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Preface

This monograph is an extension of my Habilitationsschrift [95]. It is intended to
generalize the ‘classical’ notion of automaticity to a more broader framework. The
main purpose of this monograph is to demonstrate that the already existing ‘classical’
results can be rediscovered in the more general framework.

However, not all possible aspects of automatic sequences are covered. In particular,
the connection between automatic sequences and logic is not even touched, see e.g.
[47] and the literature cited there. Questions like complexity of sequences or spectral
properties of sequences are also completely neglected, see e.g. [38], [39], [102], [133],
[141], [142], [143].

Further relations to other structures are mentioned at the end of each chapter under
the heading ‘Notes and comments’.

Although it is not really necessary for an understanding of the basic ideas presented
in the text, it is helpful if the reader is acquainted with finite fields, finitely generated
groups, and some Perron–Frobenius Theory.

Acknowledgement. This monograph would have never been finished without the
material support from the Universität Bremen, Florida Atlantic University (Boca Ra-
ton, U.S.A.), Katholieke Universiteit Leuven (Belgium).

Naturally moral support of every possible kind is much more important. It was pro-
vided by J. P. Allouche, A. Barbé, W. Jürgensen, M. Karbe, H.-O. Peitgen, A. Petersen,
G. Skordev, and R. O. Wells. My sincere thanks to all of you.

Leuven, October 2002 F. v. Haeseler
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Introduction

In recreational mathematics one often encounters the problem of continuing a given
finite sequence of numbers, like,

1, 2, 3, 4, 5, . . .

From a strictly logical point of view there does not exist a unique answer to questions
of this type. In fact the answer can be whatever one likes. However, the ‘real’meaning
of the question is to find the rule or the algorithm (in a naive sense) which has produced
the given finite sequence of numbers. Of course, as long as we are dealing with finite
sequences, this question is meaningless, too. The situation changes if one considers
infinite sequences, e.g., the decimal expansion of π ,

π = 3.141592653589793238462 . . .

Then we all know that there exist several different algorithms to compute π . On the
other hand, the naive approach of speaking of algorithms without a precise definition
leads to severe problems. Tossing a coin infinitely often produces a sequence of 0’s
(tail) and 1’s (head) in an algorithmic way. However, this ‘algorithm’is hardly capable
to produce the same sequence on a second run. One therefore is in need of a precise
definition of an algorithm. Instead of troubling ourselves with the general definition
of the notion of an algorithm, we simply drastically restrict the admissible rules to
produce a sequence of numbers.

In this monograph we discuss sequences (xn)n∈N which are generated by a finite
device. Loosely speaking, the value xn can be determined in finitely many steps and
from a knowledge of the p-adic expansion of n. Here the p-adic expansion of n is of
the form

n =
∞∑
j=0

njp
j ,

where p ≥ 2 is a natural number and nj ∈ {0, 1, . . . , p − 1}. Sequences of this type
will be called automatic sequences.

The goal of this introduction is twofold. Firstly, we provide a few examples which
should give some insight into the realm of automatic sequences and their interrelations
with other concepts. In the second part, we present a short summary of the results
contained in this work.
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We start with a classic example, the Thue–Morse sequence. In 1906, A. Thue
constructed this sequence in connection with a word problem. In 1921, the Thue–
Morse sequence was rediscovered by M. Morse to establish the existence of recurrent
non-periodic geodesics. The Thue–Morse sequence (tn)n∈N is defined recursively by

t0 = 0,

t2n = tn,
t2n+1 = 1− tn.

The first few terms are: 01101001100101 . . . . The first property of the sequence (tn)
is a simple consequence of its definition. Let 2lnl + · · · + 2n1+ n0 = n be the 2-adic
expansion of n, then

tn =
( l∑
j=0

nj

)
mod 2.

The next property of (tn) is concerned with certain subsequences of (tn). By con-
struction of (tn), we have (t2n)n∈N = (tn)n∈N and (t2n+1)n∈N = (1 − tn)n∈N. Thus
we can conclude that t4n+1 = t2(2n)+1 = 1− t2n = 1− tn and t4n+3 = t2(2n+1)+1 =
1 − t2n+1 = 1 − (1 − tn) = tn. In other words, the set of subsequences which is
defined by { (

t2kn+j
)
n∈N

| k ∈ N, j ∈ {0, 1, 2, . . . , 2k − 1}}
is a finite set, namely {(tn), (t2n+1)}. The above defined set of subsequences is called
the 2-kernel of the Thue–Morse sequence. There exist certain relations between the
elements of the 2-kernel of (tn). We visualize this relations with a directed graph.

tn un0 0

1

1

Figure 1. The graph associated with the Thue Morse sequence.

The interpretation of the graph is as follows: If one takes the subsequence (t2n)
of (tn) one gets (tn) back. If one takes the subsequence (t2n+1) of (tn) one gets a
new sequence (un) = (t2n+1). If one takes the subsequence (u2n) of (un) one gets
(un) back, for the other subsequence (u2n+1) of (un) we obtain (tn). Moreover, the
above directed graph provides another method to compute tn for a given n. If 2lnl +
· · · + 2n1 + n0 = n denotes the 2-adic expansion of n, then the digits n0, n1, . . . , nl
define a path in the directed graph. The path starts at the vertex labelled (tn) and then
follows the arrows n0, n1, . . . , nk . The terminal vertex of the path determines tn. If
the path ends in (tn) then we have tn = 0, otherwise, we have tn = 1. The graph is an
example of a 2-automaton, and we say that the Thue–Morse sequence is 2-automatic,
cf. Eilenberg [77], [78].
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There is a third way to generate the Thue–Morse sequence. It is the method of
substitution. A substitution is, roughly speaking, a rule which assigns words, i.e.,
concatenations of symbols or letters, to a single letter. The letters belong to a finite
set which is called alphabet. We define a 2-substitution over the alphabet {0, 1} by

0 �→ 01

1 �→ 10.

If we start with the letter 0 and iterate the substitution, we obtain a sequence of words

0 �→ 01 �→ 0110 �→ 01101001 �→ · · ·
and we observe that the sequence of words converges in a vague sense, to be more
precise the beginning (if one reads from left to right) of the words tends to stabilize.
In other words, we can speak of the limit sequence (un)n∈N which is a fixed point of
the substitution. By construction of the substitution, we have u2n = un and u2n+1 =
1 − un. Therefore, (un) is the Thue–Morse sequence. Thus, we can say that the
Thue–Morse sequence is generated by a 2-substitution.

Besides this somehow combinatorial description of sequences which are generated
by substitutions, there is yet another, more algebraic, characterization of automatic
sequences. We explain the basic idea for the Thue–Morse sequence. Let (tn) be the
Thue–Morse sequence. We consider the formal power series

T (x) =
∞∑
n=0

tnx
n

as an element of F2(x), i.e., the ring of all power series with coefficients in the field
F2 = {0, 1}with addition and multiplication modulo 2. Due to the characterization of
the Thue–Morse sequence, we have the identities t2n = tn and t2n+1 = tn + 1, where
the addition tn + 1 has to be carried out in Z2. With these identities and the fact that
for all f (x) ∈ F2(x) we have f (x)2 = f (x2) we obtain that T (x) satisfies a Mahler
equation, namely

T (x) =
∞∑
n=0

x2nt2n +
∞∑
n=0

x2n+1t2n+1

=
∞∑
n=0

x2ntn +
∞∑
n=0

x2n+1(tn + 1)

= T (x)2 + xT (x)2 + x
∞∑
n=0

x2n

= T (x)2(1+ x)+ x

1+ x2 .

As a summary we list the properties of the Thue–Morse sequence.
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• The 2-kernel of (tn) is finite.

• The Thue–Morse sequence is generated by a 2-automaton.

• There exists a 2-substitution which generates (tn).

• The generating power series T (x) of the Thue–Morse sequence satisfies an
algebraic equation.

In [56], Cobham proved that the first three properties are equivalent. He showed that
a sequence over a finite alphabet has a finite k-kernel if and only if the sequence is
k-automatic, and the sequence is k-automatic if and only if it is generated by a k-
substitution. The algebraic property of the Thue–Morse sequence reflects a celebrated
theorem of Christol, Kamae, Mendès France, and Rauzy in [53], [54]. It states that a
sequence (kn) with values in a finite field F of prime characteristic p is p-automatic
if the generating function, i.e., f (x) = ∑

knx
n satisfies a Mahler equation over the

ring of formal power series F(x), that is

f (x) =
N∑
j=1

rj (x)f (x
pj ),

where the rj (x) are rational functions. Furthermore, any solution in F(x) of the above
equation is p-automatic.

As a further example and generalization, we study double sequences, i.e., (sn,k),
where n, k ∈ N, with values in a finite set. One of the most prominent examples
of such a double sequence are the binomial coefficients reduced modulo a natural
number q, i.e., we consider (

(
n
k

)
mod q), k, n ∈ N. We start with the simplest example

(sk,n =
(
n
k

)
mod 2). We consider the double sequence as a table of numbers. In the

lower left corner we have s0,0 and sk,n is the element in the k-th column (counted from
the left) and in the n-th row (counted from the button). For the binomial coefficients
we obtain the following

...
...
...
...
...
...
...

1 0 1 0 1 0 1 . . .

1 1 0 0 1 1 0 . . .

1 0 0 0 1 0 0 . . .

1 1 1 1 0 0 0 . . .

1 0 1 0 0 0 0 . . .

1 1 0 0 0 0 0 . . .

1 0 0 0 0 0 0 . . .

By inspection, we conjecture that the above table is generated by the following
2-dimensional (2× 2)-substitution:

1 �→ 1 1
1 0

0 �→ 0 0
0 0

.
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This fact can be proved using number theoretical properties of the binomial coeffi-
cients. As for the Thue–Morse sequence, we consider the formal power series

P(X, Y ) =
∞∑

k,n=0

sk,nX
kY n,

where the sk,n are elements of the field F2. Due to the definition of the binomial
coefficients, we have

P(X, Y ) =
∞∑
n=0

(1+X)nYn.

So, we have

P(X, Y ) =
∞∑
n=0

(1+X)2nY 2n +
∞∑
n=0

(1+X)2n+1Y 2n+1

= P(X2, Y 2)(1+ Y + YX)
which yields

s2k,2n+1 = sk,n, s2k+1,2n+1 = sk,n
s2k,2n = sk,n, s2k+1,2n = 0.

Actually, this is the substitution which we found by inspection of the table. On the
other hand, we haveP(X, Y ) = 1

1+Y (1+X) . Thus, we see that the binomial coefficients
modulo 2 are generated by a 2-dimensional (2 × 2)-substitution and the generating
power series satisfies an algebraic equation, P(X, Y )(1+ Y (1+X)) = 1. It remains
to show that (sk,n) has a finite 2-dimensional (2× 2)-kernel. By analogy, the (2× 2)-
kernel of a sequence (un,k) is defined by{

(u2l k+j,2ln+i )k,n | k ∈ N, i, j ∈ {0, 1, . . . , 2k − 1}}.
The above relations between (s2k,2n), (s2k+1,2n), (s2k,2n+1), (s2k+1,2n+1) imply that
the (2×2)-kernel of the binomial coefficients mod 2 is given by {(sn,k), (0)n,k}, where
(0)n,k is the zero sequence. The graph of the kernel relations is then given in Figure 2.

1 0
(0,0)
(0,1)
(1,1)

(0,0)
(0,1)
(1,0)
(1,1)

(1, 0)

Figure 2. The graph associated with the binomial coefficients mod2.

The graph is an example of a (2 × 2)-automaton which generates the binomial
coefficients modulo 2. Let (k, n) = 2l (kl, nl)+ 2l−1(kl−1, nl−1)+ · · · + (k0, n0) be
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the 2-adic expansion of (k, n). As for the Thue–Morse sequence, the binary expansion
of (k, n) defines a path which starts at the vertex 1. The terminal vertex determines
sk,n which is 1 for the vertex 1 and 0 for the vertex 0.

For the general case, i.e., the binomial coefficients modulo q, one knows exactly
whether or not the double sequence is automatic. In [11] and the literature cited there,
the authors prove that the double sequence (

(
n
k

)
mod q) is k-automatic if and only if k

is a power of a prime number p and q is a power of p. In all other cases, there exists
no k such that the double sequence is k-automatic.

There is yet another interpretation of the table of numbers which is expressed in
[5], [6]. We can regard the double sequence as an orbit of a cellular automaton. We
remind the reader what a cellular automaton is. Let A be a finite set and �(Z, A) =
{a : Z → A} be the set of bi-infinite sequences with values in A. A one-dimensional
cellular automaton (of width r) is a map C : �(Z, A)→ �(Z, A) such that

C(a)(i) = �(a(i − r), a(i − r + 1), . . . , a(i), . . . a(i + r − 1), a(i + r)),
where � : A2r+1 → A is any map.

The above example, the binomial coefficients modulo 2, fits into the framework
of cellular automata. Let A = F2 be the field with two elements. Then �(Z,F2) is
the set of all Laurent series, i.e., a ∈ �(Z, A) is written as a = ∑∞

j=−∞ ajxj . The
usual product of a polynomial with a Laurent series defines a cellular automaton. In
our example, we have

(1+ x)
∞∑

j=−∞
ajx

j =
∞∑

j=−∞
(aj−1 + aj )xj .

Thus the series
∑∞
n=0 Y

n(1 + X)n describes the orbit of the Laurent series 1 under
iteration of the cellular automata. Orbits of certain cellular automata provide examples
of automatic double sequences.

The goal of this work is to develop a general approach to the above presented
phenomena.

In Chapter 1, we introduce the general setting. The set N (for the Thue–Morse
sequence) or the set N

2 (for the binomial coefficients modulo 2) is replaced by a finitely
generated group �. By abuse of language, we consider ‘sequences’ to be maps from
� to a finite set A. The set of sequences is denoted by �(�,A).

The second chapter deals with the introduction of the notion of a substitution on
�(�,A). In the examples above we considered the p-adic expansion of a natural
number. This concept can be generalized to a finitely generated group �, provided
there exists an expanding group endomorphism H : � → � such that the subgroup
H(�) is of finite index. The first section discusses under which conditions on the
group one can find such an expanding endomorphism.

In the second part of Chapter 2 we introduce the general notion of a substitution
S : �(�,A)→ �(�,A). More precisely, a (V ,H)-substitution, where H : �→ �
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is an expanding group endomorphism with H(�) of finite index and V is a complete
system of left representatives of �/H(�).

As for the above examples, we study the fixed points of a substitution S. Analogous
to our examples, we introduce the (V ,H)-kernel of a sequence. The main result will
be: A sequence f ∈ �(�,A) is generated by a (V ,H)-substitution if and only if
it has a finite (V ,H)-kernel. In this chapter we also introduce the kernel graph of a
sequence. The kernel graph will be an important tool in the later chapters.

Chapter 3 is devoted to the introduction of (V ,H)-automata, a notion analogous to
the finite automata given above. A (V ,H)-automatic sequence is generated by a finite
(V ,H)-automaton. We will prove that the following three statements are equivalent:

• f is generated by a finite (V ,H)-automaton,

• f is generated by a (V ,H)-substitution,

• f has a finite (V ,H)-kernel.

In the second part of Chapter 3 a further investigation of (V ,H)-automatic sequences
leads to the result that the above three statements are independent of the set V . E.g.,
if V and W are different systems of left representatives, then the (V ,H)-kernel of f
is finite if and only if the (W,H)-kernel of f is finite. It is therefore justified to speak
of H -automatic sequences rather then of (V ,H)-automatic sequences.

Chapter 4 pursues the investigation of properties ofH -automatic sequences. In the
first section we demonstrate that a study ofH -automatic sequences can be reduced to
a study ofH -automatic subsets of �. We introduce the notion of (H1×H2)-automatic
maps G : �1 → �2 and study their properties. The most important property is that
they preserve automaticity, i.e., if G is an (H1 × H2)-automatic map, then G maps
an H1-automatic subset on an H2-automatic subset. In the third part of Chapter 4,
we characterize (H1 × H2)-automata which generate an (H1 × H2)-automatic map.
Furthermore, we prove that there exists a universal map Vp : � → N such that for
every H -automatic subset M ⊂ � the image Vp(M) is a p-automatic subset of N,
where p = |V | is the cardinality of V .

In the fourth section automatic functions G : N → N are studied in detail. We
present upper and lower estimates on the growth of these functions and we discuss the
question on the existence of automatic functions with prescribed properties. E.g., we
show that for p < q no surjective (p, q)-automatic function exists.

Chapter 5 is written in the spirit of the above mentioned results on Mahler equa-
tions. We introduce an additional algebraic structure on the finite set �A. Firstly, we
suppose that �A is a finite, commutative monoid. Closely related to the monoid is
the set of endomorphisms of �A, i.e., the set End(�A) = {h : �A → �A | h(a + b) =
h(a) + h(b) holds for all a, b ∈ �A} and + denotes the addition in the monoid. A
polynomial with coefficients in End(�A) is a sequence (hγ ) over � such that hγ = 0
(the zero-map) almost everywhere. The set of polynomials operates on the set of
sequences over � with values in �A. The important result of Chapter 5 is that any
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solution f = (fγ )γ∈� of a Mahler equation of the type

f = p1 ·H∗(f )+ · · · + pN ·H 
N∗ (f )

is generated by a substitution and therefore H -automatic. In the above formula, pj
are polynomials with coefficients in End(�A), · is the operation of polynomials on
sequences, and H∗ is analogous to the map f (x) �→ f (x2) for the above mentioned
Thue–Morse sequence.

In the second part of Chapter 5, we present two methods how to solve a Mahler
equation of the form

f = p ·H∗(f ).
One method is based on the construction of a certain substitution, the other one is
based on the computation of the kernel graph of an assumed solution.

In the last section of Chapter 5 we consider sequences over�, where� is commuta-
tive and the sequences take their values in a finite field. Under these strong conditions
we will be able to establish the existence of certain Mahler equations for automatic
sequences.



Chapter 1

Preliminaries

In this chapter, we present the basic notions which will occur throughout the course
of this book. We begin with some basic properties of norms on groups and continue
with the basic facts on sequence spaces.

In the second part of this chapter, we study a particular group, the Heisenberg
group. It serves as an important example of a non-Abelian group for our theory.

1.1 Sequence spaces over groups

Let � be a group and denote by e the unit of the group �, i.e., eγ = γ e = γ for all
γ ∈ �. A norm on � is a function ‖ ‖ : � → R

+
0 = {r | r ∈ R, r ≥ 0} with the

following properties:

a) ‖γ ‖ = 0 if and only if γ = e
b) ‖γ ‖ = ‖γ−1‖ for all γ ∈ �
c) ‖γ ′γ ‖ ≤ ‖γ ′‖ + ‖γ ‖ for all γ ′, γ ∈ �.

If� is a finitely generated group, e.g., generated by the setE = {γ1, . . . , γk}, then there
exists at least one function having the properties a), b), and c). Each element γ ∈ � can
be represented by a word γ p1

i1
γ
p2
i2
. . . γ

pl
il

, with pj ∈ Z for j = 1, . . . , l. The number

|p1| + · · · + |pl | is called the length of the word 1. The length of the identity element
is equal to zero. We define the function ‖γ ‖E (with respect to E = {γ1, . . . , γk}) as
the minimal length of the word representing γ . Then the function ‖ ‖E : � → R

has all the properties of a norm. We call ‖ ‖E the norm induced by E. Moreover, if
E′ = {δ1, . . . , δl} is another set of generators of � and ‖ ‖E′ the induced norm, then
there exists a constant C > 0 such that

C‖γ ‖E ≥ ‖γ ‖E′ ≥ C−1‖γ ‖E
holds for all γ ∈ �.

1Sometimes we define the length of a word as
√
p2

1 + · · · + p2
l

or any other norm of this type. In any
case, every such word length gives a norm on �.
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Any norm ‖ ‖ : � → R
+
0 on � induces a metric D‖ ‖ on �. We define D‖ ‖ :

� × �→ R
+
0 by

D‖ ‖(γ, ρ) = ‖ρ−1γ ‖.
By construction, the metric D‖ ‖ is invariant under left translations, i.e., we have

D‖ ‖(τγ, τρ) = D‖ ‖(γ, ρ)
for all τ ∈ �. On the other hand, any left invariant metric D : � × �→ R

+
0 induces

a norm on � by setting ‖γ ‖D = D(γ, e).
From now on we suppose that � is equipped with a norm which we denote by ‖ ‖.

In most cases we may think of the norm as being induced from a set of generators of
the group.

It makes perfect sense to speak of balls of the group. The subset Br(γ ) ∈ �
defined by

Br(γ ) = {τ | τ ∈ � and ‖γ−1τ‖ ≤ r}
is called the closed ball of radius r with center γ . The open ball of radius r with

center in γ , denoted by
o

Br(γ ), is the set of τ ∈ � with ‖γ−1γ ′‖ < r . If we want
to emphasize the norm for which we consider the balls, we use the precise language
‖ ‖-ball.

Examples.

1. Let Z be the group of integers with addition. Then Z is generated by 1, and for
l ∈ Z we have for the induced norm ‖l‖ = |l|, where | | is the absolute value
function.

2. Since 2 and 3 are relatively prime, any integer l ∈ Z can be written as l =
2m+3n, with integersm, n ∈ Z. Note that the representation of l is not unique.
Therefore 2 and 3 generate Z, and the induced norm is given by

‖l‖ =

⎧⎪⎨⎪⎩
k if |l| = 3k

k + 2 if |l| = 3k + 1

k + 1 if |l| = 3k + 2.

3. Let � be the free group generated by a, b, then the induced norm of an element
γ ∈ � is the length of γ , i.e., if γ = α1α2 . . . αn, with αi ∈ {a, a−1, b, b−1},
i = 1, . . . , n, then ‖γ ‖ = n.

4. Let G = Z + ıZ be the additive group of the Gaussian integers. The group
G is generated by {1, ı} and the induced norm of ω ∈ G is given by ‖ω‖ =
|�(ω)| + |�(ω)|, where �(ω) denotes the real part of ω and �(ω) denotes the
imaginary part of ω.
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5. Let m be a natural number greater than or equal to 2 and let Gm = {0, 1, . . . ,
m− 1} = Z/mZ denote the additive group of residue classes modulo m. Then
Gm is generated by 1 and the induced norm ‖ ‖1 of an element g ∈ Gm equals
g. If h is a generator ofGm then the induced norm ‖ ‖h of an element g is given
by ‖g‖h = hg mod m.

Let�1 and�2 be finitely generated groups with norms‖‖1 and‖‖2. Then the direct
product �1 × �2 is a finitely generated group and the function ‖ ‖ : �1 × �2 → R

+
0

defined by ‖(γ, ρ)‖ = ‖γ ‖1+‖ρ‖2 is a norm for the direct product. In the same way
we can define a norm on the n-fold direct product of groups.

We now introduce the main object of our interest. It is the notion of a sequence
over a group �, or, if is clear from the context, simply a sequence. In general, we
assume that a sequence has its values in a finite set.

Let A = {a1, . . . , aN } be a finite set, where N ∈ N, and denote by �(�,A) =
A� = {f : � → A} the set of maps from � to A. The elements of A are called
symbols and the elements of �(�,A) are called sequences over � with values in the
symbols A.

Any sequence space can be equipped with a metric in such a way that it becomes
a complete metric space. To this end, let δ be any metric on A and let (rγ )γ∈� be a
family of positive numbers such that

∑
γ∈� rγ <∞. Then

�(f , g) =
∑
γ∈�

rγ δ(f (γ ), g(γ )) (1.1)

defines a metric on �(�,A) such that (�(�,A),�) is a compact metric space. In
fact, if the cardinality of A is greater than 1, then (�(�,A),�) is a Cantor set. From
now on,�(�,A)will be considered as a metric space with a metric of the above type.

For several technical reasons which will become apparent later, we have to enlarge
the set of symbols A by an empty symbol, denoted by ∅ and which is not an element of
A. If the set of symbols is enlarged by the empty symbol then we denote it by �A. We
are mainly interested in sequences with values in the symbol set A. Sequences with
values in the extended symbol set �A are only a helpful tool in certain constructions.
In all of the following we consider �(�,A) as a subset of �(�, �A).

If we consider sequences with values in a product of finite sets, i.e., a set of the
form A1 ×A2 × · · · ×An. Then A1 ×A2 × · · · ×An denotes the extension of the
product by the empty symbol.

The sequence ∅(γ ) ≡ ∅ is called the empty sequence.
Let A, B be two finite sets and a : A → B be a map, then a has the obvious

extension, also denoted by a, a : �A → B, where a(∅) = ∅.
For f ∈ �(�, �A), we denote by supp(f ) = {γ | f (γ ) �= ∅} the support of f . The

set of sequences with finite support is denoted by �c(�, �A). By abuse of language,
elements of �c(�, �A) are called polynomials with coefficients in �A.
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For f , g ∈ �(�, �A) with supp(f ) ∩ supp(g) = ∅, we define the sum f ⊕ g of f
and g by

(f ⊕ g)(γ ) =

⎧⎪⎨⎪⎩
f (γ ) if γ ∈ supp(f )

g(γ ) if γ ∈ supp(g)

∅ otherwise.

(1.2)

For τ ∈ � and a ∈ A, we introduce the special sequence f a
τ
: � → �A having the

property that

f a
τ
(γ ) =

{
a if γ = τ
∅ otherwise.

In this notation, we can write any f ∈ �(�, �A) as a sum

f =
⊕

γ∈supp(f )

f f (γ )
γ

.

For the sake of simplicity and for later use, we abbreviate the above notation as a
“formal series”, i.e., we write f as

f =
⊕

γ∈supp(f )

γfγ ,

where fγ = f (γ ) ∈ A. If it is clear from the context, we even omit the summation
index.

Then the sum of f and g, as defined in Equation (1.2), can be written as

f ⊕ g =
⊕

γfγ ⊕
⊕

γgγ =
⊕

γ (fγ ⊕ gγ ),
where ⊕ is defined in the obvious way.

As a next step, we introduce the notion of reduction and expansion maps. These
maps are of utmost importance for all of the following.

Definition 1.1.1. Let G : � → � be an arbitrary map. Then G induces a map
G∗ : �(�, �A)→ �(�, �A) which is defined by

G∗(f )(γ ) = f 
G(γ ).
G∗ is called the G-reduction.

Furthermore, forG injective there exists a second mapG∗ : �(�, �A)→ �(�, �A)
which is defined by

G∗(f )(γ ) =
{

∅ if γ �∈ G(�)
f (ρ) if γ = G(ρ).

The map G∗ is called the G-expansion.

Remark. The set �(�,A) is invariant under G-reductions; but �(�,A) is not in-
variant under G-expansions. Note that �(�, �A) is invariant under G-expansions.



1.1 Sequence spaces over groups 13

Examples.
1. Let A be a finite set and let � = Z be the additive group of natural numbers, let
G : Z → Z be defined byG(z) = 3z+ 1. Then theG-reduction of a sequence
f = ⊕jfj is given by

G∗(f ) =
⊕

jf3j+1.

If we consider the sequence f in the following way

f = ( . . . f−4 f−3 f−2 f−1 f0 f1 f2 f3 f4 . . . ),

↑
where the arrow indicates the zero position, then G∗(f ) is the sequence given
by

G∗(f ) = ( . . . f−11 f−8 f−5 f−2 f1 f4 f7 f10 f4 . . . ).

↑
This explains the name reduction.

The G-expansion of a sequence f is given by

G∗(f ) =
⊕
(3j + 1)fj ,

which can be regarded as the sequence given by

G∗(f ) = ( . . . ∅ ∅ f−1 ∅ ∅ f0 ∅ ∅ f2 . . . ).

↑
In other words, a G-expansion expands a sequence with values in A (!) by
inserting the empty symbol at certain places.

2. Let G : Z → Z be defined by

G(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if z = 0

2 if z = 1

0 if z = 2

z otherwise,

then G∗(f ) is given by

f = ( . . . f−4 f−3 f−2 f−1 f1 f2 f0 f3 f4 . . . )

↑
and G∗(f ) is given by

f = ( . . . f−4 f−3 f−2 f−1 f2 f0 f1 f3 f4 . . . ).

↑
The example shows that for a mapG : �→ � being surjective theG-expansion
is well defined on �(�,A).



14 1 Preliminaries

Remarks.
1. We have the obvious relations for maps G,H

(G 
H)∗ = H ∗ 
G∗,
and for G,H injective we have

(G 
H)∗ = G∗ 
H∗.

2. In the notation of formal series, we have

G∗(f ) =
⊕

γfG(γ ),

and for G injective
G∗(f ) =

⊕
G(γ )fγ .

Proposition 1.1.2. Let G : �→ � be an injective map. Then

G∗ 
G∗ = id,

where id denotes the identity on �(�, �A).
Proof. We have

G∗(G∗(f ))(γ ) = G∗(f )(G(γ )) = f (γ )
due to Definition 1.1.1. ��

In other words, G∗ is the left inverse of G∗. Moreover, note that for G : � → �

bijective, the maps G∗ and G∗ are well defined on �(�,A), and we have that G∗ =
(G−1)∗, or, equivalently, (G−1)∗ = G∗.

Given two finite sets A and B and a map a : A → B. Then the map a induces a
map â : �(�, �A)→ �(�,B) which is defined by

â(f )(γ ) = a(f (γ ))
for all γ ∈ �. In the notation of formal series we write

â(f ) =
⊕

γ a(fγ ).

Proposition 1.1.3. Let G : �→ � and a : A → A be maps, then

â 
G∗ = G∗ 
 â.
If, additionally, G is injective, then

â 
G∗ = G∗ 
 â.
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The proof is an immediate consequence of the definitions.

Let τ be an element of �, then the map

Tτ : �→ �

γ �→ τγ
(1.3)

is called left translation. The induced map T ∗τ : �(�, �A)→ �(�, �A) is called a (left)
shift on the set of sequences. Moreover, since Tτ is bijective, we have T ∗τ = (Tτ−1)∗
and �(�,A) is invariant under T ∗τ and (Tτ )∗.

Using the notion of formal series we have

(Tτ )∗(f ) = ⊕τγfγ
and we use the short form τf for (Tτ )∗(f ). The right translations are defined in a
similar way, namely

Rτ : �→ �

γ �→ γ τ.
(1.4)

The induced map R∗τ on �(�, �A) is called a right shift.

1.2 The Heisenberg group

In this section, we introduce one of our main examples of a non-commutative group
to which all of our theory can be applied. It is a finitely generated discrete subgroup
of the so-called Heisenberg group. The Heisenberg group is a non-Abelian, simply
connected 3-dimensional Lie group. Following the definition of the Heisenberg group
we show how to equip the Heisenberg group with a left invariant Riemannian metric
w.r.t. left translations. This left invariant metric gives a norm on the discrete subgroups
of the Heisenberg group.

Let L denote the set of upper triangular matrices with 1’s on the diagonal, i.e.,

L =
⎧⎨⎩
⎛⎝1 x z

0 1 y
0 0 1

⎞⎠ ∣∣∣ x, y, z ∈ R

⎫⎬⎭ .
The usual matrix multiplication provides a group structure, where the unit is given by
the unit matrix. Moreover, the multiplication is smooth. If

A =
⎛⎝ 1 x z

0 1 y
0 0 1

⎞⎠
is in L, then the inverse A−1 of A is given by

A−1 =
⎛⎝ 1 −x xy − z

0 1 −y
0 0 1

⎞⎠ .
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and therefore a smooth map. Thus, L is a Lie group. Moreover, we see that the set

LZ =
⎧⎨⎩
⎛⎝ 1 x z

0 1 y
0 0 1

⎞⎠ ∣∣∣ x, y, z ∈ Z

⎫⎬⎭ ,
is a discrete subgroup of L.

Let �H = 〈a, b, c; abc = ba, ac = ca, bc = cb〉, i.e., �H is generated as a group
by a, b, c with relations abc = ba, ac = ca, and bc = cb. The group �H is called
the discrete Heisenberg group.

Lemma 1.2.1.

1. ambn = bnamc−nm for all n,m ∈ Z.

2. (bnamcp)−1 = b−na−mc−p−nm for all n,mp ∈ Z.

3. The group �H is isomorphic to LZ.

Proof. 1. We have abc = ba which gives ab = bac−1 and a−1b−1 = b−1a−1c−1.
From abc = ba we obtain b = a−1bac−1 and thus ab−1 = a(a−1b−1ac) = b−1ac

and a−1b = ba−1c. This gives aεbδ = bδaεc−εδ , for ε, δ ∈ {−1, 0, 1}.
If we define ε : Z → {−1, 0, 1} by

ε(k) =

⎧⎪⎨⎪⎩
−1 if k ≤ −1

0 if k = 0

1 if k ≥ 1,

then ambn can be written as

ambn = aε(m) . . . aε(m)︸ ︷︷ ︸
|m|-times

bε(n) . . . bε(n)︸ ︷︷ ︸
|n|-times

,

and an nm-times application of aεbδ = bδaεc−εδ yields the desired result.
2. One has (bnamcp)−1 = c−pa−mb−n = a−mb−nc−p and by 1. we obtain the

assertion.
3. Let γ ∈ �H , then γ = γ α1

1 . . . γ
αk
k for some k, γj ∈ {a, b, c}, j = 1, . . . , k and

α1, . . . , αk ∈ Z. By the defining relations for �H , we can write γ as

γ = γ α1
1 . . . γ αnn c

p′ ,

where γj ∈ {a, b}, j = 1, . . . , k. By 1., we see that we can move all a’s to the right
adding or removing c’s. After finitely many steps we have that γ is of the form

γ = bnamcp.
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This gives a map h : �H → LZ defined by

h(bnamcp) =
⎛⎝ 1 n p

0 1 m
0 0 1

⎞⎠ .
By construction of h, we have the identity

h(bnamcp) h(bn
′
am

′
cp

′
) = h(bnamcp bn′am′cp′) = h(an+n′bm+m′cp+p′+nm′),

which shows that h is a morphism of groups. Moreover, h is a bijection, i.e., both
groups are isomorphic. ��

As the proof of Lemma 1.2.1 shows, LZ is generated by the matrices

A =
⎛⎝ 1 0 0

0 1 1
0 0 1

⎞⎠ , B =
⎛⎝ 1 1 0

0 1 0
0 0 1

⎞⎠ , C =
⎛⎝ 1 0 1

0 1 0
0 0 1

⎞⎠ ,
and we have ABC = BA, AC = CA, BC = CB.

As a next step, we define a left invariant Riemannian metric on L. Let

L =
⎧⎨⎩
⎛⎝ 0 x z

0 0 y
0 0 0

⎞⎠ ∣∣∣ x, y, z ∈ R

⎫⎬⎭
denote the nilpotent Lie algebra of L. On L we introduce a norm by defining
‖a‖ = √

x2 + y2 + z2, where a ∈ L. We now consider the Heisenberg group as
a 3-dimensional manifold with tangent space isomorphic to L at each point of the
Heisenberg group. Let

v =
⎛⎝ 0 ξ ζ

0 0 η
0 0 0

⎞⎠ ∈ T(1 x z
0 1 y
0 0 1

)L

be a tangent vector, then we define the norm by ‖v‖ = √
(ζ − xη)2 + η2 + ξ2. This

gives a Riemannian metric on Lwhich is invariant under left translations. To this end,
let ⎛⎝ 1 α γ

0 1 β
0 0 1

⎞⎠ ∈ L

and denote byTα,β,γ : L→ L the associated left translation, i.e., the left multiplication
of the above matrix with elements of the Heisenberg group. Then the derivative
DTα,β,γ of Tα,β,γ , viewed as a linear map from L to L, is given by

DTα,β,γ : L → L⎛⎝ 0 ξ ζ
0 0 η
0 0 0

⎞⎠ �→
⎛⎝ 1 α 0

0 1 0
0 0 1

⎞⎠⎛⎝ 0 ξ ζ
0 0 η
0 0 0

⎞⎠ ,
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Therefore DTα,β,γ is a map from

DTα,β,γ : T(1 x z
0 1 y
0 0 1

)L→ T(1 x + α z+ γ + yα
0 1 y + β
0 0 1

)L

and for

v =
⎛⎝ 0 ξ ζ

0 0 η
0 0 0

⎞⎠ ∈ T(1 x z
0 1 y
0 0 1

)L

we compute DTα,β,γ v as

DTα,β,γ v =
⎛⎝ 0 ξ ζ + αη

0 0 η

0 0 0

⎞⎠ ∈ T(1 x + α z+ γ + yα
0 1 y + β
0 0 1

)L.

The norm of DTα,β,γ v is given by

‖DTα,β,γ v‖ = (ζ + αη − (x + α)η)2 + η2 + ξ2

which is the same as ‖v‖. If we define the distance of two points as the length (w.r.t. the
metric defined above) of the shortest path connecting these two points, we obtain a
left invariant metric on L. Therefore we have a left invariant metric on the subgroup
LZ which yields a left invariant metric on �H .

From now on we suppose that �H is equipped with the norm which is induced by
the Riemannian metric defined on L, and we denote this norm by ‖ ‖r .

1.3 Notes and comments

The definition of the norm ‖ ‖E for a finitely generated group is from [88]. A proof of
the fact that the metric space (�(�,A),�)) is a Cantor set can be found in [58]. The
definitions of G-reduction and G-expansion along with their properties are stated in
[95].

More information on the Heisenberg group, Lie groups and so forth can be found
in, e.g., [49] and the references cited there.



Chapter 2

Expanding endomorphisms and substitutions

In this chapter, we introduce the notion of a substitution on the space of sequences
�(�, �A). In order to do so, we have to consider expanding endomorphisms of the
group �. This is done in the first section. We discuss the question which finitely
generated groups possibly admit an expanding endomorphism H : �→ �.

In the second part, we give the definition of a (V ,H)-substitution S : �(�, �A)→
�(�, �A), whereH : �→ � is an expanding endomorphism such that the index of the
subgroupH(�) is finite and V is a residue set ofH . As a first step we shall investigate
the dynamic properties of a substitution. Then we introduce the notion of a sequence
which is generated by a substitution. As it will turn out later, these sequences are
precisely the automatic sequences we are interested in.

Furthermore, we introduce a special kind of reduction maps, namely the so-called
decimation. Along with the decimation of a sequence comes the kernel of a sequence
f ∈ �(�,A). Loosely speaking the kernel of a sequence f consists of all sequences
which can be obtained by repeated applications of the decimations. We shall show
that a sequence is generated by a substitution if and only if the kernel of the sequence
is finite.

Furthermore, we present two types of finite directed graphs. The first one is the so-
called graph of a substitution, and the second one is the kernel graph of a sequence f .
We discuss the relations between these two graphs.

2.1 Expanding endomorphisms

In this section we introduce the concept of an expanding group endomorphism of the
finitely generated group�. We begin with the definition of expanding endomorphisms,
followed by several examples of expanding endomorphisms.

The question on the existence of expanding endomorphisms of a group is a very
delicate one. Its answer depends on the structure of the group as well as on the norm.

Finally, we investigate for which groups � there exists an expanding endomor-
phism H : �→ � such that H(�) is a subgroup of finite index.

From now on, (�, ‖ ‖) denotes a finitely generated group with a norm.
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Definition 2.1.1. Let H : (�, ‖ ‖) → (�, ‖ ‖) be a group endomorphism. If there
exists a C > 1, C ∈ R, such that

‖H(γ )‖ ≥ C‖γ ‖
holds for all γ ∈ � then H is called expanding (w.r.t. the norm on �).

If we want to emphasize that an endomorphism H of � is expanding w.r.t. the
norm induced by a generating set E of �, we say that H is expanding w.r.t. E.

Remarks.
1. The largestC satisfying the condition of Definition 2.1.1 is called the expansion

ratio of H .

2. If D‖ ‖ denotes the left invariant metric associated with the norm, then for an
expanding endomorphism H we have D(H(γ ),H(ρ)) ≥ CD(γ, ρ) for all
γ, ρ ∈ �.

3. If H is expanding, then the n-th iterate, H 
n, of H is expanding, too. The
expansion ratio ofH 
n is greater than or equal to Cn, where C is the expansion
ratio of H .

4. If H is expanding, then H is injective.

5. If H is expanding (w.r.t. ‖ ‖) with expansion ratio C > 1, then

‖H−1(γ )‖ ≤ ‖γ ‖
C

holds for all γ ∈ H(�) = {H(τ) | τ ∈ �}.
6. The property of an endomorphismH : �→ � to be expanding depends on the

norm. E.g.: Let Z be the group of integers and let H : Z → Z be defined by
z �→ 2z. Then H is expanding w.r.t.E = {1} and the expansion ratio is equal
to 2. If we consider Z with generating set E′ = {2, 3}, thenH is not expanding
w.r.t. E′. We have ‖1‖E′ = 2 and ‖H(1)‖ = ‖2‖ = 1.

7. If H : �→ � is an endomorphism and E is a generating set such that H(�) ∩
E �= ∅, then H is not expanding w.r.t.E.

Examples.
1. Let � = 〈x〉, i.e., � is isomorphic to Z. Then all expanding endomorphisms

(w.r.t. {x}) are of the form H(xj ) = xjd , where d ∈ Z and |d| ≥ 2.

2. Let � = 〈x, y〉 be the free Abelian group, i.e., � is isomorphic to Z
2. Any

endomorphism H : 〈x, y〉 → 〈x, y〉 is given by a matrix AH ∈ Z
2×2, and vice

versa. Since any norm on the vector space R
2 induces a norm on the group

〈x, y〉 (regarded as a subset of R
2) the expanding property depends on the norm

on R
2. By a result in [114], there exists a norm on R

2 such thatH is expanding
if all eigenvalues of the matrix AH have modulus greater than 1.
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3. Let L be the Heisenberg group introduced in Section 1.2 equipped with the left
invariant Riemannian metric also introduced in 1.2. The map

Ha,b : L→ L⎛⎝ 1 x z
0 1 y
0 0 1

⎞⎠ �→
⎛⎝ 1 ax abz

0 1 by

0 0 1

⎞⎠ ,
where a, b ∈ R, is a group endomorphism of the Heisenberg group. If one
chooses a, b such that |a|, |b| > 1, thenHa,b is expanding w.r.t. the Riemannian
metric. For a,b ∈ Z,Ha,b maps the discrete subgroupLZ intoLZ, and therefore
we have for a, b ∈ Z and |a|, |b| > 1 that the map Ha,b : (LZ, ‖ ‖r ) →
(LZ, ‖ ‖r ) is an expanding group endomorphism (w.r.t. the norm ‖ ‖r )

4. Let � be the free group generated by a, b equipped with the norm induced
by the generating set {a, b}. Then the endomorphism H : � → � defined
by the unique extension of the map a �→ aa and b �→ bb is an expanding
endomorphism. Its expansion ratio is two.
The unique extension of the map a �→ ab−1 and b �→ bb to an endomorphism
H of the free group does not define an expanding map. We have ‖H(ab)‖ =
‖ab−1bb‖ = ‖ab‖ which shows thatH is not an expanding map. Indeed, there
exists no norm on � such that H is expanding.

As a first step towards a characterization of groups which admit expanding endo-
morphisms we begin with some simple observations.

Lemma 2.1.2. Let� be a non-trivial finite group equipped with any norm. Then there
exists no expanding endomorphism of �.

Proof. Assume that H : �→ � is an expanding (w.r.t any norm ‖ ‖) endomorphism
with expansion ratio C > 1. Since � is a finite group and H is injective, it follows
that H is an automorphism of �. Since the automorphism group of � is finite there
exists an n0 ∈ N such that

H 
n0(γ ) = γ
holds for all n ∈ N. We therefore conclude that

‖H 
n0(γ )‖ = ‖γ ‖ ≥ Cn0‖γ ‖
holds for all γ ∈ �; this is a contradiction. ��

Let Tor(�) denote the set of all elements of � which are of finite order. If Tor(�)
is a subgroup of � and H is an expanding endomorphism, then, as a consequence
of Lemma 2.1.2, either the cardinality of Tor(�) is infinite or Tor(�) is trivial, i.e.,
Tor(�) = {e}. In case of a finitely generated Abelian group � we state the following
result.
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Lemma 2.1.3. Let � �= {e} be a finitely generated Abelian group andH : (�, ‖ ‖)→
(�, ‖ ‖) be an expanding endomorphism. Then � (as a group) is isomorphic to the
group Z

n for some n ∈ N.

Proof. The set Tor(�) of� is a finite subgroup since� is finitely generated andAbelian.
Moreover, H(Tor(�)) ⊂ Tor(�) and by Lemma 2.1.2 it follows that Tor(�) = {e}.
By the classification theorem of finitely generated Abelian groups, we obtain that �
is isomorphic to some Z

n. ��

If� is finitely generated nilpotent, then the torsion subgroup is finite, see e.g. [123].
Thus if a finitely generated nilpotent group admits an expanding endomorphism the
torsion subgroup must be trivial.

If one compares the examples of expanding endomorphisms given above, then one
observes a striking difference between 1., 2., 3., and 4.. For the cases 1., 2., and 3.
the subgroup H(�) is of finite index, while for the case 4. the subgroup H(�) is of
infinite index, where the index ofH(�) is equal to the number of different equivalence
classes given by the following equivalence relation: γ , γ ′ ∈ � are calledH -equivalent
if γ−1γ ′ ∈ H(�).

For our study of substitutions we are only interested in expanding endomorphisms
H : �→ � such that the subgroup H(�) is of finite index.

The next lemma shows that the existence of an expanding endomorphism of �
implies that H -equivalent points cannot be too close together.

Lemma 2.1.4. LetH : (�, ‖ ‖E)→ (�, ‖ ‖E) be expanding (w.r.t.E = {γ1, . . . , γk})
with expansion ratioC > 1. Then the open ball

o

B C
2
(e) contains noH -equivalent points.

Proof. Suppose there are γ , γ ′ ∈ o

B C
2
(e) with γ �= γ ′ and γ−1γ ′ ∈ H(�), i.e., there

exists a τ ∈ � with γ−1γ ′ = H(τ). Then we estimate

C > ‖γ ‖E + ‖γ ′‖E ≥ ‖γ−1γ ′‖E = ‖H(τ)‖E ≥ C‖τ‖E.
Since the norm only takes values in N, we conclude that τ = e and therefore γ = γ ′
which is a contradiction. ��

Let � = 〈γ1, . . . , γk〉 be a finitely generated group. The open ball of radius r > 0
with center τ is the set

o

Br(τ ) = {γ | ‖τ−1γ ‖E < r}.
Each ball of radius r centered at τ ∈ � contains only finitely many elements. Moreover,
balls with different center but equal radius have equal cardinality.

