legendre weight function on [−1, 1], n = 10, node fixed at −1, Golub and
Welsch

Nodes Weights
−9.999999999999996 10−1 1.999999999999979 10−2

−9.274843742335808 10−1 1.202966705574827 10−1

−7.638420424200024 10−1 2.042701318789991 10−1

−5.256460303700790 10−1 2.681948378411793 10−1

−2.362344693905885 10−1 3.058592877244225 10−1

7.605919783797777 10−2 3.135824572269377 10−1

3.806648401447248 10−1 2.906101648329181 10−1

6.477666876740096 10−1 2.391934317143801 10−1

8.512252205816072 10−1 1.643760127369219 10−1

9.711751807022468 10−1 7.361700548675848 10−2

Table 10.12 Legendre weight function on [−1, 1], n = 10, node fixed at −1, OPQ

Nodes Weights
−1.000000000000000 1.999999999999983 10−2

−9.274843742335811 10−1 1.202966705574817 10−1

−7.638420424200026 10−1 2.042701318790005 10−1

−5.256460303700794 10−1 2.681948378411785 10−1

−2.362344693905883 10−1 3.058592877244226 10−1

7.605919783797817 10−2 3.135824572269378 10−1

3.806648401447244 10−1 2.906101648329185 10−1

6.477666876740094 10−1 2.391934317143814 10−1

8.512252205816080 10−1 1.643760127369209 10−1

9.711751807022472 10−1 7.361700548675876 10−2

Let us now consider the Chebyshev weight function of the first kind on [−1, 1]
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with a node fixed at z = 1. Again, the results are the same up to the last two
decimal digits (tables 10.13 and 10.14).

Table 10.13 Chebyshev weight function on [−1, 1], n = 10, node fixed at 1, Golub and
Welsch

Nodes Weights
−9.863613034027220 10−1 3.306939635357689 10−1

−8.794737512064897 10−1 3.306939635357680 10−1

−6.772815716257409 10−1 3.306939635357673 10−1

−4.016954246529697 10−1 3.306939635357679 10−1

−8.257934547233214 10−2 3.306939635357673 10−1

2.454854871407992 10−1 3.306939635357680 10−1

5.469481581224269 10−1 3.306939635357675 10−1

7.891405093963938 10−1 3.306939635357679 10−1

9.458172417006351 10−1 3.306939635357693 10−1

9.999999999999994 10−1 1.653469817678827 10−1

Table 10.14 Chebyshev weight function on [−1, 1], n = 10, node fixed at 1, OPQ

Nodes Weights
−9.863613034027223 10−1 3.306939635357677 10−1

−8.794737512064891 10−1 3.306939635357674 10−1

−6.772815716257411 10−1 3.306939635357679 10−1

−4.016954246529694 10−1 3.306939635357677 10−1

−8.257934547233234 10−2 3.306939635357675 10−1

2.454854871407993 10−1 3.306939635357681 10−1

5.469481581224266 10−1 3.306939635357668 10−1

7.891405093963936 10−1 3.306939635357658 10−1

9.458172417006349 10−1 3.306939635357681 10−1

1.000000000000000 1.653469817678845 10−1

10.7 Gauss–Lobatto Quadrature Rules

To obtain the Gauss–Lobatto rule with two prescribed nodes at both ends of the
integration interval [a, b], we first need to solve two tridiagonal linear systems,

(Jk − aI)ω = ek, (Jk − bI)ρ = ek.

Then, the two values ωk+1 and βk that extend the matrix Jk are given by solving(
1 −ωk
1 −ρk

)(
ωk+1

β2
k

)
=

(
a
b

)
.

Let us consider the Legendre weight function on [−1, 1] with two fixed nodes
at both ends of the interval. Results in tables 10.15 and 10.16 show that we have
differences in the last two decimal digits.
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Table 10.15 Legendre weight function on [−1, 1], n = 10, nodes fixed at −1 and 1, Golub
and Welsch

Nodes Weights
−9.999999999999999 10−1 2.222222222222217 10−2

−9.195339081664596 10−1 1.333059908510702 10−1

−7.387738651055050 10−1 2.248893420631271 10−1

−4.779249498104440 10−1 2.920426836796831 10−1

−1.652789576663868 10−1 3.275397611838977 10−1

1.652789576663872 10−1 3.275397611838972 10−1

4.779249498104442 10−1 2.920426836796839 10−1

7.387738651055051 10−1 2.248893420631256 10−1

9.195339081664585 10−1 1.333059908510702 10−1

1.000000000000000 2.222222222222224 10−2

Table 10.16 Legendre weight function on [−1, 1], n = 10, nodes fixed at −1 and 1, OPQ

Nodes Weights
−9.999999999999996 10−1 2.222222222222240 10−2

−9.195339081664586 10−1 1.333059908510701 10−1

−7.387738651055048 10−1 2.248893420631266 10−1

−4.779249498104444 10−1 2.920426836796839 10−1

−1.652789576663870 10−1 3.275397611838975 10−1

1.652789576663869 10−1 3.275397611838974 10−1

4.779249498104443 10−1 2.920426836796844 10−1

7.387738651055049 10−1 2.248893420631251 10−1

9.195339081664588 10−1 1.333059908510702 10−1

9.999999999999998 10−1 2.222222222222210 10−2
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10.8 Anti-Gauss Quadrature Rule

We compute the results for the anti-Gauss rule by multiplying by a factor
√
2 two

elements of the Jacobi matrix for the Legendre weight function and then by using
the Golub and Welsch algorithm. We choose n = 11 since this rule must give
errors which are of opposite sign to the error of the Gauss rule for n = 10 (see
table 10.17).

Table 10.17 Anti-Gauss, Legendre weight function on [−1, 1], n = 11

Nodes Weights
−9.959918853818236 10−1 2.257839165513059 10−2

−9.297956389113654 10−1 1.091543623802435 10−1

−7.809379654082114 10−1 1.863290923563876 10−1

−5.626785950628905 10−1 2.469272555985873 10−1

−2.944199592771482 10−1 2.855813256108908 10−1

0 2.988591447975199 10−1

2.944199592771473 10−1 2.855813256108902 10−1

5.626785950628914 10−1 2.469272555985887 10−1

7.809379654082104 10−1 1.863290923563861 10−1

9.297956389113663 10−1 1.091543623802462 10−1

9.959918853818245 10−1 2.257839165512853 10−2

10.9 Gauss–Kronrod Quadrature Rule

Let us give an example of a Gauss–Kronrod quadrature rule for the Legendre
weight function. We choose N = 10 and compute a rule with 21 nodes because
this rule must have the 10-point Gauss rule nodes as a subset. When we want to
compute a quadrature rule with a small number of nodes we can simplify a little bit
the algorithm of Calvetti, Golub, Gragg and Reichel [59]. Assume N is even; we
first compute the eigenvalues and eigenvectors of JN and JN+2: 3N

2 +1. Then we

compute the first components of the eigenvectors of J̆N by

w̆k =
N/2∑
j=1

lk(θ∗j )w
∗
j , k = 1, . . . , N.

We compute the eigenvalues and eigenvector matrix U2N+1 of the matrix
 ΘN γNZ

T
Ne

N 0
γN (eN )TZN ωN+1 γN+1(e1)T Z̆N

0 γN+1Z̆
T
Ne

1 ΘN


 ,

which is similar to Ĵ2N+1. This gives the nodes of the Gauss–Kronrod rule. The
first components of the eigenvectors are obtained by computing (uT 0 )U2N+1

where uT is the first row of the matrix of the eigenvectors of JN . The results are
given in table 10.18. We can check that every other node is a node of the 10-point
Gauss rule.



EXAMPLES OF GAUSS QUADRATURE RULES 149

Table 10.18 Gauss–Kronrod, Legendre weight function on [−1, 1], N = 10, n = 21

Nodes Weights
−9.956571630258079 10−1 1.169463886737180 10−2

−9.739065285171706 10−1 3.255816230796485 10−2

−9.301574913557080 10−1 5.475589657435226 10−2

−8.650633666889848 10−1 7.503967481091979 10−2

−7.808177265864176 10−1 9.312545458369767 10−2

−6.794095682990247 10−1 1.093871588022972 10−1

−5.627571346686043 10−1 1.234919762620656 10−1

−4.333953941292472 10−1 1.347092173114734 10−1

−2.943928627014605 10−1 1.427759385770600 10−1

−1.488743389816314 10−1 1.477391049013385 10−1

−5.985584791552117 10−1 1.494455540029168 10−1

1.488743389816317 10−1 1.477391049013382 10−1

2.943928627014603 10−1 1.427759385770603 10−1

4.333953941292473 10−1 1.347092173114733 10−1

5.627571346686046 10−1 1.234919762620654 10−1

6.794095682990238 10−1 1.093871588022977 10−1

7.808177265864170 10−1 9.312545458369791 10−2

8.650633666889850 10−1 7.503967481091990 10−2

9.301574913557086 10−1 5.475589657435200 10−2

9.739065285171715 10−1 3.255816230796519 10−2

9.956571630258081 10−1 1.169463886737200 10−2

10.10 Computation of Integrals

Let us consider the computation of some integrals over the interval [−1, 1]. Some
examples are from Trefethen [327]. The first function is a monomial λ20 (Example
Q1). Its integral is of course equal to 2/21 = 9.523809523809523 10−2. The
approximate values computed with the Gauss–Legendre quadrature rule are given
in table 10.19 as a function of the number n of integration points. We see that
the error (the exact value minus the approximation) decreases significantly (i.e., is
almost zero up to machine precision) for n = 11 for which the Gauss rule is exact
for polynomials of degree less than 2n−1 = 21. For n = 10, the rule is only exact
for polynomials of degree 19.

We now compute the integral of eλ (Example Q2) which is an entire function.
The rounded value of the integral is 2.350402387287603. The results are given in
table 10.20. The error is zero up to machine precision for n = 7. The Gauss rule
gives a lower bound of the integral (except when we are at the roundoff level) since
the derivatives of the function are all positive in [−1, 1].

Then we consider the function 1/(1 + 10λ2) (Example Q3). The rounded value
of the integral over [−1, 1] is 0.7997520101115316. The log10 of the absolute value
of the error is given in figure 10.1. We see that we need almost 55 points to obtain
an error close to machine precision. The signs of the derivatives alternate when n
increases. Therefore, we have a lower bound of the integral when the number of
nodes n is even and an upper bound when n is odd.

Let us compute the integral of e−1/λ2
over [−1, 1] (Example Q4) whose rounded
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Table 10.19 Integral of λ20 on [−1, 1] as a function of n, Gauss rule, Golub and Welsch

n Integral Error
2 3.387017561686067 10−5 9.520422506247837 10−2

3 6.718463999999998 10−3 8.851963123809524 10−2

4 3.498372981825397 10−2 6.025436541984126 10−2

5 6.606306950648783 10−2 2.917502573160741 10−2

6 8.481758799621919 10−2 1.042050724187604 10−2

7 9.252257541458878 10−2 2.715519823506457 10−3

8 9.474699295632059 10−2 4.911022817746386 10−4

9 9.518280330178025 10−2 0.529193631498286 10−5

10 9.523516964776493 10−2 2.925590330299377 10−6

11 9.523809523809357 10−2 1.665334536937735 10−15

12 9.523809523809479 10−2 4.16333634234433710−16

13 9.523809523809480 10−2 4.44089209850062610−16

14 9.523809523809566 10−2 −4.163336342344337 10−16

15 9.523809523809551 10−2 −2.914335439641036 10−16

Table 10.20 Integral of eλ on [−1, 1] as a function of n, Gauss rule, Golub and Welsch

n Integral Error
1 2 3.504023872876032 10−1

2 2.342696087909731 7.706299377872039 10−3

3 2.350336928680010 6.545860759343825 10−5

4 2.350402092156377 2.951312261245676 10−7

5 2.350402386462827 8.247758032098318 10−10

6 2.350402387286034 1.568967178400271 10−12

7 2.350402387287602 8.881784197001252 10−16

8 2.350402387287603 0
9 2.350402387287603 0

10 2.350402387287603 4.440892098500626 10−16

11 2.350402387287602 1.332267629550188 10−15

12 2.350402387287604 −4.440892098500626 10−16
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Figure 10.1 log10 of the error for the integral of 1/(1 + 10λ2), Gauss rule

value is 0.1781477117815611. The log10 of the absolute value of the error is given
in figure 10.2. For this example the error is oscillating, so we do not always obtain
better results when the number of nodes is increased.

Another example is the function (1 − λ2)−1/2 over [−1, 1] corresponding to
Chebyshev polynomials of the first kind. We have at least two ways of computing
this integral, whose value is π. We can compute the approximate value using the
Legendre weight function (Example Q5). With 1500 nodes we obtain the value
3.140432120277716; this is not very satisfactory. Using the Chebyshev weight
function and integrating the constant function equal to 1 (Example Q6), we obtain
the (rounded) exact value with only one integration point. Of course, this is an
extreme example because the function corresponds to a weight function for which
we know the orthogonal polynomials, but this illustrates the interest of being able
to compute orthogonal polynomials corresponding to other measures. This can
sometimes be done by modification algorithms.

We now compute the integral of (1−λ2)1/2/(2+λ)1/2 over [−1, 1]. Figure 10.3
shows the log10 of the absolute value of the error when integrating this function
with the Gauss–Legendre rule (Example Q7) and when integrating 1/(2 + λ)1/2

using the measure corresponding to the Chebyshev polynomials of the second kind
(that is (1−λ2)1/2 dλ, Example Q8). One can see the large difference in the errors.

Let us consider the Gauss–Radau and Gauss–Lobatto rules where some nodes
are prescribed. Tables 10.21 and 10.22 give the errors as a function of the number
of nodes for Example Q1. The results in table 10.21 might seem strange when
compared with those of table 10.19 since one might think that the Gauss–Radau
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Figure 10.2 log10 of the error for the integral of e−1/λ2
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Figure 10.3 log10 of the error for the integral of (1 − λ2)1/2/(2 + λ)1/2, Gauss–Legendre
(solid line), Chebyshev second kind (dashed line)
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rule is less precise than the Gauss rule. However, the column labeled n gives the
total number of nodes. In the Gauss–Radau rule we have n − 1 free nodes and
one prescribed node. Therefore, when n = 10, the rule is exact for polynomials of
degree at most 2(n−1) = 18. When n = 11, the rule must be exact for polynomials
of degree 20, which is what we observe. Similarly, for the Gauss–Lobatto rule, for
n = 11, it must be exact for polynomials of degree 2(n− 2)+ 1 = 19. For n = 12
the rule is exact for polynomials of degree at most 21, which is what we can see in
the table.

Table 10.21 Integral of λ20 on [−1, 1] as a function of n, Gauss–Radau rule

n Error Gauss–Radau, node=1 Error Gauss–Radau, node=-1
2 −4.047619051920983 10−1 −4.047619051920959 10−1

3 −1.274332654308090 10−1 −1.274332654308121 10−1

4 −3.869514350464778 10−2 −3.869514350464628 10−2

5 −1.081482914060589 10−2 −1.081482914060511 10−2

6 −2.653678531877202 10−3 −2.653678531878090 10−3

7 −5.196757636501403 10−4 −5.196757636500848 10−4

8 −7.449570767370517 10−5 −7.449570767464886 10−5

9 −6.894455820208312 10−6 −6.894455820111167 10−6

10 −3.079568777486497 10−7 −3.079568764441376 10−7

11 −1.942890293094024 10−16 9.714451465470120 10−17

12 −1.942890293094024 10−16 2.775557561562891 10−17

13 9.298117831235686 10−16 8.049116928532385 10−16

14 −5.551115123125783 10−17 −7.355227538141662 10−16

15 5.273559366969494 10−16 3.469446951953614 10−16

Table 10.22 Integral of λ20 on [−1, 1] as a function of n, Gauss–Lobatto rule

n Error Gauss–Lobatto
2 −1.904761904761895
3 −5.714285714285746 10−1

4 −2.380954087619067 10−1

5 −1.049895275367407 10−1

6 −4.166734114303916 10−2

7 −1.340136107659812 10−2

8 −3.276609531666960 10−3

9 −5.681860545760920 10−4

10 −6.212577114121654 10−5

11 −3.218149364950240 10−6

12 4.024558464266193 10−16

13 2.220446049250313 10−16

14 3.053113317719181 10−16

15 1.526556658859590 10−16

The results for Example Q2 are in tables 10.23 and 10.24. In this example the
derivatives of the function are positive. Therefore, when the prescribed node is
located at the end of the interval we obtain an upper bound (the error, defined as
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the exact value minus the approximation, is negative, except when we are at the
roundoff level). When the prescribed node is at the beginning of the interval we
obtain a lower bound of the integral. The Gauss–Lobatto rule gives an upper bound.

Table 10.23 Integral of eλ on [−1, 1] as a function of n, Gauss–Radau rule

n Error Gauss–Radau, node=1 Error Gauss–Radau, node=-1
2 −8.353549280260264 10−2 7.304402907274943 10−2

3 −9.488216490005641 10−4 8.960763974479313 10−4

4 −5.416475832742407 10−6 5.247179327039220 10−6

5 −1.837145857663813 10−8 1.800400228901822 10−8

6 −4.113198670552265 10−11 4.056177616007517 10−11

7 −6.528111384795921 10−14 6.483702463810914 10−14

8 4.440892098500626 10−16 8.881784197001252 10−16

9 −8.881784197001252 10−16 8.881784197001252 10−16

10 −4.440892098500626 10−16 0
11 8.881784197001252 10−16 4.440892098500626 10−16

12 4.440892098500626 10−16 −1.332267629550188 10−15

Table 10.24 Integral of eλ on [−1, 1] as a function of n, Gauss–Lobatto rule

n Error Gauss–Lobatto
2 −7.357588823428833 10−1

3 −1.165136925589216 10−2

4 −8.752023187019731 10−5

5 −3.693924663927817 10−7

6 −9.904339570709908 10−10

7 −1.831423901421658 10−12

8 0
9 −1.332267629550188 10−15

10 2.220446049250313 10−15

11 −2.220446049250313 10−15

12 −4.440892098500626 10−16

We also consider Example Q1 with the anti-Gauss rule using 11 nodes to be
able to compare with the Gauss rule using 10 nodes. The approximate value of
the integral obtained by using the Gauss rule is 9.523516964776493 10−2 and the
error is 2.925590330299377 10−6, while the anti-Gauss rule with 11 nodes gives
a value 9.524102082842620 10−2 and the error is −2.925590330965511 10−6.
So, to 10 decimal digits, the error is the opposite of the error of the Gauss rule
with one fewer node. This gives an estimation of the error for the Gauss rule of
2.925590330632444 10−6 which is correct to 10 decimal digits. Taking the average
of the Gauss and anti-Gauss values we obtain 9.523809523809557 10−2 with an
error of −3.330669073875470 10−16.

Using a Gauss–Kronrod rule with 21 nodes on Example Q1, we obtain an ap-
proximate value of the integral of 9.523809523809526 10−2 when the exact value
is 2/21 = 9.523809523809523 10−2. Thus the error is at the roundoff level. This
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gives an estimation for the error of the Gauss rule of 2.925590330327132 10−6.
For Example Q3 with 30 nodes, the Gauss rule gives 0.7997519988056411

with an error 1.130589055708953 10−8. The anti-Gauss rule with 31 nodes gives
0.7997520214173953 with an error of −1.130586368969233 10−8, which is the
negative of the Gauss rule error up to 6 decimal digits. The average of the two rules
gives 0.7997520101115182 with an error of 1.343369859796439 10−14.

The Gauss–Kronrod rule with 61 nodes gives 0.7997520101115313 with an
error 3.330669073875470 10−16. The approximation of the Gauss rule error is
1.130589022402262 10−8 with 8 correct decimal digits.

10.11 Modification Algorithms

Let us illustrate the use of modification algorithms by computing Gauss rules for the
Legendre measure multiplied by a polynomial. We first multiply by a linear factor
λ + 2. This is particularly simple since we compute the Cholesky factorization of
JN + 2I = LLT , and then we form J̃N = LTL − 2I . The Jacobi matrix we are
seeking is the leading submatrix of order N − 1 of J̃N . Then we use the Golub and
Welsch algorithm to compute the nodes and weights. Note that this factorization
can also be done using the QD algorithm. The results of the 9-point rule forN = 10
using the Cholesky factorization are given in table 10.25. Up to the last two decimal
digits they are equal to the nodes and weights given by the modification algorithm
of the OPQ package of Gautschi.

Table 10.25 Multiplication of the Legendre weight by λ+2, Gauss rule, Golub and Welsch

Nodes Weights
−9.656446552418069 10−1 9.048144617079827 10−2

−8.247634420027529 10−1 2.243999204425018 10−1

−5.922714172905702 10−1 3.788698771441218 10−1

−2.971217556807707 10−1 5.373601521445760 10−1

2.735769852646871 10−2 6.641696281904350 10−1

3.466713414373445 10−1 7.169055718980852 10−1

6.279518601817928 10−1 6.629658604495480 10−1

8.427336504825537 10−1 4.936926435406916 10−1

9.695179097981458 10−1 2.311549000192406 10−1

Then we modify the Legendre weight by a quadratic factor r(λ) = (λ + 2)2.
To obtain the nodes and weights corresponding to r dλ, we compute the spectral
decomposition JN = ZΘZT of the Jacobi Legendre matrix and the diagonal ma-
trix D2 = r(Θ). A QR factorization UR = DZT gives the solution, which is a
submatrix of J̃ = UTΘU . The results of the 8-point rule are given in table 10.26.

To check our codes we computed a modification of the Laguerre weight by a
quadratic polynomial r(λ)w(λ) = λ2e−λ on [0,∞). The result can also be di-
rectly computed because we know the recurrence coefficients for the generalized
Laguerre weight λαe−λ. The results of a 10-point rule by modification are given
in table 10.27. The relative error with the nodes and weights computed directly is
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at most 10−14.

Table 10.26 Multiplication of the Legendre weight by (λ + 2)2, Gauss rule, Golub and
Welsch

Nodes Weights
−9.528330676642192 10−1 1.308154992912135 10−1

−7.652771465436233 10−1 3.790280369125821 10−1

−4.716614027220163 10−1 7.715671502593013 10−1

−1.210428334349832 10−1 1.281180888296799
2.386080141552248 10−1 1.748935115599083
5.630550164503659 10−1 1.928253609533150
8.143685870664167 10−1 1.618035092187539
9.639225083058827 10−1 8.088512745870043 10−1

Table 10.27 Multiplication of the Laguerre weight by λ2, Gauss rule, Golub and Welsch

Nodes Weights
5.763138581163630 10−1 1.419969396448682 10−1

1.559343460467388 6.182793763589497 10−1

3.003710358249312 7.540018044944447 10−1

4.942019073857106 3.836098427417975 10−1

7.422707108754277 9.131042204305420 10−2

1.051881997561453 101 1.027704776239767 10−2

1.434451458602408 101 5.146265531306630 10−4

1.909178003200538 101 9.887226319049070 10−6

2.513064781033858 101 5.313992045295483 10−8

3.341014373657300 101 3.511750313883932 10−11

Finally let us consider the inverse Cholesky algorithm and then the Golub and
Welsch algorithm for computing the nodes and weights associated with dλ/(λ+2).
Results for the 11-point rule are given in table 10.28. As a check we then computed
the coefficients for a multiplication by λ + 2. They are different from the exact
coefficients for the Legendre polynomials by 1 to 4 times the roundoff unit.

10.12 Inverse Eigenvalue Problems

The first experiment uses the Laguerre nodes and weights as in Laurie [220]. We
first computed the coefficients of the Laguerre polynomials. Then, using a vari-
able precision version of the QR algorithm we computed the eigenvalues and first
components of the eigenvectors with 32 decimal digits. They are converted to dou-
ble precision. From this data we use the different methods we have discussed in
chapter 6. They are:

• The Lanczos algorithm with full double reorthogonalization

• The MGS variant of the Lanczos algorithm advocated by Paige
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Table 10.28 Modification of the Legendre weight by division with λ+2, Gauss rule, Golub
and Welsch

Nodes Weights
−9.795263491601517 10−1 5.136126150560710 10−2

−8.932832431004641 10−1 1.078344955970998 10−1

−7.431029041780251 10−1 1.428070637989318 10−1

−5.381390419625562 10−1 1.560509479502007 10−1

−2.921725981087949 10−1 1.527298117657011 10−1

−2.289051245982113 10−2 1.387539521769125 10−1

2.495089713520985 10−1 1.186674611104695 10−1

5.040698745878063 10−1 9.537918021179864 10−2

7.209133166287860 10−1 7.055691745705198 10−2

8.829588256941766 10−1 4.507803619921015 10−2

9.774119492229954 10−1 1.939316089512510 10−2

• The standard Lanczos algorithm

• The rational Lanczos algorithm as described in Gragg and Harrod [164]

• convqr from Laurie [220]

• RKPW from Gragg and Harrod [164] as in OPQ

• pftoqd from Laurie [220]

• The Stieltjes algorithm

Table 10.29 gives the relative error for the diagonal coefficient αk divided by the
roundoff unit u, that is,

1
u
max
i

∣∣∣∣1− αi
αexi

∣∣∣∣ ,
where αexi are the exact values. Table 10.30 displays similar quantities for the
subdiagonal coefficient βk. The results are somewhat different from those that have
been published in the literature [164], [220]. The Lanczos algorithms perform well
except for the rational Lanczos algorithm, for which the coefficient ρ2

k overflows
after k = 100. The standard Lanczos algorithm is a little bit worse than the versions
with reorthogonalization and MGS. Surprisingly, convqr does not perform too well,
even though it is supposed to be equivalent to RKPW. pftoqd is not as good as the
Lanczos algorithms and RKPW. Finally, the Stieltjes algorithm works but its results
are worse than those of the Lanczos algorithm.

In fact this problem is too easy for the Lanczos algorithms because of the eigen-
value distribution. Let us consider an example for which it is known that there is a
rapid increase of the roundoff errors in the Lanczos algorithm. This example is due
to Z. Strakoš. The matrix Λ of dimension n is diagonal with eigenvalues

λi = λ1 +
(
i− 1
n− 1

)
(λn − λ1)ρn−i, i = 1, . . . , n.
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Table 10.29 Inverse problem for the Laguerre polynomials, relative error / u for αk

k Lanc. Lanc. Lanc. Rat. convqr RKPW pftoqd Stielt.
reorth MGS Lanc.

1 0 0 0 0 0 0 0 0
5 4 2 2 2 5 2 2 2

10 6 8 8 6 10 4 12 18
15 5 10 15 4 11 6 10 13
20 4 11 21 13 19 4 11 21
25 12 8 19 22 18 10 12 36
30 6 10 19 24 38 10 16 26
35 8 10 26 11 30 7 37 54
40 18 13 32 28 38 16 84 34
45 11 12 12 14 60 17 30 48
50 14 18 39 28 77 12 50 80
55 10 16 39 36 78 14 45 46
60 13 13 38 39 72 13 26 46
65 14 16 34 26 106 20 36 62
70 20 17 36 49 180 18 36 148
75 20 20 62 34 137 14 52 152
80 22 16 55 44 118 14 35 72
85 22 20 32 70 160 34 48 88
90 20 15 60 42 91 20 50 113
95 22 18 80 55 134 28 38 84
100 14 20 44 Inf 108 26 78 130
110 20 22 39 Inf 146 24 80 159
120 16 23 51 Inf 315 25 78 113
130 18 28 44 Inf 126 22 108 102
140 24 20 76 Inf 276 24 128 129
150 22 26 132 Inf 274 36 134 144
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Table 10.30 Inverse problem for the Laguerre polynomials, relative error / u for βk

k Lanc. Lanc. Lanc. Rat. convqr RKPW pftoqd Stielt.
reorth MGS Lanc.

1 0 0 0 0 0 0 0 0
5 2 2 2 1 3 2 1 2

10 3 5 3 7 16 5 9 11
15 4 6 4 4 10 4 10 12
20 3 6 5 6 16 7 8 16
25 6 8 8 10 36 15 14 23
30 6 6 4 6 26 11 24 13
35 12 8 6 6 40 11 20 33
40 12 10 10 10 52 10 39 23
45 10 8 8 6 58 8 19 39
50 14 14 10 10 78 16 28 48
55 12 10 14 12 71 16 32 37
60 16 14 12 14 112 17 44 32
65 13 12 14 10 68 14 28 37
70 10 12 10 8 84 14 46 75
75 14 9 12 14 116 16 39 84
80 16 14 14 16 104 18 45 57
85 22 22 18 19 148 22 40 70
90 18 14 13 15 94 16 60 72
95 20 18 18 17 149 26 34 74
100 20 16 16 Inf 204 22 53 69
110 17 18 20 Inf 144 27 82 102
120 21 20 20 Inf 242 27 86 71
130 24 20 22 Inf 210 30 93 81
140 20 20 16 Inf 219 26 93 78
150 23 24 22 Inf 179 30 72 98
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The parameters λ1 and λn are respectively the smallest and largest eigenvalues. The
parameter ρ controls the distribution of the eigenvalues. We use λ1 = 0.1, λn =
100 and a value ρ = 0.9 which gives well-separated large eigenvalues. Then we
choose A = QΛQT where Q is an orthonormal matrix. The eigenvalues and the
first components of the eigenvectors are explicitly known. The tridiagonal matrix
which is the solution of the inverse problem is computed with the Lanczos algo-
rithm with double reorthogonalization which (for this particular problem) gives
results that are close to those of exact arithmetic; see [239]. Results are given in
tables 10.31 and 10.32. The stars mean that the elements of the Jacobi matrix are
completely wrong. We see that the Lanczos methods are not able to correctly re-
construct the Jacobi matrix for this problem, except at the very beginning when the
orthogonality is still preserved. The method that seems the most reliable is pftoqd.
Note that the results for βk are worst than those for the diagonal coefficient αk.

Table 10.31 Inverse problem for the Strakoš matrix, relative error / u for αk

k Lanc. Lanc. Rat. convqr RKPW pftoqd Stielt.
MGS Lanc.

1 0 0 0 0 0 0 0
5 3 14 8 4 4 5 16
10 8 22 24 4 4 2 83
15 8 68 71 16 18 7 347
20 * * * 12 10 6 *
25 * * * 17 12 14 *
30 * * * 28 31 16 *
35 * * * 14 27 12 *
40 * * * 36 60 22 *
45 * * * 26 62 34 *
50 * * * 23 72 28 *
55 * * * 33 94 38 *
60 * * * 36 58 38 *
65 * * * 44 102 38 *
70 * * * 54 150 36 *
75 * * * 30 102 22 *
80 * * * 42 55 32 *
85 * * * 34 156 16 *
90 * * * 28 73 17 *
95 * * * 32 114 21 *
100 * * * 29 118 21 *
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Table 10.32 Inverse problem for the Strakoš matrix, relative error / u for βk

k Lanc. Lanc. Rat. convqr RKPW pftoqd Stielt.
MGS Lanc.

1 0 0 0 0 0 0 0
5 1 3 2 4 3 2 6
10 4 4 4 6 8 2 40
15 6 8 6 12 6 6 492
20 * * * 9 12 6 *
25 * * * 16 34 8 *
30 * * * 16 42 8 *
35 * * * 38 32 14 *
40 * * * 22 52 14 *
45 * * * 25 134 31 *
50 * * * 23 58 27 *
55 * * * 34 119 50 *
60 * * * 169 195 116 *
65 * * * 179 324 106 *
70 * * * 324 388 168 *
75 * * * 137 202 89 *
80 * * * 1076 328 526 *
85 * * * 420 531 411 *
90 * * * 1129 701 223 *
95 * * * 3746 1060 926 *

100 * * * 3492 1513 646 *



Chapter Eleven

Bounds and Estimates for Elements of
Functions of Matrices

11.1 Introduction

In this chapter we consider the computation of elements of a function f(A) of a
symmetric matrix A. If A = QΛQT is the spectral decomposition of A with Q
orthogonal and Λ diagonal, then f(A) = Qf(Λ)QT . Diagonal elements can be
estimated by considering

[f(A)]i,i = (ei)T f(A)ei,

where ei is the ith column of the identity matrix. Following chapter 7, we can apply
the Lanczos algorithm to the matrixAwith a starting vector ei. This generates tridi-
agonal Jacobi matrices Jk. The estimate of [f(A)]i,i given by the Gauss quadrature
rule at iteration k is (e1)T f(Jk)e1, that is, the (1, 1) entry of the matrix f(Jk). This
estimate is a lower or upper bound if the derivative of order 2k of the function f has
a constant sign on the interval [λ1, λn]. Other bounds can be obtained with Gauss–
Radau and Gauss–Lobatto quadrature rules by suitably modifying some elements
of Jk as we have seen in chapter 6.

Off-diagonal elements of f(A) correspond to

[f(A)]i,j = (ei)T f(A)ej , i �= j.

For this case, we cannot directly use the Lanczos algorithm to generate the orthog-
onal polynomials. Nevertheless, as we have already seen in chapter 7, there are
several ways to deal with this problem. First of all, one can use the identity

(ei)T f(A)ej =
1
4
[(ei + ej)T f(A)(ei + ej)− (ei − ej)T f(A)(ei − ej)].

Then by using the Lanczos algorithm twice with starting vectors (1/2)(ei+ej) and
(1/2)(ei − ej), one can obtain estimates of [f(A)]i,j . Signs of the derivatives of
f permitting, bounds can be obtained by combining upper and lower bounds from
the Gauss and Gauss–Radau rules.

Another possibility is to use the symmetric variant of the nonsymmetric Lanczos
algorithm, see chapter 4. However, we cannot directly use v1 = ei and v̂1 = ej as
starting vectors because these vectors are orthogonal and therefore, the algorithm
will break down immediately. A way to avoid this difficulty is to choose v1 = ei/δ
and v̂1 = δei+ej where δ is a positive parameter. Then, (v1)T v̂1 = 1. Introducing
this parameter δ has the added advantage of being able to choose it to have the
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product of the off-diagonal elements of Jk to be positive. In this case the two sets
of polynomials are the same, simplifying the algorithm.

The third possibility is to use the block Lanczos algorithm with a starting matrix
X0 = (ei, ej). The difficulty with this approach is that we only obtain estimates
and not bounds.

Bounds for the entries of matrix functions have been used by Benzi and Golub
[27] to construct preconditioners for iterative methods. Benzi and Razouk [28]
obtained decay bounds for elements of functions of sparse matrices.

11.2 Analytic Bounds for the Elements of the Inverse

We consider obtaining analytical bounds for the entries of the inverse of a given
matrix by doing one or two iterations of the Lanczos algorithm. This is obtained
by considering the function

f(λ) =
1
λ
, 0 < a ≤ λ ≤ b,

for which the derivatives are

f (2k+1)(λ) = −(2k + 1)! λ−(2k+2), f (2k)(λ) = (2k)! λ−(2k+1).

Therefore, the even derivatives are positive on [a, b]when a > 0 and the odd deriva-
tives are negative, which implies that we can use the results of chapter 6, mainly
theorems 6.3, 6.4 and 6.5, which show that the Gauss rule gives a lower bound, the
Gauss–Radau rule gives lower and upper bounds and the Gauss–Lobatto rule gives
an upper bound.

Performing analytically two Lanczos iterations, we are able to obtain bounds for
the entries of the inverse.

THEOREM 11.1 Let A be a symmetric positive definite matrix. Let

s2i =
∑
j 
=i

a2
ji, i = 1, . . . , n;

we have the following bounds for the diagonal entries of the inverse given respec-
tively by the Gauss, Gauss–Radau and Gauss–Lobatto rules∑

k 
=i
∑
l 
=i ak,iak,lal,i

ai,i
∑
k 
=i

∑
l 
=i ak,iak,lal,i −

(∑
k 
=i a

2
k,i

)2 ≤ (A−1)i,i,

ai,i − b+ s2i
b

a2
i,i − ai,ib+ s2i

≤ (A−1)i,i ≤
ai,i − a+ s2i

a

a2
i,i − ai,ia+ s2i

,

(A−1)i,i ≤ a+ b− aii
ab

.
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Proof. We denote the elements of the matrix A as ai,j . We choose the initial vec-
tor v1 = ei and we apply the Lanczos algorithm. The first step of the Lanczos
algorithm gives

α1 = (ei)TAei = aii,

η1v
2 = (A− α1I)ei.

Let si be defined by

s2i =
∑
j 
=i

a2
ji,

and

di = (a1,i, . . . , ai−1,i, 0, ai+1,i, . . . , an,i)T .

Then

η1 = si, v2 =
1
si
di.

From this, we have

α2 = (Av2, v2) =
1
s2i

∑
k 
=i

∑
l 
=i

ak,iak,lal,i.

We can now compute the Gauss rule and obtain a lower bound on the diagonal
element by considering the matrix

J2 =
(
α1 η1

η1 α2

)
,

and its inverse

J−1
2 =

1
α1α2 − η2

1

(
α2 −η1

−η1 α1

)
.

The lower bound is given by (e1)TJ−1
2 e1, the (1, 1) entry of the inverse,

(e1)TJ−1
2 e1 =

α2

α1α2 − η2
1

=

∑
k 
=i

∑
l 
=i ak,iak,lal,i

ai,i
∑
k 
=i

∑
l 
=i ak,iak,lal,i −

(∑
k 
=i a

2
k,i

)2 .

Note that this bound does not depend on the extreme eigenvalues of A. To obtain
an upper bound we consider the Gauss–Radau rule. Then, we have to modify the
(2, 2) element of the Lanczos matrix

J̃2 =
(
α1 η1

η1 ξ

)
,

and the eigenvalues λ of J̃2 are the roots of (α1 −λ)(ξ−λ)− η2
1 = 0, which gives

the relation

ξ = λ+
η2
1

α1 − λ
.
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To obtain an upper bound we impose the requirement of an eigenvalue equal to the
lower bound of the eigenvalues of A, λ = a. The solution is

ξ = ξa = a+
η2
1

α1 − a
,

from which we can compute the (1, 1) element of the inverse of J̃2,

(e1)T J̃−1
2 e1 =

ξ

α1ξ − η2
1

.

For the Gauss–Lobatto rule we want J̃2 to have a and b as eigenvalues. This leads
to solving the linear system(

α1 − a −1
α1 − b −1

)(
ξ
η2
1

)
=

(
aα1 − a2

bα1 − b2

)
.

Solving this system gives ξ = a+ b− α1 and, since the determinant should be ab,
computing the (1, 1) element of the inverse gives the upper bound

a+ b− α1

ab
.

Note that in this case all the eigenvalues are prescribed. ✷

Of course, these bounds are not sharp since they can be improved by doing more
Lanczos iterations, except if the Lanczos algorithm converges in one iteration.
More iterations can eventually be done analytically by using a symbolic calcula-
tion software. For off-diagonal entries it is not too easy to derive analytical bounds
from the block Lanczos algorithm since we have to compute repeated inverses of
2×2matrices. It is much easier to use the nonsymmetric Lanczos method with the
Gauss–Radau rule. We are looking at the sum of the (i, i) and (i, j) elements of the
inverse. The computations are essentially the same as for the diagonal case.

THEOREM 11.2 Let A be a symmetric positive definite matrix and

ti =
∑
k 
=i

ak,i(ak,i + ak,j)− ai,j(ai,j + ai,i).

For (A−1)i,j + (A−1)i,i we have the two following estimates

ai,i + ai,j − a+ ti
a

(ai,i + ai,j)2 − a(ai,i + ai,j) + ti
,

ai,i + ai,j − b+ ti
b

(ai,i + ai,j)2 − b(ai,i + ai,j) + ti
.

If ti ≥ 0, the first expression with a gives an upper bound and the second one
with b a lower bound. Then, we have to subtract the bounds for the diagonal term
to obtain bounds on (A−1)i,j .

The previous results can be compared with those obtained using variational
methods by Robinson and Wathen [285]. More precise results can also be obtained
for sparse matrices taking into account the sparsity structure since in this case some
terms in the sums arising in theorems 11.1 and 11.2 are zero.
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11.3 Analytic Bounds for Elements of Other Functions

If we would like to obtain analytical bounds of diagonal elements for other func-
tions, we see from the derivation for the inverse that all we have to do is to compute
f(J) for a symmetric matrix J of order 2 whose coefficients are known. Let

J =
(
α η
η ξ

)
.

If we are interested in the exponential we have to compute exp(J) (in fact only
the (1, 1) element). We use, for instance, a symbolic mathematics package. In the
Matlab symbolic toolbox there is a function giving the exponential of a symbolic
matrix. The result is the following.

We have α = ai,i, η = si, using the notations of the previous section. The
element ξ is either α2 or ξa.

PROPOSITION 11.3 Let

δ = (α− ξ)2 + 4η2,

γ = exp
(
1
2
(α+ ξ −

√
δ)
)
,

ω = exp
(
1
2
(α+ ξ +

√
δ)
)
.

Then, the (1, 1) element of the exponential of J is

1
2

[
γ + ω +

ω − γ√
δ
(α− ξ)

]
.

Although these expressions are quite complicated, if we substitute the values of the
parameters we obtain a lower bound from the Gauss rule and an upper bound from
the Gauss–Radau rule.

For other functions which are not available in the symbolic packages we can
compute analytically the eigenvalues and eigenvectors of J . In fact we just need
the first components of the eigenvectors. The eigenvalues are

λ+ =
1
2
(α+ ξ +

√
δ), λ− =

1
2
(α+ ξ −

√
δ).

The matrix of the unnormalized eigenvectors is

Q =
(
θ µ
1 1

)
,

where

θ = − 1
2η
(α− ξ +

√
δ), µ = − 1

2η
(α− ξ −

√
δ).

The first components of the normalized eigenvectors are θ/
√
1 + θ2 and µ/

√
1 + µ2.

Then we have to compute the (1, 1) element of Q̃f(Λ)Q̃T where Λ is the diago-
nal matrix of the eigenvalues λ+ and λ− and Q̃ is the matrix of the normalized
eigenvectors. We need the values θ2/(1 + θ2) and µ2/(1 + µ2).
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LEMMA 11.4 We have

θ2

1 + θ2
=
α− ξ +

√
δ

2
√
δ

,
µ2

1 + µ2
= −α− ξ −√

δ

2
√
δ

.

From this lemma we obtain the (1, 1) element of f(J).

THEOREM 11.5 The (1, 1) element of f(J) is

1
2
√
δ

[
(α− ξ)(f(λ+)− f(λ−)) +

√
δ(f(λ+) + f(λ−))

]
.

Proof. Clearly the (1, 1) element is

θ2

1 + θ2
f(λ+) +

µ2

1 + µ2
f(λ−).

Using the expressions of lemma 11.4 and simplifying we obtain the result. ✷

We see that if f is the exponential function we recover the results of propo-
sition 11.3. From the last theorem we can obtain analytic bounds for the (i, i)
element of f(A) for any function for which we can compute f(λ+) and f(λ−).

