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Preface to the Second Edition

The first edition of this book appeared a decade ago. This is a revised
expanded version. My goal has remained the same: to provide a text for
a second course in matrix theory and linear algebra accessible to advanced
undergraduate and beginning graduate students. Through the course, stu-
dents learn, practice, and master basic matrix results and techniques (or
matrix kung fu) that are useful for applications in various fields such as
mathematics, statistics, physics, computer science, and engineering, etc.

Major changes for the new edition are: eliminated errors, typos, and
mistakes found in the first edition; expanded with topics such as matrix
functions, nonnegative matrices, and (unitarily invariant) matrix norms;
included more than 1000 exercise problems; rearranged some material from
the previous version to form a new chapter, Chapter 4, which now contains
numerical ranges and radii, matrix norms, and special operations such as
the Kronecker and Hadamard products and compound matrices; and added
a new chapter, Chapter 10, “Majorization and Matrix Inequalities”, which
presents a variety of inequalities on the eigenvalues and singular values of
matrices and unitarily invariant norms.

I am thankful to many mathematicians who have sent me their com-
ments on the first edition of the book or reviewed the manuscript of this
edition: Liangjun Bai, Jane Day, Farid O. Farid, Takayuki Furuta, Geoffrey
Goodson, Roger Horn, Zejun Huang, Minghua Lin, Dennis Merino, George
P.H. Styan, Götz Trenkler, Qingwen Wang, Yimin Wei, Changqing Xu, Hu
Yang, Xingzhi Zhan, Xiaodong Zhang, and Xiuping Zhang. I also thank
Farquhar College of Arts and Sciences at Nova Southeastern University for
providing released time for me to work on this project.

Readers are welcome to communicate with me via e-mail.
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Fuzhen Zhang
Fort Lauderdale

May 23, 2011
zhang@nova.edu

www.nova.edu/˜zhang



 



Preface

It has been my goal to write a concise book that contains fundamen-
tal ideas, results, and techniques in linear algebra and (mainly) in matrix
theory which are accessible to general readers with an elementary linear
algebra background. I hope this book serves the purpose.

Having been studied for more than a century, linear algebra is of central
importance to all fields of mathematics. Matrix theory is widely used in
a variety of areas including applied math, computer science, economics,
engineering, operations research, statistics, and others.

Modern work in matrix theory is not confined to either linear or alge-
braic techniques. The subject has a great deal of interaction with combina-
torics, group theory, graph theory, operator theory, and other mathematical
disciplines. Matrix theory is still one of the richest branches of mathematics;
some intriguing problems in the field were long standing, such as the Van
der Waerden conjecture (1926–1980), and some, such as the permanental-
dominance conjecture (since 1966), are still open.

This book contains eight chapters covering various topics from sim-
ilarity and special types of matrices to Schur complements and matrix
normality. Each chapter focuses on the results, techniques, and methods
that are beautiful, interesting, and representative, followed by carefully se-
lected problems. Many theorems are given different proofs. The material
is treated primarily by matrix approaches and reflects the author’s tastes.

The book can be used as a text or a supplement for a linear algebra
or matrix theory class or seminar. A one-semester course may consist of
the first four chapters plus any other chapter(s) or section(s). The only
prerequisites are a decent background in elementary linear algebra and
calculus (continuity, derivative, and compactness in a few places). The
book can also serve as a reference for researchers and instructors.

The author has benefited from numerous books and journals, including
The American Mathematical Monthly, Linear Algebra and Its Applications,
Linear and Multilinear Algebra, and the International Linear Algebra Soci-
ety (ILAS) Bulletin Image. This book would not exist without the earlier
works of a great number of authors (see the References).

I am grateful to the following professors for many valuable suggestions
and input and for carefully reading the manuscript so that many errors
have been eliminated from the earlier version of the book:

Professor R.B. Bapat (Indian Statistical Institute),
Professor L. Elsner (University of Bielefeld),
Professor R.A. Horn (University of Utah),
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x Preface

Professor T.-G. Lei (National Natural Science Foundation of China),
Professor J.-S. Li (University of Science and Technology of China),
Professor R.-C. Li (University of Kentucky),
Professor Z.-S. Li (Georgia State University),
Professor D. Simon (Nova Southeastern University),
Professor G.P.H. Styan (McGill University),
Professor B.-Y. Wang (Beijing Normal University), and
Professor X.-P. Zhang (Beijing Normal University).

F. Zhang
Ft. Lauderdale
March 5, 1999

zhang@nova.edu
www.nova.edu/˜zhang
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Frequently Used Notation and Terminology

dimV , 3 dimension of vector space V
Mn, 8 n× n (i.e., n-square) matrices with complex entries
A = (aij), 8 matrix A with (i, j)-entry aij
I, 9 identity matrix
AT , 9 transpose of matrix A
A, 9 conjugate of matrix A

A∗, 9 conjugate transpose of matrix A, i.e., A∗ = A
T

A−1, 13 inverse of matrix A
rank (A), 11 rank of matrix A
trA, 21 trace of matrix A
detA, 12 determinant of matrix A
|A|, 12, 83, 164 determinant for a block matrix A or (A∗A)1/2 or (|aij |)
(u, v), 27 inner product of vectors u and v
∥ · ∥, 28, 113 norm of a vector or a matrix
Ker(A), 17 kernel or null space of A, i.e., Ker(A) = {x : Ax = 0}
Im(A), 17 image space of A, i.e., Im(A) = {Ax}
ρ(A), 109 spectral radius of matrix A
σmax(A), 109 largest singular value (spectral norm) of matrix A
λmax(A), 124 largest eigenvalue of matrix A
A ≥ 0, 81 A is positive semidefinite (or all aij ≥ 0 in Section 5.7)
A ≥ B, 81 A−B is positive semidefinite (or aij ≥ bij in Section 5.7)
A ◦B, 117 Hadamard (entrywise) product of matrices A and B
A⊗B, 117 Kronecker (tensor) product of matrices A and B

x ≺w y, 326 weak majorization, i.e., all
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i hold

x ≺wlog y, 344 weak log-majorization, i.e., all
∏k

i=1 x
↓
i ≤

∏k
i=1 y

↓
i hold

An n× n matrix A is said to be

upper-triangular if all entries below the main diagonal are zero
diagonalizable if P−1AP is diagonal for some invertible matrix P
similar to B if P−1AP = B for some invertible matrix P
unitarily similar to B if U∗AU = B for some unitary matrix U
unitary if AA∗ = A∗A = I, i.e., A−1 = A∗

positive semidefinite if x∗Ax ≥ 0 for all vectors x ∈ Cn

Hermitian if A = A∗

normal if A∗A = AA∗

λ ∈ C is an eigenvalue of A ∈ Mn if Ax = λx for some nonzero x ∈ Cn.
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Frequently Used Theorems

• Cauchy–Schwarz inequality: Let V be an inner product space over
a number field (R or C). Then for all vectors x and y in V

|(x, y)|2 ≤ (x, x)(y, y).

Equality holds if and only if x and y are linearly dependent.

• Theorem on the eigenvalues of AB and BA: Let A and B be m×n
and n ×m complex matrices, respectively. Then AB and BA have the
same nonzero eigenvalues, counting multiplicity. As a consequence,

tr(AB) = tr(BA).

• Schur triangularization theorem: For any n-square matrix A, there
exists an n-square unitary matrix U such that U∗AU is upper-triangular.

• Jordan decomposition theorem: For any n-square matrix A, there
exists an n-square invertible complex matrix P such that

A = P−1(J1 ⊕ J2 ⊕ · · · ⊕ Jk)P,

where each Ji, i = 1, 2, . . . , k, is a Jordan block.

• Spectral decomposition theorem: Let A be an n-square normal
matrix with eigenvalues λ1, λ2, . . . , λn. Then there exists an n-square
unitary matrix U such that

A = U∗ diag(λ1, λ2, . . . , λn)U.

In particular, if A is positive semidefinite, then all λi ≥ 0; if A is Her-
mitian, then all λi are real; and if A is unitary, then all |λi| = 1.

• Singular value decomposition theorem: Let A be anm×n complex
matrix with rank r. Then there exist an m-square unitary matrix U and
an n-square unitary matrix V such that

A = UDV,

where D is the m×n matrix with (i, i)-entries being the singular values
of A, i = 1, 2, . . . , r, and other entries 0. If m = n, then D is diagonal.

xvii



 



CHAPTER 1

Elementary Linear Algebra Review

Introduction: We briefly review, mostly without proof, the basic
concepts and results taught in an elementary linear algebra course.
The subjects are vector spaces, basis and dimension, linear transfor-
mations and their eigenvalues, and inner product spaces.

1.1 Vector Spaces

Let V be a set of objects (elements) and F be a field, mostly the real
number field R or the complex number field C throughout this book.
The set V is called a vector space over F if the operations addition

u+ v, u, v ∈ V,

and scalar multiplication

cv, c ∈ F, v ∈ V,

are defined so that the addition is associative, is commutative, has
an additive identity 0 and additive inverse −v in V for each v ∈ V ,
and so that the scalar multiplication is distributive, is associative,
and has an identity 1 ∈ F for which 1v = v for every v ∈ V .
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Put these in symbols:

1. u+ v ∈ V for all u, v ∈ V .

2. cv ∈ V for all c ∈ F and v ∈ V .

3. u+ v = v + u for all u, v ∈ V .

4. (u+ v) + w = u+ (v + w) for all u, v, w ∈ V .

5. There is an element 0 ∈ V such that v + 0 = v for all v ∈ V .

6. For each v ∈ V there is an element −v ∈ V so that v+(−v) = 0.

7. c(u+ v) = cu+ cv for all c ∈ F and u, v ∈ V .

8. (a+ b)v = av + bv for all a, b ∈ F and v ∈ V .

9. (ab)v = a(bv) for all a, b ∈ F and v ∈ V .

10. 1v = v for all v ∈ V .

O

u

v u + v

O

v

cv, c > 1

Figure 1.1: Vector addition and scalar multiplication

We call the elements of a vector space vectors and the elements
of the field scalars. For instance, Rn, the set of real column vectors

x1
x2
...
xn

 , also written as (x1, x2, . . . , xn)
T

(T for transpose) is a vector space over R with respect to the addition

(x1, x2, . . . , xn)
T + (y1, y2, . . . , yn)

T = (x1 + y1, x2 + y2, . . . , xn+ yn)
T

and the scalar multiplication

c (x1, x2, . . . , xn)
T = (cx1, cx2, . . . , cxn)

T , c ∈ R.
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Note that the real row vectors also form a vector space over R;
and they are essentially the same as the column vectors as far as
vector spaces are concerned. For convenience, we may also consider
Rn as a row vector space if no confusion is caused. However, in the
matrix-vector product Ax, obviously x needs to be a column vector.

Let S be a nonempty subset of a vector space V over a field F.
Denote by SpanS the collection of all finite linear combinations of
the vectors in S; that is, SpanS consists of all vectors of the form

c1v1 + c2v2 + · · ·+ ctvt, t = 1, 2, . . . , ci ∈ F, vi ∈ S,

The set SpanS is also a vector space over F. If SpanS = V , then
every vector in V can be expressed as a linear combination of vectors
in S. In such cases we say that the set S spans the vector space V .

A set S = {v1, v2, . . . , vk} is said to be linearly independent if

c1v1 + c2v2 + · · ·+ ckvk = 0

holds only when c1 = c2 = · · · = ck = 0. If there are also nontrivial
solutions, i.e., not all c are zero, then S is linearly dependent.

For example, both {(1, 0), (0, 1), (1, 1)} and {(1, 0), (0, 1)} span
R2. The first set is linearly dependent; the second one is linearly
independent. The vectors (1, 0) and (1, 1) also span R2.

A basis of a vector space V is a linearly independent set that spans
V . If V possesses a basis of an n-vector set S = {v1, v2, . . . , vn}, we
say that V is of dimension n, written as dimV = n. Conventionally,
if V = {0}, we write dimV = 0. If any finite set cannot span V ,
then V is infinite-dimensional and we write dimV = ∞. Unless
otherwise stated, we assume throughout the book that the vector
spaces are finite-dimensional, as we mostly deal with finite matrices,
even though some results hold for infinite-dimensional spaces.

For instance, C is a vector space of dimension 2 over R with basis
{1, i}, where i =

√
−1, and of dimension 1 over C with basis {1}.

Cn, the set of row (or column) vectors of n complex components,
is a vector space over C having standard basis

e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, . . . , 0, 0), . . . , en = (0, 0, . . . , 0, 1).



4 Elementary Linear Algebra Review Chap. 1

If {u1, u2, . . . , un} is a basis for a vector space V of dimension n,
then every x in V can be uniquely expressed as a linear combination
of the basis vectors:

x = x1u1 + x2u2 + · · ·+ xnun,

where the xi are scalars. The n-tuple (x1, x2, . . . , xn) is called the
coordinate of vector x with respect to the basis.

Let V be a vector space of dimension n, and let {v1, v2, . . . , vk} be
a linearly independent subset of V . Then k ≤ n, and it is not difficult
to see that if k < n, then there exists a vector vk+1 ∈ V such that
the set {v1, v2, . . . , vk, vk+1} is linearly independent (Problem 16). It
follows that the set {v1, v2, . . . , vk} can be extended to a basis of V .

LetW be a subset of a vector space V . IfW is also a vector space
under the addition and scalar multiplication for V , then W is called
a subspace of V . One may check (Problem 9) that W is a subspace if
and only if W is closed under the addition and scalar multiplication.

For subspaces V1 and V2, the sum of V1 and V2 is defined to be

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}.

It follows that the sum V1 + V2 is also a subspace. In addition,
the intersection V1 ∩ V2 is a subspace, and

V1 ∩ V2 ⊆ Vi ⊆ V1 + V2, i = 1, 2.

The sum V1 + V2 is called a direct sum, symbolized by V1 ⊕ V2, if

v1 + v2 = 0, v1 ∈ V1, v2 ∈ V2 ⇒ v1 = v2 = 0.

One checks that in the case of a direct sum, every vector in V1⊕V2
is uniquely written as a sum of a vector in V1 and a vector in V2.

V2

V1

O

V1 ⊕ V2

Figure 1.2: Direct sum
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Theorem 1.1 (Dimension Identity) Let V be a finite-dimensional
vector space, and let V1 and V2 be subspaces of V . Then

dimV1 + dimV2 = dim(V1 + V2) + dim(V1 ∩ V2).

The proof is done by first choosing a basis {u1, . . . , uk} for V1∩V2,
extending it to a basis {u1, . . . , uk, vk+1, . . . , vs} for V1 and a basis
{u1, . . . , uk, wk+1, . . . , wt} for V2, and then showing that

{u1, . . . , uk, vk+1, . . . , vs, wk+1, . . . , wt}

is a basis for V1 + V2.
It follows that subspaces V1 and V2 contain nonzero common

vectors if the sum of their dimensions exceeds dimV .

Problems

1. Show explicitly that R2 is a vector space over R. Consider R2 over
C with the usual addition. Define c(x, y) = (cx, cy), c ∈ C. Is R2 a
vector space over C? What if the “scalar multiplication” is defined as

c(x, y) = (ax+ by, ax− by), where c = a+ bi, a, b ∈ R?

2. Can a vector space have two different additive identities? Why?

3. Show that Fn[x], the collection of polynomials over a field F with
degree at most n, is a vector space over F with respect to the ordinary
addition and scalar multiplication of polynomials. Is F[x], the set of
polynomials with any finite degree, a vector space over F? What is
the dimension of Fn[x] or F[x]?

4. Determine whether the vectors v1 = 1 + x − 2x2, v2 = 2 + 5x − x2,
and v3 = x+ x2 in F2[x] are linearly independent.

5. Show that {(1, i), (i,−1)} is a linearly independent subset of C2 over
the real R but not over the complex C.

6. Determine whether R2, with the operations

(x1, y1) + (x2, y2) = (x1x2, y1y2)

and
c(x1, y1) = (cx1, cy1),

is a vector space over R.
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7. Let V be the set of all real numbers in the form

a+ b
√
2 + c

√
5,

where a, b, and c are rational numbers. Show that V is a vector space
over the rational number field Q. Find dimV and a basis of V .

8. Let V be a vector space. If u, v, w ∈ V are such that au+bv+cw = 0
for some scalars a, b, c, ac ̸= 0, show that Span{u, v} = Span{v, w}.

9. Let V be a vector space over F and let W be a subset of V . Show
that W is a subspace of V if and only if for all u, v ∈W and c ∈ F

u+ v ∈W and cu ∈W.

10. Is the set {(x, y) ∈ R2 : 2x− 3y = 0} a subspace of R2? How about
{(x, y) ∈ R2 : 2x− 3y = 1}? Give a geometric explanation.

11. Show that the set {(x, y−x, y) : x, y ∈ R} is a subspace of R3. Find
the dimension and a basis of the subspace.

12. Find a basis for Span{u, v, w}, where u = (1, 1, 0), v = (1, 3,−1),
and w = (1,−1, 1). Find the coordinate of (1, 2, 3) under the basis.

13. Let W = {(x1, x2, x3, x4) ∈ R4 : x3 = x1 + x2 and x4 = x1 − x2}.

(a) Prove that W is a subspace of R4.

(b) Find a basis for W . What is the dimension of W?

(c) Prove that {c(1, 0, 1, 1) : c ∈ R} is a subspace of W .

(d) Is {c(1, 0, 0, 0) : c ∈ R} a subspace of W?

14. Show that each of the following is a vector space over R.

(a) C[a, b], the set of all (real-valued) continuous functions on [a, b].

(b) C′(R), the set of all functions of continuous derivatives on R.
(c) The set of all even functions.

(d) The set of all odd functions.

(e) The set of all functions f that satisfy f(0) = 0.

[Note: Unless otherwise stated, functions are added and multiplied by
scalars in a usual way, i.e., (f+g)(x) = f(x)+g(x), (kf)(x) = kf(x).]

15. Show that if W is a subspace of vector space V of dimension n, then
dimW ≤ n. Is it possible that dimW = n for a proper subspace W?
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16. Let {u1, . . . , us} and {v1, . . . , vt} be two sets of vectors. If s > t and
each ui can be expressed as a linear combination of v1, . . . , vt, show
that u1, . . . , us are linearly dependent.

17. Let V be a vector space over a field F. Show that cv = 0, where c ∈ F
and v ∈ V , if and only if c = 0 or v = 0. [Note: The scalar 0 and the
vector 0 are usually different. For simplicity, here we use 0 for both.
In general, one can easily tell from the text which is which.]

18. Let V1 and V2 be subspaces of a finite-dimensional space. Show that
the sum V1 + V2 is a direct sum if and only if

dim(V1 + V2) = dimV1 + dimV2.

Conclude that if {u1, . . . , us} is a basis for V1 and {v1, . . . , vt} is a
basis for V2, then {u1, . . . , us, v1, . . . , vt} is a basis for V1 ⊕ V2.

19. If V1, V2, and W are subspaces of a finite-dimensional vector space
V such that V1 ⊕W = V2 ⊕W , is it always true that V1 = V2?

20. Let V be a vector space of finite dimension over a field F. If V1 and
V2 are two subspaces of V such that dimV1 = dimV2, show that
there exists a subspace W such that V = V1 ⊕W = V2 ⊕W.

21. Let V1 and V2 be subspaces of a vector space of finite dimension such
that dim(V1+V2) = dim(V1∩V2)+1. Show that V1 ⊆ V2 or V2 ⊆ V1.

22. Let S1, S2, and S3 be subspaces of a vector space of dimension n.
Show that

(S1 + S2) ∩ (S1 + S3) = S1 + (S1 + S2) ∩ S3.

23. Let S1, S2, and S3 be subspaces of a vector space of dimension n.
Show that

dim(S1 ∩ S2 ∩ S3) ≥ dimS1 + dimS2 + dimS3 − 2n.

. ⊙ .
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1.2 Matrices and Determinants

An m × n matrix A over a field F is a rectangular array of m rows
and n columns of entries in F:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 .

Such a matrix, written as A = (aij), is said to be of size (or order)
m × n. Two matrices are considered to be equal if they have the
same size and same corresponding entries in all positions.

The set of all m×n matrices over a field F is a vector space with
respect to matrix addition by adding corresponding entries and to
scalar multiplication by multiplying each entry of the matrix by the
scalar. The dimension of the space is mn, and the matrices with one
entry equal to 1 and 0 entries elsewhere form a basis. In the case of
square matrices; that is, m = n, the dimension is n2.

We denote by Mm×n(F) the set of all m × n matrices over the
field F, and throughout the book we simply write Mn for the set of
all complex n-square (i.e., n× n) matrices.

The product AB of two matrices A = (aij) and B = (bij) is
defined to be the matrix whose (i, j)-entry is given by

ai1b1j + ai2b2j + · · ·+ ainbnj .

Thus, in order that AB make sense, the number of columns of A
must be equal to the number of rows of B. Take, for example,

A =

(
1 −1
0 2

)
, B =

(
3 4 5
6 0 8

)
.

Then

AB =

(
−3 4 −3
12 0 16

)
.

Note that BA is undefined.
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Sometimes it is useful to write the matrix product AB, with
B = (b1, b2, . . . , bn), where the bi are the column vectors of B, as

AB = (Ab1, Ab2, . . . , Abn).

The transpose of an m× n matrix A = (aij) is an n×m matrix,
denoted by AT , whose (i, j)-entry is aji; and the conjugate of A is a
matrix of the same size as A, symbolized by A, whose (i, j)-entry is
aij . We denote the conjugate transpose A

T
of A by A∗.

The n×n identity matrix In, or simply I, is the n-square matrix
with all diagonal entries 1 and off-diagonal entries 0. A scalar matrix
is a multiple of I, and a zero matrix 0 is a matrix with all entries 0.
Note that two zero matrices may not be the same, as they may have
different sizes. A square complex matrix A = (aij) is said to be

diagonal if aij = 0, i ̸= j,

upper-triangular if aij = 0, i > j,

symmetric if AT = A,

Hermitian if A∗ = A,
normal if A∗A = AA∗,

unitary if A∗A = AA∗ = I, and

orthogonal if ATA = AAT = I.

A submatrix of a given matrix is an array lying in specified subsets
of the rows and columns of the given matrix. For example,

C =

(
1 2
3 1

4

)
is a submatrix of

A =

 0 1 2
i 3 1

4

π
√
3 −1


lying in rows one and two and columns two and three.

If we write B = (0, i), D = (π), and E = (
√
3,−1), then

A =

(
B C
D E

)
.
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The right-hand side matrix is called a partitioned or block form of A,
or we say that A is a partitioned (or block) matrix.

The manipulation of partitioned matrices is a basic technique
in matrix theory. One can perform addition and multiplication of
(appropriately) partitioned matrices as with ordinary matrices.

For instance, if A, B, C, X, Y, U, V are n-square matrices, then(
A B
0 C

)(
X Y
U V

)
=

(
AX +BU AY +BV

CU CV

)
.

The block matrices of order 2× 2 have appeared to be the most
useful partitioned matrices. We primarily emphasize the techniques
for block matrices of this kind in this book.

Elementary row operations for matrices are those that

i. Interchange two rows.

ii. Multiply a row by a nonzero constant.

iii. Add a multiple of a row to another row.

Elementary column operations are similarly defined, and similar
operations on partitioned matrices are discussed in Section 2.1.

An n-square matrix is called an elementary matrix if it can be
obtained from In by a single elementary row operation. Elementary
operations can be represented by elementary matrices. Let E be
the elementary matrix by performing an elementary row (or column)
operation on Im (or In for column). If the same elementary row
(or column) operation is performed on an m × n matrix A, then
the resulting matrix from A via the elementary row (or column)
operation is given by the product EA (or AE, respectively).

For instance, by elementary row and column operations, the 2×3
matrix A =

(
1
4

2
5

3
6

)
is brought into

(
1
0

0
1

0
0

)
. Write in equations:

R3R2R1

(
1 2 3
4 5 6

)
C1C2 =

(
1 0 0
0 1 0

)
,

where

R1 =

(
1 0
−4 1

)
, R2 =

(
1 0
0 −1

3

)
, R3 =

(
1 −2
0 1

)
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and

C1 =

 1 0 1
0 1 0
0 0 1

 , C2 =

 1 0 0
0 1 −2
0 0 1

 .

This generalizes to the so-called rank decomposition as follows.

Theorem 1.2 Let A be an m× n matrix over a field F. Then there
exist an m ×m matrix P and an n × n matrix Q,both of which are
products of elementary matrices with entries from F, such that

PAQ =

(
Ir 0
0 0

)
. (1.1)

The partitioned matrix in (1.1), written as Ir ⊕ 0 and called a
direct sum of Ir and 0, is uniquely determined by A. The size r of
the identity Ir is the rank of A, denoted by rank (A). If A = 0, then
rank (A) = 0. Clearly rank (AT ) = rank (A) = rank (A∗) = rank (A).

An application of this theorem reveals the dimension of the solu-
tion space or null space of the linear equation system Ax = 0.

Theorem 1.3 Let A be an m×n (real or complex) matrix of rank r.
Let KerA be the null space of A, i.e., KerA = {x : Ax = 0}. Then

dimKerA = n− r.

A notable fact about a linear equation system is that

Ax = 0 if and only if (A∗A)x = 0.

The determinant of a square matrix A, denoted by detA, or |A|
as preferred if A is in a partitioned form, is a number associated with
A. It can be defined in several different but equivalent ways. The
one in terms of permutations is concise and sometimes convenient.

We say a permutation p on {1, 2, . . . , n} is even if p can be restored
to natural order by an even number of interchanges. Otherwise, p
is odd. For instance, consider the permutations on {1, 2, 3, 4}. The
permutation p = (2, 1, 4, 3); that is, p(1) = 2, p(2) = 1, p(3) = 4,
p(4) = 3, is even because it will become (1, 2, 3, 4) after interchanging
2 and 1 and 4 and 3 (two interchanges), whereas (1, 4, 3, 2) is odd,
for interchanging 4 and 2 gives (1, 2, 3, 4).
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Let Sn be the set of all (n!) permutations on {1, 2, . . . , n}. For
p ∈ Sn, define sign(p) = 1 if p is even and sign(p) = −1 if p is odd.
Then the determinant of an n-square matrix A = (aij) is given by

detA =
∑
p∈Sn

sign(p)
n∏

t=1

atp(t).

Simply put, the determinant is the sum of all (n!) possible “signed”
products in which each product involves n entries of A belonging to

different rows and columns. For n = 2, A =
(
a
c
b
d

)
, detA = ad− bc.

The determinant can be calculated by the Laplace formula

detA =
n∑

j=1

(−1)1+ja1j detA(1|j),

where A(1|j) is a submatrix of A obtained by deleting row 1 and
column j of A. This formula is referred to as the Laplace expansion
formula along row 1. One can also expand a determinant along other
rows or columns to get the same result. The determinant of a matrix
has the following properties.

a. The determinant changes sign if two rows are interchanged.

b. The determinant is unchanged if a constant multiple of one row
is added to another row.

c. The determinant is a linear function of any row when all the
other rows are held fixed.

Similar properties are true for columns. Two often-used facts are

det(AB) = detA detB, A, B ∈ Mn,

and ∣∣∣∣ A B
0 C

∣∣∣∣ = detA detC, A ∈ Mn, C ∈ Mm.

A square matrix A is said to be invertible or nonsingular if there
exists a matrix B of the same size such that

AB = BA = I.



Sec. 1.2 Matrices and Determinants 13

Such a matrix B, which can be proven to be unique, is called the
inverse of A and denoted by A−1. The inverse of A, when it exists,
can be obtained from the adjoint of A, written as adj(A), whose (i, j)-
entry is the cofactor of aji, that is, (−1)j+i detA(j|i). In symbols,

A−1 =
1

detA
adj(A). (1.2)

An effective way to find the inverse of a matrix A is to apply
elementary row operations to the matrix (A, I) to get a matrix in
the form (I,B). Then B = A−1 (Problem 23).

If A is a square matrix, then AB = I if and only if BA = I.
It is easy to see that rank (A) = rank (PAQ) for invertible ma-

trices P and Q of appropriate sizes (meaning that the involved op-
erations for matrices can be performed). It can also be shown that
the rank of A is the largest number of linearly independent columns
(rows) of A. In addition, the rank of A is r if and only if there ex-
ists an r-square submatrix of A with nonzero determinant, but all
(r+1)-square submatrices of A have determinant zero (Problem 24).

Theorem 1.4 The following statements are equivalent for A ∈ Mn.

1. A is invertible, i.e., AB = BA = I for some B ∈ Mn.

2. AB = I (or BA = I) for some B ∈ Mn.

3. A is of rank n.

4. A is a product of elementary matrices.

5. Ax = 0 has only the trivial solution x = 0.

6. Ax = b has a unique solution for each b ∈ Cn.

7. detA ̸= 0.

8. The column vectors of A are linearly independent.

9. The row vectors of A are linearly independent.
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Problems

1. Find the rank of

 1 2 3
4 5 6
2 1 0

 by performing elementary operations.

2. Evaluate the determinants∣∣∣∣∣∣
2 −3 10
1 2 −2
0 1 −3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
1 + x 1 1
1 1 + y 1
1 1 1 + z

∣∣∣∣∣∣ .
3. Show the 3× 3 Vandermonde determinant identity∣∣∣∣∣∣

1 1 1
a1 a2 a3
a21 a22 a23

∣∣∣∣∣∣ = (a2 − a1)(a3 − a1)(a3 − a2)

and evaluate the determinant∣∣∣∣∣∣
1 a a2 − bc
1 b b2 − ca
1 c c2 − ab

∣∣∣∣∣∣ .
4. Let A be an n-square matrix and k be a scalar. Show that

det(kA) = kn detA.

5. If A is a Hermitian (complex) matrix, show that detA is real.

6. If A an n× n real matrix, where n is odd, show that A2 ̸= −I.
7. Let A ∈ Mn. Show that A∗ +A is Hermitian and A∗ −A is normal.

8. Let A and B be complex matrices of appropriate sizes. Show that

(a) AB = A B,

(b) (AB)T = BTAT ,

(c) (AB)∗ = B∗A∗, and

(d) (AB)−1 = B−1A−1 if A and B are invertible.

9. Show that matrices
(
1
i
i
1

)
and

(
i
i

i
−1

)
are both symmetric, but one is

normal and the other one is not normal.

10. Find the inverse of each of the following matrices. 1 a 0
0 1 0
0 b 1

 ,

 1 1 0
0 1 1
0 0 1

 ,

 1 1 0
1 1 1
0 1 1

 .
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11. If a, b, c, and d are complex numbers such that ad−bc ̸= 0, show that(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

12. Compute for every positive integer k,(
0 1
1 0

)k

,

(
1 1
1 0

)k

,

(
1 1
0 1

)k

,

(
1 1
1 1

)k

.

13. Show that for any square matrices A and B of the same size,

A∗A−B∗B =
1

2

(
(A+B)∗(A−B) + (A−B)∗(A+B)

)
.

14. If AB = A+B for matrices A, B, show that A and B commute, i.e.,

AB = A+B ⇒ AB = BA.

15. Let A and B be n-square matrices such that AB = BA. Show that

(A+B)k = Ak + kAk−1B + k(k−1)
2 Ak−2B2 + · · ·+Bk.

16. Let A be a square complex matrix. Show that

I − Am+1 = (I − A)(I + A+ A2 + · · ·+Am).

17. Let A, B, C, and D be n-square complex matrices. Compute(
A A∗

A∗ A

)2

and

(
A B
C D

)(
D −B
−C A

)
.

18. Determine whether each of the following statements is true.

(a) The sum of Hermitian matrices is Hermitian.

(b) The product of Hermitian matrices is Hermitian.

(c) The sum of unitary matrices is unitary.

(d) The product of unitary matrices is unitary.

(e) The sum of normal matrices is normal.

(f) The product of normal matrices is normal.

19. Show that the solution set to the linear system Ax = 0 is a vector
space of dimension n− rank (A) for any m×n matrix A over R or C.



16 Elementary Linear Algebra Review Chap. 1

20. Let A, B ∈ Mn. If AB = 0, show that rank (A) + rank (B) ≤ n.

21. Let A and B be complex matrices with the same number of columns.
If Bx = 0 whenever Ax = 0, show that

rank (B) ≤ rank (A), rank

(
A

B

)
= rank (A),

and that B = CA for some matrix C. When is C invertible?

22. Show that any two of the following three properties imply the third:

(a) A = A∗; (b) A∗ = A−1; (c) A2 = I.

23. Let A,B ∈ Mn. If B(A, I) = (I,B), show that B = A−1. Explain
why A−1, if it exists, can be obtained by row operations; that is, if

(A, I) row reduces to (I,B),

then matrix B is the inverse of A. Use this approach to find 2 7 3
3 9 4
1 5 3

−1

.

24. Show that the following statements are equivalent for A ∈ Mn.

(a) PAQ =
(

Ir
0

0
0

)
for some invertible matrices P and Q.

(b) The largest number of column (row) vectors of A that constitute
a linearly independent set is r.

(c) A contains an r × r nonsingular submatrix, and every (r + 1)-
square submatrix has determinant zero.

[Hint: View P and Q as sequences of elementary operations. Note
that rank does not change under elementary operations.]

25. Prove Theorem 1.4.

26. Let A and B be n× n matrices. Show that for any n× n matrix X,

rank

(
A X
0 B

)
≥ rank (A) + rank (B).

Discuss the cases where X = 0 and X = I, respectively.

. ⊙ .
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1.3 Linear Transformations and Eigenvalues

Let V and W be vector spaces over a field F. A map A : V 7→ W is
called a linear transformation from V to W if for all u, v ∈ V , c ∈ F

A(u+ v) = A(u) +A(v)

and
A(cv) = cA(v).

It is easy to check that A : R2 7→ R2, defined by

A(x1, x2) = (x1 + x2, x1 − x2),

is a linear transformation and that the differential operator Dx from
C ′[a, b], the set (space) of functions with continuous derivatives on
the interval [a, b], to C[a, b], the set of continuous functions on [a, b],
defined by

Dx(f) =
df(x)

dx
, f ∈ C ′[a, b],

is a linear transformation.
Let A be a linear transformation from V toW . The subset inW ,

Im(A) = {A(v) : v ∈ V },

is a subspace of W , called the image of A, and the subset in V ,

Ker(A) = {v ∈ V : A(v) = 0 ∈W},

is a subspace of V , called the kernel or null space of A.

Im(A)

W
V

A

Ker(A)

W

A

V

0

Figure 1.3: Image and kernel
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Theorem 1.5 Let A be a linear transformation from a vector space
V of dimension n to a vector space W. Then

dim Im(A) + dimKer(A) = n.

This is seen by taking a basis {u1, . . . , us} for Ker(A) and ex-
tending it to a basis {u1, . . . , us, v1, . . . , vt} for V , where s + t = n.
It is easy to show that {A(v1), . . . ,A(vt)} is a basis of Im(A).

Given an m×n matrix A with entries in F, one can always define
a linear transformation A from Fn to Fm by

A(x) = Ax, x ∈ Fn. (1.3)

Conversely, linear transformations can be represented by matrices.
Consider, for example, A : R2 7→ R3 defined by

A(x1, x2)
T = (3x1, 2x1 + x2, −x1 − 2x2)

T .

Then A is a linear transformation. We may write in the form

A(x) = Ax,

where

x = (x1, x2)
T , A =

 3 0
2 1

−1 −2

 .

LetA be a linear transformation from V toW . Once the bases for
V and W have been chosen, A has a unique matrix representation
A as in (1.3) determined by the images of the basis vectors of V
under A, and there is a one-to-one correspondence between the linear
transformations and their matrices. A linear transformation may
have different matrices under different bases. In what follows we show
that these matrices are similar when V = W . Two square matrices
A and B of the same size are said to be similar if P−1AP = B for
some invertible matrix P .

Let A be a linear transformation on a vector space V with a basis
{u1, . . . , un}. Since each A(ui) is a vector in V , we may write

A(ui) =
n∑

j=1

ajiuj, i = 1, . . . , n, (1.4)
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and call A = (aij) the matrix of A under the basis {u1, . . . , un}.
Write (1.4) conventionally as

A(u1, . . . , un) = (A(u1), . . . ,A(un)) = (u1, . . . , un)A.

Let v ∈ V . If v = x1u1 + · · ·+ xnun, then

A(v) =
n∑

i=1

xiA(ui) = (A(u1), . . . ,A(un))x = (u1, . . . , un)Ax,

where x is the column vector (x1, . . . , xn)
T . In case of Rn or Cn with

the standard basis u1 = e1, . . . , un = en, we have

A(v) = Ax.

Let {v1, . . . , vn} also be a basis of V . Expressing each ui as a
linear combination of v1, . . . , vn gives an n× n matrix B such that

(u1, . . . , un) = (v1, . . . , vn)B.

It can be shown (Problem 10) that B is invertible since {u1, . . . , un}
is a linearly independent set. It follows by using (1.4) that

A(v1, . . . , vn) = A((u1, . . . , un)B
−1)

= (u1, . . . , un)AB
−1

= (v1, . . . , vn)(BAB
−1).

This says that the matrices of a linear transformation under different
bases {u1, . . . , un} and {v1, . . . , vn} are similar.

Given a linear transformation on a vector space, it is a central
theme of linear algebra to find a basis of the vector space so that the
matrix of a linear transformation is as simple as possible, in the sense
that the matrix contains more zeros or has a particular structure. In
the words of matrices, the given matrix is reduced to a canonical
form via similarity. This is discussed in Chapter 3.

Let A be a linear transformation on a vector space V over C. A
nonzero vector v ∈ V is called an eigenvector of A belonging to an
eigenvalue λ ∈ C if

A(v) = λv, v ̸= 0.
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O

A(v) = λv, λ > 1

v

Figure 1.4: Eigenvalue and eigenvector

If, for example, A is defined on R2 by

A(x, y) = (y, x),

then A has two eigenvalues, 1 and −1. What are the eigenvectors?
If λ1 and λ2 are different eigenvalues of A with respective eigen-

vectors x1 and x2, then x1 and x2 are linearly independent, for if

l1x1 + l2x2 = 0 (1.5)

for some scalars l1 and l2, then applying A to both sides yields

l1λ1x1 + l2λ2x2 = 0. (1.6)

Multiplying both sides of (1.5) by λ1, we have

l1λ1x1 + l2λ1x2 = 0. (1.7)

Subtracting (1.6) from (1.7) results in

l2(λ1 − λ2)x2 = 0.

It follows that l2 = 0, and thus l1 = 0 from (1.5).
This can be generalized by induction to the following statement.

If αij are linearly independent eigenvectors corresponding to an
eigenvalue λi, then the set of all eigenvectors αij for these eigenvalues
λi together is linearly independent. Simply put:

Theorem 1.6 The eigenvectors belonging to different eigenvalues
are linearly independent.
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Let A be a linear transformation on a vector space V of dimen-
sion n. If A happens to have n linearly independent eigenvectors be-
longing to (not necessarily distinct) eigenvalues λ1, λ2, . . . , λn, then
A, under the basis formed by the corresponding eigenvectors, has a
diagonal matrix representation

λ1 0
λ2

. . .

0 λn

 .

To find eigenvalues and eigenvectors, one needs to convert

A(v) = λv

under a basis into a linear equation system

Ax = λx.

Therefore, the eigenvalues of A are those λ ∈ F such that

det(λI −A) = 0,

and the eigenvectors of A are the vectors whose coordinates under
the basis are the solutions to the equation system Ax = λx.

Suppose A is an n× n complex matrix. The polynomial in λ,

pA(λ) = det(λIn −A), (1.8)

is called the characteristic polynomial of A, and the zeros of the
polynomial are called the eigenvalues of A. It follows that every
n-square matrix has n eigenvalues over C (including repeated ones).

The trace of an n-square matrix A, denoted by trA, is defined to
be the sum of the eigenvalues λ1, . . . , λn of A, that is,

trA = λ1 + · · ·+ λn.

It is easy to see from (1.8) by expanding the determinant that

trA = a11 + · · ·+ ann
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and

detA =

n∏
i=1

λi.

Let A be a linear transformation on a vector space V . Let W be
a subspace of V . If for every w ∈ W , A(w) ∈ W , we say that W is
invariant under A. Obviously {0} and V are invariant under A. It
is easy to check that KerA and ImA are invariant under A too.

A(W )

AV V

W
W

Figure 1.5: Invariant subspace

Let V be a vector space over a field. Consider all linear transfor-
mations (operators) on V and denote the set by L(V ). Then L(V ) is
a vector space under the following addition and scalar multiplication:

(A+ B)(v) = A(v) + B(v), (kA)(v) = kA(v).

The zero vector in L(V ) is the zero transformation. And for every
A ∈ L(V ), −A is the operator (−A)(v) = −(A(v)). For two opera-
tors A and B on V , define the product of A and B by

(AB)(v) = A(B(v)), v ∈ V.

Then AB is again a linear transformation on V . The identity trans-
formation I is the one such that I(v) = v for all v ∈ V .

Problems

1. Show that the map A from R3 to R3 defined by

A(x, y, z) = (x+ y, x− y, z)

is a linear transformation. Find its matrix under the standard basis.
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2. Find the dimensions of Im(A) and Ker(A), and find their bases for
the linear transformation A on R3 defined by

A(x, y, z) = (x− 2z, y + z, 0).

3. Define a linear transformation A : R2 7→ R2 by

A(x, y) = (y, 0).

(a) Find Im(A) and Ker(A).

(b) Find a matrix representation of A.

(c) Verify that dimR2 = dim Im(A) + dimKer(A).

(d) Is Im(A) + Ker(A) a direct sum?

(e) Does R2 = Im(A) + Ker(A)?

4. Find the eigenvalues and eigenvectors of the differential operator Dx.

5. Find the eigenvalues and corresponding eigenvectors of the matrix

A =

(
1 4
2 3

)
.

6. Find the eigenvalues of the matrix

A =


4 −2 −1 0
−2 4 0 −1
−1 0 4 −2
0 −1 −2 4

 .

7. Let λ be an eigenvalue of A on a vector space V , and let

Vλ = {v ∈ V : A(v) = λv},

called the eigenspace of λ. Show that Vλ is an invariant subspace of
V under A; that is, it is a subspace and A(v) ∈ Vλ for every v ∈ Vλ.

8. Define linear transformations A and B on R2 by

A(x, y) = (x+ y, y), B(x, y) = (x+ y, x− y).

Find all eigenvalues of A and B and their eigenspaces.
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9. Let p(x) = det(xI − A) be the characteristic polynomial of matrix
A ∈ Mn. If λ is an eigenvalue of A such that p(x) = (x− λ)kq(x) for
some polynomial q(x) with q(λ) ̸= 0, show that

k ≥ dimVλ.

[Note: Such a k is known as the algebraic multiplicity of λ; dim Vλ
is the geometric multiplicity of λ. When we say multiplicity of λ, we
usually mean the former unless otherwise stated.]

10. Let {u1, . . . , un} and {v1, . . . , vn} be two bases of a vector space V .
Show that there exists an invertible matrix B such that

(u1, . . . , un) = (v1, . . . , vn)B.

11. Let {u1, . . . , un} be a basis for a vector space V and let {v1, . . . , vk}
be a set of vectors in V . If vi =

∑n
j=1 aijuj , i = 1, . . . , k, show that

dimSpan{v1, . . . , vk} = rank (A), where A = (aij).

12. Show that similar matrices have the same trace and determinant.

13. Let v1 and v2 be eigenvectors of matrix A belonging to different
eigenvalues λ1 and λ2, respectively. Show that v1 + v2 is not an
eigenvector of A. How about av1 + bv2, a, b ∈ R?

14. Let A ∈ Mn and let S ∈ Mn be nonsingular. If the first column of
S−1AS is (λ, 0, . . . , 0)T , show that λ is an eigenvalue of A and that
the first column of S is an eigenvector of A belonging to λ.

15. Let x ∈ Cn. Find the eigenvalues and eigenvectors of the matrices

A1 = xx∗ and A2 =

(
0 x∗

x 0

)
.

16. If each row sum (i.e., the sum of all entries in a row) of matrix A is
1, show that 1 is an eigenvalue of A.

17. If λ is an eigenvalue of A ∈ Mn, show that λ2 is an eigenvalue of A2

and that if A is invertible, then λ−1 is an eigenvalue of A−1.

18. If x ∈ Cn is an eigenvector of A ∈ Mn belonging to the eigenvalue λ,
show that for any y ∈ Cn, λ+ y∗x is an eigenvalue of A+ xy∗.
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19. Aminor of a matrix A ∈ Mn is the determinant of a square submatrix
of A. Show that

det(λI − A) = λn − δ1λ
n−1 + δ2λ

n−2 − · · ·+ (−1)n detA,

where δi is the sum of all principal minors of order i, i = 1, 2, . . . , n−1.
[Note: A principal minor is the determinant of a submatrix indexed
by the same rows and columns, called a principal submatrix.]

20. A linear transformation A on a vector space V is said to be invertible
if there exists a linear transformation B such that AB = BA = I,
the identity. If dimV <∞, show that the following are equivalent.

(a) A is invertible.

(b) If A(x) = 0, then x = 0; that is, Ker(A) = {0}.
(c) If {u1, . . . , un} is a basis for V , then so is {Au1, . . . ,Aun}.
(d) A is one-to-one.

(e) A is onto; that is, Im(A) = V .

(f) A has a nonsingular matrix representation under some basis.

21. Let A be a linear transformation on a vector space of dimension n
with matrix representation A. Show that

dim Im(A) = rank (A) and dimKer(A) = n− rank (A).

22. Let A and B be linear transformations on a finite-dimensional vector
space V having the same image; that is, Im(A) = Im(B). If

V = Im(A)⊕Ker(A) = Im(B)⊕Ker(B),

does it follow that Ker(A) = Ker(B)?

23. Consider the vector space F[x] of all polynomials over F(= R or Q).
For f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ F[x], define

S(f(x)) = an
n+ 1

xn+1 +
an−1

n
xn + · · ·+ a1

2
x2 + a0x

and
T (f(x)) = nanx

n−1 + (n− 1)an−1x
n−2 + · · ·+ a1.

Compute ST and T S. Does ST = T S?

24. Define P : Cn 7→ Cn by P(x) = (0, 0, x3, . . . , xn). Show that P is a
linear transformation and P2 = P. What is Ker(P)?
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25. Let A be a linear transformation on a finite-dimensional vector space
V , and let W be a subspace of V . Denote

A(W ) = {A(w) : w ∈W}.

Show that A(W ) is a subspace of V . Furthermore, show that

dim(A(W )) + dim(Ker(A) ∩W ) = dimW.

26. Let V be a vector space of dimension n over C and let {u1, . . . , un}
be a basis of V . For x = x1u1 + · · ·+ xnun ∈ V, define

T (x) = (x1, . . . , xn) ∈ Cn.

Show that T is an isomorphism, or T is one-to-one, onto, and satisfies

T (ax+ by) = aT (x) + bT (y), x, y ∈ V, a, b ∈ C.

27. Let V be the vector space of all sequences

(c1, c2, . . .), ci ∈ C, i = 1, 2, . . . .

Define a linear transformation on V by

S(c1, c2, · · ·) = (0, c1, c2, · · ·).

Show that S has no eigenvalues. Moreover, if we define

S∗(c1, c2, c3, · · ·) = (c2, c3, · · ·),

then S∗S is the identity, but SS∗ is not.

28. Let A be a linear operator on a vector space V of dimension n. Let

V0 = ∪∞
i=1 Ker(Ai), V1 = ∩∞

i=1 Im(Ai).

Show that V0 and V1 are invariant under A and that V = V0 ⊕ V1.

. ⊙ .
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1.4 Inner Product Spaces

A vector space V over the number field C or R is called an inner
product space if it is equipped with an inner product ( , ) satisfying
for all u, v, w ∈ V and scalar c,

1. (u, u) ≥ 0, and (u, u) = 0 if and only if u = 0,

2. (u+ v, w) = (u,w) + (v, w),

3. (cu, v) = c(u, v), and

4. (u, v) = (v, u).

Cn is an inner product space over C with the inner product

(x, y) = y∗x = y1 x1 + · · ·+ yn xn.

An inner product space over R is usually called a Euclidean space.
The Cauchy–Schwarz inequality for an inner product space is one

of the most useful inequalities in mathematics.

Theorem 1.7 (Cauchy–Schwarz Inequality) Let V be an inner
product space. Then for all vectors x and y in V ,

|(x, y)|2 ≤ (x, x)(y, y).

Equality holds if and only if x and y are linearly dependent.

The proof of this can be done in a number of different ways. The
most common proof is to consider the quadratic function in t

(x+ ty, x+ ty) ≥ 0

and to derive the inequality from the nonpositive discriminant. One
may also obtain the inequality from (z, z) ≥ 0 by setting

z = y − (y, x)

(x, x)
x, x ̸= 0,

and showing that (z, x) = 0 and then (z, z) = (z, y) ≥ 0.
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A matrix proof is left as an exercise for the reader (Problem 13).

For any vector x in an inner product space, the positive square
root of (x, x) is called the length or norm of the vector x and is
denoted by ∥x∥; that is,

∥x∥ =
√
(x, x).

Thus, the Cauchy–Schwarz inequality is rewritten as

|(x, y)| ≤ ∥x∥ ∥y∥.

Theorem 1.8 For all vectors x and y in an inner product space,

i. ∥x∥ ≥ 0; ii. ∥cx∥ = |c|∥x∥, c ∈ C; iii. ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

The last inequality is referred to as the triangle inequality.

A unit vector is a vector whose length is 1. For any nonzero
vector u, 1

∥u∥u is a unit vector. Two vectors x and y are said to

be orthogonal if (x, y) = 0. An orthogonal set is a set in which any
two of the vectors are orthogonal. Such a set is further said to be
orthonormal if every vector in the set is of length 1.

For example, {v1, v2} is an orthonormal set in R2, where

v1 =

(
1√
2
,
1√
2

)
, v2 =

(
1√
2
,− 1√

2

)
.

The column (row) vectors of a unitary matrix are orthonormal.

Let S be a subset of an inner product space V . Denote by S⊥

the collection of the vectors in V that are orthogonal to all vectors
in S; that is,

S⊥ = {v ∈ V : (v, s) = 0 for all s ∈ S}.

It is easy to see that S⊥ is a subspace of V . If S contains only
one element, say x, we simply use x⊥ for S⊥. For two subsets S1 and
S2, if (x, y) = 0 for all x ∈ S1 and y ∈ S2, we write S1⊥S2.



Sec. 1.4 Inner Product Spaces 29

S

S⊥

Figure 1.6: Orthogonality

As we saw in the first section, a set of linearly independent vectors
of a vector space of finite dimension can be extended to a basis for
the vector space. Likewise a set of orthogonal vectors of an inner
product space can be extended to an orthogonal basis of the space.
The same is true for a set of orthonormal vectors. Consider Cn, for
instance. Let u1 be a unit vector in Cn. Pick a unit vector u2 in
u⊥1 if n ≥ 2. Then u1 and u2 are orthonormal. Now if n ≥ 3, let
u3 be a unit vector in (Span{u1, u2})⊥ (equivalently, (u1, u3) = 0
and (u2, u3) = 0). Then u1, u2, u3 are orthonormal. Continuing this
way, one obtains an orthonormal basis for the inner product space.
We summarize this as a theorem for Cn, which will be freely and
frequently used in the future.

Theorem 1.9 If u1, . . . , uk are k linearly independent column vec-
tors in Cn, 1 ≤ k < n, then there exist n − k column vectors
uk+1, . . . , un in Cn such that the matrix

P = (u1, . . . , uk, uk+1, . . . , un)

is invertible. Furthermore, if u1, . . . , uk are orthonormal, then there
exist unit n− k vectors uk+1, . . . , un in Cn such that the matrix

U = (u1, . . . , uk, uk+1, . . . , un)

is unitary. In particular, for any unit vector u in Cn, there exists a
unitary matrix that contains u as its first column.

If {u1, . . . , un} is an orthonormal basis of an inner product space
V over C, and if x and y are two vectors in V expressed as

x = x1u1 + · · ·+ xnun, y = y1u1 + · · ·+ ynun,
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then xi = (x, ui), yi = (y, ui) for i = 1, . . . , n,

∥x∥ = (|x1|2 + · · ·+ |xn|2)1/2 (1.9)

and
(x, y) = y1 x1 + · · ·+ yn xn. (1.10)

For A ∈ Mn and with the standard basis e1, . . . , en of Cn, we have

trA =

n∑
i=1

(Aei, ei)

and for x ∈ Cn

(Ax, x) = x∗Ax =
n∑

i, j=1

aijxixj.

Upon computation, we have

(Ax, y) = (x, A∗y)

and, with ImA = {Ax : x ∈ Cn} and KerA = {x ∈ Cn : Ax = 0},

KerA∗ = (ImA)⊥, ImA∗ = (KerA)⊥. (1.11)

Mn is an inner product space with the inner product

(A,B)M = tr(B∗A), A, B ∈ Mn.

It is immediate by the Cauchy–Schwarz inequality that

| tr(AB)|2 ≤ tr(A∗A) tr(B∗B)

and that
tr(A∗A) = 0 if and only if A = 0.

We end this section by presenting an inequality of the angles
between vectors in a Euclidean space. This inequality is intuitive
and obvious in R2 and R3. The good part of this theorem is the idea
in its proof of reducing the problem to R2 or R3.

Let V be an inner product space over R. For any nonzero vectors
x and y, define the (measure of) angle between x and y by

∠x, y = cos−1 (x, y)

∥x∥∥y∥ .
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Theorem 1.10 For any nonzero vectors x, y, and z in a Euclidean
space (i.e., an inner product space V over R),

∠x, z ≤ ∠x, y + ∠y, z.

Equality occurs if and only if y = ax+ bz, a, b ≥ 0.

Proof. Because the inequality involves only the vectors x, y, and z,
we may focus on the subspace Span{x, y, z}, which has dimension at
most 3. We can further choose an orthonormal basis (a unit vector
in the case of dimension one) for this subspace. Let x, y, and z have
coordinate vectors α, β, and γ under the basis, respectively. Then
the inequality holds if and only if it holds for real vectors α, β, and
γ, due to (1.9) and (1.10). Thus, the problem is reduced to R, R2, or
R3 depending on whether the dimension of Span{x, y, z} is 1, 2, or
3, respectively. For R, the assertion is trivial. For R2 or R3, a simple
graph will do the job.

Problems

1. If V is an inner product space over C, show that for x, y ∈ V , c ∈ C,

(x, cy) = c̄(x, y) and (x, y)(y, x) = |(x, y)|2.

2. Find all vectors in R2 (with the usual inner product) that are orthog-
onal to (1, 1). Is (1, 1) a unit vector?

3. Show that in an inner product space over R or C

(x, y) = 0 ⇒ ∥x+ y∥2 = ∥x∥2 + ∥y∥2

and that the converse is true over R but not over C.

4. Let V be an inner product space over R and let x, y ∈ V . Show that

∥x∥ = ∥y∥ ⇒ (x+ y, x− y) = 0.

5. Show that for any two vectors x and y in an inner product space

∥x− y∥2 + ∥x+ y∥2 = 2(∥x∥2 + ∥y∥2).

6. Is [ , ] defined as [x, y] = x1y1 + · · ·+xnyn an inner product for Cn?
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7. For what diagonal D ∈ Mn is [x, y] = y∗Dx an inner product for Cn?

8. Let {u1, . . . , un} be an orthonormal basis of an inner product space
V . Show that for x ∈ V

(ui, x) = 0, i = 1, . . . , n, ⇔ x = 0,

and that for x, y ∈ V

(ui, x) = (ui, y), i = 1, . . . , n, ⇔ x = y.

9. Let {v1, . . . , vn} be a set of vectors in an inner product space V .
Denote the matrix with entries (vi, vj) by G. Show that detG = 0 if
and only if v1, . . . , vn are linearly dependent.

10. Let A be an n-square complex matrix. Show that

tr(AX) = 0 for every X ∈ Mn ⇔ A = 0.

11. Let A ∈ Mn. Show that for any unit vector x ∈ Cn,

|x∗Ax|2 ≤ x∗A∗Ax.

12. Let A = (aij) be a complex matrix. Show that

tr(A∗A) = tr(AA∗) =
∑
i, j

|aij |2.

13. Use the fact that tr(A∗A) ≥ 0 with equality if and only if A = 0 to
show the Cauchy–Schwarz inequality for Cn by taking A = xy∗−yx∗.

14. Let A and B be complex matrices of the same size. Show that

| tr(A∗B)| ≤
(
tr(A∗A) tr(B∗B)

)1/2 ≤ 1

2

(
tr(A∗A) + tr(B∗B)

)
.

If A and B are both n-square, then tr(A∗B) on the left-hand side
may be replaced by tr(AB), even though tr(A∗B) ̸= tr(AB). Why?

15. Let A and B be n-square complex matrices. If, for every x ∈ Cn,

(Ax, x) = (Bx, x),

does it follow that A = B? What if x ∈ Rn?

16. Show that for any n-square complex matrix A

Cn = ImA⊕ (ImA)⊥ = ImA⊕KerA∗

and that Cn = ImA⊕KerA if and only if rank (A2) = rank (A).
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17. Let θi and λi be positive numbers and
∑n

i=1 θi = 1. Show that

1 ≤
( n∑

i=1

θiλi

) ( n∑
i=1

θiλ
−1
i

)
.

18. Let {u1, . . . , un} be an orthonormal basis of an inner product space
V . Show that x1, . . . , xm in V are pairwise orthogonal if and only if

n∑
k=1

(xi, uk)(xj , uk) = 0, i ̸= j.

19. If {u1, . . . , uk} is an orthonormal set in an inner product space V of
dimension n, show that k ≤ n and for any x ∈ V ,

∥x∥2 ≥
k∑

i=1

|(x, ui)|2.

20. Let {u1, . . . , un} and {v1, . . . , vn} be two orthonormal bases of an
inner product space. Show that there exists a unitary U such that

(u1, . . . , un) = (v1, . . . , vn)U.

21. (Gram–Schmidt Orthonormalization) Let x1, x2, . . . , xn be linearly
independent vectors in an inner product space. Let y1 = x1 and de-
fine z1 = ∥y1∥−1y1; let y2 = x2−(x2, z1)z1 and define z2 = ∥y2∥−1y2.
Then z1, z2 are orthonormal. Continue this process inductively: yk =
xk−(xk, zk−1)zk−1−(xk, zk−2)zk−2−· · ·−(xk, z1)z1, zk = ∥yk∥−1yk.
Show that the vectors z1, z2, . . . , zn are orthonormal.

22. Prove or disprove for unit vectors u, v, w in an inner product space

|(u,w)| ≤ |(u, v)|+ |(v, w)|.

23. Let V be an inner product space and ∥ · ∥ be the induced norm, that
is, ∥u∥ =

√
(u, u), u ∈ V . Show that for vectors x and y in V ,

∥x+ y∥ = ∥x∥+ ∥y∥

if and only if one of the vectors is a nonnegative multiple of the other.

24. If the angle between nonzero vectors x and y in an inner product

space over R or C is defined by <x,y= cos−1 |(x, y)|
∥x∥∥y∥ , show that x⊥y if

and only if <x,y=
π
2 . Explain why the law of cosines does not hold.
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25. Let V be a (not necessarily inner product) vector space over a field
F (= R or C). We say that V is a normed space if it is equipped with
a function ||| · ||| : V 7→ R, called a vector norm, satisfying

(i) |||x||| ≥ 0, (ii) |||cx||| = |c| |||x|||, (iii) |||x+ y||| ≤ |||x|||+ |||y|||,

for all x, y ∈ V , c ∈ F, and |||x||| = 0 if and only if x = 0. Show that

(a) If x→ 0 in V = Rn entrywise, then |||x||| → 0.

(b) | |||x||| − |||y||| | ≤ |||x− y||| for all vectors x and y in V .

(c) Give an example showing it is possible that |||x+y||| = |||x|||+ |||y|||
for some vectors x and y that are linearly independent.

26. Let V1 and V2 be subsets of an inner product space V . Show that

V1 ⊆ V2 ⇒ V ⊥
2 ⊆ V ⊥

1 .

27. Let V1 and V2 be subspaces of an inner product space V . Show that

(V1 + V2)
⊥ = V ⊥

1 ∩ V ⊥
2

and
(V1 ∩ V2)⊥ = V ⊥

1 + V ⊥
2 .

28. Let V1 and V2 be subspaces of an inner product space V of dimension
n. If dimV1 > dimV2, show that there exists a subspace V3 such that

V3 ⊂ V1, V3⊥V2, dimV3 ≥ dimV1 − dimV2.

Give a geometric explanation of this in R3.

29. Let A and B be m× n complex matrices. Show that

ImA⊥ ImB ⇔ A∗B = 0.

30. Let A be an n-square complex matrix. Show that for any x, y ∈ Cn

4(Ax, y) = (As, s)− (At, t) + i(Au, u)− i(Av, v),

where s = x+ y, t = x− y, u = x+ iy, and v = x− iy.

31. Let u be a nonzero vector in an inner product space V . If v1, v2, . . . , vk
are vectors in V such that (i) (vi, u) > 0 for all i and (ii) (vi, vj) ≤ 0
whenever i ̸= j, show that v1, v2, . . . , vk are linearly independent.

32. Show that for any nonzero vectors x and y in Cn

∥x− y∥ ≥ 1

2
(∥x∥+ ∥y∥)

∥∥∥∥ 1

∥x∥x− 1

∥y∥y
∥∥∥∥.

. ⊙ .



CHAPTER 2

Partitioned Matrices, Rank, and Eigenvalues

Introduction: We begin with the elementary operations on parti-
tioned (block) matrices, followed by discussions of the inverse and
rank of the sum and product of matrices. We then present four
different proofs of the theorem that the products AB and BA of
matrices A and B of sizes m × n and n ×m, respectively, have the
same nonzero eigenvalues. At the end of this chapter we discuss the
often-used matrix technique of continuity argument and the tool for
localizing eigenvalues by means of the Geršgorin discs.

2.1 Elementary Operations of Partitioned Matrices

The manipulation of partitioned matrices is a basic tool in matrix
theory. The techniques for manipulating partitioned matrices resem-
ble those for ordinary numerical matrices. We begin by considering
a 2× 2 matrix (

a b
c d

)
, a, b, c, d ∈ C.

An application of an elementary row operation, say, adding the sec-
ond row multiplied by −3 to the first row, can be represented by the
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matrix multiplication(
1 −3
0 1

)(
a b
c d

)
=

(
a− 3c b− 3d
c d

)
.

Elementary row or column operations for matrices play an impor-
tant role in elementary linear algebra. These operations (Section 1.2)
can be generalized to partitioned matrices as follows.

I. Interchange two block rows (columns).

II. Multiply a block row (column) from the left (right) by a non-
singular matrix of appropriate size.

III. Multiply a block row (column) by a matrix from the left (right),
then add it to another row (column).

Write in matrices, say, for type III elementary row operations,(
A B
C D

)
→
(

A B
C +XA D +XB

)
,

where A ∈ Mm, D ∈ Mn, and X is n×m. Note that A is multiplied
by X from the left (when row operations are performed).

Generalized elementary matrices are those obtained by applying
a single elementary operation to the identity matrix. For instance,(

0 Im
In 0

)
and

(
Im 0
X In

)
are generalized elementary matrices of type I and type III.

Theorem 2.1 Let G be the generalized elementary matrix obtained
by performing an elementary row (column) operation on I. If that
same elementary row (column) operation is performed on a block
matrix A, then the resulting matrix is given by the product GA (AG).

Proof. We show the case of 2 × 2 partitioned matrices Because
we deal with this type of partitioned matrix most of the time. An
argument for the general case is similar.

Let A, B, C, and D be matrices, where A and D are m- and
n-square, respectively. Suppose we apply a type III operation, say,
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adding the first row times an n ×m matrix E from the left to the
second row, to the matrix (

A B
C D

)
. (2.1)

Then we have, by writing in equation,(
A B

C + EA D +EB

)
=

(
Im 0
E In

)(
A B
C D

)
.

As an application, suppose that A is invertible. By successively
applying suitable elementary row and column block operations, we
can change the matrix (2.1) so that the lower-left and upper-right
submatrices become 0. More precisely, we can make the lower-left
and upper-right submatrices 0 by subtracting the first row multi-
plied by CA−1 from the the second row, and by subtracting the first
column multiplied by A−1B from the second column. In symbols,(

A B
C D

)
→
(
A B
0 D − CA−1B

)
→
(
A 0
0 D − CA−1B

)
,

and in equation form,(
Im 0

−CA−1 In

)(
A B
C D

)(
Im −A−1B
0 In

)

=

(
A 0
0 D − CA−1B

)
. (2.2)

Note that by taking determinants,∣∣∣∣ A B
C D

∣∣∣∣ = detA det(D − CA−1B).

The method of manipulating block matrices by elementary oper-
ations and the corresponding generalized elementary matrices as in
(2.2) is used repeatedly in this book.

For practice, we now consider expressing the block matrix(
A B
0 A−1

)
(2.3)
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as a product of block matrices of the forms(
I X
0 I

)
,

(
I 0
Y I

)
.

In other words, we want to get a matrix in the above form by per-
forming type III operations on the block matrix in (2.3).

Add the first row of (2.3) times A−1 to the second row to get(
A B
I A−1 +A−1B

)
.

Add the second row multiplied by I −A to the first row to get(
I A−1 +A−1B − I
I A−1 +A−1B

)
.

Subtract the first row from the second row to get(
I A−1 +A−1B − I
0 I

)
,

which is in the desired form. Putting these steps in identity, we have(
I 0
−I I

)(
I I −A
0 I

)(
I 0
A−1 I

)(
A B
0 A−1

)

=

(
I A−1 +A−1B − I
0 I

)
.

Therefore,(
A B
0 A−1

)
=

(
I 0
A−1 I

)−1(
I I −A
0 I

)−1

×
(

I 0
−I I

)−1(
I A−1 +A−1B − I
0 I

)
=

(
I 0

−A−1 I

)(
I A− I
0 I

)
×
(
I 0
I I

)(
I A−1 +A−1B − I
0 I

)
is a product of type III generalized elementary matrices.
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Problems

1. Let E = E[i(c) → j] denote the elementary matrix obtained from In
by adding row i times c to row j.

(a) Show that E∗ = E[j(c̄) → i].

(b) Show that E−1 = E[i(−c) → j].

(c) How is E obtained via an elementary column operation?

2. Show that

A(B,C) = (AB,AC) for A ∈ Mm×n, B ∈ Mn×p, C ∈ Mn×q;(
A
B

)
C =

(
AC
BC

)
for A ∈ Mp×n, B ∈ Mq×n, C ∈ Mn×m.

3. Let X be any n×m complex matrix. Show that(
Im 0
X In

)−1

=

(
Im 0
−X In

)
.

4. Show that for any n-square complex matrix X,(
X In
In 0

)−1

=

(
0 In
In −X

)
.

Does it follow that(
0 Im
In 0

)−1

=

(
0 Im
In 0

)
?

5. Show that every 2×2 matrix of determinant 1 is the product of some
matrices of the following types, with y ̸= 0:(

1 0
x 1

)
,

(
1 x
0 1

)
,

(
0 1
1 0

)
,

(
y 0
0 1

)
,

(
1 0
0 y

)
.

6. Let X and Y be matrices with the same number of rows. Multiply(
X Y
0 0

)(
X∗ 0
Y ∗ 0

)
and

(
X∗ 0
Y ∗ 0

)(
X Y
0 0

)
.

7. Let X and Y be complex matrices of the same size. Verify that(
I +XX∗ X + Y
X∗ + Y ∗ I + Y ∗Y

)
=

(
I X
Y ∗ I

)(
I Y
X∗ I

)
=(

X I
I Y ∗

)(
X∗ I
I Y

)
=

(
X
I

)
(X∗, I) +

(
I
Y ∗

)
(I, Y ).
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8. Let a1, a2, . . . , an be complex numbers, a = (−a2, . . . ,−an), and

A =

(
0 In−1

−a1 a

)
.

Find detA. Show that A is invertible if a1 ̸= 0 and that

A−1 =

(
1
a1
a − 1

a1

In−1 0

)
.

9. Let a1, a2, . . . , an be nonzero complex numbers. Find
0 a1 0 . . . 0
0 0 a2 . . . 0
...

...
...

...
...

0 0 0 . . . an−1

an 0 0 . . . 0


−1

.

10. Show that the block matrices
(

Im
0

A
In

)
and

(
Im
0

B
In

)
commute.

11. Show that a generalized elementary matrix
(

I
0
X
I

)
can be written as

the product of the same type of elementary matrices with only one
nonzero off-diagonal entry. [Hint: See how to get (i, j)-entry xij in
the matrix by a type iii elementary operation from Section 1.2.]

12. Let A and B be nonsingular matrices. Find
(

A
0

C
B

)−1

.

13. Let A and B be m- and n-square matrices, respectively. Show that(
A ∗
0 B

)k

=

(
Ak ∗
0 Bk

)
,

where the ∗ are some matrices, and that if A and B are invertible,(
A ∗
0 B

)−1

=

(
A−1 ∗
0 B−1

)
.

14. Let A and B be n× n complex matrices. Show that∣∣∣∣ 0 A
B 0

∣∣∣∣ = (−1)n detA detB

and that if A and B are invertible, then(
0 A
B 0

)−1

=

(
0 B−1

A−1 0

)
.
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15. Let A and B be n × n matrices. Apply elementary operations to(
A
I

0
B

)
to get

(
AB
B

0
I

)
. Deduce det(AB) = detAdetB.

16. Let A and B be n × n matrices. Apply elementary operations to(
I
B

A
I

)
to get

(
I−AB

0
0
I

)
and

(
I
0

0
I−AB

)
. Conclude that I −AB and

I −BA have the same rank for any A, B ∈ Mn.

17. Let A, B ∈ Mn. Show that
(

A
B

B
A

)
is similar to

(
A+B

0
0

A−B

)
.

18. Let A and B be n × n matrices. Apply elementary operations to(
A
0

0
B

)
to get

(
A+B
B

B
B

)
and derive the rank inequality

rank (A+B) ≤ rank (A) + rank (B).

19. Let A be a square complex matrix partitioned as

A =

(
A11 A12

A21 A22

)
, A11 ∈ Mm, A22 ∈ Mn.

Show that for any B ∈ Mm∣∣∣∣ BA11 BA12

A21 A22

∣∣∣∣ = detB detA

and for any n×m matrix C∣∣∣∣ A11 A12

A21 + CA11 A22 + CA12

∣∣∣∣ = detA.

20. Let A be a square complex matrix. Show that∣∣∣∣ I A
A∗ I

∣∣∣∣ = 1−
∑

M∗
1M1 +

∑
M∗

2M2 −
∑

M∗
3M3 + · · · ,

where each Mk is a minor of order k = 1, 2, . . . . [Hint: Reduce the
left-hand side to det(I −A∗A) and use Problem 19 of Section 1.3.]

. ⊙ .
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2.2 The Determinant and Inverse of Partitioned Matrices

Let M be a square complex matrix partitioned as

M =

(
A B
C D

)
,

where A and D are m- and n-square matrices, respectively. We dis-
cuss the determinants and inverses of matrices in this form. The re-
sults are fundamental and used almost everywhere in matrix theory,
such as matrix computation and matrix inequalities. The methods
of continuity and finding inverses deserve special attention.

Theorem 2.2 Let M be a square matrix partitioned as above. Then

detM = detA det(D − CA−1B), if A is invertible,

and
detM = det(AD − CB), if AC = CA.

Proof. When A−1 exists, it is easy to verify (see also (2.2)) that(
Im 0

−CA−1 In

)(
A B
C D

)
=

(
A B
0 D − CA−1B

)
.

By taking determinants for both sides, we have

detM =

∣∣∣∣ A B
0 D − CA−1B

∣∣∣∣
= detA det(D − CA−1B).

For the second part, if A and C commute, then A, B, C, and D
are of the same size. We show the identity by the so-called continuity
argument method.

First consider the case where A is invertible. Following the above
argument and using the fact that

det(XY ) = detX detY
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for any two square matrices X and Y of the same size, we have

detM = detAdet(D − CA−1B)

= det(AD −ACA−1B)

= det(AD − CAA−1B)

= det(AD − CB).

Now assume that A is singular. Since det(A + ϵI) as a polynomial
in ϵ has a finite number of zeros, we may choose δ > 0 such that

det(A+ ϵI) ̸= 0 whenever 0 < ϵ < δ;

that is, A+ ϵI is invertible for all ϵ ∈ (0, δ). Denote

Mϵ =

(
A+ ϵI B
C D

)
.

Noticing further that A+ ϵI and C commute, we have

detMϵ = det((A+ ϵI)D − CB) whenever 0 < ϵ < δ.

Observe that both sides of the above equation are continuous func-
tions of ϵ. Letting ϵ→ 0+ gives that

detM = det(AD − CB).

Note that the identity need not be true if AC ̸= CA.
We now turn our attention to the inverses of partitioned matrices.

Theorem 2.3 Suppose that the partitioned matrix

M =

(
A B
C D

)
is invertible and that the inverse is conformally partitioned as

M−1 =

(
X Y
U V

)
,

where A, D, X, and V are square matrices. Then

detA = detV detM. (2.4)
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Proof. The identity (2.4) follows immediately by taking the deter-
minants of both sides of the matrix identity(

A B
C D

)(
I Y
0 V

)
=

(
A 0
C I

)
.

Note that the identity matrices I in the proof may have different
sizes. By Theorem 2.3, A is singular if and only if V is singular.

Theorem 2.4 Let M and M−1 be as defined in Theorem 2.3. If A
is a nonsingular principal submatrix of M , then

X = A−1 +A−1B(D − CA−1B)−1CA−1,

Y = −A−1B(D − CA−1B)−1,

U = −(D − CA−1B)−1CA−1,

V = (D − CA−1B)−1.

Proof. As we know from elementary linear algebra (Theorem 1.2),
every invertible matrix can be written as a product of elementary
matrices; so can M−1. Furthermore, since

M−1(M, I) = (I, M−1),

this says that we can obtain the inverse of M by performing row
operations on (M, I) to get (I,M−1) (Problem 23, Section 1.2).

We now apply row operations to the augmented block matrix(
A B I 0
C D 0 I

)
.

Multiply row 1 by A−1 (from the left) to get(
I A−1B A−1 0
C D 0 I

)
.

Subtract row 1 multiplied by C from row 2 to get(
I A−1B A−1 0
0 D − CA−1B −CA−1 I

)
.



Sec. 2.2 The Determinant and Inverse of Partitioned Matrices 45

Multiply row 2 by (D − CA−1B)−1 (which exists; why?) to get(
I A−1B A−1 0
0 I −(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

By subtracting row 2 times A−1B from row 1, we get the inverse of
the partitioned matrix M in the form(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

Comparing to the inverse M−1 in the block form, we have X, Y, U,
and V with the desired expressions in terms of A, B, C, and D.

A similar discussion for a nonsingular D implies

X = (A−BD−1C)−1.

It follows that

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1. (2.5)

Below is a direct proof for (2.5). More similar identities are de-
rived by means of partitioned matrices in Section 6.4 of Chapter 6.

Theorem 2.5 Let A ∈ Mm and B ∈ Mn be nonsingular matrices
and let C and D be m × n and n ×m matrices, respectively. If the
matrix A+ CBD is nonsingular, then

(A+ CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1. (2.6)

Proof. Note that B−1 +DA−1C is nonsingular, since (Problem 5)

det(B−1 +DA−1C) = detB−1 det(In +BDA−1C)

= detB−1 det(Im + A−1CBD)

= detB−1 detA−1 det(A+ CBD) ̸= 0.

We now prove (2.6) by a direct verification:
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(A+ CBD)
(
A−1 −A−1C(B−1 +DA−1C)−1DA−1

)
= Im − C(B−1 +DA−1C)−1DA−1 + CBDA−1

− CBDA−1C(B−1 +DA−1C)−1DA−1

= Im − C
(
(B−1 +DA−1C)−1 − B

+ BDA−1C(B−1 +DA−1C)−1
)
DA−1

= Im − C
(
(In +BDA−1C)(B−1 +DA−1C)−1 −B

)
DA−1

= Im − C
(
B(B−1 +DA−1C)(B−1 +DA−1C)−1 − B

)
DA−1

= Im − C(B −B)DA−1

= Im.

A great number of matrix identities involving inverses can be de-
rived from (2.6). The following two are immediate when the involved
inverses exist:

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1

and

(A+ UV ∗)−1 = A−1 −A−1U(I + V ∗A−1U)−1V ∗A−1.

Problems

1. Let A be an n× n nonsingular matrix, a ∈ C, αT , β ∈ Cn. Prove

(detA)−1

∣∣∣∣ a α
β A

∣∣∣∣ = a− αA−1β.

2. Refer to Theorem 2.2 and assume AC = CA. Does it follow that∣∣∣∣ A B
C D

∣∣∣∣ = det(AD −BC)?

3. For matrices A, B, C of appropriate sizes, evaluate the determinants∣∣∣∣ A In
Im 0

∣∣∣∣ , ∣∣∣∣ 0 A
A−1 0

∣∣∣∣ , ∣∣∣∣ 0 A
B C

∣∣∣∣ .
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4. Let A, B, and C be n-square complex matrices. Show that∣∣∣∣ In A
B C

∣∣∣∣ = det(C −BA).

5. Let A and B be m× n and n×m matrices, respectively. Show that∣∣∣∣ In B
A Im

∣∣∣∣ = ∣∣∣∣ Im A
B In

∣∣∣∣
and conclude that

det(Im − AB) = det(In −BA).

Is it true that

rank (Im − AB) = rank (In −BA)?

6. Can any two of the following expressions be identical for general
complex square matrices A, B, C, D of the same size?

det(AD − CB), det(AD −BC), det(DA− CB), det(DA−BC),∣∣∣∣ A B
C D

∣∣∣∣ .
7. If A is an invertible matrix, show that

rank

(
A B
C D

)
= rank (A) + rank (D − CA−1B).

In particular,

rank

(
In In
X Y

)
= n+ rank (X − Y ).

8. Does it follow from the identity (2.4) that any principal submatrix
(A) of a singular matrix (M) is singular?

9. Find the determinant and the inverse of the 2m× 2m block matrix

A =

(
aIm bIm
cIm dIm

)
, ad− bc ̸= 0.

10. If U is a unitary matrix partitioned as U =
(

u
y

x
U1

)
, where u ∈ C,

show that |u| = |detU1|. What if U is real orthogonal?
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11. Find the inverses, if they exist, for the matrices(
A I
I 0

)
,

(
I X
Y Z

)
.

12. Let A be an n-square nonsingular matrix. Write

A = B + iC, A−1 = F + iG,

where B, C, F, G are real matrices, and set

D =

(
B −C
C B

)
.

Show that D is nonsingular and that the inverse of D is(
F −G
G F

)
.

In addition, D is normal if A is normal, and orthogonal if A is unitary.

13. Let A and C be m- and n-square invertible matrices, respectively.
Show that for any m× n matrix B and n×m matrix D,

det(A+BCD) = detAdetC det(C−1 +DA−1B).

What can be deduced from this identity if A = Im and C = In?

14. Let A and B be real square matrices of the same size. Show that∣∣∣∣ A −B
B A

∣∣∣∣ = |det(A+ iB)|2.

15. Let A and B be complex square matrices of the same size. Show that∣∣∣∣ A B
B A

∣∣∣∣ = det(A+B) det(A−B).

Also show that the eigenvalues of the 2× 2 block matrix on the left-
hand side consist of those of A+B and A−B.

16. Let A and B be n-square matrices. For any integer k (positive or
negative if A is invertible), find the (1, 2) block of the matrix(

A B
0 I

)k

.
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17. Let B and C be complex matrices with the same number of rows,
and let A = (B,C). Show that∣∣∣∣ I B∗

B AA∗

∣∣∣∣ = det(CC∗)

and that if C∗B = 0 then

det(A∗A) = det(B∗B) det(C∗C).

18. Let A ∈ Mn. Show that there exists a diagonal matrix D with diago-
nal entries ±1 such that det(A+D) ̸= 0. [Hint: Show by induction.]

19. If I +A is nonsingular, show that (I+A)−1 and I−A commute and

(I +A)−1 + (I + A−1)−1 = I.

20. Show that for any m× n complex matrix A

(I +A∗A)−1A∗A = A∗A(I + A∗A)−1 = I − (I + A∗A)−1.

21. Let A and B be m× n and n×m matrices, respectively. If In +BA
is nonsingular, show that Im +AB is nonsingular and that

(In +BA)−1B = B(Im + AB)−1.

22. Let A and B be m × n and n × m matrices, respectively. If the
involved inverses exist, show that

(I − AB)−1 = I + A(I −BA)−1B.

Conclude that if I−AB is invertible, then so is I−BA. In particular,

(I + AA∗)−1 = I − A(I + A∗A)−1A∗.

23. Let A ∈ Mn and α, β ∈ C. If the involved inverses exist, show that

(αI −A)−1 − (βI − A)−1 = (β − α)(αI −A)−1(βI − A)−1.

24. Show that for any x, y ∈ Cn

adj(I − xy∗) = xy∗ + (1− y∗x)I.

25. Let u, v ∈ Cn with v∗u ̸= 0. Write v∗u = p−1 + q−1. Show that

(I − puv∗)−1 = I − quv∗.
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26. Let u and v be column vectors in Cn such that v∗A−1u is not equal
to −1. Show that A+ uv∗ is invertible and, with δ = 1 + v∗A−1u,

(A+ uv∗)−1 = A−1 − δ−1A−1uv∗A−1.

27. LetM =
(

A
C

B
D

)
. Assume that the inverses involved exist, and denote

S = D − CA−1B, T = A−BD−1C.

Show that each of the following expressions is equal to M−1.

(a)

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
.

(b)

(
T−1 −T−1BD−1

−D−1CT−1 D−1 +D−1CT−1BD−1

)
.

(c)

(
T−1 −A−1BS−1

−D−1CT−1 S−1

)
.

(d)

(
T−1 (C −DB−1A)−1

(B − AC−1D)−1 S−1

)
.

(e)

(
I −A−1B
0 I

)(
A−1 0
0 S−1

)(
I 0

−CA−1 I

)
.

(f)

(
A−1 0
0 0

)
+

(
A−1B
−I

)
S−1(CA−1,−I).

28. Deduce the following inverse identities from the previous problem.

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1

= −C−1D(B − AC−1D)−1

= −(C −DB−1A)−1DB−1

= C−1D(D − CA−1B)−1CA−1

= A−1B(D − CA−1B)−1DB−1.

. ⊙ .
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2.3 The Rank of Product and Sum

This section is concerned with the ranks of the product AB and the
sum A+B in terms of the ranks of matrices A and B.

Matrix rank is one of the most important concepts. In the previ-
ous chapter we defined the rank of a matrix A to be the nonnegative

number r in the matrix
(
Ir
0

0
0

)
, which is obtained through elemen-

tary operations on A. The rank of matrix A, denoted by rank (A),
is uniquely determined by A. rank (A) = 0 if and only if A = 0.

The rank of a matrix can be defined in many different but equiv-
alent ways (see Problem 24 of Section 1.2). For instance, it can be
defined by row rank or column rank. The row (column) rank of a
matrix A is the dimension of the vector space spanned by the rows
(columns) of A. The row rank and column rank of a matrix are
equal. Here is why: let the row rank of an m × n matrix A be r
and the column rank be c. We show r = c. Suppose that columns
C1, C2, . . . , Cc of A are linearly independent and span the column
space of A. For the jth column Aj of A, j = 1, 2, . . . , n, we can write

Aj = d1jC1 + d2jC2 + · · ·+ dcjCc = Cdj ,

where C = (C1, C2, . . . , Cc) and dj = (d1j , d2j , . . . , dcj)
T .

Let D = (dij) = (d1, d2, . . . , dn). Then A = CD and D is c × n.
It follows that every row of A is a linear combination of the rows of
D. Thus, r ≤ c. A similar argument on AT shows c ≤ r.