Therefore it is sufficient to count the number of elements in the ballBr(e). In order
to study groups which admit an expanding endomorphism we introduce the concept
of polynomial growth of a group.
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Definition 2.1.5. Let the group � be generated by the set E = {γ1, . . . , γk}. The
group � has polynomial growth if there exist real numbers K > 0 and D > 0 such
that

|Br(e)| ≤ KrD

holds for all r ≥ 0.

Due two our preliminary remarks, see p. 9, the definition of polynomial growth
does not depend on the choice of the generating set.

Examples.

1. Let � = 〈x〉, i.e., � is isomorphic to Z. Then � has polynomial growth, since

|Br(e)| = 2k + 1 for r ∈ [k, k + 1[ and k ∈ N0.

2. Let � = 〈x, y〉 be the free Abelian group, i.e., � is isomorphic to Z
2, with

generating set E = {x, y}. Then � has polynomial growth, since

|Br(e)| = 2k2 + 2k + 1 for r ∈ [k, k + 1[ and k ∈ N0.

3. Any finitely generated Abelian group has polynomial growth.

4. Let � be the free group generated by a, b equipped with the norm induced by
the generating set {a, b}. Then � is not of polynomial growth, since

|Br(e)| = 2 · 3k − 1 for r ∈ [k, k + 1[ and ∈ N0.

Moreover, any free group with more than two generators does not have polyno-
mial growth. It rather has exponential growth, i.e.,

|Br(e)| ≥ Kr

for all r > 1 and some real constant K > 1.

Theorem 2.1.6. Let � be a finitely generated group and H : (�, ‖ ‖E)→ (�, ‖ ‖E)
be an expanding endomorphism (w.r.t. the generating set E) with expansion ratio
C > 1. If the index of the subgroup H(�) is finite, then � has polynomial growth.

Proof. By Lemma 2.1.4, we have that
o

B C
2
(e) contains no equivalent points. The

n-th iterateH 
n ofH is expanding and
o

B Cn

2
(e) contains noH 
n-equivalent points. If

d ≥ 1 is the index ofH(�), then the index ofH 
n(�) is dn, and, as a consequence of
Lemma 2.1.4, we obtain ∣∣ oB Cn

2
(e)
∣∣ ≤ dn
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for all n ∈ N. For α = log d
logC the above inequality becomes

∣∣ oB Cn

2
(e)
∣∣ ≤ 2α

(
Cn

2

)α
.

Since the function r �→ ∣∣ oBr(e)∣∣ is increasing, we have for all real numbers r such that
Cn

2 ≤ r < Cn+1

2 the inequality

∣∣ oBr(e)∣∣ ≤ ∣∣ oB Cn+1
2
(e)
∣∣ ≤ 2α

(
Cn+1

2

)α
= 2α

(
Cn

2

)α
Cα ≤ 2αdrα.

We therefore conclude that
∣∣ oBr(e)∣∣ ≤ 2αdrα holds for all r ≥ 0 which proves that �

has the polynomial growth property. ��

Remarks.
1. Note that the above proof also shows that the index of H(�) is not equal to 1,

unless � is the trivial group {e}.
2. If � is the free group with more than two generators, then there exists no ex-

panding endomorphism H such that H(�) is of finite index.

In order to generalize the above result to arbitrary norms on �, we introduce the
notion of a discrete norm.

Definition 2.1.7. Let � be a group and ‖ ‖ a norm on �. The norm is called discrete
if the set {‖γ ‖ | γ ∈ �} is a discrete subset of R

+
0 .

Remarks.
1. All previous examples of norms on groups are discrete norms.

2. Let � = 〈x〉, then

‖xk‖ = |k|
1+ |k|

is a non-discrete norm on �.

3. If ‖ ‖ is a bounded norm, i.e., ‖�‖ is a bounded subset of R
+
0 , then there do not

exist expanding endomorphisms (w.r.t. ‖ ‖) on �.

Lemma 2.1.8. Let � be a finitely generated group and let H : (�, ‖ ‖) → (�, ‖ ‖)
be an expanding group endomorphism with expansion ratio C > 1. If the index of the
subgroupH(�) is finite and if the norm is discrete, then � has the polynomial growth
property.
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Proof. Since ‖ ‖ is a discrete norm, there exists an r0 > 0 such that |Br(e)| = 1
for all 0 ≤ r < r0. Let d, d ≥ 1, be the index of the subgroup H(�) ⊂ �. Then

Lemma 2.1.4 generalizes to: The open ball
o

Br0 C2
(e) contains no equivalent points.

With analogous arguments as in the proof of Theorem 2.1.5 one obtains that

∣∣ oBr(e)∣∣ ≤ (
2

ro

)α
drα, (2.1)

where d is the index ofH(�) andα = log d
logC , holds for all r ≥ 0. Thus� has polynomial

growth w.r.t. the norm ‖ ‖. It remains to show that � has polynomial growth w.r.t. a
generating set E. Let E = {γ1, . . . , γk} be a generating set of � and let ‖ ‖E be the
induced norm. Let γ = γ p1

j1
. . . γ

pm
jm

be a minimal word length representation of γ
(w.r.t.E), then

‖γ ‖ = ‖γ p1
j1
. . . γ

pm
jm
‖ ≤

m∑
i=1

|pi | ‖γji‖.

Since E is a finite set, there exists a K > 0 such that ‖γj‖ ≤ K holds for all γj ∈ E.
This gives

‖γ ‖ ≤ K
m∑
i=0

|pi | = K‖γ ‖E.

Therefore a ‖ ‖E-ball of radius r and center e is contained in the ‖ ‖-ball of radiusKr
and center e. By Equation (2.1), it follows that the cardinality of a ‖ ‖-ball of radius
r with center e is at most 2α

rα0
d(rK)α , i.e., � has polynomial growth w.r.t.E. ��

Due to a result of Gromov [88], we obtain that under the assumptions of Corol-
lary 2.1.8 � contains a nilpotent subgroup of finite index.

After this excursion we focus our attention now on the substitutions.

2.2 Substitutions

We start with our example from the Introduction. Let (tn)n∈N be the Thue–Morse
sequence, i.e.,

t0 = 0

t2n = tn
t2n+1 = 1− tn.

Due to our observations, the Thue–Morse sequence is generated by a ‘substitution’
defined by 0 �→ 01 and 1 �→ 10. Starting with 0 we get a sequence of words

0 �→ 01 �→ 0110 �→ 01101001 �→ · · ·
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which ‘converges’ to the Thue–Morse sequence. The goal of this section is to put this
observation on a firm mathematical ground.

Let A = {0, 1} be a finite set and consider the sequence space �(N,A)., i.e., the
set of sequences over N with values in A = {0, 1}. Although N with addition is not a
group, we can consider it as a subset of the group Z with addition. In order to write
addition of the group Z in a multiplicative way, we denote the elements of the group Z

by xj with j ∈ Z. There is a natural projection of p : �(Z,A)→ �(N,A) defined
by p(f ) = f |N. There does not exist a natural embedding �(N,A) into �(Z,A);

but there exists a natural embedding j of �(N,A) into �(Z, �A) defined by

i(f )(xj ) =
{
f (xj ) if j ≥ 0

∅ if j < 0

The mapH : Z → Z defined byH(xj ) = x2j is a monomorphism of Z andH(Z) ⊂ Z

is a subgroup of index 2. Since Z is generated by x, there exists an induced norm
on Z which we denote by ‖ ‖ and which is defined by ‖xj‖ = |j |. For xj in Z

we thus obtain ‖H(xj )‖ = 2‖xj‖, i.e., the monomorphism H is expanding w.r.t. the
generating set {x}. Moreover, the set N is H -invariant, i.e., H(N) ⊂ N.

Since H(Z) is a subgroup of index two, every element xj ∈ Z can be uniquely
written as xj = xεH(xj ′), where ε ∈ {0, 1}. The set V = {x0, x1} is called a residue
set of H . Due to the choice of the residue set we even have that any element xj ∈ N

has a unique representation xj = xεH(xj ′) with xj
′ ∈ N.

As a next step we introduce the notion of a substitution. To this end, we consider
the finite set A = {0, 1} and define a map s : V ×A → A by the following table:

x0 x1

0 0 1
1 1 0

For the sake of simplicity, we write sxε : A → A for the map a �→ s(xε, a). The
extensions to �A of the maps sxε are defined by sxε (∅) = ∅ and also denoted by sxε .

We now consider the map S : �(Z, �A)→ �(Z, �A) defined by

S(f ) = ŝx0(H∗(f ))⊕ ŝx1((Tx1 
H)∗(f )).
Note that �(Z,A) ⊂ �(Z, �A) is S-invariant. Thus we can study S on �(Z,A).
Moreover, due to our choice of V , we have that the set �(N,A) is S-invariant, too.

The map S is called a substitution. To justify the name substitution we study the
orbit of the sequence f 0

x0 under the iteration of S. Since f 0
x0 denotes the sequence

with value 0 at x0 and ∅ otherwise, we obtain the following orbit:

f 0
x0 = (. . . ∅ ∅∅ . 0 ∅ ∅ ∅ ∅ ∅ . . . )

S(f 0
x0) = (. . . ∅ ∅ ∅ .0 1 ∅ ∅ ∅ ∅ . . . )

S
2(f 0
x0) = (. . . ∅ ∅ ∅ .0 1 1 0 ∅ ∅ . . . ),
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where “.” indicates the lower left corner of the zero position. The map S|N = p 
S 
 i
is a substitution on�(N,A) which exactly models the generation of the Thue–Morse
sequence. Moreover, the Thue–Morse sequence, t , is a fixed point of the substitution
S|N = p 
 S 
 i, i.e., we have S|N(t) = t . If we set un = 1− tn for all n ∈ N then the
sequence u = (un) is another fixed point of S|N = p 
 S 
 i. These are the only fixed
points of S|N = p 
 S 
 i.

The substitution S on �(Z, �A) has three fixed points; the empty sequence, the
embedded Thue–Morse sequence i(t) and the embedded sequence

u =
⊕
j≥0

xj tj ,

where 0 = 1 and 1 = 0. Moreover, S on�(Z, �A) has two periodic points {f
1
, S(f

1
)},

{f2, S(f 2
)} of period two, where

f
1
=
⊕
j<0

xj t−j−1 ⊕
⊕
j≥0

xj tj , f
2
=
⊕
j<0

xj t−j−1 ⊕
⊕
j≥0

xj uj

The substitution S on �(Z,A) has two periodic orbits of period two and no fixed
points.

After this introductory example we start with the general theory. As we have seen,
it is the expanding endomorphism H(xj ) = x2j and the finite residue set V which
allow us to define a substitution. We therefore deal with expanding endomorphisms
and residue sets first.

Definition 2.2.1. Let (�, ‖ ‖) be a finitely generated group with a norm, and let H
be an expanding endomorphism such that H(�) is a subgroup of finite index. A set
V ∈ � is called a (left-)residue set (w.r.t.H) if the following holds.

1. The unit e of � is in V .

2. For any γ ∈ � there exist a unique v ∈ V and a unique γ ′ ∈ � such that

γ = vH(γ ′).

For the sake of simplicity, we often call V a residue set (of H ).

Remarks.

1. The condition e ∈ V is not really necessary for the definition of a residue set.
However, for all what follows it is very convenient to ensure that e belongs to a
residue set.

2. The number of elements in a residue set is equal to the index of the subgroup
H(�). Therefore all residue sets have the same cardinality.
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3. Let V be residue set (w.r.t.H ), and define the sequence (Vn)n∈N as V0 = V and
for n ≥ 1 set

Vn = VH(Vn−1) = {vH(w) | v ∈ V,w ∈ Vn−1}.
Then Vn is a residue set w.r.t.H 
n.

Examples.
1. Let � = 〈x〉, i.e., � is isomorphic to Z. Then all expanding endomorphisms

(w.r.t. the norm induced by {x}) are of the formH(xj ) = xjd , where d ∈ Z and
|d| ≥ 2. A residue set (of H(x) = xdj ) is given by V = {0, 1, . . . , |d| − 1}.

2. Let � = 〈x, y〉 be the free Abelian group, i.e., � is isomorphic to the additive
group Z

2. Any endomorphism H : 〈x, y〉 → 〈x, y〉 is given by a matrix
A ∈ Z

2×2, and vice versa. Since any norm on the vector space R
2 induces a

norm on the group 〈x, y〉 (regarded as a subset of R
2) the expanding property

depends on the norm chosen on R
2. The endomorphism H : 〈x, y〉 → 〈x, y〉

defined by the matrix (
1 −1
1 1

)
is expanding w.r.t. the euclidean metric; it is not expanding w.r.t. the metric
induced by the generating set {x, y}. A residue set is given byV = {x0y0, x1y0}.

3. Let �3 be the discrete Heisenberg group and consider the endomorphism H2,2,
see Example 3, p. 21,

H2,2 : L→ L⎛⎝ 1 x z
0 1 y
0 0 1

⎞⎠ �→
⎛⎝ 1 2x 4z

0 1 2y
0 0 1

⎞⎠ .
Then H is an expanding endomorphism (w.r.t. the norm ‖ ‖r ). A (left)-residue
set is given by

V = {bε1aε2cε3 | ε1, ε2 ∈ {0, 1}, ε3 ∈ {0, 1, 2, 3}}.
By Lemma 1.2.1 each γ ∈ �3 has a unique representation as γ = anbmcp and
therefore H(γ ) = b2na2mc4p. If we write n = 2n′ + ε1, m = 2m′ + ε2, where
ε1, ε2 ∈ {0, 1} and n′, m′ ∈ Z, then we have

γ = anbmcp = a2n′+ε1b2m′+ε2cp = bε1aε2 a2n′b2m′cp+2n′ε2 ,

where the last equation is due to Lemma 1.2.1. Since p − 2n′ε2 = 4p′ + ε3,
where ε3 ∈ {0, 1, 2, 3} and p′ ∈ Z, we obtain

γ = bε1aε2cε3a2n′b2m′c4p′ = bε1aε2cε3H(bn′am′cp′).
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The uniqueness property of the representation of γ as γ = anbmcp yields that
V is a residue set.

Definition 2.2.2. Let (�, ‖ ‖) be a finitely generated group with a norm, and letH be
an expanding endomorphism such thatH(�) is a subgroup of finite index. Moreover,
letV be a residue set (w.r.t.H ). The maps κ = κH,V : �→ � and ζ = ζH,V : �→ V

defined by
γ = ζ(γ )H(κ(γ ))

are called image-part-map and remainder-map, respectively.

The image-part-map and the remainder-map define a kind of euclidian algorithm
on �. If � is equipped with a discrete norm, see Definition 2.1.7, then the dynamics
of κH,V is described by the next lemma.

Lemma 2.2.3. Let (�, ‖ ‖) be a finitely generated group with a discrete norm, and let
H be an expanding endomorphism such that H(�) is a subgroup of finite index. For
every residue set V there exists an RV > 0 such that κH,V maps the closed ‖ ‖-ball
BRV (e) = {γ ∈ � | ‖γ ‖ ≤ RV } into itself.

For each γ ∈ �, there exists an n ∈ N such that κ
nH,V (γ ) ∈ BRV (e).

Proof. We have ζH,V (γ )−1γ = H(κH,V (γ )), and therefore

‖κH,V (γ )‖ ≤ rV + ‖γ ‖
C

,

where rV = max{‖v‖ | v ∈ V }. For ‖γ ‖ ≤ RV = rV
C−1 we have

‖κ(γ )‖ ≤ RV .
If ‖γ ‖ > RV , then ‖κ(γ )‖ < ‖γ ‖. Since the norm is discrete, there exists an n ∈ N

such that ‖κ
nH,V (γ )‖ ≤ RV . This proves the second assertion. ��

By our previous results, see Section 2.1, we see that under the conditions of
Lemma 2.2.3, |BRV (e)| is finite. Since κ maps the ball BRV (e) into itself, κ has
only finitely many periodic points all of which are contained in BRV (e). The set
of periodic points of κ is denoted by Per κ , i.e., Per κ = {γ | there exists an n ∈
N such that κ
n(γ ) = γ }. As usual, the smallest positive n with κ
n(γ ) = γ is
called the period of γ ∈ Per κ . If the period of γ ∈ Per κ equals 1, then we call γ a
fixed point of κ . Obviously, we have e ∈ Per κ , since κ(e) = e.

Given any γ ∈ � there exists an n such that κ
n(γ ) is a periodic point of κ , i.e.,
there exists an m ∈ N such that κ
(n+m)(γ ) = κ
n(γ ). In other words, every γ is a
preperiodic point of κ .

As a consequence of Lemma 2.2.3 we have the following corollary.
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Corollary 2.2.4. Let (�, ‖ ‖) be a finitely generated group with a discrete norm, and
let H be an expanding endomorphism such that H(�) is a subgroup of finite index.
Furthermore, let V be a residue set. Then for all R > 0 there exists an n ∈ N such
that κ
−nH,V (Per κH,V ) ⊃ BR(e).

Among the set of residue sets are special residue sets, the so-called complete digit
sets.

Definition 2.2.5. Let (�, ‖ ‖) be a finitely generated group and letH be an expanding
endomorphism such thatH(�) is a subgroup of finite index. A residue set V (w.r.t.H )
is called a complete digit set (of H) if Per κH,V = {e}.

If V is a complete digit set for H and �, then the euclidian algorithm defined by
κH,V and ζH,V terminates at e for all γ ∈ �.

Corollary 2.2.6. Let (�, ‖ ‖) be a finitely generated group, and letH be an expanding
endomorphism such that H(�) is a subgroup of finite index. A residue set V is a
complete digit set if and only if each γ ∈ � \ {e} has a finite representation as

γ = vi0H(vi1) . . . H 
n(vin)

with vij ∈ V for j = 0, . . . , n and vin �= e.
Proof. Let V be a residue set and let ζ and κ be the associated remainder-map and
image-part-map, respectively.

Suppose that V is a complete digit set. For every γ ∈ � \ {e} there exists an n ∈ N

such that κ
n(γ ) = e. Therefore there exist finite sequences (γk = κ
k(γ ))k=0,...,n−1
and (vk = ζ(γk))k=0,...,n−2 such that γk = ζ(γk)H(κ(γk)). We therefore have

γ = ζ(γ0)H(ζ(γ1)) . . . H

n−1(ζ(γk−1)),

which proves the first assertion.
The second assertion follows from

κ(γ ) = κ(vi0H(vi1)H(vi2) . . . H 
n(vin)) = vi1 . . . H 
n−1(vin). ��

Examples.

1. Let� = 〈x〉, i.e.,� is isomorphic to Z. Then the mapH(xj ) = x2j is expanding
(w.r.t. E = {x}). The set V = {x0, x1} is a residue set of H but not a complete
digit set. We have Per κH,V = {x−1, x0}, and all elements of Per κH,V are fixed
points.

Moreover, there exists no residue set V such that V is a complete digit set for
H(xj ) = x2j .
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2. Let � = 〈x〉 andH(xj ) = x−2j . ThenH is expanding (w.r.t.E = {x}) and the
set V = {x0, x1} is a complete digit set.

3. Let � = 〈x〉, then H(xj ) = x3j is expanding. The set V = {x0, x1, x2} is a
residue set which is not a complete digit set. The periodic points are x−1 and
x0 and both are fixed points.

The set V1 = {x−1, x0, x13} is a residue set for H(xj ) = x3j . Then x0 is a
fixed point of the associated image-part-map κ , the point x−2 is a periodic point
of period 3, i.e., κ(x−2) = x−5, κ(x−5) = x−6, and κ(x−6) = x−2.

The set V2 = {x−1, x0, x1} is a complete digit set for H .

4. For� = 〈x, y〉, the freeAbelian group with two generators, the mapH(xiyj ) =
x2iy2j is expanding (w.r.t.E = {x, y}). A residue set V of H is given by V =
{x0y0, x1y0, x0y1, x1y1}, however, V is not a complete residue set. Moreover,
there does not exist a complete digit set for H .

Let Hb(xiyj ) = x
−ib−j
1 x

−bj−i
2 is expanding (w.r.t, the norm induced by the

euclidian metric on R
2). The set V = {x0

1 , x
1
1 , x

2
1 , . . . , x

b2

1 } is a complete digit
set, cf. [103].

5. Let LZ be the discrete Heisenberg group introduced in Section 1.2. Consider

H : L→ L⎛⎝ 1 x z
0 1 y
0 0 1

⎞⎠ �→
⎛⎝ 1 2x 4z

0 1 2y
0 0 1

⎞⎠ .
Then H is an expanding endomorphism (w.r.t. the norm ‖ ‖r ). A (left)-residue
set is given by V = {bε1aε2cε3 | ε1, ε2 ∈ {0, 1} and ε3 ∈ {0, 1, 2, 3}}. The
residue set V is not a complete digit set. The fixed points of κ are e, a−1, b−1,
c−1, b−1c−1, a−1c−1, b−1a−1c−1. Moreover, these are the only periodic points
of κ .

The next theorem provides a simple criterion for the existence of complete digit
sets.

Theorem 2.2.7. Let H : � → � be expanding w.r.t. the discrete norm ‖ ‖ with
expansion ratio C > 2 and let H(�) be of index d ∈ N. Then there exists a residue
set that is a complete digit set (of H).

Proof. Let V = {v1 = e, v2, . . . , vd} be an arbitrary residue set (of H ). For each
j = 1, 2, . . . , d there exists a ξj ∈ vjH(�) such that

‖ξj‖ ≤ ‖vjH(γ )‖
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holds for all γ ∈ �. The set � = {ξ1 = e, ξ2, . . . , ξd} is a residue set and a complete
digit set. Due to Definition 2.2.5 we have to show that Per κ�,H = {e}. Suppose that
γ0 ∈ Per κH,� is a non-trivial periodic point of period n. Then we have

γ0 = α0H(α1)H

2(α2) . . . H


n−1(αn−1)H

n(γ0),

where αi ∈ �, i = 0, . . . , n− 1. Note that γ1 = κ�,H (γ0) is also a periodic point of
κ�,,H and

γ1 = α1H(α2) . . . H

n−2(αn−1)H


n−1(α0)H(γ1).

This observation allows us to choose γ0 in such a way that ‖α0‖ ≥ ‖αj‖ for all
j = 0, . . . , n− 1. We also have

γ0 = H−1(α−1
n−1H

−1(. . . H−1(α−1
1 H−1(α−1

0 γ0))) . . . )
)
,

which yields the estimate

‖γ0‖ ≤ ‖αn‖
C

+ ‖αn−1‖
C2 + · · · + ‖α0‖ + ‖γ0‖

Cn
.

Due to our assumption, we have that ‖α0‖ ≥ ‖αj‖ for all j = 0, . . . , n − 1. This
leads to

‖γ ‖ ≤ ‖α0‖
C − 1

.

Since C > 2 we have that ‖γ ‖ < ‖α0‖ and γ0 = α0H(γ
′). This contradicts the

choice of the residue set �. ��

Remarks.

1. IfH : �→ � is an expanding endomorphism with expansion ratioC > 1, then
there exists n0 ∈ N such that H 
n0 has an expansion ratio of at least Cn0 > 2.
Due to the above theorem, there exists a complete digit set of H 
n0 .

2. The estimate C > 2 is sharp in the sense that there exists an expanding group
endomorphism H with expansion ratio C = 2 such that H has no complete
digit set, see Example 1, p. 30.

On the other hand, Example 2, p. 31, shows that there exist expanding maps H
with expansion ratio C = 2 such that H has a complete digit set.

Even for the case C < 2 there exists examples of expanding maps with a com-
plete digit set. E.g., the endomorphism H(xiyj ) = x−1−j yi−j which is the
multiplication by −1+ ı, has expansion ratio C = √

2 (w.r.t. euclidian metric)
and the complete digit set V = {x0y0, x1y0}.

We are now prepared to state the definition of substitutions.
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Definition 2.2.8. Let (�, ‖ ‖) be a finitely generated group and H : � → � an
expanding endomorphism (w.r.t. ‖ ‖) such that H(�) is of finite index. Furthermore,
let V be a residue set (of H ) and A a finite set, and let s : V × A → A be a map.
Then s induces a map S : �(�,A)→ �(�,A) defined by

S(f )(γ ) = s(v, f (ρ)),
where γ = vH(ρ) is the unique representation relative to H and V . The map S is
called a (V ,H)-substitution.

Note that a substitution has a canonical extension, also denoted by S, to�(�, �A).
This extension is defined by s(v,∅) = ∅ for all v ∈ V . With this extension the set
�(�,A) ⊂ �(�, �A) is an invariant set of S.

For v ∈ V , we denote the map �A � a �→ s(v, a) ∈ �A by sv . If the map H and
the set V are clear from the context, we simply speak of the substitution S.

In terms of formal series, and it is here where we have to consider S as a map on
�(�, �A), we can write S in the following way:

S(f ) = S(
⊕

fγ γ ) =
⊕
v∈V
(Tv 
H)∗ 
 ŝv(f ),

where Tv : � → �, γ �→ vγ are left-translations. If we use the short form for the
map (Tτ )∗, we can rewrite S(f ) as

S(f ) =
⊕
v∈V

vH∗(ŝv(f )).

More informally, we can write

S(f ) =
⊕
v∈V

⊕
γ∈�

vH(γ )s(v, fγ ).

If the sum f ⊕ g is defined, then we have S(f ⊕ g) = S(f )⊕ S(g).
The next lemma describes the dynamics of a substitution S.

Lemma 2.2.9. Let S : �(�, �A) → �(�, �A) be a (V ,H)-substitution. Then the
ω-limit set of f ∈ �(�, �A) under S, i.e., the set

ω(f ) = {
g | there exists (nj )j∈N with lim

j→∞ nj = ∞ such that lim
j→∞ S


nj (f ) = g},
is a periodic orbit of S.

Proof. Let κ be the image-part-map associated with H and V and let Per κ be the set
of periodic points of κ . Let f ∈ �(�, �A) and denote by R(f ) the restriction of f on
Per κ , i.e.,

R(f ) =
⊕
γ∈Per κ

γfγ ,
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with the usual convention R(f )(γ ) = ∅ for γ �∈ Per κ .

Let � be a distance on �(�, �A), see Equation (1.1), We begin by proving

lim
n→∞�(S


n(f ), S
n(R(f ))) = 0.

This means that the ω-limit set of f is determined by the ω-limit set of the restriction
of f on Per κ .

For the first iterate S(R(f )) we obtain

S(R(f )) =
⊕
v∈V

⊕
γ∈Per κ

vH(γ ) s(v, R(f )γ ) =
⊕

γ∈κ−1(Per κ)

γ S(R(f ))(γ ),

and for S(f ) we obtain

S(f ) = S(R(f ))⊕ S(
⊕
γ �∈Per κ

γ fγ ) = S(R(f ))⊕
⊕

γ �∈κ−1(Per κ)

γ S(f )(γ ).

Therefore we have S(R(f ))(γ ) = S(f )(γ ) for all γ ∈ κ−1(Per κ). By Corol-
lary 2.2.4, we easily obtain

S
n(R(f ))(γ ) = S
n(f )(γ )
for all γ ∈ κ
−n(Per κ). This proves the first step. In other words, the ω-limit sets
of f and R(f ) coincide. Since the set of maps from Per κ to �A is finite, there exist
n0, k ∈ N such that

R(S
n0+k(f )) = R(S
n0(f )),

which implies that the ω-limit set of f is a periodic orbit. ��

Remarks.
1. Any (V ,H)-substitution on �(�, �A) has the empty sequence as a fixed point.

2. If S : �(�,A) → �(�,A) is a (V ,H)-substitution, then the n-th iterate S
n
of S is a (Vn,H 
n)-substitution. Thus, by considering sufficiently high iterates
of H and S we can always assume that Per κ consists of fixed points.

3. LetV be a residue set (ofH ) such that the associated image-part-map κ has only
fixed points as periodic points. If S is a (V ,H)-substitution, then the number
of fixed points of S is given as the product∏

ξ∈Per κ

|{a | sv(a) = a, where ξ = vH(ξ)}| .

If V is a complete digit set (ofH ), then the number of fixed points of a (V ,H)-
substitution is given by

|{a | se(a) = a}| .
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Under certain conditions one can restrict a substitution S on a subset of �(�,A).

Definition 2.2.10. Let �′ ⊂ � be a subset of �. Then �′ is called (V ,H)-substitu-
tion-invariant if

�′ =
⋃
v∈V

vH(�′),

where vH(�′) = {vH(γ ′) | γ ′ ∈ �′}.

Remarks.

1. The set � is a (V ,H)-substitution-invariant set for all residue sets V . In fact, it
is the only non-trivial set with this property.

2. Let �′ be a (V ,H)-substitution-invariant set and e ∈ �′, then the restriction
κ|�′ : �′ → �′ is well defined. Following Definition 2.2.5, we say that V is a
complete digit set of �′ if and only if Per κ|�′ = {e}.

3. Let κ = κH,V denote the remainder-map, see Definition 2.2.2 and let ω be a
subset of �, then

� =
⋃
n∈N

κ
−n(ω)

is the smallest (V ,H)-substitution-invariant set containing ω.

4. If �′ is (V ,H)-substitution-invariant then the restriction S|�′ : �(�′,A) →
�(�′,A) of a (V ,H)-substitution S : �(�,A) → �(�,A) is well defined.
If there is no risk of confusion, we simply speak of the substitution S on �′.
Lemma 2.2.9 applies also for a substitution S on �′.

5. Let ξ ∈ Per κH,V be a fixed point of κ , then �ξ denotes the smallest (V ,H)-
substitution-invariant subset containing ξ . By 2., one has �ξ = ∪n∈Nκ


−n(ξ).
As a special case we note that the set �e is (V ,H)-substitution-invariant and V
is a complete digit set of �e.

6. If � = Z and H(xj ) = xdj with d ≥ 2, then V = {x0, x1, . . . , xd−1} is not
a complete digit set for �. However, the subset N ⊂ Z is (V ,H)-substitution-
invariant and V is a complete digit set for N.

Definition 2.2.11. Let f ∈ �(�,A). If there exist a finite set B, a map θ : B → A
and a (V ,H)-substitution S : �(�,B) → �(�,B) with fixed point F ∈ �(�,B)
such that

θ̂ (F (γ )) = f (γ )
holds for all γ ∈ �, then f is generated by a (V ,H)-substitution.



36 2 Expanding endomorphisms and substitutions

Remarks.
1. The above definition immediately generalizes to sequences f ∈ �(�′,A),

where �′ is a (V ,H)-substitution-invariant set.

2. If f ∈ �(�,A) is generated by a substitution S : �(�,A)→ �(�,A), then

f regarded as an element of �(�, �A) is generated by the natural extension of

S to �(�, �A).

Examples.
1. Let � = 〈x〉 = Z and H(xj ) = x2j with residue set V = {x0, x1}. Then
�x0 = {xj | j ≥ 0} = N is (V ,H)-substitution-invariant and the Thue–Morse
sequence, regarded as an element of�(N, {0, 1}) is generated by the substitution
S defined by

x0 x1

0 0 1
1 1 0

The finite set B from Definition 2.2.11 is equal to �A = {0, 1,∅}, the map θ is
the identity. As already noted, the substitution S restricted on �(N, {0, 1}) has
two different fixed points. In the light of Lemma 2.2.9, these two fixed points
are given as limits, i.e.

t = lim
n→∞ S


n(x00),

u = lim
n→∞ S


n(x01).

The substitution S considered as a map from �(�,A) has no fixed point, it
rather has four periodic points of period two.

2. Let H(xj ) = x2j and V = {x0, x1}, let A = {0, 1, 2, 3} and define a substitu-
tion by

x0 x1

0 0 1
1 2 1
2 1 3
3 3 3

Since Per κ = {−1, 0} consists of fixed points only, the number of fixed points
of S on �(Z,A) is given by∣∣{a | sx0(a) = a}∣∣ ∣∣{a | sx1(a) = a}∣∣ = |{0, 3}| |{1, 3}|
which is 4. The fixed points f

(α,β)
, where (α, β) ∈ {0, 3} × {1, 3} are given by

f
(α,β)

= lim
n→∞ S


n(x−1β ⊕ x0α
)
.



2.2 Substitutions 37

There are no other periodic points of S. Let θ : {0, 1, 2, 3} → {0, 1} be defined
by θ(0) = θ(1) = 1 and θ(2) = θ(3) = 0, then the restriction of the sequence
θ̂ (f

(3,0)
) on N = Ze is called the Baum–Sweet sequence. It is recursively

defined by

bs(x0) = 1

bs(x2j+1) = bs(xj )
bs(x4j ) = bs(xj )

bs(x4j+2) = 0.

By the recursive definition of bs, it is easy to see that bs(xj ) = 1 if and only if
j ≥ 0 and the binary expansion of j contains no substring of the form 10 . . . 0 ∗1

such that the number of zeros is odd.

3. Let �A = {0, 1, 2, 3}, � = 〈x〉, H(xj ) = x2j and V = {x0, x1} and define
s : V ×A → A by

x0 x1

0 0 1
1 2 1
2 0 3
3 2 3

The induced (V ,H)-substitution S on�(Z,A) has six fixed points and no other
periodic points. If θ is defined as in 2. above, then the sequence

pf = θ̂ ( lim
n→∞ S


n(x00)),

regarded as a sequence in �(N, {0, 1}), is called the paperfolding sequence.
By construction, the paperfolding sequence is recursively defined by

pf (x2j+1) = pf (xj )
pf (x4j ) = 1

pf (x4j+2) = 0,

for j ≥ 0.

4. Let H(xj ) = x3j and let V = {x−1, x0, x1} and define s : V ×A → A by

x−1 x0 x1

0 2 0 1
1 0 1 2
2 2 2 2

1The symbol ∗ is either 1 or the end of the binary expansion
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Since V is a complete digit set, the number of periodic points of the induced
substitution S is equal to the number of periodic points of the map sx0 : A → A
which is 3. All periodic points of S are fixed points of S. We denote the fixed
points by

f
j
= lim
n→∞ S


n(x0 j),

where j ∈ {0, 1}.
Let θ : {0, 1, 2} → {0, 1} be defined by θ(0) = 1 and θ(1) = θ(2) = 0.
The restriction of the sequence θ̂ (f

0
) on N is abbreviated as cs, and we have

cs(xj ) = 1 if and only if the 3-adic expansion of j contains no 1, i.e., j =∑∞
i=0 3i ni , where ni ∈ {0, 2} for all i.

5. Let � = 〈x, y〉 be the free Abelian group generated by two elements, i.e,
� = Z

2, and let H(xiyj ) = x3iy3j . Then H is expanding (w.r.t.E = {x, y}).
Let A = {0, 1, 2, 3} and V = {xαyβ | α, β = 0, 1, 2}, then the sequence

b(xiyj ) =
{

∅ if i < 0 or j < 0(
i+j
i

)
mod 3 otherwise

is generated by a (V ,H)-substitution. This sequence is the sequence of the
binomial coefficients modulo three. The substitution is given by a map s :
V ×A → A, which is defined by

s(xαyβ, a) =
{

∅ if a = ∅

a
(
α+β
α

)
mod 3 otherwise,

where we consider a ∈ �A, a �= ∅ as an element of the natural numbers. Note
that the induced substitution S : �(Z2, {0, 1, 2}) → �(Z2, {0, 1, 2}) has 81
different fixed points and no periodic points.

Note that N
2 = Z

2
x0y0 is (V ,H)-substitution-invariant. If we restrict S to

�(N2, {0, 1, 2}), then S has only three fixed points.

The introduction of the decimation maps which are special reductions (Defini-
tions 1.1.1), will enable us to develop a necessary and sufficient condition for a se-
quence f to be generated by a substitution.

Definition 2.2.12. Let H : (�, ‖ ‖)→ (�, ‖ ‖) be an expanding endomorphism and
let τ ∈ �, then the map

∂Hτ : �(�,A)→ �(�,A)

f �→ (Tτ 
H)∗(f )
is called the τ -decimation w.r.t.H .
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Remarks.
1. In the notion of formal series the τ -decimation is written as

∂Hτ (f ) =
⊕

γfτH(γ ) =
⊕

γ f (vH(γ )).

In other words, a τ -decimation is a (Tτ 
H)-reduction.

2. We have the following identity

(Tτ 
H)∗ 
 ∂Hτ (f )(γ ) =
{
f (γ ) if γ = τH(γ ′)
∅ otherwise.

3. Let a : A → A be any map and let â : �(�,A) → �(�,A) be the induced
map, then

∂Hτ 
 â = â 
 ∂Hτ
holds for all τ ∈ �.

4. �(�,A) regarded as a subset of �(�, �A) is invariant under τ -decimations.

Corollary 2.2.13. Let H : (�, ‖ ‖)→ (�, ‖ ‖) be an expanding endomorphism, and
let τ, ρ ∈ �, then we have

1. ∂Hτ 
 ∂Hρ = ∂H 
2
ρH(τ),

2. ∂Hτ 
 (Tρ)∗ = ∂Hρτ ,

3. ∂Hτ 
 (Tρ)∗ = ∂Hρ−1τ
.

Proof. 1.

∂Hτ 
 ∂Hρ = (Tτ 
H)∗ 
 (Tρ 
H)∗
= (Tρ 
H 
 Tτ 
H)∗
= (Tρ 
 TH(τ) 
H 
2)∗

= (TρH(τ) 
H 
2)∗

= ∂H 
2
ρH(τ).

2. ∂Hτ 
 (Tρ)∗ = (Tρ 
 Tτ 
H)∗ = ∂Hρτ .

3. Since the map Tρ : � → � is bijective we have (Tρ)∗ = (Tρ−1)∗ and the
assertion follows from 2. ��
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Lemma 2.2.14. Let H : (�, ‖ ‖) → (�, ‖ ‖) be an expanding endomorphism such
thatH(�) is a subgroup of finite index. IfV is a residue set ofH , then any τ -decimation
∂Hτ can be written as

∂Hτ = (Tκ(τ))∗ 
 ∂Hζ(τ),
where κ and ζ are the associated image-part- and remainder-map, respectively.

Proof. Any τ ∈ � has a unique representation as τ = ζ(τ )H(κ(τ)) = vH(τ ′). We
therefore obtain that

∂Hτ = ∂H
vH(τ ′) = (TvH(τ ′) 
H)∗

= (Tv 
H 
 Tτ ′)∗
= (Tτ ′)∗ 
 ∂Hv ,

which finishes the proof. ��

A combination of Lemma 2.2.14 and 2. of Corollary 2.2.13 yields

Lemma 2.2.15. Let H be an expanding endomorphism of �, let V be a residue sys-
tem of H , and let ζ and κ be the associated remainder-map and image-part-map,
respectively. Then

∂Hv 
 (Tρ)∗ = (Tκ(ρv))∗ 
 ∂Hζ(ρv)
holds for all ρ ∈ � and v ∈ V .

The next lemma provides a kind of summation formula for elements of �(�, �A).

Lemma 2.2.16. Let the assumptions of Lemma 2.2.15 be satisfied. Then

f =
⊕
v∈V
(Tv 
H)∗ 
 ∂Hv (f )

holds for all f ∈ �(�, �A).
The proof is a direct consequence of Remark 2, p. 39.

The following lemma relates v-decimations with v ∈ V , V a residue set, to
(V ,H)-substitutions.

Lemma 2.2.17. Let the assumptions of Lemma 2.2.15 be satisfied, and let
S : �(�,A)→ �(�,A) be a (V ,H)-substitution induced by a map s : V ×A → A .
Then

∂Hv 
 S(f ) = ŝv(f )
holds for all v ∈ V and f ∈ �(�,A).
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Proof. By Definition 2.2.8, we can write S(f ) as

S(f ) =
⊕
w∈V

(Tw 
H)∗ 
 ŝw(f ),

by Corollary 1.1.2 and by Lemma 2.2.16, we obtain ∂Hv (S(f )) = ŝv(f ). ��

Remark. If �′ is a (V ,H)-substitution-invariant subset of �, then the v-decimations,
v ∈ V are well-defined maps from �(�′,A)→ �(�′, �A).

The most important object which allows us to describe sequences generated by a
substitution, is the kernel of a sequence.

Definition 2.2.18. Let H : �→ � be an expanding endomorphism and let V denote
a residue set of H . For any f ∈ �(�,A) the set

{f } ∪ {∂Hv1

 · · · 
 ∂Hvn (f ) | vi ∈ V, n ∈ N}

is called the (V ,H)-kernel of f and is denoted by kerV,H (f ).

Remark. If �′ is a (V ,H)-substitution-invariant set, then the (V ,H)-kernel of the
sequence f ∈ �(�′,A) is well defined.

Examples.
1. The (V ,H)-kernel of the Thue–Morse sequence, viewed as an element of
�(�e, {0, 1}), consists of the elements t = (tn) and u = (tn), where 0 = 1
and 1 = 1.

2. The (V ,H)-kernel of the Baum–Sweet sequence bs, cf., Example 2, p. 36,
contains three elements which are bs,⊕xjbf (x2j ) and⊕j≥0x

j 0. This follows
almost immediately from the recursive description of bf .

3. The (V ,H)-kernel of the paperfolding sequence contains pf , the sequence

⊕xjpf (x2j ), and the sequences
⊕
j≥0 x

j1,
⊕
j≥0 x

j0.

4. The (V ,H)-kernel of the binomials modulo three contains the sequences b,
⊕i,j≥0x

iyj2b(xiyj ) mod 3 and ⊕i,j≥0x
iyj0.

The next theorem states a necessary and sufficient condition for a sequence to be
generated by a (V ,H)-substitution.

Theorem 2.2.19. Let f ∈ �(�,A). Then f is generated by a (V ,H)-substitution if
and only if the (V ,H)-kernel of f is a finite set.
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Proof. Let us assume that f is generated by a (V ,H)-substitution, i.e., f = θ̂ (F ),
where F is a fixed point of a (V ,H)-substitution S : �(�,B)→ �(�,B). We have
∂Hv 
 θ̂ = θ̂ 
 ∂Hv , therefore it suffices to show that kerV,H (F ) is finite.

Since S(F ) = F and by Lemma 2.2.17, we obtain

∂Hv (F ) = ∂Hv (S(F )) = ŝv(F ).
This yields ∂Hw 
 ∂Hv (S(F )) = ∂Hw (ŝv(F )) = ŝv 
 ∂Hw (F ) = ŝv 
 ŝw(F ). Thus, we
obtain

kerV,H (F ) = {F } ∪ {ŝv1 
 · · · 
 ŝvn(F ) | vj ∈ V ; j = 1, . . . , n; n ∈ N}.
We conclude that the (V ,H)-kernel of F is a subset of the set

K = {â(F ) | where a is any map a : B → B}.
The above set is finite since B is finite, therefore the (V ,H)-kernel of F is finite.

Now, let us assume that the (V ,H)-kernel of f is finite, i.e.,

kerV,H (f ) = {f
1
, . . . , f

N
},

whereN ∈ N and f
1
= f . As a consequence of the finiteness of the (V ,H)-kernel of

f there exists a map ν : V ×{1, 2, . . . , N} → {1, . . . , N} such that ∂Hv (fj ) = f ν(v,j)
for all v ∈ V and j ∈ {1, . . . , N}. Due to Lemma 2.2.16 we obtain

f
j
=
⊕
v∈V
(Tv 
H)∗ 
 ∂Hv (fj ) =

⊕
v∈V
(Tv 
H)∗(f ν(v,j)) (2.2)

for all j ∈ {1, . . . , N}. Equation (2.2) can be interpreted as a (V ,H)-substitution in
the following way. Define B = AN . Then the map

s : V ×B → B, s(v, (a1, . . . , aN)) = (aν(v,1), . . . , aν(v,N))
induces a substitution S : �(�,B)→ �(�,B). Let F ∈ �(�,B) be defined by

F(γ ) = (f
1
(γ ), . . . , f

N
(γ )).

Due to Equation (2.2), the above defined F is a fixed point of the substitution S. If
we define θ : B → A as θ((a1, . . . , aN)) = a1, we obtain

θ̂ (F ) = f
1
= f .

This finishes the proof. ��

The first part of the proof of Theorem 2.2.19 is a fundamental tool to establish the
finiteness of the kernel of a given sequence f . The procedure is as follows: Find a
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finite setK which contains f and is invariant under all v-decimations, then kerV,H (f )

being a subset ofK is finite. We shall encounter this method of proof several times in
the following chapters.

As the proof of Theorem 2.2.19 shows, we can compute the kernel of a sequence
which is a fixed point of a substitution.

Example. Let t be the Thue–Morse sequence. Then we have

∂H
x0(t) = ŝx0(t) = t

and
∂H
x1(t) = ŝx1(t) = u.

Thus we get

∂x0(∂H
x0(t)) = ŝx0(ŝx1(t)) = u,

∂x1(∂H
x0(t)) = ŝx1(ŝx1(t)) = u.

Therefore the (V ,H)-kernel of the Thue–Morse sequence is the set {t, u}.

In order to compute the (V ,H)-kernel of a fixed point F of a (V ,H)-substitu-
tion we introduce the graph of a substitution. Let S be a (V ,H)-substitution and
sv, v ∈ V be its defining maps. The maps sv and idA generate via composition a finite
semigroup, G = G(S) which is a subset of all maps from A to A.

A finite directed labeled graph with base point is a quadruple (E, b, L,K). E
denotes the set of vertices, b ∈ E is the base point, L denotes the set of labels and K

denotes the set of directed edges. An edge is denoted by g
l−→ h, where g, h ∈ E

and l ∈ L. Moreover, all sets are finite.

Definition 2.2.20. Let s : V ×A → A be a (V ,H)-substitution. The (V ,H)-sub-
stitution-graph is the directed, labeled graph with base point defined by (G(S), idA,

{sv | v ∈ V },K), i.e., the set of vertices is the semigroupG(S) of the substitution, the
basepoint is idA, the set of labels is {sv | v ∈ V }, and the set of labeled edges K is

defined as follows: If g1, g2 ∈ G(S) and v ∈ V , then (g1
sv−→ g2) ∈ K if and only if

sv 
 g1 = g2.

Remarks.