11.4 Computing Bounds for Elements of f(A)

A way to compute bounds or estimates of elements of the matrix f(A) for a sym-
metric matrix A is to apply the general framework described in chapter 7. For
diagonal entries we are interested in (ei)T f(A)ei and we apply the Lanczos algo-
rithm toAwith a starting vector v1 = ei. At each iteration k we augment the Jacobi
matrix Jk−1 to obtain Jk. Then we can use quadrature rules to obtain the bounds if
the signs of the derivatives of the function f are constant on the integration interval.
If, for instance, we are interested in the diagonal elements of the inverse of A, then
we can compute incrementally the quantities (e1)TJ−1

k e1 that give the bounds; see
chapter 3. We have a lower bound from the Gauss rule. If we know lower and upper
bounds of the smallest and largest eigenvalues respectively, then the Gauss–Radau
rule gives lower and upper bounds for the diagonal entries of the inverse of A.

If we are interested in the off-diagonal elements, we may use the nonsymmetric
Lanczos algorithm. In some cases we can obtain bounds. Another possibility is
to use the block Lanczos algorithm, but in this case we are not able to tell if the
computed quantities are lower or upper bounds.

11.5 Solving Ax = c and Looking at dTx

In some applications it may be interesting to look at quantities like dTx, where
d is a vector and x is the solution of a linear system Ax = c, without explicitly
solving for x. For instance, one may be interested only in the lth component of the
solution, in which case d = el. For a symmetric matrix, this can be done by using
the framework of chapter 7. We use the Lanczos or block Lanczos algorithms with



168 CHAPTER 11

only a very small storage and we can obtain bounds or estimates of dTx. Of course,
this can also be done by first solving the linear system Ax = c and then computing
dTx. But, in some problems this process is less stable and accurate than computing
the estimates using the Lanczos algorithms.

11.6 Estimates of tr(A−1) and det(A)

In [15] Bai and Golub studied how to estimate the trace of the inverse tr(A−1)
and the determinant det(A) of symmetric positive definite matrices; see also [16].
There are applications arising in the study of fractals [291], [351], lattice quantum
chromodynamics (QCD) [296], [88] and crystals [253], [254]; see also [227]. Es-
timates of determinants have also been considered in Ipsen and Lee [197]. The
estimates are based on the following result.

LEMMA 11.6 Let A be a symmetric positive definite matrix. Then,
ln(det(A)) = tr(ln(A)). (11.1)

Proof. The matrix A being symmetric positive definite, we have A = QΛQT and
ln(A) = Q ln(Λ)QT . Therefore, if we denote by qi the columns of Q that are
vectors of norm 1,

tr(ln(A)) =
n∑
i=1

[(q1i )
2 ln(λ1) + · · ·+ (qni )2 ln(λn)] = ln(λ1) + · · ·+ ln(λn).

On the other hand, it is obvious that

det(A) = det(Λ) =
n∏
i=1

λi.

Therefore

ln(det(A)) =
n∑
i=1

ln(λi),

which proves the result. ✷

Lemma 11.6 shows that to bound det(A) we can bound ln(det(A)), which is the
same as bounding tr(ln(A)). Therefore, in this section, we consider the problem
of estimating tr(f(A)) with f(λ) = 1/λ and f(λ) = ln(λ).

11.6.1 tr(A−1)

In [15] Bai and Golub obtained bounds using Gauss quadrature analytically. Let

µr = tr(Ar) =
n∑
i=1

λri =
∫ b

a

λr dα

be the moments related to α, the measure (which we do not know explicitly) with
steps at the eigenvalues of A. The first three moments are easily computed

µ0 = n, µ1 = tr(A) =
n∑
i=1

ai,i, µ2 = tr(A2) =
n∑

i,j=1

a2
i,j = ‖A‖2

F .
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A Gauss–Radau quadrature rule is written as

µr =
∫ b

a

λr dα = µ̄r +Rr.

The approximation of the integral is
µ̄r = w0t

r
0 + w1t

r
1, (11.2)

where the weights w0, w1 and the node t1 are to be determined. The node t0 is
prescribed to be a or b, the ends of the integration interval. From chapter 6 we know
that t0 and t1 are the eigenvalues of a 2× 2 matrix. Hence, they are solutions of a
quadratic equation that we write as cξ2 + dξ − 1 = 0. Because of equation (11.2),
this implies that

cµ̄r + dµ̄r−1 − µ̄r−2 = 0. (11.3)
For r = 0, 1, 2 the quadrature rule is exact, µ̄r = µr and t0 is a root of the quadratic
equation. This gives two equations for c and d,

cµ2 + dµ1 − µ0=0,
ct20 + dt0 − 1=0.

By solving this linear system we obtain the values of c and d,(
c
d

)
=

(
µ2 µ1

t20 t0

)−1 (
µ0

1

)
.

The unknown root t1 of the quadratic equation is obtained by using the product of
the roots, t1 = −1/(t0c). The weights are found by solving

w0t0 + w1t1=µ1,

w0t
2
0 + w1t

2
1=µ2.

This gives (
w0

w1

)
=

(
t0 t1
t20 t21

)−1 (
µ1

µ2

)
.

To bound tr(A−1) we use equation (11.3) with r = 1,
cµ̄1 + dµ̄0 − µ̄−1 = 0.

But µ̄0 = µ0 and µ̄1 = µ1. Hence,

µ̄−1 = (µ1 µ0 )
(
c
d

)
,

which gives

µ̄−1 = (µ1 µ0 )
(
µ2 µ1

t20 t0

)−1 (
µ0

1

)
.

Then,
µ−1 = µ̄−1 +R−1(λ),

and the remainder is

R−1(λ) = − 1
η4

∫ b

a

(λ− t0)(λ− t1)2 dα,

for some a < η < b. If the prescribed node is t0 = a the remainder is negative
and µ̄−1 is an upper bound of µ−1. It is a lower bound if t0 = b. This leads to the
following result.
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THEOREM 11.7 Let A be a symmetric positive definite matrix, µ1 = tr(A), µ2 =
‖A‖2

F , the spectrum of A being contained in [a, b], then

(µ1 n )
(
µ2 µ1

b2 b

)−1 (
n
1

)
≤ tr(A−1) ≤ (µ1 n )

(
µ2 µ1

a2 a

)−1 (
n
1

)
.

(11.4)

11.6.2 det(A)

For bounding tr(ln(A)) we use the same method as for the trace of the inverse. We
have

tr(ln(A)) =
n∑
i=1

lnλi =
∫ b

a

lnλ dα.

Slight modifications of what we did before lead to the following theorem.

THEOREM 11.8 Let A be a symmetric positive definite matrix, µ1 = tr(A), µ2 =
‖A‖2

F , the spectrum of A being contained in [a, b], then

( ln a ln t )
(
a t
a2 t2

)−1 (
µ1

µ2

)
≤ tr(ln(A)) ≤ ( ln b ln t̄ )

(
b t̄
b2 t̄2

)−1 (
µ1

µ2

)
,

(11.5)
where

t =
aµ1 − µ2

an− µ1
, t̄ =

bµ1 − µ2

bn− µ1
.

Another possibility to compute the trace is to consider the diagonal elements of
A−1. From chapters 6 and 11 we know how to estimate (ei)TA−1ei. However,
this approach requires computing n such estimates. This might be too costly if n
is large. In Bai, Fahey, Golub, Menon and Richter [18] it was proposed to use a
Monte Carlo technique based on the following proposition; see Hutchinson [195]
and also Bai, Fahey and Golub [17].

PROPOSITION 11.9 Let B be a symmetric matrix of order n with tr(B) �= 0. Let
Z be a discrete random variable with values 1 and −1 with equal probability 0.5
and let z be a vector of n independent samples from Z . Then zTBz is an unbiased
estimator of tr(B),

E(zTBz) = tr(B),

var(zTBz) = 2
∑
i
=j

b2i,j ,

where E(·) denotes the expected value and var denotes the variance.

The method proposed in [18] is to first generate p sample vectors zk, k =
1, . . . , p ! n and then to estimate (zk)T f(A)zk. This gives p estimates σk from
which an unbiased estimate of the trace is derived as

tr(f(A)) ≈ 1
p

p∑
k=1

σk.
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If we have p lower bounds σLk and p upper bounds σUk , we obtain lower and upper
bounds by computing the means

1
p

p∑
k=1

σLk ≤ 1
p

∑
k=1

(zk)T f(A)zk ≤ 1
p

p∑
k=1

σUk .

The quality of such an estimation was assessed in Bai, Fahey and Golub [17] by
using the following Hoeffding exponential inequality.

PROPOSITION 11.10 Letw1, w2, . . . , wp be p independent random variables with
zero means and ranges ai ≤ wi ≤ bi. Then for each η > 0 we have the following
inequalities for the probabilities

P (w1 + · · ·+ wp ≥ η) ≤ exp
( −2η2∑p

i=1(bi − ai)2

)
and

P (|w1 + · · ·+ wp| ≥ η) ≤ 2 exp
( −2η2∑p

i=1(bi − ai)2

)
.

We apply this result with wi = (zi)T (ln(A))zi − tr(ln(A)). Let σL = minσLk
and σU = maxσUk . Then we have the bounds

σL − tr(ln(A)) ≤ wi ≤ σU − tr(ln(A)).
Hence, by proposition 11.10 we have

P

(∣∣∣∣∣1p
p∑
k=1

(zk)T ln(A)zk − tr(ln(A))

∣∣∣∣∣ ≥ η

p

)
≤ 2 exp

(−2η2

d

)
,

where d = p(σU − σL)2 and η is a given positive tolerance value. This means that

P

(
1
p

p∑
k=1

σLk − η

p
< tr(ln(A)) <

1
p

p∑
k=1

σUk +
η

p

)
> 1− 2 exp

(−2η2

d

)
.

Therefore the trace of ln(A) is in the interval[
1
p

p∑
k=1

σLk − η

p
,
1
p

p∑
k=1

σUk +
η

p

]
,

with probability q = 1− 2 exp(−2η2/d). If the probability q is specified we have

η

p
=

√
− 1
2p
(σU − σL)2 ln

(
1− q

2

)
.

For a fixed value of q, η/p → 0 when p → ∞. Therefore, for a large value of p,
the confidence interval is determined by the means of the lower and upper bounds.
Of course, it does not make sense to have p ≥ n.

For the case of a nonsingular and nonsymmetric matrix A which arises in some
lattice QCD problems [296], one has to estimate

det(ATA) = (det(A))2 = exp(tr(ln(ATA))).
Therefore, we can estimate tr(f(ATA)) with f(λ) = ln(λ) using the same tech-
niques as before. Finally, we have

det(A) = ±
√
exp(tr(ln(ATA))).

The drawback of this technique is that we cannot obtain the sign of the determinant.
However, there are many problems for which this is known in advance.
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11.6.3 Partial Eigensums
Some applications in solid state physics for computing the total energy of an elec-
tronic structure require solving the following problem; see Bai, Fahey, Golub,
Menon and Richter [18]. Let H and S be two symmetric matrices of order n,
S being positive definite, involved in the generalized eigenvalue problem

Hψ = λSψ,

with eigenvalues λi. Let µ be a real number such that

λ1 ≤ λ2 · · · ≤ λm < µ < λm+1 ≤ · · · ≤ λn.

Then, one wants to compute the partial eigenvalue sum

τµ = λ1 + · · ·+ λm.

To solve this problem, let us construct a function f such that

f(λi) =
{
λi, if λi < µ,
0, if λi > µ.

A simple choice is f(λ) = λh(λ), h being a step function:

h(λ) =
{
1, if λ < µ.
0, if λ > µ.

However, for our purposes, it is better to use a continuously differentiable function.
Let f(λ) = λg(λ) where

g(λ) =
1

1 + exp
(
λ−µ
κ

) ,
κ being a given parameter. The smaller is κ, the closer g is to the step function h.
Hence, as an approximation of the partial eigensum of A, we use

n∑
i=1

(ei)T f(A)ei.

The problem has been transformed to computing (ei)T f(A)ei, i = 1, . . . , n. In
[18] this algorithm is applied to the matrix A = L−1HL−T where L arises from a
Cholesky factorization of S = LLT .

This can be expensive if n is large. Another possibility that we will explore in
the numerical experiments is to use the modified Chebyshev algorithm to compute
the trace of f(A).

11.7 Krylov Subspace Spectral Methods

Another application of Gauss quadrature rules for estimating bilinear forms was
developed by J. Lambers [211], [212], [213], [215] and [215]. The goal is to solve
time-dependent linear partial differential equations with spectral methods. Con-
sider, for instance, the following problem in one spatial dimension

∂u

∂t
+ L(x,D)u = 0, u(x, 0) = u0
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in [0, 2π] with periodic boundary conditions

u(0, t) = u(2π, t),

where D is a differential operator of order m. To solve such a PDE, the important
operator is S = exp(−L). The Krylov subspace spectral (KSS) method computes
an approximation of the solution at discrete times tn = n∆t. It uses Gauss quadra-
ture to compute the Fourier components of the approximation ũ of the solution

û(ω, tn+1) =
〈

1√
2π
eiωx, S(x,D)ũ(x, tn)

〉
.

Space is discretized with a uniform grid of step size h = 2π/N . Then,

ûn+1 ≈ (êω)HSN (∆t)u(tn),

where the components of the vectors are

[êω]j =
1√
2π
eiωjh, [u(tn)]j = u(jh, tn),

and the matrix is SN = exp(−LN ) where LN is the operator restricted to the
spatial grid.

The bilinear form is estimated by using our techniques with Gauss or Gauss–
Radau quadrature rules. In practical applications the number of quadrature nodes
is small, say 2 or 3. The main reason for the success of this type of method is that
a different Krylov subspace is used for each Fourier component. Note that is is dif-
ferent from the methods using exponential integrators, see for instance Hochbruck
and Lubich [192].

The practical implementation of KSS algorithms for different types of PDEs is
studied in [212]. Numerous numerical examples of the efficiency of these methods
are given in Lambers’ articles. More recently, block quadrature rules have been
investigated in [215].

11.8 Numerical Experiments

In this section we provide numerical results concerning the problems we have de-
scribed in the previous sections. First we consider computing bounds for elements
of a function of a symmetric matrix A. We consider f(λ) = 1/λ, which corre-
sponds to the inverse of A, f(λ) = eλ corresponding to the exponential of the ma-
trix and f(λ) =

√
λ for the square root of the matrix. For applications in physics,

see Haydock [183], [182], Haydock and Te [184] and Nex [247], [248]. We use
some examples from [149].

11.8.1 Description of the examples
We first consider examples of small dimension for which the inverses are explicitly
known. Then, we will turn to larger examples arising from the discretization of
partial differential equations. The numerical computations were done with Matlab
6 on different personal computers using IEEE floating point arithmetic.
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Example F1
This is an example of dimension 10,

A =
1
11




10 9 8 7 6 5 4 3 2 1
9 18 16 14 12 10 8 6 4 2
8 16 24 21 18 15 12 9 6 3
7 14 21 28 24 20 16 12 8 4
6 12 18 24 30 25 20 15 10 5
5 10 15 20 25 30 24 18 12 6
4 8 12 16 20 24 28 21 14 7
3 6 9 12 15 18 21 24 16 8
2 4 6 8 10 12 14 16 18 9
1 2 3 4 5 6 7 8 9 10



.

It is known (see [234]) that the inverse of A is a tridiagonal matrix

A−1 =




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


 .

The eigenvalues of A are therefore distinct, explicitly known as the inverses of
those of A−1. To four decimal digits the minimum and maximum eigenvalues are
0.2552 and 12.3435.

Example F2
We use a tridiagonal matrix whose nonzero elements in a row are −1, 2, −1

except for the first row where the diagonal element is 3 and the last row for which
the diagonal element is 1. The inverse is one half a matrix whose elements of the
first row and column are equal to 1. In row and column i, the elements (i, j) for
j ≥ i in the row and (j, i) for j ≥ i in the column are equal to 2(i− 1) + 1.

An example of order 5 is

A =




3 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1


 ,

whose inverse is

A−1 =
1
2



1 1 1 1 1
1 3 3 3 3
1 3 5 5 5
1 3 5 7 7
1 3 5 7 9


 .

The minimum and maximum eigenvalues of the matrix A are 0.0979 and 3.9021.
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Example F3
We consider an example proposed by Strakoš [315]. This is a diagonal matrix Λ

whose diagonal elements are

λi = λ1 +
(
i− 1
n− 1

)
(λn − λ1)ρn−i, i = 1, . . . , n.

The parameters λ1 and λn are respectively the smallest and largest eigenvalues.
The parameter ρ controls the distribution of the eigenvalues. We will use λ1 =
0.1, λn = 100 and a value ρ = 0.9 which gives well-separated large eigenval-
ues. Let Q be the orthogonal matrix of the eigenvectors of the tridiagonal matrix
(−1, 2, −1). Then the matrix is A = QTΛQ. It has the same eigenvalues as Λ.

Example F4
This example is the matrix arising from the five-point finite difference approxi-

mation of the Poisson equation in a unit square with an m×m mesh. This gives a
linear system Ax = c of order m2, where

A =




T −I
−I T −I

. . . . . . . . .
−I T −I

−I T


 ,

each block being of order m, and

T =




4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4


 .

For m = 6, the minimum and maximum eigenvalues are 0.3961 and 7.6039.

Example F5
This example arises from the five-point finite difference approximation of the

following diffusion equation in a unit square,

−div(a∇u)) = f,

with homogeneous Dirichlet boundary conditions. The diffusion coefficient a(x, y)
is constant and equal to 1000 in the square ]1/4, 3/4[×]1/4, 3/4[ and equal to 1
otherwise. For m = 6, the minimum and maximum eigenvalues are 0.4354 and
6828.7.

In the captions of the tables we will denote the use of Gauss quadrature with the
Lanczos algorithm by GL, the nonsymmetric Gauss quadrature with the nonsym-
metric Lanczos algorithm by GNS and the block Gauss quadrature with the block
Lanczos algorithm by GB.
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11.8.2 Bounds for the Elements of the Inverse
11.8.2.1 Diagonal Elements

In the following results, Nit denotes the number of iterations of the Lanczos algo-
rithm. This corresponds to N for the Gauss and Gauss–Radau rules and N − 1 for
the Gauss–Lobatto rule.

Example F1
We are looking for bounds for (A−1)5,5 whose exact value is 2. Results (rounded

to four decimal digits) are given in table 11.1. In this example five or six iterations
should be sufficient, so we are a little off the theory. For Gauss–Radau and Gauss–
Lobatto we use the “exact” smallest and largest eigenvalues.

Table 11.1 Example F1, GL, A−1
5,5 = 2

Rule Nit=1 2 3 4 5 6 7
G 0.3667 1.3896 1.7875 1.9404 1.9929 1.9993 2

G-R bL 1.3430 1.7627 1.9376 1.9926 1.9993 2.0000 2
G-R bU 3.0330 2.2931 2.1264 2.0171 2.0020 2.0001 2

G-L 3.1341 2.3211 2.1356 2.0178 2.0021 2.0001 2

Example F2
Let us first consider a small example of order n = 5. We look at bounds for

(A−1)5,5, whose exact value is 4.5. Results are given in table 11.2.

Table 11.2 Example F2, GL, n = 5, A−1
5,5 = 4.5

Rule Nit=1 2 3 4 5
G 1 2 3 4 4.5

G-R bL 1.3910 2.4425 3.4743 4.5 4.5
G-R bU 5.8450 4.7936 4.5257 4.5 4.5

G-L 7.8541 5.2361 4.6180 4.5 4.5

Now, we consider the same example with n = 100. We are interested in the
(50, 50) element of the inverse whose value is 49.5. Results are given in table 11.3.
These results do not seem to be very encouraging since we obtain good bounds only
after a large number of iterations, around 80 or 90 iterations. However, the eigen-
value distribution for the matrix A is such that the convergence of the Ritz values
towards the eigenvalues is very slow and this is what we see also for the lower and
upper bounds for the quadratic form. With this kind of matrix, since there is no
convergence in the early iterations, orthogonality of the Lanczos vectors is usually
quite good. We have seen in chapter 7 that the convergence of the bounds for the
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quadratic form is closely linked to the convergence of the Ritz values towards the
eigenvalues of A. For this example, it could be interesting to use a preconditioner.

Table 11.3 Example F2, GL, n = 100, A−1
50,50 = 49.5

Nit G G-R bL G-R bU G-L
10 5.0000 5.2503 196.4856 205.9564
20 10.0000 10.2507 105.6575 107.9577
30 15.0000 15.2510 76.5260 77.4667
40 20.0000 20.2515 63.3448 63.8080
50 24.8333 24.9187 55.6146 56.3129
60 29.9783 30.2094 52.2493 52.3811
70 34.9884 35.2308 50.5347 50.5955
80 39.9921 40.2407 49.7693 49.7925
90 44.9940 45.2526 49.5253 49.5300

100 49.5000 49.5000 49.5000 49.5000

Example F3
We choose n = 100 and we consider the (50, 50) element whose value is 4.2717.

The results are given in table 11.4. The convergence is much faster than with the
previous example. Due to the rapid convergence of some eigenvalues at the begin-
ning of the iterations, there is a large growth of the rounding errors and appearance
of multiple copies of the already converged eigenvalues; see [239]. But we obtain
good bounds after only 30 iterations.

Table 11.4 Example F3, GL, n = 100, A−1
50,50 = 4.2717

Nit G G-R bL G-R bU G-L
10 2.7850 3.0008 5.1427 5.1664
20 4.0464 4.0505 4.4262 4.4643
30 4.2545 4.2553 4.2883 4.2897
40 4.2704 4.2704 4.2728 4.2733
50 4.2716 4.2716 4.2718 4.2718
60 4.2717 4.2717 4.2717 4.2717

Example F4
We first consider m = 6. Then we have a small matrix of order n = 36 and we

look for bounds on (A−1)18,18 whose value is 0.3515. This matrix has 19 distinct
eigenvalues, therefore we should get the exact answer in about 10 iterations for
Gauss and Gauss–Radau and 9 iterations for Gauss–Lobatto. Results are given in
table 11.5.

Now, we consider m = 30 which gives a matrix of order 900. We want to
compute bounds for the (150, 150) element whose value is 0.3602. We show the
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Table 11.5 Example F4, GL, n = 36, A−1
18,18 = 0.3515

Rule Nit=1 2 3 4 8 9
G 0.25 0.3077 0.3304 0.3411 0.3512 0.3515

G-R bL 0.2811 0.3203 0.3366 0.3443 0.3514 0.3515
G-R bU 0.6418 0.4178 0.3703 0.3572 0.3515 0.3515

G-L 1.3280 0.4990 0.3874 0.3619 0.3515 -

results in table 11.6. We have very good estimates much sooner than expected.
This is because there are distinct eigenvalues which are very close to each other.

Table 11.6 Example F4, GL, n = 900, A−1
150,150 = 0.3602

Nit G G-R bL G-R bU G-L
10 0.3578 0.3581 0.3777 0.3822
20 0.3599 0.3599 0.3608 0.3609
30 0.3601 0.3601 0.3602 0.3602
40 0.3602 0.3602 0.3602 0.3602

Example F5
We takem = 6 as in the previous example. So we have a matrix of order 36. The

(2, 2) element of the inverse has an “exact” value of 0.3088 and there are 23 distinct
eigenvalues so that the exact answer should be obtained after 12 iterations but the
matrix is ill conditioned. We get the results in table 11.7. Then, we use m = 30
which gives a matrix of order n = 900 and look for the element (200, 200) whose
value is 0.4347. Results are given in table 11.8. Convergence is slower than for
Example F4.

Table 11.7 Example F5, GL, n = 36, A−1
2,2 = 0.3088

Rule Nit=1 2 4 6 8 10 12 15
G 0.25 0.2503 0.2525 0.2609 0.2837 0.2889 0.3036 0.3088

G-R bL 0.2504 0.2516 0.2583 0.2821 0.2879 0.2968 0.3044 0.3088
G-R bU 0.5375 0.5202 0.5080 0.5039 0.5013 0.3237 0.3098 0.3088

G-L 2.2955 0.5765 0.5156 0.5065 0.5020 0.3237 0.3098 0.3088

In conclusion, we have seen that the convergence of the bounds or estimates
obtained with the Lanczos algorithm is closely linked to the convergence of the
Ritz values toward the eigenvalues of A.
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Table 11.8 Example F5, GL, n = 900, A−1
200,200 = 0.4347

Nit G G-R bL G-R bU G-L
10 0.2992 0.3005 6.4655 6.5569
60 0.3393 0.3400 0.9783 0.9800
110 0.3763 0.3763 0.4791 0.4800
160 0.4085 0.4085 0.4371 0.4374
210 0.4292 0.4292 0.4351 0.4351
260 0.4343 0.4343 0.4348 0.4348
310 0.4347 0.4347 0.4347 0.4347

11.8.2.2 Off-Diagonal Elements with the Nonsymmetric Lanczos Algorithm

Here, we use the nonsymmetric Lanczos algorithm to obtain estimates or bounds
of off-diagonal elements.

Example F1
We are looking for estimates for the sum of the (2, 2) and (2, 1) elements whose

exact value is 1. First, we use δ = 1 for which the measure is positive but not
increasing. Results are in table 11.9.

Table 11.9 Example F1, GNS, A−1
2,2 +A−1

2,1 = 1

Rule Nit=1 2 3 4 5 6 7 8
G 0.4074 0.6494 0.8341 0.9512 0.9998 1.0004 1 -

G-R bL 0.6181 0.8268 0.9488 0.9998 1.0004 1.0001 1 -
G-R bU 2.6483 1.4324 1.0488 1.0035 1.0012 0.9994 1 -

G-L 3.2207 1.4932 1.0529 1.0036 1.0012 0.9993 0.9994 1

We have a small problem at the end near convergence where we obtain estimates
and not bounds, but the estimates are quite good. Note that for δ = 4 the measure
is positive and increasing.

Example F2
This example illustrates some of the problems that can happen with the nonsym-

metric Lanczos algorithm. We would like to compute the sum of the (2, 2) and
(2, 1) elements which is equal to 2. After two iterations we have a breakdown of
the Lanczos algorithm since γβ = 0. The same happens at the first iteration for
the Gauss–Radau rule and at the second one for the Gauss–Lobatto rule. Choosing
a value of δ different from 1 cures the breakdown problem. We can obtain bounds
with a value δ = 10 (with a positive and increasing measure). Then the value we
are looking for is 1.55 and the results of table 11.10 follow. Table 11.11 shows the
results for n = 100. We are computing approximations of the sum of elements
(50, 50) and (50, 1)/10 whose value is 49.55. As with the symmetric Lanczos al-
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gorithm the convergence is slow. At the beginning the results are very close to those
for the symmetric case because A−1

50,1 = 0.5, thus the correction to A−1
50,50 = 49.5

is small.

Table 11.10 Example F2, GNS, n = 5, A−1
2,2 +A−1

2,1/10 = 1.55

Rule Nit=1 2 3 4 5
G 0.5263 0.8585 1.0333 1.4533 1.55

G-R bL - 1.0011 1.2771 1.55 -
G-R bU - 1.9949 1.5539 1.55 -

G-L - 2.2432 1.5696 1.55 -

Table 11.11 Example F2, GNS, n = 100, A−1
50,50 +A−1

50,1/10 = 49.55

Nit G G-R bL G-R bU G-L
10 5.0000 5.2503 196.4856 205.9564
20 10.0000 10.2507 105.6575 107.9577
30 15.0263 15.2771 76.6303 77.5740
40 20.0263 20.2775 63.4181 63.8826
50 24.8585 24.9436 55.6715 56.3736
60 30.0044 30.2352 52.2992 52.4315
70 35.0146 35.2564 50.5807 50.6418
80 40.1023 40.5801 49.8167 49.8283
90 45.1135 45.3149 49.5733 49.5791
100 49.5500 49.5500 49.5500 49.5500

Example F3
We use n = 100 and we compute A−1

50,50 + A−1
50,49 = 1.4394. The results are

given in table 11.12. We see that we obtain good bounds with a few iterations.

Table 11.12 Example F3, GNS, n = 100, A−1
50,50 +A−1

50,49 = 1.4394

Nit G G-R bL G-R bU G-L
10 0.8795 0.9429 2.2057 2.2327
20 1.3344 1.3362 1.5535 1.5839
30 1.4301 1.4308 1.4510 1.4516
40 1.4386 1.4387 1.4404 1.4404
50 1.4394 1.4394 1.4395 1.4395
60 1.4394 1.4394 1.4394 1.4394
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Example F4
We considerm = 6; then, we have a system of order 36 and we look for estimates

of the sum of the (2, 2) and (2, 1) elements which is 0.4471. Remember there are
19 distinct eigenvalues. Results are given in table 11.13. Then, in table 11.14, we
use n = 900 and we compute the sum A−1

150,150 +A−1
150,50 = 0.3665.

Table 11.13 Example F4, GNS, n = 36, A−1
2,2 +A−1

2,1 = 0.4471

Rule Nit=1 2 4 6 7 8 9 10
G 0.3333 0.4000 0.4369 0.4446 0.4461 0.4468 0.4471 -

G-R bL 0.3675 0.4156 0.4390 0.4456 0.4466 0.4470 0.4471 -
G-R bU 0.7800 0.5319 0.4537 0.4476 0.4472 0.4472 0.4471 -

G-L 1.6660 0.6238 0.4596 0.4480 0.4473 0.4472 0.4472 0.4471

Table 11.14 Example F4, GNS, n = 900, A−1
150,150 +A−1

150,50 = 0.3665

Nit G G-R bL G-R bU G-L
10 0.3611 0.3615 0.3917 0.3979
20 0.3656 0.3657 0.3678 0.3680
30 0.3663 0.3664 0.3666 0.3666
40 0.3665 0.3665 0.3665 0.3665

Example F5
We first take m = 6. The sum of the (2, 2) and (2, 1) elements of the inverse is

0.3962 and there are 23 distinct eigenvalues. We obtain the results in table 11.15.
Then we use n = 900 and we compute the sum A−1

200,200+A
−1
200,172 = 0.5625. The

results are given in table 11.16. We see that the convergence is slow.

Table 11.15 Example F5, GNS, n = 36, A−1
2,2 +A−1

2,1 = 0.3962

Rule Nit=1 2 4 6 8 10 12 15
G 0.3333 0.3336 0.3348 0.3396 0.3607 0.3689 0.3899 0.3962

G-R bL - 0.3337 0.3355 0.3460 0.3672 0.3803 0.3912 0.3962
G-R bU - 0.6230 0.5793 0.5698 0.5660 0.4078 0.3970 0.3962

G-L 2.2959 0.6898 0.5850 0.5703 0.5664 0.4078 0.3970 0.3962

11.8.2.3 Off-Diagonal Elements with the Block Lanczos Algorithm

When using block quadrature rules for computing elements of the inverse we are
faced with the problem of computing eTJ−1

k e where e is a 2k × 2 matrix which is
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Table 11.16 Example F5, GNS, n = 900, A−1
200,200 +A−1

200,172 = 0.5625

Nit G G-R bL G-R bU G-L
10 0.3163 0.3186 6.6552 6.7077
60 0.3859 0.3867 1.3049 1.3077
110 0.4592 0.4593 0.6562 0.6570
160 0.5153 0.5154 0.5693 0.5694
210 0.5336 0.5346 0.5635 0.5635
260 0.5607 0.5607 0.5626 0.5626
310 0.5623 0.5623 0.5625 0.5625
360 0.5625 0.5625 0.5625 0.5625

made of the two first columns of the identity and Jk is block tridiagonal. This can
be done incrementally as for the point tridiagonal case; see chapter 3. Let f be a
matrix of dimension 2k×2 whose columns are the last two columns of the identity
and denote by (J−1

k )1,1 the 2× 2 (1, 1) block of the inverse of Jk with

Jk =



Ω1 ΓT1
Γ1 Ω2 ΓT2

. . . . . . . . .
Γk−2 Ωk−1 ΓTk−1

Γk−1 Ωk


 .

The matrix Jk+1 is written as

Jk+1 =
(

Jk fΓTk
ΓkfT Ωk+1

)
.

To obtain the block (1, 1) element we are interested in the inverse of the Schur com-
plement Sk = Jk − fΓTkΩ

−1
k+1Γkf

T . We use the Sherman–Morrison–Woodbury
formula (see [154]) which gives

S−1
k = J−1

k + J−1
k fΓTk (Ωk+1 − ΓkfTJ−1

k fΓTk )
−1ΓkfTJ−1

k .

For the 2× 2 matrix we are interested in we obtain

(J−1
k+1)1,1 = (J−1

k )1,1 + (eTJ−1
k f)ΓTk (Ωk+1 − ΓkfTJ−1

k fΓTk )
−1Γk(fTJ−1

k e).

Hence, we have to compute eTJ−1
k f which is the (1, k) block of the inverse of Jk

and (Ωk+1 − ΓkfTJ−1
k fΓTk )

−1. This is done using the block LU factorization of
Jk whose block diagonal elements are given by the recurrence

∆1 = Ω1, ∆i = Ωi − Γi−1Ω−1
i−1Γ

T
i−1, i = 2, . . . , k.

With these notations, we have

eTJ−1
k f = (−1)k−1∆−1

1 ΓT1∆
−1
2 ΓT2 · · ·∆−1

k−1Γ
T
k−1∆

−1
k ,

fTJ−1
k f = ∆−1

k and Ωk+1 − Γk∆−1
k ΓTk = ∆k+1. Let

Ck = ∆−1
1 ΓT1∆

−1
2 ΓT2 · · ·∆−1

k−1Γ
T
k−1∆

−1
k ΓTk .



BOUNDS AND ESTIMATES FOR ELEMENTS OF FUNCTIONS OF MATRICES 183

Putting these formulas together we obtain

(J−1
k+1)1,1 = (J−1

k )1,1 + Ck∆−1
k+1C

T
k .

Going from step k to step k+1 we compute Ck+1 incrementally. Note that we can
reuse Ck∆−1

k+1 to compute Ck+1.
Since it is difficult to compute small examples using 2× 2 blocks, we start with

Example F3.

Example F3
This example uses n = 100. The (2, 1) element of the inverse is −3.2002. We

obtain the figures in table 11.17. We see that we obtain good approximations but
not always bounds. As an added bonus we also obtain estimates of A−1

1,1 and A−1
2,2.

Table 11.17 Example F3, GB, n = 100, A−1
2,1 = −3.2002

Nit G G-R bL G-R bU G-L
2 -3.0808 -3.0948 -3.9996 -4.1691
3 -3.1274 -3.1431 -3.5655 -3.6910
4 -3.2204 -3.2187 -3.2637 -3.5216
5 -3.2015 -3.2001 -3.1974 -3.2473
6 -3.1969 -3.1966 -3.1964 -3.1969
7 -3.1970 -3.1972 -3.1995 -3.1994
8 -3.1993 -3.1995 -3.2008 -3.1999
9 -3.2001 -3.2001 -3.2005 -3.2008

10 -3.2002 -3.2002 -3.2002 -3.2004

Example F4
We consider a problem of order n = 900 and look for the (400, 100) element

of the inverse which is equal to 0.0597. Results are given in table 11.18. Note
that for this problem everything works well. The Gauss rule gives a lower bound,
Gauss–Radau a lower and an upper bound.

Table 11.18 Example F4, GB, n = 900, A−1
400,100 = 0.0597

Nit G G-R bL G-R bU G-L
10 0.0172 0.0207 0.0632 0.0588
20 0.0527 0.0532 0.0616 0.0621
30 0.0590 0.0591 0.0597 0.0597
40 0.0597 0.0597 0.0597 0.0597

Example F5
As before we use n = 900. We would like to obtain estimates of the (2, 1)

element of the inverse whose value is 0.1046. We get the results in table 11.19.
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Table 11.19 Example F5, GB, n = 900, A−1
2,1 = 0.1046

Nit G G-R bL G-R bU G-L
2 0.0894 0.0894 0.7349 1.8810
4 0.1008 0.1008 0.2032 0.3383
6 0.1033 0.1033 0.1280 0.1507
8 0.1040 0.1040 0.1119 0.1173

10 0.1044 0.1044 0.1074 0.1090
12 0.1045 0.1045 0.1058 0.1064
14 0.1046 0.1046 0.1054 0.1054
16 0.1046 0.1046 0.1054 0.1054

Note that in this example we obtain bounds. Now, we illustrate the fact that
some estimates can be 0 for some iterations. This is one of the reasons for which
we cannot always obtain bounds with the block Lanczos algorithm. We take n = 36
and we would like to estimate the (36, 1) element of the inverse, which is 0.005.
For the first iterations, the computed approximations are 0 which means that the
2× 2 matrices which provide them are diagonal; see table 11.20.

Table 11.20 Example F5, GB, n = 36, A−1
36,1 = 0.005

Rule Nit=2 4 6 8 10 11
G 0. 0. 0.0002 0.0037 0.0049 0.0050

G-R bL 0. 0. 0.0023 0.0037 0.0049 0.0050
G-R bU 0. 0. 0.0024 0.0050 0.0050 0.0050

G-L 0. 0. 0.0022 0.0044 0.0050 0.0050

11.8.2.4 Dependence on the Eigenvalue Estimates

In this part, we investigate numerically how the bounds and estimates of the Gauss–
Radau rules depend on the accuracy of the estimates of the extreme eigenvalues of
A. We take Example F4 with m = 6 and look at the results given by the Gauss–
Radau rule as a function of a and b. Remember that in the previous experiments
we took for a and b the values returned by the EIG function of Matlab, that is
a = 0.3961, b = 7.6039. Using these values, we need nine Lanczos iterations to
obtain the correct result up to four decimal digits.

It turns out that (for this example) the estimates are only weakly dependent on
the values of a and b. We look at the number of Lanczos iterations needed to obtain
an upper bound for the element (18, 18) with four exact digits. The results are
given in table 11.21. Note that it works even when a > λmin. We have the same
properties when b is varied.

Therefore, we see that the estimation of the extreme eigenvalues does not seem
to matter too much. In any case, better estimates of the smallest and largest eigen-
values can be obtained after a few iterations of the Lanczos algorithm or with the
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Table 11.21 Example F4, GL, n = 36

a = 10−4 10−2 0.1 0.3 0.4 1 6
15 13 11 11 8 8 9

Gerschgorin disks.

11.8.3 Bounds for the Elements of the Exponential
In this section we are looking for bounds of elements of the exponential of the
matrices for some of the examples. We will see that the convergence of the bounds
to the exact values is quite fast.

11.8.3.1 Diagonal Elements

We first compute diagonal elements of the exponential for some of our examples.

Example F1
The (5, 5) entry is 4.0879 104. The Gauss rule obtains the “exact” value in four

iterations, the Gauss–Radau and Gauss–Lobatto rules in three iterations.

Example F3
We use n = 100 and compute the (50, 50) element, whose value is 5.3217 1041.

Results are given in table 11.22. We obtain good bounds very rapidly.

Table 11.22 Example F3, GL, n = 100, exp(A)50,50 = 5.3217 1041. Results ×10−41

Nit G G-R bL G-R bU G-L
2 0.0000 0.0000 7.0288 8.8014
3 0.0075 0.2008 5.6649 6.0776
4 1.0322 2.5894 5.3731 5.4565
5 3.9335 4.7779 5.3270 5.3385
6 5.1340 5.2680 5.3235 5.3232
7 5.3070 5.3178 5.3218 5.3219
8 5.3203 5.3209 5.3218 5.3218
9 5.3212 5.3213 5.3217 5.3217
10 5.3215 5.3217 5.3217 5.3217
11 5.3217 5.3217 5.3217 5.3217

Example F4
We use n = 36 and we consider the (18, 18) element, whose value is 197.8311.

We obtain the results in table 11.23. We remark that to compute diagonal elements
of the exponential the convergence rate is quite fast. Then we take n = 900 and
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compute the (50, 50) element whose value is 277.4061. Results are given in ta-
ble 11.24.

Table 11.23 Example F4, GL, n = 36, exp(A)18,18 = 197.8311

Rule Nit=2 3 4 5 6 7
G 159.1305 193.4021 197.5633 197.8208 197.8308 197.8311

G-R bL 182.2094 196.6343 197.7779 197.8296 197.8311 197.8311
G-R bU 217.4084 199.0836 197.8821 197.8325 197.8311 197.8311

G-L 273.8301 203.4148 198.0978 197.8392 197.8313 197.8311

Table 11.24 Example F4, GL, n = 900, exp(A)50,50 = 277.4061

Rule Nit=2 3 4 5 6 7 8
G 205.4089 270.6459 276.9261 277.3863 277.4055 277.4060 277.4061

G-R bL 248.6974 275.1781 277.2898 277.4021 277.4060 277.4060 277.4061
G-R bU 319.2222 280.3322 277.5413 277.4105 277.4062 277.4061 277.4061

G-L 409.7618 292.5355 278.1514 277.4350 277.4068 277.4061 277.4061

11.8.3.2 Off-Diagonal Elements

We consider only Example F4 with n = 36 and we would like to compute the ele-
ment (2, 1), whose value is −119.6646. First, we use the block Lanczos algorithm,
which gives the results in table 11.25.

Table 11.25 Example F4, GB, n = 36, exp(A)2,1 = −119.6646

Rule Nit=2 3 4 5 6
G -111.2179 -119.0085 -119.6333 -119.6336 -119.6646

G-R bL -115.9316 -119.4565 -119.6571 -119.6644 -119.6646
G-R bU -122.2213 -119.7928 -119.6687 -119.6647 -119.6646

G-L -137.7050 -120.6801 -119.7008 -119.6655 -119.6646

Then, we use the nonsymmetric Lanczos algorithm. The sum of the (2, 2) and
(2, 1) elements of the exponential is 73.9023. Results are in table 11.26.

Finally, we take n = 900 and consider exp(A)50,50 + exp(A)50,49 = 83.8391.
Results are in table 11.27. Again, convergence is quite fast. We obtain good results
after four iterations.
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Table 11.26 Example F4, GNS, n = 36, exp(A)2,2 + exp(A)2,1 = 73.9023

Rule Nit=2 3 4 5 6 7
G 54.3971 71.6576 73.7637 73.8962 73.9021 73.9023

G-R bL 65.1847 73.2896 73.8718 73.9014 73.9023 -
G-R bU 84.0323 74.6772 73.9323 73.9014 73.9023 -

G-L 113.5085 77.2717 74.0711 73.9070 73.9024 73.9023

Table 11.27 Example F4, GNS, n = 900, exp(A)50,50 + exp(A)50,49 = 83.8391

Rule Nit=2 3 4 5 6 7
G 63.4045 81.4124 83.6607 83.8318 83.8389 83.8391

G-R bL 76.1266 83.7668 83.7781 83.8383 83.8391 83.8391
G-R bU 108.0918 86.3239 83.8796 83.8420 83.8392 83.8391

G-L 163.8043 90.9304 84.1878 83.8530 83.8395 83.8391

11.8.4 Bounds for the Elements of the Square Root
The last function we consider as an example is the square root. We use the same
numerical examples as for the exponential to be able to compare the speed of con-
vergence.

11.8.4.1 Diagonal Elements

Results for Example F1 are given in table 11.28. We compute bounds for the (5, 5)
entry of the square root. For this small example, we need one or two more iterations
than for the exponential function to obtain the same precision.

Table 11.28 Example F1, GL, n = 10, (
√
A)5,5 = 1.2415

Nit G G-R bL G-R bU G-L
2 1.2705 1.2328 1.2471 1.2311
3 1.2462 1.2392 1.2423 1.2390
4 1.2422 1.2413 1.2415 1.2413
5 1.2415 1.2415 1.2415 1.2415

The second example is F3 with n = 100. We compute bounds of the (50, 50)
element whose value is 1.8973. Results are in table 11.29. We need more iterations
than for the exponential function. Note that the lower bound from the Gauss–
Radau rule and the lower bound from the Gauss–Lobatto rule are slow to converge.
However, convergence is faster than when computing elements of the inverse of A.