We can also see that row rank equals column rank through the
relation that the dimension of the column space, i.e., ImA, is the rank
of A. Recall that the kernel, or the null space, and the image of an
m×n matrix A, viewed as a linear transformation, are, respectively,

KerA = {x ∈ Cn : Ax = 0}, ImA = {Ax : x ∈ Cn}.

Denote the row and column ranks of matrix X by rr(X) and cr(X),
respectively. Then cr(X) = dim ImX. Since Ax = 0 ⇔ A∗Ax = 0,

cr(A) = cr(A∗A) = dim Im(A∗A) ≤ dim Im(A∗) = cr(A∗).
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Hence cr(A∗) ≤ cr((A∗)∗) = cr(A). So cr(A) = cr(A∗). However,
cr(A) = rr(AT ); we have cr(A) = cr(A∗) = rr(Ā) = rr(A) (over C).

Theorem 2.6 (Sylvester) Let A and B be complex matrices of
sizes m× n and n× p, respectively. Then

rank (AB) = rank (B)− dim(ImB ∩KerA). (2.7)

Consequently,

rank (A) + rank (B)− n ≤ rank (AB) ≤ min{rank (A), rank (B)}.

Proof. Recall from Theorem 1.5 that if A is a linear transformation
on an n-dimensional vector space, then

dim Im(A) + dimKer(A) = n.

Viewing A as a linear transformation on Cn, we have (Problem 1)

rank (A) = dim ImA.

For the rank of AB, we think of A as a linear transformation on the
vector space ImB. Then its image is Im(AB) and its null space is
ImB ∩KerA. We thus have

dim Im(AB) + dim(ImB ∩KerA) = dim ImB.

The identity (2.7) then follows.
For the inequalities, the second one is immediate from (2.7), and

the first one is due to the fact that

dim ImA+ dim(ImB ∩KerA) ≤ n.

For the product of three matrices, we have

rank (ABC) ≥ rank (AB) + rank (BC)− rank (B). (2.8)

A pure matrix proof of (2.8) goes as follows. Note that

rank

(
0 X
Y Z

)
≥ rank (X) + rank (Y )
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for any matrix Z of appropriate size, and that equality holds if Z = 0.
The inequality (2.8) then follows from the matrix identity(

I −A
0 I

)(
0 AB
BC B

)(
I 0

−C I

)
=

(
−ABC 0

0 B

)
.

Theorem 2.7 Let A and B be m×n matrices and denote by C and
D, respectively, the partitioned matrices

C = (Im, Im), D =

(
A
B

)
.

Then

rank (A+B) = rank (A) + rank (B)− dim(KerC ∩ ImD)

−dim(ImA∗ ∩ ImB∗). (2.9)

In particular,

rank (A+B) ≤ rank (A) + rank (B).

Proof. Write

A+B = (Im, Im)

(
A
B

)
= CD.

Utilizing the previous theorem, we have

rank (A+ B) = rank (D)− dim(ImD ∩KerC). (2.10)

However,

rank (D) = rank (D∗) = rank (A∗, B∗)

= dim Im(A∗, B∗) (by Problem 9)

= dim(ImA∗ + ImB∗)

= dim ImA∗ + dim ImB∗

−dim(ImA∗ ∩ ImB∗)

= rank (A∗) + rank (B∗)− dim(ImA∗ ∩ ImB∗)

= rank (A) + rank (B)− dim(ImA∗ ∩ ImB∗).

Substituting this into (2.10) reveals (2.9).
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Problems

1. Show that rank (A) = dim ImA for any complex matrix A.

2. Let A,B ∈ Mn. If rank (A) < n
2

and rank (B) < n
2
, show that

det(A+ λB) = 0 for some complex number λ.

3. If B ∈ Mn is invertible, show that rank (AB) = rank (A) for every
m× n matrix A. Is the converse true?

4. Is it true that the sum of two singular matrices is singular? How
about the product?

5. Let A be an m × n matrix. Show that if rank (A) = m, then there
is an n×m matrix B such that AB = Im, and that if rank (A) = n,
then there is an m× n matrix B such that BA = In.

6. Let A be an m × n matrix. Show that for any s × m matrix X
with columns linearly independent and any n× t matrix Y with rows
linearly independent,

rank (A) = rank (XA) = rank (AY ) = rank (XAY ).

7. For matrices A and B, show that if rank (AB) = rank (B), then

ABX = ABY ⇔ BX = BY,

and if rank (AB) = rank (A), then

XAB = Y AB ⇔ XA = Y A.

8. Let A be an m × n matrix over a field F, rank (A) = r. Show that
for any positive integer k, r ≤ k ≤ n, there exists an n× n matrix B
over F such that AB = 0 and rank (A) + rank (B) = k,

9. For any matrices A and B of the same size, show that

Im(A,B) = ImA+ ImB.

10. Let A be an m× n matrix. Show that for any n×m matrix B,

dim ImA+ dimKerA = dim Im(BA) + dimKer(BA).

11. Let A and B be m× n and n×m matrices, respectively. Show that

det(AB) = 0 if m > n.
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12. For matrices A and B of the same size, show that

|rank (A)− rank (B)| ≤ rank (A±B).

13. Let A and B be n-square complex matrices. Show that

rank (AB − I) ≤ rank (A− I) + rank (B − I).

14. Let A ∈ Mn. If A
2 = I, show that

rank (A+ I) + rank (A− I) = n.

15. Show that if A ∈ Mn and A2 = A, then rank (A)+rank (In−A) = n.

16. Let A,B ∈ Mn. Show that

(a) rank (A−ABA) = rank (A) + rank (In −BA)− n.

(b) If A+B = In and rank (A) + rank (B) = n, then
A2 = A, B2 = B, and AB = 0 = BA.

17. If A is an n-square matrix with rank r, show that there exist an
n-square matrix B of rank n− r such that AB = 0.

18. Let A andB be n×nmatrices over a field F having null spacesW1 and
W2, respectively. (i). If AB = 0, show that dimW1 + dimW2 ≥ n.
(ii). Show that W1 = W2 if and only if A = PB and B = QA for
some n× n matrices P and Q.

19. Let A be an m× n matrix with rank n. If m > n, show that there is
a matrix B of size (m− n)×m and a matrix C of size m× (m− n),
both of rank m− n, such that BA = 0 and (A,C) is nonsingular.

20. Let A be a linear transformation on a finite-dimensional vector space.
Show that

Ker(A) ⊆ Ker(A2) ⊆ Ker(A3) ⊆ · · ·

and that
Im(A) ⊇ Im(A2) ⊇ Im(A3) ⊇ · · · .

Further show that there are finite proper inclusions in each chain.

21. If A is anm×n complex matrix, Im(A) is in fact the space spanned by
the column vectors of A, called the column space of A and denoted by
C(A). Similarly, the row vectors of A span the row space, symbolized
by R(A). Let A and B be two matrices. Show that

C(A) ⊆ C(B) ⇔ A = BC,
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for some matrix C, and

R(A) ⊆ R(B) ⇔ A = RB,

for some matrix R. [Note: C(A) = ImA and R(A) = ImAT .]

22. Let A and B be m× n matrices. Show that

C(A+B) ⊆ C(A) + C(B)

and that the following statements are equivalent.

(a) C(A) ⊆ C(A+B).

(b) C(B) ⊆ C(A+B).

(c) C(A+B) = C(A) + C(B).

23. Prove or disprove, for any n-square matrices A and B, that

rank

(
A
B

)
= rank (A,B).

24. Let A be an m× n matrix and B be a p× n matrix. Show that

KerA ∩KerB = Ker

(
A
B

)
.

25. Let A and B be matrices of the same size. Show the rank inequalities

rank (A+B) ≤ rank

(
A
B

)
≤ rank (A) + rank (B)

and
rank (A+B) ≤ rank (A,B) ≤ rank (A) + rank (B)

by writing

A+B = (A,B)

(
I
I

)
= (I, I)

(
A
B

)
.

Additionally, show that

rank

(
A B
C D

)
≤ rank (A) + rank (B) + rank (C) + rank (D).

26. Let A, B, and C be complex matrices of the same size. Show that

rank (A,B,C) ≤ rank (A,B) + rank (B,C)− rank (B).

. ⊙ .
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2.4 The Eigenvalues of AB and BA

For square matrices A and B of the same size, the product matrices
AB and BA need not be equal, or even similar. For instance, if

A =

(
1 0
1 0

)
, B =

(
0 0
1 1

)
,

then

AB =

(
0 0
0 0

)
but BA =

(
0 0
2 0

)
.

Note that in this example both AB (= 0) and BA (̸= 0) have only
repeated eigenvalue 0 (twice, referred to as multiplicity of 0). Is this
a coincidence, or can we construct an example such that AB has only
zero eigenvalues but BA has some nonzero eigenvalues?

The following theorem gives a negative answer to the question.
This is a very important result in matrix theory.

Theorem 2.8 Let A and B be m× n and n×m complex matrices,
respectively. Then AB and BA have the same nonzero eigenvalues,
counting multiplicity. If m = n, A and B have the same eigenvalues.

Proof 1. Use determinants. Notice that(
Im −A
0 λIn

)(
λIm A
B In

)
=

(
λIm −AB 0

λB λIn

)
and that(

Im 0
−B λIn

)(
λIm A
B In

)
=

(
λIm A
0 λIn −BA

)
.

By taking determinants and equating the right-hand sides, we obtain

λn det(λIm − AB) = λm det(λIn −BA). (2.11)

Thus, det(λIm − AB) = 0 if and only if det(λIn − BA) = 0 when
λ ̸= 0. It is immediate that AB and BA have the same nonzero
eigenvalues, including multiplicity (by factorization).
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Proof 2. Use matrix similarity. Consider the block matrix(
0 0
B 0

)
.

Add the second row multiplied by A from the left to the first row:(
AB 0
B 0

)
.

Do the similar operation for columns to get(
0 0
B BA

)
.

Write, in equation form,(
Im A
0 In

)(
0 0
B 0

)
=

(
AB 0
B 0

)
and (

0 0
B 0

)(
Im A
0 In

)
=

(
0 0
B BA

)
.

It follows that(
Im A
0 In

)−1(
AB 0
B 0

)(
Im A
0 In

)
=

(
0 0
B BA

)
;

that is, matrices (
AB 0
B 0

)
and

(
0 0
B BA

)
are similar. Thus, matrices AB and BA have the same nonzero
eigenvalues, counting multiplicity. (Are AB and BA similar?)

Proof 3. Use the continuity argument. We first deal with the case
where m = n. If A is nonsingular, then

BA = A−1(AB)A.

Thus, AB and BA are similar and have the same eigenvalues.
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If A is singular, let δ be such a positive number that ϵI + A is
nonsingular for every ϵ, 0 < ϵ < δ. Then

(ϵI +A)B and B(ϵI +A)

are similar and have the same characteristic polynomials. Therefore,

det (λIn − (ϵIn +A)B) = det (λIn −B(ϵIn +A)), 0 < ϵ < δ.

Since both sides are continuous functions of ϵ, letting ϵ→ 0 gives

det(λIn − AB) = det(λIn −BA).

Thus, AB and BA have the same eigenvalues.
For the case where m ̸= n, assume m < n. Augment A and B by

zero rows and zero columns, respectively, so that

A1 =

(
A
0

)
, B1 = (B, 0)

are n-square matrices. Then

A1B1 =

(
AB 0
0 0

)
and B1A1 = BA.

It follows that A1B1 and B1A1, consequently AB and BA, have the
same nonzero eigenvalues, counting multiplicity.

Proof 4. Treat matrices as operators. It must be shown that if
λIm − AB is singular, so is λIn − BA, and vice versa. It may be
assumed that λ = 1, by multiplying 1

λ otherwise.
If Im −AB is invertible, let X = (Im − AB)−1. We compute

(In −BA)(In +BXA) = In +BXA−BA−BABXA

= In + (BXA−BABXA)−BA

= In +B(Im −AB)XA−BA

= In +BA−BA

= In.

Thus, In −BA is invertible. Note that this approach gives no infor-
mation on the multiplicity of the nonzero eigenvalues.
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As a side product, using (2.11), we have (see also Problem 5 of
Section 2.2), for any m× n matrix A and n×m matrix B,

det(Im +AB) = det(In +BA).

Note that Im +AB is invertible if and only if In +BA is invertible.

Problems

1. Show that tr(AB) = tr(BA) for any m × n matrix A and n × m
matrix B. In particular, tr(A∗A) = tr(AA∗).

2. For any square matrices A and B of the same size, show that

tr(A+B)2 = trA2 + 2 tr(AB) + trB2.

Does it follow that (A+B)2 = A2 + 2AB +B2?

3. Let A and B be square matrices of the same size. Show that

det(AB) = det(BA).

Does this hold if A and B are not square? Is it true that

rank (AB) = rank (BA)?

4. Let A and B be m × n and n × m complex matrices, respectively,
with m < n. If the eigenvalues of AB are λ1, . . . , λm, what are the
eigenvalues of BA?

5. Let A and B be n× n matrices. Show that for every integer k ≥ 1,

tr(AB)k = tr(BA)k.

Does
tr(AB)k = tr(AkBk)?

6. Show that for any x, y ∈ Cn

det(In + xy∗) = 1 + y∗x.

7. Compute the determinant∣∣∣∣∣∣∣∣∣
1 + x1y1 x1y2 · · · x1yn
x2y1 1 + x2y2 · · · x2yn
...

...
...

...
xny1 xny2 · · · 1 + xnyn

∣∣∣∣∣∣∣∣∣ .
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8. If A, B, and C are three complex matrices of appropriate sizes, show
that ABC, CAB, and BCA have the same nonzero eigenvalues. Is
it true that ABC and CBA have the same nonzero eigenvalues?

9. Do A∗ and A have the same nonzero eigenvalues? How about A∗A
and AA∗? Show by example that det(AA∗) ̸= det(A∗A) in general.

10. Let A,B ∈ Mn. Show that
(

0
B

A
0

)
is similar to

(
0
A

B
0

)
via

(
0
I
I
0

)
.

11. For any square matrices A and B of the same size, show that

A2 +B2 and

(
A2 AB
BA B2

)
have the same nonzero eigenvalues. Further show that the latter
block matrix must have zero eigenvalues. How many of them?

12. Let A ∈ Mn. Find the eigenvalues of
(

A
A

A
A

)
in terms of those of A.

13. Let A be a 3× 2 matrix and B be a 2× 3 matrix such that

AB =

 8 2 −2
2 5 4
−2 4 5

 .

Find the ranks of AB and (AB)2 and show that BA =
(
9
0
0
9

)
.

14. Let A be an m× n complex matrix and M =
(

0
A∗

A
0

)
. Show that

(a) M is a Hermitian matrix.

(b) The eigenvalues of M are

−σ1, . . . ,−σr,
m+n−2r︷ ︸︸ ︷
0, . . . , 0 , σr, . . . , σ1,

where σ1 ≥ · · · ≥ σr are the positive square roots of the nonzero
eigenvalues of A∗A, called singular values of A.

(c) detM = det(−A∗A) = (−1)n| detA|2 if A is n-square.

(d) 2
(

0
A∗

A
0

)
=
(

B
A∗

A
C

)
+
(

−B
A∗

A
C

)
for any matrices B, C.

15. Let A and B be matrices of sizes m× n and n×m, respectively. Do
AB and BA have the same nonzero singular values?

. ⊙ .
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2.5 The Continuity Argument and Matrix Functions

One of the most frequently used techniques in matrix theory is the
continuity argument. A good example of this is to show, as we saw
in the previous section, that matrices AB and BA have the same set
of eigenvalues when A and B are both square matrices of the same
size. It goes as follows. First consider the case where A is invertible
and conclude that AB and BA are similar due to the fact that

AB = A(BA)A−1.

If A is singular, consider A + ϵI. Choose δ > 0 such that A + ϵI is
invertible for all ϵ, 0 < ϵ < δ. Thus, (A+ ϵI)B and B(A+ ϵI) have
the same set of eigenvalues for every ϵ ∈ (0, δ).

Equate the characteristic polynomials to get

det(λI − (A+ ϵI)B) = det(λI −B(A+ ϵI)), 0 < ϵ < δ.

Since both sides are continuous functions of ϵ, letting ϵ→ 0+ gives

det(λI −AB) = det(λI −BA).

Thus, AB and BA have the same eigenvalues.
The proof was done in three steps:

1. Show that the assertion is true for the nonsingular A.
2. Replace singular A by nonsingular A+ ϵI.
3. Use continuity of a function in ϵ to get the desired conclusion.

We have used and will more frequently use the following theorem.

Theorem 2.9 Let A be an n×n matrix. If A is singular, then there
exists a δ > 0 such that A+ ϵI is nonsingular for all ϵ ∈ (0, δ).

Proof. The polynomial det(λI+A) in λ has at most n zeros. If they
are all 0, we can take δ to be any positive number. Otherwise, let δ
be the smallest nonzero λ in modulus. This δ serves the purpose.

A continuity argument is certainly an effective way for many ma-
trix problems when a singular matrix is involved. The setting in
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which the technique is used is rather important. Sometimes the re-
sult for nonsingular matrices may be invalid for the singular case.
Here is an example for which the continuity argument fails.

Theorem 2.10 Let C and D be n-square matrices such that

CDT +DCT = 0.

If D is nonsingular, then for any n-square matrices A and B∣∣∣∣ A B
C D

∣∣∣∣ = det(ADT +BCT ).

The identity is invalid in general if D is singular.

Proof. It is easy to verify that(
A B
C D

)(
DT 0
CT I

)
=

(
ADT +BCT B

0 D

)
.

Taking determinants of both sides results in the desired identity.
For an example of the singular case, we take A, B, C, and D to

be, respectively,(
1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

where D is singular. It is easy to see by a simple computation that
the determinant identity does not hold.

The continuity argument may be applied to more general func-
tions of matrices. For instance, the trace and determinant depend
continuously on the entries of a matrix. These are easy to see as the
trace is the sum of the main diagonal entries and the determinant
is the sum of all products of (different) diagonal entries. So we may
simply say that the trace and determinant are continuous functions
of (the entries of) the matrix.

We have used the term matrix function. What is a matrix func-
tion after all? A matrix function, f(A), or function of a matrix can
have several different meanings. It can be an operation on a matrix
producing a scalar, such as trA and detA; it can be a mapping from
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a matrix space to a matrix space, like f(A) = A2; it can also be
entrywise operations on the matrix, for instance, g(A) = (a2ij). In
this book we use the term matrix function in a general (loose) sense;
that is, a matrix function is a mapping f : A 7→ f(A) as long as f(A)
is well defined, where f(A) is a scalar or a matrix (or a vector).

Given a square matrix A, the square of A, A2, is well defined.
How about a square root of A? Take A =

(
0
0
1
0

)
, for example. There

is no matrix B such that B2 = A. After a moment’s consideration,
one may realize that this thing is nontrivial. In fact, generalizing a
function f(z) of a scalar variable z ∈ C to a matrix function f(A) is
a serious business and it takes great effort.

Most of the terminology in calculus can be defined for square
matrices. For instance, a matrix sequence (or series) is convergent if
it is convergent entrywise. As an example,(

1
k

k−1
k

0 1
k

)
→

(
0 1
0 0

)
, as k → ∞.

For differentiation and integration, let A(t) = (aij(t)) and denote

d

dt
(A(t)) =

(
d

dt
aij(t)

)
,

∫
A(t)dt =

(∫
aij(t)dt

)
.

That is, by differentiating or integrating a matrix we mean to perform
the operation on the matrix entrywise. It can be shown that the
product rule for derivatives in calculus holds for matrices whereas
the power rule does not. Now one is off to a good start working on
matrix calculus, which is useful for differential equations. Interested
readers may pursue and explore more in this direction.

Problems

1. Why did the continuity argument fail Theorem 2.10?

2. Let C and D be real matrices such that CDT +DCT = 0. Show that
if C is skew-symmetric (i.e., CT = −C), then so is DC.

3. Show that A has no square root. How about B and C, where

A =

(
0 1
0 0

)
, B =

 0 1 0
0 0 0
0 0 0

 , C =

(
A 0
0 A

)
?
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4. Let A =
(
2
2
1
3

)
. Find a 2× 2 matrix X so that X2 = A.

5. Use a continuity argument to show that for any A,B ∈ Mn

adj(AB) = adj(B) adj(A).

6. Show that Aϵ = PϵJϵP
−1
ϵ if ϵ ̸= 0, where

Aϵ =

(
ϵ 0
1 0

)
, Pϵ =

(
0 ϵ
1 1

)
, Jϵ =

(
0 0
0 ϵ

)
.

What happens to the matrix identity if ϵ→ 0? Is A0 similar to J0?

7. Explain why rank (A2) ≤ rank (A). Discuss whether a continuity
argument can be used to show the inequality.

8. Show that the eigenvalues of A are independent of ϵ, where

A =

(
ϵ− 1 −1

ϵ2 − ϵ+ 1 −ϵ

)
.

9. Denote by σmax and σmin, σmax ≥ σmin, the singular values of matrix
A =

(
1
ϵ
ϵ
1

)
, ϵ > 0. Show that limϵ→1− σmax/σmin = +∞.

10. Let A be a nonsingular matrix with A−1 = B = (bij). Show that
bij are continuous functions of aij , the entries of A, and that if
limt→0A(t) = A and detA ̸= 0 (this condition is necessary), then

lim
t→0

(
A(t)

)−1
= A−1.

Conclude that
lim
λ→0

(A− λI)−1 = A−1

and for any m× n matrix X and n×m matrix Y , independent of ϵ,

lim
ϵ→0

(
Im ϵX
ϵY In

)−1

= Im+n.

11. Let A ∈ Mn. If |λ| < 1 for all eigenvalues λ of A, show that

(I −A)−1 =
∞∑
k=1

Ak = I + A+ A2 + A3 + · · · .

12. Let A =
(

−1
0

1
−1

)
. Show that

∑∞
k=1

1
k2A

k is convergent.
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13. Let p(x), q(x) be polynomials and A ∈ Mn be such that q(A) is
invertible. Show that p(A)(q(A))−1 = (q(A))−1p(A). Conclude that
(I −A)−1(I +A2) = (I +A2)(I −A)−1 when A has no eigenvalue 1.

14. Let n be a positive number and x be a real number. Let

A =

(
1 − x

n
x
n 1

)
.

Show that

lim
x→0

(
lim

n→∞

1

x
(I − An)

)
=

(
0 1
−1 0

)
.

[Hint: A = cP for some constant c and orthogonal matrix P .]

15. For any square matrixX , show that eX =
∑∞

k=0
1
k!X

k is well defined;
that is, the series always converges. Let A, B ∈ Mn. Show that

(a) If A = 0, then eA = I.

(b) If A = I, then eA = eI.

(c) If AB = BA, then eA+B = eAeB = eBeA.

(d) If A is invertible, then e−A = (eA)−1.

(e) If A is invertible, then eABA−1

= AeBA−1.

(f) If λ is an eigenvalue of A, then eλ is an eigenvalue of eA.

(g) det eA = etrA.

(h) (eA)
∗
= eA

∗
.

(i) If A is Hermitian, then eiA is unitary.

(j) If A is real skew-symmetric, then eA is (real) orthogonal.

16. Let A ∈ Mn and t ∈ R. Show that d
dt
etA = AetA = etAA.

17. Let A(t) =
(

e2t

1+t
t

sin t

)
, where t ∈ R. Find

∫ 1

0
A(t)dt and d

dtA(t).

. ⊙ .



2.6 Localization of Eigenvalues: The Geršgorin Theorem

Is there a way to locate in the complex plane the eigenvalues of a
matrix? The Geršgorin theorem is a celebrated result on this; it
ensures that the eigenvalues of a matrix lie in certain discs in the
complex plane centered at the diagonal entries of the matrix.

Before proceeding, we note that the eigenvalues of a matrix are
continuous functions of the matrix entries. To see this, as an example,
we examine the 2× 2 case for

A =

(
a11 a12
a21 a22

)
.

A computation gives the eigenvalues of A

λ =
1

2

[
a11 + a22 ±

√
(a11 − a22)2 + 4a21a12

]
,

which are obviously continuous functions of the entries of A.

In general, the eigenvalues of a matrix depend continuously on the
entries of the matrix. This follows from the continuous dependence of
the zeros of a polynomial on its coefficients, which invokes the theory
of polynomials with real or complex coefficients. Simply put: small
changes in the coefficients of a polynomial can lead only to small
changes in any zero. As a result, the eigenvalues of a (real or complex)
matrix depend continuously upon the entries of the matrix. The idea
of the proof of this goes as follows. Obviously, the coefficients of the
characteristic polynomial depend continuously on the entries of the
matrix. It remains to show that the roots of a polynomial depend
continuously on the coefficients. Consider, without loss of generality,
the zero root case.

Let p(x) = xn+a1x
n−1+· · ·+an with p(0) = 0. Then an = 0. For

any positive number ϵ, if q(x) = xn+b1x
n−1+ · · ·+bn is a polynomial

such that |bi − ai| < ϵ, i = 1, . . . , n, then the roots x1, . . . , xn of q(x)
satisfy |x1 · · ·xn| = |bn| < ϵ. It follows that |xi| < n

√
ϵ for some i.

This means that q(x) has an eigenvalue “close” to 0.
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Theorem 2.11 The eigenvalues of a matrix are continuous func-
tions of the entries of the matrix.

Because singular values are the square roots of the eigenvalues of
certain matrices, singular values are also continuous functions of the
entries of the matrix. It is readily seen that determinant and trace
are continuous functions of the entries of the matrix too.

Theorem 2.12 (Geršgorin) Let A = (aij) ∈ Mn and let

ri =
n∑

j=1, j ̸=i

|aij|, i = 1, 2, . . . , n.

Then all the eigenvalues of A lie in the union of n closed discs

∪n
i=1{z ∈ C : |z − aii| ≤ ri}.

Furthermore, if a union of k of these n discs forms a connected region
that is disjoint from the remaining n−k discs, then there are exactly
k eigenvalues of A in this region (counting algebraic multiplicities).

Let us see an example before proving the theorem. For

A =

 1 1 0
0.25 2 0.25
0.25 0 3

 ,

there are three Geršgorin discs:

G1 = {z ∈ C : |z − 1| ≤ 1},

G2 = {z ∈ C : |z − 2| ≤ 0.5},

G3 = {z ∈ C : |z − 3| ≤ 0.25}.

The first two discs are connected and disjoint with G3. Thus
there are two eigenvalues of A in G1 ∪G2, and one eigenvalue in G3.
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1 2 3

Figure 2.7: Geršgorin discs

Proof of Theorem 2.12. Let λ be an eigenvalue of A, and let x be an
eigenvector of A corresponding to λ. Suppose that xp is the largest
component of x in absolute value; that is,

|xp| ≥ |xi|, i = 1, 2, . . . , n.

Then xp ̸= 0. The equation Ax = λx gives

n∑
j=1

apjxj = λxp

or

xp(λ− app) =

n∑
j=1, j ̸=p

apjxj.

By taking absolute value, we have

|xp||λ− app| =

∣∣∣∣ n∑
j=1, j ̸=p

apjxj

∣∣∣∣
≤

n∑
j=1, j ̸=p

|apjxj |

=
n∑

j=1, j ̸=p

|apj ||xj |
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≤ |xp|
n∑

j=1, j ̸=p

|apj|

= |xp|rp.

It follows that |λ−app| ≤ rp, and that λ lies in a closed disc centered
at app with radius rp.

To prove the second part, we assume that the first k discs, cen-
tered at a11, . . . , akk, form a connected union G which is disjoint from
other discs. Let A = D +B, where D = diag(a11, a22, . . . , ann), and

Aϵ = D + ϵB, ϵ ∈ [0, 1]

and denote r′i for Aϵ as ri for A. Then r
′
i = ϵri. It is immediate that

for every ϵ ∈ [0, 1] the set G contains the union Gϵ of the first k discs
of Aϵ, where

Gϵ = ∪k
i=1{z ∈ C : |z − aii| ≤ r′i}.

Consider the eigenvalues of A0 and Aϵ:

λi(A0) = aii, λi(Aϵ), i = 1, 2, . . . , k, ϵ > 0.

Because the eigenvalues are continuous functions of the entries of A
and because for each i = 1, 2, . . . , k,

λi(A0) ∈ Gϵ ⊆ G, for all ϵ ∈ [0, 1],

we have that each λi(A0) is joined to some λi(A1) = λi(A) by the
continuous curve

{λi(Aϵ) : 0 ≤ ϵ ≤ 1} ⊆ G.

Thus for each ϵ ∈ [0, 1], there are at least k eigenvalues of Aϵ in Gϵ,
and G contains at least k eigenvalues of A (not necessarily different).
The remaining n − k eigenvalues of A0 start outside the connected
set G, and those eigenvalues of A lie outside G.

An application of this theorem to AT gives a version of the the-
orem for the columns of A.
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Problems

1. Apply the Geršgorin theorem to the matrix 1 1 0
−1 −1 0
1 2 4

 .

2. Show by the Geršgorin theorem thatA has three different eigenvalues:

A =

 1 1
2

i
2

1
2

3 0
0 1 5

 or

 1 i 0
1
2 4 i

2
1 0 7

 .

Conclude that A is diagonalizable, i.e., S−1AS is diagonal for some S.

3. Construct a 4× 4 complex matrix so that it contains no zero entries
and that the four different eigenvalues of the matrix lie in the discs
centered at 1, −1, i, and −i, all with diameter 1.

4. Illustrate the Geršgorin theorem by the matrix

A =


2 −1

2
1
4 −1

4
1
4 1 + 2i 0 1

4

−1
2

1
4 −1 1

2
1
4 −1

2
1
2 −2− 2i

 .

5. State and prove the first part of Geršgorin theorem for columns.

6. Let A ∈ Mn and D = diag(A); that is, the diagonal matrix of A.
Denote B = A−D. If λ is an eigenvalue of A and it is not a diagonal
entry of A, show that 1 is an eigenvalue of (λI −D)−1B.

7. Let A = (aij) ∈ Mn. Show that for any eigenvalue λ of A

|λ| ≥ min
i
{|aii| − ri}, where ri =

n∑
j=1, j ̸=i

|aij |.

Derive that
|detA| ≥ (min

i
{|aii| − ri})n.

8. Let A = (aij) ∈ Mn. Show that for any eigenvalue λ of A

|λ| ≤ min

{
max

i

n∑
s=1

|ais|, max
j

n∑
t=1

|atj |
}
.
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9. Let A = (aij) ∈ Mn. Show that for any eigenvalue λ of A

|λ| ≤ nmax
i,j

|aij |.

10. Let A = (aij) ∈ Mn. Show that for any positive numbers d1, . . . , dn
and for any eigenvalue λ of A

|λ| ≤ min

{
max

i

1

di

n∑
s=1

ds|ais|, max
j

1

dj

n∑
t=1

dt|atj |
}
.

11. (Levy–Desplanques) A matrix A ∈ Mn is said to be strictly diag-
onally dominant if

|aij | >
n∑

i=1, i̸=j

|aij |, j = 1, 2, . . . , n.

Show that a strictly diagonally dominant matrix is nonsingular.

12. Let A = (aij) ∈ Mn and Ri =
∑n

j=1 |aij |, i = 1, 2, . . . , n. Suppose
that A does not have a zero row. Show that

rank (A) ≥
n∑

i=1

|aii|
Ri

.

13. Let A = (aij) ∈ Mn. Denote δ = mini̸=j |aii − ajj | and ϵ =
maxi̸=j |aij |. If δ > 0 and ϵ ≤ δ/4n, show that each Geršgorin disc
contains exactly one eigenvalue of A.

14. Let f(x) = xn + a1x
n−1 + · · ·+ an be any monic polynomial. Show

that all the roots of f are bounded (in absolute value) by

γ = 2 max
1≤k≤n

|ak|1/k.

[Hint: Consider |f(x)/xn| and show that |f(x)/xn| > 0 if |x| > γ.]

. ⊙ .



CHAPTER 3

Matrix Polynomials and Canonical Forms

Introduction: This chapter is devoted to matrix decompositions.
The main studies are on the Schur decomposition, spectral decom-
position, singular value decomposition, Jordan decomposition, and
numerical range. Attention is also paid to the polynomials that anni-
hilate matrices, especially the minimal and characteristic polynomi-
als, and to the similarity of a complex matrix to a real matrix. At the
end we introduce three important matrix operations: the Hadamard
product, the Kronecker product, and compound matrices.

3.1 Commuting Matrices

Matrices do not commute in general. One may easily find two square
matrices A and B of the same size such that AB ̸= BA. Any square
matrix A, however, commutes with polynomials in A.

A question arises: If a matrix B commutes with A, is it true that
B can be expressed as a polynomial in A? The answer is negative,
by taking A to be the n× n identity matrix I and B to be an n× n
nondiagonal matrix. For some sorts of matrices, nevertheless, we
have the following result.

Theorem 3.1 Let A and B be n×n matrices such that AB = BA. If
all the eigenvalues of A are distinct, then B can be expressed uniquely
as a polynomial in A with degree no more than n− 1.
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Proof. To begin, recall from Theorem 1.6 that the eigenvectors be-
longing to different eigenvalues are linearly independent. Thus, a
matrix with distinct eigenvalues has a set of linearly independent
eigenvectors that form a basis of Cn (or Rn if the matrix is real).

Let u1, u2, . . . , un be the eigenvectors corresponding to the eigen-
values λ1, λ2, . . . , λn of A, respectively. Set

P = (u1, u2, . . . , un).

Then P is an invertible matrix and

P−1AP = diag(λ1, λ2, . . . , λn).

Let
P−1AP = C and P−1BP = D.

It follows from AB = BA that CD = DC.
The diagonal entries of C are distinct, therefore D must be a

diagonal matrix too (Problem 1). Let D = diag(µ1, µ2, . . . , µn).
Consider the linear equation system of unknowns x0, x1, . . . , xn−1:

x0 + λ1x1 + · · ·+ λn−1
1 xn−1 = µ1,

x0 + λ2x1 + · · ·+ λn−1
2 xn−1 = µ2,

...

x0 + λnx1 + · · ·+ λn−1
n xn−1 = µn.

Because the coefficient matrix is a Vandermonde matrix that is
nonsingular when λ1, λ2, . . . , λn are distinct (see Problem 3 of Sec-
tion 1.2 or Theorem 5.9 in Chapter 5), the equation system has a
unique solution, say, (a0, a1, . . . , an−1).

Define a polynomial with degree no more than n− 1 by

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1.

It follows that
p(λi) = µi, i = 1, 2, . . . , n.

It is immediate that p(A) = B since p(C) = D and that this poly-
nomial p(x) is unique for the solution to the system is unique.
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Such a method of finding a polynomial p(x) of the given pairs is
referred to as interpolation. The proof also shows that there exists an
invertible matrix P such that P−1AP and P−1BP are both diagonal.

Theorem 3.2 Let A and B be square matrices of the same size. If
AB = BA, then there exists a unitary matrix U such that U∗AU and
U∗BU are both upper-triangular.

Proof. We use induction on n. If n = 1, we have nothing to show.
Suppose that the assertion is true for n− 1.

For the case of n, we consider matrices as linear transformations.
Note that if A is a linear transformation on a finite-dimensional vec-
tor space V over C, then A has at least one eigenvector in V , for

Ax = λx, x ̸= 0, if and only if det(λI −A) = 0,

which has a solution in C.
For each eigenvalue µ of B, consider the eigenspace of B

Vµ = {v ∈ Cn : Bv = µv}.

If A and B commute, then for every v ∈ Vµ,

B(Av) = (BA)v = (AB)v = A(Bv) = A(µv) = µ(Av).

Thus, Av ∈ Vµ; that is, Vµ is an invariant subspace of A. As a linear
transformation on Vµ, A has an eigenvalue λ and a corresponding
eigenvector v1 in Vµ. Put in symbols,

Av1 = λv1, Bv1 = µv1, v1 ∈ Vµ.

We may assume that v1 is a unit vector. Extend v1 to a unitary
matrix U1; that is, U1 is a unitary matrix whose first column is v1.
By computation, we have

U∗
1AU1 =

(
λ α
0 C

)
and U∗

1BU1 =

(
µ β
0 D

)
,

where C, D ∈ Mn−1, and α and β are some row vectors.
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It follows from AB = BA that CD = DC. The induction hy-
pothesis guarantees a unitary matrix U2 ∈ Mn−1 such that U∗

2CU2

and U∗
2DU2 are both upper-triangular. Let

U = U1

(
1 0
0 U2

)
.

Then U , a product of two unitary matrices, is unitary, and U∗AU
and U∗BU are both upper-triangular.

Problems

1. Let A be a diagonal matrix with different diagonal entries. If B is a
matrix such that AB = BA, show that B is also diagonal.

2. Let A,B ∈ Mn and let A have n distinct eigenvalues. Show that
AB = BA if and only if there exists a set of n linearly independent
vectors as the eigenvectors of A and B.

3. Let A =
(

0
−1

1
0

)
and B =

(
1
−1

1
1

)
. Show that AB = BA. Find

a unitary matrix U such that both U∗AU and U∗BU are upper-
triangular. Show that such a U cannot be a real matrix.

4. Give an example of matrices A and B for which AB = BA, λ is an
eigenvalue of A, µ is an eigenvalue of B, but λ+µ is not an eigenvalue
of A+B, and λµ is not an eigenvalue of AB.

5. Let f(x) be a polynomial and let A be an n-square matrix. Show
that for any n-square invertible matrix P ,

f(P−1AP ) = P−1f(A)P

and that there exists a unitary matrix U such that both U∗AU and
U∗f(A)U are upper-triangular.

6. Show that the adjoints, inverses, sums, products, and polynomials of
upper-triangular matrices are upper-triangular.

7. Show that every square matrix is a sum of two commuting matrices.

8. If A and B are two matrices such that AB = Im and BA = In, show
that m = n, AB = BA = I, and B = A−1.

9. Let A, B, and C be matrices such that AB = CA. Show that for
any polynomial f(x),

Af(B) = f(C)A.
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10. Is it true that any linear transformation on a vector space over R has
at least a real eigenvalue?

11. Show that if AB = BA = 0 then rank (A+B) = rank (A)+rank (B).

12. Let A1, A2, . . . , Ak ∈ Mn be commuting matrices, i.e., AiAj = AjAi

for all i, j. Show that there exists a unitary matrix U ∈ Mn such
that all U∗AiU are upper-triangular.

13. Let A and B be commuting matrices. If A has k distinct eigenvalues,
show that B has at least k linearly independent eigenvectors. Does
it follow that B has k distinct eigenvalues?

14. Let A and B be n-square matrices. If AB = BA, what are the
eigenvalues of A+B and AB in terms of those of A and B?

15. Let A, B ∈ Mn. If AB = BA, find the eigenvalues of the matrix(
A B
B −A

)
.

16. What matrices in Mn commute with all diagonal matrices? With all
Hermitian matrices? With all matrices in Mn?

17. Let A and B be square complex matrices. If A commutes with B
and B∗, show that A+ A∗ commutes with B +B∗.

18. Show that Theorem 3.2 holds for more than two commuting matrices.

19. What conclusion can be drawn from Theorem 3.2 if B is assumed to
be the identity matrix?

20. Let A and B be complex matrices. Show that

AB = A+B ⇒ AB = BA.

21. Let A and B be n- and m-square matrices, respectively, with m ≤ n.
If AP = PB for an n×m matrix P with columns linearly indepen-
dent, show that every eigenvalue of B is an eigenvalue of A.

22. If A and B are nonsingular matrices such that AB −BA is singular,
show that 1 is an eigenvalue of A−1B−1AB.

23. Let A and B be n × n matrices such that rank (AB − BA) ≤ 1.
Show that A and B have a common eigenvector. Find a common
eigenvector (probably belonging to different eigenvalues) for

A =

(
1 −1
1 −1

)
, B =

(
1 0
1 0

)
.
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24. Let S = {AB − BA : A,B ∈ Mn}. Show that SpanS is a subspace
of Mn and that

dim(SpanS) = n2 − 1.

25. Let A and B be 2n× 2n matrices partitioned conformally as

A =

(
A11 0
0 A22

)
, B =

(
B11 B12

B21 B22

)
.

If A commutes with B, show that A11 and A22 commute with B11

and B22, respectively, and that for any polynomial f(x)

f(A11)B12 = B12f(A22), f(A22)B21 = B21f(A11).

In particular, if A11 = a1I and A22 = a2I with a1 ̸= a2, then B12 =
B21 = 0, and thus B = B11 ⊕ B22. The same conclusion follows if
f(A11) = 0 (or singular) and f(A22) is nonsingular (respectively, 0).

26. Let S be the n× n backward identity matrix; that is,

S =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 .

Show that S−1 = ST = S; equivalently, ST = S, S2 = I, STS = I.
What is detS? When n = 3, compute SAS for A = (aij) ∈ M3.

27. Let A = (aij) be an n × n matrix and S be the n × n backward

identity. Denote Â = (âij) = SAS. Show that âij = an−i+1,n−j+1.
[Note: The matrix SAS can be obtained by any of the following
methods: (1) Relist all the rows in the reverse order then relist all the
columns of the resulting matrix; (2) Flip the matrix along the main
diagonal then flip the resulting matrix along the backward diagonal
a1n, . . . , an1; or (3) Rotate the matrix 180◦ in the plane; that is, hold
the upper-left corner, then rotate the paper by 180◦.]

If A is one of the following matrices, show that the other one is SAS.
+ − × ÷
⊕ ⊖ ⊗ ⊙
⋄ ◃▹ ∞ ⋆
= ≡ | ∥

 ,


∥ | ≡ =
⋆ ∞ ◃▹ ⋄
⊙ ⊗ ⊖ ⊕
÷ × − +

 .

. ⊙ .



Sec. 3.2 Matrix Decompositions 79

3.2 Matrix Decompositions

Factorizations of matrices into some special sorts of matrices via sim-
ilarity are of fundamental importance in matrix theory. We study the
following decompositions of matrices in this section: the Schur de-
composition, spectral decomposition, singular value decomposition,
and polar decomposition. We also continue our study of Jordan de-
composition in later sections.

Theorem 3.3 (Schur Decomposition) Let λ1, λ2, . . . , λn be the
eigenvalues of A ∈ Mn. Then there exists a unitary matrix U ∈ Mn

such that U∗AU is an upper-triangular matrix. In symbols,

U∗AU =


λ1 ∗

λ2
. . .

0 λn

 .

Proof. This theorem follows from Theorem 3.2. We present a pure
matrix proof below without using the theory of vector spaces.

If n = 1, there is nothing to show. Suppose the statement is true
for matrices with sizes less than n. We show by induction that it is
true for the matrices of size n.

Let x1 be a unit eigenvector of A belonging to eigenvalue λ1:

Ax1 = λ1x1, x1 ̸= 0.

Extend x1 to a unitary matrix S = (x1, y2, . . . , yn). Then

AS = (Ax1, Ay2, . . . , Ayn)

= (λ1x1, Ay2, . . . , Ayn)

= S(u, S−1Ay2, . . . , S
−1Ayn),

where u = (λ1, 0, . . . , 0)
T . Thus, we can write

S∗AS =

(
λ1 v
0 B

)
,
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where v is a row vector and B ∈ Mn−1.

Applying the induction hypothesis on B, we have a unitary ma-
trix T of size n− 1 such that T ∗BT is upper-triangular. Let

U = S

(
1 0
0 T

)
.

Then U , a product of two unitary matrices, is unitary, and U∗AU
is upper-triangular. It is obvious that the diagonal entries λi of the
upper-triangular matrix are the eigenvalues of A.

A weaker statement is that of triangularization. For every A ∈
Mn there exists an invertible P such that P−1AP is upper-triangular.

Schur triangularization is one of the most important theorems in
linear algebra and matrix theory. It is used repeatedly in this book.
As an application, we see by taking the conjugate transpose that
any Hermitian matrix A (i.e., A∗ = A) is unitarily diagonalizable.
The same is true for normal matrices A, because the matrix identity
A∗A = AA∗, together with the Schur decomposition of A, implies
the desired decomposition form of A (Problem 4).

A positive semidefinite matrix A ∈ Mn, by definition, x∗Ax ≥ 0
for all x ∈ Cn (instead of Rn), has a similar structure. To see this,
it suffices to show that a positive semidefinite matrix is necessarily
Hermitian. This goes as follows.

Since x∗Ax ≥ 0 for every x ∈ Cn, we have, by taking x to be the
column vector with the sth component 1, the tth component c ∈ C,
and 0 elsewhere,

x∗Ax = ass + att|c|2 + atsc̄+ astc ≥ 0.

It follows that each diagonal entry ass is nonnegative by putting
c = 0 and that ast = ats or A∗ = A by putting c = 1, i, respectively.

Note that if A is real and xTAx ≥ 0 for all real vectors x, A need

not be symmetric. Let A =
(

0
−1

1
0

)
. Then xTAx = 0 for all x ∈ R2.

It is immediate that the eigenvalues λ of a positive semidefinite
A are nonnegative since x∗Ax = λx∗x for any eigenvector x of λ.

We summarize these discussions in the following theorem.



Sec. 3.2 Matrix Decompositions 81

Theorem 3.4 (Spectral Decomposition) Let A be an n-square
complex matrix with eigenvalues λ1, λ2, . . . , λn. Then A is normal
if and only if A is unitarily diagonalizable; that is, there exists a
unitary matrix U such that

U∗AU = diag(λ1, λ2, . . . , λn).

In particular, A is Hermitian if and only if the λi are all real and is
positive semidefinite if and only if the λi are all nonnegative.

As a result, by taking the square roots of the λi in the decomposi-
tion, we see that for any positive semidefinite matrix A, there exists
a positive semidefinite matrix B such that A = B2. We show such
a matrix B is unique (see also Section 7.1) and call it a square root
of A, denoted by A1/2. In addition, we write A ≥ 0 if A is positive
semidefinite and A > 0 if A is positive definite; that is, x∗Ax > 0
for all nonzero x ∈ Cn. For two Hermitian matrices A and B of the
same size, we write A ≥ B if A−B ≥ 0 and A > B if A−B > 0.

Theorem 3.5 (Uniqueness of Square Root) Let A be an n-square
positive semidefinite matrix. Then there is a unique n-square positive
semidefinite matrix B such that B2 = A.

Proof. Let A = U∗ diag(λ1, λ2, . . . , λn)U be a spectral decomposi-
tion of A. Take B = U∗ diag(

√
λ1,

√
λ2, . . . ,

√
λn )U . Then B ≥ 0

and B2 = A. For uniqueness, let C also be a positive semidefinite
matrix such that C2 = A and, by the spectral decomposition, write
C = V ∗ diag(µ1, µ2, . . . , µn)V (actually µi =

√
λi ). Then B

2 = C2 =
A implies that U∗ diag(λ1, λ2, . . . , λn)U = V ∗ diag(µ21, µ

2
2, . . . , µ

2
n)V ;

that is, W diag(λ1, λ2, . . . , λn) = diag(µ21, µ
2
2, . . . , µ

2
n)W , where W =

(wij) = V U∗. This results in wijλj = µ2iwij for all i, j. It follows
that wij

√
λj = µiwij. Therefore, W diag(

√
λ1,

√
λ2, . . . ,

√
λn ) =

diag(µ1, µ2, . . . , µn)W , which reveals B = C.

Such a B in the theorem is called the square root of A and is de-
noted by A1/2. The proof shows that if A = U∗ diag(λ1, λ2, . . . , λn)U ,
where all λi > 0, then A1/2 = U∗ diag(

√
λ1,

√
λ2, . . . ,

√
λn )U . Like-

wise, A1/3 = U∗ diag( 3
√
λ1,

3
√
λ2, . . . ,

3
√
λn )U . Similarly, for any r >

0, one may verify the following Ar is well defined (Problem 30):

Ar = U∗ diag(λr1, λ
r
2, . . . , λ

r
n)U.
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The singular values of a matrix A are defined to be the non-
negative square roots of the eigenvalues of A∗A, which is positive
semidefinite, for x∗(A∗A)x = (Ax)∗(Ax) ≥ 0. If we denote by σi a
singular value and by λi an eigenvalue, we may simply write

σi(A) =
√
λi(A∗A).

Theorem 3.6 (Singular Value Decomposition) Let A be an
m×n matrix with nonzero singular values σ1, σ2, . . . , σr. Then there
exist an m×m unitary U and an n× n unitary V such that

A = U

(
Dr 0
0 0

)
V, (3.1)

where the block matrix is of size m×n and Dr = diag(σ1, σ2, . . . , σr).

Proof. If A is a number c, say, then the absolute value |c| is the
singular value of A, and A = |c|eiθ for some θ ∈ R. If A is a nonzero
row or column vector, say, A = (a1, . . . , an), then σ1 is the norm
(length) of the vector A. Let V be a unitary matrix with the first
row the unit vector ( 1

σ1
a1, . . . ,

1
σ1
an). Then A = (σ1, 0, . . . , 0)V.

We now assume m > 1, n > 1, and A ̸= 0. Let u1 be a unit
eigenvector of A∗A belonging to σ21; that is,

(A∗A)u1 = σ21u1, u∗1u1 = 1.

Let

v1 =
1

σ1
Au1.

Then v1 is a unit vector and a simple computation gives u∗1A
∗v1 = σ1.

Let P and Q be unitary matrices with u1 and v1 as their first
columns, respectively. Then, withA∗v1 = σ1u1 and u

∗
1A

∗ = (Au1)
∗ =

σ1v
∗
1 , we see the first column of P ∗A∗Q is (σ1, 0, . . . , 0)

T and the first
row is (σ1, 0, . . . , 0). It follows that

P ∗A∗Q =

(
σ1 0
0 B

)
or A = Q

(
σ1 0
0 B∗

)
P ∗

for some (n−1)×(m−1) matrixB. The assertion follows by repeating
the process (or by induction) on B∗.
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Apparently the rank of A equals r as U and V are nonsingular.
If A is a real matrix, U and V can be chosen to be real. Besides,
when A is an n×n matrix, then U and V are n×n unitary matrices.
By inserting V V ∗ between U and the block matrix in (3.1), we have
A = UV V ∗DV = WP , where W = UV is unitary and P = V ∗DV
is positive semidefinite. Since A∗A = PW ∗WP = P 2, we see P =
(A∗A)1/2, which is uniquely determined by the matrix A. We denote

|A| = (A∗A)1/2

and call it the modulus of A. Note that |A| is positive semidefinite.

Theorem 3.7 (Polar Decomposition) For any square matrix A,
there exist unitary matrices U and V such that

A = W |A| = |A∗|V.

The polar decomposition may be generalized for rectangular ma-
trices with partial unitary matrices (Problem 24). The polar de-
composition was proven by the singular value decomposition. One
may prove the latter using the polar decomposition and the spectral
decomposition.

Problems

1. Let B and D be square matrices (of possibly different sizes). Let

A =

(
B C
0 D

)
.

Show that every eigenvalue of B or D is an eigenvalue of A.

2. Find a matrix P so that P−1AP is diagonal; then compute A5, where

A =

(
1 2
4 3

)
.

3. Show that the complex symmetric A is not diagonalizable, where

A =

(
1 i
i −1

)
.

That is, P−1AP is not diagonal for any invertible matrix P .
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4. If A is an upper-triangular matrix such that A∗A = AA∗, show that
A is in fact a diagonal matrix.

5. Let A be an n-square complex matrix. Show that

x∗Ax = 0 for all x ∈ Cn ⇔ A = 0

and
xTAx = 0 for all x ∈ Rn ⇔ AT = −A.

6. Let A ∈ Mn. If x∗Ax ∈ R for all x ∈ Cn, show that A∗ = A by
the previous problem or by making use of the spectral theorem on
A−A∗. (Note that A− A∗ is skew-Hermitian, thus normal.)

7. Let A ∈ Mn. Show that if λ is an eigenvalue of A, then λk is an
eigenvalue of Ak, and that α ∈ C is an eigenvalue of f(A) if and only
if α = f(λ) for some eigenvalue λ of A, where f is a polynomial.

8. Show that if A ∈ Mn has n distinct eigenvalues, then A is diagonal-
izable. Does the converse hold?

9. Let A be an n-square positive semidefinite matrix. Show that

(a) X∗AX ≥ 0 for every n×m matrix X.

(b) Every principal submatrix of A is positive semidefinite.

10. Let

A =

 0 1 0
0 0 −1
0 0 0

 , B =

 0 0 0
1 0 0
0 1 0

 .

(a) Show that A3 = B3 = C3 = 0, where C = λA+ µB, λ, µ ∈ C.
(b) Does there exist an integer k such that (AB)k = 0?

(c) Does there exist a nonsingular matrix P such that P−1AP and
P−1BP are both upper-triangular?

11. Let A be an n-square matrix and let P be a nonsingular matrix of
the same size such that P−1AP is upper-triangular. Write

P−1AP = D − U,

where D is a diagonal matrix and U is an upper-triangular matrix
with 0 on the diagonal. Show that if A is invertible, then

A−1 = PD−1
(
I + UD−1 + (UD−1)2 + · · ·+ (UD−1)n−1

)
P−1.
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12. Let A be an n× n real matrix. If all eigenvalues of A are real, then
there exists an n × n real orthogonal matrix Q such that QTAQ is
upper-triangular. What if the eigenvalues of A are not real?

13. Let A be an n-square complex matrix. Show that

(a) (QR Factorization) There exist a unitary matrix Q and an
upper-triangular matrix R such that A = QR. Furthermore
Q and R can be chosen to be real if A is real.

(b) (LU Factorization) If all the leading principal minors of A are
nonzero, then A = LU , where L and U are lower- and upper-
triangular matrices, respectively.

14. Let Xii denote the (i, i)-entry of matrix X . If A ≥ 0, show that

(A1/2)ii ≤ (Aii)
1/2.

15. Let A ∈ Mn have rank r. Show that A is normal if and only if

A =

r∑
i=1

λiuiu
∗
i ,

where λi are complex numbers and ui are column vectors of a unitary
matrix. Further show that A is Hermitian if and only if all λi are real,
and A is positive semidefinite if and only if all λi are nonnegative.

16. Let A be an m× n complex matrix with rank r. Show that

(a) A has r nonzero singular values.

(b) A has at most r nonzero eigenvalues (in case m = n).

(c) A = UrDrVr,where Ur is anm×r matrix,Dr=diag(σ1, . . . , σr),
Vr is an r × n matrix, all of rank r, and U∗

rUr = VrV
∗
r = Ir.

(d) A =
∑r

i=1 σiuiv
∗
i , where the σi are the singular values of A,

and ui and vi are column vectors of some unitary matrices.

17. Let A and B be upper-triangular matrices with positive diagonal
entries. If A = UB for some unitary U , show that U = I and A = B.

18. Let A be a square matrix. Show that A has a zero singular value if
and only if A has a zero eigenvalue. Does it follow that the number
of zero singular values is equal to that of the zero eigenvalues?

19. Show that two Hermitian matrices are (unitarily) similar if and only
if they have the same set of eigenvalues.
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20. Let A = P1U1 = P2U2 be two polar decompositions of A. Show that
P1 = P2 and U1 = U2 if A is nonsingular. What if A is singular?

21. Let P be a positive definite matrix and U and V be unitary matrices
such that UP = PV . Show that U = V .

22. Show that if A is an n-square complex matrix, then there exist non-
singular matrices P and Q such that (PA)2 = PA, (AQ)2 = AQ.

23. Let A ∈ Mn. Show that |A| = UA for some unitary matrix U .

24. State and show the polar decomposition for rectangular matrices.

25. Let A be an m×n complex matrix of rank r. Show that A = ST for
some m× r matrix S and r × n matrix T ; both have rank r.

26. Show that |λ1 · · ·λn| = σ1 · · ·σn for any A ∈ Mn, where the λi and
σi are the eigenvalues and singular values of A, respectively.

27. What can be said about A ∈ Mn if all its singular values are equal?
Can the same conclusion be drawn in the case of eigenvalues?

28. For any n-square complex matrix A, show that

tr

(
A∗ +A

2

)
≤ tr

(
(A∗A)1/2

)
.

29. If A is a matrix with eigenvalues λi and singular values σi, show that∑
i

|λi|2 ≤ tr(A∗A) = tr(AA∗) =
∑
i,j

|aij |2 =
∑
i

σ2
i .

Equality occurs if and only if A is normal. Use this and the matrix
with (i, i+ 1) entry

√
xi, i = 1, 2, . . . , n− 1, (n, 1) entry

√
xn, and 0

elsewhere to show the arithmetic mean–geometric mean inequality( n∏
i=1

xi

)1/n

≤ 1

n

n∑
i=1

xi.

30. Let A ≥ 0. Show that the definition Ar = U∗ diag(λr1, λ
r
2, . . . , λ

r
n)U

is independent of the unitary matrix U . In other words, if A =
V ∗ diag(λ1, λ2, . . . , λn)V =W ∗ diag(λ1, λ2, . . . , λn)W , V,W are uni-
tary, then V ∗ diag(λr1, λ

r
2, . . . , λ

r
n)V =W ∗ diag(λr1, λ

r
2, . . . , λ

r
n)W .

31. Let A,B ≥ 0 and U be unitary, all n× n. Show that for any r > 0,

(a) (U∗AU)r = U∗ArU .

(b) If AB = BA, then AB ≥ 0 and (AB)r = ArBr.

. ⊙ .
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3.3 Annihilating Polynomials of Matrices

Given a polynomial in λ with complex coefficients am, am−1, . . . , a0,

f(λ) = amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0,

one can always define a matrix polynomial for A ∈ Mn by

f(A) = amA
m + am−1A

m−1 + · · ·+ a1A+ a0I.

We consider in this section the annihilating polynomials of a ma-
trix; that is, the polynomials f(λ) for which f(A) = 0. Particular
attention is paid to the characteristic and minimal polynomials.

Theorem 3.8 Let A be an n-square complex matrix. Then there
exists a nonzero polynomial f(λ) over C such that f(A) = 0.

Proof. Mn is a vector space over C of dimension n2. Thus, any n2+1
vectors in Mn are linearly dependent. In particular, the matrices

I, A, A2, . . . , An2

are linearly dependent; namely, there exist numbers a0, a1, a2, . . . , an2 ,
not all zero, such that

a0I + a1A+ a2A
2 + · · ·+ an2An2

= 0.

Set
f(λ) = a0 + a1λ+ a2λ

2 + · · ·+ an2λn
2
.

Then f(A) = 0, as desired.

Theorem 3.9 (Cayley–Hamilton) Let A be an n-square complex
matrix and let p

A
(λ) be the characteristic polynomial of A; that is,

p
A
(λ) = det(λI −A).

Then
p
A
(A) = 0.
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Proof. Let the eigenvalues of A be λ1, λ2, . . . , λn. We write A by
triangularization as, for some invertible matrix P ,

A = P−1TP,

where T is an upper-triangular matrix with λ1, λ2, . . . , λn on the
diagonal. Factor the characteristic polynomial p(λ) = p

A
(λ) of A as

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn).

Then
p(A) = p(P−1TP ) = P−1p(T )P.

Note that

p(T ) = (T − λ1I)(T − λ2I) · · · (T − λnI).

It can be shown inductively that (T−λ1I) · · · (T−λkI) has the first k
columns equal to zero, 1 ≤ k ≤ n. Thus, p(T ) = 0, and p(A) = 0.

A monic polynomial m(λ) is called the minimal polynomial of a
matrix A if m(A) = 0 and it is of the smallest degree in the set

{f(λ) : f(A) = 0}.

It is immediate that if f(A) = 0, then m(λ) divides f(λ), or, in
symbols, m(λ)|f(λ), because otherwise we may write

f(λ) = q(λ)m(λ) + r(λ),

where r(λ) ̸= 0 is of smaller degree than m(λ) and r(A) = 0, a con-
tradiction. In particular, the minimal polynomial divides the char-
acteristic polynomial. Note that both the characteristic polynomial
and the minimal polynomial are uniquely determined by its matrix.

Theorem 3.10 Similar matrices have the same minimal polyno-
mial.

Proof. Let A and B be similar matrices such that A = P−1BP
for some nonsingular matrix P , and let mA(λ) and mB(λ) be the
minimal polynomials of A and B, respectively. Then

mB(A) = mB (P
−1BP ) = P−1mB(B)P = 0.
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Thus, mA(λ) dividesmB(λ). Similarly, mB(λ) dividesmA(λ). Hence
mA(λ) = mB (λ) as they are both of leading coefficient 1.

For a polynomial with (real or) complex coefficients

p(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0,

one may construct an n-square (real or) complex matrix

C =


0 0 . . . −c0
1 0 . . . −c1
...

. . .
. . .

...
0 . . . 1 −cn−1

 .

Such a matrix C is known as the companion matrix of p(x).
By expanding det(xI−C), we see p(x) = det(xI−C); that is, p(x)

is the characteristic polynomial of its companion matrix. p(x) is also
the minimal polynomial of C. For this end, let e1, e2, . . . , en be the
column vectors with the 1st, 2nd, . . . , nth component 1, respectively,
and all other components 0. Then Cei is the ith column of C, i =
1, 2, . . . , n. By looking at the first n− 1 columns of C, we have

Ce1 = e2, Ce2 = e3 = C2e1, . . . , Cen−1 = en = Cn−1e1

and
Cen = −c0e1 − c1e2 − · · · − cn−1en.

If q(x) = xm + dm−1x
m−1 + dm−2x

m−2 + · · · + d1x + d0 is such a
polynomial that q(C) = 0, m < n, we compute q(C)e1 = 0 to get

0 = Cme1 + dm−1C
m−1e1 + dm−2C

m−2e1 + · · ·+ d1Ce1 + d0e1

= em+1 + dm−1em + dm−2em−1 + · · ·+ d1e2 + d0e1.

This says that e1, e2, . . . , en are linearly dependent, a contradiction.
An effective method of computing minimal polynomials is given in

the next section in conjunction with the discussion of Jordan canon-
ical forms of square matrices.
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Problems

1. Let A =
(
1
3
2
1

)
and f(x) = 3x2 − 5x− 2. Find f(A).

2. Find the characteristic and minimal polynomials of the matrices(
0 1
0 0

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)
.

3. Find the characteristic and minimal polynomials of the matrices 0 0 c
1 0 b
0 1 a

 ,

 λ 1 0
0 λ 1
0 0 λ

 .

4. Find a nonzero polynomial p(x) such that p(A) = 0, where

A =

 2 −2 0
−2 1 −2
0 2 0

 .

5. Compute det(AB − A) and f(A), where f(λ) = det(λB −A) and

A =

(
1 0
1 0

)
, B =

(
1 1
0 0

)
.

6. Let A ∈ Mn. Show that there exists a polynomial f(x) with real
coefficients such that f(A) = 0.

7. Let A and B be n×nmatrices, and let f(λ) = det(λI−B). Show that
f(A) is invertible if and only if A and B have no common eigenvalues.

8. Let A and B be square matrices of the same size. Show that if A
and B are similar, then so are f(A) and f(B) for any polynomial f .

9. Let A and B be n × n matrices. If A and B are similar, show that
f(A) = 0 if and only if f(B) = 0. Is the converse true?

10. Show that rank (AB) = n − 2 if A and B are n-square upper-
triangular matrices of rank n− 1 with diagonal entries zero.

11. Let A1, . . . , Am be upper-triangular matrices in Mn. If they all have
diagonal entries zero, show that A1 · · ·Am = 0 when m ≥ n.

12. Explain what is wrong with the following proof of the Cayley–Hamilton
theorem. Because p(λ) = det(λI − A), plugging A for λ directly in
both sides gives p(A) = det(A− A) = 0.
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13. As is known, for square matrices A and B of the same size, AB and
BA have the same characteristic polynomial (Section 2.4). Do they
have the same minimal polynomial?

14. Let f(x) be a polynomial and let λ be an eigenvalue of a square
matrix A. Show that if f(A) = 0, then f(λ) = 0.

15. Let v ∈ Cn and A ∈ Mn. If f(λ) is the monic polynomial with the
smallest degree such that f(A)v = 0, show that f(λ) divides mA(λ).

16. Let c0, c1, . . . , cn−1 ∈ C and let C and D be, respectively,
0 0 . . . −c0
1 0 . . . −c1
...

. . .
...

0 . . . 1 −cn−1

 ,


−cn−1 −cn−2 . . . −c0

1 0 . . . 0
...

. . .
. . .

...
0 . . . 1 0

 .

Show that SCS = DT , where S is the backward identity; that is,

S =

 0 1
···

1 0

 .

Show that the matrices C, CT , D, and DT all have the polynomial

p(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0

as their characteristic and minimal polynomials.

17. Let C be the companion matrix of the polynomial p(x) = xn +
cn−1x

n−1 + · · ·+ c1x+ c0. Show that C is nonsingular if and only if
c0 ̸= 0. In case where C is nonsingular, find the inverse of C.

18. Let A,B,C ∈ Mn. If X ∈ Mn satisfies AX2 +BX + C = 0 and if λ
is an eigenvalue of X, show that λ2A+ λB + C is singular.

19. Let A ∈ Mn, p(x) = det(xI − A), and P (x) = adj(xI − A). Show
that every entry in the matrix xkP (x)− P (x)Ak is divisible by p(x)
for k = 1, 2, . . . .

20. Let A and B be n-square complex matrices. Show that

AX −XB = 0 ⇒ f(A)X −Xf(B) = 0

for every polynomial f . In addition, if A and B have no common
eigenvalues, then AX −XB = 0 has only the solution X = 0.
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21. Let A and B be 2n× 2n matrices partitioned conformally as

A =

(
A11 0
0 A22

)
, B =

(
B11 B12

B21 B22

)
.

If AB = BA and A11 and A22 have no common eigenvalue, show that

B12 = B21 = 0.

22. Show that for any nonsingular matrix A, matrices A−1 and adj(A)
can be expressed as polynomials in A.

23. Express J−1 as a polynomial in J , where

J =


1 1 0

1
. . .

. . . 1
0 1

 .

24. For a square matrix X, we denote eX =
∑∞

k=0
1
k!X

k. Let A be a
square matrix with all its eigenvalues equal to λ. Show that

etA = etλ
n−1∑
k=0

tk

k!
(A− λI)k, t ∈ C.

In particular, if A is a 3× 3 matrix having eigenvalues λ, λ, λ, then

etA = etλ
(
I + t(A− λI) +

1

2
t2(A− λI)2

)
.

25. Let X and Y be positive semidefinite matrices of the same size such
thatX ≥ Y , i.e., X−Y ≥ 0. Does it necessarily follow that eX ≥ eY ?

. ⊙ .
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3.4 Jordan Canonical Forms

We saw in Section 3.2 that a square matrix is similar (and even
unitarily similar) to an upper-triangular matrix. We now discuss the
upper-triangular matrices and give simpler structures.

The main theorem of this section is the Jordan decomposition,
which states that every square complex matrix is similar (not neces-
sarily unitarily similar) to a direct sum of Jordan blocks, referred to
as Jordan canonical form or simply Jordan form. A Jordan block is
a square matrix in the form

Jx =


x 1 0

x
. . .
. . . 1

0 x

 . (3.2)

For this purpose we introduce λ-matrices as a tool and use ele-
mentary operations to bring λ-matrices to so-called standard forms.
We then show that two matrices A and B in Mn are similar if and
only if their λ-matrices λI − A and λI − B can be brought to the
same standard form. Thus, a square matrix A is similar to its Jordan
form that is determined by the standard form of the λ-matrix λI−A.

To proceed, a λ-matrix is a matrix whose entries are complex
polynomials in λ. For instance, 1 λ2 −

√
2 (λ+ 1)2

1
2λ− 1 0 1− 2λ− λ2

−1 1 λ− i


is a λ-matrix, for every entry is a polynomial in λ (or a constant).

We perform operations (i.e., addition and multiplication) on λ-
matrices in the same way as we do for numerical matrices. Of course,
here the polynomials obey their usual rules of operations. Note that
division by a nonzero polynomial is not permitted.

Note that the minimal polynomial of Jx of size t, say, in (3.2) is

m(λ) = (λ− x)t.
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Elementary operations on λ-matrices are similar to those on nu-
merical matrices. Elementary λ-matrices and invertible λ-matrices
are similarly defined as those of numerical matrices.

Any square numerical matrix can be brought into a diagonal ma-
trix with 1 and 0 on the main diagonal by elementary operations.
Likewise, λ-matrices can be brought into the standard form

d1(λ) 0
. . .

dk(λ)
0

. . .

0 0


, (3.3)

where di(λ)|di+1(λ), i = 1, . . . , k − 1, and each di(λ) is 1 or monic.
Therefore, for any λ-matrix A(λ) there exist elementary λ-matrices
Ps(λ), . . . , P1(λ) and Q1(λ), . . . , Qt(λ) such that

Ps(λ) · · ·P1(λ)A(λ)Q1(λ) · · ·Qt(λ) = D(λ)

is in the standard form (3.3).

If A(λ) is an invertible λ-matrix; that is, B(λ)A(λ) = I for some
λ-matrix B(λ) of the same size, then, by taking determinants, we
see that detA(λ) is a nonzero constant. Conversely, if detA(λ) is a
nonzero constant, then (detA(λ))−1 adj(A(λ)) is also a λ-matrix and
it is the inverse of A(λ). Moreover, a square λ-matrix is invertible if
and only if its standard form (3.3) is the identity matrix and if and
only if it is a product of elementary λ-matrices.

For the λ-matrix λI − A, A ∈ Mn, we have k = n and D(λ) =
diag(d1(λ), . . . , dn(λ)). The di(λ) are called the invariant factors of
A, and the divisors of di(λ) factored into the form (λ− x)t for some
constant x and positive integer t are the elementary divisors of A.

To illustrate this, look at the example

A =

 −1 0 0
1 1 2
3 0 1

 .
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We perform elementary operations on the λ-matrix

λI −A =

 λ+ 1 0 0
−1 λ− 1 −2
−3 0 λ− 1

 .

Interchange row 1 and row 2 times−1 to get a 1 for the (1, 1) position: 1 1− λ 2
λ+ 1 0 0
−3 0 λ− 1

 .

Add row 1 times −(λ+1) and 3 to rows 2 and 3, respectively, to get
0 below 1:  1 1− λ 2

0 (λ− 1)(λ+ 1) −2(λ+ 1)
0 −3(λ− 1) λ+ 5

 .

Add row 3 times 2 to row 2 to get a nonzero number 8: 1 1− λ 2
0 λ2 − 6λ+ 5 8
0 −3(λ− 1) λ+ 5

 .

Interchange column 2 and column 3 to get a nonzero number for the
(2, 2) position:  1 2 1− λ

0 8 λ2 − 6λ+ 5
0 λ+ 5 −3(λ− 1)

 .

Subtract the second row times 1
8(λ+ 5) from row 3 to get 1 2 1− λ

0 8 λ2 − 6λ+ 5
0 0 −1

8(λ− 1)2(λ+ 1)

 ,

which gives the standard form at once (by column operations) 1 0 0
0 1 0
0 0 (λ+ 1)(λ− 1)2

 .
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Thus, the invariant factors of A are

d1(λ) = 1, d2(λ) = 1, d3(λ) = (λ+ 1)(λ− 1)2,

and the elementary divisors of A are

λ+ 1, (λ− 1)2.

Note that the matrix, a direct sum of two Jordan blocks,

J =

 −1 0 0
0 1 1
0 0 1

 = (−1)⊕
(

1 1
0 1

)
has the same invariant factors and elementary divisors as A.

In general, each elementary divisor (λ − x)t corresponds to a
Jordan block in the form (3.2). Consider all the elementary divisors
of a matrix A, find all the corresponding Jordan blocks, and form a
direct sum of them. A profound conclusion is that A is similar to this
direct sum. To this end, we need to show a fundamental theorem.

Theorem 3.11 Let A and B be n-square complex matrices. Then
A and B are similar if and only if λI−A and λI−B have the same
standard form. Equivalently, there exist λ-matrices P (λ) and Q(λ)
that are products of elementary λ-matrices such that

P (λ)(λI − A)Q(λ) = λI −B.

This implies our main theorem on the Jordan canonical form,
which is one of the most useful results in linear algebra and matrix
theory. The theorem itself is much more important than its proof.
We sketch the proof of Theorem 3.11 as follows.

Proof outline. If A and B are similar, then there exists an invertible
complex matrix P such that PAP−1 = B. It follows that

P (λI − A)P−1 = λI −B.

To show the other way, let P (λ) and Q(λ) be invertible λ-matrices
such that (we put Q(λ) for Q(λ)−1 on the right for convenience)

P (λ)(λI −A) = (λI −B)Q(λ). (3.4)
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Write (Problem 4)

P (λ) = (λI −B)P1(λ) + P, Q(λ) = Q1(λ)(λI −A) +Q,

where P1(λ), Q1(λ) are λ-matrices, and P , Q are numerical matrices.

Identity (3.4) implies P1(λ)−Q1(λ) = 0 by considering the degree
of P1(λ)−Q1(λ). It follows that Q = P , and thus PA = BP .

It remains to show that P is invertible. Assume R(λ) is the
inverse of P (λ), or P (λ)R(λ) = I. Write R(λ) = (λI−A)R1(λ)+R,
where R is a numerical matrix. With PA = BP , I = P (λ)R(λ) gives

I = (λI − B)T (λ) + PR, (3.5)

where

T (λ) = P1(λ)(λI −A)R1(λ) + P1(λ)R+ PR1(λ).

By considering the degree of both sides of (3.5), T (λ) must be
zero. Therefore, I = PR and hence P is nonsingular.

Based on the earlier discussions, we conclude our main result.

Theorem 3.12 (Jordan Decomposition) Let A be a square com-
plex matrix. Then there exists an invertible matrix P such that

P−1AP = J1 ⊕ · · · ⊕ Js,

where the Ji are the Jordan blocks of A with the eigenvalues of A on
the diagonal. The Jordan blocks are uniquely determined by A.

The uniqueness of the Jordan decomposition of A up to permu-
tations of the diagonal Jordan blocks follows from the uniqueness
of the standard form (3.3) of λI − A. Two different sets of Jordan
blocks will result in two different standard forms (3.3).

To find the minimal polynomial of a given matrix A ∈ Mn, reduce
λI − A by elementary operations to a standard form with invariant
factors d1(λ), . . . , dn(λ), di(λ)|di+1(λ), for i = 1, . . . , n − 1. Note
that similar matrices have the same minimal polynomial (Theorem
3.10). Thus, dn(λ) is the minimal polynomial of A, because it is the
minimal polynomial of the Jordan canonical form of A (Problem 12).
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Theorem 3.13 Let p(λ) and m(λ) be, respectively, the characteris-
tic and minimal polynomials of matrix A ∈ Mn. Let d1(λ), . . . , dn(λ)
be the invariant factors of A, where di(λ)|di+1, i = 1, . . . , n−1. Then

p(λ) = d1(λ) · · · dn(λ), m(λ) = dn(λ).

In the earlier example preceding Theorem 3.11, the characteristic
and minimal polynomials of A are the same, and they are equal to

p(λ) = m(λ) = (λ+ 1)(λ− 1)2 = λ3 − λ2 − λ+ 1.

Problems

1. Find the invariant factors, elementary divisors, characteristic and
minimal polynomials, and the Jordan canonical form of the matrix

A =

 3 1 −3
−7 −2 9
−2 −1 4

 .

2. Show that A and B are similar but not unitarily similar, where

A =

(
0 2
0 0

)
, B =

(
0 3
0 0

)
.

What is the Jordan canonical form J of A and B? Can one find an
invertible matrix P such that

P−1AP = P−1BP = J?

3. Are the following matrices similar? Why? 1 1 0
0 1 1
0 0 1

 ,

 1 0 0
2 1 0
0 2 1

 ,

 1 2 0
2 1 0
0 0 1

 .

4. Let A ∈ Mn. If P (λ) is an n-square λ-matrix, show that there exist
a λ-matrix S(λ) and a numerical matrix T such that

P (λ) = (λI − A)S(λ) + T.

[Hint: Write P (λ) = λmPm + λm−1Pm−1 + · · ·+ λP1 + P0.]
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5. Show that a λ-matrix is invertible if and only if it is a product of
elementary λ-matrices.

6. Show that two matrices are similar if and only if they have the same
set of Jordan blocks, counting the repeated ones.

7. Find the invariant factors, elementary divisors, and characteristic
and minimal polynomials for each of the following matrices. 1 0 0

0 1 1
0 0 1

 ,

 −1 0 0
0 1 1
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 1 1 0
0 1 0
0 1 1

 ,


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

 ,


λ 0 1 0
0 λ 0 1
0 0 λ 0
0 0 0 λ

 .

8. Find the Jordan canonical form of the matrix

P =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

 .

9. Let A be a square complex matrix with invariant factors

1, λ(λ− 2), λ3(λ− 2).

Answer the following questions.

(a) What is the characteristic polynomial of A?

(b) What is the minimal polynomial of A?

(c) What are the elementary divisors of A?

(d) What is the size of A?

(e) What is the rank of A?

(f) What is the trace of A?

(g) What is the Jordan form of A?

10. Let J be a Jordan block. Find the Jordan forms of J−1 (if it exists)
and J2.
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11. Show that every Jordan block J is similar to JT via S:

S−1JS = JT ,

where S is the backward identity matrix, that is, si,n−i+1 = 1 for
i = 1, 2, . . . , n, and 0 elsewhere.

12. Show that the last invariant factor dn(λ) in the standard form of
λI −A is the minimal polynomial of A ∈ Mn.

13. Let p(x) = xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0. What are the
invariant factors of the companion matrix of p(x)? Show that the
minimal polynomial of the companion matrix of p(x) is p(x).

14. If J is a Jordan block such that J2 = J , show that J = 1 or 0.

15. Let A be an n × n matrix. Show that rank (A2) = rank (A) implies
rank (Ak) = rank (A) for any integer k > 0 and Cn = ImA⊕KerA.

16. Let A be an n × n matrix. Show that rank (Ak) = rank (Ak+1) for
some positive integer k ≤ n and that rank (Ak) = rank (Am) for all
positive integer m > k. In particular, rank (An) = rank (An+1).

17. Show that every matrix A ∈ Mn can be written as A = B+C, where
Ck = 0 for some integer k, B is diagonalizable, and BC = CB.

18. Let A be a square complex matrix. If Ax = 0 whenever A2x = 0,
show that A does not have any Jordan block of order more than 1
corresponding to eigenvalue 0.

19. Show that if matrix A has all eigenvalues equal to 1, then Ak is
similar to A for every positive integer k. Discuss the converse.

20. Show that the dimension of the vector space of all the polynomials
in A is equal to the degree of the minimal polynomial of A.

21. Let A be an n × n matrix such that Akv = 0 and Ak−1v ̸= 0 for
some vector v and positive integer k. Show that v,Av, . . . , Ak−1v
are linearly independent. What is the Jordan form of A?

22. Let A ∈ Mn be a Jordan block. Show that there exists a vector v
such that v,Av, . . . , An−1v constitute a basis for Cn.

23. Show that the characteristic polynomial coincides with the minimal
polynomial for A ∈ Mn if and only if v,Av, . . . , An−1v are linearly
independent for some vector v ∈ Cn. What can be said about the
Jordan form (or Jordan blocks) of A?
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24. Let A be an n-square complex matrix. Show that for any nonzero
vector v ∈ Cn, there exists an eigenvector u of A that is contained
in the span of v,Av,A2v, . . . . [Hint: v,Av,A2v, . . . , Akv are linearly
dependent for some k. Find a related polynomial then factor it out.]

25. Let A be an n-square complex matrix with the characteristic poly-
nomial factored over the complex field C as

det(λI − A) = (λ− λ1)
r1(λ− λ2)

r2 · · · (λ− λs)
rs ,

where λ1, λ2, . . . , λs are the distinct eigenvalues of A. Show that the
following statements are equivalent.

(a) A is diagonalizable; namely, A is similar to a diagonal matrix.

(b) A has n linearly independent eigenvectors.

(c) All the elementary divisors of λI − A are linear.

(d) The minimal polynomial of A has no repeated zeros.

(e) rank (λI −A) = rank (λI −A)2 for every eigenvalue λ.

(f) rank (cI −A) = rank (cI −A)2 for every complex number c.

(g) (λI−A)x = 0 and (λI−A)2x = 0 have the same solution space
for every eigenvalue λ.

(h) (cI−A)x = 0 and (cI−A)2x = 0 have the same solution space
for every complex number c.

(i) dimVλi
= ri for each eigenspace Vλi

of eigenvalue λi.

(j) rank (λiI −A) = n− ri for every eigenvalue λi.

(k) Im(λI − A) ∩Ker(λI − A) = {0} for every eigenvalue λ.

(l) Im(cI − A) ∩Ker(cI − A) = {0} for every complex number c.

26. Let A be a linear transformation on a finite-dimensional vector space.
Let λ be an eigenvalue of A. Show that each subspace Ker(λI−A)k,
where k is a positive integer, is invariant under A, and that

Ker(λI − A) ⊆ Ker(λI − A)2 ⊆ Ker(λI − A)3 ⊆ · · · .

Conclude that for some positive integer m,

Ker(λI − A)m = Ker(λI − A)m+1 = · · ·

and that
∪∞
k=1 Ker(λI − A)k = Ker(λI − A)m.

. ⊙ .
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3.5 The Matrices AT , A, A∗, ATA, A∗A, and AA

The matrices associated with a matrix A and often encountered are

AT , A, A∗, ATA, A∗A, AA,

where T , −, and ∗ mean transpose, conjugate, and transpose conju-
gate, respectively. All these matrices, except ATA, have the same
rank as A:

rank (A) = rank (AT ) = rank (A) = rank (A∗) = rank (A∗A).

The last identity is due to the fact that the equation systems

(A∗A)x = 0 and Ax = 0

have the same solution space.

Theorem 3.14 Let A be an n-square complex matrix. Then

1. A is similar to its transpose AT .

2. A is similar to A∗ (equivalently A) if and only if the Jordan
blocks of the nonreal eigenvalues of A occur in conjugate pairs.

3. A∗A is similar to AA∗.

4. AA is similar to AA.

Proof. For (1), recall from Theorem 3.11 that two matrices X and Y
are similar if and only if λI −X and λI −Y have the same standard
form. It is obvious that the matrices λI − A and λI − AT have the
same standard form. Thus, A and AT are similar. An alternative
way to show (1) is to verify that for every Jordan block J ,

SJS−1 = JT ,

where S is the backward identity matrix (Problem 11, Section 3.4).
For (2), let J1, . . . , Jk be the Jordan blocks of A and let

P−1AP = J1 ⊕ · · · ⊕ Jk
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for some invertible matrix P . Taking the transpose conjugate gives

P ∗A∗(P ∗)−1 = J∗
1 ⊕ · · · ⊕ J∗

k .

The right-hand side, by (1), is similar to

J1 ⊕ · · · ⊕ Jk.

Thus, if A and A∗ are similar, then

J1 ⊕ · · · ⊕ Jk and J1 ⊕ · · · ⊕ Jk

are similar. It follows by the uniqueness of Jordan decomposition
that the Jordan blocks of nonreal complex eigenvalues of A must
occur in conjugate pairs (Problem 6, Section 3.4).

For sufficiency, we may consider the special case

A = J ⊕ J ⊕R, (3.6)

where J and R are Jordan blocks, J is complex, and R is real. Then

A∗ = J
T ⊕ JT ⊕RT ,

which is, by permutation, similar to

JT ⊕ J
T ⊕RT . (3.7)

Using (1), (3.6) and (3.7) give the similarity of A∗ and A.

(3) is by a singular value decomposition of A.

We have left to show (4) that AA is similar to AA. It suffices to
show that AA and AA have the same Jordan decomposition (blocks).

The matrix identity(
I −A
0 I

)(
AA 0

A 0

)(
I A
0 I

)
=

(
0 0

A AA

)
gives the similarity of the block matrices(

AA 0

A 0

)
and

(
0 0

A AA

)
.
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Thus, the nonsingular Jordan blocks of AA and AA are identical. (In
general, this is true for AB and BA. See Problem 12.) On the other

hand, the singular Jordan blocks of AA and AA = AA are obviously
the same. This concludes that AA and AA are similar.