1. The (V ,H)-substitution-graph can be considered as a Cayley-graph of the semi-
group G(S) = 〈{sv | v ∈ V }〉. To be precise, it should be called left Cayley
graph, since an edge from g1 to g2 with label sv exists if and only if sv 
g1 = g2.
Later we shall see that the right Cayley graph of G(S) is also meaningful for
sequences generated by a substitution.
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2. Fix b = a1a2 . . . aN ∈ AN ,N = |A|, such that ai �= aj whenever i �= j and let
g ∈ G(S), then we can encode the elements of G(S) by its action on b. For a
given g ∈ G(S), we write g(b) = g(a1)g(a2) . . . g(aN). Thus we can describe
g as g(a1) . . . g(aN) ∈ AN . In other words the vertices of the (V ,H)-substitu-
tion-graph are given by g(a1) . . . g(aN) ∈ AN and b denotes the basepoint of
the (V ,H)-substitution-graph.

3. Let f be a fixed point of a (V ,H)-substitution S and G(S) the associated
semigroup, then kerV,H (f ) ⊂ {ĝ(f ) | g ∈ G(S)}.

4. If F is a fixed point of a (V ,H)-substitution S and θ : B → A a map,
then the (V ,H)-kernel of θ̂ (F ) is contained in the set {θ̂ (ĝ(f )) | g ∈ G(S)}.
Moreover, if θ 
 g = θ 
 h for g, h ∈ G(S), then θ̂ (ĝ(F )) = θ̂ (ĥ(F )). Thus,
the cardinality of the set {θ 
g | g ∈ G(S)} is an upper bound for the cardinality
of kerV,H (θ̂(F )).

Examples.

1. Let t be the Thue–Morse sequence, then the (V ,H)-substitution-graph is given
in Figure 2.1. The double circle represents the base point. This will be the case
in all figures!

01 10s0 s0

s1

s1

Figure 2.1. The substitution-graph of the Thue–Morse substitution.

Each vertex of the graph represents an element of the semigroup of the sub-
stitution. Therefore the kernel of t contains two elements, as we have seen
earlier.

2. Let bs = θ̂ (f
(3,0)

) be the Baum–Sweet sequence, see Example 2, p. 36. The
graph of the associated substitution is given in Figure 2.2.

Therefore the (V ,H)-kernel of f
(3,0)

contains at most 7 elements. By in-
spection, one can see that the kernel of f

(3,0)
contains indeed seven different

elements.

Since θ 
 (0123) = θ 
 (1133), θ 
 (0213) = θ 
 (1213), and θ 
 (2233) =
θ 
 (2323) = θ 
 (3333), the kernel of the Baum–Sweet sequence contains at
most three elements. In fact, as one can easily see the kernel of the Baum–Sweet
sequence contains three elements.
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Figure 2.2. The substitution-graph of the Baum–Sweet substitution.

3. Let A = {0, 1, 2, 3}, � = 〈x〉 = Z, H(xj ) = x2j and V = {x0, x1} then
s : V ×A → A defined by

x0 x1

0 0 1
1 1 2
2 2 0
3 2 3

induces a (V ,H)-substitution S on �(Z,A). Let

F (3,0) = lim
n→∞ S


n(X−1 3⊕ x0 0)

be one of the fixed points of the substitution S. The (V ,H)-substitution-graph
is given in Figure 2.3. The number of kernel elements is therefore limited by
13. The actual value of the number of elements is three.

As the above example shows, the number of elements ofG(S) gives only an upper
bound for the cardinality of the kernel. We next show how to determine the cardinality
of kerV,H (f ), where f is a fixed point of a substitution.

Definition 2.2.21. Let f ∈ �(�,A). The set

R(f ) = {a | there exists γ ∈ � such that f (γ ) = a}
is called the range of f .

Remarks.

1. If f is a fixed point of a substitution S, then R(f ) is G(S)-invariant, i.e.,
g(R(f )) ⊂ R(f ) holds for all g ∈ G(S).
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Figure 2.3. The substitution-graph of the substitution of Example 3, p. 45.

2. The range R(f ) of a fixed point f is the smallest G(S)-invariant subset of �A
that contains the set {f (γ ) | γ ∈ Per κV,H }.

3. Let g, h ∈ G(S) be elements of the semigroup associated with the (V ,H)-sub-
stitution S and let f be a fixed point of S. We say that g is R(f )-equivalent
to h if g|R(f ) = h|R(f ). The quotient of G(S) w.r.t. R(f )-equivalence is a
semigroup. This follows from the fact that g(R(f )) ⊂ R(f ). We denote the
quotient by GR(f )(S).

Examples.
1. The range of the Thue–Morse sequence is A = {0, 1}.
2. The range of the sequence f

(3,0)
which generates the Baum–Sweet sequence,

is A = {0, 1, 2, 3}.
3. The range of the sequence F 0, Example 3. above, is {0, 1, 2}. The quotient of
G(S) modulo R(F 0)-equivalence is the semigroup

GR(F (3,0) (S) = {(012), (120), (021)},
where we use the notation for maps on the finite set R(F (3,0)).
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Lemma 2.2.22. Let F be a fixed point of the (V ,H)-substitution S, then∣∣ kerV,H (F )
∣∣ = ∣∣GR(F )(S)

∣∣.
Proof. The map g �→ ĝ(F ) defines a surjection fromGR(F )(S) to kerV,H (F ). There-
fore |GR(F )(S)| ≥ | kerV,H (F )|.

Now suppose that there are g, h ∈ GR(F )(S) such that g �= h and ĝ(F ) = ĥ(F ).
Since g �= h there exists an a ∈ R(F ) such that g(a) �= h(a); but this contradicts
ĝ(F ) = ĥ(F ). ��

Corollary 2.2.23. Let F ∈ �(�,B) be a fixed point of the (V ,H)-substitution S and
let θ : B → A be a map. Then θ̂ (F ) is generated by a substitution and we have∣∣ kerV,H (θ̂(F ))

∣∣ = ∣∣{θ 
 g | g ∈ GR(F )(S)}
∣∣.

The proof follows the same lines as the proof of the above lemma.

Definition 2.2.24. Let F be a fixed point of a (V ,H)-substitution S. The F -graph
of the (V ,H)-substitution is a directed, labelled graph defined as follows: The set of
vertices is the semigroup GR(F )(S), and the set of labels {sv | v ∈ V }. There is a
directed edge with label sv from g1 to g2 if sv 
 g1 = g2.

The vertex idR(F ) is called the basepoint of the F -graph.

Remark. The F -graph is the left Cauchy graph of the semigroup GR(F )(S).

Examples.
1. Consider Example 3 from above. The semigroup GR(F (3,0))(S) contains three

elements which are (012), (120), (021). TheF (3,0)-graph is shown in Figure 2.4.

012

201 120

s0

s1

s0

s1

s0s1

Figure 2.4. The F(3,0)-graph of the substitution of Example 3.

2. Letpf be the paper folding sequence, considered as an element of�(�e, {0, 1}),
see Example 3, p. 37, and let f

0
= limn→∞ S
n(x0 0) be considered as an ele-

ment of �(�e, {0, 1, 2, 3}). Then we have θ̂ (f
0
) = pf . The semigroup G(S)
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of the substitution S contains 7 elements. Since the range of f
0

is {0, 1, 2, 3,∅},
the cardinality of the kernel of f

0
is equal to 7, see Lemma 2.2.22. By Corol-

lary 2.2.23, the cardinality of the kernel of the paper folding sequence is equal
to |{θ 
 g | g ∈ GR(f )(S)}|, which is 4.

In the preceding we have seen that the left Cauchy graph of the semigroup resem-
bles certain features of the substitution. Moreover, by factoring out certain elements
ofG(S)we constructed the semigroupGR(F )(S)which provides us with information
about the fixed point F of the substitution. Even if we consider a sequence of the form
θ̂ (f ) the above concepts are useful, see Corollary 2.2.23.

Definition 2.2.25. Let f be generated by a (V ,H)-substitution. Then the (V ,H)-
kernel graph of f is a directed, labeled graph defined as follows: The set of vertices
is the (V ,H)-kernel of f , and the set of labels is the set V . There is a directed edge

with label v from f
1

to f
2

if and only if ∂Hv (f 1
) = f2.

The vertex f is called the basepoint of the (V ,H)-kernel graph.

Remark. If M = {f
1
, . . . , f

N
} is a finite set such that ∂HV (M) ⊂ M for all v ∈ V ,

then the (V ,H)-kernel-graph of the set M is a directed graph with set of vertices
equal to M , label set equal to V , and the set of edges is given by {(f v→ h) | f , h ∈
M, ∂Hv (f ) = h}. If we choose a basepoint fj ∈ M the (V ,H)-kernel-graph of M
with basepoint fj is called extended (V ,H)-kernel-graph of fj .

Examples.

1. Let t be the Thue–Morse sequence, its kernel graph is shown in Figure 2.5,
where 0 and 1 are abbreviations for x0, x1, respectively.

t u0 0

1

1

Figure 2.5. The kernel-graph of the Thue–Morse sequence.

2. In Figure 2.6 we see the kernel graph of the Baum–Sweet sequence. As for
the Thue–Morse sequence, 0 and 1 stand for x0 and x1. Furthermore, f =
⊕j≥0x

j bs(x2j ) and h = ⊕j≥0x
j 0.

The next theorem shows how to compute the kernel graph of a sequence that is
generated by a substitution.

To this end we introduce the right Cayley graph of the semigroup G(S) of a
substitution S. The right Cayley graph is a directed, labeled graph. Its vertices are the
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bs f h1
0

0
1 0, 1

Figure 2.6. The kernel-graph of the Baum–Sweet sequence.

elements ofG(S), the labels are the maps sv and for g1, g2 ∈ G(S) and v ∈ V we have

that g1
sv−→ g2 is a labeled edge of the right Cayley graph if and only if g1 
 sv = g2.

Moreover, we need the concept of isomorphic directed, labeled graphs with a base
point. Let (E, b, L,K) be any finite, directed, labeled graph, whereE denotes the set

of vertices, b the basepoint, L the labels and K the arrows, denoted by (a1
l→ a2).

Let ϑ : E → E′ be a surjective map from E to a finite set E′. The ϑ-projection of
the graph (E, b, L,K) is the directed graph (E′, ϑ(b), L,K ′), where

K ′ = {(a′1 l→ a′2) | there exist (a1
l→ a2) ∈ K such that ϑ(a1) = a′1, ϑ(a2) = a′2}

is the set of edges, and ϑ(b) is the basepoint.
Two directed, labeled graphs (E, b, L,K), (E′, b′, L′,K ′) are isomorphic if there

exist bijective maps ϑ : E → E′, λ : L → L′ such that ϑ(b) = b′ and the map
(ϑ, λ) : K → K ′ given by

(ϑ, λ)((a1
l−→ a2)) = (ϑ(a1)

λ(l)−→ ϑ(a2))

is well defined and bijective.

Theorem 2.2.26. LetF be a fixed point of the (V ,H)-substitutionS. Then the (V ,H)-
kernel-graph of F is isomorphic to the right Cayley graph of GR(F )(S).

Proof. By Lemma 2.2.22, we have∣∣kerV,H (F )
∣∣ = ∣∣GR(F )(S)

∣∣
and the map � : GR(F )(S) → kerV,H (F ) defined by �(g) = ĝ(F ) is a bijection.
Define the map λ : {sv | v ∈ V } → V by λ(sv) = v. Certainly, λ is a bijection.
Then the pair (�, λ) is a bijection between the right Cayley graph of GR(F )(S) and
the (V ,H)-kernel-graph of F .

It remains to show that (�, λ) is a bijection of the edges. To this end it suffices to
prove that (�, λ) is well defined.

Let (g1
sv−→ g2) be a directed edge of the Cayley graph of GR(F )(S), then we

have
(�, λ)((g1

sv−→ g2)) = (ĝ1(F )
v−→ ĝ2(F )).
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Therefore we must show that (ĝ1(F )
v−→ ĝ2(F )) is an edge of the kernel graph of f ,

i.e., we have to prove that ∂Hv (ĝ1(F )) = ĝ2(F ).
By Remark 3, p. 39, we have

∂Hv (ĝ1(F )) = ĝ1(∂
H
v (F )).

By Lemma 2.2.17, we obtain

ĝ1(∂
H
v (F )) = ĝ1(sv(F )) = ĝ2(F ).

Thus, we have proved that (�, λ) maps arrows of the Cayley graph on arrows of the
kernel graph of f .

The bijectivity property of the map (�, λ) on the edges is then an immediate
consequence of the bijectivity property of � and λ. ��

Corollary 2.2.27. Let F ∈ �(�,B) be a fixed point of the (V ,H)-substitution S
and let θ : B → A be a map. If f = θ̂ (F ) and if θ̃ : GR(F )(S) → kerV,H (f ) is

defined by θ̃ (g) = θ̂ (ĝ(F )), then the (V ,H)-kernel graph of f is isomorphic to the

θ̃ -projection of the right Cayley graph of GR(F )(S).

Proof. By Corollary 2.2.23, the map θ̂ : GR(F )(S) → kerV,H (f ) is bijective. Let

λ : {sv | v ∈ V } → V be defined as in the proof of Theorem 2.2.26. If g1
sv−→ g2 is an

edge in the right Cayley graph ofGR(F )(S), then it remains to show that ∂Hv (θ̃(g1)) =
θ̃ (g2). We have, cf. Remark 3, p. 39,

∂(vθ̃(g1)) = ∂Hv (θ̂(ĝ1(F )))) = θ̂ (∂Hv (ĝ1(F ))).

By Lemma 2.2.17 this yields

θ̂ (∂Hv (ĝ1(F ))) = θ̂ (ĝ1(ŝv(F ))),= θ̃ (g2)

which was our claim. ��

Example. We consider the paperfolding sequence pf = θ(limn→∞ S
n(x0 0)),

see Example 2, p. 36. The range of F = limn→∞ S
n(x0 0) is {0, 1, 2, 3,∅}. By
Theorem 2.2.26, the kernel graph of F is isomorphic to the right Cayley graph of
G(S). The right Cayley graph is shown in Figure 2.7, where the labels {sx0 , sx1} are
replaced by 0 and 1, respectively. Note that G(S) = GR(F )(S) which implies that
the θ̃ -projection of the left Cayley graph of G(S) gives the kernel graph of pf . In
Figure 2.8 the θ -projection of the right Cayley graph is given. Due to Corollary 2.2.27,
this is the kernel graph of pf .



2.2 Substitutions 51

0123 1133 1313 3333

0202 2222 1111

0000

1

0

1

0 1

0

0, 1

1

0

0, 1 0, 1

0, 1

Figure 2.7. The right Cayley graph of the paperfolding substitution.
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Figure 2.8. The kernel-graph of the paperfolding sequence.

Remarks.

1. The semigroup G(S) of the paperfolding substitution is an example of the fact
that the right Cayley graph and the left Cayley graph need not to be isomorphic
as graphs. One easily computes that the left Cayley graph contains a cycle
depicted in Figure 2.9, whereas the right Cayley graph has only trivial cycles,
cf., Figure 2.7.

2. The right Cayley graph of the Thue–Morse substitution is isomorphic to the
left Cayley graph. This is no surprise, since the semigroup G(S) is in fact the
commutative group Z/(2Z).

3. The Baum–Sweet substitution provides another example of non-isomorphic left
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and right Cayley graphs.

2222 3333
1

0
1

Figure 2.9. A cycle in left Cayley graph of the paperfolding substitution.

Let us summarize the preceding results. A knowledge of the substitution that
generates a given sequence enables one to compute the kernel and the kernel graph
quite efficiently.

On the other hand, if we know the kernel-graph of a given sequence what can be
said about a generating substitution? The second part of the proof of Theorem 2.2.19
provides a method to compute a substitution of a sequence if its kernel graph is given.

Let f ∈ �(�,A) be such that kerV,H (f ) = {f
j
| j = 1, . . . , N} with f

1
= f .

As the proof of Theorem 2.2.19 shows, there exists a map

s : V ×B → B
s(v, (a1, . . . , aN)) = (aν(v,1), . . . , aν(v,N)))

that induces a substitution on�(�,B), where B = AN . This map s can be understood
as a sum of certain matrices. In order to do so, we consider the field F2 and the finite
set �A = A ∪ {∅}. For b ∈ F2 and a ∈ �A we define the product a · b by

b · a =
{
a if b = 1

∅ if b = 0.

For each v ∈ V we define the matrix Av = (avij )i,j=1,...,N ∈ F
N×N
2 by

avij =
{

1 if ν(v, j) = i
0 otherwise.

In terms of the kernel graph of f we have avij = 1 if and only if ∂Hv (f i) = fj . In
other words, Av is the adjacency matrix of the graph obtained from the kernel graph
after removing all edges not labeled with v.

The maps sv : AN → AN defined by the above substitution can then be written
as a matrix product, i.e.,

sv(a1, . . . , aN) = Av

⎛⎜⎝ a1
...

aN

⎞⎟⎠ ,
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where the sum is⊕ on �A, i.e, a⊕∅ = ∅⊕ a = a for all a ∈ �A, and the products are
as above. Since each row of Av contains only one entry equal to 1, the above product
is indeed well defined.

The substitution S : �(�,AN) → (�,AN) of the proof of Theorem 2.2.19 can
now be written as

S(G) =
⊕

vH(γ )Av(G(γ )), (2.3)

where the summation is over all v ∈ V and γ ∈ �.
On the other hand, ifAv ∈ F

N×N
2 , v ∈ V , is a collection of matrices such that every

row of every Av contains precisely one 1, then Equation (2.3) defines a substitution.

Definition 2.2.28. Let Av ∈ F
N×N
2 , v ∈ V , such that every row of every matrix Av

contains one 1. The polynomial ⊕
v∈V

vAv

is called a substitution polynomial.

If the matricesAv are induced by a kernel graph of a sequence f ∈ �(�,A), then
the substitution polynomial P is called the substitution polynomial of f .

Examples.
1. Let bs be the Baum–Sweet sequence viewed as an element of�(N, {0, 1}), see

Example 2., p. 36. Its (V ,H)-kernel-graph, where V = {x0, x1}, is shown in
Figure 2.6. If we set f

1
= bf , f

2
= f , and f

3
= h, then the substitution

polynomial is given by

x0

⎛⎝ 0 1 0
1 0 0
0 0 1

⎞⎠⊕ x1

⎛⎝ 1 0 0
0 0 1
0 0 1

⎞⎠ .
2. The Thue–Morse sequence as a sequence in �(N, {0, 1}) has the substitution

polynomial for V = {x0, x1}.

x0
(

1 0
0 1

)
⊕ x1

(
0 1
1 0

)
.

3. The paper folding sequence as an element of�(�, {0, 1}) and for V = {x0, x1}
has the substitution polynomial

x0

⎛⎜⎜⎝
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠⊕ x1

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .
The substitution polynomial will be more relevant in the following sections.
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2.3 Notes and comments

The question on the existence of expanding endomorphisms of a finitely generated
group is closely related to the existence of expanding maps on certain Riemannian
manifolds, see [49], [130], [154], [166]. It is also very much related to the work of
Gromov on the growth properties of finitely generated groups, see [88].

Residue sets and complete digit sets are usually studied within the framework of
representations of the integers or natural numbers, see e.g., [7], [9], [61], [79], [82],
[103], [107], [152], and the references given there.

The Thue–Morse sequence appears in [158] and later independently in [131]. It
is one of the best studied automatic sequences. Different facets of this sequence are
discussed in: [3], [5], [13], [26], [27], [41], [51], [52], [62], [68], [70], [71], [75],
[76], [81], [86], [104], [112], [113], [122], [139], [146], [150], [161], [162], [167],
[168], to name but a few.

The paperfolding sequence is also a prominent example of an automatic sequence.
In [15], [19], [37], [65], [66], [67], [108], [110], [125], [126], [129], [132], [144],
[145], [146], [157] the reader will find detailed discussions about properties of the
paperfolding sequence as well as generalizations of the paperfolding sequence.

The Baum–Sweet sequence defined in [32] seems to be less interesting.
In [11], one finds a discussion of the binomial coefficients modulo a natural number.
We conclude with some general remarks on substitutions. Substitutions provide a

basic tool for the constructions of fractal sets, see, e.g.,[135], [138] and the literature
cited there. Substitutions play also a prominent role in the theory of formal languages
and in the theory of combinatorics on words. In this context substitutions are special
morphisms of a free monoid, see, e.g., [60], [115] for more details.



Chapter 3

Automaticity

In this chapter, we introduce the concept of automatic sequences over �. We begin
with the definition of automaticity, to be precise, (Vc,H)-automaticity of a sequence
f ∈ �(�,A), where Vc is a complete digit set for H . Roughly speaking, a (Vc,H)-
automatic sequence is generated by a finite (Vc,H)-automaton. We demonstrate that
the set of sequences which are generated by a (Vc,H)-automaton coincides with the
set of sequences with a finite (Vc,H)-kernel.

Closely related to a finite (Vc,H)-automaton is a directed labeled graph, the tran-
sition graph of the automaton. We shall show that the finite (Vc,H)-kernel graph
of a sequence provides a transition graph of a (Vc,H)-automaton that generates the
sequence. Furthermore, this automaton is minimal within a certain class of automata.
Finally we develop an algorithm that allows us to construct a minimal (w.r.t. the number
of states) (Vc,H)-automaton for a given (Vc,H)-automatic sequence.

At the end of the first part, we also indicate how to introduce a notion of (V ,H)-
automaticity if V is not a complete digit set for H .

The second part of this chapter is devoted to investigate properties of (Vc,H)-
automatic sequences. The main result is that the automaticity of a sequence does not
depend on the choice of the residue set V . In other words, if f has a finite (V ,H)-
kernel, then f has a finite (W,H)-kernel for all residue sets W of H . It is therefore
justified to speak of an H -automatic sequence.

3.1 Automatic sequences

Again, we consider the Thue Morse sequence (tn)n≥0. As we have seen in the intro-
duction, there exists a graph associated with the Thue Morse sequence, cf. Figure 1.
This graph allows us to compute the value tn using the binary expansion of n.

In Chapter 2 we introduced the kernel graph. In this section, we show that the kernel
graph of a sequence f generated by a (V ,H)-substitution allows the computation of
f (γ ) from a knowledge of the ζV,H -image of the orbit of γ under iteration of κV,H .

We consider an expanding endomorphism H : � → � (w.r.t. a fixed norm ‖ ‖)
together with a complete digit set Vc, cf. Definition 2.2.5. We begin with the definition
of a (Vc,H)-automatic sequence.
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Definition 3.1.1. The sequence f ∈ �(�,A) is called (Vc,H)-automatic if there

exist a finite set B = B ∪ {∅} and maps αv : B → B, with v ∈ Vc, ω : B → A
such that:

1. ω(∅) = f (e).
2. For γ ∈ � \ {e} let γ = vi0H(vi1) . . . H 
n(vin) be the digit representation, i.e.,

if vin �= e, then
ω(αvin 
 · · · 
 αvi0 (∅)) = f (γ )

holds for all γ �= e.
Remarks.

1. If it is clear from the context whatVc andH are, we simply speak of an automatic
sequence f .

2. If the sequence f ∈ �(�,A) is automatic, then the quintuple aut(f ) =
(B,∅,A, ω, {αv | v ∈ Vc}) is called a (Vc,H)-automaton for f . The set

B is called the state alphabet, or simply the states, the special element ∅ is
called the initial state, the set A is the output alphabet, the map ω : B → A is
the output map, and the maps {αv | v ∈ V } are called transition functions. We
often say that the automaton aut(f ) generates the sequence f .

The reader should be aware of the fact that there are several different finite
automata generating a sequence f . Despite this fact, the notion aut(f ) simply
means that we have chosen one automaton generating f .

3. Due to Corollary 2.2.6, any γ ∈ � has a unique digit representation.

4. If V is any residue set for H , then �e is a (V ,H)-substitution-invariant subset
of � and we can speak of the automaticity of elements in �(�e,A).

The next examples provide some insight how to define a finite automaton which
generates a given sequence.

Examples.
1. Consider the Thue–Morse sequence t as an element of �(N, {0, 1}). Then t is
(V ,H)-automatic, where H(xj ) = x2j and V = {x0, x1}. The state alphabet
B is given by the set B = {∅, 1}, the output alphabet is A = {0, 1}, the output
function ω : B → A is defined by ω(∅) = 0 and ω(1) = 1, the transition
functions αx0 and αx1 are given by

αx0(∅) = ∅, αx0(1) = 1,

αx1(∅) = 1, αx0(1) = ∅.

Thus the Thue–Morse sequence viewed as an element of�(N, {0, 1}) is (V ,H)-
automatic.
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2. Let ps ∈ �(N, {0, 1} denote the paperfolding sequence. Then ps is (V ,H)-

automatic, where H(xj ) = x2j and V = {x0, x1}. The state alphabet B is
given by the set B = {∅, 1, 2, 3}, the output alphabet is A = {0, 1}, the output
function ω : B → A is defined by ω(∅) = 1, ω(1) = 1, ω(2) = 0, and
ω(3) = 1.

The transition functions αx0 and αx1 are given by

αx0(∅) = 1, αx0(1) = 3, αx0(2) = 2, αx0(3) = 3,

αx1(∅) = ∅, αx0(1) = 2, αx1(2) = 2, αx0(3) = 3.

3. The sequence f
0
∈ �(N, {0, 1, 2}), see Example 4, p. 37, is (Vc,H)-automatic,

where H(xj ) = x3j and Vc = {x−1, x0, x1}. The state alphabet B is the set
{∅, 1, 2}, the output alphabet A is {0, 1, 2}, the output function ω : B → A is
defined by ω(∅) = 0, ω(1) = 1, and ω(2) = 2. The transition functions are
given by

αx−1(∅) = 1, αx−1(1) = 2, αx−1(2) = 2,

αx0(∅) = ∅, αx0(1) = 1, αx0(2) = 2,

αx1(∅) = 2, αx1(1) = ∅, αx1(2) = 2.

If we consider the sequence cs = θ(f
0
) ∈ �(N, {0, 1}) defined in Example 4,

then the notion of (Vc,H)-automaticity makes no sense, since the map κH,Vc ,
where H and Vc are as above, is not defined as a map from N to N.

If we chooseV = {x0, x1, x2} instead ofVc, then cs ∈ �(N, {0, 1, 2}) is indeed
(V ,H)-automatic.

Definition 3.1.2. Letf ∈ �(�,A) be a (Vc,H)-automatic sequence and let aut(f ) =
(B,∅,A, ω, {αv | v ∈ Vc) be a generating automaton. Then the finite, labeled,
directed graph G = G(aut(f )) = (B,∅, Vc,K) with basepoint ∅ where the set of
edges is given by

K = {
(b1

v−→ b2) | b1, b2 ∈ B such that there exists αv with αv(b1) = b2
}
,

is called the transition graph of aut(f ).

The output function ω : B → A can be considered as a function on the vertices
of the graph G(aut(f )). The automaton aut(f ) “produces” the sequence f in the
following way. Let γ ∈ �, γ �= e, then γ has a unique finite representation

γ = v0H(v1)H

2(v2) . . . H


k(vk),

with vj ∈ Vc for j = 1, . . . , k and vk �= e. The representation of γ defines a path
in the graph G. The path starts at the basepoint ∅ and follows the edges labeled
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v0, v1, . . . , vk . The value of ω at the terminal vertex of the path is equal to f (γ ).
If γ = e, then ω(∅) = f (e). We often speak simply of the transition graph of a
sequence. Figure 3.1 shows a transition graph for the Thue–Morse sequence with
output map ω(∅) = 0, ω(I) = 1. For the sake of simplicity the arrows are labeled 0
and 1 rather then x0, x1.

∅ I0 0
1

1

Figure 3.1. Transition graph for the Thue–Morse sequence.

If (B1,∅1,A1, ω1, {αv | v ∈ Vc}) and (B2,∅2,A2, ω2, {βv | v ∈ Vc}) are finite
(Vc,H)-automata, then we say that they are isomorphic if their transition graphs
are isomorphic as directed, labeled graphs with basepoint, cf. the definition given on
page 49.

As a next step, we study the connection of sequences generated by a substitution
and automatic sequences. Let f be (Vc,H)-automatic. Let γ ∈ �, γ �= e and
γ = vi0H(v1) . . . H


n(vin) be its unique representation, in particular vin �= e, then
the map αγ : B → B is defined by

αγ = αvin 
 · · · 
 αvi0 .
If κ and ζ denote the image-part-map and remainder-map ofH w.r.t.Vc, respectively,
then we have αγ = ακ(γ ) 
 αζ(γ ) for all γ �= e.

If f is (Vc,H)-automatic and if aut(f ) = (B,∅,A, ω, {αv | v ∈ Vc}) is a
generating automaton for f , then the sequence F

∅
defined by

F
∅
= ∅e ⊕

⊕
γ∈�,γ �=e

αγ (∅)γ

is an element of �(�,B) and (Vc,H)-automatic. It is generated by the (Vc,H)-
automaton aut(F

∅
) = (B,∅,B, id, {αv | v ∈ Vc}). Furthermore, the output function

ω of aut(f ) satisfies ω̂(F
∅
) = f .

By analogy, we define for any b ∈ B the sequence Fb by

Fb = b e ⊕
⊕

γ∈�,γ �=e
αγ (b)γ. (3.1)

Definition 3.1.3. Let A be a finite set and �(�,A) the set of sequences. The map
L : �(�,A) :→ �(�, �A) defined by

L(f ) = ∅⊕
⊕
γ �=e

fγ γ

is called L-map.
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Note that any sequence f ∈ �(�,A) can be written as f = fe e ⊕ L(f ), where

the summands have to be considered as elements in �(�, �A).
The following lemma is immediate, it relates the L-map and the decimations.

Lemma 3.1.4. If g ∈ �(�,A) and v ∈ Vc, v �= e, then

∂Hv (L(g)) =

⎧⎪⎨⎪⎩
∂Hv (g) if v �= e

L(∂He (g)) if v = e.
In other words, the L-map commutes with ∂He , and ∂Hv , v �= e, is a left inverse of

the L-map.
Let f be generated by (B,∅,A, ω, {αv | v ∈ V }). For a, b ∈ B we define the

sequences Ga,b ∈ �(�,B) by

Ga,b = ae ⊕ L(Fb), (3.2)

where Fb is defined as in Equation (3.1). The next lemma relates the maps αv of
(B,∅,A, ω, {αv | v ∈ Vc}) to the decimations ∂Hv of Ga,b.

Lemma 3.1.5. Let (B,∅,B, id, {αv | v ∈ Vc}) be a (Vc,H)-automaton. If Ga,b is
defined as in Equation (3.2), then

∂Hv (Ga,b) =
{
Gαv(b),αv(b) if v �= e
Ga,αe(b) if v = e.

Proof. By the definition of Ga,b, one has

Ga,b = ae ⊕
⊕
γ �=e

αγ (b) γ,

and therefore
Ga,b = ae ⊕

⊕
v∈Vc,γ∈�,
vH(�) �=e

αvH(γ )(b) vH(γ ).

For w ∈ Vc with w �= e this gives

∂Hw (Ga,b) =
⊕
γ∈�

αwH(�)(b) γ =
⊕
γ∈�

αγ (αw(b)) γ = Gαw(b),αw(b).

This proves the first part of the assertion. The ∂He -decimation of Ga,b is given by

∂He (Ga,b) = ae ⊕
⊕

γ∈�,γ �=e
αH(γ )(b) γ = ae ⊕

⊕
γ∈�,γ �=e

αγ (αe(b)) γ = Ga,αe(b).

This proves the second assertion. ��



60 3 Automaticity

Theorem 3.1.6. f ∈ �(�,A) is (Vc,H)-automatic if and only if kerVc,H (f ) is finite.

Proof. Let us suppose that f is automatic, i.e., there exists a (Vc,H)-automaton

(B,∅,A, ω, {αv | v ∈ Vc}). Then one has f = ω̂(F
∅
) = ω̂(G

∅,∅). This yields for
v ∈ Vc

∂v(f ) = ω̂(∂v(G∅,∅)).

By Lemma 3.1.5, it follows that every kernel element h of f can be written as ω̂(Ga,b),

where a, b ∈ B are determined by h. Therefore the (Vc,H)-kernel of f is finite.
Suppose that f possesses a finite (Vc,H)-kernel. We construct a finite automaton

generating f . To this end, let B = kerVc,H (f ) = {f
1
= f , . . . , f

N
} be the state

alphabet with distinguished element ∅ = f . The output alphabet is the set A, the

output function ω : B → A is defined by ω(h) = h(e). The transition functions
αv : B → B are defined by αv(h) = ∂Hv (h). Thus, we have ω(∅) = ω(f ) = f (e)
and for γ ∈ � \ {e} with digit representation γ = vi0H(vi1) . . . H 
n(vin), we have

ω(αvin 
 · · · 
 αvi0 (∅)) = [∂Hvn 
 · · · 
 ∂Hvi0 (f )](e) = f (vi0H(vi1) . . . H

n(vin)).

Therefore f is (Vc,H)-automatic. ��

The proof of Theorem 3.1.6 shows that the kernel graph of a sequence can be
interpreted as a transition graph of an automaton. Therefore the kernel graph provides
a ‘natural’ finite automaton generating the sequence f . The output function is then
defined by θ : kerVc,H (f )→ A with θ(h) = h(e).

Note further that the first part of the proof of Theorem 3.1.6 also provides a way
to compute the kernel graph of the sequence G

∅,∅ = F
∅

.

Example. Let � = N and H(xj ) = x2j with Vc = {x0, x1} as complete digit set.
Figure 3.2 shows a transition graph of a finite (Vc,H)-automaton. The first terms of

∅ I1 1

0

0

Figure 3.2. Transition graph of a (Vc,H)-automaton.

the sequence F
∅

are then given by

∅∅I∅∅II∅ . . . .

Applying Lemma 3.1.5, we can compute the (Vc,H)-kernel graph of F
∅

. It is shown
in Figure 3.3.
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G∅,∅ G
∅,I

GI,∅ GI,I

1

1

1 1

0

0

0

0

Figure 3.3. Kernel graph of F∅ = G∅,∅ generated by the automaton in Figure 3.2.

We now investigate the relation between | kerV,h(f )| and the cardinality of the

state set B of aut(F ).

Definition 3.1.7. Let (B,∅,A, ω, {αv | v ∈ Vc}) be a finite (Vc,H)-automaton. Let
a, b ∈ B. The state a is accessible from b if a = b, or if there exist n ∈ N and
vi0 , . . . , vin ∈ Vc such that a = αvi0 
 · · · 
 αvin (b). The set

Acc(b,B, {αv | v ∈ Vc}) = {a ∈ B | a is accessible from b}
is called the set of accessible states (from b w.r.t. the automaton).

Remarks.
1. If the automaton is clear from the context, we simply write Acc(b) for the set

of accessible states. In particular, Acc(f ) is the set of accessible elements of
kerV,H (f ) (w.r.t. the v-decimations).

2. The set of accessible states Acc(b) is the smallest subset of B which is invariant
under all maps αv , v ∈ Vc, and contains b.

As a consequence of Lemma 3.1.5 we obtain the following estimate on the number
of kernel elements.

Proposition 3.1.8. Let f ∈ �(�,A) be generated by the finite automaton (B,∅,
A, ω, {αv | v ∈ Vc}), then ∣∣ kerVc,H (f )

∣∣ ≤ |Acc(∅)|2 .

Examples.
1. Let f ∈ �(N, {0, 1}) be defined by

f =
⊕
n≥0

fnx
n,
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where fn = 1 if and only if n = 2k − 1 for k ∈ N, otherwise fn = 0. In a more
compact way we write

f =
⊕
n≥0

x2n−1,

where we agree that all other values of the sequence f are equal to zero.

Then f is (Vc,H)-automatic, where Vc = {x0, x1} and H(xj ) = x2j . The
transition graph of the automaton generating f is shown in Figure 3.4, the

∅ I1 0, 10

Figure 3.4. Transition graph of the automaton for f =⊕∞
n=0 x

2n−1.

output function is ω(∅) = 1 and ω(I) = 0. We then compute

∂H
x0(f ) = ∂Hx0(1 x

0 ⊕ L(F 1)) = 1 x0 ⊕ L(Fα
x0 (1)) = 1 x0 ⊕ L(F 0) = g

∂H
x1(f ) = ∂Hx1(1 x

0 ⊕ L(F 1)) = αx1(1) x0 ⊕ L(f
α
x1 (1)

) = 1 x0 ⊕ L(F 1) = f

∂H
x0(1 x

0 ⊕ L(F 0)) = 1 x0 ⊕ L(f
α
x0 (0)

) = 1 x0 ⊕ L(F 0) = g

∂H
x1(1 x

0 ⊕ L(F 0)) = 0 x0 ⊕ L(Fα
x1 (0)) = 0 x0 ⊕ L(F 0) = h,

and ∂H
x0(h) = ∂Hx1(h) = h. The kernel-graph is shown in Figure 3.5.

f g h1

0

0, 10 1

Figure 3.5. Kernel graph of f generated by the automaton in Figure 3.4.

2. Let B = {∅, A, B,C} and let (B, A, id,A, {αv | v ∈ Vc}) be a finite automaton
with H and Vc as above. The transition functions are given by the graph in
Figure 3.6.

The kernel graph of the sequence F
∅

is shown in Figure 3.7.

Note that there are 7 different kernel elements while the generating automaton
has only 4 different states.
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∅ B

C D

1

0, 1

1

0

0

01

0

Figure 3.6. Finite automaton for the second example.

G
∅,∅ GB,B GB,C GB,D

G
∅,C G

∅,D GD,D

1

0

0

0, 1

1

0

0

1

0

11

0 1

Figure 3.7. Kernel graph for the sequence F∅ of the second example.

As we have seen already, the square of the cardinality of the set

Acc(∅,B, {αv | v ∈ Vc}))
is an upper bound for the number of kernel elements of F

∅
.

The range, R(F
∅
), see Definition 2.2.21, of the sequence F

∅
is a subset of the

accessible states. Using the range and the dynamics of αe as a map from B to B we
can obtain a better estimate on the number of kernel elements of F

∅
.

Lemma 3.1.9. Let f ∈ �(�,A) be generated by the automaton aut(f ) = (B,∅,A,
ω, {αv | v ∈ Vc}), then ∣∣ kerVc,H (F∅

)
∣∣ ≤ ∑

b∈R(F∅)

|Oe(b)|,

where Oe(b) = {α
ne (b) | n ∈ N} denotes the orbit of b under iteration of αe, R(F
∅
)

denotes the range of F
∅

, and F
∅

is defined as in Equation (3.1).

Proof. The set K defined by

K = {Ga,b = b e ⊕ L(Fα
ke (b)) | b ∈ R(F
∅
), k ∈ N}

is a finite set, it contains G
∅,∅ = F

∅
and is, due to Lemma 3.1.5, invariant under

decimations. ��
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Remarks.
1. Note that Lemma 3.1.9 yields the estimate∣∣ kerVc,H (f )

∣∣ ≤ ∑
b∈R(F∅)

|Oe(b)|,

since ω̂(F
∅
) = f . This is the best possible estimate.

2. Example 2, see also Figure 3.6, from above shows that the estimate stated in
Lemma 3.1.9 is sharp. The range of F

∅
is the set {∅, B,D} and the orbits

under iteration of αe are given by ∅ �→ C �→ D �→ D, B �→ C �→ D �→ D,
andD �→ D. This gives 7 as an upper bound for the number of kernel elements.
And indeed, the kernel has cardinalty 7, see also Figure 3.7.

Let ω : {∅, B, C,D} → {0, 1} be defined by ω(z) = 1 if and only if z = D.
The sequence f = ω̂(F

∅
) has also 7 kernel elements.

As we have noted already there exist several different finite automata which gener-
ate a given sequence f . It is therefore natural to ask for the minimal finite automaton
that generates the sequence f . An automaton (B,∅,A, ω, {αv | v ∈ Vc}) that gener-
ates f is called minimal if the number of states is minimal. It is called an f -automaton.

In the following we discuss properties of minimal automata. We show that the
kernel graph provides a minimal automaton in a certain subclass of finite automata.
Then we present a method how to obtain a finite automaton which is minimal. We
begin with an almost trivial estimate on the minimal number of states.

Lemma 3.1.10. Let f ∈ �(�,A) be (Vc,H)-automatic. If aut(f ) is a minimal
(Vc,H)-automaton, then ∣∣R(f )∣∣ ≤ |B| ≤ ∣∣ kerVc,H (f )

∣∣.
Proof. If ω : B → A denotes the output map of a minimal automaton, then R(f ) ⊂
ω(B), i.e., B contains at least

∣∣R(f )∣∣ different states.
As we have already seen, the (Vc,H)-kernel graph of f provides a finite automaton

that generates f . Thus the number of states of a minimal automaton is at most∣∣ kerVc,H (f )
∣∣. ��

The next lemma collects some necessary conditions for an automaton aut(f ) to
be minimal.

Lemma 3.1.11. If aut(f ) = (B,∅,A, ω, {αv | v ∈ Vc}) is a minimal (Vc,H)-
automaton for f , then aut(f ) has the following properties:

1. The set of accessible states Acc(∅,B, {αv | v ∈ Vc})) is equal to the set of
states, i.e., B = Acc(∅).
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2. If a, b ∈ B such that a �= b, then ω̂(F a) �= ω̂(F b) (see Equation (3.1) for the
definition of Fa).

Proof. 1. If there exists b ∈ B such that b �∈ Acc(∅), then the set

B
′ = Acc(∅)

is a proper subset of B and the automaton (B
′
,∅, ω|

B
′ , {αv|B′ | v ∈ Vc}) is well

defined and generates f . In fact, it even generates F
∅

. Since the cardinality of B
′
is

smaller than the cardinality of B, the automaton with states B is not minimal which
is a contradiction.

2. Assume that there exist a, b ∈ B such that a �= b and ω̂(F a) = ω̂(F b). Then
define B

′ = B \ {a} and new transition functions α′v : B ′ → B
′

by

α′v(x) =
{
αv(x) if αv(x) �= a
b if αv(x) = a,

and (B
′
,∅, ω|

B
′ , {α′v | v ∈ Vc}) is a finite automaton that generates the sequence

F
∅

. This is a contradiction to the minimality of aut(f ). ��

These necessary conditions for an automaton to be minimal are far from being
sufficient. The first condition states that the automaton has no superfluous states. The
second condition means that all states which are in a certain sense necessary appear
only once.

Remarks.
1. Given an automaton which generates a sequence f and which does not satisfy

condition 1 or condition 2 of Lemma 3.1.11, then it is possible to derive a smaller
automaton by applying the reduction process outlined in the proof.

2. The automaton defined by the (Vc,H)-kernel graph of a sequence f is an
example of an automaton satisfying both minimality conditions.

If aut(f ) is an automaton which satisfies the above minimality conditions, then
it is not easy to further reduce the number of states. The next theorem shows that
the automaton which is defined by the kernel graph is minimal under the class of
output-consistent automata.

Definition 3.1.12. Let aut(f ) = (B,∅,A, ω, {αv | v ∈ Vc}) be a (Vc,H)-automa-

ton for f . Then aut(f ) is called output-consistent if for all a, b ∈ B with αe(a) = b
we have that ω(a) = ω(b).
Remark. The automaton defined by the (Vc,H)-kernel graph of f with output func-
tion θ : kerVc,H (f ) → A defined by θ(h) = h(e) is an example of an output-
consistent automaton.
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Among the output-consistent automata there exists a minimal automaton. The
following theorem characterizes the minimal output-consistent automaton.

Theorem 3.1.13. Let f ∈ �(�,A) be a sequence such that the (Vc,H)-kernel of
f is finite. Then the (Vc,H)-automaton defined by the (Vc,H)-kernel graph and
the output function θ : kerVc,H (f ) → A, where θ(h) = h(e), is minimal under all
output-consistent automata that generate f .

Proof. Let us assume that aut(f ) = (B,∅,A, ω, {αv | v ∈ Vc}) is output-consistent.
Let us further assume that the transition graph of aut(f ) satisfies the minimality

condition 1. of Lemma 3.1.11, or, equivalently B = Acc(∅). For b ∈ B we define
Fb as in Equation (3.1). Then the map � : B → �(�,A) given by

�(b) = ω̂(F b)
is well defined. From Lemma 3.1.5, we conclude that

∂Hv (�(b)) = �(αv(b))
holds for all v ∈ Vc, v �= e. For v = e Lemma 3.1.5 yields

∂He (�(b)) = ω̂(b ⊕ L(Fαe(b))) = ω(b)⊕ ω̂(L(Fαe(b))).
Since ω is output consistent, we can replace ω(b) by ω(αe(b)) which gives

∂He (�(b)) = ω(αe(b)⊕ ω̂(L(Fαe(b))) = ω̂(F αe(b)) = �(αe(b)).

Thus, we have ∂Hv (�(b)) = �(αv(b)) for all v ∈ Vc and all b ∈ B.
To prove that the automaton defined by the (Vc,H)-kernel graph is minimal it

suffices to show that for any h ∈ kerVc,H (f ) there exists a state b ∈ B such that
�(b) = h. To this end, let h ∈ kerVc,H (f ). If h = f , then choose b = ∅. If

h = ∂Hvk 
 · · · 
 ∂Hv0
(f ), then by our above observation we see that

h = ω̂(∂Hvk 
 · · · 
 ∂Hv0
(F

∅
)) = ∂Hvk 
 · · · 
 ∂Hv0

(�(F
∅
)) = �(αvk 
 · · · 
 αv0(∅)),

which means that kerVc,H (f ) ⊂ �(B), i.e., |B| ≥ ∣∣ kerVc,H (f )
∣∣. ��

Remarks.
1. Note that the above proof also shows that the automaton defined by the ker-

nel graph is the unique, up to isomorphism, among the minimal and output-
consistent automata. This follows from

∂v(�(b)) = �(αv(b)).
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2. All of the above remains true if we consider an arbitrary residue set V for H
and study sequences in �(�e,A).

Example. Let � = N and H(xj ) = x2j , V = {x0, x1} and define f ∈ �(N, {0, 1})
by the transition graph shown in Figure 3.8, where the output function is given by
ω(∅) = 0, ω(I) = 1. Note further that the automaton is certainly minimal.

∅ I
0, 1

0, 1

Figure 3.8. Finite automaton for the sequence f =⊕∞
n=0([log2(2n+ 1)] mod 2)xn.