Results for Example F4 are displayed in table 11.30 for n = 36 and in table 11.31
for n = 900. For the case n = 36 the number of iterations is about the same as for
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Table 11.29 Example F3, GL, n = 100, (
√
A)50,50 = 1.8973

Nit G G-R bL G-R bU G-L
2 2.3440 1.7211 2.1962 1.6628
3 2.1328 1.7938 2.0637 1.7729
4 2.0385 1.8310 1.9992 1.8217
5 1.9875 1.8529 1.9628 1.8483
6 1.9569 1.8669 1.9407 1.8643
7 1.9373 1.8761 1.9279 1.8744
8 1.9247 1.8819 1.9214 1.8795
9 1.9182 1.8847 1.9143 1.8837

10 1.9133 1.8881 1.9092 1.8876
11 1.9085 1.8905 1.9069 1.8899
12 1.9060 1.8917 1.9042 1.8914
13 1.9039 1.8933 1.9023 1.8931
14 1.9020 1.8942 1.9013 1.8939
15 1.9011 1.8949 1.9001 1.8948
16 1.9000 1.8956 1.8995 1.8955
17 1.8994 1.8959 1.8990 1.8958
18 1.8988 1.8963 1.8988 1.8960
19 1.8984 1.8965 1.8984 1.8964
20 1.8982 1.8968 1.8981 1.8966
21 1.8979 1.8969 1.8979 1.8968
22 1.8978 1.8970 1.8978 1.8969
23 1.8976 1.8971 1.8976 1.8970
24 1.8976 1.8972 1.8976 1.8971
25 1.8975 1.8972 1.8975 1.8972
26 1.8974 1.8973 1.8974 1.8972
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the exponential, but the convergence is slower when we increase the dimension of
the matrix.

Table 11.30 Example F4, GL, n = 36, (
√
A)18,18 = 1.9438

Nit G G-R bL G-R bU G-L
2 1.9501 1.9391 1.9468 1.9292
3 1.9452 1.9429 1.9445 1.9418
4 1.9442 1.9436 1.9440 1.9434
5 1.9439 1.9438 1.9439 1.9437
6 1.9438 1.9438 1.9438 1.9438

Table 11.31 Example F4, GL, n = 900, (
√
A)50,50 = 1.9189

Nit G G-R bL G-R bU G-L
2 1.9319 1.8945 1.9255 1.8697
3 1.9220 1.9112 1.9209 1.9038
4 1.9201 1.9160 1.9197 1.9140
5 1.9195 1.9176 1.9193 1.9169
6 1.9192 1.9183 1.9191 1.9180
7 1.9191 1.9186 1.9190 1.9185
8 1.9190 1.9187 1.9190 1.9187
9 1.9190 1.9188 1.9190 1.9188
10 1.9190 1.9189 1.9190 1.9189
11 1.9190 1.9189 1.9190 1.9189
12 1.9190 1.9189 1.9189 1.9189
13 1.9189 1.9189 1.9189 1.9189

11.8.4.2 Off-Diagonal Elements

We first use the block Gauss quadrature rule for Example F4 with n = 36. The
results are given in table 11.32. We obtain a nice result quite rapidly.

Table 11.32 Example F4, GB, n = 36, (
√
A)2,1 = −0.2627.

Nit G G-R bL G-R bU G-L
2 -0.2612 -0.2618 -0.2638 -0.2669
3 -0.2623 -0.2625 -0.2629 -0.2633
4 -0.2626 -0.2626 -0.2628 -0.2628
5 -0.2627 -0.2627 -0.2627 -0.2627

Then, we use the nonsymmetric Lanczos algorithm for computing the sum of
the elements (2, 1) and (2, 2) of the square root of the matrix of Example F4. Ta-
ble 11.33 gives the results for n = 36 and table 11.34 for n = 900. As for the sym-
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metric Lanczos algorithm, convergence is slower than for the exponential function.
Nevertheless we obtain good bounds in a few iterations.

Table 11.33 Example F4, GNS, n = 36, (
√
A)2,1 + (

√
A)2,2 = 1.6819

Nit G G-R bL G-R bU G-L
2 1.6882 1.6778 1.6854 1.6664
3 1.6832 1.6808 1.6825 1.6796
4 1.6823 1.6817 1.6821 1.6815
5 1.6821 1.6819 1.6820 1.6818
6 1.6820 1.6819 1.6820 1.6819
7 1.6819 1.6819 1.6819 1.6819

Table 11.34 Example F4, GNS, n = 900, (
√
A)50,49 + (

√
A)50,50 = 1.6411

Nit G G-R bL G-R bU G-L
2 1.6559 1.6061 1.6484 1.5751
3 1.6451 1.6287 1.6433 1.6209
4 1.6428 1.6374 1.6424 1.6344
5 1.6419 1.6391 1.6416 1.6382
6 1.6415 1.6402 1.6414 1.6397
7 1.6413 1.6406 1.6413 1.6404
8 1.6412 1.6408 1.6412 1.6407
9 1.6412 1.6410 1.6412 1.6409

10 1.6412 1.6410 1.6412 1.6410
11 1.6412 1.6411 1.6411 1.6410
12 1.6411 1.6411 1.6411 1.6411

11.8.5 Linear Combination of the Solution of a Linear System
We are interested in dTx where x is the solution of the linear system Ax = c.
Therefore, the value we would like to compute is dTA−1c. This can be done using
the same techniques and codes as in the previous sections using the nonsymmetric
Lanczos algorithm. Let us consider Example F4. We use n = 900, c is a random
vector and d is a vector whose all components are equal to 1. This means that we
are interested in the sum of all the components of x whose value is 1.6428 104.
The results are in table 11.35. For solving this problem we can also use the block
Lanczos algorithm. Results are given in table 11.36. They are almost equivalent to
those of the nonsymmetric Lanczos algorithm in terms of the number of iterations.

Another interesting application is to compute only one component (say the ith
one) of the solution of the linear system Ax = c. We have to estimate (ei)TA−1c.
Let us use the same example with the nonsymmetric Lanczos algorithm and look
for the 10th component of the solution, whose value is 4.6884. Results are in
table 11.37. Note that, in this case, since the matrix A is positive definite the so-
lution could have been computed with the conjugate gradient algorithm. Without
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Table 11.35 Example F4, GNS, n = 900, dTA−1c = 1.6428 104. Results ×10−4

Nit G G-R bL G-R bU G-L
2 0.5998 0.6653 1.9107 1.9783
4 0.9339 0.9937 1.7798 1.8094
6 1.1766 1.2240 1.7093 1.7237
8 1.3512 1.3839 1.6725 1.6799
10 1.4766 1.4955 1.6550 1.6589
12 1.5537 1.5666 1.6471 1.6486
14 1.6012 1.6081 1.6441 1.6447
16 1.6265 1.6302 1.6431 1.6432
18 1.6383 1.6399 1.6429 1.6430
20 1.6419 1.6422 1.6428 1.6429
22 1.6425 1.6425 1.6428 1.6428
24 1.6428 1.6428 1.6428 1.6428

Table 11.36 Example F4, GB, n = 900, dTA−1c = 1.6428 104. Results ×10−4

Nit G G-R bL G-R bU G-L
2 0.6207 0.6611 1.8844 1.9925
4 0.9719 1.0247 1.7595 1.7883
6 1.2127 1.2547 1.6980 1.7114
8 1.3822 1.4114 1.6671 1.6736
10 1.4955 1.5151 1.6524 1.6553
12 1.5670 1.5787 1.6460 1.6472
14 1.6086 1.6152 1.6437 1.6441
16 1.6304 1.6335 1.6430 1.6431
18 1.6397 1.6407 1.6429 1.6429
20 1.6422 1.6423 1.6428 1.6429
22 1.6425 1.6426 1.6428 1.6428
24 1.6427 1.6428 1.6428 1.6428
26 1.6428 1.6428 1.6428 1.6428
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preconditioning, it takes 65 CG iterations to obtain x(10) with the same accuracy.
However, remember that there is only one matrix-vector multiplication per itera-
tion in CG, whereas, we have two multiplications in the nonsymmetric Lanczos
algorithm.

Table 11.37 Example F4, GNS, n = 900, x(10) = 4.6884

Nit G G-R bL G-R bU G-L
5 1.9024 1.8461 9.3913 7.4680

10 3.1996 3.2251 4.9937 5.3832
15 4.1500 4.1770 4.7265 4.7584
20 4.5654 4.6255 4.6951 4.6955
25 4.6812 4.6820 4.6915 4.6919
30 4.6856 4.6817 4.6881 4.6881
35 4.6883 4.6893 4.6882 4.6882
40 4.6900 4.6907 4.6885 4.6885
45 4.6883 4.6893 4.6884 4.6884
50 4.6885 4.6884 4.6884 4.6884

We can also improve one component of an approximate solution x̃ of Ax = c.
Let r = c−Ax̃ be the residual. The error ε = x− x̃ satisfies the equation Aε = r.
Assume we want to improve the ith component of the solution. Then we estimate
the ith component of ε by considering (ei)TA−1r. Finally, we add the estimate
of the bilinear form to the ith component of x̃. Let us use the same example as
before. After five CG iterations we have xCG(10) = 4.0977. We compute the
residual vector and then use the block Lanczos algorithm. We obtain the results
in table 11.38, which displays the sum of xCG(10) and the estimates of the error.
Note that the first iterations do not always improve the solution.

Table 11.38 Example F4, GB, n = 900, x(10) = 4.6884

Nit G G-R bL G-R bU G-L
6 3.1890 3.2047 3.1493 2.9772
8 3.2996 3.3639 3.8110 3.6118

10 3.5631 3.6605 4.1239 4.0717
12 3.9683 4.0541 4.4261 4.3705
14 4.2816 4.3474 4.5523 4.5330
16 4.4759 4.5050 4.6330 4.6172
18 4.5761 4.5969 4.6723 4.6682
20 4.6504 4.6616 4.6848 4.6837
22 4.6816 4.6843 4.6884 4.6879
24 4.6874 4.6877 4.6891 4.6891
26 4.6878 4.6881 4.6887 4.6887
28 4.6883 4.6883 4.6886 4.6886
30 4.6884 4.6883 4.6885 4.6885



BOUNDS AND ESTIMATES FOR ELEMENTS OF FUNCTIONS OF MATRICES 193

11.8.6 Estimates of Traces and Determinants
Let us first consider the analytic bounds of Bai and Golub [15], that we have re-
called in section 11.6, for Example F4 with n = 36. The trace of the inverse is
13.7571. The lower and upper bounds obtained using the first three moments are
10.2830 and 24.3776. However, if we consider a larger problem with n = 900
for which the trace of the inverse is 512.6442, the bounds computed from three
moments are 261.0030 and 8751.76; the upper bound is a large overestimate.

One can also compute more moments, which are the traces tr(Ai), i > 2, and
from the moments recover (with the Chebyshev algorithm) the Jacobi matrix whose
eigenvalues and eigenvectors allows us to compute an approximation of the trace
of the inverse, which is the moment of order −1, using the Gauss quadrature rule.
Results are given for n = 36 in table 11.39. They seem fine after k = 4 which cor-
responds to the computation of eight moments. However, the moment matrices are
ill-conditioned and if we continue the computations after k = 10 they are no longer
positive definite. Table 11.40 gives the results for n = 900. The ill-conditioning
of the moment matrices does not allow us to go further. Hence, this method is not
feasible for large matrices.

Table 11.39 Example F4, n = 36, Chebyshev, tr(A−1) = 13.7571

k Estimate
1 9.0000
2 11.3684
3 12.5714
4 13.1581
5 13.4773
6 13.6363
7 13.7139
8 13.7452
9 13.7550
10 13.7568

Table 11.40 Example F4, n = 900, Chebyshev, tr(A−1) = 512.6442

k Estimate
1 225.0000
2 296.7033
3 344.6869
4 375.8398
5 400.0648
6 418.2138
7 433.1216
8 444.9913
9 455.0122
10 463.2337
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Since the moment matrices are too ill-conditioned, it is tempting to see if we
can use modified moments to solve this problem; see [241]. We use the shifted
Chebyshev polynomials of the first kind as the auxiliary orthogonal polynomials.
The drawback is that we need to have estimates of the smallest and largest eigen-
values of A. On the interval [λmin, λmax] these polynomials satisfy the following
three-term recurrence

C0(λ) ≡ 1,
(
λmax − λmin

2

)
C1(λ) = λ−

(
λmax + λmin

2

)
,

(
λmax − λmin

4

)
Ck+1(λ)=

(
λ− λmax + λmin

2

)
Ck(λ)

−
(
λmax − λmin

4

)
Ck−1(λ).

From these relations we can compute the trace of the matricesCi(A), i = 0, . . . , k,
which are the modified moments. The modified Chebyshev algorithm (see chap-
ter 5) generates the coefficients of monic polynomials corresponding to the mea-
sure related to the problem. We symmetrize this Jacobi matrix and obtain the nodes
and weights of the Gauss quadrature rule from the Golub and Welsch algorithm.
The function to consider is f(x) = 1/x. Results are displayed in tables 11.41 for
n = 36 and 11.42 for n = 900. Note that upper bounds can be obtained by using
the Gauss–Radau rule. Using the modified moments there are no breakdowns in
the computations and we obtain quite good results for the trace of the inverse. This
example illustrates the benefits of using modified moments.

Table 11.41 Example F4, n = 36, modified moments, tr(A−1) = 13.7571

k Estimate
1 9.0000
2 11.3684
3 12.5714
4 13.1581
5 13.4773
6 13.6363
7 13.7139
8 13.7452
9 13.7550
10 13.7568
11 13.7571

Estimates of the trace of the inverse can also be computed using Monte Carlo
techniques; see Hutchinson [195]. We use p random vectors zi with components 1
and −1 and we compute lower and upper bounds of (zi)TA−1zi with the quadra-
ture rules. The estimates of the trace are the averages of the bounds over the p
computations. Table 11.43 gives the results for Example F4 with n = 36 and five
iterations of the Lanczos algorithm. Results for = 900 with 30 iterations are given
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Table 11.42 Example F4, n = 900, modified moments, tr(A−1) = 512.6442

k Estimate
5 400.0648
10 463.2560
15 489.5383
20 502.0008
25 508.0799
30 510.9301
35 512.1385
40 512.5469

Table 11.43 Example F4, n = 36, Monte Carlo, 5 it., tr(A−1) = 13.7571

p G G-R bL G-R bU G-L
1 12.8274 12.8749 12.9087 13.1169
2 14.7464 14.8440 14.9300 15.1671
3 14.8973 14.9681 15.0277 15.2448
4 13.6203 13.6777 13.7226 13.8941
5 13.9216 13.9918 14.0495 14.1970

Table 11.44 Example F4, n = 900, Monte Carlo, 30 it., tr(A−1) = 512.6442

p G G-R bL G-R bU G-L
1 478.1734 478.3272 478.4955 479.6967
2 466.4618 466.5600 466.6667 467.6658
3 458.1058 458.1850 458.2703 459.0539
4 466.5929 466.6975 466.8028 467.7714
5 511.1780 511.2772 511.3732 512.2220
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in table 11.44. The results are good even though we do not always obtain lower and
upper bounds, but not as good as with the modified Chebyshev algorithm.

Since the matrices that have to be computed when using the modified moments
become denser and denser as k increases, it can be costly to compute and to store
them. Therefore it is tempting to combine the modified moments algorithm and
the Monte Carlo estimates of the trace of a matrix to compute approximate mod-
ified moments. Instead of computing the matrices Ci(A) and their traces, we can
choose p random vectors zj , j = 1, . . . , p, compute Ci(A)zj by three-term vector
recurrences and obtain an estimate of the trace of Ci(A) by averaging the values
(zj)TCi(A)zj . The results for n = 36 are given in table 11.45. Of course, the
results are not as good as when using the exact traces of the matrices Ci(A). They
are of the same order of accuracy as those obtained with the Monte Carlo method
on A−1. The best result is given by p = 5.

Table 11.45 Example F4, n = 36, modified moments + Monte Carlo, tr(A−1) = 13.7571

p G
1 12.8274
2 14.7289
3 14.8535
4 13.5780
5 13.8215
6 14.1153
7 14.1134
8 14.5652
9 14.9474
10 14.7008

We now turn to numerical experiments for the computation of the determinant
of a matrix A. The analytic bounds of Bai and Golub [15] for Example F4 with
n = 36 using the first three moments are 6.2482 109 and 3.2863 1020 when the
exact value is 1.9872 1019. The results using more moments and the Chebyshev
algorithm are given in table 11.46. Again we have a breakdown after 10 iterations.
The results using the modified Chebyshev algorithm are essentially the same except
that we can go beyond k = 10. Monte Carlo results are in table 11.47. There are
large variations in the estimates and, in fact, the best ones are given for p = 1.

For this example we cannot use n = 900 since the determinant overflows. There
are 827 eigenvalues larger than 1, so the product of the eigenvalues is very large.
One way to get around this problem is to normalize the matrix. It turns out that
by dividing the matrix by λmax/2.45 � 3.2569 we obtain a determinant of order
1, precisely 9.9174. For this matrix Ã the analytic bounds are useless since they
are 1.6042 10−256 and 7.5059 1045. The Chebyshev algorithm works until k = 11
for which we obtain a value of 32.0947. The modified Chebyshev algorithm works
much better, as we can see with the results in table 11.48.

Let us consider a smaller problem with n = 400 for which the determinant is
7.7187 10206. The bounds computed from three moments are 2.1014 10118 and
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Table 11.46 Example F4, n = 36, Chebyshev, det(A) = 1.9872 1019, results ×10−19

k Estimate
1 472.2366
2 7.0457
3 2.9167
4 2.2840
5 2.0900
6 2.0233
7 1.9982
8 1.9899
9 1.9877
10 1.9873

Table 11.47 Example F4, n = 36, Monte Carlo, 10 it., det(A) = 1.9872 1019, re-
sults ×10−19

p G G-R bL G-R bU G-L
1 1.9202 1.9202 1.9202 1.9140
2 0.1562 0.1562 0.1562 0.1556
3 0.1025 0.1025 0.1025 0.1022
4 0.7860 0.7860 0.7860 0.7843
5 1.1395 1.1395 1.1395 1.1369

Table 11.48 Example F4, n = 900, modified moments, det(Ã) = 9.9174

k Estimate
15 14.4863
16 13.3824
17 12.5776
18 11.9865
19 11.5371
20 11.1951
21 10.9282
22 10.7204
23 10.5556
24 10.4254
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5.9484 10225. The results using the Chebyshev algorithm are in table 11.49. We
cannot go beyond k = 11. As for the trace of the inverse, the results are much
better using modified moments with the Chebyshev polynomials; see table 11.50.

When using the Monte Carlo estimates the results are not so good because the
statistical variations are amplified by the exponential. The estimates of tr(ln(A))
are reasonably good. We have tr(ln(A)) = 476.3762. The statistical estimates
of the trace are in table 11.51. They are not far from the exact answer. However,
when we take the exponential, we do not even obtain the correct order of magni-
tude. Doing more iterations or using more samples does not improve the results
significantly.

Table 11.49 Example F4, n = 400, Chebyshev, det(A) = 7.7187 10206

k Estimate
1 6.6680 10240

2 1.8705 10217

3 1.7314 10211

4 1.4990 10209

5 1.5589 10208

6 4.9892 10207

7 2.5627 10207

8 1.7268 10207

9 1.3375 10207

10 1.1338 10207

11 1.0147 10207

Table 11.50 Example F4, n = 400, modified moments, det(A) = 7.7187 10206

k Estimate
2 1.8705 10217

4 1.4990 10209

6 4.9892 10207

8 1.7268 10207

10 1.1338 10207

12 9.3701 10206

14 8.5330 10206

16 8.1315 10206

18 7.9273 10206

20 7.8210 10206

Let us finally consider computing partial eigensums. We first use Example F4
with n = 36. We would like to compute the sum of the eigenvalues smaller than
µ = 2.8. This corresponds to the sum of the 10 smallest eigenvalues, which is
equal to 17.2125. We use the modified Chebyshev algorithm. The approximate
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Table 11.51 Example F4, n = 400, Monte Carlo, 10 it., tr(ln(A)) = 476.3762

p G G-R bL G-R bU G-L
1 466.6638 466.6206 466.6391 466.1251
2 459.7104 459.6521 459.6778 459.0748
3 457.4522 457.3549 457.3957 456.6670
4 466.2908 466.2037 466.2403 465.5342
5 469.5209 469.4212 469.4645 468.7859

step function separating the first 10 eigenvalues from the other ones is

f(λ) =
λ

1 + exp
(
λ−µ
κ

) .
The parameter κ is set equal to 0.01. Results are given in table 11.52. Even though
the convergence is not monotone we obtain a good estimate with k = 16. Results
for n = 900 and the sum of the first 50 eigenvalues are given in table 11.53.

Table 11.52 Example F4, n = 36, modified moments,
∑10

i=1
λi = 17.2125

k Estimate
2 39.1366
4 3.7983
6 9.8230
8 14.9895
10 20.0729
12 12.4985
14 15.7451
16 17.9512
18 17.2278
20 17.2125

Table 11.53 Example F4, n = 900, modified moments,
∑50

i=1
λi = 19.4656

k Estimate
10 29.8038
20 26.2463
30 22.6129
40 17.7532
50 17.3318
60 18.1218

In conclusion, we have seen that use of the modified Chebyshev algorithm with
modified moments improves the results that were previously obtained for the trace
of the inverse, the determinant and the computation of partial eigensums.



Chapter Twelve

Estimates of Norms of Errors in the
Conjugate Gradient Algorithm

In this chapter we study how the techniques for computing bounds of quadratic
forms can be applied to the computation of bounds for norms of the error in iterative
methods for solving linear systems. We are particularly interested in the conjugate
gradient algorithm since we will see that it is closely related to Gauss quadrature.

12.1 Estimates of Norms of Errors in Solving Linear
Systems

Let A be a symmetric positive definite matrix of order n and suppose that an ap-
proximate solution x̃ of the linear system

Ax = c,

where c is a given vector, has been computed by either a direct or an iterative
method. The residual r is defined as

r = c−Ax̃.

The error ε being defined as ε = x− x̃, we obviously have

ε = A−1r.

Therefore, if we consider the A-norm of the error, we see that it corresponds to a
quadratic form involving the inverse of A,

‖ε‖2
A = εTAε = rTA−1AA−1r = rTA−1r.

One can also consider the l2 norm, for which ‖ε‖2 = rTA−2r. Here, the matrix to
consider is the square of the inverse of A. Note that when A is nonsymmetric we
still have (ε, ε) = (A−1r)TA−1r = rT (AAT )−1r. Therefore we have a quadratic
form with a symmetric matrix AAT .

In order to bound or estimate ‖ε‖A or ‖ε‖, we must obtain bounds or estimates
for the quadratic forms rTA−1r or rTA−2r. This problem was considered in
Dahlquist, Eisenstat and Golub [75], Dahlquist, Golub and Nash [76] and more
recently in Golub and Meurant [150]. Note that r is easy to compute but, of course,
we do not want to compute A−1 or even to solve a linear system Ay = r.

As we have seen several times in this book, the first step toward a solution is to
express the quadratic form as a Riemann–Stieltjes integral and to apply the general
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framework of chapter 7. Let A = QΛQT be the spectral decomposition of A, with
Q orthonormal and Λ diagonal. For i = 1, 2 we have

rTA−ir= rTQΛ−iQT r

=
n∑
j=1

λ−ij [r̂j ]
2,

where r̂ = QT r. This last sum can be considered as a Riemann–Stieltjes integral

I[A, r] = rTA−ir =
∫ b

a

λ−i dα(λ), (12.1)

where the measure α is piecewise constant and defined (when the eigenvalues of A
are distinct) by

α(λ) =



0, if λ < a = λ1,∑i
j=1[r̂j ]

2, if λi ≤ λ < λi+1,∑n
j=1[r̂j ]

2, if b = λn ≤ λ.

Then, quadrature rules can be used to approximate the integral in equation (12.1).
For using the Gauss rule, the first step is to generate the orthogonal polynomials
associated with the measure α. We saw in chapters 4 and 7 that this can be done by
doing N iterations of the Lanczos algorithm with v1 = r/‖r‖. This builds up the
Jacobi matrix JN , and the Gauss estimate of the integral is

‖r‖2(e1)T (JN )−ie1.

This can be computed by solving JNy = e1, that is, computing (elements of) the
first column of the inverse of JN . Then, for i = 1 we obtain ‖r‖2y1. This means
we need only the first component of the solution y. This is easily obtained by
using a UL Cholesky factorization of the tridiagonal matrix; see Meurant [234] and
chapter 3. Another possibility is to compute the (1, 1) entry of the inverse of JN
incrementally as in chapter 3. For i = 2 the approximation is ‖r‖2yT y, but this
can also be computed using the QR factorization of JN ; see Meurant [239]. When
i = 1, the function to be considered is f(λ) = 1/λ. Hence, all the derivatives of
f of even order are positive and the Gauss rule gives a lower bound. The same is
true for i = 2. Upper bounds can be obtained with the Gauss–Radau or Gauss–
Lobatto rules by suitably modifying the tridiagonal matrix JN . But we need lower
and upper bounds of the smallest and largest eigenvalues of A. As we will see, the
anti-Gauss rule can also be used to obtain an estimate of the integral.

However, if the approximation x̃ arises from an iterative method like Jacobi or
Gauss–Seidel (see, for instance, Golub and Van Loan [154] or Meurant [237]) it
does not make too much sense to have to do some iterations of the Lanczos algo-
rithm to obtain bounds for the norm of the error. It is, of course, much better to
directly solve the linear system by using the CG algorithm. This is considered later
on. Use of this estimation technique makes more sense if x̃ comes from a direct
solver.

Stochastic estimates of norms of the error in iterative methods can also be con-
sidered; see Golub and Melbø[147], [148].
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12.2 Formulas for the A-Norm of the Error

When we have an approximation xk of the solution of Ax = c and the correspond-
ing residual rk (wherever they come from), we have seen that we can obtain bounds
of the A-norm of the error by running some iterations of the Lanczos algorithm. Of
course, this does not make too much sense when xk is obtained by the Lanczos
algorithm itself or CG. This would correspond to a restarting of the algorithm and
a kind of iterative refinement with, maybe, no improvement of the solution. There-
fore, we use another strategy to compute bounds or approximations of the norms of
the error during the CG iterates.

In Meurant [236] the following theorem was proved concerning the A-norm of
the error εk = x− xk in CG.

THEOREM 12.1 The square of the A-norm of the error at CG iteration k is given
by

‖εk‖2
A = ‖r0‖2[(J−1

n e1, e1)− (J−1
k e1, e1)]. (12.2)

where n is the order of the matrix A and Jk is the Jacobi matrix of the Lanczos al-
gorithm whose coefficients can be computed from those of CG using relations (4.9)
and (4.10). Moreover,

‖εk‖2
A = ‖r0‖2


 n∑
j=1

[(zj(n))1]
2

λj
−

k∑
j=1

[(zj(k))1]
2

θ
(k)
j


 ,

where zj(k) is the jth normalized eigenvector of Jk corresponding to the eigenvalue

θ
(k)
j .

Proof. The first relation has been well known for quite a long time; see the papers
of Golub and his coauthors [75], [76]. It is also mentioned in a slightly different
form in a paper by Paige, Parlett and van der Vorst [263] and apparently Stiefel
was aware of it. By using the definition of the A-norm and the relation between
the Lanczos and CG algorithms we have Aεk = rk = r0 −AVky

k where Vk is the
matrix of the Lanczos vectors and yk is the solution of Jkyk = ‖r0‖e1, see [239].
Then,

‖εk‖2
A = (Aεk, εk) = (A−1r0, r0)− 2(r0, Vkyk) + (AVkyk, Vkyk).

The first term of the right-hand side is easy to evaluate since AVn = VnJn assum-
ing that the eigenvalues are distinct. The square matrix Vn of order n is orthogonal;
hence this gives A−1Vn = VnJ

−1
n . Now,

r0 = ‖r0‖v1 = ‖r0‖Vne1.
Therefore,

A−1r0 = ‖r0‖A−1Vne
1 = ‖r0‖VnJ−1

n e1

and

(A−1r0, r0) = ‖r0‖2(VnJ−1
n e1, Vne

1) = ‖r0‖2(J−1
n e1, e1).
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For the second term we have to compute (r0, Vkyk). But since r0 = ‖r0‖v1 =
‖r0‖Vke1, this term is equal to ‖r0‖2(e1, J−1

k e1) by using the orthogonality of the
Lanczos vectors. The third term is (AVkyk, Vkyk). Using V Tk AVk = Jk we have

(AVkyk, Vkyk) = (V Tk AVky
k, yk) = (Jkyk, yk).

Hence (AVkyk, Vkyk) = ‖r0‖2(J−1
k e1, e1). This proves the formula in the theo-

rem. The second relation is obtained by using the spectral decompositions of Jn
and Jk. ✷

The formula (12.2) is the link between CG and Gauss quadrature. It shows that
the square of the A-norm of the error is the remainder of a Gauss quadrature rule.
The inner product ‖r0‖2(J−1

n e1, e1) = (A−1r0, r0) can be written as a Riemann–
Stieltjes integral and ‖r0‖2(J−1

k e1, e1) is nothing other than the Gauss quadrature
approximation to this integral, see [234]. It is interesting to consider this point
of view because it allows the computation of lower and upper bounds (if we have
estimates of λ1 and λn) for the A-norm of the error. Therefore, estimating the
A-norm of the error in CG is completely equivalent to computing an estimate of
the remainder of a Gauss quadrature rule assuming only knowledge of the Jacobi
matrix. We will elaborate on this point in the next sections.

We can also use the fact that the norm of the error is related to Gauss quadrature
to obtain other expressions for ‖εk‖A as in the next theorem.

THEOREM 12.2 For all k there exists ξk, λ1 ≤ ξk ≤ λn such that the A-norm of
the error is given by

‖εk‖2
A =

1
ξ2k+1
k

n∑
i=1


 k∏
j=1

(λi − θ
(k)
j )2


 (r0, qi)2,

where qi is the ith eigenvector of A corresponding to the eigenvalue λi.

Proof. This is obtained by using the expression for the remainder of the Gauss
quadrature. ✷

An important consequence of the previous theorems is that in exact arithmetic,
when an eigenvalue of Jk (a Ritz value) has converged to an eigenvalue of A, the
corresponding component of the initial residual on the eigenvector of A has been
eliminated from the norm of the error.

12.3 Estimates of the A-Norm of the Error

How can we approximately compute ‖εk‖2
A = (rk)TA−1rk? We can use the for-

mula (12.2) that relates the A-norm of the error at step k and the inverse of matrix
Jk. This formula has been used in Fischer and Golub [111] but the computations
of ‖εk‖A were not performed below 10−5. A partial analysis in finite precision
arithmetic was done in Golub and Strakoš [151]. A more complete analysis was
given by Strakoš and Tichý [317]. We will show below how reliable estimates of
‖εk‖A can be computed. In finite precision arithmetic we can still use the same
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formulas up to O(u) perturbation terms (where u is the unit roundoff); see [317].
For variants of these estimates, see Calvetti, Morigi, Reichel and Sgallari [60]; for
another point of view, see Knizhnerman [206].

For the sake of simplicity, let us first consider the lower bound computed by the
Gauss rule. The formula (12.2) cannot be used directly since at CG iteration k
we do not know (J−1

n )1,1. But it is known (see [239]) that the absolute values of
(J−1
k )1,1 are an increasing sequence bounded by |(J−1

n )1,1|. So we use the current
value of (J−1

k )1,1 to approximate the final value. Let d be a given delay integer;
the approximation of the A-norm of the error at iteration k − d is given by

‖εk−d‖2
A ≈ ‖r0‖2((J−1

k )(1,1) − (J−1
k−d)(1,1)),

This can also be understood as writing

‖εk−d‖2
A − ‖εk‖2

A = ‖r0‖2((J−1
k )(1,1) − (J−1

k−d)(1,1)),

and supposing that ‖εk‖A is negligible against ‖εk−d‖A. Another interpretation is
to consider that, having a Gauss rule with k − d nodes at iteration k − d, we use
another more precise Gauss quadrature with k nodes to estimate the error of the
quadrature rule. Usually, the larger is d, the better is the estimate.

Using the results of chapter 3, let us summarize for the convenience of the reader
how to compute the difference (J−1

k )(1,1) − (J−1
k−d)(1,1). Let αi and ηi be the

diagonal and off-diagonal nonzero entries of Jk and bk be the computed value
of (J−1

k )1,1, which can be obtained in an additive way by using the Sherman–
Morrison formula; see Golub and Van Loan [154] and chapter 3. Let jk = J−1

k ek

be the last column of the inverse of Jk; then,

(J−1
k+1)1,1 = (J−1

k )1,1 +
η2
k(jkj

T
k )1,1

αk+1 − η2
k(jk)k

.

The first and last elements of the last column of the inverse of Jk that we need can
be computed using the Cholesky factorization of Jk whose diagonal elements are
δ1 = α1 and

δi = αi −
η2
i−1

δi−1
, i = 2, . . . , k.

Then,

(jk)1 = (−1)k−1 η1 · · · ηk−1

δ1 · · · δk , (jk)k =
1
δk
.

Using these results, we have

bk = bk−1 + fk, fk =
η2
k−1c

2
k−1

δk−1(αkδk−1 − η2
k−1)

=
c2k
δk
,

where

ck =
η1 · · · ηk−2

δ1 · · · δk−2

ηk−1

δk−1
= ck−1

ηk−1

δk−1
.

Since Jk is positive definite, we have δk > 0 and this shows that fk > 0. Let sk
be the estimate of ‖εk‖2

A we are seeking and d be the given integer delay, at CG
iteration number k, we set

sk−d = ‖r0‖2(bk − bk−d).
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This gives an estimate of the error d iterations before the current one. It was shown
in [235] that if we compute bk in floating point arithmetic and use the formula
for ‖εk−d‖2

A straightforwardly, there exists a kmax such that if k > kmax, then
sk = 0. This happens when k is large enough because ηk/δk < 1 and ck → 0;
consequently fk → 0. Therefore, when k > kmax, bk = bkmax. But fortunately,
as noted in [235], we can compute sk−d in another way since we just need to sum
up the last d values of fj .

Moreover, from [239] we have

ck =
η1 · · · ηk−1

δ1 · · · δk−1
=

‖rk−1‖
‖r0‖ ,

and γk−1 = 1/δk. Therefore, fk = γk−1‖rk−1‖2/‖r0‖2. The corresponding
formula for the A-norm of the error was already given by Hestenes and Stiefel in
[187]. This gives a simpler way of computing the Gauss lower bound. Of course,
the Gauss quadrature framework is more general since we can also use the Gauss–
Radau and Gauss–Lobatto rules to obtain other bounds by suitably modifying Jk
and Jk−d.

If we let λm and λM to be approximations of the smallest and largest eigenval-
ues of A and d be a positive integer (whose choice is discussed later), the algorithm
computing the iterates of CG and estimates from the Gauss (sk−d), Gauss–Radau
(sk−d and s̄k−d) and Gauss–Lobatto (s̆k−d) rules is given by the following algo-
rithm whose name stands for Conjugate Gradient with Quadrature and Lanczos
(with slight simplifications from [235]):

CGQL algorithm
Let x0 be given, r0 = b−Ax0, p0 = r0, β0 = 0, γ−1 = 1, c1 = 1.
For k = 1, . . . until convergence

γk−1 =
(rk−1, rk−1)
(pk−1, Apk−1)

,

αk =
1

γk−1
+
βk−1

γk−2
,

if k = 1 —————————————————–

f1 =
1
α1
,

δ1 = α1,

δ̄1 = α1 − λm,

δ1 = α1 − λM ,

else ——————————————————–

ck = ck−1
ηk−1

δk−1
=

‖rk−1‖
‖r0‖ ,
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δk = αk −
η2
k−1

δk−1
=

1
γk−1

,

fk =
η2
k−1c

2
k−1

δk−1(αkδk−1 − η2
k−1)

= γk−1c
2
k,

δ̄k = αk − λm − η2
k−1

δ̄k−1
= αk − ᾱk−1,

δk = αk − λM − η2
k−1

δk−1

= αk − αk−1

end ———————————————————

xk = xk−1 + γk−1p
k−1,

rk = rk−1 − γk−1Ap
k−1,

βk =
(rk, rk)

(rk−1, rk−1)
,

ηk =
√
βk

γk−1
,

pk = rk + βkp
k−1,

ᾱk = λm +
η2
k

δ̄k
,

αk = λM +
η2
k

δk
,

ᾰk =
δ̄kδk
δk − δ̄k

(
λM
δ̄k

− λm
δk

)
,

η̆2
k =

δ̄kδk
δk − δ̄k

(λM − λm),

f̄k =
η2
kc

2
k

δk(ᾱkδk − η2
k)
,

f
k
=

η2
kc

2
k

δk(αkδk − η2
k)
,

f̆k =
η̆2
kc

2
k

δk(ᾰkδk − η̆2
k)
,
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if k > d —————————————————–

gk =
k∑

j=k−d+1

fj ,

sk−d = ‖r0‖2gk,

s̄k−d = ‖r0‖2(gk + f̄k),

sk−d = ‖r0‖2(gk + f
k
),

s̆k−d = ‖r0‖2(gk + f̆k)

end ———————————————————–

The algorithm CGQL computes lower bounds sk−d, sk−d and upper bounds
s̄k−d, s̆k−d of ‖εk−d‖2

A. The following result was proved in [235].

PROPOSITION 12.3 Let Jk, Jk, J̄k and J̆k be the tridiagonal matrices of the
Gauss, Gauss–Radau (with b and a as prescribed nodes) and Gauss–Lobatto rules.
Then, if 0 < a = λm ≤ λmin(A) and b = λM ≥ λmax(A), ‖r0‖(J−1

k )1,1,
‖r0‖(J−1

k )1,1 are lower bounds of ‖e0‖2
A = r0A−1r0, ‖r0‖(J̄−1

k )1,1 and ‖r0‖(J̆−1
k )1,1

are upper bounds of r0A−1r0.

Proof. The proof is obtained since we know the sign of the remainder in the quadra-
ture rules. Note that Jk and J̄k are of order k + 1 as well as J̆k. We have that
f̄k > f

k
and therefore, ᾱk < αk. ✷

THEOREM 12.4 At iteration number k of CGQL, sk−d and sk−d are lower bounds
of ‖εk−d‖2

A, s̄k−d and s̆k−d are upper bounds of ‖εk−d‖2
A.

Proof. We have

‖εk−d‖2
A = ‖r0‖2((J−1

n )1,1 − (J−1
k−d)1,1)

and

sk−d = ‖r0‖2((J−1
k )1,1 − (J−1

k−d)1,1).

Therefore,

‖εk−d‖2
A − sk−d = ‖r0‖2((J−1

n )1,1 − (J−1
k )1,1) > 0,

showing that sk−d is a lower bound of ‖εk−d‖2
A. A similar proof applies for the

other cases since, for instance,

s̄k−d = ‖r0‖2((J̄−1
k )1,1 − (J−1

k−d)1,1).

✷

Note that in the practical implementation we do not need to store all the fk’s
but only the last d values. We can also compute only some of the estimates. The
additional number of operations for CG is approximately 50+ d if we compute the
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four estimates, which is not significant compared to the 10n operations plus the
matrix-vector product of CG.

An interesting question is to know how large d has to be to get a reliable estimate
of the error. Unfortunately, in our experiments, the choice of d depends on the
example. The faster is CG convergence, the smaller d has to be. In fact, this is
closely linked to the convergence of the Ritz values toward the eigenvalues of A.
When the smallest eigenvalues have converged d can be small but we do not change
it during the CG iterations, although this can eventually be done adaptively. It is
shown experimentally in [239] that the choice of d is related to the smoothness of
‖rk‖ as a function of k. Even though the A-norm of the error is monotonically
decreasing, if the norm of the residual oscillates, then it is the same for the A-norm
estimate. In this case a larger value of d allows the smoothing of these oscillations.
When the residual norm curve is smooth, a small value of d gives good estimates.
In the quadrature community, it is considered as a bad practice to estimate the error
of a Gauss quadrature rule with k − 1 nodes by using a Gauss quadrature with k
nodes. However, in many cases, d = 1 already gives good estimates of the norm of
the error.

Nevertheless, if we accept storing a few more vectors whose lengths are the
number of CG iterations, we can improve the bounds. For instance, for the Gauss
lower bound at iteration k, we can compute fk and sum it to the bounds we have
computed at all the previous iterations. This will improve our previous bounds and
as a result we shall have a vector containing bounds using d = 1 for iteration k−1,
d = 2 for iteration k − 2 and so on. This is interesting if we want to have an a
posteriori look at the rate of convergence. Of course, it is not useful if we just want
to use the bound as a stopping criterion. A similar idea was proposed by Strakoš
and Tichý [318].

In the CGQL algorithm λm and λM are lower and upper bounds of the smallest
and largest eigenvalues of A. Note that the value of sk is independent of λm and
λM , s̄k depends only on λm and sk only on λM . Experimentally the best bounds
are generally the ones computed by the Gauss–Radau rule when using the exact
extreme eigenvalues. It is unfortunate that estimates of the smallest eigenvalue are
required to obtain upper bounds of the A-norm of the error. We have seen that
the extreme eigenvalues of Jk are approximations of the extreme eigenvalues of
A that are usually improving as k increases. Therefore, we propose the following
adaptive algorithm. We begin the CGQL iterations with λm = a0 an underestimate
of λmin(A). An estimate of the smallest eigenvalue can be easily obtained by in-
verse iteration using Jk (see Golub and Van Loan [154]) since, for computing the
bounds of the norm, we already compute incrementally the Cholesky factorization
of Jk. The smallest eigenvalue of Jk is obtained by repeatedly solving tridiagonal
systems. We use a fixed number na of (inner) iterations of inverse iteration at every
CG iteration, giving a value λkm. When λkm is such that

|λkm − λk−1
m |

λkm
≤ εa,

with a prescribed threshold εa, we set λm = λkm, and stop computing the eigen-
value estimate. Then we continue with CGQL. Of course, this is cheating a little
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bit since the smallest Ritz value approximates the smallest eigenvalue from above
and not from below as is required by the theorem.

For the preconditioned CG algorithm, the formula to consider is

‖εk‖2
A = (z0, r0)((J−1

n )1,1 − (J−1
k )1,1),

whereMz0 = r0,M being the preconditioner, a symmetric positive definite matrix
that is chosen to speed up the convergence. This is easily obtained by a change of
variables in CG applied to the linear system M−1/2AM−1/2x = M−1/2b. So the
Gauss rule estimate is

‖εk−d‖2
A ≈

k−1∑
j=k−d

γj(zj , rj).

The case of preconditioned CG has been considered in Strakoš and Tichý [318] and
Meurant [236] as well as in [239].

12.4 Other Approaches

Another possibility to obtain an upper bound for the error in CG is to use the anti-
Gauss rule since the error at iteration k − d + 1 is of the opposite sign to that for
the Gauss rule at iteration k − d. Something that has not been exploited so far is
the use a Gauss–Kronrod rule.