Following the discussion of the case where A is similar to A∗ in
the proof, one may obtain a more profound result. Consider the
matrix with Jordan blocks of conjugate pairs

λ 1 0 0
0 λ 0 0

0 0 λ 1

0 0 0 λ

 ,

which is similar via permutation to
λ 0 1 0

0 λ 0 1
0 0 λ 0

0 0 0 λ

 =

(
C(λ) I
0 C(λ)

)
,

where

C(λ) =

(
λ 0

0 λ

)
.

If λ = a+ bi with a, b ∈ R, then we have by computation(
−i −i
1 −1

)(
λ 0

0 λ

)(
−i −i
1 −1

)−1

=

(
a b
−b a

)
.

Thus, matrices
λ 0 1 0

0 λ 0 1
0 0 λ 0

0 0 0 λ

 and


a b 1 0
−b a 0 1
0 0 a b
0 0 −b a


are similar. These observations lead to the following theorem.

Theorem 3.15 A square matrix A is similar to A∗ (equivalently A)
if and only if A is similar to a real matrix.
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As a result, AA is similar to a real matrix. The ideas of pairing
Jordan blocks are often used in the similarity theory of matrices.

Problems

1. Let A be an m× n matrix. Prove or disprove

(a) rank (A) = rank (ATA).

(b) rank (A∗A) = rank (AA∗).

(c) ATA is similar to AAT .

2. Is it possible that AA = 0 or A∗A = 0 for a nonzero A ∈ Mn?

3. Let

A =

(
1 1
1 1

)
, B =

(
1 1
−1 −1

)
.

Compute AB and BA. Find rank (AB) and rank (BA). What are
the Jordan forms of AB and BA? Are AB and BA similar?

4. If the nonreal eigenvalues of a square matrix A occur in conjugate
pairs, does it follow that A is similar to A∗?

5. Show that the characteristic polynomial of AA has only real coeffi-
cients. Conclude that the nonreal eigenvalues of AA must occur in
conjugate pairs.

6. Let A = B + iC ∈ Mn be nonsingular, where B and C are real
square matrices. Show that A = A−1 if and only if BC = CB and
B2 + C2 = I. Find the conditions on B and C if AT = A = A−1.

7. Let A ∈ Mn. Show that the following statements are equivalent.

(a) A is similar to A∗ (equivalently A).

(b) The elementary divisors occur in conjugate pairs.

(c) The invariant factors of A are all real coefficients.

Are they equivalent to the statement “det(λI−A) is real coefficient”?

8. If A ∈ Mn has only real eigenvalues, show that A is similar to A∗.

9. Let A be a nonsingular matrix. When is A−1 similar to A?

10. Let A ∈ Mn and B be m× n. Let M be the (m+ n)-square matrix

M =

(
A 0
B 0

)
.

Show that the nonsingular Jordan blocks of A and M are identical.
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11. Let A, B, C, and D be n-square complex matrices. If the matrices(
A B
0 0

)
and

(
C D
0 0

)
are similar, does it follow that A and C are similar?

12. Let A and BT be m×n complex matrices. Show that the nonsingular
Jordan blocks of AB and BA are identical. Conclude that AB and
BA have the same nonzero eigenvalues, including multiplicity.

13. If A and B ∈ Mn have no common eigenvalues, show that the fol-
lowing two block matrices are similar for any X ∈ Mn:(

A X
0 B

)
,

(
A 0
0 B

)
.

14. Let A, B, and C be matrices of appropriate sizes. Show that

AX − Y B = C

for some matrices X and Y if and only if the block matrices(
A C
0 B

)
and

(
A 0
0 B

)
have the same rank.

15. Let A and B be n-square complex matrices and let

M =

(
A B
−B A

)
.

Show that

(a) The characteristic polynomial of M is of real coefficients.

(b) The eigenvalues ofM occur in conjugate pairs with eigenvectors

in forms
(

x
y

)
∈ C2n and

(−ȳ
x̄

)
∈ C2n.

(c) The eigenvectors in (b) are linearly independent.

(d) detM ≥ 0. In particular, det(I +AA) ≥ 0 for any A ∈ Mn.

. ⊙ .



CHAPTER 4

Numerical Ranges, Matrix Norms, and
Special Operations

Introduction: This chapter is devoted to a few basic topics on matri-
ces. We first study the numerical range and radius of a square matrix
and matrix norms. We then introduce three important special ma-
trix operations: the Kronecker product, the Hadamard product, and
compound matrices.

4.1 Numerical Range and Radius

Let A be an n × n complex matrix. For x = (x1, . . . , xn)
T ∈ Cn,

as usual, ∥x∥ = (
∑n

i=1 |xi|2)1/2 is the norm of x (Section 1.4). The
numerical range, also known as the field of values, of A is defined by

W (A) = {x∗Ax : ∥x∥ = 1, x ∈ Cn}.

For example, if

A =

(
1 0
0 0

)
,

then W (A) is the closed interval [0, 1], and if

A =

(
0 0
1 1

)
,

then W (A) is the closed elliptical disc with foci at (0, 0) and (1, 0),
minor axis 1, and major axis

√
2 (Problem 9).
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One of the celebrated and fundamental results on numerical range
is the Toeplitz–Hausdorff convexity theorem.

Theorem 4.1(Toeplitz–Hausdorff)The numerical range of a square
matrix is a convex compact subset of the complex plane.

Proof. For convexity, if W (A) is a singleton, there is nothing to
show. Suppose W (A) has more than one point. We prove that the
line segment joining any two distinct points in W (A) lies in W (A);
that is, if u, v ∈W (A), then tu+ (1− t)v ∈W (A) for all t ∈ [0, 1].

For any complex numbers α and β, it is easy to verify that

W (αI + βA) = {α+ βz : z ∈W (A)}.

Intuitively the convexity of W (A) does not change under shifting,
scaling, and rotation. Thus, we may assume that the two points to
be considered are 0 and 1, and show that [0, 1] ⊆ W (A). Write

A = H + iK,

where

H =
1

2
(A+A∗) and K =

1

2i
(A−A∗)

are Hermitian matrices. Let x and y be unit vectors in Cn such that

x∗Ax = 0, y∗Ay = 1.

It follows that x and y are linearly independent and that

x∗Hx = x∗Kx = y∗Ky = 0, y∗Hy = 1.

We may further assume that x∗Ky has real part zero; otherwise, one
may replace x with cx, c ∈ C, and |c| = 1, so that cx∗Ky is 0 or a
pure complex number without changing the value of x∗Ax.

Note that tx+ (1− t)y ̸= 0, t ∈ [0, 1]. Define for t ∈ [0, 1]

z(t) =
1

∥tx+ (1− t)y∥2
(tx+ (1− t)y).

Then z(t) is a unit vector. It is easy to compute that for all t ∈ [0, 1]

z(t)∗Kz(t) = 0.
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The convexity of W (A) then follows, for

{z(t)∗Az(t) : 0 ≤ t ≤ 1} = [0, 1].

The compactness of W (A), meaning the boundary is contained
in W (A), is seen by noting that W (A) is the range of the continuous
function x 7→ x∗Ax on the compact set {x ∈ Cn : ∥x∥ = 1}. (A
continuous function maps a compact set to a compact set.)

When considering the smallest disc centered at the origin that
covers the numerical range, we associate with W (A) a number

w(A) = sup{|z| : z ∈W (A)} = sup
∥x∥=1

|x∗Ax|

and call it the numerical radius of A ∈ Mn. Note that the “sup” can
be attained by some z ∈W (A). It is immediate that for any x ∈ Cn

|x∗Ax| ≤ w(A)∥x∥2. (4.1)

We now make comparisons of the numerical radius w(A) to the
largest eigenvalue ρ(A) in absolute value, or the spectral radius, i.e.,

ρ(A) = max{|λ| : λ is an eigenvalue of A},

and to the largest singular value σmax(A), also called the spectral
norm. It is easy to see (Problem 7) that

σmax(A) = sup
∥x∥=1

∥Ax∥ = sup
x̸=0

∥Ax∥
∥x∥

and that for every x ∈ Cn

∥Ax∥ ≤ σmax(A)∥x∥.

Theorem 4.2 Let A be a square complex matrix. Then

ρ(A) ≤ w(A) ≤ σmax(A) ≤ 2w(A).

Proof. Let λ be the eigenvalue of A such that ρ(A) = |λ|, and let u
be a unit eigenvector corresponding to λ. Then

ρ(A) = |λu∗u| = |u∗Au| ≤ w(A).
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The second inequality follows from the Cauchy–Schwarz inequality

|x∗Ax| = |(Ax, x)| ≤ ∥Ax∥∥x∥.

We next show that σmax(A) ≤ 2w(A). It can be verified that

4(Ax, y) =
(
A(x+ y), x+ y

)
−
(
A(x− y), x− y

)
+ i
(
A(x+ iy), x+ iy

)
− i
(
A(x− iy), x− iy

)
.

Using (4.1), it follows that

4|(Ax, y)| ≤ w(A)(∥x+ y∥2 + ∥x− y∥2

+ ∥x+ iy∥2 + ∥x− iy∥2)
= 4w(A)(∥x∥2 + ∥y∥2).

Thus, for any unit x and y in Cn, we have

|(Ax, y)| ≤ 2w(A).

The inequality follows immediately from Problem 7.

Theorem 4.3 Let A ∈ Mn. Then limk→∞Ak = 0 if and only if
ρ(A) < 1; that is, all the eigenvalues of A have moduli less than 1.

Proof. Let A = P−1TP be a Jordan decomposition of A, where P is
invertible and T is a direct sum of Jordan blocks with the eigenvalues
λ1, . . . , λn of A on the main diagonal. Then Ak = P−1T kP and
ρ(Ak) = (ρ(A))k. Thus, if Ak tends to zero, so does T k. It follows
that λk → 0 as k → 0 for every eigenvalue of A. Therefore ρ(A) < 1.
Conversely, suppose ρ(A) < 1. We show that Ak → 0 as k → ∞. It
suffices to show that Jk → 0 as k → ∞ for each Jordan block J .

Suppose J is an m×m Jordan block:

J =


λ 1 . . . 0

0 λ
. . .

...
...

. . .
. . . 1

0 . . . 0 λ

 .
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Upon computation, we have

Jk =


λk

(
k
1

)
λk−1 . . .

(
k

m−1

)
λk−m+1

0 λk
. . .

...
...

. . .
. . .

(
k
1

)
λk−1

0 . . . 0 λk

 .

Recall from calculus that for any constants l and λ < 1

lim
k→∞

(
k

l

)
λk = 0.

It follows that Jk, thus Ak, converges to 0 as k → ∞.

Problems

1. Find a nonzero matrix A so that ρ(A) = 0.

2. Find the eigenvalues, singular values, numerical radius, spectral ra-
dius, spectral norm, and numerical range for each of the following:(

0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)
.

3. Let A be an n-square complex matrix. Show that the numerical
radius, spectral radius, spectral norm, and numerical range are uni-
tarily invariant. That is, for instance, w(U∗AU) = w(A) for any
n-square unitary matrix U .

4. Show that the diagonal entries and the eigenvalues of a square matrix
are contained in the numerical range of the matrix.

5. Let A ∈ Mn. Show that 1
n
trA is contained in W (A). Conclude that

for any nonsingular P ∈ Mn, W (P−1AP − PAP−1) contains 0.

6. Let A be a square complex matrix. Show that ∥Ax∥
∥x∥ is constant for

all x ̸= 0 if and only if all the singular values of A are identical.

7. Let A be a complex matrix. Show that

σmax(A) =
√
ρ(A∗A)= sup

∥x∥=1

∥Ax∥ = sup
x̸=0

∥Ax∥
∥x∥ = sup

∥x∥=∥y∥=1

|(Ax, y)|.
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8. Show that for any square matrices A and B of the same size,

σmax(AB) ≤ σmax(A)σmax(B),

and
σmax(A+B) ≤ σmax(A) + σmax(B).

9. Show that the numerical range of
(
0
1
0
1

)
is a closed elliptical disc.

10. Take

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


and let B = A2. Show that w(A) < 1. Find w(B) and w(AB).

11. Show that the numerical range of a normal matrix is the convex
hull of its eigenvalues. That is, if A ∈ Mn is a normal matrix with
eigenvalues λ1, . . . , λn, then

W (A) = {t1λ1 + · · ·+ tnλn : t1 + · · ·+ tn = 1, each ti ≥ 0}.

12. Show that W (A) is a polygon inscribed in the unit circle if A is
unitary, and that W (A) ⊆ R if A is Hermitian. What can be said
about W (A) if A is positive semidefinite?

13. Show that w(A) = ρ(A) = σmax(A) if A is normal. Discuss the
converse by considering

A = diag(1, i,−1,−i)⊕
(

0 1
0 0

)
.

14. Prove or disprove that for any n-square complex matrices A and B

(a) ρ(AB) ≤ ρ(A)ρ(B).

(b) w(AB) ≤ w(A)w(B).

(c) σmax(AB) ≤ σmax(A)σmax(B).

15. Let A be a square matrix. Show that for every positive integer k

w(Ak) ≤
(
w(A)

)k
.

Is it true in general that

w(Ak+m) ≤ w(Ak) w(Am)?

. ⊙ .
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4.2 Matrix Norms

A matrix may be assigned numerical items in various ways. In ad-
dition to determinant, trace, eigenvalues, singular values, numerical
radius, and spectral radius, matrix norm is another important one.

Recall from Section 1.4 of Chapter 1 that vectors can be measured
by their norms. If V is an inner product space, then the norm of a
vector v in V is ∥v∥ =

√
(v, v). The norm ∥ · ∥ on V satisfies

i. ∥v∥ ≥ 0 with equality if and only if v = 0,

ii. ∥cv∥ ≤ |c|∥v∥ for all scalars c and vectors v, and

iii. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all vectors u, v.

Like the norms for vectors being introduced to measure the mag-
nitudes of vectors, norms for matrices are used to measure the “sizes”
of matrices. We call a matrix function ∥ · ∥ : Mn 7→ R a matrix norm
if for all A,B ∈ Mn and c ∈ C, the following conditions are satisfied:

1. ∥A∥ ≥ 0 with equality if and only if A = 0,

2. ∥cA∥ ≤ |c|∥A∥,
3. ∥A+B∥ ≤ ∥A∥+ ∥B∥, and
4. ∥AB∥ ≤ ∥A∥∥B∥.

We call ∥ · ∥ for matrices satisfying (1)–(3) a matrix-vector norm.
In this book by a matrix norm we mean that all conditions (1)–(4) are
met. Such a matrix norm is sometimes referred to as a multiplicative
matrix norm. We use the notation ∥ · ∥ for both vector norm and
matrix norm. Generally speaking, this won’t cause confusion as one
can easily tell from what is being studied.

If a matrix is considered as a linear operator on an inner product
space V , a matrix operator norm ∥ · ∥op can be induced as follows:

∥A∥op = sup
x̸=0

∥Ax∥
∥x∥

= sup
∥x∥=1

∥Ax∥.
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From the previous section (Problems 7 and 8, Section 4.1), we see
that the spectral norm is a matrix (operator) norm on Mn induced
by the ordinary inner product on Cn.

Matrices can be viewed as vectors in the matrix spaceM n equipped
with the inner product (A,B) = tr(B∗A). Matrices as vectors under
the inner product have vector norms. One may check that this vector
norm for matrices is also a (multiplicative) matrix norm.

Two observations on matrix norms follow: first, a matrix norm
∥ · ∥ : A 7→ ∥A∥ is a continuous function on the matrix space Mn

(Problem 2), and second, ρ(·) ≤ ∥ · ∥ for any matrix norm ∥ · ∥.
Reason: If Ax = λx, where x ̸= 0 and ρ(A) = |λ|, then, by letting
X be the n× n matrix with all columns equal to the eigenvector x,

ρ(A)∥X∥ = ∥λX∥ = ∥AX∥ ≤ ∥A∥∥X∥.

Nevertheless, the numerical radius ρ(·) is not a matrix norm. (Why?)
The following result reveals a relation between the two.

Theorem 4.4 Let ∥ · ∥ be a matrix norm. Then for every A ∈ Mn

ρ(A) = lim
k→∞

∥Ak∥1/k.

Proof. The eigenvalues of Ak are the kth powers of those of A. Since
spectral radius is dominated by norm, for every positive integer k,

(ρ(A))k = ρ(Ak) ≤ ∥Ak∥ or ρ(A) ≤ ∥Ak∥1/k.

On the other hand, for any ϵ > 0, let

Aϵ =
1

ρ(A) + ϵ
A.

Then ρ(Aϵ) < 1. By Theorem 4.3, Ak
ϵ tends to 0 as k → ∞. Thus,

Because the norm is a continuous function, for k large enough,

∥Ak
ϵ ∥ < 1 or ∥Ak∥ ≤ (ρ(A) + ϵ)k.

Therefore

∥Ak∥1/k ≤ ρ(A) + ϵ.
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In summary, for any ϵ > 0 and k large enough

ρ(A) ≤ ∥Ak∥1/k ≤ ρ(A) + ϵ.

The conclusion follows immediately by letting ϵ approach 0.

Now we turn our attention to an important class of matrix norms:
unitarily invariant norms. We say a matrix (vector) norm ∥·∥ on Mn

is unitarily invariant if for any A ∈ Mn and for all unitary U, V ∈ Mn

∥UAV ∥ = ∥A∥.

The spectral norm σmax : A 7→ σmax(A) is a matrix norm and it
is unitarily invariant because σmax(UAV ) = σmax(A). The Frobenius
norm (also known as the Euclidean norm or Hilbert–Schmidt norm)
is the matrix norm induced by the inner product (A,B) = tr(B∗A)
on the matrix space Mn

∥A∥F =
(
tr(A∗A))

)1/2
=

( n∑
i,j=1

|aij |2
)1/2

. (4.2)

With σi(A) denoting the singular values of A, we see that

∥A∥F =
( n∑

i=1

σ2i (A)
)1/2

.

Thus ∥A∥F is uniquely determined by the singular values of A. Con-
sequently, the Frobenius norm is a unitarily invariant matrix norm.

Actually, the spectral norm and the Frobenius norm belong to
two larger families of unitarily invariant norms: the Ky Fan k-norms
and the Schatten p-norms, which we study more in Chapter 10.

Ky Fan k-norm: Let k ≤ n be a positive integer. Define

∥A∥(k) =
k∑

i=1

σi(A), A ∈ Mn.

Schatten p-norm: Let p ≥ 1 be a real number. Define

∥A∥p =
( n∑

i=1

σpi (A)

)1/p

, A ∈ Mn.
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It is readily seen that the spectral norm is the Ky Fan norm when
k = 1, it also equals the limit of ∥A∥p as p→ ∞, i.e., ∥A∥∞, whereas
the Frobenius norm is the Schatten 2-norm, i.e., ∥A∥F = ∥A∥2.

Problems

1. Let ∥ · ∥ be a vector norm on Cn (or Rn). Define

∥x∥D = max{|(x, y)| : y ∈ Cn, ∥y∥ = 1}.

Show that ∥ · ∥D is a vector norm on Cn (known as the dual norm).

2. Show that for any matrix norm ∥ · ∥ on Mn and A = (aij), B ∈ Mn

| ∥A∥ − ∥B∥ | ≤ ∥A−B∥ and ∥A∥ ≤
∑
i,j

|aij | ∥Eij∥,

where Eij is the matrix with (i, j)-entry 1 and elsewhere 0 for all i, j.

3. Let A,B ∈ Mn. Show that

∥A+B∥F ≤ ∥A∥F + ∥B∥F and ∥AB∥F ≤ ∥A∥F ∥B∥F .

4. Let A ∈ Mn. Show that for any matrix norm ∥ · ∥ and integer k ≥ 1,

∥Ak∥ ≤ ∥A∥k and ∥Ak∥−1∥I∥ ≤ ∥A−1∥k if A is invertible.

5. Let A ∈ Mn be given. If there exists a matrix norm ∥ · ∥ such that
∥A∥ < 1, show that Ak → 0 as k → 0.

6. Let ∥ · ∥ be a matrix norm on Mn. Show that for any invertible
matrix P ∈ Mn, ∥ · ∥P : Mn 7→ R defined by ∥A∥P = ∥P−1AP∥ for
all matrices A ∈ Mn is also a matrix norm.

7. Let A = (aij) ∈ Mn and define ∥A∥∞ = max1≤i, j≤n |aij |. Show that
∥ ·∥∞ is a matrix-vector norm, but not a multiplicative matrix norm.

8. Show that ∥ · ∥§, ∥ · ∥1, and ||| · |||∞ are matrix norms on Mn, where

∥A∥§ = n∥A∥∞, ∥A∥1 =
∑

1≤i,j≤n

|aij |, |||A|||∞ = max
1≤i≤n

n∑
j=1

|aij |.

Are these (multiplicative) matrix norms unitarily invariant?

. ⊙ .
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4.3 The Kronecker and Hadamard Products

Matrices can be multiplied in different ways. The Kronecker prod-
uct and Hadamard product, defined below, used in many fields, are
almost as important as the ordinary product. Another basic ma-
trix operation is “compounding” matrices, which is evidently a use-
ful tool in deriving matrix inequalities. This section introduces the
three concepts and presents their properties.

The Kronecker product, also known as tensor product or direct
product, of two matrices A and B of sizesm×n and s×t, respectively,
is defined to be the (ms)× (nt) matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
...

...
...

...
am1B am2B . . . amnB

 .

In other words, the Kronecker product A⊗B is an (ms)×(nt) matrix,
partitioned into mn blocks with the (i, j) block the s×t matrix aijB.
Note that A and B can have any different sizes.

The Hadamard product, or the Schur product, of two matrices A
and B of the same size is defined to be the entrywise product

A ◦B = (aijbij).

In particular, for u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Cn,

u⊗ v = (u1v1, . . . , u1vn, . . . , unv1, . . . , unvn)

and
u ◦ v = (u1v1, u2v2, . . . , unvn).

Note that A⊗B ̸= B ⊗A in general and A ◦B = B ◦A.
We take, for example, A =

(
1
3
2
4

)
and B =

(
a
c
b
d

)
. Then

A⊗B =


a b 2a 2b
c d 2c 2d
3a 3b 4a 4b
3c 3d 4c 4d

 , A ◦B =

(
a 2b
3c 4d

)
.
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The Kronecker product has the following basic properties, each
of which can be verified by definition and direct computations.

Theorem 4.5 Let A, B, C be matrices of appropriate sizes. Then

1. (kA)⊗B = A⊗ (kB) = k(A⊗B), where k is a scalar.

2. (A+B)⊗ C = A⊗ C +B ⊗ C.

3. A⊗ (B + C) = A⊗B +A⊗ C.

4. (A⊗B)⊗ C = A⊗ (B ⊗ C).

5. A⊗B = 0 if and only if A = 0 or B = 0.

6. (A⊗B)T = AT ⊗BT . If A and B are symmetric, so is A⊗B.

7. (A⊗B)∗ = A∗ ⊗B∗. If A and B are Hermitian, so is A⊗B.

Theorem 4.6 Let A, B, C be matrices of appropriate sizes. Then

1. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

2. (A⊗B)−1 = A−1 ⊗B−1 if A and B are invertible.

3. A⊗B is unitary if A and B are unitary.

4. A⊗B is normal if A and B are normal.

Proof. For (1), letA have n columns. Then C has n rows as indicated
in the product AC on the right-hand side of (1). We write A⊗B =
(aijB), C ⊗D = (cijD). Then the (i, j) block of (A⊗B)(C ⊗D) is

n∑
t=1

aitBctjD =
n∑

t=1

aitctj BD.

But this is the (i, j)-entry of AC times BD, which is the (i, j) block
of (AC)⊗ (BD). (1) follows. The rest are immediate from (1).

To perform the Hadamard product, matrices need to have the
same size. In the case of square matrices, an interesting and impor-
tant observation is that the Hadamard product A◦B is contained in
the Kronecker product A⊗B as a principal submatrix.
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Theorem 4.7 Let A,B ∈ Mn. Then the Hadamard product A ◦ B
is a principal submatrix of the Kronecker product A⊗B lying on the
intersections of rows and columns 1, n+ 2, 2n+ 3, . . . , n2.

Proof. Let ei be, as usual, the column vector of n components with
the ith position 1 and 0 elsewhere, i = 1, 2, . . . , n, and let

E = (e1 ⊗ e1, . . . , en ⊗ en).

Then for every pair of i and j, we have by computation

aijbij = (eTi Aej)⊗ (eTi Bej) = (ei ⊗ ei)
T (A⊗B)(ej ⊗ ej),

which equals the (i, j)-entry of the matrix ET (A⊗B)E. Thus,

ET (A⊗B)E = A ◦B.

This says that A ◦ B is the principal submatrix of A ⊗ B lying on
the intersections of rows and columns 1, n+ 2, 2n+ 3, . . . , n2.

The following theorem, relating the eigenvalues of the Kronecker
product to those of individual matrices, presents in its proof a com-
mon method of decomposing a Kronecker product.

Theorem 4.8 Let A and B be m-square and n-square complex ma-
trices with eigenvalues λi and µj, i = 1, . . . ,m, j = 1, . . . , n, respec-
tively. Then the eigenvalues of A⊗B are

λiµj , i = 1, . . . ,m, j = 1, . . . , n,

and the eigenvalues of A⊗ In + Im ⊗B are

λi + µj , i = 1, . . . ,m, j = 1, . . . , n.

Proof. By the Schur decomposition (Theorem 3.3), let U and V be
unitary matrices of sizes m and n, respectively, such that

U∗AU = T1 and V ∗BV = T2,

where T1 and T2 are upper-triangular matrices with diagonal entries
λi and µj , i = 1, . . . ,m, j = 1, . . . , n, respectively. Then

T1 ⊗ T2 = (U∗AU)⊗ (V ∗BV ) = (U∗ ⊗ V ∗)(A⊗B)(U ⊗ V ).
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Note that U⊗V is unitary. Thus A⊗B is unitarily similar to T1⊗T2.
The eigenvalues of the latter matrix are λiµj .

For the second part, let W = U ⊗ V . Then

W ∗(A⊗ In)W = T1 ⊗ In =

 λ1In ∗
. . .

0 λmIn


and

W ∗(Im ⊗B)W = Im ⊗ T2 =

 T2 0
. . .

0 T2

 .

Thus

W ∗(A⊗ In + Im ⊗B)W = T1 ⊗ In + Im ⊗ T2

is an upper-triangular matrix with eigenvalues λi + µj .

Problems

1. Compute A⊗B and B ⊗ A for

A =

(
0 1
−2 3

)
, B =

 0
√
2

π 2
−1 7

 .

2. Let J2 =
(
1
1
1
1

)
. Compute In ⊗ J2 and J2 ⊗ In.

3. Let A, B, C, and D be complex matrices. Show that

(a) (A⊗B)k = Ak ⊗Bk.

(b) tr(A⊗B) = trA trB.

(c) rank (A⊗B) = rank (A) rank (B).

(d) det(A⊗B) = (detA)n(detB)m, if A ∈ Mm and B ∈ Mn.

(e) If A ⊗ B = C ⊗ D ̸= 0, where A and C are of the same size,
then A = aC and B = bD with ab = 1, and vice versa.

4. Let A and B be m- and n-square matrices, respectively. Show that

(A⊗ In)(Im ⊗B) = A⊗B = (Im ⊗B)(A⊗ In).
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5. Let A ∈ Mn have characteristic polynomial p. Show that

det(A⊗ I + I ⊗A) = (−1)n det p(−A).

6. Let A,B ∈ Mn. Show that for some permutation matrix P ∈ Mn2

P−1(A⊗B)P = B ⊗A.

7. Let x, y, u, v ∈ Cn. With (x, y) = y∗x and ∥x∥2 = x∗x, show that

(x, y)(u, v) = (x⊗ u, y ⊗ v).

Derive
∥x⊗ y∥ = ∥x∥ ∥y∥.

8. Let A, B ∈ Mn. Show that A ◦ In = diag(a11, . . . , ann) and that

D1(A ◦B)D2 = (D1AD2) ◦B = A ◦ (D1BD2)

for any n-square diagonal matrices D1 and D2.

9. Let A, B, and C be square matrices. Show that

(A⊕B)⊗ C = (A⊗ C)⊕ (B ⊗ C).

But it need not be true that

(A⊗B)⊕ C = (A⊕ C)⊗ (B ⊕ C).

10. Consider the vector space M2, 2× 2 complex matrices, over C.

(a) What is the dimension of M2?

(b) Find a basis for M2.

(c) For A, B ∈ M2, define

L(X) = AXB, X ∈ M2.

Show that L is a linear transformation on M2.

(d) Show that if λ and µ are eigenvalues of A and B, respectively,
then λµ is an eigenvalue of L.

11. LetA andB be square matrices (of possibly different sizes). Show that

eA⊗I = eA ⊗ I, eI⊗B = I ⊗ eB , eA⊕B = eA ⊗ eB .

. ⊙ .
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4.4 Compound Matrices

We now turn our attention to compound matrices. Roughly speaking,
the Kronecker product and the Hadamard product are operations
on two (or more) matrices. Unlike the Kronecker and Hadamard
products, “compounding” matrix is a matrix operation on a single
matrix that arranges in certain order all minors of a given size from
the given matrix. A rigorous definition is given as follows.

Let A be an m×n matrix, α = {i1, . . . , is}, and β = {j1, . . . , jt},
1 ≤ i1 < · · · < is ≤ m, 1 ≤ j1 < · · · < jt ≤ n. Denote by
A[i1, . . . , is, j1, . . . , jt], or simply A[α, β], the submatrix of A consist-
ing of the entries in rows i1, . . . , is and columns j1, . . . , jt.

Given a positive integer k ≤ min{m,n}, there are
(
m
k

)
×
(
n
k

)
pos-

sible minors (numbers) that we can get from the m × n matrix A.
We now form a matrix, denoted by A(k) and called the kth compound
matrix of A, of size

(
m
k

)
×
(
n
k

)
by ordering these numbers lexicographi-

cally; that is, the (1, 1) position of A(k) is detA[1, . . . , k|1, . . . , k], the
(1, 2) position of A(k) is detA[1, . . . , k|1, . . . , k−1, k+1], . . ., whereas
the (2, 1) position is detA[1, . . . , k− 1, k+1|1, . . . , k], . . ., and so on.
For convenience, we say that the minor detA[α, β] is in the (α, β)

position of the compound matrix and denote it by A
(k)
α,β. Clearly,

A(1) = A and A(n) = detA if A is an n× n matrix.
As an example, let m = n = 3, k = 2, and take

A =

 1 2 3
4 5 6
7 8 9

 .

Then

A(2) =

 detA[1, 2|1, 2] detA[1, 2|1, 3] detA[1, 2|2, 3]
detA[1, 3|1, 2] detA[1, 3|1, 3] detA[1, 3|2, 3]
detA[2, 3|1, 2] detA[2, 3|1, 3] detA[2, 3|2, 3]



=


∣∣1
4
2
5

∣∣ ∣∣1
4
3
6

∣∣ ∣∣2
5
3
6

∣∣∣∣1
7
2
8

∣∣ ∣∣1
7
3
9

∣∣ ∣∣2
8
3
9

∣∣∣∣4
7
5
8

∣∣ ∣∣4
7
6
9

∣∣ ∣∣5
8
6
9

∣∣
 =

 −3 −6 −3
−6 −12 −6
−3 −6 −3

 .
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If A is an n-square matrix, then the main diagonal entries of A(k)

are detA[α|α], i.e., the principal minors of A. For an n-square upper-
triangular matrix A, detA[α|β] = 0 if α is after β in lexicographic
order. This leads to the result that if A is upper (lower)-triangular,
then so is A(k). As a consequence, if A is diagonal, then so is A(k).

The goal of this section is to show that the compound matrix of
the product of matrices is the product of their compound matrices.
For this purpose, we need to borrow a well-known result on deter-
minant expansion, the Binet–Cauchy formula. (A good reference on
this formula and its proof is Lancaster and Tismenetsky’s book, The
Theory of Matrices, 1985, pp. 36–42.)

Theorem 4.9 (Binet–Cauchy formula) Let C = AB, where A
is m× n and B is n×m, m ≤ n, and let α = {1, 2, . . . ,m}. Then

detC =
∑
β

detA[α|β] detB[β|α],

where β runs over all sequences {j1, . . . , jm}, 1 ≤ j1 < · · · < jm ≤ n.

The following theorem is of fundamental importance for com-
pound matrices, whose corollary plays a pivotal role in deriving ma-
trix inequalities involving eigenvalue and singular value products.

Theorem 4.10 Let A be an m× p matrix and B be a p×n matrix.
If k is a positive integer, k ≤ min{m, p, n}, then (AB)(k) = A(k)B(k).

Proof. For α = {i1, . . . , ik} and β = {j1, . . . , jk}, 1 ≤ i1 < · · · <
ik ≤ m, 1 ≤ j1 < · · · < jk ≤ m, we compute the entry in the (α, β)
position (in lexicographic order) of (AB)(k) by the Binet–Cauchy
determinant expansion formula and get

(AB)
(k)
α,β = det ((AB)[α|β])

=
∑
γ

detA[α|γ] detB[γ|β] = (A(k)B(k))α,β ,

where γ runs over all possible sequences 1 ≤ γ1 < · · · < γk ≤ p.

If A is Hermitian, it is readily seen that A(k) is Hermitian too.
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Corollary 4.1 Let A ∈ Mn be a positive semidefinite matrix with
eigenvalues λ1(A) ≥ · · · ≥ λn(A). Then the largest eigenvalue of
A(k) is the product of the first k largest eigenvalues of A; that is,

λmax(A
(k)) =

k∏
i=1

λi(A).

Problems

1. Find A(2), where

A =

 0 1 2 3
4 5 6 7
8 9 10 −1

 .

2. Show that A∗[α|β] = (A[β|α])∗.

3. Show that I
(k)
n = I(nk)

, where Il is the l × l identity matrix.

4. Show that (A(k))∗ = (A∗)(k); (A(k))T = (AT )(k).

5. Show that (A(k))−1 = (A−1)(k) if A is nonsingular.

6. Show that detA(k) = (detA)(
n−1
k−1) when A is n-square.

7. If rank (A) = r, show that rank (A(k)) =
(
r
k

)
or 0 if r < k.

8. Show that if A is unitary, symmetric, positive (semi-)definite, Her-
mitian, or normal, then so is A(k), respectively.

9. If A = diag(a1, . . . , an), show that A(k) is an
(
n
k

)
×
(
n
k

)
diagonal

matrix with diagonal entries ai1 · · ·aik , 1 ≤ i1 < · · · < ik ≤ n.

10. If A ∈ Mn has eigenvalues λ1, . . . , λn, show that A(k) has eigenvalues
λi1 · · ·λik , 1 ≤ i1 < · · · < ik ≤ n.

11. If A ∈ Mn has singular values σ1, . . . , σn, show that A(k) has singular
values σi1 · · ·σik , 1 ≤ i1 < · · · < ik ≤ n.

12. If A ∈ Mn has eigenvalues λ1, . . . , λn, show that tr(A(k)) equals∑
γ λi1 · · ·λik , denoted by sk(λ1, . . . , λn) and called kth elementary

symmetric function, where γ is any sequence 1 ≤ i1 < · · · < ik ≤ n.

13. If A is a positive semidefinite matrix with eigenvalues λ1 ≥ · · · ≥ λn,
show that the smallest eigenvalue ofA(k) is λmin(A

(k)) =
∏k

i=1λn−i+1.

. ⊙ .



CHAPTER 5

Special Types of Matrices

Introduction: This chapter studies special types of matrices. They
are: idempotent matrices, nilpotent matrices, involutary matrices,
projection matrices, tridiagonal matrices, circulant matrices, Vander-
monde matrices, Hadamard matrices, permutation matrices, doubly
stochastic matrices, and nonnegative matrices. These matrices are
often used in many subjects of mathematics and in other fields.

5.1 Idempotence, Nilpotence, Involution, and Projections

We first present three types of matrices that have simple structures
under similarity: idempotent matrices, nilpotent matrices, and invo-
lutions. We then turn attention to orthogonal projection matrices.

A square matrix A is said to be idempotent, or a projection, if

A2 = A,

nilpotent if for some positive integer k

Ak = 0,

and involutary if
A2 = I.
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Theorem 5.1 Let A be an n-square complex matrix. Then

1. A is idempotent if and only if A is similar to a diagonal matrix
of the form diag(1, . . . , 1, 0, . . . , 0).

2. A is nilpotent if and only if all the eigenvalues of A are zero.

3. A is involutary if and only if A is similar to a diagonal matrix
of the form diag(1, . . . , 1,−1, . . . ,−1).

Proof. The sufficiency in (1) is obvious. To see the necessity, let

A = P−1(J1 ⊕ · · · ⊕ Jk)P

be a Jordan decomposition of A. Then for each i, i = 1, . . . , k,

A2 = A ⇒ J2
i = Ji.

Observe that if J is a Jordan block and if J2 = J , then J must be
of size 1; that is, J is a number. The assertion then follows.

For (2), consider the Schur (or Jordan) decomposition of A,

A = U−1

 λ1 ∗
. . .

0 λn

U,

where U is an n-square unitary matrix.
If Ak = 0, then each λki = 0, and A has only zero eigenvalues.

Conversely, it is easy to verify by computation that An = 0 if all the
eigenvalues of A are equal to zero (see also Problem 11, Section 3.3).

The proof of (3) is similar to that of (1).

Theorem 5.2 Let A and B be nilpotent matrices of the same size.
If A and B commute, then A+ B is nilpotent.

Proof. Let Am = 0 and Bn = 0. Upon computation, we have

(A+B)m+n = 0,

for each term in the expansion of (A+B)m+n is Am+n, is Bm+n, or
contains AsBt, s ≥ m or t ≥ n. In any case, every term vanishes.
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By choosing a suitable basis for Cn, we can interpret Theo-
rem 5.1(1) as follows. A matrix A is a projection if and only if
Cn can be decomposed as

Cn =W1 ⊕W2, (5.1)

where W1 and W2 are subspaces such that for all w1 ∈W1, w2 ∈W2,

Aw1 = w1, Aw2 = 0.

Thus, if w = w1 + w2 ∈ Cn, where w1 ∈W1 and w2 ∈W2, then

Aw = Aw1 +Aw2 = w1.

Such a w1 is called the projection of w on W1. Note that

W1 = ImA, W2 = KerA = Im(I −A).

Using this and Theorem 5.1(1), one may prove the next result.

Theorem 5.3 For any A ∈ Mn the following are equivalent.

1. A is a projection matrix; that is, A2 = A.

2. Cn = ImA+KerA with Ax = x for every x ∈ ImA.

3. KerA = Im(I −A).

4. rank (A) + rank (I −A) = n.

5. ImA ∩ Im(I −A) = {0}.

We now turn our attention to orthogonal projection matrices.
A square complex matrix A is called an orthogonal projection if

A2 = A = A∗.

For orthogonal projection matrices, the subspaces

W1 = ImA and W2 = Im(I −A)

in (5.1) are orthogonal; that is, for all w1 ∈W1 and w2 ∈W2,

(w1, w2) = 0. (5.2)

In other words, (Ax, (I −A)x) = 0 for all x ∈ Cn; this is because

(w1, w2) = (Aw1, w2) = (w1, A
∗w2) = (w1, Aw2) = 0.
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Theorem 5.4 For any A ∈ Mn the following are equivalent.

1. A is an orthogonal projection matrix; that is, A2 = A = A∗.

2. A = U∗ diag(1, . . . , 1, 0, . . . , 0)U for some unitary matrix U.

3. ∥x−Ax∥ ≤ ∥x−Ay∥ for every x and y in Cn.

4. A2 = A and ∥Ax∥ ≤ ∥x∥ for every x ∈ Cn.

5. A = A∗A.

Proof. (1)⇔(2): We show (1)⇒(2). The other direction is obvious.
Because A is Hermitian, by the spectral decomposition theorem

(Theorem 3.4), we have A = V ∗ diag(λ1, . . . , λn)V for some unitary
matrix V , where the λi are the eigenvalues of A. However, A is
idempotent and thus has only eigenvalues 1 and 0 according to the
previous theorem. It follows that

A = U∗ diag(

r︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)U,

where r is the rank of A and U is some unitary matrix.
(1)⇔(3): For (1)⇒(3), let A be an orthogonal projection. We

have the decomposition (5.1) with the orthogonality condition (5.2).
Let x = x1 + x2, where x1 ∈ W1, x2 ∈ W2, and (x1, x2) = 0.

Similarly, write y = y1 + y2. Note that x1 − y1 ∈W1 and W1⊥W2.
Since (u, v) = 0 implies ∥u∥2 + ∥v∥2 = ∥u+ v∥2, we have

∥x−Ax∥2 = ∥x2∥2≤ ∥x2∥2+∥x1−y1∥2 = ∥x2+(x1−y1)∥2 = ∥x−Ay∥2.

We now show (3)⇒(1). It is sufficient to show that the decompo-
sition (5.1) with the orthogonality condition (5.2) holds, where ImA
serves as W1 and Im(I −A) as W2.

As x = Ax+ (I −A)x for every x ∈ Cn, it is obvious that

Cn = ImA+ Im(I −A).

We have left to show that (x, y) = 0 if x ∈ ImA and y ∈ Im(I −A).
Suppose instead that ((I −A)x,Ay) ̸= 0 for some x and y ∈ Cn. We
show that there exists a vector z ∈ Cn such that

∥x−Az∥ < ∥x−Ax∥,
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which is a contradiction to the given condition (3).
Let ((I − A)x,Ay) = α ̸= 0. We may assume that α < 0.

Otherwise, replace x with eiθx, where θ ∈ R is such that eiθα < 0.
Let zϵ = x− ϵ y, where ϵ > 0. Then

∥x−Azϵ∥2 = ∥(x−Ax) + (Ax−Azϵ)∥2

= ∥x−Ax∥2 + ∥Ax−Azϵ∥2

+ 2Re((I −A)x,A(x− zϵ))

= ∥x−Ax∥2 + ∥Ax−Azϵ∥2

+ 2ϵ((I −A)x,Ay)

= ∥x−Ax∥2 + ϵ2∥Ay∥2 + 2ϵα.

Because α < 0, we have ϵ2∥Ay∥2 + 2ϵα < 0 for some ϵ small
enough, which results in a contradiction to the assumption in (3):

∥x−Azϵ∥ < ∥x− Ax∥.

(1)⇒(4): If A is an orthogonal projection matrix, then the or-
thogonality condition (5.2) holds. Thus, (Ax, (I −A)x) = 0 and

∥Ax∥2 ≤ ∥Ax∥2 + ∥(I −A)x∥2 = ∥Ax+ (I −A)x∥2 = ∥x∥2.

(4)⇒(5): If A ̸= A∗A; that is, (A∗ − I)A ̸= 0 or A∗(I − A) ̸= 0,
then rank (I −A) < n and dim Im(I −A) < n by Theorem 5.1(1).

We show that there exists a nonzero x such that

(x, (I −A)x) = 0, but (I −A)x ̸= 0.

Thus, for this x,

∥Ax∥2 = ∥x− (I −A)x∥2 = ∥x∥2 + ∥(I −A)x∥2 > ∥x∥2,

which contradicts the condition ∥Ax∥ ≤ ∥x∥ for every x ∈ Cn.
To show the existence of such a vector x, it is sufficient to show

that there exists a nonzero x in (Im(I −A))⊥ but not in Ker(I −A);
that is, (Im(I −A))⊥ is not contained in Ker(I −A).

Notice that (Theorem 1.5)

dim Im(I −A) + dimKer(I −A) = n
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and that
Cn = Im(I −A)⊕ (Im(I −A))⊥.

Now if (Im(I −A))⊥ is contained in Ker(I − A), then they must be
equal, for they have the same dimension:

dim(Im(I −A))⊥ = n− dim Im(I −A) = dimKer(I −A).

It follows, by (1.11) in Section 1.4 of Chapter 1, that

Im(I −A) = Im(I − A∗).

Thus, I −A = I −A∗ and A is Hermitian. Then (5) follows easily.
(5)⇒(1): If A = A∗A, then A is obviously Hermitian. Thus,

A = A∗A = AA = A2.

Problems

1. Characterize all 2×2 idempotent, nilpotent, and involutary matrices
up to similarity.

2. Can a nonzero matrix be both idempotent and nilpotent? Why?

3. What is the characteristic polynomial of a nilpotent matrix?

4. What idempotent matrices are nonsingular?

5. Show that if A ∈ Mn is idempotent, then so is P−1AP for any
invertible P ∈ Mn.

6. Show that the rank of an idempotent matrix is equal to the number
of nonzero eigenvalues of the matrix.

7. Let A and B be idempotent matrices of the same size. Find the nec-
essary and sufficient conditions for A+B to be idempotent. Discuss
the analogue for A−B.

8. Show that 1
2(I +A) is idempotent if and only if A is an involution.

9. Let A be a square complex matrix. Show that

A2 = A ⇔ rank (A) = tr(A) and rank (I − A) = tr(I − A).

If A2 = −A, what rank conditions on A does one get?
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10. Let A be an idempotent matrix. Show that

A = A∗ ⇔ ImA = ImA∗.

11. Show that a Hermitian idempotent matrix is positive semidefinite
and that the matrix M is positive semidefinite, where

M = I − 1

y∗y
yy∗, y ∈ Cn.

12. Show that T 3 = 0, where T is a transformation defined on M2 by

T (X) = TX −XT, X ∈ M2,

with

T =

(
0 1
0 0

)
.

Find the Jordan form of a matrix representation of T .

13. Let A ∈ Mn. Define a linear transformation on Mn by

T (X) = AX −XA, X ∈ Mn.

Show that if A is nilpotent then T is nilpotent and that if A is
diagonalizable then the matrix representation of T is diagonalizable.

14. Let A and B be square matrices of the same size. If A is nilpotent
and AB = BA, show that AB is nilpotent. Is the converse true?

15. Let A be an n-square nonsingular matrix. If X is a matrix such that

AXA−1 = λX, λ ∈ C,

show that |λ| = 1 or X is nilpotent.

16. Give a 2× 2 matrix such that A2 = I but A∗A ̸= I.

17. Let A2 = A. Show that (A+ I)k = I + (2k − 1)A for k = 1, 2, . . . .

18. Find a matrix that is a projection but not an orthogonal projection.

19. Let A and B be square matrices of the same size. If AB = A and
BA = B, show that A and B are projection matrices.

20. Let A be a projection matrix. Show that A is Hermitian if and only
if ImA and KerA are orthogonal; that is, ImA⊥KerA.

21. Prove Theorem 5.3 along the line: (1)⇔(2)⇒(3)⇒(4)⇒(5)⇒(2).
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22. Show that A is an orthogonal projection matrix if and only if A =
B∗B for some matrix B with BB∗ = I.

23. Let A1, . . . , Am be n× n idempotent matrices. If

A1 + · · ·+ Am = In,

show that
AiAj = 0, i ̸= j.

[Hint: Show that Cn = ImA1 ⊕ · · · ⊕ ImAm by using trace.]

24. If W is a subspace of an inner product space V , one may write

V = W ⊕W⊥

and define a transformation A on V by

A(v) = w, if v = w + w⊥, w ∈W, w⊥ ∈W⊥,

where w is called the projection of v on W . Show that

(a) A is a linear transformation.

(b) A2 = A.

(c) Im(A) =W and Ker(A) =W⊥.

(d) ∥v −A(v)∥ ≤ ∥v −A(u)∥ for any u ∈ V .

(e) Every v ∈ V has a unique projection w ∈W .

(f) ∥v∥2 = ∥w∥2 + ∥w⊥∥2.

25. When does equality in Theorem 5.3(3) hold?

26. Let A and B be m × n complex matrices of rank n, n ≤ m. Show
that the matrix A(A∗A)−1A∗ is idempotent and that

A(A∗A)−1A∗ = B(B∗B)−1B∗ ⇔ A = BX

for some nonsingular matrix X. [Hint: Multiply by A.]

27. Let A and B be orthogonal projections of the same size. Show that

(a) A+B is an orthogonal projection if and only if AB = BA = 0.

(b) A−B is an orthogonal projection if and only if AB = BA = B.

(c) AB is an orthogonal projection if and only if AB = BA.

. ⊙ .
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5.2 Tridiagonal Matrices

One of the frequently used techniques in determinant computation is
recursion. We illustrate this method by computing the determinant
of a tridiagonal matrix and go on studying the eigenvalues of matrices
of this kind.

An n-square tridiagonal matrix is a matrix with entries tij = 0
whenever |i − j| > 1. The determinant of a tridiagonal matrix can
be calculated inductively. For simplicity, we consider the special
tridiagonal matrix

Tn =



a b 0
c a b

c a b
. . .

. . .
. . .

c a b
0 c a


. (5.3)

Theorem 5.5 Let Tn be defined as in (5.3). Then

detTn =


an if bc = 0,
(n+ 1)(a/2)n if a2 = 4bc,
(αn+1 − βn+1)/(α− β) if a2 ̸= 4bc,

where

α =
a+

√
a2 − 4bc

2
, β =

a−
√
a2 − 4bc

2
.

Proof. Expand the determinant along the first row of the matrix in
(5.3) to obtain the recursive formula

detTn = adetTn−1 − bcdetTn−2. (5.4)

If bc = 0, then b = 0 or c = 0, and from (5.3) obviously detTn = an.
If bc ̸= 0, let α and β be the solutions to x2 − ax+ bc = 0. Then

α+ β = a, αβ = bc.
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Note that
a2 − 4bc = (α− β)2.

From the recursive formula (5.4), we have

detTn − αdetTn−1 = β(detTn−1 − αdetTn−2)

and
detTn − β detTn−1 = α(detTn−1 − β detTn−2).

Denote

fn = detTn − αdetTn−1, gn = detTn − β detTn−1.

Then
fn = βfn−1, gn = αgn−1,

with (by a simple computation)

f2 = β2, g2 = α2.

Thus,
fn = βn, gn = αn;

that is,

detTn − α detTn−1 = βn, detTn − β detTn−1 = αn. (5.5)

It follows, using Tn+1 in (5.5) and subtracting the equations, that

detTn =
αn+1 − βn+1

α− β
, if α ̸= β.

If α = β, one can easily prove by induction that

detTn = (n+ 1)

(
a

2

)n

.

Note that the recursive formula (5.4) in the proof depends not on
the single values of b and c but on the product bc. Thus, if a ∈ R,
bc > 0, we may replace b and c by d and d̄, respectively, where
dd̄ = bc, to get a tridiagonal Hermitian matrix Hn, for which

det(λI − Tn) = det(λI −Hn).

It follows that Tn has only real eigenvalues because Hn does. In fact,
when a, b, c ∈ R, and bc > 0, matrix DTnD

−1 is real symmetric,
where D is the diagonal matrix diag(1, e, . . . , en−1) with e =

√
b/c.
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Theorem 5.6 If Tn is a tridiagonal matrix defined as in (5.3) with
a, b, c ∈ R and bc > 0, then the eigenvalues of Tn are all real and
have eigenspaces of dimension one.

Proof. The first half follows from the argument prior to the theorem.
For the second part, it is sufficient to prove that each eigenvalue has
only one eigenvector up to a factor.

Let x = (x1, . . . , xn)
T be an eigenvector of Tn corresponding to

the eigenvalue λ. Then

(λI − Tn)x = 0, x ̸= 0,

or equivalently

(λ− a)x1 − bx2 = 0,
−cx1 + (λ− a)x2 − bx3 = 0,

...
−cxn−2 + (λ− a)xn−1 − bxn = 0,

−cxn−1 + (λ− a)xn = 0.

Because b ̸= 0, x2 is determined by x1 in the first equation, so are
x3, . . . , xn successively by x2, x3, and so on in the equations 2, 3,
. . . , n − 1. If x1 is replaced by kx1, then x2, x3, . . . , xn become
kx2, kx3, . . . , kxn, and the eigenvector is unique up to a factor.

Note that the theorem is in fact true for a general tridiagonal
matrix when ai is real and bici > 0 for each i.

Problems

1. Compute the determinant ∣∣∣∣∣∣
a b 0
c a b
0 c a

∣∣∣∣∣∣ .
2. Carry out in detail the proof that Tn is similar to a real symmetric

matrix if a, b, c ∈ R and bc > 0.
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3. Compute the n× n determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

4. Compute the n× n determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0
−1 1 1

−1 1 1
. . .

. . .
. . .

−1 1 1
0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

5. Compute the n× n determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0
1 2 1

1 2 1
. . .

. . .
. . .

1 2 1
0 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

6. Compute the n× n determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 2 0
1 3 1

2 3 2
1 3 1

. . .
. . .

. . .

1 3 1
0 2 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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7. Find the inverse of the n× n matrix

2 −1 0
−1 2 −1

−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2


.

8. Show that the value of the following determinant is independent of x:∣∣∣∣∣∣∣∣∣∣∣∣∣

a x 0
1
x a x

1
x a x

. . .
. . .

. . .
1
x a x

0 1
x a

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

9. (Cauchy matrix) Let λ1, . . . , λn be positive numbers and let

Λ =

(
1

λi + λj

)
.

Show that

detΛ =

∏
i>j(λi − λj)

2∏
i,j(λi + λj)

.

[Hint: Subtract the last column from each of the other columns, then
factor; do the same thing for rows; use induction.]

10. Show that ∣∣∣∣∣∣∣∣∣∣∣

1
2

1
3 · · · 1

n+1

1
3

1
4 · · · 1

n+2

...
...

...
...

1
n+1

1
n+2

· · · 1
2n

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

. ⊙ .
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5.3 Circulant Matrices

An n-square circulant matrix is a matrix of the form
c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3
...

...
...

...
...

c1 c2 c3 · · · c0

 , (5.6)

where c0, c1, . . . , cn−1 are complex numbers. For instance,

N =


1 2 3 · · · n
n 1 2 · · · n− 1
...

...
...

...
...

3 4 5 · · · 2
2 3 4 · · · 1


and

P =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

 (5.7)

are circulant matrices. Note that P is also a permutation matrix.
We refer to this P as the n× n primary permutation matrix.

This section deals with the basic properties of circulant matrices.
The following theorem may be shown by a direct verification.

Theorem 5.7 An n-square matrix C is circulant if and only if

C = PCP T ,

where P is the n× n primary permutation matrix.
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We call a complex number ω an nth primitive root of unity if
ωn − 1 = 0 and ωk − 1 ̸= 0 for every positive integer k < n.

Note that if ω is an nth primitive root of unity, then ωk is a
solution to xn− 1 = 0, 0 < k < n. It follows by factoring xn− 1 that

n−1∑
i=0

ωik =
(ωk)n − 1

ωk − 1
= 0.

Theorem 5.8 Let C be a circulant matrix in the form (5.6), and let
f(λ) = c0 + c1λ+ · · ·+ cn−1λ

n−1. Then

1. C = f(P ), where P is the n× n primary permutation matrix.

2. C is a normal matrix; that is, C∗C = CC∗.

3. The eigenvalues of C are f(ωk), k = 0, 1, . . . , n− 1.

4. detC = f(ω0)f(ω1) · · · f(ωn−1).

5. F ∗CF is a diagonal matrix, where F is the unitary matrix with
the (i, j)-entry equal to 1√

n
ω(i−1)(j−1), i, j = 1, . . . , n.

Proof. (1) is easy to see by a direct computation. (2) is due to the
fact that if matrices A and B commute, so do p(A) and q(B), where
p and q are any polynomials (Problem 4). Note that PP ∗ = P ∗P.

For (3) and (4), the characteristic polynomial of P is

det(λI − P ) = λn − 1 =
n−1∏
k=0

(λ− ωk).

Thus, the eigenvalues of P and P i are, respectively, ωk and ωik,
k = 0, 1, . . . , n − 1. It follows that the eigenvalues of C = f(P ) are
f(ωk), k = 0, 1, . . . , n− 1 (Problem 7, Section 3.2), and that

detC =

n−1∏
k=0

f(ωk).

To show (5), for each k = 0, 1, . . . , n− 1, let

xk = (1, ωk, ω2k, . . . , ω(n−1)k)T .
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Then

Pxk = (ωk, ω2k, . . . , ω(n−1)k, 1)T = ωkxk

and

Cxk = f(P )xk = f(ωk)xk.

In other words, xk are the eigenvectors of P and C corresponding to
the eigenvalues ωk and f(ωk), respectively, k = 0, 1, . . . , n− 1.

However, because

(xi, xj) =
n−1∑
k=0

ωjk ωik =
n−1∑
k=0

ω(i−j)k =

{
0, i ̸= j,
n, i = j,

we have that {
1√
n
x0,

1√
n
x1, . . . ,

1√
n
xn−1

}
is an orthonormal basis for Cn. Thus, we get a unitary matrix

F =
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


such that

F ∗CF = diag(f(ω0), f(ω1), . . . , f(ωn−1)).

That F is a unitary matrix is verified by a direct computation.

Note that F , called a Fourier matrix, is independent of C.

Problems

1. Let ω be an nth primitive root of unity. Show that

(a) ωω = 1.

(b) ωk = ω−k = ωn−k.

(c) 1 + ω + · · ·+ ωn−1 = 0.
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2. Let ω be an nth primitive root of unity. Show that ωk is also an nth
primitive root of unity if and only if (n, k) = 1; that is, n and k have
no common positive divisors other than 1.

3. Show that if A is a circulant matrix, then so are A∗, Ak, and A−1 if
the inverse exists.

4. Let A and B be square matrices of the same size. If AB = BA, show
that p(A)q(B) = q(B)p(A) for any polynomials p and q.

5. Let A and B be circulant matrices of the same size. Show that A
and B commute and that AB is a circulant matrix.

6. Let A be a circulant matrix. Show that for every positive integer k

rank (Ak) = rank (A).

7. Find the eigenvalues of the circulant matrices: 1 2 3
3 1 2
2 3 1

 and

 1 ω ω2

ω2 1 ω
ω ω2 1

 , ω3 = 1.

8. Find the eigenvalues and the eigenvectors of the circulant matrix
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

Find the matrix F that diagonalizes the above matrix.

9. Let P be the n× n primary permutation matrix. Show that

Pn = I, P T = P−1 = Pn−1.

10. Find a matrix X such that c0 c1 c2
c1 c2 c0
c2 c0 c1

 = X

 c0 c1 c2
c2 c0 c1
c1 c2 c0

 .

11. Find an invertible matrix Q such that

Q∗


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

Q =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
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12. Let F be the n× n Fourier matrix. Show that

(a) F is symmetric; namely, F T = F .

(b) (F ∗)2 = F 2 is a permutation matrix.

(c) (F ∗)3 = F and F 4 = I.

(d) The eigenvalues of F are ±1 and ±i with appropriate multi-
plicity (which is the number of times the eigenvalue repeats).

(e) F ∗ = n−1/2V (1, ω, ω2, . . . , ωn−1), where V stands for the Van-
dermonde matrix (see the next section).

(f) If F = R + iS, where R and S are real, then R2 + S2 = I,
RS = SR, and R and S are symmetric.

13. Let ei be the column vectors of n components with the ith component
1 and 0 elsewhere, i = 1, 2, . . . , n, c1, c2, . . . , cn ∈ C, and let

A = diag(c1, c2, . . . , cn)P,

where P is the n× n primary permutation matrix. Show that

(a) Aei = ci−1ei−1 for each i = 1, 2, . . . , n, where c0 = cn, e0 = en.

(b) An = cI, where c = c1c2 · · · cn.
(c) det(I +A+ · · ·+ An−1) = (1− c)n−1.

14. A matrix A is called a Toeplitz matrix if all entries of A are constant
down the diagonals parallel to the main diagonal. In symbols,

A =



a0 a1 a2 · · · an
a−1 a0 a1 · · · an−1

a−2 a−1 a0
. . .

...
...

...
. . .

. . . a1
a−n a−n+1 · · · a−1 a0

 .

For example, matrix F = (fij) with fi,i+1 = 1, i = 1, 2, . . . , n − 1,
and 0 elsewhere, is a Toeplitz matrix. Show that (i) a matrix A is a
Toeplitz matrix if and only if A can be written in the form

A =
n∑

k=1

a−k(F
T )k +

n∑
k=0

akF
k,

(ii) the sum of two Toeplitz matrices is a Toeplitz matrix, (iii) a
circulant matrix is a Toeplitz matrix, and (iv) BA is a symmetric
matrix, known as a Hankel matrix, where B is the backward identity.

. ⊙ .
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5.4 Vandermonde Matrices

An n-square Vandermonde matrix is a matrix of the form
1 1 1 · · · 1
a1 a2 a3 · · · an
a21 a22 a23 · · · a2n
...

...
...

...
...

an−1
1 an−1

2 an−1
3 · · · an−1

n

 ,

denoted by Vn(a1, a2, . . . , an) or simply V .
Vandermonde matrices play a role in many places such as in-

terpolation problems and solving systems of linear equations. We
consider the determinant and the inverse of a Vandermonde matrix
in this section.

Theorem 5.9 Let Vn(a1, a2, . . . , an) be a Vandermonde matrix. Then

detVn(a1, a2, . . . , an) =
∏

1≤i<j≤n

(aj − ai),

and Vn(a1, a2, . . . , an) is invertible if and only if all the ai are distinct.

Proof. We proceed with the proof by induction. There is nothing to
show if n = 1 or 2. Let n ≥ 3.

Suppose the assertion is true when the size of the matrix is n−1.
For the case of n, subtracting row i multiplied by a1 from row i+ 1,
for i going down from n− 1 to 1, we have

detV =

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
0 a2 − a1 a3 − a1 · · · an − a1
0 a2(a2 − a1) a3(a3 − a1) · · · an(an − a1)
...

...
...

...
...

0 an−2
2 (a2 − a1) an−2

3 (a3 − a1) · · · an−2
n (an − a1)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
a2 − a1 a3 − a1 · · · an − a1

a2(a2 − a1) a3(a3 − a1) · · · an(an − a1)
...

...
...

...

an−2
2 (a2 − a1) an−2

3 (a3 − a1) · · · an−2
n (an − a1)

∣∣∣∣∣∣∣∣∣
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=
n∏

j=2

(aj − a1) detVn−1(a2, a3, . . . , an)

=

n∏
j=2

(aj − a1)
∏

2≤i<j≤n

(aj − ai) (by the hypothesis)

=
∏

1≤i<j≤n

(aj − ai).

It is readily seen that the Vandermonde matrix is singular if and only
if at least two of the ai are equal.

An interesting application follows: Let A ∈ Mn. Then

An = 0 ⇔ trAk = 0, k = 1, 2, . . . , n.

Because An = 0, A is nilpotent, thus, A has only zero eigenvalues;
so does Ak for each k. For the other way around, let the eigenvalues
of A be λ1, λ2, . . . , λn. Then the trace identities imply

λ1 + λ2 + · · ·+ λn = 0,
λ21 + λ22 + · · ·+ λ2n = 0,

...
λn1 + λn2 + · · ·+ λnn = 0,

rewritten as

Vn(λ1, λ2, . . . , λn)(λ1, λ2, . . . , λn)
T = 0.

If all of the λi are distinct, then by the preceding theorem the Vander-
monde matrix is nonsingular and the system of equations in λ1, λ2,
. . . , λn has only the trivial solution λ1 = λ2 = · · · = λn = 0. If some
of the λi are identical, for instance, λ1 = λ2 and λ2, λ3, . . . , λn are
distinct, we then write the system as

Vn−1(λ2, . . . , λn)(2λ2, . . . , λn)
T = 0.

A similar argument will result in λ2 = · · · = λn = 0.
This idea applies to the interpolation problem of finding a poly-

nomial f(x) of degree at most n− 1 satisfying

f(xi) = yi, i = 1, 2, . . . , n,

where the xi and yi are given constants (Problem 4).
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Theorem 5.10 For any integers k1 < k2 < · · · < kn, the quotient

detVn(k1, k2, . . . , kn)

detVn(1, 2, . . . , n)

is an integer.

Proof. Let fi be any monic polynomial of degree i for i = 1, 2, . . . , n−
1. The additive property of determinants (see Section 1.2) shows that∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
f1(k1) f1(k2) f1(k3) · · · f1(kn)
f2(k1) f2(k2) f2(k3) · · · f2(kn)

...
...

...
...

...
fn−1(k1) fn−1(k2) fn−1(k3) · · · fn−1(kn)

∣∣∣∣∣∣∣∣∣∣∣
(5.8)

is the same as detVn(k1, k2, . . . , kn). By taking, for any integer a,

fi(a) = a(a− 1)(a− 2) · · · (a− i+ 1) = i!

(
a

i

)
,

we see that fi(a) is divisible by (i− 1)!.
Factoring out (i− 1)! from row i, i = 2, 3, . . . , n, we see that the

determinant in (5.8), thus detVn(k1, k2, . . . , kn), is divisible by the
product

∏n
i=1(i− 1)!.

The proof is complete, for
∏n

i=1(i− 1)! = detVn(1, 2, . . . , n).

We now turn our attention to the inverse of a Vandermonde ma-
trix. Consider the polynomial in x given by the product

p(x) = (x+ a1)(x+ a2) · · · (x+ an),

where a1, a2, . . . , an are constants. Expand p(x) as a polynomial

p(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn,

where s0 = 1 and for each k = 1, 2, . . . , n,

sk = sk(a1, a2, . . . , an) =
∑

1≤p1<···<pk≤n

k∏
q=1

apq .

We refer to sk, depending on a1, a2, . . . , an, as the kth elementary
symmetric function of a1, a2, . . . , an. (See also Section 4.4.)

One may expand p(x) = (x+ a1)(x+ a2)(x+ a3) as an example.
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Theorem 5.11 Suppose that a1, a2, . . . , an are distinct. Then

(Vn(a1, a2, . . . , an))
−1 = (αij),

where for each pair of i and j

αij =
(−1)1+j

∑
p1<···<pn−j

∏n−j
q=1, pq ̸=i apq∏n

k=1, k ̸=i(ak − ai)
.

Proof. Recall from elementary linear algebra (Section 1.2) that the
entries of the inverse of the matrix V are the cofactors of order n−1
divided by detV ; that is,

V −1 =

(
1

detV
cij

)T

,

where cij is the cofactor of the (i, j)-entry of V .

In what follows we compute the cofactors cij. Let Vk be the
matrix obtained from V by deleting row k+ 1 (the kth powers) and
adjoining as a new nth row the nth powers of the ai. We show

detVk = sn−k detV. (5.9)

Augment V with the nth powers of the ai as the (n + 1)th row
and with (1, −x, (−x)2, . . . , (−x)n)T as the first column. Denote
the resulting matrix by W . Then W is a Vandermonde matrix and

detW = (x+ a1) · · · (x+ an) detV

= (xn + s1x
n−1 + · · ·+ sn−1x+ sn) detV. (5.10)

Expanding detW along the first column, we have

detW = detV0 + xdetV1 + · · ·+ xn detV. (5.11)

Identity (5.9) follows by comparing (5.10) and (5.11).

Now notice that each cofactor cij is a determinant of order n−1 in
the same form as detVk. Let V (âj) and sk(âj) denote, respectively,
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the (n−1)-square Vandermonde matrix and the kth elementary sym-
metric function of a1, a2, . . . , an without aj . Using (5.9) we have

cij = (−1)i+j detV (i|j)
= (−1)i+js(n−1)−(i−1)(âj) detV (âj)

= (−1)i+jsn−i(âj) detV (âj).

Thus,

1

detV
cij =

(−1)i+jsn−i(âj) detV (âj)∏
t>s(at − as)

=
(−1)i+jsn−i(âj)∏

s<j(aj − as)
∏

j<t(at − aj)

=
(−1)i+1sn−i(âj)∏n
k=1, k ̸=j(ak − aj)

=
(−1)i+1

∑
p1<···<pn−i

∏n−i
q=1, pq ̸=j apq∏n

k=1, k ̸=j(ak − aj)

or

αij =
(−1)1+j

∑
p1<···<pn−j

∏n−j
q=1, pq ̸=i apq∏n

k=1, k ̸=i(ak − ai)
.

Problems

1. Find the solution to the equation in x:∣∣∣∣∣∣
x2 4 9
x 2 3
1 1 1

∣∣∣∣∣∣ = 0.

2. Evaluate the determinant∣∣∣∣∣∣
1 ax a2 + x2

1 ay a2 + y2

1 az a2 + z2

∣∣∣∣∣∣ .
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3. Find all solutions to the system of equations in x1, . . . , xn,
x1 + · · ·+ xn = a
x21 + · · ·+ x2n = a2

...
xn1 + · · ·+ xnn = an.

4. Let x1, x2, . . . , xn be different numbers. Show that for any set of n
numbers y1, y2, . . . , yn, there exists a polynomial f(x) of degree at
most n − 1 such that f(xi) = yi, i = 1, 2, . . . , n. In particular, for
any numbers λ1, λ2, . . ., λn, there exist polynomials g(x), and h(x)
if each λi ≥ 0, of degree at most n− 1 such that

g(λi) = λi, h(λi) =
√
λi, i = 1, 2, . . . , n.

5. Let A = diag(λ1, λ2, . . . , λn), where λi ̸= λj for i ̸= j. Show that for
every normal matrix B ∈ Mn, there exist a unitary matrix U and a
polynomial f such that B = U∗f(A)U.

6. Let U = (uij) be the p-square unitary matrix with

uij = ω(i−1)(j−1), i, j = 1, 2, . . . , p,

where p is a prime integer and ω is a pth primitive root of unity.
Show that all square submatrices of U are nonsingular.

7. Let S1 = {αi}ri=1 and S2 = {βi}si=1 be nonzero complex number
multisets (i.e., repetition of elements is allowed. Say, {1, 2, 2, 3}). If

r∑
i=1

αk
i =

s∑
i=1

βk
i , for every positive integer k ≤ r + s,

show that r = s and S1 = S2; that is, the two sets are the same.

8. Show that two n-square complex matrices A and B have the same
set of eigenvalues if and only if trAk = trBk, k = 1, 2, . . . , n.

9. Find the inverse, if it exists, of the Vandermonde matrix 1 1 1
1 x y
1 x2 y2

 .

10. Expand and find elementary symmetric functions for

p(x) = (x+ a1)(x+ a2)(x+ a3)(x+ a4).
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11. Let W be the matrix obtained from V = Vn(a1, . . . , an) by replac-
ing the last row (an−1

1 , . . . , an−1
n ) with (an1 , . . . , a

n
n). Show directly

without using (5.9) that detW = (a1 + · · ·+ an) detV.

12. Let f1(x), f2(x), . . . , fn(x) be polynomials with degree at most
n− 2. Show that for any numbers a1, a2, . . . , an∣∣∣∣∣∣∣∣∣

f1(a1) f1(a2) · · · f1(an)
f2(a1) f2(a2) · · · f2(an)

...
...

...
...

fn(a1) fn(a2) · · · fn(an)

∣∣∣∣∣∣∣∣∣ = 0.

13. Let A = (aij) ∈ Mn and fi(x) = a1i + a2ix + · · · + anix
n−1 for

i = 1, 2, . . . , n. Show that∣∣∣∣∣∣∣∣∣
f1(x1) f1(x2) · · · f1(xn)
f2(x1) f2(x2) · · · f2(xn)

...
...

...
...

fn(x1) fn(x2) · · · fn(xn)

∣∣∣∣∣∣∣∣∣ = detA
∏

1≤i<j≤n

(xj − xi).

14. Let a1, a2, . . . , an be complex numbers. Show that∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
a1 · · · an
...

...
...

an−2
1 · · · an−2

n

a2a3 · · · an · · · a1a2 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−1 detVn(a1, . . . , an).

15. Let V = Vn(x1, . . . , xn) be the n×n Vandermonde matrix of x1, . . . ,
xn, where xi ̸= xj whenever i ̸= j. Define F (x) =

∏n
i=1(x − xi)

and fk(x) = F (x)/(xk − x). Show that fk(xj) = 0 if j ̸= k and
fk(xk) = −F ′(xk), where F ′ is the 1st derivative of F . Expand
−fk(x)/F ′(xk) and form a matrix M by its coefficients as the kth
row of M , k = 1, . . . , n. Show that M is the inverse of V .

16. Let A be an n× n matrix with eigenvalues λ1, . . . , λn. Show that

det(λI − A) = λn − σ1λ
n−1 + σ2λ

n−2 − · · ·+ (−1)nσn,

where σk = sk(λ1, λ2, . . . , λn), k = 1, 2, . . . , n. Describe σk in terms
of principal minors (see Problem 19, Section 1.3.)

. ⊙ .
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5.5 Hadamard Matrices

An n-square matrix A is called a Hadamard matrix if each entry of
A is 1 or −1 and if the rows or columns of A are orthogonal; that is,

AAT = nI or ATA = nI.

Note that AAT = nI and ATA = nI are equivalent (Problem 5).
The following are two examples of Hadamard matrices:

(
1 1
1 −1

)
,


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 .

Notice that if A is a Hadamard matrix, then so is AP for any
matrix P with entries ±1 satisfying PP T = I. Thus, one may change
the −1 in the first row of A to +1 by multiplying an appropriate
matrix P with diagonal entries ±1. There is only one 2×2 Hadamard
matrix of this kind. Can one construct a 3× 3 Hadamard matrix?

Theorem 5.12 Let n > 2. A necessary condition for an n-square
matrix A to be a Hadamard matrix is that n is a multiple of 4.

Proof 1. Let A = (aij) be an n-square Hadamard matrix. Noticing
that the entries of A are ±1, the equation AAT = nI yields

n∑
k=1

aikajk =

{
0, if i ̸= j,
n, if i = j.

Upon computation, we have
n∑

k=1

(a1k + a2k)(a1k + a3k) =

n∑
k=1

a21k +

n∑
k=1

a1ka2k

+
n∑

k=1

a1ka3k +
n∑

k=1

a2ka3k

=
n∑

k=1

a21k

= n.
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Observe that the possible values for a1k+a2k and a1k+a3k are +2, 0,
and −2. Thus, each term in the summation

n∑
k=1

(a1k + a2k)(a1k + a3k)

must be +4, 0, or −4. It follows that n is divisible by 4.

Proof 2. Let P be an n-square matrix with main diagonal entries
1 or −1 such that the first row of AP consists entirely of +1. Note
that AP is also a Hadamard matrix. Since the second and third rows
of AP are orthogonal to the first row, they must each have the same
number, say r, of +1s and −1s. Thus n = 2r is an even number.

Let n+− be the number of columns of AP that contain a +1 of
row 2 and a −1 of row 3. Similarly, define n−+, n

+
+, and n

−
−. Then

n++ + n+− = n++ + n−+ = n−− + n+− = r.

Thus,
n++ = n−−, n+− = n−+.

The orthogonality of rows 2 and 3 implies that

n++ + n−− = n−+ + n+−.

This gives n++ = n+−. Therefore, n = 2r = 4n++ is a multiple of 4.

It has been conjectured that a Hadamard matrix of size 4k × 4k
exists for every positive integer k. The conjecture is not resolved yet.

The following theorem, verified by a direct computation, gives a
way to construct Hadamard matrices of larger dimensions.

Theorem 5.13 If A is a Hadamard matrix, then so is(
A A
A −A

)
. (5.12)

By this theorem, Hadamard matrices Hn of order 2n can be gen-
erated recursively by defining

H1 =

(
1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
, n ≥ 2. (5.13)
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Let

x1 =

(
1
c

)
and xn =

(
xn−1

cxn−1

)
, where c = −1 +

√
2.

By a simple computation, H1 has two eigenvalues ±
√
2, and x1 is an

eigenvector corresponding to
√
2. This generalizes as follows.

Theorem 5.14 Let Hn be defined as in (5.13). Then Hn has eigen-
values +2n/2 and −2n/2 each of multiplicity 2n−1, and an eigenvector
xn corresponding to the positive eigenvalue 2n/2.

Proof. The proof is done by induction on n. The case of n = 1 was
discussed just prior to the theorem. Now for n ≥ 2, we have

det(λI −Hn) =

∣∣∣∣ λI −Hn−1 −Hn−1

−Hn−1 λI +Hn−1

∣∣∣∣
= det

(
(λI −Hn−1)(λI +Hn−1)−H2

n−1

)
= det(λ2I − 2H2

n−1)

= det(λI −
√
2Hn−1) det(λI +

√
2Hn−1).

Thus each eigenvalue µ of Hn−1 generates two eigenvalues ±
√
2µ of

Hn. The assertion then follows by the induction hypothesis, forHn−1

has eigenvalues +2(n−1)/2 and −2(n−1)/2 each of multiplicity 2n−2.
To see the eigenvector part, we observe that, by induction again,

Hnxn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)(
xn−1

(−1 +
√
2 )xn−1

)
=

( √
2Hn−1xn−1

(2−
√
2 )Hn−1xn−1

)
= 2n/2

(
xn−1

(−1 +
√
2 )xn−1

)
= 2n/2xn.

Let Jn denote the n-square matrix whose entries are all equal to
1. We give a lower bound for the size of a Hadamard matrix that
contains a Jn as a submatrix.
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Theorem 5.15 If A is an m-square Hadamard matrix that contains
a Jn as a submatrix, then m ≥ n2.

Proof. We may assume by permutation that A is partitioned as

A =

(
Jn X
Y Zs

)
, (5.14)

where Zs is an s-square matrix of entries ±1, and s = m− n.
Since A is a Hadamard matrix of size m = n+ s, we have

AAT = (n+ s)Im,

which implies, by using the block form (5.14) of A, that

J2
n +XXT = (n+ s)In.

Thus,
XXT = (n+ s)In − nJn. (5.15)

The eigenvalues of the right-hand matrix in (5.15) are

n+ s− n2, n+ s, . . . , n+ s.

However, XXT is positive semidefinite, and thus has nonnegative
eigenvalues. Therefore, n+ s− n2 ≥ 0 or m ≥ n2.

Problems

1. Show that A is a Hadamard matrix, and then find A4, where

A =


1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

 .

2. Does there exist a 3 × 3 Hadamard matrix? How about a 6 × 6?
Construct an 8× 8 Hadamard matrix.

3. What is the determinant of an n-square Hadamard matrix?

4. Let A = (aij) be a 3 × 3 matrix. Show that if each aij = 1 or −1,
then detA is an even number. What is the maximum for detA?
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5. Let A be an n-square matrix with entries ±1. Show that

AAT = nI ⇔ ATA = nI.

Conclude that if A is Hadamard, then 1√
n
A is orthogonal.

6. Find the eigenvalues and eigenvectors of the Hadamard matrix
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

7. Show that the Kronecker product of two Hadamard matrices is also
a Hadamard matrix.

8. Let n ≥ 2 and define recursively, as in (5.13),

H1 =

(
1 1
1 −1

)
, Hn =

(
Hn−1 Hn−1

Hn−1 −Hn−1

)
,

and let

F1 =
1

2
(I + 2−n/2Hn), F2 = −1

2
(I − 2−n/2Hn).

Show that F1 and F2 are idempotent matrices and that

F1 + F2 = 2−n/2Hn.

9. Let n ≥ 2 and define recursively

E1 =

(
0 −1
1 0

)
, En+1 =

(
0 −En

En 0

)
.

Show that

(a) E2
n = (−1)nI2n .

(b) En is symmetric if n is even, and skew-symmetric if n is odd.

(c) EnHn = (−1)nHnEn, where Hn is defined as in (5.13).

10. Let A be a square matrix with entries 1, −1, or 0. If each row and
column of A contains only one nonzero entry 1 or −1, show that
Ak = I for some positive integer k.

11. How many n× n matrices of 0 and 1 entries are there for which the
number of 1s in each row and column is even? [Answer: 2(n−1)(n−1).]

. ⊙ .
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5.6 Permutation and Doubly Stochastic Matrices

A square matrix is called a permutation matrix if each row and col-
umn of the matrix has exactly one 1 and all other entries are 0.

It is easy to see that there are n! permutation matrices of size n.
Furthermore, the product of two permutation matrices of the same
size is a permutation matrix, and if P is a permutation matrix, then
P is invertible, and P−1 = P T (Problem 1).

Our goal in this section is to show that every permutation matrix
is a direct sum of primary permutation matrices under permutation
similarity and that every doubly stochastic matrix is a convex com-
bination of permutation matrices.

A matrix A of order n is said to be reducible if there exists a
permutation matrix P such that

P TAP =

(
B C
0 D

)
, (5.16)

where B and D are square matrices of order at least 1.

A matrix is said to be irreducible if it is not reducible. Note
that a matrix of order 1 is considered to be irreducible. The matrix
P TAP = P−1AP in (5.16) is similar to A through the permutation
matrix P . We say that they are permutation similar.

It is obvious that the diagonal entries of irreducible permutation
matrices are all equal to 0, but not vice versa. For example,

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Theorem 5.16 Every reducible permutation matrix is permutation
similar to a direct sum of irreducible permutation matrices.

Proof. Let A be an n-square reducible permutation matrix, as in
(5.16). The matrix C in this case must be zero, for otherwise, let B
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be r × r and D be s × s, where r + s = n. Then B contains r 1s
(in columns) and D contains s 1s (in rows). If C contained a 1, then
A would have at least r + s + 1 = n + 1 1s, a contradiction. The
assertion then follows by the induction on B and D.

We now show that every n-square irreducible permutation matrix
is permutation similar to the n× n primary permutation matrix

P =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
1 0 0 . . . 0

 . (5.17)

Theorem 5.17 A primary permutation matrix is irreducible.

Proof. Suppose the n×n primary permutation matrix P is reducible.
Let STPS = J1⊕· · ·⊕Jk, k ≥ 2, where S is some permutation matrix
and the Ji are irreducible matrices with order < n.

The rank of P − I is n− 1, for det(P − I) = 0 and the submatrix
of size n− 1 by deleting the last row and the last column from P − I
is nonsingular. It follows that

rank (STPS − I) = rank (ST (P − I)S) = n− 1.

By using the above decomposition, we have

rank (STPS − I) =
k∑

i=1

rank (Ji − I) ≤ n− k < n− 1.

This is a contradiction. The proof is complete.

The eigenvalues of the n× n primary permutation matrix P are
exactly all the roots of the equation λn = 1; that is, 1, ω, . . . , ωn−1,
where ω is an nth primitive root of unity, because

det(λI − P ) = λn − 1

by a direct computation. In addition, for any positive integer k < n,

Pn−1 = P T , Pn = In, P k =

(
0 In−k

Ik 0

)
.
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Theorem 5.18 A permutation matrix is irreducible if and only if it
is permutation similar to a primary permutation matrix.

Proof. Let Q be an n × n permutation matrix and P the n × n
primary permutation matrix in (5.17). If Q is permutation similar
to P , then Q is irreducible by the previous theorem. Conversely,
suppose that Q is irreducible. We show that Q can be brought to P
through simultaneous row and column permutations.

Let the 1 of the first row be in the position (1, i1). Then i1 ̸=
1 since Q is irreducible. If i1 = 2, we proceed to the next step,
considering the 1 in the second row. Otherwise, i1 > 2. Permute
columns 2 and i1 so that the 1 is placed in the (1, 2) position.

Permute rows 2 and i1 to get a matrix Q1. This matrix is per-
mutation similar to Q and also irreducible. If the (2, 3)-entry of Q1

is 1, we go on to the next step. Otherwise, let the (2, i2)-entry be 1,
i2 ̸= 3. If i2 = 1, then Q1 would be reducible, for all entries in the
first two columns but not in the first two rows equal 0. Thus, i2 ≥ 3.
Permute columns 3 and i2 so that the 1 is in the (2, 3) position.

Note that the 1 in the (1, 2) position was not affected by the
permutations in the second step. Continuing in this way, one obtains
the permutation matrix P in the form of (5.17). The product of
a sequence of permutation matrices is also a permutation matrix,
therefore we have a permutation matrix S such that

STQS = S−1QS = P.