From the transition graph one easily concludes that the sequence f = ⊕fn xn =
ω̂(F

∅
) can be computed: fn ≡ [log2(2n+ 1)] mod 2.

Figure 3.9 shows the kernel graph of the sequence F
∅

which is via application of
ω also the kernel graph of ω̂(F

∅
). It is the minimal output-consistent automaton and

has as many as |Acc(∅)|2 = 4 states.
Moreover, it can be shown that any sequence g ∈ �(N, {0, . . . ,M − 1}) with

nn ≡ [logk(kn+1)] mod M , is generated by a ({x0, . . . , xk−1}, H)-automaton, where
H(xj ) = xkj . The minimal automaton generating the sequence hasM states and the
associated minimal output-consistent automaton hasM2 different states.

G
∅,∅ G

∅,I

GI,I GI,∅

0

1

0, 1

1

0

0, 1

Figure 3.9. The kernel graph of f =⊕∞
n=0([log2(2n+ 1)] mod 2)xn.

The still unsolved question is how to construct a minimal (Vc,H)-automaton that
generates a given sequence f ∈ �(�,A). We tackle this problem in the following.
It will turn out that the kernel graph again provides a tool to construct a minimal
(Vc,H)-automaton for f .

If f has a finite (Vc,H)-kernel, then the kernel graph of f is a transition graph of
a finite automaton. An element h ∈ kerVc,H (f ) is called accessible if h is accessible
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from f in the sense of Definition 3.1.7, where the automaton is defined by the kernel
graph. By its construction, each kernel element is accessible.

If a (Vc,H)-automaton satisfies the minimality requirements of Lemma 3.1.11,
then each state is accessible. In order to distinguish between different kinds of acces-
sibility we introduce the properly accessible states.

Definition 3.1.14. Let (B,∅,A, ω, {αv | v ∈ Vc}) be a finite (Vc,H)-automaton.
Let a, b ∈ B. We say that a is properly accessible from b (w.r.t. the automaton) if
there exist n ∈ N and vi0 , . . . , vin ∈ Vc such that a = αvi0 
 · · · 
 αvin (b) and vi0 �= e.
The set

Accprop(b,B, {αv | v ∈ Vc}) = {a ∈ B | a is properly accessible from b} ∪ {b}
is called the set of properly accessible states (from b). By definition, we set b ∈
Accprop(b).

Again we agree to write Accprop(b) if all other data are clear from the context.
Especially, we simply write Accprop(f ) for Accprop(f , kerVc,H (f ), {∂Hv | v ∈ Vc}),
the properly accessible states from f w.r.t. the automaton defined by the kernel graph,
if f has a finite (Vc,H)-kernel.

The L-map introduced in Definition 3.1.3 introduces an equivalent relation on
�(�,A).

Definition 3.1.15. Two sequencesg, h ∈ �(�,A) are calledL-equal ifL(g) = L(h).
It is obvious that the relation L-equal is an equivalence relation. The equivalence

class of a sequence h is denoted by [h]L.

Theorem 3.1.16. Let f ∈ �(�,A) be generated by the automaton

(B,∅,A, ω, {αv | v ∈ Vc})
which satisfies condition 1. of Lemma 3.1.11. Then

|B| ≥ ∣∣Accprop(f )
∣∣+ ∣∣K∗(f )

∣∣,
where Accprop(f ) is the set of properly accessible h ∈ kerVc,H (f ) and K∗(f ) is the
set

K∗(f ) = {[h]L | h ∈ kerVc,H (f ) and L(h) �∈ L( kerVc,H (f )
)}
.

Proof. Let h ∈ Accprop, i.e., h = ∂Hvk 
 · · · 
 ∂v0(f ) and vk �= e. This can be written as

h = ω̂(∂Hvk 
 · · · 
 ∂Hv0
(F

∅
)).

A repeated application of Lemma 3.1.5 gives

h = ω̂(Fαvk 
···
αv0 (∅)).
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This proves that every properly accessible kernel element requires a state in B.
Now let h ∈ kerVc,H (f ) be not properly accessible, i.e.,

h = ω̂(∂He 
 ∂Hvk 
 · · · 
 ∂Hv0
(F

∅
)).

A repeated application of Lemma 3.1.5 then gives

h = ω̂(Ga,αe
αvk 
···
αv0 (∅)),
where a ∈ B is determined by h. This shows that a non-properly accessible kernel
element h defines an equivalence class [h]L. Then either there exists a g ∈ Accprop(f )

such that g ∈ [h]L or no such g exists. In the second case it follows that h ∈ K∗(f ).
This shows that B contains additional

∣∣K∗(f )
∣∣ elements. This completes the proof.

��

It remains to show that for an (Vc,H)-automatic sequence f ∈ �(�,A) there
exists an automaton such that the state set has cardinality equal to the lower bound in
Theorem 3.1.16.

Theorem 3.1.17. Let f ∈ �(A, �) be (Vc,H)-automatic. There exists a (Vc,H)-

automaton (B,∅,A, ω, {αv | v ∈ V }) that generates f and satisfies

|B| = ∣∣Accprop(f )
∣∣+ ∣∣K∗(f )

∣∣.
Proof. The proof is constructive. Let

kerVc,H (f )/L = {[g]L | g ∈ kerVc,H (f )}
denote the kernel of f modulo L-equivalence. Then fix a map � : kerVc,H /L →
Accprop ∪K∗(f ) such that [

�([h]L)
]
L
= [h]L

holds for all [h]L ∈ kerVc,H (f )/L. Note that �([h]L) can be considered as a repre-
sentative in Accprop ∪K∗(f ) of the L-equivalence class [h]L.

We set B = Accprop(f ) ∪K∗(f ), where K∗(f ) is defined as in Theorem 3.1.16.

The special element ∅ of B is f .

The transition functions αv : B → B, v ∈ Vc are defined in different steps.

1. For v �= e and h ∈ Accprop(f ) we define

αv(h) = ∂Hv (h).
Note that αv(h) ∈ Accprop(f ).
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2. If v �= e and [h]L ∈ K∗(f ), then we set

αv([h]L) = ∂Hv (h).
Note that this definition is independent of the chosen sequence in the equivalence
class. Note further that αv([h]L) ∈ Accprop(f ).

3. Let v = e and h ∈ Accprop(f ). Then

αe(h) = �
([∂He (h)]L).

Note that αe(h) = a e ⊕ L(∂He (h)), where a ∈ A is determined by �.

4. Let v = e and [h]L ∈ K∗(f ). Then

αe([h]L) = �
([∂He 
�([h]L)]L

)
.

Note that for every g ∈ ([h]L ∩ kerVc,H (f )) there exists an ge ∈ A such that

∂He (g) = ge e ⊕ L(αe([h]L))
or, equivalently,

αe([h]L) = a e ⊕ L(∂He (g)),
where a ∈ A is determined by �.

Due to the above definition of the transition functions αv , v ∈ Vc, it is easy to
see that for all g ∈ Accprop(f ), for all n ∈ N and for all v ∈ Vc \ {e} the following
equation is true:

∂Hv 
 (∂He )
n(g) = αv 
 α
ne (g). (3.3)

To conclude the proof we define an output function ω : Accprop ∪K∗(f ))→ A by

ω(g) =
{
g(e) if g ∈ Accprop(f )

a otherwise,

where a ∈ A is fixed.
Now let γ = vi0H(vi1) . . . H 
n(vin) be the representation of γ , i.e., vin �= e. It

remains to show that
ω(αvin 
 · · · 
 αvi0 (∅)) = f (γ ).

Since viγ �= e, it follows that ∂Hvin 
 · · · 
 ∂Hvi0 (f ) ∈ Accprop. As a consequence of
Equation (3.3) one has

∂Hvin

 · · · 
 ∂Hvi0 (f ) = αvin 
 · · · 
 αvi0 (f ) ∈ Accprop,

and therefore ω(αvin 
 · · · 
 αvi0 (f )) = f (γ ). This proves the assertion. ��
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Note that the above construction of a minimal automaton is not unique. Every
choice of a function � gives another automaton.

Remark. Figure 3.8 is the minimal automaton one obtains from the kernel graph in
Figure 3.9 using the algorithm given in the proof of Theorem 3.1.17.

Proposition 3.1.18. Assume thatf ∈�(�,A) is (Vc,H)-automatic. If kerVc,H (f ) =
Accprop(f ), then the f -automaton has | kerVc,H (f )| states.

In other words, if every kernel element is properly accessible, then the minimal
automaton is given by the kernel graph.

The kernel graph of the paperfolding sequence pf is a minimal automaton that
generates pf without the property that every kernel element is properly accessible.

As we will see in the next section, if f is (Vc,H)-automatic, then f is also (W,H)-
automatic, whereW is a residue set for H . Therefore ifWc is another complete digit
set for H , the above construction gives a minimal (Wc,H)-automaton which may or
may have not more states than the minimal (Vc,H)-automaton.

Example. We consider the sequence ⊕n≥0x
n ∈ �(Z, {0, 1}), i.e., f (n) = 1 if

and only if n ∈ N, and the expanding endomorphism H(xj ) = x3j . Then both
Vc = {x−1, x0, x1} and Wc = {x−7, x0, x1} are complete digit sets for H . Then
the minimal (Vc,H)-automaton for the sequence f has two states and the minimal
(Wc,H)-automaton has five states. In fact, in both cases the minimal automaton
is provided by the kernel graphs, see Figure 3.10 for the (Vc,H)-kernel graph and
Figure 3.11 for the (Wc,H)-kernel graph.

f g0, 1
−1 −1, 0
1

Figure 3.10. (Vc,H)-kernel graph for the sequence f =⊕
n≥0 x

n.

f g
1

g
2

g
3

g
4

0, 1 −7 −7

0, 1

−7

1 01 −7

0

−7
0, 1

Figure 3.11. (Wc,H)-kernel graph for the sequence f =⊕
n≥0 x

n.



72 3 Automaticity

We conclude this section with some remarks on generalizations of automatic se-
quences, i.e., (V ,H)-automatic sequences forV not being a complete digit set. To this
end, we have to consider properties of the remainder- and image-part-maps defined
by V and H , see Definition 2.2.2. We introduce a more general concept of automatic
sequences which becomes the concept of Definition 3.1.1 for complete digit sets.

To begin with, let us assume that V is a residue set for H such that Per κH,V
consists of fixed points only, i.e., Per κ = Fix κ . Then � is the disjoint union of sets
�ξ with ξ ∈ Fix κ , where

�ξ = {γ | there exists n ∈ N such that κ
n(γ ) = ξ} =
⋃
n∈0

κ
−n({ξ}).

For a sequence f ∈ �(�,A) we therefore have a canonical decomposition

f =
⊕
ξ∈Fix κ

(f )ξ ,

where (f )ξ = f |�ξ .
Let ξ ∈ Fix κ be a fixed point of κ , then there exists a unique vξ ∈ V such that

ξ = vξH(ξ). For all γ ∈ � \ Fix κ there exists a unique representation

γ = vi0 . . . H 
n(vin)H 
n+1(ξ),

where n = min{k | κ
k+1(γ ) ∈ Fix κ}, or, equivalently, vin �= vξ .
By analogy, we define (f )ξ to be (V ,H)-automatic if there exist a finite set B

and maps αv : B → B, v ∈ V , ω : B → A such that

1. ω(∅) = (f )ξ (ξ)
2. For γ ∈ �ξ \ {ξ} with representation γ = vi0 . . . H 
n(vin)H 
n+1(ξ) one has

ω(αvin 
 · · ·αvi0 (∅)) = (f )ξ (γ ).

Taking the above considerations into account, we can extend the notion of auto-
maticity.

Definition 3.1.19. Let f ∈ �(�,A) and let V be a residue set of H such that Per κ
consists of fixed points only. Then f is called (V ,H)-automatic if each (f )ξ is
(V ,H)-automatic.

It is now plain how to generalize the notion to arbitrary residue sets V . Let Per κ
denote the set of periodic points, then for every γ ∈ � \ Per κ there exists a minimal
n such that κ
n(γ ) ∈ Per κ; this defines a map � : � → Per κ with �(γ ) = κ
n(γ ).
Thus � can be written as the disjoint union

� =
⋃

ξ∈Per κ

�ξ ,
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where �ξ = {γ | �(γ ) = ξ} and ξ ∈ Per κ . Any sequence f ∈ �(�,A) has a
decomposition

f =
⊕
ξ∈Per κ

(f )ξj ,

where (f )ξ = f |γξ . In a similar fashion as above we can now define a notion of
automaticity for a sequence f . This notion of automaticity is based on the fact that
each γ ∈ � \ Per κ has a unique representation

γ = vi0H(vi1) . . . H 
n(vin)H 
n+1(�(γ )).

The restriction of f on �ξ , i.e., the sequence (f )ξ is (V ,H)-automatic if there exists

a finite set B and maps αv : B → B, ω : B → A such that the following holds:

1. ω(∅) = (f )ξ (ξ).

2. For γ ∈ �ξ \ {ξ} with representation γ = vi0H(vi1) . . . H 
n(vin)H 
n+1(ξ) one
has

ω(αvi0

 · · · 
 αvi0 (∅)) = (f )ξj (γ ).

Thus a sequence f is (V ,H)-automatic if and only if each sequence f
ξ

is automatic
in the above sense.

This shows that in case of Per κ �= ∅ several different automata are necessary to
produce a sequence f . The following lemma shows that the (V ,H)-kernel graph of
the sequence f provides already these different automata if we allow different output
functions.

Lemma 3.1.20. Let f ∈ �(�,A) be such that the (V ,H)-kernel of f is finite. For
ξ ∈ Per κ we define ωξ : kerV,H (f )→ A by

ωξ (h) = h(ξ).

Then for each ξ ∈ Per κ the automaton defined by (kerV,H , f , ωξ ,A, {∂Hv | v ∈ V })
generates the sequence (f )ξ in the above sense.

The proof is easy and left to the reader.

The poor treatment of the generalized notion of automaticity is justified by the
results of the following section. There we shall show that in order to study (V ,H)-
automatic sequences it is sufficient to study sequences and their (V ,H)-kernels with
respect to a complete digit set.
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3.2 Elementary properties of automatic sequences

In this section we start to investigate certain elementary, but important properties of
sequences generated by substitutions. One of the main results is that a sequence has
a finite (V ,H)-kernel if and only if the sequence has a finite (VH(V ),H 
2)-kernel.
Moreover, if a sequence has a finite (V ,H)-kernel then it has a finite (W,H)-kernel
for any other residue setW of H . Thus the finiteness of the kernel of a sequence is a
property of the sequence and the expanding mapH and does not depend on the residue
set chosen. In view of these results we simply say that a sequence is H -automatic.

One should also compare the results with our considerations of the previous section.
If a sequence has a finite (V ,H)-kernel, then it has a finite (W,H 
n)-kernel, whereW
is a residue set of H 
n and n ∈ N. By Theorem 2.2.7, we know that for n sufficiently
large we always can find a complete digit set Wc for H 
n. Thus the concept of
automaticity introduced for complete digit sets is sufficient for a study of automatic
sequences.

However, although the automaticity of a sequence does not depend on the residue
set chosen it is often advantageous to choose a certain residue set, e.g., if one wants
to compute the substitution associated with an automatic sequence. Moreover, as we
have seen, the minimal automaton that generates a sequence depends on the residue
set.

Theorem 3.2.1. Let f ∈ �(�,A), then f has a finite (V ,H)-kernel if and only if f

has a finite (VH(V ),H 
2)-kernel.

Proof. Let kerV,H (f ) be finite. By 1. of Corollary 2.2.13, we have for τ = vH(w) ∈
VH(V )

∂H

2

τ = ∂H 
2
vH(w) = ∂Hw 
 ∂Hv

for all v,w ∈ V . In other words, ∂H

2

τ (f ) ∈ kerV,H for all τ ∈ VH(V ). This means
kerVH(V ),H 
2(f ) ⊂ kerV,H (f ). Thus the finiteness of the (V ,H)-kernel of f implies

the finiteness of the (VH(V );H 
2)-kernel of f .

Now, we assume that the (VH(V ),H 
2)-kernel of f is finite. Then the set

K = kerVH(V ),H 
2 ∪
⋃
v∈V

∂Hv
(

kerVH(V ),H 
2(f )
)

contains f and is finite. In order to show that the (V ,H)-kernel of f is finite it suffices

to show that K is invariant under v-decimations, v ∈ V , i.e., ∂Hv (K) ⊂ K; this is a
simple consequence of the definition of K . ��

Similar arguments show that the same assertion is true for higher iterates H 
n of
H and the corresponding residue sets κ
−n(V ).
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For several of the following results we need the fact that balls with radius r > 0
and center γ ∈ � contain only finitely many elements. This is guaranteed if ‖ ‖ on �
is discrete, see Definition 2.1.7.

The next theorem shows that the finiteness of the (V ,H)-kernel off is independent
of the residue system.

Theorem 3.2.2. Let ‖ ‖ be a discrete norm on � and let H : � → � be expanding
with H(�) of finite index in �. Let f ∈ �(�,A) and let kerV,H (f ) be finite. IfW is
a residue system for H , then kerW,H (f ) is finite, too.

Proof. Let r = max{‖v‖ | v ∈ V } and R = max{‖κH,V (w)‖ | w ∈ W } and let C be
the expansion ratio ofH . We shall show that kerW,H (f ) ⊂ K , whereK is defined by

K = {
(Tγ )

∗(h) | h ∈ kerV,H (f ) and ‖γ ‖ ≤ 2r+CR
C−1

}
.

Since kerV,H (f ) and B 2r+CR
C−1

(e) are finite sets, K is a finite set and therefore the

invariance of K under ∂Hw -decimations, w ∈ W , would imply that kerW,H (f ) is
finite.

By the definition of K , we have f ∈ K . Therefore, it suffices to prove that

∂Hw (K) ⊂ K for all w ∈ W .
To this end, we write

∂Hw = (TκH,V (w))∗ 
 ∂HζH,V (w),

see Lemma 2.2.14. Furthermore, let γ ∈ � such that ‖γ ‖ ≤ 2r+CR
C−1 and consider for

w ∈ W
∂Hw 
 (Tγ )∗ = (TκH,V (w))∗ 
 ∂HζH,V (w) 
 (Tγ )∗.

By Lemma 2.2.15 this gives

(TκH,V (w))
∗ 
 (TκH,V (γ ζH,V (w)))∗ 
 ∂HζH,V (γ ζH,V (w))

= (TκH,V (γ ζH,V (w))κH,V (w))∗ 
 ∂HζH,V (γ ζH,V (w)).
We now estimate

‖κH,V (γ ζH,V (w))κH,V (w)‖ ≤ ‖κH,V (γ ζH,V (w))‖ + ‖κH,V (w)‖.
From the proof of Lemma 2.2.3 we obtain

‖κH,V (γ ζH,V (w))‖ + ‖κH,V (w)‖ ≤ ‖γ ζH,V (w)‖ + r
C

+ R

≤ ‖γ ‖ + 2r

C
+ R

≤ 2r + CR
C − 1
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by our choice of γ . Therefore ∂Hw (K) ⊂ K . ��

From now on it is justified to speak of the H -kernel of f which we denote by
kerH (f ). Furthermore, we may restate Theorems 2.2.19 and 3.1.6

Theorem 2.2.19∗. The sequence f ∈ �(�,A) is generated by a substitution (w.r.t.H)
if and only if the H -kernel of f is finite.

Theorem 3.1.6∗. The sequence f ∈ �(�,A) is H -automatic if and only if the H -
kernel of f is finite.

The next lemma shows that the change of the residue set does not create entirely
new sequences. In fact, the sequences contained in kerW,H (f ) are translations of the
elements in kerV,H (f ).

Lemma 3.2.3. Let f be a sequence with a finite H -kernel. If V and W are residue
sets for H and kerV (f ), kerW(f ) are the kernels w.r.t.V and W , respectively, then
the following holds.

1. For any h ∈ kerV (f ) there exists a ρ ∈ � such that (Tρ)∗(h) ∈ kerW(f ).

2. For any g ∈ kerW(f ) there exists a h ∈ kerV (f ) and a ρ ∈ � such that
g = (Tρ)∗(h).

Proof. Let h = ∂Hv1

 · · · 
 ∂Hvk (f ) ∈ kerV (f ), where vj ∈ V , j = 1, . . . , k. By

Lemma 2.2.14, we can replace each ∂Hvj by (TκW (vj ))
∗ 
 ∂HζW (vj ), where ζW (vj ) ∈ W .

This gives

h = ((TκW (v1))
∗ 
 ∂HζW (v1)

) 
 · · · 
 (TκW (vk))∗ 
 ∂HζW (vk))(f ).
A repeated application of Lemma 2.2.15 yields

h = (Tρ)∗ 
 ∂Hw′1 
 · · · 
 ∂
H
w′k
(f )

for a certain ρ ∈ � and w′j ∈ W , j = 1, . . . , k. This proves the first assertion.
The second assertion follows from the above proof by interchanging the roles of

V andW . ��

The next lemma relates H -automatic sequences with certain G-automatic se-
quences.

Lemma 3.2.4. LetG,H : �→ � be expanding endomorphisms. Suppose there exist
k, n ∈ N such that H 
n = G
k . Then f ∈ �(�,A) has a finite H -kernel if and only
if f has a finite G-kernel.
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Proof. The proof is a direct consequence of Theorem 3.2.1 and Theorem 3.2.2. ��

As a next step, we are interested in the following question. Suppose that f is an
H -automatic sequence. What are possible alterations of the sequence which preserve
the automaticity? In the remaining part of this section we will give some preliminary
answers. In the next chapter we shall investigate this question in greater detail.

We start with a translation invariance property.

Theorem 3.2.5. Let ‖ ‖ be discrete on �. If f ∈ �(�,A) has a finiteH -kernel, then
(Tρ)

∗(f ) has a finite H -kernel.

Proof. Let V be a residue set of H and let r = max{‖v‖ | v ∈ V }. Let C be the
expansion ratio of H and let the finite set K be defined by

K = {
(Tγ )

∗(h) | ‖γ ‖ ≤ max
{‖ρ‖, 2r

C−1

}
and h ∈ kerV,H (f )

}
.

As usual, we shall prove that kerV,H ((Tρ)∗(f )) ⊂ K . By construction, we have that

(Tρ)
∗(f ) ∈ K . It is therefore sufficient to show that ∂Hv (K) ⊂ K for all v ∈ V .

Let γ ∈ � such that ‖γ ‖ ≤ max{‖ρ‖, 2r
C−1 } and let v ∈ V , then by Lemma 2.2.15

∂Hv 
 (Tγ )∗ = (Tκ(γ v))∗ 
 ∂Hζ(γ v).
Again, we estimate

‖κ(γ v)‖ ≤ ‖γ v‖ + r
C

≤ ‖γ ‖ + 2r

C
≤ max

{
‖ρ‖, 2r

C − 1

}
.

This proves the assertion. ��

Remarks.
1. Since (Tρ)∗ = (Tρ−1)∗ the same assertion holds for (Tρ)∗(f ).

2. The above lemma does not hold for right translations, as the example below
shows. The lemma is true for right translationsRρ(γ ) = γρ under an additional
assumption on the group �, namely if the commutators

[H(γ ), ρ] = H(γ−1)ρ−1H(γ )ρ

are uniformly bounded, i.e., there exists a constant K such that ‖[H(γ ), ρ]‖ ≤
K for all ρ and all γ . This seems to be a rather strong condition on the group
� which is certainly satisfied by commutative groups.

The Heisenberg group provides an example for which H -automaticity is not pre-
served under right translations.
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Example. Let �3 be the Heisenberg group and H2,2 : L → L be as in Example 3,
p. 28. Then V = {bε1aε2cε3 | ε1, ε2 ∈ {0, 1}, ε3 ∈ {0, 1, 2, 3}} is a residue set for
H2,2. Now consider the sequence f ∈ �(�3, {0, 1}) defined by f (γ ) = 1 if and only
if γ = bn with n ∈ N. Then f has a finite H2,2-kernel. Indeed, we have

∂
H2,2
v (f ) = 0 for all v �= e, b, b2,

∂
H2,2
v (f ) = f v ∈ {e, b, b2}.

Due to the above theorem, we have that the sequence (Ta−1)∗(f ) is H -automatic. If
Ra−1 : �3 → �3 denotes the right translation, then the sequence (Ra−1)∗(f ) is not
H -automatic.

In order to prove the non-automaticity of (Ra−1)∗(f ) we introduce the setM1(h)

for an arbitrary sequence h ∈ �(�3, {0, 1}). It is defined by

M1(h) = {γ | h(γ ) = 1}.
By definition, we have (Ra−1)∗(f )(γ ) = f (γ a−1), so we obtain (Ra−1)∗(f )(γ ) = 1
if and only if γ = bna = abncn and therefore

M1((Ra−1)∗(f )(γ )) = {abncn | n ∈ N}.
Now consider ∂a((Ra−1)∗(f ))(γ ) = (Ra−1)∗(f )(aH(γ )), and we thus obtain that
∂a((Ra−1)∗(f ))(γ ) = 1 if and only if aH(γ ) = abncn, i.e., H(γ ) = bncn. This is
only possible if n is a multiple of 4 which yields

M1(∂a((Ra−1)∗(f ))) = {b2ncn | n ∈ N}.
Finally we compute the set

M1(∂e(∂a((Ra−1)∗(f )))).

By our above considerations we see that

∂e(∂a((Ra−1)∗(f )))(γ ) = 1

if and only if H(γ ) ∈ {b2ncn | n ∈ N}, i.e., γ = b4ncn and n ∈ N. By induction, we
obtain

M1
(
∂
ke (∂a((Ra−1)∗(f )))

) = {b2k+1ncn | n ∈ N}.
This proves that the H -kernel of (Ra−1)∗(f ) is infinite.

The next theorem is about the finiteness of the kernel of a G-reduction of f .

Theorem 3.2.6. Let ‖ ‖ be discrete on �. Let G : �→ � be a group endomorphism
which commutes with H , i.e., H 
G = G 
H . If the H -kernel of f is finite, then the
H -kernel of G∗(f ) is finite.
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Proof. Let V be a residue system for H (with expansion ratio C) and let r =
max{‖v‖ | v ∈ V }, r̃ = max{‖G(v)‖ | v ∈ V }. Define the finite set K by

K = {
G∗ 
 (Tγ )∗(h) | h ∈ kerV,H (f ) and ‖γ ‖ ≤ r̃+r

C−1

}
.

We thus have G∗(f ) ∈ K , and it suffices to show the invariance of K under the

v-decimations. Let ‖γ ‖ ≤ r̃+r
C−1 , then we have

∂Hv 
G∗ 
 (Tγ )∗ = (Tv 
H)∗ 
 (Tγ 
G)∗
= (Tγ 
G 
 Tv 
H)∗
= (Tγ 
 TG(v) 
G 
H)∗
= (Tγ 
 TG(v) 
H 
G)∗ since H 
G = G 
H
= G∗ 
 ∂HγG(v)
= G∗ 
 (TκH,V (γG(v)))∗ 
 ∂HζH,V (γG(v))

which gives

‖κH,V (γG(v))‖ ≤ ‖γG(v)‖ + r
C

≤ ‖γ ‖ + r + r̃
C

≤ r̃ + r
C − 1

due to our choice of γ . ��

If G : � → � commutes with H and if G is not surjective, then Theorem 3.2.6
can be formulated as follows: A carefully chosen subsequence of f , i.e., the sequence
G∗(f ), of an H -automatic sequence f is H -automatic, too.

IfG is a bijection and commutes withH , then we can say that a careful rearrange-
ment, i.e., G∗(f ), of an H -automatic sequence is also H -automatic.

One special rearrangement is the endomorphism G(γ ) = γ−1.

Proposition 3.2.7. Let G(γ ) = γ−1. Then G 
 H = H 
 G, and therefore f has a
finite H -kernel if and only if this holds for G∗(f ).

A slight modification of the proof of Theorem 3.2.6 yields the following general-
ization of Theorem 3.2.6.

Corollary 3.2.8. Let {G1, . . . ,GM} be a finite set of group endomorphisms of � and
let η : {1, . . . ,M} → {1, . . . ,M} be a map such that

Gj 
H = H 
Gη(j)
holds for all j ∈ {1, . . . ,M}. If the H -kernel of f is finite, then so is the H -kernel of
(Gj )

∗(f ) for all j ∈ {1, . . . ,M}.



80 3 Automaticity

Example. Let � be the additive group Z
2. Then H : Z

2 → Z
2 defined by

H

(
x

y

)
=
(
x − y
x + y

)
is an expanding endomorphism (w.r.t. the euclidian metric). Let G0 : Z

2 → Z
2 be

defined by

G0

(
x

y

)
=
(
a b

c d

)(
x

y

)
,

where a + b + c + d = 0 mod 2. Then the set {H 
−nG0H

n | n ∈ N} is finite and

satisfies the requirements of Corollary 3.2.8.

As another application of Theorem 3.2.6 we show that a kind of blocking of an
automatic sequence again yields an automatic sequence.

The blocking is best explained by an example. If (fn)n≥0 is a sequence with values
in A, then the sequence (gn)n≥0 defined by gn = (f2n, f2n+1) is a new sequence with
values in A2.

Definition 3.2.9. Let G : � → � be a group endomorphism such that G(�) ⊂ � is
a subgroup of finite index and letW = {w1 = e,w2, . . . , wD} be a residue set forG.
The map BW,G : �(�,A)→ �(�,AD) defined by

BW,G(f )(γ ) =

⎛⎜⎜⎜⎝
f (G(γ ))

f (w2G(γ ))

...

f (wDG(γ ))

⎞⎟⎟⎟⎠
is called (W,G)-block map.

Lemma 3.2.10. LetG : �→ � be as in Definition 3.2.9 and assume thatG commutes
with H , i.e., G 
 H = H 
 G. If f ∈ �(�,A) is H -automatic, then BW,G(f ) ∈
�(�,AD) is H -automatic.

Proof. The proof follows immediately from the fact that the j -th component of
BW,G(f ), j = 1, . . . , D, is ∂Gwj (f ) = (Twj 
G)∗(f ). By Theorem 3.2.5 and Theo-
rem 3.2.6, each component is H -automatic and therefore BW,G(f ) is H -automatic.

��

It remains to study the automaticity properties of G∗(f ), where G : � → � is
injective. As for the case G∗(f ) we need that G satisfies certain requirements.

Lemma 3.2.11. Let G : � → � be an injective group endomorphism such that the
subgroupG(�) ⊂ � has finite index. Furthermore, assume thatG commutes withH ,
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i.e., H 
G = H 
G. If V is a residue set for H and W is a residue set for G, then
for all f ∈ �(�, �A) and all v ∈ V

∂Hv 
G∗(f ) =
⊕

w∈W(v)
(Tw 
G)∗ 
 (Tκ(G−1(vH(w)))

∗ 
 ∂H
ζ(G−1(vH(w))

(f ),

where W(v) = {w | w ∈ W and vH(w) ∈ G(�)} and κ and ζ are the image-part-
and remainder-maps w.r.t.V , respectively.

Proof. By its definition, we have

∂Hv (G∗(f ))(γ ) = G∗(f )(vH(γ )) =
{
f (ρ) if vH(γ ) = G(ρ)
∅ otherwise.

Now let γ ∈ � be such that vH(γ ) ∈ G(�). Since W is a residue set of G, γ has a
unique representation γ = wG(γ ′) with w ∈ W . This yields vH(wG(γ ′)) ∈ G(�),
and therefore vH(w)G(H(γ ′)) ∈ G(�) which implies vH(w) ∈ G(�). Due to the
definition ofW(v) the set ⋃

w∈W(v)
wG(�)

contains all γ such that vH(γ ) ∈ G(�). In other words, we have

∂Hv (G∗(f ))(wG(γ )) = f (vH(w)H(G(γ ))
for all γ ∈ � and w ∈ W(v). For all ρ ∈ � which are not of the form wG(γ ) we
have that ∂Hv (G∗(f ))(ρ) = ∅. Written as a formal series we obtain

∂Hv (G∗(f )) =
⊕

w∈W(v),γ∈�
f (vH(w)H(G(γ ))wG(γ ).

By the fact thatG−1(vH(w)H(G(γ ))) is well defined and equal toG−1(vH(w))H(γ )

we can rewrite the summands as

∂Hv (G∗(f )) =
⊕

w∈W(v)
(Tw 
G)∗∂HG−1(vH(w))

(f )

and an application of Lemma 2.2.14 proves the assertion. ��

Theorem 3.2.12. Let G : � → � be as in Lemma 3.2.11. If f ∈ �(�,A) is H -
automatic, then G∗(f ) is H -automatic, too.

Proof. Let V be a residue set for H andW be a residue set forG. By Lemma 3.2.11,
we have that

∂Hv (G∗(f )) =
⊕

w∈W(v)
(Tw 
G)∗ 
 (Tκ(G−1(vH(w)))

∗ 
 ∂H
ζ(G−1(vH(w))

(f ).
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Now (Tw 
G)∗ = (Tw−1)∗ 
G∗, and we obtain

∂Hv (G∗(f )) =
⊕

w∈W(v)
(Tw−1)∗ 
G∗ 
 (Tκ(G−1(vH(w)))

∗ 
 ∂H
ζ(G−1(vH(w))

(f ).

Note that the summands are of the form (Tγ ) 
G∗ 
T ∗ρ (h), where h ∈ kerV,H (f ). As
a next step, we define several constants, namely

r = max{‖v‖ | v ∈ V },
R1 = max{‖G−1(vH(W))‖ | v ∈ V and w ∈ W(v)},
R2 = max{‖w‖ | w ∈ W }.

The set of sequences

K ′ = {
T ∗γ 
G∗ 
 T ∗ρ (h) | h ∈ kerH (f ), ‖γ ‖ ≤ CR2+2r

C−1 , ‖ρ‖ ≤ R1+3r
C−1

}
,

where C denotes the expansion ratio of H , is a finite set. Unfortunately, it is not
decimation invariant. If we apply Lemma 3.2.11 to an element of K ′, we obtain the
following formula

∂Hv (T
∗
γ 
G∗ 
 T ∗ρ (h)

=
⊕

w∈W(ζ(γ v))
T ∗
w−1κ(γ v)


G∗ 
 T ∗κ(ρζ(G−1(vH(w))κ(G−1(vH(w))

 ∂H
ζ(ρζ(G−1(vH(w))

(h)

and we estimate

‖w−1κ(γ v)‖ ≤ R2 + ‖γ ‖ + 2r

C
≤ CR2 + 2r

C − 1
,

due to the choice of γ , and

‖κ(ρζ(G−1(vH(w))κ(G−1(vH(w))‖ ≤ ‖ρ‖ + 2r + R1 + r
C

≤ R1 + 3r

C − 1

due to the choice of ρ. Therefore the decimation of an element inK ′ is a finite sum of
elements inK ′. Note that the summands have pairwise disjoint support. Note further
that the set of sums of elements in K ′ where the summands have pairwise disjoint
support is also a finite set.

Since G∗(f ) is an element of K ′, its decimations are well defined and can be
written as a finite sum of elements of K ′ such that the summands have pairwise
disjoint support. Therefore the H -kernel of G∗(f ) is finite. ��

Corollary 3.2.13. LetG : �→ � be as in Lemma 3.2.11 and let s : W ×A → B be
a map, where A and B are finite sets. Then S induces a kind of (W,G)-substitution
S from �(�,A) to �(�,B) by setting

S(f )(wG(γ )) = s(w, f (γ )).
If f ∈ �(�,A) is H -automatic, then S(f ) is also H -automatic.
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Proof. We have
S(f ) =

⊕
w∈W

ˆsw((Tw 
G)∗(f ),

where sw : A → B denotes the map s(w, ). By the above theorem and Theorem 3.2.5
each of the summands is H -automatic. Therefore the sum is H -automatic. ��

The above results indicate that it is possible to perform alterations of an H -auto-
matic sequence without destroying the H -automaticity of the sequence. So far, we
have seen that as long as the alterations are compatible with the group structure and
with the expanding endomorphism H , then the H -automaticity is preserved.

On the other hand, there are simple alterations of a sequence f which certainly
do not affect the automaticity of the sequence. One of the simplest of these changes
is the exchange of two values. Let f be an H -automatic sequence and let γ1, γ2 be
different elements of �, then g defined by

g(γ ) =

⎧⎪⎨⎪⎩
f (γ1) if γ = γ2

f (γ2) if γ = γ1

f (γ ) otherwise

is an H -automatic sequence, too. Unfortunately, this kind of exchange of two values
is not covered by mappings G : H → H which satisfy one of the above mentioned
conditions. It is clear that any finite number of changes of an H -automatic sequence
f produces a sequence g which is H -automatic.

There is yet another, more complicated, way to rearrange an automatic sequence.
Let us assume that (B,∅,A, ω, {αv | v ∈ Vc}) is a (Vc,H)-automaton generating the
sequence f ∈ �(�,A). If σ : Vc → Vc is bijective and σ(e) = e, then the automaton

(B,∅,A, ω, {ασ(v) | v ∈ Vc}) generates a sequence which can be considered as a
rearrangement of f . By the construction, it is clear that the new sequence is also
automatic.

In the next chapter we shall introduce the necessary tools to deal with more general
rearrangements of sequences.

3.3 Notes and comments

The definition of a (Vc,H)-automaton is a special case of the general notion of a finite
automaton. More information on finite automata and their relations to other structures
in mathematics and computer science can be found in, e.g., [45], [48], [77], [78], [85],
[98], [105], [124], [147], [156], [159].

Definition 3.1.1 is a generalization of the concept of automaticity for ‘true’ se-
quences, i.e., maps from N to a set. In [7], [9], [15], [17], [153], the reader will find
further generalizations of automaticity.

Theorem 3.1.6 is a generalization of a result in [55] for true sequences.



Chapter 4

Automaticity II

As we have seen in the previous section there exist operations on the set ofH -automatic
sequences which preserve the H -automaticity. We have also seen that the allowed
operations are very restrictive since they depend on the group structure as well as on
the expanding endomorphismH . In this chapter we develop a more general theory of
admissible alterations of H -automatic sequences.

We begin with H -automatic subsets of �. We study the behavior of H -automatic
subsets under the elementary set operations.

Using the notion of automatic subsets, we define (H1 × H2)-automatic maps
G : �1 → �2, where Hi : �i → �i , i = 1, 2, are expanding endomorphisms such
that the index of H(�i) is finite. We study the properties of automatic maps. In
particular, we shall show that an (H1 × H2)-automatic map G : �1 → �2 maps an
H1-automatic subsetM ⊂ �1 on the H2-automatic subset G(M).

In the third section, we discuss the structure of finite (V1×V2, H1×H2)-automata
that generate (H1 × H2)-automatic maps G : �1 → �2. We present necessary and
sufficient conditions on the transition graph of a (V1 × V2, H1 × H2)-automaton to
generate an (H1 × H2)-automatic map. We conclude this section by showing that
there exists an (H × Hp)-automatic bijective map Vp : � → N such that for every
H -automatic subset M ⊂ � the set Vp(M) ⊂ N is Hp-automatic, where Hp(xj ) =
xpj and p = |V |.

In the fourth section we present a detailed discussion of the properties of (Hp×Hq)-
automatic functions G : N → N. We present upper and lower bounds for the growth
of (Hp×Hq)-automatic functions. Moreover, we prove that for p < q there exists no
surjective (Hp × Hq)-automatic function G : N → N. By studying the distribution
or density of an Hq -automatic subset we are able to give sufficient conditions for the
existence of an (Hp × Hq)-automatic function G : N → N such that p < q and
G(N) = M .

Finally, in the fifth section, we briefly introduce cellular automata and show that
under mild restrictions a cellular automaton is a tool to generate an (H1 × H2)-
automatic map G : �1 → �2.
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4.1 Automatic subsets

As always, � is a finitely generated group and H : � → � is an expanding endo-
morphism (w.r.t. some fixed discrete norm) such that H(�) is of finite index in �.
Moreover, A denotes a finite set and �(�,A) denotes the set of sequences.

In this section, we discuss the notion of automatic subsets of �. It will turn out
that a study of automatic subsets almost suffices to understand arbitrary H -automatic
sequences.

Definition 4.1.1. A subsetM ⊂ � is calledH -automatic if the characteristic sequence
χM ∈ �(�, {0, 1}) defined by

χM(γ ) =
{

1 if γ ∈ M
0 otherwise

is H -automatic.

Examples.
1. The empty set ∅ and the set � are H -automatic subsets. Indeed, we have
χ∅(γ ) = 0 and χ�(γ ) = 1 for all γ ∈ �. Therefore ∂Hv (χ∅) = χ∅ and
∂Hv (χ�) = χ� for all v ∈ V .

From now on χ∅ is simply denoted by 0, the sequence with values all equal to 0.

2. Every finite subsetM of � is an H -automatic subset.

3. If M is equal to � \ {γ1, . . . , γn}, where n ∈ N, then M is an H -automatic
subset.

In order to model the different operations with subsets, we introduce an additional
structure on the set {0, 1}. We denote this structure by B = ({0, 1},∨,∧, −), i.e., we
consider the set {0, 1} as a two element Boolean algebra, where

0 ∨ 0 = 0 and 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1,

and
1 ∧ 1 = 1 and 1 ∧ 0 = 0 ∧ 1 = 0 ∧ 0 = 0,

and 0− = 1, 1− = 0.
The operations given for the Boolean algebra can be extended to the sequence

space �(�,B). If f ∈ �(�,B), then f− is defined by

f−(γ ) = f (γ )−.
For two given sequences f , g ∈ �(�,B) we define their sum by

(f ∨ g)(γ ) = f (γ ) ∨ g(γ ).
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As a formal series we write a sequence f ∈ �(�,B) as

f =
∨
γ∈�

fγ γ

to emphasize the addition on B. There are to different kinds of products. The first one
is a pointwise product, it is induced by ∧ and defined by

(f ∧ g)(γ ) = f (γ ) ∧ g(γ ),
or, in the notion of formal series,

f ∧ g =
∨
γ∈�
(fγ ∧ gγ ) γ.

The second product is the so-called Cauchy product. It is defined by

(f · g)(γ ) =
∨
ρτ=γ

fρ · gτ ,

where the summation is over all pairs (ρ, τ ) with ρτ = γ , or, in the notion of formal
series,

(f · g) =
∨
γ∈�

( ∨
ρτ=γ

fρ · gτ
)
γ,

i.e., the Cauchy product of two sequences can be interpreted as the product of their
formal series. It is important to notice that the Cauchy product of two sequences is
well defined since the sequences take their values in the Boolean algebra B.

If a ∈ B andf ∈ �(�,B), then a∧f denotes the sequence (a∧f )(γ ) = a∧f (γ ).
This is either the zero sequence if a = 0 or it is the sequence f if a = 1.

With regard to the automaticity of sequences in �(�,B) we have the following
first result.

Lemma 4.1.2. If f , g ∈ �(�,B) are both H -automatic, then the sum f ∨ g and the
∧-product f ∧ g are both H -automatic.

Proof. One easily shows that

kerV,H (f ∨ g) ⊂ {i ∨ j | i ∈ kerV,H (f ), j ∈ kerV,H (g)}
and

kerV,H (f ∧ g) ⊂ {i ∧ j | i ∈ kerV,H (f ), j ∈ kerV,H (g)}.
Since f and g areH -automatic, the sets on the right-hand side of the above inclusions
are finite. ��

With this notation we can state several properties of H -automatic subsets.
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Lemma 4.1.3. LetM,N ⊂ � be H -automatic subsets. Then the following holds:

1. The unionM ∪N is H -automatic.

2. The intersectionM ∩N is H -automatic.

3. The complement � \M = Mc is H -automatic.

4. The symmetric differenceM"N = (M ∩Nc) ∪ (Mc ∩N) is H -automatic.

Proof. The set theoretic operations translate into operations with characteristic se-
quences having values in the Boolean algebra B. E.g., χM∪N = χM ∨ χN , χM∩N =
χM ∧ χN , and χMc = (χM)−.

Then 1, 2, and 3 are immediate from Lemma 4.1.2. Assertion 4 follows from

χM"N = (χM ∧ χ−N ) ∨ (χ−M ∧ χN)
and Lemma 4.1.2. ��

The next lemma justifies that a study of automatic subsets of � is indeed a study
of automatic sequences in �(�,A). Before stating the lemma we define a ‘multipli-
cation’ ∗ : �A× B → �A by

a ∗ b =
{
a if b = 1

∅ if b = 0.

Let a be in A and let χ ∈ �(�,B), then a ∗ χ is an element of �(�, �A). It is defined
by

(a ∗ χ)(γ ) = a ∗ χ(γ ).
Furthermore, we have the obvious identity

∂Hv (a ∗ χ) = a ∗ ∂Hv (χ).
For a ∈ A we define the maps δa : A → B by

δa(b) =
{

1 if a = b
0 otherwise.

Lemma 4.1.4. Let f ∈ �(�,A). The sequence f is H -automatic if and only if the
sets

Ma(f ) = {γ | f (γ ) = a}
are H -automatic subsets of � for all a ∈ A.
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Proof. For a ∈ A we define χa ∈ �(�,B) to be the characteristic sequence of the set
Ma(f ). Then the sequence f can be written as

f =
⊕
a∈A

a ∗ χMa(f )

and we have χMa(f ) = δ̂a(f ). Since δ̂a 
 ∂Hv = ∂Hv 
 δ̂a , the assertion follows. ��

Therefore a study of automatic sequences is basically a study of automatic subsets
of�. All of our previous theorems for automatic sequences apply to automatic subsets
M ⊂ �. I.e., if Vc is a complete digit set for H , then there exists a finite automaton
that generates the subset. In that case we can – in a more poetic language – say that
the automaton answers to the question whether a given γ is an element of M with
‘yes’ or ‘no’.

As we have seen, the usual set theoretic operations with automatic subsets do
not affect the automaticity property. Besides these set theoretic operations there are
operations with subsets of � which are induced by the group structure of �. The
productMN of two subsetsM,N ⊂ � is defined by

MN = {γρ | γ ∈ M, ρ ∈ N}.
In terms of characteristic functions we have the following result

Lemma 4.1.5. Let M , N be subsets of �. Then the characteristic sequence χMN ∈
�(�,B) ofMN is the Cauchy product of χM with χN , i.e.,

χMN = χM · χN.
Proof. Let γ = ρτ , where ρ ∈ M and τ ∈ N , then

(χM · χN)(γ ) =
∨
ρ′τ ′=γ

χM(ρ
′) ∧ χN(τ ′)

is equal to 1. On the other hand, if (χM ∧ χN)(γ ) = 1, then there exists at least one
pair (ρ′, τ ′) such that ρ′ · τ ′ = γ and ρ′ ∈ M , τ ′ ∈ N . ��

Thus the question on the automaticity of MN translates into a question on the
automaticity of the Cauchy product of two automatic sequences.