Other formulas have been proposed by several authors. Let rk = b − Axk be
the residual vector and εk the error. Brezinski [37] considered the first moments of
r = rk (or ε = εk),

m0 = (r, r) = ‖r‖2 = (Aε,Aε),

m1 = (r,Ar) = (Aε,A2ε),

m2 = (Ar,Ar) = (A2ε,A2ε),

m−1 = (r,A−1r) = (Aε, ε) = ‖ε‖2
A.

The moments m0, m1 and m2 are computable (but note that m2 is not computed
in CG). We would like to have estimates of m−1 and/or m−2.

Using the first terms in singular value decomposition (SVD; see [154]) expan-
sions, Brezinski obtained the following estimates e2i for m−2:

e21=m
4
1/m

3
2,

e22=m0m
2
1/m

2
2,

e23=m
2
0/m2,

e24=m
3
0/m

2
1,

e25=m
4
0m2/m

4
1.

He proved that

e1 ≤ e2 ≤ e3 ≤ e4 ≤ e5.
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The value e3 is usually the most appropriate estimate of ‖ε‖. Moreover, it can be
derived by other techniques (see Auchmuty [14]) and is valid for any consistent
norm. Therefore, we consider

‖ε‖2 ≈ (r, r)2

(Ar,Ar)
,

‖ε‖2
A ≈ (r,Ar)2

(A2r,Ar)
.

Unfortunately, we do not know if these estimates are lower or upper bounds. But
they have the advantage that they can be used also for nonsymmetric problems. For
more results on these error estimates, see Brezinski, Rodriguez and Seatzu [39],
where the previous estimates were gathered in one single formula,

e2ν = mν−1
0 (m2

1)
3−νmν−4

2 ,

where ν is a real parameter. Moreover eν is an increasing function of ν. See also
[40] and [280].

12.5 Formulas for the l2 Norm of the Error

Hestenes and Stiefel [187] proved the following result relating the l2 norm and the
A-norm of the error.

THEOREM 12.5

‖εk‖2 − ‖εk+1‖2 =
‖εk‖2

A + ‖εk+1‖2
A

µ(pk)
,

with

µ(pk) =
(pk, Apk)
‖pk‖2

.

Proof. See [187] and another proof in Meurant [239]. ✷

Expressions for the l2 norm of the error can be obtained using the same tech-
niques as for the A-norm. This leads to the following result [238].

THEOREM 12.6

‖εk‖2 = ‖r0‖2[(e1, J−2
n e1)− (e1, J−2

k e1)] + (−1)k2ηk ‖r
0‖

‖rk‖ (e
k, J−2

k e1)‖εk‖2
A.

Proof. See [238] and [239]. ✷

COROLLARY 12.7

‖εk‖2 = ‖r0‖2[(e1, J−2
n e1)− (e1, J−2

k e1)]− 2
(ek, J−2

k e1)
(ek, J−1

k e1)
‖εk‖2

A.

We see that the above formulas are not as nice as equation (12.2) for the A-norm.
Besides the term with (e1, J−2

n e1)− (e1, J−2
k e1), which could have been expected,

there is another term involving ‖εk‖2
A.
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12.6 Estimates of the l2 Norm of the Error

To obtain an estimate of the l2 norm of the error using theorem 12.6 we can solve
Jky = e1 with the Cholesky factorization but it is sometimes better to use a QR
factorization of the tridiagonal Jacobi matrix Jk,

QkJk = Rk,

where Qk is an orthogonal matrix and Rk an upper triangular matrix. This gives
the Cholesky factorization of J2

k = RTkRk; hence

(e1, J−2
k e1) = (R−T

k e1, R−T
k e1).

To compute this inner product we have to solve a linear system with matrix RTk
and right-hand side e1. For the QR factorization of Jk we use the results of Fischer
[109]. We remark that the matrix Rk has only three nonzero diagonals whose
entries are denoted as r1,i, r2,i, r3,i. The general formulas are

r̂1,1 = α1, r̂1,2 = c1α2 − s1η1, r̂1,i = ci−1αi − si−1ci−2ηi−1, i ≥ 3,

r1,i =
√
r̂21,i + η2

i ,

r3,i = si−2ηi−1, i ≥ 3,

r2,2 = c1η1, r2,i = ci−2ci−1ηi−1 + si−1αi, i ≥ 3,

ci =
r̂1,i
r1,i

, si =
ηi
r1,i

.

To incrementally compute the solution of the linear systems RTkw
k = e1 for k =

1, 2, . . . we have to be careful that, even though the other elements of Rk stay the
same, the (k, k) element changes when we go from k to k + 1. Hence changing
notations w = wk and with ŵ an auxiliary vector, we define

ŵ1 =
1
r̂1,1

, w1 =
1
r1,1

,

ŵ2 = −r2,2w
2
1

r̂1,2
, w2 = −r2,2w

2
1

r1,2
,

and more generally for i ≥ 3

ŵi = − (r3,iwi−2 + r2,iwi−1)
r̂1,i

, wi = − (r3,iwi−2 + r2,iwi−1)
r1,i

.

Therefore, ŵk is the last component of the solution at iteration k and wk is used in
the subsequent steps. Then,

‖R−T
k e1‖2 =

k−1∑
j=1

w2
j + ŵ2

k.
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As for theA-norm, we introduce an integer delay d and we approximate (r0, A−2r0)−
‖r0‖2(e1, J−2

k−de
1) at iteration k by the difference of the k and k − d terms com-

puted from the solutions, that is,

ŵ2
k − ŵ2

k−d +
k−1∑
j=k−d

w2
j , k > d.

To approximate the last term

(−1)k−d2ηk−d ‖r0‖
‖rk−d‖ (e

k−d, J−2
k−de

1)‖εk−d‖2
A

we use the lower bound of ‖εk−d‖A from Gauss quadrature and the value (ek−d, J−2
k−de

1)
which is ŵk−d/r̂1,k−d. For more comments on this approximation and the compu-
tations using finite precision arithmetic, see Meurant [239].

12.7 Relation to Finite Element Problems

When the linear system to solve arises from the discretization of partial differential
equations (PDEs), there are several sources of errors. Suppose we want to solve a
PDE

Lu = f in Ω,

Ω being a two- or three-dimensional bounded domain, with appropriate boundary
conditions on Γ the boundary of Ω. As a simple example, consider the PDE

−∆u = f, u|Γ = 0.

This problem is naturally formulated in the Hilbert space H1
0 (Ω) which is the space

of square integrable functions (denoted as L2(Ω)) with square integrable deriva-
tives (in the sense of distributions) and zero boundary traces. It is written in varia-
tional form for the solution u as

a(u, v) = (f, v), ∀v ∈ V = H1
0 (Ω),

where a(u, v) is a self-adjoint bilinear form

a(u, v) =
∫

Ω

∇u · ∇v dx, (12.3)

and

(f, v) =
∫

Ω

fv dx.

The bilinear form is continuous and coercive, that is,

|a(u, v)| ≤ C‖u‖1 ‖v‖1, a(u, u) ≥ γ‖u‖2
1,

where the H1 norm is defined as

‖v‖2
1 =

∫
Ω

[u2 +∇u2] dx.
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Equation (12.3) has a unique solution u ∈ H1
0 (Ω). Note that a(v, v) = ‖v‖2

a

defines a norm which is equivalent to the H1 norm. An approximate solution uh
can be computed using the finite element method. The approximate solution is
sought in a finite dimensional subspace Vh ⊂ V as

a(uh, vh) = (f, vh), ∀vh ∈ Vh.

The subspace Vh can be constructed in many different ways. The simplest one is
to triangulate the domain Ω (with triangles or tetrahedrons of maximal diameter h)
and to use functions which are linear on each element. Hence, a function vh ∈ Vh
is piecewise linear and the unknowns are the values of uh at the vertices of the
triangulation. Using basis functions φi which are piecewise linear and have a value
1 at vertex i and 0 at all the other vertices,

vh(x) =
n∑
j=1

vjφj(x).

The approximated problem is equivalent to a linear system Aũ = c, where

[A]i,j = a(φi, φj), ci = (f, φi).

The matrix A is symmetric and positive definite. The solution of the finite dimen-
sional problem is

uh(x) =
n∑
j=1

ũjφj(x).

If the order of the linear system is large, it can be solved by an iterative method; the
algorithm of choice is CG. Stopping at iteration k will give an approximate solution
u

(k)
h .
Therefore, we have two sources of errors, the difference between the exact and

approximate solutions u − uh, and uh − u
(k)
h , the difference between the approx-

imate solution and its CG computed value (not speaking of rounding errors). Of
course, we desire the norm of u − u

(k)
h to be small. This depends on h and on the

CG stopping criterion. The problem of finding an appropriate stopping criterion
has been studied by Arioli and his coauthors [9], [10].

The rationale in [9] is based on the following inequality. Let u∗h ∈ Vh be such
that

‖uh − u∗h‖a ≤ ht‖uh‖a,
where the value of t is related to the stopping criterion and depends on the regularity
of the solution. Then,

‖u− u∗h‖a≤‖u− uh‖a + ‖uh − u∗h‖a
≤ht‖u‖a + (1 + ht)‖u− uh‖a.

If t > 0 and h < 1, we have

‖u− u∗h‖a ≤ ht‖u‖a + 2‖u− uh‖a.
Therefore, if u∗h = u

(k)
h and we choose t and therefore ‖uh−u∗h‖a such that ht‖u‖a

is of the same order as ‖u− uh‖a we have

‖u− u∗h‖a ≈ ‖u− uh‖a,
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which is the best we can hope for; see examples in [9]. Now, it turns out that

‖v(k)
h ‖a = ‖vk‖A,

where vk is the vector of the vertex unknowns. During CG iterations we know how
to estimate theA-norm of the error. Let ζk be such an estimate of ‖εk‖2

A at iteration
k (obtained with iterations up to k + d). Then, Arioli [9] proposed to compare ζk
to ‖c‖2

A−1 . The proposed stopping criterion is

‖c−Au(k)‖A−1 ≤ η‖c‖A−1 .

But ‖c−Au(k)‖A−1 = ‖uh − u
(k)
h ‖a which is the A-norm of the error. We have

‖c‖2
A−1 = ũTAũ ≥ (u(k))T r0 + cTu(0).

Using this lower bound, the stopping test is

If ζk ≤ η2((uk)T r0 + cTu0) then stop.

The parameter η is chosen as h or η2 as the maximum area of the triangles in two
dimensions. Numerical examples in [9] show that this stopping criterion is capable
of stopping the CG iterations when u(k)

h is a reasonable approximation to u(x), that
is, when ‖u− u

(k)
h ‖a is of the same order as ‖u− uh‖a.

12.8 Numerical Experiments

12.8.1 Examples
We will use Examples F3 and F4 from chapter 11. We also introduce two other
examples. Example CG1 is the matrix Bcsstk01 from the Matrix Market (at the
address http://math.nist.gov/MatrixMarket/). Example CG2 arises from the dis-
cretization of a diffusion problem similar to F5 except that the diffusion coefficient
is given by

λ(x, y) =
1

(2 + p sin xη )(2 + p sin yη )
. (12.4)

The function λ may have peaks. The parameter η allows us to choose the number
of peaks and the value of the parameter p determines the heights of the peaks. We
are interested in the values p = 1.8 and a value of η = 0.1 for which the diffusion
coefficient has a single peak. A value of η = 0.08 would give four peaks.

12.8.2 Numerical Results

Example F3
We solve a linear system of order n = 100 with a random right-hand side. Fig-

ure 12.1 shows the log10 of the A-norm of the error (solid), the lower bound ob-
tained with the Gauss quadrature rule (dashed) and the upper bound given by the
Gauss–Radau rule with a = λmin (dot-dashed). The lower bound is oscillating but
the upper bound is very close to the exact error. This problem is difficult to solve
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with CG. We see that we need many more than 100 iterations to go down to the
stagnation level of the norm of the error. This happens because of the large round-
ing errors, which delay convergence. Figure 12.1 is for a delay d = 1. When we
increase the delay to d = 5 (figure 12.2) the oscillations of the lower bound are
smoothed.
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Figure 12.1 Example F3, d = 1, log10 of the A-norm of the error (solid), Gauss (dashed)
and Gauss–Radau (dot-dashed)

Example F4
The order of the linear system is n = 900. The notations are the same as for

Example F3. For the Gauss–Radau upper bound we use a value of a = 0.02,
whence the smallest eigenvalue is λmin = 0.025. We can see on figure 12.3 that
we obtain a good lower bound even with d = 1. Figure 12.4 shows a zoom of the
convergence curve for d = 5.

The problem for obtaining upper bounds with the Gauss–Radau rule is to have an
estimated value of λmin, the smallest eigenvalue ofA. During the first CG iterations
an estimate of λmin can be obtained by computing the smallest eigenvalue of Jk.
In the experiment of figure 12.5 the smallest eigenvalue is computed by inverse
iteration solving tridiagonal systems. The computation is started with a = 10−10

and we switch when the smallest eigenvalue of Jk has converged. Therefore at
the beginning the upper bound is a large overestimate of the A-norm but, after the
switch, we obtain a good upper bound.

Example CG1
This small example of order 48 was chosen to show the relation between the

oscillations of the Gauss lower bound and the oscillations of the residual norm when
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Figure 12.2 Example F3, d = 5, zoom of log10 of the A-norm of the error (solid), Gauss
(dashed) and Gauss–Radau (dot-dashed)
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Figure 12.3 Example F4, n = 900, d = 1, log10 of the A-norm of the error (solid), Gauss
(dashed) and Gauss–Radau (dot–dashed)
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Figure 12.4 Example F4, n = 900, d = 5, zoom of log10 of theA-norm of the error (solid),
Gauss (dashed) and Gauss–Radau (dot-dashed)
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Figure 12.5 Example F4, n = 900, d = 1, estimate of λmin, log10 of the A-norm of the
error (solid), Gauss (dashed) and Gauss–Radau (dot-dashed)
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the delay d is small. In figure 12.6 the delay is d = 1. There are large oscillations
of the lower bound. They are, of course, closely linked to the oscillations of the
residual as we can see in figure 12.7. There are much few oscillations with d = 5
in figure 12.8, particularly when the A-norm decreases fast. Note that n = 48 but
we need many more iterations to have a small error.
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Figure 12.6 Example CG1, d = 1, log10 of the A-norm of the error (solid), Gauss (dashed)
and Gauss–Radau (dot-dashed)

Example CG2
For the linear system we first use n = 900. The results are shown in figure 12.9

for which we choose a = 0.002 whence the smallest eigenvalue is λmin = 0.0025.
Figure 12.10 is a zoom of the convergence curve with d = 5.

Then, we solve a larger problem with n = 10000. The approximation of the
smallest eigenvalue is a = 10−4 whence the exact value is λmin = 2.3216 10−4.
Results with d = 1 are given in figure 12.11. With this problem size we need a
large number of iterations. Figure 12.12 shows the results of the preconditioned
conjugate gradient algorithm with an incomplete Cholesky factorization IC(0) as
preconditioner; see for instance [237]. The convergence is much faster and the
Gauss lower bound is closer to the A-norm of the error.

Let us consider solving a PDE problem of which we know the exact solution to
demonstrate the usefulness of the stopping criterion developed by Arioli and his
coauthors [9], [10]. We choose Example CG2. Since we are solving a problem
arising from finite difference and we have multiplied the right-hand side of the
linear system by h2, we modify the Arioli criterion to

If ζk ≤ 0.1 ∗ (1/n)2((xk)T r0 + cTx0) then stop. (12.5)
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Figure 12.7 Example CG1, d = 1, log10 of the residual norm (solid) and the Gauss bound
(dashed)

0 20 40 60 80 100 120 140 160 180
−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 12.8 Example CG1, d = 5, log10 of the A-norm of the error (solid), Gauss (dashed)
and Gauss–Radau (dot-dashed)
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Figure 12.9 Example CG2, d = 1, n = 900, log10 of theA-norm of the error (solid), Gauss
(dashed) and Gauss–Radau (dot-dashed)
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Figure 12.10 Example CG2, d = 5, n = 900, zoom of log10 of the A-norm of the error
(solid), Gauss (dashed) and Gauss–Radau (dot-dashed)
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Figure 12.11 Example CG2, d = 1, n = 10000, log10 of the A-norm of the error (solid),
Gauss (dashed) and Gauss–Radau (dot-dashed)
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Figure 12.12 Example CG2, d = 1, n = 10000, IC(0), log10 of the A-norm of the error
(solid) and Gauss (dashed)



222 CHAPTER 12

where ζk is an estimate of ‖εk‖2
A at iteration k (obtained with iterations up to k+d)

and c is the right-hand side of the linear system of order n. The coefficient 0.1 is
somewhat arbitrary. The right-hand side of the PDE is computed such that the exact
solution is u(x, y) = sin(πx) sin(πy). When using n = 900, the A-norm of the
difference between the “exact” solution of the linear system (obtained by Gaussian
elimination) and the discretization of u is nu = 5.9468 10−4. Using the stopping
criterion of equation (12.5) we do 53 iterations and the A-norm of the difference
between u and the CG approximate solution is nx = 7.1570 10−4, which is of the
same order of magnitude as the true error norm.

With n = 10000, we obtain nu = 5.6033 10−5. We do 226 iterations and we
have nx = 9.5473 10−5. Using the incomplete Cholesky factorization IC(0) as
a preconditioner we do 47 iterations and obtain nx = 5.6033 10−5. Hence, this
stopping criterion is working fine even for this difficult problem.

Anti-Gauss quadrature rules can also be used to obtain estimates of the A-norm
of the error. For Example F4, the results with d = 1 are given in figure 12.13. We
obtain an upper bound with the anti-Gauss rule. A zoom of the convergence curve
with d = 5 is given in figure 12.14. Use of the anti-Gauss rule is interesting since
it does not need any estimate of the smallest eigenvalue of A. However, the anti-
Gauss estimate may fail since sometimes we have to take square roots of negative
values. Hence, for figure 12.15 we use the generalized anti-Gauss rule with a pa-
rameter γ. We started from a value γ0 (taken to be 1 and 0.7 for the figure). When
at some iteration we find a value δk < 0 when computing the Cholesky factoriza-
tion of the Jacobi matrix, we decrease the value of γ until we find a positive definite
matrix. At most we will find γ = 0 and recover the Gauss rule. Figure 12.15 shows
that this strategy works fine. We can also see that using values of γ less than 1 may
give better results. But, of course, with the anti-Gauss rule we may not always get
an upper bound. One can also use an average between the Gauss and the anti-Gauss
rules. This is shown in figure 12.16. It may give an estimate that is very close to
the exact error norm but not necessarily a bound.

The fact that the anti-Gauss rule may not always give an upper bound is illus-
trated in figure 12.17 for Example CG1. We see that in this case the Gauss–Radau
rule gives a much better result than the anti-Gauss rule but it needs an estimate of
the smallest eigenvalue of A.

We now use the formula given by Brezinski [37] for estimating the A-norm of
the error. Figure 12.18 displays the result of this estimate. Generally Brezinski’s
estimates give better results for the l2 norm than for the A-norm.

As we have seen before, the l2 norm of the error can also be estimated by quadra-
ture rules. Details of the algorithm are given in [239]. A numerical experiment for
Example F4 and n = 900 is given in figure 12.19 with a delay d = 1.
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Figure 12.13 Example F4, d = 1, n = 900, log10 of the A-norm of the error (solid), Gauss
(dashed) and anti-Gauss (dot-dashed)
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Figure 12.14 Example F4, d = 5, n = 900, zoom of log10 of the A-norm of the error
(solid), Gauss (dashed) and anti-Gauss (dot-dashed)
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Figure 12.15 Example F4, d = 1, n = 900, log10 of the A-norm of the error (solid),
anti-Gauss γ0 = 1 (dashed) and γ0 = 0.7 (dot-dashed)
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Figure 12.16 Example F4, d = 1, n = 900, zoom of log10 of the A-norm of the error
(solid), averaged anti-Gauss γ0 = 1 (dashed) and γ0 = 0.7 (dot-dashed)
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Figure 12.17 Example CG1, d = 1, n = 48, log10 of the A-norm of the error (solid),
anti-Gauss (dashed) and Gauss–Radau (dotted)
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Figure 12.18 Example F4, n = 900, log10 of theA-norm of the error (solid) and Brezinski’s
estimate (dashed),
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Figure 12.19 Example F4, d = 1, n = 900, log10 of the l2 norm of the error (solid) and
Gauss (dashed)



Chapter Thirteen

Least Squares Problems

In this chapter we are concerned with the application of the techniques we devel-
oped to estimate bilinear forms related to the solution of least squares problems.
First we give a brief introduction to least squares problems. For more details see
the book by Björck [30].

13.1 Introduction to Least Squares

13.1.1 Weighted Least Squares
Assume we have a data matrix A of dimension m × n with m ≥ n and a vector c
of observations and we want to solve the linear system Ax ≈ c in a certain sense.
If c is not in the range of A, a common way to compute a solution is to solve a least
squares (LS) problem, seeking for the minimum of

‖W (c−Ax)‖, (13.1)

where W is a diagonal matrix of weights (in many instances W = I , the identity
matrix) and the norm is the l2 (or Euclidean) norm; see, for instance, Golub and
Van Loan [154] or Björck [30]. Least squares approximations were first introduced
in the 19th century by Adrien-Marie Legendre and Carl Friedrich Gauss to solve
some problems arising from astronomy. Of course, at that time their methods were
not formulated in matrix terms. It is well known that the mathematical solution of
the LS problem (13.1) satisfies the normal equations

ATW 2Ax = ATW 2c.

This is obtained by computing the gradient of the functional in equation (13.1). The
solution is unique if A has full rank n. If we do not use weighting for simplicity
(W = I) we see easily that the residual norm ‖rLS‖ at the solution xLS is given
by

‖rLS‖2 = cT c− cTA(ATA)−1AT c

and

‖xLS‖2 = cTA(ATA)−2AT c.

We have quadratic forms with a symmetric matrix in the right-hand sides.
Since the normal equation matrix ATA can be badly conditioned, the LS prob-

lem is often solved using orthogonal transformations, namely Givens rotations or
Householder transformations; see Björck [30]. However, the solution can also be
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written with the help of the singular value decomposition (SVD). Assume W = I ,
using the SVD of A we have three matrices U , V , Σ such that UTAV = Σ, where
U of order m and V of order n are orthonormal and Σ is a diagonal matrix with r
positive diagonal elements (the singular values), where r is the rank of A (which is
the number of nonzero singular values). Let ui, i = 1, . . . ,m be the columns of U
and vi, i = 1, . . . , n be the columns of V . Then, the solution of the LS problem is

xLS =
r∑
i=1

(ui)T c
σi

vi. (13.2)

It gives the minimum residual norm ‖c − Ax‖ and the smallest l2 norm between
the minimizers when the solution is not unique.

The least squares problem given in equation (13.1) can also be rephrased as

minimize ‖Wr‖ (13.3)

subject to Ax = c + r. Thus the LS problem corresponds to perturbing the vector
of observations c by the minimum amount r such that the right-hand side c + r is
in the range of A.

13.1.2 Backward Error for Least Squares Problems
When solving a linear system Ax = c with a square matrix, it is of interest to know
the effects of perturbations of the data on the solution. If one only perturbs the
matrix A, we consider the problem

(A+∆A)y = c,

with a perturbation satisfying ‖∆A‖ ≤ ω. The normwise backward error η mea-
sures the minimal distance (in the l2 norm) to a perturbed problem which is solved
exactly by the computed solution y,

η = inf{ω|, ω ≥ 0, ‖∆A‖ ≤ ω, (A+∆A)y = c}.
The normwise backward error for square linear systems has been characterized by
Rigal and Gaches [284]. Let r = c−Ay be the residual, then

η =
‖r‖
‖y‖ .

A rule of thumb says that the forward relative error ‖y − x‖/‖x‖ is approximately
the product of the condition number of A and the backward error.

When solving a linear problem in the least squares sense with an m × n matrix
A, we seek for the solution of

min
x

‖c−Ax‖.
The perturbation analysis of this problem is summarized in Higham’s book [188].
The backward error is now defined in the Frobenius norm as

µ(x) = min ‖ (∆A θ∆c ) ‖F ,
subject to (A + ∆A)x = c + ∆c where x is the computed solution. Here θ is a
real parameter. We will see in chapter 14 that this is quite similar to the total least
squares (TLS) problem except that here we have the computed solution x.
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The backward error has been characterized by Walden, Karlson and Sun [343].
It is given by

µ(x) =
( ‖r‖2

‖x‖2
ν +min

{
0, λmin

(
AAT − ν

rrT

‖x‖2

)})1/2

, ν =
θ2‖x‖2

1 + θ2‖x‖2
,

where r = c − Ax is the residual vector corresponding to the computed solution.
Assuming the right-hand side c is known exactly (data least squares abbreviated as
DLS), letting θ → ∞ which gives ∆c = 0, the computed solution x is the exact
solution for a matrix A+∆A. The backward error is then

µ(x) = min ‖∆A‖F
and

µ(x) =
( ‖r‖2

‖x‖2
+min

{
0, λmin

(
AAT − rrT

‖x‖2

)})1/2

.

Let A = UΣV T be the SVD of A, where U and V (respectively of order m and n)
are orthonormal matrices. If m > n, Σ of dimension m× n is

Σ =
(
D
0

)
,

D being a diagonal matrix of order n. Then, we have

AAT = U

(
D2 0
0 0

)
UT .

Let d =
√
νr/‖x‖, the matrix to consider is AAT − ddT . If we denote f = UT d,

we have

AAT − ddT = U

[(
D2 0
0 0

)
− ffT

]
UT .

The eigenvalues of AAT − ddT are those of the matrix within brackets. Clearly
some of the diagonal entries are −f2

i ≤ 0. Therefore this matrix cannot be positive
definite and it is likely (if there are components fi �= 0, i = n + 1, . . . ,m) that
there are negative eigenvalues. To compute the smallest negative eigenvalue of
AAT − ddT we have to solve the secular equation

1− dT (AAT − µI)−1d = 0.

Using the SVD of A this is written as

1−
n∑
i=1

f2
i

σ2
i − µ

+
m∑

i=n+1

f2
i

µ
= 0.

We have a pole at 0. If µ→ 0 by negative values, the left-hand side → −∞. When
µ → −∞ the left-hand side goes to 1. Hence, there is one negative root for the
secular equation.

If m ≤ n D is of order m and we have AAT = UD2UT , the secular equation is

1−
n∑
i=1

f2
i

σ2
i − µ

= 0.
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The left-hand side is a decreasing function between poles. The limit value when
µ→ −∞ is 1. Therefore there is a zero left to σ2

1 . It may or may not be negative.
The value µ(x), requiring the knowledge of the smallest eigenvalue of a rank-one

perturbation to AAT , may be expensive to compute and can lead to computational
difficulties because of cancellation. It has been suggested to use

µ̃(x) = ‖(‖x‖2ATA+ ‖r‖2I)−1/2AT r‖,
as an estimate of µ(x). If F (A, x) = AT (c − Ax) and DA is the matrix of the
partial derivatives related to A, then (see Grcar [165])

DAD
T
A = ‖r‖2I + ‖x‖2ATA.

The estimate is ‖D†
AF (A, x)‖ = ‖(DADTA)−1/2AT r‖, where the † sign denotes

the pseudoinverse. Grcar proved that

lim
x→x∗

µ̃(x)
µ(x)

= 1,

where x∗ is the exact solution of the original problem. Methods to compute µ̃(x)
were considered by Grcar, Saunders and Su; see also the Ph.D. thesis of Zheng Su
[322]. If one knows the singular value decomposition of A, A = UΣV T , then

‖x‖µ̃(x) = ‖(Σ2 + η2I)−1/2ΣUT r‖,
where η = ‖r‖/‖x‖. Of course, this is quite expensive and not practical when A is
large and sparse. Another possibility is to use a QR factorization of the matrix

K =
(

A
‖r‖
‖x‖I

)
,

see Zheng Su [322]. However, computing µ̂(x) = ‖x‖2[µ̃(x)]2 fits quite well into
our approach for estimating quadratic forms since

µ̂(x) = yT (ATA+ η2I)−1y, y = AT r.

Then, we can use almost exactly the method of Section 15.1.6 for solving the L-
curve problem that is using the (Golub–Kahan) Lanczos bidiagonalization algo-
rithm starting with y/‖y‖. This computes bidiagonal matrices Bk. To obtain the
estimates we have to solve (small) problems similar to equation (15.6). One can
also use the Gauss–Radau modification of Bk; see chapter 4 of Su’s thesis [322].

13.2 Least Squares Data Fitting

13.2.1 Solution Using Orthogonal Polynomials
We consider the following approximation problem of fitting given data by polyno-
mials. Giving a discrete inner product

〈f, g〉m =
m∑
j=1

f(tj)g(tj)w2
j , (13.4)
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where the nodes tj and the weights w2
j , j = 1, . . . ,m are given, and a set of

given values yj , j = 1, . . . ,m find a polynomial q of degree n < m such that the
weighted sum

m∑
j=1

(yj − q(tj))2 w2
j , (13.5)

is minimized. The values yj may come, for instance, from the pointwise values of a
function at the nodes tj or from experimental data. The solution of this least squares
problem can be obtained by using the polynomials pk orthogonal with respect to
the inner product (13.4). This was considered by G. Forsythe in 1957 [113]. The
inner product (13.4) can be seen as a Gauss quadrature formula. Let Jm be the
corresponding Jacobi matrix with eigenvalues θ(m)

i = ti. The values wi are the
first elements of the normalized eigenvectors of Jm. We know that

pm(θ(m)
i ) =

(
p0(θ

(m)
i ) · · · pm−1(θ

(m)
i )

)T
is an (unnormalized) eigenvector corresponding to θ(m)

i . Then, if we denote

Pm =
(
pm(θ(m)

1 ) · · · pm(θ(m)
m )

)
,

we have JmPm = PmΘm where Θm is the diagonal matrix of the eigenvalues
θ
(m)
i . Let Dm be the diagonal matrix with diagonal elements

νi = [pm(θ(m)
i )T pm(θ(m)

i )]−1/2.

We have PTmPm = D−2
m and PmDm is the orthonormal matrix whose columns are

the normalized eigenvectors of Jm. The first elements of the columns of PmDm
are the values wj , j = 1, . . . ,m. Let ym be the vector with components yj and dm

be a vector of coefficients dj . Then, a polynomial q of degree m− 1 can be written
as q(x) = (pm(x))T dm and if tm is the vector of the values tj = θ

(m)
j , we have

q(tm) = PTmd
m. Then, the weighted sum in equation (13.5) is written as

m∑
j=1

(yj − q(tj))2 w2
j = ‖Dm(ym − q(tm))‖2

= ‖Dm(ym − PTmd
m)‖2

= ‖PmD2
my

m − dm‖2.

The last expression is obtained because PmDm is orthonormal and therefore we
have PmD2

mP
T
m = I . Clearly, dm = PmD

2
my

m is the solution of the interpolation
problem at nodes tj expressed in terms of orthogonal polynomials. Taking a vector
dn with only the first n components of dm gives the solution of the least squares fit
with polynomials of degree n < m− 1 written as

dn = Pn,mD
2
my

m,

where Pn,m is the matrix of the first n rows of Pm.
Therefore, given the nodes tj and weightsw2

j , j = 1, . . . ,m, we have to solve an
inverse eigenvalue problem to obtain the Jacobi matrix Jm representing the orthog-
onal polynomials. We have already studied such problems in chapter 6. We will
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see in the next sections how to apply the algorithms of chapter 6 to our particular
problem.

The paper [100] by Elhay, Golub and Kautsky considers the slightly different
problem of updating and downdating the least squares fit. Assuming the knowledge
of the solution for dimension m, adding a new triplet of data {tm+1, wm+1, ym+1}
and computing the new solution is called updating. Removing a triplet of data is
called downdating. This is particularly useful when the data come from experi-
ments.

13.2.2 Updating the LS Solution
We assume that we know the Jacobi matrix Jn and the vector dn with n ≤ m. We
want to compute the Jacobi matrix Jñ and vector dñ with ñ = n or n + 1 for the
data {tj , wj , yj}, j = 1, . . . ,m+ 1. A solution always exists for a partial solution
with ñ = n. The solution for ñ = n + 1 requires that m = n and therefore the
points tj , j = 1, . . . ,m are the eigenvalues of Jn. The update is possible only if
the new point tm+1 is not one of the eigenvalues of Jn.

In the case n = m, ñ = m + 1, the problem is to expand Jm to a tridiagonal
matrix Jm+1 having the spectral data {tj , wj}j=1,...,m+1. The solution is given by
the following theorem, see [100].

THEOREM 13.1 Assume we know Jm. Let σm = (w2
1+· · ·+w2

m)
1/2. The solution

of the problem for {tj , wj , yj}, j = 1, . . . ,m+ 1 is given by

Jm+1 = Q

(
Jm 0
0 tm+1

)
QT ,

σm+1 = (σ2
m + w2

m+1)
1/2,

dm+1 = Q

(
dm

wm+1ym+1

)
,

where the orthogonal matrix Q is uniquely determined by requiring Jm+1 to be
tridiagonal and Q to be such that

Q(σme1 + wm+1e
m+1) = σm+1e

1.

Proof. Let Qm = PmDm. Then, Qm is the matrix of the eigenvectors of Jm =
QmΘmQTm and

σm(e1)TQm = (wm)T ,

where wm is the vector with components wj , j = 1, . . . ,m. Similarly, we have
Jm+1 = Qm+1Θm+1Q

T
m+1 and σm+1(e1)TQm+1 = (wm+1)T with (wm+1)T =

((wm)T wm+1). The matrix

Q = Qm+1

(
QTm 0
0 1

)

satisfies the first relation of the theorem. Moreover, one can check that Q(σme1 +
wm+1e

m+1) = σm+1e
1 is verified. Taking the norms of both sides of this relation
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gives the second relation of the theorem. Now, we have dm = QmDmy
m and

dm+1 = Qm+1Dm+1y
m+1 with (ym+1)T = ((ym)T ym+1). Hence,

dm+1 = Qm+1

(
Dmy

m

wm+1ym+1

)
= Qm+1

(
QTmd

m

wm+1ym+1

)
= Q

(
dm

wm+1ym+1

)
,

which proves the third assertion. ✷

This theorem is not constructive since even if we know Qm we do not know
Qm+1. The matrix Q of order m+1 can be constructed as a product of elementary
Givens rotations

Q = RmRm−1 · · ·R1,

whereRj is a rotation between rows j andm+1. The first rotation R1 is computed
to achieve the relation Q(σme1 + wm+1e

m+1) = σm+1e
1. The vector σme1 +

wm+1e
m+1 has nonzero components only in positions 1 and m + 1. Therefore

the bottom entry can be zeroed by a rotation R1 between the first and last rows.
Applying symmetrically this rotation to the matrix(

Jm 0
0 tm+1

)

creates two nonzero entries in the last row in positions 1 and 2 and, symmetrically
two nonzeros in the last column. The next rotations R2, R3, . . . are constructed to
chase these nonzero elements to the right of the last row and to the bottom of the
last column. Hence, R2 is a rotation between rows 2 and m + 1 to zero the entry
in position (m + 1, 1). It modifies the element (m + 1, 2) and creates a nonzero
element in position (m+1, 3). Rotation R3 zero the (m+1, 2) entry and creates a
nonzero in position (m+ 1, 4) and so on. At step k the first k − 1 elements of the
last row and of the last column of

Kk = RkRk−1 · · ·R1

(
Jm 0
0 tm+1

)
RT1 · · ·RTm−1R

T
m,

vanish. The matrix Kk is tridiagonal up to the last row and column which have
nonzero elements in position k, k + 1 and m + 1. Hence, Km is tridiagonal. This
updating method named RHR should be stable since it uses only orthogonal rota-
tion matrices.

Note that we can also use this method to solve the inverse eigenvalue problem
of chapter 5 starting with a pair of one node and one weight, adding a new pair at
each step. The data yj , j = 1, . . . ,m + 1 is only involved in the computation of
dm when we know Q.

Elhay, Golub and Kautsky [100] studied also some Lanczos-type methods in the
same spirit as the methods proposed in Kautsky and Golub [202] that we have con-
sidered in chapter 5 in the section devoted to the modification of the weight function
by multiplication with a polynomial. They were looking for monic polynomials p̃k
orthogonal with respect to the inner product 〈. , .〉m+1 assuming the knowledge of
the orthogonal polynomials pk for 〈. , .〉m. We have

p̃m+1(t) = (t− tm+1)pm(t).
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Both sets of polynomials satisfy

tpm(t) = Jmp
m(t) + βme

mpm(t),

tp̃m(t) = J̃m+1p̃
m(t) + β̃m+1e

m+1p̃m+1(t).

Denoting (pm+1)T = ((pm)T pm), we have

tpm+1(t) = Jm+1p
m+1(t) + em+1p̃m+1(t),

where

Jm+1 =
(
Jm βme

m

0 tm+1

)
.

There exists a nonsingular lower triangular matrix L such that

pm+1 = Lp̃m+1.

Comparing the previous relations, we obtain

Jm+1L = LJ̃m+1, β̃m+1(em+1)TLem+1 = 1.

Then, denoting by lj the columns of L,

(1− δj,m+1)β̃j lj+1 + α̃j l
j + (1− δj,1)β̃j−1l

j−1 = Jm+1l
j , j = 1, . . . ,m+ 1,

where δj,i is the Kronecker symbol. These relations can be used to evaluate al-
ternately the elements of J̃m+1 and the columns of L from the knowledge of l1.
This is clearly analogous to the Lanczos (or Stieltjes) algorithm. This algorithm
exploits the special form of L. It remains to show how to compute the first column
l1 = Le1. Using the relation pm+1 = Lp̃m+1 and the fact that the polynomials
p̃j are orthonormal we have that the matrix LLT is equal to a matrix whose ele-
ments (i, j) are the inner products 〈pi, pj〉m+1. We remark that since L is lower
triangular, LT e1 = ((e1)TLe1)e1. Therefore,

LLT e1 = ((e1)TLe1)l1 = 〈pm+1, p0〉 = e1 + w2
m+1p0 p

m+1(tm+1).

The last relation allows us to compute the first column l1. It turns out that for
constructing the Jacobi matrix we need only the diagonal and subdiagonal elements
of L. Let the jth column of L be denoted as

lj = ( 0 . . . 0 ρj τj . . . )T ,

where ρj and τj are the elements we are interested in. We have the following
relations

β̃j−1ρj−1 = (ej−1)T J̃m+1l
j = βj−1ρj , j = 2, . . . ,m+ 1,

α̃jρj + β̃j−1τj−1 = (ej)TJm+1l
j =

{
αjρj + βjτj , 1 ≤ j ≤ m
tρm+1, j = m+ 1

β̃m+1 = 1/ρm+1.

It remains to compute ρj and τj , j = 1, . . . ,m+1. Denoting M = LLT , we have

M = diag(I, 0) + um+1(um+1)T ,
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where um+1 = wm+1p
m+1(tm+1). Thus L is the Cholesky factor of a rank-one

modification of a diagonal matrix. We denote the elements of the vector um+1 by
ψj = wm+1pj−1(tm+1). For j < k we have

(ek)TLej = ψkqj ,

where the diagonal elements ρj and qj satisfy

ρ2
j = 1− δj,m+1 + ψ2

j (1− q21 − · · · − q2j−1),

ρjqj = ψj(1− q21 − · · · − q2j−1).

Noticing that τj = (ej−1)TLej , we can evaluate ρj and the ratio τj/ρj which is

τj
ρj
=

ψj+1ψj
ψ2
j + 1/(1− q21 − · · · − q2j−1)

.

The solution of the least squares problem can be computed recursively as

dm+1
j =

dmj + wm+1ym+1ψj − ψj
∑j−1
k=1 d

m+1
k qk

ρj
.

This method is called TLS (!) in [100]. To avoid confusion with total least squares
(see chapter 14) we will denote this method as TLUDSFUS, UD for update and
downdate, SFUS for special form and unscaled. In the paper [100] another method
was described using determinants. We will denote it by TLUDUS.

13.2.3 Downdating the LS Solution
Before considering the downdating of the least squares fitting solution, we show
how to change the weight of an existing point. This can be done by adding a new
point that is the same as one of the points tj , j = 1, . . . ,m, say the last one. The
solution to this problem is given in the following theorem, see Elhay, Golub and
Kautsky [100].

THEOREM 13.2 Given σm, Jm and dm and new data {tm+1, wm+1, ym+1} with
tm+1 = tm, the solution is given by

J̃m = QJmQ
T ,

σ̃m = (σ2
m + w2

m+1)
1/2,

d̃m = Q(dm + (w̃mỹm − wmym)qm),

where w̃m = (w2
m+w

2
m+1)

1/2, ỹm = (w2
mym+w

2
m+1ym+1)/(w2

m+w
2
m+1) and

the orthonormal matrixQ is uniquely determined by requiring J̃m to be tridiagonal
and such that

Q(σme1 + (w̃m − wm)qm) = σ̃me
1.

The vector qm is the normalized eigenvector of Jm corresponding to the eigenvalue
tm scaled to have a positive first element.
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Proof. The proof is very similar to the proof of theorem 13.1 (see [100]). ✷

This theorem shows that one can modify the weight of a chosen node by orthog-
onal transformations. However, an eigenvector like qm has to be computed. We re-
mark that the updating methods using rotations discussed previously can be used in
this case. The difference with the previous situation is that the Jacobi matrix that is
obtained cannot be unreduced because it must have two equal eigenvalues. Hence,
one of the subdiagonal coefficients must be zero. Note also that theorem 13.2 cor-
responds to an increase of the weight since w2

m+1 > 0 corresponds to w̃m > wm.
We now turn to the downdating problem. This is similar to zeroing a weight,

say, having w̃m = 0. A way to achieve this is to use the same method as when
modifying a weight but replacing wm+1 by ıwm+1 where ı2 = −1. The methods
that have been described before in this section can be coded such that the complex
quantities that are involved remain purely imaginary throughout the calculation and
thus everything can be done conveniently in real arithmetic. In the method using
rotations the similarity matrices which are involved are(

c ıs
−ıs c

)
,

with c2−s2 = 1, embedded in an identity matrix. These matrices are called hyper-
rotations and they are complex orthogonal. Contrary to plane rotations they can be
badly conditioned.

Another possibility is, so to speak, to “reverse” the rotation method. The solution
is given in the following theorem.

THEOREM 13.3 Given σm+1, Jm+1 and dm+1, the solution when removing the
triplet {tm+1, wm+1, ym+1} from the data is given by(

J̃m 0
0 tm+1

)
= QJm+1Q

T ,

σ̃m = (σ2
m − w2

m+1)
1/2,(

d̃m

wm+1ym+1

)
= Qdm+1,

where the orthogonal matrix Q is uniquely determined by requiring J̃m to be tridi-
agonal and such that

Q(σm+1e
1 − wm+1q

m+1) = σ̃me
1,

qm+1 being the normalized eigenvector of Jm+1 corresponding to tm+1 scaled to
have a positive first element.