Combining the above theorems, we see that every reducible per-
mutation matrix is permutation similar to a direct sum of primary
permutation matrices. Moreover, the rank of an n-square irreducible
permutation matrix minus I is n− 1 (Problem 4).

Theorem 5.19 Let Q be an n-square permutation matrix. Then Q
is irreducible if and only if the eigenvalues of Q are 1, ω, . . . , ωn−1,
where ω is an nth primitive root of unity.

Proof. If Q is irreducible, then Q is similar to the n × n primary
permutation matrix, according to Theorem 5.18, which has the eigen-
values 1, ω, . . . , ωn−1; so does matrix Q.
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Conversely, suppose that 1, ω, . . . , ωn−1 are the eigenvalues of
Q. Note that ωk ̸= 1 for any 1 ≤ k < n since ω is an nth primitive
root of unity. If Q is reducible, then we may write

STQS = J1 ⊕ · · · ⊕ Jk,

where S is a permutation matrix, and the Ji are primary permutation
matrices with order less than n.

The eigenvalues of those Ji are the eigenvalues of Q, none of
which is an nth primitive root of unity, for the order of every Ji is
less than n. This is a contradiction. Thus, Q is irreducible.

We next present a beautiful relation between permutation matri-
ces and doubly stochastic matrices, a type of matrices that plays an
important role in statistics and in some other subjects.

A square matrix is said to be doubly stochastic if all entries of the
matrix are nonnegative and the sum of the entries in each row and
each column equals 1. Equivalently, a matrix A with nonnegative
entries is doubly stochastic if

eTA = eT and Ae = e, where e = (1, 1, . . . , 1)T . (5.18)

It is readily seen that permutation matrices are doubly stochastic
and so is the product of two doubly stochastic matrices.

We show that a matrix is a doubly stochastic matrix if and only
if it is a convex combination of finite permutation matrices. To prove
this, we need a result, which is of interest in its own right.

Theorem 5.20 (Frobenius–König) Let A be an n-square complex
matrix. Then every product of n entries of A taken from distinct rows
and columns equals 0; in symbols,

a1i1a2i2 · · · anin = 0, {i1, i2, . . . , in} = {1, 2, . . . , n}, (5.19)

if and only if A contains an r×s zero submatrix, where r+s = n+1.

Proof. First notice that property (5.19) of A will remain true when
row or column permutations are applied to A. In other words, an
n-square matrix A has property (5.19) if and only if PAQ has the
property, where P and Q are any n-square permutation matrices.
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Sufficiency: We may assume by permutation that the r × s zero
submatrix is in the lower-left corner, and write

A =

(
B C
0 D

)
.

Because n − r = s − 1, B is of size (s − 1) × s. Thus, there must
be a zero among any s entries taken from the first s columns and
any s different rows. Therefore, every product a1i1a2i2 · · · anin has to
contain a zero factor, hence equals zero.

Necessity: If all the entries of A are zero, there is nothing to prove.
Suppose A has a nonzero entry and consider the submatrix obtained
from A by deleting the row and the column that contain the nonzero
entry. An application of induction on the (n−1)× (n−1) submatrix
results in a zero submatrix of size p×q, where p+q = (n−1)+1 = n.
We thus may write A, by permutation, as

A =

(
B C
0 D

)
,

where B is q × q and D is p × p. Since every product of the entries
of A from different rows and columns is 0, this property must be
inherited by B or D, say B. Applying the induction to B, we see
that B has an l × s zero submatrix such that l + s = q + 1. Putting
this zero submatrix in the lower-left corner of B, we see that A has
an r × s zero submatrix, where r = p+ l and r + s = n+ 1.

Theorem 5.21 (Birkhoff) A matrix A is doubly stochastic if and
only if it is a convex combination of permutation matrices.

Proof. To show sufficiency, let A be a convex combination of permu-
tation matrices P1, P2, . . . , Pm; that is,

A = t1P1 + t2P2 + · · ·+ tmPm,

where t1, t2, . . . , tm are nonnegative numbers of a sum equal to 1.
Then it is easy to see that eTA = eT and Ae = e, where e =
(1, . . . , 1)T . By (5.18) A is doubly stochastic.

For necessity, we apply induction on the number of zero entries of
the doubly stochastic matrices. If A has (at most) n2−n zeros, then
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A is a permutation matrix, and we have nothing to show. Suppose
that the doubly stochastic matrices with at least k zeros are convex
combinations of permutation matrices. We show that the assertion
holds for the doubly stochastic matrices with k − 1 zeros.

Let A be an n-square doubly stochastic matrix of k − 1 zero
entries. If every product of the entries of A from distinct rows and
columns is zero, then A may be written as, up to permutation,

A =

(
B C
0 D

)
,

where the zero submatrix is of size r × s with r + s = n+ 1.
Since the entries in each column A add up to 1, the sum of all

entries of B equals s. Similarly, by considering rows, the sum of all
entries of D is r. Thus, the sum of all entries of A would be at least
r+ s = n+1. This is impossible, for the sum of all entries of A is n.
Therefore, some product a1i11a2i2 · · · anin ̸= 0.

Let P1 be a permutation matrix with 1 in the positions (j, ij),
j = 1, 2, . . . , n, and 0 elsewhere. Consider the matrix

E = (1− δ)−1(A− δP1),

where δ = min{a1i1 , a2i2 , . . . , anin}.
It is readily seen by (5.18) that E is also a doubly stochastic

matrix and that E has at least one more zero than A. By the induc-
tion hypothesis, there are positive numbers t2, . . . , tm of sum 1, and
permutation matrices P2, . . . , Pm, such that

E = t2P2 + · · ·+ tmPm.

It follows that

A = δP1 + (1− δ)t2P2 + · · ·+ (1− δ)tmPm,

where Pi are permutation matrices, and their coefficients are non-
negative and sum up to 1.
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Problems

1. Show that the determinant of a permutation matrix is ±1 and that
permutation matrices are unitary and hence normal.

2. Find permutations that bring the reducible permutation matrix

P =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


to a direct sum of irreducible matrices. Show that P 2 = I.

3. Let A = B =
(
0
1
1
0

)
. Show that A and B are both irreducible but

AB, A2, and A⊗B are reducible.

4. Let P be an n× n irreducible permutation matrix. Show that

rank (P − I) = n− 1.

5. Let P be an n× n irreducible permutation matrix. Show that P k is
irreducible if and only if (n, k) = 1; that is, n and k have no common
positive divisors other than 1.

6. Let P be an n-square permutation matrix. Show that P is irreducible
if and only if P has the property Pm = In ⇔ n|m.

7. Let P be an n × n irreducible permutation matrix. Show that P is
diagonalizable over C but not over R when n ≥ 3.

8. Show that if two permutation matrices A and B are similar, i.e.,
S−1AS = B for some nonsingular S, then they are permutation
similar; that is, S can be chosen to be a permutation matrix.

9. Show that for any n×n permutation matrix P , Pn! = I, and further
that if P is irreducible, then Pn = I. Is the converse true?

10. Prove or disprove that a symmetric permutation matrix (of odd or
even order greater than 1) is reducible.

11. Find the rank of the partitioned permutation matrix Q, where

Q =


0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
I 0 0 0 0
0 I 0 0 0

 .
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12. Show that 
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


is not permutation similar to its Jordan canonical form

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

13. Show that an n-square matrix A with nonnegative entries is reducible
if and only if there exists a proper subset {i1, . . . , ik} of {1, . . . , n}
such that

Span{Aei1 , . . . , Aeik} ⊆ Span{ei1 , . . . , eik},

where the ei are the standard basis vectors for Cn.

14. Show that the product of two doubly stochastic matrices is a doubly
stochastic matrix. How about the sum?

15. Show that if U = (uij) is a unitary matrix, then A = (|uij |2) is a
doubly stochastic matrix. How about B = (|uij ||vij |), where V =
(vij) is a unitary matrix of the same size as U?

16. Let P and Q be permutation matrices of the same size. Show that

αP + (1− α)Q

is a doubly stochastic matrix for any α ∈ [0, 1].

17. Show that the following determinant is zero:∣∣∣∣∣∣∣∣∣∣
a b 0 0 0
c d 0 0 0
e f 0 0 0
g h i j k
l m n o p

∣∣∣∣∣∣∣∣∣∣
.

18. Show that every n × n doubly stochastic matrix is a convex combi-
nation of at most n2 − 2n+ 2 permutation matrices.

19. If A is an n × n nonsingular matrix, how many zero entries can A
have at most?
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20. Show that every nilpotent matrix with nonnegative entries is per-
mutation similar to a strictly upper-triangular matrix. [Hint: Let
e1, . . . , en be the standard basis vectors of Cn. Show Aei = 0 for
some i; that is, A contains a zero column, by induction.]

21. A permutation of an n-element set {1, 2, . . . , n} is a mapping

p : 1 → i1, 2 → i2, . . . , n→ in,

written as

p =

(
1 2 · · · n
i1 i2 · · · in

)
.

Assign p a permutation matrix P = f(p), which has 1 in the (k, ik)
position and 0 elsewhere, k = 1, 2, . . . , n. Define the product of

p =

(
1 2 · · · n
i1 i2 · · · in

)
and q =

(
i1 i2 · · · in
j1 j2 · · · jn

)
by

pq =

(
1 2 · · · n
j1 j2 · · · jn

)
.

Show that
f(pq) = f(p)f(q).

22. A permutation is called an interchange if only two elements are per-
muted. For instance, the following p is an interchange, where

p =

(
1 2 3 4 · · · n
3 2 1 4 · · · n

)
.

Show that every permutation on {1, 2, . . . , n} can be obtained by a
sequence of interchanges (permutation of two numbers each time).

23. Show that any n × n permutation matrix can be expressed as the
product of at most n− 1 symmetric permutation matrices.

. ⊙ .



5.7 Nonnegative Matrices

A nonnegative matrix is a matrix all of whose entries are nonnegative.
Permutation matrices and doubly stochastic matrices are nonnega-
tive matrices. If A = (aij) is a nonnegative matrix, i.e., aij ≥ 0 for
all i and j, we write A ≥ 0 (or 0 ≤ A). If all the entries of A are
positive, we call A a positive matrix and denote A > 0 (or 0 < A).

Any matrix A (including row and column vectors) is associated
with a nonnegative matrix (vector), written as |A|, whose entries are
the absolute values of the entries of A; that is, |A| = (|aij |).

Important note: Let A be a matrix (or a vector). In this section,
and only in this section, of the book, A ≥ (>)0 means that A is a
nonnegative (positive) matrix and |A| stands for the resulting matrix
by taking the absolute values of the entries of A. In all other sections
of the book, A ≥ 0 means that A is positive semidefinite and |A| is
the modulus of A, i.e., |A| = (A∗A)1/2. Each of these notations is
about equally and widely used in the literature for both meanings.
One may use A≥e0 with a subscript e for an entrywise nonnegative
matrix and |A|e = (|aij |) for an entrywise absolute value matrix.

For matrices A and B of the same size, we write

A ≥ (>)B if A−B ≥ (>)0.

Obviously, when A and B are matrices of the same size

|A+ B| ≤ |A|+ |B|

and for matrices A and B of sizes m× n and n×m, respectively,

|AB| ≤ |A||B|.

In particular, for any n-square complex matrix A and vector x in Cn,

|Ax| ≤ |A||x|

and for any square complex matrix A and positive integer k,

|Ak| ≤ |A|k.
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Furthermore, if A > 0 and x ̸= 0, then A|x| > 0.
We are now ready to present a theorem on comparison of the

spectral radii of nonnegative matrices. Recall that the spectral radius
ρ(A) of an n-square complex matrix A is defined to be

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

Note that ρ(A) is in general not an eigenvalue of A. Our main goal
of this section is to show that if A ≥ 0, then ρ(A) is an eigenvalue of
A and that a positive eigenvector belonging to this eigenvalue exists.

Theorem 5.22 Let A ≥ 0 and B ≥ 0 be n-square matrices. Then

A ≥ B ⇒ ρ(A) ≥ ρ(B).

Proof. Since A ≥ B ≥ 0, i.e., aij ≥ bij ≥ 0 for all i and j, we have∑
i, j

a2ij ≥
∑
i, j

b2ij .

It follows that (∑
i, j

a2ij

)1/2

≥
(∑

i, j

b2ij

)1/2

or in Frobenius norm,
∥A∥F ≥ ∥B∥F .

On the other hand (Problem 4), for all positive integers k, we have

A ≥ B ≥ 0 ⇒ Ak ≥ Bk.

This yields
∥Ak∥F ≥ ∥Bk∥F

or
∥Ak∥1/kF ≥ ∥Bk∥1/kF .

Taking limits and using Theorem 4.4, we have ρ(A) ≥ ρ(B).

Consider a pair of n-square nonnegative matrices A and B. Since
the Hadamard product A ◦ B is a principal submatrix of the Kro-
necker product A⊗B (Theorem 4.7), by Problem 11, we have

ρ(A ◦B) ≤ ρ(A⊗B) = ρ(A)ρ(B).
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The example below shows that ρ(AB) ≤ ρ(A)ρ(B) is not true:

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
.

The following result ensures that ρ(AB) dominates ρ(A ◦B).

Theorem 5.23 Let A and B be n× n nonnegative matrices. Then

ρ(A ◦B) ≤ ρ(AB).

Proof. The proof is based on two facts: If 0 ≤ X ≤ Y then
ρ(X) ≤ ρ(Y ) (Theorem 5.22); and if P is a principal submatrix
of a nonnegative square matrix Q then ρ(P ) ≤ ρ(Q) (Problem 11).

We first show that

(A ◦B)(B ◦A) ≤ (AB) ◦ (BA). (5.20)

Computing the (i, j)-entry of the right-hand side of (5.20), we have(∑
s

aisbsj

)(∑
t

bitatj

)
=
∑
s, t

aisbitatjbsj .

Setting s = t = p yields
∑

p aipbipapjbpj, the left-hand side of (5.20).
Recalling that the Hadamard product is a principal submatrix of

the Kronecker product (Theorem 4.7), we have

(ρ(A ◦B))2 ≤ ρ(AB ◦BA) ≤ ρ(AB ⊗BA) = (ρ(AB))2.

By taking the square roots, we obtain the desired inequality.

The next result reveals lower and upper bounds for the spectral
radius of a nonnegative matrix in terms of the entries, precisely, the
row and column sums of the matrix.

Theorem 5.24 Let A be an n-square nonnegative matrix. Then

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij.

In other words, the spectral radius of a nonnegative square matrix is
between the smallest row sum and the largest row sum.
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Proof. We may assume A ̸= 0. Denote the ith row sum by ri;
namely, ri = ai1 + ai2 + · · · + ain. Let r be the smallest row sum of
A; that is, r = min ri. We construct a new matrix B such that

0 ≤ B ≤ A and r = ρ(B).

If r = 0, set B = 0. Otherwise, let

bij = r(r−1
i aij).

It is immediate that 0 ≤ B ≤ A. The preceding theorem ensures
ρ(B) ≤ ρ(A). To see ρ(B) = r, first observe that Be0 = re0, where
e0 = (1, . . . , 1)T . This says that r is an eigenvalue of B. So ρ(B) ≥ r.
However, considering the maximum row sum matrix norm ||| · |||∞
(Problem 8, Section 4.2), we have ρ(B) ≤ |||B|||∞ = r. Thus, ρ(B) =
r. The upper bound is similarly shown.

Similar results hold for the columns with AT in place of A.
We now show a fundamental theorem on nonnegative matrices.

We present the theorem for positive matrices. The results can be gen-
eralized and amplified to nonnegative matrices (due to Frobenius).

Theorem 5.25 (Perron) Let A be an n× n positive matrix. Then

1. ρ(A) > 0.

2. ρ(A) is an eigenvalue of A.

3. Ax = ρ(A)x for some vector x > 0.

4. If Au = ρ(A)u and Av = ρ(A)v, then u = αv for some α ∈ C.
5. If λ is an eigenvalue of A and λ ̸= ρ(A), then |λ| < ρ(A).

Proof. If A > 0, then each row sum (and column) sum is greater
than zero. By the preceding theorem, (1) is true.

To show (2) and (3), let Ax = λx, where x ̸= 0 and |λ| = ρ(A).
We show that A|x| = ρ(A)|x|. Denote ρ = ρ(A) for simplicity. Then

ρ|x| = |λ||x| = |λx| = |Ax| ≤ |A||x| = A|x|.

Note that A|u| > 0 for all u ̸= 0 since every entry of A is positive.
So A|x| > 0. Now set y = A|x| − ρ|x|. Then y ≥ 0. If y ̸= 0, then

0 < Ay = A(A|x|)− ρA|x|
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or
Az > ρz, where z = A|x| > 0.

If we write z = A|x| = (z1, . . . , zn), then all zi are positive and
Az > ρz implies that

∑
j aijzj > ρzi for all i. Let Z be the diagonal

matrix diag(z1, . . . , zn). Using Theorem 5.24, we have

ρ(A) = ρ(Z−1AZ) ≥ min
i

1

zi

∑
j

aijzj > ρ = ρ(A),

a contradiction. So y = 0, i.e., A|x| = ρ|x|, and |x| > 0 as A|x| > 0.
We have shown that for any square positive matrix A,

Ax = λx, x ̸= 0, |λ| = ρ(A) ⇒ A|x| = ρ(A)|x|, |x| > 0. (5.21)

To show (4), following the above argument, we have A|x| = ρ|x|
and |x| > 0 whenever Ax = ρx and x ̸= 0. Thus for t = 1, 2, . . . , n,

ρ|xt| =
n∑

j=1

atj |xj |.

However, ρ|x| = |ρx| = |Ax|, thus we have

ρ|xt| =
∣∣∣ n∑
j=1

atjxj

∣∣∣ and
∣∣∣ n∑
j=1

atjxj

∣∣∣ = n∑
j=1

atj |xj |

which holds if and only if all at1x1, at2x2, . . . , atnxn, thus x1, x2, . . . ,
xn (as at1, at2, . . . , atn are positive), have the same argument (Prob-
lem 6), namely, there exists θ ∈ R such that for all j = 1, 2, . . . , n,

eθixj > 0; that is, |x| = eθix > 0. (5.22)

Now suppose u and v are two eigenvectors belonging to the eigen-
value ρ. By the above discussion, there exist real numbers θ1 and θ2
such that |u| = eθ1iu > 0 and |v| = eθ2iv > 0. Set β = mint |ut|/|vt|
and define w = |u| − β|v|. Then w is a nonnegative vector having at
least one component 0. On the other hand,

Aw = A(|u| − β|v|) = A|u| − βA|v| = ρ|u| − βρ|v| = ρw.
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If w ̸= 0, then w > 0 by (5.21), a contraction. Thus w = 0 and
|u| = β|v| which implies u = αv, where α = βe(θ2−θ1)i.

For (5), if |λ| = ρ and Ax = λx, x ̸= 0, then eθix > 0 for some
θ ∈ R by (5.22). Set y = eθix. Then Ay = λy, which is positive. So
λ > 0 and λ = ρ. In other words, if λ ̸= ρ, then |λ| < ρ.

The Perron theorem simply states that for any square positive
matrix A, the spectral radius ρ(A) is an eigenvalue of A, known as
the Perron root. The Perron eigenvalue of a positive matrix is the
only eigenvalue that attains the spectral radius. Moreover, the posi-
tive eigenvectors, known as Perron vectors, of the Perron eigenvalue
are unique up to magnitude. These statements hold for irreducible
nonnegative matrices. However, it is possible for a nonnegative A to
have several eigenvalues that have the maximum modulus ρ(A).

Problems

1. Does there exist a positive matrix that is similar to
(
0
0
1
0

)
?

2. Compute explicitly the eigenvalues of the matrix

A =

(
1− α α
1− α α

)
, 0 < α < 1.

Show that the spectral radius ρ(A) can be strictly less than the nu-
merical radius w(A) = max∥x∥=1 x

∗Ax for some α. What if α = 1
2?

3. Can the inverse of a positive matrix be also positive?

4. Let A,B,C,D be square matrices of the same size. Show that

0 ≤ B ≤ A, 0 ≤ D ≤ C ⇒ 0 ≤ BD ≤ AC.

5. Let A be an n-square positive matrix. Show that there exists a unique
vector x > 0 such that Ax = ρ(A)x and x1 + x2 + · · ·+ xn = 1.

6. Let p1, p2, . . . , pn be positive numbers and let c1, c2, . . . , cn ∈ C. If

|p1c1 + p2c2 + · · ·+ pncn| = p1|c1|+ p2|c2|+ · · ·+ pn|cn|,

show that eθick ≥ 0 for some θ ∈ R and all k = 1, 2, . . . , n.

7. Let A ≥ 0 be a square matrix. If αx ≤ Ax ≤ βx for some scalars
α, β, and nonnegative vector x ̸= 0, show that α ≤ ρ(A) ≤ β.
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8. Let A ≥ 0 be a square matrix. If Au = λu for some positive vector
u and a scalar λ, show that λ = ρ(A). Is it true that Av ≤ ρ(A)v for
all positive vectors v?

9. Show that ρ(A) ≤ ρ(|A|) for any complex square matrix A.

10. Compute ρ(AB), ρ(A)ρ(B), and ρ(A◦B) for each pair of the following
matrices and conclude that any two of these quantities can be the
same whereas the third one may be different:(

1 0
0 1

)
,

(
1 1
1 1

)
;

(
0 0
1 0

)
,

(
0 1
0 0

)
;

(
1 0
0 0

)
,

(
0 0
0 1

)
.

11. Let A ≥ 0 be a square matrix and B be a (proper) principal subma-
trix of A. Show that ρ(B) ≤ ρ(A). If A > 0, show that ρ(B) < ρ(A).

12. Let A and B be n×n positive matrices. Show that ρ(A◦B) < ρ(AB).

13. Let A and B be n×n nonnegative matrices. Show that ∥A ◦B∥op ≤
ρ(ATB), where ∥A ◦ B∥op is the operator (spectral) norm of A ◦ B.
Show by example that ∥A ◦B∥op ≤ ρ(AB) does not hold in general.

14. Let A > 0 and let M =
(

A
0

0
A

)
. What is ρ(M)? How many eigenval-

ues of M are there that have the maximum modulus ρ(M)?

15. Show that every square positive matrix is similar to a positive matrix
all of whose row sums are constant.

16. Let A =
(
1
1
1
0

)
and B =

(
0
1
1
1

)
. Show that Au ̸= Bv for any positive

vectors u and v. Use this to show that no two multiplicative elements
of A and B written in different ways are the same. For example,
A2B3ABA5B ̸= B2A3BA3B2.

17. An M -matrix A is a matrix that can be written as

A = αI − P, where P ≥ 0, α ≥ ρ(P ).

Let A be an M -matrix. Show that

(a) All principal submatrices of A are M -matrices.

(b) All real eigenvalues of A are nonnegative.

(c) The determinant of A is nonnegative.

(d) If A is nonsingular, then A−1 ≥ 0.

. ⊙ .



CHAPTER 6

Unitary Matrices and Contractions

Introduction: This chapter studies unitary matrices and contrac-
tions. Section 6.1 gives basic properties of unitary matrices, Section
6.2 discusses the structure of real orthogonal matrices under similar-
ity, and Section 6.3 develops metric spaces and the fixed-point theo-
rem of strict contractions. Section 6.4 deals with the connections of
contractions with unitary matrices, Section 6.5 concerns the unitary
similarity of real matrices, and Section 6.6 presents a trace inequality
for unitary matrices, relating the average of the eigenvalues of each
of two unitary matrices to that of their product.

6.1 Properties of Unitary Matrices

A unitary matrix is a square complex matrix satisfying

U∗U = UU∗ = I.

Notice that U∗ = U−1 and |detU | = 1 for any unitary matrix U . A
complex (real) matrix A is called complex (real) orthogonal if

ATA = AAT = I.

Unitary matrices and complex orthogonal matrices are different in
general, but real unitary and real orthogonal matrices are the same.
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Theorem 6.1 Let U ∈ Mn be a unitary matrix. Then

1. ∥Ux∥ = ∥x∥ for every x ∈ Cn.

2. |λ| = 1 for every eigenvalue λ of U .

3. U = V diag(λ1, . . . , λn)V
∗, where V is unitary and each |λi| =1.

4. The column vectors of U form an orthonormal basis for Cn.

Proof. (1) is obtained by rewriting the norm as an inner product:

∥Ux∥ =
√

(Ux,Ux) =
√
(x, U∗Ux) =

√
(x, x) = ∥x∥.

To show (2), let x be a unit eigenvector of U corresponding to
eigenvalue λ. Then, by using (1),

|λ| = |λ|∥x∥ = ∥λx∥ = ∥Ux∥ = ∥x∥ = 1.

(3) is by the spectral decomposition theorem (Theorem 3.4).
For (4), suppose that ui is the ith column of U , i = 1, . . . , n.

Then the matrix identity U∗U = I is equivalent to u∗1
...
u∗n

 (u1, . . . , un) =

 1 0
. . .

0 1

 .

This says (ui, uj) = u∗jui = 1 if i = j, and 0 otherwise.

An interesting observation follows. Note that for any unitary U ,

adj(U) = (detU)U−1 = (detU)U∗.

If we partition U as

U =

(
u α
β U1

)
, u ∈ C,

then, by comparing the (1, 1)-entries in adj(U) = (detU)U∗,

detU1 = detU ū,

which is also a consequence of Theorem 2.3.
As we saw in Theorem 6.1, the eigenvalues of a unitary matrix

are necessarily equal to 1 in absolute value. The converse is not true
in general. We have, however, the following result.
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Theorem 6.2 Let A ∈ Mn have all the eigenvalues equal to 1 in
absolute value. Then A is unitary if, for all x ∈ Cn,

∥Ax∥ ≤ ∥x∥.

Proof 1. The given inequality is equivalent to

∥Ax∥ ≤ 1, for all unit x ∈ Cn.

This specifies that σmax(A) ≤ 1 (Problem 7, Section 4.1).

On the other hand, the identity |detA|2 = det(A∗A) implies
that the product of eigenvalues in absolute value equals the product
of singular values. If A has only eigenvalues 1 in absolute value, then
the smallest singular value of A has to be 1; thus, all the singular
values of A are equal to 1. Therefore, A∗A = I, and A is unitary.

Proof 2. Let A = U∗DU be a Schur decomposition of A, where U is
a unitary matrix, and D is an upper-triangular matrix:

D =


λ1 t12 . . . t1n

0 λ2
. . .

...
...

. . .
. . . tn−1,n

0 . . . 0 λn

 ,

where |λi| = 1, i = 1, 2, . . . , n, and tij are complex numbers.

Take x = U∗en = U∗(0, . . . , 0, 1)T . Then ∥x∥ = 1. We have

∥Ax∥ = ∥Den∥ = (|t1n|2 + · · ·+ |tn−1,n|2 + |λn|2)1/2.

The conditions ∥Ax∥ ≤ 1 for unit x and |λn| = 1 force each
tin = 0 for i = 1, 2, . . . , n − 1. By induction, one sees that D is a
diagonal matrix with the λi on the diagonal. Thus, A is unitary, for

A∗A = U∗D∗UU∗DU = U∗D∗DU = U∗U = I.

We now show a result on the singular values of the principal
submatrices of a unitary matrix.
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Theorem 6.3 Let U be a unitary matrix partitioned as

U =

(
A B
C D

)
,

where A is m×m and D is n×n. If m = n, then A and D have the
same singular values. If m < n and if the singular values of A are

σ1, . . . , σm, then the singular values of D are σ1, . . . , σm,

n−m︷ ︸︸ ︷
1, . . . , 1 .

Proof. Since U is unitary, the identities U∗U = UU∗ = I imply

A∗A+ C∗C = Im, CC∗ +DD∗ = In.

It follows that

A∗A = Im − C∗C, DD∗ = In − CC∗.

Note that CC∗ and C∗C have the same nonzero eigenvalues. Hence,
In−CC∗ and Im−C∗C have the same eigenvalues except n−m 1s;
that is, A∗A and DD∗ have the same eigenvalues except n −m 1s.
Therefore, if m = n, then A and D have the same singular values,
and if m < n and A has singular values σ1, . . . , σm, then the singular
values of D are σ1, . . . , σm, plus n−m 1s.

An interesting result on the unitary matrix U in Theorem 6.3 is

| detA| = |detD|.

In other words, the complementary principal submatrices of a unitary
matrix always have the same determinant in absolute value.

Problems

1. Which of the items in Theorem 6.1 implies that U is a unitary matrix?

2. Show that for any θ1, . . . , θn ∈ R, diag(eiθ1 , . . . , eiθn) is unitary.

3. What are the singular values of a unitary matrix?

4. Find an m× n matrix V , m ̸= n, such that V ∗V = In.

5. Let A =
(
0
0
x
0

)
, where x ∈ C. What are the eigenvalues and singular

values of A in terms of x?
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6. Show that for any θ ∈ R, the following two matrices are similar:(
eiθ 0
0 e−iθ

)
and

(
cos θ sin θ
− sin θ cos θ

)
.

[Note: They are both unitary; the first is complex; the second is real.]

7. Show that any 2 × 2 unitary matrix with determinant equal to 1 is
similar to a real orthogonal matrix.

8. Let A and C be m- and n-square matrices, respectively, and let

M =

(
A B
0 C

)
.

Show thatM is unitary if and only if B = 0 and A and C are unitary.

9. Show that the 2× 2 block matrix below is real orthogonal:( √
λ I −

√
1− λ I√

1− λ I
√
λI

)
, λ ∈ [0, 1].

10. If A is a unitary matrix with all eigenvalues real, show that

A2 = I and A∗ = A.

11. If A is similar to a unitary matrix, show that A∗ is similar to A−1.

12. Let A ∈ Mn be Hermitian. Show that (A− iI)−1(A+ iI) is unitary.

13. Let A be an n×n unitary matrix. If A− I is nonsingular, show that
i(A− I)−1(A+ I) is Hermitian.

14. Let a and b be real numbers such that a2 − b2 = 1, ab ̸= 0, and let

K =

(
a bi

−bi a

)
.

(a) Show that K is complex orthogonal but not unitary; that is,

KTK = I but K∗K ̸= I.

(b) Let a =
√
2 and b = 1. Find the eigenvalues of K.

(c) Let a = 1
2(e + e−1) and b = 1

2 (e − e−1), where e = 2.718 . . . .
Show that the eigenvalues of K are e and e−1.

(d) Let a = 1
2 (e

t + e−t) and b = 1
2 (e

t − e−t), t ∈ R. What are the
eigenvalues of K? Is the trace of K bounded?
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15. Let A be an n-square complex matrix. Show that A = 0 if A satisfies

|(Ay, y)| ≤ ∥y∥, for all y ∈ Cn,

or
|(Ay, y)| ≤ ∥Ay∥, for all y ∈ Cn.

[Hint: If A ̸= 0, then (Ay0, y0) ̸= 0 for some y0 ∈ Cn.]

16. Let A ∈ Mn and α ∈ (0, 1). What can be said about A if

|(Ay, y)| ≤ (y, y)α, for all y ∈ Cn?

17. Let A ∈ Mn have all eigenvalues equal to 1 in absolute value. Show
that A is unitary if A satisfies

|(Ay, y)| ≤ ∥Ay∥2, for all y ∈ Cn,

or
|(Ay, y)| ≤ ∥y∥2, for all y ∈ Cn.

18. Let A be an n×n complex matrix having the largest and the smallest
singular values σmax(A) and σmin(A), respectively. Show that

(Ay,Ay) ≤ (y, y), for all y ∈ Cn, ⇒ σmax(A) ≤ 1

and

(y, y) ≤ (Ay,Ay), for all y ∈ Cn, ⇒ σmin(A) ≥ 1.

19. Let A ∈ Mn have all eigenvalues equal to 1 in absolute value. Show
that A is unitary if A satisfies, for some real α ̸= 1

2
,

|(Ay, y)| ≤ (Ay,Ay)α, for all unit y ∈ Cn.

[Hint: Assume that A is upper-triangular with a11 = 1, a1i > 0 for
some i > 1. Take y = (cos t, 0, . . . , 0, sin t, 0, . . . , 0) and consider the
behavior of the function f(t) = (Ay,Ay)α−|(Ay, y)| near the origin.]

. ⊙ .
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6.2 Real Orthogonal Matrices

This section is devoted to real orthogonal matrices, the real matrices
A satisfying AAT = ATA = I. We discuss the structure of real
orthogonal matrices under similarity and show that real orthogonal
matrices with a commutativity condition are necessarily involutions.

We begin with 2× 2 real orthogonal matrices A:

A =

(
a b
c d

)
, a, b, c, d ∈ R.

The identities AAT = ATA = I imply several equations in a, b, c,
and d, one of which is a2 + b2 = 1. Since a is real between −1 and 1,
one may set a = cos θ for some θ ∈ R, and get b, c, and d in terms of
θ. Thus, there are only two types of 2× 2 real orthogonal matrices:(

cos θ sin θ
− sin θ cos θ

)
,

(
cos θ sin θ
sin θ − cos θ

)
, θ ∈ R, (6.1)

where the first type is called rotation and the second reflection.
We show that a real orthogonal matrix is similar to a direct sum

of real orthogonal matrices of order 1 or 2.

Theorem 6.4 Every real orthogonal matrix is real orthogonally sim-
ilar to a direct sum of real orthogonal matrices of order at most 2.

Proof. Let A be an n×n real orthogonal matrix. We apply induction
on n. If n = 1 or 2, there is nothing to prove.

Suppose n > 2. If A has a real eigenvalue λ with a real unit
eigenvector x, then

Ax = λx, x ̸= 0 ⇒ xTATAx = λ2xTx.

Thus, λ = ±1, say, 1. Extend the real unit eigenvector x to a real
orthogonal matrix P . Then P TAP has (1, 1)-entry 1 and 0 elsewhere
in the first column. Write in symbols

P TAP =

(
1 u
0 A1

)
.
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The orthogonality of A implies u = 0. Notice that A1 is also real
orthogonal. The conclusion then follows from an induction on A1.

Assume that A has no real eigenvalues. Then for any nonzero
x ∈ Rn, vectors x and Ax cannot be linearly dependent. Recall the
angle ∠x, y between two vectors x and y and note that ∠x, y = ∠Ax,Ay

due to the orthogonality of A. Define f(x) to be the angle function

f(x) = ∠x,Ax = cos−1 (x,Ax)

∥x∥∥Ax∥ .

Then f(x) is continuous on the compact set S = {x ∈ Rn : ∥x∥ = 1}.
Let θ0 = ∠x0,Ax0 be the minimum of f(x) on S. Let y0 be the

unit vector in Span{x0, Ax0} such that ∠x0, y0 = ∠y0,Ax0 . Then by
Theorem 1.10, we have

θ0 ≤ ∠y0,Ay0 ≤ ∠y0,Ax0 + ∠Ax0,Ay0 =
θ0
2

+
θ0
2

= θ0

and Ax0 ∈ Span{y0, Ay0}. Thus, Ay0 has to belong to Span{x0, y0}.
It follows, because Ax0 is also in the subspace, that Span{x0, y0}
is an invariant subspace under A. We thus write A, up to similar-
ity by taking a suitable orthonormal basis (equivalently, via a real
orthogonal matrix), as

A =

(
T0 0
0 B

)
,

where T0 is a 2 × 2 matrix, and B is a matrix of order n − 2. Since
A is orthogonal, so are T0 and B. An application of the induction
hypothesis to B completes the proof.

Another way to attack the problem is to consider the eigenvectors
of A. One may again focus on the nonreal eigenvalues. Since A is
real, the characteristic polynomial of A has real coefficients, and the
nonreal eigenvalues of A thus occur in conjugate pairs. Furthermore,
their eigenvectors are in the forms α+βi and α−βi, where α and β
are real, (α, β) = 0, and Aα = aα− bβ, Aβ = bα+ aβ for some real
a and b with a2 + b2 = 1. Matrix A will have the desired form (via
orthogonal similarity) by choosing a suitable real orthonormal basis.
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Our next theorem shows that a matrix with a certain commuting
property is necessarily an involution. For this purpose, we need a
result that is of interest in its own right.

If two complex square matrices F and G of orders m and n, re-
spectively, have no eigenvalues in common, then the matrix equation
FX −XG = 0 has a unique solution X = 0.

To see this, rewrite the equation as FX = XG. Then for every
positive integer k, F kX = XGk. It follows that

f(F )X = Xf(G)

for every polynomial f . In particular, we take f to be the char-
acteristic polynomial det(λI − F ) of F ; then f(F ) = 0, and thus
Xf(G) = 0. However, because F and G have no eigenvalues in
common, f(G) is nonsingular and hence X = 0.

Theorem 6.5 Let A and U be real orthogonal matrices of the same
size. If U has no repeated eigenvalues and if

UA = AUT ,

then A is an involution, that is, A2 = I.

Proof. By the previous theorem, let P be a real orthogonal matrix
such that P−1UP is a direct sum of orthogonal matrices Vi of order
1 or 2. The identity UA = AUT results in

(P−1UP )(P−1AP ) = (P−1AP )(P−1UP )T .

Partition P−1AP conformally with P−1UP as P−1AP = (Bij),
where the Bij are matrices whose number of rows (or columns) is
1 or 2. Then UA = AUT gives

ViBij = BijV
T
j , i, j = 1, . . . , k. (6.2)

Since U , thus P−1UP , has no repeated eigenvalues, we have

Bij = 0, i ̸= j.

Hence P−1AP is a direct sum of matrices of order no more than 2:

P−1AP = B11 ⊕ · · · ⊕Bkk.
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The orthogonality of A, thus P−1AP , implies that each Bii is either
an orthogonal matrix of order 1 or an orthogonal matrix of form
(6.1). Obviously B2

ii = I if Bii is ±1 or a reflection. Now suppose
Bii is a rotation; then Vi is not a rotation. Otherwise, Vi and Bii

are both rotations and hence commute (Problem 4), so that V 2
i Bii =

Bii and V 2
i = I. Using the rotation in (6.1), we have Vi = ±I,

contradicting the fact that Vi has two distinct eigenvalues. Thus, Vi
is a reflection, hence orthogonally similar to diag(1,−1). It follows
that Bii is similar to diag(±1,±1) by (6.2). In either case B2

ii = I.
Thus, (P−1AP )2 = I and A2 = I.

Problems

1. Give a 2× 2 matrix such that A2 = I but A∗A ̸= I.

2. When is an upper-triangular matrix (complex or real) orthogonal?

3. If A is a 2 × 2 real matrix with a complex eigenvalue λ = a + bi,
a, b ∈ R, b ̸= 0, show that A is similar to the real matrix(

a b
−b a

)
.

4. Verify that A and B commute; that is, AB = BA, where

A =

(
cosα sinα
− sinα cosα

)
, B =

(
cosβ sinβ
− sinβ cosβ

)
, α, β ∈ R.

5. Show that a real matrix P is an orthogonal projection if and only if P
is orthogonally similar to a matrix in the form diag(1, . . . , 1, 0, . . . , 0).

6. Show that, with a rotation (in the xy-plane) of angle θ written as

Iθ =

(
cos θ sin θ
− sin θ cos θ

)
,

(a) (Iθ)
T = I−θ,

(b) IθIϕ = IϕIθ = Iθ+ϕ,

(c) Inθ = Inθ, and

(d) a reflection is expressed as
(

1
0

0
−1

)
Iθ.
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7. If A is a real orthogonal matrix with detA = −1, show that A has
an eigenvalue −1.

8. Let A be a 3× 3 real orthogonal matrix with detA = 1. Show that

(trA− 1)2 +
∑
i<j

(aij − aji)
2 = 4.

9. Let A be an n × n real matrix. Denote ss(A) =
∑n

i,j=1 a
2
ij . Show

that A is real orthogonal if and only if

ss(ATXA) = ss(X), for all n× n real X .

10. If A ∈ Mn is real symmetric and idempotent, show that 0 ≤ aii ≤ 1
for each i and |aij | ≤ 1

2 for all i ̸= j. Moreover, if aii = 0 or 1, then
aij = aji = 0 for all j with j ̸= i.

11. Let A be an n×n real orthogonal matrix such that rank (A−In) = 1.
Show that A is real orthogonally similar to diag(−1, 1, . . . , 1).

12. Let A = (aij) be an n×n real matrix and Cij be the cofactor of aij ,
i, j = 1, 2, . . . , n. Show that A is orthogonal if and only if detA = ±1
and aij = Cij if detA = 1, aij = −Cij if detA = −1 for all i, j.

13. Let A = (aij) ̸= 0 be an n×n real matrix and Cij be the cofactor of
aij , i, j = 1, 2, . . . , n. If n > 2, show that A is orthogonal if aij = Cij

for all i, j, or aij = −Cij for all i, j.

14. Let

A =
1√
2


0 0 −1 1
0 0 1 1
1 1 0 0
1 −1 0 0

 , U =


0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

 .

(a) Show that UA = AUT .

(b) Find the eigenvalues of U .

(c) Show that A2 ̸= I.

. ⊙ .
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6.3 Metric Space and Contractions

A metric space consists of a set M and a mapping

d :M ×M 7→ R,

called a metric of M , for which

1. d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x) for all x and y in M , and

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, and z in M .

Consider a sequence of points {xi} in a metric space M . If for
every ϵ > 0 there exists a positive integer N such that d(xi, xj) < ϵ
for all i, j > N , then the sequence is called a Cauchy sequence. A
sequence {xi} converges to a point x if for every ϵ > 0 there exists
a positive integer N such that d(x, xi) < ϵ for all i > N . A metric
space M is said to be complete if every Cauchy sequence converges
to a point of M . For instance, {cn}, 0 < c < 1, is a Cauchy sequence
of the complete metric space R with metric d(x, y) = |x− y|.

Cn is a metric space with metric

d(x, y) = ∥x− y∥, x, y ∈ Cn, (6.3)

defined by the vector norm

∥x∥ =

( n∑
i=1

|xi|2
)1/2

, x ∈ Cn.

Let f : M 7→ M be a mapping of a metric space M with metric
d into itself. We call f a contraction if there exists a constant c with
0 < c ≤ 1 such that

d(f(x), f(y)) ≤ cd(x, y), for all x, y ∈M. (6.4)

If 0 < c < 1, we say that f is a strict contraction.
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For the metric space R with the usual metric

d(x, y) = |x− y|, x, y ∈ R,

the mapping x 7→ sin x
2 is a strict contraction, since by the sum-to-

product trigonometric identity (or by using the mean value theorem)

sin
x

2
− sin

y

2
= 2 cos

x+ y

4
sin

x− y

4
,

together with the inequality | sin x| ≤ |x|, we have for all x, y in R∣∣∣∣ sin x2 − sin
y

2

∣∣∣∣ ≤ 1

2
|x− y|.

The mapping x 7→ sinx is a contraction, but not strict, since

lim
x→0

sinx

x
= 1.

A point x in a metric space M is referred to as a fixed point of
a mapping f if f(x) = x. The following fixed-point theorem of a
contraction has applications in many fields. For example, it gives a
useful method for constructing solutions of differential equations.

Theorem 6.6 Let f :M 7→M be a strict contraction mapping of a
complete metric space M into itself. Then f has one and only one
fixed point. Moreover, for any point x ∈M , the sequence

x, f(x), f2(x), f3(x), . . .

converges to the fixed point.

Proof. Let x be a point in M . Denote d(x, f(x)) = δ. By (6.4)

d(fn(x), fn+1(x)) ≤ cnδ, n ≥ 1. (6.5)

The series
∑∞

n=1 c
n converges to c

1−c for every fixed c, 0 < c < 1.
Hence, the sequence fn(x), n = 1, 2, . . . , is a Cauchy sequence, since

d(fm(x), fn(x)) ≤ d(fm(x), fm+1(x)) + · · ·+ d(fn−1(x), fn(x))

≤ (cm + · · ·+ cn−1)δ.
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Thus, the limit limn→∞ fn(x) exists in M , for M is complete. Let
the limit be X. We show that X is the fixed point. Note that a
contraction mapping is a continuous function by (6.4). Therefore,

f(X) = f( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = X.

If Y ∈M is also a fixed point of f , then

d(X,Y ) = d(f(X), f(Y )) ≤ cd(X,Y ).

It follows that d(X,Y ) = 0; that is, X = Y if 0 < c < 1.

Let A be an m×n complex matrix, and consider A as a mapping
from Cn into itself defined by the ordinary matrix-vector product;
namely, Ax, where x ∈ Cn. Then inequality (6.4) is rewritten as

∥Ax− Ay∥ ≤ c∥x− y∥.

We show that A is a contraction if and only if σmax(A), the largest
singular value of A, does not exceed 1.

Theorem 6.7 Matrix A is a contraction if and only if σmax(A) ≤ 1.

Proof. Let A be m× n. For any x, y ∈ Cn, we have (Section 4.1)

∥Ax−Ay∥ = ∥A(x− y)∥ ≤ σmax(A)∥x− y∥.

It follows that A is a contraction if σmax(A) ≤ 1. Conversely, suppose
that A is a contraction; then for some c, 0 < c ≤ 1, and all x, y ∈ Cn,

∥Ax− Ay∥ ≤ c∥x− y∥.

In particular, ∥Ax∥ ≤ c∥x∥ for x ∈ Cn. Thus, σmax(A) ≤ c ≤ 1.

Note that unitary matrices are contractions, but not strict. One
can also prove that a matrix A is a contraction if and only if

A∗A ≤ I, AA∗ ≤ I, or

(
I A
A∗ I

)
≥ 0.

Here X ≥ Y , or Y ≤ X, means that X − Y is positive semidefinite.
We conclude this section by presenting a result on partitioned

positive semidefinite matrices, from which a variety of matrix in-
equalities can be derived.

Let A be a positive semidefinite matrix. Recall that A1/2 is the
square root of A; that is, A1/2 ≥ 0 and (A1/2)2 = A (Section 3.2).
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Theorem 6.8 Let L and M be positive semidefinite matrices. Then(
L X
X∗ M

)
≥ 0 ⇔ X = L1/2CM1/2 for some contraction C.

Proof. Sufficiency: If X = L1/2CM1/2, then we write(
L X
X∗ M

)
=

(
L1/2 0

0 M1/2

)(
I C
C∗ I

)(
L1/2 0

0 M1/2

)
.

For the positive semidefiniteness, it suffices to note that (Problem 9)

σmax(C) ≤ 1 ⇒
(

I C
C∗ I

)
≥ 0.

For the other direction, assume that L andM are nonsingular and
let C = L−1/2XM−1/2. Here the exponent −1/2 means the inverse
of the square root. Then X = L1/2CM1/2 has the desired form. We
need to show that C is a contraction. First notice that

C∗C =M−1/2X∗L−1XM−1/2.

Notice also that, since the partitioned matrix is positive semidefinite,

P ∗
(

L X
X∗ M

)
P =

(
L 0
0 M −X∗L−1X

)
≥ 0,

where

P =

(
I −L−1X
0 I

)
.

Thus, M −X∗L−1X ≥ 0 (Problem 9, Section 3.2). Therefore,

M−1/2(M −X∗L−1X)M−1/2 = I −M−1/2X∗L−1XM−1/2 ≥ 0.

That is, I−C∗C ≥ 0, and thus C is a contraction. The singular case
of L and M follows from a continuity argument (Problem 17).

We end this section by noting that targeting the submatrices X
and X∗ in the upper-right and lower-left corners in the given par-
titioned matrix by row and column elementary operations for block
matrices is a basic technique in matrix theory. It is used repeatedly
in later chapters of this book.
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Problems

1. What are the differences between vector space, inner product space,
normed space, and metric space?

2. Following the proof of Theorem 6.6, show that

d(x,X) ≤ δ

1− c
.

3. Show that a contraction is a continuous function.

4. If f is a strict contraction of a complete metric space, show that

d(fn(x), fn(y)) → 0, as n→ ∞,

for any fixed x and y in the space.

5. Show that the product of contractions is again a contraction.

6. Is the mapping x 7→ sin(2x) a contraction on R? How about the
mappings x 7→ 2 sinx, x 7→ 1

2
sinx, and x 7→ 2 sin x

2
?

7. Construct an example of a map f for a metric space such that
d(f(x), f(y)) < d(x, y) for all x ̸= y, but f has no fixed point.

8. If A ∈ Mn is a contraction with eigenvalues λ(A), show that

|detA| ≤ 1, |λ(A)| ≤ 1, |x∗Ax| ≤ 1 for unit x ∈ Cn.

9. Show that an m× n matrix A is a contraction if and only if

(a) A∗A ≤ In.

(b) AA∗ ≤ Im.

(c)
(

I
A∗

A
I

)
≥ 0.

(d) x∗(A∗A)x ≤ 1 for every unit x ∈ Cn.

(e) ∥Ax∥ ≤ ∥x∥ for every x ∈ Cn.

10. Let A be an n× n matrix and B be an m× n matrix. Show that(
A B∗

B I

)
≥ 0 ⇔ A ≥ B∗B.

11. Let A ∈ Mn. If σmax(A) < 1, show that In − A is invertible.



Sec. 6.3 Metric Space and Contractions 187

12. Let A and B be n-square complex matrices. Show that

A∗A ≤ B∗B

if and only if A = CB for some contraction matrix C.

13. Consider the complete metric space R2 and let

A =

(
λ 0
0 λ

)
, λ ∈ (0, 1).

Discuss the effect of an application of A to a nonzero vector v ∈ R2.
Describe the geometric orbit of the iterates Anv. What is the fixed
point of A? What if the second λ in A is replaced with µ ∈ (0, 1)?

14. Let A ∈ Mn be a projection matrix; that is, A2 = A. Show that
∥Ax∥ ≤ ∥x∥ for all x ∈ Cn if and only if A is Hermitian.

15. Let A and B be n-square positive definite matrices. Find the condi-
tions on the invertible n-square matrix X so that(

A X∗

X B

)
≥ 0 and

(
A−1 X−1

(X∗)−1 B−1

)
≥ 0.

16. Let A be a matrix. If there exists a Hermitian matrix X such that(
I +X A
A∗ I −X

)
≥ 0,

show that
|(Ay, y)| ≤ (y, y), for all y.

17. Prove Theorem 6.8 for the singular case.

18. Show that for any matrices X and Y of the same size,

X + Y = (I +XX∗)1/2C(I + Y ∗Y )1/2

for some contraction C. Derive the matrix inequality

|det(X + Y )|2 ≤ det(I +XX∗) det(I + Y ∗Y ).

. ⊙ .
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6.4 Contractions and Unitary Matrices

The goal of this section is to present two theorems connecting con-
tractions and unitary matrices. We focus on square matrices, for oth-
erwise we can augment by zero entries to make the matrices square.
We show that a matrix is a contraction if and only if it can be em-
bedded in a unitary matrix, and if and only if it is a (finite) convex
combination of unitary matrices.

Theorem 6.9 A matrix A is a contraction if and only if

U =

(
A X
Y Z

)
is unitary for some matrices X, Y, and Z of appropriate sizes.

Proof. The sufficiency is easy to see, since if U is unitary, then

U∗U = I ⇒ A∗A+ Y ∗Y = I ⇒ A∗A ≤ I.

Thus, A is a contraction. For the necessity, we take

U =

(
A (I −AA∗)1/2

(I −A∗A)1/2 −A∗

)
and show that U is a unitary matrix as follows.

Let A = V DW be a singular value decomposition of A, where
V and W are unitary, and D is a nonnegative diagonal matrix with
diagonal entries (singular values of A) not exceeding 1. Then

(I −AA∗)1/2 = V (I −D2)1/2V ∗, (I −A∗A)1/2 =W ∗(I −D2)1/2W.

In as much as D is diagonal, it is easy to see that

D(I −D2)1/2 = (I −D2)1/2D.

Multiplying by V and W from the left and right gives

V D(I −D2)1/2W = V (I −D2)1/2DW
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or equivalently

A(I −A∗A)1/2 = (I −AA∗)1/2A.

With this, a simple computation results in U∗U = I.

Recall from Problem 8 of Section 4.1 that for any A, B ∈ Mn

σmax(A+ B) ≤ σmax(A) + σmax(B).

Thus, for unitary matrices U and V of the same size and t ∈ (0, 1),

σmax(tU + (1− t)V ) ≤ tσmax(U) + (1− t)σmax(V ) = 1.

In other words, the matrix tU + (1 − t)V , a convex combination of
unitary matrices U and V , is a contraction.

Inductively, a convex combination of unitary matrices is a con-
traction (Problem 3). The converse is also true.

Theorem 6.10 A matrix A is a contraction if and only if A is a
finite convex combination of unitary matrices.

Proof. As discussed earlier, a convex combination of unitary matri-
ces is a contraction. Let A be a contraction. We show that A is a
convex combination of unitary matrices. The proof goes as follows.
A is a convex combination of matrices diag(1, . . . , 1, 0, . . . , 0); each
matrix in such a form is a convex combination of diagonal (unitary)
matrices with diagonal entries ±1. We then reach the conclusion
that A is a convex combination of unitary matrices.

Let A be of rank r and A = UDV be a singular value decomposi-
tion of A, where U and V are unitary, D = diag(σ1, . . . , σr, 0, . . . , 0)
with 1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σr > 0. We may assume r > 0.

If D is a convex combination of unitary matrices, say, Wi, then
A is a convex combination of unitary matrices UWiV . We may thus
consider the diagonal matrix A = diag(σ1, . . . , σr, 0, . . . , 0). Write

A = diag(σ1, . . . , σr, 0, . . . , 0)

= (1− σ1)0 + (σ1 − σ2) diag(1, 0, . . . , 0)

+ (σ2 − σ3) diag(1, 1, 0, . . . , 0) + · · ·

+ (σr−1 − σr) diag(

r−1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)

+ σr diag(

r︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0).



190 Unitary Matrices and Contractions Chap. 6

That is, matrix A is a (finite) convex combination of matrices Ei =
diag(1, . . . , 1, 0, . . . , 0) with i copies of 1, where 0 ≤ i ≤ r. We now
show that such a matrix is a convex combination of diagonal matrices
with entries ±1. Let

Fi = diag(0, . . . , 0,

n−i︷ ︸︸ ︷
−1, . . . ,−1).

Then

Ei =
1

2
I +

1

2
(Ei + Fi)

is a convex combination of unitary matrices I and Ei + Fi.
It follows that if σ1 ≤ 1, then the matrix diag(σ1, . . . , σr, 0, . . . , 0),

thus A, is a convex combination of diagonal matrices in the form
diag(1, . . . , 1, 0, . . . , 0), which in turn is a convex combination of (di-
agonal) unitary matrices. The proof is complete by Problem 11.

Problems

1. Let t ∈ [0, 1]. Write t as a convex combination of 1 and −1. Write
matrix A as a convex combination of unitary matrices, where

A =

(
1
2 0
0 1

3

)
.

2. Let λ and µ be positive numbers. Show that for any t ∈ [0, 1],

λµ ≤
(
tλ+ (1− t)µ

)(
tµ+ (1− t)λ

)
.

3. Show by induction that a finite convex combination of unitary ma-
trices of the same size is a contraction.

4. For any two matrices U and V of the same size, show that

U∗V + V ∗U ≤ U∗U + V ∗V.

In particular, if U and V are unitary, then

U∗V + V ∗U ≤ 2I.

Also show that for any t ∈ [0, 1] and unitary U and V ,(
tU + (1− t)V

)∗(
tU + (1− t)V

)
≤ I.
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5. Prove or disprove that a convex combination, the sum, or the product
of two unitary matrices is a unitary matrix.

6. If A is a contraction satisfying A+A∗ = 2I, show that A = I.

7. Let A be a complex contraction matrix. Show that(
A (I − AA∗)1/2

−(I − A∗A)1/2 A∗

)
and (

(I −AA∗)1/2 A

−A∗ (I −A∗A)1/2

)
are unitary matrices.

8. Let Bm be the m×m backward identity matrix. Show that

1√
2

(
Im Im
Bm −Bm

)
and

1√
2

 Im 0 Im
0

√
2 0

Bm 0 −Bm


are 2m- and (2m+ 1)-square unitary matrices, respectively.

9. Let σ1 ≥ · · · ≥ σr ≥ 0. Show that diag(σ1, . . . , σr, 0, . . . , 0) is a con-
vex combination of matrices diag(σ1, . . . , σ1, 0, . . . , 0) with k copies
of σ1, k = 1, 2, . . . , r.

10. Let σ be such that 0 < σ ≤ 1. Show that diag(σ, . . . , σ, 0, . . . , 0) is a
convex combination of the following diagonal unitary matrices:

I, Gi = diag(

i︷ ︸︸ ︷
−1, . . . ,−1, 1, . . . , 1), −Gi, −I.

[Hint: Consider the cases for 0 ≤ σ < 1
2 and 1

2 ≤ σ ≤ 1.]

11. Let P1, . . . , Pm be a set of matrices. If each Pi is a convex combi-
nation of matrices Q1, . . . , Qn, show that a convex combination of
P1, . . . , Pm is also a convex combination of Q1, . . . , Qn.

. ⊙ .
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6.5 The Unitary Similarity of Real Matrices

We show in this section that if two real matrices are similar over
the complex number field C, then they are similar over the real R.
The statement also holds for unitary similarity. Precisely, if two real
matrices are unitarily similar, then they are real orthogonally similar.

Theorem 6.11 Let A and B be real square matrices of the same
size. If P is a complex invertible matrix such that P−1AP = B, then
there exists a real invertible matrix Q such that Q−1AQ = B.

Proof. Write P = P1 + P2i, where P1 and P2 are real square ma-
trices. If P2 = 0, we have nothing to show. Otherwise, by rewriting
P−1AP = B as AP = PB, we have AP1 = P1B and AP2 = P2B. It
follows that for any real number t,

A(P1 + tP2) = (P1 + tP2)B.

Because det(P1+ tP2) = 0 for a finite number of t, we can choose
a real t so that the matrix Q = P1 + tP2 is invertible. Thus, A and
B are similar via the real invertible matrix Q.

For the unitary similarity, we begin with a result that is of interest
in its own right.

Theorem 6.12 Let U be a symmetric unitary matrix, that is, UT =
U and U∗ = U−1. Then there exists a complex matrix S satisfying

1. S2 = U .

2. S is unitary.

3. S is symmetric.

4. S commutes with every matrix that commutes with U .

In other words, every symmetric unitary U has a symmetric unitary
square root that commutes with any matrix commuting with U .
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Proof. Since U is unitary, it is unitarily diagonalizable (Theorem 6.1).
Let U = V DV ∗, where V is unitary and D = a1I1 ⊕ · · · ⊕ akIk with
all aj distinct and Ii identity matrices of certain sizes. Because U
is unitary and hence has eigenvalues of modulus 1, we write each
aj = eiθj for some θj real.

Now let S = V (b1I1⊕· · ·⊕ bkIk)V ∗, where bj = eiθj/2. Obviously
S is a unitary matrix and S2 = U .

If A is a matrix commuting with U , then V ∗AV commutes with
D. It follows that V ∗AV = A1 ⊕ · · · ⊕ Ak, with each Ai having the
same size as Ii (Problem 4). Thus, S commutes with A.

Since U = UT , this implies that V TV commutes with D, so that
V TV commutes with b1I1 ⊕ · · · ⊕ bkIk. Thus, S is symmetric.

Theorem 6.13 Let A and B be real square matrices of the same
size. If A = UBU∗ for some unitary matrix U , then there exists a
real orthogonal matrix Q such that A = QBQT .

Proof. Since A and B are real, we have UBU∗ = A = A = UBUT .
This gives UTUB = BUTU. Now that UTU is symmetric unitary, by
the preceding theorem it has a symmetric unitary square root, say
S; that is, UTU = S2, which commutes with B.

Let Q = US−1 or U = QS. Then Q is also unitary. Notice that

QTQ = (US−1)T (US−1) = S−1UTUS−1 = I.

Hence Q is orthogonal. Q is real, for QT = Q−1 = Q∗ yields Q = Q.
Putting it all together, S and B commute, S is unitary, and Q is real
orthogonal. We thus have

A = UBU∗ = (US−1)(SB)U∗ = Q(BS)U∗

= QB(S−1)∗U∗ = QBQ∗ = QBQT .

Problems

1. If A2 is a unitary matrix, is A necessarily a unitary matrix?

2. If A is an invertible matrix with complex, real, rational, or integer
entries, is the inverse of A also a matrix with complex, real, rational,
or integer entries, respectively?
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3. Let A be a normal matrix. Show that there exists a normal matrix
B such that B2 = A. Is such a B unique?

4. If matrix A commutes with B = b1I1 ⊕ · · · ⊕ bkIk, where the Ii
are identity matrices and all bi are distinct, show that A is of the
form A = A1 ⊕ · · · ⊕ Ak, where each Ai has the same size as the
corresponding Ii.

5. Show that A and B are similar via a real invertible matrix Q, where

A =

(
1 1
0 0

)
, B =

(
1 0
0 0

)
.

Find Q. Are they real orthogonally (or unitarily) similar?

6. If two matrices A and B with rational entries are similar over the
complex C, are they similar over the real R? The rational Q?

7. Let Q be a real orthogonal matrix. If λ is an imaginary eigenvalue of
Q and u = x+ yi is a corresponding eigenvector, where x and y are
real, show that x and y are orthogonal and have the same length.

8. Let b and c be complex numbers such that |b| ̸= |c|. Show that for
any complex numbers a and d, matrix A cannot be normal, where

A =

(
a b
c d

)
.

9. Show that if A is a real symmetric matrix, then there exists a real
orthogonal Q such that QTAQ is real diagonal. Give an example of
a real normal matrix that is unitarily similar to a (complex) diagonal
matrix but is not real orthogonally similar to a diagonal matrix.

10. Let

A =

 1 0 1
0 2 1
0 0 2

 , B =

 1 0 0

0 2 ±
√
2

0 0 2

 .

(a) What are the eigenvalues and eigenvectors of A and B?

(b) Why are A and B similar?

(c) Show that 1 is a singular value of B but not of A.

(d) Show that A cannot be unitarily similar to a direct sum of
upper-triangular matrices of order 1 or 2.

(e) Can A and B be unitarily similar?

. ⊙ .
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6.6 A Trace Inequality of Unitary Matrices

The set of all complex matrices of the same size forms an inner
product space over C with respect to the inner product defined as

(A,B)M = tr(B∗A).

In what follows we consider the inner product space Mn over C
and present a trace inequality for complex unitary matrices, relating
the average of the eigenvalues of each of two unitary matrices to that
of their product. For this purpose, we first show an inequality for an
inner product space V , which is of interest in its own right.

Theorem 6.14 Let u, v, and w be unit vectors in V over C. Then√
1− |(u, v)|2 ≤

√
1− |(u,w)|2 +

√
1− |(w, v)|2 . (6.6)

Equality holds if and only if w is a multiple of u or v.

Proof. To prove this, we first notice that any component of w that is
orthogonal to the span of u and v plays no role in (6.6); namely, we
really have a problem in which u and v are arbitrary unit vectors, w
is in the span of u and v, and (w,w) ≤ 1. The case w = 0 is trivial. If
w ̸= 0, scaling up w to have length 1 diminishes the right-hand side
of (6.6), so we are done if we can prove inequality (6.6) for arbitrary
unit vectors u, v, and w with w in the span of u and v. The case in
which u and v are dependent is trivial. Suppose u and v are linearly
independent, and let {u, z} be an orthonormal basis of Span{u, v},
so that v = µu+ λz and w = αu+ βz for some complex numbers µ,
λ, α, and β. Then we have

|λ|2 + |µ|2 = 1 and |α|2 + |β|2 = 1.

Use these relations and the arithmetic-geometric mean inequality,
together with |c| ≥ Re(c) for any complex number c, to compute
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|λβ| =
1

2
|λβ|(|µ|2 + |λ|2 + |α|2 + |β|2)

≥ |λβ|(|λβ|+ |αµ|)
= |λβ|2 + |λβαµ|
= |λβ|2 + |λβ̄αµ̄|
≥ |λβ|2 +Re(λβ̄αµ̄),

so that −2|λβ| ≤ −2|λβ|2 − 2Re(λβ̄αµ̄). Thus, we have

(|λ| − |β|)2 = |λ|2 − 2|λβ|+ |β|2

≤ |λ|2 + |β|2 − 2|λβ|2 − 2Re(λβ̄αµ̄)

= |λ|2 + |β|2(1− |λ|2)− |λβ|2 − 2Re(λβ̄αµ̄)

= (1− |µ|2) + |β|2|µ|2 − |λβ|2 − 2Re(λβ̄αµ̄)

= 1− |µ|2(1− |β|2)− |λβ|2 − 2Re(λβ̄αµ̄)

= 1− |µα|2 − |λβ|2 − 2Re(λβ̄αµ̄)

= 1− |αµ̄+ βλ̄|2.

This gives

|λ| − |β| ≤
√
1− |αµ̄+ βλ̄|2 ,

or

|λ| ≤ |β|+
√
1− |αµ̄+ βλ̄|2 ,

which is the same as√
1− |µ|2 ≤

√
1− |α|2 +

√
1− |αµ̄+ βλ̄|2 .

Because |µ|2 = |(u, v)|2, |α|2 = |(u,w)|2, and

|αµ̄+ βλ̄|2 = |(αu+ βz, µu+ λz)|2 = |(w, v)|2,

the inequality (6.6) is proved.
Equality holds for the overall inequality if and only if equal-

ity holds at the two points in our derivation where we invoked the
arithmetic-geometric mean inequality and |c| ≥ Re(c). Thus, equal-
ity holds if and only if |λ| = |β| and |α| = |µ|, as well as Re(λβ̄αµ̄) =
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|λβ̄αµ̄|. The former is equivalent to having λ = eiθβ and µ = eiϕα
for some real numbers θ and ϕ, while the latter is then equivalent
to Re(|αβ|2(ei(θ−ϕ) − 1)) = 0. Thus, α = 0, β = 0, or eiθ = eiϕ, so
equality in (6.6) holds if and only if either w is a multiple of u (β = 0)
or w is a multiple of v (α = 0 or eiθ = eiϕ).

Now consider the vector space Mn of all n× n complex matrices
with the inner product (A,B)M = tr(B∗A) for A and B in Mn.

Let U and V be n-square unitary matrices. By putting

u =
1√
n
V, v =

1√
n
U∗, w =

1√
n
I

in (6.6), and writingm(X) = 1
n trX for the average of the eigenvalues

of the matrix X ∈ Mn, we have the following result.

Theorem 6.15 For any unitary matrices U and V ,√
1− |m(UV )|2 ≤

√
1− |m(U)|2 +

√
1− |m(V )|2

with equality if and only if U or V is a unitary scalar matrix.

Problems

1. Let U be an m× n matrix such that U∗U = In. Show that

tr(UAU∗) = trA, for any A ∈ Mn.

How about

tr(U∗AU) = trA, for any A ∈ Mn?

2. Show that for any square matrix A and positive integers p and q

| trAp+q|2 ≤ tr
(
(A∗)pAp

)
tr
(
(A∗)qAq

)
and

tr((A∗)pAp) ≤ (tr(A∗A))p, tr(A∗A)p ≤ (tr(A∗A))p.

3. If U is an n×n nonscalar unitary matrix with eigenvalues λ1, . . . , λn,
show that the following strict inequality holds:∣∣∣∣λ1 + · · ·+ λn

n

∣∣∣∣ < 1.
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4. Let V be any square submatrix of a unitary matrix U . Show that
|λ(V )| ≤ 1 for any eigenvalue λ(V ) of V .

5. For unit vectors u and v in an inner product space V over C, define
<u,v= cos−1 |(u, v)|. Show that for any unit vector w in V ,

sin <u,v≤ sin <u,w +sin <w,v .

6. Let D = diag(a1, . . . , an). Show that for any n-square unitary U ,

min
i

|ai| ≤ |λ(DU)| ≤ max
i

|ai|,

where λ(DU) is any eigenvalue of DU .

7. With ∥A∥2 =
√

(A,A)M =
√
tr(A∗A), show that for any A ∈ Mn

∥A∥22 =

∥∥∥∥A+ A∗

2

∥∥∥∥2
2

+

∥∥∥∥A−A∗

2

∥∥∥∥2
2

.

8. Let U be a unitary matrix. If λ and µ are two different eigenvalues
of U , show that their eigenvectors u and v are orthogonal. Further
show that au+ bv cannot be an eigenvector of U if ab ̸= 0.

9. Let P2 be the collection of all the unit vectors in Cn. Define

d(x, y) =
√

1− |(x, y)|2, x, y ∈ P2.

Show that d(x, y) = d(y, x) for all x and y in P2 and that d(x, y) = 0
if and only if x = cy for some complex number c with |c| = 1.

10. For nonzero vectors u, v ∈ C2, define

d(u, v) =

√
1− |(u, v)|2

∥u∥2∥v∥2 .

Show that for any u, v, w ∈ C2, and λ, µ ∈ C,

(a) d(λu, µv) = d(u, v),

(b) d(u, v) ≤ d(u,w) + d(w, v),

(c) d(u, v) = d(zu, zv), where zx = x2

x1
if x = (x1, x2)

T ∈ C2, x1 ̸= 0,

d(zu, zv) =
|zu − zv|√

(1 + |zu|2)(1 + |zv|2)
.

. ⊙ .



CHAPTER 7

Positive Semidefinite Matrices

Introduction: This chapter studies the positive semidefinite matri-
ces, concentrating primarily on the inequalities of this type of matrix.
The main goal is to present the fundamental results and show some
often-used techniques. Section 7.1 gives the basic properties, Section
7.2 treats the Löwner partial ordering of positive semidefinite matri-
ces, and Section 7.3 presents some inequalities of principal submatri-
ces. Section 7.4 derives inequalities of partitioned positive semidef-
inite matrices using Schur complements, and Sections 7.5 and 7.6
investigate the Hadamard product of the positive semidefinite ma-
trices. Finally, Section 7.7 shows the Cauchy–Schwarz type matrix
inequalities and the Wielandt and Kantorovich inequalities.

7.1 Positive Semidefinite Matrices

An n-square complex matrix A is said to be positive semidefinite or
nonnegative definite, written as A ≥ 0, if

x∗Ax ≥ 0, for all x ∈ Cn. (7.1)

A is further called positive definite, symbolized A > 0, if the strict
inequality in (7.1) holds for all nonzero x ∈ Cn.
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It is immediate that if A is an n× n complex matrix, then

A ≥ 0 ⇔ X∗AX ≥ 0 (7.2)

for every n ×m complex matrix X. (Note that one may augment a
vector x ∈ Cn by zero entries to get a matrix of size n×m.)

The following decomposition theorem (see the spectral decompo-
sition theorem in Chapter 3) of positive semidefinite matrices best
characterizes positive semidefiniteness under unitary similarity.

Theorem 7.1 An n × n complex matrix A is positive semidefinite
if and only if there exists an n× n unitary matrix U such that

A = U∗ diag(λ1, . . . , λn)U, (7.3)

where the λi are the eigenvalues of A and are all nonnegative. In
addition, if A ≥ 0 then detA ≥ 0. A is positive definite if and only
if all the λi in (7.3) are positive. Besides, if A > 0 then detA > 0.

Positive semidefinite matrices have many interesting and impor-
tant properties and play a central role in matrix theory.

Theorem 7.2 Let A be an n-square Hermitian matrix. Then

1. A is positive definite if and only if the determinant of every
leading principal submatrix (leading minor) of A is positive.

2. A is positive semidefinite if and only if the determinant of every
(not just leading) principal submatrix of A is nonnegative.

Proof. Let Ak be a k × k principal submatrix of A ∈ Mn. By per-
muting rows and columns we may place Ak in the upper-left corner
of A. In other words, there exists a permutation matrix P such that
Ak is the (1, 1)-block of P TAP.

If A ≥ 0, then (7.1) holds. Thus, for any x ∈ Ck,

x∗Akx = y∗Ay ≥ 0, where y = P
(
x
0

)
∈ Cn.

This says that Ak is positive semidefinite. Therefore, detAk ≥ 0.
The strict inequalities hold for positive definite matrix A.
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Conversely, if every principal submatrix of A has a nonnegative
determinant, then the polynomial in λ (Problem 19 of Section 1.3)

det(λI −A) = λn − δ1λ
n−1 + δ2λ

n−2 − · · ·+ (−1)n detA,

has no negative zeros, since each δi, the sum of the determinants of
all the principal matrices of order i, is nonnegative.

The case where A is positive definite follows similarly.

Note that A being Hermitian in Theorem 7.2 is necessary. For
instance, all the determinants of the principal submatrices of the
matrix A =

(
1
1
0
1

)
are positive, but A is not positive (semi)definite.

As a side product of the proof, we see thatA is positive (semi)definite
if and only if all of its principal submatrices are positive (semi)definite.

It is immediate that A ≥ 0 ⇒ aii ≥ 0 and that aiiajj ≥ |aij|2
for i ̸= j by considering 2× 2 principal submatrices(

aii aij
aji ajj

)
≥ 0.

Thus, if some diagonal entry aii = 0, then aij = 0 for all j, and hence,
ahi = 0 for all h, in as much as A is Hermitian. We conclude that
some diagonal entry aii = 0 if and only if the row and the column
containing aii consist entirely of 0.

Using Theorem 7.1 and the fact that any square matrix is a prod-
uct of a unitary matrix and an upper-triangular matrix (QR factor-
ization; see Section 3.2), one can prove the next result (Problem 17).

Theorem 7.3 The following statements for A ∈ Mn are equivalent.

1. A is positive semidefinite.

2. A = B∗B for some matrix B.

3. A = C∗C for some upper-triangular matrix C.

4. A = D∗D for some upper-triangular matrix D with nonnegative
diagonal entries (Cholesky factorization).

5. A = E∗
(
Ir
0

0
0

)
E = F ∗F for some n×n invertible matrix E and

r× n matrix F , where r is the rank of A (Rank factorization).
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Every nonnegative number has a unique nonnegative square root.
The analogous result for positive semidefinite matrices also holds as
we saw in Section 3.2 (Theorem 3.5). We restate the theorem and
present a proof that works for linear operators.

Theorem 7.4 For every A ≥ 0, there exists a unique B ≥ 0 so that

B2 = A.

Furthermore, B can be expressed as a polynomial in A.

Proof. We may view n-square matrices as linear operators on Cn.
The spectral theorem ensures the existence of orthonormal eigenvec-
tors u1, u2, . . . , un belonging to the eigenvalues λ1, λ2, . . . , λn of A, re-
spectively. Then u1, u2, . . . , un form an orthonormal basis for Cn and
A(ui) = λiui, λi ≥ 0. Define a linear operator B by B(ui) =

√
λi ui

for i = 1, 2, . . . , n. It is routine to check that B2(x) = A(x) and
(B(x), x) ≥ 0 for all vectors x; that is, B2 = A and B ≥ 0.

To show the uniqueness, suppose C is also a linear operator such
that C2(x) = A(x) and (C(x), x) = (x,C(x)) ≥ 0 for all vectors x.
If v is an eigenvector of C: Cv = µv, then C2v = µ2v, i.e., µ2 is
an eigenvalue of A. Hence, the eigenvalues of C are the nonnegative
square roots of the eigenvalues of A; that is,

√
λ1,

√
λ2, . . . ,

√
λn.

Choose orthonormal eigenvectors v1, v2, . . . , vn corresponding to
the eigenvalues

√
λ1,

√
λ2, . . . ,

√
λn of C, respectively. Then v1, v2,

. . . , vn form an orthonormal basis for Cn. Let ui = w1iv1+· · ·+wnivn,
i = 1, 2, . . . , n. On one hand, C2(ui) = A(ui) = λiui = w1iλiv1 +
· · ·+ wniλivn, however, C

2(ui) = w1iλ1v1 + · · · + wniλnvn. Because
v1, v2, . . . , vn are linearly independent, we have wtiλi = wtiλt for each
t. It follows that wti

√
λi = wti

√
λt, t = 1, 2, . . . , n. Thus,

C(ui) = C(w1iv1 + · · ·+ wnivn)

= w1i

√
λ1v1 + · · ·+ wni

√
λn vn

= w1i

√
λiv1 + · · ·+ wni

√
λi vn

=
√
λiui = B(ui).

As u1, u2, . . . , un constitute a basis for Cn, we conclude B = C.
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To see that B is a polynomial of A, let p(x) be a polynomial,
by interpolation, such that p(λi) =

√
λi, i = 1, 2, . . . , n (Problem 4,

Section 5.4). Then it is easy to verify that p(A) = B.

Such a matrix B is called the square root of A, denoted by A1/2.
Note that A∗A is positive semidefinite for every complex matrix

A and that the eigenvalues of (A∗A)1/2 are the singular values of A.
We further discuss the matrix (A∗A)1/2 in Chapters 8 and 9.

Problems

1. Show that if A is a positive semidefinite matrix, then so are the
matrices A, AT , adj(A), and A−1 if the inverse exists.

2. Let A be a positive semidefinite matrix. Show that trA ≥ 0. Equality
holds if and only if A = 0.

3. Let A = (aij) ∈ Mn and S =
∑n

i,j=1 aij . If A ≥ 0, show that S ≥ 0.

4. Let A ∈ Mn be positive semidefinite. Show that (detA)1/n ≤ 1
n trA.

5. Find a 2 × 2 nonsymmetric real matrix A such that xTAx ≥ 0 for
every x ∈ R2. What if x ∈ C2?

6. Let

A =

 4 0 0
0 0 0
0 0 0

 , B =

 1 1 1
1 1 1
1 1 1

 .

(a) Is B similar to A?

(b) Is B congruent to A?

(c) Is B be obtainable from A by elementary operations?

7. For what real number t is the following n× n matrix with diagonal
entries 1 and off-diagonal entries t positive semidefinite? 1 t

. . .

t 1

 .

8. For what x, y, z ∈ C are the following matrices positive semidefinite? 1 1 x
1 1 1
x̄ 1 1

 ,

 1 1 −1
1 1 y
−1 ȳ 1

 ,

 1 z 0
z̄ 1 1
0 1 1

 .
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9. Let x ∈ C, u, v ∈ Cn, α ∈ [0, 1]. Show that (if the powers make sense)(
|x|2α x

x̄ |x|2(1−α)

)
≥ 0,

(
u∗u u∗v
v∗u v∗v

)
≥ 0.

10. If λ, µ ∈ C, show that the following matrices are positive semidefinite:(
|λ|2 + 1 λ+ µ
λ̄+ µ̄ |µ|2 + 1

)
,

(
|λ|2 λµ
λ̄µ̄ |µ|2

)
,

(
|λ|2 + |µ|2 λ+ µ
λ̄+ µ̄ 2

)
.

11. Show that if A is positive definite, so is a principal submatrix of A.
Conclude that the diagonal entries of A are all positive.

12. Let A = (aij) > 0 be n× n. Show that the matrix with (i, j)-entry

aij√
aiiajj

, i, j = 1, 2, . . . , n,

is positive definite. What are the diagonal entries of this matrix?

13. Let A ≥ 0. Show that A can be written as a sum of rank 1 matrices

A =
k∑

i=1

uiu
∗
i ,

where each ui is a column vector and k = rank (A).

14. Let A ∈ Mn. If x
∗Ax = 0 for some x ̸= 0, does it follow that A = 0?

or Ax = 0? What if A is positive semidefinite?

15. Let A be an n-square positive semidefinite matrix. Show that

λmin(A) ≤ x∗Ax ≤ λmax(A), for any unit x ∈ Cn.

16. Show that A ≥ 0 if and only if A = Q∗Q for some matrix Q with
linearly independent rows. What is the size of Q?

17. Prove Theorem 7.3. Show further that if A > 0 then the Cholesky
factorization of A is unique.

18. Show that every positive definite matrix is ∗-congruent to itself; that
is, if A > 0 then A−1 = P ∗AP for some invertible matrix P .

19. Let A be a Hermitian matrix. Show that all the eigenvalues of A lie
in the interval [a, b] if and only if A−aI ≥ 0 and bI−A ≥ 0 and that
there exist α > 0 and β > 0 such that αI + A > 0 and I + βA > 0.
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20. Let A be a Hermitian matrix. If no eigenvalue of A lies in the interval
[a, b], show that A2 − (a+ b)A+ abI is positive definite.

21. Find a matrix A ∈ Mn such that all of its principal submatrices of
order not exceeding n− 1 are positive semidefinite, but A is not.

22. Find a Hermitian matrix A such that the leading minors are all non-
negative, but A is not positive semidefinite.

23. Let A ∈ Mn. Show that A ≥ 0 if and only if every leading principal
submatrix of A (including A itself) is positive semidefinite.

24. Let A ∈ Mn be a singular Hermitian matrix. If A contains a positive
definite principal submatrix of order n− 1, show that A ≥ 0.

25. Let A ∈ Mn be a positive definite matrix. Prove trA trA−1 ≥ n2.

26. Does every normal matrix have a normal square root? Is it unique?
How about a general complex matrix?

27. Find the square roots for the positive semidefinite matrices(
1 1
1 1

)
,

(
1 1

2
1
2 1

)
,

(
a 1
1 a−1

)
, a > 0.

28. Let A be a Hermitian matrix and k > 0 be an odd number. Show
that there exists a unique Hermitian matrix B such that A = Bk.
Show further that if AP = PA for some matrix P , then BP = PB.

29. Let A be a nonzero n-square matrix. If A is Hermitian and satisfies

trA

(trA2)1/2
≥

√
n− 1,

show that A ≥ 0. Conversely, if A ≥ 0, show that

trA

(trA2)1/2
≥ 1.

30. Let A be a square complex matrix such that A+A∗ ≥ 0. Show that

det
A+ A∗

2
≤ |detA|.

31. Show that if B commutes with A ≥ 0, then B commutes with A1/2.
Thus any positive semidefinite matrix commutes with its square root.

32. Let A > 0. Show that (A−1)1/2 = (A1/2)−1 (denoted by A−1/2).
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33. Does a contractive matrix really make matrices “smaller”? To be
precise, if A is a positive definite matrix and C is a contraction, i.e.,
σmax(C) ≤ 1, both of size n× n, is it true that A ≥ C∗AC?

34. Let A ≥ 0 and let B be a principal submatrix of A. Show that B is
singular (i.e., detB = 0) if and only if the rows (columns) of A that
contain B are linearly dependent.

35. Let A be an n× n positive definite matrix. Show that

(detA)
1/n

= min
tr(AX)

n
,

where the minimum is taken over all n-square X > 0 with detX = 1.

36. Let A be a Hermitian matrix. Show that neither A nor −A is positive
semidefinite if and only if at least one of the following holds.

(a) A has a minor of even order with negative sign.

(b) A has two minors of odd order with opposite signs.

37. Let A and B be n× n complex matrices. Show that

A∗A = B∗B

if and only if B = UA for some unitary U . When does

A∗ +A

2
= (A∗A)1/2?

38. Let A be a positive definite matrix and r ∈ [0, 1]. Show that

rA+ (1− r)I ≥ Ar

and
(Au, u)r ≥ (Aru, u), for all unit vectors u.

39. Let A and C be n×n matrices, where A is positive semidefinite and
C is contractive. Show that for any real number r, 0 < r < 1,

C∗ArC ≤ (C∗AC)r.

. ⊙ .
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7.2 A Pair of Positive Semidefinite Matrices

Inequality is one of the main topics in modern matrix theory. In this
section we present some inequalities involving two positive semidefi-
nite matrices.

Let A and B be two Hermitian matrices of the same size. If A−B
is positive semidefinite, we write

A ≥ B or B ≤ A.

It is easy to see that ≥ is a partial ordering, referred to as Löwner
(partial) ordering, on the set of Hermitian matrices; that is,

1. A ≥ A for every Hermitian matrix A.

2. If A ≥ B and B ≥ A, then A = B.

3. If A ≥ B and B ≥ C, then A ≥ C.

Obviously, A + B ≥ B if A ≥ 0. That A ≥ 0 ⇔ X∗AX ≥ 0 in
(7.2) of the previous section immediately generalizes as follows.