The definition of the products of sets allows us to define an embedding ι : � →
�(�,B) by setting

ι(γ ) = χ{γ }.
Then we have ι(γρ) = ι(γ ) · ι(ρ). If we interpret ι(γ ) as a formal series, we can
simply write ι(γ ) = γ . From now on we do not distinguish between ι(γ ) and γ . It
will always be clear from the context which interpretation of γ has to be chosen. The
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Cauchy product enables us to give a new meaning to the left translation (Tτ )∗ and
right translation (Rτ )∗. By their definition, see Equations (1.3), (1.4), we have

(Tτ )∗(f ) = τ · f and (Rτ )∗(f ) = f · τ
for all f ∈ �(�,B) and all τ ∈ �, where we interpret τ as an element of �(�,B).
Due to Theorem 3.2.5, the left translations preserve the automaticity while the right
translations do not necessarily preserve the automaticity, as shown by the example on
p. 78. Since the Cauchy product χM · χN involves the left translations as well as the
right translations, the question on the automaticity of χM ·χN is closely related to the
automaticity properties of left and right translations.

If � is a commutative group, then � is isomorphic to Z
n, see Lemma 2.1.3, and the

question on the automaticity of the product of two automatic sequences is answered
in the next theorem. Before we state and prove this theorem we need a preparatory
lemma. It provides us with a product formula for decimations and does only apply to
the situation where � is commutative.

Lemma 4.1.6. Let f , g ∈ �(ZN,B), then

∂Hv (f · g) =
∨
u,w∈V
ζ(uw)=v

κ(uw) · ∂Hu (f ) · ∂Hw (g),

where κ and ζ are the image-part- and remainder-map associated with H and a
residue set V for H .

Proof. Due to Lemma 2.2.16, we can write

f =∨
v∈V v ·H∗(∂Hv (f ))

g =∨
v∈V v ·H∗(∂Hv (g)).

Therefore the Cauchy product is given by

f · g =
∨
u,w∈V

uw ·H∗(∂Hu (f )) ·H∗(∂Hw (g)),

where we use the fact that the underlying group is commutative. If we write uw =
ζ(uw)H(κ(uw)) (again the commutativity is crucial), and if we use the fact that

H∗(∂Hu (f )) ·H∗(∂Hw (g)) = H∗(∂Hu (f ) · ∂Hw (g)).
then we can rewrite the product as

f · g =
∨
v∈V

v ·
∨
u,w∈V
ζ(uw)=v

H(κ(uw)) ·H∗(∂Hu (f ) · ∂Hw (g)).
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Observe that the summands can be written as

H
(
κ(uw)) ·H∗(∂Hu (f ) · ∂Hw (g)

) = H∗(κ(uw) · ∂Hu (f ) · ∂Hw (f ))
and therefore the product takes the form

f · g =
∨
v∈V

v ·H∗
( ∨
u,w∈V
ζ(uw)=v

κ(uw) · ∂Hu (f ) · ∂Hw (f )
)
.

Thus, as a consequence of Lemma 2.2.16, ∂Hv (f · g) is of the desired form. ��

We are now prepared to prove the announced theorem on the automaticity of a
product of automatic sets.

Theorem 4.1.7. Let � be a commutative group and let H : �→ � be an expanding
endomorphism. If M and N are H -automatic subsets of �, then the product MN is
H -automatic.

Proof. Let r = max{‖v‖ | v ∈ V } for a residue set for H and let C denote the
expansion ratio of H . We define the set K ⊂ �(�,B) by

K =
{ ∨
ρ,f ,g

aρ,f ,g ∧ (ρ · f · g)
∣∣∣ ‖ρ‖ ≤ R, f ∈ kerV,H (χM),

g ∈ kerV,H (χN), aρ,f ,g ∈ B

}
.

where R = 5r
C−1 . SinceM and N are automatic, K is a finite set. It remains to show

that K is decimation invariant and contains χM · χN . The latter assertion is certainly
true. Therefore it remains to establish the decimation invariance of K . It is obvious
that it suffices to prove that the decimation of a summand

a ∧ (ρ · f · g) = (ρ · g · g)
is also an element ofK . For a = 0 there is nothing to show. We therefore assume that
a = 1. By Lemma 4.1.6, we can write

ρ · f · g = ρ ·
( ∨
v∈V

v ·H∗
( ∨
u,w∈V
ζ(uw)=v

κ(uw) · ∂Hu (f ) · ∂Hw (f )
))
.

Since vρ = ζ(vρ)H(κ(vρ)), we obtain

ρ · f · g =
∨
v∈V

ζ(vρ)H∗
( ∨
u,w∈V
ζ(uw)=v

κ(vρ)κ(uw)∂Hu (f ) · ∂Hw (g)
)
.
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Thus the decimations of ρ · f · g are of the form∨
u,w∈V
ζ(uw)=v

κ(vρ)κ(uw)∂Hu (f ) · ∂Hw (g).

It remains to estimate the norm of κ(vρ)κ(uw). We have

‖κ(vρ)κ(uw)‖ ≤ ‖κ(vρ)‖ + ‖κ(uw)‖ ≤ ‖v‖ + ‖ρ‖ + ‖u‖ + ‖v‖ + 2r

C

≤ 5r + ‖ρ‖
C

≤ 5r

C − 1
,

where the last inequality is due to our choice of ρ. Thus the decimation of a summand
is the sum of summands of the given form. Therefore the setK is decimation invariant
which yields the H -automaticity of χMN . ��

The following lemma deals with a proper mixing of H -automatic subsets.

Lemma 4.1.8. Let W be a residue set of G, where G satisfies the conditions of
Lemma 3.2.11, and letMw ⊂ � with w ∈ W be H -automatic subsets. The set

M =
⋃
w∈W

wG(Mw),

where wG(Mw) = {wG(m) | m ∈ Mw}, is H -automatic.

Proof. The proof follows from the fact that

χM =
⊕
w∈W

(Tw 
H)∗(χMw)

and Theorems 3.2.5 and 3.2.12. ��

As a next step we discuss automatic sets of direct product of groups. We suppose
that �1 and �2 are two finitely generated groups and H1 : �1 → �1 and H2 :
�2 → �2 are expanding endomorphisms, respectively. The direct product � =
�1 × �2 is a group and the endomorphism H = (H1 × H2) : � → � defined
by H(γ1, γ2) = (H1(γ1),H2(γ2)) is expanding with respect to the discrete norm
‖(γ1, γ2)‖ = ‖γ1‖1 + ‖γ2‖2, where ‖ ‖1 and ‖ ‖2 are the discrete norms on �1 and
�2. If V1 and V2 are residue sets for H1 and H2, then V = V1 × V2 is a residue set
for H .

Thanks to our general setting, all results stated so far carry over directly to the case
where � = �1 × �2 and H = (H1 ×H2) is an expanding endomorphism.
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Lemma 4.1.9. Let � = �1 × �2 and H = (H1 ×H2), where H1, H2 are expanding
endomorphisms of �1 and �2. If M1 ⊂ �1 and M2 ⊂ �2 are H1-automatic and
H2-automatic, respectively, then the setM1 ×M2 ⊂ � is H -automatic.

Proof. The proof is almost trivial, all we have to do is to construct the characteristic
sequence of the setM1 ×M2. It is defined by

χM1×M2(γ1, γ2) = (χM1 # χM2)(γ1, γ2) := χM1(γ1) ∧ χM2(γ2),

i.e., χM1×M2 = χM1 # χM2 . Then the (V1 × V2, H)-kernel of χM1×M2 is contained
in the finite set

K = {f # g | f ∈ kerV1,H1(χM1), g ∈ kerV2,H2(χM2)}
and K is invariant under (v1, v2)-decimations. ��

Corollary 4.1.10. Let ε : �(�1,B)→ �(�1 × �2,B) be defined by

ε(f )(γ1, γ2) = f (γ1).

If f ∈ �(�1,B) is H1-automatic, then ε(f ) is (H1 ×H2)-automatic.

Proof. ε(f ) is the characteristic sequence of the set supp(f ) × �2. Therefore the
assertion follows from Lemma 4.1.9. ��

The following result allows a kind of reduction of variables.

Theorem 4.1.11. Let f , g ∈ �(�1 ×�2,B) be (H1 ×H2)-automatic. The sequence
h = f ⊗ g ∈ �(�1,B) defined by

h(γ1) =
∨
γ2∈�2

f (γ1, γ2) ∧ g(γ1, γ2)

for γ1 ∈ �1 is H1-automatic.

Proof. Let Vi be a fixed residue set for Hi , i = 1, 2. By ker(f ) and ker(g) we
denote the (V1, H1)-, (V2, H2)-kernel of f and g, respectively. We define the subset
K ⊂ �(�1,B) by

K =
{ ∨
f ′∈ker(f ),
g′∈ker(g)

af ′,g′ ∧ (f ′ ⊗ g′)
∣∣ af ′,g′ ∈ B

}
∪ {0},

The set K is finite and contains f ⊗ g. It remains to prove that K is decimation
invariant. To this end it is sufficient to consider a summand h′ = f ′ ⊗g′, f ′ ∈ ker(f ),
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g′ ∈ ker(g), and to prove that ∂H1
v (f

′⊗g′) ∈ K for all v ∈ V1. To this end we compute

∂H1
v (h

′)(γ1) =
∨
γ2∈�2

f ′(vH(γ1), γ2) · g′(vH(γ1), γ2)

=
∨
w∈V2
γ2∈�2

f ′(vH(γ1), wH(γ2)) · g(vH(γ1), wH(γ2))

=
∨
w∈V2

∨
γ2∈�2

f ′(vH(γ1), wH(γ2)) · g(vH(γ1), wH(γ2)).

Due to the definition of ⊗, the last expression can be written as∨
w∈V2

∂
(H1×H2)
(v,w) (f ′)⊗ ∂(H1×H2)

(v,w) (g′).

This shows that ∂H1
v (h

′) is an element of K . Therefore the set K is invariant under
∂
H1
v -decimations. This completes the proof. ��

As a consequence of the above proof we note

Corollary 4.1.12. If f , g ∈ �(�1 × �2,B), then

∂H1
v0

 · · · 
 ∂H1

vk
(f ⊗ g)

=
∨

w0,...,wk∈V2

(
∂
(H1×H2)
(v0,w0)


 · · · 
 ∂(H1×H2)
(vk,wk)

(f )
)
⊗
(
∂
(H1×H2)
(v0,w0)


 · · · 
 ∂(H1×H2)
(vk,wk)

(g)
)

holds for all v0, . . . , vk ∈ V1 and all k ∈ N.

The next lemma deals with projections of automatic sets.

Lemma 4.1.13. Let � and H be as in Lemma 4.1.9. IfM ⊂ � is H -automatic, then
the projection

p1(M) = {γ1 ∈ �1 | there exists γ2 ∈ �2 with (γ1, γ2) ∈ M}
is H1-automatic.

Proof. The characteristic sequence χp1(M) is given by

χp1(M)(γ1) =
∨
γ2∈�2

χM(γ1, γ2) = (χM ⊗ χ�1×�2)(γ1)

and Theorem 4.1.11 applies. ��

It is obvious that the projection of an (H1 ×H2)-automatic subset of �1 × �2 on
the second component also yields an H2-automatic subset.

As an application of Theorem 3.2.6, we have the following result.
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Corollary 4.1.14. Let �2 = � × � and let H be an expanding endomorphism of �.
IfM ⊂ �2 is (H ×H)-automatic, then the set

MT = {(γ, ρ) | (ρ, γ ) ∈ M}
is (H ×H)-automatic.

Proof. The mapG : �2 → �2 defined byG(γ, ρ) = (ρ, γ ) is a group endomorphism
which commutes with H ×H . Therefore Theorem 3.2.6 applies. ��

Remark. An analogous result is true for (H1×H2)-automatic subsetsM ⊂ �1×�2.
IfM is (H1 ×H2)-automatic, then the set

MT = {(γ2, γ1) | (γ1, γ2) ∈ M} ⊂ �2 × �1

is (H2 ×H1)-automatic.

4.2 Automatic maps

In this section, we introduce the concept of automatic maps. The main purpose is,
besides the interest in its own right, to obtain a large class of maps which preserve the
automaticity of a sequence.

At the end of the section we shall show that the study of automatic mapsG : �1 →
�2 can be reduced to a study of automatic maps on N.

Definition 4.2.1. Let �1, �2 be groups, andH1 andH2 be expanding endomorphisms
of �1 and �2. A mapG : �1 → �2 is called (H1 ×H2)-automatic if the graph of the
map, i.e., set

Gr(G) = {(γ1,G(γ1)) | γ1 ∈ �1},
is an (H1 ×H2)-automatic subset of �1 × �2.

Remarks.
1. G : �1 → �2 is (H1 × H2)-automatic if and only if χGr(G) is (H1 × H2)-

automatic.

2. If G : � → � is (H × H)-automatic, we simply say that G is H -automatic
provided there is no risk of confusion.

3. Constant maps are (H1 ×H2)-automatic for all expanding maps H1, H2.

4. If M ⊂ �1 and G : M → �2 is a map, then G is (H1 × H2)-automatic if the
graph, i.e., the set

Gr(G : M → �2) = {(γ,G(γ )) | γ ∈ M},
is an (H1×H2)-automatic subset of �1×�2. By Lemma 4.1.13, the setM has
to be H1-automatic.
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The following lemma relates the maps discussed in Theorem 3.2.5 and Theo-
rem 3.2.6 with automatic maps.

Lemma 4.2.2.

1. The left translation Tτ : �→ � is a H -automatic map.

2. If G : �1 → �2 is a group endomorphism such that G 
 H1 = H2 
G, then G is
(H1 ×H2)-automatic.

Proof. Both proofs follow similar arguments already encountered in the proofs of
Theorems 3.2.5, 3.2.6.

1. We fix a residue set V for H . Set r = max{‖v‖ | v ∈ V } and denote by C the
expansion ratio of H .

The characteristic function of Gr(Tτ ) is given by

χGr(Tτ ) =
∨
γ∈�
(γ, τγ ).

This can be written as

χGr(Tτ ) =
∨
v∈V
γ∈�

(vH(γ ), τvH(γ ))

or as
χGr(Tτ ) =

∨
v∈V
γ∈�

(vH(γ ), ζ(τv)H(κ(τv)γ )),

where ζ = ζH,V and κ = κH,V are the remainder- and image-part-map, respectively.
The above formula gives

∂
(H×H)
(v,w) (χGr(Tτ )) =

∨
γ∈�
(γ, κ(τv)γ )

for w = ζ(τv) ∈ V and for w ∈ V such that w �= ζ(τv) we have

∂
(H×H)
(v,w) (χGr(Tτ )) = 0,

the characteristic sequence of the empty set.
The above reasoning leads us to consider the set

K = {∑
γ∈�(γ, ργ ) | ‖ρ‖ ≤ R

} ∪ {0},
where R = max

{ 2r
C−1 , ‖ρ‖

}
. K is a finite set and decimation invariant and contains

χGr(Tτ ). This shows that χGr has a finite (H ×H)-kernel.
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2. The characteristic sequence of the graph of G is given by

χGr(G) =
∨
γ∈�1

(γ,G(γ )).

LetV2 be a residue set forH2, let r = max{‖v‖2 | v ∈ V2} and r̃ = max{‖G(v)‖2 | v ∈
V1}, where V1 is a residue set for H1. If C denotes the expansion ration of H , then
for R = r+r̃

C−1 . The set

K = {∑∨∈�1
(γ, ρG(γ )) | ‖ρ‖ ≤ R} ∪ {0}

is finite, contains χGr(G), and is decimation invariant. Therefore G is (H1 × H2)-
automatic. ��

The situation is different for right translations, see the example on page 78.

Examples.
1. Let H : � → � be H -automatic. The (H ×H)-kernel of χGr(H) contains the

sequences χGr(Tv
H), where v ∈ V , and the sequence 0. To prove this assertion,
consider

χGr(H) =
∑
γ∈�
(γ,H(γ )) =

∑
v∈V
γ∈�

(vH(γ ),H(vH(γ )).

This gives ∂H×H(v,w) (χGr(H)) = 0 for all v ∈ V and w ∈ V \ {e}. For the (v, e)-
decimations with v ∈ V one obtains

∂H×H(v,e) (χGr(H)) =
∑
γ∈�
(γ, vH(γ )) = χGr(Tv).

Similar arguments show that the decimations of χGr(Tv) are either 0 or of the
form χGr(Tw) for a w ∈ W .

2. Let id� : �→ � be the identity. Then id� is (H ×H)-automatic, grace to 2. of
Lemma 4.2.2. But (!) id� is not (H ×H 
2)-automatic. This follows from(

∂H×H

2

(e,e)

)
N
(χid� ) =

∑
γ∈�
(H 
N(γ ), γ )

for N ∈ N.

3. Let � = Z and let G(xj ) = xkj+l where k, l ∈ Z, then G is H -automatic for
every H(xj ) = xpj and |p| ≥ 2.

4. Let � = N and letH(xj ) = x2j , thenG(xj ) = xj2
is notH -automatic. This is

a special case of a general theorem which we shall discuss later, see Example 1,
p. 111.
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5. Let � = N and H1(x
j ) = x2j , H2(x

j ) = x3j , furthermore let V1 = {x0, x1}
and V2 = {x0, x1, x2}. The map G : N → N is defined in the following
way: If n = a0 + a121 + . . . ak2k is the binary expansion of n, then G(n) =
a0 + a131 + · · · + ak3k is the value of G at n. The map G is an example of an
(H1 ×H2)-automatic map.

We continue our discussion of automatic maps by considering allowable operations
with automatic maps.

Lemma 4.2.3. If G : �1 → �2 is a bijective map which is (H1 × H2)-automatic,
then the inverse map G−1 : �2 → �1 is an (H2 ×H1)-automatic map.

Proof. The assertion follows immediately from Gr(G−1) = Gr(G)T and Corol-
lary 4.1.14. ��

The next important question is whether compositions of automatic maps are auto-
matic. The question is answered by the next theorem.

Theorem 4.2.4. Let �i ,Hi : �i → �i , i = 1, 2, 3, be groups and expanding maps as
always. If F : �1 → �2 is (H1 ×H2)-automatic and if G : �2 → �3 is (H2 ×H3)-
automatic, then the composition G 
 F : �1 → �3 is (H1 ×H3)-automatic.

Proof. We define the embeddings

ε1 : �(�1 × �2,B)→ �(�1 × �2 × �3,B), ε1(f )(γ1, γ2, γ3) = f (γ1, γ2),

ε2 : �(�2 × �3,B)→ �(�1 × �2 × �3,B), ε1(f )(γ1, γ2, γ3) = f (γ2, γ3).

Due to Corollary 4.1.10, both embeddings preserve automaticity, e.g., if f ∈ �(�2 ×
�3,B) is (H2 ×H3)-automatic, then ε2(f ) is (H1 ×H2 ×H3)-automatic. We define
the projection

p1,3 : �(�1 × �2 × �3,B)→ �(�1 × �3,B)

by setting
p1,3(f )(γ1, γ3) =

∨
γ2∈�2

f (γ1, γ2, γ3).

In terms of subsets, p1,3 is the usual projection of a subset M ∈ �1 × �2 × �3
on the first and third coordinate. By Lemma 4.1.13, p1,3 preserves automaticity.
If χGr(F ) ∈ �(�1 × �2,B) and χGr(G) ∈ �(�2 × �3,B) denote the characteristic
sequences of Gr(F ) and Gr(G), respectively, then the sequence

ε2(χGr(G))# ε1(χGr(F )) ∈ �(�1 × �2 × �3,B)

defined by

ε2(χGr(G))# ε1(χGr(F ))(γ1, γ2, γ3) = ε2(χGr(G))(γ2, γ3) ∧ ε1(χGr(F ))(γ1, γ2)
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is (H1 ×H2 ×H3)-automatic, see Lemma 4.1.9. Therefore the sequence

p1,3(ε2(χGr(G))# ε1(χGr(F ))) ∈ �(�1 × �3,B)

is (H1 ×H3)-automatic. It remains to show that

p1,3(ε2(χGr(G))# ε1(χGr(F ))) = χGr(G
F).

We have

p1,3(ε2(χGr(G))# ε1(χGr(G))(γ1, γ3)) =
∨
γ2∈�2

χGr(G)(γ2, γ3) · χGr(F )(γ1, γ2)

and the sum is equal to 1 if and only if there exists a γ1 ∈ �1 such that F(γ1) = γ2
and such thatG(γ2) = γ3. This shows that p1,3(ε2(χGr(G))#ε1(χGr(F ))) = χGr(G
F)
and it follows that G 
 F is (H1 ×H3)-automatic. ��

Remark. If F : M1 → M2 and G : M2 → �3 are automatic maps on M1 ⊂ �1
andM2 ⊂ �2, respectively, then their composition G 
 F : M1 → �3 is (H1 ×H3)-
automatic onM1.

If F , G : �1 → �2 are (H1 × H2)-automatic maps, then the group structure of
�2 also allows to consider the group product F G of these maps. It is defined by
(F G)(γ ) = F(γ )G(γ ). As for the product of two sets M , N ⊂ �, the question
whether the group product of two automatic maps is automatic is a very delicate one.
Again the discrete Heisenberg group shows that the group product of two automatic
maps need not be automatic. To this end we consider the identity id : LZ → LZ on the
Heisenberg group and the mapG(γ ) = a, where a is one of the generating elements of
the Heisenberg group (see Lemma 1.2.1). Both maps are H2,2-automatic. However,
the group product (id G) is the map (id G)(γ ) = γ a, i.e., a right translation which
is not H2,2-automatic.

We tackle the problem of the automaticity of the product of two automatic functions
in a more general setting.

Definition 4.2.5. Let μ : � × � → � be a map. If μ is ((H ×H)×H)-automatic,
then μ is called an H -automatic operation on �.

Automatic operations allow us to construct new automatic functions from two
automatic functions. If μ is an automatic operation on �2 and if G, F are maps from
�1 to �2, then μ(G,F) denotes a new map from �1 to �2. It is defined by

μ(G,F)(γ ) = μ(G(γ ), F (γ ))
and called the μ-product of G and F .
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Theorem 4.2.6. Letμ : �2×�2 → �2 be an ((H2×H2)×H2)-automatic operation
on �2 and let G : �1 → �2, F : �1 → �2 be (H1 ×H2)-automatic maps. Then the
μ-product, μ(G,F) : �1 → �2, of G and F is (H1 ×H2)-automatic.

Proof. From the automaticity of G and F it follows immediately that the map
ι : �1 → �2 × �2 defined by

ι(γ ) = (G(γ ), F (γ ))
is (H1 × (H2 ×H2))-automatic. Due to Theorem 4.2.4, the composition of μ with ι,
i.e., μ 
 ι(γ ) = μ(G(γ ), F (γ )), is (H1 ×H2)-automatic. ��

Remarks.
1. If μ1, μ2 : �2

2 → �2, are H2-automatic operations on �2, then

μ1(F1, μ2(F2, F3))

is (H1 × H2)-automatic for (H1 × H2)-automatic maps Fi : �1 → �2, i =
1, 2, 3.

2. It is straightforward to generalize the above result to operations with more than
two variables μ : �k → �.

The notion of automatic operations allows us to answer the question whether
products of automatic functions are again automatic.

Corollary 4.2.7. If the product μ(γ, ρ) = γρ is an H2-automatic operation on �2
and ifG, F are (H1 ×H2)-automatic maps from �1 to �2, then the productGF is an
(H1 ×H2)-automatic map.

Note that for the Heisenberg group the multiplication is not an H2×2-automatic
operation.

Lemma 4.2.8. If � is a commutative group, then the product μ(γ, ρ) = γρ is an
H -automatic operation on �.

Proof. We denote by χ ∈ �(� × � × �,B) the characteristic sequence of the set

{(γ, ρ, γρ) | γ, ρ ∈ �},
which is the graph of the multiplication. It remains to show that χ is (H ×H ×H)-
automatic. Let V be a residue set forH and let r = max{‖v‖ | v ∈ V }. LetR = 2r

C−1 ,
where C > 1 is the expansion ration of H . Then the set

K =
{
f
τ
=

∨
γ,ρ∈�

(γ, ρ, τγρ) | ‖τ‖ ≤ R
}
∪ {0}
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is a finite subset of�(�×�×�,B) and containsχ . As usual, to prove the automaticity
of χ it suffices to show thatK is invariant under decimations. To this end, we observe
that, due to the commutativity of �,

τvH(γ )wH(ρ) = τvwH(γρ) = ζ(τvw)H(κ(τvw)γρ),
where v, w ∈ V and ζ and κ are the remainder- and image-part-maps w.r.t.V and H .
If f

τ
is an element of K , then we have

∂
(H×H×H)
(v,w,ζ(τvw))(f τ

) =
∨
γ,ρ∈�

(γ, ρ, κ(τvw)γρ)

and for u �= ζ(τvw) we have

∂
(H×H×H)
(v,w,u) (f

τ
) = 0.

Due to the choice of τ one has ‖κ(τvw)‖ ≤ R. This proves the decimation
invariance of K . ��

So far we have discussed properties of (H1 × H2)-automatic maps with respect
to operations, i.e, composition, μ-product, on the set of (H1 × H2)-automatic maps.
The true relevance of H -automatic maps is revealed by the following results.

Theorem 4.2.9. Let G : �1 → �2 be (H1 × H2)-automatic. If f ∈ �(�2,B) is
H2-automatic, then G∗(f ) ∈ �(�1,B) is H1-automatic.

Proof. We consider the embedding, see Corollary 4.1.10, ε : �(�2,B) → �(�1 ×
�2,B) by setting

ε(f )(γ1, γ2) = f (γ2).

Note that ε(f ) = χ�1×supp f . This gives the following equation for all γ1 ∈ �1:

G∗(f )(γ1) =
∨
γ2∈�2

χGr(G)(γ1, γ2) · ε(f )(γ1, γ2).

Therefore G∗(f ) is H1-automatic, due to Corollary 4.1.10 and Theorem 4.1.11. ��

Remark. If G : �→ � is bijective and H -automatic, then G∗(f ) is H -automatic if
f is an H -automatic sequence. Thus, loosely speaking, an automatic rearrangement
of an automatic sequence preserves the automaticity.

Theorem 4.2.10. Let G : �1 → �2 be an (H1 × H2)-automatic map. If M ⊂ �1 is
H1-automatic, then G(M) is H2-automatic.
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Proof. The assertion follows from the identity

χG(M) = χGr(G) ⊗ χM×�2

and the automaticity of both χGr(G) and χM×�2 (see Lemma 4.1.9) in combination
with Theorem 4.1.11. ��

Finally, we state a result for preimages.

Theorem 4.2.11. Let G : �1 → �2 be an (H1 × H2)-automatic map. If M ⊂ �2 is
H2-automatic, then the preimage

G−1(M) = {γ1 | γ1 ∈ �1, G(γ1) ∈ M}
ofM is H1-automatic.

Proof. The proof is a consequence of

G−1(M) = p1 ((�1 ×M) ∩ Gr(G)) ,

where p1 : �1 × �2 → �1 is the projection on the first component. ��

4.3 Automata and automatic maps

This section is devoted to the study of the properties of finite (H1×H2)-automata that
generate an automatic map. We begin with a modified kernel graph of an automatic
sequence.

Definition 4.3.1. Let f ∈ �(�,A) be an H -automatic sequence such that the cardi-
nality of the range of f satisfies

∣∣R(f )∣∣ ≥ 2 and let a ∈ R(f ). Let V be a residue
set of H . The labeled, directed graph GaV,H (f ) = (keraV,H , f , V,K), where

• the set of vertices is given by

keraV,H (f ) = {h ∈ kerV,H (f ) | h �= a},
where a denotes the constant sequence with value a,

• the set of edges is given by

K = {g v→ h | g, h ∈ keraV,H (f ) and ∂Hv (g) = h},

is called the reduced kernel graph (w.r.t. a).
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Remarks.
1. The condition

∣∣R(f )∣∣ ≥ 2 is introduced to avoid an empty reduced kernel
graph.

2. The reduced kernel graph is obtained from the kernel graph by removing the
constant sequence a from the vertices of the kernel graph and by deleting all
arrows leading to or leaving from the constant sequence a. If the sequence a is
not an element of the kernel, then the reduced kernel graph and the kernel graph
are the same.

3. If f ∈ �(�,B) is an H -automatic sequence, then we agree that the reduced
kernel graph of f , denoted by G∗V,H , always means the reduced kernel graph
w.r.t. 0. The set kerV,H (f ) \ {0} is denoted by ker∗V,H (f ) and is called the
reduced kernel.

Let (B,∅,B, ω, {α(v,w) | (v,w) ∈ V1 × V2}), where V1, V2 are complete digit
sets for H1, H2, respectively, be an (H1 ×H2)-automaton. This automaton generates
a subset of �1 × �2. The question is, when is this generated subset a graph of a map
F : �1 → �2. In order to answer this question we have to consider the transition
graph of the given automaton. We begin by introducing the notion of a path in the
transition graph of an automaton.

To (vi, wi)
k−1
i=0 ∈ (V1 × V2)

k , where k ∈ N, k �= 0, we associate a path of length
k in the transition graph of the automaton. The path starts at the vertex ∅ and moves
along the edges labeled (vi, wi), i = 0, . . . , k − 1. A path in the transition graph is
denoted by w = (∅; (vi, wi)i=0,...,k−1). We agree to consider the vertex ∅ as a path
of length 0 in the transition graph and denote it by w∅ = (∅; ). The set of paths
in the transition graph is denoted by W(V1 × V2). We define two evaluation maps
ei : W(V1, V2) → �i , i = 1, 2. The first evaluation map e1 : W(V1, V2) → �1 is
defined by

e1(w) =
{
e1 if w = (∅; )
v0H(v1) . . . H


k if w = (∅; (vi, wi)ki=0).

The second evaluation map is defined in a similar way for the second components.
For a path w �= w∅ in the transition graph of an automaton the terminal vertex of

the path is denoted by t(w) ∈ B. The terminal vertex of w∅ is equal to ∅. Note that

t(w) = α(vk−1,wk−1) 
 · · · 
 α(v0,w0)(∅).

The next lemma states a necessary criterion for an automaton to generate an automatic
map.

Lemma 4.3.2. Let F : �1 → �2 be (H1 ×H2)-automatic. If (B,∅,B, ω, {α(v,w) |
(v,w) ∈ V1 × V2}) is an (H1 ×H2)-automaton that generates Gr(F ), then for every
γ1 ∈ �1 \ {e1} there exists a path w ∈ W(V1 × V2) such that

γ1 = e1(w) and ω(t(w)) = 1.
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The proof is clear. The following definition characterizes automata that generate
automatic maps.

Definition 4.3.3. Let (B,∅,B, ω, {α(v,w) | (v,w) ∈ V1 × V2}) be an (H1 × H2)-
automaton, where V1, V2 are complete digit sets forH1 andH2, respectively. Further-
more, for γ1 ∈ �1 let

Wγ1(V1 × V2) = {w | γ1 = e1(w), w ∈ W(V1, V2)}.
The automaton has the unique first component property if the following holds: If w1,
w2 ∈ Wγ1(V1 × V2) such that ω(t(w1)) = ω(t(w2)) = 1, then e2(w1) = e2(w2).

Remarks.
1. Let (B,∅,B, ω, {α(v,w) | (v,w) ∈ V1 ×V2}) be an automaton with the unique

first component property. If the set

W∗
γ1
= {w | w ∈ Wγ1(V1 × V2) and ω(t(w)) = 1}

is not empty, then it contains a unique shortest path wγ1 ∈ Wγ1(V1 × V2) such
that ω(t(wγ1)) = 1. In case γ1 = e1 this shortest path maybe the empty path.
This shortest path is denoted by wγ1 .

If wγ1 = (∅, (vi, wi)ki=0) denotes the shortest path, then all other possible paths
in W∗

γ1
(V1×V2) are of the form (∅, (v0, w0) . . . (vk, wk), (e1, e2), . . . (e1, e2)).

2. It is essential for the definition that both V1 and V2 are complete digit sets.
One can extend the above definition to arbitrary residue sets taking the periodic
points of the image-part-maps into account. The extended definition would
involve several awkward technical details which, as it seems, do not create any
deeper insight into the realm of automatic maps.

3. IfM ⊂ �1×�2 is the graph of an automatic mapG : �1 → �2, then the kernel
graph (w.r.t. complete digit sets) provides an example of a finite automaton with
the unique first component property. Moreover, the reduced kernel graph has
also the unique first component property.

4. It is straightforward to generalize the unique first component to H1-automatic
subsets ofM ⊂ �1. We say that the automaton (B,∅,B, ω, {α(v,w) | (v,w) ∈
V1 × V2}) has the unique first component w.r.t.M if for every γ ∈ M there
exists a unique path in the transition graph of the automaton.

The relevance of the above definition is justified by the following lemma.

Lemma 4.3.4. Let (B,∅,B, ω, {α(v,w) | (v,w) ∈ V1 × V2}) be an (H1 × H2)-
automaton with the unique first component property. If the set W∗

γ1
�= ∅ for all

γ1 ∈ �1, then the set M generated by the automaton is the graph of an (H1 × H2)-
automatic map F : �1 → �2.
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Proof. By the definition of an automaton with the unique first component property,
the sets V1 and V2 are complete digit sets for H1 and H2, respectively. We define a
map F : �1 → �2 in the following way. Since W∗

γ1
�= ∅ for all γ1 ∈ �1 there exists

a unique shortest path wγ1 in W∗
γ1

. Define F as

F(γ1) = e2(wγ1).

This defines a map F from �1 to �2 such that Gr(F ) ⊂ M .
It remains to show that the graph Gr(F ) ofF is equal toM . Therefore let us assume

that there exists a pair (γ1, γ2) ∈ M such that F(γ1) �= γ2. Suppose that (e1, e2) ∈ M
and (e1, e2) �∈ Gr(F ), then the shortest path we1 in W∗

e1
satisfies e1(we1) = e1 and

e2(we1) = e2. This shows that F(e1) = e2, a contradiction.
Now assume that (γ1, γ2) ∈ M , (γ1, γ2) �∈ Gr(F ) and (γ1, γ2) �= (e1, e2). If

(v0, w0)(H1×H2)(v1, w1) . . . (H1×H2)

k(vk, wk) denotes the unique representation

of the pair (γ1, γ2) w.r.t. the complete digit set V1 × V2, then it follows that

ω(α(vk,wk) 
 · · · 
 α(v0,w0)(∅)) = 1.

If vk �= e1, then the path (∅, (v0, w0), . . . , (vk, wk)) is the shortest path in W∗
γ1

, there-
fore F(γ1) = γ2. If vk = e1, then wk �= e2 and therefore (∅, (v0, w0), . . . , (vk, wk))

is the shortest path in W∗
γ1

, i.e., F(γ1) = γ2. ThereforeM is the graph of an automatic
function. ��

Remark. If the automaton in Lemma 4.3.4 has the unique first component property
w.r.t. an H1-automatic subset M ⊂ �1 and if W∗

γ �= ∅ for all γ ∈ M , then the above
arguments show that the automaton defines a function G : M → �2.

Examples.

1. Let � = 〈x〉 and H(xj ) = x2j and V = {x0, x1}. In Figure 4.1 the kernel
graph of an automatic subset of N

2 is shown. We have omitted all directed
edges emanating from the vertex 0, the zero sequence. The automaton has the
unique first component property and W∗

γ1
�= ∅ for all γ1 ∈ N. Therefore the

automaton represents an automatic function.

∅ B

0

(0, 0) (1, 0)
(1, 1)

(1,0)
(0,1)

(0, 1)
(0,0)
(1,1)

Figure 4.1. Transition graph with the unique first component property. Note thatω(∅) =
1, ω(B) = ω(0) = 0.
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2. Let � = 〈x〉 and H(xj ) = x2j and V = {x0, x1}. In Figure 4.2 a kernel
graph without the unique first component property is depicted. The setM ⊂ N

2

generated by this automaton is characterized byM = {(n, k) | (k
n

)
is odd , n, k ∈

N}. Again we have omitted the edges leaving from the zero sequence 0.

∅ 0
(0,0)
(0,1)
(1,1)

(1, 0)

Figure 4.2. Transition graph without the unique first component property. Note that
ω(∅) = 1, ω(0) = 0.

3. Let � = 〈x〉 andH(xj ) = x2j and V = {x0, x1}. Figure 4.3 shows the reduced
kernel graph of an automatic subset M ⊂ N

2. The output function is defined
by ω(∅) = ω(C) = ω(D) = 1 and ω(B) = 0. Note that all missing edges
lead to the constant sequence 0. The automaton satisfies the requirements of
Lemma 4.3.4 and therefore defines an automatic function G : N → N. This
function is in fact given by

G(n) =
{

0 if n = 0 or n = 2k for an k ∈ N

n otherwise.

∅ B C

D

(0, 0)
(1, 1)

(1, 0)

(0, 0)

(1, 1) (0,0)
(1,1)

(0, 0)

Figure 4.3. Reduced kernel graph of a subset M ⊂ N
2 with unique first component

property.

Although Examples 1 and 3 are examples for reduced kernel graphs with the unique
first component property there exists a difference. The first example has exactly two
edges emanating from each vertex. Moreover for each vertex g in the reduced kernel
there exists a bijective map νg : {0, 1} → {0, 1} such that the arrow (v, νg(v)) ends
in a vertex of the reduced kernel graph. This is not true for the third example.

Automata with this property will be studied next.

Definition 4.3.5. Let M ⊂ �1 × �2 be an (H1 × H2)-automatic set. The set M has
the transducer property if there exist complete digit sets V1 forH1 and V2 forH2 such
that for all g ∈ ker∗(V1×V2),(H1×H1)

(χM) there exists a map

νg : V1 → V2



106 4 Automaticity II

such that
∂
(H1×H2)
(v,w) (g) ∈ ker∗(V1×V2),(H×H2)

(χGr(G))

if and only if w = νg(v).
Remarks.

1. If G : �1 → �2 is an (H1 × H2)-automatic map, then we say that G has the
transducer property if the set Gr(G) has the transducer property.

2. IfM ⊂ �1 × �2 is (H1 ×H2)-automatic and has the transducer property, then
there exists a map G : p1(M) → M , where p1(M) = {m1 | (m1,m2) ∈ M},
such thatM = {(γ,G(γ )) | γ ∈ p1(M)}.

Note that we do not require that the maps νg are bijective. At a first glance one
would expect that the transducer property of a automatic function depends on the
choice of the residue set. As a consequence of the following lemma we shall see that
the transducer property is a property of the automatic function G.

Lemma 4.3.6. LetG : �1 → �2 be (H1×H2)-automatic. LetV1 andV2 be complete
digit sets forH1 andH2, respectively. ThenG has the transducer property w.r.t.V1×V2
if and only if every g ∈ ker∗(V1×V2),(H1×H2)

(χGr(G)) is the graph of a function Gg :
�1 → �2.

Proof. LetG have the transducer property. Let ker∗V1×V2,H1×H2
(χGr(G)) be the reduced

kernel of Gr(G). Then every kernel element h defines a subset Mh = supp(h) ⊂
�1×�2. SinceG has the transducer property, every subsetMh also has the transducer

property. It is therefore sufficient to prove that the decimations ∂(H1×H2)
(v,w) (χGr(G)),

w = νχGr(G) (v), represent a map defined on �1. We have

χGr(G) = ∨
γ∈�1

(γ,G(γ ))

= ∨
v∈V
γ∈�
(vH1(γ ),G(vH1(γ )))

= ∨
v∈V
γ∈�
(vH1(γ ), ζ(G(vH1(γ )))H2(κ(G(vH1(γ ))))),

where ζ andκ are the remainder- and image-part-maps w.r.t.V2 andH2. The transducer
property now implies that

ζ(G(vH1(γ )))H2(κ(G(vH1(γ )))) = νχGr(G) (v) = w
holds for all γ ∈ �1. Therefore we see that

∂
(H1×H2)
(v,w) (χGr(G)) =

∨
γ∈�1

(γ, κ(G(vH1(γ ))))
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represents a function from �1 to �2. This shows that every setMh is a graph of a map
from �1 to �2.

Let us now assume that for every kernel element g the set Mg is a graph of a
function from �1 to �2. To prove that G has the transducer property it suffices to
show that there exists a map νg : V1 → V2 such that ∂H1×H2

(v,ν(g)(v)
(g) is an element of the

reduced kernel of χGr(G) and ∂(H1×H2)
(v,w) (g) = 0 for w �= νg(v). Let v ∈ V1, then there

exists a w ∈ V2 such that ∂(H1×H2)
(v,w) (g) �= χ∅, otherwise Mg would not be a graph of

a function. Then we have

∂
(H1×H2)
(v,w) (g)(γ, ρ) = g(vH1(γ ), wH2(ρ)),

and for any γ there exists a unique ρ such that

g(vH1(γ ), wH2(ρ)) �= 0,

since ∂(H1×H2)
(v,w) (g) represents a graph of a function. If there exists a w′ �= w such that

∂
(H1×H2)

(v,w′) (g) �= χ∅, then there exists for any γ ∈ �1 a unique ρ′ such that

∂
(H1×H2)

v,w′ (g)(γ, ρ′) = g(vH(γ ),w′H(ρ′)) �= 0.

Since Mg is a graph of function this is impossible unless w′ = w and ρ′ = ρ. Thus

for any v ∈ V there exists a unique w ∈ V such that ∂(H1×H2)
(v,w) (g) is an element of the

reduced kernel of χGr(G). In other words, G has the transducer property. ��

As a corollary to the above lemma we obtain that the transducer property of an
automatic function is a genuine property of G.

Corollary 4.3.7. Let G : �1 → �2 be an (H1 × H2)-automatic map such G has
the transducer property w.r.t.V1 × V2. Then G has the transducer property w.r.t. any
residue set for (H1 ×H2).

Proof. If G has the transducer property w.r.t.V1 × V2, then any kernel element rep-
resents a function. If V ′1 × V ′2 is another residue set for (H1 ×H2), then, by Lemma
3.2.3, for every g ∈ kerV ′1×V ′2(χGr(G)) there exists a (γ1, γ2) such that

(T(γ1,γ2))
∗(g) ∈ kerV1×V2(χGr(G)).

Therefore g represents a function defined on �1. By the above lemma, the assertion
follows. ��

Examples.
1. Let � = N and H(xj ) = xjp and let k ∈ N. Then the function F(xj ) = xkj is
H -automatic and has the transducer property. The function Fm(xj ) = xkj+m
withm ∈ N,m ≥ 1, provides another class ofH -automatic functions on N with
the transducer property.
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2. IfG : �→ � is a group endomorphism that commutes withH , thenG has the
transducer property.

3. Example 1, p. 104, shows an automatic function G : N → N that has the
transducer property. It is not a function as simple as the examples given above.
In fact, G is fairly complicated. Using the reduced kernel graph one can show
that G satisfies the following inequalities:

n ≤ G(n) ≤ 3n.

These inequalities are best possible, sinceG(2n−1) = 2n+1 andG(2n) = 3·2n
for all n ≥ 1.

The last example shows that automatic functions may have a strange behaviour
as far as their growth is concerned. We shall investigate this phenomenon in the next
section.

By Theorem 4.2.10 we already know that G(�1) is H2-automatic if the map G :
�1 → �2 is (H1 × H2)-automatic. The image of �1 under G is described by the
sequence χG(�1) ∈ �(�2,B) which is also given by

χG(�1)(γ2) =
∨
γ1∈�1

χGr(F )(γ1, γ2).

The above formula allows us to compute the kernel graph of χG(�1) using Corol-
lary 4.1.12. An application of the above formula is particularly easy if the automatic
map has the transducer property and the maps νg are injective. Then the kernel graph
of the image G(�1) is obtained by removing all first coordinates from the labels of
the edges. The graph obtained in this way is the kernel graph of the characteristic
sequence of the set G(�1).

Examples.

1. The automatic function defined in Figure 4.1 has the transducer property. More-
over, each map νg is injective. Thus the automaton for the imageG(N) is given
by removing the first coordinates from the labels. This shows that G(N) is the
support of the Thue–Morse sequence.

2. Figure 4.4 shows the reduced kernel graph of the graph of the functionG0(n) =
3n, n ∈ N, w.r.t.H1(x

j ) = H2(x
j ) = x2j and V1 = V2 = {x0, x1}. The re-

G0 G1 G2(0, 0)
(1, 1)

(0, 1)

(1, 0)

(0, 0)
(1, 1)

Figure 4.4. Reduced kernel graph of the graph of the function G0(n) = 3n.
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duced kernel graph has the transducer property. Removing the first components
of the labels gives the kernel graph of G0(N) = 3N. Moreover, the vertices
G1,2 represent the functions Gi(n) = 3n+ i, i = 1, 2.

The above example raises the question: If M ⊂ �2 is an H2-automatic subset,
does there exist an (H1 × H2)-automatic map G : �1 → �2 such that G(�1) = M?
In its simplest form this question is related to the existence of an (H1×H2)-automatic
map G such that G(�1) = �2.

In order to answer these questions we introduce a kind of normalization. We shall
show that every (H1 × H2)-automatic map can be realized in a precise sense by an
(xp, xq)-automatic map from N to N. To this end we define the p-valuation map.

Definition 4.3.8. LetH : �→ � be an expanding group endomorphism such that the
index of H(�) is equal to p ≥ 2 and let Vc = {e = v0, v1, . . . , vp−1} be a complete
digit set for H . The map Vp : �→ N defined by

Vp(γ ) = Vp(vi0H(vi1) . . . H

k(vik )) =

k∑
j=0

ijp
j ,

where vi0H(vi1) . . . H

k(vik ) denotes the unique representation of γ , is called a

p-valuation map (w.r.t. (H, Vc)).

Remarks.

1. A p-valuation map transforms the unique representation of γ ∈ � w.r.t. the
complete digit set Vc of H into the unique representation of a natural number
n ∈ N w.r.t. the complete digit set {0, 1, . . . , p − 1} for the expanding map
n �→ pn.