Proof. See Elhay, Golub and Kautsky [100]. ✷

The method based on theorem 13.3 is called REV. The paper [100] also shows
how to downdate a partial matrix Jn with n < m + 1. The existence of a solution
is equivalent to the existence of a matrix Jn̂ with n̂ > n such that Jn is a submatrix
of Jn̂ and the node to be removed is an eigenvalue of Jn̂. Note that obtaining this
matrix is quite similar to the problem we solved for the Gauss–Radau quadrature
rule.
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13.3 Numerical Experiments

13.3.1 LS Test Problems
In this section we describe the results of numerical experiments for updating and
downdating a least squares fit with the methods we have described above and we
show how to improve some of them. Let us consider the following problems,

Example LS1
The nodes, weights and data are given by

tm = −1+2(m−1)/(n−1), wm = 1/
√
n, ym = 1.5+sin(4tm), m = 1, . . . , n.

Example LS2

ρ = 0.9, t1 = 0.01, tn = 100,

tm = t1 + ((m− 1)/(n− 1))(tn − t1)ρn−m, m = 2, . . . , n− 1,

wm = 1/
√
n, ym = 1.5 + sin(4tm).

Example LS1 is close to one in Elhay, Golub and Kautsky [100]. It has regularly
distributed nodes. Example LS2 corresponds to the Strakoš Example F3; see chap-
ter 11.

13.3.2 Solutions Using Rotations
We first consider the following experiment. Starting from

σ = |w1|, α1 = t1, d1 = y1σ,

we recursively build up the symmetric tridiagonal matrices Jm, m = 2, . . . , n
whose diagonal elements are αi and subdiagonal elements are βi adding a point
tm at each step. Having obtained the final Jn, we downdate the solution by succes-
sively removing tm,m = n, . . . , 2. In the updating phase we check the eigenvalues
of Jm. They must be equal to t1, . . . , tm. When downdating we compare the Jacobi
matrices we obtain with the ones that have been computed in the updating phase.

We first do the updating using RHR and the downdating using hyperbolic rota-
tions. Let us start with Example LS1 using a small number of points n = 8. The
absolute values of the differences between the points tm and the eigenvalues of
Jn are at the roundoff level. This means that the updating process using rotations
works quite well, at least for this small problem. Now, we downdate by removing
one point at a time. The log10 of the relative differences in the elements of the
matrix Jm and the Fourier coefficients computed as

‖α− α̃‖
‖α̃‖ ,

where α (resp. α̃) is the diagonal of Jm obtained when downdating (resp. updating)
are given in figure 13.1. In other words we compare the solution we obtain when
downdating to what we had previously when updating. Therefore, the figure is to be
read from right to left. The results when downdating the last point tn = 1 are given
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Figure 13.1 Example LS1, log10 of relative errors when downdating, n = 8, RHR and
hyperbolic rotations

for abscissa 7 and so on. We see that the relative errors are quite large, up to 10−10,
except for σ for which they are negligible. Moreover, the errors increase when n
increases, up to the point where the algorithm is no longer able to downdate.

These downdating results can be improved a little by a careful reordering of
the floating point operations (specially when computing the rotations). With this
version of the algorithm and for Example LS1, the breakdown when no downdating
is possible happens for n = 13.

Example LS2 breaks down at n = 13. The results for n = 12 which are shown
in figure 13.2 are worst than for the other example. The conclusion of these exper-
iments (and others not reported here) is that the hyperbolic rotations that are used
for downdating are highly unstable and cannot be used even for moderate values of
n.

As we have seen, Elhay, Golub and Kautsky [100] proposed another downdating
method called REV based on an eigenvector of Jm, see theorem 13.3. In [100]
its components are obtained by solving a triangular system. The results for Exam-
ple LS1 are given in figure 13.3. The errors are not better than with hyperbolic
rotations (with modifications). However, REV is more robust and allows us to use
larger values of n. Results for n = 19 are given in figure 13.4. For n = 20, we
found a value βj = 0 and the algorithm has to stop.

When downdating the points in the reverse order as they were added for updating,
one can compute the eigenvectors of the matrices Jj incrementally. Assume that
we are updating for Jn to Jn+1. Let Z (resp. W ) be the matrix of the eigenvectors
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Figure 13.2 Example LS2, log10 of relative errors when downdating with modifications of
RHR and hyperbolic rotations, n = 12
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Figure 13.3 Example LS1, log10 of relative errors when downdating with REV, n = 8
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Figure 13.4 Example LS1, log10 of relative errors when downdating with REV, n = 19

of Jn (resp. Jn+1) and Q = Rn · · ·R1 be the products of the rotations in RHR. We
have the relation

W = Q

(
Z 0
0 1

)
= Rn · · ·R1

(
Z 0
0 1

)
.

Therefore, starting from Z = 1 for n = 1, we can compute the eigenvectors by
applying the rotations that are obtained at each step. Reciprocally, from the eigen-
vectors of Jn+1 we have (

Z 0
0 1

)
= RT1 · · ·RTnW.

If we know the eigenvalues of Jn that are (approximately) the points tj , we can also
recover Jn from Z (removing the last point we added) by taking the tridiagonal part
of ZΛZT where Λ is the diagonal matrix of the eigenvalues (although this is only
marginally better, what is important is to have good eigenvectors). Let us see how
this is working in figures 13.5 and 13.6. We see that the results are good even for
large data sets. However, there are several serious drawbacks with this algorithm.
First, it is much more expensive than the other ones. So recomputing the solution
for the downdated data set from scratch may be cheaper. If we want to remove any
data point and not just the last one, we can use the REV algorithm modified to use
an eigenvector computed using the rotations and not by solving a linear system.
Then, we can compute the downdated eigenvectors by deflation after applying the
rotations computed by REV.

We now try to reproduce the numerical results of Elhay, Golub and Kautsky
[100] using a sliding window in the data. The data are generated for N points;
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Figure 13.5 Example LS1, log10 of relative errors when downdating with eigenvectors, n =
8
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Figure 13.6 Example LS1, log10 of relative errors when downdating with eigenvectors, n =
100
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let Yk = {tj , wj , yj}k+M−1
j=k , k = 1, . . . , N −M + 1 be the sliding window. A

least squares fit of dimension n (n <=M ) is computed for the data Y1, that is, the
points from 1 to M . Then, for k = 2, . . . , N −M +1, the solution is computed for
Yk by first updating with the data {tk+M , wk+M , yk+M} on the right and second
downdating {tk−1, wk−1, yk−1} on the left of the window. The authors compare
the solution every ns steps with a reference solution computed from scratch by
updating. They used the values N = 50,M = 10, n = 5, ns = 5. We first
compare the values of the entries of Jm and the Fourier coefficients d at the end
of the process. We do not use a random perturbation of the data as in [100]. The
relative errors of RHRud (for updating and downdating) for Example LS1 at the
end for σ, α, β and d are, respectively,

0, 2.8951 10−7, 9.0746 10−8, 2.3494 10−10.

The relative errors at each step (as a function of k, when we add the data for k+M
and remove the data for k) are shown in figure 13.7. The errors increase with k as
the window is sliding and the quality of the solution decreases as N increases. For
N = 190, we obtain as relative errors

0, 8.1277 10−1, 9.1918 10−1, 6.5218 10−6,

with bad results for α and β.
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Figure 13.7 Example LS1, RHRud, log10 of relative errors with a sliding window, N =
50,M = 10, n = 5

Example LS2 gives better results as we see in figure 13.8. The relative errors at
the end for σ, α, β and d and N = 50,M = 10, n = 5 are

0, 1.2783 10−12, 6.9897 10−13, 5.0452 10−13.
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We were able to compute up to N = 340,M = 10, n = 5 with the following
results:

1.6184 10−16, 7.3216 10−12, 3.7765 10−12, 7.5073 10−13.
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Figure 13.8 Example LS2, RHRud, log10 of relative errors with a sliding window, N =
50,M = 10, n = 5

Things are different when we update with RHR and downdate with REV; see
figure 13.9. For Example LS1 the relative errors at the end for σ, α, β and d are

0, 3.6593 10−1, 3.4459 10−1, 3.2987 10−4.

The results are much better for example LS2 as it can be seen in figure 13.10.
When using the methods that compute all the eigenvectors when updating and

downdating, we obtain the following results for Example LS1 with N = 50,M =
10, n = 5:

0, 1.8244 10−14, 5.8681 10−14, 2.9810 10−13.

The downdating is done using REV but with an eigenvector computed during the
updating and not by solving a linear system as in [100]. This method works fine
for N = 50,M = 10, n = 5, the relative errors being of the order 10−13; see
figure 13.11. For N = 190 we obtain

0, 2.2019 10−14, 2.2132 10−13, 7.8349 10−13.

Example LS2 gives

0, 3.8045 10−15, 2.6309 10−15, 1.9726 10−14.



244 CHAPTER 13

0 5 10 15 20 25 30 35 40
−15

−10

−5

0
 

err sig
err alpha
err beta
err d

Figure 13.9 Example LS1, RHRu + REV, log10 of relative errors with a sliding window,
N = 50,M = 10, n = 5
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Figure 13.10 Example LS2, RHRu + REV, log10 of relative errors with a sliding window,
N = 50,M = 10, n = 5
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Figure 13.11 Example LS1, eigenvectors, log10 of relative errors with a sliding window,
N = 50,M = 10, n = 5

Just to compare with other methods, for N = 340 we obtain

1.6184 10−16, 8.7078 10−15, 1.3943 10−14, 3.8488 10−14.

We note that if we just want to discard one point it is not necessary to compute
all the eigenvectors. We just have to store and use the rotations. However, the
computation of the Fourier coefficients is easier when using the eigenvectors.

There are many other ways to compute an eigenvector for a known eigenvalue.
This problem has been considered at length during the last fifteen years by Dhillon
and Parlett [84], [85], [268], based on remarks of J. Wilkinson and works of V. Fer-
nando [105], [107]; see also [83], [86], [87]. The solution uses twisted factor-
izations of the Jacobi matrix Jm, see chapter 3. Making only this change to
the method using eigenvectors, we obtain the following results for Example LS1,
N = 50,M = 10, n = 5 (see figure 13.12)

0, 2.4329 10−16, 3.5398 10−16, 4.1946 10−15.

Example LS2 gives

0, 4.9989 10−16, 2.9341 10−16, 1.3637 10−15.

It is now interesting to see what we can obtain if we do the updating without
using the eigenvectors and the downdating with the eigenvectors computed using
the Dhillon–Parlett algorithm. So we do the updating by using RHRu and the
downdating using an eigenvector. We obtain the following results for Example LS1,
N = 50,M = 10, n = 5 (see figure 13.13)

0, 3.1013 10−16, 8.5406 10−16, 3.3256 10−15.
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Figure 13.12 Example LS1, eigenvector Dhillon–Parlett, log10 of relative errors with a slid-
ing window, N = 50,M = 10, n = 5

The results are almost as good as when using the eigenvectors for updating. There
is no growth of errors.

Example LS2 gives

0, 4.3906 10−16, 1.0122 10−15, 1.7337 10−15,

and the results are in figure 13.14 for N = 50. The conclusion of this experiment
is that updating with rotations and downdating with a good eigenvector allows us
to solve large problems in a stable way with good results.

Now that we have another method to compute the eigenvector, we return to the
first experiment where we first update and then downdate the points by deleting the
last one. We obtain the results of figure 13.15, which are much better than with the
other methods.

The problem with using the eigenvector to downdate is that we have to know that
the Jacobi matrix has the point t to be removed as an eigenvalue. This is not true
when we compute a partial solution with n < m. A possible solution (as we used
above) is to always compute the full Jacobi matrix of size m and then to use the
appropriate submatrix. Moreover, this has the added advantage of providing least
squares fitting of different degrees. This is not too costly if m is not much different
from n as in the examples we used. Elhay, Golub and Kautsky [100] considered
the problem of downdating a partial solution.
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Figure 13.13 Example LS1, RHRu + eigenvector Dhillon–Parlett, log10 of relative errors
with a sliding window, N = 50,M = 10, n = 5
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Figure 13.14 Example LS2, RHRu + eigenvector Dhillon–Parlett, log10 of relative errors
with a sliding window, N = 50,M = 10, n = 5
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Figure 13.15 Example LS1, RHRu + eigenvector Dhillon–Parlett, log10 of relative errors
when downdating, n = 8

13.3.3 Solution Using Lanczos-Like Methods
We consider the experiment where we slide the window by adding a node at the
right of the interval and removing a node at the left end at each step. For Example
LS1 we experiment difficulties with TLUDUS and TLUDSFUS after N = 30.
For Example LS2 the results are much better. Figures 13.16 and 13.17 display the
results of algorithm TLUDUS for N = 50 and N = 200, respectively. The results
for TLUDSFUS are given in figures 13.18 and 13.19.

The general conclusion is that the algorithms which work best for downdating
use orthogonal transformations and accurate eigenvectors.

13.3.4 Solution Using the Lanczos Algorithm
The problem of computing the LS solution by computing the entries of the Jacobi
matrix is an inverse eigenvalue problem. As we have seen in chapter 6 this problem
can be solved in exact arithmetic by the Lanczos algorithm. In finite precision
arithmetic the Lanczos algorithm may suffer from a severe growth of rounding
errors. Nevertheless, let us see how it works on our Examples LS1 and LS2. We
check if the eigenvalues of the computed Jacobi matrix are equal to the given points
tj and how the first components of the eigenvectors are related to the weights wj in
the inner product. For Example LS1, after N = 50 Lanczos iterations the relative
errors on the nodes and weights in l2 norm are

et = 4.9736 10−16, ew = 6.4759 10−15,
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Figure 13.16 Example LS2, TLUDUS, log10 of relative errors with a sliding window, N =
50,M = 10, n = 5
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Figure 13.17 Example LS2, TLUDUS, log10 of relative errors with a sliding window, N =
200,M = 10, n = 5
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Figure 13.18 Example LS2, TLUDSFUS, log10 of relative errors with a sliding window,
N = 50,M = 10, n = 5
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Figure 13.19 Example LS2, TLUDSFUS, log10 of relative errors with a sliding window,
N = 200,M = 10, n = 5



LEAST SQUARES PROBLEMS 251

with full double reorthogonalization at each Lanczos iteration. The level of orthog-
onality computed as the maximum of the absolute values of off-diagonal elements
of V TmVm is 6.6613 10−16, where Vm is the matrix of the Lanczos vectors which
are orthogonal in exact arithmetic.

Without reorthogonalization, we have

et = 1.3203 10−6, ew = 2.6883 10−6.

The level of orthogonality is 0.0017. Of course, the results are much worse. How-
ever, this example is not the worst one for the Lanczos algorithm because the
gaps between successive eigenvalues are constant and the first convergence of a
Ritz value toward an eigenvalue does not occur rapidly. Let us consider Exam-
ple LS2 with N = 50. With double reorthogonalization the level of orthogonality
is 6.6613 10−16 and the errors are

et = 5.2394 10−16, ew = 5.1508 10−14.

Without reorthogonalization, we have a level of orthogonality 0.7552 and

et = 0.6778, ew = 0.5391.

Therefore, the computed Jacobi matrix does not have the given nodes as eigenval-
ues. This example was designed by Z. Strakoš to have a fast convergence of a Ritz
value and a rapid growth of the rounding errors which explains the complete loss
of orthogonality.

To compute the vector of Fourier coefficients dn of the solution from the Lanczos
algorithm we note that we have

dm = PmD
2
my

m,

where PmDm is the matrix of the normalized eigenvectors and dn with n ≤ m is
obtained by taking the n first rows of the previous expression. When applying the
Lanczos algorithm to a diagonal matrix, the matrix of eigenvectors is the identity
matrix I . At the end, we have the computed eigenvectors which are VmZm where
Zm is the matrix of the eigenvectors of Jm. Therefore, we have VmZm = I which
gives Zm = V Tm . The solution is given by

dm = V TmDmy
m. (13.6)

The diagonal elements of Dm are given by

(Dm)i,i =


m−1∑
j=0

pj(θ
(m)
i )2




1
2

.

The polynomials pj can be evaluated at θ(m)
i using Jm. In exact arithmetic the Ritz

values at the last iteration are equal to the nodes, θ(m)
i = ti. The least squares so-

lution is obtained by taking the first n rows of the left-hand side of equation (13.6).
Note that we have to keep the Lanczos vectors to compute the solution.

It is not so obvious how to update the Jacobi matrix when using the Lanczos
algorithm. It amounts to computing the Lanczos coefficients when going from a
diagonal matrix of order m to a matrix of order m + 1 by adding the new point
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tm+1 and also adding a component wm+1 to the initial vector. In exact arithmetic,
this can be solved by using the relation between the Lanczos algorithm and the
QR factorization. We have seen that Λ = VmRm and that Vm is the matrix of
the Lanczos vectors. The coefficients of the Jacobi matrix can be obtained from
the two main diagonals of Rm. Then, we can use methods for updating the QR
factorization. The downdating problem can be be seen as zeroing a component
(say the last one) of the initial vector in the Lanczos algorithm. But it is not clear
how one can exploit this.

13.3.5 Solution Using the Stieltjes Algorithm
The Stieltjes algorithm was described in chapter 6. We use the Matlab routine
Stieltjes.m from the package OPQ by Gautschi [132] and compute the Jacobi ma-
trix. For Example LS1, after N = 50 iterations the relative errors in the l2 norm
are

et = 3.3769 10−7, ew = 7.1688 10−7.

Now consider Example LS2 with N = 50. The errors are
et = 0.6815, ew = 0.5371.

Therefore, the behavior of the Stieltjes algorithm is almost the same as it is for the
Lanczos algorithm without reorthogonalization.

13.3.6 The Gragg and Harrod algorithm
We use the implementation provided in Gautschi’s package OPQ [132]. We check
the eigenvalues (using the Matlab QR algorithm) and the first components of the
eigenvectors of the computed Jacobi matrix. For Example LS1, for N = 50 the
relative errors in the l2 norm are

et = 4.6782 10−16, ew = 6.0235 10−15.

Example LS2 gives
et = 4.0544 10−16, ew = 8.7212 10−14.

The method proposed by Gragg and Harrod [164] constructs the solution incremen-
tally; see chapter 5. Therefore, it can be used to update the solution. The problem
of downdating was not considered in this paper.

13.3.7 The Laurie QD Algorithm
In [220] Laurie proposed to use variants of the QD algorithm to recover the Jacobi
matrix from nodes and (positive) weights. We use the algorithm pftoqd. For Exam-
ple LS1, the smallest nodes are negative. Thus we have to use the trick mentioned
in [220] to compute the Jacobi matrix by omitting the last step and shifting. The
errors for N = 50 are

et = 4.4347 10−16, ew = 5.3900 10−15.

For Example LS2, we obtain the following errors:
et = 3.3720 10−16, ew = 2.4849 10−14.
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13.4 Numerical Experiments for the Backward Error

Let us consider a small problem of dimension 20 × 10 (Example BK1). We use
an example derived from those of U. von Matt for solving ill-posed problems; see
chapter 15. Let A be an m× n matrix such that

A = UsΣsV Ts , Us = I − 2
usu

T
s

‖us‖2
, Vs = I − 2

vsv
T
s

‖vs‖2
,

where us and vs are vectors whose components are sin(2πi/(l + 1)) where l is
the length of the vector. Σs is an m × n diagonal matrix with diagonal elements
[1, · · · ,√n]. Then the singular values are perturbed by 10−3 times a random num-
ber. Let xs be a vector whose ith component is 1/i and cs = Axs. The right-hand
side is

c = cs + ξ randn(m, 1).

Let x be an approximate solution of the least squares problem and r = c − Ax be
the residual. We first compute the smallest eigenvalue

λmin

(
AAT − ν

rrT

‖x‖2

)
,

using the Matlab 6 eigenvalue solver. Since we know that the smallest eigenvalue
is negative, we then try to compute λmin using the SVD of A and solving for the
smallest solution of a secular equation. If d =

√
νr/‖x‖ and if we denote the SVD

as A = UΣV T we have to solve

1−
n∑
i=1

f2
i

σ2
i − µ

+
m∑

i=n+1

f2
i

µ
= 0,

where f = UT d and σi are the singular values of A. We use the algorithm BNS1
of chapter 9. The function is interpolated by a rational function

1 +
p

µ
− r − s

δ − µ

with p =
∑m
i=n+1 f

2
i , δ is the smallest singular value squared and r and s are

determined by interpolation of the function and its derivative. Since these secular
equations are difficult to solve because the function is often flat around the zero, if
the value of the function at the approximate zero is not small enough, we refine the
zero by bisection.

From the computations of the smallest eigenvalue we compute the backward
error

µ(x) =
( ‖r‖2

‖x‖2
ν +min

{
0, λmin

(
AAT − ν

rrT

‖x‖2

)})1/2

, ν =
‖x‖2

1 + ‖x‖2
.

We also compute the estimate of the backward error

µ̃(x) = ‖(‖x‖2ATA+ ‖r‖2I)−1/2AT r‖,
using the SVD of A.
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Let x0 = (ATA)−1AT c. As the approximate solution we use x = x0+εw where
w is a random vector. In table 13.1 λmin is the eigenvalue computed directly, λsec

is the zero obtained by the secular equation solver and λbis the refined solution
obtained by bisection. The line below gives the corresponding values of the secular
function (which must be zero at the solution). Then µ and µbis are the backward
errors obtained from λmin and λbis, respectively. Finally µ̃ is the estimate of µ. We
give the results for several values of ε starting from the solution obtained by solving
the normal equations.

For ε = 0, both eigenvalues are approximately the same and we do not need
to refine with bisection but the value of the secular function is smaller with λsec.
The backward errors are zero and the estimate is at the roundoff level. When ε
increases the difference between λmin and λsec increases too. This is because the
secular equation is more difficult to solve. However, the refined solution λbis gives
smaller values of the secular function. We see that with a large perturbation λmin

is not accurate at all, λsec is better but not really good and we have to rely on λbis.
The value µ̃ always gives a good estimate of the backward error. Hence it is worth
looking at computing this estimate for large problems for which it is not feasible to
compute the SVD of A.

Table 13.1 Example BK1,m = 20, n = 10

ε λmin, f λsec, f λbis, f

0 −4.4434299056 10−6 −4.4434299053 10−6 -
6.5650 10−11 −5.3129 10−32

µ µbis µ̃
0 0 7.41124 10−16

ε λmin, f λsec, f λbis, f
10−5 −4.44363798 10−6 −4.44356566 10−6 −4.443363799 10−6

−2.1870 10−10 4.5428 10−5 1.4646 10−11

µ µbis µ̃
2.98008 10−5 2.98007 10−5 3.82161 10−5

ε λmin, f λsec, f λbis, f
10−3 −4.436828 10−6 −6.452511 10−6 −4.436837 10−6

−1.9327 10−6 3.1238 10−1 3.1330 10−11

µ µbis µ̃
2.977886 10−3 2.977884 10−3 3.81698 10−3

ε λmin, f λsec, f λbis, f
10−1 −3.86786 10−6 −1.77244 10−2 −3.93425 10−6

−1.6621 10−2 9.6995 10−1 −8.8366 10−12

µ µbis µ̃
2.761580 10−1 2.761579 10−1 3.356922 10−1

ε λmin, f λsec, f λbis, f
10 −2.79253 10−7 −3.14999 −2.09544

−1.1168 0.1862 1.6259 10−11

µ µbis µ̃
2.26368 1.74035 1.70267
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We wish to compute an estimate of

µ̂ = yT (ATA+ η2I)−1y, y = AT r, η =
‖r‖
‖x‖ ,

and then µ̃ =
√
µ̂/‖x‖. To obtain a lower bound corresponding to Gauss quadrature

we use the Golub–Kahan bidiagonalization algorithm with r as a starting vector. At
each iteration k we obtain a bidiagonal matrix Ck of dimension (k + 1) × k. The
approximate value of µ̂ is

‖y‖2 (e1)TCk(CTk Ck + η2I)−1CTk e
1.

We compute this using the SVD of Ck = UkSkV
T
k . Let Sk be the diagonal matrix

of order k of the singular values si, uk = UTk e
1 and f = (uk)1:k the vector of the

first k components of uk. The approximation is

‖y‖2
k∑
i=1

f2
i

s2i + η2
.

If it is needed one can also compute upper bounds by suitably modifying Ck to
obtain the Gauss–Radau quadrature rule.

On the small Example BK1 with ε = 10−3 after nine iterations we obtain a value
3.8169799 10−3 but we have already 3.7960733 10−3 after three iterations. If we
use a similar example but of dimension 2000 × 1000, the value of µ is 0.2535201
and µ̃ is 0.3210393. After 25 iterations we obtain 0.3203181. If ε = 0.1 we have
µ̃ = 14.0104382 and after seven iterations we obtain 14.0100725. Hence, this
technique works nicely and we have only to compute the SVD of small matrices.



Chapter Fourteen

Total Least Squares

14.1 Introduction to Total Least Squares

In least squares (LS) we have only a perturbation of the right-hand side as in equa-
tion (13.3) whereas total least squares (TLS) considers perturbations of the vector
of observations c and of the m× n data matrix A. Given two nonsingular diagonal
weighting matricesWL of orderm andWR of order n+1, we consider the problem

min ‖WL (E r )WR‖F ,
E, r

(14.1)

subject to the constraint (A + E)x = c + r, which means finding the smallest
perturbations E and r such that c + r is in the range of A + E. The norm ‖ · ‖F
is the Frobenius norm, which is the square root of the sum of the squares of all the
entries of the given matrix. The matrix E is m × n and r is a vector with m com-
ponents. This type of minimization problem has been considered by statisticians
since the beginning of the 20th century. For examples of applications in different
areas of scientific computing, see for instance Arun [12], Fierro, Golub, Hansen
and O’Leary [108], Mühlich and Mester [245], Pintelon, Guillaume, Vandersteen
and Rolain [275], Sima, Van Huffel and Golub [302] and Xia, Saber, Sharma and
Murat Tekalp [352]. Here we follow the exposition of Golub and Van Loan [153];
see also [154]. A detailed treatment of the TLS problem is given in the book by
Van Huffel and Vandewalle [333]. We will also rely on the recent results of Paige
and Strakoš [258], [259], [260], [261] and [262].

As pointed out in [153], TLS problems may fail to have a solution. The solution
of the TLS problem (when it exists) is given in the following theorem.

THEOREM 14.1 Let C = WL (A c )WR and UTCV = Σ be its SVD. Assume
that the singular values of C are such that

σ1 ≥ · · · ≥ σk > σk+1 = · · ·σn+1.

Then the solution of the TLS problem (14.1) is given by

min ‖WL (E r )WR‖F = σn+1,

and

xTLS = − W 1
Ry

αwRn+1

,

where the vector ( y α )T of norm 1 with α �= 0 is in the subspace Sk spanned by
the right singular vectors {vk+1, . . . , vn+1} of V and W 1

R is a diagonal matrix of
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order n whose diagonal elements are the first n diagonal elements wRj of WR and
wRn+1 is the last element which is omitted. If there is no such vector with α �= 0,
the TLS problem has no solution.

Proof. We follow [153]. Since c + r is in the range of A + E, there is an x such
that (A+ E)x = c+ r. This compatibility condition can be written as

[WL (A c )WR +WL (E r )WR]W−1
R

(
x
−1

)
= 0. (14.2)

The TLS problem is thus equivalent to finding a perturbation matrix∆ of dimension
m × (n + 1) having minimal Frobenius norm such that the matrix C + ∆ is rank
deficient. It can be shown (see, for instance, Stewart [310]) that the solution of this
problem is

min ‖∆‖F = σn+1.
rank(C +∆) < n+ 1

The minimum is attained by ∆ = −CvvT where v is a vector of norm 1 in the
subspace Sk. Then if v = ( y α )T , it is easy to check that xTLS in the theorem
satisfies equation (14.2). ✷

Golub and Van Loan [153] gave some results about the sensitivity of the TLS
problem as well as characterizations of the solution. The right singular vectors
vi are the eigenvectors of CTC and Sk is the invariant subspace associated to the
smallest eigenvalue σ2

n+1. Then the TLS solution xTLS solves the eigenvalue prob-
lem

CTCW−1
R

(
x
−1

)
= σ2

n+1W
−1
R

(
x
−1

)
. (14.3)

Let Â =WLAW
1
R, ĉ =WLc and λ = wRn+1. Then equation (14.3) can be written

as (
ÂT Â λÂĉ
λĉT Â λ2ĉT ĉ

)(
(W 1

R)
−1x

−λ−1

)
= σ2

n+1

(
(W 1

R)
−1x

−λ−1

)
. (14.4)

Let Û ÂV̂ = Σ̂ be the SVD of Â with singular values σ̂j , the smallest being σ̂n. If
we denote

K = Σ̂T Σ̂, g = Σ̂T ÛT c, h2 = ĉT ĉ, z = V̂ T (W 1
R)

−1x,

equation (14.4) writes(
K λg
λgT λ2h2

)(
z

−λ−1

)
= σ2

n+1

(
z

−λ−1

)
.

This gives the two following equations

(K − σ2
n+1)z = g,

σ2
n+1

λ2
+ gT z = h2.

With these notations we have the following result from Golub and Van Loan [153].
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THEOREM 14.2 If σ̂n > σn+1, then xTLS exists and is the unique solution of the
TLS problem. It is written as

xTLS =W 1
R(Â

T Â− σ2
n+1I)

−1ÂT ĉ.

Moreover, σn+1 satisfies the secular equation

σ2
n+1

[
1
λ2
+

n∑
i=1

d2
i

σ̂2
i − σ2

n+1

]
= ρ2

LS ,

with the vector d = ÛT ĉ and ρ2
LS = ‖WL(c−AxLS)‖2.

For simplicity of notations we will no longer consider weighting in the rest of
the chapter. Without weighting the norm of the residual rTLS = c − AxTLS can
be written as

‖rTLS‖2 = cT c−cTA(ATA−σ2
n+1I)

−1AT c+σ2
n+1c

TA(ATA−σ2
n+1I)

−2AT c

and

‖xTLS‖2 = cTA(ATA− σ2
n+1I)

−2AT c.

To prove the first relation we use the following identity which holds for µ �= 0:

I −A(ATA+ µI)−1AT = µ(AAT + µI)−1.

It can be proved by noticing that A(ATA+µI)−1 = (AAT +µI)−1A. By defini-
tion, we have ‖rTLS‖ ≥ ‖rLS‖ since LS gives the minimum of the residual norm
over all vectors. By using the SVD of A it turns out that

‖rTLS‖2 = ‖rLS‖2 +
n∑
i=1

d2
i

σ4
n+1

σ̂2
i (σ̂

2
i − σ2

n+1)2
. (14.5)

This can also be written as

‖rTLS‖2 = ‖rLS‖2 + σ4
n+1c

TA(ATA)−1(ATA− σ2
n+1I)

−2AT c.

From Van Huffel and Vandewalle [333], we have

‖rTLS‖ = σn+1(1 + ‖xTLS‖2)1/2.

These relations show that σn+1 must satisfy the equation

σ2
n+1 = cT c− cTA(ATA− σ2

n+1I)
−1AT c.

This is a secular equation for the smallest singular value σn+1 of (A c ). We have
seen how to solve secular equations in chapter 9, where numerical experiments
were described.

Note that the condition σ̂n > σn+1 in theorem 14.2 is sufficient but not neces-
sary. If σ̂n = σn+1 a solution may or may not exist. In case the solution does
not exist Van Huffel and Vandewalle [333] impose an additional restriction on the
perturbations,

(E r ) ( vq+1 · · · vn+1 ) = 0,
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where q is the maximal index for which the vectors vi have a last nonzero compo-
nent. The problem with this additional condition is called nongeneric TLS. It has
always a unique solution.

The characterization of the solution in theorem 14.2 is also interesting for com-
parison of the TLS solution with the solutions of regularized LS problems that we
will study in section 15.1. Anticipating what we will see, a regularized LS solution
can be written as

xRLS(µ) = (ATA+ µI)−1AT c,

with a parameter µ > 0. We see that xTLS = xRLS(−σ2
n+1). Therefore, TLS

appears as a “deregularizing” procedure since it corresponds to a negative µ.
If we consider only perturbations of the data matrix A without perturbations

on the right-hand side, the problem is called data least squares (DLS). Without
weighting, it reads

min ‖E‖F ,
E

(14.6)

subject to (A+ E)x = c. An alternative formulation is

min ‖c−Ax‖2/‖x‖2.
x

A backward perturbation analysis of DLS was done by Chang, Golub and Paige
[62].

14.2 Scaled Total Least Squares

All these approaches, LS, DLS and TLS, have been unified by several researchers.
We consider what has been proposed by Paige and Strakoš [261], [259], [258],
[260]. The scaled total least squares (STLS) problem is

minimize ‖ (E r ) ‖F ,
E, r

(14.7)

subject to (A + E)xγ = cγ + r, where γ is a parameter. The vector x = x(γ)
is the STLS solution and x(γ)γ is the TLS solution of the problem (14.7) that we
have already exhibited for TLS. In [261], Paige and Strakoš show that when γ → 0,
x(γ) becomes the LS solution. On the other end, when γ → ∞, x(γ) becomes the
DLS solution. Paige and Strakoš consider matrices with complex entries; here we
consider only real matrices. An alternative formulation of the STLS problem is

min ‖r‖2 + ‖cγ + r −Ax‖2/‖x‖2.
r, x

Another formulation is
min ‖cγ −Ax‖2/(1 + ‖x‖2).
x

By interlacing properties, one has

σmin[(A cγ )] ≤ σmin[A].
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When we have a strict inequality, the STLS norm for the solution is σmin[(A cγ )]
and the STLS problem can be solved with the SVD, the dimension of the problem
permitting. However, the theory of [261] is not based on this inequality on singular
values which is a sufficient condition. Let Umin be the left singular subspace of A
corresponding to σmin[A], the condition used in [261] is

the m× n matrix A has rank n and c �⊥ Umin. (14.8)

The rationale behind this is given in the following theorem, see [261].

THEOREM 14.3 If σAi , i = 1, . . . , n are the singular values of A in descending
order and u1, . . . , un the corresponding left singular vectors, then

σmin[(A cγ )] = σmin[A],

if and only if

di = (ui)T c = 0, i = k + 1, . . . , n,

where σAk+1 = · · · = σAn and

ψk(σ, γ) = γ2‖r‖2 − σ2 − γ2σ2
k∑
i=1

d2
i

(σAi )2 − σ2
≥ 0.

Proof. See [261]. ✷

Theorem 14.3 shows that condition (14.8) implies that σmin[(A cγ )] < σmin[A].
As we know from theorem 14.2, the solution of the STLS problem satisfies a secu-
lar equation.

PROPOSITION 14.4 If condition (14.8) holds then the solution σmin[(A cγ )] is
the smallest nonnegative scalar σ satisfying

γ2‖r‖2 − σ2 − γ2σ2
k∑
i=1

d2
i

(σAi )2 − σ2
= 0,

‖r‖ being the LS distance.

Proof. See [261]. ✷

The choice of condition (14.8) was made by Paige and Strakoš because any
scaled total least squares problem can be reduced by orthogonal transformations
to what they called a “core” problem satisfying this condition. The problem with
matrix A and right-hand side c can be transformed as

PT ( c AQ ) =
(
c1 A1,1 0
0 0 A2,2

)
,

where P and Q are orthonormal matrices. The original problem reduces to solving

A1,1x1 ≈ c1, A2,2x2 ≈ 0, x = Q

(
x1

x2

)
.

The problem A1,1x1 ≈ c1 was called a “core” problem by Paige and Strakoš [262]
if the matrix A2,2 is of maximal dimension. Generally, there is no reason for not
taking x2 = 0.
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The paper [262] proposed to compute the “core” problem by reducing ( c A )
to upper bidiagonal form by orthogonal transformations P and Q. They are parti-
tioned asP = (P1 P2 ) andQ = (Q1 Q2 ), giving ( c1 A1,1 ) = PT1 ( c AQ1 )
with either

( c1 A1,1 ) =



β1 α1

β2 α2

. . . . . .
βp αp


 , βiαi �= 0, i = 1, . . . , p

if βp+1 = 0 or p = m; or

( c1 A1,1 ) =



β1 α1

β2 α2

. . . . . .
βp αp

βp+1


 , βiαi �= 0, i = 1, . . . , p, βp+1 �= 0

if αp+1 = 0 or p = n. The proofs that these matrices correspond to “core” prob-
lems are given in [262]. In particular, if c �⊥ range of A then A1,1 has no zero or
multiple singular values. The important points are the following:

• The matrix A1,1 has no zero or multiple singular values,

• A1,1 has minimal dimensions and A2,2 maximal dimensions,

• All components of c1 in the left singular vector subspaces ofA1,1 are nonzero.
Then we can solve the TLS problem A1,1x1 � c1.

This approach gives the TLS solution determined by Golub and Van Loan [153] if
it exists. In the other case we obtain the nongeneric minimum norm TLS solution
of Van Huffel and Vandewalle [333].

“Core” formulations for ill-posed problems are used in the paper [301] by Sima
and Van Huffel. Hnětynkovà and Strakoš [190] show how to obtain the “core”
formulation from the Golub–Kahan bidiagonalization algorithm, see chapter 4.

14.3 Total Least Squares Secular Equation Solvers

In this section we are interested in solving the secular equations giving σn+1 or
approximations of these equations using the techniques we developed for comput-
ing estimates of quadratic forms. Let us first recall the secular equations we have
to consider. This methodology can be applied to the TLS problem if the solution
exists or to the problem which is given by the “core” formulation.

14.3.1 TLS and DLS Secular Equations
Let r and E be, respectively, the perturbations of the right-hand side c and the
matrix A. Let C = (A c) and (σCn+1)

2 be the smallest eigenvalue of CTC. Then
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the TLS solution xTLS solves the eigenvalue problem

CTC

(
x
−1

)
= (σCn+1)

2

(
x
−1

)
. (14.9)

The equation (14.9) can be written as(
ATA Ac
cTA cT c

)(
x
−1

)
= (σCn+1)

2

(
x
−1

)
. (14.10)

By eliminating x from equation (14.10) we find that σ2 = (σCn+1)
2 satisfies the

secular equation

cT c− cTA(ATA− σ2I)−1AT c = σ2. (14.11)

We are looking for the smallest σ2 satisfying this equation with σ < σmin(A), the
smallest singular value of A.

For data least squares (DLS) when only the matrix is perturbed, the secular equa-
tion is

cT c− cTA(ATA− σ2I)−1AT c = 0. (14.12)

To simplify these secular equations we can use the relation

I −A(ATA− σ2I)−1AT = −σ2(AAT − σ2I)−1,

which is valid if σ2 �= 0. Therefore, the secular equation (14.11) reduces to

cT (AAT − σ2I)−1c+ 1 = 0. (14.13)

The DLS secular equation (14.12) becomes

cT (AAT − σ2I)−1c = 0. (14.14)

Assuming that the matrix A of dimension m × n,m ≥ n is of full rank, the
secular equations can be written using the SVD of A = UΣV T , where U and V
are orthogonal matrices and Σ is a rectangular diagonal matrix of the same size as
A which can be written as

Σ =
(
D
0

)
,

where D is a diagonal matrix of order n with the singular values on the diagonal.
The matrix ATA is of order n and

ATA = V ΣTUTUΣV T = V ΣTΣV T = V D2V T .

The matrix V D2V T is the spectral decomposition of ATA. On the other hand, the
matrix AAT is of order m and

AAT = UΣV TV ΣTUT = UΣΣTUT = U

(
D2 0
0 0

)
UT .

The matrix AAT of order m is singular and of rank n. The secular equations can
be written using the SVD of A. Since

(ATA− σ2I)−1 = [V (D2 − σ2I)V T ]−1 = V (D2 − σ2I)−1V T ,
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equation (14.11) is

cT c− cTUΣ(D2 − σ2I)−1ΣTUT c = σ2.

Let ξ = UT c; the TLS secular equation (14.11) is

cT c−
n∑
i=1

ξ2i σ
2
i

σ2
i − σ2

= σ2. (14.15)

Similarly, the other form of the TLS secular equation is written as
n∑
i=1

ξ2i
σ2
i − σ2

−
m∑

i=n+1

ξ2i
σ2

+ 1 = 0. (14.16)

Are they equivalent (as they must be)? In equation (14.15) the term cT c is nothing
other than

cT c = cTUUT c =
m∑
i=1

ξ2i .

Therefore, equation (14.15) is
n∑
i=1

ξ2i

[
1− σ2

i

σ2
i − σ2

]
+

m∑
i=n+1

ξ2i = σ2.

This implies
m∑

i=n+1

ξ2i −
n∑
i=1

ξ2i σ
2

σ2
i − σ2

= σ2. (14.17)

Clearly, if σ2 �= 0, we can divide by σ2 and we recover equation (14.16). There-
fore, we can use either form of the TLS equation. However, they have different
properties since equation (14.16) has a pole at 0. To find the TLS solution we are
interested mainly in the behavior of the secular functions for σ ≤ σmin(A).

An example for equation (14.17) (as a function of σ) written as

σ2 −
m∑

i=n+1

ξ2i +
n∑
i=1

ξ2i σ
2

σ2
i − σ2

= 0 (14.18)

is displayed in figure 14.1. If we look at the same function as a function of σ2, we
have figure 14.2. An example for equation (14.16) (as a function of σ) is given in
figure 14.3. If we look at the same function as a function of σ2, we have figure 14.4.

It is not obvious which is the best form of equation to choose and which variable,
σ or σ2. Moreover, in some practical problems the poles can be very close to each
other. In the TLS problem, if σmin(A) is very close to zero, it may be difficult to
find a zero of the secular function in this interval.

14.3.2 Approximation of the TLS Secular Equation
We approximate the quadratic form in the TLS secular equation (14.11) by us-
ing the Golub–Kahan bidiagonalization algorithm with c as a starting vector. It
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Figure 14.1 Example of TLS secular function (14.17) as a function of σ
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Figure 14.2 Example of TLS secular function (14.17) as a function of σ2
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Figure 14.3 Example of TLS secular function (14.16) as a function of σ
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Figure 14.4 Example of TLS secular function (14.16) as a function of σ2
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is named “Lanczos bidiagonalization II” or “Bidiag 1” and has been described in
chapter 4. It reduces A to lower bidiagonal form and generates a matrix

Ck =




γ1

δ1
. . .
. . . . . .

. . . γk
δk



,

a (k + 1) × k matrix such that CTk Ck = Jk where Jk is the tridiagonal matrix
generated by the Lanczos algorithm for the matrix ATA.

At iteration k of the bidiagonalization algorithm, we approximate the TLS secu-
lar equation by

cT c− ‖c‖2(e1)TCk(CTk Ck − σ2I)−1CTk e
1 = σ2. (14.19)

This corresponds to the Gauss quadrature rule. To solve equation (14.19) when k is
not too large, we first use the SVD of Ck = UkSkV

T
k . We note that the number of

bidiagonalization iterations is generally small relative to the number of rows of A.
Hence, computing the SVD of Ck is cheap. Moreover, the SVD can be computed
incrementally from the previous iteration k − 1; see Bunch and Nielsen [44]. Let
σ

(k)
i be the singular values of Ck and ξ(k) = UTk e

1, the secular equation (14.19) is
written as

(ξ(k)k+1)
2

σ2
−

k∑
i=1

(ξ(k)i )2

(σ(k)
i )2 − σ2

=
1

‖c‖2
. (14.20)

To solve this equation in the interval ]0, σ(k)
min[ we use the secular equation solvers

of chapter 9. We note that as a by-product we can obtain an approximation of the
smallest singular value of A when computing the SVD of Ck. So we can (approxi-
mately) check the condition σ < σmin(A).