A ≥ B ⇔ X∗AX ≥ X∗BX (7.4)

for every complex matrix X of appropriate size. If A and B are both
positive semidefinite, then (A1/2)∗ = A1/2 and thus A1/2BA1/2 ≥ 0.

Theorem 7.5 Let A ≥ 0 and B ≥ 0 be of the same size. Then

1. The trace of the product AB is less than or equal to the product
of the traces trA and trB; that is, tr(AB) ≤ trA trB.

2. The eigenvalues of AB are all nonnegative. Furthermore, AB
is positive semidefinite if and only if AB = BA.

3. If α, β are the largest eigenvalues of A, B, respectively, then

−1

4
αβI ≤ AB +BA ≤ 2αβI.
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Proof. To show (1), by unitary similarity, with A = U∗DU ,

tr(AB) = tr(U∗DUB) = tr(DUBU∗),

we may assume that A = diag(λ1, . . . , λn). Suppose that b11, . . . , bnn
are the diagonal entries of B. Then

tr(AB) = λ1b11 + · · ·+ λnbnn

≤ (λ1 + · · ·+ λn)(b11 + · · ·+ bnn)

= trA trB.

For (2), recall that XY and Y X have the same eigenvalues if X and
Y are square matrices of the same size. Thus, AB = A1/2(A1/2B) has
the same eigenvalues as A1/2BA1/2, which is positive semidefinite.

AB is not positive semidefinite in general, since it need not be
Hermitian. If A and B commute, however, then AB is Hermitian, for

(AB)∗ = B∗A∗ = BA = AB,

and thus AB ≥ 0. Conversely, if AB ≥ 0, then it is Hermitian, and

AB = (AB)∗ = B∗A∗ = BA.

To show (3), we assume that A ̸= 0 and B ̸= 0. Dividing through
the inequalities by αβ, we see that the statement is equivalent to its
case α = 1, β = 1. Thus, we need to show −1

4I ≤ AB + BA ≤ 2I.
Note that 0 ≤ A ≤ I implies 0 ≤ A2 ≤ A ≤ I. It follows that

0 ≤ (A+B − 1
2
I)2

= (A+B)2 − (A+B) + 1
4I

= A2 +B2 +AB + BA−A−B + 1
4I

≤ AB +BA+ 1
4
I;

that is, AB +BA ≥ − 1
4
I. To show AB +BA ≤ 2I, we compute

0 ≤ (A−B)2 = A2 +B2 −AB −BA ≤ 2I −AB −BA.

What follows is the main result of this section, which we use to
reduce many problems involving a pair of positive definite matrices
to a problem involving two diagonal matrices.
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Theorem 7.6 Let A and B be n-square positive semidefinite matri-
ces. Then there exists an invertible matrix P such that

P ∗AP and P ∗BP

are both diagonal matrices. In addition, if A is nonsingular, then P
can be chosen so that P ∗AP = I and P ∗BP is diagonal.

Proof. Let rank (A+B) = r and S be a nonsingular matrix so that

S∗(A+B)S =

(
Ir 0
0 0

)
.

Conformally partition S∗BS as

S∗BS =

(
B11 B12

B21 B22

)
.

By (7.4), we have S∗(A+B)S ≥ S∗BS. This implies

B22 = 0, B12 = 0, B21 = 0.

Now for B11, because B11 ≥ 0, there exists an r × r unitary matrix
T such that T ∗B11T is diagonal. Put

P = S

(
T 0
0 In−r

)
.

Then P ∗BP and P ∗AP = P ∗(A+B)P − P ∗BP are both diagonal.
If A is invertible, we write A = C∗C for some matrix C. Consider

matrix (C−1)∗BC−1. Since it is positive semidefinite, we have a
unitary matrix U such that

(C−1)∗BC−1 = UDU∗,

where D is a diagonal matrix with nonnegative diagonal entries.
Let P = C−1U . Then P ∗AP = I and P ∗BP = D.

Many results can be derived by reduction of positive semidefinite
matrices A and B to diagonal matrices, or further to nonnegative
numbers, to which some elementary inequalities may apply. The
following two are immediate from the previous theorem by writing
A = P ∗D1P and B = P ∗D2P , where P is an invertible matrix, and
D1 and D2 are diagonal matrices with nonnegative entries.
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Theorem 7.7 Let A ≥ 0, B ≥ 0 be of the same order (> 1). Then

det(A+B) ≥ detA+ detB (7.5)

with equality if and only if A+B is singular or A = 0 or B = 0, and

(A+B)−1 ≤ 1

4
(A−1 +B−1) (7.6)

if A and B are nonsingular, with equality if and only if A = B.

Theorem 7.8 If A ≥ B ≥ 0, then

1. rank (A) ≥ rank (B),

2. detA ≥ detB, and

3. B−1 ≥ A−1 if A and B are nonsingular.

Every positive semidefinite matrix has a positive semidefinite
square root. The square root is a matrix monotone function for
positive semidefinite matrices in the sense that the Löwner partial
ordering is preserved when taking the square root.

Theorem 7.9 Let A and B be positive semidefinite matrices. Then

A ≥ B ⇒ A1/2 ≥ B1/2.

Proof 1. It may be assumed that A is positive definite by continuity
(Problem 5). Let C = A1/2, D = B1/2, and E = C − D. We have
to establish E ≥ 0. For this purpose, it is sufficient to show that the
eigenvalues of E are all nonnegative. Notice that

0 ≤ C2 −D2 = C2 − (C −E)2 = CE +EC −E2.

It follows that CE +EC ≥ 0, for E is Hermitian and E2 ≥ 0.
On the other hand, let λ be an eigenvalue of E and let u be an

eigenvector corresponding to λ. Then λ is real and by (7.1),

0 ≤ u∗(CE +EC)u = 2λ(u∗Cu).

Since C > 0, we have λ ≥ 0. Hence E ≥ 0; namely, C ≥ D.
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Proof 2. First notice that A1/2 − B1/2 is Hermitian. We show that
the eigenvalues are all nonnegative. Let (A1/2−B1/2)x = λx, x ̸= 0.
Then B1/2x = A1/2x− λx. By the Cauchy–Schwarz inequality,

|x∗y| ≤ (x∗x)1/2 (y∗y)1/2, for all x, y ∈ Cn.

Thus, we have

x∗Ax = (x∗Ax)1/2(x∗Ax)1/2 ≥ (x∗Ax)1/2(x∗Bx)1/2 ≥ x∗A1/2B1/2x

= x∗A1/2(A1/2x− λx) = x∗Ax− λx∗A1/2x.

It follows that λx∗A1/2x ≥ 0 for all x in C, so λ ≥ 0.

Proof 3. If A is positive definite, then by using (7.4) and by multi-
plying both sides of B ≤ A by A−1/2 = (A−1/2)∗, we obtain

A−1/2BA−1/2 ≤ I,

rewritten as
(B1/2A−1/2)∗(B1/2A−1/2) ≤ I,

which gives
σmax(B

1/2A−1/2) ≤ 1,

where σmax means the largest singular value. Thus, by Problem 10,

λmax(A
−1/4B1/2A−1/4) = λmax(B

1/2A−1/2) ≤ σmax(B
1/2A−1/2) ≤ 1,

where A−1/4 is the square root of A−1/2, and, by Problem 11,

0 ≤ A−1/4B1/2A−1/4 ≤ I.

Multiplying both sides by A1/4, the square root of A1/2, we see that

B1/2 ≤ A1/2.

The case for singular A follows from a continuity argument.

Theorem 7.10 Let A and B be positive semidefinite matrices. Then

A ≥ B ⇒ Ar ≥ Br, 0 ≤ r ≤ 1.

This result, due to Löwner and Heinz, can be shown in a similar
way as the above proof 3. That is, one can prove that if the inequality
holds for s, t ∈ [0, 1], then it holds for (s+ t)/2, concluding that the
set of numbers in [0, 1] for which the inequality holds is convex.
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Problems

1. Show that A ≥ B ⇒ trA ≥ trB. When does equality occur?

2. Give an example where A ≥ 0 and B ≥ 0 but AB is not Hermitian.

3. Show by example that A ≥ B ≥ 0 ⇒ A2 ≥ B2 is not true in general.
But AB = BA and A ≥ B ≥ 0 imply Ak ≥ Bk, k = 1, 2, . . . .

4. Referring to Theorem 7.6, give an example showing that the matrix
P is not unique in general. Show that matrix P can be chosen to be
unitary if and only if AB = BA.

5. Show Theorem 7.9 for the singular case by a continuity argument;
that is, limϵ→0+(A+ ϵI)1/2 = A1/2 for A ≥ 0.

6. Complete the proof of Theorem 7.10.

7. If A is an n × n complex matrix such that x∗Ax ≥ x∗x for every
x ∈ Cn, show that A is nonsingular and that A ≥ I ≥ A−1 > 0.

8. Let A,B ∈ Mn. Show that A > B (i.e., A − B > 0) if and only if
X∗AX > X∗BX for every n×m matrix X with rank (X) = m.

9. Let A be a nonsingular Hermitian matrix. Show that A ≥ A−1 if
and only if all eigenvalues of A lie in [−1, 0) ∪ [1,∞).

10. Let A ∈ Mn. If A ≥ 0, show that x∗Ax ≤ λmax(A) for all unit x and
that |λ(A)| ≤ σmax(A) for every eigenvalue λ(A) of A.

11. Let A = A∗. Show that 0 ≤ A ≤ I ⇔ every eigenvalue λ(A) ∈ [0, 1].

12. Let A ≥ 0. Show that λmax(A)I ≥ A and λmax(A) ≥ max{aii}.

13. Let A and B be n-square positive semidefinite matrices.

(a) Show that A > B ≥ 0 ⇔ λmax(A
−1B) < 1.

(b) Show that A > B ≥ 0 ⇒ detA > detB.

(c) Give an example that A ≥ B ≥ 0, detA = detB, but A ̸= B.

14. LetA ≥ 0 andB ≥ 0 be of the same size. As is known, the eigenvalues
of positive semidefinite matrices are the same as the singular values,
and the eigenvalues of AB are nonnegative. Are the eigenvalues of
AB in this case necessarily equal to the singular values of AB?

15. Show that the eigenvalues of the product of three positive semidefinite
matrices are not necessarily nonnegative by the example

A =

(
1 1
1 1

)
, B =

(
2 1
1 1

)
, C =

(
2 i
−i 1

)
.
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16. Let A > 0 and B = B∗ (not necessarily positive semidefinite) be of
the same size. Show that there exists a nonsingular matrix P such
that P ∗AP = I, P ∗BP is diagonal, and the diagonal entries of P ∗BP
are the eigenvalues of A−1B. Show by example that the assertion is
not true in general if A > 0 is replaced with A ≥ 0.

17. Let A,B,C be three n-square positive semidefinite matrices. Give an
example showing that there does not necessarily exist an invertible
matrix P such that P ∗AP,P ∗BP,P ∗CP are all diagonal.

18. Let A, B be m×n matrices. Show that for any m×m matrix X > 0

| tr(A∗B)|2 ≤ tr(A∗XA) tr(B∗X−1B).

19. Let A = (aij) be an n× n positive semidefinite matrix. Show that

(a)
∑n

i=1 a
2
ii ≤ trA2 ≤

(∑n
i=1 aii

)2
,

(b)
(∑n

i=1 aii
)1/2 ≤ trA1/2 ≤

∑n
i=1 a

1/2
ii ,

(c)
(∑n

i=1 aii
)−1 ≤

∑n
i=1 a

−1
ii ≤ trA−1 if A > 0.

20. Let A ≥ 0 and B ≥ 0 be of the same size. Show that

tr(A1/2B1/2) ≤ (trA)1/2(trB)1/2

and (
tr(A+B)

)1/2 ≤ (trA)1/2 + (trB)1/2.

21. Let A > 0 and B > 0 be of the same size. Show that

tr
(
(A−1 −B−1)(A−B)

)
≤ 0.

22. Let A > 0 and B ≥ C ≥ 0 be all of the same size. Show that

tr
(
(A+B)−1B

)
≥ tr

(
(A+ C)−1C

)
.

23. Construct an example that A > 0, B > 0 but AB+BA ̸≥ 0. Explain
why A1/2BA1/2 ≤ 1

2
(AB +BA) is not true in general for A,B ≥ 0.

24. Show that for Hermitian matrices A and B of the same size,

A2 +B2 ≥ AB +BA.

25. Let A =
(
1
0

0
α

)
and B =

(
1
β

β
1

)
. Find a condition on α and β so that

A2 +AB +BA ̸≥ 0.
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26. Let A and B be n-square Hermitian matrices. Show that

A > 0, AB +BA ≥ 0 ⇒ B ≥ 0

and

A > 0, AB +BA > 0 ⇒ B > 0.

Show that A > 0 in fact can be replaced by the weaker condition
A ≥ 0 with positive diagonal entries. Show by example that the
assertions do not hold in general if A > 0 is replaced by A ≥ 0.

27. Let A and B be n-square real symmetric invertible matrices. Show
that there exists a real n-square invertible matrix P such that P TAP
and P TBP are both diagonal if and only if all the roots of p(x) =
det(xA−B) and q(x) = det(xB −A) are real.

28. Let A =
(

1
0

0
−1

)
and B =

(
0
1
1
1

)
. Does there exist a real matrix P

such that P TAP and P TBP are both diagonal? Does there exist a
complex matrix P such that P ∗AP and PTBP are both diagonal?

29. Let A > 0 and B ≥ 0 be of the same size. Show that

(A+B)−1 ≤ A−1 (or B−1).

30. Let A > 0 and B > 0 be of the same size. Show that

A−1 − (A+B)−1 − (A+B)−1B(A+B)−1 ≥ 0.

31. Let A ≥ 0 and B ≥ 0 be of the same size. Prove or disprove that

(BAB)α = BαAαBα,

where α = 2, 1
2 , or −1 if A and B are nonsingular.

32. Let A ≥ 0 and B ≥ 0 be of the same size. Show that

BA2B ≤ I ⇒ B1/2AB1/2 ≤ I.

33. Let A ≥ 0 and B ≥ 0 be of the same size. Consider the inequalities:

(a) A ≥ B (b) A2 ≥ B2 (c) BA2B ≥ B4 (d) (BA2B)1/2 ≥ B2.

Show that (a)̸⇒(b). However, (b)⇒(c)⇒(d).

34. Prove Theorem 7.10. Show by example that A ≥ B ≥ 0 ̸⇒ A2 ≥ B2.
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35. Let A ≥ 0 and B ≥ 0 be of order n, where n > 1. Show that(
det(A+B)

)1/n ≥ (detA)1/n + (detB)1/n.

Equality occurs if and only if A = 0 or B = 0 or A+B is singular or
B = aA for some a > 0. Conclude that

det(A+B) ≥ detA+ detB

with equality if and only if A = 0 or B = 0 or A+B is singular, and

det(A+B) ≥ detA

with equality if and only if B = 0 or A+B is singular.

36. Let A, B, and C be n× n positive semidefinite matrices. Show that

det(A+B) + det(A+ C) ≤ detA+ det(A+B + C).

[Hint: Use elementary symmetric functions and compound matrices.]

37. Let A ≥ 0 and B ≥ 0 be of the same size. Show that for any λ, µ ∈ C,

|det(λA+ µB)| ≤ det(|λ|A+ |µ|B).

38. Show by example that A ≥ B ≥ 0 does not imply

A1/2 −B1/2 ≤ (A−B)1/2.

39. Let A > 0 and B ≥ 0 be of the same size. Show that

trB

trA
≥ detB

detA
.

40. Let A ≥ 0 and B ≥ 0, both n× n. Show that

tr(ABA) ≤ tr(A)λmax(AB)

and
tr(A+ABA) ≤

(
n+ tr(AB)

)
λmax(A).

41. Show that A ≥ 0 and B ≥ C ≥ 0 imply the matrix inequality

A1/2BA1/2 ≥ A1/2CA1/2 but not B1/2AB1/2 ≥ C1/2AC1/2.

42. Let A and B be n-square complex matrices. Prove or disprove

A∗A ≤ B∗B ⇒ A∗CA ≤ B∗CB, for C ≥ 0.
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43. Let A and B be n-square complex matrices. Prove or disprove

A∗A ≤ B∗B ⇒ AA∗ ≤ BB∗.

44. Let A ≥ 0 and B ≥ 0 be of the same size. For any t ∈ [0, 1] with
t̃ = 1− t, assuming that the involved inverses exist, show that

(a) (tA+ t̃B)−1 ≤ tA−1 + t̃B−1. So (A+B
2 )−1 ≤ A−1+B−1

2 .

(b) (tA+t̃B)−1/2 ≤ tA−1/2+t̃B−1/2. So (A+B
2 )−1/2 ≤ A−1/2+B−1/2

2 .

(c) (tA+ t̃B)1/2 ≥ tA1/2 + t̃B1/2. So (A+B
2 )1/2 ≥ A1/2+B1/2

2 .

(d) (tA+ t̃B)2 ≤ tA2 + t̃B2. So (A+B
2

)2 ≤ A2+B2

2
.

Show, however, that (A+B
2 )3 ≤ A3+B3

2 is not true in general.

(e) det(tA+ t̃B) ≥ (detA)t(detB)t̃. So det(A+B
2

) ≥
√
detA detB.

45. Let A > 0 and B > 0 be matrices of the same size with eigenvalues
contained in the closed interval [m,M ]. Show that

2mM

(m+M)2
(A+B) ≤ 2(A−1 +B−1)−1

≤ A1/2(A−1/2BA−1/2)1/2A1/2

≤ 1

2
(A+B).

46. Let A, B, and C be Hermitian matrices of the same size. If A ≥ B
and if C commutes with both AB and A+B, show that C commutes
with A and B. What if the condition A ≥ B is removed?

47. Show that the product AB of a positive definite matrix A and a
Hermitian matrix B is diagonalizable. What if A is singular?

48. Let A be an n-square complex matrix. If A + A∗ > 0, show that
every eigenvalue of A has a positive real part. Use this fact to show
that X > 0 if X is a Hermitian matrix satisfying for some Y > 0

XY + Y X > 0.

49. Let A and B be n×n Hermitian matrices. If Ak+Bk = 2In for some
positive integer k, show that A + B ≤ 2In. [Hint: Consider odd k
first. For the even case, show that A2p+B2p ≤ 2I ⇒ Ap+Bp ≤ 2I.]

. ⊙ .
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7.3 Partitioned Positive Semidefinite Matrices

In this section we present the Fischer and Hadamard determinant in-
equalities and the matrix inequalities involving principal submatrices
of positive semidefinite matrices.

Let A be a square complex matrix partitioned as

A =

(
A11 A12

A21 A22

)
, (7.7)

where A11 is a square submatrix of A. If A11 is nonsingular, we have(
I 0

−A21A
−1
11 I

)
A

(
I −A−1

11 A12

0 I

)
=

(
A11 0

0 Ã11

)
, (7.8)

where

Ã11 = A22 −A21A
−1
11 A12

is called the Schur complement of A11 in A. By taking determinants,

detA = detA11 det Ã11.

If A is a positive definite matrix, then A11 is nonsingular and

A22 ≥ Ã11 ≥ 0.

The Fischer determinant inequality follows, for detA22 ≥ det Ã11.

Theorem 7.11 (Fischer Inequality) If A is a positive semidefi-
nite matrix partitioned as in (7.7), then

detA ≤ detA11 detA22

with equality if and only if both sides vanish or A12 = 0. Also

| detA12|2 ≤ detA11 detA22

if the blocks A11, A12, A21, and A22 are square matrices of the same size.
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Proof. The nonsingular case follows from the earlier discussion. For
the singular case, one may replace A with A + ϵI, ϵ > 0, to obtain
the desired inequality by a continuity argument.

If equality holds and both A11 and A22 are nonsingular, then

det Ã11 = detA22 = det(A22 −A21A
−1
11 A12).

Thus, A21A
−1
11 A12 = 0 or A12 = 0 by Theorem 7.7 and Problem 9.

For the second inequality, notice that A22 ≥ A21A
−1
11 A12 ≥ 0.

The assertion follows at once by taking the determinants.

An induction on the size of the matrices gives the following result.

Theorem 7.12 (Hadamard Inequality) Let A be a positive semidef-
inite matrix with diagonal entries a11, a22, . . . , ann. Then

detA ≤ a11a22 · · · ann.

Equality holds if and only if some aii = 0 or A is diagonal.

A direct proof goes as follows. Assume that each aii > 0 and

let D = diag(a
−1/2
11 , . . . , a

−1/2
nn ). Put B = DAD. Then B is a posi-

tive semidefinite matrix with diagonal entries all equal to 1. By the
arithmetic mean–geometric mean inequality, we have

n = trB =
n∑

i=1

λi(B) ≥ n

( n∏
i=1

λi(B)

)1/n

= n(detB)1/n.

This implies detB ≤ 1. Thus,

detA = det(D−1BD−1) =
n∏

i=1

aii detB ≤
n∏

i=1

aii.

Equality occurs if and only if the eigenvalues of B are identical and
detB = 1; that is, B is the identity and A is diagonal.

It follows that for any complex matrix A of size m× n,

det(A∗A) ≤
n∏

j=1

m∑
i=1

|aij|2. (7.9)
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An interesting application of the Hadamard inequality is to show
that if A = B + iC ≥ 0, where B and C are real matrices, then

detA ≤ detB

by passing the diagonal entries of A to B through a real orthogonal
diagonalization of the real matrix B (Problem 31).

We now turn our attention to the inequalities involving principal
submatrices of positive semidefinite matrices.

Let A be an n-square positive semidefinite matrix. We denote in
this section by [A]ω, or simply [A], the k×k principal submatrix of A
indexed by a sequence ω = {i1, . . . , ik}, where 1 ≤ i1 < · · · < ik ≤ n.
We are interested in comparing f([A]) and [f(A)], where f(x) is the
elementary function x2, x1/2, x−1/2, or x−1.

Theorem 7.13 Let A ≥ 0 and let [A] be a principal submatrix of
the matrix A. Then, assuming that the inverses involved exist,

[A2] ≥ [A]2, [A1/2] ≤ [A]1/2, [A−1/2] ≥ [A]−1/2, [A−1] ≥ [A]−1.

Proof. Wemay assume that [A] = A11 as in (7.7). Otherwise one can
carry out a similar argument for P TAP , where P is a permutation
matrix so that [A] is in the upper-left corner.

Partition A2, A1/2, and A−1 conformally to A in (7.7) as

A2 =

(
E F
F ∗ G

)
, A1/2 =

(
P Q
Q∗ R

)
, A−1 =

(
X Y
Y ∗ Z

)
.

Upon computation of A2 using (7.7), we have the first inequality:

[A2] = E = A2
11 +A12A21 ≥ A2

11 = [A]2.

This yields [A]1/2 ≥ [A1/2] by replacing A with A1/2 and then taking
the square root. The third inequality, [A−1/2] ≥ [A]−1/2, follows from
an application of the last inequality to the second.

We are left to show [A−1] ≥ [A]−1. By Theorem 2.4, we have

[A−1] = X = A−1
11 +A−1

11 A12Ã11
−1
A21A

−1
11 ≥ A−1

11 = [A]−1.
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The inequalities in Theorem 7.13 may be unified in the form

[f(A)] ≥ f([A]), where f(x) = x2, −x1/2, x−1/2, or x−1.

Notice that if A is an n-square positive definite matrix, then for
any n×m matrix B, (

A B
B∗ B∗A−1B

)
≥ 0. (7.10)

Note also that B∗A−1B is the smallest matrix to make the block
matrix positive semidefinite in the Löwner partial ordering sense.

Theorem 7.14 Let A ∈ Mn be a positive definite matrix and let B
be an n×m matrix. Then for any positive semidefinite X ∈ Mm,(

A B
B∗ X

)
≥ 0 ⇔ X ≥ B∗A−1B.

Proof. It is sufficient to notice the matrix identity(
In 0

−B∗A−1 Im

)(
A B
B∗ X

)(
In −A−1B
0 Im

)

=

(
A 0
0 X −B∗A−1B

)
.

Note that, by Theorem 2.4, [A−1] = (A11−A12A
−1
22 A21)

−1. Thus
for any positive semidefinite matrix A partitioned as in (7.7),

A−
(

[A−1]−1 0
0 0

)
=

(
A12A

−1
22 A21 A12

A21 A22

)
≥ 0. (7.11)

Since a principal submatrix of a positive definite matrix is also
positive definite, we have, for any n× n matrices A, B, and C,(

A B
B∗ C

)
≥ 0 ⇒

(
[A] [B]
[B∗] [C]

)
≥ 0.

Using the partitioned matrix in (7.10), we obtain the following result.
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Theorem 7.15 Let A be an n×n positive definite matrix. Then for
any n× n matrix B, with [ · ] standing for a principal submatrix,

[B∗][A]−1[B] ≤ [B∗A−1B].

We end the section by presenting a result on partitioned posi-
tive semidefinite matrices. It states that for a partitioned positive
semidefinite matrix in which each block is square, the resulting ma-
trix of taking determinant of each block is also positive semidefinite.
An analogous result for trace is given in Section 7.5.

Theorem 7.16 Let A be a kn×kn positive semidefinite matrix par-
titioned as A = (Aij), where each Aij is an n×n matrix, 1 ≤ i, j ≤ k.
Then the k × k matrix D = (detAij) is positive semidefinite.

Proof. By Theorem 7.3, we write A = R∗R, where R is kn×kn. Par-
tition R = (R1, R2, . . . , Rk), where Ri is kn×n, i = 1, 2, . . . , k. Then
Aij = R∗

iRj . Applying the Binet–Cauchy formula (Theorem 4.9) to
detAij = det(R∗

iRj) with α = {1, 2, . . . , n}, we have

detAij = det(R∗
iRj) =

∑
β

detR∗
i [α|β] detRj [β|α],

where β = {j1, . . . , jn}, 1 ≤ j1 < · · · < jn ≤ kn. It follows that

D = (detAij) =
(∑

β

detR∗
i [α|β] detRj [β|α]

)
=

∑
β

(
detR∗

i [α|β] detRj [β|α]
)

=
∑
β

(
det(Ri[β|α])∗ detRj [β|α]

)
=

∑
β

T ∗
βTβ ≥ 0,

where Tβ is the row vector ( detR1[β|α], . . . ,detRk[β|α]).
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Problems

1. Show that
(

A
A

A
X

)
≥ 0 for any X ≥ A ≥ 0.

2. Show that if A ≥ B ≥ 0, then
(

A
B

B
A

)
≥ 0.

3. Show that X must be the zero matrix if
(

I+X
I

I
I−X

)
≥ 0.

4. Show that
(

I
X∗

X
X∗X

)
≥ 0 for any matrix X .

5. Show that
(

A
B1/2A1/2

A1/2B1/2

B

)
≥ 0 and

(
A

A1/2
A

A1/2

)
≥ 0 if A,B ≥ 0.

6. Let A > 0 and B > 0 be of the same size. Show that(
A+B A
A A+X

)
≥ 0 ⇔ X ≥ −(A−1 +B−1)−1.

7. Refer to Theorem 7.11. Show the reversal Fischer inequality

det Ã11 det Ã22 ≤ detA.

8. Show the Hadamard determinant inequality by Theorem 7.3(4).

9. Let A be an n×m complex matrix and B be an n×n positive definite
matrix. If A∗BA = 0, show that A = 0. Does the assertion hold if
B is a nonzero positive definite or general nonsingular matrix?

10. When does equality in (7.9) occur?

11. Show that a square complex matrix A is unitary if and only if each
row (column) vector of A has length 1 and | detA| = 1.

12. Show that the following matrices are positive semidefinite.

(a)
(

σmax(A)In
A

A∗

σmax(A)Im

)
for any m× n matrix A.

(b)
(

A
I

I
A−1

)
for any positive definite matrix A.

(c)
(

A∗A
B∗A

A∗B
B∗B

)
for any A and B of the same size.

(d)
(

I+A∗A
A+B

A∗+B∗

I+BB∗

)
for any A and B of the same size.

(e)
(

λA
A

A
1
λA

)
for any λ ∈ (0,+∞) and A ≥ 0.

(f)
(

|A∗|
A∗

A
|A|

)
for any matrix A.
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13. Let A be n× n and B be n×m. If A is nonsingular, verify that(
A B
B∗ B∗A−1B

)
=

(
I 0
0 B∗

)(
A I
I A−1

)(
I 0
0 B

)
.

14. Let A > 0 and B > 0 be of the same size. Show that, with [X]
standing for the corresponding principal submatrices of X,

(a) [(A+B)−1] ≤ [A−1] + [B−1],

(b) [A+B]−1 ≤ [A]−1 + [B−1],

(c) [A+B]−1 ≤ [(A+B)−1],

(d) [A]−1 + [B]−1 ≤ [A−1] + [B−1].

15. Show that for any square complex matrix A, with [X] standing for
the corresponding principal submatrices of X,

[A∗A] ≥ [A∗][A].

16. Let A and B be square complex matrices of the same size. With [X]
standing for the corresponding principal submatrices of X, show that

[AB][B∗A∗] ≤ [ABB∗A∗]

and
[A][B][B∗][A∗] ≤ [A][BB∗][A∗].

Show by example that the inequalities below do not hold in general:

[A][B][B∗][A∗] ≤ [ABB∗A∗].

[AB][B∗A∗] ≤ [A][BB∗][A∗].

[A][BB∗][A∗] ≤ [ABB∗A∗].

Conclude that the following inequality does not hold in general.

[B∗][A][B] ≤ [B∗AB], where A ≥ 0.

17. Let A be a positive semidefinite matrix. Show by the given A that

[A4] ≥ [A]4

is not true in general, where [ · ] stands for a principal submatrix and

A =

 1 0 1
0 0 1
1 1 1

 .

What is wrong with the proof, using [A2] ≥ [A]2 in Theorem 7.13,

[A4] = [
(
A2
)2
] ≥ [A2]2 ≥

(
[A]2

)2
= [A]4?
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18. Let A > 0 and B > 0 be of the same size. Show that

A−X∗B−1X > 0 ⇔ B −XA−1X∗ > 0.

19. Let A > 0 and B ≥ 0 be of the same size. Show that

tr(A−1B) ≥ trB

λmax(A)
≥ trB

trA

and

tr
(
(I +AB)−1A

)
≥ trA

1 + λmax(AB)
.

20. Let A ∈ Mn, C ∈ Mm, and B be n×m. Show that(
A B
B∗ C

)
≥ 0 ⇒ tr(B∗B) ≤ trA trC.

Does
det(B∗B) ≤ detAdetC?

21. Let A, B, and C be n-square matrices. If AB = BA, show that(
A B
B∗ C

)
≥ 0 ⇒ A1/2CA1/2 ≥ B∗B.

22. Let A, B, and C be n-square matrices. Show that(
A B
B∗ C

)
≥ 0 ⇒ A± (B +B∗) + C ≥ 0.

23. Let A, B, and C be n-square matrices. Show that(
A B
B∗ C

)
≥ 0 ⇒

(
Σ(A) Σ(B)
Σ(B∗) Σ(C)

)
≥ 0,

where Σ(X) denotes the sum of all entries of matrix X.

24. Give an example of square matrices A,B,C of the same size for which(
A B
B∗ C

)
≥ 0 but

(
A B∗

B C

)
̸≥ 0.

25. Give an example of square matrices A,B,C of the same size for which(
A B
B∗ C

)
≥ 0 but

(
A2 B2

(B∗)2 C2

)
̸≥ 0.
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26. Let A ∈ Mn be a positive definite matrix. Show that for any B ∈ Mn,

A+B +B∗ +B∗A−1B ≥ 0.

In particular,
I +B +B∗ +B∗B ≥ 0.

27. For any nonzero vectors x1, x2, . . . , xn in an inner product space, let

G(x1, x2, . . . , xn) = ((xj , xi)).

Such a matrix is called the Gram matrix of x1, x2, . . . , xn. Show that

G(x1, x2, . . . , xn) ≥ 0

and that

detG(x1, . . . , xn) ≤
n∏

i=1

(xi, xi).

Equality holds if and only if the vectors are orthogonal. Moreover,

detG(x1, . . . , xn) ≤ detG(x1, . . . , xm) detG(xm+1, . . . , xn).

28. Let u1, u2, . . . , un ∈ Cm be n column vectors ofm components. Form
four matrices as follows by these vectors. Show that the first three
matrices are positive semidefinite, and the last one is not in general.

u∗1u1 u∗1u2 . . . u∗1un
u∗2u1 u∗2u2 . . . u∗2un
. . . . . . . . . . . .
u∗nu1 u∗nu2 . . . u∗nun

 ,


u∗1u1 u∗2u1 . . . u∗nu1
u∗1u2 u∗2u2 . . . u∗nu2
. . . . . . . . . . . .
u∗1un u∗2un . . . u∗nun

 ,


u1u

∗
1 u1u

∗
2 . . . u1u

∗
n

u2u
∗
1 u2u

∗
2 . . . u2u

∗
n

. . . . . . . . . . . .
unu

∗
1 unu

∗
2 . . . unu

∗
n

 ,


u1u

∗
1 u2u

∗
1 . . . unu

∗
1

u1u
∗
2 u2u

∗
2 . . . unu

∗
2

. . . . . . . . . . . .
u1u

∗
n u2u

∗
n . . . unu

∗
n

 .

29. Use the Hadamard inequality to show the Fischer inequality. [Hint:
If B is a principal submatrix of A, where A is Hermitian, then there
exists a unitary matrix U such that U∗BU is diagonal.]

30. Show Theorem 7.16 by a compound matrix. [Hint: The k×k matrix
(detAij) is a principal submatrix of the nth compound matrix of A.]
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31. Let A = B + iC ≥ 0, where B and C are real matrices. Show that

(a) B is positive semidefinite.

(b) C is skew-symmetric.

(c) detB ≥ detA; when does equality occur?

(d) rank (B) ≥ max{rank (A), rank (C)}.

32. Find a positive semidefinite matrix A partitioned as

A =

(
A11 A12

A21 A22

)
such that

detA = detA11 detA22 but A12 = A∗
21 ̸= 0.

33. Show that for any complex matrices A and B of the same size,(
det(A∗A) det(A∗B)
det(B∗A) det(B∗B)

)
≥ 0,

(
tr(A∗A) tr(A∗B)
tr(B∗A) tr(B∗B)

)
≥ 0,

and ∣∣∣∣ A∗A A∗B
B∗A B∗B

∣∣∣∣ = 0.

34. Let A be an n× n positive semidefinite matrix partitioned as

A =

(
A11 A12

A21 A22

)
, where A11 and A22 are square.

Show that, by writing A = X∗X, where X = (S, T ) for some S, T ,

C(A12) ⊆ C(A11), C(A21) ⊆ C(A22),

and
R(A12) ⊆ R(A22), R(A21) ⊆ R(A11).

Further show that

rank (A11, A12) = rank (A11), rank (A21, A22) = rank (A22).

Derive that A12 = A11P and A21 = QA11 for some P and Q. Thus

max{rank (A12), rank (A21)} ≤ min{rank (A11), rank (A22)}.

35. Let [X] stand for a principal submatrix of X . If A ≥ 0, show that

rank [Ak] = rank [A]k = rank [A], k = 1, 2, . . . .

[Hint: rank [AB] ≤ rank [A] and rank [A2] = rank [A] for A,B ≥ 0.]

. ⊙ .
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7.4 Schur Complements and Determinant Inequalities

Making use of Schur complements (or type III elementary operations
for partitioned matrices) has appeared to be an important technique
in many matrix problems and applications in statistics. In this sec-
tion, we are concerned with matrix and determinant (in)equalities
involving matrices in the forms I +A∗A, I −A∗A, and I −A∗B.

As defined in the previous section, the Schur complement of the
nonsingular principal submatrix A11 in the partitioned matrix

A =

(
A11 A12

A21 A22

)
is

Ã11 = A22 −A21A
−1
11 A12.

Note that if A is positive semidefinite and if A11 is nonsingular, then

A22 ≥ Ã11 ≥ 0.

Theorem 7.17 Let A > 0 be partitioned as above. Then

A−1 =

(
Ã22

−1
X

Y Ã11
−1

)
, (7.12)

where

X = −A−1
11 A12Ã11

−1
= −Ã22

−1
A12A

−1
22

and

Y = −A−1
22 A21Ã22

−1
= −Ã11

−1
A21A

−1
11 .

The proof of this theorem follows from Theorem 2.4 immediately.

The inverse form (7.12) of A in terms of Schur complements is
very useful. We demonstrate an application of it to obtain some
determinant inequalities and present the Hua inequality at the end.
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Theorem 7.18 For any n-square complex matrices A and B,

det(I +AA∗) det(I +B∗B) ≥ | det(A+ B)|2 + | det(I −AB∗)|2

with equality if and only if n = 1 or A+B = 0 or AB∗ = I.

The determinant inequality proceeds from the following key ma-
trix identity, for which we present two proofs.

I +AA∗ = (A+B)(I +B∗B)−1(A+B)∗

+ (I − AB∗)(I +BB∗)−1(I −AB∗)∗. (7.13)

Note that the left-hand side of (7.13) is independent of B.

Proof 1 for the identity (7.13). Use Schur complements. Let

X =

(
I +B∗B B∗ +A∗

A+B I +AA∗

)
.

Then the Schur complement of I +B∗B in X is

(I +AA∗)− (A+B)(I +B∗B)−1(A+B)∗. (7.14)

On the other hand, we write

X =

(
I B∗

A I

)(
I A∗

B I

)
.

Then by using (7.12), if I −AB∗ is invertible (then so is I −B∗A),

X−1 =

(
I A∗

B I

)−1(
I B∗

A I

)−1

=

(
(I −A∗B)−1 −(I −A∗B)−1A∗

−(I −BA∗)−1B (I −BA∗)−1

)
×
(

(I −B∗A)−1 −B∗(I −AB∗)−1

−A(I −B∗A)−1 (I −AB∗)−1

)
.

Thus, we have the lower-right corner of X−1, after multiplying out
the right-hand side and then taking inverses,

(I − AB∗)(I +BB∗)−1(I −AB∗)∗. (7.15)
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Equating (7.14) and (7.15), by (7.12), results in (7.13). The singular
case of I − AB∗ follows from a continuity argument by replacing A
with ϵA such that I − ϵAB∗ is invertible and by letting ϵ→ 1.

Proof 2 for the identity (7.13). A direct proof by showing that

(I +AA∗)− (I −AB∗)(I +BB∗)−1(I −AB∗)∗

equals
(A+ B)(I +B∗B)−1(A+B)∗.

Noticing that
B(I +B∗B) = (I +BB∗)B,

we have, by multiplying the inverses,

(I +BB∗)−1B = B(I +B∗B)−1 (7.16)

and, by taking the conjugate transpose,

B∗(I +BB∗)−1 = (I +B∗B)−1B∗. (7.17)

Furthermore, the identity

I = (I +B∗B)(I +B∗B)−1

yields
I − B∗B(I + B∗B)−1 = (I +B∗B)−1 (7.18)

and, by switching B and B∗,

I − (I +BB∗)−1 = BB∗(I +BB∗)−1. (7.19)

Upon computation, we have

(I +AA∗)− (I −AB∗)(I +BB∗)−1(I −AB∗)∗

= AA∗ −AB∗(I +BB∗)−1BA∗ +AB∗(I +BB∗)−1

+ (I +BB∗)−1BA∗ + I − (I +BB∗)−1 (by expansion)

= AA∗ −AB∗B(I +B∗B)−1A∗ +A(I +B∗B)−1B∗

+ B(I +B∗B)−1A∗ +BB∗(I +BB∗)−1 (by 7.16, 7.17, 7.19)

= A(I +B∗B)−1A∗ +A(I +B∗B)−1B∗

+ B(I +B∗B)−1A∗ +B(I +B∗B)−1B∗ (by 7.17, 7.18)

= (A+B)(I +B∗B)−1(A+B)∗ (by factoring).
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The identity (7.13) thus follows.
Now we are ready to prove the determinant inequality. Recall

that (Theorem 7.7 and Problem 35 of Section 7.2) for any positive
semidefinite matrices X and Y of the same size (more than 1),

det(X + Y ) ≥ detX + detY

with equality if and only if X + Y is singular or X = 0 or Y = 0.
Applying this to (7.13) and noticing that I+AA∗ is never singu-

lar, we have, when A and B are square matrices of the same size,

|det(I −AB∗)|2 + |det(A+ B)|2 ≤ det(I +AA∗) det(I + B∗B);

equality holds if and only if n = 1 or A+B = 0 or AB∗ = I.

As consequences of (7.13), we have the Löwner partial orderings

I +AA∗ ≥ (A+B)(I +B∗B)−1(A+B)∗ ≥ 0

and

I +AA∗ ≥ (I −AB∗)(I +BB∗)−1(I −AB∗)∗ ≥ 0,

and thus the determinant inequalities

|det(A+B)|2 ≤ det(I +AA∗) det(I +B∗B)

and

| det(I −AB∗)|2 ≤ det(I +AA∗) det(I +B∗B). (7.20)

Using similar ideas, one can derive the Hua determinant inequal-
ity (Problem 15) for contractive matrices. Recall that a matrix X is
contractive if I −X∗X ≥ 0, and strictly contractive if I −X∗X > 0.
It is readily seen that the product of contractive matrices is a con-
tractive matrix:

I ≥ A∗A ⇒ B∗B ≥ B∗(A∗A)B ⇒ I ≥ (AB)∗(AB).

To show Hua’s result, one shows that

(I −B∗A)(I −A∗A)−1(I −A∗B)
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is equal to

(B −A)∗(I −AA∗)−1(B −A) + (I −B∗B);

both expressions are positive semidefinite when A and B are strict
contractions. This implies the matrix inequality

I −B∗B ≤ (I −B∗A)(I −A∗A)−1(I −A∗B). (7.21)

Theorem 7.19 (Hua Determinant Inequality) Let A and B be
m× n contractive matrices. Then

|det(I −A∗B)|2 ≥ det(I −A∗A) det(I −B∗B). (7.22)

Equality holds if and only if A = B.

Hua’s determinant inequality is a reversal of (7.20) under the
condition that A and B be contractive matrices of the same size.
Note that the matrix inequality (7.21) is equivalent to saying(

(I −A∗A)−1 (I −B∗A)−1

(I −A∗B)−1 (I −B∗B)−1

)
≥ 0.

Question: Is the above block matrix the same as(
(I −A∗A)−1 (I −A∗B)−1

(I −B∗A)−1 (I −B∗B)−1

)
?

If not, is the latter block matrix positive semidefinite? Note that in

general
(
X
Z

Z∗

Y

)
≥ 0 ̸⇒

(
X
Z∗

Z
Y

)
≥ 0 (see Problem 24, Section 7.3).

Problems

1. Let A11 be a principal submatrix of a square matrix A. Show that

A > 0 ⇔ A11 > 0 and Ã11 > 0.

2. Show by writing A = (A−1)−1 that for any principal submatrix A11,

˜̃
A11

−1
−1

= A11 or
˜̃
A11

−1
= A−1

11 .
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3. Let A11 and B11 be the corresponding principal submatrices of the
n×n positive semidefinite matrices A and B, respectively. Show that

4(A11 +B11)
−1 ≤ Ã22

−1
+ B̃22

−1
.

4. Let A and B be positive definite. Show that A ≤ B ⇒ Ã11 ≤ B̃11.

5. Let A ≥ 0. Show that for any matrices X and Y of appropriate sizes,(
X∗AX X∗AY
Y ∗AX Y ∗AY

)
≥ 0.

6. Use the block matrix
(

I
A∗

A
I

)
to show the matrix identities

(I − A∗A)−1 = I + A∗(I −AA∗)−1A

and
I + AA∗(I − AA∗)−1 = (I −AA∗)−1.

7. Show that if P is the elementary matrix of a type III operation on

A =

(
A11 A12

A21 A22

)
; that is, P =

(
I X
0 I

)
,

then the Schur complements of A11 in A and in P TAP are the same.

8. Let A,B,C, andD be n×n nonsingular complex matrices. Show that∣∣∣∣ A−1 B−1

C−1 D−1

∣∣∣∣ = (−1)n

det(ACBD)

∣∣∣∣ A C
B D

∣∣∣∣ .
9. Let A, C be m×n matrices, and B, D be m×p matrices. Show that(

AA∗ +BB∗ AC∗ +BD∗

CA∗ +DB∗ CC∗ +DD∗

)
≥ 0.

10. Show that for matrices A, B, C, and D of appropriate sizes,

|det(AC +BD)|2 ≤ det(AA∗ +BB∗) det(C∗C +D∗D).

In particular, for any two square matrices X and Y of the same size,

|det(X + Y )|2 ≤ det(I +XX∗) det(I + Y ∗Y )

and
| det(I +XY )|2 ≤ det(I +XX∗) det(I + Y ∗Y ).



Sec. 7.4 Schur Complements and Determinant Inequalities 233

11. Prove or disprove that for any n-square complex matrices A and B,

det(A∗A+B∗B) = det(A∗A+BB∗)

or
det(A∗A+B∗B) = det(AA∗ +BB∗).

12. Let A and B be m×n matrices. Show that for any n× n matrix X,

AA∗ +BB∗ = (B +AX)(I +X∗X)−1(B + AX)∗

+ (A−BX∗)(I +XX∗)−1(A−BX∗)∗.

13. Denote H(X) = 1
2
(X∗+X) for a square matrix X . For any n-square

matrices A and B, explain why (A−B)∗(A−B) ≥ 0. Show that

H(I −A∗B) ≥ 1

2

(
(I −A∗A) + (I −B∗B)

)
.

14. Let A and B be square contractive matrices of the same size. Derive

det(I −A∗A) det(I −B∗B) + | det(A∗ −B∗)|2 ≤ | det(I − A∗B)|2

by applying Theorem 7.17 to the block matrix(
I − A∗A I − A∗B
I −B∗A I −B∗B

)
=

(
I A∗

I B∗

)(
I I

−A −B

)
.

Show that the determinant of the block matrix on the left-hand side
is (−1)n|det(A−B)|2. As a consequence of the inequality,

|det(I − A∗B)|2 ≥ det(I − A∗A) det(I −B∗B)

with equality if and only if A = B when A, B are strict contractions.

15. Show Theorem 7.19 by the method in the second proof of (7.13).

16. Let A, B, C, and D be square matrices of the same size. Show that

I +D∗C − (I +D∗B)(I + A∗B)−1(I + A∗C)

= (D − A)∗(I +BA∗)−1(C −B)

if the inverses involved exist, by considering the block matrix(
I + A∗B I + A∗C
I +D∗B I +D∗C

)
.

. ⊙ .
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7.5 The Kronecker and Hadamard Products
of Positive Semidefinite Matrices

The Kronecker product and Hadamard product were introduced in
Chapter 4 and basic properties were presented there. In this section
we are interested in the matrix inequalities of the Kronecker and
Hadamard products of positive semidefinite matrices.

Theorem 7.20 Let A ≥ 0 and B ≥ 0. Then A⊗B ≥ 0.

Proof. Let A = U∗CU and B = V ∗DV , where C and D are diagonal
matrices with nonnegative entries on the main diagonals, and U and
V are unitary matrices. Thus, by Theorem 4.6,

A⊗B = (U∗CU)⊗ (V ∗DV ) = (U∗ ⊗ V ∗)(C ⊗D)(U ⊗ V ) ≥ 0.

Note that A and B in the theorem may have different sizes.
Our next celebrated theorem of Schur on Hadamard products is

used repeatedly in deriving matrix inequalities that involve Hadamard
products of positive semidefinite matrices.

Theorem 7.21 (Schur) Let A and B be n-square matrices. Then

A ≥ 0, B ≥ 0 ⇒ A ◦B ≥ 0

and

A > 0, B > 0 ⇒ A ◦B > 0.

Proof 1. Since the Hadamard product A◦B is a principal submatrix
of the Kronecker product A ⊗ B, which is positive semidefinite by
the preceding theorem, the positive semidefiniteness of A◦B follows.

For the positive definite case, it is sufficient to notice that a prin-
cipal submatrix of a positive definite matrix is also positive definite.

Proof 2. Write, by Theorem 7.3, A = U∗U and B = V ∗V, and let ui
and vi be the ith columns of matrices U and V , respectively. Then

aij = u∗iuj = (uj , ui), bij = v∗i vj = (vj , vi)
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for each pair i and j, and thus (Problem 7, Section 4.3)

A ◦B = (aijbij) =
(
(uj, ui)(vj , vi)

)
=
(
(uj ⊗ vj, ui ⊗ vi)

)
≥ 0.

Proof 3. Let A =
∑n

i=1 λiuiu
∗
i , where λis are the eigenvalues of A,

thus nonnegative; uis are orthonormal column vectors. Denote by Ui

the diagonal matrix with the components of ui on the main diagonal
of Ui. Note that (uiu

∗
i ) ◦B = UiBU

∗
i . We have

A ◦B =
( n∑

i=1

λiuiu
∗
i

)
◦B =

n∑
i=1

λi(uiu
∗
i ) ◦B =

n∑
i=1

λiUiBU
∗
i ≥ 0.

Proof 4. For vector x ∈ Cn, denote by diag x the n-square diagonal
matrix with the components of x on the diagonal. We have

x∗(A ◦B)x = tr(diag x∗ A diag x BT )

= tr
(
(B1/2)T diag x∗ A1/2A1/2 diag x (B1/2)T

)
= tr

(
A1/2 diag x (B1/2)T

)∗(
A1/2 diag x (B1/2)T

)
≥ 0.

We are now ready to compare the pairs involving squares and
inverses such as (A◦B)2 and A2 ◦B2, and (A◦B)−1 and A−1 ◦B−1.

Theorem 7.22 Let A ≥ 0 and B ≥ 0 be of the same size. Then

A2 ◦B2 ≥ (A ◦B)2.

Moreover, if A and B are nonsingular, then

A−1 ◦B−1 ≥ (A ◦B)−1 and A ◦A−1 ≥ I.

Proof. Let ai and bi be the ith columns of matrices A and B,
respectively. It is easy to verify by a direct computation that

(AA∗) ◦ (BB∗) = (A ◦B)(A∗ ◦B∗) +
∑
i ̸=j

(ai ◦ bj)(a∗i ◦ b∗j).

It follows that for any matrices A and B of the same size

(AA∗) ◦ (BB∗) ≥ (A ◦B)(A∗ ◦B∗).
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In particular, if A and B are positive semidefinite, then

A2 ◦B2 ≥ (A ◦B)2.

If A and B are nonsingular matrices, then, by Theorem 4.6,

(A⊗B)−1 = A−1 ⊗B−1.

Noticing that A ◦ B and A−1 ◦ B−1 are principal submatrices of
A⊗B and A−1⊗B−1 in the same position, respectively, we have by
Theorem 7.13, with [X] representing a principal submatrix of X,

A−1 ◦B−1 = [(A⊗ B)−1] ≥ [A⊗B]−1 = (A ◦B)−1.

For the last inequality, replacing B with A−1 in the above inequality,
we get A−1 ◦A ≥ (A◦A−1)−1, which implies (A−1 ◦A)2 ≥ I. Taking
the square roots of both sides reveals A−1 ◦A ≥ I.

The last inequality can also be proven by induction on the size
of the matrices as follows. Partition A and A−1 conformally as

A =

(
a α
α∗ A1

)
and A−1 =

(
b β
β∗ B1

)
.

By inequality (7.11)

A−
(

1
b 0
0 0

)
≥ 0, A−1 −

(
0 0

0 A−1
1

)
≥ 0,

and by Theorem 7.20,(
A−

(
1
b 0
0 0

))
◦
(
A−1 −

(
0 0

0 A−1
1

))
≥ 0,

which yields

A ◦A−1 ≥
(

1 0

0 A1 ◦A−1
1

)
.

An induction hypothesis on A1 ◦A−1
1 reveals A ◦A−1 ≥ I.

Theorem 7.23 Let A, B, and C be n-square matrices.

If

(
A B
B∗ C

)
≥ 0, then A ◦ C ≥ ±B ◦B∗.
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Proof.(
A B
B∗ C

)
≥ 0 ⇒

(
C B∗

B A

)
≥ 0 ⇒

(
A ◦ C B ◦B∗

B ◦B∗ A ◦ C

)
≥ 0.

The desired inequalities are immediate from the fact (Problem 4)

that
(
H
K

K
H

)
≥ 0 ⇔ H ≥ ±K, where H ≥ 0 and K is Hermitian.

Our next result is an analogue of Theorem 7.16 of Section 7.3.

Theorem 7.24 Let A be a kn×kn positive semidefinite matrix par-
titioned as A = (Aij), where each Aij is an n×n matrix, 1 ≤ i, j ≤ k.
Then the k × k matrix T = (trAij) is positive semidefinite.

Proof 1. Let A = R∗R, where R is nk-by-nk. Partition R =
(R1, R2, . . . , Rk), where each Ri is nk × n, i = 1, 2, . . . , k. Then
Aij = R∗

iRj . Note that tr(R∗
iRj) = ⟨Rj , Ri⟩, an inner product of

the space of nk × n matrices. Thus T = ( tr(Aij)) = ( tr(R∗
iRj)) =

(⟨Rj , Ri⟩) is a Gram matrix. So T ≥ 0.

Proof 2. Let et ∈ Cn denote the column vector with the tth compo-
nent 1 and 0 elsewhere, t = 1, 2, . . . , n. Then for any n × n matrix
X = (xij), xtt = e∗tXet. Thus, trAij =

∑n
t=1 e

∗
tAijet. Therefore,

T = ( trAij) =
( n∑

t=1

e∗tAijet

)
=

n∑
t=1

(e∗tAijet)

=
n∑

t=1

E∗
t (Aij)Et =

n∑
t=1

E∗
tAEt ≥ 0,

where Et = diag(et, . . . , et) is nk × k, with k copies of et.

One can also prove the theorem using a similar idea by first ex-
tracting the diagonal entries of each Aij through B = Jk ⊗ In, where
Jk is the k×k matrix all of whose entries are 1. Note that A◦B ≥ 0.

Problems

1. Show that A ≥ 0 ⇔ tr(A ◦B) ≥ 0 for all B ≥ 0, where A, B ∈ Mn.

2. Let A ≥ 0 and B ≥ 0 be of the same size. Show that

A ≥ B ⇔ A⊗ I ≥ B ⊗ I ⇔ A⊗A ≥ B ⊗B.
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3. Let A ≥ 0 and B ≥ 0 be of the same size. Show that

(a) tr(AB) ≤ tr(A⊗B) = trA trB ≤ 1
4(trA+ trB)2.

(b) tr(A ◦B) ≤ 1
2 tr(A ◦A+B ◦B).

(c) tr(A⊗B) ≤ 1
2 tr(A⊗ A+B ⊗B).

(d) det(A⊗B) ≤ 1
2 (det(A⊗A) + det(B ⊗B)).

4. Let H and K be n-square Hermitian matrices. Show that(
H K
K H

)
≥ 0 ⇔ H ≥ ±K.

5. Let A ≥ 0 and B ≥ 0 be of the same size. Show that

rank (A ◦B) ≤ rank (A) rank (B).

Show further that if A > 0, then rank (A ◦B) is equal to the number
of nonzero diagonal entries of the matrix B.

6. Let A > 0 and let λ be any eigenvalue of A−1 ◦A. Show that

(a) λ ≥ 1, (b) A−1 +A ≥ 2I, (c) A−1 ◦A−1 ≥ (A ◦A)−1.

7. Let A, B, C, andD be n×n positive semidefinite matrices. Show that

A ≥ B ⇒ A ◦ C ≥ B ◦ C, A⊗ C ≥ B ⊗ C;

A ≥ B, C ≥ D ⇒ A ◦ C ≥ B ◦D, A⊗ C ≥ B ⊗D.

8. Let A > 0 and B > 0 be of the same size. Show that

(A−1 ◦B−1)−1 ≤ A ◦B ≤ (A2 ◦B2)1/2.

9. Prove or disprove that for A ≥ 0 and B ≥ 0 of the same size

A3 ◦B3 ≥ (A ◦B)3 or A1/2 ◦B1/2 ≤ (A ◦B)1/2.

10. Show that for any square matrices A and B of the same size

(A ◦B)(A∗ ◦B∗) ≤ (σ2I) ◦ (AA∗),

where σ = σmax(B) is the largest singular value of B.

11. Let A and B be complex matrices of the same size. Show that(
(AA∗) ◦ I A ◦B
A∗ ◦B∗ (B∗B) ◦ I

)
≥ 0,

(
(AA∗) ◦ (BB∗) A ◦B

A∗ ◦B∗ I

)
≥ 0.
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12. Let A ≥ 0 and B ≥ 0 be of the same size. Let λ be the largest
eigenvalue of A and µ be the largest diagonal entry of B. Show that

A ◦B ≤ λI ◦B ≤ λµI and

(
λµI A ◦B
A ◦B λµI

)
≥ 0.

13. Let A, B, C, D, X, Y, U, and V be n×n complex matrices and let

M =

(
A

C

B

D

)
, N =

(
X

U

Y

V

)
, M ⊙N =

(
A⊗X

C ⊗ U

B ⊗ Y

D ⊗ V

)
.

Show thatM ◦N is a principal submatrix ofM⊙N and thatM⊙N is
a principal submatrix of M ⊗N. Moreover, M ⊙N ≥ 0 if M, N ≥ 0.

14. Let A = (aij) ≥ 0. Show that A ◦ A = (a2ij) ≥ 0 and A ◦ AT =

A ◦ A = (|aij |2) ≥ 0. Show also that (a3ij) ≥ 0. How about (|aij |3)
and (

√
|aij | )? Show, however, that the matrix Â = (|aij |) is not

necessarily positive semidefinite as one checks for

A =


1 α 0 −α
α 1 α 0
0 α 1 α
−α 0 α 1

 , α =
1√
2
.

15. Let λ1, λ2, . . . , λn be positive numbers. Use Cauchy matrices to show
that the following matrices are positive semidefinite.(

1

λi + λj

)
,

(
1

λiλj

)
,

(
λiλj
λi + λj

)
,(

1

λ2i + λ2j

)
,

(√
λiλj

)
,

(
2

λ−1
i + λ−1

j

)
,

(
1

λi(λi + λj)λj

)
,

(√
λiλj

λi + λj

)
,

(
λiλj√

λi +
√
λj

)
.

16. Let A = (Aij) be an nk × nk partitioned matrix, where each block
Aij is n × n. If A is positive semidefinite, show that the matrices
C = (Cm(Aij)) and E = (Em(Aij)) are positive semidefinite, where
Cm(X) and Em(X), 1 ≤ m ≤ n, denote the mth compound matrix
and the mth elementary symmetric function of n× n matrix X, re-
spectively. Deduce that the positivity of A = (Aij) implies that of
D = (det(Aij)). [Hint: See Section 4.4 on compound matrices.]

. ⊙ .
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7.6 Schur Complements and the Hadamard Product

The goal of this section is to obtain some inequalities for matrix sums
and Hadamard products using Schur complements.

As we saw earlier (Theorem 7.7 and Theorem 7.22), for any pos-
itive definite matrices A and B of the same size

(A+B)−1 ≤ 1

4
(A−1 +B−1)

and
(A ◦B)−1 ≤ A−1 ◦B−1.

These are special cases of the next theorem whose proof uses the fact(
A B
B∗ B∗A−1B

)
≥ 0 if A > 0.

Theorem 7.25 Let A and B be n-square positive definite matrices,
and let C and D be any matrices of size m× n. Then

(C +D)(A+ B)−1(C +D)∗ ≤ CA−1C∗ +DB−1D∗, (7.23)

(C ◦D)(A ◦B)−1(C ◦D)∗ ≤ (CA−1C∗) ◦ (DB−1D∗). (7.24)

Proof. Note that X ≥ 0, Y ≥ 0, X + Y ≥ 0, and X ◦ Y ≥ 0, where

X =

(
A C∗

C CA−1C∗

)
, Y =

(
B D∗

D DB−1D∗

)
.

The inequalities are immediate by taking the Schur complement of
the (1, 1)-block in X + Y ≥ 0 and X ◦ Y ≥ 0, respectively.

An alternative approach to proving (7.24) is to use Theorem 7.15
with the observation that X ◦ Y is a principal submatrix of X ⊗ Y .

By taking A = B = In in (7.23) and (7.24), we have

1

2
(C +D)(C +D)∗ ≤ CC∗ +DD∗

and
(C ◦D)(C ◦D)∗ ≤ (CC∗) ◦ (DD∗).
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Theorem 7.26 Let A and B be positive definite matrices of the
same size partitioned conformally as

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
.

Then
˜A11 +B11 ≥ Ã11 + B̃11 (7.25)

and
˜A11 ◦B11 ≥ Ã11 ◦ B̃11. (7.26)

Proof. Let

Â =

(
A11 A12

A21 A21A
−1
11 A12

)
, B̂ =

(
B11 B12

B21 B21B
−1
11 B12

)
.

The inequality (7.25) is obtained by taking the Schur complement of
A11 +B11 in Â+ B̂ and using (7.23). For (7.26), notice that

A22 ≥ A21A
−1
11 A12, B22 ≥ B21B

−1
11 B12.

Therefore,

A22 ◦ (B21B
−1
11 B12) +B22 ◦ (A21A

−1
11 A12)

≥ 2
(
(A21A

−1
11 A12) ◦ (B21B

−1
11 B12)

)
.

It follows that

Ã11 ◦ B̃11 = (A22 −A21A
−1
11 A12) ◦ (B22 −B21B

−1
11 B12)

≤ A22 ◦B22 − (A21A
−1
11 A12) ◦ (B21B

−1
11 B12).

Applying (7.24) to the right-hand side of the above inequality yields

A22 ◦B22 − (A21A
−1
11 A12) ◦ (B21B

−1
11 B12)

≤ A22 ◦B22 − (A21 ◦B21)(A11 ◦B11)
−1(A12 ◦B12)

= ˜A11 ◦B11.

Thus
Ã11 ◦ B̃11 ≤ ˜A11 ◦B11.
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We end this section with a determinant inequality of Oppenheim.
The proof uses a Schur complement technique.

As we recall, for A ≥ 0 and any principal submatrix A11 of A

detA = detA11 det Ã11.

Theorem 7.27 (Oppenheim) Let A and B be n×n positive semi-
definite matrices with diagonal entries aii and bii, respectively. Then

n∏
i=1

aiibii ≥ det(A ◦B) ≥ a11 · · · ann detB ≥ detAdetB.

Proof. The first and last inequalities are immediate from the Hadamard
determinant inequality. We show the second inequality.

Let B̂ be as in the proof of the preceding theorem. Consider A◦B̂
this time and use induction on n, the order of the matrices.

If n = 2, then it is obvious. Suppose n > 2. Notice that

B21B
−1
11 B12 = B22 − B̃11.

Take the Schur complement of A11 ◦B11 in A ◦ B̂ to get

A22 ◦ (B22 − B̃11)− (A21 ◦B21)(A11 ◦B11)
−1(A12 ◦B12) ≥ 0

or

A22 ◦B22 − (A21 ◦B21)(A11 ◦B11)
−1(A12 ◦B12) ≥ A22 ◦ B̃11.

Observe that the left-hand side of the above inequality is the Schur
complement of A11 ◦B11 in A ◦B. By taking determinants, we have

det( ˜A11 ◦B11) ≥ det(A22 ◦ B̃11).

Multiply both sides by det(A11 ◦B11) to obtain

det(A ◦B) ≥ det(A11 ◦B11) det(A22 ◦ B̃11).

The assertion then follows from the induction hypothesis on the two
determinants on the right-hand side.
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Let λi(X) be the eigenvalues of n×n matrix X, i = 1, . . . , n. The
inequalities in Theorem 7.27 are rewritten in terms of eigenvalues as

n∏
i=1

aiibii ≥
n∏

i=1

λi(A ◦B) ≥
n∏

i=1

aiiλi(B) ≥
n∏

i=1

λi(AB) =

n∏
i=1

λi(A)λi(B).

Problems

1. A correlation matrix is a positive semidefinite matrix all of whose
diagonal entries are equal to 1. Let A be an n×n positive semidefinite
matrix. Show that min

X
det(A◦X) = detA, where the minimal value

is taken over all n× n correlation matrices X .

2. Let A > 0. Use the identity det Ã11 = detA
detA11

to show that

det(A+B)

det(A11 +B11)
≥ detA

detA11
+

detB

detB11
.

3. Let A, B, and A + B be invertible matrices. Find the inverse of(
A
A

A
A+B

)
. Use the Schur complement of A+B to verify that

A−A(A+B)−1A = (A−1 +B−1)−1.

4. Let A > 0 and B > 0 be of the same size. Show that for all x, y ∈ Cn,

(x+ y)∗(A+B)−1(x+ y) ≤ x∗A−1x+ y∗B−1y

and
(x ◦ y)∗(A ◦B)−1(x ◦ y) ≤ (x∗A−1x) ◦ (y∗B−1y).

5. Show that for any m× n complex matrices A and B(
A∗A A∗

A Im

)
≥ 0,

(
B∗B B∗

B Im

)
≥ 0.

Derive the following inequalities using the Schur complement:

Im ≥ A(A∗A)−1A∗, if rank (A) = n;

(A∗A) ◦ (B∗B) ≥ (A∗ ◦B∗)(A ◦B);

A∗A+B∗B ≥ (A∗ +B∗)(A+B)

2
.
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6. Let A ∈ Mn be a positive definite matrix. Show that for any B ∈ Mn,(
A ◦ (B∗A−1B) B∗ ◦B

B∗ ◦B A ◦ (B∗A−1B)

)
≥ 0.

In particular, (
A ◦A−1 I

I A ◦A−1

)
≥ 0.

Derive the following inequalities using the Schur complement:

(A ◦A−1)−1 ≤ A ◦A−1;

det(B∗ ◦B) ≤ det
(
A ◦ (B∗A−1B)

)
;(

tr(B∗ ◦B)2
)1/2 ≤ tr

(
A ◦ (B∗A−1B)

)
;

I ◦B∗B ≥ (B∗ ◦B)(I ◦B∗B)−1(B∗ ◦B)

if B has no zero row or column. Discuss the analogue for sum (+).

7. Let A, B, and C be n× n complex matrices such that
(

A
B∗

B
C

)
≥ 0.

With ⋆ denoting the sum + or the Hadamard product ◦, show that(
tr(B∗ ⋆ B)2

)1/2 ≤ tr(A ⋆ C)

and
det(B∗ ⋆ B) ≤ det(A ⋆ C).

8. Let A be a positive definite matrix partitioned as
(

A11

A21

A12

A22

)
, where

A11 andA22 are square matrices (maybe of different sizes). Show that

A ◦A−1 ≥
(
A11 ◦A−1

11 0

0 Ã11 ◦ Ã11

−1

)
≥ 0.

Conclude that A ◦A−1 ≥ I. Similarly show that AT ◦A−1 ≥ I.

9. Let A1 and A2 be n× n real contractive matrices. Show that

(a) det(I −Ai) ≥ 0 for i = 1, 2.

(b) H = (hij) ≥ 0, where hij = 1/ det(I −A∗
iAj), 1 ≤ i, j ≤ 2.

(c) L = (lij) ≥ 0, where lij = 1/det(I − A∗
iAj)

k, 1 ≤ i, j ≤ 2, and
k is any positive integer.

[Hint: Use the Hua determinant inequality in Section 7.4.]

. ⊙ .
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7.7 The Wielandt and Kantorovich Inequalities

The Cauchy–Schwarz inequality is one of the most useful and funda-
mental inequalities in mathematics. It states that for any vectors x
and y in an inner product vector space with inner product (· , ·),

|(x, y)|2 ≤ (x, x)(y, y)

and equality holds if and only if x and y are linearly dependent. Thus

|y∗x|2 ≤ (x∗x)(y∗y)

for all column vectors x, y ∈ Cn. An easy proof of this is to observe

(x, y)∗(x, y) =

(
x∗

y∗

)
(x, y) =

(
x∗x x∗y
y∗x y∗y

)
≥ 0.

In this section we give a refined version of the Cauchy–Schwarz in-
equality, show a Cauchy–Schwarz inequality involving matrices, and
present the Wielandt and Kantorovich inequalities.

Lemma 7.1 Let A =
(
a
b̄
b
c

)
be a nonzero 2× 2 positive semidefinite

matrix with eigenvalues α and β, α ≥ β. Then

|b|2 ≤
(
α− β

α+ β

)2

ac. (7.27)

Equality holds if and only if a = c or β = 0, i.e., A is singular.

Proof. Solving the equation det(λI −A) = 0 reveals the eigenvalues

α, β =
(a+ c)±

√
(a− c)2 + 4|b|2
2

.

Computing α−β
α+β and squaring it, we get an equivalent form of (7.27),

(a− c)2(ac− |b|2) ≥ 0.

The conclusions follow immediately
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Theorem 7.28 Let x and y be vectors in an inner product space.

Let A =
(
(x, x)
(y, x)

(x, y)
(y, y)

)
have eigenvalues α and β, α ≥ β, α > 0. Then

|(x, y)|2 ≤
(
α− β

α+ β

)2

(x, x)(y, y). (7.28)

Equality holds if and only if x and y have the same length (i.e.,
∥x∥ = ∥y∥) or are linearly dependent (i.e., A is singular or β = 0).

Proof. The inequality follows from the lemma at once. For the
equality case, we may assume that ∥y∥ = 1. It is sufficient to notice
that (x− ty, x− ty) = 0; that is, x = ty, when t = (x, y).

We proceed to derive more related inequalities in which matrices
are involved. To this end, we use the fact that if 0 < r ≤ p ≤ q ≤ s,
then q−p

q+p ≤ s−r
s+r . This is because

t−1
t+1 is an increasing function.

Theorem 7.29 Let A, B, and C be n-square matrices such that(
A B∗

B C

)
≥ 0.

Denote by M the (nonzero) partitioned matrix and let α and β be the
largest and smallest eigenvalues of M , respectively. Then

|(Bx, y)|2 ≤
(
α− β

α+ β

)2

(Ax, x)(Cy, y), x, y ∈ Cn. (7.29)

Proof. We may assume that x and y are unit (column) vectors. Let

N =

(
x∗ 0
0 y∗

)
M

(
x 0
0 y

)
=

(
x∗Ax x∗B∗y
y∗Bx y∗Cy

)
.

Then N is a 2× 2 positive semidefinite matrix. Let λ and µ be the
eigenvalues of N with λ ≥ µ. By Lemma 7.1, we have

|(Bx, y)|2 ≤
(
λ− µ

λ+ µ

)2

(Ax, x)(Cy, y).

To get the desired inequality, with βI ≤M ≤ αI, pre- and post-

multiplying by
(
x
0
0
y

)∗
and

(
x
0
0
y

)
, respectively, as

(
x
0
0
y

)∗ (
x
0
0
y

)
= I,

we obtain that βI ≤ N ≤ αI. It follows that β ≤ µ ≤ λ ≤ α.
Consequently, 0 ≤ λ−µ

λ+µ ≤ α−β
α+β . Inequality (7.29) then follows.
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Theorem 7.30 (Weilandt) Let A be an n×n positive semidefinite
matrix and λ1 and λn be the largest and smallest eigenvalues of A,
respectively. Then for all orthogonal n-column vectors x and y ∈ Cn,

|x∗Ay|2 ≤
(
λ1 − λn
λ1 + λn

)2

(x∗Ax)(y∗Ay).

Proof 1. Let M = (x, y)∗A(x, y). M is positive semidefinite and

M =

(
x∗Ax x∗Ay
y∗Ax y∗Ay

)
.

Because λnI ≤ A ≤ λ1I, multiplying by (x, y)∗ from the left and by
(x, y) from the right, as (x, y)∗(x, y) = I2, we have λnI ≤ M ≤ λ1I.
If α and β are the eigenvalues of the 2 × 2 matrix M with α ≥ β,
α > 0, then λn ≤ β ≤ α ≤ λ1. By Lemma 7.1, we have

|y∗Ax|2 ≤
(
α− β

α+ β

)2

(x∗Ax)(y∗Ay).

Using the fact that α−β
α+β ≤ λ1−λn

λ1+λn
, we obtain the inequality.

Proof 2. Let x and y be orthogonal unit vectors and let θ be a real
number such that eiθ(Ay, x) = |(Ay, x)| = |x∗Ay| = |y∗Ax|. Because
λnI ≤ A ≤ λ1I, we have, for any complex number c,

λn∥x+ cy∥2 ≤ (A(x+ cy), x+ cy) ≤ λ1∥x+ cy∥2.

Expanding the inequalities and setting c = teiθ, t ∈ R, we have

t2(y∗Ay − λn) + 2t|x∗Ay|+ x∗Ax− λn ≥ 0 (7.30)

and
t2(λ1 − y∗Ay) + 2t|x∗Ay|+ λ1 − x∗Ax ≥ 0. (7.31)

Multiply (7.30) by λ1 and (7.31) by λn; then add to get

t2(λ1 − λn)y
∗Ay + 2t(λ1 + λn)|x∗Ay|+ (λ1 − λn)x

∗Ax ≥ 0.

Since this is true for all real t, by taking the discriminant, we have

(λ1 + λn)
2|x∗Ay|2 ≤ (λ1 − λn)

2(x∗Ax)(y∗Ay).
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In the classical Cauchy–Schwarz inequality |y∗x| ≤ (x∗x)(y∗y), if
we substitute x and y with A1/2x and A−1/2y, respectively, where A
is an n-square positive definite matrix, we then have

|y∗x|2 ≤ (x∗Ax)(y∗A−1y).

In particular, for any unit column vector x, we obtain

1 ≤ (x∗Ax)(x∗A−1x).

A reversal of this is the well-known Kantorovich inequality, which
is a special case of the following more general result.

Let f : Mn 7→ Mk be a linear transformation. f is said to be
positive if f(A) ≥ 0 whenever A ≥ 0; f is strictly positive if f(A) > 0
when A > 0; and f is unital if f(In) = Ik. Here are some examples:

1. f : A 7→ trA is strictly positive from Mn to M1 = C.
2. g: A 7→ X∗AX is positive, where X is a fixed n× k matrix.

3. h: A 7→ Ak is positive and unital, where Ak is the k×k leading
principal submatrix of A.

4. p: A 7→ A⊗X and q: A 7→ A ◦X are both positive, where X
and Y are positive semidefinite matrices.

Theorem 7.31 Let f be strictly positive and unital and A be a pos-
itive definite matrix. Let α and β be positive numbers, α < β, such
that all the eigenvalues of A are contained in the interval [α, β]. Then

f(A−1) ≤ (α+ β)2

4αβ
(f(A))−1.

Proof. Since all the eigenvalues of A are contained in [α, β], the
matrices A− αI and βI −A are both positive semidefinite. As they
commute, (A− αI)(βI −A) ≥ 0. This implies

αβI ≤ (α+ β)A−A2 or αβA−1 ≤ (α+ β)I −A.

Applying f , we have

αβf(A−1) ≤ (α+ β)I − f(A).
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For any real numbers c and x, (c − 2x)2 ≥ 0. It follows that
c− x ≤ 1

4c
2x−1 for any real c and positive number x. Thus

αβf(A−1) ≤ (α+ β)I − f(A) ≤ (α+ β)2

4
(f(A))−1.

If we take f in the theorem to be f(A) = x∗Ax, where x ∈ Cn is
a unit vector, then we have the Kantorovich inequality.

Theorem 7.32 (Kantorovich) Let A ∈ Mn be positive definite
and λ1, λn be its largest and smallest eigenvalues, respectively. Then

(x∗Ax)(x∗A−1x) ≤ (λ1 + λn)
2

4λ1λn
, x∗x = 1, (7.32)

The Kantorovich inequality has made appearances in a variety
of forms. A matrix version is as follows. Let A ∈ Mn be a positive
definite matrix. Then for any n×m matrix X satisfying X∗X = Im,

(X∗AX)−1 ≤ X∗A−1X ≤ (λ1 + λn)
2

4λ1λn
(X∗AX)−1.

The first inequality is proven by noting that I−Y (Y ∗Y )−1Y ∗ ≥ 0
for any matrix Y with columns linearly independent. For the inequal-
ities on the Hadamard product of positive definite matrices, we have

(A ◦B)−1 ≤ A−1 ◦B−1 ≤ (λ+ µ)2

4λµ
(A ◦B)−1,

where λ is the largest and µ is the smallest eigenvalue of A⊗B.
We leave the proofs to the reader (Problems 18 and 19).

Problems

1. Let r ≥ 1. Show that for any positive number t such that 1
r ≤ t ≤ r,

t+
1

t
≤ r +

1

r
.

2. Let 0 < a < b. Show that for any x ∈ [a, b],

1

x
≤ a+ b

ab
− x

ab
.
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3. Let x, y ∈ Cn be unit vectors. Show that the eigenvalues of the

matrix
(

1
(y,x)

(x,y)
1

)
are contained in [1− t, 1 + t], where t = |(x, y)|.

4. Let A =
(

a
b̄
b
c

)
be a nonzero 2×2 Hermitian matrix with (necessarily

real) eigenvalues α and β, α ≥ β. Show that 2|b| ≤ α− β.

5. Let A be an n× n positive definite matrix. Show that

|y∗x|2 = (x∗Ax)(y∗A−1y)

if and only if y = 0 or Ax = cy for some constant c.

6. Let λ1, . . . , λn be positive numbers. Show that for any x, y ∈ Cn,∣∣∣∣ n∑
i=1

xiyi

∣∣∣∣2 ≤
( n∑

i=1

λi|xi|2
)( n∑

i=1

λ−1
i |yi|2

)
.

7. Show that for positive numbers a1, a2, . . . , an and any t ∈ [0, 1],( n∑
i=1

a
1/2
i

)2

≤
( n∑

i=1

ati

)( n∑
i=1

a1−t
i

)
.

Equality occurs if and only if t = 1
2
or all the ai are equal.

8. Let A ∈ Mn be positive semidefinite. Show that for any unit x ∈ Cn

(Ax, x)2 ≤ (A2x, x).

9. Let A, B, and C be n×n matrices. Assume that A and C are positive
definite. Show that the following statements are equivalent.

(a)
(

A
B

B∗

C

)
≥ 0.

(b) λmax(BA
−1B∗C−1) ≤ 1.

(c) |(Bx, y)| ≤ 1
2

(
(Ax, x) + (Cy, y)

)
for all x, y ∈ Cn.

10. Show that for any n× n matrix A ≥ 0, m× n matrix B, x, y ∈ Cn,

|(Bx, y)|2 ≤ (Ax, x)(BA−1B∗y, y)

and that for any m× n matrices A, B, and x ∈ Cn, y ∈ Cm,∣∣((A+B)x, y
)∣∣2 ≤

(
(I + A∗A)x, x

)(
(I +BB∗)y, y

)
.
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11. Let A be an n× n positive definite matrix. Show that for all x ̸= 0,

1 ≤ (x∗Ax)(x∗A−1x)

(x∗x)2
≤ λ1
λn
.

12. Let A and B be n× n Hermitian. If A ≤ B or B ≤ A, show that

A ◦B ≤ 1

2
(A ◦A+B ◦B).

13. Let A and B be n × n positive definite matrices with eigenvalues
contained in [m,M ], where 0 < m < M . Show that for any t ∈ [0, 1],

tA2 + (1− t)B2 −
(
tA+ (1− t)B

)2 ≤ 1

4
(M −m)2I.

14. Show the Kantorovich inequality by the Wielandt inequality with

y = ∥x∥2(A−1x)− (x∗A−1x)x.

15. Show the Kantorovich inequality following the line:

(a) If 0 < m ≤ t ≤M, then 0 ≤ (m+M − t)t−mM .

(b) If 0 ≤ m ≤ λi ≤M , i = 1, . . . , n, and
∑n

i=1 |xi|2 = 1, then

S

(
1

λ

)
≤ m+M − S(λ)

mM
,

where S( 1λ ) =
∑n

i=1
1
λi
|xi|2 and S(λ) =

∑n
i=1 λi|xi|2.

(c) The Kantorovich inequality follows from the inequality

S(λ)S

(
1

λ

)
≤ (m+M)2

4mM
.

16. Let A be an n× n positive definite matrix having the largest eigen-
value λ1 and the smallest eigenvalue λn. Show that

I ≤ A ◦A−1 ≤ λ21 + λ2n
2λ1λn

I.

17. Let λ1 ≥ λ2 ≥ · · · ≥ λn be positive numbers. Show that

max
i, j

(λi + λj)
2

4λiλj
=

(λ1 + λn)
2

4λ1λn
.
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18. Let A be an n × n positive definite matrix with λ1 = λmax(A) and
λn = λmin(A). Show that for all n×m matrices X , X∗X = Im,

(X∗AX)−1 ≤ X∗A−1X ≤ (λ1 + λn)
2

4λ1λn
(X∗AX)−1.

Use the first one to derive the inequality for principal submatrices:

[A]−1 ≤ [A−1]

and then show the following matrix inequalities.

(a) X∗AX − (X∗A−1X)−1 ≤ (
√
λ1 −

√
λn )2I.

(b) (X∗AX)2 ≤ X∗A2X ≤ (λ1+λn)
2

4λ1λn
(X∗AX)2.

(c) X∗A2X − (X∗AX)2 ≤ (λ1−λn)
2

4
I.

(d) X∗AX ≤ (X∗A2X)1/2 ≤ λ1+λn

2
√
λ1λn

(X∗AX).

(e) (X∗A2X)1/2 −X∗AX ≤ (λ1−λn)
2

4(λ1+λn)
I.

19. Let A and B be n× n positive definite matrices. Show that

λmax(A⊗B) = λmax(A)λmax(B) (denoted by λ)

and
λmin(A⊗B) = λmin(A)λmin(B) (denoted by µ).

Derive the following inequalities from the previous problem.

(a) (A ◦B)−1 ≤ A−1 ◦B−1 ≤ (λ+µ)2

4λµ (A ◦B)−1.

(b) A ◦B − (A−1 ◦B−1)−1 ≤ (
√
λ−√

µ)2I.

(c) (A ◦B)2 ≤ A2 ◦B2 ≤ (λ+µ)2

4λµ
(A ◦B)2.

(d) (A ◦B)2 − A2 ◦B2 ≤ (λ−µ)2

4
I.

(e) A ◦B ≤ (A2 ◦B2)1/2 ≤ λ+µ
2
√
λµ
A ◦B.

(f) (A2 ◦B2)1/2 − A ◦B ≤ (λ−µ)2

4(λ+µ)I.

. ⊙ .



CHAPTER 8

Hermitian Matrices

Introduction: This chapter contains fundamental results of Hermi-
tian matrices and demonstrates the basic techniques used to derive
the results. Section 8.1 presents equivalent conditions to matrix Her-
mitity, Section 8.2 gives some trace inequalities and discusses a nec-
essary and sufficient condition for a square matrix to be a product of
two Hermitian matrices, and Section 8.3 develops the min-max the-
orem and the interlacing theorem for eigenvalues. Section 8.4 deals
with the eigenvalue and singular value inequalities for the sum of Her-
mitian matrices, and Section 8.5 shows a matrix triangle inequality.

8.1 Hermitian Matrices and Their Inertias

A square complex matrix A is said to be Hermitian if A is equal to
its transpose conjugate, symbolically, A∗ = A.

Theorem 8.1 An n-square complex matrix A is Hermitian if and
only if there exists a unitary matrix U such that

A = U∗ diag(λ1, . . . , λn)U, (8.1)

where the λi are real numbers (and they are the eigenvalues of A).
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In other words, A is Hermitian if and only if A is unitarily similar
to a real diagonal matrix. This is the Hermitian case of the spectral
decomposition theorem (Theorem 3.4). The decomposition (8.1) is
often used when a trace or norm inequality is under investigation.

Theorem 8.2 The following statements for A ∈ Mn are equivalent.

1. A is Hermitian.

2. x∗Ax ∈ R for all x ∈ Cn.

3. A2 = A∗A.

4. trA2 = tr(A∗A).