2. There exist several p-valuation maps depending on the numbering of the com-
plete digit set Vc. In fact, every bijective map ν : Vc \ {e} → {1, . . . , p − 1}
defines a p-valuation map. However, from the point of view of automaticity all
these p-valuations are equivalent.

3. A p-valuation map is completely determined by its values on Vc.

Lemma 4.3.9. Let Vp : �→ N be a p-valuation map.

1. The map Vp is bijective.

2. For all γ ∈ � and all v ∈ Vc the following holds:

Vp(vH(γ )) = Vp(v)+ pVp(γ ).
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3. If κ and ζ denote the remainder- and image-part-map w.r.t.Vc and H , respec-
tively, then

Vp(κ(γ )) = 1

p

(
Vp(γ )−Vp(ζ(γ ))

)
holds for all γ ∈ �.

The proof is an obvious consequence of the fact that Vc and {0, 1, . . . , p − 1} are
complete digit sets for H and Hp(xn) = xpn, respectively. The next lemma gives a
first hint to the importance of the p-valuation map.

Lemma 4.3.10. Let H : � → � such that the index of H(�) is equal to p and
let Vc = {v0 = e, v1, . . . , vp−1} be a complete digit set for H . Let �2 = N, let
Hp : N → N be defined by Hp(n) = np and let Vp = {0, 1, . . . , p − 1}. Then a
p-valuation map is (H ×Hp)-automatic.

Proof. Figure 4.5 defines an automaton that generates the graph of Vp : �→ N, see
also Lemma 4.3.9. ��

∅

(e,0)
...

(vp−1,p−1)

Figure 4.5. Reduced kernel graph of the graph of a p-valuation map, ω(∅) = 1.

As a corollary we note that as far as theH -automaticity of a setM ⊂ � is concerned
the actual choice of the p-valuation map is not important.

Corollary 4.3.11. Let Vp and V′
p be p-valuation maps. The map V−1

p 
V′
p : �→ �

is bijective and (H ×H)-automatic.

As a consequence of the above results we note

Theorem 4.3.12. Let H : �→ � be expanding such that the index of H(�) is equal
to p and let Vc be a complete digit set for H . A subsetM ⊂ � is H -automatic if and
only if Vp(M) ⊂ N is Hp-automatic, where Hp(xj ) = xpj .

The notion of (H1 ×H2)-automatic maps G : �1 → �2 can be transported to N.

Lemma 4.3.13. Let G : �1 → �2 a map and let Vp : �1 → N and Vq : �2 → N

be valuations (w.r.t. (H1, V1) and (H2, V2)). The map G is (H1 × H2)-automatic if
and only if

Vq 
G 
V−1
p : N → N

is (Hp ×Hq)-automatic.
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Let Mi ⊂ �i be (Hi, Vi)-automatic sets for i = 1, 2 and let |V1| = p, |V2| = q.
Then Vp(M1) and Vq(M2) are both subsets of N. It is therefore natural to ask under
which conditions these sets are equal. This question can be rephrased as follows:
Under which conditions is a set M ⊂ N both Hp-automatic and Hq -automatic? By
Theorem 3.2.1 and Lemma 3.2.4, it follows that the Hp-automaticity of M ⊂ N

implies the Hq -automaticity ofM if there exist α, β ∈ N, α + β �= 0, such that

pα = qβ
holds. One calls p and q multiplicatively independent if the above equation has only
the trivial solution α = β = 0. In [56] a characterization of Hp- and Hq -automatic
sets is given for multiplicatively independent p and q.

Theorem 4.3.14 (Cobham). Let p, q ∈ N, p, q ≥ 2 be multiplicatively independent.
A subsetM of N is p-automatic and q-automatic if and only if there exist n0 ∈ N and
d ∈ N \ {0} such that

χM(n+ d) = χM(n)
holds for all n ≥ n0.

In other words,M isHp- andHq -automatic if and only ifχM is ultimately periodic.
Note that in this caseM is automatic for all p ≥ 2.

Examples.
1. The setsMp = {pn | n ∈ N},p ≥ 2, areHp-automatic and notHq -automatic for

multiplicatively independentp and q. Obviously, χMp is not ultimately periodic
andMp is Hp-automatic. By Cobham’s theoremMp is not Hq -automatic.

2. The set M = {(n, n) | n ∈ N} ⊂ N
2 is (p, p)-automatic for all p ≥ 2, p ∈ N.

For p = 2 and the complete digit set V1 = {(0, 0), (1, 0), (0, 1), (1, 1)} of
H(l,m) = 2(l, m) we define a 4-valuation map V4 as the continuation of

V4(0, 0) = 0, V4(0, 1) = 1,

V4(1, 0) = 2, V4(1, 1) = 3.

The set V4(M) is H4-automatic. Figure 4.6 shows the reduced kernel graph of
the characteristic sequence χ of V4(M).

∅0, 3

Figure 4.6. Reduced kernel graph of the characteristic sequence of V4(M).

From the reduced kernel graph one immediately sees that χ is not ultimately
periodic. Therefore V4(M) is notHq -automatic for all q multiplicatively inde-
pendent from 4.
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4.4 Automatic functions on N

In this section we investigate properties of automatic maps defined on N. We consider
(N,+) as a semigroup. Then any expanding (w.r.t. the absolute value) endomorphism
is given by Hp : N → N, n �→ pn, where p ≥ 2, p ∈ N. Moreover, there exists only
one complete digit set Vp = {0, 1, . . . , p − 1}. However, all of our above results on
automaticity properties of sequences apply to the case (N,+).

To simplify our language we say thatM ⊂ N is p-automatic if it isHp automatic,
where Hp(n) = pn. A setM ⊂ N× N is called (p, q)-automatic if it is (Hp ×Hq)-
automatic, the same applies for functions F : N → N. We also simplify the notion of

the decimations. Instead of ∂
Hp
v , we write ∂v whenever there is no risk of confusion.

We begin with a fundamental estimate on the growth of automatic functions.

Theorem 4.4.1. Let G : N → N be a (p, q)-automatic function. Then there exists a
constant K1 > 0 such that

G(n) ≤ K1n
log q
logp

holds for all n ∈ N, n �= 0.

Proof. Let n = v0+pv1+· · ·+pkvk , vj ∈ {0, . . . , p−1} be the unique representation
of n, n �= 0. Then the reduced kernel graph of χGr(G) has the unique first component
property, see Remark 3, p. 103. Thus there exists a unique shortest path wn =
(∅; (v0, w0), . . . , (vk, wk), (0, wk+1), . . . (0, wk+l )) ∈ W∗

n, see Remark 1, p. 103,
where l = l(n) such that wk+l �= 0. Since the reduced kernel graph is finite and the
path is shortest there exists an upper bound L for all l(n), n ∈ N. Thus we conclude
that

G(n) ≤ qk+L+1,

where k depends on n. Since wk �= 0, we have the important relation

k ≤ log n

logp

and we obtain
G(n) ≤ qL+1 n

log q
logp ,

the desired result. ��

Remarks.
1. In terms of groups,p- and q-valuation maps, the above theorem reads as follows.

LetG : �1 → �2 be (H1 ×H2)-automatic and let V1 and V2 be complete digit
sets for H1 and H2, respectively. If the cardinality of V1 is equal to p and the
cardinality of V2 is equal to q, then there exists a constant K such that

Vq(G(γ )) ≤ KVp(γ )
log q
logp

holds for all γ �= e1.
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2. If one wants to take also the zero into account, the estimate becomes

G(n) ≤ K(n+ 1)
log q
logp ,

where K is a properly chosen positive number.

3. The above estimate on the growth readily generalizes to the case whereM ⊂ N

and G : M → N is a (p, q)-automatic map. We then have

G(m) ≤ K1m
log q
logp

for all m ∈ M .

As a simple consequence we note

Corollary 4.4.2. Let G : N → N be (p, q)-automatic. If p > q, then G is not
injective.

Proof. By our basic inequality we have that

G(n) ≤ K(n+ 1)
log q
logp < n

for all n ≥ n0. Since G is a function from N to N, it cannot be injective. ��

Corollary 4.4.3. Let G : N → N be (p, q)-automatic. If p < q and G is injective,
then G is not surjective.

Proof. Suppose that there exist an automatic function G : N → N which is bijective.
Then by Lemma 4.2.3,G−1 would be (q, p)-automatic and bijective which contradicts
Corollary 4.4.2. ��

Examples.

1. The identity on N is a (p, p)-automatic map for all p ≥ 2.

2. If p and q are different, then the identity on N is not (p, q)-automatic.

3. If α, β ∈ N, then the function n �→ α n+ β is (p, p)-automatic for all p ≥ 2.
See Lemma 4.2.2.

4. If p > q, then there exists a surjective automatic map G : N → N. Fig-
ure 4.7 shows the reduced kernel graph of G, where the residue sets are Vp =
{0, 1, . . . , p−1} and Vq = {0, 1, . . . , q−1} and ν : Vp → Vq is any surjective
map with ν(0) = 0. Note that G even has the transducer property and G is not
injective.
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∅
(0,0)

(i,ν(i))
p−1
i=1

Figure 4.7. Reduced kernel graph of a surjective (p, q)-automatic function.

5. Let M = {3n | n ∈ N} then M ⊂ N is 3-automatic. There exists no (2, 3)-
automatic function G : N → N such that G(N) = M and G is injective.

Let us assume that G is an injective function such that G(N) = M . By Theo-

rem 4.4.1, we have G(n) ≤ Kn log 3
log 2 . For every n ∈ N there exists n0(n) ∈ N

such that

n0(n) ≤ 2n

K
log 2
log 3

< n0 + 1.

Then G(n0(n)) ≤ 3n. Since G is injective, G([0, n0(0)]) ⊂ (M ∩ [0, 3n])
contains n0(n)+ 1 elements. If n is sufficiently large, then n0(n) > n which is
a contradiction.

On the other hand, if we drop the requirement of injectivity, then it is possible to
construct a (2, 3)-automatic map withG(N) = N. The reduced kernel graph of
the graph of such a function is shown in Figure 4.8. Note that the kernel graph
also has the transducer property.

∅ A(0, 0)
(1, 1) (0,0)

(1,0)

Figure 4.8. Reduced kernel graph for the (2, 3)-automatic set N× {3n|n ∈ N}.

The next theorem is concerned with a lower bound for (p, q)-automatic functions.
Since any constant function is automatic, no useful lower bound can be achieved
without certain restrictions on the automatic function.

Definition 4.4.4. A function F : N → N has the finite preimage property if the set
F−1(m) = {n | F(n) = m} is finite for all m ∈ N.

Examples 3 and 4 from above both provide examples for automatic functions with
the finite preimage property.

Theorem 4.4.5. Let G : N → N be a (p, q)-automatic function such that G has the
finite preimage property. Then there exists an n0 ∈ N and a constant K2 > 0 such
that

K2 n
log q
logp ≤ G(n)

holds for all n ≥ n0.
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Proof. For the proof we construct the (∗, 0)-skeleton of the (p, q)-kernel graph of

χGr(G) by removing all edges of the form h
(v,w)−→ g with w �= 0.

Now let h ∈ ker(χGr(G)) such that h(0, 0) = 1 and such that there exists a
g ∈ ker(χGr(G)) with ∂(v,0)(g) = h and v �= 0.

Then the number of paths in the (∗, 0)-skeleton leading to g is finite. Indeed, if
we suppose that the number of paths leading to g is infinite, then there exists a cycle
in the (∗, 0)-skeleton, see Figure 4.9.

g h
(∗, 0) (∗, 0)

(∗, 0)

(v, 0)

(∗, 0)

Figure 4.9. A cycle in the (∗, 0)-skeleton.

This shows that there are infinitely many paths in the kernel graph which start at
χGr(G) and terminate at h. The first component of each of these paths corresponds to
different values of n while the second component remains constant. Therefore there
exists an n ∈ N such that G−1(n) is an infinite set. This is a contradiction.

It follows that there exists an L ∈ N such that for all h ∈ ker(χGr(G)), where
h(0, 0) = 1 and g with ∂(v,0)(g) = h, v �= 0, the length of the longest path leading to
g in the (∗, 0)-skeleton has length at most L.

Now let (n,G(n)), n �= 0, be given and let (v0, w0), . . . , (vk, wk) be the unique
representation of (n,G(n)). We distinguish two cases.

• If wk �= 0, then it follows that G(n) ≥ qk , and using the fact that

k ≥ log n

logp
− 1

one obtains

G(n) ≥ 1

q
n

log q
logp .

• If wk = 0, then vk �= 0. If k ≥ L, then, by our above considerations, at least
one of the wk−L,wk−L+1, . . . , wk is different from 0. This gives

G(n)q ≥ qk−L ≥ 1

qL+1 n
log q
logp ,

where we also used the inequality k ≥ log n
logp − 1.
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• The finitely many cases left, namely wk = 0 and k < L for the representation
of (n,G(n)) and (0,G(0)) are incorporated in the constant n0.

These three cases complete the proof. ��

Remarks.
1. If we assume thatG satisfies the assumptions of Theorem 4.4.5 andG−1(0) = 0,

then there exists a K > 0 such that

G(n) ≥ K n log q
logp

holds for all n ∈ N.

2. As for Theorem 4.4.1, the above theorem also applies for (p, q)-automatic maps
G : M → N provided G has the finite preimage property and M ⊂ N is a p-
automatic subset.

As a first application of Theorem 4.4.5 we can generalize Corollary 4.4.3.

Corollary 4.4.6. Let G : N → N be a (p, q)-automatic map. If p < q and G has
the finite preimage property, then G is not surjective.

Proof. By Theorem 4.4.5, there exists a constant such that

G(n) ≥ K2n
log q
logp

holds for all n ≥ n0. Thus we see that∣∣G({0, . . . , n}) ∩ {0, . . . , [K2n
log q
logp

]}∣∣ ≤ n
for all n ≥ n0. Since p < q, it follows that n < Kn

log q
logp for n sufficiently large. This

shows that G is not injective. ��

Remark. The assertion of the above corollary remains true if we consider (p, q)-
automatic maps G : M → N.

As a further application of Theorems 4.4.1, 4.4.5 we consider the usual addition and
multiplication on the natural numbers. In view of Theorem 4.2.6 and of Lemma 4.2.8
it is natural to ask whether the addition or multiplication are (p, q, r)-automatic. We
begin with the addition.

Theorem 4.4.7. The set Gr(Add) = {(m, n,Add(m, n)) | m, n ∈ N} ⊂ N
3, i.e. the

graph of the map Add(n,m) = n + m ∈ N, is (p, q, r)-automatic if and only if
p = q = r ≥ 2.



4.4 Automatic functions on N 117

Proof. Suppose that Gr(Add) is (p, q, r)-automatic. Since the set Vp × Vq is a
complete digit set for N

2 w.r.t.Hq ×Hp, we define a pq-valuation Vpq : N
2 → N as

the unique continuation of
Vpq((i, j)) = i + pj

for (i, j) ∈ Vp × Vq . The function G = Add 
 V−1
pq : N → N is well defined and

(pq, r)-automatic. Furthermore,G has the finite preimage property andG−1(0) = 0.
By Theorems 4.4.1, 4.4.5 there exist constants K1 and K2 such that

K1n
log r

logpq ≤ G(n) ≤ K2n
log r

logpq

holds for all n ∈ N.
Since Vpq is a pq-valuation one computes that

Vpq(p
n, 0) = (pq)n and Vpq(0, q

n) = p(pq)n.
This gives the following values for G = Add 
V−1

pq :

G((pq)n) = pn and G(p(pq)n) = qn.
In view of the inequalities satisfied by G, we therefore get the two inequalities

K1r
n ≤ pn ≤ K2r

n

K1p
log r

logpq rn ≤ qn ≤ K2p
log r

logpq rn

for all n ∈ N. This is only possible if p = q = r . It remains to prove that χGr(Add) is
(p, p, p)-automatic for p ≥ 2. This follows immediately from the invariance of the
set

K = {
0,
∑
n,m(n,m, n+m),

∑
n,m∈N

(n,m, n+m+ 1)
} ⊂ �(N3,B)

under the decimations ∂(i,j,k), (i, j, k) ∈ Vp × Vq × Vr . ��

As an important consequence of the above theorem we have

Corollary 4.4.8. If F,G : N → N are both (p, q)-automatic functions, then the sum
(F +G)(n) = F(n)+G(n) is also a (p, q)-automatic function.

As far as the multiplication is concerned we state

Theorem 4.4.9. There exists no (p, q, r) ∈ N
3, p, q, r ≥ 2 such that the set

Gr(Mul) = {(n,m, nm) | n,m ∈ N}, i.e., the graph of the multiplication, is (p, q, r)-
automatic.
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Proof. The proof is analogous to the proof in case of addition. In order to avoid
complications with 0 we consider the graph of the multiplication only for positive
natural numbers.

We assume that there exist (p, q, r) such that Gr(Mul) is (p, q, r)-automatic. We
consider the pq-valuation Vpq : N

2 → N defined in the proof of Theorem 4.4.7.
Then the function G = Mul 
V−1

pq : N \ {0} → N is a (pq, r)-automatic map with
finite preimage property.

As before one easily computes thatG((p+1)(pq)n) = (pq)n andG((pq)n+1) =
pn. This leads to the inequalities

K ′
1r
n ≤ (pq)n ≤ K ′

2r
n

K ′′
1 r
n ≤ pn ≤ K ′′

2 r
n

for certain positive constants K ′
i , K

′′
i , i = 1, 2, and all n ∈ N. This is impossible for

any triple (p, q, r) with p, q, r ≥ 2. ��

We have seen that in casep < q there exists no surjective (p, q)-automatic function
G : N → N with the finite preimage property. Thus the question arises whether there
exists a surjective and (p, q)-automatic function G : N → N at all. The question is
answered by the next theorem.

Theorem 4.4.10. Let p < q. Then there exists no surjective (p, q)-automatic func-
tion G : N → N.

Proof. The idea of the proof is quite simple. We assume that there exists a surjective
(p, q)-automatic function G. Then, by the above results, G does not have the finite
preimage property. We therefore try to find a p-automatic subset M ⊂ N such that
G : M → N is surjective and has the finite preimage property. This yields the
desired contradiction, see the remark on p. 116. The main difficulty is therefore the
construction of the setM . M will be obtained by a careful modification of the reduced
(p, q)-kernel graph of χGr(G). As already seen in the proof of Theorem 4.4.5, it
is the structure of the (∗, 0)-skeleton of the reduced kernel graph which causes the
existence of infinitely many preimages. In particular, cycles in the (∗, 0)-skeleton
‘create’ infinitely many preimages.

An elementary cycle in the (∗, 0)-skeleton is a path whose initial point coincides
with its terminal point and for every vertex h of the path there exists a unique edge

g
(u,0)−→ h of the path. In other words, an elementary cycle is as short as possible. Due

to the finiteness of the (∗, 0)-skeleton, there exist only finitely many elementary paths.
These are denoted by C1, . . . , CL. The length of the paths, i.e., the number of edges
in the cycle, is denoted by d1, . . . , dL.
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As a next step, we construct a special (p, q)-automaton (B,∅,B, ω, {α(a,b) | a ∈
{0, . . . , p − 1}, b ∈ {0, . . . , q − 1}). The set of states is given by

B =
(

kerp,q(χGr(G))×
L∏
j=1

{0, 1, . . . , dL − 1}
)
∪ {h∗ | h ∈ kerp,q(χGr(G))}.

The elements of B are denoted by (h,w) with w = (wj )
L
j=1 or as h∗. The output

function ω : B → B is defined by

ω(s) =
{

0 if s = h∗
h(0, 0) if s = (h,w).

Finally we define the transition function α(a,b).

1. If (a, b) ∈ {0, . . . , p − 1} × {1, . . . , q − 1}, then

α(a,b)((h,w)) = (∂(a,b)(h), (0, . . . , 0))
α(a,b)(h

∗) = (∂(a,b)(h), (0, . . . , 0)).
2. If (a, 0) ∈ {0, . . . , p − 1} × {0} and h∗ ∈ B, then

α(a,0)(h
∗) = (

∂(a,0)(h)
)∗
.

3. If (a, 0) ∈ {0, . . . , p − 1} × {0} and (h,w) ∈ B, then we define an element
w′ = (w′j ) in N

L, where w′j is given by

w′j = wj + 1,

if h and ∂(a,0)(h) are both vertices of the elementary cycle Cj of the (∗, 0)-
skeleton.

If ∂(a,0)(h) is not a vertex of the elementary cycle Cj , then w′j = 0. If ∂(a,0)(h)
belongs to the vertices of Cj and h does not belong to the vertices of Cj , then
w′j = 0. In all other cases w′j = wj . Finally, we set

α(a,0)((h,w)) =
{(
∂(a,0)(h)

)∗ if there exists j such that w′j = dj
(∂(a,0)(h),w) otherwise.

It remains to define the distinguished element ∅. We set ∅ = (χGr(G), (0, . . . , 0)).
Figure 4.10 shows how a cycle of length 2 in the (∗, 0)-skeleton of the kernel graph

reappears in the extended transition graph defined by the above automaton. Note that
the cycle has become a cycle in the ∗-states.

Let us pause for a moment and reflect upon the properties of the transition graph
defined by the above automaton. A path starting in χGr(G) in the kernel graph of
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Gr(G) corresponds to a path starting in ∅ in the transition graph of the above defined
automaton. The vector w counts the number of successive steps done in the elementary
cycle Cj , j = 0, . . . , L. If the path leaves a cycle Cj , then wj is reset to 0. If the
path has completed an elementary cycle, then the path in the transition graph of the
automaton enters a ∗-state h∗. The only way to leave a ∗-state is via α(a,b) with b �= 0.

g

h

(1, 0)(0,0)
(1,1)

g
0

h1 g∗

h0 g
1

h∗

(1, 0)

(1, 1)

(0, 0)

(1, 0)(1, 1)

(0, 0) (1, 0)

(1, 1)
(0, 0)

Figure 4.10. Transformation of a cycle in the (∗, 0)-skeleton.

It is clear that the above defined automaton is a (p, q)-automaton. Since its values
are in B it defines a subset M of N × N. It remains to show the following three
assertions.

1. The projection on the second coordinate p2(M) is equal to N.

2. The projection on the first coordinate p1(M) is unbounded.

3. The restriction ofG on p1(M) defines a function which has the finite preimage
property.

Let m ∈ N, m �= 0 be given. Then there exists a minimal n ∈ N such thatG(n) = m.
Let (n,m) = (χGr(G), ((n0,m0), . . . , (nk,mk))) be the path defined by the unique
representation of (n,m). Then the path terminates at a kernel element h of the reduced
kernel graph of χGr(G) such that h(0, 0) = 1. Now we consider the same path in the
transition graph of the above defined automaton. To this end we consider the sequence
of states (sj )kj=0 defined by

sj = α(mj ,nj ) 
 · · · 
 α(n0,m0)(χGr(G)).

If mk �= 0, then sk = (h, (0, . . . , 0)) and ω(sm) = 1, i.e., the point (n,m) belongs to
M .
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Ifmk = 0, then nk is different from 0, for otherwise (n0,m0), . . . , (nk,mk)would
not be the unique representation of (n,m). Since m �= 0 there exists an l < k such
that ml �= 0 which means that the state sl is not a ∗-state. It remains to show that
the states sj , j = l + 1, . . . , k are no ∗-states either. Due to the minimality of n, the
path starting in sl and following the edges (nl+1,ml+1), . . . , (nk,mk) does not contain
an elementary cycle. This shows that the final state sk is not a ∗-state and therefore
ω(sk) = h(0, 0) = 1, i.e., (m, n) ∈ M . This proves the first assertion.

A similar argument applies for the remaining case m = 0.
The second assertion follows directly from our above considerations. We have

shown that p1(M) contains all minimal preimages of all m ∈ N. This means that M
is unbounded.

The last point is to show thatG : M → N has the finite preimage property. By our
construction of the automaton, a (∗, 0)-cycle in the transition graph of the automaton
occurs only for ∗-states and ω(h∗) = 0. This yields thatG−1(m) ∩M is finite for all
m ∈ N.

Therefore we have constructed a (p, q)-automatic function G : M → N which is
surjective and has the finite preimage property. This is impossible and therefore no
surjective (p, q)-automatic function G : N → G does exist. ��

An immediate consequence of the proof the above theorem is the following corol-
lary.

Corollary 4.4.11. If G : N → N is a (p, q)-automatic function, then there exists a
p-automatic subset M of N such that G(M) = G(N) and G : M → N has the finite
preimage property.

If G : N → N is a (p, q)-automatic function with p < q, then, as we have
seen, G(N) is a q-automatic set different from N. It is therefore natural to ask which
q-automatic subsets Mq are of the form Mq = G(N). In view of Corollary 4.4.11
and the lower bound for the growth of G restricted on M it is not surprising that the
“density” ofMq plays a crucial role in whetherMq is of the formMq = G(N) or not.

Before we begin with a closer study of the “density” we demonstrate that under
certain circumstances it is possible to construct a (p, q)-automatic mapG : N → Mq
such that G(N) = Mq .

Definition 4.4.12. Let χ be a p-automatic sequence, and let G∗q(χ) be the reduced
q-kernel graph of χ . For h ∈ ker∗p(χ) the number∣∣{j |∂j (h) ∈ ker∗p(χ), j = 0, . . . , q − 1}∣∣
is called the degree of h and denoted by deg(h). The number

max{deg(h) | h ∈ ker∗p(χ)}
is called the degree of G∗p(χ) and is denoted by deg(G∗p(χ)).
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Lemma 4.4.13. Let M ⊂ N be a q-automatic subset. If the degree of the reduced
q-kernel graph of ker∗q(χM) satisfies

deg(G∗q(χM)) ≤ p,
then there exists a (p, q)-automatic function G : N → M such that G(N) = M .

Proof. We construct a (p, q)-automatic function with the transducer property. To this
end, we define for every h ∈ ker∗q(χM) surjective maps νh : {0, . . . , p − 1} → Wh,
whereWh = {j | ∂j (h) ∈ ker∗p(χM), j = 0, . . . , q − 1}.

If h ∈ ker∗q(χM) and if h(0) = 1, then νh : V → Wh can be any surjective map
which satisfies νh(0) = 0.

If h ∈ ker∗q(χM) and h(0) = 0, then there exists a minimal n ≥ 1 such that
h(n) = 1. If n = n0 + qn′, then νh : V → Wh is any surjective map such that
νh(0) = n0.

Using the maps νh we define a (p, q)-automaton in the obvious way. The states
are given by the q-kernel of χM , the basepoint is χM , the output function is given by
ω(h) = h(0), and the transition functions are defined by

α(v,w)(h) =
{
∂w(h) if νh(v) = w
0 otherwise,

for h ∈ ker∗p(χM), and α(v,w)(0) = 0 for all (v,w) ∈ {0, . . . , p−1}×{0, . . . , q−1}.
It remains to prove that the above automaton defines a function G : N → M . By

Lemma 4.3.4, it suffices to show that the automaton has the unique first component
property.

If n = 0 and χM(0) = 1, then we haveG(0) = 0 is well defined since νχM (0) = 0.
If χM(0) �= 0, then there exists a smallestm = m0+m1p+· · ·+mkpk ,mk �= 0, such
that χM(m) = 1 and we set G(0) = m. Due to the construction of the maps νh, we
have that the path (0,m0), (0,m1), . . . , (0,mk) is the unique path which terminates
at a kernel element h with h(0) = 1.

If n = n0 + n1p + · · · + nkpk , nk �= 0, then the maps νh define a unique path
(n0,m0), . . . , (nk,mk) which terminates in h ∈ ker∗q(χM). If h(0) = 1, then we
define G(n) = m0 +m1q + · · · +mkpk . If h(0) = 0, then with the same arguments
as for the case n = 0, there exists a unique extension

(n0,m0), . . . , (nk,mk), (0,mk+1), . . . (0,mk+l )

such that mk+l �= 0 and the path terminates in a kernel element h′ with h′(0) = 1. ��

As a corollary we note

Corollary 4.4.14. LetM ⊂ N be a q-automatic subset. If

deg(h) = p
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for all h ∈ ker∗q(χM) andp ≥ 2, then there exists a bijective (p, q)-automatic function
G : N → M .

Examples.

1. The Thue–Morse sequence t = (tn)n∈N defines a subsetMt ⊂ N. In Figure 3.1
the reduced kernel graph of t is shown. Since every vertex in the reduced
kernel graph has degree 2, it follows that there exists a (2, 2)-automatic function
G : N → Mt . Following the procedure in the proof of Lemma 4.4.13 we
construct the reduced kernel graph of χ = χGr(G). It is shown in Figure 4.11.
See also Example 3, p. 108, for further properties of G.

χ h(0, 0) (1, 0)
(1, 1)

(0, 1)

Figure 4.11. Transition graph for the bijective function G : N → M , where M is the
support of the Thue–Morse sequence.

2. Figure 4.12 shows the reduced kernel graph of a (2, 3)-automatic function G :
N → M , where M is the set of integers n which have no 1 in their 3-adic
representation.

χ(0,0)
(1,2)

Figure 4.12. Transition graph for the bijective function G : N → M . M is the set of
integers without a 1 in the 3-adic representation.

We now start our investigation on the “density” of the set Mq ⊂ N. To this end
we introduce certain counting functions.

Definition 4.4.15. Let M ⊂ N be a p-automatic set. The function c(M) : N → N

defined by
c(M)(n) = |[0, n+ 1[∩M|

is called the counting function ofM . The function Cp(M) : N → N defined by

Cp(M)(n) =
∣∣[0, pn[∩M∣∣

is called the p-counting function.

Examples.

1. Cp(N)(n) = pn and c(N)(n) = n+ 1.
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2. Consider the Thue–Morse sequence (tn) as a characteristic sequence of a subset
Mt ∈ N. The 2-counting function C2(M) is given by

C2(Mt)(n) = 2n−1

for all n ≥ 1.

3. IfM is a bounded set, then

c(M)(n) = |M|
for all n ≥ n0.

4. IfM = {2n | n ∈ N}, then
C2(M)(n) = n

for all n.

The following lemma is immediate. It provides a first hint how the density ofMq
influences the existence of a surjective function G : N → Mq .

Lemma 4.4.16. Let Mq ⊂ N be a q-automatic subset and let G : N → Mq be a
(p, q)-automatic map with the finite preimage property. LetK2 be the constant given
in Theorem 4.4.5. If there exists an n0 such that

Cq(Mq)(n) >

(
1

K2

) logp
log q

pn

holds for all n ≥ n0, then G : N → Mq is not surjective.

Proof. Assume that there exist a (p, q)-automatic function G : N → Mq such that G
is surjective and has the finite preimage property.

If n ≥ K− logp
log q

2 pm and m ≥ m0 for a certain large m0, then it follows that

G(n) ≥ K2n
log q
logp ≥ qm.

This shows that Cq(Mq)(m) ≤ K− logp
log q

2 pm for all m which proves the assertion. ��

The counting function c(M) of a q-automatic subset M allows us to establish
the existence of a very special (p, q)-automatic function G : N → M such that
G(N) = M . We have the following surprising result.

Theorem 4.4.17. Let M ⊂ N be an unbounded q-automatic subset. Then c(M) :
N → N is (q, p)-automatic if and only if there exists a (p, q)-automatic function
F : N → M such that F is bijective and monotone increasing.
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Proof. Let F : N → M be (p, q)-automatic with the above properties. By purely set
theoretic operations we construct the graph of the counting function c(M) from the
graph of F .

For a subset L ⊂ N× N, we define the upper closure Lup of L by

Lup =
⋃

(l1,l2)∈L
{(l1, n) | n ≥ l2}.

The upper closure Gr(F )up of Gr(F ) is then given by

Gr(F )up = {(n, l) | n ∈ N and l ≥ F(n)}.
Then Gr(F )up is a (p, q)-automatic subset. It is easy to see that

χGr(F )up = χGr(F ) · χ{0}×N =
∨
n∈N

xnyF(n) ·
∨
n∈N

yn,

i.e., χGr(F )up is the Cauchy product of two elements in �(N2,B). Since both factors
are (p, q)-automatic, it follows from Theorem 4.1.7 that Gr(F )up is (p, q)-automatic.

Now let G : N → M be defined by G(n) = F(n + 1). Then G is also (p, q)-
automatic. This follows from the fact that the addition is p-automatic and that com-
positions of automatic functions are automatic. Then the sequence

χ = χGr(F )up"Gr(G)up

which is the characteristic sequence of the symmetric difference of Gr(F )up and
Gr(G)up is (p, q)-automatic, see 4. of Lemma 4.1.3. Since F is monotone increasing,
it follows that

supp(χ)T = {(n, l) | χ(l, n) = 1} = Gr(c(M)).

This proves the (q, p)-automaticity of the counting function ofM .
Let us now assume that c(M) : N → N is (q, p)-automatic. Since M is un-

bounded, it follows that c(M) is surjective. Moreover, for m ∈ M the set

(N× {m}) ∩ Gr(c(M))T

contains only one point and, furthermore, for any n ∈ N there exists a uniquemn ∈ M
such that

(N× {mn}) ∩ Gr(c(M))T = (n,mn).
Thus the map F : N → M defined by F(n) = mn provides a monotone bijection. By
the construction of F we have

Gr(F ) = (N×M) ∩ Gr(c(M))T .

It follows that F is (p, q)-automatic. ��
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Examples.
1. The set M = {3n + 1 | n ∈ N} is a 2-automatic subset of N and its counting

function is (2, 2)-automatic since F(n) = 3n + 1 provides an automatic and
monotone increasing function from N toM .

2. Let M = {2n | n ∈ N}, then M is a 2-automatic subset of N and c(M)
is not (2, 2)-automatic. This follows almost immediately from the fact that
c1 log2(n) ≤ c(M)(n) ≤ c2 log2(n) holds for all n ≥ 1 and constants c1, c2 > 0
and the growth theorem for automatic functions. Thus there exists no monotone
increasing surjective and (2, 2)-automatic function F : N → M . In particular,
f (n) = 2n is not a (2, 2)-automatic function. However, in Figure 4.13 the
reduced kernel graph of a surjective (2, 2)-automatic function F : N → M is
shown. Observe that ω(A) = 0, ω(B) = 1.

A B(1, 0)
(0, 1)

(0,0)
(1,0)

Figure 4.13. A surjective function F : N → {2n | n ∈ N}.

Note that F does not have the finite preimage property. Indeed, F(2n+ 1) = 1
for all n ∈ N.

3. The Thue–Morse sequence t = (tn)n≥0 ∈ �(N,B) provides a non-trivial exam-
ple of a 2-automatic subsetMt = {n | tn = 1} with a (2, 2)-automatic counting
function c(M). In fact, it follows from the construction of the Thue–Morse
sequence by a substitution that

c(M)(n) =
{
k + 1 if n = 2k + 1

k + tk if n = 2k

holds for alln ∈ N. From these formulas it follows that c(M) is (2, 2)-automatic.
Moreover, the monotone bijective function F : N → Mt is given by

F(n) = 2n+ 1− tn
for n ∈ N. From these formulas it follows that c(M) is (2, 2)-automatic.

In order to compute the counting functions c(M) and Cp(M) of a p-automatic
subset M �= ∅ we use the fact that the sequence χM ∈ �(N,B) is generated by
a p-substitution S : �(N,BN) → �(N,BN), where N denotes the cardinality of
kerp(χM). If we enumerate the kernel elements such that χM = f

1
, then the substi-

tution is given by its substitution polynomial

PS =
p−1∑
j=0

xjAj ,
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where Aj are N ×N -matrices with entries in {0, 1}, see Definition 2.2.28. Moreover
we have that the sequence FM ∈ �(N,BN) defined by

FM(n) = (f 1
(n), . . . f

N
(n))

is a fixed point of the substitution S, i.e.,

FM = PSH∗(F ),
where H(xj ) = xpj . Thus we can write FM(x) = PS(x)FM(xp), considered as a
Cauchy product over B. Actually, we can consider this product as the usual product
over Z which we do from now on.

Definition 4.4.18. Let M ⊂ N be a p-automatic subset and let f
1
, . . . , f

N+1
be a

enumeration of the kernel elements such that f
1
= χM and f

N+1
= 0. Then the

polynomial

P red
S =

p−1∑
j=0

xjAred
j ,

where Ared
j is an N ×N -matrix obtained from Aj by removing the N + 1-st row and

the N + 1-st column, is called the reduced substitution polynomial ofM .

In case that 0 �∈ kerp(χM) we consider the substitution polynomial also as the
reduced substitution polynomial. The next lemma justifies the above definition.

Lemma 4.4.19. LetM ⊂ N be p-automatic and let P red
S be the reduced substitution

polynomial ofM . Furthermore, let F red
M ∈ �(N,BN) be defined by

F red
M (n) = (f 1

(n), . . . f
N
(n)).

Then F red
M satisfies the equation

F red
M = P red

S H∗(F red
M )

in B
N and H : N → N is given by H(xj ) = xpj .

Proof. There is nothing to show if 0 �∈ kerp(χM). Therefore let us assume that 0 is a
kernel element. Then the matricesAj , j = 0, . . . , p− 1 have the following structure:

Aj =
(
Ared
j b

0 . . . 0 1

)
,

where b ∈ B
N , and each row of Aj contains one 1. We now notice that FM(n) is

an element of B
N × {0} and Aj(a1, . . . , aN , 0)T = (b1, . . . , bN , 0)T holds for all
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a1, . . . , aN ∈ {0, 1}. Then the assertion follows from

(
Ared
j b

0 . . . 0 1

)⎛⎜⎜⎜⎝
a1
...

aN
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝Ared
j

⎛⎜⎝ a1
...

aN

⎞⎟⎠
0

⎞⎟⎟⎟⎠ ,
where the matrix multiplication on the r.h.s. of the equation is an operation in B. ��

The above lemma remains true if B is replaced by Z.

Examples.

1. Let (tn)n≥0 ∈ �(N,B) be the Thue–Morse sequence. Then the reduced substi-
tution polynomial is given by

PS =
(

1 0
0 1

)
+ x

(
0 1
1 0

)
,

which is equal to the substitution polynomial.

2. Let χ be the characteristic sequence of the set {2n | n ∈ N}. The sequence χ is
two automatic and its reduced substitution polynomial is given by

P red
S =

(
1 0
0 1

)
+ x

(
0 1
0 0

)
.

3. For the paperfolding sequence the reduced substitution polynomial is given by

P red
S =

⎛⎝ 0 1 0
0 0 1
0 0 1

⎞⎠+ x
⎛⎝ 1 0 0

0 0 1
0 0 1

⎞⎠ .

Remarks.

1. If P(x) denotes the reduced p-substitution polynomial of a sequence χM , then
P(x)P (xp) defines a p2-substitution which has FM as a fixed point, i.e., we
have

FM(x) = P(x)P (xp)FM(xp
2
).

2. The polynomial P(x)P (xp) is not necessarily equal to the reduced p2-substi-
tution polynomial.
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We are now prepared to compute the counting function c(M) and the p-counting
function Cp(M). The following observation is crucial for the computation. LetM be
a subset of N and let χM be its characteristic sequence, i.e.,

χM =
∞∨
j=0

xj χM(j).

If we consider the formal series for χM as an element of the ring Z[[x]] of formal
power series with coefficients in the ring Z, then we have the identity

c(M)(x) =
∞∑
j=0

xj c(M)(j) = 1

1− x
∞∑
j=0

xj χM(j) = 1

1− x χM(x).

In other words, the generating function c(M)(x) of the sequence (c(M)(n))n≥0 is
given by the above identity.

This observation yields the following lemma.

Lemma 4.4.20. Let M ⊂ N be a p-automatic subset and let P red
S denote the re-

duced substitution polynomial with respect to an enumeration of the kernel elements,
f

1
= χM, . . . , f N . Then the generating functionCM(x) ∈ �(N,ZN) of the sequence

((c(supp(f
1
)), . . . , c(supp(f

N
)))n≥0 with values in N

N satisfies the following equa-
tion

CM(x) = (1+ x + · · · + xp−1)P red
S (x)CM(x

p)

over Z.

Proof. SinceM is automatic it follows from Lemma 4.4.19 that

F red
M = P red

S H∗(F red
M ).

If we consider the above equation as an equation in the ring Z, then the equation
remains true for FM . This follows from the fact that due to the construction of the
matrices Ared

j contain at most one 1 in each row.
Thus FM(x) satisfies

FM(x) = P red
S (x)FM(x

p)

viewed as an equation with coefficients in Z. This gives

1

1− x FM(x) =
1

1− x P
red
S (x)FM(x

p),

where the multiplication by 1
1−x is defined component-wise. Hence

CM(x) = 1

1− x FM(x) = (1+ x + · · · + x
p−1)P red

S (x)CM(x
p). ��
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Examples.
1. For the Thue–Morse sequence t we obtain the equation

C(x) = (1+ x)
(

1 x
x 1

)
C(x2)

for the counting functions of the kernel elements. If one further observes that
c(supp(t))(n)+c(supp(∂1(t)))(n) = n holds for all n ∈ N we get the following
equation (over Z!) for the generating function c(M)(x) withM = supp(t):

c(M)(x) = (1− x2)c(M)(x2)+ x

1− x − x2 + x3 .

The above equation yields the formulas given for c(M)(n) in Example 3, p. 126.

2. If we consider the counting function for the paper folding sequence, then we
obtain the equation

c(M)(x) = x(1+ x)c(x2)+ 1

1− x − x4 + x5

for the generating function of the counting function of M = supp(pf ). The
above functional equation yields the following recursive relations:

c(M)(2n) = c(M)(n− 1)+ [ 2n+4
4

]
c(M)(2n+ 1) = c(M)(n)+

[
2n+5

4

]
.

It is not known whether c(M) is a (2, 2)-automatic function.

The reduced substitution polynomial also provides a tool to compute the p-coun-
ting function Cp(M) for an automatic subsetM .

Lemma 4.4.21. Let M be a p-automatic subset and P red
S the reduced substitution

polynomial w.r.t. an enumeration of the kernel elements of χM . Then we have

Cp(M)(n) = (1, 0, . . . , 0)(P red
S (1))n

⎛⎜⎝ f 1
(0)
...

f
N
(0)

⎞⎟⎠
for all n ∈ N, where we interpret P red

S (1) as an (N × N)-matrix with coefficients in
Z after substituting 1 for x.

Proof. The proof follows from the fact that the sequence FM is obtained as a limit of
the substitution S, i.e.,

F = lim
n→∞ S

n

⎛⎜⎝ f 1
(0)
...

f
N
(0)

⎞⎟⎠ ,
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where the limit is in�(N,BN). We thus obtain in terms of formal power series over Z

Sn

⎛⎜⎝ f 1
(0)
...

f
N
(0)

⎞⎟⎠ (x) = P red
S (x)P red

S (xp) . . . P red
S (xp

n

)

⎛⎜⎝ f 1
(0)
...

f
N
(0)

⎞⎟⎠
and by substituting x = 1 in the r.h.s. of the equation we achieve the desired result. ��

We have almost reached our goal, namely to characterize q-automatic subsetsM
which are an image of a (p, q)-automatic map F : N → N.

There are basically two approaches to decide whether aq-automatic set is the image
of a (p, q)-automatic map. The first approach uses Lemma 4.4.16 and Lemma 4.4.21.
The second approach uses Lemma 4.4.13.

Examples.

1. In Figure 4.14 a reduced 3-kernel graph of a 3-automatic subset M is shown.
Note that f (0) = g(0) = 1.

f g0, 1
1 0, 2

Figure 4.14. The automaton generates a setM ⊂ N which is not of the form F(N) for a
(2, 3)-automatic function F .

The reduced kernel polynomial is given by

P(x) =
(

0 1
0 1

)
+ x

(
1 0
0 0

)
+ x2

(
0 1
0 1

)
,

which gives

P(1) =
(

2 1
0 2

)
.

Using the above result we easily compute that C3(M)(n) = 2n + n2n−1. By
Lemma 4.4.16, it follows that there exists no (2, 3)-automatic function F such
that F(N) = M and F has the finite preimage property. Indeed, if we suppose
that there exists a (2, 3)-automatic F with F(N) = M and F does not have
the finite preimage property, then by Lemma 4.4.11 there exists a 2-automatic
subset M2 such that F : M2 → M is surjective and has the finite preimage
property which is a contradiction to Lemma 4.4.16.

By Lemma 4.4.13, for all p ≥ 3 there exists a (p, 3)-automatic map F with
F(N) = M .
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2. Figure 4.15 shows the reduced 3-kernel graph of a 3-automatic subset M =
supp(f ), where f (0) = g(0) = 0 and h(0) = 1. We show that M is an image
of a (2, 3)-automatic map F .

f g

h

0
0

1, 2 1
1

Figure 4.15. 3-automatic subset M ⊂ N which is of the form M = F(N) for a (2, 3)-
automatic function.

Since the degree of the reduced kernel graph is equal to 3, Lemma 4.4.13 does
not apply. Let P(x) be the reduced substitution polynomial then

P(1) =
⎛⎝ 0 1 2

0 1 1
1 0 0

⎞⎠ .
Since M is 3-automatic it is also 9-automatic and the reduced 9-substitution
polynomial is given byQ(x) = P(x)P (x3). We obtain

Q(1) = P(1)2 =
⎛⎝ 2 1 1

1 1 1
0 1 2

⎞⎠ .
Since the sum of the entries of Q(1) in row i gives the degree of the kernel
element f

i
∈ G∗9(f ), we see that the degree of the 9-kernel graph of f is

equal to 4. By Lemma 4.4.13 we can construct a (4, 9)-automatic function
F : N → M such that F(N) = M . If F is (4, 9)-automatic, then it is also (2, 3)
automatic which proves our assertion.

The reduced 9-kernel graph ofM is shown in Figure 4.16.

f g

h

4, 5 0

4, 7

0

3
3

1

Figure 4.16. The reduced 9-kernel graph ofM in Figure 4.15.
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Moreover, for any p ≥ 2 there exists a (p, 3)-automatic function such that M
is the image of the function.

The above examples indicate that the existence of a surjective function from N

onto an automatic set M ⊂ N is closely related to the behavior of the powers of the
matrix PM(1). This behavior is influenced by the eigenvalues of the matrix P(1).
Note further that P(1) is a non-negative matrix, i.e., all entries of P(1) are greater
than or equal to zero.