If we do not want to (or cannot) use the SVD ofCk, we can write equation (14.19)
as

1
‖c‖2

+ (e1)T (CkCTk − σ2)−1e1 = 0.

Then, we cannot use the secular equations solvers which do a partition of the secu-
lar equation in two pieces since this needs the knowledge of the poles. Moreover,
we cannot compute the good starting point proposed by Melman [232], [233]; see
chapter 9. But we can use rational interpolation, the function and its derivatives be-
ing computed by solving tridiagonal linear systems. When an approximate solution
σ2
TLS has been computed, the corresponding solution xTLS is obtained by solving

xTLS = (ATA− σ2
TLSI)

−1AT c.

If A is not too large, one can store the vectors qk computed during the bidiagonal-
ization algorithm. Then, if k is the number of iterations and Jk = CTk Ck, we can
solve (Jk − σ2

TLSI)z = ‖AT c‖e1 and we obtain the solution with xTLS = Qkz.
When A is large it is not feasible to store the vectors qk. The bidiagonalization
algorithm has to be rerun to obtain the solution.
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14.3.3 The Gauss–Radau Rule
We implement the Gauss–Radau rule to approximate the quadratic form in the TLS
secular equation (14.11) by using the Golub–Kahan bidiagonalization algorithm
with AT c as a starting vector. It is named “Lanczos bidiagonalizaion I” or “Bidiag
2”; see chapter 4. It reduces A to upper bidiagonal form. If

Bk =



γ1 δ1

. . . . . .
γk−1 δk−1

γk


 ,

the matrix Bk is the Cholesky factor of the Lanczos matrix Jk and BTk Bk = Jk.
The Gauss rule approximates equation (14.11) by

‖c‖2 − ‖AT c‖2(e1)T (BTk Bk − σ2I)−1e1 = σ2.

To obtain the Gauss–Radau rule we must modify Jk (or Bk) in order to have a
prescribed eigenvalue z. Let ω be the solution of

(BTk Bk − zI)ω = (γk−1δk−1)2ek,

where ek is the last column of the identity matrix of order k. Then, let

ω̃k = (z + ωk)− (γk−1δk−1)2

γ2
k−1

= (z + ωk)− δ2k−1.

The modified matrix giving the Gauss–Radau rule is

B̃k =



γ1 δ1

. . . . . .
γk−1 δk−1

γ̃k


 ,

where γ̃k =
√
ω̃k. Using B̃k we solve the secular equation

‖c‖2 − ‖AT c‖2(e1)T (B̃Tk B̃k − σ2I)−1e1 = σ2, (14.21)

by using the SVD of B̃k. This gives

f(t) = α+ ρt+
k∑
i=1

ξ2i
di − t

= 0,

where σ2 = σ2
min + ρt with ρ = ‖AT c‖2, α = σ2

min − ‖c‖2. The variable in the
denominator is di = (σ2

i − σ2
min)/ρ. The vector ξ is defined as ξ = V Tk e

1 where
B̃k = UkSkV

T
k is the SVD of B̃k.

This equation is solved using the Newton method or preferably a rational ap-
proximation a+ b/t of the sum. This leads to solving a quadratic equation but we
are only interested in the negative solution.

In the following numerical experiments we will also check the convergence of
the smallest singular value of Ck to stop the Lanczos iterations. The matrix CTk Ck
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is tridiagonal. When we want to compute the smallest eigenvalue of Jk+1 =
CTk+1Ck+1 we need to compute the smallest root of the equation

f(λ) = λ− αk+1 − η2
k(e

k)T (Jk − λI)−1ek = 0.

We use a third-order rational interpolation such that

a+ bλ+
c

θ1 − λ
= f

for a given λ, where θ1 is the smallest eigenvalue of Jk. The coefficients a, b and c
are found by solving the previous equation together with

b+
c

(θ1 − λ)2
= f ′,

2c
(θ1 − λ)3

= f ′′.

The first and second derivatives are given by

f ′(λ) = 1 + η2
k(e

k)T (Jk − λI)−2ek,

f ′′(λ) = 2η2
k(e

k)T (Jk − λI)−3ek.

The function and the derivatives are computed (for a given λ) by solving tridiagonal
linear systems. The starting value of λ is taken as a number a little smaller than θ1.

14.3.4 Numerical Experiments
In this section we report numerical experiments in which we solve the TLS secular
equations. We start with a straightforward application of the algorithms of chap-
ter 9. Then, we show how to improve them by trying to do a smaller number of
secular solver iterations.
The Gauss Rule

We use examples derived from those of U. von Matt for solving ill-posed prob-
lems; see chapter 15. Let As be an m× n matrix such that

As = UsΣsV Ts , Us = I − 2
usu

T
s

‖us‖2
, Vs = I − 2

vsv
T
s

‖vs‖2
,

where us and vs are random vectors (generated using “randn”). Σs is an m × n
diagonal matrix with diagonal elements [1, . . . ,

√
n]. Let xs be a vector whose ith

component is 1/i and cs = Asxs. The matrix is generated as

A = As + ξ randn(m,n).

The right-hand side is

c = cs + ξ randn(m, 1).

The parameter ξ is 0.3. We begin with a small example (Example TLS1) with
m = 100 and n = 50. The smallest singular value of A is 1.5565918. The
smallest singular value of [A, c] which is the “exact” solution of the TLS problem
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is 1.464891451263777. Therefore, the sufficient condition for the existence of the
TLS solution is satisfied.

To attain a relative change of ε = 10−6 for σ2, it requires 28 bidiagonalization
iterations. The total number of iterations of the secular equation solver using algo-
rithm BNS1 (see chapter 9) is 73, the minimum number of iterations per bidiago-
nalization step is 1, the maximum 3 and the average 2.52. The solution computed
by the Gauss rule is 1.464892131470029 with six exact decimal digits. Results for
the other algorithms of chapter 9 are given in table 14.1. The column “Secul. it.”
gives the total number of iterations for all the Lanczos steps. The column “Av. it.”
is the average number of secular iterations per Lanczos step.

Table 14.1 Example TLS1,m = 100, n = 50, ε = 10−6

Method Lanczos it. Secul. it. Min it. Max it. Av. it. Solution
BNS1 28 73 1 3 2.52 1.464892131470029
BNS2 28 74 1 3 2.55 1.464892131470029
MW 28 73 1 3 2.52 1.464892131470029
FW1 28 73 1 3 2.52 1.464892131470029
GR 28 74 1 3 2.55 1.464892131470028

Note that all methods give (almost) the same number of secular iterations. With
a stopping criterion of 10−10, the number of Lanczos iterations is 38 with a total
of 108 secular iterations for BNS1. The solution is 1.464891451267460 with 12
exact decimal digits. Results are given in table 14.2. Note that these approximate
solutions are upper bounds. This is because the Gauss rule gives a lower bound for
the quadratic form and the graph of the approximate function is below the graph
of the exact one. Since it is an increasing function between poles, the approximate
root is to the right of the exact one.

Table 14.2 Example TLS1,m = 100, n = 50, ε = 10−10

Method Lanczos it. Secul. it. Min it. Max it. Av. it. Solution
BNS1 38 108 1 3 2.77 1.464891451267460
BNS2 38 108 1 3 2.77 1.464891451267460
MW 38 108 1 3 2.77 1.464891451267460
FW1 38 108 1 3 2.77 1.464891451267460
GR 38 109 1 3 2.79 1.464891451267460

With the same problem let us vary the level of noise ξ. Results using BNS1 are
given in table 14.3. The number of Lanczos iterations does not depend too much
on ξ.

Then we increase the size of the problem to m = 1000 and n = 500 (Example
TLS2). The smallest singular value of A is 5.230339. The smallest singular value
of [A, c] is 5.200943688079055.

To attain a stopping criterion of 10−6, it takes 75 bidiagonalization iterations.
The total number of iterations of the secular solver using BNS1 is 263, the min-
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Table 14.3 Example TLS1,m = 100, n = 50, BNS1 ε = 10−6

Noise Lanczos it. Secul. it. Solution Exact solution
0.3 10−2 30 57 0.01703479103104873 0.01703478979190218
0.3 10−1 26 49 0.169448388286749 0.1694483528865543

0.3 28 73 1.464892131470029 1.464891451263777
30 33 64 88.21012648624229 88.21012652906667

imum number per bidiagonalization step is 1, the maximum 5 and the average is
3.46. The Gauss rule computed solution is 5.200958880262121 with five exact
decimal digits. Results are given in table 14.4. There is not much difference in the
number of secular iterations except for GR.

Table 14.4 Example TLS2,m = 1000, n = 500, ε = 10−6

Method Lanczos it. Secul. it. Min it. Max it. Av. it. Solution
BNS1 75 263 1 5 3.46 5.200958880262121
BNS2 75 257 1 5 3.38 5.200958880262426
MW 75 263 1 5 3.46 5.200958880262122
FW1 75 263 1 5 3.46 5.200958880262118
GR 75 244 1 4 3.21 5.200958880262104

With a criterion of 10−10, the number of iterations is 101 with a total of secular
iterations of 431. The solution is 5.200943723128725 with seven exact decimal
digits. Results are given in table 14.5.

Table 14.5 Example TLS2,m = 1000, n = 500, ε = 10−10

Method Lanczos it. Secul. it. Min it. Max it. Av. it. Solution
BNS1 101 431 1 5 4.23 5.200943723128725
BNS2 101 441 1 5 4.32 5.200943723128731
MW 101 431 1 5 4.23 5.200943723128735
FW1 101 431 1 5 4.23 5.200943723128736
GR 101 440 1 5 4.31 5.200943723128733

For larger problems we were not able to store A which is a dense matrix in
Matlab. We use the vectors us and vs to do matrix multiplies with As or ATs .
Therefore, since we do not store As, we cannot perturb the matrix by adding a
random perturbation matrix. After computing the right-hand side, we perturb the
singular values in the same way as the right-hand side. Negative singular values
after perturbations are replaced by 10−2 times a random number.

First, we use the same initial singular value distribution as in the previous exam-
ples. To see the differences with the previous examples, we use a small problem
with m = 100, n = 50 and the same noise as before. The smallest singular value
of A is 1.119018116118189 and the TLS parameter is 0.9286027768624542. Note
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that the solution is much smaller than the minimum singular value of A. We did
28 Lanczos bidiagonalization iterations with a stopping criterion of 10−6. The so-
lution given by the Gauss rule is 0.9286027937283224 obtained with 64 secular
equation solver iterations using BNS1. We observe the same behavior as with Ex-
ample TLS1.

Then we solve a larger problem with m = 10000, n = 5000 (Example TLS3).
The smallest singular value of A is 1.418961206071727. For this problem, it is not
feasible to compute the “exact” TLS parameter using the SVD of [A, c]. Since all
methods give more or less the same results, we only give the results for BNS1 in
table 14.6.

Table 14.6 Example TLS3,m = 10000, n = 5000, noise = 0.3

ε Method Lanc. it. Secul. it. Min it. Max it. Av. it. Solution
10−6 BNS1 250 273 1 2 1.09 1.418582932414374
10−10 BNS1 328 660 1 3 2.01 1.418576233569240

Since we now have a good way to compute the solution of the TLS secular equa-
tion, let us try to optimize the algorithm. To save computing time we may start
solving the secular equation only after some Lanczos bidiagonalization iterations
since the solution obtained at the beginning is not really meaningful. It is an open
problem to decide how many Lanczos iterations have to be done before starting to
solve the secular equation. Another possibility which is explored in table 14.7 is
to compute the SVD of Bk and to solve the secular equation only every ν Lanczos
iterations. We use a frequency of 10 or 50 iterations.

Table 14.7 Example TLS3,m = 10000, n = 5000, noise = 0.3, ε = 10−6

ν Method Lanc. it. Secul. it. Min it. Max it. Av. it. Solution
10 BNS1 251 29 1 2 0.12 1.418582271405106
50 BNS1 301 8 1 1 0.03 1.418576255595023

The total number of secular equation solves is greatly reduced. Moreover, we
compute fewer SVDs. With ν = 50, since we are monitoring the convergence of
the TLS parameter to stop the Lanczos iteration, we are doing 50 more Lanczos
iterations than necessary because for 250 iterations the criteria is not satisfied. This
means that the stopping criterion at convergence is much less than 10−6; in fact its
value is 3.75867 10−9.

Another possibility for stopping the Lanczos iterations is to monitor the conver-
gence of the smallest singular value of Bk without solving the TLS secular equa-
tion. Figure 14.5 shows the convergence (relative difference between successive
iterates) of the TLS parameter σ2 (solid) and the convergence of the smallest sin-
gular value of A squared. We see that (at least for this example) they decay in the
same way since the curves are almost superimposed except at the very beginning.
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Thus, we “just” have to find a cheap way to compute the smallest singular value of
Bk. We can solve the TLS secular equation and compute the full SVD of Bk (with
singular values and singular vectors) only when we decide to stop.
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0

Figure 14.5 Convergence of TLS parameter (solid) and smallest singular value squared
(dashed)

In the computations of table 14.8, we monitor the convergence of the smallest
singular value (which is computed using the SVD of Bk). The Lanczos iterations
are stopped when the relative difference is smaller than the TLS criteria. Then,
the full SVD (with the singular vectors) is computed to solve the secular equation.
Moreover, the convergence of the smallest singular value is checked only every
ν iterations. We see that we have reduced the number of secular iterations to a
minimum.

Table 14.8 Example TLS3,m = 10000, n = 5000, noise = 0.3, ε = 10−6

ν Method Lanc. it. Secul. it. Min it. Max it. Solution
10 BNS1 250 1 1 1 1.418582932414374
50 BNS1 301 1 1 1 1.418576255595023

The Gauss–Radau Rule
We begin with the small Example TLS1. The Gauss–Radau approximations are

computed with
√
z chosen as the exact smallest and largest singular values of A.

As we will see later this is not a problem if we compute the Gauss estimate first
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because we can then obtain good estimates of the extreme singular values. Results
are given in tables 14.9 and 14.10 for which we solve the secular equation at each
iteration. We use the Newton method (Newt) and a rational interpolation (Rat).

Table 14.9 Example TLS1,m = 100, n = 50, Gauss–Radau, noise = 0.3, ε = 10−6

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 28 σmin 130 2 14 4.48 1.464891376927382
Newt 28 σmax 79 2 4 2.72 1.464892626809155

Rat 28 σmin 98 2 5 3.38 1.464891376927382
Rat 28 σmax 74 2 3 2.55 1.464892626809155

Table 14.10 Example TLS1,m = 100, n = 50, Gauss–Radau, noise = 0.3, ε = 10−10

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 38 σmin 172 2 15 4.41 1.464891451263721
Newt 38 σmax 118 2 4 3.03 1.464891451304268

Rat 38 σmin 133 2 6 3.41 1.464891451263721
Rat 38 σmax 113 2 4 2.90 1.464891451304268

Table 14.11 Example TLS2,m = 1000, n = 500, Gauss–Radau, noise = 0.3, ε = 10−6

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 75 σmin 370 3 11 4.87 5.200942068935540
Newt 75 σmax 216 2 4 2.84 5.200960368809433

Rat 75 σmin 320 3 5 4.21 5.200942068935540
Rat 75 σmax 208 2 8 2.74 5.200960368809433

Table 14.12 Example TLS2,m = 1000, n = 500, Gauss–Radau, noise = 0.3, ε = 10−10

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 101 σmin 488 2 12 4.87 5.200943687659306
Newt 101 σmax 323 2 4 3.17 5.200943728774683

Rat 101 σmin 422 2 6 4.14 5.200943687659305
Rat 101 σmax 321 2 8 3.15 5.200943728774683

Results for large examples are in tables 14.11-14.14. The number of secular
iterations is large. For these examples we can just compute the Gauss solution
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Table 14.13 Example TLS3,m = 10000, n = 5000, Gauss–Radau, noise = 0.3, ε = 10−6

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 250 σmin 2572 3 31 10.25 1.418576232676234
Newt 250 σmax 1926 3 26 7.67 1.418583305908228

Rat 250 σmin 837 2 5 3.33 1.418576232676233
Rat 250 σmax 653 2 4 2.60 1.418583305908227

Table 14.14 Example TLS3,m = 10000, n = 5000, Gauss–Radau, noise = 0.3, ε = 10−10

Method Lanc. it.
√

z Secul. it. Min it. Max it. Av. it. Solution
Newt 328 σmin 3000 2 32 9.12 1.418576233569240
Newt 328 σmax 2335 2 26 7.10 1.418576233598322

Rat 328 σmin 2093 2 51 6.36 1.418576233174081
Rat 328 σmax 2142 2 51 6.51 1.418576233598324

and compute the Gauss–Radau solution when we decide that the Gauss estimate
has converged. Moreover, we can compute the Gauss solution only every ν it-
erations. Results are given in table 14.15 for ν = 10 where “Secul. it.” is the
number of secular iterations for Gauss–Radau at the end of the iterations. The
Gauss estimate needs 29 secular equation solver (BNS1) iterations and the solution
is 1.418582271405106. Table 14.16 gives the results for ν = 50. The total number
of secular equation solver iterations is 8 and the solution is 1.418576255595023.

Table 14.15 Example TLS3,m = 10000, n = 5000, Gauss–Radau, noise = 0.3, ε = 10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Newt 10 251 σmin 3 1.418576232734915
Newt 10 251 σmax 3 1.418582638031528

Rat 10 251 σmin 2 1.418576232734914
Rat 10 251 σmax 2 1.418582638031525

Table 14.16 Example TLS3,m = 10000, n = 5000, Gauss–Radau, noise = 0.3, ε = 10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Newt 50 301 σmin 2 1.418576233173016
Newt 50 301 σmax 2 1.418576256849264

Rat 50 301 σmin 2 1.418576233173017
Rat 50 301 σmax 2 1.418576256849263

Now, we monitor the convergence of the smallest singular value of A (computed



TOTAL LEAST SQUARES 275

using the SVD) every ν iterations to stop the Lanczos bidiagonalization iterations.
Therefore, we compute only the Gauss and Gauss–Radau solutions at the end of the
Lanczos iterations. The Gauss–Radau computations are done with the smallest and
largest singular values of Bk at convergence. The results are given in table 14.17.

Table 14.17 Example TLS3,m = 10000, n = 5000, Gauss–Radau, noise = 0.3, ε = 10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Gauss 10 250 - 1 1.418582932414374

Newt 10 250 σmin(Bk) 1 1.418582932414377
Newt 10 250 σmax(Bk) 3 1.418583305908215

Rat 10 250 σmin(Bk) 1 1.418582932414372
Rat 10 250 σmax(Bk) 2 1.418583305908213

Example TLS4 is the same problem as TLS3 but with m = 100000 and n =
50000. The version checking the convergence of the smallest singular value of A
gives the results of table 14.18. We observe that we have to do a large number of
Lanczos bidiagonalization iterations.

Table 14.18 Example TLS4, m = 100000, n = 50000, Gauss–Radau, noise = 0.3, ε =
10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Gauss 50 801 - 1 0.8721024989570489

Newt 50 801 σmin(Bk) 1 0.8721024989575631
Newt 50 801 σmax(Bk) 2 0.8721025571544376

Rat 50 801 σmin(Bk) 1 0.8721024989574467
Rat 50 801 σmax(Bk) 2 0.8721025571545402

In Example TLS5 we keep the same value of m = 100000 and reduce the value
of n to n = 5000. Results are given in table 14.19.

Table 14.19 Example TLS5, m = 100000, n = 5000, Gauss–Radau, noise = 0.3, ε =
10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Gauss 50 351 - 1 1.168845952730205

Newt 50 351 σmin(Bk) 1 1.168845952730189
Newt 50 351 σmax(Bk) 2 1.168845953038015

Rat 50 351 σmin(Bk) 1 1.168845952729973
Rat 50 351 σmax(Bk) 2 1.168845953037930

In Example TLS6 we keep the same value of m = 100000 and change the value
of n to n = 500. The problem is easier to solve. Results are given in table 14.20.

In the next computations, we monitor the convergence of the smallest singular
value by solving a secular equation at every Lanczos iteration. The total number
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Table 14.20 Example TLS6,m = 100000, n = 500, Gauss–Radau, noise = 0.3, ε = 10−6

Method ν Lanc. it.
√

z Secul. it. Solution
Gauss 50 150 - 1 1.291969588729442

Newt 50 150 σmin(Bk) 1 1.291969588729447
Newt 50 150 σmax(Bk) 1 1.291969588729463

Rat 50 150 σmin(Bk) 1 1.291969588729486
Rat 50 150 σmax(Bk) 2 1.291969588729502

of iterations to solve these secular equations is given under the name “trid”. If
the rational approximation method does not converge well, we use bisection. The
Gauss and Gauss–Radau solutions are computed only at the end using the SVD of
Bk and Newton iterations.

Table 14.21 Example TLS3,m = 10000, n = 5000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 250 551

Gauss - 1 1.418582932414377

G-R σmin(Bk) 1 1.418582932414377
G-R σmax(Bk) 1 1.418583305908215

We see that for Example TLS4 in table 14.22, the iterations are stopped a little too
early. Therefore we may want to use a smaller stopping criterion when computing
the smallest singular value in this way. In tables 14.23 and 14.24 we decrease the
value of n.

Table 14.22 Example TLS4,m = 100000, n = 50000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 750 1603

Gauss - 1 0.8721144459858997

G-R σmin(Bk) 1 0.8721144459856636
G-R σmax(Bk) 3 0.8721146975760565

In the next computations (tables 14.25–14.28) we solve all the secular equations
by using a third-order rational approximation and by solving tridiagonal systems to
compute the function and its derivatives instead of using the SVD of Bk. Note that
we have to solve the equation for the smallest singular value at every iteration since
we have to know in which interval we have to look for the solution. This algorithm
is more or less the best we can do without using SVDs.

Then, we change the singular value distribution. In descending order the singular
values are σi = exp(−3 10−8i), i = 1, . . . , n. First, in Example TLS7 we usem =
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Table 14.23 Example TLS5,m = 100000, n = 5000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 294 634

Gauss - 1 1.168850294618886

G-R σmin(Bk) 1 1.168850294618983
G-R σmax(Bk) 3 1.168850447388590

Table 14.24 Example TLS6,m = 100000, n = 500, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 92 211

Gauss - 1 1.291970910578612

G-R σmin(Bk) 1 1.291970910578655
G-R σmax(Bk) 3 1.291971161042421

Table 14.25 Example TLS3,m = 10000, n = 5000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 250 551

Gauss - 2 1.418582932414440

G-R σmin(Bk) 2 1.418582932414443
G-R σmax(Bk) 3 1.418583305908306

Table 14.26 Example TLS4,m = 100000, n = 50000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 755 1775

Gauss - 1 0.8721122166701496

G-R σmin(Bk) 2 0.8721122166735605
G-R σmax(Bk) 3 0.8721124331415380

Table 14.27 Example TLS5,m = 100000, n = 5000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 293 634

Gauss - 1 1.168850294619013

G-R σmin(Bk) 2 1.168850294618839
G-R σmax(Bk) 3 1.168850513547429
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Table 14.28 Example TLS6,m = 100000, n = 500, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 92 211

Gauss - 1 1.291999525873749

G-R σmin(Bk) 2 1.291970910578657
G-R σmax(Bk) 3 1.291971119694316

100, n = 50. The smallest singular value ofA is 0.1611919831064825 and the TLS
parameter, which is 0.1611917031832353, is very close to the smallest singular
value. Monitoring the convergence of the smallest singular value, we obtain the
results of table 14.29. Results in table 14.30 are obtained with ε = 10−10. Note
that most of the solutions are upper bounds.

Table 14.29 Example TLS7,m = 100, n = 50, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 28 70

Gauss - 2 0.1611917162057354

G-R σmin(Bk) 2 0.1611917162057353
G-R σmax(Bk) 2 0.1611917212163983

Table 14.30 Example TLS7,m = 100, n = 50, noise = 0.3, ε = 10−10

Method Lanc. it. Trid
√

z Secul. it. Solution
- 33 280

Gauss - 3 0.1611917031833536

G-R σmin(Bk) 3 0.1611917031831545
G-R σmax(Bk) 3 0.1611917031833930

Example TLS8 uses m = 10000 and n = 5000. Results are in table 14.31,
monitoring the smallest singular value to stop the Lanczos iterations and using
tridiagonal systems to compute functions and derivatives. However, in this com-
putation we do not obtain a good approximation of the smallest singular value of
A. The approximate value is 1.155072478369476 10−3 whereas the “exact” result
is 1.153611860471415 10−3. Moreover, the computed TLS parameters are larger
than the exact σmin(A). Increasing the precision, we have the results of table 14.32.
Then, the computed minimum singular value is 1.153611860609424 10−3. How-
ever, as we can see, this computation is much more expensive and the secular equa-
tions are difficult to solve, some of the tridiagonal systems being almost singular.

If we use m = 10000 and n = 500 (Example TLS9) the problem is much easier
to solve. The exact smallest singular value of A is 0.2379927701875446 and the
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computed one is 0.2379928280610862. The results are given in table 14.33.

Table 14.31 Example TLS8,m = 10000, n = 5000, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 379 884

Gauss - 2 1.154993988896189 10−3

G-R σmin(Bk) 2 1.154993976869066 10−3

G-R σmax(Bk) 3 1.154994276316134 10−3

Table 14.32 Example TLS8,m = 10000, n = 5000, noise = 0.3, ε = 10−10

Method Lanc. it. Trid
√

z Secul. it. Solution
- 503 10445

Gauss - 87 1.153540337993690 10−3

G-R σmin(Bk) 87 1.153540337993690 10−3

G-R σmax(Bk) 3 1.153540341197251 10−3

Table 14.33 Example TLS9,m = 10000, n = 500, noise = 0.3, ε = 10−6

Method Lanc. it. Trid
√

z Secul. it. Solution
- 92 260

Gauss - 3 0.2379928280610862

G-R σmin(Bk) 3 0.2379902725954008
G-R σmax(Bk) 3 0.2379902838087289

To summarize, we have seen in this chapter that we can compute the parameter
σn+1 of the TLS problem by using the approximation from the Golub–Kahan bidi-
agonalization algorithm and efficient solvers for the secular equations. We have
optimized the algorithm. For Example TLS3 with m = 10000, n = 5000 and
ε = 10−6, solving the secular equations at each iteration, the computing time was
117 seconds. For the last optimized version using a rational approximation and
solving tridiagonal systems the computing time is 12 seconds.



Chapter Fifteen

Discrete Ill-Posed Problems

15.1 Introduction to Ill-Posed Problems

Problems are generally defined as ill-posed (as defined by J. Hadamard) when the
solution is not unique or does not depend continuously on the data. More practi-
cally, problems are said to be ill-posed when a small change in the data may cause
a large change in the solution. Strictly speaking, problems cannot be ill-posed in
Hadamard’s sense in finite dimension, but problems whose solution is sensitive to
perturbations of the data are called discrete ill-posed problems (DIP); see Hansen
[178]. This is typically what may happen in the solution of least squares problems.
Looking back at the solution of Ax ≈ c given in equation (13.2), we see that if the
matrix A has small nonzero singular values (and if the corresponding projections
of the perturbed right-hand side (ui)T (c + ∆c) are not small) then the perturbed
solution can be much different from xLS .

As a small example (close to one defined by P. C. Hansen), let us define

A =


 0.15 0.1
0.16 0.1
2.02 1.3


 , c+∆c = A

(
1
1

)
+


 0.01

−0.032
0.01


 .

We added a small perturbation to a right-hand side corresponding to a solution with
all components equal to 1. The solution of the perturbed least squares problem
(rounded to four decimals) using the QR factorization of A is

xQR =
(−2.9977
7.2179

)
,

which is quite different from the unperturbed solution. However, the norm of the
residual is small being 0.0295. Rounded to four decimal digits the SVD of A is

U =


−0.0746 0.7588 −0.6470

−0.0781 −0.6513 −0.7548
−0.9942 −0.0058 0.1078


 , Σ =


 2.4163 0

0 0.0038
0 0


 ,

V =
(−0.8409 −0.5412
−0.5412 0.8409

)
.

The component (u2)T∆c/σ2 (u2 being the second column of U ) corresponding
to the smallest nonzero singular value is large, being 6.2161. This gives the large
change in the solution. Of course, the computed solution is not really useful. We
would have preferred computing something close to ( 1 1 )T which is the solution
without noise.
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The solution of ill-posed linear systems arise in many areas of scientific comput-
ing; see, for instance, Engl [102], Hanke and Hansen [173], Tikhonov [324] and
Varah [334]. Many problems in seismology, signal processing, medical imaging
and image restoration (Adorf [1], Bardsley, Jefferies, Nagy and Plemmons [21],
Hanke [170], Hanke and Nagy [174], Nagy, Palmer and Perrone [246], Thompson,
Brown, Kay and Titterington [326], Vio, Nagy, Tenorio and Wamsteker [335]) as
well as other scientific areas lead to integral equations of the first kind like∫ 1

0

k(s, t)f(t) dt = g(s) + e(s),

where k(s, t) is the kernel, the right-hand side corresponds to measurements, e
being an unknown noise, and f is the solution we are seeking. When discretized
with quadrature and collocation, this often leads to discrete ill-posed problems.
These problems are also called inverse problems since they amount to computing
the cause from the results of some measurements.

We now consider the finite dimensional case with an overdetermined linear sys-
tem

Ax ≈ c = c̄− e,

where A is a matrix of dimension m × n,m ≥ n and the right-hand side c̄ is
contaminated by a (generally) unknown noise vector e. The standard solution of
the least squares problem min ‖c−Ax‖ (even using backward stable methods like
QR) may give a vector x severely contaminated by noise. This may seem hopeless.
However, a way to compute something useful is to modify the problem into another
problem whose solution can be computed more reliably. This process is called
regularization. Of course this will not give the solution of the original unperturbed
problem. Hence, we have to find a balance between obtaining a problem that we
can solve reliably and obtaining a solution which is not too far from the solution
without noise.

15.1.1 Truncated SVD
When the dimension of the problem is small enough and the SVD of A can be
computed, one can obtain an approximate solution by neglecting the terms corre-
sponding to the smallest singular values (which are labeled with the largest indices
in our notation). The LS solution is

xLS =
r∑
i=1

(ui)T c
σi

,

where r is the rank of A. The regularized solution by truncated SVD (TSVD) is

xTSV D =
k∑
i=1

(ui)T c
σi

,

with k < r. This threshold integer k can be seen as the regularization parameter.
The TSVD solution can also be written as a filtered solution

xTSV D =
r∑
i=1

fi
(ui)T c
σi

.
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Here, the values of the filter coefficients fi are particularly simple being 1 for i ≤ k
and 0 otherwise.

15.1.2 Tikhonov Regularization
One of the most popular regularization methods to obtain a meaningful solution
is Tikhonov regularization (see Tikhonov [324], Tikhonov and Arsenin [325]) in
which the linear system or the LS problem is replaced by the minimization problem

min
x

{‖c−Ax‖2 + µ‖x‖2}, (15.1)

where µ ≥ 0 is a regularization parameter to be chosen. For some problems (par-
ticularly in image restoration) it is better to consider

min
x

{‖c−Ax‖2 + µ‖Lx‖2}, (15.2)

where L is typically the discretization of a derivative operator of first or second
order. Numerically the problem (15.2) is solved by considering it as a least squares
problem

min
∥∥∥∥
(

A√
µL

)
x−

(
c
0

)∥∥∥∥ ,
whose solution is obtained using orthogonal transformations or iterative methods.

One can also consider other norms than the l2 norm, for instance the l1 norm.
Another possible extension is to use more than one penalty term by writing the
functional to be minimized as

k

(
‖c−Ax‖2 +

k∑
i=1

µi‖Lix‖2

)
.

For such an approach, see, for instance, Brezinski, Redivo–Zaglia, Rodriguez and
Seatzu [41] and Belge, Kilmer and Miller [26]. Tikhonov regularization has also
been used with total least squares by Golub, Hansen and O’Leary [161].

The solution xµ of the problem (15.1) solves the linear system

(ATA+ µI)x = AT c. (15.3)

This is the so-called normal equations. The choice of the regularization parameter
µ is crucial since if µ is too small the solution is contaminated by the noise in
the right-hand side (as it is with µ = 0), on the other hand if µ is too large the
solution is a poor approximation of the original problem. Many methods have been
devised for choosing µ; see Golub and von Matt [158] for an overview. As we will
see, most of these methods lead to the evaluation of bilinear forms with different
matrices. We will consider in more detail two of these techniques: generalized
cross-validation and the L-curve criterion.

When the dimension is small enough the regularized solution xµ can be com-
puted using the SVD of A as

xµ =
n∑
i=1

σi(ui)T c
σ2
i + µ

vi,
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ifA has full rank. This can be seen as a filtered solution, the filter coefficients being

fi =
σ2
i

σ2
i + µ

.

For the large singular values σi the filter fi is almost 1, when it is close to zero for
the smallest singular values if they are near zero.

If L = I the problem is said to be in standard form. Otherwise it is in general
form. In this case the generalized singular value decomposition (GSVD; see, for
instance, Golub and Van Loan [154]) can be used. The factorization of the pair
(A, L) is

A = U


Γ 0
0 In−p
0 0


W−1, L = V (Υ 0 )W−1, (15.4)

where L is p × n and m ≥ n ≥ p. The matrices U(m × m) and V (p × p)
are orthonormal and the nonsingular matrix W is n × n. The matrices Γ and Υ
with diagonal elements γi and τi are diagonal with γ2

i + τ2
i = 1. The generalized

singular values of the matrix pencil (A L ) are defined as σi = γi/τi. The last
n − p columns of W form a basis of the null space of L. If L = I the GSVD
reduces to the SVD of A.

For the generalized form, the regularized solution is written as

xµ =
p∑
i=1

σ2
i

σ2
i + µ

(ui)T c
γi

wi +
n∑

i=p+1

(ui)T cwi.

The second term in the right-hand side is the (unregularized) component of the
solution in the null space of L.

All problems in general form can be reduced to problems in standard form; see,
for instance, Hanke and Hansen [173]. In the next paragraphs we describe some
ways for choosing the regularization parameter µ for problems in standard form.
For other methods, see O’Leary [250].

15.1.3 Morozov’s Discrepancy Principle
This method (see Morozov [244]) can be used only if the (norm of the) noise vector
e is known. The value of the regularization parameter µ is chosen such that the
norm of the residual equals the norm of the noise vector using the mathematical
solution from equation (15.3),

‖c−A(ATA+ µI)−1AT c‖ = ‖e‖.
This equation can also be written as

µ2cT (AAT + µI)−2c = ‖e‖2,

and has a unique positive solution which can be obtained by using the SVD of A
if the dimension of the problem is not too large. We have A = UΣV T and by
denoting d = UT c, the previous relation is written as

µ2dT (Σ + µI)−2d = ‖e‖2.
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Considered as a function of µ the left-hand side is an increasing function whose
value is 0 for µ = 0. When µ → ∞ the left-hand side tends to ‖c‖2. Hence, if
‖e‖ ≤ ‖c‖ which is usually the case, there is a unique solution that can be com-
puted with any scalar root finding algorithm or from the secular equation solvers of
chapter 9.

15.1.4 The Gfrerer/Raus Method
This method (see Gfrerer [136], Hanke and Raus [175]) also needs knowledge of
the norm of the noise vector. The parameter is chosen such that

µ3cT (AAT + µI)−3c = ‖e‖2.

As for the discrepancy principle, there is usually a unique solution to this equation.
In fact, the paper [136] considers the problem posed in Hilbert spaces and uses the
iterated Tikhonov regularization in which one computes a sequence of solutions xj

given by

(ATA+ µI)xj = AT c+ µxj−1, j = 1, . . . , k.

The Gfrerer/Raus criterion is obtained by minimizing an upper bound of

‖(ATA+ µI)−1c− (ATA)−1c̄‖.

15.1.5 The quasi-Optimality Criterion
This criterion (Leonov [224]) chooses µ as a positive minimizer of

µ2cTA(ATA+ µI)−4AT c.

Note that with this criterion we do not have to know the norm of the noise vector.
It involves computations of a quadratic form.

15.1.6 The L-curve Criterion
In [223], Lawson and Hanson observed that a “good” way to see how the regular-
ized solution xµ depends on the parameter µ is to plot the curve (‖xµ‖, ‖b−Axµ‖)
obtained by varying the value of µ ∈ [0,∞). This curve is known as the L-curve
since it is (in many circumstances) shaped as the letter “L”. Actually it is even
more illuminating to look at this curve in a log-log scale as suggested by Hansen
and O’Leary [180]. Lawson and Hanson [223] proposed to choose the value µL
corresponding to the “vertex” or the “corner” of the L-curve that is the point with
maximal curvature; see also Hansen and O’Leary [180] and Hansen [176], [178].

A motivation for choosing the “vertex” is, as we said before, to have a balance
between µ being too small and the solution contaminated by noise, and µ being
too large giving a poor approximation of the solution. The “vertex” of the L-curve
gives an average value between these two extremes.

The properties of the L-curve have been investigated in [180]. Let η2 = ‖xµ‖2

and ρ2 = ‖c−Axµ‖2 be functions of µ. In [180] it is proved that

d(η2)
d(ρ2)

= − 1
µ
,
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and this derivative is negative since µ > 0. Computation of the second derivative
shows that the L-curve in linear scale is convex and steeper as µ approaches the
smallest singular value. The L-curve has also been studied by Regińska [277] for
different scaling functions, mainly the square root and the logarithm. In this paper
it is proved that the L-curve remains decreasing in any differentiable strictly mono-
tonic scale (which is the case for the logarithm). However, Regińska exhibited
conditions under which the L-curve in logarithmic scale is (partly) strictly concave.
It was suggested to choose a µ giving a local minimum of ‖xµ‖ ‖c−Axµ‖λ. Con-
ditions for having these minima and their relations to the L-curve are given in [277].
For the limitations of the L-curve criterion, see also Hanke [169] and Vogel [336],
who showed that the L-curve approach may give regularized solutions which fail
to converge for certain classes of problems.

A major problem in determining an approximate value of µL in large ill-posed
problems for which the SVD of A is not available is that it is expensive to compute
points on the L-curve. The computation of each point needs the solution of a mini-
mization problem (15.1). Usually one computes only a few points on the curve and
determines a value of the regularization parameter (not necessarily “optimal”) by
interpolation. This is discussed in Hansen and O’Leary [180].

In [51] Calvetti, Golub and Reichel proposed to use the techniques developed
in the previous chapters to inexpensively compute approximations of points on the
L-curve without having to solve large minimization problems. Let us now describe
how we can efficiently compute these approximations.

From the solution (15.3) of the regularized problem we can compute the norm of
the solution and the corresponding residual

‖xµ‖2 = cTA(ATA+ µI)−2AT c

and
‖c−Axµ‖2= cT c+ cTA(ATA+ µI)−1ATA(ATA+ µI)−1AT c

−2cTA(ATA+ µI)−1AT c.

The expression of the residual norm can be simplified by using the identity
I −A(ATA+ µI)−1AT = µ(AAT + µI)−1.

Hanke [172] remarked that the norm of the residual can be written more simply as
‖c−Axµ‖2 = µ2cT (AAT + µI)−2c. (15.5)

Nevertheless, in the paper [51] the more complex form of the norm of the residual
was used. By denoting K = ATA and d = AT c, we have

‖c−Axµ‖2 = cT c+ dTK(K + µI)−2d− 2dT (K + µI)−1d.

Then, if we define two functions
φ1(t)= (t+ µ)−2,

φ2(t)= t(t+ µ)−2 − 2(t+ µ)−1,

we are interested in si = dTφi(K)d, i = 1, 2 from which we can obtain points on
the L-curve

‖xµ‖= s1/21 ,

‖c−Axµ‖=(cT c+ s2)1/2,
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or we may be interested in the logarithms of these expressions. We can obtain
bounds for s1 and s2 using our usual machinery by running the Lanczos algorithm
with the symmetric matrix ATA, which needs only multiplications by A and AT .
However, for this particular matrix, we can use the Lanczos bidiagonalization al-
gorithm developed by Golub and Kahan [144]; see chapter 4. We note that this
algorithm (as well as the Lanczos algorithm) is independent of µ. At iteration k,
the algorithm computes a Jacobi matrix Jk = BTk Bk and the approximation given
by the Gauss rule for a function φi defined previously is

IGk (φi) = ‖d‖2(e1)Tφi(Jk)e1.

The Gauss–Radau rule with one assigned node a ≤ λ1, where λ1 is the smallest
eigenvalue of ATA, is obtained as

IGRk (φi) = ‖d‖2(e1)Tφi(Ĵk)e1,

where Ĵk is obtained by modifying the (k, k) element of Jk. In particular, if we
prescribe a node at the origin a = 0, then we have Ĵk = B̂Tk B̂k where B̂k is
obtained from Bk by setting the last diagonal element δk = 0; see Golub and von
Matt [158].

To know if the approximations are lower or upper bounds we have the following
results.

LEMMA 15.1 Let φ1(t) = (t+µ)−2, φ2(t) = t(t+µ)−2 − 2(t+µ)−1. Then, for
t ≥ 0 and k ≥ 1, the derivatives are such that

φ
(2k−1)
1 (t) < 0, φ

(2k)
1 (t) > 0,

φ
(2k−1)
2 (t) > 0, φ

(2k)
2 (t) < 0.

THEOREM 15.2 The Gauss quadrature rule gives a lower bound for φ1 defined in
lemma 15.1. The Gauss–Radau rule with a ≤ λ1 gives an upper bound for φ1. We
have

IGk (φ1) ≤ s1 ≤ IGRk (φ1),

where

IGk (φ1)= ‖d‖2(e1)T (BTk Bk + µI)−2e1,

IGRk (φ1)= ‖d‖2(e1)T (B̂Tk B̂k + µI)−2e1.

The computation of the quadrature rules requires solving for vectors y satisfying

(BTB + µI)y = e1 withB = Bk or B̂k. (15.6)

The solution y can be computed by solving a (small) least squares problem

min
y

∥∥∥∥
(

B√
µI

)
y − 1√

µ
z

∥∥∥∥ ,
where z is a vector of dimension 2k with zero components except zk+1 = 1. One
can check that the normal equation for this problem is identical to equation (15.6).
The solution can be obtained incrementally and efficiently using Givens rotations to
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zero the lower part of the matrix since the upper part is already upper triangular. Let
us denote by ykµ and ŷkµ the solution of equations (15.6) for B = Bk and B = B̂k.
Then,

IGk (φ1)= ‖d‖2 ‖ykµ‖2,

IGRk (φ1)= ‖d‖2 ‖ŷkµ‖2.

THEOREM 15.3 The Gauss quadrature rule gives an upper bound for φ2 defined
in lemma 15.1. The Gauss–Radau rule with a ≤ λ1 gives a lower bound for φ2.
For the norm of the residual, we have

IGRk (φ2) ≤ s2 ≤ IGk (φ2),

where

IGk (φ2)= ‖d‖2[(e1)TBTk Bk(B
T
k Bk + µI)−2e1 − 2(e1)T (BTk Bk + µI)−1e1],

IGRk (φ2)= ‖d‖2[(e1)T B̂Tk B̂k(B̂
T
k B̂k + µI)−2e1 − 2(e1)T (B̂Tk B̂k + µI)−1e1].