We show that (1)⇔(2) and (1)⇔(3). (1)⇔(4) is similar. It is not
difficult to see that (1) and (2) are equivalent, because a complex
number a is real if and only if a∗ = a and (Problem 16)

A∗ = A ⇔ x∗(A∗ −A)x = 0 for all x ∈ Cn.

We present four different proofs for (3)⇒(1), each of which shows
a common technique of linear algebra and matrix theory. The first
proof gives (4)⇒(1) immediately. Other implications are obvious.

Proof 1. Use Schur decomposition. Write A = U∗TU , where U is
unitary and T is upper-triangular with the eigenvalues λ1, . . . , λn of
A on the main diagonal. Then A2 = A∗A implies T 2 = T ∗T .

By comparison of the main diagonal entries of the matrices on
both sides of T 2 = T ∗T , we have, for each j = 1, . . . , n,

λ2j = |λj |2 +
∑
i<j

|tij |2.

It follows that each λj is real and that tij = 0 whenever i < j.
Therefore, T is real diagonal, and thus

A∗ = (U∗TU)∗ = U∗T ∗U = U∗TU = A.

The trace identity trT 2 = tr(T ∗T ) yields (4)⇒(1) in the same way.

Proof 2. Use the fact that tr(XX∗) = 0 ⇔ X = 0. We show that
tr(A−A∗)(A−A∗)∗ = 0 to conclude that A− A∗ = 0 or A = A∗.
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Upon computation we have

(A− A∗)(A−A∗)∗ = AA∗ −A2 +A∗A− (A∗)2,

which reveals, by using tr(AA∗) = tr(A∗A) and A∗A = A2 = (A∗)2,

tr(A−A∗)(A−A∗)∗ = 0.

Proof 3. Use eigenvalues. Let B = i(A−A∗). Then B is Hermitian.
We show that B has only zero eigenvalues; consequently, B = 0.

Suppose λ is a nonzero eigenvalue of B with eigenvector x:

Bx = λx, λ ̸= 0, x ̸= 0.

Note that the condition A∗A = A2 implies BA = 0. We have

λA∗x = A∗(Bx) = (BA)∗x = 0.

Thus, A∗x = 0. But Bx = λx yields A∗x = Ax+ iλx. Therefore,

0 = x∗A∗x = x∗Ax+ iλx∗x = x∗A∗x+ iλx∗x = iλx∗x.

It follows that λ = 0, a contradiction to the assumption λ ̸= 0.

Proof 4. Use inner product. Note that (Problem 16, Section 1.4)

Cn = KerA∗ ⊕ ImA.

Thus, to show A∗ = A, it suffices to show A∗x = Ax for every x ∈
KerA∗ and x ∈ ImA. If x ∈ KerA∗, then, by A2 = (A∗)2 = A∗A,

(Ax,Ax) = (A∗Ax, x) = ((A∗)2x, x) = 0.

This forces Ax = 0; namely, Ax = A∗x for every x ∈ KerA∗. If
x ∈ ImA, write x = Ay, y ∈ Cn. We then have

A∗x = (A∗A)y = A2y = A(Ay) = Ax.

Let A be an n× n Hermitian matrix. The inertia of A is defined
to be the ordered triple (i+(A), i−(A), i0(A)), where i+(A), i−(A),
and i0(A) are the numbers of positive, negative, and zero eigenvalues
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of A, respectively (including multiplicities). Denote the inertia of A
by In(A), i.e., In(A) = (i+(A), i−(A), i0(A)), or simply (i+, i−, i0) if
no confusion is caused. Obviously, rank (A) = i+(A) + i−(A).

The inertias of a nonsingular Hermitian matrix and its inverse are
the same since their (necessarily nonzero) eigenvalues are reciprocals
of each other. The inertias of similar Hermitian matrices are the same
because their eigenvalues are identical. The inertias of ∗-congruent
matrices are also the same; this is Sylvester’s law of inertia. We say
that two n × n complex matrices A and B are ∗-congruent if there
exists a nonsingular n×n matrix S such that B = S∗AS(= B̄TBS).

Theorem 8.3 (Sylvester’s Law of Inertia) Let A and B be Her-
mitian matrices of the same size. Then A and B are ∗-congruent if
and only if they have the same inertia; that is, In (A) = In (B).

Proof. The spectral theorem ensures that there are positive diagonal
matrices E and F with respective sizes i+(A) and i− (A) such that
A is unitarily similar (*-congruent) to E ⊕ (−F ) ⊕ 0i0(A). Setting

G = E−1/2 ⊕ F−1/2 ⊕ Ii0(A) and upon computation, we have

G∗ (E ⊕ (−F )⊕ 0i0(A)

)
G = Ii+(A) ⊕ (−Ii−(A))⊕ 0i0(A).

A similar argument shows thatB is *-congruent to Ii+(B)⊕(−Ii−(B))⊕
0i0(B). If In(A) = In(B), transitivity of *-congruence implies that A
and B are *-congruent, i.e., B = S∗AS for some nonsingular S.

For the converse, suppose that B = S∗AS for some nonsingular
matrix S. Let A = U∗MU and B = V NV ∗, where U and V are
nonsingular matrices, M = Ii+(A) ⊕ (−Ii−(A)) ⊕ 0i0(A) and N =
Ii+(B) ⊕ (−Ii−(B)) ⊕ 0i0(B). Then B = S∗AS implies that N =
W ∗MW , where W = USV is a nonsingular matrix. Denote the first
i+(A) rows of W by W1 and the rest of the rows by W2. Then N =
W ∗MW reveals N = W1

∗W1 −W ∗
2 (Ii−(A) ⊕ 0)W2. So N ≤ W1

∗W1.
Since N = Ii+(B)⊕(−Ii−(B))⊕0i0(B), the leading principal submatrix
of W1

∗W1 corresponding to Ii+(B) is positive definite. Thus i+(B) ≤
rank (W1

∗W1) = rank (W1) = i+(A). It follows that i−(B) ≥ i−(A)
as A and B have the same rank. On the other hand, applying the
above argument to −A and −B and noting that i+(−H) = i−(H)
for any Hermitian matrix H , we conclude that In(A) = In(B).

Below is a result on Schur complements of Hermitian matrices.



Sec. 8.1 Hermitian Matrices and Their Inertias 257

Theorem 8.4 Let A be Hermitian, A11 be a nonsingular principal
submatrix of A, and Ã11 be the Schur complement of A11 in A. Then

In(A) = In(A11) + In(Ã11).

Proof. By permutation similarity (if necessary), we may assume that

A =

(
A11 A12

A21 A22

)
and define G ≡

(
I −A12A

−1
11

0 I

)
.

Then

G∗AG =

(
A11 0

0 Ã11

)
.

This says the eigenvalues of G∗AG are those of A11 and Ã11, or
In(G∗AG) = In(A11) + In(Ã11), where the triples are added as vec-
tors. The conclusion follows from Sylvester’s law of inertia.

Problems

1. What are the differences in the spectral decompositions of normal,
Hermitian, positive semidefinite, and unitary matrices?

2. Show that the diagonal entries of a Hermitian matrix are all real.

3. Show that A∗ +A and A∗A are Hermitian for any square matrix A.

4. Show that if A and B are Hermitian matrices of the same size, then
so are A+B and A−B. What about AB and ABA?

5. Let A be an n-square Hermitian matrix. Show that C∗AC is also
Hermitian for any n×m complex matrix C.

6. Show that if A and B are Hermitian matrices of the same size, then
AB = 0 ⇔ BA = 0. What if A and B are not Hermitian?

7. Is a matrix similar to a Hermitian matrix necessarily Hermitian?
What if unitary similarity is assumed?

8. Show that if matrix A is skew-Hermitian, that is, A∗ = −A, then
A = iB for some Hermitian matrix B.

9. Let A be an n× n positive definite matrix and B be an n× n skew-
Hermitian matrix. Show that the rank of B∗AB is an even number.
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10. Let A be a nonsingular skew-Hermitian matrix. Show that A2+A−1

is nonsingular and that B = (A2 − A−1)(A2 + A−1)−1 is unitary.

11. Show that a square complex matrix A can be uniquely written as

A = B + iC = S − iT,

where B and C are Hermitian, and S and T are skew-Hermitian.

12. Show directly the implication (4)⇒(1) in Theorem 8.2.

13. If A is Hermitian, show that A2 is positive semidefinite.

14. Find a unitary matrix U such that U∗HU is diagonal, where

H =

(
1 −i
i 1

)
.

15. Let A and B be Hermitian matrices of the same size. If AB − BA
and A−B commute, show that A and B commute.

16. Let A ∈ Mn. Show that A is Hermitian if and only if

(Ax, y) = (x,Ay), x, y ∈ Cn,

and if and only if

(Ax, x) = (x,Ax), x ∈ Cn.

Is it true that A is Hermitian if

(Ax, x) = (x,Ax), x ∈ Rn?

17. Let A be an n-square complex matrix. Show that

(a) tr(AX) = 0 for all Hermitian X ∈ Mn if and only if A = 0.

(b) tr(AX) ∈ R for all Hermitian X ∈ Mn if and only if A = A∗.

(c) If A is Hermitian and trA ≥ Re tr(AU) for all unitary U ∈ Mn,
then A ≥ 0.

18. Show that the rank of a Hermitian matrix is the same as the number
of nonzero eigenvalues of the matrix and that the rank of a general
matrix A equals the number of nonzero singular values of A, but not
the number of nonzero eigenvalues (in general).

19. Show that if A is a Hermitian matrix of rank r, then A has a nonsin-
gular principal submatrix of order r. How about a general matrix?
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20. Let A be a Hermitian matrix with rank r. Show that all nonzero
r × r principal minors of A have the same sign.

21. Let A = A∗ and trA = 0. If the sum of all 2× 2 principal minors of
A is zero, show that A = 0. [Hint: Use Problem 16 of Section 5.4.]

22. Show that the numbers of positive, negative, and zero eigenvalues in
Theorem 8.1 do not depend on the choice of unitary matrix U .

23. Find the rank and inertia of each of following matrices: 0 1 1
1 0 0
1 0 0

 ,

 1 0 1
0 2 0
1 0 1

 .

24. Let A be a Hermitian matrix and B be a principal submatrix of A.
Show that i±(B) ≤ i±(A). Is it true that i0(B) ≤ i0(A)?

25. Let A and B be Hermitian matrices of the same size. Show that
if A ≤ B then i±(A) ≤ i±(B) and that if A ≤ B and rank (A) =
rank (B) then A and B are ∗-congruent.

26. Let A be an n×n Hermitian matrix. Show that for any n×m matrix
Q with rank r, i−(Q

∗AQ) ≤ r and i+(Q
∗AQ) ≤ r.

27. Let A and B be n×n nonsingular Hermitian matrices. If the smallest
eigenvalue λmin(B

−1A) > 0, show that A ≥ B ⇔ B−1 ≥ A−1.

28. Compute the inertias of the following partitioned matrices in which
I is the n× n identity matrix and A and B are any n× n matrices:(

I 0
0 −I

)
,

(
I I
I 0

)
,

(
I + A∗A I + A∗B
I +B∗A I +B∗B

)
.

29. Show that for any m× n complex matrix A,

In

(
Im A
A∗ In

)
= (m, 0, 0)+In(In−A∗A) = (n, 0, 0)+In(Im−AA∗).

30. Show that two unitary matrices are *-congruent if and only if they
are similar, i.e., if U and V are unitary, then U = W ∗VW for some
nonsingular W if and only if U = R−1V R for some nonsingular R.

. ⊙ .
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8.2 The Product of Hermitian Matrices

This section concerns the product of two Hermitian matrices. As
is known, the product of two Hermitian matrices is not necessarily
Hermitian in general. For instance, take

A =

(
1 0
0 −2

)
, B =

(
1 1
1 −1

)
.

Note that the eigenvalues of AB are the nonreal numbers 1
2(3±

√
7 i).

We first show a trace inequality of the product of two Hermi-
tian matrices, and then we turn our attention to discussing when a
matrix product is Hermitian. Note that the trace of a product of
two Hermitian matrices is always real although the product is not
Hermitian. This is seen as follows. If A and B are Hermitian, then

tr(AB) = tr(A∗B∗) = tr(BA)∗ = tr(BA) = tr(AB).

That is, tr(AB) is real. Is this true for three Hermitian matrices?

Theorem 8.5 Let A and B be n-square Hermitian matrices. Then

tr(AB)2 ≤ tr(A2B2). (8.2)

Equality occurs if and only if A and B commute; namely, AB = BA.

Proof 1. Let C = AB −BA. Using the fact that tr(XY ) = tr(Y X)
for any square matrices X and Y of the same size, we compute

tr(C∗C) = tr(BA−AB)(AB −BA)

= tr(BA2B) + tr(AB2A)− tr(BABA)− tr(ABAB)

= 2 tr(A2B2)− 2 tr(AB)2.

Note that tr(A2B2) = tr(AB2A) is real because AB2A is Hermitian.
Thus tr(AB)2 is real. The inequality (8.2) then follows immediately
from the fact that tr(C∗C) ≥ 0 with equality if and only if C = 0;
that is, AB = BA.
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Proof 2. Since for any unitary matrix U ∈ Mn, U
∗AU is also Her-

mitian, inequality (8.2) holds if and only if

tr
(
(U∗AU)B

)2
≤ tr

(
(U∗AU)2B2

)
.

Thus we assume A = diag(a1, . . . , an) by Schur decomposition. Then

tr(A2B2)− tr(AB)2 =
∑
i, j

a2i |bij|2 −
∑
i, j

aiaj |bij |2

=
∑
i<j

(ai − aj)
2|bij |2 ≥ 0

with equality if and only if aibij = ajbij. This implies AB = BA.

Proof 3 for the Equality Case. We use the fact that a matrix X is
Hermitian if and only if trX2 = tr(XX∗) (see Theorem 7.2(4)).

Notice that the Hermitity of A and B gives

tr(A2B2) = tr(ABBA) = tr(AB)(AB)∗.

Thus,

tr(AB)2 = tr(A2B2) ⇒ tr(AB)2 = tr(AB)(AB)∗.

It follows that AB is Hermitian. Hence,

AB = (AB)∗ = B∗A∗ = BA.

Clearly, the product of two Hermitian matrices is Hermitian if
and only if these two matrices commute (Problem 4). We are now
interested in the following question. When can a given matrix be
written as a product of two Hermitian matrices?

Let A be given. Suppose A = BC is a product of two Hermitian
matrices B and C of the same size. If B is nonsingular, then

A = BC = B(CB)B−1 = BA∗B−1;

namely, A is similar to A∗. This is in fact a necessary and sufficient
condition for a matrix to be a product of two Hermitian matrices.
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Theorem 8.6 A square matrix A is a product of two Hermitian
matrices if and only if A is similar to A∗.

Proof. Necessity: Let A = BC, where B and C are n-square Her-
mitian matrices. Then we have at once

AB = BCB = B(BC)∗ = BA∗

and inductively for every positive integer k

AkB = B(A∗)k. (8.3)

We may write, without loss of generality via similarity (Problem 7),

A =

(
J 0
0 K

)
,

where J and K contain the Jordan blocks of eigenvalues 0 and
nonzero, respectively. Note that J is nilpotent and K is invertible.

Partition B and C conformally with A as

B =

(
L M
M∗ N

)
, C =

(
P Q
Q∗ R

)
.

Then (8.3) implies that for each positive integer k

KkM∗ =M∗(J∗)k.

Notice that (J∗)k = 0 when k ≥ n, for J is nilpotent. It follows that
M = 0, since K is nonsingular. Thus A = BC is the same as(

J 0
0 K

)
=

(
L 0
0 N

)(
P Q
Q∗ R

)
.

This yields K = NR, and hence N and R are nonsingular.
Taking k = 1 in (8.3), we have(

J 0
0 K

)(
L 0
0 N

)
=

(
L 0
0 N

)(
J∗ 0
0 K∗

)
,

which gives KN = NK∗, or, because N is invertible,

N−1KN = K∗.
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In other words, K is similar to K∗. On the other hand, any square
matrix is similar to its transpose (Theorem 3.14(1)). Thus J is sim-
ilar to JT = J∗, and it follows that A is similar to A∗.

Sufficiency: We show that if A is similar to A∗, then A can be
expressed as a product of two Hermitian matrices. Notice that

A = P−1H1H2P ⇒ A = P−1H1(P
−1)∗P ∗H2P.

This says if A is similar to a product of Hermitian matrices, then A
is in fact a product of Hermitian matrices.

Recall from Theorem 3.14(2) that A is similar to A∗ if and only if
the Jordan blocks of the nonreal eigenvalues λ of A occur in conjugate
pairs. Thus it is sufficient to show that the paired Jordan block(

J(λ) 0

0 J(λ)

)
,

where J(λ) is a Jordan block with λ on the diagonal, is similar to a
product of two Hermitian matrices. This is seen as follows: matrices(

J(λ) 0

0 J(λ)

)
and

(
J(λ) 0

0 (J(λ))T

)
are similar, since any square matrix is similar to its transpose. But(

J(λ) 0

0 (J(λ))T

)
=

(
J(λ) 0
0 (J(λ))∗

)
,

which is equal to a product of two Hermitian matrices:(
0 J(λ)

(J(λ))∗ 0

)(
0 I
I 0

)
.

Problems

1. Let A and B be Hermitian matrices of the same size. Show that
AB −BA is skew-Hermitian and ABA−BAB is Hermitian.

2. Let A, B, and C be n× n Hermitian matrices. Prove or disprove

tr(ABC) = tr(BCA) or tr(ABC) = tr(CBA).

Is tr(ABC) necessarily real? How about det(ABC)? Eigenvalues?
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3. Let A and B be n×n Hermitian matrices. Show that tr(AkBk) and
tr(AB)k are real for any positive integer k.

4. Let A and B be n-square Hermitian matrices. Show that the product
AB is Hermitian if and only if AB = BA. What if A,B are normal?

5. Let A and B be Hermitian matrices of the same size. Show that AB
and BA are similar. What if A,B are normal?

6. If λ1, λ2, . . . , λn are the eigenvalues of a Hermitian matrix A, what
are the singular eigenvalues of A?

7. Give in detail the reason why the matrix A may be assumed to be a
Jordan form in the proof of Theorem 8.6.

8. Let A ∈ Mn. If A
k = Ak+1 for some positive integer k, show that

trA = trA2 = · · · = trAn = · · · .

9. Show that for any square complex matrices A and B of the same size

tr(AB −BA) = 0 and tr(AB −BA)(AB +BA) = 0.

10. Let A and B be Hermitian matrices of the same size. Show that

| tr(AB)| ≤ (trA2)1/2(trB2)1/2 ≤ tr
(A2 +B2

2

)
and

(tr(A+B)2)1/2 ≤ (trA2)1/2 + (trB2)1/2.

11. Let A, B, and C be Hermitian matrices of the same size. Show that

| tr(ABC)| ≤ | tr(A2B2C2)|1/2

is not true in general. [Hint: Assume that A is a diagonal matrix.]

12. Let A be a square matrix with all eigenvalues real (A is not necessarily
Hermitian), k of which are nonzero, k ≥ 1. Show that

(trA)2

trA2
≤ k ≤ rank (A).

13. Let A, B ∈ Mn be Hermitian matrices of positive traces. Show that

tr(A+B)2

tr(A+B)
≤ trA2

trA
+

trB2

trB
.
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14. Consider two or three n× n Hermitian matrices. Prove or disprove

(a) The determinant of a product of Hermitian matrices is real.

(b) The trace of a product of Hermitian matrices is real.

(c) The eigenvalues of a product of Hermitian matrices are real.

15. Let A and B be Hermitian matrices of the same size. Show that
there exists a unitary matrix U such that U∗AU and U∗BU are both
diagonal if and only if AB = BA.

16. Let A and B be Hermitian matrices of the same size. If AB = BA,
show that for any a, b ∈ C the eigenvalues of aA+ bB are in the form
aλ+bµ, where λ and µ are some eigenvalues of A and B, respectively.

17. Let A ∈ Mn and S be an invertible matrix so that S−1AS = A∗. Set

Hc = cS + c̄S∗.

Show that Hc and AHc are Hermitian matrices. Also show that

A = (AHc)H
−1
c

is a product of two Hermitian matrices for some c such that Hc is
invertible. Why does such an invertible matrix Hc exist?

18. Show that a matrix is diagonalizable (not necessarily unitarily diag-
onalizable) with real eigenvalues if and only if it can be written as
a product of a positive definite matrix and a Hermitian matrix. For
the singular case, is the product of a singular positive semidefinite
matrix and a Hermitian matrix always diagonalizable?

19. Show that any square matrix is a product of two symmetric matrices.

20. Let A ∈ Mn be positive definite and let B ∈ Mn be Hermitian such
that AB is a Hermitian matrix. Show that AB is positive definite if
and only if the eigenvalues of B are all positive.

21. Let A ∈ Mn be a Hermitian matrix. Show that trA > 0 if and only
if A = B +B∗ for some B similar to a positive definite matrix.

22. Show that a matrix A is a product of two positive semidefinite ma-
trices if and only if A is similar to a positive semidefinite matrix.

. ⊙ .
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8.3 The Min-Max Theorem and Interlacing Theorem

In this section we use some techniques on vector spaces to derive
eigenvalue inequalities for Hermitian matrices. The idea is to choose
vectors in certain subspaces spanned by eigenvectors in order to ob-
tain the min-max representations that yield the desired inequalities.

Let H be an n×n Hermitian matrix with (necessarily real) eigen-
values λi(H), or simply λi, i = 1, 2, . . . , n. By Theorem 8.1, there is
a unitary matrix U such that

U∗HU = diag(λ1, λ2, . . . , λn)

or

HU = U diag(λ1, λ2, . . . , λn).

The column vectors u1, u2, . . . , un of U are orthonormal eigenvec-
tors of H corresponding to λ1, λ2, . . . , λn, respectively, that is,

Hui = λiui, u∗i uj = δij , i, j = 1, 2, . . . , n, (8.4)

where δij = 1 if i = j and 0 otherwise (Kronecker delta).

We assume that the eigenvalues and singular values of a Hermi-
tian matrix H are arranged in decreasing order:

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin;

σmax = σ1 ≥ σ2 ≥ · · · ≥ σn = σmin.

The following theorem is of fundamental importance to the rest
of this chapter. The idea and result are employed frequently.

Theorem 8.7 Let H be an n×n Hermitian matrix. Let u1, u2, . . . ,
un be orthonormal eigenvectors of H corresponding to the (not nec-
essarily different) eigenvalues λ1, λ2, . . . , λn of H, respectively. Let
W = Span{up, . . . , uq}, 1 ≤ p ≤ q ≤ n. Then for any unit x ∈W

λq(H) ≤ x∗Hx ≤ λp(H). (8.5)
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Proof. Let x = xpup + · · ·+ xquq. Then by using (8.4)

x∗Hx = x∗(xpHup + · · ·+ xqHuq)

= x∗(λpxpup + · · ·+ λqxquq)

= λpxpx
∗up + · · ·+ λqxqx

∗uq

= λp|xp|2 + · · ·+ λq|xq|2.

The inequality follows since x is a unit vector:
∑q

i=p |xi|2 = 1.

Theorem 8.8 (Rayleigh–Ritz) Let H ∈ Mn be Hermitian. Then

λmin(H) = min
x∗x=1

x∗Hx

and

λmax(H) = max
x∗x=1

x∗Hx.

Proof. The eigenvectors of H in (8.4) form an orthonormal basis for
Cn. By (8.5), it is sufficient to observe that

λmin(H) = u∗nHun and λmax(H) = u∗1Hu1.

Recall the dimension identity (Theorem 1.1 of Section 1.1): If S1
and S2 are subspaces of an n-dimensional vector space, then

dim(S1 ∩ S2) = dimS1 + dimS2 − dim(S1 + S2).

It follows that S1 ∩ S2 is nonempty if

dimS1 + dimS2 > n (8.6)

and that for three subspaces S1, S2, and S3,

dim(S1 ∩ S2 ∩ S3) ≥ dimS1 + dimS2 + dimS3 − 2n. (8.7)

We use these inequalities to obtain the min-max theorem and
derive eigenvalue inequalities for Hermitian matrices.
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Theorem 8.9 (Courant–Fischer) Let H ∈ Mn be Hermitian and
let S represent a subspace of Cn (of complex column vectors). Then

λk(H) = max
(dimS=k)

min
(x∈S, x∗x=1)

x∗Hx

= max
(dimS=n−k)

min
(x∈S⊥, x∗x=1)

x∗Hx

= min
(dimS=n−k+1)

max
(x∈S, x∗x=1)

x∗Hx

= min
(dimS=k−1)

max
(x∈S⊥, x∗x=1)

x∗Hx.

Proof. We show the first max-min representation. The second one
follows from the first immediately as dimS⊥ = k if dimS = n − k.
The rest of the min-max representations are proven similarly. Let ui
be orthonormal eigenvectors belonging to λi, i = 1, 2 . . . , n. We set

S1 = Span{uk, . . . , un}, dimS1 = n− k + 1,

and let S2 = S be any k-dimensional subspace of Cn. By (8.6), there
exists a vector x such that x ∈ S1 ∩ S2, x∗x = 1, and for this x, by
(8.5), λk ≥ x∗Hx. Thus, for any k-dimensional subspace S of Cn,

λk ≥ min
v∈S, v∗v=1

v∗Hv.

It follows that

λk ≥ max
(dimS=k)

min
(v∈S, v∗v=1)

v∗Hv.

However, for any unit vector v ∈ Span{u1, u2, . . . , uk}, which has
dimension k, we have, by (8.5) again, v∗Hv ≥ λk and u∗kHuk = λk.
Thus, for S = Span{u1, . . . , uk}, we have

min
v∈S, v∗v=1

v∗Hv ≥ λk.

It follows that

max
(dimS=k)

min
(v∈S, v∗v=1)

v∗Hv ≥ λk.



Sec. 8.3 The Min-Max Theorem and Interlacing Theorem 269

Putting these together,

max
(dimS=k)

min
(v∈S, v∗v=1)

v∗Hv = λk.

The following theorem is usually referred to as the eigenvalue
interlacing theorem, also known as the Cauchy, Poincaré, or Sturm
interlacing theorem. It states, simply put, that the eigenvalues of
a principal submatrix of a Hermitian matrix interlace those of the
underlying matrix. This is used to obtain many matrix inequalities.

Theorem 8.10 (Eigenvalue Interlacing Theorem) Let H be an
n× n Hermitian matrix partitioned as

H =

(
A B
B∗ C

)
,

where A is an m×m principal submatrix of H, 1 ≤ m ≤ n. Then

λk+n−m(H) ≤ λk(A) ≤ λk(H), k = 1, 2, . . . ,m.

In particular, when m = n− 1,

λn(H) ≤ λn−1(A) ≤ λn−1(H) ≤ · · · ≤ λ2(H) ≤ λ1(A) ≤ λ1(H).

We present three different proofs in the following. For conve-
nience, we denote the eigenvalues of H and A, respectively, by

λ1 ≥ λ2 ≥ · · · ≥ λn, µ1 ≥ µ2 ≥ · · · ≥ µm.

Proof 1. Use subspaces spanned by certain eigenvectors. Let ui
and vi be orthonormal eigenvectors of H and A belonging to the
eigenvalues λi and µi, respectively. Symbolically,

Hui = λiui, u∗iuj = δij , i, j = 1, 2, . . . , n, ui ∈ Cn,

Avi = µivi, v∗i vj = δij , i, j = 1, 2, . . . ,m, vi ∈ Cm,

where δij = 1 if i = j and 0 otherwise. Let

wi =

(
vi
0

)
∈ Cn, i = 1, 2, . . . ,m.
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Note that the wi are eigenvectors belonging to the respective eigen-
values µi of the partitioned matrix A⊕ 0. For 1 ≤ k ≤ m, we set

S1 = Span{uk, . . . , un}

and
S2 = Span{w1, . . . , wk}.

Then
dimS1 = n− k + 1 and dimS2 = k.

We thus have a vector x ∈ S1 ∩ S2, x∗x = 1, and for this x, by (8.5),

λk ≥ x∗Hx ≥ µk. (8.8)

An application of this inequality to −H gives µk ≥ λk+n−m.

Proof 2. Use the adjoint matrix and continuity of functions. Reduce
the proof to the case m = n− 1 by considering a sequence of leading
principal submatrices, two consecutive ones differing in size by one.

We may assume that λ1 > λ2 > · · · > λn. The case in which some
of the λi are equal follows from a continuity argument (replacing λi
with λi + ϵi). Let U be an n-square unitary matrix such that

H = U∗ diag(λ1, λ2, . . . , λn)U.

Then
tI −H = U∗ diag(t− λ1, t− λ2, . . . , t− λn)U (8.9)

and for t ̸= λi, i = 1, 2, . . . , n,

adj(tI −H) = det(tI −H)(tI −H)−1. (8.10)

Upon computation, the (n, n)-entry of (tI −H)−1 by using (8.9) is

|u1n|2

t− λ1
+

|u2n|2

t− λ2
+ · · ·+ |unn|2

t− λn

and the (n, n)-entry of adj(tI −H) is det(tI −A). Thus by (8.10)

det(tI −A)

det(tI −H)
=

|u1n|2

t− λ1
+

|u2n|2

t− λ2
+ · · ·+ |unn|2

t− λn
. (8.11)
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Notice that the function of t defined in (8.11) is continuous except
at the points λi, and that it is decreasing on each interval (λi+1, λi).
On the other hand, since µ1, µ2, . . . , µn are the roots of the numerator
det(tI − A), by considering the behavior of the function over the
intervals divided by the eigenvalues λi, it follows that

µi ∈ [λi+1, λi], i = 1, 2, . . . , n− 1.

The preceding proof is surely a good example of applications of
calculus to linear algebra and matrix theory.

Proof 3. Use the Courant–Fischer theorem. Let 1 ≤ k ≤ m. Then

λk(A) = max
Sk
m

min
(x∈Sk

m, x∗x=1)
x∗Ax,

where Sk
m is an arbitrary k-dimensional subspace of Cm, and

λk(H) = max
Sk
n

min
(x∈Sk

n, x
∗x=1)

x∗Hx,

where Sk
n is an arbitrary k-dimensional subspace of Cn.

Denote by Sk
0 the k-dimensional subspace of Cn of the vectors

y =

(
x
0

)
, where x ∈ Sk

m.

Noticing that y∗Hy = x∗Ax, we have, by a simple computation,

λk(H) = max
Sk
n

min
(x∈Sk

n, x
∗x=1)

x∗Hx

≥ max
Sk
0

min
(y∈Sk

0 , y
∗y=1)

y∗Hy

= max
Sk
m

min
(x∈Sk

m, x∗x=1)
x∗Ax

= λk(A).

The other inequality is obtained by replacing H with −H .

As an application of the interlacing theorem, we present a result
due to Poincaré: if A ∈ Mm is a Hermitian matrix, then for any
m× n matrix V satisfying V ∗V = In and for each i = 1, 2, . . . ,m,

λi+m−n(A) ≤ λi(V
∗AV ) ≤ λi(A). (8.12)
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To see this, first notice that V ∗V = In ⇒ m ≥ n (Problem 1).
Let U be an m× (m− n) matrix such that (V,U) is unitary. Then

(V,U)∗A(V,U) =

(
V ∗AV V ∗AU
U∗AV U∗AU

)
.

Thus by applying the interlacing theorem, we have

λi+m−n(A) = λi+m−n

(
(V,U)∗A(V,U)

)
≤ λi(V

∗AV )

≤ λi
(
(V,U)∗A(V,U)

)
= λi(A).

Problems

1. Let V be an m× n matrix. Show that if V ∗V = In, then m ≥ n.

2. Let [A] be a principal submatrix of A. If A is Hermitian, show that

λmin(A) ≤ λmin([A]) ≤ λmax([A]) ≤ λmax(A).

3. Let λk(A) denote the kth largest eigenvalue of an n-square positive
definite matrix A. Show that

λk(A
−1) =

1

λn−k+1(A)
.

4. Let A ∈ Mn be Hermitian. Show that for every nonzero x ∈ Cn,

λmin(A) ≤
x∗Ax

x∗x
≤ λmax(A)

and for all diagonal entries aii of A,

λmin(A) ≤ aii ≤ λmax(A).

5. For any Hermitian matrices A and B of the same size, show that

λmax(A−B) + λmin(B) ≤ λmax(A).
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6. Let A ∈ Mn be Hermitian and B ∈ Mn be positive definite. Show
that the eigenvalues of AB−1 are all real, that

λmax(AB
−1) = max

x ̸=0

x∗Ax

x∗Bx
,

and that

λmin(AB
−1) = min

x̸=0

x∗Ax

x∗Bx
.

7. Let A be an n× n Hermitian matrix and X be an n× p matrix such
that X∗X = Ip. Then

n∑
i=n−p+1

λi(A) ≤ tr(X∗AX) ≤
p∑

i=1

λi(A)

and
p∑

i=1

λ−1
i (A) ≤ tr(X∗AX)−1 ≤

n∑
i=n−p+1

λ−1
i (A).

8. Let A be an n-square positive semidefinite matrix. If V is an n×m
complex matrix such that V ∗V = Im, show that

m∏
i=1

λn−m+i(A) ≤ det(V ∗AV ) ≤
m∏
i=1

λi(A).

9. Let A be a positive semidefinite matrix partitioned as

A =

(
A11 A12

A21 A22

)
,

where A11 is square, and let Ã11 = A22 − A21A
−1
11 A12 be the Schur

complement of A11 in A when A11 is nonsingular. Show that

λmin(A) ≤ λmin(Ã11) ≤ λmin(A22).

10. Let H =
(

X
Z∗

Z
Y

)
be Hermitian, whereX is the k×k leading principal

submatrix of H. If λi(H) = λi(X), i = 1, 2, . . . , k, show that Z = 0.

11. Let A be an n-square matrix and U be an n× k matrix, k ≤ n, such
that U∗U = Ik. Show that σi(U

∗AU) ≤ σi(A), i = 1, 2, . . . , k.

12. Show the min-max representations in Theorem 8.9.

. ⊙ .
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8.4 Eigenvalue and Singular Value Inequalities

This section presents some basic eigenvalue and singular value in-
equalities by using the min-max representation theorem and the
eigenvalue interlacing theorem. We assume that the eigenvalues
λi(A), singular values σi(A), and diagonal entries di(A) of a Her-
mitian matrix A are arranged in decreasing order.

The following theorem on comparing two Hermitian matrices best
characterizes the Löwner ordering in terms of eigenvalues.

Theorem 8.11 Let A, B ∈ Mn be Hermitian matrices. Then

A ≥ B ⇒ λi(A) ≥ λi(B), i = 1, 2, . . . , n.

This follows from the Courant–Fischer theorem immediately, for

A ≥ B ⇒ x∗Ax ≥ x∗Bx, x ∈ Cn.

Our next theorem compares the eigenvalues of sum, ordinary, and
Hadamard products of matrices to those of the individual matrices.

Theorem 8.12 Let A, B ∈ Mn be Hermitian matrices. Then

1. λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B).

2. λi(A)λn(B) ≤ λi(AB) ≤ λi(A)λ1(B) if A ≥ 0 and B ≥ 0.

3. di(A)λn(B) ≤ λi(A ◦B) ≤ di(A)λ1(B) if A ≥ 0 and B ≥ 0.

Proof. Let x be unit vectors in Cn. Then we have

x∗Ax+min
x
x∗Bx ≤ x∗(A+B)x ≤ x∗Ax+max

x
x∗Bx.

Thus
x∗Ax+ λn(B) ≤ x∗(A+B)x ≤ x∗Ax+ λ1(B).

An application of the min-max theorem results in (1). For (2), we
write λi(AB) = λi(B

1/2AB1/2). Notice that λ1(A)I − A ≥ 0. Thus

B1/2AB1/2 ≤ B1/2AB1/2 +B1/2(λ1(A)I −A
)
B1/2 = λ1(A)B.
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An application of Theorem 8.11 gives (2). For (3), recall that the
Hadamard product of two positive semidefinite matrices is positive
semidefinite (Schur theorem, Section 7.5). Since λ1(B)I−B ≥ 0 and
B − λn(B)I ≥ 0, by taking the Hadamard product with A, we have

A ◦
(
λ1(B)I −B

)
≥ 0, A ◦

(
B − λn(B)I

)
≥ 0,

which reveals

λn(B)(I ◦A) ≤ A ◦B ≤ λ1(B)(I ◦A).

Note that I ◦A = diag(a11, . . . , ann). Theorem 8.11 gives for each i,

di(A)λn(B) ≤ λi(A ◦B) ≤ di(A)λ1(B).

It is natural to ask the question: if A ≥ 0 and B ≥ 0, is

λi(A)λn(B) ≤ λi(A ◦B) ≤ λi(A)λ1(B)?

The answer is negative (Problem 8). For singular values, we have

Theorem 8.13 Let A and B be complex matrices. Then

σi(A) + σn(B) ≤ σi(A+B) ≤ σi(A) + σ1(B) (8.13)

if A and B are of the same size m× n, and

σi(A)σm(B) ≤ σi(AB) ≤ σi(A)σ1(B) (8.14)

if A is m× n and B is n×m.

Proof. To show (8.13), notice that the Hermitian matrix(
0 X
X∗ 0

)
,

where X is an m× n matrix with rank r, has eigenvalues

σ1(X), . . . , σr(X),

m+n−2r︷ ︸︸ ︷
0, . . . , 0, −σr(X), . . . , −σ1(X).
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Applying the previous theorem to the Hermitian matrices(
0 A
A∗ 0

)
,

(
0 B
B∗ 0

)
and to their sum, one gets the desired singular value inequalities.

For the inequalities on product, it suffices to note that

σi(AB) =
√
λi(B∗A∗AB) =

√
λi(A∗ABB∗).

Some stronger results can be obtained by using the min-max the-
orem (Problem 18). For submatrices of a general matrix, we have
the following inequalities on the singular values.

Theorem 8.14 Let B be any submatrix of an m × n matrix A ob-
tained by deleting s rows and t columns, s+ t = r. Then

σr+i(A) ≤ σi(B) ≤ σi(A), i = 1, 2, . . . ,min{m,n}.

Proof. We may assume that r = 1 and B is obtained from A by
deleting a column, say b; that is, A = (B, b). Otherwise one may
place B in the upper-left corner of A by permutation and consider a
sequence of submatrices of A that contain B, two consecutive ones
differing by a row or column (see the second proof of Theorem 8.10).

Notice that B∗B is a principal submatrix of A∗A. Using the
eigenvalue interlacing theorem (Theorem 8.10), we have for each i,

λi+1(A
∗A) ≤ λi(B

∗B) ≤ λi(A
∗A).

The proof is completed by taking square roots.

Theorem 8.12 can be generalized to eigenvalues with indices r and
s, r+s ≤ n−1. As an example, we present two such inequalities, one
for the sum of Hermitian matrices and one for the product of positive
semidefinite matrices, and leave others to the reader (Problem 18).

Theorem 8.15 Let A and B be n-square Hermitian matrices. If r
and s are nonnegative integers such that r + s ≤ n− 1, then

λr+s+1(A+B) ≤ λr+1(A) + λs+1(B).
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Proof. Let ui, vi, and wi, i = 1, 2, . . . , n, be orthonormal eigenvectors
corresponding to the eigenvalues λi(A), λi(B), and λi(A+B), of the
matrices A, B, and A+B, respectively. Let

S1 = Span{ur+1, . . . , . . . , un}, dimS1 = n− r,

S2 = Span{vs+1, . . . , . . . , sn}, dimS2 = n− s,

S3 = Span{w1, . . . , . . . , wr+s+1}, dimS3 = r + s+ 1.

Then, by Problem 23 of Section 1.1,

dim(S1 ∩ S2 ∩ S3) ≥ dimS1 + dimS2 + dimS3 − 2n = 1.

Thus, there exists a nonzero unit vector x ∈ S1 ∩ S2 ∩ S3. By (8.5),

λr+s+1(A+B) ≤ x∗(A+B)x = x∗Ax+x∗Bx ≤ λr+1(A)+λs+1(B).

Setting r = 0 in the theorem, we have for any 1 ≤ k ≤ n,

λk(A+B) ≤ λ1(A) + λk(B).

Applying the theorem to −A and −B, one gets

λn−r−s(A+B) ≥ λn−r(A) + λn−s(B).

Theorem 8.16 Let G and H be n×n positive semidefinite matrices.
If r and s are nonnegative integers such that r + s ≤ n− 1, then

λr+s+1(GH) ≤ λr+1(G)λs+1(H).

Proof. We may assume that both G and H are positive definite;
otherwise use a continuity argument. Let ui and vi be the orthonor-
mal eigenvectors corresponding to λi(G) and λi(H), respectively,
i = 1, . . . , n. Let W1 be the subspace of Cn spanned by u1, . . . , ur
and W2 be the subspace spanned by v1, . . . , vs.

Let W3 = Span{H−1/2u1, . . . ,H
−1/2ur}. Then dim(W2 +W3) ≤

r + s. Let S be a subspace of dimension r + s containing W2 +W3.
Then S⊥ ⊆ (W2 +W3)

⊥ =W⊥
2 ∩W⊥

3 . It follows that
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λr+s+1(GH) = λr+s+1(H
1/2GH1/2)

= min
(dimW=r+s)

max
(x∈W⊥, x∗x=1)

x∗(H1/2GH1/2)x

≤ max
x∈S⊥, x∗x=1

x∗(H1/2GH1/2)x

≤ max
x∈W⊥

2 ∩W⊥
3 , x∗x=1

x∗(H1/2GH1/2)x

x∗Hx
· x∗Hx

≤ max
x∈W⊥

3 , x∗x=1

x∗(H1/2GH1/2)x

x∗Hx
· max
x∈W⊥

2 , x∗x=1
x∗Hx

≤ max
y∈W⊥

1

y∗Gy

y∗y
· max
x∈W⊥

2 , x∗x=1
x∗Hx

= λr+1(G)λs+1(H).

Problems

1. Use Theorem 8.11 to show that A ≥ B ≥ 0 implies

rank (A) ≥ rank (B), detA ≥ detB.

2. Let A ≥ 0, B ≥ 0. Prove or disprove λi(A) ≥ λi(B) ⇒ A ≥ B.

3. Show that A > B ⇒ λi(A) > λi(B) for each i.

4. Let A ≥ B ≥ 0. Show that for X ≥ 0 of the same size as A and B

λi(AX) ≥ λi(BX), for each i.

5. Let A ∈ Mn be a positive semidefinite matrix. Show that

λ1(A)I −A ≥ 0 ≥ λn(A)I − A, i.e., λn(A)I ≤ A ≤ λ1(A)I.

6. Let A and B be n× n positive semidefinite matrices. Show that

λn(A) + λn(B) ≤ λn(A+B) ≤ λ1(A+B) ≤ λ1(A) + λ1(B);

λn(A)λn(B) ≤ λn(AB) ≤ λ1(AB) ≤ λ1(A)λ1(B);

λn(A)λn(B) ≤ λn(A ◦B) ≤ λ1(A ◦B) ≤ λ1(A)λ1(B).
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7. Show by example that for A ≥ 0 and B ≥ 0 of the same size the
following inequalities may both occur.

λn(AB) > λn(A)min
i
bii, λn(AB) < λn(A)min

i
bii.

8. Show by example that for A ≥ 0 and B ≥ 0 of the same size the
following inequalities do not hold in general.

λi(A)λn(B) ≤ λi(A ◦B) ≤ λi(A)λ1(B).

9. Let A, B ∈ Mn be Hermitian matrices. Prove or disprove

λi(A+B) ≤ λi(A) + λi(B).

10. Let A, B ∈ Mn be Hermitian matrices. Show that for any α ∈ [0, 1],

λmin(αA+ (1− α)B) ≥ αλmin(A) + (1− α)λmin(B)

and

λmax(αA+ (1− α)B) ≤ αλmax(A) + (1− α)λmax(B).

11. Let A be Hermitian and B ≥ 0 be of the same size. Show that

λmin(B)λi(A
2) ≤ λi(ABA) ≤ λmax(B)λi(A

2).

12. Let A ∈ Mn be Hermitian. Show that for any row vector u ∈ Cn,

λi+2(A+ u∗u) ≤ λi+1(A) ≤ λi(A+ u∗u)

and

λi+2(A) ≤ λi+1(A+ u∗u) ≤ λi(A).

13. When does d(A) = λ(A)? In other words, for what matrices are the
diagonal entries equal to the eigenvalues? How about

d(A) = σ(A) or λ(A) = σ(A)?

14. Let A be an n × n positive semidefinite matrix. If V is an n × m
matrix so that V ∗V = diag(δ1, δ2, . . . , δm), each δi > 0, show that

λn(A)min
i
δi ≤ λi(V

∗AV ) ≤ λ1(A)max
i
δi.
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15. Let A and B be n-square complex matrices. Show that

σn(A)σn(B) ≤ |λ(AB)| ≤ σ1(A)σ1(B)

for any eigenvalue λ(AB) of AB. In particular, |λ(A)| ≤ σmax(A).

16. Let A,X,B be m× p, p× q, q × n matrices, respectively. Show that

σi(AXB) ≤ σ1(A)σi(X)σ1(B) for every i ≤ min{m, p, q, n}.

17. Let X and Y be n× n matrices, t ∈ [0, 1], and t̃ = 1− t. Show that

σi(tX + t̃Y ) ≤ σi(X ⊕ Y ).

[Hint: Consider (αI, βI)(X ⊕ Y )(αI, βI)T and use Problem 16.]

18. Let A and B be n×n matrices and r+s ≤ n−1. Show the following.

(a) If A and B are Hermitian, then

λn−r−s(A+B) ≥ λn−r(A) + λn−s(B).

(b) If A and B are positive semidefinite, then

λn−r−s(AB) ≥ λn−r(A)λn−s(B).

(c) For singular values,

σr+s+1(A+B) ≤ σr+1(A) + σs+1(B),

σr+s+1(AB) ≤ σr+1(A)σs+1(B),

and
σn−r−s(AB) ≥ σn−r(A)σn−s(B),

but it is false that

σn−r−s(A+B) ≥ σn−r(A) + σn−s(B).

. ⊙ .
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8.5 Eigenvalues of Hermitian Matrices A, B, and A+B

This section is devoted to the relationship between the eigenvalues
of Hermitian matrices A and B and those of the sum A+B. It has
been evident that min-max representations play an important role in
the study. We start with a simple, but neat result of min-max type.

Theorem 8.17 (Fan) Let H be an n×n Hermitian matrix. Denote
by Sk a set of any k orthonormal vectors x1, x2, . . . , xk ∈ Cn. Then

k∑
i=1

λi(H) = max
Sk

k∑
i=1

x∗iHxi, 1 ≤ k ≤ n. (8.15)

Proof. Let U = (V,W ) be a unitary matrix, where V consists of the
orthonormal vectors x1, x2, . . . , xk. Then by (8.12)

k∑
i=1

x∗iHxi = tr(V ∗HV ) =
k∑

i=1

λi(V
∗HV ) ≤

k∑
i=1

λi(H).

Identity (8.15) follows by choosing the unit eigenvectors xi of λi(H):

k∑
i=1

x∗iHxi =

k∑
i=1

λi(H).

Our main result of this section is the following theorem, which
results in a number of majorization inequalities (Chapter 10).

Theorem 8.18 (Thompson) Let A and B be n×n Hermitian ma-
trices and let C = A + B. If α1 ≥ · · · ≥ αn, β1 ≥ · · · ≥ βn, and
γ1 ≥ · · · ≥ γn are the eigenvalues of A, B, and C, respectively, then
for any sequence 1 ≤ i1 < · · · < ik ≤ n,

k∑
t=1

αit +
k∑

t=1

βn−k+t ≤
k∑

t=1

γit ≤
k∑

t=1

αit +
k∑

t=1

βt. (8.16)
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This theorem is proved by using the following min-max expression
for the sum of eigenvalues that is in turn shown via a few lemmas.

Theorem 8.19 Let H be an n × n Hermitian matrix and let Wt

represent a subspace of Cn. Then, for 1 ≤ i1 < · · · < ik ≤ n,

k∑
t=1

λit(H) = max
dimWt=it

min
xt∈Wt

k∑
t=1

x∗tHxt, (8.17)

where x1, . . . , xk (in W1, . . . ,Wk, respectively) are orthonormal.

Lemma 8.1 Let U1, . . . , Uk be subspaces of an inner product space
such that dimUt ≥ t, t = 1, . . . , k. If u2, . . . , uk are linearly inde-
pendent vectors in U2, . . . , Uk, respectively, then there exist linearly
independent vectors y1, y2, . . . , yk in U1, U2, . . . , Uk, respectively, such
that Span{u2, . . . , uk} ⊆ Span{y1, y2, . . . , yk}. If, in addition, U1 ⊂
· · · ⊂ Uk, then y1, y2, . . . , yk can be chosen to be orthonormal.

Proof. We use induction on k. Let k = 2 and u2 ∈ U2 be nonzero.
If u2 ∈ U1, then we set y1 = u2 and take y2 from U2 so that y2 is not
a multiple of u2 (i.e., y1 and y2 are linearly independent). This is
possible because dimU2 ≥ 2. If u2 ̸∈ U1, there must exist a nonzero
vector y1 ∈ U1 that is not a multiple of u2. Now set y2 = u2. y1 and
y2 are linearly independent. In either case, Span{u2} ⊆ Span{y1, y2}.

Now suppose it is true for the case of k − 1; that is, given
u2, . . . , uk−1, there exist linearly independent y1, y2, . . . , yk−1 so that
the span of the us is contained in the span of the ys. We show the
case of k. If uk ̸∈ Span{y1, y2, . . . , yk−1}, then we take yk = uk.
Otherwise, we take a nonzero yk ∈ Uk ∩ (Span{y1, y2, . . . , yk−1})⊥.
In any case, we have Span{u2, . . . , uk} ⊆ Span{y1, y2, . . . , yk}, where
yt ∈ Ut are linearly independent, t = 1, . . . , k. Due to the Gram–
Schmidt orthonormalization (Problem 21, Section 1.4), y1, y2, . . . , yk
can be chosen to be orthonormal.

By putting Qt = Uk−t+1 for each t in the above lemma, we ob-
tain an equivalent statement to the lemma: if Qt are k subspaces of
an inner product space, dimQt ≥ k − t + 1, and if vt are linearly
independent vectors, where vt ∈ Qt, t = 1, . . . , k − 1, there exist lin-
early independent vectors yt, where yt ∈ Qt, t = 1, . . . , k, such that
Span{v1, . . . , vk−1} ⊆ Span{y1, y2, . . . , yk}.
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Lemma 8.2 Let 1 ≤ i1 < · · · < ik ≤ n. Let W1, . . . ,Wk and
V1, . . . , Vk be subspaces of an inner product space such that dimWt ≥
it, dimVt ≥ n − it + 1, t = 1, . . . , k, and V1 ⊇ · · · ⊇ Vk. Then there
exist orthonormal xt ∈ Wt, t = 1, . . . , k, and orthonormal yt ∈ Vt,
t = 1, . . . , k, such that Span{x1, . . . , xk} = Span{y1, . . . , yk}.

Proof. Since dimW1 + dimV1 = n + 1, by the dimension identity
(Theorem 1.1), W1∩V1 ̸= ∅. A unit vector x1 = y1 ∈W1 ∩V1 exists.
So the conclusion is true when k = 1. Suppose it is true for k − 1;
that is, there exist orthonormal xt ∈Wt and vt ∈ Vt, t = 1, . . . , k−1,
such that Span{x1, . . . , xk−1} = Span{v1, . . . , vk−1}. Now let

W = Span{x1, . . . , xk−1}+Wk ∩ (Span{x1, . . . , xk−1})⊥. (8.18)

Then dimW ≥ dimWk ≥ ik (Problem 3). Note that ik − it ≥ k − t;
we have dimW + dim Vt ≥ ik + n− it + 1 ≥ n+ k − t+ 1.

Set Qt = W ∩ Vt, t = 1, . . . , k. By the dimension identity again,
dimQt ≥ k − t + 1. Moreover, Q1 ⊇ · · · ⊇ Qk, and vt ∈ Qt, t =
1, . . . , k − 1. By the discussion following Lemma 8.1, there exist
orthonormal yt ∈ Qt, t = 1, . . . , k, such that Span{x1, . . . , xk−1} =
Span{v1, . . . , vk−1} ⊆ Span{y1, . . . , yk} ⊆ W . Choose a unit vector
xk from the space (Span{x1, . . . , xk−1})⊥∩Span{y1, . . . , yk} ̸= ∅. By
(8.18), xk ∈Wk and Span{x1, . . . , xk} = Span{y1, . . . , yk}.

Lemma 8.3 Let H be an n × n Hermitian matrix and let 1 ≤ i1 <
· · · < ik ≤ n. Then for any subspaces W1, . . . ,Wk of Cn such that
dimWt = it, t = 1, . . . , k, there exist orthonormal xt ∈ Wt, t =
1, . . . , k, such that

k∑
t=1

x∗tHxt ≤
k∑

t=1

λit(H).

Proof. Let Vt = Span{uit , uit+1, . . . , un}, where uj are the or-
thonormal eigenvectors of H belonging to the eigenvalues λj , re-
spectively. Then dimVt = n− it+1, t = 1, . . . , k, and V1 ⊇ · · · ⊇ Vk.
By Lemma 8.2, there exist orthonormal x1, . . . , xk and orthonor-
mal y1, . . . , yk, where xt ∈ Wt and yt ∈ Vt, t = 1, . . . , k, such
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that Span{x1, . . . , xk} = Span{y1, . . . , yk}. By Problem 4 and Theo-
rem 8.7, we have

k∑
t=1

x∗tHxt =
k∑

t=1

y∗tHyt ≤
k∑

t=1

λit(H).

Now we are ready to prove Theorem 8.19.

Proof of Theorem 8.19. Let Wt = Span{u1, u2, . . . , uit}, where uj
are the orthonormal eigenvectors of H belonging to the eigenvalues
λj , respectively. (This is possible because H is Hermitian.) Then
dimWt = it, t = 1, . . . , k. For any unit vectors xt ∈Wt, we have

k∑
t=1

x∗tHxt ≥
k∑

t=1

λit(H).

Combining Lemma 8.3, we accomplish the proof.

Proof of Theorem 8.18. By Theorem 8.19, we may assume that∑k
t=1 γit is attained by the subspaces St, dimSt = it, t = 1, . . . , k,

with orthonormal yt ∈ St, t = 1, . . . , k. Then Lemma 8.3 ensures

k∑
t=1

y∗tAyt ≤
k∑

t=1

λit(A).

However, Theorem 8.17 yields
∑k

t=1 y
∗
tByt ≤

∑k
t=1 λt(B). Therefore,

k∑
t=1

γit =
k∑

t=1

y∗t (A+B)yt ≤
k∑

t=1

λit(A) +
k∑

t=1

λt(B).

This is the inequality on the right-hand side of (8.16). For the first
inequality, let D = −B and denote the eigenvalues of D by δ1 ≥
· · · ≥ δn. Then A = C +D. The inequality we just proved reveals

k∑
t=1

αit ≤
k∑

t=1

γit +

k∑
t=1

δt.

Note that δt = −βn−t+1, t = 1, . . . , n. The inequality follows.
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Problems

1. LetA ∈ Mn be a Hermitian matrix with eigenvalues ordered |λ1(A)| ≥
· · · ≥ |λn(A)|. Show that |λ1(A)| = maxx∗x=1 |x∗Ax|. However,
|λn(A)| = minx∗x=1 |x∗Ax| is not true in general.

2. Let A be an m× n matrix. For any index i, show that

σi(A) = max
(dimW=i)

min
(x∈W,x∗x=1)

x∗(A∗A)1/2x

= max
(dimW=i)

min
(x∈W,x∗x=1)

(x∗A∗Ax)1/2.

3. Let V and S be subspaces of an inner product space of finite dimen-
sion. Let W = S + S⊥ ∩ V . Show that dimW ≥ dimV .

4. Let {x1, . . . , xm} and {y1, . . . , ym} be orthonormal sets in Cn so that

Span{x1, . . . , xm} = Span{y1, . . . , ym}.

Show that for any n-square complex matrix A,

m∑
t=1

x∗tAxt =
m∑
t=1

y∗tAyt.

5. Let H be an n× n Hermitian matrix. For any 1 ≤ k ≤ n, show that

k∑
i=1

λn−i+1(H) = min
U∗U=Ik

trU∗HU = min
x∗
i xj=δij

k∑
i=1

x∗iHxi,

where δij = 1 if i = j and 0 if i ̸= j.

6. Let H ∈ Mn be positive semidefinite. For any 1 ≤ k ≤ n, show that

k∏
i=1

λi(H) = max
U∗U=Ik

detU∗HU = max
x∗
i xj=δij

det(x∗iHxj),

where δij = 1 if i = j and 0 if i ̸= j, and

k∏
i=1

λn−i+1(H) = min
U∗U=Ik

detU∗HU = min
x∗
i xj=δij

det(x∗iHxj).

7. Let A and B be n×n Hermitian matrices and B > 0. Let µ1 ≥ µ2 ≥
· · · ≥ µn be the eigenvalues of det(A− µB) = 0. Show that

µ1 = max
x̸=0

x∗Ax

x∗Bx
, µn = min

x ̸=0

x∗Ax

x∗Bx
.
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Show more generally that for 1 ≤ k ≤ n,

k∑
i=1

µi = max
x∗
i Bxj=0, i ̸=j

k∑
i=1

x∗iAxi
x∗iBxi

and
n∏

i=n−k+1

µi = min
x∗
iBxj=0, i̸=j

k∏
i=1

x∗iAxi
x∗iBxi

.

8. Let A be an m× n complex matrix. For any 1 ≤ k ≤ n, show that

k∏
i=1

σi(A) = max
U∗U=Ik

(det(U∗A∗AU))1/2

and
k∏

i=1

σn−i+1(A) = min
U∗U=Ik

(det(U∗A∗AU))1/2.

9. Let A be an m× n complex matrix. For any 1 ≤ k ≤ n, show that

k∑
i=1

σi(A) = max
U∗U=V ∗V=Ik

| tr(UAV )| = max
U∗U=V ∗V =Ik

Re(tr(UAV )).

However, neither of the following holds:

k∑
i=1

σn−i+1(A) = min
U∗U=V ∗V=Ik

| tr(UAV )|;

k∑
i=1

σn−i+1(A) = min
U∗U=V ∗V=Ik

Re(tr(UAV )).

10. Let A and B be n × n Hermitian matrices such that tr(A + B)k =
tr(Ak) + tr(Bk) for all positive integers k. Show that

(a) rank (A+B) = rankA+ rankB.

(b) Im(A+B) = ImA+ ImB.

(c) AB = 0.

[Hint: For (a), use Problem 7 of Section 5.4. For (c), view A and B
as linear transformations on Im(A + B). Find the matrix of A + B
on Im(A+B) and use the equality case of the Hadamard inequality.]

. ⊙ .
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8.6 A Triangle Inequality for the Matrix (A∗A)1/2

This section studies the positive semidefinite matrix (A∗A)1/2, de-
noted by |A|, where A is any complex matrix. We call |A| themodulus
of matrix A. The main result is that for any square matrices A and
B of the same size, there exist unitary matrices U and V such that

|A+B| ≤ U∗|A|U + V ∗|B|V.

As is known (Theorem 8.11), for Hermitian matrices A and B,

A ≥ B ⇒ λi(A) ≥ λi(B).

Our first observation is on the converse of the statement. The in-
equalities λi(A) ≥ λi(B) for all i cannot ensure A ≥ B. For example,

A =

(
3 0
0 2

)
, B =

(
1 0
0 3

)
.

Then λ1(A) = 3 ≥ λ1(B) = 3 and λ2(A) = 2 ≥ λ2(B) = 1. But
A − B, having a negative eigenvalue −1, is obviously not positive
semidefinite. We have, however, the following result.

Theorem 8.20 Let A, B ∈ Mn be Hermitian matrices. If

λi(A) ≥ λi(B)

for all i = 1, 2, . . . , n, then there exists a unitary matrix U such that

U∗AU ≥ B.

Proof. Let P and Q be unitary matrices such that

A = P ∗ diag(λ1(A), . . . , λn(A))P,

B = Q∗ diag(λ1(B), . . . , λn(B))Q.

The condition λi(A) ≥ λi(B), i = 1, . . . , n, implies that

diag(λ1(A), . . . , λn(A))− diag(λ1(B), . . . , λn(B)) ≥ 0.
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Multiply both sides by Q∗ from the left and Q from the right to get

Q∗ diag(λ1(A), . . . , λn(A))Q−B ≥ 0.

Take U = P ∗Q. Then we have U∗AU −B ≥ 0, as desired.

We now turn our attention to the positive semidefinite matrix |A|.
Note that |A| is the unique positive semidefinite matrix satisfying

|A|2 = A∗A.

Moreover, for any complex matrix A,

A = U |A| (8.19)

is a polar decomposition of A, where U is some unitary matrix. Be-
cause of such a relation between |A| and A, matrix |A| has drawn
much attention, and many interesting results have been obtained.

Note that the eigenvalues of |A| are the square roots of the eigen-
values of A∗A; namely, the singular values of A. In symbols,

λ(|A|) = (λ(A∗A))1/2 = σ(A).

In addition, if A = UDV is a singular value decomposition of A, then

|A| = V ∗DV and |A∗| = UDU∗.

To prove Thompson’s matrix triangle inequality, two theorems
are needed. They are of interest in their own right.

Theorem 8.21 Let A be an n-square complex matrix. Then

λi

(
A∗ + A

2

)
≤ λi(|A|), i = 1, 2, . . . , n.

Proof. Take v1, v2, . . . , vn and w1, w2, . . . , wn to be orthonormal sets
of eigenvectors of A∗+A

2 and A∗A, respectively. Then for each i,(
A∗ +A

2

)
vi = λi

(
A∗ +A

2

)
vi, (A∗A)wi = (λi(|A|))2wi.
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For each fixed positive integer k with 1 ≤ k ≤ n, let

S1 = Span{v1, v2, . . . , vk}, S2 = Span{wk, . . . , wn}.

Then for some unit vector x ∈ S1 ∩ S2, by Theorem 8.7,

x∗
(
A∗ +A

2

)
x ≥ λk

(
A∗ +A

2

)
and

x∗(A∗A)x ≤ (λk(|A|))2.

By the Cauchy–Schwarz inequality, we have

λk

(
A∗ +A

2

)
≤ x∗

(
A∗ +A

2

)
x

= Re(x∗Ax)

≤ |x∗Ax|
≤

√
x∗A∗Ax

≤ λk(|A|).

Combining Theorems 8.20 and 8.21, we see that for any n-square
complex matrix A there exists a unitary matrix U such that

A∗ +A

2
≤ U∗|A|U. (8.20)

We are now ready to present the matrix triangle inequality.

Theorem 8.22 (Thompson) For any square complex matrices A
and B of the same size, unitary matrices U and V exist such that

|A+B| ≤ U∗|A|U + V ∗|B|V.

Proof. By the polar decomposition (8.19), we may write

A+B =W |A+B|,
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where W is a unitary matrix. By (8.20), for some unitary U , V ,

|A+B| = W ∗(A+B)

=
1

2

(
W ∗(A+B) + (A+B)∗W

)
=

1

2
(A∗W +W ∗A) +

1

2
(B∗W +W ∗B)

≤ U∗|W ∗A|U + V ∗|W ∗B|V
= U∗|A|U + V ∗|B|V.

Note that Theorem 8.22 would be false without the presence of
the unitary matrices U and V (Problem 16).

Problems

1. Show that A∗+A
2 is Hermitian for any n× n matrix A and that

A∗ + A

2
≥ 0 ⇔ Re(x∗Ax) ≥ 0 for all x ∈ Cn.

2. Show that A∗A ≥ 0 for any matrix A. What is the rank of (A∗A)1/2?

3. Let A be a square complex matrix and |A| = (A∗A)1/2. Show that

(a) A is positive semidefinite if and only if |A| = A.

(b) A is normal if and only if |A∗| = |A|.
(c) |A| and |A∗| are similar.

(d) If A = PU is a polar decomposition of A, where P ≥ 0 and U
is unitary, then |A| = U∗PU and |A∗| = P.

4. Find |A| and |A∗| for each of the following matrices A.(
0 1
0 0

)
,

(
1 1
0 0

)
,

(
1 1
1 1

)
,

(
1 1
−1 −1

)
.

5. Find |A| and |A∗| for A =
(
1
0
a
0

)
, where a > 0.

6. Let M =
(

0
A

A∗

0

)
. Show that |M | =

(
|A|
0

0
|A∗|

)
.

7. Find |A| for the normal matrix A ∈ Mn with spectral decomposition

A = U diag(λ1, . . . , λn)U
∗ =

n∑
i=1

λiuiu
∗
i , where U = (u1, . . . , un).
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8. Let A be an m×n complex matrix. Show that |UAV | = V ∗|A|V for
any unitary matrices U ∈ Mm and V ∈ Mn.

9. Let A ∈ Mn. Then A and U∗AU have the same eigenvalues for any
unitary U ∈ Mn. Show that A and UAV have the same singular val-
ues for any unitary U, V ∈ Mn. Do they have the same eigenvalues?

10. Let A be a Hermitian matrix. If X is a Hermitian matrix commuting
with A such that A ≤ X and −A ≤ X, show that |A| ≤ X.

11. Show that for any matrix A there exist matrices X and Y such that

A = (AA∗)X and A = (AA∗)1/2Y.

12. Let A be an m × n complex matrix, m ≥ n. Show that there exists
an m-square unitary matrix U such that

AA∗ = U∗
(
A∗A 0
0 0

)
U.

13. Show that for any complex matrices A and B (of any sizes)

|A⊗B| = |A| ⊗ |B|.

14. Show that for any unit column vector x ∈ Cn and A ∈ Mn

|x∗Ax|2 ≤ x∗|A|2x.

15. Show that |A+ A∗| ≤ |A|+ |A∗ for all normal matrices A.

16. Construct an example showing it is not true that for A, B ∈ Mn

|A+B| ≤ |A|+ |B|.

Show that the trace inequality, however, holds:

tr |A+B| ≤ tr(|A|+ |B|).

17. Let A, B ∈ Mn, p, q > 1, 1/p+ 1/q = 1. Show that

|A−B|2 + |
√
p/q A+

√
q/pB|2 = p|A|2 + q|B|2.

18. Let A, B ∈ Mn, a, b > 0, c ∈ R, ab ≥ c2. Show that

a|A|2 + b|B|2 + c(A∗B +B∗A) ≥ 0.
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19. Let A1, · · · , Ak ∈ Mn, a1, . . . , ak ≥ 0, a1 + · · ·+ ak = 1. Show that

|a1A1 + · · ·+ akAk|2 ≤ a1|A2
1 + · · ·+ ak|Ak|2.

20. Let A, B, C, D ∈ Mn. If CC
∗ +DD∗ ≤ In, show that

|CA+DB| ≤ (|A|2 + |B|2)1/2.

21. Let A and B be n-square Hermitian matrices. Show that(
A2 B2

B2 I

)
≥ 0 ⇒

(
|A| |B|
|B| I

)
≥ 0.

22. Let A be an n×n Hermitian matrix with the largest eigenvalue λmax

and the smallest eigenvalue λmin. Show that

λmax − λmin = 2max{|x∗Ay| : x, y ∈ Cn orthonormal}.

Derive that
λmax − λmin ≥ 2max

i,j
|aij |.

23. Let A be any n× n matrix. By Theorem 8.21, for i = 1, 2, . . . , n,

λi

(
A+A∗

2

)
≤ λi(|A|).

Does it follow that

σi

(
A∗ +A

2

)
≤ σi(A)?

24. Show that A2+B2

2
≥ (A+B

2
)2 for all n × n Hermitian matrices A

and B. With P =
(
1
0
0
0

)
and Q =

(
0
x
x
0

)
, show that for any given

positive integer k > 2, one may choose a sufficiently small positive

real number x such that Pk+Qk

2 − (P+Q
2 )k has a negative eigenvalue.

. ⊙ .



CHAPTER 9

Normal Matrices

Introduction: A great deal of elegant work has been done for normal
matrices. The goal of this chapter is to present basic results and
methods on normal matrices. Section 9.1 gives conditions equivalent
to the normality of matrices, Section 9.2 focuses on a special type of
normal matrix with entries consisting of zeros and ones, Section 9.3
studies the positive semidefinite matrix (A∗A)1/2 associated with a
matrix A, and finally Section 9.4 compares two normal matrices.

9.1 Equivalent Conditions

A square complex matrix A is said to be normal if it commutes with
its conjugate transpose; in symbols,

A∗A = AA∗.

Matrix normality is one of the most interesting topics in linear al-
gebra and matrix theory, since normal matrices have not only simple
structures under unitary similarity but also many applications.

This section presents conditions equivalent to normality.

Theorem 9.1 Let A = (aij) be an n-square complex matrix with
eigenvalues λ1, λ2, . . . , λn. The following statements are equivalent.
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1. A is normal; that is, A∗A = AA∗.

2. A is unitarily diagonalizable; namely, there exists an n-square
unitary matrix U such that

U∗AU = diag(λ1, λ2, . . . , λn). (9.1)

3. There exists a polynomial p(x) such that A∗ = p(A).

4. There exists a set of eigenvectors of A that form an orthonor-
mal basis for Cn.

5. Every eigenvector of A is an eigenvector of A∗.

6. Every eigenvector of A is an eigenvector of A+A∗.

7. Every eigenvector of A is an eigenvector of A−A∗.

8. A = B + iC for some B and C Hermitian, and BC = CB.

9. If U is a unitary matrix such that U∗AU =
(
B
0

C
D

)
, where B

and D are square, then B and D are normal and C = 0.

10. If W ⊆ Cn is an invariant subspace of A, then so is W⊥.

11. If x is an eigenvector of A, then x⊥ is invariant under A.

12. A can be written as A =
∑n

i=1 λiEi, where λi ∈ C and Ei ∈ Mn

satisfy E2
i = Ei = E∗

i , EiEj = 0 if i ̸= j, and
∑n

i=1Ei = I.

13. tr(A∗A) =
∑n

i=1 |λi|2.
14. The singular values of A are |λ1|, |λ2|, . . . , |λn|.
15.

∑n
i=1(Reλi)

2 = 1
4 tr(A+A∗)2.

16.
∑n

i=1(Imλi)
2 = −1

4 tr(A−A∗)2.

17. The eigenvalues of A+A∗ are λ1 + λ1, . . . , λn + λn.

18. The eigenvalues of AA∗ are λ1λπ(1), . . . , λnλπ(n) for some per-
mutation π on {1, 2, . . . , n}.

19. tr(A∗A)2 = tr
(
(A∗)2A2

)
.

20. (A∗A)2 = (A∗)2A2.

21. ∥Ax∥ = ∥A∗x∥ for all x ∈ Cn.

22. (Ax,Ay) = (A∗x,A∗y) for all x, y ∈ Cn.

23. |A| = |A∗|, where |A| = (A∗A)1/2.
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24. A∗ = AU for some unitary U.

25. A∗ = V A for some unitary V.

26. UP = PU if A = UP , a polar decomposition of A.

27. AU = UA if A = UP , a polar decomposition of A.

28. AP = PA if A = UP , a polar decomposition of A.

29. A commutes with a normal matrix of no duplicate eigenvalues.

30. A commutes with A+A∗.

31. A commutes with A−A∗.

32. A+A∗ and A−A∗ commute.

33. A commutes with A∗A.

34. A commutes with AA∗ −A∗A.

35. A∗B = BA∗ whenever AB = BA.

36. A∗A−AA∗ is a positive semidefinite matrix.

37. |(Ax, x)| ≤ (|A|x, x) for all x ∈ Cn, where |A| = (A∗A)1/2.

Proof. (2)⇔(1): We show that (1) implies (2). The other direction
is obvious. Let A = U∗TU be a Schur decomposition of A. It suffices
to show that the upper-triangular matrix T = (tij) is diagonal.

Note that A∗A = AA∗ yields T ∗T = TT ∗. Computing and equat-
ing the (1, 1)-entries of T ∗T and TT ∗, we have |t11|2 = |t11|2 +∑n

j=2 |t1j |2. It follows that t1j = 0 if j > 1. Inductively, we have
tij = 0 whenever i < j. Thus T is diagonal.

(3)⇔(2): To show that (2) implies (3), we choose a polynomial
p(x) of degree at most n− 1 (by interpolation) such that

p(λi) = λi, i = 1, . . . , n.

Thus, if A = U∗ diag(λ1, . . . , λn)U for some unitary matrix U , then

A∗ = U∗ diag(λ1, . . . , λn)U

= U∗ diag(p(λ1), . . . , p(λn))U

= U∗p(diag(λ1, . . . , λn))U

= p(U∗ diag(λ1, . . . , λn)U)

= p(A).
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For the other direction, if A∗ = p(A) for some polynomial p, then

A∗A = p(A)A = Ap(A) = AA∗.

(4)⇔(2): If (9.1) holds, then multiplying by U from the left gives

AU = U diag(λ1, . . . , λn)

or
Aui = λiui, i = 1, . . . , n,

where ui is the ith column of U , i = 1, . . . , n. Thus, the column
vectors of U are eigenvectors of A and they form an orthonormal
basis of Cn because U is a unitary matrix.

Conversely, if A has a set of eigenvectors that form an orthonor-
mal basis for Cn, then the matrix U consisting of these vectors as
columns is unitary and satisfies (9.1).

(5)⇔(1): Assume that A is normal and let u be a unit eigenvector
of A corresponding to eigenvalue λ. Extend u to a unitary matrix
with u as the first column. Then

U∗AU =

(
λ α
0 A1

)
. (9.2)

The normality of A forces α = 0.
Taking the conjugate transpose and by a simple computation, u

is an eigenvector of A∗ corresponding to the eigenvalue λ of A∗.
To see the other way around, we use induction on n. Note that

Ax = λx ⇔ (U∗AU)(U∗x) = λ(U∗x)

for any n-square unitary matrix U . Thus, when considering Ax = λx,
we may assume that A is upper-triangular by Schur decomposition.

Take e1 = (1, 0, . . . , 0)T . Then e1 is an eigenvector of A. Hence,
by assumption, e1 is an eigenvector of A∗. A direct computation of
A∗e1 = µe1 (for some scalar µ) yields that the first column of A∗

must consist of zeros except the first component. Thus, if we write

A =

(
λ1 0
0 B

)
, then A∗ =

(
λ1 0
0 B∗

)
.
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Every eigenvector of A is an eigenvector of A∗, thus this property is
inherited by B and B∗. An induction hypothesis on B shows that A
is diagonal. It follows that A is normal.

(6)⇔(5): Let (A + A∗)u = λu and Au = µu, u ̸= 0. Then
A∗u = λu − Au = (λ − µ)u; that is, u is an eigenvector of A∗.
Conversely, let Au = λu and A∗u = µu. Then (A+A∗)u = (λ+µ)u.

(7)⇔(5) is similarly proven.

(8)⇔(1): It is sufficient to notice that B = A+A∗

2 and C = A−A∗

2i .

(9)⇔(1): We show that (1) implies (9). The other direction is
easy. Upon computation, we have that A∗A = AA∗ implies(

B∗B B∗C
C∗B C∗C +D∗D

)
=

(
BB∗ + CC∗ CD∗

DC∗ DD∗

)
.

Therefore,

B∗B = BB∗ + CC∗ and C∗C +D∗D = DD∗.

By taking the trace for both sides of the first identity and noticing
that tr(BB∗) = tr(B∗B), we obtain tr(CC∗) = 0. This forces C = 0.
Thus B is normal, and so is D by the second identity.

We have shown that the first nine conditions are all equivalent.

(9)⇒(10): It suffices to note that Cn = W ⊕W⊥ and that a basis
of W and a basis of W⊥ form a basis of Cn.

(10)⇒(11)⇒(4): (11) is a restatement of (10) with W consisting
of an eigenvector of A. For (11)⇒(4), if Ax = λx, where x ̸= 0, we
may assume that x is a unit vector. By (11), x⊥ is invariant under
A. Consider the restriction of A on x⊥. Inductively, we obtain a set
of eigenvectors of A that form an orthonormal basis of Cn.

(12)⇒(1): It is by a direct computation. To show (2)⇒(12), we
write U = (u1, . . . , un), where ui is the ith column of U . Then

A = U diag(λ1, . . . , λn)U
∗ = λ1u1u

∗
1 + · · ·+ λnunu

∗
n.

Take Ei = uiu
∗
i , i = 1, . . . , n. (12) then follows.

(13)⇔(2): Let A = U∗TU be a Schur decomposition of A, where
U is unitary and T = (tij) is upper-triangular. ThenA

∗A = U∗T ∗TU.
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Hence, tr(A∗A) = tr(T ∗T ). On the other hand, upon computation,

tr(A∗A) =
n∑

i, j=1

|aij |2, tr(T ∗T ) =
n∑

i=1

|λi|2 +
∑
i<j

|tij|2.

Thus, tr(A∗A) =
∑n

i=1 |λi|2 if and only if tij = 0 for all i < j; that
is, T is diagonal and A is unitarily diagonalizable.

(14)⇒(13): If the singular values of A are σ1, . . . , σn, then

tr(A∗A) = λ1(A
∗A) + · · ·+ λn(A

∗A)

= σ21 + · · ·+ σ2n

= |λ1|2 + · · ·+ |λn|2,

which is (13). For the other direction, obviously (13)⇒(2)⇒(14).

(15)⇒(13): We may assume that A is an upper-triangular matrix,
because the identity holds when A is replaced by U∗AU , where U is
any unitary matrix. Notice that

tr(A+A∗)2 = trA2 + 2 tr(A∗A) + tr(A∗)2.

It follows that

tr(A∗A) =
1

2

(
tr(A+A∗)2 − trA2 − tr(A∗)2

)
.

Since 4(Reλi)
2 = (λi+ λ̄i)

2, (15) implies (13). (15) follows from (2).

Similarly, (16)⇒(13) and (2)⇒(16).

(17)⇒(15): If the eigenvalues of A+A∗ are λ1 +λ1, . . . , λn+λn,
then their squares are the eigenvalues of (A+A∗)2. Thus,

tr(A+A∗)2 =
n∑

i=1

(λi + λi)
2 = 4

n∑
i=1

(Reλi)
2.

(17) follows from (2) at once.

(18)⇔(14): Obviously (14) implies (18). For the converse, sup-
pose, without loss of generality, that λ1λπ(1) > 0 is the largest eigen-
value of AA∗. As is known, all |λi| ≤ σmax(A). If |λπ(1)| ̸= |λ1|,
then |λ1λπ(1)| < σ2max(A) = λmax(AA

∗), a contradiction. Hence,
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|λπ(1)| = |λ1|. On the other hand, λ1λπ(1) is a positive number.
Thus, λ1 = λπ(1). The rest follows by induction.

(19) is immediate from (1). To see the other way, we make use
of the facts that for any square matrices X and Y of the same size,

tr(XY ) = tr(Y X)

and
tr(X∗X) = 0 ⇔ X = 0.

Upon computation and noting that tr(AA∗)2 = tr(A∗A)2, we have

tr
(
(A∗A−AA∗)∗(A∗A−AA∗)

)
= tr(A∗A−AA∗)2

= tr(A∗A)2 − tr ((A∗)2A2)− tr (A2(A∗)2) + tr(AA∗)2,

which equals 0 by assumption. Thus, A∗A−AA∗ = 0.

(20)⇒(19)⇒(1)⇒(20).

(21)⇔(1): By squaring both sides, the norm identity in (21) is
rewritten as the inner product identity

(Ax,Ax) = (A∗x,A∗x),

which is equivalent to

(x,A∗Ax) = (x,AA∗x),

or (
x, (A∗A−AA∗)x

)
= 0.

This holds for all x ∈ Cn if and only if A∗A−AA∗ = 0.

(22)⇒(21) by setting x = y; (21)⇒(1)⇒(22).

(23)⇔(1): This is by the uniqueness of the square root.

(24)⇔(1): If A∗ = AU for some unitary U , then

A∗A = A∗(A∗)∗ = (AU)(AU)∗ = AA∗,

and A is normal. For the converse, we show (2)⇒(24). Let

A = V ∗ diag(λ1, . . . , λn)V,
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where V is unitary. Take

U = V ∗ diag(l1, . . . , ln)V,

where li =
λi
λi

if λi ̸= 0, and li = 1 otherwise, for i = 1, . . . , n. Then

A∗ = V ∗ diag( λ1, . . . , λn )V

= V ∗ diag(λ1, . . . , λn)V V ∗ diag(l1, . . . , ln)V

= AU.

Similarly, (25) is equivalent to (1).

(26)⇔(1): If A = UP , where U is unitary and P is positive
semidefinite, then A∗A = AA∗ implies

P ∗P = UPP ∗U∗ or P 2 = UP 2U∗.

By taking square roots, we have

P = UPU∗ or PU = UP.

The other direction is easy to check: A∗A = P 2 = AA∗.

(27)⇔(26): Note that U is invertible.

(28)⇔(26): We show that (28) implies (26). The other direction
is immediate by multiplying P from the right-hand side.

Suppose AP = PA; that is, UP 2 = PUP . If P is nonsingular,
then obviously UP = PU . Let r = rank (A) = rank (P ) and write

P = V ∗
(
D 0
0 0

)
V,

where V is unitary and D is r × r positive definite diagonal, r < n.
Then UP 2 = PUP gives, with W = V UV ∗,

W

(
D2 0
0 0

)
=

(
D 0
0 0

)
W

(
D 0
0 0

)
.

Partition W as (
W1 W2

W3 W4

)
, where W1 is r × r.
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Then
W1D

2 = DW1D and W3D
2 = 0,

which imply, for D is nonsingular,

W1D = DW1 and W3 = 0.

It follows that W2 = 0 because W is unitary and that

W

(
D 0
0 0

)
=

(
D 0
0 0

)
W.

This results in UP = PU at once.

(29)⇔(2): Let A commute with B, where B is normal and all the
eigenvalues of B are distinct. Write B = V ∗CV , where V is unitary
and C = diag(c1, . . . , cn) is diagonal and all ci are distinct. Then
AB = BA impliesWC = CW , whereW = (wij) = V AV ∗. It follows
that wijci = wijcj , i.e., wij(ci − cj) = 0 for all i and j. Since ci ̸= cj
whenever i ̸= j, we have wij = 0 whenever i ̸= j. Thus, V AV ∗

is diagonal; that is, A is unitarily diagonalizable, and it is normal.
Conversely, if (2) holds, then we take B = U diag(1, 2, . . . , n)U∗. It
is easy to check that B is normal and AB = BA.

(30), (31), and (32) are equivalent to (1) by direct computation.

(33)⇒(20): If A commutes with A∗A, then

AA∗A = A∗A2.

Multiply both sides by A∗ from the left to get

(A∗A)2 = (A∗)2A2.

(34)⇒(19) is similarly proven. (1) easily implies (33) and (34).

(35)⇔(1): Take B = A for the normality. For the converse,
suppose that A is normal and that A and B commute, and let A =
U∗ diag(λ1, . . . , λn)U , where U is unitary. Then AB = BA implies

diag(λ1, . . . , λn)(UBU
∗) = (UBU∗) diag(λ1, . . . , λn).

Denote T = UBU∗ = (tij). Then

diag(λ1, . . . , λn)T = T diag(λ1, . . . , λn),
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which gives (λi − λj)tij = 0; thus, (λi − λj)tij = 0, for all i and j,
which, in return, implies that A∗B = BA∗.

(36)⇔(1): This is a combination of two facts: tr(XY − Y X) = 0
for all square matrices X and Y of the same size; and if matrix X is
positive semidefinite, then trX = 0 if and only if X = 0.

For (37), notice that |(Ax, x)| ≤ (|A|x, x) is unitarily invariant;
that is, it holds if and only if |(U∗AUx, x)| ≤ (|U∗AU |x, x), where U
is any unitary matrix. (Bear in mind that |U∗AU | = U∗|A|U .) By
the Schur decomposition, we may assume that A is upper-triangular.