Remark. IfA is anN×N matrix with entries aij ≥ 0, then there exists a non-negative
eigenvalue λ+ such that λ+ ≥ |λ| for all other eigenvalues λ of A, see e.g. [84]. The
eigenvalue is called leading eigenvalue of A.

As a first result on the existence of a surjective (p, q)-automatic functionF : N →
M we state

Theorem 4.4.22. LetMq be a q-automatic subset, PM(x) its reduced q-substitution
polynomial and let λ+ be the leading eigenvalue of PM(1). If p ≥ 2 and p > λ+,
then there exists a (p, q)-automatic function F : N → N such that F(N) = Mq .

Proof. Let ε > 0 be such that ε + λ+ < p. Since λ+ is the leading eigenvalue there
exists a constant r > 0 such that the entries (pnij )i,j=1,...,N of the nth power PM(1)n

satisfy

0 ≤ pnij < r(ε + λ+)n

for all n ∈ N, see [84]. Thus there exists an n0 ∈ N such that

N∑
j=1

p
n0
ij ≤ N(ε + λ+)n0 < pn0

holds for all i = 1, . . . , N . Since the sum of the entries in the i-th row of PM(1)n0

equals the degree of f
i

in the reduced Pn0
M -kernel graph, we obtain that the degree

of the reduced pn0 -kernel graph is less than pn0 . By Lemma 4.4.13, there exists a
(pn0 , qn0)-automatic map F such that F(N) = Mq . This proves the assertion. ��

The above theorem is useful if the leading eigenvalue is not a natural number.
Example 1. from above shows that it is not necessarily true that λ+ = p implies the
existence of a (p, q)-automatic function F with F(N) = M . Example 2. provides an
example where the leading eigenvalue is less than 2. In fact the leading eigenvalue is
approximately 1.8019.

The following examples show that a surjective function may exist even if the
leading eigenvalue of PM(1) is an integer.
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Examples.

1. Figure 4.17 shows an example of a reduced 3-kernel graph of a 3-automatic
subset M . It is plain to see the P(1) = 2, therefore the leading eigenvalue is
equal to 2. Due to Lemma 4.4.13, there exists a (2, 3)-automatic function F
such that F(N) = M .

f0, 2

Figure 4.17. 3-automatic subset M ⊂ N that is of the form M = F(N) for a (2, 3)-
automatic function.

2. Figure 4.18 presents an example of a reduced 3-kernel graph that generates a
3-automatic setM such that the leading eigenvalue of P(1) is equal to 2. Note
that f (0) = 1 and g(0) = 1.

f g0, 2 1
0

Figure 4.18. 3-automatic subsetM ⊂ N with degree of the kernel graph equal to 3 and
that is of the formM = F(N) for a (2, 3)-automatic function.

One computes that the degree of f in the pn-kernel graph is given by

deg(f ∈ G∗pn) = 2n+1 − 1.

Therefore deg(f ∈ G∗pn) > 2n for all n ≥ 1 and Lemma 4.4.13 does not apply.
On the other hand, the 3-counting function C3(M) is also given by

C3(M) = 2n+1 − 1,

which might induce the conjecture that there exists a (2, 3)-automatic functionF
with F(N) = M . Indeed, it is possible to construct a (2, 3)-automatic function
F : N → N such that F(N) = M . We outline the construction of this function.
At first, one observes thatM can be partitioned into two non-empty subsetsM0,
M1 such thatM = M0 ∪M1. These are

M0 = supp(f ) and M1 = supp(g).

Then there exists a surjective (2, 3)-automatic function F0 : N → M0 (the
reduced kernel graph for χM0 is shown in Figure 4.17). Figure 4.19 shows the
reduced (2, 3)-transition graph of a (2, 3)-automaton that generates a surjective
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function F1 : N \ {0} → M1, where ω(f ) = 0 and ω(g) = 1.

f g(0,0)
(1,2)

(1,1)
0

Figure 4.19. Reduced (2, 3)-transition graph that generates F1 : N \ {0} → M1.

Lemma 4.1.8 now states that the function F : N → M defined by

F(n) =
{
F0(k) if n = 2k

F1(k) if n = 2k − 1

is (2, 3)-automatic and, due to our construction, F is surjective.

As we have already seen, if the leading eigenvalue of P(1) is equal to a natural
number greater than or equal to 2 then the existence of a surjective map F depends on
the finer structure of the reduced kernel graph. Before we study this dependence we
introduce the notion of recurrence.

Definition 4.4.23. Let χ ∈ �(N,B) be p-automatic. If there exists a k ∈ N and
v0, . . . , vk ∈ {0, . . . , p − 1} such that

∂v0 
 · · · 
 ∂vk (χ) = χ,
then χ is called p-recurrent.

The importance of the recurrent sequences is demonstrated by the following the-
orem.

Theorem 4.4.24. Let M ⊂ N be q-automatic such that χ = χM is not q-recurrent.
Then M is the image of a (p, q)-automatic function F : N → M if and only there
exist pairwise disjoint q-automatic non-empty setsMj ⊂ N, j = 1, . . . , l and (p, q)-
automatic functions Fj : N → Mj such that

Fj (N) = Mj
l⋃

j=1

Mj = M.

Proof. Since χ is q-automatic and non recurrent, there exists a k ∈ N such that the
sequence

∂vk 
 · · · 
 ∂v0(χ)
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for v0, . . . , vk ∈ {0, . . . , q − 1} is either the sequence 0, the zero sequence, or the
sequence is q-recurrent. ForQ = qk+1 and V = {0, . . . ,Q− 1} these sequences can
be written as χJ := ∂J (χ), where J ∈ V . ThenM is given by

M =
⋃

J | χJ �=0

(Q supp (χJ )+ J ) ,

whereQ supp(χJ )+J = {Qx+J | x ∈ supp(χJ )} = MJ . The setsMJ are mutually
disjoint and eachMJ is q-automatic.

Let us now assume that there exist a (p, q)-automatic function F : N → M

such that F(N) = M . It remains to show that there exist (p, q)-automatic functions
FJ : N → MJ with FJ (N) = MJ for all J ∈ {0, . . . ,Q− 1} with MJ �= ∅. To this
end we construct (q, q)-automatic functionsGJ : M → MJ such thatGJ (M) = MJ .
The functions FJ are then given by FJ = GJ 
 F . Let mJ ∈ MJ be fixed for every
J withMJ �= ∅. The functions GJ : M → MJ defined by

GJ (m) =
{
m if m ∈ MJ
mJ otherwise

are (q, q)-automatic and satisfy GJ (M) = MJ .
The other assertion, namely thatM = F(N) for a (p, q)-automatic functionF ifM

is the union of finitely many mutually disjoint setsM1, . . . ,Ml with (p, q)-automatic
functions Fj : N → Mj , j = 1, . . . l, and Fj (N) = Mj is a direct consequence of
Lemma 4.1.8. ��

Thus, non-recurrent sequences can be considered as being composed of recurrent
sequences. In order to study recurrent sequences, we make deliberate use of the theory
of non-negative matrices, see, e.g., [84] or [151].

We begin with some standard definitions. A matrix A = (aij ) ∈ R
n×n is called

non-negative if aij ≥ 0 for all i, j = 1, . . . , n. The matrix A is called positive if
aij > 0 for all i, j = 1, . . . , n.

Definition 4.4.25. A non-negative matrix A ∈ R
n×n is primitive if there exists an

n0 ∈ N such that An0 is positive.
A non-negative matrix A = (aij ) ∈ R

n×n is irreducible if for every pair (i, j) ∈
{1, . . . , n} there exists an n ∈ N such that (i, j)-th entry of An is positive.

Remarks.
1. If a non-negative matrixA is reducible, then there exist a permutation matrix P

such that the matrix A′ = P−1AP is of upper triangular block form:

A′ =

⎛⎜⎜⎜⎜⎝
A1 � . . . �

0 A2
. . .

...
...
. . .

. . . �

0 . . . 0 Ak

⎞⎟⎟⎟⎟⎠
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where the Ai , i = 1, . . . , k, are either irreducible square matrices or the zero
matrix.

2. If a non-negative matrix A is irreducible, then either A is primitive or there
exists a permutation matrix P and a π ∈ N, π ≥ 2, such A′ = P−1AP is of
the form

A′ =

⎛⎜⎜⎜⎜⎜⎝
0 D0 0 . . . 0
0 0 D1 . . . 0
...

...
...
. . .

...

0 0 0 . . . Dπ−2
Dπ−1 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

Moreover (A′)π is of block diagonal form

(A′)π =

⎛⎜⎜⎜⎜⎝
A0 0 . . . 0

0 A1
...

...
. . . 0

0 . . . 0 Aπ−1

⎞⎟⎟⎟⎟⎠ ,

where the square matrices Ai , i = 0, . . . , π − 1, are primitive and given by
Ai = Di . . . Dπ−1D0 . . . Di−1.

If A ∈ R
n×n is given and if λ0 is an eigenvalue of A, then the order of the

zero of the characteristic polynomial of A, i.e., det(λ id−A), is called the algebraic
multiplicity of λ0. The complex dimension of the kernel of the matrix λ id−A is called
the geometric multiplicity of λ0.

The main result of the Perron–Frobenius theory is the next theorem.

Theorem 4.4.26 (Perron–Frobenius Theorem). IfA∈R
n×n,A �= 0, is a non-negative

irreducible matrix, then A has a positive eigenvector x ∈ R
n with eigenvalue λ+ > 0

that has algebraic and geometric multiplicity equal to one. Furthermore, any positive
eigenvector ofA is a multiple of x, and ifμ is another eigenvalue ofA, then |μ| ≤ λ+.

Proofs may be found in the above mentioned books. Note that if A is a non-
negative matrix in upper triangular block form, then the leading eigenvalue λ+ of A
is the maximum of the leading eigenvalues of the block matrices Ai .

Remarks.

1. If A ∈ R
n×n is a non-negative and irreducible matrix, then the leading eigen-

value λ+ of A satisfies
r− ≤ λ+ ≤ r+,

where r− and r+ denote the smallest and the largest row sum ofA, respectively.
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2. If A �= 0 is a non-negative irreducible matrix such that A is of the form

A =

⎛⎜⎜⎜⎜⎜⎝
0 D0 0 . . . 0
0 0 D1 . . . 0
...

...
...
. . .

...

0 0 0 . . . Dπ−2
Dπ−1 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ ,
and if λ is an eigenvalue of A and μ ∈ C a π-th root of unity, then μλ is also
an eigenvalue of A.

3. Let A be as above. Since Aπ is of block diagonal form

Aπ =

⎛⎜⎜⎜⎜⎝
A0 0 . . . 0

0 A1
...

...
. . . 0

0 . . . 0 Aπ−1

⎞⎟⎟⎟⎟⎠
with primitive matrices Ai , each of the matrices Ai has the leading eigenvalue
λπ+, where λ+ is the leading eigenvalue of A.

If M ⊂ N, M �= ∅, is a p-automatic set and if PM(x) denotes the reduced
substitution polynomial then PM(1) is clearly a non-negative matrix. Remark 1,
p. 136, can be stated as follows: There exists a numbering of the kernel elements of
χM such that PM(1) has an upper triangular block structure. The irreducible matrices
Aii �= 0 correspond to strongly connected components of the reduced kernel graph of
χM . A non-empty subset C ⊂ kerp(χM) is called strongly connected if for every g,
h ∈ G there exists a path inG from h to g and vice versa. Furthermore C is maximal
with this property (w.r.t. inclusion).

If C1, C2 ⊂ kerp(χM) are two different strongly connected components of the
reduced kernel graph ofχ , thenC1 is larger thanC2, denoted byC1 % C2, if there exist
g ∈ C1 and h ∈ C2 such that h ∈ kerp(g) or, equivalently, there exists a path from
g to h in the reduced kernel graph of χM . This clearly defines a partial order on the
set of strongly connected components. If χM is p-recurrent, the strongly connected
component containing χM is the maximal element.

Note further that for every strongly connected component C of the kernel graph
of χ there exists a corresponding square matrix in the upper triangular block form of
the matrix P(1). This matrix is denoted by A(C).

Theorem 4.4.27. Let M ⊂ N be q-automatic and let χM be q-recurrent. Let P(x)
be the reduced substitution polynomial and let λ+ = p ≥ 2, p ∈ N, be the leading
eigenvalue of P(1).

If there exist two strongly connected components C1, C2 ⊂ kerq(χM) such that
C1 ≺ C2 and such that the leading eigenvalues ofA(C1) andA(C2) are both equal to
p, then there exists no (p, q)-automatic function F : N → N such that F(N) = M .
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Proof. We assume that P(1) is given in upper triangular block structure. Since the
matrices Ai , i = 1, . . . , k, along the diagonal are either irreducible or zero, there
exists an N0 ∈ N such that either ANi = 0 or ANi is of the form⎛⎜⎜⎜⎜⎝

Ai0 0 . . . 0

0 Ai1
...

...
. . . 0

0 . . . 0 Aiπi−1

⎞⎟⎟⎟⎟⎠
if Ai is irreducible. Since the matrices Ai,j are primitive there exists an N1 ∈ N such

that the AN1
i,j are positive matrices. This yields that P(1)N0N1 is of upper triangular

block structure and a block along the diagonal is either a positive square matrix or the
zero matrix.

Let Ai1 and Ai2 be the matrices corresponding to the strongly connected compo-
nents C1 and C2. Since C1 % C2, the triangular block structure of P(1) implies that
P(1) contains the submatrix ⎛⎜⎜⎜⎜⎝

Ai1 � . . . �

0 Ai1+1
. . .

...
...

. . .
. . . �

0 . . . 0 Ai2

⎞⎟⎟⎟⎟⎠ .
Now the results on the structure of P(1)N0N1 and the fact that C1 % C2 imply the
existence of an N2 such that P(1)N0N1N2 contains the submatrix⎛⎜⎜⎝

A
N2
i1j1

. . . B

...
. . .

...

0 . . . A
N2
i2j2

⎞⎟⎟⎠ ,
where Ai1j1 , j1 ∈ {0, . . . , π1 − 1}, and Ai2j2 , j2 ∈ {0, . . . , π2 − 1}, are primitive and
positive matrices and where the matrix B = (bst ) with (s, t) ∈ I × J for certain sets
I, J ⊂ {1, . . . , | kerq(χ)|} is positive. Due to the assumption, Ai1 and Ai2 both have
the leading eigenvalue p. Due to the primitivity ofAi1j1 andAi2j2 it follows that there
exists a constant c > 0 such that

A
NN0N1N2
i1j1

> cpNN0N1N2

A
NN0N1N2
i2j2

> cpNN0N1N2

holds for all N ∈ N. If BN = (bNst ) denotes the submatrix of P(1)NN0N1N2 defined
by the entries at position (s, t) ∈ I × J , then an induction argument shows that

bNst ≥ 2cp(N−1)N0N1N2 + (N − 2)c2p(N−1)N0N1N2
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for all N ∈ N and all (s, t) ∈ I × J .
Thus there exists a sequence h ∈ kerq(χM) such that

Cq(supp(h))(NN0N1N2) ≥ 2cp(N−1)N0N1N2 + (N − 2)c2p(N−1)N0N1N2

for all N ∈ N. Due to Lemma 4.4.16, a (p, q)-automatic function F : N → supp(h)
with F(N) = supp(h) does not exist. Since h ∈ kerq(χM) the same conclusion holds
for the setM . ��

In short the above theorem says, that if there exists a bad connection between two
strongly components of the reduced q-kernel graph of χM , thenM is not an image of
a (p, q)-automatic function. If no such bad connection exist, then the question on the
existence of a (p, q)-automatic function GN → M with G(N) = M is still open.

We conclude this section with a further result which can be derived from our
approach to compute Cp(M).

Lemma 4.4.28. Let M ⊂ N, M �= ∅, be a p-automatic subset such that χM is p-
recurrent and let λ+ be the leading eigenvalue of P red(1). There exists a c > 0 and
an n0 ∈ N such that

Cp(M)(n) ≥ cλn+
holds for all n ≥ n0.

Proof. Since M is recurrent and non-empty, the leading eigenvalue λ+ of P red(1) is
positive. Furthermore, we assume thatP red(1) is in upper triangular block form. Then
there exists a submatrix Ai along the diagonal of P red(1) such that Ai is irreducible
and has leading eigenvalue λ+. Due to the irreducibility there exists a π and an n0
such that Aπn0

i is of block diagonal form, where the square matrices Ai1, . . . , Aiπ
along the diagonal are positive and with leading eigenvalue λπn0+ . We can therefore
conclude that there exists a c > 0 such that

A
πn0n
ij > cλ

πn0n+

holds for all n ∈ N, n �= 0, and all j = 1, . . . , π . This shows that there exists an
h ∈ kerp(χM) such that

Cp(supp(h))(πn0n) > cλ
πn0n+

for all n ∈ N, n ≥ 1. This leads to

Cp(supp(h))(πn0 + n) > c

λ
πn0−1
+

λπn0+n

for all n ≥ 1. Since h ∈ kerp(χM), it follows that there exist m ∈ N and l ∈
{0, . . . , pm − 1} such that

pm supp(h)+ l ⊂ M.
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This yields the existence of a c′ > 0 such that

Cp(πn0 + n+ l + 1) ≥ c′λπn0+n+1+l
+

holds for all n ≥ 1. This proves the assertion. ��

The case χM being non-recurrent is similar.

Corollary 4.4.29. LetM ⊂ N be p-automatic. If λ+ denotes the leading eigenvalue
of P red(1), then there exist c > 0 and n0 ∈ N such that

Cp(M)(n) ≥
{
cλn+ if λ+ > 0

c if λ+ = 0

holds for all n ≥ n0.

Proof. Ifλ+ > 0, then the assertion is a consequence of Lemma 4.4.28. Ifλ+ = 0, then
the upper triangular block form of P red(1) has only zero matrices along the diagonal.
In other words, the reduced kernel graph has no strongly connected component. This
means thatM contains only finitely many points. This proves the second assertion. ��

In combination with the Jordan form of the matrix P red(1) Lemma 4.4.28 and
Corollary 4.4.29 one obtains a rather good description of the growth of Cp(M)(n).

Theorem 4.4.30. Let M ⊂ N be p-automatic and unbounded, and let λ+ be the
leading eigenvalue of P red(1). There exist α ∈ N, k ∈ N and s ∈ [0, 1] such that the
limit

lim
n→∞

Cp(M)(αn)

(πn)kpαns

exists and is positive.

Proof. Let N denote the cardinality of the reduced p-kernel of χM . Let P red(1) be
in upper triangular block structure. Then there exists an α ∈ N such that P red(1)α

has only primitive or zero matrices along its diagonal. Moreover, λα+ is the leading
eigenvalue and all other eigenvalues μ of P red(1)α satisfy |μ| < λα+.

We can therefore conclude that there exists a matrix U ∈ C
N×N such that

P red(1)α = U
⎛⎝�∗ 0 0

0 � 0
0 0 L̃

⎞⎠U−1,

where � is a diagonal matrix with entries λα+ along the diagonal, �∗ has entries λα+
along the diagonal and entries 1 at the positions (j, j + 1), the matrix L̃ is an upper
triangular matrix and the entries along the diagonal have absolute value less then λα+.
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Now choose s = log λ+
logp . Since λ+ is an eigenvalue of an irreducible matrix which

corresponds to a strongly connected component of the p-kernel graph of χ , it follows
that 1 ≤ λ+ ≤ p and therefore s ∈ [0, 1]. Note that ps = λ+. Then we have

1

pαns
P red(1)αn = U

⎛⎜⎝
1
pαns

�n∗ 0 0

0 1
pαns

�n 0

0 0 1
pαns

L̃αn

⎞⎟⎠U−1

for all n ∈ N, n �= 0. If �∗ is a k × k-matrix, where k ≥ 2, then the nth power of �∗
is given by

�n∗ =

⎛⎜⎜⎜⎜⎜⎝
λαn+

(
n
1

)
λαn−1+ . . .

(
n
k−1

)
λ
αn−(k−1)
+

. . .
. . .

...

λαn+
(
n
1

)
λαn−1+
λαn+

⎞⎟⎟⎟⎟⎟⎠ .
Therefore

Cp(M)(αn)

pαns

= (1, 0, . . . , 0)U
⎛⎜⎝

1
pαns

�n∗ 0 0

0 1
pαns

�n 0

0 0 1
pαns

L̃αn

⎞⎟⎠U−1(f
1
(0), f

2
(0), . . . , fN(0))

T

is of the form
Cp(M)(αn)

pαns
=
k−1∑
j=0

αj

(
n

j

)
1

λ
j
+
+ o(n),

where limn→∞ o(n) = 0 and αj ∈ R. Due to Lemma 4.4.29, we obtain

0 < c <
Cp(M)(αn)

pπns
=
k−1∑
j=0

αj

(
n

j

)
1

λ
j
+
+ o(n).

This shows that at least one of the coefficients αj is different from zero. Let j0 =
max{j | αj �= 0, j = 0, . . . , k − 1}, then clearly αj0 > 0. This concludes the proof,
since

lim
n→∞

1

(πn)k
αk

(
n

k

)
1

λk+
= αk

πkλk+k!
> 0

is the desired limit. ��

As an application we show that the prime numbers are not automatic. It is a
well-known fact that the number of prime numbers in the interval [0, n] is given by
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O(n/ log n), i.e., there exist constants 0 < c1 < c2 such that

c1
x

log x
≤ |{p | p is prime, p ∈ Np ≤ x}| ≤ c2

x

log x

holds for all x > 0. Actually there exist stronger estimates. However, the above
estimate is sufficient for our purpose.

Now assume that the set of prime numbers P is p-automatic. Then there exist π ,
k ∈ N and s ∈ [0, 1] such that the limit

lim
n→∞

Cp(P)(πn)

pπns(πn)k

exists and is positive. The asymptotic formula for π(n) yields

Cp(P)(πn) = O
(

pπn

πn logp

)
which in turn gives

Cp(P)(πn)

pπns(πn)k
= O

(
pπn

(πn)k+1pπns logp

)
.

This shows that s = 1, in order to guarantee the existence of a limit. However, for
every choice of k ∈ N, the limit is zero. Therefore it follows that the set of prime
numbers is not p-automatic for all p ≥ 2.

4.5 Cellular automata and automatic maps

In this section we shall show how cellular automata may be used to define (H1×H2)-
automatic maps G : �1 → �2. Surprisingly, the conditions on a cellular automaton
to induce an automatic map are very weak.

We begin with a definition of a cellular automaton. Let A1, A2 be finite sets.
As we have mentioned in Chapter 1 we can define a metric �1 on �(Z,A1) and a
metric �2 on �(Z,A2) in such a way that both sequence spaces become complete
metric spaces. It is therefore meaningful to consider continuous functions between the
sequence spaces. Among the continuous maps there is a special class of continuous
maps, the class of cellular automata.

Definition 4.5.1. Let � : (�(Z,A1),�1)→ (�(Z,A2),�2) be a continuous map.
� is called a cellular automaton if

�((Tx)∗(f )) = (Tx)∗(�(f ))
holds for all f ∈ �(Z,A1).
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As usual, we denote an element f ∈ �(Z,A1) by

f =
⊕
j∈Z

fjx
j

and (Tx)∗(⊕fjxj ) = ⊕fjxj+1 = xf is called shift, see Chapter 1.
The following theorem is due to Hedlund, [97]. It gives a complete characterization

of cellular automata.

Theorem 4.5.2. A continuous map � : (�(Z,A1), d1) → (�(Z,A2), d2) is a cel-
lular automaton if and only if there exist a k ∈ N and a function φ : A2k+1

1 → A2
such that

�(f )(xj ) = φ(f (xj−k), . . . , f (xj ), . . . , f (xj+k))
holds for all f ∈ �(Z,A1) and for all j ∈ Z.

Remarks.
1. The function φ : A2k+1

1 → A2 is called the generating function of the cellular
automaton �.

2. Let H : �→ � and let Vc be a complete digit set of H . If γ ∈ �, then

p
γ
=

k⊕
j=0

vjx
j ,

where γ = v0H(v1) . . . H

k(vk) is a polynomial in �c(Z, Vc). Note that p

e
is

the polynomial e. pγ is called the γ -polynomial.

If q ∈ �c(Z, Vc) is a polynomial, i.e., the set {j | q(j) �= e} is finite, then

p(q) = q(0)H(q(1))H 
2(q(2)) . . . H 
k(q(k)) . . . , (4.1)

is a well-defined element of �. Moreover, one has

p(p
γ
) = γ

for all γ ∈ �. In other words, p is the inverse of the map γ �→ p
γ

. Note that

pp(q) = q if and only if q truly is a polynomial. i.e. supp(q) ⊂ N.

We now set A1 = Vc and A2 = Wc, where Vc andWc are complete digit sets for
the expanding maps H1 : �1 → �1 and H2 : �2 → �2, respectively. Furthermore,
the neutral elements e1 ∈ Vc and e2 ∈ Wc play the role of the empty symbol in A1
and A2.

Definition 4.5.3. Let � : �(Z, Vc) → �(Z,Wc) be a cellular automaton. The
cellular automaton � preserves polynomials if

�(�c(Z, Vc)) ⊂ �c(Z,Wc).
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Remarks.

1. A cellular automaton � : �(Z, Vc)→ �(Z,Wc) preserves polynomials if and
only if

φ(e1, . . . , e1) = e2

for the generating function φ : V 2k+1
c → Wc of �.

2. A special class of cellular automata which preserve polynomials is given by the
left dependent cellular automata. A cellular automaton with generating function
φ : V 2k+1

c → Wc is left dependent if there exists a map φ̃ : V k+1
c → Wc such

that
φ(a−k, . . . , a0, a1, . . . , ak) = φ̃(a−k, . . . , a−1, a0)

holds for all (a−k, . . . , ak) ∈ V 2k+1
c .

If � : �(Z, Vc)→ �(Z,Wc) is a cellular automaton that preserves polynomials,
then there exists an induced map G� : �1 → �2 defined by

G�(γ1) = p 
�(p
γ1
),

where p
γ1
∈ �c(Z, Vc) is the γ1-polynomial and p : �(Z,Wc)→ �2 is defined as in

Equation (4.1).

Theorem 4.5.4. If� : �(Z, Vc)→ �(Z,Wc) is a cellular automaton that preserves
polynomials, then the induced map G� : �1 → �2 is (H1 ×H2)-automatic.

Proof. Let χ ∈ �(�1 × �2,B) denote the characteristic sequence of the graph of
G� : �1 → �2. The generating function of the cellular automaton � is denoted by
φ : A2k+1

1 → A2. It is no restriction to assume that k is greater than or equal to 1.
In order to prove the finiteness of the (Vc ×Wc)-kernel of χ , we define auxiliary

functions βα : �1 → �2, whereα ∈ V kc andβ ∈ V k+1
c . For reasons that will be appar-

ent in a moment we denote α by α = (a−k, . . . , a−1) and β by β = (b0, b1, . . . , bk).
With these settings we define

 βα : �1 → �2

by

 βα(γ1) = p 
�
( −1⊕
i=−k

aix
i ⊕

k⊕
i=0

bix
i ⊕ xk+1p

γ1

)
,

where p : �c(Z,Wc) → �2 is defined as in Equation (4.1). Since � preserves
polynomials, the maps  βα are well defined for all choices of α ∈ V kc , β ∈ V k+1

c .

To each  βα we associate a sequence χβα ∈ �(�1 × �2,B) which is defined by

χβα =
∨
γ∈�
(β0H1(β1) . . . H


k
1 (βk)H


(k+1)
1 (γ ), βα(γ )).
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Note thatχβα can be considered as the characteristic sequence of the graph of a function
defined on the set β0H1(β1) . . . H


k
1 (βk)H


(k+1)
1 (�).

The auxiliary maps allow us to express the characteristic function χ of the graph
of G� as a finite sum of sequences of the form χβα . Indeed, we have

χ =
∨
β∈V kc

χ
β

(e1,...,e1)
.

LetK be the set of all finite sums of sequences of the form χβα with α ∈ V kc , β ∈ V k+1
c .

Since the addition is in the Boolean algebra B, K is a finite set and contains χ .
In order to prove thatG� is an automatic map it remains to show thatK is invariant

under decimations. It is clear that it suffices to show that the decimations of χβα is a

sum of sequences of the form χβ
′
α′ . To this end, we make use of the following identity:

 βα(γ1) = φ(α, β)H2

(
 
(b1,...,bk,v0)
(a−k+1,...,a−1,b0)

)(γ ′1)
)
= φ(α, β)H2

(
 
(β ′,v0)

(α′,b0)
(γ ′1)

)
,

where γ1 = v0H1(γ
′
1) with v0 ∈ Vc and (β ′, v0) = (b1, . . . , bk, v0), (α′, b0) =

(a−k+1, . . . , a−1, b0).
Using this identity we rewrite χβα as

χβα =
∨
γ1∈�1
v0∈Vc

(
b0 . . . H


k
1 (bk)H


(k+1)
1 (v0)H


(k+2)
1 (γ ), φ(α, β)H2

(
 
(β ′,v0)

(α′,b0)
(γ1)

))
.

Thus we see that the decimations of χβα are given by

∂(v,w)(χ
β
α ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∨
v0∈Vc

χ
(β ′,v0)

(α′,b0)
if v = b0 and φ(α, β) = w

0 otherwise.

Therefore the non-trivial decimations of χβα are given as a sum of sequences of the

form χ
β ′
α′ . This shows that the set K is invariant under decimations and proves the

(H1 ×H2)-automaticity of G� . ��

Examples.

1. The automatic function defined by Figure 4.1 is an example of an automatic
function G : N → N that is induced by a cellular automaton. In fact, if we
consider the set�(Z, {0, 1}) as the set of formal Laurent series with coefficients
in the field F2 = {0, 1}, then the multiplication of a Laurent series with the
polynomial 1+ x defines a cellular automaton � : �(Z,F2)→ �(Z,F2).
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If one sets H(xj ) = x2j and V = {x0, x1} and defines the generating function
φ : {0, 1}3 → {0, 1} as φ(a, b, c) = a + b + c mod 2, then the proof of
Theorem 4.5.4 allows to compute the reduced kernel graph of the induced map
G� : N → N. It turns out that the reduced kernel graph of G� is the same as
is shown in Figure 4.1.

Note further that G�(N) is the support of the Thue–Morse sequence.

2. As we have seen in the previous section the map n �→ 3n defines a (2, 2)-
automatic function, see Figure 4.4 for the reduced kernel graph. It is a function
which is not induced by a cellular automaton � : (Z, {0, 1})→ �(Z, {0, 1}).
Loosely speaking, this is a result of the carry overs which occur if one performs
a multiplication by 3 in the binary representation of natural numbers.

Let us assume that there exists a cellular automaton � : �(Z, {0, 1}) →
�(Z, {0, 1}) which induces the multiplication by 3 on the natural numbers,
i.e., the graph ofG� : N → N is equal to the graph of the function n �→ 3n. By
Hedlund’s Theorem 4.5.2, there exist a k and a generating mapφ : {0, 1}2k+1 →
{0, 1}.
Choose N = 2 22n−1

3 , then N is a natural number and the 2n+ 1-st coefficient
of the binary expansion of 3N is equal to zero. Since N is an even number the
binary expansion ofN + 1 coincides with the binary expansion ofN except for
the first digit. Now we have 3(N+1) = 22n+1+1, i.e., the 2n+1-st coefficient
of the binary expansion of 3(N + 1) is equal to one. This shows that the value
of k has to be greater than 2n + 1. Hence there exists no cellular automaton
defined on �(Z, {0, 1}) that induces the multiplication by 3 on N.

The general question whether a given (H1 × H2)-automatic function is induced
by a cellular automaton is a very delicate one. By Hedlund’s theorem the question
is closely related to the question whether an automatic map G : �1 → �2 has a
continuous extension G̃ : �(Z, Vc)→ �(Z,Wc).

Although the proof of Theorem 4.5.4 provides an algorithm to compute the kernel
graph ofG� ,� being a cellular automaton. Performing this computation can be quite
painful.

The situation is slightly improved if we consider left dependent cellular automata.

Lemma 4.5.5. If the cellular automaton � : �(Z, Vc)→ �(Z,Wc) preserves poly-
nomials and is left dependent, then G� : �1 → �2 has the transducer property.

Proof. The proof is almost a copy of the proof of Theorem 4.5.4. Due to the left
dependence of � is suffices to consider auxiliary maps  α : �1 → �2 with α =
(a−k, . . . , a−1) ∈ V kc . These functions are defined by

 α(γ1) = p 
�
( −1⊕
i=−k

aix
i ⊕ p

γ1

)
.
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The sequences χα ∈ �(�1 × �2,B) are then given by

χα =
∨
γ1∈�1

(γ1, α(γ1)) .

Following the same line of arguments as above, we arrive at

∂v,w(χα) =
{
χ(a−k,...,a−1,v) if w = φ(a−k+1, . . . , a−1, v)

0 otherwise.

This proves the transducer property. ��

The cellular automaton in Example 1 is a left dependent cellular automaton. Note
further that the second example provides an automatic function with the transducer
property that is not induced by a cellular automaton. In other words, the converse of
Lemma 4.5.5 is not true.

4.6 Notes and comments

Within the framework of formal logic, automatic subsets are also called recognizable
subsets. For the relations between formal logic and automatic sets we recommend
[46], [47].

The kernel graph of an automatic map can also be considered as a special transducer
in the sense of [77]. Besides the literature already mentioned for finite automata we
add [42], [44], [59], [74], [83], and [165] for further reading on transducers.

A proof of Theorem 4.3.14 can be found in [56], see also [80] and [137].
The results on non-negative matrices can be found in, e.g., [84], [151].
For further connections between cellular automata and automatic sequences we

suggest [5], [6], [11], [29], [30], [31], [44], [90], [91], [96], and [116].



Chapter 5

Algebraic properties

As already noted it is advantageous to consider an additional structure on the set A. In
order to study automatic subsets, we introduced a Boolean structure on the set {0, 1}.
In this chapter we are studying automatic sequences which take their values in A and
A is a commutative and associative monoid.

In the first section, we shall show that an automatic sequence always satisfies a
special equation, namely a so-calledN -dimensional Mahler equation (over a monoid).

In the second section, we study certain Mahler equations (over a monoid) and
provide a method to solve the equation with the help of a substitution.

In the third section, we restrict our investigations to the case that � is a finitely
generated Abelian group and A carries the structure of a finite field. It will turn out
that every p-automatic sequence over a commutative group and with values in a finite
field of characteristic p satisfies a generalized Mahler equation. We also discuss the
converse of this statement.

5.1 Additional structure on �A
In this section, we suppose that the finite set �A carries an algebraic structure. Through-
out this section we assume that �A is a commutative, associative monoid with neutral
element. This monoid is denoted by M and its neutral element is denoted by 0. The
binary operation is given by + : M ×M → M, (a, b) �→ a + b, called addition. It
satisfies a + b = b + a for all a, b ∈ M and a + 0 = a for all a ∈ M. Moreover,
a + (b + c) = (a + b) + c holds for all a, b, c ∈ M. From now on 0 is the distin-
guished element of M. In order to emphasize the addition on M, we write sequences
f ∈ �(�,M) as

f =
∑
γ∈�

fγ γ.

In this setting we can add any two sequences f , g ∈ �(�,M), i.e., f + g =∑
(fγ +

gγ )γ , and by 0 we denote the sequence with all values equal to 0. For the decimation
operators ∂Hv we have the obvious equation

∂Hv (f + g) = ∂Hv (f )+ ∂Hv (g).
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Let End(M) = {h : M → M | h(a + b) = h(a)+ h(b) for all a, b ∈ M} denote
the endomorphisms of the monoid M. We have the usual addition, denoted by+, and
composition, denoted by 
, of endomorphisms. The constant map which maps every
a ∈ M on 0 is denoted by 0.

The set �c(�,End(M)) ⊂ �(�,End(M)) denotes the sequences with finite sup-
port.

For p, q ∈ �c(�,End(M)) we define the Cauchy product p ∗ q as

(p ∗ q)(γ ) =
∑
ρτ=γ

pρ 
 qτ ,

where p =∑
pγ γ and q =∑

qγ γ .
We endow �c(�,End(M)) with a norm ‖ ‖ defined by

‖p‖ = max{‖γ ‖ | γ ∈ supp p}
for p �= 0 and ‖0‖ = 0. Then we have ‖p + q‖ ≤ max{‖p‖, ‖q‖} and ‖p ∗ q‖ ≤
‖p‖ + ‖q‖.

Finally, we define a product · of elements of �c(�,End(M)) with elements of
�(�,M) by

p · f =
∑
γ∈�

( ∑
ρτ=γ

pρ(fτ )
)
γ.

Lemma 5.1.1.

1. 0 · f = 0.

2. p · (f + g) = p · f + p · g.

3. (p + q) · f = p · f + q · f .

4. q · (p · f ) = (q ∗ p) · f .

5. Let V be a residue set for the expanding map H : � → � with expansion ratio
C > 1 and let r = max{‖v‖ | v ∈ V }. Then for p ∈ �c(�,End(M)) we have

‖∂Hv (p)‖ ≤
‖p‖ + r
C

.

6. Let p ∈ �c(�,End(M)) and f ∈ �(�,M), then

∂Hv (p ·H∗(f )) = ∂Hv (p) · f
holds for the v-decimations.

7. H∗(p · f ) = H∗(p) ·H∗(f ).
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Proof. The assertions 1, 2, 3, 5, 6, and 7 are obvious. To prove 4, we calculate

q · (p · f )(γ ) =
∑
ρ

qρ

(∑
ξ

pξ (fξ−1ρ−1γ )
)
.

Since qρ ∈ End(M) and due to the commutativity of + on M we obtain

q · (p · f )(γ ) =
∑
ρ,ξ

qρ 
 pξ (fξ−1ρ−1γ ),

which is the same as (q ∗ p) · f (γ ). ��

We are interested in the invariance of the finiteness of the H -kernel under certain
operations of �c(�,End(M)) on �(�,M). We start with a simple observation. We
consider an elementh ∈ End(M) as an element in�c(�,End(M)) by writingp = h e,
i.e., p is a map from� to End(M)with value h at the neutral element e ∈ � and value 0
for all γ �= e. Then we have p · f =∑

h(fγ )γ , i.e., in the notation of the previous

chapters, h · f = ĥ(f ). Thus, we obtain

∂Hv (h · f ) = ∂Hv ĥ(f ) = ĥ(∂Hv (f )) = h · ∂Hv (f ),
cf. 3. of the remark on p. 39. Moreover, we have the trivial statement that the sum of
two sequences with finite H -kernel has again a finite H -kernel.

Lemma 5.1.2. Let p ∈ �c(�,End(M)) and let f ∈ �(�,M) have a finiteH -kernel,
then p · f has a finite H -kernel.

Proof. Consider ξ ∈ � and the polynomial p = h ξ ∈ �c(�,End(M)), where
h ∈ End(M), h �= 0. Then

p · f =
∑
γ

h(fξ−1γ ) = h(Tξ−1)∗(f ).

By Theorem 3.2.5 and due to the above observation, we conclude that p ·f has a finite
H -kernel.

For an arbitrary p = ∑
pγ γ ∈ �c(�,End(M)), where pγ = hγ γ and hγ ∈

End(M), we write p · f as a finite sum

p · f =
∑

γ∈supp(p)

pγ · (f );

each of the summands has finite H -kernel and therefore p · f has a finite h-kernel. ��

We are now prepared to state the main result of this section.
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Theorem 5.1.3. Let p ∈ �c(�,End(M)). If f ∈ �(�,M) satisfies

f = p ·H∗(f ), (5.1)

then f has a finite H -kernel.

Proof. We shall show that theH -kernel of f is finite. For this purpose we fix a residue
set V for the expanding map H with expansion ration C > 1. By κ we denote the
associated image-part-map. With r = max{‖v‖ | v ∈ V } and R = ‖p‖+r

C−1 we set

K = {q · f | q ∈ �c(�,End(M)) such that ‖q‖ ≤ R}.
Since f ∈ K and K is a finite set, it remains to show that K is invariant under

decimation operators. To this end, leth = q·f be inK . Sincef satisfies Equation (5.1)
and due to 4. of Lemma 5.1.1, we obtain

q · f = q · p ·H∗(f ) = (q ∗ p) ·H∗(f ).
Due to 6. of Lemma 5.1.1, we obtain that ∂Hv (q · f ) = ∂Hv (q ∗ p) · f . We therefore
estimate

‖∂Hv (q ∗ p)‖ ≤
‖q ∗ p‖ + r

C
≤ ‖q‖ + ‖p‖ + r

C
≤ R

by the choice of R. Therefore K is decimation invariant. ��

As the next example shows the above proof actually allows a calculation of the
kernel of an assumed solution.

Example. Let M = F2 be the field with two elements and let � = 〈x〉 = Z. Then
H(xα) = x2α is expanding. We fix the residue set as V = {x0, x1}. In this setting,
we consider F2 as a subset of End(F2), where 0 ∈ F2 is considered as the 0-map in
End(F2) and 1 ∈ F2 is considered as the identity in End(F2). This means that we
have the inclusion �(�,F2) ⊆ �(�,End(F2)). The multiplication of p ∈ �c(�,F2)

is the Cauchy product of a polynomial with a formal Laurent series. The equation

f = (1+ x + x2)H∗(f )

has at least one non-trivial solution. We calculate the kernel of the assumed solution
as

∂H
x0(f ) = (1+ x)f
∂H
x1(f ) = f

∂H
x0((1+ x)f ) = ∂Hx0((1+ x3)H∗(f )) = f
∂H
x1((1+ x)f ) = xf

∂H
x0(xf ) = ∂Hx0((x + x2 + x3)H∗(f )) = xf
∂H
x1(xf ) = (1+ x)f .
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By the proof of Theorem 2.2.19 there exists a substitution which is associated with
the above kernel. In the next section, we shall discuss whether the fixed points of the
substitution give a solution of the Mahler equation.

Furthermore, we can also obtain the (reduced) 2-kernel graph of a solution. It is
shown in Figure 5.1

f (1+ x)f xf1 0
0

0

1

1

Figure 5.1. Reduced kernel graph for Example 1.

Corollary 5.1.4. Let p, q ∈ �c(�,End(M)). If f ∈ �(�,M) satisfies

f = q + p ·H∗(f ),

then f has a finite H -kernel.

Proof. Let V be a residue set of H with expansion ratio C > 1 and let r =
max{‖v‖ | v ∈ V }, r∗ = max{‖γ ‖ | γ ∈ supp q}. Set R = max{‖p‖,r∗}+r

C−1 . We
prove that the set

K = {s + t · f | s, t ∈ �c(�,End(M)) such that ‖s‖ ≤ R and ‖t‖ ≤ R}

is invariant under the decimation operators. Since f ∈ K and K is a finite set, the
assertion follows. We have

∂Hv (s + t · f ) = ∂Hv (s + t · q)+ ∂Hv (t ∗ p)f

due to the equation for f . Applying 5. of Lemma 5.1.1 and the properties of the norm

on�c(�,End(M)), we obtain ‖∂Hv (t ∗p)‖ ≤ R. Moreover, we have supp(s+ t ·q) ⊂
BR(e). ��

More important is the next consequence

Corollary 5.1.5. Let pj ∈ �c(�,End(M)), j = 1, . . . , N and q ∈ �c(�,M). If f
satisfies

f = q + p1 ·H∗(f )+ · · · + pN ·HN∗ (f ), (5.2)

then f has a finite H -kernel.



154 5 Algebraic properties

Proof. Let f
1
= f , f

2
= H∗(f ), . . . , f N = HN−1∗ (f ). Then Equation (5.2)

transforms into

f
1
= p1 ·H∗(f 1

)+ · · · + pN ·H∗(f N)+ q
f

2
= H∗(f 1

)

...
f
N
= H∗(f N−1

).

Let B = MN with distinguished element (0, . . . , 0) and componentwise addition,
i.e., (a1, . . . , aN)+ (b1, . . . , bN) = (a1 + b1, . . . , aN + bN). Then End(B) is given
by End(M)N×N , i.e., by matrices whose entries are elements of End(M). For A =
(hi,j )i,j=1,....N we define

(A(a1, . . . , aN))k =
N∑
l=1

hk,l(al).

With this notation the transformed Equation (5.2) can be interpreted as

F = P ·H∗(F )+Q,
where F ∈ �(�,MN) with F(γ ) = (f

1
(γ ), . . . , f

N
(γ )), and Q ∈ �c(�,MN)

withQ(γ ) = (q(γ ), 0, . . . , 0) and P ∈ �c(�,End(B)) defined by

Pγ =

⎛⎜⎜⎜⎜⎜⎝
(p1)γ (p2)γ . . . (pN)γ

id 0 . . . 0
0 id . . . 0

...

0 . . . id 0

⎞⎟⎟⎟⎟⎟⎠ .
Thus, we have shown that F satisfies the requirements of Theorem 5.1.3 and Corol-
lary 5.1.5. Therefore, F has a finite H -kernel and, by projection, f has a finite
H -kernel, too. ��

Equations of type (5.2) are called Mahler equations. One may hope that Corollar-
ies 5.1.4, 5.1.5 even hold for the case that q has a finite H -kernel. Indeed, this is true
as we shall show, with different methods, in the next section.

Finally, we arrive at the characterization of H -automatic sequences. A combina-
tion of the proofs of Theorem 2.2.19 and Theorem 5.1.3 provides us with the following:

Theorem 5.1.6. A sequence f ∈ �(�,M), where M is a commutative, associative

monoid with 0, is H -automatic if and only if there exists an N ∈ N, B = MN ,
P ∈ �c(�,End(B)) and F ∈ �(�,B) such that

F = P ·H∗(F )
and θ̂ (F ) = f , where θ : B → M is defined by θ(a1, . . . , an) = a1.
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An equation of the type in Theorem 5.1.6 is called an N -dimensional Mahler
equation.

5.2 Solutions of Mahler equations

In this section we study Mahler equations over the finite, commutative, and associative
monoid M in more detail. As we have seen in the previous section, any solution f of
an equation of the type

f = p ·H∗(f )
is H -automatic, or, equivalently, has a finite H -kernel. Since there exists always the
trivial solution f = 0, we are mainly interested in non-trivial solutions of the above
equation. In this section, we develop a method based on substitutions which allows
us to find all solutions of the above equations.