Proof. We use the fact that B(BTB + µI)−1 = (BBT + µI)−1B to simplify the
expressions for φ2. ✷

Using the solutions computed previously for φ1, the bounds for φ2 are written

IGk (φ2)= ‖d‖2[ ‖Bkykµ‖2 − 2(e1)T ykµ ],

IGRk (φ2)= ‖d‖2[ ‖B̂kŷkµ‖2 − 2(e1)T ŷkµ ].

Hanke [172] proved that the lower and upper bounds improve when the number of
iterations is increased.

From these bounds we can define an approximation of the L-curve. Let

x−(µ)=
√
IGk (φ1),

x+(µ)=
√
IGRk (φ1),

y−(µ)=
√
cT c+ IGRk (φ2),

y+(µ)=
√
cT c+ IGk (φ2).

For a given value of µ > 0 the bounds are

x−(µ) ≤ ‖xµ‖ ≤ x+(µ),

y−(µ) ≤ ‖c−Axµ‖ ≤ y+(µ).

This defines a rectangle. Calvetti, Golub and Reichel [51] defined the L-ribbon as
the union of these rectangles for all µ > 0,⋃

µ>0

{ {x(µ), y(µ)} : x−(µ) ≤ x(µ) ≤ x+(µ), y−(µ) ≤ y(µ) ≤ y+(µ)}.

The previous techniques compute bounds on the norms of the residual and the solu-
tion. After choosing a point inside the L-ribbon (that is, a value of µ), the solution
must be computed. One can use the approximation

xkµ = ‖d‖Qkykµ,
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whereQk is the matrix computed by the Lanczos bidiagonalization algorithm. Note
that with this choice of point inside the L-ribbon ‖xkµ‖ = x−(µ).

This line of research has been pursued by Calvetti, Reichel and some collabora-
tors; see [53], [48], [47], [50], [55], [56] and [57]. A possible improvement in the
choice of µ is to look directly at the curvature of the L-curve and to select a point
of (approximate) maximum curvature. In log-log scale the curvature is given (see
Golub and von Matt [158]) by

Cµ = 2
ρ′′η′ − ρ′η′′

((ρ′)2 + (η′)2)3/2
,

where the prime denotes differentiation with respect to µ and

ρ(µ)=
1
2
log ‖c−Axµ‖ = logµ2cTφ(AAT )c,

η(µ)=
1
2
log ‖xµ‖ = log cTAφ(ATA)AT c,

where φ(t) = (t+ µ)−2. The first derivatives can be computed as

ρ′(µ)=
cTA(ATA+ µI)−3AT c

µcT (AAT + µI)−2c
,

η′(µ)=−c
TA(ATA+ µI)−3AT c

cTA(ATA+ µI)−2AT c
.

The numerator is more complicated

ρ′η′′ − ρ′′η′ =
(

cTA(ATA+ µI)−3AT c

µcT (AAT + µI)−2c · cTA(ATA+ µI)−2AT c

)2

(cT (AAT + µI)−2c · cTA(ATA+ µI)−2AT c

+2µcT (AAT + µI)−3c · cTA(ATA+ µI)−2AT c

−2µcT (AAT + µI)−2c · cTA(ATA+ µI)−3AT c).

It is important to note that this involves matrices of the form (AAT + µI)−p and
A(ATA+µI)−qAT with the powers p and q taking values 2 and 3 and correspond-
ing bilinear forms for which lower and upper bounds can be computed.

In [53] Calvetti, Hansen and Reichel, using a slightly different formulation and
Gauss and Gauss–Radau rules, obtained bounds for the curvature of the L-curve.
This defines a curvature-ribbon around the curvature curve from which it is easier
to find the value of µ giving the largest curvature. As with the L-curve, the bounds
for the curvature are tighter when the number of Lanczos (or bidiagonalization)
steps increases.

Numerical experiments using the L-ribbon and the curvature-ribbon will be de-
scribed later in this chapter.

15.1.7 Minimization of the Error Norm
Brezinski, Rodriguez and Seatzu [39] proposed to use the estimates of the error
devised by Brezinski [37] to select the parameter in the Tikhonov regularization
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method when the matrix is square. The estimate of the error is tailored to this
special problem. One possibility is to use

e3 =
‖rµ‖2

µ‖xµ‖ ,
where rµ = c − Axµ is the residual corresponding to the solution xµ of the regu-
larized problem. One samples e3 for a set of values of µ and selects the value of
µ which gives the minimum of the estimate. Brezinski, Rodriguez and Seatzu [40]
extended their results to rectangular matrices.

Reichel, Rodriguez and Seatzu [280] used error estimates obtained from Gauss
quadrature to obtain the regularization parameter.

15.1.8 Generalized Cross-Validation
Cross-validation and generalized cross-validation are techniques for model fitting
for given data and model evaluation. These two tasks can be accomplished using
independent data samples. The available data can be split into two sets, one for
fitting and one for evaluation. This is not very efficient if the sample is not very
large. The idea of cross-validation, introduced by Allen [5] for linear regression, is
to recycle the data.

Suppose we have a measure given for the model evaluation; for instance, in a
linear case the norm of the residual. Then, for cross-validation we split the data set
D into N disjoint samples D1, . . . , DN . For each j = 1, . . . , N the model is fit
to the sample ∪i
=jDi and we compute the discrepancies dj(µ) using Dj and the
given measure. Then, the method finds the vector of the tuning parameters µ of the
model as the minimizer of the total discrepancy over the N data samples,

d(µ) =
N∑
j=1

dj(µ).

As an example, consider a regression model with m given data as yi = f(ti) + εi,
where t represents the time, y are the observations and ε are random fluctuations.
Then, remove only one observation each time to define the data samples Dj . Let
y(i) be the vector of length m − 1 where the ith observation is removed from the
response vector y. Let f (i)

µ be the estimate of the response function based on the
observations y(i). The optimal cross-validation parameter µ is the minimizer of

1
m

m∑
i=1

(yi − f (i)
µ (ti))2.

Computing this minimizer can be computationally expensive. Let us now assume
that a vector ỹ is obtained from y by replacing the ith coordinate by the estimate
f

(i)
µ (ti) and let f̃ (i)

µ be the estimate obtained from ỹ. Then, in many cases one can
show (Wahba [340]) that f̃ (i)

µ = f
(i)
µ , ∀i. For some models we have fµ = C(µ)y

where C(µ) is a matrix with elements ci,j . Then we have

(fµ)(ti) =
m∑
j=1

ci,jyj
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and

f (i)
µ (ti) = f̃ (i)

µ (ti) =
∑
j 
=i

ci,jyj + ci,i(f (i
µ )(ti).

These two relations lead to

fµ(ti)− f (i)
µ (ti) = ci,i(yi − f (i)

µ (ti)).

Then

yi − f (i)
µ (ti) =

yi − fµ(ti)
1− ci,i

and the prediction error is

1
m

m∑
i=1

(
yi − fµ(ti)
1− ci,i

)2

. (15.7)

The generalized cross-validation (GCV) (see Craven and Wahba [70]) replaces ci,i
in equation (15.7) by the average of the diagonal elements ofC, so the denominator
can be taken out of the sum. The criterion becomes∑m

i=1(yi − fµ(ti))2

m(1− tr(C)/m)2
,

where tr is the trace of the matrix. GCV is explained for that problem in Golub,
Heath and Wahba [162], and some of its properties are studied using the singular
value decomposition, which can also be used to compute an estimate of µ. This
paper considered also GCV for subset selection and general linear model building
and compared GCV with the maximum likelihood estimate. GCV has been used
in many scientific areas. Applications in remote sensing, ridge regression, spline
regression, likelihood estimation and log-hazard estimation are cited in Gu, Ba-
tres, Chen and Wahba [166]. Other applications include smoothing splines (Bur-
rage, Williams, Ehrel and Pohl [46], Craven and Wahba [70], Hutchinson [194],
Hutchinson and De Hoog [196], Lu and Mathis [229], Schumaker and Utreras
[295], Utreras [329], [330], Wahba [339], Wahba and Wold [341], Williams and
Burrage [350]), numerical weather forecasting (Wahba, Johnson, Gao and Gong
[342]), image processing (Berman [29], Shahraray and Anderson [297], Thomp-
son, Brown, Kay and Titterington [326]), statistics (Li [225]) and so on. There are
of course many other examples of the use of GCV.

GCV for large-scale linear ill-posed problems is considered in the paper [159]
by Golub and von Matt. This paper uses the techniques of estimation of quadratic
forms to compute the parameter of the model. The regularized problem is written
as

min{‖c−Ax‖2 +mµ‖x‖2},
where µ ≥ 0 is the regularization parameter and the matrix A is m× n. The GCV
estimate of the parameter µ is the minimizer of

G(µ) =
1
m‖(I −A(ATA+mµI)−1AT )c‖2

( 1
m tr(I −A(ATA+mµI)−1AT ))2

. (15.8)
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The numerator is, up to a scaling factor, the square of the norm of the residual
corresponding to the solution of the normal equations of the regularized problem.
A weighted GCV method has been proposed by Chung, Nagy and O’Leary [66] in
which the denominator in equation (15.8) is replaced by(

1
m

tr(I − ωA(ATA+mµI)−1AT )
)2

,

where ω is a real parameter. In some cases and if ω is chosen properly, this gives
better results than GCV.

We are concerned with the numerical evaluation and minimization of G(µ) in
equation (15.8). The evaluation of the trace term in the denominator is based on
Hutchinson’s result (see [195] and proposition 11.9). In the following we will
assume that A has full rank r, which is the minimum of m and n. Let ν = mµ; the
function t we are interested in is

tr(I −A(ATA+ νI)−1AT ).

Let A = UΣV T be the singular value decomposition of A where U and V are
orthonormal. We can write

A(ATA+ νI)−1AT = UΣ(ΣTΣ+ νI)−1ΣUT .

Therefore,

−tr(A(ATA+ νI)−1AT )=−‖Σ(ΣTΣ+ νI)−1/2‖2
F

=−
r∑
i=1

σ2
i

σ2
i + ν

= −r +
r∑
i=1

ν

σ2
i + ν

.

Hence, t can be written as

t(µ) = m− n+ ν tr(ATA+ νI)−1

if m ≥ n and

t(µ) = ν tr(AAT + νI)−1

if m < n. Let t̃(µ) be the stochastic estimator of t, v(µ) be the variance and
K = (AAT + νI)−1. Then,

K = V (ΣTΣ+ νI)−1V T ,

if m ≥ n and

K = U(ΣΣT + νI)−1UT

if m < n. The variance v(µ) is bounded by

v(µ) ≤ 2ν2‖A‖2
F = 2

r∑
i=1

(
ν

σ2
i + ν

)2

,

where the σi’s are the singular values of A. The matrix A being of full rank,

v(µ) ≤ 2r
σ4
r

ν2.
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Therefore v(µ) goes to zero as µ goes to zero. One can also show that v(µ) goes to
zero if µ→ ∞. If m > n the relative standard error satisfies√

v(µ)
t(µ)

≤
√
2r
σ2
r

ν

m− n
,

and it goes to zero as µ→ 0. In all cases the relative standard error is bounded. We
now concentrate on the case m ≥ n. Using our machinery for quadratic forms we
can obtain an estimate of sz(ν) = zT (ATA+ νI)−1z, where z is a random vector
as in proposition 11.9, using Lanczos bidiagonalization. In fact using the Gauss
and Gauss–Radau rules we have lower and upper bounds

gz(ν) ≤ sz(ν) ≤ rz(ν).

We can also estimate s(p)c (ν) = cTA(ATA + νI)−pAT c, p = 1, 2. Using the
Gauss and Gauss–Radau rules we obtain bounds satisfying

g(p)
c (ν) ≤ s(p)c (ν) ≤ r(p)c (ν).

We want to compute approximations of

G̃(µ) = m
cT c− s

(−1)
c (ν)− νs

(−2)
c (ν)

(m− n+ νsz(ν))2
.

We remark that the numerator of G(µ) could have been simplified since

‖(I −A(ATA+mµI)−1AT )c‖2 = m2µ2‖(AAT +mµI)−1c‖2.

Nevertheless, the paper [159] defined

L0(ν) = m
cT c− r

(−1)
c (ν)− νr

(−2)
c (ν)

(m− n+ νrz(ν))2
,

U0(ν) = m
cT c− g

(−1)
c (ν)− νg

(−2)
c (ν)

(m− n+ νgz(ν))2
.

These quantities, L0 and U0, are lower and upper bounds for the estimate of G(µ).
The evaluation of the bounds was considered at length in [159]. We write

U0(µ) = m
p(ν)
q2(ν)

,

whose derivative is

U ′
0(ν) = m

(
p′(ν)
q2(ν)

− 2
p(ν)q′(ν)
q3(ν)

)
,

where

p(ν) = cT c− g(−1)
c (ν)− νg(−2)

c (ν),

q(ν) = m− n+ νgz(ν).

The function p(ν) can be written as

p(ν) = ‖c‖2 ‖e1 −Bk(BTk Bk + νI)−1BTk e
1‖2,
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where Bk is the upper bidiagonal matrix obtained from the Lanczos bidiagonaliza-
tion algorithm (defined in chapter 4) on A. The derivative is given by

p′(ν) = 2m2µ‖c‖2(e1)TBk(BTk Bk + νI)−3BTk e
1.

Defining

ξ = (BTk Bk + νI)−1BTk e
1,

η =
√
ν(BTk Bk + νI)−1ξ,

we have

p(ν) = ‖c‖2 ‖e1 −Bkξ‖2,

p′(ν) = 2m
√
ν‖c‖2 ξT η.

The vectors ξ and η can be obtained as solutions of two (small) least squares prob-
lems (

Bk√
νI

)
ξ ≈

(
e1

0

)
,

(
Bk√
νI

)
η ≈

(
0
ξ

)
.

The denominator q(ν) is written as

q(ν) = m− n+ ν‖z‖2 (e1)T (BTk Bk + νI)−1e1.

Let us define

ξ =
√
ν(BTk Bk + νI)−1e1,

which can be computed as the solution of the least squares problem(
Bk√
νI

)
ξ ≈

(
0
e1

)
.

Then

q(ν) = m− n+
√
ν‖z‖2 ξ1.

The derivative of q is

q′(ν) = m‖z‖2 (e1)T (BTk Bk + νI)−1e1 −mν‖z‖2 (e1)T (BTk Bk + νI)−2e1.

Since (BTk Bk + νI)−1Bk = Bk(BkBTk + νI)−1, it can also be written as

q′(ν) = m‖z‖2 (e1)TBTk (BkB
T
k + νI)−2Bke

1.

Then, if η = (BkBTk + νI)−1Bke
1, which can be obtained by solving(

BTk√
νI

)
η ≈

(
e1

0

)
,

the derivative is given by

q′(ν) = m‖z‖2 ‖η‖2.
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Similarly, the lower bound L0(ν) and its derivative can be written as

L0(ν) = m
r(ν)
s2(ν)

,

L′
0(ν) = m

(
r′(ν)
s2(ν)

− 2
r(ν)s′(ν)
s3(ν)

)
,

where

r(ν) = cT c− r−1
c (ν)− νr−2

c (ν),

s(ν) = m− n+ νr−1
z (ν).

The numerator r(ν) can be written

r(ν) = ‖c‖2−‖AT c‖2 (e1)T (UTk Uk+νI)
−1e1−ν‖AT c‖2 (e1)T (UTk Uk+νI)

−2e1,

where Uk is defined by applying Givens rotations (whose product is WT ) to trans-
form the lower bidiagonal matrix Bk into a (k + 1)× k upper bidiagonal matrix,

WTBk = Ũk,

and then the (k, k) element of Ũk is set to zero to obtain Uk for the Gauss–Radau
rule. The derivative is

r′(ν) = 2mν‖AT b‖2 (e1)T (UTk Uk + νI)−3e1.

Now we consider the QR factorization(
Uk√
νI

)
= QR,

where R is a k × k upper bidiagonal matrix. Let ξ = R−T e1 and

η =
√
ν(UTk Uk + νI)−1e1,

which can be computed by solving the least squares problem(
Uk√
νI

)
η ≈

(
0
e1

)
.

The function r can be written as

r(ν) = ‖c‖2 − ‖AT c‖2(‖ξ‖2 + ‖η‖2).

Defining ζ = R−T η, we have

r′(ν) = 2m‖AT c‖2 ‖ζ‖2.

The denominator s(ν) can be computed in the same way as q(ν).
The bounds L0(ν) and U0(ν) allow computation of an approximation of the

global minimizer ν∗ of the estimate of G(ν). Of course the tightness of these
bounds depends on the number of the Lanczos (bidiagonalization) iterations. More-
over, L0(ν) tends to −∞ as ν → 0, but U0 remains finite. Therefore, U0 is a better
approximation than L0 for small ν’s. The algorithm proposed in [159] to compute
ν∗ is to first do

kmin = (3 logmin(m,n))
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Lanczos iterations. Then the global minimizer ν̂ of U0(ν) is computed. If we can
find a ν such that 0 < ν < ν̂ and L0(ν) > L0(ν̂), the algorithm stops and returns ν̂
as the approximation to the parameter. Otherwise, the algorithm executes one more
Lanczos iteration and repeats the convergence test. The range of ν is restricted to

ν < νmax =
‖A‖2

F

ε
,

where ε is the roundoff unit. It was noted in [159] that this algorithm does not
guarantee that the global minimizer is found. After some numerical experiments,
we will study how to improve the Golub and von Matt algorithm.

15.2 Iterative Methods for Ill-Posed Problems

As we said before, when solving large ill-posed problems it may not be practical
to compute the SVD of the matrix A. Very early in the 1950s people turned to
iterative methods since most of them only require the ability to compute the product
of the matrix with a vector. Iterative methods can be used in two ways: either to
solve the regularized system (for a given or several values of µ) or as regularizing
procedures by themselves. When they are used as a regularization procedure, the
iteration index takes the role of the regularization parameter.

The use of iterative methods can also be seen as a projection of the original
problem on a subspace where the problem is less ill-posed or as a model reduction
process. Of course, regularization and iterative methods can be combined since
one can use an iterative method as a projection technique and then solve the re-
duced problem by regularization; this is considered, for instance, by O’Leary and
Simmons [251] and Hanke [171].

Most popular methods are based on the Lanczos algorithm applied explicitly
or implicitly to the normal equations. One important remark about the Lanczos
algorithm is that it is shift invariant: if Jk is the Jacobi matrix produced at iteration
k for a matrix B, then Jk+µI is the Jacobi matrix produced for the matrix B+µI .

Suppose we want to solve a linear system By = c for a symmetric matrix B;
then the Lanczos algorithm we have studied in chapter 4 generates basis vectors
vi, i = 1, . . . , k which are the columns of an orthogonal matrix Vk and a Jacobi
matrix Jk. For solving a linear system, the iterates are sought as

yk = y0 + Vkz
k,

and the residual rk = c − Byk = r0 − BVkz
k is asked to be orthogonal to the

subspace spanned by the columns of Vk which gives that the coordinates zk are
solution of a tridiagonal linear system of order k,

Jkz
k = ‖r0‖e1.

Therefore, if we want to solve a Tikhonov regularized system (ATA + µI)xµ =
AT c, the iterates xkµ = x0 + Vkz

k
µ are determined by (Jk + µI)zkµ = ‖r0‖e1 if we

run the Lanczos algorithm on ATA.
However, we have to be careful for several reasons that we have already men-

tioned in chapter 4. First, it is well known (see, for instance, [239] or the review
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paper [242]) that the Lanczos algorithm in finite precision arithmetic does not fulfill
its theoretical properties. In particular, after a first eigenvalue of Jk has converged
to an eigenvalue of ATA, the Lanczos vectors vi are no longer mutually orthogo-
nal. Moreover, there is a delay in the convergence of the other eigenvalues. Second,
if the matrix has small (and close) eigenvalues, then it is difficult to obtain conver-
gence towards these eigenvalues.

In fact, this last issue can be used to our advantage since, particularly for small
values of µ, the noisy components of the right-hand side can be amplified by the
smallest eigenvalues. If the smallest eigenvalues are not well approximated in the
first iterations, then the approximate solution xk is not polluted by the components
over the corresponding eigenvectors. This is why the Lanczos algorithm can give
a “regularized” solution. However, we have to stop the iterations before there is
convergence toward the smallest eigenvalues.

Instead of using the Lanczos algorithm onATA, one may use instead the Golub–
Kahan Lanczos bidiagonalization algorithm (see chapter 4) which is well suited for
least squares problems. It produces an orthogonal matrix Qk which is the equiv-
alent of Vk and an upper bidiagonal matrix Bk, which is the Cholesky factor of
Jk = BTk Bk. However, the matrix Bk cannot be used directly for computing the
approximation of the solution of the regularized problem since Bk is not shift in-
variant. The Cholesky factor of Jk + µI is not the shift of Bk. To solve this
problem, one can use the QD algorithm with shifts; see chapter 3.

Usually, when the matrix is symmetric and positive definite (which is the case
for ATA if A has full rank), one prefers to use the conjugate gradient (CG) method
instead of the Lanczos algorithm. The reason is that in the Lanczos algorithm we
have to store the matrix Vk of the Lanczos vectors to compute the solution, whereas
CG uses only short recurrences. Unfortunately, CG is not shift invariant since if was
obtained from the Lanczos algorithm by an LU factorization of the Lanczos matrix
Jk. This can, somehow, be circumvented as we will see later. When applied to the
normal equations ATAx = AT c, CG is usually denoted as CGNR. In this case, the
CG method minimizes the ATA-norm of the error x− xk but we have

‖x− xk‖2
ATA = (A(x− xk), A(x− xk)) = ‖c−Axk‖2.

Hence, CGNR minimizes the l2 norm of the residual c−Axk.
Of course, one does not compute the product ATA. The multiplication by a

vector is done by successive multiplications with A and AT . Nevertheless, for ill-
posed problems, ATA is ill conditioned and it is usually preferred to use a variant
denoted as CGLS [30], which is the following for ATA+ µI:
z0 = c−Ax0, r0 = AT z0 − µx0, p0 = r0, and for k = 0, 1, . . .

qk = Apk,

γk =
‖rk‖2

‖qk‖2 + µ‖pk‖2
,

xk+1 = xk + γkp
k,

zk+1 = zk − γkq
k,
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rk+1 = AT zk+1 − µxk+1,

ωk =
‖rk+1‖2

‖rk‖2
,

pk+1 = rk+1 + ωkp
k.

Note that this algorithm does the recursive update on zk which is the residual c −
Axk (the quantity minimized by the algorithm) and not on the residuals of the
normal equations.

As we said before, a difficult problem is to know when to stop the Lanczos or
CG iterations. For instance, if the norm of the noise e is approximately known, one
can choose to stop when the discrepancy principle is satisfied

‖c−Axkµ‖ ≈ τ‖e‖,
where e is the known noise vector.

When solving a least squares problemmin ‖c−Ax‖, it is usually preferred to use
the LSQR algorithm of Paige and Saunders [256] since this method uses orthogonal
transformations to solve the projected problems. The algorithm uses the Lanczos
bidiagonalization (denoted as “Lanczos bidiagonalization II” in [159] and “Bidiag
1” in [256]) we have described in chapter 4. The relations describing the LSQR
algorithm are the following as defined in [256].

Let β1 = ‖c‖, u1 = c/β1, α1 = ‖ATu1‖, v1 = ATu1/α1, w1 = v1, x0 = 0,
φ̄1 = β1, ρ̄1 = α1, then for k = 1, . . .

ū = Avk − αku
k, βk+1 = ‖ū‖, uk+1 = ū/βk+1,

v̄ = ATuk+1 − βk+1v
k, αk+1 = ‖v̄‖, vk+1 = v̄/αk+1,

ρk =
√
ρ̄2
k + β2

k+1,

ck = ρ̄k/ρk, sk = βk+1/ρk,

θk+1 = skαk+1, ρ̄k+1 = −ckαk+1,

φk = ckφ̄k, φ̄k+1 = skφ̄k,

xk = xk−1 + (φk/ρk)wk,

wk+1 = vk+1 − (θk+1/ρk)wk.

If we want to solve a regularized problem for a given value of µ, we apply this
algorithm to the least squares problem

min
∥∥∥∥
(
A
µI

)
x−

(
c
0

)∥∥∥∥ .
Otherwise, when we want to solve the regularized system for several values of

µ, we can use the correspondance between the coefficients of the Lanczos and CG
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algorithms (see chapter 4) and the fact that the Lanczos algorithm is shift invariant.
If the CG vectors are obtained as

pk = rk + βkp
k−1, xk+1 = xk + γkp

k.

Then, the coefficients αi and ηi of the Lanczos algorithm which are the nonzero
entries of Jk are given by

αk =
1

γk−1
+
βk−1

γk−2
, β0 = 0, γ−1 = 1, ηk =

√
βk

γk−1
.

Moreover, γk is related to the diagonal elements of the Cholesky (LDLT ) factor-
ization of the Jacobi matrices Jk,

γk =
1

δk+1
.

Then, when running CG (or CGLS) with the matrix ATA we can compute Jk from
the CG coefficients. Then, we can shift Jk by µI for a given µ and compute the
LDLT factorization to obtain the CG coefficients for the shifted system.

These ways of proceeding have the advantage of requiring only two matrix vector
products (with A and AT ) per iteration for computing the solutions for as many
values of µ as we wish. This kind of algorithms was advocated in a paper by
Frommer and Maas [116].

Other aspects of iterative methods for ill-posed problems are developed in Kilmer
and Stewart [204] and Kilmer and O’Leary [203].

15.3 Test Problems

We first use several examples from the Regutools toolbox (version 3.1) by Hansen
[177]. A newer version of this toolbox is now available [179].

Example IP1 = Baart
This problem arises from the discretization of a first-kind Fredholm integral

equation with kernel K and right-hand side g given by

K(s, t) = exp(s cos(t)), g(s) = 2 sinh(s)/s,

and with integration intervals s ∈ [0, π/2], t ∈ [0, π]; see Baart [19]. The solution is
given by f(t) = sin(t). The square matrix A of order 100 is dense and its smallest
and largest singular values are 1.7170 10−18 and 3.2286. The singular values are
displayed in figure 15.1. We see that there are many small singular values (smaller
than 10−12).

Example IP2 = ILaplace
This problem comes from the discretization of the inverse Laplace transform by

means of a Gauss–Laguerre quadrature rule. The kernel K is given by

K(s, t) = exp(−st),
and the integration interval is [0,∞[. The solution f and the right-hand side g are

f(t) = exp(−t/2), g(s) = 1/(s+ 0.5).
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Figure 15.1 Singular values for the Baart problem,m = n = 100

The square matrix A of order 100 is partly dense and its smallest and largest singu-
lar values are 8.3948 10−33 and 2.3749. The distribution of the singular values is
even worse than for Example IP1.

Example IP3 = Phillips
This problem arises from the discretization of a first-kind Fredholm integral

equation devised by D. L. Phillips. Define the function

φ(x) = 1 + cos(xπ/3) for |x| < 3, 0 for |x| >= 3.

The kernel K, the solution f and the right-hand side g are given by

K(s, t) = φ(s− t), f(t) = φ(t),

g(s) = (6− |s|)(1 + 0.5 cos(sπ/3)) + 9/(2π) sin(|s|π/3).
The integration interval is [−6, 6]. The square matrix A of order 200 is banded and
its smallest and largest singular values are 1.3725 10−7 and 5.8029.

All the preceding examples are small and can be solved using the SVD of A.

Example IP4 = von Matt’s problem
To obtain a large matrix A with similar properties as the matrices from ill-posed

problems without having to store a dense matrix, Urs von Matt [158], [159] pro-
posed the following example that we have already used in chapter 14. The matrix
A is defined as A = UΣV T where

U = I − 2
uuT

‖u‖2
, U = I − 2

vvT

‖v‖2
,
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u and v being given vectors of length m and n. The diagonal matrix Σ (containing
the singular values) is chosen such that we have a linear distribution of the singular
values or as

σi = exp(−ci), i = 1, . . . , n ≤ m

where c is suitably chosen. This choice of matrix allows one to store only u, v and
the diagonal of Σ to do the matrix-vector multiplications.

15.4 Study of the GCV Function

GCV for large scale linear ill-posed problems is considered in the paper by Golub
and von Matt [158]. This paper uses the techniques of estimation of quadratic forms
to compute the parameters of the model. Remember that the GCV estimate of the
parameter µ is the minimizer of

G(µ) =
1
m‖(I −A(ATA+mµI)−1AT )c‖2

( 1
m tr(I −A(ATA+mµI)−1AT ))2

. (15.9)

Let A = UΣV T be the SVD of A with singular values σi and d = UT c. Let
us assume that m ≥ n and the matrix A has full rank r = n. Then the GCV
function (15.9) can be written as

G(ν) =
m

{∑r
i=1 d

2
i

(
ν

σ2
i
+ν

)2

+
∑m
i=r+1 d

2
i

}
[m− n+

∑r
i=1

ν
σ2

i
+ν
]2

, (15.10)

where ν = mµ. An example of GCV function (as a function of µ) is displayed
in figure 15.2 for the IP1 (Baart) example with m = n = 100. The right-hand
side c is generated from the exact solution x̃ by c = Ax̃ + e where e is a random
vector with a normal distribution of norm noise = 10−3. The cross on the curve
shows the minimum of the function. The GCV functions for different noise levels
are displayed in figure 15.3. We observe that these functions are rather flat near the
minimum and this can be a problem.

From the figures, we see that G is almost constant when ν is very small or large,
at least in log-log scale. When ν → ∞, the ratios involving ν in the numerator and
denominator tend to 1. The numerator tends to

m

m∑
i=1

d2
i

and the denominator tends to m2. Therefore G(ν)→ ‖c‖2/m since
m∑
i=1

d2
i = ‖UT c‖2 = ‖c‖2.

When ν → 0 the situation is different wether m = n or not. The numerator of G
tends to

m

m∑
i=r+1

d2
i
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Figure 15.2 GCV function for the IP1 (Baart) problem,m = n = 100, noise= 10−3
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Figure 15.3 GCV functions for the IP1 (Baart) problem, m = n = 100 for different noise
levels
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if m �= n or 0 when m = n. When m �= n the denominator tends to m and to 0
otherwise. Therefore, the limit value of G is

m
∑m
i=r+1 d

2
i

m− n

for m �= n. When m = n we obtain 0/0 but we can simplify the GCV function by
ν2 in the numerator and denominator. The function is written as

G(ν) =
m

∑r
i=1 d

2
i

(
1

σ2
i
+ν

)2

[
∑r
i=1

1
σ2

i
+ν
]2

. (15.11)

This can be written as

G(ν) =
m‖(AAT + νI)−1c‖
[tr((AAT + νI)−1)]2

. (15.12)

Therefore, the limit value when ν → 0 is

m
∑r
i=1 d

2
i

(
1
σ2

i

)2

(∑r
i=1

1
σ2

i

)2 . (15.13)

When the smallest singular value σn is much smaller than most of the other ones
(as in many ill-posed problems), this limit value is md2

n. Moreover, it turns out
that the GCV function is almost constant for ν < σ2

n and for ν > σ2
1 . This is

illustrated in figure 15.4, where the horizontal dashed lines give the limit values
and the vertical lines show the squares of the smallest and largest singular values.
Therefore when looking for the minimum value of G (or its approximations) it is
enough to consider the interval [σ2

n, σ
2
1 ]. We note that the largest singular value

can be estimated with the bidiagonalization algorithm. In von Matt’s software, the
interval which is considered for ν is

(ε‖A‖)2
m

≤ ν ≤ 1
m

(‖A‖
ε

)2

,

where ε is the machine epsilon. This is shown in figure 15.5, where these values are
the vertical dot-dashed lines. We see that the upper bound is greatly overestimated.
Therefore, we propose to use the interval

[max(σ2
n, ε‖A‖)2, σ2

1 ]

for ν if σn is known or

[(ε‖A‖)2, σ2
1 ]

otherwise.
The GCV functions for the other examples are shown in figures 15.6 and 15.7.

The GCV function G is approximated by G̃ where the trace in the denominator
is computed using Hutchinson’s estimator. The function G̃ computed using the
singular values of A is plotted with dotted lines for the IP1 example in figure 15.8.
The circle gives the minimum of G̃. We see that G and G̃ do not have the same
limit value when ν → 0. In most cases G̃ is a poor approximation of G for small
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Figure 15.4 GCV function for the IP1 (Baart) problem,m = n = 100, noise= 10−3

10−50 10−40 10−30 10−20 10−10 100 1010 1020 1030

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

 

Figure 15.5 GCV function for the IP1 (Baart) problem,m = n = 100, noise= 10−3
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Figure 15.6 GCV function for the IP2 (inverse Laplace equation) problem,m = n = 100,
noise= 10−3
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Figure 15.7 GCV function for the IP3 (Phillips) problem,m = n = 100, noise= 10−3
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values of ν. This comes, of course, from the computation of the denominator since
the numerator is computed in the same way for both functions. However, near the
location of the minimum G̃ is quite accurate for this problem. Unfortunately, this
is not always the case as we can see with figure 15.9 for the IP1 example using a
large perturbation with noise= 0.1. The function G̃ is then a poor approximation
of G and its minimizer is quite different from the one for G. The parameter ν that
is found using the minimum of G̃ is not correct.
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Figure 15.8 G (solid) and G̃ (dotted) functions for the IP1 (Baart) problem,m = n = 100,
noise= 10−3

15.5 Optimization of Finding the GCV Minimum

The problem we have is to locate the minimum of the approximation G̃ of the GCV
function G as cheaply as possible. Von Matt [159] computed the minimum of the
upper bound obtained by Lanczos bidiagonalization by sampling this function on
100 points with an exponential distribution which gives a regular distribution using
a log scale. After locating the minimum of these samples, if the neighbors of the
point giving the minimum do not have the same values, he looked at the derivative
and sought for a local minimum in either the left or right interval depending on the
sign of the derivative. The local minimum is found by using bisection.

To try to find a minimum in a more efficient way, we propose first to work with
the logarithms of ν and G̃ instead of the function itself. Then we compute 50
samples on a regular mesh. We locate the minimum, say the point k, we then
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Figure 15.9 G (solid) and G̃ (dotted) functions for the IP1 (Baart) problem,m = n = 100,
noise= 10−1

compute again 50 samples in the interval [k−1, k+1]. After locating the minimum
in this interval we use the von Matt algorithm for computing a local minimum.

To compare both approaches, we use the number of function evaluations as a
criteria. Each function evaluation leads to solving several (small) least squares
problems. The results are given for some test problems in table 15.1 where vm
refers to the von Matt implementation and gm to ours. Note that for m = n = 100,
14 is the minimum number of iterations that can be done with this algorithm. In
most cases, the values of µ from the two minimization methods are close. Although
there are some exceptions, in many cases, the number of function evaluations is
about the same.

Looking for improving these results, one has to look more closely at these al-
gorithms. In the Golub and von Matt algorithm the lower bound is used only in
the stopping criterion. The algorithm is stopped when the maximum of the lower
bound is larger than the minimum of the upper bound. This is done to have the
upper bound close enough to the function G̃ around the minimum. The value of the
minimizer µ that is returned corresponds to the minimum value of the upper bound.

The difficulty can be understood by looking at figure 15.10 for the Baart prob-
lem for a level of noise of 10−3 which displays upper bounds at different Lanczos
iterations. We see that the upper bound does not have the right asymptotic behav-
ior when ν is small since the upper bound tends to infinity, whence the function
is bounded. The convergence of the minimum is rather slow and it is difficult to
know when the minimum has converged. The solution chosen by Golub and von
Matt is to look also at the lower bound. This problem arises because we are in the
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Table 15.1 Minimizer values and number of function evaluations

Example Noise No. it. µ f min f max f total
Baart vm 10−7 17 9.6482 10−15 494 613 1107

10−5 14 9.7587 10−12 125 132 257
10−3 14 1.2018 10−8 130 123 253
10−1 14 1.0336 10−7 128 126 254
10 14 8.8817 10−8 127 119 246

Baart gm 10−7 14 1.1496 10−14 146 145 291
10−5 14 1.1470 10−11 146 118 264
10−3 14 1.3702 10−8 147 115 262
10−1 14 1.1208 10−7 148 114 262
10 14 9.9400 10−8 147 114 261

ILaplace vm 10−7 112 2.1520 10−15 12438 10216 22654
10−5 47 5.2329 10−12 4242 3428 7670
10−3 18 2.2111 10−8 620 541 1161
10−1 14 1.9484 10−5 120 125 245
10 14 6.5983 10−3 124 126 250

ILaplace gm 10−7 82 7.9939 10−15 10101 9788 19889
10−5 47 5.9072 10−12 4977 4175 9152
10−3 17 2.4905 10−8 589 416 1005
10−1 14 2.2036 10−5 148 120 268
10 14 7.0253 10−3 149 123 272

Phillips vm 10−7 221 8.7929 10−11 26299 21616 47915
10−5 122 4.5432 10−9 13435 10759 24194
10−3 32 4.3674 10−7 2111 1736 3847
10−1 16 3.8320 10−5 130 128 258
10 16 8.4751 10−3 118 121 239

Phillips gm 10−7 136 2.5684 10−10 17761 17306 35067
10−5 116 5.4911 10−9 14857 12265 27122
10−3 31 4.6715 10−7 2364 1640 4004
10−1 16 4.2203 10−5 147 119 266
10 14 9.3842 10−3 149 116 265
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case m = n and from the way the function is computed with the general formula
(as a norm of a residual) the numerator is bounded away from zero when the de-
nominator tends to zero with ν2. This is different when m �= n as we can see in
figure 15.11 for IP4 with m = 200, n = 100 because in this case the denominator
does not tend to zero when ν → 0 and the approximation has the right behavior.
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Figure 15.10 G (solid) and G̃ (dashed) functions and upper bounds for the IP1 (Baart) prob-
lem,m = n = 100, noise= 10−3

To try to better understand the issues, let us use the SVD of the bidiagonal matrix
Bk (arising from the Lanczos bidiagonalization algorithm) which is a (k + 1)× k
matrix. The numerator of the approximation is

p(ν) = ‖c‖2 ‖e1 −Bk(BTk Bk + νI)−1BTk e
1‖2. (15.14)

Using the SVD of Bk = UkSkV
T
k (Sk being a (k + 1) × k matrix) and denoting

the singular values as θi (with no reference to k for the sake of simplicity), from
equation (15.14) we have

p(ν) = ‖c‖2 ‖(I − Sk(STk Sk + νI)−1STk )U
T
k e

1‖2.

This can be written as

p(ν) = ‖c‖2

{
k∑
i=1

ν2f2
i

(θ2
i + ν)2

+ f2
k+1

}
, (15.15)

where f = UTk e
1. Therefore, we see that when ν → ∞, we have p(ν)→ ‖c‖2 and

when ν → 0, then p(ν) → ‖c‖2f2
k+1. The limit value is not the same as for the

numerator of the function G̃ and it is bounded away from zero (at least when k is
small enough).
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Figure 15.11 G (solid) and G̃ (dashed) functions and upper bounds for the IP4 example,
m = 200, n = 100, noise= 1

The denominator is

q(ν) = m− n+ ν‖u‖2 (e1)T (B̄Tk B̄k + νI)−1e1, (15.16)

where B̄k is a bidiagonal square matrix of order k and u is a random vector. Using
the SVD of B̄k = ZkTkW

T
k with singular values ti, we can write

q(ν) = m− n+ ‖u‖2
k∑
i=1

f̄2
i ν

t2i + ν
, (15.17)

where f̄ = WT
k e

1. When ν → ∞ we have q(ν) → m − n + k and when ν → 0,
then q(ν) → m − n. Hence, when m = n as in the IP1 example, we have a
numerator that is bounded away from zero and a denominator that goes to zero.
Thus, the limit value for ν → 0 is infinity. We see that the problem comes from
the term f2

k+1 that we have in the numerator since it prevents us from being able to
divide the numerator and the denominator by ν2.

To improve upon the implementation of von Matt, we propose the following
algorithm:

1) Working in log-log scale (that is, log10(ν) and log10(U0
k )), we compute an

upper bound of the function (saving the computation of the lower bound) for which
we seek a minimizer.

2) We evaluate the numerator of the approximation (that is, equation (15.14)) by
computing the SVD ofBk and using formula (15.15). The computation of the SVD
is done only once per iteration and there is no need to solve a least squares problem
for each value of ν.
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3) After locating a minimum νk with a value of the upper bound U0
k at iteration

k, the stopping criterion is∣∣∣∣νk − νk−1

νk−1

∣∣∣∣+
∣∣∣∣U0
k − U0

k−1

U0
k−1

∣∣∣∣ ≤ ε,

for a given ε. That is, we look both at the location of the minimum and the value of
the upper bound.

Of course, the difficult problem with such an approach is the choice of a suitable
value of ε for the stopping criterion in step 3. If ε is large we will save some
computation time but there is a risk of missing the true minimum. If ε is too small,
the computation may be too expensive.

To obtain the right behavior of the upper bound close to zero when m = n, we
modify the function as follows: instead of using mp(ν)/q(ν)2 we can use

m
p(ν)

q(ν)2 + α
.

We may want to choose

α = ᾱ =
‖c‖2f2

k+1

d2
n

.

Such a choice is not really feasible for large problems since we do not know dn
which can only be obtained from the SVD of A. It turns out that the value of
ᾱ is too large during the first iterations; this value must be limited and we use
α = min(ᾱ, 500). Of course, such a modification may be problem dependent. For
Example IP1 the computation using mp/q2 was given in figure 15.10. When using
mp/(q2 + α) we obtain figure 15.12, where we can see the truncation given by
introducing α in the denominator.

As we said before, when solving real problems, it is likely that dn is not available.
Hence, we use α = ‖c‖2 instead. There is not much difference in the results, except
that the asymptotic value when ν → 0 is not the correct one, but the smallest values
of ν do not have any influence on the minimizer. However, we will see that we can
use them to reduce the number of function evaluations that is needed to find the
minimum.

It would be nice if we could know when this costly process of function minimiza-
tion is really needed. The Golub and von Matt algorithm [158] imposes to perform
kmin Lanczos iterations before starting to compute the minimum of the approxi-
mation of the GCV function. The value of kminwas selected empirically by Golub
and von Matt as kmin = (3 logmin(m,n)). Imposing to perform kmin − 1 it-
erations before looking for the minimum may give us a penalty. But, we can take
advantage that we now have a better asymptotic behavior of the upper bound when
ν → 0. We choose a (small) value of ν (denoted as ν0) for which we monitor
the convergence of the upper bound at each iteration from the beginning. When it
satisfies the condition ∣∣∣∣U0

k (ν0)− U0
k−1(ν0)

U0
k−1(ν0)

∣∣∣∣ ≤ ε0,
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Figure 15.12 G (solid) and G̃ (dashed) functions and upper bounds for the IP1 (Baart) prob-
lem,m = n = 100, noise= 10−3

we start computing the minimum of the upper bound. We denote this algorithm by
gm-opt. The results are given in table 15.2 with ε0 = 10−5. It has to be compared
with table 15.1. We see that when the convergence is not fast we can save some
function evaluations.