If A is normal, then A is unitarily diagonalizable. We may assume
that A = diag(λ1, . . . , λn). Then the inequality is the same as saying
that |

∑
i λi|xi|2| ≤

∑
i |λi||xi|2, which is obvious.

For the converse, if |(Ax, x)| ≤ (|A|x, x) for all x ∈ Cn, where
A is upper-triangular, we show that A is in fact a diagonal matrix.
We demonstrate the proof for the case of n = 2; the general case is

similarly proven by induction. Let A =
(
λ1

0
α
λ2

)
. We show α = 0.

If λ1 = λ2 = 0 and α ̸= 0, then take positive numbers s, t, s > t;
set x = (s, t)T . Then |x∗Ax| = st|α| and x∗|A|x = t2|α|. That
|x∗Ax| ≤ x∗|A|x implies s ≤ t, a contradiction.

If λ1 (or λ2) is not 0. Let |A| =
(
a
b̄
b
c

)
. Putting x = (1, 0)T

in |x∗Ax| ≤ x∗|A|x gives |λ1| ≤ a. Computing |A|2 = A∗A and
comparing the entries in the upper-left corners, we have a2 + |b|2 =
|λ1|2. So b = 0. Inspecting the entries in the (1, 2) positions of |A|2
and A∗A, we get λ̄1α = (a+ c)b = 0. Thus α = 0.

As many as 90 equivalent conditions of normal matrices have been
observed in the literature. More are shown in the following exercises
and in the later sections.

Problems

1. Is matrix
(
1
i
i
1

)
normal, Hermitian, or symmetric? How about

(
1
−i

i
1

)
?

2. Let A be an n-square matrix. Show that for all unit vector x ∈ Cn

|(Ax, x)| ≤ (|A|2x, x).

[Note: If the square is dropped, then A has to be normal. See (37).]
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3. Show that each of the following conditions is equivalent to the nor-
mality of matrix A ∈ Mn.

(a) A has a linearly independent set of n eigenvectors, and any two
corresponding to distinct eigenvalues are orthogonal.

(b) (Ax,Ay) = (A∗x,A∗y) for all x, y ∈ Cn.

(c) (Ax,Ax) = (A∗x,A∗x) for all x ∈ Cn.

4. Let λ1, λ2, . . . , λn be the eigenvalues of matrix A ∈ Mn. Show that

|λiλj | ≤ λ1(A
∗A)

for any pair λi, λj , where λ1(A
∗A) is the largest eigenvalue of A∗A.

5. Let A be an n× n complex matrix with eigenvalues λi and singular
values σi arranged as |λ1| ≥ · · · ≥ |λn| and σ1 ≥ · · · ≥ σn. Show that

σ1σ2 · · ·σk = |λ1λ2 · · ·λk|, k = 1, 2, . . . , n, ⇔ A∗A = AA∗.

6. Let A be a normal matrix. Show that Ax = 0 if and only if A∗x = 0.

7. Let A be a normal matrix. Show that if x is an eigenvector of A,
then A∗x is also an eigenvector of A for the same eigenvalue.

8. If matrix A commutes with some normal matrix with distinct eigen-
values, show that A is normal. Is the converse true?

9. Show that unitary matrices, Hermitian matrices, skew-Hermitian ma-
trices, real orthogonal matrices, and permutation matrices are all
normal. Is a complex orthogonal matrix normal?

10. When is a normal matrix Hermitian? Positive semidefinite? Skew-
Hermitian? Unitary? Nilpotent? Idempotent?

11. When is a triangular matrix normal?

12. Let A be a square matrix. Show that if A is a normal matrix, then
f(A) is normal for any polynomial f . If f(A) is normal for some
nonzero polynomial f , does it follow that A is normal?

13. Show that (33) is equivalent to (28) using Problem 31, Section 7.1.

14. Show that two normal matrices are similar if and only if they have the
same set of eigenvalues and if and only if they are unitarily similar.

15. Let A and B be normal matrices of the same size. If AB = BA,
show that AB is normal and that there exists a unitary matrix U
that diagonalizes both A and B.
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16. Let A be a nonsingular matrix and let M = A−1A∗. Show that A is
normal if and only if M is unitary.

17. Let A ∈ Mn be a normal matrix. Show that for any unitary U ∈ Mn,

min
i
{|λi(A)|} ≤ |λi(AU)| ≤ max

i
{|λi(A)|}.

18. Let A be a normal matrix. If Ak = I for some positive integer k,
show that A is unitary.

19. Let B be an n-square matrix and let A be the block matrix

A =

(
B B∗

B∗ B

)
.

Show that A is normal and that if B is normal with eigenvalues
λt = xt + yti, xt, yt ∈ R, t = 1, 2, . . . , n, then

detA = 4i

n∏
t=1

xtyt.

20. Show that Cn = KerA⊕ ImA for any n-square normal matrix A.

21. Let A and B be n × n normal matrices. If ImA⊥ ImB; that is,
(x, y) = 0 for all x ∈ ImA, y ∈ ImB, show that A+B is normal.

22. Let A be a normal matrix. Show that AĀ = 0 ⇔ AAT = ATA = 0.

23. Let A be Hermitian, B be skew-Hermitian, and C = A + B. Show
that the following statements are equivalent.

(a) C is normal. (b) AB = BA. (c) AB is skew-Hermitian.

24. Show that for any n-square complex matrix A

tr(A∗A)2 ≥ tr
(
(A∗)2A2

)
.

Equality holds if and only if A is normal. Is it true that

(A∗A)2 ≥ (A∗)2A2?

25. Verify with the following matrix A that A∗A − AA∗ is an entrywise
nonnegative matrix, but A is not normal (i.e., A∗A− AA∗ ̸= 0):

A =

 0 1 3

−
√
2 0 −

√
3

2
√
2 2 0

 .
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26. Let A and B be n× n matrices. The matrix AB −BA is called the
commutator of A and B, and it is denoted by [A,B]. Show that

(a) tr[A,B] = 0.

(b) [A,B]∗ = [B∗, A∗].

(c) [A,B + C] = [A,B] + [A,C].

(d) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

(e) [A,B] is never similar to the identity matrix.

(f) If A and B are both Hermitian or skew-Hermitian, then [A,B]
is skew-Hermitian.

(g) If A and B are Hermitian, then the real part of every eigenvalue
of [A,B] is zero.

(h) A is normal if and only if [A,A∗] = 0.

(i) A is normal if and only if [A, [A,A∗]] = 0.

27. Complete the proof of Condition (37) for the case n > 2.

28. Let A and B be normal matrices of the same size. Show that

(a) AM =MA ⇒ A∗M =MA∗.

(b) AM =MB ⇒ A∗M =MB∗.

29. Let A and B be n-square matrices.

(a) If A and B are Hermitian, show that AB is Hermitian if and
only if A and B commute.

(b) Give an example showing that the generalization of (a) to nor-
mal matrices is not valid.

(c) Show (a) does hold for normal matrices if A (or B) is such a
matrix that its different eigenvalues have different moduli.

(d) If A is positive semidefinite and B is normal, show that AB is
normal if and only if A and B commute.

. ⊙ .
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9.2 Normal Matrices with Zero and One Entries

Matrices of zeros and ones are referred to as (0, 1)-matrices. (0, 1)-
matrices have applications in graph theory and combinatorics. This
section presents three theorems on matrices with zero and one entries:
the first one shows how to construct a symmetric (normal) (0, 1)-
matrix from a given (0, 1)-matrix, the second one gives a sufficient
condition on normality, and the last one is on commutativity.

Given an m × n (0, 1)-matrix, say A, we add the 1s in each row
to get row sums r1, r2, . . . , rm. We call R = (r1, r2, . . . , rm) the row
sum vector of A and denote it by R(A). Similarly, we can define the
column sum vector of A and denote it by S(A). For example,

A =


0 1 0 0
1 0 0 1
0 1 1 1
1 1 0 0

 ,
R(A) = (r1, r2, r3, r4) = (1, 2, 3, 2),

S(A) = (s1, s2, s3, s4) = (2, 3, 1, 2).

The sum of the components of R(A) is equal to the total number
of 1s in A. The same is true of S(A). Given vectors R and S of
nonnegative integers, there may not exist a (0, 1)-matrix that has R
as its row sum vector and S as its column sum vector. For instance,
no 3×3 (0, 1)-matrix A satisfies R(A) = (3, 1, 1) and S(A) = (3, 2, 0).
For what R and S does there exist a (0, 1)-matrix that has R and S
as its row and column sum vectors? This is an intriguing problem
and has been well studied in combinatorial matrix theory.

Apparently, for a symmetric (0, 1)-matrix, the row sum vector
and column sum vector coincide. The following result says the con-
verse is also true in some sense (via reconstruction). Thus there exists
a (0, 1)-matrix that has the given vector R as its row and column sum
vectors if and only if there exists such a normal (0, 1)-matrix and if
and only if there exists such a symmetric (0, 1)-matrix.

Theorem 9.2 If there exists a (0, 1)-matrix A with R(A) = S(A) =
R, then there exists a symmetric (0, 1)-matrix B that has the same
row and column vector as A; that is, R(B) = S(B) = R.
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Proof. We use induction on n. If n = 1 or 2, it is obvious. Let
n > 2. We may also assume that A contains no zero row (or column).
Suppose that the assertion is true for matrices of order less than n.
If A is symmetric, there is nothing to prove. So we assume that
A = (aij) is not symmetric.

If the first column is the transpose of the first row, i.e., they are
identical when regarded as n-tuples, then by induction hypothesis on
the (n− 1)-square submatrix in the lower-right corner, we are done.
Otherwise, because A is not symmetric and R(A) = S(A), we have
a1p = 1, a1q = 0, ap1 = 0, aq1 = 1 for some p and q.

Now consider the rows p and q. With ap1 = 0, aq1 = 1, if apt ≤
aqt, t = 2, . . . , n, then rp < rq. For the columns p and q, with a1p =
1, a1q = 0, if atp ≥ atq, t = 2, . . . , n, then sp > sq. Both cases cannot
happen at the same time, or they would lead to rp < rq = sq < sp =
rp, a contradiction. Therefore, there must exist a t such that either
apt = 1 and aqt = 0 or atp = 0 and atq = 1.

Now interchange the 0s and 1s in the intersections of rows p, q
and columns 1, t, or columns p, q and rows 1, t. Notice that such an
interchange reduces the number of different entries in the first row
and first column of A without affecting the row and column sum
vectors of A. Inductively, we can have a matrix in which the first
column is the transpose of the first row. By induction on the size of
matrices, a symmetric matrix is obtained from A.

Take the following matrix A as an example. In rows 2 and 4,
replacing the 0s by 1s and 1s by 0s (all ×s remain unchanged) results
in the matrix A1 that has the same row and column sum vector as
A, whereas the first column of A1 is “closer” to the transpose of the
first row of A1 (or A).

A =


× 1 × 0
0 × 1 ×
× × × ×
1 × 0 ×

 , A1 =


× 1 × 0
1 × 0 ×
× × × ×
0 × 1 ×

 .

In what follows, Jn, or simply J , denotes the n-square matrix all
of whose entries are 1. As usual, I is the identity matrix.

The following theorem often appears in combinatorics when a
configuration of subsets is under investigation.



308 Normal Matrices Chap. 9

Theorem 9.3 Let A be an n-square (0, 1)-matrix. If

AAT = tI + J (9.3)

for some positive integer t, then A is a normal matrix.

Proof. By considering the diagonal entries, we see that (9.3) implies
that each row sum of A equals t+ 1; that is,

AJ = (t+ 1)J. (9.4)

Matrix A is nonsingular, since the determinant

(detA)2 = det(AAT ) = det(tI + J) = (t+ n)tn−1

is nonzero. Thus by (9.4), we have

A−1J = (t+ 1)−1J.

Multiplying both sides of (9.3) by J from the right reveals

AATJ = tJ + J2 = (t+ n)J.

It follows by multiplying A−1 from the left that

ATJ = (t+ 1)−1(t+ n)J.

By taking the transpose, we have

JA = (t+ 1)−1(t+ n)J. (9.5)

Multiply both sides by J from the right to get

JAJ = n(t+ 1)−1(t+ n)J.

Multiply both sides of (9.4) by J from the left to get

JAJ = n(t+ 1)J.

It follows by comparison of the right-hand sides that

(t+ 1)2 = t+ n or n = t2 + t+ 1.
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Substituting this into (9.5), one gets

JA = (t+ 1)J.

From (9.4),
AJ = JA or A−1JA = J.

We then have

ATA = A−1(AAT )A

= A−1(tI + J)A

= tI +A−1JA

= tI + J

= AAT .

Our next result asserts that if the product of two (0, 1)-matrices
is a matrix whose diagonal entries are all 0s and whose off-diagonal
entries are all 1s, then these two matrices commute. The proof of
this theorem uses the determinant identity (Problem 5, Section 2.2)

det(Im +AB) = det(In +BA),

where A and B are m× n and n×m matrices, respectively.

Theorem 9.4 Let A and B be n-square (0, 1)-matrices such that

AB = Jn − In. (9.6)

Then

AB = BA.

Proof. Let ai and bj be the columns of A and BT , respectively:

A = (a1, . . . , an), BT = (b1, . . . , bn).

Then, by computation,

0 = tr(AB) = tr(BA) =

n∑
i=1

bTi ai.
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Thus bTi ai = 0 for each i, since A and B have nonnegative entries.
Rewrite equation (9.6) as

In = Jn −AB or In = Jn −
∑
s

asb
T
s .

Then
In + aib

T
i + ajb

T
j = Jn −

∑
s ̸=i, j

asb
T
s .

Notice that the right-hand side contains n−1 matrices, each of which
is of rank one. Thus, by the rank formula for sum (Problem 6), the
matrix on the right-hand side has rank at most n − 1. Hence the
matrix on the left-hand side is singular. We have

0 = det(In + aib
T
i + ajb

T
j )

= det
(
In + (ai, aj)(bi, bj)

T
)

= det
(
I2 + (bi, bj)

T (ai, aj)
)

= det

((
1 0
0 1

)
+

(
0 bTi aj
bTj ai 0

))
= 1− (bTi aj)(b

T
j ai).

This forces bTi aj = 1 for each pair of i and j, i ̸= j, because A and
B are (0, 1)-matrices. It follows, by combining with bTi ai = 0, that

BA = (bTi aj) = Jn − In = AB.

Problems

1. Show that no 3 × 3 (0, 1)-matrix A satisfies R(A) = (3, 1, 1) and
S(A) = (3, 2, 0). But there does exist a 3 × 3 (0, 1)-matrix B that
satisfies S(B) = (3, 1, 1) and R(B) = (3, 2, 0).

2. Show that A ∈ Mn is normal if and only if I − A is normal.

3. Let A be an n-square (0, 1)-matrix. Denote the number of 1s in row
i by ri and in column j by cj . Show that

A is normal ⇒ ri = ci for each i and Jn −A is normal.
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4. Construct a nonsymmetric 4 × 4 normal matrix of zeros and ones
such that each row and each column sum equal 2.

5. Let A be a 3× 3 (0, 1)-matrix. Show that detA equals 0, ±1, or ±2.

6. Let A1, . . . , An be m×m matrices each with rank 1. Show that

rank (A1 + · · ·+ An) ≤ n.

7. Let A be a (0, 1)-matrix with row sum vector R = (r1, r2, . . . , rm),
where r1 ≥ r2 ≥ · · · ≥ rm. Show that

k∑
i=1

ri ≤ kt+

n∑
j=t+1

rj .

8. Does there exist a normal matrix with real entries of the sign pattern + + 0
+ 0 +
+ + +

?

9. If A is an n× n matrix with integer entries, show that 2Ax = x has
no nontrivial solutions; that is, the only solution is x = 0.

10. Let A be an n-square (0, 1)-matrix such that AAT = tI +J for some
positive integer t, and let C = J − A. Show that A commutes with
C and CT . Compute CCT .

11. Let A be an n-square (0, 1)-matrix such that AAT = tI +J for some
positive integer t. Find the singular values of A in terms of n and t
and conclude that allA satisfying the equation have the same singular
values. Do they have the same eigenvalues? When is A nonsingular?

12. Let A be a v × v matrix with zero and one entries such that

AAT = (k − h)I + hJ,

where v, k, and h are positive integers satisfying 0 < h < k < v.

(a) Show that A is normal.

(b) Show that h = 1
v−1

k(k − 1).

(c) Show that A−1 = 1
k(k−h) (kA

T − hJ).

(d) Find the eigenvalues of AAT .

. ⊙ .
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9.3 Normality and Cauchy–Schwarz–Type Inequalities

We consider in this section the inequalities involving diagonal entries,
eigenvalues, and singular values of matrices. The equality cases of
these inequalities will result in the normality of the matrices.

Theorem 9.5 (Schur Inequality) Let A = (aij) be an n-square
complex matrix having eigenvalues λ1, λ2, . . . , λn. Then

n∑
i=1

|λi|2 ≤
n∑

i, j=1

|aij|2.

Equality occurs if and only if A is normal.

Proof. Let A = U∗TU be a Schur decomposition of A, where U is
unitary and T is upper-triangular. Then A∗A = U∗T ∗TU ; conse-
quently, tr(A∗A) = tr(T ∗T ). Upon computation, we have

tr(A∗A) =

n∑
i, j=1

|aij|2

and

tr(T ∗T ) =
n∑

i=1

|λi|2 +
∑
i<j

|tij |2.

The inequality is immediate. For the equality case, notice that each
tij = 0, i < j; that is, T is diagonal. Hence A is unitarily diagonal-
izable, thus normal. The other direction is obvious.

An interesting application of this result is to show that if matrices
A, B, and AB are normal, then so is BA (Problem 11).

Theorem 9.6 Let A = (aij) be an n-square complex matrix having
singular values σ1, σ2, . . . , σn. Then

| trA| ≤ σ1 + · · ·+ σn. (9.7)

Equality holds if and only if A = uP for some P ≥ 0 and some u ∈ C
with |u| = 1; consequently, A is normal (but not conversely).
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Proof. Let A = UDV be a singular value decomposition of A, where
D = diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σr > σr+1 = 0 = · · · = 0,
r = rank (A), and U and V are unitary. By computation, we have,

| trA| =

∣∣∣∣ n∑
i=1

n∑
j=1

uijσjvji

∣∣∣∣
=

∣∣∣∣ n∑
j=1

n∑
i=1

uijvjiσj

∣∣∣∣
≤

n∑
j=1

∣∣∣∣ n∑
i=1

uijvji

∣∣∣∣σj
≤

n∑
j=1

( n∑
i=1

|uijvji|
)
σj

≤
n∑

j=1

σj .

The last inequality was due to the Cauchy–Schwarz inequality:

n∑
i=1

|uijvji| ≤

√√√√ n∑
i=1

|uij |2
n∑

i=1

|vji|2 = 1.

If equality holds for the overall inequality, then∣∣∣∣ n∑
i=1

uijvji

∣∣∣∣ = n∑
i=1

|uijvji| = 1, for each j ≤ r.

Rewrite
∑n

i=1 uijvji as (uj , v
∗
j ), where uj is the jth column of U and

vj is the jth row of V . By the equality case of the Cauchy–Schwarz
inequality, it follows that uj = cjv

∗
j , for each j ≤ r, where cj is a

constant with |cj | = 1. Thus, by switching vi and v
∗
i , | trA| equals

| tr(c1σ1v∗1v1 + · · ·+ crσrv
∗
rvr)| = |c1σ1v1v∗1 + · · ·+ crσrvrv

∗
r |.

Notice that viv
∗
i = 1 for each i. By Problem 6 of Section 5.7, we

have A = c1V
∗DV . The other direction is easy to verify.
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There is a variety of Cauchy–Schwarz inequalities of different
types. The matrix version of the Cauchy–Schwarz inequality has
been obtained by different methods and techniques. Below we give
some Cauchy–Schwarz matrix inequalities involving the matrix

|A| = (A∗A)1/2, the modulus of A.

Obviously, if A = UDV is a singular value decomposition of A,
where U and V are unitary and D is nonnegative diagonal, then

|A| = V ∗DV and |A∗| = UDU∗.

Theorem 9.7 Let A be an n-square matrix. Then for any u, v ∈ Cn,

|(Au, v)|2 ≤ (|A|u, u)(|A∗|v, v) (9.8)

and
|((A ◦A∗)u, u)| ≤ ((|A| ◦ |A∗|)u, u). (9.9)

Proof. It is sufficient, by Theorem 7.29, to observe that(
|A| A∗

A |A∗|

)
=

(
V ∗ 0
0 U

)(
D D
D D

)(
V 0
0 U∗

)
≥ 0.

and, by Theorem 7.21,(
|A| ◦ |A∗| A∗ ◦A
A ◦A∗ |A∗| ◦ |A|

)
=

(
|A| A∗

A |A∗|

)
◦
(

|A∗| A
A∗ |A|

)
≥ 0.

Note that |A| ◦ |A∗| = |A∗| ◦ |A|, with u = v, gives (9.9).

For more results, consider Hermitian matrices A decomposed as

A = U∗ diag(λ1, . . . , λn)U,

where U is unitary. Define Aα for α ∈ R, if each λαi makes sense, as

Aα = U∗ diag(λα1 , . . . , λ
α
n)U.

Theorem 9.8 Let A ∈ Mn. Then for any α ∈ (0, 1),

|(Au, v)| ≤ ∥|A|αu∥ ∥|A∗|1−αv∥, u, v ∈ Cn. (9.10)
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Proof. Let A = U |A| be a polar decomposition of A. Then

A = U |A|1−αU∗U |A|α = |A∗|1−αU |A|α.

By the Cauchy–Schwarz inequality, we have

|(Au, v)| = |(U |A|αu, |A∗|1−αv)| ≤ ∥|A|αu∥ ∥|A∗|1−αv∥.

Note that (9.8) is a special case of (9.10) by taking α = 1
2 .

Theorem 9.9 Let A ∈ Mn and α ∈ R be different from 1
2 . If

|(Au, u)| ≤ (|A|u, u)α(|A∗|u, u)1−α, for all u ∈ Cn, (9.11)

then A is normal. The converse is obviously true.

Proof. We first consider the case where A is nonsingular.

Let A = UDV be a singular value decomposition of A, whereD is
diagonal and invertible, and U and V are unitary. With |A| = V ∗DV
and |A∗| = UDU∗, the inequality in (9.11) becomes

|(UDV u, u)| ≤ (V ∗DV u, u)α(UDU∗u, u)1−α

or

|(D1/2V u,D1/2U∗u)| ≤ (D1/2V u,D1/2V u)α(D1/2U∗u,D1/2U∗u)1−α.

For any nonzero u ∈ Cn, set

y =
1

||D1/2U∗u||
D1/2U∗u.

Then ||y|| = 1, and y ranges over all unit vectors as u runs over all
nonzero vectors. By putting Â = D1/2V UD−1/2, we have

|(Ây, y)| ≤ (Ây, Ây)α, for all unit y ∈ Cn.

Applying Problem 19 of Section 6.1 to Â, we see Â is unitary. Thus,

D−1/2U∗V ∗DV UD−1/2 = I.
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It follows that
UDU∗ = V ∗DV.

By squaring both sides, we have AA∗ = A∗A, or A is normal.
We next deal with the case where A is singular using mathemat-

ical induction on n. If n = 1, we have nothing to prove. Suppose
that the assertion is true for (n− 1)-square matrices.

Noting that (9.11) still holds when A is replaced by U∗AU for
any unitary matrix U , we assume, without loss of generality, that

A =

(
A1 b
0 0

)
,

where A1 ∈ Mn−1 and b is an (n− 1)-column vector.
If b = 0, then A is normal by induction on A1. If b ̸= 0, we take

u1 ∈ Cn−1 such that (b, u1) ̸= 0. Let u =
(
u1

u2

)
with u2 > 0. Then

|(Au, u)| = |(A1u1, u1) + (b, u1)u2|

and
(|A∗|u, u) =

(
(A1A

∗
1 + bb∗)1/2u1, u1

)
which is independent of u2. To compute (|A|u, u), we write

|A| =
(
C d
d∗ β

)
.

Then
b∗b = d∗d+ β2.

Hence, β ̸= 0; otherwise d = 0 and thus b = 0. Therefore, β > 0 and

(|A|u, u) = (Cu1, u1) + u2
(
(d, u1) + (u1, d)

)
+ βu22.

Letting u2 → ∞ in (9.11) implies 2α ≥ 1 or α ≥ 1
2 .

With A replaced by A∗ and α by 1− α, we can rewrite (9.11) as

|(A∗u, u)| ≤ (|A∗|u, u)1−α(|A|u, u)1−(1−α).

Applying the same argument to A∗, one obtains α ≤ 1
2 . By the

induction hypothesis, we see that A is normal if α ̸= 1
2 .
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Problems

1. For what value(s) of x ∈ C is the matrix A =
(
0
x
1
0

)
normal? Hermi-

tian? Diagonalizable? Show that An is always normal if n is even.

2. Let A be a square complex matrix. Show that

tr |A| = tr |A∗| ≥ | trA| and det |A| = det |A∗| = |detA|.

3. Give an example showing that the unitary matrix U in the decom-
position A = U∗ diag(λ1, . . . , λn)U is not unique. Show that the
definition Aα = U∗ diag(λα1 , . . . , λ

α
n)U for the Hermitian A and real

α is independent of choices of unitary matrices U .

4. Let A ∈ Mn, H = 1
2
(A+A∗), and S = 1

2
(A−A∗). Let λt = at + bti

be the eigenvalues of A, where at, bt are real, t = 1, . . . , n. Show that

n∑
t=1

|at|2 ≤ ∥H∥22,
n∑

t=1

|bt|2 ≤ ∥S∥22.

5. Show that for any n-square complex matrix A(
|A| A∗

A |A∗|

)
≥ 0, but

(
|A| A
A∗ |A∗|

)
̸≥ 0

in general. Conclude that(
A B
B∗ C

)
≥ 0 ̸⇒

(
A B∗

B C

)
≥ 0.

Show that it is always true that(
A B
B∗ A

)
≥ 0 ⇒

(
A B∗

B A

)
≥ 0.

6. For any n-square complex matrices A and B, show that(
|A|+ |B| A∗ +B∗

A+B |A∗|+ |B∗|

)
≥ 0.

Derive the determinant inequality

(det |A+B|)2 ≤ det(|A|+ |B|) det(|A∗|+ |B∗|).

In particular,
det |A+ A∗| ≤ det(|A|+ |A∗|).

Discuss the analogue for the Hadamard product.
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7. Show that an n-square complex matrix A is normal if and only if

|u∗Au| ≤ u∗|A|u for all u ∈ Cn.

8. Let A be an n-square complex matrix and α ∈ [0, 1]. Show that(
|A|2α A∗

A |A∗|2(1−α)

)
≥ 0.

9. Let A and B be n-square complex matrices. Show that

A∗A = B∗B ⇔ |A| = |B|.

Is it true that
A∗A ≥ B∗B ⇔ |A| ≥ |B|?

Prove or disprove

|A| ≥ |B| ⇔ |A∗| ≥ |B∗|.

10. Let [A] denote a principal submatrix of a square matrix A. Show by
example that |[A]| and [|A|] are not comparable; that is,

|[A]| ̸≥ [|A|] and [|A|] ̸≥ |[A]|.

But the inequalities below hold, assuming the inverses involved exist:

(a) [|A|2] ≥ [|A|]2,
(b) [|A|2] ≥ |[A]|2,
(c) [|A|1/2] ≤ [|A|]1/2,
(d) [|A|−1/2] ≥ [|A|]−1/2,

(e) [|A|−1] ≤ [|A|−2]1/2.

11. If A and B are normal matrices such that AB is normal, show
that BA is normal. Construct an example showing that matrices
A,B,AB,BA are all normal, but AB ̸= BA.

. ⊙ .
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9.4 Normal Matrix Perturbation

Given two square matrices, how “close” are the matrices in terms of
their eigenvalues? More interestingly, if a matrix is “perturbed” a
little bit, how would the eigenvalues of the matrix change? In this
section we present three results on normal matrix perturbations. The
first one is on comparison of |A|− |B| and A−B in terms of a norm,
and the second one is on the difference (closeness) of the eigenvalues
of the normal matrices in certain order. The third result is of the
same kind except that only one matrix is required to be normal.

Theorem 9.10 (Kittaneh) If A,B are n×n normal matrices, then

∥|A| − |B| ∥2 ≤ ∥A−B∥2.

Proof. By the spectral theorem, let A = U∗ diag(λ1, . . . , λn)U and
B = V ∗ diag(µ1, . . . , µn)V , where U and V are unitary matrices.
Then |A| = U∗ diag(|λ1|, . . . , |λn|)U , |B| = V ∗ diag(|µ1|, . . . , |µn|)V .
For simplicity, let C = diag(|λ1|, . . . , |λn|), D = diag(|µ1|, . . . , |µn|)
and W = (wij) = UV ∗. Then, upon computation, we have

∥|A| − |B|∥2 = ∥U∗CU − V ∗DV ∥2
= ∥CUV ∗ − UV ∗D∥2
= ∥CW −WD∥2

=
( n∑

i, j=1

( |λi| − |µj | )2 · |wij|2
)1/2

≤
( n∑

i, j=1

|λi − µj |2 · |wij |2
)1/2

=
( n∑

i, j=1

|(λi − µj)wij |2
)1/2

= ∥ diag(λ1, . . . , λn)W −W diag(µ1, . . . , µn)∥2
= ∥A−B∥2.
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Corollary 9.1 Let A and B be n× n complex matrices. Then

∥|A| − |B| ∥2 ≤
√
2 ∥A−B∥2.

Proof. Let Â =
(

0
A∗

A
0

)
and B̂ =

(
0
B∗

B
0

)
. Then Â and B̂ are

Hermitian (normal). Applying Theorem 9.10 to Â and B̂, we have

∥ |Â| − |B̂| ∥22 = ∥|A| − |B| ∥22 + ∥|A∗| − |B∗| ∥22 ≤ 2∥A−B∥22.

The desired inequality follows immediately.

Theorem 9.11 (Hoffman–Wielandt) Let A and B be n×n nor-
mal matrices having eigenvalues λ1, . . . , λn and µ1, . . . , µn, respec-
tively. Then there exists a permutation p on {1, 2, . . . , n} such that(

n∑
i=1

|λi − µp(i)|2
)1/2

≤ ∥A−B∥2.

Proof. Let A = U∗ diag(λ1, . . . , λn)U and B = V ∗ diag(µ1, . . . , µn)V
be spectral decompositions of A and B, respectively, where U and
V are unitary matrices. For simplicity, denote E = diag(λ1, . . . , λn),
F = diag(µ1, . . . , µn), and W = (wij) = UV ∗. Then

∥A−B∥22 = ∥U∗(EUV ∗ − UV ∗F )V ∥22
= ∥EW −WF∥22

=

n∑
i,j=1

|λi − µj|2|wij|2. (9.12)

Set G = (|λi − µj |2) and S = (|wij |2). Then (9.12) is rewritten as

∥A−B∥22 =
n∑

i,j=1

|λi − µj|2|wij |2 = eT (G ◦ S)e,

where G◦S is the Hadamard (entrywise) product of G and S, and e is
the n-column vector all of whose components are 1. Note that S is a
doubly stochastic matrix. By the Birkhoff theorem (Theorem 5.21),
S is a convex combination of permutation matrices: S =

∑m
i=1 tiPi,
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where all ti are nonnegative and add up to 1, Pi are permutation
matrices. Among all eT (G ◦ Pi)e, i = 1, . . . ,m, suppose eT (G ◦ Pk)e
is the smallest for some k. Consider this Pk as a permutation p on
the set {1, 2, . . . , n}. Then

∥A−B∥22 = eT (G ◦ S)e =
m∑
i=1

tie
T (G ◦ Pi)e

≥
m∑
i=1

tie
T (G ◦ Pk)e

= eT (G ◦ Pk)e =

n∑
i=1

|λi − µp(i)|2.

The Hoffman–Wielandt theorem requires both matrices be nor-
mal. In what follows we present a result in which one matrix is
normal and the other is arbitrary. For this, we need a lemma. For
convenience, if A is a square matrix, we write A = UA + DA + LA,
where UA, DA, and LA are the upper part, diagonal, and lower part
of A, respectively. For instance, A =

(
1
3
2
4

)
=
(
0
0
2
0

)
+
(
1
0
0
4

)
+
(
0
3
0
0

)
.

Lemma 9.1 Let A be an n× n normal matrix. Then

∥UA∥2 ≤
√
n− 1 ∥LA∥2, ∥LA∥2 ≤

√
n− 1 ∥UA∥2.

Proof. Upon computation, we have

∥UA∥22 =
n−1∑
i=1

n∑
j=i+1

|aij|2

≤
n−1∑
i=1

n∑
j=i+1

(j − i)|aij |2

=

n−1∑
j=1

n∑
i=j+1

(i− j)|aij |2 (Problem 12)

≤ (n− 1)

n−1∑
j=1

n∑
i=j+1

|aij |2 = (n− 1)∥LA∥22.

The second inequality follows by applying the argument to AT .
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Theorem 9.12 (Sun) Let A be an n × n normal matrix having
eigenvalues λ1, . . . , λn and B be any n×n matrix having eigenvalues
µ1, . . . , µn. Then there is a permutation p on {1, 2, . . . , n} such that( n∑

i=1

|λi − µp(i)|2
)1/2

≤
√
n ∥A−B∥2.

Proof. By the Schur triangularization theorem (Theorem 3.3), there
exists a unitary matrix U such that U∗BU is upper-triangular. With-
out loss of generality, we may assume that B is already upper-
triangular. Thus DB = diag(µ1, . . . , µn). Let C = A− B. Then

A−DB = C + UB , UB = UA − UC , LA = LC .

Because A and DB are both normal, the Hoffman–Wielandt theorem
ensures a permutation p on the index set {1, 2, . . . , n} such that( n∑

i=1

|λi − µp(i)|2
)1/2

≤ ∥A−DB∥2 = ∥C + UB∥2.

Now we apply the lemma to get

∥C + UB∥22 = ∥C + UA − UC∥22
= ∥LC +DC + UA∥22
= ∥LC∥22 + ∥DC∥22 + ∥UA∥22
≤ ∥LC∥22 + ∥DC∥22 + (n− 1)∥LA∥22
= ∥LC∥22 + ∥DC∥22 + (n− 1)∥LC∥22
≤ n∥C∥22 = n∥A−B∥22.

Taking square roots of both sides yields the desired inequality.

Problems

1. If A is a normal matrix such that A2 = A, show that A is Hermitian.

2. If A is a normal matrix such that A3 = A2, show that A2 = A.

3. Let A = (aij) be a normal matrix. Show that |λ| ≥ maxi,j |aij | for
at least one eigenvalue λ of A.
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4. Let A = (aij) be a normal matrix. If K is a k×k principal submatrix
of A, we denote by Σ(K) the sum of all entries of K. Show that
k|λ| ≥ max

K
|Σ(K)| for at least one eigenvalue λ of A.

5. Let A = (aij) be an n-square complex matrix and denote

m1 = max
i,j

|aij |, m2 = max
i,j

|aij + āji|/2, m3 = max
i,j

|aij − āji|/2.

Show that for any eigenvalue λ = a+ bi of A, where a and b are real,

|λ| ≤ nm1, |a| ≤ nm2, |b| ≤ nm3.

6. Let A = (aij) ∈ Mn and denote m = maxi,j |aij |. Show that

|detA| ≤ (m
√
n )n.

7. Let A = (aij) be an n× n real matrix and d = maxi,j{|aij − aji|/2}.
Let λ = a+ bi be any eigenvalue of A, where a, b are real. Show that

|b| ≤
√
n(n− 1)

2
d.

8. Let A = (aij) be an n × n normal matrix having eigenvalues λt =
at + bti, where at and bt are real, t = 1, . . . , n. Show that

max
t

|at| ≥ max
i,j

∣∣1
2
(aij + āij

∣∣, max
t

|bt| ≥ max
i,j

∣∣1
2
(aij − āij

∣∣.
9. Show that Theorem 9.12 is false if not both A and B are normal by

the example A =
(
0
0
0
4

)
and B =

(−1
1

−1
1

)
.

10. Show that the scalar
√
2 in Corollary 9.1 is best possible by consid-

ering ∥|A|−|B| ∥2

∥A−B∥2
with A =

(
1
0
0
0

)
and B =

(
1
0
x
0

)
as x→ 0.

11. Let A be a normal matrix partitioned as
(

E
G

F
H

)
, where E and H are

square matrices (of possibly different sizes). Show that ∥F∥2 = ∥G∥2.

12. Use Problem 11 to show that for any n×n normal matrix X = (xij),

n−1∑
i=1

n∑
j=i+1

(j − i)|xij |2 =

n−1∑
j=1

n∑
i=j+1

(i− j)|xij |2.



324 Normal Matrices Chap. 9

13. Show that the scalar
√
n in Theorem 9.12 is best possible by consid-

ering the n× n matrices

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

 , B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 .

14. Let A be a Hermitian matrix. If the diagonal entries of A are also the
eigenvalues of A, show that A has to be diagonal, i.e., all off-diagonal
entries are 0. Prove or disprove such a statement for normal matrices.

15. Let A and B be n×n normal matrices having eigenvalues λ1, . . . , λn
and µ1, . . . , µn, respectively. Show that

min
p

max
i

|λi − µp(i)| ≤ n∥A−B∥∞,

where p represents permutations on {1, 2, . . . , n} and ∥A − B∥∞ is
the spectral norm of A−B, i.e., the largest singular value of A−B.

16. Let A ∈ Mn and let λ1, . . . , λn be the eigenvalues of A. The spread
of A, written s(A), is defined by s(A) = maxi,j |λi − λj |. Show that

(a) s(A) ≤
√
2∥A∥2 for any A ∈ Mn.

(b) s(A) ≥
√
3maxi̸=j |aij | if A is normal.

(c) s(A) ≥ 2maxi ̸=j |aij | if A is Hermitian.

17. Let A,B, and C be n× n complex matrices. If all the eigenvalues of
B are contained in a disc {z ∈ C : |z| < r}, and all the eigenvalues
of A lie outside the disc, i.e., in {z ∈ C : |z| ≥ r+ d} for some d > 0,
show that the matrix equation AX −XB = C has a solution

X =

∞∑
i=0

A−i−1CBi.

Show further that if A and B are normal, then ∥X∥op ≤ 1
d
∥C∥op,

where ∥ · ∥op denotes the operator norm. [Hint: Use Theorem 4.4.]

. ⊙ .



CHAPTER 10

Majorization and Matrix Inequalities

Introduction: Majorization is an important tool in deriving matrix
inequalities of eigenvalues, singular values, and matrix norms. In this
chapter we introduce the concept of majorization, present its basic
properties, and show a variety of matrix inequalities in majorization.

10.1 Basic Properties of Majorization

Two vectors in Rn can be compared in different ways. For instance,
one vector may be longer than the other one when measured in terms
of norm (length); one may dominate the other componentwise. In
this section, we introduce the concept of majorization, with which we
may compare two real vectors and see whose components are “less
spread out” or if one vector “contains” or “controls” the other.

Let x = (x1, x2, . . . , xn) ∈ Rn. We rearrange the components of x
in decreasing order and obtain a vector x↓ = (x↓

1, x
↓
2, . . . , x

↓
n), where

x↓
1 ≥ x↓

2 ≥ · · · ≥ x↓
n.

Similarly, let x↑
1 ≤ x↑

2 ≤ · · · ≤ x↑
n denote the components of x in

increasing order and write x↑ = (x↑
1, x

↑
2, . . . , x

↑
n). For example,

x = (−1,−2, 3), x↓ = (3,−1,−2), x↑ = (−2,−1, 3).
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For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn, if

k∑
i=1

x↓
i ≤

k∑
i=1

y↓
i , k = 1, 2, . . . , n− 1, (10.1)

and
n∑

i=1

xi =

n∑
i=1

yi, (10.2)

we say that y majorizes x or x is majorized by y, written as x ≺ y or
y ≻ x. If the equality (10.2) is replaced with the inequality

∑n
i=1 xi ≤∑n

i=1 yi, we say that y weakly majorizes x or x is weakly majorized
by y, denoted by x ≺w y or y ≻w x. Obviously, x ≺ y ⇒ x ≺w y. As
an example, take x = (−1, 0, 1), y = (3,−2,−1), and z = (3, 0, 0).
Then x ≺ y and y ≺w z. Of course, x ≺w z.

Note that the positions of the components in the vectors are
unimportant for majorization; if a vector x is majorized by y, then
any vector of reordering the components of x is also majorized by y.
The inequalities in (10.1) may be rewritten in the equivalent form:

max
1≤i1<···<ik≤n

k∑
t=1

xit ≤ max
1≤i1<···<ik≤n

k∑
t=1

yit , k = 1, 2, . . . , n− 1.

For the case of n = 2, intuitively, the set {x ∈ R2 : x ≺ y} for a
given y ∈ R2 is the line segment joining y↓ and y↑.

y↓x ≺w y

y↑

x ≺ y
y↓n

y↓1
x↓1

y↓2
x↓2

x↓n

Figure 10.8: Majorization
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For x = (x1, . . . , xn), let |x| = (|x1|, . . . , |xn|). For x, y ∈ Rn,
x+y and x◦y are, respectively, the componentwise sum and product
of x and y. Apparently, x ≤ y (componentwise) implies x ≺w y. For
the sake of convenience, sometimes we simply write x ∈ Rn to mean
that x = (x1, x2, . . . , xn), where each xi ∈ R.

It is easily checked from the definitions that majorization ≺ and
weak majorization ≺w are transitive binary relations on Rn:

x ≺ y, y ≺ z ⇒ x ≺ z; x ≺w y, y ≺w z ⇒ x ≺w z.

Theorem 10.1 Let x, y, z ∈ Rn. Then

1. x ≺w y ⇒ x↓
1 ≤ y↓

1 and x ≺ y ⇒ y↓
n ≤ xi ≤ y↓

1 for all xi.

2. x ≺ z, y ≺ z ⇒ px+ qy ≺ z, where p, q ≥ 0, p+ q = 1.

3. x ≺w z, y ≺w z ⇒ px+ qy ≺w z, where p, q ≥ 0, p+ q = 1.

4. x ≺ y ⇔ x ≺w y and −x ≺w −y.
5. x ≺ y, y ≺ x ⇔ x = yP for some permutation matrix P .

6. x ≺w y, y ≺w x ⇔ x = yP for some permutation matrix P .

Proof. The first part of (1) is obvious from the definition by taking
k = 1. For the second part of (1), we show y↓

n ≤ x↓
n. x ≺ y reveals

n∑
i=1

x↓
i =

n∑
i=1

y↓
i ,

n−1∑
i=1

x↓
i ≤

n−1∑
i=1

y↓
i .

Subtracting the inequality from the equality yields x↓
n ≥ y↓

n.
(2) and (3) are similar. We show (3). Let u = px + qy. Then

u ≺w z is equivalent to, for any k = 1, 2, . . . , n,

k∑
i=1

u↓
i =

k∑
i=1

(px+ qy)↓i ≤
k∑

i=1

(p x↓
i + q y↓

i )

= p
k∑

i=1

x↓
i + q

k∑
i=1

y↓
i ≤ (p+ q)

k∑
i=1

z↓
i =

k∑
i=1

z↓
i .

We now show (4). If x ≺ y, then x ≺w y. Moreover,
∑n

i=1 x
↓
i =∑n

i=1 y
↓
i and

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i for all k < n. Subtracting the
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inequality from the equality yields
∑n−k

i=1 x
↓
n−i+1 ≥

∑n−k
i=1 y

↓
n−i+1.

Thus,
∑n−k

i=1 −(x↓
n−i+1) ≤

∑n−k
i=1 −(y↓

n−i+1). Noticing that

−(x↓
n−i+1) = (−x)↓i , −(y↓

n−i+1) = (−y)↓i ,

we have
∑n−k

i=1 (−x)
↓
i ≤

∑n−k
i=1 (−y)

↓
i for all k = n − 1, . . . , 2, 1. With∑n

i=1(−x)
↓
i =

∑n
i=1(−y)

↓
i , we conclude −x ≺w −y. For the converse,

it is sufficient to show that
∑n

i=1 xi =
∑n

i=1 yi. We have x ≺w y
implies

∑n
i=1 xi ≤

∑n
i=1 yi. On the other hand, −x ≺w −y reveals

the reversed inequality. Thus, the equality has to hold. So x ≺ y.

(5) and (6) are similar. We show (5). If x ≺ y and y ≺ x, then
x↓
1 ≤ y↓

1 and y↓
1 ≤ x↓

1. Thus x↓
1 = y↓

1. Let x̃ and ỹ be the vectors
obtained from x and y by deleting x↓

1 and y↓
1, respectively. Then

x̃ ≺ ỹ and ỹ ≺ x̃. From the above argument, we have x̃↓
1 = ỹ↓

1, i.e.,
x↓
2 = y↓

2. Inductively, x
↓
i = y↓

i for all i. This says that the components
of x are rearrangements of the components of y; that is, x = yP for
some permutation matrix P . The converse is trivial.

Our next theorem best characterizes the relationship between the
weak majorization≺w and the majorization≺ via the componentwise
dominance ≤. This theorem is used repeatedly.

Theorem 10.2 The following statements are equivalent.

1. x ≺w y, where x, y ∈ Rn.

2. x ≤ z and z ≺ y for some z ∈ Rn.

3. x ≺ u and u ≤ y for some u ∈ Rn.

Proof. (1)⇔(2): It is easy to see that (2)⇒(1). We show the converse
by induction on the number of components. If n = 1, it is obvious.

Let n > 1 and suppose it is true for vectors with less than n
components. We may assume that the components of x and y are
already in decreasing order. Let ϵ = mink{

∑k
i=1(yi − xi)} ≥ 0 and

x̃ = x+ (ϵ, 0, . . . , 0). Then x̃ = x̃↓, x ≤ x̃, and x̃ ≺w y, as for each p,

p∑
i=1

x̃i =

p∑
i=1

xi + ϵ ≤
p∑

i=1

xi +

p∑
i=1

(yi − xi) =

p∑
i=1

yi.
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If ϵ is attained when k = m, then
∑m

i=1 x̃i =
∑m

i=1 yi. This yields

(x̃1, . . . , x̃m) ≺ (y1, . . . , ym), (x̃m+1, . . . , x̃n) ≺w (ym+1, . . . , yn).

By induction, we have a real vector (zm+1, . . . , zn) such that

(x̃m+1, . . . , x̃n) ≤ (zm+1, . . . , zn) ≺ (ym+1, . . . , yn).

Set z = (x̃1, . . . , x̃m, zm+1, . . . , zn). This z serves the purpose.
(1)⇔(3): One easily checks that (3)⇒(1). We show the converse.

Let yk be the smallest component of y. Let δ =
∑n

i=1 yi −
∑n

i=1 xi
and u = y− δek, where ek ∈ Rn has component 1 in the kth position
and 0 elsewhere. Then it is easy to verify that x ≺ u and u ≤ y.

Theorem 10.3 Let x, y ∈ Rm and u, v ∈ Rn. Then

1. x ≺ y, u ≺ v ⇒ (x, u) ≺ (y, v).

2. x ≺w y, u ≺w v ⇒ (x, u) ≺w (y, v).

3. x ≺ y, u ≺ v ⇒ x+ u ≺ y↓ + v↓ (when m = n).

4. x ≺w y, u ≺w v ⇒ x+ u ≺w y↓ + v↓ (when m = n).

Proof. (1) is similar to (2) and (3) is similar to (4). We show (2)
and (4). Let x̃ = (x, u) and ỹ = (y, v). For positive integer k ≤ n,
suppose that the first k largest components of x̃ consist of x↓

1, . . . , x
↓
r

and u↓
1, . . . , u

↓
s, r + s = k. Since x ≺w y and u ≺w v, we have

k∑
i=1

x̃↓
i =

r∑
i=1

x↓
i +

s∑
i=1

u↓
i ≤

r∑
i=1

y↓
i +

s∑
i=1

v↓
i ≤

k∑
i=1

ỹ↓
i .

This says that x̃ is weakly majorized by ỹ, i.e., (x, u) ≺w (y, v).
(4) is proven in a similar way by checking that

k∑
i=1

(x+ u)↓i ≤
k∑

i=1

x↓
i +

k∑
i=1

u↓
i ≤

k∑
i=1

y↓
i +

k∑
i=1

v↓
i

=

k∑
i=1

(y↓
i + v↓

i ) =

k∑
i=1

(y↓ + v↓)i

=
k∑

i=1

(y↓ + v↓)↓i .
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Theorem 10.4 Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then

1. x ≺w |x|.
2. |x+ y| ≺w |x|↓ + |y|↓.
3. x↓ + y↑ ≺ x+ y ≺ x↓ + y↓.

4.
∑n

i=1 x
↓
iy

↑
i ≤

∑n
i=1 xiyi ≤

∑n
i=1 x

↓
iy

↓
i .

Proof. (1) is due to the fact that for each k = 1, 2, . . . , n

k∑
i=1

x↓
i ≤

k∑
i=1

|x↓
i | ≤

k∑
i=1

|x|↓i .

In a similar way, that
∑k

i=1 |x+ y|↓i ≤
∑k

i=1(|x|
↓
i + |y|↓i ) implies (2).

The second inequality in (3) is a consequence of Theorem 10.3 (3).
To show the first one, we may assume that x = x↓. Consider the case
n = 2 first. If y1 ≤ y2, then y = y↑ and x↓ + y↑ = x + y ≺ x + y.
If y1 > y2, then y = y↓ and x + y = x↓ + y↓. As y↑ ≺ y↓, by
Theorem 10.3 (3), we have x↓ + y↑ ≺ x↓ + y↓ = x+ y.

Let n > 2. Our goal is to obtain y↑ by repeatedly exchanging
components y so that they are in increasing order. If y = y↑, there
is nothing to prove. Suppose yi > yj for some i and j, i < j. Switch
the components yi and yj in y and denote the resulting vector by ỹ.
Note that a pair of components yi, yj in y now are in increasing order
yj , yi in ỹ. Observe that x + ỹ and x + y differ by two components.
By Theorem 10.3 (1) and the above argument for the case of n = 2,
we see x + ỹ ≺ x + y. If ỹ = y↑, we are done. Otherwise, by the
same argument, we have ŷ so that x + ŷ ≺ x + ỹ and ŷ has two
more components than ỹ that are in increasing order. Repeating the
process reveals x↓ + y↑ ≺ · · · ≺ x+ ŷ ≺ x+ ỹ ≺ x+ y.

For (4), again, we assume x = x↓ and show the first inequality;
the proof for the second one is similar. If y = y↑, then we have
nothing to prove. Otherwise, let ỹ be the vector as above. Compute

x↓
iyj + x↓

jyi − x↓
iyi − x↓

jyj = (x↓
i − x↓

j)(yj − yi) ≤ 0;

that is,

x↓
i ỹi + x↓

j ỹj = x↓
iyj + x↓

jyi ≤ x↓
iyi + x↓

jyj .
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This yields
∑n

t=1 x
↓
t ỹt ≤

∑n
t=1 x

↓
tyt. Likewise,

∑n
t=1 x

↓
t ŷt ≤

∑n
t=1 x

↓
t ỹt.

Repeat this process until y↑ is obtained. Thus (4) follows.

The inequalities in Theorem 10.4 (4) can be generalized to ma-
jorization inequalities when the components of x and y are all non-
negative; in other words, the upper limit n for the summation can
be replaced by k = 1, 2, . . . , n. (See Theorem 10.16.)

Denote by Rn
+ the set of all vectors in Rn with nonnegative com-

ponents; that is, u = (u1, u2, . . . , un) ∈ Rn
+ means that all ui ≥ 0.

Theorem 10.5 Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Then

x ≺ y ⇔
n∑

i=1

x↓
iu

↓
i ≤

n∑
i=1

y↓
iu

↓
i for all u = (u1, . . . , un) ∈ Rn

and

x ≺w y ⇔
n∑

i=1

x↓
iu

↓
i ≤

n∑
i=1

y↓
iu

↓
i for all u = (u1, . . . , un) ∈ Rn

+.

Proof. We show the one for weak majorization. The other one is
similar. “⇐” is immediate by setting u = (1, . . . , 1, 0, . . . , 0) in which
there are k 1s, k = 1, 2, . . . , n. For “⇒”, let ti = y↓

i − x↓
i for each i.

Then x ≺w y implies
∑k

i=1 ti ≥ 0 for k = 1, 2, . . . , n. Compute

n∑
i=1

y↓
iu

↓
i −

n∑
i=1

x↓
iu

↓
i =

n∑
i=1

tiu
↓
i

= t1(u
↓
1 − u↓

2) + (t1 + t2)(u
↓
2 − u↓

3) + · · ·
+ (t1 + · · ·+ tn−1)(u

↓
n−1 − u↓

n) + (t1 + · · ·+ tn)u
↓
n ≥ 0.

Therefore, the desired inequality follows.

Theorem 10.6 Let x, y, u, v ∈ Rn
+. Then

1. x ≺w y ⇒ x ◦ u ≺w y
↓ ◦ u↓.

2. x ≺w u, y ≺w v ⇒ x ◦ y ≺w u
↓ ◦ v↓.
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Proof. We first show that (x1u1, . . . , xnun) ≺w (y↓
1u

↓
1, . . . , y

↓
nu

↓
n). By

setting u↓
k+1 = · · · = u↓

n = 0 in Theorem 10.5, we obtain

k∑
i=1

x↓
iu

↓
i ≤

k∑
i=1

y↓
iu

↓
i , k = 1, . . . , n. (10.3)

Note that all components of x, y, and u are nonnegative. For any
positive integer k ≤ n and sequence 1 ≤ i1 < · · · < ik ≤ n, we have
xit ≤ x↓

t and uit ≤ u↓
t , t = 1, . . . , k. It follows that

k∑
t=1

xituit ≤
k∑

t=1

x↓
tu

↓
t , k = 1, . . . , n.

With (10.3), (1) is proven. For (2), apply (1) twice.

Problems

1. Find two vectors x, y ∈ R3 such that neither x ≺ y nor x ≻ y holds.

2. Let y = (2, 1) ∈ R2. Sketch the following sets in the plane R2:

{x ∈ R2 : x ≺ y} and {x ∈ R2 : x ≺w y}.

3. Let x, y ∈ Rn. Show that (−x)↓ = −(x↑) and x− y ≺ x↓ − y↑.

4. Let x = (x1, . . . , xn) ∈ Rn. Show that x↓
i = x↑

n−i+1, i = 1, 2, . . . , n.

5. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in Rn. Show that
x ≺w y ⇔ (x↓

1, x
↓
2, . . . , x

↓
k) ≺w (y↓1, y

↓
2, . . . , y

↓
k), k = 1, 2, . . . , n.

6. Let x = (x1, x2, . . . , xn) ∈ Rn. If x1 ≥ x2 ≥ · · · ≥ xn, show that
1
m

∑m
i=1 xi ≥

1
n

∑n
i=1 xi for any positive integer m ≤ n.

7. Let a1, a2, . . . , an be nonnegative numbers such that
∑n

i=1 ai = 1.
Show that ( 1

n
, 1
n
, . . . , 1

n
) ≺ (a1, a2, . . . , an) ≺ (1, 0, . . . , 0) and that

vn ≺ (vn−1, 0) ≺ · · · ≺ (v2, 0, . . . , 0) ≺ (1, 0, . . . , 0),

where vk = ( 1k ,
1
k , . . . ,

1
k ) with k copies of 1

k for k = 1, 2, . . . , n.

8. Referring to Theorem 10.6 (2), can u↓ ◦ v↓ be replaced by u ◦ v?

9. Let x, y ∈ Rn. Show that x ≺ y ⇔ −x ≺ −y. If x ≺w y, does it
necessarily follow that −x ≺w −y (or −y ≺w −x)?
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10. Let x, y, z ∈ Rn. If x+ y ≺w z, show that x ≺w z − y↑.

11. Let x, y ∈ Rn and x ≤ y (componentwise). Show that xP ≤ yP for
any n× n permutation matrix P and consequently x↓ ≤ y↓.

12. Let e = (1, 1, . . . , 1) ∈ Rn. Find all x ∈ Rn such that x ≺ e.

13. Let x = (x1, x2, . . . , xn) ∈ Rn and x̄ = 1
n
(x1 + x2 + · · · + xn). Show

that x̄e ≺ x, where e = (1, 1, . . . , 1) ∈ Rn. State the case of n = 2.

14. Let x, y ∈ Rn
+. Show that (x, y) ≺w (x+ y, 0).

15. Let x, y ∈ Rn. If x ≺ y and if 0 ≤ α ≤ β ≤ 1, show that

βx↓ + (1− β)y↓ ≺ αx↓ + (1− α)y↓.

16. Let x, y ∈ Rn. Show that x ≺ y ⇔ (x, z) ≺ (y, z) for all z ∈ Rm.

17. Let x, y ∈ Rn and z ∈ Rm. Show that

(x, z) ≺w (y, z) ⇒ x ≺w y.

Consider the more general case. If (x, u) ≺ (y, v) for some u, v ∈ Rm

satisfying u ≺ v, does it necessarily follow that x ≺ y or x ≺w y?

18. Let x, y ∈ Rn such that x ≺w y. Show that (i) there exists ỹ ∈ Rn

which differs from y by at most one component such that x ≺ ỹ; and
(ii) there exist a, b ∈ R such that (x, a) ≺ (y, b).

19. Let x, y, z ∈ Rn
+. If 2x ≺w y↓ + z↓, show that

(x, x) ≺w (y, z) ≺w (y↓ + z↓, 0).

20. Let x = (x1, x2, . . . , xn) ∈ Rn and α be a real number such that x↓
n ≤

α ≤ x↓
1. Let β = x1+x2+ · · ·+xn. Show that (α, β−α

n−1 , . . . ,
β−α
n−1 ) ≺ x.

21. Let x, y ∈ Rn. If x ≺ y, show that y↓m ≥ x↓
m ≥ y↓m+1 for some m.

22. Let t ∈ R and denote t+ = max{t, 0}. For x, y ∈ Rn, if x ≺w y, show
that (x+1 , . . . , x

+
n ) ≺w (y+1 , . . . , y

+
n ). Is the converse true?

23. Give an example that Theorem 10.6 is not valid for some x, y ∈ Rn.

24. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. If x ≺ y, show that

n∑
i=1

u↓
i y

↑
i ≤

n∑
i=1

u↓
ixi ≤

n∑
i=1

u↓
ix

↓
i ≤

n∑
i=1

u↓
i y

↓
i , u = (u1, . . . , un) ∈ Rn.

. ⊙ .



10.2 Majorization and Stochastic Matrices

Recall that a doubly stochastic matrix is a square nonnegative matrix
whose row sums and column sums are all equal to 1. In symbols, A
is doubly stochastic if A is nonnegative and for e = (1, . . . , 1) ∈ Rn,

eA = e and AeT = eT .

In this section, we show a close relation between majorization and
this type of matrices. Our goal is to present two fundamental results:
x ≺ y if and only if x = yP for some doubly stochastic matrix P ;
x ≺w y if and only if x = yQ for some doubly substochastic matrix Q.
A doubly substochastic matrix is a square nonnegative matrix whose
row and column sums are each at most 1, i.e., eA ≤ e, AeT ≤ eT .

Theorem 10.7 Let A be an n × n nonnegative matrix. Then A is
doubly stochastic if and only if xA ≺ x for all (row vectors) x ∈ Rn.

Proof. For necessity, by Theorem 5.21, we write A as a convex
combination of permutation matrices P1, P2, . . . , Pm:

A =
m∑
i=1

αiPi,
m∑
i=1

αi = 1, αi ≥ 0.

Because xPi ≺ x for each i, we have

xA =
m∑
i=1

αixPi ≺
m∑
i=1

αix = x.

For sufficiency, take x = e = (1, . . . , 1). Then eA ≺ e says that
each column sum of A is at most 1. However, adding up all the
column sums of A, one should get n. It follows that every column
sum of A is 1. Now set x = ei = (0, . . . , 1, . . . , 0), where 1 is the
ith component of ei and all other components are 0. Then eiA ≺ ei
means that the ith row sum of A is 1 for i = 1, 2, . . . , n.

We next take a closer look at the relation between two vectors
when one is majorized by the other. Specifically, we want to see
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how to get one vector from the other. This can be accomplished by
successively applying a finite number of so-called T -transforms.

A 2 × 2 T -transformation, or transform for short, is a matrix of

the form
(

t
1−t

1−t
t

)
, where 0 ≤ t ≤ 1. For higher dimension, we call a

matrix a T -transform if it is obtained from the identity matrix I by
replacing a 2×2 principal submatrix of I with a 2×2 T -transform. It
is readily seen that a T -transform is a doubly stochastic matrix and
it can be written as tI+(1−t)P, where 0 ≤ t ≤ 1 and P is a permuta-
tion matrix that just interchanges two columns of the identity matrix
I. Note that when t = 0, the T -transform is a permutation matrix.
Since a permutation on the set {1, 2, . . . , n} can be obtained by a se-
quence of interchanges (Problem 22, Section 5.6), every permutation
matrix can be factorized as a product of T -transforms.

Theorem 10.8 Let x, y ∈ Rn. Then x ≺ y if and only if there exist
T -transforms T1, . . . , Tm such that x = yT1 · · ·Tm. Consequently,

x ≺ y ⇔ x = yD for some doubly stochastic matrix D.

Proof. Sufficiency: This is immediate from the previous theorem.
To prove the necessity, we use induction on n. If n = 1, there is
nothing to show. Suppose n > 1 and the result is true for n− 1.

If x1 = y1, then (x2, . . . , xn) ≺ (y2, . . . , yn). By induction hy-
pothesis, there exist T -transforms S1, S2, . . . , Sm, all of order n− 1,

such that (x2, . . . , xn) = (y2, . . . , yn)S1S2 · · ·Sm. Let Ti =
(
1
0

0
Si

)
.

Then Ti is also a T -transform, i = 1, 2, . . . ,m, and x = yT1T2 · · ·Tm.
If xi = yj for some i and j, we may apply permutations on x and

y so that xi and yj are the first components of the resulting vectors.
Since every permutation matrix is a product of T -transforms, the
argument reduces to the case x1 = y1 that we have settled.

Let xi ̸= yj for all i, j. We may further assume that x and y are
in decreasing order. By Problem 21 of Section 10.1, x ≺ y implies

yk > xk > yk+1, for some k.

So

xk = tyk + (1− t)yk+1, for some t ∈ (0, 1).
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Let T0 be the T -transform with
(

t
1−t

1−t
t

)
lying in the rows k and

k+1 and columns k and k+1. Set z = yT0. Then z and y have the
same components except the kth and (k + 1)th components:

zk = tyk + (1− t)yk+1 = xk

and

zk+1 = (1− t)yk + tyk+1 = yk + yk+1 − xk.

Note that

k∑
i=1

xi ≤
k−1∑
i=1

yi + xk =
k∑

i=1

zi ≤
k∑

i=1

z↓i .

For r ̸= k, i.e., r < k or r > k, bearing in mind that zk + zk+1 =
yk + yk+1, we always have

r∑
i=1

xi ≤
r∑

i=1

yi =
r∑

i=1

zi ≤
r∑

i=1

z↓
i ,

and equality holds when r = n. Hence, x ≺ z.
Now x and z have the same component xk = zk. By the above

argument, we have that x = zT1T2 · · ·Tm = yT0T1T2 · · ·Tm, where
Tis are T -transforms.

Every doubly stochastic matrix is a convex combination of (finite)
permutation matrices (Theorem 5.21, Section 5.6), therefore we may
restate the second part of the theorem as x ≺ y if and only if there
exist permutation matrices P1, . . . , Pm such that x = t1yP1 + · · · +
tmyPm, where t1 + · · · + tm = 1, and all ti ≥ 0. Thus, for given
y ∈ Rn, {x : x ≺ y} is the convex hull of all points in Rn obtained
from y by permuting its components.

We now study the analogue of Theorem 10.8 for weak majoriza-
tion. A weak majorization ≺w becomes the componentwise inequal-
ity ≤ via T -transforms. When the vectors are nonnegative, the weak
majorization can be characterized by doubly substochastic matrices.

Theorem 10.9 Let x, y ∈ Rn. Then x ≺w y if and only if there
exist T -transforms T1, T2, . . . , Tm such that x ≤ yT1T2 · · ·Tm.
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Proof. If x ≺w y, by Theorem 10.2, there exists z ∈ Rn such that
x ≤ z ≺ y. By Theorem 10.8, z = yT1T2 · · ·Tm, where Tis are
T -transforms. It follows that x ≤ yT1T2 · · ·Tm.

Conversely, let u = yT1T2 · · ·Tm. Then x ≤ u, so x ≺w u. How-
ever, u ≺ y as T1T2 · · ·Tm is doubly stochastic. Thus, x ≺w y.

Theorem 10.10 Let x, y ∈ Rn
+. Then x ≺w y if and only if x = yS

for some doubly substochastic matrix S.

Proof. Let x = yS for some doubly substochastic matrix S. Then
there exists a stochastic matrix P such that P − S is a nonnegative
matrix. Thus, yS ≤ yP for y ∈ Rn

+. As yP ≺ y, x = yS ≤ yP ≺ y.

For the converse, since x ≺w y, by Theorem 10.9, there exist
T -transforms T1, T2, . . . , Tm such that x ≤ yT1T2 · · ·Tm. Denote
z = yT1T2 · · ·Tm. Then x ≤ z. Note that x is nonnegative. By
scaling the components of z to get x; that is, taking ri so that
xi = ziri, 0 ≤ ri ≤ 1, i = 1, 2, . . . , n, we have a diagonal matrix
R = diag(r1, r2, . . . , rn) such that x = zR. Set S = T1T2 · · ·TmR.
Then S is doubly substochastic and x = yS.

For given y ∈ Rn
+, {x : x ≺w y} is the convex hull of all points

(t1yp(1), t2yp(2), . . . , tnyp(n)), where p runs over all permutations and
each ti is either 0 or 1. Note that both x and y are required to
be nonnegative vectors in Theorem 10.10. The conclusion does not
necessarily follow otherwise (Problem 14).

Problems

1. Find a doubly stochastic matrix P such that (1, 2, 3) = (6, 0, 0)P.

2. Show that Q = (qij) is a doubly substochastic matrix if there exists
a doubly stochastic matrix D = (dij) such that qij ≤ dij for all i, j.

3. Let A = (aij) and B = (bij) be n× n matrices. Show that

(a) If A and B are doubly substochastic, then C = (aijbij) and
D = (

√
aijbij ) are also doubly substochastic.

(b) If A and B are unitary, then E = (|aijbij |) is doubly substochas-

tic, but F = (
√

|aijbij | ) is not in general.
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4. Show that the following matrix A satisfies (i) eA ≥ e, AeT ≥ eT ; (ii)
A−Q is never nonnegative for any doubly stochastic matrix Q:

A =

 0 1 1
1 0 0
1 0 0

 , e = (1, 1, 1).

5. Show that the following doubly stochastic matrix cannot be expressed
as a product of T -transforms:

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 .

6. Let P be a square matrix. If both P and its inverse P−1 are doubly
stochastic, show that P is a permutation matrix.

7. Show each of the following statements.

(a) The (ordinary) product of two doubly stochastic matrices is a
doubly stochastic matrix.

(b) The (ordinary) product of two doubly substochastic matrices is
a doubly substochastic matrix.

(c) The Hadamard product of two doubly substochastic matrices
is a doubly substochastic matrix.

(d) The Kronecker product of two doubly substochastic matrices is
a doubly substochastic matrix.

(e) The convex combination of finite doubly stochastic matrices is
a doubly stochastic matrix.

(f) The convex combination of finite doubly substochastic matrices
is a doubly substochastic matrix.

8. Show that any square submatrix of a doubly stochastic matrix is
doubly substochastic and that every doubly substochastic matrix can
be regarded as a square submatrix of a doubly stochastic matrix.

9. A square (0,1)-matrix is called sub-permutation matrix if each row
and each column have at most one 1. Show that a matrix is dou-
bly substochastic if and only if it is a convex combination of finite
subpermutation matrices.
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10. Let A = (aij) be an n × n doubly stochastic matrix. Show that n
entries of A can be chosen from different rows and columns so that
their product is positive; that is, there exists a permutation p such
that

∏n
i=1 aip(i) > 0. [Hint: Use the Frobenius–König theorem.]

11. A matrix A of order n ≥ 2 is said to be reducible if PAP T =
(

B
C

0
D

)
for some permutation matrix P , where B and D are some square
matrices; A is irreducible if it is not reducible. A matrix A is said to

be decomposable if PAQ =
(

B
C

0
D

)
for some permutation matrices P

and Q, where B andD are some square matrices; A is indecomposable
if it is not decomposable. Prove each of the following statements.

(a) If A is a nonnegative indecomposable matrix of order n, then
the entries of An−1 are all positive.

(b) The product of two nonnegative indecomposable matrices is
indecomposable.

(c) The product of two nonnegative irreducible matrices need not
be irreducible.

12. Let x, y ∈ Rn
+. Show that x ≺w y if and only if x is a convex

combination of the vectors yQ1, yQ2, . . . , yQm, whereQ1, Q2, . . . , Qm

are subpermutation matrices.

13. Let A be an n × n nonnegative matrix. Show that A is doubly
substochastic if and only if Ax ≺w x for all column vectors x ∈ Rn

+.

14. Give an example that x ∈ Rn
+, y ∈ Rn, x = yS for some substochastic

matrix S, but x ≺w y does not hold.

15. Let x, y ∈ Rn. Show that for any real numbers a and b,

x ≺ y ⇒ (ax1+b, ax2+b, . . . , axn+b) ≺ (ay1+b, ay2+b, . . . , ayn+b).

16. Let T =
(

1−a
a

b
1−b

)
, S =

(
−a
a

b
−b

)
, 0 < a < 1, 0 < b < 1. Show that

Tn = I +
1− rn

1− r
S, r = 1− (a+ b),

for every positive integer n. Find Tn as n→ ∞.

. ⊙ .



10.3 Majorization and Convex Functions

This section is devoted to majorization and convex functions. Recall
that a real-valued function f(t) defined on an interval of R is said to
be increasing if x ≤ y implies f(x) ≤ f(y), and convex if for all x, y
in the interval and all nonnegative numbers α, β such that α+β = 1,

f(αx+ βy) ≤ αf(x) + βf(y). (10.4)

A function is strictly convex if the above strict inequality holds when-
ever x ̸= y, α, β ∈ (0, 1), α+ β = 1. f is concave if −f is convex.

A general and equivalent form of (10.4) is known as Jensen’s
inequality: let f : I 7→ R be a convex function on an interval I ⊆ R.
Let t1, . . . , tn be nonnegative numbers such that

∑n
i=1 ti = 1. Then

f
( n∑

i=1

tixi

)
≤

n∑
i=1

tif(xi), whenever all xi ∈ I.

If f(t) is a differentiable function, from calculus we know that f(t)
is increasing if the first derivative is nonnegative, i.e., f ′(t) ≥ 0 on the
interval, and f(t) is convex if the second derivative is nonnegative,
i.e., f ′′(t) ≥ 0. Geometrically, the graph of a convex function is
concave upwards. For example, |t| is convex on (−∞,∞) Also, if
f(x) is twice differentiable and f ′′(x) > 0 then f(x) is strictly convex.
For instance, t2 and et are strictly convex on (−∞,∞), whereas ln t
is strictly concave on (0,∞).

Below is a reversal inequality of Jensen type.

Theorem 10.11 Let f : R+ 7→ R be a strictly convex function with
f(0) ≤ 0. If x1, . . . , xn are nonnegative numbers and at least two xi
are nonzero, then

n∑
i=1

f(xi) < f
( n∑

i=1

xi

)
.

Proof. We prove the case n = 2. The general case is shown by
induction. Let x1, x2 > 0.Write x1 =

x1
x1+x2

(x1+x2)+
x2

x1+x2
0. Then

f(x1) <
x1

x1 + x2
f(x1 + x2) +

x2
x1 + x2

f(0).
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In a similar way, we have

f(x2) <
x1

x1 + x2
f(0) +

x2
x1 + x2

f(x1 + x2).

Adding both sides of the inequalities, we arrive at

f(x1) + f(x2) < f(x1 + x2) + f(0).

The desired inequality follows at once as f(0) ≤ 0.

We may generalize the definitions of convex and concave functions
defined above to functions on Rn or on a convex subset of Rn. For
instance, f is convex on Rn if (10.4) holds for all x, y ∈ Rn. A real-
valued function ϕ defined on Rn (Rn

+, in most cases, or even more
generally, a convex set) is called Schur-convex if

x ≺ y ⇒ ϕ(x) ≤ ϕ(y).

As an example, the function ϕ(x) = |x1| + · · · + |xn| is Schur-
convex on Rn, where x = (x1, . . . , xn). Since if x ≺ y, we can write
x = yA, where A = (aij) is an n×n doubly stochastic matrix. Then

ϕ(x) =
n∑

i=1

|xi| =
n∑

i=1

∣∣∣ n∑
j=1

ajiyj

∣∣∣
≤

n∑
i=1

n∑
j=1

aji|yj | =
n∑

j=1

( n∑
i=1

aji

)
|yj |

=
n∑

j=1

|yj | = ϕ(y).

One may prove that ϕ(x) = |x1|2+ · · ·+ |xn|2 is Schur-convex on
Rn too. In fact, if f(t) is convex on R, then ϕ(x) = f(x1)+· · ·+f(xn)
is Schur-convex on Rn (Problem 6).

The Schur-convex functions have been extensively studied. In
this book we are more focused on the functions defined on R that
preserve majorizations. When we write f(x), where x ∈ Rn, we
mean, conventionally, that f is a function defined on an interval that
contains all components of x, and that f is applied to every compo-
nent of x; that is, if x = (x1, . . . , xn), then f(x) = (f(x1), . . . , f(xn)).
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In such a way, x2 = (x21, . . . , x
2
n) and lnx = (lnx1, . . . , lnxn). By

x ∈ Rn, we automatically assume that the ith component of x is xi.
The following theorem is useful in deriving inequalities.

Theorem 10.12 Let x, y ∈ Rn. If f is convex, then

x ≺ y ⇒ f(x) ≺w f(y);

if f is increasing and convex, then

x ≺w y ⇒ f(x) ≺w f(y).

Proof. Since x ≺ y, by Theorem 10.8, there exists a doubly stochas-
tic matrix A = (aij) such that x = yA. This reveals

xi =
n∑

j=1

ajiyj, i = 1, 2, . . . , n.

Applying f to both sides, and because f is convex, we have

f(xi) ≤
n∑

j=1

ajif(yj), i = 1, 2, . . . , n.

Therefore,

(f(x1), . . . , f(xn)) ≤ (f(y1), . . . , f(yn))A.

It follows that f(x) ≤ f(y)A. By Theorem 10.8, the first part of the
conclusion is immediate. For the second part, it suffices to note that
x ≺w y ensures x ≤ z ≺ y for some z ∈ Rn (see Theorem 10.2).

Corollary 10.1 Let x, y ∈ Rn. Then

1. x ≺ y ⇒ |x| ≺w |y|, i.e., (|x1|, . . . , |xn|) ≺w (|y1|, . . . , |yn|).
2. x ≺ y ⇒ x2 ≺w y

2, i.e., (x21, . . . , x
2
n) ≺w (y21 , . . . , y

2
n).

3. lnx ≺w ln y ⇒ x ≺w y, where all xi and yi are positive.

Proof. For (1) and (2), it suffices to notice that |t| and t2 are convex,
whereas (3) is due to the fact that et is increasing and convex.

Majorization may be characterized in terms of convex functions.
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Theorem 10.13 Let x, y ∈ Rn. Then

1. x ≺ y ⇔
∑n

i=1 f(xi) ≤
∑n

i=1 f(yi) for all convex functions f .

2. x ≺w y ⇔
∑n

i=1 f(xi) ≤
∑n

i=1 f(yi) for all increasing and
convex functions f .

Proof. Necessities are immediate from Theorem 10.12. For sufficien-
cies, we need to show that

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i , k = 1, 2, . . . , n. For

any fixed k, take f(r) = (r − y↓
k)

+, where t+ = max{t, 0}; that is,
f(r) = r − y↓

k if r ≥ y↓
k, 0 otherwise. Then f(r) is a convex function

in r and the condition
∑n

i=1 f(yi) ≥
∑n

i=1 f(xi) reveals

k∑
i=1

(y↓
i − y↓

k) =

k∑
i=1

(y↓
i − y↓

k)
+ =

n∑
i=1

(y↓
i − y↓

k)
+

≥
n∑

i=1

(x↓
i − y↓

k)
+ ≥

k∑
i=1

(x↓
i − y↓

k)
+

≥
k∑

i=1

(x↓
i − y↓

k).

This implies (2):

k∑
i=1

x↓
i ≤

k∑
i=1

y↓
i , i.e., x ≺w y.

For (1), take g(x) = −x. Then g(x) is a convex function and this
gives

∑n
i=1 xi ≥

∑n
i=1 yi. So equality has to hold and x ≺ y.

The next theorem is useful when an equality is in consideration.

Theorem 10.14 Let x, y ∈ Rn. If y is not a permutation of x,
then for any strictly increasing and strictly convex function f that
contains all the components of x and y,

x ≺w y ⇒
n∑

i=1

f(xi) <
n∑

i=1

f(yi).
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Proof. Since x ≺w y, by Theorem 10.7, there exists a z ∈ Rn such
that x ≺ z ≤ y. Let z = (z1, . . . , zn). By Theorem 10.13, we have

n∑
i=1

f(xi) ≤
n∑

i=1

f(zi) ≤
n∑

i=1

f(yi).

We show that in these inequalities at least one strict inequality holds.
If z is a permutation of x, then z cannot be a permutation of y.

Thus zk < yk for some k. As f is strictly increasing, f(zk) < f(yk).
The second inequality is strict because f(zi) ≤ f(yi) for all i ̸= k.

If z is not a permutation of x, there exists a nonpermutation,
doubly stochastic matrix A = (aij) such that x = zA. This reveals

xi =
n∑

j=1

ajizj , i = 1, 2, . . . , n.

Applying f to both sides, and since f is strictly convex, we have

f(xi) ≤
n∑

j=1

ajif(zj), i = 1, 2, . . . , n,

and at least one strict inequality holds. It follows that

n∑
i=1

f(xi) <
n∑

i=1

n∑
j=1

ajif(zj) ≤
n∑

j=1

n∑
i=1

ajif(yj) ≤
n∑

j=1

f(yj).

Our next result is useful in deriving matrix inequalities and is
used repeatedly in later sections. For this purpose, we introduce
log-majorization. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn

+;
that is, all xi and yi are nonnegative. We say that x is weakly log-
majorized by y and write it as x ≺wlog y if

k∏
i=1

x↓
i ≤

k∏
i=1

y↓
i , k = 1, . . . , n.

If equality holds when k = n, we say that x is log-majorized by y and
write it as x ≺log y. In the event that all components of x and y are
positive, x ≺wlog y is the same as lnx ≺w ln y, and x ≺log y if and
only if lnx ≺ ln y, for ln t and et are strictly increasing functions.



Sec. 10.3 Majorization and Convex Functions 345

Theorem 10.15 Let x, y ∈ Rn
+. Then

x ≺wlog y ⇒ x ≺w y;

that is,

k∏
i=1

x↓
i ≤

k∏
i=1

y↓
i , k = 1, . . . , n ⇒

k∑
i=1

x↓
i ≤

k∑
i=1

y↓
i , k = 1, . . . , n.

Proof. If all components of x are positive, then all components of y
are positive. In this case, x ≺wlog y yields lnx ≺w ln y which results
in x ≺w y by Corollary 10.1(3).

If x contains zero components, say, x↓
k = 0 and x↓

i > 0 for all
i < k, then, by the above argument, (x↓

1, . . . , x
↓
k−1) ≺w (y↓

1, . . . , y
↓
k−1).

So x = (x↓
1, . . . , x

↓
k−1, 0, . . . , 0) ≺w (y↓

1, . . . , y
↓
k−1, y

↓
k . . . , y

↓
n) = y.

Note that the converse of Theorem 10.15 is not true. For example,
take x = (3, 2, 1) and y = (4, 1, 1). Then x ≺ y, but x ̸≺wlog y.

Theorem 10.16 Let x, y ∈ Rn
+. Then

x↓ ◦ y↑ ≺w x ◦ y ≺w x
↓ ◦ y↓ (10.5)

and
n∏

i=1

(x↓
i + y↑

i ) ≥
n∏

i=1

(xi + yi) ≥
n∏

i=1

(x↓
i + y↓

i ). (10.6)

Proof. We may only consider the case of positive x and y; otherwise
we replace the zero components of x or y with arbitrarily small pos-
itive numbers and use a continuity argument. Note that (lnx)↓ =
ln(x↓). By Theorem 10.4(3), lnx↓ +ln y↑ ≺ lnx+ln y ≺ lnx↓ +ln y↓;
that is, ln(x↓ ◦ y↑) ≺ ln(x ◦ y) ≺ ln(x↓ ◦ y↓). Corollary 10.1(3) reveals
(10.5). For (10.6), applying the convex function f(t) = − ln t to
x↓ + y↑ ≺ x+ y ≺ x↓ + y↓ (Theorem 10.4(3)), Theorem 10.12 reveals

− ln(x↓ + y↑) ≺w − ln(x+ y) ≺w − ln(x↓ + y↓).

This yields

ln(x↓
1 + y↑

1) + · · ·+ ln(x↓
n + y↑

n)

≥ ln(x1 + y1) + · · ·+ ln(xn + yn)

≥ ln(x↓
1 + y↓

1) + · · ·+ ln(x↓
n + y↓

n).
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The desired inequalities in (10.6) then follow immediately.

We point out that if x or y contains negative components, then
the conclusion does not necessarily follow. For instance, take x =
(−1,−2), y = (1, 2). Then x ◦ y ≺w x

↓ ◦ y↓ does not hold.
We end this section with the result (Problem 13) for x, y ∈ Rn

+:

x ≺ y ⇒
n∏

i=1

xi ≥
n∏

i=1

yi.

Problems

1. Let x, y ∈ Rn. If x ≤ y (componentwise), show that x ≺w y.

2. Let α > 1. Show that f(t) = tα is strictly increasing and strictly
convex on R+ and that g(t) = |t|α is strictly convex on R.

3. Show that f(t) = eαt, α > 0, is strictly increasing and strictly convex
on R and that g(t) =

√
t is strictly concave and increasing on R+.

4. Show that f(t) = ln(1
t
− 1) is convex on (0, 1

2
) but not on ( 1

2
, 1).

5. The following inequalities are of fundamental importance. They can
be shown in various ways. One way is to use induction; another way
is to use Jensen inequality with convex functions (f(x) = − lnx, say).

(a) Use Jensen inequality to show the general arithmetic mean–
geometric mean inequality: if all ai ≥ 0, pi > 0 and

∑n
i=1 pi = 1,

n∏
i=1

api

i ≤
n∑

i=1

piai.

(b) Use (a) to show the Hölder inequality: if p, q > 1 and 1
p
+ 1

q
= 1,∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

for complex numbers a1, . . . , an, b1, . . . , bn.

(c) Use (b) to show the Minkowski inequality: if 1 ≤ p <∞,(
n∑

i=1

|ai + bi|p
)1/p

≤
(

n∑
i=1

|ai|p
)1/p

+

(
n∑

i=1

|bi|p
)1/p

for complex numbers a1, . . . , an, b1, . . . , bn.
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6. Show that (i) if f(t) is convex on R, then f1(x) = f(x1)+ · · ·+f(xn)
and f2(x) = (f(x1), . . . , f(xn)) are Schur-convex on Rn; and (ii) if g
is convex on Rn, then g is Schur-convex on Rn.