We also present a method based on the reduced kernel graph of an assumed solution.
This method is less efficient than the method based on substitutions.

We begin with the method based on substitutions. At first glance one might expect
that the proof of Theorem 5.1.3 in combination with the proof of Theorem 2.2.19
provides such a tool. The steps for finding a non-trivial solution would then be the
following.

Firstly, calculate the H -kernel of an assumed solution. This is basically the proof
of Theorem 5.1.3. The H -kernel of f and the relations between the elements of the
kernel lead to a substitution, as shown in the proof of Theorem 2.2.19.

Secondly, find all fixed points of the associated substitution and check which of
the fixed points projects to a solution of the Mahler equation. It is the last step which
causes the main difficulties, even if V is a complete digit set of H . The next example
shows the drawbacks of the approach.

Examples.
1. Let M = {0, 1} be considered as the field F2. Let� = 〈x〉 = {xl | l ∈ Z}, i.e.,�

is isomorphic to Z. The mapH(x) = x3 is an expanding group endomorphism
w.r.t. the generating element x. We consider the following equation:

f = (1+ x + x3)H∗(f ).

The set V = {x0, x1, x2} is a residue set for H . Then the (V,H )-kernel of an
assumed solution f has four elements, namely

kerV,H (f ) = {f1 = f , f2 = ∂Hx0(f ), f3 = ∂Hx1(∂
H
x0(f )), f4 = ∂Hx2(f )}.

We thus obtain a substitution S : �(�,F4
2)→ �(�,F4

2) defined by

s0(a1, a2, a3, a4) = (a2, a2, a4, a4)

s1(a1, a2, a3, a4) = (a1, a3, a2, a4)

s2(a1, a2, a3, a4) = (a4, a1, a1, a4).
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Since Per κ = {x0, x−1} and x0, x−1 are fixed points of κ we can calculate the
number of fixed points of the substitution as∣∣{a ∈ F

4
2 | s0(a) = a}∣∣∣∣{a ∈ �A4 | s2(a) = a}∣∣,

which is 16. However, as it will turn out, not all fixed points are solutions of
the equation.

2. Let the setting be as in 1, except for V . Now let Vc = {x−1, x0, x1} be a
complete digit set. The (Vc,H)-kernel is given by

kerVc,H (f ) = {f
1
= f , (1+ x)f , xf }

and the kernel graph is shown in Figure 5.2.

f (1+ x)f

0 xf

1 0

−1−1, 0, 1

0

−1 −1, 11

0

Figure 5.2. (Vc,H)-kernel graph for Example 2.

The substitution is given by

s0(a1, a2, a3, a4) = (a2, a2, a4, a4)

s1(a1, a2, a3, a4) = (a1, a3, a3, a4)

s−1(a1, a2, a3, a4) = (a4, a4, a3, a4).

The number of fixed points is equal to 4. However, the number of different
solutions of the equation is equal to 2.

Note that the kernel graph together with the output function θ : kerVc,H (f )→
{0, 1} with θ(g) = g(x0) gives an automaton which generates the two possible
solutions.

The examples indicate that the above method is not well suited for finding solutions
of Mahler equations. We explain the underlying idea for a better method to solve these
equations.

Let M be the usual monoid and consider the simple Mahler equation

f = p ·H∗(f ) =
(∑
v∈V

hvv
)
·H∗(f ),
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where V is a residue set of H and p ∈ �(�,End(M)). The product of p with H∗(f )
is then given by p ·H∗(f ) =∑

v∈V,γ∈� hv(fγ )vH(γ ), i.e., the map f �→ p ·H∗(f )
is a substitution. A solution of the simple Mahler equation is a fixed point of the
substitution, and vice versa.

For an arbitrary p ∈ �c(�,End(M)) and its associated Mahler equation we shall
prove a similar result. Namely, we shall show that there exists a finite set B, an
injective map ι : �(�,M)→ �(�,B), and a substitution Sp : �(�,B)→ �(�,B)
such that

Sp(ι(f )) = ι(p ·H∗(f ))
holds for all f ∈ �(�,M). In a dynamical interpretation, we can say that the map
f �→ p ·H∗(f ) is conjugate to a substitution Sp on ι(�(�,M)). Moreover, any fixed
point of the substitution Sp is an element of ι(�(�,M)) The following example gives
a hint for an understanding of the general case.

Example. Let id be the identity on M = {0, 1}. We consider the Mahler equation

f = (id x0 + id x1 + id x3)H∗(f ),

where H(x) = x3. Let V = {x−1, x0, x1} be a complete digit set of H . We want
to find a (non-trivial) solution f ∈ �(Z,M) of the above equation. To this end, let

f =∑
flx

l . Then we can calculate

(p ·H∗(f ))(x3l−2) = f (xl−1)

(p ·H∗(f ))(x3l−1) = 0

(p ·H∗(f ))(x3l ) = f (xl−1)+ f (xl)
(p ·H∗(f ))(x3l+1) = f (xl).

(5.3)

We can conclude that a knowledge of f (xl) and of f (xl−1) enables us to compute

(p ·H∗(f ))(xj ) for j = 3l − 2, 3l − 1, 3l, 3l + 1. If we set B = M2 and define the

injective map ι : �(�,M)→ �(�,B) by

ι(f )(xl) =
(
f (xl)

f (xl−1)

)
,

then Equation (5.3) defines a substitution S : �(�,B)→ �(�,B) via

s−1(a1, a2) = (0, a1)

s0(a1, a2) = (a1 + a2, 0)

s1(a1, a2) = (a1, a1 + a2).

By construction, we have S(ι(f )) = ι((1 + x + x3)H∗(f )). Since V is a complete
digit set, the number of solutions of the substitution equals the number of fixed points
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of s0, which are (0, 0) and (1, 0). In fact, these are all solutions of the Mahler equation.
We thus have seen that a sort of grouping of f (xj ), where j is in a finite set, gives a

new finite set B and new sequences. In this context the operation of p on�(�,M) is
a substitution. This idea will be our guiding rule for the general situation.

From now on � ⊂ � denotes a finite subset of � and B� = {h : �→ M} is the
set of maps from � to M, where the zero-map, denoted by 0 : �→ M, 0(λ) = 0, is
the distinguished element.

Definition 5.2.1. Let � ⊂ � be finite. The map ι� : �(�,M)→ �(�,B�), where
ι�(f )γ : �→ M is defined by

ι�(f )γ (λ) = f (λγ ),

is called �-block-map. A sequence h ∈ �(�,B�) is called admissible if h ∈
ι�(�(�,M)).

Remarks.

1. It is plain that ι� is injective.

2. ι�(f 1
+ f

2
) = ι�(f 1

)+ ι�(f 2
).

3. h =∑
γ hγ γ ∈ �(�,B�) is admissible if and only if hγ (λ) = hγ ′(λ′) for all

γ, γ ′ ∈ �, λ, λ′ ∈ � such that λγ = λ′γ ′.
There exist several projections from �(�,B�) to �(�,M), some of them are

important for us. For λ ∈ � we define pλ : �(�,B�)→ �(�,M) by

pλ

(∑
hγ γ

)
=
∑
hγ (λ)γ

and p∗λ : �(�,B�)→ �(�,M) as

p∗λ
(∑

hγ γ
)
=
∑
hγ (λ)λγ = (Tλ)∗pλ(h).

The projections p∗λ allow a characterization of admissible sequences. A sequence
h ∈ �(�,B�) is admissible if and only if p∗λ(h) = p∗

λλ′(h) for all λ, λ′ ∈ �.
Moreover, p∗λ(ι�(f )) = f , i.e., p∗λ is injective on the set of admissible sequences.

The next lemma shows that the map ι� respects the finiteness of H -kernels.

Lemma 5.2.2. Iff ∈�(�,M) has a finiteH -kernel, then ι�(f ) has a finiteH -kernel,
too.

If h ∈ �(�,B�) has a finite H -kernel, then pλ(h) has a finite H -kernel for all
λ ∈ �.
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Proof. We have the following identity: pλ
∂Hv (h) = ∂Hv 
pλ(h) for all h ∈ �(�,B�)

and λ ∈ �. Thus for h = ι�(f ), we conclude that

pλ 
 ∂Hv (h) = ∂Hv 
 (Tλ)∗(f ).
Due to Theorem 3.2.5 and due to the finiteness of �, we obtain that the H -kernel of
ι�(f ) is contained in the set

K = {∑
gγ γ | pλ(∑ gγ γ ) ∈ ker(Tλ)∗(f ) for all λ ∈ �}

which is finite.
The second assertion follows from the above commutativity of the projections pλ

and the v-decimations. ��

Since p∗λ = (Tλ)∗ 
pλ, we obtain that p∗λ(h) has a finiteH -kernel if h has a finite
H -kernel.

The following theorem states that for a certain choice of a finite set� ⊂ � and its
associated map ι� we can model the operation of p ∈ �c(�,End(M)) on elements
of the form H∗(f ) by a substitution Sp : �(�,B�)→ �(�,B�).

We remind of the notion of the product of two (finite) sets. If �1,�2 ⊂ �, then
the product �1�2 is given by �1�2 = {γ1γ2 | γ1 ∈ �1, γ2 ∈ �2}.
Theorem 5.2.3. Let p ∈ �c(�,End(M)) and let V be a fixed residue set ofH . Then
there exists a finite set � = �(p, V ) and a (V ,H)-substitution Sp : �(�,B�) →
�(�,B�) such that

ι�(p ·H∗(f )) = Sp(ι�(f ))
holds for all f ∈ �(�,M).
Proof. We start with the defining properties of�. For p ∈ �c(�,End(M)) let the set
W be defined by W = {γ−1 | p(γ ) �= 0}. In order to describe the operation of p on
elements of the form H∗(f ) as a substitution we need a finite set � such that

W�vH(γ ) ∩H(�) ⊂ H(�)H(γ )
holds for all γ ∈ � and v ∈ V . In fact, this equation for � was solved for the above
example. The equation for � is equivalent to

W�V ∩H(�) ⊂ H(�).
Now observe that for any subset �′ of � the following inclusion is true:

�′ ⊂
⋃
v∈V

vH(κ(�′)).

Therefore we obtain
W�V ∩H(�) ⊂ H(κ(W�V )).
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Thus we can conclude that a solution� of the equation H(κ(W�V )) = H(�) gives
a solution of the above inclusion. If we apply H−1, we obtain: if � is a solution of
κ(W�V ) = �, then � satisfies the desired inclusions.

The next step is to show that there exists always a solution�. Let r = max{‖v‖ |v ∈
V } and r∗ = max{‖w‖ | w ∈ W }, let R = 2r+r∗

C−1 , where C is the expansion ratio of
H . If � is a non-empty subset of BR(e), then due to the choice of R we have the
following inequality for the norm of γ ∈ κ(W�V ):

‖γ ‖ = ‖κ(wλv)‖ ≤ r + ‖wλv‖
C

≤ 2r + r∗ + R
C

≤ R.
Therefore, if ∅ �= � ⊂ BR(e), then κ(W�V ) is a non-empty subset of BR(e), too.
Since the set of subsets ofBR(e) is finite there exists a subset which is a periodic point
of the map � �→ κ(W�V ). If we take the union over the orbit of the periodic point
we obtain a finite set � with � = κ(W�V ). We thus have established the existence
of a finite set � with the desired property.

From now on � denotes a solution of � = κ(W�V ). With � we are able to
define the substitution Sp. An element h ∈ B� can also be considered as an element of
�(�,M). If we consider h as an element of�(�,M)we write it as h′ =∑

λ∈� h(λ)λ
with the usual convention h(γ ) = 0 for γ �∈ �.

Due to the choice of � we can define maps sv : B� → B� by

sv(h) = ι�(p ·H∗(h′))(v),
where v ∈ V . Since sv(0) = 0 for all v ∈ V , we can define a substitution Sp :
�(�,B�)→ �(�,B�) by Sp(h) =∑

(Tv 
H)∗ 
 sv(h).
Finally, we prove that Sp 
 ι�(f ) = ι�(p ·H∗(f )) holds for all f .
Let λ, λ′ ∈ �. We start with

ι�(p ·H∗(f ))vH(γ )(λ′) = (p ·H∗(f ))(λ′vH(γ )) =
∑
w,ξ

pw−1(fξ ),

where the sum is over all w ∈ W and ξ ∈ � such that H(ξ) = wλ′vH(γ ).
For the substitution we obtain:

Sp(ι�(f ))vH(γ )(λ
′) = sv(ι�(f )γ )(λ′)
= ι�

(
p ·H∗

(∑
λ∈�

fλγ λ
))
v
(λ′)

=
(
p ·H∗

(∑
λ∈�

fλγ

))
(λ′v)

=
∑
w,λ

pw−1(fλγ ),
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where the sum is over all w ∈ W and λ ∈ � such that H(λ) = wλ′v holds. Once
again, we encounter the defining equation for �. The defining equation guarantees
that the last sum is in fact equal to the above sum. More formally, we obtain that
H(ξ) = wλ′vH(γ ) = H(λγ ), i.e., ξ = λγ . Therefore both sums are equal which
proves the assertion. ��

We say that the substitution Sp is induced by the equation f = p · H∗(f ), or
simply is induced by p.

Example. Let � = 〈x〉, H(xj ) = x3j and let Vc = {x−1, x0, x1} be a complete digit
set. Consider the Mahler equation

f (x) = (id+ id x + id x4) ·H∗(f ),

where id is the identity id on M. ThenW = {x0, x−1, x−4} and � = {x−2, x−1, x0}
satisfies

κ(W�V ) = �.
Therefore B = M� = M3 = {(a0, a−1, a−2) | ai ∈ M, i = 0,−1,−2}. The
multiplication (id+ id x + id x4) · H∗(f ) is modelled by the induced substitution

Sp : �(�,M�)→ �(�,M�) defined by

s−1(a0, a−1, a2) = (0, a1 + a−2, a−1)

s0(a0, a−1, a−2) = (a0, 0, a−1 + a−2)

s1(a0, a−1, a−2) = (a0 + a−1, a0, 0).

The fixed points of the substitution Sp are given by (a, 0, b), where a, b ∈ �A. These
fixed points give all solutions of the Mahler equation.

If we combine the proofs of Corollary 5.1.5 and Theorem 5.2.3, we obtain a
substitution for Mahler equations of the type

f = p1 ·H∗(f )+ · · · + pN ·H 
N∗ (f ).

As a consequence of Theorem 5.2.3 we get an answer to our question on the number
of solutions of Mahler equations.

Corollary 5.2.4. SupposeV is a complete digit set ofH and Sp is the induced (V ,H)-
substitution. Then the number of fixed points of Sp equals the number of solutions of
the equation

f = p ·H∗(f ).
Proof. The proof of Theorem 5.2.3 shows that Sp maps admissible sequences on
admissible sequences. It therefore remains to show that any fixed point of Sp is
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admissible. To this end, suppose that h = ∑
hγ γ is a fixed point of Sp, then h′e =∑

λ∈� he(λ), λ ∈ �(�,M) maps via ι� to an admissible sequence ι�(h′e), which
coincides with the assumed fixed point at e. Due to the proof of Lemma 2.2.9, the
value at the fixed point of κ completely determines the dynamics. We thus obtain that
the sequence SNp (ι�(h

′
e)) is a sequence of admissible sequences and converges to the

fixed point. Therefore the fixed point is an admissible sequence, and the projection
p∗λ is a solution of the Mahler equation. Since the projection is injective the assertion
follows. ��

Remarks.

1. If V is such that Per κ contains only fixed points we get a similar result. Let h
be a fixed point of Sp. Consider g =∑

ξ∈Perκ hξ ξ , and suppose g satisfies

gξ (λ) = gξ ′(λ′)
whenever ξλ = ξ ′λ′ for all ξ, ξ ′ ∈ Per κ and λ, λ′ ∈ �. Then

f =
∑

ξ∈Per κ, λ∈�
gξ (λ)λξ

is mapped under ι� to an admissible sequence which coincides on Per κ with
the fixed point h. The number of solutions of the Mahler equation is then given
by the number of fixed points of the substitution with the above property.

2. In the general situation one has that the number of solutions of the Mahler
equation is given by the number of admissible fixed points of the associated
substitution.

As another application of Theorem 5.2.3 we obtain a generalization of Corol-
lary 5.1.4.

Corollary 5.2.5. Letp∈�c(�,End(M)), and let g∈�(�,M)with a finiteH -kernel.
If f satisfies

f = p ·H∗(f )+ g,
then f has a finite H -kernel.

Proof. By Theorem 5.2.3 there exist a finite set � and a (V ,H)-substitution Sp :
�(�,B�)→ �(�,B�) such that

ι�(p ·H∗(f )) = Sp(ι�(f )).

Therefore we consider the Mahler equation over the set �(�,B�), i.e., we consider
the equation

h = Sp(h)+ ι�(g).



5.2 Solutions of Mahler equations 163

By Lemma 5.2.2, ι�(g) has a finite H -kernel. Moreover, an admissible solution h
projects viap∗λ(h) to a solution of the Mahler equation. By Lemma 5.2.2, the finiteness
of ker p∗λ(h) follows from the finiteness of the H -kernel of h. To this end, we define
the set K by

K = {
â(h)+∑j∈ker ι�(g) b̂j (j) | where a, bj ∈ End(B�) and j ∈ ker ι�(g)

}
.

The set K is finite and contains h. It is therefore sufficient to show the decimation
invariance of K . To this end, we calculate

∂Hv (â(h)+
∑
b̂j (j))

= â(∂Hv (h))+
∑
b̂′j (j)

= â∂Hv (Sp(h)+ ι�(g))+
∑
b̂′j (j) by fixed point property of h

= â(ŝv(h))+ â(∂Hv (ι�(g)))+
∑
b̂′j (j) by Lemma 2.2.17.

The last line shows that ∂Hv (K) ⊂ K . By projection, we obtain the desired result for
the H -kernel of p∗λh. ��

For the number of different solutions of non-homogenous Mahler equations we
get a result similar to Corollary 5.2.4.

Corollary 5.2.6. Let V be a complete digit set and let g ∈ �(�,M) with finite H -
kernel. Then the number of solutions of the non-homogenous Mahler equation

f = p ·H∗(f )+ g
is equal to the number of fixed points of the equation

h = Sp(h)+ ι�(g).

Yet another application of Theorem 5.2.3 is concerned with a criterion for a residue
set to be a complete digit set.

Corollary 5.2.7. Let V be a residue set of H , and let M = {0, 1} be considered as
the field F2. Let W be a residue set of H , W �= V . The residue set W is a complete
digit set if and only if the equation

f = (
∑
w∈W

id �Aw) ·H∗(f ) (5.4)

has two solutions.
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Proof. We start with a simple observation. Since W is a residue set of H there are
always the solutions f ≡ 0 and f ≡ 1 of Equation (5.4).

Now suppose that W is a complete digit set. We apply Theorem 5.2.3 to Equa-
tion (5.4) and residue set W and obtain � = {e} and sw(a) = a for all w ∈ W .
Therefore 5.4 has only two solutions.

Suppose that 5.4 has two solutions and that W is not a complete digit set. Then
�e =⋃∞

n=0 κ
−n
H,W (e) �= � and

f
e
=
∑
γ∈�e

γ

is a solution of 5.4; this is a contradiction. ��

If M has a richer algebraic structure, e.g., a commutative ring with 0 and 1, we
can transfer all the above results to this situation in the following way. The ring
multiplication defines a left operation on �(�,M) (componentwise multiplication),
i.e., we consider �(�,M) as an M-module. The set �c(�,End(M)) is then the set
of polynomials with coefficients in M, i.e.,

p =
∑
γ∈�

pγ γ

with pγ ∈ M and pγ = 0 almost everywhere. Hence we can identify�c(�,End(M))
with �c(�,M) = {f ∈ �(�,M) | f has finite support}. The operation of p ∈
�c(�, �A) on �(�, �A) is the usual Cauchy product. If M is a commutative ring then
Lemma 5.1.2 states that the set of H -automatic sequences is a �c(�,M)-module.

We conclude this section by comparing the substitution approach for the solutions
of a Mahler equation with the approach of using the kernel graph of an assumed
solution. As the example above shows, one can determine the solutions of the Mahler
equation f = (id+ id x+ id x4) ·H∗(f ) for every monoid M. An attempt to find the
solutions using the kernel graph requires to compute the kernel graph of an assumed
solution. It is obvious that this computation depends heavily on the cardinality of M
and also on the structure of the addition in M.

5.3 � abelian

In this section, we study the theory of substitutions for the case that � is an abelian
group. As we have already seen the commutativity of � implies that � is equal to Z

n

for some n ∈ N, see Lemma 2.1.3.
We also impose some further restriction on the finite set �A. Namely we suppose

that �A carries the structure of a finite field which we denote by F . As before, we also
write Fq for the finite field with q = pα elements, p a prime number.

The main goal of this chapter is to obtain a sort of inverse statement of Theo-
rem 5.1.3. We shall prove that for f ∈ �(Zn,F ), the finiteness of theH -kernel of f
implies the existence of a generalized Mahler equation for which f is a solution. In
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the course of the proof it will become clear that the conditions that � is commutative
and that F is a field are crucial.

From now on we think of � = Z
n with generating set {x1, . . . , xn}. The elements

of � are written as xα = xα1
1 x

α2
2 . . . x

αn
n and we have xαyβ = xα1+β1

1 . . . x
αn+βn
n . Any

expanding endomorphism (w.r.t. the generating set {x1, . . . , xn}) of Z
n is given by a

matrix M ∈ Z
n×n which is expanding w.r.t. any norm on R

n. Usually, we use the
euclidian norm on R

n.
For an expanding endomorphism H and a residue set V we have the following

trivial identities for the associated remainder- and image-part-map, respectively,

κ(xy) = κ(ζ(x)ζ(y))κ(x)κ(y)
ζ(xy) = ζ(ζ(x)ζ(y)). (5.5)

Similar to Lemma 4.1.6 we obtain a product-formula for decimations.

Lemma 5.3.1. Let M be a commutative, finite monoid and let p ∈ �c(Zn,End(M)).
Then, for H : Z

n → Z
n expanding,

∂Hv (p · f ) =
∑

u,w ∈ V
ζ(uw) = v

(Tκ(uw))∗ 
 ∂Hu (p) 
 ∂Hw (f )

holds for all v ∈ V , V a residue set of H .

Proof. We have for x ∈ Z
n and v ∈ V that

∂Hv (p · f )(x) = (p · f )(vH(x)) =
∑
y,z

py(fz),

where the sum is over all y, z ∈ Z
n such that yz = vH(x). For y = uH(y′),

z = wH(z′) and by Equation (5.5) we get∑
y,z

py(fz) =
∑

u,w ∈ V
ζ(uw) = v

(∑
y′,z′

puH(y′)(fwH(z′))
)
,

where the last sum is over all y′, z′ such that y′z′ = κ(uw)−1x. This means that∑
y′,z′

puH(y′)(fwH(z′)) = (Tκ(uw))∗ 
 ∂Hu (p) 
 ∂Hw (f )(x)

which proves the assertion. ��
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Remarks.

1. The product formula is also valid for the ∗-product of two elements in
�c(Z

n,End(M)).

2. If M is a commutative ring, then the product formula holds for all f , g ∈
�(Zn,M) as long as the products are well defined. E.g., if supp f , supp g ⊂ N

N

the Cauchy product is well defined and the product formula holds.

After these preliminary remarks we turn our attention to a partial converse of
Theorem 5.1.3 and its consequences. Namely, we shall show that for any expanding
map H : Z

n → Z
n and any f ∈ �(Zn,F ) with finite H -kernel, where F is a finite

field, there exists an N ∈ N and polynomials pj ∈ �c(Zn,End(F )) = �c(Zn,F ),
j = 0, 1, . . . , N , such that f satisfies a generalized Mahler equation, i.e.,

p0f + p1H∗(f )+ · · · + pnHN∗ (f ) = 0.

Before we state two lemmata which are important for a proof of the above state-
ment, we remark that the set of polynomials, i.e., �c(Zn,F ), equipped with Cauchy
product and componentwise addition is a commutative integral domain, i.e., a com-
mutative ring without zero divisors. As in Section 5.1, we also work with the sequence
space �(Zn,F N) and its associated polynomial ring �c(Zn,End(Zn,F N)) =
�c(Z

n,F N×N) which is not commutative. The elements of �c(Zn,F N×N) are
polynomials with coefficients in the set of N × N -matrices with entries in the field
F . These polynomials operate in an obvious way on �(Zn,F N).

If q ∈ �c(Zn,F ) and F ∈ �(Zn,F N), then

(qF )(x) =
⎛⎜⎝ (qf 1

)(x)

...

(qf
N
)(x)

⎞⎟⎠ .
The following lemma shows that f

1
∈ {f

1
, . . . , f

N
} satisfies a generalized

Mahler equation if the elements f
1
, . . . , f

N
are related by a functional equation.

Lemma 5.3.2. Let F be a finite field and let H : Z
n → Z

n be expanding. Let
F ∈ �(Zn,F N) be such that there exist a polynomial q ∈ �c(Zn,F ), q �= 0, and
A ∈ �c(Zn,F N×N) with

qH∗(F ) = AF. (5.6)

Then each component f
j

of F satisfies a generalized Mahler equation.
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Proof. It suffices to prove that f
1

satisfies a generalized Mahler equation. Let
〈f

1
, . . . , f

N
〉 be the �c(Zn,F )-module generated by f

1
, . . . f

N
, i.e.,

〈f
1
, . . . , f

N
〉 = {

f =∑N
j=1 pjfj

| pj ∈ �c(Zn,F )
}
.

Then Equation (5.6) implies that the �c(Zn,F )-module 〈qH∗(f 1
), . . . , qH∗(f N)〉

is a submodule of 〈f
1
, . . . , f

N
〉. Applying H∗ to Equation (5.6) we obtain

H∗(q)H 2∗ (F ) = H∗(A)H∗(F )
and after multiplication by q we arrive at

qH∗(q)H 2∗ (F ) = H∗(A)qH∗(F )
which yields

qH∗(q)H 2∗ (F ) = H∗(A)AF .
In other words, the �c(Zn,F )-module 〈qH∗(q)H 2∗ (f 1

), . . . , qH∗(q)H 2∗ (f N)〉 is a
submodule of 〈f

1
, . . . , f

N
〉 and of the module 〈qH∗(f 1

), . . . , qH∗(f N)〉. If we set

q0 = 1x0 and qn+1 = qH∗(qn) and B0 = id x0 and Bn+1 = H∗(Bn)A, we obtain that

qnH
n∗ (F ) = BnF

holds for all n ∈ N. We thus have constructed a descending sequence of �c(Zn,F )-
modules

〈f
1
, . . . , f

N
〉 ⊃ 〈q1H∗(f 1

), . . . , q1H∗(f N)〉
...

⊃ 〈qNHN∗ (f 1
), . . . , qNH

N∗ (f N)〉.
If we consider the matrices Bn ∈ �(Zn,F N×N) as elements of�c(Zn,F )N×N , i.e.,
as a polynomial-matrices, then Bn has the following property.

Let g ∈ 〈qnHn∗ (f 1
), . . . , qnH

n∗ (f n)〉 and write

g =
N∑
j=1

rj qnH
n∗ (fj ),

where rj ∈ �c(Zn,F ). Then

Bn

⎛⎜⎝ r1...
rN

⎞⎟⎠ =
⎛⎜⎝ s1...
sN

⎞⎟⎠
and g =∑N

j=1 sjfj
.
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We thus obtained that the �c(Zn,F )-module 〈f
1
, q1H∗(f 1

), . . . , qNH
N∗ (f 1

)〉
is a submodule of 〈f

1
, . . . , f

N
〉. From the Bj , j = 0, . . . , N , we can construct an

M ∈ �c(Zn,F )N×(N+1) such that for

g =
N∑
j=0

rj qjH
j∗ (f 1

) ∈ 〈f
1
, q1H∗(f 1

), . . . , qNH
N∗ (f 1

)〉

the polynomials defined by

(s1, . . . , sN ) = M(r0, . . . , rN )T
give a representation of g as g = ∑N

j=1 sjfj . Since �c(Zn,F ) is an integral do-

main there exist non-trivial polynomials p0, . . . , pn such that M(p0, . . . , pN)
T =

(0, 0, . . . , 0). Therefore g = ∑N
j=0 pjqjH

j∗ (f 1
) equals zero; which is the desired

generalized Mahler equation. ��

The next example shows how the proof proceeds.

Example. Let F = F2 and let � = Z and H(xj ) = x2j , and suppose that f
1
, f

2
satisfy

(1+ x2)

(
H∗(f 1

)

H∗(f 2
)

)
=
(

1 x
x 1

)(
f

1
f

2

)
.

Then we obtain q2 = 1+ x2 + x4 + x6 and

B2 =
(

1+ x3 x + x2

x + x2 1+ x3

)
which yields

M =
(

1 1 1+ x3

0 x x + x2

)
.

We thus conclude that (x + x3, 1 + x, 1)T is mapped on (0, 0) by M . Therefore the
generalized Mahler equation

0 = (x + x3)f1 + (1+ x + x2 + x3 + x4)H∗(f 1
)+ (1+ x2 + x4 + x6)H 2∗ (f 1

)

is satisfied by f
1
.

Remark. The proof of Lemma 5.3.2 shows that the conditionH : Z
n → Z

n expanding
is not necessary.

The next lemma is inspired by the following observation. Suppose that f ∈
�(Zn,F ) has a finite (V ,H)-kernel {f

1
= f , f

2
, . . . , f

N
}. Then there exists an

A ∈ �c(Zn,F )N×N such that

A =
∑
ν∈V

Aν x
ν
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and each Aν has 0 or 1 as entries. Moreover A is such that

F =
⎛⎜⎝ f 1
...

f
N

⎞⎟⎠ = AH∗(F )

holds. This is essentially the second part of the proof of Theorem 2.2.19.
The determinant of A is a polynomial in the variables x1, . . . , xn. If detA is

different from the zero polynomial, then we can multiply with the adjoint Aad of A
and obtain

AadF = (detA)H∗(F ).
Then by Lemma 5.3.2, f

1
satisfies a generalized Mahler equation. Unfortunately,

there exist automatic sequences such that detA = 0. The next lemma provides a kind
of reduction process to overcome this difficulty.

Lemma 5.3.3. Let F ∈ �(Zn,F N) = (f
1
, . . . , f

N
)T and let A ∈ �c(Zn,F N×N)

and p ∈ �c(Zn,F ), p �= 0, be such that

pF = AH∗(F )
holds. If detA = 0, then there exists an A ∈ �c(Zn,F (N−1)×(N−1)), a polynomial
p ∈ �c(Zn,F ) and j ∈ {1, 2, . . . , N} such that F = (f

1
, . . . , f̂

j
, . . . f

N
)T ∈

�c(Z
n,F N−1), where f

j
is omitted, satisfies

pF = AH∗(F ).
Proof. Since pf = AH∗(F ) and detA = 0, we have that AadpF = 0. Since
�c(Z

n,F ) is an integral domain there exists α1, . . . , αN ∈ �c(Zn,F ) and j =
1, . . . , N with αj �= 0 and

αjpfj
=

N∑
l=1,l �=j

αlpf l
. (5.7)

For all k ∈ {1, . . . , N} we have

pfk =
N∑
l=1

aklH∗(fl),

where A = (akl), k, l = 1, . . . , N , regarded as an element of �c(Zn,F )N×N . Mul-
tiplication by H∗(αjp) yields

H∗(αjp)pfk =
N∑
l=1

aklH∗(αjp)H∗(f l).
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From Equation (5.7) we get

H∗(αjpfj ) =
N∑

l=1,l �=j
H∗(αlpf l),

and thus

H∗(αjp)pfk =
N∑

l=1,l �=j
(aklH∗(αjp)+ akjH∗(αlp))H∗(f l)

for all l = 1, . . . , N and l �= j . For p = H∗(αjp)p andA = (ak,l) = (aklH∗(αjp)+
akjH∗(αlp)), where l, k = 1, . . . , N and l, k �= j the assertion is proved. ��

Example. Let Z
n = 〈x〉, i.e., Z

n is isomorphic to Z, letH(xj ) = x2j and let F = F2.
We consider ⎛⎜⎜⎝

f
1
f

2
f

3
f

4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x 1 0 0
0 0 1 x

0 0 1+ x 0
0 0 0 1+ x

⎞⎟⎟⎠
⎛⎜⎜⎝
H∗(f 1

)

H∗(f 2
)

H∗(f 3
)

H∗(f 4
)

⎞⎟⎟⎠
which is the defining equation for a 2-automaton that generates the paperfolding se-
quence. Then detA = 0. Multiplying the above equation by

Aad =

⎛⎜⎜⎝
0 1+ x2 1+ x x(1+ x)
0 1+ x2 1+ x x(1+ x)
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
leads to (1+ x2)f2 = (1+ x)f 3

+ x(1+ x)f
4
. This yields

(1+ x2)

⎛⎝ f 1
f

3
f

4

⎞⎠ =
⎛⎝ x(1+ x2) 1+ x2 x2(1+ x2)

0 1+ x3 0
0 0 1+ x3

⎞⎠⎛⎝H∗(f 1
)

H∗(f 3
)

H∗(f 4
)

⎞⎠ ,
and the above matrix has a non-vanishing determinant. We can thus multiply by the
adjoint and apply Lemma 5.3.2.

With these two lemmata we are able to prove the main result of this chapter.

Theorem 5.3.4. Let f ∈ �(Zn,F ), where F be is finite field. If f has a finite
H -kernel, then f satisfies a generalized Mahler equation.
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Proof. Let kerH,V = {f
1
= f , . . . , f

N
} be the kernel of f and V be a residue set of

H . Then there exists a matrix A ∈ �c(Zn,F )N×N such that

F =
⎛⎜⎝ f 1
...

f
N

⎞⎟⎠AH∗(F ).
If detA �= 0, we multiply the above equation by the adjoint Aad of A and obtain

AadF = (detA)H∗(F ).

By Lemma 5.3.2, f
1

satisfies a generalized Mahler equation.
If detA = 0, then there exist α1, . . . , αN ∈ �c(Zn,F ) such that 0 = α1f 1

+
· · · + αNf N and not all αj equal zero. We distinguish two cases.

If there is a j ∈ {2, 3, . . . , N} such that αj �= 0 we apply Lemma 5.3.3 and obtain
ap1 ∈ �c(Zn,F ) andA1 ∈ �c(Zn,F (N−1)×(N−1)) such that for the modified kernel
of f , i.e., the set {f

i
| i = 1, . . . , N, i �= j} the equation p1F1 = A1H∗(F 1) holds.

If α1 �= 0 and α2 = α3 = · · · = αN = 0 then 0 = α1f 1
= α1f is the desired

Mahler equation.
Iterating this process we either arrive at an Aj with detAj �= 0 and, after multi-

plication by the adjoint of Aj , we apply Lemma 5.3.2 or we get a Mahler equation of
the type 0 = pf , where p ∈ �c(Zn,F ). ��

The question on the converse of Theorem 5.3.4 is a very delicate one. Its answer
depends on the field F and the expanding mapH . Even in the one-dimensional case,
i.e., � = Z, interesting phenomena occur.

Example. Let � = Z and F = Fp, where p is a prime number, the field with p
elements, the expanding map H : Z

n → Z
n is defined by H(x) = x2.

We consider the following generalized Mahler equation

(1− x)f = H∗(f ).
Then we have the following results.

a) For all prime numbersp there exists a non-trivial solution g
p

with supp g
p
⊂ N.

b) The solution g
p

has a finite H -kernel if and only if p = 2.

The first statement follows from the fact that the infinite product

g(x) =
∞∏
j=0

1

1− x2j
=

∞∏
j=0

( ∞∑
k=0

x2j k
)
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is well defined over Z and not zero. Moreover, g
p
≡ g(x) mod p satisfies the above

generalized Mahler equation.
For the second assertion, we fix the residue set as V = {x0, x1} and a prime

number p ≥ 3 and show that the orbit of g
p

under iteration of ∂H
x0 is not eventually

periodic. Therefore the 2-kernel of g
p

is infinite. Since supp g
p
⊂ N0 we can divide

by 1− x and thus obtains that g
p

satisfies

g
p
= 1

1− xH∗(gp). (5.8)

As a next step we use Corollary 5.3.1 to calculate the decimations of rational functions.
A rational function r is of the form r = p/q, where p, q are polynomials.

We have

∂H
x0

(
p/q

) = ∂H
x0(p)∂

H
x0(q)− x∂Hx1(p)∂

H
x1(q)

∂H
x0(q)

2 − x∂H
x1(q)

2

and

∂H
x1

(
p/q

) = ∂H
x0(q)∂

H
x1(p)− ∂Hx0(p)∂

H
x1(q)

∂H
x0(q)

2 − x∂H
x1(q)

2
.

If we consider 1−x as an element of the polynomial ring Z[x] then a simple induction
argument shows that

(1− x)n = ∂H
x0

(
(1− x)n)2 − x∂H

x1

(
(1− x)n)2

holds for all n ∈ N. Moreover, we have

∂H
x0

(
(1− x)n)(1) = 2n−1 and ∂H

x1

(
(1− x)n)(1) = −2n−1

for all n ∈ N.
The product formula and the formula for the decimations of rational functions

applied to Equation (5.8) gives for the n-th iterate of ∂H
x0(

∂H
x0

)n
(g
p
) = qn

(1− x)n gp,
and the recursion

qn+1(x) = ∂Hx0(qn)∂
H
x0

(
(1− x)n+1)− x∂H

x1(qn)∂
H
x1

(
(1− x)n+1).

Combining all these facts we see that qn+1(1) = 2nq0(1).
Since qn(1) is always a power of 2 the polynomial qn(x) viewed as an element of

Zp[x] (p prime number greater than 2) has no factor of the form 1− x. Therefore all(
∂H
x0

)n
(g
p
) are different, i.e., the 2-kernel is infinite. For p = 2 it is easy to verify,

using the above formulas, that the 2-kernel is finite.

If F = Fpα is a finite field of characteristic p, then f being a solution of a
generalized Mahler equation implies that f is automatic.
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Theorem 5.3.5. Let� = Z and let Fpα be a finite field of characteristicp and consider
the expanding map H(xj ) = xpj . If f = ∑

l∈Z
xl fl ∈ �(Fpα ) is such that there

exists anm0 ∈ Z with fm = 0 for allm < m0 and if f satisfies a generalized Mahler
equation, i.e.,

N∑
j=0

p
j
H

j∗ (f ) = 0

for polynomials p
j
∈ �c(Z, �A) not all of them equal to zero, then f has a finite

H -kernel.

Proof. Since Fpα is a finite field of characteristic p, the pα-th power of p ∈ �c(Z, �A)
is given as the α-th iterate of H∗, i.e.,

pp
α = H 
α∗ (p). (5.9)

It is no restriction to assume that p
0

is not the zero polynomial. Indeed, suppose that
there exists 0 < j0 such that p

j0
is the smallest non-zero polynomial, then there exists

at least one decimation ∂Hi , i ∈ {0, . . . , p − 1}, such that ∂Hi (pj0
) �= 0. This gives

0 = ∂Hi
( N∑
j=j0

p
j
H

j∗ (f ) = 0

)
=

N∑
j=j0−1

q
j
H

j∗ (f ).

Therefore
p

0
f + p

1
H∗(f )+ · · · + pNH∗(f ) = 0

and p
0

is different from the zero sequence. Since p
j

are polynomials and fm = 0

for all m sufficiently small, we may divide by p
0
. If we set g

i
= H


(i−1)∗ (f ) for
i = 1, . . . , N , then we can transform the above equation into a matrix version:

G =

⎛⎜⎜⎜⎝
g

1
g

2
...

g
N

⎞⎟⎟⎟⎠ = 1

p
0

⎛⎜⎜⎜⎜⎜⎝
−p

1
−p

2
. . . −p

N

1 0 . . . 0
0 1 . . . 0
... 0

. . .
...

0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
H∗(g1

)

H∗(g2
)

...

H∗(gN)

⎞⎟⎟⎟⎠ = Q′H∗(G).

For α as in Equation (5.9) one obtains a polynomial q ∈ �(Z, �A) and a polynomial

matrix Q̃ ∈ �c(Z, �AN×N) such that

G = 1

q
Q̃Hα∗ (G).

To complete the proof we prove thatG has a finiteHα-kernel. To this end, we consider
the set

K =
{

1

q
QG | Q ∈ �(Z, �AN×N

c ) , ‖Q‖ ≤ ‖q‖ + ‖Q̃‖ + r
}
,
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where r = max{|v| | v ∈ V } for a residue set V of Hα . Let v ∈ V , then we have

∂H
α

v (G) = ∂Hαv
(

1

q
Q̃Hα∗ (G)

)
.

By Equation (5.9), this can be transformed to

1

q
∂H

α

v

(
qp

α−1Q̃
)
G

and ∥∥∂Hαv (
qp

α−1Q̃
)∥∥ ≤ (pα − 1)‖q‖ + ‖Q̃‖ + r

pα − 1
≤ ‖q‖ + ‖Q̃‖ + r

which shows that ∂H
α

v (G) ∈ K for all v ∈ V . Similar arguments show that K is
invariant under decimations. This shows that G is pα-automatic and therefore f is
p-automatic. ��

As an immediate consequence we also note

Corollary 5.3.6. Let Fq be a finite field of characteristic p. If f =∑
l∈Z
fl x

l is such
that there exists an l0 ∈ Z with fl = 0 for all l ≤ l0 and if there exist polynomials
p
j
∈ �c(Z,Fq), j = 0, . . . , N , such that

N∑
j=0

p
j
f j = 0,

then f is p-automatic.

Proof. If f satisfies the above equation then there exist polynomials q
j
∈ �(Z,Fq),

j = 0, . . . ,M , such that at least one of the polynomials is different from zero and
such that

M∑
j=0

q
j
H

j∗ (f ) = 0

holds. Then the assertion follows from Theorem 5.3.5. ��

We conclude with the higher dimensional analogue of Theorem 5.3.5.

Theorem 5.3.7. Let f ∈ �(Zn,Fpα ) be such that there exists a t ∈ N
n with t +

supp(f ) ⊂ N
n. If there exist polynomials p

j
, j = 0, . . . , N , not all of them zero, and∑

j=0

p
j
H

j∗ (f ) = 0,

then f is H -automatic, where H(xa1
1 . . . x

an
n ) = xpa1

1 . . . x
pan
n .
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The proof follows the same lines as the proof of Theorem 5.3.5. Observe that the
condition on the support of f allows us to multiply f with 1/p for a polynomial p.

Examples.
1. A rational function f ∈ �(Zn, �A) is the quotient of two polynomials p, q ∈
�(Zn,F ), where F is a finite field. Therefore, f q = p is an equation for f .

By Corollary 5.3.6, f is H -automatic, where H : Z
n → Z

n, H(x) = xp.

2. Let � = Z
2 and H(xα1 x

β
2 ) = x2α

1 x
3β
2 . Then r = ∑∞

k=0 x
k
1x
k
2 ∈ �(Z2,Z2) is

a rational function. However, r has an infinite H -kernel. This follows from
the fact that supp(r) is the graph of the identity on N and an application of
Theorem 4.4.5

5.4 Notes and comments

The book [111] provides an excellent source of information on finite fields.
Theorems 5.3.4, 5.3.5 and 5.3.7, and Corollary 5.3.6 are generalizations of results

stated in [53], [54], [148], and [149].
The theory of Mahler equations dates back to 1929, see [121]. Mahler equations

play an important role in transcendence question, see e.g., [134]. In [117], [118],
[119], [120], N -dimensional Mahler equations are considered.

The inverse problem, namely the question whether a solution of a Mahler equation
is automatic has been discussed under various aspects in [33], [34], [35], [72], [73],
and [99].

Automaticity properties of rational functions in more than one variable are dis-
cussed in [94] and [149].

In [147] one finds a treatment of formal power series in non-commuting variables.
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accessible

properly, 68
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map, 94
set, 85

automatic operation, 98
automatic set, 85
automatic sets

mixing, 91
properties, 86

automaticity
direct product, 92
general, 72
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of the group product, 99
of the inverse map, 97

automaton
minimal, 64
output-consistent, 65

(Vc,H)-automaton, 56

ball
closed Br(γ ), 10

open
o

Br(γ ), 10
Baum–Sweet sequence, 37
Boolean Algebra, 85
B, 85

Cauchy product, 86
cellular automata

left dependent, 145
cellular automaton, 143

preserves polynomials, 144
counting function, 123

decimation, 38
degree of a state, 121

eigenvalue
leading, 133

empty sequence, 11
empty symbol, 11
evaluation map, 102
expanding, 19
expansion, G-, 12

f -automaton, 64
finite preimage property, 114
formal series, 12

G-blocking, 80
G-expansion, 12
G-reduction, 12
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graph

F -, 47
kernel, 48
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reduced kernel, 101
transition, 57

group
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Heisenberg group, 15
discrete, 16
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L-equal, 68

Mahler equation, 154
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N -dimensional, 155

map
p-valuation, 109
automatic, 94
evaluation, 102
induced, 145
�-block, 158

matrix
irreducible, 136
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primitive, 136
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multiplicatively independent, 111
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algebraic, 137
geometric, 137

norm, 9
direct product, 11
discrete, 24
induced by E, 9

operation
automatic, 98

output-consistent, 65

p-valuation map, 109
paperfolding sequence, 37
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in the transition graph, 102
of length k, 102

Perron–Frobenius Theorem, 137
polynomial

reduced substitution, 127
substitution, 53

polynomial growth, 23

polynomial over �A, 11
product

automatic, 90
Cauchy, 86
of subsets, 88
pointwise, 86

range, 45
recurrent state, 135
reduction, G-, 12
remainder-map, 29

sequence
p-recurrent, 135
admissible, 158
automatic, 55
Baum–Sweet, 37
empty, 11
over �, 11
paperfolding, 37
range of, 45
Thue–Morse, 25

series
formal, 12

set
automatic, 85
complete digit, 30
of accessible states, 61
of properly accessible states, 68
residue, 27
substitution invariant, 35

shift
left, 15
right, 15

state
accessible, 61
properly accessible, 68
recurrent, 135

subsets
product, 88

substitution, 33
generated by, 35

sum
f ∨ g, 85
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terminal vertex, 102
Thue–Morse sequence, 25
transducer property, 105

translation
left, 15
right, 15

unique upper part property, 103
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