Table 15.2 Minimizer values and number of function evaluations, gm-opt, ε = 10−6,
kmin = 2

Example Noise No. it. µ f min f max f total
Baart 10−7 12 1.0706 10−14 436 0 436

10−5 12 1.0581 10−11 437 0 437
10−3 8 1.3077 10−8 293 0 293
10−1 7 1.1104 10−7 294 0 294
10 7 9.1683 10−8 294 0 294

ILaplace 10−7 58 4.2396 10−14 5239 0 5239
10−5 28 5.4552 10−11 1453 0 1453
10−3 17 2.3046 10−8 440 0 440
10−1 15 2.0896 10−5 293 0 293
10 10 6.8436 10−3 296 0 296

Phillips 10−7 157 1.6343 10−10 17179 0 17179
10−5 103 5.3835 10−9 11086 0 11086
10−3 39 4.1814 10−7 1759 0 1759
10−1 17 4.1875 10−5 438 0 438
10 13 8.7084 10−3 294 0 294
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When a regularization parameter has been computed, an important issue for com-
paring the different methods is to assess the quality of the solution we can compute
with the parameter value we have found. This can be done by looking at the norms
of the solution x and the residual c − Ax. In our examples, we also know the so-
lution x0 of the noise-free problem from which the right-hand side was computed.
So we can compute ‖x − x0‖. The solution x is computed using the SVD of A
(this, of course, cannot be done for real problems). We compare von Matt’s origi-
nal implementation and the gm-opt algorithm in table 15.3. The computing times
(using Matlab on a Dell D600 laptop) should be considered with some care since,
with Matlab, they depend very much on the implementation. For instance, von
Matt used C mex-files to solve the least squares problem for each value of ν and
gm-opt uses the SVD, which is a built-in function. Moreover, the problem sizes are
quite small. Results on a larger problem (on a Sony Vaio RC102, Pentium D 2.8
Ghz) are given in table 15.4. The algorithm gm-opt seems generally faster than von
Matt’s implementation. The quality of the solutions is the same.

Table 15.3 Minimizer values and comparison of the solutions

Example Noise µ ‖c − Ax‖ ‖x − x0‖ Time (s)
Baart vm 10−7 9.6482 10−15 9.8049 10−8 5.9424 10−2 0.38

10−5 9.7587 10−12 9.8566 10−6 6.5951 10−2 0.18
10−3 1.2018 10−8 9.8573 10−4 1.5239 10−1 0.16
10−1 1.0336 10−7 9.8730 10−2 1.6614 −
10 8.8817 10−8 9.8728 16.722 −

Baart gm-opt 10−7 1.0706 10−14 9.8058 10−8 5.9519 10−2 0.18
10−5 1.0581 10−11 9.8588 10−6 6.5957 10−2 0.27
10−3 1.3077 10−8 9.8582 10−4 1.5205 10−1 0.14
10−1 1.1104 10−7 9.8736 10−2 1.6227 −
10 9.1683 10−8 9.8730 16.569 −

ILaplace vm 10−7 2.1520 10−15 9.5132 10−8 1.4909 10−2 10.06
10−5 5.2329 10−12 9.6965 10−6 6.8646 10−2 2.37
10−3 2.2111 10−8 9.7215 10−4 1.9890 10−1 0.35
10−1 1.9484 10−5 9.8196 10−2 3.4627 10−1 0.22
10 6.5983 10−3 9.9095 8.8165 10−1 0.12

ILaplace gm-opt 10−7 4.2396 10−14 1.1004 10−7 2.7130 10−2 2.03
10−5 5.4552 10−11 1.0560 10−5 9.6771 10−2 0.53
10−3 2.3046 10−8 9.7243 10−4 1.9937 10−1 0.29
10−1 2.0896 10−5 9.8235 10−2 3.4634 10−1 0.09
10 6.8436 10−3 9.9115 8.8791 10−1 0.14

Phillips vm 10−7 8.7929 10−11 9.0162 10−8 2.2391 10−4 29.50
10−5 4.5432 10−9 9.0825 10−6 2.2620 10−3 6.09
10−3 4.3674 10−7 9.7826 10−4 1.0057 10−2 1.14
10−1 3.8320 10−5 9.8962 10−2 9.3139 10−2 0.16
10 8.4751 10−3 10.012 5.2677 10−1 0.10

Phillips gm-opt 10−7 1.6343 10−10 1.1260 10−7 2.2163 10−4 15.30
10−5 5.3835 10−9 9.1722 10−6 2.1174 10−3 6.10
10−3 4.1814 10−7 9.7737 10−4 1.0375 10−2 0.66
10−1 4.1875 10−5 9.9016 10−2 9.0659 10−2 0.22
10 8.7084 10−3 10.015 5.2683 10−1 0.15

On these examples we see that the norm of the residual is approximately equal
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Table 15.4 Minimizer values and comparison of the solutions

Example Noise No. it. µ ‖c − Ax‖ ‖x − x0‖ Time (s)
Baart 10−3 19 7.5768 10−10 9.9810 10−4 1.4113 10−1 0.26

n=500, vm
Baart 10−3 11 8.1350 10−10 9.8811 10−4 1.4132 10−1 0.16

n=500, gm-opt

to the level of noise. The larger is the noise, the larger is the norm of the difference
with the unperturbed solution.

15.6 Study of the L-Curve

15.6.1 Properties of the L-Curve
The L-curve is the plot of ‖x‖ versus ‖c−Ax‖ where x is obtained as a function of
ν by solving a regularized problem. In general, one uses the log-log plot of these
curves. An example of an L-curve is given in figure 15.13 in log-log scale for the
IP1 example. The circles give the values for the sample of ν = mµ we used.

10−4 10−3 10−2 10−1 100 101
10−1

100

101

102

103

104

Figure 15.13 The L-curve for the IP1 (Baart) problem,m = n = 100, noise= 10−3

Of course, the plot of the L-curve depends on the range which has been chosen
for the regularization parameter ν = mµ. Properties of the L-curve have been
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studied in many papers. However, as we will see, it is sometimes more informative
to look separately at ‖x(ν)‖ and ‖c − Ax(ν)‖ as functions of ν. If A = UΣV T

is the SVD of A, a full rank m × n matrix with m ≥ n and ν is the Tikhonov
regularization parameter, we have

‖c−Ax‖2 =
n∑
i=1

(
νdi

σ2
i + ν

)2

, (15.18)

and

‖x‖2 =
n∑
i=1

(
σidi
σ2
i + ν

)2

. (15.19)

Computing the derivatives with respect to ν we have

[‖c−Ax‖2]′ = 2
n∑
i=1

νσ2
i d

2
i

(σ2
i + ν)3

(15.20)

and

[‖x‖2]′ = −2
n∑
i=1

σ2
i d

2
i

(σ2
i + ν)3

. (15.21)

This implies that there is a simple relation between the derivatives, since

[‖x‖2]′ = −1
ν
[‖c−Ax‖2]′.

Moreover, ‖c − Ax‖ is an increasing function of ν whence ‖x‖ is a decreasing
function of ν. This is what is seen in figure 15.14 where the solid curve is the log10

of ‖x‖ and the dashed curve is the log10 of ‖c − Ax‖. For this example there is
a large range of values of ν for which both the logarithms of ‖x‖ and ‖c − Ax‖
are almost constant. These values correspond to the accumulation of points close
to the corner of the L-curve in figure 15.13. We note that it can be more interesting
to locate this range of values rather than just the corner of the L-curve. We will
come back to this point later. To know where the curves of figure 15.14 are more
or less contant, we are interested in the (absolute values of) derivatives relative to
log10 ν. This is shown in figure 15.15. Both derivatives are small for ν between
10−8 and 10−6 which corresponds to the plateaus of the curves of the logarithms
of ‖x‖ and ‖c−Ax‖. It is likely that one can choose any value of ν in the interval
corresponding to the intersection of both plateaus.

Other quantities that can be used to characterize the L-curve are distances and
angles. The distances between two consecutive points of the L-curve are displayed
in figure 15.16. There is a well-located minimum of the distances. We will see that
it corresponds approximately to the minimum of the norm of the error. The angles
are not much different whatever the value of ν is. If we look more closely around
the corner, as in figure 15.17, we see that all the angles are far from π/2.

Of course, what is also interesting is the distance of the regularized solution x to
the unperturbed solution x0. Since for the IP1 example we know the unperturbed
solution, this distance is displayed in figure 15.18, where the minimum is shown
by a circle. Of course, this is not feasible for real problems.



DISCRETE ILL-POSED PROBLEMS 315

−14 −12 −10 −8 −6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3
 

Figure 15.14 log10 of ‖x‖ (solid) and ‖c−Ax‖ (dashed) for the IP1 (Baart) problem,m =
n = 100, noise= 10−3
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Figure 15.15 log10 of derivatives of ‖x‖ (solid) and ‖c− Ax‖ (dashed) for the IP1 (Baart)
problem,m = n = 100, noise= 10−3
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Figure 15.16 log10 of distances for the IP1 (Baart) problem,m = n = 100, noise= 10−3
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Figure 15.17 Zoom of the L-curve around the corner for the IP1 (Baart) problem,m = n =
100, noise= 10−3
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Figure 15.18 log10 of ‖x− x0‖ for the IP1 (Baart) problem,m = n = 100, noise= 10−3

15.6.2 Locating the Corner of the L-Curve
When using the L-curve, the regularization parameter is the value ν corresponding
to the “corner” of the L-curve. If it is feasible to compute the SVD of the matrix A,
the corner of the L-curve can be determined as the maximum of the convexity of
the curve. However, if the matrix is too large for computing the SVD, this method
cannot be used. Here, we assume that we can only compute values of points on the
L-curve. We will compare our results with algorithms using the SVD.

The idea we want to exploit here is that if we rotate the L-curve by, say, −π/4,
(see figure 15.19, using 25 sampling points) then finding the corner is almost equiv-
alent to finding the minimum of the curve, at least when the L-curve is really L-
shaped. Since the curve is composed of a sequence of discrete values and parame-
terized by ν, we can obtain the value of ν corresponding to the corner by finding the
index corresponding to the minimum. Therefore, we propose doing several passes
of the following algorithm: we select the index k of the minimum value and ap-
ply the same algorithm iteratively computing new (say 25) sampling points on the
curve in the interval [k − 1, k + 1]. Portions of the L-curves and rotated L-curves
for the first two passes are displayed in figures 15.20 and 15.21. If in one of the
passes the minimum is located at one of the ends of the interval, then we select the
index with minimum angle. The center of rotation is found by the intersection of
two linear fits respectively for the smallest and largest values of µ. We denote this
algorithm as lc1.

Another possibility is to consider the differences of consecutive points of the
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Figure 15.19 The rotated L-curve for the IP1 (Baart) problem,m = n = 100, noise= 10−3
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Figure 15.20 The L-curve for the IP1 (Baart) problem, m = n = 100, noise= 10−3,
second pass
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Figure 15.21 The rotated L-curve for the IP1 (Baart) problem,m = n = 100, noise= 10−3,
second pass

L-curve. We compute the differences

∆ri = | log10(‖c−Ax(νi)‖)− log10(‖c−Ax(νi−1)‖)|,
∆xi = | log10(‖x(νi)‖)− log10(‖x(νi−1)‖)|.

The logarithms of these quantities are shown in figure 15.22. Let ε∆ be a given
threshold. The algorithm lc2 returns the ends of intervals for which both ∆xi and
∆ri are smaller than ε∆. If there is no such interval, the algorithm returns the
minimum of the angles.

15.6.3 Comparison of L-Curve Algorithms
In tables 15.5-15.7 we compare the algorithm (lc) for finding the corner of the
L-curve in Regutools (version 3.1) [177], the pruning algorithm (lp) of Hansen,
Jensen and Rodriguez [181] with lc1 and lc2 (ε∆ = 10−2) for which there are two
lines because we give the ends of the interval found by the algorithm. The value
opt gives the point on the L-curve (discretized with 200 points) with the smallest
error. Note that to be able to compare with the GCV results we give the value of
µ = ν/m. The different methods give results of comparable accuracy.

15.6.4 Approximations of the L-Curve
In practical problems we are not always able to compute the SVD of A and there-
fore we cannot compute points on the real L-curve. However, the techniques for
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Table 15.5 L-curve algorithms, IP1 (Baart) problem, n = 100

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 opt 8.9107 10−17 9.7917 10−8 4.9820 10−2

lc 1.0908 10−16 9.7919 10−8 4.9940 10−2

lp 1.6360 10−16 9.7923 10−8 5.0453 10−2

lc1 6.0889 10−17 9.7912 10−8 5.0041 10−2

lc2 7.3065 10−17 9.7915 10−8 4.9842 10−2

2.0622 10−14 9.8182 10−8 5.9956 10−2

10−5 opt 7.3023 10−12 9.8509 10−6 6.5944 10−2

lc 6.5087 10−13 9.8433 10−6 6.8269 10−2

lp failed
lc1 6.1717 10−13 9.8433 10−6 6.8445 10−2

lc2 9.2095 10−15 9.8344 10−6 3.5326 10−1

1.3033 10−11 9.8666 10−6 6.5985 10−2

10−3 opt 2.4990 10−8 9.8720 10−4 1.5080 10−1

lc 4.5414 10−9 9.8524 10−4 1.6030 10−1

lp 8.2364 10−9 9.8545 10−4 1.5454 10−1

lc1 6.3232 10−9 9.8534 10−4 1.5669 10−1

lc2 5.8203 10−12 9.8463 10−4 4.1492 10−1

4.1297 10−8 9.8996 10−4 1.5153 10−1

10−1 opt 1.1750 10−5 9.9264 10−2 2.9455 10−1

lc 4.1328 10−5 9.9681 10−2 3.2147 10−1

lp failed
lc1 7.2928 10−5 1.0021 10−1 3.4666 10−1

lc2 2.3246 10−6 9.9127 10−2 3.9737 10−1

5.8440 10−5 9.9958 10−2 3.3650 10−1

10 opt 5.5250 10−3 9.9772 6.1260 10−1

lc 1.7086 10−2 9.9990 7.1387 10−1

lp 1.8518 10−1 10.257 9.9211 10−1

lc1 2.7442 10−2 10.018 7.6407 10−1

lc2 8.2700 10−2 10.120 8.8160 10−1

8.2700 10−2 10.120 8.8160 10−1
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Table 15.6 L-curve algorithms, IP2 (ILaplace) problem, n = 100

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 opt 3.7606 10−15 9.5730 10−8 1.3306 10−2

lc 2.1645 10−17 9.3028 10−8 1.8717 10−1

lp failed
lc1 1.5871 10−17 9.2893 10−8 2.2020 10−1

lc2 6.0929 10−17 9.3464 10−8 1.0878 10−1

3.2817 10−15 9.5557 10−8 1.3391 10−2

10−5 opt 7.5376 10−13 9.6065 10−6 6.1880 10−2

lc 2.5207 10−13 9.5870 10−6 8.0606 10−2

lp 1.7675 10−13 9.5797 10−6 1.0110 10−1

lc1 1.6951 10−13 9.5788 10−6 1.0407 10−1

lc2 1.6166 10−14 9.5211 10−6 4.9916 10−1

9.5200 10−12 9.7844 10−6 7.3388 10−2

10−3 opt 4.9065 10−10 9.6720 10−4 1.4798 10−1

lc 1.7737 10−9 9.6762 10−4 1.6240 10−1

lp failed
lc1 1.7535 10−9 9.6762 10−4 1.6221 10−1

lc2 4.6897 10−11 9.6561 10−4 5.3631 10−1

2.7617 10−8 9.7386 10−4 2.0140 10−1

10−1 opt 1.9712 10−5 9.8202 10−2 3.4628 10−1

lc 1.2893 10−5 9.8020 10−2 3.4741 10−1

lp 1.6264 10−5 9.8109 10−2 3.4644 10−1

lc1 1.8139 10−5 9.8159 10−2 3.4628 10−1

lc2 1.4875 10−6 9.7534 10−2 4.9989 10−1

3.6097 10−5 9.8705 10−2 3.4921 10−1

10 opt 3.2468 10−3 9.8835 8.2361 10−1

lc 5.5909 10−3 9.9014 8.5642 10−1

lp 2.1257 10−2 10.041 1.1757
lc1 1.1683 10−2 9.9532 1.0038
lc2 2.1257 10−2 10.041 1.1757

2.1257 10−2 10.041 1.1757
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Table 15.7 L-curve algorithms, IP3 (Phillips) problem, n = 200

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 opt 1.1147 10−10 9.6750 10−8 2.1751 10−4

lc 7.8289 10−16 6.2009 10−9 2.2252 10−2

lp 5.0212 10−16 5.2779 10−9 2.4073 10−2

lc1 6.3760 10−16 5.7625 10−9 2.3071 10−2

lc2 9.1009 10−11 9.1001 10−8 2.2254 10−4

9.1009 10−14 9.1001 10−8 2.2254 10−4

10−5 opt 1.6035 10−8 1.0595 10−5 1.6452 10−3

lc 3.6730 10−14 2.4301 10−6 7.9811 10−1

lp 1.2677 10−14 1.7596 10−6 1.1377
lc1 2.8635 10−14 2.2673 10−6 8.6888 10−1

lc2 1.1545 10−8 9.9214 10−6 1.7001 10−3

1.1545 10−8 9.9214 10−6 1.7001 10−3

10−3 opt 8.5392 10−7 9.9864 10−4 7.3711 10−3

lc 7.1966 10−10 8.5111 10−4 5.3762 10−1

lp 4.5729 10−10 8.3869 10−4 6.8849 10−1

lc1 3.6084 10−10 8.3172 10−4 7.8603 10−1

lc2 1.0250 10−9 8.6013 10−4 4.4563 10−1

2.9147 10−7 9.7098 10−4 1.3595 10−2

10−1 opt 1.4985 10−4 1.0164 10−1 7.5250 10−2

lc 7.9348 10−6 9.8383 10−2 1.8558 10−1

lp failed
lc1 5.3451 10−6 9.8260 10−2 2.2869 10−1

lc2 1.4645 10−6 9.7757 10−2 4.9688 10−1

3.6975 10−5 9.8941 10−2 9.4203 10−2

10 opt 7.9797 10−3 10.060 5.2728 10−1

lc 6.1453 10−3 9.9867 5.3855 10−1

lp failed
lc1 2.1489 10−2 10.222 6.5404 10−1

lc2 1.0514 10−2 10.038 5.3249 10−1

1.0514 10−2 10.038 5.3249 10−1
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Figure 15.22 log10 of ∆x (solid) and ∆r (dashed) for the IP1 (Baart) problem, m = n =
100, noise= 10−3

computing lower and upper bounds of quadratic forms allow the computation of
the L-ribbon approximation introduced in Calvetti, Golub and Reichel [51]. An
example of an L-ribbon for the IP1 example with m = n = 100 and six iterations
is shown in figure 15.23. We display one of the boxes of the L-ribbon. The cross is
the point on the exact L-curve for the given value of µ.

In table 15.8 we give the number of iterations and the values of µ obtained by the
following algorithms. At each iteration of the Lanczos bidiagonalization algorithm
we compute the corners of the curves given by the lower left and upper right corners
of the rectangles using algorithm lc1. When these values of µ have both converged
(up to 10−2) and are close enough to each other, we stop the iterations. It turns
out that there is a large difference in the number of iterations with and without
full reorthogonalization for the Lanczos bidiagonalization algorithm. Therefore we
give the number of iterations for both algorithms (in the third and fifth columns).
Note that the Phillips problem requires a large number of iterations. The smaller is
the noise level, the larger is the number of iterations.

Anyway, these results show that with only a few iterations of the Lanczos bidi-
agonalization algorithm (which requires only one multiplication by A and one by
AT per iteration), we can obtain values of the regularization parameter close to the
ones of the “exact” curve.



324 CHAPTER 15

−3.0072 −3.0071 −3.007 −3.0069 −3.0068 −3.0067 −3.0066 −3.0065 −3.0064 −3.0063

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Figure 15.23 One rectangle of the L-ribbon for the IP1 (Baart) problem, m = n = 100,
noise= 10−3

Table 15.8 L-ribbon

Example Noise No. it. µ No. it. without reorth.
Baart 10−7 11 6.0889 10−17 40

10−5 9 6.1717 10−13 19
10−3 8 6.3232 10−9 10
10−1 6 7.2928 10−5 6
10 5 3.260 10−2 5

ILaplace 10−7 23 1.5871 10−17 > 200
10−5 20 1.6951 10−13 93
10−3 15 1.7535 10−9 33
10−1 10 1.8139 10−5 11
10 6 1.3850 10−2 6

Phillips 10−7 188 7.0255 10−16 > 200
10−5 197 2.6269 10−14 > 200
10−3 48 3.5697 10−10 > 200
10−1 17 5.3451 10−6 26
10 7 2.4194 10−2 7
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15.6.5 Approximation of the Curvature
In table 15.9 we give the number of iterations and the values of µ obtained by com-
puting lower and upper bounds for the curvature of the L-curve. Convergence is
measured is the same way as for the L-ribbon. We see that in some cases conver-
gence is more difficult. The advantage of the L-curvature is that we do not have to
rely on algorithms like lc1 to find the corner. We just have to compute the maxi-
mum of vectors. However, the results (as well as the number of iterations) seem to
be quite dependent on the interval that is chosen for the values of ν.

Table 15.9 L-curvature

Example Noise No. it. µ No. it. without reorth.
Baart 10−7 10 1.5220 10−16 27

10−5 10 6.4404 10−13 20
10−3 10 5.8220 10−9 20
10−1 10 5.2630 10−5 20
10 10 2.2839 10−2 20

ILaplace 10−7 23 2.7322 10−17 237
10−5 22 2.2216 10−13 160
10−3 22 1.8064 10−9 160
10−1 22 1.4689 10−5 159
10 23 5.9395 10−3 205

Phillips 10−7 200 5.0113 10−16 > 300
10−5 200 4.7952 10−14 -
10−3 197 9.3901 10−10 -
10−1 196 8.5979 10−6 -
10 200 8.0479 10−3 -

15.7 Comparison of Methods for Computing the Regu-
larization Parameter

15.7.1 Results on Moderate Size Problems
In this section we compare the different methods for computing the regularization
parameter. The chosen methods are the von Matt implementation of the Golub and
von Matt method (vm) [158] and the gm-opt algorithm for GCV. The other meth-
ods are computed using the SVD of A (which is not feasible for large problems),
using the discrepancy principle (disc), the Gfrerer/Raus method (gr), finding the
minimum of the GCV function G (gcv), locating the corner of the L-curve (lc) and
looking at the minimum of the quasi-optimality function (qo). The results for lc and
qo come from the regularization toolbox Regutools from P. C. Hansen [177] version
3.1. The parameters given by the L-ribbon and L-curvature algorithms are denoted
respectively as L-rib and L-cur. The selection of the parameter from Brezinski et
al. by minimizing an estimate of the error is denoted as err. We give the results for
µ. Note that the regularization parameter is ν = mµ. µ opt is the parameter which
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approximately minimizes the error with the unperturbed solution.

Example IP1
The results for the Baart problem are given in table 15.10. Plots of the unper-

turbed solution (solid line) and some of its approximations are displayed in fig-
ure 15.24.
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Figure 15.24 Solutions for the IP1 (Baart) problem, m = n = 100, noise= 10−3, unper-
turbed solution (solid), vm (dashed) and gm-opt (dotted)

On this problem, which is not too difficult to solve, all the methods give more
or less the same results for the norms of the residual and of the error relative to the
unperturbed solution. However, as we have seen before, vm and gm-opt give poor
results (as we see when comparing to gcv) for noise= 10−1 and 10 (the distance to
the unperturbed solution being two or three times larger) because in these cases G̃
is a poor approximation of the GCV function G around the minimizer.
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Table 15.10 IP1 (Baart) problem, n = 100

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 µ opt 8.6975 10−17 2.0335 10−7 4.9814 10−2

vm 9.6482 10−15 9.8049 10−8 5.9424 10−2

gm-opt 1.0706 10−14 9.8058 10−8 5.9519 10−2

gcv 8.0440 10−15 9.8035 10−8 5.9238 10−2

disc 7.6875 10−14 1.0000 10−7 6.0364 10−2

gr 2.0434 10−13 1.0853 10−7 6.0621 10−2

lc 1.0908 10−16 9.7919 10−8 4.9856 10−2

qo 2.0937 10−14 9.8187 10−8 5.9964 10−2

L-rib 6.0889 10−17 9.7912 10−8 5.0041 10−2

L-cur 1.5220 10−16 9.7923 10−8 5.0341 10−2

err 2.9151 10−12 2.6025 10−7 6.3637 10−2

10−5 µ opt 8.9022 10−12 2.9008 10−5 6.5946 10−2

vm 9.7587 10−12 9.8566 10−6 6.5951 10−2

gm-opt 1.0581 10−11 9.8588 10−6 6.5957 10−2

gcv 8.7357 10−12 9.8540 10−6 6.5945 10−2

disc 3.5344 10−11 1.0000 10−5 6.6498 10−2

gr 1.0058 10−10 1.0832 10−5 6.9237 10−2

lc 6.5087 10−13 9.8433 10−6 6.8263 10−2

qo 3.3484 10−12 9.8450 10−6 6.6072 10−2

L-rib 6.1717 10−13 9.8433 10−6 6.8445 10−2

L-cur 6.4404 10−13 9.8433 10−6 6.8303 10−2

err 8.3022 10−9 3.9008 10−5 1.3679 10−1

10−3 µ opt 2.7826 10−8 2.3501 10−3 1.5084 10−1

vm 1.2018 10−8 9.8573 10−4 1.5239 10−1

gm-opt 1.3077 10−8 9.8582 10−4 1.5205 10−1

gcv 9.4870 10−9 9.8554 10−4 1.5362 10−1

disc 8.4260 10−8 1.0000 10−3 1.5556 10−1

gr 1.7047 10−7 1.0235 10−3 1.6373 10−1

lc 4.5414 10−9 9.8524 10−4 1.6028 10−1

qo 1.2586 10−8 9.8450 10−4 6.6072 10−1

L-rib 6.3232 10−9 9.8534 10−4 1.5669 10−1

L-cur 5.8220 10−9 9.8531 10−4 1.5749 10−1

err 2.3101 10−6 1.6505 10−3 2.0094 10−1

10−1 µ opt 1.1768 10−5 2.2583 10−1 2.9455 10−1

vm 1.0336 10−7 9.8730 10−2 1.6614
gm-opt 1.1104 10−7 9.8736 10−2 1.6267

gcv 3.0727 10−5 9.9378 10−2 2.9955 10−1

disc 6.0927 10−5 1.0000 10−1 3.3839 10−1

gr 1.5620 10−4 1.0197 10−1 3.8022 10−1

lc 4.1338 10−5 9.9682 10−2 3.2142 10−1

qo 1.9141 10−4 1.0291 10−1 3.8810 10−1

L-rib 7.2928 10−5 1.0021 10−1 3.4666 10−1

L-cur 5.2630 10−5 9.9862 10−2 3.3180 10−1

err 1.2328 10−3 1.5756 10−1 4.6015 10−1

10 µ opt 4.9770 10−3 26.307 6.1180 10−1

vm 8.8817 10−8 9.8728 1.6722
gm-opt 9.1683 10−8 9.8730 1.6267

gcv 1.1189 10−2 9.9885 6.6657 10−1

disc 1.7654 10−2 10.000 7.1748 10−1

gr 3.6604 10−2 10.035 7.9288 10−1

lc 1.7087 10−2 9.9990 7.1386 10−1

qo 2.3769 10−2 10.011 7.4933 10−1

L-rib 3.260 10−2 10.027 7.8135 10−1

L-cur 2.2839 10−2 10.009 7.4516 10−1
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Example IP2
For this problem there are more differences between the methods, especially for

the error norm. However, there is no clear overall winner when we vary the noise
level. The results are given in table 15.11. We see that most methods give a residual
norm which is close to the noise level whereas the “optimal” value of the parameter
gives a larger residual norm but a smaller norm of the error.
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Figure 15.25 Solutions for the IP2 (ILaplace) problem, m = n = 100, noise= 10−3, un-
perturbed solution (solid), vm (dashed), gm-opt (dot-dashed) and disc(dotted)
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Table 15.11 IP2 (ILaplace) problem, n = 100

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 µ opt 4.3288 10−15 3.2079 10−5 1.3402 10−2

vm 2.1520 10−15 9.5132 10−8 1.4909 10−2

gm-opt 4.2396 10−14 1.1004 10−7 2.7130 10−2

gcv 1.0754 10−15 9.4656 10−8 2.1639 10−2

disc 1.5720 10−14 1.0000 10−7 1.9742 10−2

gr 3.3438 10−14 1.0659 10−7 2.5316 10−2

lc 2.1645 10−17 9.3028 10−8 1.8717 10−1

qo 2.1912 10−14 1.0226 10−7 2.2147 10−2

L-rib 1.5871 10−17 9.2893 10−8 2.2020 10−1

L-cur 2.7322 10−17 9.3130 10−8 1.6540 10−1

err 3.3516 10−13 2.1248 10−7 4.4507 10−2

10−5 µ opt 6.5793 10−13 3.2418 10−3 6.1866 10−2

vm 5.2329 10−12 9.6965 10−6 6.8646 10−2

gm-opt 5.4552 10−11 1.0560 10−5 9.6771 10−2

gcv 2.3495 10−12 9.6371 10−6 6.5557 10−2

disc 2.1272 10−11 1.0000 10−5 8.3321 10−2

gr 4.2645 10−11 1.0362 10−5 9.3222 10−2

lc 2.5207 10−13 9.5870 10−6 8.0606 10−2

qo 1.9841 10−12 9.6301 10−6 6.5035 10−2

L-rib 1.6951 10−13 9.5788 10−6 1.0407 10−1

L-cur 1.6951 10−13 9.5788 10−6 1.0407 10−1

err 1.2328 10−9 2.5975 10−5 1.4084 10−1

10−3 µ opt 5.3367 10−10 3.2173 10−1 1.4791 10−1

vm 2.2111 10−8 9.7215 10−4 1.9890 10−1

gm-opt 2.3046 10−8 9.7243 10−4 1.9937 10−1

gcv 2.0776 10−8 9.7177 10−4 1.9819 10−1

disc 8.6814 10−8 1.0000 10−3 2.1391 10−1

gr 1.8660 10−7 1.0555 10−3 2.2402 10−1

lc 1.7737 10−9 9.6762 10−4 1.6240 10−1

qo 1.2759 10−8 9.6973 10−4 1.9227 10−1

L-rib 1.7535 10−9 9.6762 10−4 1.6221 10−1

L-cur 1.8064 10−9 9.6763 10−4 1.6271 10−1

err 2.9151 10−6 2.3831 10−3 2.7795 10−1

10−1 µ opt 1.8738 10−5 3.1515 101 3.4627 10−1

vm 1.9484 10−5 9.8196 10−2 3.4627 10−1

gm-opt 2.0896 10−5 9.8235 10−2 3.4634 10−1

gcv 2.2562 10−5 9.8282 10−2 3.4649 10−1

disc 6.9079 10−5 1.0000 10−1 3.5847 10−1

gr 1.7227 10−4 1.0568 10−1 3.8490 10−1

lc 1.2893 10−5 9.8020 10−2 3.4741 10−1

qo 2.7439 10−5 9.8426 10−2 3.4724 10−1

L-rib 1.8139 10−5 9.8159 10−2 3.4628 10−1

L-cur 1.4689 10−5 9.8067 10−2 3.4675 10−1

err 6.1359 10−4 1.4475 10−1 4.4754 10−1

10 µ opt 3.9442 10−3 3.1352 103 8.2453 10−1

vm 6.5983 10−3 9.9095 8.8165 10−1

gm-opt 6.8436 10−3 9.9115 8.8791 10−1

gcv 6.0540 10−3 9.9051 8.6785 10−1

disc 1.6819 10−2 10 1.1039
gr 3.2174 10−2 10.137 1.3146
lc 5.5909 10−3 9.9014 8.5642 10−1

qo 6.0077 10−3 9.9047 8.6669 10−1

L-rib 1.3850 10−2 9.8835 8.2361 10−1

L-cur 5.9395 10−3 9.9728 1.0487
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Example IP3
For this problem there are some differences in the error norm when the noise is

between 10−5 and 10−1. Results are given in table 15.12. The algorithms based
on the L-curve fail on this problem. The norms of the residuals are smaller but the
norms of the error are larger than with the other methods, except for large noise
levels. Note that for this example, the “optimal” parameter gives residual norms
which are much smaller than with the other choices of the parameter.
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Figure 15.26 Solutions for the IP3 (Phillips) problem, m = n = 200, noise= 10, unper-
turbed solution (solid), vm (dashed), gm-opt (dot-dashed) and disc (dotted)

15.7.2 Results on Large Problems
In this section we solve problems with Example IP4 (von Matt example). We start
with a medium size problem m = 2000 and n = 1000 with a linear distribution of
the singular values

σ = 1− 10−3 [0 : n− 1]′

The vectors u and v of lengths= m or n are chosen with components sin(2πi/(l+
1)), i = 1, . . . , l. The solution is

x=2 exp(−6(−π/2 + [0.5 : m− 0.5]′π/m− 0.8)2)
+ exp(−2(−π/2 + [0.5 : m− 0.5]′π/n− 0.5)2).

The results are obtained without reorthogonalization since this is impractical for
large problems because of the storage issue. The results for lc were obtained by
the L-curve code of von Matt because for this problem we cannot use directly the
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Table 15.12 IP3 (Phillips) problem, n = 200

Noise Method µ ‖c − Ax‖ ‖x − x0‖
10−7 µ opt 1.3280 10−10 2.8193 10−14 2.1729 10−4

vm 8.7929 10−11 9.0162 10−8 2.2391 10−4

gm-opt 1.6343 10−10 1.1260 10−7 2.2163 10−4

gcv 2.3940 10−11 7.3021 10−8 3.9089 10−4

disc 1.2259 10−10 1.0000 10−7 2.1693 10−4

gr 4.3205 10−10 2.0760 10−7 2.9550 10−4

lc 7.8290 10−16 6.2011 10−9 2.2259 10−2

qo 1.8148 10−10 1.1844 10−7 2.2559 10−4

L-rib 7.0255 10−16 5.9666 10−9 2.2680 10−2

L-cur 5.0113 10−16 5.2740 10−9 2.4082 10−2

err 1.6758 10−10 1.1393 10−7 2.2248 10−4

10−5 µ opt 1.3725 10−7 2.9505 10−14 1.6641 10−3

vm 4.5432 10−9 9.0825 10−6 2.2620 10−3

gm-opt 5.3835 10−9 9.1722 10−6 2.1174 10−3

gcv 3.1203 10−9 8.9283 10−6 2.6499 10−3

disc 1.2107 10−8 1.0000 10−5 1.6873 10−3

gr 4.1876 10−8 1.5784 10−5 1.9344 10−3

lc 3.6731 10−14 2.4301 10−6 7.9811 10−1

qo 1.5710 10−8 1.0542 10−5 1.6463 10−3

L-rib 2.6269 10−14 2.2118 10−6 8.9457 10−1

L-cur 4.7952 10−14 2.6093 10−6 7.2750 10−1

err 3.5274 10−8 1.4322 10−5 1.8362 10−3

10−3 µ opt 9.1537 10−7 2.4133 10−13 7.3429 10−3

vm 4.3674 10−7 9.7826 10−4 1.0057 10−2

gm-opt 4.1814 10−7 9.7737 10−4 1.0375 10−2

gcv 4.0669 10−7 9.7682 10−4 1.0585 10−2

disc 8.7965 10−7 1.0000 10−3 7.3535 10−3

gr 2.9376 10−6 1.1656 10−3 1.1260 10−2

lc 7.1965 10−10 8.5111 10−4 5.3762 10−1

qo 1.9308 10−6 1.0711 10−3 9.2198 10−3

L-rib 3.5697 10−10 8.3172 10−4 7.8603 10−1

L-cur 9.3901 10−10 8.5794 10−4 4.6668 10−1

err 5.8841 10−6 1.5336 10−3 1.5434 10−2

10−1 µ opt 1.5269 10−4 2.1773 10−11 7.5243 10−2

vm 3.8320 10−5 9.8962 10−2 9.3139 10−2

gm-opt 4.1875 10−5 9.9016 10−2 9.0659 10−2

gcv 5.3006 10−5 9.9195 10−2 8.5119 10−2

disc 9.3222 10−5 1.0000 10−1 7.7226 10−2

gr 4.9453 10−4 1.2322 10−1 8.5662 10−2

lc 7.9330 10−6 9.8383 10−2 1.8555 10−1

qo 1.8894 10−4 1.0314 10−1 7.5516 10−2

L-rib 5.3451 10−6 9.8260 10−2 2.2869 10−1

L-cur 8.5979 10−6 9.8407 10−2 1.7808 10−1

err 7.7784 10−4 1.5046 10−1 9.8279 10−2

10 µ opt 8.3405 10−3 2.1624 10−9 5.2682 10−1

vm 8.4751 10−3 10.012 5.2677 10−1

gm-opt 8.7084 10−3 10.015 5.2683 10−1

gcv 4.0214 10−3 9.9679 5.8251 10−1

disc 7.4140 10−3 10 5.2902 10−1

gr 1.8947 10−2 10.175 6.2024 10−1

lc 6.1445 10−3 9.9867 5.3837 10−1

qo 5.0910 10−3 9.9768 5.5454 10−1

L-rib 2.4194 10−2 10.275 6.9069 10−1

L-cur 8.0479 10−3 10.007 5.2715 10−1
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code from Regutools since we do not store the matrix. Note that we are able to use
the algorithms which need the singular value distribution because of the way the
problem is constructed. Otherwise we would have had to compute the SVD of large
matrices. Results are not given for vm when the noise is small because it needs too
many iterations.

Table 15.13 IP4 (von Matt) problem,m = 2000, n = 1000, linear distribution

Noise Method No. it. µ ‖c − Ax‖ ‖x − x0‖
10−3 gm-opt 1102 9.9271 10−11 6.9950 10−4 5.7874 10−2

disc - 6.2891 10−9 1.2199 10−3 8.7843 10−2

gr - 9.3420 10−8 1.4567 10−2 0.1386
gcv - failed - -
lc - 8.6889 10−15 6.9919 10−4 6.1444 10−2

qo - 7.3848 10−15 6.9919 10−4 6.1445 10−2

10−2 gm-opt 366 2.1224 10−9 7.0054 10−3 0.1522
disc - 6.3912 10−8 1.2199 10−2 0.1398
gr - 4.9023 10−7 7.5531 10−2 0.3517

gcv - 1.2408 10−9 6.9986 10−3 0.1652
lc - 8.6989 10−15 6.9919 10−3 0.3137
qo - 7.3848 10−15 6.9919 10−3 0.3154

0.1 vm 219 3.0202 10−8 7.0278 10−2 0.7675
gm-opt 197 3.3106 10−8 7.9321 10−2 0.7522

disc - 6.5011 10−7 1.2199 10−1 0.5651
gr - 2.5391 10−6 3.7179 10−1 1.5162

gcv - 3.3217 10−8 7.0323 10−2 0.7516
lc - 8.6889 10−15 6.9919 10−2 3.1093
qo - 7.3848 10−15 6.9919 10−2 3.1093

Then in table 15.14 we display the results with m = 2000, n = 1000 and an ex-
ponential distribution of the singular values. We see that with this problem we have
to do a large number of iterations and it is likely that some form of preconditioning
would have to be introduced in the method using the Lanczos bidiagonalization al-
gorithm. Finally we solve a problem with m = 20000, n = 2000 and c = 0.003
(Table 15.15).

To summarize, we have shown in this chapter that the techniques for computing
approximations of quadratic forms can be used to determine a good regularization
parameter for solving discrete ill-posed problems.
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Table 15.14 IP4 (von Matt) problem, m = 2000, n = 1000, exponential distribution, c =
0.025

Noise Method No. it. µ ‖c − Ax‖ ‖x − x0‖
10−2 gm-opt 1373 5.5723 10−11 9.4447 10−3 22.56

disc - 5.7744 10−10 1.2199 10−2 25.03
gr - 1.1164 10−9 1.4258 10−2 25.74

gcv - 7.7201 10−12 9.0380 10−3 21.60
lc - failed - -
qo - 4.7561 10−4 0.9821 31.53

10−1 gm-opt 410 2.2399 10−9 9.4690 10−2 26.63
disc - 9.8649 10−8 0.1220 29.46
gr - 1.8484 10−7 0.1371 29.81

gcv - 5.7442 10−10 9.2855 10−2 26.37
lc - failed - -
qo - 4.7561 10−4 0.9880 31.53

1 gm-opt 80 2.6542 10−7 0.9644 30.31
disc - 7.2771 10−5 1.2199 31.43
gr - 1.2238 10−4 1.2725 31.47

gcv - 2.7099 10−7 0.9647 30.31
lc - failed - -
qo - 4.7561 10−4 1.4050 31.53

Table 15.15 IP4 (von Matt) problem, m = 20000, n = 2000, exponential distribution,
c = 0.003

Noise Method No. it. µ ‖c − Ax‖ ‖x − x0‖
10−2 gm-opt 933 4.8353 10−13 9.4753 10−3 0.3578

disc - 1.3263 10−10 1.3776 10−2 1.4219
gr - failed - -

gcv - 3.0721 10−10 2.3836 10−2 2.9420
lc - 3.0721 10−10 2.3836 10−2 2.9420
qo - 4.9701 10−5 4.2021 1.4856

10−1 gm-opt 585 4.3687 10−11 9.4816 10−2 3.394
disc - 1.9861 10−9 0.1378 11.531
gr - failed - -

gcv - 3.0721 10−10 9.7315 10−2 3.905
lc - 3.0721 10−10 9.7315 10−2 3.905
qo - 4.9701 10−5 4.203 44.216

1 gm-opt 289 1.6036 10−9 0.9554 17.915
disc - 3.5982 10−7 1.3776 38.187
gr - 6.8886 10−7 1.6325 39.343

gcv - 1.0991 10−9 0.9527 18.868
lc - 3.0721 10−10 0.9485 25.720
qo - 4.9701 10−5 4.3195 44.216
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[254] B. ORTNER AND A.R. KRÄUTER, Lower bounds for the determinant and
the trace of a class of Hermitian matrix, Linear Alg. Appl., v 236 (1996),
pp 147–180.

[255] C.C. PAIGE, The computation of eigenvalues and eigenvectors of very large
sparse matrices, Ph.D. thesis, University of London (1971).

[256] C.C. PAIGE AND M.A. SAUNDERS, LSQR: An algorithm for sparse linear
equations and sparse least squares, ACM Trans. Math. Soft., v 8 (1982),
pp 43–71.

[257] C.C. PAIGE AND M.A. SAUNDERS, Algorithm 583, LSQR: Sparse linear
equations and least squares problems, ACM Trans. Math. Soft., v 8 (1982),
pp 195–209.
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[259] C.C. PAIGE AND Z. STRAKOŠ, Unifying least squares, total least squares
and data least squares, in Proceedings of the third international workshop
on TLS and error-in-variables modelling, S. Van Huffel and P. Lemmerling
Eds., Kluwer, Dordrecht (2001), pp 35–44.



BIBLIOGRAPHY 353
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