7. Let f(t) be a nonnegative continuous function defined on an interval
I ⊆ R. If f is (strictly) convex on I, show that F (x) =

∏n
i=1 f(xi) is

(strictly) Schur-convex on In = {(x1, . . . , xn) : x1, . . . , xn ∈ I} ⊆ Rn.

8. Give an example of convex, nonincreasing function f(t) for which
(f(x1), . . . , f(xn)) ≺w (f(y1), . . . , f(yn)) is not true even if x ≺w y.

9. Let x, y ∈ Rn. Prove or disprove:

(a) x ≺w y ⇒ |x| ≺w |y|, i.e., (|x1|, . . . , |xn|) ≺w (|y1|, . . . , |yn|).
(b) |x| ≺w |y| ⇒ x2 ≺w y2, i.e., (x21, . . . , x

2
n) ≺w (y21 , . . . , y

2
n).

(c) x ≺w y ⇒ x2 ≺w y2, i.e., (x21, . . . , x
2
n) ≺w (y21 , . . . , y

2
n).

(d) x ≺ y ⇒ x3 ≺w y3, i.e., (x31, . . . , x
3
n) ≺w (y31 , . . . , y

3
n).

(e) x ≺ y ⇒ |x|3 ≺w |y|3, i.e., (|x1|3, . . . , |xn|3) ≺w (|y1|3, . . . , |yn|3).
(f) x ≺w y ⇒ ex ≺w ey, i.e., (ex1 , . . . , exn) ≺w (ey1 , . . . , eyn).

10. Let x, y ∈ Rn. Show that |x↓ − y↓| ≺w |x− y|.

11. Let x, y ∈ Rn
+, x ≺ y. Show that

∑n
i=k

√
x↓
i ≥

∑n
i=k

√
y↓i for each k.

12. Show that the following functions are Schur-convex on Rn.

(a) f(x) = maxi |xi|.
(b) g(x) =

∑n
i=1 |xi|p, p ≥ 1.

(c) h(x) =
(∑n

i=1 |xi|p
)1/p

, p ≥ 1.

(d) p(x) =
∑n

i=1
1
xi
, where all xi > 0.

13. Let x, y ∈ Rn
+. If x ≺ y, show that

∏n
i=1 xi ≥

∏n
i=1 yi and that the

strict inequality holds if y is not a permutation of x. Show by example
that this is invalid if x or y contains nonnegative components.

14. Let x, y ∈ Rn
+. Show that the sum inequalities

∑k
i=1 x

↑
i ≤

∑k
i=1 y

↑
i

(k ≤ n) imply the product inequalities
∏k

i=1 x
↑
i ≤

∏k
i=1 y

↑
i (k ≤ n).

15. Let x, y, z be the three interior angles of any triangle. Show that

0 < sinx+ sin y + sin z ≤ 3

2

√
3.
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16. Let a1, . . . , an and b1, . . . , bn be positive numbers. Show that(a↓1
b↓1
, . . . ,

a↓n
b↓n

)
≺w

(a1
b1
, . . . ,

an
bn

)
≺w

(a↓1
b↓n
, . . . ,

a↓n
b↓1

)
.

17. Let x1, . . . , xn be positive numbers such that x1+ · · ·+xn = 1. Prove

(a)
∑n

i=1
1−xi

xi
≥ n(n− 1);

∑n
i=1

xi

1−xi
≥ n

(n−1)
.

(b)
∑n

i=1
1+xi

xi
≥ n(n+ 1); n

(n+1)
≥
∑n

i=1
xi

1+xi
≥ 1

2
.

(c)
∑n

i=1
1+xi

1−xi
≥ n(n+1)

n−1 ; n− 1 ≥
∑n

i=1
1−xi

1+xi
≥ n(n−1)

n+1 .

(d)
∑n

i=1 xi ln
1
xi

≤ lnn.

18. Let A be an n × n positive semidefinite matrix, n > 1. Show that
tr eA ≤ etrA + (n− 1) with equality if and only if rank (A) ≤ 1.

19. Let x, y ∈ Rn
+. If x ≺log y and x ≺ y, show that x↓ = y↓.

20. For real number t, denote t+ = max{t, 0}. Let x, y ∈ Rn. Show that

(a) x ≺ y if and only if
∑n

i=1(xi− t)+ ≤
∑n

i=1(yi− t)+ for all t ∈ R
and

∑n
i=1 xi =

∑n
i=1 yi.

(b) x ≺ y if and only if
∑n

i=1 |xi − t| ≤
∑n

i=1 |yi − t| for all t ∈ R.

21. Show that both words “strictly” in Theorem 10.14 are necessary.

22. Let x, y ∈ Rn
+. If x ≺w y, show that xm ≺w ym for all integers

m ≥ 1, where zm = (zm1 , . . . , z
m
n ) for z = (z1, . . . , zn) ∈ Rn. If

xm ≺ ym for all integers m ≥ 1, show that x↓ = y↓.

23. Let g be a differentiable function on an interval I ⊆ R. Show that

(a) g is convex if and only if g(a+b
2 ) ≤ 1

2 (g(a)+g(b)) for all a, b ∈ I.
(b) g is linear if and only if g(a+b

2
) = 1

2
(g(a) + g(b)) for all a, b ∈ I.

(c) g(x) ≺ g(y) whenever x ≺ y, x, y ∈ Rn, if and only if g is linear.

24. If x, y, u, v ∈ Rn
+, show that x ≺wlog u, y ≺wlog v ⇒ x◦y ≺wlog u

↓◦v↓.
25. Let a, b ∈ Rn and all components of a and b be positive. Show that

n∑
i=1

a↓i b
↓
i ≤ r + s

2
√
rs

n∑
i=1

aibi,

where r and s are the numbers such that r ≥ ai

bi
≥ s > 0, i = 1, . . . , n.

[Hint: Use the Kantorovich inequality for A = diag(a1

b1
, . . . , an

bn
).]

. ⊙ .



10.4 Majorization of Diagonal Entries, Eigenvalues,
and Singular Values

This section presents some elegant matrix inequalities involving di-
agonal entries, eigenvalues, and singular values in terms of majoriza-
tion. Especially, we show that the relationship between the diagonal
entries and eigenvalues of a Hermitian matrix is precisely character-
ized by majorization. It has been evident that majorization is a very
useful tool in deriving matrix inequalities.

We denote the vectors of the diagonal entries, eigenvalues, and
singular values of an n-square complex matrix A, respectively, by

d(A) = (d1(A), d2(A), . . . , dn(A)),

λ(A) = (λ1(A), λ2(A), . . . , λn(A)),

σ(A) = (σ1(A), σ2(A), . . . , σn(A)).

The singular values are always arranged in decreasing order. In the
case where A is Hermitian, all di(A) and λi(A) are real; we assume
that the components of d(A) and λ(A) are in decreasing order too.

Theorem 10.17 (Schur) Let H be a Hermitian matrix. Then

d(H) ≺ λ(H).

Proof. Let Hk, 1 ≤ k ≤ n, be the k × k principal submatrix of H
with diagonal entries d1(H), d2(H), . . . , dk(H). Theorem 8.10 yields

k∑
i=1

di(H) = trHk =
k∑

i=1

λi(Hk) ≤
k∑

i=1

λi(H).

Equality holds when k = n, for both sides are equal to trH .

It is immediate that if H is a Hermitian matrix and U is any
unitary matrix of the same size, then

d(U∗HU) ≺ λ(H). (10.7)

The next result shows the validity of the converse of Theorem 10.17.
Thus the relationship between the diagonal entries and eigenvalues
of a Hermitian matrix is precisely characterized by majorization.
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Theorem 10.18 Let d = (d1, d2, . . . , dn), λ = (λ1, λ2, . . . , λn) ∈
Rn. If d ≺ λ, then there exists an n × n real symmetric matrix H
that has diagonal entries d1, d2, . . . , dn and eigenvalues λ1, λ2, . . . , λn.

Proof. The proof goes as follows. We first deal with the case of
n = 2, then proceed inductively. For n > 2, we construct a new
vector (sequence) λ′ that differs from λ by at most two components
one of which is some di, i.e., λ

′ is a step “closer” to d. An application
of induction results in the desired conclusion. We may assume that
d1, d2, . . . , dn and λ1, λ2, . . . , λn are arranged in decreasing order. De-
note diag d = diag(d1, d2, . . . , dn) and diagλ = diag(λ1, λ2, . . . , λn).

If n = 2 and λ1 = λ2, then d1 = d2. The statement is obviously
true. If n = 2 and λ1 > λ2, because (d1, d2) ≺ (λ1, λ2), we have
λ2 ≤ d2 ≤ d1 ≤ λ1 and d1 + d2 = λ1 + λ2. Take

U = (λ1 − λ2)
−1/2

(
(d1 − λ2)

1/2

(λ1 − d1)1/2
−(λ1 − d1)

1/2

(d1 − λ2)1/2

)
.

Then it is routine to check that U is real orthogonal and that H =

UT (diag λ)U =
(
d1
∗

∗
d2

)
is real symmetric with diagonal entries d1, d2.

Now suppose n > 2. If d1 = λ1, then (d2, . . . , dn) ≺ (λ2, . . . , λn).
By induction hypothesis on n− 1, there exists an (n− 1)-square real
symmetric matrix G having diagonal entries d2, . . . , dn and eigenval-
ues λ2, . . . , λn. Then take H = (λ1)⊕G, as desired.

If d1 < λ1, since the sum of all dis equals that of all λis, it is
impossible that di < λi for all i. Let d1 < λ1, . . . , dk < λk, and
dk+1 ≥ λk+1 for some k ≥ 1. Then λk+1 ≤ dk+1 ≤ dk < λk. Put
λ′k+1 = λk+1+λk−dk. It follows that (dk, λ′k+1) ≺ (λk, λk+1). By the
above argument for n = 2, there is a 2× 2 real orthogonal matrix U2

such that the diagonal entries of UT
2 diag(λk, λk+1)U2 are dk, λ

′
k+1.

Now replace the 2 × 2 principal submatrix in rows k and k + 1
of the identity matrix In by U2 to get an n × n matrix V . Then
V is real orthogonal. Set F = V T (diag λ)V . Then F is real sym-
metric, having eigenvalues λ1, . . . , λk, λk+1, . . . , λn and diagonal en-
tries λ1, . . . dk, λ

′
k+1, . . . , λn. Let λ

′ = (λ1, . . . dk, λ
′
k+1, . . . , λn). Then

d ≺ λ′ ≺ λ; λ′ and λ differ by only two elements, and d and λ′ both
contain dk. Let d̃ be the vector by deleting dk from d and λ̃ by delet-



351

ing dk from λ′. Then d̃ ≺ λ̃. By induction, there exists an (n − 1)-
square real orthogonal matrix Un−1 such that UT

n−1(diag λ̃)Un−1 has

diagonal entries d̃. Now construct an n-square matrix W = (wij) by
inserting a row and column in Un−1 so that wkk = 1 and all other
ws are 0 in the row and column. Then W is real orthogonal and
H =W TFW has diagonal entries d1, d2, . . . , dn, as desired.

Theorem 10.19 Let A be an n-square complex matrix. Then

|d(A)| ≺w σ(A) (10.8)

and

|λ(A)| ≺w σ(A). (10.9)

Proof. We may assume that the absolute values of the diagonal
entries of A are in decreasing order. For each aii, let ti be such that

tiaii = |aii|, |ti| = 1, i = 1, . . . , n.

Let B = Adiag(t1, . . . , tn) and let C be the leading k × k principal
submatrix of B. Then B has the same singular values as A, and

d(C) = (|a11|, . . . , |akk|).

By Theorem 8.14, we have σi(C) ≤ σi(B), i = 1, . . . , k.
Applying Theorem 9.6 reveals (10.8):

| trC| = |a11|+ · · ·+ |akk|
≤ σ1(C) + · · ·+ σk(C)

≤ σ1(B) + · · ·+ σk(B)

= σ1(A) + · · ·+ σk(A).

For (10.9), let A = U∗TU be a Schur decomposition of A, where
U is unitary and T is upper-triangular. Then

|λ(A)| = |d(T )| and σ(A) = σ(T ).

An application of (10.8) gives (10.9).
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Theorem 10.20 Let A, B, C be n× n complex matrices such that(
A B
B∗ C

)
≥ 0.

Then
σ(B) ≺wlog λ

1/2(A) ◦ λ1/2(C) (10.10)

and
|λ(B)| ≺wlog λ

1/2(A) ◦ λ1/2(C). (10.11)

Proof. For any n× p matrix U and any n× q matrix V , we have(
U∗ 0
0 V ∗

)(
A B
B∗ C

)(
U 0
0 V

)
=

(
U∗AU U∗BV
V ∗B∗U V ∗CV

)
≥ 0.

If B = 0, there is nothing to prove. Let rank (B) = r > 0 and
choose U and V so that B = UDV ∗ is a singular value decomposition
of B, where D is the r × r diagonal matrix diag(σ1(B), . . . , σr(B)),
and U and V are n × r partial unitary matrices; that is, U∗U =
V ∗V = Ir. Then U

∗BV = D.
Denote by [X]k the k × k leading principal submatrix of matrix

X. Extracting such submatrix from each block for every k ≤ n:(
[U∗AU ]k [D]k
[D]k [V ∗CV ]k

)
≥ 0.

Taking the determinant for each block and then for the 2×2 matrix,

det[D]2k ≤ det([U∗AU ]k) det([V
∗CV ]k).

Or equivalently, for each 1 ≤ k ≤ r,

k∏
i=1

σ2i (B) ≤
k∏

i=1

λi([U
∗AU ]k)λi([V

∗CV ]k).

By the eigenvalue interlacing theorem (Section 8.3), we arrive at

k∏
i=1

σ2i (B) ≤
k∏

i=1

λi(A)λi(C).
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(10.10) follows by taking the square roots of both sides. (10.11) is
similarly obtained by letting B = WTW ∗, where W is unitary and
T is an upper-triangular matrix with eigenvalues λ1(B), λ2(B), . . . ,
λn(B) on the main diagonal (Schur decomposition).

Corollary 10.2 (Weyl) Let A be any n× n complex matrix. Then

|λ(A)| ≺log σ(A). (10.12)

Proof 1. Note that |λ1(A) · · ·λn(A)| = σ1(A) · · ·σn(A) = | detA|.
To show the log-majorization, let A = UDV be a singular value
decomposition of A, where U, V are unitary, and D is diagonal. Then(

|A∗| A
A∗ |A|

)
=

(
U 0
0 V ∗

)(
D D
D D

)(
U∗ 0
0 V

)
≥ 0.

Applying (10.11) to the block matrix on the left gives the inequality.

Proof 2. Let |λmax(X)| represent the largest modulus of the eigen-
values ofX. Then |λmax(X)| ≤ σ1(X). For any given positive integer
k ≤ n, consider the compound matrix A(k). For any j1 < · · · < jk,

k∏
i=1

|λji(A)| ≤ |λmax(A
(k))| ≤ σ1(A

(k)) =
k∏

i=1

σi(A).

As log-majorization implies weak majorization, we have

|λ(A)| ≺w σ(A), i.e., |λ(A)| ≺w λ(|A|),

which is (10.9). Note that this is weaker than the log-majorization.

Corollary 10.3 (Horn) Let A,B ∈ Mn. Then

σ(AB) ≺log σ(A) ◦ σ(B).

Proof. This is immediate from (10.10) by observing that

(A∗, B)∗(A∗, B) =

(
AA∗ AB
B∗A∗ B∗B

)
≥ 0. (10.13)

Note that for any n-square matrix X,
∏n

i=1 σi(X) = | detX|.

Sec. 10.4 Majorization of Diagonal Entries, Eigenvalues, and Singular Values
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Corollary 10.4 (Bhatia–Kittaneh) Let A,B ∈ Mn. Then

2σi(AB) ≤ σi(A
∗A+ BB∗), i = 1, 2, . . . , n.

Proof. Use the block matrix in (10.13). By Problem 11, we have

2σi(AB) ≤ λi

(
(A∗, B)∗(A∗, B)

)
= λi

(
(A∗, B)(A∗, B)∗

)
= λi(A

∗A+ BB∗) = σi(A
∗A+BB∗).

Problems

1. Let A ∈ Mn. Prove or disprove each of the following identities.

(a) σ(A) = σ(A∗).

(b) σ(|A|) = σ(|A∗|).
(c) λ(A) = λ(A∗).

(d) λ(|A|) = λ(|A∗|).
(e) d(A) = d(A∗).

(f) d(|A|) = d(|A∗|).
(g) σ(A) = λ(|A|).
(h) σ(A) = σ(|A|).

2. Let A be a Hermitian matrix partitioned as A =
(

A11

A21

A12

A22

)
. Show

that A11 ⊕ A22 = 1
2
(A+ UAU∗), where U = I ⊕ (−I), and that

λ(A11 ⊕ A22) = (λ(A11), λ(A22)) ≺ λ(A).

3. For any square complex matrix A = (aij), show that

max
i

|aii| ≤ |λmax(A)| ≤ σmax(A).

4. Show by example that |d(A)| ≺wlog σ(A) is not true in general.

5. Show that |d(A)| ≺w |λ(A)| for all normal matrices A and that it is

not true for nonnormal matrix B =
(
2
1
1
1

)−1 ( 0
0
1
0

) (
2
1
1
1

)
=
(

1
−1

1
−1

)
.
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6. Let A = (aij) ∈ Mn and p be a permutation on {1, 2, . . . , n}. Denote
dp(A) = (a1p(1), a2p(2), . . . , anp(n)). Show that |dp(A)| ≺w σ(A).

7. Verify that
(
1
c
0
1

)−1
(

λ1

0
1
λ2

) (
1
c
0
1

)
=
(

d1

∗
∗
d2

)
, where c = d1 − λ1.

8. Let A be a square complex matrix. Majorization (10.8) ensures that
|d(A)| ≺w σ(A). Show that this ≺w becomes ≺ if and only if A = PU
for a positive semidefinite matrix P and a diagonal unitary matrix U .

9. Let A be a square complex matrix. Majorization (10.9) ensures that
|λ(A)| ≺w σ(A). Show that this ≺w becomes ≺ if and only if A is
normal; that is, |λ(A)| ≺ λ(|A|) if and only if A is normal.

10. Let A be an n × n positive definite matrix having diagonal entries
d1 ≥ d2 ≥ · · · ≥ dn and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Show that

n∏
i=k

di ≥
n∏

i=k

λi,
n∑

i=k

1

di
≤

n∑
i=k

1

λi
, k = 1, 2, . . . , n.

11. Let A, B, C be n× n complex matrices such that M =
(

A
B∗

B
C

)
≥ 0.

Show that M − 2N ≥ 0, where N =
(

0
B∗

B
0

)
≥ 0, and that

2σi(B) ≤ λi(M), i = 1, 2, . . . , n.

12. Referring to Corollary 10.4, show by example that A∗A cannot be
replaced with AA∗; that is, it is not true in general that 2σi(AB) ≤
σi(AA

∗ +BB∗), even though 2σi(AB) ≤ σi(A
∗A+BB∗) for all i.

13. Show that Corollary 10.3 implies Theorem 10.20 via Theorem 6.8.

14. Let A ∈ Mn. Show that

(a) |λ(A)|2 ≺w σ2(A).

(b) |d(A)|2 ≺wlog d(|A|) ◦ λ(|A∗|).
(c) d(|A|) ◦ d(|A∗|) ≺w λ(A∗A).

(d) |λ(A+A∗)| ≺w λ(|A|+ |A∗|) and |λ(A ◦A∗)| ≺w λ(|A| ◦ |A∗|).

15. Let A, B, C ∈ Mn be such that
(

A
B∗

B
C

)
≥ 0. Show that(

∥A∥op ∥B∥op
∥B∗∥op ∥C∥op

)
≥ 0 and

(
ρ(A) ρ(B)
ρ(B∗) ρ(C)

)
≥ 0,

where ∥X∥op and ρ(X) are the spectral norm and spectral radius of
square matrixX, respectively. Do these hold for 3×3 block matrices?

. ⊙ .
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Now we turn our attention to the eigenvalue and singular value in-
equalities in majorization for the sum of Hermitian matrices.

Theorem 10.21 (Fan) Let A, B ∈ Mn be Hermitian. Then

λ(A+B) ≺ λ(A) + λ(B).

Proof. By Theorem 8.17, with Sk denoting a set of any k orthonor-
mal vectors x1, x2, . . . , xk ∈ Cn, we see that the weak majorization
λ(A+B) ≺w λ(A) + λ(B) is equivalent to, for each k ≤ n,

max
Sk

k∑
i=1

x∗i (A+B)xi ≤ max
Sk

k∑
i=1

x∗iAxi +max
Sk

k∑
i=1

x∗iBxi.

Since tr(A+B) = trA+ trB, the desired majorization follows.

Theorem 10.22 Let A, B ∈ Mn be Hermitian. Then

λ(A)− λ(B) ≺ λ(A−B).

Proof. Write A = B + (A−B). By Theorem 8.18,

k∑
t=1

λit(A) ≤
k∑

t=1

λit(B) +

k∑
j=1

λj(A−B),

which yields, for k = 1, 2, . . . , n,

max
1≤i1<···<ik≤n

k∑
t=1

(
λit(A)− λit(B)

)
≤

k∑
j=1

λj(A− B);

that is,
λ(A)− λ(B) ≺w λ(A−B).

As equality holds when k = n, the desired majorization follows.
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Note that λ↑(H) = (λn(H), . . . , λ1(H)) = −λ(−H) for any n×n
Hermitian matrix H . We may rewrite the above two theorems as

λ(A) + λ↑(B) ≺ λ(A+B) ≺ λ(A) + λ(B); (10.14)

λ(A)− λ(B) ≺ λ(A−B) ≺ λ(A)− λ↑(B). (10.15)

For singular value majorizations, if A is anm×n complex matrix,
as usual, we denote by σ(A) the singular value vector of A; the
singular values of A are the eigenvalues of |A| = (A∗A)1/2. As we

know, for any matrix X, matrix X̂ =
(

0
X∗

X
0

)
is Hermitian and has

eigenvalues σ1(X), . . . , σr(X), 0, . . . , 0,−σr(X), . . . ,−σ1(X), where r

is the rank of X. Applying Theorem 10.21 to Â =
(

0
A∗

A
0

)
and

B̂ =
(

0
B∗

B
0

)
gives the analogous majorization for singular values.

Theorem 10.23 Let A and B be m× n complex matrices. Then

σ(A+B) ≺w σ(A) + σ(B). (10.16)

Applying Theorem 10.22 to Â and B̂ reveals the following ma-
jorization on the difference (in absolute value) of singular values and
the singular values of the difference of matrices.

Theorem 10.24 Let A and B be m× n complex matrices. Then

|σ(A)− σ(B)| ≺w σ(A−B). (10.17)

Proof. By Theorem 10.22, λ(Â)− λ(B̂) ≺ λ(Â− B̂); that is,

(σ1(A)− σ1(B), . . . , 0, . . . , 0, . . . , σ1(B)− σ1(A)) ≺ λ(Â− B̂).

It follows that, for k = 1, 2, . . . , n,

max
1≤i1<···<ik≤n

k∑
t=1

∣∣∣σit(A)− σit(B)
∣∣∣ ≤ k∑

j=1

σj(A−B).

Theorem 10.25 Let A and B be n-square positive semidefinite ma-
trices and let z be any complex number. Then

σ(A− |z|B) ≺wlog σ(A+ zB) ≺wlog σ(A+ |z|B). (10.18)
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Proof. For the second part, by (10.10), it is sufficient to notice that(
A+ |z|B A+ zB
A+ z∗B A+ |z|B

)
≥ 0.

Now we show the first majorization in (10.18). If A and B are
nonnegative diagonal matrices, invoking the elementary inequality
|a− |z|b| ≤ |a+ zb|, where z ∈ C, a, b ≥ 0, we arrive at

|det(A− |z|B)| ≤ |det(A+ zB)|. (10.19)

Inequality (10.19) actually holds for all positive semidefinite A
and B due to the fact that there exists an invertible matrix P such
that P ∗AP and P ∗BP are both nonnegative diagonal (Theorem 7.6).

Note that A−|z|B is Hermitian. By (10.19) and (10.12), we have

n∏
i=1

σi(A− |z|B) ≤
n∏

i=1

|λi(A+ zB)| ≤
n∏

i=1

σi(A+ zB). (10.20)

We claim that the upper limit n for the products in (10.20) can
be replaced by any positive integer k ≤ n. To show this, let U be an
n-square unitary matrix such that U∗(A−|z|B)U = diag(λ1, . . . , λn),
where |λi| = σi(A− |z|B). Write U = (U1, U2), where U1 consists of
the first k columns of U . Then U∗

1AU1 and U∗
1BU1 are k× k. Thus,

k∏
i=1

σi(A− |z|B) =
k∏

i=1

σi(U
∗
1 (A− |z|B)U1)

=
k∏

i=1

σi(U
∗
1AU1 − |z|U∗

1BU1)

≤
k∏

i=1

σi(U
∗
1AU1 + zU∗

1BU1) (by (10.20))

=

k∏
i=1

σi(U
∗
1 (A+ zB)U1)

≤
k∏

i=1

σi(A+ zB).

The last inequality is by Problem 11 of Section 8.3.
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The following result is immediate since “≺wlog” implies “≺w”.

Corollary 10.5 Let A and B be n-square positive semidefinite ma-
trices and let z be any complex number with |z| = 1. Then

σ(A−B) ≺w σ(A+ zB) ≺w σ(A+B).

Theorem 10.26 Let A be an n×n complex matrix and let H(A) be
the Hermitian part of A; that is, H(A) = (A+A∗)/2. Then for any
n× n Hermitian matrix G,

σ(A−H(A)) ≺w σ(A−G). (10.21)

Proof. By Theorem 10.23,

σ(A−H(A)) = σ
(
(A−G)/2− (A−G)∗/2

)
≺w σ((A−G)/2) + σ((A−G)∗/2)

= σ(A−G).

Theorem 10.27 Let A be an n × n positive semidefinite matrix.
Then for any n× n unitary matrix U ,

σ(A− In) ≺w σ(A− U) ≺w σ(A+ In). (10.22)

Proof. Because (10.22) holds if and only if it holds when A is re-
placed with W ∗AW , where W is unitary, we may assume that A is
a diagonal matrix with nonnegative diagonal entries. An application
of Theorem 10.24 results in

σ(A− In) = (|σ(A)− σ(U)|)↓ ≺w σ(A− U)

≺w σ(A) + σ(U) = σ(A+ I).

Corollary 10.6 Let A be an n × n complex matrix and A = UP
be a polar decomposition of A, where U is unitary and P is positive
semidefinite. Then for any n× n unitary matrix V

σ(A− U) ≺w σ(A− V ) ≺w σ(A+ U). (10.23)
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Proof. Notice that

σ(A− U) = σ(UP − U) = σ(P − I).

Invoking Theorem 10.27 reveals the desired majorizations.

We end this section by presenting another result of Fan.

Theorem 10.28 (Fan) Let A be an n× n matrix with eigenvalues
λ1(A), . . . , λn(A). Let Reλ(A) = (Reλ1(A), . . . ,Reλn(A)). Then

Reλ(A) ≺ λ(H(A)),

where H(A) = (A+A∗)/2 is the Hermitian part of the matrix A.

Proof. By the Schur triangularization theorem, we can write A =
V ∗TV , where V is unitary and T is upper-triangular. Moreover, we
may assume that Reλ1(A) ≥ · · · ≥ Reλn(A). Note that

n∑
i=1

λi(H(A)) = trH(A) = Re trA = Re
n∑

i=1

λi(A) =
n∑

i=1

Reλi(A).

Now for partial sum, by min-max representation, we have

k∑
i=1

λi(H(A)) = max
UU∗=Ik

trU(H(A))U∗

= max
UU∗=Ik

trUV ∗(H(T ))V U∗

= max
WW ∗=Ik

trW (H(T ))W ∗.

Take W = (Ik, 0), k × n. Then

k∑
i=1

λi(H(A)) ≥
k∑

i=1

(λi(A) + λi(A)

2

)
=

k∑
i=1

Reλi(A).

Problems

1. Let z be a complex number. Show that |1− |z|| ≤ |1− z| ≤ 1 + |z|.
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2. Show that the following matrix inequalities do not hold in general

|A− |z|B| ≤ |A− zB| ≤ A+ |z|B

by taking z = i, A =
(
4
2
2
1

)
, and B =

(
1
2
2
4

)
.

3. Let A ∈ Mn and x be any n-row complex vector. Show that

λ(A+ x∗x) ≺
(
λ1(A) + xx∗, λ2(A), . . . , λn(A)

)
.

4. Show by example that neither of the following holds in general.

σi(A+B) ≥ σi(A) + σn(B), i = 1, 2, . . . , n;

k∑
i=1

σi(A+B) ≥
k∑

i=1

σi(A) +
k∑

i=1

σn−i+1(B), k = 1, 2, . . . , n,

where A, B ∈ Mn. However, the second inequality is true if the plus
sign “+” on the right-hand side is replace by the minus sign “−”.

5. Let A be an n × n complex matrix. Denote S(A) = A−A∗

2 . Show
that for any n× n skew-Hermitian matrix G

σ(A− S(A)) ≺w σ(A−G).

6. Let A ∈ Mn have a singular value decomposition A = UDV , where
U and V are unitary. Show that for any n× n unitary matrix W ,

σ(A− UV ) ≺w σ(A−W ) ≺w σ(A+ UV ).

7. If A = (aij) ∈ Mn is normal and d(A) = (a11, . . . , ann), show that

Re d(A) ≺ Reλ(A).

8. (Fan–Hoffman) Let A be a square complex matrix. Show that

λ

(
A∗ +A

2

)
≺w

∣∣∣∣λ(A∗ + A

2

)∣∣∣∣ ≺w σ(A).

9. Let A ∈ Mn. Denote the (necessarily real) eigenvalues of the Hermi-
tian matrix H(A) = A+A∗

2
by h1 ≥ h2 ≥ · · · ≥ hn. Show that

hi ≤ σi(A), i = 1, 2, . . . , n.

However, if we rearrange the absolute values of these eigenvalues of
H(A) in the decreasing order |hi1 | ≥ |hi2 | ≥ · · · ≥ |hin |, show by
example that |hit | ≤ σt(A) does not hold in general.
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10. Let A and B be n× n complex matrices. Show that

σ(A+B) ≺w σ(A⊕B) ≺w σ(|A|+ |B|).

11. Let A1, . . . , Am be n-square positive semidefinite matrices and let
λ1, . . . , λm be complex numbers. Show that

|det(λ1A1 + · · ·+ λmAm)| ≤ det(|λ1|A1 + · · ·+ |λm|Am).

12. Let A and B be n× n positive semidefinite matrices. Show that

|λ(A−B)| ≺wlog λ(A+B).

13. Let A and B be n× n positive semidefinite matrices. Show that

σi(A−B) ≤ σi(A⊕B), i = 1, 2, . . . , n.

14. Let A and B be n× n positive semidefinite matrices. Show that(
λ(A+B), 0

)
≺
(
λ(A), λ(B)

)
.

15. Let A and B be n× n positive definite matrices. Show that

n∑
i=1

1

λi(A) + λn−i+1(B)
≤ tr

(
(A+B)−1

)
≤

n∑
i=1

1

λi(A) + λi(B)

and
n∏

i=1

(
λi(A) + λn−i+1(B)

)
≤ det(A+B) ≤

n∏
i=1

(
λi(A) + λi(B)

)
.

16. Let A, B be n×n strict contractions, i.e., σ1(A) < 1, σ1(B) < 1. Let

H =

(
(I − A∗A)−1 (I − A∗B)−1

(I −B∗A)−1 (I −B∗B)−1

)
.

Show that

(1, 1, . . . , 1) ≤ d(H) ≺
(
λ((I − A∗A)−1), λ((I −B∗B)−1)

)
≺ λ(H).

Show also that H ≥
(

I
I
I
I

)
to conclude that H has at least n eigen-

values greater than or equal to 2. [Hint: Expand (I −XY )−1.]

. ⊙ .



10.6 Majorization for Matrix Product

We have shown in the previous section (see (10.16)) that for complex
matrices A and B of the same size

σ(A+B) ≺w σ(A) + σ(B).

The analogue of this for product is: if A and B are n× n matrices,

σ(AB) ≺w σ(A) ◦ σ(B). (10.24)

In particular, for n× n positive semidefinite matrices A and B,

λ(AB) ≺w λ(A) ◦ λ(B).

(10.24) was proved in Section 10.4 (see Corollary 10.3). In this
section, we first present a different classic proof of it, study the ma-
jorization inequalities of the matrix product AB, then move on to
show the majorization inequalities concerning the power of product
(i.e., (AB)m) and the product of the powers (i.e., AmBm).

Theorem 10.29 (Lidskǐi) Let A and B be n× n positive semidef-
inite matrices and let 1 ≤ i1 < · · · < ik ≤ n. Then

k∏
t=1

λit(AB) ≤
k∏

t=1

λit(A)λt(B). (10.25)

Equality holds when k = n.

Proof. Note that λi(AB) ≤ λi(A)λ1(B) for any positive semidefinite
matrices A and B and any index i (Theorem 8.12). Apply this to the
compound matrix (AB)(k). Because

∏k
t=1 λit(AB) is an eigenvalue

of (AB)(k) indexed by α = (i1, . . . , ik), we have

k∏
t=1

λit(AB) = λα((AB)(k)) = λα((A
(k)B(k))

≤ λα(A
(k))λ1(B

(k)) =
k∏

t=1

λit(A)λt(B).
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Equality holds when k = n as det(AB) = detAdetB.

Since σ2j (X) = λj(X
∗X) for any matrix X and index j, we have

Corollary 10.7 Let A,B ∈ Mn and let 1 ≤ i1 < · · · < ik ≤ n. Then

k∏
t=1

σit(AB) ≤
k∏

t=1

σit(A)σt(B). (10.26)

Equality holds when k = n.

Taking it = t in the corollary reveals the log-majorization

σ(AB) ≺log σ(A) ◦ σ(B). (10.27)

In particular, if A and B are positive semidefinite matrices, then

λ(AB) ≺log λ(A) ◦ λ(B).

By Theorem 10.15, (10.27) implies the weak majorization (10.24).
The next theorem gives lower bounds for σ(AB) and λ(AB).

Theorem 10.30 Let A and B be n× n complex matrices. Then

σ(A) ◦ σ↑(B) ≺log σ(AB); σ(A) ◦ σ↑(B) ≺w σ(AB).

In particular, if A and B are positive semidefinite, then

λ(A) ◦ λ↑(B) ≺log λ(AB); λ(A) ◦ λ↑(B) ≺w λ(AB).

Proof. It is sufficient to show the first log-majorization. We may as-
sume that A and B are nonsingular by continuity. Note that (10.26)
also holds when AB on the left-hand side is replaced by BA. Taking
logarithm for both sides of (10.26) with BA for AB, we get

max
1≤i1<···<ik≤n

k∑
i=1

( lnσit(BA)− ln σit(A)) ≤
k∑

t=1

lnσt(B).

It follows that lnσ(BA) − lnσ(A) ≺ lnσ(B). With A replaced by
B−1A and then B by AB, we obtain lnσ(A)−ln σ(B−1) ≺ ln σ(AB),
i.e., ln (σ(A) ◦ σ↑(B)) ≺ lnσ(AB), or σ(A) ◦ σ↑(B) ≺log σ(AB).
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In summary, we have for n× n complex matrices A and B

σ(A) ◦ σ↑(B) ≺log σ(AB) ≺log σ(A) ◦ σ(B); (10.28)

σ(A) ◦ σ↑(B) ≺w σ(AB) ≺w σ(A) ◦ σ(B).

In particular, if A and B are positive semidefinite, then

λ(A) ◦ λ↑(B) ≺log λ(AB) ≺log λ(A) ◦ λ(B); (10.29)

λ(A) ◦ λ↑(B) ≺w λ(AB) ≺w λ(A) ◦ λ(B).

We now study the majorization inequalities concerning the power
of product, (AB)m, and the product of the powers, AmBm.

By (10.27), it is immediate that for any positive integer m and
n× n positive semidefinite matrices A and B,

λ(AmBm) ≺log λ
m(A) ◦ λm(B)

(here λα(X) = (λα1 (X), . . . , λαn(X)) = ((λ1(X))α, . . . , (λn(X))α)). Thus

λ1/m(AmBm) ≺log λ(A) ◦ λ(B).

This says that λ1/m(AmBm) is bounded above in majorization by
λ(A)◦λ(B). In what follows we show it is bounded below by λ(AB),
or equivalently, λ((AB)m) ≺log λ(A

mBm). Putting these together,

λ(AB) ≺log λ
1/m(AmBm) ≺log λ(A) ◦ λ(B).

In fact, more can be said about λ1/m(AmBm), as we show.

We have seen that for n× n positive semidefinite matrices A,B,

λ1(AB) ≤ λ1(A)λ1(B), λn(AB) ≥ λn(A)λn(B),

and that for arbitrary n× n matrices X,Y ,

|λ1(XY )| ≤ σ1(XY ) ≤ σ1(X)σ1(Y )

and

|λn(XY )| ≥ σn(XY ) ≥ σn(X)σn(Y ).
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Theorem 10.31 Let A and B be n× n positive semidefinite matri-
ces. Then for any positive integers p and q, where p ≤ q,

λ1(AB) ≤ λ
1/p
1 (ApBp) ≤ λ

1/q
1 (AqBq) ≤ λ1(A)λ1(B)

and

λn(AB) ≥ λ1/pn (ApBp) ≥ λ1/qn (AqBq) ≥ λn(A)λn(B).

Proof. We use induction on positive integer m to show that

λ
1/m
1 (AmBm) ≤ λ

1/m+1
1 (Am+1Bm+1). (10.30)

If m = 1, then

λ1(AB) ≤ σ1(AB) = λ
1/2
1 (ABBA) = λ

1/2
1 (A2B2).

Suppose that the inequalities hold for integers no more than m. Put

X = A(m+1)/2B(m+1)/2, Y = B(m−1)/2A(m−1)/2.

Then λ1(XY ) = λ1(A
mBm). However,

λ1(XY ) ≤ σ1(X)σ1(Y ) = λ
1/2
1 (Am+1Bm+1)λ

1/2
1 (Am−1Bm−1).

By induction hypothesis on m− 1, we have

λ1(A
mBm) ≤ λ

1/2
1 (Am+1Bm+1)λ

1/2
1 (Am−1Bm−1)

≤ λ
1/2
1 (Am+1Bm+1)λ

(m−1)/2m
1 (AmBm).

Thus
λ
(m+1)/2m
1 (AmBm) ≤ λ

1/2
1 (Am+1Bm+1);

that is,

λ
1/m
1 (AmBm) ≤ λ

1/(m+1)
1 (Am+1Bm+1).

This proves (10.30). On the other hand, for any positive integer m,

λ
1/m
1 (AmBm) ≤ λ

1/m
1 (Am)λ

1/m
1 (Bm) = λ1(A)λ1(B).

The second part is similarly proven.
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Theorem 10.32 (Wang–Gong) Let A and B be n × n positive
semidefinite matrices. Then for any positive integers p and q, p ≤ q,

λ(AB) ≺log λ
1/p(ApBp) ≺log λ

1/q(AqBq) ≺log λ(A) ◦ λ(B).

Proof. We only show that for any positive integer m,

λ1/m(AmBm) ≺log λ
1/m+1(Am+1Bm+1).

Considering the compound matrix (AmBm)(k), where k ≤ n, we have

(AmBm)(k) = (Am)(k)(Bm)(k) = (A(k))m(B(k))m.

Moreover,

λ1

(
(A(k))m(B(k))m

)
= λ1

(
(AmBm)(k)

)
=

k∏
i=1

λi(A
mBm).

Note that A(k) and B(k) are positive semidefinite. By (10.30),

k∏
i=1

λ
1/m
i (AmBm) = λ

1/m
1

(
(A(k))m(B(k))m

)
≤ λ

1/m+1
1

(
(A(k))m+1(B(k))m+1

)
=

k∏
i=1

λ
1/m+1
i (Am+1Bm+1).

When k = n, equality holds as for any positive integer m,

n∏
i=1

λ
1/m
i (AmBm) = detAdetB.

The previous theorem refines λ(AB) ≺log λ(A) ◦ λ(B). Our next
theorem shows an analogous result for λ(A) ◦ λ↑(B) ≺log λ(AB).

Theorem 10.33 (Wang–Gong) Let A and B be n × n positive
semidefinite matrices. Then for any positive integers p and q, p ≤ q,

λ(A) ◦ λ↑(B) ≺log λ
q(A1/qB1/q) ≺log λ

p(A1/pB1/p) ≺log λ(AB).
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Proof. By the first log-majorization of (10.29), we have

λ(A1/m) ◦ λ↑(B1/m) ≺log λ(A
1/mB1/m).

Raising both sides to the mth power, we arrive at

λ(A) ◦ λ↑(B) ≺log λ
m(A1/mB1/m).

We now show that

λm+1(A1/m+1B1/m+1) ≺log λ
m(A1/mB1/m).

By Theorem 10.31, we have (Problem 5)

λm+1
1 (A1/m+1B1/m+1) ≤ λm1 (A1/mB1/m) ≤ λ1(AB).

The desired log-majorizations follow by making use of compound
matrices as we did in the proof of Theorem 10.32.

The following corollaries are immediate from the theorems. For
instance, withA replaced byAm andB byBm in the log-majorization
λm(A1/mB1/m) ≺log λ(AB), we obtainλm(AB)≺log λ(A

mBm), which
results in the weak majorization λm(AB) ≺w λ(A

mBm) .

Corollary 10.8 Let A and B be n×n positive semidefinite matrices.
Then for any positive integer m,

λm(A) ◦ (λm(B))↑ ≺log λ
m(AB) ≺log λ(A

mBm) ≺log λ
m(A) ◦ λm(B)

and

λm(A) ◦ (λm(B))↑ ≺w λm(AB) ≺w λ(AmBm) ≺w λm(A) ◦ λm(B).

Corollary 10.9 (Lieb–Thirring) Let A and B be n × n positive
semidefinite matrices. Then for any positive integer m,

tr(AB)m ≤ tr(AmBm). (10.31)

Equality holds if and only if m = 1 or AB = BA.
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Proof. The inequality is readily seen from the previous corollary.
We show that equality occurs if and only if m = 1 or AB = BA.

Sufficiency is obvious. For necessity, assume that equality holds
for some m ≥ 2. We first consider the case m = 2; that is, tr(AB)2 =
tr(A2B2). Without loss of generality, we may assume that A is a
diagonal matrix with diagonal entries a1, . . . , an. Then

tr(A2B2)− tr(AB)2 =
∑
i, j

a2i |bij|2 −
∑
i, j

aiaj |bij |2

=
∑
i<j

(ai − aj)
2|bij |2 = 0.

Thus aibij = ajbij for every pair of i and j; that is, AB = BA.

Letm > 2. We show that tr(AB)m= tr(AmBm) implies tr(AB)2 =
tr(A2B2), which leads to AB = BA, as we have just proven.

If tr(AB)2 ̸= tr(A2B2), we apply the strictly increasing and
strictly convex function f(t) = tm/2, t > 0, to the weak majorization
λ2(AB) ≺w λ(A

2B2). By Theorem 10.14, we arrive at

tr(AB)m =
n∑

i=1

λ
m/2
i ((AB)2) <

n∑
i=1

λ
m/2
i (A2B2).

On the other hand, since x ≺w y ⇒ xm ≺w ym for x, y ∈ Rn
+

(Problem 22, Section 10.3) and λ1/2(A2B2) ≺w λ1/m(AmBm) (The-
orem 10.32), which results in λm/2(A2B2) ≺w λ(A

mBm), we have

n∑
i=1

λ
m/2
i (A2B2) ≤

n∑
i=1

λi(A
mBm) = tr(AmBm).

This contradicts the assumption that tr(AB)m = tr(AmBm).

Problems

1. Show that the inequalities in Theorem 10.31 hold for singular values
σ1 (resp.,σn) in place of λ1 (resp.,λn) when A and B are normal
matrices. If A or B is not normal, then they are not true in general:
Take A =

(
1
0
1
1

)
and B = I2 as an example.
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2. Let A and B be positive semidefinite matrices of the same size, and
p and q be positive numbers with 1 < p <∞, 1

p + 1
q = 1. Show that

tr(A1/pB1/q) ≤ (trA)1/p(trB)1/q

and
(tr(A+B))

1/p ≤ (trAp)1/p + (trBq)1/q.

3. Let A be an n×n positive semidefinite matrix, and p and q be positive
numbers such that 1 < p < ∞, 1

p + 1
q = 1. Show that for all n × n

positive semidefinite matrices B with trBq = 1, the inequality

tr(AB) ≤ (trAp)1/p

holds. Show that equality occurs if and only if Bq = 1
trApA

p.

4. Let A and B be positive semidefinite matrices of the same size. Show
that λm1 (AB) ≤ λ1(A

m)λ1(B
m) for any positive integer m.

5. Let A and B be positive semidefinite matrices of the same size. Show
that λm1 (A1/mB1/m) decreases as m increases; that is,

λm+1
1 (A1/m+1B1/m+1) ≤ λm1 (A1/mB1/m).

6. Show Theorem 10.32 for singular values with A and B both normal.

7. Let A ◦ B = (aijbij) be the Hadamard product of A = (aij) and
B = (bij). Show, with A =

(
1
0
0
1

)
and B =

(
1
1
1
1

)
, that the inequality

n∑
i=1

λmi (A)λmn−i+1(B) ≤ tr ((A ◦B)m)

does not hold in general for positive semidefinite matrices A and B.

8. Let A be a square matrix. Show that

σ2(A) ≺ σ(A2) ⇔ A is normal.

9. Referring to (10.28), show that for n×n complex matrices A and B,
σ(A) ◦ σ↑(B) ≺log σ(BA). Note that σ(AB) ̸= σ(BA) in general.

10. Let A and B be positive semidefinite and 0 ≤ r ≤ 1. Show that

λ1(A
rBr) ≤ λr1(AB).

The inequality is reversed for r ≥ 1.
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11. Let A and B be n × n positive semidefinite matrices and k be a
positive integer, k ≤ n. If 1 ≤ i1 < i2 < · · · < ik ≤ n, show that

(a)
∏k

t=1 λt(AB) ≥
∏k

t=1 λit(A)λn−it+1(B).

(b)
∑k

t=1 λt(AB) ≥
∑k

t=1 λit(A)λn−it+1(B).

(c) tr(AB) ≥
∑n

t=1 λt(A)λn−t+1(B).

12. Let A and B be n× n complex matrices and k be a positive integer,
k ≤ n. If 1 ≤ i1 < i2 < · · · < ik ≤ n, show that

k∏
t=1

σit(AB) ≥
k∏

t=1

σit(A)σn−t+1(B),

but it is not true in general that

k∑
t=1

σit(AB) ≥
k∑

t=1

σit(A)σn−t+1(B).

13. Let A, B, and C be n× n positive definite matrices. Show that

lnλ(A−1C) ≺ lnλ(A−1B) + lnλ(B−1C).

14. Let A be an n× n matrix. Show that for any positive integer k,

σ(Ak) ≺log σ
k(A).

Deduce that
tr
(
(A∗)kAk

)
≤ tr(A∗A)k.

Show that equality holds if and only if A is a normal matrix.

15. Let A and B be n×n positive semidefinite matrices and k and m be
positive integers, k ≤ m. Show that

tr(AkBk)m ≤ tr(AmBm)k.

16. Let A and B be n×n Hermitian matrices andm be a positive integer.
Show that

| tr(AB)2m| ≤ tr(A2mB2m);

| tr(AmBm)2| ≤ tr(A2mB2m).

Show by the example A =
(

1
1

1
−1

)
and B =

(−1
1

1
0

)
that in general

| tr(AB)3| ̸≤ tr(A3B3).

. ⊙ .



10.7 Majorization and Unitarily Invariant Norms

This section shows a close relation between the weak majorization
and unitarily invariant matrix (vector) norms. To be precise, for
A,B ∈ Mm×n, we show that σ(A) ≺w σ(B) if and only if ∥A∥ ≤ ∥B∥
for all unitarily invariant matrix norms ∥ · ∥ on Mm×n. Note that
σ(A) = λ1/2(A∗A) is an n-vector for m×n matrix A. The symmetric
gauge functions that we introduce below serve as a “bridge” between
majorization and the matrix norm.

A symmetric gauge function is a real-valued function defined on
Rn that is invariant under any permutation of the components of the
vectors and any change of signs of the components. To be exact, ϕ :
Rn 7→ R is a symmetric gauge function if the following are satisfied.

a. ϕ(x) ≥ 0. And ϕ(x) = 0 if and only if x = 0.

b. ϕ(cx) = |c|ϕ(x), c ∈ R.
c. ϕ(x+ y) ≤ ϕ(x) + ϕ(y).

d. ϕ(x1, x2, . . . , xn) = ϕ(xp(1), xp(2), . . . , xp(n)), where p ∈ Sn.

e. ϕ(x1, x2, . . . , xn) = ϕ(ϵ1x1, ϵ2x2, . . . , ϵnxn), where all ϵi = ±1.

Apparently, a symmetric gauge function is a norm on Rn. Recall
that a vector norm is a function satisfying (a), (b), and (c).

One may check that φ(x) = maxi |xi| and ψ(x) =
∑

i |xi| are
symmetric gauge functions. Moreover, if ϕ is a symmetric gauge
function, then (a) ϕ(x) = ϕ(|x|) and (b) 0 ≤ x ≤ y ⇒ ϕ(x) ≤ ϕ(y).
We demonstrate the proof of (b) for the case n = 2. Let x = (x1, x2)
and y = (y1, y2). Let t1 be such that t1y1 = x1. Then 0 ≤ t1 ≤ 1 and

ϕ(x) = ϕ(x1, x2) = ϕ(t1y1, x2)

= ϕ

(
1 + t1

2
(y1, x2) +

1− t1
2

(−y1, x2)
)

≤ 1 + t1
2

ϕ(y1, x2) +
1− t1

2
ϕ(−y1, x2)

= ϕ(y1, x2).

Likewise, ϕ(y1, x2) ≤ ϕ(y1, y2) = ϕ(y). Thus ϕ(x) ≤ ϕ(y).
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One can prove (Problem 5) that the lp-norm on Rn

∥x∥p =
( n∑

i=1

|xi|p
)1/p

, p ≥ 1

is a symmetric gauge function, and so is the Ky Fan k-norm on Rn

∥x∥(k) = max
1≤i1<···<ik≤n

k∑
t=1

|xit |.

Theorem 10.34 Symmetric gauge functions are Schur-convex on Rn
+.

Proof. Let x, y ∈ Rn
+ and x ≺ y. We need to show that ϕ(x) ≤ ϕ(y)

for any symmetric gauge function ϕ on Rn. By Theorem 10.8, there
exists a doubly stochastic matrix A such that x = yA. By Theo-
rem 5.21, every doubly stochastic matrix is a convex combination of
permutation matrices. Write x =

∑m
i=1 tiyPi, where ti are positive

numbers adding up to 1 and Pi are permutation matrices. Then

ϕ(x) = ϕ
( m∑

i=1

tiyPi

)
≤

m∑
i=1

tiϕ(yPi) =
m∑
i=1

tiϕ(y) = ϕ(y).

Theorem 10.35 Let x, y ∈ Rn. Then |x| ≺w |y| if and only if
ϕ(x) ≤ ϕ(y) for all symmetric gauge functions ϕ on Rn.

Proof. For sufficiency, take ϕ to be the Ky Fan k-norm, k =
1, 2, . . . , n. Then ϕ(x) ≤ ϕ(y) yields |x| ≺w |y|. For necessity, since
|x| ≺w |y|, there exists a nonnegative vector u such that |x| ≺ u ≤ |y|.
Theorem 10.34 implies that ϕ(x) = ϕ(|x|) ≤ ϕ(u) ≤ ϕ(|y|) = ϕ(y).

Recall that a matrix-vector norm (see Section 4.2, Chapter 4) on
the vector space Mm×n is a function ∥·∥ from Mm×n to R+ satisfying

i. ∥A∥ ≥ 0, and ∥A∥ ≥ 0 if and only if A = 0,

ii. ∥cA∥ = |c|∥A∥, c ∈ C, and
iii. ∥A+B∥ ≤ ∥A∥+ ∥B∥.

It is further said to be unitarily invariant if

v. ∥UAV ∥ = ∥A∥ for all A ∈ Mm×n and unitary U and V .
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Note that the multiplicative condition ∥AB∥ ≤ ∥A∥∥B∥ is not
required for a matrix-vector norm.

If ϕ is a symmetric gauge function on Rn and A is an m × n
matrix, then σ(A) ∈ Rn and ϕ(σ(A)) is well defined. Moreover,
ϕ(σ(UAV )) = ϕ(σ(A)) for all m×m unitary U and n×n unitary V .
The following two theorems, due to von Neumann, best characterize
the relation between a unitarily invariant matrix-vector norm and
symmetric gauge functions through singular values.

Theorem 10.36 If ϕ : Rn 7→ R is a symmetric gauge function, then
∥A∥ϕ = ϕ(σ(A)) is a unitarily invariant norm on Mm×n.

Proof. Conditions (i) and (ii) are obviously satisfied. To show (iii),
let A and B be m×n matrices. Because σ(A+B) ≺w σ(A)+ σ(B),

∥A+B∥ϕ = ϕ(σ(A+ B)) ≤ ϕ(σ(A) + σ(B))

≤ ϕ(σ(A)) + ϕ(σ(B)) = ∥A∥ϕ + ∥B∥ϕ.

Thus ∥ · ∥ϕ is a matrix-vector norm. It is unitarily invariant because
σ(UAV ) = σ(A) for any m×m unitary U and n×n unitary V .

Theorem 10.37 If ∥·∥ is a unitarily invariant (matrix-vector) norm
on Mm×n, then there exists a symmetric gauge function ϕ on Rn such
that ∥A∥ = ϕ(σ(A)) for all m× n complex matrices A.

Proof. If m ≥ n, for x = (x1, . . . , xn) ∈ Rn, define an m× n matrix
Mx whose (i, i)-entry is xi, i = 1, 2, . . . , n, and 0 elsewhere. Let
ϕ(x) = ∥Mx∥. Then ϕ is a function from Rn to R+ and it is readily
seen that it satisfies (a) and (b). For (d) and (e), it suffices to note
that ∥PMxQ∥ = ∥Mx∥ for permutation matrices P and Q and for
diagonal matrices Q with ±1 on the main diagonal. For (c), we have

ϕ(x+ y) = ∥Mx+y∥ = ∥Mx +My∥
≤ ∥Mx∥+ ∥My∥ = ϕ(x) + ϕ(y).

Thus, ϕ : Rn 7→ R+ is a symmetric gauge function. For any m × n
matrix A, σ(A) = λ1/2(A∗A) ∈ Rn

+. Let A = UAσV be a singular
value decomposition of A, where Aσ =Mσ(A). Then

∥A∥ = ∥Aσ∥ = ∥Mσ(A)∥ = ϕ(σ(A)).
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If m < n, we define ∥X ∥̃ = ∥XT∥, where X is n×m. Then ∥ · ∥̃
is a unitarily invariant norm on Mn×m. The above argument ensures
a symmetric gauge function φ : Rm 7→ R+ such that φ(σ(X)) =
∥X∥˜= ∥XT∥. Define ϕ : Rn 7→ R+ by ϕ(x) = φ(x̃), where x̃ is the
m-vector consisting of the firstm largest components of x in absolute
value. Then ϕ is a symmetric gauge function on Rn (Problem 4).

Now for A ∈ Mm×n, A
T is n×m, σ(A) is an n-vector, and σ̃(A)

is an m-vector that differs from σ(A) by n −m zeros. Notice that
A∗A, AA∗, and AA∗ = (AT )∗AT have the same nonzero eigenvalues.
Thus σ̃(A) = σ(AT ). It follows that

ϕ(σ(A)) = φ(σ̃(A)) = φ(σ(AT )) = ∥AT∥˜= ∥A∥.

Theorem 10.38 (von Neumann) Let A, B ∈ Mm×n. Then

σ(A) ≺w σ(B) ⇔ ∥A∥ ≤ ∥B∥

for all unitarily invariant matrix-vector norms ∥ · ∥ on Mm×n.

Proof. Theorem 10.37 says that unitarily invariant norms are es-
sentially the same as symmetric gauge functions. On the other
hand, Theorem 10.35 ensures that σ(A) ≺w σ(B) if and only if
ϕ(σ(A)) ≤ ϕ(σ(B)) for all symmetric gauge functions ϕ.

Theorem 10.39 (Fan Dominance Theorem) Let A, B ∈ Mm×n.
Then ∥A∥ ≤ ∥B∥ for all unitarily invariant matrix-vector norm
∥ · ∥ on Mm×n if and only if ∥A∥(k) ≤ ∥B∥(k), k = 1, 2, . . . , q =
min{m,n}, where ∥A∥(k) denote the Ky Fan k-norms on Mm×n :

∥A∥(k) =
k∑

i=1

σi(A), k = 1, . . . , q = min{m,n}.

Proof. Ky Fan k-norms onMm×n are unitarily invariant; so necessity
is obvious. Conversely, that ∥A∥(k) ≤ ∥B∥(k) for each k is the same
as σ(A) ≺w σ(B). By Theorem 10.38, the sufficiency follows.

A variety of matrix inequalities on unitarily invariant norms fol-
lows at once from Theorem 10.38. For instance, by Theorem 10.25,
for any unitarily invariant norm ∥ · ∥ on Mn, A,B ∈ Mn, and z ∈ C,

∥A− |z|B∥ ≤ ∥A+ zB∥ ≤ ∥A+ |z|B∥,
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and Corollary 10.8 ensures that for a unitarily invariant norm ∥ · ∥
on Mn, positive semidefinite A,B ∈ Mn, and positive integers m,

∥(AB)m∥ ≤ ∥AmBm∥.

Problems

1. If ∥ · ∥ is a vector norm on Rn satisfying ∥xP∥ = ∥x∥ for any n× n
permutation matrix P , show that such a vector norm is Schur-convex.

2. Show that a symmetric gauge function on Rn is a convex function.

3. Let ∥ · ∥ be a vector norm on Rn. Show that ∥ |x| ∥ = ∥x∥ for any x ∈
Rn if and only if 0 ≤ x ≤ y ⇒ ∥x∥ ≤ ∥y∥, where |x| = (|x1|, . . . , |xn|).

4. Let φ be a symmetric gauge function on Rm. Let n > m. For x ∈ Rn,
let x̃ be the vector of them largest components of x in absolute value.
Show that ϕ(x) = φ(x̃) is a symmetric gauge function on Rn.

5. Show that the lp-norm ∥ · ∥p (or the Schatten p-norm) and the Ky
Fan k-norm ∥ · ∥(k) defined on Rn are symmetric gauge functions:

∥x∥p =
( n∑

i=1

|xi|p
)1/p

, p ≥ 1; ∥x∥(k) = max
1≤i1<···<ik≤n

k∑
t=1

|xit |.

6. For m × n matrix A, let ∥A∥(k) be given as in Theorem 10.39; for
x ∈ Rn, let ∥x∥(k) be defined as in the previous problem. Show that

∥A∥(k) = ∥σ(A)∥(k).

7. Extend the definition of symmetric gauge function for Cn as follows.
Replace the conditions (b) and (e) by, respectively, (b’). ϕ(cx) =
|c|ϕ(x), c ∈ C and (e’). ϕ(x) = ϕ(|x|), where |x| = (|x1|, . . . , |xn|).
For x, y ∈ Cn, show that |x| ≺w |y| if and only if ϕ(x) ≤ ϕ(y) for all
symmetric gauge functions ϕ on Cn.

8. We have used ∥·∥(k) to denote the Ky Fan k-norms for both matrices
(in Theorem 10.39) and vectors (in Problem 5). If M is a matrix
with singular value vector v = σ(M), show that ∥M∥(k) = ∥v∥(k).
Let A =

(
1
1
0
0

)
. Compute ∥A∥(1). If A is considered as a vector in

R4, say u, find ∥u∥(1). Are ∥A∥(1) and ∥u∥(1) the same?

9. Show that ∥A∥ = ∥ |A| ∥ for any unitarily invariant norm ∥ · ∥ on Mn

and A ∈ Mn, where |A| = (A∗A)1/2.
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10. Show that ∥ · ∥ defined below is a unitarily invariant norm on Mn:

∥A∥ = max{| tr(AX)| : X ∈ Mn, tr(X
∗X) = 1}.

11. Let α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 be given. Define

∥A∥α =
n∑

i=1

αiσi(A), A ∈ Mn.

Show that ∥ · ∥α is a unitarily invariant norm on Mn.

12. Let A ∈ Mn and let λ1, λ2, . . . , λn be the eigenvalues of A. Denote
by Λ the diagonal matrix diag(λ1, λ2, . . . , λn). Show that for every
unitarily invariant norm on Mn, ∥Λ∥ ≤ ∥A∥.

13. Let A and B bem×n complex matrices with singular values σ1(A) ≥
· · · ≥ σn(A) and σ1(B) ≥ · · · ≥ σn(B), respectively. Show that

∥ diag(σ1(A)− σ1(B), . . . , σn(A)− σn(B))∥ ≤ ∥A−B∥

for unitarily invariant norms on Mm×n. [Hint: Use Theorem 10.24.]

14. Let A,B ∈ Mn. Show that for every unitarily invariant norm on Mn,

2∥AB∥ ≤ ∥A∗A∥+ ∥B∗B∥.

15. Let A,B ∈ Mn. As is known, |A + B| ≤ |A| + |B| is not true in
general, where |X | = (X∗X)1/2 (see Section 8.6). However, show by
Theorem 8.22 that for any unitarily invariant norm ∥ · ∥ on Mn,

∥ |A+B| ∥ ≤ ∥ |A| ∥+ ∥ |B| ∥.

16. Let A,B ∈ Mn. Show that for unitarily invariant norms ∥ ·∥ on M2n,∥∥∥∥A+B

2
⊕ A+B

2

∥∥∥∥ ≤ ∥A⊕B∥ = ∥ |A| ⊕ |B| ∥ ≤ ∥(|A|+ ∥B∥)⊕ 0∥.

17. Let A = U
(

D
0

0
0

)
V be a singular value decomposition of A, where U

and V arem×m and n×n unitary matrices, respectively, D is an r×r
positive diagonal matrix, and r = rank (A). Let A† be the Moore–

Penrose inverse of A, i.e., A† = V ∗
(

D−1

0
0
0

)
U∗. Let A,B ∈ Mm×n.

Show that for any n×n matrix X and unitarily invariant norm ∥ · ∥,

∥A(A†B)−B∥ ≤ ∥AX −B∥.
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18. Let A be an m × n complex matrix. Show that the Moore–Penrose
inverse A† of A is the only matrix satisfying all the equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

19. Give a unitarily invariant matrix-vector norm ∥ · ∥ on Mn, for which
∥AB∥ ≤ ∥A∥ ∥B∥ does not hold for some matrices A, B ∈ Mn.

20. Let A ∈ Mn and ∥·∥ denote a unitarily invariant norm on Mn. Prove

(a) For any Hermitian X ∈ Mn, ∥A− 1
2
(A+ A∗)∥ ≤ ∥A−X∥.

(b) For any skew-Hermitian X ∈ Mn, ∥A− 1
2(A−A∗)∥ ≤ ∥A−X∥.

(c) If A = UP is a polar decomposition of A, where U is unitary
and P is positive semidefinite, then for any unitary X ∈ Mn,
∥A− U∥ ≤ ∥A−X∥ ≤ ∥A+ U∥.

(d) If A = UDV is a singular value decomposition of A, where U
and V are unitary, and D is nonnegative diagonal, then for any
unitary X ∈ Mn, ∥A− UV ∥ ≤ ∥A−X∥ ≤ ∥A+ UV ∥.

(e) If A is normal, then ∥A∥ ≤ ∥X−1AX∥ for all invertibleX ∈ Mn.
(f) If A is positive semidefinite, then ∥A−I∥ ≤ ∥A−X∥ ≤ ∥A+I∥

for any unitary X ∈ Mn.

21. Let A and B be n×n normal matrices. Let A ◦B be the Hadamard
(entrywise) product of A and B and |A| = (A∗A)1/2. Show that

∥A ◦B∥ ≤ ∥ |A| ◦ |B| ∥

for unitarily invariant norms onMn. [Hint: Note that
(

|A|
A

A∗

|A∗|

)
≥ 0.]

22. Let A,B ∈ Mn. If the product AB is normal, show that ∥AB∥ ≤
∥BA∥ for any unitarily invariant matrix-vector norm ∥ · ∥.

23. Let p and q be positive real numbers such that 1
p +

1
q = 1. Show that

∥AB∥pq = ∥AB∥p+q ≤ ∥ |A|p∥ ∥ |B|q∥

for all A,B ∈ Mn and for all unitarily invariant norms ∥ · ∥ on Mn.

24. (Horn–Johnson) Let ∥ · ∥ be a unitarily invariant matrix-vector
norm on Mn. Show that the following statements are equivalent.

(a) ∥diag(1, 0, . . . , 0)∥ ≥ 1.

(b) ∥A∥ ≥ σmax(A) for all matrices A ∈ Mn.

(c) ∥A∥ ≥ ρ(A), the spectral radius of A, for all matrices A ∈ Mn.

(d) ∥AB∥ ≤ ∥A∥ ∥B∥ for all matrices A,B ∈ Mn.

. ⊙ .
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Notation

Mn, 8 n× n (i.e., n-square) complex matrices
Mm×n, 8 m× n complex matrices
C, 1 complex numbers
R, 1 real numbers
F, 1 a field of numbers, i.e., C or R in this book
Q, 6 rational numbers
Cn, 3 (column) vectors with n complex components
Rn, 2 (column) vectors with n real components
Rn

+, 331 (column) vectors with n nonnegative components
F[x], 5 polynomials over field F
Fn[x], 5 polynomials over field F with degree at most n
C[a, b], 6 real-valued continuous functions on interval [a, b]
C′(R), 6 real-valued functions with continuous derivatives on R
Re c, 129, 195 real part of complex number c
Im c, 294 imaginary part of complex number c
ω, 139 nth primitive root of unity
t+, 333 t+ = t if t ≥ 0; t+ = 0 if t < 0
δij , 266 Kronecker delta, i.e., δij = 1 if i = j, and 0 otherwise
V ∩W , 4 intersettion of sets V and W
V ∪W , 26, 68 union of sets V and W
P ⇒ Q, 4 statement P implies statement Q
P ⇔ Q, 32 statements P and Q are equivalent
SpanS, 3 vector space spanned by the vectors in S
dimV , 3 dimension of the vector space V
V +W , 4 sum of subspaces V and W
V ⊕W , 4 direct sum of subspaces V and W
Dx, 17 differential operator
Sn, 12 nth symmetric group, i.e., all permutations on {1, 2, . . . , n}
ei, 3 vector with ith component 1 and 0 elsewhere
(u, v), 27 inner product of vectors u and v, i.e, v∗u

∠x,y, 30 angle between real vectors x, y, i.e., ∠x,y = cos−1 (x,y)
∥x∥ ∥y∥

<x,y, 33, 198 angle between complex vectors x, y, i.e., <x,y= cos−1 |(x,y)|
∥x∥ ∥y∥

d(x, y), 182 distance between x and y in a metric space
|x|, 327 absolute value vector |x| = (|x1|, . . . , |xn|)
∥x∥, 28 length or norm of vector x

∥x∥p, 373 lp-norm of vector x, i.e., ∥x∥p =
(∑n

i=1 |xi|p
)1/p

∥x∥(k), 373 Ky Fan k-norm of vector x, i.e., ∥x∥(k) = maxi1<···<ik

∑k
t=1 |xit |

xT , 2 transpose of x; it is a column vector if x is a row vector

x⊥, 28 vectors orthogonal to vector x
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392 Notation

S⊥, 28 vector space orthogonal to set S
S1⊥S2, 28 (x, y) = 0 for all x ∈ S1 and y ∈ S2

Vλ, 23 eigenspace of the eigenvalue λ
In, I, 9 identity matrix of order n
A = (aij), 8 matrix with entries aij

AT , 9 transpose of matrix A

A, 9 conjugate of matrix A
A∗, 9 conjugate transpose of matrix A
A−1, 13 inverse of matrix A
A†, 377 Moore–Penrose inverse of matrix A
A11, 41, 217 principal submatrix of matrix A in the upper-left corner
A(i|j), 13 matrix by deleting the ith row and jth column of matrix A
adj(A), 13 adjoint matrix of matrix A
detA, 12 determinant of matrix A
rank (A), 11 rank of matrix A
trA, 21 trace of matrix A
diagS, 70 diagonal matrix with the elements of S on the diagonal∣∣A
C

B
D

∣∣, 11 determinant of the 2× 2 block matrix
(A,B)M , 30 matrix inner product, i.e., (A,B)M = tr(B∗A)
ImA, 17, 51 image of matrix or linear transformation A, i.e., ImA = {Ax}
KerA, 17, 51 kernel or null space of A, i.e., KerA = {x : Ax = 0}
R(A), 55 row space spanned by the row vectors of matrix A
C(A), 55 column space spanned by the column vectors of matrix A
R(A, 306 row sum vector of matrix A
C(A), 306 column sum vector of matrix A
H(A), 233 Hermitian part of matrix A, i.e., 1

2
(A+A∗)

S(A), 361 skew-Hermitian part of matrix A, i.e., 1
2
(A−A∗)

W (A), 107 numerical range of matrix A
Jn, 152 n-square matrix with all entries equal to 1
Tn, 133 n-square tridiagonal matrix
Hn, 150 Hadamard matrix
Vn(ai), 143 n-square Vandermonde matrix of a1, . . . , an

G(xi), 225 Gram matrix of x1, . . . , xn

sk(ai), 124 kth elementary symmetric function of a1, . . . , an

w(A), 109 numerical radius of matrix A
ρ(A), 109 spectral radius of matrix A
i+(A), 255 number of positive eigenvalues of Hermitian matrix A
i−(A), 255 number of negative eigenvalues of Hermitian matrix A
i0(A), 255 number of zero eigenvalues of Hermitian matrix A
In(A), 256 inertia of Hermitian matrix A, i.e., In(A) = (i+(A), i−(A), i0(A))
λmax(A), 124 largest eigenvalue of matrix A
σmax(A), 109 largest singular value of matrix A, i.e., the spectral norm of A
σ1(A), 266 largest singular value of matrix A; the same as σmax(A)
λmin(A), 266 smallest eigenvalue of matrix A
σmin(A), 266 smallest singular value of matrix A
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λi(A), 21, 82 eigenvalue of matrix A
σi(A), 61, 82 singular value of matrix A
λ(A), 349 eigenvalue vector of A ∈ Mn, i.e., λ(A) = (λ1(A), . . . , λn(A))
σ(A), 349 singular value vector of A ∈ Mm×n, i.e., σ(A) = (σ1(A), . . . , σn(A))
λα(A), 365 λα(A) = (λα

1 (A), . . . , λα
n(A)) = ((λ1(A))α, . . . , (λn(A))α)

σα(A), 365 σα(A) = (σα
1 (A), . . . , σα

n (A)) = ((σ1(A))α, . . . , (σn(A))α)
p(λ)|q(λ), 94 p(λ) divides q(λ)
d(λ), 94 invariant factors of λ-matrix λI −A
d(A), 349 vector of diagonal entries of a square matrix A
mA(λ), 88 minimal polynomial of matrix A
pA(λ), 21, 87 characteristic polynomial of matrix A, i.e., pA(λ) = det(λI −A)
A ≥ 0, 81 A is positive semidefinite (or a nonnegative matrix in Section 5.7)
A > 0, 81 A is positive definite (or a positive matrix in Section 5.7)
A ≥ B, 81 A−B is positive semidefinite (or aij ≥ bij in Section 5.7)

A1/2, 81, 203 square root of positive semidefinite matrix A
Aα, 81 Aα = U∗ diag(λα

1 , . . . , λ
α
n)U if A = U∗ diag(λ1, . . . , λn)U

eA, 66
∑∞

k=0
1
k!
Ak

[A], 219 principal submatrix of A
A[α|β], 122 submatrix of A indexed by α and β

|A|, 83, 287 |A| = (A∗A)1/2 (or (|aij |) in Section 5.7)

Ã11, 217 Schur complement of A11

A(k), 122 kth compound matrix of matrix A
∥A∥, 113 norm of matrix A
∥A∥op, 113 operator norm of matrix A, i.e., ∥A∥op = sup∥x∥=1 ∥Ax∥
∥A∥F , 115 Frobenious norm of matrix A, i.e., ∥A∥F =

(∑n
i=1 σ

2
i (A)

)1/2
∥A∥(k), 115 Ky Fan k-norm of matrix A, i.e., ∥A∥(k) =

∑k
i=1 σi(A)

∥A∥p, 115 Schatten p-norm of matrix A, i.e., ∥A∥p =
(∑n

i=1 σ
p
i (A)

)1/p
∥A∥2, 115 ∥A∥2 = ∥A∥F =

(∑
i, j |aij |2

)1/2

=
(∑n

i=1 σ
2
i (A)

)1/2
[A,B], 305 commutator of A and B, i.e., [A,B] = AB −BA

A⊕B, 11 direct sum of matrices A and B, i.e., A⊕B =
(
A
0

0
B

)
A⊗B, 117 Kronecker product of matrices A and B
A ◦B, 117 Hadamard product of matrices A and B
x ◦ y, 117, 327 x ◦ y = (x1y1, . . . , xnyn)
xm, 348 xm = (xm

1 , . . . , xm
n ) if x = (x1, . . . , xn)

x↓, 325 x↓ = (x↓
1, x

↓
2, . . . , x

↓
n), where x↓

1 ≥ x↓
2 ≥ · · · ≥ x↓

n.

x↑, 325 x↑ = (x↑
1, x

↑
2, . . . , x

↓
n), where x↑

1 ≤ x↑
2 ≤ · · · ≤ x↑

n.

x ≺w y, 326 x is weakly majorized by y, i.e.,
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i , k ≤ n

x ≺ y, 326 x is majorized by y, i.e., x ≺w y and
∑n

i=1 xi =
∑n

i=1 yi
x ≺wlog y, 344 x is weakly log-majorized by y, i.e.,

∏k
i=1 x

↓
i ≤

∏k
i=1 y

↓
i , k ≤ n

x ≺log y, 344 x is log-majorized by y, i.e., x ≺wlog y and
∏n

i=1 xi =
∏n

i=1 yi



 



T -transform, 335
T -transformation, 335
∗-congruency, 256
λ-matrix, 93
λ-matrix standard form, 94
lp-norm, 373, 376

addition, 1
adjoint, 13
algebraic multiplicity, 24
angle, 30
arithmetic mean–geometric mean

inequality, 86, 346

backward identity, 78, 100
backward identity matrix, 91
basis, 3
Bhatia–Kittaneh theorem on singular

values, 354
Binet–Cauchy formula, 123, 221
Birkhoff theorem, 159

Cauchy eigenvalue interlacing
theorem, 269

Cauchy matrix, 137, 239
Cauchy sequence, 182
Cauchy–Schwarz inequality, xvii, 27,

245
Cayley–Hamilton theorem, 87
characteristic polynomial, 21
Cholesky factorization, 201, 204
cofactor, 13
column rank, 51
column space, 55
column sum vector, 306
commutator, 305

companion matrix, 89, 91
complete space, 182
conjugate, 9
continuity argument, 62
contraction, 182, 206, 230, 362

strict, 182
convergency, 182
convex combination, 159
convex hull, 112
coordinate, 4
Courant–Fischer theorem, 268

decomposable matrix, 339
decomposition

Cholesky, 201, 204
Jordan, 97
LU, 85
polar, 83
QR, 85
rank, 11, 201
Schur, 79
singular value, 82
spectral, 81
triangularization, 80

determinant, 11
differential operator, 17
dimension, 3

finite, 3
infinite, 3

dimension identity, 5
direct product, 117
direct sum, 4, 11
dual norm, 116

eigenspace, 23
eigenvalue, 19, 21
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eigenvalue interlacing theorem, 269
eigenvector, 19
elementary λ-matrix, 94
elementary column operations, 10
elementary divisors, 94
elementary operation on λ-matrix, 94
elementary operations, 10
elementary row operations, 10
elementary symmetric function, 124,

145
Euclidean norm, 115
Euclidean space, 27, 30
even permutation, 11

Fan dominance theorem, 375
Fan eigenvalue majorization theorem,

356
Fan max-representation, 281
Fan–Hoffman theorem, 361
field of values, 107
Fischer inequality, 217, 225
fixed point, 183
Frobenius norm, 115
Frobenius–König theorem, 158
function

concave, 340
convex, 340
increasing, 340
Schur-convex, 341
strictly convex, 340

generalized elementary matrix, 36, 40
geometric multiplicity, 24
Geršgorin disc theorem, 68
Gram matrix, 225
Gram–Schmidt orthonormalization, 33
Gram–Schmidt process, 33

Hölder inequality, 346
Hadamard inequality, 218, 225
Hadamard product, 117
Hilbert–Schmidt norm, 115
Hoffman–Wielandt theorem, 320
Horn theorem on singular values, 353
Horn–Johnson theorem, 378
Hua determinant inequality, 230, 231

image, 17
indecomposable matrix, 339
induced norm, 33, 113
inertia, 255
inner product, 27
inner product of vectors, 27
inner product space, 27
interpolation, 75, 144
invariant factors, 94
invariant subspace, 22, 23
inverse, 13
invertible λ-matrix, 94
invertible matrix, 13
involution, 179
irreducible matrix, 155, 339
isomorphism, 26

Jensen inequality, 340
Jordan block, 93
Jordan canonical form, 93
Jordan decomposition, 97
Jordan decomposition theorem, xvii
Jordan form, 93

Kantorovich inequality, 248, 249, 348
kernel, 17, 51
Kittaneh theorem, 319
Kronecker delta, 266
Kronecker product, 117
Ky Fan k-norm for matrix, 115, 375,

376
Ky Fan k-norm for vector, 373, 376

Löwner (partial) ordering, 207
Löwner ordering, 274
Löwner–Heinz theorem, 211
Laplace formula, 12
Laplace expansion formula, 12
length, 28
Levy–Desplanques theorem, 72
Lidskǐi theorem, 363
Lieb–Thirring theorem, 368
linear transformation, 17

addition, 22
identity, 22, 25
invertible, 25
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product, 22
scalar multiplication, 22

linearly dependent, 3
linearly independent, 3
log-majorization, 344
LU factorization, 85

majorization, 325, 326, 349
matrix

M -, 170
∗-congruent, 256
λ-, 93
(0, 1)-, 306
addition, 8
adjoint, 13
backward identity, 78, 91
block, 10
Cauchy, 137, 239
circulant, 138
companion, 89, 91
compound, 122
conjugate, 9
constractive, 230
correlation, 243
decomposable, 339
definition, 8
diagonal, 9
direct sum, 11
doubly stochastic, 158, 334
doubly substochastic, 334
elementary, 10
elementary operations, 10
Fourier, 140, 142
function, 63
generalized elementary, 36, 40
Gram, 225
Hadamard, 150
Hankel, 142
Hermitian, 9, 253
idempotent, 125
identity, 9
indecomposable, 339
inverse, 13
invertible, 12
involutary, 125
involution, 179

irreducible, 155, 339

nilpotent, 125
nonnegative, 164
nonnegative definite, 199

nonsingular, 12
normal, 9, 293
order, 8
orthogonal, 9, 171
partitioned, 10
permuation, 155
positive, 164
positive definite, 199
positive semidefinite, 80, 199
primary permutation, 138, 156
product, 8
projection, 125
rank, 11
reducible, 155, 339
reflection, 177
rotation, 177
scalar, 9
scalar multiplication, 8
sequence, 64

series, 64
similar, 18
size, 8
skew-Hermitian, 257
skew-symmetric, 64
square root, 64, 81, 202
strictly diagonally dominant, 72
subpermutation, 338
symmetric, 9
symmetric unitary, 192
Toeplitz, 142
transpose, 9
tridiagonal, 133
under a basis, 19
unitary, 9, 171
upper-triangular, 9
Vandermonde, 74, 142, 143
zero, 9

matrix addition, 8
matrix function, 63

matrix norm, 113
matrix product, 8
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matrix sequence, 64
matrix series, 64
matrix square root, 203
matrix-vector norm, 113, 373
metric, 182
metric space, 182
min-max representation, 266
minimal polynomial, 88
Minkowski inequality, 346
minor, 25
modulus of a matrix, 83, 287, 314
Moore–Penrose inverse, 377
multiplicative matrix norm, 113

norm, 28
lp, 373, 376
Euclidean, 115
Frobenius, 115
Hilbert–Schmidt, 115
induced, 33, 113
Ky Fan k-matrix, 115, 375, 376
Ky Fan k-vector, 373, 376
matrix, 113
matrix-vector, 113, 373
multiplicative, 374
multiplicative matrix, 113
operator, 113
Schatten p-matrix, 115
Schatten p-vector, 376
spectral, 114
unitarily invariant, 115, 373
vector, 34, 113, 372

normed space, 34
null space, 11, 17, 51
numerical radius, 109
numerical range, 107

odd permutation, 11
operator, 22
operator norm, 113
Oppenheim inequality, 242
orthogonal, 28
orthogonal projection, 127, 132
orthogonal set, 28
orthonormal, 28

permutation
even, 11
interchange, 163
odd, 11
of {1, 2, . . . , n}, 163

permutation similarity, 155
Perron root, 169
Perron theorem, 167
Perron vector, 169
Poincaré eigenvalue interlacing

theorem, 269, 271
polar decomposition, 83
positive linear transformation, 248
positive semidefinite matrix, 80
primary permutation matrix, 138
primitive root of unity, 139
principal submatrix, 25
product

linear transformation, 22
operator, 22

projection, 125, 127, 132

QR factorization, 85

range, 51
rank, 11
rank decomposition, 11
rank factorization, 201
Rayleigh–Ritz theorem, 267
reducible matrix, 155, 339
reflection, 177
rotation, 177
row rank, 51
row space, 55
row sum vector, 306

scalar, 2
scalar multiplication, 1
Schatten p-norm for matrix, 115
Schatten p-norm for vector, 376
Schur complement, 217, 227
Schur decomposition, 79
Schur inequality, 312
Schur product, 117
Schur theorem on Hadamard product,
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Schur theorem on majorization, 349
Schur triangularization, 80
Schur triangularization theorem, xvii

Schur-convex function, 341
similarity, 18
singular value, 61, 82
singular value decomposition, 82
singular value decomposition theorem,

xvii
solution space, 11
span, 3
spectral decomposition, 81
spectral decomposition theorem, xvii
spectral norm, 109, 114
spectral radius, 109, 165
spread, 324
square root, 64, 81
square root of a matrix, 81, 203
square root of a positive semidefinite

matrix, 81, 202
standard basis, 3
Sturm eigenvalue interlacing theorem,

269
submatrix, 9
subpermutation, 338
subspace, 4
sum

direct, 4
vector spaces, 4

Sun theorem, 322
SVD, 82
Sylvester rank identity, 52
Sylvester’s law of inertia, 256
symmetric gauge function, 372

tensor product, 117
Thompson theorem on matrix

modulus, 289
Thompson theorem on sum of

Hermitian matrices, 281
Toeplitz–Hausdorff theorem, 108
trace, 21
transpose, 9
triangle inequality, 28
triangularization, 80

uniqueness of matrix square root, 81,
202

unit, 28
unital linear transformation, 248
unitarily invariant norm, 115

Vandermonde determinant, 14
Vandermonde matrix, 74, 143
vector, 2
vector norm, 34, 113, 372
vector norm of matrix, 373
vector space, 1
von Neumann theorem, 375

Wang–Gong theorem, 367
weak majorization, 326
Weyl theorem on log-majorization, 353
Wielandt inequality, 247
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